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Nomenclature

English words

d Darcy number

c wave speed

R* radius

n power law index

We Weissenberg number

M Hartmann number

P pressure

ay half width of endoscope

as half width of tube

q flow rate

Es viscous damping force parameter
Es stiffness parameter

En rigidity parameter

Nrp thermophoresis parameter

Ny Brownian motion parameter

R, Reynolds number

G, Grashof number

B, local nanoparticle Grashof number
Jo current density distribution

R, magnetic Reynolds number

b wave amplitude

T,, T1 | constant temperature on walls
u, v, w | components of velocity

T,z radial and axial directions

k curvature parameter

C,, C1 | nanoparticles concentration on walls
S Strommer’s number




Greek words

v

€ > & 9 N0

=

heat source parameter

wave number

viscosity parameter

curvature parameter

magnetic diffusivity

radius of the endoscopic tube
wavelength

nanoparticle volume

thermal slip

amplitude ratio

nanoparticle concentration
temperature

Hybrid nanofluid viscosity

Nanofluid viscosity

Base fluid viscosity

thermal conductivity of the hybrid nanofluid
thermal conductivity of the nanofluid
thermal conductivity of the fluid
heat capacity of nanofluid

electrical conductivity of nanofluid
heat capacity of fluid

electrical conductivity of basefluid
thermal conductivity of the solid particle
heat capacity of solid particle

electrical conductivity of solid particle




Chapter 1

Introduction

The continuous process of wave contraction and relaxation along the boundary causing the
fluid to flow is termed as peristaltic pumping. This is an eminent mechanism in physiology of
fluid flows. Peristaltic phenomena is quite significant in engineering and applied mathematics
as well, because of its huge involvement in real life it has gained limelight among many re-
searchers. It is tracked back to 1966 when Latham [1] did the inaugural work in this direction
and studied peristaltic pumping. Afterwards number of researchers are inspired by the topic
and they analyzed peristaltic phenomena of different situations [2—6]. It has many applications
in biological field when there is no direct contact of transmitting matter with any other part
except the inner surface of walls, which makes it very effective for transmitting the fluid to short
distance without infecting it . Some medical examples are passage of food through esophagus,
movement of ovum in the fallopian tube, transport of urine from kidney to bladder, movement
of spermatozoa in the ductus efferents of reproductive tract, blood vessels vasomotion, chyme
movement in intestines and many more. Numerous advanced mechanical applications are in-
vented on the pumping principle of peristalsis for the transportation of fluid in the absence of
internal operational components. Such devices include peristaltic transport of treacherous fluid
in nuclear reactors, heart lung machine, finger and roller pumps, cell separation etc. A variety
of hose pumps also follow the working essence of peristalsis.

Non-Newtonian fluid, is the class of fluids that do not follow Newton’s law of viscosity e.g.
shampoos, soaps, sugar solutions, honey, tomato ketchup etc. A single constitutive equation is

not enough to completely characterize the diverse rheological properties of such fluids. Because



of the significance of non-Newtonian fluids, numerous researchers have examined peristaltic
transport in distinct flow configuration in several aspects. Kalantan et al. [7] studied peri-
staltic transport in curved channel for non-Newtonian fluid by numerical technique. Ali et al.
[8] analyzed peristaltic transport through curved channel by considering the micropolar fluid.
Peristaltic flow of couple stress fluid in an asymmetric channel with hall effects was examined
by Hayat et al. [9]. Singh [10] presented the Rabinowitsch fluid model for curved slider bearings
and deduced the results for shear thickening, shear thinning and Newtonian fluids. Jothi at el.
[11] analyzed the Prandtl fluid in a symmetric channel under magnetic field impact by using
long wavelength and low Reynolds number approximation. Nadeem and Maraj [12] studied the
hyperbolic tangent fluid in curved channel. Moreover some studies relevant to the topic are
given in [13 — 15].

Properties of electrically conducting fluids can be summarized with the help of Magnetohy-
drodynamic (MHD) qualities. Major applications of MHD are applicable in the disciplines like
cosmology, geophysics, astrophysics, sensors, engineering and magnetic drug targeting. Study
of complex rheology of biological fluids within the range of magnetic field known as Biomagnetic
fluid dynamics (BFD) is generally a new region in fluid mechanics. It has numerous utilizations
in medicine and bioengineering. Research work in this field is being multiplied so considerably
[16 — 22]. Due to the movement of fluid (conducting) magnetic filed creates electric current
which in result modify the magnetic field and henceforth mechanical forces are produced which
alter the flow stream. Initially such analysis was done by Vishnyakow and Pavlov [23]. In their
work, viscous fluids had been discussed.

Darcy’s Law is responsible for fluid flow in porous region meanwhile fluid in the free flow
region is represented by Navier Stokes equation. In 1967, Beavers and Joseph considered per-
meable surface with couple flow motion [24,25]. Several pragmatic practices experience the
flow in the occupancy of permeable medium especially in the dynamics of geophysical fluid.
Sandstones, limestones, beach sands, blood vessels with stones in gall bladder, human lungs
and filter paper are some of the remarkable examples of natural permeable surfaces. Akbar et
al. [26] examined the nanofluid flow through permeable walls of stenosed arteries. An excellent
biological example of the porous media is the placement of gallstones in bile ducts when they

close them completely or partially. Rapits et al. [27] considered infinite vertical plates with



fluid crossing through permeable medium. Effects of magnetic field and porous media in a ver-
tical tube are examined by Vasudev et al. [28]. Mekheimer [29] considered the porous inclined
channel for nonlinear peristaltic flow.

Parenthetically, it is more reasonable to consider curved tube/channel for the development
of mathematical models related to fluid flow domains such as blood arteries, turbine blades,
turbo-compressor devices, pumps and fluid machinery. As most of the natural flows in biological
courses and glandular pipes are designed in curved tubes [30,31]. In addition, the wall compli-
ance is found more active regarding rigidity, solidness and mass per unit area for tubes having
thinner span (<0.05cm). Medically, the biddable sort of walls have huge role in respiratory
and cardiovascular procedures where vessels stretch out because of pressure and accordingly
impacts pumping and blood pressure. It implies that under similar circumstances vessels with
greater compliance contort easily than lower compliant vessels. During the previous decades,
number of studies have taken place on compliant walls but its working phenomena in reducing
skin friction still needs a lot of work to understand [32 — 34]. In view of blood flow, study
on peristalsis with wall properties in complex geometry has moved toward becoming subject
of enthusiasm these days. To study these wall properties, the contribution of Kramer [35, 36]
is notable. Kramer published many experimental studies in which he covers the considered
entity with rubber and significant reduction is found in the drag. To study the flows through
compliant boundaries experiments have been performed i.e. dolphin propulsion , blood flow in
arteries, etc. Mittra and Prasad [37] extended the idea of compliant wall for peristaltic flows
given by Kramer .Heat transfer analysis of Jaffery fluid in a porous media was analyzed by
Dheia et al. [38] under compliant walls effects. Sreenadh et al. [39] examined the peristaltic
movement of bolus through esophagus with wall properties and heat transfer effects. Further
analyzed by many investigators as [40 — 42].

In the majority of the given references, viscosity of the fluid is viewed to be consistent. The
change in radius and temperature can impressively change the physical properties of the fluid.
Viscosity of the fluid get influenced due to the calefaction produced by the internal retarding
force that corresponds to rise in temperature, so the fluid viscosity can not be assumed to
be constant any longer. Subsequently, to inspect the flow behavior precisely it is adequate

to consider the variation of viscosity for incompressible fluids [43 — 45]. Hakeem et al. [46]



considered the hydromagnetic flow of fluid in a tube under the influence of variable viscosity.
Abbasi et al. [47] discussed the impact of viscosity depending upon temperature for magneto
hydrodynamic peristaltic flows.

Endoscopy, from the very beginning has dramatically affected the execution of modern ex-
amination. It has created new ways of diagnostic possibilities that are still growing rapidly.
Inclusion of a long attenuated tube specifically into the body to watch an interior tissue or
organ in particular is called endoscopy. Its simultaneous usage is to perform different tasks
such as imaging and minor surgery. From dynamic viewpoint there is no contrast amongst
catheter and endoscope. Catheters can be adjusted for cardiovascular, neurovascular, urolog-
ical, gastrointestinal and ophthalmic applications by amending the material and refining the
strategy catheters are produced. Administration of fluid and gases, drainage, access of surgical
instruments and wide range of different tasks are fundamental elements of catheters depending
upon its classification. Furthermore flow field and pressure distribution will be altered due to
lodged catheter. Number of examinations are completed to breakdown the effect of endoscope
over peristalsis. Mekheimer et al. [48] discussed the application of an endoscope by considering
the couple stress fluid model in an annulus. There are many investigations to examine the
impact of endoscope/annulus on the peristaltic flow of Newtonian and non-Newtonian fluids
[49 — 51]. An important utilization of fluid dynamics is in infusion of fluid in the body by
needles or syringes. In the surgical procedure of thread lift infusion, an expert imbues fluid or
various medical supplements in the body. Lip augmentation is one of the most popular and
used thread lift injection in modern

plastic surgery. Many investigators have theoratically studied the peristaltic fluid flow
through annular cylinders [52 — 54].

Currently, the heat transfer phenomena in peristalsis has picked up a lot of consideration
because to its innumerable applications in the field of engineering and biomedical science. Heat
transfer includes different complex procedure such as destruction of unwanted cancer tissues,
assessing skin burns, vasodilation, making of paper, food processing, hyperthermia, metabolic
heat generation and in the treatment of tissue coagulation. It is noticed that when a person does
some intense physical exercise or when body uncovered its exorbitant heat to the surrounding

environment then the flow of blood stream increases. The elements of artery should be adjusted



in such a way the increase in blood flow should be controlled. It is evident that the heat transfer
happens through skin surface by the procedure of evaporation via perspiring when temperature
exceeds 20°C and heat of person’s body drop by both radiation and conduction when the
temperature is less then 20°C. Eldabe et al. [55] discussed the heat and mass transfer analysis
of couple stress fluid in a porous media with MHD. Sinha et al. [56] analyzed the transfer
of heat in the asymmetric channel with the impact of velocity and thermal slip with variable
viscosity.

Scientists are motivated to investigate increasingly in thermal engineering due to rising
needs of modern technology driven world. Right now, a standout amongst most crucial quest
is to give attention on new kind of heat transfer fluids. Scientists found that expansion of solid
particles to base fluid can enhance the thermal exchange ability. In view of this idea, a new fluid
named as "nanofluid" is introduced and it has hold the attention of scientists and kept them
passionate through the last two decades and word “nanofluid” was first introduced by Choi
[57]. In the study of nanofluids, thermophoresis and Brownian motion shows vital importance
as proposed by Buongiorno [58]. The term nanofluid is used to represent the suspension of
ultrafine elements with diameter upto 50nm. These elements may be nonmetals (graphite,
carbon nanotubes) or metals (oxides, carbides, nitrides). Ordinarily, water, ethylene glycol, oil
etc. are utilized as base liquids, which have naturally low thermal conductivity. As metals have
greater thermal conductivity, thus their inclusion in conventional fluids give the possibility to
enhance the substantially higher thermal conductivity of base fluids. Modern research uncovers
that nanofluid based frameworks have a broad potential zone, for example, electronics cooling,
nuclear reactor cooling, modulators, optical gratings, sink float separations, heat exchangers,
refrigerators and solar collectors [59 — 61]. Very significant and intriguing use of nanoparticles
in medicine is drug delivery. In this process nanoparticles are engineered that they only attract
to malignant cells which allow coordinate treatment of these cells. This procedure is mostly
utilized in cancer treatment so that it cause less harm to healthy cells. The prospective usage to
such mixture fluids for different systems have showed the importance of meticulous examination
on properties of nanofluids [62 — 64]. Since the size and the shape of nanoparticles plays an
effective part in improving the thermal conductivity of base fluid therefore, Timofeeva et al.

[65] exhibit a research where shape effect of nanofluid parcticles is considered.



Magnetic properties of nanoparticles include another scope, where they can improve the
utilization of an external magnetic field. Infact, magnetic nanofluids have the prospects for
both of liquid and magnetic field. Some of the useful applications are optical gratings, switches,
adjustable optical fiber filters and modulators. Magnetic nanoparticles show critical signifi-
cance in the treatment of cancer where medicine and the nanoparticles are instructed to move
with the circulation system towards the malignant cells with magnets. The influence of these
nanoparticles on the malignancy are found in more adhesive than the invigorating cells. Mody
et al. [66] discussed that the magnetic nanoparticles are used as a drug agent to treat the
tumor cells. Abbasi et al. [67] studied the hydromagnetic peristaltic flow of nanofluid under
the influence of temperature dependent viscosity.

Keeping an eye on above literature, the purpose of the present thesis is to study the theoret-
ical analysis of peristaltic transport of nanofluid in different flow configurations under different
effects. Dimensionless parameters and assumptions of long wavelength and low Reynolds num-
ber are used to present the significant modeling. The resulting equations are then solved exactly
and by using HPM techniques [68]. Physical clarification of results is given with the help of
tables and graphs. The thesis consists of six chapters that are prepared by the author and
is published in international journal. Chapter 1 is devoted to the introduction while the
other five are mainly the study and analysis of peristaltic flow of nanofluid in the presence of
endoscope.

The unit wise division of the thesis is presented as below.

Chapter 2 reveals the study of peristaltic transport of nano hyperbolic tangent fluid in
an annulus. The motivation behind the current examination is to concentrate on the impacts
of induced magnetic field on the peristaltic flow of non-Newtonian fluid. The flow is explored
in a wave frame of reference which is moving with velocity ¢. Nanoparticle and temperature
conditions are comprehended analytically by utilizing Homotopy Perturbation Method and
exact solutions are calculated for velocity, axial induced magnetic field, current distribution,
pressure gradient and stream functions. The impacts of various rising parameters are examined
for sinusoidal wave. The phenomenon of trapping has additionally been talked about toward
the end of chapter.

In chapter 3, we deal with the peristaltic transport of Au-nanoparticles in curved tube

10



having biddable walls. Governing equations have been derived for curved tube by using toroidal
coordinate system. Long wavelength and low Reynolds number approximation are utilised to
tackle the nonlinear partial differential equation. Furthermore, perturbation approximation is
used in the form of variant curvature parameter to get the analytical solutions such as axial
velocity and streamlines. Graphs are drawn to understand the physical features of dominant
parameters such as Grashoff’s number, heat source/sink parameter, amplitude ratio and elastic
parameters. Also temperature tables are subsumed for varying values of mentioned parameters.
This chapter summarised that there is a critical contrast amongst curvature and non-curvature
flow across the catheterised tube.

The purpose of chapter 4 is to summarize the effects of different shaped Ag-nanoparticles
on peristaltic flow through a curved tube having permeable walls.The different shaped Ag-
nanoparticles are cylinders,bricks and platelets.To study the behaviour of these Ag-nanoparticles
mathematically, system of toroidal coordinate for viscous fluid is utilized. Furthermore, the
analysis is carried out under the assumptions of low Reynolds number and long wavelength
approximation. The method of Perturbation approximation is utilized to simplify the problem
and get the results for pressure gradient, pressure rise, axial velocity and stream functions. The
effects of several parameters have been discussed graphically. We percieve from present analysis
that the temperature profile exhibits a decline for larger shape factor of Ag-nanoparticles. Also
the trapped bolus is observed to have larger size for bigger shape factor.

Nanofluids are classified as a class of fluids that enhance the thermal conductivity and
serve as a modern drug delivery technique. The main motivation of chapter 5 is to illustrate
the effects of variable viscosity on peristaltic flow of Au-nanoparticles. The geometry under
consideration is a curved tube with an endoscope inserted into it. The constructed mathematical
differential system is solved by perturbation method. The comparison between curvature and
non-curvature tube over velocity, pressure gradient and pressure rise are visualized graphically.
For better comprehension of flow and heat characteristics, streamlines for flow and contour map
for temperature are plotted. The contemporary investigstion has revealed that non-curvature
tube exhibits larger velocity, pressure gradient and pressure rise in the presence of nanoparticles.

Chapter 6 is the study of hybrid nanofluid, which is considered to be a new class of

nanofluids and getting famous due to its thermal properties and possible utilities to further
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ameliorates the heat transfer rate. Main objective of this analysis is to represent a comparison
between conventional nanofluid and hybrid nanofluid when fluid passes through curved tube
with an endoscope inserted in it while flow behavior is peristaltic. Cu/water nanofluid and
Cu — FeyOy/water hybrid nanofluid are considered for this problem. Results for pressure
gradient, velocity, pressure rise and streamlines are given graphically. Tables for temperature
and heat transfer rate are also mentioned. Present study concludes that heat transfer rate for

hybrid nanofluid is higher in comparison to nanofluid.
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Chapter 2

Consequences of induced magnetic
field on peristaltic low of nano
hyperbolic tangent fluid in an

annulus

The objective of this present chapter is to investigate the peristaltic transport of nano hyperbolic
tangent fluid in an endoscope. The motivation behind this examination is to concentrate on
the impacts of induced magnetic field on the peristaltic flow of non-Newtonian fluid. The flow
is explored in a moving wave frame of velocity c. Nanoparticle and temperature conditions
have been comprehended analytically by using Homotopy Perturbation Method while exact
solutions are calculated for velocity, axial induced magnetic field, current distribution, pressure
gradient and stream functions. The impacts of various rising parameters are examined for
sinusoidal wave. The phenomenon of trapping has additionally been talked about toward the

end of chapter.
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2.1 Mathematical formulation

The basic equations for magnetohydrodynamics, abandoning the free charges and displacement
currents are defined as [22]

(1) Maxwell’s equation

V-H*=0, (2.1)
V-E =0, (2.2)
VxHT"=J with) =c{E +p, (V' xHT)}, (2.3)
OH'*
V x E, = *,U/EW (24)
(74) The continuity equation

V.V =0. (2.5)

(737) The Navier-Stokes equation

DV’ /

P = VP V(I < H) 4 pf, (2.6)

where V' defines velocity vector, J’ represents electric current density, E’ is an induced electric
field, p, denotes magnetic permeability while o represent electrical conductivity, D/Dt’ is the

material derivative and 7’ is giving stress tensor. The stress tensor is given as

7' = [1oo + (1104 00) tanh(I7)"J;], (2.7)

in which 7, 14, m, I', denote the zero shear rate viscosity, infinite rate of shear viscosity,

power law index, and time constant. - is now defined as

7‘,/5227@%’1‘_\/?7 (2.8)

7 = trace(grad V' + (grad V/)1)2, (2.9)

where

7 is representing second invariant strain tensor. Here we discuss Eq. (2.7) for 1, = 0 and I'y
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< 1. The element of extra stress tensor so inscribed as

T =no[(IY)"]v; = nol(1 + Ty — 1)"]v; = [1 + n(Ty — D]ngs, (2.10)

v, =L+LT. (2.11)

(1v) The energy equation

DT d
(pe) sy = KV°T + [(?T)VT.VT + dyVC.VT](pe)p, (2.12)
1
(v) The mass concentration
Dt dyV=C + (Tl )V, (2.13)

(7v) On combining Maxwell’s equations, we get induction equation as follow

aH/+ + 2 +
W:VX{V’><H’}+CVH’. (2.14)

where magnetic diffusitivity is given as ¢ = ﬁ

2.2 Problem formulation

Consider electrically conducting and incompressible nanofluid across the cavity among two
coaxial tubes. The internal tube is uniform, and is sustained at the temperature Ty and
nanoparticle velocity Cy while outer tube experiences a sinusoidal wave travelling down its
walls having temperature 77 and nanoparticle velocity C;. Here we consider cylindrical co-
ordinates (R’,Z’) such as R’ is the radial coordinates and Z’ is axial coordinates. Uniform
magnetic field of strength HyR, /R’ is applied externally in radial direction which results in an
induced magnetic field H’ (h}%, (R',Z',t),0,h, (R, Z', t’)). So the total magnetic field will be
H (D 4, 0,8,).

The tube walls are taken to be non-conductive and walls surface geometry is shown in Fig.

15



2.1.

=3

Fig. 2.1 Geometry of problem

The surfaces of the wall satisfy:

Ry =a,, (2.15)
2
R = bsin% (2" = ct') + a,, (2.16)

here b is representing wave amplitude, a,and a, are the radius of two tubes, A represent the
wavelength and c is denoting propagation velocity.

By assuming the flow parameters independent of the azimuthal coordinates, the velocity
is given as V' = (U’,0,W’) where U’ and W' are the components of velocity in R’ and Z’

direction, respectively. Temperature and concentration fields take the form
T=T(R,Zt), C=C(R,Z,t). (2.17)

The governing equations along with nanoparticles in the fixed frame are given as

Ohy by Dby
orR' T R 07

=0, (2.18)
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! ! !
ou U ow 219)

or ' o7
ou’ ,ou’ ,ou's o 1 O(R7lhy)  O(Thhy)  Thy
or Vo *Woz) = "ar TR o o7 R
R on)
+ 1k, [8Z’ <H;R3 + h’R> — mﬂ , (2.20)
ou’ LOW! LW oy 1 O(R'thhg)  0(T%y)
o PV T Woz) = ez " wmar T oz
On’ d R R
. [8RZ’ ~ o (Hg}; + K )} <H{,R$ + 1) >
+ pgar(T —T1) + pgac(C — Ch). (2.21)
Energy and mass concentration equations are given as
9T 10T 8T oC 9T  dC aT
o) o)
W' +W'iz) = lgpe + o * 972 ™M Gpar oz oz
dr 0T o, 0T
oC oC 0*C 1 oC 9*C dr  0°T 1 0T  O0°T
’ / _ il — — 2.2
om ™ Waoz) =Gz " wor " or?) Y 1,922 T wor T ore) 3%

_ (po)
= (Ze)

component form is given as

; is the proportion of the effective heat capacity. The magnetic induction equations in

0 0 0 ou’ R ou’
7t Vam | (g +1) s

av T 8R’+W6Z’)_8R’ ° R

ot
G- e

0z' "\ o0z’

o0 T W Wz~ oz |t o o

1 0 on, 0 0 1 R
=< (5 )~ 57 (o + ) (e + 7). (2.25)

/ ! /
[a 9 0 aw]h, oW <H,Rg+h,R>
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In the non moving coordinates (R’, Z’), the flow among the two cylinders is not steady. Flow
becomes steady in a wave structure (r/, 2') that moves with similar speed as the wave movement

in the Z’ direction. Both structures are connected through the following transformations

P =R, =7 —ct', U =u, v =W —c, (2.26)

where u/, w’ are the velocity components in the wave structure. Suitable boundary limits in

wave structures stands

w = —c, atr' =7, =0, =0,
2
w' = —c, at ' =71 =ay+ bsin Tﬂ(z’), (2.27)
T=Tyatr' =r], T=T at v’ =1, (2.28)
C=Coatr' =r], C=Cyatr =r). (2.29)

Introducing the dimensionless parameters

RI Z/ / / !/ ! / /
R - &g 2, w W g A A
as A as A c asc c asc
c)\,u To—T1 A A 12 00—01
T T4 . b a h! n
rn = ;;26, rgZézl—l—ssm%rz,a:a—z, e:a—;, hr:ﬁ;’ hz—FZO’
_ pgarH3(To —T1) . pgacH3(Co —Ch) _ (pc)p dp(Co — C1)
G, = , by = , Ny = ,
cu cn az(pe) s
To—T1)d k T
Ny = (pc)p (o = T1)dr Qg = W = =, (2.30)
Ty az(pc)y (pc)s az

The parameters Ny, N¢, G, b,, Ry, ¢ are representing the Brownian motion parameter, ther-
mophoresis parameter, local temperature Grashof number, local nanoparticle Grashof number,
Reynolds number and wave number respectively. € is the radius ratio and amplitude ratio is
represented by €. W, as Weissenberg number.

Making use of above non-dimensional parameters Egs. (2.18) to (2.25) with conditions (2.27)
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0 (2.29) become

o T =0, (2.31)
ow u Ou
2% it 0, (2.32)
du Ou 8p 0 o0 10ry  Oh;
3 ouw  ou \_ 2 00 2 or2
g RY(uar 8ZW) or o az( Tis) + r@r(rTrr) Too + SRy [5 <r 0z  Or )
Oh;,
—arhz} , (2.33)
ow ow,  Op 0 10 9 Oh,, 10ry  Oh,
(SRy(WE UE) == _a+5$(Tzz)+;a(rTr7)+S R |: 8]:‘ 5(1‘ az a >:|
<r?2+h>+gr9+ba (2.34)
where
Ty = ?[1 + n(Wey —1)]20,
= (2 P (W — 1),
or 0z
ow
T2z = E[l + n(We")’ — 1)]2(5,
Ty = %[1 + n(We’y — 1)]26, (235)
ou. ow Ou , oW . 5 9 9
v = [(ar)é (ar+86)+2(8)5+2 (5] (2.36)
Energy, mass and induction equations become
oT oT PT 19T 50T oC oT
dase [“ar +Waz] = <a2 car 7O a?) (G 5,
oc orT or or
204 Ol e | 2,012
oc  oC 0’C 10C  ,0*°C. dp ,0*°T 10T 50T
dazc [“a+ az} =hGE iy V) T G Y T B3
0 0 0 oul /re ou, o6 0 19ry  Oh, Oh.,
g L?t * (“5 +w§) - 87"} (7 + hT) _55}% R, 0z {5 (r 0z 0z ) - or ]  (2:39)
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0 0 0 ow ow /7o 110 Oh,
g at““aﬁwaz)‘az]hfar(r+hr)—3m[rar<rar>

8 8 1 T2
09 (ar ; > (5 +

(2.40)

Utilizing the long wavelength approximation and neglecting terms of order § and higher, Egs.

(2.31) to (2.40) take the form

9p _

0z

where R,,

oh, hr
+

ar TZO’
o r 0z
dp
o
10 ow ow 9., Ohy (1o
T Or (r<1+n<W€8r_1)> (97">+5Rm or (?—i_hT)—i_gra—i_bTU’
Ocd 10, 00 20 4
bg§+;§(r§)+Nt(a) =0,
10 0o N, 10 09

(;a(fa))‘i‘ Nb(;a f@)) ;

ow /19 B 1 [10 Oh,
o () =g [a( a)}

a
S

(2.41)

(2.42)

(2.43)

(2.44)

(2.45)

(2.46)

(2.47)

H?2 . :
=2 and §? = pOT’;e are magnetic Reynolds number and Strommer’s number(magnetic

force number) respectively. Eq. (2.43) displays that p is independent of r.
Rate of volume flow and boundary conditions
In the fixed coordinates volume flow rate in the instantaneous position is specified by
Ry
Q= QW/RIWIdR/,

Ry

(2.48)

where R} is a function of Z’' and ¢'. Invoking Eq. (2.26) into Eq. (2.48) and integrating produces

2 /2)
)

Q= q+ me(ry —rf (2.49)
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where

!
T2

q= 27r/7"'w'dr'. (2.50)

!
1

In the moving coordinates system the volume flow rate is independent of time as mention in

Eq. (2.50). Here 74 is the function of 2z’ only. Now utilizing dimensionless variables, we find

!

T2
q
F=—=2 dr. 2.51
radc /rw r (2.51)
i

Over a period T' = \/c the time-mean flow at a fixed z is given as

/_l A 4!
q——T/Qﬁ. (2.52)

Invoking Eq. (2.49) into Eq. (2.52) and integrating, we attain

b2
qd =q+mc <a% —a?+ 2) , (2.53)
which can be inscribed as
q q g2
—=— +1+=—¢. (2.54)
Ta;c — Tazc 2
Dimensionless time-mean flow can be given as
q/
qg=——- (2.55)
meas

With the aid of Egs. (2.51) and (2.55), Eq. (2.54) become
2

q:F—|—1—|—%—62. (2.56)

The consistent dimensionless boundary conditions for the problem under consideration are
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defined as

w = —latr=r1r1=¢ w=—1latr=ry=1+cesin(27z),
hr = 0,h,=0atr=r,
c =1 atr=r1r1, 0=0 at T = ra,

0 =1 atr=r1, 6=0 at r =ra. (2.57)

2.3 Solution of the problem

From Eq. (2.41), and boundary condition (2.57), we come to know that h, = 0. Eqs. (2.44)

and (2.47) are given as

Op — lg al _ @ 25, Oh, T2
9 " 1ol (1+n (Wear 1)) o)+ SR, (T) + 9.0+ b0, (2.58)
ow 0 oh,
_Rm7“25 = o (7“ ar ) . (2_59)

Homotopy perturbation method is utilized to solve the above equations. This advises that we

write Egs. (2.37) to (2.38), as [68]

2’/“2
Hlw 0) = (1= ) [£(w) - L) +3 [£0w) - 5 - 22
w 2 w 2w
—l—%nWe (;) + 2nW, (;) (gﬂ) + g-0 + b0, (2.60)
H(o, 2) = (1 - 2) [£(0) — £(ow)] + 2 [fs(a) n ji;@gr(rgf»} | (2.61)
H,z) = (1 —x)[£(0) — £(010)] + = [,5(9) + Nb%% + Nt(gf)Q] , (2.62)
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Initial guess and the linear operator are given as

£9r
£wr
UlO(ra Z)

wag(T, 2)

10 0O 10,6 0
corTgr) Lo = 1)
10 0 M?r3
;E(T(l—”)a)— 2
(—2), O10(r,2) = (—2

r; — T r; — 1y’

0z

According to Homotopy Perturbation Method, we write

Oy + 61 + 1’292 + ...,
oo+ 01 +1‘20'2 + ...
wo + rwy + iL‘z'LUQ + ...,

po + zp1 + 332292 + ..

8 /
o (a4frk +a5r F + a2r2) —1.

(2.63)

(2.64)

Utilizing these equations in Eqgs. (2.61) and (2.62), the expression for temperature and concen-

tration field can be written as

0 = SogT + I'sgg + sg7lnr + S38,

0 = 8391‘3 + 1‘2846 4 S411 4 Ssa71InT + S45.

The expressions (2.65) and (2.66) finally make it convenient to give the velocity

op

w = (b47‘k + 1357“7’C + b27"2> + bm57‘k + 61067’7’“ + b1077’2 + b1087"2k71

0z

+b1007 " @Y £ b1107° + b1y r Tt 4 briarF T 4 brgr B — b3k

7b86,r—k—2 o b87,r_k+2 o b88rk—2 . b897,,—k+2 o b907‘2k o bng_Qk

—bgg’l"_3k_2 — b967“4 + b1007‘2 Inr — 1.

23

(2.65)

(2.66)

(2.67)



and pressure gradient is given as

0z

Integration of Eq. (2.59) with respect to r takes the form

ahz Rng C1
= w

or r ry’

where ¢ is constant.
To find the constant ¢;, we used Egs. (2.3) and (2.69)
Oh, Ry,ro ¢

J:— e R
0 or T w+r1

since Jy = 0 at r = ro, so ¢; = R,,72, which gives

th - RmTQ
JO__aT‘_ , (w+1).

24
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L b [9 - <1 + 62> + 62] + b115.

(2.68)

(2.69)

(2.70)

(2.71)



The axial induced magnetic field is given as

B op rk — ok rok — =k ra — 12
he = ey, (b4 () () e (P
k_ ok —k _ .~k 2 .2
ry —T _ Ty —T Ty —T
( ? > bios (k ) + bior ( 5 )
5 p2kl _ p2k-1 ., T;(2k+1)__r—(2k+1)
A 109 1

3 3 -1 —1 k+1 k+1
Ty — T Ty —T ro ' —T
—b 2 b 2 -
3 ) 111< 1 >+112< Erl )
T;k+1 kel b T:23k72 _ k=2 b T;k72 _ k-2
—k+1 3k —2 —k—-2
k+2 k42 k—2 k—2 —k+2 —k+2
T - T T - T T - T
—bg7 2 7 ) bss 2 ) bsg 2 0
k+2 k—2 —k+2
r2k _ 2k r2k _ 2k f(?’k”) _ p—(3k+2)
—b 20 b 20 b 2
9°< 2k >+91< 2% >+92 3k + 2

rd g4 r2lnry —r2lnr 12 — 2
—b96< 24 )—Hnoo( 2 22 — 24 )] (2.72)

From Egs. (2.71) and (2.72), the current density distribution become

0
Jo = RmTZ[£ (b4rk_1 + byr R 4 b27“) + b1o57F 7+ broerF T 4 bygrr
+010872 72 + b1oor ™ *F 2 £ b1yor? 4 bi11r 2 + brar® + byyzrF
b3 b8 bkl k3 g B pyop2h1

—5917"72]971 — b927’73k73 — b967’3 +rln Tbl()o]. (2.73)

The pressure rise, AP, and the frictional forces on the outer and inner tubes, F© and F®, in

non-dimensional form are given as

1 1
AP — gl;’d,z, F(o>:/ rg(_@)dz, F<i>:/ rf(_@)dz. (2.74)
0 0

The pressure rise AP and the friction forces are calculated numerically by mathematica, where
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as appendix is given to define constants.The velocities and stream functions are related as [1]

—6 00 1,00
= (= d 2.
u=""() mdw=1(3)) (2.75)
Using Eq. (2.67) into Eq. (2.75), we get stream function as
ap P2 k2 k2 _ o —k+2 A A
UV = — || ——1— b | ———— L b 1
az<4< PR I W +2< >
r2 g2 ph+2 k2 — 71c+2
— b -1 b
(57) b () o |
A A p2h1 2k po2k1 2k
b L b SEEE b 2
+107< 4 >+ 108( 2k +1 + 0109 -2k +1
P56 b ph3 _ k3
b L b — b -1
+11o< 5 >+ 11 (r—mr) + 112( P13
k43 _ T1_k+3 r3k — 3k Pk —k
s (T ) e () e
, P _ T]f+4 ., rk ok L Fkta _ r1—k+4
T\ k4 S\ k * —k+4
F2k42 _ 2k+2 F2k+2 L —2k42 p—3k _ =3k
—bgo | ——=—2— | —bo1 | 2 —bgy | ———1—
2k + 2 —2k + 2 3k
r6 — 0 rAlnr —r¥lnr;,  rt—ort
—b ! b ! — L. 2.76
96( 6 )-i- 100( 1 16 )] ( )

2.4 Results and discussion

2.4.1 Pumping characteristics

This section deals with the effects of different parameters involved in the study of pressure
gradlent , frictional forces F(®) and F(©) and pressure rise AP. Figs 2.2 — 2.13 depicts these
effects. In Fz’g 2.2, pressure gradient variations are given against axial coordinates z for values of
Hartmann number M and keeping other parameters fixed. As M elevates, maximum amplitude
of pressure gradient rises. Fig 2.3 describes that by elevating Brownian motion parameter
Ny, the amplitude of pressure gradients drops. F'ig 2.4 depicts a decline in pressure gradient with

elevating values of thermophoresis parameter V;. It is evident from figures that pressure gradient
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is compact in extensive part of annulus z € [0,0.5] and in the shrinked section z € [0.5,1] the
pressure gradient is significantly greater i.e. in the extensive portion, fluid can smoothly flow
without interference of huge pressure gradient whereas in the shrinked section, massive pressure
gradient is required to sustain the flux primarily at the narrowest point z = 0.75. This even
satisfies the physical situation. Figs 2.5—2.7 gives the variation of pressure rise with the volume
flow rate with varying M, Ny, N;. These figures depict an inverse relation among pressure rise
and flow rate i.e. a rise in flow rate drops the pressure rise which describes that maximum
pressure results in zero flow rate and elevating flow rate reduces the pressure rise. Retrograde
pumping region (AP > 0,q < 0), augmented pumping region (AP < 0,q > 0) and peristaltic
pumping region (AP > 0,q > 0) are the pumping regions which are displayed in the Fig 2.5
within the intervals g € [0,0.5], ¢ € [0.5,0.7] and ¢ € [0.7,1] respectively. It is also evident
that by increasing Hartmann number M, the pressure rise elevates in the retrograde pumping
region and opposite behaviors are observed in augmented pumping. Also Fig 2.5 reveals free
pumping region for AP = 0, ¢ = 0. It can be seen in Fig 2.6 that by elevating Brownian
motion parameter N, pressure rise decreases whereas for increasing thermophoresis parameter
N, pressure rise show an increase which is revealed in Fig 2.7.

Frictional forces for inner and outer wall against flow rate are shown in Fig 2.8 — 2.13.
Behavior of these forces is entirely opposite to that of pressure rise whereas both behave likewise
for maintaining the values of different parameters. Also outer wall friction is observed to be

dominant as compared to inner wall friction.

2.4.2 Magnetic field characteristics

The variations of axial induced magnetic field h, at » = 0.22 with other settled arrangement of
parameters with various estimations of Hartmann number M along axial coordinate z is shown
in Fig 2.14. It is revealed that by expanding the values of M, the axial induced magnetic field
h, show an increment. Behaviour of h, for several values of ¢ is described in Fig 2.17. As
q elevates, h, show decreasing behavior. In Fig 2.17, variation of R, is taken to investigate the
induced magnetic field along z coordinate. By increasing R,,, h, first increases in the region
[0,0.1] then decreasing behavior is observed in region [0.1,0.4] and again a sharp increasing

behavior is seen in the region [0.4, 1].
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In Fig 2.17, different values of M are taken for induced magnetic field across annulus.
It declines in region [0,0.4] whereas elevates in region [0.4, 1] for increasing values of M. A
rise in magnetic Reynolds number R, results in rise of induced magnetic field h, as depicted
in F'ig 2.18. Similar behavior is observed for flow rate ¢ which can be seen in Fig 2.18.
By increasing Weisenberg number We , induced magnetic field h, first decreases in region
[0,0.5] and then follows an increasing attitude in region [0.5, 1] as plotted in Fig 2.20. Current
density J, across annulus is discussed in Fig 2.21 —2.22. It is observed that current density for

increasing M initially declines and then elevates for increasing R,,.

2.4.3 Nanofluid characteristics

It is seen that the temperature profile 0 elevates with the increasing value of Brownian motion
parameter N, as can be seen in Fig 2.23. Exactly same behavior is found for thermophoresis
parameter N; in F'ig 2.24. Now by increasing N, concentration profile o is found to be increas-
ing as seen in Fig 2.25 whereas for increasing IV; opposite trend is noticed i.e. ¢ shows decline

as depicted in Fig 2.26.

2.4.4 Fluid trapping

When an internal circulating bolus of fluid is formed along closed streamline and moves forward
with peristaltic wave then such phenomenon is said to be trapping. Trapping situation is

described by plotting the streamlines in F'igs 2.27 — 2.29.
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Fig. 2.2 : Pressure gradient dp/dz with z for different values of M.

250 —

200+
Np = 1, 5, 10, 15

Fig. 2.3 : Pressure gradient dp/dz with z for different values of Nj.
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Ni=1,5, 10,15
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Fig. 2.5 : Pressure rise Ap with ¢ for different values of M.
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Fig. 2.7 : Pressure rise Ap with ¢ for different values of V.
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Np =0.55,10, 15

Fig. 2.9: Friction force F(¢) (on inner wall) with ¢ for different values of IV,
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N: =0.55, 10, 15

00 05 10

Fig. 2.11: Friction force F'(0) (on outer wall) with ¢ for different values of M.
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Fig. 2.13: The variation of friction force F'(0) (on outer wall) with ¢ for different values of Nj.
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Fig. 2.14: Axial induced magnetic field h, with z for different values of M.
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Fig. 2.15: Axial induced magnetic field h, with z for different values of ¢.
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Fig. 2.16: Axial induced magnetic field h, with the z for different values of R,,.
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Fig. 2.17: The modifications of axial induced magnetic field h, with the radial coordinate r

for different values of M where r € [e, 2]
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Fig. 2.18: The modifications of axial induced magnetic field h, with the radial coordinate r

for different values of R,, where r € [e, 72].
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Fig. 2.19: The modifications of axial induced magnetic field h, with the radial coordinate r

for different values of ¢ where r € [e, 72].
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Fig. 2.20: The modification of axial induced magnetic field h, with the radial coordinate r for

different values of W, where r € [¢, r2].
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Fig. 2.21: The modification of current density J, across the annulus for different values of M

where r € [, 72].
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Fig. 2.22: The variation of current density J, with the radial coordinate r for different values

of R, where r € [¢,73].
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Fig. 2.23: Temperature profile for modifications of V.
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Fig. 2.24: Temperature profile for modifications of NVy.
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Fig. 2.25: Concentration profile for modifications of Nj,.
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2.5

Fig.2.27 : Streamlines for e = 0.2, e = 0.3,¢ = 0.4.

Conclusions

This study observes the impact of induced magnetic filed on peristaltic flow of nano hyperbolic

tangent fluid in an endoscope. The main findings of the examination are given beneath.

The greatest amplitude of pressure gradient boosts as the Hartmann number elevate while

it drops for expanding values of N, and N;.
For rising values of Ny and N; retrograde, peristaltic and augmented pumping grows.

There is a contrarily linear relation among Ap and ¢ that is pressure rise falls off with

rising flow rate.

The outer and inner friction forces carry on by an opposite manner contrasted with

pressure rise Ap.

The induced magnetic field h, boosts by aggravating Magnetic Reynolds number across

the endoscope.
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e Expansion in values of Magnetic Reynolds number results in larger current density J,.
e Temperature profile gives increasing behavior with rising values of NV, and Ny.

e Nanoparticles concentration decline with the rise of NV, and elevates with increasing INVp.
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Chapter 3

Au-nanoparticles analysis of

catheterised curved tube with

biddable walls

In the extant analysis, we have analyzed the peristaltic transport of Au-nanoparticles in curved
tube having biddable walls. Governing equations have been derived for curved tube by us-
ing toroidal coordinate system. Long wavelength and low Reynolds number approximation
are utilised to tackle the nonlinear partial differential equation. Furthermore, perturbation
approximation is used to achieve the analytical solutions such as axial velocity and stream-
lines. Graphs are plotted to understand the physical features of dominant parameters such as
Grashoff’s number, heat source/sink parameter, amplitude ratio and elastic parameters. Also
temperature tables are subsumed for varying values of mentioned parameters. This chapter
summarised that there is a critical contrast amongst curvature and non-curvature flow across

the catheterised tube.

3.1 Mathematical formulation

The movement of blood for peristaltic transport is modelled in a region between two annular
curved tubes. Fluid under consideration is incompressible, laminar and viscous. Gold nanopar-

ticles are considered along with blood. Outer tube walls are flexible and also assumed to be
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biddable on which mobile waves are inflicted with small amplitude. While inner tube is firm
and maintains temperature T,. The flow is generated by sinusoidal wave of range b moving with
speed c¢ through the outer biddable walls of tube. The formulated model for curved tube is, a
flexible circular tube of sweep ao wrapped as a hover of radius k£ and an endoscope as a coaxial
tube with span aq. Because of the bent idea of tube, curvature is likewise considered.

Mathematically, two wall surfaces are delineated as follow

Rl = aip,

2
Ry = n= bsinT7T (2" = ct') + a,, (3.1)

Fig.3.1(a). Geometry of problem
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AZ

Fig.3.1(b)

Fig. 3.1 uncovers that the toroidal coordinates system (r, 0, ¢) is utilized to study the stream
field of the mentioned geometry. To ignore the impact of torsion, flow geometry is considered to
lie in a plane. C is representing the focal point of cross area of the tube that is making an angle
¢ with axial plane and (r, 6) is representing polar coordinates of arbitrary point P. Radius of
curvature of this curved tube is given as OC = k while z = ky is representing axial coordinate.

For incompressible fluid, continuity equation in the toroidal coordinates is characterized

below

oU 10V k oW Q Ucos@—Vsin@_O

e _ _ _ — 3.2
9R R0 k1 ReosB0Z 'R kit Reosd (3.2)

The R , 6 and Z components of momentum equation using toroidal coordinate are written as
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Energy equation for the curved tube and considering the effects of heat generation for

nanofluid is described as
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(C) 67T+_07T+ kW 87T+Qaif — 82T+167T+ cos 0 iT
Poif\ 9t TR k+ Reos00Z ' Roo) " \9R2 T ROR ' k+ RcosOOR
1 9*T k2 0T
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R? 99 (k+ Rcos0)?20Z
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- . 3.6
k+Rcos€60>+QO (3:6)
The appropriate boundary conditions are given as
W = O,T:To, at Rlezal,
- _ - _ _ 2
W = 0, T=T, at R:Rg:n:bsin;(Z'—ct/)%—aZ. (3.7)

Mathematically, wall compliance may be given as

here P, is representing the pressure on the wall surface from outside which is a consequence of
muscle tension and is considered zero. L is an operator that is utilized to depict the movement
of the stretched membrane with viscous retarding forces, given as

0? 0? 0

“Toz TMap Ty

L =
ot’

here 7 is representing elastic tension per unit width of the membrane, m is denoting mass per
unit area and d; is representing coefficient of viscous damping forces.

Introducing the following dimensionless quantities
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w o= E, u:&, z:i, T:L, T22Q21+5sin(27rz),
c asc A a az
t 2(T — T, ~ — _
poo @b g i Dby 5 T-T 5,
A as cli s To — 11
- 2
as 71 a5Qo azcpy a9
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K* a3 —71a3 ma’c dia?
d = 5 P = 2 ) =33 > Es 3 E3 = : (313)
as CAl g Aepy Apg Ay
After employing the lubrication approach, Egs. (3.2) — (3.6) take the form
Jp
— =0 3.14
a/r 9 ( )
Ip
— =0 3.15
80 ) ( )
L g (P 10w 10w Cwtl) | Cemsd dw
1+(¢rcosfdz pp \Or2 ror  r290* (1+(rcosf)? 1+ (rcos6 Or
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020 100 Ccos 00 19% K
SALANT LN L L =0 3.17
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1 dp _ IL(n) & &n 9%n
1+ {rcosf oz 0z 1023 T 0z0t2 + 2920t (3.18)

3.2 Solution of the problem

To get the expressions for velocity and temperature according to the given boundary condi-

tion,we consider the following
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0(r(z,t), 0) = 0o(r) + Ccos(0)01(r) + ...

w(r(z,t), ) = wo(r)+ (cos(@)wi(r) + ... (3.19)

Substituting Eq. (3.19) into Egs. (3.16) to (3.18) and equating the same powers of ¢ cos(), we

obtain the written below system and their solutions.
3.2.1 Zeroth order system and solution

82é0 1 8750 Ky

- — 2
or:  r Or nynf 0 (3.20)
&wo | 1 dwo (PB)ng My 7y dp
= 24222046, gy =L 3.21
or? r or (0B)f tng © Hyy d2 (3:21)
0o(r1) =1, wo(r1) =0, (3.22)
éo(’l"g) == 0, w[)(?“g) = 0. (3.23)

The exact solution at this order can be directly written as

Ky
~ Y
Oo(r) =Cilnr + Cy — 71;’” 2, (3.24)
wor) = M2 g @D pr (VRS (R 0 G
¢ abns " (pB)f pnp \ 64 2\ 2 2/ 4
f
+C5nr + C. (3.25)
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3.2.2 First order system and solution

920, 100, 0, 9%y 90, Ky

S S 7L 20 p0 = 2
or2 + r or 2 T or2 + or +7“’Yan 0, (3.26)
Pwy 10wy wy 9wy dwo (PB)nf Bf , = >
W_F;W_TT—FTW—FQW_F r (p/B)f TM(TH()—FGl)—O, (327)
01(r1) =0, wy(r) =0, (3.28)
él(’l"g) = 0, w1(7‘2) =0. (3.29)

Solution is obtained by substituting Eqgs. (3.24 — 3.25) into Egs. (3.26 — 3.27) and is given

as follow

f 2
- Cy Y&, Cilnr 1 K r Cyr?
01(r) =rC3 + — YA —= 3.30
i) =rCs+ =+ 8 2 r <7an16 1) (3.30)
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") 2\ b " (pB)y g 32 4 1"

C 1 3M ’Y Ch
32 Csln 7“) — Cs1n 7“) —— |-z r T (PB)n K K"f P+ Ly
2 2 | "8t 05 1y \ 48 " T

ST PR B T2 52 31
6" + s " T 5 " 5 " (3.31)

here all the C’s are constants and defined in appendix.

3.3 Results and discussion

Fluid velocity and streamlines are graphically explained for the effects of various parameters i.e.
Gy, v, ¢, F1, Es and E3. Gold nanoparticles with brick shape factor n=3.7 are used to study
these effects. Figs 3.2—3.7 are plotted to elucidate the sequel of apposite parameters for velocity
field. Furthermore, these figures also depict the difference of velocity profile for non-curvature
tube and curvature tube. In the region between tube having sinusoidal curve and endoscope,

parabolic behavior is observed for axial velocity w against all the involved parameters. Effect of
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Grashoff’s number G, is discussed in Fig 3.2(a), magnitude of axial velocity is small for small
values of G.. As GG, increases, an increase in magnitude of velocity profile is seen. It is seen that
the maximum velocity is attained closer to the inner tube as compared to the outer tube i.e.
at r = 0.38. It is also evident from the figure that the velocity for non-curvature tube is lower
in comparison to curvature tube for varying GG,. Three dimensional velocity profile is shown in
Fig.3.2(b) for brick Au nanoparticles for pertinent values of G,. Fig 3.3(a) gives the influence
of 7, heat source(sink) parameter, on the velocity. It is noticed that the velocity declines with
rise in the magnitude of «v. Non-curvature tube experiences low velocity as that of tube having
non-zero curvature. F'ig 3.3(b) is depicting the 3D graph for the velocity profile with variation
of v for brick Au nanoparticle. Fig 3.4(a) is plotted to display the effect of amplitude ratio
on velocity profile. Small variations are taken into consideration and it is clear from the graph
that an increase in ¢ gives rise to the magnitude of velocity profile. The variation gets more
small for big values of ¢. Non-curvature tube and curvature tube exhibit same behavior for
variations of ¢ with the only difference that magnitude of velocity for curvature tube is higher
than non-curvature tube. Fig 3.4(b) is sketched to give a 3D view of axial velocity for different
amplitude ratios.

Fig 3.5(a) emphasizes that as rigidity parameter F; increases there is a remarkable rise

in the velocity profile. Physically, it means that wall elastins is helpful to the fluid flow.
Tube having greater curvature experiences larger velocity. The 3D description for the effects
of F; on velocity is given in Fig 3.5(b). Effects of stiffness parameter E2 over axial velocity
are highlighted in Fig 3.6(a) and 3.6(b) for both 2D and 3D respectively. A rise in velocity
is seen for elevating values of Fs i.e. increase in Fo reduces tension in the walls of the tube
which in result pace up the fluid flow. Variation of damping coefficient Fs5 effecting the velocity
profile can be observed in Fig 3.7(a) and 3.7(b). It is found that higher values of Ej3 results
in diminishing velocity . This is due to the fact that E3 has oscillating resistance to the fluid
flow and that is the reason for decrease in velocity for wall damming coefficient E3. It may
also be seen that this behavior of velocity for F3 remain unaltered for both non-curvature and
curvature tube.

Trapping is an imperative phenomena in peristaltic motion. For the most part, the state

of streamline demonstrates the impact of boundary wall on flow pattern. Here pattern of flow
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in the area between endoscope and tube wall is discussed. Amazingly, the streamlines split to
shape recirculating closed streamlines, called bolus, inside the tube. This internally circulating
fluid pushes the peristaltic wave ahead. Arbitrary response of encased bolus is seen for variety
of G, alongside closed streamlines and is depicted in Fig 3.8. From Fig it is seen that the
quantity of caught bolus increases when G, shifts from 2 to 3 and size is likewise seen to boost
as G, additionally changes from 3 to 4. Impacts of « over enclosed bolus is considered in
Fig 3.9. It is seen that as v changes from 0.1 to 0.5, number of caught bolus elevates and the
size likewise increases as v bounces to 0.9 from 0.5. Fig 3.10 is utilized to demonstrate the effect
of ¢ over trapped bolus. As ¢ is expanded from 0.03 to 0.05, number of bolus increments and
on additionally expanding ¢ from 0.05 to 0.07 a further increment in number of bolus is seen.
Fig 3.11 is used to study the bolus phenomena for variation of ;. As value of Fy increases an
increase in size of trapped bolus is seen. From Fig 3.11 — 3.12, it is clear that the change in
bolus appearance is similar for both Fq and Es. Effects of F3 are elaborated in F'ig 3.13 and
it is noted that appearance of bolus mitigates with its increase.

Temperature profile for curved tube having elastic walls presented in Table 3.1 and 3.2.
It is witnessed that for greater value of source parameter i.e. for larger v the temperature
of the fluid increases. Also it is interesting to see that the variation in curvature effects the
temperature profile. With larger curvature parameter ¢ low temperature is noticed as can be

seen in comparison of tables.
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Figs. 3.2(a,b), Velocity profile for distinct Grashroff number G,
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Figs. 3.7(a,b), Velocity profile for distinct damping force Fs.
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Figs. 3.8(a,b,c), Streamlines for Gold nanoparticle for (a) G, = 3.8, (b) G, = 4.2, (c)

G, =4.4.
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Figs. 3.9(a, b, ¢), Streamlines for Gold nanoparticle for
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Figs. 3.10(a, b, ¢), Streamlines for Gold nanoparticles for (a) ¢ = 0.05, (b) ¢ = 0.07, (c)
¢ =0.1.



Figs. 3.11(a, b, ¢), Streamlines for Gold nanoparticles for (a) £y = 0.01, (b) E; = 0.05, (c)
E; =0.1.
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Figs. 3.12(a, b, c), Streamlines for Gold nanoparticles for (a) F2 = 0.1, (b) E2 = 0.15, (c)
Ey =0.2.
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Figs. 3.13(a, b, c), Streamlines for Gold nanoparticles for (a) F3 = 0.4, (b) E5 = 0.6, (c)

E; =0.38.
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T ¥=0.1" "¥=0.5" ¥ =009
ry=0.1 1.000000 1.000000 1.000000
0.2 0.711671 0.733329 0.7545988
0.3 0.542416 0.574373 0.606329
0.4 0421698 0.458437 0.485177
0.5 0.327408 0.365249 0.403088
0.6 0.249702 0.285777 0.321852
0.7 0.183327 0.215205 0.247083
0.8 0.125147 0.150657 0176167
0.9 0.073139 0090278 0.107418
“h"=1 0.025924 0.032803 0.039817

Table. (3.1), Temperature profile for variant source parameters with curvature ¢ = 0.

T

r “v=0.1" “y=0.5" “v=0.9"
ry=0.1 1.00000 1.000000 1.000000
0.2 0.688735 0.71079 0.732845
0.3 0.510258 0.542328 0.574399
0.4 0.385937 0.422296 0.458656
0.5 0.291537 0.328471 0.365406
0.6 0.216283 0.251008 0.285734
0.7 0.154407 0.184667 0.214927
0.8 0.102449 0.126326 0.150203
0.9 0.0581672 0.073982 0.089797
“h’=1 0.0200183 0.026275 0.032531

Table. (3.2), Temperature profile for variant source parameters with curvature ¢ = 0.5.

3.4 Conclusions

This study investigates Au-nanoparticles in an elastic curved tube with endoscope.Perturbation
method is utilized to get the analytical solution.On the basis of graphical results, some obser-

vations are made which are given below

e Non-curvature tube experiences low velocity as compared to curved tube.

Axial velocity profile is observed to be higher for greater Grashoff’s number.

Large damping force parameter F3 results in lower velocity field.

An increase in source parameter results in higher temperature.
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e Trapped bolus grow bigger with larger F7 and E5 and reduces for larger Fs.

3.5 Appendix
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Chapter 4

Endoscopic analysis of wave
propagation with Ag-nanoparticles
in curved tube having permeable

walls

The purpose of present chapter is to summarize the effects of different shaped Ag-nanoparticles
on peristaltic flow through a curved tube having permeable walls.The different shaped Ag-
nanoparticles are cylinders,bricks and platelets.To study the behaviour of these Ag-nanoparticles
mathematically, system of toroidal coordinate for viscous fluid is utilized. Furthermore, the
analysis is carried out under the assumptions of low Reynolds number and long wavelength
approximation. The method of Perturbation approximation is utilized to simplify the problem
and get the results for pressure gradient, pressure rise, axial velocity and stream functions. The
effects of several parameters have been discussed graphically. We percieve from present analysis
that the temperature profile exhibits a decline for larger shape factor of Ag-nanoparticles. Also

the trapped bolus is observed to have larger size for bigger shape factor.
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4.1 Formulation of the problem

We are interested to examine the peristaltic transport of incompressible, laminar and viscous
nanofluid in the region between two curved annular tubes. A sinusoidal wave of speed c¢ travels
along the walls of outer tube with wave amplitude b and wavelength A. Inner tube is considered
to be rigid and have constant temperature T, while outer tube maintains temperature 77. The
mathematical formulation model for curved tube is, an inflexible circular tube of radius as
wrapped as a circle of radius k and endoscope in the form of coaxial tube with radius a;. In
view of the fact that tube is curved, the curvature parameter is also taken into account. Gold
nanoparticles with shape factors brick, cylinder and platelet are considered along with blood.

Mathematically, two wall surfaces can be given as

Rl = ay,

Re — as+bsin [2; (Z—ct)], (4.1)

Fig.4.1. Geometry of problem
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Fig. 4.1 reveals that the system of toroidal coordinates (7, 6, ¢) is utilized to investigate the
flow field in the mentioned geometry. Flow geometry is considered to lie in a plane so torsion
impact is ignored. C'is representing centre of the cross section of the tube that is making an
angle ¢ with the fixed axial plane and (r, ) is representing polar coordinates of an arbitrary
point P in the cross section. Radius of the curvature of this curved tube is given as OC = k
while axial coordinate is defined as z = k.

The continuity equation for incompressible fluid in the toroidal coordinates is given below

oU U 10V Ucos—Vsind k ow

ﬁ_‘_é—i_ﬁﬁ_'_ k + Rcosf +k‘—|—RCOS§aZ:

(4.2)

The R , 6 and Z components of momentum equation using toroidal coordinate are given as

ot + ﬁ_’_ﬁﬁ—i_ k+ RcoshdZ R k + Rcos®
L (P 100 10\ K PT 207
Fnt \\oR2 " ROR " R? 92 ) " (k+ Rcos0)292Z% R2 09

) <8U _oU  VoU kW oUu V? W2cos0>
nf

£+ 1 Cosé@+VSin9_sin@@
R2  k+ Rcosf OR R R 06
2ksind  OW cos @ _ - - oP
_ - — — ———  (Ucosf — Vsinb) | — —= 4.3
+(k‘+Rc089)2 07 (k+Rcos€)2( o8 S )> OR (43)
@4__@_’_2@_’_ kW @4_@_’_ W cos 0
Pri\at TVO9R TR0  k+ Rcos00Z ' R | k+ Rcosd
Fni\\oR? "TROR " R2 99> ) " (k+ Rcos0)2022 R R? 00
N cos @ g_ sin @ <U+18‘7> N 2ksinf  OW
k+ Rcos§ OR k+ Rcosf \ R R 90 (b+ Rcos0)? 07
sin @ _ _ _ 1 0P
2T (Ucosh— Vsind) ) — = 4.4
+(k+Rcos€)2 (U cos S )) R 06 (4.4)
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ot + 8R+E 00 Jr/<:+Rcos@ 8Z+ k+ Rcosf

*W N l@ n L@zW k2 OPW 3 %%
Fni\\aR? "TROR "R 99 ) " (k+ Rcosf)? 022  (k + Rcosf)?
1 _OW  sinf OW 2k sin @ _oU oV

cos—= — —I-( cosf—= —sinf—

, (aW oW VoW W oW W(Ucosa_vsm@)>
nf

+k‘—|—Rcos@ OR R 00 k + Rcos0)? 07 07
k oP
T-T)————. 4.5
He0npg T =) = g G 07 )
Energy equation in the presence of heat generation for a nanofluid is given as,
Pomi\ a9t TV OR " k+ Reos00Z  Rao0) M \oR T ROR ' k+ RcosBIR
1 0*T k2 0T
T T » 0)2 572
R? 9p (k+ Rcosh)?0Z
sinf  oT
- . 4.6
k+&m9%)+% (46)

For the fixed frame, the boundary conditions are given as

W == O,T:To, at R:Rlzal,

L L o
W = Wpg, T=1T1, at R = Ry =bsin [;\T(Z—ct)}—kag, (4.7)

here W is the slip velocity at R as suggested in [29]

Try = /BT(WB - Q)a (48)
where @ is the Darcy’s velocity given by

K:*

Q=———(VP = (pB)nsg(T — T1), (4.9)
,unf

where k* is the permeability constant.
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For the stated nanofluid model, the nanofluid viscosity w,,r, specific heat and density are

defined as mentioned in [5]

np = s (0o = o)+ (1= 9) (00 0y = ([fé{f
(PB)ng = 0(pB)s + (1 =) (pB) s, Pnf = 0ps + (1 — @) py- (4.10)

The expression for thermal heat conductivity of nanofluids is expressed as

Koy (n— kg + ke — (n— D)(ks — ko)
K~ ket (n—Dkytolks —K) (4.11)

Here n signify shape factor of nanoparticles given by 3/, where 1 represents sphericity of
the particle and is determined by the formation of nanoparticle. For cylindrical nanoparticle
n = 6 or ¢» = 1/2 while for spherical nanoparticle ) = 1 or n = 6. Here, in this investigation
we have taken n = 6 i.e. considered spherical shape.

Since the active velocity component is axial velocity so we assume the velocity vector in the

form (0,0, W). The written below transformation is used to shift from (R, Z,#) fixed frame to

(7, Z) wave frame,

z=/7—ct, p(z,7) = P(Z,R,t), =R, w=W —¢, u=U. (4.12)

_ _ \i _ _
w = E’ r:L, u:l7 z:E’ r2zﬂzl+5sin(27rz),
c as asc A )
3 a3(Ty — T - T-T -
. i,t:C—t,Gr: 5(Th 0)pfﬂfg’9: LGy,
as A clip To —T1
_ 2
a9 1 a5Qo a2Cp¢ a2
— -, = — = 5 == T N1 R - ) 5: N
C k n a9 “ 7 (Tl —T(])]Cf © ,uf A
2= *
asp K 10y 10y
_ d= " 77 - __-7 4.13
b ey’ a%’w ror " r 0z (4.13)

In these expressions, p is representing the pressure, G, represents the Grashrof number, 0 is
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dimensionless temperature, R, is Reynolds number,y is dimensionless heat source parameter, ¢
is curvature parameter, d is the darcy number and ¢ represent wave number. After employing

the lubrication approach, Egs. (4.2) — (4.6) take the form:

op
=2=0, (4.14)
op
0= 0, (4.15)
1 Op by ainr;aiw 10w Clw+1) (cost Ow
1+ Creosfdz — pp \Or>  ror  1200% (1+(rcosh)? 1+ (reosf or
¢sinf  Jw (PB)nf 15 ~>
—_— r —0 4.16
r(1 4 (rcosf) 00 (PB)f tng (4.16)

9%0 1879 Ccos® 90 1 0%w Ky

— + - - — =0. 4.17
87’2+7’8r+1+gr00808r+r2 06> +7an (4.17)
In wave frame, the suitable boundary conditions are defined as
ézl,w:—l, at r=r1=c¢,
0=0, w=wp—1, at r=ry=1+esin(2nz), (4.18)
Dimensionless volume flow rate is given as
1 e g
—F4L -4 4.19
¢=F+5-5+, (4.19)
T2
F = / rwdr. (4.20)
T1
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4.2 Solution of the problem

In order to get the expression for velocity and temperature according to the given boundary

condition,we consider the following forms

0(r(z,t), 0) = 0Oo(r)+ Ccos(0)01(r) + ...

w(r(z,t), 0) = wo(r) + (cos(Q)wi(r) + ... (4.21)

Substituting Eq. (4.21) into Egs. (4.16) to (4.18) and equating like powers of ¢ cos(6), we obtain

the following systems and their solutions
4.2.1 Zeroth order system and solution

or2  r Or Wan B
9%wy 1% G (pﬁ)nfﬁé _ My @

0, (4.22)

- 0= ———, 4.23
o7 v or T GB)y T g e (429
éo(’f‘l) = 1, wo(Tl) = —1, (424)
fo(ra) = 0, wo(rs) = wp — 1. (4.25)
The exact solution at this order is given as
Yk

0o(r) = Cilnr + Co — %7’2, (4.26)

& YKL 4y (0] 2\, C

wo(r) Z‘Zf T’Q—Gr(p'g)nfﬁ ST - <T = _r) 4 222

e (PB)f by 64 2 2 2 4

+CsInr + Cg. (4.27)
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4.2.2 First order system and solution

920, 100, 0, 9%y 90, Ky

-7 ) i) = 4.2
or2 + ror r2 T Or? + or +7“’Yan 0, (4.28)
Pwy 10wy wy 9wy dwo (PB)nf Bf , = >
2 Trar o o Oy, 0T =0 (429)
91(7“1) = 0, wl(rl) = 0, (4.30)
01(r2) =0, wi(r2) = wg, (4.31)

Solution is obtained by substituting Eqgs. (4.26 — 4.27) into Eqgs. (4.28 — 4.29) as follow

Ky 2
- Cy Tx,; Cilar 1/ Kyrt Cpr?
01(r) =rCs + — R - = — - 4.32
(r) =G+ 24| — 2 r UK, 16 4 )° (4.32)
Cs r[ 3% (pB)ns 1 T2 c C C
— O824 2 o nf Pf [ __Bnfoa 2L 29, X2 P22
wi(r) T7+r+2 4%7"—1— T(Pﬁ)f/inf 32?“—1—27’ nr 47’—1—47"
f
Cs ol o1 1 3% 4+G(Pﬁ)nfﬂf 7% 6+C1 4
5 " yInr 5Inr o S%T (0B oy 15 " L7l
30]_ 4 02 4 03 4 C4 2 05 2
—— —r® - —=r* = —= - — . 4.
16T+8T 1" 5" 5" (4.33)
here all the C’s are constants and defined in appendix at the end of this chapter.
The pressure gradient is defined as
dp F—tl
— = . 4.34
dz t2 ( )

where t1and to are calculated by Mathematica.
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4.3 Results and discussion

This section represents the discussion for the graphical results of velocity, pressure gradient,
pressure rise and streamlines. These graphs are obtained by restricting the included parameters
such as G, = 2—4, v =, d =, § = . Axial velocity w demonstrates parabolic behavior against all
the involved parameters in the region between tube having sinusoidal curve and endoscope. Figs
4.2 (a) and (b) depict the impact of Grashoff’s number on velocity profile while keeping other
parameters fixed. Shape factor of bricks for Ag nanoparticles are considered and it is evident
from the figure that axial velocity shows increasing attitude in the region [0.1—0.66] for growing
Grashoff’s number but opposite trend is noticed in region [0.66 — 1]. Three dimensional axial
velocity profile can be seen in Fig 4.2 b for brick Ag nanoparticles for the variation of Grashoff;’s
number. Figs 4.3(a,b) indicate how the velocity profile behaves for cylindrical Ag nanoparticles
for varying Grashoff’s number. It is viewed that velocity elevates in region [0.1 — 0.66] and
diminishes in region [0.66 — 1]. Fig 4.3 (b) gives the 3 dimensional view of variation of velocity
profile for cylindrical nanoparticles with modifying G, . Similar trend is seen for both brick
and cylindrical nanoparticles. Impact of platelet nanoparticles with different G, on velocity
profile is captured in Figs 4.4 (a) and (b) for both 2 and 3 dimensional flow. Variation is
noticed to be alike as that of brick and cylindrical nanoparticles. Influence of heat source(sink)
parameter v on axial velocity profile for shape factor of bricks for Ag nanoparticles can be
seen in Figs 4.5 (a) and (b) for 2D and 3D respectively. Velocity profile shows a decrease in
magnitude for increasing 7. Figs 4.6 (a) and (b) are plotted to exhibit the trends followed
by velocity profile for cylindrical Ag particles. Identical behavior is observed for cylindrical
and brick nanoparticles i.e. velocity profile shows a decline in its magnitude both for bricks
and cylinders. Fig 4.6 (b) portraits the 3D velocity for cylindrical Ag nanoparticles. Platelet
nanoparticles with varying ~ are plotted in Figs 4.7 (a) and (b) for both 2 and 3 dimensions
respectively. Bricks, cylinders and platelets are observed to give the same trend. Velocity is
also influenced by amplitude ratio ¢. Figs 4.8(a, b) describe the behavior of velocity profile for
different ¢ with brick Ag nanoparticles. It is seen that velocity decreases in the region [0.1,0.62]
and increases in the region [0.62, 1] by increasing ¢. An increase is noticed as we move from inner
tube to the center of the region enclosed by the two tubes which is depicted in Figs 4.9(a, b) for

cylindrical Ag nanoparticles giving both 2D and 3D velocity graphs with increasing amplitude
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ratio. Platelets nanoparticles show the same behavior for amplitude ratio as that of cylindrical
and brick nanoparticles and this behavior is captured in Figs 4.10(a,b). Variation of Darcy’s
number d effecting the velocity profile can be seen in Figs 4.11(a, b). Initially velocity increases
for increasing d but as we move towards the porous tube, velocity decreases for elevating d. In
region [0.1,0.74] velocity experiences a rise and then a decline is noticed in region [0.74, 1]. Figs
4.11(a,b) is 2 and 3-dimensional graph plotted to describe velocity profile for shape factor of
brick Ag nanoparticles. Figs 4.12(a, b) portrays 2D and 3D view of axial velocity for cylindrical
nanoparticles. Velocity boosts as we move from endoscope to central region i.e.0.1 < r < 0.74
and a decline is noticed in the region 0.74 < r < 1. Figs 4.13(a,b) give the effects of platelet
Ag nanoparticles for different values of darcy’s number and they behave likely as bricks and
cylinders.

Figs (4.14 — 4.17) are sketched to describe the change in pressure gradient for different
Gy, v, ¢ and d. Figs 4.14(a, b, ¢) depicts the behavior of pressure gradient effected by Grashoff’s
number G,. It the observed that the growth of buoyancy forces results in decrease of pres-
sure gradient. Shape factor of bricks, cylinders and platelets for Ag nanoparticle all give the
same behavior. Figs 4.15(a, b, ¢) describes the behavior of dp/dz against z for variational heat
source(sink) parameter 7. The amplitude of pressure is noticed to decrease as v gets higher val-
ues with shape factors of bricks,cylinders and platelets. The variational change in pressure gra-
dient due to amplitude ratio ¢ with bricks, cylinders and platelets in shown in Figs 4.16(a, b, ¢)
respectively. Pressure gradient is noticed to decrease in region [—1, —0.5] and [0,0.5] and in-
crease is observed in region [—0.5,0] and [0.5, 1] for elevating amplitude ratio ¢. Figs 4.17(a, b, ¢)
is plotted to give the influence of darcy’s number d on dp/dz by taking bricks, cylinders and
platelets. An increase in darcy number d give rise to amplitude of pressure gradient.

To explain the pumping properties, it is crucial to know pressure rise per wavelength.
Thus Figs (4.18 — 4.20) are plotted to depict the pressure rise for varying different parameters
such as Grashoff’s number G,, heat source parameter ~, amplitude ratio and darcy’s number
d. With expansion in flow rate,on common observation from these figures, pressure rise per
wavelength decreases. Figs 4.19(a,b,c) is used to analyze the behavior of pressure rise for
different values of G;. It is observed that pressure rise experiences a decline with elevating G,

through annulus. This trend is followed in both retrograde pumping region(g < 0, Ap > 0) and
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augmented pumping region (¢ > 0, Ap < 0). Also shape factor of bricks, cylinders and platelet
Ag nanoparticle behave likely i.e. pressure rise drops for all these nanoparticles with increase in
G,. Figs 4.20(a, b, ¢) is plotted to the effects of heat source (sink) parameter v on Ap. It can be
seen from fig that Ap decreases in retrograde pumping region as well as in augmented pumping
region when ~ has been increased. The impact of brick, cylinder and platelet nanoparticles is
similar for Ap for different ~.Figs 4.21(a, b, ¢) give the effects of amplitude ratio ¢ over Ap. As
the value of parameter increases, Ap decreases in retrograde and augmented pumping region.
This behavior is seen for brick, cylinder and platelet Ag nanoparticles.

An engrossing phenomena of trapping for peristaltic flow with an endoscope is described in
Figs (4.21—4.33). Ag nanoparticles with different shape factors are taken into consideration for
this discussion. pattern of flow in the region enclosed by catheter and curved tube is studied by
plotting streamlines. Random behavior of enclosed bolus is seen for variation of G, along with
closed streamlines and is portrayed in Figs 4.21. From Fig it is seen that the number of trapped
bolus decreases when G, shifts from 2 to 3 and size is also observed to decrease as G, further
changes from 3 to 4. From Figs 4.21 — 4.23 it is evident that the change in bolus appearance
is concordant for all different shape factors considered. Effects of v over trapping phenomena
is studied in Fig 4.24. It is witnessed that as v changes from 0.1 to 0.5, number of trapped
bolus decreases and the size also recedes as v jumps to 0.9 from 0.5. Different shape factors
considered give the harmonious behavior for variation of v and this argument is supported by
Figs 4.24 — 4.26. Fig 4.27 is used to show the impact of ¢ over trapping phenomena. As ¢ is
increased from 0.03 to 0.05, number of bolus increases and on further increasing ¢ from 0.05 to
0.07 a decrease in number of bolus is seen. Brick, cylinder and platelet Ag Nanoparticles give
the same trend which can be verified with the help of Figs 4.27 — 4.29. Decrease in size of
bolus in more noticeable in cylinder and platelet particles as compared to brick nanoparticles.
Variation of darcy’s number is studied in Figs 4.30 — 4.32. Initially, number of trapped bolus
increases for increasing darcy’s number then their size also increases with similar trend of darcy’s
number. Visual study has revealed that all the considered shape factors of nanoparticles have
shown likely behavior. Fig 4.33 is used to compare the effects of different shape factors of
nanoparticles used. Temperature profile for curved channel with permeable walls having shape

factor m is presented in Table 4.1. It is witnessed that for greater value of shape factor i.e.
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for larger m the temperature of the base fluid decreases. Also it is interesting to see that the
variation in curvature effects the temperature profile. With larger curvature parameter ¢ low

temperature is noticed as can be seen in Table 4.2.

Figs. 4.2(a,b), velocity profile for distinct values of Grashroff number G, with shape factor
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of bricks

Figs. 4.3(a,b), velocity profile for distinct values of Grashroff number G, with shape factor

of cylinders
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Figs. 4.4(a,b), velocity profile for distinct values of Grashroff number G, with shape factor
of platelets
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04

0.2

Figs. 4.5(a,b), velocity profile for distinct values of heat source(sink) v with shape factor

of bricks
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Figs. 4.6(a,b), velocity profile for distinct values of heat source(sink) v with shape factor

of cylinders
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Figs. 4.7(a,b), velocity profile for distinct values of heat source(sink) v with shape factor

of platelets
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~0.2,

~0.4} $=0.03,0.05,0.07 :

(b)

Figs. 4.8(a,b), velocity profile for distinct values of amplitude ratio ¢ with shape factor of
bricks
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~0.2

— 0.4} $=0.03,0.05,0.07

Figs. 4.9(a,b), velocity profile for distinct values of amplitude ratio ¢ with shape factor of

cylinders
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~0.2

- o_4} $=0.03,0.05,0.07

Figs. 4.10(a, b), velocity profile for distinct values of amplitude ratio ¢ with shape factor of

platelets
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d=0.003,0.007,0.01 ]

Figs. 4.11(a, b), velocity profile for distinct values of darcy’s number d with shape factor of
bricks
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d = 0. 0030. 0070. 01

Figs. 4.12(a,b), velocity profile for distinct values of darcy’s number d with shape factor of

cylinders
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d = 0. 0030. 0070.

0.2 04 06 08 10

Figs. 4.13(a,b), velocity profile for distinct values of darcy’s number d with shape factor of

platelets
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Figs. 4.14(a, b, ¢), Pressure gradient for different values of Grashroff number G, for (a) bricks
(b) cylinders (c) platelets.
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Figs. 4.15(a, b), Pressure gradient for different values of heat source(sink) parameter v for (a)

dz
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bricks (b) cylinders (c) platelets.
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Figs. 4.16(a, b, ¢), Pressure gradient for different values of amplitude ratio ¢ for (a) bricks (b)

1.0

¢=0.03,0.05,0.07

-120
-1.0

cylinders (c) platelets.
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Figs. 4.17(a, b, c), Pressure gradient for different values of darcy’s number d for (a) bricks (b)

cylinders (c) platelets.
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Figs. 4.18(a, b, ¢), Pressure rise for different values of Grashroff number G, for (a) bricks (b)

cylinders (c) platelets.
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Figs. 4.19(a, b, ¢), Pressure rise for different values of heat source (sink) parameter v for (a)

bricks (b) cylinders (c) platelets.
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Figs. 4.20(a, b, ¢), Pressure rise for distinct values of amplitude ratio ¢ for (a) bricks (b)

cylinders (c) platelets.
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Figs.4.21(a, b, ¢), Streamlines for Gold nanoparticle with shape factor of bricks for Grashoff’s
number (a) G, =2, (b) G, =3, (c) G, = 4.
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Figs.4.22(a,b, ¢), Streamlines for Gold nanoparticle with shape factor of cylinders for distinct
values of (a) G, =2, (b) G, =3, (¢) G, = 4.
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Figs.4.23(a,b, c), Streamlines for Gold nanoparticle with shape factor of platelets for distinct
values of (a) G, =2, (b) G, =3, (¢) G, =4.
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Figs.4.24(a,b, c), Streamlines for Gold nanoparticle with shape factor of bricks for distinct
values of (a) v = 0.1, (b) v=10.5, (c¢) v =0.9.
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(b) (c)

Figs.4.25(a, b, ¢), Streamlines for Gold nanoparticle with shape factor of cylinders for distinct
values of (a) v = 0.1, (b) v=10.5, (c¢) v =0.9.
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Figs. 4.26(a, b, ¢), Streamlines for Gold nanoparticle with shape factor of platelets for distinct
values of (a) v = 0.1, (b) v=10.5, (c¢) v =0.9.
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Figs. 4.27(a, b, ¢), Streamlines for Gold nanoparticle with shape factor of bricks for distinct
values of (a) ¢ = 0.03, (b) ¢ = 0.05, (c) ¢ = 0.07.
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Figs. 4.28(a, b, ¢), Streamlines for Gold nanoparticle with shape factor of cylinders for distinct

values of (a) ¢ = 0.03, (b) ¢ = 0.05, (c) ¢ = 0.07.
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Figs. 4.29(a, b, ¢), Streamlines for Gold nanoparticle with shape factor of platelets for distinct
values of (a) ¢ = 0.03, (b) ¢ = 0.05, (c) ¢ = 0.07.
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Figs. 4.30(a, b, ¢), Streamlines for Gold nanoparticle with shape factor of bricks for distinct
values of (a) d = 0.008, (b) d =0.009, (c) d = 0.01.
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Figs. 4.31(a, b, ¢), Streamlines for Gold nanoparticle with shape factor of cylinders for distinct

values of (a) d = 0.008, (b) d =0.009, (c) d = 0.01.
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Figs. 4.32(a, b, ¢), Streamlines for Gold nanoparticle with shape factor of platelets for distinct
values of (a) d = 0.008, (b) d =0.009, (c) d = 0.01.
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Figs. 4.33(a, b, ¢), Streamlines for Gold nanoparticle with shape factor of (a) Bricks
(m = 3.7), (b) Cylinders (m = 4.9), (c) Platelets (m = 5.7).
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“r" “Bricks” “Cylinders” “Platelets”
m=3.7 m=4.9 m=5.7
ry=0.1 1.000000 1.000000 1.000000
0.2 0.728822 0.726736 0.72535
0.3 0.567964 0.564896 0.562856
0.4 0.451209 0.447691 0.445353
0.5 0.357893 0.354280 0.351878
0.6 0.278823 0.275388 0.273105
0.7 0.203097 0.206070 0.204058
0.8 0.145791 0.143375 0.141769
0.9 0.087193 0.0854003 0.0843241
“h"=1 0.03149 0.03084395 0.0304187

Table. 4.1, Variation of temperature profile for different shape factor m with curvature

¢=0.1.

“r" “Bricks” “Cylinders” “Platelets”
m=3.7 m=4.9 m=5.7

ry=0.1 1.000000 1.000000 1.000000
0.2 0.71079 0.708674 0.707268
0.3 0.542328 0.539252 0.537206
0.4 0.4222%96 0.418808 0.416489
0.5 0.328471 0.324928 0.322572
0.6 0.251008 0.247677 0.245462
0.7 0.184667 0.181764 0.179834
0.8 0.1263260 0.124036 0.122513
0.9 0.07359822 0.0724649 0.0714563

“h"=1 0.0262754 0.256751 0.0252761

Table. 4.2, Variation of temperature profile for different shape factor m with curvature

¢=0.5.

4.4 Conclusions

A detailed mathematical analysis has been done for impact of Ag nanoparticles on the peristaltic
flow through a curved tube with an endoscope inserted in it. Some observations of the present

study made on the basis of graphical results are highlighted below

e Temperature profile of the nanofluid decreases with the increase in shape factor m of

nanoparticles.

e With an increment in curvature parameter, temperature of nanofluid recedes.
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Pressure gradient exhibits higher results with larger Darcy’s number.

Axial velocity elevates as we move from endoscope to the center of annular region.
For greater Grashoff’s number G, and Darcy’s number d, axial velocity is larger.
The inner bolus grows larger with increasing Darcy’s number.

The trapping phenomena reveals that the size of inner bolus appears larger for Platelet

nanoparticles as compared to Brick and Cylinder nanoparticles.
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Chapter 5

Physiological study of nanofluid flow
for Hamilton and Crosser model

with variable viscosity

Nanofluids are classified as a class of fluids that enhance the thermal conductivity and serve as
a modern drug delivery technique. The main objective of this chapter is to present the effects
of variable viscosity on peristaltic flow of Au-nanoparticles. The geometry under consideration
is a curved tube with an endoscope inserted into it. The constructed mathematical differential
system is solved by perturbation method. The comparison between curvature and non-curvature
tube over velocity, pressure gradient and pressure rise are visualized through graphs. For
better comprehension of flow and heat characteristics, streamlines for flow and contour map
for temperature are plotted. We perceive from the present analysis that non-curvature tube

exhibits larger velocity, pressure gradient and pressure rise in the presence of nanoparticles.

5.1 Mathematical formulation

We are interested to examine the peristaltic transport of incompressible, laminar and viscous
nanofluid in the region between two curved annular tubes. A sinusoidal type wave with speed
¢ travels down the outer wall of tube with wave amplitude b and wavelength A. Inner tube is

considered to be rigid and have constant temperature T, while outer tube maintains temperature
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Ty. The mathematical formulation model for curved tube is, an inflexible circular tube of radius
as wrapped as a circle having radius k£ and endoscope in the form of coaxial tube of radius a;.
Due to the curviness of tube, curvature parameter is also taken into account. Gold nanoparticles
with shape factor of spheres are considered along with blood.

Mathematically, two wall surfaces can be written as

Ry = aq,

2
Ry = as+bsin [;\T (Z - Ct):| . (5.1)
For incompressible fluid, continuity equation is given as

@+Q+lﬂ+ﬁ00s9—f/siné+ k 8W_0 (5.2)
OR R R0 k + Rcosf k+ Rcosf 0Z '

The components of momentum equation for variable viscosity using toroidal coordinate are

given as

oU ;00 VOU kW U V* W2 cos §
Pri\ ot TYOR TR0 ' k+ Rcos00Z R k+ Reosf

k o) _ k ou 9 w
= - k )| ———
(k + Rcos9) <8Z <unf(R)R<k+R00893Z + (b o+ Rcos ) <k+Rcos@)>)

Q3

0 k+ Rcos@\ oU 0 k+ Rcos@
2 b ficost) oY 9 k+ fcost
OR ( “"f(R)R< k ) az) * <ae“"f(R) < k

R(k + Rcosf)
+2=
<av_v 13U>)>+2an( )<1(9V+U>_2unf(]_%)cos€( koW

OR R ROO R R 06 k+ Rcos@ k+ Rcosf 0Z
Ucosf — Vsinf oP
k + Rcosf > - OR’ (53)
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R O
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ol

Energy equation with heat generation for nanofluid is given as

PInf \ 58 TYOR T k+ Rcos00Z  R00) OR? " ROR ' k+ RcosOOR
1 02T k2 0T
T T D 0)2 572
R2 9p (k+ Rcosh)? 0Z
sin 0 oT
e el . 5.6
k+Rc0s980)+Q0 (56)
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For the fixed frame, the boundary condition is given as

W = O,T:T(), at Rlezal,

_ _ _ _ 2 _
W = 0, T=1T, at R:Rg:ag—kbsin[;(Z—ct)], (5.7)

where T} and Ty are representing the temperature of the outer and inner tube as suggested
in [29]
For this present nanofluid model, f,,; is the variable nanofluid viscosity and the variation

of viscosity from Brinkman [33] and Srivastava et al. [34] is as follows

Mf(R)

fing = (1— )25 (5.8)

where p ¢ is the base fluid viscosity. Also viscosity of the base fluid is assorted according to

the following relation

D, —« Ho
uy(R) = e = - Fo e (5.9)

Here 1, is the blood viscosity and « is representing variable viscosity parameter (o << 1).

From Egs. (5.8), (5.9) the effective viscosity of the nanofluid is given as

- Ho
Pnf = (1 — )25 (1 + aR) ? (5.10)

It is evident from the equation discussed above that for o = 0, Brinkman’s viscosity model
(i.e., the effective viscosity independent of R) is going to be retrieved. Also for ¢ = 0, we can
get fluid viscosity independent of the nanoparticles.

For this stated nanofluid model, specific heat, density and the nanofluid viscosity pu,,; are

defined as

(pcp)nf - @(pcp)s + (Pcp)f (1 - (P)a Qnf = (pIC{:;cnf’
(PB)ny = @(pB)s + (L =) (PB)s, oy = pps+ (L= @) py. (5.11)
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Hamilton and Crosser [36] gave the most frequent utilized thermal conductivity equation

(11) for the mixtures of micrometer size particles, it is believed that this equation can be used

for the nanofluids.

an - (n— 1)kjf —|—k;8 — (n_ 1)(kf _ ks)ﬁp
Kf ket (n— ks + o(ks — ks) (5.12)

In the above stated equation, n is used to represent the shape factor and for spherical
nanoparticles n = 3. This relation accurately speculates the thermal conductivity of nanofluids
as shown by Zhang et al. [35].

As axial velocity is efficacious velocity component, so we assume the velocity of the form

(0,0, W). Further we used following transformation to shift from fixed frame (R, Z, %) to wave

frame (7, 2),

z=7—ct, =R, w=W —¢, u=U, p(z,7) = P(Z,R,1), (5.13)

)

here u, w and p are velocity components and pressure in wave frame respectively.

Following are the dimensionless quantities

_ _ A _ _
c as asc A as
b & « T-T, - a3(Ty — To)psBr9(1 — @)*5
e = —’t:—79: ,0:(9, G, = )
as )\ TO — T1 Clt,
- 2
as 71 a5Qo a2CPf az
C L y T1 a9 € 7 (Tl — To)kfv e Mf ; \ y
2= *
asp I
= ,d=—. 5.14
P CAfLf a3 (514

After employing the approximations, Eqgs. (5.2) — (5.6) are written as

op
5 = 0. (5.15)
op
56 =0 (5.16)
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1 op  (1—¢)*® 1 , 0 (w+1)

1+ Crcosfdz Ly (7‘(1+CT0089) 87“(1+C7‘c050)>jL

8<<1_ar)(1+§r0086)28 (w+1) >> 1, cos 0 8( w+1 )

00 r 96 (1 + Crcosh) (1—=)2% Or \ 14 (rcosf
fto  (sind 8< w+ 1 > o PB)ng  Ho é>

(1—p)2> ¢ 00 \ 14 (rcosb "(pB) (1— )20

<§; (7‘(1 —ar)(1 +(rcosd)

(5.17)

9%0 1@ Ccos® 90 1 d%w Ky

T SR T, 2 =0. 5.18
or2  rOr 1+ (rcosfor 12 pn? 'yan (5.18)
In wave frame, the boundary conditions take the form
w:—l,ézl, at r=r7r; =¢,
w=-1,0=0, at 7=ry=1+esin(2nz). (5.19)
The volume flow rate in the dimensionless form is given as
1 & g2
a4 _S Lz 2
¢=F+5-5+ (5.20)
T2
F = / rwdr. (5.21)
1

5.2 Solution of the problem

In order to get the expression for velocity and temperature according to the given boundary

condition, we consider the following

O(r(z,t), 0) = Bo(r)+Ccos(0)01(r) + ...

w(r(z,t), ) = wo(r)+ ¢cos(§)wi(r)+ ... (5.22)
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Using Eq. (5.21) into Egs. (5.16) to (5.18) and equating like powers of ¢ cos(f), we obtain the

written below systems
5.2.1 Zeroth order system

920y 100, Kf

or? o or Ky =0
Pwy (1 dwg (PB)ns 1o o  dp
o) G+ (- 20) G+ 6 O e = e i

Oo(r1) = 1, wo(ry) = —1,

Oo(r2) = 0, wo(rz) = —1.
5.2.2 First order system

%0, 100, 0, Ky 9%, .00,

o Trar TR, T T =0
w; (1 —ar) dw _(I-oar) 0wo
(1 - CYT) 8T2 + r 87” ’I"2 w1 +r (]. - O[T') W
ow
+2(1 - ar) =2 + awp + G, ((b;) i Ho PEE (7“490+(91)

or
él(’l"l) :0, w1 ( )
(r

91(7“2) = 0 wi\T )

(5.23)

(5.24)

(5.25)

(5.26)

(5.27)

(5.28)

Solution of equation (5.23) and (5.26) is obtained as [37] and Egs. (24,27) are solved with

the help of inbuilt program of Mathematica.

Pressure gradient is defined as

dp  F—t
dz_ tz ’

where t1and to can be easily calculated through Mathematica.
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5.3 Results and discussion

Individual effects of Grashoff’s number, heat source parameter, amplitude ratio and variable
viscosity on the dimensionless velocity, pressure gradient and pressure rise are illustrated in
Figs 5.1 — 5.12. Furthermore, streamlines for these parameters are depicted in Figs 5.13 — 5.16
and thermal graphs are also portrayed in Figs 5.17 — 5.18.

The effects of Grashoff’s number G, on dimensionless velocity w are presented in Fig 5.1
for nanofluid. It is important to note that an increase in Grashoff’s number represents an
increase in nanofluid velocity. From Fig 5.2, we observed that as heat source/sink parameter -y
increases, the velocity starts to become shallow. Physically, this is due to the increase in the
temperature. Fig 5.3 depicts the effects of amplitude ratio on velocity profile. It is found that a
higher amplitude ratio ¢, results in higher velocity i.e. with large amplitude of propagated wave
the resultant velocity is higher. Fig 5.4 is pictorial representation of effects of variable viscosity
« for dimensionless velocity. As the values of this parameter increases, velocity in response
ascends. Moreover, in the absence of curvature parameter that is for non-curvature tube, the
dimensionless velocity profile is higher as compared to velocity of nanofluid in curvature tube.
Thus one can conclude that , in the curved tube velocity is observed to be lower or the cravenness
results in a decrease of velocity. Apart from the attitude of velocity curve all the parameters
have identical behavior both in the presence and absence of curvature parameter.

Figs 5.5 — 5.8 are sketched to illustrate the change in pressure gradient for parameters such
as G, v, ¢ and «. A sinusoidal curve is observed for pressure gradient and this is due to the
fact that wave propagated along the walls is sinusoidal, thus the curve for pressure gradient
behaves likewise. Fig 5.5 depicts the behavior of pressure gradient due to the variation of
Grashoff’s number G,. It is observed that the growth of buoyancy forces results in increase
of pressure gradient. For both the situations, curved and non-curved tube, similar trend is
witnessed whereas curve amplitude of dp/dz for non-curvature tube is higher in comparison to
amplitude of curved tube. Fig 5.6 is used for the graphical representation of heat source/sink
parameter v on pressure gradient. It is clear from the figure that with a rise in this parameter,
a decrease in dp/dz is happening. Variational change in pressure gradient due to amplitude
ratio ¢ are shown in Fig 5.7. Here as we elevate the values of this parameter, pressure gradient

appears to have a increasing trend in the narrow part of tube while opposite behavior near
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the wider part of tube is seen. Fig 5.8 is plotted to give the influence of variable viscosity on
dp/dz. An increase in « give rise to the amplitude of pressure gradient. Non-curvature tube
have higher pressure gradient than curvature tube.

To explain the pumping properties it is important to know pressure rise per wavelength.
Thus Figs 5.9 — 5.12 are plotted to give the pressure rise for varying different parameters
such as Grashoff’s number G,, source parameter v, amplitude ratio ¢ and variable viscosity
a.With expansion in flow rate,a similar observation from these figures is that pressure rise
per wavelength declines. Fig 5.9 is depicted to study the behavior of pressure rise for various
values of G,.. Pressure rise elevates with a rise in G, in the retrograde pumping region whereas it
declines in the augmented region. Effects of heat source parameter are plotted in Fig 5.10. With
the increase in this parameter, Ap drops for retrograde pumping region and rise in augmented
pumping region. Fig 5.11 is giving the pictorial presentation of pressure rise for variation of
amplitude ratio . Initially an increase in observed for growing values of ¢ but, in augmented
pumping region opposite trend is seen. Variation of variable viscosity for Ap is plotted in
Fig 5.12 and we witness elevating behavior in retrograde region and a decline is captured in
augmented pumping region.

An engrossing phenomena of trapping for peristaltic flow with an endoscope is described in
Figs (5.13 — 5.16). Au nanoparticles are taken into consideration for this discussion. Pattern
of flow in the region enclosed by catheter and curved tube is studied by plotting streamlines.
Increase in number of enclosed bolus is observed for variation of G, along with closed streamlines
and is portrayed in Figs 5.13. From figure it is seen that the quantity of trapped bolus increases
when G, shifts from 1.5 to 1.75 and size is also observed to increase as G, further changes from
1.75 to 2. Effects of v over trapping phenomena is studied in Fig 5.14. It is witnessed that as
~ changes from 0.1 to 0.5, magnitude of trapped bolus decreases and than increases as v jumps
to 0.9 from 0.5. Fig 5.15 is used to show the impact of ¢ over trapping phenomena. As ¢ is
increased from 0.11 to 0.12, number of bolus increases and on further increasing ¢ from 0.12 to
0.13 same trend is witnessed. Variation of variable viscosity « is studied in Figs 5.16. Initially,
number of trapped bolus increases for increasing « then their size also increases with similar
trend of a.

Figs (5.17—5.18) are responsible for the variation of temperature contour maps for different
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parameters. In Figs 5.17, we see that as heat source parameter increases, initially the quantity
of trapped bolus reduces and on additional increase of v the size is also seen to recedes. For
the variation of curvature,it is portrayed in Figs 5.18 that first the size of bolus increases and

on additional increment of  number of trapped bolus elevates.
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Figs. 5.14, Streamlines for distinct values of heat source (sink) parameter (a) v = 0.1, (b)

v=10.5, (c) y=0.9.
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Figs. 5.15, Streamlines for distinct values of amplitude ratio(a) ¢ = 0.11, (b) ¢ = 0.12, (c)
p =0.13.
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Figs. 5.16, Streamlines for distinct values of variable viscosity (a) a = 0.1, (b) a = 0.2, (c)

a=0.3.
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Figs. 5.18, Temperature contour maps for distinct values of curvature parameter (a) ¢ = 0.4,

(b) ¢ = 0.5, () ¢ = 0.6.
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5.4 Summary of the work

A detailed mathematical analysis has been done for impact of Au nanoparticles on the peristaltic
flow through a curved tube with an endoscope inserted in it. Some observations of the present

study made on the basis of graphical results are highlighted below

e With an increment in curvature parameter, velocity of nanofluid recedes.

e Pressure gradient exhibits higher results with larger variable viscosity a.

Axial velocity elevates as we move from endoscope to the center of annular region.

For greater Grashoff’s number G, and variable viscosity «, axial velocity is larger.

The inner bolus for streamlines grows larger with increasing variable viscosity parameter.

Bolus in temperature contour map increases in size with increase in curvature parameter.
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Chapter 6

Impact of hybrid nanoparticles on

peristaltic flow in curved tube

Hybrid nanofluid is considered to be a new class of nanofluids which is getting famous due
to its thermal properties and possible utilities to further ameliorates the heat transfer rate.
Main objective of this analysis is to represent a comparison between conventional nanofluid
and hybrid nanofluid when fluid is passed through curved tube with an endoscope inserted
in it while flow behavior is peristaltic. Cu/water nanofluid and Cu — FeaOy/water hybrid
nanofluid are considered for this problem. Results for pressure gradient,velocity, pressure rise
and streamlines are given graphically. Tables for temperature and heat transfer rate are also
mentioned. Present study concludes that heat transfer rate for hybrid nanofluid is greater in

comparison to nanofluid.

6.1 Formulation of the problem

We are interested to examine the transport of incompressible, laminar and viscous nanofluid in
the region between two curved annular tubes. A sinusoidal type of wave with velocity ¢ travels
down the walls of tube with wave amplitude b and wavelength A. Inner tube is considered to be
inflexible. The mathematical formulation model for curved tube is , an inflexible circular tube
having radius as wrapped as circular coil of radius k£ and endoscope as coaxial tube of radius

a1. Because of the bending of tube, curvature parameter is also taken into account. Copper
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nanoparticles along with iron oxide are taken under consideration

Mathematically, two wall surfaces can be written as

Rl = ai,
_ 2
Ry, = bsin [; (Z - ct)} + as. (6.1)

Toroidal coordinates system (r, 0, ) is utilized to investigate the flow field in the geometry
discussed above. Flow geometry is considered to lie in a plane so torsion impact is ignored.

The continuity equation for considered incompressible fluid in the toroidal coordinates is

given as

@ U n Ucosf — Vsinf +l@+ k ow —0 (6.2)
OR R RcosO + k R0  Rcosb+kdZ '
The component form of momentum equation using toroidal coordinate are written as
ou VvVouUu _oU EW  oU W?2cosf V2
pmfl =+ 5 +0s+5———5-"5—>— =
ot R 00 OR  Rcos@+k0Z RcosO+k R
10U U 10U\, ¥ U _U
Finf\\R2 9g2 " 9R? " ROR) ' (Rcosd + k2022 R
—1@4— 1 0059@4— Vsind  sinfoU
R200  Rcosf+k OR R R 00
2ksing  OW cos 0 — o = oP
_ — - Ucosf —Vsinb) | — — 6.3
+(Rcos€+k:)2 0z (RcosG—i—k)?( cos s )> OR’ (63)
@_}_U@_i_ kW &_FE@_*_ W? cos 0 +@
Phnf\"9f "7 OR T Reos0+k0Z R0  Reosb+k R
Hrnf \\R2 992 T oR? " ROR) " (RcosO+ k2072 ' R2 98 R?
n cos 0 @_ sin 0 Q+l@ N 2ksingd  OW
RcosO+kOR Rcosf+k\R RO (Rcosf + k)2 0Z
sin 6 o 10P
———— (Ucosf — Vsinf) | — =— 6.4
+(Rcos0+k)2( o8 S )> Rop’ (6.4)
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ot TVoR TR 99  Reos0+k0Z  ReosOik
1 2W W 10w K2 oW W
/“Lhnf (

R 05 " 0R2 "ROR) T (Reostt k)2 022 (Rcosh + k)?

— ! (sin&@W — cos@av_v> + <cos@a[7 — sin@av> _ 2ksind >
RcosO+k \ R 00 OR 07 07 ) (Rcosf + k)2

T (0B)ungg(T — T1) i

, (aW oW VoW W oW W(vsina_Ucos@))
hnf

k oP
- - . 6.5
RcosO+ k07 (6.5)

Energy equation in the occupancy of heat generation for a hybrid nanofluid is written as,

P Iimnf \ "ot TV OR " Rcos@+ koZ  Roa) — "™ \RoR ' 9R2 " Rcosd t kOR
1 92T k2 9T
tm = TR 0 2 972
R? 9p (RcosO+ k)2 0Z
sin 0 oT
- . 6.6
Rcos@—i—k@@)JrQo (6.6)

For the fixed frame, the boundary condition is given as

W = O,T:T(), at R:Rlzal,

_ T - - 2T =
w = 0, Kh"fgﬁg =—-B(T'—-Ty), at R= Ry =as+bsin [;\T (Z - ct)} . (6.7)

As the axial velocity is effective velocity component so we suppose the vector form as

(0,0, W). The written below relation is utilized to switch from (R, Z,t) fixed frame to wave

frame (r,z),

z=27—ct p(z,7) = P(Z,R,1), u=U, =R, w=W —ec. (6.8)

Introducing the following dimensionless quantities
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w T ; ct A\ | + e sin(272) z
W = — r=— t=" u=212 p5= sin(27z), z = —
c’ as’ A’ aze’ ’ A
b as(Ty — T - T-1T -
1 b VT Lo=0, (=",
as ciy To—Th k
B I L N S ) S SO /A
as (T — To)ky Ky A CALLy

(6.9)

Mentioned above expressions are representing p as the pressure, GG, as the Grashrof number, 0

as the temperature, R, is the Reynolds number, v is dimensionless heat source parameter, ( is

the curvature parameter and § represent wave number. Employing the lubrication approach,

Egs. (6.2) — (6.6) are now written as

(6.10)

(6.11)

ar
Op
o
1 Op _ Hing 82710 laﬂ+ Ceost  Ow i82w_ C(w+1)
1+ ¢reos@dz — pp \Or2  rdr  1+(Crcos® dr 290> (14 (rcosf)?

_ (sind dw (PB)hng iy g)
r(L+Creosf) 96~ " (pB)s fhng

920 100 Ccosf 90 1 d%w K
ot 4y = 0.
or rdr 1+ rcosor 1200 Ky

In wave frame, the pertinent boundary conditions are given as

ézl,w:—l, at =717y =c¢,
90 Ky

5+BiK;mfé:O’ w=—1, at r=ry=1+esin(2nz),

Dimensionless volume flow rate is given as

(6.12)

(6.13)

(6.14)

(6.15)



where

r2
F:/ rwdr. (6.16)
1

6.2 Solution of the problem

In order to get the expression for velocity and temperature according to the given boundary

condition,we consider the following

0(r(z,t), 0) = 0o(r) + Ccos(0)01(r) +
w(r(z,t), 0) = wo(r) + (cos(Q)wi(r) + ... (6.17)

Substituting Eq. (6.17) into Egs. (6.12) to (6.14) and equating same powers of ¢ cos(), we

obtain the written below systems and their solutions
6.2.1 Zeroth order system
8290 1 87% Ky

Oor? ; or ’yKhnf
2 ~
0 wo_i_}@wo a (PB)hns Hoy 0 — Mf dp

=0, (6.18)

0 ) 6.19
or? ~r or " (PB)s tng Hhn g dz (6.19)
Oo(r1) =1, wo(r1) = —1, (6.20)

o0 K
(80 thfeo) lrmry= 0, wo(ry) = —1. (6.21)

n

The exact solution at this order is given as
Y7L

fo(r) = CiInr + Cy — 711"” r2, (6.22)
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_ _dz_,2 PP)anf Hf Khns 4 L (r-mr T 2 2

wo(r) = —iZ=r =G, - r r
A= (PB)f Bnny 64 2 2 2

+CsInr + Cg. (6.23)
6.2.2 First order system

90, 106, 0, %0, 06 K¢

il _ = 92 % = .24
or2 ror r? tr or? + or +T7K;mf 0, (6.24)
0?w; 10wy wy 0?wo Owo (PB)hns Hf = =~
-t - — 2— r =0, 2
a2 + - or 2 +r 972 + or + G (Pﬁ)f .y (r@p+61) =0 (6.25)
01(r1) = 0, wi(r1) =0, (6.26)
96, K; - B B
(E + BZ Khnf (91) ‘T=7“2_ 0, wl(rg) =0. (627)

Solution is obtained by using Eqs. (6.22,6.23) into Eqgs. (6.24,6.25) and is given as follow

K
VKh,ifrz ~ Cilnr 1 < Ky rt C’lr2>

8 2 T

T Ky 16~ 4

01(r) = rCs + % +r (6.28)

Ky
Cs | r 3% 2 (Pﬁ)hnf Ky V&g 4, C1 o C1 o,
wi(r) = Cr+ —+ - | —F%1r"+G ——r" 4+ —r‘lnr — —r
1(r) T T2 4”;;—;” " (0B)s Bang 32 2 4
C: C 1 3%
_‘_72742 — 32 Cyln 7"> —C51n 7"> —— | = Mgz rt+ G, (pﬁ)hnf i
4 2 2r ST;” (PB)f iy
TR C 3¢, , Ch, Cs3, C C
—7[11%"’6 o+ Z1T4 Inr — 1—617“4 + §2T4 — fr‘l — 747"2 — 757"2 (6.29)
here all the C’s are constants and defined in appendix.
The pressure gradient is defined as
dp F - t1
o _ 6.30
7 r— (6.30)
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where tiand ¢y are calculated by Mathematica.

The thermophysical properties of stated nanofluid model and hybrid nanofluid are defined

as mentioned in [70]

Properties Nanofluid Hybrid nanofluid
- _ Ur _ 1y
V1sg0s1ty My (1—p)25 Hinr (o) (1)
Density pur=0ps+(1—9)pr Pinf = @1Ps, +@2ps, + (1 =1 )(1 — @2)pr
Heat Capacity (,l’cp)ufz (P(Pcp)s +(1 _(P)(Pcp)f (Pcp)]mf= (Pl(f’cp)n +(/)2(,0Cp)33 +(1 =01 _(Pl)(})cp)f
s ﬂ _ (n=Dkprk~(n=1)(kr—k)o AR _ (11—1))'\':Jﬁf(::—(zl—l)(kbj—l\zj)q): e Ky _ (11—1)kﬁﬂ';l—(zl—l)()\y—kjl)(01
Thermal Conduetivity | 5= = — == Ky = kDol te) where = = oy ke (e, )

Here n signify shape factor of nanoparticles given by 3/, where 1 represents sphericity of

the particle and is determined by the formation of nanoparticle. For cylindrical nanoparticle

n = 6 or ¢» = 1/2 while for spherical nanoparticle ) = 1 or n = 6. Here, in this investigation

we have taken n = 6 i.e. considered spherical shape.

Thermophysical properties | Fluid Phase(water) | Cu | FeaO4
Co(j/kg) K 4179 385 | 670
p(kg/m3) 997.1 3970 | 5180
E(W/mK) 0.613 40 9.7

6.3 Results and discussion

In the present study, parameters that we considered are ¢,, B;, G,, ¢ and ¢; = 0.1 is fixed.

The physical situation is modeled in terms of partial differential equation and then perturbation

method is used to solve these equations. Results obtained, are represented through graphs and

tables.

Figures depict the effects of parameters on velocity profile, pressure gradient, pressure rise

and streamlines for both hybrid nanofluid and nanofluid. Particularly, Figs 6.1 — 6.5 portray

the behavior of velocity profile for the variation of G,, v, B;, ¢ and @, respectively. It is clear

from Fig 6.1 that with a rise in G,, decrease is observed in the region [0.1 — 0.5] and for the

region [0.5 — 1] an increase is witnessed. It is eminent that velocity for nanofluid is higher in

first region as compared to hybrid nanofluid and opposite trend is seen in second region. Fig
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6.2 explains the effect of v on velocity profile. Initially with an increase in ~, velocity profile
declines but in the region [0.5 — 1] increase is observed for this parameter. Hybrid nanofluid
velocity is smaller in first region while in the second region we see that velocity for hybrid
nanofluid is higher then nanofluid.

Influence of Biot number on velocity is displayed in Fig 6.3. We can see the similar behavior
for this parameter as we observed for v in both cases of nanofluid and hybrid nanofluid. Influence
of curvature ( is seen in Fig 6.4. As the bending of the tube increases, we see a decline in velocity
near the mid of tube while towards the sides of tube, velocity is higher. Hybrid nanofluid
velocity is greater then nanofluid velocity in first half region. Fig 6.5 is giving the visual display
of variation of volume fraction (5. The outcome of this observation is that in the first region
velocity decreases as we increase the volume fraction but it increases in second half.

For peristaltic transportation pressure gradient plays a vital role. So Figs 6.6 — 6.10 are
drawn to depict the impact of different parameters on pressure gradient for hybrid nanofluid
and nanofluid. Increasing G, results in increase of pressure gradient, also dp/dz for hybrid
nanofluid is higher in comparison to nanofluid and this can be seen in Fig 6.6. Heat source/sink
parameter gives the similar effect as of Grashoff’s number on pressure gradient i.e. by elevating
~ an increase is observed for dp/dz. Fig 8 also shows that pressure gradient for hybrid nanofluid
is larger then nanofluid.

Fig 6.8 is sketched to give the effect of Biot number on dp/dz. With higher B; ,pressure
gradient is observed to be higher and amplitude for hybrid nanofluid is larger then nanofluid’s
curve. Visual evidence for the fluctuation of curvature parameter is given in Fig 6.9. Larger
curvature results in higher pressure gradient for both hybrid nanofluid and nanofluid, while
dp/dz for hybrid nanofluid remains greater then dp/dz of nanofluid. Fig 6.10 is an observa-
tion for the variation of volume fraction and it illustrates that as we gradually increase the
concentration of FeaOy in water, pressure gradient elevates.

Figs 6.11 — 6.15 are pictorial representations of pressure rise for both hybrid nanofluid and
nanofluid under the influence of several parameters. Describing precisely, Fig 6.11 is effect of G,
and as it begin to increase we see an increase in pressure rise as well. Fig 6.12 is representing
variation of v and with larger values of v, we get greater pressure rise. Fluctuation of Biot

number is sketched in Fig 6.13 and it results in increased pressure rise for larger values. More
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curvature has an increasing effect on Ap but opposite behavior is seen towards the end of region
which is clearly visible in Fig 6.14. One more observation for these figures is that pressure rise
for hybrid nanofluid is greater than Ap for nanofluid. Fig 6.15 is also advocating this behaviour
where distinct ¢4 are taken under consideration.

Streamlines give the flow pattern and we have drawn these flow patterns for hybrid nanofluid
in Fig 6.16—6.20. It is noted that for variation of Grashoff’s number, initially number of trapped
bolus decreases but for further variation we observe an increase in these bolus which is evident
in Fig 6.16. Number and size of trapped bolus has clearly reduced in Fig 6.17 which is the result
of larger heat source parameter. Fig 6.18 is describing that with an increase in volume fraction
powell distinct bolus are seen and eventually they increase in number as well. Streamlines
for variation of B; are given in Fig 6.19 and it is witnessed that magnitude and quantity of
trapped bolus are intensified. For greater curvature parameter i.e for a more curved tube we
see a significant increase in number of bolus and is clear in Fig 6.20.

Temperature profile for curved channel with Cu/water and Cu— FesO4/water is presented
in Table 6.1. It is declared that temperature source parameter contributes positively for temper-
ature profile i.e. for larger values of v we get higher temperature. Similar behaviour is testified
for Biot number whereas curvature parameter acts oppositely, for larger curvature we get low
temperature. It is clear from the table that temperature for hybrid nanofluid is higher than
temperature of nanofluid. Also it is interesting to see the variation in concentration effects the
temperature profile. Higher concentration of F'esO4 in base fluid results in higher temperature.
Table 6.2 is bearing the data for heat transfer rate of peristaltic transport in curved tube with
Cu/water and Cu — FeaOy/water. Heat source parameter and Biot number are responsible
for higher heat transfer rate for both nanofluid and hybrid nanofluid. Curvature parameter has

deteriorating impact on heat transfer rate i.e. with a rise in ¢ it decreases. Greater volume
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fraction ¢4 results in higher transfer rate.
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Fig. 6.8, Variations of pressure gradient for B;.
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Figs. 6.16 (a,b, c), Streamlines for variation of G, for hybrid nanofluid.
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Figs. 6.17 (a,b, c), Streamlines for variation of ~ for hybrid nanofluid.
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Figs. 6.18 (a,b, c), Streamlines for variation of ¢, for hybrid nanofluid.
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Figs. 6.20 (a,b, c), Streamlines for variation of ¢ for hybrid nanofluid.
e " “B;" B i "o "Cu/water" | "Cu— Fe,04/water”
0.1 0.2 0.5 0.5 0.05 1 1
0.3 0.718686 0.750885
0.5 0.579443 0.623342
0.3 0.2 0.718686 0.750885
0.5 0.843552 0.922428
0.7 0.926796 1.03679
0.2 0.4 0.711517 0.740233
0.5 0.718686 0.750885
0.6 0.725635 0761278
0.3 0 0.748035 0777608
0.1 0.742165 0.772263
0.2 0.736295 0.766919
0.5 0.01 - 0.723957
0.02 - 0.729733
0.05 - 0.750885

Table. (6.1), Variation in temperature profile for both nanofluid and hybrid nanofluid.
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F i 8 i By i "oy "Cu/water" | "Cu — Fe,0,/water”
0.1 0.2 0.5 0.5 0.05 -1.39812 -0.977032
0.3 -0.481258 -0.344830
0.5 -0.312859 -0.233073
0.3 0.2 -0.481258 -0.344830
0.5 -0.308248 -0.152668
0.7 -0.192909 -0.024560
0.2 0.4 -0.453711 -0.359271
0.3 -0.481258 -0.344830
0.6 -0.469308 -0.330861
0.5 0 -0.437218 -0.312498
0.1 -0.446026 -0.318964
0.2 -0.454834 -0.325431
0.5 0.01 - -0.453449
0.02 - -0.425930
0.05 - -0.344830

Table. (6.2), Variation in heat transfer rate for nanofluid and hybrid nanofluid.

6.4 Conclusions

A detailed mathematical analysis has been done for hybrid nanofluid peristaltic flow through a

curved tube with an endoscope inserted in it. Some observations of the present study made on

the basis of graphical results are highlighted below

e Axial velocity elevates as we move from endoscope to the center of annular region.

e Pressure gradient exhibits higher results for hybrid nanofluid in comparison to nanofluid.

e Pressure rise shows positive attitude towards volume fraction.
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Higher concentration of FesOy in base fluid results in higher temperature.
Heat transfer rate is greater for hybrid nanofluid than nanofluid.

Significant increase in the number of trapped bolus is observed for larger ¢s.




6.5 Appendix
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