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Nomenclature
English words

H distance between corrugated walls

L length of channel

p pressure

Re Reynolds number

Ha Hartmann number

Pr Prandtl number

Gr Grashof number

Da Darcy number

R Radiation parameter

w velocity component

B magnetic �eld

E electric �eld

J current density

x; y; z x-axis, y-axis and z-axis directions

r; x radial and axial directions

T Temperature

k" thermal conductivity

Q� heat generation/absorption

k� coe¢ cient of mean absorption

S constant �uid parameter

q� radiative heat �ux

k1 permeability of the medium

R radius

Nu Nusselt number

Kn Knudsen number

Bi Biot number

k Curvature parameter

C Couple stress �uid parameter
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Greek words

" amplitude parameter

�1 velocity slip

1 temperature slip

� strength of electric �eld

� casson parameter

�� phase di¤erence

� viscosity

� density

� electrical conductivity

� deformation rate component

�c critical value

�Cp heat coe¢ cient

�� Steaf Boltzmann

� couple stress viscosity coe¢ cient

�� plastic dynamics viscosity

� thermal expansion coe¢ cient

' mean velocity

� heat absorption coe¢ cient

! angular frequency

�� wave number

� nanoparticle volume fraction

� dimensionless temperature

� shear stress
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Subscripts

nf nano�uid

hnf hybrid nano�uid

f base �uid

l left

r right

u" upper

l" lower
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Chapter 1

Introduction

EMHD micropumps have di¤erent points of interest, to be particular essential manufacture

process, steady �ow force and bidirectional pumping capacity.The principle of EMHD microp-

ump is Lorentz force, which is relating an electric current to the conductive liquid over the

channel in the presence of an opposite attractive �eld.EMHD micropumps have di¤erent points

of interest, to be particular essential manufacture process, steady �ow force and bidirectional

pumping capacity. EMHD can be utilized to propel liquids as well as for creating secondary

complex �ow. The possibility of EMHD micropumps has been exhibited by utilizing both direct

�ow and rotating �ow electric and attractive �elds.The EMHD micropumps established by both

of direct and alternating current electric and magnetic �elds. Roughnesses on surfaces always

occurred during the fabrication process. At the microscale level, it is tough to get a totally

smooth wall surface. In any case, in practice, roughness dependably exists on the surface of

channel walls that happened during the manufacture procedure or because of the adsorption

of di¤erent species, for example, macromolecules. Surface roughness can be outlined mislead-

ingly to advance axial rotation or blending. Numerous scientists have considered �ow and heat

transfer of a liquid through corrugated channel. One basic subject among these investigations

is geometrical impacts because of wall corrugations on the �ow opposition or pressure drop in

the channel. The surface roughness is also mimics by wavy boundary, where roughness impacts

are magni�ed by small scale of channel.

The EMHD micropump is one of fundamental nonmechanical micropumps and has diverse

applications, for example, liquid pumping, control �ow in micro�uidic frameworks, and liquid
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mixing and blending [1]. Investigation of EMHD micropumps take prodigious consideration due

to outstanding submissions in �uid propelling, stirring, �uid chromatography and microcoolers

[2, 3]. Reddy et al. [4] explored the EMHD �ow variabilities in two-phase. The EMHD signi�-

cance on �uid �ow is investigated by Chakraborty and Paul [5]. Jhorar et al. [6] investigated the

electroosmosis modulated biomechanical transport through asymmetric micro�uidics channel.

Sundaravadivelu and Tso [7] explored the electromagnetic �elds impact on the surface tension

driven �ow in microchannel. Rivero [8] explored the consequences of considering �uid/wall

slippage in micropumps under electromagnetic �elds by analytical and numerical calculations.

On microscale level, to obtain an absolutely smooth wall surface is incredible. For repetition,

roughness on surfaces continuously happened in manufacture procedure and the adsorption of

macromolecules. In 1970s researchers presented di¤erent number of investigation and mathe-

matical procedures to inspect the in�uence of wall irregularity. Chu [9] discovered the e¤ect

of corrugation on movement inside a microtube. The importance of heat transfer features

on MHD �ow is deliberated by Tashtoush et al. [10]. Ligrani et al. [11] examined surface

roughness on pressure rise and �ow rate near wall slip operating with Newtonian water. On

Darcy�Brinkman �ow the impacts of transverse and longitudinal wall corrugations examined

by Ng and Wang [12]. Bergles [12] examined the heat transfer perspectives. Szumbarski et al.

[14] studied temporary disturbance development in a wavy channel. Luo et al. [15] inspected

two-layer �ow in ridged channel. Si and Jian [16] researched EMHD �ow of the Je¤rey �uids

with longitudinal corrugated walls in microchannels. Nadeem et al. [17] discussed corrugation

e¤ects in microchannels through permeable medium. Elshafei et al. [18] discussed the impacts

of temperature transmission and pressure drop happening in wavy walls. Nadeem et al. [19]

inspected �ow in a rectangular duct having Je¤rey �uid. Akbarzadeh et al. [20] discussed

the convection of heat in two-phase model by corrugated absorber plates. Phan-Thien [21]

examined the Stokes��ow between two corrugated plates. Flow depends on orientation of the

corrugations and phase di¤erence of the corrugation. Bujurke and Kudenatti [22] examined the

squeeze �lm behavior of magnetohydrodynamic (MHD) between irregular rectangular plates.

Buren et al. [23] deliberated the wall roughness consequences for EMHD �ow correspond-

ing to the corrugations of wall in micro parallel channel. Kwang [24] analyzed the e¤ect of

Small�Knudsen-Number �ow with slip �ow in an annulus with corrugated walls.
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Micro�uidic systems usually applied in reduced systems for organic, therapeutic which are

used by genetic researches and syntheses. One of the important research areas in micro�u-

idics is microelectro mechanical system because of its potential applications as an instrument

for concentrate crucial physical and biochemical procedures. Micro�uidic greatly in�uenced in

numerous areas for example heat exchange, �rewood, detection and corporal element separa-

tion. Micro�uidics �eld gradually more considered in both scholarly world and industry due

to plausibility and productivity for controlling �ows in microscale devices. Micro�uidic trans-

port have attractive advantage of passive machineries, especially surface tension. Micro�uidic

systems are highly desirable due to active pump and a self-contained. Dispensing therapeutic

agents is a goal of micropump inventors into the body. Micro�uidic can be appeared as mi-

cropumps impelled by pressure, magnetohydrodynamic (MHDs), electromagnetohydrodynamic

pumps (EMHD), electroosmosis siphons, etc., when driving force is divided. Most micro�uidic

framework require an independent dynamic pump of a size practically identical with the volume

of liquid to be pumped. The key contemplations for them incorporate their reliability, control

utilization, activation voltage, cost of fabrication and a dosing exactness similar with fuel pump.

First micropump was established by Jan Smits in 1980 to controlled insulin delivery systems

for preserving diabetics�blood sugar stage without recurrent needle injections [25].

Darcay�s law is very much essential in order to study the �uid �ow problems in porous

medium. Currently, investigation of �uid �ows and heat transfer over porous medium has en-

grossed much attention. It is a fact that porous medium has many real-world applications.

Instances of common porous media phenomena are sea shore sand, sandstone, bile duct, lime-

stone and wood. Another illustration in out�ow under a dam which is very imperative [26].

Alamri et al. [27] deliberated the convective radiative nano�uid �ow along porous medium.

Akbar et al. [28] explored the nano�uid di¤usive process in a permeable channel. In an annulus

the peristaltic �ow through permeable medium is inspected by Mekheimer et al. [29]. Ellahi

et al. [30] discussed the impacts of porous medium on two phase �ow. Rapits et al. [31]

have tackled issues of the progression of a viscous �uid by a permeable medium con�ned by

a vertical surface. Mekheimer and Al-Arabi [32] analyzed peristaltic nonlinear transport in a

porous medium for MHD �ow. Sayed [33] examined the electrohydrodynamic instability of two

superposed viscous and streaming �uids through permeable medium. Varshney [34] examined
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the �uctuating progression of a viscous liquid through a permeable medium.

The nano�uids have extraordinary consideration in research because of adequate applica-

tions. Nano�uid is basically novel class of �uids which comprises nano-sized elements. Nano�u-

ids have gigantic e¤ect in many submissions for example pharmacological procedures, cross-

mechanical appliances, petroleum cells, housing cooler, nuclear device and space invention and

several circumstances. Thermal performance of �uids improves by means of nanoscience knowl-

edge. The nanotechnology was �rst presented by Choi et al. [35]: Later on, Akbar et al. [36]

explore the e¤ect of metallic nanoparticles on viscous �uid in an asymmetric channel. Buon-

giorno [37] suggested that the thermophoresis and Brownian movement assume a key role in the

elements of nano�uids. Inside a pipe �ow of a nano�uid was studied by Xuan et al. [38] apply-

ing a dispersal model. Pramuanjaroenkij et al. [39] deliberated heat transfer ability employing

nano�uids. In a permeable network MHD �ow of nano�uid considered by Sheikholeslami et al.

[40]. The slip e¤ect in a rotating disk is illustrated by Hayat et al. [41]. Darcy �ow e¤ect on

nano�uids is evaluated by Shehzad [42]. Khanafer et al. [43] presented a model for nano�uids

heat transfer in a two-dimensional channel. Sheikholeslami et al. [44] inspected nano�uid invol-

untary convection in semi annulus. Nasrin et al. [45] de�ned free convection heat transmission

on nano�uid in a cavity. Andreozzi et al. [46] inspected the impacts of nano�uid and spines

in channel. Nadeem et al. [47] examined the heat degeneracy impacts on Je¤ery nano�uid by

using biological analysis.

In vertical channels, the mixed convection has gained extensive signi�cance to upgrade the

systems of cooling in engineering. This incorporates present day heat exchangers, atomic reac-

tors, sun based cells and numerous other electronic gadgets. Buoyancy forces are responsible for

such type of �ows. Heat transfer analysis in the existence of mixed convection is the extensive

signi�cance because of its applications in self-cooled or independently cooled �uid metal cov-

ers, cooling frameworks for electronic gadgets, sun based vitality accumulation and synthetic

procedures. Utilization of nanoparticles as intends to upgrade the �ow of heat in low thermal

conductivity liquids has turned out to be a novel procedure. The art of nano�uids mechanics

has increased signi�cant consideration of propelled analysis from everywhere throughout the

world. Iqbal et al. [48] researched the unsteady transport of MHD mixed convection inspired

by thermal radiation and partial slip performance. The exact solutions are computed for the
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reduced systems of equations. Nanoparticles due to distinct properties have countless delib-

eration for investigators and the motivation of nanotechnology in numerous submissions are

accessible in the literature such as [49-51].

The fundamental �uid�s property (viscosity) di¤er with temperature. It plays a dynamic

part in nano�uids. In industrial application the conventional �uids like oil, water and ethylene

glycol have been extensively used in �uids heat transfer. Di¤erent types of nano �uids are

de�ned as pharmaceutical nano�uids, medicinal nano�uids, environmental nano�uids etc. Cur-

rently frequent experiments have been performed with �Hybrid Nano�uid�, the cutting edge

nano�uid. Another class of �uid is recognized as hybrid nano�uid for noteworthy conductivity

and stability. A signi�cant number of heat transfer enhancement studies using di¤erent nano�u-

ids type, for example, Al2O3, CNT, Fe2O3, Cu, CuO, Ag, TiO2, ZnO, SiO and SiC through

a cylinder have been done [52-54]. The Hybrid nano�uid can be accumulated by merging two

unalike solid nanoparticles in the base �uids. Picking up the proper mixture of nanoparticles is

the principle favoured perspective of exploiting hybrid nano�uid. Encouraging structures can

be amended and by the reason of synergistic e¤ect troublesomeness can be enclosed. Recently,

hybrid nano�uids have been extensively used in many areas such as micro �uidics, transporta-

tion, medical, naval structures and acoustics etc. Mainly, nano�uids �ow are eminent for high

heat transfer as related to normal �uid. In addition to improve it even further, the hybrid

nano�uid is initiated. Suresh et al. [55] deliberated the hybrid nano�uid �ow features include

with the heat transfer phenomena. Momin [56] did a trial investigation of mixed convection

with (Al2O3-Cu/H2O) hybrid nano�uid for laminar �ow in a inclined tube. From that point

forward di¤erent endeavors subject to Hybrid nano�uid are accounted for see Refs. [57-59].

Presently, it is imperative to note that numerous �uids of industrial signi�cance are non-

Newtonian. In real mechanical non-Newtonian �uids are more suitable than Newtonian �uids,

because to their applications in oil penetrating, polymer designing, certain partition forms, man-

ufacturing of substances and paper and some other modern procedures [60]. The non-linearity

can show itself in an assortment of ways in numerous �elds, for example, food, penetrating

operations and bio- designing. The Navier�Stokes theory is insu¢ cient for such �uids, and no

single constitutive condition is accessible in the literature which displays the properties of all

�uids. Subsequently, few non-Newtonian �uid models [61-62] have been proposed relying upon
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di¤erent physical characters. So as to acquire an exhaustive perception of non-Newtonian �uids

and their numerous applications, it is essential to study their �ow actions. Because of their

application in industry and machinery, couple of issues in �uid mechanics have delighted in the

consideration that concurred to �ow which includes non-Newtonian �uids.

In classi�cation of the non-Newtonian liquids, casson model has distinguishing characteris-

tic. This model was displayed by the Casson [63] for progression of viscoelastic �uid in 1959.

This model is developed for determining giant shear-rate viscosities when the information of

transitional shear-rate are accessible. In the literature, the Casson �uid is in some cases ex-

pressed to �t rheological information superior to general viscoelastic models for some materials.

Precisely, the Casson �uid depicts the �ow qualities of blood exactly at low shear rates and

when it moves through little veins. Casson �uids are observed to be material in creating models

for blood oxygenator and haemodialysers. The non-linear Casson�s constitutive equation has

been found to depict precisely the �ow curves of suspensions of colors in lithographic varnishes

utilized for research of printing inks and silicon suspensions [64]. Eldabe et al. [65] evaluated

the heat transfer of MHD Casson �uid �ow between two pivoting chambers. Fredrickson [66]

inspected the unfaltering progression of a Casson �uid in a tube. Dash et al. [67] explored Cas-

son �ow in tube �lled through homogeneous permeable medium. Examination of the Casson

non-Newtonian blood models in stable and oscillatory �ow. Nadeem et al. [68] investigated

MHD Casson �ow in two horizontal directions past a permeable straight stretching sheet.

The most commonly used Non- Newtonian �uids is Couple Stress �uid, which is actually the

generalized from of Newtonian �uid. Ramesh [69] examined peristaltic �ow in inclined channel

through porous medium. Khan et al. [70] presented de�nite solution of MHD heat transfer

couple stress �uid for peristaltic transport. Kaladhar [71] have investigated the consequence

of Joule heating and Hall current on free convection �ow of couple stress �uid. Sankad and

Nagathan [72] examined peristaltic transport in uniform channel of couple stress �uid. Dhit

and Roy [73] explored the impact of channel inclination on couple stress �uid. The stability

of buoyancy driven parallel shear �ow con�ned between vertical plates on couple stress �uid is

investigated by Shankar et al. [74]. Devakar et al. [75] worked on analytical solutions of couple

stress �uid.

All mentioned available studies have been focused to the �ows in planar channels or tubes.
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In real world issues curved channel are essential signi�cance. In simple channel most of the

practical application do not encounter, curved channel increase signi�cantly more important in

veins, intestines and arteries. Sato et al. [76] �rstly analyzed the �ow in a rectangular curved

channel for a viscous �uid. Vriend [77] examined the curved microchannel array plates. In

curved channel unsteady transport inspected by Ramanamurthy et al. [78]. Hina et al. [79]

discussed the impact of nano�uid on curved channel on cilic motion. Eskinazi [80] investigation

about fully developed turbulent �ows in curved channel. The mathematical examination of

hyperbolic tangent �uid in curved tube examined by Nadeem et al. [81]. In the curved channel

�ow of the pseudoplastic �uid using wall properties and slip conditions were explored by Hina

et al. [82]. Fluid motion in a curved channel has been discussed by Dean et al. [83].

Inspired Motivated from the above studies, the them of the current thesis is to digout the

e¤ects of corrugation and EMHD for various non-Newtonian �uids. This thesis consist of eight

chapters in which �rst chapter is introductory chapter which other chapters are described as

follow.

Chapter two objectives to assess the EMHD�ow in microchannel through permeable medium

under corrugation e¤ects. The walls corrugations are described by period sine waves with small

amplitude. The signi�cant formulation is discussed in the presence of Lorenz force. The corre-

sponding solutions are calculated by using perturbation technique. 3D contours are developed

for the small amplitude parameters. This chapter contents are submitted in Physica A: Statis-

tical Mechanics and its Applications.

The aims of chapter three is to investigate the in�uences of surface wavy roughness on the

viscous �uid �ow inside microchannel through corrugated walls. The theme to this chapter has

the following interesting features. Firstly, to inspect the in�uence of Lorenz on electromagneto-

hydrodynamic �ow. Secondly to address the e¤ect of convective conditions. Thirdly the e¤ect

of EMHD on nano�uid through the corrugated walls are discussed. Fourth, the Navier-Stokes

equations are simpli�ed by utilizing perturbation technique. Fifth the in�uence of related pa-

rameters graphically interpreted. This chapter contents are published in Physica A: Statistical

Mechanics and its Applications, Volume 551, 1 August 2020, 124089.

In Chapter four we explored the e¤ect of Couple stress �uid on electromagnetohydrodynamic

�ow in a microchannel. The �ow is deliberated in the presence of convective conditions. By
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employing mathematical computation, we evaluated the wavy e¤ects on velocity for the EMHD

�ow. The impact of all parameters on velocity and the mean velocity pro�les can be analyzed

by graphs. This chapter contents are submitted in Advances in Mechanical Engineering.

The determination of Chapter �ve is to examine the consequences of heat generation and

heat �ow on hybrid nano�uid in microchannel. The heat transfer enhancement by using hybrid

nano�uid. We take two-dimensional �ow of a Hybrid nano�uid Cu-Al2O3/water and nano�uid

Cu/water along with Casson �uid. This model is employed to inspect the consequence of

thermal radiation, heat generation and porous e¤ect in microchannel with corrugated walls.

This chapter contents are submitted in Journal of Thermal Analysis and Calorimetry.

Chapter six models the electromagnetohydrodynamic �ow in a curved channel of viscous

�uid. Amplitude of corrugations of the wavy walls are either in phase or out of phase. The

solution of velocity is achieved by employing the perturbation technique. By means of math-

ematical calculations we investigated the corrugation e¤ects on the EMHD velocity �ow. The

in�uence of emerging parameters from obtained solutions are inspected by graphs. This chapter

contents are submitted in Physica A: Statistical Mechanics and its Applications.

Chapter seven investigates the corrugated e¤ect on nano�uids in curved channel under the

in�uence of electromagnetohydrodynamic �ow. Firstly, performed the mathematical modelling

and then employing the method of perturbation, we have estimated the analytical solutions.

The main observations are summarized in the conclusions. The physical e¤ects of �ow variables

are graphically discussed. Consequences of Curvature parameter on stresses and Nusselt number

are analyzed through tables. The important conclusion is that reducing the unobvious wave

e¤ect on the velocity by taking amplitude ratio parameter small. This chapter contents are

accepted in Applied Mathematics-A Journal of Chinese Universities.

The aims of chapter eight is described the steady EMHD non-Newtonain incompressible and

electrical conducting Casson �uid between corrugated walls in the presence of Lorenz force. The

Casson �uid model is utilized to characterize the non-Newtonian �uid behavior. The equations

are transformed by utilizing the perturbation method. Analytical solution corresponding to

momentum and temperature equations are acquired. The heat transfer features are analyzed

in detail. This chapter contents are submitted in Applied Mathematics-A Journal of Chinese

Universities.
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Chapter 2

Electromagnetohydrodynamic �ow

in microchannel by velocity slip and

temperature jump through a porous

medium under corrugated wall

In this chapter, we have discussed the electromagnetohydrodynamic (EMHD) �ow in microchan-

nels by perturbation technique through the porous medium under slightly corrugated walls

e¤ects. In microparallel plates we consider incompressible and electrically conducting viscous

�uid. With small amplitudes the wall corrugations are described by periodic sine waves. The

�ow is discussed in the presence of Lorenz force. We discussed the e¤ects of darcy condition on

velocity. Impacts of velocity slip and in addition thermal slip have been appropriately dealt

with in the present examination. The energy equation is de�ned by including a heat source

factor which simulates either absorption or generation. Systematic solutions assessed for ve-

locity and temperature. By utilizing numerical computations, we investigated the corrugation

consequences on EMHD �ow. We explicitly clari�ed the pro�les of velocity and temperature

and their dependencies on the parameters.
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2.1 Mathematical development

We consider EMHD �ow of viscous, incompressible and electrically conducting Newtonian �uids

between two vertical corrugated walls separated by 2H distance. We assumed that the length

L of channel in z�-direction and in x�-direction width W and the �ow is taken due to Lorenz

force. The �ow is taken opposite to corrugations of the walls. The wavy walls are described by

y�l = H + "H sin (��x�) and y�r = �H � "H sin (��x�) : (2.1)

We can applied electric �eld E�and magnetic �eld B�in x� and y� direction respectively. Here

J�B�is the Lorenz force taken along the z� direction and created by electric and magnetic

�eld interaction, where current density is symbolize by J.

Fig. (2.1): Geometrical sketch of

EMHD �ow in microchannel.

The basic equations for mass, momentum and temperature are expressed as [84],
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r�u� = 0: (2.2)

�
@u�

@t�
+ � (u�:r�)u� = �r�p+ �r�2u� + J�B� + g(��)(T � � T �r )�

�

k1
u�; (2.3)

(�Cp)
DT �

Dt�
=r�:k"r�T � +Q0(T

� � T �r ): (2.4)

We choose the velocity in that form

u� = (0; 0; w�(x�; y�)).

Assume that velocity will be maintained by z�component. The equations are simpli�ed as

�
@w�

@t�
= � @p

@z�
+ �

�
@2w�

@x�2
+
@2w�

@y�2

�
+ �B� (E� �B�w�) + g(��)(T � � T �r )�

�

k1
w�; (2.5)

(�Cp)

�
@T �

@t�

�
= k"

�
@2T �

@x�2
+
@2T �

@y�2

�
+Q0(T

� � T �r ): (2.6)

We consider incompressible �uid between microparallel plates and along z� direction. Adopt-

ing channel is open in z� direction so neglected pressure gradient [85] and the velocity satis�es

�
@w�

@t�
= �

�
@2w�

@x�2
+
@2w�

@y�2

�
+ �B� (E� �B�w�) + g(��)(T � � T �r )�

�

k1
w�: (2.7)

Velocity, electric �eld and temperature in periodical forms are expressed as

w� = Rf ~w(x�; y�)ei!t�g; E� = RfE0ei!t
�g; T � = RfT (x�; y�)ei!t�g; (2.8)

where Rf g, ~w, !; E0, i and T denotes real part, amplitude of velocity, angular frequency,

electric �eld, imaginary unit and temperature. Utilizing Eq. (2:8) into Eq. (2:6) and Eq. (2:7),

we get
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i�! ~w = �

�
@2 ~w

@x�2
+
@2 ~w

@y�2

�
+ �B�E0 � �B�2 ~w � g(��)(T � Tr)�

�

k1
~w: (2.9)

T!i = �

�
@2T

@x�2
+
@2T

@y�2

�
+

Q0
(�Cp)

(T � Tr): (2.10)

Nondimensional variables are

(x; y) =
(x�; y�)

H
;w =

~w

H!
; � = ��H: (2.11)

Using Eq. (2:11) into Eqs. (2:9)and (2:10), we get

�
@2w

@x2
+
@2w

@y2

�
�
�
Ha2 +Re i+

1

Da

�
w +Gr� +Ha� = 0; (2.12)

1

Pr
(
@2�

@x2
+
@2�

@y2
) + �(�� i)� Si = 0; (2.13)

Now non-dimensional quantities are

Re = �!H2

� ; Ha = B�H
�
�
�

� 1
2
; � = E0

�
�
�

� 1
2
=!; Da = k1

H2 ;

Gr =
g(��)H(Tl�Tr)

�! ; � = T�Tr
Tl�Tr ; S =

Tr
(Tl�Tr) ; Pr =

!H2

�f
; � = Q0H2

k00
:

(2.14)

The corresponding dimensionless slip conditions are

w � �1
@w

@y
= 0 and � � 1

@�

@y
= 1 at y = yl; (2.15)

w + �1
@w

@y
= 0 and � + 1

@�

@y
= 0 at y = yr: (2.16)

2.2 Perturbation analysis

In order to solve Eqs. (2:12) and (2:13) using boundary conditions (2:15) and (2:16), we consider

the perturbation expansion by writing
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w (x; y) = w0 (y) + "w1 (x; y) + "
2w2 (x; y) + ::: (2.17)

� (x; y) = �0 (y) + "�1 (x; y) + "
2�2 (x; y) + ::: (2.18)

Now using Eqs.(2:17) and (2:18) into Eqs. (2:12) and (2:13) and the boundary conditions

(2:15) and (2:16) are expanded by Taylor series on wavy wall at y = 1 and y = �1 and collecting

like power of ", one gets the zeroth-order equations as

d2w0
dy2

�
�
Ha2 +Re i+

1

Da

�
w0 +Gr�0 +Ha� = 0; (2.19)

1

Pr

d2�0
dy2

+ �0(�� i)� Si = 0: (2.20)

Corresponding boundary conditions are

w0 � �1
dw0
dy

= 0 and �0 � 1
d�0
dy

= 1at y = 1 and (2.21)

w0 + �1
dw0
dy

= 0 and �0 + 1
d�0
dy

= 0 at y = � 1: (2.22)

The �rst-order perturbation equation is found in the form

�
@2w1
@x2

+
@2w1
@y2

�
�
�
Ha2 +Re i+

1

Da

�
w1 +Gr�1 = 0; (2.23)

1

Pr
(
@2�1
@x2

+
@2�1
@y2

) + (�� i)�1 = 0: (2.24)

The corresponding boundary conditions are

w1 + sin(�x)
dw0
dy � �1(

@w1
@y + sin(�x)

d2w0
dx2

) = 0 and

�1 + sin(�x)
d�0
dy � 1(

@�1
@y + sin(�x)

d2�0
dx2
) = 0 at y = 1:

(2.25)
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and
w1 � sin(�x)dw0dy + �1(

@w1
@y � sin(�x)

d2w0
dx2

) = 0 and

�1 � sin(�x)d�0dy + 1(
@�1
@y � sin(�x)

d2�0
dx2
) = 0 at y = �1:

(2.26)

The second-order perturbation equation is found in the form

@2w2
@x2

+
@2w2
@y2

�
�
Ha2 +Re i+

1

Da

�
w2 +Gr�2 = 0; (2.27)

1

Pr
(
@2�2
@x2

+
@2�2
@y2

) + (�� i)�2 = 0: (2.28)

The corresponding boundary conditions are

w2 + sin(�x)
@w1
@y +

1
2 sin

2(�x)d
2w0
dy2

� �1(@w2@y + sin(�x)
@2w1
@y2

+ 1
2 sin

2(�x)d
3w0
dy3 ) = 0 ,

�2 + sin(�x)
@�1
@y +

1
2 sin

2(�x)d
2�0
dy2

� 1(@�2@y + sin(�x)
@2�1
@y2

+ 1
2 sin

2(�x)d
3�0
dy3 ) = 0 at y = 1;

(2.29)

and

w2 � sin(�x)@w1@y +
1
2 sin

2(�x)d
2w0
dy2

+ �1(
@w2
@y � sin(�x)

@2w1
@y2

+ 1
2 sin

2(�x)d
3w0
dy3 ) = 0 ,

�2 � sin(�x)@�1@y +
1
2 sin

2(�x)d
2�0
dy2

+ 1(
@�2
@y � sin(�x)

@2�1
@y2

+ 1
2 sin

2(�x)d
3�0
dy3 ) = 0 at y = �1:

(2.30)

2.3 Solution of the problem

The solution of zero order system (2:19) and (2:20) by utilizing boundary conditions (2:21) and

(2:22) we obtained

�0 (y) = �
PrSi

a2
+ eayA1 + e

�ayA2; (2.31)
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w0 (y) =

(e�y(a+b)(Daey(a+b)GrPr Si(1 +Da(Ha2 +Re i)) + a2(�Da2ey(a+b)GrPr Si�A2Daeyb

Gr(1 +Da(Ha2 +Re i))�A1Dae2y(a+b)Gr(1 +Da(Ha2 +Re i))�Daey(a+b)Ha� �Da2

ey(a+b)Ha3� �Da2ey(a+b)HaRe i� � ey(a+2b)(1 +Da(Ha2 +Re i))2B1 �B2eya � 2Daeya

Ha2B2 �Da2eyaHa4B2 � 2DaeyaRe iB2 � 2Da2eyaHa2Re iB2 �Da2eyaRe i2B2) + a4

Daeya(DaeybHa� + e2yb(1 +Da(Ha2 +Re i))B1 +B2 +Da(Ha
2 +Re i)B2)))=(a

2(�1+

a2Da�Da(Ha2 +Re i))(1 +Da(Ha2 +Re i))):
(2.32)

with

a =
p
iPr�Pr�;

b =

p
1+Da(Ha2+Re i)p

Da
:

(2.33)

On the base of conditions (2:25) and (2:26), the �rst order system solution is

�1 (x; y) = sin (�x) f (y) ; (2.34)

w1 (x; y) = sin (�x) g (y) ; (2.35)

here f (y) and g (y) are function of y.

Using Eq. (2:34) into Eqs. (2:35), (2:23) and (2:24); we get

1

Pr
(
d2f (y)

dy2
� �2)f (y) + (�� i)f (y) = 0; (2.36)

d2g (y)

dy2
� (�2 +Ha2 +Re i+ 1

Da
)g (y) +Grf (y) = 0: (2.37)

The boundary conditions are transformed in the following form

f (y) + d�0
dy � 1(

df(y)
dy + d2�0

dy2
) = 0 and

g (y) + dw0
dy � �1(

dg(y)
dy + d2w0

dy2
) = 0 at y = 1;

(2.38)

and
f (y)� d�0

dy + 1(
df(y)
dy � d2�0

dy2
) = 0 and

g (y)� dw0
dy + �1(

dg(y)
dy � d2w0

dy2
) = 0 at y = �1:

(2.39)
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Based upon boundary conditions, the solutions of Eqs. (2:36) and (2:37) takes the form

f (y) = ecyC1 + e
�cyC2; (2.40)

g(y) = �(Dae�dy(C2+C1e2dy)Gr=(�1+c2Da�Da(Ha2+Re i+�2)))+edyD1+e�dyD2; (2.41)

with
c =

p
iPr+�2 � Pr�;

d ==

p
1+Da(Ha2+Re i+�2)p

Da
:

(2.42)

First order problem solution can be expressed as

�1 (x; y) = sin (�x) (e
cyC1 + e

�cyC2) (2.43)

w1 (x; y) = sin (�x)
�(Dae�dy(C2 + C1e2dy)Gr=(�1 + c2Da�Da

(Ha2 +Re i+ �2))) + edyD1 + e
�dyD2:

(2.44)

The boundary conditions (2:29) and (2:30) of the second order can be simpli�ed by the

solutions of (2:31); (2:32); (2:43) and (2:44). Base on boundary conditions, the second order

system solutions can be computed as

�2 (x; y) = h (y) + cos (2�x) k (y) ; (2.45)

w2 (x; y) = m (y) + cos (2�x)n (y) : (2.46)

By utilizing Eqs. (2:45) and (2:46) into Eqs. (2:27) and (2:28); we get the following forms

1

Pr

d2h (y)

dy2
+ (�� i)h (y) = 0; (2.47)

d2m (y)

dy2
� (Ha2 +Re i+ 1

Da
)m (y) +Grh (y) = 0: (2.48)
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The boundary conditions are transformed as

h (y) + 1
2(
df(y)
dy + 1

2
d2�0
dy2
)� 1(

dh(y)
dy + 1

2(
d2f(y)
dy2

+ 1
2
d3�0
dy3 )) = 0 and

m (y) + 1
2(
dg(y)
dy + 1

2
d2w0
dy2

)� �1(
dm(y)
dy + 1

2(
d2g(y)
dy2

+ 1
2
d3w0
dy3 )) = 0 at y = 1;

(2.49)

and

h (y)� 1
2(
df(y)
dy � 1

2
d20�
dy2
) + 1(

dh(y)
dy � 1

2(
d2f(y)
dy2

� 1
2
d30�
dy3)) = 0 and

m (y)� 1
2(
dg(y)
dy � 1

2
d2w0
dy2

) + �1(
dm(y)
dy � 1

2(
d2g(y)
dy2

� 1
2
d3w0
dy3 )) = 0 at y = �1;

(2.50)

1

Pr
(
d2k (y)

dy2
� 4�2)k (y) + (�� i)k (y) = 0; (2.51)

d2n (y)

dy2
� (4�2 +Ha2 +Re i+ 1

Da
)n (y) +Grk (y) = 0: (2.52)

The boundary conditions are transformed in the following form

k (y)� 1
2(
df(y)
dy + 1

2
d2�0
dy2
)� 1(

dk(y)
dy � 1

2(
d2f(y)
dy2

+ 1
2
d3�0
dy3 )) = 0 and

n (y)� 1
2(
dg(y)
dy + 1

2
d2w0
dy2

)� �1(
dn(y)
dy � 1

2(
d2g(y)
dy2

+ 1
2
d3w0
dy3 )) = 0 at y = 1;

(2.53)

and

k (y) + 1
2(
df(y)
dy � 1

2
d2�0
dy2
) + 1(

dk(y)
dy + 1

2(
d2f(y)
dy2

� 1
2
d3�0
dy3 )) = 0 and

n (y) + 1
2(
dg(y)
dy � 1

2
d2w0
dy2

) + �1(
dn(y)
dy + 1

2(
d2g(y)
dy2

� 1
2
d3w0
dy3 )) = 0 at y = �1:

(2.54)

By utilizing the above boundary conditions (2:49), (2:50); (2:53) and (2:54) the solutions are

expressed as

h (y) = eayE1 + e
�ayE2; (2.55)

m (y) = (Dae�ay(E2 + E1e
2ay)Gr=(1 +Da(�a2 +Ha2 +Re i))) + ebyF1 + e�byF2; (2.56)

k (y) = eeyG1 + e
�eyG2; (2.57)
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n (y) = (Dae�ey(G2+G1e
2ey)Gr=(1+Da(�e2+Ha2+Re i+4�2)))+efyH1+e�fyH2; (2.58)

with
e =

p
iPr+4�2 � Pr�;

f =

p
1+Da(Ha2+Re i+4�2)p

Da
:

(2.59)

Thus the second order solutions �nally take the form

�2 = e
ayE1 + e

�ayE2 + cos (2�x) (e
eyG1 + e

�eyG2); (2.60)

w2 =
(Dae�ay(E2 + E1e2ay)Gr=(1 +Da(�a2 +Ha2 +Re i))) + ebyF1 + e�byF2 + cos (2�x)

((Dae�ey(G2 +G1e2ey)Gr=(1 +Da(�e2 +Ha2 +Re i+ 4�2))) + efyH1 + e�fyH2):
(2.61)

Collecting (2:31), (2:43) and (2:60), the approximate temperature solution can be obtained

as

� (x; y) = �0 (y) + "�1 (x; y) + "
2�2 (x; y) + ::: (2.62)

� (x; y) =
�PrSi

a2
+ eayA1 + e

�ayA2 + " sin (�x) (ecyC1 + e�cyC2)

+"2(eayE1 + e
�ayE2 + cos (2�x) (eeyG1 + e�eyG2)):

(2.63)

Collecting (2:32), (2:44) and (2:61), the estimated velocity solution can be written as

w (x; y) = w0 (y) + "w1 (x; y) + "
2w2 (x; y) + ::: (2.64)
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w (x; y) =

(e�y(a+b)(Daey(a+b)GrPr Si(1 +Da(Ha2 +Re i)) + a2(�Da2ey(a+b)GrPr Si�A2Daeyb

Gr(1 +Da(Ha2 +Re i))�A1Dae2y(a+b)Gr(1 +Da(Ha2 +Re i))�Daey(a+b)Ha� �Da2

ey(a+b)Ha3� �Da2ey(a+b)HaRe i� � ey(a+2b)(1 +Da(Ha2 +Re i))2B1 �B2eya � 2Daeya

Ha2B2 �Da2eyaHa4B2 � 2DaeyaRe iB2 � 2Da2eyaHa2Re iB2 �Da2eyaRe i2B2) + a4

Daeya(DaeybHa� + e2yb(1 +Da(Ha2 +Re i))B1 +B2 +Da(Ha
2 +Re i)B2)))=(a

2(�1+

a2Da�Da(Ha2 +Re i))(1 +Da(Ha2 +Re i))) + " sin (�x) (�(Dae�dy(C2 + C1e2dy)Gr=

(�1 + c2Da�Da(Ha2 +Re i+ �2))) + edyD1 + e�dyD2) + "2((Dae�ay(E2 + E1e2ay)Gr=

(1 +Da(�a2 +Ha2 +Re i))) + ebyF1 + e�byF2 + cos (2�x) ((Dae�ey(G2 +G1e2ey)Gr=(1

+Da(�e2 +Ha2 +Re i+ 4�2))) + efyH1 + e�fyH2):
(2.65)

2.4 Volume �ow rate

We can de�ne the volume �ow rate per unit width of channel as

q(x) =

Z 1+" sin(�x)

�1�" sin(�x)
w(x; y)dy: (2.66)

Substituting (2:57) into (2:58) and expanded the integrals results and disregarding third

order term , �nally expressed as

q(x) =

R 1
�1w0(y)dy + "

R 1
�1w1(x; y)dy + "

2(
R 1
�1w2(x; y)dy ++sin(�x)[w1(x; y) jy=1

+w1(x; y) jy=�1] + 1
2 sin

2(�x)(dw0(y)dy jy=1 �dw0(y)
dy jy=�1))

: (2.67)

2.5 Graphical consequence

We obtained solutions by using perturbation method for velocity, temperature and volume �ow

rate of EMHD viscous �uids bounded by microparallel plates with corrugated walls. For general

micro�uidic analysis, consider H � 100�m is half height of channel, the conditions of domain

on density of water set with physical properties is � � 103kgm�3, the electrical conductivity

� � 2:2� 10�4 � 106Sm�1 and the viscosity � � 10�3kgm�1s�1. If range of magnetic �eld is

the O(B�) � 0:018� 0:44T , the Hartmann number order O(Ha) using Ha = B�H(�=�)1=2 is
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taken from 0:0001 to 3. The electric �eld frequency O(!) is changes from the 50 to 500s�1 and

range of the frequency is 0� 1� 104s�1. The order of Reynolds number O(Re) change between

the 0:5 to 5 and the dimensionless parameter is �xed value i.e. � = 5.

2.5.1 E¤ect of wall roughness on contour distributions of velocity and tem-

perature

The contour of the non-dimensionless velocity and temperature distributions with x and y

coordinates for various " are shown in the Figs. 2:2 � 2:3. Figs. 2:2(a) and 2.3(a) display the

in�uence of velocity and temperature distributions through smooth channels when " = 0. It is

de�nes from Figs. 2:2 � 2:3 that the wavy phenomenon noticeable with the expansion of the

corrugation. We found that the velocity distribution depends on the shape of channel. The

asymmetric boundaries of the channels lead to asymmetric velocity. The three-dimensional

velocity and contour distributions for various value of variable viscosity are shown in Figs.

2:2� 2:3. In microchannel, the wall roughness can cause changes in the velocity distribution.

a b
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c d

Fig. (2.2): Velocity contours (a, b, c, b) for "= 0, 0.02, 0.05, 0.1 respectively.

a b
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c d

Fig. (2.3): Temperature contours (a, b, c, b) for "= 0, 0.02, 0.05, 0.1 respectively.

2.5.2 E¤ect of wall roughness on velocity

The 2D variations of the EMHD velocity w for various values of Reynolds number, Grashof

number, velocity-slip parameter furthermore, Darcy number are shown in the Figs. (2:4) to

(2:7). Figs. 2:4� 2:7 focus around the EMHD velocity of di¤erent parameter at point x = 0:5

and y = 0 when we take " = 0:1 and � = 5. From these �gures, the velocities �rst grow and

then reduce by expanding the y. Fig. (2:4) illustrates that the disparity of the velocity for

various estimations of Reynolds number, with increasing Re the velocity w increases. Fig. (2:5)

displays that the velocity w declines for distinct values of Gr. Fig. (2:6) illustrates that the

velocity w declines due to velocity slip parameter �1. Fig. (2:7) displays the impact of Darcy

number Da on velocity w. It is inspected that the velocity increases with the increasing Darcy

number Da.
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w

Re=0.5

Re=1.0
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Fig. (2.4): 2D Variation of velocity for Reynolds number Re.
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Fig. (2.5): 2D Variation of velocity for Grashof number Gr:
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Fig. (2.6): 2D Variation of velocity for velocity slip parameter �1:
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Fig. (2.7): 2D Variation of velocity for Darcy number Da.
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2.5.3 E¤ect of wall roughness on temperature

Figs. 2.8 � 2:11 give some trademark pro�les of temperature for distinct values of thermal

slip/ temperature jump factor, heat absorption coe¢ cient, Prandtl number and dimensionless

parameter respectively. The 2D variation of di¤erent parameters 1, �; Pr and S are taken at

x = 0:5 and y = 0. Fig. (2:8) represents the change of � versus y for numerous values of 1.

Temperature plot �rst declines with the expanding of 1 and afterward enlarge with expanding

value of 1. Fig. (2:9) emphasizes that as heat generates during �ow in channel. Therefore the

temperature of the wall enhanced when the heat absorption coe¢ cient � increases. Fig. (2:10)

shows that pro�le of temperature decreases when the Prandtl number Pr increases. Fig. (2:11)

shows that pro�le of temperature decreases when non-dimensional parameter S increases.

1 0.5 0 0.5 1

0.5

0

0.5

1

1.5

y

θ

γ1=0.3

γ1=0.5

γ1=0.7

Fig. (2.8): 2D Temperature variation for thermal slip parameter 1.
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Fig. (2.9): Temperature variation for heat absorption coe¢ cient �.
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Fig. (2.10): Temperature variation for Prandtl number Pr.
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Fig. (2.11): 2Temperature variation for Non-dimensional parameter S.

2.6 Conclusions

The technique of perturbation is utilized to assess EMHD �ow behavior through microchannel

in the presence of corrugated walls depicted by the sin wave with small amplitude for viscous

�uid. The primary outcomes are quickly clari�ed as

� The unobvious in�uences of wave can be reduced by small value of " parameter.

� When amplitude " approach to 0, the pro�le of velocity and temperature distributions of

�ow through the corrugated walls approach to the velocity and temperature distributions

of the �ow through a smooth channel.

� The velocity and temperature depend on the shape of a channel.

� Velocity grows with expanding assay of Reynolds number; Grashof number and Darcy

number.

� Velocity declines for various estimations of slip parameter �1:
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� Wave phenomenon of velocity becomes obvious with enlargement of corrugation.

� Velocity is more prominent middle of the channel and lesser sides of walls in all cases.

� The pro�le of temperature at �rst decreases then increases with e¤ect of jump temperature

coe¢ cient 1:

� The pro�le of temperature increases with �.

� The pro�le of temperature declines with non-dimensional parameter S and Prandtl num-

ber Pr:
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Chapter 3

Signi�cance of knudsen number and

corrugation on EMHD �ow under

metallic nanoparticles impact

In this chapter, the impacts of surface wavy roughness on the viscous �uid �ow inside mi-

crochannel through corrugated walls is examined. The Navier�Stokes equations are simpli�ed

by utilizing perturbation technique with incorporated microscopic slip conditions at the wavy

wall. The present investigation depends on the assumptions that the corrugations are periodic

sinusoidal waves of small amplitude. The considered examination involves the consequence

of electromagnetohydrodynamic on the features of the nano�uid through the corrugated walls

under the impact of nanoparticle by considering an appropriate mathematical model. The equa-

tions are understood through the strategy of perturbation. Examination is introduced by taking

water and copper in the presence of convective conditions. In�uence of related parameters are

interpreted graphically.

3.1 Mathematical model

We inspected the EMHD �ow with nanoparticle between two vertical corrugated walls of height

2H. The microchannel height is taken 100�m and 0:1H is taken amplitude of corrugated wall.

The wall surfaces are describe by
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y�l =H + "H sin (��x�) and y�r = �H � "H sin (��x� + ��) ; (3.1)

where �� represents the wave length and " is small amplitude. We can applied electric �eld

E�and magnetic �eld B�in x� and y� direction respectively, J�B� is Lorenz force which taken

along the z� direction and created by electric and magnetic �eld interaction, where current

density is symbolize by J.

Fig. (3.1): Geometrical sketch of

EMHD �ow in microchannel.

The formulated problem composed as

r�u� = 0; (3.2)

�nf
@u�

@t�
+ �nf (u

�:r�)u� = �r�p+r�� � + J�B� + g(��)nf (T � � T �r ); (3.3)
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(�Cp)nf
DT �

Dt�
=r�k"nfr�T � +Q0(T

� � T �r ); (3.4)

where T � shows the temperature, Q0 is heat absorption constant, �nf , k"nf ; �nf ; �nf ,

(�Cp)nf are de�ned the nano�uid viscosity, thermal conductivity, density, expansion coe¢ cient

and heat capacitance.

�nf =
�f

(1��)2:5 ; �nf =
k"nf

(�Cp)nf
; �nf = (1� �)�f +��s;

(��)nf = (1� �)(��)f +�(��)s; (�Cp)nf = (1� �)(�Cp)f +�(�Cp)s;
k"nf
k"f

=
(k"s+2k"f )�2�(k"f�k"s)
(k"s+2k"f )+�(k"f�k"s) ;

�nf
�f

= 1 +
( �s
�f
�1)�

( �s
�f
+1)��( �s

�f
�1)

(3.5)

Under the considered assumptions only the z�factor of velocity will be retained. The equa-

tions are rearranged as

�nf
@w�

@t�
= � @p

@z�
+

@

@x�
��x�z� +

@

@x�
��y�z� +

@

@z�
��z�z� +�nfB

� (E� �B�w�)+ g(��)nf (T ��T �r );

(3.6)

(�Cp)nf

�
@T �

@t�

�
= k"nf

�
@2T �

@x�2
+
@2T �

@y�2

�
+Q0(T

� � T �r ): (3.7)

The simpli�cation and incorporating the values of stresses in Eq. (3:6) yield

�nf
@w�

@t�
= � @p

@z�
+ �nf (

@2w�

@x�2
+
@2w�

@y�2
) + �nfB

� (E� �B�w�) + g(��)nf (T � � T �r ): (3.8)

The boundary conditions are written as:

w� (x�; y�l ) = Kn
dw�

dn at y�l = H + "H sin (��x�)

w� (x�; y�r ) = Kn
dw�

dn at y�r = �H � "H sin (��x� + ��)

T � (x�; y�l ) = T
�
l (x

�; y�) at y�l = H + "H sin (��x�)

k"nf
@T �

@y� = �B(T
� � T �r ) at y�r = �H � "H sin (��x� + ��)

: (3.9)

We assumed that �uid is incompressible and only taken in z� direction. In z� direction we

38



assume that channel is open so pressure gradient is ignored [85] and the velocity satis�es

�nf
@w�

@t�
= �nf (

@2w�

@x�2
+
@2w�

@y�2
) + �nfB

� (E� �B�w�) + g(��)nf (T � � T �r ): (3.10)

Velocity, electric �eld and temperature in EMHD �ow are express in periodical forms as

w� = Rf ~w(x�; y�)ei!t�g; E� = RfE0ei!t
�g; T � = RfT (x�; y�)ei!t�g: (3.11)

Utilizing Eq. (3:11) into Eqs. (3:7) and (3:10), we get

i�nf! ~w = �nf

�
@2 ~w

@x�2
+
@2 ~w

@y�2

�
+ �nfB

�E0 � �nfB�2 ~w + g(��)nf (T � Tr); (3.12)

T!i = �nf

�
@2T

@x�2
+
@2T

@y�2

�
+

Q0
(�Cp)nf

(T � Tr): (3.13)

The dimensionless form of momentum and temperature equations are

@2w

@x2
+
@2w

@y2
�
�f
�nf

�
�nf
�f
Ha2 +

�nf
�f

Re i

�
w +

�f
�nf

�nf
�f
Ha� +

�f
�nf

(��)nf
(��)f

Gr� = 0; (3.14)

@2�

@x2
+
@2�

@y2
+
k"f
k"nf

�� � Pr i �f
�nf

(S + �) = 0: (3.15)

The non-dimensional quantities are expressed as

(x; y) = (x�;y�)
H ; � = ��H; w = ~w

H! ; Ha = B
�H
�
�f
�f

� 1
2
;

Re =
�f!H

2

�f
; � = E0

�
�f
�f

� 1
2
=!; Pr = !H2

�f
; Bi =

BH
k"f
;

Gr =
g(��)fH(Tl�Tr)

�f!
; � = T�Tr

Tl�Tr ; S =
Tr

(Tl�Tr) ; � =
Q0H2

k"f
:

(3.16)

On the boundary, we expand w(x; y) in the following form as suggested by [10]

w(x; y) = w(x; y) + "dywy(x; y) + "
2(
dy2

2
wyy(x; y))::: = Kn

dw

dn
: (3.17)
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Thus, on the upper wall and lower walls dwdn is de�ned as

dw

dn
= 5w 5(yl � 1� " sin (�x))

j5(yl � 1� " sin (�x))j
(3.18)

= (1 + "2�2 cos2(�x))�
1
2 (wy � "� cos(�x)wx)

at yl = 1 + " sin (�x) ;
(3.19)

dw

dn
= 5w 5(yr + 1 + " sin (�x+ ��))

j5(yr + 1 + " sin (�x+ ��))j
(3.20)

= (1 + "2�2 cos2(�x+ ��))�
1
2 (wy � "� cos(�x+ ��)wx)

at yr = �1� " sin (�x+ ��) ;
(3.21)

and boundary conditions on temperature are

� = 1 at yl = 1 + " sin (�x) ; (3.22)

@�

@y
+

Bi

(
k"nf
k"f

)
� = 0 at yr = �1� " sin (�x+ ��) : (3.23)

3.2 Solution of technique

Utilizing regular perturbation technique in above equations, we may de�ne

w (x; y) = w0 (y) + "w1 (x; y) + "
2w2 (x; y) + ::: (3.24)

� (x; y) = �0 (y) + "�1 (x; y) + "
2�2 (x; y) + ::: (3.25)

Incorporating Eqs. (3:24) and (3:25) into equations (3:14), (3:15) and boundary condition

(3:17), collecting the same powers of ", we reach at

3.2.1 Zeroth order classi�cation

d2�0
dy2

+
k"f
k"nf

��0 � Pr i
�f
�nf

(S + �0) = 0; (3.26)
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d2w0
dy2

�
�f
�nf

�
�nf
�f
Ha2 +

�nf
�f

Re i

�
w0 +

�f
�nf

�nf
�f
Ha� +

�f
�nf

(��)nf
(��)f

Gr�0 = 0; (3.27)

�0 = 1 at y = 1;
d�0
dy

+
Bi

(
k"nf
k"f

)
�0 = 0 at y = �1; (3.28)

w0 �Kn
dw0
dy

= 0 at y = 1, w0 �Kn
dw0
dy

= 0 at y = �1: (3.29)

3.2.2 First order classi�cation

@2�1
@x2

+
@2�1
@y2

+
k"f
k"nf

��1 � Pr i
�f
�nf

�1 = 0; (3.30)

@2w1
@x2

+
@2w1
@y2

�
�f
�nf

�
�nf
�f
Ha2 +

�nf
�f

Re i

�
w1 +

�f
�nf

�nf
�f
Ha� +

�f
�nf

(��)nf
(��)f

Gr�1 = 0;

(3.31)

�1 + sin(�x)
�
d�0
dy

�
= 0 at y = 1

@�1
@y + sin(�x+ �

�)d
2�0
dy2

+ Bi

(
k"nf
k"f

)
(�1 + sin(�x+ �

�)�0) = 0 at y = �1;
(3.32)

w1 + 2 sin(�x)
dw0
dy �Kn(2 sin(�x)

d2w0
dy2

+ @w1
@y � � cos(�x)

dw0x
dy ) = 0 at y = 1

w1 + 2 sin(�x+ �
�)dw0dy �Kn(2 sin(�x�

�)d
2w0
dy2

+ @w1
@y � � cos(�x�

�)dw0xdy ) = 0 at y = �1:
(3.33)

3.2.3 Second order classi�cation

@2�2
@x2

+
@2�2
@y2

+
k"f
k"nf

��2 � Pr i
�f
�nf

�2 = 0; (3.34)

@2w2
@x2

+
@2w2
@y2

�
�f
�nf

�
�nf
�f
Ha2 +

�nf
�f

Re i

�
w2 +

�f
�nf

Gr
(��)nf
(��)f

�2 = 0; (3.35)
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�2 + sin(�x)
@�1
@y +

1
4(1� cos(2�x))

d2�0
dy2

= 0 at y = 1

@2�2
@y2

+ sin(�x+ ��)@
2�1
@y2

+ 1
4(1� cos(2�x+ 2�

�))d
3�0
dy3

+ Bi

(
k"nf
k"f

)

(�2 + sin(�x+ �
�)�1 +

1
4(1� cos(2�x+ 2�

�))�0) = 0 at y = �1;

(3.36)

w2 + 2 sin(�x)
@w1
@y + (1� cos(2�x))

d2w0
dy2

�Kn(@w2@y + 2 sin(�x)
@2w1
@y2

+ (1� cos(2�x))d3w0
dy3

�

2� cos(�x) sin(�x)@
2w0
@x@y � � cos(�x)

@w1
@x �

1
4�
2(1 + cos(2�x))dw0dy ) = 0 at y = 1

w2 + 2 sin(�x+ �
�)@w1@y + (1� cos(2�x+ 2�

�))d
2w0
dy2

�Kn(@w2@y + 2 sin(�x+ �
�)@

2w1
@y2

+

(1� cos(2�x+ 2��))d3w0
dy3

� 2� cos(�x+ ��) sin(�x+ ��)@2w0@x@y � � cos(�x+ �
�)@w1@x �

1
4�
2(1 + cos(2�x+ 2��))dw0dy ) = 0 at y = 1:

(3.37)

The solution of �rst order system can be computed by using the following expressions

�1 (x; y) = sin (�x) f (y) + cos(�x)g(y); (3.38)

w1 (x; y) = sin (�x)h (y) + cos(�x)k(y): (3.39)

Using Eqs. (3:38) and (3.39) into Eqs. (3:30) and (3:31) and boundary conditions Eqs. (3:32)

and (3:33); we get

d2f (y)

dy2
� [�2 � k"f

k"nf
�+ Pr i

�f
�nf

]f (y) ; (3.40)

d2g (y)

dy2
� [�2 � k"f

k"nf
�+ Pr i

�f
�nf

]g (y) ; (3.41)

(
d2h (y)

dy2
� �2h(y))�

�f
�nf

((
�nf
�f
Ha2 +

�nf
�f

Re i)h (y)�Gr (��)nf
(��)f

f (y)) = 0; (3.42)

(
d2k (y)

dy2
� �2k(y))�

�f
�nf

((
�nf
�f
Ha2 +

�nf
�f

Re i)k (y)�Gr (��)nf
(��)f

g (y)) = 0; (3.43)

f(y) +
d�0
dy

= 0aty = 1;
df

dy
+ cos��

d2�0
dy2

+
Bi

(
k"nf
k"f

)
(f(y) + �0 cos�

�)aty = �1; (3.44)
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g(y) = 0 at y = 1;
dg

dy
+ sin��

d2�0
dy2

+
Bi

(
k"nf
k"f

)
(g(y) + �0 sin�

�) at y = �1: (3.45)

The solution of second order scheme can be evaluated by means of expressions of the form

�2 (x; y) = l (y) + sin(2�x)m(y) + cos (2�x)n (y) ; (3.46)

w2 (x; y) = p (y) + sin(2�x)q(y) + cos (2�x) r (y) : (3.47)

Invoking Eqs. (3:46) and (3.47) into Eqs. (3:34) and (3:35) and boundary conditions Eqs.

(3:36) and (3:37), we get the resulting di¤erential equations are

d2l (y)

dy2
+ (

k"f
k"nf

�� �f
�nf

Pr i)l(y) = 0; (3.48)

d2m (y)

dy2
� (4�2 � k"f

k"nf
�+

�f
�nf

Pr i)m (y) = 0; (3.49)

d2n (y)

dy2
� (4�2 � k"f

k"nf
�+

�f
�nf

Pr i)n (y) = 0; (3.50)

d2p (y)

dy2
�
�f
�nf

((
�nf
�f
Ha2 +

�nf
�f

Re i)p (y)�Gr (��)nf
(��)f

l (y)) = 0; (3.51)

(
d2q (y)

dy2
� 4�2q(y))�

�f
�nf

((
�nf
�f
Ha2 +

�nf
�f

Re i)q (y)�Gr (��)nf
(��)f

m (y)) = 0; (3.52)

(
d2r (y)

dy2
� 4�2r(y))�

�f
�nf

((
�nf
�f
Ha2 +

�nf
�f

Re i)r (y)�Gr (��)nf
(��)f

n (y)) = 0; (3.53)

l(y) +
1

2
(
df

dy
+
1

2

d2�0
dy2

) = 0 at y = 1;

d2l
dy2

+ cos��

2
d2f
dy2

+ sin��

2
d2g
dy2

+ 1
4
d3�0
dy3 +

Bi

(
k"nf
k"f

)
(l(y)

+ cos��

2 f(y) + sin��

2 g(y) + 1
4�0) at y = �1;

(3.54)
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m(y) +
1

2

dg

dy
= 0 at y = 1;

d2m
dy2

+ cos��

2
d2g
dy2

+ sin��

2
d2f
dy2

+ sin 2��

4
d3�0
dy3 +

Bi

(
k"nf
k"f

)
(m(y)

+ cos��

2 g(y) + sin��

2 f(y) + sin 2��

4 �0) at y = �1;
(3.55)

n(y)� 1
2
(
df

dy
+
1

2

d2�0
dy2

) = 0 at y = 1;

d2n
dy2

� cos��

2
d2f
dy2

+ sin��

2
d2g
dy2

� cos 2��

4
d3�0
dy3 +

Bi

(
k"nf
k"f

)
(n(y)

� cos��

2 f(y) + sin��

2 g(y)� cos 2��

4 �0) at y = �1;
(3.56)

p(y) +
d2w0
dy2

� dh
dy
�Kn(

d3w0
dy3

� d
2h

dy2
+
dp

dy
� �

2

2
(h(y) +

1

2

dw0
dy
) = 0 at y = 1;

p(y) +
d2w0
dy2

+ cos��
dh

dy
+ sin��

dk

dy
�Kn(

d3w0
dy3

+ cos��
d2h

dy2
+ sin��

d2k

dy2
+
dp

dy

��
2

2
(
dw0
dy

+ cos��h(y) + sin��k(y)) = 0 at y = �1; (3.57)

q(y) +
dk

dy
�Kn(

d2k

dy2
+
dq

dy
+
�2

2
k(y)) = 0 at y = 1;

q(y) + sin 2��
d2w0
dy2

+ cos��
dk

dy
+ sin��

dh

dy
�Kn(sin 2��

d3w0
dy3

+ cos��
d2k

dy2

+sin��
d2h

dy2
+
dq

dy
+
�2

2
(sin 2��

dw0
dy

+ cos��k(y) + sin��h(y))=0 at y = �1; (3.58)
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r(y)� d
2w0
dy2

� dh
dy
�Kn(�

d3w0
dy3

� d
2h

dy2
+
dr

dy
� �

2

2
(h(y) +

1

2

dw0
dy
) = 0 at y = 1;

r(y)� cos 2��d
2w0
dy2

� cos��dh
dy
+ sin��

dk

dy
�Kn(� cos 2��

d3w0
dy3

� cos��d
2h

dy2

+sin��
d2k

dy2
+
dr

dy
� �

2

2
(cos 2��

dw0
dy

+ cos��h(y)� sin��k(y)) = 0 at y = �1: (3.59)

The approximate temperature solution can be obtained as

� (x; y) = �0 (y) + "�1 (x; y) + "
2�2 (x; y) + ::: (3.60)

The approximate velocity solution can be demonstrated as

w (x; y) = w0 (y) + "w1 (x; y) + "
2w2 (x; y) + ::: (3.61)

3.3 Heat transfer rate

The Nusselt number determines the convective heat exchange strength, and is de�ned as follows

[86]

Nu =
Hqw

k"f (T
�
l � T �r )

; (3.62)

On left and right walls we de�ned

qw = �k"nf
@T �

@y�
jy�=y�l ; qw = �k"nf

@T �

@y�
jy�=y�r ; (3.63)

From Eqs. (3:62) and (3:63), the Nusselt number can be expressed as

Nu = �k"nf
k"f

@�

@y
jy=yl ; Nu = �

k"nf
k"f

@�

@y
jy=yr : (3.64)
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3.4 Volume Flow rate

We can de�ne volume �ow rate as

q(x) =

Z 1+" sin(�x)

�1�" sin(�x)
w(x; y)dy: (3.65)

Substituting (3:61) into (3:65) and expanded by using the Taylor series the integrals results

in x and neglecting third order term, �nally volume �ow rate written as:

q(x) =

R 1
�1w0(y)dy + "

R 1
�1w1(x; y)dy + "

2(
R 1
�1w2(x; y)dy ++sin(�x)[w1(x; y) jy=1

+w1(x; y) jy=�1] + 1
2 sin

2(�x)(dw0(y)dy jy=1 �dw0(y)
dy jy=�1))

: (3.66)

3.4.1 Mean velocity

On average over the one wavelength (0; 2�=�) of the corrugations,thus we de�ned mean velocity

as:

wm =
�

4�

Z 1+" sin(�x)

�1�" sin(�x)

Z 2�
�

0
w(x; y)dxdy: (3.67)

Inserting (3:65) into (3:67) and using (3:66), the mean velocity is:

wm =
�

4�

Z 2�
�

0
q(x)dx = w0m

�
1 + "2'+O("4)

�
; (3.68)

where

' = 1
8(3b1(B1 �B2) cosh(b1) + 4(D1 +D2) cosh(b2) + (5b1(B1 +B2) + 81(F1

+F2) sinh(b1))=b1 + (((4(C1 + C2) cosh(a2)s2�f�f ) + ((3a1(A1 �A2) cosh(a1)

�f (a
2
2 � �2)s4 � s1�f )�f ) + (1=a1)((5a21(A1 +A2) + 8(E1 + E2)) sinh(a1)2�f
(a22 � �2)s4 � s1�f )�f ))=(a21s4 � �fs1))=(((�a22 � �2)s4 + s1�f )(��)f )

: (3.69)

The w0m represents the mean velocity for perfectly smooth walls and ' denotes the leading-

order perturbations to the mean velocity due to the corrugations.
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3.5 Thermophysical properties

The thermophysical properties are

Physical Properties Water Copper

Cp(J/kgK) 4179 385

�(kg/m3) 997.1 89333

k"(W/mK) 0.613 400

��105 (1/K) 21.0 1.67

�(S/m) 5.0�10-2 5,96�107

�(kg/m.see) 8.90�10-4 -

Table (3.1): Thermo physical e¤ects.

3.6 Graphical consequence

In the previous portion, velocity,temperature and Nusselt number have been determined and

results are demonstrated graphically to explore the �ow parallel to the wall corrugations. To

analyze the impacts of corrugations on the electromagnetically driven �ow, the accompanying

typical parametric values are utilized. For micro�uidic examination, half height of channel

is H1 � 100�m, the conditions of domain set with physical properties of the water density

� � 103kgm�3, the electrical conductivity � � 2:2 � 10�4 � 106Sm�1 and the viscosity � �

10�3kgm�1s�1. If range of magnetic �eld is the O(B�) � 0:018 � 0:44, the valued of order

of Hartmann number O(Ha) using Ha = B�H(�=�)1=2 is from 0:0001 to 3. The frequency of

electric �eld O(!) changes from the 50 to 500s�1 and range of the frequency is 0� 1� 104s�1.

The Reynolds number order O(Re) changes from the 0:5 to 5 and the dimensionless parameter

is �xed value i.e. � = 5.

3.6.1 E¤ect of wall roughness on 3D velocity and contour distributions

The three-dimensional velocity and contour distributions for various Kn and Bi when �� = 0;

�� = �
2 and �

� = � are shown in �gures 3:2 � 3:7. In microchannel, the wall roughness can

cause changes in the velocity distribution. In Figs. (3:2) and (3:5), the phase di¤erence between
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two walls is 0�. In Figs. (3:3) and (3:6), the phase di¤erence is 90� and in Figs. (3:4) and (3:7),

the phase di¤erence between two walls is 180�. We �nd that the velocity distribution depends

on the shape of channel from Figs. (3:2) to (3:7).

a b

c d

Fig. (3.2): 3D Velocity distribution and contour (a, b, c, d) when Kn = 0:05 and Kn = 0:1

in phase (i.e. �� = 0).
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a b

c d

Fig. (3.3): 3D Velocity distribution and contour (a, b, c, d) when Kn = 0:05 and Kn = 0:1

when �� = �
2 .
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a b

c d

Fig. (3.4): 3D Velocity distribution and contour (a, b, c, d) when Kn = 0:05 and Kn = 0:1

out of phase (i.e. �� = �).
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a b

c d

Fig. (3.5): 3D Velocity distribution and contour (a, b, c, d) when Bi = 4:0 and Bi = 8:0 in

phase (i.e. �� = 0).
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a b

c d

Fig. (3.6): 3D Velocity distribution and contour (a, b, c, d) when Bi = 4:0 and Bi = 8:0

when �� = �
2 .
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a b

c d

Fig. (3.7): 3D Velocity distribution and contour (a, b, c, d) when Bi = 4:0 and Bi = 8:0 out

of phase (i.e. �� = �).

3.6.2 E¤ect of wall roughness on velocity

The 2D variations of the EMHD velocity w for various Gr, �; Kn; Pr; Bi ; �; Re and Ha are

displayed in the Figs. (3:8) to (3:15) when we take " = 0:1 and � = 5. Fig. (3:8) demonstrates
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that the w increases for various estimate of Grashof number due to e¤ect of declining in viscosity

with growing Gr. Fig. (3:9) illustrates the small impact of � on the EMHD velocity. Fig. (3:10)

shows that the velocity w increases in the portion [�1; 0] and decreases in the portion [0; 1] with

increasing value ofKn. Fig. (3:11) shows that the velocity increases for Bi . Fig. (3:12) displays

that the velocity w decreases for various estimations of Pr : Fig. (3:13) shows that the velocity

w decreases for heat absorption coe¢ cient �. Fig. (3:14) shows that velocity w for Re, with

increasing Reynolds number velocity w decreases. The reason is that the rapid oscillation of

velocity with small amplitudes for the larger Re. Fig. (3:15) illustrates that velocity w increases

for various values of Ha.

1 0.5 0 0.5 1

0

0.5

1

1.5

2

y

w

Gr=0.1

Gr=0.4

Gr=0.6

Fig. (3.8): 2D Variation of velocity for Grashof number Gr:
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1 0.5 0 0.5 1
0

0.2

0.4

0.6
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w

Φ=0.01

Φ=0.05

Φ=0.09

Fig. (3.9): 2D Variation of velocity for nanoparticle volume fraction �:
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Fig. (3.10): 2D Variation of velocity for knudsen number Kn:
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Fig. (3.11): 2D Variation of velocity for biot number Bi :

1 0.5 0 0.5 1
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Fig. (3.12): 2D Variation of velocity for Prandtl number Pr :
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φ=2.0
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Fig. (3.13): 2D Variation of velocity for heat absorption coe¢ cient �:
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Fig. (3.14): 2D Variation of velocity for Reynolds number Re:
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0

0.5

1

1.5
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y

w

Ha=0.5

Ha=0.9

Ha=1.4

Fig. (3.15): 2D Variation of velocity for hartmann number Ha:

3.6.3 E¤ect of wall roughness on temperature

The 2D variations of the EMHD temperature � for various �, Pr, �; and Bi are represented in

the Figs. (3:16) to (3:19) when we take " = 0:1 and � = 5. Fig. (3:16) depicts that pro�le of

temperature increases when the heat absorption coe¢ cient � increases. Fig. (3:17) shows that

pro�le of temperature decreases when the Prandtl number Pr increase. Fig. (3:18) illustrates

the result of volume fraction � on temperature plot. By enlarges the � temperature shows

declining e¤ect. Fig. (3:19) shows that pro�le of temperature increases when the Bi increases.
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0.2

0

0.2

0.4

0.6

0.8

y

θ

φ=0.1

φ=0.5

φ=0.9

Fig. (3.16): 2D Temperature variation for heat absorption coe¢ cient �:
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Fig. (3.17): 2D Temperature variation for Prandtl number Pr :
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Fig. (3.18): 2D Temperature variation for nanoparticle volume fraction �:
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Fig. (3.19): 2D Temperature variation for biot number Bi :
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3.7 Tables Description

In this section, the impact of Nusselt number Nu=�k"nf
k"f

�
0
(yu) and Nu=�k"nf

k"f
�
0
(yl) on EMHD

�ow �uid discussed in microchannel through corrugated walls. Table 3.2 demonstrates that the

Nusselt number Nu increases with the increasing value of x at upper wall and lower walls

respectively while Nusselt number Nu increases by the rises of Biot number Bi on both walls.

Table 3.3 shows that the Nu grows on both walls with the increasing of x and also decreases by

the increment in Prandtl number Pr: In this section, the impact of mean velocity ' on Grashof

number Gr, Knudsen number Kn; nanoparticle volume fraction � explain through the table

in microchannel through corrugated walls with variation of hartmann number Ha. Table 3.4

demonstrates that by the increasing value of Ha, Grashof number Gr and Knudsen number Kn

the mean velocity ' increases but decreases with the increasing value of nanoparticle volume

fraction �.

Nu At left wall At right wall

x Bi = 5 Bi = 7 Bi = 9 Bi = 5 Bi = 7 Bi = 9

0 -0.562202 -0.386915 -0.345996 -0.889901 -0.781847 -0.749193

0.1 -0.559438 -0.385261 -0.344604 -0.887708 -0.780493 -0.748051

0.2 -0.556704 -0.38362 -0.343221 -0.885537 -0.779148 -0.746914

0.3 0.554003 -0.381993 -0.341849 -0.883388 -0.777815 -0.745784

0.4 -0.551337 -0.380383 -0.340489 -0.881265 -0.776493 -0.744662

0.5 -0.548708 -0.378791 -0.339141 -0.879168 -0.775183 -0.743548

0.6 -0.546117 -0.377217 -0.337808 -0.877099 -0.773888 -0.742444

0.7 -0.543567 -0.375663 -0.33649 -0.875061 -0.772608 -0.74135

0.8 -0.541059 -0.374131 0.335188 -0.873053 -0.771343 -0.740267

0.9 -0.538596 -0.37262 -0.333904 -0.871079 -0.770096 -0.739197

1 -0.536178 -0.371134 -0.332638 -0.869138 -0.768867 -0.738141

Table (3.2): E¤ect of Biot number Bi on Nusselt number Nu:
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Nu At left wall At right wall

x Pr = 0:7 Pr = 1:4 Pr = 2:0 Pr = 0:7 Pr = 1:4 Pr = 2:0

0 -0.202748 -0.583935 -0.967906 -0.789329 -0.559082 -0.319657

0.1 -0.200841 -0.584461 -0.969994 -0.787639 -0.556282 -0.31611

0.2 -0.198953 -0.585007 -0.972089 -0.785964 -0.55352 -0.312636

0.3 -0.197088 -0.585571 -0.974186 -0.784303 -0.550799 -0.309237

0.4 -0.195245 -0.586153 -0.976284 -0.782659 -0.54812 -0.305917

0.5 -0.193427 -0.586752 -0.978381 -0.781032 -0.545486 -0.302677

0.6 -0.191636 -0.587366 -0.980473 -0.779426 -0.5429 -0.29952

0.7 -0.189871 -0.587994 -0.98256 -0.77784 -0.540363 -0.296448

0.8 -0.188134 -0.588636 -0.984638 -0.776276 -0.537878 -0.293463

0.9 -0.186428 -0.589289 -0.986706 -0.774735 -0.535446 -0.290567

1 -0.184752 -0.589952 -0.988759 -0.773219 -0.533069 -0.287761

Table (3.3): E¤ect of Prandtl number Pr on Nusselt number Nu:

Ha Gr = 0:1 Gr = 0:6 Kn = 0:07 Kn = 0:1 � = 0:01 � = 0:09

0 0.0728856 0.437313 0.437313 0.459048 0.473643 0.383185

0.1 0.414823 0.77926 0.77926 0.850018 0.797492 0.708564

0.2 0.753043 1.11751 1.11751 1.23761 1.11768 1.0302

0.3 1.08406 1.44858 1.44858 1.61855 1.43059 1.34466,

0.4 1.40484 1.76943 1.76943 1.98997 1.73305 1.6489

0.5 1.71294 2.07758 2.07758 2.34952 2.02252 1.94047

0.6 2.00659 2.37123 2.37123 2.69554 2.29712 2.21756

0.7 2.28475 2.64926 2.64926 3.02696 2.55571 2.47901

0.8 2.54703 2.91121 2.91121 3.3434 2.79784 2.72433

0.9 2.79364 3.15719 3.15719 3.64499 3.02363 2.9536

1 3.02524 3.38781 3.38781 3.93237 3.23372 3.16739

Table (3.4): E¤ect of Grashof number Gr, Knudsen number Kn; Nanoparticle

volume fraction � on mean velocity ':
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3.8 Conclusions

The impact of copper nanoparticles on EMHD �ow through corrugated walls in microchannel

is discussed. The main observations from this theoretical analysis is concise as follows,

� The shape of channel depends on velocity and temperature.

� Velocity increases with Gr;.Bi and Ha:

� The velocity declines with rising value of Kn in inner half of channel and rises in outer

half of channel.

� With expanding Reynolds number, heat absorption coe¢ cient; nanoparticles and Prandtl

number, velocity �eld decreases.

� Temperature declines with volumetric concentration of nanoparticle � and Prandtl num-

ber Pr.

� Temperature increases with the heat absorption coe¢ cient � and Biot number Bi:

� Nusselt number expands with Biot number Bi declines with Prandtl number Pr :

� Mean velocity ' increases by the increasing value ofHa, Grashof number Gr and Knudsen

number Kn while decreases with the increasing value of nanoparticle volume fraction �.
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Chapter 4

EMHD �ow of Couple stress

nano�uid inside a vertical

corrugated wavy walls

In this chapter, we have presented the analytical solutions for a �ow of the velocity, volume

�ow rate and mean velocity by using the method of perturbation inside a corrugated surface.

For corrugated walls we considered the electromagnetohydrodynamic �ow of �uid between the

microparallel plates. By employing mathematical computation, we evaluated the wavy e¤ects

on velocity for the EMHD �ow. The impact of all parameters on velocity and the mean velocity

pro�les can be analyzed through graphs. With the help of graphs we explain the e¤ect of the

Hartmann number, Wave number, Reynolds number and �uid parameter on velocity.

4.1 Mathematical model

Considered the EMHD �ow of electrically conducting and an incompressible couple stress �uid

between two vertical corrugated walls with 2H height. The microchannel height is 100�m and

corrugated wall amplitude is set to be 0:1 H. Here we have adopted at the middle of the

microchannel, the Cartesian coordinate system with a �xed origin. The length L of the channel

along z� direction while width of the channel is assumed to be W along x� direction are much

larger than the layer thickness i.e. L;W � 2H:
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The geometry of �ow is shown in Figure 4:1

Fig. (4.1): Geometrical sketch of

EMHD �ow in microchannel.

The equations of lower and upper walls are

y�l = H + "H sin (��x�) and y�r = �H � "H sin (��x�) ; (4.1)

where " is small amplitude and �� is wave number. We take magnetic �eld B� along y�

direction while along the x� direction electric �eld E� is applied. Along the z� direction, we

take the Lorentz force which is produced by the contact among the magnetic �eld B� and the

electric �eld E�. In the presence of body force the equation of continuity, momentum equation

and energy equation of an incompressible couple stress �uid are written as

r�u� = 0: (4.2)
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�nf (u
�:r�)u� = �r�p+r�� � � �r�4u� + J�B� + g(��)nf (T � � T �r ): (4.3)

(�Cp)nf (u
�:r�)T � =r�:k"nfr�T � +Q0: (4.4)

where

� � = �nfA
�
1; (4.5)

A�1 =r�u� + (r�u�)t: (4.6)

The therrmo physical characteristics of nano�uid are speci�ed as

�nf =
�f

(1��)2:5 ; �nf =
k"nf

(�Cp)nf
; �nf = (1� �)�f +��s;

(��)nf = (1� �)(��)f +�(��)s; (�Cp)nf = (1� �)(�Cp)f +�(�Cp)s;
k"nf
k"f

=
(k"s+2k"f )�2�(k"f�k"s)
(k"s+2k"f )+�(k"f�k"s) ;

�nf
�f

= 1 +
( �s
�f
�1)�

( �s
�f
+1)��( �s

�f
�1)

: (4.7)

Here �f , �s, �f , �s, k"f , k"s, (�Cp)f , (�Cp)s, �f and �s represent the densities, thermal

expansion, thermal conductivities, heat capacitance and electrical conductivities respectively.

The numerical values of these parameters are given in Table 4.1.

We consider the velocity pro�le of the following form

u� = [0; 0; w�(x�; y�)]: (4.8)

In the microchannel, we assumed an incompressible �uid to be along the z� axis direction

only. Thus Eqs. (4:3) and (4:4) take the following form

� @p
@z�

+�nf

�
@2w�

@x�2
+
@2w�

@y�2

�
��
�
@4w�

@x�4
+
@4w�

@y�4
+ 2

@4w�

@x�2@y�2

�
+�nfB

� (E� �B�w�)+g(��)nf (T ��T �r ) = 0;

(4.9)

�
@2T �

@x�2
+
@2T �

@y�2

�
+

Q0
(�Cp)nf

= 0: (4.10)

The correspondingly conditions are
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w� = 0; T � = T �l at y
�
l = H + "H sin (��x�) ; (4.11)

w� = 0; knf
@T �

@r�
= �B(T � � T �r ) at y�r = �H � "H sin (��x�) ; (4.12)

Suppose along the z� direction channel is open, so we can ignore the pressure gradient

@p=@z� along the microchannel [85] and the velocity w�(x�; y�) satis�es

�nf

�
@2w�

@x�2
+
@2w�

@y�2

�
��
�
@4w�

@x�4
+
@4w�

@y�4
+ 2

@4w�

@x�2@y�2

�
+�nfB

� (E� �B�w�)+g(��)nf (T ��T �r ) = 0:

(4.13)

Dimensionless quantities that are used in the above equations are

(x; y) = (x�;y�)
H ; � = ��H; w = w�

U ; Ha = B
�H
�
�f
�f

� 1
2
; � = E0

�
�f
�f

� 1
2
=U

C2 = �
H2�f

; � = T�Tr
Tl�Tr ; Gr =

g(��)fH(Tl�Tr)
�fU

; � = Q0H2

kf (Tl�Tr) ; Bi =
BH
k"f

: (4.14)

In the above expression Gr; �; �, Ha, �, C2,Bi, � represent the Grashof number, dimen-

sionless temperature, wave number, Hartmann number, dimensionless heat source parameter,

couple stress parameter, Biot number and non-dimensional parameter respectively. After using

the lubrication approach, the continuity equation is exactly satis�ed and Eqs. (4:9) and (4:12)

are converted into

�
@2w

@x2
+
@2w

@y2

�
�
�f
�nf

�
C2
�
@4w

@x4
+
@4w

@y4
+ 2

@4w

@x2@y2

�
� �nf
�f
(Ha2w +

�nf
�f
Ha�)� g (��)nf

��)f
Gr�

�
= 0;

(4.15)�
@2�

@x2
+
@2�

@y2

�
+
k"f
k"nf

� = 0: (4.16)

The corresponding non-dimensional boundary conditions are

� = 1 at yl = 1 + " sin (�x) ; (4.17)

@�

@y
+

Bi

(
knf
kf
)
� = 0 at yr = �1� " sin (�x+ ��) : (4.18)
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w = 0 at yl = 1 + " sin (�x) and yr = �1� " sin (�x) ;

wyy = 0 at yl = 1 + " sin (�x) and yr = �1� " sin (�x) ;

wyy = 0 at yl = 1 + " sin (�x) and yr = �1� " sin (�x) ;

� = 1 at yl = 1 + " sin (�x) ;

@�
@y +

Bi

(
k"nf
k"f

)
� = 0 at yr = �1� " sin (�x) :

(4.19)

In above Eq. (4:17), yl = y�l =H, yr = y
�
r =H, the ���symbol means the half period out of phase

and �+�sign means wavy walls corrugation in phase.

4.2 Solution by Perturbation method

By applying Taylor series, we can expand the boundary conditions in Eq. (4:17). If there is

no roughness then the velocity is function of y only while in the presence of surface roughness

the x direction variation is also considered. With the consideration of small amplitude " � 1,

we can apply the perturbation technique to solve Eqs. (4:15) and (4:16). Then velocity and

temperature function written as

w (x; y) = w0 (y) + "w1 (x; y) + "
2w2 (x; y) + :::

� (x; y) = �0 (y) + "�1 (x; y) + "
2�2 (x; y) + ::: (4.20)

By utilizing Eq. (4:18) into Eqs. (4:15) and (4:16) and boundary conditions (4:17), com-

paring the similar powers of the ", we obtain the following systems.

4.2.1 Zero Order classi�cation

d2�0
dy2

+
k"f
k"nf

� = 0; (4.21)

d2w0
dy2

�
�f
�nf

�
C2
d4w0
dy4

� �nf
�f
(Ha2w0 +

�nf
�f
Ha�)� g (��)nf

��)f
Gr�0

�
= 0 (4.22)

The required boundary conditions are
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�0 jy=1= 1;
d�0
dy

jy=�1= �
Bi

(
k"nf
k"f

)
�0y=�1 = 0 (4.23)

w0 jy=1= 0; w0 jy=�1= 0

w0yy jy=1= 0; w0yy jy=�1= 0 (4.24)

4.2.2 First Order classi�cation�
@2�1
@x2

+
@2�1
@y2

�
= 0; (4.25)

�
@2w1
@x2

+
@2w1
@y2

�
�
�f
�nf

�
C2
�
@4w1
@x4

+
@4w1
@y4

+ 2
@4w1
@x2@y2

�
� �nf
�f
(Ha2w1 +

�nf
�f
Ha�)� g (��)nf

��)f
Gr�1

�
= 0:

(4.26)

The boundary conditions are

�1 jy=1= � sin(�x)
�
d�0
dy

�
y=1

@�1
@y jy=�1=

 
� sin(�x)d2�0

dy2
jy=�1 � Bi

(
k"nf
k"f

)
(�1 � sin(�x)�0)

!
y=�1

; (4.27)

w1 jy=1= � sin(�x)
�
dw0
dy

�
y=1

; w�1 jy=�1= � sin(�x)
�
dw0
dy

�
y=�1

;

w1yy jy=1= � sin(�x)
�
d3w0
dy3

�
y=1

; w�1yy jy=�1= � sin(�x)
�
d3w0
dy3

�
y=�1

:
(4.28)

4.2.3 Second Order classi�cation�
@2�2
@x2

+
@2�2
@y2

�
= 0; (4.29)

�
@2w2
@x2

+
@2w2
@y2

�
�
�f
�nf

�
C2
�
@4w2
@x4

+
@4w2
@y4

+ 2
@4w2
@x2@y2

�
� �nf
�f
(Ha2w2 +

�nf
�f
Ha�)� g (��)nf

��)f
Gr�2

�
= 0:

(4.30)

The boundary conditions are
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�2 jy=1=
�
� sin(�x)@�1@r +

sin2(�x)
2

d2�0
dy2

�
y=1

;

@2�2
@y2

jy=1=
 
� sin(�x)@2�1

@y2
� sin2(�x)

2
d3�0
dy3

� Bi

(
k"nf
k"f

)
(�2 � sin(�x)�1 � sin2(�x)

2 �0)

!
y=�1

:

(4.31)

w2 jy=1= � sin(�x)
�
@w1
@y

�
y=1

� 1
2 sin

2(�x)
�
d2w0
dy2

�
y=1

;

w�2 jy=�1= � sin(�x)
�
@w1
@y

�
y=�1

� 1
2 sin

2(�x)
�
d2w0
dy2

�
y=�1

w2yy jy=1= � sin(�x)
�
@3w1
@y3

�
y=1

� 1
2 sin

2(�x)
�
d4w0
dy4

�
y=1

;

w�2yy jy=�1= � sin(�x)
�
@3w1
@y3

�
y=�1

� 1
2 sin

2(�x)
�
d4w0
dy4

�
y=�1

(4.32)

Solution of zero order classi�cation

By utilizing boundary conditions we obtained the zero order solution as

�0 (y) = A11 +A12y �
y2�k"f
2k"nf

(4.33)

w0 (y) =
e�yb1B11 + eyb1B12 + e�yb2B13 + eyb2B14 � �

Ha + (Gr(��)nf�f (�2�k"f
�nf�f +Ha

2(y2�k"f � 2(A11 +A12y)k"nf )�f�nf )=2Ha4k"nf�f (��)f�2nf );
(4.34)

where

b1 =

s
�nf
2C2�f

�
q
�2nf�f+4C

2Ha2�2f�nf

2C2�f
p
�f

;

b2 =

s
�nf
2C2�f

+

q
�2nf�f+4C

2Ha2�2f�nf

2C2�f
p
�f

;

(4.35)

where A11; A12; B11; B12; B13 and B14 are constants.

Solution of �rst order classi�cation

By utilizing the solutions (4:31) and (4:32) into Eqs. (4:25) and (4:26), we can adopt solution

of the �rst order classi�cation as

�1 (x; y) = sin (�x) f (y) ;

w1 (x; y) = sin (�x) g (y) ; (4.36)
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where f(y) and g(y) is function of the y.

Employing Eq. (4:34) in Eqs. (4:23) and (4:24), we get the following form of �rst order

system
d2f (y)

dy2
� �2f (y) = 0; (4.37)

(
d2g (y)

dy2
� �2g (y))�

�f
�nf

�
C2(

d4g (y)

dy4
� 2�2d

2g (y)

dy2
+ �4g(y))� �nf

�f
Ha2g(y)� (��)nf

��)f
Grf(y)

�
= 0:

(4.38)

The boundary conditions yield the form

f jy=1= �
d�0
dy y=1

;
df�(y)

dy
jy=�1= (�

d2�0
dy2

� Bi

(
k"nf
k"f

)
(f�(y)� �0y=�1); (4.39)

g jy=1= �dw0
dy y=1

; g� jy=�1= �dw0
dy y=�1

;

gyy jy=�1= �d3w0
dy3 y=1

; g�yy jy=�1= �d3w0
dy3 y=�1

:
(4.40)

Under the above boundary conditions (4:37) and (4:38), the solution of the Eqs. (4:35) and

(4:36) are directly written as

f� (y) =
ey�A21 + e

�y�A22;

ey�A31 + e
�y�A32;

(4.41)

g� (y) =
e�yb3B21 + eyb3B22 + e�yb4B23 + eyb4B24 � (Gre�y�(e2y�A21 +A22)(��)nf�f=Ha2(��)f�nf );

e�yb3B31 + eyb3B32 + e�yb4B33 + eyb4B34 � (Gre�y�(e2y�A31 +A32)(��)nf�f=Ha2(��)f�nf );
(4.42)

where A21; A22; A31; A32; B21; B22; B23; B24; B31; B32; B33 and B34 are constants.

Using (4:39) and (4:40) into equation (4:34), the solution of �rst order system take the form

��1 (x; y) =
sin (�x) (ey�A21 + e

�y�A22);

sin (�x) (ey�A31 + e
�y�A32);

(4.43)

71



w�1 (x; y) =

sin (�x) (e�yb3B21 + eyb3B22 + e�yb4B23 + eyb4B24 � (Gre�y�

(e2y�A21 +A22)(��)nf�f=Ha
2(��)f�nf ));

sin (�x) (e�yb3B31 + eyb3B32 + e�yb4B33 + eyb4B34 � (Gre�y�

(e2y�A31 +A32)(��)nf�f=Ha
2(��)f�nf ));

(4.44)

where

b3 =

s
4�2C2�f+2�nf

C2�f
�

2
q
�2nf�f+4C

2Ha2�2f�nf

C2�f
p
�f

;

b4 =

s
4C2�2�f+2�nf

C2�f
+

2
q
�2nf�f+4C

2Ha2�2f�nf

C2�f
p
�f

:

(4.45)

4.2.4 Solution of second order classi�cation

The boundary conditions (4:29) and (4:30) of second order classi�cation can be simpli�ed by

utilizing the solutions of (4:31); (4:32); (4:41) and (4:42). Under the boundary conditions (4:29)

and (4:30) , we can adopt solution of the second order classi�cation as

��2 (x; y) = h
� (y) + cos (2�x) k� (y) ;

w�2 (x; y) = m
� (y) + cos (2�x)n� (y) :

(4.46)

By applying Eq. (4:44) into Eqs.(4:27) and (4:28), we get the following forms

d2h� (y)

dy2
= 0; (4.47)

d2k� (y)

dy2
� 4�2k (y) = 0; (4.48)

d2m� (y)

dy2
�
�f
�nf

�
C2
d4m� (y)

dy4
� �nf
�f
Ha2m�(y)� (��)nf

��)f
Grh�(y)

�
= 0; (4.49)

(d
2n�(y)
dy2

� 4�2n� (y))� �f
�nf
[C2(d

4n�(y)
dy4

� 8�2 d
2n�(y)
dy2

+16�4n�(y))� �nf
�f
Ha2n�(y)� (��)nf

��)f
Grk�(y)] = 0:

(4.50)

The boundary conditions of two functions are
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h�(y) jy=1= �1
2

�
df�(y)
dr + 1

2
d2�0
dr2

�
y=1

;

dh�(y)
dy j= �

 
1
2(
d2f�(y)
dy2

+ 1
2
d3�0
dy3 ) +

Bi

(
k"nf
k"f

)
(h�(y) + 1

2(f
�(y) + 1

2�0(y))

!
y=�1

;
(4.51)

m� (y) jy=1= �1
2

�
dg�(y)
dy + 1

2
d2w0
dy2

�
y=1

;

m� (y) jy=�1= �1
2

�
�dg�(y)

dy � 1
2
d2w0
dy2

�
y=�1

;

d2m�(y)
dy2

jy=1= �1
2

�
d3g�(y)
dy3

+ 1
2
d4w0
dy4

�
y=1

;

d2m�(y)
dy2

jy=�1= �1
2

�
�d3g�(y)

dy3
+ 1

2
d4w0
dy4

�
y=�1

;

(4.52)

n� (y) jy=1= 1
2

�
dg�(y)
dy + 1

2
d2w0
dy2

�
y=1

;

n� (y) jy=�1= �1
2

�
�dg�(y)

dy � 1
2
d2w0
dy2

�
y=�1

;

d2n�(y)
dy2

jy=1= 1
2

�
d3g�(y)
dy3

+ 1
2
d4w0
dy4

�
y=1

;

d2n�(y)
dy2

jy=�1= �1
2

�
�d3g�(y)

dy3
� 1

2
d4w0
dy4

�
y=�1

:

(4.53)

By utilizing the above boundary conditions (4:49) to (4:51), the exact solutions can be

obtained as

h� (y) =
A41 +A42y;

A61 +A62y;
(4.54)

m� (y) =
e�yb1B41 + eyb1B42 + e�yb2B43 + eyb2B44 � (Gr(A41 +A42y)(��)nf�f=Ha2(��)f�nf );

e�yb1B61 + eyb1B62 + e�yb2B63 + eyb2B64 � (Gr(A61 +A62y)(��)nf�f=Ha2(��)f�nf );
(4.55)

k� (y) =
e2y�A51 + e

�2y�A52;

e2y�A71 + e
�2y�A72;

(4.56)

n� (y) =
e�yb5B51 + eyb5B52 + e�yb6B53 + eyb6B54 � (Gre�2y�(e4y�A51 +A52)(��)nf�f=Ha2(��)f�nf );

e�yb5B71 + eyb5B72 + e�yb6B73 + eyb6B74 � (Gre�2y�(e4y�A71 +A72)(��)nf�f=Ha2(��)f�nf );
(4.57)
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where

b5 =

s
16C2�2�f+2�nf

C2�f
�

2
q
�2nf�f+4C

2Ha2�2f�nf

C2�f
p
�f

;

b6 =

s
16C2�2�f+2�nf

C2�f
+

2
q
�2nf�f+4C

2Ha2�2f�nf

C2�f
p
�f

;

(4.58)

where A41; A42; A51; A52; A61; A62; A71; A72; B41; B42; B43; B44; B51; B52; B53; B54; B61;

B62; B63; B64; B71; B72; B73 and B74 are constants.

The solution of second order classi�cation can be written as

��2 (x; y) =
A41 +A42y + cos (2�x) (e

2y�A51 + e
�2y�A52);

A61 +A62y + cos (2�x) (e
2y�A71 + e

�2y�A72);
(4.59)

w�2 (x; y) =

e�yb1B41 + eyb1B42 + e�yb2B43 + eyb2B44 � (Gr(A41 +A42y)(��)nf�f=Ha2(��)f�nf )

+ cos (2�x) (e�yb5B51 + eyb5B52 + e�yb6B53 + eyb6B54 � (Gre�2y�(e4y�A51 +A52)�f
(��)nf=Ha

2(��)f�nf ));

e�yb1B61 + eyb1B62 + e�yb2B63 + eyb2B64 � (Gr(A61 +A62y)(��)nf�f=Ha2(��)f�nf )

+ cos (2�x) e�yb5B71 + eyb5B72 + e�yb6B73 + eyb6B74 � (Gre�2y�(e4y�A71 +A72)�f
(��)nf=Ha

2(��)f�nf ):

(4.60)

Collecting the solutions of zero, �rst and second order systems, the approximate solutions

can be denoted as

� (x; y) = �0 (y) + "�
�
1 (x; y) + "

2��2 (x; y) + ::: (4.61)

w (x; y) = w0 (y) + "w
�
1 (x; y) + "

2w�2 (x; y) + ::: (4.62)

4.2.5 Volume �ow rate

We can de�ne the volume �ow rate as

q(x) =

Z 1+" sin(�x)

�1�" sin(�x)
w(x; y)dy; (4.63)
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q(x) =

R 1
�1w0(y)dy + "

R 1
�1w1(x; y)dy + "

2(
R 1
�1w2(x; y)dy ++sin(�x)[w1(x; y) jy=1

+w1(x; y) jy=�1] + 1
2 sin

2(�x)(dw0(y)dy jy=1 �dw0(y)
dy jy=�1))

: (4.64)

4.2.6 Mean velocity

The mean velocity on average over one wavelength (0; 2�=�) of the corrugations as

w�m =
�

4�

Z 1+" sin(�x)

�1�" sin(�x)

Z 2�
�

0
w�(x; y)dxdy: (4.65)

Inserting (4:61) into (4:63) and using (4:62), the mean velocity takes the form

w�m =
�

4�

Z 2�
�

0
q�(x)dx = w0m

�
1 + "2'� +O("4)

�
; (4.66)

where w0m indicates the mean velocity for the perfectly smooth walls and '� indicates the

leading order perturbations to a mean velocity due to the corrugations. When '� is positive

then mean velocity increases, while when '� is negative then mean velocity decreases.

4.3 Thermophysical properties of water and silver

The thermophysical properties are

Physical Properties Water Silver

Cp(J=kgK) 4179 235

�(kg=m3) 997.1 10,500

k"(W=mK) 0.613 429

� � 105 (1=K) 21.0 1.89

�(S=m) 5.0�10-2 6.3�107

�(kg=m:see) 8.90�10-4 -

Table (4.1): Thermo physical e¤ects.
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4.4 Graphical consequence

In this portion, the graphical behavior of couple stress �uid discussed between the corrugated

walls. For micro�uidic investigation the height of channel is H � 100�m, electric �eld frequency

changes from 50 to 500s�1, the Hartmann number between 0:0001 to 3. The Reynolds number

changes from 0:5 to 5, � = 5 is the �xed dimensionless parameter. In order to decrease the

unclear in�uence of the wave, we established the small parameter " as 0:1:

For three dimensional disparities, the electromagnetohydrodynamic (EMHD) velocity dis-

tributions and contour of the couple stress parameter C are shown in Figs. (4:2) and (4:3). In

3D Figs. (4:2), 0� is the phase di¤erence between the walls. During the 3D plots of Figs. (4:3)

the phase di¤erence is equal to the 180� between two walls. We observe that, in the 3D Figs.

(4:2) and (4:3) the velocity distribution depends upon the shape of the channel. Figs. (4:2)

and (4:3) illustrates the velocity distribution for distinct values of C and wavy phenomenon

becomes obvious on velocity with the increase of the corrugation and the phase di¤erence is

180� between the walls:

The electromagnetohydrodynamic velocity w� distribution for di¤erent parameters Ha, Gr,

�, C, � and Bi are shown in the Figs. (4:4) to (4:9) when we take " = 0:1 and � = 5. From these

�gures, the velocities increase and then decline with the y. Fig. (4:4) shows that the velocity w�

increases with increasing Hartmann number Ha. Fig. (4:5) shows that small e¤ect on velocity

w� for distinct values values of Gr. Fig. (4:6) displays that w� declines for various values of �

as a e¤ect of decreasing in heat transfer rate. Fig. (4:7) shows that velocity w� decreases with

couple stress parameter C. Fig. (4:8) displays that w� increases for heat absorption coe¢ cient

�: Fig. (4:9) illustrates that the velocity w� increases for values of biot number Bi: We found

out, the EMHD velocities in phase are weaker than out of phase.

The 2D variation of the EMHD temperature �� distribution in phase and out phase for

parameters � and Bi are exposed in Figs. (4:10) and (4:11). Fig. (4:10) shows that pro�le of

temperature increases when the heat absorption coe¢ cient � are increase. Fig. (4:11) describes

the outcome of Bi on temperature. By enlarges value of biot number Bi temperature shows

increasing e¤ect.

The impact of mean velocity '� on EMHD �ow of Couple stress �uid discussed in the

microchannel through corrugated walls. Table 4.2 and Table 4.3 expressed the behavior of
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couple stress parameter and Grashof number on the mean velocity '�: Table 4.2 demonstrates

that mean velocity rises by increasing value of x for couple stress parameter C and Grashof

number Gr and the mean velocity '+ decreases with the couple stress parameter C and Grashof

number Gr. Table 4.3 displays mean velocity '� enlarges by increasing value of x for couple

stress parameter C and Grashof number Gr and the mean velocity '+ increases with the couple

stress parameter C and Grashof number Gr:

77



4.5 Graphs

a b

c d

Fig. (4.2): 3D Velocity distribution and contour (a, b, c, d) when �uid parameter C = 0:5

and C = 1:5 in phase.
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a b

c d

Fig. (4.3): 3D Velocity distribution and contour (a, b, c, d) when �uid parameter C = 0:5

and C = 1:5 out of phase.
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For Mean velocity '+

x C = 0:5 C = 1:5 C = 2:0 Gr = 0:1 Gr = 0:4 Gr = 0:6

0 -0.499662 -0.256531 -0.182453 -0.395093 -0.551947 -0.656516

0.1 -0.415546 -0.212912 -0.151429 -0.320551 -0.463044 -0.55804

0.2 -0.333973 -0.170617 -0.121347 -0.248347 -0.376787 -0.462413

0.3 -0.254987 -0.129667 -0.0922233 -0.178519 -0.293221 -0.369688

0.4 -0.178627 -0.0900846 -0.0640716 -0.111105 -0.212388 -0.27991

0.5 -0.104929 -0.0518868 -0.0369053 -0.0461341 -0.134326 -0.19312

0.6 -0.033932 -0.0150902 -0.010736 0.016365 -0.0590674 -0.109356

0.7 0.0343625 0.0202915 0.0144265 0.0763693 0.0133591 -0.0286477

0.8 0.099906 0.0542466 0.0385739 0.133859 0.0829295 0.0489766

0.9 0.162689 0.0867657 0.0616996 0.188819 0.149625 0.123495

1 0.222698 0.117842 0.0837984 0.241236 0.213429 0.194891

Table. (4.2): E¤ect of �uid parameter C and Grashof number Gr on mean velocity '+:

For Mean velocity '�

x C = 0:5 C = 1:5 C = 2:0 Gr = 0:1 Gr = 0:4 Gr = 0:6

0 2.77896 2.09495 1.64963 2.35469 2.99109 3.41535

0.1 2.79108 2.09997 1.65245 2.36572 3.00376 3.42913

0.2 2.80039 2.10385 1.65463 2.37426 3.01345 3.43958

0.3 2.80687 2.10658 1.65616 2.38032 3.02015 3.4467

0.4 2.81051 2.10815 1.65703 2.38387 3.02383 3.45047

0.5 2.8113 2.10856 1.65726 2.38491 3.0245 3.45089

0.6 2.80925 2.10781 1.65683 2.38345 3.02215 3.44795

0.7 2.80434 2.10591 1.65574 2.37948 3.01678 3.44165

0.8 2.7966 2.10284 1.65401 2.373 3.0084 3.43201

0.9 2.78603 2.09862 1.65162 2.36403 2.99703 3.41903

1 2.77265 2.09326 1.64859 2.35259 2.98268 3.40274

Table. (4.3): E¤ect of �uid parameter C and Grashof number Gr on mean velocity '�:
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4.6 Conclusions

� The main results are brie�y explained as

� The shape of channel depends on velocity distribution.

� The velocities pro�les in phase and out of phase are asymmetric and symmetric, respec-

tively.

� The unobvious wave e¤ects on the velocity reducing by small value of " parameter.

� With the increases in Hartmann number velocity �eld increases.

� Velocity have small impact for various values of Gr.

� EMHD velocity decreases with the increasing nanoparticle volume fraction and couple

stress parameter .

� The EMHD velocity increases with the increasing heat absorption coe¢ cient and volume

fraction .

� The temperature �elds increases for value of heat absorption coe¢ cient and biot number.

� The mean velocity parameter '+ decreases with couple stress parameter C and Grashof

number Gr:

� The mean velocity parameter '� increases with couple stress parameter C and Grashof

number Gr:
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Chapter 5

Impacts of heat generation and heat

�ow on Al2O3�Cu/water hybrid

nano�uid in microchannel under

corrugated walls through porous

medium

The heat transfer enhancement by using hybrid nano�uid is another class of study to enhance

the heat transfer rate is discussed in this chapter. The major purpose of present examination is

to observe behaviour of Hybrid nano�uid in microchannel through permeable medium with cor-

rugated walls. Here, we take two dimensional �ow of a Hybrid nano�uid Cu�Al2O3/water and

nano�uid Cu/water along with casson �uid. This model is employed to inspect the consequence

of thermal radiation, heat generation and porous e¤ect in microchannel with corrugated walls.

Results for temperature and velocity are calculated. Final section of this paper is devoted for

the graphical discussion of velocity, temperature and stream functions.
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5.1 Problem formulation

Let us considered electrically conducting and incompressible Casson �uid with electrical con-

ductivity and density for an EMHD �ow between corrugated walls of height 2H. The amplitude

of corrugated wall is 0:1H and the height of microchannel is supposed to 100�m. With the

�xed origin at the center of the microchannel, we choose the Cartesian coordinate system. We

take the length L along z� direction and the width of the channel W along x� direction, the

width and the length much greater than thickness of the layer i.e. W , along x� direction, the

width and the length much greater than thickness of the layer i.e. W , L� 2H.

Fig. (5.1): Geometrical sketch of

EMHD �ow in microchannel.

Along the x� direction the electric �eld E� is applied while magnetic �eldB� is taken along y�

direction. Lorentz force J�B� is generated by the magnetic B� and electric �eld E� interaction

is taken along the z� direction, where current density is represented by J = �(E� + u� �B�):

The rheoloigcal equation of Casson �uid is [66]
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� ij =

8<: 2(�� + py=
p
2�)eij ; � � �c

2(�� + py=
p
2�)eij ; � � �c

; (5.1)

where � ij is the stress tensor component, � is the component of deformation, �c is critical

value, �� is the plastic dynamics viscosity and py yield stress. Location of right and left wavy

walls are

y�r=�H � "H sin (��x�) and y�l = H + "H sin (��x�) ; (5.2)

where " is small amplitude and �� is the wave number.

Velocity �eld for the �uid is given by

u� = [0; 0, w�(x�; y�)]: (5.3)

The formulated problem for Casson hybrid nano�uid as,

@w�

@z�
= 0; (5.4)

� @p
@z�

+
@

@x�
��x�z�+

@

@x�
��y�z�+

@

@x�
��z�z�+�B

� (E� �B�w�)�
�hnf
k1

w�+g(��)hnf (T
��T �r ) = 0;

(5.5)

k"hnf (
@2T �

@x�2
+
@2T �

@y�2
) +Q0(T

� � T �r )�
@q�

@y�
; (5.6)

where �hnf , �hnf and k"hnf are density, thermal expansion and thermal conductivity of

hybrid nano�uid respectively. The dimensional coe¢ cient of heat generation/ absorption is

represented by Q0; q� is radiative heat �ux de�ned by [87]

q� =
4��

3k�
@T �4

@y�
; (5.7)

where ��, k� denoted Stefan-Boltzmann value and coe¢ cient of mean absorption. It is supposed

that the variations of temperature is small, therefore the term T �4 might be written as
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T �4 = 4T �T �3r � 3T �4r : (5.8)

The nondimensional parameters utilized in the problem are characterized as pursues:

(x; y) = (x�;y�)
H ; � = ��H; w = w�

U ; � = E0

�
�
�f

� 1
2
=U; � = Q0H2

k"f
; Da = k1

H2

T = T �; Ha = B�H
�
�
�f

� 1
2
; � = T�Tr

Tl�Tr ; Gr =
g(��)fH(Tl�Tr)

�fU
; R = 4��T 3r

3k�k"f

; (5.9)

Dimensionless form of momentum and temperature equations are, we get

(1 +
1

�
)(
@2w

@x2
+
@2w

@y2
)� 1

Da
w +

�f
�hnf

(Ha� +Ha2w) +
(��)hnf
(��)f

Gr� = 0; (5.10)

k"hnf
k"f

@2�

@x2
+ (
k"hnf
k"f

+R)
@2�

@y2
+ �� = 0: (5.11)

The corresponding non-dimensional boundary conditions are

w = 0 at yl = 1 + " sin (�x) and yr = �1� " sin (�x) ; (5.12)

� = 1 at yl = 1 + " sin (�x) ; � = 0 at yr = �1� " sin (�x) : (5.13)

In Eqs. (5:12) and (5:13), yl = y�l =H; yr = y
�
r=H:

5.2 Solution of Problem

The velocity w and temperature � are functions of y only when there is no roughness and the

existence of surface roughness the x direction variation can also be considered. By assuming

small amplitude "� 1; we solve Eqs. (5:10) and (5:11) with the help of perturbation technique

by taking small parameter . Then by expanding velocity and temperature function as
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w (x; y) = w0 (y) + "w1 (x; y) + "
2w2 (x; y) + ::: (5.14)

� (x; y) = �0 (y) + "�1 (x; y) + "
2�2 (x; y) + ::: (5.15)

By utilizing Eqs. (5:14) and (5:15) into Eqs. (5:10) and (5:11), we get

((1 + 1
� )(

@2

@x2
+ @2

@y2
)� 1

Da +
�f
�hnf

Ha2)(w0 (y) + "w1 (x; y) + "
2w2 (x; y) + ::)

+
�f
�hnf

(Ha�) +
(��)hnf
(��)f

Gr(�0 (y) + "�1 (x; y) + "
2�2 (x; y) + :::) = 0;

(5.16)

(
k"hnf
k"f

@2

@x2
+ (
k"hnf
k"f

+R)
@2

@y2
+ �)(�0 (y) + "�1 (x; y) + "

2�2 (x; y) + :::) = 0: (5.17)

By using Taylor series, we can expand the boundary conditions (5:12) and (5:13) at y = 1

and y = �1, respectively

0 = w jy=1+" sin(�x)=
�
w0 + "w1 + "

2w2
�
y=1

+ " sin (�x)�
dw0
dy + "

@w1
@y

�
y=1

+ "2 sin2(�x)
2

�
d2w0
dy2

�
y=1

+O
�
"3
�
;

(5.18)

0 = w� jy=�1�" sin(�x)=
�
w0 + "w

�
1 + "

2w�2
�
y=�1 � " sin (�x)�

dw0
dy + "

@w1
@y

�
y=�1

+ "2 sin2(�x)
2

�
d2w0
dy2

�
y=�1

+O
�
"3
�
;

(5.19)

1 = � jy=1+" sin(�x)=
�
�0 + "�1 + "

2�2
�
y=1

+ " sin (�x)�
d�0
dy + "

@�1
@y

�
y=1

+ "2 sin2(�x)
2

�
d20�
dy2

�
y=1

+O
�
"3
�
;

(5.20)

0 = �� jy=�1�" sin(�x)=
�
�0 + "�

�
1 + "

2�2
�
y=�1 � " sin (�x)�

d�0
dy + "

@�1
@y

�
y=�1

+ "2 sin2(�x)
2

�
d2�0
dy2

�
y=�1

+O
�
"3
�
;

(5.21)
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where the ���sign in above equation represented half period out of phase and �+�sign is the

case for corrugation in phase and by equating the like powers of " from Eqs. (5:16) to (5:21),

the following systems are acquire.

5.2.1 Zero Order classi�cation

The zero order classi�cation given as,

(
k"hnf
k"f

+R)
d2�0
dy2

+ ��0 = 0; (5.22)

(1 +
1

�
)
d2w0
dy2

� 1

Da
w0 +

�f
�hnf

(Ha� +Ha2w0 +
(��)hnf
(��)f

Gr�0) = 0; (5.23)

with the following boundary conditions

�0 jy=1= 1; �0 jy=�1= 0; (5.24)

w0 jy=1= 0; w0 jy=�1= 0: (5.25)

5.2.2 First Order classi�cation

The �rst order classi�cation can be expressed as,

k"hnf
k"f

@2�1
@x2

+ (
k"hnf
k"f

+R)
@2�1
@y2

+ ��1 = 0; (5.26)

(1 +
1

�
)(
@2w1
@x2

+
@2w1
@y2

)� 1

Da
w1 +

�f
�hnf

(Ha� +Ha2w1 +
(��)hnf
(��)f

Gr�1) = 0; (5.27)

with the following boundary conditions

�1 jy=1= � sin(�x)
�
d�0
dy

�
y=1

; ��1 jy=�1= � sin(�x)
�
d�0
dy

�
y=�1

; (5.28)

w1 jy=1= � sin(�x)
�
dw0
dy

�
y=1

; w�1 jy=�1= � sin(�x)
�
dw0
dy

�
y=�1

: (5.29)
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5.2.3 Second Order classi�cation

The second order classi�cation can be expressed as

k"hnf
k"f

@2�2
@x2

+ (
k"hnf
k"f

+R)
@2�2
@y2

+ ��2 = 0; (5.30)

(1 +
1

�
)(
@2w2
@x2

+
@2w2
@y2

)� 1

Da
w2 +

�f
�hnf

(Ha� +Ha2w2 +
(��)hnf
(��)f

Gr�2) = 0; (5.31)

with the following boundary conditions

�2 jy=1= � sin(�x)
�
@�1
@y

�
y=1

� 1
2
sin2(�x)

�
d2�0
dy2

�
y=1

; (5.32)

��2 jy=�1= � sin(�x)
�
@�1
@y

�
y=�1

� 1
2
sin2(�x)

�
d2�0
dy2

�
y=�1

; (5.33)

w2 jy=1= � sin(�x)
�
@w1
@y

�
y=1

� 1
2
sin2(�x)

�
d2w0
dy2

�
y=1

; (5.34)

w�2 jy=�1= � sin(�x)
�
@w1
@y

�
y=�1

� 1
2
sin2(�x)

�
d2w0
dy2

�
y=�1

: (5.35)

Solution of zeroth order

By solving zero order classi�cation with the corresponding boundary conditions from Eqs. (5:22)

to (5:25), we obtained

�0 (y) = e
�ya1A1 + e

ya2A2; (5.36)

w0 (y) =
e�yb1B1 + eyb2B2 +Da�f (Ha�=(�DaHa2�f + �hnf )� e�ya1(A1 +A2
e2ya2)Gr(��)hnf=((DaHa

2�f + (�1 +Da(1 + 1
� )a

2
1)�hnf )(��)f ));

(5.37)

with

a1 =
q

�k"f
�Rk"f�k"hnf ;

b1 =

r
DaHa2�f+�hnf
Da(1+ 1

� )�hnf
:

(5.38)
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5.2.4 Solution of �rst order

Within the boundary conditions (5:28) and (5:29), we can assume the solution to the �rst order

classi�cation can be denoted as

�1 (x; y) = sin (�x) f (y) ; (5.39)

w1 (x; y) = sin (�x) g (y) ; (5.40)

where f (y) and g (y) are the functions of y.

By employing Eqs. (5:39) and (5:40) into (5:26) to (5:29), we get

(
k"hnf
k"f

+R)
d2f (y)

dy2
� �2k"hnf

k"f
f (y) + �f (y) = 0; (5.41)

(1 +
1

�
)(
d2g (y)

dy2
� �2g (y))]� 1

Da
g (y) +

�f
�hnf

(Ha2g (y) +
(��)hnf
(��)f

Grf (y)) = 0; (5.42)

while boundary conditions yield the following form

fy=1 = �
d�0
dy
; f�y=�1 = �

d�0
dy
; (5.43)

gy=1 = �
dw0
dy
; g�y=�1 = �

dw0
dy
: (5.44)

By using the boundary conditions (5:43) and (5:44); the solution of (5:41) and (5:42) is

directly obtained as

f� (y) =
e�a2yC1 + ea2yC2;

e�a2yC 01 + e
a2yC 02;

(5.45)

g�y =

e�b2yD1 + eb2yD2 � (Dae�ya2(C1 + C2e2a2y)Gr�f (��)hnf=

((DaHa2�f + (�1�Da(1 + 1
� )(�

2 � a22))�hnf )(��)f ));

e�b2yD01 + e
b2yD02 � (Dae�ya2(C 01 + C 02e2a2y)Gr�f (��)hnf=

((DaHa2�f + (�1�Da(1 + 1
� )(�

2 � a22))�hnf )(��)f ))

(5.46)
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where

a2 =

r
��k"f+�2k"hnf
Rk"f+k"hnf

b2 =

r
�DaHa2�f+�hnf+Da(1+ 1

� )�
2�hnf

Da(1+ 1
� )�hnf

(5.47)

The �rst order solutions �nally take the form

��1 (x; y) =

8<: sin (�x) (e�a2yC1 + ea2yC2);

sin (�x) (e�a2yC 01 + e
a2yC 02);

(5.48)

w�1 (x; y) =

8>>>>>><>>>>>>:

sin (�x) (e�b2yD1 + eb2yD2 � (Dae�ya2(C1 + C2e2a2y)n�f (��)hnf
Gr=((DaHa2�f + (�1�Da(1 + 1

� )(�
2 � a22))�hnf )(��)f ))) ;

sin (�x) (e�b2yD01 + e
b2yD02 � (Dae�ya2(C 01 + C 02e2a2y)�f (��)hnf

Gr=((DaHa2�f + (�1�Da(1 + 1
� )(�

2 � a22))�hnf )(��)f ))) :

(5.49)

5.2.5 Solution of second order

On the base of zeroth order solutions (5:36) and (5:37) and �rst order solutions (5:48) and

(5:49), we can assume second order solutions as

��2 (x; y) = h� (y) + cos (2�x) k� (y) ; (5.50)

w�2 (x; y) = m� (y) + cos (2�x)n� (y) : (5.51)

By putting Eqs. (5:50) and (5:51) into (5:30) to (5:35), we obtained

(
k"hnf
k"f

+R)
d2h� (y)

dy2
+ �h� (y) = 0; (5.52)

(
k"hnf
k"f

+R)
d2k� (y)

dy2
� 4�2k"hnf

k"f
k� (y) + �k� (y) = 0; (5.53)

(1 +
1

�
)
d2m� (y)

dy2
� 1

Da
m� (y) +

�f
�hnf

(Ha2m� (y) +
(��)hnf
(��)f

Grh� (y)) = 0: (5.54)
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(1 +
1

�
)(
d2n� (y)

dy2
� 4�2n� (y))� 1

Da
n� (y) +

�f
�hnf

(Ha2n� (y) +
(��)hnf
(��)f

Grk� (y)) = 0:

(5.55)

The relevant boundary conditions are

h� = �1
2
(
df

dy
+
1

2

d2�0
dy2

) at y = 1;�1
2
(� df
dy
� 1
2

d2�0
dy2

) at y = �1; (5.56)

k� =
1

2
(
df

dy
+
1

2

d2�0
dy2

) at y = 1;�1
2
(� df
dy
� 1
2

d2�0
dy2

) at y = �1; (5.57)

m� = �1
2
(
dg

dy
+
1

2

d2w0
dy2

) at y = 1;�1
2
(�dg
dy
� 1
2

d2w0
dy2

) at y = �1; (5.58)

n� =
1

2
(
dg

dy
+
1

2

d2w0
dy2

) at y = 1;�1
2
(�dg
dy
� 1
2

d2w0
dy2

) at y = �1: (5.59)

By utilizing the boundary conditions (5:56) to (5:59) and (5:52) to (5:55), the solu-

tions are

h� (y) =
e�a1yE1 + ea1yE2;

e�a1yE01 + e
a1yE02;

(5.60)

k� (y) =
sin(a3y)G1 + cos(a3y)G2;

sin(a3y)G
0
1 + cos(a3y)G

0
2;

(5.61)

m� (y) =

e�b1yF1 + eb1yF2 � (Dae�ya1(E1 + E2e2a1y)Gr(��)hnf
�f=((DaHa

2�f + (�1 +Da(1 + 1
� )a

2
1�hnf )(��)f ));

e�b1yF 01 + e
b1yF 02 � (Dae�ya1(E01 + E02e2a1y)Gr(��)hnf

�f=((DaHa
2�f + (�1 +Da(1 + 1

� )a
2
1)�hnf )(��)f )):

(5.62)

n� (y) =

e�b3yH1 + eb3yH2 � (Dae�ya1(sin(a3y)G1 + cos(a3y)G2)(��)hnf
�f=((DaHa

2�f � (1 +Da(1 + 1
� )(4�

2 + a23)�hnf )(��)f ));

e�b3yH 0
1 + e

b3yH 0
2 � (Dae�ya1(sin(a3y)G01 + cos(a3y)G02)(��)hnf

�f=((DaHa
2�f � (1 +Da(1 + 1

� )(4�
2 + a23)�hnf )(��)f ));

(5.63)
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with

a3 =

r
�k"f�4�2k"hnf
Rk"f+k"hnf

;

b3 =

r
�DaHa2�f+�hnf+4Da(1+ 1

� )�
2�hnf

Da(1+ 1
� )�hnf

:

(5.64)

The second order solutions �nally take the form

��2 =
e�a1yE1 + ea1yE2 + cos (2�x) (sin(a3y)G1 + cos(a3y)G2);

e�a1yE01 + e
a1yE02 + cos (2�x) (sin(a3y)G

0
1 + cos(a3y)G

0
2);

(5.65)

:

w�2 =

e�b1yF1 + eb1yF2 � (Dae�ya1(E1 + E2e2a1y)Gr(��)hnf�f=((DaHa2�f + (�1 +Da

(1 + 1
� )a

2
1�hnf )(��)f )) + cos (2�x) e

�b3yH1 + eb3yH2 � (Dae�ya1(sin(a3y)G1+

cos(a3y)G2)(��)hnf�f=((DaHa
2�f � (1 +Da(1 + 1

� )(4�
2 + a23)�hnf )(��)f ));

e�b1yF 01 + e
b1yF 02 � (Dae�ya1(E01 + E02e2a1y)Gr(��)hnf�f=((DaHa2�f + (�1 +Da

(1 + 1
� )a

2
1)�hnf )(��)f )) + cos (2�x) e

�b3yH 0
1 + e

b3yH 0
2 � (Dae�ya1(sin(a3y)G01+

cos(a3y)G
0
2)(��)hnf�f=((DaHa

2�f � (1 +Da(1 + 1
� )(4�

2 + a23)�hnf )(��)f )):

(5.66)

By collection of Eqs. (5:36); (5:37); (5:48); (5:49); (5:65) and (5:66), we obtain the approx-

imate velocity and temperature solution as

�� (x; y) = �0 (y) + "�
�
1 (x; y) + "

2��2 (x; y) + ::: (5.67)

w� (x; y) = w0 (y) + "w
�
1 (x; y) + "

2w�2 (x; y) + ::: (5.68)

5.2.6 Volume �ow rate

We can de�ne volume �ow rate as

q�(x) =

Z 1+" sin(�x)

�1�" sin(�x)
w�(x; y)dy: (5.69)

Utilizing Eq.(5:68) into (5:69) and by using Taylor series we can expand the integral results

in x and third order term neglecting, we �nally obtained the expression of volume �ow as
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q�(x) =

R 1
�1w0(y)dy + "

R 1
�1w

�
1 (x; y)dy + "

2(
R 1
�1w

�
2 (x; y)dy + sin(�x)[w

�
1 (x; y) jy=1

�w�1 (x; y) jy=�1] + 1
2 sin

2(�x)(dw0(y)dy jy=1 �dw0(y)
dy jy=�1)):

(5.70)

5.2.7 Mean velocity

Mean velocity over one wavelength (0; 2�=�) on averaging of the corrugations, can be evaluated

as

w�m =
�

4�

Z 1+" sin(�x)

�1�" sin(�x)

Z 2�
�

0
w�(x; y)dxdy: (5.71)

By putting Eq. (5:70) into Eq. (5:71), the mean velocity becomes

w�m =
�

4�

Z 2�
�

0
q�(x)dx = w0m

�
1 + "2'� +O("4)

�
; (5.72)

where w0m shows the mean velocity for perfectly smooth walls and '� denotes the leading

order perturbations to mean velocity due to the corrugations. When '� be negative then mean

velocity decreased while for positive '� the mean velocity increases.

5.2.8 Heat transfer rate

Nusselt number determines the convective heat exchange strength, and is expressed as follows

[86]

Nu� =
Hqw

k"f (T
�
l � T �r )

; (5.73)

where

qw = �k"nf
@T �

@y�
jy�=y�l : (5.74)

From Eqs. (5:73) and (5:74), we get
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Nu� = �k"nf
k"f

@�

@y
jy=yl : (5.75)

5.3 Thermophysical properties

The thermophysical properties are

Physical Properties Fluid Phase (water) Al2O3 Copper

�(kg=m3) 997.1 3970 8933

k"(W=mK) 0.613 40 400

� � 105 (1=K) 21.0 5.1 1.67

Table (5.1): Thermo physical properties.

Properties Nano�uid (Cu-water)

Density (�) �nf = (1� �1)�f +�1�s1
Viscosity (�) �nf =

�f
(1��1)2:5

Thermal expansion (�) �nf = (1� �1)�f +�1�s1
Thermal conductivity (k") k"nf

k"f
=

k"s1+(n�1)k"f�(n�1)�1(k"f�k"s1)
k"s1+(n�1)k"f+�1(k"f�k"s1)

Properties Hybrid Nano�uid (Al2O3�water)

Density (�) �hnf = ((1� �2)((1� �1)�f +�1�s1) + �2�s2)

Viscosity (�) �hnf =
�f

(1��1)2:5(1��2)2:5

Thermal expansion (�) �hnf = ((1� �2)((1� �1)�f +�1�s1) + �2�s2)

Thermal conductivity (k")
k"hnf
k"bf

=
k"s2+(n�1)k"bf�(n�1)�2(k"bf�k"s2)
k"s2+(n�1)k"bf+�2(k"bf�k"s2) where

k"bf
k"f

=
k"s1+(n�1)k"f�(n�1)�1(k"f�k"s1)
k"s1+(n�1)k"f+�1(k"f�k"s1)

Table (5.2): Thermo physical properties.

For the nanoparticles, we take the n = 3. The subscripts of the parameters s1; s2, f;

hnf and nf represent the solid nanoparticle of copper, alumina, �uid, hybrid nano�uid and

nano�uid respectively. The thermosphysical characteristics of �uid at 25�C and particles are

given in Table 5.1.
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5.4 Graphical consequence

This portion dedicated for investigation of the copper and aluminum oxide nanoparticles for

some emerging parameters of �ow on corrugated walls under porous e¤ect through the graph

of stream line, velocity and temperature pro�le. half height of channel is H � 100�m, for

the general micro�uidic analysis. The electrical conductivity � � 2:2 � 10�4 � 106Sm�1,

if the magnetic �eld range is the O(B�) � 0:018 � 0:44T , the order of Hartmann number

between 0:0001 to 3: The graphs are drawn by taking the parameters constants, for example,

0:005 � �2 � 0:09; �1 = 0:1; � = 5 :

We describe the graphical e¤ects of velocity and temperature for the distinct values of

Grashof number Gr; Casson parameter �; heat generation �; darcy number Da, �2, radiation

parameter R. We set " = 0:1 as a small parameter because small parameter " reducing the

unobvious e¤ects.

In 3D (three-dimensional) disparity and contour of velocity and temperature for hybrid

nano�uid and nano�uid for radiation parameter R are shown in Figs. (5:2) to (5:9), respectively.

In 3D Figs. (5:2), (5:4) and (5:6) , (5:8); the phase di¤erence between the walls is 0
�
. In 3D Figs.

(5:3), (5:5) and (5:7) , (5:9); the phase di¤erence between the walls is 180
�
. In three dimensional

graphs of Figs. (5:2) and (5:6) shown the consequence of radiation parameter R on velocity

and temperature for nano�uid and Figs. (5:4) and (5:8) shown the consequence of radiation

parameter on w and � for hybrid nano�uid, the e¤ect of corrugation are more prominent for

hybrid nano�uid as compare to nano�uid is in phase. In three dimensional graphs of Figs. (5:3)

and (5:7) shown the impact radiation parameter R on velocity and temperature for nano�uid

and Figs. (5:5) and (5:9) shown the outcome radiation parameter R on velocity and temperature

for hybrid nano�uid, the e¤ect of corrugation are more prominent for nano�uid as compare to

hybrid nano�uid is out of phase. The wavy phenomenon of the distribution of velocity and

temperature becomes clear in Figs. (5:2) to (5:9) with increase of the corrugation, especially

when the phase di¤erence between the two walls is 180
�
:

The 2D (two-dimensional) variations of the EMHD velocity w� in phase and out phase

for Grashof number Gr, Casson parameter �; Heat source parameter �, Darcy number Da;

nanopartical volume fraction �2, Radiation parameter R are represents in the Figs. (5:10) to

(5:15) by taking " = 0:1 and � = 5. From these Figs., the velocities at �rst grow and then reduce.
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Particularly, Figs. (5:10) and (5:11) shown the distinction of velocity pro�les for the Grashof

number Gr and Casson parameter �. Velocity plots grow rapidly for nano�uid (Cu=water) as

contrary to hybrid nano�uid (Cu�Al2O3=water) by expanding the estimations of Gr and �:

Figs. (5:12) and (5:13) demonstrated the velocity plots for � and Da. Velocity plot enlarge

quickly for nano�uid (Cu=water) as related to hybrid nano�uid (Cu � Al2O3=water) by ex-

panding � and Da: Figs. (5:14) and (5:15) shown the disparity of velocity for the distinct result

of nanopartical volume fraction �2 and Radiation parameter R. It is seen that velocity plots

reduced for hybrid nano�uid (Cu�Al2O3=water) rapidly as compared to nano�uid (Cu=water)

by increasing the values of nanopartical volume fraction �2 and Radiation parameter R: We

can observe that, the EMHD velocities in phase are weaker than out of phase.

The 2D (two-dimensional) disparity of the EMHD temperature for non-dimensional para-

meters heat source parameter � and radiation parameter R and at the point x = 0:5 and y = 0

are shown in the Figs. (5:16) and (5:17): For various values of heat source parameter �, Fig.

(5:16) describes the variation of the temperature. With increment in heat source parameter �,

there is an increase in temperature �� . Fig. (5:17) shows that for di¤erent values radiation

parameter R temperature �� decreases.
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a b

c d

Fig. (5.2): 3D Velocity distribution and contour (a, b, c, d) for R = 0:5 and R = 2 in phase

for nano�uid:
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a b

c d

Fig. (5.3): 3D Velocity distribution and contour (a, b, c, d) for R = 0:5 and R = 2 out of

phase for nano�uid:
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a b

c d

Fig. (5.4): 3D Velocity distribution and contour (a, b, c, d) for R = 0:5 and R = 2 in phase

for hybrid nano�uid:
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a b

c d

Fig. (5.5): 3D Velocity distribution and contour (a, b, c, d) for R = 0:5 and R = 2 out of

phase for hybrid nano�uid:
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a b

c d

Fig. (5.6): 3D Temperature distribution and contour (a, b, c, d) for R = 0:5 and R = 2 in

phase for nano�uid:
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a b

c d

Fig. (5.7): 3D Temperature distribution and contour (a, b, c, d) for R = 0:5 and R = 2 out

of phase for nano�uid:
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a b

c d

Fig. (5.8): 3D Temperature distribution and contour (a, b, c, d) for R = 0:5 and R = 2 in

phase for hybrid nano�uid:
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a b

c d

Fig. (5.9): 3D Temperature distribution and contour (a, b, c, d) for R = 0:5 and R = 2 out

of phase for hybrid nano�uid:
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Fig. (5.10): 2D Variation of velocity for Grashof number Gr:
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Fig. (5.11): 2D Variation of velocity for Casson parameter �:
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Fig. (5.12): 2D Variation of velocity for heat source parameter �:
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Fig. (5.13): 2D Variation of velocity for Darcy number Da:
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Fig. (5.14): 2D Variation of velocity for Volume fraction �2:
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Fig. (5.15): 2D Variation of velocity for Radiation parameter R:
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5.4.1 Tables Description

In this section, the impact of Nusselt number Nu�=�k"nf
k"f

�
0
(yu) on EMHD �ow of Casson

�uid for nano �uid (Cu/water) and hybrid nano�uid (Cu � Al2O3/water) discussed in the

microchannel through corrugated walls under porous medium. This section expressed the be-

havior of Radiation parameter R on the Nusselt number Nu�: Table 5.3 demonstrates that

Nu+ declines with expanding value of x and increases by the rise of the Radiation parameter R

for both the nano �uid (Cu/water) and hybrid nano�uid (Cu�Al2O3/water) . Table 5.4 shows

that the Nu� declines with expanding value of x and increases by the rise of the Radiation

parameter R for both the nano �uid (Cu/water) and hybrid nano�uid (Cu�Al2O3/water).

For Nusselt number Nu+

For nano �uid (Cu/water) For hybrid nano�uid

x R = 0:5 R = 2 R = 3 R = 0:5 R = 2 R = 3

0 0.348705 0.468788 0.498593 0.385843 0.486562 0.51363

0.1 0.34049 0.461955 0.492098 0.377783 0.479654 0.50703

0.2 0.33203 0.454929 0.485422 0.369491 0.472551 0.500248

0.3 0.323422 0.447791 0.478644 0.36106 0.465339 0.493364

0.4 0.314764 0.440623 0.471841 0.352585 0.458097 0.486455

0.5 0.306149 0.433501 0.465086 0.34416 0.450906 0.479597

0.6 0.297668 0.426501 0.458449 0.335872 0.443839 0.47286

0.7 0.289406 0.419691 0.451996 0.327805 0.436967 0.466312

0.8 0.28144 0.413133 0.445787 0.320035 0.430353 0.460013

0.9 0.273841 0.406887 0.439874 0.31263 0.424056 0.454017

1 0.266675 0.401003 0.434308 0.305654 0.418127 0.448374

Table (5.3): Impact of the Radiation parameter R on Nusselt number Nu+:
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For Nusselt number Nu�

For nano �uid (Cu/water) For hybrid nano�uid

x R = 0:5 R = 2 R = 3 R = 0:5 R = 2 R = 3

0 0.313892 0.438894 0.469855 0.324607 0.449201 0.48037

0.1 0.313096 0.438459 0.469522 0.323788 0.448751 0.480024

0.2 0.312261 0.438004 0.469173 0.322931 0.44828 0.479663

0.3 0.311398 0.437534 0.468813 0.322042 0.447793 0.47929

0.4 0.310512 0.437053 0.468445 0.321132 0.447296 0.478908

0.5 0.309613 0.436566 0.468073 0.320209 0.446792 0.478522

0.6 0.30871 0.436078 0.4677 0.319281 0.446287 0.478136

0.7 0.307812 0.435593 0.467329 0.318358 0.445786 0.477752

0.8 0.306927 0.435117 0.466966 0.317449 0.445293 0.477375

0.9 0.306065 0.434654 0.466613 0.316563 0.444815 0.47701

1 0.305234 0.43421 0.466274 0.31571 0.444355 0.476658

Table (5.4): Impact of the Radiation parameter R on Nusselt number Nu�:

5.5 Conclusion

The outline of present work is ordered as follows

� The unobvious e¤ect reduces by small value of " on velocity and temperature.

� The shape of channel depends on velocity distribution.

� The velocity for the Grashof number, Casson parameter, Heat source parameter and

Darcy number increase with increasing value of parameters.

� The velocity pro�les increase rapidly for nano�uid (Cu=water) as compared to hybrid

nano�uid (Cu�Al2O3=water) for Grashof number, Casson parameter, Heat source para-

meter and Darcy number.

� The temperature for both nano�uid and hybrid nano�uid is increasing with heat source

parameter �.

114



� The temperature for both nano�uid and hybrid nano�uid is decreasing with the positive

values of radiation parameter R parameter.

� The velocities pro�les in phase are weaker than out of phase.
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Chapter 6

Theoretical aspect of EMHD

viscous �uid with corrugated walls

in curved channel

In this chapter, we have investigation base on the electromagnetohydrodynamic (EMHD) �ow

e¤ects on viscous �uid through corrugated walls in the curved channel. Amplitude of corruga-

tions of the wavy walls are either in phase or out of phase. At �rst performed the mathematical

modelling and then the solution of velocity is achieved by employing the perturbation technique.

By means of mathematical calculations we investigated the corrugation e¤ects on the EMHD

velocity �ow. The in�uence of emerging parameters from obtained solutions are inspected by

plotting the graphs. The important conclusion is that reducing the unobvious wave e¤ect on

the velocity by taking amplitude ratio parameter small.

6.1 Mathematical Formulation

The EMHD �ow viscous and an incompressible �uid between �xed corrugated wall in a curved

channel with height 2H, center at O and radius R0 is considered. The �ow induced in the

channel by sine waves by small amplitude " along the corrugated walls of the channel. The

wavy walls are located at
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r�u" = H + "H sin (��x�) and r�l" = �H � "H sin (��x�) : (6.1)

where " is small amplitude and �� is wave number. We take magnetic �eld B� along y�

direction while along the x� direction electric �eld E� is applied. Along the z� direction, we

take the Lorentz force which is produced by the contact among the magnetic �eld B� and the

electric �eld E�.

Fig. (6.1): Geometrical sketch of EMHD �ow in microchannel.

De�ning velocity �eld as

u� = (0; 0; w�(X�; R�; t)): (6.2)

For present �ow the basic equations are

Continuity equation

r�u� = 0: (6.3)

Momentum equation
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�
@u�

@t�
+ � (u�:r�)u� = �r�p+r�� � + J�B�: (6.4)

Suppose along the z� direction channel is open, so we can ignore the pressure gradient

@p=@z� along the microchannel [85] and the velocity w�(x�; y�) satis�es

�
@w�

@t�
=

1

�R+R�
@

@R�
(R� + �R)��Z�R�) +

�R

�R+R�
��Z�X� + �B�(E� � (

�R

�R+R�
)2B�w�); (6.5)

where

��Z�R� = �
@w�

@R�
; ��Z�X� = �

�R

�R+R�
@w�

@X� : (6.6)

Corresponding no-slip boundary conditions expressed as

w� (X�; R�u") = w
� (X�; R�l") = 0: (6.7)

In complex forms the EMHD velocity, electric �eld and stress components can be written

as

w� = Rf ~w(X�; R�u")e
i!t�g; E� = RfE0ei!t

�g; ���{�j = Rf� ijei!t
�g; (6.8)

where real part of function denotes by Rf g, ! is angular frequency, ~w, E0 and � ij are

velocity amplitude, electric �eld and stress component. Using Eq. (6:8) into Eq. (6:5), we get

i�! ~w =
1

�R+R�
@

@R�
(R� + �R)�Z�R�) +

�R

R� + �R
�Z�X� + �B�(E� � (

�R

�R+R�
)2B� ~w) : (6.9)

Bring out the non dimensionless parameters as

(r; x) =
(R�; X�)

H
; � = ��H; w =

~w

H!
; k =

�R

H
; z = Z�;

Re =
�!H2

�
; Ha = B�H

�
�

�

� 1
2

; � = E0

�
�

�

� 1
2

=!: (6.10)
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The dimensionless momentum equation stated in the following form

@2w

@r2
+

1

r + k

@w

@r
+

k

r + k

@2w

@x2
� (Re i+ ( k

r + k
)2Ha2)w +Ha� = 0: (6.11)

The corresponding non-dimensional boundary conditions de�ne as

w = 0; ru" = 1 + " sin (�x) ; rl" = �1� " sin (�x) : (6.12)

In Eq. (6:12), ru" = r�u"=H; rl" = r
�
l"=H; the �+�symbol means the corrugation is in phase and

for out of phase���symbol is used.

6.2 Solution of Problem

By using regular perturbation technique in above equation:

w (r; x) = w0 (r) + "w1 (r; x) + "
2w2 (r; x) + ::::: (6.13)

Equating the like power of " after using the Eq.(6:13) into Eqs. (6:11) and (6:12); we get

the systems as

6.2.1 Zeroth Order System

@2w0
@r2

+
1

r + k

@w0
@r

�
�
Re i+ (

k

r + k
)2Ha2

�
w0 +Ha� = 0; (6.14)

w0 jr=1= 0; w0 jr=�1= 0: (6.15)

6.2.2 First Order System

@2w1
@r2

+
1

r + k

@w1
@r

+
k

r + k

@2w1
@x2

� (Re i+ ( k

r + k
)2Ha2)w1 = 0; (6.16)

w1 jr=1= � sin(�x)
�
dw0
dr

�
r=1

; w1 jr=�1= � sin(�x)
�
dw0
dr

�
r=�1

: (6.17)

119



6.2.3 Second Order System

@2w2
@r2

+
1

r + k

@w2
@r

+
k

r + k

@2w2
@x2

� (Re i+ ( k

r + k
)2Ha2)w2 = 0; (6.18)

w2 jr=1= � sin(�x)
�
@w1
@r

�
r=1

� 1
2
sin2(�x)

�
d2w0
dr2

�
r=1

;

w�2 jr=�1 � sin(�x)
�
@w1
@r

�
r=�1

� 1
2
sin2(�x)

�
d2w0
dr2

�
r=�1

: (6.19)

6.2.4 Solution of zeroth order

Under the boundary conditions the zero-order solution can be expressed as:

w0 (r) =

BesselJ[kHa;�i(k + r)A1 + BesselY[kHa;�i(k + r)
p
Re i]A2 +

1
�8k+2k3Ha2

(k + r)2�((2 + kHa)Hypergeometric0F1[1 + kHa; 14(k + r)
2Re i]

HypergeometricPFQ[f1� kHa
2 g; f1� kHa; 2�

kHa
2 g;

1
4(k + r)

2Re i]

+(�2 + kHa)Hypergeometric0F1[1� kHa; 14(k + r)
2Re i]

HypergeometricPFQ[f1 + kHa
2 g; f2 +

kHa
2 ; 1 + kHag;

1
4(k + r)

2Re i]):

(6.20)

6.2.5 Solution of �rst order

Base on the boundary conditions (6:17), we can assume the solution of �rst order as

w1 (r; x) = sin (�x) f (r) ; (6.21)

where f (r) is function of r.

Using Eq.(6:21) into Eq.(6:16), we get

d2f (r)

dr2
+

1

(k + r)

df (r)

dr
� [ (�k)

2

(k + r)2
+Re i+Ha2

k2

(k + r)2
]f (r) = 0: (6.22)

Correspondingly boundary conditions are transformed as
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f(r) +
dw0
dr

= 0 at r = 1; f(r)� dw0
dr

= 0 at r = �1: (6.23)

The solution of �rst order problem can be expressed as

w�1 (r; x) = sin (�x)

8>>>>>><>>>>>>:

BesselJ[k
p
Ha2 + �2;�i(k + r)

p
Re i]B1+

BesselY[k
p
Ha2 + �2;�i(k + r)

p
Re i]B2

;

BesselJ[k
p
Ha2 + �2;�i(k + r)

p
Re i]B01+

BesselY[k
p
Ha2 + �2;�i(k + r)

p
Re i]B02

:

(6.24)

6.2.6 Solution of second order

Base on the boundary conditions (6:19), second order system solution in supposed form is

considered as

w�2 (r; x) = g
� (r) + cos (2�x)h� (r) ; (6.25)

where g� (r)and h� (r) are function of r only.

By utilizing Eq.(6:25) into Eq. (6:18); we get the following forms

d2g� (r)

dr2
+

1

(k + r)

dg� (r)

dr
� [Re i+Ha2 k2

(k + r)2
]g� (r) = 0; (6.26)

d2h� (r)

dr2
+

1

(k + r)

dh� (r)

dr
� [ 4(�k)

2

(k + r)2
+Re i+Ha2

k2

(k + r)2
]h� (r) = 0: (6.27)

The boundary conditions of the functions g� (r) and h�(r) are

g�(r) +
1

2
(
df(r)

dr
+
1

2

d2w0
dr2

) at r = 1; g�(r)� 1
2
(
df(r)

dr
� 1
2

d2w0
dr2

) at r = �1; (6.28)

h�(r)� 1
2
(
df(r)

dr
+
1

2

d2w0
dr2

) at r = 1; h�(r)� 1
2
(
df(r)

dr
� 1
2

d2w0
dr2

) at r = �1: (6.29)
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Second order solution can be written as:

w�2 =

BesselJ[kHa;�i(k + r)
p
Re i]C1 + BesselY[kHa;�i(k + r)

p
Re i]C2 + cos (2�x)

BesselJ[k
p
Ha2 + 4�2;�i(k + r)

p
Re i]D1 + BesselY[k

p
Ha2 + 4�2;�i(k + r)

p
Re i]D2

;

BesselJ[kHa;�i(k + r)
p
Re i]C 01 + BesselY[kHa;�i(k + r)

p
Re i]C 02 + cos (2�x)

BesselJ[k
p
Ha2 + 4�2;�i(k + r)

p
Re i]D01 + BesselY[k

p
Ha2 + 4�2;�i(k + r)

p
Re i]D02

:

(6.30)

Collecting Eqs.(6:20), (6:24) and (6:30), the approximate velocity solution can be evaluated

as

w� (r; x) = w0 (r) + "w
�
1 (r; x) + "

2w�2 (r; x) + ::: (6.31)

6.3 Graphical consequence

In this portion, the graphical outcomes of the viscous �uid are explored by EMHD �ow in a

curved channel with corrugated walls. All graphical e¤ects are attained by using the MATLAB

software. This portion is expressly arranged to inspect the impact of embedded constraints on

�ow quantities. Plots for 3D variations and contour of velocity and 2D variations of velocity

are shown and dissected through Figs. (6:2) to (6:7) respectively. Speci�cally, the Reynolds

parameters Re and curvature parameter k have been seen.

In Figs.(6:2) and (6:3), the phase di¤erence among the two corrugated walls equals 0�. In

Figs. (6:4) to (6:5), the phase di¤erence between walls equals 180o. It is found that trapped

bolus are appear for out-of-phase corrugations when " is small. From the 3D plots of Figs. (6:2)

to (6:5), we explored that the velocity distribution depends upon the shape of channel. When

the corrugations are in phase, the wave phenomenon in the center of channel becomes obvious,

as appeared in Figs. (6:2) to (6:5). As shown in Figs. (6:2) to (6:5), the wave phenomenon

of the �ow shape becomes obvious with the expansion of the corrugation. The wavy pattern

increases by increase the value of parameters.

In Figs. (6:6) and (6:7), the velocities w� are plotted against r for various estimations of

parameters the Reynolds parameters Re and curvature parameter k when we take " = 0:1 and

� = 5. In particular, it can be found in Figs. (6:6) and (6:7), that the velocity amplitude

achieves the maximum value at the middle of the channel. Fig. (6:6) demonstrates that the
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velocity w� decreases with increasing Reynolds number. The reason is that for the larger the

rapid oscillation of velocity with smaller amplitudes. Fig.(6:7) illustrates that the velocity w�

decreases for curvature parameter k in the portion [�1; 0] with increases in k, where as velocity

it increases in the portion [0; 1]. The maximum value of velocity in curved channel shifts from

the center towards the lower wall. We can �nd that, the EMHD velocities in phase are weaker

than out of phase.
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a b

c d

Fig. (6.2): 3D Velocity distribution and contour (a, b, c, d) for Re = 0:6 and Re = 1:7 in

phase.
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a b

c d

Fig. (6.3): 3D Velocity distribution and contour (a, b, c, d) for k = 3:0 and k = 15 in phase.
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a b

c d

Fig. (6.4): 3D Velocity distribution and contour (a, b, c, d) for Re = 0:6 and Re = 1:7 out

phase.
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a b

c d

Fig. (6.5): 3D Velocity distribution and contour (a, b, c, d) for k = 3:0 and k = 15 out

phase.
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Fig. (6.6): 2D Variation of velocity for Reynolds number Re :
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Fig. (6.7): 2D Variation of velocity for Curvature parameter k:
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r k = 3 k = 7 k = 12

-1 2.15359 1.96843 1.92498

-0.8 1.5868 1.51916 1.50131

-0.6 1.10327 1.10303 1.1019

-0.4 0.677796 0.712567 0.721596

-0.2 0.291429 0.34125 0.355449

0 -0.0675845 -0.0166458 -0.00122718

0.2 -0.407992 -0.366113 -0.352811

0.4 -0.736208 -0.711458 -0.703309

0.6 -1.05695 -1.05631 -1.05629

0.8 -1.05695 -1.40361 -1.41481

1 -1.68858 -1.75556 -1.78133

Table (6.1): E¤ect of curvature parameter k on stress component �+zr.

r k = 3 k = 7 k = 12

-1 2.11532 1.96843 1.89557

-0.8 1.55722 1.49273 1.47588

-0.6 1.08031 1.08053 1.07987

-0.4 0.65891 0.693301 0.702441

-0.2 0.275897 0.32461 0.338686

0 -0.0806089 -0.0311831 -0.0160419

0.2 -0.419146 -0.379008 -0.36609

0.4 -0.745984 -0.723121 -0.715439

0.6 -1.06575 -1.06711 -1.06764

0.8 -1.38177 -1.41389 -1.42573

1 -1.69634 -1.76565 -1.79215

Table (6.2): E¤ect of curvature parameter k on stress component ��zr.
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r k = 3 k = 7 k = 12

-1 0.018365 0.0194658 0.0198482

-0.8 0.018686 0.0197808 0.0201616

-0.6 0.0189403 0.0200241 0.0204017

-0.4 0.0191269 0.0201949 0.0205677

-0.2 0.019245 0.0202929 0.0206593

0 0.019294 0.0203177 0.0206762

0.2 0.0192735 0.0202693 0.0206188

0.4 0.0191835 0.0201482 0.0204874

0.6 0.0190242 0.0199547 0.0202827

0.8 0.0187959 0.0196899 0.0200056

1 0.0184994 0.0193546 0.0196574

Table (6.3): E¤ect of curvature parameter k on stress component �+zx.

r k = 3 k = 7 k = 12

-1 0.0299634 0.0331521 0.0343054

-0.8 0.0305791 0.0338156 0.0349872

-0.6 0.0310898 0.0343622 0.0355477

-0.4 0.0314924 0.0347887 0.035984

-0.2 0.0317843 0.0350926 0.0362932

0 0.0319632 0.0352714 0.036473

0.2 0.032027 0.0353232 0.0365215

0.4 0.0319742 0.0352467 0.0364374

0.6 0.0318038 0.0350408 0.0362197

0.8 0.031515 0.0347052 0.035868

1 0.0311078 0.0342399 0.0353825

Table (6.4): E¤ect of curvature parameter k on stress component ��zx.
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6.4 Tables Description

In this section, the impact of stress components on EMHD �ow discussed in curved channel

through corrugated walls. This section expressed the behavior of curvature parameter k on the

stress components ��zr and �
�
zx: Table 6.1 and Table 6.2 demonstrate that the stress components

�+zr and �
�
zr decreased with the increasing value of r and furthermore decrease with the rise of

the curvature parameter k. Table 6.3 and table 6.4 show that the stress components �+zx and

��zx increased with the increasing value of r and also enlarge with the increment of curvature

parameter k.

6.5 Conclusion

The impact of corrugated wall roughness on the viscous EMHD �ow in a curved channel is

calculated in this paper. Perturbation technique is applied to examine the problem. From the

above results, the following deductions are drawn.

� The wavy phenomenon in the center becomes obvious when the amplitude " is small with

in phase and out of phase corrugations.

� The contour plots from the solutions of the velocity, it is found that trapped bolus are

appear for out-of-phase corrugations.

� The wavy phenomenon increases by enlarge the parameters values.

� The velocity amplitude achieves maximum value in middle of channel.

� The velocity plot decreases with expanding value of Reynolds number. The reason is that

for the larger the rapid oscillation of velocity with smaller amplitudes.

� The velocity pro�le declines with rising value of k in inner half of channel and rise in outer

half of channel.

� The EMHD velocities in phase are weaker than out of phase.

� Stress components ��zr decrease with the rise of the curvature parameter while stress

components ��zx increase with the increasing value of the curvature parameter.
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Chapter 7

Flow of EMHD nano�uid in curved

channel through corrugated walls

The corrugated e¤ect on nano�uids in curved channel under the in�uence of electromagnetohy-

drodynamic is discussed in this chapter. Investigation is carried out by water based nano�uids

using copper nanoparticle. Firstly performed the mathematical modelling and then employing

the method of perturbation, we have estimated the analytical solutions. By mean of mathe-

matical calculations we examined the corrugation e¤ects on EMHD �ow. The physical e¤ects

of �ow variables are graphically discussed. Moreover, consequence of Curvature parameter on

stresses and Nusselt number are discussed through tables. The velocity and temperature decline

when the curvature parameter increases. The electromagnetohydrodynamic (EMHD) velocity

and temperature distributions show that 0� is the phase di¤erence between the two walls for

in phase and the phase di¤erence is equal to the 180� between two walls for out of phase.

The important conclusion is that reducing the unobvious wave e¤ect on the velocity by taking

amplitude ratio parameter small.

7.1 Mathematical model

Consider a EMHD �ow of laminar, incompressible and electrically conducting �uid between

corrugated wall in the curved channel separated by a distance 2H, center at O and radius R0

is considered. The �ow induced in the channel by sine waves with small amplitude " along the
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corrugated walls of the channel. The wavy walls are located a

r�u" = H + "H sin (��x�) and r�l" = �H � "H sin (��x�) (7.1)

where " is small amplitude and �� is wave number. We take magnetic �eld B� along y�

direction while along the x� direction electric �eld E� is applied. Along the z� direction, we

take the Lorentz force which is produced by the contact among the magnetic �eld B� and the

electric �eld E�.

Fig. (7.1): Geometrical sketch of EMHD

�ow in microchannel.

De�ning the velocity �eld as

u� = (0; 0; w�(X�; R�)): (7.2)

For present �ow we considered the following basic equations

Continuity equation

r�u� = 0: (7.3)
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Equation of motion

(
1

�R+R�
@

@R�
(R�+ �R)��Z�R�)+

�R

�R+R�
��Z�X�+�nfB

�(E��(
�R

�R+R�
)2B�w�)+g(��)nf (T

��T �l ) = 0:

(7.4)

Energy equation

k"nf

 
1

�R+R�
@

@R�
((R� + �R)

@T �

@R�
) + (

�R

�R+R�
)2
@2T �

@X�2

!
+Q0 = 0: (7.5)

In addition, assuming that in z� direction channel is open and pressure gradient can be

ignored, the Navier-Stokes Eq. (7:4) along the z�direction [85] as

(
1

�R+R�
@

@R�
(R�+ �R)��Z�R�)+

�R

�R+R�
��Z�X�+�nfB

�(E��(
�R

�R+R�
)2B�w�)+g(��)nf (T

��T �l ) = 0;

(7.6)

where

��Z�R� = �nf
@w�

@R�
; ��Z�X� = �nf

�R

�R+R�
@w�

@X� : (7.7)

Corresponding no-slip boundary conditions expressed as

w� (X�; R�u") = 0 at R
�
u" = H + "H sin (��X�) ;

w� (X�; R�l") = 0 at R
�
l" = �H � "H sin (��X�) ;

T � (X�; R�u") = T
�
u" (X

�; R�u") at R
�
u" = H + "H sin (��X�) ;

T � (X�; R�l") = T
�
l" (X

�; R�l") at R
�
l" = �H � "H sin (��X�) :

(7.8)

Bring out the following dimensionless variables

(r; x) = (R�;X�)
H ; � = ��H; w = w�

U ; k =
�R
H ; Ha = B

�H
�
�f
�f

� 1
2
;

� = E0

�
�f
�f

� 1
2
=U; � = T�Tl"

Tu"�Tl" ; Gr =
g(��)fH(Tu"�Tl")

�fU
; � = Q0H2

k"f (Tu"�Tl") :
(7.9)

Here Ha; Gr; �; �; � and k represents Hartmann number, Grashof number, non-dimensional

parameter, temperature, heat absorption coe¢ cient and curvature parameter. The dimension-

less momentum and temperature equation stated in the following form
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�nf
�f
(
@2w

@r2
+

1

r + k

@w

@r
+ (

k

r + k
)2
@2w

@x2
) +

�nf
�f
(Ha� + (

k

r + k
)2Ha2w) +

(��)nf
(��)f

Gr� = 0;

(7.10)

@2�

@r2
+

1

r + k

@�

@r
+ (

k

r + k
)2
@2�

@x2
+ �

k"f
k"nf

= 0: (7.11)

The corresponding dimensionless boundary conditions yield the form

w = 0; ru" = 1 + " sin (�x) ; rl" = �1� " sin (�x) ; (7.12)

� = 1; ru" = 1 + " sin (�x) ; � = 0; rl" = �1� " sin (�x) : (7.13)

7.2 Solution of Problem:

By using regular perturbation technique in above equations, we de�ne the following form

w (r; x) = w0 (r) + "w1 (r; x) + "
2w2 (r; x) + ::::: (7.14)

� (r; x) = �0 (r) + "�1 (r; x) + "
2�2 (r; x) + ::: (7.15)

Substituting above equations inti Eqs. (7:10) to (7:13) and computing the like powers of "

yield

7.2.1 Zeroth Order System

@2�0
@r2

+
1

r + k

@�0
@r

+ �
k"f
k"nf

= 0; (7.16)

�nf
�f
(
@2w0
@r2

+
1

r + k

@w0
@r

) +
�nf
�f
(Ha� + (

k

r + k
)2Ha2w0) +

(��)nf
(��)f

Gr�0 = 0; (7.17)

�0 j r=1 = 1; �0 jr=�1= 0; (7.18)

w0 j r=1 = 0; w0 jr=�1= 0: (7.19)
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7.2.2 First Order System

@2�1
@r2

+
1

r + k

@�1
@r

+ (
k

r + k
)2
@2�1
@x2

= 0; (7.20)

�nf
�f
(
@2w1
@r2

+
1

r + k

@w1
@r

+ (
k

r + k
)2
@2w1
@x2

) +
�nf
�f
(
k

r + k
)2Ha2w1 +

(��)nf
(��)f

Gr�1 = 0; (7.21)

�1 jr=1= � sin(�x)
�
d�0
dr

�
r=1

; ��1 jr=�1= � sin(�x)
�
d�0
dr

�
r=�1

; (7.22)

w1 jr=1= � sin(�x)
�
dw0
dr

�
r=1

; w�1 jr=�1= � sin(�x)
�
dw0
dr

�
r=�1

: (7.23)

7.2.3 Second Order System

@2�2
@r2

+
1

r + k

@�2
@r

+ (
k

r + k
)2
@2�2
@x2

= 0; (7.24)

�nf
�f
(
@2w2
@r2

+
1

r + k

@w2
@r

+ (
k

r + k
)2
@2w2
@x2

) +
�nf
�f
(
k

r + k
)2Ha2w2 +

(��)nf
(��)f

Gr�2 = 0; (7.25)

�2 jr=1= � sin(�x)
�
@�1
@r

�
r=1

� 1
2 sin

2(�x)
�
d2�0
dr2

�
r=1

;

��2 jr=�1= � sin(�x)
�
@�1
@r

�
r=�1

� 1
2 sin

2(�x)
�
d2�0
dr2

�
r=�1

;
(7.26)

w2 jr=1= � sin(�x)
�
@w1
@r

�
r=1

� 1
2 sin

2(�x)
�
d2w0
dr2

�
r=1

;

w�2 jr=�1 � sin(�x)
�
@w1
@r

�
r=�1

� 1
2 sin

2(�x)
�
d2w0
dr2

�
r=�1

:
(7.27)

Solution of zeroth order

Under the boundary conditions the zero-order solution can be expressed as:

�0 (r) = A2 + (�
1

2
�(r(2k + r)� 2k2 ln(k + r))k"f + 2A1 ln(k + r))k"nf )=2knf ; (7.28)
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w0 (y) =

8>>>>>>>>><>>>>>>>>>:

(�Gr(k + r)2�k"f�f (��)nf�f (16(�5k2 � 2kr � r2 + 8k2 ln(k + r))u2nf�2f + k2Ha2

(k2 � 4kr � 2r2 + 10k2 ln(k + r))�f�nf�f�nf + k4Ha4(�r(2k + r) + 2 ln(k + r))

k2u2f�
2
nf ) + 4k"nfa(B1 cos(a1 ln(k + r))b(��)f +B2 sin(a1 ln(k + r))(��)fb+ �f

(k + r)2(4�nf�f (�Gr(�A1 +A2 +A1 ln(k + r))(��)nf�f � c)� k2Ha2�f�nf (Gr

(A2 +A1 ln(k + r))(��)nf�f + a1))))=(4(��)fknfba);

(7.29)

with

a = 16�nf�f + k
2Ha2�f�nf ;

b = (4�nf�f + k
2Ha2�f�nf )

2;

c = Ha�(��)f�nf ;

a1 =
kHa

p
�f�nfp

�nf�f
:

(7.30)

Solution of �rst order

Under the boundary conditions (7:22) and (7:23), we can assume the solution of �rst order

system as

�1 (r; x) = sin (�x) f (r) ;

w1 (r; x) = sin (�x) g (r) ; (7.31)

where f (r) and g (r) is function of r.

Using Eq. (7:31) into Eqs. (7:20) to (7:23), we get

d2f (r)

dr2
+

1

(k + r)

df (r)

dr
� k2

(k + r)2
�2f (r) = 0; (7.32)

�nf
�f
(
d2g (r)

dr2
+

1

(k + r)

dg (r)

dr
� �2( k

r + k
)2g (r)) +

�nf
�f
(
k

r + k
)2Ha2g (r) +

(��)nf
(��)f

Grf(r) = 0:

(7.33)
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with the following boundary conditions

fr=1 = �
d�0
dr
; f�r=�1 = �

d�0
dr
; (7.34)

gr=1 = �
dw0
dr
; g�r=�1 = �

dw0
dr
: (7.35)

The solution of �rst order problem can be expressed as

��1 (r; x) = sin (�x)

8<: sin (�x) (C1 cosh(k� ln(k + r)) + iC2 sinh(k� ln(k + r)));

sin (�x) (C 01 cosh(k� ln(k + r)) + iC
0
2 sinh(k� ln(k + r))):

(7.36)

w�1 (r; x) =

8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:

sin (�x) (D1 cosh(a2 ln(k + r)) + iD2 sinh(a2 ln(k + r)) + (Gr(k + r)
2�f (��)nf

�f (4((C1 � iC2k�) cosh(k� ln(k + r)) + i(C2 + iC1k�) sinh(k� ln(k + r))�nf
�f sinh(k� ln(k + r)) + k

2Ha2C1 cosh(k� ln(k + r)) + sinh(k� ln(k + r)))iC2

�f�nf ))=((��)f16(�1 + k2�2)u2nf�2f � 8k2Ha2�f�nf�f�nf � k4Ha4�2f�2nf )))

;

sin (�x) (D01 cosh(a2 ln(k + r)) + iD
0
2 sinh(a2 ln(k + r)) + (Gr(k + r)

2(��)nf

�f�f (4((C
0
1 � iC 02k�) cosh(k� ln(k + r)) + sinh(k� ln(k + r))i(C 02 + iC 01k�)

�nf�f + k
2Ha2C 01 cosh(k� ln(k + r)) + iC

0
2 sinh(k� ln(k + r)))�f�nf ))=

((��)f16(�1 + k2�2)u2nf�2f � 8k2Ha2�f�nf�f�nf � k4Ha4�2f�2nf )))

;

(7.37)

a2 =
k
q
�2�nf�f �Ha2�f�nf

p
�nf�f

: (7.38)

Solution of second order

The boundary conditions (7:26) and (7:27) can be simpli�ed by applying the solution of zero

and �rst order. Under conditions we can suppose the solution as

��2 (r; x) = h� (r) + cos (2�x) k� (r) ; (7.39)

w�2 (r; x) = m� (r) + cos (2�x)n� (r) ; (7.40)
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where h� (r) ; k� (r) ; m� (r) and n� (r) are function of r only.

By employing Eq.(7:39) and Eq.(7:40) into Eq. (7:24) and Eq. (7:25); we get the following

forms

d2h� (r)

dr2
+

1

k + r

dh� (r)

dr
= 0; (7.41)

d2k� (r)

dr2
+

1

(k + r)

dk� (r)

dr
� 4�2k2

(k + r)2
�2k� (r) = 0; (7.42)

�nf
�f
(
d2m� (r)

dr2
+

1

(k + r)

dm� (r)

dr
) +

�nf
�f
(
k

r + k
)2Ha2m� (r) +

(��)nf
(��)f

Grh�(r) = 0; (7.43)

�nf
�f
(
d2n� (r)

dr2
+

1

(k + r)

dn� (r)

dr
� 4�2( k

r + k
)2n� (r)) +

�nf
�f
(
k

r + k
)2Ha2n� (r) +

(��)nf
(��)f

Grk�(r) = 0:

(7.44)

and boundary conditions are

h� =

8<: �1
2

�
df
dr +

1
2
d2�0
dr2

�
at r = 1,

�1
2

�
� df
dr �

1
2
d2�0
dr2

�
at r = 1,

(7.45)

k� =

8<:
1
2

�
df
dr +

1
2
d2�0
dr2

�
at r = 1,

�1
2

�
� df
dr �

1
2
d2�0
dr2

�
at r = 1,

(7.46)

m� =

8<: �1
2

�
dg
dr +

1
2
d2w0
dr2

�
at r = 1,

�1
2

�
�dg
dr �

1
2
d2w0
dr2

�
at r = 1,

; (7.47)

n� =

8<:
1
2

�
dg
dr +

1
2
d2w0
dr2

�
at r = 1,

�1
2

�
�dg
dr �

1
2
d2w0
dr2

�
at r = 1.

: (7.48)

Thus the solution of second order system can be obtained as

��2 =

8<: E2 + E1 ln(k + r) + cos (2�x) (G1 cosh(2k� ln(k + r)) + iG2 sinh(2k� ln(k + r)));

E02 + E
0
1 ln(k + r) + cos (2�x) (G

0
1 cosh(2k� ln(k + r)) + iG

0
2 sinh(2k� ln(k + r)));

(7.49)
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w�2 =

8>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

F1 cosh(a1 ln(k + r)) + F2 sinh(a1 ln(k + r)) + (Gr(k + r)
2�f (��)nf�f (�4((

�E1 + E2)E1 ln(k + r))�nf�f � k2Ha2(E2 + E1 ln(k + r))�f�nf ))=((��)fb)

+ cos (2�x) (H1 cosh(a3 ln(k + r)) + iH2 sinh(a3 ln(k + r)) + (Gr(��)nf�f�f

(cosh(2k� ln(k + r)) + i sinh(2k� ln(k + r))(4(G2 + 2iG1k�)�nf�f +G1k
2

Ha2�f�nf )))=((��)f16(�1 + 4k2�2)u2nf�2f � 8k2Ha2�f�nf�f�nf � k4Ha4�2f�2nf ))

;

F 01 cosh(a1 ln(k + r)) + F
0
2 sinh(a1 ln(k + r)) + (Gr(k + r)

2�f (��)nf�f (�4((

�E01 + E02)E01 ln(k + r))�nf�f � k2Ha2(E02 + E01 ln(k + r))�f�nf ))=((��)fb)+

cos (2�x) (H 01 cosh(a3 ln(k + r)) + iH 0
2 sinh(a3 ln(k + r)) + (Gr(k + r)

2(��)nf

�f�f (cosh(2k� ln(k + r))(4(G
0
1 � 2iG02k�)�nf�f +G01k2Ha2�f�nf ) + i sinh(2k�

ln(k + r))(4(G02 + 2iG
0
1k�)�nf�f +G

0
1k
2Ha2�f�nf )))=((��)f16(�1 + 4k2�2)u2nf

�2f � 8k2Ha2�f�nf�f�nf � k4Ha4�2f�2nf ))

;

(7.50)

with

a3 =
k
q
4�2�nf�f �Ha2�f�nf

p
�nf�f

: (7.51)

Collecting Eqs.(7:28), (7:29); (7:36); (7:37); (7:49) and (7:50), the approximate velocity and

temperature solution as

�� (r; x) = �0 (r) + "�
�
1 (r; x) + "

2��2 (r; x) + ::: (7.52)

w� (r; x) = w0 (r) + "w
�
1 (r; x) + "

2w�2 (r; x) + ::: (7.53)

Evaluation of constants have been done by using Mathematica 9.

7.3 Heat transfer rate

Nusselt number determines the convective heat exchange strength. De�ned as follows [86]

Nu =
Hqw

k"f (T
�
u" � T �l")

; (7.54)

On upper and lower walls we de�ned
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qw = �k"nf
@T �

@r�
jr�=r�u : (7.55)

From Eqs. (7:54) and (7:55), the Nusselt number can be expressed as

Nu = �k"nf
k"f

@�

@r
jr=ru" : (7.56)

7.4 Thermophysical properties

The thermophysical properties are

Physical Properties Water Copper

Cp(J=kgK) 4179 385

�(kg=m3) 997.1 8933

k"(W=mK) 0.613 400

� � 105 (1=K) 21.0 1.67

�(S=m) 5.0�10-2 5.96�107

�(kg=m:see) 8.90�10-4 -

Table (7.1): Thermo physical e¤ects.

7.5 Graphical consequence

In this part, the graphical impacts of viscous �uid are investigated by EMHD �ow in a curved

channel with corrugated walls. All graphical outcomes are achieved by utilizing the MATLAB

programming. This segment is explicitly arranged to investigate the impact of inserted parame-

ters on �ow quantities. Plots 3D variations of velocity and contour are appeared dismembered

through Figs. (7:2) to (7:5) respectively.

The 3D variations and contour plots are acquired from the solutions of the velocity w� and

temperature �� for curvature parameter k are shown in Figs. (7:2) to (7:5): In Figs. (7:2)

and (7:4) the phase di¤erence among the two corrugated walls equals is 0�. Figs. (7:2) and

(7:4) shows that bolus increase with expanding value of curvature parameter k. In Figs. (7:3)

and (7:5), the phase di¤erence between walls equals to 180o. It is found that trapped bolus
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increases with enlarging curvature parameter k out-of-phase corrugations when " is small. As

shows in Figs. (7:2) to (7:5), the wave phenomenon of the �ow shape becomes obvious with the

expansion of the corrugation. The wavy pattern increases by increase the value of parameters.

In Figs. (7:6) to(7:12), the velocities w� and temperature �� are plotted against r for

various estimations of parameters the Hartmann number Ha, Volumetric concentration �,

Grashof number Gr, Curvature parameter k and Heat absorption coe¢ cient � when we take

" = 0:1 and � = 5. Speci�cally, it can be found in Figs. (7:6) to (7:10), that the velocity

amplitude accomplishes the maximum value at the middle of the channel. Fig. (7:6) shows

that the velocity w� increases with expanding Hartmann number. Fig. (7:7) demonstrates that

the velocity w� declines for various estimations of Volumetric concentration of nanoparticles �:

Fig. (7:8) shows that the velocity w� increases with Grashof number. Fig. (7:9) demonstrates

that the velocity w� decreases for curvature parameter k. Fig. (7:10) admits that EMHD

velocity w� increases for various values of heat absorption coe¢ cient �. We can found that,

the EMHD velocities in phase are weaker than out of phase. Fig. (7:11) shows that pro�le of

temperature �� decreases when the curvature parameter k increases. Fig. (7:12) depicts the

consequence of Heat absorption coe¢ cient � on temperature plot. Temperature variation grows

when the � increases.
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a b

c d

Fig. (7.2): 3D Velocity distribution and contour (a, b, c, d) for k = 1:5 and k = 3:5 in phase.
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a b

c d

Fig. (7.3): 3D Velocity distribution and contour (a, b, c, d) for k = 1:5 and k = 3:5 out of

phase.
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a b

c d

Fig. (7.4): 3D Temperature distribution and contour (a, b, c, d) for k = 1:5 and k = 3:5 in

phase.
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a b

c d

Figs. (7.5): 3D Temperature contour for Curvature parameter k = 1:5 and k = 3:5 out of

phase.

146



1 0.5 0 0.5 1
0

1

2

3

4

r

w

w+

w

Ha=0.1, 0.6, 1.1

Fig. (7.6): 2D Variation of velocity for Hartmann number Ha:
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Fig. (7.7): 2D Variation of velocity for Volumetric concentration of nanoparticles �:
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Fig. (7.8): 2D Variation of velocity for Grashof number Gr:
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Fig. (7.9): 2D Variation of velocity for Curvature parameter k:
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Fig. (7.10): 2D Variation of velocity for Heat absorption coe¢ cient �:
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Fig. (7.11): 2D Variation of temperature for Curvature parameter k:
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Fig. (7.12): 2D Variation of temperature for Heat absorption coe¢ cient �:

�+rz in phase ��rz out of phase

r k = 2:5 k = 4:0 k = 5:0 k = 2:5 k = 4:0 k = 5:0

-1 5.00097 4.38566 3.28585 4.90409 4.34458 4.20501

-0.8 3.77671 3.52612 2.56966 3.67526 3.4262 3.35829

-0.6 2.64766 2.65359 1.84091 2.54358 2.50167 2.48748

-0.4 1.61499 1.78832 1.11609 1.50944 1.58999 1.61143

-0.2 0.671711 0.943975 0.407727 0.565348 0.703732 0.744382

0 -0.191463 0.129656 -0.274713 -0.298267 -0.148966 -0.102962

0.2 -0.983743 -0.648739 -0.92417 -1.09082 -0.963014 -0.922668

0.4 -1.71342 -1.38752 -1.53542 -1.82074 -1.73542 -1.70892

0.6 -2.3876 -2.08454 -2.10465 -2.49521 -2.46461 -2.45756

0.8 -3.01223 -2.73868 -2.62915 -3.12025 -3.14998 -3.16565

1 -3.59224 -3.34955 -3.10702 -3.7008 -3.79156 -3.83125

Table (7.2): Impact of curvature parameter k on Stress components ��rz =
�nf
�f

@w
@r
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�+rx in phase ��rx out of phase

r k = 2:5 k = 4:0 k = 5:0 k = 2:5 k = 4:0 k = 5:0

-1 -0.231029 -0.178203 -0.20903 0.244095 0.172208 0.156072

-0.8 -0.172401 -0.220363 -0.520479 0.222807 0.169103 0.15621

-0.6 -0.12452 -0.239668 -0.732131 0.201311 0.163309 0.153674

-0.4 -0.0848175 -0.240199 -0.855576 0.180792 0.15574 0.149153

-0.2 -0.0513982 -0.225175 -0.900917 0.161743 0.147063 0.143193

0 -0.0228554 -0.19715 -0.876924 0.144326 0.137764 0.136231

0.2 0.00186674 -0.158159 -0.791185 0.12854 0.128201 0.128614

0.4 0.0235702 -0.109826 -0.650256 0.114309 0.118631 0.120617

0.6 0.0428717 -0.0534562 -0.459789 0.101526 0.109244 0.112459

0.8 0.0602508 0.0098998 -0.22465 0.0900729 0.100176 0.104314

1 0.0760844 0.0793949 0.0509706 0.0798331 0.0915214 0.0963176

Table (7.3): Impact of curvature parameter k on Stress components ��rx =
�nf
�f

k
r+k

@w
@x :

r k = 1:5 k = 2:5 k = 3:5

-1 -0.133035 -0.0331892 0.0577811

-0.8 -0.134987 -0.0389481 0.0395459

-0.6 -0.137009 -0.0447724 0.0211779

-0.4 -0.139093 -0.0506403 0.00274853

-0.2 -0.141234 -0.0565299 -0.0156717

0 -0.143423 -0.0624198 -0.0340141

0.2 -0.145653 -0.0682885 -0.0522116

0.4 -0.147916 -0.0741149 -0.0701992

0.6 -0.150202 -0.0798783 -0.0879144

0.8 -0.152501 -0.0855585 -0.105297

1 -0.154804 -0.0911357 -0.12229

Table (7.4): Impact of curvature parameter k on Nusselt number Nu+:
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x k = 1:5 k = 2:5 k = 3:5

-1 -0.135427 -0.0414312 -0.00237821

-0.8 -0.141131 -0.0471789 -0.00826093

-0.6 -0.146811 -0.0529364 -0.0141611

-0.4 -0.152444 -0.0586804 -0.0200548

-0.2 -0.158007 -0.0643883 -0.0259191

0 -0.163478 -0.0700387 -0.0317317

0.2 -0.168839 -0.075611 -0.0374716

0.4 -0.17407 -0.0810858 -0.0431184

0.6 -0.179156 -0.0864449 -0.0486533

0.8 -0.184083 -0.0916713 -0.0540582

1 -0.188836 -0.0967492 -0.0593164

Table (7.5): Impact of curvature parameter k on Nusselt number Nu�:

7.6 Tables Description

In this section, we discussed the impact of stress components and Nusselt number on EMHD

�ow in curved channel through corrugated walls. This section expressed the behavior of cur-

vature parameter k on the stress components ��zr and �
�
zx and Nusselt number Nu

� Table 7.2

demonstrates that the stress components �+zr and �
�
zr decrease with the increasing value of r and

furthermore decrease with the rise of the curvature parameter k. Table 7.3 shows that the stress

components �+zx and �
�
zx increase with the increasing value of r and also expand with the incre-

ment in the value of curvature parameter k. The impact of Nusselt number Nu=�k"nf
k"f

�
0
(yu)

on EMHD �ow of nano�uid discussed in microchannel through corrugated walls. Table 7.4 and

Table 7.5 demonstrate that the Nusselt number Nu� decrease with the increasing value of x

and increase with increment in the value of curvature parameter k:

152



7.7 Conclusion

The consequence of corrugated wall roughness on the viscous EMHD �ow in a curved channel

is determined in this paper. Perturbation technique is applied to inspect the issue. From the

above outcomes, the accompanying reasonings are drawn.

� The wavy phenomenon in the center becomes obvious when the amplitude " is small with

in phase and out of phase corrugations.

� The contour plots from the solutions of the velocity, it is found that trapped bolus are

appeared for out-of-phase corrugations.

� The wavy phenomenon increases by increasing in the estimation of parameters.

� The velocity amplitude accomplishes the maximum value on the channel center.

� The velocity enlarges for various values of Ha and Gr.

� The velocity declines for various estimations of Volumetric concentration of nanoparticles

� and curvature parameter k.

� The EMHD velocity w� increases by increment in heat absorption coe¢ cient �.

� The pro�le of temperature �� decreases when the curvature parameter k and increases

when the � increases.

� The bolus increase with enlarging the value of curvature parameter k in phase and out of

phase corrugations when " is small.

� The EMHD velocities in phase are weaker than out of phase.

� Stress components ��zr decrease with the rise of the curvature parameter while stress

components ��zx increase with the increasing value of the curvature parameter.

� The Nusselt number Nu� decrease with the increasing value of x and increase with

increment in the value of curvature parameter k:
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Chapter 8

Analysis of EMHD Casson Fluid in

curved channel with corrugated

walls under metallic nanoparticles

The main object of this chapter is to deal the steady EMHD non-Newtonain incompressible

and electrical conducting Casson �uid between corrugated walls in the presence of Lorenz force

has been examined. The Casson �uid model is utilized to characterize the non-Newtonian �uid

behavior. The equations are transformed by utilizing the perturbation method. Analytical so-

lution corresponding to momentum and temperature equations are acquired. The heat transfer

features are analyzed and discussed in detail.

8.1 Formulation of problem

Deliberate the steady, incompressible and electrically conducting Casson �uid between corru-

gated wall in the curved channel separated by a distance 2H, center at O and radius R0 is

considered. The �ow induced in the channel by sine waves with amplitude " in the corrugated

walls of the a channel. The wavy walls are located at

r�u" = H + "H sin (��x�) and r�l" = �H � "H sin (��x�) : (8.1)
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where " is small amplitude and �� is wave number. We take magnetic �eld B� along y�

direction while along the x� direction electric �eld E� is applied. Along the z� direction, we

take the Lorentz force which is produced by the contact among the magnetic �eld B� and the

electric �eld E�.

Fig. (8.1): Geometrical sketch of EMHD

�ow in microchannel.

The rheoloigcal equation of Casson �uid is [66]

� ij =

8<: 2(�� + py=
p
2�)eij ; � � �c

2(�� + py=
p
2�)eij ; � � �c

; (8.2)

where � ij is the stress tensor component, � is the component of deformation, �c is critical

value, �� is the plastic dynamics viscosity and py yield stress.

Velocity �eld expressed as

u� = (0; 0; w�(X�; R�)): (8.3)
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For present situation the �ow equations are

@w�

@z�
= 0; (8.4)

(
1

�R+R�
@

@R�
(R�+ �R)��Z�R�)+

�R

�R+R�
��Z�X�+�nfB

�(E��(
�R

�R+R�
)2B�w�)+g(��)nf (T

��T �l ) = 0;

(8.5)

k"nf

 
1

�R+R�
@

@R�
((R� + �R)

@T �

@R�
) + (

�R

�R+R�
)2
@2T �

@X�2

!
+Q0 = 0: (8.6)

In above equations, T represents the temperature and Q0 shows heat absorption constant.

(�nf ; �nf ; �nf ; k"nf ; �nf ; (�Cp)nf ) denotes nano�uid (density, viscosity, electrical conductivity,

thermal conductivity, thermal expansion coe¢ cient, heat capacitance). These constants are

�nf =
�f

(1� �)2:5 ; �nf =
k"nf
(�Cp)nf

; �nf = (1� �)�f +��s;

(��)nf = (1� �)(��)f +�(��)s; (�Cp)nf = (1� �)(�Cp)f +�(�Cp)s;
k"nf
k"f

=
(k"s + 2k"f )� 2�(k"f � k"s)
(k"s + 2k"f ) + �(k"f � k"s)

;
�nf
�f

= 1 +
( �s�f � 1)�

( �s�f + 1)� �(
�s
�f
� 1) : (8.7)

Here �f , �s, �f , �s, k"f , k"s, (�Cp)f , (�Cp)s, �f and �s represents the densities, thermal

expansion coe¢ cients, thermal conductivities, heat capacitance and electrical conductivities

respectively. Suppose along the z� direction channel is open, so we can ignore the pressure

gradient @p=@z� along the microchannel [85] and the velocity w�(x�; y�) satis�es

(
1

�R+R�
@

@R�
(R�+ �R)��Z�R�)+

�R

�R+R�
��Z�X�+�nfB

�(E��(
�R

�R+R�
)2B�w�)+g(��)nf (T

��T �l ) = 0;

(8.8)

where

��Z�R� = (1 +
1

�
)
�nf
�f

@w�

@R�
; ��Z�X� = (1 +

1

�
)
�nf
�f

�R

�R+R�
@w�

@X� ; (8.9)

where � = ��
p
2�c=py.
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The boundary conditions are

w� (X�; R�u") = 0 at R�u" = H + "H sin (��X�) ;

w� (X�; R�l") = 0 at R�l" = �H � "H sin (��X�) ; (8.10)

T � (X�; R�u") = T �u" (X
�; R�u") at R

�
u" = H + "H sin (��X�) ;

k"nf
@T �

@r�
= �B(T � � T �l") at R�l" = �H � "H sin (��X�) : (8.11)

By Introducing dimensionless variables

(r; x) = (R�;X�)
H ; � = ��H; w = w�

U ; k =
�R
H ; Ha = B

�H
�
�f
�f

� 1
2
;

� = E0

�
�f
�f

� 1
2
=U; � = T�Tl"

Tu"�Tl" ; Gr =
g(��)fH(Tu"�Tl")

�fU
; � = Q0H2

k"f (Tu"�Tl") :
(8.12)

Dimensionless form of equations are

�nf
�f
(1 +

1

�
)(
@2w

@r2
+

1

r + k

@w

@r
+ (

k

r + k
)2
@2w

@x2
) +

�nf
�f
(Ha� + (

k

r + k
)2Ha2w) +

(��)nf
(��)f

Gr� = 0;

(8.13)

@2�

@r2
+

1

r + k

@�

@r
+ (

k

r + k
)2
@2�

@x2
+ �

k"f
k"nf

= 0: (8.14)

The corresponding non-dimensional conditions are

w = 0 at ru" = 1 + " sin (�x) ;

w = 0 at rl" = �1� " sin (�x) ;

� = 1 at ru" = 1 + " sin (�x) ;

@�
@r +

Bi

(
k"nf
k"f

)
� = 0 at rl" = �1� " sin (�x) :

(8.15)

157



8.2 Solution of Problem:

We use the perturbation approximation by taking " as the small parameter

w (r; x) = w0 (r) + "w1 (r; x) + "
2w2 (r; x) + ::::: (8.16)

� (r; x) = �0 (r) + "�1 (r; x) + "
2�2 (r; x) + ::: (8.17)

Equating the like power of " after using the Eq.(8:16), Eq. (8:17) into Eqs. (8:13) to (8:14);

we get the following systems as

8.2.1 Zeroth order classi�cation

d2�0
dr2

+
1

r + k

d�0
dr

+ �
k"f
k"nf

= 0; (8.18)

�nf
�f
(1 +

1

�
)(
d2w0
dr2

+
1

r + k

dw0
dr
) +

�nf
�f
(Ha� + (

k

r + k
)2Ha2w0) +

(��)nf
(��)f

Gr�0 = 0; (8.19)

�0 j r=1 = 1;
d�0
dr

+
Bi

(
k"nf
k"f

)
�0 = 0 jr=�1= 0; (8.20)

w0 j r=1 = 0; w0 jr=�1= 0: (8.21)

8.2.2 First order classi�cation

@2�1
@r2

+
1

r + k

@�1
@r

+ (
k

r + k
)2
@2�1
@x2

= 0; (8.22)

�nf
�f
(1+

1

�
)(
@2w1
@r2

+
1

r + k

@w1
@r

+(
k

r + k
)2
@2w1
@x2

)+
�nf
�f
(
k

r + k
)2Ha2w1+

(��)nf
(��)f

Gr�1 = 0; (8.23)

�1 + sin(�x)

�
d�0
dy

�
= 0 at r = 1; (8.24)

@�1
@r

� sin(�x)d
2�0
dy2

+
Bi

(
k"nf
k"f

)
(�1 � sin(�x)�0) = 0 at r = �1; (8.25)
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w1 + sin(�x)

�
dw0
dr

�
= 0 at r = 1; (8.26)

w1 � sin(�x)
�
dw0
dr

�
= 0 at r = �1: (8.27)

8.2.3 Second order classi�cation

@2�2
@r2

+
1

r + k

@�2
@r

+ (
k

r + k
)2
@2�2
@x2

= 0; (8.28)

�nf
�f
(1 +

1

�
)(
@2w2
@r2

+
1

r + k

@w2
@r

+ (
k

r + k
)2
@2w2
@x2

) +
�nf
�f
(
k

r + k
)2Ha2w2 +

(��)nf
(��)f

Gr�2 = 0;

(8.29)

�2 + sin(�x)
@�1
@r

+
sin2(�x)

2

d2�0
dy2

= 0 at r = 1; (8.30)

@2�2
@r2

� sin(�x)@
2�1
@r2

+
sin2(�x)

2

d3�0
dy3

+
Bi

(
knf
kf
)
(�2 � sin(�x)�1 +

sin2(�x)

2
�0) = 0 at r = �1;

(8.31)

w2 + sin(�x)
@w1
@r

+
1

2
sin2(�x)

�
d2w0
dr2

�
= 0 at r = 1; (8.32)

w2 � sin(�x)
�
@w1
@r

�
+
1

2
sin2(�x)

�
d2w0
dr2

�
= 0 at r = 1: (8.33)

Zeroth order solution

Under the boundary conditions the zero-order solution can be expressed as:

�0 (r) = A2 + (�
1

2
�(r(2k + r)� 2k2Log(k + r))k"f + 2A1Log(k + r))k"nf )=2k"nf ; (8.34)
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w0 (y) =

8>>>>>>>>>>>><>>>>>>>>>>>>:

(�Gr(k + r)2�k"f�f (��)nf�f (16r2(�5k2 � 2kr � r2 + 8k2Log(k + r))u2nf�2f + 4Ha2

k2(1 + 1
� )(k

2 � 4kr � 2r2 + 10k2Log(k + r))�f�nf�f�nf + k4Ha4(�r(2k + r) + 2

k2Log(k + r))u2f�
2
nf ) + 4knf (16(1 +

1
� )�nf�f + k

2Ha2�f�nf )(B1 cos(a1Log(k + r))

(��)fb1 +B2 sin(a1Log(k + r))(��)fb1 + (k + r)
2�f (4(1 +

1
� )�nf�f (�Gr(�A1+

A2 +A1Log(k + r))(��)nf�f �Ha�(��)f�nf )� k2Ha2�f�nf (Gr(A2 +A1Log(k + r))

((��)nf�f +Ha�(��)f�nf ))))=(4(��)fk"nfb1b2)

;

(8.35)

with

a1 =
kHa

p
�f�nfq

(1+ 1
� )�nf�f

;

b1 = (4(1 +
1
� )�nf�f + k

2Ha2�f�nf )
2;

b2 = 16(1 +
1
� )�nf�f + k

2Ha2�f�nf :

(8.36)

First order solution

Under the boundary conditions (8:24) to (8:27), we can assume �rst order solution as

�1 (r; x) = sin (�x) f (r) ; (8.37)

w1 (r; x) = sin (�x) g (r) ; (8.38)

where f (r) and g (r) is function of r.

Using Eq.(8:37) and (8:38) into Eq.(8:22) to (8:27), we get

d2f (r)

dr2
+

1

(k + r)

df (r)

dr
� k2

(k + r)2
�2f (r) = 0; (8.39)

�nf
�f
(1 +

1

�
)(
d2g (r)

dr2
+

1

(k + r)

dg (r)

dr
� �2( k

r + k
)2g (r)) +

�nf
�f
(
k

r + k
)2Ha2g (r) +

(��)nf
(��)f

Grf(r) = 0:

(8.40)

Correspondingly boundary conditions are transformed as
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f(r) +
d�0
dr

= 0 at r = 1;
df�(r)

dr
� d

2�0
dr2

+
Bi

(
k"nf
k"f

)
(f�(r)� �0) at r = �1; (8.41)

g(r) +
dw0
dr

= 0 at r = 1; g�(r)� dw0
dr

= 0 at r = �1: (8.42)

The solution of �rst order problem can be expressed as

��1 (r; x) =

8<: sin (�x) (C1 cosh(k�Log(k + r)) + iC2 sinh(k�Log(k + r)))

sin (�x) (C 01 cosh(k�Log(k + r)) + iC
0
2 sinh(k�Log(k + r)))

; (8.43)

w�1 (r; x) =

8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:

sin (�x) (D1 cosh(a2Log(k + r)) + iD2 sinh(a2Log(k + r)) + (Gr(k + r)
2�f (��)nf�f (4(

1 + 1
� )((C1 � iC2k�) cosh(k�Log(k + r)) + i(C2 + iC1k�) sinh(k�Log(k + r)))

�nf�f + k
2Ha2(C1 cosh(k�Log(k + r)) + iC2 sinh(k�Log(k + r)))�f�nf ))=((��)f

(16(1 + 1
� )

2(�1 + k2�2)u2nf�2f � 8k2Ha2(1 + 1
� )�f�nf�f�nf � k

4Ha4�2f�
2
nf ))

;

sin (�x) (D01 cosh(a2Log(k + r)) + iD
0
2 sinh(a2Log(k + r)) + (Gr(k + r)

2�f (��)nf�f (k
2�f

Ha2�nf (cosh(k�Log(k + r))C
0
1 + i sinh(k�Log(k + r))C

0
2) + 4(1 +

1
� )�nf�f (sinh

(k�Log(k + r))(�k�C 01 + iC 02) + cosh(k�Log(k + r))(C 01 � iC 02k�))))=((��)f (16

(1 + 1
� )

2(�1 + k2�2)u2nf�2f � 8k2Ha2(1 + 1
� )�f�nf�f�nf � k

4Ha4�2f�
2
nf ))

;

(8.44)

a2 =
k
q
(1 + 1

�
)�2�nf�f �Ha2�f�nfq
(1 + 1

�
)�nf�f

: (8.45)

Second order solution

The boundary conditions (8:30) to (8:33) can be simpli�ed by applying the solution of �rst and

second order system. Base on boundary conditions assume the solution as

��2 (r; x) = h� (r) + cos (2�x) k� (r) ; (8.46)

w�2 (r; x) = m� (r) + cos (2�x)n� (r) ; (8.47)
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where h� (r) ; k� (r) ; m� (r) and n� (r) are function of r only.

By employing Eq.(8:46) and Eq.(8:47) into Eq. (8:28) and Eq. (8:33); we get the following

forms

d2h� (r)

dr2
+

1

k + r

dh� (r)

dr
= 0; (8.48)

d2k� (r)

dr2
+

1

(k + r)

dk� (r)

dr
� 4�2k2

(k + r)2
�2k� (r) = 0; (8.49)

�nf
�f
(1 +

1

�
)(
d2m� (r)

dr2
+

1

(k + r)

dm� (r)

dr
) +

�nf
�f
(
k

r + k
)2Ha2m� (r) +

(��)nf
(��)f

Grh�(r) = 0;

(8.50)
�nf
�f
(1 +

1

�
)(
d2n� (r)

dr2
+

1

(k + r)

dn� (r)

dr
� 4( �k

r + k
)2n� (r)) +

�nf
�f
(
Hak

r + k
)2n� (r) +

(��)nf
(��)f

Grk�(r) = 0:

(8.51)

The boundary conditions are

h�(r)� 1
2
(
df

dr
+
1

2

d2�0
dr2

) = 0 at r = 1; (8.52)

dh�

dr
� 1
2
(
d2f

dr2
+
1

2

d3�0
dr3

) +
Bi

(
k"nf
k"f

)
(h(r)� 1

2
(f(r) +

1

2
�0(r)) at r = �1; (8.53)

m� (r) +
1

2

�
dg

dr
+
1

2

d2w0
dr2

�
= 0 at r = 1; (8.54)

m� (r) +
1

2

�
�dg
dr
� 1
2

d2w0
dr2

�
= 0 at r = �1; (8.55)

n� (r)� 1
2

�
dg

dr
+
1

2

d2w0
dr2

�
= 0 at r = 1; (8.56)

n� (r) +
1

2

�
�dg
dr
� 1
2

d2w0
dr2

�
= 0 at r = �1: (8.57)

Second order solution can be evaluated as
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��2 =

8<: E2 + E1Log(k + r) + cos (2�x) (G1 cosh(2k�Log(k + r)) + iG2 sinh(2k�Log(k + r)));

E02 + E
0
1Log(k + r) + cos (2�x) (G

0
1 cosh(2k�Log(k + r)) + iG

0
2 sinh(2k�Log(k + r)));

(8.58)

w�2 =

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

F1 cosh(a1Log(k + r)) + F2 sinh(a1Log(k + r)) + (Gr(k + r)
2�f (��)nf�f ((1 +

1
� )

�4(�E1 + E2 + E1Log(k + r))�nf�f � k2Ha2(E2 + E1Log(k + r))�f�nf ))=((��)fb1)

+ cos (2�x) (H1 cosh(a3Log(k + r)) + iH2 sinh(a3Log(k + r)) + (Gr(k + r)
2�f (��)nf

�f (4(1 +
1
� )((G1 � 2iG2k�) cosh(2k�Log(k + r)) + i(G2 + 2iG1k�) sinh(2k�Log

(k + r)))�nf�f + k
2Ha2(G1 cosh(2k�Log(k + r)) + iG2 sinh(2k�Log(k + r)))�f )�nf )=

((��)f16(1 +
1
� )

2(�1 + 4k2�2)u2nf�2f � 8k2Ha2(1 + 1
� )�f�nf�f�nf � k

4Ha4�2f�
2
nf ))

;

F 01 cosh(a1Log(k + r)) + F
0
2 sinh(a1Log(k + r))� (Gr(k + r)2�f (��)nf�f (4(1 + 1

� )

�nf�f ((�1 + Log(k + r))E01 + E02) + k2Ha2�f�nf (E01Log(k + r) + E02)))=((��)fb1)+

cos (2�x) (H 01 cosh(a3Log(k + r)) + iH 0
2 sinh(a3Log(k + r)) + (Gr(k + r)

2(��)nf�f

�f (i sinh(2k�Log(k + r))(k
2Ha2�f�nfG

0
2 + 4(1 +

1
� )�nf�f ((2iG

0
1k�+G

0
2))+

cosh(2k�Log(k + r))(k2Ha2�f�nfG
0
1 + 4(1 +

1
� )�nf�f ((G

0
1 � 2iG02k�+G02))))=

((��)f16(1 +
1
� )

2(�1 + 4k2�2)u2nf�2f � 8k2Ha2(1 + 1
� )�f�nf�f�nf � k

4Ha4�2f�
2
nf ))

;

(8.59)

with

a3 =
k
q
4(1 + 1

� )�
2�nf�f �Ha2�f�nfq

(1 + 1
� )�nf�f

: (8.60)

Collecting Eqs.(8:34), (8:35) (8:43) (8:44) (8:58) and (8:59), the approximate velocity and

temperature solution as

�� (r; x) = �0 (r) + "�
�
1 (r; x) + "

2��2 (r; x) + ::: (8.61)

w� (r; x) = w0 (r) + "w
�
1 (r; x) + "

2w�2 (r; x) + ::: (8.62)

Evaluation of constants have been done by using Mathematica 9.
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8.3 Heat transfer rate

Nusselt number determines convective heat exchange strength. Expresses as [86]

Nu =
Hqw

k"f (T
�
u" � T �l")

(8.63)

On upper wall it is de�ned as

qw = �k"nf
@T �

@r�
jr�=r�u" (8.64)

From Eqs. (8:61) and (8:63), the Nusselt number can be expressed as

Nu = �k"nf
k"f

@�

@r
jr=ru" (8.65)

8.4 Thermophysical properties

The thermophysical properties are

Physical Properties Water Copper Silver

Cp(J=kgK) 4179 385 235

�(kg=m3) 997.1 8933 10,500

k"(W=mK) 0.613 400 429

� � 105 (1=K) 21.0 1.67 1.89

�(S=m) 5.0�10-2 5.96�107 6.3�107

�(kg=m:see) 8.90�10-4 - -

Table (8.1): Thermo physical e¤ects.

8.5 Graphical consequence

In the previous portion, velocity, temperature and Nusselt number have been determined

and results are demonstrated graphically to explore the �ow parallel to the wall corruga-

tions. To analyze the impacts of corrugations on the electromagnetically driven �ow, the

accompanying typical parametric values are utilized. For micro�uidic examination, half height
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of channel is H~100�m, the conditions of domain set with physical properties of the water

density �~103kgm�3, the electrical conductivity �~2:2 � 10�4 � 106Sm�1 and the viscosity

�~10�3kgm�1s�1.If range of magnetic �eld is the O(B�)~0:018 � 0:44, the valued of order of

Hartmann number O(Ha) using Ha = B�H(�=�)1=2 is from 0:0001 to 3. The frequency of

electric �eld O(!) changes from the 50 to 500s�1 and range of the frequency is 0� 1� 104s�1.

The Reynolds number order O(Re) changes from the 0:5 to 5 and the dimensionless parameter

is �xed value i.e. � = 5.

8.5.1 E¤ect of wall roughness on 3D velocity and contour distributions

The three-dimensional velocity and contour distributions for casson parameter �; when � =

0:7; and � = 1:8 for copper and silver nanoparticles are shown in Figs. 8:2 � 8:5. The wall

roughness can cause changes in the velocity distribution. In Figs. (8:2) and (8:4), the phase

di¤erence between the walls is 0�. In Figs. (8:3) and (8:5), the phase di¤erence between the

walls is 180�. From the Figs. (8:2) to (8:5), we �nd that the velocity distribution depends on

the shape of channel. Corrugation e¤ect is more prominent for silver nanoparticle as compare

to copper nanoparticle.
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a b

c d

Fig. (8.2): 3D Velocity distribution and contour for � = 0:7 in phase for copper (a; b) and

silver (c; d).
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a b

c d

Fig. (8.3): 3D Velocity distribution and contour for � = 1:8 in phase for copper (a; b) and

silver (c; d).
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a b

c d

Fig. (8.4): 3D Velocity distribution and contour for � = 0:7 out phase for copper (a; b) and

silver (c; d).
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a b

c d

Fig. (8,5): 3D Velocity distribution and contour for � = 1:8 out phase for copper (a; b) and

silver (c; d).

8.5.2 E¤ect of wall roughness on velocity

Impact of silver and copper nanoparticles with the aid of embedded parameters on the charac-

teristics of corrugated curved channel presented in this section through the graphs of velocity.
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The 2D variations of the EMHD velocity w for various embedded parameters like Casson para-

meter (�), Curvature parameter (k), Grashof number (Gr), Sink parameter (�), Biot number

(Bi) and Nanoparticle volume fraction (�) on velocity as exposed in Figs. 8.6� 8:11. All these

�gures illustrated that the velocity pro�les attains maximum value at the centre when we take

" = 0:1 and � = 5. Fig. (8:6) demonstrates that the velocity w increases for Casson parameter

� and it is elucidated that velocity plot gives giant altitude for copper as compare to silver

nanoparticles by increasing �. Fig. (8:7) illustrates the impact of k on the EMHD velocity by

increasing k velocity pro�le increases and increasing e¤ect is more prominent for silver nanopar-

ticle. Fig. (8:8) demonstrates that w increases for various values of Grashof number as a result

of decreasing in viscosity and increase in velocity is more prominent for copper nanoparticle.

Figs. (8:9) shows that the velocity w increases for various observation of the � and e¤ect is

more prominent for silver nanoparticles. Fig. (8:10) illustrates that the impact of Bi on the

EMHD velocity and negligible results due to silver and copper nanoparticles on velocity pro�le.

Fig. (8:11) exhibits the consequence of � on EMHD velocity and velocity plot declines with

enlarging the value of nanoparticle volume fraction. These results are more prominent in silver

nanoparticles as compare to copper nanoparticle.
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Fig. (8.6): 2D Variation of velocity for Casson parameter �:
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Fig. (8.7): 2D Variation of velocity for Curvature parameter k:
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Fig. (8.8): 2D Variation of velocity for Grashof number.Gr:
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Fig. (8.9 ): 2D Variation of velocity for Heat source parameter �:
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Fig. (8.10 ): 2D Variation of velocity for Biot number Bi:
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Fig. (8.11 ): 2D Variation of velocity for Nanoparticle volume fraction �.
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8.5.3 E¤ect of wall roughness on temperature

Impact of silver and copper nanoparticles with the aid of embedded parameters on the character-

istics of corrugated curved channel presented in this section through the graphs of temperature.

The 2D variations of the EMHD temperature � for various embedded parameters like Biot

number (Bi), Sink parameter (�) and Curvature parameter (k) on temperature as exposed in

Figs. 8.12 � 8:14. Fig. (8:12) shows that pro�le of temperature increases when the Bi are

increase and negligible e¤ect due to silver and copper nanoparticles on temperature pro�le.

Fig. (8:13) depicts that pro�le of temperature decreases in the portion [�1; 0] and increases in

the portion [0; 1] when the heat absorption coe¢ cient � are increase. Fig. (8:14) shows that

pro�le of temperature increases when the Curvature parameter k are increase.
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Fig. (8.12 ): 2D Variation of temperature for Biot number Bi:
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8.5.4 Tables Description

In this section, the impact of Nusselt number Nu�=�k"nf
k"f

�
0
(ru) on EMHD �ow of Casson �uid

discussed in the curved channel through corrugated walls. This section expressed the behavior

of Biot number Bi on the Nusselt number Nu�: Table 7.2 demonstrates that the Nu+ declines

with the enlarging value of x and the Nu+ decreases with the rise of the Biot number Bi

for both the copper and silver nanoparticles. Table 7.3 shows that the Nu� grows with the

enlarging value of x and the Nu� decreases with the rise of the Biot number Bi for both the

copper and silver nanoparticles.

For Nusselt number Nu+

For copper nanoparticle For silver nanoparticle

x Bi = 2 Bi = 5 Bi = 7 Bi = 2 Bi = 5 Bi = 7

0 7.82735 0.116966 0.0274677 7.83192 0.117007 0.0274975

0.1 7.71548 0.106945 0.0209968 7.71994 0.106984 0.0210261

0.2 7.57082 0.0971166 0.0145824 7.57517 0.0971549 0.0146112

0.3 7.39295 0.0875268 0.00825245 7.39716 0.0875641 0.00828068

0.4 7.18186 0.0782175 0.00203288 7.18593 0.0782538 0.00206063

0.5 6.93802 0.0692255 -0.00405237 6.94195 0.0692609 -0.00402508

0.6 6.66241 0.0605826 -0.00998156 6.66616 0.0606172 -0.00995472

0.7 6.35639 0.0523158 -0.0157352 6.35996 0.0523496 -0.0157088

0.8 6.02181 0.0444471 -0.021296 6.02519 0.0444802 -0.02127

0.9 5.66091 0.0369935 -0.0266491 5.66409 0.0370259 -0.0266234

1 5.27635 0.0299671 -0.0317816 5.27932 0.0299989 -0.0317563

Table (8.2): E¤ect of Biot number Bi on Nusselt number Nu+.

176



For Nusselt number Nu�

For copper nanoparticle For silver nanoparticle

x Bi = 2 Bi = 5 Bi = 7 Bi = 2 Bi = 5 Bi = 7

0 4.43789 0.0516885 -0.00860913 4.44028 0.0517206 -0.00858331

0.1 4.75904 0.0527978 -0.00896355 4.76161 0.0528303 -0.00893758

0.2 5.0551 0.0541474 -0.00923036 5.05783 0.0541802 -0.00920424

0.3 5.32406 0.00557392 -0.00940574 5.32695 0.0557725 -0.00937944

0.4 5.56435 0.057572 -0.00948721 5.56738 0.0576057 -0.00946072

0.5 5.77482 0.0596412 -0.00947363 5.77798 0.596754 -0.00944694

0.6 5.95476 0.0619388 -0.00936527 5.95804 0.0619736 -0.00933836

0.7 6.1039 0.0644537 -0.00916373 6.10729 0.064489 -0.00913659

0.8 6.2224 0.0671714 -0.00887193 6.22588 0.0672074 -0.00884456

0.9 6.31082 0.0700746 -0.00849407 6.31439 0.0701113 -0.00846645

1 6.37014 0.0731433 -0.00803552 6.37378 0.0731806 -0.00800764

Table (8.2): E¤ect of Biot number Bi on Nusselt number Nu�.

8.6 Deduction

The impact of nanoparticles on EMHD �ow with corrugated walls in microchannel is discussed.

The main observations from this theoretical analysis is concise as follows,

� Velocity plot increases for Casson parameter �and it is elucidated that velocity plot gives

giant altitude for copper as compare to silver nanoparticles by enlarging �:

� The velocity plot increases by enlarging k and e¤ect is more prominent for silver nanopar-

ticle.

� The velocity increases for Grashof number and and heat absorption coe¢ cient.

� Temperature pro�le increases when the Bi are increase and negligible e¤ect due to silver

and copper nanoparticles on temperature pro�le.
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� The pro�le of temperature declines in the portion [�1; 0] and increases in the portion [0;

1] when the heat absorption coe¢ cient � are increase.

� Temperature increases when the Curvature parameter increases.

� Nusselt number Nu+ declines with the increasing value of x and decreases with the raise

of the Biot number Bi for both the copper and silver nanoparticles.

� Nusselt number Nu� increases with the increasing value of x and the Nusselt number

Nu� decreases with the raise of the Biot number Bi for both the copper and silver

nanoparticles.
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