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Nomenclature

English words

H distance between corrugated walls
L length of channel

P pressure

Re Reynolds number

Ha Hartmann number

Pr Prandtl number

Gr Grashof number

Da Darcy number

R Radiation parameter

w velocity component

B magnetic field

E electric field

J current density

x,y, 2 | x-axis, y-axis and z-axis directions
T radial and axial directions

T Temperature

k” thermal conductivity

Qo heat generation/absorption
k* coefficient of mean absorption
S constant fluid parameter

q* radiative heat flux

k1 permeability of the medium
R radius

Nu Nusselt number

K, Knudsen number

B; Biot number

k Curvature parameter

C Couple stress fluid parameter




Greek words

€ amplitude parameter
B, | velocity slip
1 temperature slip
I} strength of electric field
y* casson parameter
B* | phase difference
W viscosity
P density
o electrical conductivity
us deformation rate component
T critical value
pCy | heat coefficient
o* Steaf Boltzmann
n couple stress viscosity coefficient
pg | plastic dynamics viscosity
thermal expansion coefficient
% mean velocity
heat absorption coeflicient
w angular frequency
A* | wave number
d nanoparticle volume fraction
0 dimensionless temperature
T shear stress




Subscripts

nf | nanofluid

hnf | hybrid nanofluid
f base fluid

l left

T right

u” upper

7 lower




Chapter 1

Introduction

EMHD micropumps have different points of interest, to be particular essential manufacture
process, steady flow force and bidirectional pumping capacity.The principle of EMHD microp-
ump is Lorentz force, which is relating an electric current to the conductive liquid over the
channel in the presence of an opposite attractive field. EMHD micropumps have different points
of interest, to be particular essential manufacture process, steady flow force and bidirectional
pumping capacity. EMHD can be utilized to propel liquids as well as for creating secondary
complex flow. The possibility of EMHD micropumps has been exhibited by utilizing both direct
flow and rotating flow electric and attractive fields.The EMHD micropumps established by both
of direct and alternating current electric and magnetic fields. Roughnesses on surfaces always
occurred during the fabrication process. At the microscale level, it is tough to get a totally
smooth wall surface. In any case, in practice, roughness dependably exists on the surface of
channel walls that happened during the manufacture procedure or because of the adsorption
of different species, for example, macromolecules. Surface roughness can be outlined mislead-
ingly to advance axial rotation or blending. Numerous scientists have considered flow and heat
transfer of a liquid through corrugated channel. One basic subject among these investigations
is geometrical impacts because of wall corrugations on the flow opposition or pressure drop in
the channel. The surface roughness is also mimics by wavy boundary, where roughness impacts
are magnified by small scale of channel.

The EMHD micropump is one of fundamental nonmechanical micropumps and has diverse

applications, for example, liquid pumping, control flow in microfluidic frameworks, and liquid



mixing and blending [1]. Investigation of EMHD micropumps take prodigious consideration due
to outstanding submissions in fluid propelling, stirring, fluid chromatography and microcoolers
[2, 3]. Reddy et al. [4] explored the EMHD flow variabilities in two-phase. The EMHD signifi-
cance on fluid flow is investigated by Chakraborty and Paul [5]. Jhorar et al. [6] investigated the
electroosmosis modulated biomechanical transport through asymmetric microfluidics channel.
Sundaravadivelu and Tso [7] explored the electromagnetic fields impact on the surface tension
driven flow in microchannel. Rivero [8] explored the consequences of considering fluid/wall
slippage in micropumps under electromagnetic fields by analytical and numerical calculations.

On microscale level, to obtain an absolutely smooth wall surface is incredible. For repetition,
roughness on surfaces continuously happened in manufacture procedure and the adsorption of
macromolecules. In 1970s researchers presented different number of investigation and mathe-
matical procedures to inspect the influence of wall irregularity. Chu [9] discovered the effect
of corrugation on movement inside a microtube. The importance of heat transfer features
on MHD flow is deliberated by Tashtoush et al. [10]. Ligrani et al. [11] examined surface
roughness on pressure rise and flow rate near wall slip operating with Newtonian water. On
Darcy—Brinkman flow the impacts of transverse and longitudinal wall corrugations examined
by Ng and Wang [12]. Bergles [12] examined the heat transfer perspectives. Szumbarski et al.
[14] studied temporary disturbance development in a wavy channel. Luo et al. [15] inspected
two-layer flow in ridged channel. Si and Jian [16] researched EMHD flow of the Jeffrey fluids
with longitudinal corrugated walls in microchannels. Nadeem et al. [17] discussed corrugation
effects in microchannels through permeable medium. Elshafei et al. [18] discussed the impacts
of temperature transmission and pressure drop happening in wavy walls. Nadeem et al. [19]
inspected flow in a rectangular duct having Jeffrey fluid. Akbarzadeh et al. [20] discussed
the convection of heat in two-phase model by corrugated absorber plates. Phan-Thien [21]
examined the Stokes’ flow between two corrugated plates. Flow depends on orientation of the
corrugations and phase difference of the corrugation. Bujurke and Kudenatti [22] examined the
squeeze film behavior of magnetohydrodynamic (MHD) between irregular rectangular plates.
Buren et al. [23] deliberated the wall roughness consequences for EMHD flow correspond-
ing to the corrugations of wall in micro parallel channel. Kwang [24] analyzed the effect of

Small-Knudsen-Number flow with slip flow in an annulus with corrugated walls.



Microfluidic systems usually applied in reduced systems for organic, therapeutic which are
used by genetic researches and syntheses. One of the important research areas in microflu-
idics is microelectro mechanical system because of its potential applications as an instrument
for concentrate crucial physical and biochemical procedures. Microfluidic greatly influenced in
numerous areas for example heat exchange, firewood, detection and corporal element separa-
tion. Microfluidics field gradually more considered in both scholarly world and industry due
to plausibility and productivity for controlling flows in microscale devices. Microfluidic trans-
port have attractive advantage of passive machineries, especially surface tension. Microfluidic
systems are highly desirable due to active pump and a self-contained. Dispensing therapeutic
agents is a goal of micropump inventors into the body. Microfluidic can be appeared as mi-
cropumps impelled by pressure, magnetohydrodynamic (MHDs), electromagnetohydrodynamic
pumps (EMHD), electroosmosis siphons, etc., when driving force is divided. Most microfluidic
framework require an independent dynamic pump of a size practically identical with the volume
of liquid to be pumped. The key contemplations for them incorporate their reliability, control
utilization, activation voltage, cost of fabrication and a dosing exactness similar with fuel pump.
First micropump was established by Jan Smits in 1980 to controlled insulin delivery systems
for preserving diabetics’ blood sugar stage without recurrent needle injections [25].

Darcay’s law is very much essential in order to study the fluid flow problems in porous
medium. Currently, investigation of fluid flows and heat transfer over porous medium has en-
grossed much attention. It is a fact that porous medium has many real-world applications.
Instances of common porous media phenomena are sea shore sand, sandstone, bile duct, lime-
stone and wood. Another illustration in outflow under a dam which is very imperative [26].
Alamri et al. [27] deliberated the convective radiative nanofluid flow along porous medium.
Akbar et al. [28] explored the nanofluid diffusive process in a permeable channel. In an annulus
the peristaltic flow through permeable medium is inspected by Mekheimer et al. [29]. Ellahi
et al. [30] discussed the impacts of porous medium on two phase flow. Rapits et al. [31]
have tackled issues of the progression of a viscous fluid by a permeable medium confined by
a vertical surface. Mekheimer and Al-Arabi [32] analyzed peristaltic nonlinear transport in a
porous medium for MHD flow. Sayed [33] examined the electrohydrodynamic instability of two

superposed viscous and streaming fluids through permeable medium. Varshney [34] examined

10



the fluctuating progression of a viscous liquid through a permeable medium.

The nanofluids have extraordinary consideration in research because of adequate applica-
tions. Nanofluid is basically novel class of fluids which comprises nano-sized elements. Nanoflu-
ids have gigantic effect in many submissions for example pharmacological procedures, cross-
mechanical appliances, petroleum cells, housing cooler, nuclear device and space invention and
several circumstances. Thermal performance of fluids improves by means of nanoscience knowl-
edge. The nanotechnology was first presented by Choi et al. [35]. Later on, Akbar et al. [36]
explore the effect of metallic nanoparticles on viscous fluid in an asymmetric channel. Buon-
giorno [37] suggested that the thermophoresis and Brownian movement assume a key role in the
elements of nanofluids. Inside a pipe flow of a nanofluid was studied by Xuan et al. [38] apply-
ing a dispersal model. Pramuanjaroenkij et al. [39] deliberated heat transfer ability employing
nanofluids. In a permeable network MHD flow of nanofluid considered by Sheikholeslami et al.
[40]. The slip effect in a rotating disk is illustrated by Hayat et al. [41]. Darcy flow effect on
nanofluids is evaluated by Shehzad [42]. Khanafer et al. [43] presented a model for nanofluids
heat transfer in a two-dimensional channel. Sheikholeslami et al. [44] inspected nanofluid invol-
untary convection in semi annulus. Nasrin et al. [45] defined free convection heat transmission
on nanofluid in a cavity. Andreozzi et al. [46] inspected the impacts of nanofluid and spines
in channel. Nadeem et al. [47] examined the heat degeneracy impacts on Jeffery nanofluid by
using biological analysis.

In vertical channels, the mixed convection has gained extensive significance to upgrade the
systems of cooling in engineering. This incorporates present day heat exchangers, atomic reac-
tors, sun based cells and numerous other electronic gadgets. Buoyancy forces are responsible for
such type of flows. Heat transfer analysis in the existence of mixed convection is the extensive
significance because of its applications in self-cooled or independently cooled fluid metal cov-
ers, cooling frameworks for electronic gadgets, sun based vitality accumulation and synthetic
procedures. Utilization of nanoparticles as intends to upgrade the flow of heat in low thermal
conductivity liquids has turned out to be a novel procedure. The art of nanofluids mechanics
has increased significant consideration of propelled analysis from everywhere throughout the
world. Igbal et al. [48] researched the unsteady transport of MHD mixed convection inspired

by thermal radiation and partial slip performance. The exact solutions are computed for the
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reduced systems of equations. Nanoparticles due to distinct properties have countless delib-
eration for investigators and the motivation of nanotechnology in numerous submissions are
accessible in the literature such as [49-51].

The fundamental fluid’s property (viscosity) differ with temperature. It plays a dynamic
part in nanofluids. In industrial application the conventional fluids like oil, water and ethylene
glycol have been extensively used in fluids heat transfer. Different types of nano fluids are
defined as pharmaceutical nanofluids, medicinal nanofluids, environmental nanofluids etc. Cur-
rently frequent experiments have been performed with “Hybrid Nanofluid”, the cutting edge
nanofluid. Another class of fluid is recognized as hybrid nanofluid for noteworthy conductivity
and stability. A significant number of heat transfer enhancement studies using different nanoflu-
ids type, for example, AlsO3, CNT, FesO3, Cu, CuO, Ag, TiOs, Zn0O, SiO and SiC through
a cylinder have been done [52-54]. The Hybrid nanofluid can be accumulated by merging two
unalike solid nanoparticles in the base fluids. Picking up the proper mixture of nanoparticles is
the principle favoured perspective of exploiting hybrid nanofluid. Encouraging structures can
be amended and by the reason of synergistic effect troublesomeness can be enclosed. Recently,
hybrid nanofluids have been extensively used in many areas such as micro fluidics, transporta-
tion, medical, naval structures and acoustics etc. Mainly, nanofluids flow are eminent for high
heat transfer as related to normal fluid. In addition to improve it even further, the hybrid
nanofluid is initiated. Suresh et al. [55] deliberated the hybrid nanofluid flow features include
with the heat transfer phenomena. Momin [56] did a trial investigation of mixed convection
with (Al;O3-Cu/H20) hybrid nanofluid for laminar flow in a inclined tube. From that point
forward different endeavors subject to Hybrid nanofluid are accounted for see Refs. [57-59].

Presently, it is imperative to note that numerous fluids of industrial significance are non-
Newtonian. In real mechanical non-Newtonian fluids are more suitable than Newtonian fluids,
because to their applications in oil penetrating, polymer designing, certain partition forms, man-
ufacturing of substances and paper and some other modern procedures [60]. The non-linearity
can show itself in an assortment of ways in numerous fields, for example, food, penetrating
operations and bio- designing. The Navier—Stokes theory is insufficient for such fluids, and no
single constitutive condition is accessible in the literature which displays the properties of all

fluids. Subsequently, few non-Newtonian fluid models [61-62] have been proposed relying upon
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different physical characters. So as to acquire an exhaustive perception of non-Newtonian fluids
and their numerous applications, it is essential to study their flow actions. Because of their
application in industry and machinery, couple of issues in fluid mechanics have delighted in the
consideration that concurred to flow which includes non-Newtonian fluids.

In classification of the non-Newtonian liquids, casson model has distinguishing characteris-
tic. This model was displayed by the Casson [63] for progression of viscoelastic fluid in 1959.
This model is developed for determining giant shear-rate viscosities when the information of
transitional shear-rate are accessible. In the literature, the Casson fluid is in some cases ex-
pressed to fit rheological information superior to general viscoelastic models for some materials.
Precisely, the Casson fluid depicts the flow qualities of blood exactly at low shear rates and
when it moves through little veins. Casson fluids are observed to be material in creating models
for blood oxygenator and haemodialysers. The non-linear Casson’s constitutive equation has
been found to depict precisely the flow curves of suspensions of colors in lithographic varnishes
utilized for research of printing inks and silicon suspensions [64]. Eldabe et al. [65] evaluated
the heat transfer of MHD Casson fluid flow between two pivoting chambers. Fredrickson [66]
inspected the unfaltering progression of a Casson fluid in a tube. Dash et al. [67] explored Cas-
son flow in tube filled through homogeneous permeable medium. Examination of the Casson
non-Newtonian blood models in stable and oscillatory flow. Nadeem et al. [68] investigated
MHD Casson flow in two horizontal directions past a permeable straight stretching sheet.

The most commonly used Non- Newtonian fluids is Couple Stress fluid, which is actually the
generalized from of Newtonian fluid. Ramesh [69] examined peristaltic flow in inclined channel
through porous medium. Khan et al. [70] presented definite solution of MHD heat transfer
couple stress fluid for peristaltic transport. Kaladhar [71] have investigated the consequence
of Joule heating and Hall current on free convection flow of couple stress fluid. Sankad and
Nagathan [72] examined peristaltic transport in uniform channel of couple stress fluid. Dhit
and Roy [73] explored the impact of channel inclination on couple stress fluid. The stability
of buoyancy driven parallel shear flow confined between vertical plates on couple stress fluid is
investigated by Shankar et al. [74]. Devakar et al. [75] worked on analytical solutions of couple
stress fluid.

All mentioned available studies have been focused to the flows in planar channels or tubes.
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In real world issues curved channel are essential significance. In simple channel most of the
practical application do not encounter, curved channel increase significantly more important in
veins, intestines and arteries. Sato et al. [76] firstly analyzed the flow in a rectangular curved
channel for a viscous fluid. Vriend [77] examined the curved microchannel array plates. In
curved channel unsteady transport inspected by Ramanamurthy et al. [78]. Hina et al. [79]
discussed the impact of nanofluid on curved channel on cilic motion. Eskinazi [80] investigation
about fully developed turbulent flows in curved channel. The mathematical examination of
hyperbolic tangent fluid in curved tube examined by Nadeem et al. [81]. In the curved channel
flow of the pseudoplastic fluid using wall properties and slip conditions were explored by Hina
et al. [82]. Fluid motion in a curved channel has been discussed by Dean et al. [83].

Inspired Motivated from the above studies, the them of the current thesis is to digout the
effects of corrugation and EMHD for various non-Newtonian fluids. This thesis consist of eight
chapters in which first chapter is introductory chapter which other chapters are described as
follow.

Chapter two objectives to assess the EMHD flow in microchannel through permeable medium
under corrugation effects. The walls corrugations are described by period sine waves with small
amplitude. The significant formulation is discussed in the presence of Lorenz force. The corre-
sponding solutions are calculated by using perturbation technique. 3D contours are developed
for the small amplitude parameters. This chapter contents are submitted in Physica A: Statis-
tical Mechanics and its Applications.

The aims of chapter three is to investigate the influences of surface wavy roughness on the
viscous fluid flow inside microchannel through corrugated walls. The theme to this chapter has
the following interesting features. Firstly, to inspect the influence of Lorenz on electromagneto-
hydrodynamic flow. Secondly to address the effect of convective conditions. Thirdly the effect
of EMHD on nanofluid through the corrugated walls are discussed. Fourth, the Navier-Stokes
equations are simplified by utilizing perturbation technique. Fifth the influence of related pa-
rameters graphically interpreted. This chapter contents are published in Physica A: Statistical
Mechanics and its Applications, Volume 551, 1 August 2020, 124089.

In Chapter four we explored the effect of Couple stress fluid on electromagnetohydrodynamic

flow in a microchannel. The flow is deliberated in the presence of convective conditions. By
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employing mathematical computation, we evaluated the wavy effects on velocity for the EMHD
flow. The impact of all parameters on velocity and the mean velocity profiles can be analyzed
by graphs. This chapter contents are submitted in Advances in Mechanical Engineering.

The determination of Chapter five is to examine the consequences of heat generation and
heat flow on hybrid nanofluid in microchannel. The heat transfer enhancement by using hybrid
nanofluid. We take two-dimensional flow of a Hybrid nanofluid Cu-AlyO3/water and nanofluid
Cu/water along with Casson fluid. This model is employed to inspect the consequence of
thermal radiation, heat generation and porous effect in microchannel with corrugated walls.
This chapter contents are submitted in Journal of Thermal Analysis and Calorimetry.

Chapter six models the electromagnetohydrodynamic flow in a curved channel of viscous
fluid. Amplitude of corrugations of the wavy walls are either in phase or out of phase. The
solution of velocity is achieved by employing the perturbation technique. By means of math-
ematical calculations we investigated the corrugation effects on the EMHD velocity flow. The
influence of emerging parameters from obtained solutions are inspected by graphs. This chapter
contents are submitted in Physica A: Statistical Mechanics and its Applications.

Chapter seven investigates the corrugated effect on nanofluids in curved channel under the
influence of electromagnetohydrodynamic flow. Firstly, performed the mathematical modelling
and then employing the method of perturbation, we have estimated the analytical solutions.
The main observations are summarized in the conclusions. The physical effects of flow variables
are graphically discussed. Consequences of Curvature parameter on stresses and Nusselt number
are analyzed through tables. The important conclusion is that reducing the unobvious wave
effect on the velocity by taking amplitude ratio parameter small. This chapter contents are
accepted in Applied Mathematics-A Journal of Chinese Universities.

The aims of chapter eight is described the steady EMHD non-Newtonain incompressible and
electrical conducting Casson fluid between corrugated walls in the presence of Lorenz force. The
Casson fluid model is utilized to characterize the non-Newtonian fluid behavior. The equations
are transformed by utilizing the perturbation method. Analytical solution corresponding to
momentum and temperature equations are acquired. The heat transfer features are analyzed
in detail. This chapter contents are submitted in Applied Mathematics-A Journal of Chinese

Universities.
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Chapter 2

Electromagnetohydrodynamic flow
in microchannel by velocity slip and
temperature jump through a porous

medium under corrugated wall

In this chapter, we have discussed the electromagnetohydrodynamic (EMHD) flow in microchan-
nels by perturbation technique through the porous medium under slightly corrugated walls
effects. In microparallel plates we consider incompressible and electrically conducting viscous
fluid. With small amplitudes the wall corrugations are described by periodic sine waves. The
flow is discussed in the presence of Lorenz force. We discussed the effects of darcy condition on
velocity. Impacts of velocity slip and in addition thermal slip have been appropriately dealt
with in the present examination. The energy equation is defined by including a heat source
factor which simulates either absorption or generation. Systematic solutions assessed for ve-
locity and temperature. By utilizing numerical computations, we investigated the corrugation
consequences on EMHD flow. We explicitly clarified the profiles of velocity and temperature

and their dependencies on the parameters.
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2.1 Mathematical development

We consider EMHD flow of viscous, incompressible and electrically conducting Newtonian fluids
between two vertical corrugated walls separated by 2H distance. We assumed that the length
L of channel in z*-direction and in z*-direction width W and the flow is taken due to Lorenz

force. The flow is taken opposite to corrugations of the walls. The wavy walls are described by
y; = H +eHsin (\*z*) and y; = —H — ¢H sin (\*z™). (2.1)

We can applied electric field E*and magnetic field B*in z* and y* direction respectively. Here
J x B*is the Lorenz force taken along the z* direction and created by electric and magnetic

field interaction, where current density is symbolize by J.

N
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Fig. (2.1): Geometrical sketch of

EMHD flow in microchannel.

The basic equations for mass, momentum and temperature are expressed as [84],

17



V*u* =0. (2.2)

*

p 81;* +p (W V" = —V*p + uV*2u* +J x B* + g(p{)(T* - T}) — kﬁu*a (2.3)
1
DT*
(PCo) g = VK VT + Qo(T" —T7). (2.4)

We choose the velocity in that form

u® = (0,0, w*(z", y")).

Assume that velocity will be maintained by z*component. The equations are simplified as

Porr = o T

ow* dp Pw*  0*w* 7
—+ —— B* (E* — B*w* T —-TF) — —w* 2.
(G G ) + 0BT (B = B 4 90T~ T — e, (25)

or*\ . (8T 0T L

We consider incompressible fluid between microparallel plates and along z* direction. Adopt-

ing channel is open in z* direction so neglected pressure gradient [85] and the velocity satisfies

ow* (8210* d*w*

* * * * * * M *
= B*(E*— B T —-T7) — —w". 2.
o = (G 4 Gy ) OB (B = B 4 (T~ T) - w21

k1
Velocity, electric field and temperature in periodical forms are expressed as
w* = R{w(z*,y*)e™""}, E* = R{Epe™"}, T* = R{T(z*,y")e™" }, (2.8)

where R{ }, W, w, Fy, i and T' denotes real part, amplitude of velocity, angular frequency,
electric field, imaginary unit and temperature. Utilizing Eq. (2.8) into Eq. (2.6) and Eq. (2.7),

we get
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- w9 ] ‘2 - -
P = (a$*2 + 3y*2) +0B*Ey — 0 B*w — g(pO)(T — Ty,) — k%w. (2.9)
Twizo(ZL L OTY | Qo (T —T,) (2.10)
~*\aw2 o) Tyt T |

Nondimensional variables are

w *
(r,y) = i ,w—H—w,)\—)\ H. (2.11)
Using Eq. (2.11) into Egs. (2.9)and (2.10), we get
82'11) 82’111 2 . 1
<8562+8y2>_<Ha +Rez—|—Da)w+Gr9+Haﬁ—0, (2.12)
1,0% 0% . .
ﬁ(@+@)+9(¢—2>—51—07 (2.13)

Now non-dimensional quantities are

1

) B:EO(%>§/(U’ DCL:%,

N

Re= 2, Ha=B'H (%)

(pQ)H (Ti=T) ) 2 2 (214
_ ~Tr _ I-T, _ T _ wH — QoH
Gr—gp p,wl ’G_TZ*TT’ S— (Tl—Tr)’ Pr—waf ,Qb— Z// .
The corresponding dimensionless slip conditions are
ow 00
w—Bla—y = Oandﬁ—vla—yzla‘cy:yl, (2.15)
ow 00
w—l—Bla—y = Oandﬁ—l—”ylafy:Oaty: Y- (2.16)

2.2 Perturbation analysis

In order to solve Egs. (2.12) and (2.13) using boundary conditions (2.15) and (2.16), we consider

the perturbation expansion by writing
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w(w,y) = wo(y)+ew (,y) + e wa (z,y) + ...

0(z,y) = 00(y)+ebi(z,y)+e02 (,9)+ ..

(2.17)

(2.18)

Now using Eqs.(2.17) and (2.18) into Egs. (2.12) and (2.13) and the boundary conditions

(2.15) and (2.16) are expanded by Taylor series on wavy wall at y = 1 and y = —1 and collecting

like power of €, one gets the zeroth-order equations as

d2w0 2 . 1
— | Ha*+Rei+ — | wog+ Groyg+ HaB =0,
dy? Da

1 d%6,

Corresponding boundary conditions are

d do

wo — By CZ;O = Oandeg—'yld—ozlatyzland
d do

wo+ﬂ1;uo = Oandeo-i—’yldo—()aty— —1.

The first-order perturbation equation is found in the form

8211)1 82101
+
0x? Oy?

0%01 00,

E(W+Tyﬂ)+(¢—l)el =0.

The corresponding boundary conditions are

wi +sin(Ar) 4 — 3, (50 4 sm(Am)‘%) =0 and
01 + sin(Az) G d% ’yl(‘%'1 + sm()\x) f0) =0 at y = 1.

20

1
> — <Ha2+Rei+Da> wy + Gré, =0,

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)



and

wy — sin(Az) % dwo + 51(83—“; - sm()\;n)d;;’go) =0 and

do a0 d26 (2.26)
01 —sin(Az) g2 +71(5,; —sin(Az)7#) =0 at y = —1.
The second-order perturbation equation is found in the form

62102 82102 2 . 1

W—’_ ay2 —(HCL +R61+Da> UJ2+GT92:O, (227)
1 ,0%05 020
— (= + = —1i)05 = 0. 2.2
PI"( 92 + 8y2 ) + (¢ 'L) 2 =10 ( 8)

The corresponding boundary conditions are

wo + sin()\ac)M + %sin2(/\ )d27w2° - 51(8w2 + Sm()\x)a 2+ g sin’ () dduéo) =0,

02 + sin(Ax )691 + 1sin (/\LB) (892 + sm()\x)(9 % + Lsin?(A\x) ddjgo) =0aty=1,
(2.29)

and

wo — sin()\:c) Jwy | 3 sin ()\LU)d wo 4 51(%—“;2 - s.m()\av)8 S+ st()\x)d;%) =0,

0y — sin()\z)%—é;1 + 1sin (Aaz) (@ - sm()\x)a % 4 3 sin ()\m)d 90) =0aty=—1.
(2.30)

2.3 Solution of the problem

The solution of zero order system (2.19) and (2.20) by utilizing boundary conditions (2.21) and
(2.22) we obtained

PrSi
2

0o (y) = — +eWA; + e WAy, (2.31)
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(et (Daev@t) Gr PrSi(1 + Da(Ha? + Rei)) + a?(—Dae?(*t) Gr Pr Si — Ay Dae¥’
Gr(1 + Da(Ha® + Rei)) — A1 Dae?@t)Gr(1 + Da(Ha? + Rei)) — DaeV®tY) Haf — Da?
V) Ha38 — Da?e?(“tY) HaReif — e¥(@+20) (1 4 Da(Ha? + Rei))?By — BaeV® — 2Dae?®

wo (y) =
Ha?Bs — Da2e¥“Ha*Bs — 2Dae¥® ReiBy — 2Da?e¥*Ha? ReiBy — Da?e¥e Re i2B2) +a*
Dae¥®(Dae?®Haf + €2¥°(1 4+ Da(Ha? 4+ Rei))By + By + Da(Ha? + Rei)Bs)))/(a?(—1+
a’Da — Da(Ha? + Rei))(1 + Da(Ha? + Re1))).
(2.32)
with
= 1Pr—Pro,
b= \/1+Da(Ha2+Re1) (233)
- VDa :
On the base of conditions (2.25) and (2.26), the first order system solution is
01(z,y) = sin(Az)f(y), (2.34)
wy (z,y) = sin(Az)g(y), (2.35)
here f (y) and g (y) are function of y.
Using Eq. (2.34) into Egs. (2.35), (2.23) and (2.24), we get
1 d*f(y) 2 ;
il Y — = 2.
5 0 )+ (6= )f () = (236)
d*g (y) 2 2 ; 1
i — (A 4+ Ha +Rez—|—D—a)g(y)+Grf(y):0. (2.37)
The boundary conditions are transformed in the following form
d90 4?00y _
) 1 d =0 and
f (y)d ( d2 a2 ) (2.38)
g(y) + Bo — g, (G2 dyz‘)):()aty:l,
and
d@o f( ) _ d*00y _
+ %) =0and
fy) - (g — G2) (2.30)

g(y) - dw°+m<dg<y> Fuo) =0at y=—1.



Based upon boundary conditions, the solutions of Egs. (2.36) and (2.37) takes the form

fy) =eYCr+e Y0y, (2.40)

g(y) = —(Dae ¥ (Cy+C12W)Gr/(—1+?Da—Da(Ha?+Rei+\2)))+e¥ Dy +e WDy, (2.41)

with
c= \/iPr+)\2 — Pro,
d—— V/1+Da(Ha?+Rei+)?) (242)
== oo .
First order problem solution can be expressed as
01 (z,y) = sin (\x) (eYCy + e~ Y Cs) (2.43)

—(Dae~%(Cy + C1e*¥)Gr /(=1 + *Da — D
wy (x,y) = sin (Ax) (Dae™(C, )G/ o ¢ (2.44)

(Ha? + Rei + A\?))) + eW Dy + e~ W Ds.

The boundary conditions (2.29) and (2.30) of the second order can be simplified by the
solutions of (2.31), (2.32), (2.43) and (2.44). Base on boundary conditions, the second order

system solutions can be computed as

02 (z,y) = h(y)+cos(2Xz)k(y), (2.45)

wy (z,y) = m(y)+cos(2Az)n (y). (2.46)

By utilizing Egs. (2.45) and (2.46) into Egs. (2.27) and (2.28), we get the following forms

2
P}rd;zy(gy) + (@ —h(y) =0, (2.47)
’m
d dy2(y) _ (Ha2 + Rei + i)m (y) + Grh (y) = 0. (2.48)
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The boundary conditions are transformed as

dh(y) f( ) 4 1d%00y\) _
— + 5 + 5522)) =0 and
71( ( 2 dy3 ) an (2.49)

By ¢ 3 4 3 0y,

and
d, d 0 dh(y d2 d3e
h(y) %(];(yy) %dy )+ 71 ()—%(#—%ﬁ))_Oa d (2.50)
w 3’l,U '
m(y) %(d%(;/) %ddyo) 51( ) %(ddi( ) %ddy?)o))_oaty_ -1,

1 d2k ('y) 2 .
pr (S — k() + (6= Dk () = 0 (251)
d’n (y) 2 2 : 1
— 4N+ H — k(y) =0. 2.52
e (4X\* + Ha” + Rei + Da)n(y)—i-Gr (y)=0 (2.52)
The boundary conditions are transformed in the following form
d 2 dk 3
k(y) — %(‘d(gf) + %C&;O) 71 (=g~ (y) — 5( dy(y) + 2051319??)) =0 and (2.53)
20 n 3w '
n(y) — 3G + L Euey g, (dnl) —%(d M) Ldwy) —gaty =1,
and
d 2 dk d>
By) + $(E — 30 + 7 (B + (T - %%) =0 and 2.54)
d 2 dn d? 3w )
n(y) + 3(4 — 1m0y 4 g, (4e) 4 LAY gy - — 1.

By utilizing the above boundary conditions (2.49), (2.50), (2.53) and (2.54) the solutions are

expressed as
h(y) = e By + e " Ey, (2.55)

m (y) = (Dae”%(Ey 4+ E1e*¥)Gr/(1 4+ Da(—a® + Ha® + Rei))) + e FL + e WF,,  (2.56)

k(y) = Gy + e Y Cy, (2.57)
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n(y) = (Dae~%(Ga+G1e*¥)Gr /(14 Da(—e* + Ha® + Rei+4)\?))) +e/YH, + e /Y Hy, (2.58)

with
e =+iPr+4X? — Pr¢,
f= /14 Da(Ha2+Rei+4)?) (2.59)
o VDa :
Thus the second order solutions finally take the form
Oy = e"E) + e YEy + cos (2Ax) (eYG1 + e YGo), (2.60)

(Dae=%(Ey + E1e*¥)Gr/(1 + Da(—a? + Ha? + Re1))) + W Fy + e % Fy 4 cos (2\z)

((Dae=¥(Ga + G12%¥)Gr/(1 + Da(—e* + Ha? + Rei + 4\?))) + e/YHy + eV Hy).
(2.61)

Collecting (2.31), (2.43) and (2.60), the approximate temperature solution can be obtained

as
0 (z,y) = 0o (y) + 1 (z,y) + %02 () + ... (2.62)
PrSi a —a : c —c
—2t 4+ eWA + e WAy +esin(A\x) (eYCr + eV
pagy = o2 TOATE AT emADEAT TG 6
+e2(eWE) + e~ WEy + cos (2A1) (e G1 + e~V (GEy)).
Collecting (2.32), (2.44) and (2.61), the estimated velocity solution can be written as
w(z,y) = wo (y) + ewr (x,y) + 2ws (z,9) + ... (2.64)
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(e7¥(F8) (Daev @Y Gr PrSi(1 + Da(Ha? + Rei)) + a?(—Da?e*Y) Gr Pr Si — Ay Dae¥”
Gr(1 + Da(Ha? 4+ Rei)) — A1 Dae?@t0)Gr(1 + Da(Ha? + Rei)) — DaeV®tY) Hafs — Da?
V@t 638 — Da?eV@tY) HaReiff — e¥(*+20) (1 4 Da(Ha? + Rei))?B; — Boe¥® — 2Dae¥®

Ha?By — Da?e¥*Ha*By — 2Dae¥* ReiBy — 2Da*e¥*Ha? ReiBy — Da%e¥* Rei?By) + at

w(z,y) = Dae¥*(Dae’*Haf + €2¥*(1 + Da(Ha? + Rei))By + By + Da(Ha? + Rei)Bs)))/(a?(—1+
a’Da — Da(Ha? + Rei))(1 + Da(Ha? + Re1))) + esin (\z) (—(Dae~%(Cy + C12%)Gr/
(=1 +c2Da — Da(Ha? + Rei + A\2))) + e Dy + e~ WDy) + e2((Dae™ % (Ey + E1e2%)Gr/

(14 Da(—a? + Ha® + Re1))) + e Fy 4+ e W Fy + cos (20z) ((Dae=(Gy + G1e2%Y)Gr /(1

+Da(—€? + Ha? + Rei + 4)?))) + e/VH, + e fVH,).

(2.65)
2.4 Volume flow rate
We can define the volume flow rate per unit width of channel as
1+esin(Ax)
ata) = [ (e y)dy. (2.66)
—1—esin(Ax)

Substituting (2.57) into (2.58) and expanded the integrals results and disregarding third

order term , finally expressed as

[ wo(y)dy + e [1 wi(z, y)dy + ([ wa(z, y)dy + +sin(A\z)[wi (2, ) [y=1

1.2 dwo(y) dwo(y) - (267)
1 (2, ) [ymt]  § sin2(h) (B30 |y _dunl) | )

q(z) =

2.5 Graphical consequence

We obtained solutions by using perturbation method for velocity, temperature and volume flow
rate of EMHD viscous fluids bounded by microparallel plates with corrugated walls. For general
microfluidic analysis, consider H ~ 100um is half height of channel, the conditions of domain
on density of water set with physical properties is p ~ 103kgm ™3, the electrical conductivity
0 ~22x107% - 10Sm~"! and the viscosity u ~ 10"3kgm~1s~!. If range of magnetic field is
the O(B*) ~ 0.018 — 0.44T , the Hartmann number order O(Ha) using Ha = B*H (o /u)"/? is
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taken from 0.0001 to 3. The electric field frequency O(w) is changes from the 50 to 5005~ and
range of the frequency is 0 — 1 x 10*s~!. The order of Reynolds number O(Re) change between

the 0.5 to 5 and the dimensionless parameter is fixed value i.e. 8 = 5.

2.5.1 Effect of wall roughness on contour distributions of velocity and tem-

perature

The contour of the non-dimensionless velocity and temperature distributions with = and y
coordinates for various ¢ are shown in the Figs. 2.2 — 2.3. Figs. 2.2(a) and 2.3(a) display the
influence of velocity and temperature distributions through smooth channels when € = 0. It is
defines from Figs. 2.2 — 2.3 that the wavy phenomenon noticeable with the expansion of the
corrugation. We found that the velocity distribution depends on the shape of channel. The
asymmetric boundaries of the channels lead to asymmetric velocity. The three-dimensional
velocity and contour distributions for various value of variable viscosity are shown in Figs.

2.2 — 2.3. In microchannel, the wall roughness can cause changes in the velocity distribution.

10 20 30 40 50 60 . 0 10 20 30 40 50 60

=
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Fig. (2.2): Velocity contours (a, b, ¢, b) for e= 0, 0.02, 0.05, 0.1 respectively.
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Fig. (2.3): Temperature contours (a, b, ¢, b) for e= 0, 0.02, 0.05, 0.1 respectively.

2.5.2 Effect of wall roughness on velocity

The 2D variations of the EMHD velocity w for various values of Reynolds number, Grashof
number, velocity-slip parameter furthermore, Darcy number are shown in the Figs. (2.4) to
(2.7). Figs. 2.4 — 2.7 focus around the EMHD velocity of different parameter at point x = 0.5
and y = 0 when we take ¢ = 0.1 and § = 5. From these figures, the velocities first grow and
then reduce by expanding the y. Fig. (2.4) illustrates that the disparity of the velocity for
various estimations of Reynolds number, with increasing Re the velocity w increases. Fig. (2.5)
displays that the velocity w declines for distinct values of Gr. Fig. (2.6) illustrates that the
velocity w declines due to velocity slip parameter 3. Fig. (2.7) displays the impact of Darcy
number Da on velocity w. It is inspected that the velocity increases with the increasing Darcy

number Da.
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Fig. (2.5): 2D Variation of velocity for Grashof number Gr.
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Fig. (2.6): 2D Variation of velocity for velocity slip parameter ;.

Fig. (2.7): 2D Variation of velocity for Darcy number Da.
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2.5.3 Effect of wall roughness on temperature

Figs. 2.8 — 2.11 give some trademark profiles of temperature for distinct values of thermal
slip/ temperature jump factor, heat absorption coefficient, Prandtl number and dimensionless
parameter respectively. The 2D variation of different parameters v, ¢, Pr and S are taken at
x = 0.5 and y = 0. Fig. (2.8) represents the change of 0 versus y for numerous values of ;.
Temperature plot first declines with the expanding of 7, and afterward enlarge with expanding
value of ;. Fig. (2.9) emphasizes that as heat generates during flow in channel. Therefore the
temperature of the wall enhanced when the heat absorption coefficient ¢ increases. Fig. (2.10)
shows that profile of temperature decreases when the Prandtl number Pr increases. Fig. (2.11)

shows that profile of temperature decreases when non-dimensional parameter S increases.

Fig. (2.8): 2D Temperature variation for thermal slip parameter ~,.
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Fig. (2.9): Temperature variation for heat absorption coefficient ¢.

Fig. (2.10): Temperature variation for Prandtl number Pr.
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Fig. (2.11): 2Temperature variation for Non-dimensional parameter S.

2.6 Conclusions

The technique of perturbation is utilized to assess EMHD flow behavior through microchannel
in the presence of corrugated walls depicted by the sin wave with small amplitude for viscous

fluid. The primary outcomes are quickly clarified as
e The unobvious influences of wave can be reduced by small value of € parameter.

e When amplitude € approach to 0, the profile of velocity and temperature distributions of
flow through the corrugated walls approach to the velocity and temperature distributions

of the flow through a smooth channel.
e The velocity and temperature depend on the shape of a channel.

e Velocity grows with expanding assay of Reynolds number, Grashof number and Darcy

number.
e Velocity declines for various estimations of slip parameter ;.
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Wave phenomenon of velocity becomes obvious with enlargement of corrugation.
Velocity is more prominent middle of the channel and lesser sides of walls in all cases.

The profile of temperature at first decreases then increases with effect of jump temperature

coefficient 7.
The profile of temperature increases with ¢.

The profile of temperature declines with non-dimensional parameter S and Prandtl num-

ber Pr.
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Chapter 3

Significance of knudsen number and
corrugation on EMHD flow under

metallic nanoparticles impact

In this chapter, the impacts of surface wavy roughness on the viscous fluid flow inside mi-
crochannel through corrugated walls is examined. The Navier—Stokes equations are simplified
by utilizing perturbation technique with incorporated microscopic slip conditions at the wavy
wall. The present investigation depends on the assumptions that the corrugations are periodic
sinusoidal waves of small amplitude. The considered examination involves the consequence
of electromagnetohydrodynamic on the features of the nanofluid through the corrugated walls
under the impact of nanoparticle by considering an appropriate mathematical model. The equa-
tions are understood through the strategy of perturbation. Examination is introduced by taking
water and copper in the presence of convective conditions. Influence of related parameters are

interpreted graphically.

3.1 Mathematical model

We inspected the EMHD flow with nanoparticle between two vertical corrugated walls of height
2H. The microchannel height is taken 100um and 0.1H is taken amplitude of corrugated wall.

The wall surfaces are describe by
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yy=H + eHsin (\*z*) and y; = —H — e¢H sin (\*z* + %), (3.1)

where \* represents the wave length and e is small amplitude. We can applied electric field
E*and magnetic field B*in z* and y* direction respectively, J x B* is Lorenz force which taken
along the z* direction and created by electric and magnetic field interaction, where current

density is symbolize by J.

S
~
)
*x

(d+xusgs—pg—=_A
= I{

N~

e
(X vwsge+H

—

Fig. (3.1): Geometrical sketch of

EMHD flow in microchannel.

The formulated problem composed as
V*u* =0, (3.2)

ou*

Puf e+ Pug (W VU = =V V" + I X B + g(pQns(T7 = T7), (3.3)
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DT™

(0Cp)as e = V'K V' T™ + Qul(T" = T7), (3.4)

where T™ shows the temperature, Qo is heat absorption constant, i, , k”nf, pnss Coys
(pCp)nys are defined the nanofluid viscosity, thermal conductivity, density, expansion coefficient
and heat capacitance.
k”
Bnyp = W? Qnf = (pCp) » Pnf = (1 - q>)10f + q)psa

(POng = (1= 2)(pQ) s + P(pC)ss (PCp)nyg = (1 = @) (pCp) s + ®(pCp)s, (3.5)

gs
k”nf i (k”s+2k)”f)72q)(k”f7k”S) Ot (Uf l)q)

- 9 9 3 9 == 1 705 T1\_d(%s 1)
By = 2R e ) oy L (e D)

Under the considered assumptions only the z*factor of velocity will be retained. The equa-

tions are rearranged as

ow* Op o 0 0 N . % " "
pnf% = _az* + ax*TJ:*z* + 55 oxr* y*z* + o5 9 Tz z* +UnfB (E - B'w )+g(pC)nf(T _Tr)7
(3.6)
WO (25) =k (25 + 210 1 o — 1), (57)
Peeinf o= ) =5 I\ e T oy 0 " '
The simplification and incorporating the values of stresses in Eq. (3.6) yield
Mot T 0z T 0r2 ay "
The boundary conditions are written as:
w* (z*,yf) = Kndd% at yf = H + eH sin (\*z*)
w* (2%, yf) = K, 2 at yf = —H — eH sin (\*z* + 5%) (3.9)

T* (z*,yf) =17 (z*,y*) at yf = H + eH sin (\*z*)
k”nfg%: = —B(T* - T) at y* = —H — eH sin (\*z* + %)

We assumed that fluid is incompressible and only taken in z* direction. In z* direction we
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assume that channel is open so pressure gradient is ignored [85] and the velocity satisfies

ow* aZ,w* 82111* * * o * *
pnf% :,U/nf(w—i-w)‘i‘anfB (E — B w )+g(p<)nf(T _Tr)' (310)

Velocity, electric field and temperature in EMHD flow are express in periodical forms as

w* = R{w(z*,y*)e™}, E* = R{Fpe™"}, T* = R{T(z*,y*)e“" }. (3.11)

Utilizing Eq. (3.11) into Eqgs. (3.7) and (3.10), we get

o*w  9*w

(P pw = [ <ax*2 52 > + 0B Eo — 00 B0 + g(pQ)ng (T — Tr),

(3.12)

2T 8T Qo
Twi = T-T). 1
YT (333*2 " 8y*2) (Pcp)nf( ) (3.13)

The dimensionless form of momentum and temperature equations are

Pw  JPw

53 +2—W<wHa2+p”R”> 0 g PO G (3.04)
ox oy P \ Of Py Hnf Of Mo (PQ)s

20 POk
— 6—Prit(s+6)= 1
TR R T zanf(s+ ) =0. (3.15)

The non-dimensional quantities are expressed as

1
_(35*731*) o\ * * 2
(,y) = ,)\_)\H,uj_Hw,Ha_BH(Mf) ,

Re = 22 5 — Eo( ) fw, Pr=f g, — BH (3.16)
H T,—T: 2

On the boundary, we expand w(z,y) in the following form as suggested by [10]

o dy? dw
w(%?/) = w(:z:, y) + Edywy(x, y) +e (7wyy<xay)) - K % (317)
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Thus, on the upper wall and lower walls %} is defined as

dw V(yr — 1 —esin (Az))
e 3.18
dn YTy — 1~ esin (Aa))] (3.18)
= (1+ &2)\? cos?(\z -3 Wy — EACOS(AX )Wy
( ()~ (1, = eXcos(Aau) 510
at y; = 1 4 esin (A\x),
dw V(yr + 1+ esin (Az + 8%))
dw 3.20
dn w‘V(yr—l-l—i-esin()\x—i-ﬁ*)ﬂ (3:20)
= (1 +&2\2cos?(\x + 5*))_%('wy —elcos(Az + B )wy) (3.21)
at yp = —1 — esin (A\z + 57%), '
and boundary conditions on temperature are
0=1aty =1+esin(\x), (3.22)
00 B; .
ot —f0=0aty =—1—csin(Az + 7). (3.23)
dy (Eny
k”y
3.2 Solution of technique
Utilizing regular perturbation technique in above equations, we may define
w(z,y) = wo(y)+ews (z,y) + 2ws (z,y) + ... (3.24)
0(x,y) = 0o(y)+eb(z,y)+e%s (x,y)+ ... (3.25)

Incorporating Eqgs. (3.24) and (3.25) into equations (3.14), (3.15) and boundary condition

(3.17), collecting the same powers of €, we reach at

3.2.1 Zeroth order classification

20, K o
— o — Pri—— (S +6p) =0 3.26
dyQ + k”nfd) 0 rzanf( + 0) ) ( )
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d2 n n n n
“;U_Mf<afH +prez>w0+“f I o+ M0 g o (3.07)
dy*  py Py ling Of tng (PQ)f

dby B;

90:1aty:1,d—y—l—W90:Oaty:—l, (328)
kﬁf
d d

wo—Knﬂ:0aty:1,w0—Knﬂ:0a‘cy:—1. (3.29)

dy dy

3.2.2 First order classification

6291 8291 ]{”f Oéf
01 —Pri—6, =0 3.30
61132 + ay2 + k'”nfd) 1 rzanf 1 ) ( )

0? 0? " N . )
7“]21 U;1_W<‘7J”Ha2+prei>wl+WUfHa + 2L (PC) fG9
(3.31)

01 + sin(Ax) <d9;) =0aty=1

3.32
391 +sm()\x+ﬁ)d0°+( ( )

P (B -+ sin(he + 37)) = 0 at y = 1,

k
i

wy + 2sin(Az) d“;f — K,(2 sin(/\x)d o awl — Acos(Az) dzc‘l);’“) =0aty=1
wy + 2sin(Ax + B* )m — K, (2sin(Axs* )d 0 4 8“” — Acos(Azp* )don) =0aty=—1.

(3.33)
3.2.3 Second order classification
%2522 .\ 8;;22 N :;f 305 — Prz'oi):;ez —0, (3.34)
Puy | Pwy _ py (fjnfﬂa2 + Pt Re z> wy + L Gr (P)ns b2 =0, (3.35)
022 " O0yE g Py tng  (PQ)f
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0y + sin()\x)ael + 31— cos(QAm))‘fi— Oaty=1

6 02 +sin(\z + B* )8 01 4 1 (1 — cos(2Ax + )) (k%f) (3.36)

(62 + sin(Az + 8*)01 + (1 — cos(2Az + 28%))0p) = 0 at y = —1,

wa + 2sm(/\3:)aw1 +(1- cos(2)\a:))d o — Kn(aw2 + 2sm(/\x)8 YL+ (1- cos(QAx))d;y“gO
2\ cos(A\z) sin(Az) gxgg )\cos()\x)% - %)\2(1 + cos(2)\x))d%/0) =0aty=1

wg + 2sin(Ax + 5% )aw1 + (1 — cos(2A\z + 25*))d;“§° (‘9“’2 + 2sin(Az + * )a wl—i—
(1 — cos(2Ax 4 2™ ))d 10 — 2X cos(Ax + %) sin(Ax + B*)glfgg — Acos(Az + 57 )Gwl (3.37)

dy
T (14 cos(2hz +28%)) L) = 0 at y = 1.

The solution of first order system can be computed by using the following expressions

01(z,y) = sin(Az) f (y) + cos(Az)g(y), (3.38)

wy (z,y) = sin(Az)h(y) + cos(Ax)k(y). (3.39)

Using Egs. (3.38) and (3.39) into Eqgs. (3.30) and (3.31) and boundary conditions Eqgs. (3.32)
and (3.33), we get

PIW) e _ k”f

d?g (y) Ky
- [\? — o ¢ + Pri anf]g(y), (3.41)
d*h (y) N2 _ Hy o Onf o, Prfg (0O _
( i () unf(( o Ha® + o Rei)h (y) — Gr 0z f () =0, (3.42)
Pk(y) o By g g2 Pfp o, (POns _
( i () ,Unf(( o Ha® + o Red)k (y) — G 0); g9(y)) =0, (3.43)
2 .
o)+ 2 = vaty = 1.5+ cos 520 (ﬁff)<f<y>+eocosﬁ*>aty=—1, (3.44)
Ky
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g . *d290 Bz . *
9(y) =0at y =1, ay T T W(g(y) + fosin 57) at y = —1. (3.45)
L

The solution of second order scheme can be evaluated by means of expressions of the form

02 (z,y) = 1(y)+sin(2Az)m(y) + cos (2Az) n (y), (3.46)

wy (z,y) = p(y)+sin(2\z)q(y) + cos (2A\x) r (y) . (3.47)

Invoking Eqs. (3.46) and (3.47) into Eqs. (3.34) and (3.35) and boundary conditions Egs.

(3.36) and (3.37), we get the resulting differential equations are

Py)

a2 T k”nfféf’ - anff Pri)i(y) =0, (3.48)
sz;gy) (4N - :Tiﬁ + Oj; Pri)m (y) =0, (3.49)
dzlygy) (42— : L4 ff Prijn () = 0, (3.50)
ngygw - Z:C(((Z;fﬂﬁ + ’Z;f Rei)p(y) — Gr ((’;%’;fz () =0, (3.51)
(s — LL( e+ 2 eig ) - 6 ERm ) =0, (@52)
(dzgygy) — 4N (y)) — lizc((o;;fHaQ + Ppnff Reid)r (y) — Gr ((ll)fg)zfn (y)) =0, (3.53)

I(y) + ;(S‘Z +;C§020) =0aty=1,

j;é Y d2f + sng” d2g 1 dy3 n (kﬁff)(l(y)

L (3.54)
+955 f(y) + T g(y) + 160) at y = —1,
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1dg
()+ff—0at =1,

2 dy
2 2 2 * 13 )
C(ljyn; + coséﬂ d%g + s1n2,6’ d f + s1nfﬂ céyé?? + k}Pl (m(y)

&) (3.55)
+<958 g () + S8 () + S22 00) at y = 1,

C1df 1 d290
=0aty=1
d? B* d2 B d? 28* d39 B;
# __ cos f + sm2 ﬁ _ cos4 dygo (k”nf)(n(y>
o (3.56)

— <5 f )+ T g(y) — <= 00) aty = 1,

p) + G g (G B 2 )+ 1 oy =1

p(y) + d;u; +cosﬁ*—h + smﬁ*% - K, (ddu;o —Fcos/é’*ﬁ + sin B*fy]; + fl]gj
_);(ddwo +cos B*h(y) +sin B*k(y)) =0 at y = —1, (3.57)
)+ 0 KR+ B ) =0ay =1,

q(y) +sin25* d;yQ + co sﬁ*z—i— in 8* 7h — K, (sin d 3 osﬁ*jzl;
+sinﬁ*fy§ + SZ + )\22(Sin QB*ddyo + cos f*k(y) +sin 8*h(y))=0 at y = —1, (3.58)
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dPwy  dh Bwyg  d2h dr N? 1 dwy

SO g (SR C R T )+ =S = 0aty =1,
) - = K = T - S+ 3 ) = 0aty
d? dh dk d3w d’h
r(y) — cos 25" d;UQO os 3* ——l— sin 8* ——K( cos 23* dy30 —cosﬁ*d—y2
L APk dr N2 -
+sin 3 Ty2+@ 2( os 203" —y—i—cosﬁ h(y) —sin B*k(y)) =0 at y = —1. (3.59)

The approximate temperature solution can be obtained as
0 (z,y) = 0o (y) + b1 (z,y) + 202 (z,9) + ... (3.60)
The approximate velocity solution can be demonstrated as

w(z,y) = wo (y) + ewy (z,y) + ws (z,y) + .. (3.61)

3.3 Heat transfer rate

The Nusselt number determines the convective heat exchange strength, and is defined as follows

[36]

Hau
N —_——— 3.62
U = Al ( T*) ( )
On left and right walls we defined
, orr* , or*
qu = —k nfTw ‘y*=y2" Gw = —k nfTw ‘y*:yiﬁ (3.63)
From Egs. (3.62) and (3.63), the Nusselt number can be expressed as
Nu ]{3” ay |y Y VU= ]{3” ay |y Yr (364)

45



3.4 Volume Flow rate

We can define volume flow rate as

1+esin(Az)
q(z) = / w(z,y)dy. (3.65)
—1—esin(Az)

Substituting (3.61) into (3.65) and expanded by using the Taylor series the integrals results

in x and neglecting third order term, finally volume flow rate written as:

_ [ wo(y)dy + e [1 wi(z,y)dy + ([ wa(z, y)dy + +sin(\a)[wi (2,) [y—1

1 .2 dwo (y) dwo (y) - (3.66)
Fwi(z,y) [y=—1] + 5 sin (A‘T)(Ty ly=1 TTdy ly=-1))

q(z)

3.4.1 Mean velocity

On average over the one wavelength (0,27 /) of the corrugations,thus we defined mean velocity
as:

A 1+esin(Ax) 27“
/ w(z,y)dzdy. (3.67)
0

Wy, = —
am —1—esin(A\z)

Inserting (3.65) into (3.67) and using (3.66), the mean velocity is:

2m
\
wn = | ala)de = wom [+ + O] (3.68)
0

where

¢ = £(3b1(B1 — By) cosh(by) + 4(Dy + D3) cosh(bz) + (5b1(By + Bs) + 81(F}

+F3) sinh(b1))/b1 + (((4(C1 + C2) cosh(az)sapspy) + ((3a1(A1 — Az) cosh(ar)

pp(as —N)sa = supp)py) + (1/ar)((5a3 (A + As) + 8(E1 + E»)) sinh(ar)ap; '
(a3 — A?)s4 — 31Nf>pf))/(a%34 - Nfsl))/«(_a% — N)ss+ s1ig)(pC) f)

(3.69)

The wo, represents the mean velocity for perfectly smooth walls and ¢ denotes the leading-

order perturbations to the mean velocity due to the corrugations.

46



3.5 Thermophysical properties

The thermophysical properties are

Physical Properties | Water Copper
Cp(J/keK) 4179 385
p(kg/m?) 997.1 89333
k"(W/mK) 0.613 400
(x10° (1/K) 21.0 1.67
o(S/m) 5.0x102 | 5,96x107
p(kg/m.see) 8.90x10* | -

Table (3.1): Thermo physical effects.

3.6 Graphical consequence

In the previous portion, velocity,temperature and Nusselt number have been determined and
results are demonstrated graphically to explore the flow parallel to the wall corrugations. To
analyze the impacts of corrugations on the electromagnetically driven flow, the accompanying
typical parametric values are utilized. For microfluidic examination, half height of channel
is Hy ~ 100um, the conditions of domain set with physical properties of the water density
p ~ 103kgm™3, the electrical conductivity o ~ 2.2 x 107% — 10°Sm~! and the viscosity p ~
1073kgm~1s~1. If range of magnetic field is the O(B*) ~ 0.018 — 0.44, the valued of order
of Hartmann number O(Ha) using Ha = B*H (o /p)"/? is from 0.0001 to 3. The frequency of
electric field O(w) changes from the 50 to 500s~! and range of the frequency is 0 — 1 x 10%s71.

The Reynolds number order O(Re) changes from the 0.5 to 5 and the dimensionless parameter

is fixed value i.e. 8 =5.

3.6.1 Effect of wall roughness on 3D velocity and contour distributions

The three-dimensional velocity and contour distributions for various K, and B; when 8* = 0,
p* = 5 and B* = m are shown in figures 3.2 — 3.7. In microchannel, the wall roughness can

cause changes in the velocity distribution. In Figs. (3.2) and (3.5), the phase difference between
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two walls is 0°. In Figs. (3.3) and (3.6), the phase difference is 90° and in Figs. (3.4) and (3.7),
the phase difference between two walls is 180°. We find that the velocity distribution depends
on the shape of channel from Figs. (3.2) to (3.7).

Fig. (3.2): 3D Velocity distribution and contour (a, b, ¢, d) when K,, = 0.05 and K,, = 0.1
in phase (i.e. 8* =0).
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Fig. (3.3): 3D Velocity distribution and contour (a, b, ¢, d) when K,, = 0.05 and K,, = 0.1

when g* = 7.
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Fig. (3.4): 3D Velocity distribution and contour (a, b, ¢, d) when K,, = 0.05 and K,, = 0.1

out of phase (i.e. * = ).
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Fig. (3.5): 3D Velocity distribution and contour (a, b, ¢, d) when B; = 4.0 and B; = 8.0 in
phase (i.e. * =0).
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Fig. (3.6): 3D Velocity distribution and contour (a, b, ¢, d) when B; = 4.0 and B; = 8.0

when g* = 7.
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Fig. (3.7): 3D Velocity distribution and contour (a, b, ¢, d) when B; = 4.0 and B; = 8.0 out
of phase (i.e. 8* = m).

3.6.2 Effect of wall roughness on velocity

The 2D variations of the EMHD velocity w for various Gr, ®, K, Pr, B; , ¢, Re and Ha are
displayed in the Figs. (3.8) to (3.15) when we take ¢ = 0.1 and 5 = 5. Fig. (3.8) demonstrates
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that the w increases for various estimate of Grashof number due to effect of declining in viscosity
with growing Gr. Fig. (3.9) illustrates the small impact of ® on the EMHD velocity. Fig. (3.10)
shows that the velocity w increases in the portion [—1, 0] and decreases in the portion [0, 1] with
increasing value of K,,. Fig. (3.11) shows that the velocity increases for B; . Fig. (3.12) displays
that the velocity w decreases for various estimations of Pr. Fig. (3.13) shows that the velocity
w decreases for heat absorption coefficient ¢. Fig. (3.14) shows that velocity w for Re, with
increasing Reynolds number velocity w decreases. The reason is that the rapid oscillation of
velocity with small amplitudes for the larger Re. Fig. (3.15) illustrates that velocity w increases

for various values of Ha.

Fig. (3.8): 2D Variation of velocity for Grashof number Gr.
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Fig. (3.10): 2D Variation of velocity for knudsen number K.
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Fig. (3.11): 2D Variation of velocity for biot number B; .

-1 -0.5 0 0.5 1

Fig. (3.12): 2D Variation of velocity for Prandtl number Pr.
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Fig. (3.13): 2D Variation of velocity for heat absorption coefficient ¢.

-1 -0.5 0 0.5 1

Fig. (3.14): 2D Variation of velocity for Reynolds number Re.
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/ - == Ha=0.9

Fig. (3.15): 2D Variation of velocity for hartmann number Ha.

3.6.3 Effect of wall roughness on temperature

The 2D variations of the EMHD temperature 6 for various ¢, Pr, ®, and B; are represented in
the Figs. (3.16) to (3.19) when we take ¢ = 0.1 and 8 = 5. Fig. (3.16) depicts that profile of
temperature increases when the heat absorption coefficient ¢ increases. Fig. (3.17) shows that
profile of temperature decreases when the Prandtl number Pr increase. Fig. (3.18) illustrates
the result of volume fraction ® on temperature plot. By enlarges the ® temperature shows

declining effect. Fig. (3.19) shows that profile of temperature increases when the B; increases.
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Fig. (3.16): 2D Temperature variation for heat absorption coefficient ¢.

1 -0.5 0 0.5 1

Fig. (3.17): 2D Temperature variation for Prandtl number Pr.
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1 -0.5

o
o
(6]
=

Fig. (3.19): 2D Temperature variation for biot number B; .
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3.7 Tables Description

k”n /7 k”/’L !
k,,ffH (yu) and Nu=— k,,ffH (y;) on EMHD

In this section, the impact of Nusselt number Nu=—
flow fluid discussed in microchannel through corrugated walls. Table 3.2 demonstrates that the
Nusselt number Nu increases with the increasing value of x at upper wall and lower walls
respectively while Nusselt number Nu increases by the rises of Biot number B; on both walls.
Table 3.3 shows that the Nu grows on both walls with the increasing of x and also decreases by
the increment in Prandtl number Pr. In this section, the impact of mean velocity ¢ on Grashof
number Gr, Knudsen number K, nanoparticle volume fraction ® explain through the table
in microchannel through corrugated walls with variation of hartmann number Ha. Table 3.4
demonstrates that by the increasing value of Ha, Grashof number Gr and Knudsen number K,

the mean velocity ¢ increases but decreases with the increasing value of nanoparticle volume

fraction ®.
Nu At left wall At right wall
x B, =5 B, =7 B;=9 B;=5 B, =7 B; =9
0 -0.562202 | -0.386915 | -0.345996 | -0.889901 | -0.781847 | -0.749193
0.1 | -0.559438 | -0.385261 | -0.344604 | -0.887708 | -0.780493 | -0.748051
0.2 | -0.556704 | -0.38362 | -0.343221 | -0.885537 | -0.779148 | -0.746914
0.3 | 0.554003 | -0.381993 | -0.341849 | -0.883388 | -0.777815 | -0.745784
0.4 | -0.551337 | -0.380383 | -0.340489 | -0.881265 | -0.776493 | -0.744662
0.5 | -0.548708 | -0.378791 | -0.339141 | -0.879168 | -0.775183 | -0.743548
0.6 | -0.546117 | -0.377217 | -0.337808 | -0.877099 | -0.773888 | -0.742444
0.7 | -0.543567 | -0.375663 | -0.33649 | -0.875061 | -0.772608 | -0.74135
0.8 | -0.541059 | -0.374131 | 0.335188 | -0.873053 | -0.771343 | -0.740267
0.9 | -0.538596 | -0.37262 | -0.333904 | -0.871079 | -0.770096 | -0.739197
1 -0.536178 | -0.371134 | -0.332638 | -0.869138 | -0.768867 | -0.738141

Table (3.2): Effect of Biot number B; on Nusselt number Nu.
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Nu At left wall At right wall
T Pr=07 |Pr=14 |Pr=20 |Pr=07 |Pr=14 |Pr=20
0 -0.202748 | -0.583935 | -0.967906 | -0.789329 | -0.559082 | -0.319657
0.1 | -0.200841 | -0.584461 | -0.969994 | -0.787639 | -0.556282 | -0.31611
0.2 | -0.198953 | -0.585007 | -0.972089 | -0.785964 | -0.55352 | -0.312636
0.3 | -0.197088 | -0.585571 | -0.974186 | -0.784303 | -0.550799 | -0.309237
0.4 |-0.195245 | -0.586153 | -0.976284 | -0.782659 | -0.54812 | -0.305917
0.5 | -0.193427 | -0.586752 | -0.978381 | -0.781032 | -0.545486 | -0.302677
0.6 | -0.191636 | -0.587366 | -0.980473 | -0.779426 | -0.5429 -0.29952
0.7 | -0.189871 | -0.587994 | -0.98256 | -0.77784 | -0.540363 | -0.296448
0.8 | -0.188134 | -0.588636 | -0.984638 | -0.776276 | -0.537878 | -0.293463
0.9 | -0.186428 | -0.589289 | -0.986706 | -0.774735 | -0.535446 | -0.290567
1 -0.184752 | -0.589952 | -0.988759 | -0.773219 | -0.533069 | -0.287761
Table (3.3): Effect of Prandtl number Pr on Nusselt number Nu.
Ha | Gr=01 |Gr=06 | K,=007| K,=01|®=0.01 | ®=0.09
0 0.0728856 | 0.437313 | 0.437313 0.459048 | 0.473643 | 0.383185
0.1 | 0.414823 | 0.77926 | 0.77926 0.850018 | 0.797492 | 0.708564
0.2 ] 0.753043 | 1.11751 1.11751 1.23761 1.11768 | 1.0302
0.3 | 1.08406 1.44858 1.44858 1.61855 1.43059 | 1.34466,
0.4 | 1.40484 1.76943 1.76943 1.98997 1.73305 | 1.6489
0.5 | 1.71294 2.07758 | 2.07758 2.34952 2.02252 | 1.94047
0.6 | 2.00659 2.37123 | 2.37123 2.69554 2.29712 | 2.21756
0.7 | 2.28475 2.64926 | 2.64926 3.02696 2.55571 | 2.47901
0.8 | 2.54703 2.91121 2.91121 3.3434 2.79784 | 2.72433
0.9 | 2.79364 3.15719 | 3.15719 3.64499 3.02363 | 2.9536
1 3.02524 3.38781 3.38781 3.93237 3.23372 | 3.16739

Table (3.4): Effect of Grashof number Gr, Knudsen number K, Nanoparticle

volume fraction ® on mean velocity .
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3.8 Conclusions

The impact of copper nanoparticles on EMHD flow through corrugated walls in microchannel

is discussed. The main observations from this theoretical analysis is concise as follows,

e The shape of channel depends on velocity and temperature.
e Velocity increases with Gr,.B; and Ha.

e The velocity declines with rising value of K, in inner half of channel and rises in outer

half of channel.

e With expanding Reynolds number, heat absorption coefficient, nanoparticles and Prandtl

number, velocity field decreases.

e Temperature declines with volumetric concentration of nanoparticle ® and Prandtl num-

ber Pr.
e Temperature increases with the heat absorption coefficient ¢ and Biot number B;.
e Nusselt number expands with Biot number B; declines with Prandtl number Pr.

e Mean velocity ¢ increases by the increasing value of Ha, Grashof number Gr and Knudsen

number K, while decreases with the increasing value of nanoparticle volume fraction &.
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Chapter 4

EMHD flow of Couple stress
nanofluid inside a vertical

corrugated wavy walls

In this chapter, we have presented the analytical solutions for a flow of the velocity, volume
flow rate and mean velocity by using the method of perturbation inside a corrugated surface.
For corrugated walls we considered the electromagnetohydrodynamic flow of fluid between the
microparallel plates. By employing mathematical computation, we evaluated the wavy effects
on velocity for the EMHD flow. The impact of all parameters on velocity and the mean velocity
profiles can be analyzed through graphs. With the help of graphs we explain the effect of the

Hartmann number, Wave number, Reynolds number and fluid parameter on velocity.

4.1 Mathematical model

Considered the EMHD flow of electrically conducting and an incompressible couple stress fluid
between two vertical corrugated walls with 2H height. The microchannel height is 100um and
corrugated wall amplitude is set to be 0.1 H. Here we have adopted at the middle of the
microchannel, the Cartesian coordinate system with a fixed origin. The length L of the channel
along z* direction while width of the channel is assumed to be W along z* direction are much

larger than the layer thickness i.e. L, W > 2H.
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The geometry of flow is shown in Figure 4.1

S~
)

=i

N
(X, yjuls g3 ¥ g-
My
S~
(X, rusgs+ H

Fig. (4.1): Geometrical sketch of

EMHD flow in microchannel.

The equations of lower and upper walls are

y; = H+eHsin(\'2") and y = —H £ ¢H sin (\*z¥) , (4.1)

where € is small amplitude and \* is wave number. We take magnetic field B* along y*
direction while along the z* direction electric field E* is applied. Along the z* direction, we
take the Lorentz force which is produced by the contact among the magnetic field B* and the
electric field E*. In the presence of body force the equation of continuity, momentum equation

and energy equation of an incompressible couple stress fluid are written as

V*u* =0. (4.2)
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Pnf (W V)u" = -Vp+ Vi7" — nV*ut +J x B* + g(pQ)ns (T* — T7). (4.3)

(pCp)ns (W V*)T* = V* k7, s V*T* + Qo. (4.4)
where
Al = VU + (Viur), (4.6)

The therrmo physical characteristics of nanofluid are specified as

I K’y
Mnf = Wa Qnf = ma pnf = (1 - q))pf + (bpw

(POng = (1= @)(pC) s + @(pC)s, (PCp)ng = (1 = @)(pCp) s + (pCp)s, . (4.7)

k”nf . (k?”s+2k”f)_2q>(k”f_k”5) Onf 1 + (a_l)é
k7p o (R 2K )+ @R p—k7s) 7 op (GHtD-2(3-1)

Here ps , ps, G Cso K7p5 K75, (pCp)y 5 (pCp)s, oy and o represent the densities, thermal
expansion, thermal conductivities, heat capacitance and electrical conductivities respectively.
The numerical values of these parameters are given in Table 4.1.

We consider the velocity profile of the following form

u* =10, 0, w*(z*,y")). (4.8)

In the microchannel, we assumed an incompressible fluid to be along the z* axis direction

only. Thus Egs. (4.3) and (4.4) take the following form

_Op  (Pwr  Pwr\ (0wt Ot Ot
(4.9)
2T 92T Qo
=0. 4.1
<8$*2 " 3y*2) " (PCp)ns ! (4.10)

The correspondingly conditions are
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w* = 0, T" =1 at y; = H + cHsin(\*z"), (4.11)

oT™

w* = 0, knf% =—-B(IT*—-T}) at y; = —H teHsin(\z"), (4.12)

Suppose along the z* direction channel is open, so we can ignore the pressure gradient

Op/0z* along the microchannel [85] and the velocity w*(z*, y*) satisfies

82 * 82 * 84 * 64 * 84 *
Mnf<w+w>—77< T >+0nfB*(E*—B*w*)+g(pé)nf(T*—Ti‘)=0-

0x*2 | Oy2 Ox*t " oy Dz*20y*2
(4.13)
Dimensionless quantities that are used in the above equations are
. 7 3
(2,9) = S, A= NH, w="4, Ho=B'H (), 8=B ()" /U o
Ot =l 0=, 6= BOLIOT) g gt g

In the above expression Gr, 0, \, Ha, ¢, C% B;, 3 represent the Grashof number, dimen-
sionless temperature, wave number, Hartmann number, dimensionless heat source parameter,
couple stress parameter, Biot number and non-dimensional parameter respectively. After using
the lubrication approach, the continuity equation is exactly satisfied and Eqgs. (4.9) and (4.12)

are converted into

2 2 4 4 4
<M+M> - [02<8w+6w+2 0w >—W(Ha2w+wHaﬁ)—g(ponfGr«9 —0,
nf

0x?2 = Oy? ox4 Oyt 0x20y2 of oy pQ) s

(4.15)

0%0 020 k"¢
— 4+ — =0. 4.16
<8x2 + 83/2) E” g ¢= ( )

The corresponding non-dimensional boundary conditions are
=1aty =1+esin(\x), (4.17)
0 B;

0 0=0aty =—1—esin(\x+ [%). (4.18)

o (&)
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w=0at yy=1+esin(A\zx) and y, = —1 *esin (Az),

wyy =0at y =1+esin(Az) and y, = —1 £ esin(Az),
wyy =0at y =1+esin(Az) and y, = —1 £ esin (Az), (4.19)

0=1aty =1+esin(A\z),

gfz_{_(ii‘f)g:oat yr = —1 £ esin (A\x).
f

In above Eq. (4.17), i =y /H, y» = y; /H, the ‘—’symbol means the half period out of phase

and ‘+’sign means wavy walls corrugation in phase.

4.2  Solution by Perturbation method

By applying Taylor series, we can expand the boundary conditions in Eq. (4.17). If there is
no roughness then the velocity is function of y only while in the presence of surface roughness
the z direction variation is also considered. With the consideration of small amplitude ¢ < 1,
we can apply the perturbation technique to solve Eqgs. (4.15) and (4.16). Then velocity and

temperature function written as

w(z,y) = wo(y)+ewy (z,y) + 2wy (z,y) + ...

0(z,y) = 00(y)+eb(z,y)+ 20 (z,y) + ... (4.20)

By utilizing Eq. (4.18) into Egs. (4.15) and (4.16) and boundary conditions (4.17), com-

paring the similar powers of the ¢, we obtain the following systems.

4.2.1 Zero Order classification

d?00 k'

7Y =0 4.21

iz k”nf¢ , (4.21)
d*wy By o2 d*wo _ @(Hcﬂwo + ﬂﬂam — g(po”f Grly| =0 (4.22)
dy? iy dy* oy of PGy

The required boundary conditions are
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dby B;

00 | :1: 1 | —71 ]
Y ay T (B

Boy——1 =0 (4.23)

wo [y=1=0, wp |y=—1=10

Woyy ly=1= 0, woyy |y=-1=0 (4.24)

4.2.2 First Order classification

0%0, 0%,
Z = = 4.2
<ax2+8y2> 0. (4.25)
8211)1 82101 Ky 2 8411)1 8411)1 84101 Onf ( ()nf
—_— - 2 — Ha? H 0
<8w2 i 3yz> Finf [C <5$4 Tyt T 856263/2) Uf( - + 0 (pc)f)Gr |
4.26
The boundary conditions are
01 ly=1= —sin(\) (fﬁ%)y_l
, (4.27)
891 ly=—1= (ZF sm()\x)”ii— ly=—1 — (01 F sm()\:c)ﬁo))
(W) =1
y
wn = —sin0) (), of = Foin0) () (4.28)
. 3w . 300 :
Wiyy ly=1= — sin(A\z) (ddySO)y:1, wfyy ly=—1= Fsin(Az) (ddy3°>y:_ .
4.2.3 Second Order classification
020, 0%04
T 4.2
<W+8y2> 0. (4.29)

82102 82102 Ky 2 84102 84102 8471)2 O’nf (C)nf
<3$2 "oy >_unf [C <3x4 Ty +28x20y2) oy (Ha'wz + H b= T p0); Gt

(4.30)

The boundary conditions are
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Y S 9601 sin?(\z) d26,
02 |y=1= ( sin(Az) Gt + =2 _t’

2 . 2 02 3 ' ] -
88;22 ly=1= <:F Sm()\x)% - w% - (&) (02 F sin(A\x)0; — 31“2()‘5”)90)>
ks

. 3 4
Wayy ly=1= —sin(Ax) <aa;‘§ >y:1 — 2sin?(\z) <dd;'io>y:1 ;
+ . 03 . d*
Wy, ly=—1= Fsin(Az) ( 8;;1) - %mn?()\x) < d;ﬁo)y:7

Solution of zero order classification

By utilizing boundary conditions we obtained the zero order solution as

y2 ¢]{:7a /
2k” nf

0o (y) = A1 + A2y —

€_yb1311 + eyb1312 + e_yb2313 + 6yb2314 — Hﬁ + (GT(pC)nfo(—Q(Z)k”f

a

wo (y) =
Hp O f + Ha2(2!2¢k”f —2(A11 + A12y)k”nf)ﬂ’fanf)/2Ha4k”nfﬂf(pC)fUif)>

where

2 2 [1a2 12
by — fi g \/unfaf+40 Ha WiOng
L=\ 2c2; 2C% 1 /o f )

by — 4] s +\/“if"f+4CQH“2#?v%f
2= 2C2%u, 2C2%u; 55 ’

where A11, A1, B11, B12, Big and B4 are constants.

Solution of first order classification

y=-1

(4.31)

(4.32)

(4.33)

(4.34)

(4.35)

By utilizing the solutions (4.31) and (4.32) into Egs. (4.25) and (4.26), we can adopt solution

of the first order classification as

01 (z,y) = sin(Az) f(y),

wy (z,y) = sin(Az)g(y),
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where f(y) and g(y) is function of the y.
Employing Eq. (4.34) in Eqgs. (4.23) and (4.24), we get the following form of first order

system

d*f (y)

=N =0 (437)
d*g(y) o by [ o d'ay) 209 () | 4 Onf 17 o (P)ns
- Xgy)—— |C —2A + Xg(y)) — ——Ha“g(y) — Grf(y)| =0.

(Vo) - L e T+ Mg() ()~ LG )
(4.38)

The boundary conditions yield the form

dfo df*(y) d*6, Bi .4
f |y71 dy y:17 dy ‘yf 1 ( dy2 (kk,,"ff)(f (y):F Oy 1) ( 39)
_ _dwo + — T dwo
9l=1= =5 9 == Ty (4.40)
| _ _d3w0 + | _ d3wq
gyy y=—1— dy3 y:17 gyy y=—1— + dyB y:—l'

Under the above boundary conditions (4.37) and (4.38), the solution of the Egs. (4.35) and

(4.36) are directly written as

€Y Aoy + e Y Ao,
£ y) = (4.41)
eVA A3y + eV Ay,

€Y% Byy + €Y% Byg 4 e Y94 Bog + €¥%4 Byy — (Gre ¥ (€29} Aoy + Agg)(p()nfaf/Haz(p()fanf),

eY% Byy + €Y% By + eV Bag + €Y% B3y — (Gre Y (2% A3y + A32)(pC)nfG'f/HCL2(pC)fO'nf),
(4.42)

g5 (y) =

where Agl, AQQ, A31, A32, Bgl, BQQ, 3237 B24, Bgl, ng, ng and 334 are constants.

Using (4.39) and (4.40) into equation (4.34), the solution of first order system take the form

6% (z,y) = sin (Az) (e¥ Ag1 + e ¥ Ag), (4.43)
L sin (Az) (e¥* A3y + e ¥ As3g),
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sin (Az) (e7Y% Boy + €Y% Bog + €Y% Bog + €Y% Byy — (Gre™¥*

(2} Ag1 + A22)(pC)nfo s/ Ha?(pC) jony)),

+ _
wl (‘T’y) -
sin (A\z) (e_yb3 Bs; + e¥bs Bss + e Vb4 Bss + 6yb4Bg4 — (Gre_yA
(€2 Ag1 + As2)(pQ)nyo s/ Ha*(pC) sony)),
where

b \/ WO,y 2y HACHR
3= -

C?uy C2us [} ’
by = 1] 2N B+ 2y 2\/% g0 1+4C? Hapfo g
4= C?puy C2uys /oy :

4.2.4 Solution of second order classification

(4.44)

(4.45)

The boundary conditions (4.29) and (4.30) of second order classification can be simplified by

utilizing the solutions of (4.31), (4.32), (4.41) and (4.42). Under the boundary conditions (4.29)

and (4.30) , we can adopt solution of the second order classification as

9§E (z,y) = h* (y) + cos (2\z) k™ (),
m* (y) + cos (2\z) n™ (y) .

S
[\
—~~
R
<
~

I

By applying Eq. (4.44) into Eqgs.(4.27) and (4.28), we get the following forms

d*h* (y) 0
dy2
dk* (y)
=2 ANk (y) =0
dy2 (y) )

2+ 4.+
EmZ @) Ky | W) Ont a0t G| g

dy? L f dy* of pC) ¢

dy? Ko g dy* dy?

+16XMn*(y)) — %fHaQni(y) — 7(’;2))” Grk*(y)] = 0.

f

The boundary conditions of two functions are
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(4.48)

(4.49)

(4.50)



df d26
W) o= =3 (Y 3R
4.51)
dhE d2 £ d30 B; (
7= <;< A+ 3 08) + i ) + 3 ) + 300(v) ) ,
Ky y=—1
d + d2
= () == —5 (T2 3)
d + 2
m* (y) ly=—1= _% (ZF gdy(y) - %ddngo)yzil ) L5
d?m* (y) lym1= —1 d*g* (y) 4+ Ldlwg (4.52)
dy? y=1 D) dy? 2 “dyt y:17
d2 :i:( ) i 1 43 :i:( ) 1d4
+ _1(d¢*y) | 142
n* (y) ly=1=3 ( o T3z d;go y=1’
d + d2
n* (y) ly=—1= _% <i gdy(y) - % d;jéo ye—1’ 453
d*n*(y) 1= 1 (d3g* () + 1 d*wg (4.53)
dy2 y=1— 73 dy3 2 dyt y:1’
*n (y) | _ 1 (Pt 1 diwyg
a2 ly=—17 3 (T g3 24t ),

By utilizing the above boundary conditions (4.49) to (4.51), the exact solutions can be

obtained as

Aut + Asay,
Py = 0T (4.54)

Ae1 + As2y,

e Y1 Byy + €Y1 Byp + e Y2 Byg + €% By — (Gr(Aa1 + As2y) (pQ)ngo r/Ha®(pC) sony),

+
m> (y) =
e Y% Bg1 + €Y% Bgy + e ¥%2 Bgg + €Y% Boy — (Gr(Ag1 + Ae2y) (pQ)ngo r/Ha®(pC) sony),
(4.55)
eWA Asy + e W As,
)= = (4.56)
eV Ar + e Y Aqg,
nE () = eY% Byy + €Y% Bsy + 7Y% Bsg + €Y% Byy — (Gre™ 2V (e A5y + A52)(p()nfaf/HaQ(pg)fanf),

€Y% By + €Y% By + 7Y% Byg 4 €Y% Byy — (Gre= 2V (e®VA Agy + A72)(p()nfaf/HaZ(pC)fanf),
(4.57)
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where

2 2
by = \/1602,\2uf+2#nf B 2\/M7Lfaf+402Ha2ufanf

C?py C?uy\of ’

(4.58)
be — 1602021 e +2p,, ¢ n 2\/Mifaf+4CQHa2uianf
6 — Czﬂf Czﬂfﬁ ’

where Ay1, As2, As1, As2, As1, Ae2, A71, A2, Bar, Bao, Bys, Baa, Bs1, Bsa, Bs3, Bsa, Ber,
Bea, Be3, Bea, Br1, Bro, Brs and By are constants.
The solution of second order classification can be written as
Ayq1 + Agoy + cos (2Ax) (62y>‘A51 + 6_22”)‘_452),

2 2 25\
Ag1 + Ag2y + cos (2Az) (eV* Aqp + eV Ara),

e Y1 Byy + €Y1 Byg 4 e7VP2Byg + €92 Byy — (Gr(As1 + As2y)(pC)ngo s/ Ha?(p) fony)
+ cos (2\xz) (e7Y%5 Byy + €Y% Byy + e 7Y% Bgz + €Y% Bgy — (Gre =292 (e A5y + Asz)o s
(P /Ha*(pC) fony));

e Bgy + ¥ Bgy 4 e7Y*2 Bgg + €¥°2 Bgy — (Gr(As1 + Ae2y) (pC)ngo s/ Ha?(p) o)
4 cos (2\x) €Y% Byy + €Y% By + 7Y% Bys + €Y% Bry — (Gre 2 (M Aqy + Ao s
(0Q)ns/Ha*(pC) yony)-

wy (z,y) =

(4.60)
Collecting the solutions of zero, first and second order systems, the approximate solutions

can be denoted as

0 (z,y) = 0o (y) + €0F (x,y) + 205 (x,y) + ... (4.61)

w (x,y) = wo (y) + ewf (z,y) + 2wy (z,y) + ... (4.62)

4.2.5 Volume flow rate

We can define the volume flow rate as

1+esin(Az)

o(z) = / w(z, y)dy, (4.63)

—1—esin(Ax)
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_ LLiwo)dy +e [2 wie,y)dy + (L waley)dy + +sin(Aa)fwi (2,y) [y

q(z) . (4.64)
. d d
twn(2,y) ly=—a] + §sin®Qa)(FFE |y~ 1)
4.2.6 Mean velocity
The mean velocity on average over one wavelength (0, 27/)) of the corrugations as
A 1+esin(Ax) Bus
wi = = /A wt (z,y)dady. (4.65)
AT J _14esin(rz) Jo
Inserting (4.61) into (4.63) and using (4.62), the mean velocity takes the form
+ a + 2 + 4
W = g (z)dz = wom [14 %9~ + O(*)], (4.66)
0

where wo,, indicates the mean velocity for the perfectly smooth walls and ¢ indicates the
leading order perturbations to a mean velocity due to the corrugations. When ¢¥ is positive
then mean velocity increases, while when T is negative then mean velocity decreases.

4.3 Thermophysical properties of water and silver

The thermophysical properties are

Physical Properties | Water Silver
Cp(J/kgK) 4179 235
p(kg/m?) 997.1 10,500
E(W/mK) 0.613 429

¢ x 10° (1/K) 21.0 1.89
a(S/m) 5.0x102 | 6.3x107
wu(kg/m.see) 8.90x10% | -

Table (4.1): Thermo physical effects.
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4.4 Graphical consequence

In this portion, the graphical behavior of couple stress fluid discussed between the corrugated
walls. For microfluidic investigation the height of channel is H ~ 100um, electric field frequency
changes from 50 to 500s~!, the Hartmann number between 0.0001 to 3. The Reynolds number
changes from 0.5 to 5, 5 = 5 is the fixed dimensionless parameter. In order to decrease the
unclear influence of the wave, we established the small parameter € as 0.1.

For three dimensional disparities, the electromagnetohydrodynamic (EMHD) velocity dis-
tributions and contour of the couple stress parameter C' are shown in Figs. (4.2) and (4.3). In
3D Figs. (4.2), 0° is the phase difference between the walls. During the 3D plots of Figs. (4.3)
the phase difference is equal to the 180° between two walls. We observe that, in the 3D Figs.
(4.2) and (4.3) the velocity distribution depends upon the shape of the channel. Figs. (4.2)
and (4.3) illustrates the velocity distribution for distinct values of C' and wavy phenomenon
becomes obvious on velocity with the increase of the corrugation and the phase difference is
180° between the walls.

The electromagnetohydrodynamic velocity w* distribution for different parameters Ha, Gr,
®, C, ¢ and B; are shown in the Figs. (4.4) to (4.9) when we take ¢ = 0.1 and 5 = 5. From these
figures, the velocities increase and then decline with the 3. Fig. (4.4) shows that the velocity w®
increases with increasing Hartmann number Ha. Fig. (4.5) shows that small effect on velocity
w* for distinct values values of Gr. Fig. (4.6) displays that w® declines for various values of ®
as a effect of decreasing in heat transfer rate. Fig. (4.7) shows that velocity w® decreases with
couple stress parameter C. Fig. (4.8) displays that w™ increases for heat absorption coefficient
#. Fig. (4.9) illustrates that the velocity w® increases for values of biot number B;. We found
out, the EMHD velocities in phase are weaker than out of phase.

The 2D variation of the EMHD temperature #F distribution in phase and out phase for
parameters ¢ and B; are exposed in Figs. (4.10) and (4.11). Fig. (4.10) shows that profile of
temperature increases when the heat absorption coefficient ¢ are increase. Fig. (4.11) describes
the outcome of B; on temperature. By enlarges value of biot number B; temperature shows
increasing effect.

The impact of mean velocity ¢* on EMHD flow of Couple stress fluid discussed in the

microchannel through corrugated walls. Table 4.2 and Table 4.3 expressed the behavior of
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couple stress parameter and Grashof number on the mean velocity p*. Table 4.2 demonstrates
that mean velocity rises by increasing value of x for couple stress parameter C' and Grashof
number Gr and the mean velocity ¢ decreases with the couple stress parameter C' and Grashof
number Gr. Table 4.3 displays mean velocity ¢~ enlarges by increasing value of = for couple
stress parameter C' and Grashof number Gr and the mean velocity ¢ increases with the couple

stress parameter C' and Grashof number Gr.
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4.5 Graphs

10 20 30 40 50 60

=

10 20 30 40 50 60

=

Fig. (4.2): 3D Velocity distribution and contour (a, b, ¢, d) when fluid parameter C' = 0.5
and C' = 1.5 in phase.
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Fig. (4.3): 3D Velocity distribution and contour (a, b, ¢, d) when fluid parameter C' = 0.5
and C' = 1.5 out of phase.
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Fig. (4.4): 2D Variation of velocity for hartmann number Ha.
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Fig. (4.5): 2D Variation of velocity for Grashof number Gr.
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Fig. (4.6): 2D Variation of velocity for nanoparticle volume fraction ®.
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Fig. (4.7): 2D Variation of velocity for couple stress parameter C.
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Fig. (4.8): 2D Variation of velocity for heat source coefficient ¢.
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Fig. (4.9): 2D Variation of velocity for biot number B;.
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f=1.0, 2.5, 6.0

Fig. (4.10): 2D Variation of temperature for heat source coefficient ¢.
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Fig. (4.11): 2D Variation of temperature for biot number B;.

83



For Mean velocity o™

z | C=05 Cc=15 C=20 Gr=0.1 Gr=04 Gr=10.6
0 -0.499662 | -0.256531 | -0.182453 | -0.395093 | -0.551947 | -0.656516
0.1 | -0.415546 | -0.212912 | -0.151429 | -0.320551 -0.463044 | -0.55804
0.2 | -0.333973 | -0.170617 | -0.121347 | -0.248347 | -0.376787 | -0.462413
0.3 | -0.254987 | -0.129667 | -0.0922233 | -0.178519 | -0.293221 | -0.369688
0.4 | -0.178627 | -0.0900846 | -0.0640716 | -0.111105 | -0.212388 | -0.27991
0.5 | -0.104929 | -0.0518868 | -0.0369053 | -0.0461341 | -0.134326 | -0.19312
0.6 | -0.033932 | -0.0150902 | -0.010736 | 0.016365 -0.0590674 | -0.109356
0.7 | 0.0343625 | 0.0202915 | 0.0144265 | 0.0763693 | 0.0133591 | -0.0286477
0.8 | 0.099906 | 0.0542466 | 0.0385739 | 0.133859 0.0829295 | 0.0489766
0.9 | 0.162689 | 0.0867657 | 0.0616996 | 0.188819 0.149625 0.123495
1 0.222698 0.117842 0.0837984 | 0.241236 0.213429 0.194891

Table. (4.2): Effect of fluid parameter C' and Grashof number Gr on mean velocity ¢*.

Table. (4.3): Effect of fluid parameter C' and Grashof number Gr on mean velocity ¢~ .

For Mean velocity ¢~

x |[C=05]C=15|C=20|Gr=01|Gr=04|Gr=0.6
0 2.77896 | 2.09495 | 1.64963 | 2.35469 | 2.99109 | 3.41535
0.1 | 2.79108 | 2.09997 | 1.65245 | 2.36572 | 3.00376 | 3.42913
0.2 | 2.80039 | 2.10385 | 1.65463 | 2.37426 | 3.01345 | 3.43958
0.3 | 2.80687 | 2.10658 | 1.65616 | 2.38032 | 3.02015 | 3.4467
0.4 | 2.81051 | 2.10815 | 1.65703 | 2.38387 | 3.02383 | 3.45047
0.5 | 2.8113 | 2.10856 | 1.65726 | 2.38491 | 3.0245 3.45089
0.6 | 2.80925 | 2.10781 | 1.65683 | 2.38345 | 3.02215 | 3.44795
0.7 | 2.80434 | 2.10591 | 1.65574 | 2.37948 | 3.01678 | 3.44165
0.8 | 2.7966 | 2.10284 | 1.65401 | 2.373 3.0084 3.43201
0.9 | 2.78603 | 2.09862 | 1.65162 | 2.36403 | 2.99703 | 3.41903
1 2.77265 | 2.09326 | 1.64859 | 2.35259 | 2.98268 | 3.40274

84




4.6

Conclusions

The main results are briefly explained as
The shape of channel depends on velocity distribution.

The velocities profiles in phase and out of phase are asymmetric and symmetric, respec-

tively.

The unobvious wave effects on the velocity reducing by small value of € parameter.
With the increases in Hartmann number velocity field increases.

Velocity have small impact for various values of Gr.

EMHD velocity decreases with the increasing nanoparticle volume fraction and couple

stress parameter .

The EMHD velocity increases with the increasing heat absorption coefficient and volume

fraction .
The temperature fields increases for value of heat absorption coefficient and biot number.

The mean velocity parameter ¢ decreases with couple stress parameter C' and Grashof

number Gr.

The mean velocity parameter ¢~ increases with couple stress parameter C' and Grashof

number Gr.
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Chapter 5

Impacts of heat generation and heat
flow on AlyO3—Cu/water hybrid

nanofluid in microchannel under
corrugated walls through porous

medium

The heat transfer enhancement by using hybrid nanofluid is another class of study to enhance
the heat transfer rate is discussed in this chapter. The major purpose of present examination is
to observe behaviour of Hybrid nanofluid in microchannel through permeable medium with cor-
rugated walls. Here, we take two dimensional flow of a Hybrid nanofluid Cu — AloO3 /water and
nanofluid Cu/water along with casson fluid. This model is employed to inspect the consequence
of thermal radiation, heat generation and porous effect in microchannel with corrugated walls.
Results for temperature and velocity are calculated. Final section of this paper is devoted for

the graphical discussion of velocity, temperature and stream functions.
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5.1 Problem formulation

Let us considered electrically conducting and incompressible Casson fluid with electrical con-
ductivity and density for an EMHD flow between corrugated walls of height 2H. The amplitude
of corrugated wall is 0.1H and the height of microchannel is supposed to 100pum. With the
fixed origin at the center of the microchannel, we choose the Cartesian coordinate system. We
take the length L along z* direction and the width of the channel W along z* direction, the
width and the length much greater than thickness of the layer i.e. W, along z* direction, the
width and the length much greater than thickness of the layer i.e. W, L > 2H.

F
P
~
= I{
*x

(x yusgss g-
o
S
(X rus g+ H

N~

S
(o)
rT

N

Fig. (5.1): Geometrical sketch of

EMHD flow in microchannel.

Along the z* direction the electric field E* is applied while magnetic field B* is taken along y*
direction. Lorentz force J x B* is generated by the magnetic B* and electric field E* interaction
is taken along the z* direction, where current density is represented by J = o(E* + u* x B*).

The rheoloigcal equation of Casson fluid is [66]
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2(pg +py/V2m)eij,m =T
Tij = s Y * ¢ y (51)

2('“/5 +py/V2m)eij, T < T
where 7;; is the stress tensor component, 7 is the component of deformation, 7. is critical
value, u4 is the plastic dynamics viscosity and p, yield stress. Location of right and left wavy

walls are

yt=—H 4+ eH sin (\*z*) and yj = H + eH sin (\*z*), (5.2)

where ¢ is small amplitude and A* is the wave number.

Velocity field for the fluid is given by

u* =10, 0, w*(z*, y")]. (5.3)

The formulated problem for Casson hybrid nanofluid as,

ow*

o =0 (5.4)
ap 0 0 0 % % % Khng ®\
Do s Tt g T+ e T OB (B = Brwt) = w4 g (p s (T = T7) =0,

(5.5)
, 0T 9T 9q”
Kong(5na + " =)+ Qo(T" — ’”)_ay*’ (5.6)

where pp,, ¢, Cppp and k7 p,g are density, thermal expansion and thermal conductivity of
hybrid nanofluid respectively. The dimensional coefficient of heat generation/ absorption is

represented by Qo, ¢* is radiative heat flux defined by [87]

_ do* o7
o 3k* oy

*

q

(5.7)

where o*, k* denoted Stefan-Boltzmann value and coefficient of mean absorption. It is supposed

that the variations of temperature is small, therefore the term 7*4 might be written as
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T* = 4T*T3 — 3174, (5.8)

The nondimensional parameters utilized in the problem are characterized as pursues:

1
* y* % * 2 H?2
(@,y) = S N N H, w =1 :E0<Mif)2/U,¢:—Q,§,f,Da:% 59)
1 bl .
_ %k o \2 _ T-T, _ 9(pQ) s H(T—T) _ 4 *Trg
T=T" Ho=BH(2)", 0= 50, Gr= WOLT=t) g ol

Dimensionless form of momentum and temperature equations are, we get

1. 0%w 0w 1 1y 5 (PQ)hng
14+ ) + )= —w+ L (HaB + Hd®w) + Gro =0, 5.10
( 7*)(8952 8y2) Da uhnf( 15 ) 00 (5.10)
Koty 020 K png 920
— + R)=— + ¢ = 0. (5.11)

Py o2 T, ay?

The corresponding non-dimensional boundary conditions are

w = 0aty =1+e¢esin(Az) and y, = —1 £ esin(A\x), (5.12)

0 = laty =1+esin(Az), 0 =0aty, =—1+esin(A\z). (5.13)
In Egs. (5.12) and (5.13), yi =y /H, y» = y;;/H.

5.2 Solution of Problem

The velocity w and temperature 6 are functions of y only when there is no roughness and the
existence of surface roughness the x direction variation can also be considered. By assuming
small amplitude ¢ < 1, we solve Egs. (5.10) and (5.11) with the help of perturbation technique

by taking small parameter . Then by expanding velocity and temperature function as
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w(w,y) = wo(y)+ew (,y) + e wa (z,y) + ...

0(z,y) = 00(y)+ebi(z,y)+e02 (,9)+ ..

By utilizing Egs. (5.14) and (5.15) into Eqgs. (5.10) and (5.11), we get

(L+ 20 + ) = a + 5 Ha)(wo () + 2wr (w,) + 22w (2,3) + )

Hhnf
+(Haf) + POgnf Gr(0o (y) + 01 (z,y) + €205 (2,y) + ...) = 0,
“hng 0% K by > 2 _
(T,,f 522 + ( 7 + R) 952 + ¢)(0o (y) + €61 (z,y) + %02 (z,y) + ...) = 0.

(5.14)

(5.15)

(5.16)

(5.17)

By using Taylor series, we can expand the boundary conditions (5.12) and (5.13) at y = 1

and y = —1, respectively

0=w |y=1tesin(\a)= (wo + ewy + €2w2)y:1 + esin (Az)

dwg 8w1> €2 sin%(\x) (dzwo) 3
( +e y:1+72 S Ta y:1+0(s ),

0=w* ’y—flissm()\x)— (wO + 5"‘”1 + 52'11);:) :|: gsin ()\a:)
d o) e2sin?(\x) (42 3
( G te wl)y:i1 +— (T;l%o)y:q + 0 (e%),

1 =0 |y—14esinp0)= (60 + €61 + 5292)3;:1 + esin (Ax)

: 2
(508),. 2550 (), -0 )
Y= Y=

0= 0= |y——1:tesin()\m): (‘90 + 59% + 5202)1/:71 + esin ()\:L‘)

90

(5.18)

(5.19)

(5.20)

(5.21)



where the ‘—’sign in above equation represented half period out of phase and ‘+’sign is the
case for corrugation in phase and by equating the like powers of ¢ from Egs. (5.16) to (5.21),
the following systems are acquire.

5.2.1 Zero Order classification

The zero order classification given as,

d%6,

k?? n
( kfff + R) a0 + ¢bo = 0, (5.22)
1 d*wy 1 [y 2 (P s
1+ —)—5 — —wo+ HafB + Ha*wy + Gréy) =0, 5.23
U T D T 0+ 00, T (52
with the following boundary conditions
0o |y=1=1, Og |y=—1= 10, (5.24)
wo |y=1: 0, wo ’y:,1: 0. (525)
5.2.2 First Order classification
The first order classification can be expressed as,
k”hnf 8201 k” hnf 82(91
]C”f (9332 ( k,,f + R)TyQ + ¢01 - 0, (526)
1. 0%w,  0%w 1 Ky 2 (pg)hnf
1+ — - — H H Gro1) =0 5.27
( + ,y*)( a$2 + 8y2 ) Dawl + /,Lhnf( a6+ a w1 + (p{)f r 1) ) ( )

with the following boundary conditions

. d90> + . <d00>
01 |y=1= —sin(A\z) | — , 07 |y=—1= Fsin(Ax) | — ) 5.28
o= —sn0) () 0 =m0 () 629)
wy |y=1= —sin(Az) <dw0> , Wi |y=_1= Fsin(\z) <dwo> . (5.29)
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5.2.3 Second Order classification

The second order classification can be expressed as

E” hn g %04 E” hn g %04
—_— 0y = .
knf O12 + ( k”f + R) ayz + ¢ 2 Oa (5 30)
1, 0%wy | 0%wy 1 Iy 9 (P nny
14+ — - — —(H H = 31
(1+ 7*)( 52 + 52 ) Da2 + :u’hnf( af + Ha"wsy + 00 Groy) =0, (5.31)

with the following boundary conditions

02 |,—1= —sin(\z) (%21)?,:1 — %sinZ(Aa:) (‘Zf;’)y:l, (5.32)
03 |y——1= Fsin(\z) (%il)y:1 — %sinQ(Ax) (i;;;)yZI, (5.33)
wy |y—1= — sin(\z) (%?)yﬂ - %sinQ(/\x) (d;;“)y:l , (5.34)
wi |y=—1= Fsin(\z) (%?)y:1 — %sinQ(/\x) (%)Fl . (5.35)

Solution of zeroth order

By solving zero order classification with the corresponding boundary conditions from Egs. (5.22)

to (5.25), we obtained

0o (y) = e V"1 Ay + V"2 Ay, (5.36)

e Y1 By + Y2 By + Dap(Haf/(—DaHa? s + py,¢) — e V1 (A + A
wo (1) = 1 2 py(HaB/( tf + Lhng) (A1 + Az (5.37)

e292)Gr(pQ)ny/(DaHa’ iy + (=1 + Da(l + 25)af) ) (00) 5));

with

_ 9
U=\ TR =Ry’ 39
b o DaHa2Mf+Mhnf ( ’ )
1 Da“-“’%)/"hnf ’
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5.2.4 Solution of first order

Within the boundary conditions (5.28) and (5.29), we can assume the solution to the first order

classification can be denoted as

01(z,y) = sin(Az) f(y), (5.39)

wy (z,y) = sin(Az)g(y), (5.40)

where f (y) and g (y) are the functions of y.
By employing Egs. (5.39) and (5.40) into (5.26) to (5.29), we get

df(y) 2k g
dyy? K

f)+of(y) =0, (5.41)

(1 =X ) = g0+ ety )+ 0 Gr () =0, (.02

while boundary conditions yield the following form

R

- = _ = 5-43

Jy=1 dy =1 + dy’ ( )
d’wo + d’wo

-1 = —— L =F—. 5.44

Jy=1 4 =1 Ty (5.44)

By using the boundary conditions (5.43) and (5.44), the solution of (5.41) and (5.42) is

directly obtained as

€Ty + 2UCh,
) = (5.45)
e”2YCY + eV,
e VD + eb2v Dy — (Dae~¥*2(Cq + 0262“2y)Gr,uf(pC)hnf/
o (DaH (<1 = Dall+ )0 = )iy -
V7 buD] 4 Dy — (Dac2(CY -+ 4Gy (g

(DaHa?uy + (=1 = Da(l+ ) (A = a3)) ) (0C) 1))
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where

s — 7¢k”f+A2k”hnf
- \l Rk”f"'k”hnf
— (5.47)
by — —DaHa? g+ p+Da(l+ =2 )N ppp g
2 Da(1+ =% )inn s

The first order solutions finally take the form

0F (z,y) = ) (70 + ), (5.48)
sin (Az) (e~ 22YC| + e™2V(CY),
sin (Az) (e7"YDy + "2V Dy — (Dae™¥2(Cy + C262%2Y)\ 11 (pC) hin f
(o 4 O/(DaB@ (1= Dall 0O o

sin (Ax) (e_b2yD’1 + ebw]_)’2 — (Dae vaz(C1 + CY 62‘129) ( Chnt
Gr/((DaHa’uy + (=1 = Da(l + 25) (N = a3)) inyg) () £))) -

5.2.5 Solution of second order

On the base of zeroth order solutions (5.36) and (5.37) and first order solutions (5.48) and

(5.49), we can assume second order solutions as

0F (z,y) = h*(y)+ cos(2hz) kE (y), (5.50)

wy (z,y) = m* (y) + cos (2Az) nT (y). (5.51)
By putting Egs. (5.50) and (5.51) into (5.30) to (5.35), we obtained

d*h* (y)

k”hnf i
_ 52
ot + =57 + o () =0, (5.52)
(K ins +R)@_4A2k”h"fki( )+ okt (y) =0 (5.53)

k" ¢ dy? k” ¢ Y v ‘
1. dPm*(y) 1 | Iy 2+ (PO nnf ~ 5+

1+ 2™ W = * )+ L (Ha?m® () + Grh™ (y)) = 0. 5.54
( ’7*) dy? Da ) Mhnf( ) (PC)f ) ( :
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A+ EW ey - L )+ B (gazn® () + LI gt ) — o,

y* dy? Da Hhnf (PQ)s
(5.55)
The relevant boundary conditions are
1.df 1 d?6, df 1 d?6,
+ _ —
h _5(@+§Tﬁ) aty—l,—z( @_§Tf) aty=-1, (5.56)
1.df 1 d?6, df 1 d26,
+ _ _ —
B=oly tage) L‘i(ag‘iaﬁ)“y“L (5:57)
1 .dg 1d%w 1, dg 1d*w
+ _ —
mn _5(@ §dy2)aty_1’_§( @—§d2)a‘cy— b (5.38)
1 .dg 1d%w 1 dg 1d°wp
+ _ _
" E(cTy 2 dy? ) aty—l,—g( dy 2 dy? Jaty=-1. (5:59)

By utilizing the boundary conditions (5.56) to (5.59) and (5.52) to (5.55), the solu-

tions are

e"WE 4+ ey,
W (y) = ' ’ (5.60)
e~ UWE] 4+ MY E)

K (y) = sin(azy)G1 + cos(azy)Ga, (5.61)
sin(asy)G + cos(azy)GY,

e VW + MYy — (Dae V4 (Ey + E2e*)Gr(pQ)png
py/(DaHa? g + (=1 + Da(l+ 52)at i, 1) (pC) ),
e MW 4 P — (Dae Y (B + E) 2“19)Gr(p§)hnf

(

ps/(DaHa? g + (=1 + Da(l+ 55)af) ) (pC) 1))-

m (y) = (5.62)

e UV, + bV, — (Dae™¥*1(sin(azy)G1 + cos(asy)G2)(pC) hns
pp/(DaHa?up — (1+ Da(l + 564X + a3)ipns) (0C) 1))
e_b3yH{ + eb3yH§ — (Dae ¥ (sin(asy )G + cos(azy)GS)(pC) hnf

)

pp/(DaHa?up — (1+ Da(l + 25) (4N + a3)itpnp) (0C)£))s

n* (y) = (5.63)
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with

. d)k”f_4)‘2k”hnf
as =\ "Rt (5.64)

b \/_DaHa2/1'f+uhnf+4Da(1+.y1*)/\2uhnf
3 = .

Da(l—i_»yi*)p’hnf

The second order solutions finally take the form
e"E 4+ eMYEy + cos (2Ax) (sin(asy)G1 + cos(azy)Ga),

o= — (5.65)
e” MY E] + eV El + cos (2Ax) (sin(asy )G + cos(asy)Gh),

e "Wy + MY Fy — (Dae ¥ (Ey + E2e*Y)Gr (o) pnspi/(DaHa? s + (=1 + Da
(1+ %)a%uhnf)(p@f)) + cos (2Az) e Y Hy + %Y Hy — (Dae ¥ (sin(azy)G1+
ot cos(asy)G2) (PO nnsip/(DaHa’ iy — (1 + Da(l+ ) (4N + a3) onns) (0C) 1)),
e "W + "V F) — (Dae V(B + E5e*Y)Gr (o) ms/(DaHa? iy + (=1 + Da
(14 55)ad) nng ) (pQ)y)) + cos (2Ax) e "V H] + eV Hj — (Dae™¥ (sin(asy) Gy +

cos(azy)Go) (p)nnpivy/(DaHa?py — (1 + Da(l + 25 ) (40 + a3) i) (0€) £))-
(5.66)

By collection of Egs. (5.36), (5.37), (5.48), (5.49), (5.65) and (5.66), we obtain the approx-

imate velocity and temperature solution as

0F (z,y) = 00 (y) + b5 (z,y) + €205 (z,y) + ... (5.67)
w® (2,y) = wo (y) + ewy (z,y) + wy (2,9) + .. (5.68)

5.2.6 Volume flow rate

We can define volume flow rate as

N 1+esin(Ax) N
i@ = [ w* (2, y)dy (5:69)
—1+esin(Ax)

Utilizing Eq.(5.68) into (5.69) and by using Taylor series we can expand the integral results

in x and third order term neglecting, we finally obtained the expression of volume flow as
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nywdyﬁw-%sjflwf@uy%ﬁ/+€2jﬂluﬁzxzndy+SHKA )wy (2,y) ly=1

*(
Fwi (z,y) [y=1] + §sin? () (29U |,y —deel) | ),

g (x) = (5.70)

5.2.7 Mean velocity

Mean velocity over one wavelength (0,27/)) on averaging of the corrugations, can be evaluated

as

A 1+esin(Az) 2

/0A wt (z,y)ddy. (5.71)

wk =

4m —1+esin(Az)

By putting Eq. (5.70) into Eq. (5.71), the mean velocity becomes

27
vz
wh = = Y gt (@)da = wom [1+ 220 + 0(eY)] (5.72)
0

where wg,, shows the mean velocity for perfectly smooth walls and ¢* denotes the leading
order perturbations to mean velocity due to the corrugations. When o* be negative then mean

velocity decreased while for positive ¢® the mean velocity increases.

5.2.8 Heat transfer rate

Nusselt number determines the convective heat exchange strength, and is expressed as follows

[36]

Hqy,
Nyt =~ .
ut =15 T ) (5.73)
where
, OT*
w:_kwabew' (5.74)

From Egs. (5.73) and (5.74), we get
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7k;”nf @
k:”f 8]/ Y=y *

Nut = (5.75)

5.3 Thermophysical properties

The thermophysical properties are

Physical Properties | Fluid Phase (water) | AloO3 | Copper
p(kg/m?) 997.1 3970 | 8933
K (W/mK) 0.613 40 400
¢ x10° (1/K) 21.0 5.1 1.67
Table (5.1): Thermo physical properties.
Properties Nanofluid (Cu-water)
Density (p) Py = (L= @1)py + P1pyy
Viscosity (u) Honf = (1_2#
Thermal expansion () Cop = (1= P1)(; + P1(y
Thermal conductivity (k”) kl:fff = k”S,i,t(li_(i)_kz)fk:ii;ll)ii(fkiil ]:’)’Sl)
Properties Hybrid Nanofluid (AloO3—water)
Density (p) Prng = (1 = 2)((1 = @1)ps + P1pyy) + P2pyo)
Viscosity (u) Phnf = (17<I>1)2-l;{17¢'2)2~5
Thermal expansion () Chng = (1= @2)((1 — @1)Cs + P1(4) + Paéy)
E” b kot (n—1)k" s —(n—1)®o (k" p s —k" s
Thermal conductivity (k”) k’fbffk;f _i‘fa%ﬁll)i]i’i%+quw§£i%::f);):)Vhere
Yy T B atm-—DE i+ (K K s1)

Table (5.2): Thermo physical properties.

For the nanoparticles, we take the n = 3. The subscripts of the parameters s1, s2, f,
hnf and nf represent the solid nanoparticle of copper, alumina, fluid, hybrid nanofluid and
nanofluid respectively. The thermosphysical characteristics of fluid at 25°C and particles are

given in Table 5.1.
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5.4 Graphical consequence

This portion dedicated for investigation of the copper and aluminum oxide nanoparticles for
some emerging parameters of flow on corrugated walls under porous effect through the graph
of stream line, velocity and temperature profile. half height of channel is H ~ 100um, for
the general microfluidic analysis. The electrical conductivity o ~ 2.2 x 107% — 105Sm™1,
if the magnetic field range is the O(B*) ~ 0.018 — 0.447', the order of Hartmann number
between 0.0001 to 3. The graphs are drawn by taking the parameters constants, for example,
0.005 < &3 <0.09, ®; =0.1,6=5.

We describe the graphical effects of velocity and temperature for the distinct values of
Grashof number Gr, Casson parameter v*, heat generation ¢, darcy number Da, ®9, radiation
parameter R. We set ¢ = 0.1 as a small parameter because small parameter ¢ reducing the
unobvious effects.

In 3D (three-dimensional) disparity and contour of velocity and temperature for hybrid
nanofluid and nanofluid for radiation parameter R are shown in Figs. (5.2) to (5.9), respectively.
In 3D Figs. (5.2), (5.4) and (5.6) , (5.8), the phase difference between the walls is 0°. In 3D Figs.
(5.3), (5.5) and (5.7) , (5.9), the phase difference between the walls is 180°. In three dimensional
graphs of Figs. (5.2) and (5.6) shown the consequence of radiation parameter R on velocity
and temperature for nanofluid and Figs. (5.4) and (5.8) shown the consequence of radiation
parameter on w and @ for hybrid nanofluid, the effect of corrugation are more prominent for
hybrid nanofluid as compare to nanofluid is in phase. In three dimensional graphs of Figs. (5.3)
and (5.7) shown the impact radiation parameter R on velocity and temperature for nanofluid
and Figs. (5.5) and (5.9) shown the outcome radiation parameter R on velocity and temperature
for hybrid nanofluid, the effect of corrugation are more prominent for nanofluid as compare to
hybrid nanofluid is out of phase. The wavy phenomenon of the distribution of velocity and
temperature becomes clear in Figs. (5.2) to (5.9) with increase of the corrugation, especially
when the phase difference between the two walls is 180" .

The 2D (two-dimensional) variations of the EMHD velocity w* in phase and out phase
for Grashof number Gr, Casson parameter v*, Heat source parameter ¢, Darcy number Da,
nanopartical volume fraction ®2, Radiation parameter R are represents in the Figs. (5.10) to

(5.15) by taking ¢ = 0.1 and 8 = 5. From these Figs., the velocities at first grow and then reduce.
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Particularly, Figs. (5.10) and (5.11) shown the distinction of velocity profiles for the Grashof
number Gr and Casson parameter v*. Velocity plots grow rapidly for nanofluid (Cu/water) as
contrary to hybrid nanofluid (Cu — AlyO3/water) by expanding the estimations of Gr and ~*.
Figs. (5.12) and (5.13) demonstrated the velocity plots for ¢ and Da. Velocity plot enlarge
quickly for nanofluid (Cu/water) as related to hybrid nanofluid (Cu — AlaOs/water) by ex-
panding ¢ and Da. Figs. (5.14) and (5.15) shown the disparity of velocity for the distinct result
of nanopartical volume fraction ®, and Radiation parameter R. It is seen that velocity plots
reduced for hybrid nanofluid (Cu — AlaO3/water) rapidly as compared to nanofluid (Cu/water)
by increasing the values of nanopartical volume fraction ®3 and Radiation parameter R. We
can observe that, the EMHD velocities in phase are weaker than out of phase.

The 2D (two-dimensional) disparity of the EMHD temperature for non-dimensional para-
meters heat source parameter ¢ and radiation parameter R and at the point x = 0.5 and y =0
are shown in the Figs. (5.16) and (5.17). For various values of heat source parameter ¢, Fig.
(5.16) describes the variation of the temperature. With increment in heat source parameter ¢,
there is an increase in temperature 6% . Fig. (5.17) shows that for different values radiation

parameter R temperature 6 decreases.

100



Fig. (5.2): 3D Velocity distribution and contour (a, b, ¢, d) for R = 0.5 and R = 2 in phase

for nanofluid.
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Fig. (5.3): 3D Velocity distribution and contour (a, b, ¢, d) for R = 0.5 and R = 2 out of

phase for nanofluid.
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Fig. (5.4): 3D Velocity distribution and contour (a, b, ¢, d) for R = 0.5 and R = 2 in phase

for hybrid nanofluid.
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Fig. (5.5): 3D Velocity distribution and contour (a, b, ¢, d) for R = 0.5 and R = 2 out of

phase for hybrid nanofluid.
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Fig. (5.6): 3D Temperature distribution and contour (a, b, ¢, d) for R = 0.5 and R = 2 in

phase for nanofluid.
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Fig. (5.7): 3D Temperature distribution and contour (a, b, ¢, d) for R = 0.5 and R = 2 out

of phase for nanofluid.
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Fig. (5.8): 3D Temperature distribution and contour (a, b, ¢, d) for R = 0.5 and R = 2 in

phase for hybrid nanofluid.
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Fig. (5.9): 3D Temperature distribution and contour (a, b, ¢, d) for R = 0.5 and R = 2 out

of phase for hybrid nanofluid.
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Fig. (5.10): 2D Variation of velocity for Grashof number Gr.
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Fig. (5.11): 2D Variation of velocity for Casson parameter ~*.
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Fig. (5.12): 2D Variation of velocity for heat source parameter ¢.
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Fig. (5.13): 2D Variation of velocity for Darcy number Da.
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Fig. (5.14): 2D Variation of velocity for Volume fraction ®s.
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Fig. (5.15): 2D Variation of velocity for Radiation parameter R.
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Fig. (5.16): 2D Variation of temperature for heat source parameter ¢.
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Fig. (5.17): 2D Variation of temperature for Radiation parameter R.
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5.4.1 Tables Description

In this section, the impact of Nusselt number N ui:—k,:,,’}f 9,(yu) on EMHD flow of Casson
fluid for nano fluid (Cu/water) and hybrid nanofluid (Cu — AlyOs/water) discussed in the
microchannel through corrugated walls under porous medium. This section expressed the be-
havior of Radiation parameter R on the Nusselt number Nu*. Table 5.3 demonstrates that
Nu™ declines with expanding value of x and increases by the rise of the Radiation parameter R
for both the nano fluid (C'u/water) and hybrid nanofluid (Cu — AloO3/water) . Table 5.4 shows

that the Nu™ declines with expanding value of = and increases by the rise of the Radiation

parameter R for both the nano fluid (Cu/water) and hybrid nanofluid (Cu — AlyO3/water).

For Nusselt number Nut

For nano fluid (Cu/water) For hybrid nanofluid

z |R=05 | R=2 R=3 R=05 | R=2 R=3

0 0.348705 | 0.468788 | 0.498593 | 0.385843 | 0.486562 | 0.51363

0.1 | 0.34049 | 0.461955 | 0.492098 | 0.377783 | 0.479654 | 0.50703

0.2 ] 0.33203 | 0.454929 | 0.485422 | 0.369491 | 0.472551 | 0.500248

0.3 | 0.323422 | 0.447791 | 0.478644 | 0.36106 | 0.465339 | 0.493364

0.4 | 0.314764 | 0.440623 | 0.471841 | 0.352585 | 0.458097 | 0.486455

0.5 ] 0.306149 | 0.433501 | 0.465086 | 0.34416 | 0.450906 | 0.479597

0.6 | 0.297668 | 0.426501 | 0.458449 | 0.335872 | 0.443839 | 0.47286

0.7 ] 0.289406 | 0.419691 | 0.451996 | 0.327805 | 0.436967 | 0.466312

0.8 | 0.28144 | 0.413133 | 0.445787 | 0.320035 | 0.430353 | 0.460013

0.9 | 0.273841 | 0.406887 | 0.439874 | 0.31263 | 0.424056 | 0.454017

1 0.266675 | 0.401003 | 0.434308 | 0.305654 | 0.418127 | 0.448374
Table (5.3): Impact of the Radiation parameter R on Nusselt number Nu*.
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For Nusselt number Nu™

For nano fluid (Cu/water) For hybrid nanofluid

T R=05 | R=2 R=3 R=05 | R=2 R=3

0 0.313892 | 0.438894 | 0.469855 | 0.324607 | 0.449201 | 0.48037

0.1 | 0.313096 | 0.438459 | 0.469522 | 0.323788 | 0.448751 | 0.480024

0.2 | 0.312261 | 0.438004 | 0.469173 | 0.322931 | 0.44828 | 0.479663

0.3 | 0.311398 | 0.437534 | 0.468813 | 0.322042 | 0.447793 | 0.47929

0.4 | 0.310512 | 0.437053 | 0.468445 | 0.321132 | 0.447296 | 0.478908

0.5 ] 0.309613 | 0.436566 | 0.468073 | 0.320209 | 0.446792 | 0.478522

0.6 | 0.30871 | 0.436078 | 0.4677 0.319281 | 0.446287 | 0.478136

0.7 ] 0.307812 | 0.435593 | 0.467329 | 0.318358 | 0.445786 | 0.477752

0.8 | 0.306927 | 0.435117 | 0.466966 | 0.317449 | 0.445293 | 0.477375

0.9 | 0.306065 | 0.434654 | 0.466613 | 0.316563 | 0.444815 | 0.47701

1 | 0.305234 | 0.43421 | 0.466274 | 0.31571 | 0.444355 | 0.476658
Table (5.4): Impact of the Radiation parameter R on Nusselt number Nu~.

5.5 Conclusion
The outline of present work is ordered as follows

e The unobvious effect reduces by small value of € on velocity and temperature.
e The shape of channel depends on velocity distribution.

e The velocity for the Grashof number, Casson parameter, Heat source parameter and

Darcy number increase with increasing value of parameters.

e The velocity profiles increase rapidly for nanofluid (Cu/water) as compared to hybrid
nanofluid (Cu — AlyO3/water) for Grashof number, Casson parameter, Heat source para-

meter and Darcy number.

e The temperature for both nanofluid and hybrid nanofluid is increasing with heat source

parameter ¢.
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e The temperature for both nanofluid and hybrid nanofluid is decreasing with the positive

values of radiation parameter R parameter.

e The velocities profiles in phase are weaker than out of phase.
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Chapter 6

Theoretical aspect of EMHD
viscous fluid with corrugated walls

in curved channel

In this chapter, we have investigation base on the electromagnetohydrodynamic (EMHD) flow
effects on viscous fluid through corrugated walls in the curved channel. Amplitude of corruga-
tions of the wavy walls are either in phase or out of phase. At first performed the mathematical
modelling and then the solution of velocity is achieved by employing the perturbation technique.
By means of mathematical calculations we investigated the corrugation effects on the EMHD
velocity flow. The influence of emerging parameters from obtained solutions are inspected by
plotting the graphs. The important conclusion is that reducing the unobvious wave effect on

the velocity by taking amplitude ratio parameter small.

6.1 Mathematical Formulation

The EMHD flow viscous and an incompressible fluid between fixed corrugated wall in a curved
channel with height 2H, center at O and radius R’ is considered. The flow induced in the
channel by sine waves by small amplitude ¢ along the corrugated walls of the channel. The

wavy walls are located at

116



ri» = H 4+ eH sin (A\*z*) and rj» = —H + eH sin (A*z") . (6.1)

where ¢ is small amplitude and \* is wave number. We take magnetic field B* along y*
direction while along the z* direction electric field E* is applied. Along the z* direction, we
take the Lorentz force which is produced by the contact among the magnetic field B* and the
electric field E*.

1) = H + eHsin(A"x")

Fig. (6.1): Geometrical sketch of EMHD flow in microchannel.

Defining velocity field as

u* = (0,0,w* (X*, R*,1)). (6.2)

For present flow the basic equations are

Continuity equation

V*u* =0. (6.3)
Momentum equation
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*

u * * *

=-V'p+ V7" +J x B". (6.4)

Suppose along the z* direction channel is open, so we can ignore the pressure gradient

Op/0z* along the microchannel [85] and the velocity w*(x*, y*) satisfies

ow* 1 0

, R R
= - R+ R)yep) + = Tyexs + o BY(E* — (= ’B*w*), (6.5
P o R+R*8R*( )T z*R*) G 72X ( (R+R*) ), (6.5)
where )
ow* R oOw*
ToeRe = ey Toex+ = f— . 6.6

Corresponding no-slip boundary conditions expressed as

w* (X*, R%) = w* (X*,Rp) = 0, (6.7)

In complex forms the EMHD velocity, electric field and stress components can be written
as

w* = R{®(X*, R}»)e™""} B* = R{Eoe™""}, 755 = R{r;;e™" }, (6.8)

where real part of function denotes by R{ }, w is angular frequency, @, Ey and 7;; are

velocity amplitude, electric field and stress component. Using Eq. (6.8) into Eq. (6.5), we get

1 9 . R R
ipwi = — R*+ R)Tz+p+) + ~Tzex+ + 0 B*(E* — (= ’B*w) . (6.9
i = o (B Byrepe) (B~ (e *B'0) . (69)
Bring out the non dimensionless parameters as
(R, X™) . W R )
=—— " AN=XNH w=—,k=—,2=27
(7’,"13) H Y ? w Hw7 H7 z )
_ pwH?

Re

, Ha=B*H (;) S B=E, <Z> * . (6.10)

118



The dimensionless momentum equation stated in the following form

2 1 2
o0“w ow k aw—(Rei+(

247 2
_—t Yt H HapB = 0. 6.11
8r2+r+k8r+r+k8m2 7“+k:) a”)w+ Haf ( )

The corresponding non-dimensional boundary conditions define as

w=0, rp =1+¢esin(Az), rp = —1£esin(A\x). (6.12)
In Eq. (6.12), 7> =172, /H, rpp = 75 /H, the ‘+’ symbol means the corrugation is in phase and

for out of phase‘—’" symbol is used.

6.2 Solution of Problem

By using regular perturbation technique in above equation:

w(r,z) = wo (1) + ewy (1, 2) + 2w (r, ) + ... (6.13)

Equating the like power of ¢ after using the Eq.(6.13) into Egs. (6.11) and (6.12), we get

the systems as

6.2.1 Zeroth Order System

9wy 1 Odwy .
or? +r+k‘ or _<Rez+(r+kz

)2Ha2> wo + HaB =0, (6.14)

wo ‘Tzl: O,ZU() ’r:—l: 0. (6.15)

6.2.2 First Order System

8211)1 1 8w1 k 8211)1 k 2 )
— (Rei+ (— ) Ha?)uw, = 1
o2 Tk ar Trikae  Reit o) Heun =0 (6.16)
. dw . dw
w1 |p=1=— — sm()\zv) <d7”0>r1 , W1 |p=—1=— $sm()\$) <d7”0>r_1 . (617)
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6.2.3 Second Order System

0%wsy 1 Ows k 0%ws )
or? +r+k‘ or +T+k 0z —(Rez—f—(m

)2Ha*)ws = 0, (6.18)

1 2
w2 |r=1: — sin()\x) <3au;1> _ 5 Sinz()\m) (ddr’u;o> ’
r=1 r=1

ow 1 d*w

+ . 1 .. 92 0

Wy |p=—1 Fsin(Ax) <) — —sin“(\x) <> . (6.19)
2 or )., 2 ar? ) ,._ 4

6.2.4 Solution of zeroth order

Under the boundary conditions the zero-order solution can be expressed as:

BesselJ[kHa, —i(k + 7)A; + BesselY[kHa, —i(k + r)VRei]As + m
(k +7)28((2 + kHa)HypergeometricOF1[1 + kHa, (k + )2 Re ]

wo (1) = HypergeometricPFQ[{1 — £} {1 — kHa,2 — EHa} 1( 4 )2 Red]

+(—2 + kHa)HypergeometricOF1[1 — kHa, % (k + r)* Re ]
HypergeometricPFQ[{1 + 22} {2 + ¥ 1 4 kHa}, L(k + )2 Red]).

(6.20)
6.2.5 Solution of first order
Base on the boundary conditions (6.17), we can assume the solution of first order as
wy (ryx) = sin (Ax) f(r), (6.21)

where f (r) is function of r.

Using Eq.(6.21) into Eq.(6.16), we get

PO O R s

dr? (k+r) dr _[(k—l-r)

If (r) = 0. (6.22)

Correspondingly boundary conditions are transformed as
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f(r)—i—%:Oatr:l,f(r):t

d
%an‘m’:—l.

The solution of first order problem can be expressed as

BesselJ[k\/m, —i(k 4+ r)vVRei] B+
BesselY[kv/Ha? + A2, —i(k +r)v/ReilBs
BesselJ[k\/m, —i(k +r)VRei] B} +
BesselY[k'\/m, —i(k 4+ 7)vVRei] B ‘

wf (r,x) = sin (\z)

6.2.6 Solution of second order

(6.23)

(6.24)

Base on the boundary conditions (6.19), second order system solution in supposed form is

considered as

wgc (r,z) = g* (r) + cos (2hz) hE (1),

where g™ (r)and k¥ (r) are function of r only.

By utilizing Eq.(6.25) into Eq. (6.18), we get the following forms

d’g™ (r) 1 dg*(r) : k? _
dr? + (k+r) dr ~[Rei + Ha® (k+ 7")2]9i (r) =0,
d?h*E (r 1 dh*(r A4(\k)? . k2
e ) - [(k(+ 2)2 +Reit Ha? oI () = 0

The boundary conditions of the functions g* (r) and h*(r) are

1 1 df(r) 1 d*wo

df (r) N }d2wg

+ 1 E i _
g (T) + 2( dT 2 dT2 ) at - 1)g (T) j: 2( dT + 2 dTQ ) at r 1)
1,df(r)  1d%w 1,df(r) _ 1d%w
+ +
-~z - =1 + - =1
h=(r) 2( dr 2 dr? )atr hE() 2( dr T2 dr? ) at
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(6.26)

(6.27)

(6.28)

(6.29)



Second order solution can be written as.

BesselJ[kHa, —i(k + )V Rei]Cy + BesselY[kHa, —i(k + r)VRe]Ca + cos (2Az)
N BesselJ [k v/Ha2 + 402, —i(k + r)v/Rei] Dy + BesselY[kv/Ha? + 42, —i(k + r)vRei]Ds
BesselJ[kHa, —i(k + r)VRe]C] + BesselY[kHa, —i(k + r)vRei|C} + cos (2Ax)

BesselJ[k\/m, —i(k 4 r)vRei] D} + BesselY[k\/m, —i(k 4+ r)VRei| D) ‘
(6.30)
Collecting Egs.(6.20), (6.24) and (6.30), the approximate velocity solution can be evaluated
as
wE (r,x) = wo (1) + ew? (r,z) 4+ 2wy (r,2) + ... (6.31)

6.3 Graphical consequence

In this portion, the graphical outcomes of the viscous fluid are explored by EMHD flow in a
curved channel with corrugated walls. All graphical effects are attained by using the MATLAB
software. This portion is expressly arranged to inspect the impact of embedded constraints on
flow quantities. Plots for 3D variations and contour of velocity and 2D variations of velocity
are shown and dissected through Figs. (6.2) to (6.7) respectively. Specifically, the Reynolds
parameters Re and curvature parameter k have been seen.

In Figs.(6.2) and (6.3), the phase difference among the two corrugated walls equals 0°. In
Figs. (6.4) to (6.5), the phase difference between walls equals 180°. It is found that trapped
bolus are appear for out-of-phase corrugations when ¢ is small. From the 3D plots of Figs. (6.2)
to (6.5), we explored that the velocity distribution depends upon the shape of channel. When
the corrugations are in phase, the wave phenomenon in the center of channel becomes obvious,
as appeared in Figs. (6.2) to (6.5). As shown in Figs. (6.2) to (6.5), the wave phenomenon
of the flow shape becomes obvious with the expansion of the corrugation. The wavy pattern
increases by increase the value of parameters.

In Figs. (6.6) and (6.7), the velocities w™® are plotted against r for various estimations of
parameters the Reynolds parameters Re and curvature parameter k& when we take ¢ = 0.1 and
B = 5. In particular, it can be found in Figs. (6.6) and (6.7), that the velocity amplitude

achieves the maximum value at the middle of the channel. Fig. (6.6) demonstrates that the

122



velocity w® decreases with increasing Reynolds number. The reason is that for the larger the
rapid oscillation of velocity with smaller amplitudes. Fig.(6.7) illustrates that the velocity w®
decreases for curvature parameter k in the portion [—1, 0] with increases in k, where as velocity
it increases in the portion [0, 1]. The maximum value of velocity in curved channel shifts from

the center towards the lower wall. We can find that, the EMHD velocities in phase are weaker

than out of phase.
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Fig. (6.2): 3D Velocity distribution and contour (a, b, ¢, d) for Re = 0.6 and Re = 1.7 in

phase.

124



10 20 30 40 50 60

10 20 30 40 50 60

Fig. (6.3): 3D Velocity distribution and contour (a, b, ¢, d) for k = 3.0 and k = 15 in phase.
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Fig. (6.4): 3D Velocity distribution and contour (a, b, ¢, d) for Re = 0.6 and Re = 1.7 out

phase.
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Fig. (6.5): 3D Velocity distribution and contour (a, b, ¢, d) for £ = 3.0 and k£ = 15 out

phase.
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Fig. (6.7): 2D Variation of velocity for Curvature parameter k.
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Table (6.1):

r k=3 k=17 k=12

-1 2.15359 1.96843 1.92498
-0.8 | 1.5868 1.51916 1.50131
-0.6 | 1.10327 1.10303 1.1019

-0.4 | 0.677796 0.712567 0.721596
-0.2 ] 0.291429 0.34125 0.355449

0 -0.0675845 | -0.0166458 | -0.00122718
0.2 |-0.407992 | -0.366113 | -0.352811
0.4 |-0.736208 | -0.711458 | -0.703309
0.6 | -1.05695 -1.05631 -1.05629
0.8 | -1.05695 -1.40361 -1.41481

1 -1.68858 -1.75556 -1.78133
Effect of curvature parameter k on stress component 77,.
r k=3 k=17 k=12

-1 2.11532 1.96843 1.89557
-0.8 | 1.55722 1.49273 1.47588
-0.6 | 1.08031 1.08053 1.07987
-0.4 | 0.65891 0.693301 0.702441
-0.2 | 0.275897 0.32461 0.338686

0 -0.0806089 | -0.0311831 | -0.0160419
0.2 |-0.419146 | -0.379008 | -0.36609
0.4 | -0.745984 | -0.723121 | -0.715439
0.6 | -1.06575 -1.06711 -1.06764
0.8 | -1.38177 -1.41389 -1.42573

1 -1.69634 -1.76565 -1.79215

Table (6.2):

Effect of curvature

parameter k on stress component 7.
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T k=3 k=7 k=12

-1 | 0.018365 | 0.0194658 | 0.0198482
-0.8 | 0.018686 | 0.0197808 | 0.0201616
-0.6 | 0.0189403 | 0.0200241 | 0.0204017
-0.4 | 0.0191269 | 0.0201949 | 0.0205677
-0.2 | 0.019245 | 0.0202929 | 0.0206593
0 0.019294 | 0.0203177 | 0.0206762
0.2 | 0.0192735 | 0.0202693 | 0.0206188
0.4 | 0.0191835 | 0.0201482 | 0.0204874
0.6 | 0.0190242 | 0.0199547 | 0.0202827
0.8 | 0.0187959 | 0.0196899 | 0.0200056
1 0.0184994 | 0.0193546 | 0.0196574

Table (6.3): Effect of curvature parameter

T k=3 k=17 k=12

-1 0.0299634 | 0.0331521 | 0.0343054
-0.8 | 0.0305791 | 0.0338156 | 0.0349872
-0.6 | 0.0310898 | 0.0343622 | 0.0355477
-0.4 | 0.0314924 | 0.0347887 | 0.035984
-0.2 | 0.0317843 | 0.0350926 | 0.0362932
0 0.0319632 | 0.0352714 | 0.036473
0.2 | 0.032027 | 0.0353232 | 0.0365215
0.4 | 0.0319742 | 0.0352467 | 0.0364374
0.6 | 0.0318038 | 0.0350408 | 0.0362197
0.8 | 0.031515 | 0.0347052 | 0.035868
1 0.0311078 | 0.0342399 | 0.0353825

Table (6.4): Effect of curvature parameter k on stress component 7_,.
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6.4 Tables Description

In this section, the impact of stress components on EMHD flow discussed in curved channel
through corrugated walls. This section expressed the behavior of curvature parameter k on the
stress components 7% and 72 . Table 6.1 and Table 6.2 demonstrate that the stress components

71 and 7, decreased with the increasing value of r and furthermore decrease with the rise of

_l’_

»p and

the curvature parameter k. Table 6.3 and table 6.4 show that the stress components 7

T, increased with the increasing value of r and also enlarge with the increment of curvature

parameter k.

6.5 Conclusion

The impact of corrugated wall roughness on the viscous EMHD flow in a curved channel is
calculated in this paper. Perturbation technique is applied to examine the problem. From the

above results, the following deductions are drawn.

e The wavy phenomenon in the center becomes obvious when the amplitude € is small with

in phase and out of phase corrugations.

e The contour plots from the solutions of the velocity, it is found that trapped bolus are

appear for out-of-phase corrugations.
e The wavy phenomenon increases by enlarge the parameters values.
e The velocity amplitude achieves maximum value in middle of channel.

e The velocity plot decreases with expanding value of Reynolds number. The reason is that

for the larger the rapid oscillation of velocity with smaller amplitudes.

e The velocity profile declines with rising value of k in inner half of channel and rise in outer

half of channel.
e The EMHD velocities in phase are weaker than out of phase.

e Stress components 7% decrease with the rise of the curvature parameter while stress

+

. increase with the increasing value of the curvature parameter.

components 7
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Chapter 7

Flow of EMHD nanofluid in curved

channel through corrugated walls

The corrugated effect on nanofluids in curved channel under the influence of electromagnetohy-
drodynamic is discussed in this chapter. Investigation is carried out by water based nanofluids
using copper nanoparticle. Firstly performed the mathematical modelling and then employing
the method of perturbation, we have estimated the analytical solutions. By mean of mathe-
matical calculations we examined the corrugation effects on EMHD flow. The physical effects
of flow variables are graphically discussed. Moreover, consequence of Curvature parameter on
stresses and Nusselt number are discussed through tables. The velocity and temperature decline
when the curvature parameter increases. The electromagnetohydrodynamic (EMHD) velocity
and temperature distributions show that 0° is the phase difference between the two walls for
in phase and the phase difference is equal to the 180° between two walls for out of phase.
The important conclusion is that reducing the unobvious wave effect on the velocity by taking

amplitude ratio parameter small.

7.1 Mathematical model

Consider a EMHD flow of laminar, incompressible and electrically conducting fluid between
corrugated wall in the curved channel separated by a distance 2H, center at O and radius R’

is considered. The flow induced in the channel by sine waves with small amplitude ¢ along the
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corrugated walls of the channel. The wavy walls are located a
ri» = H +eHsin (A\*'z*) and rj» = —H + eH sin (A*z") (7.1)

where € is small amplitude and \* is wave number. We take magnetic field B* along y*
direction while along the z* direction electric field E* is applied. Along the z* direction, we

take the Lorentz force which is produced by the contact among the magnetic field B* and the
electric field E*.

(xy)usygs + g= [

Fig. (7.1): Geometrical sketch of EMHD

flow in microchannel.

Defining the velocity field as

u* = (0,0,w* (X", RY)). (7.2)
For present flow we considered the following basic equations
Continuity equation

V*u* = 0. (7.3)

133



Equation of motion

10 , R R
; R*+R)Tz+p+)+ = Tz x++0n B (E*—(= 2B*w*)+ nt(T*=T7) = 0.
(R+R*8R*( )Tz R*) G xton ( (R+R*) )+9(POns ( r)
(7.4)
Energy equation
§ 19 ., . 0T R, 0%T* B
Fs (R—l—R* o Rgpe) + ) aX*2> Q=0 (7.5)

In addition, assuming that in z* direction channel is open and pressure gradient can be

ignored, the Navier-Stokes Eq. (7.4) along the z*direction [85] as

19 ; R
- R*4+R)Tz+p+ )+ Toxxx+o,t B (E*—(= 2B*w*)+ T -T7%) =0,
(R—i-R*aR*( ) ) Lt R nf ( (R—i-R*) ) g(pC)nf( l)
(7.6)
where )
_ ow*  _ R ow* (77)
T 7% Rpx — —, TZ*xX* — 7 . .
Z*R 'unfaR*’ X “nfR+R*aX*
Corresponding no-slip boundary conditions expressed as
w* (X*,R’») =0at R, = H+eH sin (\*X¥),
w* (X*, Rj,) =0 at R, = —H +eH sin (A" X™), (7.8)
T*(X* R:) = T% (X*,R%) at R% = H + eHsin (\*X*), '
T (X*, Rj) =15 (X*,R}) at Rjy = —H £ eH sin (A" X™).
Bring out the following dimensionless variables
1
_ (BYX") gy _ w* _ R _ 952
(r7x)_1T7)‘_)\H7w_w7vk_ﬁ7 Ha_B*H(?;) ) (79)
B or\2 _ T-Tp _ 9(pQH(Twy =Tp) ,  QoH?
ﬁ = ko <ﬁ> /U, 0 = Tu”_%l”’ Gr = £ 1 U l ) d) - k”f(Tinprv)'

Here Ha, Gr, 3, 0, ¢ and k represents Hartmann number, Grashof number, non-dimensional
parameter, temperature, heat absorption coefficient and curvature parameter. The dimension-

less momentum and temperature equation stated in the following form

134



tnf ,O%w 1 ow ko o0%w, oy k5. o (PQO)nf
— (= — — )+ —(H —)°H Gro =0
uf(8r2 r—l—k(?rJr(r—l—k) 8m2)+0f( a6+(r+k‘) aw)+(p0f " ’
(7.10)
020 1 00 k 50% K"
— +t — = — = 0. 7.11
8r2+r+k‘87‘+(r+k‘) 8x2+¢k”nf (7.11)
The corresponding dimensionless boundary conditions yield the form
w = 0, rp =14esin(Az), rp = —1=+esin(Az), (7.12)
0 = 1, r, =1+esin(Az), §=0, rp =—1+esin(A\z). (7.13)

7.2 Solution of Problem:

By using regular perturbation technique in above equations, we define the following form

w(r,x) = wo(r)+ew (r,x) +ws (1) + .....

0(r,x) = 0o (r)+eby (r,z)+e%0g (r,z) + ...

(7.14)

(7.15)

Substituting above equations inti Eqgs. (7.10) to (7.13) and computing the like powers of ¢

yield

7.2.1 Zeroth Order System
%0, 1 00 k'

oz Tk ar Ok, O
fng PPwo 1 Owo,  ong koo L (0Qns 0y
s or? r+k or )+ oy (Haﬁ+(r+k) Ha“wo) + (pC) ¢ Gro =0,

6o | r=1=1, 6 |=—1=0,

Wo | r=1 = 0,wp |7"=71: 0.
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(7.19)



7.2.2 First Order System

0260 1 06 k 026
St T ) g =0
or2  r+kor r+k’ 0x2

g Pwy L Owy kO oy kg (0O
Pnf Onf ko .
= i dfo + _ . dbo
01 |r=1= —sin(\x) ( o >r—l’ 07 |r=—1= Fsin(A\z) < . )7«__17

) dw . dw
wr o= =sin0a) (40) =i (G)
r=1 r=-—1

7.2.3 Second Order System
0204 1 06, ko 50%0,

3T2+7’+k8r+(r+k) 8352:0’
fng DPwy 1 Owy kg 0Mwa, oug Ky a (PO
L H _
uf(8r2 r+k Or +(r+k) 8:52) Uf(r—i—k) a“wz + (pC)fGTGQ 0,

03 |r—1= —sin(A\z) (%) L 3 sin®(\z) (d;%o) )
0 0

r=1
1 2
05 lr—1=FsinOa) (B2)  —Fsin?(a) (45)
o= ) (3, = o) ()
r= r=
ot s () - deion (8)

Solution of zeroth order

Under the boundary conditions the zero-order solution can be expressed as:

00 () = Az + (~56(r(2k + 1) = 2 I(k + )R g + 240 Ink 4 ) )/ 2k,
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(7.21)

(7.22)

(7.23)

(7.24)

(7.25)

(7.26)

(7.27)

(7.28)



(=Gr(k +r)?ok” ppup(pQngo (16(=5k* — 2kr — 1% + 8k* In(k + r))uifafc + k*Ha?

(k* — 4kr — 2r2 + 10k2 In(k + r) o p i ;0 pOng + K*Ha*(—r(2k + 1) + 2In(k + 1))

wo (y) = K2u3o? ) + 4k" , pa(By cos(ay n(k + 1))b(p¢) f + By sin(ay In(k + 1)) (p¢) b + piy

(k + 1) (4 ot (~Gr(— A1 + Az + A1 In(k + 1)) (pQ)ngo s — ¢) — k2 Ha? ;0,5 (Gr
(A2 + Avln(k +7))(pC)nso f + a1))))/(4(pC) thnsba),

(7.29)
with

a=16p,pof + /<:2Ha2ufanf,
b= (Anyos + K2Ha2 iy, )2

¢ = Haf(pC)sony,

o _ kHaymg
L= T o

(7.30)

Solution of first order

Under the boundary conditions (7.22) and (7.23), we can assume the solution of first order

system as

01 (r,x) = sin(Ax) f(r),

wy (r,x) = sin(Ax)g(r), (7.31)

where f (r) and g (1) is function of r.

Using Eq. (7.31) into Egs. (7.20) to (7.23), we get

d2f (r) n 1 df(r) k2

dr? (k+7r) dr  (k+r)2 =0, (7.32)

g d2g (r) 1 dg(r) k onf, k (PQ)ny B
Ty dr? + k+r) dr )\2(r+k)2g (r)) + Tf(r+ k)QHa2g (r) + Ty Grf(r)(— 0.)
7.33
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with the following boundary conditions

d90 + d90
r=1 = — "7 -1 = T .34
Jr=1 dr’ =1 + dr (7.34)
. d’wo + . d’wo
gr=1 = — ar 9r—_1=7F ar (735)

The solution of first order problem can be expressed as

% (.2 — sin () { st () (Cr cosh(RA (k7)) +iCasinh (A (k7).
sin (Az) (C] cosh(kAIn(k + r)) + iCh sinh (kX In(k + 7))).

[ sin () (D1 cosh(as In(k + ) + iDs sinh(as In(k + 7)) + (Gr(k + )20 £ (5)ns
pr(4((C1 — iC2kA) cosh(kAIn(k + 7)) + i(C2 + iC1kA) sinh (KA In(k + 7)), ¢
opsinh(kAIn(k + 7)) + k*?Ha?Cy cosh(kAIn(k + r)) + sinh(kA In(k + 7)) )iCs
150 f))/((PC) £16(—1 + K2APJ2 ;0% — 8K Ha2puppu, 10 jorng — K Ha' 2o )
sin (Az) (D] cosh(az In(k + 1)) + D} sinh(az In(k + 7)) + (Gr(k + r)*(pC)ns

150 1 (4((C} — iC3kN) cosh(kX In(k + 1)) + sinh (kA In(k 4 ))i(Ch + iCLkN)
fnf0§ + k2Ha?Cl cosh(kXIn(k + 7)) + iCh sinh(kXIn(k + 7)) ) o))/

((pQ) f16(=1 + k*N*)u2 j0F — 8k*HaP puppi, o pons — Kk Ha'pfor ()))
(7.37)

B k\//\z,u,nfaf — Ha2psony

7 (7.38)

a2

Solution of second order

The boundary conditions (7.26) and (7.27) can be simplified by applying the solution of zero

and first order. Under conditions we can suppose the solution as

03 (r,x) = h*(r) 4 cos (2 z) k* (1), (7.39)

wy (r,x) = m* (r) + cos (2A\z) n* (1), (7.40)
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where h* (r), k* (r), m™* (r) and n* (1) are function of r only.

By employing Eq.(7.39) and Eq.(7.40) into Eq. (7.24) and Eq. (7.25), we get the following

forms
d?h* (r) 1 dh®(r) 0 (7.41)
dr? kE+r dr ’ '
d?k* (r) 1 dk*T(r)  4NR?
— NEE (r) = 42
dr? + (k+r) dr (k+1)2 (r) =0, (7.42)
png  d*m* (r) 1 dm*(r), ong, koo . (PQ)ny +
— —(——)“H Grh =0 7.43
w ar T ar T ey GaR) HemT g oritn) =0, (143)
Png d*n* (1) 1 dn*(r) 2, ko 4 Onf, koo 4 (PO nf o, +
— — AN (—— — Grk =0
thy dr? (k+r) dr (7"+k) (r) + of (7’+k) )+ (PQ)y rer)
(7.44)
and boundary conditions are
1(df | 1d%0 _
-5\t 35 at r=1,
=y 7 (dd L (7.45)
_% <:l:dij; - % dr20) at r = 17
1 (ﬁ 1 209 1
+ slar T2 gz ) atr=1
k™ = p 20 (7.46)
~3 (iT{« —3 dr20> at r =1,
d d>w
TUEN 1 (ds 1w ! (747)
—3 <i7 — 35 dT20) at r = ].,
1(d 1 d%w
n* = s (3G avr=1, (7.48)
N 1 (1dg 1 d%wg '
—§<i%—§ dr2) atr =

Thus the solution of second order system can be obtained as

Es + E1In(k + 1) + cos (2A\x) (G1 cosh(2kA In(k + 7)) + iGa sinh(2kA In(k + 7)),

EL + EiIn(k + r) 4 cos (2Az) (G cosh(2kA In(k + 7)) 4+ iGY sinh(2kX In(k + 7)),
(7.49)

0y =
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F cosh(ay In(k + 7)) + Fysinh(ay In(k 4 1)) + (Gr(k +7)2 (00 ngo s (—4((

— B+ Ea)Ern(k + 7)) g0y — k2 Ha? (B + ExIn(k +1))psonr))/((pC) £b)

+cos (2Ax) (Hy cosh(az In(k + 1)) + iHa sinh(az In(k + 7)) + (Gr(p)nppso s ;
(cosh(2kA In(k + 7)) + i sinh(2kA In(k + 7)) (4(G2 + 2iG1kN) iy, po p + G1k?

Hazﬂfanf)»/((PC)flG(—l + 4k2/\2)u721f0% - 8k2H@2ManfoUnf - k4H@4M§U%f))
wy = Fy cosh(ay In(k + 7)) + Fysinh(ai In(k + 7)) + (Gr(k + 1) (p¢)npo s (—4((

— B} + By By In(k + 1))t y0 7 — K2 Ha> (B} + By In(k + 1))00p))/ ((0C) 1)+
cos (2Az) (H'1 cosh(ag In(k + 7)) + iH} sinh(ag In(k + 1)) + (Gr(k 4+ r)2(p{)ns
ppop(cosh(2kAIn(k + 7)) (4G — 2iGokN) py,po g + Gik*Ha?ppoy ) + i sinh(2kX
In(k + 1)) (4(Gh + 2iG kN pn oy + Gik*Ha? ppong))) /((p) f16(—1 + 4k*A%)u?

9

0? — 8k*Ha jup iy, 0 pOnf — k4Ha4ufcaif))
(7.50)
with

k:\/4)\2,unfaf — Ha’psony
B /HBnfO f '
Collecting Eqs.(7.28), (7.29), (7.36), (7.37), (7.49) and (7.50), the approximate velocity and

as (7.51)

temperature solution as
0F (r,x) = 0o (1) + 05 (r,x) + 205 (r,x) + ... (7.52)

wE (r,x) = wo () + ewt (r,x) + 2wy (r,2) + ... (7.53)

Evaluation of constants have been done by using Mathematica 9.

7.3 Heat transfer rate

Nusselt number determines the convective heat exchange strength. Defined as follows [86]

Haqyw

Nu=—S————~,
k(T — T3)

(7.54)

On upper and lower walls we defined
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quw = _k”nfw ’r*:r;‘; .

or*

From Egs. (7.54) and (7.55), the Nusselt number can be expressed as

Nu =

7k77nf @
K or

7.4 Thermophysical properties

The thermophysical properties are

Physical Properties | Water Copper
Cp(J/kgK) 4179 385
p(kg/m3) 997.1 8933
E(W/mK) 0.613 400

¢ x 10° (1/K) 21.0 1.67
o(S/m) 5.0x102 | 5.96x107
wu(kg/m.see) 8.90x10% | -

Table (7.1): Thermo physical effects.

7.5 Graphical consequence

(7.55)

(7.56)

In this part, the graphical impacts of viscous fluid are investigated by EMHD flow in a curved

channel with corrugated walls. All graphical outcomes are achieved by utilizing the MATLAB

programming. This segment is explicitly arranged to investigate the impact of inserted parame-

ters on flow quantities. Plots 3D variations of velocity and contour are appeared dismembered

through Figs. (7.2) to (7.5) respectively.

The 3D variations and contour plots are acquired from the solutions of the velocity w® and

temperature = for curvature parameter k are shown in Figs. (7.2) to (7.5). In Figs. (7.2)

and (7.4) the phase difference among the two corrugated walls equals is 0°. Figs. (7.2) and

(7.4) shows that bolus increase with expanding value of curvature parameter k. In Figs. (7.3)

and (7.5), the phase difference between walls equals to 180°. It is found that trapped bolus
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increases with enlarging curvature parameter k out-of-phase corrugations when ¢ is small. As
shows in Figs. (7.2) to (7.5), the wave phenomenon of the flow shape becomes obvious with the
expansion of the corrugation. The wavy pattern increases by increase the value of parameters.

In Figs. (7.6) to(7.12), the velocities w* and temperature §= are plotted against r for
various estimations of parameters the Hartmann number Ha, Volumetric concentration &,
Grashof number Gr, Curvature parameter k£ and Heat absorption coefficient ¢ when we take
e = 0.1 and § = 5. Specifically, it can be found in Figs. (7.6) to (7.10), that the velocity
amplitude accomplishes the maximum value at the middle of the channel. Fig. (7.6) shows
that the velocity w™ increases with expanding Hartmann number. Fig. (7.7) demonstrates that
the velocity w™® declines for various estimations of Volumetric concentration of nanoparticles ®.
Fig. (7.8) shows that the velocity w* increases with Grashof number. Fig. (7.9) demonstrates
that the velocity w® decreases for curvature parameter k. Fig. (7.10) admits that EMHD
velocity w™ increases for various values of heat absorption coefficient ¢. We can found that,
the EMHD velocities in phase are weaker than out of phase. Fig. (7.11) shows that profile of
temperature §* decreases when the curvature parameter k increases. Fig. (7.12) depicts the
consequence of Heat absorption coefficient ¢ on temperature plot. Temperature variation grows

when the ¢ increases.
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Fig. (7.2): 3D Velocity distribution and contour (a, b, ¢, d) for £k = 1.5 and k = 3.5 in phase.
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Fig. (7.3): 3D Velocity distribution and contour (a, b, ¢, d) for k = 1.5 and k = 3.5 out of

phase.
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Fig. (7.4): 3D Temperature distribution and contour (a, b, ¢, d) for £k = 1.5 and k = 3.5 in

phase.
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Figs. (7.5): 3D Temperature contour for Curvature parameter k = 1.5 and k = 3.5 out of

phase.
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Fig. (7.6): 2D Variation of velocity for Hartmann number Ha.
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Fig. (7.7): 2D Variation of velocity for Volumetric concentration of nanoparticles ®.
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Fig. (7.9): 2D Variation of velocity for Curvature parameter k.
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Fig. (7.10): 2D Variation of velocity for Heat absorption coefficient ¢.
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Fig. (7.11): 2D Variation of temperature for Curvature parameter k.
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Fig. (7.12): 2D Variation of temperature for Heat absorption coefficient ¢.

7", in phase 7, out of phase

T k=25 k=4.0 k=15.0 k=25 k=4.0 k=15.0
-1 5.00097 4.38566 3.28585 4.90409 4.34458 4.20501
-0.8 | 3.77671 3.52612 2.56966 3.67526 3.4262 3.35829
-0.6 | 2.64766 2.65359 1.84091 2.54358 2.50167 2.48748
-0.4 | 1.61499 1.78832 1.11609 1.50944 1.58999 1.61143
-0.2 | 0.671711 | 0.943975 | 0.407727 | 0.565348 | 0.703732 | 0.744382
0 -0.191463 | 0.129656 | -0.274713 | -0.298267 | -0.148966 | -0.102962
0.2 |-0.983743 | -0.648739 | -0.92417 | -1.09082 | -0.963014 | -0.922668
0.4 | -1.71342 | -1.38752 | -1.53542 | -1.82074 | -1.73542 | -1.70892
0.6 | -2.3876 -2.08454 | -2.10465 | -2.49521 | -2.46461 | -2.45756
0.8 | -3.01223 | -2.73868 | -2.62915 | -3.12025 | -3.14998 | -3.16565
1 -3.59224 | -3.34955 | -3.10702 | -3.7008 -3.79156 | -3.83125

Table (7.2): Impact of curvature parameter k on Stress components 7
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7,7, in phase T, out of phase
r k=25 k=4.0 k=250 k=25 k=4.0 k=5.0
-1 -0.231029 -0.178203 | -0.20903 0.244095 | 0.172208 | 0.156072
-0.8 | -0.172401 -0.220363 | -0.520479 | 0.222807 | 0.169103 | 0.15621
-0.6 | -0.12452 -0.239668 | -0.732131 | 0.201311 | 0.163309 | 0.153674
-0.4 | -0.0848175 | -0.240199 | -0.855576 | 0.180792 | 0.15574 0.149153
-0.2 | -0.0513982 | -0.225175 | -0.900917 | 0.161743 | 0.147063 | 0.143193
0 -0.0228554 | -0.19715 -0.876924 | 0.144326 | 0.137764 | 0.136231
0.2 | 0.00186674 | -0.158159 | -0.791185 | 0.12854 0.128201 | 0.128614
0.4 | 0.0235702 | -0.109826 | -0.650256 | 0.114309 | 0.118631 | 0.120617
0.6 | 0.0428717 | -0.0534562 | -0.459789 | 0.101526 | 0.109244 | 0.112459
0.8 | 0.0602508 | 0.0098998 | -0.22465 0.0900729 | 0.100176 | 0.104314
1 0.0760844 | 0.0793949 | 0.0509706 | 0.0798331 | 0.0915214 | 0.0963176

Table (7.3): Impact of curvature parameter k on Stress components 7, = ’%fr —Iik%'

T k=15 k=25 k=35

-1 -0.133035 | -0.0331892 | 0.0577811

-0.8 | -0.134987 | -0.0389481 | 0.0395459

-0.6 | -0.137009 | -0.0447724 | 0.0211779

-0.4 | -0.139093 | -0.0506403 | 0.00274853

-0.2 | -0.141234 | -0.0565299 | -0.0156717

0 -0.143423 | -0.0624198 | -0.0340141

0.2 | -0.145653 | -0.0682885 | -0.0522116

0.4 | -0.147916 | -0.0741149 | -0.0701992

0.6 | -0.150202 | -0.0798783 | -0.0879144

0.8 | -0.152501 | -0.0855585 | -0.105297

1 -0.154804 | -0.0911357 | -0.12229

Table (7.4): Impact of curvature parameter k¥ on Nusselt number Nu™.
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T k=15 k=25 k=35

-1 -0.135427 | -0.0414312 | -0.00237821
-0.8 | -0.141131 | -0.0471789 | -0.00826093
-0.6 | -0.146811 | -0.0529364 | -0.0141611
-0.4 | -0.152444 | -0.0586804 | -0.0200548
-0.2 | -0.158007 | -0.0643883 | -0.0259191
0 -0.163478 | -0.0700387 | -0.0317317
0.2 |-0.168839 | -0.075611 | -0.0374716
0.4 |-0.17407 | -0.0810858 | -0.0431184
0.6 | -0.179156 | -0.0864449 | -0.0486533
0.8 | -0.184083 | -0.0916713 | -0.0540582
1 -0.188836 | -0.0967492 | -0.0593164

Table (7.5): Impact of curvature parameter k£ on Nusselt number Nu~.

7.6 Tables Description

In this section, we discussed the impact of stress components and Nusselt number on EMHD
flow in curved channel through corrugated walls. This section expressed the behavior of cur-
vature parameter k on the stress components 72, and 7% and Nusselt number Nu* Table 7.2
demonstrates that the stress components 7, and 7, decrease with the increasing value of 7 and
furthermore decrease with the rise of the curvature parameter k. Table 7.3 shows that the stress
components 71, and 7, increase with the increasing value of r and also expand with the incre-
ment in the value of curvature parameter k. The impact of Nusselt number N u:—%ﬁl(yu)
on EMHD flow of nanofluid discussed in microchannel through corrugated walls. Table 7.4 and
Table 7.5 demonstrate that the Nusselt number Nu® decrease with the increasing value of

and increase with increment in the value of curvature parameter k.
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7.7 Conclusion

The consequence of corrugated wall roughness on the viscous EMHD flow in a curved channel
is determined in this paper. Perturbation technique is applied to inspect the issue. From the

above outcomes, the accompanying reasonings are drawn.

e The wavy phenomenon in the center becomes obvious when the amplitude € is small with

in phase and out of phase corrugations.

e The contour plots from the solutions of the velocity, it is found that trapped bolus are

appeared for out-of-phase corrugations.
e The wavy phenomenon increases by increasing in the estimation of parameters.
e The velocity amplitude accomplishes the maximum value on the channel center.
e The velocity enlarges for various values of Ha and Gr.

e The velocity declines for various estimations of Volumetric concentration of nanoparticles

® and curvature parameter k.
e The EMHD velocity w® increases by increment in heat absorption coefficient ¢.

e The profile of temperature 6 decreases when the curvature parameter k and increases

when the ¢ increases.

e The bolus increase with enlarging the value of curvature parameter k in phase and out of

phase corrugations when ¢ is small.
e The EMHD velocities in phase are weaker than out of phase.

e Stress components 7. decrease with the rise of the curvature parameter while stress
+

~ increase with the increasing value of the curvature parameter.

components 7

e The Nusselt number Nu* decrease with the increasing value of z and increase with

increment in the value of curvature parameter k.
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Chapter 8

Analysis of EMHD Casson Fluid in
curved channel with corrugated

walls under metallic nanoparticles

The main object of this chapter is to deal the steady EMHD non-Newtonain incompressible
and electrical conducting Casson fluid between corrugated walls in the presence of Lorenz force
has been examined. The Casson fluid model is utilized to characterize the non-Newtonian fluid
behavior. The equations are transformed by utilizing the perturbation method. Analytical so-
lution corresponding to momentum and temperature equations are acquired. The heat transfer

features are analyzed and discussed in detail.

8.1 Formulation of problem

Deliberate the steady, incompressible and electrically conducting Casson fluid between corru-
gated wall in the curved channel separated by a distance 2H, center at O and radius R’ is
considered. The flow induced in the channel by sine waves with amplitude ¢ in the corrugated

walls of the a channel. The wavy walls are located at

ri» = H +eHsin (A\*z*) and rj» = —H + ¢H sin (A*z") . (8.1)
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where ¢ is small amplitude and \* is wave number. We take magnetic field B* along y*
direction while along the z* direction electric field E* is applied. Along the z* direction, we

take the Lorentz force which is produced by the contact among the magnetic field B* and the
electric field E*.

n
et

(xY)wsHs + H

Fig. (8.1): Geometrical sketch of EMHD

flow in microchannel.

The rheoloigcal equation of Casson fluid is [66]

2(/11/3 —i—py/\/2ﬂ')eij,7r - T
2(,u,5 +py/V21)eij, T < e

- (8.2)

where 7;; is the stress tensor component, 7 is the component of deformation, 7 is critical
value, pg is the plastic dynamics viscosity and py yield stress.

Velocity field expressed as

u* = (0,0, w*(X*, R")).
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For present situation the flow equations are

ow*

_ 4
( ! 0 (R*+R)7 7+ =)+ L Tzex++0on B (" —( )?B*w*)+9(pC)n s (T*—=T77) = 0
fi+ R ORF SRR e T R+ R PPt I =

(8.5)

1 0 . OT* R 92T
E e | = R*+ R . 2 = 0. 8.6
f<R+R*aR*(( * )8R*>+(R+R*) 8X*2>+Q0 (8.6)

In above equations, T represents the temperature and Qg shows heat absorption constant.

(Pnfs Hng> Onfs K ngs Cups (PCp)ny) denotes nanofluid (density, viscosity, electrical conductivity,

thermal conductivity, thermal expansion coefficient, heat capacitance). These constants are

Ky k”nf
hy f = ————55, Onf = —<—, Pt = (1 —P)p, + Pp
nf (1 - @)2’5 ’ nf (‘)Cp)nf ’ nf ( ) f s

(p)ng = (1= @)(pQ)  + ®(pC)s; (PCp)ng = (1 = @)(pCp) s + 2(pCh)s,

kong (K7 +2k"p) —20(K"p — K75) onp 14 (%} - 1)@ (8.7)
k”f (k578+2k77f)_’_CI)(kwf_kws) ) oy - (%+1) _@(%_1). .

Here ps , ps, Cr 5 Css K75, K75, (pCp) s 5 (pCp)s, oy and o5 represents the densities, thermal
expansion coefficients, thermal conductivities, heat capacitance and electrical conductivities
respectively. Suppose along the z* direction channel is open, so we can ignore the pressure

gradient dp/0z* along the microchannel [85] and the velocity w*(z*, y*) satisfies

10 . R R
, R*+R)T7:r* )+~ Tzex++ons B (E*—(= 2B*w*)+ ni(T*=T7) = 0,
G ar V2R )+ g T Ao BB () )+9(pQ)ns (T =17")
(8.8)
where )
_ 1 My ow* 1 My R ow*
Tzr =1+ )— o5 Tooxr =1+ )—= : 8.9
( v py OR* ( 7*)uf R+ R* 0X* (&.9)

where v* = jig\/27:/py.
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The boundary conditions are

w* (X* R%) = 0at RY = H +eHsin (\*X*),

w* (X*,Rj») = 0at Rj» =—H +eHsin(\"X"), (8.10)

T* (X*7R,Zw) == T,wa (X*, R,Zw) at R;‘;w == H “l— €H Sin ()\*X*) 5
or*

k’? nf %

— _B(T*—1T})at R = —H % eH sin (\"X*). (8.11)

By Introducing dimensionless variables

1

(T,x):(R*,X*)’)\:)\*H’w:“L7 k:E’ Ha:B*H(o—f)§7
b ) (0) H]f : S (8.12)
_ g 2 _ T-Tp __glp T, _T» o Q "
p=Eo (ﬁ) /U, 0= Tu”*r}l”’ Gr = %7 ¢ = m

Dimensionless form of equations are

1+ )=+ —— — )+ —(H ——)°H 0=
[y ( +’y*)(8r2 +T+k8r +(’I“+]€) 8x2)+ of ( aﬂ+(r+k) a"w) + (PC) ¢ o =10
(8.13)
020 1 00 k  ,0% E”
i i i =0. 14
o T rakar T GaR) a2 0%, 0 (8:14)
The corresponding non-dimensional conditions are
w=0atr, =1+esin(A\z),
w=0atrp =—1+esin(\x),
1
=1atr,” =1+esin(\z), (8.15)
% + (kiif)é? =0at r” =—-1+esin(A\z).
Ry
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8.2 Solution of Problem:

We use the perturbation approximation by taking ¢ as the small parameter

w(r,z) = wo(r)+ew (r,x)+ 2w (ryx) +

0(r,z) = 6o (r)+eby (r,x)+ %0y (r,z) + ...

(8.16)

(8.17)

Equating the like power of € after using the Eq.(8.16), Eq. (8.17) into Eqs. (8.13) to (8.14),

we get the following systems as

8.2.1 Zeroth order classification

20, 1 dby | K;

-v0 -0
dr? + r+k dr +¢k‘”nf ’
unf 1 d2w0 1 dwo Unf k 2 2 (pg)n
a2 Int (g " ey
uf< +fy*)(dr2 r+k dr)+of( a5+(r+k) aw0)+(p§)f
do B;
bo | r=1=1, dio + % ——00=0]=—1=0,
T ()
K ¢
wo | r=1=0,wp [p=—1=0.
8.2.2 First order classification
%0 1 90 k %0
52 T e T e =0
or r+k Or r+k’ Oz
Hon g 1., 0% 1 Ow ko 50%un Onf, k 9. o (PQ)nf
nfoqe = Inf
uf( 7*)( or2 r+k Or (7’+k:) 8$2) of (r+k:) wit (pC) ¢
01 + sin(Az) (nyo> =0atr=1,
0 d?6 B;
% + Sin()\x)@f + W(éﬁ +sin(Az)fy) =0 at r = —1,
f
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L Groy = 0,

(8.18)

(8.19)

(8.20)

(8.21)

(8.22)

Gro; =0, (8.23)

(8.24)

(8.25)



wi + sin(\z) <CZ‘:)> —0atr=1, (8.26)
d
wy + sin(\z) (;‘;‘)) —0atr=—1. (8.27)

8.2.3 Second order classification

9204 1 86, k0%,
o2 ik TG R o

=0, (8.28)

Ky f 1 82w2 1 Ows k 282102 Onf k 9 2 (pC)nf
— (14— — H Oy =
T ( +7*)< or? +r+k or +(T+k) Ox? ) of (T+k) @t (pC) s G2 =0,
(8.29)
0 + sin(\a) 0L 4 SCO) o _ g (8.30)
2 or 2 dy2 o o ’
0%0y . . 0201  sin?(\z) d0 B; . sin?(A\x)
2 + sin(Az) a2 + 5 0 + (I‘ZJ) (02 £ sin(A\x)6; + 0o) =0 at r=—1,
!
(8.31)
9 1 d?
wo + sin()\:n)% + 5 sin?(\z) <d:;0> =0atr=1, (8.32)
. 8’[01 1 .92 d2w0 _ _
wy £ sin(A\x) <8r> + 5 sin (Ax) (dr2 =0atr=1. (8.33)

Zeroth order solution

Under the boundary conditions the zero-order solution can be expressed as:

1
0o (r) = As + (—§¢(r(2k +7) — 2k*Log(k + r))k” ; + 2A1 Log(k + 7))k" 1) /2K  ny,  (8.34)
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(=Gr(k+r)?ok” ppup(pQ)npo § (1672 (—5k* — 2kr — r? + 8k* Log(k + r))uifafc + 4Ha?
K2(1+ 2) (K — 4kr — 2r% + 10k* Log(k + 1)) iyt 0 gong + k*Ha* (=r(2k +7) + 2
k?Log(k + r))u?caflf) + 4k (16(1 + %*)anaf + k2Ha2,ufanf)(Bl cos(ay Log(k + 7))

wo (y) =
(pC) b1 + Bz sin(ar Log(k +1))(pC) by + (k + )24 (41 + ), o (—Gr(— A1+
As + ArLog(k + 1) (pQ)nyo s — HaB(pC) jons) — k*HaP oy (Gr(As + AiLog(k + 1))
\ ((pOngoy + HaB(pC) pongs))))/ (4(pC) £k npbrb2)
(8.35)
with
_ _kHayErony
ay = ——4——,
(1+77*)'U‘nfo-f
b= (41 + o )ngoy + K Haugo0p)?, (8:36)
by = 16(1 + %)unfcrf + k:QHaQ,ufcrnf.
First order solution
Under the boundary conditions (8.24) to (8.27), we can assume first order solution as
01 (r,z) = sin(A\z) f(r), (8.37)
wy (r,z) = sin(Ax)g(r), (8.38)

where f (1) and g (r) is function of .
Using Eq.(8.37) and (8.38) into Eq.(8.22) to (8.27), we get
PE0) 1 &) K

I e N e A (8:39)

Fing 1, d*g(r) 1 dg(r) k ong, K (PQ)ns _
Tf(l + 5)( a2 + G+r) dr AQ(m)zg (r)) + Tf(r n k)2HaZg () + (PC)f( Grf)(r) =0.
8.40

Correspondingly boundary conditions are transformed as
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dby L dfE(r) | d%6, Bi 4 _
flr) + o Oatr=1, Tt t (k”nf)(f (r) £6p) at r = —1, (8.41)
kﬁf
(r)+M—0atr—l jE(r):l:—dwo—Oa‘cr——l (8.42)
g dr - dr - :

The solution of first order problem can be expressed as

6 1.2 — { sin (\r) (Ci cosh(kALog(k + 1)) +iCy sinb(KALog(k + 7)) 5.1

sin (Az) (C] cosh(kALog(k + r)) + iC4 sinh(kALog(k + 1))
)
sin (Az) (D cosh(agLog(k + r)) + iDy sinh(ag Log(k + 7)) + (Gr(k + T‘)2,uf(pC)nf0f(4(
1+ 2)((C1 — iCakX) cosh(kALog(k + 7)) +i(Cz + iC1k)) sinh(kALog(k + 7))
fin 0 g + k*Ha?(Cy cosh(kALog(k + 7)) + iCy sinh(kALog(k + 7)) i rons))/ ((pC) s
(16(1 + 2 )2(~1 4+ K22)u2 0% — SK2HG(1 + )y, g0 g — K Halpho? )
sin (Az) (D] cosh(agLog(k + r)) + iDjsinh(agLog(k + 7)) 4+ (Gr(k + 1) (pQ)nso (kg
Ha?0,,¢(cosh(kALog(k +7))C} + i sinh(kALog(k + 7))Ch) + 4(1 + %)unfaf(sinh
(EXLog(k + 1)) (—kAC] +iC%) + cosh(kALog(k + 1)) (C] — iC5kN))))/((p¢) r(16
(1+ 7%)2(—1 + /{:2)\2)uif0; — 8k?Ha?(1 + %*)Hfﬂnfafffnf — k4Ha4ufcaif))
(8.44)

wf (r, )

k\/(l + %))\Q,unfaf — Ha?p oy

(1 + %)/Lnfo-f

(8.45)

ag —

Second order solution

The boundary conditions (8.30) to (8.33) can be simplified by applying the solution of first and

second order system. Base on boundary conditions assume the solution as

0F (r,x) = h*(r)+ cos (2 z) k* (1), (8.46)

wi (r,x) = m* (r) + cos (2Az) nt (1), (8.47)
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where h* (r), k* (r), m™* (r) and n* (1) are function of r only.

By employing Eq.(8.46) and Eq.(8.47) into Eq. (8.28) and Eq. (8.33), we get the following

forms
d?h* (r) 1 dh*(r)
pu— .4
p R e 0, (8.48)
d’k* 1 dk* 4Nk?
2(’") r) _ NS (1) =0, (8.49)
dr (k+r) dr (k+1)
[ f 1 d®>m*(r) 1 dm®(r),  onf, k 9, 2 4 (PQnf o+
a4+ = + — (——)*H + Grh = 07
Nf( 7*)< dr? (k+r) dr ) of G/ Ham™ ) ST ")
8.50
Mnf(l i i (d2ni (’l“) 1 dni (7“) B 4( Ak )Qni (T‘)) i %( Hak )2n:|: (7“) + (pC)fzf G?“)k:t(T) =0
fhy Y dr? (k+r7) dr r+k of ‘r+k (pC) ¢ o
(8.51)
The boundary conditions are
1. df 1d%6,
dh® 1, d%f 1d%0, B; 1 1
T =G T as) [y () £ + ) sty =1 (55
Ty
1 (dg 1d?
g (e g) 0w = .
1 d 1d
m (1) + & <id§ -1 di?) —0atr=—1, (8.55)
1(dg 1d?
ni(r>2<djf+2 d:f;“) —Oatr=1, (8.56)
1/, dg 1d?
n* (r) + 3 (idi -3 d;?) =0atr=—1. (8.57)

Second order solution can be evaluated as
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ot { E5 + E1Log(k + ) + cos (2Az) (G cosh(2kALog(k + 7)) + iGa sinh(2kALog(k + 1))),

E} 4+ E{Log(k + 1) + cos (2Az) (G cosh(2kALog(k + r)) + iGY sinh(2kALog(k + 1))),
(8.58)

F1 cosh(ay Log(k + 1)) + Fasinh(ay Log(k + 7)) 4+ (Gr(k + 1) (pQnsop((1 + 7%)
~A(—=E1 + Bz + ErLog(k + 1), g0 — k* Ha?(Ez + E1Log(k + 1)) psons))/((pC) £b1)
+ cos (2Az) (H; cosh(agLog(k + )) + iHa sinh(azLog(k + 7)) + (Gr(k + 7)1 (pC)ng
o5 (4(1 4 5)((G1 — 2iG2kX) cosh(2kALog(k + 7)) + (G + 2iG1kA) sinh(2kALog
(k+ 7))t g0  + K2Ha?(Gy cosh(2kALog(k + 7)) + iGa sinh(2kALog(k + 1)) ) ons)/
N (PO p16(1 + 25)% (=1 + 4k>N*)u 07 — 8K2Ha® (1 + 3¢ )i i g0 pong — k* Ha ,ufan ))
Fi{ cosh(ai1Log(k + 7)) + Fysinh(ai Log(k + 1)) — (G'r’(k +7) 2 (P ngop(4(1 + )
tingo (=1 + Log(k + 1)) By + Ej) + k> Ha?pupon (B Log(k + 1) + Eé)))/((ﬂ()fbl)+
cos (2A\z) (H'1 cosh(azLog(k + r)) 4 iHy sinh(agLog(k + 1)) + (Gr(k + r)*(pQ)n iy
o (isinh(2kALog(k + 7)) (K> Ha® 11705 Gl + 4(1 + )ty 10 (201G RN + G5))+
cosh(2kALog(k + ) (K2Ha2ju;0, G + 4(1 + )Mnfaf((G' — 2GYkN + Gh))))/

((PO)F16(1 + J)2(~1 + 4k2A2)u2 0% — 8K2Ha? <1+ L) gting fong — K*Ha 0% )
(8.59)

with

k\/4(1 + %))\Q,unfaf — Ha?psony
as = . (860)

(1 =+ )Mnfof

Collecting Eqgs.(8.34), (8.35) (8.43) (8.44) (8.58) and (8.59), the approximate velocity and

temperature solution as

0F (r,x) = 0o (1) + €05 (r,x) + €205 (r,x) + ... (8.61)

wE (r,x) = wo (1) + ew? (r,z) 4+ 2wy (r,2) + ... (8.62)

Evaluation of constants have been done by using Mathematica 9.
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8.3 Heat transfer rate

Nusselt number determines convective heat exchange strength. Expresses as [86]

Haquw
Nu = oy
k f(T’U/” - 7—}71)
On upper wall it is defined as
oT*
quw = _k”nfw ’r*:rz,,

From Egs. (8.61) and (8.63), the Nusselt number can be expressed as

Nu =

k" s 00

- k”f E T=Ty»

8.4 Thermophysical properties

The thermophysical properties are

Physical Properties | Water Copper Silver
Cp(J/kgK) 4179 385 235
p(kg/m?) 997.1 8933 10,500
E(W/mK) 0.613 400 429

¢ x10° (1/K) 21.0 1.67 1.89
o(S/m) 5.0x102 | 5.96x107 | 6.3x107
wu(kg/m.see) 8.90x10% | - -

Table (8.1): Thermo physical effects.

8.5 Graphical consequence

(8.63)

(8.64)

(8.65)

In the previous portion, velocity, temperature and Nusselt number have been determined

and results are demonstrated graphically to explore the flow parallel to the wall corruga-

tions. To analyze the impacts of corrugations on the electromagnetically driven flow, the

accompanying typical parametric values are utilized. For microfluidic examination, half height
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of channel is H~100um, the conditions of domain set with physical properties of the water
density p 103kgm ™3, the electrical conductivity ¢72.2 x 107% — 105Sm~"! and the viscosity
p 1073kgm~1sLIf range of magnetic field is the O(B*)~0.018 — 0.44, the valued of order of
Hartmann number O(Ha) using Ha = B*H(o/p)'/? is from 0.0001 to 3. The frequency of
electric field O(w) changes from the 50 to 500s~! and range of the frequency is 0 — 1 x 10%s~1.
The Reynolds number order O(Re) changes from the 0.5 to 5 and the dimensionless parameter

is fixed value i.e. 8 = 5.

8.5.1 Effect of wall roughness on 3D velocity and contour distributions

The three-dimensional velocity and contour distributions for casson parameter v*, when ~* =
0.7, and v* = 1.8 for copper and silver nanoparticles are shown in Figs. 8.2 — 8.5. The wall
roughness can cause changes in the velocity distribution. In Figs. (8.2) and (8.4), the phase
difference between the walls is 0°. In Figs. (8.3) and (8.5), the phase difference between the
walls is 180°. From the Figs. (8.2) to (8.5), we find that the velocity distribution depends on
the shape of channel. Corrugation effect is more prominent for silver nanoparticle as compare

to copper nanoparticle.
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Fig. (8.2): 3D Velocity distribution and contour for v* = 0.7 in phase for copper (a, b) and

silver (¢, d).
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Fig. (8.3): 3D Velocity distribution and contour for v* = 1.8 in phase for copper (a, b) and

silver (¢, d).
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Fig. (8.4): 3D Velocity distribution and contour for v* = 0.7 out phase for copper (a, b) and

silver (¢, d).
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Fig. (8,5): 3D Velocity distribution and contour for v* = 1.8 out phase for copper (a, b) and

silver (¢, d).

8.5.2 Effect of wall roughness on velocity

Impact of silver and copper nanoparticles with the aid of embedded parameters on the charac-

teristics of corrugated curved channel presented in this section through the graphs of velocity.
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The 2D variations of the EMHD velocity w for various embedded parameters like Casson para-
meter (v*), Curvature parameter (k), Grashof number (Gr), Sink parameter (¢), Biot number
(B;) and Nanoparticle volume fraction (®) on velocity as exposed in Figs. 8.6 —8.11. All these
figures illustrated that the velocity profiles attains maximum value at the centre when we take
e =0.1 and § = 5. Fig. (8.6) demonstrates that the velocity w increases for Casson parameter
~* and it is elucidated that velocity plot gives giant altitude for copper as compare to silver
nanoparticles by increasing v*. Fig. (8.7) illustrates the impact of k£ on the EMHD velocity by
increasing k velocity profile increases and increasing effect is more prominent for silver nanopar-
ticle. Fig. (8.8) demonstrates that w increases for various values of Grashof number as a result
of decreasing in viscosity and increase in velocity is more prominent for copper nanoparticle.
Figs. (8.9) shows that the velocity w increases for various observation of the ¢ and effect is
more prominent for silver nanoparticles. Fig. (8.10) illustrates that the impact of B; on the
EMHD velocity and negligible results due to silver and copper nanoparticles on velocity profile.
Fig. (8.11) exhibits the consequence of ® on EMHD velocity and velocity plot declines with

enlarging the value of nanoparticle volume fraction. These results are more prominent in silver

nanoparticles as compare to copper nanoparticle.
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Fig. (8.7): 2D Variation of velocity for Curvature parameter k.
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Fig. (8.8): 2D Variation of velocity for Grashof number.Gr.

Fig. (8.9 ): 2D Variation of velocity for Heat source parameter ¢.
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Fig. (8.10 ): 2D Variation of velocity for Biot number B;.

Fig. (8.11 ): 2D Variation of velocity for Nanoparticle volume fraction ®.
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8.5.3 Effect of wall roughness on temperature

Impact of silver and copper nanoparticles with the aid of embedded parameters on the character-
istics of corrugated curved channel presented in this section through the graphs of temperature.
The 2D variations of the EMHD temperature 6 for various embedded parameters like Biot
number (B;), Sink parameter (¢) and Curvature parameter (k) on temperature as exposed in
Figs. 8.12 — 8.14. Fig. (8.12) shows that profile of temperature increases when the B; are
increase and negligible effect due to silver and copper nanoparticles on temperature profile.
Fig. (8.13) depicts that profile of temperature decreases in the portion [—1, 0] and increases in
the portion [0, 1] when the heat absorption coefficient ¢ are increase. Fig. (8.14) shows that

profile of temperature increases when the Curvature parameter k are increase.

Fig. (8.12 ): 2D Variation of temperature for Biot number B;.
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Fig. (8.13 ): 2D Variation of temperature for Heat source parameter ¢.

/s k:1.5, 2, 3
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Fig. (8.14 ): 2D Variation of temperature for Curvature parameter k.
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8.5.4 Tables Description

In this section, the impact of Nusselt number Nu*=
discussed in the curved channel through corrugated walls. This section expressed the behavior
of Biot number B; on the Nusselt number Nu®. Table 7.2 demonstrates that the Nut declines
with the enlarging value of  and the Nut decreases with the rise of the Biot number B;
for both the copper and silver nanoparticles. Table 7.3 shows that the Nu~ grows with the

enlarging value of z and the Nu~ decreases with the rise of the Biot number B; for both the

copper and silver nanoparticles.

- k,nf

F2nt 6’ (r,) on EMHD flow of Casson fluid

For Nusselt number Nu™

For copper nanoparticle For silver nanoparticle
x Bi=2 | B;=5 B;=7 Bi=2 | B;=5 B, =7
0 7.82735 | 0.116966 | 0.0274677 7.83192 | 0.117007 | 0.0274975
0.1 | 7.71548 | 0.106945 | 0.0209968 7.71994 | 0.106984 | 0.0210261
0.2 | 7.57082 | 0.0971166 | 0.0145824 7.57517 | 0.0971549 | 0.0146112
0.3 | 7.39295 | 0.0875268 | 0.00825245 | 7.39716 | 0.0875641 | 0.00828068
0.4 | 7.18186 | 0.0782175 | 0.00203288 | 7.18593 | 0.0782538 | 0.00206063
0.5 | 6.93802 | 0.0692255 | -0.00405237 | 6.94195 | 0.0692609 | -0.00402508
0.6 | 6.66241 | 0.0605826 | -0.00998156 | 6.66616 | 0.0606172 | -0.00995472
0.7 | 6.35639 | 0.0523158 | -0.0157352 | 6.35996 | 0.0523496 | -0.0157088
0.8 | 6.02181 | 0.0444471 | -0.021296 6.02519 | 0.0444802 | -0.02127
0.9 | 5.66091 | 0.0369935 | -0.0266491 | 5.66409 | 0.0370259 | -0.0266234
1 5.27635 | 0.0299671 | -0.0317816 | 5.27932 | 0.0299989 | -0.0317563

Table (8.2): Effect of Biot number B; on Nusselt number Nu™.
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For Nusselt number Nu~™

For copper nanoparticle For silver nanoparticle

0 4.43789 | 0.0516885 | -0.00860913 | 4.44028 | 0.0517206 | -0.00858331
0.1 | 4.75904 | 0.0527978 | -0.00896355 | 4.76161 | 0.0528303 | -0.00893758
0.2 | 5.0551 | 0.0541474 | -0.00923036 | 5.05783 | 0.0541802 | -0.00920424

0.3 | 5.32406 | 0.00557392 | -0.00940574 | 5.32695 | 0.0557725 | -0.00937944
0.4 | 5.56435 | 0.057572 -0.00948721 | 5.56738 | 0.0576057 | -0.00946072
0.5 | 5.77482 | 0.0596412 | -0.00947363 | 5.77798 | 0.596754 | -0.00944694

0.6 | 5.95476 | 0.0619388 | -0.00936527 | 5.95804 | 0.0619736 | -0.00933836
0.7 | 6.1039 | 0.0644537 | -0.00916373 | 6.10729 | 0.064489 | -0.00913659
0.8 | 6.2224 | 0.0671714 | -0.00887193 | 6.22588 | 0.0672074 | -0.00884456

0.9 | 6.31082 | 0.0700746 | -0.00849407 | 6.31439 | 0.0701113 | -0.00846645

1 | 6.37014 | 0.0731433 | -0.00803552 | 6.37378 | 0.0731806 | -0.00800764
Table (8.2): Effect of Biot number B; on Nusselt number Nu™.

8.6 Deduction

The impact of nanoparticles on EMHD flow with corrugated walls in microchannel is discussed.

The main observations from this theoretical analysis is concise as follows,

e Velocity plot increases for Casson parameter ,and it is elucidated that velocity plot gives

giant altitude for copper as compare to silver nanoparticles by enlarging v*.

e The velocity plot increases by enlarging k£ and effect is more prominent for silver nanopar-

ticle.
e The velocity increases for Grashof number and and heat absorption coefficient.

e Temperature profile increases when the B; are increase and negligible effect due to silver

and copper nanoparticles on temperature profile.
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The profile of temperature declines in the portion [—1, 0] and increases in the portion [0,

1] when the heat absorption coefficient ¢ are increase.
Temperature increases when the Curvature parameter increases.

Nusselt number Nu™ declines with the increasing value of x and decreases with the raise

of the Biot number B; for both the copper and silver nanoparticles.

Nusselt number Nu~ increases with the increasing value of z and the Nusselt number
Nu~ decreases with the raise of the Biot number B; for both the copper and silver

nanoparticles.
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