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Abstract

Fuzzy Riesz Space is an attempt to study vector spaces with a fuzzy order for more com-

plicated scenarios. In this dissertation, we study the fuzzy order convergence, fuzzy Riesz

homomorphisms, and fuzzy order continuous positive operator, which help to prove the exis-

tence of fuzzy Dedekind completion of Archimedean fuzzy Riesz spaces. Theory of the fuzzy

Riesz space of all fuzzy order bounded linear operators are investigated. We define and study

unbounded fuzzy order convergence and some of its applications. Furthermore, study the

fuzzy norms compatible with fuzzy ordering (fuzzy normed Riesz space) and discuss the rela-

tionship between the fuzzy order dual and topological dual of a locally convex solid fuzzy Riesz

space. Besides, we throw light on the unbounded fuzzy norm convergence and its applications

in fuzzy Banach lattice, which is topological.
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Chapter 1

Introduction

One can marvel at the complexities of real-life that cannot be modeled with perfection. In

an attempt to handle vague and imprecise scenarios, Zadeh gave the notion of fuzzy set [65].

Since then, the fuzzy set theory has been developed enormously and with many applications.

Many classical structures like topological spaces, metric spaces, and norm spaces have been

designed in the fuzzy framework. Chang and Michalek [16, 45] defined and characterized

the basic theory of fuzzy topological spaces. Warren [58] formalized many concepts in fuzzy

topological spaces like neighbourhood, continuity, and bases. Lawn [41, 42] defined and

studied the fuzzy compactness and connectedness in fuzzy topological spaces. Seenivasan and

Kamala [53] proposed and investigated the theory of fuzzy e-continuity and fuzzy e-open sets.

Vadivela and Vijayalakshmib [55] studied and characterized the fuzzy ∧e sets and continuity

in fuzzy topological spaces. Authors in [50] investigated the theory of a new pairwise fuzzy

topology through a fuzzy ideal.

In a series of papers, Katsaras and Liu [36, 37, 38] defined fuzzy vector spaces, fuzzy

topological vector spaces and proved many related results. Amudhambigaia and Madhuria

[6] defined and studied fuzzy irresolute topological vector spaces. The notion of fuzzy metric

space was first proposed in [40]. Then Gregori et al. [24, 25] studied the convergence criteria

in fuzzy metric spaces. George and Veeramani [23] gave several theocratical concepts in
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fuzzy metric spaces. Kaleva and Seikkala [34] investigated the fuzzy metric spaces in detail.

Katsaras [38] defined a fuzzy norm in fuzzy vector spaces. After that, Felbin [21] further

developed the structure of fuzzy normed space. Saadati and Vaezpour [54] investigated the

theory of fuzzy Banach spaces. Cheng and Mordeson [17] developed the theory of a fuzzy

linear operator. The completeness of the fuzzy norm space of linear operators is discussed by

Xaio and Zhu [61]. Then, Bag and Samanta [7, 8] defined and studied the notion of a fuzzy

bounded linear operator and observed a type of convergence of sequence in fuzzy normed

linear spaces. Moradi [47] characterized the complete fuzzy normed spaces. Rano and Bag

[51] redefined fuzzy normed linear space. Since then, many authors have done more work on

these structures.

The ordering of objects is much more important in many problems, to handle the situations

where it is not easy to determine the relative position of an object, fuzzy ordering, and fuzzy

ordered sets are defined by Venugopalan [56] and Zadeh [64]. Chon [18] further developed

the notions of fuzzy partial order relations and fuzzy lattices. Xie et al. [62] introduced the

theory of the Dedekind–MacNeille completions for fuzzy posets. Yuan and Wu [60] proposed

and studied the notion of fuzzy ideals and sublattices in fuzzy lattices. Ajmal and Thomas

[2] explored fuzzy lattices with an algebraic point of view and gave a characterization of

fuzzy sublattices. Bodenhofer [15] defined similarity-based fuzzy ordering and worked on its

representation. Amroune et al. [5] investigated the notions of fuzzy t-filters, fuzzy prime

t-filters, and defined fuzzy lattice isomorphism. Davvaz and Kazanci [19, 35] defined a new

kind of fuzzy-sublattices (ideal, filter) and characterized lattices in many classes by using their

properties. Kadji et al. [33] investigated the theory of L-fuzzy filter, L-fuzzy prime filter for

giving residuated lattice M and lattice L. Konecny and Krupka [39] studied the complete fuzzy

lattices, residuated lattice valued ordered sets and proved many essential results. Yang [59]

discussed fuzzy weak regular, strong, and preassociative filters in residuated lattices. In [48]

Panneerselvam and Jayadevi investigated the notion of anti monotonic P-fuzzy G– distributive

lattices. Micić et al. [46] devised practical ways to compute the greatest right invariant fuzzy
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quasi-order, greatest right, and left-invariant fuzzy equivalences for fuzzy automaton.

Beg and Islam [9] initiated to study vector spaces with fuzzy ordering and come up with the

notion of fuzzy Riesz space [10, 11]. In continuation, Beg [12, 13, 14] defined and characterized

the notion of the fuzzy positive operator and discussed the properties of fuzzy order relations.

Hong [26] defined and studied fuzzy Riesz subspaces in detail. Park et al. [49] gave the

concept of Riesz fuzzy normed spaces. Recently, Kadhim [32] discussed the concept of fuzzy

statistical (O)-convergence in fuzzy Riesz space. The precise details of the fuzzy set theory

and classical Riesz spaces can be found in [52, 66] and [1, 3, 4, 20, 22, 27, 44, 57], respectively.

In this dissertation, we study fuzzy Riesz space in many directions. We define several

theoretical concepts and prove many essential results, thus significantly contributing to the

existing theory of fuzzy Riesz space. The details of our findings are given below.

• In Chapter 3 we prove the existence of fuzzy Dedekind completion of an Archimedean

fuzzy Riesz space. Consider (K,φ) is a fuzzy Riesz space with K a vector space and φ a

fuzzy partial order on K. Our idea is to construct a vector space Kδ with fuzzy partial

order ψ based on (K,φ) in a way that (Kδ, ψ) is fuzzy Dedekind complete. Then, a one

to one positive linear map P : K → Kδ is constructed, which preserves the lattice and

algebraic structures of K that coincides with subspace lattice structure P (K) inherits

from Kδ. Furthermore, P (K) is somehow dense in Kδ. However, the existing theory

was not adequate to implement this plan, as its many parts do not make sense in the

existing literature. Therefore, many new concepts are needed to be defined. For fuzzy

Riesz subspace, the notions of fuzzy order dense, fuzzy majorizing, and fuzzy regular-

ness are defined and studied in collaboration with fuzzy order convergence. The fuzzy

order convergence of a net in a fuzzy Riesz space is another important concept closely

related to fuzzy Dedekind completeness. Still, there is a certain defect in its definition.

Therefore, it is redefined and studied in depth. For fuzzy positive operator between two

fuzzy Riesz spaces, the notions of fuzzy order continuity, fuzzy boundedness, fuzzy Riesz

homomorphisms, and isomorphisms are proposed and characterized nicely for practical
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uses.

• In Chapter 4 we study the space of all fuzzy order bounded positive linear operators

denoted by Lb(K,H). We show that it is fuzzy Dedekind complete when (H,µ) is

fuzzy Dedekind complete by defining suitable fuzzy lattice operations. The set of all

fuzzy order (σ-order) continuous bounded linear operators denoted Ln(K,H)(Lc(K,H))

are showed to be fuzzy bands of Lb(K,H) when H is fuzzy Dedekind complete and

Ln(K,H) ⊆ Lc(K,H). As a special case, we also study other related concepts like

separation properties, fuzzy order continuous dual, and σ−fuzzy order continuous dual

on K.

• In Chapter 5, to handle the imprecise and vague scenarios more effectively, we propose a

novel concept unbounded fuzzy order convergence to deal with unbounded fuzzy ordered

nets. Then, an in-depth theoretical investigation is done to study its various properties.

However, it is much harder to determine the unbounded fuzzy order convergence of a

given net in several practical scenarios. To resolve this issue, the notion of the fuzzy

weak order unit is proposed to reduce the labour of checking unbounded fuzzy order

convergence. Thus, unbounded fuzzy order convergence is nicely characterized in fuzzy

Dedekind complete Riesz spaces. To further develop the theory for practical use, the

completeness of a fuzzy Riesz space is also explored with respect to unbounded fuzzy or-

der convergence. For this purpose, we study the fuzzy ideals and fuzzy bands connected

with fuzzy order convergence, and some results are given in the end as applications.

• In Chapter 6, we study the fuzzy normed Riesz space, which is an experiment to inves-

tigate vector space with fuzzy ordering and a compatible fuzzy norm. We prove several

results and investigate fuzzy Banach lattices (complete fuzzy normed Riesz space). Also,

we study the connections between the topological structure and fuzzy lattice structure of

a fuzzy Riesz space, when the induced topology of the fuzzy norm is locally convex-solid.

We show that topological dual is a fuzzy ideal in the fuzzy order dual. Furthermore, to
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deal with unbounded nets, we define a novel notion unbounded fuzzy norm convergence

in a fuzzy Banach lattice and investigate its various properties. Unbounded fuzzy order

convergence implies unbounded fuzzy norm convergence when a fuzzy norm is order

continuous and for fuzzy norm bounded nets both notions unbounded fuzzy norm con-

vergence and fuzzy norm convergence coincides. We define the notion of a fuzzy quasi

interior point to ease the practical checking of unbounded fuzzy norm convergence. Be-

sides, every disjoint sequence is unbounded fuzzy order convergent to zero, but this fact

is not valid for unbounded fuzzy norm convergence. However, any sequence which is

unbounded norm convergent to zero has an asymptotically disjoint subsequence. Lastly,

we work with the topological aspect of unbounded fuzzy order convergence. We know

unbounded fuzzy order convergence is not topological, but the same is not true for

unbounded fuzzy order convergence and we can construct its compatible topology.

The results of Chapter 3 and Chapter 5 are reported in [29] and [28], respectively. Whereas,

the remaining work is currently submitted to well-reputed international journals, see the

preprints [30, 31].

5



Chapter 2

Basics concepts

We present here some basic concepts about fuzzy Riesz spaces, which is a vector space compat-

ible with fuzzy ordering. Since these spaces have several structures on them, and we provide

a brief overview of the background material. We recall some basic concepts and advise reader

to consult them for further explanation if needed [9, 13, 16, 21, 26, 28, 37, 38, 41, 43, 54, 57].

We start by reviewing the theory of a fuzzy ordered set.

2.1 Fuzzy order set

Definition 2.1.1. A fuzzy subset C of K is characterized through a membership function

φC : K → [0, 1], which corresponds with every point k ∈ K its grade or degree of membership

φC(k) ∈ [0, 1]. If φC(k) closer to one higher the degree of membership of k in C.

Definition 2.1.2. A fuzzy order φ on a set K is a fuzzy set on K×K with the understanding

that k precedes g iff φ(k, g) > 1/2 for k, g ∈ K and the following conditions are also satisfied:

(i) ∀ k ∈ K φ(k, k) = 1 (reflexivity);

(ii) for k, g ∈ K φ(k, g) + φ(g, k) > 1 implies k = g (antisymmetric);

(iii) for k, h ∈ K φ(k, h) ≥
∨
g∈K [φ(k, g) ∧ φ(g, h)](transitivity).
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The space (K,φ) is called fuzzy ordered set (FOS).

Let (K,φ) be an FOS, for k ∈ K two related fuzzy sets ↑ k and ↓ k are known as

(↑ k)(g) = φ(k, g) and (↓ k)(g) = φ(g, k) for g ∈ K, respectively.

Definition 2.1.3. Let (K,φ) be an FOS. For C ⊆ K, then two fuzzy sets U(C) and L(C)

are defined as follows.

U(C)(g) =

0 if (↑ k)(g) ≤ 1/2 for some k ∈ C;

(∩k∈C ↑ k)(g) otherwise.

L(C)(g) =

0 if (↓ k)(g) ≤ 1/2 for some k ∈ C;

(∩k∈C ↓ k)(g) otherwise.

Let (C)u denotes the set of all upper bounds of C and k ∈ (C)u if U(C)(k) > 0. Analogously,

(C)l denotes the set of all lower bounds and k ∈ (C)l if L(C)(k) > 0. Also, d ∈ K is known

as the supremum of C in K if (i) d ∈ (C)u (ii) g ∈ (C)u implies g ∈ (d)u. The infimum

is defined analogously. A subset C is said to be fuzzy order bounded if (C)u and (C)l are

non-empty. For C ⊆ K, (C)u denotes (suppC)u, where C = {k ∈ K;φC(k) > 0} is said to

be the support of C. Analogously, (C)l denotes (suppC)l.

Proposition 2.1.4. If C is a subset of FOS K then inf C(supC), if it exists is unique.

The notations k ∨ g = sup{k, g} and k ∧ g = inf{k, g}.

Proposition 2.1.5. If K is a FOS then the following identities hold,

(i) g ∧ g = g and g ∨ g = g (idempotent).

(ii) k ∧ g = g ∧ k and k ∨ g = g ∨ k (commutative).

(iii) k ∧ (k ∨ g) = k ∨ (k ∧ g) (absorption).

(iv) φ(k, g) > 1/2 iff k ∧ k = k and k ∨ k = g

7



2.2 Fuzzy order linear space

Definition 2.2.1. A real vector space K with fuzzy order φ is known as fuzzy ordered vector

space (FOVS) if φ satisfies:

(i) for k, g ∈ K if φ(k, g) > 1/2 then φ(k, g) ≤ φ(k + h, g + h) for all h ∈ K;

(ii) for k, g ∈ K if φ(k, g) > 1/2 then φ(k, g) ≤ φ(λk, λg) for all 0 ≤ λ ∈ R;

For k ∈ K is known as positive if φ(0, k) > 1/2, and negative if φ(k, 0) > 1/2. Also K+

as set of all positive elements in K, i.e. K+ = {k ∈ K : φ(0, k) > 1/2} is referred to as

the fuzzy positive cone. C ⊆ K is called directed upwards if for each finite subset D of C we

have C ∩ (D)u 6= ∅. The directed downwards set is defined analogously. Furthermore, for a

net (kλ)λ∈Λ kλ ↑ k reads as the net (kλ) is directed upwards to k i.e. for λ0 ≤ λ we have

φ(kλ0 , kλ) > 1/2 and sup{kλ} = k. kλ ↓ k is defined analogously.

It is observed that from Definition 2.2.1, if φ(k1, k2) > 1/2 and φ(k3, k4) > 1/2 then

φ(k1 + k3, k2 + k4) > 1/2. Now some identities are presented in the following proposition.

Proposition 2.2.2. Let K be an FOVS, k, k1, k2 ∈ K and λ, γ real numbers then:

(i) if k1 and k2 are positive then their sum k1 + k2 is also positive.

(ii) if k is positive and λ ≥ 0 then λk is too;

(iii) φ(k1, k2) > 1/2 and λ ≤ 0 then φ(λk2, λk1) > 1/2;

(iv) φ(k1, k2) > 1/2 and λ ≤ γ then φ(λk1, γk2) > 1/2.

Proposition 2.2.3. Let {kλ}λ∈Λ be a system of elements in a FOVS. If the element
∨
λ∈Λ kλ

exists then
∧
λ∈Λ(−kλ) too, and the following equality holds

∨
λ∈Λ

kλ = −
∧
λ∈Λ

(−kλ).
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Proposition 2.2.4. Let {kλ}λ∈Λ and {gλ}γ∈Γ be two systems of elements in a FOVS. If∨
λ∈Λ kλ and

∨
γ∈Γ gγ exist then

∨
λ∈Λ,γ∈Γ(kλ + gγ) exists too, and the following equality holds

∨
λ∈Λ,γ∈Γ

(kλ + gγ) =
∨
λ∈Λ

kλ +
∨
γ∈Γ

gγ.

Definition 2.2.5. An FOVS (K,φ) is said to be Archimedean if φ(nk, g) > 1/2 for all n ∈ N

implies that φ(k, 0) > 1/2 for all k, g ∈ K. Therefore, { k
n
} ↓ 0 and {nk} is unbounded from

above for all 0 6= k ∈ K+.

2.3 Fuzzy Riesz space

Definition 2.3.1. An FOVS (K,φ) is said to be fuzzy Riesz space (FRS) if k ∨ g and k ∧ g

exist in K for all k, g ∈ K.

Definition 2.3.2. An FRS (K,φ) is called:

(i) fuzzy order complete if each non-empty subset of K has a supremum and infimum in

K;

(ii) fuzzy σ− order complete if each nonempty countable subset of K has a supremum and

infimum in K;

(iii) fuzzy Dedekind complete if each non-empty subset of K which is bounded from above

has a supremum in K;

(iv) fuzzy σ− Dedekind complete if each nonempty countable subset of K which is bounded

from above has a supremum in K.

Remark 2.3.3. The notion of order completeness and Dedekind completeness is considered

to be the same by some authors, see [3, 4]. However, we follow the approach of Zaanen [66]

and differentiate between these terms as defined above. We write Dedekind complete FRS.
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Lemma 2.3.4. If (K,φ) is a Dedekind complete FRS then K is fuzzy Archimedean.

For k ∈ K, k+ = k∨ 0 and k− = (−k)∨ 0 are defined to be the positive and negative part

of k, respectively, whereas the absolute value of k is known as |k| = (−k) ∨ k. Furthermore,

for C ⊆ K one can easily prove that:

i. k + supC = sup(k + C);

ii. k + inf C = inf(k + C).

Proposition 2.3.5. If k and g are elements of an FRS (K,φ), then

(i) k = k+ − k−;

(ii) k+ ∧ k− = 0;

(iii) |k| = k+ + k−;

(iv) |k| = 0⇔ k = 0;

(v) k + g = k ∨ g + k ∧ g.

Theorem 2.3.6. If k, h ∈ K and real number λ ≥ 0 then following hold:

(i) φ((k + h)−, k− + h−) > 1/2;

(ii) φ((k + h)+, k+ + h+) > 1/2;

(iii) (λk)+ = λk+;

(iv) (λk)− = λk−.

Theorem 2.3.7. Let (K,φ) be an FRS. Then following properties are satisfied:

(i) φ(|k + g|, |k|+ |g|) > 1/2;

(ii) φ(|k| − |g|, |k − g|) > 1/2;

10



(iii) |λk| = |λ||k|;

(iv) |k − g| = k ∨ g − k ∧ g.

The decomposition property of an FRS can be seen in the upcoming theorem.

Theorem 2.3.8. If φ(|k|, |g1 + ... + gn|) > 1/2 in an FRS (K,φ) then there exist k1, ..., kn

satisfying k = k1, ..., kn and φ(ki, gi) > 1/2 for each i = 1, ..., n. Furthermore, for positive k,

ki are also positive.

Let k1, k2 ∈ K are called orthogonal or disjoint if k1 ∧ k2 = 0 and written as k1⊥k2.

Also, for C1, C2 ⊂ K are called disjoint and denoted by C1 ⊥ C2 if k1 ⊥ k2 = 0 for each

k1 ∈ C1 and k2 ∈ C2. Moreover, if ∅ 6= C ⊆ K, then its disjoint complement is defined as

Cd = {k ∈ K : k ⊥ g for each g ∈ C}. Notation Cdd represents the disjoint complement of

Cd.

Theorem 2.3.9. If k ⊥ g then:

(i) (k + g)+ = k+ + g+;

(ii) (k + g)− = k− + g−;

(iii) |k + g| = |k|+ |g|.

Let (K,φ) be an FRS and k, g ∈ K with φ(k, g) > 1/2. Then the fuzzy order interval

[k, g] ⊆ K is given by

[k, g] = {h ∈ K : φ(k, h) > 1/2 and φ(h, g) > 1/2}.

A fuzzy positive operator, P between two FRSs, is a linear map P : K → H such that

P (k) ∈ H+ for all k ∈ K+.

Lemma 2.3.10. If P is an additive fuzzy positive operator between an FRS (K,φ) and

Archimedean FRS (H,µ) then P is homogeneous.
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Lemma 2.3.11. If P : K+ → H is a fuzzy positive operator with H is a vector space,

satisfying P (k+ g) = P (k) +P (g) for each k, g ∈ K+ then P extends uniquely to an additive

positive operator V : K → H. Furthermore,

V (k) = P (k+)− P (k−)

for k ∈ K.

2.3.1 Fuzzy Riesz subspaces

A vector subspace L of an FRS (K,φ) is known as fuzzy Riesz subspace if L is closed under

the fuzzy Riesz operations ∨ and ∧.

Definition 2.3.12. A net (kλ)λ∈Λ in an FRS (K,φ) is known as fuzzy order convergent to

k ∈ K denoted kλ
fo−→ k if there exists another net (gλ)λ∈Λ in K+ directed downwards to zero

such that φ(|kλ − k|, gλ) > 1/2 for each λ ∈ Λ.

Definition 2.3.13. Let (K,φ) be an FRS.

(i) A subset C of K is said to be fuzzy order closed (fo-closed for short), if for any net

(kλ)λ∈Λ ⊂ C and k ∈ K with kλ
fo−→ k in K implies k ∈ C.

(ii) A subset C of K is said to be σ-fuzzy order closed , if for any net (kn)n∈N ⊂ C and

k ∈ K with kλ
fo−→ k in K implies k ∈ C.

(iii) A subset S of K is called fuzzy solid if φ(|k|, |g|) > 1/2 and g ∈ S implies k ∈ S.

(iv) A fuzzy solid vector subspace is called a fuzzy ideal of K.

(v) A fuzzy order closed ideal in K is said to be a fuzzy band.

Suppose C is a subset of an FRS (K,φ). IC is the smallest fuzzy ideal generated by C. If

a vector k ∈ K generates a fuzzy ideal denoted Ik is called the principal fuzzy ideal.
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Theorem 2.3.14. Let (K,φ) be an FRS and C ⊆ K. Then there exists a unique IC that can

be described as

IC = {k ∈ K∃k1, ..., km and α ≥ 0 such that φ(|k|, α
m∑
j=1

|kj|) > 1/2}.

Corollary 2.3.15. If (K,φ) is an FRS and k ∈ K then fuzzy ideal generated by k is described

as

Ik = {g ∈ K and α ≥ 0 such that φ(|g|, α|k|) > 1/2}.

Theorem 2.3.16. Let (K,φ) be an FRS and C ⊆ K. Then following statements are true:

(i) C ⊂ Cdd;

(ii) Cd = Cddd;

(iii) Cd ∩ Cdd = {0};

(iv) If Cd = {0} then Cdd = K;

(v) Cd is a fuzzy ideal of K.

2.4 Fuzzy normed spaces

Definition 2.4.1. Consider a vector space K over a field F and ? a continuous t-norm on

[0, 1]. A fuzzy norm on K is a mapping N : K × (0,∞) → [0, 1] if for each k, g ∈ K and

λ ∈ F :

(i) for each t ∈ (0,∞) with t > 0,N(k, t) = 1⇔ k = 0;

(ii) for each t ∈ (0,∞) with t > 0, N(λk, t) = N(k, t
λ
);

(iii) for each t, s ∈ (0,∞) with t ≥ 0, N(k, t) ? N(g, s) ≤ N(k + g, t+ s);
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(iv) N(k, .) : (0,∞)→ [0, 1] is continuous;

(v) limt→∞N(k, t) = 1;

for each k, g ∈ K and t, s > 0. The triple (K,N, ?) is called fuzzy norm space.

Definition 2.4.2. A sequence (kn)n∈N in a fuzzy norm space is said to be:

(i) convergent to k ∈ K denoted kn
fn−→ k if for each α ∈ (0, 1) and s > 0, ∃ n0 ∈ N such

that

N(kn − k, s) > 1− α

for each n > n0.

(ii) fuzzy cauchy if for each α ∈ (0, 1) and s > 0, ∃ n0 ∈ N such that

N(kn − km, s) > 1− α

for each n,m > n0.

2.4.1 Fuzzy topological spaces

Definition 2.4.3. A family τ of fuzzy sets of K is known as fuzzy topology if

(i) τ contain all constant fuzzy sets in K;

(ii) for {Ci}i∈∆ ∈ τ we have supi∈∆ Ci ∈ τ ;

(iii) if C,D ∈ τ then C ∧D ∈ τ .

The pair (K, τ) is said to be fuzzy topological space (FTS).

A fuzzy set C in (K, τ) is a neighborhood of a point k ∈ K iff N ≤ C and N(k) = C(k) > 0

for N ∈ τ . A map U from a FTS K to a FTS H is called continuous at some k ∈ K if U−1(N)

is a neighborhood of k in K for each neighborhood N of U(k) in H. A net (kλ)λ∈Λ in a FTS
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(K, τ) converges to a point k denoted kλ
fτ−→ k if given a neighborhood N of k, there exists a

λ0 ∈ Λ such that kλ ∈ N whenever λ ≥ λ0.

A fuzzy set C ⊆ K is called convex if αC + (1− α)C ≤ C for each α ∈ [0, 1], balanced if

αC ≤ C for each scalar α with |α| ≤ 1 and absorbing if supα>0 αC = 1.

Definition 2.4.4. A fuzzy topology τ on a vector space K over field R is a fuzzy linear

topology if the two mappings

(i) + : K ×K → K, (k, g) 7→ k + g;

(ii) · : R×K → K, (k, g) 7→ λk.

are continuous when R×K, K ×K the corresponding product fuzzy topologies and R has the

usual fuzzy topology. The pair (K, τ) is called fuzzy topological vector space.
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Chapter 3

The existence of fuzzy Dedekind

completion of Archimedean fuzzy

Riesz space

Completeness plays an essential role in fuzzy metric space, fuzzy norm space, and fuzzy inner

product space. Therefore, it is essential to question whether or not the fuzzy Dedekind com-

pletion of incomplete fuzzy Riesz space exists? To address this issue, we prove the existence

of fuzzy Dedekind completion of Archimedean fuzzy Riesz spaces.

3.1 Fuzzy order convergence

Although the notion of fuzzy order convergence is a central tool in studying fuzzy Riesz spaces,

the Definition 2.3.12 given in [9, 26] has some limitations that cannot truly fulfill the concept

of convergence. Intuitively if we add some terms at the start of the net then the convergence

should not change. The following example illustrates our point.

Example 3.1.1. Let (K,µ) be an Archimedean FRS. Then for k ∈ K+ the net { k
n
} ↓ 0.

Therefore, k
n

fo−→ 0 according to Definition 5.0.1. On the other hand, negative integers are
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added and placed between 1 and 2 in the index set. Thus the new index set is denoted as

Λ = {1,−1,−2,−3, ..., 2, 3, 4, ...}.

The extended net (gn) is defined as

gn =


k, if n = 1

|n|k, if n ∈ −N;

k
n
, otherwise.

Clearly, (gn) is not fuzzy order convergent to zero according to the Definition 5.0.1.

This deficiency is pointed out in [1] for the classical order convergence. Therefore, a new

definition is proposed in [28] to overcome this issue, given as follows.

Definition 3.1.2. A net (kλ)λ∈Λ in an FRS (K,µ) is known as fuzzy order convergent to

k ∈ K denoted kλ
fo−→ k if there exists another net (gγ)γ∈Γ in K+ directed downwards to zero

and for each γ ∈ Γ there exist λ0 ∈ Λ such that µ(|kλ − k|, gγ) > 1/2 whenever λ ≥ λ0.

One can check that the extended net in Example 3.1.1 is fuzzy order convergent to zero

according to Definition 3.1.2. Clearly, Definition 2.3.12 implies Definition 3.1.2 and many

proven results for Definition 2.3.12 also hold for Definition 3.1.2 with analogous proofs given

in [9, 12, 26]. The next theorem has the same proof as in [10, 26] according to definition 3.1.2.

Theorem 3.1.3. If (kλ)λ∈Λ and (gγ)γ∈Γ are nets in an FRS (K,φ) then the following state-

ments are true:

(i) the fuzzy order limit is unique;

(ii) every fuzzy order convergent net is fuzzy order bounded;

(iii) if kλ ↑ (kλ ↓) then kλ
fo−→ k iff kλ ↑ k (kλ ↓ k);
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(iv) if kλ
fo−→ k then k+

λ

fo−→ k, k−λ
fo−→ k and |kλ|

fo−→ |k|;

(v) if kλ
fo−→ k then any subnet of kλ is fuzzy order convergent to k;

(vi) if kλ
fo−→ k and gγ

fo−→ g then kλ ∨ gγ
fo−→ k ∨ g and kλ ∧ gγ

fo−→ k ∧ g;

(vii) if kλ
fo−→ k and gγ

fo−→ g then akλ + bgγ
fo−→ ak + bg for each a, b ∈ R.

Now we characterized fuzzy Dedekind complete FRS in terms of fuzzy order convergence.

Proposition 3.1.4. An FRS (K,φ) is fuzzy Dedekind complete if and only if for every in-

creasing net (kλ) in K+, (kλ)
u 6= ∅ there exists some h ∈ K such that kλ ↑ h i.e. kλ

fo−→ h.

Proof. The forward implication is obvious. Conversely, take ∅ 6= C ⊆ K which is bounded

above. Without loss, we assume that C admits supremum of its finite elements. Take k ∈ C,

consider the set C1 = {k ∨ g : g ∈ C}, then (C1)u = (C)u 6= ∅ and C1 is directed upward.

Therefore, it is sufficient to show that supremum of C1 exists. Define C2 = {j − k : j ∈ C1}

then C2 ⊆ K+ and also it is directed upward so we can consider it as a net (j − k)(j−k)∈C2 ,

which is increasing and bounded above. Thus, by hypothesis there is some h with (j− k) ↑ h

i.e. sup(j − k) = h. Whereas, h = sup(C2) = sup(C1)− k, hence sup(C) = h+ k exits.

Remark 3.1.5. Let (K,φ) be a Dedekind complete FRS with (kλ)λ∈Λ a fuzzy order bounded

net. Then kλ
fo−→ k iff k = lim supλ(kλ) = lim infλ(kλ).

The rest of this section is dedicated to develop the basic notions and prove detailed results

that will be applied in Section 3.4 to define fuzzy Dedekind completion and prove its existence.

In this regard, many important notions for fuzzy Riesz subspaces are defined and studied in

detail.

Definition 3.1.6. A fuzzy Riesz subspace L of an FRS (K,φ) is said to be:

(i) fuzzy order dense if (k)l ∩ L+ − {0} 6= ∅ for 0 6= k ∈ K+;

(ii) fuzzy majorizing if (k)u ∩ L+ 6= ∅ for 0 6= k ∈ K+;
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(iii) fuzzy dense with respect to the fuzzy order convergence if every vector of K is a fuzzy

order limit of a net in L;

(iv) fuzzy regular for A ⊆ L, inf A is same in K and L whenever inf A exists in L.

One can easily prove the following simple proposition.

Proposition 3.1.7. Let L be a fuzzy Riesz subspace of an FRS (K,φ). Then following

statements are equivalent:

(i) L is a fuzzy regular Riesz subspace of K;

(ii) if kλ ↓ 0 in L, then kλ ↓ 0 in K;

(iii) if kλ
fo−→ k in L, then kλ

fo−→ k in K.

The relationship between fuzzy regular and fuzzy order dense Riesz subspace is discussed

in the following result.

Proposition 3.1.8. Every fuzzy order dense Riesz subspace L of an FRS (K,φ) is fuzzy

regular.

Proof. Take a net gλ ↓ 0 in L. Suppose on the contrary that (gλ)λ∈Λ is not directed downwards

to zero in K then there exists some 0 6= k ∈ K+ with φ(k, gλ) > 1/2 for all λ. Since L is

fuzzy order dense, there exists 0 6= g ∈ L+ such that φ(g, k) > 1/2. Thus φ(g, gλ) > 1/2 in L

for all λ, a contradiction. Hence by the Proposition 3.1.7 L is fuzzy regular.

The following result characterizes fuzzy order denseness and majorizingness for the Archimedean

FRS (k, φ).

Theorem 3.1.9. Let L be a fuzzy Riesz subspace of an Archimedean FRS (K,φ). Then

following statements are true:

(i) L is fuzzy order dense iff k = sup{g ∈ L+ : φ(g, k) > 1/2} holds for each k ∈ K+.
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(ii) L is fuzzy majorizing iff k = inf{g ∈ L+ : φ(k, g) > 1/2} holds for each k ∈ K+.

Proof. (i): If k = sup{g ∈ L+ : φ(g, k) > 1/2} holds for all k ∈ K+, then clearly L is fuzzy

order dense in K.

Conversely, let L is fuzzy order dense, so the set {g ∈ L+ : φ(g, k) > 1/2} 6= ∅ for each

k in K+. Assume that there is some k ∈ K+ such that k 6= sup{g ∈ L+ : φ(g, k) > 1/2}.

Therefore, there exists u ∈ K+ with u 6= k, φ(u, k) > 1/2 and whenever φ(g, k) > 1/2 for

g ∈ L+ we have φ(g, u) > 1/2. Since L is fuzzy order dense in K, so there exists 0 6= d ∈ L+

with φ(d, k − u) > 1/2, by transitivity φ(d, k) > 1/2 and hence φ(d, u) > 1/2. Therefore,

φ(2d = d + d, k − u + u) > 1/2, by induction φ(nd, k) > 1/2 for each n ∈ N, a contradiction

to the fuzzy Archimedean property.

(ii): If k = inf{g ∈ L+ : φ(k, g) > 1/2} for each k ∈ K+, then clearly L is fuzzy majorizing.

Conversely, let L be fuzzy majorizing. Then, the set C := {g ∈ L+ : φ(k, g) > 1/2} 6= ∅,

so there exists u ∈ L+ with φ(k, u) > 1/2 and [k, u] ∩ L+ ⊆ C. Thus,

inf
{

[k, u] ∩ L+
}

= u− sup
{

[0, u− k] ∩ L+
}
,

= u− (u− k) = k.

Hence, inf C = k.

Fuzzy order convergence in FRS (K,φ) does not imply fuzzy order convergence in its fuzzy

Riesz subspaces unless the fuzzy Riesz subspace is fuzzy order dense and majorizing.

Proposition 3.1.10. Let (kλ)λ∈Λ be a net in the fuzzy order dense and majorizing Riesz

subspace L. Then kλ
fo−→ 0 in L iff kλ

fo−→ 0 in FRS (K,φ).

Proof. Since L is fuzzy order dense by the Proposition 3.1.8 it is fuzzy regular. Therefore the

forward implication is obvious due to the Proposition 3.1.7.

Conversely, in K we let kλ
fo−→ 0 , such that there exists a net gγ ↓ 0 in K+ with, for all
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γ ∈ Γ there exists λ0 such that for all λ ≥ λ0 we have φ(|kλ|, gγ) > 1/2. Put

C = {h ∈ L+ : φ(gγ, h) > 1/2 for some γ ∈ Γ}.

Then, C 6= ∅ as L is fuzzy majorizing. Let k = inf C in K then φ(k, gγ) > 1/2 for all γ ∈ Γ.

Therefore, k = 0 as gγ ↓ 0, but L is fuzzy regular so inf C = 0 as well in L. Thus, there exists

a net hγ ↓ 0 in L+ with φ(gγ, hγ) > 1/2. Hence, kλ
fo−→ 0 in L.

3.2 Fuzzy positive linear operators

Fuzzy positive operators play a vital role in studying the fuzzy Riesz spaces, especially to find

the fuzzy Dedekind completion. Therefore, they are studied in detail first.

Definition 3.2.1. A fuzzy positive operator P between the two FRSs (K,φ) and (H,µ) is

said to be:

(i) fuzzy order bounded if P (C) ⊆ H is fuzzy order bounded whenever C ⊆ K is fuzzy

order bounded;

(ii) fuzzy σ-order continuous if (kn)n∈N
fo−→ 0 in K implies P (kn)n∈N

fo−→ 0 in H;

(iii) fuzzy order continuous if kλ
fo−→ 0 in K implies P (kλ)

fo−→ 0 in H.

The fuzzy order continuity of fuzzy positive operator implies the fuzzy order boundedness.

Proposition 3.2.2. Every fuzzy order continuous positive operator P is fuzzy order bounded.

Proof. Since P is a fuzzy order continuous positive operator between the two FRSs (K,φ)

and (H,µ). For g ∈ K+, consider the net ck := g − k for k ∈ [0, g]. Then ck ↓ 0, therefore,

P (ck)
fo−→ 0. Thus, the net

(P (ck) : k ∈ [0, g]) = (P (g − k) : k ∈ [0, g]) = P ([0, g])
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is fuzzy order bounded in H.

The notion of fuzzy order continuous operators have nice characterizing conditions.

Theorem 3.2.3. If P is a fuzzy order continuous operator between two FRSs (K,φ) and

(H,µ) with H fuzzy Dedekind complete then underlying statements are equivalent:

(i) P is fuzzy order continuous ;

(ii) if kλ ↓ 0 in K then P (kλ) ↓ 0 in H;

(iii) if kλ ↓ 0 in K then inf(P (kλ)) = 0 in H;

(iv) P+ and P− are both fuzzy order continuous;

(v) |P | is fuzzy order continuous.

Proof. (i)→ (ii) and (ii)→ (iii) are obvious.

(iii)→ (iv) Let kλ ↓ 0 in K and P (kλ) ↓ h in H for h ∈ H+. We have to show that h = 0.

Fixed some γ and put k = kγ. Take k, g ∈ K+ such that φ(g, k) > 1/2 and for each λ � γ we

have

g − g ∧ kλ = g ∧ g − g ∧ kλ and φ(g − g ∧ kλ, k − kλ) > 1/2.

Therefore,

P (g)− P (g ∧ kλ) = P (g − g ∧ kλ), µ(P (g − g ∧ kλ), P+(k − kλ)) > 1/2

and

P+(k − kλ) = P+(k)− P+(kλ) implies µ(P (g − g ∧ kλ), P+(k)− P+(kλ)) > 1/2.

It follows that

µ(h, P+(kλ)) > 1/2 and µ(P+(kλ), P
+(k) + P (g ∧ kλ)− P (g)) > 1/2. (3.2.1)

22



Sinceφ(g, k) > 1/2 we have g∧kλ ↓ 0 for each λ � γ. It follows from (iii) that inf(P (g∧kλ)) =

0. Therefore, from Equation 3.2.1 µ(h, P+(k) − P (g)) > 1/2 for each φ(g, k) > 1/2. Thus,

P+(k) = sup{P (g) : φ(g, k) > 1/2} implies that h = 0.

(iv)→ (v) is straightforward.

(v)→ (i) immediately follows from µ(|P (k)|, |P |(|k|)) > 1/2.

For k ∈ K we have k = k+− k−, therefore, K = K+−K+. Now the question is if a fuzzy

positive operator is defined from K+ to FRS (H,µ) then can it be extended to the entire FRS

(K,φ) Beg [13, Lemma 2.4] gave a positive answer. Our work is related to the extension of

fuzzy order continuous positive operator P from the fuzzy order dense and majorizing Riesz

subspace L to the FRS (K,φ).

Theorem 3.2.4. Let L be a fuzzy order dense and majorizing Riesz subspace of an FRS (K,φ)

and (H,µ) is a Dedekind complete FRS. If P is a fuzzy order continuous positive operator

from L into H then for k ∈ K+

P (k) := sup{P (g) : g ∈ L+ and φ(g, k) > 1/2},

P extend uniquely as a fuzzy order continuous linear operator to all of K.

Proof. For k ∈ K+

V (k) = sup{P (g) : g ∈ L+ and φ(g, k) > 1/2},

exists in H because it is fuzzy Dedekind complete and L is fuzzy order dense in K. Take

kλ ↑ k in L+. If g ∈ L+ satisfies φ(g, k) > 1/2 then kλ ∧ g ↑ g in L+. Since P is fuzzy order

continuous, therefore

P (g) = sup{P (kλ ∧ g)}.
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So,

µ(sup{P (kλ ∧ g)}, sup{P (kλ)}) > 1/2 and µ(sup{P (kλ)}, V (k)) > 1/2.

Hence, P (kλ) ↑ V (k) in H.

Let k, h ∈ K+, then by Theorem 3.1.9(i) there exist two nets kλ ↑ k and hγ ↑ h in L+. So,

kλ+hγ ↑ k+h. Hence, P (kλ) ↑ V (k), P (gγ) ↑ V (h) and P (kλ)+P (hγ) = P (kλ+hγ) ↑ V (k+h).

Therefore,

V (k + h) = V (k) + V (h).

Now as V : K+ → H+ is an additive map, by [13, Lemma 2.4] it is the unique extension of

P from K to H.

Lastly, V is proved to be fuzzy order continuous. Let kλ ↓ 0 be a net in K+ then there

exists hλ ↓ 0 in L+ with φ(kλ, hλ) > 1/2 for all λ ∈ Λ, due to the fact that L is fuzzy

majorizing.

Moreover, V (hλ) = P (hλ) ↓ 0 because P is fuzzy order continuous. Therefore, V is

deduced that µ(V (kλ), V (hλ)) > 1/2 for all λ ∈ Λ. Hence, finally V (kλ) ↓ 0.

3.3 Fuzzy Riesz homomorphism

Here we will define and study the particular class of positive operators known as fuzzy Riesz

homomorphism that preserves the fuzzy lattice structure.

Definition 3.3.1. A linear operator P between the two FRSs (K,φ) and (H,µ) is called fuzzy

Riesz homomorphism if P (k ∨ g) = P (k) ∨ P (g) holds for all k, g ∈ K. In addition, if P is

bijective then it is said to be fuzzy Riesz isomorphism.

Note that a fuzzy Riesz homomorphism is indeed a fuzzy positive operator. Indeed, for

k ∈ K+ P (k) = P (k+) = P (k ∨ 0) = P (k) ∨ P (0) = [P (k)]+. The notion of fuzzy Riesz

homomorphism has several nice characterizing conditions.
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Proposition 3.3.2. If P is a fuzzy positive operator between the two FRSs (K,φ) and (H,µ)

then the following statements are equivalent:

(i) P is a fuzzy Riesz homomorphism;

(ii) P (k+) = [P (k)]+ for each k ∈ K;

(iii) P (k ∧ h) = P (k) ∧ P (h) for each k, h ∈ K;

(iv) if k ∧ h = 0 in K, then P (k) ∧ P (h) = 0 holds in H;

(v) P (|k|) = |Pk| for each k ∈ K.

Proof. It is obvious that (i)⇒ (ii).

(ii)⇒ (iii)

P (h ∧ k) = P (k − (k − h)+) = P (k)− P (k − h)+

= P (k)− (Pk − Ph)+ = Pk ∧ Ph.

(iii)⇒ (iv) If k ∧ h = 0 then Ph ∧ Pk = P (h ∧ k) = P (0) = 0.

(iv)⇒ (v) In view if k+ ∧ k− = 0 we have

|Pk| = |Pk+ − Pk−| = Pk+ ∨ Pk− − Pk+ ∧ Pk−

= Pk+ ∨ Pk− = Pk+ + Pk− = P (k+ + k−)

= P (|k|).

(v)⇒ (i) observe that

P (k ∨ h) = P (1/2[k + h+ |k − h|]) = 1/2[Pk + Ph+ P (|k − h|)

= 1/2[Pk + Ph+ |Pk − Ph|] = Pk ∨ Ph.
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The fuzzy Riesz isomorphisms between the surjective fuzzy positive operators are charac-

terized as follows.

Proposition 3.3.3. Let P be a bijective linear operator between the two FRSs (K,φ) and

(H,µ). Then P is a fuzzy Riesz isomorphism iff both P and P−1 are fuzzy positive operators.

Proof. Since P is a fuzzy Riesz isomorphism, therefore, both P and P−1 are fuzzy positive

operators.

Conversely, let k, g ∈ K. Then φ(k, k ∨ g) > 1/2 and φ(g, k ∨ g) > 1/2, thus

µ(Pk, P (g ∨ k)) > 1/2 and µ(Pg, P (g ∨ k)) > 1/2.

Therefore,

µ(Pg ∨ Pk, P (g ∨ k)) > 1/2. (3.3.1)

Also, P−1 is fuzzy positive operator, so by similar arguments as above.

φ(P−1a ∨ P−1b, P−1(a ∨ b)) > 1/2,

for each a, b ∈ H. Particularly, for a = Pk and b = Pg we have

φ(k ∨ g, P−1(Pk ∨ Pg)) > 1/2,

which implies

µ(P (k ∨ g), Pk ∨ Pg) > 1/2.

Hence, the above combined with the Equation 3.3.1, we have

P (k ∨ g) = Pk ∨ Pg.
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3.4 Fuzzy Dedekind completion

This section aims to prove the existence of fuzzy Dedekind completion for an incomplete FRS.

In this regard, we know that a Dedekind complete FRS is fuzzy Archimedean [26, Lemma

5.9]. Thus, one can hope to find the fuzzy Dedekind completion only for an Archimedean

FRS.

Definition 3.4.1. Let (K,φ) be an FRS. A Dedekind complete FRS (H,µ) is said to be the

fuzzy Dedekind completion of K if K is fuzzy Riesz isomorphic to a fuzzy majorizing and order

dense Riesz subspace of H. Furthermore, (H,µ) is unique up to fuzzy Riesz isomorphisms.

The fundamental result in this section will be that any Archimedean FRS has a fuzzy

Dedekind completion indeed. To achieve our goal, we adopt a somewhat more general ap-

proach and start our work on fuzzy ordered sets.

Two FOSs (K,φ) and (H,µ) are called fuzzy order isomorphic, if their exists a bijective

map P between them that preserves the fuzzy ordering i.e. µ(P (k), P (g)) > 1/2 iff φ(k, g) >

1/2 for all k, g ∈ K. Furthermore, a mapping P from an FOS (K,φ) into FOS (H,µ)

preserves the suprema and infima, if u = supC and l = inf C in K then P (u) = supP (C)

and P (l) = inf P (C) in H for any subset C of K.

Consider the following conditions for an injective mapping P between the two FOSs (K,φ)

and (H,µ):

(a) K and its image P (K) are fuzzy order isomorphic;

(b) P preserves suprema and infima.

The above conditions do not imply each other in general.

Proposition 3.4.2. Let P be an injective mapping between the two FOSs (K,φ) and (H,µ).

Then following hold:

(i) if K is a fuzzy lattice then (b) implies (a);
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(ii) if K and H are two fuzzy lattices and also for g ∈ H the following holds

g = sup{P (k) : µ(P (k), g) > 1/2} = inf{P (k) : µ(g, P (k)) > 1/2},

then (a) implies (b).

Proof. (i): Let µ(P (k1), P (k2)) > 1/2 for k1, k2 in K. As P preserves the suprema, therefore

P (k1 ∨ k2) = P (k1) ∨ P (k2) = P (k2).

Thus, k1∨k2 = k2, hence φ(k1, k2) > 1/2. Analogously, φ(k1, k2) > 1/2 implies µ(P (k1), P (k2)) >

1/2.

(ii): Take two fuzzy lattices K and H, satisfying the given condition. Let k0 = sup{C} for

C ⊂ K. Suppose on the contrary that P (k0) 6= sup{P (C)}, then there exists g1 ∈ (P (C))u

such that g1 6= P (k0) and µ(g1, P (k0)) > 1/2. Therefore, g1 = inf{P (k) : µ(g1, P (k)) > 1/2},

so there is some k1 in K with µ(g1, P (k1)) > 1/2, P (k1) 6= P (k0) and µ(P (k1), P (k0)) > 1/2.

But, on the other hand φ(z, k1) > 1/2 for each z ∈ C which implies φ(k0, k1) > 1/2, hence

µ(P (k0), P (k1)) > 1/2, a contradiction.

Definition 3.4.3. Consider (K,φ) is an FOS. Then a subset C of K is called fuzzy cut if

(Cu)l = C.

From here on (Cu)l will be written as Cul. Clearly, ∅ and K are the fuzzy cuts. Therefore,

the set of all fuzzy cuts is non-empty. Also, one can easily prove that Cul is a fuzzy cut. It is

the smallest fuzzy cut containing C. Let Kδ be the set of all fuzzy cuts except ∅ and K. The

fuzzy order ψ on Kδ is defined as follows.

ψ(C,D) =


1 if C = D;

2/3 if C ⊂ D;

0 otherwise,

(3.4.1)
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for C,D ∈ Kδ.

Consider an FOS (Kδ, ψ). If K has no largest or smallest element, then K must contain

at least two elements. Moreover, for k0 6= k1, we have {k0}ul 6= {k1}ul.

Theorem 3.4.4. Let (K,φ) be an FOS containing no smallest or largest element. Then

(Kδ, ψ) is a fuzzy order complete lattice. Moreover, the map P (k) := {k}ul from K to Kδ

satisfies condition (ii). In addition, every fuzzy cut C satisfies the following

C = sup{{k}ul : ψ({k}ul, C) > 1/2} = inf{{k}ul : ψ(C, {k}ul) > 1/2}.

Proof. Let (K,φ) be an FOS containing no smallest or largest element. Take F ⊂ Kδ,

then D = (∪C∈FC)ul is an upper bound of F in Kδ. Let D1 be another upper bound, so

∪C∈FC ⊆ D1, therefore, ψ(D,D1) > 1/2. Hence, D = sup(F ). Analogously, E = (∩C∈FC)ul

is the infima of F in Kδ. Thus Kδ is a fuzzy order complete lattice.

Take C ⊂ K with k0 = sup(C). Then D = (∪k∈C{k}ul)ul, is the supremum of P (C) in Kδ.

As Cu = (∪k∈C{k}ul)u and k0 is the smallest element of Cu, therefore D = (∪k∈C{k}ul)ul =

{k : φ(k, k0) > 1/2} = {k0}ul. Hence P preserves the suprema. Analogously, it can be shown

that P preserves the infima.

Finally, take C ∈ Kδ, we have k ∈ C iff ψ({k}ul, C) > 1/2. Thus

C =
⋃

ψ({k}ul,C)>1/2

{k}ul.

Hence C = sup{{k}ul : ψ({k}ul, C) > 1/2}. Analogously, C = inf{{k}ul : ψ(C, {k}ul) >

1/2}.

We are coming closer to our goal, indeed (Kδ, ψ) is the completion of an unbounded FOS

(K,φ). As an Archimedean FRS (K,φ) has no smallest and largest element; therefore, the

Theorem 3.4.4 holds for it. The next step is to define the algebraic operations on Kδ so that

it can become an FRS for an Archimedean FRS (K,φ).
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Definition 3.4.5. Given an Archimedean FRS (K,φ), we define addition and scalar multi-

plication on Kδ as follows

C ⊕D = (C +D)ul, (3.4.2)

λ ◦ C =


λC if λ > 0;

{0}ul if λ = 0;

λCu if λ < 0,

(3.4.3)

where C,D ∈ Kδ and λ ∈ R.

Proposition 3.4.6. The FOS (Kδ, ψ) is an FRS with the operations ⊕ and ◦ given in the

Definition 3.4.5.

Proof. Take A,B ∈ Kδ. Then A ⊕ B = (A + B)ul 6= K because A 6= K and B 6= K. Hence

⊕ is well defined on Kδ. The other axioms are verified as follows.

Associative property: Take A,B,C ∈ Kδ. Let Y = {a + b + c : a ∈ A, b ∈ B, c ∈ C},

clearly, Y ⊆ (A ⊕ B) ⊕ C, therefore, Y ul also contained in (A ⊕ B) ⊕ C. Conversely, let

y ∈ Y u, then φ(a+ b+ c, y) > 1/2 holds for a ∈ A, b ∈ B and c ∈ C. So φ(a+ b, y− c) > 1/2,

therefore, y − c ∈ (A + B)ul. Thus φ(z, y − c) > 1/2 holds for each z ∈ A + B. However,

φ(z+c, y) > 1/2 holds and implies y ∈ {(A+B)+C}u. Hence (A⊕B)⊕C = Y ul. Analogously,

A⊕ (B ⊕ C) = Y ul. Therefore,

(A⊕B)⊕ C = A⊕ (B ⊕ C).

Additive identity: The element C0 = {0}ul = −K+ plays the role of identity for

operation ⊕. Take C ∈ Kδ, now for a ∈ C and m ∈ C0 we have φ(c + m, c) > 1/2 with

equality holds if m = 0. Therefore, M = {c + m : c ∈ C,m ∈ C0} satisfies Mu = Cu, then

Mul = Cul = C. Hence

C ⊕ C0 = C0 ⊕ C = C.
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Also the additive identity is unique, indeed B0 ∈ Kδ satisfies C ⊕ B0 = B0 ⊕ C = C for all

C ∈ Kδ, then C0 = B0.

Additive inverse: For C ∈ Kδ, consider C ′ = −Cu. First, we show that C ′ belongs to

Kδ and secondly, it is the inverse of C for operation ⊕. Indeed, we have

k ∈ C ′u ⇔ φ(d, k) > 1/2,∀ d ∈ C ′ ⇔ φ(−k,−d) > 1/2, ∀ − d ∈ Cu

⇔ φ(−k, g) > 1/2, ∀ g ∈ Cu ⇔ −k ∈ Cul = C.

Take m ∈ C ′ul then φ(m, k) > 1/2 for each k ∈ C ′u. But k ∈ C ′u iff k = −c for some c ∈ C.

Therefore, φ(m,−c) > 1/2 for all c ∈ C. Thus −m ∈ Cu and eventually m ∈ C ′. Hence,

C ′ul = C ′.

Next, consider V = {c+ d : c ∈ C, d ∈ C ′}, then

V = {c− k : c ∈ C, k ∈ Cu}.

Hence, φ(c− k, 0) > 1/2 so ψ(V,C0) > 1/2, therefore, K+ ⊆ V u. Let s ∈ V u, then φ(r, 0) >

1/2 and φ(r, s) > 1/2 for each r ∈ V . Also, φ(r, s ∧ 0) > 1/2 i.e. φ(c − k,−s−) > 1/2 for

each c ∈ C and k ∈ Cu. It follows that φ(c + s−, k) > 1/2, then c + s− ∈ Cul = C. By

induction, for fix c ∈ C and k ∈ Cu, we have φ(ns−, k − c) > 1/2 for n = 1, 2.... Since K is

an Archimedean FOS, this is possible iff s− = 0. Hence V u ⊂ K+, so V u = K+. Therefore,

C ⊕ C ′ = C ′ ⊕ C = C0.

Moreover, the inverse is unique.

It is not hard to verify the distributional properties of operations⊕ and ◦ and compatibility

between algebraic and order structures in Kδ. Hence, (Kδ,⊕, ◦, ψ) is an FRS.

Finally, the existence of fuzzy Dedekind completion is proved as follows.
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Theorem 3.4.7. If (K,φ) is an Archimedean FRS then the FRS (Kδ,⊕, ◦, ψ) is its fuzzy

Dedekind completion.

Proof. The Archimedean FRS (K,φ) has no smallest and largest element, thus by the Theo-

rem 3.4.4 P (K) is fuzzy order isomorphic to K under the map P : K → Kδ with the definition

P (k) = {k}ul. Now we show that P preserves the algebraic structure as well.

Indeed, for {w}ul, {z}ul ∈ P (K), {w}ul ⊕ {z}ul ⊆ {w + z}ul is clear. Take s ∈ {w + z}ul,

then φ(s, w + z) > 1/2. Let s = w + (s− w) with w ∈ {w}ul and s− w ∈ {z}ul. Thus,

{w + z}ul = {w}ul ⊕ {z}ul.

Therefore, P (w + z) = P (w) ⊕ P (z) for all w, z ∈ K. Also, it is not hard to prove that

P (λw) = λ ◦ P (w) for λ ∈ R and w ∈ K. Hence, P is a fuzzy Riesz isomorphism between K

and P (K).

Lastly, P (K) is also fuzzy order dense and majorizing Riesz subspace of Kδ due to the

Theorem 3.1.9.

Proposition 3.1.8 implies that (K,φ) is a fuzzy regular Riesz subspace of (Kδ, ψ). In the

end, as an application of Theorem 3.4.7 some results are proved for a fuzzy regular Riesz

subspaces of an FRS (K,φ).

Theorem 3.4.8. If L is a fuzzy regular Riesz subspace of an Archimedean FRS (K,φ) then

Lδ is a fuzzy regular Riesz subspace of (Kδ, ψ).

Proof. Suppose K is fuzzy regular in Kδ, we have L fuzzy regular in Kδ. Then without loss,

assume that K = Kδ. Let V : L → K be the inclusion map. Therefore, V is a fuzzy order

continuous by the fuzzy regularity of L.

Theorem 3.2.4 yields that V can be extended to a fuzzy order continuous positive operator

P : Lδ → K. It will be shown that P is a fuzzy Riesz isomorphism from Lδ into K.
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Let g ∈ Lδ. Take two nets (aλ) and (bλ) in L+ such that aλ ↑ g+ and bλ ↑ g− in Lδ. Then

clearly

aλ = Paλ
fo−→ Pg+,

in K. Moreover, aλ − bλ
fo−→ g in Lδ, so aλ − bλ = P (aλ − bλ)

fo−→ Pg in K.

Also, g+ ∧ g− = 0 that implies aλ ∧ bλ = 0 in Lδ for any λ ∈ Λ and hence

aλ = (aλ − bλ)+ = P (aλ − bλ)+ fo−→ (Pg)+,

in K. Therefore, (Pg)+ = P (g+) for any g ∈ Lδ. By Theorem 5.1.5 P is a fuzzy Riesz

homomorphism.

Now let Pg = 0 for some g ∈ Lδ, we can assume without loss of generality that g ∈ L+,

because P is a fuzzy Riesz homomorphism. Take a net (aλ) in L+ with aλ ↑ g in Lδ. Then

aλ = P (aλ) and φ(Paλ, 0) > 1/2 implies that aλ = 0 for all λ, hence g = 0 and P is proved

to be injective.

The fuzzy regularity of Lδ in K follows from the fuzzy order continuity of P .

Proposition 3.4.9. Let L be a fuzzy regular Dedekind complete Riesz subspace of an Archimedean

FRS (K,φ). Take a net (gλ) in L and k ∈ K. If gλ
fo−→ k in K then k ∈ L and gλ

fo−→ k in L.

Proof. Without loss, assume that K = Kδ. By Remark 3.1.5 k = lim supλ(gλ) = lim infλ(gλ),

as L is a fuzzy Dedekind complete, so the lim supλ(gλ) and lim infλ(gλ) exist in L. Also, it is

fuzzy regular therefore, the limits are same as in K. Hence k also belongs to L and gλ
fo−→ k

in L.

A fuzzy order dense Riesz subspace L of an FRS (K,φ) is fuzzy dense with respect to

the fuzzy order convergence, but the backward implication is not valid in general. The next

result yields the equivalence between fuzzy order denseness and fuzzy denseness concerning

to fuzzy order convergence.
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Theorem 3.4.10. If a fuzzy regular Riesz subspace L is dense with respect to the fuzzy order

convergence in an Archimedean FRS (K,φ) then L is fuzzy order dense in FRS (K,φ). In

addition, If L is a fuzzy Dedekind complete then L is a fuzzy ideal of an FRS (K,φ).

Proof. By Theorem 3.4.8, Lδ is a fuzzy regular Riesz subspace of Kδ. First we show that Lδ

is a fuzzy ideal of Kδ.

Take u ∈ (Kδ)+ and v ∈ (Lδ)+ such that ψ(u, v) > 1/2. Then K ∩ sup ([0, u]) = u in Kδ

by Theorem 3.1.9. For k ∈ [0, u] ∩ K there is a net (gλ) in L with gλ
fo−→ k due to the fact

that L is dense with respect to the fuzzy order convergence. Let wλ = gλ ∧ v for λ ∈ Λ. Then

(wλ) is a net in Lδ and wλ
fo−→ k in Kδ as well. Therefore, by the Proposition 5.1.3 k belongs

to Lδ.

Thus sup
(
[0, u] ∩ Lδ

)
= u in Kδ but Lδ is fuzzy regular so the supremum is same in Lδ.

Hence, u ∈ Lδ and this proves that Lδ is indeed a fuzzy ideal of Kδ.

Now, take 0 6= k ∈ K+ as L is dense with respect to the fuzzy order convergence in K, so

there exists a net (gλ) in L such that gλ
fo−→ k in K. Then |gλ| ∧ k

fo−→ k in K too.

Put w = |gλ0| ∧ k for some λ0 ∈ Λ. Then φ(w, |gλ0|) > 1/2, as Lδ is fuzzy ideal and gλ0

is in L, therefore w is in (Lδ)+. Furthermore, L is fuzzy order dense in Lδ so there is some u

in L+ with φ(u,w) > 1/2. Hence, by transitivity φ(u, k) > 1/2 and this leads to fuzzy order

denseness of L in K.

Lastly, if L is a fuzzy Dedekind complete in its own right then L = Lδ and hence it is a

fuzzy ideal of K.
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Chapter 4

Fuzzy order bounded linear operators

in fuzzy Riesz spaces

In this chapter, we study the space of all fuzzy order bounded positive linear operators

Lb(K,H). In order to investigate Lb(K,H) we start our work in the set of all linear operators

L(K,H) between (K,φ) and (H,µ). Of course, L(K,H) is a vector space with pointwise

operations. But the natural pointwise ordering i.e. P ≤ V if µ(P (k), V (k)) > 1/2 for each

k ∈ K, does not induce lattice structure on L(K,H). Thus, to define proper fuzzy lattice

operations on Lb(K,H) first, we work on the modulus of a fuzzy positive linear operator.

Definition 4.0.1. A fuzzy positive operator P between two FRSs (K,φ) and (H,µ) possesses

a modulus if |P | = P ∨ (−P ). The modulus of P means the supremum of the set {−P, P} in

L(K,H).

The next proposition gives the existence of a modulus of a fuzzy positive operator.

Proposition 4.0.2. If P is a fuzzy positive operator between two FRSs (K,φ) and (H,µ)

such that sup{|Pg| : φ(|g|, k) > 1/2} exists in H for all k ∈ K+ then modulus of P exists and

|P |(k) = sup{|Pg| : φ(|g|, k) > 1/2}.
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Proof. Suppose V : K+ → H+ is defined by V (k) = sup{|Pg| : φ(|g|, k) > 1/2} for k ∈ K+.

Since φ(|g|, k) > 1/2 implies | ± g| = |g|, φ(| ± g|, k) > 1/2. Now we show that V is additive.

Let h, l ∈ K+. If φ(|g|, h) > 1/2 and φ(|r|, l) > 1/2 then

φ(|g + r|, |g|+ |r|) > 1/2 and φ(|g|+ |r|, h+ l) > 1/2.

Thus,

P (g) + P (r) = P (g + r) and µ(P (g + r), V (h+ l)) > 1/2.

Therefore, µ(V (h) + V (l), V (h + l)) > 1/2. Conversely, if φ(|g|, h + l) > 1/2, then by [10,

Theorem 4.12] there exist g1 and g2 with φ(|g1|, h) > 1/2, φ(|g2|, l) > 1/2 and g = g1 + g2.

Therefore,

P (g) = P (g1) + P (g2) and µ(P (g1) + P (g2), V (h) + V (l)) > 1/2,

so µ(V (h + l), V (h) + V (l)) > 1/2. Hence, V is additive. By [13, Lemma 2.4] V from K to

H extends uniquely to a fuzzy positive operator.

It is left to show that V is a supremum of {−P, P}. Observe that P ≤ V and −P ≤ V .

Assume that ±P ≤ R. Thus, R is a fuzzy positive operator. Fix k ∈ K+. If φ(|g|, k) > 1/2

then

Pg = Pg+ − Pg− and µ(Pg+ − Pg−, Rg+ +Rg−) > 1/2.

Therefore,

Rg+ +Rg− = R|g| and µ(R|g|, Rk) > 1/2.

Then, µ(V (k), R(k)) > 1/2 for k ∈ K+. Hence V = P ∨ (−P ) in L(K,H).

Remark 4.0.3. Now we know that sup{|Pg| : φ(|g|, k) > 1/2} exists when H is a fuzzy

Dedekind complete. Thus, with the help of Proposition 4.0.2 we define the fuzzy lattice oper-

ations in Lb(K,H) for fuzzy Dedekind complete (H,µ).
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Theorem 4.0.4. If (K,φ) and (H,µ) are FRSs with H fuzzy Dedekind complete then the

fuzzy order vector space Lb(K,H) is a Dedekind complete FRS with the following fuzzy lattice

operations,

|P |(h) = sup{|Pg| : φ(|g|, h) > 1/2},

[V ∨ P ](h) = sup{V (g) + P (k) : g, k ∈ K+ and g + k = h},

[V ∧ P ](h) = inf{V (g) + P (k) : g, k ∈ K+ and g + k = h}

for each V, P ∈ Lb(K,H) and k ∈ K+. In addition, Pλ ↓ 0 in Lb(K,H) iff Pλ(h) ↓ 0 in H

for all h ∈ K+.

Proof. Since P is fuzzy order bounded,

sup{|Pg| : φ(|g|, h) > 1/2} = sup{Pg : φ(|g|, h) > 1/2} = supP [−h, h]

exists in H for h ∈ K+. By Proposition 4.0.2 the modulus of P exists and also

|P |(h) = sup{Pg : φ(|g|, h) > 1/2}.

Now we show that Lb(K,H) is an FRS. Let V, P ∈ Lb(K,H) and h ∈ K+ satisfying

g + k = h iff there exits some l ∈ K such that φ(|l|, h) > 1/2 with g = 1/2(h + l) and

k = 1/2(h− l) for g, k ∈ K+. It follows from [10, Theorem 4.11] that

[V ∨ P ](h) = 1/2[V (h) + P (h) + |V − P |(h)]

= 1/2[V (h) + P (h) + sup{(V − P )(l) : φ(|l|, h) > 1/2}]

= 1/2 sup{V (h) + V (l) + P (h)− P (l) : φ(|l|, h) > 1/2}

= sup{V (1/2(h+ l)) + P (1/2(h− l)) : φ(|l|, h) > 1/2}

= sup{V (g) + P (k) : g, k ∈ K+ and g + k = h}.
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[V ∧ P ] can be proven analogously.

Now we have to show that Lb(K,H) is fuzzy Dedekind complete. Let Pλ ↑ P in Lb(K,H).

Assume that V (h) = sup{Pλ(h)} implies that Pλ(h) ↑ V (h) for each h ∈ K+. As Pλ(h+ g) =

Pλ(h)+Pλ(g), it follows that V : K+ → H+ is additive. Then V from K to H defines a fuzzy

positive operator. Clearly, Pλ ↑ V in Lb(K,H).

Remark 4.0.5. Theorem 4.0.4 yields that if (K,φ) and (H,µ) are FRSs with H fuzzy

Dedekind complete then every fuzzy order bounded operator P : K → H satisfies

P+(k) = sup{Pg : φ(g, k) > 1/2}

P−(k) = sup{−Pg : φ(g, k) > 1/2}

for each k ∈ K+ and we have P = P+ − P−. To derive some formulas for fuzzy positive

operators, we first prove the approximation properties of fuzzy positive operators, which are

discussed as follows.

Lemma 4.0.6. If P is a fuzzy positive operator between two FRSs (K,φ) and (H,µ) with H

σ−fuzzy Dedekind complete then there exists a fuzzy positive operator V : K → H for each

k ∈ K+ such that:

(i) V ≤ P ;

(ii) V (k) = P (k);

(iii) V (g) = 0 for each g ⊥ k.

Proof. The proof is basically the same as for the Proposition 4.0.2 with the use of [13, Lemma

2.4].

The next result is proved by using Lemma 4.0.6 .

Theorem 4.0.7. If P is a fuzzy positive operator between two FRSs (K,φ) and (H,µ) with

H σ-fuzzy Dedekind complete then for each k ∈ K we have:
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(i) P (k+) = max{V (k) : V ∈ L(K,H) and V ≤ P};

(ii) P (k−) = max{−V (k) : V ∈ L(K,H) and V ≤ P};

(iii) P (|k|) = max{V (k) : V ∈ L(K,H) and − P ≤ V ≤ P}.

Proof. (i) Fix k ∈ K. By Lemma 4.0.6 there exists a fuzzy positive operator V : K → H

such that V ≤ P , V (k+) = P (k+) and V (k−) = 0. If R ∈ L(K,H) with R ≤ P then

µ(R(k), R(k+)) > 1/2 and µ(R(k+), P (k+)) > 1/2.

(ii) The proof of this part can be obtained from (i) by using identity k− = (−k)+.

(iii) Suppose that operator R : K → H satisfies −P ≤ R ≤ P , then R(k) = R(k+)−R(k−)

such that

µ(R(k+)−R(k−), P (k+) + P (k−)) > 1/2 and P (k+) + P (k−) = P (|k|).

Hence R(k) = P (|k|).

On the other hand, by Lemma 4.0.6 there exist two fuzzy positive operators V1, V2 :

K → H such that

V1(k+) = P (k+) and V1(k−) = 0.

And

V2(k−) = P (k−) and V2(k+) = 0.

Therefore, R = V1 − V2 satisfies −P ≤ R ≤ P and R(k) = P (|k|).

Remark 4.0.8. The set of all fuzzy order continuous operator of Lb(K,H) are denoted by
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Ln(K,H) i.e.

Ln(K,H) = {P ∈ Lb(K,H) : P is fuzzy order continuous}.

Analogously, Lc(K,H) denotes the set of all σ-fuzzy order continuous operator i.e.

Lc(K,H) = {P ∈ Lb(K,H) : P is σ−fuzzy order continuous}.

Both Lc(K,H) and Ln(K,H) are vector subspaces of Lb(K,H). Furthermore, Ln(K,H) ⊆

Lc(K,H). The following proposition shows Ln(K,H) and Lc(K,H) are fuzzy bands of Lb(K,H).

Proposition 4.0.9. If (K,φ) and (H,µ) are FRSs with H fuzzy Dedekind complete then both

Ln(K,H) and Lc(K,H) are fuzzy bands of Lb(K,H).

Proof. If |V | ≤ |P | in Lb(K,H) with P ∈ Lb(K,H) then by Theorem 3.2.3 V ∈ Lb(K,H).

Thus, Ln(K,H) are fuzzy ideal of Lb(K,H).

Now we show that Ln(K,H) is a fuzzy band. Let (Pγ)γ∈Γ ∈ Ln(K,H) and Pγ ↑ P in

Lb(K,H). Let kλ ↑ k in K+. For fixed γ, we have

µ(P (k − kλ), (P − Pγ)(k) + Pγ(k − kλ)) > 1/2,

and k − kλ ↓ 0. As Pγ ∈ Ln(K,H) implies that

µ(inf(P (k − kλ)), (P − Pγ)(k)) > 1/2

for each γ. Thus, (P − Pγ) ↓ 0. Therefore, inf(P (k − kλ) = 0 and so P (kλ) ↑ P (k). Hence

P ∈ Ln(K,H).

Lc(K,H) can be proved analogously.
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4.1 Fuzzy order dual

A fuzzy positive linear functional u between an FRS (K,φ) and R is a linear map u : K → R

such that u(k) ∈ R+ for all k ∈ K+. Kv = Lb(K,R), the fuzzy order dual of K is a

vector space of all fuzzy order bounded linear functionals on K. Also (Kv)+ is the set of all

fuzzy order bounded positive linear functionals. By Theorem 4.0.4, Kv is a fuzzy Dedekind

complete Riesz space. Also, according to Theorem 4.0.4, the following fuzzy lattice operations

hold for Kv.

Proposition 4.1.1. If Kv is a fuzzy order dual of an FRS (K,φ) then u, v ∈ Kv and h ∈ K+

the following statements are true:

(i) u+(h) = sup{u(g) : g ∈ K+ and φ(g, h) > 1/2};

(ii) u−(h) = sup{−u(g) : g ∈ K+ and φ(g, h) > 1/2};

(iii) |u|(h) = sup{|u(g)| : φ(|g|, h) > 1/2};

(iv) [u ∨ v](h) = sup{u(g) + v(k) : g, k ∈ K+ and g + k = h};

(v) [u ∧ v](h) = inf{u(g) + v(k) : g, k ∈ K+ and g + k = h}.

Now we discussed the FRSs whose fuzzy order dual separates the points of the spaces.

Definition 4.1.2. The fuzzy order dual Kv of an FRS (K,φ) separates the points of K if

for all 0 6= k ∈ K+ there exists 0 6= u ∈ (Kv)+ with u(k) 6= 0 .

Proposition 4.1.3. If Kv separates the points of an FRS (K,φ) then k ∈ K+ iff u(k) ≥ 0

holds for all u ∈ (Kv)+.

Proof. The forward implication is obvious.

Conversely, let k ∈ K satisfies u(k) ≥ 0 for each u ∈ (Kv)+. If u ∈ (Kv)+ is fixed then

Theorem 4.0.7 yields that there exists some v ∈ (Kv)+ such that u(k−) = −v(k). As v(k) ≥ 0

implies that −v(k) ≤ 0. Thus u(k−) = 0. Therefore, Kv separates the points of K , we have

k− = 0. Hence k = k+ − k− = k+ i.e. φ(0, k+) > 1/2.
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Remark 4.1.4. In addition to fuzzy order dual of an FRS, one can assume the fuzzy bands

of fuzzy order (σ-fuzzy order) continuous linear functionals. Let Ln(K,R) be the set of all

fuzzy order continuous linear functionals denoted by Kv
n i.e. Kv

n := Ln(K,R). Analogously,

σ−fuzzy order continuous linear functionals is denoted by Kv
c := Lc(K,R). Where Kv

n and

Kv
c are called fuzzy order continuous dual and σ−fuzzy order continuous dual of K, respec-

tively. By Proposition 4.0.9 both Kv
n and Kv

c are fuzzy bands of Kv.

Definition 4.1.5. If u ∈ Kv then:

(i) the null fuzzy ideal of u denoted Nu and defined as Nu := {k ∈ K : |u|(|k|) = 0};

(ii) the disjoint complement of null fuzzy ideal denoted Cu = Nd
u is said to be fuzzy carrier

of u and is defined as Cu := {k ∈ K : k ⊥ Nu}. Note that a fuzzy carrier is indeed a

fuzzy band.

One can easily prove that the null fuzzy ideal is a fuzzy band if fuzzy order bounded linear

functional is fuzzy order continuous. The following proposition shows that the two fuzzy

linear functionals are disjoint iff their fuzzy carriers are disjoint.

Proposition 4.1.6. If (K,φ) is an Archimedean FRS then u, v ∈ Kv
n then following state-

ments are equivalent:

(i) u ⊥ v;

(ii) Cu ⊆ Nv

(iii) Cv ⊆ Nu

(iv) Cu ⊥ Cv.

Proof. Without loss, assume that positive u, v ∈ Kv
n .

(i)→ (ii) Let positive c ∈ Cu = Nd
u and ε ∈ (0, 1). Since u∧v = 0, there exists a sequence

(kn) in K+ satisfying kn ↑ k and u(kn) + v(k − kn) < ε for each n.
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Take gn =
∧n
i=1 ki and gn ↓ 0 in K+. Indeed, if φ(g, gn) > 1/2 then µ(u(g), u(gn)) > 1/2

and u(gn) < ε implies u(g) = 0. Therefore, g ∈ Cn ∩Nu = {0} implies g = 0.

Since v ∈ (Kv
n )+, we have v(k − gn) ↑ v(k). But

v(k − gn) = v(
n∨
i=1

(k − ki)),

µ(v(
n∨
i=1

(k − ki)),
n∑
i=1

v(k − ki)) > 1/2 and
n∑
i=1

v(k − ki) < ε.

Consequently, positive v(k) ≤ ε for each ε ∈ (0, 1). Therefore, v(k) = 0 and hence Cu ⊆ Nv.

(ii) → (iii) Since Nu is a fuzzy band, so Cu = Nd
u . By [26, Theorem 5.8] Cv = Nd

v ⊆

Ndd
v = Nv.

(iii)→ (iv) Cv ⊆ Nu and Nu ⊥ Cu, we have Cv ⊆ Nu ⊥ Cu implies Cv ⊥ Cu.

(iv)→ (i) Suppose Cv ⊥ Cu. If k = g + h ∈ Nv ⊕ Cv then

[u ∧ v](k) = [u ∧ v](g) + [u ∧ v](h),

µ([u ∧ v](g) + [u ∧ v](h), v(g) + u(h)) > 1/2 and v(g) + u(h) = 0.

Therefore, by [26, Theorem 4.7(ii)] u∧v = 0 holds for fuzzy order dense ideal Nv⊕Cv. Hence,

u ⊥ v.
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Chapter 5

Unbounded fuzzy order convergence

Here we study the generalization of fuzzy order convergence in fuzzy Riesz spaces known as

unbounded fuzzy order convergence. With the help of a fuzzy weak order unit, the unbounded

fuzzy order convergence is nicely characterized in FRSs. Also, we discuss the fuzzy order

closeness with respect to this convergence. Furthermore, in σ−fuzzy Dedekind complete

FRS, the disjoint sequences are fuzzy order convergent to zero.

Definition 5.0.1. A net (kλ)λ∈Λ in an FRS (K,φ) is said to be unbounded fuzzy order

convergent (ufo-convergent for short) to k ∈ K denoted kλ
ufo−−→ k if |kλ− k| ∧ g

fo−→ 0 for each

g ∈ K+.

Note that fo-convergence implies ufo-convergence. The ufo-convergence has many nice

characterizing conditions.

Proposition 5.0.2. Let (kλ)λ∈Λ and (gγ)γ∈Γ be nets in an FRS (K,φ). Then the following

statements are true:

(i) kλ
ufo−−→ k iff (kλ − k)

ufo−−→ 0;

(ii) if kλ
ufo−−→ k and gγ

ufo−−→ g then akλ + bgγ
ufo−−→ ak + bg for each a, b ∈ R;

(iii) if kλ
ufo−−→ k and kλ

ufo−−→ g then k = g;
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(iv) if kλ
ufo−−→ k then

(a) (kλ)
+ ufo−−→ k+;

(b) (kλ)
− ufo−−→ k−.

Furthermore, (a) and (b) imply that

|kλ|
ufo−−→ |k|.

(v) If a positive net kλ
ufo−−→ k and φ(kλ, gγ) > 1/2, gγ

ufo−−→ g then φ(k, g) > 1/2.

Proof. (i) Suppose kλ
ufo−−→ k. Then |(kλ − k)− 0| ∧ g = |kλ − k| ∧ g

fo−→ 0 for each g ∈ K+,

hence (kλ − k)
ufo−−→ 0. The converse can be proved analogously.

(ii) Suppose kλ
ufo−−→ k and gγ

ufo−−→ g, we have

φ(|(kλ + gγ)− (k + g)| ∧ h, (|kλ − k|+ |gγ − g|) ∧ h) > 1/2,

and

φ((|kλ − k|+ |gγ − g|) ∧ h, |kλ − k| ∧ h+ |gγ − g| ∧ h) > 1/2

for each λ, γ and h ∈ K+. it follows that kλ + gγ
fo−→ k + g. Fix a ∈ R and let

h ∈ K+. Check that |akλ − ak| ∧ h = |a||kλ − k| ∧ h. If |a| ≤ 1, then φ(|a||kλ −

k| ∧ h, |kλ − k| ∧ h) > 1/2 and |kλ − k| ∧ h fo−→ 0. If |a| > 1 then |h| ≤ |a|h and

φ(|a||kλ − k| ∧ h, |a||kλ − k| ∧ |a|h) > 1/2 and |a|(|kλ − k| ∧ h)
fo−→ 0. In each case

akλ
ufo−−→ ak.

(iii) Let φ(|k − g|, |k − kλ| + |g − kλ|) > 1/2 for each λ. Let h = |k − g|. Observe that

|k − g| = |k − g| ∧ h. Also

φ(|k − g| ∧ h, |k − kλ| ∧ h+ |g − kλ| ∧ h) > 1/2.
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Hence, k = g.

(iv) Suppose |kλ−k|
ufo−−→ 0. As φ(|(kλ)+−k+|, |kλ−k|) > 1/2 for each λ. So |(kλ)+−k+| ufo−−→

0. Hence, (kλ)
+ ufo−−→ k+. Thus −kλ

ufo−−→ −k this gives that (kλ)
− ufo−−→ k−. The final

statement follows from φ(||kλ| − |k||, |kλ − k|) > 1/2.

(v) By (iv) kλ = |kλ|
ufo−−→ |k|. Since k = |k| by uniqueness of fuzzy order limit. As

φ(0, gγ − kλ) > 1/2, then gγ − kλ
ufo−−→ g − k, we have φ(k, g) > 1/2.

Remark 5.0.3. Let (K,φ) be a Dedekind complete FRS and (kλ)λ∈Λ be a fuzzy order bounded

net in K. Then kλ
fo−→ k iff k = lim supλ(kλ) = lim infλ(kλ). Moreover, two sequences (kn) and

(km) are called disjoint if |kn| ∧ |km| = 0 or (kn ⊥ km) holds for m 6= n. The ufo-convergence

for disjoints sequences in σ-Dedekind complete FRS are discussed in the following proposition.

Proposition 5.0.4.

(i) Suppose (kn)n∈N is a disjoint sequence in σ-Dedekind complete FRS (K,φ). Then

kn
ufo−−→ 0 in K.

(ii) Suppose (kn)n∈N is a sequence in an FRS (K,φ). If kn
ufo−−→ 0 then infm(knm) = 0 for

each increasing sequence (nm) of natural numbers.

Proof.

(i) Fix k ∈ K+. We will show that lim supn(|kn| ∧ k) = 0. Indeed, let g ∈ K+ such that

φ(g, supn(|kn| ∧ k)) > 1/2. Therefore,

φ(g ∧ |kn|, (sup
n+1

(|kn+1| ∧ k) ∧ |kn|) > 1/2 and sup
n+1

(|kn+1| ∧ |kn| ∧ k) = 0.

Thus, g ∧ |kn| = 0 for each n ∈ N. It follows that

g = g ∧ sup
n≥1

(k ∧ |kn|) = sup
n≥1

(g ∧ k ∧ |kn|) = 0.
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Hence, |kn| ∧ k
fo−→ 0.

(ii) Suppose kn
ufo−−→ 0. Take (nm) as an increasing sequence of N . Clearly, knm

ufo−−→ 0. Let

φ(k, knm) > 1/2 for each m ∈ N and k ∈ K+. Therefore, k = knm ∧k
fo−→ 0, implies that

k = 0. Hence, infm(knm) = 0.

5.1 Fuzzy weak order unit

Our next goal is to reduce the task of checking ufo-convergence at every positive vector to

a single special vector known as a fuzzy weak order unit that allows us to characterize ufo-

convergence nicely. For k ∈ K the fuzzy band generated by k is known as principal fuzzy

band and defined as Bk = {g ∈ K : |g| ∧ n|k| ↑ |g|} by Corollary [26, 5.4]. The fuzzy band

generated by a non-zero positive element is discussed as follows.

Definition 5.1.1. Let (K,φ) be an FRS and 0 6= w ∈ K+ is called fuzzy weak order unit if

w generates fuzzy band satisfying either k ∧ nw ↑ k : n ∈ N for each k ∈ K+ or Bw = K.

Proposition 5.1.2. Let (K,φ) be an Archimedean FRS. 0 6= w ∈ K+ is a fuzzy weak order

unit iff k ⊥ w implies k = 0 for each k ∈ K+.

Proof. It follows from the definition of fuzzy weak order unit, [26, Theorems 4.7 and 5.8].

Now we use the Proposition 5.1.2 to prove the underlying result.

Proposition 5.1.3. Let (K,φ) be a Dedekind complete FRS with a fuzzy weak order unit w.

Then kλ
ufo−−→ 0 iff |kλ| ∧ w

fo−→ 0.

Proof. Suppose kλ
ufo−−→ 0. Take any g ∈ K+. As K is fuzzy Dedekind complete, then

(lim sup
λ

(|kλ| ∧ g)) ∧ w = (lim sup
λ

(|kλ| ∧ w)) ∧ g = 0 ∧ g = 0.
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Thus, w being a fuzzy weak order unit implies that lim supλ(|kλ|∧g) = 0. Hence, |kλ|∧g
fo−→ 0.

The converse follows from the Definition 5.0.1.

Now we defined and studied the properties of the fuzzy component in which ufo-convergence

is nicely characterized.

Definition 5.1.4. Let (K,φ) be an FRS. A vector k ∈ K+ is said to be fuzzy component of

w whenever k ∧ (w − k) = 0 for w ∈ K+.

Remark 5.1.5. For k ∈ K, wk denotes the fuzzy component of w in the fuzzy band generated

by k. So for each α ∈ R, w(k−αw)+ is the fuzzy component of w in the fuzzy band generated

by (k − αw)+ and we set e(α) = w(k−αw)+. In a Dedekind complete FRS (K,φ) with k ∈ K+

and let e = wk+ then ke = k+.

Now, many lemmas are proved to characterize the ufo-convergence with the help of fuzzy

components.

Lemma 5.1.6. If (K,φ) be a Dedekind complete FRS for k ∈ K+ then

φ(e(α),
1

α
k) > 1/2

for α > 0.

Proof. Remark 5.1.5 yields that (k − αw)e(α) = (k − αw)+ and φ(0, (k − αw)+) > 1/2.

Therefore, (k − αw)e(α) = ke(α) − αwe(α) and φ(0, k − αe(α)) > 1/2 implies φ(e(α), 1
α
k) >

1/2.

Lemma 5.1.7. Let (K,φ) be a Dedekind complete FRS and (kλ) a net in K+. Then ∧λwkλ =

0 implies ∧λkλ = 0. But converse is not true.

Proof. For each λ, φ(kλ∧w,wkλ) > 1/2, so (∧λkλ)∧w = ∧λ(kλ∧w) and φ(∧λ(kλ∧w),∧λwkλ) >

1/2. Thus (∧λkλ) ∧ w = 0. Hence ∧λkλ = 0. To see that the converse is false, take a set

kn = 1
n
w for all n ∈ N.
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Lemma 5.1.8. Let (K,φ) be a Dedekind complete FRS and (kλ) a net in K+. Then ∧λw(kλ−αw)+ =

0 for each α > 0 iff ∧λkλ = 0.

Proof. For the forward implication we show that φ(∧λkλ, αw) > 1/2 for each α > 0. Fix α. By

Lemma 5.1.7 ∧λ(kλ−αw)+ = 0. So φ(∧λ(kλ−αw), 0) > 1/2 that implies φ(∧λkλ, αw) > 1/2.

The converse follows from the Lemma 5.1.6.

Lemma 5.1.9. Let (K,φ) be a Dedekind complete FRS and (kλ) a net in K+. Then wkλ
fo−→ 0

implies kλ
ufo−−→ 0. The converse is not true.

Proof. The proof is essentially the same as for Lemma 5.1.7, using Lemma 5.1.3.

Now the characterization of ufo-convergence is established in the next theorem.

Theorem 5.1.10. Suppose (K,φ) is a Dedekind complete FRS and (kλ) a net in K+. Then

w(kλ−αw)
fo−→ 0 for each α > 0 iff kλ

ufo−−→ 0.

Proof. For the forward implication, suppose the net (kλ) is fuzzy order bounded. We show

that

φ(lim sup
λ

kλ, αw) > 1/2 ∀ α > 0.

Fix α. By Lemma 5.1.9 (kλ − αw)+ fo−→ 0. In particular, lim supλ(kλ − αw)+ = 0, thus

φ(lim supλ(kλ − αw), 0) > 1/2 such that φ(lim supλ kλ, αw) > 1/2.

Now drop the supposition that (kλ) is fuzzy order bounded. For every α > 0,

φ(w(kλ∧w−αw)+ , w(kλ−αw)+) > 1/2 and w(kλ−αw)+
fo−→ 0.

Since kλ ∧ w is fuzzy order bounded, then kλ ∧ w
fo−→ 0.

The backward implication is followed by the Lemma 5.1.6.
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5.1.1 Fuzzy ideals and completeness with respect to ufo-convergence

The fuzzy ideal is a useful structure with important properties that can help to study ufo-

convergence. To work in the fuzzy ideal is much easier than to work in the whole space.

Indeed it is shown that ufo-convergence in the fuzzy ideal is equivalent to ufo-convergence in

the entire space.

Remark 5.1.11. Let (K,φ) be an FRS, I a fuzzy ideal of K and (kλ) ⊂ I. If kλ
fo−→ 0 in I,

then kλ
fo−→ 0 in K. Conversely, If (kλ) is fuzzy order bounded in I and kλ

fo−→ 0 in K, then

kλ
fo−→ 0 in I.

Proposition 5.1.12. Let (K,φ) be a Dedekind complete FRS and (kλ) a net in fuzzy ideal I

of K. Then kλ
ufo−−→ 0 in I iff kλ

ufo−−→ 0 in K.

Proof. Suppose kλ
ufo−−→ 0 in K. Then for any g ∈ I+ such that |kλ| ∧ g

fo−→ 0 in K, Remark

5.1.11 yields |kλ| ∧ g
fo−→ 0 in I. Hence kλ

ufo−−→ 0 in I. Conversely, take any g ∈ I+, then

|kλ| ∧ g
fo−→ 0 in I, again by Remark 5.1.11 |kλ| ∧ g

fo−→ 0 in K. It follows that, for any g ∈ I+

and positive h ∈ Id such that |kλ| ∧ (g + h)
fo−→ 0 = |kλ| ∧ g

fo−→ 0 in K.

For any u ∈ K+ and z ∈ (I ⊕ Id)+, we have u ∧ z ∈ (I ⊕ Id)+. Therefore, by Remark

5.1.11 |kλ| ∧ (u+ z)
fo−→ 0 in K, or equivalently,

lim sup
λ

(|kλ| ∧ u) ∧ z = lim sup
λ

(|kλ| ∧ (u ∧ z)) = 0.

[26, Theorem 4.7 (i)] yields that (I ⊕ Id)d = {0}. Thus,

lim sup
λ

(|kλ| ∧ u) = 0.

Hence, |kλ| ∧ u
fo−→ 0 in K.

The closeness of ufo-convergence is defined and discussed as follows.
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Definition 5.1.13. Let (K,φ) be an FRS. For C ⊂ K is said to be unbounded fuzzy order

closed (ufo-closed for short), if for any net (kλ) ⊂ C and k ∈ K with kλ
ufo−−→ k in K implies

k ∈ C.

Proposition 5.1.14. Let L be a fuzzy Riesz subspace of FRS (K,φ). Then L is ufo-closed

in K iff L is fo-closed in K.

Proof. The forward implication is straightforward.

Conversely, suppose L is fo-closed in K. Let (gλ) ⊆ L and k ∈ K such that gλ
ufo−−→ k in K.

By Lemma 5.0.2(iv) |gλ|
ufo−−→ |k| in K. Therefore, without loss generality, consider (gλ) ⊆ L+

and k ∈ K+. Observe that for each w ∈ K+, then

φ(|gλ ∧ w − k ∧ w|, |gλ − k| ∧ w) > 1/2 and |gλ − k| ∧ w
fo−→ 0 in K. (5.1.1)

Consequently, for any g ∈ L+, gλ ∧ g
fo−→ k ∧ g in K. As L is fo-closed, then k ∧ g ∈ L.

On the other hand, for any w ∈ (Ld)+, then gλ ∧w = 0 for each λ, so that by ((i)) k ∧w = 0.

Thus, k ∈ Ldd, which is fuzzy band generated by L in K.

It follows that there is a net (wγ) in the fuzzy ideal generated by L+ such that wγ ↑ k in

K. Moreover, for each γ there exists zγ ∈ L such that φ(wγ, zγ) > 1/2. So

φ(wγ ∧ k, zγ ∧ k) > 1/2 and φ(zγ ∧ k, k) > 1/2

implies that wγ ↑ k in K. Therefore, zγ ∧ k
fo−→ k in K. Hence, zγ ∧ k ∈ L and L is fo-closed

then k ∈ L.
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Chapter 6

Fuzzy normed Riesz space

In the current chapter, we study the fuzzy norm in view of fuzzy ordering and defined fuzzy

normed Riesz space. Later on, we investigate the theory of locally convex-solid fuzzy Riesz

space. Toward the end of this chapter, we define unbounded fuzzy norm convergence in fuzzy

Banach lattices.

Definition 6.0.1. A fuzzy norm N on an FRS (K,φ) is called fuzzy Riesz norm if φ(|k|, |g|) >

1/2 implies N(k, t) ≥ N(g, t) for each k, g ∈ K and 0 < t ∈ R. If N is a fuzzy Riesz norm

on K then (K,N, φ) is said to be fuzzy normed Riesz space (FNRS). A norm complete fuzzy

normed Riesz space is said to be fuzzy Banach lattice.

The following result shows that a closed unit ball in a fuzzy Riesz norm is fuzzy solid.

Proposition 6.0.2. Let a fuzzy norm on an FRS (K,φ) is a fuzzy Riesz norm iff its closed

unit ball with radius r

BN = {k ∈ K, N(k, t) ≥ 1− r ∀ 0 < t ∈ R}

is a fuzzy solid subset.

Proof. If N is an FNRS then clearly BN is a fuzzy solid subset.
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Conversely, if BN is a fuzzy solid and φ(|k|, |g|) > 1/2 in K then

φ(| 1

N(k, t) + ε
k|, | 1

N(k, t) + ε
g|) > 1/2

for all ε ∈ (0, 1). As 1
N(k,t)+ε

g ∈ BN implies 1
N(k,t)+ε

k ∈ BN . Therefore, N(g, t) ≤ N(k, t) + ε

for all ε. Hence N(g, t) ≤ N(k, t).

It is obvious in an FNRS (K,N, φ), N(|k|, t) = N(k, t) for each k ∈ K and 0 < t ∈ R. A

few properties of FNRS are discussed in the underlying proposition.

Proposition 6.0.3. If (K,N, φ) is an FNRS then following statements are true:

(i) K is an Archimedean FRS;

(ii) the fuzzy lattice operations (k, g) 7→ k∧ g, (k, g) 7→ k∨ g, k 7→ k−, k 7→ k+, and k 7→ |k|

are fuzzy continuous from K ×K (or from K, resp.) into K;

(iii) the positive cone is fuzzy norm closed;

(iv) the closure of a fuzzy ideal is a fuzzy ideal;

(v) the closure of a fuzzy Riesz subspace is a fuzzy Riesz subspace;

(vi) every fuzzy band is closed.

Proof. (i) For k, g ∈ K and φ(nk, g) > 1/2 for each n ∈ N, it follows that φ(nk+, g+) > 1/2

and N(g+, t) ≤ N(nk+, t) for each 0 < t ∈ R. Thus, k+ = 0. Hence, φ(k, 0) > 1/2.

(ii) Suppose kλ
fn−→ k in K. Then for each 0 < t ∈ R

N(|kλ| − |k|, t) ≥ N(|kλ − k|, t) = N(kλ − k, t) = 1.

So, |kλ|
fn−→ |k|. Hence the modulus operation is fuzzy continuous. Since the modulus

can express all fuzzy lattice operations, so these lattice operations are fuzzy continuous

as well.
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(iii) Let K+ = {k, k− = 0} be the fuzzy positive cone. Therefore, it is the inverse image of

fuzzy closed set {0} with respect to fuzzy continuous map k 7→ k−.

(iv) Suppose C is a fuzzy ideal of K. Then φ(|k|, |g|) > 1/2 we have g ∈ C. Take a sequence

(gn)n∈N ⊆ C with gn
fn−→ g. Define k+

n := k+ ∧ |gn| and k−n := k− ∧ |gn| for each n, we

have kn = k+
n − k−n ∈ C. Clearly, φ(kn, gn) > 1/2 for each n. Since C is a fuzzy ideal,

we have kn
fn−→ k. By (ii), hence k ∈ C.

(v) It is the immediate consequences of (ii) and (iv).

(vi) Let kn ↑ k in K i.e. k = supn kn. Suppose C is a σ-fuzzy ideal in K and (hn) ⊆ C such

that hn
fn−→ h in K. Let gn := |hn| ∧ |h| we have (gn) ⊆ C. By (ii) (gn) fn-converges

to |h|. Defining kn := supn gn in C and satisfying φ(gn, kn) > 1/2 and φ(kn, |h|) > 1/2.

Thus, we have for each 0 < t ∈ R

N(kn − |h|, t) ≥ N(gn − |h|, t)

which shows that (kn) fn-convergent to |h| in K. But kn ↑ |h|. Since C is a σ-fuzzy

ideal, we have |h| ∈ C implies that h ∈ C. Hence C is closed.

Lemma 6.0.4. Let (K,N, φ) be an FNRS. If a net kλ ↑ k and limλ kλ = k then k = supλ kλ.

Proof. For fixed γ, take γ ≤ λ, we have φ(kγ, kλ) > 1/2. Since K+ is fuzzy closed, it follows

that φ(kγ, k) > 1/2. Thus k is an upper bound of (kλ). If g ∈ K is another upper bound,

then φ(kγ, g) > 1/2 implies φ(k, g) > 1/2. Hence k = supλ kλ.

An important result about continuity of fuzzy positive operators between fuzzy Banach

lattice is given as follow.

Proposition 6.0.5. If P is a fuzzy positive operator between fuzzy Banach lattice (K,N1, φ)

to FNRS (H,N2, µ) then it is fuzzy continuous.
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Proof. Let P : K → H is a fuzzy positive operator. Suppose on contrary that, P is not fuzzy

continuous then it must be fuzzy unbounded. Therefore, there exists a sequence (kn)n∈N in

K such that kn ↓ 0 satisfying N1(kn, t) = 1 and N2(P (kn), t) ≤ M for each 0 < t ∈ R

and M ∈ (0, 1). Since K is fuzzy norm complete then g :=
∑

n kn exists in K. Clearly,

φ(kn, g) > 1/2 for each n. Thus, µ(P (kn), P (g)) > 1/2 and so

N2(P (g), t) ≤ N2(P (kn), t) ≤M

for each n, a contradiction.

6.0.1 Fuzzy order continuous Banach lattice

A fuzzy Riesz norm on an FRS (K,φ) is known as fuzzy order continuous if kλ ↓ 0 implies

kλ
fn−→ 0 and σ-fuzzy order continuous if (kn)n∈N ↓ 0 implies (kn)n∈N

fn−→ 0. Next lemma is

conducive to characterized the fuzzy order continuous Banach lattice (K,N, φ).

Lemma 6.0.6. Let (K,φ) be an Archimedean FRS. If a net kλ ↑ k in K, then the set

C = {g ∈ K,φ(kλ, g) > 1/2 for each λ} is directed downward and g − kλ ↓ 0.

Proof. Clearly, C is directed downward. Let φ(z, g − kλ) > 1/2 holds for each λ and g ∈ C.

Then φ(kλ, g − z) > 1/2 for all λ. Therefore, g − z ∈ C. By induction, g − nz ∈ C for each

n. In particular, φ(nz, k) > 1/2 for each n. Since K is Archimedean FRS then z = 0. Hence

g − kλ ↓ 0.

A characterization of fuzzy Banach lattice (K,N, φ) with fuzzy order continuous norms

are given in the following results.

Theorem 6.0.7. If (K,N, φ) is a fuzzy Banach lattice then underlying statements are equiv-

alent:

(i) K has fuzzy order continuous norm;
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(ii) if kn ↑ k in K+ then (kn) is a fuzzy norm cauchy sequence;

(iii) K is a σ-fuzzy Dedekind complete and kn ↓ 0 in K implies N(kn, t) ↓ 0 for t > 0.

Proof. (i) ⇒ (ii) Let kλ ↑ k in K+. Take α ∈ (0, 1) and by continuity of ?, we can find

r ∈ (0, 1) such that (1 − r) ? (1 − r) > 1 − α. By Lemma 6.0.6 there exists a net (gγ) ⊆ K

with gγ − kλ ↓ 0. Therefore, there exist λ0 and γ0 such that N(gγ − kλ, t) > 1 − α for each

λ ≥ λ0 and γ ≥ γ0. The inequality

N(kβ − kλ, t+ s) ≥ N(kβ − gλ0 , t) ? N(kλ − gλ0 , s)

> (1− r) ? (1− r) > 1− α

for each λ, β ≥ λ0 and t, s > 0. Hence (kλ) is fuzzy norm cauchy net.

(ii) ⇒ (i) Suppose (kn) is a decreasing sequence in K+. Let (kn) be a fuzzy norm cauchy

sequence. Take α ∈ (0, 1) and by continuity of ?, we can discover r ∈ (0, 1) such that

(1− r) ? (1− r) ? (1− r) > 1− α. Let some gn ∈ K+ with N(kn− gn, t) > 1− r/2n for t > 0.

Put un =
∧n
i=1 gi and note (un) is a decreasing sequence in K+. By our assumption, there

exists some n0 with N(un − um, t) > 1− r for each n,m ≥ n0. So,

kn − un =
n∨
i=1

(kn − gi)

such that

φ(
n∨
i=1

(kn − gi),
n∨
i=1

(ki − gi)) > 1/2 and φ(
n∨
i=1

(ki − gi),
n∑
i=1

|ki − gi|) > 1/2.

Now

−(kn − un) =
n∧
i=1

(gi − kn)
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such that

φ(
n∧
i=1

(gi − kn), gn − kn) > 1/2 and φ(gn − kn,
n∑
i=1

|ki − gi|) > 1/2.

We have φ(|kn − un|,
∑n

i=1 |ki − gi|) > 1/2. Thus,

N(kn − un, t) ≥
n∑
i=1

N(ki − gi, s) > 1− r/2i > 1− r for each n.

In particular, for m,n ≥ n0 and t, s, p > 0 we have,

N(kn − km, t+ s+ p) ≥ N(kn − un, t) ? N(um − un, s) ? N(um − km, p)

> (1− r) ? (1− r) ? (1− r) > 1− α.

(ii) ⇒ (iii) is straight forward.

(iii) ⇒ (i) Let kλ ↓ 0. Suppose the net (kλ) is not fuzzy norm cauchy, therefore, there

exists some α ∈ (0, 1) and an increasing sequence (λn) such that N(kλn − kλn+1 , t) < 1 − α

for each n. As K is σ-fuzzy Dedekind complete, there exists some k ∈ K with kλn ↓ k. So,

kλn is fuzzy norm cauchy sequence. A contradiction, thus, N(kλ, t) ↓ 0.

6.1 Locally convex-solid fuzzy Riesz space

With the induced topology τ of fuzzy norms (K, τ) is a topological vector space. Furthermore,

a topological vector space is said to be locally convex if it has a local base at zero consisting

of convex sets. We aim to study the relationship between the fuzzy lattice structure of K

under the fuzzy order φ and topological structure of K.

In order to construct a relation between topological dual denoted K
′

(set of all continuous

linear functionals with respect to topology τ) and fuzzy order dual, we adopt a general
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approach by considering a locally convex topology τ on FRS (K,φ) generated by a family

of complete fuzzy Riesz norms on K. We call the triple (K,φ, τ) locally convex-solid fuzzy

Riesz space(LCSFRS). Every locally convex-solid topology on a fuzzy Riesz space makes fuzzy

lattice operations continuous functions.

Proposition 6.1.1. If (K,φ, τ) is a LCSFRS then following statements are true:

(i) k 7→ k+ from K to K is continuous;

(ii) k 7→ k− from K to K is continuous;

(iii) k 7→ |k| from K to K is continuous;

(iv) (k, g) 7→ k ∨ g from K ×K to K is continuous;

(v) (k, g) 7→ k ∧ g from K ×K to K is continuous.

Proof. It is an immediate consequence of [10, Theorem 4.11].

The next result shows some essential characterization of LCSFRSs.

Proposition 6.1.2. If (K,φ, τ) is a LCSFRS then following statements are true:

(i) the FRS K is a fuzzy Archimedean;

(ii) the fuzzy positive cone K+ is a τ − closed;

(iii) τ − closure of fuzzy solid subset C of K is also a fuzzy solid;

(iv) τ − closure of fuzzy Riesz subspace of an FRS is a fuzzy Riesz subspace;

(v) every fuzzy band is a τ − closed;

(vi) if kλ
τ−→ k in K then kλ ↑ k in K;

(vii) if two nets (kλ) and (gλ) satisfied φ(kλ, gλ) > 1/2 and kλ−gλ
τ−→ 0 then kλ ↓ k iff gλ ↓ k.
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Proof. (i) Let φ(nk, g) > 1/2 for each n ∈ N and k, g ∈ K+. As φ(k, 1
n
g) > 1/2 and 1

n
g

τ−→ 0

implies that k = 0.

(ii) By Proposition 6.1.1 k 7→ k− is continuous. Therefore, K+ = {k ∈ K : k− = 0}. Hence

K+ is τ − closed.

(iii) Let C be a fuzzy solid subset of K. Then φ(|k|, |g|) > 1/2 we have g ∈ C. Take a

net (gλ) ⊆ C with gλ
τ−→ g. Define kλ := (k ∧ gλ) ∨ (| − gλ|) for each λ. Clearly,

φ(kλ, gλ) > 1/2 for each λ. Therefore, (kλ) ⊆ C such that kλ
τ−→ k. Hence, k ∈ C.

(iv) Suppose L is a fuzzy Riesz subspace of K. Clearly, L is a vector subspace of K. If

g ∈ G therefore, there exists a net (gλ) in L such that gλ
τ−→ g. By Proposition 6.1.1

(gλ)
+ ⊆ L such that g+

λ

τ−→ g+. Hence g+ ∈ L.

(v) Take a ∅ 6= C ⊆ K with disjoint complement Cd = {k ∈ K, |k| ∧ |g| = 0,∀ g ∈ C} is

τ − closed. Indeed, if k ∈ Cd then kλ
τ−→ k for some (kλ) ⊆ C. Thus, 0 = |g| ∧ |kλ|

τ−→

|g| ∧ |k| for each g ∈ C. Since |k| ∧ |g| = 0 implies that k ∈ Cd. Hence, Cd is τ − closed.

Since K fuzzy Archimedean then by [26, Theorem 5.8] every fuzzy band satisfies C =

Cdd. Hence, C is τ − closed.

(vi) For fixed λ, γ � λ we have φ(k∨ kλ− k, k∨ kγ − k) > 1/2 and φ(kγ − k, |kγ − k|) > 1/2.

Thus, |kγ − k|
τ−→ 0. Therefore, k ∨ kλ − k = 0 i.e. φ(kλ, k) > 1/2 for each λ.

Suppose there exists some g ∈ K such that φ(kλ, g) > 1/2 for each λ. Thus, g − kλ
τ−→

g − k implies that g − k ∈ K+ i.e. φ(k, g) > 1/2. Hence, kλ ↑ k in K.

(vii) Suppose kλ ↓ k and φ(k, g) > 1/2, φ(g, gλ) > 1/2 for each λ. Then φ((g−kλ)+, gλ−kλ) >

1/2 for each λ. Thus, (g − kλ)+ τ−→ 0. Therefore, (g − kλ)+ ↑ (g − k)+ = g − k. By (vi)

we have g − k = 0 implies that gλ ↓ k.

Conversely, suppose that gλ ↓ k in K. Then φ(k − k ∧ kλ, gλ − kλ) > 1/2, therefore,

k − k ∧ kλ
τ−→ 0. So k − k ∧ kλ ↑ by (vi) k − k ∧ kλ ↑ 0 implies that k − k ∧ kλ = 0 for
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each λ, thus φ(k, kλ) > 1/2. Hence, kλ ↓ k in K.

Theorem 6.1.3. If (K,φ, τ) is an LCSFRS, then the topological dual K
′

(is fuzzy Dedekind

complete in its own right) is a fuzzy ideal of the fuzzy order dual Kv. Moreover, if for each

u, v ∈ K ′
and h ∈ K+ then

[u ∨ v](h) = sup{u(k) + v(g) : k, g ∈ K+ and k + g = h}

and

[u ∧ v](h) = inf{u(k) + v(g) : k, g ∈ K+ and k + g = h}.

Proof. We show that K
′

is a vector subspace of Kv. Suppose on contrary that some u ∈ K ′

and u does not exist in Kv there exist some k ∈ K+ and a sequence (kn)n∈N ⊆ [0, k] satisfying

u(kn) ≥ n for each n. Now φ( 1
n
kn,

1
n
k) > 1/2 and 1

n
k

fτ−→ 0. Therefore, limu( 1
n
kn) = 0, a

contradiction.

Now we show that K
′

is a fuzzy ideal of Kv. Suppose ψ(|u|, |v|) > 1/2 in Kv with

v ∈ K ′
. Let kλ

fτ−→ 0 and ε ∈ (0, 1). The Theorem 4.0.4 yields that there exists a net (gλ)

with φ(gλ, kλ) > 1/2 and |v|(|kλ|) ≤ |v(gλ)|+ ε for each λ. Clearly, gλ
fτ−→ 0. Thus

ψ(|u(kλ)|, |u|(|kλ|)) > 1/2 and |u|(|kλ|) ≤ |v|(|kλ|).

So |u(kλ)| ≤ |v(gλ)|+ε then lim sup |u(kλ)| ≤ ε for each ε ∈ (0, 1). Therefore, lim sup |u(kλ)| =

0 and limu(kλ) = 0. Hence u ∈ K ′
. The fuzzy lattice operations are acquired from Theorem

4.0.4.

6.2 Unbounded fuzzy norm convergence

This section aims to define and study unbounded fuzzy norm convergence in fuzzy Banach

lattice, which is closely related to unbounded fuzzy order convergence. Some other theoret-
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ical concepts like fuzzy quasi interior-point and disjoint sequences are studied in relation to

unbounded fuzzy norm convergence. Moreover, we define a topology that is compatible with

unbounded fuzzy norm convergence.

Definition 6.2.1. A net (kλ)λ∈Λ in a fuzzy Banach lattice (K,N, φ) is known as unbounded

fuzzy norm convergent (ufn-convergent for short) to k ∈ K denoted kλ
ufn−−→ k if |kλ−k|∧g

fn−→

0 for each g ∈ K+ and read as kλ ufn-convergent to k.

Note that fn-convergence implies ufn-convergence. The following result provides some

basic properties of ufn-convergence.

Lemma 6.2.2. Let (kλ)λ∈Λ and (gγ)γ∈Γ be nets in a fuzzy Banach lattice (K,N, φ). Then

following statements are true:

(i) kλ
ufn−−→ k iff (kλ − k)

ufn−−→ 0;

(ii) if kλ
ufn−−→ k and gγ

ufn−−→ g then akλ + bgγ
ufn−−→ ak + bg for each a, b ∈ R;

(iii) if kλ
ufn−−→ k, then |kλ|

ufn−−→ |k|;

(iv) if kλ
ufn−−→ k and kλ

ufn−−→ g, then k = g.

(v) if kn
ufn−−→ k and gn

ufn−−→ g, then kn ∨ gn
ufn−−→ k ∨ g and kn ∧ gn

ufn−−→ k ∧ g.

(vi) if kn
ufn−−→ k, then knp

ufn−−→ k for any subsequence (knp) of (kn).

Proof. The proof of (i) and (ii) are obvious.

(iii) It follows from φ(||kλ| − |k||, |kλ − k|) > 1/2.

(iv) Let φ(|k−g|, |k−kλ|+|g−kλ|) > 1/2 for each λ. Let h = |k−g|. Thus, |k−g| = |k−g|∧h.

Therefore,

φ(|k − g| ∧ h, |k − kλ| ∧ h+ |g − kλ| ∧ h) > 1/2.

Hence, k = g.
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(v) It follows from

φ(|kn ∨ gn − k ∨ g|, |k ∨ gn − k ∨ g|+ |kn ∨ gn − k ∨ gn|) > 1/2

and

φ(|k ∨ gn − k ∨ g|+ |kn ∨ gn − k ∨ gn|, |kn − k|+ |gn − g|) > 1/2.

Analogously, kn ∧ gn
ufn−−→ k ∧ g.

(vi) Assume that kn
ufn−−→ k. Let (knp) be subsequence of (kn). For each α ∈ (0, 1) and

z ∈ K+ there is an n0 ∈ N such that N((kn − k) ∧ z, t) > 1 − α for t > 0 whenever

n ≥ n0. Then n0 ≤ np ≤ p we have N((knp − k) ∧ z, t) > 1− α. Hence knp
ufn−−→ k.

Note that if a net is fuzzy order bounded inK then ufn-convergence implies fn-convergence.

Lemma 6.2.3. Let (kλ) be a fuzzy order bounded net in fuzzy Banach lattice (K,N, φ). Then

kλ
fn−→ 0 iff kλ

ufn−−→ 0.

Proof. Without loss, suppose the net (kλ) in K+. Then for each w ∈ K+, φ(kλ∧w, kλ) > 1/2

and kλ
ufn−−→ 0. Conversely, suppose kλ

ufn−−→ 0 there exists some z ∈ K+ such that φ(kλ, z) >

1/2 for each λ. Thus kλ = kλ ∧ z
fn−→ 0.

The following result shows that ufo-convergence implies ufn-convergence when fuzzy Ba-

nach lattice is fuzzy order continuous.

Lemma 6.2.4. If (K,N, φ) is a fuzzy order continuous Banach lattice then ufo-convergence

implies ufn-convergence.

Proof. fo-convergence implies fn-convergence in fuzzy order continuous spaces. So if kλ
ufo−−→ 0

then we have kλ∧z
fo−→ 0 for each z ∈ K+. Hence fuzzy order continuity gives kλ∧z

fn−→ 0.
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To reduce the checking work of ufn-convergence to each positive vector to a single special

vector is known as a fuzzy quasi-interior point as in [28, Proposition 5], which is discussed as

follows.

Definition 6.2.5. A non-zero positive q in a fuzzy Banach lattice (K,N, φ) is known as fuzzy

quasi-interior point if k ∧ nq fn−→ k for each k ∈ K+.

Theorem 6.2.6. Let (K,N, φ) be a fuzzy Banach lattice with fuzzy quasi-interior point q.

Then kλ
ufn−−→ 0 if and only if |kλ| ∧ q

fn−→ 0.

Proof. As kλ ∧ q
fn−→ k implies kλ

ufn−−→ 0. Conversely, let z ∈ K+ , t > 0. Take α ∈ (0, 1) and

by continuity of ?, we can find r ∈ (0, 1) such that (1− r) ? (1− r) > 1− α. Then

φ(|kλ| ∧ z, |kλ| ∧ (z − z ∧ nq) + |kλ| ∧ (z ∧ nq)) > 1/2

and

φ(|kλ| ∧ (z − z ∧ nq) + (|kλ| ∧ (z ∧ nq), (z − z ∧ nq) + n(|kλ| ∧ q)) > 1/2.

Thus,

N(|kλ| ∧ z, t+ s) ≥ N(z − z ∧ nq, t) ? N(n(|kλ| ∧ q), s)

for each λ and n ∈ N. As q is fuzzy quasi-interior point we may find n such that N(z −

z ∧ nq, t) > 1 − r for each n and t > 0. Moreover, it follows from kλ ∧ q
fn−→ k there

exists λ0 such that N(kλ ∧ q, s) > (1 − r)/n whenever λ ≥ λ0 and s > 0. Therefore,

N(|kλ| ∧ z, t) > (1− r) ? n(1− r)/n > 1− α. Hence |kλ| ∧ z
fn−→ 0.

6.2.1 Disjoint Sequences

Two sequences (kn) and (km) are called disjoint if |kn| ∧ |km| = 0 for m 6= n and read as

kn ⊥ km. Disjoint sequences in an FRS is ufo-convergent to zero. But this fact is not true for

ufn-convergence. The ufn-convergent sequences are almost disjoint. The next result is useful

to prove our key result.
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Lemma 6.2.7. Let (K,φ) be an FRS. If |k| = g + h for some k ∈ K and some g, h ∈ K+

then there exist a and b such that k = a+ b, |a| = g and |b| = h.

Proof. Suppose k+ + k− = g + h, Theorem 2.3.8 yields the four positive vector w, x, y and z

such that g = w + x, h = y + z, k+ = w + y and k− = x + z. Put a = w − x and b = y − z.

Thus a + b = k+ − k− = k. Now as φ(w, k+) > 1/2 and φ(x, k−) > 1/2 that w ⊥ x. Hence

|a| = |w − x| = |w + x| = w + x = g. Analogously, y ⊥ z. Hence |b| = h.

Theorem 6.2.8. If a net kλ
ufn−−→ 0 in a fuzzy Banach lattice (K,N, φ) then there exists a

disjoint sequence (δn) and an increasing sequence of indices (λn) such that kλn − δn
fn−→ 0.

Proof. Suppose that (kλ) ⊆ K+. Take any λ1 and construct λ1, ..., λn−1. Observe that

kλ ∧ kλj
fn−→ 0, 1 ≤ j ≤ n− 1. Take λn > λn−1 such that N(kλ ∧ kλj , t) ≥ 1− 1

2n+j
for each j

and t > 0. Therefore, we get an increasing sequence of indices (λn). Let gnj = kλ ∧ kλj such

that N(gnj, t) ≥ 1− 1
2n+j

, 1 ≤ j ≤ n− 1.

For each n, put hn =
∑n−1

j=1 gjn +
∑∞

i=n gni. Clearly, hn is convergent and N(hn, tn) >

1 − 1
2n+j

for
∑∞

n=1 tn < ∞. Put δn = (kλn − hn)+. Clearly, φ(kλn − δn, hn) > 1/2 such that

N(kλn − δn, t) > 1− 1
2n+j

for each n and t > 0. Thus, kλn − δn
fn−→ 0.

Now we show that (δn) is disjoint sequence. Let n < p.

δn = φ((kλn − hn)+, (kλn − hnp)+) > 1/2 and (kλn − hnp)+ = kλn − kλn ∧ kλp

and

δp = φ((kλp − hp)+, (kλn − hnp)+) > 1/2 and (kλp − hnp)+ = kλp − kλn ∧ kλp .

Clearly, δn ⊥ δp = 0.

For the general case, we first take |kλ| and increasing sequence of indices. Also we take a

positive disjoint sequence (an) and bn
fn−→ 0 , we have |kλn| = an + bn. Lemma 6.2.7 yields

that there exists two sequence (δn) and (gn) in K with |δn| = an, |gn| = bn and kλn = δn + gn.

It follows that (δn) is disjoint and gn
fn−→ 0. Hence kλn − δn

fn−→ 0.
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Remark 6.2.9. Let (kλ)λ∈Λ be a net in fuzzy norm space, if kλ
fn−→ k then there exists an

increasing sequence of indices (λn) such that kλn
fn−→ k. One can reduce nets to sequences

while studying the fuzzy norm convergence.

Proposition 6.2.10. If a sequence kn
fn−→ k in a fuzzy Banach lattice (K,N, φ) then there

exists a subsequence (knp) such that knp
fo−→ k in K.

Proof. Let kn
fn−→ k. Take a subsequence (knp)(p = 1, 2, ...) of (kn) such that N(knp , t) >

1−p−3 for each p and t > 0. There exists an element g ∈ K+ such that φ(p|knp−k|, g) > 1/2

implies φ(|knp − k|, p−1g) > 1/2 for each p.

For fuzzy order continuous Banach lattice, ufn-convergence is sequential, so one can always

use ufn-convergent sequences instead of nets.

Proposition 6.2.11. If a net kλ
ufn−−→ 0 in a fuzzy order continuous Banach lattice (K,N, φ)

then there exists an increasing sequence of indices (λn) such that kλn
ufo−−→ 0 and kλn

ufn−−→ 0.

Proof. Let (λn) be an increasing sequence of indices and (δn) disjoint sequence as in Theorem

6.2.8. Since δn
ufo−−→ 0, by Lemma 6.2.4 δn

ufn−−→ 0. It follows from kλn − δn
fn−→ 0 implies

kλn − δn
ufn−−→ 0. Thus, kλn

ufn−−→ 0. Moreover, since kλn − δn
fn−→ 0 implies kλn − δn

fo−→ 0.

Therefore, kλn − δn
ufo−−→ 0. Hence kλn

ufo−−→ 0.

It is of interest to note that Lemma 6.2.4 is an extension of the forward direction of this

result to general fuzzy Banach lattice. The following results show the characterization of

ufn-convergence in terms of ufo-convergence in fuzzy order continuous Banach lattices.

Proposition 6.2.12. If a sequence kn
ufn−−→ 0 in a fuzzy Banach lattice (K,N, φ) then there

exists a subsequence (knp) such that knp
ufo−−→ 0 in K.

Proof. Let Be be the fuzzy band generated by 0 6= e ∈ K+. As kn
ufn−−→ 0 i.e. kn ∧ e

fn−→ 0 in

K and therefore, in Be. By Proposition 6.2.10 there exists a subsequence (knp) of (kn) such
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that knp ∧ e
fo−→ 0 in Be. Since e is a fuzzy weak order unit in Be by [28, Proposition 3.4]

kn
ufo−−→ 0 in K.

Proposition 6.2.13. Let (kn) be a sequence in fuzzy order continuous Banach lattice (K,N, φ).

Then kn
ufn−−→ 0 if and only if each subsequence (knp) has 1further subsequence (knpi ) such that

knpi
ufo−−→ 0.

Proof. The forward implication is same as Proposition 6.2.12. Conversely, suppose on contrary

that kn 6
ufn−−→ 0. Then there exists α ∈ (0, 1) and g ∈ K+ and a subsequence (knp) of (kn) such

that N(knp , t) < 1 − α for all p. By assumption there is a subsequence (knpi ) of (knp) such

that knpi
ufo−−→ 0. By Lemma 6.2.4 knpi

ufn−−→ 0, a contradiction.

6.2.2 ufn-convergence is topological

This section is dedicated to define topology that is compatible with ufn- convergence. We

work through by defining a local base of zero. Given α ∈ (0, 1) and 0 6= z ∈ K+.

Cz,α = {k ∈ K : N(|k| ∧ z, t) > 1− α for t > 0}.

Where Cz,α is a neighborhood of zero. The set of all neighborhood of zero is represented as

N0 = {Cz,α : α ∈ (0, 1), 0 6= z ∈ K+}.

The next result shows that N0 is a base of neighborhoods of zero for topology.

Proposition 6.2.14. The family N0 is a base of neighborhoods of zero for topological vector

space.

Proof. Clearly, every set in N0 contains zero.

Now, we show that intersection of any two sets in N0 contains another set in N0. Let

Cz1,α1 , Cz2,α2 ∈ N0. Take α = min{α1, α2} and z = max{z1, z2}. We claim that there exists a
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Cz,α such that Cz,α ⊆ Cz1,α1 ∩Cz2,α2 . Let c ∈ Cz,α. Therefore, N(|c| ∧ z, t) > 1−α. It follows

from φ(|c| ∧ z1, |c| ∧ z) > 1/2 i.e.

N(|c| ∧ z1, t) ≥ N(|c| ∧ z, t) > 1− α ≥ 1− α1 for t > 0.

Thus c ∈ Cz1,α1 . Analogously, c ∈ Cz2,α2 .

Clearly, Cz,α +Cz,α ⊆ Cz,2α. It is easy to see that for every |λ| ≤ 1, we have λCz,α ⊆ Cz,α.

Finally we have to show that for every c ∈ Cz,α there exists Cg,β ∈ N0 such that

c+ Cg,β ⊆ Cz,α

for some α ∈ (0, 1) and 0 6= z ∈ K+. We need to find β ∈ (0, 1) and 0 6= g ∈ K+. Put g := z.

It follows from c ∈ Cz,α that N(|c| ∧ z, t) > 1− α for t > 0. Take β := N(|c| ∧ z, s) + α − 1.

It is enough to show that c+ d ∈ Cz,α. Indeed,

φ(|c+ d| ∧ z, |c| ∧ z + |d| ∧ z) > 1/2.

Thus,

N(|c+ d| ∧ z, t+ s) ≥ N(|c| ∧ z, t) ∧N(|d| ∧ z, s) ≥ N(|c| ∧ z, t)− β ≥ 1− α.

The next proposition shows that ufn-convergence is topological.

Proposition 6.2.15. ufn-convergence in a fuzzy Banach lattice is the same as the convergence

in topology whose base neighbourhood of zero is given by N0.

Proof. If kλ
ufn−−→ 0 then for every α ∈ (0, 1) and 0 6= z ∈ K+ there is some λ0 such that

N(|kλ| ∧ z, t) > 1 − α whenever λ ≥ λ0. For every Cz,α ∈ N0 there is λ0 such that kλ ∈
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Cz,α whenever λ ≥ λ0. Therefore, the natural convergence in this topology is exactly ufn-

convergence.

Concluding Remarks:

Now, in the end, we summarize the novel contributions and present some future research

lines.

• The existence of fuzzy Dedekind completion of a incomplete fuzzy Riesz space is

proved, whereas to achieve this goal other related concepts like fuzzy order

convergence, fuzzy positive operators and their related results are also explored to

enrich the theory of fuzzy Riesz spaces.

• Fuzzy lattice operations are defined on the space of all fuzzy order bounded linear

operators between two fuzzy Riesz spaces to make it fuzzy Riesz space when the range

is fuzzy Dedekind complete. As a special case separation property of fuzzy order dual

spaces are discussed.

• Fuzzy order convergence is generalized as unbounded fuzzy order convergence. Many

other concepts like fuzzy weak order unit and fuzzy component are studied and many

related results are proved.

• Fuzzy norms with respect to fuzzy ordering, to develop fuzzy Riesz norm, which leads

to the fuzzy Banach lattices are defined and studied. Moreover, we proved that the

topological dual is a fuzzy ideal of its fuzzy order dual in locally convex-solid fuzzy

Riesz spaces.

• Unbounded fuzzy norm convergence is defined and studied in fuzzy Banach lattices.

Many other concepts like fuzzy quasi interior point and disjoint sequences are

investigated. Moreover, a topology is defined in which convergence is same as

ufn-convergence.
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For future research lines, one can define and explore the notion of fuzzy Riesz

orthomorphism,unbounded fuzzy norm topology, unbounded fuzzy order convergence in

fuzzy order dual spaces and unbounded absolute fuzzy weak convergence in fuzzy Banach

lattices. Fuzzy order convergence and fuzzy positive operators can be applied to other

spaces like soft sets, intuitionistic fuzzy sets and Rough set.
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