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Abstract 

Investigation of electromagnetic waves propagating along plane dielectric interface poses 

a very interesting and challenging problem. It is known that the phase velocities of the 

electromagnetic waves in dielectric media depend on the constitutive parameters of the 

media. Although phase velocities of electromagnetic waves in different dielectric media 

are different the tangent.ial elect.ric and magnetic field~ across the interface mu~t be 

continuous t.o satisfy the boundary conditions. The studies carried out so far in t.he field 

of propagation along dielectric interface show discontinuous t.angential field components 

across the int.erface thereby violating boundary condit.ions. The discontinuity exists in 

the phase and hence in the phase velocity of the field components whereas the magnitude 

is continuous acro~s the interface. It i~ desired to find such a ~olution for which phase 

as well as magnitude of field component~, E and if are continuous across the interface 

thereby satisfying Maxwell's equations. 

To study the propagation behavior along the interface two classes of problems have 

been considered. In the first class of problems current sources of finite extent have been 

considered and in the second clas~ the source considered is an infinite current sheet. In 

the first class of problems electric field due to electric currents source parallel to the 

interface was investigated. The first order asymptotic evaluation of field components 

shows a null of the electric field at the interface. This solution satisfies the continu

ity of electric field while the magnetic field component is discontinuous. Higher order 

asymptotic evaluations have been employed to get further insight into this propagation 

problem. The results show that the wavefronts need not be discontinuous. In the second 
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class of problems a current sheet was 8.'3sumed to be present across the interface to see 

the behavior of plane wave near the dielectric interface due to an infinite source. 

Among various source configurat.ions considered in this work' the continuity of the 

pha.se front.s is found to be preserved with the help of interesting and stable structures 

of phase fronts. These structures are formed by two types of critical points in the phase 

map known as saddle points and center points. The phase map plots show that these 

points exist. near t.he interface in bot.h half spaces when· finit.e extent sources are present. 

While t.he infinite extent source was responsible for creation of these points in the upper 

half space only . These points are located periodically along the interface while their 

position above or below the interface depends upon the refractive index of the denser 

medium of the two dielectric half spaces . It was found that the refractive index also 

effects the periodicity of these points along the interface. 



xi 

Don't just say "it is impossible" without putting in a sincere effort. Observe the word 

"Impossible" carefully. You can see "I'm possible" . What really matters is your 

attitude and your perception . 

Anonymous 
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Chapter 1 

Introduction 

It is well known that plane waves are fundamental solutions of Maxwell's equations. 

Plane wave is generated by an infinite sheet of electric current. It is physically impossible 

to have sources of infinite dimensions . The finite sources radiate divergent waves but 

t.hese waves can be considered locally as plane waves in the far zone of the source. In 

various two dimensional radiation and scattering problems of electromagnetic waves, 

the waves have to travel parallel to interface in the far zone. An example is of radio 

wave propagation parallel to earth's surface with source at or near the surface. Another 

example can be given of a normal incidence of electromagnet.ic wave on a dielectric 

wedge. In t.he far zone near the interface of this wedge" direction of propagation of the 

wave would become parallel to interface. 

The phase velocity of electromagnetic waves in a medium depend upon the consti

tutive parameters of t.he medium. vVhen t.he elect.romagnetic waves have to propagate 

parallel to an interface of dielect.ric media the difference in phase velocity in dift'erent 

media poses some interesting questions at and near the interface. For example, how the 

phase velocity will change over from one value to the other value across the interface in 

a continuous manner? Ext.ensive work has been done in radiat.ion and scat.tering of elec

tromagnetic waves in the presence of dielectric interfaces but the interest has generally 
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been in calculating fields away from interface or in the far zone. 

The most basic interface problem is, of course, the problem of reflection and refraction 

of a plane electromagnetic wave by a plane interface, which was solved by Fresnel and 

presented to the French Academy in 1823. The propagation of waves is not parallel 

to interface in this particular case. Consider Fig. 1.1, a plane wave strikes a dielectric 

~ 

\ ::;:(e ,I 
\ ~ I .. / 

Interface 

Figure 1.1: Typical oblique incidence case - A text book problem 

interface at an incidence angle, Bi and is reflected at an angle, (), .. The wave penetrates in 

t.he second medium at an angle, Bt . The field in the upper medium is sum of incident and 

reflected plane waves, or Ei + E'·. The transmitted field is Et. These fields are related 



3 

through reflection and transmission co-efficients by Snell's law. To obtain propagation 

parallel to the int.erface t.he angle of incidence, Bi mu~t approach 7r /2. As a result the 

reflection and transmission co-efficients tend to become zero and only the incident field 

remains. The aim of obtaining propagation parallel to the dielectric interface cannot 

be achieved by this simplistic model. The failure of this model is due to its idealized 

nat.ure because an infinit.e source and and an infinite dielectric interface are required by 

t.his model. Therefore one has to look elsewhere to study wave propagation parallel to 

a dielectric interface. 

Pm·viz Parhami et. al. [1] derived fields due to current elements radiating over a lossy 

ground. They numerically evaluated Sommerfeld integrals present in the expressions 

for vect.or potentials. These vector pot.entials are valid only above t.he ground, so the 

resulting field gives no information about the fields at or below the surface. Similarly 

Parhami and Mittra [2] worked on problem of an arbitrarily shaped thin wire antenna 

radiating over a lossy half space. They employed method of moments to solve the 

integral equation arising from center-fed vertical dipole and center-fed inverted V-dipole. 

Their results show that the far field radiation pattern of the electric field component 

parallel to the interface is zero along the interface. Kin-Lu [3] studied interference 

effects of a Gaussian electromagnetic pulse incident. on a.n air-dielectric interface for a 

micro strip circuit. The numerically obtained results show that the power absorption by 

the dielectric surface drops to zero as the incidence angle approaches 7r /2. Engheta and 

Papas [4] had analytica.lly solved the problem of an interfacial line source on a dielectric

dielectric interface. Their result.s also show zero electric field along the interface. They 

had observed sub-surface peaking of the field pattern in the denser medium at critical 

angle. 

Geometrical theory of diffraction(GTD) and Expansion Wave Concept have been 
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employed by Volski and Vandenbo!::ich [5] to fi ncl radi at.ion pattern of an electric line 

source present on a semi-infinite dielectric slab. They have used GTD to investigate 

the diffraction effects of the truncation while expansion wave concepts were employed 

to find out field at the edges of the slab. The field patterns of their results also show a 

null of elect.ric field at. the interface of the dielectric slab. 

Scattering and diffraction problems clue to wedge shaped ob.iects also present. the 

same kind of situation on the interface far from the edge of the wedge. Such problems 

have been treated extensively in the literature and several solutions for the scattered 

far field have been presented. Complicated field dist.ribut.ions exist near t.he edge of 

t.he wedge due to presence of diffracted and scattered fields as shown in Fig. 1.2. But 

far from the edge of the wedge near the interface the phase velocity continuity again 

becomes questionable. For example, Maliuzhinets [6] has given a rigorous solution based 

on approximate boundary conditions referred to as impedance boundary conditions. 

His solut.ions are valid only if t.he magnitude of refractive index of the wedge is large 

compared to unity. Kraut and Lehman [7] investigated, t.he problem of diffraction of a 

plane-polarized electromagnetic wave incident on a right-angled dielectric wedge. They 

examined the electric field amplitude at the tip of the wedge. Their results are not valid 

to invest.igate t.he fie ld behavior along the interface far away from the t.ip, as shown in 

Fig. 1.2. Zuffada [8] had also solved a dielectric wedge problem. Her results are not 

valid at the wedge interface. 

It can be seen that some solutions are invalid at the interface and provide no clue 

to t.he interfacial wave propagation problem. While in t.he solutions that are valid on 

the interface either there is discontinuity of fields at the interface or field is zero at the 

interface. The discontinuous field along the interface does not satisfy the Maxwell's 

equations and the zero field on the interface does not satisfy boundary condition that 
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Figure 1.2: Propagat.ion along a wedge in the far zone 

5 

magnetic field must be continuous on the interface. The solutions which give a field 

null on the interface are in fact approximations. This means that actual field will have 

additional higher order terms . The zero field on t.he interface is an unstable condition. 

Any small perturbation will change the location of zero away from the interface. This 

can be best understood by considering a simple polynomial, y = x 3
, This polynomial 

has three roots at the origin. Addition of a small term, ax will give two complex roots 

(±ifo) along with a root at origin thereby changing the nat.ure of roots in the original 

polynomial y = x 3 . Similarly r;ubtraction of the same term will give two real rootr; 
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-8 

- 1 0 '---------'------==--'-~=----'----------' 
- 10 -5 o 5 10 

Figure 1.3: A line source radiates cylindrical EM waves 

(±fo) along with a root at origin. 

In two dimensional electromagnetic propagation problems the Poynting vector of an 

electric field Ezez = A(x, y)ei ¢(x.lI )ez is given by [9], 

~ 1 2 
S( x, y) == -2 -A \l¢(x, y). 

W/-L 

The amplitude function A(x, y) is continuous and differentiable. Associated with this 

electric field is the phase velocity of the wave given by, 

v = 1\l~1 2 \l¢(x, y) 

It is observed that the phase velocity is parallel to the Poynting vector and both of 

them are normal to the surfaces of constant phase. The behavior of phase velocity can 
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be observed by looking at the surfaces of constant phase. For example a line source 

of electric current placed in a homogenous dielectric radiates a field whose surfaces 

of constant phase are circular cylinder as shown in Fig. 1.3. The phase velocity is 

completely radial in this case. The situation changes when the line source is at the 

interface of two different media. Away from the interface in both media the surfaces 

of constant phase will be nearly semi cylindrica.l but. t.he densit.y of constant phase 

surfaces will be different due to different dielectric constants as seen in Fig. 1.4. Since 

field is continuous along the interface the interesting question is how these surfaces 

connect in a continuous manner without going through a structurally unstable null field 

condition. The phase velocity map near the interface cannot. be clearly shown a.<; in Fig. 

1.4. Therefore the continuous transition of the phase velocity across the interface needs 

further investigation. This is the question that will be addressed in this thesis . 

Wave propagation along the interface depends on , the source of excitation. The 

simplest source is an interfacial line source. Although this problem has been solved by 

Engetha and Papa.,; [4] but a more detailed analysis is required along the interface and 

this will be done in chapter 2. Interfacial propagation is not limited to interfacial source. 

In Chapter 3 arbitrary sources are placed in the half space above the interface and below 

the interface. The nature of the field near the interface due to these sources has been 

investigated in this chapter. Later a generalized finite source of radiation is assumed to 

be located arbitrarily in the two media. The resulting fields near the interface are found 

asymptotically in the far zone. 

Interfacial propagation may also happen due to infinite extent sources. In Chapter 

4 a current sheet is placed aero::;::; the dielect.ric half ::;pace interface. Electric field in 

the vicinity of the interface is found a.<;ymptotically. The behaviour of phase velocity in 

this case is also determined. In the fifth and the final chapter a discussion on results of 
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various cases considered in t.his t.hesis is carried out. An effort has been made to explain 

the true nature of the phase velocity near the interface in this work. 
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Figure 1.4: Circular phase fronts due to interfacial line source between two dielectric 
half spaces 



Chapter 2 

Interfacial Line Source 

It is desired to formulate a problem where EM waves will propagate parallel to the di

electric interface. The simplest geometrical configuration possible is the current carrying 

line source present at the interface of two dielectric media. Engheta and Papa.'3 [4] has 

~olved t.hi~ problem. First order a~YIllptotic solution has been obtained by him which 

describes power radiated in the two half spaces. T he limitations present in the solution 

are that they do not describe the conditions existing at the interface. According to his 

results the electric field, E z which is zero at the boundary is continuous but the magnetic 

field Hx is discontinuous . Further a zero field indicates a zero phase velocity ·iJ which is 

structurally an unstable condition. In this chapter the work carried out in [4] is extended 

in such a way that the above raised objections are removed and an structurally stable 

configuration of surfaces of constant phase is determined. 

2.1 Problem Formulation 

Consider Fig. 2.1 in which a dielectric with permittivity 101 fills the region y > 0 and 

another dielectric with permittivity 102 fills the region y < O. As materials are non

magnetic in nat.ure generally the permeabilit.y of free space, f-J.o i~ assumed for both half 
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spaces. A linear source of electric current is placed coincident with the z-axis on the 

interface of the dielectric media. The current distribution associated with this source is 

given as, 

where 0(·) is Dirac delta function, I is the current whose magnit.ude is given in Amperes, 

and az is unit vector along z-axis. The time harmonic dependence term is take as e-iwt 

x=o 
Figure 2.1 : Geometry of the problem 

and it will be suppressed in further calculations. Due to the geometry of the problem, 
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only the z-component. of the electric field, Ezaz will be present.. Maxwell's equations 

reduce the problem to the solution of Helmohltz's equation for the electric field Ez(x, y) 

given as, 

(2.1 ) 

where k = wy'f.1-0c is commonly known as wavenumber. The wavenumber is kl for y > 0 

and it is k2 for y < O. The refract.ive index in region y < 0 is n = J E2/ EI > l. 

Solution for Ez in (2 .1) is called Green's function. The solution given below follows 

that of Engheta and Papa.s [4]. This solution is given in terms of spectrum of plane 

waves. Homogenous solution to the Helmohltz's equation is a plane wave, 

y > 0; 

E -z -

where kx is arbitrary and 

The coordinate chosen for k 1y and k2y is such that the radiation condition is satisfied. A 

linear combination of all such solutions for all values of kx will also represent a solution 

to the Helmohltz's equation. This statement can be mat.hematically written as, 

y 2: 0, (2.2) 

y :S o. (2.3) 

The complex amplitude function A(kx ) is same for both the regions to satisfy the bound-

ary condition that tangential component of electric field, Ez is continuous across the 

interface at y = O. 
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The proposed solutions are used in the wave equation using the fact that, 

8(x) = -f- ] OOeik" ,Cdkx , 

7r -00 

and that eik"x form an orthogonal set of functions. The magnetic field component 

tangential to the interface is Hx = -(i/WfL)fJEz/8y and it must be continuous at the 

interface y = O. This boundary condition when applied to (2.2) and (2.3) yields 

(2.4) 

The above can be written as 

]

00 {k A k A WIt!} ik-.x lk 0 
" Iy + "'2y - 27r e'" G,',c = 

-00 

(2.5) 

The above condition gives the complex amplitude coefficient, 

Therefore t.he plane wave representation of E z , for the two regions is, 

y > 0, (2.7) 

_ WfLI ] OO ei (k"x- k2yY) " 
Ez2 - --- dkx 

27r -oo( k1y + k2Y) 
y < O. (2.8) 

The solutions of equations (2.7) and (2.8) at. y = 0 is given as, 

(2.9) 

The asymptotic evaluation of (2,7) and (2.8) will be carried Ollt for the two half spaces 

separately. 
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2.2 Asymptotic Solution for Upper Half Space 

In t.he expression (2.7) the path of integration runs on real axis of complex kx plane from 

kx = -00 to kx = +00. There are branch point singularities present in (2.7). These 

singularities are present at kx = ±k1 and kx = ±k2 . The path of integration, P and 

t.he branch point.s are shown in Fig. 2.2. The branch cuts present at kx = -kn where 

1m k 
x 

( 

) 

p~ ) k1 k2 ... Re k 
) ) 7 

-k ) -k ) 

2 1 

) 

) 

~ 

) 

Figure 2.2: Branch cuts drawn to satisfy radiation conditions in E z l 

n = 1,2 are made to run arbitrarily in in the plane ~ kx < 0 to satisfy the radiation 

x 
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conditions. Similarly to satisfy the radiation conditions the branch cuts originating from 

kx = kl and kx = k2 are extended in C;Skx > 0 plane. The path of integration P is to be 

closed at infinity to evaluate the integrals. The path P will be deformed to avoid the 

branch cuts. This deformed path is shown as pI in Fig. 2.3. 

-k 2 -k 1 

1m k x 

p I 

Figure 2.3: Deformed Path of Integration for Branch cuts for Ezl 

For the convenience in the subsequent evaluation of integral (2 .7) the mapping from 

t.he complex k:c plane t.o t.he complex C\' plane ii:i carried out. The relatiolli:ihip which 
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governs this mapping is, 

kx = kl cos a = kl COS(T/ + ie) . (2.10) 

Under this t.ransformation k1y = kl sin a and 

k2y = Jk§ - kfcos2 a. 

The transcendental function cos(a) is single-valued in the above relationship. From its 

periodicity propertycos(a + 2m!') = cos(a)where n = ±1, ±2, ... , it is evident that a 

mult.iplicit.y of 0: value::; corresponds to the sa.me value of kx . Thus t.he ent.ire kx plane 

can be mapped into various adjacent sections of width 7r in the a plane. To investigate 

in detail the properties of the mapping from the kx to the a plane (2.10) is separated 

into its real and imaginary parts, assuming kl t.o be real, 

k,. = kl cos T/ cosh (, (2.11 ) 

where, 

kx = kr + iki . 

The four qua.drants in t.he k" plane are mapped in t.he 0: plane into corre::;ponding regions 

identified according to equation (2.10) as shown in Fig. 2.4. These can also be identified 

by the encircled numbers in the same Fig. 2.4. The repetitious nature of the regions in 

the a plane can be noted as T/ changes by multiples of 27r. So this mapping is seen not 

to be 1 - 1, rat.her 1- many. The path of integration P in the original kx plane is now 

shown as Q in the new a plane. The transformation also results in the removal of one 

branch point pair at ±k1 . The remaining two branch cuts also run arbitrarily as shown 

in Fig. 2.5. 

To put t.he integral (2 .7) in a simplified form, cartesian coordinates x and yare con

verted to polar coordinates T and e. The relationship used relating these two coordinates 
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Figure 2.4: Mapped complex Q plane 

is, 

x = rcose, y = r sin e. 

The field represented in the upper half space by (2 .7) is now represent.ed by, 

(2 .12) 

where, 

F(Q) = sin a 
(sin Q + vn2 - COS2'Q)' 
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and, 

f(o<) = icos(o< - B). 

-7r 

Figure 2.5: Only one pair of branch cuts left in the new 0< plane. 

The integral in (2.12) is of Laplace type. The observation point is in the far zone thus 

kl r is a large parameter which appears in the exponential term. It. is the large value of 

k1r which permits to observe the field behavior near the interface for small values of B. 

There are only two branch points present at 0< = i cosh - 1 (n) and 0< = 1[' - i cosh -1 (n) in 
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(2.12). The amplitude function F(a) varies slowly in comparison with the exponential 

function . The method of steepest descent is the most convenient to evaluate (2.12). 

17 = e 
( = (c An examination of f(a) shows that there is a saddle point at a = e. The 

path of integration will be now changed so as to run on path of constant phase while 

passing through the saddle point. This deformed path of integration is shown as Q' 

in Fig. 2.6. The endpoints of deformed path of integration are joined with the original 

-'iT 
( j 

on _ L) 
., I - {} 

Figure 2.6: Branch point at a = i cosh 1] contributes in evaluation for E z l 

path of integration, Q at infinity. The enclosed region between Q and Q' should not 
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contain any singularities. The contribution of branch point singularity at a = i cosh -1 rJ 

will be l:illmmed with the saddle point contribution when 0 :'S () :'S cos-1(1/n) , as shown 

in Fig. 2.6. When the condition 0 :'S () :'S cos- 1(1/n) is met, the path of int.egration 

will be deformed with its segments shown as C1 and C2 in this figure. Similarly when 

7f /2 :'S () :'S 7f the contribution from the second branch point at a = 7f - i cosh - 1 rJ will 

be included in the evaluation of integral (2.12) . It can be seen from Fig. 2. 7 that neither 

of the branch point contributes when the observation angle is 7f /2. 

-1j 

------....--~~--... ·17 
1f/2 

Figure 2.7: Neither of the Branch Cut will Contribute when e = 7f/2 

For a further facilitation in the evaluation of (2.12) the phase function f( a) is replaced 

by the simplest polynomial having the same local behavior as f (a) near the saddle point. 
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-7r 

C2 

Figure 2.8: Lower Branch Cut will Contribute when 7r /2 < e < 7r 

The t.ransformation is carried out according to [10], 

(2 .13) 

The steepest descent path in the s plane, along which ~h(s )=constant, has shifted along 

real s-axis. The integral in (2 .12) becomes, 

where, 

Ezl = wf.L~eikll. {'XJ G(s)e-kp.s2 ds, 
7r J-oo 

(2.14 ) 
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Figure 2.9: No Branch Point Contribution when Tic> r]b 
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The saddle point is now shifted to the origin of new s plane. The power series expansion 

of G(s) about 8 = 0 is given as, 

2 n 

G(s) = G(O) -/- G'(0)8 -/- G" (O) 8
21 

-/- ... .... -/- G(n)(o); . 
. 1l. 

Only first and third terms of expansion will be taken for the evaluation of (2.12) . The 

second term makes the integrand in (2.12) as an odd function of 8 and the symmetrical 

integration interval around 8 = 0 will result into a zero for this second term. The term 
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by term integration results into the following expression represent.ing the saddle point 

contribution, 
wp,Ieik1" 00 G(2n)(0) f(n +~) 

Ed-sud = vr;:r L () ( ) . 
27r kIT n=O 2n! kIT n 

The first. t.erm in power series expansion of G (s) will be, 

s=O 

where, 

s=o 

= ~2 = . 12 -i1f/4 
. f"(crS) V L.e , 

and 

F(a
s

) = sine 
(sin e + vn2 - cos2 e) 

Similarly the second t.erm is given as, 

where, 

[¢(O)p = 2V2e- i31f /4 ) 

(/P) (0) 
e- i31f /4 

v'2 
, 

¢'(O) 0, 

and, 

(2 .15) 

F(2) (as) = {2 cost! e + n2 sin e(sin 11 - 111.2 
- cos2 e) - 2 cos2 11(17.2 - In2 

- cos2 e)} . 
(n2 - cos2 e)3/2(sin e + ";11,2 - cos2 e) 

Substitution of the above relationships in (2.14) results into the expression for the saddle 

point contribution in the upper half space, 

I iklT { D (e) - i31f/4 } E - _ WJ.L e F (8) - i1f/4 _ r2 e 
zl-"ud - ~k l e t- 2k ) 

V ,:,7rf{;lT ' jT 
(2.16) 



where, 

and, 

F (8) = sin 8 
1 (sin 8 + vn2 _ cos2 8)' 

1 
~~---r~==~~ x 
(sin 8 + vn2 - cos2 8) 

24 

[
{2 COS4 8 + n2 sin 8(sin 8 -)n2 - cos2 8) - 2 cos2 

8(17,2 - sin 8vn2 - cos2 8)} 
(n2 - cos2 8)3/2 

+ 8;:0 1 
(2.17) 

It can be seen that the dominant term which decays as (k1r) - 1/2 vanishes at the interface. 

This is in accordance with the results of [4]. But it is not true for the next higher 

order t.erm which decays as (k1r)-3/2. The zero electric field conditions which existed 

in the results of Engheta and Papas no longer hold true if higher order terms in the 

asymptotic evaluations are taken. As it has been already pointed out that (2.12) contains 

an isolated saddle point at cx = 8 along with a pair of branch points at cx = i cosh Tf and 

cx = 1f - i cosh 17. The point of observation in the far field is assumed to be located in the 

region x > 0 due to the symmetry of the problem geo~et.ry. It means the observation 

angle will lie in the range of 0 < 8 < 1f /2. 

The branch cut originating from branch point present at cx = i cosh Tf is made to 

follow a st.eepest descent. path Q' thereby facilitat.ing the evaluation of the integral, as 

shown in Fig. 2.6. The same kind of polynomial transformation is carried out a.s was 

done to find out the saddle point contribution, 

(2.18) 

where, 

f(CXb) = COS(CXb - 8) = (ncos 8 + ij(n2 - 1) sin 8). 



The above substitution transforms (2.11) into the following form, 

where, 

and, 

Ezl = e 'ikI7' COS(QI>-O)jOO G(s)e-kll'S2 ds, 
-00 

da 
G(s) = F(s) ds' 

( ) 
sin a 

Fs=-:--------r~=~==:
(sin a + }n2 - cos2 a) 

From the relationship (2.18) of plane transformation, 

da 

ds 

i2s 
sin(a-8) 

The above can be approxim.ated near s = 0 as, 

da 2se-i7r/ 2 

ds ~ sin(ab - 8)' 

i2s 

The power series expansion of F(s) around a = ab is, 

V2r1(1 - n 2)1/4Ja - ab 
F(s) ~ 1- (1-17,2)1 /2 
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(2 .19) 

(2.20) 

(2.21) 

(2 .22) 

The factor Jet - au is obt.ained by expall::>ion of cos(CY - CYb) around a = CYb resulting in 

the following form, 

The resultant form of F(s) is, 

J21ise- 157r / 4 

F ( s) = 1 - -:---------:::-:-:-:--:-r==:======:7 
(1 - n2)1/" JSin(CYb - 8) 

The even term of S2 in the final form of G(s) will integrate out to give results while the 

odd term containing the fa.ctor of s will integrate out to zero. 

V2r1se-i57r/ 4 2se-i7r/ 2 , 
- X ---;-----::7 

(1 - n2)1/4y1sin(CYb - 8) sin(CYb - 8) 
G(s) = 

2V2r1s2 

(2.23) 
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The following result is obtained, involving powers of 82 according to (2.23), 

(2 .24) 

As, 

sin(ab - e) = 'ivn2 - lcose - nsine, 

the branch point contribution given in (2.24) result into the following form, 

(2 .25) 

It can be seen from the expression that the branch cut contribution is in the form of a 

lateral wave, [11], which decays fast perpendicular to the interface and propagates along 

the interface. The total field in the upper half space near the interface is given as, 

(2.26) 

The first two terms of the above field expression contains the leading term and the next 

higher order term from saddle point contribution in the field expression for the upper 

half space. The third term is the branch point contribution present in the electric field 

expression for the upper half space. 

2.3 Asymptotic Solution for Lower Half Space 

The expression in (2 .8) which is integral representation of electric field Ez2 for lower 

half space ha.s also two pairs of branch points at kx = ±k2 and kx = ±k1. The path of 

integration in (2.8) also runs on real kx-axis from kx = -00 to kx = 00 as in (2.7) which 

represents electric field for upper half space. The path deformation and extensions of 
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branch cuts in the kx plane are according to Fig. 2.2. The kx plane is mapped to a-plane 

according to the following relationship to facilitate the evaluation. 

Cartesian coordinates x and yare changed to polar coordinates T and fJ to convert 

the integral in a more simplified form. Electric field Ez2 for the lower half space is now 

represented in Hew a-plane as, 

where, 

and, 

F( ) 
sin a 

< a = -;----r=;==;o==~=:
(sin a + )1/n2 - cos2 a) , 

f(a) = icos(a + fJ) . 

(2.27) 

According to (2.27) it is clear that one pair of branch points at kx = ±k2 has been 

converted to a saddle point at a = -e. The ot.her pair of branch point.s at kx = ±k1 in 

the original kx plane has now shifted on the real axis of a-plane at. at = cos-1 (1/n) and 

a2 = 7f - cos-1(1/n). This is shown in Fig. 2.10 along wit.h the pat.h of integration, Q. 

The observat.ion point is in t.he far zone so /c2T is a large parameter present in the 

exponential t.erm in (2.27). Due to this reason it is pertinent to use steepest descent 

method for its evaluation. The path of integration Q will be deformed to run along a 

constant phase path Q' shown in Fig. 2.11. It can be seen in this figure that while joining 

endpoints of Q' with the original path Q at infinity the branch cut will be enclosed while 

fJ < cos-1(1/n) . Path Q' will be deformed to follow path Pb path as shown in Fig. 2.12 to 

avoid crossing the branch cut. It will be required to sum the saddle point contribut.ion 

as well as branch point contribution in this particular case. On the contrary when 
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( 

Q 

- 7r 

Figure 2.10: Original path of integration, Q and the pair of branch cuts for E z2 in 
ex-plane 

e > cos-1(1/n) only the sadd le point contribution will represent the electric field in 

t.he lower half space. The steepest descent path for the evaluation of the saddle point 

contribution follows the equation, 

cos(( + e) cosh TJ = 1. 

A transformation of ex-plane to s-plane is carried out similar t.o equation (2 .13). The 
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( 

-Jr 
'TJ 

Figure 2.11: Deformed Path of Integration, Q' and the pair of branch cuts for E z2 in 
a-plane 

resulting integral becomes, 

with, 

da 
G(s) = F(s) ds . 

(2 .28) 

Taking the power series expansion of G(s) at s = 0 only the first two even powered 

terms of s will be used. The terms involving odd powers of s integrate out to zero due 
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to the interval of integration being identical on both sides of s = O. The saddle point 

contribution comes out to be, 

where, 

and, 

E z2-sad 

F (e) = sine 
3 (sin e + }1/n2 - cos2 e) , 

1 
~~--~=7~==~~~~~--~~~ x 
(sin e + }1/n2 - cos2 e)(1/n2 - cos2 e)3/2 

{ 2 cos' B + ~2 sinB(sin B - V1/n2 - cos' 0) -

(2 .29) 

sin e(1/n2 - cos2 8)3/2} 
2 cos2 8(1/11,2 - sin 8}1/n2 - cos2 e) + 4 . (2.30) 

The dominant term which decays with (k2T) - 1/2 vanishes at the interface. In this case 

also the next higher order term results into non-zero electric field at t.he interface which 

is an extension of Engheta and Papas results. 

As discussed in the last section due t.o t.he symmetry of the problem geometry the 

far zone electric field is being analyzed only for x > 0 region near the interface. Before 

application of the steepest descent method to evaluate the integral a transformation is 

made according to (2 .18) in the last section which is, 

where, 

f(a) = i cos(a + e), 

With the fact that ab = cos-1(1/n) the following relationship is obtained, 

'l 
f(ab) = iCOS(C.~b + e) = -{cose - Jn2=l" sine} 

n 
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-7r 

Figure 2.12: Bra.nch point contribution is to be ta.ken when () < cos-1(1/n) 

The above substitutions result into the following form of electric field below the interface, 

In the above expression, 

while, 

da 
G(s) = F(a) ds' 

F(a) = nsina(nsina - 'iJn2 cos2 a - 1) . 

(2.31) 



The power series expansion of F(Cr), around Cr = Crb, is, 

while, 
dCr 2se- i7r/ 2 

ds ~ sin(Crb+e)' 

near s = O. 

It is known previously from last section t.hat, 

This gives, 
V2se-ifm/4 

F( s) = 1 - -:-:--~--r==o==~ 
(11.2 - 1)1/4 Jsin(Crb + e) 

The last two relationships combine to give, 

G(s) = 
V2se- i57r/ 4 2se-i7r/ 2 

(11.2 - 1)1/4 Jsin(Crb + e) sin(Crb + e) 
2V2s2e-i37r/4 

(n2 - 1)1/4 sin(Crb + 8)3/2' 

Carrying out the integration of (2.31) with G(s) given by (2 .34), 

Total field below the interface comes out. t.o be by addition of (2.29) and (2.35), 
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(2.33) 

(2 .34) 

The first two t.erms of the above field expression are due to the saddle point in the 

expression for E z2 and the leading term from the branch point is represented by the third 



33 

term in the above field expression. The leading term due to saddle point is according 

to Engheta and Papas results which vanish at the interface but the next higher order 

t.erm doel; not vanish at. t.he int.erface. The branch point. term also does not vanish at 

t.he int.erface. 

2.4 Wave Propagation along the Interface 

The expressions for the electric field have been obtained after the asymptotic evaluation 

of the field integrals (2.7) and (2 .8). The solutions obtained satisfy the Helmohltz's 

equation as well as the boundary conditions at the interface. These solutions are given 

in (2 .26) and (2.36) . The contributions of different terms in the overall field expression 

present in these two equations will be discussed. 

A very close mathematical symmetry is found to exist in (2 .26) and (2.36). A close 

resemblance is found to exist between Fd (}) and F3 (fJ) which differ by reciprocal of 

refractive index, n. The same is also true for F2 ((}) and F4 ((}) . Therefore it is evident 

t.hat the branch point cont.ribution for E'l.1 equals the sadd le point contribution for Ez'2 

at y = O. The same is true for saddle point contribution in Ed and branch point 

contribution in Ez2 at y = O. The branch point in E'l.1 is responsible for lateral wave 

which travels according to the velocity of the slower medium (y < 0) in a fast medium 

(y > 0) but decays exponentially across t.he interface. This slow wave in upper medium 

is supported by the normal slow wave in the lower medium due to the saddle point 

contribution in Ez2 . Similarly the fast wave in the upper medium supports a similar 

wave in the lower medium to preserve the continuity of the phase fronts. The wave due 

to branch point cont.ribution in Ez2 also bends t.owards the interface normal in the lower 

half space. 
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The results obtained are for the cases of isolated saddle point.s and branch points 

in both the media. This is because the interest was to investigate the electric field 

behavior near the interface . As the observation angle is increased from the interface 

in the far zone the saddle point approached the branch point . The field contribution 

coming from branch point integral decays as (kr) -3/4 when the transition from the point 

of observation, e i branch point towards e = branch point occurs. The field then decays 

as (kr) -3/4 and can be expressed a.s parabolic cylinder functions [10] . 

The wave propagation phenomena near the dielectric interface can also be studied 

now with the help of (2.26) and (2.36). The focus in this study will be on the phase 

velocity and direction of propagation of the wave. 

It. has been mentioned earlier that phase velocity, 'u and Poynting vector field, § are 

parallel and proportional to each other. It means that the continuous phase velocity 

field will give the continuous Poynting vector field. This necessitates the continuity of E 

and jj fields across the int.erface. It was observed earlier in the solut ion of Engheta and 

Papas [4] that the electric field was continuous across the interface but the magnetic field 

component was discontinuous. But the results in (2.26) and (2.36) show that Ez and He 

are continuous up to the term which decays as (kp)-3/2 across the interface. This can 

be easily verified by using Maxwell 's equations. The continuity of electric field across 

the interface employs that the phase fronts must be continuous across the interface. 

Therefore in the following discussion careful attention will be paid to the phase of the 

electric field derived in the previous section to investigate the field behavior near the 

interface. 

The phase velocity of an electromagnetic wave may be defined as 

'U= 1~1 2 \l¢ 

in analogy with plane waves. The equiphase contours of electric field will be called phase 
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maps. Due to the symmetry of the problem the phase maps for x > 0 will be shown 

and discussed only. The lines of phase velocity will be orthogonal to t.hese phase maps. 

The phase map of the field in t.he close vicinit.y of the interface is shown in Fig. 2.13. 

A close observation of the phase map in this figure shows two types of points occurring 

periodically in both half spaces near the interface. The phase deforw around these points 

to form interesting structures. 

The lines of phase velocity near these points of this st.ructure form closed curves and 

waves seem to circulate around these points. These points are called center type critical 

points [12]. Above each center type of critical point i's another type of critical point 

where equiphase contours intersect each other . The lines of phase velocity near these 

point.s form hyperbolic curves. This is a point of st.agnation and waves seem to avoid 

flowing through these points . At these points t he electric and magnetic fields are in time 

quadrature. Hence Poynting vector field is zero at these points . Such points on phase 

maps are called saddle type critical points [12] . 

It. is obvious from Fig. 2.13 that. two adjacent. arms of the saddle type of critical 

point enclose the center type of critical point . The overall effect of the structure formed 

by the pair of these critical points is to slow down the wave as it enters in the second 

medium. It can also be seen in Fig. 2.14 that these two types of critical points occur 

wit.h a different arrangement in the denser medium. For each pair of the two t.ypes of 

critical point in t.he rarer medium there are two such pairs in the denser medium. 

The field decays as (k1r) - 1 due to the leading terms of saddle points in both half 

spaces. The next higher order terms cause more rapid decay of field along the interface, 

recognized by (k1 r) -3/2 factor. The leading t.erm contribution due to branch points in 

bot.h half spaces can be distinguished by (k1 r t 3/ 2 factor. 

It has been observed from Fig. 2.14 that the locations of critical points are dependent 
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O:~clPrnp.'}'lt.Yll.'l 

Figure 2.13: Lines of equiphase planes with critical points for E z l and E z 2 , continuous 
across the interface 

on the refractive index, n. As the medium 2 is made more denser by increasing its 

permittivity, critical points in the region for y > 0 move closer to the interface. The 

increase in the value of n also brings closer the pair of critical points in the lower half 

space for y < O. These points will try to merge togeth~r when refractive index is still 

increased further, [9]. This effect of refractive index on the critical points is shown in Fig. 

2.14. These points are interesting because they redirect the energy and the Poynting 

vector, 8, is zero at these points [9] . 
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Figure 2.14: The critical points seem to densely packed in the lower half space while the 
refractive index, 11 value is increased 

2.5 Location of Field Nulls or Critical Points 

It is known that the phase and the phase velocity of an electromagnetic wave become 

ambiguous at the points where the electric field is zero. These points known as critical 

points have been discussed in the last section. Therefore the location of the field nulls 

or of critical points will be determined. An observation of (2.26) and (2.36) shows that 

electric field due to the leading terms of the saddle point contributions become zero 

at the interface, e = O. The next higher order term of the saddle point contributions 

which decays as kr-3/ 2 is not zero at the interface. The branch point contributions in 
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both half space electric field expressions are also non-zero at the interface boundary of 

the two dielectric half spaces. The location(s) where the electric field Ez is zero will be 

determined now. Considering the case of upper half space first, one has to find roots of 

the following relationship involving (2. 26), 

The field expression above the interface can be written as, 

The various variables in the above expression are, 

A = _ Wfl'! e- i31T-j4 
~ , 

F (e) = isine 
1 sin () + vn2 - cos2 e' 

1 
~~---=~==~~ x 
sine + vn2 - cos2 e 

(2.37) 

[
{2 cos4 e + n2 sin e(sin e - vn2 - cos2 e) - 2 cos2 e( n2 

- vn2 - cos2 () sin en 
2( 71.2 - cos2 e)3/2 

and, 

Sine] 
+-8- , (2 .38) 

'ljJ(e) = ~ t an- 1 (~) . 
2 11.2 - 1 

As field is being investigated near the interface, so Taylor series of the above four func-

tions of () is taken near e = O. This makes the above functions as, 

3n 
1/)(e) = ~e, 

2 n2 - 1 
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With the assumption that. kt'r = Rand R(ncos8 - l) -1/) ~ R(ncos8 - 1) when R » 1, 

following simplified electric field representation is obtained, 

iR'8 1 r,;:: 
E - A e [ 2 . yn -R(J~ iR(n-l l ] "z l - - - + e e Vii. Jn2=l (n2 - I)R (n2 - I)R 

(2.39) 

The above equa.tion is a non-linear equa.t.ion whose solution is difficult to obtain so Taylor 

series of its terms around 8 = 0 is taken. 

Taking the first terms of the Taylor series expansion and equating the real and 

imaginary parts of these terms, respectively, the following simultaneous equations are 

obtained, 

1 ' e" cos{R(n - I)} = _eROJn2-1 ~ -, 

Vii Vii 
(2.40) 

and, 

. R8vn2 - 1 ~ 1i sm{R(n - I)} = - eRlivn--l = __ eu . 
yin yin 

(2.41) 

where, 

1t=R8~ 

Equations (2 .40) and (2.41) are squared and added to get rid of R. The result is a 

transcendental equation of the following form, 

This transcendental equation can be solved using the fixed point iterations of the fol-

lowing form, 

1 (1 + 1i%) 
'LLk+l = -'2 In -n-

where k is the iterations index. For a given value of n the right hand sides of equations 

(2.40) and (2 .41) are fixed. Thus there are many values of Rand 8, which satisfy these 



simultaneous equations. Hence the locations of center points is given as, 

2m7f - sin-1(-,-,-) \/'1+,,2 
n - l 

u 

40 

(2 .42) 

where 171 is a positive integer . In t.he car te::; ian coordinates the field nulls are located at 

Xm and Ym which are given as, 

Ym = (2.43) 

It is observed that t.he field nulls are located periodically at a const.ant height above the 

interface and the distance between them is given as, 

A 
n-l 

This is also evident from t.he Fig. 2.14 that the periodic nulls occur along x-axis. 

The points where electric field is null in the lower half space will be determined now. 

These points can be located for Y < 0 region by setting Ez2 = 0 and finding solution for 

this equation. The first terms of factors of (2 .36) representing Ez2 in their Taylor series 

expansion are, 

1 { 1 e-iR(n-l)} 
E z2 = oe + - = 0 

Jl - l/n2 nJl - l/n2 R nynJl - l/n2 
. 

(2.44) 

Equating the real and imaginary parts of the above relationship equal to zero following 

simultaneolls equations are obtained, 

o e + 1 _ Vii cos R (n - 1) = 0 
Jl - l/n2 n(1 - l/n2)R R(n2 - 1) , 

and, 

Vii sin R(n - 1) 

R( :2 ) = O. n -1 
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From t.he above relat.ionship, 

R(n - 1) = ±m7f, 

Je = VI - l/n
2 

{ Vii (±1)111 _ 1 } , 
R n2 - 1 n(1 - l/n2) 

Ro e = (± 1) 111 _ 1 = 1 { (± 1) 111 _ I} . 
foJn2-1 ~ ~ fo 

From the above expression it is clear that for a given constant height from the interface 

critical points exist in a the form of a pair. Their location is also dependent on the 

refractive index, n of the medium. This observation is evident from Fig. 2.13. 



Chapter 3 

Two Dimensional Finite Sources 

In the last chapter asymptotic expressions of electric field were found due to a line 

source placed at the interface of two dielectric half spaces. The leading terms in the 

solution were observed to be in accordance with the solution of Engheta and Papas. But 

t.heir solution gave null of electric field at. the interface. Investigating further into this 

propagation problem it was found that addition of next higher order term perturbed zero 

field condition at the interface. This perturbation resulted in the generation of critical 

points which were responsible for generation of extra phase lines near the interface. 

These extra phase lines preserved t.he continuit.y of electric field phase map across the 

interface. 

The next question to consider is whether the behavior of phase velocity remains qual

itatively unchanged when the source moves away from the dielectric interface. Green's 

functions have been found due to sources present near dielectric interfaces in various 

works for example in [13] . The field represent.ed by the Green's functions is either in 

integral representation or if field is asymptotically evaluated in these integrals then only 

the first term which decays as (kp)-1/2 is given. The results presented in such papers as 

[13] provide no answer to the preservation of phase map of waves near the interface. 

In t.his chapter the problem of wave propagation near t.he interface will be investigated 

42 
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with different source configurations present in the two dielectric half spaces. As a first 

step among these source configurations, a line source will be placed above and below 

the interface one by one. Electric field due to t.he line source will be calculated . Then 

the line source will be replaced by an arbitrary current di::;t.ribut.ion confined to eit.her of 

the dielectric half space. The electric field behavior near the interface will be examined 

in both cases. Finally generalized current distribution which may be distributed in 

both half spaces will be assumed and elect.ric field near the dielectric interface will be 

examined. · 

3 .1 Line Source In Upper Half Space 

Consider Fig. 3.1 of two dielectric half spaces wit.h a line source of electric current 

located at (}I, r' in the upper half space. The constitutive parameters of upper half ::;pace 

are assumed as co and fLo while for lower half space as Cl and fLo. The permeability 

fLo of free space is assumed for both half spaces as most of dielectric materials are non-

magnetic in nature. A line source carrying electric current, I AI m is placed at (x', y'). 

The current den::;ity J is represented as, 

~ I I 
J = IJ(x - x )o(y - y )riz, 

where 0(-) is Dirac delta function. The objective is to find the electric field due to 

t.he above source distribut.ion in both half spaces near the interface. The formulat.ion 

of the problem is carried out identically to the one given for interfacial line source in 

the previous chapter. Various notations used for the electric field representations in the 

following evaluations should be taken as, a 'U' in the superscript stands for Upper half 

space while a 'L' in the superscript for Lower half space. Similarly a '+' in the subscript 

stands for positive (+) y-axis while a '-' in the subscript stands for negative (-) y-axi::;. 



x=o 

y=o 

.... 
::. ::;:;;; 

'::: 

Figure 3.1: A displaced line source in upper half space 
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'sd' stands for saddle point while 'br' stands for branch point. According to [13] the 

electric field in the upper half space is given as, 

Eu -+ -

(3.1 ) 

The first integral, i.e., 11 represents the reflected field from the interface. It possesses 

branch point singularities at kx = ±k1 and kx = ±k2 . The second integral, i.e., 12 
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on the right hand side of (3 .1) is proportional to the integral representation of the 

Hankel funct.ion. It represents the field due to the source in an unbounded medium 

with propagation constant k1. This integral has a pair of branch point singularities at 

kx = ±k1 . The path of integration for both the integrals runs on real axis of complex 

kx plane. The branch cuts are extended in the kx plane according to Fig. 2.2 so as to 

give decaying field when the path of integration is closed at infinity. Evaluation of the 

two integrals will be carried out separately. 

The integralft is considered first. To facilitate the evaluation, a transformation from 

kx plane to a plane is carried out according to, 

k =k1 cosa kl =k1 sina k2 =k1 vn2 -cos2 a x 1 11 , 11 • 

A further transformation from cartesian to polar coordinates is also carried out for the 

spacial coordinates according to, 

x = r cose, y = rsin e, x' = r' cos e', y' = r' sin e' . 

Due to the above transformation II is given as, 

I = wf.LI r F(a r')ekp·f(a)da 
1 41f(n2 -1) }p' , 

(3 .2) 

where, 

and, 

f(a) = i cos(a - e) . 

The path of integration is identical to the path P in the Fig. 2.2. There is a saddle point 

at a = e and a pair of branch points are located at a = i cosh -1 ( and a = 1f - i cosh -1 (. 

The contribution of the saddle point denoted as E~sd will be determined first. The saddle 



46 

point is present at ex = (j in (3.2) at which f'(ex) = O. A transformation from ex plane to 

s plane is carried out according to (2.13). The transfo'rmed integral is given as, 

where, 

and, 

Whereas, 

and, 

dex ~ 
ds = V rr;;;)' 

The saddle point has shifted to the origin of new s plane. Hence a power series expansion 

of G(s) at s = 0 will be taken. The second order derivative of the function F1(8,T') 

required in t.his power series expansion is given as, 

F1(8, 1") 
-;---c::----'----::--':-:-::-:::- X 
(n2 - cos2 8)3/2 

[4 cos' OVn' - cos' 0 + k".'(n' - cos' 0)3/' {i cos(O' - 0) 

-kIT' sin2 (8' - 8)} -I- i4kI T ' cos (j sin(8' - 8)(n2 
- cos2 8) 

+2n' sin oj. (3.3) 

The evaluation of the integral h yields the saddle point contribution which is given as, 

(3.4) 
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Only the first two terms involving even powers of s will be retained in the above series. 

The odd powers of s integrate out to zero due to the identical interval of integration on 

bot.h sides of s = O. The truncat.ed form of the result. will be given as under, 

The contribution of branch point present in II will be determined now. The complex 

k," plane is t.ransformed to complex s plane according to (2 .13) to facilit.ate t.he evaluation 

which shifts one of t.he branch point to the origin of new plane. The new form of integral, 

h, is, 

The same procedure is followed as was followed in cas.e of (2 .19) to give the following 

result for branch point contribution of the integral, h 

w{d , e ikl!' {n cosO+i v n 2-l sinO} 

JIbr = - V2-ff F(U+b)(e, r) (112 _ 1)1/4(kIr)3/2 (3.7) 

where, 
F, e' vne - ikl"'{ncosO' +ivn2-ISinO'} 

(U+b)( ,r) = {'~ e . ep/2 ' 
2 17, - cos - nS1l1 

The asymptotic evaluation of the second integral, J2 will now be carried out . The 

same transformation is applied to this integral as was applied to II' The resulting shape 

of t.he integral is, 

(3.8) 

where, 

Po (ex r') = e-ik1 r' cos(a-O') 2 , , 

and, 
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The original path of integration Q of this integral is the same as given in Fig. 2.10. This 

integral has no branch points. The path of integration is deformed to pass through the 

sa.ddle point at O! = 8. The deformed path of integration is the same as shown Q' in 

Fig. 2.11. The contribution of this saddle point is evaluated similarly as for h, with the 

unknowns in the power series expansion being, 

This results into, 

I = _w/.J1e
ik1T

[ 0,F.(8 ') _i7r/4+e-i37r/4{F2(8,T') _F.(2l(8 I)}] (3 .9) 
2sd 4J7rklT VL, 2 ,T e V2klT 4 2,T 

Hence the total saddle point contribution, 

Wf-l,/ e
ikp

· [ J2e-i7r/4{ Fl (8,1") + (n2 - 1 )F2( 8,1")} 
4J1f(n2 - 1)Jk11' 

+ e-;37r/4 {F1(2
l(8, 1") _ (n2 - 1)FJ2l(8, T') + ~{1 + (n2 - 1)F2(8, T'))}] 

v2k1T 4 
(3 .10) 

The combined field expression involving the saddle point and branch points cont.ri

bution is given below, 

Eu -+ -

(3.11) 
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Now the electric field transmitted in the lower half space will be evaluated. This field 

is given as [13], 
W~dl°O e-i (k."x'+kl yl/)ei (k",x- J'2vY) 

E~ = --- dk" 
27r - 00 (k1y + k2Y) 

(3.12) 

The above representation is seen to possess branch point singularities at kx = ±kl and 

at kx = ±k2 . A transformation from kx to a plane is carried out according to, 

whereas the rectangular spatial coordinates, Xl, yl and x, yare also converted to polar 

coordinates, 1'1, 81 and T, 8 respect.ively using the following relationships, 

Xl = rl cos 81
, yl = rl sin 81

, x = T cos 8, y = r sin 8. 

The above substitutions result into, 

EL = WJ.1J1F (a r l )eJ..:27'!(Ci )da + 2 3 , ' , 
7r P 

(3.13) 

where, 
. - ik2r' (J ::':r -cos2 D< sin 0' +cos <> cos 0') 

F ( . 81 ./) = _Sl_n_a_e ___ '_' ---r====---3 a, ,7 , 

(sin a + J n\ - cos2 a) 

and, 

f(a) = i cos(a + 8). 

The above field expression is seen to possess a saddle point at a = 8 and a pair of branch 

points at a = cos-l(l/n) and a = IT - cos- l(l/n). Due to symmetry of problem the 

electric field being investigated near the interface is for x > 0 region so the branch point 

present at a = cos-l(l/n) will have to be included in the evalua.tion if 8 < cos- 1(1/n) . 

This eva.luation will again be carried by running the branch cut along a steepest descent 

path. The path on each side of the branch cut gives similar contribution which is added 

to give total contribution of the branch cut . 
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The contribution of the saddle point. will be evaluated first of all. A transformation 

is carried out for convenience, as in the case of field for upper half space, into another 

s-plane according to (2 .19). This transformation converts the integral into the following 

form, 

E
L _ w/-d eI.:

2 ,·j(<X·<)l G( ) -1.:2,·.s2d 
+- se s. 

21f p 

The power series expansion of G(s) around s = 0 is taken . First two terms containing 

even powers of s are considered for their saddle point contribution. F3 (e,1") and its 

derivative are required for this purpose. The value of F3(a, 1") at a = 8 and its second 

derivative are, 

and, 

. 8 -ik2"'(J~-COS20 sinO'+cosOcosO') 

F
3
(8,r') = sm e" , 

(sine -1-);2 - cos2 e) 

F3 (8,1") 
--(======--'------x 
sin 8),;2 - cos2 8(n2 cos2 e - 1) 

-n? cos4 8(2 -I- i3k2r' sin 8' sin 8) 

+ cos2 e{2 - sin 8(2n2
'; ~2 - cos2 8 - i3k2T' sin 8') 

-i2n2 k2r" I ~ - cos2 e sin 8' sin2 8 V n2 

-n2(k
2
1")2 cos 28' sin2 8.;r-~-2---~-(-1-+-CO-S-2-8-) 

-I-'ik21" cos 8 sin e (ik2r' sin 28' sin2 e - cos 8' (3' I \ - cos2 8 + 2 sin 8)) } Vn 
(3.14) 
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The resultant expression for saddle point contribut.ion below the interface would be, 

EL _ wf..d e
ik2

" ["';?;;F3(8,r') e-i7f/" + V7fe-i3rr/4{F3(8,r') +2V2F
3
(2)(B,r')}] 

+sd - 2'if.j k2T 4k2T V2 
(3.15) 

The complex kx plane is transformed to complex a plane. The branch points in the 

complex a plane have moved to ab = cos-l(l/n) and abl = 'if - cos-l(l/n) on the real 

axis of the plane. The branch cut originating from the branch point is made to run along 

a constant phase path. Under these condit.ions the method of steepest descent is most 

convenient to evaluate asymptotically the integral, Ei. The transf?rmation results into, 

(3 .16) 

where, 

d . -ik2r' (J~ -cOS2Qsi ll e ' +COSQCOse l) d 
G(s) = F(a)..!: = smae n. t, 

ds sin a + . / ~ _ cos2 a G s V ,,2 

da 2se-irr/ 2 

ds sin a b + 8 

Expanding G(s) in the Power series at s = 0 or a = ab and retaining only the S2 term 

of the expansion results into the following form of the branch point contribution, 

(3.17) 

where, 
e-ik1r' coso' (1 + i~k 1" sin 8') 

~ (1" 8) - 1 
{L+b} ,- {~1 8 . 8}3/2 v n - - 1 cos + sm 

(3.18) 

The addition of the saddle point and branch point contributions in (3.15) and (3 .17) 

respect.ively gives the total field below t.he interface clue t.o the prei:ience of source above 
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the interface, 

E~ = wf-LI eik27
' [.,)2; F

3
(B, .,. ' )e-i7f/4 + .,fife-

i37f
/

4 
{F3 (B , '1") + 2J2F~2)(B, r')}] 

27r J k2r 4k2T V2 
+ wf-LI F(B+b) ('1", B) eik1l'{cosB- Jn2-1 sill B} - i37f/4 (3.19) 

v'27f(n2 - 1)1/4(klT)3/2 

The expression of the electric field below the interface has been obtained asymptot.ically. 

The leading terms of t.he (3.19) decay as (k'2r)-1/2 . The next. higher order term come 

from the saddle point and branch point cont.ribut.ions neal' the interface while only the 

saddle point contribution is included in the solution when the observation angle if away 

from the interface beyond the critical angle. The term from the saddle point can be 

identified by the factor of (k2r)-3/2 while the factor of (k1T)-3/2 distinguishes the branch 

point contribution . 

Phase maps of equations (3.11) and (3.19) combined are shown in Fig. 3.2. Interest-

ingly enough the same structures of phase map can be seen in t.his figure &'3 were seen in 

Fig. 2.13 and Fig. 2.14 in the last chapter. The continuity of phase lines of the electric 

field across the interface is preserved in Fig. 3.2 . 

3.2 Line Source In Lower Half Space 

Consider Fig. 3.3 in which a displaced line source placed in the lower dielectric half 

space for y < 0 has been shown. The constitutive parameters of this half space are ILo 

and Cl being its permeability and permittivity respectively. The source is located at 

(x", y") . The electric field due to this line source will be investigated near the interface 

in both dielectric half spaces. 

First of all electric field in t.he upper half space will be examined. Wit.h this source 
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Figure 3.2: Phase map near the interface with displaced line source in upper half space 

configurat.ion elect.ric field above t.he interface is represent.ed as spectrum of plane waves, 

(3.20) 

The path of integration runs along the real axis of the complex k" plane. There are two 

pairs of branch points which exist. at kJ; = ±k2 and k:c = ±k1 in t.he integral given in 

(3 .20) . These branch point.s are to be avoided on the path of integration while the path 

is closed at 00 as shown in Fig. 2.2 in the previous chapter. A transformation will be 
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x=o 

", E'·[! 

y=o 

Figure 3.3: A displaced line source in lower half space 

made again from kx to the a-plane and spatial cartesian coordinates x and y will be 

transformed to polar coordinates rand e for convenience in the asymptotic evaluation 

of this integral. These transformations are carried out using the relationships, 

while the cartesian coordinates t.ransformation is carried out using, 

x = r cos e, y = r sin (), x" = r" cos e", y" = -r" sin e". 



After carrying out these substitutions the resulting form of (3.20) becomes, 

where, 

and 

. -ik t!·I1( Jn2 - cos2 as in Oil- COS a cos 0") 

F( ") S1l1 exe 
< ex r = ------~----j=~==~~-----

, sin ex + Jn2 - cos2 ex ' 

f(ex) = i cos(ex - B) . 
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(3 .21 ) 

It can be seen that a saddle point exists at ex = B due to the choice of kx = k1 cos ex and 

t.he corresponding branch point pair at kJ: = ±k1 has disappeared. The remaining branch 

points now are located on the imaginary axis at ex = cosh -l (b and ex = 'if - i cosh -1 (b. 

The path of integration is deformed to run along a constant phase path. This path 

deformation permits to use the most convenient method, steepest descent method for 

asympt.otic evaluation of this integral given in (3. 21) . 

Carrying out the t.ransformation from ex plane to a new complex, s-plane using the 

following relationship, 

the resulting form of the rela tionship comes out. to be, 

where, 

and, 

In the above relationship, 

f(ex s ) = i, 

dex 
G(s) = F(s) ds ' 

dex 2s 
ds 'i sin(ex - B)' 

(3 .22) 
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The saddle point contribution at. 0: = e is given as, 

E U = -f(1/2) + . wpJeikt" [G(O) G(2)(0) r(3/2)] 
-sd 27rVkl T' O! 2! kIT 

(3.23) 

The functions F(o:s, T'") and its second derivative at the saddle point. is required in G(O) 

and G(2) (0) respectively. These are found to be, 

and, 

F( 
") _ sin ee-ikp'l( vn2-cos20sinOI-cosOcosO") 

o:s, T' - , 
(sine +";n2 - cos2 e) 

F(e , Til) 
--~----~~~ x 
sine(n2 - cos2 e)3/2 

- cos4 e(2 + i3k l T'" sin e" sin e) 

+in2 kIT" cos e" cos e sin e(3/n2 - cos2 e - 2 sin e - 'i2kIT" sin e" sin2 e) 

_ n2 sin e{ sin e - Vn2 - cos2 e + iklT'" sin2 e x 

(ikIr" cos2 e"Vn2 - cos2 e + sin e") } + cos2 e{ 2n2 + sin e x 

(i3n2k1T" sin e" - 2/n2 - cos2 e) - i2klT" sin e" sin2 eVn2 - cos2 e 

- (kIT")2 cos(2e") sin3 e 11.2 - ~(1 + cos(2e)) } 

+ikIT" cos3 e sin e { ikl Til sin 2()" sin 2 e 

+cose"(2sine - 3Vn2 - cos2 e)} (3.24) 

Finally the saddle point contribution comes out to be, 

The branch point contribution will be evaluated now. It has already been ment.ioned 

that the branch points are present on the imaginary axis of 0: plane in (3.22). The 

branch cut at 0: = 'i cosh "7 will contribute only when saddle point is less than the critical 
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angle. The transformation from a plane to s plane is once again carried out, 

where, 

j(a) = 'i cos(a - 8), 

and, 

j(ab) = i cos(ab - 8) = i(n cos 8 + i~ sin 8). 

Int.egral given in (3 .22) is now represented in s-plane as, 

Wf..1,Ieikl7"{nCOSO+iv'n2-1SinOlj OO ... 2 

E U = G(s)e-kps ds 
- 27r -00 ' 

(3.26) 

where, 
G(s) = sin ae-ikl""(v'n'l-cos2 QsinO"-cosQCOsO") da. 

(sin a + vn2 - cos2 a) ds 

Power series expansion of G(s), is taken at s = 0 or a = ab. The even terms 

containing factor of S2 are retained to give the contribution of the branch point while 

the terms of odd powers of s integrate out to zero. The integration is carried out while 

running t.he branch cut along a steepest descent path to give the following result, 

(3 .27) 

where, 

/I eikd'(l - ~kl~/') 
F(U-b)(r ,8) = ~ . 

( n2 -1cos8-nsin8)3/2 

By adding (3.25) and (3.27) the total field above the interface due to this source 

below the interface comes out to be, 

E~ = 

(3.28) 
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Now the field below the interface will be evaluated while the source is also in the 

same region. The field in the region, y < 0 consists of two integrals, hand h given 

below, 

E~ 

(3.29) 

The path of integration in both integra.ls hand 12 run along real kx axis and branch 

points are avoided in the process as given in Fig. 2.2. It can be seen in (3.29) that in II 

two pairs of branch points exist at kx = ±k2 and at kx = ±k1 while the second integral 

is in fact the integral representation of Hankel function. It represents the reflected field 

from the interface while h gives a cylindrical wave in an unbounded media. Transfor-

mation from kx t.o a plane will be carried out to facilitate the evalua.tion of the int.egral::; 

according to 

This above transformation results in the removal of branch points at kx = ±k2 . Similarly 

the cartesian coordinates x and yare transformed to polar coordinates T and e using, 

x = T cose, Y = Tsine. 

The integral It results into the following form after the substitution for a plane, 

I - wp1n
2 1 F (" ) k2 1'!(O)d 

1 - 4 (2 ) 1 T ,a e a, 7fn-l p 
(3.30) 

where, 

and, 

f(a) = i cos(a - e). 
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There is a saddle point at a = 8 and a pair of branch points at a = ± cos-1(1/n) . 

The transformation to the s-plane is carried out as in the last section. The resulting 

expression is of the form, 

I = WJ..l n e . H( ) -k21·s2d I 2 k2 1' !(O:,) 100 

1 4 (2) S e s. 
7r 11. - 1 - 00 

(3.31) 

The saddle point has now moved to t.he origin of the new s plane. Power series expansion 

of the function H(s) will be taken around s = O. Following functions of observation angle 

8 and the source coordinates will be used in the term by term int.egration to be carried 

out after the expansion. 

F1(as, r") 
-:--,....--::~....:..c....~:-:-::-7::' X 
(1/11.2 - cos2 8)3/2 

{ 4 cos' OV1/n' - cos' 0 + k,r"(l/n' - cos' O)3/'{ i cos (0" - 0) 

-k2T" sin2 (8" - 8)} + i4k2r" cos f.) sin(8" - 8)(1/11.2 - cos2 8) 

+2sinO/n' } (3.32) 

After inserting the above functions in the power series expansion of H (s) and carrying 

out the integration the final form of the integral under consideration becomes, 

I 1sd = wJ..lln2eik21· { .J2Fl(8, r " )e-i1f /4 + e-
i31f

/
4 

(F1(B, r") + 2.J2F12) (8, Til))} 
4fi(n2 - 1h/k2r 4k2TV2 

(3 .33) 

Evaluation for the branch point contribution present in the integral in (3.33) will be 

carried out now. It. has already been discussed in the previous section that the branch 

point contribution is to be included in the overall integral evaluation of h when the ob

servation angle 8 is less than C<b = cos-1(1/n) on the real axis. The same transformation 
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to 8 plane is carried out as in the previous section, i-e ., 

i cos(a - 8) = i cos(ab - 8) - 82
. 

The resulting integral will be, 

(3.34) 

where, 

The path of integration runs on real axis of 8-plane. The power series expansion of one 

of the above relationship, K(8) around 8 = 0 or a = ab is carried out. Keeping only 82 

term from t.he expansion t.he branch point. contribution comes out to be, 

(3.35) 

while, 
e-ik27·// cos(Ii // -o/,) n3/2e-ikl7·//( COS 6// -Jn2 -1 sin 6//) 

F(L- b) (1'", e) = {sin( ab _ 8) }3/2 = {v'n2=l cos e _ sin ep/2 

It can be seen that when the second integral 12 is transformed to a plane only a 

saddle point is present in the transformed int.egral. The saddle point contribution from 

the second integral is evaluated by following the same procedure as was done in a similar 

case when the source was present in the upper half space. The result comes out to be, 

w/.d e
ik2T 

{ . e-
i371

"/4 } 
12-sd = - [;;;. n:-= V2F2(8, r")e- t7l

/
4 + F3(e, Til) 4k ' 

4y 1r Y k2r ~2T 
(3.36) 

where, 

L' (8 . .11 ) = -iI.:2 7·
11 cos(6-6") 1' 2 ,1 e , 

and, 
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The t.otal saddle point cont.ribution is achieved by the difference of (3 .33) and (3.36). 

This result is given as, 

(3.37) 

Hence combining (3 .35) and (3.37) will give the total electric fie ld below the interface 

while the source is also in this half dielectric space, 

(3.38) 

Equations (3.28) and (3 .35) are combined to get. the phase map of the electric field 

near the interface. This phase map has been shown in Fig. (3.4). It can be seen from 

this figure that phase lines are continuous across the interface due to the continuity of 

the field across the interface. The same behaviour was observed in C8.'3e of interfacial 

line source case where the higher order terms of electric field expressions gave continuous 

phase lines across the interface. 

In this section electric field near the interface has been evaluated using steepest 

descent method of asymptotic evaluation of integrals. The source configurations used 

include a line source placed above the interface and field found due to it both above and 

below the interface. Then the source W8.'::i moved below t.he interface and the process of 

electric field evaluation repeated. The saddle point and branch point. contributions were 

obtained when the observation angle was less than the critical angle. Similarly it was 

seen that only the saddle point contributes in case the angle of observation was larger 
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Figure 3.4: Phase map continuity preserved when displace line source is below the 
interface 

t.han the critical angle. The field due to the branch point decays perpendicular to the 

interface in the rarer medium while the propagation along the interface of this wave 

component is with propagation constant of the lower medium. 

3.3 Existence of Critical Points 

It was proved in the last chapter that critical points existed in both half spaces near the 

interface when a line source was placed at the interface of t.he two half spaces. In this 
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chapter two cases have been considered as far as the electric current line source location 

is concerned. In the first case the line source was placed in the upper half space and 

field due to it was evaluated in both half spaces near the interface. In the second case 

t.he line source was placed in the lower half space and field was found in both half spaces 

near the interface. The presence of critical points was observed near the interface in 

these two cases. The obvious question which now arises is that is it also true in general 

for any type of source configuration? If the answer is in affirmative then E~,L = 0, must 

have a solution. This solution will help to located the center type of critical points near 

the interface. Corresponding to each center type of critical point will be a saddle type 

of critical point nearby to conserve the index of rotation of Poynting vector field [9]. 

An examination of (3.11) reveals various complicated amplitude functions of (), 1" and 

()' . To simplify matters (3.11) is written in a simplified form as follows, 

where, 

'IjJ(()) = (ncos()+iVn2 - Isin()) 

and G.i for.j = 1,2 are simplified forms of Ft) for n = 0,2 and 'i = 1,2 as given in (3.11) . 

The first function in the curly braces above vanishes a~ the interface or at () = O. The 

remaining two functions C2 and C3 represent very small terms which are not zero at the 

interface. These small terms perturb the solution of E~ (1', (); 1", ()') = 0 at () = O. The fact 

that these small terms are being added to the leading term also suggests that the zero 

of E~ has shifted from the line at () = 0 to some other location neal' the interface. The 

source location parameters 1" and ()' are constants. It is expedient to expand function 

Cj for .j = 2,3 in a Taylor series about () = O. The leading terms of the expansion are 

constants. It is assumed that T = X and l' sin e = y because the point of observation is 



in the far zone. The assumption leads to the following simplified form of (3 .39), 

where, 

}'/ + K ik1 (n-1)x - klvn2 - 1y .qy 2 = e e . 

As ](1 and ](2 are complex numbers the above relationship can be written as, 

where (p is the phase of complex number on the left hand side of (3.41) . 
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(3.40) 

(3.41) 

It can also be seen that the left hand side of (3.41) increases with y > 0 in the 

upper half space. The magnitude of first exponential function on the right hand side 

varies periodically between -1 and + 1 when the observer moves along x-axis. The second 

exponential function on right hand side is real. Its value decays from one to zero as y 

increases from 0 to 00. It leads to the conclusion that product of the right hand side 

functions periodically equals the left hand side as the value of y is increased from zero 

in the upper half space. The fact that. the solutions of the above relationships repeat 

periodically results in the creation of critical points in the upper half space near the 

interface as shown in Fig. 3.2. 

The location of the critical points in the lower half space will be ascertained. The 

total field in the lower half space can be writt.en in the following simplified form, 

ik2" 
EL - e [{ " ee (e · II e")k' c (e · ,II ell)} c (e · .II e") ik1TX(B) ] - - (k2r )3/2 sm 4 ,r, 27 + 5 ,7, + (j ,r, e (3.42) 

The functions Cn for n = 4, 5 and 6 are complicated functions of spatial polar coordinates 

of the observer as well as the source. It is observed that for small values of angle of 

observation e the functions C4 and C5 become complex functions. Based on the fact 
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that the two function become complex a furt.her simplification of the equation (3.42) can 

be rewritten the following form, 

ik,,' 
EL = e - [{c (e · Til e")k l' + Cr. (() · T il ell)} + c.(() · Til ()1I) eik l" X((J)e-i llk[1' ] (3 .43) 

- (k2T )3/2 4" 2 ",' 6 , , 

The phases of functions C4((); Til, e" ) and C5(e; 1'", e") can be approximated as constants 

in the far zone when the angle of observation is increased away from the interface. This 

assumption leads to the following simplified form of above equation, 

(3 .44) 

The real and imaginary parts of the above equation can be related by the following 

equations, 

and, 

sin{R(X(e) - n)} = O. 

This means that, 

R(X(B) - n) = ±m7f, 

or , 

From the above relationship it can be written that, 

where, 

R = M - J(, 

and 
(±l)m 

M= nC
4 

' 
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F\'om the above equation it can be seen that M « J( indicating that a pair of critical 

points will exist. in close proximity in the lower region for each value of integer m . Hence 

for each critical point in the upper half space for a particular value of m a pair of critical 

points will exist in the lower half space. This is also confirmed by the Fig. 3.4. 

It has been seen that the above procedure adopted for simplification of E~ and E~ 

can also be followed for El!. and Ei. As a result of the simplification the form that El!. 

attains resembles that of E~ while E!t. looks similar to E~ . From this resemblance of 

field quantities and observation of phase plots show that the critical points also exist due 

to El!. and Ei on both sides of the interface as they exist due to E~ and E~ respectively. 

3.4 Generalization 

Electric field expressions have been found near the dielectric interface in the las t two 

sections 3.2 and 3.3. In section 3.2 a line source was placed above the interface. The 

electric field expressions were found both above and below the interface due to this 

source. In the next section, 3.3 the line source was moved to the lower half space and 

field due to it was found in both half spaces. It wa.., observed that the zeros of fields near 

the interface existed at a fixed height from the interface. The frequency of occurrence 

of these nulls of field was (71, - 1) per wavelength. These nulls were also independent of 

current magnitude of the sources. 

Consider now Fig. 3.5 in which two line sources, Land L1 are shown placed in 

close proximity to each other in the upper half space. The direct distances of these 

sources Land L1 from origin of the geometry are 1" and r~ respectively. As a first step 

to analyze the field behavior due to these two sources assume presence of only one of 

the two sources, L only. The periodic nulls of the electric field will be created near the 
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interface due t.o this single source as has been proved earlier in t.his chapter. One of 

this field null is shown as Z in Fig. 3.5. Now consider t.he second source, L1 placed at 

r~ while the source L has been removed. The presence of L1 will also cause field nulls 

to appear along the interface. One of such field null is shown as Z1 in this figure. The 

simultaneous presence of these two sources is now assumed in the geometry of problem 

as shown in Fig. 3.5. It is known that the electric field is a complex function of two 

real variables, x and y. The resultant field due to these two sources can be represented 

by sum of the leading terms of the Taylor series expansion of the individual electric 

fields of the two sources. The resultant expressions will be linear functions of x and 

y. Equating real and imaginary parts to zero the resulting two equations can be solved 

simultaneously for the finding the zeros of the resultant field. In other words it means 

that simultaneous presence of the two line sources will cause the occurrence of field nulls 

in the close vicinity of Z and Z1 . 

In t.he next step a source of arbitrary shape and size is obtained by considering a 

number of line sources in close proximity and integrating them over source coordinates. 

Field due to this in the upper half space is represented by E~a7' and in the lower half 

space by E!;.ar' This arbitrary source in the upper half space has been shown in Fig. 3.6. 

Likewise in Fig. 3.7 a similar source in lower half space is assumed with fields due to 

the source shown in the same figure. Now the simultaneous presence of these sources is 

considered in this media of two dielectric half spaces. All the field expressions valid for 

above the interface are summed up to obtain the net effect of fields near the interface 

in upper half space. In fact this summation is achieved by adding equations (3.11) and 

(3.28). An integration is carried out over arbitrary volumes Vi and v" in the resulting 

expression. Later Taylor series expansion of the resulting expression is taken at e = O. 

Retaining only the leading terms of the expansion gives the following form of electric 
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Figure 3.5 : Two line sources placed arbitrarily in the upper half space 

field expression above the interface, 

(3 .45) 

where, 

It can be observed that (3.45) is similar in shape as (3 .40) which shows periodic nulls near 

the interface. Hence it can be concluded that any number of sources present arbitrarily 

in the two dielectric half spaces will always lead to a general form of (3.45). This form 
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x=o 

y=o 

Figure 3.6: A displaced arbitrary source in upper half space 

has its solution near and above the interface at periodic points which are responsible for 

creation of critical points near the interface. Similarly equations (3.19) and (3.38) can 

also be combined to get electric field expression below the interface while the source's 

location is arbitrary. Following the same procedure of carrying out integration over the 

volume parameters v' and v" the following simplified expression is obtained for the total 
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u E_ar 

Figure 3.7: A displaced arbitrary source in lower half Space 

field below the interface for sources arbitrarily present anywhere in the medium, 

ik2" 
EL = e [{k rsin()E (()) + J (B)} + M (B)eiklTX(8)e -inkI7'] 

ar (k2r )3/2 2' 2 2 4 

where, 
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(3.46) 

This expression is similar in form to (3.43). It also has a solution at periodic points valid 

for lower half space. The phase maps in the due to arbitrary source in the upper half 
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space is shown in Fig. 3.8. A similar pattern is obtained due to the arbitrary source in 

the lower half space. Saddle and center type of critical points are generated near the 

interface which are responsible for the continuity of the phase map of the electromagnetic 

wave across the interface. The value of refractive index also changes t.he location of these 

points on the phase map as shown in Fig. 3.9. 

c< ......... 
>. . -ro 
E .... 
0 
Z 
Q) 
() 

- 0.2 ro 
't: 
Q) ..... 
c - 0.4 

81 82 83 84 85 86 
Direction of Propagation, x/A 

Figure 3.8: Phase map near the interface clue to arbitrary shaped electric source in the 
upper half space 
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81 83 84 85 86 87 
Direction of Propagation, xJ). 

Figure 3.9: Critical points move away as refractive index decreases in lower half space 



Chapter 4 

Current Sheet Perpendicular to 
Plane Dielectric Interface 

Behaviour of electric field phase velocit.y and phase map along the interface of two di

electric half spaces was investigated in Chapters 2 and 3. The sources of electromagnetic 

waves were finite in size. In Chapter 2 the source was an electric current line source 

placed at the interface of the two dielectric half spaces. Then in Chapter 3 the source 

was generalized to be an arbitrary z-directed source but finite in extent. The phase 

velocity plots of the electric field in both the chapters was in conformity with continuity 

of field across the interface. 

The phase plots also showed interesting structures of phase map present along t.he 

interface. These structures of phase map were produced due to two types of critical 

points, the saddle type of critical point and the center type of critical point. The role 

of these critical points were explained as regards the phase velocity transition from one 

medium to the other. Now two points need further investigation. First point is that how 

would a wave generated due to a source of infinite dimensions behave near the interface? 

The second point. is that if a plane wave propagates alongside the interface what would 

be t.he wave behaviour near the interface? 
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The source of an infinite extent can be a current sheet which generates plane elec

tromagnetic waves. Consider Fig. 1.1 once again to determine if this simple text book 

problem can be modified so that propagation parallel to interface can be obtained? In 

this figure a source is placed at infinity in a medium having a finite dielectric inter

face. But it becomes a Fresnel transmission and reflection problem already solved by 

Fresnel in 1823. Another possibility is to extend the interface to infinity as shown in 

Fig. 1.1 but the source will cut the interface thereby presenting a complicated problem 

of transmission and reflection at the interface. Hence the convenient way to study the 

plane wave propagation problem near the interface is to place the sheet perpendicular 

to the interface. The resulting plane wave propagation will be parallel to the interface. 

Far away from the interface the plane wave will propagate according to the propagation 

constant of the respective dielectric half space. But near the interface the conditions 

will be different.. The interest is to invest.igate how the fast wave in one medium changes 

over to a slower wave in the second medium across the interface and what type of phase 

map will be generated near the interface? 

4.1 Problem Formulation 

Consider two half current sheets of current densities 1;. and J; lying in x = 0 plane as 

shown in Fig. 4.1. The dielectric half space which exists for y > 0 has permittivity and 

permeability as EO and ~lO respectively. The second dielectric half space which occupies 

the y < 0 space has permittivity and permeability as Ei and ~o respectively. The flow 

of current in the sheets is parallel to the z-axis. The propagation constant of the plane 

wave in the upper half space is kl while for the lower half space it is k2 . The current 
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density may be written as, 

h y > 0; 

J~ y < 0; 

y 

x 

Figure 4.1: Two half current sheets present in the yz plane 

Ii and 12 are the current magnit.udes in the two sheets measured in amperes/meter. 

It is well known that the Helmohltz equation in a homogenous medium is, 

\72 if + k2 E = -iw/-kJ. ( 4.1) 
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Since J is z directed and independent of z coordinate thus the electric field E is also z 

directed and independent of z coordinate. The electric field E in the two half spaces is 

defined as , 

Therefore (4 .1) can be written as, 

y > O. ( 4.2) 

y < O. ( 4.3) 

The solution of (4.2 ) will be considered first.. This equation has a homogenous and 

a particular solution, 

where E 1Ji is the homogenous solution while E 1p represents the particular solution of 

( 4.2). 

An elementary solution to the homogenous form of this equation which satisfies the 

radiation conditions is, 

E - e±ik"xeiklulla' Ih - z· 

where + sign in the first exponential is for x > 0 while the - sign is for x < 0 to satisfy 

the radiation conditions. Therefore a general solution to (4.2) can be written as, 

Elh = 100 

P(kx)e±ik:r.xeikllllldkx, 
-00 

where, 
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and P(lcx ) is an arbitrary complex amplitude function of the electric field. The particular 

solution which satisfies (4.2) is given as, 

where A is the amplitude constant of the electric field. Since the current magnitude is 

constant over the sheet and its distribution is independent. of y, the particular solution 

E lp will not be a function of spatial coordinate y. The boundary condit.ion at 1; = 0 

which is Ampere's law results into the following relationship , 

\:fy > 0 (4.4) 

Substitution of this proposed solution in (4.4) will help to find the value of A. This 

nleans, 

or, 

A = _ w11J 1 . 

2k1 

Thus the total electric field in the region, y > 0 can be written as, 

(4.5) 

In a similar manner the solution to (4.3) for the half space y < 0 that also satisfies 

radiation condition can be written as, 

( 4.6) 

where, 

k - Vk2 k·2 
2y - 2 x' 

and Q(kx ) is an unknown complex amplitude function of the electric field in the lower 

half space. 
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The boundary conditions at y = 0 will now be applied to find the value of the 

unknown amplitude functions P(k,c) and Q(kx) given in (4.5) and (4.6) respectively. 

There are two boundary conditions given as, 

(4.7) 

and, 

( 4.8) 

According to the first boundary condition (4.7) the tangential components of the electric 

fields are continuous across the interface and the equations (4.5) and (4.6) give the 

following relationship, 

The ratio eikllxl / kl in the above integral may be written as residue of a pole at kx = kl of 

the integral (i/7f)j~oo eik"X/kiydkx' Substitution of this fact in (4 .9) gives the following 

relationship, 

(4.10) 

Using orthogonality of the complex exponential function in the above expression the 

following relationship is obtained, 

( 4.11) 

Similarly according to the second boundary condition (4.8) the difference of tangential 

component of magnetic field is equal to the current density on the interface. According 

to this condition no electric current exists at the interface except at origin. As the 

interface is dielectric in nature no surface currents exist or there is no 5(-) function. 
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Hence according to Ampere's law, 

By By 
y=o+ 11=0-

= \:Ix 1= o. ( 4.12) 

Therefore, 

(4.13) 

Application of orthogonality property of complex exponential function to (4.13) gives, 

(4.14) 

Solving (4 .11) and (4.14) simultaneously, the following values of complex amplitude 

coefficients P(kx ) and Q(k,J are obtained, 

Q(kx)= .w~lk1Y {~_~}. (4.16) 
27f'l(k1y + k2Y) kr!J k~!J 

Substitution of (4.15) and (4 .16) in (4.5) and (4 .6) gives, 

E1 = roo k2y { ~_ ~} ei("~X+kI1J!J)dkx _ wMheikl lxl, (4.17) 
J -00 (kly + k2Y) k~y kry 2kI 

and, 

E2 = roo k1y { ~_ ~} ei("XX-k2YY)dkx _ WMI2eik2lxl. (4 .18) 
J -00 (kly + k2Y) k?y k~y 2k2 

For simplification of problem consider Fig. 4.2 . In this figure the two current sheets 

in the Fig. 4.1 has been replaced by a single sheet of current with the current density 

IO(x)cfz placed at x = O. The electric field in the z-direction will now be represented by 

the following equations in the two half spaces, 

E u _ WMI ikdxl w~d {I I} 
~ - -e + -. 10 - 2U , 

2kI 2m 
(4.19) 
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and, 

Wf.d ik2 1xl wj.11 {I I} --e + --. 1L - 2L . 
2k2 27f2 

(4.20) 

where, 

and, 

j OO{ ik .x-ik2 l' } e .1 . Y.I 

12£ = k2 dkx 
-00 21} 

It has been decided to change the notations of electric field representations such that 

E1 is replaced by E U while EL will replace E2. This has been done in conformity with 

t.he notations used for electric fields in the previous chapt.ers. The 'U' in the i:iuperi:icript 

denotes the Upper half space Electric field while '1' in the superi:icript stands for Lower 

half space. Evaluation of the electric field expressions E U and EL will be carried out 

now. 

4.2 Electric Field In Upper Half Space 

The total field in the upper half space is sum of a plane wave propagating with wavenum-

ber kl and two integrals IlU and I2u as given in (4.20). Consider Iru in (4.19) first, which 

is given as, 

(4.21) 

where, 

k = Jk2 
- k2 21} 2 x 
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Figure 4.2: Current sheet. present in the yz plane 

k - Jk2 
- k2 

ly - 1 x 
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x 

The path of integration in this integral runs along real axis of kx plane. There are two 

pairs of branch points in hu at kx = ±k2 and kx = ±k1. The branch cuts originating 

from these branch points are shown in Fig. 2.2 in chapter 2. These cuts run in t.he 

first quadrant of the complex kx plane because 8'[eik1lJ 1 > 0 will satisfy the radiation 

conditions when the contour of integration is closed at kx = 00. A transformation from 
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kx plane to a plane is carried out to simplify the evaluation process according to, 

A subsequent transformation of cartesian coordinates x and y to polar coordinate T and 

() according to, 

x = TCOSe, y = T sin () 

converts hu to the following form, 

( 4.22) 

where, 

f(a) = i cos(a - e), 

and, 
1 

F(a) = . 
kl v'n2 - cos2 a 

The path of integration Q which extends from 7f - i cosh TJ to 'ioo is shown in Fig. 4.3. 

It can be seen that the choice kx = kl cos a results in the removal of the branch point 

at kx = k1 . The second pair of branch points are located on the imaginary axis of ex 

plane. Complex function f(ex) is multiplied by large parameter k11' has a saddle point at 

ex = e. The complex exponent with a large parameter in the integrand of (4.22) demands 

application of steepest descent method for evaluation of flU. The path of integration, 

Q will be deformed to run on a constant phase path and also pass through the saddle 

point. The deformed path is shown as Q' in the Fig. 4.3. The contribution from saddle 

point will be represented by flU-sd while that from branch point will be represented by 

f lU-br . The pair of branch points present in C\' plane corresponds to those at kx = ±k2 

in the original kx plane. It may be remembered that as electric field for x > a is being 

investigated near the interface, the branch point at C\' ,,; i cosh T) will contribute if the 
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Figure 4.3: The corresponding path of integration in complex a plane of flU 
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point of observation e is less than the critical angle. The branch cut will be made 

to run along a constant phase path to be able to apply method of steepest descent 

for asymptotic evaluation of branch point contribution. In case angle of observation is 

greater than the critical angle only the saddle point contribution will be taken to express 

electric field in the upper half space. 

To evaluate the saddle point contribution a transformation to the s plane is carried 

out according to (2.13) for convenience in t.he evaluation of f W -sd ' The path of integration 

will now run on real s-axis while the saddle point will be shifted to origin of the new 



plane. The integral (4.22) transforms to, 

where, 

while , 

da 
G(s) = F(a) ds' 
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(4.23) 

As the saddle point is located at s = 0 in (4.23) a power series expansion of G(s) at 

s = 0 will be taken. The first term of expansion is taken only which does not come out 

to be zero at the interface. This results into the following relationship, 

s=o 
where, 

1 
F(as ) = . vn2 - cos2 e 

Hence t.he saddle point contribution due to t.he first integral comes out to be, 

( 4.24) 

The following transformation is made to find out the contribution of the branch point 

i cos(a - e) = i cos(ab - e) - S2. 

The new form of integral h for finding the branch point contribution is, 

eiklT{ncoso+i~s inO}l°O 
I G( ) -klTs2d 

lU-br = k s e s, 
1 -00 

(4.25) 

where, 



85 

Power series expansion of F(ab) will be taken around a = ab while retaining the first 

two t.erms only. The resultant expansion comprising of these first t.wo terms will be, 

It is known from a to s plane transformation that, 

se-i5rr/ 4 va - au = , 
VSin(au - B) 

and, 
da 2se-irr/ 2 

ds sin(ab - B) . 

The substitutions of the above relationships into the relationship of G(s) results into 

the following form of G(s), 

Retaining only the first term of the expansion, 

( 4.26) 

Combination of saddle and branch point contributions give the following expression, 

(4.27) 

The second integral in (4.19) is given as, 

(4.28) 

The path of this integral runs also along real axis of complex kx plane. This integral has 

a pair of branch points at lex = ±k1 and a pair of poles at kx = ±k1 as well, as shown in 
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Figure 4.4: Integration path and two branch cuts with poles in the kx plane of f 2U 

Fig. 4.4. The kx to et plane transformation as well as the cartesian to polar corclinate 

t.ransformation is carried out as in the case of flU. The resulting form of the integral is, 

where, 

and, 

f(et) = i{cos(et - B)}, 

1 
F(et) =-. 

Slllet 

(4.29) 



87 

F(a) indicates that a pole exists at the origin of new complex a plane while f(a) shows 

that a saddle point. exists at a = e. The original path of integration, P runs as shown 

in Fig. 4.4. 

To describe the saddle point arrangement in the simplest form at a = e, the expo-

nential function f(a) in equation (4.29) is replaced by a polynomial so as to convert the 

integral 12u into a canonical form. The transformation is given as, 

or, 

cos(a - e) = 1 + is2
, 

and, 
da 2is 
ds sin(o: - e) ' 

This results into the following form of hu 

12u = _ek 11'!(Cr.')j oo G(s)e-klTS2 ds, 
-00 

( 4.30) 

where, 

G(s) = _._l_da = _ 2'i 
sma ds vs2 - 2i{svs2 - 2icose + (1 + iS2) sine} ' 

It can be seen from the above expression that a pair of poles exist at, 

while first order branch point singularities are present at s = ±J2ei7r
/

4
. The integral 

has now been converted to a Laplace type integral. This allows to take the power series 

expansion of the function G (s) at s = 0, The steepest descent path through the sadelle 

point in the complex a plane, is defined by; 
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It is seen from Fig. 4.5 that the transformation of the integration variable C\' to s, results 

into SDP on real axis of s-plane while the pole shifts to, s = _V2eitr/ 4 sin(e /2). Region 

1m s / 
s1 

Re s 

I I 
s2 Poles 

Figure 4.5: Integration path in the mapped s plane of 12u 

of converg~nce is defined by the area enclosed by the original contour in the s-plane and 

the SDP which runs on the real s-axis, as shown in the figure 4.5. The location of the 

poles at s = ±V2eitr/ 4 sin( e /2) is at the boundary of the convergent region . 

The contribution of this integral can be examined in two regions of observation. One 

region is very near to the interface i-e; e ~ 0 while the second is away from the interface, 

e » 0. In the situation when the observation point is away from the interface or the 

pole is away from origin only the saddle point contributes in the electric field expression 
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and the pole being at the boundary of t.he convergent region does not contribute. 

Under the conditions that e -7 0, the following relationship is used, [10], 

(4.31) 

where, 

a = I, 

and, 
e- i1f / 4 

T(O) = ~ . {cos(e/2) - I}. 
2sm(e/2) 

Therefore the field comes out to be due to this integral having a pole giving dominant 

contribution at origin, 

According to [10] when ibi -7 0 then T(O) vanishes and Q(±ibJk1r) -7 ft /2. This 

means that for the condition ibiJk1r » 1 to be satisfied so as to include the parabolic 

cylinder functions as the solution of 12U . When this condition is not satisfied a plane 

wave is obtained from this integral, 12U which cancels the plane wave contained in the 

solution of EU. Hence the total expression for the electric field above the interface is 
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given as, 

(4.33) 

It should be noted that when () ~ 0 the argument of the Error function in the last term 

of the above equation becomes zero and the integral contributes only a plane wave. This 

wave is due to the pair of poles which have shifted to origin when angle of observation 

is reduced to zero. The asymptot.ic effects of this term become significant only when the 

argument has a large value or Iblvk1r » 1. 

4.3 Electric Field In Lower Half Space 

The solution for the equation (4.3) which is valid for y < 0 region is similar in form as 

the solution for equation (4.2) already obtained and given in (4.33) . 

EL _ w~d ik2 1x l wfl,l {I _ I } 
- 2k e + 2' 1L 2L, 

"2 7rZ 
( 4.34) 

where, 

and, 
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Evaluation of IlL will be carried out first. The path of integration in this integral 

runs along the real axis of the kx plane. There are two pairs of branch points present 

in the integrand which are at kx = ±kl and k" = ±k2. The path of integration and 

branch cuts shown in Fig. 2.2 are also valid for this integral. It can be seen that the 

exponential term, e -ik21JY in the integrand satisfies the radiation conditions when the 

contour is closed at kx = 00. Transformation to the lX plane is carried out using the 

relationship kx = k2 cos lX. The resulting integral is, 

(4.35) 

The path of integration Q now runs from 7r - i cosh 7J to i cosh 7J as shown in the Fig. 4.3. 

The transformation from kx to lX plane has also removed the branch point at kx = k2 

while the remaining pair shifted to the real axis of lX plane at lXI = cos- l(l/n) and 

lX2 = 7r - cos- 1(1/n). T he branch cut contribution which is present at lXI = cos- l( l/n) 

will be included only when the observation angle is less than the critical angle. The path 

of integration and branch cut arrangement is the same as for E~. 

It is known that. lX = -8 is the saddle point and e is a negative number below the 

interface, therefore the saddle point lies in the (0 < lX < 7r /2) in the lX-plane for x > 0 

region. The path of integration Q will be deformed to run through the saddle point at 

lX = -8 shown as QJ in the Fig. 4.3. The branch cut is also deformed to extend along a 

constant phase path so that when observation angle is less than the critical angle steepest 

descent method can be llsed while avoiding the branch cut. A transformation is carried 

out according to (2.13) to evaluate the integral asymptotically. This transformation will 

convert the integral into the following form, 

( 4.36) 
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where, 

As the pat.h of integration now runs along real axis of new s plane therefore the power 

series expansion of G( s) in (4.36) is taken at s = 0 due to the presence of the saddle 

point at the origin of s plane. In the relationship of G(s) the function F(ccs ) is given as, 

This leads to, 

hLsd = (4.37) 

The contribution of the branch point. will be evaluated now. The branch point is 

present at cc = CCb = cos-1(1/n) in the cc plane. The following transformation, 

i cos(cc - B) = i COS(CCb - B) - S2 

shifts the branch point to the origin of the new complex s-plane. The new form of 

int.egral, IlL, is, 
eikP'{COsO-v'n2-ISinO}jOO ? 

IlL = k G(s)e- k21T ds, 
2 -00 

( 4.38) 

where, 

and, 

1 
F(CCb) = . 

JI/n2 - cos2 CCb 

The derivative (dcc/ds) is expanded in a power series at s = O. Only the first term of 

the expansion will be used in further calculations or, 

(Jn2=l" cos B - sin B) . 
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F(CCb) is expanded in a Power series about the branch point, cc = CCb. The first two terms 

of the expansion are given as , 

where, 
se- i51f / 4 

V cc - CCb = --r=;===::::;: V sin( CCb - (}) 

Subst.itut.ing t.he value of VCC - Cl:b the first two terms of Power series expansion becomes, 

{ 
vsin(ccb - (})e i51f / 4 (n 2 _ 2)se- i51f / 4 } 

F(Cl:b) = n + . 
V2(n2 - 1)1/4s 4V2(n2 - 1)3/4 Jsin(Cl:b - (}) 

The function G(s) is given as, 

ei31f / 4 (n2 _ 2)s2e- i71f / 4 } 
G(s) = 2n{ + . 

V2(n2 - 1)1/4 Jsin(Cl:b - (}) 4V2(n2 - 1)3/4(sin( Cl:b - (}))3/2 

The integral is evaluated as, 

( 4.39) 

The last integral to be evaluated in the lower half space is, 

( 4.40) 

Obviously the pole and t.he branch point lie at the same point. i-e; kx = ±k2 . Transfor-

mati on into the polar coordinate systems, introduces a saddle point on the real axis and 

a pole at the origin. The same approach is adapted in this evaluation as was clone for 
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It can be said now that the total electric field below the interface also has two regions for 

the nature of the electric field . One form of electric field is represented near the interface 

while another form of elect.ric field is represented while the point of observation is away 

from the interface. So the total electric field below the interface becomes, 

E L wJ-tI ik21 x l 
"-J --e 

s - 2k2 
ev"hiik27'e-i7f/4 J2iieik17.( cos O-ln2 - I sin 0) e i37f/4 

+ +-----~====------~~ 
k2\/k21·Jl/n2 - cos2 e k1 (n2 - 1)1/4( ~ COS () - sin B)l/2y'k l T 

-Wj,;::" [ ~ _ vGe-i,/4 { C( ~ sin( ~)) + is( ~ sin( ~)) } 

+ V -k:-r V2es~:~:; /2) {cos( e /2) - I} 1 ( 4.42) 

The above field expression which represents electric field below the interface has a 

plane wave term. This wave travels with wavenumber k2 in the lower half space. Near 

the interface this wave term is canceled by a similar wave but of opposite polarity 

contributed by the pole present in 12L . The contribution of the pole becomes dominant 

near t.he interface. The branch point contribution field decays as (kT) - 1/2. 

Asymptotic solutions for electric fields have been obtained for two dielectric half 

spaces due to the current sheet placed perpendicular the interface. The results showed 

that diffraction terms appeared in the field expressions in the form of parabolic cylin-

del' functions near the interface in both half space. These diffraction terms vanished 

as Ibl Jk1,2r » 1 is satisfied. The asymptotic solutions for the two half spaces also 

contained plane wave terms with wavenumbers k1 and k2 for the half spaces which exist 

for y > 0 and y < 0 respectively. These plane wave term get canceled near the interface 

when B ----i 0 while became dominant when e » 0 or the condition Ibl Jk1,2T » 1 is 

satisfied. The saddle and branch point terms in both half spaces decay as (kT) -1/2. The 

electric field expression for the region y > 0 contain evanescent wave near the interface 
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Figure 4.6: Critical points in the region, y > 0 due to a current sheet across the interface 
while no such points in y < 0 

which decay exponentially perpendicular to the interface. The evanescent wave when 

interacts with the plane wave near the interface and as a result the critical points appear 

in the upper half space as shown in Fig. 4.6. The critical points for the region y < 0 

are not observed while the continuity of the phase map is preserved across the interface. 

The frequency of occurrence of these points in the upper half space is proportional to 

t.he refractive index, n of the second medium for y < O. 



Chapter 5 

Conclusion 

This work was carried out to study the behavior of electromagnetic waves along the 

plane interface of dielectric media. The media considered throughout this work con

sisted of two dielectric half spaces such that their interface was located at y = 0 plane 

in the cartesian coordinate system. In order to simplify this investigation of electromag

netic wave behaviour near the interface, sources of finite and infinite extents were used. 

The finite sources included electric current line source as well as sources of arbitrary 

shape placed parallel to the interface. Electric current sheet placed perpendicular to 

the interface was used as a source of infinite extent. The electric field component of the 

electromagnetic waves, propagating parallel to the dielectric interface was investigated. 

The leading terms of the asymptot ic field expressions valid above and below the 

interface due to sources of finite or infinite extent show that the field is zero on the 

entire interfacial plane. This solution is good enough if one wants to observe the power 

propagating to infinity in a certain direction, because this is the only term which decays 

as (kp) -1/2. Unfort.unately this does not give the full picture of wave propagation near 

the interface when ky « 1. Moreover zero field condition on the interface represents a 

structural instability in the phase map of the electromagnetic waves. This structurally 

96 



97 

unst.able condition of the phase map is converted to structurally st.able forms on pertur

bation by higher order terms in the asymptotic solution of the electric field . Perturbation 

by higher order terms results into creation of periodic structures of phase map near the 

interface. These structures are formed around isolated critical points . The critical point.s 

are of t.wo types, the saddle type critical points and the center type critical points. The 

phase velocity and the Poynting vector field are zero at both the critical points. These 

two types of critical points always exist in pair when index of rotation of the Poynting 

vector field is zero [9J. 

A common behaviour of the equiphase lines is observed above the interface for both 

kinds of sources. The density of the equiphase lines in the rarer medium is lower than 

the density of the equiphase lines in the denser medium. The center type critical points 

produce additional phase lines periodically and saddle type critical points redirect the 

additional phase lines into t.he denser medium where t.hey are required to support the 

slower wave. It is known that phase velocity is orthogonal to the equiphase contours. 

The phase velocity near center type of critical points forms closed curves and waves seem 

to circulate around these points. This circulation phenomenon results into slowing down 

of the wave in the rarer medium. Above each center t.ype of critical point is a saddle type 

critical point. The lines of phase velocity near saddle type critical points form hyperbolic 

curves thus showing as if the wave is avoiding these points. The overall effect of this 

structure can be seen qualitatively in Fig. 5.1. There is one major difference in the phase 

maps of the finite extent source and infinite extent pla~e wave propagating parallel to 

the surface. In the case of finite extent sources the flow line through a saddle type critical 

point eventually ends up going below the structure and into the denser medium. The 

passing of flow lines below the structure into the denser medium can be seen in Fig. 5.2. 

It means that interconnection of saddle points by flow lines is avoided. This is perfectly 



98 

4.343.2 43.4 43.6 43.8 44 44.2 44.4 44.6 44.8 45 

Figure 5.1: Poynting vector and the phase map in the rarer medium 

reasonable because such an interconnection is inherently unstable [14]. In case of plane 

wave the flow lines through saddle type ·critical points are interconnected. Although this 

is structurally unstable but it is supported due to the inherent symmetry of the plane 

wave. Hence region above the interface is effectively divided in two parts. A flow line 

above the interconnecting line remains above and a flow line below the interconnecting 

remains below. It has been shown in The interconnecting flow line serves as a boundary 

between the two parts. The separation of the two parts has been shown in Fig. 5.3. 
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Figure 5.2: Flow lines due to finite extent sources in the rarer medium 

There is another difference in the phase map of electromagnetic waves due to finite 

extent sources and infinite extent sources . For each pair of saddle type critical point and 

center type critical point in the rarer medium two such pairs of these points exist in the 

denser medium in case the sources are of finite extent. The arrangement of these points 

in the denser medium is such that the saddle type critical points of all the structures 

of phase map are almost on a line parallel to x-axis. Whereas the center of each pair 

of phase map structure is slightly displaced horizontally from its corresponding phase 

map structure in the rarer medium. This slight displacement can be seen in Fig. 5.4. 

The flow lines entering from the rarer medium are trapped in these structures for a few 

wavelengths before moving further down in the denser medium. 

It is known that the phase velocity and Poynting vector field of a wave are propor

tional to each other. Therefore by looking at the phase map near the interface due to 

various source configurations it is possible to jxedict the behaviour of Poynting vector 

field qualitatively near and along the interface of dielectric media. It can be said that 

for any type of problem involving propagation near the interface the wave will behave 

in a manner discussed above. 
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Figure 5.3: Flow lines due to current sheet in the rarer medium 

983.5 984 984.5 985 985.5 986 98G.S 
Direclion of Propagation, '!fA 

Figure 5.4, Close view of phase map structures with horizontal displacement of the lower 
pair 
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