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Abstract

Focused electromagnetic waves have applications in many areas. such as mi-
crowave antennas and integrated optical systems ete. Asymptotic ray theory (ART)
or the geometrical optics (GO) approximation is a powerful tool for evaluating high
frequency fields in homogeneous and inhomogeneous medium but it fails in the vicin-
ity of caustic. Maslov's method combines the simplicity of asymptotic ray theory and
generality of Fourier transform method. This is achieved by representing the geomet-
rical optics fields in terms of mixed coordinates consisting of space coordinates and
wave vector coordinates. High frequency field expressions valid around focal regions
of two dimensional Cassegrain and Gregorian dual reflector microwave antennas are
derived using Maslov’s method. The reflectors materials composed of perfect elec-
tric conductor (PEC), perfect electromagnetic conductor (PEMC) and chirval nihility
coated PEMC are chosen for the study of field behavior around caustic region of these
systems. Numerical computations are used to evaluate field patterns around the caus-
tic of dual reflector microwave antennas. To establish validity of Maslov’s method the
results of cylindrical parabolic reflector based on Maslov’s method are compared with
the results obtained using Kirchhoff’s approximation. The results are found in good
agreement. The field reflected from both PEMC and chiral nihility backed by PEMC
interface, contains both co-polarized and cross-polarized components. Dependence of
co-polarized and cross-polarized field components for different values of admittance

parameter of PEMC has been studied.
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Chapter 1

Introduction

Asymptotic ray theory (ART) or geometrical optics (GO) approximation is fre-
quently employed for the analysis of wave propagation both in homogenous and in-
homogenous media [1,2]. Tt gives both qualitative and quantitative picture of the field
and is widely used to study variety of problems in different areas of electromagnetics,
acoustics, and seismology [2-4]. In fact, GO deals with relatively high frequency field
problems with limitation to predict the field only in a region where cross-sectional area
of ray tube does not become zero. However, in practical applications there are regions
such as focal region of focussing systems where cross-sectional area of ray tube reduces
to zero as shown in Fig. 1.1. and Fig. 1.2., GO fails to quantify the ray field at these
points. Therefore, GO approximation is not suitable for field evaluation around caus-
tic where it shows singularity [3-6]. The formation of caustics is a frequent [eature in
electromagnetics, acoustics, and seismology etc., and again these are often the points
of great interest for their usefulness in practical applications. So in order to study the

field behavior near caustics [1,5] or focal points, some different approach is required.

Fig. 1.1. Transportation of electromagnetic energy in the form of a tube of geomet-

rical rays



Z, (1) = Zo (o) [AGoVA®]
= Zo(ro) ] (¥

Fig. 1.2. The schematic diagram showing variation of field intensity of rectilinear

rays as a function of area of field distribution

Maslov proposed an alternate method [8,9] to predict the field distribution around
caustic region. Maslov’s method is a systematic procedure which combines the sim-
plicity of GO and generality of the Fourier transform which remedies the defecis ol GO
field expression at caustic. The formulation of GO field around caustic may be done
either in spatial domain or wave vector domain or in combination of both the domains
known as phase space. Ray representation of the field in phase space along with their
projections onto spatial domain and wave vector domain is shown in Fig. 1.3. The
representation of GO field in wave vector domain is equivalent to Fourier transform of
the wave field. The transformation removes the formation of ray singularity at caustic
as shown in Fig. 1.3. Considering the problem of geometrical optics in physical space,
mathematically there appears singularity around the caustic but in fact this singularity
is not genuine. This is so, because the solution of electromagnetic wave equation is not
singular. Maslov's method makes use of the fact that appearance of caustic/singularity
is dependent on the choice of domain for field formulation. A caustic/singularity along

the ray cannot appear both in its spatial and wave vector domain simultaneously as



shown in Fig. 1.3.

—— Phase space
\  ray trajectory

Wave vector domain

Fig. 1.3. The schematic diagram depicts the rectilinear rays as phase space trajectory
along with their projections onto both spatial domain and wave vector domain. The

singularity in spatial domain is removed in wave vector domain.

Rays never intersect in phase space, ray intersection and hence the caustic occurs
only in spatial domain ray projection. Following properties of ray and wave constitute

the basis of Maslov’s method [8,9].

(i) The trajectory of a ray in three dimensions is represented by the solution of Hamil-
ton’s canonical equations that is generally considered in spatial domain r(z.y, 2).
Again the ray trajectory can also be viewed in six dimensional phase space con-
sisting of space co-ordinates r(z,y, z) and wave vector components p(p..py,p=)
as shown in Fig. 1.3. Furthermore, spatial domain and wave vector domain may
then be taken as respective projections from six dimensional phase space. Other

projections of phase space e.g.. (x.py,pz). (Pe.py. z) called the mixed domain are
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also possible. It implies that a ray can also be described in which a few compo-
nents of space domain (z,y, z) are replaced by corresponding components of wave
vector domain p(pg, py.p-). giving rise to a new domain (p,,p,. z), referred as
hybrid domain or mixed domain. The solution in mixed or hybrid domain is con-
sidered because in general, the singularities in different domains do not coincide.
The ray shows singularity at caustic when one sees it in spatial domain (z,y. 2)
as in Fig. 1.3., but generally it is regular in the mixed domain as the singularity

in each space is usually located at different locations.

(ii) The solution of the Helmholtz equation may be represented as spectrum of su-
perposition of plane wave. This is accomplished through Fourier transform rep-
resentations of solution with unknown coefficients. The derivation of asymptotic
ray expression in terms of unknown coefficients is obtained from Fourier integral
by applying the stationary phase method of integration [6] to the integral. The
ray expression thus obtained from plane wave spectrum may be compared with
GO field expression derived using Hamilton's optics. This may lead to determine
unknown coefficients of the integrand of Fourier integral. It may be pointed out
that the integrand of integral transform is in mixed domain and predicts finite

field at caustic.

In practical use, the field expression based on Maslov’s method assumes the form
of an integral representation of the solution which once again reduces to GO field
expression in a region far away from the caustic when integral is solved by stationary
phase method of integration. The integral which appears in the field expression can
be evaluated either numerically or asymptotically to determine image field. Although
Maslov’s method has attracted attention of many investigators who frequently use
the method to study the problems in acoustics and seismology [2-4], yet the literature
related with the applications of the method to physical problems in electromagnetics is

relatively few. The main objective of this research work is to encourage radio engineers
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and scientists confronted with high frequency field problems to use Maslov’s method
for their solutions. In the next sections. mathematical formulation of field expression

based on Maslov's method is carried out.

1.1. Formulation of GO Field

Consider two dimensional scalar Helmholtz equation

(V2 + k2n®)U(r) =0 (1.1.1)

5 2 2 ; : .
where r = (x,2), V*° = if + 25 and the field U(r) is assumed to be uniform along
y-axis, kg = i—: is a wave number and Ag being the wave length in free space. Index
of refraction of the medium is n = {l& and assumed to be constant for homogenous

and isotropic medium. For large values of parameter k, the asymptotic solution of the

Helmholtz equation (1.1.1) is given as below
U(r,k) = e %50 A(r, k) (1.1.2)

where S(r) is a slowly varying real-valued phase function and the amplitude A(r. k)
is a slowly varying complex valued function. For large k&, amplitude function can be
expressed in terms of Luneberg-IKline asymptotic expansion as

oo

Alr, k)= (—jk) ™ Zm(r) (1.1.3)

m=()

Therefore the asymptotic solution of (1.1.1) may be written as

U(r. k) = exp|—jkS(r |Z jh)"’ (1.1.4)

m= (l
For high frequency fields, k tends to become large and assumes infinite value so that

retaining the leading term of the asymptotic series (1.1.4), gives

U(r, k) = Zo(r)e () (L.1.5)
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Phase and amplitude functions may be determined by substituting (1.1.4) in
(1.1.1) and setting the co-efficient of each powers of k equal to zero. Thus co-efficient

of k? yields the equation for phase function S(r), known as Eikonal equation 3]
[VS(r)? —n?=0 (1.1.6)
Similarly the co-efficient of k yields the amplitude equation
OV Zp (r)VS + V28 Zn (7)) = =V2Zpn—_1(7), (m=1,2,3,4,.....) (1.1.7)
For m = 0, zeroth order transport equation [3] is obtained and is given by
2V Zo(r)VS + V25(Zy(r)) =0 (1.1.8)

This retains the leading term of asymptotic series (1.1.4). The equation (1.1.8) further

reduces to

90%0(r) (V28)Zy(r) = 0 (1.1.9)
or
where
J or 0

-
i

it may be noted that V.S has a direction perpendicular to the surface S(r) = constant,

so that 7 specifies position of a point on the curve perpendicular to this surface.

i-Phase Function

Phase function of a ray is given by the solution of Eikonal equation (1.1.6). Now.
. " . . 2
wave vector is defined as p = V.S and Hamiltonian as H(r,p) = %(p -p — 1<) so that

Eikonal equation (1.1.6) becomes

H(r.p)=0 (1.1.11)



which describes the path of propagation of a ray. Eikonal equation can be converted

to ordinary differential equations using the theory of characteristics which gives

dr

— =V, H= 1.12
7 = VpH =P (1.1.12)
dp 1 dn?(r) .

il A 7 % - S - .13
dr Yall 2 dr ¢ u )

where refractive index n remains constant for homogenous medium. Using p = V.8

and (1.1.12), one can readily obtain

dS dS dr .

T e e =D N 1.1.14
dr _dr dr P Vi ( )

where 7 is the parameter along the ray. In (1.1.12) and (1.1.13), V,, and V,. are

differential operators with respect to wave vector p(p., py, p-) and space coordinates

r(x,y, z) respectively.

Hamilton’s equations in cartesian components are

dx - dz e
dr Pas dr Pz
dpa dp-
—_ —_— = 1.1.15
dr 0, dr ¢ ( )

Solution of Hamilton’s equations is obtained below

t=E+p.T, z2=C(+p.T

Pz = Paxg» Pz = Pzq (]'116)

where (&€, ¢) and (pg,,p2,) are the initial value of (x, z) and (p,, p.) respectively. Inte-
gration of (1.1.14) yields
S(7) = So(mo) + (7 — T0)n? (1.1.17)

79 is value of parameter at initial point. Parameter 7 is related with the length of the

ray o and is given by

dr:d—g (1.1.18)

mn



ii-Amplitude Function

Amplitude of the ray is given by the solution of transport equation. Consider the
zeroth order transport equation given by (1.1.9). Now, if (% = F(r) has the solution

r = R(&, 7) then one can have the relation

d o _ D(r) _ 0(,2) ;
E[ln J(r)| =V, B, .Jr)= D(0)’ D)= (€. 7) (1.1.19)

This relation can be shown by differentiation .J(7) directly and using the relation

(1.1.20)

- dr ) = 92, 0T ' Bz, OT | Ozs OT

i Ehrk E d:r:k - 8F;,- 8$1 (3Fk 63)2 811 31‘5
dr oT — 0T

In the above equation r = (21,29, 23) and T represents one of the variables (£, 7).
Hamilton’s equation f}i— = p has the same form if one sets F = p. and V, - F =

V, - p = V25 so that the solution may be expressed in the form
d 2 r
—[In J(7)] = VS (1.1.21)
dr

The solution of the transport equation (1.1.9) is obtained in the form

T

%[IHZS(?*)] = -V2§ (1.1.22)

Comparison of (1.1.21) and (1.1.22) yields,

1
I
4= i

or more explicitly

D(7)

Zo(r) = Zo(ro)J(r)"%, where J(7) = D(0)

(1.1.23)

In order to explain the Jacobian physically and mathematically, please refer to Fig 1.2.
which shows variation of field distribution area of rectilinear rays as a function of

distance. It may be noted that cross-sectional area of paraxial ray A(r) is proportional
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to transformation D(7) from ray co-ordinates (€, 7) to cartesian co-ordinates (x,y)

. . sron_ Alr) __ D(r)
so that J(7)= Alra) — D(0)

where ry = (£.0) and J(7) is the normalized Jacobian.
Now substituting the phase and amplitude given by (1.1.17) and (1.1.23) respectively
in (1.1.5), yields the approximate solution of wave equation (1.1.1) known as GO

solution [1]

U(r) = Zo(€)[J(r)]~* exp [~jkSo(€) — jkn*(r — 70)] (1.1.24)

When several rays pass through a point (z,z), the field U(z,z) is described by a
sum of components of the type (1.1.24). Note that the GO field expression (1.1.24)
fails to explain the behavior of the field at caustic both in terms of its amplitude
and phase. The phase function undergoes a characteristics 4 phase shift as the ray
continues through a caustic. The Jacobian J(7) = 0 at caustic because the tube of
rays in which the intensity is being conserved has zero cross-section there. The GO
field expression, therefore, yields an infinite field at caustic. The next section includes
the detail of mathematical work involved in the use of Maslov’s method to derive the
field expression valid around caustic region. The GO field expression that has been
established using Hamilton’s equations, needs some remedial treatment. The remedy

for GO field is accomplished by expressing both its amplitude and phase in mixed

coordinates through Fourier transform [1,5].
1.2. Field Formulation Using Maslov’s Method

The occurrence of a caustic in spatial domain can be avoided by mapping the
rays from phase space to the wave vector domain as shown in Fig. 1.3. The mapping
from phase space to wave vector domain, separates the rays that intersect at caustic in
spatial domain. The Maslov's method uses the ray solution in one domain to correct the
ray solution in other domain. Transformation from spatial domain to spectral domain

or vice versa, can be realized through the use of Fourier transform and this constitutes
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the basis of Maslov’s method. Let UU(r) and V(Y) be the two wave functions in spatial

and wave vector domain respectively, defined by

U(r) =Ulx, z)

V(Y)=V(z,p:)

Their Fourier transform may be defined as

V(Y) :/\ U(r)exp(jkzp:)dz (1.2.1)
and
1 S g
UG) = 5 [ VOY)exp(-ikeps)dp. (12.2)

Equation (1.2.2) provides an integral representation of U if V' is known. The Maslov’s
method essentially entails the replacement of the function V' in (1.2.2) by an approx-
imation obtained using the stationary phase approximation to the integral in (1.2.1).
Working in mixed domain may enable one to determine solution of Helmholtz equation

that remains valid near caustic and it is the main feature of Maslov’s method.

Consider Helmohltz equation given by (1.1.1) which may be written more explic-

itly as
d*U(r)  0*U(r)

4 + K2U(r) = 1.2.3
5t —p -+ U} =0 (1.2.3)

Fourier transform of (1.2.3) for homogeneous medium gives

A’V (Y) 2 2
thk [l—pz] V(Y)=0 (1.2.4)
Equation (1.2.4) is considered to be the wave equation in the mixed domain Y (z,p.)
and its formal asymptotic solution may be assumed to have the form
[o =}
V(Y)= 3 Bu(Y)(—jk) "™ exp kT (Y)]
m=0

= [Bo(Y) + (—jk) ' B1(Y) + (—jk) > Ba(Y) + - -] exp [-jkT'(Y)]

(1.2.5)



1)

Considering high frequency field, & — oo and selecting the leading term of the asymp-

totic series (1.2.5), gives
V(Y) = Bo(Y) exp (—jkT(Y)) (1.2.6)
Substituting (1.2.6) in (1.2.2) gives
1 i O
Ulz,z)= o / Bo(Y)exp |—jk{T'(Y) + p.2}| dp- (1.2.7)

The integral can be evaluated approximately by applying stationary phase method of
integration [6]. This yields an asymptotic solution in terms of unknown variables of
phase T'(Y') and amplitude By(Y). The unknowns are determined in such a way that

the solution should have the following characteristics.

(i) The solution yields the finite field at caustic so that at points far away from caustic
it gives the same result as produced by the GO field expression (1.1.24). It implies
that both expressions coincide at stationary point p. = p.. and consequently the
comparison of the two field expressions will lead to determine unknown variables

in (1.2.7).

(ii) The unknown variables 7'(Y) and Bg(Y') determined above, are substituted back
in (1.2.7) and for this, it is assumed that the field expression (1.2.7) holds for all

values of p..

The stationary point is determined from the phase function of (1.2.7) and is found

to be located at

which gives
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The second derivative of phase function as required by stationary phase method of

integration is

& 0 or Oz
ap? ek % = Y — & Ip:=p: 1.2.8
Zrna]  [2(E)] Lo 02

where z, is the value of z at stationary point and must be expressed as z, = z,(x,p..).

Using these relations, stationary phase method of integration gives the approximate

solution which remains valid in the region far away from caustic

Ulz.z) = (ﬁi{) |

Comparison of (1.2.9) with (1.1.24) in respect of amplitude and phase respectively.

Ozs | ? :
By(x,y.p:.) [(():j } exp[—jk{T(z,p:,) + pz,2s}] (1.2.9)

t

yields ] :
i _ [2mk\? -y =112 Ip-. | * 9
B(l(lspzﬁj S ( J ) Z(J(ﬁ!@)‘} (T) [323 } (1—'10)
and
T(x,pz,) = So(&,¢) + (1 — 10)n® — Pz, 2 (1.2.11)

where £, ¢, 7 and z must be expressed in terms of mixed co-ordinates (x,p.). Although
(1.2.9) agrees with GO solution only at the stationary points, yet it is assumed that the
expression is valid for all values of p.. Under this assumption explicit form of By(z, p.)
in (1.2.10) and 7'(x,p,) in (1.2.11) have been determined. In this respect, the method
resembles the equivalent current distribution method in high frequency technique of
electromagnetic diffraction theory. On substitution of (1.2.10) and (1.2.11) in (1.2.7),

the field expression assumes the form of

K \§ o o, 14
U(m”z):(%) ] Z0(6,¢) [f(j—’] x

exp [—jk {s0(&,¢) + (7 — To)n? — zs(z, p2)ps + zpz}] dp, (1.2.12)

In (1.2.12) J%”; can be evaluated by using the following relations
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dp. _ d(x,p:)

0z Az, z)

Op. I x,z) dx,p.)

0z A, ) Oz, z)
= dp. d(x,p;)

Dirl 5, = A, 7)
Jf)pz _ O(z,p.) 1

9z A, 1) D(0)

The field expression (1.2.12) expression based on Maslov’s method, remains valid
at all points including caustic region. The solution of (1.2.12) is obtained through
numerical computations. which yields the field distribution around the caustic region
of focussing systems. Maslov's method takes into account both the field reflected from
the surface of the reflector and the field diffracted from edge of the reflector which is
reflected in the field plots as main-lobe and minor-lobes respectively. The problem of
field evaluation in focal region has been undertaken by Kay and Keller [13] using the
conventional Huygens-Kirchhoff’s integral or physical optics approximation. The two
field expressions agree completely around the caustic region but differ slightly in phase

and amplitude elsewhere.

The basic work of Maslov is reported in Maslov, 1972 [8], a book written in Russian
and translated into French and another more recent book by Maslov and Fedoriuk,
1981 [9]. Maslov’s method was originally developed for the purpose of finding uni-
form asymptotic solution of partial differential equations, such as Schrodinger’'s wave
equation. The method has subsequently been applied to propagation and radiation
of waves in homogenous and non homogeneous medium [1.2]. The physical interpre-
tation of mathematics of Maslov’'s method and its relation to other ART methods
have been discussed by Ziolkowski and Dechamp [5]. Arnold [12] has provided fur-
ther physical insight into this technique. The application of Maslov's method to in-
homogeneous medium and continuation problems have been discussed by Kravstov

and Gorman [1,15]. The method has been summarized by Kravtsov, Ziolkowski and
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Dechamps [5,14] and applied to propagation and radiation of waves in homogeneous
and inhomogencous medium. Chapman and Drumond [4] used it to construct the
seismograms, Gorman and his associates [6,15] showed how to construct the asymp-
totic solution for various kinds of differential equations. Hongo and co-workers applied
Maslov’s method to derive the high frequency solutions for field distribution by a phase
transformer, a cylindrical reflector, spherical reflector antenna, a dielectric spherical
lens, spherical dielectric interface and radiation characteristic of plano convex lens an-
tenna [17-28]. Aziz et al. utilized the Maslov's method to study the field distribution
around caustics of two dimensional Cassegrain and Gregorian dual reflector systems
composed of perfect electric conductor (PEC) and perfect electromagnetic conductor
(PEMC) reflectors [23,24,43]. Ghaffar et al extended the work to three dimensional
Cassegrain and Gregorian systems, study of focussing of feld refracted by a plano
convex lens into uni-axial crystal, study of focussing of field refracted by an inho-
mogeneous slab were studied [25-30]. Hussain et al. used this method to study the
radiation characteristics of wood lens [32]. Ashraf et al recently used the method to
study the fields in the focal space of symmetrical hyperbolic focusing lens |31]. Fiaz
et al. utilized the Maslov’s method to study the fields distribution around caustics
of two dimensional PEMC Gregorian system [42,43]. Faryad and Naqvi extended the
Hongo's work by studying the high frequency field expressions in the caustic region
of a parabolic cylinder placed in chiral medium [45]. Ahsan and Naqvi used Maslov’s
method to study the behavior of reflected field around caustic region of a PEMC
parabolic cylinder when it is coated with chiral nihility medium [54]. The work in the
thesis will show that the method can be applied to derive the field expressions for both
single and dual reflector systems for field around their caustic regions. Cassegrain and
Gregorian dual reflector systems are considered for the study of field behavior around
their focal regions. The reflectors used are of different materials which include PEC,

PEMC and PEMC backed chiral nihility.
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Concept of PEMC has been introduced by Lindell and Sihvola [35, 36] as a gener-
alization of Perfect electric conductor (PEC) and perfect magnetic conductor (PMC).
PEMC is a new class of metamaterials [Appendix IF| that exhibits exceptional prop-
erties not readily observed in nature. At PEMC interface certain linear combinations
of electromagnetic fields are required to vanish and has been discussed [35. 36]. Using
differential-form representation [10, 37| the corresponding medinm has been charac-
terized as being the simplest possible medium. PEMC medium is defined through one
scalar parameter, the PEMC admittance M [35], whose zero and infinite limits give
the PMC and PEC media, respectively. It has been demonstrated theoretically that a
PEMC material acts as a Perfect reflector of electromagnetic wave but differs from PEC
and PMC in that the reflected field has both co and cross-polarized (cr-polarized) field
components. PEMC does not allow electromagnetic energy to enter, so it can serve
as boundary material. Non-reciprocity of the PEMC boundary can be demonstrated
by showing that the polarization of plane wave reflected from its surface is rotated,
the sense and angle of rotation depend on M, the admittance parameter. Many aun-

thors have used the PEMC concept [35-13

. Chiral nihility [Appendix F| is a special
kind of chiral medium, for which the real part of permittivity and permeability are
simultaneously zero, in other words refractive index becomes zero at certain frequency
known as chiral nihility frequency [49]. In chiral nihility, the two eigenwaves are still
circularly polarized.But one of them is a backward wave whose phase velocity has an
anti-parallel direction with corresponding Poynting vector. Chiral is a meta-material
and field reflected from PEMC backed chiral nihility reflector contains both co and

cross-polarized field components which finds potential use in military applications.

The electromagnetic waves radiated from a distant source will become a field of
plane waves at receiving antenna. The field is focussed around caustic region. The
knowledge of field distribution pattern around caustic is necessary as it is helpful in

selecting receiver/transmitter to be placed in the caustic region. The field pattern
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at caustic leads to development of practical antenna design. The work on Maslov’s
method applied two dimensional dual reflector systems having reflectors of different
materials has been original as reported in this dissertation [23],[24] and [43]. The work
has attracted attention of a large number of researchers who have made more than
fifteen citations of the work in this dissertation while taking this work as basis for
their further research work. The results of 2-D in the dissertation may be useful in
the design of more practical 3-D systems to receive signals of high frequency field in

communication.

A Chapter wise brief description of the work carried out in the thesis is given be-
low: In Chapter 2, field expression based on Maslov’s method is applied to an arbitrary
cylindrical reflector (PEC) to derive a general form of field expression which should
remain valid at all points including the caustic. The general form of field expression so
derived, can be applied to different shapes of single reflector antenna such as parabolic,
circular and elliptical cylinder etc. The high frequency field expression contains an inte-
gral form of solution near caustic and may be evaluated either analyticallv /numerically
or with uniform asymptotic techniques. The validity of field expression is established
by showing that integral form of solution reduces to GO field expression when the field
point is considered far away from caustic region. As an application, the field expression
is applied to parabolic cylinder widely used as microwave antenna. The high frequency
field expression obtained for a parabolic microwave antenna closely matches with that
obtained by Kay and Keller [13] using induced current method. The field patterns
evaluated around caustic region of parabolic cylinder for oblique and normal incident
plane wave [18] using both Maslov’s method and Huygens-Kirchhoff’s integral, are

compared and the results are found in complete agreement.

In Chapter 3, the work on Maslov's method is extended to include the study of field
behavior around caustic region of more complex systems which include PEC Cassegrain

and Gregorian dual reflector systems. Both utilize a sub-reflector which is placed to
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intercept the field reflected from main-reflector [23-25|. The dimensional parameters
of main-reflector and sub-reflector are determined using near field focussing properties
of aperture antennas. The diameter of main-reflector [Appendix D] is obtained so that
sub-reflector is properly illuminated by the reflected field. The sub-reflector profile is
determined using ray optics to maximize the efficiency of parabolic reflector. Maslov's
method is applied to derive high frequency field expressions for both Cassegrain and
Gregorian dual reflector antennas for normal incident plane wave. Field patterns
around their caustic regions are evaluated through numerical computations. The re-
sults of both the focussing systems are then compared with the results obtained by
applying Huygens-Kirchhoff's integral to their equivalent parabolic reflector. They are
found in complete agreement, which yet again testifies the validity of Maslov’s method.
The parameters of focussing systems under study are varied to see the impact on the
image quality of focussing fields. The field patterns corresponding to three different
set of parameters of dual reflector systems, are obtained to study the quality of image

fields around the caustic region.

In first part of Chapter 4, the present work is extended to include the study of
field behavior around the caustic region of dual reflector focussing systems in which
one or both the PEC reflectors are replaced with PEMC reflectors. For this purpose

following two cases are considered,

(i) PEMC Gregorian dual reflector microwave antenna in which main-reflector is

PEMC while sub-reflector is PEC.

(ii) PEMC Cassegrain dual reflector microwave antenna in which both the reflectors

are PEMC.

Maslov’s method is applied to both PEMC Cassegrain and Gregorian dual reflec-
tor antennas to derive high frequency field expressions. The field expressions obtained

thereby, yield finite field value around caustic of these systems. The integral of field



18

expression is solved through numerical computations to determine field distribution
around the caustics. A comparison study of amplitude variation of both co-polarized
and cr-polarized field components has been carried out for different values of parameter

M, the admittance of PEMC boundary. The results are shown schematically.

In second Part, both Gregorian and Cassegrain dual reflector antennas in which
main-reflector is PEMC backed chiral nihility whereas sub-reflector is PEC, are con-
sidered for the study of field behavior around their caustic regions. Field expressions
valid around the caustic of both dual reflector systems are derived using Maslov's
method. Solutions of field expressions are obtained through numerical computations
to evaluate the field patterns around the caustics. Dependence of co-polarized and cr-
polarized field components for different values of admittance parameter M of PEMC
has been studied. Interpretation of the results is given by taking into account fol-
lowing observation. How admittance parameter effects the co and cr-polarized field

components?

Chapter 5 concludes the present discussion with the observations based on the
results presented in the thesis that the method is straightforward and provides an
alternate to the conventional induced current method or Huygens-Kirchhoff's integral
for field evaluation around the caustic region of focussing systems. Both Maslov's
method and Huygens-IKirchhoff’s integral yield the results which completely agree
around the caustic region but show slight difference in phase and amplitude elsewhere.
The coating of PEMC and chiral nihility metamaterial on reflectors of Cassegrain and
Gregorian systems gives rise to co and cr-polarized field components when plane wave
is incident on this metamaterial interface. The generation of co and cr-polarized field

components finds potential use in military applications
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Chapter 2

PEC Arbitrary Cylindrical Reflector

Maslov’s method is used to derive field expression that is valid around the caustic
of an arbitrary cylindrical reflector. The field expression so obtained, is used to study
the field distribution around the caustic region of various shapes of single reflector
focusing system i.e., parabolic, circular and elliptical cylinder etc. But here only
parabolic cylinder is considered for the study of field pattern around caustic region.
Results obtained for parabolic reflector using Maslov's method are compared with
the results obtained by applying Huygens-Kirchhoff’s principle. It is assumed that
cylindrical reflector is of PEC and source of excitation is a uniform electromagnetic
plane wave. Medium surrounding the reflector is homogeneous, isotropic, lossless,

linear, and non-dispersive.
2.1. Formulation of Geometrical Optics Field

Consider an arbitrarily shaped cylindrical reflector as shown in Fig. 2.1. whose
contour is described by

C=f&) (2.1.1)

where (&, () are the Cartesian coordinates of a point on the reflector. The surface of
arbitrary cylinder is excited by a linearly polarized plane wave with time dependency

time harmonic exp(jwt). The field is obliquely incident and is given by
E' = exp(—jk.r)

where

k = kpix + ki, r = ziyx + zig,
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Therefore incident field may be written as
E' = exp|—j(ksz + k22)] (2.1.2)

where k; = ksindy, k. = kcos @y, and ¢q is the angle of incident with respect to
the z-axis. It may be noted that throughout the research work it is assumed that

k = ko = w./fioko.

X-axis

Al

Oblique Incident _

Plane wave
B-j k.r -

Caustic
points

Arbitrary Cylinderical
Reflector

=1
Fig. 2.1. An arbitrary cylindrical (PEC) reflector being excited by oblique incident
plane electromagnetic wave .
The wave vector of the incident field is given by
p' = sin ¢oix + €Os oy (2.1.3)

The wave vector of the reflected field may be obtained from the formula based on

Snell’s law as

p =p' —2(p' n)n (2.1.4)

where n is unit normal at incident point (£, ) on the surface (2.1.1) and is defined by

,—-n
o
—
on
—

n = sin fiy + cos i,



where
e ') . cosfl = —_____.] ;
VI+[f (P VI+[(6P

where f/(€) is the derivative of the function given by (2.1.1) with respect to £ Sub-

sinf) = tanf) = — f'(€) (2.1.6)
stituting (2.1.3) and (2.1.5) in (2.1.4) gives wave vector of the reflected field as

P = [sin ¢y — 2sind cos(l — q‘;n)} ix + {cos Go — 2cosfcos(f) — ¢p)|i,

= —sin(20 — ¢g)ix — cos(20 — ¢g)i, = pLix + plis (2.1.7)

The coordinates of a point on the reflected ray are given by the solution of Hamil-
ton’s equation [19]
z=E+p,T, 2= f)+pT (2.1.8)

The GO field associated with the reflected ray at the point (z,z) is given by [8]

E™(z,z) = A" (z,z) exp [—_-ij[;t:, z)] (2.1.9)
where amplitude A" (x, z) may be written as
1
. . D(r)] 2
A'(z,2) = A] e 2.1.10
(@)= 45(6) | 510 (2.1.10)
and the phase function is given by
S(x,z)=Esingg+ f(E)cosgg +T=Sg+ T (2.1.11)

Ap(€) is the field amplitude on the reflector at point (&, () and A"(x, z) is the field
amplitude at observation point away from the reflector. D(7) is the Jacobian of trans-
formation from the ray coordinates (£, 7) to cartesian coordinates (xz,z). Quantity
So = Esin g + f(€) cos ¢y is the initial value of the phase function at point (&, () and
7 represents the distance along the ray from a reference point (£,¢) on the reflector.

Substituting (2.1.10) and (2.1.11) in (2.1.9), gives

_ . [D(M)]7? .
B(@,2) = 43(6) | i) | exp [~ik(gsingu + F(©)cosen +7)]
1
_are |20 ]F " f
= AL (€) [D(UJ t.xp[ ‘;A.(s[, + T)] (2.1.12)
In the next section, Jacobian of transformation J(7) = ‘;ﬁ;: is determined to evaluate

the amplitude of the field reflected from the reflector.
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2.1.1. Determination of Amplitude

The amplitude of the field associated with the ray reflected from the reflector is

w(e.5) = 4506 | 30|

i) (2.1.13)

where the Jacobian may be determined as

D(r) = da,z) Or 0z C'_)E _ _3_! (2.1.14)

Differentiating (2.1.8) with respect to € and 7,using (2.1.7) and substituting in (2.1.14)

yields
. o G o0
D(1) = —cos(20 — ¢g) + f'(€) sin(20 — ¢g) + 2&
Referring to (2.1.6), gives tan@ = —f’(€) and so f”(£) = — sec? Qg—g and substituting
in above relation gives

- COS(G — (ﬁ{;)

. 2 oy 9 [
pz 2cos” 0" (&)T (2.1.15)

D(r) =
s0 that
D(0) = cos(f — ¢o)

cos
so that normalized Jacobian J(7) may be written as

D(r) 2 cos® 0

Jr)= D(0) L cos(0 — qbu)f”(&)rr e

The location of caustic is given by the point satisfying .J(7) = 0 so that

_ cos(f —gp)
7= T 9cos? 0f" (&) o]

Thus the coordinates of the caustic point (., z.) on the reflected ray are obtained by
substituting (2.1.17) in (2.1.8)
sin(260 — ¢g) cos(@ — ¢o)

2cos3 0 f"(€)

cos(26 — ¢g) cos(d — o)
2cos3 0 f"(€)

Te :€+

(2.1.18)

Ze = j(f} T
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GO expression for the field reflected from an arbitrary cylindrical reflector is

obtained by substituting (2.1.16) in (2.1.12)

J"(E)r|  exp[—jk(Sy + 7)] (2.1.19)

3=

2 cos® f)

T foif 2BBY
(5:2) 0(&) 1+ cos(f — o)

In above field expression, when 7 = 2{%%}—;;’%% the field E"(x,z) = E"(z¢, 2¢)
becomes infinite. This means that GO field expression (2.1.19) fails to predict the
field around caustic region of an arbitrary cylindrical reflector. The objective is to
derive field expression using Maslov’'s method that should yield the finite field value at

all points including the caustic region. This is accomplished using Maslov's method.
2.2. Determination of Field Around Caustic

In order to obtain uniform field distribution around caustic, Maslov's method
is used. According to Maslov’s method, the field expression valid around caustic of

arbitrary cylinder can be derived using the relation (1.2.12) as

o E g o]
B 2) = \/J;_ﬁ /_ Ao(€) [gg; 5’1]

X exp{—jif [Sn + T — z4(z, p% )P, + ;u’:':.’ } dp, (2.2.1)

where Sy = Esingg + f(€) cos g is the initial phase of the field on the reflector. In
above expression, z,(x, p.) means that the coordinate z; should be expressed in terms

of mixed coordinates (x,pl) using the solution of Hamilton’s equations. The same is

z—£

true for 7 and it is given by 7 = o
a

. Now proceeding to find the unknown variables

of phase and amplitude in (2.2.1) as below.

2.2.1. Evaluation of Phase Function

The phase function of the reflected field is given by

S(p) = So+ 7 — zs(z, pL)p} + plz
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Using solution of Hamilton’s equations (2.1.8), the phase function may be written as

T — e — DS
RGN - f@n e (22)

€T

S(p.) = Esindg + [(£) cos go +

= Esingg + f(€) cos ¢g +
Using (2.1.7) and (2.1.8), it gives
Sl = éj[sin ¢o + sin(20 — éo)] FI1e) {cos oo + cos(20 — r,bo)] +pla +plz

= 2Esinf cos(l — ¢p) + 2f(€) cosO cos(6 — og) + pha + plz

In the above equation, introducing polar coordinates
T = psin o, z = pcoso (2.2.3)
It yields,

5(8) = 2[{;" sinf + f(€)cos 9} cos(0 — ¢g) — pcos(20 — ¢ — ¢g) (2.2.4)

2.2.2, Evaluation of Amplitude Function

The amplitude function means integrand of (2.2.1)

D(r) dp] _ ap;]
{D({]) 62] = [J(T)-a?} (2.2.5)

First of all, it is required to determine %—p; from (2.1.7) and (2.1.8), variable z can be
written as

z= f(&) + cot(20 — ¢p)(x — &) (2.2.6)

Differentiation of (2.2.6) w.r.t. 0 yields

dz 3_{-_ 20z-8 on 0
a0 / (6)(%' sin?(26 — o) e QU)(')O

2t
sin(20 — ¢p)
cos(f —¢g) 1 0¢ [1 2cosf 00

= — [tanf) + cot (20 — c:'ou}] % +

(2.2.7)

sin(20 — ¢p) cos 0 00 cos(0 — ¢g) BET



Making use of (2.1.7), gives
a0

As tan@ = — f'(&) therefore g-g = —cos? 0f"(€) hence using (2.2.7) and (2.2.8), gives

= 25in(20 — ¢y) (2.2.8)

dz 0z 00
apt %8;3;‘

B 1 0z

~ 2sin(20 — ¢p) a0

- cos( — ¢p) 0€ 21" (€) cos® #

N _251112(26‘ — ¢p) cos 0 o0 [ " cos(6 — og) T]
Opy _ 2sin®(20 — g) cos® 0" (€) [1 21" (€) cos® (JT} !
0z cos(@ — oq) cos(0 — aq)

(2.2.9)

Using (2.1.16) and (2.2.9), yields

op’. 21" (€) cos® @ 2 cos® Osin*(20 — ¢q) | 2/"(€)cos?o 1
J(r) == |1+ = f - ———
() 0z : cos(0 — o) " cos(f — o) Fe cos(@ — o) %
2 cos® 0sin(20 — ¢y) ., _
== 22
cosl0 — do) f(&) (Appendix A) (2.2.10)

Also (2.2.8) yields
dp’ = 2sin(20 — ¢y)do (2.2.11)

Now substituting (2.2.4), (2.2.10) and (2.2.11) in (2.2.1), gives

e x| T e cos(f — @)
E'(z,2) = -\/;BXIJ (—J H) -/—8,’2 Ap(€) [W]

X exp {—_'}'Qk [E sinfl + f(€)cos {J} cos(f — G’l]}}

X exp {j!ﬁ:p cos(20 — ¢ — (f')n)] do (2.2.12)

=

where © is the aperture angle subtended at the caustic such that ©® = 20 at the edge
of the reflector. It may be noted that integration variable has been changed from p?
to 0. Field expression (2.2.12) yields finite field at all points including caustic region

of arbitrary cylinder.



2.3. Validity of Maslov’s Method

It is interesting to establish the validity of the held expression (2.2.12) based on
Maslov’s method that produces finite field value in the neighborhood of caustic region.
In order to achieve this, consider a region far away from caustic and evaluate the
field by obtaining approximate solution of (2.2.12) through the use of stationary phase
method of integration [6]. The results obtained from this approximate solution must
agree with those obtained from GO field expression derived in (2.1.19). This serves as
an important check on the validity of the field expression (2.2.12) based on Meslov’s
method. In order to solve the integral of (2.2.12) by using stationary phase method of

integration, the stationary point is determined from the phase function
S(0) = 2[{ sinf + f(&)cosO| cos(l — og) — pcos(20 — & — o) (2.3.1)
Differentiating (2.3.1) w.r.t. €, gives
5'(0) = 2[{ cos(20 — ¢g) — [(&)sin(20 — @) | + 2psin(20 — & — op) (2.3.2)

Stationary point is obtained by setting

which yields stationary point

The second derivative of the phase function at stationary point is

S"(8,) = —4 [Esin(?f? — dg) + f(€) cos(260 — C')u)]
, = ) d€
-i-Q[mH(Qﬂ — ¢y) — (&) sin(26 O“)}Eé tApcos(20 — o — o)
cos(f — oq) cos® ) -
o e g, | e
- [1 T s — do) !

o COs( ) — o)

- A f) « 0
2 o TE) J(7) (2.3.3)
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The phase function at stationary point is

S(0,) = 2[5 sinf + f(€) cos 0] cos( — o) — pcos(20 — ¢ — o)
= E[ﬁi]l(?ﬂ éu) + sin c}l,] 4 f{{)[(‘oﬁ(?n‘? _ o) + cosido
— axsin(26 — ¢g) — zcos(20 — oq)

=£ sin ¢ + j(E) cosgg + 7 (2.34)
Equation (2.2.12) may be written in the form of a standard integral as

: o [©/2
Bf{x,2) = \/gexp (_JZ) / F(0) exp [-jkS(6)] db (2.3.5)

—0/2

where

cos(f — (bn)] =7

F(0) = Ap(€) [W

Using stationary phase method of integration, asymptotic solution of (2.3.5) is

ey k LT ?.1 | . el |
(@, 2) =~ v/;nxp ( ;1}) [\,‘ %f (0s)exp|-jkS(0,)] T-W—a—ﬁ] ; k> 1

= AR(E)|J ()] 2 exp [—kS(8,)

= AE,(£)|J{7)|'£ exp |7k {Esin g + f(&) cosgp + T} (2.3.6)

The field expression (2.3.6) obtained as an approximate solution of (2.2.12), is the
same as GO field expression (2.1.19). Thus the field expression (2.2.12) reduces to GO
field expression (2.1.19) in a region far away from caustic. This confirms the validity

of the field expression (2.2.12) obtained using Maslov's method.
2.4. Special Case—Parabolic Cylindrical Reflector

The field expression (2.2.12) derived for an arbitrary cylindrical reflector is now
used to determine the field distribution around the focal region of a PEC parabolic

cylinder which is used as microwave receiving antenna.
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Fig. 2.2. PEC parabolic cylinder being excited by both normal and oblique incident

plane electromagnetic wave.

Consider a plane wave reflection from a two dimensional parabolic microwave
antenna with its focus at the origin of cartesian coordinates system. The surface

contour of parabolic reflector is defined as

T T _.
HEl =¢=1 ] (2.4.1)

where (€, ) are the cartesian coordinates of a point on the parabolic reflector. Suppose
that a uniform electromagnetic plane wave is obliquely incident from the left on concave

side of parabolic reflector as shown in Fig. 2.2, and is given by

Et =g Jkr (2.4.2)

Now the differentiation of (2.4.1) w.r.t. £ yields

E Ji 1
= —— 2.4.8
f'(€) = Taf 7€) o] (2.4.3)
As from (2.1.7), f/(€) = — tan @, the relation (2.4.3) and (2.4.1) respectively give

cos 20

(2.4.4
cos? [ )

E =2ftand, and { =
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Now substitute (2.4.3) and (2.4.4) in the field expression (2.2.12) and obtain

- kT . a1 [©/? cos(0 — ¢p) 2
_‘J; Tr,z)= —eX — 42k f — 4— o
E"(z,z) =/ = P\p[ J2kf J,lJ ./_9/2[ T }

cos(t — ¢p) — cosﬂ}

=
o0 do  (2.4.5)

exp [jkp cos(20 — do — ¢) — j2kf

where * = psing, z = pcos¢, and © = 26, is the angle subtended at focal point
by the aperture of parabolic reflector and is selected by © = 2Are I.ﬂu(j:),.-l. when
the observation point is considered far from caustic, it can be shown that (2.4.5)
will reduce to GO field expression (2.1.19) by applying stationary phase method of
integration. Using numerical computations, the field expression (2.4.5) gives feld
distribution around the caustic of a parabolic reflector for obliquely incident ¢y plane
wave. For normal incident plane wave ¢¢ = 0, the field expression (2.4.5) will become,

©/2

2k f T
E"(a Gx) i2kf — 3 / sec
——exp | — j2kf A e
exl)[;i\p(ub 20 — {,b)] o (2.4.6)

The field expression (2.4.6) completely agrees with that of Kay and Keller [13]. The
field distribution around the caustic region of parabolic reflector is studied for both
oblique incident field ¢y = —5° and normal incident field ¢g = 0 as shown in Fig. 2.3~

Fig. 2.5.
2.5. Comparison with the Huygens-Kirchhoff’s Principle

To testify the validity of the uniform field expression (2.4.5) based on Maslov’s
method, alternate field expression for a parabolic reflector is derived using Huygens-
Kirchhoff’s principle based on Green’s theorem as

o8, HS (kr)dl (2.5.1)

1
Bz z) =7 c on
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where 7 = [(z — €)2 + (2 — ¢)?]2 and Oc.;’i” can be calculated as

OE, f).b‘.yﬂ " oE,
on dxz " 0z
Jy = (2n x H'), = —j2wpcos(0 — ¢o) exp(—jknSp) (2.5.2)

n, = —jwp(n x H), = —jwpd,

where Sy = € sin ¢ + ( cos ¢g and C' is the contour of the reflector. Using the following

facts and the asymptotic expression for Hankel function

dl = /1 + [f'(§)]?

r) id
2 (2.5.3)

cost

2 [ 2 : , ,
h’lg“J(kr) o s exp[—,}k"r + j?l'/f‘!}] (2.5.4)

Finally the field expression which is valid around the caustic is

n o 2%k : T 8/2 cos(tl — o
B (w,2) = S\ - exp |2k 5] efﬁ
k2 [ cos(f — ¢g) — cos

10 (2.5.5
cos ] G {2e.5)

X exp [jfirp cos(20 — g — @) —

where © = 2arc tan(%) and O signifies the angle which is subtended at the focal point

by the aperture of parabolic eylinder. It may be noted that D is the height of the edge

S eos(0—ap)
cos @ 5

of parabolic reflector from horizontal axis. In the vicinity of caustic 7 =
The above field expression assumes the form which completely agrees with (2.4.5).
The results of field pattern obtained from field expression (2.5.5) based on Huygens-
Kirchhoff's principle are compared with those obtained from field expression (2.4.5)

based on Maslov's method for both normal and oblique incident electromagnetic plane

wave. The results show complete agreement around caustic region.
2.6. Results and Discussion

The field expression (2.2.12) for an arbitrary reflector has been established us-

ing Maslov’s method. When observation point is far away from caustic, it has been
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shown that (2.2.12) reduces to GO field expression (2.1.19) which is based on solutions
of Hamilton’s equations. As an application to radio engineering, the field expression
(2.2.12) for an arbitrary cylinder is applied to a parabolic cylinder which is of perfect
electric conductor. The two field expressions (2.4.5) and (2.5.5) based on Maslov's
method and Huygens-Kirchhoff’s principle respectively, are evaluated through numer-
ical computations to determine field distribution around the feed point of parabolic

cylinder.

Fig. 2.3. provides comparison of the two field patterns around feed point, obtained
using both (a) Maslov’s method (solid line) and (b) Kirchhoff’s approximation (dashed
line) respectively. The comparison results of field patterns are found in complete agree-
ment. The above analysis is carried out for a parabolic cylinder having dimensional
parameters of k& f = 50 and © = 3 . Fig. 2.4. provides the comparison of field patterns
around caustic region of parabolic cylinder under normal incident (¢ = 0) of plane
electromagnetic wave, using both (a) Maslov's method, and (b) Huygens-Kirchhoffs
principle. The results of field comparison are found in complete agreement. The above
field analysis is carried out for a parabolic cylinder having dimensional parameters of
the reflector as kf = 50 and © = Z. Fig. 2.5. provides the comparison of field dis-
tribution around caustic region of parabolic cylinder under oblique (¢ = 5Y) incident
of plane electromagnetic wave using the field expression based on both (a) Maslov’s
method, and (b) Huygens-Kirchhoff’s principle. The caustic region is located off-axis
of parabolic cylinder. The results of field comparison are found in complete agreement.
The above field analysis is carried out for a parabolic eylinder having dimensional pa-
rameters of the reflector as kf = 50 and © = §. The discussion is concluded with the

observation that the results obtained by comparison of field patterns are in complete

agreement, thereby establishing the validity of Maslov’s method.
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Fig. 2.3. Comparison of reflected field intensity around the caustic region of PEC
parabolic cylinder along z-axis for normal incident plane wave (o4 = 0) using Maslov's
method (solid line) with that using Kirchhofl’s approximation (dashed line). The

dimension of parabolic cylinder is © = % and kf = 50
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Fig. 2.4. Comparison of field intensity distribution around the caustic region of PEC
parabolic eylinder along r-axis for normal incident plane wave (o = 0) using Maslov’s
method (solid line) with that using Kirchhoff's approximation (dashed line). The di-

mension of parabolic cylinder is © = % and kf = 50.
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Fig. 2.5. Comparison of field intensity distribution around the caustic region of
PEC parabolic cylinder along x-axis for oblique incident plane wave (¢y = —5°) us-
ing Maslov’s method (solid line) with that using Kirchhoff’s approximation (dashed

line). The dimension of parabolic cylinder is © = % and k f = 50.
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Chapter 3

Two Dimensional PEC Dual Reflector Systems

In this Chapter, two dimensional dual reflector systems of perfect electric condue-
tor are considered for the study of field distribution around their caustic regions when
they are used as microwave receiving antennas, High frequency field expressions are
derived around feed point of two dimensional Cassegrain and Gregorian systems using
Maslov’s method. Field patterns around feed point of these systems are evaluated
using numerical computations. The results of each dual reflector system are compared
with the results of their equivalent parabola obtained using field expression based on

Huygens-Kirchhoff’s integral.

3.1. Cassegrain Dual Reflector System

A Cassegrain dual reflector system as shown in Fig. 3.1., consists of a main-
reflector which is a parabolic cylinder and a sub-reflector which is hyperbolic cylinder.
Both the cylindrical reflectors are assumed to be perfect electric conductor(PEC).
The focal points of the two reflectors overlap each other and the system is being
used as high frequency receiving antenna. Cassegrain dual reflector system can be
modelled as a single equivalent parabolic reflector as shown in Fig. 3.2. The equivalent
parabolic reflector has the same aperture as that of main-reflector of Cassegrain system,
D., = D, but its focal length is much longer than that of the main-reflector. The focal

length of equivalent parabola is determined using the following relation [Appendix D]

- cA-d "
fL= (c—a) f

where {‘—ﬂ; is called image field magnification. The increased focal length has various

advantages regarding its performance i.e., less cross polarization, improved aperture

efficiency etc.



3.1.1. Formulation of Geometrical Parameters

The configuration of the Cassegrain microwave antenna is shown in IMig. 3.1. The
main-reflector is a parabolic eylinder and the equation describing its surface contour

is given by
=E—l-,—,/'+r: (3.1.1)
4/

with

9 9 9
e® =a‘+ b°

where (&, () are the cartesian co-ordinates of a point on the main-reflector and [ is
its focal distance. The sub-reflector is an hyperbolic eylinder whose equation defining

the surface contour is given below

== 3.1.2
Parabolic cylinder (PEC) X-axis eijIncident Plane

/C.=f(§.) T e wave
e

> Hyperbolic cylinder
6 6) (PEC)

iGsLD

| | Incident Plane
el wave

A

Fig. 3.1. The schematic diagram showing a PEC Cassegrain dual reflector system

being excited by normal incident plane electromagnetic wave.
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The equation takes the form

fed =il [1 ; i—} (3.13)
with
? =a? +b? (3.1.4)

where (&2, (2) are cartesian co-ordinates of a point on the surface of hyperbolic cylin-
drical reflector. Further ¢+ a and ¢ — a are the distances from the feed points /5 and
Iy respectively to the sub-reflector as shown in the Fig. 3.1. Also D and d are the half

apertures of the main reflector and sub reflector respectively.

TMaiu-rcﬂecmr X-axis oJkz Tncident Plane  Equivalent Parabola
| | wave

Fig. 3.2. Parameters in cylindrical dual reflector Cassegrain systenmn.
A 5 ;

The parameters shown in Fig. 3.2. are defined as

T=/(z — &)+ (2 — (2)2 (3.1.5)
1=V (& —&)2+ (G2 — ()2 (3.1.6)
Ry =\/& + (¢2 +c¢)? (3.1.7)

Ry = /€ + (G2 —¢)? (3.1.8)

where 7 is distance along the ray between two points located on the two reflectors,

T is a parameter along the ray reflected by sub-reflector, B} and Rs are the distances
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from the hyperbolic surface to the focal points F5 and I} respectively. let ny and
ny be unit normals at reflection point (£,¢;) and (&2, () on the main-reflector and

sub-reflector respectively and are defined by

n; = —sinal, + cos ai. (3.1.9a)
n; = —sin i, + cosyi, (3.1.9b)
where
Sill(.’t=—-——~—-f—,1)—, cosa«:——————}-—— (3.1.10)
siny = — J'(&) cosy = N - (3.1.11)

VIH[[(EP o 1+ [f"(&)?

where a and ¢ are the angles which the unit normals n; and ns make with the z-
2
axis respectively. Referring to (3.1.1), we have (&) = (G = % ~ [+ ¢ which on

differentiating gives

RS

therefore

; —&i 2 :

sina = ————, cosQ = ————— (3.1.12)

VE H4S? VE +4f?
Similarly differentiating (3.1.2) yields f'(&) = %i & and substituting in (3.1.11) will
produce (Appendix E)
b
siny) = ac2 cosp = G2 (3.1.13)

b\;‘ R-le' a1y Rqﬂg

For formulation of other parameters of Cassegrain system [Appendix D].

3.1.2. Derivation of GO Field

Consider a linearly polarized electromagnetic plane wave which is normally in-
cident on the aperture of an axially symmetric parabolic reflector of the Cassegrain

system as shown in Fig. (3.1). Let the field be given by

E' = uy exp(jkz) (3.1.14)



38
As receiving characteristics of the system are considered, so a field expression is derived
to determine field distribution around caustic point I of the system. The wave vector
associated with the normal incident field is given by p' = —i,, as angle of incident is
¢p = m. The wave vector of the field reflected from parabolic reflector is obtained by

substituting p' and n in (2.1.4)
pP; = — sin 2ai, + cos 2ai, (3.1.15)

This will become incident wave vector p} for sub-reflector so that wave vector of the

field reflected from the hyperbolic cylinder is
p5 = —sin(2a — 29)i, — cos(2a — 2¢)i, (3.1.16)
which explicitly gives
Py = —sin(2a — 29¢), p., = —cos(2a — 2¢) (3.1.17)

The space coordinates (z, z) of a point on the ray reflected from hyperbolic cylinder

may be obtained using (3.1.17) and the solutions of Hamilton’s equations

T =& + PpoT

z2=C0+ploT (3.1.18)

The cartesian coordinates of the ray reflected from hyperbolic reflector in terms of

coordinates &, (; of parabolic reflector are given by

T =& + PhoT =& + P T1 + PioT

2=0C+pl,T=C( +pim1+0l, (3.1.19)

In the above equations (p;,,p%, ) and (p,,.ps,) are the rectangular components of

p; and pj respectively. Considering the field after reflection from sub-reflector. the
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expression for GO field of Cassegrain dual reflector microwave antenna may be given

using (1.2.26)

E"(z,2) = Eg(€2, G| % expl—ik{So(r) + 71 + 7] S
T8 iy = SRR
So(&1) = -G =2/ 1 + cos 2a ‘

where Sp(&;) is the initial phase of the field incident on the parabolic main reflector, 7
as given by (3.1.6) is the phase function of the field associated with the ray propagating
between the parabolic and hyperbolic reflector, 7 as given by (3.1.5), is the phase
function variation of the field along the ray between the sub-reflector and feed point

of the Cassegrain system and E{(&2,(z) is the initial amplitude of the field reflected

from hyperbolic reflector.

3.1.3. Evaluation of Jacobian of the Field

The Jacobian of the field reflected from the parabolic cylinder is obtained by using

(2.1.16) as

. D) - 2c08°0
PN =D0) = cos@—an)! O
Substituting ¢g = m, f"(£) = glj., f# = —a in the above relation yields
D, (7 cos? a : .
Jp(7) = D? EO; == 7 (3.1.21)
P

Now consider the field after reflection from the hyperbolic eylinder, the Jacobian of
transformation from ray co-ordinates (£;,7) to cartesian co-ordinates (x,y) is given

by | Appendix B

o s O€2 | Opaz 96 4 Opsa
pry =282 _ @ +3ET T
(&1, 7) Pu2 Hez
_gole—v)  cos2a—1v)0L; (3.1.22)

)3 cosr  0&
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where relation being used is g—g‘: = g%%% = tan wg—%. And
&  cosip ] Go —Greos®al cos?  Rpcos®a
06 cos(2a — 1) f cos2a|  cos(2a — ) F
Furthermore,
oy 1 o ap N 0o cos? 1 a' 1 0&
= = 005", — = — — =008 Y——m
06 2f ' 0§ 0 9& b? (3 0&
Therefore
cos? a 2co82 Y at
D(r) = 1 — =R — R: 3.1.23
(7) f { [ cos(2a — ) b2¢3 2} ! ‘J} ( )
As
cos(2a — ) = £ Efg Cos i + % sin
1 b( ¢ 2) b
= —————(clh —a°) = —=
RovRiRza® > VR Ra
Also
B 2(‘.083 ‘l,() (14 Ry —1 — 2abRs &R-z\! Rle —1_ % _ &
cos(2a — 1) B3¢§ (RiRa)? b(cGz — a?) Ry~ R
So that
cos? o T
D(r) = — R |1 — — 3.1.24
(1) ] 2 { R ] ( )

Therefore the normalized Jacobian of the field reflected from hyperbolic reflector of

Cassegrain system becomes

J(7) = =1—-— 3.1.25
()= 5y = l-g (3.1.25)
Substituting (3.1.25) in (3.1.20) will produce the GO field expression for Cassegrain
system 1
37
E" = E5(62,(2) {1 - Ri] exp[—jk(So " T)} (3.1.26)
1
with
B = =5 €Oos 20y _—
0 M T Y Y cos2a

It is readily seen that the value of the field given by GO field expression becomes
infinite at feed point Fo when 7 = Ry so that J(7) = 0 as expected. Thus in order
to overcome the problem of singularity at caustic, Maslov’s method is used to derive
field expression that remains valid in the neighborhood of caustic and gives finite field

value.
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3.2. Derivation of Field near Caustic

The refined field expression may be derived using the field expression (1.2.16)

based on Maslov’s method and is given by

H D(t :
:i;} / (I(E G2) [E) :}

P exp{——_}k [.5'(] + 7+ 71 — 2(2ps)Paz + })322] } dp.o (3:2.1)

In order to solve above integral, it is required to determine amplitude and phase of

the field in the caustic region.

(i) Evaluation of Field Amplitude

The integrand of (3.2.1) gives the amplitude of the reflected field as

. . (1) Op%s
E"(x,2) = B}, ¢ :
(‘Iv ) O(€2$C2) [D(O) ()—«
 By(es,o) [m 22] (32.2)
0 (&2, G2 92 2.2
L
The value of [J(T)%’—f—} " has been evaluated below, for detailed work [Appendix C|.
As,
m Pz2 %
z=(p+ *;—(;z'- £2) = (o + cot(2a — 2¢)(x — &)
Pa2
Pz, = —cos(2a — 2y)
so that
0z 1 61 9 Ia—1) cos(2a —v) 06
D€y sin(2a — 21h) O ¥ 0&, cosyy  0&
6}'32:2 . 8(“ - 1’))
= 250200 —21)) ————=
96 (C‘r — 1)

= 2sin(2a — 29 )(3'& J¢
2 1
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Ipz2 _ 0& Op.2 06 O(a —v) %3
ZPa2 - 32022 _ 9sin(20 — 29) ot 20V in(20 — Ip) =2
% D 0 sin(2a )052 d&l sin(2a — 21/ )051
a—1) cos(2a — 1)) 0& ! o
X ]:27 8&1 CUS'{;‘} 861 (t;-?-t})
D(7) Opa 5 N — 1) B cos(2a — 1) % cos % Op.o
D) 9z T 0&, cost)  9& | |cos(2a — ) 0| 0=
Finally it gives
D(T) ()?Jag N sin® (2q — 21)) (3.2.4)
D(0) oz R,
N I 4
[ ¥ )——} ~ sin(2a — 20) 2.9
Substituting (3.2.5) in (3.2.2) yields
: : R
E"(z,z) = Ej(&2,C2) il (3.2.6)

sin(2a — 21))
which is field amplitude between sub-reflector and the feed point Iy of Cassegrain

microwave antenna.
(ii) Evaluation of Phase Function

The phase function of the field in Caustic region is contained in (3.2.1) and is
given by

T

S=80+mn+7—2(x,p)Pt, "p‘

S = SU T T Sr?..r.'.‘ (327)

where Sy and 7 have been defined in equations (3.1.20) and (3.1.6) respectively. The
extra phase term S.. is given by
Sazt =122 02 0%, +20%,
=7 — [Cg . pzzfr]p:_z + zp},
= (1 - [pL, )7

= [p%, ]2""‘“ (2 — ¢2)ps,

+ (2 — G2)pL,

= P, (2 — &2) + P2, (2 — C2) (3.2.8)
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Now expressing cartesian coordinates @ and z in terms of polar coordinates to obtain
the field near caustic, x = psin¢g and 2z = pcos¢ . Now substituting these values

and (3.1.17) in (3.2.8) gives

Sext = —pcos(2a — 2 — @) + [sin(2a — 29))&s + cos(2a — 24) (o (3.2.9)
where
b? sin
§2 = ———
\/ a?cos? v + b2 sin® ¥
a? cos

Co =
2 ' T
Va2 cos? ¥ + b2 sin® 1)

p=Va?+ 22

Also from (3.1.17)
dp’, = sin(2a — 2¢)d(2a)

Thus substituting (3.2.5) (3.2.7),(3.2.9) and the value of dpZ, in (3.2.1) produces

k Ay —Ay
RN )y
.}27]— ./l.l —A-z

In the above field expression , Ry, Sy, 71, and S.;; have been expressed in terms of

/Ry exp [ujk(Su + 71+ Sem)]d(%e) (3.2.10)

a. Further in (3.2.10), A; and As are the subtention angles equal to ¢, and ¢, at the
edges of the parabolic and hyperbolic cylinders respectively as shown in IMig. 3.2, [t
may be noted here that limits of the integrals in equation (3.2.10) are selected using

the following relations [Appendix D]
D
Ay = ¢, = 2arctan (‘-)-]>

D
Ao = ¢, = 2arctan -
o (w)

where D and d are the heights of the edge of the parabolic and hyperbolic cylinders

respectively from horizontal axis.



3.2.1. Results and Discussion

The field expression (3.2.10) obtained using Masloy's method is valid around caus-
tic region. So that it could be used to determine field patterns around feed point of
Cassegrain dual reflector system. Mathematica software has been used to find the
solutions of (3.2.10) by performing numerical computations. The solutions obtained
thereby are plotted along a-axis and z-axis to give pictorial view of field distribution
around caustic region. The field patterns around the caustic region of Cassegrain
dual reflector system and its equivalent parabolic cylinder are obtained using Maslov’s
method (solid line) and Huygens-Kirchhoff's integral (dashed line) respectively. The
field patterns are determined for three set of parameters of Cassegrain system in order

to study the field behavior around caustic region.

Fig. 3.3. provides comparison of two field patterns both along (a) r-axis and
(b) z-axis around the focal region of Cassegrain system (solid line) and its equivalent
parabola (dotted line). The comparison results of field patterns are found in close
agreement. It is observed that the field spread region around the feed point is “small”
as compared to other two cases. The above analysis is carried out for Cassegrain
dual reflector system having dimensional parameters as kf = 55, ka = 6.2, kb = 6.8,

kd =6, kD = 90 and kf. = 282.2

In Fig. 3.4., the results of Cassegrain dual reflector system obtained by Maslov’s
method (solid line), along (a) x-axis and (b) z-axis, are compared with the results
of its equivalent parabola (dotted line) obtained using Huygens-Kirchhofl’s integral
respectively. The agreement of comparison results is fairly good. It is observed that
the field spread region around the feed point is “medium” as compared to other two
cases. The above analysis is carried out for Cassegrain dual reflector system having
dimensional parameters as kf = 65, ka = 6.2, kb = 6.8, kd = 6, kD = 70 and

kfe =333.5



Fig. 3.5. again provides comparison of two field patterns both along (a) z-axis and
(b) z-axis around the focal region of Cassegrain system (solid line) and its equivalent
parabola (dotted line). The comparison results of field patterns are found in close
agreement. It is observed that the field spread region around the feed point is “large”
as compared to other two cases. The above analysis is carried out for Cassegrain dual
reflector system having dimensional parameters as kf = 100, ka = 18.7, kb = 15,

kd =12, kD = 125 and kf. = 809

IMig. 3.3-3.5 show comparison of field plots around caustic region of Cassegrain sys-
tem and its equivalent parabola, the field is obtained using both Maslov’s method and
Huygens-Kirchhoff’s integral respectively. The slight difference in field space regions
by two methods appears due to consideration of equivalent parabola of Cassegrain

system.
The field behavior in terms of field space variation around the feed point is studied.
Fig. 3.6 contains the three field plots designated as image field-1, image field-2 and
image field-3 and they correspond respectively to the following three set of parameters
of Cassegrain system,
(i) kf =55, ka=6.2, kb=16.8, kd =6, kD =90 and kf. = 282.2,
(1) kf =68, ka=106.2, kb= 6.8, kd =6, kD= 70 and kf. = 333.5,

(iii) kf = 100, ka = 18.7, kb = 15, kd = 12, kD = 125 and kf. = 809.

The variation of field spread region around feed point against the change in parameters
of Cassegrain system, is observed. The knowledge of the size of field region around
the feed point is useful in selecting the physical size of transmitter or receiver for

electromagnetic waves.
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Fig. 3.3. Comparison of field intensity distribution around the caustic region of PEC

Casssegrain dual reflector system along (a) r-axis and along (b) z-axis for normal

incident plane wave using Maslov’s method with that of syatem equivalent parabola

using induced current method with kf = 55, ka = 6.2, kb = 6.8, kd = 6, kD = 90.

and kf, = 282.2
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Fig. 3.4. Comparison of field intensity distribution around the caustic region of PEC
Casssegrain dual reflector system along (a) r-axis and along (b) z-axis for normal
incident plane wave using Maslov’s method with that of system equivalent parabola
using induced current method with kf = 65, ka = 6.2, kb = 6.8, kd = 6, kD = 70.

and kf. = 333.5
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Casssegrain dual reflector system along (a) x-axis and along (b) z-axis for normal
incident plane wave using Maslov's method with that of syatem equivalent parabola
using induced current method with kf = 100, ka = 18.7, kb = 15, kd = 12, kD = 125.
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Fig. 3.6. Comparison of image field spread region around caustic of Cassegrain dual

reflector system by considering three different set of parameters of focussing system.
3.3. Gregorian Dual Reflector System

The configuration of Gregorian dual reflector system is shown in Fig. 3.7. It
consists of two cylindrical reflectors, a parabolic main-reflector and another elliptical
sub-reflector both are considered to be perfect electric conductor. The focal point
F5 of the sub-reflector coincides with the focal point of parabolic reflector.The field
investigation of the dual reflector antenna is carried out from the receiving point of
view. The derivation of high frequency field expression for Gregorian system is based

on Maslov's method.

Gregorian dual reflector antenna can be replaced with a single equivalent parabolic
reflector as shown in Fig. 3.8. The equivalent parabolic reflector has the same aperture
as that of main-reflector of Gregorian system D., = D, but its focal length is much
longer than that of the main-reflector. The focal length of equivalent parabola is

determined using the following relation |[Appendix D]

foe = (( - u.)
c—a
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Here (¢ + a)/(e — a) is called image field magnification. The increased focal length has
various advantages in terms of its performance i.c., less cross polarization. improved
aperture efficiency ete.
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Fig. 3.7. A schematic diagram showing PEC cylindrical dual reflector Gregorian sys-

tem being excited by a normal incident plane wave field .

3.3.1. GO Field Expression

The equation describing the surface contour of main-reflector is given by (3.1.1)

and for elliptical sub-reflector may be given as

il

f(&2) =G = a[j—g - 1} (3.3.1)
¢? =gq? — b? (3.3.2)

where (&;.(y) are the cartesian coordinates of a point on the surface of sub-reflector.

In Fig. 3.7., f is the focal distance of the main-reflector, D and d are the half apertures
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of the main and sub-reflector respectively. Let ny and ny be the unit normals at points
(&1,¢1) and (&2, (o) on the surface of main-reflector and sub-reflector respectively. The
unit vector n; is completely defined by (3.1.9) and (3.1.12), whereas ny may be given

by | Appendix E |

Ny = — Sin i, + cos wi. (3.3.3)
where
1 a 1 b
siny = ————=—&o, cost) = ————C 3.34
VIt Ry b& ; VIt R G—CZ ( :

and R, and Ry are defined by (3.1.7) and (3.1.8) respectively.
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Fig. 3.8. Parameters in PEC dual reflector Gregorian systemn.

Suppose the main-reflector is excited by a linearly polarized plane wave which is
defined by equation (3.1.14) and corresponding wave vector is given by (2.1.3) with
¢g = m. The wave vector of the field reflected by main-reflector is given by equation

(3.1.16) and that reflected by the sub-reflector may be given by
p5 = —sin(2a — 2¢)i,; — cos(2a — 2¢)i, (3:3.5)

with the condition ¢ > a. It may be noted that the condition ¥» > a comes from the

physical picture of the system for which the above relation has been established. The
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Jacobian associated with the wave reflected by parabolic cylindrical reflector is given
in (3.1.21). Now considering the field after reflection from sub-reflector, GO field of

the Gregorian system may be given using (1.1.24) as

. . D(r)] 2 |
E"(z,z) = E§(€2,(2) [%} {-:xl)[—jk(b'o +71+7) (3.3.6)

The phase function Sy . 7 and 7 are given by (3.1.20).(3.1.6)and (3.1.5) respectively.
The Jacobian of transformation from the ray co-ordinates (£,.7) to the space co-

ordinates (x,z) of the field is given

_D(r) 1 19,
Y7 =D©) = DOy o 7)
o 2 Jop U 2 Op.
= L 821 + -;%TT % T —("{-ET
D(0) Da2 P22

. A 28(& — -i,f.!)T B cos(2a — ) @

— D(0) 0&, cos 0&,
T

=1—-— 3.3.7
= (3.3.7)

Around caustic region 7 = Ry and hence J(7) = 0, GO field expression (3.3.6), gives
infinite field. Therefore the G.O field expression fails to quantify the field around caus-
tic region. In order to determine finite field value £ (x, z) at caustic, field expression

based on Maslov’s method is derived.

3.3.2. Field Determination Around Caustics

According to the Maslov's method, the field expression which is valid around

caustic may be derived using (1.2.12) as

[ fr) Ip.1-%
(2,2) j2?‘l’/ O Bz}

('xp —ik [-59 + 71+ 7 — 2(T, P2y )Pz, + P2y ]} dp. (3.3.8)

where Sy, 71 and 7 have been defined in equation (3.1.20), (3.1.6),(3.1.5) respectively.

i
The amplitude term [% %;—‘} * in field expression (3.3.8) has been evaluated in



[Appendix C] as
VR,

D(t)Op,1—%
[ ) Op ] R e (3.3.9)
D(0) 9z sin(2¢ — 2a)
The phase function is given by
S =80+ 1 + 17— 2(,p2)Pz, + 5,2
=80 + 71 + Sex (3.3.10)

where S and 7, are determined from equations (3.1.20) and (3.1.6) respectively.
The extra term of the phase function is given by
Sex = T — 2(2, 0, )DL, + P52
=7 — (C2 + P, T)P;, + P2p?
— 1 e 2 T - 7
=7(1 -pz, )+ (2 — )L,

= P, (@ — &) + 1L, (2 — () (3.3.11)

On substituting = = psin¢ and z = pcos¢, using (3.3.5) and p, = —cos(2y — 2a) in

the above extra phase relation, one obtains
Sex = —pcos(2Y — 2a+ @) + £25in(2¢ — 2a) — (2 cos(2¢ — 2a)  (3.3.12)

where

2
cos= i 5 acosy =
=byf/l - —————, g e L e o 52
& \/ cos? (v — 2w) & cos(v — 2a)’ p=y

Substituting (3.3.9), (3.3.10) and dp. = sin(2¢> — 2a)d(2a) in (3.3.8) yields

. [k [ [ . )
Er(z,2) = ﬁ[/,x +/_A1 ]mexp[—Jk(Sg+T1-I-;Se;;;](ﬁ(Q{r} (3.3.13)

where Ry, Sy, 71 and S., in above equation have been expressed in terms of a. More-
over Ay and A, are the subtention angles equal to ¢, and ¢, at the edges of the

parabolic and elliptical cylinders respectively as shown in Fig. 3.8. It may be noted
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here that limits of the integrals in equation (3.3.13) are selected using the following

D
Ay =¢, = 2arctan [ —
1= wretan (2} )

D
A. —_ 1.:2{—_.' L‘ e
2 = wetan (21 )

e

relations [Appendix D]

where D and d are the heights of the edge of the parabolic and elliptical cylinders

respectively from the horizontal axis.

3.4. Results and Discussion

The field patterns around the caustic of dual reflector Gregorian system are ob-
tained by solving (3.3.13) through numerical computations. Note that the focal region
is located between the two cylindrical reflectors, that is point /) as shown in IFig. 3.7.
The field patterns are determined for three set of parameters of Gregorian system in
order to study the field behavior around caustic region. The location of the caustic
may be observed and verified easily. The results of field distribution around caustic of
Gregorian dual reflector system obtained using Maslov's method are compared with
the results of its equivalent parabola obtained using Huygens-Kirchhoff’s principle.
Ilig. 3.9. contains comparison plots of field distribution around the caustic region
of a Gregorian system (solid line) and an equivalent parabolic reflector (dotted line)
both along x-axis and z-axis. The comparison results are found in close agreement
thereby reaffirming the validity of Maslov’s method when it is applied to Gregorian
dual reflector system. It is also observed that the field spread region around the feed
point is “small” as compared to the other two cases considered for the study. The
above analysis is carried out for Gregorian dual reflector system having dimensional

parameters as kf = 05, ka = 14, kb =121, kd = 10, kD = 80 and kf. = 168.1

In Fig. 3.10., the results of Gregorian dual reflector system obtained by Maslov's

method (solid line), along (a) x-axis and (b) z-axis, are compared with the results of its
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(1)

equivalent parabola (dotted line) obtained using induced current method respectively.
The agreement of results of comparison is fairly good and it validates Maslov's method.
It is also observed that the field spread region around the feed point is “medium™ as
compared to other two cases. The above analysis is based on the parameters chosen
for Gregorian dual reflector system as kf = 62.5, ka = 10, kb = 8.7, kd = 8.2, kD = 70

and kf. = 191.5

Fig. 3.11. again provides comparison of two field patterns both along (a) a-
axis and (b) z-axis around the focal region of Gregorian system (solid line) and its
equivalent parabola (dotted line). The comparison results of field patterns are found
in close agreement, validating Maslov's method for Gregorian dual reflector system.
It is also observed that the field spread region around the feed point is “large” as
compared to other two cases. The above analysis is carried out by choosing parameters
of Gregorian dual reflector system as kf = 100, ka = 35, kb = 30, kd = 15, kD = 80

and £ f. = 3535

The field behavior in terms of spread of field region around the feed point against
change in system parameters is studied. Fig. 3.12. contains the four field plots desig-
nated as image field-1, image field-2, image field-3 and image field-4 and they corre-
spond respectively to the following set of parameters of Gregorian system

(i) kf =55, ka = 14, kb = 12.1, kd = 10, kD = 80 and kf. = 168.4,

(ii) kf =62.5, ka =10, kb = 8.7, kd = 8.2, kD = 70 and kf. = 191.5,

Il

(iii) kf = 100, ka = 35, kb = 30, kd = 15, kD = 80 and kf. = 3535,
(iv) kf = 100, ka = 15, kb = 30, kd = 40, kD = 150 and kf. = 353.5

The variation of field region around feed point in response to change in parameters of

Gregorian system, is observed so as to know the size of region occupied by the field.
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The knowledge of the size of field region around the feed point is useful to fix physical

size of transmitter or receiver for electromagnetic waves.
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Fig. 3.9. Comparison of field distribution around the caustic region of PEC Gregorian
dual reflector system using Maslov’s method along (a) r-axis and along (b) z-axis with
B

that of equivalent parabola using induced current method with parameters k[ = 5

ka =14, kb= 12, kd = 10, kD =80 and kf. = 168.4
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Fig. 3.10. Comparison of field distribution around the caustic region of PEC Grego-
rian dual reflector system using Maslov’s method along (a) x-axis and (b) z-axis for
normal incident plane wave, with that of equivalent parabola using induced current
method with parameters kf = 62.5, ka = 10, kb = 8.7, kd = 8.2, kD = 70 and

kf.=1915
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Chapter 4

The PEMC Dual Reflector Systems

The Chapter is divided into two parts. The first part deals with the study of field
pattern around focal region of PEMC Gregorian and Cassegrain microwave antennas,
while the second part is concerned with PEMC backed chiral nihility Gregorian and

Cassegrain systems.
4,1. Plane Wave Reflection from PEMC Plane Surface

Consider a linearly polarized plane wave obliquely incident on interface of PEMC

plane surface as shown in Fig. 4.1. Let the field of incident wave be given by

E; = Ejo exp|—jk(asin ¢y + z cos ®0)]

PEMC Plane Surface w

Incident Plane
wave e"J k-r VS

Co-field
component Reflected Plane
wave e Jk.r
Cr-field
component

Fig. 4.1. A plane wave obliquely incident upon the interface of PENMC plane surface,

creates both co and cr-filed components.
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The wave vector associated with incident field is
P, = sin @puy + cos gpu,

where ¢q is the oblique incident angle on PEMC plane surface. The reflected field
contains both electric and magnetic fields given by
E, = Ey, exp|—jk(z sin ¢, + z cos ¢,.)]

cos gguy X Big
Ul

H, exp|—jk(zsin ¢, + z cos ¢,.)]

where it is assumed that n =ng = ,/ %‘: On substituting E and H in vector boundary

condition [Appendix F|, yields
Mn(Eijo + Ero) = —(cos oguy, x Eijg — cos ppu, x Eg) (4.1.1)
Taking the dot product with dyadic I of both sides and rearranging the terms, gives
(cospoug x I — Mnl) - Epo = (cos gpouy x I + Mnyl) - Bio (1.1.2)

where dyadic [ is defined as

~i
l

Ux Uy + Uyl
Solving (4.1.2), gives

(M?1?% — cos? ¢o)Eio + 2Mn cos ¢o(u, x Eio)

1.1.3
cos? ¢g + M?n? ( )

which is the initial value of the field at the reflection point (€, () on the PEMC reflector.

The initial value of the field on PEMC plane reflector, may also be obtained as
Ej(€,¢) = R Eio (4.1.4)
The reflection dyadic R is defined by

R= Reol + Rerd (1.1.5)
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where I = ugux + uyuy and J = u, x [ where co means co-polarized and er means

cross-polarized components of the reflected field. Comparing (4.1.3) with (4.1.1) yields

N | 5 o L hw oz \
R=——3’ P Vi [(M?)? — cos® ¢o)] + 2M 1 cos dpJ | (4.1.6)
M?n? — cos? ¢ .
JRt:o —= _2?. 19 2 (117)
cos? ¢g + M=n?
2M71) cos
B, = 7 CO8 Po (4.1.8)

cos? ¢g + M?2n?

The rotation angle ¢, between co and cr-polarized field components caused as a result

of field reflection from PEMC interface, is obtained below

Ron 2Mn cos ¢g
tandy = v _ 1.1.9
an Reo  M?9? — cos? ¢g ( )

The rotation angle ¢, depends on the characteristics of both the surrounding medium

and PEMC interface.

4.2, PEMC Gregorian Dual Reflector Antenna

Gregorian dual reflector system shown in Fig. 4.2., consists of two reflectors. one
is PEMC parabolic main-reflector and another is PEC elliptical sub-reflector. The
equations describing the surface contour of both main-reflector and sub-reflector are
given by (3.1.1) and (3.3.1) respectively. The unit normals ny and ny on the surface
of main-reflector and sub-reflector and are given by (3.1.7) and (3.3.3) respectively.
Let the main-reflector of Gregorian dual reflector system be excited by a plane elec-

tromagnetic wave which is given by

E' = uy exp(jkz) (4.2.1)

The wave vector associated with incident field (1.2.1) is given by
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The wave vector of the field reflected by the PEMC main-reflector and that reflected
by PEC sub-reflector are given by (3.1.16) and (3.3.5) respectively. The geometrical
optics field expression for the Gregorian system consisting of PENC parabolic and
PEC elliptical cylinder may be obtained from (3.3.6) by including phase angle ¢ in
the phase term. The phase angle ¢ is the rotation angle caused due to reflection from

PEMC interface of main-reflector. The GO field expression becomes,

3 e ikz
&=1(@,) x ,af 2 Incident Field e]
T (E_H t] C[)

’|

A

5 Z-axis

[yl
W)
Parabolic cylinder
>
Elliptical|cylinder

(‘E\z’qz) L= f(a:)

-

Il

Reflector e PEC ke
Materials —=—= PEMC  Incident Field e

Fig. 4.2. A schematic diagram showing a PEMC Gregorian dual cylindrical reflector
system being excited by a plane electromagnetic wave, the reflected field contains both

co and cr-field components around Caustic region.

exp|—7k(So + 711 + 7) + ¢1] (4.2.2)

B (2, 2) = B (62, C2) [%] i

where phase function includes Sy, 7y and 7 given by (3.1.20), (3.1.6) and (3.1.5) respec-

tively. The Jacobian of transformation associated with the wave after reflection from
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sub-reflector is given by using the relation (3.3.7) so that equation (4.2.2) becomes

=1
. . T 17 ) .
E'(z,z) = Ey(&2,(2) [1 -- ﬁ} exp|—jk(So + 7 +7) + ¢ (4.2.3)
where
o s Ber
an @) = R

4.2.1. Determination of Surface Field

In field expression (4.2.3), Ef (€2, (o) is the amplitude of the field at the reflection
point (&2, () on the sub-reflector. For normal incident field, the incident angle becomes
¢y = m, further let a be the angle made with z-axis by unit normal on the main-reflector
as shown in Fig. 4.2. Now using the relations (4.1.3) and (4.1.6) through (4.1.9) one
can obtain E{(&1, (1), R and its co and cr-polarized reflection coefficients R, Rep and
rotation angle ¢, for PEMC main-reflector of Gregorian system as

B (M?n?* — cos® a)Ej, — 2Mn cos a(u, x Eip)

E‘.I" — 4..2.'{1
0(&1,G1) cos? ov ++ M?2n? ( )
B (M?1? — cos? o)l + 2M1) cos aJ
N cos? o — M2p?
= Reol + Rerd (4.2.5)
M2 — cos® a
Reo = cos2a + M 2n2
R — 2Mn cos v
T cos?a + M2y?
R, —2Mn cos
tan ¢ = — = e (4.2.6)

Reo  M292 — cos?a
where Ej(&;, (), is the surface field of main-reflector and the field after reflection is
fully intercepted by the sub-reflector. Therefore it is logical to assume that E¢ (&, G )=
0(€2,C2), the surface field of the sub-reflector. Substituting(4.2.1) and (4.2.4) in

(4.1.4), gives
Ej(62,C2) = Reouty — Repux (4.2.7)



65
where R, and R, are given by (4.2.5). On substituting (4.2.7) in (4.2.3), it is readily
seen that the amplitude of the field around caustic at 7 = Ry where J=0, becomes

infinite. In order to determine finite field value around the caustic, field expression

based on Maslov's method is derived in the next section.
4.2.2. Derivation of Caustic Field Expression

The field expression which should remain valid around the focal region of PEMC
Gregorian system, may be derived using Maslov's method. The field expression for

the system may be written using (3.3.8) as

k R s
Ef(z,z) = [ E;J(E'-%C?)[

— 00

D(r) apz} =z
D(0) 0z

X exXp [—jk(S(] +r+1 — 2T 02 )ng - zi')zrg) i d)l}d-pz;r (4.2.8)

1
The amplitude term DUr) 9p= | *ip (4.2.8) is evaluated in (Appendix C) and is given
Pl

D(0) 0=
by |
B = T\{QR_?‘% (1:2.9)
The phase function S(p.) is given by
S(p:) = So+ 71 + Sex + 1 (4.2.10)

where Sy, 71, and S,.,. are given by (3.1.20), (3.1.6) and (3.3.12) respectively and
phase angle ¢; by (1.2.6). Substituting (4.2.7), (1.2.9) and (4.2.10) into (4.2.8) and

converting dp, into a, gives

) k A2 — Al -
E' (.T, Z) = - / +/ (Rcuuy - Rm'u:r‘) \ h’l
J2m | Jan —A2

X CXI)[*—JA(SU + 7+ Sr:;i:) + 0 Id(gﬂ) (1211}

This gives field distribution around feed point Fy of PEMC Gregorian microwave
antenna. The field reflected from PEMC parabolic cylindrical reflector has both co-

polarized (R.,) and cr-polarized (R..) field components. When Mn — Zoo, (for
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PEC reflector) in the expression (4.2.11) containing both co and cr-polarized field
components, produces R.. = 0 and R., = —1, consequently ¢=0 so that (4.2.11)
becomes

E'(z;z) =

k - A2 — A1
e / +/ V/Ryexp|—jk(So + 1 + Sea)|d(20)  (4.2.12)
2 | Jaa —Ad

~

The field expression (4.2.12) is same as (3.3.13), the field expression of PEC Gregorian
microwave antenna. It may be noted that in all the field plots here in this discussion,
it is assumed that Mmn;, Mo, Mns, Mny, and Mns are used to represent different

values of M1
4.2.3. Results and Discussion

The field expression (4.2.11) based on Maslov’'s method remains valid at all points
and gives finite field around caustic region of PEMC Gregorian dual reflector system.
The solution of (4.2.11) is obtained through numerical integration. For all plots, the
focussing system having parameters kf = 62.5, ka = 10, kb = 8.7, kd = 8.2 and
kD = 70, is considered for the study of field behavior around caustic region. I'ig. 4.3.
and Fig. 4.4. contain the comparison plots along z-axis and z-axis of co-polarized
field distribution around feed point F} of microwave antenna for different values of
Mmnyg. Plot for M7 = 6000 is in good agreement with two dimensional PEC Gregorian
reflector antenna, that is, field pattern of (4.2.12) as shown in Fig. 4.11. Now Fig. 4.5.
and Fig. 4.6. contain the comparison of plots of cr-polarized field distribution around
caustic region for different values of M. For Mn = 6000 cr-field component vanishes.
Fig. 4.7. to Fig. 4.10. contain the comparison of plots of co-polarized and cr-polarized
field distribution around caustic region for some other values of M7. The location of
the caustic may be observed and verified easily. It is observed from comparison that
cr-polarized field intensity component decreases as M7 increases and it finally vanishes
as Mn approaches infinity, whereas co-polarized field intensity component increases as
M increases till it approaches the results of field pattern determined from (4.2.12)

for two dimensional PEC Gregorian dual reflector antenna.
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Field Intensity

x, Distance in wave lengths from the focus

Fig. 4.3. Comparison of co-polarized field intensity distribution pattern along r-axis
around the caustic region of PEMC Gregorian system for Mn; = 6000, My = 4.5,
Mny = 3.2, Myy = 2.2 and Mns = 0.5.
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Field Intensity

z, Distance in wave lengths from the focus

Fig. 4.4. Comparison of co-polarized field intensity distribution in the caustic region
along z-axis of PEMC Gregorian system with parameters Mn; = 6000 (zero field

intensity), Mny = 4.5, Mnz = 3.2, Mny = 2.2 and Mns = 0.5 .
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Fig. 4.5. Comparison of cr-polarized field intensity distribution pattern along x-axis
around the caustic region of PEMC Gregorian system for M, = 6000, M = 4.5,

Mng =32, Mny = 2.2 and Mns = 0.5 .
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Fig. 4.6. Comparison of cr-polarized field intensity distribution in the caustic region
along z-axis of PEMC Gregorian system having PEMC parameter values as M, =

6000 (zero field intensity), Mns = 4.5, Mny = 3.2, Mny = 2.2 and Mn; = 0.5 .
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Fig. 4.7. Comparison of co-polarized field intensity distribution along x-axis in the
caustic region of PEMC Gregorian system having PEMC parameter values as Mn; =

6000 (maximum field intensity), Mn, = 4.1, Mns = 2.5, Mny = 1.5 and Mn; = 1.1 .
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Fig. 4.8. Comparison of co-polarized field intensity distribution along z-axis in the
caustic region of PEMC Gregorian system having PEMC parameter values as My =

6000 (maximum field intensity), Mns = 4.1, Mny = 2.5, Mn, = 1.5 and Mn; = 1.1.
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Fig. 4.9. Comparison of cr-polarized field intensity distribution along r-axis in the
caustic region of a PEMC Gregorian system having PEMC parameter of M, = 6000

(zero field intensity), Mns = 4.1, Mny = 2.5, Mny = 1.5 and Mns = 1.1 .
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Fig. 4.10. Comparison of cr-polarized field intensity distribution along z-axis in the
caustic region of a PEMC Gregorian system having parameter values of M, = 6000

(zero field intensity), Mns = 4.1, My = 2.5, Mny = 1.5 and Mn; = 1.1 .
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Fig. 4.11. Comparison of field intensity distribution along x-axis around caustic re-

gion of PEC and PEMC Gregorian system with PEMC parameter Mn — 400

1.0+

Cr—field
T :

0.8 i
Co-field

e ]

0.6

e
Y
T

Field Intensity

60
x, Distance in wave lengths from the focus

Fig. 4.12. Comparison of co and cr-polarized field intensity distribution along x-axis

around caustic region of a PEMC Gregorian system with Mn = 2.
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4.3. PEMC Cassegrain Dual Reflector Antenna

Geometry of a two dimensional Cassegrain microwave antenna is as shown in
schematic diagram of Fig. 4.13. In present work, it is assumed that both the reflectors
are perfect electromagnetic conductor (PEMC). The equations describing the surfaces
of both main-reflector and sub-reflector are given by (3.1.1) and (3.1.2) respectively.
The surface of main-reflector is excited by the field of linearly polarized plane wave
propagating along z-axis, and is given by
: jkz
I &= (&) Incident Plane ¢

wave
X-axis ; | |
| — Hyperbolic cylinder
(PEMC) &,.=f (&,)

WE G
.
20 iﬁi

*—~—37-axis

Parabolic cylinder
(PEMC)

r

Incident Plane ejkz
wave

Fig. 4.13. PEMC Cassegrain dual cylindrical reflector system being excited by plane

electromagnetic wave, creates both co and cr-field components around feed point.
i _ : e AT
E' = uy exp(jkz) (4.3.1)

Field after reflection from the parabolic reflector hits the hyperbolic reflector and
therefore converges around feed point of the Cassegrain microwave antenna. The

objective is to determine the field expression which should remain valid around caustic
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region of the system. To achieve this, the discussion may be divided into two main

parts:

In the first part, GO field expression is determined, which of course contains
singularity at the feed point. Maslov’s method is used to derive a field expression
that should also be valid around focal region. The method transforms the expression
of GO field from spatial domain into spectral domain. To do this it requires to find
components of ray vector after reflection from both surfaces, we need expressions for
the unit normals on the surfaces of each reflector. Unit normals ny and ng of parabolic
reflector and hyperbolic reflector have been given by (3.1.9). GO field expression of
PEC Cassegrain dual reflector microwave antenna is given by (3.1.20), and on including
field rotation angle @» due to plane wave reflection from PEMC interface, in the phase

term, yields GO field expression for PEMC Cassegrain system.
E" = EyJ(7) 7 exp|—jk(So + 71 +T) + @2 (4.3.2)

where phase function includes Sy, 7 and 7 which are given by (3.1.20), (3.1.6) and
(3.1.5) respectively. The Jacobian of field reflected from sub-reflector of Cassegrain

system has been evaluated in (3.1.25) and is given by

_ D) . T -
=20 = 1 R, (4.3.3)

J(T)

4,3.1. Evaluation of Surface Field

Ej, is the amplitude of the field on the surface of PEMC hyperbolic cylinder and
may be evaluated by considering the field reflected from PEMC main-reflector Ef, as
incident field on sub-reflector. The field Ef; and reflection coefficients have already

been evaluated in (4.2.4) and (4.2.5) respectively and are given as

1

m[(ﬂ'ffnz —cos?a)E; — 2Mncosa(u, x Ey)|  (1.3.4)

ro_
10—
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5 1

Ry =—-— ——[(M?n* — cos® ) — 2Myncosad|R
cos® a + Min?
= Resl + Rerd (1.3.5)

M{n? — cos® a

Rh-U:"J_ 2.9
cos* a + Min
AR e

Ri. 17] COS ¢

"~ cos?a + M2

Ri.o and Ry, are co and cr reflection coeflicients of the main reflector. The wave
reflected by main-reflector acts as incident wave to sub-reflector. Therefore the field
reflected by sub-reflector is given below

) 1

207 cos?(2a + ) + MZn? .
— 2Man cos(2a + ) (u, x Eiy))

M2n? — cos?(2a + 1)) El,

]. Ly W v
= — M#n? — cos*(2a + 1)) (Ricotty — Ry
o T oy T M — cos?(20 £ 0)) (Ricoty ~ Raerty)
- 2Mancos(2a + Y1) (uy X (Ricoty — Ricerug))] (1.3.6)
Set
M3n? — cos?(2a + 1)
Ry =

cos?(2a + ) + M3n?
_ 2Myncos(2a + )
27 cos?(20 + 1) + M2n2

The relation (4.3.6) will become,

Egu = RQ] (Rlcouy - Rlc-ru:r) + R‘ZQ(UZ X (Rlcouy S le'um)l
== R2] Rlcouy == R‘ZI Rlcw'u:u = RE?(Rlcuu;n + Rl("f'uy)
= (R21er:u = 32231.:.--:-)11;; = (Rlelcr + R'_?‘ZRIL-{J)U:::

= Rocouy — Rogruy, (4.3.7)

where

Rieo = Rt Rico — Rz Riyer
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Roer = Ro1 Rier + RaaRico

Ry, and Ra., are co and cr reflection coefficients of PEMC Cassegrain microwave
antenna. The rotation angle ¢ produced between the field components after reflection
from PEMC interface is obtained as

‘R'.Zri‘

tan ¢y =
1?"Zr:n

On substituting (4.3.7) and (4.3.3) in GO field expression (4.3.2), It is readily seen
that the Geometrical optics field expression gives infinite field value around feed point
Iy of microwave antenna as is expected. The field expression valid around caustic
has been formulated by using Maslov’s method in (3.2.1) and may be used for PEMC

Cassegrain system by including rotation angle ¢ caused by PEMC interface as,

/ - 1) D(r) 9pa] T
J2ﬂ‘ Eao D([}) 0z

exp | k(S0 + 11 + Sewt) + 02])dp2s (4.3.8)

where integrand in square bracket of above equation has been given in (3.2.5). whereas
So, 71 and S, are obtained from (3.1.20), (3.1.6) and (3.1.9) respectively. The ro-
tation angle ¢, is obtained from tan ¢, = %—’—L On substituting these values, the

equation (4.3.8) may be written as

— Al
ET(.’IJ. z / / R;:uuy = R(:'f'u.'l-‘) V Ry
3217 —A2

exp[—jk (So+7m + SE;,;) + (ﬁ2|(1(2ﬂ) (4.3.9)

When M, = M, = +oo (PEC), R.. = 0, R., = —1, therefore (4.3.9) reduces to the

field expression of PEC Cassegrain system (3.2.10)

, Az A
E"(z,2) = \/{';; U +/ J R, (:x]')[—jk(b'u - 5‘,.,{.)](){(2(1) (4.3.10)
J&T Ay —Ag )
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4.3.2. Results and Discussion

Field patterns around the caustic of a two dimensional PEMC Cassegrain dual
reflector antenna are evaluated using field expression (4.3.9) by solving it through
numerical integration. The dual reflector locussing system, having parameters k[ =
60, ka = 6.2, kb = 6.8, kd = 6 and kD = 70, is chosen for the study of field behavior
around caustic region. Fig. 4.14.to Fig. 4.20., contain the plots of co-polarized and
cr-polarized field components around feed point both along z-axis and z-axis. For all
plots, we assume Mn = Myn = Msyn with quantities My and M, as the admittances
of parabolic and hyperbolic reflector respectively. Fig. 4.14.to Fig. 1.15., contain the
comparison plots of co-polarized component of field distribution for different values
of Mn along z-axis and z-axis respectively. Fig. 4.16. to Fig. 4.17., contain the
comparison of field plots for cr-polarized field distribution for different values of Mn

along z-axis and z-axis respectively.

Plot for Mn — 400 i.e., ( M7 = 6000) is in good agreement with the plot of field
distribution resulting from field expression (1.3.10) of two dimensional PIEC Cassegrain
dual reflector antenna and for M7n=0 it gives the results of PMC Cassegrain system
for co-polarized field components.On the other hand. for Mn=0 and Mn — +~, the
cr-polarized field components vanish. At AMn==1, it is observed .I"mm comparison
that cr-polarized component of field intensity assume maximum value whereas co-
polarized component of field intensity decreases to minimum value. It is observed
from comparison that cr-polarized field intensity decreases as M7 increases. Also with
the increase in admittance parameter, both main and side lobe start vanishing, whereas
co-polarized component of field intensity increases as M7 increases till it approaches

the results of two dimensional PEC Cassegrain antanna.

It may be noted that with the increase in admittance parameter, increases the

amplitude more of main lobe than the amplitude of the side lobes. There is a little
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change in amplitude of side lobes as compared to the main lobe. It may be noted
that change in the admittance parameter does not affect number of side lobes. A
comparison of field distribution of a PEMC Cassegrain dual reflector antenna having
admittance parameter Mn — +oc with the field pattern of a PEC Cassegrain dual

reflector system is as shown in Fig. 4.18.
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Fig. 4.14. Comparison of co-polarized field intensity distribution along x-axis in the
caustic region of a PEMC Cassegrain system having PEMC' parameter of M, = 6

(zero field intensity), Mny = 4.5, Mny = 3.5, Mn, = 2.85 and Mns = 6000.
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Fig. 4.15. Comparison of co-polarized field intensity distribution along z-axis in the
caustic region of a PEMC Cassegrain system having PEMC parameter of Mn; = 6,

My = 4.5, Mns = 3.5, Mny = 2.85 and Mns = 6000.
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Fig. 4.16. Comparison of cr-polarized field intensity distribution along r-axis in the
caustic region of a PENMC Cassegrain system having PIEMC parameter of M, = 6,

Mns = 4.5, Mn; = 3.5, Mn, = 2.85 and Mns; = 6000 .
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Fig. 4.17. Comparison of cr-polarized field intensity distribution along z-axis in the
caustic region of a PEMC Cassegrain system having PEMC parameter of My, = 6,

My = 4.5, Mns = 3.5, Mny = 2.85 and Mns = 6000 (zero field intensity)
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Fig. 4.18. Comparison of co and cr-polarized field intensity distribution along r-axis
in the caustic region of PEC and PEMC Cassegrain system with PEMC parameter

Mn — +oc.
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Fig. 4.19. Comparison of co and cr-polarized field intensity distribution along r-axis

in the caustic region of a PEMC Cassegrain system with Mn = 5.5.
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Fig. 4.20. Comparison of co and cr-polarized field intensity distribution along z-axis

in the caustic region of a PEMC Cassegrain system with Mn = 5.5.

4.4, PEMC Backed Chiral Nihility Dual Reflector Systems

In the present discussion, our interest is to study the field reflected around caustic
region of PEMC Cassegrain and Gregorian dual reflector systems in which parabolic
cylindrical reflector has been coated with chiral nihility material. Chiral nihility is
a special kind of chiral medium for which the constitutive parameters, at certain
frequency known as nihility frequency [49] become e=0, p=0. such that s # 0. where
# is the chirality of the medium. In the next section, expression for the field reflected

from interface of chiral nihility slab backed by PEMC material is derived.

4.4.1. Chiral Nihility Slab Backed by PEMC Boundary.

Consider a slab of chiral nihility metamaterial of infinite length and is backed by
perfect electromagnetic conductor. Front face of the chiral nihility slab is located at
z = d; while perfect electromagnetic conductor is located at z = do. where dy > d) as

shown in Fig. 4.22.



Fig. 4.22. A chiral nihility slab backed by PEMC medium. When the slab is excited

by a plane wave field, creates both co and cross-field components upon reflection.

A linearly polarized uniform plane wave, is obliquely incident on the chiral nihility slab
backed by PEMC. The electric and magnetic fields inside and outside the grounded

chiral nihility slab may be written in terms of unknown coefficients as [51, 53|
Eg = exp(jkyy) [x exp(jk.z) + A" Ny exp(—jk.z2)
+B™N, exp(—jkzz)] , z2<d (4.4.1)

E; = exp(jkyy) [EY M} exp(jky, 2) + FYM] exp(jky,2)

+E~Mp exp(—jki,z) + F~M[ exp(—jky,)], di<z<dy  (44.2)

= ol B . .

Ho = exp(jkyy) [E {y exp(jk.z) — zky exp(jk.2)}

_.f_} {A"Npexp(—jk.z) + B"Ng exp(—jk.2)}|, 2<d (4.4.3)
H, = exp(jkyy);—f (B MY exp(jki, 2) — F*M} exp(jki, 2)

+E"Mpexp(—jki,z) - F" M exp(—jki,z)], di<z<dy (4.4.4)
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where

: k. ik,
NEt=x+22y JI%
REX=TFY %"
k. jk
NE = A W
L k7T k"
- .,-"l»;r Jky
Mg = x+ My Iy
ki ki
fu Jky
=x+ gy - s
1
; gt ik,
M* = — Y
L=XF A }itr B
fﬁ‘l{ Jky

=x iy
T T

Superscript + in above relations represent the eigenwaves propagating in the =z di-
rection. The superscript £ and L refer to RCP and LCP eigenwaves satisfying the
dispersion relations as

k2 + (k)2 = (k7)?

where A'f = 4wk, at the nihility frequency and k is chirality parameter. Also for
free space medium assuming k = w./lg€g and n = J%:J—’ such that k., k, satisty the
following dispersion relation

K2+ k2 = &

[t may be noted that relation ki, = — &, holds for all modes propagating inside the

slab. Substituting N, and N, in (1.4.1) gives

EU = exP(J;“qy) [X C.‘Cp(jkzZ} T A('ax GX[)(_j‘li'-zz) + -41:7'

x (jk y + J: ) exp(—jkzz)J vz <dy (4.4.5)

k

where A., and A.. are values of the co-polarized and cr-polarized reflected fields.
Unknown coefficients A., and A, in field expression (4.4.5) may be obtained using

the continuity of tangential components of electric and magnetic fields across the
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dielectric interface located at z = dy. Continuity of tangential components of electric

and magnetic field yields [53]

29
(;‘X])(jkzdl) =t Ar..'u CXI)("jkzdl} = (MT}'):L J)

X [E*‘ exp(jki.di) + E~ exp(—jki.d; )] (4.4.6)

; ki k 27
A["I" _kzd — - :
.+ exp(—jkzdy) W (Mnﬂ)

X [E“L exp(jki.dy) — £ exp(—jki.dy )] (4.4.7)

where it is assumed that n = = \/é‘f Solving (4.4.6) and (4.4.7) simultaneously,

gives

: 25 . .
Ar‘o = —2ik, . - - ik
: exp(—2jk.dy) + (Mn = _;) exp(jk=d)
X [E+ exp(jki-dy) + E exp(—jki=d; )] (1.1.8)
 kik 27 ’
A = Tk (M'f? +;,f) exp(jk.dy)

x [E* exp(jkizd1) — E~ exp(—jki=dy)] (4.4.9)

where

. [ jRp+M N
E~ = —E* (%) exp(2jky.dy)

2exp(jk=dr — jhizch)

Et = ———=
P-QL
p— ‘)_j tMnR;
T Mny+j
[ JjRy+ Mn
@= (-“jR}' + M?;)
[ —od —MnRy
Mn+3
B bk -

kik.
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4.4.2. PEMC backed Chiral Nihility Parabolic Cylinder

Consider a parabolic cylindrical reflector coated with chiral nihility material and
defined by ¢ = L}f- where [ is the focal length of the parabola as shown in the
Fig. 4.23. The field of oblique incident plane wave may be defined as

E' = xexp(jkyy + jk:2)

Fig. 4.23. The schematic diagram shows a parabolic cylindrical reflector having
PEMC' backed chiral nihility coating being excited by oblique incident plane wave.

The surface field of parabolic reflector using (4.4.5) is given as

Ey = exP(jk‘vy) [x exp(jk-zz) + Ar_‘axexp(_jkzz) + Aer

X (J:?‘y + %z) exp(—jkzz)] i z<dy

(1.4.10)

The reflection coefficients A, and A, are given by (4.4.8) and (4.4.9) respectively as

o = —eni(—2h) 4 ( ) sk

23
Mn +j
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X [J’f'+ exp(jki=dy) + E~ exp(—jki.dy)] (4.4.11)
ok (2 |
R 2 B N exp(ik.d
4 kyk. (M 17 4 ";) exp(ikzch)
e [E+ exp(jki.dy) — E7 exp(—jky.dy )] (4.4.12)

where =, E*, P, (), L and Ry have been defined in the previous section. When the
plane wave is obliquely incident at an angle ¢y on the interface of parabolic cylinder,

k. and k, in (4.4.10), (4.4.11) and (4.4.12) are defined by

k. = kcos(2a + o)

ky = ksin(2a + ¢)

where « is the angle made with the z-axis by a unit normal n on the surface of parabolic

cylinder. For normal incident plane wave. the incident angle becomes ¢y = 0. so that

k. = k cos 2cx

k, = ksin 2a

4.4.3. Gregorian Dual Reflector System

Gregorian system consists of two reflectors. These two reflectors may be of any
material. It is assumed that the main reflector of Gregorian system is of PEMC
while sub-reflector is of PEC. The main reflector is coated with chiral nihility material
as shown in schematic diagram of Fig. 4.24. If someone is interested in the field
distribution around the focus (caustic) Fy of the system through geometrical optics
(GO). he will fail to do so. because GO explodes at caustic. Our interest is to study
the effect of these metamaterials on the field patterns around caustic region. So, a
high frequency expression for the field around caustic region of chiral nihility coated

PEMC Gregorian system is derived using Maslov's method.
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Fig. 4.24. PEMC backed chiral nihility dual reflector Gregorian system.

4.4.4. Field Formulation at Caustic

The main-reflector of this Gregorian system is excited by the field of a uniform
plane wave propagating along the z-direction. The field associated with the incident
wave is given by

E' = ugexp(—jkz) (4.4.13)
Uniform field expression may be formulated using Maslov’s method. which should
remain valid around caustic, may be given using (3.3.8) as

Br(02) =55 [ B, )| 70 2] T exp [kl + 7+ Sl dza)
(4.4.14)

where Sy and 7; are given by (3.1.20) and (3.1.6), respectively and Ef(&2, (o) is the
initial value of field amplitude reflected from sub-reflector. The extra phase term is
eiven by

Sex = —pcos(2¢ — 2a + ¢) — &z 5in(2Y — 2a0) + (2 cos(2y — 2a)



where

Now, substituting E{(&2, (2) from (4.4.10) and J(T)Qgg—z from
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2
1 — cos<

o=b =
&2 cos? (Y — 2ar)
¢ . Ccos
g
cos(v — 2a)
& = -2ftana
[ eos2a
g =L,
COS* a
2
2
tany = ——= E—"
b (o
1
tan @ = y
z

(4.2.9) in (4.4.14), co

and cr-polarized field components reflected by PEMC backed chiral nihility Gregorian

system are given by
cn J\ \f_§_
—

k
E(; O e
Y. 2) = \/JBW

A2 — Al
1L
Al

X cxp| S“ |

v A2 —A
Al J—-A2

x exp|—jk(So +

[Acox exp(—jk.z)] / Ry

71 + Sez)|d(2cx) (1.4.15)
e i —

{-’1(%- ("‘A* y _}A_’Z)} \‘f 1

71 + Sex)|d(2cx) (4.4.16)

where A, (av) and A.,-(a) have been given in (4.4.11) and (4.4.12) respectively. In these

equations, k, = kcos2a and k, = ksin2« have been used. It may be noted that in

the limit Mn — +oo the backing is PEC, and co scattering coefficient reduces to PEC

Gregorian system i.e.,
reduces to zero i.e.,

PEC Gregorian system

Ago(a) = —exp(—2jk.d;y) while the cross polarization coefficient

A = 0, the relation (4.4.15) reduces to the relation (3.3.13) Of

E"(y,2)co = \/; [fA2 / ] \/Eexp[—jk(su + 7 +Sem)]d(2n) (4.4.17)

Similarly, in case of PMC backing, Mn = 0, and the cross polarization co-efficient

A.(a) again vanishes and co-polarization co-efficient A.,(a) independent of parameter

Mmn



- 89

4.4.5, Results and Discussion

Plots of co-polarized and cr-polarized components of the reflected field along the
reflector axes are shown in Fig. 1.25 to Fig. 4.31. The Gregorian system having pa-
rameters as kf = 60, ka = 25, kb = 23.7. kd = 12.5 and kD = 40. is chosen for the
study of field behavior around caustic region, It has been observed that admittance
parameter My affects the amplitude of the reflected field whereas field distribution
pattern remains unchanged. Field intensity Plots have been obtained for different val-
ues of Mn. It has been observed that for My = £1, cr component of the reflected
field is maximum, while co-polarized field component reduces to zero. For Mn = 2,
the field amplitude of cross polarized component is greater than the co polarized field
component and the behavior is reversed for Mn = 3. For Mn > 3, the field ampli-
tude of the cr component decreases and finally vanishes for large values of M. It
can also be seen that for Mn = 0 and Mn — 4oo cr-polarized components of the
reflected field disappear showing the behavior of the chiral nihility reflector backed by
PMC and PEC material respectively, which agrees with our analytical formulation. In
Fig. 4.29. The results of PEMC backed chiral nihility reflector are compared with the
results of PEC backed chiral nihility reflector. The results are in good agreement.lt
has been observed starting from Mn = 0 (PMC) boundary that field is rotated giving
rise to increase and decrease in field intensity of co and er components for different
values of M. Finally, observation comes to M7 — +oc (PEC boundary).The field
intensity variation behavior of co and cr-polarised components has also been studied
for different values of admittance parameter My =5, Mny = 3, Mns =2, Mny = 1.5
and Mns = 1. The behavior may be observed in the plots of Fig. 4.30. and IMig. 4.31.
respectively. These findings may find potential use in some applications where con-
trolled intensity of co and cr-polarized field is required. Another striking feature can
be seen that the factor thickness didn't appear in the expression of the reflected field.

It means that the thickness of nihility material coating on the reflector, is irrelevant.
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It is perhaps due to the fact that in chiral nihility material, the two eigen-waves are

circularly polarized but one of them is a backward wave.
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Fig. 4.25. Comparison of co and cr-polarized field intensity distribution (a) along y-
axis and (b) along z-axis, around the caustic region of a PEMC backed chiral nihility

Gregorian system for Mn = 0.
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Fig. 4.26. Comparison of co and cr-polarized field intensity distribution (a) along y-

axis and (b) along z-axis, around the caustic region of a PEMC backed chiral nihility

Gregorian system for Mn = 1.
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Fig. 4.27. Comparison of co and cr-polarized field intensity distribution (a) along y-
axis and (b) along z-axis, around the caustic region of a PEMC backed chiral nihility

Gregorian system for Mn = 2.
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Fig. 4.28. Comparison of co and cr-polarized field intensity distribution (a) along -
axis and (b) along z-axis, around the caustic region of a PEMC backed chiral nihility

Gregorian system for Mn = 3.
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Fig. 4.30. Variations of co-polarized component of field intensity along y-axis, around
the caustic region of chiral nihility coated PEMC Gregorian dual reflector system for

different values of M.
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different values of Mm.
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4.5. Cassegrain Dual Reflector System

Geometry of Cassegrain system composed of two reflectors. In the present dis-
cussion, it is assumed that main-reflector is a chiral nihility coated PEMC cylinder
whereas sub-reflector is PEC hyperbolic cylinder as shown in Fig. 4.32. The system
is being used as high frequency receiving antenna. The main objective here is to de-
termine the field expression based on Maslov's method, which should remain valid
around the feed point of the system. This is accomplished by first determining GO
field for the system in space coordinates which does contain singularity around focal
region and then expressing GO field from spatial domain into spectral or wave vector

domain. This gives finite field value at all points including the caustic region.
: -jkz  x-axis

Incident Plane e A
wave _ |

Hyperbolic cylinder
C,=f(&)
—r.r (&a' Ci)’
all Rag===

.
>

: wsweee Chiral nhilit tin
Incident Plane e'-lkz SR PEMC AT

he vl Materials s PHE

Fig. 4.32. PEMC backed chiral nihility dual reflector microwave antenna.

4.5.1. GO Field
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Let the surface of main-reflector be excited by normal incident field of a uniform
plane wave as shown in Fig. 4.32. The field is propagating from left to right along
z-axis and is defined by

E' = uy exp(—jkz) (4.5.1)

The GO ray expression for the field reflected from the sub-reflector may be given

using (3.1.20) as
E"(y,z) = E}(€2,C2)[J(7)] "% exp|—jk{So(&1) + 71 + T} (1.5.2)

where Sy(&). 71 and 7 are given by (3.1.20), (3.1.6) and (3.1.5) respectively. Now,
substituting the values of J(7) and E{(§s.(2) from (3.1.25) and (4.4.10) respectively
in (4.5.2), yields the GO field expression for the Cassegrain system under discussion.
It is readily seen that at caustic i.e., 7=R; and consequently .J = 0. Hence GO field
expression shows singularity at caustic of Cassegrain microwave antenna. But the
main interest here is to study the impact of these metamaterials on the behavior of
the field around caustic region. So Maslov’s method is used to transform GO field

expression (4.5.2) into caustic field expression.
4.5.2, Field Computation Near Caustic

High frequency expression based on Maslov’s method for the field around caustic

region of Cassegrain system under consideration is given from (3.2.1) as

=i
Ip-o

| - ; =
. E I ) 2 )
E'(y,2) = \/—;)— / Eq (&2, Ca) [J(T} = ] exp |[—Jk|So + 11 + Ser)]] d(2c)
JET J s 0z

(4.5.3)

where Sy and 71 are given by (3.1.20) and (3.1.6), respectively and Eg(&2,(2) is the

initial field value on sub-reflector. The extra phase term S, is given by

Sex = —pcos(2Y — 2a + ¢) — & sin(2Y — 2a0) + (o cos(2¢ — 2av)
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where

b sin 1

‘52 = 5 v I I
vV a? cos? v + b2 sin® ¥
C ﬂ.2 cos
2= : 5 s .
\/a""’ cos2 1) + b2 sin”
& = —2ftana
"cos 2a
G = J—q —c
cos? o
2
a 62
tany) = ——-=>=
b2 (o
1
tan ¢ = i

p=Vy+2?

The Cassegrain system under study in which main-reflector is of PENMC and is coated
with chiral nihility medium, the surface field E{j(&. () is given by (4.4.10) with A,
and A, obtained from (4.4.11) and (4.4.12) 1'5]'J{-I:(:l:ivuly. Now substituting surface field
E{(&2, (2) and Jacobian of the field [J(T)Qg;—“] ¥ from (4.4.10) and (3.2.5) respectively
n (4.5.3), yields both co and cr-polarized field components. Therefore, co and cr-

polarized fields reflected by PEMC backed chiral nihility Cassegrain system are given

x /Ry exp|—7k(So + 11 + Sex)]d(2a) (4
where A.,(a) and A..(a) have been given in (4.4.11) and (4.4.12) respectively. In

by

these relations, k. = kcos2«a and k, = ksin2a. When Mn — +oo (PEC), A, = 0,

A.o = — 1, therefore (4.5.4) becomes as

ke Ay Ay .
E'(y,z) = J'T?T l/l + / 1 } \/Ri|uxp[—-ﬂi'(3n 71+ S,.,'.Hn’.(?n-) (4.5.5)

In the above equation R, Sp, 7 and S., are expressed in terms of o and A, A,
are the angles subtended at the feed point Fy and F5 by the parabolic and hyperbolic

cylinders respectively.



4.5.3. Results and Discussion

Plots of co-polarized and cr-polarized components of the reflected field along the
reflector axes are shown in Fig. 4.33. to Fig. 4.39. PEMC backed chiral nihility
Cassegrain system with parameters kf = 60, ka = 8, kb = 25, kd = 8 and kD = 40 is
considered for the study of field behavior around caustic region. It has been observed
that admittance parameter Mn affects the amplitude of the reflected field whereas field
distribution pattern remains unchanged. Field intensity Plots have been obtained for
different values of M. It has been observed that for M7y = +1, cr component of the
reflected field is maximum, while co polarized field component reduces to zero. For
Mn = 2, the field amplitude of c¢r component is greater than the co-polarized field
component and the behavior is reversed for Mn = 3. For M7 > 3, the field amplitude
of the cross component decreases and finally vanishes for large values of Aln. [t
can also be seen that for Mn = 0 and Mn — +oo cr-polarized components of the
reflected field disappear showing the behavior of the chiral nihility reflector backed by
PMC and PEC material respectively, which agrees with our analytical formulation. In
Fig. 4.37., the results of PEMC backed chiral nihility Cassegrain system are compared
with that of PEC backed chiral nihility Cassegrain system. The results are in good
agreement. The study of field behavior is started from Mn = 0 (PMC) boundary
and observed that field is rotated giving rise to increase and decrease in field intensity
of co and cr components for different values of Mn. Finally, it reaches M7 — $oo
(PEC boundary). The study also includes comparison of field intensity variation of co-
polarized and cr-polarized components along y-axis for different values of admittance
parameter Mn, = 5, Mn, = 3, Mns = 2, Mny = 1.5 and Mn; = 1. The variation
behavior of co and cr-polarized field components may be observed in the plots of
Fig. 4.38. and Fig. 4.39. respectively. These findings may find potential use in
some applications where controlled intensity of co and cross polarized field is required.

Another striking feature can be seen that the factor thickness didn’t appear in the
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expression of the reflected field. It means that the thickness of the reflector coating,
is irrelevant. It is perhaps due to the fact that in chiral nihility material, the two

cigenwaves are circularly polarized but one of them is a backward wave.
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(b)
Fig. 4.33. Distribution of co and cr-polarized components of field intensity (a) along
y-axis and (b) along z-axis, around caustic region of PEMC backed chiral nihility

Cassegrain system for My = 0. Here cr-polarized field component reduces to zero.
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Fig. 4.34. Distribution of co and cr-polarized components of field intensity (a) along
y-axis and (b) along z-axis, around the caustic region of PEMC backed chiral nihility
Cassegrain dual reflector system for Mn = 1. Here co-polarized field component

reduces to zero
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Fig. 4.35. Distribution of co and cr-polarized components of field intensity (a) along
y-axis and (b) along z-axis, around the caustic region of chiral nihility coated PEMC

Cassegrain dual reflector system for Mn =2 .
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Fig. 4.36. Distribution of co and cr-polarized components of field intensity (a) along
y-axis and (b) along z-axis, around caustic region of chiral nihility coated PEMC

Cassegrain dual reflector system for Mn = 3



1041

|_0i. o o /\\ ’ ik o = J
: ¢ PEC—field |
2 o) /) |
2 g6l i Wco-field ]
= | f = 1
i - \ Mpn=00 1
o 04 / "
o \
= 02} / \
0.0 )
-150 —-100 -50 0 50 100 150
ky
v, Distance in wave lengths from the focus
(a)
1ol ' ' ' ]
PEC-field
é" 0.8}
5 Co—field
+~—= 06 8
o - Mp=c0
= 04F
o)
P~ 02t
0.0
-150 —100 -50 0 50 100 150
kz

z, Distance in wave lengths from the focus
(b)
Fig. 4.37. Comparison of field intensity distribution (a) along y-axis and (b) along
z-axis, around the caustic region of PEC and PEMC backed chiral nihility Cassegrain

dual reflector antenna with Mn — +oc .



e
o

"L Co-field

Field Intensity

oal  Comparison
02}
0.0~ - :
-150 -100 =50 0 50 100 150

v, Distance in wave lengths from the focus

Fig. 4.38. Variations of co-polarized component of field intensity along y-axis. around
the caustic region of chiral nihility coated PEMC Cassegrain dual reflector system for
different values of M1 .

o

=
=

g Cr -field § =90
g .o Comparison [/ 322.5
2 Mp=35
502l Mn,=5.0
~150  —100 100 150

v, Distance in wave lengths from the focus

Fig. 4.39. Variations of cross-polarized component of field intensity along y-axis,
around the caustic region of chiral nihility coated PEMC Cassegrain dual reflector

system for different values of Mu.



- 106
Chapter 5

Summary and Conclusion

GO approximation is a powerful tool for dealing with problems of high frequency
fields in homogenous and in-homogenous media. However, it fails to quantify the fields
in the vicinity of caustic of focussing systems. On the other hand, focussed electro-
magnetic fields have applications in various areas such as microwave antennas, and
integrated optical systems. Field distribution in focal region of focusing systems is
studied for synthesizing feed arrays in image field and designing of multiple beam an-
tennas. Usually the conventional Huygens-ICirchhoff’s integral is used to evaluate the
field around the focal region of focusing systems. Maslov proposed another method
to predict the field in the caustic region. Maslov's method is based on the idea that
combines the simplicity of GO and generality of Fourier transform. Maslov’s method
makes use of the fact that appearance of caustic depends on domain formulation of the
ray field. It means that appearance of caustic in field formulation cannot take place
both in spatial domain and wave vector domain simultaneously. According to Maslov's
method the conventional GO field expression in space coordinates is expressed in terms
of wave vector domain through the use of Fourier transform to avoid the singularity
that exists in spatial domain. The field expression obtained in this way, is valid at all
points including the caustic region. When the observation point is far away from caus-
tic, the field expression based on Maslov’s method, reduces to GO field expression by
applying stationary phase method of integration. The high frequency field expressions
for arbitrary reflector, Cassegrain and Gregorian dual reflector systems consisting of
PEC, PEMC and PEMC backed chiral nihility reflectors, are derived using Maslov's
method, when a plane wave is incident. The field expression based on Maslov’s method
is obtained for a parabolic reflector from the field expression derived for arbitrary re-

flector. The corresponding expression for the field reflected from a parabolic reflector,
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is also derived using Huygens-Kirchhoff’s integral. Both expressions agree completely

near caustics whereas they differ slightly in phase and amplitude away from the caustic.

Theoretically derived field expressions for a parabolic reflector, are evaluated
through numerical computations so as to determine the field patterns around the caus-
tic region for both oblique and normal incident plane wave. The results are compared
with those obtained by Huygens-Kirchhofl’s integral. The agreement is fairly good.
The results of field pattern around the caustic region of PEC Cassegrain and Grego-
rian systems are compared with the results of their equivalent parabolas obtained by
applying Huygens-Kirchhoff’s integral. The results are found in close agreement. This
yet again testifies the validity of Maslov’'s method for both Cassegrain and Gregorian
dual reflector systems. For PEMC Cassegrain and Gregorian dual reflector systems,
the field behavior around caustic regions is different from corresponding PEC dual
reflector systems in that the field reflected from PEMC interface has both co-polarized
and cr-polarized field components. The behavior of co and cr-polarized fields around
caustic region of PEMC dual refiector systems has been studied for different. values
of admittance parameter Mn. For the PMC and PEC special cases. i.e., Mn = 0
and Mn — +£oc respectively, the cr-polarized field component vanishes in either case
whereas co-polarized field component exists in both cases. For Mn -+ +x, the co-
polarized field component approaches the results of two dimensional PEC dual reflector
system and is verified through comparison of the two field plots. For PEMC backed
chiral nihility Cassegrain and Gregorian dual reflector systems, the field behavior at
caustics of these systems has been studied for different values of admittance parame-
ter M. It is observed that for M7y = 0 and Mn — +oo, cr-polarized components of
the reflected field disappear which represents chiral nihility reflector backed by PMC
and PEC material respectively which is in accordance to our analytical formulation.
The results of co-polarized field components of PEMC backed chiral nihility reflector

are also compared with those of PEC backed chiral nihility reflector. The results are
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found in good agreement. For the special PEMC case when M =%,t‘.l‘10 reflected field
appears totally cross-polarized. So it acts like twist polarizer which is a non-reciprocal
device. It has been observed that value of admittance parameter Mn affects only the
amplitude of the reflected field whereas field pattern remains unchanged. It may be
noted that the reflected field is independent of parameter ds. the layer thickness of
chiral nihility material. This is perhaps due to the fact that in chiral nihility. the two
eigenwaves are circularly polarized but one of them is a backward wave. The field
reflected from PEMC or PEMC backed chiral nihility reflectors of focussing systems
include the variation of co and cross-polarized field components for different values
of admittance parameter M7. These findings may find potential use in Military and

other applications where controlled intensity of co and cross-polarized field is required.

The results presented demonstrate that the Maslov’s method is straightforward
and provides an alternate tool to conventional induced current method or Huygens-
Kirchhoff’s principle for evaluating diffraction field in the caustic region of focussing
systems. It might be an important result of this work to conclude that the two methods
are equivalent but Maslov’'s method is easier to compute than Huygens-Kirchhofl’s
integral. Maslov’s method can be used to solve various focussing problems. It is
suggested that the work presented in the thesis may further be extended to apply to

more complex practical problem of tri-reflector system being used in Space Technology.
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Appendix A  Evaluation of I/ = J(%=)

Z

First evaluate %";— as

z = f(§) + cot(20 — ¢o)(z — &) (A1)
On differentiating (A1) with respect to 0, gives

0z 9 20@-§ cot (20 — G’)n)a—E

a0~ g sin2(20 — ¢y) Bl
JE 27
= - o 9 - COL 2 — N
[Lan ook (g‘)n)} o N sin(26 — o)
- Lfo::'.(ﬂ- G).U) 1 % | 2 cos 0. ()_UT (42)
sin(260 — &) cos 0 00 cos(f — o) O
Hence the differential ;%JL can be derived as follows.
0z @ a0 1 0z
Op. 00 0p.  2sin(20 — ¢g) 90
cos(f — o) o€ 21"(€) cos* @ .
=—— . e | Jrf (A3)
2sin” (20 — ¢ ) cos O 00 cos(0 — ag)
Using (A3) and (2.1.16) yields the final result
op. 21"(€) cos® 0 2 cos® 0sin?(20 — ¢p) .,
F=Jr)—=|1
(7) 0z [ cos(6 — do) | cos(0 — ¢o) i
Y e =g
i 2f"(€) cos 9?_
cos(0 — og)
2 cos® 0sin%(20 — ¢g) .,
= S0 = gy (Ad)

cos(6 — ¢y)

Appendix B Derivation of the Jacobian

Evaluating the Jacobian of coordinate transformation (z,z) to (&, 7) with (x,2)

given by (3.1.19).

'z 982 | Opg2 9C2 | dp=2
L_J(T) = 'a(ﬂu._,) = Off ™ 9, | aff T BEIZT
C}(f]. T) Pa2 D22
— 20(0 — 'u_'i’)'r B COS(QQ’ = U:‘) ?i'% (B]}

0&; cosy  0&
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The relation between (£;.¢;) and

92 02 _ tan f,f'd‘fz

where the relation used is %z—f = Be, OE,
(€2, (o) is given by
& — & = —tan2a(la — (1) (132)
and differentiating both sides with respect to &;, yields
& B cos 1 (o — (1 cos? a B cosp [y cos?® a (B3)
& cos(2a — ) f cos2a|  cos(2a—1p)  f
Furthermore,
0 1 oL N O, 10
2 — — cos? «, V=90, 1!’ o <2 (B4)
o9& 2f 08 0606 3 06
Substituting (B3) and (B4) in (B1) yields
cos® a cos’y  a’ -G cos? o 5~ (o — (71 cos? a
[ cos2w [ cos2a
(135)

— = :
D(7) t { 2f cos(2a — ¥) b2¢

From Fig. 3.1. and with simple calculation it can be readily found that the following

relations hold
2 cos 2¢x (o —Ceosa Ry
s =c—Rycos2a, (G =-L1—f4e=-— s I = = cos’a
G =e—Racoden G af I+ f(:o:-.:?a—l—(" [ cos2a b el
(B6)
Hence D(7) can be written as
cos? a 2 cos® 1 a’
Bir)= 1— R — R BT
"I==7 {[ cos(2a — v) b2¢3 ] ! 2} all
By using the relations
e=G  gnga= 2 (1B8)
R

cos 2 =
Ry
cos(2a — 1)) in (B7) can be expressed by

c—( 9
cos(2a —Y) = -—I—?-(l% cos i + o sin
2

1

— Bo /BB
]

" RoVR1R:
1

" Ro/R1R3

%]
l 2
~Gale — G2) %a]

+
b ¢ &
—ab (ﬂ_Q 3
b
- — a2) = B9
—i(e(z — a) Rl (B9)

:
o
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. » - gy — 2 » . -
where the relation used is Ry = \/(c — (2)? + & = ‘5-”—“ Then the coefficient of 7

in (B7) is simplified to

2cos*yY  al | 2abR>  aRov/ Ry R 2a I
U=1- —g 2 =1- T —— == | = =S
cos(2a — 1) b2¢; (13 R2)2 bleCa — a?) Iy R

Hence D(7) in (B7) becomes

This shows that the ray is focused at point F5.

. . &) Iz
Appendix C  Evaluation of F' = J(r)%5=2

(B10)

(B11)

The integrand of (3.2.1) is used to derive the expression which is valid at the focal

point F5. From the relation

Pz2

Pa2

(x — &2) = (2 + cot(2a — 2¢)(z — &2)

z=~0+

one can obtain

92 _ 0G 2(x — &) dla—-v)
96  0& sin(2a-20) 0&
B cos(2a — 1) 27 Ao — )
~ cos Ysin(2a — 2¢)  sin(2a — 2¢)  0&s
1 06 Na—1)  cos(2a — ) 2&_2

— cot(2a — 27)

. sin(2a — 29)) &, - 0& cost  0&

By using the relations

0z . 2 852 apz? . %ap,ﬂ.
8?)z‘2 - 862 6}3,;2’ 0z e 0z 8‘5‘2 :
Op.o da — ) & d(a — )

= 2sin(2a — 20) 28— ¥/ _ 9gin(2a — 2p) et DL Y
06, sin(2a — 21)) 5 sin(2a L )f')fz o€,

it gives
Opzo  0& Op.o
dz 0z 0&
Tb‘(n - ¥)  cos(20 — ) 062 |
J& cos &,

8¢, 8(cx — )
d&  0&

1

d€2

sin(2a — '21--’!)(_jg
1

= 2sin(2a — 29)

2

(C2)

(C'3)

(C4)



= {18~

There we have

D(7) Op.o _jlfc')(a- — 1)  cos(2a — ) O cos 0& ] Opao
D)y o | )€, Cos ! dJE | | cos(2a — y) D& | Oz
— (90 = 21‘“)()({\' ) cosy (}i (C5)
&, cos(2a — ) dés
From the results of Appendix B we have
D(7) Op.o _ 2:5i112(2a B Qw)coszlaﬁg cos cos(2a — 1)) _ i ’
D(0) 0z 2f Rycos(2a —1)  costy  Racos?a
sin?(2a — 2¢)) .
_ C6
]{1 ( )
where
R, — cCo 4 a? - accosw + /a2 cos2 ) — b2 sin? costh = ¢ + a cos 2o .
a Va2 cos? 1 — b2 sin® va? + ¢ + 2accos 2a
s asin 2a ¢ of tari % 5 2f cos2a
siny = - = Lan o, =c-
va? + ¢? + 2accos 2 : :

¢ b? sin ¢ a? cos )
]

G2

o F Bt TP R T
Va2 cos? i — b2 sin® 1

- P P v T
va?cos? ¢ — b2sin?

Appendix D  Parameters of Cassegrain Antenna

(D1) D

tan 5 = aF

and £r

tan )

1 + cos 2a

The equation of the parabolic cylinder is given by (3.1.1). Hence, it produces

D'Z

OAZ-j‘l‘C, ﬁs

AH =

”

and

D
2f
D

2f

2

—

2 tan %‘—'
tan @, = =

2 2 ¢
) 1 — tan® %

From (D2) we have tan 2 =

@

parabolic cylinder from horizontal axis.

D‘Z

x[f

(D1)

(D2)

%. It may be noted that D is height of the edge of the
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Similarly, it gives
D (D3)

where [, is the focal length of the equivalent parabola.

st Honto.)

(02) = :iill_.g-[‘(.’hv by)

From the similarities of the triangles, one can obtain

f(" Ly s cta e +1 N tan %wa (D"i)

S L,,_c—a_F—l_tan%w,

The last term is obtained from the results in (D1). From the above equation e is

obtained as
__tande, +iande, _sind(du+ ) _ Lo+ Ly -
tan %qﬁv — tan %qb-,. sin %(qbq, — @) Ly — Ly
and
1 5 sin 1 (¢, + 0,
1__:L:]__ﬂ%(®__o_) (D6)
e L,+L, sin 5 (@p — @)
Appendix E
The surface contour of elliptical cylinder is defined as
G, & _ ;
22 23 = 1 (£1)
with
¢ = a® — b2

Let the foci of (£7) be F1(0, —c¢), F5(0,¢) and (&2,(2) be the point on the surface.

Ry =+/((2+ )2+ Ej, Rs

Then
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so that

(R1R2)? = [\/(gg 4 ¢)2 + 53] [\/(cg +e)%+ 63]
= (®+ ¢+ +2¢C) (A + ¢+ € - 2c()
= (c® +¢* +£%) — 4¢3
2 . o5 (:2 : 2 2
= [r.z = b2 42 (1 = E.'_z)] — 4¢? (a® —b%)

- [cﬁ | (1 f:—,) g} 1¢2(a® - b?)
2 2y 2
= a' — 242 (1 - b—,) %+ (1 - b—z) ¢!
a*® (
2
b2 P
- [(a_?_]) 5+b2]

Let the unit normal at point (€2, (2) on the elliptical cylinder by (o = f(&2) be n, then
n = sin i, + cos i,

then
ao
b\a’ R] .RQ
cCosY = ng
I {J\/ R] R'g

o/ 1 ], = Eé -3 "2£2
ren=La(158)7 (22)

sin) =

Therefore

_ @&
e
4 ¢2
: o 2 a &
L+ |f(&)] =1+ P
a? {%
— ]_ £ .__,___2_
- 9)
b (V% —€3) + %8}
N b2 (b2 — Sg)
_ ¥ -0’8 +a%
b2 (b2 — €3)
RiRs

b2 — &2



Then

S E— 2
e} \/R] H_g ( )

~["(&2)
1+ f2(&)

siny =

. (E3)

Appendix F  Perfect Electromagnetic Conductor and Chiral Medium

The perfect electromagnetic conductor (PEMC) is an idealized electromagnetic
medium that has been introduced as a non-reciprocal generalization of both perfect
electric conductor (PEC) and perfect magnetic conductor (PMC). Possibilities for
realization of a PEMC has been suggested by Lindel [35, 36] in terms of a layer of
certain non-reciprocal materials resting on a PEC plane. Parameters of a bi-isotropic
medium can be chosen so that the interface of the layer acts as a PEMC boundary.

The PEMC boundary conditions [35-38] are of more general form as given below.
n x (H+ ME) =0, n(D-MB)=0 (PEMC) (F'1)
The vector boundary condition is given by

ME=-H+ (1+ Mzng)nn.l—l, Mo = V/ Ho/€o (F2)
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where M denotes the admittance of the PEMC boundary (dimension ﬁ). Obviously,

PMC corresponds to M =0 while PEC is obtained as the limit M — +0c.

Chiral Medium

A chiral medium [44-46] is macroscopically continuous medium composed of equiv-
alent chiral objects, uniformly distributed and randomly oriented. A chiral object
consists of a circular loop of wire whose two ends extend perpendicular to the plane
of the loop in opposite direction. When an incident wave falls on the helix. it induces
both electric and magnetic dipole moments. Following Maxwell’s equations. the con-
stitutive relations for isotropic chiral media. for time harmonic fields exp(jwf) must

have the form

D =¢E+ jkH

B =uH — jkE (F3)
so that the dispersive relation for the wave number k is

ks = w(y/HE £ K) (F4)

where "+’ and ’-" represent different eigenwaves in the above expression and « is the
chirality of the medium which is assumed to be positive for this study. Such media are
characterized by two intrinsic eigenwaves with left-handed and right-handed circular
polarization and both of them have different phase velocities and refraction indices.
Recent researches show that the refraction index for one of the eigenwaves will even
be negative [47, 48] for strong chirality (k) chiral nihility is a special kind of chiral
medium for which the constitutive parameters, at certain frequency known as nihility

frequency [49] will become e=0, u=0, such that x # 0, where & is the chirality of the
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medium. Hence the constitutive relations (F6) for an isotropic chiral nihility medium

will become

D= +jxH
B = —jskE (£°5)
ks = tw(k) (F6)

In chiral nihility, the two eigenwaves are still circularly polarized.But one of them is a
backward wave whose phase velocity has an anti-parallel direction with corresponding
Poynting vector. Phenomena of negative refraction occurs when a plane wave enters
from vacuum into chiral nihility medium.That is when a plane wave obliquely hits the
interface of vacuum and chiral nihility.One refracted eigenwave propagates on one side
of the normal at certain angle while other eigenwave propagates at same angle on the

other side ol normal to the interface.
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