
--

IMAGE COMPRESSION USING
WAVELET TRASFORM

BY

MUHAMMAD SHOAIB

4s
£LE

C-2~

DEPARTMENT OF ELECTRONICS
QUAID-I-AZAM UNIVERSITY

ISLAMABAD PAKISTAN

July, 1998

Certificate

Certified that the work contained in this dissertation was carried out by Mr.

Muhammad Shoaib under my supervision.

Chairman

Department of Electronics

Quaid-i-Azam University

Islamabad, Pakistan

(DJd&w,aksl:il
Department of Electronics

Quaid-i-Azam University

Islamabad, Pakistan

This work is submitted as dissertation

in partial fulfilment of

the requirements for the degree of

MASTER OF PHILOSOPHY

111

ELECTRONICS

Department of E lectronics

Quaid-i-Azam University

Islamabad, Pakistan

Dedicated to my
Parents I Brothers and

Sisters

Acknowledgment

In The Name of ALLAH, The most gracious and merciful, who gave me an

opportunity to complete this dissertation. I'm deeply debted to my supervisor Dr. Ijaz

Mansoor Qureshi for his continued guidance and inspiration, His insight and

suggestions have been indispensable for my research work. It has been rewarding,

fruitful and above all fun to work with him.

I'm thankful to my friends, Ahsan, Faisa l and Zahid for providing me a valuable

material relevant to my research work. Specially Ahsan who helped me beyond my

expectation. I'd like to thank Dr. Q. A. Naqvi, Dr. A. A. Rizvi and Dr. Nisar for

providing me computer facilities and setting a high standard for me, which really helped

me - learn and grow. Special thanks goes to Akram, and Zahoor for their care and

attention during my M.Phi!.

My groupmates Aliya, Ateka, Safia, Sarwar and classmates deserve credit for

fostering a healthy and friendly environment, their valuable suggestions and discussions

were a real help during this dissertation .

Finally, the debt lowe to my parents, brothers, sisters and family , who has

always remembered me in their prayers, has no measure.

Muhammad Shoaib

ABSTRACT

A wavelet based algorithm for digital image compression IS presented. The

algoritlm1 has good compression ratio as well as PSNR. A comparison with the standard

JPEG algorithm for a number of images is also presented. This algorithm has been

applied to gray scale images but can be extended for color.

Contents

1 Introduction

1.1 Layout of the dissert.a t.ion

2 Image Compression

2.1 Introduction.. .

2.2

2.3

2.4

Why compression is necessary?

Lossless And Lossy Compression

JPEG

2.4. 1 Transformation From T he Spatial Domain To The Frequency Do

main

2.5 Quantization

2.5. 1 Scalar Quantization

2. 5. 2 Vector Quantization

2. 6 Symbol Encoding

2.6.1 Fixed Length Codes

2.6.2 Variable - Length Codes

2. 6.3 Run Length And Huffman Coding.

2.7 Wavelet based image coding

3 Wavelet Analysis

3.1 Dilation Equations

1

3

5

6

6

7

7

9

10

11

11

11

12

13

13

13

17

19

20

3.2 Dilat.ion Wavelet.

3.3 Condition for Wavelet co-efficient

3.4 Discrete wavelet transforms ...

3.4.1 The filter matrices L & H

3.4.2 Decomposition

3.4.3 Reconstruction

3.5 Wavelet and Multiresolution Analysis

3.5.1 A Scale Of Subspaces ...

3.5.2 The Dilation Requirement

3.5 .3 The Translation Reqllirement And The Basis .

4 Image Compression Using Wavelet Transform

4.1 Subband Coding

4.2 Subband Image Coding .

4.3 DWT And Subband Coding

4.3 .1 Entropy Coding:

4.3 .2 Scanning Of The Discrete Wavelet Coefficients:

4.3.3 Sequential Baseline Coding:

4.4 Conclusion.

4.5 References.

2

22

23

24

31

32

32

33

33

34

34

35

35

36

37

40

40

41

48

49

Chapter 1

Introduction

This work deals wit.h t.he image codillg using wavelet transform. I t, can b e bet.ter de

scribed by cast.ing it in the framework of t.rallsform image coding . In t.his t.ypical stat.e

of t.he art., t.ransform image codillg system , t.he ellcoder consist.s of a linear t.ransform

operat.ion, followed by quantization of the t.ransform-domain coefficients, and lossless

compression of the quantized coefficients using an entropy coder. Aft.er t.he encoded bit.

stream of an input image is transmitted over the channel (ass1lmed to be perfect), t.he

decoder undoes all the fllnctionalities applied in the encoder and t.ries to reconst.mct a

decoded image that looks as close as possible to the original input image, based on the

t.ransmitted information . This source coding paradigm has become the de-facto st.an

dard for lossy image compression application sl1ch as JPEG [lJ and MPEG [2J , where

the only loss of information occurs in t.he quantizer . See Figme 1.1 .

The basic idea behind using a linear transformation is to make the t.ask of compressing

an image in t.he transform domain after qnant.ization easier t.han direct coding in t.he

spat.ial domain. A good candidat.e trallsform at.ion sho111d be able t.o offer flexible image

represent.ation decorrelation (t.o facilit.a t.e efficient. ent.ropy coding) and good energy

compaction in the transform domain (so t.hat. fewer qnantized coefficient.s are needed t.o

be encoded and the rest can be discarded for minim11m dist.ortion) . It. is also desirable

for t.he t.ransform to be orthogonal so t.ha t. the energy is conserved from t.he spatial

3

domain to the transform domain , and the distortion in the spatial domain introduced by

qllantization of transform coefficients can be directly examined in the transform domain

. Finding the optimal orthogonal transform for an N x N image necessitates a search

over the set. of all N 2 x N 2 llnitary matrices, which is clearly impossible, since sllch a

set. of unitary matrices is infinite. In practice, suboptimal approximations such as the

discrete cosine transform (DCT) are llsed for comput.at ional efficiency and being image

independent [3] .

c§) Li near Entropy
~ T'*ansfonl' ~ Quanti z a ti on I----? codi n g

(a) [~ r '''00''0 <--- 0 ••••• ""."." <- c,,<coo,
~ Trans fo,"m D ecocllng

(b)

010 111
--7-
0 .5 blp

Figure 1.1: Block diagram of typical transform coding system (a) The encoder block

(b) The decoder block diagram

Transform coding (DCT) is an efficient block oriented image compression techniqlles

that is now being widely used in the image compression industry. while various discrete

transforms have been investigated for application t.o transform coding, only the discret.e

cosine transform (DCT) has emerged as t.he most practical and efficient transform [11].

The principle used for transform coding is to resolve the original sllbpicture int.o a lin

ear combination of a set of predefined sllbpictnres, called bosis junct'ion.The transform

coefficients, which form t.he transmitted informations, are the mllltiplying factors of the

basis fllnctions. The bit. rat.e redllction is operR.t,ed by qnantizing t.he t.ransform coeffi-

4

dents before transmission.

To achieve a high compression ratio, most of the transform coefficients are coarsely

quant.ized. Coarse quantization of the transform coefficients result.s in various artifacts

in the coded images. Methods for reducing the block-artifacts in the transform coding

of the images has been extensively st.udied. One of them is t.o incorporate the HVS

(Human Visual System) properties with designing the quantization matrix (Q-mat.rix)

for the transform coding since the human eye has discriminative sensitivit.y to different.

spatial frequencies. Another approach to cope with this problem is t.o replace the DCT

basis functions by discrete wavelet basis [4], which has shorter basis functions for higher

frequencies, and longer basis functi ons for lower frequencies as shown in figm e[3.1]. There

are more samples to represent the higher frequency sub-bands, than the lower frequencies

ones . Therefore, sharp edges, which are well localized spatially and have significant high

frequency contents, can be represent.ed more compact.ly with the DWT than with t.he

DCT.

Recently , wavelets and filter bank theory [5, 6, 7, 8, 9, 10,] , t.ogether with their

generalization such as wavelet packet (W P) [5 , 6, 20,] , have appeared as alternat.ives

to the DCT basis due to their ability to provide more flexible space-frequency resolution

trade-off image representation.

1.1 Layout of the dissertation

The research work carried out and described in this dissertation constitutes a lossy com

pression algorithm. it is based on wavelet transform. Before going into details of the

actual work existing image compression methods and wavelet based algorithm are dis

cussed. chapter 2 discusses the need for image compression and st andard image compres

sion t echniques. Chapter 3 deals with the wavelet analysis. Compression using wavelet

t.ransform and its results are discussed in chap t.er 4. Some real images along with the

processed images are presented in chapter 4.

5

Chapter 2

Image Compression

2 .1 Introduction

Digital image cont.ain large amount.s of information therefore from t.he st.and points of

data storage and transmission, one would like t.o have an image stored in a way that.

requires fewer bits. If one is processing a large number of images, then efficient represen

tation is necessary in order not to overwhelm memory and if images are t.o be transmitted

then there are bandwidth limitations so that. timely t.ransmission requires efficient. rep

resentation. Thus data need t.o be compressed, or coded in such a way as to faci litate

storage and transmission. Further more, various image representations enhance the speed

of various algorithms. A key here is elimination of redundancy, and various transforma

tion serve to reduce various type of redundancy. More than simply finding an efficient

image representation, image are often altered in a noninvertible manner. Since this in

volve the loss of information, such compression is termed 'lossy' as opposed to invertible

encoding, which are termed lossless .

6

2.2 Why compression is necessary?

"A picture is worth a tho11sand words ." This English aphorism reminds 11S of t.he impor

tance of images. It is especially true in the age of information highway and multimedia.

Computers, fax machines, video phones, t eleconferencing sys tem and storage devices im

pact our workplace. Text, dat.a, sound , images and video clip are grouped together to

send over data networks or to store The amonnt. of dat.a is as t.ronomical . Compres

sion increases the throughput of t.he net.work and t.he capacity of the st.orage device .For

sat.ellite transmission,compression greatly redllces cost.

To understand why compression is needed it is a good idea t.o s t.art with the analog

video signal. The analog video signal is mostly t.he sonrce for a digi tal video, b eca11se the

most common form of the video signal in nse today

The full resolution of PAL video signal is 720*576=414,720 pixels for one picture

For true color 24 Bites per pixel are needed, so 720*576*24/8=1,244,160. byt.es are

needed for one picture. The PAL video signal contains 25 pictures per second. so we need

31,104,000 bytes per second digit.al video. This means we have bit. rate of 248,832 ,000

Byt.es per second or about 249NIbit/sec.

If you now compute how much space you need to store one 90 minute movie you will

recognize why compression is needed:

90 Minutes contain 90*60=5400 seconds. One 90 minute movie needs 5400*31,104,000=

16,796,160,000 bytes or 156 G Byte.

This astronomical bit rate can not b e handled by any comput.er system today. The

logical solution to this problem is digital image compression .

2.3 Lossless And Lossy Con1pression

Compression t.echniques are classified into two cat.egories loss less and lossy as shown in

figme[2.1]. Lossless t.echniqnes are capable to recover the original da t.a perfectly. These

algorithms are nsed to archive compnt.er da ta ,vhich have to recovered perfectly.

7

Ori ginal image data

Decomposi ti on or trans formation

L
o
s
s
I
e
s
s

Storage Device

L
o
s
s
y

Figure 2.1 : Basic elementt of lossey and lossless image compression

Lossy t echniques involve algorithms which recover only similar dat a to the original

one. The lossy techniques provide higher compression ratios, and therefore they are more

often applied in the image compression than lossless techniques.

The lossy compression algorithm make llse of t.he characteristic of the human eye,

because a picture contains some information which is not necessary for the pictnre quality.

The human visual system does not treat all the visnal information with equal sensitivity

For example, the eye is more sensitive for changes in the luminance than in the

chrominance. For this reason it suffies to transfer only one chrominance pixel U and

V for four luminance pixel Y. This indicates that four adjacent pixels have the same

color information but various brightness on t he display screen . These make it possible

to reduce the color information .

8

The human eye is also less sensitive to high frequencies. So it is a good idea to

t.ransfer the lower frequencies more exactly than t.he high frequencies or t.o clip the high

frequencies . This reduction is not exactly reversible . But because of the human eye

there are some possibilit.ies to cut high frequencies and to reduce the color information

wit.hout visible artifact.s.

2.4 JPEG

The first. st.andard for image compression was developed by the JPEG (Joint Photo

graphic Experts Group) committee in t.he eight.ies.

The JPEG committee was introduced by the ISO / IEC (International Standard

Organizat.ion / Int.ernational Electro technical Commission). The JPEG compression

algorit.hm is used for still image applications. The JPEG standard is targeted for fu ll

color still frames, achieving 15: 1 average compression. You can get a compression factor

up to 30 nearly without visible qualit.y difference. The JPEG standard provides four

modes of operation:

1. sequential DCT - based encoding in which each image component is encoded in a

single left-to-right and top-to bottom scan.

2. progressive DCT - based encoding in the image is encoded in multiple scan,

in order to produce a quick rough decoded image when the transmission time is

long. This encoding mode is often used in the World Wide Web to provide a quick

transmitted picture which gets bet.ter and better.

3. lossless encoding in which the image is encoded to guarantee the exact reproduc

tion. But the compression ration is only about 2:1

4. hierarchical encoding in which the image is encoded in multiple resolution.

The JPEG encoding is based on the transformation in the frequency domain using

9

the Discrete Cosine 'Il'ansform (DCT). T he compression is made by a quantization in

the frequency domain and this means that JPEG is a lossy compression technique.

2.4.1 Transformation Froln The Spatial Domain To The Fre-

quency D omain

The standardized image compression techniques transform a spatial domain into the

frequency domain. This transformation into t.he frequency domain exploits the spatial

correlation of the pixels by converting them to a set of independent coefficients. This

transformation is done on a block basis. The picture is divided mostly into 8*8 pixel

blocks and then these blocks are transformed using a 2-D transformation into the fre

quency domain.

The video compression algorithms use the discret.e cosine transform (DCT). The

DCT offers the advantage in comparison wit.h ot.her t.ransformations , that the coefficients

are all in real domain. There are other t.ransformations available, but in the JPEG and

MPEG standard the transformation is done by the DCT.

The forward 2-D DCT and the inverse 2-D rDCT are defined as follows:

DCT

F(u, v) = i * C(u) * C(v)* f~ f(j , k) * [cos (2*J+1t u
*7r] * [cos (2*k+1t n

*7r]

rDCT

F(J, k) = 1 ff C(u) * C(v) * [cos (2*j+hU*7r] * [cos (2*k+hV*7r]
4 j k 16 16

with

C(w) = {~ with w = 0

The result of the DCT is an 8x8 matrix with the frequency coefficient. In the value

at the upper left corner is the DC coefficient. The frequency increases to the right and

to the bottom.

Normally a picture contain many low frequency components. Mostly the coefficients

are concentrated in the upper left corner of a matrix.

10

After the transformation into the frequency domain the results of the DCT are quan

tized. The higher frequencies are more quantized than the lower frequencies, because the

human eye is not very sensitive for the higher frequency components. The result of the

quantization of higher frequencies is mostly zero. Because the high frequency coefficient

are more quantized as the low ones.

2.5 Quantization

A quantizer is essentially a staircase function that maps the possible input values into

a smaller number of output levels. In t.his way the number of symbols that need t.o

be encoded are reduced at the expense of introducing error in the reconstructed image.

The type and degree of quantization has a large impact on the final bi t rate and the

reconstructed picture quality of a lossy scheme. The individual quantization of each

signal value is called scalar quantization (SQ), and the joint quantization of a block of

signal value is called vector quantization (VQ). The selection of a quantizer is usually

based on the minimization of some distortion measure for a given average output bit

rate.

2.5.1 Scalar Quantization

As mentioned previously, scalar quantization (SQ) refers to the independent quantiza

tion of each signal value. The main advantage of SQ is its implementation simplicity and

optimal performance in many situation.

2.5.2 Vector Quantization

The joint quantization of a block of signal value is called vector quantization (VQ). In

VQ, an N-dimentional input vector X=[Xl,X2 , Xn], whose components represent the

discrete or continuous signal value, is mapped into one of N possible reconstruction

11

vectors Vi, donated by d [X , Yi 1 and is defined according to the application. The most

common distortion measurement is mean-squared (MSE), given by

dmse(X, Y) = ~ 2: (Xi - Yi) 2

The set Y is sometimes referred to as the reconstruction code book and its members are

called codevector s or templates. The codebook design problem is to find the optimal code

book (in the sense of minimizing average distortion) for given input signal statistics,

distortion measure, and code book size, N .

Hierarchical VQ

Compute the variance of an (N x N) block. If it. is above a given t.hreshold, divide it int.o

four(N/2 x N/2) block. Compute the variances of the four (N/2 x N/2) blocks. If all

or some of the variances of the (N /2 x N /2) blocks are above an other threshold, then

divide each (N/2 x N/2) block (that is, t.hose above t.he t.hreshold) into four (N /4 x N/4)

blocks. This is a variable block size and, hence, a variable vector dimension VQ reflecting

the image activity. Separate code book for each block size are to be designed and, of

course, stored at the encoder and decoder. Overhead by bits indicating the actual coding

mode need to be transmitted. This adaptivity improves the coding efficiency at the cost

of increased complexity.

2.6 Symbol Encoding

The last component in common compression algorithms is symbol encoding. i.e., mapping

of output symbols (values) resulting from the decomposition and / or quantization stages

into channel symbols. The mapping operat.ion is also referred to as noiseless coding,

lossless coding or data compaction coding. Symbol encoding may be as simple as using

fixed-length binary code words to represent symbols, or it. might lIS variable-length code

• words for better efficiency.

12

2.6.1 Fixed Length Codes

In some application it is desirable to use fixed length code words to minimize imple

mentation complexity or to satisfy certain channel constraints, such as the need for a

constant data rate. In fixed length coding, each source symbol is assigned a fixed length

code, where code length depends upon the number of symbols the source can generate.

The inefficiency of this type of coding results when the number of symbols is not a power

of 2. The variable-length coding is better choice in such cases .

2.6.2 Variable - Length Codes

Variable-length codes are efficient than the fixed-length codes in terms of bit rate but

they have complex implementation. Also, they are not su~table for applications requiring

fixed bit rate.

2.6.3 Run Length And Huffman Coding

After the quantization the 8*8 matrix contains many zero coefficients particularly in

the high-frequency part. These can be coded by the run-length coding efficiency. The

run-length coding produce a couple of nnmbers which represent the following:

The run-length coding counts the nnmber of zeros until a coefficient unequal zero

occurs. Then one pair of numbers is generated, the first value is the count of zero

coefficient and the second value is the value of the coefficient which is unequal zero

For example the run level code (5,20) represent the following 0 0 0 0 0 20.

For the run-length coding the 2-D 8*8 matrix has to be arranged to a I-D sequence.

This ordering is done by the so called Zig Zag scan way through the matrix. This Zig

Zag scan way orders the quantized DCT coefficient in ascending spatial frequencies from

the dc coefficient to the highest frequency coefficient . The frequency increases from the

left to the right of the result matrix and also from the top to the bottom. The Zig Zag

scan way is shown in Figure 1. The run-length coding is a lossless compression.

13

After the run-length coding each run-length couple is coded by an entropy coding.

The entropy coding is also known as Huffman or variable length coding.

The appearance probability P s of one single mn-length couple is investigated. The

run-length couple with the largest appearance probability is coded with a shorter bit

code then run-length couple with appearance probability. The optimum code length for

a symbol, Ls is given by [11] :

Ls= 10g2(1/ Ps)

The entropy, which is simply the average number of bits per symbol, is given by [11] :

Entropy = L: Ps 10g2 (1 / Ps)

The Huffman codes are constructed by pairing two symbols with the lowest probability

combining them to a branch of a tree. The branches of the tree are assigned a1 and aO

bit. The tree is developed until every symbol is covered by a branch of a tree. The

Huffman codes are constructed by containing the bit.s of the branches, start.ing from t.he

root and going back to the symbol to code.

The following example shows the results of the transformation to the frequency do

main, the quantization and the run-length coding.

* * * * * * * * * * 8*8 pixelblock: * * * * * * * * * *
130 125 133 136 139 149 135 137

119 132 150 150 135 128 124 122

135 136 127 120 122 117 133 137

88 106 133 138 140 134 126 104

142 151 142 134 116 120 125 140

120 113 118 148 165 149 147 130

129 139 141 127 124 120 129 150

132 126 122 121 134 147 157 149

Quantization Results:

14

132 - 1 - 1 0 0 0 0 0

-1 1 -1 0 0 0 0 0

1 -1 1 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

-1 0 0 0 0 0 0 0

0 - 1 0 1 0 0 0 0

0 1 2 0 0 0 0 0

Results of Run-length Coding:

(0, 132) (0, -1) (0, -1) (0 , 1) (0, 1) (0, -1) (I , -1) (0, -1)

(0, 1) (2, 1) (7, -1) (13 , -1) (I, 1) (10, 1) (0, 2)

These run-length couples are coded using the Huffman coding. In this example a

Huffman code is developed for these Run-length couples.

Run - level code Count Probability(P) Code

0, -1 4 0.266 1

0,1 3 0.200 01

0,132 1 0.066 00111

0,2 1 0.066 00110

1,1 1 0.066 00101

I, - 1 1 0.066 00100

2,1 1 0.066 00011

7, -1 1 0.066 00010

10,1 1 0.066 00001

13, -1 1 0.066 00000

• Table: Probability of the run-length couples

15

The Huffman code can be developed with the following tree shown in figure 2.2.

~r-----------------------\

~~----------------\

~1
@] }-

ITD-}-
[ill 0

ITIJ- 1 "\;-----.
f---.../O

lliJJ- 0

Huffman coding

Figure 2.2:

The run-length couples are coded as follows:

00111 1 1 01 01 00100 1 01 0011 00010 00000 00100 00001 00110 (50 Bit)

16

2.7 Wavelet based image coding

There are many techniques for image coding but, presently sllbband coding is the SllC

cessful one. DCT based transform coding was popular in 1980's due to less complexity

and effective bit allocation, so became the JPEG standard in image coding. JPEG image

suffers from blocking artifacts . Wavelet based subband coding avoids blocking at medium

bit rate, because its basis function have variable length. Wavelet based coder transforms

the image into subimages using two channel filter bank.

V1 LH

(LL) W I

HL HH
W 1 W 1

figure 2.3: Image decomposition: first stage of the 2-D dyadic DWT

The upper left subimage is obtained by low pass filtering in both horizontal and

vertical directions, represented by LL as in figure 2.3. The other subimages have high

frequencies. The algorithm will assign few bits to HH and many bits to LL. The LL

image is 4 to 5 time is iterated. These s1lbbands are q1lantized and t.hen scanned. These

17

scanned coefficients are coded using lossless compression and then transmitted or stored.

We will study in details of image compression using wavelet transform in chapter 4.

18

Chapter 3

Wavelet Analysis

In Fourier analysis frequency information can only be extracted for the complete duration

of signal f(t). Since the integral in the Fourier transform extends over all the time

t.herefore the information rises over whole the lengt.h of signal. If there is a local oscillation

at some point in f(t), will contribute to the calculated Fourier transform F(w). BuL its

location in the time domain will be lost.

f

Figure 3.1: Discrete time wavelet series .

19

This disadvantage is overcome in wavelet analysis because the wavelet transform has

shorter basis functions for the higher frequencies and longer basis function for the lower

frequencies as shown in figure 3.1, which provides an alternative way of breaking a signal

down into its constituent parts.

3.1 Dilation Equations

Now we will examine how the wavelets are generated from dilation equations. The basic

function of ¢(x) is a dilated version of ¢(2x). In dilation equation ¢(x) is expressed

as a finite series of terms involving ¢(2x). Each of these ¢(2x) terms in positioned at a

different place and different argument on the horizontal axis. The basic dilution equation

has a form

¢(x) = I>k4>(2x - k) (3 .1)
k

where c's are numerical constants.

It is very difficult to solve equation 1 directly to find out 4>(x) therefore we have to

construct ¢(x) indirectly. The simplest approach is to set up an iterative algorithm in

which each new approximation is calculated by the previous one.

the process of iteration is continued until 4>j(x) and 4>j-1(X) becomes almost same

(indistinguishable). Consider a box function 4>0 = 1 0::; x ::; l. The interval x = 0 to 1

has developed a stairless function over the interval x = 0 to 2. The added contribution

is shown in this figure [3.2] . A particular set of co-efficient is used as defined below

Co - (1 + v3) / 4 ,

C2 (3 - v3) / 4 ,

C1 = (3 + v3) / 4

C3 = - (v3 - 1) / 4 ,

these co-efficient generates (see later) D4 wavelet. The D stands for Daubechies who

first discovered their properties [10] .

20

If the iterative process is continued, the function ¢(x) approaches to limiting shape

as shown in figure (3.2) and is discontinuous in nature. By magnifying the figure, we

observed the graph has a fractal nature and its irregular out line remain always there.

We can get smoother function by adding more terms in the dilation equation (1). This

function ¢(x) is called scaling function and the corresponding wavelet function will be

constructed in the next section.

The scaling function ¢(x) generated by iteration follows this matrix scheme

Co

C1

C2 Co

C3 C1

[¢2] =
C2 Co

C3 C1

C2 Co

C3 C1

C2

C3

21

" '0
~

0 . 8

0.6

" 0.4
.~

0.
~ C.2

0.8

" 0 .6
'0
~

" 0 . 4
.~

1 0 . 2

..---

r--

'-----

J
Time

(a)

-0.2'----0 ___ -:--__ -=::-__ --'

Time

(c)

0.8

QJ
0 . 6

'0

3 0.4
.~

~

to.
.. ~ 0.2

0

-0.2

0 . 8

QJ 0 . 6
'0
~

.!:: 0 . 4
~ r 0.2

0

Time

(b)

O~----~~-~=-~

-0.2 '----0 ___ -:--__ ----':-__ --'

Time

(d)

Figure 3.2: (a) ¢(l)(t).(b) ¢(2)(t).(c) ¢(3)(t).(d) ¢(4)(t) . Generated by iteration

where Mr denotes a matrix of order (2r+1 + 2r - 2) x (2r + 2r- 1 - 2) in which each

column has a submatrix of coefficients CO C1 , C2 , C3 , positioned two places below of

its left submatrix. As the iteration increases, the number points increases on the graph

in sequence, 1, 4, 10, 22, 46, 2r+1 + 2 so that after eight iteration it reaches 29 + 28

- 2 = 766 with each point spaced 1 / 28 = 1 / 256 unit apart . This is not most efficient

method but it is simple.

3.2 Dilation Wavelet

Wavelet function is derived from the corresponding scaling function with same co-efficient

but in reverse order and with terms having their sign changed.

N -1

'ljJ(x) = L (_l)k Ck ¢(2x + k - N + 1) (3.3)
k= 0 .

22

where k is positive integer and N is the total number of co-efficient . Like scaling

function, it also retains the discontinuous and fractal nature but have a surprising shape

for the bases function. Suppose we want to generate 'ljJ(x) (wavelet function) from ¢(x)

just after single iteration then it is generat.ed by the following matrix scheme.

Co

C1

C2 Co

C3 C1

C2 Co
['ljJ2]

C3 C1

C2 Co

C3 C1

C2

C3

similarly

and so on where M3 is matrix of order 22 x 10

3.3 Condition for Wavelet co-efficient

A good set of co-efficient must satisfy the following conditions.
N -1
E Ck = 2

k= 0
N - 1

ii E(-l)kkm
k= 0

where m = 0 1 2 N / 2 -1 , , ,

iii

IV

N -1
E Ck Ck+2m = 0

k= 0
N -1
E C~ = 2

k= 0

m =1= 0

23

(3 .4)

2~-----'------~----~------~----~------1

i
1·5 --- -----f--.-..... --- ... --. -- - -.--.-... -- -- - -.

I
I . ------1---_·· -.-.------- .-.. ~ .- -------.- -.-.-.. -- .. ,"--" -:.- .----.----.. --.. -

---+------------:---- - --------+----- ----------: .-------- - --~-----------~-0·5

)(
0

~
- 0,5

- 1

I i ~ _____ I_~~~~_~J=_-=~:-~~=I~ -~ -... -~------
_________ 1.. _______ ... ____ ... 1 _____ _

I I
I I

- 1·5 __ _ + _____ .. ____ _ _1 .. _ .. ___ ._ "-" ---- --- --.. -.. .. ---.... ---- --.... i -----..

I '
- 20L---~--0~.5--------L-----~1~.5~----~2~----~2~.5~----~3

x

Figure 3.3: D4 wavelet from the scaling function

3.4 Discrete wavelet transforms

The DWT algorithm was discovered by Mallat [12] and is called Mallat 's pyramid al

gorithm or sometimes Mill at , tree algorithm. We shall approach the algorithm by con

sidering first its inverse. Suppose that the DWT has been computed to generate the

sequence

Suppose, for example, that we consider an expansion with the primary scaling function

¢(x) and wavelet of scale 0, 1 and 2. Then a will have (1 + 1 + 2 + 4) = 23 terms. In

order to include all the wavelets at any particular scale, the total number of terms in

the transform must always be a power of 2. Consider the case when there are only eight

t erms so that

(3 .5)

The first element ao is the ampli tude of the scaling function term ¢(x). Since ¢(x)

can be generated by iteration from a unit box over the integral 0 :::; x < 1 (see figure),

24

ao¢(x) can be generated by iteration s tarting from a box of height an . Suppose we chosen

a wavelet with four coefficients. Then the firs t step in the iteration is from (3.4)

Co

(/h =
C1

[aD]
C2

C3

The initial box function occupied from interval 0 :::; x < I , but we see in figure (3. 1)

that the first iteration extends over 0 :::; x < 2. If the part that lies outside the interval

is wrapped round to fall back into the unit interval, we get

On taking the second iterative step , without including wrap-around , we have, fro111.

(3.4) ,

. Co

C1

C2 Co

C3 C1 Co

C2 Co C1
¢ 2 = [aD]

C3 C1 C2

(3.6)

C2 Co C3

C3 C1

C2

C3

Allowing for wrap-around and adding terms at the same position in 0 :::; x < I , we

25

can check by multiplication t.hat. this is t.he same as

(3.7)

Notice how the left-hand matrix is formed, by taking a submatrix of order 4 x 2

from the left-hand matrix in (3 .6) and the11 transposing t.he C2 and C3 . This recipe also

applies for the matrix in (3.5) which is formed by transposing t.he same two elements

For the third iterative step, the calculation is

Co C2

C1 C3

C2 Co Co C2

¢3 =
C3 C1 C1 C3 [Co + C2] lao]

C2 Co C2 Co C1 + C3

(3.8)

C3 C1 C3 C1

C2 Co

C3 C1

and this generates the eight ordinates in the interval 0 :s; x < 1 for the wrap-around

scaling function. If we revise the definitions of the M mat.rices of t.he wavelet coefficients

so that

M1 = [Co + C2]
C1 + C3

of order 2 x 1 (3.9)

Co C2

lvI2 =
C1 C3

of order 22 x 2 (3.10)
C2 Co

C3 C1

26

Co C2

C1 C3

C2 Co

M3=
C3 C1

of order 2
3 x 22

C2 Co

C3 C1

C2 Co

C3 C1

then the algorithm for generating the contribution of ao¢(x) to f(x) is

f'P(x) = lVh M2 Ml 0,0

or, in diagrammatic form,

(3.11)

(3 .12)

(3.13)

where f'P(l : 8) means an array of eight elements that. represents the contribution of

ao¢(x) to f(x) at x = 0, 1/8, 1/4, , 7/8.

Ret.urning to the sequence (2), consider the second term, al ' This is the amplitude

of the wavelet function W(x) which is generated from a unit box by iteration as shown

in figure (3.5). The matrix operations for doing this are the same as for generating the

scaling function ¢(x) except that the first step involves replacing

Co -C3

C1
by

C2
(3.14)

C2 -C1

C3 Co

according to (3.4). The procedure for allowing for wrap-around is exactly the same

as for the scaling function .

Defining

G, ~ [~~: ~~' 1 (3.15)

27

The algorithm for generating the contribution of a1 W(x) to f(x) is

(3.16)

or in diagrammatic form,

(3.17)

The third term in (3 .5), a2, is the amplitude of \ i\T(2x). Instead of the second iteration

being reached by

Co C2

C1 C3 [-C3
- C, 1

C2 Co C2+Co

C3 C1

the first operation is omitted and we go straight to

-C3

C2

-C1

Co

Thereafter the iteration proceeds as before to get

-C3

C2

-C1

Co

[a2l (3 .18)

(3.19)

(3 .20)

The fourth term in (3.5), a3, is the amplitude of the translated wavelet W(2x - 1).

Allowing for wrap-around, the procedure for computing the contribution that this makes

to f(x) is exactly the same as for a2 except that the elements in the first matrix are

arranged in the order

(3 .21)

28

so that (3.20) becomes

1 (1 ,2) (1 : 8) = 1Vh (3. 22)

Combining (3.20) and (3.22) then gives

-C3 -C1

1(1,2)(1 : 8) = 1Vh
C2 Co

[:: 1 -C1 -C3

(3.23)

Co C2

or putting

-C3 -C3 -C1

G2 =
C2 C2 Co

-C1 -C3 -C1 -C3

Co C2 Co C2

we get

(3.24)

and, in a diagram,

[:: 1 "l f(l)(1 • 4) '!I f(l)(1 • 8) (3.25)

The remaining four elements of (3.5), al[, a5, a6, a7 are the amplitndes of wavelets

W(4x), w(4x-1), W(4x-2), w(4x - 3). Each wavelet has the elements [-C3 C2 -Cl colt

29

and so the single stage of calculation is

-C3 - C1

C2 Co

-C1 -C3 a4

f(2) (1 : 8) =
Co C2 a5

(3 .26)
-C1 -C3 a6

Co C2 a7

- C1 - C3

Co C2

or, diagrammatically,

a4

a5
~ f(2) (1 : 8) (3.27)

a6

a7

combining the results we get

we have the final diagram below:

(3.29)

a = [a(1) a(2) a(3 : 4) a(5 : 8)]

where a(1) = ao, a(2) = aI , a(3,4) = [a2 a3]t a(5,8) = [a4 a5 ~ a7]t, This is the

inverse of Mallat's tree algorithm [1. 2]. Now consider how to break down an arbitrary

function f(1 : 2n) into its wavelet transform a(1 : 2n). The matrix M and G follow the

orthogonality conditions, so we have

1 t - 11/1 jUr = I
2 r

30

G~ NIr = 0

~ Gt G = I 2 r r

Reversing the tree and taking transpose ofM and G we get the Mallat's tree algorithm.

We can decompose and reconstruct a discrete function in the same by defining a filter

Land H (low pass and high pass filter).

3.4.1 The filter matrices L & H

For a given vector f(x) = [f1 , f2 , f3 , fn] where n = 2j they may be equally spaced

values of a function f(x) on a unit interval. The goal is to decompose this vector at

different scales. At each new level the entries cut into half. The decomposition is

¢ (0) '-1 f = f + f +·····F

the details j1 is the combination of 2j 'wavelets and f ¢ is the multiple of the scaling

function cp.

The matrix L is the fine to coarse filter and it produces a vector with half as many

entries. The entries (Lij = C2i- j) of this filter are the recursion coefficient for the scaling

function. Rows 1, 2 and columns -1 , 0, 1, 2 are displayed with N = 3

The beautiful thing is that the high pass filLer H uses the same coefficient and in the

same way this filter is associated with wavelets \]i just as L is associated with the scaling

function the filter H is defined as follow

31

for i = 1, 2 and j = 1, 2 4

H ~ q Co -C1 C2 -C3 1
Co - C1 C2 -C3

These indices are used to match the Haar different are also possible. The important

points are

H L * = 0

L L * = I & H H * = I

and L * L + H * H = I

3.4.2 Decomposition

The decomposition of a discrete function f in to Mallat's Pyramid algorithm is as follow

starting from

faT i = J, ·1

and

t.he full decomposition is represented by a tree of filters

3.4.3 Reconstruction

The decomposition of discrete function at different scale can be recovered by starting

from aD and bO, ••••• bJ - 1 for j = 1, J

aj = Laj - 1 + H *{} - l

The reconstruction goes from the branches of the t.ree back to the root

° L ' L' 2 L' J a -t a1 -t a -t a = f

32

3.5 Wavelet and Multiresolution Analysis

Multiresolution will be described first for subspaces Vj and Wj . The scaling spaces Vj are

increasing. The wavelet space IIVj is the difference between Vj and Vj +l. The sum of V j

and Wj is Vj+l. Then these extra condit.ions involving dilation to 2t and translation to

t - k define a genuine multiresolution:

If f (t) is in Vj then f (t) and f (2t) and all f (t - k) and f (2t - k) are in

Vj+l.

In the end, one wavelet generates a whole basis . The functions w(2j t - k) come by

dilation and translation (all j and all k). There are six steps toward this goal, and we

take them one at a time:

1. An increasing sequence of subspaces Vj (complete in L2) .

2. The wavelet subspace Wj that gives Vj + Wj = Vj+I

3. The dilation requirement from f (t) in Vj to f (2t) in Vj+l

4. The basis <p (t - k) for Vo and wet - k) for Wo

5. The basis <p (2 jt - k) for Vj and w(2jt - k) for Wj

6. The basis of all wavelets w(2jt - k) for the whole space L2

3.5.1 A Scale Of Subspaces

Each Vj is contained in the next subspace Vj+l. A function in one subspace is in all the

higher (finer) subspaces:

Vo C VI ... C Vj C Vj-l-l C

A function f (t) in the whole space hf.\,s a piece in each subspace. Those pieces contain

more and more of the full information in f (t). The piece in Vjis fj (t). One requirement

on the sequence of subspaces is completeness .

fj (t) _ f (t) as J-OO

33

3.5.2 The Dilation Requirernent

So for we have an increasing and complete scalar of spaces. Each is Vj contained in

the next Vj+1.For multiresolution, the crucial word scale carries an additional meaning.

Vj+l consists of all re scaled functions in Vj+l

Dilation : f (t) is in Vj <===> f (2t) is in Vj+l'

In addition to completeness as j ~ 00, we require emptiness as j ~ -00 :

n Vj = {O} and U Vj = whole space.

Emptiness means that II fj(t) II ~ 0 as j ~ -oo.Completeness means that fj(t) ~

f(t) as j ~ oo.The detail:

6. fj =fj+1 - fJ belongs to Wj and we still have

Vj ® Wj = Vj+l

This can be orthogonal sum, with 6.fj orthogonal to h It must be a direct sum, with

Vj n Wj = {O}. The construction of f(-t) from its details 6.fj can st.art at j = 0 as before,

or it can start at j = -00 :

3.5.3 The Translation Requirement And The Basis

Instead of rescaling f(t),we now shift its graph. This is translation, and it leads t.o

the fundamental requirement of time-invariance in signal processing. The subspaces are

shift - invariant:

If fj(t) is in Vj then so are its translates fJ(t - k).

Suppose f(t) is in Vo.Then f(2t) is in VI and so is f(2t - k). By induction, f(2 jt) is

in Vjand so is f (2 j t - k) .Dilation and translation are now built in.

34

Chapter 4

Image Compression Using Wavelet

Transform

The main obstacle for many application of digital images , i.e,acquisition, data storage,

printing, and display, is the huge amount of data required to represent an image di

rectly. Such an image needs to be compressed for storage or transmissions. The actual

compression ratio can vary from 100: 1 to 2: 1 depending on the specific application and

encoder/decoder complexity. State-of-the art techniques can compressed typical images

by a factor of 10 to 50 without significantly effecting the image quality, depending on

the technique applied. There are many techniques for image coding, we use the most

successful, i.e,wavelet based subband image coding that avoid blocking artifact (which

is the main disadvantage of JPEG standard) at medium bit rate, because the variable

length of its basis functions.

4.1 Subband Coding

Subband coding (SBC) is another form of frequency decomposition. In SBC, a signal is

decomposed into a number of equal- or unequal-frequency bands using filter banks that

have been developed recently [13, 14, 15,]. In fact by using perfect reconstruction filter

35

banks [5], the original signal going through the frequency decomposition-subsampling

interpolation-synthesis process can be fully recovered. The philosophy behind SBC is

that coding techniques compatible with the frequency bands can be applied. signal

components in high-frequency bands can be either dropped out or coarsely quantized.

Subband coding is also ideally suited for progressive image transmission (PIT) as bits

related to lower bands can be transmitted first , followed by those related to the upper

bands.

4.2 Subband Image Coding

A popular approach to subband image coding [16] is to map the image into four equal

sub bands in the 2D frequency domain as shown in figure 4.1. In general, a transform

(such as DCT) is applied to the lowest subband, followed by quantization and VLC. The

remaining subbands are coarsely quantized.

I

HH LH LH HH

HL LL LL HL

~

HL LL LL HL fx

HH LH LH HH

FOUR EQUAL SUBBANDS

Figure 4.1: Mapping of an image into four equal sbbands in the 2-D frequency domain

(L : low frequency, H: high frequency).

36

Vertical frequency

4 6

1 2 3
r 5 r
0-m
=>
0.

Horizontal frequency

Figure 4.2: Unequal subband decomposit.ion proposed by Bellcore for the ATM /

SCONET / H-4-ISDN HDTV project [17J

4.3 DWT And Subband Coding

The DWT is known to be generated by a cascade of filter banks and the DWT is essen

tially the well-known subband decomposition [18]. The advantages of the DWT comes

from the trade-off between spatial and frequency resolution, as the DWT has shorter basis

functions for the higher frequencies as shown in the fig. Therefore, DWT has a versatile

time-frequency localization due to a pyramid like multiresolution decomposition.

The 2-D wavelet transform is implemented independently, first in the horizontal di

rection and then in the vertical direction [12]. This method of applying the DWT to

a two dimensional signal that is sampled on a rectangular lattice is called the dyadic

2-D DWT. The dyadic 2-D DWT decomposes the original image into four subbands, as

shown in figure 4.3(a).

37

Y1
(LL) W1

W1 W1

1
Fv

~ Fh

V3 ~
r--
~ VI/2

W3
W1

VI/2 VI/2

W1 W1

Figure 4. 3: Image decomposition (a) first st age of the 2-D dyadic DWT (b) third stage

of the 2-D dyadic DWT. V and W mean subspaces and difference subspaces,

respectively.

One of the subband contains all the low-pass information (LL) and another all the

high-pass information (HH) . The other two subbands are a horizontal high-pass band

containing vertical low-pass information (LH) and a vertical high-pass containing hori

zontal low-pass information (HL). For a full DWT the decomposition is repeated several

times on the LL part [19]. Fig.4.3(b) shows the decomposition of the image after three

iterations. There are a total of ten sub-images, which are used to encode the original

image. V and TtV were defined as subspaces and spaces, respectively. This decomposition

38

provides sub-images corresponding to different resolution levels and orientations.

Figure 4.4 shows the analysis section of a two-dimensional (2D) separable filter bank,

where the first image rows are passed through the 2-channel filter bank and then, the

columns are processed. The analysis section can be viewed as a 2 x 2 transform applied to

the image (note that each subband has one fourth of the samples in the original signal).

Also, the synthesis section can be viewed as a 2 x 2 inverse transform. Note that only

the low-pass subband is connected to next stage transform. The inverse transform is, of

course, accomplished by reversing the paths and the transforms.

To reconstruct the image from the subbands, one may choose the set of low-pass and

high-pass filters shown in figure 4.4, so as to provide perfect reconstruction.

Input
image

<
Verii cal

) < Horizontal >

Figure 4.4: One step (first level) of a 2-D wavelet decomposit.ion.

39

4.3.1 Entropy Coding:

After bit allocation and quantization, we have subimages with discrete levels represented

by integers. How do we store or transmit these subimages? Many high pass coefficients

are zero after quantization. These coefficients should be grouped so that the entropy

coder can take full advantage of long strings of zeros. This is accomplished by scanning.

Run-length coding or Huffman coding or a combination should be used to reduce

the redundancy of the images . We will discuss the baseline entropy coder which is a

combination. JPEG also uses the baseline coding method.

4.3.2 Scanning Of The D iscrete Wavelet Coefficients:

To demonstrate scanning, consider the three level wavelet transform in Figure 4.5. Sub

band 2,5 and 8 are highly correlated since 2 is the coarse approximation of 5 and 5 is

the coarse approximation of 8. Suppose the pixel at the upper left corner of subband 2

is zero. Then it is very likely that the pixels in a 2 x 2 shaded square of subband 5 are

zero. Similarly, the pixels in a 4 x 4 shaded square of subband 8 are probably zero.

One can these group pixels into an "AC sequence" of length 21(= 1+4+16) by vertically

scanning the shaded squares. Figure also shows the scanning patterns of subbands 3, 6

and 9 (horizontal) and for subbands 4, 7 and 10 (diagonal) . When the original image

has size 32, the 16 pixels in each subband2, 3, and 4 give 48 AC sequences. The low

frequency band is scanned horizontally and grouped into the DC sequence of length 16.

This scanning method is similar to the zero-tree coder proposed by [Shapiro].

40

---. AC Sequence (Verti ca l)

8 1-+1 1--+1---1
I I I .

"-10.

AC Sequence (Diagonal)

H t--I ------i

I I I . I I I .

Figure 4.5: Scaning method used in the discrete wavelet decomposition.

4.3.3 Sequential Baseline Coding:

After scanning the quantized subimages, we have a set of DC and AC sequences to be

stored. The baseline coder takes advantage of the correlation in the AC sequences . This

algorithm combines Sequential Baseline Coding and I-Iuffman entropy coding. The basic

principle is similar to the JPEG coder, but does not restrict to the DCT.

Coding Of The A C Sequence:

The sequence 9 0 0 2 0 1 0 0 0 - 3 0 0 3 0 - 1 - 1 has strings of zeros interlacing

with nonzero's. An efficient representation remembers the number of zeros before each

nonzero. Symbol-l is the pair (runlength, size) where runlength specifies the number

of preceding zeros. Size determines the number of bits to encode the current nonzero .

Symbol-2 gives the (amplit'ude) of the nonzero: Size = n corresponds to amplitude less

than 2n(but not less than 2n - 1).

41

This representation of the example gives a string of Symbol-i and Symbol-2:

(0,1)1 (2,2)2 (1,1)1 (3,2)-3 (2 , 2)3 (1 , 1)-1 (0,1)-1 (0,0):

Note the terminal symbol-i (0, 0) at the end. Also (1, 1) and (0, 1) and (2, 2)

occur twice in the string. Huffman entropy coding as shown In figure 4.6 can exploit this

redundancy in symbol-i .

r-- Symbol-1
1 Huffman e ntropy
~ (Runlength , size) --7 coding 0

0 - - --_ ._--
2

S ymbol-2
0 --7 1 ~ (Ampli tud e)

Bina r y coding
- 1
'-

Figure 4.6: Steps in a sequential baseline coder.

Coding OJ The DC Sequence:

DC coefficients measure the average energy of the input signal. There are usually a strong

correlation between neighbouring coefficients. For efficiency, we use differential coding:

save the first coefficient and then the differences between successive coefficients . These

are coded as for AC coefficients. Since one would not expect long zero strings, runlength

is not used. Symbol-i only gives size.

Three error measures are often used to compare coders and perceptual quality:
m - 1 n - 1

Mean Square Error MSE = ~n I: I: 1 x(m,71,) - x(m, 71,) 12
771,= 071,= 0

Peak Signal Noise Ratio PSN R = 10 10glOU;l~~)

42

Bit Rate 0.2 0.25 0.3 0.4 0.5 0.6 0.6 0.8 0.9 1.0

Lena PSNR 32.6 33.5 34. 1 35.5 36.4 37.0 37.8 38.5 39.0 39.6

Barbara PSNR 25.8 26.9 27.8 29.1 29 .9 31.6 32. 1 33 .1 33.7 34.8

Goldhill PSNR 29.8 30.4 31.0 32.0 32.9 33 .8 34.1 34.9 35.6 36.1

Table 4. 1: PSNR and Bit rate of Lena, Barbara and Goldhill

Maximum Error M axError =Maxl x(m, n) - x(m, n) I
The image is M x N . The MSE and PSNR are directly related, and one normally

uses P SNR to measure the coder 's objective performance. At high rate, images with

PSNR above 32 db are considered to be perceptually loss less [5J. At medium and low

rates, t he PSNR does not agree with the quality of the image.

43

41

40

39

38

J7

~ 36

~ 35
en
Po

34

JJ

......... :' ~

wavelet .~·
...........• ~~'~~

....... .;.--< : ~ : :
---- _----- JPEG : :

. • 7~
/

........... i··

32

31

0.2 0.3 0,4 0.5 0,6 0,7 0,8 0.9 1,0 1. 1

bittate (b/p)

Figure 4.10: Comparisons of wavelet based image coding and JPEG) in bit.rate and

PSNR for the 512 x 512 Lena image.

41,-----~--~----~--~----~----~--~----~--~

40

39

.. , ~
~ .

38
...... .. -~~-.-. :.

37
36

35

i 34 i 33
Po 32

31

30

29
28
27

.' : ~
'~: ... '

. C;oldlull .•. ..;;?.. .. ,.,... ' . . .
........................ ~

. :~~~~~--: ..

26
251-~--r-~-r~--+-~-T--.-~~-,r-~-r~--+-~-4

0,2 0,3 0,4 0,5 0,6 0,7 0, 8 0,9 1,0 1,1
bitrate (b/p)

Figure 4.11: Comparisons of wavelet based image coding) in bitrate and PSNR for the

512 x 512 Lena) Barbara and Goldhill images.

47

14 ~
13· ; ; ;

12 -
,

• • • • • • · t o •• • ••• • • • • • ••• • •• •• ~ •• • • • • • • • • • • • •• •• • •• · . . 11 · , . · , . · , . · . .
10 "" ; ; -. ,

, , , .
I , • I

, . . .
, . , . ,
I I , , ,

. • • • .• • ••• •• • I •••• • • .. - ••• ~ •• • • • •• • • • •• ' ,' • •• • • • • • • • • , • • • • • •. . • r •• • • • ••

~ 8
: Barbara :

.. '' ' ' . · . · . · . · .
.. J • • . •.. •• • •. • ••• • •••• _ ..

7 . .
..... ·· : ·~ol~hlll : · .~ :. ' .

6 : " .:. . .'~. .: . . : ':--",-~ . <
5 ~ : L~n~.j ; ... ~~: :~._ r·· .. ~ ----- ' -------
: .•.•.•••••••.•. :~.. ! .•••• ;; -~~---->~-

· . . . ----'--~:.~
, I I I · . , ,

2 +-~-r'~--~' ~~.--r-~.~--r-~~~~--~

0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0
Bitrate

Figure 4.12: Comparisons of wavelet based image coding, in bitrate, RMS ell"Of, for tile

512 x 512, Barbara, Lena, and Goldhill images

4.5 R eferences

1. ISO / IEC CD 10918-1 Digital Compression and Coding of Continuous- tone sti ll

Images , Part 1: Requirements and Guidelines, March 15, 199 1.

2. ISO /IEC DIS 11172, Coding of Ivloving Pictures and associated Audio for Digital

Storage Media up to about 1.5 Mbits/s, 1992.

3. K. R. Rao and P.Yip , Discrete Cosine Transform. New York: Academic Press,

1990.

4. Y. Huh, J. J. Hwang, and K. R. Rao, Block wavelet transform coding of images

using classified vector quantization, IEEE Trans. on circuits and system for Video

Technology, Vol. 5, pp. 63-67, Feb. 1995.

5. G. Strang, T . Nguyen , Wavelets and filter banks, Welle-sley-Cambridge Press, 1996.

6. Y. Meyer, Wavelets: Algorithms and applications: SIAM,1993.

7. M. Vetterli and J . Kovacevic, Wavelets and Subband Coding, Prentice-Hall,1995.

8. G. W. Wornell, Signal Processing with Fractals: A Wavelet-Based Approach, Prentice

Hall,1995 .

9. C. K. Chui, ed ., Wavelets: A Tlltorial 111 Theory and Applications, Academic

Press,1992.

10. 1. Daubechies, Ten Lectures on ·Wavelets, SIAM,1992.

11. K. R. Rao and J. J. Hwang, Techniques and Standard for Image, Video and Audio

Coding, Prentice-Hall,l996.

49

12. S. G. Mallat, "A theory of multiresolntion signal decomposition: The wavelet repre

sentation, " IEEE Trans. on Pattern Anal. and Mach. InteL, Vol. 11, pp. 674-693,

July. 1989.

13. P. P. Vaidyanathan, "Multirate digital filters , filter banks , Polyphase networks, and

applications: a tutorial)) Proc. IEEE, Vol. 78, pp. 56-93, Jan. 1990.

14. H. Gharavi and A. Tabatabai , "Subband coding of monochrome and color images,

" IEEE Trans. Circuits Systems, Vol. 35, pp. 207-214, Feb. 1988.

15. M. Vetterli "A theory of Multirate filter banks , " IEEE Trans. Acoust ., Speech

and signal Process., Vol. ASSP-35, pp. 356-372, Mar. 1987.

16. J. W. Woods (Editor), Subband image coding, Norwell , MA: Kluwer Academic,

1991.

17. P. E. Fleischer, C . Lan, and M. Lucas, "Digital transport of HDTV on optical

fiber, " IEEE Commun. Magazine, Vol. 29, pp. 36-41, Aug. 1991.

18. M. Vetterli and C. Herley, "Wavelets and filter banks: Theory and Design, " IEEE

Trans. on Signal Processing., Vol. 40, pp. 2207-2232, Sep. 1992.

19. Yong Huh and J. J. Hwang, " The New Extended JPEG Coder with Variable Quan

tizer Using Block Wavelet Transform," IEEE Transactions on consumer Electronics,

Vol. 43, No.3, August 1997.

20. Zixiang Xiong, Ph.D, Thesis University of Illinnois at Urbana-Champaign,1996.

50

Appendix

IIENCODE.cpp

"include <stdio .h>
#include <stdarg.h>
#include <stdlib.h>
#incll.lde <math.h>
#include <assert.h>
#include <iostream .h>
#include <fstream.h>
#include - trans .hh"
~include "coeffset . hh "
*incl ude 'allocr . hh'
'include 'quant.hh'

void compress (Image *image, Wavelet *wavelet, int nStages,
int capacity, Real p , Real *weight,
int paramPrecision , int budget, inc nQuant,
Real rninStepSize, char *filenarne, int monolayer) ;

int:.
maln

void)
(

char input_nameISO) , output_name I SO) ;
Real Ratio;

Hfdef PG11

printf('Please enter the Input file name\n '),
scanf('%s ', &input_name) ;
princf("Please enter the Output file name\n"),
scanf ("%5 ", &output_name);
printf("Please enter the Compression Ratio\n"),
scanf ('%f', &Ratio) ;

char *in Elle_name = input_name;
char "'Ducfile_name = output_name;
Rea l ratio = Ratio;

II Load the image to be coded
Image ""'image = ne\ol Image (lnflle_name);

encode.cpp

int budget = (int) {(Real) (image->hsize*image->vsize)/ratio); II (assumes 8 bit pix
els)

printf (' Reading %d x %d image %s, writing %s\nCompression ratio %g , l\n',
image->hsize, image->vsize, infile_name, outtile_name, ratio);

;:else
if (argc < 6)

fprintf (stderr,
'Usage, %s [imagejlvlidthl [heightjjoutputjlratioj\n ',
program) ;

fprintf (stderr ,
"image, image to be compressed (in RAW format) \n ');

fprintf (stderr,
·width, height: width and height of image to be compressed \n M);

fprintE (stderr,
·output : name of compressed image\ n-);

fprintf (stderr,

-rati o: compression ratio\n-);
exit(O) ;

char *infile_name = argvllj ;
int hsize = a t oi (argvI2)) ;
int vsize = atoi(argvI3j);
cha r *outf il e_name = argv I4);
Real ratio = atof(argvISI) ;
in t budget = (int) ((Real) (hsize*vsize) / ratio); II (assumes 8 bit pixels)
printE (-Reading %d x %d image %s, writing %s\nCompression ratio %g : l\n - ,

hsize, vsize, infile_name, ouctile_name, ratio) ;

II Load the image to be coded
Image *image :;; new Image (infile_name, hsize, vsize);

#endif

II Create a new wavelet from the 7/9 Antonini filterset
Wavelet Ywavelet :;; new Wavelet (&Antonini) i

II Coding parameters
Real p = 2 . 0;
int nStages :;; 5;
int capacity:;; 512 ;
int paramPrecision 4 ;
int nQ1Jant = 10;
Real minStepSi ze :;; 0 . 05;
int monolayer :;; FALSE;

II Exponent for LAp error metric
II ~ of stages in the wavelet transform
II capacity of histogram for arithmetic coder
II precision for stored quantizer parameters
II # of quantizers to examine for allocation
II smallest quantizer step to consider
1/ TRUE for non-embedded uniform quantizer
II FALSE for multilayer quantizer

Real *weight :;; 1/ perceptual weights for coefficient sets
new RealI3*nStages+l] ;

I I for nov! give all sets equal weight
for (int i :;; 0; i < 3*nStages·l: i++)

weightlil = 1.0;

compress (image , wavelet, nStages, capacity, p, weight,
paramPrecision, budget, nQuant , minStepSize, outfile_name,
monolayer,;

delete II weight;
delete image;
delete wavel et ;
return 0;

void compress (Image *image , Wavelet *wavelet, int nStages,
int capacity, Real p, Real *weight,
int paramPrecision, int budget, int nQuant ,
Real minStepSize, char Yfi lename, int monolayer)

int i;
/1 Compute the wavelet transform of the given image
\'Javel e tTrans Eo rm Y tr ans fo rm

new WaveletTransfoDm (wavelet, image, nStages);

II Fo r each subband allocate a CoeffSet , an error met ric, an
/1 EntropyCoder, and a Quantizer
int nSets :;; transform->nSubbands ;
CoeffSet W*coeff :;; new CoeffSet* InSets];
ErrorMetric **err :;; new ErrorMetric w InSets];
EntropyCoder **entropy :;; new EntropyCoder W InSets];

Quantizer w·quant new Quantizer* InSets);

for (i 0; i < nSets; i+~)

err[iJ new LpError (pJ;

if (mono layer J (

J

II Use uniform quantizer and single layer escape coder for each
I I subband
entropy[iJ = new EscapeCoder (capacitYJ;
II Assume all subbands have pdf ' s centered around 0 except the
II low pass subband 0
quant[i J

else (

new UniformQuant ((MonoLayerCoder *)entropy[l),
paramPrecision, i != 0, err(i]);

II Use a layered quantizer with dead zones and a layered entropy
' II coder for each subband
entropy [iJ = new LayerCoder (nQuan t, i != 0, capacityJ;
I I Assume all subbands have pdf's centered around 0 except the
II low pass subband 0
quant [iJ = new LayerQuant «MultiLayerCoder *Jentropy[iJ,

paramPrecision, i != 0, nQuant , err{i]);

II Partition the wavelet transformed coefficients into subbands -
II each subband will have a different quantizer
coeff[iJ = new CoeffSet (transfor m->subband(i),

transform- >subbandSizeJiJ, quant[iJ);

II For each sub band determine the rate and distortion for each of
II the possible nQuanc quantizers
coeff[il ->getRateDist (nQuant, minStepSizel;

Allocator *allocator = new Allocator ();
II Use rate l distortion information for each subband to find bit
II allocation that minimizes total (weighted) distortion subject
II to a byte budget
budget -= nSets w 4; II subtract off approximate size of header info
allocator ->optimalAllocate (coeff, nSets, budget, TRUE, weightJ;
printf ("Target rate = %d bytes\n" , budget);
II Display the resulting allocation
allocator - >print (coefE, nSets) ;

I I Open output file
ofstream outf il e (fi l ename, ios"out lias, ,trunc I ios"binaryl;
if (!outfile) (

error (· Unable to open file %s·, filename);

II Create 1/0 interface object for arithmetic coder
Encoder wencoder = new Encoder (outfile);

II Write image size to output file
encoder->writePositive (image - >hsize);
encoder->writePositive (image->vsize);
II printf (·hsize = %d, vsize = %d\n-, image->hs ize , image->vsize);

for (i = OJ i < nSetsj i++) {

/ / \-!rite quantizer parameters for each subband to file
coeffliJ->writeHeader (encoder , alloc ator->precision liJ);

for (i 0; i < nSets; i++) (

enc~de·sp:p
II Quantize and write entropy coded coef ficients for each subband
coeff[il->encode (encoder, alloca t or->precision[ill;

II Flush bits from arithmetic coder and close file
encoder->flush [I;
dele t e encoder;
outfile,close ();

1/ Clean up
for (i = 0; i < nSets; i++J [

delete err [i 1 ;
delete entropy[il;
delete quantliJ;
delete coeff[iJ;

delete [J err;
delete [I entropy ;
delete [J quant;
delete [J coef f;
delete allocatorj
delete transformj

#include <stdio .h>
#include <stdarg . h>
.include <stdlib.h>
'include <math .h>
#include <assert . h>
~include <iostream . h>
#include <fstream.h>
#include - trans . hh ·
#include · coeffset . hh M

'include "allocr.hh"
'include "quant.hh "

void decompress (Image ~~image , Wavelet *wavelet, int nStages,
int capacity, int pa ramPrecision, char *filename,
int nQuant , int monolayer) i

int
main

void)
(

char i npucfile[50], output_file[50];

printf("Pl ease Enter The Coded File\n "] ;
scanf (" %s ", &inp'Jt_ f He) ;
printf ("Please Enter The OUtpu t File\n ") ;
scanf (" %s ", &output_f i leI ;

char ~infile_name = input_fil e ;
char *olJtfile_name = OlJtput_fil e ;

printf (-Read ing compressed image %s, writing %s\ n\n ",
infile_name, outfile_ nama) ;

II Create a new wavelet from the 7/9 Antonini fil te rset
Wavelet ""wavelet = nevJ \"/avelet (&Antonini);

1/ Coding parameters
i nt nStages = 5 ;
int capacity = 512;
int paramPrecision = 4'
int nQuant = 10;
i nt monolayer = FALSE;

I mage *reconstruct;

/1 # of stages in the wavelet transform
1/ capacity o f histogram for arithmetic coder
1/ precision for stored quantizer parameters
1/ # of quantizers to examine for allocation
II TRUE for non - embedded uniform quan ti zer
/1 FALS2 for multilayer quantizer

decompress {&recons truct, wavelet. nSta ges , capacity, pa ramPrecis ion,
infile_name, nQuant, monolayer} ;

i ifdef PGM
reconstruct->sa vePGM (ou tfile_name) ;

#else
reconstruct->saveRaw (out file_name) ;

#endif
delete reconstruct;
delet.e wavelet;

return 0;

decode.cpp

void decompress (Image **image, Wave let ~wavelet , i nt nStages,
int capacity, int paramP recision, char *filename,
int maxQuant, int monolayer)

int i;

II open compressed image file
ifstream infile (filename , ios, ,in I ios"nocreate I ios, ,binary);
if (! infile) (

error (MUnable to open file %s ·, filename):

1/ Create 1/0 interface object for a r ithmetic decoder
Decoder *decoder = new Decoder (infile);

II Read i mage dime nsions from file
int hsize = decoder->readPositive ()i

int v size = decoder->readPositive () ;
I I printf ("hsize = %d, vsize = %d\ n ", hsize, vsize);

VJaveletTransform * transforrn. =
new WaveletTransform (wavelet , hsize, vsi ze , nStages);

// For each subband allocate a CoeffSet, an En t ro pyCoder, and a
II Quanti zer (don't need to know anything about errors here)
int nSets = transform->nSubbands ;
CoeffSet *""coeff = new CoeffSet* (nSetsl;
EntropyCoder *"'en tropy = ne\o! EntropyCode r* (nSet.s] ;
Quantizer **quant. = ne\"! QIJantizer* (nSets];
II Quantizer precision for each subband
int *precision = ne\o..' int [nSets] ;

for (i = 0; i < nSets ; i++) {
if (mono laye r) (

II Use uniform quanti zer and single layer escape coder for each
II subband
en tropy[i) = ne w EscapeCoder (capacity) ;
1/ ASSllme all subbands have pdf's cen t ered around 0 except the
II low pass subband 0
quant(i] = new UniformQuant.

((Mono LayerCoder *)ent.ropy(ij, pa ramPrec isi on, i ! = 0);
else (

en tropy lil = new LayerCoder (maxQuant , i != 0, capacity) ;
I I Assume all subbands have pdf' s centered around 0 e:i:cept the
II low pass subband 0
quant [i) = new LayerQuant

((Multi LayerCoder *)entropy[i j, paramPrec i sion. i != 0, maxQ1lant);
}

II Indicate that each set of coefficients t o be read corresponds
II t o a subband
coef f[ij = new CoeffSet (tr ans fo rm->subband (ij,

transform->SllbbandSize [ii, quant {i J) ;

for (i = 0; i < nSets; i+-t-) {
// Read quantizer parameters for each subband
coeffliJ->readHeader (decoder, precision[i1);

for (i 0 ; i < nSets; i++) {

II Read, decode, and dequantize coefficients for each subband
coeff[i]->decode [decoder, precision[i]);

II Close file
del ete decoder;
inf ile. close [) ;

I I Clean up
for (i ;;;; 0; i < nSet.s; i++) {

delete entropy[i);
delete quant [i) ;
delete coeff [i) ;

delete [) entropy;
delete [) quanti
delete [) coeff ;
delete [) precision;

II Allocate image and invert transform
-image;;;; new Image (hsize, vsize);
transEorm->invert (*image);
delete transform;

.decode.cpp

I' Allocato . cpp

#include <stdio.h>
#include <iostream.h>
iinclude <math . h>
iinclude "global . hh"
iinclude "entropy .hh "
iinclude "quant . hh "
#include ·coder.hh
!include "a llocr.hh "

Allocator , , Allocator ()
{

precision NULL ;

Allocator , , -Allocator ()
(

if (precision !; NULL)
delete (J precision ;

void Allocator : :resetPrecision (inc nSets)
(

if (precision !;;: NULL)
delete [J precision ;

precision;;: new int [nSets1;
for (inc i ;;: 0; i < nSecs; i++J

precision(i) ; 0;

void Allocator: :optlrnalAllocate (CoeffSet ~~coeff, int nSets,
int budget, int augment, Real "'weight)

Real bi tBudget a'budget;

Real lambda, lambdaLow, lambdaHigh;
Real rateLow, rateHigh, c1jrrentRate;
Real distLo,J, distHigh, currentDist;

resetPrecision (nSets);

lambdaLow = 0.0;
alloc ateLambda (coeff, nSets, lambdaLow, rateLow, distLow, weight);
if (rateLow < bitBudget) II this uses the largest possible # of bits

return; 1/ -- if this is within th e budget, do it

lambdaHigh = 1000000.0;
Real lastRateHigh = -1;
do (

II try to use the smallest possible" of bits
allocateLambda (coef(, nSets, lambdaHigh, rateHigh , distHigh, weight);

a11ocato.cpp
II if this is still> bitBudget, try again wI larger lambda
if (rateHigh > bitBudget && lastRateHigh != rateHigh) (

lambda Low = lambda High;
rateLow = rateHigh;
distLow = distHigh;
lambdaHigh *= 10.0;

while (rateH igh > bitBudget && lastRateHigh != r ateHigh);

II give up when changing lambda has no effect on things
if (las tRateHigh == rateHigh)

return;

II Note rateLow will be> rateHig h
if (rateLow < bitBudget)

error (-Failed to bracket bit budget
budget, rateLow, rateHigh) ;

while (l ambdaHigh - lambdaLow > 0 . 01)
lambda = (lambda Low + lambdaHigh) 12 .0;

%d: rateLow %g rateHigh %g\n" ,

allocateLambda (coeff, nSets, lambda, currentRate, currentDist, weight);

if (c1.lrrentRate> bitBudget)
lambda Low = lambda;

else
lambdaHigh = lambda;

if (currentRate > bitBudget)
lambda = lambdaHigh;
allocateLambda (coett, nSet.s, lambda, current.Rat.e, currentDist, y.,·eight);

if (augment)
greedyAugment (coefE, nSet.s, bit.Budget.-current~at.e, weight.) ;

void Allocator: :allocateLambda (CoeffSet **coeff, inc nSets,
Real lambda, Real &opcimalRate,
Real &opt.imaIDist, Real *t,.leighc)

inc i, j;
Real G, minG, minRate, rninDist;

optimalRate optimalDist 0.0;

II want. to minimize G distortion + lambda '* rate

II loop through all rate-distortion curves
for (i 0 ; i < nSets; i+~)

minG = minRate = minDist = HaY-Real;

for (j = 0; j < coeff(i]->nQuant; j++)

------------*1

G = weight(i]'coeff(i]->dist(j] + lambda' coeff(i)->rate(j];
if (G < minG) (

minG = G;
minRate = coeff{iJ->rate(j];
minDist = weightii)*coeff(i)->dist(j) ;
precision!i] = j;

optimalRate
optimalDist

minRa te;
minDist.;

void Allocator::greedyAugment (CoeffSec **coeff, int nSets,
Real bitsLeEt, Real 'weight)

int bestSet , newPrecision = -1;
Real de lta, ma>:Delta, bestDel taDist, bestDeltaRate 0;

do (
bestSet = -1;
ma xDel ta = 0 ;

// Find best coeEE se t t o augmen t
for (int i = 0 ; i < nSets; i++) {

Eor (int j = prec ision(ij +1 ; j < coeff[ij->nQuant; j++) (
Real deltaRate = coeEElij->rateljj -

coeffli] ->rate{precis ion liJ] i
Real deltaDist = -weightlil*(coefflij - >distlj l -

coefflil->distlprecisionlil I) ;

if (del t aRa t e != 0 && deltaRate <= bitsLeEt) (
delta = del taOist / deltaRa te;

if (delta> maxDelta) (
maxDelta = delta;
bestDel ta Ra te deltaRate;
bestDeltaDist = deltaDisCi
bestSet = i;
newPrecision = j:

if (bestSet ! = -1) (
prec ision [bes t.Setj = newPrecision;
bitsLeft -= bestDeltaRate ;

while (bestSet != -1);

void Allocator: :print (CoeffSet **coefE, int nSets)
(

Rea l totalRate = 0, totalDis t 0;
int totalDa t a = 0;

)

fo. (i nt i 0; i < nSet.s; j ++) (

totalRat.e
totalDist.
to talData

c oefElil - >rate /prec i s ion/il I;
coeff{ii->dist [precision [ii I;
coefflil->nData;

Real rms = sqrt(totalDist/(Rea l)t.otalData) ;

allocato.cpp
Real psnr 20 . 0 * 10g (2 55.0 / rms)/log(10.0);

printE ("\ n ") ;
II printf ("total r ate = %g\n ", totalRate/S.O);
II printf ("total dist = %g\n ", totalDist);
IIprintE (" total coef fs = %d\n", total Data) ;

p r intE ("RMS error = %g\n " , rms) ;
printE (" PSNR (transform domain) = %g \ n " , psnr);

·.< @th.~PP .··.
II
#include <iostream . h>
~include <iomanip.h>
#include <assert . h>
#include <math . h>
#include "global . hh "
linclude "BitlO . h"
#include "iHisto.h "
#include "Arith . h "

const int CodingValues::CodeValueBits ; 16;
const long CodingValues"MaxFreq = «long)l« (CodeValueBits - 2)) - 1;
const long CodingValues, ,One = «long)l « CodeValueBits) - 1;
const long CodingValues " Qtr = One I 4 + 1 ;
const long CodingValues"Half = 2 * Qtr;
const long CodingValues"ThreeQtr = 3 * Qtr;

ArithEncoder, ,ArithEncoder(BitOut &bo)
(

void

low = 0;
h igh = One ;
bitsToFollow o·

ArithEncoder ' ,flush(void)
(

output (bo)

for (int i = 0; i < CodeValueBits; i) {
if (low >= Half) (

bpf (1);
l ow -; Half;

else (
bpf (0) ;

low * low;

output.flush() ;

void ArithEncoder: :Encode(int count, int countLeft, int countTot)

II cerr « - Encode{- « count « . « counCLeft «

assert (count) ;

long range = high - low 1;
high = low + (range' (countLeft + count)) I countTot - 1;
low = low + (range * countLefc) / cQuntTot;

while (1) (
if (h igh < Half) (

bpE (0) ;
else if (low >= Half)

bpE (1) ;
low -= Half;
high - = Half;

else if (low >= Qtr && high < ThreeQtr) (
bitsToFollow++;
low - = Qtr;

« countTot « ") \n

high - Qtr;
else (

break;

low = 2 * low;
high = 2 * high + 1;

ArithDecoder"ArithDecoder(Bitln &bi)
(

input(bi)

~t

low = 0;
high = One;
va lue = 0;
for (int i = 0; i < CodeValueBits; i++) (

value = (value« 1) + input.input_bit();

ArithDecoder , , Decode (iHistogram &h)
(

long range;
int cum;
int answer ;
int et, ctLeft, ctTotal;

ctTotal = h.TotalCount();
range = high - low + 1;
cum = « (long) (value - low) + 1) • ctTotal - 1) I range;
answer = h.Symbol(cum);

ct h.Count(answer); ctLeft h .LeftCount(answer) ;

II cerr « -Decoder : cum= • « cum« ._ > . « answer « "\n";
1/ cerr « ct = " « ct « • ctLeft = • « ctLeft « • ctTotal

ctTotal « "\n ";

high = low + (range * (ctLaEt + ct)) I ctTotal - 1;
low = low + (range '* ctLeft) / ctTotal;
while (1) (

if (high < Half)

else if (low >= Half)
value -= Hal f;
low -= Hal f;
high -= Half;

else if (low >= Qtr
&& high < ThreeQtr)

value -= Qtr;
low -= Qtr;
high -= Qtr;

else break;
low = 2 '* low;
high = 2 • high + 1;
value = 2 • value + input.input_bit();

return answer;

". «

//coder.cpp

linclude <iostream.h>
iinclude <stdio . h>
iinclude <math . h>
linclude "global . hh "
linclude "coder . hh "

Encoder : : Encoder (ostream &out, ostream &log)
(

bitout
arith
int.coder

new BitOUt (out, log);
new Ari thEncoder (*bi tout.> ;
new CdeltaEncode (bitou t);

Encoder : :-Encoder ()
(

delete intcoder;
delete ari th;
delete bitout.;

Decoder : : Decoder (istream &in, cstream &log)
(

bitin
intcoder
a rith

new BitIn (in, log);
new CdeltaDecode (bitin);
NULL;

Decoder: : -Oecoder ()

delet.e int.coder;
if (arith ! = NULL) delete arith;
delete bitin;

/ *---

.. ·« §g4er ;spp ··

I I Filter . cpp

linclude <stdio.h>
tinclude <stdarg.h>
linclude <stdlib . h>
linclude <math . h>
'include <assert.h>
linclude "wavelet.hh "

Real HaarCoeffs [[{l.0/Sqrt2, 1 . 0/Sqrt2 };

II A few Daubechies filters

Real Daub4Coeffs [[0.4829629131445341, 0.83651630373780 77,

Real Daub6Coeffs [[

Real Daub8Coeffs [[

0.2241438680420134, - 0.1294095225512603 } ;

0 . 3326705529500825, 0 . 8068915093110924 ,
o . 4598775021184914, - 0.13 50 11 02 001025 46 ,

-0.0854412738820267, 0.0352262918857095};

0.2303778133088964, 0 . 7148465705529154 ,
0 . 6308807679398587, -0.0279837694168599,

-0.1870348117190931, 0.0308413818355607,
0.0328830116668852, - 0.0105974017850690 };

/1 Filter from Eera Simoncelli ' s PhD thesis -- used in Edward Adelson's EPIC wavelet
coder
/1 These are probably the filter coefficients used in Shapiro's EZvJ paper
Real AdelsonCoeffs[[= (0 . 028220367, - 0 . 060394127, - 0.07388188 ,

0.41394752, 0.7984298, 0.41394752,
-0.07388188, -0 . 060394127, 0 . 028220367);

II 7/9 Filter from M. Antonini, M. Barlaud, P . Mathieu, and
/1 I. Daubechies, - Image coding using wavelet transform-, IEEE
II Transactions on Image Processing " , Vol. pp . 205-220, 1992.

Real AntoniniSynthesis [[-6.453888262893856e- 02,
-4 .068941760955867e-02,

4.180922732222124e-01,
7.884856164055651e- 01,
4.180922732222124e-01,

-4.068941760955867e-02,
-6.453888262893856e- 02 };

Real AntoniniAnalysis[[3.78284555069953 5e-02,
- 2 . 384946501937986e-02,
- 1.106244044184226e- 01,
3.774028556126536e- 01,
8.526986790094022e- 01,
3.774028556126537e-01,

-1.106244044184226e-01,
- 2.38494650193 7986e-02,
3.782845550699535e-02 };

II Unpublished 18/10 filter from Villasenor ' s group

Real Villa1810Synthesis [[= (9.544158682435510e-04,
-2.727196296995984e-06 ,
-9.452462998353147e-03,
- 2 . 528037293949898e- 03,

3.083373438534281e-02 ,
-1.37 6513483818621e-02,
-8.566118833165798e-02,

1.533685405569902e- 01,
6 . 233596410344172e-01,
6 . 233596410344158e- 01,
1 . 633685405569888e- 01,

- 8 . 566118833165885e-02,
-1 .376513483818652e-02,

3.08337343853426 7e -02,
-2.528037293949898e-03 ,
- 9 . 452462998353147e - 03,
- 2 .72 719629699598 4e - 06,

9 . 544158682436510e-04[;
Real Vil l a1810Analysis [[= (2.885256501123136e-02,

8.244478227504624e- 05,
-1.57 52644690 7 6351e- 01,

7.679048884591438e- 02 ,
7.589077294537618e-01,
7 . 58907729453761ge- 01,
7 . 679048884691436e- 02,

-1.575264469076351e-01,
8.244478227504624e-05,
2 . 885256501123136e-02) ;

1/ Filters from Chris Brislawn's tutorial code

Real Brislawn~nalysis [[0.037828455506995 , -0.023849465019380,
-0.110624404418423, 0 . 377402855612654,

0 . 852698679009403,
0 . 377402855612654, -0 . 110624404418423,

-0.023849465019380, 0 . 037828455506995) ;
Real Brisla~~Synthesis [[- 0 . 064538882628938 , -0.040689417609558,

0.418092273222212,
0.788485616405664,
0 .418092273222212,

- 0.040689417609558, -0 . 064538882628938};

Real Brislawn2Analysis [[0 . 0269 13419, -0.032303352,
-0.241109818, 0.054100420,

0.899506092, 0.899506092,
0 . 054100420, - 0 . 241109818,

- 0.032303352, 0.026913419};
Real Brislawn2Synthesis [[0.019843545, 0.023817599,

-0 . 023257840, 0.145570740,
0.541132748, 0.541132748,
0.145570740, -0.023257840,
0.023817599, 0 .0 19843545 };

II Filters from J. Villasenor , B . Belzer, J . Liao, · Wavelet Filter
II Evaluation for Image Compression.- IEEE Transactions on Image
/1 Processing, Vol. 2, pp. 1053 - 1060, August 1995.

Real Villa1Ana l ysis [[= (
3.782845550699535e- 02,
-2.384946501937986e-02,
-1.106244044184226e-01,
3.774028556126536e- 01,
8.526986790094022e- 01,
3.774028556126537e-Ol,
-1.10624404 4184226e-Ol,
-2.384946501937986e-02,
3 . 782845550699535e-02

);

Real Villa1Synthesis [[

);

-6.453888262893856e-02,
-4.06 8941760955867e-02,
4.180922732222124e-01 ,
7.884856164056551e-01,
4.18092273222212 4e-01 ,
-4.0 68941760955867e- 02,
-6 . 453888262893856e - 02

Real Villa2Analysis II = (
-8 .4728277413 1 8157e-03 ,
3.759210316686883e-03,
4.728175282882753e- 02 ,
-3.347508104780150e- 02 ,

);

-6.887811419061032e-02 ,
3.832692613243884e-01,
7.672451593927493e- 01 ,
3 . 83269261324388ge-01 ,
- 6 . 887811419061045e- 02 ,
-3 . 347508104780156e-02 ,
4.728175282882753e-02,
3.759210316686883e- 03 ,
-8.472827741318157e-03

Real Villa2Synthesis II =
1.41821558912635ge- 02,
6.292315666859828e- 03,
-1.087373652243805e-01,

);

-6.916271012030040e-02,
4.481085999263908e-01,
8.328475700934288e- 01,
4.481085999263908e-01,
- 6 . 916271012030040e- 02,
- 1 . 087373652243805e-01,
6.292315666859828e- 03 ,
1.4182155891263 5ge-02

Real Villa3Analysis II = (
-1. 2907776525 78771e-01,
4 . 769893003875977e-02,
7.884856164056651e-01,
7.884856164056651e-01,
4.769893003875977e- 02,
- 1 . 290777652578771e- 01

);

Real Villa3Synthesis II =
1.891422775349768e- 02,
6 . 989495243807747e- 03,
- 6 . 723693471890128e- 02,
1.3338922559711 54e-01 ,
6 .1505076 731 10278e- 01,
6 . 1505076 73110278e- 01,
1 . 33389225 5 971154e-01,
-6 . 723693471890128e- 02,
6 . 989495243807747e- 03,
1.891422775349768e-02

);

Real Villa4Analysis II = (
-1 . 76776695295636ge-01,
3 .53553 3905932738e-01 ,
1 . 060660171779821e+00 ,

3.535533905932738e-01,
-1.7 6776 69 5 29663 6ge-01

);

Real Villa4Synthesis II =
3.535533905932738e-01,
7.07106781 1 86 5476e- 01,
3.535533 90 5932738e-01

) ;

Real Vi lla5Ana lysis II =
7.071067811865476e-01,
7.071067811865476e- 01

);

Real Villa5Synthesis II
- 8.83883476483 1845e-02,
8 . 83883476483 1845e -02,
7 . 071067811865476e-01,
7 . 0710678118654 7 6e - 01,
8 . 838834764831845e-02,
- 8 . 838834764831845e- 02

);

Real Vi11a6Analysis II = (
3 . 314563036811943e-02,
- 6 . 629126073623885e-02,

);

-1.7677 669 5296'36ge-01,
4.198446513295127e- 01,
9.943689110435828e-01 ,
4 . 1984465132 95 127e-01,
-1. 76776695296636ge-01,
- 6 . 629126073623885e-02 ,
3.3145630368 11943e-02

Real Villa6Synthes i s 1)·=
3 . 535533905932738e- 01,
7 . 071067811865476e-0 1 ,
3 . 535533905932738e-01

);

II Filter

Real Odegard~alysi sll = (
5 . 2865768532960523e- 02,

- 3 .3 418473279346828e - 02,

) ;

-9.306926370358271ge-02,
3 . 869718638726203ge- 01,
7.8751377152779212e-01,
3 . 869718638726203ge - 01 ,

-9.306926370358271ge-02,
-3.3418473279346828e- 02,

5.2865768532960523e-02

Real OdegardSynthesisl1 =
-8.6748316131711606e- 02 ,

);

-5.4836926902779436e - 02,
4 .4 030170672498536e - 01 ,
8.1678063499210640e - 01,
4.4030170672498536e - 01 ,

- 5 .4836926902779436e-02,
-8.6748316131711606e-02

FilterSet Haar (FALSE, HaarCoeffs, 2, 0) ;
FH terSet Daub4 (FALSE, Daub4Coeffs, 4, 0) ;
FH terSet Daub6 (FALSE, Daub6Coef fs , 6 , 0) ;
F i 1 ter$et DaubS (FALSE, Daub8Coef fs, 8, 0) ;
Fi lterSet Antonini (TRUE , AntoniniAnalysis, 9, -4,

AntoniniSynthes i s , 7, - 3) ;
FilterSet Villa1810 (TRUE, Villa1810Analysis, 10, - 4,

Villa1810Synthesis, 18, - 8) ;
FilterSet Adelson (TRUE, AdelsonCoeffs , 9, - 4) ;
FilterSet Brislawn (TRUE, BrislawnAnalysis, 9, - 4,

BrislawnSynthesis, 7, - 3) ;
FilterSet Brislawn2 (TRUE, Brislawn2Analysis, 10, - 4,

Brislawn2Synthesis, 10, - 4) ;

FilterSet Villa1 (TRUE, Villa1Ana l ysis, 9 , - 4, Villa1Synthesis, 7, -3) ;
FilterSet Villa2 (TRUE, Villa2Analysis, 13, - 6, Villa2Synthesis, 11 , -S) ;
FilterSet Villa3 (TRUE, Vil la3Analysis, 6, - 2 , Villa3Synthesis, 10, - 4) ;
FilterSet Villa4 (TRUE, Villa4Analysis , S, -2, Villa4Synthesis, 3, - 1) ;
FilterSet VillaS (TRUE, VillaSAnalysis, 2, 0, VillaSSynthesis, 6, -2) ;
FilterSet Villa6 (TRUE, Villa6Analysis, 9, - 4, Vi lla6Synthesis, 3, - 1) ;

Filte rSet Odegard (TRUE, OdegardAnalysis, 9, -4, OdegardSynthesis, 7, - 3) ;

I I Destructor

Filter, , -Filter ()
{

if (coeff ! = NULL)
delete [J coeff;

void Filter"init (int filterSize, int filterFirst, Real *data)
{

si ze = filterSize;
firstlndex = filterFirst;
center = - firstlndex;

coeff = new Real [size];
if (data ! = NULL) {

for (int i
coeff[i]

else {
for (int i

coeff[i)

0; i < si ze;
data[i] ;

0; < sizE;
0;

i++}

i ++)

void Filter"copy (const Filter& filter)
{

if (coeff ! = NULL)
delete [) coeff;

inlt (filter.size, filter.firstlndex, filter.coeEf);

FilterSet: :FilterSet (inc symmetric ,

filteLcpp
Real *anLow, inc anLowSize, int anLowFirst,
Real *synLow, i nt synLowSize, int synLowFirst)
symmetric (symmetric)

inc i, sign;

analysisLow new Filter (anLowSize , anLowFirs t, an Low) ;

II If no synthes is c oeffs are given, assume wavelet is orthogonal
if (synLow == NULL) {

syn thesi s Low = new Filter (*analysisLow);

II For or thogonal wavel e t s , compute the h igh pass fil ter using
II the relation g_n = (- l)'n h_ {l-n)"
II (or equivalently g_ {l -n) = (-l)'{l-n) h_n'*)

anal ysisHigh new Filter (analysisLow->size, 2 - analysisLow->size
analysisLow->firstlndex);

II Compute (-l)'(l-n) for first n
if (analysisLow->firstlndex % 2)

sign = 1;
else sign = - 1 i

for (i = 0; i < analysisLow->size ; i++)
analysisHigh- >coeff[l - i - analysisLow->firstlndex -

analysisHigh->firstlndex]
sign'" analysisLow->coeff[iJ;

assert (1 - i - analysisLow->firstlndex -
analysisHigh->firstlndey. >= 0);

assert (1 - i - analysisLow->firstlndex -
analysisHigh->firstlndex < analysisHigh->size);

sign *= -1;

II Copy the high pass analysis filter to the synthesis filter
synchesisHigh = new Filter (*analysisHigh);

else (
II If separate synthesis coeffs given, assume biorthogonal

synthesisLow new Fi lter (synLowSize, synLowFirst, synLow);

II For
II the
II
I I (or

orthogonal wavelets, compute the high frequency filter using
r elation g_n = (-l)'n complement (h-_{l - n)) and

g-_n = (-l)'n complement (h_(l-n))
equivalently g_{l - n) = (-l)'{l-n) complement (h-_n))

analysisHigh new Filter (synthesisLow - >size, 2 - synthesisLow->size -
synthesisLow->firstIndex) ;

II Compute (- l)'(l-n) for first n
if (synthesisLow->firstlndex % 2)

sign = 1 ;
else sign = -1;

for (i = 0; i < synthesisLow->size; i ++)
analysisHigh - >coeff[l - i - synthesisLow->firstlndex -

a nalysisHigh->fi rstlndexj
sign * synthesisLow->coeff[il;

assert (1 - i - synthesisLow- >f irstIndex -
analysisHigh->firstlndey. >= 0) ;

assert (1 - i - synthesisLow->firstlndex -

sign * = -1 ;

synChesisHigh

analysisHigh->firscIndey. < analysisHigh->size);

new Filter
(analysisLow- >s ize, 2 - analysisLow- >size -
ana lys isLow->firs cIndex);

II Compuce (-l)A(l-n) for first n
if (analysisLow- >fi rstIndex % 2)

sign = 1;
else sign = - 1;

for (i = 0; i < analysisLow- >size; i++)
synchesisHigh- >coeff(l - i - analysisLow->fi r stlndex -

synthesi sHigh- >f i rstIndex)
sign ,.. analysisLow->coeff[i] ;

assert (1 - i - analysisLow->firstlndex -
synthesisHigh->firstIndex >= 0);

assert (1 - i - analysisLow->firstlndex -

. ··>< •• fiiter.cpp
0:--:0:-.:.::-::-::-. .. .

synthesisHigh->firstlndex < synthesisHigh->size);
sign *= -1;

FilcerSet"FilterSet (const FilcerSec& filterset)
(

copy (filtersec);

FilterSet , ,-FilterSet ()
(

delete analysis Low;
delete analysisHigh ;
delete synthesisLow;
delete synchesisHigh;

FilcerSet& FilcerSet : :operator= (const FilterSet filterset)
(

delete analysisLow;
delete analysisHigh;
delete synthesisLow;
delete synthesisHigh;
copy (filterset);
return *this;

void FilterSec"copy (const FilterSet& filterset)
(

symmetric = filcerset.symmetric;
analysisLow = new Filter (~(filterset.analysisLow));
analysisHigh new Filter (*(filterset.analysisHigh» ;
synthesisLow; new Filter (*{filterset.synthesisLow));

synthesisHigh new Filter (*(filterset.synthesisHigh»;

~include <stdarg.h>
.include <stdio . h>
linclude <stdlib.h>
.include <new .h>
linclude <math.h>
#inc lude <assert.h>
linclude "global.hh"

lifde f DEBUG
stati c FILE 'debug_file;
static inc debug_file_open
iendi f

FALSE;

II function called when out of memory put a debugger breakpoint here
II if trying to locate c ause of Out of memory error

void no_more_memory ()
(

error ("Out of memory") ;

1/ Initialize system-level th ings

void init()

/1 Cal l no_more~emory when unable to malloe
set_nev,-handler (no_more_memory);

Ii f de f DEBUG
debug_ file = fopen ("debug. log", "w. ") ;
debug_file_open = (deb'Jg_file != NULL);

#endif

II Close down system- level stuff

void shut_down ()
(

hfdef DEBUG
fclo s e (debug_file) ;
debug_f i le_open = FALSE;

lendif
)

volatile void error (char *format, . . .)

va_li st list;

va_start (li st , format);

printf ("Error ' ");
v~rintf (format, list);
va_end (list);
p rinc f (" \n ");

Hfder DEBUG
if (debug_file_open)

fprintf (debug_ file, "Error, ");
vfprintf (debug_ file, format, list);
fprintf (debug_ file, " \ n");
fflush (debug_file);

lendif

assert(O) ;

void warning {char *forrnat, . .. }
(

va_ li st l is t;

va_start (list, format) ;

lifdef DEBUG
if (debug_f il e_open)

fprintf (debug_file, "Wa rning, ");
vfprint f (debug_ file, format, list);
fprintf (debug_fi le, " \ n");
ffl ush (debug_file) ;

lendif

printf ("Warning , ") ;
vprintf (format, list) i
va_end (list);
printf ("\n ") ;

'include <stdio.h>
l include <stdlib .h>
linclude <string . h>
l i nc l ude <math .h>
l include <iostream.h>
l include "global . hh"
l include "image.hh "

int main (inc argc , char **argv)

Image *image;

char *program argv[OJ;

if (argc != 3)
fprintf (stderr ,

"Convert an image in pbm/pgm format to raw pixel format \n ");
fprintf (stderr ,

· Usage : %s (pgm image name) [raw image name]\n - , program);

return 1-

i mage = new Image (argv(lJ) ;
image - >saveRaw (argv[2J);
return 0;

npgg12ra~fsI?p .

//Quantize.cpp

'include <stdio.h>
linclude <stdlib.h>
linclude <mach . h>
'include <iostream.h>
'include <iornanip.h>
.include "global.hh "
#include -quant.hh-

Quantizer ::Quantizer (ErrorMetric *err)
{

err (err)

data = NULL;
nData = 0;
max = min = sum sumSq mean
initialDist = 0;

void Quantizer "getStats ()
{

may. -Ma>:~ c al;
min May-Real;
sum sumSq = 0;

for (int i = 0; i < nData; i.-+) {

if (datalil < min)
min = data[iJ;

if (data[i) > max)
max = data[i);

sum += da ta [i I ;
sumSq += square(data[lJ);

mean = sum / (Real)nData;

var 0;

var = sumSq / (Real)nData - square (mean);

UnifonmQuant : :UniformQuant (MonoLayerCoder *entropy, int paramPrecision,
int zeroCenter, ErrorMecric *err) :

Quancizer (err) , entropy (entropy), paramPrecision (paramPrecision),
zeroCenter (zeroCenter)

void UniformQuant::setDataEncode (Real *newData, int newNData)
(

data ;;; newData;
nData = newNData;

getS tats ();

if (zeroCentec)
max fabs(max) > fabs(min)
min = -maXi

fabs (max)

imaz = realTolnt (max, paramPrecision);
qrnax = lntTaReal (imax, paramPrecision);
II Make sure qmay. >= max and -qmax <= min
whil e (qrnax < max)

fabs (mini;

quantiie.cpp ·
qrnax intToReal (++imax , paramPrecision) ;

if (zeroCenter)
imin - imax;
qrnin - qmax;
else
imin realTolnt (min, paramPrecision);
qmin intToReal (imin, paramPrecision) i

1/ Make sure qmin <= min
while (qrnin > mini

qrnin = intTbReal (--imin, paramPrecision);

imean
qmean

realTolnt (mean , paramPrecision) i
intToReal (imean, paramPrecision);

initialDist = 0 ;
if (zeroCenter)

for (int. i = 0; i < nDat.a; i++)
initialDist += ('err) (data[iJ);

else
far tint i = 0; i < nData; i++)

initialDist += ('err) (data[il - qmean) ;

void UniformQuant : :set.Dat.aDecode (Real *newDat.a, int newNDat.a,
int irnax, i nt. lrnin, int. irnean)

data = newOata;
nData = newNData;

if (imin < ima:.:) {
qmax intToReal (imin, paramPrecision);

if (zeroCenter)
gmin -gmax;
else
qmin intToReal (imin, paramPrecision) ;

qrnean intTaReal (irnean, param Precision);

void UniformQuant : :getRateDist (int precision, Real minStepSize,
Real &rate, Real &distl

if (precision> 0) (
const int nSteps = (l«precision)-l;
const Rea l stepSize = (qrnax-qmin) / (Real)nSteps;
const Real rec ipStepSize = 1.0/stepSizei

if (stepSize < minStepSize)
rate = May-Real ;
dist = MaxReal;
return;

entropy->setNSym (nSteps);
rate = dist = 0;

for (int i 0; < nData; i++) {

int symbol = (int) ((da ta(iJ -qrnin)'recipStepSizeJ ;
assert (symbol < nSteps && symbol >= OJ ;
rate += entropy- >cost (symbol, TRUE);
Real reconstruct = qrnin + ((RealJsymbol + 0.5) • stepSi ze;
dist += ('err) (data(iJ - reconstruct);

else (
rate = dist = 0 ;
if (zeroCenter) (

for (int i = 0; i < nData; i++)
dist += ('err) (dataliJ);

else (
for (int i = 0; i < nData; i++) {

dist += IWerr) (dataliJ - qrnean);

voi d UniformQuant: :quantize (Encoder *encoder, int precision)
(

if (precision> 0) (
const int nSteps = (l«precision)-l;
const Real stepSize = (qroax-qrnin) /(Real)nSteps;
canst Real recipStepSize = 1.0/scepSize;

entropy->setNSym (nSteps);

for (int. i = 0; i < nData; iTT) (
int symbol = (int) «datali!-qrnin)Wrec ipStepSi ze);
assert (symbol < nSteps && symbol >= 0) ;
entropy->write (encoder, symbol, TRUE);

voi d UniformQuant::dequantize (Decoder *decoder, int precision)
(
if (precision> 0) (

canst int nSteps = (l«precision) - l;
const Real stepSize = (qrnax-qrnin)/(Real) nSteps ;
int symbol;

entropy- >setNSym (nSteps);

for (int i ;; 0; i < nData; i++) {
symbol = entropy->read (decoder, TRUE);
assert (symbol < nSteps && symbol >= 0) ;
data li! = qrnin + «(Real)symbol + 0.5) W stepSize;

else (
for (int. i = 0; i < nData; ITT) {

dataliJ = qrnean ;

void UniformQuant. :: writeHeader (Encoder *encoder, int precision)

··qUaIly~e;9PP > .•...•••.•....••••....•
encoder- >writeNonneg (precisionJ;

if (precision> 0) (
encoder- >writeln t (imax);
if (! zeroCenter)

encoder - >writel nt (i min);
el s e (
if (!zeroCenter)

encoder ->wri telnt (imean) ;

void UniformQuant' ,readHeader (Decoder *decoder, int &precision)
(

precision decoder- >readNonneg ();

if (precis ion> 0) (
imax decoder->readlnt (}i

qrnax = intToReal (imax , paramPrecision) i

if (zeroCenter)
groin - qrnaxi
else
imin decoder->readlnt ();
qrnin intToReal (imin , paramPrecision) ;

qrnean = 0;
else (
if (! zeroCenter)

imean = decoder->readlnt () ; .
qrnean = intToReal (imean , paramPrecision) ;
else (
qrnean 0;
imean = realTolnt (qrnean , paramPrecision) ;

qrnax qmin qrnean;

void UniformQuant : :setParams (int newParamPrecision, Real newMax,
Real newMin, Real newMean)

paramPrecision
qmax = newMax;
qrnin = newMin;
qrnean = newMean;

newParamPrecision;

LayerQuant"LayerQuant (MultiLayerCoder 'entropy, int paramPrecision,
int signedSym, int nLayers, ErrorMetric ~err)

Quantizer (er r), entropy (entropy), paramPrecision (paramPrecision),
signedSym (signedSym), nLayers (nLaye r s !

currentLayer = -1;
layerRate = new Real InLayers);
layerDist = new Real InLayers!;
context = NULL;
residual = NULL;

LayerQuant, ,-LayerQuant ()
(

delete I) layerRate;
delete II layerDist ;
if (context != NULL)

delete II context ;
if (residual ! = NULL)

delete [) residual ;

void LayerQuant : :setDataEncode (Real *newData, i nc newNData)
(

data:; newData:
nData :; newNData:

getS tats ();

if (signedSym)
max fabs(max) > fabs(min) ? fabs(max) fabs(min) ;
min;; -max:

imax = realTolnt (max, paramPrecision);
qrnax = intToReal (imax, paramPrecision);
/ / Make sure qrnax >= max and - qmay. <= min
while (qrnax < max)

qrnax = intToReal (++imax, paramPrecision);

if (signedSym) (
imin -imax;
qmin -qrnax;
else
imin realTolnt (min , paramPrecision);
qmin intToReal (imin, paramPrecision);
II Hake sure qmin <:::: min
while (groin> min)

qrnin = intToReal (-- imin , paramPrecision);

if (signedSym)
threshold = qmax/2.0;

else
threshold (groax - qmin)/2.0;

currentLayer = - 1;
i f (context '= NULL)

delete [) context;
if (residual != NULL)

delete [) residual;
context;; new int [nDatal;
residlJal = new Real (nDat.a];

resetLayer ();

ini tialDist = 0;
for (inc i ;; 0; i < nData; i +)

initialDist += [-err) [residual[i));

entropy- >reset ();

quantize·9BP
void LayerQuant::setDataDecode (Real *newDa t a, int newNData, int imax,

int imin , int imean)

data = newData;
nData = newNData;

if (imin < i max) (
qmax = intToRea l (imin, paramPrecision);
gmean = intToReal (irnean, pararnPrecision) ;

if (signedSym) (
groin = - qmax;
threshol d = qmax / 2.0;
else (
qmin = intToReal (imin, pararnPrecision);
threshold = (qmax - qmin)/2.0;

currentLayer = -1 ;
if (context ! = NULL)

delete [J context;
context = new i nt [nData] ;
if [signedSym) (

for (int i = 0; i < nData; i++) {
data [i] = 0;
context[il = 0;

else (
for (int i = 0; i < nData ; i++) {

data [i] = qmean;
context[i] = 0;

resetLayer ();
entropy->reset ();

void LayerQuant: :getRateDist (int precision, Real minStepSize,
Real &rate, Real &dist)

assert (precision <= nLayers) ;

Real currentRate
Real currentDist

0 ;
ini tialDist;

for (in t i = 0 ; i < precision ; i++)
II rates & distortions have been computed for layers up to currentLayer
if (i <= currentLayer) (

currentRate layerRate[i);
currentDist += layerDist[i};
else (
if [threshold> minStepSize)

quantizeLayer (NULL) ;
currentRate layerRate[iJ;
currentDist += layerDistlil;
else (
layerRate[i) = MaxReal;
layerDist{iJ = - MaxReal;
curren t Ra t e = MaxReal;

currentDist

rate currentRate;
dist currentDist;

MaxReal;

void LayerQuant::quantize (Encoder *encoder, int precision)
I

resetLayer I);
entropy->reset I) ;

for (int i = 0; i < precision; i++) (
quantizeLayer (encoder);

void LayerQuant. ::resetLayer ()

if (residual != NULL)
if (signedSym) (

for (int i = 0 ;i < nData; i++) (
residual (i) = da~ali);
con text Ii) = 0;

else (
li on the first layer we remove the mean
for (int i = 0 ;i < nData; i++) I

residualli) = datali) - 0.5*lqrnax+qrnin);
context Ii) = 0 ;

else
if (s ignedSym)

for lint i =
context Ii)

e lse {

:i < nData; i++) {
0;

lI on the first layer we remove the mean
for (int. i = 0 ;i < nData ; i++) (

context[i) = 0 ;

currentLayer -1 ;

if (signedSym)
threshold = qrnax/2 . 0;

else
threshold (qrnax - qrnin) /2.0 ;

II deltaRate
II deltaDist

bits required to code current. layer
reduction in distort ion from current layer

void LayerQuant: :quantizeLayer (Encoder *encoder)
(

const Real half Threshold = 0.5 * threshold;
const Real threeHalvesThreshold = 1.5 * threshold;

(iuantize.GJ?P•....
Real deltaRate
int symbol;

0, deltaDist 0;

currentLayer++;

II printf ('current layer = %d, threshold %g\n', currentLayer, threshold);
if (s ignedSym) I

for (int i = 0; i < nData; i ++) I
deltaDist -= (*err) (residual(i)); II subtract of f old error
II Real oldResid = residualli J;
if (contextliJ == OJ I

if I residual I i) > threshold) I
symbol = 1;
residual(i) -= threeHalvesThreshold;
else if (residual Ii) < -threshold) I
symbol = -1;
residual Ii) += threeHalvesThreshold;
e lse I
symbol = 0;

else I
if (res idual [i) > 0) (

symbol = 1;
residual Ii) -= half Threshold;
else I
symbol = 0;
residual [i) += half Threshold ;

deltaDist (*err) (residualli)) ; I I add in new error
deltaRate entropy->write (encoder, symbol, TRUE , currentLayer,

context[i));
contextli) = 2*context(iJ + symbol;

else
for (int i = 0; i < nData: i++) (

deltaDist -= (*err) (residual Ii)); II subtract off oid error

if (residual Ii) > 0) I
symbol = 1;
residual [i) -= half Threshold;
else I
symbol = 0;
residual Ii) += half Threshold;

deltaDist (*err) (residualli)); II add in new error
delt.aRate += entropy->write (encoder, symbol, TRUE, currentLayer,

context (i));
contextli) = 2*context[i) + symbol;

threshold '= 0.5;

layerRate[currentLayerJ
layerDist [c1Jrren tLayer J

del taRa t.e:
deltaDist.;

void Laye rQuant: :dequantize
(

resetLaye r ();

(Decode r ~decoder, int precision)

for (int i = 0; i < precision; i ++) (
dequantizeLayer (decoder);

void LayerQuant"dequantizeLayer (Decoder ~decoder)
(

int symbo l;

currentLayer++ ;

if (signedSym) (
for (int i = 0; i < nData; i++) {

symbol = en tropy- >rea d (decoder, TRUE, currentLaye r,
c ontextl i)) ;

II int oldData = datali);
if (contextli) == 0)

datali) += 1 . S*threshold ~ symbol;
else

datali)

context I i J

else (

(symbol - 0.5) * threshold;

2~contey.t[iJ + symbol;

for (int i = 0 ; i < nData; i++) (
symbol entr opy->read (decoder, TRUE, currentLayer, context[i});

datali) += (symbol - 0 . 5) * threshold;
c ontextli) = 2*contextli) + symbol;

threshold *= 0.5 ;

void LayerQuant::writeHeader (Encoder ~encoder , i nt precision)

e ncoder - >wri t eNonneg (precisi on) ;

if (precision> 0) (
encoder->writelnt (imax) ;
i f (! si gn edSym)

encoder - >writeln t (irnin);
else (
if (! si gnedSym)

encoder - >writelnt (imean);

vo id LayerQuant::readHeader (Decoder ~decoder, int &precision)

precision decoder-> readNonneg ();

.. ,,,,,., .. ':.'::<'ti' ':'.,. ..
q-q~ ... Zy: ~pp

if (precision> 0) (
imax decoder- >readlnt ();
qmax = i n tToReal (imax, paramPrecision);

if (signedSym) (
qrnin = - qrnax;
qrnean = 0;
e l se (
imin = decode r->readlnt ():
qmi n = intToReal (imin, paramPrecision);
qrnean = 0.5 ~ (qrnax + qrnin) ;

else (
if (! signedSym)

imean = decoder - >readlnt () ;
qrnean = intToReal (irnean , pararnPrecision);
else (
qrnean 0;
iroean = realTolnt (qrnean, pararnPr ec ision) ;

qmax qroin qrnean;

void LayerQuant: :setParams (in t newParamPrecision, Real newMax,
Real newMin, Real newMean)

pa raroPrecision newParamPrecision;
qmay. = newMay.;
qrnin = newMin;
qrnean = newNean;

.include <s tdio.h>
fiinclude <stdlib . h>
#include <string.h>
. include <math . h>
'include <iostream.b>
. include "global .hh "
.include "image . hh"

inc main (inC argc, char wWargv)

Imag e '*' image;

char ""program argv(O) ;

if (argc ! = 5)
f princf (stderr,

·Convert an image in pbm/ pgm format to raw pixel format\n -);
fprincf (stderr,

··. Ia~gpgm'CPlr >·······

"Usage , %s (raw image name) (height) (width) (pgm i mage nameJ\n ",
program) ;

r eturn 1;

int hsize ; atoi(a rgv(3]) ;
int vsi z e = a t ol(argv(2]) i

image = new Image (argv[l], hsize, vsize);

image- >savePGM (a rgv (4));
return 0 ;

'include <stdio.h>
'include <stdarg.h>
'include <stdlib . h>
linclude <math.h>
»include <assert.h>
'include · global . hh ·
'include · image.hh ·
linclude ·wavelet .hh R

Wavelet"Wavelet (FilterSet *fi l ter set)
(

analysisLow = filterset->analysisLowi
analysisHigh = filterset->analysisH i gh;
synthes i sLow = filterset->synthesisLowi
synchesisHigh = filterset - >synthesisHigh;
symmetric = Eilterset->symmetric;

II amount of space to leave for padding vectors for symmetric extensions
npad = rnax(analysisLow->size , analysisHigh->size);

~Iavelet' ,-Wavelet ()
(
)

vo id y,lavelet: :transformld (Rea l *input, Real *output, inc size,
int nsteps, inc s~ext)

int i;
inc currentlndex = 0;
Real *data [21;
int lowSize = size, highSize:

if (sYllLext == -1)
5Ym-ext = symmetric;

data [0)
data [11

new Real (2*npad+sizeji
new Real (2*npad+si ze];

for (i = 0: i < size; i++)
data [cu r rentlndexl [npad+il

while (ns teps - -)

input[i) ;

if (lowSize <= 2 && symmetric == 1) {
warning (- Reduce # of transform s t eps or increase signal size -);
warning (- or switch to periodic extension -);
error (- Low pass subband is too small -);

II Transform
printf [· transforming, size = %d\n ' , lowSi ze);
transfo~step (datalcurrentlndex], dataI1 - currentlndex!,

lowS"i ze, sym_ext);

..... · •••• ~ayei¢f:~pp {<>

h i ghSize = lowSize/2;
l owSize = (lowSize+1)/2;

II Copy h i gh-pass data to output signal
copy (data [l -cur r entlndex) + npad + lowSize , output +

lowSize, highSize) ;

for (i = 0; i < lowSize+highSize; i ++)
p r intf (· %5 . 2f " data [l - currentlndexl [npad+i));

prin t f (' \n\n ');

II Now pass low- pass da t a (firs t 1/2 of signal) back to
II transform routine
currentlndex = 1 - c ur rentlndex ;

II Copy low-pass data to output signal
copy (data [currentlndex) + npad, output, lowSize);

delete [I data [lJ;
delete [J data [0);

void Wavelet::invert1d (Real Tinput, Real *output, i nt size,
int nsteps, int sYID-ext)

int i;
int currentlndex 0;
Real 'data [2 I ;

if (syrn_ext == -1)
sym_ext = symmetric;

int *lowSize = new int insteps];
int *highSize = new int Insteps);

l owSize[OI = (size+1) 12;
highSize[O) = size/2;

for (i = 1; i < nsteps ; i++) (
lowSize[i) = (lowSize [i-1) +1)/2;
highSize[i l = lowSize[i - 1)/2;

data [0)
data [lJ

new Real 12*npad+size);
new Real (2 Tnpad+s i ze);

copy (input, data[currentlndex)+npad, lowSize[nsteps-1));

while (nsteps - -)

II grab the next high- pass component
copy (input + lowSize[nsteps),

data{currentlndey.l~npad+lowSize(nsteps J, highSize(nstepsll;

II Combine low- pass data (first 1/ 2' n of signal) with hi gh-pass
II data (next 1/2An of signal) to get higher resolution low-pass data
invert_step (data [currentlndex) , data [l - currentlndex),

lowSize[ns t epsJ+highSize[nstepsl , syrn_ext);

II Now pass low-pass data (first 1/2 of signal) back to
II transform routine
currentlndex ;;; 1 - currentlndex;

II Copy inverted signal to output signal
copy (datalcurrentlndexl+npad, output, size);

delete II highSize;
delete I) lowSize;

delete I I da ta 11 I ;
delete I I da ta 101;

void Wavelet : :cransform2d (Real *input, Real *output, inc hsize, inc vsize,
int nsteps, inc sym_ext)

int j;
inc hLowSize
inc vLowSize

hsize, hHighSize;
vsi ze, vHighSize;

if (sym_ext == -1)
sym......ext ;;; symmetric;

Real Ycemp_in = new Real [2*npad+max(hsize,vsize)];
Real *temp_out = new Real [2~npad+rnax(hsize/vsize)];

copy (input , output, hsize*vsize);

while (nsteps--)
if ((hLowSize <= 2 II vLowSize <= 2) && sym_ext == 1) (

warning (-Reduce # of transform steps or increase signa l size-);
warning (- or switch to periodic extension -);
error ("Low pass subband is too small");

for (j ;;; 0; j < vLoWSize: j++)

II Copy row j to data array
copy (output+(j*hsize) , temp_in+npad, hLowSize);

transforffi-step (temp_in, temp_out , hLowSize, sym_ext);

II Copy back to image
copy (temp_out+npad, output+(j*hsize), hLowSize);

for (j = 0; j < hLowSize; j++)
II Copy column j to data array
copy (OUCput+j, hsize, cernp_in+npad, vLowSize);

II Convolve with low and high pass filters
transform-step (temp_in, temp_out, vLowSize, sym_ext);

II Copy back to image

· w~veIet.cpp
copy (temp_out~npad, output~j, hsize, vLowSize);

II Now convolve low-pass portion again
hHighSize = hLowSize/2;
hLowSize = (hLowSize+1) 12;
vHighSize = vLowSize/2;
vLowSize = (vLowSize+1) 12;

delete II temp_out;
delete (I temp_in;

void Wavelet::invert2d (Real 'input, Real 'output, int hsize, int vsize,
int nsteps, int sym_ext)

int i, j;

if (sym_ext == -1)
sym_ext = symmetric;

int *hLowSize = new int Insteps],
*hHighSize = new int Insteps);

int *vLowSize = new int Insteps],
*vHighSize = new int Insteps];

hLowSizelOI = (hsize+1)/2;
hHighSizelOI = hsize/2;
vLowSizelOI = (vsize+ 1) / 2;
vHighSizelOI = vsize/2;

for (i = 1; i < nsteps; i++) (
hLowSizeli) = (hLowSize(i-11+1)/2;
hHighSizelil = hLowSizeli-11 /2 ;
vLowSize(il = (vLowSizeli-1]+1)/2;
vHighSizelil = vLowSizeli-11 12;

Real *temp_in = new Real [2*npad+rnay.(hsize,vsize)];
Real *temp_out = new Real (2*npad+max(hsize,vsize)];

copy (input, output, hsize*vsize);

while (nsteps --)
II Do a reconstruction for each of the columns
for (j = 0; j < hLowSize(nstepsl+hHighSizelnstepsl; j++)

I I Copy column j to data a rray
copy (output~j , hsize, temp_in+npad,

vLowSizelnsteps]+vHighSizelnsteps]) ;

II Combine low-pass data (first 1 / 2'n of signal) with high-pass
II data (next 1/2'n of signal) to get higher resolution low-pass data
invert_ seep (temp_ in, temp_out,

vLowS izeinsteps]+vHighSizelnsteps), sym_ext) ;

II Copy back to image
c opy (temp_out+npad, output+j, hsize,

vLowSizelnsteps] +vHighSizelnstepsl);

··· ~~ve1et;cPI) < ...

1/ Now do a reconstruction pass for each row
for (j = 0; j < vLowSizelnstepsl+vHighSizelnstepsl; j++1

II Copy row j to data array
copy (output + (j*hsize), Cemp_in+npad,

hLowSizelnstepsl+hHighSizelnstepsll;

II Combine low-pass data (first 1/2'n of signall with high-pass
II data (next 1/2' n of signal) to get higher resolution low-pass data
invert_ step (temp_in, temp_ out,

hLoWSizelnstepsl+hHighSizelnstepsl, s~extl;

II Copy back to image
copy (ternp_out+npad, output + (j*hsize) ,

hLowSize(nstepsl+hHighSizelnstepsl) ;

delete (I hLoWSize;
delete II hHighSize;
delete II vLowSize;
delete II vHighSize;

delete II temp_in:
delete II temp_out;

void Wavelet: :transform_step (Real *input, Real *output, inc size,
int syrn_ext)

inc i, j;

int lowSize = (size+1)/2;
inc left_ext, right_ext;

if (analysisLow->size %2)
II odd filter length
left_ext = right_ext = 1;
else (
left_ext

if (syrn_ext)

right_ext 2;

s ymmetri c_extension (input, size, left_ext , right_ext, 1);
else

periodic_extension (input, size);

II coarse detail
II xxxxxxxxxxxxxxxx --> HHHHHHHHGGGGGGGG
for (i = 0; i < lowSize: i ••) {

output I npad+i I = 0.0;
for (j = 0; j < analysisLow->size; j ++)

output Inpad+iJ +;

inputlnpad + 2*i + analysisLow->firstlndex + j] *
analysisLow->coeff{jl ;

for (i = lowSize; i < size; i++)
outputlnpad+il = 0.0;

for (j = 0; j < analysisHigh- >size; j++)
output (npad+iJ +=

inputlnpad + 2*(i-lowSize) + analysisHigh->firstlndex + jl *
analysisHigh- >coeff(jl;

void Wavelet::invert_step (Real *input, Real *output, int size, int syrn_ext)
(

int i, j;
int left_ext, right_ext, symmetry;
II amount of low and high pass - - if odd I of va lues, extra will be
I I l ow pass
int lowSize = (size+1)/2, highSize = size/2;

symmetry = 1;
if (analysisLow- >size % 2 == 0) (

II even length filter -- do (2, X) extension
left_ext = 2;
else (
II odd length filter -- do (1, X) extension
lefCext = 1;

if (size % 2 == 0) (
II even length signal -- do (X, 2) extension
righ t _ext = 2;
else (
II odd length signal -- do IX , 1) extension
right_ext = 1;

Real *temp = new Real [2*npad+lowSizej;
for (i = 0; i < lowSize; i++) (

t.emp[npad+iJ = inpl.lt[n:?ad+i];

if Isyrn_ext)
symmetric_extension (temp, lowSize, left_ext , right_ext, symmetry);

else
periodic_extension (temp, lowSize) ;

II coarse detail
I I HHHHHHHHGGGGGGGG - - > xxxxxxXY.>o:xxxx=
for (i = 0; i < 2*npad+size; i++)

output(il = 0.0;

int firstIndex = synthesisLow->firstIndex;
int last.Index = synthesisLow->size - 1 + firstIndex;

for (i = -lastlndex /2; i <= (size- l-firstlndex) 12; i++)
for (j = 0; j < synthesisLow->size; j++) (

out.put[npad + 2*i + firstIndex + jJ +=

templnpad+il • synthesisLow->coeffljl;

left_ext 2;

if (analysisLow->size % 2 0) (

.· · ... i &v~yelet9pp .

II even length filters
right_ext = (size % 2 == 0) ? 2
symmetry = - 1;
else (
II odd length filters
right_ext = (si z e % 2 0)
symmetry = 1;

1;

2;

for (i = 0; i < highSize; i++) (
temp (npad+i) = input(npad+loWSize+i] ;

if (syYlLext)
symmetric_extension (temp , highSize , l eft_ext , right_ext,

symmetry) ;
else

periodic_extension (temp, highSize)i

firstlndex = synthesisHigh->firstlndex;
lastlndex = synthesisHigh->size - 1 + firstlndex;

for (i = -lastlndex/2; i <= (size- 1-firstlndex) 12; i ++)
for (j = 0; j < synthes isHigh->size; j++) (

output(npad + 2 wi + firstlndex + jl +=

temp[npad+i) * synthesisHigh->coeff[j];

delete [) temp;

void Wavelet: : symmetric_extension (Real *output, int size, inc left_ext, int
right_ext, inc symmetry)

inc i;
int first npad, last

if (symmetry == - 1) (
if (left_ext == 1)

output[--first] = 0;
if (right_ext == 1)

output[++ last) = 0;

npad + size-i;

inc originalFirst = first;
inc originalLast last;
int o riginalSize = originalLast -originalFirst+l;

int period 2 * [last - first + 1) - (left_ext 1) - (right_ext 1);

if (left_ ext == 2)
output[-- first) = symmetry'output[originalFirst];

if [right_ext == 2)
output [++last) = symmetry*output[originalLastl;

inc nextend min (originalSize-2 , first);
for (i = 0; < neY-cend ; i.+) (

outputl--f rst) = symmetrY'ou tputloriginalFirst+1+il;

whil e (first> 0)
first-- ;
output(first] = output(first+period);

nextend = min (or i g inalSize - 2 , 2*npad+size -l - last);
for (i = 0; i < nextend; i++) (

ou t put(++!astj = symmecry*oucpuc[originalLast-l-ij;

while (last < 2*npad+size-1) (
last++;
output(last) = output (last-period];

void v/avelet: : periodic_extension (Real "'output, int size)

int first npad, last npad + size-l;

while (first> 0)
f irst--;
output(first) = output[first+size);

while (last < 2*npad+size-l) (
last++;
output[last) = output[last-size);

linclude <stdio .h>
linclude <stdlib.h>
#include <math.h>
.include -trans .hh-

Wavelet Transform : :WaveletTransform (Wavelet *wavelet, Image *image,
int nsteps, int symmetric)

wavelet (wavelet), nsteps{nsteps) , symmetric (symmetric)

value NULL ;

if (image != NULL)
hsize image - >hsize;
vsize = image->vsize;

.transform (image, wavelet, nsteps, symmetric) i

else (
hsize = vsize = 0;

WaveletTransform : :WaveletTransforrn (Wavelet *wavelet, int hsize, int
vsize, int nsteps, inc symmetric) :

hsize(hsize), vsize(vsizel , wavelet

nsteps = 0 ;
symmetric = -1;
init ();

(wavelet), nsteps(nsteps), symmetric (syrnrnetric)

for (int i 0;
value[il 0,

< hsize*vsize; i++)

Wavelet Transform: :WaveletTransform (canst Wavelet Transform &t)
(

wavelet = t .waveleti
hsize = t.hslze;
vsize = t.vsize;
nsteps = t .nsteps;
symmetric = t.symmetric;

if (t.value == NULL)
value = NULL;
else [
init (J;
for (inc i

value[il
0; i < hsize·vsize; i++)
t. value[iI,

WaveletTransform: :-WaveletTransform ()
(

freeAll (J ,

void WaveletTransfonn : : init ()

int i;

value new Real [hsize*vsize};

nSubbands = 3 * nsteps + 1;
subbandSize ;;: new int [nSubbands];
subbandHsize = new int [nSubbandsl,
subbandVsize = new int [nSubbandsl,
subbandPtr = new Real" [nSubbandsl,

int *lowHsize ;;: new int [nsteps];
int *lowVsize = new int [nsteps1;
int *higbHsize new int Insteps];
int *highVsize ;;: new int Insteps];

lowHsize[nsteps-ll = (hsize+ll/2 ,
lowVsize[nsteps - l) = (vsize+l)/2,
highHsize[nsteps-ll hsize/2,
highVsize[nsteps-ll = vsize/2,

for (i = nsteps-2, i >= 0, i --)
lowHsize[il = (lowHsize[i+ll +l) /2 ;
lowVsize[il = (lowVsize[i+ ll+l)/2,
highHsize[il lowHsize[i+ll/2,
highVsize[i) = lowVsize[i+ll/2,

subbandPtr[OI = value;
subbandHsize[OI = lowHsize[O),
subbandVsize[OI = lowVsize[OI,
subbandSize[OI = subbandHsize[OI*subbandVsize[OI,

for (i ;;: 0 ; i < nsteps;
subbandHsize[3*i+l]
subbandVsize[3*i+ll
subbandHsize[3*i+2]
subbandVsize[3*i+21
subbandHsize[3*i+3]
subbandVsize[3*i+31

i++) (
highHsize[i),
lowVsize[il ;
lowHsize[il,
highVsize[il,
highHsize[il,
highVsize[il,

for (i = 1, i < nSubbands, i++) (
subbandSize[il = subbandHsize[il"subbandVsize[il,
subbandPtr[il = subbandPtr[i-ll + subbandSize[i-ll,

delete II lowHsize;
delete IJ lowVsize;
delete [I highHsize,
delete [I highVsize,

void WaveletTransfonn: :freeAll ()
(

if (value != NULL) (
delete [J value ;
delete [I subbandSize,

--O f

delete II subbandHsize;
delete I I s'lbbandVsize;
delete II subbandPtr;

void WaveletTrans form : : transform (Imag,e * image, Wavelet *newWavelet,
int steps, inc is~etric)

II clear out old info and set up subband pointers
freeAll ();
hsize = image->hsize;
vs ize = image->vsizei
wavelet;;: newWavelet;
nsteps ;;: steps;
symmetric = isSyrnmetric;
ini t ();

Real ytemp = new Real [hsize*vsizej;
wavelet->transforrn2d (image->value, t~~PI hsize, vsize, nsteps ,

symmetric) ;

II linearize data
rnallatToLinear (temp);
delete II temp;

vo id WaveletTransforrn: : invert (Image *invertedIrnage)
(

Real * temp new Real {hsize*vsize);

/ / P1Jt data in Mallat format
linearToMallat I temp) ;

wavelet->invert2d (temp, inverted l mage- >value, hsize, vsize,
nsteps, symmetric);

delete I I temp;

void WaveletTransform::mallatToLinear (Real *mallat)
(

inc. i, j, k ;

int. *lowHsize
int *lowVsize

new int. Insteps);
new int (nsteps);

lowHsizelnsteps-ll
lowVsizelnsteps-ll

(hsize+l) /2;
(vsize+l) /2;

for (i = nsteps - 2; i >= 0 ; i--) (
lowHsizelil (lowHsizeli+ll+1)/2;
lowVsize(il = (lowVsizeli+ll+l)/2;

/I move transEormed image (in Mallat orderl into linear array structure
II special case for LL subband

transfOLCpp
for (j = 0; j < subbandVsizelOI; j++)

for (i = 0; i < subbandHsizelOj; i++)
subbandPtrlOj Ij*subbandHsizeIOI+il

mallatlj*hsize+i);

for (k = 0; k < nsteps; k++1
for (j = 0; j < subbandVsizelk*3 +1j; j ++)

for (i = 0 ; i < subbandHsizelk*3+1j; i++)
subbandPtrlk*3+1j Ij*subbandHs i zelk*3+11+il

mallatlj*hsize+(lowHsizelkl+il);

for (j = 0; j < subbandVsizelk*3+2); j++)
for (i = 0; i < subbandHsize(k-3 +2]; i++)

subbandPtrlk*3+21Ij*subbandHsizelk*3+21 +ij
roallatl(lowVsizelkl+j)*hsize+il;

for (j = 0; j < subbandVsizelk*3+31; j ++)
for (i = 0; i < subbandHsizelk*3+31 ; i++)

subbandPtrlk*3+31Ij*subbandHsizelk*3+31+ij
mallatl(lowVsizelkl+j)*hsize+(lowHsizelkl+i)l ;

delete II lowHsize;
delete II loWVsize ;

void WaveletTransforrn: :linearToMallat (Real -mallat)
(

int i, j, k;

int 'lrlowHsize
int "'lowVsize

new int [nsteps J ;

new int (nsteps) ;

lowHsizelnsteps-ll
lowVsizelnsteps-ll

(hsize+11/2;
(vsize+l)/2;

for (i = nsteps-2 ; i >= 0; i--) (
lowHsizelil (lowHsizeli+lj+l) 12;
lowVsizelil = (lowVsizeli+l)+1)/2;

II put linearized image in Mallat format
II special case for LL subband
for (j = 0; j < subbandVsizelOI; j++)

for (i = 0; i < subbandHsizelOI; i++)
mallatlj*hsize+il = subbandPtrlOI Ij*subbandHsizeIOI+il ;

for (k = 0 ; k < nsteps; k++) (
for (j = 0; j < subbandVsizelk*3+11; j++)

for (i = 0; i < subbandHsize(k*3+1]; i++)
mallatlj*hsize+llowHsizelkl+ill =

subbandPtrlk*3+11Ij*subbandHsizelk*3+11+il;

for (j = 0; j < sUbbandVsizelk*3+21; j++)
for (i = 0; i < subbandHsize(k*3+2); i++)

mallatl(lowVsizelkl+j)*hsize+ij =
subbandPtr lk*3+21Ij*subbandHsizelk*3+21+il ;

for (j = 0; j < subbandVsizelk*3+3j; j++ 1
for (i = 0 ; i < subbandHsizelk'lr3+3); i+ +)

mallatl (lowVsizelkl+j) *hsize+(lowHsizel kj+i)1

\y

",
+

M
+

M

• ..,
Q)
N

' ..
<Jl

:a
" '" .0
.0
::J
<Jl ·

M
+

M · ..,
" Q) Q)

'" .~ .~ n.
'0 <Jl <Jl

" :g
2l o 0
.0
::J
<Jl

Q) Q)

"'''' Q) <ll
ri
Q) QJ
'0'0

#include <stdio.h>
iinclude <stdlib.h>
Minclude <math . h>
iinclude "global.hh "
#include "image .hh "

II Create a blank image with width=hsize, height=vsize
II If hsize is unspecified, creates an image with width=O, helght=O
II If vsize is unspecified, creates a square image with width =
II height = hsize

Image::lmage (int new_hsize, int new_vsizel
vslze(new_vsize)

if (hsi ze == -1)
hsize = vsize = 0;

if (vsize == -1)
vsize = hsize;

value = new Real [hsize*vsizej;
if (value == NULL)

hsize(new_hslze) I

error (·Can't allocate memory for image of size %d by %d\n - ,
hsize, vsize);

/ / Copy constr1jctor

Image : : Image (const Image& image)
(

int i;

hsize image.hsize;
vsize = image.vsize:
value = new Real [hsize*vsizej;
if (value == NULL)

error (- Can't allocate memory for image of size %d by %d\n · ,
hsize, vsize);

for (i = 0; i < hsize*vsize; i++)
valueli} = image.valueli};

I I Loads a raw image of size hsize by vsize from t"he specified file
II The file is assumed to contain an image in raw byte format

Image: : Image (canst char *filename, int new_hsize, int new_vsi z e)
hsize(new_hsize), vsize(new_vsize)

if (hsize == -I)
hsize = vsize = 0:

if (vsize == -1)
vsize = hsize:

value = new Real Ihsize*vsizei:
if (value == NULL)

error ("Can't allocate memory for image of size %d by %d\ n ",
hsize, vsize);

loadRaw (filename) ;

imag~.cpp ./:: ..

II Loads a PGM image from a file . Sets hsize, vsize.

Image::Image (const char 'filename)
(

vsize = hsize = 0;
value = NULL;
loadPGM (filename);

I I Destructor

Image: :-Image ()
(

hsize = vsize = - 1:
delete IJ value;

II Assignment operator

Im~ge &Image: :operator= (const Image& image)
(

delete I) value;
hsize
vsize
value

image . hsize;
image .vsize;
new Real (hsize*vsizej:

for (int i
va l ueli)

0: i < hsi ze*vsi ze; i++)
image.valueli} ;

return *this;

II Loads an image from the specif i ed file. The file is assumed to
II contain an image in raw byte format of size hsize by vsize

void Image::loadRaw (canst char *filename)
(

FILE *infile:
unsigned char *b1Jffer;
int i;

infile = fopen (filename, "rb");
if (infile == NULL)

error ("Unable to open file %s\n ", filename);

buffer new unsigned char {hsize * vsizel ;

if (fread (buffer, hsize*vsize, s i zeof(unsigned char), infile) != 1)
error (- Read < %d chars when loading file %s\n -, hsize*vsize, filename);

for (i = 0 ; i < hsize*vsi z e; i++)
valuelil (Real)bufferliJ;

delete (1 buffer;
fclose (inf il e) ;

II Saves an image to the specified file. The image is written in
II raw byte format.

void Image: :saveRaw (const char *filename)
(

FILE 'outfile;
unsigned char *buffer;
int i:

outfile = fopen (filename, ' wb+ ');
if (outfile == NULL)

error ('Unable to open file %s\n ' , filename);

buffer new unsigned char Ihsize*vsize l;

for (i = 0;
buffer (i J

i < hsize*vsize; i++)
realToChar(value[i));

fwrite (buffer, hsize*vsize, 1, oucfile);

delete [J buffer;
fclose [outfile);

II Private stuff to load pgms/ppms

void Image , ,PGMSkipCornrnents (FILE' infile, unsigned char' chI
(

while «'ch == 'I ')) (
while ("'ch != '\n') (*ch
while (*ch < ' ,) (*ch

II Comment(s)

fgetc (infile) ;
fgetc (in f ile) ;

II Get a number from a pgm file header, skipping comments etc.

unsigned int Image, ,PGMGetVal (FILE' infile)
(

unsigned int tmp;
unsigned char chi
do (ch = fgetc(infile);) while «ch <= ' ') && (ch != 'I'));

PGMSkipCornments(infile, &ch) ;
ungetc(ch, infile);
if (fscanf(infile, '%u ' ,&tmp) '= 1) (

printf(' %s\n ' , 'Error parsing file !');
exi t(l) ;

return (tmp) ;

II Loads a binary [PSI PGM image from the specified file. Sets hsize and
II vsize to the correct values for the file.

void Image: : loadPGM (canst char *filename)
(

FILE* infile:
unsigned char eh ' ;

infile = foper. (filename, - rb -);
if [inEile == NULL)

............. . . ::-: .. ::

.1mage.Cpp
error ('Unable to open file %s\n ' , filename);

II Look for type indicator
while «ch != 'P') && (ch != 'I')) (ch = fgetc (infile);
PGMSkipCornrnents(infile, &ch);
char ftype = fgetc(infile); II get type, S or 6

II Look for x size, y size, max grey level
in t xsize = (int)PGMGetVal(infile);
in t ysize = (int)PGMGetVal(infile);
int maxg = (int)PGMGetVal(infile);

II Do some consistency checks

if ((hsize <= 0) && [vsize <= 0)) (
resize (xsize, ysize);
if (value == NULL)

error ('Can't allocate memory for image of size %d by %d\n ' ,
hsize, vsize);

else (
if «xsize ! = hsize) II (ys ize != vsize)) (

error (-File dimensions conflict with image settings\n-);

if [f type == ' S') (
printf['Pile %s is of type PGM, is %d x %d with max gray level %d\n ',

filename , hsize, vsize, maxg);
PGMLoadData(infile, filename);

if (ftype == ' 6 ') (
printf('Pile %s is of type PPM, is %d x %d with max gray level %d\n ',

filename, hsize, vsize, maxg);
error['Atternpt to load a PPM as a PGM\n');

fclose (infile) ;

II Loads the data segment of a PGM image from the specified file .

void Image::PGMLoadOata (FILE *infile, const char *filenarne)
(

unsigned char *buffer;
int i;

buffer new uns igned char Ihsize * vsizel;

long fp = -l*hsize*vsize:
fseek(infile, fp, SEEK_END);

if (tread (buffer, hsize*vsize, sizeot(unsigned char), infile) != 1)
error (- Read < %d chars when loading file %s\n-, hsize*vsize, filename);

for (i = 0; i < hsize*vsize; i++)
valuelil (Real)bufferli);

delete II buffer;

1* ------
II Saves an image to the specified file. The image is writ·ten in

