SOME STUDIES IN
LEFT ALMOST SEMIGROUPS

BY

QAMAR IQBAL

SUPERVISED BY

DR. QAISER MUSHTAQ

A THESIS Kb
SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN THE

DEPARTMENT OF MATHEMATICS
QUAID-I-AZAM UNIVERSITY
ISLAMABAD

1991



TO

MY HUSBAND



ACKNOWLEDGEMENTS

I am deeply grateful to my supervisor, Dr. Qaiser Mushtaq, for his learned
guidance which inspired me to specialize in algebra. Without his patience and in-

numerable suggestions, | would not have been able to complete my thesis work.

I further wish to thank Prof. A, Qadir, who has been very helpful and encourag-

ing in his capacity as a Chairman of the Department.

I would like to thank the referee of Semigroup Forum for suggesting some

improvement especially in the proof of theorem 3.9.

I also appreciate my friends and group fellows, who have been very helpful

throughout.

Iam grateful to my family and in particular my husband Dr. M, Aslam Chaudhry,

who have been very cooperative and encouraging during my academic pursuits.

QAMAR IOBAL



CONTENTS
PREFACE: (1)
CHAPTER ONE: (1)

Definitions, Examples and Survey

CHAPTER TWO: (24)

Semilattice Structure of LA-semigroups

CHAPTER THREE: 3 (33)

Decomposition of a Locally Associative
LA-semigroups

CHAPTER FOUR: (52)

Characterization of LA-semigroup by a
Spined Product

REFERENCES: (89)



PREFACE

In ternary operations the commutative law
is given by abc = cba. M.A. Kazim and M. Naseerudin
(1972) introduced braces on the 1left of this
equation to get a new pseudo associative law, that
is, (ab)c = (cb)a. It is called the left invertive
law. A groupoid is called a left almost semigroup,
abbreviated as LA-semigroup, if its elements
satisfy the left invertive law. Similarly, a
groupoid is called a right almost semigroup,
abbreviated as RA-semigroup, if its elements
satisfy the right invertive law, that is
a(bc) = ec{(ba). A group is called an almost
semigroup if it is both an LA-semigroup and an
RA-semigroup.

An LA-semigroup is an algebraic structure
midway between a groupoid and a commutative
semigroup. Despite the fact that the structure is
non-associative and non-commutative, it
nevertheless possesses many'intarasting properties
which we usually find in commutative and
associative algebraic structures.

This thesis comprises four chapters. The

(i)



first chapter contains only those definitions and
results which are directly related to our study of
the LA-semigroups. We have mentioned in this
chapter the results without proofs in order to
avoid making the dissertation unnecessarily bulky.
We have avoided giving the text-book definition
also by presuming that the reader is familiar with
these definitions. However, one can refer for
reference to several text-books, and one of them
is: A.H. Clifford and G.B. Preston, The algebraic
theory of semigroups, Amer. Math. Soc., Vels.1,
1961 and II, 1967.

In Chapter 2, we have described the

structure of LA-semigroups by means of
LA-semigroups and certain homomorphisms between
them. Specifically, we have shown that an

LA-semigroup G is a semilattice of LA-semigrups.
Conversely we have shown that given a semilattice
of LA-semigroups and a family of homomorphisms,
with certain properties, an LA-semigroup can be
defined which is a union of the (given
LA-semigroups.

In chapter 3, we have extended the results
by Tamura and Kimura [33] that any commutative
semigroup G is uniguely @expressible as a
semilattice of archimedean semigroups. We have
generalized also the results of Hewitt and
Zuckerman [11] that the following are mutually
equivalent: (1) G is separative (1i) the

(ii)



archimedean components of G are cancellative
(iii) G can be embedded in a union of groups. We
have shown alse in chapter 3, that any locally
associative LA-semigroup G with left identity is
uniquely  expressible as a semilattice of
archimedean components. Also it has been shown
that G is separative if and only if the archimedean
components of G are cancellative and G can be
embedded in a union of LA-groups if and only if it
is separative.

In chapter 4, an LA-semigroup G, which has
a left regular band of LA-groups as an LA-semigroup
of left guotients, is shown to be the LA-semigroup
which is a left regular band of right reversible
cancellative LA-semigroups. An alternative
characterization is provided by unigue spined
products. These results are applied to the case
where S is, super abundant and where the set of
idempotents form a left normal band.

The results contained in chapter 2, are
published in Proceedings of Academy of
Sciences 2, 28 (1991), 197-200. The results
contained in chapter 3, are published in
Semigroup Forum, 41 (1991) 155-164.

One separate paper, containing results
from chapter 4, has already been submitted to
journal for consideration of publication.

(iii)



CHAPTER ONE
DEFINITIONS, EXAMPLES AND SURVEY

In ternary operations the commutative law is
given by abc = cba. In 1972, Kazim and Naseerudin
[15] have introduced braces on the left of this
eqguation to get a new pseudo associative law, that
is, (ab)e =(cb)a and proved several interesting
results.

A left almost semigroup, abbreviated as
LA-semigroup, is an algebraic structure midway
between a groupoid and a commutative semigroup. An
LA-semigroup is a non-commutative and
non-associative algebraic structure. It has been
defined in [15] and [28] as a groupoid G in which

the left invertive law:



(1.1) = (ab)c = (cb)a for all a,b,¢ in G holds.

Naseerudin has investigated some  Dbasic
characteristics of this structure in his doctoral
thesis [28). He has generalized some rudimentary
but useful and important results of semigroup
theory. Relationships between LA-semigroups and
guasi-groups, semigroups, loops, monolds and groups
have been established.

Kazim and Naseerudin, in their paper on

almost semigroups [15] have shown that G is medial.
That is,
(1.2) (ab) (cd) = (ac) (bd) for all a,b,c,d in G.
Right almost semigroups can be defined dually. That
is, a groupoid (G,.) is called a right almost
semigroup, abbreviated as an RA-semigroup, if it
satisfies the right invertive law:

a(bc) = c(ba) for all a,b,c in G.

EXAMPLES 1.1

(i) Let (Z,+) denote the group of integers under
‘+!’. Define a binary operation * in Z as follows:

x*y = y-x for every x,y in 2,



where ‘-' denotes the ordinary subtraction defined
in 2. Then it is a routine matter to check that
(Z,*) is an LA-semigroup.
(ii) Let (Q,+) denote the group of rational
numbers under ‘+/. Let * be defined in Q as
follows:

x*y = y-x for every %,y in Q.
Thenl it is easy to check that (Q,*) is an
LA-semigroup.
(iii) Similarly (R,*), where (R,+) is a group of
all real numbers under ordinary addition (+) and *
is the binary operation defined by x*y = y-x, for
every ¥,y in R, is an LA-semigroup.
(iv) Let {ﬁ,.} denote the group-of all non-zero
rational numbers under ordinary multiplication (.).
Define a binary operation * in a as follows:

X*y = y + x for every X,y e 6. Then it can be

checked easily that (Q,*) is an LA-semigroup.

REMARK 1.2

(i) Note that the binary operation ‘*’/ is not

necessarily associative. For if we consider the



additive group of integers, (2,+), and define
a*b = b-a for all a,b in Z,
Then (3%4)%5 = (4-3)%5 = 145 = 5-1 = 4
and  3%(4%*5) = 3%(5-4) = 3%l = 1-3 = -2,
Thus 3I*(4*5) = (3*4)*5 and so (Z,*) is not a
semigroup.
(ii) The binary operation ‘*’/ is not necessarily
commutative. For |

3%4 = 4-3 =1
and 4%3 = 3-4 = -1
implies that 3*4 = 4%3,

The structural properties of LA-semigroups
are studied in a number of important papers that
have appeared since the introduction of this
structure. In one of these papers Kazim and
Naseeruddin [15] have tried to find out a condition
under which an LA-semigroup can be converted into a
group. They assert that an LA-semigroup G with left
identity e will become a group if for each a in G
there exist b and ¢ in G such that a(bc) = e =
(ac)b holds in G. In [23] Mushtag has shown that
their assertion was not true. He provided a counter

example to support his assertion. Kazim and



Naseerudin [15] have extensively used the identity
a(a(bc)) = e and (a(bc))a = e which 1is not
necessarily true as Mushtaq (23] has shown that
a(bc) = e does not necessarily imply that
a(a(bc)) = e and (a(bec)) a = e.

Consider, for instance, the following example of an
LA-semigroup which satisfies the hypothesis of the
theorem by Kazim and Naseerudin but which is not a

group.

EXAMPLE 1.3

Let G = {a,b,c,d} and a binary operation (.)

be defined in G as follows.

a 0 o o

o 0 o o
0 & v oo
2 @ o a |0
=" = S o O = P =

Then (G,.) is an LA-semigroup with left identity a

because all the elements of G satisfy the left



invertive law and ax = x for all x in G. Moreover,
all the elements of G satisfy the identity

a(a(bc)) = e and (a(bc)) a = e
Thus, for each x in G, there exist y and z in G
such that x(yz) = a = (xz)y. But (G,.) is not a
group. It is not even a semigroup because we find
at least two elements b and ¢ in G such that (bb)c
z b(bc).

Mushtag and Yusuf in [20]) have defined an
LA-semigroup defined by a commutative inverse
semigroup. Let (G,.) be a commutative inverse
semigroup. Define a binary operation * in G as
follows:

a*b = b.a", for every a,b in-G.

They have proved that (G,*) is an LA-semigroup and
referred to this as an ‘LA-semigroup defined by a
commutative inverse semigroup’. In [20], the
authors have described the structure of
LA-semigroups defined by commutative inverse
semigroups, by means .of LA-semigroups defined by
commutative groups and certain homomorphisms
between them. Specifically, they have shown that if

a commutative inverse semigroup G is a semilattice



of the inverse semigroup G then the LA-semigroup
defined by G is also a semilattice of
LA-semigroups. Conversely they have shown that
given a semilattice of LA-semigroups and a family
of homomorphisms with certain properties, an
LA-semigroup can be defined which is a union of the
given LA-semigroups.

Mushtag [22], has shown that conversely,
provided that a necessary and sufficient condition
is satisfied by an LA-semigroup, it can induce an
‘Abelian group satisfying the condition a.b = b*a ™'
for all a,b in G. He also observed some additional
characterstic of such LA-semigroups. Specifically,
the author proved that in (G,.), the following
conditions are equivalent:

(i) a = (cc.ab)b for all a,b,c in G,

(ii) there exists an Abelian group (G,*) such that
a.b = b*a"' for all a,b in G,

(iii) (G,.) is cancellation with left identity e
and a° = e for all a in G, |

(iv) (G,.) has a left idéntity e and a° = e for

all a in G.

The notion of a left(right) translative



mapping (which is called a left(right) translation
in semigroup theory) is natural and very useful. It
is well-known [5] that each element of a semigroup
induces a 1left and right translation. These
translations play an important role, for example,
in the theory of ideal extensions. A system of
mappings T,: ¥ — T, (x) of a non-enpty set G into
itself, where u ranges over elements of a set U, is
called commutable if T, T (%) = T T, (x) holds for
all u,v in U and x in G. A system of mappings
T, X — Tu(x} is transitive if Tu[x} = G for all x
in G, where the set of elements Tu(x] for all u in
U is denoted by T (x). A system of mappings
T: x — Tu(x] of G into itself is called right
translative, left translative or translative
according as Tﬁ{xy} = xT (Y), T,(Xy) = T, (x)y or
Tu{xy} - xTu{y} = Tu{x]y holds for every X,y in G
and u in U.

In [26), Mushtag has defined translative
mappings on LA-semigroups, and besides other
things, he has shown that if there is a transitive
system of translative mappings on an LA-semigroup

with left identity then the  structure is



necessarily a commutative semigroup with identity.
It has been shown also that a mapping el of a
translative system of mappings over an LA-semigroup
G is injective if the right cancellative law holds
with respect to every element of Tu{G}. Also, every
transitive system of translative mappings over a
multiplicative LA-semigroup G with left identity
has the form x — T,(x) = x + 68(x), where + is an
Abelian group operation on G and 8: U — G is a
mapping of U onto G.

Mushtag and Kamran [25] have shown that a
cancellative LA-semigroup is a commutative
semigroup if a(bec) = (cb)a for all a,b,c in G.
Further, it has been shown that G, with left
identity, is a commutative monoid if and only if
(ab)e = b(ca) for all a,b,c in G.

Hewitt and Zukerman [11], surveyed the field
of ternary operations and semigroups giving rise to
them. In [13], Igbal has generalized their results
to invertive operations and studied the
LA-semigroups connected with them. Apart from
several interesting results, the main result he has

proved is that an LA-semigroup is isomorphic to the



direct product of a group all of whose elements are
of order two and a semigroup under a special binary
operation,

Analogous to Vagner-Preston Representation
Theorem [5), Igbal in [13] has proved that every
inverse LA-semigroup has a faithfull representation
as an inverse LA-semigroup of partial one-one
mappings. Igbal has also shown that the given
partial ordering relation is the maximum
idempotent-separating congruence on an inverse
LA-semigroup.

In [13], a ternary operation on an
LA-semigroup was introduced and the author
generalized the results of Hewitt and Zukerman
[11]. Some useful properties of this structure were
studied and a relationship was established between
LA-semigroups (S,.) and (S,0), defined on the same
set S, such that x.(y.z) = xo(yoz) for all x,y,z in
S. If in (5,.) and (S,0), X.(y.z) = xo(yoz) then we
say that (5,.) and (S,0) are in relation R with
each other. Igbal [13] has shown that if (5,.) and
(5,0) are related by R then (8,.) and (5,0) are

isomorphic under certain conditions.

10



Translations and transformations play a vital
role in the theory of semigroups. In [14] Kamran
has shown that under certain conditions the set of
left translations on a left almost semigroup forms
a left almost semigroup. A parallel result to
Cayley’s theorem for the set of left translations
defined on a left almost semigroup has been proved
in [14]. In [14), the concepts of zeroids and
idempoids in left almost semigroups are discussed
in detail, and some interesting results have been
proved.

Mushtaq [24) has  proved that if an
LA-semigroup contains the left cancellative
LA-subsemigroup such that the LA-subsemigroup is
contained in the centre of the LA-semigroup then it
can be embedded in a commutative monoid whose
cancellative elements form an Abelian group and the
identity element of this group coincides with the
identity element of the commutative monoid.

In [15], it has also been proved by Kazim and
‘Naseerudin that in an LA-semigroup G the

conditions:

(1.3) b(ac) = (ab)c

11



(1.4) b(ca) = (ab)c
are equivalent for all a,b,c in G.

In order to define associative powers in an
LA-semigroup G we impose the condition (i) on G and
call (1.3) or (1.4) a weak associative law. Notice
that if a = b = ¢ in (1.3) then an LA-semigroup
with the weak associative law becomes a locally
associative LA-semigroup, that is, an LA-semigroup
with the condition (aa)a = a(aa) for all a in G. In
{19], Mushtagq and Yusuf have defined a locally
associative LA-semigroup G and have defined on it a
relation p on G as follows:

a p b if and only if ab” = b™' and ba" =
a™'! for some positive integer n.

They have shown that if G is a locally
associative LA-semigroup with left identity, then p
is a congruence on G and G/p is the maximal
separative homomorphic image of G. (Refer to [19)
for details) and hence all the results contained in
[32] are true for this structure.

In [34)], Tamura and Nordhal have called the
semigroup satisfying the identity (xy)" = x™"

(m =2 2) as exponential m-subsemigroup.

12



It is important to note that an LA-semigroup
G with weak associative property (1.3) or (1.4) is
exponential. One can refer to [19] and [25] for
more details about this property.

In [19]), it has been shown that locally
associative LA-semigroups are exponential. Several
structural theorems are proved in this paper.

The following results are essential for our
subsequent work and are referred to frequently.
These results are proved in [18) and [21], and here

we state these results without proofs.

THEOREM 1.4

In an LA-semigroup the left identiy is unique.

THEOREM 1.5

In an LA-semigroup the right identity becomes
a two sided identity.

We may mention here that the converse of the
above theorem is not necessarily true. That is, the

left identity does not become the right identity.

13



As a consequence of the above theorem we have

the following important result.

THEOREM 1.6

An LA-semigroup with right identity is a

commutative monoid.

THEOREM 1.7

In an LA-semigroup G with left identity,

a(bc) = b(ac) for all a,b,c in G.

THEOREM 1.8

An LA-semigroup with left identity and right
inverses has two sided inverses.

A groupoid (G,.) is called a left almost
group, abbreviated as LA-group, if:
(i) (G,.) is a left almost semigroup,
(ii) e.a = a for all a € G, and

(iii) a.a = e for all a e G.

14



EXAMPLE 1.9

Let G = {a,b,c,d} and (.) be the binary

operation in G defined as follows.

o 0 o e

o0 o e
0 & & oT|o
a & o 0|0
P T 0O AR

Then G is an LA-group with left identity a, and
every element of G has a left inverse and the

elements satisfy the left invertive law.

THEOREM 1.10

An LA-group with right identity is an Abelian
group.

THEOREM 1,11

A left cancellative LA-semigroup is a

cancellative LA-semigroup.

15



THEOREM 1.12

In an LA-semigroup G with left identity, ab =

cd implies that ba = dc for all a,b,c,d in G.

THEOREM 1.13

A finite LA-semigroup is a group provided

a(bc) = (cb)a for all a,b,c in G.

THEOREM 1.14

If (G,.) is a commutative group then (G,*) is
an LA-semigroup under *, where * is defined by:
a*b = a"'b = b 'a for every a,b in G, and by a~' we

mean the inverse of a.

THEOREM 1.15

A subset containing all the idempotent
elements of an Lh-semigfuup with left identity e is
a commutative subsemigroup with e as its identity.

Due to theorem 2.6, corollary 2.2 [21], we

16



have the following useful results.

THEOREM 1. 16

In a right cancellative LA-semigroup G every
right identity of an idempotent element is its
identity.

In theorem 3.10, 3.11, 3.12, [21] the

following results have been proved.

THEOREM 1,17

If in an LA-semigroup G, ax = b has a unique
solution for every a,b in G, then yc = d has also a

unique solution for every ¢,d in G.

THEOREM 1.18

If in an LA-semigroup G with left identity e
yc = d has a unique solution for every c,d in G,
then ax = b has also a unigue solution for every

a,b in G.

17



THEOREM 1.13

If in an LA-semigroup G, ax = b has a unique
solution for every a,b in G, then G is a
commutative group.

The following example shows the existence of

an LA-semigroup with more than one idempotent.

EXAMPLE 1. 20
Let G = {a,b,c} and the binary operation (.)

be defined in G as follows.

b
a
a
a

B o oo (@
O @ @0

0 o w

Then G is an LA-semigroup with more than one
idempotent. An LA-semigroup with left identity can

have idempotents other than the identity.

EXAMPLE 1,21

Let 6 = {e,f,a,b,c} and the binary operation

(.) be defined as follows.

18



0O T D Moo
T oo Mmoo |0
OO thoh k|
T o0 o + oo
n » o uouolo
o0 O 00

Then G is an LA-semigroup which has e as the left
identity and £ as an idempotent.
Note that ef = fe = f implies that f = e.

In [18], the following results have been proved.

THEOREM 1.22

An LA-semigroup with left identity e contains

no idempotent such that e = f.

THEOREM 1,23

A subset containing all the idempotent
elements of an LA-semigroup with left identity e,

is a commutative subsemigroup with e as its

identity.

19



EXAMPLE 1.24

Let 6 = {a,b,c} and a binary operation (.) be

defined in G as follows.

0 o o

o T 0|
o oT o0\|v
o T o|a

Then (G,.) is a locally associative LA-semigroup.
The above example shows that we can not define
associative powers in G, as we do in semigroups. So
in order to define associative powers, in a locally
associative LA-semigroup we introduce the left
identity.

Mushtag and Yusuf [19] have proved the

following results in this connection.

THEOREM 1, 25

Every locally associative LA-semigroup with
left identity has associative powers.
In [19], Mushtag and Yusuf have defined a

relation p (refer to page 12) on a locally

20



associative LA-semigroup G with left identity.

Later in [19] it has been proved that the
relation p is a congruence relation on a locally
associative LA-semigroup with left identity.

A relation o on a locally associative
LA-semigroup G with left identity e is separative
if and only if

ab ¢ a° and ab ¢ b° implies a o b.

It was also proved in [19] that the relation
p is separative. :

In [20], Mushtag and Yusuf have shown that if
an LA-semigroup is defined by a commutative inverse
semigroup [commutative group], then by defining a
binary relation in the LA-semigroup, we can recover
the commutative inverse semigroup [commutative
group].

In chapter 2, we have described the structure
of LA-semigroups by means of LA-semigroups and
certain homomorphisms between them. Specifically,
we have shown that an LA-semigroup G is a
semilattice of LA-semigroups. Conversely we have
shown that given a semilattice of LA-semigroups and

a family of homomorphisms, with certain properties,

21



an LA-semigroup can be defined which is a union of
the given LA-semigroups.

In chapter 3 we have extended the results by
Tamura and Kimura ([33] that any commutative
semigroup G is uniquely @expressible as a
semilattice of archimedean semigroups. We have
generalized also the results of Hewitt and
Zuckerman [11] that the following are mutually
equivalent: (1) G is separative {(ii) the
archimedean components of G are cancellative (iii)
G can be embedded in a union of groups.

We have shown in chapter 3, that any locally
associative LA-semigroup G with left identity is
uniquely expressible as a semilattice of
archimedean components. Also it has been shown that
G is separative if and only if the archimedean
components of G are cancellative and G can be
embedded in a union of LA-groups if and only if it
is separative,

In chapter 4, an LA-semigroup G, which has a
left regular band of LA-groups as an LA-semigroup
of left qguotients, has been shown to be the

LA-semigroup which is a left regular band of right

22



reversible cancellative LA-semigroups. An
alternative characterization has been provided by
unique spined products. These results have been
applied to the case where 5 is super abundant and
where the set of idempotents forms a left normal

band.

23



CHAPTER TWO
SEMILATTICE STRUCTURE OF LA-SEMIGROUPS

To consider the decomposition of semigroups
into groups, we need to recall from (5], the
following theorem. It gives a number of conditions
on G, each of which is equivalent to the assertion
that G is a union of groups.

The following conditions are equivalent:

(i) G is a union of disjoint groups,
(ii) G is both left and right regular,
(iii) every left and every right ideal of ¢ is
semi-prime, N
(iv) every H-class of G is a group.
These conditions, however, shed no light on

the actual structure of G, and in article 4.2 [5],

24



provide small illumination in this direction.

It is well known that a commutative inverse
semigroup G is a union of groups. Due to [5], if E
denotes the set of all idempotents of a commutative

inverse semigroup G, then G = U G where each G, is
eEE

the group with identity element and GG. < G .
Moreover, e = f implies that G = G, Being a
commutative band, E is a semilattice. Let ¥ be a

semilattice isomorphic to E. Then e = e, in Y if

B
and only if a = 8 in Y. We write Ga for GE i thus
o
GﬂGﬁ < Gtxﬁ' The elements of 13.‘:|= will be denoted by
ar bm" .

Since by the Rees theorem [5], the structure
of a completely simple semigroup is known, a
semigroup which is a union of groups is a
semilattice Y of semigroups G,(x € ¥Y) of a known
structure. Even if we regard the structure of a
semilattice as known, we still do not know the

structure of G. For although we know that GﬂG %

B

GHE, we are not in a position to say just how the

product aabﬁ {au = Ga' hﬁ £ GB} lies in G where

afi’

@ *= B. This is in general a complicated problem.

But if we make the further assumption that the

25



idempotent elements of G commute with each other
then we can determine the structure. We observe by
theorem 1.17 ([5], that G is an inverse semigroup.
We are thus dealing with inverse semigroups which
are the union of groups.

Before we prove the results concerning
LA-semigroups, we define the following terms.

An element a of an LA-semigroup G is called
regular if (ax)a =‘ a for some x in G. An
LA-semigroup G is called left regular if, for any
element a in G, there exists x in G such that x(aa)
= a. Similarly, an LA-semigroup G is called right
regular if for any element a in G, there exists x
in G such that (aa)x = a. An LA-semigroup G is
called regular if every element of G is regular.

In [20]), Mushtag and Yusuf have described the
structure of LA-semigroups defined by commutative
inverse semigroups, by means of LA-semigroups
defined by commutative groups and certain
homomorphims between them. Specifically, it has
been shown that if a commutative inverse semigroup
G is a semilattice of the inverse semigroups GDt

then the LA-semigroup defined by G is also a

26



semilattice of LA-semigroups. Conversely, it has
also been shown that given a semilattice of
LA-semigroups and a family of homomorphisms, with
certain properties, an LA-semigroup can be defined
which is the union of the given LA-semigroups. If G
is an LA-semigroup and E denotes a set of all
idempotent contained in ¢, then we call E to be a
band. (It is important to point out here that E,
being a subset of G ls an LA-subsemigroup of G and
is not associative as in the case of a band in
semigroups) The main objective of this chapter is
to refine these results and describe the structure
of LA-semigroups by means of LA-semigroups and
certaiq homomorphisms between them. Specifically,
we shall show that an LA-semigroup G is a
semilattice of LA-semigroups. Conversely, we shall
show that given a semilattice of LA-semigroups and
a family of homomorphisms, with certain properties,
an LA-semigroup can be defined which is a union of
the given LA-semigroups.

It is important to note that an LA-semigroup
cannot contain a right identity because an

LA-semigroup with a right identity becomes a
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commutative semigroup with two sided identity. A
homomorphism between two LA-semigroups is defined
in the same way as a homomorphism between two
semigroups. That is a mapping f from an
LA-semigroup (G,.) to an LA-semigroup (G,*) is
called a homomorphism if (a.b)f = (a)f*(b)f, for
all a,b in G.

With the necessary information and
terminology in hand, we can now prove the following

results.

THEOREM 2.1

Let an LA-semigroup G be a semilattice Y of
LA-semigroups Gﬁ, ¢ € Y whence each Ga has a unigue
idempotent e, for a in Y. If a = B, the mapping
¢a,ﬂ defined by amaa,ﬁ = ega,, a, e Ga is a

homomorphism of G, into Gu'
If z z o = . Mo r
o g ¥ then ¢H.E ¢E:7 ¢a’3 Moreover,

¢a,u is the identity mapping of G-

% aﬁ = Gu and bIF3 [ GB' then aahﬁ =

{aaéa,w}{bﬁ¢ﬂ,w} whence y = afl.
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PROOF

First note that ¢, g Maps G, into Gg because

B
a,Bf being idempotents commute and aa ¢u,£ = Eﬂaa (3
= (= .
Gﬁ G;,; < GB-:: GL‘:_E GB
Let au'hﬁ = Gu' then {aubu} ¢a.ﬂ = eB(nuha} =

(egeg) (3gb,) = (ega,) (egby) = (agdy o) (Bydy o).

Thus ¢ 8 is a homomorphism from G, to G If xa =z B

g
(a®a,p) 8,4
(egay)dp o = ey (8g3y) = (e,0,) (egay)=(e,ep) (e,a)) =

z 7y, then for any a, in G,

ET(E aa} = e as e_ is the left identity of G

¥ 7%’ 7 4
and ea, € GT' Thus (a, ¢&.B}¢B.T = aa¢a,?

¢a.ﬂ¢ﬂ,r - ¢ﬁ:T' As au¢u'a = ea, = a , therefore

and

¢a,a is the identity map of Gy

In an LA-semigroup the product of idempotents
is an idempotent, so aabﬁ = {eaaa]{eﬁhﬂl =
{eaeﬁj{aqhﬁj = ay[aahﬁ} = {eie?}{aabﬁj -

tﬂ?“ajferhﬂl = {au ¢u.7}{bﬂﬁﬂpfl'
THEOREM 2.2

Let ¥ be a semilattice, and to each element «
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of Y assign an LA-semigroup G, with left identity

e and no other idempotent such that Gu and G, are

o

B
disjoint if a« # B in Y. To each pair of elements

a,8 of Y such that « > f#, assign a homomorphism
of G, into Gﬂ such that if a > B > 7 then
= . h i
¢a,ﬁ¢ﬁ,7 ¢ﬁr? Let ¢a,a be the identity
epi-morphism of G, Let G be the union of all

%,

LA-semigroups G, @ € Y and define the product of

any two elements aa,b of G (a, € G, and b

R & g € Sg
by au‘bﬂ = {aa ¢a,11{b3 ¢ﬂ,a} where ¥y = af in Y.

Then G is an LA-semigroup which is a semilattice Y

of LA-semigroups Gyr @ € Y.
PROOF

The converse statement has already been

established in theorem 2.1. Since a ]

o € Gy

o, ap &}

Bﬁﬂ,aﬁ € G,q+ therefore (a

belongs to Gaﬁ'
Now faﬂbﬁi c, = {(a, ¢u.a3}{hﬁ'¢ﬂ,uﬂ}}cr

= 3y %, a8) %ap,apy (bg 8,08 %ap,apy? 5 , apy
={(a, ¢

= {(c

ﬂ;mﬁrj[hﬁ ¢ﬁ.aﬁ?’} fc? ¢v,aﬂr]
- ¢r,aﬁr}{bﬁ ¢H'u57}}{aa #a‘ﬂﬁri and (crbﬂlan
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1% Pyus 1% 95,080 %

“car ¢'ar,ar.‘3} ¢?;ﬂﬂltbﬁ¢5ﬁﬁ} %ﬁ,ﬂﬁr} [am %,fxﬁr}
{{'3T ¢1'Eﬂrlibﬂ ¢ﬁ,¢ﬁ?}}{am¢a,asr} implies that

(aabﬁ}c? - {c?bﬂjaﬁ.

Moreover, &g = (e, ¢u,u3}[23 ¢E;¢B}
Emﬂeaﬁ o and Eﬂﬁﬂ = Eaﬂ - Eﬁu EEH' Hence G
is an LA-semigroup with commuting idempotents and

= g = g
is a union of LA-semigroups, each having a left
identity.

Now we shall prove the last theorem which
describes the structure of an LA-semigroup defined

by a commutative inverse semigroup.
THEOREM 2.3

An LA-semigroup G 4is a wunion, v G, of
e €E

LA-semigroups G_, where G, is the LA-semigroup with
left identity e. Moreover, E is a commutative

sub-semigroup of the LA-semigroup.
PROOF

Since the idempotents of an LA-semigroup with
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left identity commute, it implies that GuGr‘ = G“
where e and f, being left identities in GIII and Gf
respectively, are the idempotents., This implies
that G is an LA-semigroup which is a union of
LA-semigroups G_. Moreover, E is a commutative
subsemigroup of the LA-semigroup by the result

mentioned in the beginning of this chapter.
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CHAPTER THREE
DECOMPOSITION OF A LOCALLY ASSOCIATIVE LA-SEMIGROUP

In [33), Tamura and Kimura proved that any
commutative semigroup G is unigquely expressible as
a semilattice of archimedean semigroups. Later in
[11], Hewitt and Zuckerman proved that the
following conditions are mutually equivalent:

(i) G is separative, (ii) the archimedean
components of G are cancellative, (iil) G can be
embedded in a union of groups. In this chapter, we
have extended their results to a locally
associative LA-semigroup G which, as we know, is

not an associative structure.

Note also that a locally associative
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LA-semigroup does not necessarily have associative

powers.

EXAMPLE 3.1

For example, in a locally associative

LA-semigroup G = {a, b, c}, defined by the table:

O o

o o &
oo o |
oo oo

a(a(aa)) = c # b = (a(aa))a.

Next, we prove the following theorems.

THEOREM 3.2

A locally associative LA-semigroup G with

left identity e has associative powers.

PROOF

For any element a in G we let a' = a and a""'
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= a'a, where n is a positive integer. The identity

n n+l

aa = a is true for n = 1 and 2 by ([2]. So

assume that the identity holds for some n > 2. Then

1

by theorem 1.7 we have aa"" = a(a'a) = a'(aa) =

l'l--!I:l

(aa (aa). But because S is medial, {aamdjtaa] =

(aa) (a"'a). Thus aa™ = (aa)(a" 'a) = (aa)a"
(a"a)a by the 1left invertive law. Hence by

induction it follows that aa" = a™'.

Now we shall show that for all a in G and for
all positive integers m, n

(3.1) ATA =aT e

According to aa" = a"™', the result is true for m =
1. Suppose that (3.1) holds for some m>1 also. Then

by the left invertive law and (3.1), we have a™'a"

= (a"a)a" = (a"a)a" = a"' a" = (aa™)a" = (a"a")a =

a"™"a = a™"''., Hence, the result (3.1) follows by
induction. Thus, the sub-structure generated by a
is associative.

Due to [19], if G is a locally associative
LA-semigroup with left identity e, then for all a
in G and for all positive integers m,n

(3.2) (A - w

It is important to mention that in [19] it
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has been shown also that
(3.3 (ab)™ = a" b" for all a,b in G and all
positive integers m.
The result is true for n=1, let n = 2. Then (ab)® =
(ab) (ab) = (a°b’), by (1.2). Thus the result is
true for n = 2, suppose the result is true for
n = k, that is (-Ell::t]lrIt = a"b*. Then {ah]"” =
(ab)*(ab) = (a“a)(b*p) by (1.2). Thus (ab)*"' =
a*'p*'!. Hence by induction, the result is true
for all positive integers.

Before we prove the next result, we consider
an example which shows that there exists a locally

associative LA-semigroup with left identity that is

not associative.

EXAMPLE 3.3

For instance, if G = {a,b,c,d} and the binary

operation (.) is defined as follows

a b ¢ d
ald d4d b d
bld d a d
cla b c d
dld 4d 4 d

36



G is a locally associative LA-semigroup with left

identity c and (ac)c = a # b = a(cc).

THEOREM 3.4

If G is a locally associative LA-semigroup
with left identity e then H = {a € G: ae = a} is a
commutative subsemigroup of G with identity e.
Moreover, for any a in G and positive integer n =

2, a" is in H.

PROOF

Let x,y belong to H., Then xe = x, ye = y and
since G is medial, (xy)e = (xy)(ee) = (xe)(ye) =
%Y. Also xy = (%e)y = (ye)x = yx by wvirtue of
(1.1). Now, let x,y,2 be in H. Then xe = x and so
because of (1.2), we have x(yz) = (xe)(yz) =
(xy) (ez) = (xy)z. Thus H is a commutative semigroup
with identity e.

Let a belong to G and n=2. It follows from
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n+l

(1.1) and the fact aa” = a™' that a% =(a"'a) e =
(ea)a"' = aa"' = a". This shows that a"” is in H.
In theorem 5 [19) Mushtagq and Yusuf have

proved the following result.

LEMMA 3.5

Let G be a locally associative LA-semigroup
with left identity. If there exists positive

integers m and n such that ab" = b™' and ba" =

m#l

a , then apb.

PROOF

For the sake of definitions assume that m<n;

mel

then we can multiply ab” = b™' by b"™ to obtain

B (ab") = BTH
= b™', by (3.1)

imply p"™(ab™) = p™!

imply a(b"™") = b™', by theorem 1.7

Hence by (1) ab" = b™', Thus ab” = b™' imply

n+l n+l

ab" = b Since ba" = a"™', have apb.
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LEMMA 3.6

The relation p on any locally associative

LA-semigroup G with left identity is a congruence

relation.

PROOF

Evidently p is reflexive and symmetric. For
transitivity we may proceed as follows. Let apb and
bpc so that there exist positive integers n and m
such that ab” = bB™', ba" = a"' and bc" = 7,
chb” = p™'.

Let k = (n+l1) (m+1l)-1, that is, k =n(m+1l) + m.

Then by (3.1), (3.2) and (3.3), ac® = ac"™'"™ =

al:cn{rlﬂlcm:l s E{(ﬂmljnﬂm} i B.{I:bcm}ncm} e
af{(b"c"c™ .
Hence, ac® = a{(c"c"™) b"}, by definition of an

LA-semigroup. Then by (3.1) and theorem 1.7,

min+l)

ac* = a(c b")

cnin*l] [abn]

cntmllbml. = tecntnﬂ}}hml

[bnﬂlf.‘.nlm”] e

g



l:hC‘} nur'le

m+l, n+l

= (c ) e

c[:‘mﬂ} (n+1 ]lE ’

Thus, ac* = (cc™™ ™™

mn+n+mil k+l

= c = C , by {3.1) and

remark 2 in [19]. Therefore, ac‘ = c''.

Similarly, it can be proved that ca* = a""',
thus showing that p is an equivalence relation.

To show that p is compatible, assume that for
some positive integer n,ab" = b™! and ba" = a™!,
Let c belong to G. Then, by (3.3) and (1.2)

(ac) (be)" = (ac) (b'c"),

(ab")ec") ,

bnﬂ cml

n+l

= (be)™ .
Thus
(ac) (be)™ = (be)"™. (1)
Similarly, (be)(ac)” = (be)(a"c") = (ba") (cc")
= (ba") (")

mlcmi

= (ac)™
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This implies that

(be) (ac)” = (ac)™'. (ii)

From (i) and (ii) we conclude that p is
compatible. Thus p is a congruence relation on G.

A congruence p on a groupoid is called
separative if a® p ab and ab p b* implies that

apb.

THEOREM 3.7

Let p and ¢ be separative congruences on a
locally associative LA-semigroup G with left

identity. If p n (HxH) € 0 n (HxH), then p € 0.

PROOF

Let a p b. Then (a°(ab))® p (a°(ab))(a’®’)p
(a’p?)>.

It follows from theorem 3.4, (1.1) and (1.2),
{tit-'“ll,'ahu}]z,fI,’iitzlzrz}r2 belong to H and {az{ab}}[azbz} =
a'((ab)b’) = a'(p’a) = p'a® belong to H. Then

(a’(ab))” o (a’(ab)) (a’ph)o(a’p?)? and so a’(ab)o
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2.2

ab . ;

Since a‘b’ o] a“ and by theorem 3.4, a?‘bz,a
is in H, we have a’b® o a'. Since, G is medial,
a’b’ = (ab)® and so (a”)" ¢ a®(ab)o(ab)®. Thus, we
have a* ¢ ab. Finally a° p b° and again by theorem
3.4, we have az,b2 is in H. Then we obtain
a’ o ab ¢ b° and so a o b.

A groupoid is said to be separative if the
identity wap defined on it is a separative

congruence.

THEOREM 3.8

A locally associative LA-semigroup G with
left identity is a commutative semigroup with

identity if it is separative.

PROOF

By virtue of theorem 3.4, we need only to
show that G = H. Let a belong to 8. Then since G is
medial it follows from theorem 3.4, that (ae)® =
(ae) (ae) = a’e = a°. Now by the fact that G is

medial and by theorem 3.2, we have ((ae}a}z -
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2,2

= a%a® ) ana (a®)? = (aa’)(ea) =

[ae}za = aa = f({a’)
{ae}[aza} = az{{aa}a], by theorem 1.7 and since G
is separative (ae)a = a®. Moreover, we have {aejz =
(ae)a = a® which implies that a = ae. Thus G = H.
We define a relation m on G as follows. Let
a,b be in G. Then we say that a n b if and only if
each of the elements a and b divides some power of
the other.
That is, a m b if and only if b" = ax for
some x and a” = by for some y and positive integers

m, n.

THEOREM 3.9

Let G be a locally associative LA-semigroup
with left identity. Then the relation m on G is the

least semilattice congruence on G.

PROOF

The relation 7n is obviously reflexive and
symmetric. To show transitivity, let a mm b and

b n ¢, where a, b, ¢ are in G. Then b"/a and a"/b
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for some positive integers m and n. This implies
that ax = b" and by = ¢" for some x and y. Then c™
= (¢")" = (by)" = b"" by (3.2) and (3.3). So c™ =
by" = (ax)y" = (y"x)a = (e(y"x))a = (a(y"x))e. Now
c™ = " 'c = (ecc™ ")e = c""e implies that ec™ =
e(a(y"™x)) by (3.3). That is c™ = a(y"x). If nm = k
and y"x = z then c* = az. Similarly,bx’ = a" and

cy' = b implies that a* = cz’.

Next, let a, b,c belong to G and a 5 b. Then
by (3.3) and (1.2), (be)" = b"" = (ax)c" =
(ax) (cc™') = (ac) (xc™') and so (bc)™ = (ac)y,
where y = xc™'. Thus ac 3 be. Similarly it can be
shown that ca 7w cb. This proves that 7 is a
congruence relation on G.

Now to show that 7 is a semilattice

congruence on G, first we show that
(3.4) anb implies ab 1 a.
Let a n b. Then ax = b" and by = a" for some x
and y. So by (3.4) and (1.2), (ab)" = a"p" = a"(ax)
= a(a"x). Also, by (3.3) and (1.2),a" = by implies
that a"® = a%" = (aa) (by) = (ab)(ay). Hence
ab n a.

Next we show that,
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(3.5) ab n ba for all a,b € G.

By (3.3), theorem 1.7 and by (1.1), (ab)® = a’p° =
a?(bb) = b(a’h) = b((ba)a) = (ba)(ba) = (ba)>.
Hence ab 7 ba. Also

(3.6) (ab)ec n a(bc) for all a,b,c ¢ G.

By the medial law (abjJc = (eb) a m (bc)a = (ac)b n
b(ac) = a(bc) by theorem 1.7. Therefore 7 is a

semilattice congruence on G.

Now to show that 7 is the least semilattice
congruence on G we need to show that 7n is contained
in any other idempotent p on G. Let a m b, then
there exist positive integers m and n and elements
x and y in G such that ax = b" and by = a". Since
apaE and bpbz, we infer that axpb and bypa. Also,
since t:auc.'lzi2 and p is compatible, we get b},rpbzy. Now

bypa implies that (hy]x! = a" and ay, = (by)". Thus

p'a" = (ba)" = b" ((by)x,) = (b"7'b)((by)x,) =

(5" 'b) ((xy)b)=(6""(x¥)) (bb) = ("' (xy))b® =
[bz{xly}b“'jj = xltbzy]l}b“'s by medial 1law and
theorem 1.7. So  (ba)" = (x (by)p" =
((ex,) (by))b™" - (((°y)x,)e)p™" -

(6" 'e) ((by)x) = (b°y)((b"'e)x) by (1.1) and

theorem 1.7. If we let z = {h“‘"e;xl, then (ba)" =

45



{bzy]z implies that {bzy)p{ba]. Similarly it can be
shown that (a’x)p(ax). Thus
ap(by)p(b'y)p(ba)p(a®x)p(ax)pb implies that
apb.
That is 7 € p. Thus 7 is the least

semilattice congruence on G.

THEOREM 3.10

Let G be a locally associative LA-semigroup
with left identity. Then G/n is a maximal

semilattice homomorphic image of G.

PROOF

Evidently a 1 a° for any a in G implies that
G/n is idempotent. Now by theorem 2.10 in [21], G/n
is commutative and it follows that G/n is a
semilattice. Since by theorem 3.9, G/n is the least
semilattice congruence on G, it follows from
proposition 1.7 in [5] that G/n is the maximal

semilattice homomorphic image of G.
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We say that G is archimedean if for any two
elements of G, each divides some power of the

other. This leads us to the following theorem.

THEOREM 3.11

If G is a locally associative LA-semigroup
with left identity then G is uniquely expressible
as a semilattice Y of archimedean locally
associative LA-semigroups Gﬂ (x £ y} with the left
identity. The semilattice y is isomorphic to the
maximal semilattice homomorphic image G/mn of G and
G“ (¢ belongs to y) are the equivalence classes of

G mod m..

PROOF

Let m be the equivalence relation defined on
G as in theorem 3.9. Then by theorem 3.4, G/n is a
semilattice and G is homomorphic to G/n. G is a

semilattice of archimedean locally associative
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LA-semigroups with left identity will follow when
we show that each equivnlﬂﬁca class A on G mod 7 is
an archimedean locally associative LA-subsemigroup
(with left identity) of G. A is a locally

associative LA-semigroup (with left) identity of S

is clear. Let a,b € A, then a 7 b implies  that
ax = b" and by = a" for some X,y € S and some
positive integers m,n. Then a(bx) = b(ax) = bb" =

and b(ay) = a(by) = aa" = a™'. This implies

mel

b
that b™'/bx, bx/b. That is, (bx) n b and so bx
e A. Similarly, ay € A. Thus b™'/a and a"'/b

are relative to A, whence A is archimedean.

For uniqueness, let G be a semilattice Y of
archimedean locally associative LA-semigroups (with
left identity) Gﬂ (¢ belongs to ¥). Once we show
that G, are the equivalence classes of S mod 71 our
job is done because then Y is isomorphic to G/7
follows immediately. Let a,b be in G. We have to
show that anb if and only if a,b ¢ Gn:' Now each
divides a power of the other. Since Gy is
archimedean, a 1 b by definition. Conversely, let
a n b and a belong to Gu, b belong to Gﬂ.
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Since a m b by definition we have ax = b" and by =
a" for some X,y in G and positive integers m and n.

L]
Let x belong to S¢: Then ax belongs to Gat and b
belongs to GH' so that at = B. Hence a = B in the

semilattice Y. By symmetry g = a«, and hence a = B.
THEOREM 3.12

If ¢ is a locally associative LA-semigroup

with left identity, then 6 is separative if and

only if its archimedean components are
cancellative.
PROOF

Let G be separative. Then by theorem 3.8, G
is a commutative semigroup with identity and so by
theorem 4.16 [5] the archimedean components Ga of G

are cancellative.

Conversely, let every archimedean component

:G“ of G be cancellative. Let a,b belong to G

such that a® = b® = ab. If a belongs to Gﬂ and b
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belongs to GB' where «,B are in ¥, then a® belongs

to G, and b’ belongs to G, such that « = f. Using

]
the cancellation in G, we conclude that a = b.

Thus, G is separative.
THEOREM 3.13

If G is a locally associative LA-semigroup
with left identity, then G can be embedded in a

semigroup which is a union of groups if and only if

G is separative.
FROOF

Suppose that G can be embedded in a semigroup
Q which is a union of groups. Let a,b belong to G

such that a° = b® = ab. IFf H_ denotes the maximal

subgroup of Q containing x, then a°

belongs to H_,

b° belongs to H, so that H = H . But a’ = ab

implies that a = b. Hence S is separative.
Conversely, assume that G is separative. Then

by theorem 3.8, G is a commutative semigroup with

identity and so by the well-known result in [5], G
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can be embedded in a semigroup which is a union of

groups.
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CHAPTER FOUR
CHARACERTIZATION OF LA-SEMIGROUP BY A SPINED PRODUCT

In this chapter we characterize LA-semigroups
S which have an LA-semigroup Q of left quotients,
where Q is an R-unipotent LA-semigroup which is a
band of LA-semigroups.

R-unipotent semigroups were studied by
several authors (see for example [8] and [9]).
Bailes [2] characterized R-unipotent semigroups
which are bands of groups. This characterization
extended the structure of inverse semigroups which
are semilattices of groups. Recently, Gould [9],
studied the semigroup S which has a semigroup Q of
left quotients where Q@ is an inverse semigroup

which is a semilattice of groups. However, many
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definitions of semigroups of quotients have been
proposed and studied. For a survey, the reader may
consult Weinert [36].° These definitions have been
motivated by corresponding definitions in ring
theory. In this chapter we are concerned with a
concept of semigroups of left quotients adopted by
Fountain and Petrich [7). The definition proposed
there, is restricted to completely O-simple
semigroups of left quotients. The idea is that a
completely O-simple semigroup Q, <containing a
subsemigroup S, is a semigroup of left guotients of
S if every element g in Q can be written as gq =

220 and a”

a’'b for some elements a,b in S with a
is the inverse of a in the group H-class H of Q.
In this case S is called a left order in Q. This
definition and its dual were used by Fountain and
Petrich (7], to characterize a semigroup S which
has a completely O-simple semigroup of quotients.
An extension of this definition and its dual was
used by Gould [8] to obtain a necessary and
sufficient condition for a semigroup S to have a

bisimple inverse w-semigroup of left quotients.

This extended definition was used by Gould in [9]
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also to characterize semigroups S which have a
semigroup Q of left quotients, where Q is an
inverse semigroup which is a semilattice of groups.
In this chapter we have considered the
corresponding problem for R-unipotent LA-semigroups
which are band of LA-groups.

After preliminary results, we have obtained a
necessary and sufficient condition for an
LA-semigroups 8 to have an LA-semigroup Q of left
quotients where Q is an R-unipotent LA-semigroup
which is a band of LA-groups. An R-unipotent
LA-semigroup is an LA-semigroup whose set of
idempotents is a left regular band in which (ef)e =
ef, for any idempotents e and £ in S.

For an LA-semigroup S, any two elements a,b
in S are R'-related if they are related by Green’s
relation R in some over LA-semigroup of S§. The dual
relation of R" is £*. It is easy to see that R" is
a left and ¢"is a right congruence. Thus the
intersection of ®  and 2" is an equivalence
relation denoted by T

We say that an over-LA-semigroup Q of an

LA-semigroup § is an LA-semigroup of left quotients

54



of § if for any element g of Q, there exist a,b in
S such that q = a'b where a' is the left inverse
of a in an LA-subgroup of Q. If Q is an
LA-semigroup of left quotients of an LA-semigroup
S, then S is said to be a left order in 0.

An LA-semigroup S is right reversible if for
any a,b in 8, there exists x,y in S such that xa =
yb.

It is known now [20] that if Q is an
R-unipotent LA-semigroup which is a band of
LA-groups, then Q can be written as a disjoint

union of LA-groups Gﬂ, 2 € Y, that is, Q = uGﬂ,
XEY

where Y is a band isomorphic to the band of
idempotents of Q. In particular Y is left regular;
S0 we may call Q in this case a left regular band
of LA-groups.

This result has been used together with the
characterization of R-unipotent LA-semigroups which
are bands of LA-groups in terms of spined product
to obtain an  alternative structure for an'
LA-semigroup S to have a left regular band of

LA-groups as an LA-semigroup of left quotients. At

the end the case where the left orders are in a
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class of R*-unipotent LA-semigroups has been

discussed.
PROPOSITION 4.1

S is a left regular band Y of right
reversible left cancellative LA-semigroups Syt ae ¥

with left identity.
PROOF

Let Q be an R-unipotent LA-semigroup with set
of idempotents E. The set E is a left regqgular band.
So every R-class in Q contains a unique idempotent.
Consider Q to be the semilattice Y of LA-semigroups

G, (¢ € Y) where for any «,B € Y, Gm nG, = ¢ if o

B

z B8 and Q = tJGu, Gnﬂ < Ga such that E = Y.

acy ﬂ ﬂ

Now let S be an LA-semigroup which is a left

order in Q. Put Sa = 8 n Ga for any a« in Y. It
follows that for any « in ¥, a in G,r there exist
x,y in 8, with a = x’'y where x in S,, y in S
for some @B,y in Y. Since x' in Gg+ ¥ in G, then a

(]

- and i 5.8 = i
Br Xy in g5y L= SB? Sn so that Su is
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non-empty for any a« in Y. Clearly for any o in Y;
Sy is an LA-subsemigroup of S. Now to show that sa
is cancellative. Let a,b,c belong to Sa and let ac
= bc. Since a,b,c are in Syt therefore a;b,c belong
to Ga also. This implies that ¢’ is in Gﬂ. That is

{ac)ec’ = (bec)e’', this implies that (c’'c)a =
(c’'e)b thus a = b.

Now to show that Sq is right reversible let «
be in Y apd a,b belong to Sa. Choose s in Sy- Since
b in Gﬂ, this implies that {sa]h" is ‘in Gﬁ. By

the ordering of § in Q, there exists x in S, and y

in 51 for some B,y in Y such that (sa)b’’ %= x'y.
This implies that a = By and (x'y)b = {(sa)b'}b =
(bb™') (sa) = e, (sa). Thus

{(x7'y)b}x

(xb) (x™'y)

(xx™') (by)

That is {em[sa}}x = eﬂ{by}.

{e (sa)}x

This implies that (sa)x = eﬂ{byj = b(eﬁy] by
theorem 1.7; and so af = a and (sa)x = eﬂ(by).

Let z be in Sﬂ. Then

{(sa)x}z = {{sa}{eﬁxilz
. {(Beﬁ}{ax}}z - {z{ax‘]}{segl

57



{a{le}{seﬂl = (aslitzx}eﬁ}
= {as]{{eﬂx]z}

(as) (x2) = {(xz)s}a.
Since (sa)x = eﬂthE}- therefore {(sa)x}z =
{eﬁ(hy]}z implies that {(xz)s}a = {b{eﬁy}}z =

{z{eﬂy}}b. It is clear that (xz)s is in S Sms S, =

&} Box
= § . This
o

S,+ Similarly z{eﬁy} is in 8 s, €8

B
shows that S is right reversible.

Pe

COROLLARY 4.2

For any a in Y; G, is an LA-group of left

quotients of Sa.

FPROOF

For any a in ¥, let g be in G, and choose a
in S Since ag is in G, there exists x in Sﬂ and
y in Sr for some B,y in Y such that ag = x“y. Then
by theorem 1.12, ga = qu. Notice that x' is in
Ggr BY = «, we have (ga)x = (yx ')x. This implies
that (xa)g = (xx ')y = egy. Let b belong to 55'
Then, {(xa)g}b = [eﬁy}b = {by}eﬂ and (bg) (xa) =
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(by) (b'b) imply that (bx)(ga) = (bb')(yb) =
eﬂ{yh] = y[eﬂb] = yb because of (1.2) and theorem
1.7. It follows that Ba = a. Now since yb is in

8,85 and 5,5 € S,z = 8, therefore g = eg =

{(bx)a)} ' (yb).

COROLLARY 4.3

If q belongs to Q, then there exist a,b in S
with aRb in Q and g = a™'b.

PROOF

This follows from corollary 4.2 and from the

fact that every two elements in Gﬁ are K-related.
LEMMA 4.4

If « belongs to ¥ and a,b are elements of Sa'

then aR*b in s.
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PROOF

If a belongs to Y and a,b are in S, and s is

in 5 t is in E“ for some A,u in Y, with sa = ta,

lf
then Bin ™ S”a. Put B8 = Aa = pa. Since sa,ta are in

Sﬂ and Sﬁ

LA-semigroup with left identity, as = at implies

is a right reversible cancellative

that there exist m,n in S, such that m(as) = n(at).

B
Then by (1.3), a(ms) = a(nt). Now sm is in 5153 and
EASE - slsha = SAu = SH' therefore tn is in s“sﬁ s
5 5 = 5§ = 5. .
Mo Mo B

And again by the right reversability of s 5
there exist u,v in SB with p(sm) = v(tn) sﬁah that
s(um) = t(vn) or (um)s = (vn)t. This means that
(as) (um) = (at)(vn) where um, vt, as, vn, at are in
Sﬁ and as = at implies that um = vt as Sﬁ is
cancellative. This implies that um = vt = Xk (say) .
Hence ks = 'kt or (ks)b = (kt)b. That is (bs)k =
(bt)k. Since k, bs, bt are in Sﬂ, therefore by
right cancellation in S_ we have bs = bt or sb =

B
st. Thus a R b in s.
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COROLLARY 4,5
* .
a X a® for any element a in S.
PROOF

Let a belong to S,+ 8 belong to 5, and t
belong to S, with a°s = a’t. Clearly a° is in S o
and aA = ap (= y say). Choose k in S, and write
k(a’s) = k(a’t). Then k{(aa)s} = k{(aa)t} implies
that (aa)(ks) = (aa)(kt) or (ak)(as) = (ak) (at) .
That is ak is in 5u57= Sasua = Saah = S? where as,
at belong to 57 and S? is cancellative. Hence as =
at implies that sa = ta and this implies that (sa)a
= (ta)a. Thus a°s = a°t and a ¢ a° in 8. Therefore
by the dual of the fact that for any two elements
a,b in an LA-semigroup S, the following two
conditions are equivalent: (1) aR’ b in 8 (ii) sa =
ta if and only if sb = tb. But aER*az by lemma 4.4
and hence ait”a® in 8.

Returning now to the product in Q, it can be

seen that the product in Q is an extension of that

in S. It is immediate from the definition of the
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product in Q that GaG € G for any «,f in Y.

B o
Therefore Q is a left regular band of LA-groups Ga,

where « belongs to Y. From its construction, Q is

an LA-semigroup of left gquotients of S. 1In
conclusion we have established the following

result.

THEOREM 4.6

An LA-semigroup S has a left regular band of
LA-groups as an LA-semigroup of left guotients if
and only if S is a left regular band of right
reversible cancellative LA-semigroups.

Theorem 4.6 shows that, if S is a left
regular band of right reversible, left cancellative
LA-semigroups, then for any decomposition of § as a
left regular band of right reversible, cancellative
LA-semigroups, we can construct @, where Q is a
left regular band of LA-groups.

Now we provide an alternative
characterization of an LA-semigroup S which has an
LA-semigroup Q of left guotients, where Q is a left

regular band of LA-groups. This characterization
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will be in terms of spined products. Recall that,
if E is a band and M is an LA-semigroup with a
semilattice «congruence Tt and an LA-semigroup
isomorphism ¢: E/e — M/T, where & is the minimum
semilattice congruence on E, then the sub-direct
product
P= {(e,X) € ExM : e e P = xr"}

is called a spined product of E and M. We call a
sub-direct product S of ExM a punched spined
product of E and M if S is subset of spined product
of E and M such that for any e in E, there exists x
in M with (e,x) in S and for any y in M, there
exists £ in E with (f,y) in S. The aim of this
discussion is to show that the left orders, which
have been characterized earlier, are in fact
punched spined products.

Let Q be an R-unipotent LA-semigroup and E be
its band of idempotents. Let £ be the minimum
semilattice congruence on E. For any e in E, denote
the eg-class containing e, by e or E(e). Write Y =
{E{e): e € E}. Since E is left regular, therefore

E(e) is a left zero semigroup.
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REMARK 4.7

Let ¥ = {(x,y) € QxQ: 7(x) = 7(y)}. It is
well known that 7 is the minimum inverse semigroup
congruence on Q, and ¥/E = e. Suppose that Q is a
band of LA-groups then Q/y is a semilattice of

LA-groups, and we can write Q/y =_u H-, where Hg is
eey

the group ¥-class in Q/y containing e. Moreover, Q
is a spined product P of E and Q/7, that is

Q=P=0U (E{e)xHE] = {[idx,xrj: X € Q).
eey

We emphasize that P is a semilattice of the direct
products E(e)xHg where e belongs to Y and the
product P is reduced from the Cartesian product
E x Q/7. Moreover (f,x 'y) is an inverse.uf (e, x7)
for any f in E(e). In particular, for any (f,y7) in
E(e)xHg; (f,yy) M (£,e) in P and the inverse of

(f,yr) in lﬂr; is (f,i‘:r. We refer the reader to

)
(2) and [31]) for further details.

Let S be an LA-semigroup which has P as an
LA-semigroup of left quotients, For any e in Y,
define a subset HE of Q/7¥ by the rule: m in HE if
and only if m belongs to Q/7 and (f,m) is in § for

some f in E(e).
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LEMMA 4.8

For any e in Y, M; is a left cancellative

LA-semigroup.
PROOF

Let e belong to E and (e,ay) be in E{e}xHE.
Since P is an LA-semigroup of left guotients of 5,
then there exist (k,x7), (g,yy) in S and {f,xqr},
the inverse of (k,x7¥), in an LA-subgroup of P, that
is, £ € E(k) such that -

(e,a7) = (£,x7)(9,¥7).

It follows that e = fg, and fe = e, ke = kg,
where ke is in E(f)E(e) s E(fe) < E(e) and (xv) (y7)
belongs to HEa = H;. Therefore (kK,xy)(g,yy) =
(kg, (x7)(yr)) Dbelongs to S n {E{&]xHE}. Hence
(x¥) (yz) = xyy e M7 and so Mg is non-empty.
Clearly, HE is an LA-subsemigroup of HE' where HE
is an LA-group and Mo is a left cancellative

LA-semigroup.
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LEMMA 4.9
For any e in Y, M7 is reversible.
PROOF

Let ay,by be in ME and g,h in E(e) so that
(g,a¥),(h,by) are in 8. Choose cy in M- and take
(k,cy) from S for some k in E(e). Let (n,b'y) be
the inverse of (h,bry) in an LA-subgroup of P. That
is, n in E(h) and

{(k,c7) (g,a7)} (n,b"'y) belongs to E(e)xH.
By the 1left ordering of S in P, there- exist
(f,qr).(i,dy) in S, and [t,qdfj the inverse of
(f,9¥) in an LA-subgroup of P, that is, t belongs

to E(f) such that {(k,c7)(g,a¥)}(n,b'7) =

(t,q '7) (i,47). This implies that
[{(k,c7) (9,a7) }(n,b"'¥)] (h,by) -
{(t,q '¥) (i,d7)}(h,by). That is

{(h,by) (n,b %) }{(k,c7) (g,a7)} =
{(h,by) (i,d¥)}(t,q '7)
implies that

(h,28) { (k,c7) (g,a¥)} = {(h,by) (i,d9)}(t,q 7).
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That is,
{(k,c7)(g,ar)} = {(h,by)(i,dr)}(t,q %) or
{(k,e) (k,cv)}(g,ar) = {(h,by) (i,d7)}(t,q'7)
or  {(g,ar) (k,c¥)}(k,e) = {(h,by)(i,dy)}(t,q'7)
or (£,97) [{(9,a7) (k,c¥)}(k,8)] =
(£,97) [{h,by) (i,d¥)} (t,q"'7)]
implies that
((g,a7) (k,c7) }{(£,q7) (k,&)} =
{(h,b7) (i,d7)}{(f,q¥) (t,q'7)} and
({(f,q7) (k,e)} (k,c¥) ) (g,a¥)= (h,by) (i,dy)}(f,E) and
[((f,qr)(k,e)}(k,e¥)])(g,ar) = ((£,E)(i,dr)](h,b7).
That is {(fk,gr.e)(k,c¥)}(g,a¥) = (fi,F.dr)(h,by)
implies that -
{(fk, (gr.e)ey) }(g,a7) = (£i,E.dy) (h,by).
By theorem 1.11, we have (g,a7){(fk), (qr.e)cy)} =
(h,by) (£i,fdy) ([(g,a7) {(fk, (qr.€)cy)}(3,vy) =
[(h,by) (£i,Edy)1(3,vr). That is
{(3,v¥) (fk, (gv.e)c¥) } (g,ar)= {(j,v?) (£i,Ed¥)} (h,by)
and (jfk, vy{(gv.e)cr})(g,ar)= (ifi, vy(Edy)) (h,by)
and (jfk,(qv.e) (vy.c7)) (g,ar)= (j£i, vy (fdy)) (h,by)
and (jfk, (awvy)cy)(g,ay) = (Jfi, wvy(Efdy))(h,by)
and (jfk, (avr.)cy)(g,ar) = (j€i, vr(Edy)) (h,by)

and (jfk, (gv)e.7)(g,ar) = (jfi, vy(fdy))(h,b7).
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Recall that k = ti, and notice that fk =fi,tk = k.

so that E(f)E(e) s E(e) and jfi

jfk, ef= efe are

in E(e). Moreover (vy)(fdr)

I

(vr((ef)dy)) =
vy(e(dy)) = vydy =vd.7y (as e is the left identity)
therefore (gv)ec , vdy are in M-.

Now we put M = UM-, M is a semilattice Y of
eey

reversible left cancellative LA-semigroup ME with
left identity, where e belongs to Y. It is easy to

note that U (E(e) xMz) is a spined product
(=13

containing S. Moreover, we have

LEMMA 4.10

(i) For any e € E, there exists xy in HE with
(e,xy) in S,
(ii) For any f in E, yy in Mg, there exists g in

E(f) with (g,yy) € S.

PROOF

(i) Let e belong to E and (e,ay) be in E(e)xMz.
Then (e,ay) = (f,x'¥)(g,yy), where (£,x7),(q,y?)

are in S and {f,xqr} is the inverse of (f,x7) in
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H of P. Therefore e = fg and (f,x7)(g,y?) =

tr,r)
(fg, (x7) (y¥)) = (e,(xy)7) in S.

(ii) The proof is straightforward.

Now it follows that S is a punched spined

product and the following result is established.

PROPOSITION 4.11

Let P be a left regular band of LA-groups and
S be an LA-semigroup. If P is an LA-semigroup of
left quotients of S, then S is a punched spined
product of a left regular band and a semilattice of

reversible, cancellative LA-semigroups.
PROOF

For the converse of proposition 4.11, let 5
be a punched spined product of a left regular band
E and a semilattice Y of reversible, cancellative
LA-semigroups Mu where o belongs to Y. By corollary
4.2, there is an LA-group of left quotients G, of
Ha for any a in Y. We may assume that Ga n Gﬂ = ¢
for all a,B in ¥, o« = 8. Let T = UG . Define a

xEY
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product (.) in T by

a'b.c'd = (xa)'yd
where, if a,b in M i c,d in M,, then %,y in Maﬁ are
chosen such that xb = yc. Then T is an LA-semigroup

of left guotients of M where M =lJHﬁ. That is, T
XEY

is a semilattice of LA-groups. Put P = U (E XG,) -
oEY

Since E xG_  is an LA-semigroup so is P, which is a
band of LA-groups and whose set of idempotents is
an LA-subsemigroup isomorphic to E. Therefore P is

a left regular band of LA-groups. In fact we have:
LEMMA 4,12

P is an LA-semigroup of left quotients of S.

PROOF

Let o« belong to Y and (e,m) be in E xG_.
Recall that S is a punched spined product of E and
M. Since e is in E, there exists an element z in M,
such that (e,z) in sS. As m in G, and M is a left
order in Ga, there exists an element 2z in Ma such

that (e,z) in 8. As m is from G, and M is a left
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order in G, there exist x,y in M . such that m =
x 'y and hence there exist f,q in E, with (f,x) and
(g,y) in S. Notice that x' belongs G, and there

v and (uz)x' =

exist u,v in M, with x' = o
uz(u'v) = (uu')(zv) = zv.

Let i,j be in Eﬁ so that (i,u) and (j,v) are
in 8. Clearly (ei,uz) = (e,uz) in S (since E(e) are
left zero semigroups). Now {e,(uzz'ﬂ is the

inverse of (e,uz) in H -y of P and (ejg, (zv)y) =

(e,e)

(e, (2v)y) (since E(e) is a left zero semigroup) .
Moreover, (e,m) = (e,x'y) = (e, (u'v)u)

= (e, {(uz)(2v)y}) = (e, (u'27){(zv)y}

= (e, {u (2v)}{z"'y}) = (e, {z(uv)}{z"'y})

(e, (zz7){(u'v)y}) = (e, (u'v)y). This implies
that (e,m) = (e, (uz) '{(zv)y})

(e, (uz')(e, (zv)y).
Now the converse of 4.11 is evident. 1In

conclusion we have the following result.

THEOREM 4,13

An LA-semigroup S has a left regular band of

LA-groups as an LA-semigroup of left guotients if
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and only if § is a punched spined product of a left
regular band and a semilattice of reversible, left
cancellative LA-semigroups.

The following corollary is an immediate

consequence of theorem 4.13.

COROLLARY 4.14

If S is a spined product of a left regular
band and a semilattice of right reversible left
cancellative LA-semigroups, then S has a left
regular band of LA-groups as an LA-semigroup of
left quotients.

For the rest of this chapter, let S be a
spined product of a left regular band E and a
semilattice Y of cancellative LA-semigroups H&:

where o belongs to Y. Put E=UE.  , M = UM and
oEY aey *

S =U(E xM ).
ﬂ!'{a %

LEMMA 4,15

*
The relation ® is the greatest semilattice
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congruence on M all of whose <classes are

cancellative.

PROOF

By the fact that M is a semilattice of
cancellative LA-semigroups, then 3" is the greatest
band congruence on M all of whose classes are
cancellative. The relation y defined on M by the
rule (a,b) is in y if and only if a,b are in M, for
some a belonging to Y is a band congruence on M all
of whose classes are cancellative. Therefore
¥ € H'. Now for any elements a,b in M, we have
(ab,ba) in 7. Hence ab H*ha and H}H* is a
semilattice.

Identify the semilattice M/#" by J, that is,
M is a semilattice J of H:, where j belongs to J.

o
Readily, z} is a sub-semilattice of Y for any j in

For each j in J, 1let ?I = {(«¢ € Y, M, ¢ HT}.

J. Put Fj = U E_  and 8, = U (B xM_) .
CEEZJ l‘IEZJ

Now we come to the final result.
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PROFPOSITION 4.16

The following statements concerning the
LA-semigroup S are equivalent.
(i) gach #*-class of M is reversible
(ii) For any a,b in M, there exist x,y in' M with
¥a = yb and % H*y H*ab
(iii) 5j is right reversible for any j in J.
(iv) There is an over-LA-semigroup T of S which is
a left reqular band X of right reversible left
cancellative LA-semigroups T,» where a belongs to X
and for any j in J, H: is isomorphic to T\‘:I for

some « in X.
PROOF

*
Recall that ¥ is a semilattice congruence on
M. (i) e (ii)
If (i) holds and a,b are in M, then ab, ba
: * ) *
are in Hah and there exist ¢,b in H. with

c(ab) = d(ba)

or a(ch) = b(da) by theorem 1.7.
* * *
Also cb in Hah 5 Hﬂ < Hab
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*

b
Put x = cb and vy = da to get ax = by or

da € H) , H) s .
xa = yb (by theorem 1.12) and x H*y H*ab. Hence
(ii) holds.

If (ii) holds, z belongs to M and a,b are in
H;, then in particular there exist x,y in M with xa
= yb and x R*y 1*ab. since a° H*ab, then a X ab and
¥,y are in H: so (i) holds.

(1) =» (iii)

If (i) holds and j is in J, (e,a), (f,b)
belong to 51, such that (e,a) belongs to Eﬂxﬂﬂ,
(£,b) belongs to EB X M,, say, where Ha and Hﬁ are
subsets of H:. Then a,b are in HT with xa = yb,
where % is in Hh' y is in Hu for some A,u in zj. It
follows that Aa = ug. Let g belong to El' h belong
to E and s belong to M =M

1] A upg”
ElEaEuEE S E, 18X is in HAuHh S M, r8Y is in M

Then gehf is in

M
HB R
< Huﬂ whence (sx)a = (sy)b. The elements (gehf,sx),

(gehf,sy) are in E X M so that they are in 51‘

Ao Ao

Moreover, (gehf, (sx)a) = (gehf, (sy)b) (EJ is right
reversible) that is (gehfe, (sx)a) = (gehff, (sy)b)
and (gehf,sx)(e,a) = (gehf,sy)(f,b). Hence (iii)

holds.
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If (iii) holds and a,b are in H:, then for
some «,f in zj, a belongs to Ha' b belongs to Hﬁ'
Let e be in Ea' f be in Eﬁ, so that (e,a), (f,b) are
in SF Then there exist (g,x),(h,y) in 51 with
(9,x) (e,a) = (h,y)(f,b). In particular, x,y belong
to H:, xa = yb and (i) holds.

(1) = (iv)

If (i) holds, then by lemma 4.15, H’: and

hence {e}xH: is a reversible, left cancellative

LA-semigroup for any e in E_, « in Z , for any j in

o J
J, « in Zj, put

N, =U ({e} x HT] so that F  x H: =U N

XEE HEZ
o J

and T =U/(F X H*} =U (U N =
1&eJ J ) 1€J aezl v

U (U (U (e} x H))))
J€J O€Z e€E
J o
is a 1left regular band of reversible, left
cancellative LA-semigroups. Clearly, for any j in
J, « in zj, e in E, i {ra]»xHj:r = HT and S is an
LA-subsemigroup of T. Hence (iv) holds.

If (iv) holds, then trivially (i) holds.

An LA-semigroup S is abundant if each
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R*—class and each E*-class of 5 contains an
idempotent. If a is an element of S, then a+ and a*

denote  typical idempotents in R and £

a a
respectively. An LA-semigroup S is super abundant
if each X -class contains an idempotent. Next we
consider the class of abundant LA-semigroups in
which the set of idempotents form a left regular
band. In this case every R*-class of S contains a
unique idempotent. Thus § is called R*uunipntent.
The objective 1is to characterize a class of
m*-unipntant LA-semigroups which have an
LA-semigroup Q@ of left quotients where Q is a left

regular band of LA-groups. This is the special case

of the subject matter discussed previously.
LEMMA 4,17

Let 5 be an H*-unipntent LA-semigroup then:
(i) S is super abundant if and only if R® = #" on
S. (ii) 8 is a band of a left cancellative
LA-moneoid if and only if S is super abundant and

*x*
¥ is a congruence on S.
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* .
Henceforth by S we shall mean an R -unipotent

LA-semigroup.
PROPOSITION 4,18

If 8 is a left regular band Y of reversible,
left cancellative LA-semigroups Sa, where a is in Y
then the following statements are equivalent.
(i) S is super abundant
(ii) for every « in ¥, a in S,+ there exists an
idempotent e, in 57 for some y in Y with erf*a and

Sisa c sa
PROOF (i) = (ii)

Let a belong to Y, a belong to Sa and a H*e?,

: A g * 0
where e, is an idempotent in 57. Since R = N by

lemma 4.17 therefore a E*ET and ara = a. That is
= .
S?S“ Eﬂ
(ii) = (4)
Let a belong to Eu where antea, es is an
idempotent in S,. Then e,a = a, that is, 8a = a. It

8" &

follows that aSa = ¢ and «8 = a. In particular, aeg
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belongs to § . By reversability of Sy 1+ ¥a =
y{aeaﬁ, for some X,y in 8, that is, (xa)e, =
{y[aea]}ea and by the left cancellation in Sa this

implies that x = y and xa = xae Thus a = ae,.

§° &
Now let e, be an idempotent in E? with ETE*a

= 4
and E?Sa Sﬁ Since ae, = a = ae;

ae? = {aea}eT = (e?ea}a. This implies that ewa -

and e?r*a, then

(awea}a and e, = e.e;s- Recall that e a belongs to

575u= < Ea, a is in Sa-We have

u{eTa} = va
and eT{ua} = va by theorem 1.7.
or {e?erjtua] = va
and (eru][era} = va by (1.2).

Similarly [eru}{era} = va

&7{{eru}a} va
ef{{au]er} = va
{au]{eyer} = va
(aujar = va
{eru}a = va.
This implies that e?a = a since efa = a = e and
ETH*a.
Since e.a = a

{e?a}ea = ae
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{eia}eﬁ = E[EEES}

{E?E}(EBES} = eafaesj

Ee?eajfaag} = eﬁfaesj.
This implies that e.e; = e

Hence eT - oy and a x*e that is a H*E and

&8 &
(i) holds.

LEMMA 4.19

If 5 is super abundant in which for any
elements a,b in S, there exist x,y in S with xa =
yb and x H*y H*ab then each H*-class in S is right

reversible.

FROOF

This is immediate from the fact that each

H*-class of S is a left cancellative LA-monoid.

PROPOSITION 4.20

If S is a band of cancellative LA-monoids,

then the following statements are eguivalent.

BO



(i) Each X -class in S is right reversible.
(ii) For any a,b in S, there exist elements X,y in

S5 with xa = yb and xH*y H*ab.
PROOF

(1) = (i)

By Lemma 4.17, S is super abundant on which
" is a congruence. Let a belong to H:, b belong to
H;, for some idempotents e,f in S. Then ab belongs
to H.. and (ab)a belongs to Ho gy = H,e. But H, .
right reversible, so there exist u,v in H;f such

is

that u(ab) = v{(ab)a}. Then, by theorem 1.?. a(ub)

= (ab)(va) or a{{bu]eef} = {(va)b}a. This implies

that {hu}{aeaf} = {(va)bla and and (ba]{ueef]

{(va)b}a which further implies that {(ue_c)a}b =
{(va)b}a.

& *
Let y = {ueef}a belong to HEfE = Hef. Then x

* ¥* * *
= Hef ¥a = yb and x ¥ y # ab

efef
(i) = (ii)

= (va)b e H

This is Lemma 4.19.

In fact any of the statements of proposition

4.20 is a consequence of S to have LA-semigroup Q
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of left quotients where Q is a left regular band of
LA-groups. The following Lemma demonstrates this

result.
LEMMA 4.21

Let S5 be super abundant which is a left
regular band of right reversible left cancellative
LA-semigroups. Then for any elements a,b in s,

there exist x,y in S with xa = yb and x H*y #”*ab.

FROOF

Put 5 ==xr$“, where Y is a left regular band
oey

and su is a right reversible left cancellative
LA-semigroup for any o« in Y. Let a,b belong to 8; a

belong to sa, b belong to 55* say. Then ab belongs

to Saﬁ' and (ab)a belongs to 5 = 5

oo ap’
there exist u,v in saﬂ with u{(ab)a} = v(ab) where

and

x = (ua)b is in Sdﬂaﬂ

belongs to Saﬁa = Saﬂ' But every two elements in

Saﬂ and y = {VENBIE

smﬁ are ﬁ*—related (Lemma 4.20). Then the result

follows from the fact that R* = ®* on S.
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Now we consider the construction of Su in s

as given in the folloing proposition.
PROPOSITION 4,22

Let S be super abundant with band of

idempotents E and E = U E, be the maximal
ey

semilattice decomposition of E. For each « in Y,
define

5 = : x', x  €E

5 = {Xx &9 2 ¥, X e a}'
Then:
(i) sa is a maximal abundant LA-subsemigroup of S
which contains E, as its set of idempotents such

* *

that R (S ) € R (S) and £"(5 ) < £"(s)

(ii) Sa n =¢ if a=p

S
B
(iii) 8 is a semilattice of Syt where « belongs

to Y
iv) s = E xH', wh * je the #*-c1 in s
(iv) - oXHg s Wwhere He = a class in
containing e, and e belongs to E. -
Now let S be super abundant with set of
idempotents E. Retain the notations of proposition
4.22. Assign to each « in ¥, a left cancellative

LA-monoid Hu - H; for some fixed e in E - By the

a3



fact that if e,f are #¥-related idempotents in an
%

LA-semigroup S, then H; - H; implies H& = Hf for

any f in E, By proposition 4.22, Sor = EuxHu.

Denote the identity of Ha by e, and put M ==u:Ma.
QEY

Define a product (.)on M by x.y = eup*Yr for any x
in M. ¥ in HB' Then
(%.y).2 = {eaﬂfxy]}.z where
eaﬁ(xy] belongs to Hﬂﬂ' z belong to HT' Also

(x.y).z2 = Cxgyt(XY) 2}

= eupy 1 (2Y)X)

= {Eﬁisz]}{ﬂuX}

= (z.y)x.
Hence M is a semilattice y of the left cancellative
LA-monoids. M, where a e V.

Moreover, we have the following lemma.

LEMMA 4.23

S5 is in one-to-one correspondence with

P =v (E xM)
aey * &
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PROOF

Define ¢: P — S by (e,a)¢ = ea. It is
obvious that ¢ is a well-defined map. Let (e,x)
X M, such

B B
that ex = fy. We can verify that e H*ex and f H*fy.

belong to Eﬂ X Hﬂ and (f,y) belong to E

Consider e(ex) = e{(ee)x} = e{xe)e} = (xe) (ee) =
(xe)e = (ee)x = ex. This implies e(ex) = ex . That

is e R ex. Similarly £ H*fy. Therefore e = f and E,

Eﬂ‘ that is, a = B. Thus ex = fy implies that

e (ex) = e (£y)

or e{e“x} = f{eﬂy}
or ex = ey
or X =y

Thus, ¢ is one-to-one.

For surjectivity, let x belong to S, where
x R x+; x* belongs to E . say. Then [x+,e“x] is in
Eﬁ b4 Hu' and {x+,e“x]¢ = x+{e“x} = x+x = x. Hence,
¢ is surjective.

Recall that a band E is a left normal band if
efg = egf for any idempotents e, f,g9 in E. Clearly

left normal bands are left regular. To improve the

result of Lemma 4.23, we impose the condition of

a5



left normality on E.
PROPOSITION 4. 24

If E is left normal, then P = v (E,xM,) is
ey

isomorphic to S.

PROOF

From the proof of Lemma 4.23, we have the
bijection ¢: P — S defined by (e,a)¢ = ea for any
(e,a) in P. To show that ¢ is a homomorphism, let
(e,x) belong to Ea X H& and (f,y) be in EE ® HB'
Then {(e,x):(f,y)}¢ = {ef,eaﬁxy}¢ - tef}(eﬂﬁxyj =

(ef) (xy) where ef,e belong to E and

[rd:] af
(e,x)8(£,y)¢ = (ex) (fy). Notice that ex R'e implies
that efe x m* efe.That is, efex m*ef or efex E*ef
because R = H* on S. That is, efexef = efx. This
implies that efexfy = efxy or efxfy = efxy.

Now let i be in E such that xf H*i. Then, in
particular we have xfi = xf. That is xfi = xff
which implies that i = if. Therefore efxfy = efixfy

= eifxfy, because E is left normal, and efxfy =

eixfy, because if = i. Thus efxfy = exfy. Hence ¢
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is an isomorphism,
As an immediate consequence of proposition

4.24, we have the following corollary.
COROLLARY 4.25

If E is left normal, then S is a spined
product of a left regular band and a semilattice of
Y of 1left cancellative LA-monoids Mﬁ; where o
belongs to Y and Hﬁ‘s are H*—classes cf 5.

Now directly from theorem 4.6 proposition
4.20, proposition 4.24, proposition 4.18, and lemma

4.12, we have

THEOREM 4. 26

Let S be super abundant in which the set of
idempotents is a left normal band. Then the
following statements are equivalent.

(i) S is a left order in a left regular band of
LA-groups,

(ii) S is a left regular band of right reversible
and left cancellative LA-semigroups,

-
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(iii) For any a,b in S, there exists x,y in § with
xa = yb and x R*yk*ab,

(iv) Each ®'-class in § is right reversible,

(v) S is a spined product of a left regular band

and a semilattice of right reversible and

cancellative LA-semigroups.
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