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Preface 

 

This study is for the understanding of the time dependent solid-liquid 

flows of non-Newtonian fluids. The solid particles are supposed to be  

micro or nano sized. Dust particles effect the flow of fluid according to 

concentration. Fluid-particle interaction is also important for the flow of 

matter and heat as well. Impact of dust particles is valuable on viscous 

flows in petroleum industry specifically in the purification of crude oil. 

Also useful in medical equipment and engineering industry as pure liquids 

may not give the required results such as thermal conductivity can be 

enhanced by in cooperating nano and micro particles. In this research, the 

study the unsteady dusty flow is done by considering different types of 

base fluids in two as well as in three dimensions. The equations for both 

fluid and particle phase are modelled separately using conservation of 

mass, momentum and heat transfer. These equations are then 

transformed into the set of nonlinear ordinary differential equations by 

using the similarity transformations. The numerical solutions of 

transformed equations are obtained via shooting mechanism with fifth 

order R-K Fehlberg technique, bvp4c package in MATLAB. In order to 

check the accuracy of the solution methods, comparison is made with the 

previous results. Also, different observations are made using graph and 

tables for all the problems under consideration. 
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0.1 Nomenclature

t Time coordinate [T](sec)

(x, y, z) Spatial coordinate [L](m)

u, v, w Velocity components of liquid phase [L/T](m/sec)

uP , vP , wP Components of velocity of solid phase [L/T](m/sec)

T Temperature of liquid phase

TP Temperature of solid phase

Ec∗, Ecx, Ecy Viscous dissipation parameters

C Volume fraction of dust particles

Cn Concentration of nano-particles

S Drag Coefficient

f ′, g′ Non-dimensional velocity of liquid phase

F ′, G′ Non-dimensional velocity of solid phase

We,Wex,Wey Weissenberg numbers

M Magnetic parameter

Pr Prandtl number

s Mass transfer parameter

λ Stretching ratio parameter

Re,Rex, Rey Reynolds numbers

A1 First Rivlin-Ericksen tensor

B(t) Unsteady magnetic field

B◦ Magnitude of magnetic field

A Unsteadiness parameter

n Power law index

A∗, B∗ Heat source/sink parameter

R, βT Fluid-particle interaction parameter for velocity and

temperature profile

V◦ Uniform suction/injection velocity

a, b Free stream parameters [1/T](1/sec)

c Balancing parameter

k Thermal conductivity
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p Pressure [ML/T 2]

τ Extra stress tensor

µ Dynamic viscosity

µ◦ Zero shear rate viscosity

ζ Biot number

µ∞ Infinite shear rate viscosity

γ̇ Shear rate

η Variable of local similarity

ψ Stream function for fluid phase [L2/T ]

ψP Stream function for solid phase [L2/T ]

α∞ Thermal conductivity at infinity

ν Kinematic viscosity

θ Non-dimensional temperature of fluid phase

θP Non-dimensional temperature of solid phase

α′ Time dependent thermal diffusivity

ρ Density of fluid phase

ρP Density of solid phase

Uw, Vw Stretching velocities

Vs Mass fluid velocity

Tw Surface/Wall temperature

qw Wall heat flux

qr Radiative heat flux

τw Wall shear stress

cp Specific heat capacity of fluid

cm Specific heat capacity of dust particles

γ Ratio of heat capacities

τT Thermal equilibrium time

T∞ Ambient temperature

Cfx, Cfy Skin friction coefficent

Nux Nusselt number

hf coefficient Heat transfer

ε Material dependent parameter

σ Electrical condu ctivity

σ∗ Stefan-Boltzmann constant
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T◦ Reference temperature

Q◦ Time dependent non-uniform heat source/sink

α Ratio of densities

Γ Time material constant

DT Coefficient of thermophoresis diffusion

DB Coefficient of Brownian diffusion

Nb Parameter for Brownian motion

Nt Parameter for Thermophoresis
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Chapter 1

Introduction

Two general topologies of multiphase flow can be usefully identified at the outset, namely

disperse flows and separated flows. By disperse flows we mean those consisting of finite

particles, drops or bubbles (the disperse phase) distributed in a connected volume of the

continuous phase. On the other hand separated flows consist of two or more continuous

streams of different fluids separated by interfaces [1].

In order to control multiphase processes, understanding of mechanisms involved is also es-

sential. Suspensions of particles are global, with examples in biological systems in blood,

household goods such as paints and industrial processing such as waste slurries. They are

encountered in an extraordinarily broad array of industrial, engineering, environmental,

chemical and biological problems, encompassing within it diverse subfields such as aerosol

dynamics, sedimentation of sand particles in rivers , the evaporation and combustion of

drops, the movement of blood cells in capillaries, the motion of catalyst particles in chem-

ical reactors, and fluidization of solids fuels in reacting bed systems, colloidal dispersions,

fluidized beds, and cohesive granular flows. Many of these flows are of great importance in

energy and environmental engineering fields. To list just a few examples, key particulate

suspension flow problems in the combustion area include ash transport, deposition, filtra-

tion and capture from combustion processes, heterogeneous combustion of pulverized coal,

fluidized bed combustion with hot cohesive materials, flame synthesis and spray coating

of nano-particles and gasification and combustion of biofuel particles, and even in-space

electrostatic propulsion based on a micro and nano-particle thruster.

Main focus of the current study is of two phase flows. There are varieties of two phase

flows depending on combinations of two phases as well as their interaction on the inter-

face structures. Two-phase mixtures are characterized by the existence of one or several
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interfaces and discontinuities at the interface. It is easy to classify behavior of two-phase

mixtures according to the combinations of two phases, since in standard conditions we

have only three states of matters namely: solid, liquid, and gas phases [2]. Following are

the combination of three phases but the main focus will be on first one:

• Liquid- solid mixture

• Gas-solid mixture

• Gas-liquid mixture

The focus in this thesis is on liquid-solid mixture with either nano sized particles or dust

size particles. Dusty flow is subclass of two-phase flow, that is liquid-solid flow. Dusty fluid

is considered as heterogeneous mixture in which solid particles are suspended naturally

or artificially. Avoiding digress although solid-particles volume fraction is presupposed

to be very small that is the collision between individual particles may be neglected. Im-

pact of dust particles is valuable on viscous flows in petroleum industry specifically in the

purification of crude oil. Also in medical equipments and engineering industry as pure

liquids may not give the required results such as thermal conductivity can be enhanced

by in cooperating nano and micro particles. Parenthetically other important applications

of such particles in boundary layer flows included soil erosion by natural winds, lunar ash

flows, combustion, dust entrainment in a cloud during nuclear explosions, fluidization and

centrifugal separation etc. The existence of impurities in any state of matter is really very

natural and following that rule of nature many scientists and researchers introduced the

new inventions and area of study. The front runner of the dusty flows was Saffmann [3].

He concluded that if the dust is fine enough then addition of dust wreck the gas flow while

coarser the dust stabilizes the gas flow. After him Soo [4] investigated the dynamics of

multiphase flows. Then Marble [5], Liu [6], Michael and Miller [7] analyzed the dynamics

of gases specifically in detail. Almost everyone is familiar with multiphase flow, like rising

mixture of dust and smoke from the chimneys of factories, foaming bear in a glass. These

are daily life examples, but how it works can be analyzed mathematically. Solid-liquid

flow can be considered on a large scale like sand flow with water in seas with the third

phase that is air bubbles. Theoretically these problems can be solved by considering the

different approaches of modeling by taking the ”principles” of rational mechanics in ac-

count like equipresence, phase seperation, objectivity and well-posedness etc. Numerical
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techniques offered earlier by Harlow and Amsden [8] to solve the multiphase flow prob-

lems. Thermal properties of two-phase flow was earlier proposed by Bishop [9]. Boundary

layer flow of two-phase fluid was introduced by Singleton [10] in his Ph.D dissertation.

Now the current focus is fluid-particle flow, as it has incredible importance in medical

studies, industry and nuclear technology etc. In Ultrasound, CT scan and MRI machines

etc, work as to measure the granular flows and fluid-particle flows given in reference [11].

There are many strong reasons of study of fluid dynamics at macro and nano-level as well.

At macro level mathematicians and engineers try to investigate the flows without defined

boundaries but the case of nano or micro level is really very interesting. We can detect

the presence of a micro-organisms or any impurity in water or in any other liquid. Micro-

organism could be considered as solid particles, like viruses are nano-sized (20 to about

100 nanometers in size) and bacteria are mostly micro-sized (about 0.5 to 3 micrometers).

Such type of study moves towards two phase or multiphase flows. Drew [12] derived a

set of coupled equations Orr-Sommerfield, which were helpful to govern the infinitesimal

distribution of dust particles in fluid. Then Mekheimer et al. [13] used the same concept

of equations gave results for peristaltic flow in a channel. Somehow in last thirty years

eminence researchers did good job for exploring the fluid-particle flow for newtonian and

non-Newtonian, steady and unsteady case as well [14]-[16]. The concur findings was that

momentum of fluid and solid fragments dwindle with the elevation in particles density

and fluid-particle interaction. In last decade of twentieth century Kumar and Sarnma

[17] presented work for fluid-particle suspension flow due to stretching. He perceive that

velocity profile of fluid and particle decreases with the increase in particle loading and

fluid particle interaction. Valentini and Maiellaro [18] studied the non-linear stability for

dusty flows. Recently Sandeep and Sulochana [19] has studied dusty nanofluid flow due

to stretching. He concluded that fluid and particle phase interaction enhances the tem-

perature of dusty fluid and depreciate the friction factor. Sandeep et al.[20]and Kumar

et al.[21] also presented observations about the unsteady dusty flow due to exponential

stretching.

Vast classification of non Newtonian fluids are based upon their characteristics and the

physical factors. Time dependent fluids class is one of the major classes. Heat and mass

flow is effected with the change in time that’s why the study of unsteady flows have great

importance in industry. In historical point of view a classical paper was given by Stewart-

son [22], in which he has given the concept of unsteady laminar boundary layer for the very

first time. Perepelitza [23] investigated the unsteady heat transfer and gave the experi-
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mental results that stabilized heat transfer was at Reynolds numbers of (0.8−6.8)×104 for

5mm× 40mm, 10mm× 40mm, and 20mm× 40mm channels. Recently Bachok et al. [24]

compared the time dependent boundary layer for two different solutions. Rees et al. [25]

investigated the time dependent flow for the Bingham fluid in the porous medium, they

concluded that the fluid stayed stagnant at early times because the resulting buoyancy

forces were too weak to overcome the yield threshold.

Wide range of Non-Newtonian fluids are used in industry for the various purposes accord-

ing to their nature, either shear thickening or thinning etc. Here, we are considering a

shear thinning fluid that is Williamson fluid which was probably a neglected fluid by the

researchers but recently studied and analyzed rapidly. It is from the literature that front

runner of Williamson fluid was Williamson [26]. Bibi et al. [27] unfolded the Williamson

fluid flow in 2-D where the cause of flow is stretching. The study of Williamson fluid in

three dimensions is studied by the Malik et al. [28]. They concluded that Williamson

parameter reduces the momentum transport. Hayat et al. [29] perceive that concentra-

tion profile decreases due to increased chemical reactions. Zehra et al. [30] have discussed

the Poiseuille and Couette flow that is pressure dependent viscosity for Williamson fluid

flow. While Bilal et al. [31] temperature dependent conductivity for three dimensional

Williamson fluid flow caused by bidirectional non-linear stretching surface. Other lat-

est investigations about steady Williamson fluid are in the following references [32]-[39].

Recently Kumar et al [40] analyzed the Williamson fluid flow in three dimensions with

chemical reactions. Mair et al. [41] additionally studied the variable diffusion and con-

ductivity for 3-D rotating flows.

Currently the Williamson non-Newtonian fluid is also taken as base fluid for Nano-fluid.

Nano paricles are used to enhance the heat flow rate. The word ”nanofluid” was firstly

used by Choi et al. [42] allude to the scattering of nano-particles in the base fluid for

the enhancement of thermal conductivities. He had unwrapped a field of study which

has great importance in industry because nanofluids plays a magical role as coolants for

many industrial and automotive purposes. Nandy et al. [43] investigated the effect of

nano particles in presence of MHD. Latest numerical model for the cooling performance

of exhaust gas recirculation (EGR) cooler by using nanofluids is given by Shabgard et al.

[44].

The use of fluids having non-Newtonian nature found in engineering and industrial pro-

cesses, like food mixing, mercury amalgams, and lubrications. This study is also for the

non-Newtonian tangent hyperbolic considered as base fluid which obeys the power law
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model and it is also shear thinning fluid. Boundary layer flow of tangent hyperbolic fluid

flow under consideration of two many conditions and effects is discussed in handy publi-

cations recently. In the last going decade the boundary layer flow as well as the peristaltic

flow considered in the following literature. Akbar et al. [34] discussed the stretching

problem for 2D, Malik et al. [45] proposed the numerical scheme for the flow over stretch-

ing cylinder, and Bibi et al. [46] investigate the dusty stretching flow. Salahuddin et al.

[47],[48] have addressed the MHD tangent hyperbolic flow for stagnation point and heat

generation absorption. Thermo-physical properties are analyzed for tangent hyperbolic

fluid flow by Khalil et al.[49]. He detected that local Nusselt number grows due to en-

hancement of Prandtl number and curvature parameter but lessen due to stratification

factor. As the time-dependency is one of the accountable issues of contemporary disqui-

sition. A perfectly phenomenal discourse have to be mentioned in which Kumar et al.

[50] analyzed the time dependent squeezed flow of magnetized tangent hyperbolic fluid

flow while considering the variable thermal conductivity. He concluded that increment of

power law index reduces the momentum and temperature boundary layer. More literature

about non-Newtonian tangent hyperbolic fluid and Maxwell fluid is given in the references

[51]-[53].

Study of flowing bodies between confined boundaries and infinite boundaries are two main

distinguished areas of interest for the researchers. In this study the boundary layer flow

for two and three dimensions both are under consideration and the flow is because of

stretching of a sheet. As boundary layer flows gained much importance and attention as

per industrial requirement, for example metal and polymer extrusion, metal wires, plas-

tic sheets and films production etc. From literature review it is well known that front

runner researchers of boundary layer flows due to stretching were Sakiadis[54], Crane[55],

Grubka and Bobba[56]. They have started study for two dimensions but afterwards as the

research area growing vast then the study of flows shifted towards the three dimensions.

Although its tough to handle 3-D but in reality flows exist in three dimensions. So taking

in account the importance of three dimensional flow Wang [57] took initiative to analyze

the 3-D flow over a flat stretching surface. Recently Arif et al. [58] evaluate the two

dimensional stretching flow for a viscoelastic natured fluid. Here three dimensional flow

is discussed with time dependency. As the time dependency is a major factor which we

cannot neglect in real life problems. Surma Devi et al. [59] studied the three-dimensional

flows due to stretching for unsteady case. Mahanthesh et al. [60] scrutinized the unsteady

three-dimensional MHD flow for non-Newtonian Eyring-Powell fluid under the effect of
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thermal radiations. Ariel played a remarkable role in this research area mentioned in the

following reference [61]-[63]. The latest consultations about non-Newtonian three dimen-

sional flows are mentioned in following references [64]-[67].

Ishak et al. [68] contemplate the boundary layer of mass and heat flow of nano fluid past

over a porous shrinking sheet. Numerical solution of MHD stretching flow with fluid-

particle suspension was found by Gireesha et al [69]. A stability analysis of stretching flow

through permeable surface was given by Yasin et al. [70] numerically. Momentum and

thermal boundary layer for porous cylinder was reported by Sia et al [71].

Noteworthy effect is under consideration that is MHD. Study of dynamics of fluid and

particles under the effect of magnetic field lies in MHD having striking importance in

industry, medical diagnostics, and nuclear power generation. MHD (magnetohydrody-

namic) technology had a start form the first MHD experiment by Michael Faraday at

the River Thames. In commercial point of view, basically this technology is used in the

power plants. Malghan [72] wrote the history of MHD from first experiment up to that

date with several evidences. Chiou et al [73] studied in mid of 90’s that the magnetic

effect is moderate if Prandtl number of fluid is low and magnetic effect increases with the

increase in Eckert number. Exact and numerical solution for the out-turn of MHD and

permeability for the concentration boundary-layer is given by Aly et al [74]. He observed

that magnetic force and permeability reduces the nano-particle concentration. Vajravelu

and Nayfeh [75] added the magnetic field effect while study of fluid-particle interaction

and select the porous sheet for flow. And gave the results of fluid-particle MHD flow over

a permeable stretching sheet. These results have strong agreement with present results

will be discussed afterwards in same disquisition. Unsteady MHD flow for dusty fluid due

to oscillating plates was analyzed by Debnath and Ghosh [76]. They concluded that if

time-periods are small then automatically frequency will be high and fluid velocity will

be retarded by the particles. Recently effect of MHD for different fluids is scrutinized by

researchers, e.g, effect on Sisko, tangent hyperbolic, Casson, Carreau and Carreau Yasuda

by Hussain et al. [77], Hayat et al. [78], Reddy et al. [79], Khan et al. [81] and Salahuddin

et al. [80] respectively.

The energy conservation is very important and most under discussion area all over the

world. That efforts in absorption technologies perform a distinct role in global energy and

environmental issues. Some of the absorption technologies are absorption heat pump

(AHP), generator absorber heat exchange (GAX), compression-absorption heat pump

(CAHP), Open-cycle absorption heat pump (OAHP), etc. There are many residential
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and commercial applications of absorption heating systems because of huge amount of

energy consumption. For example Direct-fired absorption chiller/heater works on ab-

sorption pump theory, Latent heat recovery of vapor works on OAPH, Hybrid CAHP

heating systems, District heating systems, thermal energy storage and transportation,

etc are civil applications. Absorption-assisted drying, Absorption-assisted evaporation,

Absorption-assisted distillation, etc are industrial applications. Internal heat generation

with multi-boiling effects on cylindrical bodies are discussed by Rybchinskaya et al. [82].

Uniform and non-uniform heat generation results for cylindrical, rectangular and longitu-

dinal surfaces examined by H.C.Unal [83, 84]. The effect of heat generation on unsteady

flow with mixed convection and magnetic force examined numerically by Mahapatra et al.

[85]. Recently boundary layer flow problem with effect of thermal conductivity and heat

generation solved numerically and to remove the highly non-linearity of momentum and

heat equation, differential transformation method (DTM) is used by Mohsen Torabi et al.

[86]. As we know thermal conductivity is a material property and varies with the change

in temperature. It depends on material, if fluid is electrically conducting then temperature

flow is increased. Study of variable thermal conductivity is important in electrolytes which

have important part in preparation of D.C. batteries. Chaim [87] studied that variable

thermal conductivity vary linearly with temperature.

Study of heat flow with convection is prodigious due to huge industry requirement. Convec-

tion can be qualified in terms of being natural, forced, gravitational, granular, or thermo-

magnetic. Consequential implementation of convection is in gas turbines, nuclear reactors,

geothermal energy extraction and material dying etc. There are other additions of heat

source or sink and variable thermal conductivity effects while determining the temperature

of the fluid and particles in cooperation of convection. Yao et al. [88] delineate the heat

flow due to stretching including convective boundary conditions. Boundary layer flow of

dusty fluids due to heat generation or absorption is given by Gireesha et al. [89]. Hussain

et al. [90] reviewed the MHD influence on tangent hyperbolic fluid flow due to stretching

with convective boundary conditions. Ahmed et al. [91] proclaim the unsteady stretch-

ing flow for power-law fluid considering convective conditions. Manjunatha and Gireesha

[92]found the outcome of thermal conductivity on heat flow. Malik et al [93] have discussed

the variable thermal conductivity for williamson fluid flow. They concluded that evocation

of variable thermal conductivity raise the temperature profile of fluid. Recapitulation of

all the effects how influential to the unsteady dusty non-Newtonian fluids mentioned in

the references [94]-[98].
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Non-linear thermal radiations effect is in-cooperated with heat equations for fluid and dust

particles. Non-linear thermal radiations are also introduced to cope up with the temper-

ature related problems during flows. Kumar et al. [99] discussed the MHD flow of dusty

tangent hyperbolic fluid including the effect of thermal radiations. Voguish inspection of

dusty flows while taking MHD and non linear thermal radiations into account mentioned

in the following references[100]-[104].

Flow can be disturbed or facilitate by changing the values of different physical parameters,

joule heating and viscous dissipation with convective boundary conditions. Historically

the front runner of the study of viscous dissipation in natural convection was Gebhart

[105]. Joule heating (also referred to as resistive or ohmic heating) describes the process

where the energy of an electric current is converted into heat as it flows through a re-

sistance. The effect of viscous dissipation in natural convection is appreciable when the

induced kinetic energy becomes appreciable compared to the amount of heat transferred.

Above effects are discussed in a combine way in following different references [106]-[110].

There are different solid-liquid fluid models, here are the main distribution depends upon

the size of solid particles, that is micro and nano sized. The liquids contain micro or

above sized particles are called dusty fluids, and nano-fluids are specified for nano sized

solid particles. There are further classification of models for nano-fluids i.e, Buongiorno

Model [111] and Tiwari and Das [112] two-phase Nano-fluid model. And for the dusty

flows, two phase model using a continuum approach is given by Drew [12], Srivastava and

Srivastava [113] and Mekheimer et al [13].

1.1 Solid-Liquid flow Models

Theoretically solid-liquid flow problems can be solved by considering the different ap-

proaches of modeling. Two of the most important models are,

• Two-phase solid-liquid fluid model

• Buongiorno Nano-fluid

1.1.1 Two-Phase Dusty flow Model

In two-phase model the dust size or micro-sized particles flow with the base fluid, either

newtonian or non-newtonian. Due to flow of these particles drag force originates. This

12



model can be defined as follows:

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (1.1)

∂uP
∂x

+
∂vP
∂y

+
∂wp
∂z

= 0, (1.2)

ρ(1− C)[
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
] = −(1− C)

∂p

∂x
+ µd(C)(1− C)[

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
]

+CS(up − u), (1.3)

CρP [
∂uP
∂t

+ uP
∂uP
∂t

+ vP
∂uP
∂y

+ wp
∂up
∂z

] = CS(u− uP ), (1.4)

ρ(1− C)[
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
] = −(1− C)

∂p

∂y
+ µd(C)(1− C)[

∂2v

∂x2
+
∂2v

∂y2
+
∂2v

∂z2
]

+CS(vp − v), (1.5)

CρP [
∂vP
∂t

+ uP
∂vP
∂t

+ vP
∂vP
∂y

+ wp
∂vp
∂z

] = CS(v − vP ), (1.6)

ρ(1− C)[
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
] = −(1− C)

∂p

∂z
+ µd(C)(1− C)[

∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2
]

+CS(wp − w), (1.7)

CρP [
∂wP
∂t

+ uP
∂wP
∂t

+ vP
∂wP
∂y

+ wp
∂wp
∂z

] = C(w − wP ), (1.8)

ρcp(1− C)[
∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z
] = k(1− C)[

∂2T

∂x2
+
∂2T

∂y2
+
∂2T

∂z2
]

+
ρpcpC

τt
(TP − T ) + CS[(u− uP )2 + (v − vP )2 + (w − wP )2]

C[
∂TP
∂t

+ uP
∂TP
∂x

+ vP
∂TP
∂y

+ wp
∂Tp
∂z

] = C
cP
cmτT

(T − TP ), (1.9)

S is Stoke’s resistance (drag coefficient), there are different correlations of it according to

assumptions are defined by Chhabra in his book[114]. Here the considered value for S is

given below,

S =
9

2

µ◦
r2
λ(C), (1.10)

where,

λ(C) =
4 + 3[8C − 3C2]1/2 + 3C

[2− 3C]2
. (1.11)

Value of the above function is determined by Tam [117]. The correlation for viscosity of

fluid-particle mixture is proposed by Charm and Kurland [116].

µd = µ◦
1

1− qC
(1.12)

and,

q = 0.07exp[2.49C +
1107

T
exp(−1.69C)] (1.13)

13



1.1.2 Buongiorno Nano-fluid Model

The Buongiorno model is used to investigate the effects of Brownian motion and ther-

mophoresis on the flow, heat, and mass transfer. In this model, the nano-sized particles

flow with the base fluid, either newtonian or non-newtonian. This model can be defined

as follows:

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (1.14)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −∂p

∂x
+ µ(

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂y
= αm(

∂2T

∂x2
+
∂2T

∂y2
+
∂2T

∂z2
) + τ [DB(

∂Cn
∂x

∂T

∂x
+
∂Cn
∂y

∂T

∂y
+
∂Cn
∂z

∂T

∂z
)

+
DT

D∞
((
∂T

∂x
)2 + (

∂T

∂y
)2 + (

∂T

∂z
)2)], (1.15)

∂Cn
∂t

+ u
∂Cn
∂x

+ v
∂Cn
∂y

+ w
∂Cn
∂z

= DB(
∂2Cn
∂x2

+
∂2Cn
∂y2

+
∂2Cn
∂z2

) +
DT

D∞
(
∂2T

∂x2
+
∂2T

∂y2
+
∂2T

∂z2
),(1.16)

Cn is nanoparticle concentration.

1.2 Methods of finding solutions

Real problems mostly contain nonlinearity and in this dissertation, the modeled equations

are non-linear differential equations. There are many analytical and numerical methods to

solve the non-linear differential equation system. To solve the problem in this dissertation,

the shooting method with Runge Kutta Fehlberg method and bvp4c are used methods.

1.3 Body forces

1.3.1 MHD

Study of dynamics of fluid and particles under the effect of magnetic field lies in MHD

having striking importance in industry, medical diagnostics and nuclear power generation.

This term can be defined by Lorentz force as: j × B, where j is electric current density

and B is magnetic field. By Ohm’s law:

j = σ[E + V×B], (1.17)

(1.18)

where σ is electrical conductivity of fluid.
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1.3.2 Thermal Radiation

Non-linear thermal radiations are also introduced to cope up with the temperature re-

lated problems during flows. qr is the radiative heat flux can be find out by Rosseland

approximation.

qr = −4σ∗

3k1

∂T 4

∂z
, (1.19)

where σ∗ is a constant called Stefan-Boltzmann and k1 is average absorption coefficient.

While considering that model, optically thick radiations are considered. T 4 given as below;

T 4 = T 4
∞ + 4T 3

∞(T − T∞) + 6T 2
∞(T − T∞)2 + ..., (1.20)

1.3.3 Heat generation/absorption

Heat generation and absorption technologies perform a distinct role in global energy and

environmental issues. The current considered expression is given by,

Q◦ = (
kUw(x, t)

xν
)[A∗(Tw − T∞)f ′ +B∗(T − T∞)]. (1.21)

1.4 Constitutive equations

1.4.1 Williamson Fluid

The tensor for Williamson fluid is defined by form

τ = [µ∞ +
(µ◦ − µ∞)

1− Γγ̇
]A1. (1.22)

Where Γ is a positive time constant i.e, Γ > 0. µ◦ is low shear rate viscosity, µ∞ is the

high shear rate viscosity and shear rate γ̇ is defined below,

γ̇ =

√
1

2
π, (1.23)

and

π =
1

2
tr(A1

2). (1.24)

Here we consider only the case for µ∞ = 0 and Γγ̇ < 1. Now extra stress tensor reduced

to:

τ = [
µ◦

1− Γγ̇
]A1. (1.25)
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By applying binomial expansion to Eq (1.18) and one can obtain following expression

τ = µ◦[1 + Γγ̇]A1, (1.26)

γ̇ = [(
∂u

∂x
)2 +

1

2
(
∂u

∂y
+
∂v

∂x
)2 + (

∂v

∂y
)2]

1
2 . (1.27)

Components of tensor depend upon the assumptions, as below are assumed for two di-

mensional flow.

τxx = 2µ◦[1 + Γγ̇](
∂u

∂x
), (1.28)

τxy = µ◦[1 + Γγ̇](
∂u

∂y
+
∂v

∂x
), (1.29)

τyy = 2µ◦[1 + Γγ̇](
v

y
), (1.30)

τxz = τyz = τzx = τzy = τzz = 0. (1.31)

1.4.2 tangent hyperbolic Fluid

The constitutive equation for tangent hyperbolic fluid is given below,

τ = [µ∞ + (µ◦ + µ∞) tanh(Γγ̇)n]γ̇ (1.32)

here µ∞ is the infinite share rate viscosity will be consider as zero to avoid the complexity

and µ◦ is zero rate viscosity of fluid, n is the power law index also known as flow behavior

index which decides that if n = 0 then fluid is newtonian or if n 6= 1 then fluid is non-

Newtonain, Γ is the time constant and γ̇ is defined below,

γ̇ =

√
1

2
tr(A2

1) (1.33)

and A1 is the first Rivilin-Ereckson tensor. As tangent hyperbolic fluid belongs to shear

thinning class so the condition Γγ̇ << 1 taken in account. Avoiding digress after consid-

erations of conditions and by opening the tangent hyperbolic series Eq.(1.28) reduces to

following equation,

τ = µ◦[1 + n(Γγ̇ − 1)]γ̇ (1.34)
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Chapter 2

Numerical analysis of unsteady

Magneto-biphase Williamson fluid

flow with time dependent magnetic

field

Numerical investigation of time dependent flow of the dusty Williamson fluid has been

focused in this chapter. The flow of biphase liquid-particle suspension saturating the

medium is caused by stretching of porous surface. The influence of magnetic field and

heat generation/absorption are also observed. It is assumed that particle has a spherical

shape and distributed uniformly in fluid matrix. Also, the concentration is small leads to

negligence of collision of particles. The unsteady two dimensional problems is modeled for

both fluid and particle phase using conservation of mass, momentum and heat transfer.

For particles it is considered that they are non-conducting and rigid. The finalized model

generates the non-dimensioned parameters, namely Weissenberg number, unsteadiness

parameter, magnetic parameter, heat generation/absorption parameter, Prandtl number,

fluid particle interaction parameter and mass concentration parameters. The numerical

solution is obtained. Locality of skin friction and Nusselt number are focused with the

help of tables and graphs.
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2.1 Mathematical formulation

Intrinsic equations for Williamson model are defined in [27], also in (Eq.(1.18)). While

formulating the constraint equations for incompressible unsteady dusty flow of Williamson

fluid, magnetic field which works with time is employed long side heat source/sink. The

flow is induced due to a porous sheet which is continuously stretched parallel to x-axis.

Fluid deformation is defined on positive y-axis. The volume fraction of the dust granules,

i.e. number density is variable. It is assumed that heat source is placed in the flow

which can generate or suck energy. Considering the assumptions, controlling equations for

current liquid/particle problem can be set like Manjunatha et al [115].

∂u

∂x
+
∂v

∂y
= 0, (2.1)

∂uP
∂x

+
∂uP
∂y

= 0, (2.2)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= ν[

∂2u

∂y2
+
√

2Γ
∂u

∂y

∂2u

∂y2
]− σB2(t)u

ρ(1− C)
+

CS

ρ(I − C)
(uP − u), (2.3)

∂uP
∂t

+ uP
∂uP
∂x

+ vP
∂uP
∂y

=
S

ρP
(u− uP ), (2.4)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
=

k

ρcp

∂2T

∂y2
+
ρP cpC

ρτt

(TP − T )

(1− C)
− Q◦
ρcP (1− C)

, (2.5)

∂TP
∂t

+ uP
∂TP
∂x

+ vP
∂TP
∂y

=
cP
cmτT

(T − TP ), (2.6)

their respective conditions at boundary are

u = Uw(x, t), v = Vs(t), T = Tw(x, t), at y = 0,

uP → 0, u→ 0, vP → v, TP → T∞ T → T∞, as y →∞. (2.7)

Here u(t, x, y) and uP (t, x, y) are the flow components of fluid and solid particles and

v(t, x, y) and vP (t, x, y) are the components of velocity of the fluid and particles which are

perpendicular to flow direction respectively. S is the Stoke’s resistance (drag coefficient)

[13]. T and TP are the fluid temperature and particles temperature respectively. Q◦ is

the non-uniform source or sink which is dependent upon space and time. The conjecture

builds of the velocity of stretching wall, temperature of the wall, and mass fluid velocity

are defined below:

Uw(x, t) =
ax

(1− ct)
, Vs(t) =

−Vo
(1− ct) 1

2

, Tw(x, t) = T∞ +
ToUwx

ν(1− ct) 1
2

,
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B(t) =
Bo

(1− ct) 1
2

, Q◦ = (
kUw(x, t)

xν
)[A∗(Tw − T∞)f ′ +B∗(T − T∞)]. (2.8)

Here a and c are the constants with positive values, V◦ is uniform suction/injection velocity

and Bo is the magnetic field intensity. Tw is the temperature at the wall and T∞ is

temperature at a large distance from wall. A∗ and B∗ are the parameters of internal heat

source/sink.

Stream functions ψ and ψP can be defined for both fluid and particles, such as

u =
∂ψ

∂y
, v = −∂ψ

∂x
uP =

∂ψP
∂y

, vP = −∂ψP
∂x

. (2.9)

The set of transformations for the conversion of PDE’s to ODE’s can be specified as

η = y

√
Uw
νx
, ψ =

√
Uwνxf(η), ψP =

√
UwνxF (η)

θ =
T − T∞
Tw − T∞

, θP =
TP − T∞
Tw − T∞

. (2.10)

By manipulating Eqs.(2.1)− (2.7) using Eqs.(2.8)− (2.1) obtain following expressions,

f ′′′[1 +Wef ′′] + ff ′′ − f ′2 − A[f ′ +
η

2
f ′′]−M2f ′ +

CR

(1− C)
(F ′ − f ′) = 0, (2.11)

F ′′(η
A

2
− F ) + AF ′ + F ′2 +R(F ′ − f ′) = 0 (2.12)

θ′′ + Pr(fθ′ − 2f ′θ)− PrA
2

(ηθ′ + 3θ) +
PrαβTC

(1− C)
(θP − θ)−

A∗f ′ −B∗θ
(1− C)

= 0,(2.13)

θ′P (η
A

2
− F )− γβT (θ − θP ) + θP (

3

2
A+ 2f ′) = 0, (2.14)

along with the conditions at boundary,

f(0) = s, θ(0) = 1, f ′(0) = 1,

f ′ → 0, F = f, F ′ → 0, θ → 0, θP → 0 as η →∞. (2.15)

Here derivative is taken w.r.t η. The dimensionless number A, M , We, Pr, α, γ and s

are the unsteadiness parameter, magnetic parameter, Weissenberg number, Prandtl num-

ber, mass concentration parameter, fraction of specific heat of the fluid to the particles

respectively, and mass transferring parameter, for injection and suction, s < 0 and s > 0

are taken respectively. All of parameters are defined below

We =

√
a3Γx2

ν(1− ct)3
, A =

c

a
, M =

√
σ

ρa
Bo, R =

S(1− ct)
ρa

,
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Pr =
µcp
k
, α =

ρP
ρ
, βT =

1− ct
aτT

, γ =
cp
cm
, s =

Vo√
νa
. (2.16)

Where, τT is the thermal equilibrium time, required by particles to regulate their tem-

perature corresponding to fluid. The skin friction and Nusselt number are the physical

quantities in which engineers are interested. Relations for skin friction and Nusselt number

are given in Eq (2.17),

Cf =
τw

1
2
ρU2

w

, Nux =
xqw

k(Tw − T∞)
, (2.17)

where, qw denotes the heat flux of the wall. For the Williamson fluid surface shear stress

and estimate of heat transfer through porous stretching wall are defined as

τw = µo[
∂u

∂y
+

Γ√
2

(
∂u

∂y
)2], qw = −k(

∂T

∂y
), (2.18)

by using value of Eq (2.18) into Eq (2.17), get following relations,

CfRe
1
2
x

2
= f ′′(0) +

We

2
f ′′2(0), NuxRe

− 1
2

x = −θ′(0). (2.19)

Here, Rex = Ux
ν

denotes the Reynolds number.

2.2 Numerical procedure of solution

Current problem is a highly non-linear system of differential equations given by Eqs (2.11)−
(2.14) and to get the exact solution in quite a tedious task, therefore solution is obtained

numerically and get the approximated solution. Eqs (2.11) − (2.14) can also be written

as,

f ′′′ =
1

1 +Wef ′′
[f ′2 − ff ′′ + A(f ′ +

η

2
) +

M2f ′

1− C
− CR

1− C
(F ′ − f ′)], (2.20)

F ′′ =
−AF ′ − F ′2 − βT (F ′ − f ′)

Aη
2
− F

, (2.21)

θ′′ = Pr
A

2
(ηθ′ + 3θ)− Pr(fθ′ − 2f ′θ)− PrαβT

(1− C)
(θP − θ) +

A∗f ′ +B∗θ

(1− C)
, (2.22)

θ′P =
γβT (θ − θP )− θP (3A

2
+ 2F ′)

Aη
2
− F

. (2.23)

Some dummy variables are introduced, shown as in Eq(2.24)

f = y1, f
′ = y2, f

′′ = y3, f
′′′ = y′3,

F = y4, F
′ = y5, F

′′ = y′5,

θ = y6, θ
′ = y7, θ

′′ = y′7,

θP = y8, θ
′
P = y′8. (2.24)
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The system of Eqs(2.20)− (2.24) can be converted in first order initial value problem can

be shown as:

dy1
dx

= y2, (2.25)

dy2
dx

= y3, (2.26)

dy3
dx

=
1

1 +Wey3
[y22 − y1y3 + A(y2 +

η

2
y3) +

M2

1− C
y2 −

CR

(1− C)
(y5 − y2)], (2.27)

dy4
dx

= y5, (2.28)

dy5
dx

=
−Ay5 − y25 − βT (y5 − y2)

Aη
2
− y4

, (2.29)

dy6
dx

= y7, (2.30)

dy7
dx

= −pr(y1y7 − 2y2y6) + Pr
A

2
(ηy7 + 3y6)−

PrαβT
(1− C)

(y8 − y6) (2.31)

+
A∗y2 +B∗y6

(1− C)
,

dy8
dx

=
γβT (y6 − y8)− y8(3A2 + 2y5)

Aη
2
− y4

, (2.32)

the reduced endpoint conditions are

y1(a) = s, y2(a) = 1, y2(b) = s1, y4(b) = y1(b),

y5(b) = s2, y6(a) = 1, y6(b) = s3, y8(b) = s4. (2.33)

where s1, s2, s3 and s4 are initially guessed values in a way like integration of the system

of first order ODE fulfil the endpoint conditions and obtained the desired solution for the

system of ordinary differential equations (2.25)-(2.33). The choice of maximum value is

η = 7 with step size= 0.01 with simulation error as 105 and s = 0.3 is fixed for all of the

results in the current discussion.

2.3 Outcomes and discussions

Final results are gained by means of numerical method bvp4c in graphical and tabular

form. Fig. 2.1 is sketched for the study of the velocity profile of fluid and dust parti-

cles. As it is obvious that Weissenberg number We is the fraction of relaxation time to

the retardation time. Increase in We will reduce the retardation time, which leads to
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Figure 2.1: Outcome of We on velocity profile of fluid and dust particles.
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Figure 2.2: Outcome of C on velocity of fluid and dust particles.
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Figure 2.3: Outcome of A on velocity profile of fluid and dust particles.
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Figure 2.4: Outcome of M on velocity of fluid and dust particles.
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Figure 2.5: Outcome of R on velocity profile of fluid and dust.
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Figure 2.6: Outcome of C on temperature profile of fluid and dust particles.
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Figure 2.7: Outcome of A on temperature profile of fluid and dust particles.
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Figure 2.8: Outcome of Pr on temperature profile of fluid and dust particles.
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Figure 2.9: Outcome of α on temperature profile of fluid and dust particles.
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Figure 2.10: Outcome of βT on temperature of fluid and dust particles.
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Figure 2.11: Outcome of γ on temperature profile of fluid and dust paricles.
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Figure 2.12: Outcome of A∗ on temperature profile of fluid and dust paricles.
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Figure 2.13: Outcome of B∗ on temperature profile of fluid and dust paricles.
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Figure 2.14: Variation of skin friction according to change in volume fraction parameter

C and Weissenberg parameter We.
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Figure 2.15: Variation of skin friction according to change in fluid-particle interaction R

and unsteadiness parameter A.
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Figure 2.17: Variation of Nusselt number according to change in mass concentration α

and fluid-particle parameter βT .

resistance to flow in very short time. In simple words, one can say that increment of

the Weissenberg number depreciates the fluid velocity as well as the dust phase velocity.

The consequence of volume fraction C on the momentum boundary layer is delineated in

Fig. 2.2. Substantially the volume taken by the dust particles is high in the fluid then

increment of C will inflate the concentration of fluid overall, due to which velocity of fluid

as well as dust particles will depreciate. Fig. 2.3. depicts that velocity profile of the fluid

decreases with the improvement of unsteadiness parameter A. Due to rapid increment in

time there is a reduction in stretching rate, which is cause of flow. So lesser stretching rate

causes thinner momentum boundary layer of fluid and dust particles. Fig. 2.4. portrays

the consequence of magnetic field on momentum boundary layer. According to the fact

that addendum of magnetic parameter evolves the resistive force against the flow, which is

predominantly known as Lorentz force. Due to this resistive force velocity profile reduces

both for the fluid and dust particle. Fig. 2.5. indicate the turn-out of fluid particle inter-

action parameter on momentum boundary layer. Graph’s out-come depicts that with the

improvement of fluid interaction reduces the velocity of fluid and enhances the velocity

of dust particles. Fig. 2.6. is sketched for the effect of volume fraction of temperature

boundary layer. When the number of particles increases the fluid temperature decreases
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Table 2.1: Analogy of Skin friction coefficient with already published results by keeping

A = 0 and We = 0.

as the internal energy is utilized to keep the temperature of the mixture at equilibrium.

Fig. 2.7. depicts that behavior of the unsteadiness parameter on temperature profile. As

explained above that due to concentration depreciates the temperature boundary layer

after attaining peak value to normalized the temperature of the fluid and dust granules.

Fig. 2.8. portray the discernible results for dimensionless Prandtl number. As the rise in

Prandtl number dwindle the thermal conductivity of fluid which leads to decline of ther-

mal boundary layer of fluid and particles as well. Fig. 2.9. shows that increase of mass

concentration α decreases the temperature boundary layer of fluid after gaining maximum

value to stabilized the temperature of the fluid and dust particles as well. Fig. 2.10.

indicates that the enhancement of fluid-particle interaction reduces the temperature of

fluid phase and raises the temperature profile of dust phase. It may happen because the

interaction of dust particles is for the enhancement of thermal conductivity. Fig. 2.11.

depicts that increase in the specific heat capacity ratio enlarge the temperature bound-

ary layer of fluid and dust phase as well and this is the obvious result. Fig. 2.12. and

Fig. 2.13. exhibits the influence of heat source/sink parameters upon the temperature

profile. Graphical results inform that there is decrease in internal heat of fluid and solid

particles due to increase in heat generation parameter. And opposite behavior is observed

in heat absorption case. Fig. 2.14. shows that increase of volume fraction of dust granules

enhances the skin friction that’s because the increment of volume of dust particles causes

the resistive force with the wall. Same the case with fluid-particle interaction parameter

shown in Fig. 2.15. Nusselt number is the change in temperature from wall to fluid and

it increases with the increase in fluid-particle interaction and mass concentration because

of addition of internal energy due to resistive force after collisions of particles shown in

Fig. 2.16 and Fig. 2.17. For the authentication of current results with previous results one
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Table 2.2: Numeric findings for Skin friction.

can consult the Table. 2.1. which shows the comparable closed results. Variation of local

skin friction against different parameter A,R,C, α,M and We is given in Table. 2.2. And

results show that skin friction increases with the increase of unsteadiness, fluid particle

interaction and volume fraction of dust particles but decreases due to Weissenberg effect.

The variation of local Nusselt number against different parameters A, βT , α, γ, Pr, A
∗ and

B∗ is given in Table. 2.3. And Nusselt number increases with the increase in unsteadiness,

fluid-particle interaction, mass concentration, specific heat ratio, Prandtl number and heat

source but reduces due to heat sink.

2.4 Concluding remarks

The two dimensional unsteady dusty flow of Williamson fluid is studied in this chapter.

The effects of magnetic field and heat generation/absorption are discussed for fluid and

dust particles as well. Following are the outcomes of the current effort:

• Enhancement of Weissenberg number, unsteady parameter, volume fraction parame-

ter, magnetic parameter, and mass concentration parameter depreciates the velocity

of fluid f ′(η) and velocity of dust granules F ′(η) as well.

• Enhancement of fluid-particle interaction reduces the velocity of fluid f ′(η) but give

rise to the velocity of dust granules F ′(η).
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Table 2.3: Numeric findings for Nusselt number.

• Enhancement of Prandtl number, volume fraction parameter, unsteadiness param-

eter and mass concentration parameter depreciates the temperature of the fluid θ

and temperature of dust granules θP as well.

• Enhancement of fluid-particle interaction reduces the temperature of fluid θ but give

rise to the temperature of dust granules θP .

• Enhancement of the ratio of specific heat capacities increases the heat of fluid θ and

heat of dust granules θP as well.

• Enhancement in heat generation reduces the heat of fluid and solid particles and

opposite vogue is followed in absorption case.

• Enhancement of volume fraction of dust granules and fluid-particle interaction in-

creases the local Skin friction.

• Enhancement of mass concentration and fluid-particle interaction increases the local

Nusselt number.
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Chapter 3

Numerical investigation of unsteady

solid-liquid flow of tangent

hyperbolic fluid with variable

thermal conductivity and convective

boundary

This chapter contains the computational estimations of magnetized particulate flow of

tangent hyperbolic fluid due to linearized stretching of porous sheet. Heat flow with

added heat generation/absorption and variable thermal conductivity, alongside convective

boundary conditions is accounted. According to modeling of particulate flow separate

PDE’s for fluid and particles (two-phase model) are modeled. With due assistance of

boundary layer approximation and appropriate transformations these PDE’s a5nd to con-

vert into nonlinear ODE’s. Approximate results are generated with the help of numerical

technique bvp4c. Upshots of emerging parameters such as unsteadiness parameter, mag-

netic parameter, Biot number etc, of ongoing study are elaborated with the support of

graphs and numeric values.

3.1 Mathematical formulation

Examining the two dimensional incompressible unsteady MHD two phase tangent hyper-

bolic fluid flowing over infinite stretching sheet, which stretches linearly parallel to x-axis.
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The effects of variable thermal conductivity and heat source sink under the convective

boundary conditions are accounted in heat transfer equation. Fluid is restricted to posi-

tive y-axis. Magnetic force of magnitude B◦ is imposed at right angle to the flow of fluid.

The stress tensor for tangent hyperbolic fluid is given in Eq.(1.3). Governing equations

for current problem can be writtellows:

∂u

∂x
+
∂v

∂y
= 0, (3.1)

∂uP
∂x

+
∂uP
∂y

= 0, (3.2)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= ν[(1− n)

∂2u

∂y2
+
√

2nΓ
∂u

∂y

∂2u

∂y2
]− σB2(t)u

ρ(1− C)

+
CS

ρ(I − C)
(up − u), (3.3)

CρP (
∂uP
∂t

+ uP
∂uP
∂t

+ vP
∂uP
∂y

) = CS(u− uP ), (3.4)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
=

k

ρcP

∂

∂y
[α′(t)

∂T

∂y
] +

ρPC

ρτt

(TP − T )

(1− C)
+
CS(u− uP )2

(1− C)

− Q◦
ρcP (1− C)

, (3.5)

C
∂TP
∂t

+ uP
∂TP
∂x

+ vP
∂TP
∂y

= C
cP
cmτT

(T − TP ), (3.6)

their respective conditions at boundary are

u = Uw(x, t), v = Vs(t), −k
∂T

∂y
= hf (Tw − T ), at y = 0,

uP → 0, u→ 0, vP → v, TP → T∞ T → T∞, as y →∞. (3.7)

The conjecture builds of the velocity of stretching wall, temperature of the wall, and mass

fluid velocity are defined in Eq.(2.8) and:

α′(t) = α∞(1 + εθ),

α∞ denotes thermal conductivity far away from sheet and ε is the small parameter depends

upon the nature of material or fluid. Stream functions ψ and ψP can be defined as in

Eq.(2.9) and the set of transformations for the conversion of PDE’s to ODE’s are same as
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Eq.(2.10) Hence Eqs.(3.1)− (3.10) after using Eqs.(2.9)− (2.10) becomes,

f ′′′[(1− n) + nWef ′′] + ff ′′ − A[f ′ +
η

2
f ′′]− f ′2 −M2f ′

+
CR

(1− C)
(F ′(η)− f ′(η)) = 0, (3.8)

F ′′(η
A

2
− F ) + AF ′ + F ′2 + βT (F ′ − f ′) = 0 (3.9)

θ′′(1 + εθ) + εθ′2 + Pr(fθ′ − 2f ′θ)− PrA
2

(ηθ′ + 3θ) +
PrαβTC

(1− C)
(θP − θ)

− CEc∗

(1− C)
(f ′ − F ′)2 − A∗f ′ −B∗θ

(1− C)
= 0, (3.10)

θ′P (η
A

2
− F )− γβT (θ − θP ) + θP (

3

2
A+ 2f ′) = 0, (3.11)

along with the conditions at boundary,

f(0) = s, f ′(0) = 1, θ′(0) = −ζ[1− θ(0)],

f ′ → 0, F ′ → 0, F = f, θ → 0, θP → 0 as η →∞. (3.12)

ζ and Ec∗ are Biot number and viscous dissipation parameter are defined below

ζ =
hf
k

√
ν(1− ct)

a
, Ec∗ =

Sν2(1− ct)2

Tok
. (3.13)

Intrinsic relations for skin friction and Nusselt number are given in Eq (3.17),

Cf =
τw

1
2
ρU2

w

, Nux =
xqw

k(Tw − T∞)
, (3.14)

here

τw = µo[(1− n)
∂u

∂y
+ n

Γ√
2

(
∂u

∂y
)2], qw = −k(

∂T

∂y
), (3.15)

settle the Eq (3.21) into Eq (3.20),to get following relations,

CfRe
1
2
x

2
= (1− n)f ′′(0) +

n

2
Wef ′′2(0), NuxRe

− 1
2

x = −θ′(0). (3.16)

3.2 Numerical procedure of solution

The modeled problem shows the nonlinear nature of differential equations and it seems

to be difficult to find the closed form or exact solution for the presumed problem. So

the better option to find the approximated solution by using numerical method. Ongoing
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problem is solved by bvp4c by using MATLAB software. Rearrangement of Eqs (3.14)−
(3.17) according to required form can be written as

f ′′′ =
1

(1− n) + nWef ′′
[f ′2 + A(f ′ +

η

2
)− ff ′′ + M2f ′

1− C

− CR

1− C
(F ′ − f ′)], (3.17)

F ′′ =
−AF ′ − F ′2 − βT (F ′ − f ′)

Aη
2
− F

, (3.18)

θ′′ =
1

1 + εθ
[Pr

A

2
(ηθ′ + 3θ)− Pr(fθ′ − 2f ′θ)− PrαβTC

1− C
(θP − θ)− εθ′2

+
CEc∗

(1− C)
(f ′ − F ′)2 +

A∗f ′ +B∗

(1− C)
θ], (3.19)

θ′P =
γβT (θ − θP )− θP (3A

2
+ 2F ′)

Aη
2
− F

. (3.20)

There is demand of dummy variables,

f = y1, f
′ = y2, f

′′ = y3, f
′′′ = y′3,

F = y4, F
′ = y5, F

′′ = y′5, (3.21)

θ = y6, θ
′ = y7, θ

′′ = y′7,

θP = y8, θ
′
P = y′8. (3.22)

The system of Eqs(3.23)− (3.26) can be converted in the initial value problem as:

dy1
dx

= y2, (3.23)

dy2
dx

= y3, (3.24)

dy3
dx

=
1

1 +Wey3
[y22 − y1y3 + A(y2 +

η

2
y3) +

M2

1− C
y2 −

CR

(1− C)
(y5 − y2)], (3.25)

dy4
dx

= y5, (3.26)

dy5
dx

=
−Ay5 − y25 − βT (y5 − y2)

Aη
2
− y4

, (3.27)

dy6
dx

= y7, (3.28)

dy7
dx

=
1

1 + εy6
[−pr(y1y7 − 2y2y6) + Pr

A

2
(ηy7 + 3y6)−

PrαβTC

1− C
(y8 − y6)

−εy27 +
CEc∗

(1− C)
(y2 − y5)2 +

A∗y2 +B∗y6
(1− C)

], (3.29)

dy8
dx

=
γβT (y6 − y8)− y8(3A2 + 2y5)

Aη
2
− y4

, (3.30)
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the reduced endpoint conditions are

y1(a) = s, y2(a) = 1, y2(b) = s1, y4(b) = y1(b), y5(b) = s2,

y6(b) = s3, y7(a) = −ζ(1− y6(a)), y8(b) = s4. (3.31)

where s1, s2, s3 and s3 are initially guessed values in a way like integration of the system

of first order ODEs fulfil the endpoint conditions and obtained the desired solution for the

system of ordinary differential equations (3.29)-(3.36). The choice of maximum value is

η = 7 with step size= 0.01 with simulation error as 105 and s = 0.3 is fixed for the whole

of the results in the current discussion.

3.3 Outcomes and discussions
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Figure 3.1: Outcome of n on velocity profile of fluid and dust particles.

Boundary layers of velocity and temperature obtained for fluid and granules through

numerical technique that is bvp4c while using MATLAB software. Fig. 3.1. is plotted to

observe the behavior of power law index n which is also known as flow consistency index. It

is clearly shown that increase in flow index causes decrease in momentum boundary layer

of both fluid and granules. Fig. 3.2. is sketched to notice the change in boundary layers
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Figure 3.2: Outcome of A on velocity profile of fluid and dust particles.
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Figure 3.3: Outcome of M on velocity profile of fluid and dust particles.
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Figure 3.4: Outcome of We on velocity profile of fluid and dust particles.
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Figure 3.5: Outcome of R on velocity of fluid and dust.
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Figure 3.6: Outcome of C on velocity profile of fluid and dust particles.
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Figure 3.7: Outcome of n on temperature profile of fluid and dust particles.
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Figure 3.8: Outcome of A on temperature profile of fluid and dust particles.
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Figure 3.9: Outcome of Pr on temperature profile of fluid and dust particles.
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Figure 3.10: Outcome of ζ on temperature profile of fluid and dust particles.
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Figure 3.11: Outcome of βT on temperature of fluid and dust particles.
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Figure 3.12: Outcome of ε on temperature profile of fluid and dust paricles.
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Figure 3.13: Outcome of A∗ and B∗ on temperature profile of fluid and dust paricles.
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Figure 3.14: Variations of skin friction according to change in unsteadiness parameter A

and power law index n.

due to change in unsteadiness parameter A. Graph shows the increment of unsteadiness

parameter reduces the velocity of fluid and particles. Fig. 3.3. delineate the effects of well

known parameter that is magnetic field parameter M . It is obvious that due to magnetic

field parameter there is origination of resistive Lorentz force which diminishes the thick-

ness of momentum boundary layer of fluid and granules as well. Fig. 3.4. is for describing

the Weissenberg effect which is tangible for non-Newtonian fluids. Weissenberg number

We is dependent upon time constant, boost of weissenberg causes falloff of retardation

time will depress the velocity of fluid and particles. Fig. 3.5. assimilate the out-turn of

fluid-particle interaction R. As in current problem two-phase that is fluid and dust phase

has been considered, so in combined flow there is interaction between fluid particles and

dust particles. This interaction sequel the velocity of fluid and dust particles in such a

way that more the interaction more the flow of particles but at the same time enhances

the resistance due to which velocity of fluid reduces. Fig. 3.6. depict the upshot of volume

fraction parameter and results are obvious that accretion of concentration will shrink the

momentum boundary layer due to resistance to flow. Fig. 3.7. illustrate the power law

index behavior on temperature boundary layer. An interesting denouement rise that flow
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Figure 3.15: Variation of Nusselt number according to change in n and ε.

index enhances the heat flow of fluid but lessen the temperature of dust phase. Fig. 3.8.

displays the same graphical decline of heat due to increase in unsteadiness parameter as

for velocity. Fig. 3.9. portray the discernible results for dimensionless Prandtl number.

As the rise in Prandtl number dwindle the thermal conductivity of fluid which leads to

decline of thermal boundary layer of fluid and particles as well. Fig. 3.10. exhibits the

graphical changing due to change in mass Biot number. Biot number has direct relation

with convection and inverse relation with conduction. So it is clear from this associa-

tion that conduction will be reduced with the enhancement of Biot number which leads to

decline in temperature boundary layer of fluid and solid particles as well. Fig. 3.11. specif-

ically describes the fluid-particle interaction for temperature boundary layer. Results are

same as for momentum boundary layer that is the increment of fluid-particle interaction

depreciates the fluid temperature and side by side resistance due to interaction increases

the temperature of solid particles. Fig. 3.12. evidently sketched that enhancement of

thermal conduction give rise to temperature of fluid and particles. Fig. 3.13. graphically

depicts that heat generation by the system of fluid and solid particle reduces the tem-

perature of system, contrarily heat absorbtion by the system from surroundings increase

the temperature of both of the fluid and particles. Fig. 3.14. exhibits the combined effect
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Table 3.1: Analogy of coefficient of Skin friction with already published results by keeping

s = 2, M = 3, n = 0, A = 0 and R = 0.

of unsteadiness parameter and flow index on local skin friction. Increment of flow index

reduces the skin friction. Certification of the ongoing study and results could be check

out in Table. 3.1. by the comparison of results with the published article by the Vajravelu

and Nayfeh [75] in which they have solved the problem by numerical technique that is

Finite Difference and also gives the comparison with exact solution of already published

data, where fn, f
′
n and f ′′n are the values obtained previously by finite difference method

but fm, f
′
m and f ′′m are the values calculated presently by bvp4c method. Table. 3.2. and

Table. 3.3. depicts the fluctuation of local skin friction and Nusselt number for different

values of various parameter. Results show that skin friction increases with the increase

of unsteadiness, fluid particle interaction, volume fraction of dust particles, mass concen-

tration and magnetic field but decreases due to Weissenberg effect and power law index.

And Nusselt number increases with the increase in unsteadiness, fluid-particle interaction,

mass concentration, specific heat ratio, Prandtl number Biot number and heat source but

reduces due to heat sink and variable thermal conductivity parameter.
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Table 3.2: Numeric findings for Skin friction.

3.4 Concluding remarks

The two dimensional unsteady dusty flow of tangent hyperbolic fluid is studied in this

chapter. The effects of magnetic field and variable thermal conductivity with convection

are discussed for fluid and dust particles as well. Evolved conclusions of the current

problem are given below. Most of the parameter cause retardation to flows, let have a

overlook,

• Boost of magnetic field, Power-law index, concentration of particles, Weissenberg

effect, unsteadiness parameter diminishes the momentum boundary layer of fluid

and dust particles.

• Boost of interaction between fluid and particles drops the flow rate of fluid but at

the same time enhance the velocity and temperature of dust particles.

• Boost of Power-law index expand the heat flow of fluid but at the same time drops

the temperature of dust particles.

• Boost of variable thermal conductivity and Biot number expand the temperature

boundary layer but boost of unsteadiness parameter and the Prandtl number lessen

the heat of fluid and dust particles as well.
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Table 3.3: Numeric findings for Nusselt number.

• Heat generation by the system reduces the temperature and heat absorption by the

system from surroundings increase the temperature of fluid and dust particles as

well.

• Boost of unsteadiness parameter and Power-law index collectively lessen the local

skin-friction.

• Boost of thermal conductivity and Power-law index collectively reduces the Nusselt

number.
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Chapter 4

Numerical analysis of unsteady flow

of three dimensional Williamson

fluid-particle suspension with MHD

and non-linear thermal radiations

In this chapter time dependent 3D flow of a non-Newtonian Williamson fluid has been

considered. Flow is generated by the stretching of a sheet with constant velocity and

effected by MHD, dust particles and non-linear thermal radiations. Problem controlling

PDEs are converted into ODEs by using appropriate transformations. Finalized equations

are solved by ’bvp4c method’. The numerical results are compared with already published

data. Non-dimensionalised parameters such as first and second ordered radiation param-

eter, the fluid particle interaction, the unsteadiness parameter, the stretching parameter,

and others are discussed that for these affect the velocity and temperature distribution.

Physical quantities Nusselt number and Skin friction are also analyzed numerically as well

as graphically.

4.1 Mathematical formulation

In this study the time dependent incompressible 3D solid-liquid Williamson non-Newtonian

fluid for momentum and heat flow are evaluated. The effects of MHD and nonlinear ther-

mal radiations are also considered. Flow distribution is due to stretching sheet which
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is assumed to be placed in xy-plane and fluid is placed along the z-axis. Solid particles

emersed in the fluid are small enough but have density, velocity and other physical proper-

ties. The tensor for Williamson fluid is mentioned in section 1.5.1. Modeling for assumed

problem using laws of conservation of mass, momentum and energy are,

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (4.1)

∂uP
∂x

+
∂vP
∂y

+
∂wp
∂z

= 0, (4.2)

ρ(1− C)[
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
] = µ(1− C)

∂

∂z
[(1 +

√
2Γ

√
(
∂u

∂z
)2 + (

∂v

∂z
)2)
∂u

∂z
]

−σB2(t)u+ CS(up − u), (4.3)

CρP (
∂uP
∂t

+ uP
∂uP
∂t

+ vP
∂uP
∂y

+ wp
∂up
∂z

) = CS(u− uP ), (4.4)

ρ(1− C)[
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
] = µ(1− C)

∂

∂z
[(1 +

√
2Γ

√
(
∂u

∂z
)2 + (

∂v

∂z
)2)
∂v

∂z
]

−σB2(t)v + CS(vp − v), (4.5)

CρP (
∂vP
∂t

+ uP
∂vP
∂t

+ vP
∂vP
∂y

+ wp
∂vp
∂z

) = CS(v − vP ), (4.6)

ρcp(1− C)[
∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z
] = k(1− C)

∂2T

∂z2
+
ρpcpC

τt
(TP − T )

+CS[(u− uP )2 + (v − vp)2]−
∂qr
∂z

(4.7)

C(
∂TP
∂t

+ uP
∂TP
∂x

+ vP
∂TP
∂y

+ wp
Tp
∂z

) = C
cP
cmτT

(T − TP ), (4.8)

conditions at boundary are:

u = Uw(x, t), v = Vw(y, t), w = 0, T = Tw(x, t), at z = 0,

uP = u = 0, vP = v = 0, wp = w, T → T∞, TP → T∞ as z →∞. (4.9)

In above equation array the u(t, x, y, z), v(t, x, y, z) and w(t, x, y, z) are the components

of fluid velocity in abscissa, ordinate and applicate axis direction. Similarly uP (x, y, t),

vP (t, x, y, z) and wp(t, x, y, z) are components of particles velocity in above mentioned

three dimensions. qr is radiative heat flux, defined below by Rosseland approximation.

qr = −4σ∗

3k1

∂T 4

∂z
, (4.10)

where σ∗ is a constant called Stefan-Boltzmann and k1 is average absorption coefficient.

While considering that model, optically thick radiations are considered. Relation for T 4
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given in Eq.(1.20) As we know its difficult to solve the PDE’s, so there is requirement of

similarity transformations for the turning of PDE into ODE as follows,

u =
ax

1− ct
f ′(η), v =

ay

1− ct
g′(η), w = −

√
νa

1− ct
(f(η) + g(η)),

uP =
ax

1− ct
F ′(η), vP =

ay

1− ct
G′(η), wP = −

√
νa

1− ct
(F (η) +G(η)),

θ =
T − T∞
Tw − T∞

, θP =
TP − T∞
Tw − T∞

, (4.11)

and to be noted that,

Uw(x, t) =
ax

1− ct
, Vw(y, t) =

by

1− ct
, η = z

√
Uw
νx
,

Tw(x, t) = T∞ +
ToUwx

ν(1− ct) 1
2

, B(t) =
Bo

(1− ct) 1
2

. (4.12)

Utilize Eqs.(4.10)− (4.12) into Eqs.(4.1)− (4.9) and get the following equalizations,

f ′′′[1 +Wex(
√
f ′2 + g′2 +

f ′′2√
f ′2 + g′2

)] +Wex
f ′′g′′g′′′√
f ′2 + g′2

+ (f + g)f ′′

−f ′2 − A[f ′ +
η

2
f ′′]− M2

(1− C)
f ′ +

CR

(1− C)
(F ′(η)− f ′(η)) = 0, (4.13)

A

2
ηF ′′ + AF ′ + F ′2 − (F +G)F ′′ +R(F ′ − f ′) = 0 (4.14)

g′′′[1 +Wey(
√
f ′2 + g′2 +

g′′2√
f ′2 + g′2

)] +Wey
g′′f ′′f ′′′√
f ′2 + g′2

+ (f + g)g′′

−g′2 − A[g′ +
η

2
g′′]− M2

(1− C)
g′ +

CR

(1− C)
(G′(η)− g′(η)) = 0, (4.15)

A

2
ηG′′ +G′2 +R(G′ − g′) + AG′ − (F +G)G′′ = 0 (4.16)

θ′′(1− 5Rd +R∗1θ) +R∗1θ
′2 + Pr(fθ′ − 2f ′θ)− PrA

2
(ηθ′ + 3θ)

+Prθ′(f + g) +
PrαβTC

(1− C)
(θP − θ) +

CEc∗

(1− C)
(f ′ − F ′)2 +

CEc∗

(1− C)
(g′ −G′)2 = 0, (4.17)

θ′P (η
A

2
− 2F −G)− γβT (θ − θP ) + θP (

3

2
A+ 2f ′) = 0, (4.18)

along with the boundary conditions

f(0) = 0, f ′(0) = 1, g(0) = 0, g′(0) = λ, θ(0) = 1,

f ′ → 0, F ′ → 0, F = f, g′ → 0, G′ → 0, G = g,

θ → 0, θP → 0 as η →∞ . (4.19)
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As the multiple dependence shifted to unique η derivative is extracted with respect to it.

Wex is Weissenberg along x-direction, Wey is Weissenberg number along y-direction, λ is

stretching ratio parameter and Rd,R
∗
1 are the nonlinear thermal radiation parameters are

defined below

Wex =

√
2a3Γx2

ν(1− ct)3
, Wey =

√
2a3Γy2

ν(1− ct)3
, λ =

b

a
,

Rd =
16σ∗T 3

∞
3k1k

, R∗1 =
3Rd

(1− ct)
[
Tw
T∞
− 1]. (4.20)

Mathematical Expressions of skin friction for three dimensional flow are given in Eq (4.25),

Cfx =
τxz

1
2
ρU2

w

, Cfy =
τyz

1
2
ρV 2

w

, , (4.21)

By using boundary layer approximation shear stress rates at wall in x, y directions and

coefficients will be reduced to

τxz = µo[
∂u

∂z
+ (

Γ√
2

√
∂u

∂z

2

+
∂v

∂z

2

)
∂u

∂z
]z=0,

τyz = µo[
∂v

∂z
+ (

Γ√
2

√
∂u

∂z

2

+
∂v

∂z

2

)
∂v

∂z
]z=0, (4.22)

by inserting Eq (4.26), into Eq (4.25), one can get,

CfxRe
1
2
x = f ′′(0) +

Wex
2

√
f ′′(0)2 + g′′(0)2f ′′2(0),

CfyRe
1
2
y = g′′(0) +

Wey
2

√
f ′′(0)2 + g′′(0)2g′′2(0). (4.23)

Now expression for another physical quantity that is Nusselt number give in Eq (4.28),

Nux =
xqw

k(Tw − T∞)
, qw = −k(

∂T

∂z
+ qr) (4.24)

where qw denotes the heat flux of the wall. Settle the value of qw into Nu while considering

the thermal radiations effective, one can get following relation for Nusselt number,

NuxRe
− 1

2
x = −[1−Rdk −R∗1kθ]θ′(0). (4.25)

Here Rex = Uwx
ν

and Rey = Vwy
ν

are the Reynolds numbers in x and y-directions respec-

tively. The considered flow is laminar and for that flow Reynolds number will be of low

range.
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4.2 Numerical procedure of solution

Conjecture built of three dimensional flow became more complicated as compare to two

dimensional flow and evidently the non-linearity rate of equations is high. So its preferable

to get the solution numerically. Here the solution of problem is find out by bvp4c method

by using the software MATLAB. For this method, the equations are reduced to first order

equations for the purpose firstly we write:

f ′′′ =
1

[1 +Wex(
√
f ′2 + g′2 + f ′′2√

f ′2+g′2
)]

[−Wex
f ′′g′′g′′′√
f ′2 + g′2

+ f ′2

+A(f ′ +
η

2
f ′′) +

M2f ′

1− C
− CR

1− C
(F ′ − f ′)− f ′′(f + g)], (4.26)

F ′′ =
−AF ′ − F ′2 −R(F ′ − f ′)

Aη
2
− 2F −G

, (4.27)

g′′′ =
1

[1 +Wey(
√
f ′2 + g′2 + g′′2√

f ′2+g′2
)]

[−Wex
g′′f ′′f ′′′√
f ′2 + g′2

+ g′2

+A(g′ +
η

2
g′′) +

M2g′

1− C
− CR

1− C
(G′ − g′)− g′′(f + g)], (4.28)

G′′ =
−AG′ − sG′2 −R(G′ − g′)

Aη
2
− F −G

, (4.29)

θ′′ =
1

1− 5Rd +R∗1θ
[Pr

A

2
(ηθ′ + 3θ)− Pr(fθ′ − 2f ′θ)− PrαβTC

1− C
(θP − θ)

−Prθ′(f + g)−R∗1θ′2 −
CEc∗

(1− C)
(f ′ − F ′)2 − CEc∗

1− C
(g′ −G′)2], (4.30)

θ′P =
γβT (θ − θP )− θP (3A

2
+ 2F ′)

Aη
2
− 2F −G

. (4.31)

There is requirement of method to assume the dummy variables as shown in Eq(4.32).

f = y1, f
′ = y2, f

′′ = y3, f
′′′ = y′3, F = y4, F

′ = y5, F
′′ = y′5,

g = y6, g
′ = y7, g

′′ = y8, g′′′ = y′8, G = y9, G
′ = y10, G

′′ = y′10,

θ = y11, θ
′ = y12, θ

′′ = y′12, θP = y13, θ
′
P = y′13. (4.32)

Set of Eqs(4.30)− (4.35) can be molded in the initial value problem as:
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dy1
dx

= y2, (4.33)

dy2
dx

= y3, (4.34)

dy3
dx

=
1

[1 +Wex(
√
y22 + y27 +

y23√
f22+y

2
7

)]
[−Wex

y3y8y
′
8√

y)22 + y27
+ y22 − y3(y1 + y6)

+A(y2 +
η

2
y3) +

M2

1− C
y2 −

CR

(1− C)
(y5 − y2)], (4.35)

dy4
dx

= y5, (4.36)

dy5
dx

=
−Ay5 − y25 −R(y5 − y2)

Aη
2
− 2y4

− y9, (4.37)

dy6
dx

= y7, (4.38)

dy7
dx

= y8, (4.39)

dy8
dx

=
1

[1 +Wey(
√
y22 + y27 +

y28√
y22+y

2
7

)]
[−Wey

y8y3y
′
3√

y22 + y27
+ y27 − y8(y1 + y6)

+A(y7 +
η

2
y8) +

M2

1− C
y7 −

CR

(1− C)
(y10 − y7)], (4.40)

dy9
dx

= y10, (4.41)

dy10
dx

=
−Ay10 − sy210 −R(y10 − y7)

Aη
2
− y4

− y9, (4.42)

dy11
dx

= y12, (4.43)

dy12
dx

=
1

1− 5Rd +R∗1y11
[−Pr(y1y12 − 2y2y11) + Pr

A

2
(ηy12 + 3y11)−R∗1y212

−PrαβTC
1− C

(y13 − y11)− Pry12(y1 + y6)−
CEc∗

(1− C)
(y2 − y5)2 −

CEc∗

(1− C)
(y7 − y10)2], (4.44)

dy13
dx

=
γβT (y11 − y13)− y13(3A2 + 2y5)

Aη
2
− 2y4 − y9

, (4.45)

the reduced endpoint conditions are

y1(a) = 0, y2(a) = 1, y2(b) = s1, y4(b) = y1(b),

y5(b) = s2, y6(a) = 0, y7(a) = λ, y7(b) = s3,

y9(b) = y6(b), y10(b) = s4, y11(a) = 1, y11(b) = s5,

y13(b) = s6. (4.46)
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Here we need to find some initial guesses that are s1, s2, s3, s4, s5 and s6 by hit and trial

in a way like integration of the system of first order ODEs fulfil the endpoint conditions

and obtained the solution for the system of equations (4.37)-(4.49). The choice of highest

value is η = 7 with step size= 0.01 with simulation error is chosen 10−5.

4.3 Outcomes and discussions
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Figure 4.1: Effect of unsteadiness parameter ”A” on momentum boundary layer of fluid

and particles in x-direction.

Outcomes of the boundary layer flow effected by the different parameters find out by

the numerical method, displayed graphically and numerically. Fig. 4.1 and Fig. 4.2. are

plotted to check the change in momentum boundary layers due to change in unsteadiness

parameter A. Graphs exhibits that rise in unsteadiness parameter decreases the speed

of fluid and granules in both x and y-directions. We can observe in the graph that just

about the surface velocity decreases and increases apart from surface. Fig. 4.3. and

Fig. 4.4. delineate the effects of magnetic field parameter M . As we know that magnetic

field parameter causes a resistive Lorentz force and create hindrance in the fluid flow,

decreases the momentum boundary layer of fluid and dust particles as well and in both x

and y-directions. Fig. 4.5. and Fig. 4.6. are for describing the Weissenberg effect which
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Figure 4.2: Effect of unsteadiness parameter ”A” on momentum boundary layer of fluid

and particles in y-direction.
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Figure 4.3: Effect of magnetic parameter ”M” on the velocity of fluid and particles in

x-direction.
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Figure 4.4: Effect of magnetic parameter ”M” on momentum boundary layer of fluid and

particles in y-direction.
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Figure 4.5: Effect of Weissenberg number ”Wex” on momentum boundary layer of fluid

and particles in x-direction.
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Figure 4.6: Effect of Weissenberg number ”Wey” on momentum boundary layer of fluid

and particles in y-direction.

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

η

f 
’ 
(η

),
  
  
F

’(
η

)

 

 

Fluid Phase
Dust Phase

C=0.1, 0.2, 0.3

A=0.2, We
x
=We

y
=M=0.4, R=1,

α=β
T
=1 ,γ=0.1, Ec*=2.0 

R
d
=0.5, R*

1
=1, Pr=1, λ=0.5

Figure 4.7: Effect of ”C” on velocity of fluid and particles in x-direction.
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Figure 4.8: Effect of ”C ′ on velocity of fluid and particles in y-direction.
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Figure 4.9: Effect of fluid-particle interaction parameter ”R” on momentum boundary

layer of fluid and particles in x-direction.

60



0 1 2 3 4 5 6 7
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

η

g
’(

η
),

  
  
G

’(
η

)

 

 

Fluid Phase
Dust Phase

R=1, 3, 5

A=0.2, C=0.2, M=We
x
=We

y
=0.4,

α=1, β
T
=1, γ=0.1, Ec*=2.0, 

R
d
=0.5, R*

1
=1, Pr=1, λ=0.5

Figure 4.10: Effect of fluid-particle interaction parameter ”R” on momentum boundary

layer of fluid and particles in y-direction.
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Figure 4.11: Outcome of ”C” on temperature boundary layer of fluid and particles.
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Figure 4.12: Effect of Prandtl number ”Pr” on temperature boundary layer of fluid and

particles.
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Figure 4.13: Effect of concentration parameter ”α” on temperature boundary layer of fluid

and particles.
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Figure 4.14: Effect of radiation parameter ”Rd” on temperature boundary layer of fluid

and particles.
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Figure 4.15: Effect of non-linear radiation parameter ”R∗1” on temperature boundary layer

of fluid and particles.
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Figure 4.16: Effect of fluid-particle interaction parameter ”βT” on temperature boundary

layer of fluid and particles.
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Figure 4.17: Effect of ”Ec∗” on temperature profile of fluid and particles.
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Figure 4.18: Effect of ”γ” on temperature boundary layer of fluid and particles.

is essential for fluids having non-Newtonian property. Weissenberg numbers Wex and

Wey are dependent upon time constant, in the x and y-direction. Boost of weissenberg

causes falloff of retardation time will depress the velocity of fluid and granules. Fig. 4.7.

and Fig. 4.8. depict the upshot of volume fraction parameter and results are obvious

that accretion of concentration enhances the resistance to flow in x and y-direction due

to which boundary layer becomes shorten in both directions. Fig. 4.9. and Fig. 4.10.

assimilate the result of fluid-particle interaction R. As in current problem two-phase that

is fluid and granules has been considered, so there is an interaction between fluid particles

and granules. This interaction enhances the velocity of liquid and solid phase in such a

way that more the interaction more the particles will flow but at the same time due to

interaction the resistance increases due to which velocity of fluid reduces. Same results are

shown in x and y-directions. Fig. 4.11. describes the effect of volume fraction of granules

C on temperature boundary layer. Due to increase in number of particles the temperature

boundary layer decreases because increase in fraction of granules causes resistance results

in the generation of internal energy turns to utilized to keep the temperature of the

mixture at state of equilibrium. Fig. 4.12. shows the results for dimensionless Prandtl

number. There is an inverse relation of thermal conduction of fluid with Prandtl number,

the enhancement of Pr decreases of temperature boundary layer of fluid and particles as

65



well. Fig. 4.13. shows that increase of mass concentration α decreases the temperature

boundary layer of fluid after gaining maximum value to stabilized the temperature of the

fluid and dust particles as well. Fig. 4.14. and Fig. 4.15. exhibits the obvious results that

increase in the radiations enhances the temperature of fluid and particles. Rd and R∗1 are

the non linear thermal radiations parameters and it is well known that the fastest way of

heat transfer is radiation. Fig. 4.16. shows that the increment of fluid-particle interaction

βT reduces the heat of fluid and increases the temperature of solid particles. It may

happen due to thermal conductivity of the particles. Fig. 4.17. shows that increment of

viscous dissipation Ec∗ raises the temperature of the system because heat generate during

the dissipation due to viscous or resistive forces. And this heat absorbed by the fluid and

thicken the thermal boundary layer of fluid and dust granules. Fig. 4.18. depicts that rise

in the specific heat capacity ratio enlarge the temperature boundary layer of liquid and

dust particles as well and this is the obvious result. Fig. 4.19. depicts that enhancement

of stretching ratio decreases the speed of fluid in x-direction and increases in y-direction.

And the reason is clear that λ = b
a
, λ has direct relation with b and inverse relation with a.

So increase in λ increases b which is coefficient of Vw and decreases the a which is coefficient

of Uw. In Table. 4.1. we have compared the of results with the online published articles by

the Ariel [61] and Hayat et al.[65] in which they have solved the problem by exact method

and numerical technique. The values find out presently by bvp4c numerical method also

gives the comparison with already published data. Table. 4.2. illustrate the evaluations

of skin-friction and Table. 4.3. illustrate Nusselt number. Results show that skin friction

increases with the increase of unsteadiness, fluid particle interaction, volume fraction of

dust particle, stretching ratio and magnetic field, but decreases due to Weissenberg effect.

And Nusselt number increases with the increase in unsteadiness, fluid-particle interaction,

mass concentration, specific heat ratio and Prandtl number but reduces due to viscous

dissipation and non-linear thermal radiations.

4.4 Concluding remarks

The three dimensional unsteady dusty flow of Williamson fluid is studied in this chapter.

The effects of magnetic field and non-linear thermal radiations are discussed for fluid and

dust particles as well. Evolved conclusions of the current problem are mentioned below.

Most of the parameter cause hindrance to flows, let have a glance to the results,

• Rise in magnetic field, Weissenberg effect, concentration of dust particles, unsteadi-
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Figure 4.19: Effect of stretching ratio parameter λ on momentum boundary layer of fluid

in x and y-direction.

ness parameter reduces the momentum boundary layer of fluid and dust granules in

both x and y-directions.

• Increase in interaction between fluid and particles drops the flow of fluid, simulta-

neously increases the flow rate (in both x and y-directions) and temperature of dust

granules.

• Increase in Prandtl number reduces the temperature boundary layer of fluid and

dust granules as well.

• Increase in viscous dissipation and non-linear thermal radiations rise the heat of the

system, increase the temperature of fluid and dust particles as well.
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Table 4.1: Similarity of values of Skin friction coefficient with published data [61] and [65]

by keeping M = 0, A = 0, R = 0, Wex = 0 and Wey = 0.

Table 4.2: Numeric values of Skin-friction.
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Table 4.3: Numerical values of Nusselt number for different values of

A, βT , α, γ, Pr, C,Rd, R
∗
1 and Ec∗.
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Chapter 5

Numerically analysis of unsteady

flow of three dimensional tangent

hyperbolic fluid-particle suspension

with MHD, viscous dissipation and

joule heating with convective

boundary conditions

This chapter explores the impact of MHD and viscous dissipation on stretching flow of

particulate tangent hyperbolic fluid in 3D. A time-dependent magnetic field is applied

along the z-axis and the sheet stretches along the xy-plane with some velocity. The effects

of joule’s heating and convective boundary conditions on the heat transfer analysis of

particle-fluid flow. The fluid and dust particles motions are coupled through momentum

and heat drag between them. The effect of dissipation due to viscosity and particle

interaction in natural convection is appreciable since, induced kinetic energy becomes

appreciable compared to the amount of heat transferred. A well known bvp4c method has

been used to find the fruitful results. Graphs and tables show the facts and figures for

physical properties according to different parameters.
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5.1 Mathematical formulation

The incompressible 3D unsteady dusty tangent hyperbolic non-Newtonian fluid momen-

tum and heat flow under the effect of MHD, Joule heating and viscous dissipation with

convective boundary conditions. Flow distribution is due to stretching sheet which is as-

sumed to be placed in xy-plane and fluid is placed along the z-axis. Solid particles emersed

in the fluid are small enough but have density, velocity and other physical properties. The

stress tensor for tangent hyperbolic fluid is mentioned in section 1.5.2. Modeling for as-

sumed situation is given as:

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (5.1)

∂uP
∂x

+
∂vP
∂y

+
∂wp
∂z

= 0, (5.2)

ρ(1− C)[
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
] = µ(1− C)

∂

∂z
[((1− n)

+
√

2nΓ

√
(
∂u

∂z
)2 + (

∂v

∂z
)2)
∂u

∂z
]− σB2(t)u+ CS(up − u), (5.3)

CρP (
∂uP
∂t

+ uP
∂uP
∂t

+ vP
∂uP
∂y

+ wp
∂up
∂z

) = CS(u− uP ), (5.4)

ρ(1− C)[
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
] = µ(1− C)

∂

∂z
[((1− n)

+
√

2nΓ

√
(
∂u

∂z
)2 + (

∂v

∂z
)2)
∂v

∂z
]− σB2(t)v + CS(vp − v), (5.5)

CρP (
∂vP
∂t

+ uP
∂vP
∂t

+ vP
∂vP
∂y

+ wp
∂vp
∂z

) = CS(v − vP ), (5.6)

ρcp(1− C)[
∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z
] = k(1− C)

∂2T

∂z2
+
ρpcpC

τt
(TP − T )

+CS[(u− uP )2 + (v − vp)2]− µ[(
∂u

∂z
)2 + (

∂v

∂z
)2] + σB2(u2 + v2) (5.7)

C(
∂TP
∂t

+ uP
∂TP
∂x

+ vP
∂TP
∂y

+ wp
Tp
z

) = C
cP
cmτT

(T − TP ), (5.8)

conditions at the boundary are:

u = Uw(x, t), v = Vw(y, t), w = 0, −k∂T
∂z

= hf (Tw − T ), at z = 0, (5.9)

uP = u = 0, vP = v = 0, wp = w, T → T∞, TP → T∞ as z →∞. (5.10)

S is the drag force. B(t) is the time dependent magnetic field. Uw and Vw are the stretch-

ing velocities of the sheet. Tw is the wall temperature of stretching sheet.
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As we know its difficult to solve the PDE’s, so there is requirement of similarity transfor-

mations for the turning of PDEs into ODEs. Similarity transformations required for the

conversion of PDE’s to ODE’s are defined as in Eqs.(4.11)− (4.12)

u =
ax

1− ct
f ′(η), v =

ay

1− ct
g′(η), w = −

√
νa

1− ct
(f(η) + g(η)),

uP =
ax

1− ct
F ′(η), vP =

ay

1− ct
G′(η), wP = −

√
νa

1− ct
(F (η) +G(η)),

θ =
T − T∞
Tw − T∞

, θP =
TP − T∞
Tw − T∞

, (5.11)

and to be noted that,

Uw(x, t) =
ax

1− ct
, Vw(y, t) =

by

1− ct
, η = z

√
Uw
νx
,

Tw(x, t) = T∞ +
ToUwx

ν(1− ct) 1
2

, B(t) =
Bo

(1− ct) 1
2

. (5.12)

Utilize Eqs.(4.11)− (4.12) into Eqs.(5.1)− (5.10) and get the following equalizations,

f ′′′[(1− n) + nWex(
√
f ′2 + g′2 +

f ′′2√
f ′2 + g′2

)] + nWex
f ′′g′′g′′′√
f ′2 + g′2

+(f + g)f ′′ − f ′2 − A[f ′ +
η

2
f ′′]− M2

(1− C)
f ′ +

CR

(1− C)
(F ′(η)− f ′(η)) = 0,(5.13)

A

2
ηF ′′ + AF ′ + F ′2 − (F +G)F ′′ +R(F ′ − f ′) = 0, (5.14)

g′′′[(1− n) + nWey(
√
f ′2 + g′2 +

g′′2√
f ′2 + g′2

)] + nWey
g′′f ′′f ′′′√
f ′2 + g′2

+(f + g)g′′ − g′2 − A[g′ +
η

2
g′′]− M2

(1− C)
g′ +

CR

(1− C)
(G′(η)− g′(η)) = 0, (5.15)

A

2
ηG′′ + AG′ +R(G′ − g′) +G′2 − (F +G)G′′ = 0, (5.16)

θ′′ + Pr(fθ′ − 2f ′θ)− PrA
2

(ηθ′ + 3θ) + Prθ′(f + g) +
PrαβTC

(1− C)
(θP − θ) +

CEc∗

(1− C)
(f ′ − F ′)2 +

CEc∗

(1− C)
(g′ −G′)2 +

Ecxf
′′2

(1− C)
+
Ecyg

′′2

(1− C)

+
M2Ecxf

′2

(1− C)
+
M2Ecyg

′2

(1− C)
= 0, (5.17)

θ′P (η
A

2
− 2F −G)− γβT (θ − θP ) + θP (

3

2
A+ 2f ′) = 0, (5.18)
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along with the conditions at boundary,

f(0) = 0, f ′(0) = 1, g(0) = 0, g′(0) = λ, θ′(0) = −ζ[1− θ(0)],

f ′ → 0, F ′ → 0, F = f, g′ → 0, G′ → 0, G = g, θ → 0, θP → 0 as η →∞. (5.19)

As the multiple dependence shifted to unique η derivative is extract with respect to it.

The dimensionless number A is unsteadiness parameter, M is magnetic parameter, Wex

is Weissenberg along x-direction, Wey is Weissenberg number along y-direction, Pr is

Prandtl number, R fluid-particle interaction parameter for momentum, βT is fluid-particle

interaction parameter for temperature, C is volume fraction of the granules, α is mass

concentration parameter, γ is fraction of specific heat of the fluid to the particles, λ is

stretching ratio parameter, Ec∗ is viscous dissipation parameter and Ecx, Ecy are Eckert

numbers in x and y-direction, defined below

Wex =

√
2a3Γx2

ν(1− ct)3
, Wey =

√
2a3Γy2

ν(1− ct)3
, A =

c

a
, M =

√
σ

ρa
Bo,

P r =
µCp
k
, R = S

(1− ct)
ρa

, α =
ρP
ρ
, γ =

cp
cm
, βT =

1− ct
aτT

, λ =
b

a
,

Ec∗ =
Sν2(1− ct)2

Tok
, Ecx =

U2
w

cp(Tf − T∞)
, Ecy =

V 2
w

cp(Tf − T∞)
. (5.20)

Where τT is the thermal equilibrium time, required by particles to manage their tem-

perature corresponding to fluid. Mathematical Expressions of skin friction for three di-

mensional flow are given in Eq (5.24),

Cfx =
τxz

1
2
ρU2

w

, Cfy =
τyz

1
2
ρV 2

w

, , (5.21)

By using boundary layer approximation shear stress rates at wall in x, y directions and

coefficients will be reduced to

τxz = µo[(1− n)
∂u

∂z
+ n(

Γ√
2

√
∂u

∂z

2

+
∂v

∂z

2

)
∂u

∂z
]z=0,

τyz = µo[(1− n)
∂v

∂z
+ n(

Γ√
2

√
∂u

∂z

2

+
∂v

∂z

2

)
∂v

∂z
]z=0, (5.22)

by inserting Eq (5.25), into Eq (5.24), one can get,

CfxRe
1
2
x = (1− n)f ′′(0) + n

Wex
2

√
f ′′(0)2 + g′′(0)2f ′′2(0),
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CfyRe
1
2
y = (1− n)g′′(0) + n

Wey
2

√
f ′′(0)2 + g′′(0)2g′′2(0). (5.23)

Now expression for another physical quantity that is Nusselt number give in Eq (5.27),

Nux =
xqw

k(Tw − T∞)
, qw = −k(

∂T

∂z
) (5.24)

where qw denotes the heat flux of the wall. Settle the value of qw into Nux while considering

the thermal radiations effective, one can get following relation for Nusselt number,

NuxRe
− 1

2
x = −θ′(0) . (5.25)

The considered flow is laminar and for that flow Reynolds number will be of low range.

5.2 Numerical procedure of solution

Conjecture built of three dimensional flow became more complicated as compare to two

dimensional flow and evidently the non-linearity rate of equations is high. So its preferable

to get the solution numerically. Here the solution of problem is find out by bvp4c method

by using the software MATLAB. For this method we have to convert equations in he
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following form:

f ′′′ =
1

[(1− n) + nWex(
√
f ′2 + g′2 + f ′′2√

f ′2+g′2
)]

[−nWex
f ′′g′′g′′′√
f ′2 + g′2

+f ′2 + A(f ′ +
η

2
f ′′) +

M2f ′

1− C
− CR

1− C
(F ′ − f ′)− f ′′(f + g)], (5.26)

F ′′ =
−AF ′ − F ′2 −R(F ′ − f ′)

Aη
2
− 2F −G

, (5.27)

g′′′ =
1

[(1− n) + nWey(
√
f ′2 + g′2 + g′′2√

f ′2+g′2
)]

[−nWex
g′′f ′′f ′′′√
f ′2 + g′2

+g′2 + A(g′ +
η

2
g′′) +

M2g′

1− C
− CR

1− C
(G′ − g′)− g′′(f + g)], (5.28)

G′′ =
−AG′ − sG′2 −R(G′ − g′)

Aη
2
− F −G

, (5.29)

θ′′ = Pr
A

2
(ηθ′ + 3θ)− Pr(fθ′ − 2f ′θ)− PrαβTC

1− C
(θP − θ)− Prθ′(f + g)

+Ecxf
′′2 + Ecyg

′′2 +M2Ecxf
′2 +M2Ecyg

′2 − CEc∗

(1− C)
(f ′ − F ′)2 (5.30)

−CEc
∗

1− C
(g′ −G′)2,

θ′P =
γβT (θ − θP )− θP (3A

2
+ 2F ′)

Aη
2
− 2F −G

. (5.31)

There is requirement of method to assume the dummy variables as shown in Eq(5.35).

f = y1, f
′ = y2, f

′′ = y3, f
′′′ = y′3, F = y4, F

′ = y5, F
′′ = y′5, (5.32)

g = y6, g
′ = y7, g

′′ = y8, g′′′ = y′8, G = y9, G
′ = y10, G

′′ = y′10,

θ = y11, θ
′ = y12, θ

′′ = y′12, θP = y13, θ
′
P = y′13.

Set of Eqs(5.29)− (5.34) can be molded in the initial value problem as:
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dy1
dx

= y2, (5.33)

dy2
dx

= y3, (5.34)

dy3
dx

=
1

[(1− n) + nWex(
√
y22 + y27 +

y23√
f22+y

2
7

)]
[−nWex

y3y8y
′
8√

y)22 + y27

+y22 − y3(y1 + y6) + A(y2 +
η

2
y3) +

M2

1− C
y2 −

CR

(1− C)
(y5 − y2)], (5.35)

dy4
dx

= y5, (5.36)

dy5
dx

=
−Ay5 − y25 −R(y5 − y2)

Aη
2
− 2y4

− y9, (5.37)

dy6
dx

= y7, (5.38)

dy7
dx

= y8, (5.39)

dy8
dx

=
1

[(1− n) + nWey(
√
y22 + y27 +

y28√
y22+y

2
7

)]
[−nWex

y8y3y
′
3√

y22 + y27

+y27 − y8(y1 + y6) + A(y7 +
η

2
y8) +

M2

1− C
y7 −

CR

(1− C)
(y10 − y7)], (5.40)

dy9
dx

= y10, (5.41)

dy10
dx

=
−Ay10 − sy210 −R(y10 − y7)

Aη
2
− y4

− y9, (5.42)

dy11
dx

= y12, (5.43)

dy12
dx

= −Pr(y1y12 − 2y2y11) + Pr
A

2
(ηy12 + 3y11)−

PrαβTC

1− C
(y13 − y11)

−Pry12(y1 + y6) + Ecxy
2
3 + Ecyy

2
8 +M2Ecxy

2
2 +M2Ecyy

2
7

− CEc∗

(1− C)
(y2 − y5)2 −

CEc∗

(1− C)
(y7 − y10)2, (5.44)

dy13
dx

=
γβT (y11 − y13)− y13(3A2 + 2y5)

Aη
2
− 2y4 − y9

, (5.45)
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the reduced endpoint conditions are

y1(a) = 0, y2(a) = 1, y2(b) = s1, y4(b) = y1(b),

y5(b) = s2, y6(a) = 0, y7(a) = λ, y7(b) = s3,

y9(b) = y6(b), y10(b) = s4, y12(a) = −ζ(1− y11(a)),

y11(b) = s5, y13(b) = s6. (5.46)

Here we need to find some initial guesses that are s1, s2, s3, s4, s5 and s6 in a way like

integration of the system of first order ODEs fulfil the endpoint conditions and obtained

the solution for the system of equations (5.36)-(5.48). The choice of highest value is η = 7

with step size= 0.01 with simulation error is chosen 105.

5.3 Outcomes and discussions
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Figure 5.1: Effect of power law index ”n” on momentum boundary layer of fluid and

particles in x-direction.

In this section the results of the momentum and temperature boundary layers effected

by the different parameters find out by the numerical method, displayed graphically and

numerically. Fig. 5.1 and Fig. 5.2. are plotted to show the behavior of the power-law
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Figure 5.2: Effect of power law index ”n” on momentum boundary layer of fluid and

particles in y-direction.
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Figure 5.3: Effect of Weissenberg number ”Wex” on momentum boundary layer of fluid

and particles in x-direction.
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Figure 5.4: Outcome of Weissenberg number ”Wey” on momentum boundary layer of fluid

and particles in y-direction.
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Figure 5.5: Effect of magnetic parameter ”M” on velocity of fluid and particles in x-

direction.
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Figure 5.6: Effect of magnetic parameter ”M” on velocity of fluid and particles in y-

direction.
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Figure 5.7: Effect of unsteadiness parameter ”A” on momentum boundary layer of fluid

and particles in x-direction.
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Figure 5.8: Effect of unsteadiness parameter ”A′ on momentum boundary layer of fluid

and particles in y-direction.
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Figure 5.9: Effect of ”C” on velocity of fluid and particles in x-direction.
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Figure 5.10: Effect of ”C” on momentum boundary layer of fluid and particles in y-

direction.
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Figure 5.11: Effect of fluid-particle interaction parameter ”R” on momentum boundary

layer of fluid and particles in x-direction.
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Figure 5.12: Effect of fluid-particle interaction parameter ”R” on momentum boundary

layer of fluid and particles in y-direction.

0 1 2 3 4 5 6 7
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

η

θ
(η

),
  
  

θ
P
(η

)

 

 

Fluid Phase
Dust Phase

n=0.0, 0.1, 0.2, 0.3

A=C=0.2, We
x
=We

y
=M=0.4,

R=α=β
T
=1.0, γ=0 .1, λ=ζ=0.5,

Ec*=Ec
x
=Ec

y
=0.2, Pr=1.0

Figure 5.13: Effect of power law index ”n” on temperature boundary layer of fluid and

particles.
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Figure 5.14: Effect of unsteadiness parameter ”A on temperature boundary layer of fluid

and particles.
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Figure 5.15: Effect of ”Ec∗” on temperature boundary layer of fluid and particles.
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Figure 5.16: Effect of Eckert number ”Ecx” on temperature boundary layer of fluid and

particles in x-direction.
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Figure 5.17: Effect of Eckert number ”Ecy” on temperature boundary layer of fluid and

particles in y-direction.
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Figure 5.18: Effect of Prandtl number ”Pr” on temperature boundary layer of fluid and

particles.

index n which is also known as flow consistency index. It is clearly shown that the

increase in flow index reduces the speed of both fluid and granules in both x and y-

directions. Fig. 5.3 and Fig. 5.4. are for describing the Weissenberg effect which is

essential for fluids having non-Newtonian property. Weissenberg parameters Wex and

Wey are dependent upon time constant, in the x and y-direction. Increase in Weissenberg

parameter causes falloff of retardation time will depress the velocity of fluid and granules.

Fig. 5.5. and Fig. 5.6. delineate the effects of magnetic field parameter M . As we know

that magnetic field parameter causes Lorentz force which is a resistive force and create

hindrance in the fluid flow, in result of which decreases the momentum boundary layer of

fluid and dust particles as well and in both x and y-directions. Fig. 5.7. and Fig. 5.8. are

plotted to check the change in momentum boundary layers due to change in unsteadiness

parameter A. Graphs reveal that the rise in unsteadiness parameter decreases the flow

rate of fluid and granules in both x and y-directions. We can observe in the graph that

near the surface, velocity decreases and increases off from surface. As A is defined as

inversely proportional to stretching coefficient a. The increase in unsteadiness parameter

A reduces the a, in result of which velocity of fluid and granules decreases. Fig. 5.9.

and Fig. 5.10. depict the upshot of volume fraction parameter and results are obvious
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that accretion of concentration enhances the resistance to flow in x and y-direction due

to which boundary layer becomes shorten in both directions. Fig. 5.11. and Fig. 5.12.

assimilate the out-turn of fluid-particle interaction R. As in current problem two-phase

that is fluid and granules has been considered, so there is an interaction between fluid

particles and granules. This interaction enhances the speed of fluid and particles as well,

in such a way that more the interaction more the particles will flow but at the same time

due to interaction the resistance increases due to which velocity of fluid reduces. Same

results are shown in x and y-directions. Fig. 5.13. shows that while enhancing the power

law index reduces the temperature of the fluid. Fig. 5.14. shows the same graphical as

for the velocity profile that unsteadiness decreases of the temperature of system. Increase

in unsteadiness parameter reduces the velocity of fluid in turn decreases the temperature

of fluid. Fig. 5.15., Fig. 5.16. and Fig. 5.17. show that increment of viscous dissipation

parameters Ec∗, Ecx and Ecy raises the temperature of the system because heat generate

during the dissipation due to viscous or resistive forces. And this heat absorbed by the fluid

and thicken the temperature boundary layer of liquid and granules. Fig. 5.18. shows the

results for dimensionless Prandtl number. Because of inverse relation of Prandtl number

with the thermal conduction of fluid, the enhancement of Pr decreases of temperature

boundary layer of fluid and particles as well. Fig. 5.19. shows that increase of mass

concentration α decreases the temperature boundary layer of fluid after gaining maximum

value to stabilized the temperature of the fluid and dust particles as well. Fig. 5.20.

reveal that the increment of fluid-particle interaction βT reduces the temperature of liquid

phase and increases the temperature of solid particles. It may happen due to thermal

conductivity of the particles. Fig. 5.21. describes the effect of volume fraction of granules

C on temperature boundary layer. Due to increase in number of particles the temperature

boundary layer decreases because increase in fraction of granules causes resistance results

in the generation of internal energy turns to utilized to keep the temperature of the mixture

at state of equilibrium. Fig. 5.22. depicts that rise in Biot number increases the heat of

system. This is due to the fact that the convective heat exchange at the surface leads

to enhance the thermal boundary layer thickness. Fig. 5.23. shows that the increase in

stretching ratio decreases the speed in x-direction and increases in y-direction. And the

reason is clear that λ = b
a
, λ has direct relation with b and inverse relation with a. So

increase in λ increases b which is coefficient of Vw and decreases the a which is coefficient

of Uw. Table. 5.1. and Table. 5.2. illustrate the variation of skin friction and also Nusselt

number for different values of considered parameters. Results show that skin friction
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increases with the increase of unsteadiness, fluid particle interaction, volume fraction of

dust particles, stretching ratio and magnetic field, but decreases due to Weissenberg effect

and power law index. And Nusselt number increases with the increase in unsteadiness,

fluid-particle interaction, mass concentration, specific heat ratio, Prandtl number Biot

number and heat source but reduces due to power law index and viscous dissipation .

5.4 Concluding remarks

The three dimensional unsteady dusty flow of tangent hyperbolic fluid is studied in this

chapter. The effects of magnetic field and viscous dissipation with convection are discussed

for fluid and dust particles as well. Evolved out-turns of the current problem are mentioned

below. Most of the parameter cause hindrance to flows, let have a glance to the results,
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Figure 5.19: Effect of concentration parameter α on temperature boundary layer of fluid

and particles.

• Increase in power law index, Weissenberg effect, magnetic field, concentration of

dust particles, and unsteadiness parameter reduces the momentum boundary layer

of fluid and dust granules in both x and y-directions.
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Figure 5.20: Effect of fluid-particle interaction parameter βT on temperature boundary

layer of fluid and particles.
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Figure 5.21: Effect of C on temperature of fluid and particles.
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Figure 5.22: Effect of mass Biot number ζ on temperature boundary layer of fluid and

particles.
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Figure 5.23: Effect of stretching ratio parameter λ on momentum boundary layer of fluid

in x and y-direction.
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Table 5.1: Numeric findings of Skin-friction.

• Increase in interaction between fluid and particles drops the flow of fluid, simulta-

neously increases the flow rate (in both x and y-directions) and temperature of dust

granules.

• Increase in Prandtl number reduces the temperature boundary layer of fluid and

dust granules as well.

• Increase in viscous dissipation and Biot number rise the heat of system, increases

the heat of fluid and dust particles as well.
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Table 5.2: Numerical findings of Nusselt number.
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Chapter 6

Numerical study of unsteady

Williamson fluid flow and heat

transfer in the presence of MHD

through a permeable stretching

surface

In this chapter, Williamson fluid model with unsteady flow field characteristics are dis-

cussed. In the flow system the nanosized particles are suspended having the magnetic field

interaction. The flow is achieved due to permeable stretching surface. The flow model

for a numerical solution is regulated by means of coupled partial differential equations via

shooting method. Mathematical modeling yields physical parameters, namely the Weis-

senberg, Prandtl, and Lewis numbers, the unsteady, magnetic, thermophoresis and Brow-

nian motion parameters. The Williamson fluid velocity, temperature , and concentration

of nanoparticles are found to be a decreasing function towards unsteady parameter.
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Figure 6.1: Physical model.

6.1 Mathematical formulation

The Constitutive equation for Williamson fluid model is defined in section 1.5.1. The

component form of continuity and momentum equations can be defined as

∂u

∂x
+
∂v

∂y
= 0, (6.1)

ρ(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
) = −∂p

∂x
+

∂

∂x
(τxx) +

∂

∂y
(τxy), (6.2)

ρ(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
+

∂

∂x
(τyx) +

∂

∂y
(τyy), (6.3)

here u(x, y, t) and v(x, y, t) are the velocity components along the flow direction and normal

to the flow direction respectively. The boundary layer approximations with zero pressure

gradient assumption reduces the constitutive equations as follows,

∂u

∂x
+
∂v

∂y
= 0, (6.4)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= ν[

∂2u

∂y2
+
√

2Γ
∂u

∂y

∂2u

∂y2
]− σB2(t)u

ρ
, (6.5)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
= αm

∂2T

∂y2
+ τ [DB

∂Cn
∂y

∂T

∂y
+
DT

D∞
(
∂T

∂y
)2], (6.6)

∂Cn
∂t

+ u
∂Cn
∂x

+ v
∂Cn
∂y

= DB
∂2Cn
∂y2

+
DT

D∞

∂2T

∂y2
, (6.7)

there respective conditions at boundary are

u = Uw(x, t), v = Vs(t), T = Tw(x, t), Cn = Cw(x, t) at y = 0,

u→ 0, T → T∞, Cn → C∞ when y →∞. (6.8)
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In above equations ν represents kinematic viscosity, τ = (ρc)p
(ρc)f

defines the ratio of effec-

tive heat capacity of the nanoparticles to the effective heat capacity of base fluid. T is

fluid temperature and Cn is nanoparticle concentration. The assumed forms of stretching

velocity, surface temperature, mass fluid velocity, surface nanoparticle concentration and

magnetic field are given as follows

Uw(x, t) =
ax

1− ct
, Vs(t) =

−Vo
(1− ct) 1

2

, B(t) =
Bo

(1− ct) 1
2

,

Tw(x.t) = T∞ +
ToUwx

ν(1− ct) 1
2

, Cw(x, t) = C∞ +
CoUwx

ν(1− ct) 1
2

, (6.9)

here Bo is the magnetic field intensity and V◦ is uniform suction/injection velocity.

One can introduce a stream function ψ which satisfy the continuity equation, such that

u =
∂ψ

∂y
, v = −∂ψ

∂x
. (6.10)

The set of transformations for order reduction can be defined as

η = y

√
Uw
νx
, ψ =

√
Uwνxf(η),

θ =
T − T∞
Tw − T∞

, φ =
Cn − C∞
Cw − C∞

. (6.11)

By using Eqs.(6.20)− (6.22) into Eqs.(6.16)− (6.19) one can obtain

f ′′′[1 +Wef ′′] + ff ′′ − f ′2 − A[f ′ +
η

2
f ′′]−M2f ′ = 0, (6.12)

θ′′ + Pr(fθ′ − 2f ′θ)− PrA
2

(ηθ′ + 3θ) + Pr[Nbθ′φ′ +Nt(θ′)2] = 0, (6.13)

φ′′ + PrLe(fφ′ − 2f ′φ)− PrA
2
Le(ηφ′ + 3φ) +

Nt

Nb
θ′′ = 0, (6.14)

along with the conditions at boundary,

f(0) = s, f ′(0) = 1, φ(0) = 1, θ(0) = 1,

f ′ → 0, φ→ 0, θ → 0, at η →∞. (6.15)

The dimensionless number We, A, M and Pr Nb Nt, Le and s are the Weissenberg

number, unsteadiness parameter, magnetic parameter, Prandtl number, Brownian motion

parameter, thermophoresis parameter, Lewis number and mass transfer parameter s > 0

for suction and s < 0 for injection are defined below

We =

√
a3Γx2

ν(1− ct)3
, A =

c

a
, M =

√
σ

ρa
Bo,
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Pr =
µCp
k
, Nb =

τDB(Cw − C∞)

ν
,

Nt =
τDT (Tw − T∞)

νT∞
, Le =

αm
DB

, s =
vo√
νa
. (6.16)

6.1.1 Skin friction coefficient, local Nusselt number and local

Sherwood number

The skin friction coefficient is defined below

Cf =
τw

1
2
ρU2

w

, (6.17)

For the Williamson fluid surface shear stress τw is defined as

τw = µo[
∂u

∂y
+

Γ√
2

(
∂u

∂y
)2]y=0, (6.18)

after incorporating the Eq (6.29) into Eq (6.28), one has following expression

CfRe
1
2
x

2
= f ′′(0) +

We

2
f ′′2(0). (6.19)

Expression for Nusselt number,

Nux =
xqw

k(Tw − T∞)
, (6.20)

and,

qw = −k(
∂T

∂r
)r=R, (6.21)

using Eq (6.32) into Eq (6.31) one has

NuxRe
− 1

2
x = −θ′(0). (6.22)

The Sherwood number is defined as

Shx =
xqm

DB(Cw − C∞)
, (6.23)

where

qm = −DB(
∂Cn
∂y

)y=0, (6.24)

by using Eq (6.35) into Eq (6.34) one can get

Re−
1
2Shx = −φ′(0), (6.25)

here Rex = Ux
ν

denotes the Reynolds number.
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6.2 Numerical procedure of solution

The system given by Eqs (6.23) − (6.25) is non-linear and it is difficult to fnd out the

closed form solution therefore for numerical solution one can write

f ′′′ =
f ′2 + A(f ′ + η

2
)− ff ′′ +M2f ′

1 +Wef ′′
, (6.26)

θ′′ = Pr
A

2
(ηθ′ + 3θ)− Pr[fθ′ − 2f ′θ − Pr(Nbθ′φ′ +Nt(θ′)2)], (6.27)

φ′′ = Pr
A

2
Le(ηφ′ + 3φ)− PrLe(fφ′ − 2f ′φ)− Nt

Nb
θ′′. (6.28)

to implement shooting method we have introduced dummy variables as follows

f = y1, f
′ = y2, f

′′ = y3, f
′′′ = y′3,

θ = y4, θ
′ = y5, θ

′′ = y′5,

φ = y6, φ
′ = y7, φ

′′ = y′7, (6.29)

The equivalent form of Eqs(6.37)− (6.39) in terms of initial value problem can be written

as:

y′1 = y2, (6.30)

y′2 = y3, (6.31)

y′3 =
y22 + A(y2 + η

2
y3)− y1y3 +M2y2

1 +Wey3
, (6.32)

y′4 = y5, (6.33)

y′5 = −pr(y1y5 − 2y2y4) + Pr
A

2
(ηy5 + 3y4)− Pr[Nby5y7 +Nt(y5)

2], (6.34)

y′6 = y7, (6.35)

y′7 = Pr
A

2
Le(ηy7 + 3y6)− PrLe(y1y7 − 2y2y6)−

Nt

Nb
y′5, (6.36)

the reduced endpoint conditions are

y1(0) = s, y2(0) = 1, y3(0) = a1, y4(0) = 1,

y5(0) = a2, y6(0) = 1, y7(0) = a3. (6.37)

where a1, a2 and a3 are initial guessed value.
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Figure 6.2: Impact of unsteadiness A on velocity.
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Figure 6.3: Impact of unsteadiness parameter A on temperature profile.
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Figure 6.4: Impact of unsteadiness parameter A on nanaparticle concentration profile.
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Figure 6.5: Impact of s on velocity profile.
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Figure 6.6: Impact of s on temperature profile.
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Figure 6.7: Impact of mass transfer parameter s on concentration profile.
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Figure 6.8: Outcome of M on velocity.
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Figure 6.9: Impact of magnetic parameter M on temperature profile.
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Figure 6.10: Impact of Weissenberg number We on velocity profile.
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Figure 6.11: Impact of Nt on temperature profile.
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Figure 6.12: Outcome of Nt on concentration profile.
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Figure 6.13: Outcome of Nb on temperature.
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Figure 6.14: Outcome of Nb on concentration profile.
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Figure 6.15: Impact of Lewis number Le on temperature profile.
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Figure 6.16: Outcome of Le on concentration profile.

6.3 Outcomes and discussions

The outcomes by means of shooting method are reported through both tables and figures.

In detail, Fig. 6.2 − 6.4. exhibit that there is a decrease in velocity, temperature and

concentration to be more specific in unsteadiness parameter. Fig. 6.2. depicts that mo-

mentum boundary layer decreases with increase in unsteadiness parameter A. Fig. 6.3.

shows that increase in unsteadiness parameters decreases the fluid temperature due to

rapid transfer of heat through the permeable sheet. Similarly noticed for nanoparticle

concentration via unsteadiness parameter shown in Fig. 6.4. It is noticed in Fig. 6.5.

to 6.7. that fluid velocity, temperature and nanoparticle is decreasing function of mass

transfer parameter that an increase in mass transfer parameter brings decline curves in

velocity, temperature and nanoparticle concentration. Fig. 6.8.−6.9. provides the impact

of magnetic field parameter on both fluid velocity and temperature distributions. It is

observed that velocity profile is decreasing function of magnetic field parameter M. When

magnetic field parameter increases the magnitude of lorentz force increases. Hence large

resistance is forced by fluid particles as a result velocity of fluid decreases. In parallel con-

text large resistance enhances the temperature of the fluid. Fig. 6.10. is used to examine
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Figure 6.17: Skin friction variation due to change in magnetic parameter M and Weis-

senberg parameter We.

the impact of Weissenberg number on velocity profile. It is noticed that the velocity profile

is decreasing function of Weissenberg number. The Weissenberg number is ratio of relax-

ation time to retardation time. Therefore increase in relaxation time which confirms the

dominance of viscous forces as a result velocity curves shows decline values. The outcome

of thermophoresis on both temperature and concentration of nano-particles are tested in

Fig. 6.11 − 6.12. It is clear from figures by increasing the rise of thermophoresis param-

eter increases the temperature and nanoparticle concentration. Fig. 6.13.− 6.14. reveals

the effect of dimensionless Brownian motion parameter on the thermal and concentration

boundary layer. It is clear from definition of Brownian motion parameter that there is rise

in energy of nano-particles due to which temperature of the nanofluid increases. In result

of this motion the heat of system increases.

The increase in kinetic energy is the cause of dispersion of nanoparticles which declines

the concentration boundary layer thickness of nanofluid. Fig. 6.15. shows the influence

of Lewis number on heat of system minutely. The Lewis number has direct relation with

thermal diffusion so increment in Lewis number enhances the heat transfer as a result

temperature increases. Fig. 6.16. reports the outcome of Lewis number on concentra-
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Figure 6.18: Skin friction variation due to change in A and s.
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Figure 6.19: Local Nusselt number variation due to change in A and Pr.
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Table 6.1: Comparison of skin friction −f ′′(0) with previously published data considering

unsteadiness parameter variation A when M = s = We = 0.

A Khan et al.[11] Present results

0.0 1.0000 1.0005

0.2 1.06801 1.0685

0.4 1.13469 1.1349

0.6 1.19912 1.1992

tion profile. The concentration of nano-particles is decreasing function of Lewis number.

Fig. 6.17. reveals the results due to friction offered by stretching permeable surface. It

clarifies rise in skin friction due to increase in magnetic parameter. But there is decline in

(1/2)Re
1/2
x Cf by increment in Weissenberg number. The influence of unsteadiness param-

eter on both local Nusselt number and local Sherwood number shown in Fig. 6.19.−6.20.

respectively. It is observed that due to increase in A, the Sherwood number and also

Nusselt number increases. Moreover it is also clear from figures that the local Nusselt

and Sherwood numbers reflects incitng values towards higher values of Prandtl and Lewis

numbers respectively. Table. 6.1. is constructed to provide the comparison of our work

with existing literature. It is observed that have an excellent match with Khan et al [81].

Table. 6.2. indicates the effect of non dimensional parameters upon skin friction coefficient

(f ′′(0) + We√
2
f ′′2(0)). Values in table shows that enhancement in Local skin friction due to

increase in unsteadiness parameter A, mass transfer s and magnetic parameter M but put

it drops due to increment in Weissenberg number We. Table. 6.3. reports the effects of non

dimensional parameter on Local Nusselt number −θ′(0). Results implies that the Nusselt

number increases with the increase in unsteadiness parameter A and Prandtl number Pr.

Table. 6.4. uncover the impact of non dimensional parameters towards the local Sherwood

number −φ′(0). For the controlled values of s, M and We there is an increase in the

Sherwood number by the increase in A, Pr, Le and Nb. But enhancement of Nt reduces

the local Sherwood number.

6.4 Concluding remarks

There are various non-dimensional parameters involved in this problem. Particularly un-

steadyness parameter, Weissenberg number, mass transfer parameter, magnetic field, ther-
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Figure 6.20: Sherwood number variation due to change in unsteadiness parameter A and

Lewis number Le.

mophoresis and Brownian parameter plays distint role in effecting flow as well as temper-

ature and concentration flow rate through a permeable sheet.

• The Williamson fluid velocity, temperature and nanoparticles concentrations are a

decreasing function of the unsteady parameter.

• The fluid velocity, temperature and nanoparticle concentration reflect declining curves

for the mass transfer parameter.

• The velocity profile shows a declining nature towards the magnetic field parameter

but the opposite trend is noticed for the case temperature profile.

• Both temperature and nanoparticles concentration show increasing values via ther-

mophoresis parameter.

• The skin friction coefficient increases for the positive values of both mass transfer

parameter and unsteadiness parameter.

• The Nusselt number shows higher values for the increasing values of both Prandtl

number and unsteadiness parameter.
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Table 6.2: Numerically computed values of Skin friction.

Table 6.3: Numerically computed values of Nusselt number by fixing s = 0.3 and M =

We = 0.2.

Table 6.4: Numerically computed values of Sherwood number for different values of

A,Pr,Nt,Nb and Le by fixing s = 0.3 and M = We = 0.2.
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