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Preface 
 

The main theme of this dissertation is about the computational approach for the flows at 

boundary layer in concern with heat transfer rate by invoking various effects to the energy 

equation which includes heat absorption/generation, Joule heating, thermal radiation and nano-

fluids etc. The nano particles are the major source to enhance heat transfer rate in fluid flows. 

Nano-fluid is the advance type of fluid which shows the combination of base fluid and nano 

sized particles. These nano particles include metals like silicon, copper and aluminum etc.  

Beside this, three main sources of heat transfer are the conduction, convection and radiation. 

The researchers of recent times have been examining the heat transfer rate in different 

perspectives. As in this dissertation, the heat transfer phenomena is observed by using 

Cattaneo-Christov heat flux model. This type of heat flux is the generalized shape of Fourier’s 

law which helps to transform heat equation into hyperbolic form. This law is used to determine 

the thermo-elastic and concentration elastic effects in Newtonian as well as non-Newtonian 

fluid models. The study of behavior of concentration of fluid is an important feature to be 

discussed in fluid dynamics. For this purpose, the concentration equation is debated through 

Homogeneous-Heterogeneous chemical reactions. 

The mathematical model for the problem is designed by considering the laws of conservation. 

The equations of motion are presented as Navier-Stokes equation which reflects as a Partial 

Differential Equations (PDE’s). The equipment which is used to alter these equations into 

Ordinary Differential Equations (ODE’s) is a well know similarity transformation technique. 

This technique helps to reduce independent variables that appears in PDE’s and provides a 

system of ODE’s. The obtained set of equations are then converted to system of first order 

ODE’s as it is simpler to deal with or we convert them into initial value problem by using 

suitable substitutions. The missing initial conditions are supposed to take as some particular 

values. These supposed values against the missing initial conditions are taken on a hit and trial 



bases which is known as shooting technique. The numerical solutions are calculated by using 

Runge-Kutta Fehlberg method in shooting scheme. The impacts of numerous physical 

quantities upon velocity of fluid, temperature of fluid and concentration of fluid are portrayed 

through graphs by using MATLAB. The main purpose of representing the graphs is to 

determine how the base fluids are affected by considering certain effects in the momentum 

energy and concentration equation. The heat transfer rate or Nusselt number and mass transfer 

rate that is Sherwood number are examined. Moreover, their numerical values are computed 

and compared with the previous results. The comparison shows an excellent match with the 

existing literature which provides the consistency and accuracy of the computational approach. 

The transfer of heat and mass phenomena by way of Carreau steady two-dimensional infinite 

shear rate viscosity model over moving wedge is analysed in chapter 1. The results for dilatant 

and pseudoplastic fluids are reported. The independent variables are reduced from partial 

differential equations in order to get ordinary differential equations by applying admissible 

similarity transformation technique. This system is sorted out in a numerically by means of 

Runge-Kutta methodology associated by shooting algorithm. The reduction in the temperature 

of Carreau fluid is captured due to greater values of viscosity ratio parameter in case of shear 

thickening and reverse trend is examined for the shear thinning case. Further, the concentration 

in Carreau fluid declines against wedge angle parameter for shear thickening and thinning. The 

headnotes of this chapter are published in “Case Studies in Thermal Engineering, 12(2018): 

126-136”. https://doi.org/10.1016/j.csite.2018.04.007 

The Carreau viscosity model with heat absorption /generation and chemical reaction, a steady 

flow at a boundary layer for moving wedge is studied in chapter 2. The mathematical shape is 

designed in coupled partial differential equations and then sorted out in a numerical way by 

implementing shooting scheme charted with Runge-Kutta Fehlberg technique. The graphs 

depict the consequence of physical parameters upon fluid concentration, velocity and 

https://doi.org/10.1016/j.csite.2018.04.007


temperature. The temperature readings are observed for positive and negative values of 

parameter of heat generation. Further, the Carreau fluid concentration is inspected for 

parameter of chemical reaction. The executive summary of the chapter is presented in “Case 

Studies in Thermal Engineering, 12 (2018): 462–469”. 

https://doi.org/10.1016/j.csite.2018.06.006 

The chapter 3 includes the results for Jeffery fluid with thermal stratification effects at a 

stagnation point. The thermal energy characteristics are studied through the generalized 

Fourier’s law of heat flux. The flow is magnified by the stretching cylinder. The homogeneous-

heterogeneous chemically reactive species are considered. The steady state flow of a boundary 

layer is examined when the reactants and auto-catalyst have equal diffusion coefficient. The 

concerned mathematical problem is developed by laws of conservation of momentum, mass 

and energy which provides coupled partial differential equation. The order of these equations 

is reduced by way of similarity transformation. Later, the set of reduced coupled equations are 

computed numerically by implementing Runge-Kutta Fehlberg technique with shooting 

algorithm. The curves for temperature and velocity of fluid are plotted for different engineering 

parameters. The coefficient of skin friction is examined, and the obtained outcomes are 

comparison with existing literature. This pagination is delineated in “Physica A: Statistical 

Mechanics and its Applications, 542 (2020): 123428”. 

https://doi.org/10.1016/j.physa.2019.123428 

The Jeffery fluid past a point of stagnation towards a cylindrical surface with the homogenous-

heterogeneous reactions, magnetic field and heat generation effects are elaborated in chapter 

4. The heat transport process is debated by Cataneo-Christov heat flux concerned to thermal 

stratification. The consequential PDE’s descend to ODE’s by carrying out the set of similarity 

transformation. These equations are sorted out in a numerical procedure named as Runge-Kutta 

Fehlberg method with shooting approach. The consequences of involved parameters are 

https://doi.org/10.1016/j.csite.2018.06.006
https://doi.org/10.1016/j.physa.2019.123428


analysed by means of graphs. The obtain outcomes are validated with an existing published 

work. The table of contents for this chapter are published in “Canadian Journal of Physics, 

97(7) (2019): 735-741”.   https://doi.org/10.1139/cjp-2018-0491 

The chapter 5 emphasizes on magneto-hydrodynamics, heat generation/absorption and slip 

effects over a Newtonian flow field with homogeneous-heterogeneous chemical reactions 

induced by the rotating disk. The concerned steady state flow is examined in case when 

reactants and auto-catalyst possess equality in coefficients of diffusion. The Cattaneo-Christov 

approach is proposed to derive the energy equation and heat transfer phenomena. The 

consequential PDE’s (Partial Differential Equations) descend to ODE’s (Ordinary Differential 

Equations) by insinuating similarity transform. Further, these equations are sorted out by way 

of numerical scheme called Runge-Kutta Fehlberg method with shooting scheme. The 

influence of arising parameters towards fluid velocity, temperature and concentration is 

observed through graphs. Further, the computational results for the friction coefficient and the 

rate of heat transfer are examined. The main results of this paper is published in “Physica 

Scripta, 94 (2019): 085217 (9pp), https://doi.org/10.1088/1402-4896/ab11ff 

A Newtonian nanofluid flow field is demonstrated in chapter 6 with thermal radiation and heat 

generation/absorption. Further, in this study mixed convection, magnetic field, stagnation 

point, temperature stratification, Joule heating, concentration stratification and chemical 

reaction are included. The flow field is caused by the inclined stretching cylinder. The 

mathematical shape is developed in coupled partial differential framework and is descended to 

coupled ordinary differential framework by means of admissible transformation. The 

numerical findings are presented by Runge-Kutta Fehlberg method along with shooting 

scheme. The temperature trend towards higher values of heat absorption/generation and 

thermal radiation is studied and analysed in detail. Further, the guesstimates for local Nusselt 

https://doi.org/10.1139/cjp-2018-0491


number as well as the skin friction coefficient are presented. The detailed summary is published 

in “Physica A, 553 (2020): 124026”. https://doi.org/10.1016/j.physa.2019.124026 

https://doi.org/10.1016/j.physa.2019.124026


Nomenclature  
  

  Angular velocity 

*k  Absorption coefficient (1/ )m  

BD  Brownian diffusion coefficient 2( / )m s  

bN  Brownian motion parameter 

N  Buoyancy force parameter 

l  Characteristic length 

,A B  Chemical species 

,a b  Concentration  of chemical species 

1, sl l , , ,b c m  Constants 

K  Curvature parameter 

C  Concentration of fluid  

*Gr  Concentration Grashoff number 

,A BD D  Diffusion coefficients 

,c d  Dimensionless constant 

Ec  Eckert number 

eu  Free stream velocity ( / )m s  

1A  First Rivlin Erickson tensor 

g  Gravitational acceleration 2( / )m s  

I  Identity tensor 

Rex
 Local Reynolds number 

Le  Lewis number 

  Material time constant 

MD  Mass diffusivity 

B  Magnetic field coefficient 

M  Magnetic field parameter 
p  Pressure 2( / )N m  

n  Power law index 



Pr  Prandtl number 

K  Reaction rate constant 

R  Radius of cylinder 

rq  Roseland radiative heat flux 2( / )W s  

wT  Surface temperature 

wC  Surface concentration 

pc  Specific heat ( / )J kgK  

Sc  Schmidt number 

wq  Surface heat flux 2( / )W s  

wj  Surface mass flux 

sL  Strength of heterogeneous reaction parameter 

L  Strength of homogeneous reaction parameter 
*a  Stretching constant 

T  Temperature ( )K  
k  Thermal conductivity ( / )W mK  
S  Thermal stratification 

TD  Thermophoresis diffusion coefficient 2( / )m s  

TR  Thermal radiation parameter 

tN  Thermophoresis parameter 

Gr  Thermal Grashoff number 

V  Velocity vector 

( , , )u v w  Velocity components ( / )m s  

  Wedge angle  

 
Greek letters 

 
  Angel of inclination 
  Apparent viscosity ( / )kg ms  

  Cauchy stress tensor 

2  Concentration stratification 
  Chemical reaction parameter 



T  Coefficient of thermal expansion 

c  Coefficient of concentration expansion 

  
Dimensionless temperature 

  
Dimensionless concentration 

  Deborah number 
  Density of fluid 3( / )kg m  
  Electrical conductivity ( / )S m  
  Heat generation/absorption parameter  

  Infinite shear rate viscosity ( / )kg ms  

*  Kinematic viscosity 2( / )m s  

m  Mixed convection parameter 
  Ratio of nanoparticles 

1  Ratio of relaxation time to retardation 

2  Retardation time 
  Similarity variable 

w  Surface shear stress 

  Stream function 

*  Stefan-Boltzman constant 

  Second invariant strain tensor 

  Thermal relaxation parameter 
*  Thermal relaxation time 

  Thermal diffusivity 2( / )m s  
* , Viscosity ratio parameter 

*  Velocity slip parameter 

  Velocity ratio parameter 
  Wedge angle parameter 

  Zero shear rate viscosity ( / )kg ms   
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Chapter 0 

 

Introduction 

 

From the past few decades, the researchers have been paying attention to unveil the features of 

the non-Newtonian type of fluid phenomena that admits the non-linear relation between shear 

rate and shear stress. The diversity of flow of non-Newtonian fluid model leads to uncertainty 

regarding rheological aspects. Thus, we cannot explain the complete picture by means of single 

constitutive equation which relates shear stress and deformation rate. The most frequently used 

non-Newtonain fluid involves paints, custard, ketchup, toothpaste, honey and various salt 

solutions.  

The major concern of the researchers working in this field is the development/enhancement in 

the use of non-Newtonian fluid phennomena. This flow phenomena towards wedge arises in 

certain chemical engineering systems. Furthermore, an analysis subject to boundary layer flow 

is more fascinating in recent years in view of its applications at an industrial scale such as 

polymer extrusion, aerodynamics, condensation of metallic plates in a cooling bath, glass as 

well as polymer industries. The recent developments subject to non-Newtonian fluid models 

can be assessed in the Refs. [1-3]. 

The Carreau fluid model is from non-Newtonian class and is assumed to be a good 

approximation for numerous shear thinning fluids to meet the rheological conduct at extreme 

low and high shear rates whereas many other models are valid merely in specific conditions. 

The comprehensive study on Carreua fluid model can be assessed in Refs. [4-6]. 

Presently the observations concerning chemical reactions and heat generation/absorption 

became centre of attraction for researchers. Analysis regarding chemically reactive species that 

generates diffusion through a stretching sheet is made by Andersson et al. [7]. Apart from other 
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fields, detailed computational study of hypersonic flow in a physical manner involving 

chemical reactions is done by Argyris et al. [8]. Motulevich [9] focused on impact of chemical 

reactions with heat transfer. The comprehensive study for computational fluid dynamics for the 

purpose of chemical reaction engineering was done by Kuipers and Swaaij [10]. The 

mathematical model is considered for the dispersion of chemically reactive species by Pal [11]. 

The comprehensive study about chemically reactive species in porous media is done by the 

Samson et al. [12]. Hjertager et al. [13] emphasized on turbulent flow modelling, emerged with 

chemical reactions. A detailed study regarding chemically reacting systems is made by Bisio 

et al. [14]. Kandasamy et al. [15] visualized the problems related to chemical reactions in the 

flow along wedge and presented useful results. The analysis for chemically reactive species 

through electrically conducting fluid induced by the stretching sheet is done by Raptis and 

Perdikis [16]. The viscous fluid blended with chemical reaction through application of Lie 

group analysis is delibrated by Bhuvaneswari et al. [17]. 

Owning the importance of heat absorption/ generation in a fluid flow phenomenon, various 

researchers reported their findings. Chen [18] designates the effect of power-law fluid along 

heat generation/absorption through stretched surface. The process of heat generation for 

chemical and engineering aspects has been considered in Refs. [19-24]. Mahmoud [25] 

considered the power-law fluids. He analyzed the slip effects associated with heat generation 

over a moving surface. The numerical approximations for the problem related to nanofluid with 

heat generation effects are discussed by Rajarathinam and Nithyadevi [26]. 

The difference that occurs in fluid layers due to a variation in densities of various fluids or 

modification in temperature and concentration is termed as stratification. The thermal 

stratification phenomena play a crucial role in an engineering and industrial aspects as its 

application involves thermally stratified water reservoirs and lakes, heterogeneous reactions or 

mixtures in atmosphere. The disadvantage includes prevention of mixing of oxygen from upper 
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to lower layer of water so that the lack of oxygen in water occur through some biological 

treatments. The heat transfer in a medium with stratification is studied by Angirasa and 

Peterson [27]. They deduced that thermally stratified phenomena greatly influenced the flow 

as well as temperature fields. An electrically conducting fluid through a thermally stratified 

field embedded with magnetic effects has been discussed by Chamkha [28]. Devi and 

Kandasamy [29] presented the results on a wedge flow concerned by the thermal stratification 

as the temperature fluctuates at each layer in the space in addition with boundary layer theory. 

Such kind of flows are useful at industrial and agricultural scale. As the stratification is used to 

improve the efficiency of thermodynamic system. Transient mixed convection flow is used to 

elaborate this phenomenon and is presented by Bouhdjar and Harhad [30]. Fabiano et al. [31] 

gave analysis about the volatile boiling of fluid when it comes to collide with hot surfaces and 

the fluid is induced by thermal stratification. They concluded that evaporation does not occur 

when superheating the cold phase as its limits were not determined.  

The amended shape of Fourier law has been used frequently to identify the characteristics of 

transfer of heat phenomena. Thus, thermal convection in a Newtonian flow field induced by 

the porous surface and the heat equation is equipped by using Cattaneo model which is 

examined by Straughan [32]. Furthermore, this is shown by Straughan [33] that thermal waves 

are to be propagate with acoustic waves whereas the model of heat waves is proposed by 

Christov’s model which is the generalization of Cattaneo’s classical model. The speed and 

amplitude of waves are observed in this study. The main results for the stress field and 

temperature in a solid surface are found analytically and Laplace transformation scheme is 

applied in order to get the thermally stressed equations and Cattaneo’s closed form solutions 

in Al-Qahtani and Yilbas. [34]. As, the Cattaneo gave the idea in the context of heat conduction, 

Christov tried to modify this formula by adding the term involving time derivative into it. This 

model is applied to an incompressible fluid and the uniqueness of the solution is observed by 
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Tibullo and Zampoli [35]. The impacts of transfer of heat in a Maxwell fluid flow regime past 

a stretched surface with slip velocity is observed whereas the heat transfer phenomena are 

proposed by the Christov modified model which is debated by Han et al. [36]. The instable 

thermal phenomena in a fluid inertia past a porous medium is studied and the equation for heat 

flux is modelled in view of the Cattaneo’s theory by Haddad [37]. The study related to 

thermally convective materials in a Brinkman porousity media considering the fluid inertia and 

the flux phase through Cattaneo theory is carried out by Shivakumara et al. [38]. A brief note 

on a Jeffery fluid in a squeezing flow regime where the whole system is placed in a rotating 

frame, is done by Hayat et al. [39]. The theory of transfer heat is debated by modified classical 

Fourier’s law that is in addition with thermal relaxation time and found that temperature profile 

decays by maximizing the parameter of thermal relaxation time. The flow at a stagnation point 

in addition with modified shape of classical Fourier’s law is a matter of discussion in Hayat et 

al. [40]. 

The magneto hydrodynamic (MHD) is the study related to correlation of fluids with electric 

conduction and magnetic features. Such type of fluids is of great interest for industrial and 

technological aspects such as MHD power generation, MHD flow meters etc. Also, MHD 

effects arise in plasma sources, like MHD generators and inductively heated plasma generators. 

The remarkable conclusions regarding specifications of MHD turbulence dominated by the 

ideal invariants were given by Biskamp [41]. The magnetic field is implanted in an 

astrophysical aspects and the numerical findings for the studied problem were carried out by 

Hawley and Stone [42]. Ishikawa et al. [43] focused on MHD disk generators employed to the 

fusion reactors. Evtushenko et al. [44] explored the results for MHD flow through conducting 

walls or in a slotted channel. A conceptual study for the MHD disk generators was formulated 

by Inui et al. [45]. The impacts of insulation upon heat flux was observed by Ying and Gaizer 

[46] and they found that this flux declines due to insulating overlay. A brief discussion on 
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MHD equations corresponding to their symmetric properties is reported by Goedbloed and 

Lifschitz [47]. Hua and Walker [48] analysed the MHD flow induced by rectangular duct 

assisted by the thin conducting walls and transverse magnetic resonance. Somewhere in 

boundary layer MHD flows, electro-thermal instabilities occur and causes dissection of the 

electrostatic sheath that transits the current from diffusion to an arc mode channel. This 

observation was carried out by Kumar et al. [49]. A conducting Oldroyd-B fluid with MHD 

effects induced by the insulating rotating disk was observed and the exact solutions were found 

by Ersoy [50]. The MHD convection with heterogeneous effects embedded with magnetic field 

and micro-disk electrodes were observed by Sugiyama et al. [51]. MHD flow in an 

astrophysical aspects was observed by Gómez et al. [52]. The electromotive force was 

employed for the process of MHD power production that arises on the cross section of seawater 

and magnetic field such investigation was performed by Liu et al. [53]. The MHD generators 

and inductive heating plasma generators that ascends from plasma genesis were investigated 

by Herdrich et al. [54]. The characteristics of radiation with MHD effects in astrophysics were 

observed by Stone and Gardiner [55].  

Newtonian fluids are those which satisfies the Newton’s viscosity law which reveals that the 

stress shear is proportional directly to rate of deformation. Thus Newton’s law for viscosity 

can be expressed in mathematical form as 
yx

du

dy
 = , where yx  is shear stress,   is termed 

as absolute or dynamic viscosity and du

dy
 is the rate of deformation. For Newtonian type fluids, 

  as viscosity is independent of rate of deformation. A study of the Newtonian fluid flow in 

a pipe for the pressure drop through granular bed is considered where the flow problem around 

the beds of spherical and non-spherical particles is observed experimentally by Dolejs and 

Machac [56]. The study of interest by Bell and Surana [57] is about the transfer of heat in a 

fluid flow and the numerical results are found through finite element method. The Navier-
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Stokes equation for three-dimensional Newtonian fluid flow with isothermal effects are 

considered and the finite element formulation is executed for the solution of incompressible 

Newtonian flows by Musson and Surana [58]. The Newtonian flow field is triggered through 

two stretching-rotating disks manifested by the surface tension is debated and the useful results 

for the elongation viscosity measurements by employing stretching liquid bridges are 

concluded by Kroger and Rath [59]. The Newtonian flow field motion through a cylindrical 

surface filled by the elastic liquid is considered. As the drag force decreases due to 

enhancement in the Weissenberg number (We ). Here, it is explored that the smaller values of 

Weissenberg number causes decrease in drag force and the drag force increases by uplifting 

Weissenberg number (Degand and Walters [60]). The axisymmetric flow of a viscous fluid 

enclosed in a concentric ring where the high temperature is given to the outer spherical ring as 

compared to the inner one. The inner and outer spheres are rotated with different angular 

velocities. A Galerkin finite element approach is executed to find numerical results of the 

problem influenced by the shear thickening and shear thinning properties studied by Bar-

Yoseph and Kryzhanovski [61]. The comparison between the results of Newtonian and non-

Newtonian fluids in a rotating regime at extremely high values of Reynolds number and the 

same inner rotatory cylinder and found it like those of non-rotatory flow observed (see Nouri 

and Whitelaw [62]). The simulation of the creeping flow of Newtonian fluid and the 

formulation of boundary element for the dual phase incompressible fluid is presented. The 

method is elaborated by the formation of a drop as it is impelled by the ambient fluid lying 

within the convergent channel was observed by Khayat et al. [63]. A theoretical approach to 

determine the drag and fall velocities of a sphere-shaped particles in Newtonian fluid was 

proposed by Dolejs et al. [64]. The specifications of a Newtonian flow field with a Bingham 

fluid are taken and the steady state solutions are deduced for the concerned problem by 

Comparini and Mannucci [65]. 
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The pioneering work on nano-fluid is done by Choi in 1995. The nanofluid is defined as a 

mixture of solid-liquid particles. Various industrial processes for example cooling, heating, 

power generation, electromagnetic and chemical processes use heat transfer fluids as base 

fluids. Such fluids include oil, water, ethylene glycol etc. These fluids have poor performance 

for transfer of heat as compared to those solids which enforce the compulsion on enhancing 

the effectiveness of heat exchanger. To deal with this problem, solid particles are added to the 

fluids that helps in increasing thermal conductivity several hundred times. In this regard, the 

characteristics of heat transfer with nano fluids are observed by Xuan and Roetzel [66]. The 

work related to nanofluids was further extended by Xuan and Li [67] in which they examined 

the thermal conductivity and heat transfer phenomena for the nanofluids in a duct merged with 

the dispersal of rigid particles. This study investigates that the nanoparticle (Al2O3) has a 

substantial influence on the boiling process that causes decline for the boiling properties of the 

fluid. Its results tell us that such fluids are used in thermal or heating process where the specific 

surface temperature is needed without altering the fluid temperature. Further, they extended 

the same problem to the narrow tube by Das et al. [68-69]. The previous literature shows 

experimental work on nanofluids with convective heat transfer that passes through the laminar 

copper tube and that disturbance in boundary layer is the main reason of nanoparticles to be 

moved freely discovered by Wen and Yulong [70]. The study emphasizing on a ferromagnetic 

nanoparticle in the magnetic fluid and the particle size of the primary clusters are evaluated 

with the aid of Einstein’s equation for Brownian motion analysed by Kikura et al. [71]. Further, 

the use of nano-fluids and nanoparticles are considered in Refs. [72-75].  

The mixed convective boundary layer flow has many engineering applications such as nuclear 

reactors, food processing, solidification process etc. Mixing also plays a vital role to maintain 

the manufacturing process like drugs, cosmetics etc. The mixed convective flow boundary 

layer towards an inclined wavy plate merged with transverse magnetic field is examined. It is 
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observed that magnetic field yields acceleration in a flow close to the leading edge of the wavy 

surface and retardation in a flow far from the leading edge is noticed by Wang and Chi-Chang 

[76]. The results deduced by Vinuesa and de Arellano [77] for the mixed convection boundary 

layer are improved particularly by employing effective reaction rates through the operation of 

parameterisation. This study is extended to a chemical apparatus that helps in the formation of 

ozone and deficiency of convective boundary layer. The remarkable conclusions regarding the 

impacts of Lewis number in a mixed convective flow inside a straight fitted tube are given. 

The numerical results related to the influence of Lewis number on the Sherwood number close 

to the tube inlet are found by Orfi and Galanis [78]. The numerical and analytical results for 

the mixed convection flow through vertical porous surface are presented by Magyari and Emad 

[79]. Further, the literature concerned to the mixed convective boundary layer flows are 

presented in Refs. [80-86]. 
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Chapter 1 

 

Thermal aspects in a Carreau viscosity model through wedge 

 

 

The transfer of heat and mass phenomena by way of steady two-dimensional Carreau viscosity 

model over moving wedge with infinite shear rate viscosity is analysed in this chapter. The 

results for the shear thinning as well as shear thickening are reported. The independent 

variables are reduced from partial differential equations in order to get ordinary differential 

equations by applying admissible similarity transformation technique. This system is sorted 

out in a numerical way by means of Runge-Kutta methodology along shooting algorithm. The 

reduction in the temperature of Carreau fluid is captured due to greater values of viscosity ratio 

parameter in case of shear thickening and reverse trend is observed for shear thinning case. 

Further, the concentration in Carreau fluid declines against wedge angle parameter for shear 

thickening and thinning. 

1.1     Mathematical formulation 

Consider the steady, incompressible, two dimensional Carreau fluid model past a moving 

wedge persuading transfer of heat and mass. The flow field occur across the stretched wedge 

whose velocity is ( ) m

wu x bx=  and the free stream velocity as ( ) m

eu x cx= , here  ,cb and m  

are the positive constants. It is important to note that ( ) 0wu x   indicates the stretched wedge 

surface velocity whereas ( ) 0wu x   relates to shrinking wedge velocity. Thus, wedge angle is 

taken as  =  where 2
1

m

m
 =

+
 refers to pressure gradient. The surface temperature ( )wT x  

is supposed to exceeds the ambient fluid temperature ( )wT T T  . Similar assumption is taken 
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in case of surface concentration ( )wC x  at surface, C  the ambient fluid concentration that is 

( )wC C . The governing equations for model of Carreau viscosity fluid are depicted as, 

 

Fig. 1.1: Geometery of the problem. 

 
1

2 21 0( )   , ( )[1 ( ) ]  ,
n

pI A       
−

 = − + = + − +   
(1.1) 

2
1

1 1 trace( )   ,
2 2

A =  =  
(1.2) 

the apparent viscosity   of a Carreau model can be written as: 

 
1

* * 2 2
0[ (1 ){1 ( ) } ] .

n

    
−

= + − +   
(1.3) 

In the above expression,   is the Cauchy’s tensor for stress, the pressure p , I  be the tensor 

identity, 1 ( )TA gradV gradV= +  is the first Rivlin Erickson tensor,   is the second invariant 

rate of strain tensor,   is the material time constant and n  is the power law index respectively. 

Also, * 



=  is the ratio parameter of viscosity with   and   as zero shear rate and infinite 

shear rate of viscosity. For the steady two-dimensional flow, the velocity, temperature and 

concentration fields are considered,  

 ( ( , ), ( , ),0), ( , ), ( , )V u x y v x y T T x y C C x y= = =  (1.4) 

where u  and v  represents the components of velocity in the x  and y  directions, respectively. 
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Thus, ultimate mathematical equations for the flow problem are given as: 

0,u v

x y

 
+ =

 
 (1.5) 

12
* * * 2 2 2

2

32
* 2 * 2 2 2 2

2

( )[ (1 ){1 ( ) } ]

             (1 )( 1)( ) ( ){1 ( ) }   ,          

n

e
e

n

duu u u u
u v u v

x y dx y y

u u u
n

y y y

 

 

−

−

   
+ = + + − +

   

  
+  − − +

  

 

(1.6) 

2

2 ,T T T
u v

x y y


  
+ =

  
 

(1.7) 

2

2 ,M

C C C
u v D

x y y

  
+ =

  
 

(1.8) 

where *  is the kinematic viscosity, 
p

k

c



=  as thermal diffusivity and MD  as mass 

diffusivity. The related end point conditions against the moving wedge are formulated as 

follows.  

( ) ,  0, ,   at 0m

w w wu u x bx v T T C C y= = = = = =  (1.9) 

( ) ,  ,   as m

eu u x cx T T C C y = = → → →  (1.10) 

for solution purpose one can use the set of transformation. 

1 1*
2 2

*
( 1) 2,  ( , )= ( ) ,  ( )= ,  ( )=   ,
2 1

m m

w w

T T C Cc m c
y x x y f x

m T T C C


      



− +
 

 

− −+
=

+ − −
 

(1.11) 

where   as the similarity variable, ( ), ( ), ( )f       are the non-dimensional fluid velocity, 

temperature and concentration,   implies the stream function which meets continuity equation 

with u
y


=


 and v
x


= −


. By utilizing these relations one can obtain the equations written 

as: 



14 
 

3
* * 2 2 2 22

2

[ (1 ){1 ( ( )) } {1 ( ( )) }] ( ) ( ) ( )
[1 ( ) ] 0,

n

f We n f We f f f

f

      

 

−

   + − + + +

+ − =
 

(1.12) 

( ) Pr ( ) ( ) 0,f     + =  (1.13) 

( ) ( ) ( ) 0Scf     + =  (1.14) 

The corresponding end point conditions, 

 (0) , (0) 0, (0) 1, (0) 1,f f   = = = =  (1.15) 

( ) 1, ( ) 0, ( ) 0,f    →  →  →  (1.16) 

The involved physical quantities are defined as: 

 
3 2 3 1 *

2
*( ),  Pr ,  , .

2

m
p

M

cc x b
We Sc

k c D

 




−
= = = =  

(1.17) 

where We  the Weissenberg number, Pr  as Prandtl number,   the velocity ratio parameter and 

Sc  the Schmidt number. Also, the local coefficient of skin friction 
fxC , the local Nusselt 

number xNu  and local Sherwood number xShu  can be defined as 

 2
2 , ,  ,

( ) ( ) ( )
w w w

fx x x

w w M w

q x xj
C Nu Shu

u x T T k D C C



  

= = =
− −

 
(1.18) 

where w  is termed as shear stress on surface, wq  the heat flux on surface and wj  the mass flux 

on surface is given as:  

 
1

* * 2 2 2
0 ( )[ (1 ){1 ( ) } ],   ( ),    ,

n

w w w M

u u T C
q k j D

x x y y
   

−
   

= + − + = − = −
   

 
(1.19) 

one can obtain the dimensionless forms: 

1
* 2 2 *22Re [(1 ){1 ( (0)) } ] (0),  

2
2 1(0),  2 (0).

Re 2 Re 2

n

x fx

x x

x x

C f We f

Nu Shu

 


 
 

−

 = − + +
−

 = − = −
− −

 

(1.20) 

where 
*Re e

x

xu


=  is the local Reynolds number.  
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1.2     Computational algorithm 

 

 
 

 

 

     Fig. 1.2: Algorithm of shooting method. 

  

Flow chart of shooting method 
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The system (see Eqs. (1.12)-(1.14)) is nonlinear therefore we focus on numerical solution. For 

this purpose, the shooting scheme along Runge-Kutta integration process is utilized. To seek 

first order differential equation system (from Eq. (1.12) - (1.14)), follow the procedure given 

below: 

 
2

3
* * 2 2 2 2 2

{1 ( ( )) } ( ) ( )( ) ,
[ (1 ){1 ( ( ) }{1 ( ( ) } ]

n

f f f
f

n f We f We

   


   
−

 − − −
 =

 + − + +
  

(1.21) 

( ) Pr ( ) ( ),f     = −  (1.22) 

( ) ( ) ( ) , Scf     = −  (1.23) 

Introduce the dummy variables as 

  
1, 2 3 3

4 5 5

6 7 7

( ),   ( ),   ( ),  = ( ) ,
( ),   = ( ),   ( ),
( ), ( ), ( ),

y f y f y f y f

y y y

y y y

   

     

     

   = = =

  = =
  = = =

 
(1.24) 

Now by incorporating Eq. (1.24) into Eqs. (1.21) - (1.23), we obtain. 

  

1 2

2 3
2
2 1 3

3 3
* * 2 2 2 2 2

3 3

4 5

5 1 5

6 7

7 1 7

y  
[ (1 ) ]

(1 )[1 ][1 ]

Pr
 

n

y y

y

y y y
y

nWe y We y

y y

y y y

y y

y Scy y



 
−

 =
 =

− − −
 =

+ − + +
 =
 = −
 =
 = −

 

 

 

(1.25) 

Along with transformed boundary conditions as 
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1

2

31

4

2 5

6

3 7

0

  
1

  
1 y
u y

y

y

yu

y

u y



  
  
  
  
  

=   
  
  
  
  

   

   

 

 

(1.26) 

where, 1 2,u u  and 3u  are assumed as initial guesses for the values of (0),  (0) and (0)f     . 

We have done with the following procedure. 

➢ Choose the value of   that lies between 5 and 10. 

➢ Initial guesses for 3 5(0), (0)y y  and 7 (0)y . Initially, 3 5 7(0) (0) (0) 1y y y= = =  are 

selected.  

➢ Obtain the solution of Odes with the help of R-K four-fifth order methodology. 

➢ Find absolute difference between provided and the calculated values of 3 5( ) ( )y y = 

and 7 ( )y   that is residuals at the boundary are acquired. The solution converges if its 

absolute difference is less than tolerance value, which is supposed to be 510−  in this 

case. 

1.3     Results and discussion 

It is worth noticing that 0   show the favourable pressure gradient and 0   termed as an 

opposed pressure. Further, 0( 0)m = =  insinuates the flow through flat plate and 

1( 1)m = =  1 ( 1)m = =  reveals the flow at a stagnation point. The constant ratio parameter 

of velocity 0   classify the moving wedge in the same direction and and 0   in the 

reverse direction to the free stream while 0 =  relates to a static wedge. The two-dimensional 

steady Carreau fluid towards a moving wedge is investigated numerically. Figs. 1.3 - 1.8 

presents the influence of wedge angle parameter ( ) , ratio parameter for viscosity *( ) , 

ratio parameter for velocity ( ) , Pr  and Sc  for shearing thinning (n 1) and shear thickening 
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(n 1) . In particular, the impacts of parameters of velocity ratio on Carreau velocity for both 

0, and 1 = =  is examined and given by way of Fig. 1.3 where shearing thinning aspects are 

under consideration while similar impact in shear thickening case is testified in Fig. 1.4. Figs. 

1.5 - 1.6 depict the influence of enhancement in ratio parameter of viscosity on temperature of 

Carreau fluid for shearing thickening as well as shear thinning case when Prandtl number is 

altered as Pr 0.4=  and Pr 0.7= . Moreover, the effect of wedge angle parameter on 

concentration profile is tested for shearing thinning as well as shear thickening case when 

Schmidt number is altered by 0.22 and 0.54Sc Sc= = . In detail, from Figs. 1.3 - 1.4, we 

observe that the fluid velocity rises by enlarging parameter of velocity ratio   for shear 

thickening and thinning. Further, it is examined that the velocity profiles are nearer to each 

other when the flow passes close to the point of stagnation. These figures show that the 

momentum boundary layer thickness for shear thickening case exceeds as compared to shear 

thinning case. Figs. 1.5 - 1.6 portray the impacts of viscosity ratio parameter *  upon 

temperature boundary layer. We observe that temperature is enhancing function towards ratio 

parameter of viscosity for shear thinning fluid and it diminishes upon viscosity ratio parameter 

in shear thickening case. From Figs. 1.5-1.6, it is also clear that for the large values of Prandtl 

number the Carreau fluid temperature shows significant declined values. 

Figs. 1.7 - 1.8 indicate the graphical variation in the concentration for varying values of wedge 

angle parameter   along with distinct values of Schmidt number for shear thickening as well 

as shear thinning fluid. One can see that the Carreau fluid concentration is a decreasing function 

towards wedge angle parameter for shear thickening and thinning. Further, it is examined that 

concentration profile reflects large amount of decline towards variation in Schmidt number. 

The system of Eq. (1.5) - (1.8) narrates Carreau fluid flow towards moving wedge in the 

presence of characteristics of transfer of heat and mass. If we ignore the involvement of mass 

transfer towards two dimensional Carreau fluid flow by way of moving wedge. Such case 
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resembles with Khan and Sardar [86]. Therefore, Table 1.1 and Table 1.2 are constructed in 

this direction. It is witnessed from both tables that we have an excellent match for both local 

coefficient of skin friction and local Nusselt number via ratio parameter of viscosity, ratio 

parameter of velocity and parameter of wedge angle. This comparison within a limiting sense 

yields the confirmation of execution of the computational algorithm.  
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1.4     Graphical representation 

 
         

     Fig. 1.3: Impacts of   on ( )f   for n < 1. 

 
 

  Fig. 1.4: Impacts of   on ( )f   for n > 1. 
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         Fig. 1.5: Impact of *  on ( )   for n < 1. 

 
      

       Fig. 1.6: Impact of *  on ( )   for n > 1. 
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           Fig. 1.7: Influence for   on ( )   for n < 1. 

 
       

         Fig. 1.8: Influence for   on ( )   for n > 1. 
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Table 1.1: Numerical approximations for local coefficient of skin friction Re fxC . 
 

 
*  

 

  

 

  

Khan and Sardar [86]  

Re fxC  

     n = 0.75              n = 1.75 

Current results 

Re fxC  

   n = 0.7         n = 1.75 

0.0 0.3 0.2 0.961012 1.22977 0.961012 1.22977 

0.2 0.3 0.2 0.979203 1.20104 0.979203 1.20104 

0.4 0.3 0.2 0.996203 1.16925 0.996203 1.16925 

0.8 0.3 0.2 1.026900 1.09174 1.026900 1.09174 

0.001 0.0 0.2 0.594385 0.706434 0.594385 0.706434 

0.001 0.3 0.2 0.961107 1.22963 0.961107 1.22963 

0.001 0.6 0.2 1.310680 1.77143 1.310680 1.77143 

0.001 1.2 0.2 2.23300 3.26384 2.23300 3.26384 

0.001 0.3     -0.3 1.170530 1.56324 1.170530 1.56324 

0.001 0.3    -0.2 1.157030 1.54768 1.157030 1.54768 

0.001 0.3     0.0 1.084620 1.43226 1.084620 1.43226 

0.001 0.3 0.2 0.961107 1.22963 0.961107 1.22963 
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Table 1.2: Numerical approximations for local Nusselt number Re xNu . 
 
 

 
*  

 

  

 

  

Khan and Sardar [86]  

Re xNu  

      n = 0.75                  n = 1.75 

Current results 

Re xNu  

    n = 0.75          n = 1.75 

0.0 0.3 0.2 0.916605 0.860677 0.916605 0.860677 

0.2 0.3 0.2 0.912067 0.865626 0.912067 0.865626 

0.4 0.3 0.2 0.90800 0.871354 0.90800 0.871354 

0.8 0.3 0.2 0.900932 0.886604 0.900932 0.886604 

0.001 0 0.2 0.795146 0.758852 0.795146 0.758852 

0.001 0.3 0.2 0.916581 0.860700 0.916581 0.860700 

0.001 0.6 0.2 1.04584 0.973570 1.04584 0.973570 

0.001 1.2 0.2 1.44201 1.33020 1.44201 1.33020 

0.001 0.3 -0.3 0.664451 0.529774 0.664451 0.529774 

0.001 0.3 -0.2 0.722834 0.605179 0.722834 0.605179 

0.001 0.3 0.0 0.825856 0.740896 0.825856 0.740896 

0.001 0.3 0.2 0.916581 0.860700 0.916581 0.860700 

 

 

1.5    Concluding Remarks. 

The present communication contains concise analysis on two dimensional Carreau fluid steady 

flow over moving wedge when the characteristics of transfer of heat and mass are to be carried 

out. The observations in this regard are itemized as follows: 

➢ The velocity portrait for Carreau fluid towards wedge increases upon velocity ratio 

parameter for thinning and thickening of shear rate.  

➢ The velocity variations for wedge ( 0)  is enriched as compared to flat surface ( 0) = . 

➢ The Carreau fluid temperature is increasing function in response to ratio parameter of 

viscosity for thinning of shear case but inverse trend is noticed for thickening of shear case.   
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➢ The decline trend in Carreau temperature is significant for Pr 0.7= than that of Pr 0.4=

which supports the inverse relation of Prandtl number with thermal diffusivity.  

➢ The Carreau concentration reflects decline nature for higher values of wedge angle for both 

shear thickening and thinning cases. 

➢ Higher values of Schmidt number show decease in Carreau fluid concentration.  

➢ The obtained outcomes are resembled with existing work which confirms the execution of 

computational algorithm. 
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Chapter 2 

 

On heat generation/absorption and chemical reaction in a non-Newtonian 

fluid flow 

 

The Carreau viscosity model with heat absorption /generation and chemical reaction, a steady 

flow at a boundary layer for moving wedge is studied in this chapter. The mathematical shape 

is designed in coupled partial differential equations and then solved numerically by Runge-

Kutta Fehlberg technique chartered with shooting scheme. To investigate the impacts of 

physical parameter upon temperature and concentration, graphs are plotted. The temperature 

readings are observed for different values of parameter of heat generation. Further, the Carreau 

fluid concentration is inspected for parameter of chemical reaction. 

2.1     Mathematical formulation 

Let us consider the Carreau fluid model with both heat absorption/generation and chemical 

reaction. The flow field is generated by the moving wedge having velocity ( ) m

wu x bx=  and 

the velocity of free stream is ( ) m

eu x cx= . Note that ( ) 0wu x   indicates the surface velocity of 

a stretchable wedge and ( ) 0wu x   refers to surface velocity of contracting wedge. The wedge 

angle is taken to be  =  where 2
1

m

m
 =

+
 is concerned with the pressure gradient. The 

governing equations for the model of Carreau viscosity are defined as,  

1
1

2 2
0

( ) ,

( )[1 ( ) ] ,
n

pI A  

    
−

 

= − +

= + − + 
 

(2.1) 
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2
1

1 1 trace( ) ,
2 2

A = =  
(2.2) 

the apparent viscosity   concerned with the Carreau fluid model is shown as:  

1
* * 2 2

0 [ (1 ){1 ( ) } ],
n

    
−

= + + +   
(2.3) 

for two-dimensional steady flow, the velocity, temperature, and concentration fields are, 

[ ( , ), ( , ),0], ( , ), ( , ),V u x y v x y T T x y C C x y= = =  (2.4) 

where u and v indicate the velocity components in x and y-directions, respectively. 

Now, the equations of mass, momentum, energy, and concentration are as follows: 

0,v u

y x

 
+ =

 
 

(2.5) 

12
* * * 2 2 2

2

12
* * 2 2 2 2 2

2

( )[ (1 ){1 ( ) } ]

             (1 ) ( ) ( )( 1){1 ( ) }  , 

n

e
e

n

duu u u u
u v u

x y dx y y

u u u
n

y y y

  

 

−

−

   
+ = + + − + 

   

  
+ −  − + 

  

 

(2.6) 

2

2 ( ),
p

QT T T
u v T T

x y y C





  
+ = + −

  
 

(2.7) 

2

02 ( ),M

C C C
v u D K C C

y x y


  
+ = − −

  
 

(2.8) 

the corresponding end point conditions for moving wedge are identified as:  

( ) ,  0,  ,   at 0m

w w wu u x bx v C C T T y= = = = = =  (2.9) 

( ) ,  ,   as m

eu u x cx C C T T y = = → → →  (2.10) 

Introduce the following transformations: 

1 1*
2 2

*
2 (1 )(x,y)= ( ) ,  ,  ( )= , ( )=  ,

1 2

m m

w w

C C T Tc c m
f x y x

m C C T T


      



+ −
 

 

− −+
=

+ − −
 

(2.11) 
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where   meets continuity equation as u
y


=


 and v
x


= −


. Hence, the reformed system 

of equations is stated as: 

3
2* * 2 2 2 2 2[ (1 ){1 ( ) } {1 ( ) }] [1 ( ) ] 0,

n

f We n f We f f f f  
−

    + − + + + + − =  (2.12) 

Pr 2Pr 0,f   + + =  (2.13) 

2 0,Scf Sc    + − =  (2.14) 

with end point conditions 

(0) 0, (0) , (0) 1, (0) 1,f f   = = = =  (2.15) 

( ) 1, ( ) 0, ( ) 0,f    →  →  →  (2.16) 

these quantities are defined as follows: 

3 2 3 1
2

* 1

*
01

1 1

1( ),  Pr ,  ,  ,
2 ( 1)

,  = , = ,
( 1)

m
p

m

p

m

M

c Qc x b
We

k c c c m x

KK
Sc K

D c m x


 

 




−

−

−


= = = =

+

=
+

 

(2.17) 

Engineers take keen interest in parameters that are used in the flow as well as heat transfer 

problem which include ,x fxNu C  and xShu  written as: 

2,  ,  ,
( ) ( ) / 2 ( )

w w w
x fx x

w w M w

xq x j
Nu C Shu

k T T u x D C C



 

= = =
− −

 
(2.18) 

where wq , w  and wj   are given as  

1
* * 2 2 2( )[ (1 ){1 ( ) } ],   ( ), ,

n

w w w M

u u T C
q k j D

x x y y
   

−
   

= + − + = − = −
   

 
(2.19) 

by using Eq. (2.11), Re ,
Re

x
fx

Nu
C  and 

Re
xShu  take the non-dimensional form, 
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1
* * 2 2 22Re [ (1 ){1 ( (0)) } ] (0),  

2
2 2(0), (0),

Re 2 Re 2

n

fx

x x

C f We f

Nu Shu

 


 
 

−

 = + − +
−

 = − = −
− −

 

(2.20) 

where *Re e
x

xu


=  is the Reynolds number.   

2.2 Computational algorithm  

The system of ordinary differential equations Eq. (2.12) - (2.14) is extremely nonlinear coupled 

system. The algorithm for shooting method is designed to get the solution along with boundary 

conditions given in Eq. (2.15) - (2.16). Therefore, this system is assembled into Odes as the 

initial value problems can be handled by using Runge-Kutta Fehlberg technique. Thus, we may 

write Eq. (2.12) – (2.14) as: 

2

3
* 2 2 * 2 2 2

(1 ( ) )

[(1 ){1 ( ) }{1 ( ) } ]
n

f ff
f

n f We f We



 
−

 − − −
 =

 − + + +
 

(2.21) 

Pr 2Pr  ,f    = − −  (2.22) 

2 +  ,
1

Scf Sc
m

    = −
+

 (2.23) 

to reduce the above set of higher order differential equations into first order system, we 

introduced new variables as: 

1 2 3 3 4 5 5

6 7 7

,   ,  ,  , ,  ,  
,  ,  ,

f y f y f y f y y y y

y y y

  

  

     = = = = = = =
  = = =

 
(2.24) 

by incorporating Eq. (2.24) into Eq. (2.21) - (2.23), we get. 
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1 2

2 3
2
2 1 3

3 3
* * 2 2 2 2 2

3 3

4 5

5 1 5 4

6 7

7 1 7 6

y
[ (1 ) ]

(1 )[1 ][1 ]

Pr 2Pr
 

2+ Sc y  ,
1

n

y y

y

y y y
y

nWe y We y

y y

y y y y

y y

y Scy y
m



 





−

 =
 =

− − −
 =

+ − + +
 =
 = − −
 =

 = −
+

 

 

 

 

(2.25) 

together with the transformed boundary conditions provided by Eq. (2.15) - (2.16) as: 

1

2

3 1

4

25

6

37

0

  
1

 
1y
uy

y

y

y u

y

uy



   
   
   
   
   

=   
   
   
   
   

  

 

 

 

 

(2.26) 

here, 1 2,u u  and 3u  are the initial guesses for the values of (0), (0)f    and (0) . 

The following steps are carried out for shooting methodology.  

➢ Suggesting the values of   that lies in between 5 and 10. 

➢ The initial guesses for 3 5(0), (0)y y  and 7 (0)y . Initially, 3 5 7(0) (0) (0) 1y y y= = =  are 

selected.  

➢ Then we get the solution of Odes with the help of four-fifth order R-K methodology. 

➢ Lastly, the absolute difference between provided and computed values that is residuals 

at boundary are acquired. The solution converges if its boundary residual values are 

less than tolerance error ( 510− ). 
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2.3    Results and discussion 

A numerical computation is done to explore the obtained results for the Carreau model along 

reactions of chemical and heat absorption/generation. The partially coupled set of Eq. (2.12) - 

(2.14) with end point conditions Eq. (2.15) - (2.16) are sorted out by employing Runge-Kutta 

four-fifth order method associated by shooting scheme to extract numerical results. The 

consequences of various parameters are determined and witnessed with the help of graphs. 

Note that 0   shows the favourable pressure gradient and 0   indicates pressure gradient 

in opposite direction. Further, 0( 0)m = =  termed as the flow through a flat plate and 

1( 1)m = =  indicates the flow at a stagnation point. The parameter of constant velocity ratio

0   specify a moving wedge in the same direction, 0   shows the opposite direction to 

the free stream velocity. Also, 0 =  is concerned with the static wedge. Here, the two-

dimensional steady flow of Carreau fluid towards moving wedge is examined through 

numerical approach. 

Figs. 2.1 - 2.2 are the impacts of positive values of   upon ( )   for both 1n   and 1n   

when 0 =  and 1 = . Figs. 2.3 - 2.4 indicates the influences of negative values of   upon 

( )   when 0 =  and 1 = . Fig. 2.5-2.6 depicts the graphical variation for the concentration 

corresponding to alternating values of   when 0 =  and 1 = . 

Now in detail, from Figs. 2.1-2.2, it is witnessed that the fluid temperature ( )   enlarges for 

positive values of   for both 1n   and 1n   cases. Due to higher values of heat generation 

parameter, bulk energy is produced which consequently enhances the temperature field. The 

temperature profiles are nearer to each other when the flow approaches to the point of 

stagnation. However, Figs. 2.1-2.2 shows that the magnitude of the temperature is higher for 

0 =  as compared to 1 = .  
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Figs. 2.3-2.4 describe the impacts of the negative values of   upon temperature profile. The 

fluid temperature diminishes for negative values of  . Due to lowest values of heat absorption 

parameter the lesser heat is produced which consequently declines the temperature field. 

However, Figs. 2.3-2.4 shows that the magnitude of the temperature is higher for 0 =  as 

compared to 1 = . Further, the flow over a flat plate 0 =  is termed as a plate with maximum 

temperature of the fluid. Apparently, it is because of motion of the fluid i.e., zero pressure 

gradient and temperature seem to be enhancing at the wedge surface due to fluid. 

Figs. 2.5-2.6 indicates graphical variation in the concentration for distinct values of   for both

1 and 1n n  . It is noticed that the behaviour of concentration declines by uplifting the values 

of   for both 1 and 1n n  . 

Table 2.1 exhibits the impacts of *,   and Pr  upon Re fxC  for 1n  . This is testified that 

the coefficient of local skin friction magnifies for growing values of * ,   and Pr  when 

0.75n = . Table 2.2 exhibits the influence of * , Pr  and   on 
Re

xNu . It is explored that values 

of 
Re

xNu  enhances when uplifting *  and Pr  but opposite trend is observed for   when 

0.75n = . Table 2.3 indicates the impact of * , Pr  and   on 
Re

xShu
. It is examined that 

Re
xShu

  

is uplifted when enlarging the values of * , Pr  and   for 0.75n = .  
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2.4     Graphical representation 

 
 

 

                             Fig. 2.1: Influence of positive values of   on ( )   for n < 1. 

 

 
 

       Fig. 2.2: Influence of positive values of   on ( )   for n > 1. 
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                           Fig. 2.3: Influence of negative values of   on ( )   for n < 1. 

 

 
 

                         Fig. 2.4: Influence of negative values of   on ( )   for n > 1. 
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        Fig. (2.5): Impacts for   on ( )   for n < 1. 

 

 
 
   

     Fig. (2.6): Impacts for   on ( )   for 1n  . 
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Table 2.1: Numerical values of Re fxC  for 3We = and n = 0.75. 
 
*  

 
  

 

  
Re fxC  

0.75n =  

0 0.3 0.2 0.2419 

0.3 0.3 0.2 0.3984 

0.5 0.3 0.2 0.4083 

0.7 0.3 0.2 0.4453 

0.001 0 0.2 0.4276 

0.001 0.3 0.2 0.5139 

0.001 0.6 0.2 0.5759 

0.001 0.9 0.2 0.9374 

0.001 0.3 -0.3 0.1849 

0.001 0.3 -0.2 0.2329 

0.001 0.3 0 0.3434 

0.001 0.3 0.2 0.4309 

 
 

Table 2.2: Numerical approximations for 
Re

xNu
 for 0.3, 3W = =  and 0.75n = . 

 
*  

 
  

 

  Re
xNu

 

0.75n =  

0 0.3 0.2 0.2575 

0.3 0.3 0.2 0.2889 

0.5 0.3 0.2 0.3016 

0.7 0.3 0.2 0.3112 

0.001 0 0.2 0.2419 

0.001 0.3 0.2 0.4930 

0.001 0.6 0.2 0.6532 

0.001 0.9 0.2 0.7693 

0.001 0.3 -0.3 0.7556 

0.001 0.3 -0.2 0.6763 

0.001 0.3 0 0.4930 
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0.001 0.3 0.2 0.2575 

 
 

Table 2.3: Numerical approximations of 
Re

xShu
 for 0.3, 3W = =  0.75n = . 

 
*  

 

Pr  

 
  Re

xShu
 

0.75n =  

0 0.3 0.2 0.2419 

0.3 0.3 0.2 0.4084 

0.5 0.3 0.2 0.4403 

0.7 0.3 0.2 0.5533 

0.001 0 0.2 0.4276 

0.001 0.3 0.2 0.5739 

0.001 0.6 0.2 0.6359 

0.001 0.9 0.2 0.9374 

0.001 0.3 -0.3 0.1849 

0.001 0.3 -0.2 0.2329 

0.001 0.3 0 0.3434 

0.001 0.3 0.2 0.4309 

 

2.5    Concluding remarks 

Here we deduced useful results for Carreau model past through moving wedge. The analysis 

regarding transfer of heat and mass is done that involves of chemical reactions too. We invoked 

R-K Fehlberg fourth-fifth order technique along shooting approach in order to get numerical 

results. The observations are itemized as follows: 

➢ The temperature of Carreau fluid is growing function for positive values of   for the 

shear thickening and thinning. 
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➢ The decline nature for Carreau temperature is observed for negative values of   for 

shear thinning and thickening. 

➢ The Carreau concentration illustrates decaying nature for positive values of   for 

thinning and thickening of shear rate. 

➢ It is witnessed that coefficient of skin friction, local Nusselt number and Sherwood 

number increases for higher values of *,Pr,   and   when 0.75n = . 
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Chapter 3 

 

Thermal energy in a Jeffery fluid flow regime: A generalized Fourier’s law 

outcomes 

 

 

This chapter includes the results for Jeffery fluid with thermal stratification effects at a 

stagnation point. The thermal energy characteristics are studied through Cattaneo-Christov heat 

flux model. The flow is magnified by the stretching cylinder. The homogeneous-heterogeneous 

chemically reactive species are considered. The concerned mathematical problem is developed 

by laws of conservation of momentum, mass and energy which provides coupled partial 

differential equation. The order of these equations is reduced by way of similarity 

transformation. Later, the set of reduced coupled equations are computed numerically via 

Runge-Kutta Fehlberg technique with shooting algorithm. The curves for temperature and 

velocity of fluid are plotted for different engineering parameters. The coefficient of skin 

friction is examined, and the obtained outcomes are comparison with existing literature. 

3.1    Mathematical formulation 

The generalized shape of Fourier’s law model that describes heat transfer is given as 

*[ . . ( . ) ] ,q
q V q q V V q k T

t



+  −  +  + = − 


 (3.1) 

where q  is the flux of heat, *  is the relaxation time of flux of heat, k  is thermal 

conductivity. Eq. (3.1) is simply the Fourier’s law when * 0 = . For an incompressible fluid, 

the above equation reduces to the following form.  

* [ . . ] ,q V q q V k T+  −  = −   (3.2) 
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Later, the energy equation is carried out by way of Eq. (3.2). Consider a two-dimensional 

Jeffery model flow on a boundary layer through a stretched cylinder. The thermal stratification 

with Cattaneo-Christov heat flux model is considered and coordinates in cylindrical form are 

x  and r  assumed along the axial and normal to surface. The stretching occurs with the velocity 

( )w

bx
u x

l
=  and free stream velocity is considered as ( )e

cx
u x

l
= ,  l  is the characteristic length 

and the flow is taken at a stagnation point. Taking homogeneous-heterogeneous reaction where 

isothermal cubic autocatalytic reaction (homogeneous) but a single first order reaction 

(heterogeneous) on a catalyst surface which is indicated as: 

2 3A B B+ → , rate = 2
1l a b , (3.3) 

A B→ , rate = sl a , (3.4) 

whereas a  and b  are the concentration for chemical species A  and B , 1, sl l  are constants. 

Now, by implementing the approximations for the boundary layer, the conservation laws 

become, 
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Fig 3.1: Geometry of the problem. 

where ( , )u v  are the components of velocity, ( )eu x  the velocity of free stream,   the fluid 

density,  as viscosity of fluid, T  as fluid temperature,   as thermal diffusivity, pc  as 

specific heat capacity, T  the ambient temperature, 1  the ratio of relaxation-retardation times, 

( ) ( ) 0,ru rv
x r

 + =
 

 (3.5) 

2 2 2 3

22 2 2 3
1

2 2 3

2

1( ) ( ) [ (
( 1)

)],

e e

u u d u u v u u v u
u v u x u x v

x r dx r r r r r r r r

u u u u u
u

x r r x r r r x




 

       
+ = + + + + +

       +

   
+ + +
      

 

(3.6) 

2 2 2
* 2 2

2 2

2

2

( 2

1) ( ),

T T T T T u T v T u T
u v v u uv u u v

x r r x x r x x x r r x

u T T T
v

r r r r r





          
+ + + + + + +

           

   
+ = +
   

 

(3.7) 

2
2

12
1( ) ,A

a a a a
u v D l ab

x r r r r

   
+ = + −

   
 

(3.8) 

2
2

12
1( ) ,B

b b b b
u v D l ab

x r r r r

   
+ = + +

   
 

(3.9) 
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2  the time of retardation,  and A B  are the chemical species with coefficients of diffusion as 

AD  and BD . The associated end point conditions are.    

( ) , 0 at , ( )  as ,w e

bx cx
u u x v r R u u x r

l l
= = = = = = →  (3.10) 

( ) ( ) at , ( ) ( ) as ,w

x x
T T x T c r R T T x T d r

l l
= = + = = = + →  (3.11) 

,  at , , 0 as ,A s B s

a b
D l a D l a r R a a b r

r r

 
= = − = → → →

 
 

(3.12) 

where wT  indicates surface and T  as ambient temperature, c  and d  are dimensionless 

constants, R  is the radius of cylinder. We use the following similarity transformations as: 

2 2 *

* ( ),  ( ),  ( ) ,
2

( ) ,  m( )= ,  n( )= ,
w

b r R b x R b
u f v f

R rl l l

T T a b

T T a b


  



   



−
= = = −

−
=

−

 

(3.13) 

Now by invoking Eq. (3.13) into Eq. (3.6) - (3.9), we get. 

2
1

2 (4) 2
1

(1 2 ) (1 )( ) 2 ( 3 )

(1 2 )( ) (1 ) 0,

K f ff f Kf K f f ff

K f ff

  

   

      + + + − + + −

+ + − + + =
 

(3.14) 

2 2

(1 2 ) 2 Pr Pr( ) Pr [ ( )
( ) ] 0,
K K f S f ff S ff

f S f

       

 

      + + + − + + + −

 − + − =
 

(3.15) 

21 [ (1 2 ) 2 ] 0,m K m K fm mn L
Sc

  + + + − =  (3.16) 

*
2[ (1 2 ) 2 ] 0,n K n K f n mn L

Sc


  + + + + =  

(3.17) 

the transformed boundary conditions are. 
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*(0) 0, (0) 1, (0) 1 , (0) (0) , (0) (0) ,
( ) , ( ) 0, ( ) 1, ( ) 0,

s sf f S m m L n n L

f m n

 

 

  = = = − = = −
  =  =  →  →

 
(3.18) 

where   
2* * * *

2 1
2 , ,Pr , , , , ,p s

s

A w A

c lb l a ll b l c
K Sc L L

bR k D u D b bl l

   
  = = = = = = = = , 

*, A

B

Dd
S

c D
= =  are named as curvature parameter, Deborah number, Prandtl number, thermal 

relaxation parameter, Schmidt number, homogeneous reaction parameter, heterogeneous 

reaction parameter, velocity ratio parameter, thermal stratification parameter and mass 

diffusion coefficient. By assuming AD  and BD  (diffusion coefficient constants) equal that is 

* 1 = . This implies ( ) ( ) 1m n + = . From Eq. (3.16) - (3.17), we get: 

21 [(1 2 ) 2 ] (1 ) 0,K m Km m f L m m
Sc

   + + + − − =  (3.19) 

with to the end point conditions 

(0) (0) , ( ) 1,sm m L m =  →  (3.20) 

the involved engineering parameters are. 

2

2 ,  ,
( )

w w
f x

w w

xq
C Nu

u k T T





−
= =

−
 

(3.21) 

2 2
2

2
1 1

[ ( ) ( )] , ( ) ,
1 1w wr R r R

u u u T
v u q k

r r r x r




  = =

   
= + + = −

    + +
 

 

Where 
fC  and xNu  are the coefficient of skin friction local Nusselt number with w  and wq

as relation of wall stress shear and surface flux at r R= . Thus, above expressions in 

dimensionless form are: 
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1

1 1Re [ (0) (0) (0) (0) (0) (0) (0) ],
2 ( 1)

(0),
Re

x f

x

x

C f f f f f K f f

Nu

  




    = − − +
+

= −
 

(3.22) 

Since, *Re w
x

u l


=  is termed as local Reynold’s number. 

3.2    Computational algorithm  

As the Eq. (3.14) - (3.20) is extremely nonlinear coupled system. The shooting algorism is 

designed in view of Runge-Kutta four-fifth order integration methodology in order to sort out 

this system. This system is assembled into set of first order ODE’s and that can be handled by 

using Runge-Kutta Fehlberg methodology. Thus Eq. (3.14) -(3.15) and Eq. (3.19) may be 

written as: 

2
1

2 2
(4) 1

(1 2 ) (1 )( ) 2 ( 3 )

(1 2 ) (1 )
(1 2 )

f K f f f K f K f f f f

K f
f

K

  

   

 

      + + + − + + −

+ + + +
=

+
, 

(3.23) 

2

2
Pr ( ) 2 Pr Pr [ ( ) ( ) ]

(1 2 ) Pr
S f K f f f S f f S f

K f

      


 

      + − − − + − − +
 =

+ −
, 

(3.24) 

2[ (1 ) ] 2
(1 2 )

Sc L m m f m K m
m

K

 − − −
 =

+
, 

(3.25) 

To get the reduced number of independent variables, we introduce new variables as: 

(4)
1 2 3 4 4

5 6 6 7 8 8

, , , , ,
, , , , , ,

y f y f y f y f y f

y y y y m y m y m  

   = = = = =
     = = = = = =

 
   (3.26) 

by inserting Eq. (3.26) into Eq. (3.23) - (3.25), the set of first order ODE’s is obtained as: 
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1 2

2 3

3 4

2
4 1 1 3 2 3 2 3 1 3

2 2
(4) 3 1

4

5 6

2
5 2 6 1 6 5 1 3 1 2 6 5 2

6

y  
y  

(1 2 ) (1 )( ) 2 ( 3 )

(1 2 ) (1 )
(1 2 )

Pr ( ) 2 Pr Pr [( ) ( ) ( )]
(1 2 ) Pr

y y

y

y

K y y y y K y K y y y y

K y
y f

K

y y

S y y K y y y S y y y y y y S y y
y

K

  

   

 



 

 =
 =
 =

+ + + − + + − +

+ + +
 = =

+
 =

+ − − − + − − +
 =

+ − 2
1

7 8
2

7 7 1 8 8
8

 

y

[ (1 ) ] 2  y = ,
(1 2 )

y

y

Sc Ly y y y K y

K

 =

− − −


+

 

  

 

  (3.27) 

the transformed end point conditions are.  

1 2 5 8 7(0) 0, (0) 1, (0) 1 , (0) (0),sy y y S y L y= = = − =   (3.28) 

2 5 7( ) , ( ) 0, ( ) 1,y y y →  →  →   

here, 3 1 4 2 6 3 7 4(0) , (0) , (0) , (0) ,y u y u y u y u= = = =  are the initial guesses for the values of 

(0), (0), (0)f f     and (0)m . 

We have done with the following procedure in view of shooting methodology. 

➢ Firstly, choose the values of  . 

➢ Then we take initial guesses for 3 4 6 7(0),  (0),  y (0) and (0)y y y . Initially, 

3 4 6 7(0) (0) (0) (0) 1y y y y= = = =  are assumed. 

➢ Then we get the solution of Odes with the help of four-fifth order R-K methodology. 
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➢ Lastly, the absolute variation in provided and computed values of 3 4 6( ),  ( ),   ( )y y y    

and 7 ( )y   that is residuals at boundary are computed. The solution converges if it is 

less than tolerance error 510− . 

3.3    Results and discussion 

Focus of this chapter is on Jeffery fluid model with stagnation point and the flow field occur 

by the cylinder that stretches. The thermal boundary layer is executed by means of Christov-

Cattaneo heat flux theory. The heterogeneous- homogeneous chemical reactions are measured. 

The mathematical equations describing the fluid flow are presented by laws of conservation of 

mass, energy and momentum. These equations are offered in the form of coupled partial 

differential framework that can be transformed into coupled ordinary differential framework 

through appropriate transformation. The numerical results are uncovered by way of Runge-

Kutta Fehlberg methodology adjacent to shooting scheme. The obtained physical parameters 

are   (Deborah number),   (thermal relaxation parameter), K , Pr , S , Sc (Schmidt number), 

L (Homogenous reaction parameter), sL (Heterogeneous reaction parameter). 

Fig. 3.2 shows the decline trend for velocity of Jeffery fluid against various values of    i.e., 

( 0.2,0.3,0.4,0.5) = . It is observed that the Jeffery fluid velocity has uplifts behavior for K  

shown in Fig. 3.3. This is because the radius of curvature depending upon cylindrical surface 

decreases when we iterate ( 0.1,0.2,0.3,0.4)K = . As the contact surface area between cylinder and 

the Jeffery fluid particles reduces. Therefore, the Jeffery fluid faces less resistance and as a 

result its velocity enhances. The effects of Jeffery fluid temperature upon , , Pr,  and S K  are 

presented. Fig. 3.4 indicates the fluctuation of Jeffery fluid temperature towards  . The impacts 

on Jeffery fluid temperature   due to iterative values of ( 0.1,0.2,0.3,0.4) =  are depicted by 

means of Fig. 3.4. The fluid temperature declines towards  . To interpret the effects of 
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temperature stratification upon temperature profile, we introduce the stratification parameter 

S . The influence of temperature stratification parameter is observed and is presented in Fig. 

3.5. This indicates that the fluid temperature declines when we iterate the values of S  i.e., 

( 0.0,0.1,0.2,0.3)S = . Physically, this is since the variation in temperature steadily decays between 

ambient temperature and the cylindrical surface. The variations in Jeffery fluid temperature 

towards Pr  is delineated in Fig. 3.6. This shows that the temperature of fluid descends for the 

iterative values of Pr  that is Pr ( 0.1,0.2,0.3,0.4)= . Physically, Prandtl number demonstrates 

the ratio of thermal diffusivity to momentum diffusivity. The decrease in thickness of thermal 

boundary layer is examined due to higher values of Pr  as it yields small amount of thermal 

diffusivity. Hence, decline in heat transfer rate occurs. Also, the inverse relation between Pr  

and thermal conductivity declines the thermal layer thickness because large values of Pr  

provides less energy diffusion. Therefore, fluid temperature decreases. Thus, the large values 

of Pr  can be used to decline the thermal boundary layer thickness in flow conduction. It is 

examined in Fig. 3.7 that the curvature of the cylinder affects the temperature of the fluid. That 

is when we iterate the curvature parameter ( 0.1,0.2,0.3,0.4)K = , the Jeffery fluid temperature 

enhances. This is since higher values of local Nusselt number enhances by increasing curvature 

parameter K  and hence the transfer rate of heat is affected. The impacts of curvature parameter 

upon fluid temperature are witnessed in Fig. 3.7. This figure discloses the fact that fluid 

velocity declines close to cylindrical surface whereas it enlarges while passing apart from the 

surface against the extended values of curvature parameter and reverse trend occurs in 

concentration profile. As, the radius of the cylinder reduces by uplifting the curvature 

parameter and provides a reason to minimize the area of contact between the fluid and the 

cylinder. Therefore, the velocity enhances and same is the case with temperature profile. 

Further, it is worthy to notice that the problem is converted into flow past a flat plate for 0K =  

upon which the thermal and momentum boundary layer are lesser as compared to the flow 
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through stretched cylinder 0K  . The correlation between Jeffery fluid concentration and 

Schmidt number is presented in Fig. 3.8. It is worth noticing that the Jeffery fluid concentration 

inclines when we iterate ( 0.1,0.3,0.5,0.7)Sc = . Physically, the ratio of viscous diffusion to 

molecular diffusion is termed as Schmidt number. The enhancement in Schmidt number 

exhibits small molecular diffusivity. Thus, the inclination in momentum diffusivity rate causes 

enhancement in concentration. 

The impacts of L  on Jeffery fluid concentration is examined in Fig. 3.9. It is shown that the 

higher values of L  i.e., ( 0.1,0.2,0.3)L =  decreases the concentration curves. The enhancement in 

homogeneous reaction parameter causes reduction in fluid concentration profile because of 

consumption of reactions. Also, it yields fluid viscosity that provides a reason for uplifting in 

fluid concentration trend. The impacts of sL  on fluid concentration trend is depicted in Fig. 

3.10. The diffusion rate reduces due to higher values of sL  i.e., ( 0.1,0.2,0.3)sL =  which 

declines the concentration because diffusion rate decreases as the reaction rate increase. 

Therefore, the concentration profile of Jeffery fluid towards sL  decreases. The approximations 

for the coefficient of skin friction towards values of 1 and    are delineated in Table 3.1 and 

Table 3.2. Thus, the coefficient of skin friction declines towards higher values of 1   whereas 

inverse trend is examined for larger   in Table 3.1. Also, variation in 1  causes decline in 

the coefficient of skin friction in Table 3.2.  
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3.4     Graphical representation 

 

 
           Fig. 3.2: Impacts of   upon ( )f  . 

 

 
 

Fig. 3.3: Impacts of K  on. ( )f   
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Fig. 3.4: Impacts of   on  ( )  . 
 
 

 
 

Fig. 3.5: Influence of S  on ( )  . 
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Fig. 3.6: Impacts of Pr  on ( )  . 

 

 
 

Fig. 3.7: Impacts of K  on ( )  . 
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Fig. 3.8: Impacts of Sc  on ( )m  . 

 

 
 

Fig. 3.9: Impacts of L  on ( )m  . 
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Fig. 3.10: Impacts of sL  on ( )m  . 
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Table 3.1. The numerical approximations for the local skin friction 1 Re
2 x fC  when

0.2, 0.5K = =  and 0.3S = . 

  1  Hayat et al. [83] Current results 

0.1 0.2 0.95743 0.9563 

0.1 0.3 0.91987 0.9185 

0.1 0.4 0.88641 0.8851 

0.1 0.5 0.85635 0.8554 

0.2 0.2 1.00000 1.000 

0.2 0.3 0.96077 0.9600 

0.2 0.4 0.92582 0.9251 

0.2 0.5 0.89442 0.8941 

0.3 0.2 1.0408 1.0406 

0.3 0.3 1.0000 1.0000 

0.3 0.4 0.96362 0.9630 

0.3 0.5 0.93095 0.9301 

0.4 0.2 1.0801 1.0801 

0.4 0.3 1.0378 1.0362 

0.4 0.4 1.0000 1.0000 

0.4 0.5 0.96608 0.9653 

 

 

Table 3.2. The numerical approximations for the local skin friction 1 Re
2 x fC  when 

0.2, 0.5 and K = = 0.3S = . 

1    Abbasi et al. [84] Hayat et al. [83] Current results 

0.0 0.2 1.09545 1.09545 1.0951 

0.5 0.2 0.89443 0.89442 0.8943 

0.7 0.2 0.84017 0.84016 0.8401 

1.0 0.2 0.77460 0.77460 0.7745 
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0.4 0.0 0.84515 0.84515 0.8450 

0.4 0.3 0.96362 0.96362 0.9635 

0.4 0.6 1.06904 1.06904 1.0691 

0.4 1.0 1.19523 1.19523 1.1953 

 

 

3.5   Concluding remarks 

In the Jeffery fluid model, we studied thermal relaxation and thermal stratification effects. The 

flow is discussed at a stagnation point and is invoked by the cylindrical surface. The Cattaneo-

Christov theory is executed for energy equation. The concentration equation is modelled 

through heterogeneous- homogeneous chemical reactions. The flow describing coupled PDE’s 

descend to ODE’s by appropriate transformation. The obtained system is sorted out 

numerically via Runge-Kutta methodology with shooting approach. The outcomes are 

compared with exiting literature. The key points for shooting methodology are as follows:  

➢ The decaying behaviour of velocity profile for Deborah number is noticed. 

➢ The curvature parameter with increasing values enlarges fluid velocity profile. 

➢ The decline trend for temperature profile is captured on exceeding thermal relaxation 

parameter. 

➢ The temperature curves decay against parameter of thermal stratification. 

➢ The Jeffery temperature declines on exceeding Prandtl number. 

➢ The curvature parameter provides a reason for uplift in temperature profile. 

➢ The Jeffery concentration increases when Schmidt number enlarges. 

➢ The decline behaviour of concentration profile is observed towards parameter of 

homogeneous reaction. 

➢ The decaying curves for the concentration are examined towards higher values of 

parameter of heterogeneous reaction. 
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➢ The coefficient of skin friction coefficient declines towards thermal relaxation 

parameter. 

➢ Increase in Deborah number provides a reason for coefficient of skin friction to get 

inclined. 
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Chapter 4 

 

MHD effects in a non-Newtonian flow model with homogeneous-

heterogeneous reactions 

 

The Jeffery fluid past a point of stagnation towards a cylindrical surface with the homogenous-

heterogeneous reactions, magnetic field and heat generation effects are elaborated in this 

chapter. The heat transport process is debated by Cataneo-Christov heat flux concerned to 

thermal stratification. The consequential PDE’s descend to ODE’s by carrying out the set of 

similarity transformation. These equations are sorted out in a numerical procedure named as 

Runge-Kutta Fehlberg method with shooting approach. The effects of involved parameters are 

analysed by means of graphs. The obtain outcomes are validated with an existing published 

work. 

4.1    Mathematical formulation 

For better description of transfer of heat, the model of generalized Fourier’s law is suggested 

as 

*[ . . ( . ) ] ,q
V q q V V q q T k

t



 −  +  + + = −


 (4.1) 

where q  is the heat flux, *  is the thermal relaxation time, k  is the thermal conductivity. 

Fourier’s law is the simplified form of Eq. (4.1) by taking * 0 = . Now, for the steady 

incompressible fluid, the above equation reduces to the following. 

* [ . . ] ,q V q q V T k+  −  = −  (4.2) 

The energy equation can be deduced from Eq. (4.2). 
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Consider a two-dimensional flow of the Jeffery fluid through a stretched cylinder having 

velocity ( )w

b x
u x

l
= . The velocity of free stream is considered as ( )e

c x
u x

l
= , where  l  is the 

characteristic length and the flow is taken along the stagnation point. The coordinates in 

cylindrical form as x  and r  are assumed along the axial direction and normal to surface. For 

homogeneous-heterogeneous chemical reactions we have isothermal cubic autocatalytic 

reaction (homogenous) within the boundary layer but a first order single reaction 

(heterogeneous) on the catalyst and exhibited as: 

 

Fig. 4.1. Physical illustration of the problem. 

2
12 3 , rate =A B B l a b+ → , (4.3) 

 , rate = ,sA B l a→  (4.4) 

where concentration of chemical species A  and B  are termed as a  and b  respectively, 1l  and 

sl  are constants. Now the flow equations are depicted as: 
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where ( , )u v  are the components of velocity,   as fluid density,   as electrical conductivity, 

B  as magnetic field coefficient,   as viscosity of fluid, T  as temperature of fluid, 
p

k

c



=   

as thermal diffusivity, Q  coefficient of heat generation, pc  the specific heat capacity, T  the 

ambient temperature, 1  as the ratio between relaxation and retardation, 2  as retardation time, 

 and A B are the chemical species with diffusion coefficients as AD  and BD . The associated end 

point conditions are as follows: 

( ) , 0 at ,  ( )  as ,w e

b x c x
u u x v r R u u x r

l l
= = = = = = →  

(4.10) 

( ) ( ) at ,  ( ) ( ) as ,w

x x
T T x T c r R T T x T d r

ll
= = + = = = + →  (4.11) 

( ) ( ) 0r u r v
x r

 
+ =

 
, (4.5) 

2 2 2 3

22 2 2 3
1

22 3 2

2

1( ) ( ) [ (
(1 )

)] ( ) ,

e e

e

u u d u u u v u v u
u v u x u x v

x r dx r r r r r r r r

Bu u u u u
u u u

r x r r x r x r




 





       
+ = + + + + +

       +

   
+ + + − −
      

 

(4.6) 

2 2 2
* 2 2

2 2

2

2

( 2

1) ( ) ( ) ,
p

T T T T T u T v T u T
u v u v uv u u v

x r x r x r x x x r r x

Qv T T T
v T T

r r r r r c








          
+ + + + + + +

           

   
+ = + + −

   

 

(4.7) 

2
2

12
1( ) ,A

a a a a
u v D l ab

x r r r r

   
+ = + −

   
 

(4.8) 

2
2

12
1( ) ,B

b b b b
u v D l ab

x r r r r

   
+ = + +

   
 

(4.9) 
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,  at ,  , 0 as ,A s B s

a b
D l a D l a r R a a b r

r r


 
= = − = → → →

 
 

(4.12) 

where  and c d  are the dimensionless constants, R  is the radius of cylinder. Implementing the 

similarity transformations as: 

2 2 *

* ( ),  ( ) ,  ( ) ,
2

( ) ,  ( )= ,  ( )= .
w

b r R b x R b
u f v f

R rl l l

T T a b
m n

T T a a


  



   

−
= = = −

−
=

−

 

(4.13) 

Now by invoking Eq. (4.13) into Eq. (4.6) - (4.9), we get the following: 

2
1

2 (4) 2 2
1

(1 2 ) (1 )( ) 2 ( 3 )

(1 2 )( ) (1 ) 0,

K f f f f K f K f f f f

K f f f M f

  

   

      + + + − + + −

 + + − + + − =
 (4.14) 

2 2

(1 2 ) 2 Pr Pr( ) Pr [( )
( ) ] 0,

K K f S f S f f f f

S f f

       

   

      + + + − + + + −

 − + − + =
 

(4.15) 

21 [(1 2 ) 2 ] 0,K m K m f m mn L
Sc

   + + + − =  (4.16) 

*
2[ (1 2 ) 2 ] 0,n K n K f n mn L

Sc


  + + + + =  

(4.17) 

and the transformed boundary conditions are. 

*(0) 0,  (0) 1,  (0) 1 , (0) (0), (0) (0),s sf f S m L m n L n   = = = − = = −  (4.18) 

( ) ,  ( ) 0,  ( ) 1,  ( ) 0,f A m n  =  =  →  →   
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where 
*

2
l

K
b R


=  as the parameter of curvature, 2b

l


 =  as the Deborah number, Pr pc

k


=  is 

the Prandtl number, 
*b

l


 =  is the thermal relaxation parameter, 

p

l Q

b c



= the parameter of 

heat generation, 
*

A

Sc
D


=  the Schmidt number, * A

B

D

D
 =  the ratio of coefficient of mass 

diffusion, 
2

1

w

l a l
L

u
=  is the parameter of homogeneous reaction, 

c

b
 =  is the Velocity ratio 

parameter, 
d

S
c

=  the thermal stratification parameter, 
*

s
s

A

l l
L

D b


=  the strength of 

heterogeneous reaction parameter. 

By assuming AD  and BD  equal as * 1 = . Therefore, ( ) ( ) 1,m n + =  so from Eq. (4.16)- (4.17), 

we have  

21 [ (1 2 ) 2 ] (1 ) 0,m K m K f m m m L
Sc

  + + + − − =  (4.19) 

subject to conditions at end point  

(0) (0) , ( ) 1.sm m L m =  →  (4.20) 

The involved engineering quantities are. 

2

2 2
2

2
1 1

2 ,  
( )

[ ( ) ( )] , ( ) ,
1 1

w w
f x

w w

w wr R r R

x q
C Nu

u k T T

u u u T
v u q k

r r x r r





 


  = =

= =
−

   
= + + = −

    + +

 

(4.21) 
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where fC and xNu  are the coefficient of skin friction and local Nusselt number with w  and wq  

as relation of wall stress shear and surface flux at r R= . The above expressions in 

dimensionless form are: 

1

1 1Re [ (0) (0) (0) (0) (0) (0) (0)],
2 (1 )

(0),
Re

x f

x

x

C f f f K f f f f

Nu

  




    = − − +
+

= −
 

(4.22) 

where *Re w
x

l u


=  is named as Reynolds number. 

4.2    Computational algorithm  

The basic mathematical laws involved in the field of fluid dynamics yields a system of coupled 

differential equations. Such equations are further converted into the coupled system of ordinary 

differential equations by dropping number of independent variables. The independent variables 

are dropped by means of set of similarity transformation (see Eq 4.13). The reduced system is 

solved numerically with the aid of shooting proficiency with fourth-fifth order Runge-Kutta 

Fehlberg technique. The system of governing equations Eq. (4.14) - (4.20) is extremely 

nonlinear coupled shape. For this purpose, necessary steps are executed. Firstly, we may write 

Eq. (4.14), (4.15) and Eq. (4.19) as follows:  

2 2
1

2 2
(4) 1

(1 2 ) (1 ) ( ) 2 ( 3 ) (1 2 )

(1 ) ,
(1 2 )

K f f f f K f K f f f f K f

M f
f

K

    

 

 

       + + + − + + − + +

+ + −
=

+
  

(4.23) 

2

2
Pr ( ) 2 Pr Pr [( ) ( ) ]

(1 2 ) Pr
S f K f S f f f f S f

K f

        


 

      + − − − + − − + −
 =

+ −
, 

(4.24) 
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2[ (1 ) ] 2 ,
(1 2 )

Sc L m m f m Km
m

K

 − − −
 =

+
 

(4.25) 

Secondly, to reduce the above set of higher order differential equations into first order system 

of differential equations, by new variables as: 

(4)
1 2 3 4 4,  = ,   ,   , = ,y f y f y f y f y f   = = =  (4.26) 

5 6 6 7 8 8,  ,  ,  ,  ,  ,y y y y m y m y m       = = = = = =   

Now, by applying Eq. (4.26) in Eq. (4.23) – (4.25), we obtained. 

1 2

2 3

3 4

2
4 1 1 3 2 3 2 3 1 3

2 2 2
(4) 3 1 2

4

5 6

5 2 6 1 6 5 1 3 1 2 6

2
5 2 5

6

 
 

(1 2 ) (1 )( ) 2 ( 3 )

(1 2 ) (1 )
(1 2 )

Pr ( ) 2 Pr Pr [( )

( ) ( )]
(1 2

y y

y y

y y

K y y y y K y K y y y y

K y M y
y f

K

y y

S y y K y y y S y y y y y y

S y y y
y

  

   

 





 =
 =
 =

+ + + − + + −

+ + + + −
 = =

+
 =

+ − − − + −

− + −
 =

+ 2
1

7 8
2

7 7 1 8 8
8

 
) Pr

[ (1 ) ] 2 ,
(1 2 )

K y

y y

Sc L y y y y K y
y

K

 



−
 =

− − −
 =

+

 

 

 

 

(4.27) 

and the boundary conditions given in Eq. (4.18) and Eq. (4.20) are transformed as: 

1 2 5 8 7(0) 0, (0) 1, (0) 1 , (0) (0),sy y y S y L y= = = − =  (4.28) 

2 5 7( ) , ( ) 0, ( ) 1,y y y →  →  →   

Here, 3 1 4 2 6 3 8 4(0) , (0) , (0) , (0)y u y u y u y u= = = = are the initial guesses for the values of 

(0), (0) (0),and (0), f f m    .  
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We have done with the following procedure to pursue shooting methodology. 

➢ Suggest the values of   that lies in between 5 and 10. 

➢ Taking initial guess for 3 4 6(0),  (0),  (0)y y y  and 8 (0)y  as 

3 4 6 8(0) (0) (0) (0) 1y y y y= = = = . 

➢ Numerical solution of Odes with the help of fourth-fifth order R-K technique is 

computed. 

➢ The absolute variation in the given and calculated values of 2 5 7( ),  ( ),  and ( )y y y    

(i.e., boundary residuals) are calculated. 

➢ The obtained solutions will be convergent if this residual value is less than tolerance, 

which is assumed to be 510− . 

4.3    Results and discussion 

Jeffery fluid model towards cylindrical surface is considered in the present investigation. Here 

Jeffery stagnation point flow field is manifested with externally applied magnetic field. The 

energy equation dragged by way of Cattaneo-Christov improvement. Thermal boundary layer 

is carried out both for heat generation and temperature stratification effects. Further, the whole 

thermally stratified MHD Jeffery fluid flow field is conjectured/designed for homogeneous and 

heterogeneous reactions. The obtained physical parameters are K  (curvature parameter), M  

(magnetic field parameter),  (heat generation parameter), S  (temperature stratification 

parameter), L  (homogeneous parameter), sL  (heterogeneous parameter) and Sc . The adopted 

values of rest of parameters while execution of computational algorithm is 

11, 0.5, Pr 0.3, and 1.  = = = =  The influence of M  and K  on Jeffery velocity is inspected 

and depicted by way of Figs. 4.2-4.3. Moreover, the effects of ,M   and S  upon Jeffery 
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temperature are examined and the output in this direction is provided with the help of Figs. 4.4 

- 4.6. Further, the variations in Jeffery fluid concentration towards ,Sc L  and sL  are obtained 

and offered by way of Figs. 4.7-4.9. In detail, Fig. 4.1 illustrates the flow model of Jeffery 

fluid. The effects of M  on velocity is tested and provided in Fig. 4.2. The Jeffery velocity 

shows descending values for M . In actual when we iterate (0.2,0.3,0.4,0.5)M = , the Lorentz 

force enhanced. It is resistive force therefore the Jeffery fluid face resistance and the velocity 

of Jeffery fluid declines. The impact of K  on Jeffery fluid velocity is examined and the 

variation in this direction is concluded by means of Fig. 4.3. It is seen that the Jeffery fluid 

velocity show inclined curves towards higher values of K . When we iterate  

(0.1,0.2,0.3,.4)K = , the curvature radius subject to surface of cylinder decreases. Therefore, 

the surface area in contact between the cylinder and the fluid reduces. Hence, the Jeffery fluid 

particles face less resistance which helps to boost in fluid velocity. The Jeffery fluid 

temperature depends upon the variation of ,M   and S . In particular, the impact of M  on 

Jeffery fluid temperature is examined and offered with the aid of Fig. 4.4. It is expected that if 

the Jeffery fluid velocity declines towards (0.1,0.2,0.3,0.4)M =  than the Jeffery fluid 

temperature reduces. Because the temperature is second measure of average kinetic energy that 

contains average velocity variations. Therefore, for (0.1,0.2,0.3,0.4)M = , the Lorentz force 

enhances, and the resistance faced by fluid particles increases and average kinetic energy 

reduces as a results temperature reduces. Fig. 4.5 is plotted to offer the observation regarding 

the relation of heat generation with Jeffery fluid temperature. When we iterate 

(0.1,0.2,0.3,0.4) = , the Jeffery fluid temperature enhances which is quite expected. This 

factor is due to production of heat energy against the higher values of (0.1,0.2,0.3,0.4) = . It 

is important to note that sometimes we may have overshoot in the temperature profile, and it is 

monitored by introducing sink to avoid turbulence. The temperature stratification parameter 
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S  appears on considering temperature stratification phenomena. The effect of S  on Jeffery 

fluid temperature is examined and the ultimate variation in temperature is shared through Fig. 

4.6. One can easily conclude from Fig. 4.6 that the Jeffery fluid temperature reflects declined 

curves towards S . When we iterate (0.0,0.1,0.2,0.3)S = , the potential difference between 

ambient region and the cylindrical surface reduced which cause the reduction in Jeffery fluid 

temperature. The impact of ,Sc L  and sL  on Jeffery fluid concentration are measured and 

shown with the help of Fig. 4.7-4.9 respectively. In detail, the relation between Jeffery fluid 

concentration and Schmidt number Sc  is illustrated in Fig. 4.7. It is noticed that when we 

iterate ( 0.1,0.3,0.5,0.7)Sc = , the Jeffrey fluid concentration magnifies. Since the mass 

diffusivity has inverse relation with Sc  so the higher values of ( 0.1,0.2,0.3)Sc = cause weaker 

rate of mass diffusion and as a result the Jeffery fluid concentration magnifies. The influence 

of both L  and sL  on Jeffery fluid concentration is reported with the help of Fig. 4.8 and Fig. 

4.9, respectively. It is noticed that in a thermally stratified Jeffery flow field the higher values 

of both ( 0.1,0.2,0.3)L =  and ( 0.1,0.2,0.3)sL =  brings reduction in Jeffery fluid concentration. 

The variations in the coefficient of local skin friction are evaluated for involved parameters 

1( and )  . The developed values are provided with the aid of Table 4.1 and Table 4.2. It is 

seen that we have an excellent match with Hayat et al. [83] in Table 4.1 while the values of 

skin friction matches with both Abbasi et al. [84] and Hayat et al. [83] in Table 4.2. 
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4.4    Graphical representation 

 
 

 
 

       Fig. 4.2: Impacts of M  upon ( )f  . 
 

 
 

       Fig. 4.3: Impacts of K  upon ( )f  . 
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Fig. (4.4): The impact of M  upon ( )  . 
 

 
 

        Fig. (4.5): Impacts of   on ( )  . 
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Fig. (4.6): Impacts of S  upon ( )  . 

 

 
 

       Fig. (4.7): Impacts of Sc  upon ( )m  . 
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Fig. (4.8): Impacts of L  on ( )m  . 
 

 
 

        Fig. (4.9): Impacts of sL  on ( )m  . 
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Table 4.1: Numerical approximations for coefficient of skin friction 1 Re
2 x fC
−

 when 

0.5, 0.3, 0.2M K S= = =  and 0.2 = . 

  1  Hayat et al. [83] Current results 

0.1 0.2 0.95743 0.9563 

0.1 0.3 0.91987 0.9185 

0.1 0.4 0.88641 0.8851 

0.1 0.5 0.85635 0.8554 

0.2 0.2 1.00000 1.0000 

0.2 0.3 0.96077 0.9600 

0.2 0.4 0.92582 0.9251 

0.2 0.5 0.89442 0.8941 

0.3 0.2 1.0408 1.0406 

0.3 0.3 1.0000 1.0000 

0.3 0.4 0.96362 0.9630 

0.3 0.5 0.93095 0.9301 

0.4 0.2 1.0801 1.0810 

0.4 0.3 1.0378 1.0362 

0.4 0.4 1.0000 1.0000 

0.4 0.5 0.96608 0.9653 
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Table 4.2: The numerical approximations for the coefficient of local skin friction 
1 Re

2 x fC
−

 when 0.5, 0.3, 0.2 and 0.1.M K S = = = =  

1    Abbasi et al. [84] Hayat et al. [83] Current results 

0.0 0.2 1.09545 1.09545 1.0951 

0.5 0.2 0.89443 0.89442 0.8943 

0.7 0.2 0.84017 0.84016 0.8401 

1.0 0.2 0.77460 0.77460 0.7745 

0.4 0.0 0.84515 0.84515 0.8450 

0.4 0.3 0.96362 0.96362 0.9635 

0.4 0.6 1.06904 1.06904 1.0691 

0.4 1.0 1.19523 1.19523 1.1953 
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4.5    Concluding remarks 

This chapter comprises of generalized Fourier’s law in a thermally stratified Jeffery flow at a 

point of stagnation induced by the magnetic effects, generation of heat and heterogeneous-

homogeneous reactions. The obtained flow equations are solved by using shooting scheme and 

the computed values of local skin friction coefficient are examined and compared with 

literature in Tables 4.1 and 4.2. The key outcomes are itemized as follows: 

➢ The velocity of Jeffery fluid reflects declined curves towards magnetic field parameter.  

➢ The upward trend is noticed for the fluid velocity curvature parameter. 

➢ Jeffery fluid temperature shows an increasing behaviour towards heat generation 

parameter whereas opposite trend is observed for magnetic field parameter. 

➢ In thermally stratified medium the Jeffery fluid concentration declines towards both 

heterogeneous and homogenous reaction parameters. 

➢ The Jeffery fluid concentration is increasing for higher values of Schmidt number. 
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Chapter 5 

 

On Cattaneo-Christov heat flux in a Newtonian flow field with MHD and 

velocity slip 
 

Emphasize of this chapter is on magneto-hydrodynamics, heat generation/absorption and slip 

effects over a Newtonian flow field with homogeneous-heterogeneous chemical reactions 

induced by the rotating disk. The concerned steady state flow is examined in case when 

reactants and auto-catalyst possess equality in coefficients of diffusion. The Cattaneo-Christov 

approach is proposed to derive the energy equation and heat transfer phenomena. The 

consequential PDE’s (Partial Differential Equations) descend to ODE’s (Ordinary Differential 

Equations) by insinuating similarity transform. Further, these equations are sorted out by way 

of numerical scheme called Runge-Kutta Fehlberg method with shooting scheme. The 

influence of arising parameters towards fluid velocity, temperature and concentration is 

observed through graphs. Further, the numerical results for coefficient of friction and the rate 

of heat transfer are examined. 

5.1 Mathematical formulation 

Introducing the model of Cattaneo-Christov heat flux to imply heat transfer as: 

2[ . . ( . ) ] ,q
V q q V V q q T k

t



 −  +  + + = −


 (5.1) 

 Consider q  as flux of heat, *  as relaxation of time of heat flux, k  as thermal conductivity. 

This Eq. (5.1) is simplified to the Fourier’s law by taking * 0 = . Now, for the incompressible 

fluid, Eq. (5.1) reduces to the following form i.e. 

*[ . . ] ,q
V q q V q T k

t



 −  + + = −


 (5.2) 
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Consider viscous fluid over a rotating disk with constant angular velocity   where the flow 

is taken along the disk 0z  . The magnetic field is applied along z -axis. Also, the energy 

equation is equipped with heat generation-absorption. The velocity component u  is along 

radial r -direction, v  is along tangential  -direction and w  is along axial z -direction. Consider 

the homogeneous-heterogeneous model as: 

2
12 3 , rate ,A B B l ab+ → =  (5.3) 

, rate ,sA B l a→ =  (5.4) 

The laws of momentum conservation and energy conservation are considered for fluid motion. 

Thus, the flow describing equations are exhibited as:  

 

 

Fig. 5.1: Physical illustration for the flow problem. 

 

0,u w u

r z r

 
+ + =

 
 (5.5) 

22 2 2
*

2 2 2
1( ) ,Bu v u u u u u

u w u
r r z r z r r r






    
− + = + + − −

    
 

(5.6) 

22 2
*

2 2 2
1( ) ,Bv v uv v v v v

u w v
r z r r r r r z






    
+ + = + − + −

    
 

(5.7) 
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2 2
*

2 2
1( ),w w w w w

u w
r z z r r r


    

+ = + +
    

 
(5.8) 

2 2 2 2 2
* 2 2

2 2 2 2
1[ ] ( 2

( ) ( ) ) ( ) ,
p

T T T T T T T T
u w u w uw

r z z r r r r z z r

Qu u T w w T
u w u w T T

r z r r z z c

 




       
+ = + + − + +

        

     
+ + + + + −
     

 

(5.9) 

2
2

12( ) ,A

a a a
u w D l ab

r z z

  
+ = −

  
 

(5.10) 

2
2

12( ) ,B

b b b
u w D l ab

r z z

  
+ = +

  
 

(5.11) 

Consider * 



=  as kinematic viscosity with ,   as dynamical viscosity and density of the 

fluid and , B , Q , pc , ,A BD D , ,
p

k

c



=  represents the electrical conductivity, applied 

magnetic field coefficient, heat generation coefficient, specific heat capacity at constant 

pressure, diffusion coefficients for chemical species  and A B , thermal diffusivity respectively. 

The corresponding end point conditions are. 

, , 0, , ,  at 0w A s B s

u v a b
u L v r L w T T D l a D k a z

z z z z

   
= = + = = = = − =

   
, (5.12) 

0, 0, , , 0u v T T a a b→ → → → →  as z →    

where L  is the velocity slip coefficient. Consider the following admissible similarity 

transformations: 

*
*

2 ( ), , ( ) , 2 ( ),

( ) ( )( ) , ( ) , ( ) ,
w

dF
z u r v G r w F

d

T T a z b z
g h

T T a a


   

 

   




= =  =  = − 

−
= = =

−

 

(5.13) 

Using the transformations given in Eq. (5.13), Eq. (5.5) identically satisfied and Eq. (5.6)-

(5.11) becomes: 
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3 2
2 2 2

3 22 ( ) 2 0,d F dF d F dF
F G M

d d d d   
− + + − =  

(5.14) 

2
2

22 2 2 0,d G dG dF
F G M G

d d d  
− − − =  

(5.15) 

2 2
2

2 2Pr(2 Re 4 Re( ) ) 0,d d d dF d
F F F

d d d d d

   
 

    
+ − + + =  

(5.16) 

2
2

2
1 0,d g dg

F L g h
Sc d d 

+ − =  
(5.17) 

* 2
2

2 0,d h dh
F L g h

Sc d d



 
+ + =  

(5.18) 

where 
2

2 B
M




=


, 
*

Pr 


= , 

2
1

2
l a

L =


, 
*

,
2 p A

Q
Sc

c D





= =


, * =   are the magnetic 

field parameter, Prandtl number, homogeneous reaction parameter, heat generation parameter, 

Schmidt number and thermal relaxation parameter. The boundary conditions in Eq. (5.12) 

becomes: 

2
* *

2

*

( ) ( ) ( ) ( )( ) 0, , ( ) 1, ( ) 1, ( ),

( ) ( ) as 0,

s

s

dF d F dG dg
F G L g

d d d d

dh
L g

d

   
      

   


  



= = = + = =

= − =
 

 

( ) 0, ( ) 0, ( ) 0, ( ) 1, ( ) 0 as ,dF
G g h

d


     


→ → → → → →  

(5.19) 

where 
*

2
s

s

A

l
L

D


=


 is heterogeneous reaction parameter and *

*
2

L



=  is the velocity 

slip parameter. By assuming AD  and BD  equal that is * 1 = . Therefore, ( ) ( ) 1h g + = . Hence, 

from Eq. (5.17)-(5.18), we have 

2
2

2
1 (1 ) 0d g dg

F Lg g
Sc d d 

+ − − = , 
(5.20) 
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with end point conditions 

(0) (0)s

dg
L g

d
=  and ( ) 1g  → , 

(5.21) 

for physical model, the non-dimensional form of local coefficient of skin friction and Nusselt 

number are computed as: 

2
1 2 1 2

2
(0) (0)Re ,Re ,r F r G

d F dG
C C

d d 
= =  

(5.22) 

1 2 (0)Re ,r

d
Nu

d





− = −  
 

where 
2

*
2Rer

r




=  as local Reynold number. 

5.2     Computational algorithm 

The system of governing Eq. (5.14)-(5.16) and (5.20) with boundary conditions Eq. (5.19)-

(5.21) are highly nonlinear coupled ordinary differential equations. The shooting algorithm 

associated by Runge-Kutta fourth-fifth order integration methodology is utilized to compute 

the solution of this system along with boundary conditions. Therefore, this system is assembled 

into a set of first order ODE as initial value problems that can be sorted out by using Runge-

Kutta Fehlberg method. Thus, we may write Eq. (5.14)-(5.16) and (5.20) as:  

3 2
2 2 2

3 2
1 (2 ( ) ),
2

d F d F dF dF
F M G

d d d d   
= − − − +  

(5.23) 

2
2

2 (2 2 ),d G dG dF
F G M G

d d d  
= − − −  

(5.24) 

2

2 2

Pr(2Re 4 Re )
,

(1 4 Pr Re )

d dF d
F F

d d d d

d F

 
  

   

 

− +
= −

−
 

(5.25) 
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2
2

2 ( (1 ) ),d g dg
Sc F Kg g

d d 
= − − −  

(5.26) 

To reduce Eq. (5.23) – (5.26) into system of first order ODE’s, consider new set of variables 

as: 

2

1 2 1 3 2 4 5 4 62

7 6 8 9 8

( ), , , ( ), , ( ),

, ( ), ,

dF d F dG
y F y y y y y G y y y

d d d

d dg
y y y g y y

d d

   
  




 

  = = = = = = = = =

 = = = = =
 

(5.27) 

where prime denotes derivative w.r.t  . By inserting Eq. (5.27) into Eq. (5.23) - (5.26), we 

obtain the following. 

1 2

2 3

2 2 2
3 1 3 2 4 2

4 5

2
5 1 5 2 4 4

6 7

1 7 1 2 7 6
7 2

1

8 9
2

9 1 9 8 8

1 (2 )
2

1 (2 2 )
2

Pr(2Re 4 Re )
(1 4 Pr Re )

( (1 ) ),

y y

y y

y y y y y M y

y y

y y y y y M y

y y

y y y y y y
y

y

y y

y Sc y y Ky y

 



 =
 =

 = − − + −

 =

 = − − −

 =
− +

 = −
−

 =

 = − − −

 

  

 

 

(5.28) 

with transformed boundary conditions: 

1 2 3 4 5 6

9 8

( ) 0, ( ) ( ), ( ) 1 ( ), ( ) 1,
( ) ( ),at 0,s

y y y y y y

y K y

       

  

= = = + =
= =

 
(5.29) 

 

2 4 6 8( ) 0, ( ) 0, ( ) 0, ( ) 1y y y y   → → → →  at  →   

Consider the initial guesses for 
2

2
(0) (0) (0) (0), , ,d F dG dT dg

d d d d   
. Shooting method is 

implemented to solve the above system and the key points are as follows:  

➢ Suggest the values of   that lies in between 5  and 10 . 
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➢ Assume that 3 5 7 9(0) (0) (0) (0) 1y y y y= = = = . 

➢ Then we found the solution of Odes with the help of four-fifth order R-K 

methodology. 

➢ Lastly, the absolute variations in provided and newly computed values of 

1 3 5 7 9( ), ( ),  ( ),  ( ) and ( ) y y y y y      that is residuals at boundary are computed. 

The solution converges if its residual values are less than given tolerance value, 

which is supposed to be 510− . 

➢ If the values found in previous point are greater than permitted error, then the values 

of 3 5 7 9(0), (0),  y (0) and y (0)y y  will be redefined by Newton’s method. 

5.3    Results and discussion 

The rotating disk viscous fluid model is discussed in this chapter. Further, the fluid flow is 

manifested by the externally applied magnetic field with slip effects. Energy equation is 

presumed by the Cattaneo-Christov heat flux model. Thermal boundary layer is executed by 

the heat generation/absorption. In this work, the chemical reaction named homogeneous-

heterogeneous is considered. Also, the conservation laws for energy and momentum are used 

to describe the flow field that can be shown in the form of coupled partial differential equations. 

Later, these equations are further reformed into coupled ordinary differential equations. 

Similarity transformation is carried out to minimize the number of independent variables. This 

reduced system is sorted out numerically by way of shooting algorithm with Runge-Kutta 

methodology. The engineering parameters are M  (magnetic field parameter), * (velocity 

slip), 0   (parameter of heat generation), 0  (parameter of heat absorption), Sc , L  and 

sL . Here, impacts of M  on viscous fluid velocity is investigated and provided by means of 

Fig. 5.2 and Fig. 5.4. The results of velocity field upon velocity slip parameter are indicated 
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through Fig. 5.3 and Fig. 5.5. The influences of 0  , 0  , Pr  on viscous temperature are 

portrait and the results are delineated in Figs. 5.6 - 5.8. The fluctuation in viscous fluid 

concentration against L , sL  and Sc  are depicted in Figs. 5.9-5.11.  

Now in detail Fig. 5.2 presents the impact of M  on velocity ( )F  . It testifies that velocity 

profile reflects deteriorate towards M  that is 0.1,0.3,0.5M = . Because of increase in M  

causes the enhancement of Lorentz’s force which is a sort of resisting force that opposes fluid 

particles to move in a free manner and as a result, velocity of fluid declines. Fig. 5.3 depicts 

the impact of *  on ( )F   when * 0.1,0.3,0.5 =  and reflect a decline trend because Lorentz 

force occurs due to enhancement in M  which resist the flow and as a result we obtain 

decreasing curves of ( )F  . The impacts of *  upon ( )G   is shown in Fig. 5.5 and captured 

as decaying curves.  

The temperature of viscous fluid relies upon the variation of 0, 0 and Pr   . In particular, 

the impacts of 0   on temperature of viscous fluid are inspected and the outcomes are portrait 

(see Fig. 5.6). On maximizing 0   i.e., 0.3, 0.2, 0.1 = − − −  declines the viscous fluid 

temperature. Because, in case of heat absorption, the heat energy is lost and hence fluid 

temperature profile declines. It is necessary to notify that an incrementing behavior is captured 

in the flow path. This behavior can be overhauled through intake of sink factor as delineated in 

Fig. 5.7. This reports an inclining trend of viscous fluid temperature when heat generation 

enlarges (i.e., 0.3,0.5,0.7 = ). The reason behind is the heat energy evolved towards the flow 

path for enhancing values of 0  . Temperature profile increases at any point inside the 

boundary layer whenever heat generation parameter attains the higher values. Also, the 

thickness of thermal boundary layer indicates significant enhancement corresponding to the 

higher values of heat generation parameter. Fig. 5.8 shows the impact of viscous fluid 

temperature for Pr . This depicts the fluid temperature that decreases after increasing 
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Pr ( 0.3,0.5,0.7)= . Physically, the ratio of thermal to momentum diffusivity is termed as 

Prandtl number. The thickness of thermal boundary layer decreases due to higher values of Pr  

as it yields small amount of thermal diffusivity. Hence, decline in heat transfer rate occurs. 

Also, the inverse relation between Pr  and thermal conductivity declines the thermal layer 

thickness because large values of Pr  provides less energy diffusion. Therefore, fluid 

temperature decreases. Fig. 5.9 shows the variation in fluid temperature towards  . The impacts 

of fluid temperature due to iterative values of (0.3,0.5,0.7) =  is presented. The temperature 

profile decreases for  . Fig. 5.10 depicts the fluctuation in viscous fluid concentration towards 

homogeneous reaction parameter L . The increasing values of ( 0.3,0.5,0.7)L =  causes 

decline in concentration trend. As the enhancement in homogeneous reaction parameter causes 

reduction in fluid concentration profile because of consumption of reactions. Also, it yields 

fluid viscosity that provides a reason for decline in fluid concentration trend. The variations in 

viscous fluid concentration towards heterogeneous reaction parameter sL  is delineated in Fig. 

5.11. The diffusion rate reduces due to higher values of sL  i.e., 0.3,0.5,0.7sL =  which 

enhances the concentration because diffusion rate decreases as the reaction rate increase. 

Therefore, concentration trend of chemical species towards sL  decreases. Fig. 5.12 is offered 

to show the link between Schmidt number and viscous fluid concentration. On iterating the 

values of Sc  i.e., ( 0.5,1.0,1.5)Sc = , one can see that the viscous fluid concentration reflects 

the inclined trend in curves. Physically, the ratio between viscous diffusion to molecular 

diffusion is termed as Schmidt number. The enhancement in Schmidt number exhibit small 

molecular diffusivity. The inclination in momentum diffusivity rate enhances the concentration 

trend. The numerical approximations for Nusselt number and the coefficient of skin friction 

are shown by Table 5.1 and Table 5.2. 
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5.4     Graphical representation 

 

 
 

          Fig. (5.2): Impacts of M  upon ( )F  . 

 

 
 

           Fig. (5.3): Impacts of *  upon ( )F  . 
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Fig. 5.4: Impacts of M  on ( )G  . 
 

 
 

         Fig. (5.5): Impacts of *  upon ( )G  . 
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      Fig. (5.6): Impacts of 0   upon ( )  . 
 

 
 

          Fig. (5.7): Impacts of 0   upon ( )  . 
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Fig. (5.8): Impacts of Pr  upon ( )  . 
 

 
 

         Fig. (5.9): Impacts of   upon ( )  . 
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         Fig. (5.10): Impacts of L  on ( )g  .  

 

 
 

        Fig. (5.11): Impacts of sL  upon ( )g  . 



88 
 

 
            

           Fig. (5.12): Impacts of Sc  upon ( )g  . 
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Table 5.1: Numerical values of skin friction coefficient (0)F  and (0)G  for various values 
of * and M   when Pr 1.1.=  

M  *  (0)F  (0)G  

0.0 0.25 0.25953 -0.41678 

0.2 0.25 0.19118 -0.50954 

0.4 0.25 0.14606 -0.59952 

0.6 0.25 0.11670 -0.68036 

0.8 0.25 0.09676 -0.75154 

 
 
 
Table 5.2: Numerical approximations for local Nusselt number upon variations in  

*, ,Pr, ,M Sc   where 0.5 and 1.2.Sc = =  
M  *    Pr  Sc  1 2Rer Nu−  

0.1 0.4 0.1 1.0 1.0 0.158252 

0.2 0.4 0.1 1.0 1.0 0.135111 

0.3   0.1 1.0 1.0 0.084889 

0.5 0.2 0.1 1.0 1.0 0.175103 

0.2 0.5 0.1 1.0 1.0 0.138543 

0.2 0.8 0.1 1.0 1.0 0.109233 

0.2 0.4 0.1 1.0 1.0 0.156255 

0.2 0.4 0.1 1.0 1.0 0.149729 

0.2 0.4 0.1 1.0 1.0 0.143689 

0.2 0.4 0.1 1.0 1.0 0.148478 

0.2 0.4 0.1 1.0 1.0 0.153036 

0.2 0.4 0.1 1.0 1.0 0.155802 
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5.5    Concluding remarks 

Our major concern in this chapter is to describe the magneto-hydrodynamics, heat 

generation/absorption and slip effects in a viscous fluid with homogeneous-heterogeneous 

chemical reactions when the flow field occurs due to disk rotation. The Catteneo-Chritov 

approach is considered to extract energy equation. The resulting PDE’s descend to ODE’s by 

similarity transformation and the Runge-Kutta Fehlberg method with shooting scheme is 

implemented to compute numerical solutions. The effects of involved physical parameters are 

studied through graphs and tables. The key aspects are mentioned as: 

➢ The decaying behaviour of viscous fluid velocity trend towards magnetic field 

parameter. 

➢ The heat absorption parameter causes decrease in temperature whereas inverse trend is 

observed for parameter of heat generation. 

➢ The temperature of viscous fluid shows decline curves upon Prandtl number. 

➢ The decreasing behaviour of fluid concentration is noticed against homogeneous 

reaction parameter. 

➢ The concentration of fluid declines towards parameter of heterogeneous reaction. 

➢ The fluid concentration profile increases towards Schmidt number. 
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Chapter 6 

 

On thermal radiation and joule heating in a mixed convective nanofluid flow 

 

A Newtonian nanofluid flow field is demonstrated in this chapter with thermal radiation and 

heat generation/absorption. Further, in this study mixed convection, magnetic field, stagnation 

point, temperature stratification, Joule heating, concentration stratification and chemical 

reaction are included. The flow field is caused by the inclined stretching cylinder. The 

mathematical model is developed in the form of coupled partial differential framework and is 

descended to coupled ordinary differential framework by means of admissible similarity 

transformation. The temperature towards higher values of heat absorption/generation and 

thermal radiation is studied and analysed in detail. Further, the guesstimates for local Nusselt 

number as well as the skin friction coefficient are presented. 

6.1    Mathematical formulation 

The equations of motion for the Newtonian flow field are modelled mathematically. The 

motion of fluid is examined over an inclined and stretched cylinder with *u a x=  as stretching 

velocity and eu a x=  as free stream velocities. For convenience, the axial direction of cylinder 

is taken to be parallel to x-axis. In the meanwhile, the perpendicular axis to the x-axis is 

supposed to be taken as r-axis (radial direction) with R  as the radius of cylinder. By applying 

the laws of conservation, we get the following flow describing equations as: 
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Fig. 6.1: Physical illustration of the model. 
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(6.4) 

By using the Roseland radiative heat flux that is 
* 4

*

4
3r

T
q

k r

  = − 
 

, where *  the coefficient 

of Stefan Boltzmann and *k  the absorption coefficient. We can modify Eq. (6.4) as: 

2
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(6.5) 

with end point conditions: 
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since the mathematical problem described in Eq. (6.4) - (6.5) with end point conditions shown 

in Eq. (6.6) are highly nonlinear therefore the exact solution seems to be unworkable. Thus, we 

need an equivalent system of ordinary differential equations in order to find the numerical 

solutions. It can be attained by using the set of similarity transformations given as: 

11
* * 22 2 22
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(6.7) 

the velocity relation towards stream functions is expressed as: 
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Eq. (6.1) satisfies after using Eq. (6.7) -(6.8), whereas Eq. (6.2) - (6.5) gives. 
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with transformed boundary conditions: 
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The involved engineering parameters are defined as: 
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where 2, , , , , ,Pr, , , , , , , and m T b tK M N R N N S Le Ec      are named as parameter of curvature, 

parameter of magnetic field, parameter of velocity ratio, parameter of mixed convection, 

parameter of buoyancy force, parameter of thermal radiation, Prandtl’s number, parameter of 

Brownian motion, parameter of thermophoresis, parameter of thermal stratification, parameter 

of heat generation, Lewis’s number, parameter of concentration stratification, parameter of 

chemical reaction and Eckert number. The coefficient of skin friction at the surface of cylinder 

is shown by. 
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in dimensionless practice, it is written as: 

0.5 Re (0),f xC F=  (6.15) 

The expression for both the local Nusselt and the local Sherwood number is: 
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the dimensionless form of these expression is pre-arranged as: 
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with  
2

*Rex

u x

v l
=   be the local Reynold’s number. 

6.2    Computational algorithm 

The governing Eq. (6.9)-(6.11) with conditions at the boundary Eq. (6.12) are coupled 

nonlinear system. The algorithm of shooting method with integration scheme named as four-

fifth order Runge-Kutta methodology is suggested to acquire solutions. For this purpose, we 

consider the steps as follows. First, we may write Eq. (6.9) - (6.11) as: 
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by inserting the above Eq. (6.21) into Eq. (6.18)-(6.20), we get the set of first order ODE’s as: 
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(6.22) 

along with the end point conditions, 

1 2 4 6 2(0) 0, (0) 1, (0) 1 , (0) 1 ,y y y S y = = = − = −  (6.23) 

2 4 6, 0, 0 as y y y → → → →   

Here we considered the initial guesses for the values of 
2

2
(0) (0) (0), , ,d F dT dC

d d d  
. 

➢ Firstly, choose the value of 6 = . 

➢ Then we suppose the initial guesses for 3 5 7(0),  (0) and y (0)y y  as, 

3 5 7(0) (0) (0) 1y y y= = = . 

➢ Solve ODE’s (Ordinary Differential Equations) with by four-fifth order R-K theory. 
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➢ The absolute variations in the provided and approximated values for 

1 3 5 7( ), ( ),  ( ) and ( )y y y y     that is residuals at boundary are calculated. Thus, 

the solution converges if its end point residuals are less than tolerance (i.e., 510− ). 

➢ If the values found in previous point are greater than permitted error, then the initial 

guesses for 3 5(0), (0)y y  and 7y (0)  will be modified by applying Newton’s method. 

6.3     Results and discussion 

This chapter narrates the specifications of Newtonian nano-fluid model towards inclined 

cylindrical surface. The conservation law of momentum is considered to describe the flow field 

in the shape of coupled PDE’s. These equations are then purified into coupled ODE’s by 

reducing the number of independent variables through similarity transformation technique. The 

numerical findings are interpreted by the shooting scheme with Runge-Kutta Fehlberg method. 

The involved physical parameters are , , , ,Pr, , , , ,m T t bK M R N N   − + . The influences of  

,K M  and m  on velocity of Newtonian fluid are explored and shown by way of Figs. 6.2 - 

6.4. Further, the impacts of ,Pr, , , , ,T t bR N N   − +  and m  on a temperature of Newtonian 

fluid are delineated in Figs. 6.5 - 6.12. Also, the variation in Newtonian fluid concentration 

towards , ,t bN N   and m  are presented in the form of Figs. 6.13 - 6.16. Now in detail, Fig. 6.2 

depicts the impact of K  on velocity of Newtonian fluid. It is witnessed that the velocity of 

fluid shows the inclining behaviour towards K  when 0.1,0.2,0.3K = . This is because the 

curvature radius subject to surface area of cylinder diminish. Therefore, the particles of 

Newtonian fluid in contact with the surface area of cylinder reduces. The lesser the resistance 

faced by the Newtonian fluid particles; the greater will be the average Newtonian fluid velocity. 

Fig. 6.3 shows the fluctuation in Newtonian fluid velocity corresponding to M . This picture 

testifies that the fluid velocity has declining nature towards M  when we iterate 
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0.1,0.2,0.3M = . Since, the increasing values of M   causes increase in Lorentz force. This 

force reasons resistance with the fluid particles to move in a free manner therefore average 

velocity of Newtonian fluid decreases. The salient features of m  upon ( )F   is portrayed in 

Fig. 6.4. Here we witness that ( )F  amplifies towards large values of m . Infact by enhancing 

the values of m  that is 0.1,0.3,0.5m = , the buoyancy forces enhance due to gravity which 

magnifies the fluid velocity. 

The Newtonian fluid temperature relies upon ,Pr, , , , ,T t bR N N   − +  and m . More 

specifically, the dimensionless fluid temperature fluctuates for various values of TR  i.e., 

0.0,0.3,0.6TR =  and is expressed by Fig. 6.5. This indicates that fluid temperature enhances 

when enlarging parameter of thermal radiation. Physically, more heat is produced to the 

working fluid that causes temperature to be increased. The impacts of Pr  on temperature of 

fluid is inspected and displayed by means of Fig. 6.6. It is evident that temperature profile rises 

towards higher values of Pr  i.e., Pr 0.1,0.2,0.3= . The effects of temperature profile for tN  

are discussed in Fig. 6.7. Here, we claim that the growing values of tN   i.e., 0.1,0.3,0.7tN =  

causes enhancement in the Newtonian fluid temperature. The strength of tN  produces the 

thermophoresis force due to temperature gradient that causes the boundary layer to become 

thicker and thus temperature enhances. Fig. 6.8 indicate the impacts of bN  that presents the 

picture of temperature profile inclined towards large values of bN  i.e., 0.1,0.3,0.7bN = . This 

is because the strength of bN  causes uplift in thermal conduction of base fluid. Therefore, the 

boundary layer becomes thicker and temperature increases. It is seen from the profile of 

temperature distribution that Fig. 6.9 delineates the variation in temperature towards  + . When 

we iterate 0.0,0.3,0.6 + = , the nanoparticle temperature testifies to be increasing. This is 
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because bulk amount of energy is produced on enlarging heat generation parameter and hence 

temperature shoots up. It is important to note that sometimes we introduce sink factor to control 

the overshoot in the temperature profile. It is witnessed from Fig. 6.10 that nanofluid 

temperature towards  −  decreases. This phenomenon happens because of the lowest values of 

the heat absorption parameter i.e., 0.1, 0.3, 0.6 − = − − − , that produces lesser amount of heat. 

Therefore, decline in temperature is witnessed. Fig. 6.11 shows the variation in fluid 

temperature towards  . For various values of   i.e., 0.0,0.1,0.5 = , the temperature gives 

decline trend. The salient features of m  upon ( )T   is portrayed in Fig. 6.12. Here we witness 

that ( )F   diminish towards large values of m . Physically, by enhancing the values of m  that 

is 0.1,0.3,0.5m = , the buoyancy force enhances due to gravity which magnifies the rate of 

heat transfer. Figs. 6.13 – 6.14 indicates that on enlarging tN  and bN  i.e. 0.1,0.3,0.5tN =  and 

0.0,0.1,0.5bN = , the thickness of the concentration boundary layer increases for tN  whereas 

enlarging in bN  causes decline in the concentration boundary layer. In view of the physical 

aspect, one can justify these factors because in a nanofluid system, Brownian motion occurs 

due to collision of the nanoparticles with base fluid. It happens because Brownian diffusion is 

manifested with heat conduction. The enhancement in cylindrical surface area for heat transfer 

is caused by the nanoparticles. A nanofluid is such a system where the freely moving 

nanoparticles enhances the kinetic energy. As the diffusion of the nanoparticles is extremely 

influenced by the Brownian motion. Moreover, the nanoparticles are supposed to be dispersed 

from the hot surface towards the ambient fluid due to thermophoresis phenomena. Since, the 

nanometre sized particles produce resistance through the heated surface. Therefore, the 

thermophoresis force allows nanoparticles to incorporate heat from the surface to the fluid in 

motion. Thus, the concentration boundary layer becomes thicker towards tN  and hence 
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nanoparticle concentration increases whereas the opposite trend is witnessed for bN . Fig. 6.15 

shows the variation in nanoparticle concentration towards  . For various values of   i.e., 

0.1,0.3,0.5 = , the nanoparticle concentration shows declining trend.  

Fig. 6.16 shows the decaying behaviour of concentration profile towards m . Physically, 

buoyancy forces exert as a compatible pressure gradient. Therefore, stronger buoyancy forces 

help to move in a vertical direction and as a result concentration declines. Table 6.1 and Table 

6.2 shows the numerical values of the skin friction coefficient and local Nusselt number. 
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6.4     Graphical representation 

 

 
                

        Fig. (6.2): Impacts of K  upon ( )F  . 
 

 
 

               Fig. (6.3): Impacts of M  upon ( )F  . 
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          Fig. (6.4): Impacts of m  on ( )F  . 

 

 
 

               Fig. (6.5): Impacts of TR  on ( )T  . 
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        Fig. 6.6: Impacts of Pr  on ( )T  . 
 

 
 

        Fig. 6.7: Influence of tN  on ( )T  . 
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        Fig. 6.8: Influence of bN  on ( )T  . 

 

 
     Fig. 6.9: Influence of  +  on ( )T  . 
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                Fig. 6.10: Influence of  −  on ( )T  . 

 

 
 

            Fig. 6.11: Influence of   on ( )T  . 
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       Fig. 6.12: Influence of m  on ( )T  . 
 

 
 

               Fig. 6.13: Influence of tN  on ( )C  . 
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       Fig. 6.14: Influence of bN  on ( )C  . 
 

 
 

               Fig. 6.15: Impacts of   on ( )C  . 
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    Fig. 6.16: Influence of m  on ( )C  . 
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Table 6.1:  Numerical approximations for coefficient of skin friction when 0.2, 0.5m = = , 

0.1bN =  and 0.1tN = . 

M  Pr  K  Le  0.5 Re (0),f xC F=  

0 3 0.3 0.001 -1.053800 

0.3 3 0.3 0.001 -1.090060 

0.6 3 0.3 0.001 -1.194930 

0.8 3 0.3 0.001 -1.298290 

0.3 2 0.3 0.001 -1.012570 

0.3 3 0.3 0.001 -1.090060 

0.3 3.5 0.3 0.001 -1.125350 

0.3 4 0.3 0.001 -1.158450 

0.3 3 0.7 0.001 -1.090060 

0.3 3 1.3 0.001 -0.490977 

0.3 3 0.3 0.001 0.598867 

0.3 3 0.7 0.001 1.827620 

0.3 3 1.3 0.001 -1.090210 

0.3 3 1.7 0.001 -1.059190 

0.3 3 0.3 0.0 -1.024390 

0.3 3 0.3 0.2 -1.007155 

 

 

Table 6.2:  Numerical approximations for Nusselt number towards various values of Pr , tN

and bN  when 0.3, 0.2, 0.5, 0.1.mK M  = = = = =  

Pr  
tN  bN  

Re
x

x

Nu  

1.0 0.2 0.3 0.31492 

1.0 0.2 0.3 0.2141 

1.0 0.2 0.3 0.2765 

1.0 0.2 0.3 0.3166 

3.0 0.3 0.3 0.3234 

3.0 0.3 0.3 0.2902 
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3.0 0.3 0.3 0.2861 

3.0 0.3 0.3 0.2397 

5.0 0.5 0.3 0.2921 

5.0 0.5 0.3 0.3327 

5.0 0.5 0.3 0.2690 

 

6.5    Concluding remarks 

This chapter comprises Newtonian nanofluid manifested with thermal radiation and heat 

absorption/generation. The governing equations descend to ordinary differential system 

through similarity transformations. The numerical results are deduced by way of Runge-Kutta 

Fehlberg technique with shooting algorithm. The numerical findings for coefficient of friction 

and the heat transfer rate are examined. The key findings are mentioned below. 

➢ The flow velocity shows an inclined trend towards curvature parameter.  

➢ The fluid velocity decreases upon variation in parameter of magnetic field. 

➢ The varying values of parameter of thermal radiation enhances the temperature profile. 

➢ The Newtonian fluid temperature declines towards Prandtl number. 

➢ The fluid temperature depicts the uplifting trend by maximizing the values of parameter 

of thermophoresis and Brownian motion. 

➢ Heat generation provides a source for higher temperature profile whereas heat 

absorption gives reason for lesser temperature.  

➢ The Newtonian fluid concentration shows an uplift towards thermophoresis parameter 

whereas opposite trend is observed for parameter of Brownian motion. 

➢ The fluid concentration declines for higher values of concentration parameter. 
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Summary 
 

This chapter is dedicated to summarizing whole thesis. Focus of the chapter 1 is on study of 

heat and mass transfer in a Carreau steady two-dimensional viscosity model over a moving 

wedge with infinite shear rate viscosity. The results for the shear thinning as well as shear 

thickening are reported. Symmetry transformation is applied which reduces modelled partial 

differential equations to the coupled system of ordinary differential equations. This system is 

sorted out in a numerical way by means of Runge-Kutta methodology associated by shooting 

algorithm. The reduction in the temperature of Carreau fluid is noticed due to large values of 

viscosity ratio parameter in case of shear thickening and, reverse trend is examined for the 

shear thinning case. Further, the concentration in Carreau fluid declines against wedge angle 

parameter for shear thickening and thinning. 

In chapter 2 the effects of heat absorption/generation and chemical reaction are included in 

chapter 1; an extension of Chapter 1. For this purpose, the mathematical model is designed in 

terms of coupled partial differential equations and then solved numerically by Runge-Kutta 

Fehlberg technique chartered with shooting scheme. To investigate the impacts of physical 

parameter upon temperature and concentration, graphs are plotted. The temperature behaviour 

is examined for heat generation/absorption parameter. Further, the Carreau fluid concentration 

is inspected for chemical reaction parameter. 

The Chapter 3 includes the results for Jeffery fluid with thermal stratification effects at a 

stagnation point. The thermal energy characteristics are studied through the generalized 

Fourier’s law of heat flux. The flow is magnified by the stretching cylinder. The homogeneous-

heterogeneous reactions are considered in this chapter. The concerned mathematical problem 

is developed by laws of conservation of momentum, mass and energy which provides a system 

of coupled partial differential equations. The order of these equations is reduced by way of 

similarity transformation. Later, the set of reduced coupled equations are computed 
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numerically by implementing Runge-Kutta Fehlberg technique with shooting algorithm. The 

curves for temperature and velocity of fluid are plotted for involved engineering parameters. 

The numerical values for the coefficient of skin friction are examined, and the obtained 

outcomes are compared with existing literature. 

The Chapter 4 is the extension of Chapter 3 after including the effects of magnetic field and 

heat generation. The consequential PDE’s descend to ODE’s by carrying out the set of 

similarity transformations. These equations are solved numerically by shooting technique 

along with Runge-Kutta Fehlberg method. The effects of involved parameters are analysed and 

debated by means of graphs. The obtain outcomes are validated with the published work. 

The Chapter 5 emphasizes on magneto-hydrodynamics, heat generation/absorption and slip 

effects over a Newtonian flow field with homogeneous-heterogeneous chemical reactions 

induced by the rotating disk. The Cattaneo-Christov approach is proposed to derive the energy 

equation and heat transfer phenomena. The equations are solved by numerical technique called 

Runge-Kutta Fehlberg method with shooting scheme. The influence of arising parameters 

towards fluid velocity, temperature and concentration is elaborated in graphs. Further, the 

numerical results for the skin friction coefficient and the rate of heat transfer are examined. 

In Chapter 6, a Newtonian nanofluid flow field is demonstrated. The effects used in this chapter 

includes thermal radiation, heat generation/absorption., mixed convection, magnetic field, 

stagnation point, temperature stratification, Joule heating, concentration stratification and 

chemical reaction. The flow field is caused by the inclined stretching cylinder. The 

mathematical model is developed in the form of coupled partial differential framework and is 

descended to a system of coupled ordinary differential equations by means of admissible 

similarity transformation. The numerical findings are presented by Runge-Kutta Fehlberg 

method along with shooting scheme. The impacts of physical parameters upon fluid velocity, 
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temperature and concentration are discussed through graphs. Further, the guesstimates for local 

Nusselt number as well as the skin friction coefficient are presented. 

Future work 

This thesis focuses on studying the methods that can enhance or reduce heat transfer rate for 

which different fluid models reflects by including number of physical parameters. This study 

can be extended: 

• for various non-Newtonian fluid models like Maxwell, Williamson, Eyring-Powell etc. 

• to debate under the influence of nonlinear thermal radiation, thermal stratification, joule 

heating. 

• by taking the convective boundary condition. 

• to various geometries like, exponentially stretching sheet, vertical cylinder, rotating 

wedge, rotating cones in addition with porosity and convectively heated effects. 

• to find the numerical solutions through FEM (Finite Element Method) for complex 

geometries. 
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