1)
!
i

HARTREE-FOCK PROGRAM \

BY

RAHEEL ALI

DEPARTMENT OF PHYSICS
QUAID-I-AZAM UNIVERSITY
ISLAMABAD PAKISTAN
1991



lhis work is submitted as a dissertalion in partial

fulfilment of the requirement for the degree of

MASTER OF PHILOSOPHY

IN

PHYSICS

to the Department of Physics

Quaid-i-Azam University

Islamabad




CERTIFICATE

It is certified Lhal the work contained in this dissertation

was carried out and completed under my supervision,

o IR o

(Dr. M. Aslam Baig)

Associate Professor
Department of Physics
Quaid-i-Azam University

Islamabad

Submitted through:

6 Yk 5.~
(Prof. Dr. G. jf}taza)
Chairman
Department of Physics
Quaid-i-Azam Universitly

Islamabad



DEDICATED TO -

MY PARENTS




CONTENTS

ACKNOWLEDGEMENTS

ABSTRACT
PAGE NO,
CHAPTER 1
INTRODUCTION
1,1 Introduction of Hartree-lFocl
me thod 1
1 o2 Curve Filting 3

CHAPTER 2
MULTI-CONFIGURATION HARTREE-FOCK PROGRAM

2 5 [ntroduction 6
2.2 General Description t
203 Method of Solution 10
2.4 Summary of subroutines 13
200 Data input and energy calculations

F'or single configuration 18

CHAPTER 3

CURVE FITTING PROGRAM
3:1 Introductlion 42
3 o Program Description 43
3.3 Summary of Subroutines 49
3.4 Data ITnput 49
3 B Main features of Program 52
3.6 Energy level calculations for Krl 54

REFERENCES 60



ACKNOWLEDGEMENTS

[ want Lo express my deep appreciation and admiration
for mny supervisor DR.M.A.BAIG, for his inspiration,
guidance, encouragement and kindness throughout this study.

His encouraging discussions enabled me Lo complete my worl.

My colleagues Zafar, Akram, Naveed, Sultan, Talat and

Rana Aslam also deserve my special appreciation.

Among my [riends Adnan, Tariq, Waqar and Nisar are note

worthy for sharing their time with me.

My thanks also must go to Mr Mr M.Tiwana and M.Zahoor
of the Computer Center Q@.A.U for helping me in using

mainframe.

Finally I wish to pay my deepest gratitude to my parents

and the family for their encouragement at all times.



ABSTRACT

In the present research projecl we have installed and
tested Ltwo computer programs for the calculations ol atomic
and molecular structure. The first program is for Lhe
Hartree-Fock mulbti configuration calculations of alom and
ionized species. The objective of this program is to to
solve the coupled integro-differential equation for radial
wave funcltions Lo extlract energy and multiplets ol  a
configuration. The equalions are being solved iteratively
using self-consistent field method. The structure of the
program is such that the frozen core approximation may be
used. The program was originally designed lor VAX-11-780, we
have modified it for NEC-610, In order Lo  check Lhe
performance of Lhe program, we have performed ab-initio
Hartree-¥Fock calculations for
1) 29635 ground state and 2p53d excited state of sodium,

2) 3pﬁds ground state of Poltassium and
3) ~Iclluﬁs ground state of Cadmium.

The second program is based on Chebyshev polynomial
fitting and is especially designed to exlracl the wavelengtlhs
from the experimentally recorded absorption/emission spectrum
using known wavelenglh standards. The main advantage of this
program is thal it rejecls automatically if a wavelength
standard does not filb or miss identified. We have checked
the wvalidity of this program by calculating the unknown
wavelength of experimental data of Krypton recorded at high

resolution and high dispersion.



CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION OF HARTREE-FOCK METHOD

The micro realm of atomic structure has proved Lo be an
exceedingly difficull problem even for simpler atoms with
anly a few eleclrons. As Lhe number of electrons increases,
Lhe tash ul solving Schrodinger's equalion Lecomes
prohibitively complicated. Exact solulions are known only for
one eleclron system., Some approximate but reliable methods

were soughl. Various successful allempts have been made [or
1]
N=2. Hylleraas was the first to reach a high degree of

accuracy in the theorelical predicltion of Lhe ground state of
two-eleclron system including Helium and the negalive
hydrogen ion. Illis calculations were based on the Variational
Principle i.e in minimizing the energy given by a wave
function wilh six parameters., Hylleraas found for E the

value -2.90324 atomic units. Chandrashaker Elbert and
[21
Herzberg recalculated the energy of the ground state by the
Ritz Variation method, making use of a trial function with
ten adjustable parameters and showed that their ground state
energy, including the relativistic and mass polarization
corrections was about 21.5 cmm1 higher than the observed
value while the error of observation was of the order +

= =% . 3 .

bem . Later more accurate variational wave functions were
[ 3} (4]

obtained by Kinoshita and by Perkeris. So far the best

approximated value is F=-2,90372437703 a.u. which is several
orders more accurate than the experimental value. The

excellent agreement between the theoretical and experimental



results for helium verifies Lhe accuracy of the quantum
mechanical model. But the wvariational methods employed are
exceedingly difficult to generalize to large systems; other
more approximate methods are required.

Fortunalely we have approximations which are good enough
Lo give agreement with experimenbt, tLhough wilh far larger

errors Lhan for tlues hel ium calculations, One such
{51
approximat ion is Hartree's method of Lhe self-consistent

field. In this melhod we replace bthe instantaneous action of
all the electrons of an atom on one of their number, which
would resull in a mechanical problem so difficult tLhat il
could not be solved, by the much simpler problem in which
each elecltron is assumed to move in a central [lield produced
by the nucleus, and the spherically averaged potential fields
of each olher electron. The wave [unction of an eleclron in
such a spherical field is very similar to the hydrogenic
funetion., Its dependence on angle is exaclly the same, and
Lthe only difflference is in the radial functiaon Rnl(r}. Thus we
can assume that the one-electron wave function or orbitals
will have the same form as that for hydrogen atom wave
function. Wave function for the N-electron atom can bhe
constructed from these one orbitals by supposing that each
electron move quite independently of Lhe others only in an
averaged manner. Hence Lhe quantity tp*w, the probability
density, where P is the N-electron wave function, should be a
product of probability densities for the various electrons,
as we should have for independent motion. This implies tLhat
the wave function should be a product of functions of the
various electrons. Each orbital is assigned three quantum
numbers l'l,l,ml. The wave function does not depend on the spin

quantum number m_, but in accordance with Pauli’s exclusion

g



principle , we may assign no more Lhan two eleclrons Lo &
given set of {nlmll values, of which we assume that one has
111__':1/2, the other has m =-1/2, Using this representaltion of
, Hartree flound the average value ol Lhe Hamillonian. This
average Iamiltonian 1is Lhen varied with respect to one
electron orbilals. This leads Lo a set of variational
equalbions. The variational equations have the form of coupled
integro-dilferential cqualbtions. In principle, a self
consistent sel of solulions can be obtained by iterative
techniques,

The Harlree's representation, however, overlooks the
fact that ¢ wmust be an anti-symmetric function of the
electron coordinates., This defect is remedied in Lhe
Hartree-Fock approach in which @ is expressed in terms of
determinantal wave funclion built up from single orbitals

which automalically satisfly this anti-symmetry requirement.
1.2 CURVE FITTING

One ol the most common problems in numerical analysis is
to approximale a function for a set of experimental data. The
approximalbing functions usually used are those involving
linear combinations of simple functions. The functions most
often encountered are;

(1) Monomials {).l], BT 0 JFN; R PR  (

(2) Fourier functions {sinkx,coskx}), k = 0,1,...n,
b x
(3) Exponentials {e ' 3 e B Dok g e T

Linear combinations of monomials lead to polynomials of

degree n, P _(x),

B ] = 1]
P LX) &2 &8 + 8% # &% * caosaev PEN,
i O 1 2 n

whereas, linear combinations of the fourier functions lead to



approximal ions of the form,

1] n
glix) = a, + Z akcoskx + z hksinkx.
k=1 k=1
The widely used approximating functions are the
algebraic polynomials 1’| (%), because they are easy ta
1]

evaluate and their sums, products and differences are also
polynomials. They can be differentiated and integrated with
little difficulty, yielding other polynomials in both cases,
But the problem with using such functions is that the error
over an arbitrary interval [a,b], centered at 0 is extremely
non-uniform, small near the center bul. growing very rapidly
near the end points., Since any such arbitrary finite
interval can he transformed to the interval [-1,1], (X in
[a,b], Z in [=-1,1]) it would seem more reasonable to look for
other set of simple related functions thal have their exlreme
values well distributed on the interval |[-1,1]. If we
approximate an arbitrary function using a linear combination
of such funclions, the error in the approximation will be
distributed more evenly over the interval. In particular, we
want to find approximations which are fairly easy to generate

and which reduce the maximum error to the minimum value.

The cosine Ffunctions cos®, ¢b6s28, .....,cosne appear to
be good candidates. Each of the function has identical
maximum and minimum values distributed regularly over an
arbitrary interval, 0 € o < 7n ;in addition, the extreme value
for two functions cosje, cosj®, Jj#k, do not, in general,
occur at the same values of Z. The cosine function requires
an approximation for its numerical evaluation. A simpler and
more useful form results from the transformation of cosn= on

the interval 0 = & £ 1 into an nth degree polynomial in Z on



the interval [-1,1]. The set of polynomials T (Z) = cosn@,

n=0, 1, o Wy generaled from the sequence of cosine

3 i g i 1 =1, :

funections using the transformation = = cos 7 is known as
| 61

Chebyshev polynomials.



CIHAPTER 2

MULTI-CONFIGURATION HARTREE-FOCK PROGRAM

2.1 INTRODUCTION

In tLhe preceding chapler Hartree-Fock approach was
introduced which was based on representing Lthe total wave
function Y in terms of determinantal wave function. In ils
simplesl [form, the Harlree-Fock approximation treabts only a
single clectronic configuration. [n this case, 1 is
represented by a linear combination of determinantal wave
functions, Ilach of these corresponds Lo & different
assignment of Lthe elecbtronic quanbLum numbers of thie
constituent spin-orbitals consistent with the symmetry of the
chosen configuration. In the special case of a closed shell
configuration, there is only one possible assignment of these
quantum numbers and hence P 1is represented by a single
determinantal wave function. In the configuration inlteraction
representation which is an extension of the Hartree-Fock
method, ¥ is expanded in terms of the determinantal wave
functions associated with more than one configuration. [L is
also assumed that the total wave f[unclbion ¥ 1is an eigen
function of S:{ and Lz, that it can be constructed _fLme
one-electron funclions ¢i and that each ¢l is a product of a
spherical harmonic, a radial wave function depending on n and

I quantum numbers and a spin function.
2.2 GENERAL DESCRIPTION

Assume tLhat the total wave function W(SL) for a ground

state of an N-electron atom can be expressed in the form



NCFG
PISL) z_Z._‘-jth:nlll,nzlz, sivdins Al Bl
I:
where NCIFG is Lhe number of configurations and (:J is Lhe
weight of the contiguration j. Other symbols have their usual
. s . . . ; o 2 . 5
meaning . ‘PI is an eigenfunction of S and L for a given
configuration in a given coupling scheme, and ,<¢ikh> = hjf
¢i are constructed from cgne-eleclLron functions ¢ , which have
1
the form
ml.
1 1
¢i = A P{r“_ti;rl ¥, (e,¢ ) ¥(1/2,m_ )5
r i i

where,

P{nili;v} are the radial wave funclions,

"
1

1 i . .
¥y {=,4") are Lhe sgpherical harmonics, and
i

K{‘Hli,mE ) are Lhe usual spin function.
i
Expressions for the energy can be derived in terms of
the unknown functions P(nl;r). When ©®(SL) is a single
71
determinant simple rules given by Slater , for example may be
used. But in complex systems the number of determinants that
need to be considered may become exceedingly large, making
this approach impractical., For a complex atom the energy
expression contains many terms, most of which are independent

of the LS term value of the state. An extremely useful
t71
concept is Slater’'s average energy of the configuration which

is denoted by Fav., 1L depends only on configuration and when

all functions are normalized is given by



Eav = Zq I{n. 1. ) +F 5:1_1_ Lli“1 Zak Fkln_] sn_ 1)
i i { = n,l_lul;n l,m] i 171

P G| i

i i k i i
50 k k
+Eq_q‘ Frfin, Lol +Zh G oL odn X )
i 1 i 1 n 1l m ;n 1 m i1 579
s R e IR A I
1,1 k i ]
Where q, is the number of electrons in the shell i

coefficients a and b are defined as

k k R iy g T
e L = e tnlml,nlmll x e (nl myosn 1 m, ),
1 1
1/2
k n k '] ' .
IJnl:u;llfl"ml' B [e (“lml"l 1 l.“I ]:I )

ko, i
where e is given as

Ek o - {Hl]l'|||+‘m|+|n'+|ml+(ln-—u|']+llu-|n'|]/2 =
nlm_:;n 1 m
1 |
1 1 f Al
(k=|m-m"|)! (2141)(1=|m]|)! ///(21'+1}(1'-]m";!
R O ki X
(k+|m-m"|)! (1 +|m|)! (L 4|m"|)!
+1
' ||u| |m‘| |m-m‘
1]1P, (W) P (M) P (pH)dp,
9
=

™
where Pl (H)'s are associated Legendre functions. Slater

o7 o |
has calculalted these coefficients for various configurations.

The Slater Fk(njli;nilii and Gk{nili;njlj) integrals are



given by

Lk % i
where Y lnlll;nlij;l"‘] is given as

o . s i s . .
Itnili,r;:)lJ{anJ,er Fy 1112

0

+ J Pilm. L. seokPlin 1. pre )ilas dr
(| 2 i i -] _1
r"'l

r

The LS term energies can be expressed as
E(LS) = Eav + AE(LS)

where AE(LS) is the deviation from the average energy and has
several useful properties.
i) When a configuration admits only one term value, AE(LS)=0,
Therefore all configurations consisting only of complele
groups, or complete groups plus one electron outside a
complete group have AE(LS) = 0.
ii) ﬂE(lnLH} = BE{141+2-“L5}; that 1is, the deviations for
electrons and holes are Lhe same.
iii) For configurations consisting of several incomplete
groups, AE is a sum of deviations from inleractions within
individual incomplete groups plus devialions from

interactions between incomplete groups. For example, suppose



Lthe devialion lor (LS is known and Lhe incomplele group

171
1“{L7311 is coupled Lo ¥L151 to produce “ state
Y(L,S ) 1"(L,S ) LS. Then
. ! " . . = - - . I . :
&1-_{711,1511.1. {l,zbzll..‘)} = &L{}’[;I.:a‘i + AE(1 Lzhz] plus

. -
K

4 a . u : = n .
the deviation for the interaction between rhlbl and 1 L.S..
Combining the average energy with the deviations we gel

Lhe expression [lor the tolal energy

. e : k _
E{yLS) —leil{nil]] +E d”kF in'li,n]l}}
i2j;k

Lk _ 7
+ z bijkh tnlli,ujlj} (213
- 3 O )

* : k k :
From the average energies, F , and G integrals two

arrays A(l1,J,K) and B(I,J,K) are then generaled. The value of

; i Wi J2(k-1)
a’jk is Lhe coefflficient of Y
function for wave function i, whereas the value of b,Jk is

(j,Jj) 1n the potential

the coefficient of

1 -1 |+2(k-1)
L 3

| 3 3 e ] .
Y (% 5300 l(njlj,r}

in the exchange function for wave function i.
2.8 METHOD OF SOLUTION

The variational principle requires Lhat enerdy given hy
(2.1) be stationary with respect to variations in each of the
radial functions. An additional assumption that wave
functions associated with a particular angular quantum number
1 form an orthonormal sel can also be introduced. However if
this assumption is made, then lagrange multipliers must be
introduced into the wvariational procedure and consequently

the orthogonality conditions result in off-diagonal energy

10



parameters in the Hartree-l'ock equations., These have the form

d°P(ulir) + 4 2 (Z2 - Y(r)) —e | = 1(1+1) ¢ P(nl;r)
dr® r r?
- 9 O . - *
=2 Xlx) + Z’c“l’n,l P(n'l;r),
r n

where Y(r) and X(r) are known as Potential and Exchange
[7]
functions and have form

.

A K
1k
B

Y iRl gt 1 )

Yiir) .

k
nl;n’ 17,k
k

1
X)) E: w6 Yk{nl;n'l';rl} P{n"1" 509,

’
n“ 1 # nl,k

where
a ’ L L
[1+ 1,n"1 }anl,n 1Lk
v ] =
nl,n 1 ,k
11, Llnl
B - bnl,n‘ﬁ,u
rl,r'l',k - C
1 1 ln],
and
A ‘e
51 " = nl,n |
nl,n qnl

The equation has boundary conditions
P(0) = P(w) = 0,

The orthonormality condition

Ip{nl;t‘i P(n'l;r) dr R

nn

are applied only to functions within a configuration.When two

incomplete groups with the same occupation number and the

11



same angular quantum number 1 are present the off diagonal

energy parameters are assumed to be zero which will not
[ 91
alwavs lead to orthogonal wave functions.

Introducing a logarithmic variable
o= logEZr.

and defining,

E{nl;r} = P(nl;r)/:ﬂlz,

the last equation can be written as

a’p
dp®

_ 2 T .
={r2Enlnl+{l+l/2]~2r{Z~Y(r}}+z £ . rh} Pinl;r) + 2rX
* n

, nl,n 1
(10, 11]
This differential equation can be solved iteratively,
i.e. by starting with an educated guess of the radial wave
functions. The differential equation 1is repeatedly solved
until the difference between the wave functions of two
successive iterations becomes smaller than some required

limit., The wave functions thus achieved are said to be
[12]

self-consistent. We may use the frozen core approximation, if
we want to reduce the amount of computer time. This
possibility has been materialized in the program by
specifying the number of functions NIT to be iterated. 1If
closed shell wave functions are to be frozen, they are not
included in NIT. However, they do make part of NWF which
stands for the total number of wave functions. The
interdependence of all the functions has been taken into
account; the program ensures that a function remains
self-consistent on a subsequent change in any other function.
The algorithm used is as follows,

1. Orthogonalize functions and determine €

a

nl;tl'l
2. Solve each differential equation in turn.

3. Orthogonalize and determine & ® {0

12



1. Search for and solve Lhe differential equation with
largest change.

5. Solve each differential equation in turn.

6. I largeslt Lolerance z SCF tolerance, double the

tolerance.

In addition to determine the set of radial functions the
energy matrix is also computed and if required the program
can also determine a set of mixing coefficients which are

components of an eigen vector of energy matrix.
2.4 SUMMARY OF SUBROUTINES

Fig 2.1 shows the flow chart of the program and various
subroutines and functions called.
1)MAIN. The main program controls the overall calculation.
Tk reads and stores data concerning the numbe r of
configuration, the number and Lype of electrons in each
configuration, as well as the data associated with Fk, Gk,
ancd Rk integrals,
2 )JARRAY . It’s purpose is to generate two arrays A and B
from the basic data and the weights c; for the configuration,
which contain coelficients for the potential function and
coefficienls for exchange lFunctions respectively.
3 )WAVEFN. It's function is to have an initial estimate of
the wave functions. Initial estimates can either be as input
data, screened hydrogenic functions, or left the same as the
results of a previous calculation still in memory. Estimates

of the energy parameter - and Ay, & B S T 0 are
= 141
r
also determined if these have been omitted from the input
2 1./2
data. Arrays for r,r , and r are also generated.
4 )SCALE. This subroutine scales for a different Z using

computed values of screening parameter,

13



(:::>w+—r| INITIALIZE

¥

READ DATA AND

ESTIMATES

¥

FORM INITIAL ————DATA——-—

———ARRAY

———WAUVEFN-—YKF——ZK

———GRAMNGE——YKF—-ZK
PERFORM SCF —_—— ——POLT-—EKIN-ZK
e G fressse—g
ITERATIONS | S o T T ¥ V7
)
'——DE-—-——HETHD1-SEARCH
SKIP HMRUS
YES | REMAINING
SCALE
DaTA
CARDS
NO
i —~—METHDZ-SEARCH
COMPUTE AND i
HHRUS
DIAGONALIZE =D LG
ENERGY MATRIX ——YRF-—ZK
YES
NO
RECOMPUTE
COEFFICIENTS
4—1 WHICH DEPEND OM f|——-|-—aRRAaY
MIXING OF
CONFIGURAT I ONS
¥ ———0UTPUT
OUTPUT §
RESULTS E
' —SUNMNRY
et (3
YES
4— SCALE RESULTS }-—-——-——— SCALE-—YKF—~2K

FIG 2.1 FLOWCHART OF PROGRAM aND CONTROL OF SUBROUTIHNES
(FUNCTION SUBPROGRAMS ARE NOT INCLUDED)>
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SIHWE ., HWEF function computes a value for an unnormalized
hydrogenic function.

6 )HNORM ., This function subroutine computes the normalization
constant for the hydrogenic function.

T)SCF. SCF subroutine determines self-consistent wave
functions for a subset of the total number of wave function,
namely the last NIT functions., The remaining core is allowed
to remain fixed.

8 )DE. This subroutine solves the differential equation

for the wave functlion,

P(nl;r) = Ptnl;r)/rllz, namely

B {rzsnl nl+{l+1/2]—2r{2—\’tr)l} Pinlgr) # 20K

= F(r) 'ﬁi + Glr),

where the potential function Y(r) and the exchange function
X(r) are determined from current estimates. Two methods of
solution are tried. If both fail, the exchange function is
reduced by a factor of 7/8 and another attempt is made at
obtaining a solution.

9)SEARCH. This subroutine searches for the largest point rj
for which Flrjl is positive. Then NJ 2 70 is selected as the
point for joining the outward integration with a special tail
procedure.

10 )METHD1. METHDI1 solves the differential equation by
estimating a . adjusting the diagonal energy parameter
0l on1 'O satisfy the differential equation and boundary
coﬂditions, then adjusting a, to satisfy the normalization

requirement and repeating the process. This method is

suitable for core functions where exchange 1is relatively
[10]
unimportant.

11 )METHD2. Solves the differential and variational equations

15



of one or two orbitals simultaneously (k=1 or 2) and searches
for acceptable solutions which are orthonormal.

12 )NMRVS., Solves the differential equation,
Y'' = F(r) Y + G(r),

in two regions. In the first, the equation is integrated
oulweard n, steps by the Numerov method, then applies a tail
procedure for a solution over Lhe remainder of an appropriate
range. The two solutions each satisfy one boundary condition
and match at l\‘j, though the differential equation may not be
satisfied at this point., M is the number of points in the
range of the solution and DELTA the difference at rnj+1 of
the outward integration and the tail procedure.

13)POLT. The POLT subroutine computes a function Yi(r) such
2 Yi(r]
that *—h?*—ﬂis the potential function.

14 )XCH. Subroutine for computing the exchange function
§*{P) either with or without +the contribution from off
diagonal energy parameters,

15)ZK. This subroutine computes Zk(i,j;r).

16)YKF.  Subroutine for computing Y (i,j;r).

17 )GRANGE. The GRANGE subroutine orthogonalizes, estimates
and computes off diagonal energy parameters.

18)DIAG. The DIAG subroutine determines the energy matrix

element Eij = (¢11Hl¢j) for the given configurations and,
unless input data specifies otherwise, computes the
eigenvalue LETOTAL and the corresponding eigenvector cj.

19)EKIN. The EKIN function computes

<P | at = 1) % 22 = 6, | P. >
J 2 2 = :
dr r r
Al [B]
= ‘ P 2[ Y (r)P (r) + X,J dr,
J_r' 1 i i

16



where Y(r) and XN(r) are the potential and exchange functions

respectively.

5 % k. - i
20)FK. The FKR function computes F (i,j) integral,
” - X .
21 1GK. The GEK function computes G (i,j) integral.
22 )RK. The RK function evaluates R [L’,17;J1,J,) integral.

23 )0UTPUT., The output subroutine prints tables of the wave
funclion Pi{r] and if OUT = TRUE punches results in a form
suitable for future input either as estimates or part of a
frozen core. Orthogonality integrals are also printed as a
possible check on the calculation.

24 )SUMMRY. The SUMMARY subroutine summarizes all results in
tabular form.

25 )SM., SM is a function required for the determination of
spin-orbit parameter.

26 )SN. SN is a function required for the determination of
spin-orbit parameter.

2NN V is a function required for the determination of
spin-orbit parameter.

28 )DYK. Function subprogram used to compute Vk(i.J).

29 )QUAD. It integrates the function

1

Xi(r) Yi{r) dr ,

by Simpson’s rule.

J0)QUADR. This function integrates
k
J ) i Pi{r) Pj(r} dr,

by Simpson’'s rule.

31)QUADS., This function evaluates

J 1 YK ) Pi{r) PJ{PJ dr,
k
o

17



by Simpson's rule.

2.5 DATA INPUT AND ENERGY CALCULATIONS FOR SINGLE
CONFIGURATION

CARD ONE WITH ATOM, TERM, Z, NO, NWF, NIT, NCFG, NF, NG, ANR
and ORTHO,

in the format

(2A6,F6.,0,16,613,L3).

ATOM. Identifying label.,

TERM., Tdentifying label.

Zi Atomic number.

NO. An estimate of the maximum number of points in Lhe
range of the oulermost electron = 220,

NWF. Number of wave functions =< 20,

NIT. Number of functions to be made self-consistent with the
core to remain fixed.

NCFG. Number of configurations = 7.

NF. Number of Fk integrals in the expression for the

energy .

NG, Number of G integrals in the expression for the energy.
NR. Number of Rk integrals in the expression for the energy
= 10.

ORTHO. Logical variable if .FALSE. , only orbitals within a
configuration will be made orthogonal, otherwise all orbitals
will be made orthogonal.

CARD TWO WITH CONFIG1l, CONFIG2, WT and WTL,

IN THE FORMAT,

(2A8,F10.8,L1).

CONFIG. Identifying label for the configuration.

WT, The weight for the configuration if omitted, all

configurations have equal weight. The weights are normalized

18



by the program.

WTL., Logical wvariable if .TRUE., then the weight is to be
left unchanged from the previous case, otherwise the value of
Wt is to be used,

CARD THREE WITH EL(I), N(I), L(I), S(I), METH(I), ACC(I),
IND(L1) and (QC(I,J), J=1,NCFG),

IN THE FORMAT

(A3,2T3;F6.2,y13,F3:1;13,6F3:0)%

EL. Identifying label for the electron.

N. Principal quantum number.
L. Angular quantum number.
S. Screening parameter.

METH., Methods to be used for solving the differential
equation. Three methods used are
1. Method 1 solves a single boundary value problem for

an acceptable solution which need not be normalized.

(G

Method 2 solves a pair of equations connected by an
orthogonality constraint (if does not exist) for
acceptable solutions, orthonormal to first order.

3., Method 3 is a variation of method 1 which does not

check whether the solution is acceptable.

ACC, Minimum accelerating factor,
IND. Indicator specifying the type of initial estimate,

-1. To be read as an input data.

0. Screened hydrogenic function.

1. Same as result already in memory.
QC. Number of electrons i in configuration j.
CARD FOUR FOR EACH M, M = 1,NF
WITH A, W3 Ks I1l, J1,; I2 .and J2,
in the format,
(L1328 08;A1,T1 1%, 202, 1%45212) .
A. Coefficient of the F* integral.

W. The character F.

19



K Value of k.

Il yJ1 .

52, 72
CARD FIVE FOR EACH M = 1,NG
B, W, B I1, J1, X2 and 32,

} [th wave function on the jth configuration.

in the format
(£f12.8,1%,I1,1X,;312;1X:312).,

B, Coefficient of the Gk integral.
W. The character G.

K. Value of k.

il.,\]]n
I12,J2.

CARD SIX FOR EACH M, M = 1,NR,
WiTH D,; %X, ¥i, J1, T2, J2, I3 and J3,

}Ith wave function on the jth configuration,

in the format,
(£12.8,1X,;T1,1%,3T2,1%, 372 ).

D. The coefficient of Rk integral.
K. Value of k.

11, T8F1
13,349,328,

CARD SEVEN

} Ith wave function on the jth configuration.

For each 1,I = 1,NWF for which IND(I) = 1, the output data
for a wave function P punched during some previous run by the
output routine. This data is used to form an estimate for
wave function I. If the value of Z on the punched input is
not the same as that for the atom under consideration, a
simple scaling procedure is used.

CARD EIGHT WITH OUT, PUNCH, NSCF, 1C, ACFG and ID,

in the format

(2L ,; 213, F3+1 T3

OuT. A logical variable if ,TRUE., results will be printed
and wave functions may be punched, otherwise neither printing
nor punching will occur.

PUNCH . A logical wvariable if OUT = ,T. and PUNCH = .T. the

20



functions which were made self-consistent will be punched.
NSCF. Maximum number of SCF iterations allowed in
configuration interaction iteration., If omitted will be set 5
by the program.

T Number of new eslimates of wave functions to be
determined beiween the recomputation of off-diagonal energy
parameters and the doubling of SCF tolerance.

ACFG ., An accelerating parameter to be applied Lo the
weights after an energy diagonalization.

L1 5 O If IDb = 0, the energy matrix computed by the DIAG
will be diagonalized and an eigenvalue and eigenvector
determined, otherwise diagonalization is omitted.

CARD NINE WITH END, NEXT, ATOM, ZZ and (ACC(I1), T = 1,NWF),
in the format

(A1,I2,A6,F6.0,20F3.1).

END, If END = #*, this signifies the end of a case, i.e,

the next card is a card of type 1.

NEXT. If NEXT = 0, the next card is assumed to be a card

of type 1. 1f NEXT = 1, the program will scale the results

for PBinl;x), Ty C"l Wil and a, for atomic number ZZ,
]

assuming a screened hydrogenic approximation and repeat the

calculations for the new atom.

We have calculated the average energy for the
configurations
i) Na in both ground and excited(3d) states.

ii) K ground state and
iii) Cd ground state.

All of these correspond to single configuration
Hartree-fock method. Further there is only one electron in
the outermost shell, therefore Y is represented by a single
determinantal wave funcltion, also all of these have only one

LS term. If more than one terms are possible then atomic



properties are calculated for the term of highest
multiplicity and within that multiplicity for the term with

the highest allowed L value. Table 2.1 shows for each nl

group
E the diagonal energy parameter Enlnl
3 141
AZ the initial slope, aﬂ[n]} = P(nl;r)/r ' , =0
SIGMA the screening parameter,

L
a = Z - 2

nl
< rnl >

H 3 y ’ »
where <rn]> is the mean radius of a hydrogenic radial

function.

. ) —_ ) / -3 _
< 1/RJ > the expectation value \rn|>, 1 > 0
1/ ) ; -1
R the expectation value ¥ g
< R > the expectation value <rn >

< R® > the expectation value < >

ZETA(nl) the spin-orbit parameter :n as defined by
[14]
Blume and Watson

: [14]
Mk(nl,nl} the orbit-orbit integral
Orthogonality integrals, F and G integrals, kinetic
energy, potential energy and ratio of both energies,
calculated by the program. If Hartree-Fock problem had been
solved exactly then the ratio of the potential energy of the

atom to its kinetic energy would be exactly -2.0. Table 2.1



suggests thal Lhis ratio is usually -2.0 to at least seven
decimal places. Fig 2.2. shows the wave functions of

i) Outermost 3s electron in Na ground stale.

3] Excited 3d-elecbtron and 2p electron of Na, shaded area
shows the spatial overlap between the d-electron and the core
whose width is the the measure of auto ionization.

iii) Outermost 4s electron in K ground state.

iv) Outermost 5s electron in Cd ground stale.

All quantities except spin-orbit parameter and orbit-orbil

integral are in atomic units.(a.u).



HATREE-FOCK CALCULATIONS FOR Na(Z=11) TERM 3°S

CONFIGURATION WIETGHT
1 SODIUM GROUND S 1.00

WAVE FUNCTION INITIAL ESTIMATES
NO. OF ELECTRONS IN CONFIGURATION

nl SIGMA METH ACC OPT 1 2 3 4 5 6 7
1 18 0.00 1 0 2
2 28 2.00 1 0 2
3 2P 4,00 1 0 6
4 35 10.00 1 . 0 1
ENERGY = E(AVERAGE) +
INITIAL ESTIMATES
nl SIGMA E(nl) AZ(nl) WAVE FUNCTION
158 0.00 9316.114 1970.075 SCREENED HYDROGENIC
28 2.00 21568.713 682.491 SCREENED HYDROGENIC
2P 4,00 2119,768 18719.733 SCREENED HYDROGENIC
35S 10.00 912.741 341.327 SCREENED HYDROGENIC

ORTHOGONALITY INTEGRALS FOR ATOM Z=11 TERM 3°s

nl nl INTEGRAL
28 15 -0.00000001
38 LS 0.00000000
38 28 -0.00000023
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ATOM Z=11 TERM 3°S

MEAN VALUE OF

nl E(nl) AZ{nl) SIGMA 1/R**3 1/R R R*¥%2 I{NL) KE
18 80.9569552 70.2903984 0.500 0.00000 10.60738 0.1428583 0.0274807 -60.40597560| 56.2752408
28 5.5940367 17.1634515 3.298 0.00000 1.86734 0.7790687 0.7314960 -13.6980725 6.8426303
2P 3.0362686 38.8468936 4,738 17.00478 1.69660 0.7984864 0.8221367 -12.7699292 5.8926271
38 3642056 2.5799190 7.792 0.00000 0.30140 4.2087689 20.7049551 -3.0480879 0.2672952

L

TOTAL ENERGY = -161.8589115 KINETIC ENERGY = 161.8587997 POTENTIAL ENERGY = -323.7177112 RATIO = 2.0060000691
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VALUES OF F AND G INTEGRALS

FO(18,18)
FO(1S,28)
GO(1S,28)
FO(28S,25)
FO(1S,2P)
G1(1S,2P)
FO(2S,2P)
G1(2S,2P)
FO(2P,2P)
FO(1S,38)
G0(18,3S)
FO(2S,3S)
GO(2S,38)
FO(2P,3S)
G1(2P,38)

donononon

I w o wowomnnonn

6.5882556
1.65678631
0.1224562
1.1674922
1.6731645
0.1884129
1.1598157
0.7016706
1.1612445
0.2966950
0.0026674
0.2866362
0,0071614
0.2864924
0.0098032
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HARTEE-FOCK CALCULATIONS FOR NA EXCITED STATE 3°D

CONFIGURATION WEIGHT
SODIUM EXCITED S 1.00

WAVE FUNCTION INITIAL ESTIMATES
NO. OF ELECTRONS IN CONFIGURATION

nl SIGMA METH ACC OPT 1 2 3 4 5 6 T
1 15 0.00 1 0.0 0 2.
2 28 2.00 1 0. 2
3 2 4.00 1 0. 6.
4 3D 10.00 1 0. 1.
ENERGY = E(AVERAGE) +
INITIAL ESTIMATES
nl SIGMA E(nl) AZ(nl) WAVE FUNCTION
18 0.00 9312.114 1970.075 SCREENED HYDROGENIC
28 2.00 2154 .5841 682.491 SCREENED HYDROGENIC
2P 4.00 2115.7956 18719.733 SCREENED HYDROGENIC
3D 10.00 890.933 70646 .867 SCREENED HYDROGENIC

ORTHOGONALITY INTEGRALS FOR ATOM Z= 11 TERM 32D

(nl) (nl) INTEGRAL

28 18 0.00000001
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ATOM Z=11 TERM 3°D

MEAN VALUE OF

nl E(nl) AZ(nl) SIGMA 1/R**3 1/R R R*¥*2 I(NL) KE

1s 81.2961946 70.2900907 0.500 0.00000 10.60731 0.1428602 0.0274816 -60.4059271 56.2744833

28 5.9239635 17.1583078 3.299 0.00000 1.86696 0.7791206 0.7314411 -13.86970788 6.8395305

2P 3.3709831 38.9051122 4.721 17.05081 1.69918 0.7962692 0.8159590 -12.7828823 5.9080711

3D 0.1113337 0.0682980 8.986 0.00260 0.11178 10.4589¢986 125.1330465 =L.1732955 0.0562525
TOTAL ENERGY = -161.7326293 KINETIC ENERGY = 161.7327068 POTENTIAL ENERGY = -323.4653363 RATIO = 1.989999520
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VALUES OF F AND G INTEGRALS

FO ( 1S, 1S ) = 6.5881875
FO ( 1S, 2S ) = 1.6575885
GO ( 1S, 2S ) = 0.1224044
FO ( 2S, 25 ) = 1.1673454
FO ( 1S, 2P ) = 1.6756771
Gl ( 1S, 2P ) = 0.1889438
FO ( 28, 2P ) = 1.1609583
Gl ( 2S, 2P ) = 0.7025280
FO ( 2P, 2P ) = 1.1637353 F2 ( 2P, 2P ) = 0.5228715
FO ( 1S, 3D ) = 0.1117771
G2 ( 1S, 3D ) = 0.0000001
FO ( 2S, 3D ) = 0.1117725
G2 ( 2S, 3D ) = 0.0000634
FO ( 2P, 3D ) = 0.1117699
Gl ( 2P, 3D ) = 0.0001425 G3 ( 2P, 3D ) = 0.0000784
SPIN ORBIT PARAMETERS
SPIN-ORBIT PARAMETER  (cm )
| ZETA( 3D) = 0.013
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HARTREE-FOCK CALCULATIONS FOR K(Z=19) TERM 4°S

CONFIGURATION WETGHT
1 I GROUND 1.000

w

WAVE FUNCTION INITIAL ESTIMATES
NO. OF ELECTRONS IN CONFIGURATION

nl SIGMA METH ACC OPT 1 2 3 4 5 6 7
1 1S 0.00 1 0.0 0 2.
2 28 2.00 1 0.0 0 2.
3 2P 4.00 1 0.0 0 6.
4 3s 10.00 1 0.0 0 2.
5 3p 12.00 1 0.0 0 6.
6 45 18.00 1 0.0 0 1.
ENERGY = E(AVERAGE) +
INITIAL ESTIMATES
nl STGMA £(nl) AZ(nl) WAVE FUNCTION
15 0.00 9188.824 1970.075 SCREENED HYDROGENIC
25 2.00 2046.067 682.491 SCREENED HYDROGENIC
2P 4.00 2004.657 18719.733 SCREENED HYDROGENIC
38 0.00 831.135 341,327 SCREENED HYDROGENILC
3P 12.00 815.102 9758.344 SCREENED HYDROGENIC
48 18.00 427,800 202,500 SCREENED HYDROGENIC

ORTHOGONALITY INTEGRALS FOR ATOM 2=19 TERM 425

(nl) (nl) INTEGRAL
28 18 0.00000000
3s 1S -0.00000001
38 28 -0.00000003
3P 2P -0.00000009
48 18 0.00000002
48 28 0.00000002
48 35 0.00000005

32




ATOM Z=19 TERM 4°S

MEAN VALUE OF

nl E(nl) AZ(nl) SIGMA 1/R¥%3 1/R R R¥%2 I(NL) KE

1S 267.0660647 161.6273378 0.588 0.00000 18.54736 0.0814665 0.0089134 -180.3708980 172.0289922

28 28.9798883 46.4261912 3.472 0.00000 3.79771 0.3863893 0.1765933 -43.492710¢2 28.6636993

2P 23.0385317 213.7963635 4.691 151.80737 3.69703 0.3494267 0.1508008 -42.7733121 27.4702037

3s 3.4975506 15.2987338 8.429 0.00000 1.07486 1.2770584 1.8834682 -15.6081848 4.8141048

3P 1.9088398 65.1091937 10.300 12.95587 0.93901 1.4368481 2.4406634 -13.9970120 3.8442265

45 0.2949507 2.9541522 14.423 0.00000 0.23659 5.2437293 31.5447375 -4.2306790 0.2645086
TOTAL ENERGY = -599.1647865 KINETIC ENERGY = 599.1646825 POTENTIAL ENERGY -1198.,3294690 RATIO = 2,000000174
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VALUES OF

F AND G INTEGRALS

FO
O
GO
0
FO
Gl
FO
G1
I'0
FO
GO
0]
GO
FO
Gl
FO
FO
G1
FO
Gl
'O
GO
FO
Gl
FO
FO
GO
FO
GO
IO
G1
FO
GO
FO
G1

— i — — — — — — p— — p— — — — — — — —p— — — — — — — — — — — — — p— — p— —

18, 38

1S, 18
1S, 28
1S, 28
9%, 28
1S, 2P
1S, 2P
28, 2P
28, 2P
2P, 2P

1S, 3S
2S, 3S
2S, 3S
2P, 3S
2P, 3S
3S, 3S
18, 3P
18, 3p
28, 3P
28, 3P
2P, 3P
2P, 3P
3S, 3P
3s, 3P
3p, 3P
18, 48
1S, 4S8
28, 48
28, 48
2P, 48
2P, 48
3S, 48
3S, 48
3p, 4S
3P, 48

LN T S T 1 { U A N | O A ¥ T 1 A I T ¥ A | 1 I | O 1 ¥ T Y O 1 1 A At I 1 A 1

B L o e

11.5410462
3.2960480
0.2864224
2.3427550
3.6246292
0.5538308
2.4520292
1.4413243
2.6180056
1.0210016
0.0291707
0.9290643
0.0539620
0.9386572
0.0671221
0.7064117
0.9325958
0.0452763
0.848565636
0.0422743
0.8594653
0.0546996
0.6653840
0.4420399
0.6304216
0.2345831
0.0010805
0.2311833
0.0018623
0.23153567
0.0023665
0.,2237949
0.0067770
0.2225479
0.0093341

F2 ( 2P, 2P ) = 1.2251859
G2 ( 2P, 3P ) = 0.0559186
F2 ( 3p, 3P ) = 0.3169379
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HARTREE-FOCK CALCULATIONS FOR CD(Z=48) TERM 5°S

CONFIGURATION WELIGHT
1 CD GROUND STATI 1.00
WAVE FUNCTION INITIAL ESTIMATES

NO. OF ELECTRONS IN CONFIGURATION

(nl) SIGMA METH ACC OPT 1 2 3 4 5 6 7
1 1S 0.00 1 0.0 0 2
2 28 2.00 1 0.0 0 2.
3 2P 4,00 1 0.0 0 6.
4 35 10.00 1 0.0 0 2
5 3P 12.00 1 0.0 0 6.
6 3D 18.00 L 0.0 0 10
7 485 28.00 1 0.0 0 2
8 1P 30.00 1 0.0 0 6
9 4D 36.00 1 0.0 0 10.
10 58S 46.00 1 0.0 0 2.
ENERGY = E(AVERAGE) +
INITIAL ESTIMATES
nl SIGMA E(nl) AZ(nl) WAVE FUNCTION
1S 0.00 8898.608 1970.075 SCREENED HYDROGENIC
28 2.00 1768.394 682.491 SCREENED HYDROGENIC
ZP 4.00 1723.920 18719.733 SCREENED HYDROGENIC
35S 10.00 605,717 341.327 SCREENED HYDROGENIC
ap 12.00 6586.463 9758.344 SCREENED HYDROGENIC
3D 18.00 547,449 59154.036 SCREENED HYDROGENIC
45 28.00 234.491 179.056 SCREENED HYDROGENIC
4P 30.00 236.579 4729.198 SCREENED HYDROGENIC
4D 36.00 225.057 29475.444 SCREENED HYDROGENIC
58 46.00 106.207 98,975 SCREENED HYDROGENIC
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ORTHOGONALITY INTEGRALS FOR ATOM Z=48

(nl) (nl) INTEGRAL
28 15 0.00000000
35 15 0.00000000
35 258 0.00000002
3p 2P 0.00000000
45 1S5 0.00000000
485 25 -0.00000007
48 38 -0.00000018
1P 2P -0.00000007
4P 3p -0.00000044
1D 3D -0.00000078
58 15 0.00000000
58 28 -0.00000002
58S 35 -0.00000026
58 48 -0,00000473
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ATOM Z=48 TERM 5°S

MEAN VALUE OF

nl E(nl}) AZ(nl) SIGMA 1/R**3 1/R R R**2 I(NL) KE

18 [1910.6298309 657.8011006 0.685 0.00000 |47.47763 [0.0317027 0.0013447 |-1151.8241844 |1127.1018128
28 284.0129646 212.0905049 4,245 0.00000 ;10.84171 |0.1371282 0.0221002 -285.5606883 234.8412253
2P 264,0933388 |2751.9008145 5.384 |[3546.41691 |10.81431 |0.1173271 0.0167533 -284.9446479 234.1422126
38 55.4167404 92.4191629 [11.406 0.00000 3.89320 |0.3688105 0.1553888 -119.6386278 67.2350680
3P 47.1939670 |1244.0431860 |13.385 637.42441 3.80254 |0.36111¢3 0.1511142 -117.6765384 64.8455399
3D 32.1434645 [3057.0539713 |16.515 99.49483 3.64201 [0.3334897 0.1318953 -114.5843009 60.2324100
45 §.9008424 39.0406056 |21.746 0.00000 1.48494 |0.9141370 0.9451458 -55.0258479 16.2511051
4P 6.1068188 498.5358293 |24.540 100.26239 1.36888 |0.9803912 1.0996742 =51,5533925 14.1575081
4D 1.5272328 [1037.0466172 |31.228 9.90387 1.06423 |1.2521038 1.8847854 -42.0134858 9.0695716
58 0.5297378 9.2800205 [36.417 0.00000 0.38039 |3.2375194 |12.1710598 -17.5501131 1.1886487

TOTAL ENERGY = -5465.1331415 KINETIC ENERGY = 5465.1273003 POTENTIAL ENERGY = -10930.2604419 RATIO = 2.000001069
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VALUES OF

F ANF G INTEGRALS

IF0
FO
GO
170
FO
Gl
"0
Gl
FO
O
Go
0
GO
IF0
Gl
FO
IFO
Gl
FO
Gl
I'0
GO
FO
Gl
FO
FO
G2
'O
G2
FO
Gl
FO
G2
o
Gl
FO

FO
GO
FO
GO
FO
Gl

GO
Iro
Gl
O
G2
IF0
IF0
Gl

— e — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —

e —n — o — — — — — — — — —

1S, 18 )
18, 28 )
18, 28 )
28, 28 )
s, 2P )
18, 2P )
28, 2P )
28, 2P )
2P, 2P )
1S, 38 )
1S, 38 )
28, 38 )
28, 35 )
2P, 3S )
2P, 3S )
38, 38 )
1S, 3P )
1S, 3P )
2S, 3P )
28, 3P )
2p, 3p )
2p, 3P )
3s, 3P )
3s, 3P )
3P, 3P )
1S, 3D )
1S, 3D )
28, 3D )
28 -8D-)
2P, 3D )
2P, 3D )
3s, 3D )
35, 3D )
3p, 3D )
3P, 3D )
3D, 3D )
1S, 4S8 )
1s, 4S8 )
28, 48 )
28, 48 )
2P, 48 )
2P, 4S )
3S, 48 )
38, 48 )
3P, 48 )
3P, 4S8 )
3D, 48 )
3D, 48 )
48, 48 )
1S, 4p )
1S, 4P )

=290.6119930

{1 [ | S T A A | | N {1 N | | | T | O e 1 | LS 1 L

{1 A A | N | T O § O 1 1 R

9.2420295
0.8920594
6.5912803
10.5474945
1.9566503
7.0447685
3.9642116
T7.7679134
3.5943763
0.1549590
3.1515001
0.2362271
3.2186280
.2948628
4355583
7518086
. 32743563
2402472
.2347491
.3336471
2958438
4611508
6120658
.4928603
3.6410112
0.0149697
3.5063895
0.8004075
3.54873567
0.8287068
2.5439198
1.0503664
2.5797686
1.41565682
2.7237799

(%]

NMHEHNCWC WO WMo

1.4317798
0.0271901
1.3540934
0.0360927
1.3656926
0.0470113
1.2417579
0.0731233
1.2456360
0.0970607
1.2575990
0.0933364
0.9834943
1.3609320
0.0507997

2 2B.; 2P = 3.7021318
G2 zp, 3P = 0.3203701
F2 3p; 3P = 1.2599577
G3 2P, 3b = 0.4754300
G3 3P, 3D = 0.9148979
2 3b, 3D = 1.3637636
Fd 3D, 3D = 0.8715615
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FO
Gl
FO
Go

FO
Gl
FO
GO
FO
al
I'0
Gl
FO
Ir0
G2
IF0
G2
FO
Gl
0
G2
0
G1
IO
GO

G2
FO
G1

FO

GO
FO
GO
FO
Gl

GO
FO
Gl

G2
KO
GO
I'0
Gl
IO
G2
IO

— e — e, " a— " —" L — L — —— —| i i i e oy iy | L ¥ e e —_—— — —

o p— — o p— — p— — — — — — — — — ——

45,

4p
4p
4P
1P

4p
4P
4P
4P
4P
4P
4P
4P
4P
4D
4D
4D
4D
4D
4D
4D
4D
4D
4D
4D
4D

4D
4D
4D
4D

4D

58
58
5S
58
58
58
58
58
58
55
55
58
58
58
58
58
58
58
58S

— T it St

— —— —— — St e e et et S et

— et e e e e e e e Tt e et et et et et

nnunn

{1 T | A S 1 1 4 ¥ 1 N S 1 N 1 Y 1 ¥ A { B 1}

n o n

n

L 1 1 1 | I 1 A O | S | A O [

1.,2826304
0.0334143
1.2967139
0.0403225

1.1757869
0.0751509
1.1800159
0.0717858
1.1908785
0.0840928
0.9492346
0.6501771
0.9184933
1.0641168
0.0016658
1.0501422
0.0709562
1.05644768
0.0748431
0.,9729201
0.0368127
0.9755160
0.0386036
0.9860556
0.0568758

0.8285444
0.3818391
0.8074265
0.5092127

0.7267250

0.3873893
0.0015319
0.3830120
0.00199156
0.3836641
0.0026108
0.3767528
0,0036220
0.3769680
0.0049325
0.,3776299
0,0047806
0.3638482
0.0102096
0.3623099
0.0153445
0.35853171
0.0387228
0.2798667

G2 ( 2P, 4P ) = 0.0461829
G2 ( 3P, 4P ) = 0.0859786
G3 ( 3D, 4P ) = 0.0822176
F2 ( 4P, 4P ) = 0.4839859 I
G3 ( 2P, 4D ) = 0.0437416
G3 ( 3P, 4D ) = 0.0399157
G2 ( 3D, 4D ) = 0.0664216
G4 3D, 4D = 0.0607162
G3 ( 4P, 4D ) = 0.3116717
F2 ( 4D, 4D ) = 0.3621135
F4 ( 4D, 4D ) = 0.2364975
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CHAPTER 3

CURVE FITTING PROGRAM

3.1 INTRODUCTION

In chapter 1 it was described that the problem with
using approximations based on monomials is that the error
over an interval centered at 0 is exlremely non-uniform,
small near the cenler but growing very rapidly near the end
points. It would seem more reasonable to use an approximating
functions instead of powers of x, polynomials whose behavior
over an interval centered al 0 would be in some sense
uniform. We would hope that functions formed from
combinations of these polynomials would exhibit a more
uniform error behavior. Such functions were introduced in

chapter 1| and are Lknown as Chebyshev polynomials. Some
{61
properties of Chebyshev polynomials are given below.
Fourier expression for orthogonality of Chebyshev

polynomials is given hy

i 0 m # n
] cosme cosn de = n/2 m = n (3, 1.9
0
b4 m = <=0
+1
= 2 (2 2 _(2) dZ ‘
‘-1 m n e, T e
2
1l == i
Using the trigonometric expressions
(1) cos(n+l)2 + cos{n-1)% = 2cos“cosne (3.2)
{2) cos(m+n)® + cos(m-n)& = 2cosmcosn?, (3 87)

we arrive at tLhe following relations



{Z) + 1 (Z) = 2 Z T LAY 5 (3.4)
n+ 1 n-1 n
2 A S (Z) = 2 T {(Z) T LZ); (3.5)
m+n m=1n (11} n
kg, (3.4) is a three term recurrence relation. For m = n,
Eq. (3.5) vields
2
T (Z) = 2T (Z) - 1.
an n

First 13 Chebyshev polynomials are given in table 3.1.
The n roots of TH{Z] are real, occur in the interval
[-1,1] and are given by
Cos[{Qi - 1) ]

A = 3 j.: l,lln-,[l-
2 n '

A very useful property of these polynomials is that of
all Lhe polynomial of degree n with the coefficient of the

nth power term equal to 1, the polynomial,

T (Z)
n

n-1 °?

¢UIZ} =
2

has tLhe smallest upper bound for its absolute value on the

interval [-1,1].
3.2 PROGRAM DESCRIPTION

This program reads a set of data tXi,YI]. It linearly

transforms the x-coordinate asX<b to Z-coordinate by using

b

n [a,b], (3.6)
n [=1:3;1].

_ 2X-b-a, X i
L Z i

b-a

It finds the Chebyshev coefficients using table 3.1 and

expands the polynomial in terms of chebyshev coefficients

f[ZJ=CUT(O,Zl+C1T(1,2)+C2T{2,Z)+......+CnT{n,Z],

where n may take on values up to 12.
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Table 3.1

2
+ 507 -

S
+ 2202 -11Z.

6
-35847Z

2
2
27%. 4
3
$E & 9
8z « 8z" % 1
5 3
162° - 20Z° +52.
! 4 2
327 = 4BZ° & 18Z° - 4.
7 5 3
642 ~ 112Z + B6Z = 73.
g 6 4 2
1282 - 256Z° + 1602 - 322° &
g 7 5 3
2867 =~ ST6Z '+ 432Z° = 320% 4 8I.
10 2] 6 4
512z~ -1280Z° + 1120Z° - 4007
. 11 9 7 5
10242 = -2816Z + 2816z - 12327
1 10 8
= 20487 -6144Z +  6912%
2

14

+

4
64072



The program finds the coefficients Cn,Cl“....Cn using
least square method which 1is as follows. 1If there are m

m

number of observations and I ( is the wvalue of the
polynomial TI evaluated at ith peoint, our task is to choose

CU'CI' e .Cn that minimize the sum of squares,

m
n
S = z (e02,9- % ¢ 1, )°
i51 j=o 4 13

r’)
S will be minimum when 3¢ = 0, where k=0,1,..n.,This permits

to write
m

L1}
G )_j Ty B ZT“‘(f(zi))

1 i=1
Define T as the m x (n + 1) matrix containing Tij in its
ith row and jth column

Tio
T :

P T

L O 1n

1

m m 1

m0 m1” """ T mn
and also define the following column vectors
£(Z) = (£(Z)eeunnn, £z 1)y € =(CiesvveusaC )

The system of normal equations can be written in the

equivalent form

T'T € = T e(2)

which has the solution,
fas Rt
@ = (T W) T £(2)

where the general element of T is given by z B



For orthogonal polynomials, we have

le‘ik'rll r e for k #1
i=1
i
T f(Z .
_ I e S X AR
[ =
sl
Zrij
i=1

After determiniung the coefficients CD Ci,CZ, ----- ,Cn, 1
1
converts the coefficients of T to those of coefficients of Z

i.e.

1‘{Zi) = @, £ B, Z. F v w e +C 7

] 1 i n i

Finally above equation should be transformed to the

original variable Z on the interval [a,b] using (3.7) to yield,

F(X) = Cy # C,X +evvveeesstC, X"

Then for each X, f(X) i,e wavelength is calculated. The

program then prints the X-values, the wavelengths given and

calculated , Lthe residuals i,e calculated minus given

wavelength and the error in Yiresulting from the errors in
the coefficient which is given by
1/2

dy, = [ ‘:Z tdCl’l‘iiz]

i=0
where dCi is the error in the coefficient of C. The
error does not refer to the error of wavelength of the line
but rather to the error in the accuracy of the polynomial fit
al that point. The residuals of the fit are then plotted,

Following this plot in the program, output is a statistical
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summary. Four measures of

the scatter of the points about the

least square tit and the quality of the fit are given. They
are defined as follows ,where
€ = residual of Lhe ith point.

1

weight of the ith point.

m = number of standards with non-zero weight.
n = number of coefficients used in the fit.
The standard deviation (for unit weight) is given by
1/2
mn ey
| Eel o
= 1 1
i=1
m - n

(131
The weighted standard deviation is

) 172
m " ]
m Z €7 w :
i=1
m
m - n z W,
i=1
- -

The probable error

= 0.6744898 x the weighted standard

deviation.

Mean error of weighted mean is given by,

1/2
B m ]
z ET W i
f=1
m
m-n W,
i=1

It

rather

is a measure of the overall uncertainty of the fit,

than the scatter of points about the mean. However,



for most purposes, the IERROR column will be a more useful
guide to the uncertainty of the fit at each standard.

If all measurements are expected to be equally accurate
i,e all are of the same weight, subjecl only to random errors
of measurements, then a histogram of the residuals [or many
observations should be a Gaussian distribution. The standard
deviation of the sample is a measure of the width of this
distribution. However, when relative weights are introduced,
the problem is more complicated. If many observations of each
weight are included, the distribution of all observations of
any weight should be Gaussian, but relative widths of the
Gaussian distributions should be inversely proportional Lo
the square root of the weight of each Gaussian. The overall
distribution of residuals is therefore a sum of Gaussians of
different widths but the distribution of Eiwi should give the
same distribution for all weights. The standard deviation for
unit weight can be used to find the widths of the
distributions of points of any weight, W, simply by
multiplying the standard deviation for wunit weight by
1/7(w)t’2,

reasonable scale of widths, the program will divide the

As a crude check that the experimenter has a

standards into two or three classes (high and low weights for
two classes; high, medium and low weights for three classes).
It then computes and prints the standard deviation (for unit
weight ) for each class. If enough points exist in each class
for this number to be significant, then the standard
deviation (for unit weight) should be approximately equal for
all classes. If it varies considerably, the weight scale
should be revised. Following these statistics if the fit is
satisfactory, the coefficients of Chebyshev polynomials are
listed, with their standard errors. If the magnitudes of the
coefficients are all considerably larger than their errors,

it may be desirable to increase the order of the polynomial.
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Main.
Waveno.
Graph.
Disp.
Extrap.
Prepar.
Cheby.

Tcalec.

Tprint.
Abcalce.

Horner.

Matinv.

Ercalc.

Convrt.

SUMMARY OF SUBROUTINES

Main program reads input data and controls the
overall calculations.

Converts wavelength to wave number,.

Does statistics and graphs the it to standard,
Tabulates and graphs the dispersion at each
standard.

Identifies where the fit must be extrapolated for
the unknowns.

Helps set up formats.

Controls iteration te find a fit to the standards.
Transform X coordinate intoe Z and computes T for
Chebyshev polynomials.

Prints chebyshev coefficients.

Calculates A’s and B's for matrix to be inverted
for least-squares solution.,

Calculates Wave = SUM(X*¥k(I-1)*%C(I)).

Inverts the matrix to obtain least-squares solution
and to allow computation of error from errors in
coefficients of the solution.

Calculates error in wavelength of unknowns due to
errors in the fit.

Converts the coefficients of T to coefficients of
powers of Z and coefficients of powers of Z to

those of powers of X.

Functl & Funct2. Their purpose is to find a least-square

3"1

CARD ONE

fit of the function other than polynomial.

DATA INPUT

WITH IDENT, TOLMIN, NMIN, NMAX, ITRMAX,
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(JopP),I1=1,10), MF, ACC, LREAD, LXFACT, DEC, JOPRPT and LFAC,
in the format

LA 2 TS, 4, 312, TOXL T8, FB2 211 ,6A1 ,20T1L) .

I1DENT .. Used to label Lhe spectrum.

TOLMLIN ., the largest acceplable difference between the
calculated and observed Y-values, that is, the tolerance for
fitting a data point Lo the polynomial. If the residual is
greater than TOLMIN, the point is rejected.

NMIN & NMAX. These are the minimum and maximum values for
the acceptable number of constants (N) in the fitting
polynomial. Ordinarily, NMIN will be tried first, and if a
fit cannot be obtained before rejecting ITRMAX points, N will
be increased by one This will continue until N = NMAX has
been tried. If still no fit has been obtained, the program
prints an explanatory message and then goes to the next
plate. 1f, however, it is decided to allow the machine to
find the best value for N, the first attempt will be made
with NMAX.

ITRMAX. This is the number of passes that will be made in
trying to fit the points within the tolerance. It 1is ane
greater than the allowed number of points to be rejected
while trying to fit the points.

JOP(I), I= 1,10 These ten options are used that permits
arbitrary weighting of the data points, calculation of
dispersion across the plate (dY/dX), rejection of points that
deviate Loo widely from Lthe probable error of the fit,
conversion of air or wvacuum wavelengths to wave numbers,
automaLic best adjustment of the degree of the polynomial,
conversion of wave numbers to Lorentz units for the case of
Zeeman spectrograms, placement of decimal points, curve
fitting of functions other than polynomials, etc.

MF. The magnetic field intensity, in gauss, for Zeeman

plates.



AcCce, I it is preferred nol to supply in advance an
absolutely fixed value for TOL, the program will calculate a
value based on the standard deviation of the fit The
resultant TOLMIN will be taken as ACC Limes the standard
deviation This is done by using JOP(2) option.

DEC. The number of decimal places to which results are
outputted.

JOPRPT. 1If its value is ’'1' tLhen fitting of function other
than polynomial is done.

LFAC. This is an integer quantity that determines the degree
of expansion of the vertical scale of tLhe plot. Each line on
a page of printed output will have a scaled width in X-units
equal to AVSEP/LFAC, where AVSEP is the average separation
between successive X-values.

CARD TWO WITH XTI, Y(I)

in the format,

(F1d,6,56X,F12.6).

XTI, The value of standards, maximum number of which can
be 385.
YT, The experimentally calculated value of wavelength

yits maximum number is also 385,

CARD THREE WITH W(J)

in the format

(10F5.,0).

WitT Y. The value of weighl assign to each standard.

CARD FOUR WITH ITERW

in the format

[ 1 10

Its value i NG will cause the program after a
polynomial fit Lo the standards, to have a new fit for the
same value of standards but different weighting.

CARD FIVE WITH UJ

in the formal



i i 120
uJ. This card is used after the polynomial fit has bheen

obtained to find Y-values for a given set of X-values.
3.uB MAIN FEATURES OF PROGRAM.

1) In order to obtain a more accurate solution of the normal
equations the X-values are first reduced so as to lie in the
range -1<X<1, and Chebyshev polynomials are used as the
coordinate functions. After the fit has been obtained, the
results are modified and for convenience re-expressed in
terms of powers of X. Double precision arithmetic is used
throughout.

2) The tolerance, TOLMIN, is the largest acceptable
difference between the calculated and observed values of an
X-Y data point or standard wavelength. [f any difference
exceed Lhis tolerance, the standard that 1is most in error
will be rejected and a new attempt at fitting will be made.
One may specify how many passes ([TRMAX) should be made
before giving up Lrying to fit Lhe lines. Up to 20 tLries may
be made, That is up to 19 lines may be discarded, one at a
time, while ¢trying ¢to fit the standards to within the
designated tolerance, TOLMIN may either be specified in
advance, or one may allow the computer to pick its own
tolerance based on Lhe standard deviation of the fit.

3) If ever the number of constants (N) specified for the
polynomial equals or exceeds the number of standards
remaining in a particular iteration, a message to that effect
is written. In this case, of course, the fit should be exact
and may or may not have meaning, depending upon the problem.
[In the case of an exact fit, the tolerance is internally set
to 0.001 to prevent computer round-off error from showing up

on Lhe plot.



4) The residuals of the fit are plotted on a scale extending
from minus 7TOL to plus TOL. If any residual exceeds the
Ltolerance, the word OUT will be printed at Lhe left or right
edge of the plot, depending upon the sign of the residual.

5) A standard line that is discarded is not used in the
succeeding Lrials at fitting, but it is still listed and
identified by a double asterisk on the printout. 1ts new
calculated wavelength is printed out to assist in its correct
identification.

6) Ovrdinarily a weight of unity will be assigned Lo each
standard. An arbitrary set of weights may, however, be
supplied at object time.

7) IL is essential that the set of standards be arranged in

algebraically ascending or descending order.



2.6 ENERGY LEVEL CALCULATIONS FOR KRI
SPECTRUM OF KR
TOLERANCE NMIN NMAX ITRMAX OPTIONS
0.4000 1 3 3 5312432001
SPECTRUM OF KR
THIS IS TRY NUMBER 1 WITH N = 3 SET NUMBER 1 THE TOLERANCE FOR THIS FIT IS 0.0067
X LAB. CALC. ERROR RESID : WT -TOL ZERO +TC
300.85 496.07 496.07 0.00546 -0.00010 1.00 ¥ *
226.20 471.23 471.22 0.00458 0.00064 1.00 . !o%
200.54 462.71 462.70 0.00220 0.00164 1.00 . ! *
188.45 458.69 458.69 0.00211 -0.00673 1.00 o ¥ !
180.67 456.12 456.11 0.00357 0.00372 1.00 . ! *
176.48 454.73 454.72 0.00463 0.00310 1.00 . ! *
173.48 453.73 453.73 0.00546 -0.00226 1.00 . * !
THE AVERAGE SEPARATION BETWEEN LINES = 21,2283 X-UNITS LFAC =1
THE NUMBER OF STANDARDS MEASURED ON THIS PLATE = 7 SMDEVSQ = 7.697202E-05 4
THE STANDARD DEVIATION (FOR UNIT WEIGHT) FROM 7 RESIDUALS = 0.0044 TESTN = 3.7074E-03
THE WEIGHTED STANDARD DEVIATION = 0.0044 CTEST = 1.3938E-02
THE PROBABLE ERROR = 0.0030 MEAN ERROR OF WEIGHTED MEAN = 0.0000



SPECTRUM OF KR

THIS 1S TRY NUMBER 2 WITH N = 3 SET NUMBER 1 THE TOLERANCE FOR THIS FIT IS 0.00386
X LAB. CALC. ERROR RESID WT -TCL ZERO +TOL

300.85 496.07 496.06 0.00339 0.00012 1.00 . e

226.20 471.23 471.23 0.00284 -0.00078 1.00 . - !

200.54 462.71 462.70 0.00136 0.00014 1.00 . e

188.45 458.69 458.69 0.00131 -0.00818 **x 0.00 B !

180.67 456.12 456.11 0.00222 0.00233 1.00 . ] *

176.48 454.73 454.72 0.00287 0.00176 1.00 . ! *

173.48 453.73 453.73 0.00339 -0.00357 1.00 oK !

THE AVERAGE SEPARATION BETWEEN LINES = 21,2283 X-UNITS LFAC =1

THE NUMBER OF STANDARDS MEASURED ON THIS PLATE = 7 SMDEVSQ = 2.,192573E-05

THE STANDARD DEVIATION (FOR UNIT WEIGHT) FROM 6 RESIDUALS = 0.0027 TESTN = 2.2073E-03

THE WEIGHTED STANDARD DEVIATION = 0.0027 GTEST = 1.335TE=02

THE PROBAELE ERROR = 0.0018 MEAN ERROR OF WEIGHTED MEAN = 0.0000

w
th



SPECTRUM OF KR

THIS IS TRY NUMBER 3 WITH N = 3 SET NUMBER 1 THE TOLERANCE FOR THIS FIT IS 0.0005
X LAB, CALC. ERROR RESID VT -TOL ZERO +TOL

300.85 486.07 496.07 0.00066 0.00000 1.00 i * i

226.20 471.23 471.22 0.00054 0.00006 1.00 . L

200.54 462.71 462.71 0.00024 -0.00020 1.00 o * !

188.45 458.69 458.69 0.00030 -0.00935 ** 0.00 . ! ,

180.67 456.12 456.11 0.00051 0.00054 1.00 . ! ¥,

176.48 454.73 454.73 0.00066 -0.00040 1.00 . * ! .

173.48 453,73 453.73 0.00066 -0.00600 ** 0.00 !

THE AVERAGE SEPARATION BETWEEN LINES = 21.2283 X-UNITS LFAC =1

THE NUMBER OF STANDARDS MEASURED ON THIS PLATE = 7 SMDEVSQ = 4,948457E-07

THE STANDARD DEVIATION (FOR UNIT WEIGHT) FROM 5 RESIDUALS = 0.0005 TESTN = 3.8330E-04

THE WEIGHTED STANDARD DEVIATION = 0.0005 CTEST = 1.4059E-02

THE PROBABLE ERROR = 0.0003 MEAN ERROR OF WEIGHTED MEAN = 0.0000



TO OBTAIN A FIT WITH N = 3 AND TOLERANCE = 0.0005, WE WOULD HAVE TO REJECT MORE THAN 2 STANDARDS,
WE ARE ACCEPTING THE LAST PRECEDING FIT THATFELL WITHIN A TOLERANCE,

NAMELY TRY NUMBER 3 WITH N = WITH N = 3

THE COEFFICIENTS OF THE CHEBYSHEV POLYNOMIALS AND THEIR ERRORS ARE AS FOLLOW
1 4.7538613997D+02 -2.4354687359D-05
2 -2.0668802861D+01 3.0478365959D-04
3 1.4059282987D-02 5.7956304762D-04

THE COEFFICIENTS TRANSFORMED INTO A POWER SERIES AND THEIR ERRORS ARE AS FOLLOWS

1 3.9645580905D+02 9.6824313684D-03
2 3.2892121541D-01 -7.64411098816D-05
3 7.2714645449D-06 1.4987507387D-07

wom
-~}



SPECTRUM OF KR )
DY/DX FOR TRY NUMBER 3 WITH N 3 SET NUMBER 1 /DISPERSION PLOT/

300.85 496.07 0.33330 .

226.20 471.22 0.33221 v *

200.54 462.71 0.33184 . *

188.45 458.69 0.33166 . ¥

180.67 456.11 0.33155 . *

176.48 454.73 0.33149 . ¥

173.48 453.73 0.33144 K

THE AVERAGE SEPARATION BETWEEN LINES = 21.2283 X-UNITS LFAC =1



SPECTRUM OF KR

X

330.10
329.80
329.60
328.45
32T .08
324.056
323.85
323.30
322.83
316.70
150..76
27.70
26.35
25,00
23510
22,758
22.568
21.70
21.00
20,40
19.80

THE NUMBER OF SPECTRAL

LAMBDA

1

&

.

I~
i

[ o o Jji o= i = Bl = B o i §il
LW oo o

(o W& e o Mol el S
(%]

501
446
405
405
404
404
403
403
403
403
403
402

.82514
. 72503
.65829
27452
.03:126
80639
+73867
55617
29929
.354568
.20603
«BT261
12803
.68348
L0787
.94263
.87678
.H9692
. 36646
. 16893
+ 97140

ERROR

0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000

LINES

SIGMA

197696.77534
197735.91240
197762.01210
197912.21474
198006.36702
198488.94582
198515.23811
198587.57665
198688.,93630
199459.63282
224111.71788
246564.97631
246835.564863
247106.69926
247489.30193
247559,90712
247600.27065
247771.95806
247913.52181
24803:1.,98750
248156.56904

ON THIS PLATE=

21
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