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Abstract 

Radiation from a two dimensional canonical source carrying t ime harmonic mag­

netic current and buried below free space-non-integer dimensional (NID) uniaxial di­

electric planar interface has been investigated. Half space carrying current source is 

NID in direction normal to the planar interface whereas ot her half space is free space. 

Far-zone radiated field is obtained in t he free space and behavior is studied with respect 

to NID parameter and permit tivity of the uniaxial medium. 
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CHAPTER 1 

Introd uction 

1.1. Green's function in electromagnetics 

One of the most fundamental problem in electromagnetics is to obtain solution 

to the Maxwell equations or Helmholtz's equation when source is present. This is 

because such situations lead to find t he solutions to the inhomogeneous partial differ­

ential equation. Green's function is considered as a powerful and efficient approach 

to obtain solution in these situations. Potential due to a point charge which satisfies 

certain boundary conditions is the most simple example of Green's function. The con­

cept of Green 's function in electromagnetics has been introduced by George Green [1]. 

His work provides the use of mathematical analysis to the theory of electromagnetism. 

Later , Poincare [2] briefly discussed the theory about Green 's functions . Mackie [3] 

soughted out how Green's functions and intergral transformation approaches can be 

applied to the boundary value problems. Neumann [4] developed and extended this 

concept and gave the idea of two-dimensional Green's function by solving two dimen­

sional potential equation. Meutzner continued Neumann's work and proposed Green's 

function for the regions that are enclosed by an ellipse and a circle [5]. Sommerfeld [6] 

established a technique using integration to develop the method of images to various 

three dimensional geometries. Later, Waldmann [7] used this technique for finding 

electrostatic solutions of an electron lens. It is important to mention that, Green's 

function for various geometries are available in scient ific literature. 

1.2. Green's function for unbounded isotropic dielectric medium 

Radiation of electromagnetic waves from buried object has applications in various 

disciplines including remote sensing and military. The problems dealing with buried 
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object are considered more difficult than when object is placed in unbounded medium. 

Difficulty arises due to electromagnetic interactions between buried object and inter­

faces surrounding the object. Interaction between buried object and its surrounding 

interfaces yields complex current distribution on the buried object. Complexity of 

buried object problems depends on the shape of the object and type of the medium 

in which the object is buried. Green 's function technique have been widely used to 

treat such problems. Hohmann [8] obtained scattered fields outside the cylindrical in­

homogeneity by using the Green 's function approach. His work was further extended 

by Howard [9] . Couple integral equations had been solved by Parry and Ward [10]. 

Engheta and Papas [11] derived the far-zone radiated fields from a line source placed 

at the planar interface of two dielectric media. Chalmers et . al [12] solved integral 

equation numerically to obtain the induced currents on the buried cylinder. Using 

these currents, they calculated the far-zone scattered field. Lakhtakia et al. [13] ob­

tained ordinary and extraordinary fields for canonical sources by using electric and 

magnetic Green's function. Chen [14] determined radiation of sources in anisotropic 

medium with the help of Fourier integrals and dyadic Green 's function. 
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In order to give more insight , two dimensional Green 's function for free-space 

geometry is discussed below. A magnetic line source is located at (Xl, yl) bearing time 

harmonic magnetic current. The space is divided in two regions so that solution of 

homogeneous Helmholtz 's equation can be used. Above the line source is Region I 

and below the line source is Region II . Expressions for unknown radiated field in both 

regions are given below 

y 

Region I 

(x' , y') 

------------------------------- - - -------------~----------. 

Region II 

__________________ -L __________________ ~ X 

Figure 1: Radiation from a m agnetic line source in unbounded isotropic dielectric 

medium 

H1 z(x , y) = 1: Al(kx) exp(ikyy + ikxx)dkx, 

H 2z(x , y) = 1: A2(kx ) exp(ikxx - ikyy)dkx, 

y > yl (1) 

y < yl (2) 

and ko = WVf-toEo using corresponding boundary condi-

tion, unknown coefficients are obtained. After substitution of unknowns, field in each 

region is given below 

-wEolo 100 
1 

H1z( x, y) = 47r -00 ky exp{ikx(x - Xl) + iky(y - y')}dkx (3a) 

( ) -wEolo 100 

1 {( I) ( I)} H2z X, Y = 4 -k exp ikx X - X - iky y - y dkx 
7r -00 y 

(3b) 
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1.3. Non-integer dimensional space in electromagnetics 

In 1977, the idea of non-integer dimensional (NID) space was first proposed by 

Stillinger [1 5] and suggested the Laplacian operator for (NID) space. Later Palmer 

and Stavrinou [16] extended his work and derived equations of motion for NID space. 

After these contributions the concept of NID space has been used succesfully in various 

fields of science and enginering [17]. Electromagnetic differential equations in NID 

space were solved by Zubair et . al [18]. Sadallah et. al [19] presented the solution 

of Euler-Langrange equation in NID space. Engheta [20] proposed the fractional curl 

operator for NID space. The differential operator \7 D and Laplacian operator \7b for 

NID space are given in [21-22]. 

\7 D = (:x + c¥~: 1 ) x + (:y + C¥22~ 1 ) f) + (:z + C¥32~ 1 ) Z 

2 82 
C¥l - 1 8 82 

C¥2 - 1 8 82 
c¥3 - 1 8 

\7 D = 8x2 + -8 + 8 2 + -8 + 8 2 + -8 x x y y y z z z 

where parameters 0 < C¥l :::; 1, 0 < C¥2 :::; 1 and 0 < C¥3 :::; 1 are measured distributions 

on coordinates x , y and z. D = C¥l + C¥2 + C¥3 which is the entire dimension of space. 

In NID space curl operator of cartesian coordinates are given below 

Homogeneous Helmholtz 's equation for NID space is 

\7bE(x, y) + k2 E(x, y) = 0 

Assuming that space is NID along y-axis and yields solution 

i = 1,2 

where n = (3 - D) /2 , 1 < D :::; 2 
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1.4. Fractal/NID space 

The idea of fractal was first introduced by mandelbrot [23] for complex structures 

by using small number of parameters. Study of fractal media depends on model of 

cont inuity [24-25] . The concept of NID space is useful to reveal the proper ties of 

fractal media [26] . Due to this reason, fractal media has been considered as cont inuum 

model with NID space [27]. Zubair et . al derived t he expressions for spherical [28] 

and cylindrical [29] waves in NID space . Antenna radiation problems in fractional 

space were discussed in [30]. Analysis of acoustic waves in isotropic fractal materials 

were discussed in [31]. The different ways to explain fr actal media were divided into 

following approaches by Tarasov [32]. i) Analysis on fractal (ii) Cont inum model for 

fractional-differentials (iii) Cont inuum model for fr actional integrals (iv) Fractional 

space approach (v) NID space approach. Fractal electrodynamics depends on continum 

model of fields [33-37]. For fractional space Green 's function has been derived in [38]. 

Green's funct ion was derived for half space geometry by taking two different NID spaces 

above and below the planar interface [39]. Ampere's law and faraday's were derived 

for NID space by Mart in [40] . Vector different ial operators and vector Laplacian for 

NID space were presented in [41]. 

1.5. Uniaxial-anisotropic media 

During the recent years, t he interaction between electromagnetic waves and uniax­

ial anisotropic medium is topic of research in growing number of scient ific publications. 

This is due to the presence of anisotropy in many natural and artificial materials. Va­

riety of applications may be proposed in many scient ific and engineering purposes. 

Anisot ropic media can be defined as media having different physical propert ies along 

different directions. Uniaxial medium is the medium wit h different physical proper­

t ies restricted along single direction . The permittivity of t he uniaxial medium can be 
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written in tensor form 

~ = '0 ( 

Ex 0 

~) 0 E 

0 0 

where Eo is t he permittivity of vacuum, Ex is permittivity along x-axis and E is permit-

tivity along y-axis and z-axis. Mukherjee and Mann [42] derived t he far-zone radiated 

field expressions and also obtained t he pattern of electromagnetic radiations for line 

sources placed in a uniaxial medium. Jokob et al. [43] obtained a spectrum of plane 

waves from an isolated current source radiated in a uniaxial anisotropic medium. Elec-

tromagnetic fields produced by an electric dipole immersed in anisotropic medium has 

been calculated by Martin [44]. The behavior of plane waves in a uniaxial medium has 

been presented by McDonald [45]. Kojima et al. [46] determined the radiated fields 

and also pattern of radiation for magnetic line source coated with a uniaxial isotropic 

moving sheath. Fleck et al. [47] solved the praxial wave equations to determine the 

generation of beams in uniaxial anisotropic media. 

1.6. Thesis plan 

Objective of the thesis is to determine t he radiation from a magnetic line source 

buried in planar half space geometry. Half space containing line source is uniaxial NID 

whereas other half space is free space. Before addressing this geometry, first magnetic 

line source in unbounded isotropic dielectric , isotropic dielectric half space, unbounded 

uniaxial dielectric and uniaxial dielectric halfspace geometries are addressed. 

This thesis contains four chapters. First chapter includes introduction and litera-

ture review about Green 's function. Two dimensional Green 's function for unbounded 

dielectric medium has been presented. NID space in electromagnetics and uniaxial-

anisotropic media has also been discussed. 

Second chapter deals with radiation from a magnetic line source buried beneath 

planar isotropic dielectric interface. Far-zone radiated field has been obtained by 
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using asymptotic technique (saddle-point method of integration). Behavior of far-zone 

radiated magnetic field has been presented. 

In the third chapter the objective is to address main problem of M.Phil. research. 

That is, to determine t he radiation from a magnetic line source buried under uniaxial 

dielectric NID planar interface. Initially, radiated magnet ic field expression has been 

derived for magnetic line source placed in unbounded uniaxial dielectric medium. The 

discussion is extended by treating magnetic line source buried under uniaxial dielectric 

planar interface. Behavior of radiated field from magnetic line source buried in uniax­

ially anisotropic medium has been studied by taking different values of permittivity of 

uniaxial medium. Finally radiation from a magnetic line source buried under uniaxial 

dielectric NID planar interface has been investigated. Behavior of the far-zone radi­

ated magnetic field has been studied with respect to different values of NID parameter. 

Chapter four contains conclusions drawn in the research work. 
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CHAPTER 2 

Line source buried under isotropic dielectric 

planar interface 

In this chapter , the goal is to determine the radiation from a magnetic line source 

buried beneath a planar isotropic dielectric interface. Expressions for radiated fields 

are derived in terms of sp ectrum of plane waves. Far-zone radiated field has b een 

obtained by using the saddle point technique of integration. 

2.1. Formulation 

Consider a line source having time harmonic magnetic current is located beneath 

planar dielectric interface. Half space y> b is free space whereas other half space is 

isotropic dielectric medium. (EO , /La) are the constitutive parameters of free space and 

( E 1, /La) are the parameters of dielectric media . It has been assumed that magnetic 

line source is located at (x' , y') . Geometry is divided into three regions. Region I is 

above the planar interface . Region II is between the line source and planar interface 

and region III is below the line source. Expressions for radiated magnetic field in each 

region are given below 

y 

Region I 

Region II ( El,j.lO) 

x 
Figure 2.1: magnetic line source buried under planar isotropic dielectric interface. 
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H1z(x ,y) = I: A1(k1x)exp(ik1xX + ik1y y)dk1x y > b (4a) 

H2z(x , y) = I: A 2(k2x) exp(ik2x x + ik2yy)dk2x+ 

I: A3(k2x) exp(ik2xx - ik2y y)dk2x ) y' < y < b (4b) 

H3z(x, y) = I: A 4 (k2x ) exp(ik2xx - ik2y y)dk2x Y < y' (4c) 

where k1y=Jk5 - kix and k2y=Jki - kix . Boundary conditions are used to deter-

mine the unknown coefficients AI , A 2, A 3 and A 4 . 

Continuity of tangential components of magnetic field at y=b, 

(5) 

Application of above yields 

(6) 

where I I =Jk5 - u2, 12=Jki - u2 and u is dummy variable. 

Continuity of tangential component of electric fields at y=b 

18H1z 18H2z (7) --- ---
EO 8y E1 8y 
18H1z 1 8H2z (8) --- ---

EO 8y EOE 8y 

where E1 = EOE 

At Y = y' , tangential components of magnetic field must be continuos 

(10) 
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yields 

At Y = y') tangential component of electric field must be discontinuos 

8H3z 8H2z . ( . ') -- - -- = 1,wEoEIo exp -'/,ux 
8y 8y 

(12) 

Following is obtained 

A2 (u) exp(i')'2Y') - A3 (u) exp( -i')'2y')+A4( u) exp( -i/ 2y') = 

1 wEocIo (. ') - exp -'/,ux 
21r /2 

(13) 

Solving above equations yields 

( ) 1 wEocIo ( . . . ,. ') 
Al U = - - exp -'/,/ lb + '/,/2b - 1,UX - 'L/2Y 

21r / 2 + f./l 
(14a) 

() wEocIo ( , ') A2 U = - exp -iux - i')'2Y 
41r/2 

(14b) 

WEOE /2 - E/I . .,., 
A3(U) = --4- exp(2'/,/2 b - 1,UX - '/,/2Y) 

1r/ 2 / 2 + f./l 
(14c) 

( ) () wEocIo ( , ') A4 U = A3 U - 4 exp -iux + i')'2Y 
1r/ 2 

(14d) 

Radiated field in region I is 

(15) 
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2.2 Asymptotic analysis 

Setting 

k1x = ko cos e, k1y = ko sine 

x = pcos ¢, y = psin ¢ 

X ' = p' COS ¢' 
I I I 

Y = P sin ¢ 

in equation (15) yields 

H ( cp ) = - wEoEloko ( 7r { EkO sin
2 

e - sin eJkr - k5 cos2 e} 
lz p, 2n Jo kr - k5(coS2 e + E2 sin2 e) 

x exp{ -ikoP' cos e cos cp' - iP' J kr - k5 cos2 e sin cp'} 

x exp{ ibJ kr - k5 cos2 e - ikob sin e} 

x exp{ ikop cos( e - ¢ ) }de (16) 

Taking kop > > 1, saddle point method of integration can be applied to find t he far-

zone radiated field. Saddle point is located at e = cp. Dominant contribution is given 

below 

H
1z 
~ -wEoEloko { EkO sin

2 
¢ - sin cp Jkr - k5 cos2 cp } 

V27r kr - k5(cos2 cp + E2 sin2 cp ) 

x exp{ -ikoP' cos cp cos cp' - ip' J kr - k5 cos2 cp sin cp'} 

x exp{ -ikob sin ¢ + ibJ kr - k5 cos2 cp } 

exp( ikop - in / 4) 
x ;-r::-:. , kop > > 1 

ykop 
(17) 
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Behavior of far zone radiated magnetic field of a line source buried beneath 

isotropic dielectric planar interface with respect to following parameters E=4 and b=O.4 

pi = 0.2 is given in Figure 2.2. 

1.8,---~-~-~-~-~-~-~-,--------, 

o~~-~-~-~-~-~-~-~~ 

o 20 40 60 80 100 120 140 160 180 

<1> 

Figure 2.2: Behavior of the far-zone radiated magnetic field for isotropic half space 

geometry 
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CHAPTER 3 

Radiation from a line source buried under uniaxial 

dielectric non-integer dimensional 

planar interface 

First, expression for radiated field from a magnetic line source placed in un-

bounded uniaxial dielectric medium has been derived. The discussion is extended by 

treating a magnetic line source buried under planar uniaxial dielectric interface. Ra-

diation from a magnetic line source buried in planar NID uniaxial dielectric interface 

has been investigated at the end. Behavior of the far-zone radiated magnetic field has 

been studied with respect to different values of NID parameter. 

3.1. Line source in unbounded uniaxial dielectric medium 

In this section, field radiated from a magnetic line source, placed in unbounded 

uniaxially anisotropic dielectric medium, is obtained in terms of plane waves . The 

permittivity of the mediums are different while the permeability are assumed to be 

same. The line source is placed at (Xl, yl) bearing harmonic magnetic current. It may 

be noted that radiated fields contain components (Hz, Ex, Ey). Uniaxially anisotropic 

dielectric medium may be described through following expressions for the constitutive 

parameters 

f = '0 ( 

Ex 0 

~) 0 E 

0 0 

fL = fLo 

where EO are the permittivity and the fLo are the permeability of the free space. Ex and 

E are relative permittivities. For this situation, Ampere 's law 
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10Hz E x = ----
iWEOEx oy 

E 
_ _ l _oHz 

y-
iWEOE ox 

As the line source carries current in z-direction, therefore Faraday's Maxwell equation 

'V x E = iw f..loH - M 

simplifies as written below 

Substituting relations derived from Ampere's law in above equation leads to following 

Helmholtz's equation 

where ko = w.jf..loEo, As canonical source is situated at (x' , y') , therefore the Helmholtz 

equation becomes 

Solution of above equation in form of Fourier transform are given below 

Using Fourier transform representation in Helmholtz 's equation gives 

o2Hz k2Ex ( k2/k2) - , ('k ') 5:( ') ~ + 0 - E - x 0 H z = - 'lwEoExl o exp 't xX u Y - Y 
uy E 
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or 

where q = koJ€; (E - ki/k5)' Therefore the spectrum representation in uniaxially 

anisotropic medium are following 

Now assume that space in y-direction is (NID), t hat is 

2 - -
d H z a - 1 dHz 2 - . ( . ') ( ') -d 2 + ---d + q H z = -'LWEoEx l o exp zkxx fJ y - y 

y y y 

where D = a + 1 is dimension of the NID space. Solution in NID uniaxial dielectric 

medium is 

3 - D 
n=--

2 

3.2: Free space-uniaxial dielectric interface 

Consider free space-uniaxial dielectric interface as shown in Figure 1. Half space 

y > b is filled with free space whereas half space y < b is occupied by uniaxially 

anisotropic dielectric medium. Constitutive parameters for free space are (EO , /-Lo). 

Consider a line source carrying time harmonic magnetic current is sit uated at (x' , y') 

in a uniaxially anisotropic dielectric medium. The geometry is splitted into three 

regions. Region I is above the planar interface. Region II is between the line source 

and planar interface whereas region III is below the line source. Helmholt'z equation 

can be used. 
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y 

Region I 

Region II (E,J.lO) 

b 
(X', y/) 

--- ----- - ----- --~- ---- --- ---

Region III 

x 
Figure 3.1: Radiation from a magnetic line source buried under uniaxial dielectric 

interface. 

Expression for radiated magnetic field in each region is written below 

H1Ax, y) = I: A1(k1X) exp(ik1yy + ik1xx )dk1x , 

H 2A x, y) = I: A 2(k2x) exp(iq2Y + ik2xx )dk2x 

+ I: A3(k2x ) exp( -iq2Y + ik2xx)dk2x , 

H 3z(x, y) = I: A4 (k2x ) exp( -iq2Y + ik2x x)dk2x , 

y > b (18a) 

y' < y < b (18b) 

y < y' (18c) 

where kly = Jk8 - kfx and q2 = koJ~ (E - k?x/k8)· Boundary conditions are ap­

plied to find the unknown co-effiecients AI , A 2, A3 and A 4 . 

Continuity of tangential components magnetic fields at y = b, 

at y=b (19) 
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gives 

(20) 

where / 1 = Jkf - U 2 , /2 = koJc; (E - u2 /k5) and u is dummy variable. 

Continuity of tangential component of electric fields at y = b 

EO By EOEx By , 
at y=b (21) 

yields 

At y = y' , continuity of tangential component of magnetic field. 

at y = y' (23) 

Therefore 

At Y = y' , tangential component of electric field must be discontinuous 

at y = y' (25) 

Therefore 

(26) 

Solving algebraic equations simultaneously yields 

(27a) 

(27b) 

(27c) 

(27d) 
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Radiat ed field in region I 

H ( ) 
- 1 / 00 -wEoEx1o 

l z X,Y --
21f -00 k / Ex (E - k2 /k2) + E k oy E I x 0 x ly 

X exp {-iko E; (E - krx/k5)(Y' - b)} exp{ik1x(x - x') + ik1y(Y - b)}dklx (28) 

3.3: Free space-NID uniaxial dielectric interface 

It is suppose Y < b, is lower half space which is NID normal to the planar interface. 

Now field in each region is given as 

H1Ax , y) = I: A1(k1x) exp(ik1yY + iklxX )dklx, 

H2z(x, y) = I: A 2(k2x ) exp(ik2x x) (q2y)n H~l) (Q2y)dk2x 

+ I: A 3(k2x ) exp(ik2xX)(Q2y)nH~2) (Q2y)dk2X' 

H3z(x, y) = I: A 4 (k2x ) exp(ik2x x) (Q2y)n H~2) (Q2y)dk2X' 

Y > b (29a) 

Y' < y < b (29b) 

y < y' (29c) 

Continuity of tangential component of magnetic fields at y = b 

at y=b (30) 

glVes 

where I I = y'kr - u2, "12 = kOJ E~," (E - u2/ k5) and u is dummy variable. 

Continuity of tangential component of electric fields 

~ 8H1z = _1_ [BH2Z + ~ D - 2 H2 Z] , 
EO By EOEx 8y 2 Y 

at y = b (32) 
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yields 

At Y = y' , continuity of tangential component of magnetic field 

at y = y' (34) 

Therefore 

At Y = y', tangential component of electric field must be discontinuous 

BH3z BH2z iWEoEx I o ( . ' ) -- - -- = exp - nlX 
By By 21f 

at y = y' (36) 

Therefore 

(37) 

Solving algebraic equations simultaneously yields spectrum function as 

(38a) 

(38b) 

(38c) 
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Radiat ed magnet ic field in upper half space is 

(r 2b)n H~2) (r 2 Y') 

(r 2y, )n H~l ) ( r2 Y ' ) H~~: (r2 Y' ) - H~1~ (r 2 Y') H~2 ) (r 2Y') 

x exp( -iklxX' - iklyb) exp( ik1 yY + ik1xx )dk1x (39) 

where r 2(k1x ) = koJ~ (c - krx/k5)· Setting 

k1x = ko cos e, k1y = ko sine 

x = pcos ¢, Y = psin ¢ 

X ' = pi cos ¢ ' , I I· ' Y = P sm ¢ 

in above equation yields 

iwcocxloko 171" (r2b)n 
H1 z(p ,¢ ) = 2 (r I· d-. /) n 7r 0 2P sm 'f' 

sin eH~2 ) (r2Y') 
x ~~----~~------~~~----~----

H~l) (r2yl)H~~ (r2Y') - H~~ (r2 yl)H~2) (r2Y') 

H~1)(r2 b)H~:) (r2 b) - H~2) (r2 b)H~~(r2 b) 
x --~--~~~--~----~~~~~~ 

r2H~~(r2 b) - ikocx sineH~2) (r2 b) 
x exp( - ikop' cos e cos ¢' - ikob sin e) 

x exp{ikopcos(e - ¢ )}de ( 40) 

Applying saddle point technique of integration to find out the far-zone radiat ed 

field by t aking kop » 1,. It is obvious that saddle point is located at e = ¢ . 

H ( ) _ iwco cx loko (r2b)n 
l z p, ¢ - V2ir (r2P' sin ¢/)n 

sin ¢H~2) (r2P' sin ¢/) 
x ~~----------~--------~--~--~------~---------

H~l) (r2P' sin ¢/)H~~ (r2p' sin ¢/) - H~~ (r2P' sin ¢/)H~2 ) (r2P' sin ¢/) 

H~1 ) (r2b)H~~ (r2 b) - H~2) (r2 b)H~~:(r2 b) x --~~~~~--~----~~~~~~ 
r2H~~ (r2b) - iko cx sin ¢H~2) (r2b) 

x exp( -ikoP' cos ¢ cos ¢' - ikob sin ¢ ) 

x exp(ikop - i7r/4) (41) 
)kop 
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where r 2 (¢) = ko J €~7; (E - cos2 ¢). It is obvious that for Ex = E yields 

3.4. Numerical results: 

In this section impact of material and NID parameters on the far-zone radiated 

field has been presented and discussed. In all plots, behavior of l'I]oH 1z I is presented 

where '1]0 is impedance of the free space. Factor eXp(i~7l'/4) has not been taken into 
kop 

I 

account in the code. Values of different parameters are t aken as b=O.4Ao , p = 0.2Ao 

and 10=1 volt . Where Ao is wavelength in free space and its value is unity in this 

paper. Figure 2 and Figure 3 depict the impact of material parameter whereas Figure 

4 depicts the impact of NID parameter on radiated field. It is noted that impact of 

variation of value of Ex is stronger than E. It is also noticed from Figure 2 and Figure 3 

that, for all observation angles , the value of l'I]oH 1z I decreases as Ex decreases whereas 

variation of E has negligible effects. It is noted that , for all observation angles, l'I7oHl z I 

decreases as value of NID parameter increases. 

Behavior of far-zone radiated field with respect to NID parameter is shown in 

Figure 5 to Figure 7. Figure 5 contains three plots, each for a specific observation 

angle. At each specific angle and over entire range of NID parameter, l'I7oHl z I decreases 

as value of the NID parameter increases. Impact of variation of observation angle on 

field is slightly more effective near the small of NID paramet er. Plots in Figure 6 and 

Figure 7 are obtained for specific values of material parameters. Insignificant change 

in behavior of the radiated field, over entire range of NID parameter, is noted when E 

varies whereas change in behavior has been noted when Ex varies. Impact of variation 

of Ex near small values of NID parameter (D ----+ 1) is more prominent than near 

obtained when D ----+ 2. In Figure 8 and Figure 9 far-zone radiated magnetic field with 

respect to components of the tensor permittivity is examined taking specific values of 
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NID parameter. Over a wide range of values of permittivity, same observation has 

been obtained as derived from plots given in previous Figures. Over the considered 

range of components of permittivity, the impact of NID parameter is slightly more 

effective near large of Ex and small values of E. 
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Figure 3.2: Behavior of the far-zone radiated magnetic field with respect to obser-

vation angle for different values of Ex. E = 4 and D=1.3. 
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Figure 3.3: Behavior of the far-zone radiated magnetic field with respect to obser-

vation angle for different values of E. Ex = 2 and D=1.3. 
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Figure 3.4: Behavior of the far- zone radiated magnetic field with respect to obser-

vation angle for different values of NID parameter . E = 4 Ex = 2. 
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Figure 3.5: Behavior of the far-zone radiated magnetic fi eld with respect to NID 

parameter for different values of cp . E = 4 and Ex = 2. 
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Figure 3.6: Behavior of the far-zone radia ted m agnetic field with respect to NID 

parameter for different values of Ex . E = 4 and ¢ = 60° . 
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Figure 3.7: Behavior of the far-zone radiated magnetic field with respect to NID 

parameter for different values of E. Ex = 2 and ¢ = 60° . 
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Figure 3.8: Behavior of the far-zon e radiated magnetic fi eld with respect to Ex for 

different values of NID parameter. ¢ = 60° and E= 4. 
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Figure 3.9: Behavior of the far-zone radiated magnetic field with respect to E for 

different values of NID parameter. ¢ = 60° and Ex =2. 
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CHA PTER 4 

Conclusions 

Conclusions and brief summary of research work are given below. 

Radiation from a line source in unbounded isotropic dielectric medium has b een 

addressed at the beginning. Secondly radiation from a line source buried beneath pla­

nar isotropic dielect ric interface has been studied by using Green 's function. Expres­

sions for r adiat ed fields have been derived by applying boundary conditions. Far-zone 

radiated field has been find out by applying saddle point t echnique of integration. 

Radiated field has been obtained and has maximum value at 900 and has minimum 

value at 00 and 1800 . 

Mathematical formulation of radiated field for magnetic line source buried under 

uniaxial anisotropic medium has been derived. Numerical results has been reported for 

different parameters . Radiated field for anisotropic half space has also been obtained 

by taking different values of Ex which is permitt ivity of the uniaxial medium. Value 

of field has been increased by increasing t he value of Ex . Behavior of the field has also 

been studied by taking different values of Ey = Ez = E. Variation of Ex is stronger than 

variation of E when radiated magnetic field is observed wit h respect to observation 

angle and also with respect to NID paramet er. 

Radiation from a line source buried under uniaxial dielect ric NID planar interface 

has been investigat ed at the end that was the main obj ective of the research work. Far­

zone radiat ed field expressions has been derived asymptotically for buried magnetic line 

source by using saddle-point t echnique of integration. Radiated field has been studied 

for different values of permittivity of the uniaxial medium. Radiated field has also been 

studied for different values of ID parameter. St rong impact of ID parameter has 

been noted on t he far-zone radiated magnetic field. By increasing t he values of NID 
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parameter , the value of radiated field decreases. It has also been noted behavior of 

radiated field with respect to NID parameter for specific values of material parameters 

and behavior of radiated field with respect to material parameters for specific values 

of NID parameter are consistent. Only a shift in values of the curve is noted. 
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Appendix A 

Curl operator for Cartesian coordinates in NID space is given below, 

For partial derivatives in NID space following identities are used. 

:y [(klyy)n H~l) (k1yy)] =kly(klyy)n H~~l (klyY) 

:y [(klyy)n H~2) (k1yy)] =kly(klyy)n H~~l (klyY) 

These identities are used to find the expressions for NID space. 

(l.A) 

(2.A) 

(3.A) 

(4.A) 

(5.A) 

(6 .A) 

(7.A) 
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