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Abstract

The renormalizability of the standard electroweak theory at finite temperatures
and densities much below the electroweak scale at the one loop level in the back-
ground of hot and dense leptons have been checked. Moreover, we calculate self-
mass and charge renormalization in such a background. Some of the applications

of these results are also mentioned in this work.



Introduction

HHuman nature is so enthusiastic that even the astonishing discoveries, sometimes.
can open new venues of rescarch in the particular area. Human curiosity always
demands the improvement of knowledge. Therefore, the scientific discoveries lead

to new directions ol research.

The intellectual mind is always exuberent to find the origin of the nniver.c
through the discovery of new laws ol nature. Therelore the beginning ol the
universe has been studied since long. In this regard the standard big bang model
of cosmology is quite well accepted. This model also depicts the thermal history
of the universe. The information about the prevalant thermodynamic condition:
is very important because it helps to understand the existence of our galaxy, solar

system and the earth itsell.

Present knowledge of the early history of the universe [1] starts from the
Plancks epoch (i.e., t ~ 107" sec and T = 10" GeV), the point at which quantim
corrections to general relativity should render it invalid. At the earliest times the
universe was a plasma of relativistic particles, including quarks, leptons, gauge
bosons, and the Higgs bosons. If current ideas are correct, a number of sponta-
neous symmetry breaking (SSB) phase transitions should take place during the
course of the early evolution of the universe. They include the grand unified the-
ories (GUTs) and phase transition at a temperature of 10 to 10'® GeV, and the
electroweak SSB phase transitions al temperatures of around 300 GeV. During
these SSB phase transitions some of the gauge hosons aquire mass via the Higos

mechanism and the entire symmetry of the theory is broken to a lower symmetry.

The standard cosmology of the universe and the microwave background give
a clear evidence ol the electroweak processes in the early universe. There i« an
evidence for leptonic scatterings at T < 2 MeV i.e., in the highly dense medium
and then fg-decays before nucleosynthesis led to the formation of He at T ~ m,.
All these calculations, even in the vacuum theories of particle physics, do not give

the desired information and the techniques have been developed to improve thieae



results incorporating different type of corrections. For any physically acceptable
quantum field theory (QI''T) the question ol renormalization is one of the basic
requirements. A most important step in this direction would be the evaluation
of the renormalization constants in the relevant background. In this regard the
cffects of the thermal background are also being incorporated through the calen-
lation of the radiative corrections at the l-loop level [2, 3, 4, 5] as well as at the

2-loop level [6, 7, 8] in hot and dense medium.

Different renormalization schemes for the electroweak theory have been pro-
posed in literature [9]. The most successful among these is the one by t Hoolt
[10], Sirlin [11] and some others [12, 13]. Since we are dealing with the first order
ccorrections af the moment and have used the on-shell scheme [14], following Hollik
[15], it is worthwhile to study the radiative corrections to electroweak processes

and to check the renormalizability of the standard electroweak theory.

The renormalizability of electroweak theory in vacuum is quite well under-
stood now. As a next step, we want to renormalize the theory in hot and dense
medium so that the relevant background effects can be correspondingly incorpo-
rated. In this connection, following Hollik [15], we try to evaluate the renormal-
ization constants of electroweak theory at finite temperature and density (FTD)
below the threshold for creation of clectroweak bosons in the backeground o
the I-loop level. We use the real-time formalism for this purpose and see to what

extent the thermal background can alfect the physical results.



Chapter 1

Gauge Theories and the
Standard Model

1.1 Gauge Theories: An Introduction

The present understanding ol various forces of nature relies on three basic prin-

“ciples of physics which can be summarised as:

[. Invariance ol the lagrangian under local gauge symmetries in Yang-Mills
theories.
~ 2. Nambu-Goldstone realization of a symmetry or non-invariance of vac-
uum under the symmetry transformation.
3. Higgs mechanism that combines (1) and (2) to eliminate the massless
unphysical scalar fields from the theory and produce mass terms for

the gauge bosons so that the weak interactions could be short ranged.

1.1.1 Abelian Gauge Theories

The most well tested theory of the particle interaction, i.e., Quantum Electrody-

namics (QED), is based on the principles of local gauge invariance. To see this,



consider a fermion carrying an electric charge 'e” described by the field 1. Its elec-
tromagnetic (e.m) interaction can be derived by demanding that the lagraneiin

for this field should be invariant under the local symmetry transformation:

() — expf{io(e)p(x). (1.1)

The kinetic energy term. involving 0, 1(x) can be made invariant under this

transformation only if 9 is replaced by a covariant derivative , i.e.,

p(x) = Dyp(x) = (9, — ceA,(2)). (1.

(%)
N

where A, transforms as

Au(z) = Au(x) + %(f)l,a'(;lr). (1.3)

Eqs.(1.1) to (1.3) are collectively called gauge group transformations. It can e

shown that the invariant kinetic energy term for ¢ is 1y, D*1p and that for A,
is F,,I'*, where

1—‘1/111 = (’)/IAII - (‘),,A,,. (ll)
is the field strength tensor. This leads to the lagrangian density,

| ‘ —
L= =P — 1y, D', (1.5)

The form of the electromagnetic interaction lagrangian dictated by the local svim-
metry is

£em. _ (:67%,),”,‘/’,/\;:_ (1.6G)

int.

The transformation in eq.(l.1) generates the U(1) gauge group.

1.1.2 Non-Abelian Gauge Theories

In 1954, Yang and Mills generalized the abelian U(1) transformation to the case
where the local symmetry is associated with the non-abelian gronp. The idea s
that, in such a situation, one could generate interactions that take one type of

particle to another, e.g., photon plays a role of mediator in the e.m interaction.



o study the formalism of non-abelian gauge theories consider a simple o
abelian group G. Let ¥ be a multiplet of fermions transforming as an irreducible
representation under G as follows

«

p(a) = () = Uz )p(a). (1.7)

where U is a unitary representation of GG in the space . To construct a G-

invariant kinetic energy in 1, note l,llla,t,
N\ — U(x)d,\V+ (0,U)\. (1.8)
In analogy with the abelian case, if we replace
a, — D, =0,—ieA, (1.9)
then
(), — A — WO,V + WU, U — WUTA,UW. (1.10)

FFor this to be invariant, obviously one must have
Ay =UAUY 4+ (9,)UT, (1.11)

Fas.(1.8) and (1.11), therefore, constitute the generalized non-abelian gauge
transformations for ¢ and A,. We now have to construct the counterpart of

17, for the non-abelian case. Using eq.(1.3), one finds by simple algebra that.
1 g eq ) y ] 2
n . s 3
Fo=0,A,—0,A,—[A. A, (1.12)
and it transforms under G as

IP/H/:(/[R;W(/T- (1.13)

One can now write the [ollowing gange invariant lagrangian for the whole system
as

. |
A o " m™. I Ay
L,—-——'l‘/?‘) /)/II/'-{-——.’I’I2 ll l,“//4 . (I] i)
“is some dimensionless scale parameter. We notice that in order to preserve

[Here g

the gauge invariance there should be as many gauge fields as the number of



generators of the gauge group. The gauge potential is known to be the adjoint

representation of the gauge group. We can write it as,
A, =ig0,Aq,, (1.15)

where the sum over the repeated index is known and 0, are the generators of the

gauge group, and they satisly the following commutation relation:
[oa)ob] = (:fabcoc, (Ilb)

fabe are the structure constants of the corresponding group, e.g., for SU(2), fu. =

Eabe the totally anti-symmetric tensor. It then follows that
Fuu = lgaaf;w,a, (117)

where
Suva = 0uAvo — 0y Apo + 9faprAnsAvy- (1.18)

Here ¢ is the universal gauge coupling constant that couples the gauge fields
among themselves with the same strength. This is known as the so called uni-
versality of the gauge coupling. For example, the §-decay and p-decay have the

same weak coupling (—ZF— despite their widely different lifetimes.

Let us see how the non-abelian gauge theories describe weak interactions.
Take a model [16] based on an SU(2) gauge group with proton and neutron
transforming as an SU(2) doublet (ignoring helicities); neutrino and electron

& g g ;

transforming as another doublet, i.e.,

1/):[2], 1/):[1:]. (1.19)

Since SU(2) has three generators, i.e., the Pauli matrices (%, o = 1,2,3), we can
write

[
A“ = ET(YI/VQ,,L

e
.

i I/Vgu (Wl - ”/V2)u
2 (W1 + iW3), —Ws,

i wae  Vow}
2 L \/iwu_ —W3# .

(1.20)




The interaction lagrangian generated by local SU(2) symmetl‘y follows from

p
n

the first term in eq.(1.14) to be

) W3, 2W
Lw = 1_(}(]5 ”’7)7“[ ", V2w,

] VaW: W,

~idw, ey Wa — V2WFE || v + h.c
2 VW, —Ws, e
. g = _
= —i—=WT¥(Py"n+ iy"e)
v2 "
. g DL = b = =
—1,—\7—‘21/1/3,1(137’ P + vy"v — ny*n — éy"e) + h.c. (1.21)

The first term in eq.(1.21) leads via the second order perturbation to the f-decay

process
n—p+e + ..

Note that the fermions, of course, could have mass since ¥ is invariant under the
transformation (1.8) in this model. One can immediately see from eqs.(1.8) and
(1.11) that the gauge transformations.prevent the W-bosons from acquiring mass,
because the mass term W,W* is not invariant under eq.(1.11). Therefore, this
theory predicts that weak interactions should be long ranged, in contradiction

with the observation.

One might think, why we do not simply add a mass term (mf, W, W")
to the lagrangian and ignore its invariance under the local symmetry. Such an
approach was first attemped by Veltman [17]. However, it leads to divergences
beyond the one loop level [18] in perturbation theory, rendering it not too useful
for making predictions. This approach, therefore, had to be abandoned and an
alternative solution of the problem had to be searched. Of course the solution
was found under the idea of SSB. We consider this idea in the next section and

observe how SSB of the local symmetry produces mass terms for the mediating

gauge bosons.



1.2 Spontaneous Breaking of Local Symmetry

In quantum field theories with symmetries, two conditions determine the way in
which a symmetry manifests itself. IYirst, the lagrangian must be invariant under
the symmetry transformation. Secondly, the vacuum state must be invariant
under it. However, Nambu and Goldstone [19] discovered, around 1960, that a
lagrangian may be invariant under a symmetry transformation, but the vacuum
state may not be so. If the symmetry is global, the spectrum of the theory contains
massless particles i.e., the Goldstone bosons [19]. It was realized [20] afterwards
that if a gauge symmetry is spontaneously broken, then ultimately we have no
such particle. But the gauge bosons corresponding to the broken generators
acquire masses. This is known as the Higgs mechanism. The SU(2),% U(1)y
model of electroweak interactions uses this mechanism in order to get masses for

the gauge bosons and, in fact, for all fermions.

We take here a simple abelian example of Higgs mechanism. Consider a

U(1) local symmetry with a scalar field ¢ transforming under U(1) as

¢ — Mg, (1.22)

If we demand that the spin 1 gauge field transforms under the local U(1) as

Au(z) = Au(z) + M), ' (1.23)

then the gauge invariant lagrangian for the system can be written as
L= L, ~V{z), (1.24)
where
L 1 v B
Lo = (Dud)!(D"¢) = T . (1.25)

The potential V(¢) must be gauge invariant. The most general form of the
potential is

V(g) = —12dtd + Mo'6)?, (1.26)

(o]



A must be positive in order that the potential has a lower bound. There is no
restriction on the sign of p?. If p? is positive, then the shape of the potential

V(¢) appears as in ig.(1). Minimization of the potential yields

N N p? i 5%
&) =P, = \/;(,0. (1.27)

The lagrangian is invariant under the e transformation, therefore, 6 can be

chosen as zero for convenience, so that

2 V 2
e vV =4/ >o. (1.28)

Qbo: g:ﬁa \

Let us redefine

L 0
#a) = —lo(a) + V1, (1.29)

with

o(z) = n(z) + ié(z), (1.30)
where V' is the minimum value of ¢ (x) and ¢ (x) (a complex field) is a small fluc-
tuation around this minimum, so that o(x) can be expanded in terms of creation
and annihilation operators. Substituting eqs.(1.4), (1.7) and (1.8) into eq.(1.5),
one can see that the kinetic energy term for ¢ leads to a term %(cthQA,,A") in the
lagrangian, which is a mass term for A,. Thus, the process of SSB gives mass to
gauge bosons. In fact, the particle spectrum of the theory also appears to have a
massless Goldstone boson ¢ and a massive scalar 7. But these are not the phys-
ical particles, because by changing the field variables one can find a particular
gauge, such that, the massless boson is eliminated from the lagrangian. Thus one
is left with only two interacting massive particles, a vector gauge boson A, and
a massive scalar, say H which is called the Higgs particle. This phenomenon is

known as the "Higgs mechanism’.

We have discussed SSB of a U(1) gauge symmetry for illustration. It can
easily be extended to the case of SU(2) local gauge symmetry, in which one in-

troduces a Higgs weak isospin doublet coupled to the fermions and gauge bosons.

The three basic ingredients needed for building a gauge model can be sum-

marized as:



e Choice of the gauge group G,
e Assignment of the fermions to a suitable representation of the gauge group,

e Choice of the Higgs bosons and their expectation values to break the gauge
symmetry. The choice must be good enough to reproduce the quark and

lepton masses in a phenomenologically acceptable way.

1.3 The Standard Model

According to the standard model of particle physics, all the matter in the universe
is made of two kinds of particles, the ’quarks’ and the ’leptons’. Quarks make up
'hadrons’ and can participate in all type of interactions whereas, the leptons are
affected by electromagnetic and weak forces only. It should be mentioned here

that the neutral leptons i.e., the neutrinos, interact only weakly.

As already stated, the hadrons are made up of quarks that come in six
flavors, labelled as u(up), d(down), s(strange), c(charm), b(bottom), and t(top).
The ’baryons’ are assumed to be composites of three quarks qqq and 'mesons’ as
qq (quark-antiquark) composites. Considerable hadronic spectra can be gained
using potential picture binding 3q’s and qq. It follows that quarks have the baryon

number B = L and also to reconcile with statistics it becomes necessary to give

3
an additional SU(3) quantum number to each quark flavor, called ’color’. Lach
quark flavor comes in three colors, Red, Green, and Blue. All the six quark flavors
are now experimently verified. Various kinds of forces (including gravitation)
are supposed to arise from the exchange of spin 1 bosons whose couplings are
dictated by the underlying local symmetry. Before proceeding further, we notice
a very fundamental symmetry [21] between quarks and leptons, for each type
(flavor) of quark there exists a corresponding lepton and weak interactions respect

quark-lepton symmetry, such that, all the lepton flavors have corresponding quark

10



flavors in different colors.

AT
o <
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S e 8
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&= =~

e no

The six flavors are grouped into three sets (called generations) of two each
with 7 = R, G, and B, standing for Red, Green, and Blue respectively. All known
forms of weak interactions are assumed to operate only inside each generation.
Observed cross-generation transitions such as AS = 1, i.e., the strangeness chang-
ing weak decays are explained in terms of a mixing angle, the Cabbibo angle [22],
and its extended version, the CKM (Cabibbo, Kobayashi, and Maskawa) matrix

[23].

In the rest of this chapter we will work only with the first generation, which

can be simply generalized to higher generations by similar type of analysis.

1.4 SU(2),® U(1)y Electroweak Model

Historically, the SU(2),® U(1)y model modifying weak and electromagnetic in-
teractions was first suggested by Glashow in 1961 [24] with the W-boson masses
inserted by hand. This was subsequently discussed by Salam and Ward [25] also.
The model in this form with Higgs mechanism for the generation of the W-bosons
was represented for the case of leptons by Salam and Weinberg [26]. The incorpo-
ration of hadrons into the model was done following the suggestion of Glashow,
[Miopous and Maiani (known as the GIM mechanism [27]), which incorporated
the six flavors of quarks (not then discovered). In the present section we will give

an outline of this model.

11



The structure of the model is completely determined by assignment of
quarks and leptons to the representation of the group. For simplicity we con-
sider only the first generation, i.e., (v, e;u,d). We denote their SU(2), U(1)y
contents by (Iw,Y), where Iy stands for the weak isospin and Y for the weak

Y = v (3,-1)
e L 2 )

hypercharge.

€R (0,—2) (1.31)
a= il an
S
UR (0, g)
(lR (0, %2) (1;;-2)

We choose the Higgs doublet denoted by

- [ o } , (139

¢_
transforming like (%, +1). The electric charge in this model is given by
Y
Q=1lw+3, (1.34)
that is
211 & '}I)l/ g
eJ;™ = e(j + ?), (1.35)

Ju represents the corresponding four currents. Y generates the symmetry group
U(1)y just as @ generates the group U(1)em. In this way the electromagnetic an
weak interactions are incorporated in a single framework, the symmetry group
SU(2),@ U(1)y.

The basic electroweak interaction can be written as

Cew = _’(/(]:L)M/zu - Lg’(];ﬁ)_éﬂa (1'3(5)

12



showing the isotriplet of vector fields W,, coupled to the weak isospin current ;/
with strength ¢, and the single vector field B, coupled to the weak hypercharge
current jy with strength conventionally taken to be % with ¢ is the SU(2) index.
The fields |

‘/V;F - ﬁ(w/mj:il/lfgu), (137)
describe massive charged bosons W¥, whereas W3, and B, are neutral fields.
The electromagnetic interaction is embeded in eq.(1.6) through the eq.(1.4) and

(1.5).

The charged current (C.C.) weak lagrangian can now be written as

L350 = LW, (77" (1 = ) + " (1 = 75)d] (1.38)

_2\/§

which leads to the expression for the fermion coupling:

(IV]T g2 .
o (1.39)

The two neutral fields W3, and B, must mix in such a way that the massive ficlds

are expressed as a linear combination of the gauge fields.
A, = B cosOw + Ws,sin Oy (massless), (1.40)
Z, = — B, sin 0w + W3, cos Oy (massive), (1.41)
Ow is the weak mixing angle.

One can write from eq.(1.6) the expression for neutral current (N.C.) elec-

troweak interaction as
LW = =gisWa, — idjy By
= —i [g sin Ow jh + gcos ij}'f] A,

—i [g cos Oy jh — gsin OWj{f] Z,. (1.42)

By using eqs.(1.10) and (1.11). The first term in the last equation gives the

electromagnetic interaction. Comparing it with eq.(1.5), we have

gSiH aw = L(;COS OW =e, (1.»1:;)

13



which yields

tan OW = 2 (l./M)
g

To extract further physical contents of the model we write the gauge invari-

ant lagrangian involving the fermion fields, the gauge fields and the Higgs fields

such that

L‘:,C(;Zﬁ)f—v((/j)), (1.71:’))

where L is the part of the lagrangian involving the gauge invariant derivatives
for all fields, Ly is the Yuakawa coupling of fermions and Higgs bosons, while

V(¢) is the Higgs potential. The explicit form of Lg is
EG = —1ZL’YMD;L¢L - éR'Y”D/LeR - QL'Y“D“QL (l'l())
-—l_LR’)’“D“uR — (Z[{’)’ND“dR o= (D:qﬁ)(D“qb)

1 w 1 w
_Zf;wfl —ZB,“,BI )

whereas, the covariant derivatives D, corresponding to fermion fields are

q
Db = (0= i57:Wou+ 5 B,
D//,e]? == (a;t + Z.(]B;t)eﬁa

i N
D[LQL = (all - gTiWi/L - LgBu)QL,

« l(’
Doup = (()“—L%B“)UR,

D.dp = (0,4 Z%Bu)(IR,
and the boson field are, (
Dy = (9, — i%Tz-Wm — igBu)®,
with the tensor fields,
fw = W, —O,W,+gW, xW,,
B,, = 0,B,—0,B,, (1.47)

and

Ly = heprder + hQréur + haQrbdr, (1.48)

14



¢ = 1m9¢* is the charge conjugate representation of ¢, 7,’s are the weak isospin

generators, and
V(g) = =i ¢T¢ + Ao'9)* (1.19)

[t is now clear from eq.(1.29) that the minimum energy solution of the Hamilto-
nian corresponds to

2
¢o = L, with v = ﬁ— (1;30)

o A

To get masses of the fermion and the gauge bosons we use eq.(1.50) which leads

to
2,2
My =27 (1.51)
4
g = hf—V—— (1.52)

V2’
due to the choice of only one helicity state for the neutrino field, m, = 0 in this

model.

Once again we consider the (W3, - B,,) sector. One obtains the following

mass mixing matrix:

/.
Ws, B,

2,2 =2

qTv —ggv ]
Wa, [ 22 =z J (1.53)
: 212 £2,,2
. —g9v .
B, 4 4

To identify the physical gauge bosons, we have to diagonalize the above

mass matrix. The eigenvectors are those given by eqs.(1.40) and (1.41) with the

masses
2 = (¢* + ¢*)v? _ qv secQW, (1.54)
4 4
and
m?% = 0. (1.55)
Irom eqs.(1.21) and (1.22), one can see that My and My are related by
A/[Z CcOS 0W = A/[u/. ( | .3(5)
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Now eqs.(1.9) and (1.13) imply

V2e2  37.35
8Gpsin®Oy  sinly

My =

Thus we are left with only one parameter, the weak mixing angle 0w, which is

measured experimentally from the neutral current phenomena.

The standard SU(2) @ U(1) model of electroweak unification has been de-
scribed briefly in this chapter. This model works very well in explaining the low
energy electroweak interactions. Most of the predictions of the model have been
confirmed experimentally. The Higgs sector of the model is still unexplored. Also
the CP violation problem is a great challenge to the model. In the next chapter
we shall discuss the problem of renormalization of electroweak processes in the

context of standard model.
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Chapter 2

Renormalizability of Gauge

Theories

2.1 Renormalization

Renormalizibility means that the amplitudes of different, processes associated with
an interaction should be finite i.e., non-divergent at higher energies and in higher
orders of perturbation. The prototype field theory i.e., Quantum Electrodynam-
ics (QED), does in fact contain divergent terms associated with integrals over
intermediate states, but it is found that these divergences can always be thrown
away in a redefinition of ‘the "bare’ lepton charges and masses, which are in any
case arbitrary, as being equal to the physically measured values. Thus we can say
that a theory is renormalizable, if at the cost of introducing a finite number of
arbitrary parameters (to be determined experimentally) the predicted amplitudes
for physical processes remain finite at all energies and to all orders in the coupling
constant. QED is an example of such a theory and for many years, was the only

one.

The true nature of QED resides in the concept of renormalization. Tomon-
aga called this concept by a name, in Japanese which phrases ’compounding

interest’ in bank accounts i.e., to say, putting the interest back into the account
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to earn more interest.

To explain the idea behind the theory by S. Tomonaga and many others [25],
it seems appropriate to quote again the phrase ’principle of renunciation’ used
by Tomonaga. The meaning of this phrase is, one should give up the hope that
the theory is perfect and that everything can be calculated from it, and instead,
one should make a definite distinction between things that can be calculated
and those that cannot. However, the theorists after spending some 20 years
in the dark, finally, got the idea that the addition of some new elements to
the renormalization theory would pave the way for a solution. However, early
theories of weak interactions though well behaved at low energy and to first
order, involved divergences at higher orders. These could be calculated only at
the cost of introducing an indefinitely large number of arbitrary constants, thus
loosing essentially their predictive power, if any, as discussed above. A good high
energy behaviour and cancellation of divergent terms at higher orders are tlus

sensible demands for any physical theory.

In order to analyse the different renormalization schemes, consider the tree

level lagrangian of the minimal SU(2)w® U(1)y model

L.=Lg+ Ly +LF, (2.1)
with the gauge field part
| « Wy 1 v & @
La = _ZLV/WVV‘ R ZB,“,B” ’ (2.2)
and the Higgs part
Ly = (D,®)'(D"®)—V(®), (2.3)

with the covariant derivative,

m#@—mMMfH%&,

and the corresponding Higgs field self-interaction (Higgs potential),

w@:_M@®+%@m{
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whereas the induced fermion gauge field interaction via the minimal substitution

rule

Lr=) Priy*Dubf + Y hiotin" Dyahio™, (2.1)

J 5e

involves a number of free parameters which are not fixed by the theory. The
definition of these parameters and their relation to measureable quantities is
the main content of a renormalization scheme. The parameters (or appropriatc
combinations) can be determined from specific experiments with the help of theo-
retical calculations of the physical processes. After this procedure of defining the
physical input, other observables can be predicted allowing verification of the the-
ory by comparison with the corresponding experimental results. In higher order
perturbation theory the relation between the formal parameters and measurable
quantities are different from the tree level relations in general. Moreover, the
procedure is obscured by the appearance of divergences from the loop integra-
tions. For a mathematically consistent treatment one has to regularize the theory,
e.g., by dimensional regularization (performing the calculations in D-dimensions).
However, the relation between physical quantities and the parameters then be-
come cut off dependent. Hence the parameters of the basic lagrangian, the 'bare’
parameters, have no physical meaning. On the other hand, relations between
measureable physical quantities, where the parameters drop out, are finite and
independent of the cut off. It is -therefore, possible to perform tests of the the-
ory in terms of such relations by eliminating the bare parameters [29, 30]. The

minimal SU(2)w® U(1)y model, involves free parameters such as:
e, My, ]\/]z, A/[H, my.i,

which have to be determined experimentally. These are chosen such that they
comprise the physical meaning of different parameters of the theory, means that
these are related to experimental quantities. This direct relation is also destroyed
through higher order corrections. Also the parameters of the original lagrangian
called the bare parameters, differ from the corresponding physical quantities hy

UV-divergent contributions (but appear in the higher values of momentum).
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These divergences are cancelled in relations between the physical quantities,
allowing for meaningful predictions in the renormalizable theories. The possibility

to evaluate predictions of a renormalizable model is the following:

e calculate physical quantities in terms of the bare parameters.

e use as many of the resulting relations as bare parameters present, to express

these in terms of physical observations.

e insert the resulting expressions into the remaining relations.

In this way we can predict physical observables in terms of other physical
quantities, which have to be determined from experiments. In these predictions
all UV-divergences cancel in any order of perturbation theory. The predictions
obtained from different input parameters differ in finite orders of perturbation
theory, in higher order contributions. This electroweak on-shell scheme is the
straight forward extension of the familiar QED, first proposed by Ross and Taylor

[14] and used in many practical applications [11, 31, 32, 33, 34, 35].

IFor stable particles, the masses are well defined quantities and can be mea-
sured with high accuracy. The masses of W and Z bosons are related to the
resonance peaks in cross sections where they are produced and hence can also
be accurately determined. The mass of the Higgs boson, as long as it is ex-
perimently unknown, is treated as a free input parameter. Before we can make
predictions from the theory, a set of independent parameters has to be deter-
mined from experiments. This can either be done for the bare quantities or for
renormalized parameters which have a simple physical interpretation. In a more
restrictive sense, a renormalization scheme characterizes a specific choice of ex-
perimental data points to be used as input, defining the basic parameters of the
lagrangian in terms of which the perturbative calculation of physical amplitudes
is performed. Predictions for the relations between physical quantities do not
depend on the choice of a specific renormalization scheme, if we perform the
calculation to all orders in the perturbative expansion. Practical calculations,

however, are obtained by truncating perturbation series, making the predictions
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dependent on the chosen set of basic parameters and thereby leading to scheme

dependence.

Parameterizations or renormalization schemes’ frequently used in the elec-

troweak calculations are:

3.

6.

. The on-shell(OS) scheme with free parameters o, My, Mz, m s, My

The G, scheme with the basic parameters o, G,,, Mz, mys, My

The low energy scheme with the mixing angle as a basic parameter

defined in neutrino electron scattering a, G, Sin*0,,,m;, My.

. Dimensional Regularization: in which a divergent multiple integral may

be made convergent by reducing the number of multiple integrals. In
dimensional regularization we keep the space-time dimension-D lower
than four dimensional integral by a convergent D-dimensional one. Ix-
plicit momentum integrations give an analytical expression in the di-
mension D. The original divergence will appear as a pole at D = 4 [40]
upon integration on D after the analytical continuation. Now we will
discuss the 1-loop contributions to the on-shell parameters and their
renormalization. Since the boson masses appear in the particle propa-

gators, we have to investigate the effects of the W and Z self-energies.

. The MS-scheme. The modified minimal substraction scheme (MS-

scheme) [36, 37, 38] is one of the simplest way to obtain finite 1-loop
expressions by performing the substitution,

2
P + Indm +Inp® — In iz,

in the divergent part of loop integral [39].

The star » scheme where the bare parameters e,, G, S? are eliminated
and replaced in terms of dressed running (K*-dependent) parameters
[40], (), G (K?), SH(IK?), my, My,

We restrict our discussion to the transverse parts Iz, In the electroweak the-

ory, different from QIED, the longitudinal components I1y. of the vector boson
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propagators do not vanish in physical matrix elements. But for light external
fermions, the contributions are suppressed by (;\'—;’2)2 and we can safely neglect

them. Writing the self-energies as [41].

w,Z w,Z
E = Juv g Fusunny (2.5)
g

with scalar functions Z:W’Z(q'z)7 we have for the l-loop propagators (V = W, 7Z)

o 14 & s A o
q*> — My- - P?-M @PA-MZ\ ¢—-ME )’ -

Besides the fermion loop contributions in the electroweak theory there are also

the non-Abelian gauge boson loops and loops involving the Higgs boson. In the
graphical representation, the self energies for the vector bosons denote the sum
of all the diagrams with virtual fermions, vector bosons, Higgs and ghost loops.
Resumming all sell energy insertions yiel(is a geometrical series for the dressed
propagaltors:

“['.(]/w
q*— M2

Vv vV 5
—Lq,y :
2 (=g | = - e (27)
AT =M+ 5 ()

I+ (
The self energies have the following properties:

o Im SV M2 # 0 for both W and Z. This is because W and Z are unstable
particles and can decay into pairs of light fermions. The imaginary parts
correspond to the total decay widths of W, Z and remove the poles from

the real axis.

e Re }:V M} # 0 for both W and Z as they are UV-divergent.

The second feature shows that the location of the poles in the propagators is
shifted by the loop contributions. Consequently, the important steps in mass
renormalization consist of a re-interpretation of the parameters. The masses in
the lagrangian cannot be the physical masses of W and Z but are the bare-

masses’ related to the physical masses My, Mz by :

ME = M2, + 6M2,, (2.8)
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M5 = M3 + 6MZ, (2.9)

with counterterms of 1-loop order. The ’correct’ propagators according to this

prescription are given by:

—tYuv v

- , 2.10
¢ — My —SME+ 3" (¢2) ¢ — ME+ 52V (g2) el

instead of eq.(2.3). The renormalization conditions which ensure that My are

the physical masses fix the mass counterterms to be

w
SMiy = Re Y (M), (2.11)
‘ Z
§Mj = Re Y (M3). (2.12)

In this way, two of these input parameters and their counterterms have heen
defined. Another parameter is the electromagnetic charge e. The electrowcak
charge renormalization is very similar to that in pure QED. As in QED, we want
to retain the definition of e’ as the classical charge in the Thomson cross-section,

64

OTh = W

Accordingly, the lagrangian carries the bare charge e, = e 4+ de with the charge
counterterm ée being absorbed in the electroweak loop contributions to the eey
vertex in the Thomson limit. This charge renormalization condition is simplified
by the validity of a generalization of the QED Ward identity [42] which implies
that the corrections related to the external particles cancel each other. Thus for

de only two universal contributions are left:
de

1 sin Oy 277
- = —TI0) — ML 2.13
e 2 (0) cos Oy M2 ( )

The first one in analogy with QED, is given by the vacuum polarization of the
photon. But now, besides the fermion loops, it also contains bosonic loop di-

agrams from WTW~ virtual states and the corresponding ghosts. The second
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term contains the mixing between photon and Z, in general described as a mixing

. Z .
propagator with > 7" normalized as

. Z
A'yZ _ Y — Z'Y ((12)
q* q? — M2

The fermion loop contribution to Z“’Z vanishes at ¢* = 0; only the non-abelian
bosonic loop yields EWZ(O) # 0. To be more precise, the charge renormalization
as discussed above, is a condition for the vector coupling constant of the photon
only. The axial coupling vanishes for on-shell photons as a consequence ol the
Ward identity. Irom the diagonal photon self energy
i/
> (d%) = ¢"1(g%),
no mass term arises for the photon. Besides the fermion loops, the boson loops

behave like

y
S (47) = ¢TI, (0) — 0,
bos

for ¢*> — 0 leaving the pole at ¢*> = 0 in the propagator. The absence of mass
terms for photon at all orders is a consequence of the unbroken electromagnetic

gauge invariance.

Concluding this discussion we summarize the principal structure of elec-

troweak calculations.

e The classical lagrangian £ (e, My, Mz,......) is sufficient for lowest order
calculations and the parameters can be identified with the physical param-

eters.

e [or higher order calculations, £ has to be considered as the ’bare’ lagrangian
of the theory L(e,, M}, M%,...) with ’bare’ parameters which are related to

the physical ones by
eo = e+ 6e; M{? = M, + 6 M3,
MP = M2+ 6§M2,
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The counter terms are fixed in terms of a certain subset of 1-loop diagrams

by specifying the definition of the physical parameters.

e lor any 4-fermion process we can write down the 1-loop matrix element
with the bare parameters and the relevant loop diagrams. Together with
the counter terms, the matrix element is finite when expressed in terms of

the physical parameters, i.e; all UV-singularities are removed.

[t is a well known fact that in QED, the Feynman diagrams for the self-energy
at the vertex which contribute to the radiative corrections to the decay processes
can be divergent. These divergences are cancelled by adding mass counterterms
to the lagrangian. The method by which these infinities are removed defines the
renormalization procedure in the theory. The singularities are separated in the
form of the renormalization of fermion mass, wavefunction and charge, usually

expressed in the form of corresponding renormalization constants.

The techniques for the renormalization of the standard model in vacuim
have been extended to include thermal background effects. But before going to
these finite temperature (FT) effects we will give the basic formalisms used to in-
corporate the statistical background effects. In quantum field theory (QFT), the
temperature effects are incorporated in the Euclidean space through imaginary
time formalism [43]. This formalism was originally developed by Matsubara which
was later expressed in terms of functional path integrals. In this framework, the
diagrammatic methods are essentially equivalent to the Feynman-Dyson pertur-
bation theory of zero temperature QFT. The only exception is that the imaginary
time domain is finite and periodic. The imaginary time formalism is particularly
suited to the direct computation of static quantities and to the use of high tem-
perature expansions. However, low temperature expansions and the properties of
explicitly time dependent quantities are much less accessible. These, in practice,
involve analytical continuation to formulate the finite-temperature field theories
in terms of the real-time or Minkowski space variables, which are obtained by

Wick’s rotation (z, — z, + ¢f#) from Euclidean space. As mentioned above, in



the Euclidean space the energies are discrete given as,

e 2.14
Wy = ——, 2.
= (2.14)
in boson propagator, and
2
ity s LI (2.15)

in the fermion propagator. These discrete energies are summed over infinite
values of n which yield a divergent series even for fixed temperatures breaking
the Lorentz covariance which is in turn restored in the form of manifest covariance.
But a very crucial problem associated with the real time formalism [44] is that
of higher order graphs. The product of delta functions of the propagators give
rise to §(0) type singularities, an unusual singularity which is difficult to handle.
At this stage it is useful to enumerate the advantages of the real-time formalism

over the imaginary-time formalism, which are:

1. Asdiscussed above, it is not diffcult to see that summations over infinite
energies in propagators are avoided in this formalism. In this way
a possible divergent summation can be replaced by the distribution
function in the theory.

2. The removal of the discrete energy summations leads to the restoration
of covariance in the real time formalism. This is done by introducing
the manifest covariance and employing the unidirectional time like four

velocity of the heat bath, u,, defined as:
i, = (1,0,0,0).
Whence the exponentials in the propagator can be written as:
PIEl — Plpul — Alpuet| (2.16)
with the particle propagators expressed in the covariant form such that

the fermion and boson distribution functions are:

1

G Sy ST e 9 17
= AT (2.17)

nr(p)
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and
|

713(,1\',') = —e[]|k.u| — 1 :

(2.18)

respectively. One can see that this introduces u, covariance in this
formalism. Due to this manifest covariance almost all the problems can
be studied involving quantum statistical background effects in quantum

field theory.

Another advantage of the real time formalism is that it immediately
splits the calculations into a zero temperature and a temperature de-
pendent part by virtue of such a splitting in the particle propagators.
Thus it is always convenient to calculate the finite temperature part
separately and add its contribution to T = 0 part. Thereby, the ratio
of the finite temperature corrections to the uncorrected (T = 0) results
for various temperature regions can be relatively easily evaluated and

compared with the results of any available physical process.

In the process of analytical continuation for the real-time formalism
from the imaginary-time one, the imposed periodic boundary conditions
on the temperature |0, —iff| are removed and the formalism becomes

valid for all temperatures.

An extension of the real-time formalism to higher order graphs which
enables to cancel §(0) type singularities has been given in the ther-
mofield dynamics (TFD). However, we shall not go beyond one loop
approximation in the perturbative expansion, therefore, TI'D method

will not be needed in our analysis.

Finally, in contrast to the imaginary time formalism the real time for-
malism has a well defined zero temperature limit and systematic low
temperature expansions become accessible. It is, of course, possible to
compute time dependent quantities, such as the linear response func-
tions, directly without using potentially very complicated analytical

continuations.



7. In this formalism the fermion propagator is:

Sl = AL T

= —9 2 _ o2
p—m+ ic 2mé(p” = m”)(p+ m)np(p),

whereas the boson propagator in the Feynman gauge is [45].

DA (p) = —g" | ————— + 216(p* — mP)ns(p)| ,

pt —m? + e

where np(p) and ng(p) are the Fermi-Dirac and Bose-Einstein distri-
bution functions given in eqs.(2.10) and (2.11) respectively. Feynman
diagrams are calculated by replacing the vacuum propagators by the
above propagators. The fermion distribution functions act as a regu-
larization parameter therel_')y providing an ultraviolet cutoff. However,

the divergence in the infrared region appears in an enhanced form i.e.,

],1 G / %:713(/3),
0

which can be eliminated in the physical processes [46, 47, 48, 49]. We
therefore, propose to preferably use the real-time formalism for the
renormalization. This is necessary because the renormalization pre-
scriptions developed at zero temperatures cannot be directly applicd
to the finite temperature theory, because of the absence of Lorentz
invariance, which is an essential ingredient of the zero temperature

theory.

We have already discussed the zero temperature renormalization methods in this
chapter. Now we present the finite temperature renormalization procedure in

QED developed by Donoghue, Holstein [3] and Robinett [50].

2.2 Renormalization of QED at Finite Temperature

It is already discussed that in QED, the Feynman diagrams for the self-energy and

vertex graphs, which contribute to the radiative corrections to the QED processes,
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contain divergences. These divergences are cancelled by adding mass counter
terms to the lagrangian. The method by which these infinities are removed defines
the renormalization procedure in the theory. The singularities are separated in
the form of the renormalization constants Z;, Z,, and Z3 which renormalize the

fermion mass, wavefunction, and charge respectively.

The techniques for the renormalization in zero temperature field theory
have been extended to include finite temperature effects [3, 51, 52]. The electron

self-energy up to the order « in Fig.(2) at finite temperature is:

'
Zp(p) = Dr=o(p)+ ;5 /(Fq(?m —p+F)x
[np(p— L')(S(p—‘ k)2 — m? B nB(k)é(k'z) } O (2.19)
k2 4 e (p— k)2 —m? + e

giving,
777',72),“15 = m? [1 = G—Qb(mﬂ)} + 4—amTa(m/})
’ s T
2 B |
+§cy7rT2 [1 — Fc(mﬂ)} , (2.20)

The temperature dependent radiative corrections to the electron mass upto the

first order in «, is obtained from

(W)
N}
SN—

Mphys = M + dm. (2.

Squaring (2.21) and neglecting the (§m)? term , the correction is

om 1 :
— & o (mfjhys —m?)
an'T? 6 20 T 3a
~ = == i = 2.99
S {1 7r2c(mﬂ)} + - ma(mﬂ) - b(mp), (2.22)

with

a(mB) = In(1+4e™),

[oe]

b(mp) = Z(—l)”e”ﬁEL(—nmﬁ),

n=1
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o —1)"
c(m/?) - Z ( n’Z) (_:—mnﬁ’. (335)
n=1
(2.24)

At low temperature, the functions a(mf), b(mf), and ¢(mf) fall off in powers of
e~ in comparison with % and can be neglected so that

52’1_, T<i7)ne arT” (225)

m 3m?

Moreover, in the high temperature limit, a(mg) and b(mf) are negligibly small
2 g al

whereas ¢(mf) — —7;. When 7' becomes very large compared to m, the term

with (£)? dominates giving:

b wym. 0710 (2.26)
m 2m?
Therefore, eq.(2.16) is valid for all temperature in QED including 7" ~ m.. This
range of temperature is particularly important from the point view of cosmology.
It has been found that some parameters in the early universe such as the energy
density pr and the helium abundance parameter Y become slowly varying func-
tions of temperature [53] whereas they are constant at 7' > m, and 7" < m,

[54, 55].
The temperature dependent wavefunction renormalization constant has

been obtained as [5].

2 < dk 5
268) = 20 =0) =" [ na(t) - Zbmp)
0

al?  1+v n? _
S e 2
+7rE'2V In - v[ 5 me(mf) + mpBa(mp)], (2.27)

The charge renormalization constant at *finite temperature has been calculated

from the vaccum polarization of a photoﬁ in Fig.(3) by writing
2

LV L € 4
Mg"(k) = Tple(q) + e /d’pT?' (v P+ g+m)y(p+m)} x

6[(p+k)* —m*Inp(P + k) = 8(p* = m*)nr(p) (2.28)
p? —m? + ie (p+ k)2 —m?+ ic oA
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where
k? =w? — k2,
with
w = k,u”.

I5q.(2.27) is now solved to obtain the longitudinal and transverse components of

I1,,, using

(k) = 7 (w, I"’)Puy + Mg (o, )6 s (2.29)
where,
k2
I (w, k) = —ﬁu“‘u”ﬂ,,u(k),
1 i
HT(w, l”) = “;HL(LU, k) i —2—gu H;w(k)y
and,
Y
[)l“/ = _(]/w + ;\:2 9
. — » V(1.2 N 9
Qu = K%Qu u, + wky,) (kK u, + wk,), (2.30)
with

Guv = Guv — UpUy,

ky =k, — wuy,

Thus, the finite temperature correction to the longitudinal and transverse com-

ponents of the photon self-energy upto the first order in & become

4e? w? w . w+t+k ,ma(mp) c(mp)
Iy, = F[l—ﬁ—] [{(1—ﬁlnw—k)( R )}
L, o, 11k 4 37w? N
+X {Qm —w”+ —T—b(mﬁ)}] : (2.31)
L2 [fuw? W wA k) fma(mB)  c(mp)
My ~ e [{kz+(l A:2)]Ilw—k:}{ TR }
+% { [27712 —w? 107&)27—2 & } b(mﬁ)}} . (2.32)
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respectively, using

, P
DF - 7y
nv A‘2 —as l—[T

With &% — 0, the charge renormalization has been determined, giving

4e? {c(mﬂ) B ma(mf3)
2

=1 _ 1, w? 9 2,
Z; =1-— — Z(m — ?)b(mﬂ)}. (2.34)

m2r B2 3
In the next section, we give the generalization of these results after including the

density effects.

2.3 Renormalization of QED at Finite Temperature and

Density

The study of hot and dense systems like the quark-gluon plasma requires the
incorporation of the finite density effects a,lon.gwith those of temperature. A
systematic development of the 'T'D dynamics has been done and the question
of renormalization examined in detail [56]. The massless bosons do not exhibit

the chemical potential(y). The fermion distribution function, however, has to be

changed to include the density effects as [57].

71[?(/6) = m, (2-3‘))
in the fermion propagator giving
Splp) = /)I_(/i):_—)i:){é —2n(p+m)é(p* —m?)
[0(Ep ) nr(p + p) + 0(=Ep)nr(p — 1)), (2.36)

The sign of chemical potential corresponds to the charge of the fermion.
The a(mp),b(mp) and c(mpB) functions in eq.(2.23) are replaced by
a(mf,+pn),b(mp, £u) and c(mfp, £u) given by

a(mpB,+p) = In(1 4 e~ mENLY,

[o.¢]

b(mp,tp) = Z(—])"e*”ﬁ"Ei(—mnﬂ),

n=l
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— {1} _
c(mB, £p) = Z( 2) e~ mAmn) (2.37)

n

n=1
where &+ correspond to particles and antiparticles in the background. If there are
particles and antiparticles with the same chemical potential x in the medium we

can simply have the following functions.

1
a(mp,p) = .2_]“ {[1 + e—(m—u)ﬁ][l i 6—(m+#)ﬁ]} :

b(mp, p) = Z(—l)” cosh(nfp) E;(—nmp),
o0 e—nmﬁ
¢(mpP,p) = Z(—l)" cosh(nf) —

The F'T as well as F'TD corrections have been used to evaluate the change
in the decay rate of the scalar Higgs bosons [3, 51, 56]. We will calculate similar
type of corrections to the electroweak decays in the next chapter and evaluate
the renormalization constants of electroweak theory at temperatures sufficiently
below the electroweak scale such that 7' << 100 GeV, i.e., low temperatures on

the electroweak scale.
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Chapter 3

Renormalization of Electroweak

Processes in Hot and Dense
Medium

The renormalization [56] of QED at F'TD involves the replacement of the cold
propagators of temperature independent theories by the hot and dense propa-
gators [57], mentioned in the last chapter. The self energy corrections to the
electron mass at F'T'D upto the first order is calculated in ref.[56], from which the
wavefunction renormalization can also be directly obtained. The electron mass
shift at F'TD has important physical implications. Such calculations have also
been done upto 2-loop level [6, 7, 8] in QED. These renormalized mass, wave-
function and charge of the particles at 'TD in QED give some corrections to the
parameters in cosmology and astrophysics. So the most important applications
of these electroweak and QED processes at FTD are expected in cosmology and

astrophysics and the universe can be considered as the best test laboratory for
F'T'D theories.
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3.1 Calculations of the Renormalization Constants

The calculation of the renormalization constants of the electroweak theory at
FTD upto the one loop level are evaluated in the background of hot and dense
leptons. We work at the temperature and the chemical potential sufficiently he-
low the electroweak scale where we do not have any hot and dense electroweak
gauge boson or Higgs particles in the background. Therefore, the statistical cor-
rections due to the background of such particles need not be evaluated. We only
mention those diagrams which acquire the background corrections whereas all the
other diagrams have the same vacuum contributions. Here we use the frame work
of real-time formalism where the background corrections appear as the additive
corrections to the vacuum results. We prefer to evaluate the background contri-
butions to these renormalization constants in parallel to the vacuum calculations
[15]

3.1.1 Mass Renormalization
Fermion Self-mass

1. Leptons:
The self mass of charged leptons at low temperature has been calculated from

the matrix amplitude of Fig.(2) which can be written as:

ie Z(p) = ic, /(l4kTr ——ig—'y“(l —9s)
’ (2m)* 2v/2
i(p—F) +m? i —igy" (1 — 75) .
|
(p+ k) —m} - k? —m3, 8 22 ’ (1)

This diagram gives a zero contribution at low temperature. However, in case of

neutral leptons, Figs.(8a) and (8b) contribute to the self-mass of neutrino if it is
considered to be a massive particle [58, 59].

ii. Quarks:

In the case of quarks, their masses have no effect at this temperature and remain

just the same as in vacuum.



Self mass of Higgs

Since we are working with temperatures sufficiently below the Higgs, W, and 7
masses, the sell mass of Higgs does not get any significant corrections from the
background of hot and dense particles except leptons. Considering Fig.(4), the
result is obtained as

m? = (m + 5777,)2, (3.2)

with

niy® = m%, + 2m

Sk(ie)é ma(mp, ) n c(mp, i,u)}
(27)4m?, B B3? ’

Gauge Bosons

The diagrams contributing to the self-energies of the photon, W, Z and ~Z
transition contain fermion, vector boson, Higgs and ghost loops. Only the fermion
loops at such low temperatures need to be cosidered in more detail. In this section
we are dealing with the self-mass effects so' we discuss 1-loop contributions to the
on-shell parameters and their renormalization. Since the boson masses are a part
of the propagators so we have to investigate only the effects of the W and 7
self-energies here.

Following Hollik [15], all self-energy insertions yield a geometrical series for the

dressed propagators in Fig.(5). eq.(2.7) shows that the poles exist at:

w
i — My + ) (k) =0,

which then gives

with refl.[A.4]
m? = (m 4+ ém)?, (3.4)



o= M2+ (—ITgw o 2mi 12 [{ 10k, 2m 2 } a(mp, £

2z " ey B
+{_2m }b(w £4) {20k2 L2 _i}c(mﬂ?i/t)

2 2 2
my mmy, My, m B

+
20k, | d(mp,£pu)
‘:;"r
e | 5] &
(

Similarly the self-energy of Z in, Fig.(6). Again using eq.(2.7), we get

Z
B - M5+ (k) =

which then gives

k2 —m?=0,

with ref.[A.8]
m?* = (m + ém)>. (3.6)

We have an expression for .7 (k?) = k2117, for Fig.(3) with

m? = M2+ XZ: k?)
Y (ig2)*(=20)(7*), » H —7m} a(mp, tpu) {—3m2 N 1}

4(2m)? m?, I7) m?
—11) e(mp,£u) =2 | d(mp, +pn)
b(mp
(mf,p) + { e } 32 i {meZ} B3
—2) f(mB, £n) , "
+ {7”,22} opr | At}

3.1.2 Coupling Constants Renormalization
Charge Renormalization

We have another input parameter i.e., electromagnetic charge ’e’. Charge renor-
malization is connected to the gauge invariance. For temperature field theory it
is not simple to establish the gauge invariance at high temperature. Donoghue,
Holstein and Robinett [50] established the gauge invariance explicitly at low tem-

perature. Here we will discuss the charge renormalization constants obtained
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which is the same as eq.(3.10). The other renormalization constants are as

cos® Oy — sin® O 3.7%(0)

§Z2 = —II"(0)—2
2 ( ) sin OW COS 0w A/w% T
cos? Oy — sin? Gw((S/Vl'% 5M3V)
.’s‘ill2 ()W A/I% Ml21’ ’

Using eq.(3.12) in eq.(3.13), we get
cos? Oy — sin’ 0w(5JVI% M,

ME T MR, )

8§27 = —T11"(0
d ( )+ Si112 OW

Again make use of eq.(3.10) in eq.(3.14),

(3.13)

(3.14)

4e? [[ k? k i ko + k| ma(mp,tpu)
6rZ - _ 0 o o o )
% = e R G e R
1 2k? 2 k? 107k2 37Ky 131]k?%|
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21k| ko, — |k] B2 sin” Oy
M2 §ME,
(g 2y, (3.15)
Mz~ M,
and for
577 = _IP(0) - (3 cos® Oy — 29.,in2 Ow) > "(0)
cos Oy sin Oy M?
sin‘ Oy Mz My,
Using eqs.(3.10) and (3.12), in eq.(3.15), we get
. 4e? 2 % b - 7 3,
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Now in the case of W self-energy

7z ; . :
5Z2W — _117(0) — 2(:0.3 Ow > (:f)s; Ow 6M? B 6/\{&,
sinfwMz  sin® Oy~ MZ M},

). (3.18)

Using eqs.(3.10) and (3.12), we have

7 4e? k2 k. k3 ko + |k ) 3,
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m2x? | | |k2]  C2lk|  20k3|7 ko — |k B
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The results obtained in this section will be discussed in some more detail in the

following section.

3.2 Results and.Discussions

[t can be seen from the calculations of the renormalization constants in the last
section that the lepton background can affect the renormalization constants of
the electroweak theory. These results are obviously different from QED becanse
the hot photon background does not affect the physical processes whereas the
massive neutrino background can have significant effects. This point is clear from
eqs.(3.5) and (3.7) because the @, b, & functions involving the expressions of the
renormalization constants are always functions of mfA and pf. The contribution
of these functions can only be significant when we deal with the massive leptons

and temperature is either of the order of the lepton mass or greater. If the
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neutrino is considered as a massless particle, the neutrino background does not
contribute at least upto the l-loop level. However, even for a very tiny mass of
neutrino the tilde functions give significant corrections at 7' < m, because ol the
exponential dependence of these functions on the parameter m, /3. Therefore, in
the standard electroweak model the hot and dense charged lepton background
contributions start when temperature goes upto the order of the lepton mass. In
this regime the fermion self-mass is simply vanishingly small because of the 11" or
Z loop suppression. Whereas, in the standard model with massive neutrinos, the
neutrino mass can get some corrections to form the hot charged lepton background

which is supressed by # [58, 59]. Similarly the Higgs self-mass corrections
w

12 .
appear to be 0(:;—2‘), hence ignorable. The self-mass of the gauge vector bosons,
H
however, get significant contribution from the background and is given in eqs.(3.5)
and (3.7) for T' ~ m;. When 7" >> m,, these equations attain a simple form. Ior

eq.(3.5) we have

!/5‘/ rI\2
384

2
myy ~my, + (

),

and eq.(3.7) gives

3 2 i
7 ~my + 0(—).
my ~m% + (771,22 )
Similarly the charge renormalization gives. First we consider eq.(3.10)
4e? k2 ko + |k| E ks ko + |k|, ) 72T?
In( ) — — In( )
2|1k3 ko — |K| |k2] 2]k ko, — |k| 12

73~ —
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Now eq.(3.14) becomes

m2m?

4e? k2 ko + || k2 k ko + |k, | w2T?
5Z,Z ~ 0 0 o o 0
2 {2]k3| W= " e G = |k|)} 12
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Now eq.(3.16) gets the form
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And eq.(3.18) becomes
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It is also worth mentioning that > = 0 for the fermion loops, even in the

statistical background.

It is therefore clear that there is no problem with the renormalizability of
electroweak theory in hot and dense lepton background. The self-masses and
charges of the particles are corrected only when they propagate in a medium.
These effective masses and effective charges are expected to be relevant in the

calculations of the physical processes taking place in astrophysics and cosmology.

3.3 Implications

The renormalized mass, wavefunction and charge of the electroweak particles at
I'TD in QED and also at low temperatures on the electroweak scale, give some
corrections to the parameters in cosmology and astrophysics. Some of the phys-
ically measureable parameters such as charge, wavefunction and mass may also
change due to these corrections. The most important of all these applications can
be found in cosmology and astrophysics for which the universe can be considered

as the best test laboratory.
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3.3.1 Cosmological

It is now evident from the standard big bang model that the temperatures in
the early universe were very high. The existing matter dominated era has lasted
throughout most of the history of the universe. But if we go back to the carly
epochs of the radiation era, the existing energies started converting into matter
which was obviously the relativistic matter at extremely high temperatures. The
ordinary vacuum quantum field theories are not enough to obtain the correct
information, so we have to evaluate the background corrections also. We want to
turn our attention back to an earlier period when the radiation and relativistic
particles were more important than ordinary matter. The thermal history of the
universe can be seen in Fig.(9). It is clear from this Fig.(9) that at 7' of the
order of a few seconds after the creation of the universe, the electroweak lepton
scatterings were taking place and the background temperature was high enough
to give non-ignorable effects. In this case, for the precise calculation of these
processes the effective charges and masses have to be incorporated. The check of

renormalizability of the theory is also important in such a background.

3.3.2 Astrophysical

The background effects are not only important in the early universe but they
are worth incorporating among the stellar objects. It is expected that the stellar
cores have very high temperatures. It is seen through detailed calculations that in
the stellar objects such as sun, T ~ 107 K which does not give significant thermal
corrections. Itven in the dense objects like neutron stars, the density corrections
are not significant. However, in the superdense collapsing stars like supernovae,
the statistical corrections are non-ignorable. Therefore, the thermal as well as
the density corrections are worth studying, though the theoretical models de-
scribing such systems are not so well understood. However, it is expected that
the tremendous amount of energy emitted from SN1987A can only be explained
if the corrections of the electroweak processes taking place in the core of these

stars are also studied in the superdense background, i.e., g > T > my; where
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[ stands for the corresponcling lepton flavour. The existing limits on T and
in supernovae [60] is T ~ 30-70 MeV and pu ~ 250-300 MeV where the leptonic
scatterings take place and the background contributions to these processes have
to be carefully calculated from the renormalization constants of the electroweak

theory in the relevant background.

3.3.3 Heavy ion collisions and quark-gluon plasma

In the heavy ion collisions and quark-gluon plasma, if it exists, the above men-
tioned calculations may be important because of very high temperatures and
densities. In hadronic physics where densities are somewhat higher than temper-
ature, weak hadronic processes can also take place. Therefore, in the perturbative
study of strangelet production, the above mentioned calculations are important
for the processes, e.g.,

u+de u+s.

3.4 Future Perspectives

The application of the above results to astrophysics, cosmology and heavy-ion col-
lisions can be in the systems studied where the hot and dense media are expected

to exist and the background effects are supposed to be non-ignorable.

The above calculations are done at low temperatures where chemical po-
tentials are even lower than the temperatures. A similar type of calculations
can be done at lepton densities greater than the lepton temperatures, which is
a more relevant regime for superdense stars. For higher temperatures and den-
sities, which are of the order of electroweak scales, more graphs involving the
hot gauge bosons and Higgs have to be incorporated at the 1-loop level. These
will be more important regarding electroweak phase transition which are thought
to lead the baryogenesis in the early universe. In addition to this, the higher

loop calculations are worth-while to check the validity of perturbative expansion.
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The calculational techniques developed here can be helpful in determining such

parameters and processes in other theories as well.
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Appendix A

A.1 Appendix A
A.2 Calculation of Self energy of W
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A.3 Calculation of Self energy of Z
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neglecting the square and higher terms, and ignoring O(ﬁ), we have
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m*m?,
f(mp, :t//’)}

i (A7)

Dropping the terms containing -~

2 , since myz very large than m; we get the result
/
in eqn.(3.7).

A.4 Calculation of Self energy of vZ

Zz (i(:)z 4. y /A l
[, = (27)’ /(l pT [’),,(/)—i ) {——————(p+ k + 2mib(p + k)°

)2 ~m

. 1
—m*np(p+ k) } (1= 75)(h+m) {———

p? —m?
+27i8(p* — mH)np (p)}] AT

After simpifying, we get

! 16i(iem Sdpnp(p m? ‘ m?
nmz - )1( - m)? [ P(l;;k()])(l _ Zp_z) {In l'm% +2p(1 + 277)/.7(,
1 2
—2pk cos 01} ] — = /p(l]mr( )1 — % ) {cos 0

[m/ + 2p(1 + i

+1
2
27»2

)/ |
—2pk | (l” i”""zj +2p(1 + ;’;)2 Yho — 2pk cos (/|> }

+1
_ | BAPRFAR. (lpnp(p)(l + il ——){n |m% + 2p(1 + —‘)]v — 2pk c039|}
—2pk 2p?

0
2
2 2p o

prdpn g (p) ; m? -
+k —=<1n |mg/ + 2p(1 + —= )k, — 2pk cos 0] + 2
o —2pk ' 2p*



y /p(lpnp(p)(] B 7712)
(—2pk) 2p?
+/ ])3(11)‘77.1:'([))( .777
—2pk 2p?

77L

1
~3 / pdpnp(p)(1 — —2——) {COSO =

+1

{111 |m% + 2p(1 + 2—2)L — 2pk cos ()|}

=1
+1

{]n |m% — 2p(1 + ———k — 2pk cos ()[}

=1

[777‘Z + 2])(1 + 2p2)k ]

(In |m?

p? —2pk
m? ¥ prdpnr(p) m? g
+2p(1 + 2—7);)/;0 — 2pk cos 0|> }~1 - / —(_—m-)—( - EP—2) {In|m3
2 * 2dpny ;
—2p(1 + %)ko — 2pk cos 0|}_] + ko/ %’Xﬂ {111 |m? — 2p
m? H pdpng(p) m?
x (1 ko — 2pk cos 0 om? | ——— (1 — —
L 2])2) » RS |}_1 + N / (—2pk) ( 2])2)
. m? +
{hl [m? — 2p(1 + m)/ﬁ(, — 2pk cos ()[} . (A.M
4 =1

neglecting the higher terms, since

then have,

l_[,).z 1();([(7[')2 2k n 2/130
B (27)1 ms o m

Sk

b(mp,£u) + { '.2 +

mmzy

2 4k,
m?m?, 33

d(mp, :E;L)J

my is large as compared to lepton mass, we

B Mz_ L2 2 } a(mp, +pu)
my - m o}

{ —3m? }
2
m?

4k 4 2 ) e(mp,tp) % Sk
mm?%  m?%  m? 2 m2mn?,
(A.10)
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