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Abstract 

The renormalizability of the stand ard eledroweak theory at finit e temperatures 

and densiti es much below the eled roweak scale at the one loop level in the back­

ground of hot and dense leptons have been checked. Moreover, we calcul ate self­

mass and charge renorm alization in such a background. Some of the app li cat ion s 

of these res ults a re a lso mentioned in this work. 



Introduction 

Il ttllliHI IIi:l.tll\'C is so cIlLlllI sia,sLi c: LII (I,L even Lh e as t oni shing di scoveri es , sO llwl.inws. 

call open new vcnll (~S of rese;Lr cll in Lil e lM rLicl ti a.r (I,rea .. I-lull1 Cl.n cllri osit.y ;J.! \\· 'I \'S 

c1 C' Il1(1,lIc.1 s 1.h (' illlp rovelllcn1. or kll o\V I (~ c1 ge. T herefore, Lh e scientifi c di scoveri es I(' elei 

1.0 new clir f'cL ions o f researcll. 

The in1.ellectllal ll1ind is al wa.ys f'x llb('r(~ IlL to Find t lt e ori g in of Lile 1IIIi \'(·I ,-.t' 

t1lrough Lh e di scovery or Ilew Ia.ws or na.ture. Th erefore th e beginning or i l j(-' 

universe has bee ll st udiecl sin ce long. In thi s regard th e stand ard big bang I1wcil ' l 

o f cos m ology is qlli1.c wdl a.ccppL(x l. T'hi s mocltd also depicts 1.he t hermal hi sl.()rv 

of t he 1II1i vers(-'. T il e illforlll aL ioll ahol l t t1w prf'vcd(l.nL Liwrlllod y nil.ll1ic t'lllld il.it ;II ;­

is v(~ ry important b(~CaIISe i t helps to IIn ci8rstanci t he ex ist ence of 0 111' galaxy, sO!;lr 

system (I,ml th e earth itse lf'. 

Presellt kn ow ledge of th e ear ly hi story of the unI verse [lJ star ts [rom t.ll<' 

Pl ancks epoch (i. e., L ,....., jO ~ ' I :3 sec ane! T = 10 19 CeV) , th e poinL a t wllic ll Citlil1ll ll111 

correcL ions La general relat i v i ty should render iL invali d. At th e earli est t il1 J<>s tlw 

universf' was a p las m a of rc~ l at i v i s ti c p articles , includi ng quarks , lepton s, gallgf' 

boso ns, and t he Higgs boso ns. If current ideas are correct , a nllmber o f spolli ;1-

neous symmet ry breaking (SSB) ph ase transitions should take pl ace d1ll'in g LIIl' 

cO llrse of th e earl y evoill tio ll o f t he uni verse. T hey include the grandllnifi e<i llll'­

ari es (curT's) and ph ase tran si t ion aL a t emperat ure of 1014 to 10 16 Gf'V , ane! l ill-' 

p l ect row~ak SSB phase t.ransitions Cl,t, temperatures of ar ou nd :1 00 C eV. Dllrill !.'; 

t hf'sf' SSI3 ph clsP t rall siLioll s som e of th e ga.ugf' hosons aq llire m ass v ie\. 1.11 (-' lIi p; ,~s 

m echa.ni sm ;wd th(-~ entire sy mmetry o f t he theory is broken to a lower sY lllllwl.n'. 

Th(-~ sta.nd ard cos m ology o f t he Ilni vf' rse and th e microwave background g i \l(-.> 

Ct. cica,r (-'v icknre of t he e l ed row('ak l)\'o C(~SSf'S ill 1;11(' ea.rl y uni vf'r sp . 1'11<'1'(' i , Oi l l 

(~v id ~ n cc 1'0 1' Icptoni c scaU erin gs aL T < 2 M eV i. e., in th e highly dense I1wciilllll 

a.nd thpn ,A-decays before I1II Ci80SY IlLi lPs is led to the f orm at ion of H e at T ,....., Ill ,. 

All ti1('se calcul a.t ions, even in the va,cuum th eori es o f parLicl e phys ics , cl o not. p; i \'(" 

th e d(~s ired informa,Lion rUld t he t echniqu es h a.Vf~ bpf'n deve loped to illl l)\'{J\ 'I' 11 ,:,.(· 



results in co rpo rCl,t in g difff: rent ty p<: o f' co rrections. Fo r a ny physicall y accf' pLaldlJ 

qu a.ntum Aeld th eo ry. (QFT) tb e qu es ti on of renorm ali zation is on e of t he bas ic 

req uirements . A mos t important s tep in thi s direct ion wou ld be t he ('! Vrti ll a.t io ll 

of th e r<: nol'lll a li zat ion co nstants in th e relevan t hackground. In tbis regard til<' 

rrff'c:Ls of th e L1 lf' rlll rtl ha.ckgrolllHI a re a lso Iw in g in c:o rporated t hroll g; h LlI<' ('" lell ­

la,t ion of t ll f' rad ic\.l,iv(' co rrect ions at th e l-Ioop level [2, 3,4, 5J as we ll as at t.'iJ(' 
2- loop If:ve l [6 , 7, 8J ill hot a nd densf: medium . 

Difl'crcnt rCll o rlll ;t1i zat ioli S(' II Clll CS for th e elcctrow<:a.k th eo ry have ' bee ll pro­

posed in lite rature [9J. T he Ill ost success ful among t ll f:se is the one by t ' l-! o() i'1 

[10], Sirlin [IIJ a nd SO Ill f: otil ers [12, 1:3J. Sin ce we a re dealin g with th e Arst orei l' r 

,('o ITect. ions a,t t he 1ll0l1Wlit and have II sed t heon-s hell sch f~ lll f~ [14], l'o ll ow in ,0; Ill ,J lil , 

['IS], it is worthw hil e to st udy th e radi at ive co rrect ions to electroweak PI'OCl-'SSl 'S 

and to check th e renorlll a li zahili ty of th e stand a rd elect roweak tb eory. 

Th e renormali zability of e l (·~ cI; roweak t heory in vacuum is quite well IIndl"r­

stood now . As a next step , we want to renormali ze tl1<" theory in hot and r1 l'IJ ~; (' 

medium so that the relevant background effects can be correspondingly in corp o­

rated. In thi s conn ect ion , follo wing Hollik [1 5], we try to evaluate t he renol'm a l­

izat ion constiwts of eled roweak th eory at finite temperature an d density (FTD) 

helow 1.\1(' t. hJ'(-~sholcl 1'0 1' creation of (d ed. roweal hosons in t. he hack.e;n )ll1 ld III; I!) 

1.\1(-' I-loop level. Vie usC' t he rcal -Lime i'orlllrl ii sm 1'0 1' t.hi s p1ll'p OSC (l,11I1 S('(' to WII ;11 

f'xtf~nt. 1.\l<' t. he rma.1 hackgrollnd call a lFp.ct t hp. pllys ical res ults. 
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C h apter 1 

Gauge T heories and the 

Standard Model 

1.1 Gauge Theories: An Introduction 

T ile pr(~s p.IlL 1l ll dp. rstalld ing of varin ll s rorc(-~s of Il at.lln~ n ~ li es 011 Lilln' ililsi(' 1'1"111 -

- cipl es of phys ics whi ch can be sllmma ri sed as: 

I. Tn vari ancp. of Lh p. lag ra,ngian under local gauge symmetri es in Yall g-iVI ill s 

th eories . 

2. Nambu-Golcl stone reali zati on of a symmetry or non-inva ri ance of \' (1. (- ­

uLim uncle I' t he symmetry tra.n sform at ion. 

:3. Higgs mecbani sm that combin es ( I) ancl (2) to eliminate t he 111,l s:, I(',-:s 

unph ys ica.l sca larfi elcl s from th e th eory and produce m ass terms fur 

t he ga. lI ge bosons so t ll at t he wea.k in teractions could be short ran,f.!;t'd . 

1.1.1 Abelian Gauge Theories 

T he mos1. well testecl t heory of the parti cle interaction, i. e., Quantum Elect rod y­

nami r.s (QED) , is based Oil th e prin cipl es or local gauge inva ri ance. To see t hi s, 



co nsid er a f ermion carry in g an elect ri c charge 'e' described by t he fi eld 7/' . Its cicc­

trolllag lldi c (C. lll ) il)tcr ;-l.c tiOli ca,l) hc deri ved hy dcm i),Il<iing t h;-d, t il<' lil .l!/i l)) ,!.::ii i l l 

for thi s fi eld shou ld I)f' in var i a.nt uncleI' t he local sy mmetry t ransformatioll : 

( 1.1 ) 

Th e kin eti c p.nergy t erm. in vo l v in g 0/1 ?/)(x) can be mad e inva.ri ant Illlcl t-')' i.l li s 

tra,nsform ation onl y if a i s replaced by a covariant derivative, i, e" 

( 1.2) 

w here A" tra.n sform s as 

( l. :q 

Eqs,( 1. 1) 1.0 ( 1.:3) arc co ll p.ct. i vc ly CiLlI p. c1 gaup;e p; rO)lp t.ra,ll sform ;-l1,io lls. I I. (d l l 1>( , 

shown that th (~ in var iant kin et.i c (~ Il erp;y 1. f~rll1 1'0 ), '1/) is 'l/ry,, [)" "I/) i),lld Lllid I'm / \" " 

is F' F" w where J.W , 

( I .II) 

i s t he Fi elcl st. rengt h t.(~ n so r. Thi s k~a.d s to t.h e lagrang ian densi ty, 

I -
r ___ I" l"'w _ I [) ,1 I 

.L..- - '2 ,11/ ? )"'1" ?fJ · ( I . 'i ) 

T he rorm or t he elect romagnet ic in te ra.ct ioll lagrangian dictated by tlw IO('il l S\ 'lll ­

m etry is 

£ f' III . ;-; A'L .... . = i e 'l YV ') ~ 
III t. ilL' 

( I . (i ) 

T'he t.ra,nsfornlCl,t ion In eq.(l.l) genera.tes th e U( l) gauge group. 

1.1.2 Non-Ab elian Gauge Theories 

1n 1954, Yang and Mi lls gener ali zed the abeli an U(l) transformation to the case 

vv lw rc th e local sy mmd ry is a,ssoc iated with t he non -aheli an grollI'. T il l-' i,I( 'i; j:-, 

t h at, in such a situat ion, on e could gener ate in t er act ion s that take one ty pe or 

p;-Lrt i c l (~ 1.0 (-),not iJ er , c.g., plt OtOIl pl ays a, rolp. or m ediato r in the e.m inLer(-)ct.ill ll. 

4 



T'o sLllcl y t il e ['o l'1l1 il,li sm 0 1' n O I1 - a.h (~ li il . n ga. II .e;(-~ tiwo l'i C's co nsid er C\ sil lll,l (' Ilf ' !I­

aheli all g rou p C. Ld 4' b(~ a multiplet o f fel'll1i oli s t l' a.nsformin g as a il il'l'e<iII (' ild( , 

I'f'presentat ion LindeI' G as foll ows 

( ! .i ) 

w herE" U IS (), unita.I'Y rep I'CCSC' n.t a.t ion o f G in tile space 1/) , To r.OllSt l'lI d iI (: ­

in vari an t kin(~ tic en cc rgy in 7/), no tE" Lha.L 

( I . ,,\ ) 

In (),nalogy w i t h t he ab eli a.n ca.sp., if W P. repla.ce 

t hen 

( I . I () ) 

1"0 I' I, II is to 1)(' ill va.r i (\.I ii" ohv iOll s Iy 0 11 (' III m;t Ii ave 

( I . I I ) 

Eqs.( 1,8) (-l.nd ( I .-I I ) , t ll f~ rdo ('(~, CO ll st i t lltP. t1w gener ali zed non-abe li an gall ,l';(-' 

t.rali sfo l'llla.t ioIiS 1'0 1' '1/' {I.lI d 1\/1 ' 'v\1(' II OW 11 (\'v(~ 1.0 (,O ll st rll c1. ti l(-! cO llll 1.eq)(J.rt. o r 

J~II/ fo r t he non-al)p. li al1 cascc. Us in g (~q .( 1.:3) , oncc find s hy simp l p. a. lgp.hl'i1 11 ,,11. 

( 1.11) 

iI.lld i t 1.r'1.Il sfol'l1I s IIn cl er C a.s 

Oll C' (·.i l-ll II OW wri te t.h (-~ rn ll ow ill g g<\.II ge in v<I.ri ant Ia.g ra.ng ian f or t he w hole syS t.I ' l ll 

as 
- j 

[ = _ ·t/ f,\, /I n 1/' + - T I' F' F' II/, 
I /' I :2 /111 

I .II 
( 1. 1 i ) 

\\ 1' 1'< ' 'g' is so m e ri i1l1 (-' l lsioll\ ess scale p (l. r 'I, lll f~ tcc r . 'vVe not ice t hat in ord er to pr(~S (' I '\- I ' 

t 11 (' gauge iIl Vi l.ri ;-I,II ('(' tiw\'( ' sh()11ld he a.s many gall gcc np. l cl s (),s t.lw numh('\' uf 

5 



ge nerators of th e gauge group . T he gauge potential is known to b e t he aclj oil li 

representa tion of th e gauge group . We can write it as, 

(1.15) 

wh ere th e sum over the repeated ind ex is known and Oc. are the generators of t he 

gauge g roup , and th ey sati s fy th e following commuta tion re lat ion : 

(1.] 6) 

J abe are the structure constants of the corresponding group, e .g. , for SU(2), ./~be = 

Cabe the totall y anti- symmetri c tensor. It then follows that 

(1. 17) 

wh ere 

( 1. 1 ~) 

Here 9 is th e universal gauge coup ling constant that couples the gauge fI eld s 

among themselves with the same strength. This is known as th e so call ed uni­

versality of th e gauge coupling. For example, the ,B-decay and fL-decay have t he 

sam e weak coupling Gj despite t heir wid ely diffe rent lifetimes . 

Let us see bow the non-abeli an gauge theories describe weak interact ion s. 

Take a model [16] based on an SU(2) gauge group with proton and neutron 

transforming as an SU(2) doub let ( ignoring heli cities ); neutrino an d elect ron 

transforming as another doublet , i.e., 

(1.19) 

Since SU(2) has three genera tors, i.e., the P auli ma tri ces (T2o , a = 1, 2 , ;~) , we ( ', III 

write 

(1.20) 
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The interact ion lagrangi an generated by local SU(2) symmetry follows from 

the first term in eq.( 1.14) to be 

LW 
tg 

--(/5 
. 2 

.g -
-t-( I! 2 e 

n)-y" [ 

( I .:! I ) 

The first t erm in eq.(1.21) leads via the second order perturbation to the ,B-decay 

process 

Note that the fermions, of course, co uld have mass since ¢'lj; is invariant under thp. 

transformation (1. 8) in thi s mode l. On e can immediately see from eqs.(1.8) ane! 

(1.11) that the gauge transformations, prevent the W-bosons from acquiring mass, 

because the mass te rm WJ.LWIL is not invariant under eq.(l.l1). Therefore, t hi s 

t heory predicts 'that weak interact ion s should be long ranged, in contrad ict ion 

with the observation. 

On e might think, why we clo not simply add a mass term Hm~ W{L WI') 

to th e lagrang ian and ignore its invariance under the local symmetry. Such an 

app roach was first a ttemped by Veltman [17]. However, it leads to divprgPIl(,('s 

beyond the one loop level [1 8] in perturbat ion theory, rendering it not too useful 

for making predictions. Th is approach, therefore, had to b e abandoned and an 

a ltern at ive solu tion of the problem had to be searched. Of course the solu tion 

was fOllnd uncl eI' th e idea of SSB. VVe consider this iclea in the nex t spcL ioll <III,] 

observe how SSB of t he local symmet ry produces mass terms for th e mediatin g 

gauge bosons. 

7 



1.2 Spontaneous Breaking of Local Symmetry 

In qu antum fi eld theories with symmetr ies, two conditions determine th e wa.y ill 

whi ch a sy mmetry m anifes ts itself. First , the lagra ngian must be inva ri a nt uncl E' r 

th e sy m Ilwt ry trallsformation. Secondl y, th e vacuum state must be in va. ri a nt 

unel er it. Howeve r, Nambu and Gold ston e [19J di scovered, around] 960 , that a 

lagrangian may be invariant und er a symrne try transformat ion , but t he vaClllIl ll 

st ate m ay not. be so . If the symmet ry is g lobal , the spect rum of the th eo ry co nt a.ill s 

massless particles i. e. , t he Go ldstone bosons [19J. It was realized [20J afte rwa rds 

t hat if a gauge symmetry is spontaneously broken, then ultimately we have no 

su ch pa rt icle . But the gauge bosons co rrespo nding to the broke n ge nercL\,()rs 

acq uire masses. This is kn own as th e Higgs mechanism. The SU(2)L0 U( I h· 
model of elect roweak interact i? l1 s uses this mechani sm in order to get masses fo r 

t.b e gauge bOSOI1S a nd , in fact , for a ll ferm ions. 

We take he re a simp le abeli an example of Higgs mechanism. Conside r a 

U(I) local symmetry with a sca,la,]" fi eld <fJ transforming uncl eI' U(1) as 

(1.22) 

If we demand that the sp in 1 gaugefielcl transforms under the local U(I) as 

(1.2:3) 

then t.he gauge in var iant lagra ngia n for the system can be written as 

L = La - V(:r), (l.24.) 

where 

(1.25 ) 

The potent ial V(<fJ) mu st be gauge invariant. The most general form of t he 

potential is 

(1.:26) 

8 



,\ must be pos it ive in ord e r that t he pote nti a l h as a lower bound . T here .is no 

res tri ct ion on t he sig n of f.1 2. H f.1 2 is pos it ive, t hen the shap e of t he potent ictl 

V( cjJ) a ppears as in Fig.(1). Minimi zation of the potentia l y ields 

It ,0 ~
2 

cjJ (.t:) = cjJo = -e . 
2,\ 

( 1.27) 

Th e lagra ngian is invari ant unde r t he eiO tran sform ation, therefore, e can be 

chosen as zero for conveni e nce, so t hat 

( 1.2X) 

Let us redefine 
1 

cjJ (x) = y'2 [O'(x) + \I], ( 1. 2CJ) 

with 

(1. :10) 

where 11 is the minimum value of cjJ (x ) and 0' (x) (a complex field) is a small f11l C­

tllation a round thi s rninill1ull1 , so t hat O'(x) can be ex pa nded in t e rms or CTf' a.t i()11 

a nd a nnihi lat ion operato rs. Subs tituting eqs.( l .4), (1.7) a nd (1. 8) in to eq.(I. [)), 

one can see that th e kin et ic energy te rm for (p lead s to a t erm He2v2AI,AIL) in t he 

lagra ngia n , wh ich is a mass t erm for AI-" Thus, the process of SSB g ives m ass to 

gauge boso ns . In fact, th e particle spectrum 0 [' the t heory al::;o appears to h (l\'e (I 

massless Goldstone boson ~ an d a massive scala r 7]. But these a re not the p hys­

ical particles, because by changing t he fi eld variables one can find a parti cul a r 

gauge, such that , th e m assless boso n is e limin ated from the lagrangia n. T hus one 

is left wit h onl y two in teract ing mass ive p a rti c les, a vector gauge boso l1 All il. lld 

a massive scalar , say H which is called the Higgs par ticl e . This phenom enon is 

kn ow n as the ' I-riggs m echan ism ' . 

We have di scussed SSB of a U(l) gauge sy mmetry for illustration. It ('ill1 

easil y be ext ended to the cfLse of SU(2) local gauge symmetry, in whi ch Oll P in ­

t rodu ces a Higgs weak isos pin doub le t coupled to th e fermion s a nd gauge bOSO Il S. 

Th e three bas ic ingredi ents needed for building a gauge model can be SUIl1 -

lll 'a ri zecl as: 
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• Choi ce of th e gauge group G, 

• Ass ignment of the fermions to a sui table represen t ation of the gauge group , 

• C hoice of the Higgs boson s and their expectation val ues to break the gauge 

symmetry. T he choice mu st be good enough t o reproduce the quark and 

lepton masses in a ph enom enologically acceptabl e way. 

1.3 T he Standard Model 

According to th e st and ard model of parti cle physics, a ll th e matter in the ul1i vers (~ 

is made of two kinds of parti cles , the 'qu a rks' and the ' leptons '. Qu a rks Ill ake lip 

'hadrons' and can p arti cipa te in all type of interaction s whereas, the lepton s are 

affected by electromagneti c and weak for ces only. It sholild be mention ed lw rf' 

t hat t he neutral lep to ns i. e., th e neut rinos, in teract on Iy weakly. 

As already st ated , t he hadrons are made up of quarks t hat come 111 S IX 

flavors, labelled as u(up), d(down), s(strange), c(charm), b(bottom), and t(top) . 

T he ' ba ryo ns' a.re ass um ed to be composites of t hree qu a.rks qqq and 'nwso ll s' (I S 

qq (quark-ant iquark ) composites. Considerable hadronic spectr a can be gain ed 

using potenti a l pi cture binding 3q 's and qq . It foll ows th at quarks have t he baryon 

number B = ~ and a lso to recon cile with stati sti cs it becomes necessary to give 

an additi onal SU(3) qu antum number to each quark fl avor , call ed 'co lor '. Ci ll ' ll 

qu ark fl avor comes in three co lors, Red , Green, and Blue. All the six quark fl avo rs 

a re now experimentl y verified . Vari ous kinds of forces (including grav itation) 

are supposed to a ri se from the exchange of spin 1 bosons whose couplings a re 

di ctated by th e underl y ing local sy mmetry. Before proceeding furth er , w(' n U1. in· 

a very fund amental sy mmetry [21] between quarks and leptons, for each ty pe 

(fl avor) of qu ark there exists a corresponding lepton and weak interactions respect 

qu a rk-Lepto n sy mmet ry, such th a t , a ll the lepton fl avors have correspond ing qu a rk 
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Aavors in different colors . 

(': ' ) I ( :: ) L 1 

( ~' ) L (::)" 2 

( ;< ) L (:: ) L 3. 

T he six fl avo rs a re grouped in to three sets (called generation s) of two each 

with i = R, G , and B, standin g for Red , Greeo, and B lue respect ively. All kn own 

form s of weak interact ions a re assumed to operate only inside each generation . 

Observed cross-generat ion tran sitions such as ,6.S = 1, i.e., t he strangeness cha ng­

ing weak decays a re exp la in ed in terms of a m ixing angle, the Cabbibo angle [22], 
and its extended version, the CKM (Cab ibbo, I<obayashi , a nd Maskawa) ma.tr ix 

[23J. 

In the res t of thi s chapter we will work only with the first generat ion , whi ch 

can be simply generali zed to higher generations by similar type of analysis. 

1.4 SU(2)L® U(l)y Electroweak Model 

Hi sto ri cally, the SU(2)L Q9 U( l )y model modifying weak and elect romagnet ic in ­

teract ions was first suggested by Glashow in 1961 [24J with the W-boson masses 

inserted by hand . T hi s was subsequently di scussed by Salam and Ward [25J a lso. 

T he mode l in thi s form with I-Tiggs m echani sm for t he generation of the W-bOSOllS 

was represented for t he case of leptons by Salam and Weinberg [26J. T he in co rp o­

rat ion of hadrons into t he model was clon e following the suggest ion of Glas how , 

IIIiopous a nd Maia.n i (known as the GlM mechan ism [27]) , whi ch inco rp orat.ed 

t he six fl avo rs of quarks (not then di scovered) . In the present section we will give 

an outlin e of this model. 
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The st ru cture of the model is compl etely determin ed by assignm ent or 

quarks and le ptons to th e representation of th e group. For simplicity we COIl ­

sider on Iy th e fI rst generation , i. e ., (/Je , e; 7'l , d). We denote th ei r SU (2) 1- 0<) If ( I h· 
contents by (Tw , Y) , wh e re Tw sta.nds ror th e weak isospin a nd Y fo r t he w(~a.k 

hy perch a,rge . 

7PL = [:' L (~, -I), 

en (0, -2) 

QL = [~ L (~ , ~) , 

'UR (0 , ~) 

dR (0, ~2) . 

We choose th e Higgs doublet deHoted by 

tra nsformin g like 0, +1) . The electri c cha rge in thi s model is g ive n by 

t h at is 
. j? 

eJ em = e(J· 3 + ~) 
~ ~ 2 ' 

( l.:31 ) 

(J .12) 

(l.33) 

( 1.:34) 

(L3:> ) 

j ~ represents the co rresponding four cu rrents. Y generates t he symmetry group 

U( J)y just as Q gene rates th e group U(l)em. In t hi s way t he electromagnetic and 

weak in te ractions a re in corporated in a single framework, the symmet ry gro ll p 

SU(2)L® U(l)y. 

T he basic electroweak in teract ion can be written as 

I: . (·"') lV . ' ( .~) B" ew = - ig h 'I' - ig Jy 2' (l.:3(j ) 
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showing th e isotripl et of vecto r fi e ld s l,vL/~ coupled to th e weak isospin current .7:' 
with strength 9 , and the single vecto rfi e lcl B/~ coup led to the weak hypercha rge 

current jt wit h strength conventionally taken to be ~ with i is the SU(2) index. 

T he fi elds 

(1.:H) 

desc rib e massive cha rged boso ns VV'F , wh ereas W3J.L and BJ.L are neutral fi e lds. 

The electromagne ti c interact ion is emb eded in eq.(1.6) through th e eq.(1 .4 ) (Inri 

(1.5). 

The cha rged current (C.C.) weak lagrangian can now be written as 

(1.38 ) 

whi ch leads to th e express ion for t he fermion coupling: 

Gp ,r/ 
h 8M,fy' 

(1.:39 ) 

The two neuti'al fi elds 1,v3J.L and BIL must m ix in such a way that th e mass i Vf~ fi elds 

are ex pressed as a lin ear combin ation of th e gauge fi eld s. 

A,L = BIL cos Ow + W 3 J.L sin Ow (massless ), 

Ow is the weak mi xing a ngle. 

(1.40) 

( 1.1 l) 

One can write from eq.(1.6) t he expression fo r neutral curren t (N.C .) elec­

troweak interaction as 

e N,c. 
ew 

',LLV ., ' J.L B -:913 v 3 /~ - 19Jy J.L 

- i [9 sin ewj~ + ~ cos ewjf] AI-' 

. [ 0 'IL g. e ' IL ] Z -L g cos wh - 2sm w)y J.L' ( 1. I:n 

By using eqs.(l.lO) and (l.11) . The first term in t he last equat ion gives t he 

e lect romagnet ic interact ion. Comparing it with eq .(1.5), we have 

9 sin Ow = f; cos t9 w = e, 
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wh ich. y ie lds , 
9 tan t9 w = -. 
9 

( 1. 44) 

To ex t ra.cL furth er physical contents of the mode l we wri te th e gauge in vari ­

ant lagra ng ia n in vo lvin g the fermi on fi e lds , t he gauge fie lds and the I-liggs fi e ld s 

such t ha t 

£ = £o =£v-V(~) , 

wh e re £ 0 is the pa rt of th e lagrangian in volv ing th e gauge in variant derivat ives 

for all fi e lds, £1' is the Yuakawa coupling of fermions and Higgs boson s, whil e 

V(~) is th e I-Ti ggs potential T he expli cit form of £0 is 

£0 = -1~L''('JD'J1/JL - en,"DJ1-eR - QL,J1-D"QL 

-UR,I'D"UR - dR,J1- DJ1-dR - (D:~)(DJ1- ¢ ) 

1 J ('''' 1 B 8IW -4 ''''. - 4 '''' , 
wh ereas, th e covariant de ri va tives 0" corresponding to fermion fi e lds are 

and 

D"ciR 

and the boson fi eld are, 

, 

·9 9) (8J1- - 1..
2

TiW iJ1- + 1..2 B J1- 1/JL, 

(8" + igB,J)eR, 
i, .f; 

(0" - -TiWi,J - 1..6BJ1-)QL, 
9 . 
. f; 

(0" - 1..3 B,,)llR, 
, 

.9 
(8" + 1..3BJ1-)dR , 

DJ1- ¢ (0
" 

- i,~Ti ,Wi'" - if;B J1-)¢' 

with the tensor fi e lds, 

J,,,, o"VVv - Ov W J1- + gWJ1- X lVv , 
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cP = LT2cP* is th e charge conjugate representat ion of cP, T, 'S are th e weak ISOS plll 

generators, and 

( 'I. -F) ) 

It is now clear from eq.(1.29) t.hat. th e minimum energy soluti on of th e Hami lto­

ni a n corresponds to 

I) 

cPo = .)2' with 
1/ - (;i - YT ' (1. !1 0) 

To get masses of the fe rmion an d the gauge bosons we use eq.( 1.50) which leads 

to 

(l.[) 1) 

(1.52) 

due to the choi ce of only one heli city state for the neutrino fi eld , mv = 0 in thi s 

model. 

On ce again we conside r the (W 3 'L - 13,,) secto r . One obtain s th e following 

mass rni xing matrix: 

W3,1 EJl 

VV3'L [ 
g2 v 2 -,.,"' 1 ( 1 .. '):1) 

'1 '1 

B _g(;v2 (/ 1/2 
Jl 4 4 

To ident ify t he physical gauge bosol1S, we have to diagonali ze t he above 

m ass m at ri x. The eige nvectors are those given by eqs .(1.40) and (1.4-1) wiLli t Il l' 

masses 

and 

m~ = O. 

91/ sec Ow 
4 

From eqs .(1.21) and (1.22) , on e can see that Mw and Mz are related by 

Mz cos tJ w = !I1w. 
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Now eqs. (1.9) a nd (1.13) impl y 

Mw= 
37.35 

sinew 
(1 .57) 

T hus we are left with only onp. p a.ram eter , th e weak mixing angle ew, whi ch I S 

measured experimentally from th e neutral current phenomena. 

The standard SU (2) ® U (1) model of elect roweak unification has been de­

scribed bri e fl y in t hi s chapter. This model works very well in explaining t he Ill \\' 

energy electroweak interact ions. Most of the predictions of the model have been 

confirmed experimentally. The Higgs sector of the model is sti ll unexplored . Also 

the CP violation probl em is a great chall enge to the model. In the nex t chapter 

we sha.1l discuss the probl em or renormalizat ion of elp.ctroweak processes ill IIIl' 

contex t or standard mode l. 
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Chapter 2 

Renormalizability of Gauge 

Theories 

2.1 R enormalization 

Renormali zibility means th at the amplitudes of different processes associa.t(~ c1 wiLl i 

an interaction should be f1nit e i. e., non-divergent at higher energi es and in higher 

orders of perturbation. The p rototype fi eld theory i.e., Quantum Electrody nam­

ics (QED), does in fact conta in divergent terms associated with integrals ove r 

intermediate states, but it is found that these divergences can always be throwli 

away in a redefinition of the ' bare' lepton charges and masses, which are in a ll Y 

case arb itrary, as being equal to t,he physically measured values . Thus we can sa.y 

that a theory is renorm ali zable, if a t the cos t of in troducing a finite number of 

arb itra ry parameters (to be dete rmined experimentally) the predicted a lllpli t lld l's 

for phys ical processes remain finit e at all energies and to all orders in the coupling 

const.ant. QED is an example of sLl ch a theory and for many years, was t he only 

one. 

The true nature of QED res ides in the concept of renormali zation. T01l10 11 -

aga call ed this concept by a name, in J apanese which phrases 'compounding 

interest' in bank accounts i. e., to say, putting the interest back into the account 
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to earn mo re interes t. 

To ex plain t he id ea be hind the theory by S. Tomonaga a nd m a ny others [2 t:] 

it seems app ropri ate to quote again t he phrase 'principle of renun ciat ion ' II sp.d 

by Tomonaga. Th e m ea ning of thi s phrase is, on e shou ld give up the hope t hat 

t he t heory is pe rfec t a nd t ha t e verything can be calcu lated from it , and in st eCl,cI , 

one should make a de finite di sti nct ion beL ween Lhings that call be ciLicui<l.ll'l i 

a nd t hose Lhat cann oL. However , th e t heori s ts after spending som e 20 y(-'ars 

in t he dark, 'finally, got t he idea that t he addition of some new elements to 

t he renormali zat ion t heory would p ave the way for a solu t ion. However, early 

th eories of weak in teract ions though well behaved at low energy a nd 1,0 lir :-, I. 

o rder , involved divergences at higher ord ers. T hese could be calcul ated on ly at, 

t he cost of introducing a n inde fini t e ly la rge number of arbitrary constants, t hus 

, loos ing essenti a ll y t heir predictive power , if any, as di scussed above. A good hi gh 

energy be haviour a ne! cance ll ation or diverge nt te rms at higher o rd ers a re Lilli S 

sensible dem ands fo r a ny physical Uieory. 

Tn order to anal yse t he different renormalization schemes, consider t he t ree 

level lagra ngia n of t he minim al SU(2)w 0 U(1h' model 

(2.1 ) 

with Lh e gauge fi eld pa rt 

£ = - ~ ltV 0' HI/w ,o - ~ B BJ.LLI 
G 4- /W 4- ltv , 

(2 .2) 

a nd t he Higgs part 

(2.3) 

wit h Lhe covari a nt de ri vat ive, 

a nd t he corresponding I-ri ggs Fi eld self- in t eract ion (Higgs poten ti a l) , 

18 



whereas t he ind uced ferm ion gauge field in teraction v ia the minimal subst it u t ion 

ru le 

(~. I) 
.i ) ,a 

involves a number of free parameters whi ch are not fixed by the theo ry. T he 

defin it ion o f t hese parameters and t heir relation to measureable quantities is 

t he main conte nt of a renormali zat ion scheme. T he parameters (or ap propri il1. l' 

combinations) can be determined from specific experiments with the he lp of t heo­

ret ical calcu lat ions of t he physical processes . After this procedure of definin g t he 

physical input, other observab les can be p redicted allowing veri fication of the L1lf'­

ory by compari son wit.h t he co rresponding experiment a.l results. In highe r urt!l ' r 

perturbation t heory t he relat ion between the formal parameters and measurab le 

quantities are different from t he t ree level relat ions in general. Moreover , t he 

procedure is obscu red by th e appearance of divergences from the loop integ ra.­

t ions. For a m athemati call y consistent treat ment one has to regulari ze t he t l1<'u r.v , 

e.g ., by dimensiona l reg ul ari zation (performing the calcul at ions in D-dimensions) . 

However, t he relat ion between physical quant it ies and t he parameters t heIl 1)("­

com e cut off dependent. J-Ience the parameters of the basic lagrangian, the ' bare' 

parameters, have no phys ical meaning. On the other hand , re lations beLwl'('1I 

measureable physical quantiti es, wh ere the parameters drop out, are finite and 

independent of the cut off. It is ·therefore, possible to perform tests of the t he­

ory in te rm s of such relations by eli minating the bare parameters [29, 30]. Th e 

minimal SU(2)w@ U(l)y model, involves free parameters such as: 

which have to be determined experimentally. T hese are chosen such t. hat. t lwy 

compri se t he physical meaning of different parameters of t he t heory, mea.ns t hi"Lt 

t hese are related to experimental quant it ies. T his direct relation is a lso dest royed 

t hrough higher ord er co rrections. Also t he parameters of the orig ina l lagra ngia n 

call ed t he bare pa.rameters, differ from t he co rresponding physical qua.nt iti f's II \' 

UV-c1 ivergent contribution s (b ut appear in the hi ghe r values of moment um ). 
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These di ve rgences a re cancell ed in relat ions between the phys ical quantiLi f!s, 

all owi ng for m eaningful predictions in th e renormali zabl e theori es. T he poss ibili ty 

to evaluate predictions of a renormalizable model is the followin g: 

• calclll a te physical q uantiti es in terms of t he bare param ete rs. 

• use as many of th e resu lting relations as bare param eters present , to express 

these in terms of physi cal observations. 

• in sert the resulting express ions into the remaining relations. 

In this way we can predict physical observables in terms of other physical 

quantiti es, whi ch have to be d~ termin ed from exp eriments. In these predirtion ~ 

a ll UV-divergences cance l in any orde r of perturb at ion th eory. Th e predi ct ioll s 

obtained from different input param eters differ in finite orders of pertUl'batioll 

theory, in higher order contributions. This electroweak on-shell scheme is th e 

straight forward extension of the familiar QED , first proposed by Ross a.nd Taylor 

[14] and used in many practi cal appli cations [11 , 31, 32, 33, 34,35]. 

For stable parti cles, th e masses a re well defined quantiti es and can be mea­

sured with high accuracy. The masses of Wand Z boso118 are related to t he 

resonance peaks in cross sections where they are produced and hence call il i s ll 

be accurately determin ed. The mass of t he Higgs boson, as long as it is ex­

p erimently unknown, is treated as a free input parameter . Before we can make 

predi ctions from the th eory, a set of independent p aram eters has to be dete r­

min ed from ex perirnents. Thi s can either be don e for t he b a('(~ quantities Ol' 1'1Ir 

renormalized param eters which have a simple physical interpretation . In a 1110re 

res trictive sense , a reli ormali zation schem e characterizes a specific choi ce of ex­

pe rimenta l data points to be used as input , defining the basic parameters of th e 

lagrangian in terms of which t he pert urbat ive calculation of physi cal amp li t lldl 's 

is performed. Predictions for the relat ions between physical quantiti es do not 

dep end on the choi ce of a specific renormalization scheme, if we perform th e 

calculation to a ll orders in the ])erturbative expansion. Practical calcu lat ions, 

however , are obtain ed by truncati ng perturbat ion series, rnaking th e pred ict.iull s 
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dependent on t he chosen set of bas ic pa rameters and thereby leading to sclw l1lf' 

depend ence. 

Parameterjzations or ' renormali zation schemes' frequently used in t he e lec­

troweak calcu lations are: 

1. T he on-she ll (OS) scheme with free parameters CY, Mw , !VIz, 111j, J\!1 /-l 

2. The G fL scheme with the basic parameters CY, G", M z , 1nj, MH 

3. Th e low energy sch eme with the mixing angle as a basic paraIl1f'te r 

defined in neut rino electron scattering CY, GfL , Sin 2()ve, mj, M/-l. 

4. Dimensional Regular izat ion: in whi ch a divergent multiple in tegra llll <l.Y 

be made conve rgent by reducing the number of multiple integral s . In 

dimension.al regul arization we keep the space-t ime dimens ion-D lower 

t han four dim ei1sional integral by a convergent D-dimensional one. Ex­

plicit momentum integrat ions give an analytical expression in the di­

mension D. The or igin al divergence will appear as a pole at D = 4 [40] 

upon in tegrat ion on D after t he analyt ical continuation . Now we wi ll 

di scuss t he I-loop contributions to the on-she ll parameters and t heir 

renormali zat ion. Since the boson masses appear in the particle p ropa.­

gators , we have to in ves tigate the effects of the HI and Z self-energi es . 

5. The MS-scheme. The modified minimal substraction schenlf' (f\1S­

scheme) [36, 37, 38] is one of t he sim plest way to obtain finit e I- loo p 

expression s by performing t he substitution , 

2 - -, + In 471" + In {l 2 ~ In IlMS' 
E 

in t he divergent part of loop in tegra l [39]. 

6. The star * scheme where the bare parameters eo, G~, 5; are eliminated 

and replaced in t erms of dressed running (K2-dependent) paramete rs 

[40], e2(!(2), G,L (Ie) , 52(/(2), mj, MH . 

We rest ri ct our d iscussion to the transverse parts ITT. In the elect roweak t he­

ory, different from QED, the longit udin a l components ITL . of the vector boson 
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propagators do not vani sh in phys ical mat ri x elements . B ut for light exte rn al 

fermi ons, t he co nt ri b llti ons a re s uppressed by C:~)2 and we can safely negll·(,t 

t hem. Writ ing the self-energies as [41 ]. 

vll,Z W,Z 

'L = 9ttll L + ..... , (2.5 ) 
/tII 

wit h scalar fun ct ions Lw,z(q2), we have for t he I- loop p ropagators (\I = W , Z) 

-29 ' '/-La ( V ) 

q2 _ MV 2 -2;;= (2.6) 

Besides t he fermi on loop cont ri but ions in the elect roweak theory t h e l'l~ il l'l ~ "ti S() 

the non-Abeli an gauge boson loops and loops involving the Higgs b oson . In t l1P 

graphical rep resentat ion, t he se lf energies fo r t he vector bosons denote the su m 

of all t he d iagrams wi t h vir t ua l fermions, vector bosons, I-liggs a nd ghost loops. 

Res ummin g a ll self energy in sert io ns yields a, geom et ri cal se ri es fo r t he dressl,d 

p ropagators: 

. [ ~v ~v 1 -L9 /tII '. L.J L.J 2 

2 M2 1 + (2 liP ) + (2 liP) +. q - V q - V q - V 
(2 .7) 

T he self energies have t he fo ll ow ing proper t ies : 

• Im LV M~ =1= 0 for both HI and Z. Th is is because Wand Z are unstab le 

particles and can decay into pairs of li ght fermions. T he imaginary parts 

correspon d to t he total decay wid t hs of W, Z an d remove t he poles 1'1'0 111 

t he real axis . 

• Re LV f'vl~ =1= 0 for both Wand Z as they are UV-di vergent . 

T he second feature shows t hat t he locat ion of the poles in t he propagators I S 

shift ed by t he loop cont ri but ions. Conseq uent ly, t he importan t steps in mass 

renormalizat ion consist of a re- in terpretat ion of the p arameters. T he m asses ill 

t he lagrangian cann ot be the physical masses of Wand Z but are t he ' bC\. re­

m asses' related to t he phys ical masses M w , Mz by : 

i\lI~ = M~ + 8M~, (2 .8) 
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(2 .9) 

with counterte rms of 1-loop order. The 'correct' propagators accord ing to til is 

prescription are given by : 

(2.10) 

in stead of eq.(2.3). Th e renorm a1izat ion conditions which ensure that MW,7 'I,·e 

the phys ical masses fix the mass counterterms to be 

w 

biVIBv = Re 2:)MBv) , (2.11 ) 

z 
bMi = Re ~(Mi). (2 .1 2) 

In this way, two of these input parameters and their counterterms have been 

defined. Another param eter is the elect romagn et ic charge e. T he e l (~ctrow( ' ;'I . I ; 

charge renorma1i zaL ion is very similar to that in pure QED. As in QED, we waut 

to retain the definition of 'e' as the class ical charge in the Thomson cross-sect ion , 

Accordingly, the lagrangian carri es the bare charge eo = e + be with the charge 

counterterm be being absorbed in th e electroweak loop contributions to the ee, 

vertex in the Thomson limit. This charge renormalization con dition is simplifit'd 

by the validity of a generali zation of the QED Ward ident ity [42] wh ich iI1lpli f's 

that the corrections related to the external particles cancel each other. Thus for 

5e on ly two universal contributions are left: 

be = ~ fP (0) _ _ si_n_O_w--,2:=-'Y_z 
e 2 cos BwM; 

(2. I ;n 

The first one in analogy with QED, is given by the vacuum polarization of the 

photon. But now , besides the fermion loops, it also contains bosonic loop di ­

agrams from W+ W- virtual states and the correspon ding ghosts . The second 
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t. e rm co ntain s the mixing between photon and Z, in gene ra l described as il 1))1 \ ll lg 

Z propagator with 2.:T' norm a li zed as 

Th e fe rmion loop contribution to 2.:T'Z vanishes at q2 = 0; only the non-ab(-~ lia.1I 

bosoni c loop y ie lds 2.:T'z (O) i- o. To be more precise, the charge renormali zat ion 

as discussed above, is a condition for the vector coupling c~:mstant of the photon 

only. The axial coupling vanishes for on-shell photons as a consequence 0 1" (II(' 

Ward identity. From the diagonal photon self energy 

T' 
I)l) = q2fP(q2), 

no ma.ss term arises for the photon. Bes ides the fe rmion loops, t1H'~ hoso l1 loops 

behave like T' 
L(r/) ~ q2nzos (0) -t 0, 
bos 

for q2 -t 0 leav ing the pole at q2 = 0 in the propagator. The absence of illa ss 

terms for photon at all orders is a consequence of the unbroken electromagnetic 

gauge IIlvanance . 

Concluding th is di scuss ion we summan ze the prin cipal st ru cture of ("1('('­

troweak calcu lat ions . 

• The classical lagrangian £ (e, Mw , M z , ...... ) is sufficient for lowes t ord e r 

calcu lations and th e parameters can be identified with the physical pa.ram ­

eters . 

• For highe r order calculat ion s, £ has to be co nsidered as the 'bare' lagrang ian 

of the th eory £( eo , Mev , Mz, ... ) with 'bare' parameters which are related La 

the p hysical ones by 

eo = e + 8~ ; NI",7 = M~ + 8M'&r, 

MZ2 
= Mi + oMi, 
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Th e CO UIlt.e r te rms a re fi xecl in terms of a ce rtain s ubset o f 1- loop di il.g ril. ll ls 

by sp ecify in g th e de fini t ion of t he p hys ical pa rame ters . 

• For any 4-fe rmion p rocess we can wri te down the I-loop matr ix element 

wit h t he bare parameters a nd t he relevant loop di agrams. Toget he r wiLli 

t he counter terms, t he m a tri x element is finit e wh en expressed in t erms of 

t he p hys ical param et ers, i.e; a ll UV-s ingul ariti es a re rem oved. 

It is a we ll kn own fact that in Q E D, the Fey nman di agra ms for the se lf-ene rgy 

at the vertex wh ich contr ibute to th e rad ia t ive corrections to t he decay p rocesse. · 

can be d ivergent. T hese d ivergences are cancell ed by add ing m ass coun te rLerms 

to the lagrangian. Th e method by whi ch these infinities are removed dennes t. llP 

renorm alizat ion procedu re in t he th eory. The singu la riti es are sep arated in til t: 

form o f t he reno rmalizat ion of fermion mass , wavefun ct ion and cha rge, usua ll y 

expressed in th e form of corresp onding renormalizat ion constants. 

The techniques for t he renorm alization of the standard m odel In Vi\,C ll llill 

have been ex tended to in clude t herm al background effect s. Bu t before going to 

t hese fini te temperature (FT) effects we will give the b asic formalisms usecl to in­

co rporate the stat istical background effects . In quantum fi eld theory (QFT), t he 

temperat ure effects a re inco rporated in t he E uclidean space t h ro ugh imagi l1 iLr.)' 

t ime form a li sm [43]. T hi s fo rm alism was or iginally developed by Matsubara whi ch 

was la ter ex pressed in terms of fun ct ional path integrals . In thi s fr am ework , t he 

di agramm at ic methods are essenti all y equi valent to the Feynman-Dyson pert ur­

bat ion t heo ry of zero te mpera ture QFT . The onl y excep t ion is t ha t t he imag i na ry 

t. ime domain is fini te and pe ri od ic. T he in1aginary t ime form alism is parti cul a rly 

sui ted to t he di rect computat ion of static qu ant it ies and to t he use of high tem­

p erat ure expansions. However, low temperat ure expansions and the properti es of 

ex p li cit ly t ime depell dent quant iti es are mu ch less a.cCf~ss i b l e. T hese, ill pra.c (,jc(', 

invo lve analy t ical cont in uation to formu late t he fini te- temperature fi eld t heo ri es 

in terms of t he real-time or Minkowski space vari ables, which are obtained by 

Wi ck's rot a tion (x o -+ .L o + ifJ) from E uclidean sp ace . As mentioned above, in 
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the Euclidean space the energ ies are ,discrete given as, 

2mr 

in boson propagator , and 

Wn = ----:--(3' -z 

(2n + 1) 7r 
-i(3 

(2.14) 

(2.1 5 ) 

In the fermion propagato r. T hese di screte energies are summed over infinit. e" 

values of n whi ch y ield a divergent seri es even for fi xed temperatures brea.kill g 

the Lorentz covari ance which is in turn res tored in the form of manifes t covar i anc(~. 

But a very cruci a l probl em associated with the real time formali sm [44] is that 

of higher order graph s. T he product of delta functions of the propagators g ivf' 

rise to 8(0) type s ingul ariti es, a n unusual singul arity which is difficult to hand le. 

At this stage it is useful to enumerate the advantages of the real -time formali sm 

over the imaginary-t ime form a li sm , which a re: 

1. As discussed above, it is not c1iffcult to see that summation s over inrilli Le 

energi es in propagators a re avoided in thi s formalism , In this W(;I,Y 

a possible divergent summation can be rep laced by the distr ibu t ion 

function in the theo ry. 

2. The removal of the di screte energy summations leads to the restoration 

of covariance in the real t ime formali sm. This is done by in tro ciucillg 

the m anifes t covari ance a nd employ ing the unidirectional time like four 

velocity of the heat bath , ltJ.L, defin ed as : 

ltJ.L = (1,0,0,0). 

Whence the ex ponenti a ls in the propagator can be written as: 

(2. 1Ij) 

with the particle propagators expressed in the covariant form such t ha t 

the fermion and boson di stribution function s are: 

1 
ndp) = eIJ lp.1L1 + l ' 
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and 

nB(k) = --­
ef3 lk.u l - 1 ' 

(2. 18) 

respectively. One can see that this introdu ces u,! covari ance ill ch is 

formali sm. Due to thi s manifest covari ance a lmost all t he problems can 

be studied in vo lving quantum statist ical background effects in quantum 

fi eld theory. 

3. Another advantage of the real time formali sm is that it imm edi a[.(-·Iy 

splits the calcu lat ions in to a ze ro temperature and a t emperat m e elC'­

pendent part by virtue of such a splitting in the particle propagators. 

Thus it is always convenient to calculate t he fini te t emperat ure part 

separa te ly anel add its contribution to T = 0 pa,rt. T he reby, th e r ; t1,ju 

of th e fin ite temperature correct ions to t he un corrected (T = 0) result :j 

for var ious temperature region s can be relat ively easi ly evaluated a nd 

compared wit h the results of any available phys ical process. 

4 . In the process of analyt ical continuation for the real-time formali sm 

from th e imag in ary-t ime one, th e imposed p eriodic bound ary condi t ions 

on the temp erature 10 , -i,81 are removed and the formal ism becom es 

valid for al l temperatures. 

5. An extens ion of the real-time formalism to higher order graph s vv hi ch 

enab les to cancel 8(0) type singu lar iti es has been given in the t her­

mofield dynamics (TFD). However, we sh all not go beyond one loop 

approximation in t he perturbative expansion , t herefore, Tro met. lwei 

will not be needed in our analysis. 

6. Finall y, in contrast to the imaginary time formalism the real time for­

mali sm has a well defin ed zero t emperature limit and systemat ic: 1( 1\\' 

t emperatu re expans ions be.come access ibl e . It is, of course, poss ible to 

compute t ime dependent quantities, such as the linear response func ­

t ions, direct ly without ll sing potentially very compli cated analytical 

continuat ions. 
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7. In thi s form ali sm the fermion propagato r is: 

wh ereas th e boson propagator in th e Feynman gallge is [45J. 

wh ere nF(p) a nd nB(p) a.re the Fermi-Dirac and Bose-Einste in di st ri ­

bution fun ct ions given in eqs.(2.10) and (2.11) respect ively. Feynl1Ml1 

diagrams a re calcul ated by rep lacing the vacuum propagators by the 

above propagators. The fermion distribution fun ct ions act as a reg ll­

lar;zation parameter th ereby providing an ultraviul et cll toff. Howev(~ r , 

the divergence in th e infrared region appears in an enhan ced form i. e ., 

rOO elk 
fA rv i o TnB(k), 

whi ch can be elimin ated in th e physical processes [46,47,48, 49J. We 

therefore , propose to preferably use the real- t ime form ali sm for t he 

renormalizat ion. Th is is necessary because the renormali zation pre­

scriptions developed at zero temp eratures cannot be direct ly <1 ppii( 'd 

to the fini te temperatlll'e theory, because of t he absen ce of Lon~ n\. z 

invariance, which is an essential ingred ient of the zero temperat ure 

theory. 

We have a lready di scussed the zero temperature renormalization methods in t hi s 

chapte r. Now we present th e finit e temperature renormalization procedure in 

Q E D developed by Donoghue, Hol stein [3J and Robinett [50J . 

2.2 Renormalization of QED at Finite Temperature 

It is already di scussed that in QED , th e Feynman di agrams for the self-energy itnd 

vertex graphs, which contribute to t lt e radi ative corrections to the QED processes, 
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contain divergences. T hese divergences a re cancell ed by adding mass cO llnter 

terms to th e lagrangian. Th e method by whi ch th ese infinities are removed ci e fin es 

the renorrn a lization pro cedure in the theory. The singularities a re separated in 

th e form of th e renormalization constants Z" Z2, and Z3 whi ch renorma li ze 1.11<' 

fermion mass, wavefu nct ion, and charge respect ively. 

The t echniques for th e renormalization in zero temperature fi eld theory 

have b een ex tended to in clude finite temperature effects [3 , 51, 52]. The elect ron 

self-energy up to the order (¥ in Pig.(2) at finit e temperature is: 

L,(J(p) = L,T=O(p) + 4:3 J d4
q(2m - p + n X 

[
nF'(p - k)o(p - k)2 - m 2 

_ nB(k)o(P) ] 
k2 + if. (p - k)2 - m 2 + u ' 

(2. 1c)) 

giving, 

2 [ 6a ] 4a m ] - --;-b(m(3) + --;-mTa(m(3) 

2 2 [ 6 1 +3"C\'7fT 1- 7f 2c(m{3) , (:2. :20) 

The temperature dep endent radiative corrections to the electron mass upto the 

first order in a , is obtained from 

n~phys = m + Om. 

Squaring (2.21) and neglecting the (om)2 t erm, th e correction is 

Om 
11/, 

with 

1 (2 2 
--2 m7J/" S - Tn ) 2m y 

a7fT
2 

[ 6 ] 2a T 3a -- 1 - -c(m {3 ) + --a(m{3 ) - - b(m{3 ), 
3m2 7f2 7f m 7f 

a( m (3 ) 

b(m(3) 
00 

n= l 
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c(m(J ) ~ (-lr -nm{3 
6--2-e , . 

n 
n= l 

(2 .:tl) 

(2.24) 

At low temperature , the function s a(m(J), b(m(J), and c(m(J ) fall off in powers of 

e- rn {3 in compari son with T~ and can be neglected so that 
rn 

8m T~me a7rT2 

--+ --
m 3m2 . 

(2.25 ) 

MOI'cover, in the high t emp erature limit , a(1n(3) and b(m(3) ar e neglig ibl y :;; 111i111 

whereas c(m(J) --+ -7~. Wh en, T becomes very large compared to me, the ter m 

with (~)2 dominates giving: 

(') "F") ~ , ._ n 

m 

Therefore, eq.(2.1 G) is valid for a ll t emperature in QED including T rv me' Thi s 

range of t empera ture is parti cularly important from th e point view of cosmology. 

It has been found that some param ete rs in th e early universe such as the ene rgy 

d ens ity PT a nd the helium abundance pa rameter Y become slowly vary ing 1'1111( '­

tions of t emperature [53J whereas they are constant at T ~ me and T « m e 

[54, 55J. 

The t emperature dependent wavefunction renormali zation constant hii s 

been obtained as [5J. 

Z:; l(T = 0) - - -nB(k) - - b(m(J) 20i 100 

dk 5a 
. 7ro k 7r 

aT2 1 + v 7r 2 

+ E 2\1 In --[- - mc(rn(J) + rn(Ja(m(J)], 
7r < l -v 6 

( -J )- ) 
~ ._I 

The charge renorm a lization constant at'nnite t empera ture has been calcul ated 

from the vaccum pol ari zat ion of a photon in F ig. (3) by writing 

(2.28 ) 
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wh ere 

wit h 

E q .(2.27) is now solved to obta in th e longitudinal and transverse compol1 E' lll S (jr 
IT I-'v , using 

(2.29) 

wh ere , 

and , 

Q/l V (2.30) 

with 

T hus, th e finit e t empera ture correct ion to th e longitudinal a nd tra nsverse CO lll ­

ponents of the ph oton self-energy upto th e first order in a becom e 

4e
2 

[1 _ W2 ] [{(1 - --===-- In w + k)(ma(m(3 ) _ c(m (3 ))} 
7[2 k2 2k w - k (3 (32 

+- 2m -w + m 1 { 2 2 ll P + 37w
2 

b( (3)}] 
4 72 ' 

(2. 31 ) 

2e
2 [{ w2 + (1 _ w2) In w + k} {ma(m(3 ) _ c(m(3 )} 

7['2 p f.:2 w - k (3 (32 

+~ { [2m2 _ w2 + l07w
2 
~ 131P} b(m(3 )}] , (2. ;32) 
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respect ively, using 
iJ - PILl) 

F,,,, - k2 - ITT (2.33) 

With P --+ 0, th e charge renormali zat ion has been determined, giving 

Z-l = 1 _ ~ { c(m(3) _ ma(m(3 ) _ ~(m2 _ w
2

)b(m(3) }. 
3 m 21['2 (32 (3 4 3 

(2.:14 ) 

In th e next sect ion , we give t he gene rali za.t ion of these results after in cludillg t i ll' 

density e ffects . 

2.3 Renormalization of QED at Finite Temperature and 

Density 

The study of hot and dense sys tems like the quark-gluon plasma requires t he 

in corporat ion of t he nnite density effects a longwith those of temperat llr('. ,\ 

system atic development of the FTD dy nami cs has been done and the quest ion 

of renormali zation examin ed in detail [56J. Th e mass less bosons do not ex hibit 

the chemical potent ial(J-l) . T he fe rmion distribution function, however, has to be 

changed to in clude the density effects as [.57J. 

1 
nF(k) = e.B lkl + l ' 

in th e fermion p ropagator giving 

i(jp+ 177.) . (j, ) C( 2 2) 
j. . - 21[' l' + m U]J - m 
p - n/,+u. 

[O( Ep)nF(p + J-l) + O( -Ep)nF(p - It)J , 

(2.:35) 

(2.36) 

T he sign of chem ical potenti a l corresponds to the charge of the fermi on. 

T he a(m(3 ), b(m(3) and c(m(3 ) function s in eq.( 2.23) are replaced IJ)' 

a(m(3, ± It ), b(m(3, ±/.L) and c(m(3, ± J-l) given by 

a(m(3, ±J-l) 

b(m(3, ± J-l) 
00 

I) -1 t e'fH.BIL Ei( -nm(3), 
n=1 
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(2 .:37) 

where ± correspond to part icles and antipar t icles in t he backgro un d . If t lw l'(' ;' 1.1' (' 

p a rti cles a nd a.l1tip ~\' r tic l es with t he sam e chemical potential J.l in the med iulll we 

can simpl y have t he foll owin g fun ctions. 

00 

b(mfJ, J.l) = I) -It cosh (n fJ J.l) E,( - nmfJ ), 
n= l 

00 e-nm~ 

c(mfJ, J.l) = I) -It cosh(nfJJ.l)--2-· 
n 

n =1 

Th e FT as we ll as FTD correct ions have been used to evaluate the change 

in th e decay ra t e of th e sca la r Higgs bosons [3, 51, 56] . We will calcul a t e s imil a r 

type o f co rrect io ns t o t he e lect roweak decays in t h p. next chapter a nd (~ Vi tll li·I. I (· 

the renormalization const ants of e lectroweak theory at t emperatures suffi cient ly 

below th e elect roweak scale such t ha t T « 100 GeV , i.e., low t emperatures 0 11 

the elect roweak scale . 
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Chapter 3 

R enormalizat ion of Elect roweak 

Processes in Hot and Dense 

Medium 

T he renorma:li zat ion [56J of QED at. rTD in volves t he rep lacement of t he (ul d 

propagators of temperature independent theories by t he hot and dense propa­

gators [57], ment ion ed in the las t chapter. T he self energy correct ions to t he 

elect ron m ass at FTD up to t he first orel er is calcula ted in ref.[56]' from wh ich t.Iw 

wavefun ct ion renorm alizat ion can also be direct ly obtained . T he elect ro n Jl)([ ;-;S 

shift at FTD has importan t phys ical imp li cat ions . Such calcul at ion s have also 

been done upto 2-100p level [6 , 7, 8J in QED. These renormali zed mass, wave­

fu nct ion and charge of the part icles at FTD in QED give some corrections to t he 

parameters in cosmology and as t rophysics. So t he most important app li caLiu ll s 

of t hese electroweak and QED processes at rTD are expected in cosmology ,we! 

ast rop hys ics and the uni verse can be considered as t he best tes t laboratory fo r 

F T D th eori es . 
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3.1 Calculations of the Renormalization Constants 

T he calcul at ion 0'[ t he renorm a lization constants of t he elect roweak t heory at 

PTD up to the one loop leve l are evaluated in the background of hot and dense 

leptons. We work at t he t empera.t1ll'e an d the chemi cal potential suffi cient ly hf'­

low the electroweak scale where we do not have any hot and dense elect rowf'a k 

gauge boson or I-riggs particles in the background . Therefore, t he stat istical cor­

rect ions due to t he background of such part icles need not be evaluated . We onl y 

m enti on those di ag ram s whi ch acquire t he background corrections wh ereas a.11 1.11(· 

other diagrarns have t he same vacuum contributions. I-Jere we use the frame wo rk 

of real-time form a.li sm where th e backgrou nd correct ions appear as t he acldit.i \"(· 

correct ions to th e vacuum results . We prefer to evaluate the background cont ri­

butions to t hese renorm alizat ion constants in parallel to t he vacuum ca icu lcl tioll s 

[1 5] 

3.1.1 Mass Renormalization 

Fermion Self-mass 

i. Leptons: 

T he se lf mass of cha rged leptons at low temperature has been calcu lated i"rom 

t he mat.rix amp litude of Pig.(2) whi ch can be wri tten as: 

ie~ J d4 kTr {_JiL,/1-( l - ,s) 
(27f)4 2V2 
i(p - ~) + m2 i -[9,"(1 - ,s)} 
(p + k) - Tn} x k2 _ m~ X 2V2 ' 

T hi s diagram gives a zero cont ribu tion at low temperature. However, in cas(~ of 

neutral leptons , Fi gs.(8a) and (8b) contribute to the self-mass of neut rino if it is 

considered to be a massive part icle [58, 59]. 

ii. Quarks: 

In the case of qua rks, their masses have no effect at this temperature and remain 

just the same as in vacuum . 
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Self mass of Higgs 

Since we are work ing with temperatures sufficient ly below the Higgs, lV, a lld Z 

masses, the self mass of Higgs does not get any significant corrections from th e 

background of hot and dense pa rt icles except leptons. Considering Fig.(4) , t il e 

resu lt is obtained as 

with 
- 2 2 2 8k(ie)2 [ ma(m(3, ± fL ) c(m(3, ±fL) } 

1TI H = mH + m ( )4 2 (3 + (32 ' 27r m I_I 
(3.3) 

Gauge Bosons 

T he d iag ra ms contr ibut ing to t he self-energies of t he photon , W, Z a nd ,Z 

t ransit ion contain fermi on, vector boson, I-liggs an d ghost loops. Only the ferllli ull 

loo ps at such low temperatures need to be cosidered in more det a il. In t hi s sect ion 

we are dealing wit h t he self-mass effects so we di scuss I -loop con t r ibutions to t lw 

on-shell parameters and thei r renormalization . Since the boson masses are a part 

of t he propagators so we have to investigate on ly t he effects of t he HI ewel L: 

self-energies here. 

Fo ll ow ing Hollik [15], a ll self-energy insert ions yield a geometrical series for t he 

dressed propagators in F ig.(5). eq.(2 .7) shows that the poles exist at: 

VI' 

k2 - M~ + I)k2) = 0, 

which t hen gives 

wit h ref.[ AA] 

(:3.4-) 

VI' 

17,/,2 = M&, + L(k2
), 
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M + -- x -- +------2 (-igW )2 27r i k2 [{ 10ko 2m 2 } a(mf3, ±!t) 
w 2V2 (27r )'1 m 'tv m'tv m f3 

{
2m2 } { 20ko 2 2 } c(mf3, ± ft ) + --2 b(mf3 , ±/t) + --2- + -2 - 2 j32 
rnw rnrnw rnw rn 

+ { 
20ko } d(mf3, ±/t )] 

m 2m'tv f33 
(:3.5 ) 

Simil a rly the self-energy of Z in, F ig.(6 ). Again using eq.(2.7) , we get 

z 
J,;2 - M1 + I)e) = 0, 

whi ch then gives 

with ref.[A. 8] 

m2 = (m + 5m)2. (:3.6 ) 

We have an express ion for L:'Y (k2 ) = k 2 II", for Fig. (3) with 

(3.7) 

3.1. 2 Coupling Constants Renormalization 

Charge Renormalization 

We have another inpu t parameter i .e., elect romagnet ic charge 'e' . C harge renur­

malization is conn ected to t he gauge inva ri ance. For tempera ture fi eld theo r.y it 

is not simple to establi sh the gauge invari ance a t high tempera ture. Donoghue, 

Hol stein and Robin et t [50] establi shed t he gauge invari ance explicitly at low tem­

p erature. I-Jere we will di scuss the charge renorm ali zation const a nts ob LailJ('d 
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which is the same as eq.(3.10). Th e other renormalizat ion constants are as 

8zf = 
2 () . 2 () ~'"1z (O) 

-IP(O) _ 2 cos w - S111 W =D=--~ + 
sin Ow cos ()w Mi 

cos2 Ow - sin
2 

()w ( 5Mi _ 5M'tv) 
. 20M2 M2' si n III! Z W 

Using eq.(3.12) in eq.(3.13), we get 

8Zz = _ 11'"1 ( ) cos
2 

()w - sin
2 

()w ( 8Mi _ 8Mfv) 
2 0 + . 2 () M2 M2' 

S111 W Z W 

Again make use of eq.(3.l0) in eq.(3.14), 

8zf = 

and for 

8ZZ 
I 

= -11 '"1 (0) _ (3 cos2 Ow - 2 sin 2 Ow) L:'"1Z (0) 
cos ()w sin Ow M; 

+ cos
2 

()w - sin
2 

()w (8Jvli _ 5JvI'tv). 
sin 2 

()w Mi M'tv 

Using eqs .(3 .10) and (3 . 12), in eq.(3. 15), we get 
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(3.14) 

(3.15) 

(3.16) 



(:1.17) 

Now in the case of W self-energy 

O ",'Y Z "2 () l:"2 l: 2 
8Z~ = -fP(O) _ 2cOS w L" + cos. -w (Mz _ uMw ). 

s in Ow M~ sin 2 ()w !vJ~ M'f:v 
(:3. 18) 

Using eqs.(3.l0) and (3.12), we have 

8Z~ = 

The res ults obtained in this sect ion will be dis cussed in some more d(~ tai l ill 1.1](' 

following section . 

3.2 Results and Discussions 

It can be seen from the calcu lation s of the renormalization constants in the last 

section that t he lepton background can affect the renormalization constants of 

the e lect roweak theory. These results are obviously different from QED IWCiIIISf' 

the hoL photon background cloes not affect the physi cal processes whereas t lw 

mass ive neut rino backg round can have signifi cant e ffects. This point is clear ['rom 

eqs. (3 .5 ) and (3.7) because the a, b, c functions involving the expr~ssion s of the 

renormalizat ion const ants are always functions of m(3 and 11(3 . The contr ihllti\lll 

of these fun ct ions can only be signifi cant when we deal with the massive lepton s 

a lid temperature is e ither of the order of the lepton mass or greater. If the 
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neutrino is cons idered as a mass less parti"cle, th e neutrino background c1oe~ 1I 0t 

cont ribute at least upto th e 1-loop level. However, even for a ve ry tiny mass of 

neutrino t he ti lde function s give s ignifi cant correction s at T < m e h ecaus(~ or til(' 
exponential dependence of th ese fun ct ion s on t he para.meter m vf3. Thereforp, in 

th e sta ndard e ledroweak model t he hot a nd dense charged lepton background 

contributions start when temperature goes upto the order of the lepton mass. In 

this regime the fermion se lf-mass is simp ly vanishingly small becau s (~ of t he j,\," III" 

Z loop suppression. Whereas, in th e standard model with massive neutrinos , the 

neutrino mass can get some co rrections to form the hot charged lepton backgrollnd 

which is supressed by + [58, 59]. Similarly the Higgs self-mass correct ions 
mw 

m 2 

appear to be O( -+), hence ignoi·abl e. The self-mass of the gauge vector bOSUl] s , 
m H 

however, get signifi cant contribution from the background and is given in eqs.(:L5) 

and (3.7) for T "-' 171,. When T » 171" these equations attain a simple form. For 

eq.(3.5) we have 

2 2 
2 0

2 (gw T ) 
171 "-'171 +--

W w 384' 

and eq.(3.7) gives 

' 1'2 
2 0

2 O( 1. ) mz "-' m z + -2' 
m z 

Simi la rly the charge renorma li zat ion gives. F irst we consider eq.(3.10) 

Now eq.(3.14) becomes 

cos 2 Ow - sin 2 Ow (oMi _ OM&,) 
+ . 20M2 M2' sm w z w 

Now eq.(3.16) gets the form 
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cos2 Ow - sin 2 tiw (OM~ _ 8M'fy) 
+ . 20 A1, 2 M 2 ' sIn w 1VJz w 

Ane! eq.(3.l S) becomes 

It is also worth mentioning that 2:I'Z = a for the fermion loops, even 111 the 

statisti cal background . 

It is therefore clear that there is no probl em with the renormaliza.bi li ty or 
electroweak theory in hot and dense lepton background. The self-masses and 

charges of th e p articl es are corrected only when they propagate in a m edium. 

T hese e ffect ive masses an d effect ive charges are expected to b e relevallt ill 1.1 1(-' 

calcul ations of the physical processes t aking pl ace in as trophysics and cosmology. 

3.3 Implications 

Th e renormali zed mass, wavefun ct ion and charge of the electroweak p articl es a t 

FTD in QED and a lso a t low temperatures on the electroweak scale , give some 

corrections to the p arameters in cosmology and as trophysics. Some of the pll Ys­

ically measureabl e parameters such as charge , wavefunction and mass may ,Ll so 

change due to th ese corrections. The most important of a ll these applications can 

be found in cosmology and as troph ys ics for whi ch the universe can be consid p. red 

a.s th e bes t t est labora tory. 
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3.3.1 Cosmological 

It is now ev ident from the standard big bang model that the temperatures in 

the earl y universe were very high. The existing matter dominated era has lasted 

throughout most of t he hi story of the universe. But. if we go back to t he ('<Irh· 

epochs of the radiat ion era, the ex isting energies started converting into matter 

which was obvious ly the relativistic matter at extremely high temperatures . Th e 

ordinary vacuum quantum fi eld theories are not enough to obtain t he cor n=~cL 

information , so we have to evaluate the background co rrect ions also. V/e wallL Il) 

turn our attention back to an earli e r period when the radiation and relativistiC' 

particles were more important than ord inary matter. The thermal history of the 

universe can be seen in Fig.(9). It is clear from this Fig.(9) that at T of t he 

order of a few seconds after the creat ion of the universe, t he electroweak l(-' p1. ()11 

scatterings were tak ing place and the background temperature was high enough 

to give non-ignorable effects . In thi s case, for the precise calcu lation of t hese 

processes the effect ive cha rges and masses have to be in corporated. The check of 

renormali zabi li ty of t he theory is a lso important in such a backgro lilld . 

3.3.2 Astrophysical 

The background e ffects are not only important in the early unIverse hilL 1. 1J('), 

are wort h in corporating among the stell ar objects. It is expected that t he ste ll ar 

cores have very high temperatures . It is seen through detailed calculations that in 

the stellar objects such as sun, T rv 107 K which does not give significant therma. l 

correct ions. Even in the dense objects like neutron stars, the density co rr(-'di(JII ~ 

are not signifi cant. However , in the superdense collapsing stars like supernovae, 

the stat ist ical corrections are non-ignorable. Therefore, the thermal as we ll a.s 

the dens ity corrections are worth studying, though the theoretical models de­

scrib ing such systems are not so well understood. However, it is ex pected LIIi-IL 

the tremendous amount of ener'gy emitted from SN1987 A can only be exp lained 

if the corrections of the electroweak 'processes taking p lace in the core of these 

stars are also studied in the superdense background, i. e., f1 > T > m/; where 
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I stands for t he corresponding lepton flavour. The existing li m its on T a nd I" 

in sup ernovae [60] is T "-J 30-70 MeV and /-l "-J 250-300 MeV where t he lepLu ni (' 

scatterin gs take p lace and t he background contributions to th ese processes haw. 

to be carefu ll y calcu lated from t he renormalizat ion constants of the eledrowea k 

t heo ry in the re levant background. 

3.3 .3 Heavy ion coll isions and quark-gluon plasma 

[n t he heavy ion colli sions and quark-g luon plasma, if it ex ists , t he ahoY(' l)1f'n ­

t ioned calcul ations may be impo rtant be~,ause of very hig h temperat ures (\.lI e! 

densit ies . In hadroni c p hys ics where densiti es a re somewhat h ighe r t hall tem pC'l'­

ature, weak hadron ic processes can a lso take p lace . Therefore, in t he pertu r bat ive 

study of st ra ngelet prod uct ion, t he above mentioned calcul at ions a re import,;ln t 

fo r t he processes, e .g., 

u + d f-7 U + s. 

3.4 Future Perspectives 

The app licat ion of the above results to astrophysics, cosmology and heavy- ion co l­

lisions can be in th e systems stud ied where the hot and dense media are expf'(' t eel 

to ex ist and t he backgrou nd effects a re supposed to be non-ignorab le. 

T he above calcul at ions a re do ne at low temperatures where chemical po­

tent ia ls are even lower t han t he temperatures. A similar type of calcul at ions 

can be done at lepton densit ies grea.ter t han t he lepton tem perat ll res, wlii( '11 is 

a more relevant reg ime for superden se stars. Por hig her tempera tures and de n­

sit ies, wh ich are o f t he oreler bf e lectroweak scales, more grap hs involving 1. 11<" 

hot gauge bosons and Higgs have to be incorporated at the I- loop level. T hese 

will be mo re important regardin g eled roweak p hase t ransit ion whi ch are L1l uug lil 

to lead t he baryogenes is in t he earl y uni verse. In add it ion to t hi s, t he hi ghe r 

loop calcu lations are wort h-whil e to check the validity of perturbative ex pan sio n. 
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The calculational t echniques developed here can be helpful in determining such 

pa rameters and processes in other theories as well . 
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Appendix A 

A.I Appendix A 

A.2 Calculation of Self energy of W 

II' - i r; \\I '2 I j' I " [ ) 11 ,:)1,:) = ( 'r.:!) -( -) I r!' 7)1 r I',ll -I's)(p + m , 
2v 2 27f ' , 

{
I . , 2'2 } ( (/J X ('2 2) + L,7fdi(p - m, )ndp) 1'1/ 1 -/5) jJ + ,,: + III,;) 

7) - m, 

{
I '2 2 2 }] X ( 1.)2 , + 27fi8[(p + 1.:) - ml/]ndp) , ( ;\.1 ) 

7) +: - 171 ~ 

whicll t hen goes to 
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Expand ing the logari t hmi c function in Tay lor se ri es and neglecting t he sqllClrp 
'1 n2 

and hi g her terms, O( ~) we ha.ve, 
Inw 

rI W (-igw):2 27f /; [{IOku 2m 2 }a(m(3,±f.l) { 2m2 }1 -- x -- --,---, -- + +-')- J(7II !-f . ±/,) 
2/2 (27f)4 'mf,v mf1f m (3 '171' \'1' 

{ 
20l.:u _ ~ _ ~} C( lI/.(j , ± p) { 20ku } d(nl-IJ, ±p)] 

+ :2 '2 '2 fP + 2 2 r:n ' ( /\,: 1) 
7nlll. w 7l1. W '1)1. rn tn w /}' 

T he' a, h, c:, d, I , (wei g , i'lIrt d iOIl S a rc el r. Gn f~ eI a.s : 

d(m(j , ±/i) 

I(mfJ, ± //. ) 

,q(m/J, ± //,) 

00 

~ (- 1 )n -n{3 (m±,L) 
L :2 e , 

/I, 
n= 1 

00 ( 1 )'" 
""" _-__ -n{3 (m±/L) 
L J e , n 
",= 1 

00 ( 1 )n 
L ---- , - n(3 (111±,',) 

(. , 
7/, " 

n = 1 

co e-nm{3 L( - I ) [(J'nEL( -nm(3) + n(3--je 'fn(hL , 
777, 

n= 1 

5 1 

( i\ ,·1 ) 



A.3 Calculation of Self energy of Z 

after simp lifying) we get 

11 z = (ig z )2(-2i) Jr2 [/ p:3dpnF'(p) ( _ n~ 2 ) {I I 2 ? ( _ 1n2 )7. ------'----'- 1 _ n 1nz + ~p 1 + 1\ " 
4 (27r )4 . (- 27)1.:) 27)2 27)'2 

/ 

p(1 + 2!£ ) + k 
- 2])1.; cos Ol}~: - 7}dp 21'

2

k 0 nF'(p) {In I m~ + 2p(l 
. - 2p " 

171,2 . }+I , 2 / 1)(i7JnP(P) _ m '2 { I 2 
+~)ko - 2pk cos OI + 2m. ( 7) ( I -~) In 171 :_ 

27) - I . - 27)1\: 27) 

177.
2 }+] J p3 dpnF(p) m 2 

+ 21)( I + -, )1.:0 - 27J!·: \.Os 01 + ( '- k) (1 - ~) 
2p - 1 - '2 p " 2p 

{ In Im~ - 2p(1 + m~ )1.;0 - 2pk cos Ol}+l - 2 / pdpnF(p) 
27)2 

- I . 

. m '2 1 j pdpnF(p) ' m '2 2 m '2 
x (1 - 2p2) + 2" . (- 2pk) (1 - 2p2)[mZ + 2p(1 + 2p2)ko ] 

{ 2' 1n2 }+1 / p
3
dpnp(p)(1 + ~~: ) 

x In Im z - 2p(1 + ~ )ko - 2pk cos (1 1 - ( r 1 
2p -J. -27)/'; ) 

{ 
'2 1712 }+1 J p2dpnd]/) 

X In Imz - 2p(1 + - 2 )1.;0 - 2pli; cos tJ l + ko ( k) 
. 2p -1 -2p " 

{
2 m

2 }+1 2 J pnp(p)dp 
X In Imz - 2])(1 + -2 )ko - 2pk cos 01 + 2m ( .- I.) 

27) - I - 2pl. 

m 2 { m
2 }+1 

X ( I + -. -. ) In Im1- 2p( I + - . )k:o - 2plG(~os (1 1 
2p2 2 ])2 -1 

I j' 7Jripndp) 171. '2 [ '2 '( m.
2
)] { I '2 .-+ ~ ( . I ) ( I - --'2 ) m z - 2]/ I + -2 ko In 1nz - 27) 

2 - 2711\: '17) 2Ji 

X ( I + ,m·~) /.:" - 27)!.:COSOI}+I] , 
271 ' - I 

(I\.(i ) 
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2 

lI f'g l('cL ili g L1 w S qll (M( ~ <w ei Ili g lw l' t(, I' I11 S, an el ignor ing O( 1H~ ) , we h av(~ 
1H z 

(£gz)2(-2l)(7r
2
) [{ -7m} a(m fJ,±ll) _ {-;3m2 

_ } b( fJ ) 
( )

2 2 P 2 1 Tn , ± /l 4 27r Tn z tJ mz 
. {~ } c(mJ3,±p ) {~} d(m(3,±p) { -2 } 

+ 2 (32 + 2 (33 + 2 2 m z mmz m m z 
I (177.(1 , ± /I.)] 

ff ! . ' (A. i) 

Dropping Uw te rm s con ta.ining ~, sin ce 17'/, Z very l arge th an 177.{ we get t he )'( 's lill 
11/, Z 

i.n f~(P1. (:1.7) . 

A.4 Calculation of Se lf energy of ry Z 

ll 'Yz 
JW 

( ,\ ' . ) 

A i'L(~ r simp ii'y illg, we get 

16 i(ie7r)2 [J p
3
dpnp( p) ( 71),2) {I. I' 2 ') (I + m2) 1. I - - n 1H Z + ~l) - . ,,·v 

(27r) '1 (-2pk) '2 p2 2p2 

+1 1 J 7n2 ) { -2p/.; cos 0l} - 1 - - pdpnp(p)(l - -2 2 cos () 
2 p 

[ 2 ') ( I ",2 ) /.; 1 ( 2 ) } + 1 7H z + ~7J + 21)2 0 '2, m. .J . . . . I - III Imz + 2])( I + - . )/" 0 - ~l)/" ( OS () 
-2pk 2p'2 

- I 

_ J 7i dpnF (p ) (1 + m2) {In Im1 + 2p(1 + m
2 

)ko _ 2pk cos ()1}+1 
-2pk 2p2 2p2 - 1 

+/,:" I p2d71,np (p) {11I17I/. ·~ + '2 7) ( I + ,m~ )k" - '27Jk cos OI} +l + 1, 111 ~ 
. - 27'/': 2]12 _ I 



J I () 2 { 2 }+1 pcpnp p m 2 m 
X (' k) (1 -~) In/mz +2p(1 +-2)ko-2pk cosO / 

- 2]1 . 2]1 2p - I 

J ]13dpndp) . 117,2 { 2 rn2 }+1 
+ 2 k (1 + ;--; ) In /m z - 2p(1 + -2 ko - 2pkcos B/ 

- p ' 2p 2p -1 

1 J rn 2 
{ [m~ + 2p( 1 + ;'~)ko l 2 

-- pclpndp)(l - -2) COS 0 - k p (In/mz 
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171, 2 ) }+1 J p2
dpnF(p) m'2 { ') 

+2p(1 + ~)ko - 2pk cosB/ - ( k) (1- -2) In/1Hz 
, 2 ]) - 1 -2p ~ 2p 

rn,2 . }+1 J 7}cZpnF(p) { 2 
- 2])(1 + - 2 )ko - 2pk cos 0/ + ko In /m z - 271 

2p -1 -2pk 

m 2 
. }+1 J pdpnp(p) m 2 

x (1 + -2)ko - 2pk cos B/ + 2m2 
( k) (1- -,,) 

2p . - 1 ' -2p" 2p~ 

{Ill Im~ - 27'( I + ~;> " -27'/<'" Ol} :] , 
neg lect ing t he hi g h (~ r terms, s in ce m z is la rge as compa red to le pton mass , \\'(' 

t he n have, 

n"Z IGi(i e7r )2 [{ 21.: 21.:0 _ Lim 2} a(m/3, ±Jl ) _ {-:5m'2 } 
(.) )'1 '2 + '2 '2 + (3 '2 ~7r 1nz rn z rH z rn rH z 

b( (3 ) { 
SI.: 4k 4 2 } c(m(3, ±/l) { RI .. m ±/-l + -- + -- - - + - + 

, mm~ m,m~ m~ rn 2 (32 m '2 'I1 ~ 

4·ko }d(m(3 , ±,a )] (A, IO) 
+ rnhn~ (33 ' 

54 



e 

• Fig. (2) 

• Fig.(3) 

-~ ~-

II /-( 

T 

• Fig.(4) 



T 

. ' Fig.(5) 

z 

T 

• Fig.(6) 

I 

z 

J 

• Fig.(7) 



.f 

// 
// 

• Fig.(8a) 

> 
1/ 11 

• Fig.(8b) 



QUANTl 'M 
G2A\·/TY 

• S"P"'rJ(T.~ lIy ~ 
• r. xlro Dlmf"n . lon . :­
, • So p""'r.ym rnf" try:" 

• SOporfll trin •• :' 

t::-mOf 
GRASO 

I'SIFICATlO!\; 
• Orlrin or 

Matl4'"r ·Antimallrr 
AJt)'mm,.try 

/ 

• M nnnpolf" JI 
- Inn.tlnn 

E !'ill OF 
f:l.fTTROW F: .... K 

1·~,."ICATlIIS 

• End "r 
Su~r~)' mm~rr)" : 

1).n .... 1 inn 

~''''Tn: 1i 
'11'\1",no," 
• F'l rm •• ann I,f • F,.rm •• '''" 

"lrul'Iurr ,,[ 4\100' ... 
",...tin ... • i_rntupltnA( It( 

I 
(Juu~ 1I.<1r"" 

III ~ II~"~ 
'u1·l t· .. .. ~ IIlh.· ... i ... I 

.\htlr. o n<1 

I""'';''" 
. --"-

IOJOK IC2SX I020K 1O '5 K • ~. J :; ••. : - ,,5 _ . 
!!-: Tr ff'P'f"r at urf"' 

Sprintrr 

109c;..v 
t 

H it'b.-",. f. nrr.,. 
('", ... mi,-Ray,,-

I T~V 

t t 
(" M F.n~rlt) 

T~Y J Tr\· II 

:~~y • M,\" 

t 
\U(" " II1" Hillrlin..: 

Etilt" r",.\ 

~ kr\' ;,.V 

t 
."' omi, ' 

Hiluhn~ Enf"n'~ 

[zror\· Enrqo· 

10-30 Hf2S 10-20 W- IS :2- i :: le -S ! Sir .. 
I I I I I I !! ! I I !! I; I I I I I. 

197 3 181 3 I SS 3 lot9 J 1:0 :\ 117 J ' J 1_15 J 1':\0 ., 
10 ,; .. 1<", 10 ' '''I<ID 10 ''''ft to lO ~m/CID 10 _ ", / r"," 10 ~ lD /c m l:)~m/r'" : ::: tml'::n JG ' ~ :u /c",~ 

t t t t 'c 
.".I urn (" 0'" ~u("'I"'1r W"Io" Ai r 

~1 . 11 .·r 

:8:1 J8G 109 :'". r, 
I I I . ' T' j I I I I I i I r j I i. , t i iff 1 f I j t 1 i'l 1ft t 1 I r j I i I ! . I I I i I I I f I 1 I 1 I I I tim .. 

lO-42uc 10-38.~c IO-30oec IO-2 4.~", 10- 18 ... , 10-12 .. c l(r6.~r l'H !Jf\~o l~12, rc 1~IIi.rr 

j)~nsir ~· 

ltLNO\V 
CONSTITUENTS 

upton. a n" 1 (i-) ~-) ~:) 
Q.. .. r lr . 

(~ ) (;) (~) 

1
f:W ONS c.... 'nT ' Z 

&a.o. ... 
X . Y . ... 17 

n.otoa.y 

m 

c;.ia.'1) S ula r 
" 'tlf' m lo,, S y .. tr m 

",,.r .., ... 
_____________________ _ vii ~ _______ 2K r-.;.ulrinc. 

(" 3 flarklroun d 

m lI.p --.J H +, D+, H ;-··.-.J H, D.JII::. 
-11I1l!"···.7Li ···_(·- -I (,He .7 Li 

• 
·11t 

. - . NalluuIMltll ... , M.ltllu ... ,, :l~, I" ... ... 

_____________________________________ ~~:lk~irn'~ a~~ 

I Rarlllr"l'Klnd 

• Fig. (9) 


