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A B S T R A C 7
A non steady state 'TRANSIENT HOT STRIP'method has been
used for measuring the thermal conductivity and thermal
diffusivity of non conducting solids. The techniqgue uses
a metal film deposited on a substrate sample, The dimen-
sions of strip aresuch as to realize an infinitely long
continuous plane heat source of negligible thickness and
finite width. Power supplied to the strip is electrical
the heat conduction equation for the strip being solved
in terms of the voltage developed across it. This voltage
is time varying because resistance of strip increases as
temperature increases with time. From the voltage vari-
ation we can get the thermal properties of substrate,
Whereas the THS method has been used beforea,in this work
the technique was improvised for milli-second time range.
Short time measurements required fast switching with rather
small voltage variation. This necessiated use of electronic
instrumentation. Varioys sophisticated circuits were design
ed ahd tested. Finally a Bridge Circuit was made which
was simple and accurate. Short time THS method was used
for measurements on pure fused quartz, an isotropic mate-
rial . It is possible to use the THS for anisotropic
samples; a §olution of the heat conduction equation for
such a situation has been attempted. The results for

fused quartz are consistent with those obtained by otnersa',4
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1 P CONDUCTION OF HEAT

Heat flows in a body from higher temperature part
to a lower temperature part. Transfer of heat takes place
in three different ways. These are conduction, convection

and radiation.

In solids, conduction is dominant while convection
is absent and radiation can usually be neglected. In liquids
and gases, convectlon and radiation dominate., We are concerned
here with conduction of heat in solids only, so we will

consider conduction of heat only.

i 4 THERMAL CONDUCTIVITY

Consider a plate of some sollid bounded by planes
of very larpe dimensions such that the points at the bound-
erles may be consldered at infinite distances w.r.t. points
in the centre of the planes (kip,],61). The planes are kept
at different temperatures of some 10 deprees. After a
sufficient time, a steady state is achieved, and the points
away from the planes and lying on planes parallel to the

bounding planes in the plate, will be at the same temperature.

Consider an imaginary cylinder of cross-section S
with axlis normal to the surface of the plate bounding the
part of a solid. The cylinder is supposed so that no flow of

heat takes place across its generating lines,



Now, let the temperature of the rirht--hand surface
be T °c and that of left-hand T]OC; T, being higher temperature

than Tl' Let the thickness of the plate be d cm, Then the
guantity of heat which [lows from lower temperature to higher
temperature surface in time t seconds over the surface S is

given by:

_ K(T - T)S ¢
d

ib (1.1)

where K is a constant called "Thermal Conductivity" of the
substance. The relation for thermal conductivity from equation

(1) becomes:

K& <o C1l.29
(TO—T )St

This constant depends upon the material. Thls result is

suggested by the experiment,

The thermal conductivity K is a functlon of tempera-
ture and is not constant for the same substance. The dependence
of K on temperature may be approximated by making K to be a

linear function of T 1like

K = KO (1 + B8T)

where R is small. This result, perhaps, proves good around

room temperature only, with B negative lor most of the substances.
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But as we go nearer to the absolute zero degree, the results
are rather strange. As shown in the Fipgl.2, the temperature
dependence of K becomes of hiprher degree and after reaching

a maximum, the curve falls to lower ones,
1.3 FLUX OF HEAT ACROSS ANY SURPFACE

The rate at which heat is transferred across any
surface S at a point per unit area per unit time is called

the flux of heat at that polnt across that surface.

It can be shown that the continuity of flux does
not depend on the continuity of' thermal properties of the

media .

If the values of flux '[''" are given for three
mutually perpendicular planes meeting at a point, its value
for any other plane throupgh the point may be written down,
This can be shown that if the three fluxes fx’ fy’ and fz
at a point P across planes parallel to the coordinate planes
are known, the flux across any other plane through P can be

determined from the following equation:

f = lfx + ufy + viz T (1.3)

where A, up,v, are the direction cosines of normal to plane

through P.



A "flux vector" f at every point P of the solid is

defined where components are fx’ fy and fz with magnitude

and lying along the line with direction cosines fx/fm’ fy/fm

andg f‘z/fm

The flux at P across a plane whose normal makes an

angle © with the line of direction of flux 1is fmcosg
1.4 ISOTHERMAL SURIACES

In a solid with a temperature distributlon which 1is
a function of position and time, the points with equal tempera-
ture (say T) will constitute a surface. Thils surface is called
the isothermal surface for temperature T. Since no point or
part of a body can have fwo ftemperatures, so no two isothermal

surfaces cut each other.
1.5 HEAT CONDUCTION IN ISOTROPIC SOLIDS

A solid is sald to be isotropic if all the directions
for heat conduction are equally favourable, i.e. when a point
within a solid is heated, the heat spreads out equally well in
all directions. On the other hand, there are crystalline and

anisotropic solids in wheh certain directions are more favourable



for the conduction of heat. There are also hetrogeneous solids
in which the conduction of heat vary from poilnt to point as

well as in direction at each point,

In the experiment described for the thermal conducti-
vity, the iscthermal surfaces are planes parallel to the faces
of the plates. The isothermals for temperatures T and T+8T are

at a distance of 8x. Then the rate of flow of heat per unit

time per unit area in the direction of x is: - K g%
and as &x »- 0, we have:
' L ii‘
TX = =K 3
We may generalize it by saying that the rate at which heat

crosses from inside to the outslde of an isothermal surface
per unit area per unit time at a point is equal to -K 3 T/9x;
where 3T/8x denotes differentiation along the outward normal

drawn to the surface.

Generally, the flux of heat at a point across any
surface is -K 3 T/3h, where 3/0h denotes differentiation in

the direction of the outward normal. When planes are parallel

to the coordinate axes, the fluxes are given by:
91 L. iy
SR F . v (1. 4a)
g, o -k 2T (1.4b)
y 5 i1,
P = ok DL (1.he)



that is f = -KVUT B (1.5)

where f is a flux vector.

1.6 THE DIFFERENTIAL EQUATION OI' CONDUCTION OF HEAT IN AN
ISOTROPIC SOLID.

Considering the case of solid within which no heat
is being generated but is flowing through it. The temperature
and flux at point P(x,y,z) will be continuous functlons of

space and time coordinates.

A rectanpgular parallelopiped is considered in the
solid with point P(x,y,z) at its centre and edges being parall
to the coordinate axes; the lenpgths of the coordinates being
2dx, 2dy, and 2dz. The faces ABCD and ABCD be in the planes
Xx-dx and x+dx respectively. Let the flux across the plane at
P parallel to A B C D is fx then the flux through the plane

A BCUDwlll ve
f o =3== ,dx
So the rate of flow of heat into the parallelpiped

over the face A B C D will be

of

R o %
I(Ix 5%

, dx) dy dz a8 (1.6)

Since the area of the face A B ¢ D is U4 dy. dz. Similarly rate



of flow of heat over the face A'B'C'D' which is at x+dx is
given by

af

(e, + 5% . dx) dy dz Wi (1.7)

Subtracting (1.6 )from(1.7) the rate of gain of heat is given

by
fo
- 8 i dxdydz

Similarly the rate of gain of heat from the flow across the

planes parallel to z-x plane is

I
Lw

. dxdydz

o
=

and that for the planes parallel to y-x plane is

af
-8 5—;5 . dxdydz

So the total rate of gain of heat of the parallelopiped from

the flow across its faces 1is found to be

OF af af

-8 X - & + 4 o = o . ,
t(ax + 55 7 ) Jdxdydz 8 dxdydz.Vf ...(1.8)

f being the f(lux vector.

The rate of gain of heat is also given by

‘%

8pec -g—- dxdydz - (1.9)

where p and ¢ are density and specific heat of the solid.



From equation (8) and (9), we ret

fo Bl& af
# fg=> 4 ik 52') =0 ce (1.10)

3T
PC ot

This equation corresponds to the equation of continuity
in hydrodynamics. This equation holds for every point of the
solid except the point where heat is being supplied. Also it

1s not necessary that the gsolid should be homogeneous or isotropic.

From equation (4), we have

al a 3__'1'
{x N R X

8'1'
fo= = K S=
Y ay

T
f, = - ¥32

The equations are true for the homogeneous isotropic

solid whose thermal conductlvity is independent of temperature.

So we have

af -2
5&5 = - K i_i sl (1a1a)
ox’
o f )
5_1= i Kﬁ_g (1.11b)
Y 3y
af sl
== - K .f?_gf (1.11c)
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Substituting equation(l.,11) in equation(1.10} we get

2 2

na

. f’f-% - JF gg =0 (raz)
X 3y 8z N
where Kk = K/pe

Kelvin called this "the diffusivity of the substance"
it
and Clerk Maxwell called/”the thermometric conductivity of the

substance".

Equation (12) is known as the eguation of conduction

of heat.

LT INITIAL AND BOUNDARY CONDITIONS:

The temperature satisfies some boundary and initial
conditions. Temperature T is considered as a continuous function
of space co-ordinates and time. Also that it is true for the
first differential coefficient w,r.t. time and upto second

differential coefficient w.r.t. x, y, and z,

CL)is INITIAL CONDITIONS

We suppose that at time t=0, the temperature is given

by some arbitrary function, 1i.e.

T = f(X,y,Z)
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So the solution of the equation of conduction of heat

2 - 9T
k VT = 9t

tends to value of T at t = 0 as t tends to 0 1.e.

Iim(T) = fix,¥y,2)
t+o

at all points of solid.

(11)'z BOUNDARY CONDITIONS

The boundary or surface conditions which usually

arise are the following:

(a): PRESCRIBED SURFACE TEMPERATURE

The prescrlbed temperature may be a constant or
function of space or time or of both space and time., It is
often difficult to prescribe surface temperature. A hetfer
condition may be given like the radiation boundary condition --

described later,

(b)) : NO FLUX ACROSS THE SURFACE

This condition suggests that the differentlation of

temperature in the directlion of outward normal to the surface



is zero at all points of surface i.e.

9T
9x

oz

= 0

el i PRESCRIBED FLUX ACROSS THE SURFACE

Like prescribed temperature, this flux also may be

constant or function of space coordinates or position or both.

(@) LINEAR HEAT TRANSFER AT THE BOUNDARY ;
THE BADIATION BOUNDARY CONDITION

The boundary condition is given by

9T , : B
K e + H(T - TO) = 0 P (1.13)
Here (T - TO) is the difference of temperature between surface
and surrounding media, T being the temperature of the medium
and H is a constant ., The second term is the flux across the
surface which is proportional to (T - TO). Fquation (1.13%)can
be written as
o'T

E}-—x— + h(T - I[.(l) = [] T (l.l’-l)

where h = H/K

This condition tends to the condition "no flux across the

12
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surface" as h tends to zero, and tends to the condition

"orescribed surface temperature" as h tends to o .

H is called the "Surface conductance" or "the
coefficient of surface heat transfer" and 1/H is called the

"Surface thermal resistance per unit area".

Also if a flux F is prescribed into the surface,

equation(1.1%)will become

a-—-—-T 1 — 1‘ -
K T + H(T *ro) + F 0 .. (1.15)
or or h(T - T - F/H) = 0 (1.16)
ax D -

this condition is called the "Radiation boundary condition";
the reason being 1s that the heat transfer by radiation,
which actually is proportional to the fourth power of the
absolute temperatures can be approx;mated to first order of
the absolute temperature, provldéa tﬁe temperature difference

is small.
(e) NON-LINEAF HEAT TRANSFER

When temperature difference between the surface and
surrounding medium is small, the {'lux dependence on temperature
difference is approximately linear. But in many cases, this is

not a linear functilon of temperature dif'ference. For example
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the rate of loss of heat from a body at absolute temperature T

surrounded by a black body at temperature T is given by
1 l
ce (T -T ) (1.17)

whereols the Stefan-Boltzman's constant and € 1s the emissivity
of the surface, which is the ratio of the heat emitted by it

to that emitted by a black body at same temperature.
It 7T - To is small, this may be approximated as

bg em (m-) (1.18)
O 0
and if TO is considered as a constant, the flux 1s directly

proportional to (T - TO).

The second example for non-linear heat transfer can
be natural convection, i.e. where a body 1s surrounded by fluid,
the heat is transferred by convectidn. It is found that this
heat transfer is nearly proportional to the 5/Uth power of the

temperature difference.
GFs CONTACT WITH A WELL-STIRRED FLUTD OR PERFECT CONDUCTOR
In this case, the surface of solid is in contact with

fluid which is well stirred so that its temperature may be taken

as constant throughout. Now let a well stirred fluid of specific



heat C' be in contact with a solid surface of area S,
surface temperature T, and conductivity K. The tempera-
ture of fluid 1is supposed to be T' and mass M. We suppose
that the fluld of mass M recelives heat from external
source at rate Q per unit time, and loses heat at the
rate H, (T - To} by radiation into a medium at tempera-
ture T. If rise in temperature of this fluid in time &t

is 6T' then we have

,_3

das

|

MC'S$T' ...(1.19)

(o5

¢
: " | . d
8t - Hl(q' - Fo)ﬁt - K&t']J X

9T vi BEL o o o Sed
K [j AR ds + MC AT + “1(T 10) R =0 « s 01200
If we also assume that

T = Tt for: & > 0

where T and T' arc the temperatures of surface and of fluild
respectively for t > 0, And if heat transfer is taking place
at a rate proportional to the difference of temperatures,
then we have

aT

== 1 o mt =
K3X+H('1 ') 0

If mass m of fluid /withdrawn per unit time and
replaced by the same amount of [luid at temperature T, we

have

15
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dT a'l
MOT = — dS + mC'(T'=T )= .
M 3t + KJJ T d I (1 IO) 0 vee (1.21)
The above condition holds as well if instead of
fluid, a perfectly condu¢ting solid is in contact with the
solid surface. A metalliec conductor may be treated as a

perfect conductor when it is in contact with non-metal,

(g): THE SURFACE OF SEPARATICN OF TWO MEDIA OF
DI FFERENT CONDUCTIVITIES

The fact that the f'lux is continuous over the
surface of separation suggests this condition. Let Kl and
K, be the conductivities and Tl and T? be the temperature

of two media, then from flux continuity condition, we have

2T,

‘ 2id s i
1 3ax 2 A% (1.22)

%; being the differentiation along the normal to the surface

of separation.
be
Another condition that may /supposed to be valid
for very intimate contact, such as soldered Jjolnt is that

the two surfaces have equal temperature, 1.e.

. = I, —_— (1.23)

For the surfaces not in contact like this (not
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soldered) heat transfer takes place so that flux across the

surfaces is proportional to the difference of temperature,
1.8
aT — L = m
Ky 21 = H(T, It (1.24)

(h): CONTACT WITH A THIN SKIN OF MUCH BETTER CONDUCTOR

Example of this boundary condition is a thin metal
sheet or wire in contact with a relatively noor conductor,
such as soil, food-stuff, ete. The skin is assumed so thin
that the temperature throughout across its thickness may be
congidered as constant ., Let T' be the temperature of the
skin and K, and k are the conductivity and diffusivity.

1

Then the equation of conduction of heat may be written as

Bh s e :
oL, e 3 K oaT _ g (1.25)

5+ g - -, =
agé 8n2 Kl Kl an

where gﬁ is differentiation along the over ward normal
0

direction and 0E and %H along two perpendicular directions.
[ we assume that the temperature of skin is equal
to that of the solid, then another boundary condition arises

i.e.
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1.8 SOURCES

1.8 (a): THE POINT SOURCE

When a finite quantity of heat is instataneously
liberated at a point, at given time in an infinite solid,
the source is called "Instataneous Point Source". In the
theory of conduction of heat this point source has proved

most useful.

The solution of this source may be taken as
fundamental. A solution of continuous point source may
be obtained by integrating it w.r.t. time. The continuous
point source 1is that which release heat at a given point

at a prescribed rate per unit time.

The solution of point sources may be integrated
w.r.t. appropriate space variables to obtain solutions
ffor instantaneous and continuous line, plane. spherical

surface, and cvlindrical surface sources.

(b): THE INSTANTANEQOUS POINT SOURCE

The equation of conduction of heat is given by

(1.12) to be



The solution of this equation is
T =-———Ji-7w exp [ ={(x=x")2+(y=y ')+ (2-2" )2} /4 (1.26)
3 2 I‘ l' 3 .}" ¥ l - = 8 .

8(mkt)

As t tends to zero; T tends to zero for all points except

The total gquantity of heat in infinite region is

= 00 wfr 0O o 0O
Qpe ” 1y 2 . 52 s i 3
8 ()37 2 exp [ = {(x-x")"+(y-y")"+(z-2")"}/hxt) dx dy dz
+eotootoo

n

J J J peT dx dy dz

e O s (X e 001

Qpc T (1.27)

Therefore the equation(lL26) may be thought as the
temperaturc in an infinite scolid due to a quantity of heat
instantaneously generated at t=0 at point (x', y', 2').

So the equation(1.26) is called the temperature due to an
instantaneous point source of strength Q at point (x',y';2')

at time t=0,

{e): THE CONTINUQUE POINT SOURCE

The temperature at point (x,y,z) at time t, due

to a source at point (x', y', %') liberating heat at the

19
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rate ¢ (t)pc ver unit time from t=0 to t=t is by integrating

equation (1.26),

t
1 o(t") 2 2 2
exp [-{(x-x") +(y-y') " +(z2-2") }/MK(t-t'h e ikl
8(mk)32 I (t-p1)3/?
veee (128)
or if we put
3 _ 2 2 2
r° = (x=x)"+(y-y) +(z-2)
then (28) becomes
t o(t')
. J L - @XT F !
=5 exp [ =r /HK(t-t')1.dt" e (229)
8(1TK)3/2 (t_t]')j/(—

This distribution of temperature is said to be a

continuous point source of strength from t=0 onward.

Now putting

T = (t = L')~1/p
we get
RSP
dT= 2t - £1)737° gt
[
or 2dt=dt'/(t - t')‘/p

and for lower limit i.e. for t = 0



= 1/ vt

I
ct

and for upper limit ¢t

i
8

T = 1/0

also if ¢(t)=q (a constant), then from(l.29) we have

(84

F11

9 { exp [—PETE/HK].dT
q(w)-;;" b
1/Vt

=3  eprfe L (1.30)

U(wkr) yIE

As t »« this reduces to T=q/(4mkr) a steady
temperature distribution in which a constant supply of
heat 1is continuously introduced at (x', y', z') and spreads

outwards in the infinite solid.
fd) ¢ INSTANTANEOUS LINE SQURCE

The line source is considered parallel to the
z-axis passing through point (x', y') with strength Q at

time t = 0.

Considering instaneous point sources of strength

Q.dz at =z distributed along the line; the temperature due to



this distribution can be obftained by integrating the solution

of instaneous point source., So

T=~——£;-f;7§ dz'.exp [—{(X—x')2+(y—y')2+(z—z')2}/ﬂgt]

8(mkt)

= s -exp[—{(x—x')2+(.v—.‘;')2}/14s:t1 R T
Yoyt

is the quantity of heat liberated by unit length of the line.

(e): INSTANTANEQUS PLANE SOURCE

The source is considered to be parallel to the y-z

plane and passing through the point (%, 0, 0) with strength Q

at ¢t = 0.

The temperature due to this source can be obtained

by integrating the solution for the instantaneous line source

i.es
+I.D
T = exp [~{(x~x‘)2+(v—y’)2}/nkt]-GY'
o wek !
_ Q 1 2 ;
- expr { =(x=x"')" } /hgt] — (1.32)
2y m kt

and the quantity of heat liberated per unit area of the

plaidn is

22
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(f£): THE CONTINUOUS LINE SOURCE

Consider a solid at zero temperature at time t=0,
when the supply heat starts. Temperature due to line source
parallel to z-axis through the point (x', y'), liberating
heat at the rate &(t)pc¢ per unit length per unit time,

at time t is determined by inteprating equation (1.26) i.e

t
Looep(tr) 5 5
T= 1 exp [ ={(x-x")"+(y-y") }/4xty.dt!
Yy t-t!
t
1 2
= H%E lgé%f% exp { =r“/Uk(t-t')}.dt"
=) . :) ) f_\
where r- = (x-x') + (y-y')°
Now if ¢(t) = q a constant
Putting
r”
u — ——
be(t-tt)
then Q.L_l. = _..E_i_t:__
4 (t=%")

and the lower 1limit (t=0) becomes



and upper limit (t=t') becomes

also ¢(t)=q a constant

we get
T = 3 exp(-u) .du
K U
2
r /bt
Q 2
® =g B -1/ Nt)
where -Ei(=x) = J exp(-u) .du
u

X

for small values of x
2 3
Ei(-x) = v+ 1In x - x + x /0 + 0(x”)

Where y is Euler's constant having numerical value 0.5772...

Thus for large values of t we have

Bkt
T = gimt I8 (=) -0 b o (1.3%)

The term E%E In(1/r) in EqJ(1l.33) is the temperature

due to a steady supply of heat. The rate of heat supply being

gp ¢ heat units per unit length per unit time.
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Also the solution for T in Eq.(L33) glves the
temperature in an infinite sclid which is heated along a

line say a wire carrying electric current.
(g): THE CONTINUQUS PLANE SQURCE

Let heat be liberated at the rate p c ¢ (t) per

unit area per unit time in a plane x' starting at time t=0.

The temrerature at time 't' is obtained by
integrating Eq.(l.i?)with respect to time. The temperature
being then pives by

t

—, { exp { -(x—x')z/ﬂk (t—t')}d:(t')/(t—t');é.dt'
2(nk)™ é

ceee (1.34)

It ¢ (t) = q, constant this becomes

t

% exp { —(x-x")°/Mkt} ~q(|x-x"|)/2k.erfel|x-x"'])/2/R

T = qt

‘% (1.35)
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EXPERIMENTAL METHODS

Some general and many special methods are in use
for experimental determination of thermal conductivity of
substances, The choice of a particular approach depends
upon the following aspects.

i) Type of specimen

ii) Gradient heater
iii) Differential thermometer

iv) Calibration or reference

v) Thermal isolation ete.

GENERAL METHODS

1P LINEAR HEAT FLOW

In this method usually a rod of uniform cross-
section 1s used and 1t is assumed that heat flows along
the rod in one direction only. 'The arrangement is shown

in Fig. 2.1,

S is a heat source at higher temperature and 0 is

heat sink. The specimen is in the rod form of cross-section A.
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(The form factor {/d of rod is selected to give accurate
results for the particular metal). T and T, are the
temperature sensors on the specimen a distance { apart.

It is assumed that there are no loses or heat generation

along the length of the specimen.

Measuring the temperature difference AT = T2 - Tl
and rate of heat flow Q; the mean thermal conductivity is

derived from the eguation

g = K(T) AAT

= 7 (2.1)

2.2 DIFFUSTIVITY PLATE AND DIFFUSTVITY ROD

Steady state methods have been popular in thermal
conductivity measurements; due totie simplicity in experi-
mental implementation. But now non-steady state methods are

comming up. Evample of a non-steady method is given below.

In this method, pulses of heat are applied to one
end of the specimen and the temperature along the specimen
is measured as a function of time, The specimen is made in

the form of plate or rod shape,

Knowing the ftemperature variations as a function

of time, the thermal conductivity can be calculated from the
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5

thermal dirWHnglvity equation 10" the specifie heat i1s known.
2.3 SELF HEATING

In this method the enerpgy is supplied to the
specimen by passing a current direct through the specimen.
Measuring the electrical conductivity, and the temperature
at various points on the svecimen, thermal conductivity may

then be indirectly be calculated,

Tt is difficult to apply this method accurately
if either the thermal or electrical conductlvities vary

significantly with temperature.
244 FORBES METHCD

Like linear heat f{low method, the specimen used
in this methed is in reod form. But radial heat flow 1is
allowed along the specimen, and corrections and control
experiments are applied to simulate the ideal axial heat

flow conditions.

This method has been used mostly 1in the temperature
range above 300 K. With this method conductivity measurements
are often made by three sets of readings; an "lsothermal" an

"unmatched guards" and then a "matched guard".



2.5 COMPARATIVE METHOD

This method is simple so far as the experimental
setup and operation is concerned, but this at the expense
of accuracy in the measurements. The power input in this
method is determined by using a material with known thermal
conductivity. This specimen is placed next to or in series
with the standard. The comparative thermal conductivity
values can be calculated by determining the different
temperature gradients. The conductivity mismatch between
standard and the specimen must not be too large, and also
one should take care of inter faecinl resiztance between
the specimen and the standard, since 1t effects the tempera-

ture distribution.

2.6 GUARDED FLAT PLATE OR SPHERE

Thic method is very nseful in measurement of poor
heat conductors, like plastics and soldified gases. The
potential heat loses are of preat importance since the
thermal conductivity of some of the materlials is pressure
dependent., 8o the apparatus must allow [f'or any possible
change in loading factor caused by thermal expansion or
change of gas pressure. The method is principally same as
the axial heat flow method except the [orm factor 1/A is
very much smaller and auxiliary heat losses effects very

prominent.
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5.7 RADIAL HEAT FLOW

The method is very useful in high temperature range
and is rarely used in low temperature range. The comparative
or absolute methods can be used as in the axial heat flow

methods.

In this method the dises stacked in the form of a
cylindrical specimen having axlal holes through them to
provide thermocouple probe entry. The thermocouple probe
is moved along the entire length of the stacked discs to
measure the axial temperature pradients. A disadvtnage of
the technique is the necessary waiting time for the system
to reach equilibrium after each change in the probe position.
This problem can be solved by installing many thermocouples
at various radial and axial positions. The electrical
resistivity and thermal conductivity measurements can be
made simultancoucly with this apparatus. The radiative
loses for hiph emissivity, low conductivity specimens at

high temperature can be much reduced by using this method.

2.8 HOT WIRE METHOD

The method is used for determining the thermal

conductivity of molten salts. Cylindrical liquid films of

variable thickness were used (steady state method) by Lucks
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2
and Peam (1950). Sand which had a conductivity similar to

those of salts, was used as a calibration material. This
avoided convection, but its purity and packing are often
difficult to reproduce. Radial heat leaks and the radiation
loses were large. To avoid convection is difficult with
such thick films, and most of the errors had been reduced
by extrapolating to zero f1lm thickness, but the overall

accuracy was still only + 25%.

The transient hot wire method i1s found suiltable
instead of steady-state method. This method uses a thin
wire in the liquid, heated by a constant current. The
rate of rise in temperature of wire is measured, and the
thermal conductivity of 1liguld can be calculated from the

rate of production of heat and the temperature time relation.

Simplicity of the probe, auxiliary apparatus,
speed, easc of opcration, and avoidence of radiation and
convection errors are the advantages of transient methods

over steady-state method.

2.8 a THEORY CF HOT WIRE
of
Considering an ideal case/an infinitely long
wire with radius 88 and infinite thermal conductivity.

is immersed in a liquid having infinite extensions in space
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with p , ¢ and k as its density, specific heat ahd thermal
conductilvity respectively. It 1s assumed that there is no
thermal resistance at the surface of the wire to the 1liquid.
The wire is heated at a constant rate g per unlt length.

The exact solution of the Fourier_differential equation

for these conditions is given by equation (1.33) which is

_aq bkt
T—m{lﬂ “'*—r);? il

Which gives for thermal conductivity

K = ﬁ-q%——r—l? {1In 47 - 0.577 }

2
where T Kt/pec r]
Now in given experiment K, p , ¢ and r  are constant.
Conductivity K can be evaluated from the linear relation of

T and 1In t. For large times the approximation becomes better.

The following considerations must be made since

the actual wire differs from the ideal case.

Small radius of wire is used to approximate to a

line source, and reduce radiation,

ii) The longest possible length of the wire is used

to reduce end loses, This length is limited by isothermal
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length of the thermostat and amount of specimen available.

m i i 1) The material of the wire must be corrosion
resistance and has a high resistive temperature coefficient,

which is also reproducable.

iv) The resistivity of the wire should be low compared
with that of salt, but high enough to enable accurate tem-

perature measurements from resistance change,

v) The temperature rise (i.e. heating current) should
be small to reduce the change in heating rate, delay the
onset of convection, avoid convection currents in the salt,

and reduce the change in K itselfl due to change in temperature,

2.8, b EXPERIMENTAL ARRANGEMENT

Bridge circuit shown in Fig. (2.,2) is used. The
probe is a platinium wire, welded to short thick platinum
leads, with a fine potential taping. Thick coppor leads of

equal resistance are used to connect the probes to the bridge

circuit. Thermo-electric effects are balanced out automatically
since all the three copper-platinium junctions are at the same
temperature.

In the bridepe circuit the resistance of leads and
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wire end effects are balanced out since these are in adjacent
bridge arms. Very small current (causing negligible heating)
is passed to determine the resistance of the wire. A dummy
resistor having resistance approximately equal to the
resistance of the bridge is used to stablize the heating
current. The current is known by passing it through a
standard resistance and measuring the potentilal drop across
it. The unbalanced voltage which is proportional to the
temperature rise of the wire, is recorded by a short
periodic time galvenometer or fast potentiometric recorder.
The resistive temrerature coefficlent of wire is found by
measuring resistance at the ice, steam, nephthaleane and

sulfur points.

2.9 HOT WIRE SHORT TIME METHOD

The method is principally same as described in
the previocus article i.e. the thermal conductivity of the
medium may be deduced from the temperature variations of
the wire, immersed in an electrically insulating medium
and is heated by a known constant power. Here 1t 1s shown
that the specific heat capacity or the thermal diffusivity
can be determined by the further analysis of temperature

variation.
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Starting from equation (1.33)

) Y :
T = e { 1n 5 - 0.5172 ) (2.2)
This equation is valid for kt/rg > > 1 or for larpge times.
Thermal conductivlity K may be determined from T versus

In t plot (T being linear in 1n t for small temperature

rise) since gq/rrk is the coefficient of the slope.

Rearranging equation (2.2) the thermal diffusivity

is given by the equation
;'!
k = (0.4453 r°/t) exp {“nK(T—Tn)/q } sow (2.3)

Now all the quantities on the right are observable
except possibly the initial temperature. This can be determined
by measuring the initial resistance using a very small current,
as explained in the previously described method. Another
method which gives more reproducible results is of small but
finite time measurements of resistance and hence temperature.
The extrapolation then to zero and time gives the required
value. This requires some rough knowledge of the expression
T - T  in small time limit. This appﬁokjmation is glven in

the form of the following eguation

%6
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. 1. 2
T"TO = gqnuj\{'l - 0.7523 o T > FOT } owesw {2,8)

2

where T = at/r
2,10 DYNAMIC ELECTRICAL - HEATING METHOD

This method is used by S. K. Chin and W. K. Zwicker
to determine the thermal conductivity of Neodynium Pentaphosphate

(NdP O, abbreviated as NPP), used in miniature efficient lasers.

Two parallel strips ol metal are grown on the surface
of the sample. One strip is used as a heater and other as a
sensor. An alternating current is passed through heater. The
resistance variation (due to temperature variation) is measured
as a funetion of heating current frequency. Knowing the electri-
cal parameters for the heater and sensor, and the temperature
coefficient of sensor resistance, alongwith measured data, the

thermal conductivity and specific heat can be calculated.
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3.1 FIRST CRDER APPROXIMATION OF TFANSIENT
HOT STRIP METHOD.

The solution for the differential equation of

conduction of heat, for a point source is given by Eqg.(1.26)

) Q cexp | - Hx - x)% + (y - y0?
1= 372 L
8(mKkt)
2
+ (z - z')"7} /Mkt]
If @(t)gc 1is the heat liberated per unit time then

the solution for a continuous infinitely long strip of width
'2d ' lying in the y-z plane is obtained by integrating
the above equation with respect to y' , z' and t'. (It is

assumed that the thickness of strip is negligible).

=
apoe L _dt' . oexp [ - x°/lk(t-t"))
8(nn)3/2 6 (t—t')j &
d
J dy '¢(t',y') expf ~(y-y')2/ﬂk(t—t')}
-d
+co
j dz' expf{ —(z-z')z/Mk(t—t')} g (%.1)

- @
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The 'z' dependent part mives us a constant

2V mk(t-t') Equation 3.1 becomes

t
AT(y,8) = —— J B+ exp { =22/ Ul t-57)]
g\ (t=t*)
(]
d
j &y THE s Yoxpe LolysyM) RtEt"F wew - (B8)
_d

Considering the strip to be in x = 0 plane we will get
== % - ( 1 1 ' 1 2 !
AT = g E“*‘ dy'¢(t',y")exp { =(y-y"')"/4x(t-t')}
cer (3.3)

Make a change of variable

Let g = i
dZ
e
= acf’ - 2—](1-— do
and when £t =0 A o = /Vrt/d
Y = % s g = 0

with these Eq. 5.3 changes to
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0 d

ﬂT(vt)_—.l { ‘(E”rdr(t_giff M)
Vs Tre | 2 J y'¢ X
At/d =4
exp{ -(y-y')°/U ¢°a°)
Kt/ a» e 5
= NIy B & e { o do J dy ' (t_QfEE "
A Y TPy | pe o s ¥
o] -
By 2.2
exp{ =(y-y')"/40"d"} . (3.4)
Let y - y' =2 nod
=> dy' = (20d) dn
and for y' = d , n = (y - d)/20d
y' =-d s n = (y + d)/2ad
Then Eq. (4) becomes
YT /d (y+d) /20d
1 do . (3202
ﬂT(y,t) = -2—?1—':: J -——G— ZUdnfb(t - "'“"K—*" s y—20’.'_'r| d) >
0 (v-d)/20d

exp(- n2). dn

or
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vkt /d (y+d)/20d
d 2 d2y"
AT(y,t) = oy J do ; dn¢(t - =3 ¥ = 2ond) x
= (y-a)/20d
exp (—115) ¥ @ (3:5)
Making another change of variables
T = /Rt L, by = a°/k ., &£ =y/d
Eq. (5) becomes
" (g+1) /20
i . a_ ; i B
or (e, 1) = S [ o | an ¢(t,(c°-0,
2 (g-1)/20
; 2
d(g- 2on)) exp (= n") ... (3.6)

We know that ¢ (y', t') is the output of energy

per unit arca per unit time.

Consider a strip of unit breadth along the length
of the main strip. Let the output of power for this, unit

breadth.strip be P(y', t')

1. Py 52
' ! = Eeie i\ 1 - 1R
= o(y',tt) pce 2h
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L] '
Py qht ) is the output of power per unit area of

&=

Where

the strip and '2h' is total length of strip.

Let the voltage across the strip be U(t'), the
resistance of the strip be AR(y',t') and thermal conductivity

of the strip be &,

We can then write ¢(y',t') as

dlyr,ery = L., L&) ... (3.7)

Rewriting (7) in terms of electrical conductivity O which

is inverse of electrical resistivity.
bly',6') = 55 UT(Lr) Ao (y',t!) (3.8)
y ’ EhS} E ’ L -
If thickness of the strip is '2v' and p(T) is the

time dependent resistivity of the strip then electrical

conductivity i1s given by

1 1 = l._:_.‘}_\’_
bop(y'st') = Sp
Where p(T) = R { 1 +adT(y',t")}

'a' is the temperature coefficient of resistance., So we can

write QU.E as
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AY

dop = 4 p, +aAT(y',t7))

At initial temperature, before any change in
temrerature occurs AT = (0 g0 we can write for electrical

conductivity at initial temperature

2d {1+ o AT(y"' ,£')}

Substituting this in Eq. (8) we get

0 U (g .
ey B L VD (3.9)
’ (L\ldhg) {_l-l-aA'T'(y',t‘)]
Now
Eo 1l e 2
U U
(o] 0
1
Let _li(_t_.._),_ = V(t')

1!
Q

So Eq. (9) can be rewritten as

’ 2
] -
nlo voCE™)

i Ny %,10
Ldhe 1+oAT(y',t") ( )

d(y',t")
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Combining Eqs. %.6 and 3.10 we get

” (&+1) /2 . 5 o
P Velt (=0 ))
or - —2= | ao J n - 72 2
Laks ? {1+QAT(d(E—20n),tC(T -0 ))} .exp(=n")
(&-1)/2
. s n (3011)
v . dy
We had AUE =
h po[l+u1\'1‘(.\/,t)}
, d dy
=D o, = e e
E J{1+aaT(y,t) )
hpo -d
T
_ O
g
where IO is the constant current input
d
or T J N
_ (@] \ll)"
Bip B eSinc e e —
24U {1+0AT(y,t)}
-l
]
or using L%E) = v(t) we pet
o
d
u _
B, b .1 J dy - (3.12)
]
U wWE) 28 (1+aAT(y,t)}

and with E = y/d we get
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L A [ . .d N : 5 (3+13)
2 j 1+anaT(E, ©)
i

3

Typically o is of the order 10"~ and the rise in
temperature 'AT' is kept below 19, S0 to a zero order
approximation a. AT(y,t) is neglected in Eq. (13). This

gives v(t) = 1 and Eq. (11) becomes

(¢+1)/20
PO 3 2
BT ET) =jmiga J do J dn . exp (= n) ... (3.14)
0 (g-1)/2¢
P o bt oo
o 2 2 2
AT(E,T) = ———— J dg. —- J dn exp(-n") - J dn.exp(-n")
L L i (£+1)/20
cvv (3:15)
. g
Using the definition —— J e™™ dm = erfc x = 1 -erfx
v "
Eq. (15) is written as
P [T
0 v FED , E+1
AT(E,T) = —-Z— | do {erfe (3—=) - erf = 3,
(&,T) s ) erfe (- erfe ( 5 )} (%3.16)
o
Léet x=~:i =5 dx=—EE- (- 1)
20 O? ’

This means that the integral deperdent on ' ' becomes



T I
, E-1, _
| do. erfec (—Eﬂ) 5 ;

0 (g=1)/217
Integration by

parts the R.H.S5. gives

w

&1 J

> dx.

(E=-1)/2T
| ax
X

(g-1)/27

More simplification can be obtained by putting

X =y = 2% dx = dy
We get from Eq. (1l6a)
£-1 J dx . erfe x =
_) [ -
= X
(g-1)/21
«] B
- (B=2))
2T
= 1 :
where —Ei(—x) = [ T exp(-U).du
J
X

dx. l?
X

erfec x

erfe (%%l) -

v

/m

Using Eq.(%16a) and(316b) in Eq.(%.16) we get

21
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(3.16a)

r. erfe (52;"1)+(§—1 ) wm

(3.16Db)
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P
© { terfe (E;}) rerfe (8{1

‘QT 3 = =
e 8h W/

+ LB (=020 = 2L B e6R20RE . am
2V

2V

For first order approximation we conslder Eq.(3,13)

whieh is
+1
L _ 1 I d g
T 2 o 2
v(t) 1 + adT(E,t)
3
Since @ ATCE$)s €1 we can write
+ 1
1 1
-1
+ 1
=1 -2 I @ g AT(E &)
]
Or
+1
vit) = 1 + ¢ [ dEAT(E,t) (3.18)
2 J o 2 3 - e -
)
+1
integral [ dgaT(g,t), in it we can substitute

Consider the

for AT(E,t) from Egq.(%.17)so that



o ) +1

Jf AdEAT(E,T) = — 2- J d
1 Bh Qv 1

Wy =B WK o

2V Sy

+

Consider the integral =7 J

-1
Let Sl =
T
Sl
-1
= T J dg erfe (%T )
-1
= 2" x.erfe x
+1
o)
or T dg erfc(;¥ y -
-1
Similarly
+1
. J dE erfc(%:l) =
-1
= 2
Let (E 1)L = X ==y

49

el evfc(g%}J - Terfec (;;;)
2 B4\ o E+1 (2
& ) s (}J‘—/'ﬁ ) Li("'('—gf ) ) } ey (3.19)
]
dg erfe (§_{)
df = 2 tdx
0
= ET? [ erfe x. 4%
J
-1/
0
21 exp (—xe) |
v
1/%
3% 2
21 (2 - erfe 1/1) - S (1-exp(-1/1°)
w
> & (3.20)
2 e 2
2t.erfe 1/1 + SL o (l-exp(-1/1°)
v/
wiNe (3-21)
(¢=1) dg = HT2 dx
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So that
+1 | : ‘]
2| asten Bir-RH% - ) Blonax
2V -1 Vi 1/t
2 ¢
e | RJE, (%) * exp () |
7? B 2
i
+1
= 2 | ag D -5
2vm / ‘
5
- I (leexp(-1/12)) - Log (<1775 ... (3.22)
/m Vo
Similarly
+1 5
== J ag (+D)E, (~(Eh2 o L By (-1/e%) - &
o/ . i 2T J v
{1 - exp (—1/1?)} “es (3.23)

Combining (19), (20), (21), (22) and (23) we get

+1 p 5
1 dEAT(E,T) = <! [:Terfc(l/T) - 1“_{ 1l - eXD(*l/Tz)}
x| 2hovT 2
1 2
w e B, fd ™) (3.24a)
2/m
Denoting the terms in brackets on R.H.S., of3.2Ua by (1)

we rewrite
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+1 '[‘J
[ dg AT(E,t) = —2— . P(1) TF (3.2upb)
L 2hQvm
where f(t) = erfe(l/1)- e T2 {1~exp(—l/r2)}- e Ei(~1/12)
v 2V
(3.25)
P
vit) =1+ 22 f£(1)
bhova
p
and substituting G for we can write
Unovn
v(t) = 1 +al@ £(1) _—_— (3.26)
+1
J[ dg AT(E,T) = 2 G. (1) (3. 27)
af
AT(E,T) = %G ¥(E,T) (3.28)
where VY(£,t) = 1 ertc (g;ii - TEPfC(%%i)
v B2 - (DY - Bl o EDH?y L (3.29)

2vm 2V 2T

Equation (3.25) above is the first order approximation.
A second ordera can be obtained by plugging (3.25) back into

Eq. (3.11) and including terms of second order.

I'rom the above we know that
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vit) = 1 + o G £(1)

Now v(t) = u(t)/UO
= u(t) = U, + U  a G.F(1) san Ki3wI0)
It 1s possible to plot u(t) apainst f(t). This would give us
a straight line. The intercept of this line gives U0 and
the slope gives the thermal conductivity as Q_l. The function

f(1) beirig numerically evaluated.

Generally it would be convenient to approximate the

complicated f(t) function by some simple expression

The f(t) function is given by Eq. (3.25) as

f(t) = erfe(l/t) - 4 " T2 {1 - exp (—l/Tz)}
2V
1 ‘
= == . =lft )
ovi *

For small values of 1. f(1t) can be expanded by

Taylor's expansion around 1 = 0.

£()=r(0) + T'(0)+ S

3
.F”(o)+3%§fl.f”'(o) + e

Now
(o) = 0
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f'(t) = erfe(l/T) - 1 s {1 - EXD(—l/Tz)}
m
=> f*lo) = 1
' 1 2
f"(t) = == {1 - exp (=1/17)}
e
= (o) = = _1-_
/?T -
(1) = L ia.exp(—l/Tc)
VL
= fMio) = 0
étc.

The third and higher order derivatilves may be written

in the form

TL o |
T exp(-1/17)

where m 3z 3

Now as >0, e ™exp(-1/17) » 0

and so sum of all terms above the second order derivative will
be zero. That is,kthe contribution is from the first two deri-

vatives only in the Taylors Expansion of f(t) around t x 0,
B
so that we keep t° terms only. The function f(t) is then

approximated as

Plt) = T = —— 1° (3.31)
VI
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The voltage variation as a function of time can be written as

)
f o

u(t) = a; + a. £t + agt - (3.32)

where the coeffecients al, ay and a3 would give the thermal

properties to be determined.
We had Eq. (3.26) as
vit) =1 +a G f(t)

where now F(1) = T = ———— T

P

0

and G = —
4 hovm

Comparing v(t) with u(t) above we get the thermal

conductivity §Q for a metal strip inside a semi-infinite medium,

.{— ) LA {3-33)

I‘'or a thin metallic {'11lm evaporated on the surface of

2 sgsemi-infinite medium we pet [or the thermal conductivity

"
5 0 dl g
s = ("— g )

- 5 4% (3.34)

For the thermal diffusivity ¥ in both cases of a

strip inside a semi-infiinite medium and a strip on the surface
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of a semi-infinite sample we have

< = umd? (a,/a,)’ | (3.35)
He2 CONDUCTIVITY TENSOR
Solution of the heat conduction equation for an instan-

taneous point source in an an-isotropic medium, with principle

conductivities 91,92 and 93 along x, y and z axes 1s given by3

3/2 ) i i
QL eC) v o | oC [(x-x 2. fyey™)
, -t eXDP )= s +
8(nﬂlﬂzn3)a(t-t')5/2 |7 u(t-t?) ﬁl 2
(z-2")%)

+

2, )

The temperature increase at time 't' for an infinitely
long strip along z and of width 2d along y and lying in the

plane x = 0 is

L d
AT = T — J dflafz j A PAE ) fep {‘ Eéz%%;%i)} "
8(nk, k)2 d (b=t 2 ) 2
+oo
J dz™ exp {H%%%%%%g; } N (3.36)
where we have put k, = ©./¢C. The part gives us 2/k, (t-t7)
so that
1 ( dt” fd 2 — [ _(y=yD)% ]
e (e k) [ (E-toy | ‘97 Ry P g i, (t=t7)

L7 B ~d (3.37)
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From Eq. %.10 we have for ¢(t7,y")

< £
ALIENAR R vl

vZ(t")
1+aAT(t",y”)

Substituting this in Eq.(3.37) we get

t

d

dy”
T+ a-AT(y ,t°)

[ 2 -
lBﬁdi CVk.K J i ztii‘;. J
PR Sy o -d

(3.38)

Now a and AT is small and a first order approximation

can be used as

done before to get
P o
vt,) 53 * —~J1———--I(T?) (3.39)
i Ih /nﬂan :

1 . )
where Ty 2 (t/Bz)z and 8? = dz/xg. 6 is called the characteristic
time and f(r) is

'[2 2 1 2
(1) = v erfa(l/t) «—— {1 =exp(=L/7*)} = —= E:(= 1/1%)
2V /T L

From BEq.(3.38) we see that if the strip is in y-z phase
then the conductivities along x and y directions and the thermal

diffusivity along y-axis can be determined.

In Figure (3.1) the three axes are designated as 1,2 and
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3. Three independent measurements can be made with the three

orientations of the strip, position A, position B and position C.

According to the alove ahalysis about the direction
dependent conductivities and the position of the strip the followirg
information can be obtained from the three positions A, B and C

of the strip.

A Ql'uz = a, and Ky = LA (3.40a)
B uz-u3 = d8 and K2 = hB (3.40b)
= 93'91 = and Ky = hC I (3.40c)
where we know that Qi = K G 3 4 8 42498
We can re-write Eqn.(3.40) as
'aA'aC‘%
Q. = ' s (3.41a)
1 ] aB J
1
¢ Cl d ] h
Q. = —S—- ’\J (3.41b)
. C
rcl =} 2
Q. = |-C BJ s (3.41c)
3 | aA
and
a, da.y’ d. Ay’ a. a %
Y 2 - C 2 | oy
C = [ AL Tt [ 2 “I bl = | : B] bt (3.42)
2B C A
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Thus with three strips along three orientations the
conductivities along the three principal directions can be found

in a single crystal.

BeD SOME FACTORS AFFECTING THE EXPERIMENT

In the mathematical model developed for the T.H.S. some
factors like radiation losses, thickness of heater and end contacts
which might affect the experiment were not considered. If the
experimental conditions are such that the contribution due to the

above factors is small then their effects may safely be neglected.

We now show that the contribution from radiation, thickness

of heater and the end contacts is negligible.

(a) Radiation from the strip

The loss of heat per unit area into a black enclosure due

to radiation 1is

Q. =o0(e Ty = o, T,) — (3.43)

where T, is temperature of radiating body, T, is temperature of

1 2
the black enclosure, ¢ is the Stefan-Boltzman constant, € is the

emissivity co-efficient and o is the absorption co-efficient.

1.2
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For a silver film e = Uyy 2 0.02 and Tl o '1'2 so that

Q, % 0.0835 Tg AT (3.44)

where AT is the mean rise in temperature and TD is initial

we can write

u = U0 (1 + o A1)
u-u
- = O
- AT = 7=
(@]
Eq.(3.42) gives
F w
v(t,) = 1 + —2 —  f(1,)
2 Wh v1Q MT 2
u—UO
where v(t) = T
(@]

So far AT we get for a film in a semi-infinite medium

I)
O

I /ﬂ&“}az

&T(Tz) = f(T2)
and for our case of a film on a sample i.e., a film on the surface

of a semi~infinite medium we have

IJ
AT ) = = o fl1,) (3.45)

2 )
zh/nulu2

The extensions of the strip are 2h x 2d where 'h' is the
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nalf length and 'd' is the half width. So the total power loss

from the strip due to radiation is

P =0.080 T3 T 2he-2d
B [}
- 3
0.32 ¢ T, h+d-P_
=> B, = : 'f(Tz)
2h¢n9192

The relative power loss is thus

. =9
p /p = 0.16 8 T  d
r 'f(12) i
/ﬂazl&IZ
For a typical experiment 1 = 0.7
Now f(1) = 1 = —%: e
i

and for 1 = 0.7 we get f(1) = 0.56

: 3

Keeping a usually acheivable width of strip 2d = 2 x 10~

-4 }

x 2 1
with g = 9,7 ¥ 18 wdtu/mzK

- Lo i .
(Rlﬂz) = 1.42 watks/mK

- o
and T, = 300°K

We get for the relative loss of power

il
P_/P =% 107"

s TR o]

So loss of power due to radiation can be neglected.

(3.46)
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(b) Thickness of the Heater

The strip has a length 2h, width 2d and thickness 2v. If
the density and specific heat of the strip are Py and Cp then the

power needed to heat the strip is

- T _Ll_(é.'.'!'.‘,)_,-' . .
Pf =t pf (,i- dt Zd 21] 2\) . .0 8 (31}"'?)
o Z = ¥ —d({\lll)o e
=D Pi_ =, BFfo dt dehev

The mean rise in temperature is

PO
AT = ——w—m————-f(12)

?h/ﬂﬂlﬂ?

Initially high power is needed to heat the strip, but

after a very short time the power required becomes negligible. So
that f(TQ) 2T,
Now T, * /%7@;
- 4 fGp L L
/utaz

So the relative power loss Pf/PO is given as

P Bprf defiev q

= = : — (3.48)
o Zh/ma q, 2/t0,

Putting 1,0, = V0, , Kk, = a’/6,, and 9, = K,/ C
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So for relative power loss we have

2
b ] =)
Yo view, 1%

Pf i 2Ffo . K

With v = 1000°A, d = 0.2 mm

pf fs 1 2 . |
~ , —e— R
pC Kl
and T = 16 we get the relative power loss to be = T =

which is negligible.

(c) End Contacts

The relative temperature decrease due to end contacts

for an isotropic solid is given by

R_-.ﬁlﬁ/m (3.49)
with the usual 6 = d?/k and t = Vt/0
and T ~ 0.7 and t > 0,5 we get

meax max
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If d & L[] h then

R < 5 x 10_3

Thus if width of strip is less than f%th of the strip length then

the effect from the end contacts can be neglected.
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4.1 CIRCUIT REQUIRNENTS FOR THE 'THS EXPERIMENT

In the T.H.S. method a constant current is allowed to
flow through the strip. Due to this input of constant current
the temperature of the strip increases and its resistance
increases too. This results in a time varying voltage u(t) across
the strip. The whole experiment depends upon the accurate

monitoring of u(t) against time. We kihow from Chapter Three that
} T
u(t) U, * U, € (1)

where UO is the voltage across the strip when the current is
switched on, C is a constant and f(T) function has been

defined in Chapter 3. in equation ( 3%.25 ) .

The trace of U(t) against t is as shown in Figure (4.1).

Usually U is of the order of 1 volt and the increase
in voltage above Us is from a few micro-volts to a few millivolts
at most. The increase in voltage AU(t) above UO is the interesting
part because that is due to the change in resistivity of the

strip.

To detect the increase in voltage AU(t) above U0



66

requires amplification of the increase. 1f the whole signal i.e.
UO included is amplified a lot of information about the change
AU(t) above U, would be lost. It would be best for the reading
instruments and for the sake of accuracy to somehow offset the

initial voltage Ug,-

In short to make a Fetter experiment it is required that:

1. There should be extremely fast switching on of the
current through the strip, so tha* voltage U0 is achieved virtuilly

at t = 0.
2. There is some arrangement to offset Uge

3. Sufficient amplification is provided to read the
increase above U, on a convenient setting using a storage oscillo-

scope.

The Adifferent circuitry attempted all revolved around
maximization of the above three points. The initial set ups were
too complicated, but finally a neat and simple arrangement developed

which was highly accurate also.

Before describing the different set ups which were tried

it would be appropriate to talk briefly about circuit design.






67

K2 BRIEF THEORY OF CLRCUIT DESIGN

(1) Constant Currnt Source

A constant current source is one which supplies a
direct current, the magnitude of which is independent of the
load into which the current flows. Also where such condition
require the current should remain constant with respect to supply

voltage and temperature.

Theoretically an ideal constant current source would be
one having an infinite supply voltage. However in practise we
cannot have an infinite supply of voltage in the first place,
secondly the actual supply voltage is limited by sort of usage
for which it is required. So it turns out that there is a limit
on the load carrying the current, beyond which the constant

current source will not supply constant current,

If a constant current source has a maximum supply

voltage Vm and the current is I then the maximum load RL for a

constant current is such that

v
m
Ry, &1

The simplest arrangement for a constant current source
is to have a voltage source VO and a high resistance R (as

compared to RL) in series with the load R, (Fig. 4.2).

L
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If the voltage across load is much smaller than the

voltage Vl aAcross Rl we would have a constant current source.

Slight changes in load would not influence the current IL in load,
which is given by
v -V
(6] Ly
I T rrer———— - s e . (Ll'l)
L Rl
Alternatively
T = g
L Rl + R?
since Rl >> RL
Yo
I = o L I (1‘02)
L Rl

The percentage departure from the constant current is

VL/Vl x 100%. This means 1if current is to be held within a few

percent and V, 1is several volts then Vl must be a few hundred volts.

L

Such a high value of V, might not be convenient in many situations.

If the voltages in a circuit are not to be very big we
can rig up a constant current source with the help of the magic

genie 'the transistor'. Consider the circuit given in Fig. (4.3)

v - V..
I = BL" 15]" - 0w (4.3)
I, = 1., = collector current

L ICHU

"
=
—
-+
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where ICBO is the leakage current

— cees (4.4)

The parameters a, ICBU and VBE for a particular tran-

sistor(at a particular temperature) are constant.

I, will be independent of load since V

L BB and RE are

fixed.

A practical circuit used as a constant current includes
a zener diode as shown in Fig. (l.4). The zener supplies a
constant voltage VBB’ which can be fixed to get a current in the

load from 0 to 200 mA.

(2) Transister Switch

For the sake of high speed and bounce free switching a
transistor is used. Ideally in the 'ON' condition the transistor
should offer zero resistance and in the 'OFF' condition the

resistance offered should Le infinite.

A circuit for such a transistor switch is shown in

Fig. (4.5). The collector to emitter voltage is given by

Vee 7 Vee - IcRL ceee (H05)
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where VCC is the supply voltage, ip is collector current and RL

is the load resistance.

Now if IB is the base current and 'f' is the common-

emitter amplification factor, than

IC = B IB ) (4.6)
£ IB 1s made zero then IC 1s zero and we will get VCE = VCC’
i.e. the whole voltage is across the transistor and no current is

flowing through R (Actually a small current does flow which is

L*

the leakage current.) When V.. = V

ol e Ve have the 'OFF' condition

of the switch,

In the 'ON' condition there should be zerc voltage across

the transistor which means that VCF = 0. Using Eq.(4.5) we get
= 3 =
VCC ICLL 8
=> VCC = lCI{Ll

So that when the whole voltage is across the load we have the 'ON'
condition of the switch. In actuality there is a small voltage
drop across the transistor because ol reasons like internal resis-

tances of the transistor.

In switching, the 'ON' and 'OFF' time of a transistor are
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of great importance. These times would depend upon the characteris-
ties of transistor especially base-emitter and base collector

capacitances. Also the external circuit plays an important part.

The design of a switch requires special transistors having
very small rise and fall times. In the external circuitry the
inductive and capacitivecomponent of the load is minimized. A

n

capacitor across the base resistance R; greatly helps/ increasing

the switching speed.

(3) Operational Amplifier

Historically operational amplifiers (op.amp) have been
used for mathematical operations such as addition, substraction,
function generation etc., therefore called operational amplifiers.
This amplifier has a very big gain, very high input and low output

impedence etc.

Ideally this amplifier is characterised as having infinite
gain, infinite input impedence, infinite band width, zero output

impedence and zero voltage and current offset.

Equivalent circuit for an ideal op.amp is given in

Fig.(4.6).
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Here R. ﬂvo

1 » @, R — 0 and band width is infinite.

Since Ri = =, the current Il is zero into the terminal, which is

defined as the summing point.

Since AVO is infinite, except zero, for any value of

: ; 4 +
Vl’VZ will be infinite. Practically V, has saturating value V

2
or V_ limited by supply voltages. The configuration in which no
feedback is applied is called 'open loop' configuration. A very
stable operation of the amplifier can be obtained by the intro-
duction of feedback. The gain, then becomes almost independent of

the gain of the amplifier, and depends only on the external

circuit components.

The circuit with feedback loop is shown in Fig., (4.7).

The circuit in which feedback is applied is called 'closed loop'

gcircuit. Since Rin = oy 13 = 0, also Vi = 0 since V2 - AVoVi and
for v, within limits V, = 0 (Ay, tends to infinity). So point
A is at virtual ground and we can write
‘\z’.l - Vi Vl
I. = 3 T - .o (Ll'ug)
1 l\l Rl
Vi, = V. v
I (4.10)
F 3
Also
% I £ =
I1 l2 lg 0
or I, = -1
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So
L
& 2
or
‘T‘F’Z.:-;:AV ... (Ll’nll)
1 1L
A

v is gain of the circuit independent of Ay, In fact AVO need
not be infinite in the real sense of the word, but it is only

necessary that AVO be large for a reasonably good approximation.

Since point A appears to be at ground potential so the

load for the input source is only R Therefore, R.istne input

l'
resistance of the amplifier. So both the input resistance and

gain can be set with Rl and RP only. This configuration is called
the inverting amplifier, since the output is always out of phase

with input.

In Fig. (4.8), a non-inverting amplifier is shown. RF is
feedback resistance and input is applied at the non-inverting
input of the amplifier. Since V, = 03 V, can be considered as a
voltage across Rl, S0 we can write

V2 = Ilﬂr + l?“l
= Ier vy
41
:R_RF + VJ - e "8 (L}-:LQ)
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or V2 RF
o = ] + =— = [l'\‘ ] L) (4113)
Vl Rl J

AV is gain of this amplifier and here input impedance is the

input resistance (Rin) of the amplifier, which is infinite ideally.

A useful version of a non-inverting amplifier is

'voltage follower' which can be considered as a special case of

a non-inverting amplifier by letting RF = 0. The voltage gain is

one and input impedance is infinite. This can be used as a buffer

or decoupling stage between load and driving source. The circuit

is shown in Fig. (4.9).
(4) Differential Amplifier

A differential amplifier is also called a substractor

or difference amplifier and is shown in l'ig. (4.10). Here we can

easily apply superposition theorem to analyze the circuit. So

first shortening VZ’ we get inverting amplifier, giving

v = = e V]. ~ P (4.14)

Now shortening Vl a non-inverting amplifier, but with R, at its

non-inverting input,is formed. Voltage v, is divided by R, and R,

5 at the non-inverting input. So we get

and produced voltage Vz
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- 2
V L V -0 ('4.15)
2 Rl + R.2 2
and
( Rp
Yoo = |4 * E‘] Vo
L
R R
. F] [ =9 ]
= l + — 5 L D V EY LR (LI'.lB)
l R R+, V2
if we let R2 = Ry, then we get
RF
V[]? = T{_"' V? . P e s (u-l?)
1,
Therefore the total output is given by
Vo = Voo * Voo
R R
F 13
B e W E s W
Rl I 1 2
RF
N ﬁ; (Y, = Vo) e (4,18)

So the output voltage is proportional to the difference of the

voltages at the inputs.

(5) Actual Operational Amplifier

Although very good approximations can be made, yet

following departures from the ideal can be realized.

Obviously in actual amplifiers, infinite gain, infinite
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input impedance, zero output resistance and infinite bandwidth

are impossible to achieve. Typically the open loop gain is of

the order of 105, the input impedance in the range of several M.ohm
output impedance around 50 ohms and the bandwidth a few M. Hertz.

Alongwith these the following differences are also observed.

(a) Offset: When both the inputs of an op.amp are at
ground, ideally there should be zero output, see Fig. (4,11).
But in a practical op.amp an undesired non-zero output appears.
VUO with input grounded is called 'output offset voltage'. This
voltage can be related to the input voltage (in built) as
v

W is called the 'input offset voltage'. 'Input

Vo0 io* Vio
offset currents' are also present in a practical op.amp. Consider
Fig, (4.12), the current flowing in or out of the input terminals.
The currents IB and IB? are usually not equal, and the difference
l A

(IBl - IBQ) = Iig is called the 'input offset current'. Vo in

this case is due to the input ollfset volltage and not due to IiU'

To see the effect of I. consider the circuit in Fig.(4.13).

0

Current IBl develops a voltage Ibl Rl accross resistance Rl' This
voltage appears as an input voltage, the amplifier yielding output

voltage.

Now VO is not only due to Vi} Lut is also due to IiO' The
effect due to IBl can be nullified ly inserting a resistance in

the other input terminal, see fig. (4.14).0ne thing must be noted
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here, that even if Rl = RQ’ VU will not be equal to zero if

A pair of terminals is provided in most of the amplifiers
for offset adjustment. A potentiometer is usually connected accross

or V .

these terminals and the adjusting arm connected to VCC EE

(b) Drift: The input offset current and voltage drifts
with temperature and to some extent with time. Thermal drift is
usually the most significant. Offset voltage and current drifts

are specified in units of uv/°c and pA/Cc respectively.

(¢) Common Mode Error: Ideally one expects that the out-

put voltage is gain times the difference of the voltages at the

inputs, i.e.

V, = Aa(vl - ¥

0 )

2

where Vy and V, are the voltages at the non-inverting and inver-
ting points., But in practical amplifiers output also has some
dependence on the average value of the two inputs., For practical
op.amp we have

v, o+,
Vg = ALY, - V) HA [ . #J ceee (4.19)

where Acm is called the common mode gain. A term 'common mode
rejection ratio' (CMRR) is defined as

CP’“{I{ = Aa/ﬂcnl . LA ] (”020)
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Eq.(4.19) can be written as

A (Vo # V)
N ; (¢ 1 7

CMR ratios of 20,000:1 to 200,000:1 are typical in practical

amplifiers,

(d) Slew Rate: 51 .w rate is a measure of how fast the
output voltage can be varied with respect to time, and hence it 1is
generally specified as so many volté'perllsec, as measured in a

particular feedback configuration with some particular load.

If an op.amp is operated open loop, and the input signal
is sinusoidal (amplitude is small enough not to saturate the

amplifier), the output will also be sinusoidal of the same frequency.

If this amplifier is used in closed loop configuration and
the magnitude ot the input i5 increased (still not to saturate the
amplifier in this configuration) the output will be distorted. This
is due to the various internal and external capacitive loads. The
output voltage cannot instantaneously follow the input due to
charging time of the capacitor. So the high frequency response of

an op.amp is different for small signal and large signal.

F'or a large step sipgnol input the output rises at
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a fixed rate, see Fig, (4.15). The rate limit is the slew rate
and determines the speed with which the amplifier can respond

to large signals.

The maximum frequency of operation (with sinusocidal
signals) of the op.amp is limited by the slew rate. If output is

given by

V = Vm sin (wt)

time rate of change of voltage is given by
=— = V. w cos (Wt)

n

and the maximum value of this rate of change is

dv =
dat * Vi “nax
max
dv . iy e o ing > t 3 >
When qT 1S Siew rate of an op.amp the maximum operating frequency

due to slew rate limit is

ja

- V
w =

1
ma}{ V_mdt - - % o w (4022)

It can be seen from Eq.(4,22) that the maximum operating frequency

decreases with increasing amplitudes.

(e) Non-Linearities: Tne input, output and gain charac-




teristics 211 show some non-linearity in the region of
operation. These non-linearities are negligible for most
purposes, but would have to be taken into account when do

ing sensitive measurements.

There are limits to the current and voltage
when using an op.amp. because there is both input and
output saturation. The input must not exceed a certain
peak to peak value and so must the output be restricted
too. These saturation limits are imposed by the maximum

rated vower supply voltage which drives the op.amp .

In this saturation bussiness the load impede-
nce plays an important role. 1f the 1load impedence
is below a certain value ( which is specified) then the
output current saturates before the voltage saturation
occurs. Hence the load impedence of an op. amp. should

be greater than that specified fol a particutar op. amp.

Now that we have described thedifferent aspect
of circuit design which would be useful in the experi-
ment on the 'transient hot strin' we go to describe the
different models attempted. These attempts finally ended
in a 'pbridge circuit! which we beleive did the best

job,

[
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4.% FIRST MODEL

Circuit diagram of the first attempted model is

shown in Figure (4.16).

RL is the current limiting resistance and S. R.
is a standard resistance of 1 ohm in series with the THS.

The other and of THS being prounded,

Voltage across the 5.R., which would give us
the current through the THS, is amplified by a differential

amplifier DAl and f'ed to channel A of the oscilloscope.

'he potential difrerence U(t) across the THS
is amplified by a variable gain amplifier Al. The gain is
adjusted so that at point 1 the amplified U0 is equal to
the zener voltage. e.g. if zener voltage is 10UO the gain
of Al is made ten. The signal at point 1 is thus fed to a
fixed gain amplifier with gain 10, from where 1t goes to

channel B of the oscilloscope.

The disadvantapes associated with this model

were:

8 If current through THS was made tolchange
then the pain of Al had te be changed also
to bring its output equal to the zener
voltare. This practically had to be done

every time a run was made,
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2. Also since each run required an adjustment
of Al its pain ﬂduid'not be find. To find
this pain each time an external signal had
to be applied to Al and its gain studied

on an oscilloscope.

Bl Because the pain of Al had to be changed'as
required each time its off setting had to be

adjusted accordingly.

However, inspite of the disadvantages the
attempted circult gave us the proper insight into the
requirements of the experiment and led to better changes

later on.

4.4 SECOND MODEL

The second atblempted model is based on the four
peobe method., First a bloeck working is explained and thus

follows a detailed description.

a) BLOCK DIAGRAM

Bloek diagram of' the circuit is glven in Fig. (4.17).
A constant current is passed through the strip. Standard
resistance (S.R.) is also in serles with the strip to measure

the current. The constant current develops voltage across SR
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and strip which are proportional to their resistances. The
voltage across the SR remains constant throughout the
experiment, due to its constant resistance, but the voltage
across the strip is a lfunction of time, The resilstance of

strip being a function of the temperature.

The voltage across the inner ends of strip is
applied to the inputs of a differential amplifier, DA2 with
gain 1. DA2 amplifies only the difference of the voltages
at its inputs, so only the voltage across the inner ends
of the strip will be amplified irrespective of any voltage

present at the strip w.r.t. ground.

The output of DAZ2 is applied to the inverting
input of a reference or difference amplifier DA3. A reference
voltage is applied at its non-inverting input. Output of
DA3 will be the reference voltage minus input voltage at
the inverting terminal of DAJ. The reference voltage is
set equal to the initial voltage U0 developed across the
strip. So at the output of DA3 we are left with only the

voltage variation above Uo across the strip but inverted.

This voltape variation is agaln given to the
input of an inverting amplifier Al with fixed gain 10.
Output of Al is amplified and inverted so we get the

change above Uo with original polarity. This voltage 1is
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given to the storage oscilloscope (channel A) where it can

be photographed for a permanent record.

Initial voltage step is measured by measuring the
reference voltage at DA3. A voltdge follower V.F. stage is
used between the digital voltmeter and DA3 stage to decouple

these from each other,

A differential amplifier DAl 1s'used to measure
the voltage across S8.F. which actually gives the current
through THS. The gain ot this amplifier is one. The output
of this amplifier is applied to channel B of the storage
oscilloscope, from which it can be recorded at same time

as the AU(t).

b) DETAILED DESCRIPTION OF SECOND MODEL

Block diapram of this model is given in Fig. (417).
In Fig. (4. 18) the detailed diagram is shown. Transistor TPl
is used as a constant current source. The transistor switch

T.5s standard resistance (9 .R.) and the strip are the load

for this constant current source (being in the collector

circuit). The necessary constant base voltage supply V is

BB

‘made available using a zener diode UZI. This voltage can be

fixed at any value from zero to VZ by adjusting a potentiometer,

ACross DZl' Vz is the zener voltape of the diode.



Transistor Tr? is used as a switch, drivem by a
single shot multivibrator. A buffer stage using TP3 as an
emitter follower is used between switch and single shot. The

"ON" duration of single shot is determined by the R,, C

i £ I

Rl is a variable resistance, and by adjusting it ON duration

can be fixed for any value between 0 and 200 milli-seconds.

Operation amplifier Op, is half 747 and 1s used

1
as a differential amplifier, with gain one. A variable
resistance is connected in the feedback loop which is used
to caliberate the gain of amplifier. A 10 K potentiometer
is used for offset adjustments. This ampliflier is across

S.R. to measure the current. The Oubtput of it is connected

to channel A of the storage oscilloscope,

Op-amp-2 (%747) is also used as a differential
amplifier across strip. The circuit configuration of this

amplifier is same as thal ol Op-amn. 1.

Op-amp-3 is also difference amplifler. It is
used to cut the initial step of voltage across the strip.
Its inverting input is connected to the output of Op-amp-2.
The non-inverting terminal is kept at a voltage, which is
approximately equal to the initial step UO. Transistor Tr3

is used to provide this voltape. Tr% provides a constant

voltage determined by zener diode D This voltage can be

z2'
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fixed at any value from 0 to V7 = 5V with the aid of a

potentiometer in the emitter leg of Tr°

5

Op-amp-4 (%747) is a simple inverting amplifier
with gain 10. The gain of this amplifier can be calibrated
by a variable resistance in its feed back ecircult. The
input of this amplifier is output of Op-amp-3, which is
only the voltage rise AU(t) across the strip. The output

of Op-amp-l is connected to channel B of storapge oscilloscope.

Op-amp-5 is a voltaye follower stage which is
used as a buffer stage between digital volt-meter (DVM) and
the rest of the circuit. Dipital voltmeter measures the
voltage present at the output of Op-amp-3, which is the
reference voltage (approximately equal to Uo) at its non-

inverting input.

The traces of AU(t) recorded on the storage
oscilloscope were as expected but accuracy was lacking,
Reproduction of results was very difficult the reasons
being basically the complex nature of the circiuit and also
lack of precise value of the ”0 leadinpg, to bad precision
in setting of the references voltarge. A slight mismateh
between llO and the reference voltapge made the image on

oscilloscone po out of the viewing window.






87

The reasons for the models short coming and for

the search of a better one were:

A Each time pain calibration cf the amplifiers

had to be done.

2, Fach time the offset of every operational

amplifier had to be adjusted.

S The current and reference voltages had to be

adjusted so ans to make them compatible.

Clearly the biggest problem was to select a
certain current to get a reasonable ”0’ and adjust the
reference voltage so that “o could be offset. The best
choice would be to have an arrangement whereby UO could be
balanced out easily. This pointed the way towards the use

of a Bridee Circuit on lines of the famous Risistance Bridge.

4.5 FINAL MODEL — THE ERIDGE ARRANGEMENT

i) THE BRIDGE:

It is a well known ecircuit having four arme as
shown in Fig. (4.19 ). When the bridge is balanced the voltages
at C and D are equal. The balance condition in terms of arm

resistances is given by
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The second class of bridge is an unbalanced bridge. When the

bridge is imbalanced, a little voltage difference arises

between C and D, which is a function of the imbalance.

From Fig. (4. 20 ) we have

V= IR - T,R,
= — | ¥ “ s s 0
IRy uce)
o I(Pg_i Ry)
= R
hF1+H2+R3

(11+I?)(R?+w%)

2R +R2+R

1 3
o~
| (] R')__-'—_Ij'; ) = 7 (R? + R?))
Y T T2 oo tm e
LE1+R2+H3 2R1+H2+R3
or
2R
. o LiL_*")= _FR3+ RB{
L o 2 5
LHI+RE+P3 2Ry +R,+Rs
or
(R, + Rg)
Il = 12 "'—':C_,R_‘__';'—‘_ LR

(4,24)

(4,25 )
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From Equations (4.24 ) and (4.2% ) we get

(R, * By)
V= I, e odl o Ry = U(t)
2R
1
I,R IR
e84 2.3 . fs)
2 2

Now I, R, 1s U, the initial voltage across the

strip and T,R, is U(t), so

3
Us . US)
Vit) = -2 + =="= U(%)
4 2
or
2V(t) = 0 = ult) S (4.26)

11) DETAILED CIRCUIT OF BRTDCGE ARRANGEMENT:

The circult 1s shown in Fig. (4.21 ). This 1s a
method which uses three probes scross the THS for current

and voltage isolated measurement,

Initially the bridge is balanced by passing a

very little current through the circult. Resistances Rl and

R2 are equal. R, is varied to balance the bridge. Section 'a'

3

of the strip see Fig. (4.21 b) is in the R3 arm of the bridge.

Section 'a' being in the lower arm balances the section 'b'
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of the strip (it being assumed that the strip is symmetric).
The effective length of the strip then becomes h. Standard
resistance (S.R.) is in the strip arm but it does not
contribute to the trace, since it remains constant for
current values lower then the current specified on standard

resistance.

The initial voltage U0 is automatically balanced
cut when the bridge gets balanced using Ra. The heating
current increases the temperature of the strip and so
imbalances the bridge. This imbalance and hence the voltage
at the input of differential amplifier DAl (which is a
Tektronics AMH02) is proportional to the voltage increase
across the strip. Fgn. (4.2¢ ). This voltage is amplified
200 times by DAl. The output of the amplifier is connected

to a storage oscilloscope, an HP 1T7HIA,

A potentiometer acting as an offset alongwith a
differential amplifier DA? (same made as DAl) is used to
measure the current. The DAZ amplifies only the difference
of the voltage across SR and the potentiometer. The poten-
tiometer voltage is set approximately equal to the voltage
across S.R. Votlage of the potentiometer is measured by a
digital voltmeter.,an HP instrument No. 3U66A. Difference
voltage, after amplification is piven to storage oscilloscope.

"

¢ e .
Detailed discription of switeh 8 18 given below.
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iii) ELECTRONIC SWITCH

Normally it is good idea to keep the battery
loaded, which means that current 1s always flowing through
the 1limiting resistor. Only when an experimental run is
made the current is switched on to the bridge. So normally
two points B and C are closed and the two contacts B and A

close only when required (at this time B and C are open).

To perform such an operation we use two single

pole single throw reed relays th and RL,, are used because

pod
they have low inertia, can be driven by low current and
low voltages. Reed relays are also bounce free. Transistors

are used to switeh ON and switceh OFF the relays.

Referring to Mig. (!, 22 ). Initially Trl is "ON"
because it has positive voltage at its base. At the same
time Tr2 is OFF since its base 1s grounded through resistance
Rl' This leads to the HL1 to be closed, and so contacts B

and C to be closed. This would be the normal position.

When we want contacts A and B to c¢lose the
manual switch 'Sl' 1s closed plving a positive voltage to

the base of Tr2 making it ON. This actuates RL, closing

2
contacts A and B. At the same time Trl goes to 'OFPF!' state,

opening RLL and so the contacts B and ¢ also,



The switch is extremely fast with switching
time of about 10 micro-seconds and so suitable for the

milli-second range of work.
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EXPERIMENTAL REQUIRMENTS

In the Transient Hot Strip (THS) method a thin film
of metal is deposited on a substrate, and a constant current
is passed through the film. Essentially what is done 1s to
read the voltage across the film as a function of time. The
things to get in the experiment are, one the Temperature
Coefficient of Resistance (TCR), 'a' and the other is to get

a visual trace giving the voltage time relation.
5.1 SUBSTRATE AND THE DEPOSITED FILM:

The substrate sample selected was fused quartz
chosen because of its well known thermal properties, The
sample was a rectangular parallelpiped of extinsions 35x15x10 mm
The sample was optically polished on two opposlte sides. The

known thermal propcrties of funsed quartz being

density = p = 2.25 gm/cm’

-3
Thermal Diffusivity = ¢ = 8.33%33x10 cﬁysec
= 3 -
Thermal Conductivity = @ = 1.4x10 watts/cm-C
The metal film was deppsited by evaporation under

vaccum.
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The metal used for the hot strip was copper., The gtrip
was 0.45r wide and 27.%mm long . The pads for current and voltage
along with the film were made in one deposition . The thickness

0
of the film was about 700 A.
The substrate and the film size are shown in Fig.(5.1)
5.2 TEMPERATURE RANCE:

The measurements were made over a temperature range

of approximately hOOC, from room temperature of 2000 to 6000.

The sample alongwith the probe leads 1s suspended in
a Dewar flask. The sample is surrounded by a thick mild steel
sylinder, which acts as a heat reservoir, next to which 1s fthe
wall of the Dewar. Near the sample is placed a thermometer,
reading to a minimum interval of 0.200. The heating was done
by using a hot air blower and then walting a sufficient time

for the temperature to stabalize,
5.3 ELECTRICAL ARRANGEMENT:
A short explaination is given below. For detailed

review refer to section dealing with the Bridge Arrangement

in Chapter Four.
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The electrical set up is -shown in Ifig. (4.21 ).
Voltage source is 2 heavy duty battery of 12V with a series
current limiting resistance Hh =~ 10 ohms. This voltage is
given across the bridge circuit. As explained in Chapter-U4
the voltage across S.R.(current through the strip) and vocltage
trace are simultaneously displayed on the oscilloscope. These
traces on the oscilloscope are photographed for further

analysis. A sample of trace is shown in Kig. (5. 2 ).

The current used for THS was about 80mA.

5.4 MEASUREMENT OF TEMPERATURE DEPENDENT COEFFICIENT OF
RESISTIVITY (TCR).

TCR 'a' was measured in two different ways, one was
to do a completely separate experiment for determination of o,
and second was to combine the determination of o with experiment

to determine the thermal properties of fused quartz.

1) EXPERIMENT TO DETERMINE 'a' ALONE:

The sample in the Dewar flask is heated using a hot
blower for some time. Then blowing is stopped and a wait ensues

till the temperature stabalizes.

At this stage a number of steps given below are under-

taken to determine a.
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I Note the temperature,
23 Balance the Bridge with adjustable reslstance Ra'

3. Then resistance of THS at that temperature is
R= (R -1) ohms.
a

Repeat step, 1,2,3, for different temperature.

by, Plot R(T) against T and from the slope we get
o'. Such a plot for our experiment is given in

Pig. £ 5. % .
i1) SECOND WAY FOR DETERMINATION OF q.

The same procedure as in the first method was followed
except that at the same time the traces of AU(t) agalinst t were
taken on the storage Cscilloscope at different temperatures.

So that making a plot of R(T) = Ra(T) - 1 against T would give
us 'a' ; and also we would be petting the thermal properties

from analysis of each photograph taken at some temperature,
5.5 ANALYSIS OF PHOTOGRAPHS:

For all traces taken on the storage oscllloscope, the
time base of the oscilloscope was 5 m. sec/div. and the vertical

voltage scale was 5 v/div.
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The voltage before being fed to the oscilloscope for
the voltage versus time trace had been amplified 200 times,
i.e. the trace on oscilloscope (and the photograph) was 200

times the original voltage developed across the THS.

The photograph of the trace was magnified about 2 times
(Actually the magnification of the original photograph does not

change the data, but it only help in making reading more easy).

The magnified photograph is placed under a travelllng
microscope, its horizontal movement is related to time t and the
vertical to the voltage. Where the voltage scale 1s read as

(5/200) volts/div.

The voltage at different data pertalining to

AU(t) u(t) - U

ref.

1

- =]
Uref. (current through THS) x R

where current through the THS is obtained by noting the voltage

across the SR.

At this stage we have the data U(ti) for different ti'
'rom the theory of THS we know that

u(t) = a) + a,/ t + a,t
“

3
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We utilize services of the faithful friend 'the desk
top computer' in the Department of Physics to fit this equation

U(t) = a, + a,v t + a3t to our data noints (U(ti),ti) and give

1

us the coefficient a,, a,, and g for the best fit,
[

Knowing a;, a a,, half width of strip d, half length

2® 73
of strip h, TCR 'a' and the current through the strip Io’ we can

find thermal diffusivity, the thermal conductivity.

Thermal diffusivity of samnle = k = HndE( 3 )2

Thermal conductivity of sample = Q =

d

knowing « we get characteristic time =:ec: =

These quantities determined for the sample are

given in TABLE 5

5.6 DATA AND RESULTS

i
Expeqhental data and subsequent results obtained

are given in form of TABLES from page 100 to page 104,



Time

See.

.005
01

<015

.025
.03
.035
.04

TABLE

-1

Experimental

Uit) U

(Volts)

L0064

.009802

.01211
.01397
.015428
.01664
017792

.018772

mA

e,

U

ref'.

U=-U
ref .

After fit
(Volts)
0064246
.00976843
.012114
.0139443
0154437
.0167086
.0177958
.0187H23

= 5.50V

Difference

.00644E-05
.35698E-05
.69297E-06
.57004E-05
.57345E-05
.46382E-05
.82560E-06
.9€853E-05

100
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TABLE - 2
Time Experimental U-U
(Sec.) U(e)-Uer, Af‘te:e?i't Dlrference
(Volts) (Volts)
.005 0.004064 0.004082 -1, 86385E-05
.01 0.006624 0.006584 3.97336E-05
.015 0.008326 0.008344 -1,82873FE-05
.02 0.009718 0.009720 -2 .42408E-06
.025 0.010880 0.018512 2.87622E-05
.03 0.011784 0.011807 -2 .37909E~05
.035 0.012608 0.012632 -2.42979E-05
.04 0.01335 0.013352 -2.2637UE-06
045 0.014008 0.013986 2.12066E-05
I_= 65.57 mA U = 4,983V

o) ref.



Time

(Sec.)

0.005

0.015

0.02
0.25

0.03

0.035

0.045

2

TABLE
Experimental
U(t)_Uref.
(Volts)
0.0059140 0
0.0084900 0
0.0102380 0
0.0116060 0
0.0127360 0
0.0136880 0
0.0145220 0
0.0152460 0
0.0158380 0
I = 65.55mA

-U
v Ir'ei‘.

After f1
(Volts)

0059279
.0084614
0102357
.0116171
.0127473
.0136992
.0145158
.0152255

0158477

Uref. -

Difference

t

-1.39114E-05
2.857UBE-05
2.23187E-06

~-1,11354E-05

-1.13694E-05

-1.12149E-05
6.11115E-06
2.04552E-05

-9 .,74118E-06

i, 982v,
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Time

(Sec.)

.005
.01
015
.02
025
.03
035
.04
.045

TABLE - 4
Experimental U-U
ref.
U(t)"Uref. After fit
(Volts) (Volts)
0.0029740 .0029803
0.0040880 0040809
0.0048620 0048544
0.0054580 0054586
0.0059560 .0059546
0.0063580 .0063738
0.0067340 .00673U7
0.0070520 .0070496
0.0073320 0073268
10 = 49,32 mA “rer.

Difference

-6.34690E-06
7.09917E-06
7.59121E-06

-6,25010E-07
1.34474E-06

-1.58369E-05

-7.86768F-07
2.36568E-06

5.19513E-06

3.748V

103
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5.50

4.963

4.982

3.748

0.96 x 107> Ohm/degree,

(mA)

L %)
o)

U
o]

T

“

4.

=

TABLE - 5

(V)

L97

.980

981

74T

2h = 0.01365m

i
o]
o (Sec.) Q= - 5 (W/mk)
' 9
0.0477 1.35
0.0478 1.32
0.501 1.34
0.0492 1.29
§ =0.0u487 Q=1.33

2d = 0.435 mm.

a
= gg )2/u , are computed with Computer Program.

page 104



5is T KRRORS

While the errors dependent upon the design
of the experiment have been dealt in Section 3.3 of Chapter

(3) an estimate of the errors in the results due to errors in

measurements and obs

The different measurements donefor the deter-

mination of the TCR

ervation is required.

and the thermal properties and the

errors in them are taken up turn by turn,

ii)

Voltage across standard resistor S.R
of 1 ohm.,

The error in measuring this voltage
is 0.17%

The voltage across S.R gives us the
current I, through the hot strip

Error in Io is 0,17 %

The ad justable resistance R_ in the

-

Bridge ( Section 4.5 , Chapter 4 ).

The error in R, is 0.05 %
Now . Uref= IO Ra

Using the standa}d error analysis
methods we get

Error in Uref is 0.22 %

105
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iii)

iv)

106

In th determination of & we read
Ra witr changing temperature T
The error in Ra is 0.05 %

The error in reading T is 0.1 %

R - Ro

T Ry Ty = Tp)

Now X

where T2‘> Tl

— Error in o is 0.15 %

In the estimation of the thermal
diffusivity and thermal conductivity
we need information about the width
''2d ' and the length '2h ' of the
hot strip.

The error in h is 0.04 %

The error in d is 1 %
2

Now thermal Diffusivity e d
-8
where ' 8 ' has been evaluated by

fitting the data abtout u(t) to
Blt) - a, + a2f¥ + ag t

with the help of the computer.(This
gives us the co-effecients of t ).

= Error in K 1is 2 %

-
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Now thermal conductivity is given by

Qo= g

5

a

2

where U5 =

U0 a3

and Uo== I0 x Resistanee of the

THS at a given temperature.

Knowing the errors in & , h and Uo
we get

Error in SU is 0.6 %

To sum up the error 1in the estimation of the

thermal properties is not greater than

¢

2 %
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