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A B S T R ACT 

A non steady state ' TRANSIENT HOT STRIP'method has been 

used' fo r measuring the thermal conductivi ty and thermal 

diffusivity of non conducting solids . The techniaue uses 

a metal film deposited on a substrate sample . The dimen-

sions of strip aresuch as to realize an infinitely long 

continuous plane heat source of negligible thickness and 

finite width . Power supplied to the strip is electrical 

the heat conduct i on equation for the strip being solved 

in ter ms of the voltage devel oped across it . This voltage 

is time varying because resistance of strip increases as 

temperature increases with time . From the volta~e vari -

ation we can get the thermal properties of substrate. 

Whereas the THS method has been used before~ ,in this work 

the technique was improvised for milli - second time range . 

Short time measurements required fast switching with rather 

small voltage variation . This necessiated use of electronic 

instrumentation . Various sophisticated circuits were desi~n 

ed and tes l ed . Finally a Bridge Circuit was made ~ r. ich 

was simpl e and a c cur ate . Short time THS method was used 

for measur e me n t s on pure fused quartz , an isotropic mate -

r ial • It is p o s s ible to use the THS for anisotropic 

samples ; a solut ion of the heat conduction equation for . , 

such a situation has been attempted . The results for 

34 
fused quartz are consistent with those obtained by others : 
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1.1 CONDUCTI ON OF HEAT 

Heat flows i n a body from hi g her temperature part 

to a l ower temperature par t. Tran s fer o f heat takes place 

in three different ways . These a re conduction, convection 

a nd r ad iati on . 

o 

In soljds , conduction i s dominant while convection 

is absent a nd radi a tion can usually be n eglec ted. In liquids 

and gases , convect ion and radi a tion dominate . We are c oncerned 

here wi th cond u c tion of heat in so lid s only, so we will 

consider con d uc tion of he at on l y . 

1. 2 THERMAL CO NDUC TIVITY 

Cons i der a pla t e of some sol i d bounded by planes 

of very l ar g e dimensions such that the point s at t h e bound-

eries may be considere d at infini te dista nces w. r . t . points 

in th e ce nt Y'P nf the p l a n es (i'i r .1. 1) . The p lane s are kep t 

a t diffe rent temp er a tures of some 10 degrees . After a 

sufficient time, a s teady state is ach ieved, a nd the p oints 

away fr om the planes a n d lying on p l anes parallel to the 

bounding planes in th e plate ', wil l b e at the same temperature. 

Consider a n imag inary cy linder o f cross-section S 

wi th axis normal to the surface of the pla te boundin g the 

part of a so lid. The cy linder' is supposed so t hat no f low of 

heat takes place ac ross i ts gen eratin g lines . 
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Now, let the temperature of the r l rht ·· hand surface 

be To °c and that of left-hand TloC ; To be ing hi gher tempera t ure 

than Tl . Let the thickne ss of the p late be d cm. Then the 

q uan ti ty of heat ,,,hich flows from lower temperat ure to hi gher 

temperature surface in time t seconds over the s urface S is 

give n by: 

Q = K(T - .'U~ 
d 

(1. 1 ) 

where J<: is a con s tant called "ThermaL,Conduct ivity " of the 

substance . The relation for th erma l conduc tivity from equat ion 

(1) becomes : 

J<: = Q d 
. · f • ( 1 . 2) 

This constant depends upon the mater ial. rrhi s re s ult is 

suggested by the experiment. 

The thermal conductivity K i s a function of tempera-

tUre and is not constrult for th e same subs t ance . The dependence 

of K on tempera tur e may be approxi ma ted by making K to be a 

linear f unction of T like 

K = K (l + BT) 
o 

where B i s small. Thi s re s ul t, pe rh aps , p rove s good around 

room t empe rature only , with B n e gative for most of th e substances. 
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4 

But as we go nearer to the abso lute ze r o degree , the res ults 

are rather strange . As shown in the Fig 2. , the temperature 

dependence of K becomes of hirher deFree and after reaching 

a maximum, the curve falls to lower ones . 

1 . 3 FLUX OF HEAT ACROSS ANY SURFAC E 

The ra t e at which heat is tra nsferred across any 

surface S at a po int per unit area per unit time is called 

the flux of heat at t hat point across t h at s urface. 

It can be s h own that the co n t inuity of f lux does 

not dep end on the continuity of therma l proper ties of the 

m ia. 

If the v a lues of flux ' f ' a r e g ive n for thre e 

mutually perpe ndicular planes meet ing at a poi nt , it s value 

for any t he r p l a n e thro ug h t he po int may be writ ten down . 

This can be shown that if the three flux es f , f , a n d f 
x y z 

at a po i nt P across p l a nes paralle l to the coordinate plane s 

a re kn o wn , the flux across a ny o ther plane t hroug h P can be 

determined from t h e following equa t i on : 

f = \f + ~ f + v f 
x Y z (1. 3) 

where \, 11, v , are th e direc ti on cos ine s of normal top lane 

through P . 
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A " f lux vector " £. at every point P of the solid i s 

defined where components are f , f and f with magnitude 
x y z 

and lying a l ong the line with d irec tion cos ine s f I f , f I f 
x m y m 

and f I f z m 

The flux at P across a plane whose nor mal makes an 

angle 8 wit h t he l ine of direct i on of f l ux is f cosG 
m 

1. 4 ISOTHERMAL S URl,'ACES 

In a solid with a temperature distribution which is 

a funct i on o f position and time , the poin t s with equal tempera-

tUre ( say T) will const it ute a surface . Th i s sur f ace i s c a lled 

the i sothe rmal surface for temperatur e T. Si n ce no point or 

par t of a body c on have tw o t pmperatures , so no tw o i sothermal 

surfaces cut each o ther. 

1. 5 HEAT CONDUCTI ON IN T, O'l'ROP TC SOLIDS 

A s olid is said to be i sotropic if a ll the di recti on s 

for hea t cond uction are equally favourable , i .e. whe n a poin t 

within a solid i s heated , the he at spreads out eq ually well in 

al l direct i ons . On the other hand, there are crystall ine and 

a ni sotrop i c so lid s in whch certain directions are more favourable 



for the co nduction of heat . There are a l so hetrogeneous solids 

in which the conduction of heat vary from point to poi nt as 

well as in di rection at each po jn L. 

In t he exper iment described for the thermal cond ucti -

vity, t he i so therma l s ur f aces are p lanes parallel t o the faces 

of the p l at es . The isothermal s for temperatures T and T+oT are 

at a di stance of a x . Then t he rate of flow of heat per unit 

time per unit are a in the d irec ti on of x is: - K aT ox 

and as OX + 0 , we h ave : 

c x 
;) I I \ 

= --J< 

\,Je may general ize it by say i nl" that the rate at which heat 

crosses from ins i de to the outside of an i sothermal surface 

pe r unit area per unit t i me at a point i s equal t o -K aT/ax; 

where a T/ax denot es d ifferentiation along t he outward normal 

d rawn to the surfac e . 

- , .' 
Gene r al ly, th e flux of heat a t a p oint across any 

surface is - I< a T/ah, where a lah denotes di ffe rentiati on in 

th e dire ct i on of th e ou t ward normal . When planes are parallel 

to the coordinate axes , the f III xes are gi ve'\l by : 

f - 1\ 
()/ r 

(1. ~ a) 
x ;rx-

f = -1< 
aT (.1.4b) y d x 

f - 1< 
a'T' (l.Llc ) = z ax 

6 



that is f -J<: :? T (1. 5 ) 

where f is a f lux vector . 

1 . 6 THE DI FFERENTIAL EQUATION or CONDUCTION OF HEA T IN AN 

ISOTROPIC SOLI D . 

Cons iderin g the case of so lid within which no heat 

is be i ng g enerated bu t i s flowing through it. The temperature 

and flux at point P (x,y, z) will be cont i nuo u s functions of 

space and time co ord inat es . 

A rectan g ular par al ] 10 iped i s considered in the 

solid with point P (x,y, z ) at its centre and edges b e ing parall 

to the coor inate axes; th 1 nrths of the coordinates being 

2dx , 2dy , and 2dz. The faces ABCD and ABCD be in the planes 

x-dx and x+d x res pe ctively . Let the flux a cros s the plane at 

P parallel to A BC D i s f then t he f lu x throu gh the p lane x 

ABC D wi ll ue 

f x 

af 
x 

ax . d x 

So the rate of flow of heat into the parallelp i ped 

over the face A BC D will b e 

~ ( f 
x 

af x 
- --- . dx) dy dz ax (1. 6) 

ince th e area of the face f\ n C J) is ~ dy . dz . S i mi l arly rate 

_ ') C" 
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of flow of heat over the face 1\ '8 'e 'D' wh i c h i s at x+dx i s 

g ive n by 

4(f 
x 

af 
x + ax . dx) dy dz 

Subtracti ng( 1 . f, )from(1.7) the rate of gain of heat is g iven 

by 

- 8 
af 

x ax . d xdyclz 

S i milar l y the rate of gain of heat from the flow across the 

planes parallel t o z-x plane i s 
, , 0 

a! ' 
- B ay~ . cixclydz 

o.nd tho.t (' or the p]nnefj p, l'llU '1 Lo .v - x plane i'" 

af 
_ 8 z . clxdydz az 

So th e t otal rate of ain of heat of the paralle lop i ped f rom 

th e fl ow across its f aces is found to be 

af af at' 
- i3( a x x + af + ~:~. ) . dxdyuz = - 8 dxcJydz . J...£ ... 0. 8 ) 

f being the ['lux vector . 

The rate of gain of heat is also g iven by 

'T' 
8 P c at dxdydL'. (1.9) 

where P an(l care d nsi t.v a nd " pec ific heat of the so lid. 

8 
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From equation (8) a nd (9) , we pet 

(l .10) 

This equation corresponds to the equation of continuity 

in hydrodynamics . This equation ho l ds for eve ry point of the 

solid except the point whe re heat i s be ing s upplied. Also it 

i s not nece ssary t hat t he solid s hould be h omogeneous or isotropic . 

From equation (4) , we ha ve 

f 
x 

f 
y 

f z 

aT = - K 
ax 

= _ K aT 
ay 

_ K aT 
az 

Th e equati on s ar e tr ue for the homogeneous isotropic 

so lid whose therma l conductivity is indep e ndent of temperature . 

0 we h ve 

af a2
T x = I< (1 .11a) - --;> ax ax 

af a 2T --y - 1< -2 (l.llb ) 
ay ay 

af a 2T z K (l.llc) = - -2 az az 



where 

Subs ti tu tin g quat j on( l. Ll) in equation(1.10 : ' Ie get 

a 2T 
+ a 2T + a 2T 1 aT 0 (1',12 ) ---2 --2- -2-

K at ax a y az 

K -- K/pc 

Ke l vin cal l ed t h i s "t he d iffusi vity of the subs tance" 
it 

an d Clerk Maxwell c a l led/ li t he thermom e tric cond uctivity of the 

substanc e " . 

Equati on ( 12 ) is known a s the equat i on of conduc ti on 

of heat. 

1. 7 IN ITIAL AND BOUNDARY CONDI 'rIONS : 

The t emper ature sati s fies some boundary and ini ti a l 

10 

c ond iti ons , Temperat ure T i s considered as a c ontinuou s funct i on 

of space co - ordin ates and time , Also that i t i s true f or the 

f i rst d i fferent i al coeffi cient w. r . t. time and up t o sec ond 

diffe r ent i al coeff i cient w. r . t , x , y , and z . 

(i) : INITI AL CONDITIONS 

We s uppose that at time t=O , the tempe r a t ure is g iven 

by s ome arb itrary funct i on , i .e . 

T = f( x ,y , z ) 



So the solu t ion of t he equat i on of c ond uction of heat 

aT 
at 

tend s to value of T a t t = 0 as t tend s to 0 i. e. 

lim( T) = f(x , y , z) 
t-r o 

at all points of s olid . 

(ii) : BOUNDARY CONDITION,' 

The b oundary or sur face conditions which usually 

ar i se are the foll owing : 

(a) : PRE SC RIBED SURFACE TEM PERATURE 

The rescI'l'rJed tempera ture may be a cons t ant or 

function of space or time or of both space and time . It is 

often d i ff i cul t to pre s rjb c su rfC1ce tempera ture. A better 

11 

condition may be given like t he r adiati on b ound ary condition--

described l a ter. 

(b) : NO FLUX ACROSS TH E URFACE 

This cond ition suggests that the d ifferent i a tion of 

t emper at ure in the d ire c ti on of out war d norma l to the surface 



i s ze r o at al l poi nts of sur fa e i. e . 

aT ::: 0 
ax 

( c ) : PRESCRI BED FLUX AC ROSS THE . URF'ACE 

Li ke presc r i b ed temperat u~e ) thi s f lux a l so may be 
.. "'\ 0 

'" 
c on stant or f un c t i on of space coord ina tes or pos iti on or b oth. 

(d ) : LI NEAR HEAT TRANS]<'I:;:n /\'1' THE BOUNDA RY ; 

Til E R/\ DIA'1' ION IJOlJ 1)/\ i\Y CO N UI'1'1 ON 

The bound ary cond ition is g i ve n by 

K ~ + H('1' 
Cl x 

T ) ::: 0 
o 

Here ( '1' - T ) is th e dif f renee of tempe r at ure be twee n s ur face 
o 

and s u rr o undi~g mediQ , T h e j n f t he t emperature of the med i um 

w1 d H i s a con s t ant . The second term i s the f l u x across the 

s ur f a ce whi h is propor t i on8 I to ('r - T ) . Eq ua t i on (1.13 )c an 
o 

be wri t t e n as 

() T + h (T - 'L' ) ax 0 
o (1'.1 4 ) 

where h ::: II/I< 

Th i s cond i tion tends to the con i t i on I i no flux across the 

12 



surface " as h tends to zero , and tends to the condit i on 

"prescribed surface temperature " as h tends to 00 • 

H is called the "Su rface conductance" or "the 

coe ffi c ie nt of sur face heat trans fer " and l / H is called t he 

" urface th ermal res i stance: rer un i t area " . 

Also if a fl ux F i s prescr ibed into t he surface, 

equation ( 1 . 13 )will be come 

or 

K aT + H(T - T ) + F ax 0 
o 

aT + h(T 
ax T - F/H) = 0 

o 

(L15 ) 

(1. 16 ) 

thi s conditi on i s called the "Radiation boun dary condit ion " ; 

the reason be i ng is that the heat transfer by rad iati on , 

wh i ch actual ly i s proport i onal to the fourth power of the 

abso lute temperatures can be approx imated to f irs t orde r of 

the absolute t emperature , provided the temperature d i ffe rence 

i s small . 

(e) NON - LINEAR HEAT TRAN SFER 

When t emperature difference betwee n the surface a nd 

13 

su rrounding medium is small , the flux dependence on temperature 

d i ffere nce is approx i mately linear . But in many cases , thi s i s 

not a linear function of ternr e r'ature diffe r e nce . For example 



the ra te of loss of heat from a body at absolute temperature T 

surrounded by a black body at t e I, gera ture Tis gi ven by 

(1.17 ) 

whereois the Stefan- Boltzman 1s constant and ~ . is the emissivity 

of the surf ce , whi ch i s t he ratio of t he heat emitted by it 

to that emitted by a black body at same temperature. 

If T - T is smal l, this may be approxi mated as 
o 

LI 0 t 'l' 3 ( 'I' - 'I' ) 
o 0 

(1. 1 8 ) 

and if T is on idere 
o 

a on ant , he flux is directly 

proportional to ( T - T ). 
o 

The second exampJ for' non-linear heat transfer ca n 
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be natural convection , i.e . whe~e a body is s urrounded by flu i d , 

the heat is transferred by conve c t..;i ()n ~ . It is found that this 

he at transfer i s neay' ly proportional to the 5/ 4th power of the 

temper a ture difference . 

(f) : CO TACT "'ITT-! A WELL- S Tl RilED FLIJID OR PERFECT CONDUCTOR 

In this case, the surface of sol id i s in contact with 

fluid wh i ch is well st irre d so that its temperature may be taken 

2sconstant throu~hout . Now let a we ll s tirred fluid of spec i fic 



heat C ' b e in contact with a so lid sur face o f area S , 

surface tempe rat ur e T~ and conduct ivity K. The tempe r a -

ture of fluid i s supposed to be 'I" and mass JVi . We s upp ose 

that he fluid of mass M rece i ves heat from ex tern a l 

source at r a te Q per un it tim e , and loses heat at the 

rate HI (T ' - To) by radi at i on into a medi um at t empera­

ture T . If ris e i n t emperat ur e of thi s fluid in time 8 t 

is 8T ' then we have 

Qa t - HI ( T ' - To)at - Kat J J ~~ dS = Me ' o T ' ., .(L19) 

... (1.20) 

If we also ass ume that 

T = T ' [' or' t > 0 

where T .::md 'I" are the temper : tUr'es of s urfa ce and of f luid 

respe c tively for t > O. And if heat transfer is taking p l ace 

at a rate proport i onal to t he d i ff erence of temperatures , 

then we have 

K aT + H ( '1' - T ' ) = 0 ax 

i : ' 
If mass m of fluirl~ithdrawn per unit time and 

repla ed by t he same amount 0[ ' fluid at temperature 'r , we 

have 

15 



Me ' + 1< d~'; + mC ' (1' '- 'T ) = 0 d'1' f J a'r 
dt J ax 0 

(1.2 1) 

'rhe a bove conditi on hold s as vlell if instead of 

flu i d , a perfec tly conductin r 001 id is in contact wi t h the 

solid s urface . A metall ic c ond u t or may be trea t ed as a 

perfect con uct or when it is in con t act with non-metal . 

(g ) : THE, URFACE OF SEPARATION OF TWO MEDIA OF 

DIF 'ERENT CONDUCTTVI'1'JE 

1'he fact that the f'1 ux is continuou. over the 

s urface of separation sugg ·t s this condit i on . Let Kl and 

1<2 be the c onductivitie s and '1'1 and '1'2 be t he temperat ure 

o f tw o me d i a , then fr om l ux .on i nuity cond ition, we have 

aT 
1\1 -1 = oX (1.22) 

o being tll 
dX 

ri i ffA r entiation alon g the norma l to t he s urface 
" 

of separ ation . 

-e 
Another cond i t i on th a t may Is upp osed to be val id 

for vel 'y illLimate contact , s uell oj" s o ldered joi n t is that 

t he two surfaces have equill telllp e l'ature , i . e . 

T = 'I (1. 23) 1 2 

For the surfaces n ot in contact like th i s (not 

16 



so ldered) heat transfer take s p l ac e so that flux across t he 

surfaces i s propor t i onal t o th e djfferen e of temperature , 

1. e . 

( 1.24) 

(h): CONTACT WITH A THIN SKTN OF MUCH GE TTER CONDUCTOR 

Exampl e of t hi s boundary cond itio n i s a th in metal 

s hee t or wi re in contact wi t h a r e lative l y p oor conductor, 

suc h as soil, f ood - stuff , e tc . The skin is assumed so thin 

tha t the tem perature t hrou g hout across it s thickness may be 

c onsidered as constant . Let T ' be th e t emperat ure of t he 

skin and j land K are the conductivity and diffusivit y . 

Then t he equati on of conducti on of heat may be written a s 

;)T 
= 0 an (1. 25 ) 

d whe re -- is d i fferentiati on a long the over ward normal an 
d irec t i on and ~ t: and ~ 1l a long two perpe ndicul a r dire cti on s . 

I f we ass um e t ha t the t emperature of sk i n i s equal 

to t h a t of t he sol i d , then a n other boundary c ond i tion ar ises 

i. e . 

T ' 'I' 

17 



1.8 SOlJRCES 

1.8 (a): THE POINT SO URCE 

~1en a finit e quantity of heat is instataneous ly 

liberated at a point, at g iven time in an infinite solid, 

the source is called "Instataneous Point Source ". In the 

theor y of cond u ction of he a t this poin t sou r c e has p r oved 

mos t useful . 

The solution of thi s source may be taken as 

f undamental . A solut i on of continuous po i nt source may 

be obta ined by inte g r a ting it w.r.t . time . The continuous 

p o int sour ce is that which release he a t at a g iven poin t 

at a prescribed rat e per unit time . 

The solution o f point s ources may be integrated 

w. r . t . approp riate space va l' iab l es to obtai n solut i ons 

for i nstantaneous and continu ous line, plane . sp he r i ca l 

surface . and cvlindr i cal surf a ce sources. 

(b): THE INSTANTANE OUS POINT SOURC E 

(1 .12) to be 

The eq uation o f conduct ion of heat i s g i ven bv 

1 aT 
K at 
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The so lu t i on of thi s equation is 

T = 

As t tends to zero ; T tend s t o zero for a l l points except 

(x ' , y ' , z ' ) 

The total quantity of heat in infinite reg ion is 

222 
[ -- { (x-x ' ) +(y-y ' ) + ( z-z ' ) }/LIKt ) dx dy dz 

+00 +00 +90 

= f J f 0 cT dx dy dz 
_00_00_ 00 

= Qp c (1 .2 7) 

The refor e t he e quati on(L26 ) may be thought as the 

temperature in an i nfi nit e s01id d ue to a quanti t y of h~at 

ins tant aneous l y genera ted a t t =Q a t po i n t (x ' , y ', z , ). 

So the equation(126) i s calle d the tempera ture due to an 

instantane ous po int sourc e of s tr'e ng t h Q at po int (x ' , y I ,Z I ) 

a t time t= O. 

(c ) : 'rIl E COWl'INU OU":- POIN 'r SOURCE 

The t emperature at point ( x , y , z) a t time t , due 

to a s ou rce a t po int (x ', y ' , 1', ' ) l i be r at i ng heat a t t he 

" 



r a t e cb ( t )pc De r unit t i me from t =O to t =t i s b y integ rating 

e quat i on (1.2 6 ). 

1 
t 

f <P (t ' ) 

) ( t - t ' ) 3/ 2 
o 

or i f we p u t 

2 
r 

t h en (28) becomes 

1 

o 

<P ( t ' ) 2 
e x p [ - r 14 K( t - t ' ) 1 . d t ' 

(t _t , )3/2 

. . .. ( },2 8 ) 

( 129 ) 

Th is d i s tributi on of tempe r ature i s sa i d t o be a 

cont i n u o us po i nt s o u rc e of s t re nrt h from t= O onward. 

we g e t 

or 

Now putti ng 

1 ( t _ t l ) - 1/2 

d 1 = ~(t - t ' ) --3/2 . d t ' 
c'. 

2d 1 = dt ' / (t - t , )j/ 2 

a nd f or l ower limit i .e . for t 0 

20 
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= 1 / It 

and for upper limit t = t ' 

T = 1/ 0 = 00 

also if <j>( t) =q ( a constant ) , then from(l.29) we have 

00 

f 2 2 e xp [- r T / 4 K] • d T 
J 

1/ l -r-

q 
erfc r 

(1. 30 ) 

As t -+ 00 this red uce s to T=q /( Lin Kr) a steady 

temperature d i stribution in which a constant supp ly of 

he a t is continuous l y introduced at (x ', y ') z ' ) and spreads 

outwards i n the f~fi n i te so li d. 

(d) : IN TANTANEOUS LINE SOURCE 

'l'lle lin e so urce is considered para lle l to t he 

z - ax i s pas s ing throug h po:Lnt (x ' , y ' ) with s tre n g t h Q a t 

time t = O. 

Conside ring inst aneous point so urces of strength 

Q. dz at z distributed aloll ['; t he line ; the t emper a tu re due to 



this d i stribut i on can be obtained by int egr a ting the s olution 

of in staneous poin t source . So 

::;: 

00 

00 

-Q~ . exp [-{ (x-x , ) 2 +( y _ y , )2 } / 4Kt l 
4n d 

( 1. 31 ) 

i s the quant ity of heat libera t ed by unit leng t h of t he line. 

(e) : INSTANTA E OUS LANE 'OUnCE 

The source is consider ed to be para l lel to the y-z 

plane a nd pass i ng throuEh the point ( x, 0 , 0) with s treng th Q 

at t ::;: O. 

The t empera ture due to t his sou r ce can be ob t a ined 

by in t e g l,et Ling -che ::;olut i Cln f C; r the i nstantane ous line s ource 

1. e . 

'r 

::;: 

+ 00 

_ Q-'C.- J ex p 
41Hct 

_ 00 

2 2 
r - { ( x - x I ) + (v -y I ) } / 4 Kt 1 . dy I 

Q 2 
e x p [ { - ( x - X I ) } y'Lj ~t 1 

2/7fKt 
(1.32 ) 

and the quantity of he a t liberated pe r un it area of the 

p laLLn i s 

(,) p c 

22 



(f) : 'I'HE CONT I NUOUS LI NE ,ounCE 

Con sider a sol i d at zero temperature at time t=O, 

when the upp l y heat starts . Tern rer'ature d ue t o line s ource 

ar l lel to z - a xi s t h rough th poin t ( x ' , y '), l ib e rating 

heat at th e rate <p (t ) p c per uni t len g th p er uni t time , 

at t i me t i s d e t erm i n ed by int egra t i n g equat i on (1 .26) i.e 

"\ 

t 
1 

23 

f <P(t ' ) 2 2 T= exp [-{( x- x ' ) +(y-y ' ) }/4 Kt ).dt' 

where 

Now i f 

then 

4 'JT K ~ t-t ' 

t 
1 I~ ( t' ) 2 

4'IT K t - t ' 
exp { - Y' /4 K( t-t ' )}.dt ' 

2 2 
l ' = ( x - x ' ) + (y _yl) 

<p( t) = q a constan t 

Putt i ng 

d u 
u 

u = 

= 

r 
' J 
L 

4k(t - t ' ) 

d t 

( t - t ' ) 

2 

a nd t h e l ower limit (t= O) becomes 

u 
2 

r 
[ I Kt 
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and upper limi t ( t= t ' ) becomes 

u = 00 

a l s o ~ (t ) = a con s t a n t 

we ge t 

00 

T q )r e xp ( - u ) . d U 

4 'fT K U 

r2/4 Kt 

q 
Ei 

2 
= - 1GTK -yo / (II Kt) 

00 

where - Ei( - x) f 
e xp ( - u) . cl u 

u 
x 

for small values of x 

Ei( - x ) 2 3 = y + ln x - x + x / 4 + O( x ) 

IAfh e r e y i s Euler ' s constant hDvjnp' numerical value 0 .577 2 .. . 

Thu s fo r lar 'e va lues o f t ~ve ha ve 

q {I n ( ~~ k t _) - r } 
Ll'fTk r~ (1 . 33 ) 

The ter m 2;k InCl/r) in Eq.( 1.33) i s t he t e mperature 

due to a steady supply of h at . The rate of h ea t supply bei n g 

q p c he at un its p e [, un it 1. e 1'12' t h r e run i tt i me . 



Also the soluti on f or T in Eq .( L3 3) g ives the 

t mre r at ure in an infini te so] id Io/hich i. heated a l on g a 

line say a wire c arry i ng e lectric urrent . 

( g) : THE CON TINCOUS PLAN~ SOURCE 

Let hea t be l iber a t ed at the rate p c ¢ ( t ) per 

unit area per unit time in a plane x ' s tarting at t ime t=O. 

The te~rerat u re a t time t t l is obtained by 

inte g rating Eq . ( 1 .32 ) with respe ct to time . The temperature 

being then g ive s b y 

T = 
1 

k 
2(nk) 2 

t 

r 
) 

o 

It ¢ (t) = q , consta n t thi s becomes 

(1 .34) 
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t k 2 
T :;;; q ( -~ 1<:- ) 2 e x p { - ( x - X f ) /4 k t} - q ( I x - X f I ) /2 k . e r f c ( I x - X f I ) / 2/k t 

( 1. 35 ) 
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EXPERIME lTAL P~ETHODS 

Some general and ~any spe cial methods are in use 

for exp erimental determination of thermal conduct ivi ty of 

sUbstances . The choice of a part i cu lar approach depends 

upon the following aspects . 

i) Ty pe of specimen 

ii) Gradient heater 

iii) Differenti al thermometer 

iV) Calibration or r eference 

v) Thermal is olat i on e tc . 

C 1< N1::1< A I J M 1';'1'11 aus 

2.1 LINEAR HEAT FLOW 

In t his method usuall y a rod o f uniform cross­

sect ion is used and it is assum e d that heat flows alon g 

the rod in one direction only. 'Phe arran gement is shown 

in Fi g . 2 . 1 . 

S is a heat source at hi g her temperature and 0 i s 

heat s ink. Th specimen is _in the rod form of cross-section A. 
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(The form fact or Q/Cl of r od i, sele ted t g ive a ccurate 

r es ul t fOI the ra r t i c u lar !TIC La 1 ) , '1'1 and 'T' 2 a r e the 

temperat ur e sensor on the Lpecimell a di. tan ce Q apar t . 

It i s assumed that t he r e are n o Joses or heat ge nerat i on 

a l ong the l eng th of the spec i men . 

Measur ing t he temperature diff ere nce 6 T = T2 - Tl 

a nd rate of heat flow Q; the mean thermal con d uctivity i s 

d e r i ved from t he equation 
i' ", 0 

Q (2. 1 ) 

2 . 2 DIl"F'U IVITY ELJ\TE !\ND D11"I:WiIVI'l'YROD 

Steady s t a t e met hods have been pop ular in therma l 

co duct i vity measu rements ; due to {- ",' simp lic ity in experi -

menta l i mplementat i on . But now non - s t eady s t at e me t hod s are 

comming up . EY?~rle nf R non-st eady m thod is gi ven below. 

In t hi s me t hod , pu ] es of heat a pe applied t o one 

end of t he pe c i me n a nd the telll per'ature alone; the specimen 

i s meas ur ed a a funct i on of time . The spec ime n i s made i n 

the form of plate or r od shape. 

Knowing the temrcJ'8tul' e va riation s as a function 

of t i me , t h e t her mal conductivjty can be calc u lated from the 

28 
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s 
thermal diffusAvity equationl!' the spec j ['ic ' heat is known . 

2.3 SELF HEATIN(; 

In t hi s met h od the energy i s s upp li ed t o the 

sp e c i me n by passing a cu r r ent direct t hroug h the specimen. 

Me as uring t he electrical c ond uctivi t y , and the temperature 

a t vari ou s po int s on the spec i men , thermal conductivity may 

then be ind i rectly be ca lculated . 

It i s dj fricult to apply th is me th od acc ura t e ly 

i f e it her the thermal or c -lcctr'icnl. conduct i viti es var y 

s i gn if icantly wit h temperature . 

2.4 FORBES ,ETHOD 

Like linear heat flow met h od, the speci me n used 

in this m~th0c i s i~ rod form . But rad i al hea t f l ow i s 

a llowe d along the spec i men , and corrections a nd c ontrol 

e xper i ments are applied to simulate the ideal ax i a l he a t 

f l ow cond i tio n s . 

'l'hi S Ille tllod has been 1.13 c d mas t ly in th e tem pcra t Ur e 

ran e above 300 K. Wi t h this method conductivity measurement s 

ar e of te n mad e by three sets of r' ad i ng s ; a n I' i s ot h e r ma 1 " a n 

"unmatched guards " and then a "matc hed e;uard ". 



, " 

2 .5 COMPARATIVE METHOD 

Th i s method is simpl so far as the exper i mental 

setup a nd operat ion i s c oncern d , but this at the expe nse 

of accuracy in the measureme nt s , The power inp ut in thi s 

method i s determined by us in g a materia l with known thermal 

conduc ti vit y. Thi s spec i me n i s p laced n e xt t o or in series 

with th e stan dar d . The comparative t hermal conductivity 

va lues can be ca l c ulat ed by de t e rmin ing the different 

tempe r at ure g r adi ents . The conduct ivity mi sma tc h be twe e n 

s tandard and the spec i men mu s t nol be too larg e , a nd a l so 

one s h ou l d trl l,e C[l r e or int pT ' t'nc i ;I -1 T' e~3 i s t ance hetwee n 

the s pe ci men and the stalldal'd ) s ince it effects the tempera­

t u r dis t l' i b 1I t i on . 

2.6 (WAR DED FLAT PLA'rE OR SPllERE: 

T:.i:: met ho d is verv 11 sef ul :Ln measuremen t of poor 

heat conductors , like plastics a nd soldified gases . Th e 

potent.ial he t J oses a l~e of l"1 'eat j mpor tance since th e 

thermal conductivity of some 0[' the materi als i s press ure 

derendent . So the 81'paratu!') nlll:_ij. (li l ow rot' any poss jble 

change in load i ng rac tor cau sed by therlflaJ expans i on or 

chan ge of' gas preSSI I.l' e . Ti le IlIetllud i s principa lly same as 

th e a xial heat flow method except t he form factor l/A is 

ve ry much smaller and auxiJiary heat los ' es effec t s very 

romi ne nt . 
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2 .7 RADIAL HEAT FLOW 

The method is very useful in high temper a ture r ang e 

and i s rarely used in low temperature ran fe . The comparative 

or abs olute methods can be used as in t he axial he at flow 

methods . 

In th i s method th e discs stacked in the form of a 

cylindrical spe ci men having axial ho les through them t o 

provide thermocouple probe entry . The thermocouple probe 

is moved alon . the entire le nrth of the stacked d i scs to 

measure the ax i al t emre r atu l' e f"l'adien t s . A di sadv tnage of 

the te chnique is the ne cessary wa i ting t ime for the sys tem 

o reach equil b 'ium after ea 11 chan ge in the probe pos i tion. 

This prob le m can be solved by installing ma ny thermocouples 

at various rad i a l and axial pos i t i ons . Th e electr ical 

resistiv i ty a nd thermal conductivity measu rem e nt s can be 

made simultan coucly wi t h th is 8pparatus . The rad iative 

loses for hi 'h emjssivity , Jow conductivity s pecimens a t 

h i gh t emperature can be muc h reduced by using this me thod . 

2 .8 HOT WIRE METHOD 

The metllod j s (I sed f'or' determi ninp- the t hermal 

conductiv ity of molten salts . Cy li ldri cal liq uid films of 

variab l e thicknes s were used (ste6dy Lt a te method) by Lucks 
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2 
and De (1 95 0) . Sand which had a conductivity s i milar t o 

those of salt s , was us ed a s a ca l'bration ma teri a l. This 

avoided con ve ction , but it s pu ri t y a nd packin g are often 

difficult to rep r oduce . Radial heat leaks and the r ad i a ti on 

los es were l arge . To avo i d convection is diffic ult with 

such t h i ck f ilms , and most of the errors had been red uced 

by extrapolating to ze ro f ilm t hickn ess , but the overall 

accuracy was s till only ± 25%. 

The tr ansi ent hot wire me th od is found s uit ab le 

i ns tead of steady-stat e method . This me t hod uses a thi n 

wire in the liq uid , heated by a c onstant current. The 

rate of rise in temperature of wire i s meas ured , and the 

thermal c ndu ·tivit y r liquid can b e ca culated from the 

rate of produc ti on of heat and the temperature t ime relat i on . 

Simpli ci ty of the probe , auxiliary a pparatus, 

speed, eaDC of operation, a nd avo i de nc e of radiat ion and 

convect i on errors are the advanta ges of transient methods 

over steady - sta te me t hod. 

2.8 a ~' HEORY 01<' HOT Vi UU: 

of 
Considerin r an id eal case/an infin itely lon g 

wire ,vith rad ius r and infinit e thermal conductivity. o 

i s imm ersed in a l i quid having infinite ex tensions in space 
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with p , c and k as i ts densi t y , specif i c h e at ahd thermal 

conduct i ~ i ty respect i vely . It is ass u med t ha t t here i s n o 

t he r mal r es i stan ce at the surface of the wi re t o t he li q uid. 

Th e wi re i s heat e d a t a constant rate q per unit leng th. 

The exact sol u t i on of th e Fourier differential eq uation 
.. t, I', 

for these c o n d iti ons i s g i ven by eq ua ti on (1. 33 ) which is 

T q { In 4 k2t } 
Lin k - r 

r 

\\Ihich g ives f or thermal c ond uctiv ity 

where 

K = ~ { I n 4, - 0 . 57 7 } 4 n T 

, Kt/ p c 
2 

r o 

Now in 8'i ve n exreriment K, p , c a n d r a re constant. o 

Conduc t i v it y K c a n b e evaluated from t he l inear relati on of 

T a n d In t . Fcr l argp t imes the approx i mat i on b ecomes better. 

The f ollowin g consid e ratio n s mus t b e made s ince 

th e a c t ual wi re d i ffers f rom t he idea l case . 

i) Small r adius of wire is used to approx i mate t o a 

lin e s ource , and r educe rad i ation . 

ii) Th e 10nEes t poss i ble length o f t he wire i s u s ed 

t o reduce e n d l oses . Thi s length i s li mi ted by i s ot he r mal 
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leng th of the thermostat a nd a mou n t of s ecime n availab le . 

iii) The material of t he wire must be c orrosion 

resistance and has a hig h res i st ive tem p erature coe fficient, 

which is als o reproducable. 

iv) The resist ivit y of th e wire should be l ow compared 

with that of salt, but hi g h en o ug h to enable a c curate tem­

perature m a ~ureme nt s from r es i s tance chan e . 

v) The temperature rise ( i . e . he a t i n g curren t ) s ho uld 

be small to reduce the chang e in heatin g rate, delay the 

onset of convect i on , avo id con vec ti on currents in the salt , 

a n d r educe t he c hang e i n K its e Jf d ue t o c ha n ge in t e mperature . 

2.8. b EXPERIMENTA L ARRA NGEMENT 

Bridg <2 c i rcuit s hown in Pi g . ( 2 . 2 ) is u sed . The 

probe i s a plat inium wire . we l de d to sh ort thick platinum 

leads , with a f ine potential t a ing . Thick coppor leads of 

eq ual res istance are used t o c onn ec t the probes to t he bridge 

c ircuit . Thermo- electric e r re c t s ar e balanced out automatica l ly 

s ince all the three copper-platini um ' unct i ons are at the same 

temperature . 

In the brid g e c ircuit t he r esi s tance of leads and 
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wire end effects are balanc ed out s i nce these are in adjac ent 

bridge arms . Very small current (causing ne g ligible heati ng) 

is passed t o determine the resi stance of the wire . A dummy 

resistor having re s is tance approxjJnately eq ual to the 

resistance of the bridge i s used t o s tablize the heating 

c urrent . The cu rrent is known by pass ing it thro ugh a 

standard resi s tance and measurinv the potential drop across 

it. The unba la nce d voltage which i s proportional to the 

temperat ure r ise of the wire , i s recorded by a short 

periodi c time galvenometer or fas t potent i ome tric recorder. 

The resistive temrerature coefficient of wire i s f ound by 

measuring res i s tance at the ic , s t eam, nephthaleane and 

s u lfur po i nts . 

2 .9 HOT WIRE SHORT TIME METHOD 

Th e method i s pri ncipally s ame as des cribed in 

the pr ev i ous ar ticle i . e . the the rmal con d uctivity of the 

med ium may be educed from the temperature variat i on s of 

the \;1 ire , i mmerserl in an e l ectd_ca-f l y [insulatin g med ium 

a nd i s hea t ed by a known onstant power. Here it i s shown 

that th e specific heat capac i y or the therma l d i f fu s i vity 

can be determined by the fu rt her analysis of t empera tu re 

var i at i on . 
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Star t ing f r om equat i on (1 . 33 ) 

T q 
{ i n 4kt 

0 . 5772 } ( 2.2 ) }~ TI k -2 -
r 

This eq uation i s va li d for kt/r 2 
1 for la r ge t i mes . > > or 

The r mal conduct ivit y K may be de term i ned f r om T ve r s us 

I n t p l ot (T beinr l i near i n In t f or s ma ll t e mperature 

ri s e) s ince q/rTI k i s t h e coefficient o f the slope . 

Rearran g ing equati on ( 2 . 2 ) the therma l d i ffusiv ity 

i s g i ven by the eq uat ion 

k (0 . 445 3 r
2

/ t) exp {}~ TIK (T- T )/q } 
o (2.3 ) 

Now a l l t he q ua ntities on the ri ght are obse rva b l e 

except po s:::;iblji th e initia l tpr.!pe r'.q tu r' e . This can be determin ed 

by measurin g the initia l resist a nc e us in g a very small c urre n t , 

as expla i ned in the previo us l y des cribed met hod. Anot her 

me t hod wh i ch g i ves mor e reproduc i ble results i s of small but 

f i n i te t i me rlleas urement s of l 'es i s tance and hence temperat ure . 

The extrapolation then t o zero an d time gives t he requ i red 

value . This requires some r ou fh knowled ge of the express i on 

T - T in smal l time limi t . 'I'hi s ajJpro"xi rnation is given in 
o 

the form of the f o llowing equat i on 
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where 

2. 10 

T- T o 

T = 

q ex {'I' _ o. 7 5 2 3 o. T 
1 . 5 + 0 T 

2 } "21TX 

t/ 2 ex r 

DYNAMIC ELECTRICAL - HEATING METHOD 

( 2. 4) 

Thi s method i s us ed by S . R. Chin and W. K. Zwic ker 

37 

t o determine the ther mal conduc tivity of Neody nium Pentap hos phate 

(NdP 0 , abbreviated a s NPP ) , used in mi niature e f ficient lasers . 

'T\vO parallel ~ tl'ip s or mctal ar gr own on the s urface 

of t he samp l e . One strip is used as a heat e r a nd other as a 

sensor . An a lternating current is pass ed throu?h heate r . The 

resistance variati on (due to tc perature variat i on ) is measured 

as a funct i on of heatin g current frequency , Knowing the e lectri-

ca l parameters for the heater and ensor , and the tempera ture 

co fi'icient of se l1 <'or refiistancl' , ellon[!;w:it h meas ured data, the 

thermal conductivity and specjfic heat can be calculat ed . 



C HAP T E R T H R E E 

rrHEORY FOR 11H~~ TRANSIENT HOT STHJP ~'rETHCD 

3. 1 First Order Approximation of The Transient 
Hot Strip Method 

3.2 Conductivity Tensor 

3.3 Some Factors Affecting The Experiment 
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3. 1 FIRST ORDER APPROXI MATION OF TPANSIENT 

HOT STRIP METHOD . 

The solution fo r the differential equation o f 

conduction of heat, for a n o in t source i s g iven by Eq.(1.26 ) 

T = Q • e x p [- {( x - x ' ) 2 + (y _ y ' ) 2 

s-(;;t) 3/2 

If ¢ ( t) ~c is t he hea l l jberat~~ per uni t ti me then 

the soluti on f or a continu ous inf i nitely long strip of width 

I 2d' l ying in the y-z plane i s obt a ined by i ntegrating 

the above e q~ation with r espect to y ' , Z l a nd t'. (It is 

assumed that the thickness of s trip is negligi ble ~ 

d 

J 
- d 

+00 

t 
r . dt ' . exp { - x2/4~(t_t l)} 
J (t_t , )3/ 2 
o 

2 dy ' <pCt ' , y ' ) exp { -(y-y ' ) I }~t.:(t-t')} 

J dz ' 
2 

exp{ - (z-z ' ) 14Idt-t ' )} (3.1 ) 
- 00 
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The ' z ' de endent parl e ives us a con s t ant 

21 n I'\ (t - t ' ) Eq uat i on 3.1 bec omes 

t 

6T(y,t) J 
clt ' 

o (t-t ' ) 

- ") 

d 

r dy ' ¢ (t ' , y ' ) exp . { -(y - y ,' )/4idt-t ' )} 
J 
- d 

Con s i der i ng t he s tri p t o be i n x = 0 plane we will get 

t d 

40 

(3.2 ) 

6 'I' 
1 

[In Ie f 
dt ' r 2 dy ' ¢ ( t ', y ' ) exp {-( y - y ' ) /LIK ( t - t ' )} 

) 

-d o (t - l ' ) 

(3 .3 ) 

Make a chan ge of variahle 

Le t 0 = 
~(t-t , ) 

7 

dt ' 2d 2 
do > - --

1<: 

and when t ' = 0 

t ' = t 0=0 

with t hese Eq . 3 . 3 chan Ee s to 



o 

6T(y,t) = 4~1C J 
I/i\t/d 

- cJ 0 

o 

222 
exp{ - (y - y ' ) /40 d } 

Irc t/d d ' " 

~ 6T( y ,t) = 4~ < J d: J dY ' ~ ( t_d:_~ , y ' ) 

Le t y - y ' = 2 nod 

dy ' = ( 2 od) dn 

a nd for y ' = d n 

y ' =-d n 

Then Eq . (4) becomes 

Ikf/ d 
6'l'(y ,t) = r 

J 
o 

or 

- d 

(y - d ) /2od 

(y + d ) /2od 

( y +d ) /2od 

do r 
o J 

( y -d ) /2od 

2 
exp( - n). dn 

41 

y , ) 

y- 2o: :n d) x 



6T ( y ,t) = 

(y +q ) /2 ad 

da f"" c. 

J 

(y - d)/2ad 

2 
e xp (- n ) 

Making another change of variable s 

T = ~t/d 

Eq . (5) becomes 

6T ( t;, , T ) 
d 
TIl<: 

t 
c 

o 

T 

J 

y/d 

( t;, +1)/2a 

da r d n <pCt
c

(T 2-a
2

, 
J 

(t;, - 1 ) /2a 

2 
d ( t;, - 2 an )) e xp (- n ) 

We kn ow t h at <p ( y ', t ') i s the output o f e n ergy 

per unit a rea p ~r u ~it t jme . 
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(3.5 ) 

(3 . 6 ) 

Con s id e r a strjp of uni t b readth alon g th e l engt h 

of the ma i n s trip . Let th e o utput of po we r for this , unit 

breadth .str i p b e P (y ', t ' l 

<p ( y ', t ' ) = 
p c 
1 P (y ' , t ' ) 

2h 



Wher e P(y ', t ' ) 
~ 2fi i s th e outpu t of ' powe r per unit area of 

the s tr ip and ' 2h ' i s t otal 1 n ~ t h of stri p . 

Le t the vo l tage across the s t r i p be U(t '), the 

resist a nce of t he strip be 6R(y ' , t ' ) and thermal conduct i vity 

of t h e s tri p be st . 

We c a n then wri te ~ (y ' , t ' ) as 

~(y ', t ' ) = K 
2 hIT 

u2 
(t ' ) 

6R(y ', t ' ) 

(3. 7) 

Rewr i ting (7) in te rm s of e l ectrica l c o nducti vit y 0 E whic h 

i s inverse of e l ectr ic a l re istivjty . 

~(y ' , t ' ) 60
B 

(y ' , t ') (3.8 ) 

I f thi c kn e s s o f the stri i s ' 2v ' a nd peT) i s the 

time depend e nt resisti vity of the s t r i p th e n electri c al 

conductivit y is g i v en by 

1 . 2v = 2hPffi 

Wh e r e peT) =P
o 

{ I + a6'J'(y ', t ' ) } 

, a ' i s th e tempe r a t ure coefficient of res i stanc e . So we can 

wri te 6 0 E as 
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At i nitial t em e r atur e , before a ny change in 

t emp eratur e oc curs 6T = C SO I'le can wr i te f or electrical 

conductivity a t ini ti al t emperat ur e 

2d . 2v 
° = ---

Eo 2hp 
0 

° 0 
==> 60

E 
= 

2d { 1 + a 6'l" (y ' , t ' ) } 

Substituti ng t h i s in Eq . ( 8 ) we g e t 
,) 

K 0Eo u2 ( t ' ) 
(y ', t') = 

{ 1 +a6T( y , , t ' ) } 
(~dhr2) 

Now 

Le t 

J 
0 

° = = 
Eo ll o 

U(t') = v(t ' ) 
lJ o 

I U P o 0 0 

U2 ~ 
0 0 

So Eq . (9) can be rewritten as 

<jl( y ', t ' ) 
1 +a6 T ( y ' , t ' ) 

~.\ 
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(3.9) 

(3.10 ) 
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Combining Eqs . 3 . 6 a nd 3 . 10 we pet 

6T = 

We had 

where 

or 

p 
__ 0 _ 

4 'TTl< r2 

or using 

T 

r 

( t:+l)/2 

dO' r 222 
{l+a6T(d ( t:- 2a n) ,t (T -a ))} .exp(- n ) 

c 
j 

o 

10 is 

= 

j 

( t:-l ) /2 

v . dy 

h p {l + a6'I' ( y , t) } 
o 

v 

I 
o 

U 

the 

T 
0 

d dy 

f {l + aNI' ( y , t)" } 
- d 

const ant current 

d 

f 
, I:y' 

input 

a E 2dU j {l +cx6 T(y , t)} 

U( t) = 
u o 

U 
0 

u = 

0 - d 

vet) we @' et 

d 

1 1 r vet) = 2d j 

dy 

{l+aL\T(y ,t) } 
- d 

(3.11 ) 

(3.12 ) 

and with Y / d we g et 



1 
vet) = 1 

2 

+1 

r 
) 

-1 
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d ( 3.13 ) 
1 + a 6'1' ( ~ , t) 

Typical ly a i s of the orde r 10- 3 a nd t he rise in 
-.", ('. 

temperature ' 6T ' is kept below 1 o . ,') 0 to a zero order 

approximati on a . 6 T (y , t) i. n p'lected in Eq . (13) . Thi s 

g ive s v et) ::::; land Eq . (1]) becomes 

(E,;+l) /? o 

6T(~ ,T) =4~~n f Tdo J 

o (~ - 1)/20 

p a 

do . 

2 
d n . e xp ( - n ) ... 

2 
d n exp (-n ) f 

00 

(3.14 ) 

2 
dn.exp(-n ) -8 -K-n o-rn- f 

o (~+1)/ 20 

Us i ng the definition 

Eq . (15) i S iV r itt e n as 

T 

2 

liT 
x 

erfc x 

p 
o r do {erfc (~-=-l) - erfc ( ~+~ )} 

J 20 2 0 

Le t x = 
~ -l 
2 0 

o 

dx 
do 

- 2 ' ( E;, -l) 
a 

... (3.15 ) 

1 - erfx 

(3 ~16 ) 

This means th at the i ntegra] dependent on ' 0 ' becomes 



T 00 

r do. 
) 

e r f c 1 
d x . 2' e r fc x 

o 

Integr a ti on by parts t he R.B .S . g ives 

~ - l 
2 

00 

J 
( ~- l ) /2 T 

1 d x. - 2 . e r f c x 
x 

00 

J 
Ct; - 1 ) /2 T 

dx . ex p (- x) 
x 

x 

Mor e simp li f icat ion can be ob t a in ed by pu tti ng 

2 
x = y 2x dx = dy 

We ge t from Eq . ( 16a) 

00 

~ - 1 f dx . e r fc x 
-2- ~ 

x 

T . er fc 

wh ere 

C~ -1) / 2 T 

- E. C- x) = 
l 

x 

00 

f 
J 

1 
U ex p C- U) . du 

Us i ng Eq . (3 16a ) and (3 .l 6b) i n Eq .(3 .16 ) we g e t 

2 

In 
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(3. 16a) 

f 

(3 .16b ) 



wh i c h is 

Since 

Or 

Po { ( E, - 1) --- T erfc -- - - Te rfc 
8 h st ilT 2 T 

t.: - 1 E-;' ( _ ( E,-1 ) ~ ) + --- , --.,.,- -
2 In l c. T 

[,+1 

2 In 
, E, +1 2 

I'" (-C--r- J )} 
l L T (3.1 7 ) 

For f ir s t order 8 p p'oxirnFltion we c onsider Eq . (3.13 ) 

+1 

J 
d E, 

1 + ex 6 '1' ( E" t ) 
- 1 

a6 T( Ct) «1 we can wr jte 

+1 

1 1 
r { 1 - a!\'T(t.:,L)} d E, v( t) 2 J 

-1 

+1 

1 ex 

f df,6T U; , t) -
2 

- J 

+1 

v ( t ) = 1 + a r d f,A 'l'(L; , t) 
2 J 

(3. 18 ) 

- 1 

+1 

Consider th e i ntegral r d E, 6 T ( E, ,t ) , in it we can subs ti tu t e 

-1 
\. f'I 

for 6'1'U;; , t ) from Eq .Cl) .17 ) SO thRt 
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+1 
P 

0 f d~6T( CT ) 
J 

== - -- -

- 1 

~-1 + ( ----
2 ITT 

8h O/rr 

+ 1 

f 
J 

- 1 
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~- 1 ( ~+ 1_) d~h - T erfc erfc(--) 2 T 2 T 

+ 1 
( 

Consider th e integral T J d~ erf c ~- 1 ( ------ ) 
2 T 

-1 

Let _S~l x =;> 
2 T 

+ 1 

T f d~ erfc ( _~ - 1) 
2 T 

-1 

2T 
2 

I x. er fc x 

+ 1 

f 
' - 1 -or T d~ e rfc ~ ..,-- - ) ..: 

J 2T 
- 1 

Simi larly 

+ 1 
( ~ + 1) 

T J d~ er fc (-2-T 

- 1 

Le t == x 

clt;: 2 T c1 X 

== 

-

0 

2 T 
2 

f erfc dx X . 
J 

- II 

0 

1 2 exp ( - x ) 
I1T 

li t 

222 
2 T ( 2 liT) - erfc - __ T __ (l- exp (-l / T ) 

rn 

(3. 20 ) 

22 2 
2T . erf c liT + -~--- ( l-exp ( -l/T ) 

Ii 

(3.2 1 ) 

( t: - J ) dt;: == 2./ dx 



So that 

1 

2 1TI 

+1 

1 
J 

-1 

2 
1 

+ 1 
1 

r =.> 

2 liT J 

- 1 

Simi larly 

1 

2 /n 

d~ 

2 
1 

liT 

+1 

r 
J 

-1 

d U ~-1) E . { 
l 

_ ( t;-l 
21 

) 2 } 

x . E . (-x) + e X!J (-x) 
l 

_( --=-l ') 

( ~-1) E. { ) '- } 
l 2 

2 ) 
= 1 E. (-x)dx 

l 

1-:;;: 1/12 

o 

I 
II 2 

2 1 2 
{1-exp(-1 / 1 )} - E . (-1/1 ) 

l 

2 
{l - e xp ( - 1 I T) } 

I~ 

2 
E . (-liT) 

l 

2 
T 

;; 

Comb ining (19) , (20) , ( 21 ), ( 22 ) and (2 3 ) we ge t 

+1 
P 

[ TerfC(lh ) 
2 

I d~ L'l T ( ~ ,T ) 
0 T 2 1 - e xp ( ~·1 11 ) } 

J 2hOl1T 2 / -; - 1 

1 
Ei (-lIT 2) ] 

2/n 

De notin g th terms in bra c ket · on R .l-I .S . 00 .24a by fCT) 

we rewrite 

50 

(3. 22 ) 

(3.23 ) 

( 3.24a ) 
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p 
o f' ( T ) (3.2 4b) 

where 

vCT) = 1 + 

2hrlITI 

1 

2/TI 

and substituting G for 
p 

o we can write 

where 

vCT ) 1 + aG f (-r) 

+1 

J dt,; 6T(t,;,T) = 2 G. fCT) 

-1 

1jI( t,; ,T) = T er1' c 

+ ~ E .{ 
2/TI l 

(3 . 25) 

( 3 . 26) 

( 3. 27 ) 

( 3 . 28 ) 

( 3 . 29 ) 

Eq uat i on ( 3 . 25) above is the fi rst order approximation. 

3 A second ord er can be obtained by plugging ( 3 . 25) back into 

Eq. (3 . 11) and includin~ term s of second order . 

Prom the above we know that 



v ( t) = 1 + CI. C: ( T ) 

Now vet) = u(t) /U 
o 

52 

u(t) = U + U CI. (i . r(T) 
o 0 

( 3 . 30 ) 

It i s pos s ible to p l ot u (t) a ga inst f(T ). This would give us 

a strai ght line . The inter cept 0 this line gives U a nd 
o 

the slope ~ ive s the thermal cond ucti vity as g-l. The funct ion 

f( T) beirtg numeric a lly eval uAted. 

'e nerally it wou Ld be conveni e nt to app roximat e the 

complicated f(T) function by some s jn,!)lE.: e xpres s ion 

The f(T) funct i on i ~ v iven by Eq . ( 3 . 25 ) as 

f( T) erfc(1/T) 1 2 { 1 2 - T - exp (-liT )} 
2 /TI 

1 E , ( 2 
- l i T ) 

2 /TI l - , c 

For small values or T, re T) can b e expanded by 

Taylor ' s e xpans i on arounci '1 ~ o . 

", 

2 3 
f h)=f(o) + Tf ' (o) + ; , 1 . f " (0 ) + 3 ~ 2~1.f '" (0) + 

Now 

r (0) 0 



f' ( T ) erfc (liT) 1 . T { l _ e xp ( - 1 I T 
2 ) } 

lIT 

f I Co) = 1 

f " (T) 

ITI 
11 2 

f' " (T ) = 3 ' exp( -l / T ) 
ITI T 

=='> f ", (0) = ° 
tc . 
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The third and hi gher order der ivat ives may be writt e n 

in the form 

where 

Now as 

-m 
T 

m ~ 3 

T -}- 0, 

exp(-1 / T2 ) 

- m e 

and so sum of all terms above the second order der ivative will 

be zero . That i s.the contribution i s from the f irst t wo der i -

vat ives only in the Taylors Expa ns i on of f(T) around T x 0, 

so that we keep T2 terms only . The function f(T) i s then 

approximated as 

1 

IIITI 
2 

T (3 . 31 ) 



The voltag e varia ti on as a fu nc t i o n of time can be written as 

u(t) ( 3 .32) 

where the coeff e c ient s aI ' a 2 and a
3 

would g ive the thermal 

p ropertie s to be determined. 

where now 

and 

He had Eq. ( 3 . 26) as 

vet) = 1 + a G f(T) 

G == 

f (T) _ 

p 
o 

4 h 0. iTI 

1 
T -

2 
T 

Comparing vet) with u(t) a bove we v et the the r mal 
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conduct i v ity 0. fo r a me tal stri p inside a semi-infinite medium . 

(3.3 3 ) 

],'or a thin metalljc ['ilm evaporated on the s urface of 

2 semi-infinite medium we ~ et f o r the therm a l cond uctivity 

aT 
0. = ~(­

h 
( 3 . 3 4) 

For the thermal diffusivity K in both cases of a 

str i p in s i de a semi- i nfinite medjum a nd a str ip o n the s urface 
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of a semi-in fi n ite sample we have 

... ( 3 . 35 ) 

3 .2 CONDUCTIVITY TENSOR 

Solu tion of the h eat con duct i o n eq u ation for a n instan-

tane o u s point so urce in a n an - isotrop i c medium , with princi p l e 

conductivities n l , n 2 and n 3 along x , y and z a xes is g iven by3 

The t emperature increase ' ~ t ~ime ' t ' for an infinitely 

l ong strip a lon g z and of wi dth 2d a l ong y a nd lying in the 

plane x = 0 is 

L d 

6T = . 1 k f 
8 ( 1T 1c K K ) 2 

'1. 2 3 0 

" r 
dt J dy"'<j> ( t ", y "') 

( t _ t ",) 3!2 
-d 

exp 

+ 00 

dz ". .. . 
- 00 

wh ere we h ave pu t Ki = ni l eC. The part gl ves us 2 /K 3 ( t-t"' ) 

so that 

( 3 . 36 ) 

6T = 
4 K2 Ct - t"') 

. . . ( 3 .37) 





From Eq . 5 . 10 we have .tor cjJ Ct'" , y'" ) 

1 + ex'L'1T Ct '" , y '" ) 

Su bst i t u ting this In Eq .( 3 . 37 ) we ge t 

t 

o 16 nd~pC(K 1 K2 J 
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d '" y 

• exp ( 3 . 38 ) 

Now ex and L'1T is s mal l a nd a fir s t order appro ximat i on 

c a n be use d as done before t o ge t 

P ex 
1 + __ 0 ___ • f ( T ) (3 . 39 ) 

k 
where T2 = Ct /8

2
) 2 a nd 8 2 = d2 IK

2
. 8 l S called the cha rac t e r is ti c 

time and f ( ~L ) i s 

f CT) = T erfc CI/T ) 
2/ir 

{1 - e xp C- I /T 2
) } -

1 

2 / n 
E . (- I/T2) 

l 

from Eq . C3 . 38 ) ItJe see that if the s tr i p lS i n y - z ph ase 

then t he conduct ivities along x and y direction s a nd the thermal 

diffu s ivity a long y - axi s c -m be ue t ·>rmin ed . 

In Figure ( 3 . 1 ) the t hree axes are des ignat ed a s 1 , 2 and 
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3 . Thre e indepe ndent m asurements cun be made with the three 

orientation s of the strip , posit i o n A, pos ition B and position e. 

Accord ing to the atove ah~ly~is about the direction 

dependent conductivities and the pos i t ion o f the strip the followiRg 

information c an be obtained from the three pos itions A, B and e 

o f the strip . 

A ~l o ~2 = a A and Kl 

S n 2 on 3 = as a n d K2 

e SG
3

on
1 = a a n d K3 e 

where we know that ~ . - K. re 
l l 

= uA 

= Us 

= be 

l = 1, 2 , 3 . 

We can re-writ e Eqn . ( 3 . 40) as 

~ l = 
( aAoae! ~ 

as J 

[a 13
o
a /\1 

~ 

~2 = a
e 

- j 

n3 = n~aBj" 

a nd 

(3.40a) 

( 3. 40b) 

( 3 .4 0c ) 

( 3 .41a) 

( 3 .4 1b ) 

( 3 .41 c ) 

( 3 .4 2 ) 
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Thu s wi th thre e strips alo n g three orientations the 

conductivit ies alo n g the t hree principal d i r ection s can be found 

in a single crystal. 

3.3 SOM[ FACTOR S AFFECTIN G THE EXPERIMEN T 

In the mathematic a l model developed for t h e T.H.S. some 

factor s like radiati on l osses ) t hickness of heater and e nd contacts 

whi "11 might af fect t he experi loe n t were not co n sidered . If the 

e xp e rimenta l con d ition s are S U C ll that the contribut ion d ue t o the 

abo ve factors i s s mall then th e ir effec t s may safely be neglected. 

~ve now show t hat the co n t ri b ution fro In radiation ) thi c kness 

of heater an d the end contacts is negligible . 

Ca) Radiati o n from the s trip 

Th e los s of heat jJe I' un i t area int o a b lack enclos ure due 

t o radiati o n lS 

- 4 4 
Q =0 « ('1' - cx T ) 

I' 1 1 2 2 
( 3 .4 3 ) 

where Tl i s t emperature of radiati ng body , T2 lS temperature of 

the black enclosure , 5 i s t h e Stefa n - Sol t z man constant , (lS the 

e mi ss ivit y co-e f f icient an d cx 12 i s the absorption co-eff icient. 
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For a s i lver f ilm E. ~ a 1 2 ::: 0 . 02 and Tl ::: T2 so that 

0 . 08 a T3 tiT 
o ... . 

where 6T i s the mean r1se 1n t e mperature a nd T 1S initial 
o 

we can writ e 

=> 

u = U ( 1 + a 6'1' ) 
o 

= 
u-u o 
OCt o 

Eq . ( 3 . If 2 ) gl ve s 

where V eT) = 
u-U o 

1 + 
P a o 

So far 6T we ge t f o r a film Hl a serni-in fi ni te med ium 

p 
o 

( 3 .44) 

and for our case of a f ilm on a sample l . e ., a film on the surface 

of a se mi - infi n it e me dium we have 

p 
o ( 3 . 45 ) 

Th e extensions of the s tr i p are 2h x 2d where 'h ' 1S the 
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half length a nd ' d ' i s the half width . So the tota l power l o ss 

from the strip due t o radiation 1S 

P = 0 . 08 0 T3 l'.T 2h ' 2d r 0 

0 . 32 
- T3 h 'd'P 0 

=> P 
0 0 .f(1

2
) = r 

2h hT ltllt2 

Th e re l at iv e power l oss 1S t hu s 

0 . 16 a T3 d p /p 
r 0 

= 0 

For a typ ical experiment T = 0 . 7 

Now f (t) .~ 1 -
1 

14TI 

and for 1 = 0.7 we get f ( l) = 0 . 56 

Keep in g a Li s ually clc heivable '.:idth of strip 2d = 2 x 1 0 - 3 m 

wit h -o = 

k 
W l it 2 ) 2 = 1 . 4 2 w a t b / mK 

a nd 

We ge t for tle relative loss of power 
i' ": I' 

So l oss of power due to radiation can be neglected. 

~\ 

( 3 . 46 ) 
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( b) Thickness of the Heater 

The strip has a length 2h , width 2d and t h ickness 2v . If 

the dens ity a nd spec i f i c h eat of t he stri p are Pf and Cf t he n the 

power needed to heat t h e strip is 

P
f 

= r:: f Cf 
d ( LI T ) 

' 2d ' 2h ' 2v ( 3 .47) 
dt 

=> P f = 8 rfCf 
d(LlI' ) 

' d 'h'v dt 

The mean ri se 1n t e mperature 1S 

LIT = 

Initially high power 1S needed to heat the strip, but 

after a very s ho rt -Lnl C the l)OWl'I' reC[ uirecJ Decome s negl i gible . So 

that f (, ) - , 
2 - 2 

Now ' 2 = /t/8 2 

and 1 

So the re l at ive power loss Pf/Po lS glven as 

P f 8 PfC f d · h · v 
1 

P = 
0 2hhTst l st

2 
2 /t 82 

( 3. 4 8 ) 

Putting / ttl2 
2 

and st
2 K 21 pC '0 8 2 = K2 = d 18

2
, = , 

- -, 



So fo r relative power loss wc havc 

Pf 2 rfc f K2 
p = 

InKIK 2 
rCdT 

0 0 

P f 2 [ r fC f I v = - IK 2/Kl . err P In pC ) 
0 0 

With v = 10 OOoA , d = o . 2 rrun 

and 1 = 16 we get t he re lative powe r loss to be _ 1 0 - 3 
o 

which 1S neglig i b l e . 

( c) End Contacts 

The relat iv e t e mp e ratu re de crease due to end co ntacts 

for a n isotrop i c so lid i s eive n by 
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R = 2~ IK t/ n ( 3 .4 9 ) 

with the u s ua l e = U2 / K tln d T = ITTO 

and T :::: 0 . 7 and t :::: O. S we ee t ma x max 

d 
R = 2h 10.S /n 



If d < ~ h th en 
40 

R < 5 x 10 - 3 

63 

- " 

Thu s i f width of s t rip 1 
lS less t h an 40th of t h e strip length then 

the effe ct f r om the e nd contacts can be negl e cted . 
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C HA P T E R F 0 U R 

ELECTRONIC CIRCUITRY 

4.1 Circuit Requirments Fox The THS Method 

4.2 Brief Theory of Circuit Design 

4.3 First Model 

4.4 Second Model 

4.5 Final Model - The Brid ge Arrangement 
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4. 1 CIRCUIT ftEQ U nn~II; N'I' ~; FOR 'I'l-m 'THS' EXPERIMENT 

In the T.H . S . me t h od a constan t current 1S allowe d to 

flow through the strip . Due t o t hi s input of constant c urrent 

the t emperature of the s trip in c r eases a nd its r es i st ance 

increas es too . Thi s result s i n a time varying voltage u ( t ) across 

the s tri p . The who l e ex perime nt de pends upon th e accurate 

moni t oring o f u ( t ) against time . ~~ \flow from Chapter Three t ha t 

where U 1 S t he vo lt ge a c ros' t h e s trip when the curre n t i s 
o 

switch e d on, C i s a c o n s tant an d f(~ ) f unction has been 

d e fin ed in Cha pt e r 3 . i n e q ua t i on ( 3.25 ) . 

The tra ce n f U( t) ag ~in s t t 1S as s ho wn 1n Figure ( 4.1 ). 

Usually U 1S of the order of 1 volt and the i ncrease o 

1n vo ltage above U 1 S f r om a f e w lni cro-volt s to a fe w millivolts 
o 

at mo st. The increase in vo ltag e 6U ( t ) ab o ve U 1 S the interest ing 
o 

part because that is due t o t h e change in resi s t iv i t y o f th e 

strip . 

To de tect t h e i ncreas e 1n vo l tage 6 U( t ) a bov e U 
o 



requires amplification of the increase . If t he whole signal i . e . 

Uo inc lude d 1S ampli f i ed a lo L 01 inforlnation abo ut the change 

6U ( t) abo ve U wo uld be lost . I t woul d be bes t fo r the read ing 
o 

instruments and fo r the s ake 0 acc uracy to s ome h ow offset t he 

initial v o l t a g e Uo ' 
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In short to make a better e xpe r ime n t i t i s r equired that: 

1 . There shou l d be extreme l y fast sw i tchi n g on of t he 

current thro ugh the s tri p , so tha~' 001t a ge U i s ach i eved v i rtuilly o 

at t = O. 

2 . There 1S some arrangeme nt to o ff se t U . 
o 

3 . Su fficient amplificatio is pro ided to read the 

incre a se a bo ve Uo on a c onvenient setting u s ing a storage oscillo-

scope. 

Th e rli f fprent circ uit ry a tte mp ted all revolved around 

maximization of the abov e th r e point s . The i n itial set ups were 

t oo complicated , but fi nal ly a ne a t a nd s imple arrangement deve l oped 

wh i ch was hi g hly accurat e a l so . 

Before describin g the d i f e rent set ups which were tried 

it would be appro pr i a t e t o t lk br i ef ly abou t circuit desi gn. 
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4 . 2 BRIEF THEORY OF CIRCUIT DESIGN 

( 1 ) Cons t ant Currnt Source 

A constant current source is one which supplies a 

d i rec t c urrent, the magnitude of which is independent of the 

load into which the current flows . Also wh e r e such condition 

require t he c urrent should remain con stant with respect to supply 

voltage and temperature. 

Theoretically an i deal con stant current source would be 

on e having an in fi ni te supply voltage . However in practise we 

cannot hav e a n infinit e s u pply of voltage in the first p lace, 

secondly the actual supply voltage is limited by sort of usage 

for which it is required . So i t turns o ut that there is a limit 

on the load carrying the current , beyond which the con s t an t 

current source will not s u pply constan t current. 

If a con stant curre nt source has a maximum supply 

voltage Vm and the current is I the n the maximum load RL f or a 

constant current is such that 

Tl1e simplest arrangement for a constant current s ource 

lS to have a voltage source V and a high resistance R ( as o 

compared to R
L

) in series with the load RL ( Fig . 4. 2 ). 
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If the voltage acros s load is much smaller than the 

vo ltage VI Llcross 1<1 ~"e would huvc a con s tant current source. 

Slight c hange s In load wo uld no t i nfluence the current IL in load , 

which is give n by 

V - VL 
IL 

0 
= 

Rl 
( 4 .1) 

Alternatively 

IL 
VI 

= 
Rl + R2 

s ince 1\ » R], 1 

V 
IL 

0 
'" Rl 

( 4.2 ) 

The percentage ue parture from the con s tant c urre nt lS 

VL/V
l 

x 100 %. This mean s i f current is to be held within a few 

percen t and V
L 

i s several vol t s then VI must be a few hundred volts . 

Such a high va lu e of VI mi ght not b~ c onv e ni e n t in many situations . 
-", 

If the vol tages in a c irc uit a r e not to be ve ry big we 

can ri g up a constant current source with the he l p of the mag ic 

gen i e ' t he transistor ' Con s ider t h e circuit glven in Fig . ( 4 . 3 ) 

IL = IC = collecto current 

= ex. I I: + I C[30 
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where leBO is th leakage curre nt 

=> (4.4) 

The p arame ters a , leBO and VSE for a particular tran­

s i stor (at a parti cu lar t mperature ) a re constant . 

IL will be indepen de n t of l o a d Slnce VBB a nd RE are 

fixed . 

A practi ca l circ uit usc d dS a con s t a n t c urrent includes 

a zener di ode as s h ovm in l-'iii, . ('1. 4 ). Th e zener supp lies a 

c o nstant voltage VSS ' wh ich can be f ixed to get a current in the 

load from 0 to 200 mAo 

( 2 ) TransistGr Switch 

Fo r t h e sake of h i g h sp e d a nd bounce free switching a 

transistor is u se d . I d eally in the ' a ' condition the transistor 

shou l d offer z ero resi stan ce and in t h e ' OFF ' con diti on the 

resistance offe red should te i nfi ni te . 

A c i rcuit f or s uch a transis t or swi tch is shown ln 

Fig . ( 4 . 5 ) . The col l ector to emitter vol t age i s gi ven by 

(4.5) 
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where Vee is t he s u pply voltage , Ie i s collector c urrent a nd RL 

is the l o ad re sistance . 

Now if 18 is the base c u rrent a nd ' S ' i s t h e common­

emitter' ~mnl i fication factor , than 

I = S I 
C 8 

( 4 . 6 ) 

If 18 is made ze ro the n Ie is ze r o a n d we wi_II get VeE = Vec ' 

i . e . t h whole vo ltage i s across t h e t ransistor a nd no current 1 S 

f l o~in g through R
L

. ( Ac tually a s m 11 c urre n t does f low wh i c h i s 

the l eak a ge c urre nt . ) Wh e ll V Cl: = V ce ' we h a ve the ' o r r ' condition 

of the s l-vi t c h . 

I n the ' ON' concli tiol! tl1er'e s ho uld be zero voltage acro s s 

the transis tor which means that VCE = O. Us i ng Eq . ( 4.5) we get 

= > 

So that when the h ole voltage i s ac ro ss the l oad we have t h e ' ON ' 

conditio n of t he sw itch. I n ac t uality th ere is a s mall voltage 

drop acros s t h e tl'3. Jl s i sLor lJecd u se o l r dsons like internal r es i s -
-. 

tances of the tran s i s t o r . 

In switching , the ' ON ' and ' Orf ' time of a trans i stor are 
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of great impo rtanc e . These times would d pend upon the charac t e ris-

tics of transistor especially Gase - e mitter and b a se collector 

capac i tances . Also the ex t e rnal circuit p lays a n important part. 

The design of a switch require s s pecial transistors ha ving 

very sma l l rise and fall tim s . In the external circuitry the 

induc t ive and capacitive compone nt o f t he load is min i mized . A 
jn 

c apacitor across the base resis tanc e R5 great ly h elps7 i n creas ing 

the switching speed . 

( 3) Operatio n a l Ampli- i er 

Hi s t orically operat i onal amp lifie rs (op . amp) have been 

used for mathematical operatiolls such as add ition , substraction, 

function generation etc . , therefore c~lled operational amplifiers. 

This amplifier has a ve ry big gain , very high input and low output 

impedence etc. 

I deally thi s ampl ifier 1S c haracterised as having infini t e 

ga i n, infinite input irnp e denc , infinite Gand width, zero outpu t 

impedence a nd zero volt age and current offset . 

Equival e nt circuit fo r an ideal op . a mp 1S glven in 

Fig .( ll.6 ). 
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Here R. 
l' 

00 , R ~ 0 and band wid t h i s i n fin ite . o 

Since Ri = 00 , the c urrent IllS zero i n t o the termi nal , which is 

defined as the s ummin g point . 

Si nce AVo i s inf i n i t e , excep t zero , for a ny value of 

Vl , V2 will be infini te . Practi cally V
2 

ha s saturat i n g value V+ 

or V l imit ed by s upply voltages . The configurati on in which no 

feedba ck i s applied i s cal l ed ' open l oop ' confi g ura t ion. A very 

stable operation of t he amplifier can be obta ined by the intro-

d uction of f eedback . Th e gain , the n becomes a lmos t independent o f 

the gain o f the ampl i fie r, and depe nds only on t he ex t e rnal 

circuit com ponent s . 

The cir u-Lt v~ith feedback loop is shown in Fig . ( 4.7) . 

The circuit in which feedback is appli ed i s called ' closed loop ' 

circuit . Since Rin = 00 ; 13 = 0 , also Vi = 0 s ince V2 = AVoVi and 

fo r V2 within limit s Vi ~ 0 (AVo te nd s to infinity ). So po int 

A i s at vi r tual gr ound a n d we can write 

V
l 

- V. 1/ 

1 1 - J I 
- ~ 

1\1 1\1 
( 4.9 ) 

1/
2 

- V. V
2 

1 2 
1 = -"R-

r
-- ~ 

Rr ..... (4.1 0 ) 

Also 
11 + 12 = 1 3 ~ 0 

or 11 = - 1 2 
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So 
Vl V2 = -
Rl R2 

or 
V2 RF 

AV (4.11) 
Vl 

= -
Rl 

= . . . . 

AV is gain of t h e circuit independent of AVo · In f a c t AVo n e ed 

no t be i n f i n i te i n the real s e n se of the word , bu t it is on l y 

necessary that AVo be large for a reasonably good approx imation. 

Si nce po int A appear s to be at ground pot e n t ial so t he 

load for the i n p ut source is only Rl . Therefore , H1i sthe in p ut 

resis t ance of the amplifier. So both the inpu t res i stance and 

ga in can be set with Rl and RF only . This configuration i s called 

the inverting amplifier, since the outpu t i s always out of phase 

with in put . 

I n Fi g . ( 4 . 8 ), a non-inverting ampl if i er is shown . R
f 

1 S 

feedba ck resi s tan ce and input 1S appl ied at t h e non- inverting 

input o f the amplifier . Since V i ~ 0 ; Vl c an be con s i dere d as a 

voltage acro ss R
l

, so W 

V
2 = I I FF + I 2 1~1 

= I IRF + Vl 

Vl 
Vl ( 4 . 12 ) = R RF + 

1 





74 

- -, 

or 
( 4 .1 3 ) 

AV is ga in of this amplifier and here inpu t impedance is the 

inp ut resis t ance ( R . ) of the a mp l ifier, whi c h is inf i nite ide a lly. 1n 

A useful version of a non -inve r t ing amplifier is 

' vo ltage follower ' whi c h c a n be con sidered as a special case of 

a non- i nv e rt ing a mp li fier by l et t i ng Rp = O. The voltage ga in is 

one a nd in put impe d a n ce is infinite . This can be us e d a s a buffer 

or decoupling s tage between load a nd driv i n g source. The circuit 

1S shown in Fig . (4. 9 ). 

(4 ) Differential Amplifier 

A differ ential am p lifier is also called a substractor 

or diffe ren ce amp li f i er and is s hown in r ig . (4 . 10) . Here we can 

easily apply superposition t he orem to analyz e the circuit . So 

fi r st s hort e nin g V2 ' we get inv rting ampl i fie r, giving 

Now short e ning Vl a ~on-inverting a mpl ifier , but with R2 at its 

non - inv e rting inpu , is form e d . Voltage V2 is divided by Rl and R2 

and produced voltage V; at the non -inve rting in put. So we get 
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v" 
R2 

V2 (4.15 ) = 2 Rl + R2 

and 

( 
Rr] V02 = II + V'" 
Rl 2 

II Rr] 
( R2 

RJ 
= + Rl lRl 

V2 
(4.16) 

+ , 

i f we le t R2 = l~F ' then we ge t 

V 02 
Rr 

V2 
(4.17) = 

Rl 
. 

Therefore t he total output i s g l ve n by 

Vo = VOl + V02 

Rr 
Vl + 

Rr 
V2 = -

Rl Rl 

Rr 
( V2 Vl ) (4.1 8 ) = 

Rl 
.... 

So the o utpu t vol t age is proportio nal to the difference o f the 

vo ltages at the inputs . 

( 5 ) Ac tual Operat ional Ampl ifier 

Al tho u gh v e ry good approximat ions can be made , yet 

following d epartures fr om the ideal c an be r ealized . 

Obvio u s l y in a ctua l a mpl i f iers , i n f i nite ga in , in f inite 



1 
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input impedance , zero output r es i s tance a nd i n finite bandwidth 

are impossible to ach i e ve . Typical l y the open loo p gain is of 

the o r der of 10 5 , t he input im e dance in t he ran ge of se veral M.ohm 

out ~ut i mpedance around 50 o hms and the b andwidth a few M. Hertz. 

A1IV ngwi th these the fol l o vlin g differe nce s are also observed . 

( a) Offse t : Wh en bot h t he inpu t s of an op .amp are at 

gro und, ideally there should be ze ro output, see Fig . (4.11). 

Sut i n a practica l op . amp a n ul\des ired no n- zero o ut put appears . 

Vo o with inp ut grounded is cal led ' ou t p u t offse t vol tage '. This 

vo ltage can be r e l a t ed to the inpu t vOltage ( i n buil t ) as 

Voo/AVo = Via ' ViO is c alled thc ' i n p ut offse t voltage'. ' Input 

offset curre nts ' are also pre s nt in a pract ical op . amp . Con s i der 

Fig . ( 4 . 12) , the c urrent flo wi n g i n or out of the input termina l s . 

The current s IS and IS 2 are us ually not equal , a n d t he differe nce 
1 

( l SI - IS ) = liO is called the ' input offse t current ' . Va i n 

t hi s C cl'~ e i s c u e t o t he i lljlut () !r ~~c L vo ]L iJ.g ' cmd no t due to I iO ' 

To see th e effect o f l i O consider the circuit 1n Fig. ( 4. 1 3 ) . 

Current IS deve l o ps a vol tag e 1U _ Rl accross res istance Rl . This 
1 1 

vol t age ap pe ars as a n input v ltiJ. E, e , the amp lifie r y i e lding output 

voltage . 

Now Va 1 S not o n ly due to Vi o but is also due to l i O' The 

effect du to lSI can be null if i cJ } ":! insert i ng a resistance in 
- , 

the other input t e rminal, e rig . (4. 14 ). One trling must be noted 
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here , t hat eve n if Rl = R2 , Vo will not be equa l to zero if 

A pa1r o f t e rm i n a l s i s p rov i ded in most of the a mp l ifiers 

for offset adjustment . A po t e n t i ometer is usually connected accross 

these termilal s and the adju s tin g arm connected to VCC o r VEE" 

( b ) Drift: The input of f s et c~rren t and voltage drifts 

with t emperature and t o some extent wi th time . Thermal drift i s 

usually the mo st significant . Offset voltage and current drifts 

are specifi e d in units of ~ V / oC and ~A/oC r espectively. 

( c ) Common fvlod e Erro r : I de al l y one expe ct s that the out-

put voltag e i s ga1n times th e di f fere nc e of the voltages at the 

input s , i . e . 

Vo = Aa ev l - V ) 

where Vl and V2 are the volLage' a t the non-inverting and inver­

ting points . But in pract i c 1 a mp l i f iers o ut p ut also has some 

dependence o n the average va lue of the t wo inputs. For p ractical 

op . a mp we have 

(4.1 9 ) 

where A 1 S called the common mode ga1n . A term ' common mode cm 

reject i on ratio ' eCMRR ) 1S d fined as 

CfvlRR = A / A a cm .... (4 .20 ) 
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Eq . (4 . 19 ) can be written as 

Aa ( V 1 + V 2 ) 
Vo = Aa ( Vl - V 2 ) + C M1~R 2 . . . . ( 4.21 ) 

CMR ratios of 20 , 000:1 Lo 200 , 000 : 1 are typ i cal 1n practical 

amplifiers . 

(d) Sl e w j~ate : SLw rate 1S a meas ure of h ow fas t the 

o ut put voltage can be varied with respect to time , a nd h e nc e i t is 

generally specified as so many vO l'tso fjer lJ sec ", a s measured in a 

particular feedback configuration with some p artic ular load. 

If an op . amp i s operated or~n loo~ , and the input s i gnal 

1S sin usoidal (amplitude 1S small C il tJ,l gll l10t to saturate the 

amplifier ), the o utpu t will also e sinusoida l of t he same freq uency. 

If this amplif i er 1S used in closed loop configuration and 

the magn i ~ u de ot the input 13 increased ( st ill no t t o saturate the 

amplifier in th i s conf i guration ) the output wil l be distort ed . Thi s 

i s due to the var i ous internal and external c apacitive l oads . Th e 

out p ut vol t age cannot instant aneously follow t h e i n put due to 

charging time of th e capacitor . So the high freq ue n cy response of 

an op . amp is different for small signal and large signal . 

I'or <-1 lClrgc c; LCjl ~~ i f', llol illlJut the output r i ses a t 



, 

.:. 
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a fixed ra te , see Fi g . (4. 15 ). The rat e limit is t h e s l e w rate 

and determi nes the spe ed wi t h wh i ch the a mp lifie r can respond 

t o large si gnals . 

Th e maXlmum frequency o f ope r at i o n (with sin u soid ~l 

sign a ls) o f the op.amp i s l i mit ed by the s lew rate. If output is 

given by 

v = Vm : ;111 ( wt ) 

time rate o f chang e of vo ltage lS gl v e n by 

dV 
dt = Vm w c os ewt ) 

and the ma ximum valu e o f t his ra t e o f change lS 

dV I dt 
max 

= V w m ma x 

Wh dV . 
en dt 10 3 1~w L'at e of an 0 r . amp the maX lmum ope ratin g frequency 

due to s lew rate limit is 

1 dV w = max V dt 
m 

(4.2 2 ) 

It can be seen from Eq . (4. 22 ) t ha t th e maXlmum operating frequency 

decre a s es with increas ing ampl itudes . 

ee) Non -Lin e arit i e s : The input, output and galn charac-
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te rist ics all s how orne non-linparity in the re gi on of 

operation . These non-linearities a e negli gi bl e for mo s t 

purpos es , but would have to he tal<en into a cc ount when do 

ing sensitive measur emen t s. 

There are l imi t s t o the current and voltage 

when us ing an op.amp . becau 'e there is both input and 

output s a tur a tion. The input mu s t not exc eed a cert.in 

pe ak t o peak value and s o must the output be restricted 

too. These satur a t ion l imits are i mp osed by the maximum 

rated Dower supply v oltape wh i ch d rives t he op.amp. 

In this saturati on bussi ness the load impede-

nce plays an imp ortant role. I f the load impe dence 

is be l ow a cer t ain value ( which is speci fied ) then the 

output curren~ saturates before t he voltage saturation 

occurs . Hence the load irnpedence of an OPe amp . should 
o 

be gr eat er than that s pec i fied foi' a ~art icutar OPe amp. 

~ow tha t we have d sc ribed thedifferent aspe ct 

of circuit desirn which ~ould be useful in ~he pxperi-

ment on the 'tr a nsient ho t s t rin' we po to de scr i be the 

d i ffe r en t mod .1 s a ttempted. 'J'llw' r~t t e r n)Jts fina l ly en ded 

in a ' bridge circuit ' which we bele ive did the bes t 

job . 
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4. 3 FIRST rv;ODEL 

Circui t diagram of t h e first attempted model is 

shown in Fi g ure ( 4 . 16 ) . 

RL i s the current limiting resistance and S . R. 

is a standard resistan ce of 1 ohm in ser i e s with the THS. 

The ot h er a nd of TH S bein g rro unded . 

Vol tage a cross t he S .R. , whic h wo u ld g ive us 

the current throu g h the THS , i s a mpl ified by a differential 

amplifier DA I and fed to c hann e l A of the oscilloscope. 

The potentia l difference U(t) acro s the THS 

is amplified by a variab l e gain amp lifier AI . The g ain i s 

adjusted so that at point 1 the amplified U is eq ual to o 

the zener voltag e . e.g . if zener vo l tag e i s IOU t he gai n 
o 

of Al i s made ten . Th e si ~nRl a t poin t I i s thus fed to a 

fixed gain amplifier with ga in 10 , from where it g oes to 

channel B of the oscilloscope . 

The d i sadvant av es associated with thi s mode l 

were : 

1 . If curr ent through 'rHS was made to change 

th n the ra in of Al h ad to be ch an g ed also 

to bri ng its outp ut equal to the ze n er 

vo Jt a!"'c . 'I'I1i.s pr-'act ic a lly had to be don e 

every t i me a run was made. 
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2 . Als o inc eac h r un required an adj ustment 

01' !\ L i t, ~) 1",l l ll ~o' ulc.f no t be fi nd . rro find 

this ~ai n eac h t i me an e xter na l signal had 

to be ap I i d t o Al and its ga i n stud i ed 

on an oscill osc op e . 

3 . Because the pai n of Al had t o be chan ged as 

required each t i me it s off s etting h ad to be 

adjusted according l y . 

How ever, i nspi te 0 (' the disadvan t a[2,:es the 

attempted circ uit gave us the pr oper ins i g ht i nto t h e 

r equir ements of th e experiment and l ed to be tt er changes 

later on. 

4.4 

The se cond at Lei llp t, eli m ode I i s based on t he four 

probe method . First a block wor king i s exp laine d and th us 

foll ows a e t ailed descri pti on . 

a ) BLOC K DrAG RAM 

8 2 

Block dia c'ra m o f' til e c ircui t is [! i ve n in Fi g . ( 4 .1 7) . 

A constant c urrent is pas s e t ll ro ugh the stri p . St a ndard 

res i stance (S . R. ) is a l s o i n se r'i e s with the strip to measure 

the urrent. The con s t a nt c ur r e nt d evelops volta~e acros s SR 



and strip wh ich are prop ort onal to thei r res i stances. The 

voltage across t he SR rem a ins constant throughout the 

experiment, d u e to its con s t a nt resistan ce, but the voltage 

a cross the str i p is a f unct i on of tim e . The resistance of 

strip being a functi on of the tempe r ature . 

The voltag e across t he inner ends Df stri p is 

app l ied t o the inp uts of a differential ampl i fier , DA2 with 

ga i n 1 . DA 2 amplifies on ly the difference of the vo l tag es 

at i ts inpu ts, so only t h e v oJtare across the inner e nds 

of the strip will be amp li fi ed i rrespe ctive of a n y volt age 

presen t a t t he str i p w. r . t . IJ; t'olmd . 

The out p ut o f DA2 i s appl i ed to the inverting 

inp ut of a reference or di fference ampl ifier DA3 . A re ference 

voltage is app lied at it s n on-i nve rting input . Output of 

DA3 will b e the reference volta e minus i np u t vol t a ge at 

the inverting termina l of DAj . Th e reference vo l tage i s 

set equa l to the ini tia l vo lt age U
o 

deve lop ed across the 

str i p . So at the out p ut or DA 3 we are left with only the 

volta ge var i a tion above U across the str i p but i nver t ed . 
o 

Thi s voltare var j 8 ti o n i s a gain g iven t o the 

in p ut of an in vert i n r-; amr 11 LLer A 1 wi th f i xed g ain 10. 

Out pu t of A 1 i s amp li fied a nd inverted so we g et the 

chan ge above U wi th oririna l polar ity. This vo lt ave i s 
o 
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g i ven t o the stor age osc i lloscope (channe l A) where i t can 

be photographed for a permanent record . 

I niti a l voltage ste is measured by mea s uring the 

reference vo ltage at DA3 . 1\ voltC3"~ rfollower V . F . s t age is 

us e d between the d i g i tal voltmeter and DA3 stage to de couple 

these from eac h oth er, 

A differe ntia l ampJifier DAI i s 1used to me asure 

the voltage a cross . P . wh ic h ac t u a l.ly g i ves the curren t · 

throug h THS . The gain of th i s ampl i f i er i s one . Th e output 

o f this amol ifi r i s applied to c hann el B of the s to rage 

osc illosc op e , from which it can be recorded at s ame time 

as the 6U(t) . 

b) DETAILED DESCRIPTION OF SECOND MODEL 
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Block d i aiYram of this model i s g ive n in Fi g . (4 ~ 7 ) . 

I n Fig . (4 .18) the cletaiJ ed d i al!ram i s s h own. Transistor Trl 

i s u s ed as a constant c U1 're n t source . 'T'he transistor s wi tch 

'1' 2 ' standard re s i s t a nce (S . [j.) and the s trip are the load 
r 

f Ol' - h js ('onstcmt curT - lI t SO IIl'CC~ (bejnp; in t he co l lec tor 

circui t). The necessary con stan t base vol t age supply VBB i s 

'made avai lable us ing a zene r ci i ode DZ
I

. Th~S volt age can b 

fixed at any val ue from ze r o to Vz by ad jus ting a pot entiometer, 

across DZl' Vz i the z ne r volta~e of t he cliode . 



Trans i stor Tr 2 is used as a swit ch , drivem by a 

s in gle shot multi vibrator. A uffer stage us ing Tr 3 as an 

em it ter follower i s used between switch and single s hot. The 

"ON " d uration of s ingle sho t is determined by the Rl , Cl , 

Rl i s a variabl e res i stan ce , and by ad j us ting it ON duration 

can be f i xed for any value between 0 and 200 mil~i-seconds . 

Operati on amp li fie r' Op 1 i s h alf 741 and i s used 

as a differential amp lifi er , wit h ~ai n one . A variable 

resi stanc e is connected i n the feedbac k loop which i s used 

t o calibe pate the p: ain of illilp I j f'jer . A 10 K p otentiometer 

is used for offse t adju tm nt ' . Thi s amp lifier i s across 

S. R, to meas ure t he current . T e Ou t put of it i s connected 

to channel A of the storare oscilJoscope . 

Op - amp - 2 (~7 47) i als 0 used as a d i ffere ntial 

amplifier a cross strip . 'I'he circuit conf i guration of this 

ampl i f i er is s ame as t hat. uf Op - amp . 1. 

Op - amp - 3 i s also diff'e r e nc e ampl L 'ier. It i s 

used to cut the i nitial step of vol tage across the stri p , 

Its inverting input i conn cted to the outp ut of Op-amp -2, 

The non-inverti ng terminal i s kept at a voltage , which is 

approx i mately equal to Lhe initial s t ep Uo ' Transistor Tr3 

i s used to prov ide this voltape . Tr3 p r ovi des a cons tant 

voltage determ i ned by zener diode DZ2 ' Th i s voltage can be 
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fixed at any value from a to Vz = 5V wit h the aid of a 

potent i o eter in the emitter leg of T
r 3

. 

Op - amp - 4 ( ~747) is s i mple inverting amp lifier 

with ain 10 . The gain of this amp lifier can be calibrated 

by a vari ab l e resis tance in its fee d back circuit . The 

input of t his amplifier i s output of Op - amp - 3 , which is 

only the voltage ris e 6 U(t ) across the stri p . The outp ut 

of Op-amp - 4 is connect -d to channel B of s torage oscilloscope . 

Op - amp - 5 is a volta~e f o l lowe r s tage which is 

used as a buffe r stag b tween i g it~l volt~meter (DVM ) and 

the rest of the circuit . Digital voltmeter measure s the 

voltage present at the output Op - amp - 3 ~ which is the 

reference voltage (approximately equal to U ) at its non­
o 

inverting inp ut . 

The tr~ces of 6 U(t) recorded on the storage 

oscillosco e were as expec ,ed bllt accuracy was lacking . 

Reproducti on of results was very diff i cu lt t he reasons 

being ba'ically the camp] x nature of the circ0it and a lso 

lack of pre eise val ue of the lJ o lead i ng to bad prec i si on 

in ett in l': o f the r'ef'el'cn('e~~ v() lLaf'~e . !\ s li [rh t mi smatc h 

between U and the r ference voltage made the i mage on 
o 

osc i llos ope ~o ou t of the viewing wind ow . 
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The reasons for the models short comi ng an d for 

the search of a better one were : 

1 . Each time gain calibrat ion o f the amplif i e r s 

had t o be done . 

2 . Each time the offset of every op er a ti onal 

amplifier had to be adj usted . 

3. The current and r'eference vo lt ages had t o be 

adjusted :'iO n~; to make them compati ble . 

Clearly the bi gEest problem was to select a 

certain current t o fe t a r easonab le Uo ' an d adjust the 

reference vo ltage so that U co uld be offse t. The bes t 
o 

choice would be to have an arrangement whereby U coul d be 
o 

balan ced out easily . Thi s pointed the way towards t he u se 

of a Br id p-e Ci rcu i t on lines of the famous Ri sis t a n ce Bri dge . 

4.5 FINAL ,ODEL - rEm; I lnDGE ARHAN GEMENT 

i) THE BRIDGE : 

It is a well kn own c ircu i t having fo u r arrn& as 
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shown in Pig . (4 . 19 ) . When the bridge i s balanced the vo ltages 

at C and D are equal. The balance cond i tion in t e r ms of arm 

res i stmlces is g iven by 
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or ( 4 .23 ) 

Th e . e cond c las s of b ridfe is an unbalanced bri dge . "'!he n the 

br i d ge is imbalanc ed, a I j ttle voltage difference arise s 

between C and D, which is a fu nction of the i mbalance . 

Fr 0 m Fi g . (4 . 20 ) we h a v e 

= I I RI U(t) ... . (4.24 ) 

I(R 2 + Rl ) 
II = ------

2F'] + F~2 + R3 

= 
(I 1 + I 2 ) ( R? + ~l ) 

2R l +R2+R
3 

or' 
R~) + R~ (R,) ~~l) 

1
1

( 1 ) I ,) 
L 

___ 0 __ ••• = 
2P. l +R

2
+R

3 
L 2R1+R2+R

3 

or 
2Rl ( R2 + R

3
) 

I
1

( -_._-) 1 2 
2R1 +R2+P3 2R

1
+R2+R

3 

or 

( 4. 25 ) 





From Equations (4 . 24 and (4.25 ) we ge t 

( R2 + R3.) 
V = 12 - PI - U(t ) 

2RI 

I 2R2 
+ 

I ?R3 
u ( t) --- -

2 2 

Now I2R 2 i s Uo ' th e i nitial voltage ac r oss the 

strip and I 2R3 is U(t ) , so 

v( t) = 

or 

2V (t) 

o + U~t )_ U(t) 
2 

= u - U(t) 
o 

1'i) DETA ILED CIRCUIT 01" BR TDGE ARRANGEMENT : 

( 4 .26 ) 

Til C c i r ::: u i t j s she '.'in 1. n 11' i g . (4. 21 ). Th i sis a 

method which uses t hree probes ac ro ss th e THS for curren t 

and voltage i solated measurement, 

I ni t i ally the brid ge is balanced by passing a 

very litt le current through t he c ircuit . Res i stan ces Rl and 

R2 are equal . R3 is varied to balance the bri dge . Section 'a ' 

of the strip see Fi g . (4 .21 b) is in the R3 arm of t he bridge. 

Section ' a' being in the lower arm bal ance s the section 'b ' 
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of the strip (it being as umed t hat the strip is symmetric) . 

The e fec - i ve length of th e s trip t hen b ecomes h . Standard 

resistance ( S . R . ) is in t he str i p arm but it does n ot 

con tribute to the trac , . :Ln ce it remains consta nt or 

current values lower then the current spec i f ied on stand ard 

resis tance . 

Th e i nitial voltage U is automa ti cally balance d 
o 

ou t when the br i d ge g ts ba lanced us ing R • The h eat ing a 

current i ncreases the tempe r a ture of the stri p and so 

imb alance the br i dge . This i mbalance and he nce the vo l t age 

a t the input of different ial ampl i f ier DAI (wh ich is a 

Tektron i c AM502) is propor ti onal to the voltag e increase 

ael'o the strip. FC'ln . (L1.? b ). 'l'his voltag is amp li f ied 

200 times by DAI. The out p ut o f the amplifier is connected 

to a storage oscilloscope , an Ill' l7 Llll\ . 

A potentiometer ac ting as an offs et alon gwit h a 

diff rential ampl ifi er DI\? ( t>amc lliade as DAl) i s us ed to 

measUl'e t he urrent . 'l'he lJI\2 ClmpJif'ies only the dif fer ence 

of the voltag e across . R nd the potentiometer . The pote n-

tiometer vo ltage i s set approximate ly equal to the voltage 

acros S. R. Votlage of the pote ntiometer i s measured by a 

d i git a l voltmeter. An HP ino trument No . 346 6A . Difference 
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voltage , afte r am Ii icati o ll is p' iven to storage osc illos cope . 
( ) 

Detailed dis ription of S\v jtc:l l ~i i s t\~iv n below. 
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iii) ~~~CTRONIC SWIT,H 

Norma lly i t is good idea to keep the battery 

loaded , wh i ch means that urrent is a lways , flowing thro ugh 

the limiting resistor . Only when an experimental run i s 

made the current i s switched on to the brid ge . So normally 

two poi nts Band C are closed and the two con tan ts B and A 

close onl y when requi red (at this time Band C are open). 

To perform such an 0 era tion we use two singl e 

pole single throw reed re l ay s RLI an d RL2, a re used because 

they have low inertia , can be dr ive n by low current a nd 

low voltages . Reed rel ays are a l so bounce f ree . Transistors 

are used to swi t ch ON and sv..r l tc:h OFF th e relays . 

Re ferrin g to I"ig . (11 . 22 ) . I nitia lly Trl i s "ON " 

because i t has posit ive vol t are a t it s base. At th e same 

ti me 'rr2 is OFF s in ce i t 3 bdse i s grounded through res is tance 

Rl . This leads t o the RLI to be closed , and so con tacts B 

and C t o be closed . Th i s wo uld be t he norma l posi tion . 

When we want contacts A and B to close the 

manual s wi tc h ' Sl ' i s c l o ed p- i ving a positive vo ltage to 

the base of Tr2 making it ON . Thi s actuates RL2 closi ng 

cont a ct s A a nd B. At the same time Tr l goes to ' OFF ' state , 

openin~ RLI a nrl so the contacts 8 and C a l so . 
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The switch is extremely fast wi th switching 

time of about 10 micro- s conds and so suitabl e for the 

mi l l i - se con d r a n ge of work . 
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EXPERIMENTft.1 nl~QUIRMF,NTS 

In the Transient Hot Ltrip (THS) method a thin film 

of meta l is deposited on a substrate , and a con s t ant current 

is passed through the film . Essen~~ally what is done i s to 

read t he voltage across the film as a function of time . The 

things to get in the experiment are , one the Temper ature 

Coeffic i ent of Res i stance ( TCR), ' a ' and the other is to get 

a vi s ual trace g iving the voltag e time re l a t on. 

5.1 SUBSTRATE AND THE DEPOSITED FILM : 

Th e substrate sample se l e ct e d was fused quartz 

chosen because of its well known thermal propert i es . The 

samp le was a rectangu:).ar parallelpiped of exti n sions 35x 15xlO mm 3 . 

The samp l e was optic lly polis h ed on two oppos i te sides . Th e 

known therma.l properties of' f ll sed q uartz be i ng 

densi t y p = 2.25 gm/ em
3 

Therma l Diff usivity = K = 
-3 ~ 

8.33 3 ,,10 p m/se c 

-2. 
'Thermal Conductivity = S1 = 1.4)(10 watt s / em-DC 

The metal film was de p osited by evaporat i on u nder 

vaccurn . 
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The metal used for the h ot s tri p was copper. The ~trip 

was B. 45w· wide a nd 27.3mm long. The pads for current and voltage , 

al ong wi th the film were made in one deposi ti on • The thi ckness 
o 

of the f ilm was about 700 A. 

Th e substrate and the film size are shown in Fig.(5.l) 

5.2 TEM PERATURE RANGE : 

The measur ements were made ove r a temperature range 

of approx i mate l y 40°C, from ro om temperature of 20°C to 60°C. 

The sample alongwi th t h e probe leads is suspended in 

a Dewar fla k. The s amp le i s sur r ou nded y a thick mild steel 

sylinder, which acts as a heat r e se rvoir, ne x t to which is the 

wall o f the Dewar. Ne ar the samp l e is p laced a thermome ter, 

reading to a minimum interval of 0 . 2oC. The heating was done 

by using a hot air blower a nd then waiting a sufficient time 

for the tem perature to stabali ze . 

5.3 ELECTRICA L ARRANGEME NT : 

A short exp laination is g iven below . For detailed 

review refer to section deal jn~ with the Bridge Arrang ement 

in Chapter Four . 
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The electrical set u i~~hown in lir. (4 . 21 ). 

Voltafe source is a ~eavy duty battery of l2V with a ser ies 

current limi ting resistance R::; '""'--' fi o ohms . Th is voltage is 

given across t he brid ge circuit . As explained in Chapter- 4 

the voltage across S . R.( current through the ~ tri p ) and voltage 

trace are simultaneously displayed on the oscilloscope. These 

traces on the oscil l oscope are photographed for further 

analysis . A samp le of t race i s s hown in Fi g . (5. 2 ) . 

The cur r ent used for THS was a bout SOmA. 

5. 4 MEA . URF.MFNT 017 TEMPERI\'l' UHE DFPEN DEN'r COEFFIC IENT OF 

RE ISTIVITY (TCR) . 

TCR ' a ' was measured in two different ways, one was 

to do a completely separate exreriment fo r determination of a, 
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and second was t o combine the determination of a with experiment 

to determine the therma l properties of fus ed quartz. 

i) EXPERIMENT TO DETERMINE ' a' I\LONE : 

The samp le in th e Dewar flask is heated using a hot 

blower for some time. The n blowin~ i s s t opp ed and a wait ensue s 

till the t emperature stabalizes . 

At this stag e a number of steps g iven below ar e under-

taken to determine a. 
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1 . Note the t emperature . 

2 . Balance the Bri dge wi th adjustab le re s i s tance R . 
a 

3 . Then resi stan ce of THS at that temperature is 

R = (R -1) ohms . 
a 

Repeat step , 1 , 2 , 3 , for different t emperature. 

4. Plot R(T) again s t T and from the slope we get 

' a ' . Such a nlot f or our experiment is g iven in 

Fi g . ( 5 . 3 ) . 

ii) SECOND WAY FOR DETERMINATION OF a . 

The same proc dure as in the firs t method was fol lowed 

except that at the same t i me t he traces of 6U(t) a gainst t were 

taken on the storage Osc illosc ope at d ifferent temperatures. 

So that making a pl ot of R(T) = R (T) - 1 a gainst T would give a 

us ' a ' ; an d a lso we would be etting t he thermal properties 

from analy sis of each p hotograph taken at s ome temperature . 

5.5 ANALYSI S OF PHOTOGRAP HS : 

For all traces t ake n on the s tor a ge osci lloscope , the 

time b ase of t he oscilloscope was 5 m. sec/d iv. and th e vertical 

voltage scale was 5 v/div . 



The volt age before being fed t o t he os ci l l oscop e for 

t h e voltage vers us t i me trace had bee n amp li f i ed 20 0 t imes , 

i . e . the trace on oscilloscope (and the photograph) was 20 0 

t i me s the original vo l t ag developed across t h e TH . 

The p h otograph of the trace was magni fied about 2 times 

( Actu ally the magni f i cati on of the or i g inal p h otograp h d o e s n ot 

c hang e the data , but i t on ly help i n making r eading more easy ) . 

The magn ifi e d photogr ap h i s placed under a travelling 

mi cr osc ope , its hor i zon tal movement is re l a t ed to t i me t a nd t h e 

verti ca l to the voltage . Where the voltage scal e i s read as 

(5/ 200) volts / div . 

The vol t ag at differ nt data pertai nin g t o 

6 u( t) 

U 
r ef. 

u(t) -U f re . 

= (current t hrough THS ) x R a 

wher e c urrent through the THS is obtained by noting t he volt a g e 

ac r os s the R . 

At t hi s stage we have the data U(t.) for d i ffer ent t . . 
l l 

From t he theory of 'J'H S we know t h at 

98 



We utilize services of the fai thful friend 'the desk 

top computer ' in the Department of Physics to fit this equation 

U(t) = a l + a
2
;-t + a

3
t to our da t a ~oints (U(t i ) ,t i ) a nd give 

us the coefficient aI ' a 2 , Clnd (\ 3 f or the be s t fit. 
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Knowing aI ' a
2

, a 3 , half width of s trip d, half length 

of strip h , Te R 'a ' a nd the current t hrough the strip I , we can 
o 

f ind thermal diff us ivit y , the therma l cond ucti vity . 

g iven in 

Therma l diffusivity of sample 
2 a 3 2 

= K = 41Td ( 2 ' ) 
a 

I 
Therma l conduct i vity of sampl e = n = _0_(_ 

h 

knowing 

These 

TABLE 5 

K we g et charact e r istic time = e = c 

q uant i t ie s determined for the sample are 

5.6 DATA AND RESULTS 

. 
I 

Expe~ental data and s ubseque nt results obtaine d 

are g iven in form of TABLES from page 100 to page 104 . 



'l'ABLE -1 

Time u-u 
ref . 

( Se c . ) 

Experimental 
U(t) - Urer . 

f\ rter fi t 
( Vo lts) 

0 . 005 

0 . 01 

0 . 015 

0 . 02 

0.0 25 

0 .03 

0 . 035 

O . O~ 

(Volts) 

o . 006~ 

0 .009802 

0.0 1211 

0 . 01 397 

0.015~28 

o . 0166 LI 

0.017792 

0 . 018772 

I = 72. 29 rnA o 

o . 006~2~6 

o .OO9 768 L13 

o . 01211 ~ 

0 . 0139~~3 

0 . 0 1 5 ~ ~37 

0 . 0167086 

0 . 0177958 

o . 0187 L123 

U 
ref . 5.50V 

( , 

100 

Diffe rence 

- 2.006~~E - 05 

3 . 35698 E- 05 

- ~. 69297E-06 

2 . 5 7 00 ~ E -05 

- 1 .57 3~ 5E-05 

-~.~ 6382 E-05 

-3 . 82560E-06 

2 . 96853E-05 



Ti me 

(Sec. ) 

0. 005 

0.01 

0 . 015 

0 . 02 

0. 02 5 

0.0 3 

0.0 35 

0.04 

0 .045 

EXDerime nta1 
U( t )-U f r e . 

(Volt s ) 

0 . 004064 

0 . 00662 4 

0 .008326 

0 .0 09718 

0 . 010880 

0 . 01178 4 

0. 0126 08 

0.01 335 

0 . 01 4008 

I = 65. 57 rnA o 

TABLE - 2 

u-u ref . 
After fi t 

(Volts) 

0 . 004082 

0 .006584 

0.0 083 44 

0 .009720 

0 .018512 

o .011807 

0 .012632 

0. 013352 

0 . 013986 
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Di ffe r e nc e 

-l. 86385E- 05 

3 .97 336E-05 

- l. 82873F- 05 

- 2 . 42 40 8E-0 6 

2 . 87622E-05 

- 2 . 37909E-05 

- 2 . 4297 9E-0 5 

- 2 . 263 74E-0 6 

2 .1 2066E - 05 

4 . 983V 



Ti me 

( e c . ) 

0 .0 05 

0.01 

0. 015 

0 .02 

0 . 25 

0 . 03 

0 . 035 

0 . 04 

0.045 

TAB LE - 3 

Exp eriment a l 
U(t)- U f re . 

(Vo l t s ) 

0 . 0059 14 0 

0 . 008 4900 

0 .01 02380 

0 . 011 6060 

0 .01 27 360 

0 . 0136 880 

o . 01 L15220 

0 . 0152460 

0 .015838 0 

I = 65 . 55mA 
() 

u-u ref . 
After f it 

(Vo lt s ) 

0 .0059279 

0 .00 846 14 

0 . 01 02357 0

'0 

0.0116171 

0 . 0127 473 

0 .01 36992 

0 . 0145158 

0 .0152255 

o .0158477 

Di ffe r e nce 

- 1. 391 14E-05 

2 . 857 48E-05 

2 .2 3187E-06 

-1. 11354 E- 05 

-1. 136 94E- 05 

- 1. 121 49E-05 

6 . 11115E- 06 

2 . 04552E-05 

- 9 .741 18E-0 6 

U ref. 4. 982V. 
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T i me 

(Sec . ) 

o .005 

0 .0 1 

0 . 015 

o .02 

0 .025 

0.03 

0 . 035 

0 .04 

0 .045 

TABLE - 4 

Experimental 
U(t )- U f re . 

(Vo l ts) 

o . 00297 LIO 

o . 00L10880 

0 . 00 48620 

0 .0054580 

0 . 0059560 

0 . 0063580 

0 . 0067340 

0 .00 70520 

0 . 0073320 

1 49 . 12 rnA 
o 

u-u 
ref . 

After fi t 
(Volts) 

0 . 00 29803 

o . 00L10809 

o . 00L18544 

0 .005 11586 

0 . 0059546 

0 . 00 63 738 

0 .0067 347 

0 .0070496 

0.0073268 

Diff e renc e 

-6 . 34690E-06 

7 .0 9917 E-06 

7 . 59121E- 06 

-6 . 25 01 0E -07 

l. 34474E-06 

-1. 58369E-05 

-7 . 86768E- 07 

2 . 36 568E- 06 

5.19513E-06 

LJ = 3 .748v ref . 

1 03 
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1. 

2 . 

3 

4 . 

Ci. = 

U r e f. 

5. 50 

4. 903 

4. 982 

3 .74 8 

I (rnA) 
o 

72 . 29 

65. 57 

65. 55 

49 . 32 

TABLE - 5 

u (v' o ) 

S. 497 

4 . 980 

4. 98 1 

3. 747 

e( Se c . ) 
( , 

o .0477 

0 .0478 

0 .5 01 

0 .0492 

8" := 0 .0487 

Ci. 

h 

I o 
(W/mk) U5 

1. 35 

1. 32 

1. 34 

1. 29 

0 . 96 x 10- 3 Ohm/d e gree, 2 ~ = 0 .01365m 2 d = O. 4 35 mm. 

8 c 
a 2 2 

) / 4 
a

3 
, are computed wi th Computer Program . 

2 
K = d /8 

o .992 

0 .98 9 

0 . 944 

o .962 

page 104 



5 . 7 EHH ORS 

While the errors dependent upon the design 

of t h e e xper i ment ha ve been deal~ in Se ction 3 .3 of Chapter 

( 3 ) a n estimat e of the errors in the results due t o e r r ors in 

me a surements a nd obs ervation is requir ed. 

The d iffere n t measure ments donefor the deter-

minat ion of the TCR a nd t he thermal properties and t he 

errors in t hem are taken up turn by turn . 

i) Vol t age acros s standard resistor S . R 

of 1 ohm . 

ii) 

The error in me asuring this voltage 

is 0 . 17% 

The volt age across S . R gives us the 

current 10 through the hot strip 

Error in 10 is 0 . 17 % 

The adjustable resista nce Ra in the 

Bridge ( Section 4 . 5 , Chapter 4 ) . 

The error i n Ra is 0 .05 % 

Using the standard error analysis 

methods we get 

Error in Uref is 0 . 22 % 
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iii) In t h de termina tion of C( we read 

Ra wi 1.1: 2 ha ng ing t e mp e r a tur e T . 

The error in R is 0.05 % a 

The e r r or in r eading T is 0 . 1 % 

R R 
Now ex 0 

- Ko Tl - T2 ) 

where T2 > Tl 

Err or in 0( is 0 . 15 % 

iv) In the estimation of the thermal 

diffusivity and thermal conductivity 

we need information a bout the width 

, 2d ' and the leng th ' 2h ' of t h e 

hot strip. 

The error in h is 0 . 04 % 

The error in d is 1 % 

Now thermal Diffusivity i 
K' ;:: e 

where , e , has been evaluated by 

fitting the data about u(t) to 

u ( t) = a l + a
2
Jt + . a

3 
t 

with the help of the comput e r . (This 

gives us the co- effecients of t ) . 

=> Error in IC" is 2 % 

• 
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Now therm a l conduc tivi t y i s g i ven by 

Sl -

wher e 

and Uo = 10 x Res istan~e of the 

THS at a give n temperature . 

Kn ow i ng the errors in « , hand Uo 
we get 

Error in S"l is 0.6 % 

To sum up the error in the esti mation of the 

thermal properties i s not greater than 2 % . 
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