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Introduction

Introduction

The process of making precise decisions to choose the suitable factor among several

available factors is all about reducing the risk factors, ambiguities, and uncertainties.

Indeed, the most reasonable set of choices depends on the fact that how much the

option is better from the rest, based on some pre-agreed criteria. The decision-

making process is in�uenced by several other factors such as methods, algorithms,

and perceptions. It can happen that one particular method or algorithm is much

e¢ cient in decision making as compare to other methods. In general, this process

begins with the setting up goals and collecting the information about those goals

and its options. It also involves evaluation of the evidence in favor/against of every

option and making choice of options with the strongest evidence. Finally, executing

the decision.

In the area of communication sciences, various kinds of set theories have played

an important role. The security of private and con�dential information, especially

during the data transfer, is one of the major concerns for the communication

scientists. Moreover, the communication networks are vulnerable and exposed to

several threats and risks. This gave rise to the development of new e¢ cient

network security techniques, not only for highly sensitive data but also for the

common processes like transfer of images and passwords etc. Theoretical

foundations of securing the data from unauthorized access were laid by Shannon,

through his theorems and theoretical development of logic gates.

Most of the contemporary data encryption principles and concepts were

proposed by Claude Elwood Shannon (1916-2001). Shannon [94] theoretically

deduced the principles of confusion and di¤usion that should be both present in a

secure cryptosystem. The purpose of confusion is to make the relation between the
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Introduction

key and the ciphertext as complex as possible (obtained by nonlinear

transformations in the form of S-boxes). In the modern cryptosystems, one of the

successful tools for the securing of data is the Substitution-box (or S-box). The

S-box have been a subject of the substantial amount of research for the fact that it

introduces the randomness in the data with minimal conditions. The basic

intention is to produce the strongest possible S-boxes to control randomness in the

data. The ability of functions, to con�gures the S-boxes plays a pivotal role in

cryptographic systems. One of the key characteristics of the functions involved in

con�guration of S-boxes is that by introducing a small variation in parameters can

generate completely di¤erent sequences and hence create randomness and secure

cryptosystems. The modern research is focused on the investigation of such

properties of S-box which can create the cryptographically strong ciphers. Block

cipher systems depend only on the kind of S-boxes which are �xed and have no

relation with a cipher key. Therefore, the only changeable parameter is the cipher

key. In contrast to confusion and di¤usion spreads the in�uence of a single

plaintext bit over many ciphertext bits (obtained by linear transformations). The

Gray Level Co-ocurrence Matrix (GLCM) is performed on AES [31], APA [29],

Gray [101], Lui J [61], residue prime [1], S8-AES [47], SKIPJACK [108], and Xyi

[95] S-boxes.

The view of the soft sets enables the representation of information under the

speci�c set of parameters. It involves other mathematical models and the soft set

theory which is de�ned to make precise decisions algorithms. The soft set theory is

used to present a study, in the context of decision-making for choosing the S-box.

The proposed techniques allow the parameters of each cipher for analyzing through

the soft sets theory. Di¤erent mappings are assign to each parameter. The given

techniques can provide a useful way which e¢ ciently help to judge the encryption
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Introduction

results of di¤erent S-boxes.

In order to attain a speci�c level of certainty and precision in the data, several

approaches have been adopted. The central reason for the problem of uncertainty

is the notion of classical logic. It was concluded that the fundamental cause of

uncertainty lies in the set theory based on classical logic. Russell�s paradox is one

of the examples that can describe the limitation of classical set theory. Molodtsov

[72] introduced a convenient and easily applicable concept of soft set theory for

modeling the uncertainties. There is no limited condition to the description of the

objects, so researchers can choose the form of parameters they needed, which

greatly simpli�es the decision-making process and make the process more e¢ cient

in the absence of partial information. The soft set theory is free from the

di¢ culties, whereas other existing methods which can be considered as

mathematical tools for dealing with uncertainties, such as, probability theory,

fuzzy set theory [Zadeh [105]], intuitionistic fuzzy set theory [Atanassov [8]], rough

set theory [Pawlak [77]], neutrosophic set theory [Smarandache [96]] etc. have

their own limitations. In general, these theories fail to recognize the formulation

stages of a decision and typically(particularly) can only be applied to problems

comprising two or more measurable alternatives. In response to such limitations,

numerous descriptive theories have been developed over the last two decades,

intended to describe how decisions are made. This work presents a framework that

classi�es descriptive theories using a theme of comparison of S-boxes, involving

analyzes and attributes. The substitution boxes (S-boxes) which provide the

cryptosystem with the confusion property described by Shannon [94], are the core

component of block cryptosystem and have been widely used in almost all

conventional block cryptographic systems. In soft set theory, the parameters are

chosen freely to simplify the decision-making process, which often makes the
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Introduction

process more e¢ cient. In order to determine the performance of S-box, several

di¤erent properties are listed in literature for example statistical and algebraic

properties. These properties are going to be taken as a parametric set of the soft

sets. Next, we will introduce the decision-making algorithm to evaluate the

performance of each S-box by taking the results of these properties collectively.

The results of the algorithm enable us to optimally grade the S-box.

In [66] and [67], Maji et al., showed the signi�cance of the soft set theory by

applying it in the decision making problem. They also introduced new functions on

soft sets. Chen in [25] established the notion of soft set parameterization reduction

which made the soft theory more applicable. In [53] Kong et al., introduced the

concept of normal parameter reduction of soft sets and its use to investigate the

problem of submost favorable option and added parameter set in soft sets. Zuo and

Xiao [107] discussed soft data analysis approach. While Neo [76], have developed

the evaluation technique by using an imprecise soft set. Ali et al., [5] discussed

new algebraic operations on soft sets. In [37] Feng et al. obtained some results

of soft set theory based on his newly de�ned algebraic operations and proved that

distributive law holds relating to new operations. Aktas and Ça¼gman [3] applied

notions of group theory on soft sets. The soft set theory has tremendous growth in

the algebraic structures. However, in [2] Acar et. al., introduced the basic idea of a

soft ring, which is, in fact, a parameterized family of subrings and ideals of a ring.

Atagun and Sezgin [6] introduced soft subring and soft ideal, soft sub�eld over a

�eld and soft sub-module over a left R-module. Celik et al., [24] a new concept of

soft rings, soft ideals, and gave new operations on soft set theory. The notion of

soft modules and its properties are de�ned in [99]. In [82], Rehman et al., came up

with the some decision-making methods of choosing the best S-box using the fuzzy
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parameterized soft set (FPS set).

The notion of the fuzzy set was introduced by Zadeh [105] in 1965. This notion

of fuzzy set attracted a number of research workers for applications in di¤erent

branches of science and technology. It has been successfully applied and new notions

have been introduced. Roy and Maji [85], also gave the particular application of

fuzzy soft set in decision making. Further Kong et al., [54] and Feng et al., [36]

improved the decision-making methods in fuzzy set theory and gave new algorithms.

The [106], Zadeh introduced and used interval-valued fuzzy set. By combining the

interval-valued fuzzy set and soft set, Yang et al., [104], proposed the interval-valued

fuzzy soft set and then analyzed a decision-making problem in the interval-valued

fuzzy soft set. The interval-valued fuzzy set contains lower and upper degree of

membership of an element. The interval-valued fuzzy soft set assigns each parameter

an interval to solve decision-making problem. Based on interval-valued fuzzy soft

set, a �exible scheme for optimal selection of S-box, in which the applied decision

criteria are judged equally by proposed scheme.

Atanassov [8], introduced the concept of intuitionistic fuzzy soft set theory to

provide a power and successful approach to tackling the uncertainty. The concept

of intuitionistic fuzzy soft set was introduced by Maji et al., [64]. In continuation

to this, Caģman and Karatas [23] introduced decision-making methods by using

intuitionistic fuzzy soft set. The intuitionistic fuzzy soft set decision making has

received paramount importance in recent time. Therefore, it is meaningful to apply

the approach of intuitionistic fuzzy soft set decision making for investigating the

quality of di¤erent image encryption scheme. The membership and non-membership

functions are de�ned by taking entropy, energy, correlation, homogeneity, contrast.

The words "neutrosophy" and "neutrosophic" were introduced by

Smarandache in 1998. The word, "neutrosophy" (noun) is taken from French word
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neutral and Latin word neuter, neutral, and Greek word Sophia, skill/wisdom

means knowledge of neutral thought. In [96], Smarandache introduced the notion

of neutrosophic set (NS). Later, Maji in [63] established the notion of neutrosophic

soft set (NSS) and de�ned certain operations on it. It is recent that, NSS has

drawn the attention of researchers due to its interesting interactions with a

spectrum of applied sciences. For instance, Broumi et al., [15], worked on algebraic

properties of interval-valued NSS. Mukherjee and Sarkar in [73] introduced

Similarity measures for NSS. The limitations of the intuitionistic fuzzy soft set are

that it contains the membership and non-membership values, whereas in NSS

along with membership and non-membership values, an intermediate value also

presented. The unpredictably in the data is arise from the use of the intermediate

function. So, to deal with the data where there is a possibility to work neutrally

the NSS is proposed. The decision-making method based on NSS has shown strong

encryption capabilities for evaluating the performance of S-boxes. In order to

evaluate the performance of the proposed S-box, a comparison is going to be done

by the applying the several statistical and algebraic analysis. The NSS is a useful

tool to help the decision makers express e¢ ciently the performance of S-boxes.

Chapterwise description

The thesis comprises of the eight chapters. Given below is a brief overview and

highlight of each chapter.

The �rst chapter provides the basic concept related to S-boxes, which is helpful

in the rest of the work. A brief review of the theoretical development of S-boxes and

the analysis methods are introduced to check the di¤erent attributes of the S-boxes.

The second chapter focuses on the soft set theory and its applications. Moreover,

the precise mathematical de�nitions of soft sets and its algebraic notions are de�ned.

Operations on soft sets are, either extended or restricted, depending on the choice

12
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of parameters and this property is unique for soft sets so far. No earlier vague

structure has addressed this problem of parameterization and, therefore, the soft

set theory is adequate in operational use with parameters. It is important that

reader must be familiar with the properties of these newly de�ned operations on

soft sets. Properties of operations de�ned on soft sets are discussed in detail, and

the examples are worked out. Further, we have given a brief review of soft set theory

in the decision-making of soft sets with fuzzy sets, intuitionistic fuzzy sets, interval

valued fuzzy sets and neutrosophic fuzzy soft sets.

In chapter (third), we adopt the method of the selection of secure S-box by

using interval-valued fuzzy soft set to the decision making. Each analysis parameter

is transformed into the interval value fuzzy set. By giving an application in decision

making which can re�ne our choice on the selection of most feasible S-box.

In chapter 4, the work done is taken [82] to a new level of classi�cation, by

analyzing the eight popular S-boxes on di¤erent images. The simulation results of

S-boxes on standard images of Airplane and Baboon of size 512 � 512 (pixels) are

employed. Furthermore, plugging in action our proposed intuitionistic fuzzy soft

(IFS)-set based algorithm, we sort out the optimal S-box, which robust with our

decision-making analysis. A novel approach is intended to classify S-boxes, by aid

of intuitionistic fuzzy soft (IFS) set theory. Finally, logical operation AND-product

have been applied to two di¤erent subsets of parameters to classify the strength of

S-boxes on the basis of corresponding computing scores.

Chapter 5, describes in detail the proposed neutrosophic soft set based method

for the decision making. The average deviation of membership, intermediate and

non-membership functions, for objects (parameters) under consideration,

presented. Later, comparison tables will be constructed by de�ned membership,

intermediate and non-membership functions of the parameters. Moreover,

13
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neutrosophic soft set will be formed by computing the weight functions, along

with that, the evaluation interval and evaluation score are de�ned. Finally, we will

practically demonstrate our proposed method, by applying it to the enciphered

image of Airplane and Baboon. Then we will sort out the suitable S-box for

mentioned images. The results of IFS and NSS-sets decision-making algorithms

has been compared.

In chapter 6, the algebraic and statistical analysis are used for the encrypted

image encryption of Lena. Though, in this study, using statistical analysis, an

improved NSS-decision making criterion for the selection of the most e¤ective S-

box from given set of S-boxes. Here, the NSS decision making is presented which

is re�ned than the method presented in the previous chapter. The �ndings of NSS-

decision making criterion are better than the output obtained in previous analysis.

The result infers that this decision-making method is more e¢ cient for sorting out

the optimal S-box.

In chapter 7, the algebraic notion of the soft ring has been used to construct

several algebraic notion which leads to constructing soft Galois ring. To ful�ll this

aim several notions like soft prime ideals, soft maximal ideals, soft primary ideals,

and soft radical ideals are introduced for a soft ring over a given unitary commutative

ring. Consequently, the primary decomposition of soft rings and soft modules is

established. In addition, the ascending and descending chain conditions on soft

ideals and soft sub-modules of soft rings and soft modules are introduced, however

enabling us to develop the notions of soft Noetherian rings and soft Noetherian

modules. Further, by constructing a soft Z2k�module over Galois ring GR (23; 8)

and the soft primary decomposition of soft Z2k�Galois submodules. Then we extend

this theory to the soft group to form soft subgroups and then S-boxes has been

constructed over elements of the soft subgroup. Finally in the last section, by

14
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employing the decision-making algorithm over a fuzzy bipolar soft set, we choose

the optimal S-box.
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Chapter 1

On Substitution Boxes

We devote this chapter to provide the general concepts and details of speci�c

algorithms related to Substitution box (in short, S-box). One of the fundamentally

important components of the modern cryptographic system is the S-box. Their

key task is to ensure the con�dentiality and protection of data over the networks.

More precisely, the S-box plays a central role in the construction of hash functions,

MACs, pseudorandom number generators and stream ciphers. Furthermore, they

are an essential ingredient of the message authentication techniques, data integrity

mechanisms, entity authentication protocols, digital signature schemes.

There are a number of varieties of block ciphers available for action, but no

block cipher is ideally suited for all applications, even if it o¤ers a high level of data
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Introduction

security. Why is that? The answer to this question lies in the inevitable trade-

o¤s required in practical applications. For instance the required processing speed

and memory limitations (like the size of the code and data size and available cache

memory) and limitations implementation platforms (for example, hardware and

software, chipcards). Moreover, the variable tolerance of applications to properties

of various modes of operation can lead to choice a particular S-box. Thus, it is

natural to consider a number of candidate block cipher in a situation and choose an

optimal one. It turns out that, DES, APA, and AES are the most secure of all and

do the job optimally in cryptosystems. The list of recently published block ciphers

includes Lui J., S8, Gray, Prime, Xyi and Skipjack S-boxes.

Let us set some terminology. We are going to call an original message as the

plaintext and the coded message as ciphertext [98]. The transformation process of

converting plaintext into the ciphertext is known as encryption or enciphering

process. The process of retrieving the original plaintext from ciphertext is called

decryption or deciphering process. The cryptography is the science of securing the

information through the encryption and decryption. In general, cryptography

comprises of two major types, know as secret key cryptography and public key

cryptography. In the secret key cryptography (or symmetric key cryptography)

both the sender and the receiver of information share a common secret code,

called the key, cipher and decipher the information. While the public key

cryptography, also called asymmetric key cryptography, depends on a pair of keys

for encryption and decryption of messages. With public key cryptography, keys

work in pairs of matched public and private keys.

By a cryptography technique, we mean a secure process of secret message transfer

over a communication line. It involves a sophisticated mathematical algorithm for

encryption and decryption of data. Since we live in the age of information and

17



1.1. Boolean Function Theory

we share and store some of the personal and secret information on computers and

transmit it over the Internet, so there is a huge need for cryptographic algorithms

to secure the storage and exchange process of information. One of the parts of our

information is mostly in the image form so it is important to protect the images

from unauthorized access. There are so many algorithms available to protect the

image from unauthorized access.

1.1 Boolean Function Theory

The study of Boolean algebra is a widespread and generalized area in itself. This

section presents a small literature survey of Boolean function theory. Particularly,

we have discussed some important cryptographic properties which are applicable to

this work.

1.1.1 Properties of Boolean Functions

The purpose of this section is to make some preliminary de�nitions on Boolean

functions. Let Zn2 be the vector space of dimension n over the two-element Galois

�eld Z2. Zn2 consist of 2n vectors written in a binary sequence of length n. The

vector space is equipped with the scalar product < :; : >: Zn2 � Zn2 ! Z2

< u; v >= �mj=1uj:vj; (1.1.1)

where the multiplication and addition � are over Z2. However, if additions are

performed in the real numbers, then it is clear from the context.

De�nition 1.1.1. A Boolean function of n variables is a function h :

Zn2 �! Zn2 (or simply a function on Zn2 ). The (0; 1)-sequence is de�ned by

(h(�0); h(�1); :::; h(�2n�1)); also called the truth table of h, where

18



1.1. Boolean Function Theory

�0 = (0; 0; :::; 0); �1 = (0; 0; :::; 1); :::; �2n�1 = (1; 1; :::; 1), ordered by lexicographical

order.

De�nition 1.1.2. A vector Boolean function is a function that maps a Boolean

vector to another Boolean vector:

� : Zn2 �! Zm2 : (1.1.2)

This vector Boolean function has n input bits and m output bits. A vector

Boolean function can be speci�ed by its de�nition table: an array containing the

output value for each of the 2n possible input values. Each bit of the output of a

vector Boolean function is itself a Boolean function of the input vector. These are

the coordinate Boolean functions of the vector Boolean function.

De�nition 1.1.3. A vector Boolean transformation is a vector Boolean function

with the identical number of input bits as output bits.

De�nition 1.1.4. A vector Boolean permutation is an invertible vector Boolean

transformation and maps all input values to di¤erent output values. There are

2m2
n
; n bit to m bit vector Boolean functions. A random n bit to m bit vector

Boolean function is a function selected at random from the set of 2m2
n
di¤erent

n bit to m bit vector Boolean functions, where each function has the same probability

of being chosen. A random vector Boolean function can be obtained by pulling its

de�nition table with 2n random m bit values.

De�nition 1.1.5. The logical negation or complement of a Boolean function g is

de�ned by g = g � 1:

De�nition 1.1.6. A linear Boolean function is denoted by

L�(x) = �1x1 � �2x2 � :::� �nxn; (1.1.3)
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1.1. Boolean Function Theory

where �ixi denotes the bitwise AND of the i�th bits of �, x and � denotes bitwise

XOR.

De�nition 1.1.7. The set of a¢ ne Boolean functions is the set of linear Boolean

functions and their complements

A�;c = L�(x)� c; (1.1.4)

where x 2 Zn2 . The sequence of an a¢ ne (or linear) function is called an a¢ ne (or

linear) sequence.

De�nition 1.1.8. The set of all single valued Boolean functions is denoted by

Gn = fg jg : Zn2 �! Z2g: (1.1.5)

The subset of all a¢ ne Boolean functions in the space Gn is denoted by

An = f� j� : is a¢ ne and � 2 Gng: (1.1.6)

We de�ne the subset of all linear Boolean functions in the space GF (2)n by

Ln = f�j� : is linear and � 2 Gng: (1.1.7)

Remark 1.1.9. The set of all a¢ ne functions consist of the linear functions and

their negations.

Remark 1.1.10. The cardinalities of the above sets are easily observed as

jGnj = 2n; jAnj = 2n+1; jLnj = 2n: (1.1.8)

De�nition 1.1.11. To each Boolean function g : Zn2 ! Z2;we associate its sign

function, or character form, denoted by bg : Zn2 ! R� � C�;and de�ned by

bg(x) = (�1)g(x): (1.1.9)

The (1;�1)�sequence is de�ned by ((�1)g(�0); (�1)g(�1); :::; (�1)g(�2n�1)), where

�j are de�ned in de�nition 1.
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1.2. Avalanche and Propagation Criterion

1.2 Avalanche and Propagation Criterion

An appropriate property of cryptography is avalanche e¤ect. An input bit is altered

than half the output bits changes. Feistel changes the idea of avalanche which is

based on the concept of Shannon�s di¤usion. Furthermore, SAC was introduced

by Webster and Tavares [103], in which SAC is de�ned as ; "If a function is to

satisfy the strict avalanche criterion, then each of its output bits should change

with a probability of one half whenever a single input bit x is complemented to x0".

The SAC is a useful property for Boolean functions in cryptographic applications.

This means that if a Boolean function is satisfying the SAC, a small change in the

input leads to a large change in the output (an avalanche e¤ect). This property is

essential in a cryptographic context due to the fact that we cannot infer its input

from its output. In addition to SAC we study the Propagation Criterion (PC for

short) which was introduced by Preneel et al., [79]. The mathematical expression

for avalanche and SAC is de�ned as follows:

De�nition 1.2.1. A function g : Zn2 �! Zm2 has the avalanche e¤ect, if an average

of 1=2 of the output bits change whenever a single input bit is complemented i.e.

1

2n

X
u2GF (2)n

wt(g(xi)� g(x)) = m

2
; for all i = 1; 2; :::; n: (1.2.1)

De�nition 1.2.2. A function g : Zn2 �! Zm2 of n input bits into m output bits

is said to be complete, if each output bit depends on each input bits, i.e. change

whenever a single input bit is complemented i.e.

8 i = 1; 2; :::; n; j = 1; 2; :::;m; 9 x 2 Zn2 with (g(xi))j 6= (g(x))j: (1.2.2)

If a cryptographic transformation is complete, then each ciphertext bit must

depend on all of the output bits. Thus, if it were possible to �nd the simplest
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Boolean expression for each ciphertext bit in terms of the plaintext bits, each of

those expressions would have to contain all of the plaintext bits if the function was

complete. Alternatively, if there is at least one pair of n-bit plaintext vectors X

and Xi that di¤er only in bit i, g(X) and g(Xi) di¤er at least in bit j for all

f(i; j)j1 � i; j � ng then the function g must be complete.

De�nition 1.2.3. A function g : Zn2 �! Zm2 satis�es the strict avalanche criterion,

if each output bit changes with a probability 1=2 whenever a single input bit is

complemented i.e.

8 i = 1; 2; :::; n; j = 1; 2; :::;m; Prob(g(xi))j 6= Prob(g(x))j =
1

2
: (1.2.3)

In the process of building these S-boxes, it was discovered that if an S-box is

complete, or even perfect, its inverse function may not be complete. This could

become important if these inverse functions are used in the decryption process,

for it would be desirable for any changes in the ciphertext to a¤ect all bits in the

plaintext in a random fashion, especially if there is not much redundancy in the

original plaintext. Complete cryptographic transformations with inverses which are

complete are described as being two-way complete, and if the inverse is not complete

the transformation is said to be only one-way complete.

De�nition 1.2.4. The dependence matrix of a function g : Zn2 �! Zm2 is an

n �m matrix A whose (i; j)th element aij denotes the number of inputs for which

complementing the ith input bit results in a change of the jth output bit,

aij = #fx 2 Zn2 j wt((g(xi))j � (g(x))jg; for i = 1; 2; :::; n; and j = 1; 2; :::;m:

(1.2.4)

De�nition 1.2.5. The distance matrix of a function g : Zn2 �! Zm2 is an

n � (m + 1) matrix B whose (i; j)th element bij denotes the number of inputs for
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which complementing ith input bit results in a change of the jth output bit, i.e.

bij = #fx 2 Zn2 jg(g(xi)� g(x)) = jg; for i = 1; 2; :::; n; and j = 1; 2; :::;m:

(1.2.5)

De�nition 1.2.6. For g : Zn2 �! Z2 and a 2 Zn2 , a 6= 0; we de�ned the function by

ga(x) = g(x)� g(x� a); (1.2.6)

where ga is called the directional derivative of g in the direction of a:

Now we are able to express the SAC in connection with the directional

derivative.

Lemma 1.2.7. [26, Lemma 5.3]A Boolean function g : Zn2 �! Z2 satis�es SAC if

and only if the function g(x) � g(x � a) is balanced for every a 2 Zn2 with

a 6= 0; Hamming-weight 1.

1.3 S-Box Theory

In this section we now turn our discussions to the area of substitution boxes (S-

boxes). The basic de�nitions of S-box theory are provided to support the research

work performed in this thesis. Also in this section, a review of relevant cryptographic

properties as applied to S-boxes, is provided.

1.3.1 S-Box De�nitions and Types

A natural progression from the theory of single output Boolean functions is the

extension of that theory to multiple output Boolean functions, collectively referred

to as an S-box. The relationship between the input and output bits in terms of

dimension and uniqueness gives rise to various types of S-boxes. We list below
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several necessary S-box de�nitions, together with a brief description of some S-box

types of interest to this research.

An n�m substitution box (S-box) is a mapping from n input bits to m output

bits, S : Zn2 ! Zm2 . The output vector S(x) = (s1; s2; :::; sm) can be decomposed

into m component functions Si : Zn2 ! Z2; i = 1; 2; :::;m: There are 2n inputs and

2m possible outputs for an n �m S-box. Often considered as a look-up table, an

n � m S-box, S; is normally symbolized as a matrix of size 2n � m; indexed as

S[i] (0 � i � 2n�1) each an m-bit entry. There are, generally speaking, three types

of S-boxes: Straight, compressed and expansion S-boxes.

A straight n �m S-box with n = m (takes in a given number of bits and puts

out the same number of bits) may either contain distinct entries where each input

is mapped to a distinct output or repeat S-box entries where multiple inputs may

be mapped to the same output and all possible outputs are not represented in

the S-box. An n � m S-box which is both injective and surjective is known as a

bijective S-box. That is, each input maps to a distinct output entry and all possible

outputs are present in the S-box. Bijective S-boxes may only exist when n = m and

are also called reversible since there must also exist a mapping from each distinct

output entry to its corresponding input. This is the design approached used with

the Rijndael cipher.

A compression n � m S-box n > m with puts out fewer bits than it takes in.

A good example of this is the S-box used in DES. In the case of DES, each S-box

takes in 6 bits but only outputs 4 bits. A expansion n�m S-box with n < m puts

out more bits than it takes in. A regular n�m S-box is one which has each of its

possible 2m output appearing an equal number of times in the S-box. Thus, each of

the possible output entries appears a total number of 2n�m times in the S-box. All

single output Boolean functions comprising a regular S-box are balanced, as are all
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linear combinations of these functions. Regular n�m S-boxes are balanced S-boxes

and may only exist when n � m. An n�m S-box ( n � 2m and n is even) is said

to be bent if every linear combination of its component Boolean functions is a bent

function.

There are issues associated with both compression and expansion S-boxes. The

�rst issue is reversibility, or decryption. Since either type of S-box alters the total

number of bits, reversing the process is di¢ cult. The second issue is a loss of

information, particularly with compression S-boxes. In the case of DES, prior to

the S-box, certain bits are replicated. Thus what is lost in the compression step are

duplicate bits and no information is lost. In general working with either compression

or expansion S-boxes will introduce signi�cant complexities in your S-box design.

Therefore straight S-boxes are far more common.

1.3.2 Cryptographic Properties of S-Boxes

While many of the Boolean function properties discussed in previous sections have

conceptual equivalences when applied to S-boxes, there are fundamental

di¤erences in the manner by which these properties are derived. As an S-box is

comprised of a number of component Boolean functions, it is important to observe

that when considering the cryptographic properties of an S-box, it is not su¢ cient

to consider the cryptographic properties of the component Boolean functions

individually. Rather, it is also necessary to consider the cryptographic properties

of all the linear combinations of the component functions. This is illustrated in

the following selection of relevant S-box properties.

An n �m S-box which is balanced is one whose component Boolean functions

and their linear combinations are all balanced. Because of this balance, there does

not exist an exploitable bias in that the equally likely number of output bits over
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all output vector combinations ensures that an attacker is unable to trivially

approximate the functions or the output.

The well-known concept of confusion due to Shannon [94] is described as a

method for ensuring that in a cipher system a complex relationship exists between

the ciphertext and the key material. This notion has been extrapolated to mean

that a signi�cant reliance on some form of substitution is required as a source of

this confusion. The confusion in a cipher system is achieved through the use of

nonlinear components. As expected, substitution boxes tend to provide the main

source of nonlinearity to cryptographic cipher systems.

1.4 Criteria for evaluating block ciphers and

modes of operation

The problem of security of block cipher has remained (and still is) a challenging

problem for the experts for a long time. Our proposed design criteria are going

to be used to estimate the security level and performance of block cipher. For

the e¢ cient and e¤ective results, we are going to choose the size of the key in an

appropriate way. The upper bound for the security depends on the entropy of the

key space. Every medium of propagation of message leads to choosing a speci�c

degree of the complexity of the cryptographic mapping. Another important factor

that can impact the complexity of algorithm and security provided by it is the size of

a block cipher. Moreover, the more algorithm becomes complex the more it a¤ects

the implementation costs both in terms of development and �xed resources, as well

as real-time performance for �xed resources. We generally require preserving the

size of plaintext data. For instance, the Homophonic substitution and randomized

encryption techniques result in data expansion. If the decrypted ciphertext involves
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some bit errors then one can expect the propagation of errors to subsequent plaintext

blocks. Di¤erent error characteristics are acceptable in various applications. Block

size (above) typically a¤ects error propagation.

Let us discuss some of the standard S-boxes which we commonly encounter and

compare the result of these S-boxes with the new one.

1.4.1 Advanced Encryption Standard (AES) S-box

The Advanced Encryption Standard (AES) was published by the National Institute

of Standards and Technology (NIST) in 2001. AES is a symmetric block cipher

that was introduced to replace the DES as the newly approved standard for a huge

spectrum of applications. Unlike the public-key algorithms like RSA, the structure

of AES and most symmetric ciphers are quite complex and cannot be explained as

easily as many other cryptographic algorithms.

Let us describe the some of the important points regarding the structure of

AES. The AES technique processes the entire data block by treating it as a single

matrix during each round using substitutions and permutation. The whole process

comprises of the four phases involving one of permutation and three substitution

phases described blow.

� Substitute bytes: This phase employs an S-box to perform a byte-by-byte

substitution of the block.

� ShiftRows: A phase of dealing simple permutation.

� MixColumns: An arithmetic based substitution.

� AddRoundKey: A simple bit-wise XOR of the current block with a portion of

the expanded key.

The structure of process is straight forward. In the both cases of encryption

and decryption, the ciphering process kicks o¤ with an AddRoundKey phase. In
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the next 9 rounds in which each round involves all above four phases. The next

10th round involves three phases. It is worth noticing that AddRoundKey stage

makes use of the key. For this reason, the cipher begins and ends with an

AddRoundKey stage. The remaining three stages combined are the source of

confusion, di¤usion, and nonlinearity, but since these phases do not involve the

key so hence provide no security. Moreover, for these phases (i.e. Substitute Byte,

ShiftRows, and MixColumns stages), an inverse function is used in the decryption

algorithm. In case of the AddRoundKey stage, the inverse function is constructed

by XORing the same round key to the block and using the identity

A � B � B = A. Like the most of the block ciphers, the decryption technique

essentially uses reverse order of the key expansion. Moreover, decryption and

encryption techniques have signi�cant di¤erences due to the structure of AES.

Once we made sure that all four phases are reversible then it is not di¢ cult to

establish that decryption successfully recovers the encrypted plaintext.

The construction of 8-bit bytes as elements in GF (28), AES S-box is combined

of a power of a function k (x) and a¢ ne transformation l (x) ; where k (x) = x�1i for

x0is 6= 0 and l (x) = xi + c where the x0is are coe¢ cient of x. From now onwards,

AES S-box can be denoted by S (x) = l � k.

Several experts of crypto-analysis have studied several important structural

characteristics of AES. Some of the well-known are given as follows;

1.4.2 A¢ ne Power A¢ ne (APA) S-box

In order to remove the uncertainties and vulnerabilities in the simple algebraic

representation of AES S-box, A¢ ne-Power-A¢ ne (APA) S-box was introduced (cf.

[29]) in the following manner,
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S(x) = A � P � A;

where A denotes the a¢ ne surjectivity and P denotes the power permutation with

�good� cryptographic characteristics in GF (28). Since AES S-box are de�ned in

following way,

S(x) = A � P:

One can observe that APA S-box o¤er a mature algebraic complexity, moreover

other cryptographic characteristics are stationary i.e. invariable. After knowing the

reason behind the simplicity of algebraic expressions of AES-like S-boxes, we can

infer that their algebraic expressions in GF (2n) can involve at most n+1 objects. It

has been show in literature that the algebraic complexity of AES S-box is boosted

from 9 to 253 and that of inverse S-box remains 225, moreover, several other good

cryptographic characteristics of AES S-box are inherited and preserved into APA

S-box.

1.4.3 S8-AES S-box

The group of symmetries S8 plays central role in construction of S8-AES (cf. [47]).

The bytes are independently processed, and the transformation to the new S-box

also exhibits nonlinear properties. The process of transformation leads to new 40320

S-boxes with di¤erent properties.

Mathematical transformation process can be given as,

f : S8 � AES-S-box �! S8-AES S-box

Based on above description it is clear that there are precisely n40320 key options for

the exchange of secret messages via an insecure line of communication. The sender
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of the option message can variate the keys with every message of length 16. In order

to hack the message from outside communication system, the hacker has to:

Either check all n40320 keys, for instance, in the case of n = 2 then we get a huge

number 240320 of secret keys this means even if the millions of calculations are made

per second the hacker needs thousands of years to decrypt the message or hacker

has to face the same complexity as AES.

1.4.4 XYi S-box

We refer to [95] for the details. XYi cipher with block size 8 bits o¤ers the substantial

resistance to di¤erential attack. It works through a transition probability matrix

which is computed by exhaustive search and hence the ith power i.e. i-transition

probability matrix. Following are the key observations:

1: The lower bound on the computational complexity of di¤erential attack to

the 5-round mini cipher is

Comp(5) � 2

0:0067� 1=255 > 2� 256

The above inequality says that the computational complexity of di¤erential attack

to the 5-round mini cipher has been greater than computational completely

determining encryption function.

2: The minimum and maximum in the i-transition probability matrix of the

mini cipher are almost agreed after 8 turns. This re�ects that the probability

distribution of i-round di¤erentials converges to uniform distribution after su¢ cient

round iterations.

The procedure of creating an 8�8 S-box against potential attacks, is illustrated

as follows:

1: Randomly generating a series of 2-bit nonnegative integers as the sub-keys

used in the �mini version�of the proposed cipher.
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2: Orderly encrypting 0; 1; 2; � � � ; 255 with enough round iterations of the mini

cipher and those sub-keys randomly generated above.

3: Pair-wise arranging the plaintexts and their resulting Ciphertexts to form an

S-box from 8-bits to 8-bits.

1.4.5 Gray S-box

We refer to [101] for the detailed treatment of Gray S-box. We are going to the

discuss some of the details of the construction of Gray S-box through binary Gray

code transformation.

Gray S-box corresponds to a polynomial with all 255 non-zero terms in

comparison with a 9-term polynomial of original AES S-box, and hence enhances

the security for S-box against algebraic attacks and interpolation attacks.

Moreover, since Gray S-box reapplies AES S-box in totality, therefore all

advantages and e¢ ciency of any existing optimized implementation of AES S-box

are also inherited. Further, Gray S-box establishes important cryptographic

properties of AES S-box, including strict avalanche criterion, nonlinearity, and

di¤erential uniformity. Consider the following de�nition of Gray

augmentation,[101, De�nition 1] Gray augmentation: using Gray code encoding

partially/entirely in a cryptographic component as an augmentation to improve its

algebraic complexity.

With regards to AES S-box, we may create the modi�ed S-box by replacing x by

a multi-termed polynomial of x as the input of the original S-box in AES. We de�ne

Gray S-box, denoted by , be the combination of the binary Gray code conversion

G(x) and the original AES S-box.

 = H � L � F �G
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The algebraic expression of Gray S-box is as follows:

 (x) =
P

0�i;j<16
aijx

16i+j

The algebraic expression has the degree of 254 (the maximum value) and the

entire 255 terms are non-zero (in comparison with only 9 terms in the algebraic

expression of the original S-box in AES). This improves the resistance of S-box

against interpolation attacks [41] and algebraic attacks [28].

The inverted Gray S-box corresponds to polynomial �1 (x) with the degree of

254 and 254 non-zero terms:

�1 (x) =
P

0�i;j<16
bijx

16i+j

As all but one term of the algebraic expression of the inverted Gray S-box are

non-zero, it is unlikely to exploit the inverse Gray S-box in algebraic attacks or

interpolation attacks.

1.4.6 Residue Prime S-box

The Residue prime algorithm was proposed by Cui and Cao [29]. The authors o¤er

an improved S-box for AES in which the proposed a¢ ne mapping in the original AES

S-box was augmented as a pre-processing step of the original S-box. By following

the proposed algorithm, the implementation of the original S-box in AES can be

reapplied entirely but the result S-box corresponds to the polynomial with only 253

terms [101].

Indeed, the residue of prime numbers can become a source of complexity to the

implementation of S-box. The complete S-Box comprises of the 256 entries which

are the residues of the prime number 257. The choice of 257 makes sense because

each of residues from 1 to 255 have unique inverses. Furthermore, these residues
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can be used for all block sizes of the AES; that is, they can be used for the 256, 192

and 128 bits blocks.

To address the vulnerability concern of storing the S-Box table, one needs to store

only some of the entries and �gure out a way to determine the rest. Fortunately,

a 50% reduction of table 1 is achievable due to the fact that all the double digits

hexadecimal numbers and their inverses coexist on the same table. Therefore, the

best possible reduction is to store only half of the numbers and their inverses and

omit the other half. Obviously, such reduction will result in a miss ratio that equals

the reduction percentage.

1.4.7 Lui J. S-box

For the detailed description and construction of Lui J. we refer to [61]. Liu J.

algorithm boosts the complexity of AES S-box from 9 to 255 by changing the

order of linear and inverse transformations. In order to overcome the sensitivities

of simple algebraic expression, improvement of the AES S-box is required. The

improved AES-box does not require the change in the previous irreducible

polynomial, a¢ ne transformation matrix, and a¢ ne constant. The boost in the

complexity of algebraic expression o¤ers the capability to resist against di¤erential

cryptanalytic invariability. The following is outline of improved scheme:

1. z = f (y) ;

2. u = z�1;

3. y = u� 0x63;

where x denotes some indeterminate.
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1.4.8 SkipJack S-box

The block cipher Skipjack was introduced and studied by the U.S. National

Security Agency (NSA) for securing the highly sensitive data. This algorithm

provides an utmost security to a government intelligence agency data. Skipjack

was �rst initiated as the encryption algorithm in a US government-sponsored

scheme of key escrow. It was used in fastened phones. Skipjack deals with an

80-bit key, known as Crypto Variable (CV), to encrypt or decrypt 64-bit data

blocks. It is a 32 revolutions based Feistel network. This algorithm is

characterized with numerous operations, but most notable is its S-box.

1.5 Analyses Techniques

Most of the linear systems are easily breakable, therefore, the nonlinearity of the

system is of fundamental importance. Nonlinearity describes the confusion created

by Boolean function in the cryptographic transformation. Whereas, the amount

of redundant information from the plaintexts and their corresponding ciphertexts

is measured by the correlation coe¢ cient. The correlation coe¢ cient is a useful

measure to judge encryption quality of any cryptosystem. Contrast measures the

consistency between the cipher text and plain text. Entropy analysis measures the

degree of indeterminateness in the system. It is a method for measuring uncertainty

in a series of numbers or bytes [97]. In image encryption scheme, an energy of

encrypted image is an acute and limited resource. The concept of energy detects

the disorder in image encryption. Homogeneity measures the smoothness of an

encrypted image and original image. Another important property for a secure block

cipher is Strict Avalanche Criterion (SAC). Bit Independence Criterion (BIC) is

most appropriate for cryptographic transformation. Mister and Adams [70] propose
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a number of criteria for S-box design. Among these are that the S-box should satisfy

both SAC and BIC. A block cipher satis�es the strict avalanche e¤ect if for a �xed

plaintext block a small change in the key causes a large change in the resulting

ciphertext block. Linear approximation Probability analysis (LP) is used to study

the probability of the attacker for obtaining the secret key by considering the parity

check matrix of plain text and cipher text.

One of the key objectives of the above-mentioned several cryptanalyses is to

study the quality of S-boxes for image encryption, secondly, these cryptanalyses

serve as parametric sets for an intuitionistic fuzzy soft sets. The majority of

contributions in this area mainly focus on measuring the suitability of S-box

through a speci�c parameter, one can rarely �nd a work in which all parameters

are considered at the same time to determine the quality of S-boxes for image

encryption.

1.5.1 Statistical Analyses

The following are mentioned statistical analyses.

Majority logic criterion (MLC)

The encrypted image produces randomness in the original image, and the sort of

randomness hkis used to analyze the strength of the S-box in image encryption

application. In [89], the MLC-de�ned a criterion based on di¤erent statistical

analyzes to examine the characteristics and properties of an S-box. The

correlation analysis, contrast analysis, entropy analysis, energy analysis,

homogeneity analysis and mean absolute deviation analysis are performed under

the umbrella of MLC. Probably, it will be a good idea to explore these mentioned

analyzes in detail.
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Contrast

Contrast analysis is used for showing the consistency of the encrypted image, it

enables the viewers to recognize the original image. Contrast is a used to measure

the local gray level di¤erence of a contiguous set of pixels in the GLCM. The

parameter can be characterized as a linear dependency of gray levels of

neighboring pixels. The neighboring pixels have high and low values of the

contrast. The high value of contrast is obtained when the encrypted image is

entirely vague. The contrast of an image is very low, then the encrypted image is

similar to the original image. The contrast value can be calculated as

C = �
i
�
j
(i� j)2p[i; j];

where i and j are the pixels in the image, and the element of gray-level

co-occurrences matrices is represented by p(i; j). The range of Contrast is

[0; (size(GLCM; 1)� 1)2];

where Contrast is 0 for a constant image. Contrast weight values by the inverse of

Homogeneity weight, which means lower the homogeneity, higher the Contrast.

Correlation

The correlation coe¢ cient re�ects the quality of encrypted cipher text and plain

text. It is used to measure the amount of ambiguity between two adjacent pixels

of the cipher text. Correlation is tested in horizontal, vertical and diagonal

directions of the adjacent pixels in the image. More than one thousand groups of

adjacent pixels are chosen to measure the pixel correlation in the horizontal,

vertical and diagonal directions. High randomness in the encrypted image is

shown when correlation coe¢ cient had the value approximately near to or equal
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zero and the encrypted image is entirely di¤erent from the plain image. In

addition to the partial regions of analysis, the complete image is also included in

the image processing. The image analysis is based on the measurement of the

correlation of a pixel to its neighboring pixel. The correlation representation is,

K = �
i;j

(i� �i)(j � �j)p(i; j)
�i�j

:

If encrypted image is completely identical to the original image, then correlation

coe¢ cient is 1, and encryption process is false. Also, if the correlation coe¢ cient is

�1, then it is negative of the original image

Energy

Energy analysis measures the uniformity, it indicates the ambiguity of the encrypted

image. The gray-level co-occurrence matrix (GLCM), is used to detect how much

the cipher text is homogenous. The GLCM distribute the values uniformly all

over the grids. The energy analysis is good when GLCM has few entries of large

magnitude. The sum of squared elements in the GLCM is used for energy. The

formula of this analysis is given as

E = �
i
�
j
p2[i; j]:

The range of the energy is [0; 1]. The higher value represent, , the greater the

similarity of cipher text and plain text. The image of encryption is same as the

constant image if the value is 1. Energy is actually local homogeneity and Entropy

is the opposite of Energy [83].

Homogeneity

Homogeneity analysis is used to measure the distribution of elements in the GLCM

to its diagonal. It�s also called gray tone spatial dependency matrix. It combines
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the pixel gray levels in the set-theoretic form, greater the homogenous area darker

the image. Hence, it provides how the encrypted image is speared out in the whole

region. It can be calculated as

H = �
i
�
j

p(i; j)

1 + ji� jj :

The homogeneity varies in interval [0; 1]. The greater change in the gray tone, shows

the lower homogeneity coe¢ cient and hence the higher contrast. Similarly, a small

variation in an encrypted refers to high homogeneity. While the low homogeneity

coe¢ cient gives high randomness in an image and their spatial arrangements.

Entropy

Entropy analysis is used to measure the amount of di¢ culty or the probability of

independently calculating each bit of the encrypted image. The nonlinear

component of the crypto-system. produced the uncertainty in the data. It gives

the amount of uncertainty in the cipher text. Also, it is the main feature of the

randomness in the system and de�ned as follows,

H(x) = �
nX
i=0

p (xi) logb p (xi) ;

where P (xi) are the histogram counts. In the case when each symbol has equal

probability, then the entropy H(x) = 8. If the image to be processed is uniform

then the entropy will be large and hence much of GLCM elements will have very

small values. The entropy of encrypted image obtained is 8 bits, which corresponds

to an ideal encryption scheme. If the entropy is less than 8, then is a lack of

randomness in the encrypted image. Complex image encryption tends to have high

entropy. However, Entropy is strongly inversely correlated to energy.
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MAD analysis

In order to judge the performance of encrypted image and the original image, the

parameter used is mean of absolute deviation (MAD). MAD criterion is more

strong to analyze than any other existing analysis. The higher value of MAD for

encrypted image shows more complex and secure encryption scheme. The

mathematical computations can be done through below-given formula,

MAD =
1

L� L
LP
j=1

LP
i=1

jaij � bijj

where aij represents the pixels of plain image, bij represents the pixels of the

corresponding encrypted image, and L represents the dimensions of the image.

1.5.2 Algebraic Analyses

Following is the brief explanation of these mentioned algebraic analyses. We now

de�ne the measure of nonlinearity for an n�m S-box.

Nonlinearity

The notion of nonlinearity was introduced by Meier and Sta¤elbach. The distance

between a reference function under evaluation and group of all possible a¢ ne

functions is nonlinearity. This method decides that the number of bits must be

changed to make the function adjacent to an a¢ ne function as much as possible.

By [28], a nonlinearity indicator of a function F : Zn2 ! Zm2 ; where Z2 = f0; 1g; is

an n � m S-box S; denoted by NL(F ): Let S = (s1; s2; :::; sm) where si

(i = 1; :::;m) are n-variable Boolean functions. Let hi be the set of linear

combinations of si (i = 1; :::;m) (which includes the functions si) and can be

de�ned as;

NL(F ) = min
h
fNSn;m(hj)g (j = 1; :::; 2m � 1):
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The resistance of an S-box against linear cryptanalyses is measured by its

nonlinearity [70]. In [39], the upper bound of nonlinearity for an S-box over

GF (2n), is UN = 2n � 2n=2�1. So theoretically, in AES the upper bound of S-box

based on GF (28) is 120. While, practically, AES S-box gets a �nest value equal to

112.

Bit Independence Criterion (BIC)

The Bit independence criterion (BIC) is introduced by Webster and Tavares [103] in

1985. BIC is used to numbered the degree of dependent change in a pair of output

bits when an input bit is inverted. Practically, in this criteria all avalanche variables

become independent pairs corresponding to a single plaintext bit. For measuring the

degree between the pair of output bits, the correlation coe¢ cient is used to calculate.

A function f : Zn2 �! f0; 1gn satis�es BIC if for all i; j; k 2 (1; 2; � � � ; n) where

j 6= k, inverting plaintext bit i gives cipher bits j and k to change independently.

The bit independence corresponding to the e¤ect of the ith input bit change on the

jth and kth bits of is Bei:

BIC(bj; bk) = max
1�i�n

jcorr(beij ; beik )j: (1.5.1)

The bit independent criterion (BIC) parameter for the S-box function f , is then

de�ned as follows:

BIC(h) = max
1�j;k�n
j 6=k

BIC(bj; bk); (1.5.2)

BIC varies in an interval [0; 1]. If the correlation coe¢ cient is zero, then the

output bits are independent to each other. For value equals 1, output bits are

identical to each other.
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Strict Avalanche Criterion (SAC)

Strict avalanche criterion (SAC) was introduced by Webster and Tavares [103],

later Feng and Wu [39] generalized this concept. The completeness and avalanche

properties are combined into strict avalanche criterion. It is an important property

to resist di¤erential crypa-analysis [11]. In SAC, a single input bit change, cause

the half change in the output bit. Also, it should be interpreted as if the probability

of change is di¤erent from half of the output, and then S-box doesn�t satisfy SAC.

The behavior of the output bits of the cipher with respect to the changes applied

to input bits, is analyzed by this criterion. Strict avalanche criterion (SAC) was

introduced by Feng and Wu [39]. By SAC, it is desirable that if a single input

bit change its value, half of the output bits must be changed. As the iteration

progresses, a single change in input bit causes an avalanche of changes in output

bits. The randomness shaped by cipher will be maximum if each of the output bit

changes with a probability of 0:5, when only a single bit is changed.

An (n;m) S-box F is said to satisfy the SAC, if

P
x2Zn2

F (x)� F (x� c(n)k ) =
�
2n�1; 2n�1; � � � ; 2n�1

�
;

for all k (1 � k � n). The c(n)k is the kth position of an n dimensional vector space

with Hamming weight 1.

Linear approximation probability (LP)

Linear approximation is a useful method in crypa-analysis, was introduced by

Matsui in 1993 as a theoretical attack on the Data Encryption Standard (DES)

[70]. It is also known as probabilistic linear relations. It works on the principle of

�nding �high probability occurrences of linear expressions involving plaintext bits,

ciphertext bits (actually we shall use bits from the 2nd last round output), and
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subkey bits�. The analysis is used to study the imbalance in an input bits, output

bits and secret key. It works with a single input bits. In this analysis the

probability of sum of output bits is equal to the half of input bits. The notions, �x

and �y are applied to the parity of the input and output bits, respectively. It can

de�ned as,

LP = max
�x;�y 6=0

����#fx 2 X : x � �x = S(x) � �yg
2n

� 1
2

���� ;
where the set X consists of all possible inputs and 2n is its cardinality. The

maximum linear approximation probability of vector Boolean function (S-boxes)

are de�ned as p = maximax�x;�y LP
Si(�y ! �x).

Di¤erential approximation probability (DP)

Di¤erential approximation was �rst presented by Biham and Shamir in 1990 as an

attack on DES [11]. The analysis is based on exploring the di¤erence between the

plain text and cipher text. This analysis works with the block of bits, it shows the

high probability of certain occurrences of plain text and cipher text di¤erences. It

exhibits the uniformity, a unique input bit must mapped to unique output bit and it

gives the information about the secret key. According to [11], di¤erential uniformity

is measured as;

DP (�x! �y) =

�
#fx 2 X : S(x)� S(x��x) = �yg

2n

�
;

where �x and �y are input and output di¤erentials respectively. The

maximum di¤erential approximation probability of vector Boolean function

(S-boxes) are de�ned as: q = maximax�x;�y DP
Si(�x ! �y):
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Chapter 2

Soft sets and its applications

The main objective of the chapter is to introduce the theory of soft set, soft group,

soft rings and soft modules. Several operations on soft sets and corresponding

algebraic structures have been de�ned and their properties are investigated. In the

vast world of data one of the biggest problem that everyone has to deal with the

imprecision of data, therefore, there is always a natural need of methods to tackle

the problem of inadequacy.

Let me give a brief overview of existing literature on soft sets. The Molodstov

in [72] came up with the notion of soft sets as a solution of uncertainty,

imprecision or inadequacy of data of various application. Moreover, Maji et al.,

[66, 67] came up with the operations on soft sets and investigated some basic
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properties. The operations (like intersection and inclusion) on soft sets were also

de�ned independently by Pie and Miao in [78], and proposed some of the

applications of soft sets into information systems. Ali et al., [5] spotted and

corrected some mistakes in the de�nition of operations proposed by Maji in [66],

moreover he de�ned some new operations on soft sets including extended and

restricted operations of union, intersection and product. The soft set theory has

been extended to its group theoretic version by Aktaş and Çaģman in [3], who

came up with some basic results about soft groups. The notion of normalistic soft

group and properties has been introduced by Sezgin and Atagun in [88]. In Acar

et al., [2], introduced the basic notions of soft rings, which are actually a

parameterized family of subrings of a ring, over a ring. Atagun and Sezgin [6],

contributed by coming up with the notion of the soft subring, soft ideal, soft

sub�eld over a �eld and soft sub-module over a left R-module. Sun et al., [99]

investigated some algebraic properties of soft modules.

This chapter consists of �ve sections. In the �rst section, the fundamental

properties of soft set theory and some elementary properties are discussed that are

familiar to the reader. In the second section, the basic properties of the soft group

are presented. In the third section, the concept of soft rings is provided. Also,

some structural properties are presented. In fourth section soft module structure

is de�ned and its properties are discussed. Lastly,

2.1 Soft Set Theory

Throughout this section, U is the universal set and E is the set of parameters.

Molodtsov [72], gives the de�nition of soft set in the following manner;

De�nition 2.1.1. [72, De�nition 2.1] Let U be an initial universe and E be a set

44



2.1. Soft Set Theory

of parameters. Let P (U) denotes the power set of U and A be a non-empty subset

of E. A pair (F;A) is called a soft set over U , where F is a mapping given by

F : A! P (U).

In other words, a soft set over U is a parametrized family of subsets of the

universe U . For " 2 A, F (") may be considered as the set of "-approximate elements

of the soft set (F;A). Clearly a soft set is not a set.

De�nition 2.1.2. [67, De�nition 2.3] For two soft sets (F;A) and (G;B) over a

common universe U , we say that (F;A) is a soft subset of (G;B) (i.e.,

(F;A)e�(G;B)) if
(i) A � B and

(ii) for all e 2 A, F (e) and G(e) are identical approximations.

(F;A) is said to be a soft super set of (G;B), if (G;B) is a soft subset of (F;A)

and it is denoted by (F;A)e�(G;B).
De�nition 2.1.3. [67, De�nition 2.4] Two soft sets (F;A) and (G;B) over a

common universe U are said to be soft equal if (F;A) is a soft subset of (G;B)

and (G;B) is a soft subset of (F;A).

De�nition 2.1.4. [67, De�nition 2.5] Let E = fe1; e2; ... ; eng be a set of

parameters. The NOT set of E denoted by eE is de�ned by eE = fee1;e e2;

...;e eng; where eei = not ei for all i.

Proposition 2.1.5. [67, Prposition 2.1]

(i) e(eA) = A;

(ii) e(A [B) =eA[eB;

(iii) e(A \B) =eA\eB.
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De�nition 2.1.6. [67, De�nition 2.7] A soft set (F;A) over U is said to be a

NULL soft set denoted by � if for all " 2 A, F (") = ; (null set).

De�nition 2.1.7. [67, De�nition 2.8] A soft set (F;A) over U is said to be absolute

soft set denoted by eA if for all " 2 A, F (") = U . Clearly eAc = ; and ;c = eA.
De�nition 2.1.8. [67, De�nition 2.9] If (F;A) and (G;B) are two soft sets, then

" (F;A) AND (G;B)" denoted by (F;A) ^ (G;B) is de�ned by

(F;A) ^ (G;B) = (H;A � B), where H((�; �)) = F (�) \ G(�), for all

(�; �) 2 A�B.

De�nition 2.1.9. [67, De�nition 2.10] If (F;A) and (G;B) are two soft sets then

" (F;A) OR (G;B)" denoted by (F;A) _ (G;B) is de�ned by

(F;A) _ (G;B) = (O;A � B) where, O((�; �)) = F (�) [ G(�) for all

(�; �) 2 A�B.

De�nition 2.1.10. [67, De�nition 2.11] Intersection of two soft sets (F;A) and

(G;B) over the common universe U is the soft set (H;C), where C = A \ B and

for all e 2 C, H (e) = F (e) or G (e). We write (F;A)~\(G;B) = (H;C).

De�nition 2.1.11. [67, De�nition 2.11] Union of two soft sets (F;A) and (G;B)

over the common universe U is the soft set (H;C), where C = A [ B and for all

e 2 C,

H(e) =

8>>><>>>:
F (e) if e 2 A�B

G(e) if e 2 B � A

F (e) [G(e) if e 2 A \B

We write (F;A)~[(G;B) = (H;C).

De�nition 2.1.12. [35, De�nition 2.3] Bi-intersection of two soft sets (F;A) and

(G;B) over the common universe U is the soft set (H;C), where C = A \ B,
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denoted by (F;A)eu(G;B), is de�ned as (F;A)eu(G;B) = (H;C), where C = A\B,
and H(e) = F (e) \G(e) for all e 2 C.

De�nition 2.1.13. [5, De�nition 3.2] Extended intersection of two soft sets (F;A)

and (G;B) over the common universe U is the soft set (H;C), where C = A [ B

and for all e 2 C.

H(e) =

8>>><>>>:
F (e) if e 2 A�B

G(e) if e 2 B � A

F (e) \G(e) if e 2 A \B

We write (F;A) \E (G;B) = (H;C).

De�nition 2.1.14. [5, De�nition 3.3] The restricted intersection (H;C) of two soft

sets (F;A) and (G;B) over a common universe U; such that A \ B 6= �, denoted

by (F;A) e (G;B), is de�ned as (F;A) e (G;B) = (H;C), where C = A \ B, and

H(e) = F (e) \G(e) for all e 2 C.

De�nition 2.1.15. [5, De�nition 3.3] The restricted di¤erence (H;C) of two soft

sets (F;A) and (G;B) over a common universe U; such that A \ B 6= �, denoted

by (F;A)�R(G;B), is de�ned as (F;A)�R(G;B) = (H;C), where C = A\B, and

H(e) = F (e)�G(e) for all e 2 C.

De�nition 2.1.16. [24, De�nition 3.26] The extended sum of two soft sets (F;A)

and (G;B) over a ring R is denoted by (F;A) �[ (G;B), is de�ned as

(F;A)�[ (G;B) = (H;C), where C = A [B and

H(e) =

8>>><>>>:
F (e) if e 2 A�B

G(e) if e 2 B � A

F (e) +G(e) if e 2 A \B

for all e 2 C.
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De�nition 2.1.17. [24, De�nition 3.27] The restricted sum of two soft sets (F;A)

and (G;B) over a ring R is denoted by (F;A) �\ (G;B), is de�ned as

(F;A) �\ (G;B) = (H;C), where C = A \ B and H(e) = F (e) + G(e) for all

e 2 C.

De�nition 2.1.18. [24, De�nition 3.28] The extended product of two soft sets

(F;A) and (G;B) over a ring R is denoted by (F;A) �[ (G;B), is de�ned as

(F;A)�[ (G;B) = (H;C), where C = A [B and

H(e) =

8>>><>>>:
F (e) if e 2 A�B

G(e) if e 2 B � A

F (e) �G(e) if e 2 A \B

for all e 2 C.

De�nition 2.1.19. [24, De�nition 3.29] The restricted product of two soft sets

(F;A) and (G;B) over a ring R is denoted by (F;A) �\ (G;B), is de�ned as

(F;A)�\ (G;B) = (H;C), where C = A\B and H(e) = F (e) �G(e) for all e 2 C.

2.2 Soft Groups

Aktaş and Ça¼gman [3], initiate the concept of a soft group. The structure of soft

subgroups, normal soft subgroups, and soft homomorphism are developed. Then

Aktaş and Özlü [4], de�ned cyclic soft groups and form a result similar to the

Lagrange theorem in group theory.

Throughout this section, G is a group and A is any non-empty set.

De�nition 2.2.1. [3, De�nition 13] Let (F;A) be a soft set over G. Then (F;A) is

said to be a soft group over G if and only if F (x) is a subgroup of G for all x 2 A.
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Theorem 2.2.2. [3, Theorem 15] Let (F;A) and (H;A) be two soft groups over G.

Then their intersection (F;A)~\(H;A) is a soft group over G.

Theorem 2.2.3. [3, Theorem 16] Let (F;A) and (H;A) be two soft groups over G.

If A \B = �, then their union (F;A)~[(H;A) is a soft group over G.

Theorem 2.2.4. [3, Theorem 17] Let (F;A) and (H;A) be two soft groups over G.

Then (F;A)�(H;A) is a soft group over G.

2.2.1 Soft subgroup

In classical algebra the notion of subgroup gain much importance. In this subsection

the notion of soft subgroup and their algebraic properties is mentioned as follows;

De�nition 2.2.5. [3, De�nition 20] Let (F;A) and (H;K) be two soft groups over

G. Then (H;K) is a soft subgroup of (F;A), written as (H;K) ~<(F;A); if K � A

and H(x) is subgroup of F (x) for all x 2 K.

Theorem 2.2.6. [3, Theorem 22] Let (F;A) be a soft group over G. If

f(Hi; Ki) : i 2 Ig is a non-empty of soft subgroups of (F;A) where I is an index

set. Then;

(i)\
i2I
(Hi; Ki) is a soft subgroup of (F;A).

(ii)�
i2I
(Hi; Ki) is a soft subgroup of (F;A).

De�nition 2.2.7. [3, De�nition 28] Let (F;A) and (H;K) be two soft groups over

G. Then (H;K) is a soft subgroup of (F;A), written as (H;K) ~<(F;A) if K � A

and H(x) is normal subgroup of F (x) for all x 2 K.

Theorem 2.2.8. [3, Theorem 29] Let (F;A) be a soft group over G. If

f(Hi; Ki) : i 2 Ig is a non-empty of the normal soft subgroups of (F;A) where I is

an index set. Then;
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(i)\
i2I
(Hi; Ki) is a normal soft subgroup of (F;A).

(ii)�
i2I
(Hi; Ki) is a normal soft subgroup of (F;A).

(iii)If Ki \ Kj = � for all i; j 2 I, then _
i2I
(Hi; Ki) is a normal soft subgroup of

(F;A).

2.2.2 Cyclic soft groups

De�nition 2.2.9. [4, De�nition 28] Let (F;A) be a soft group over G and X be an

element of P (G). The set f(a; hxi) : F (a) = hxi ; x 2 Xg is called a soft subset of

(F;A) generated by the set X and denoted by hXi. If (F;A) = hXi, then the soft

group (F;A) is called the cyclic soft group generated by X.

Theorem 2.2.10. [4, Theorem 30] Let (F;A) be a �nite group. If

(i) (F;A) is an in�nite cyclic soft group generated by X, then j(F;A)j = jXj.

(ii) (F;A) be a soft group on G. If the order of G is prime, then (F;A) is a

cyclic soft group.

(iii) A soft subgroup of a cyclic soft group is cyclic soft group.

2.3 Soft Rings

From now on, R denotes a unitary commutative ring and all soft sets are considered

over R.

De�nition 2.3.1. [2, De�nition 2.9] Let (F;A) be a soft set. The set

Supp(F;A) = fx 2 A : F (x) 6= �g is called the support of the soft set (F;A). A

soft set is said to be non-null if its support is not equal to the empty set.

De�nition 2.3.2. [2, De�nition 3.1] Let (F;A) be a non-null soft set over a ring

R. Then (F;A) is called a soft ring over R if F (x) is a subring of R for all x 2 A.
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Theorem 2.3.3. [2, Theorem 3.3] Let (F;A) and (G;B) be soft rings over R. Then

(i) (F;A)ê(G;B) is a soft ring over R if it is non-null.
(ii) The Bi-intersection (F;A)eu(G;B) is a soft ring over R if it is non-null.

De�nition 2.3.4. [2, De�nition 3.4] Let (F;A) and (G;B) be soft rings over R.

Then (G;B) is called a soft subring of (F;A) if

(i) B � A.

(ii) G(x) is a subring of F (x), for all x 2 Supp(G;B):

Theorem 2.3.5. [2, Theorem 3.6] Let (F;A) and (G;B) be soft rings over R.

(i) If G(x) � F (x); for all x 2 B � A, then (G;B) is a soft subring of (F;A):

(ii) (F;A)eu(G;B) is a soft subring of both (F;A) and (G;B) if it is non-null.
Theorem 2.3.6. [2, Theorem 3.8] Let (Fi; Ai)i2I be a non-empty family of soft

rings over R. Then

(i) êi2I(Fi; Ai) is a soft ring over R if it is non-null.
(ii) eui2I(Fi; Ai) is a soft ring over R if it is non-null.
(iii) e[i2I(Fi; Ai) is a soft ring over R if fAi : i 2 Ig are pairwise disjoint.

2.3.1 Soft ideal

In classical algebra, the notion of ideals is very important. For this reason, in [2,

De�nition 4.1] there is an introduction of soft ideals of a soft ring. Note that, if I

is an ideal of a ring R, we write I C R:

De�nition 2.3.7. [2, De�nition 4.1] Let (F;A) be a soft ring over R. A non-

null soft set (; I) over R is called soft ideal of (F;A), which will be denoted by

(; I) ~C(F;A), if it satis�es the following conditions:

(i) I � A.

(ii) (x) is an ideal of F (x) for all x 2 Supp(; I).
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Theorem 2.3.8. [2, Theorem 4.3] Let (1; I1) and (2; I2) be soft ideals of a soft

ring (F;A) over R. Then (1; I1)eu(2; I2) is a soft ideal of (F;A) if it is non-null.
Theorem 2.3.9. [2, Theorem 4.4] Let (1; I1) and (2; I2) be soft ideals of soft

rings (F;A) and (G;B) over R; respectively. Then (1; I1)eu(2; I2) is a soft ideal
of (F;A)eu(G;B) if it is non-null.
Theorem 2.3.10. [2, Theorem 4.6] Let (F;A) be a soft ring over R and (1; I1)

and (2; I2) are soft ideals of (F;A) over R. If I1 and I2 are disjoint, then

(1; I1)et(2; I2) is a soft ideal of (F;A):
Theorem 2.3.11. [2, Theorem 4.7] Let (F;A) be a soft ring over R and (k; Ik)k2K

be a non-empty family of soft ideals of (F;A). Then

(i) euk(k; Ik) is a soft ideal of (F;A) if it is non-null.
(ii) êk(k; Ik) is a soft ideal of (F;A) if it is non-null.
(iii) If fIk : k 2 Kg are pairwise disjoint, then e[k(k; Ik) is a soft ideal of (F;A)

if it is non-null.

2.3.2 Idealistic soft ring

Let (F;A) be a non-null soft set over R. Then (F;A) is called an idealistic soft ring

over R if F (x) is an ideal of R for all x 2 Supp(F;A). The trivial and whole soft

ring is as follows;

Proposition 2.3.12. [2, Proposition 5.3]Let (F;A) be an idealistic soft ring over

R and B � A. Then (F;B) is also idealistic soft ring.

Theorem 2.3.13. [2, Theorem 5.4]Let (F;A) and (G;B) be an idealistic soft ring

over R. Then (F;A) eu (G;B) is an idealistic soft ring if it is non null.
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Theorem 2.3.14. [2, Theorem 5.5] Let (F;A) and (G;B) be an idealistic soft ring

over R. If A \B = �, then (F;A) e[ (G;B) is an idealistic soft ring.
De�nition 2.3.15. [2, De�nition 5.9] An idealistic soft ring (F;A) over a ring R

is said to be trivial if F (x) = f0g for all x 2 A: An idealistic soft ring (F;A) over

R is said to be whole if F (x) = R for all x 2 A.

2.4 Soft Modules

In this section we recall some basic concepts of soft module. Sun et al., [99], gave

the basic concept of soft modules which gives the practical approach to soft set

theory in the direction of modules.

De�nition 2.4.1. [99, De�nition 10] A soft set (G;B) over an R-module M is

called a soft module if each G(b) is a submodule of M , for all b 2 Supp(G;B).

Proposition 2.4.2. [99, Proposition 3] Let (G;B) and (G0; B0) are two soft modules

over M . Then

(i) (G;B)~\(G0; B0) is soft module over M .

(ii) (G;B)~[(G0; B0) is soft module over M if B \B0 = �.

2.4.1 Soft submodules

De�nition 2.4.3. [99, De�nition 13] Let (G;B) be a soft module over an R-module

M . Then (H;C) be a soft submodule over (G;B) if

(i) C � B

(ii) H (c) is submodule of G (c), for all c 2 Supp (H;C).

Proposition 2.4.4. [99, Proposition 7] Let (G;B) be a soft module over M , and

f(Gi; Bi)ji 2 Ig be a non-empty family of soft submodules of (G;B). Then
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(i)
P
i2I
(Gi; Bi) is soft submodule of (G;B).

(ii) \
i2I
(Gi; Bi) is soft submodule of (G;B).

(iii) [
i2I
(Gi; Bi) is soft submodule of (G;B), if Bi \Bj = � for all i; j 2 I.

De�nition 2.4.5. [99, De�nition 13] Let (H;C) be a soft submodule of a soft

module (G;B) over a module M . is called maximal soft submodule of (G;B) if

H(b) is a maximal submodule of G(b) for all b 2 C.

2.4.2 Sums of soft submodules

De�nition 2.4.6. [102, De�nition 9] Let (G;B) be a soft module over M and

f(Gi; Bi)gi2I are the collection of soft submodules of (G;B), where I is the non

empty subset. The sum of submodules f(Gi; Bi)gi2I is de�ned asP
i2I

(Gi; Bi) = (H; [
i2I
Bi) such that H (b) =

P
i2I(b)

Gi (b) for all b 2 [
i2I
Bi and I(a) is

the set of all elements i 2 I such that a 2 Bi.

Theorem 2.4.7. [102, Theorem 1] Let (G;B) be a soft module over M and

f(Gi; Bi)gi2I are the collection of soft submodules of (G;B), where I is the non

empty subset. Then
P
i2I

(Gi; Bi) is a soft submodule of (G;B).

2.5 Decision Making Techniques based on Theory

of Soft sets

The soft set has grabbed the huge attention of the experts due to its �nest

applications in various kind of sensitive decision-making situations. We going to

provide a quick overview of such successful attempts.

Let us begin with [72], in which the Molodstov proposed an extremely e¢ cient

way of handling the information by means of the theory of Soft sets. Almost all of
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classical methods were not that much e¢ cient in information handling, as compared

to proposed method based on soft set theory. The classical methods were more

computationally complex and less accurate, while the Molodstov�s approach based

on the soft set theory, turned out to be more accurate and computationaly feasible.

The success story of theory of soft sets does not ends at decision making, it has shown

a great deal of applications in areas like data analysis [107, 45], clustering attribute

[80, 68], maximal association rules mining [46], parameterization reduction [25],

texture classi�cation [73], classi�cation of musical instruments [59], �ood alarming,

game theory, operation research.

Maji and Roy [66], were the �rst to initiate the application of soft and rough

sets to deal with the decision-making problems. The choice parameter is

formulated to choose the optimal object. Chen [25] came up with the idea of the

parameterization reduction of a soft set and gave its application to

decision-making problems. Chen suggested that sub-optimal choice of object is

redundant while the decision-making problem can be dealt by the direct method

of optimal choice of an object corresponding to the respective soft reduction.

Kong et al., [53] proposed the method of normal parameterization reduction, as

the second step to optimal decision choice, when in the �rst step the Chen�s

method of parameter reduction is applied on soft set. With this method of normal

parameterization reduction, a technique is suggested to characterize the choice

objects in accordance with the results of decision method.

Ça¼gman and Engino¼glu [20] investigated soft matrix theory and presented the

classical soft sets in the form of matrices. The advantage of writing the soft sets

as matrices, i.e., soft matrices is that such matrices require the less computational

complexity, easily programmable and require less storage capacity. Further, Ça¼gman

and Engino¼glu in [21], proposed uni-int decision making algorithm which selects a
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set of optimum elements from two di¤erent decision-making processes. The optimal

element is selected by using uni-int operators in the reduction of parameters. The

method has its own discrepancy as it is di¢ cult to operate for more than two soft

sets. Feng et al., [38] improved and extended the technique of [21] from two soft

sets to k soft sets.

Qin et al., [81], developed a new method of decision-making algorithm based

on soft sets, which was less computationally complex from all other existing

algorithms. Their proposed algorithm enjoys the choice value and comparative

score based approach for various situations requiring the optimal decision making.

2.5.1 Decision making through fuzzy soft sets

An important class of soft sets is the fuzzy soft. The Roy and Maji [85], were the

�rst to developed an algorithm based on decision-making problem that includes

the choice value to �nd an optimally e¢ cient object from the fuzzy soft sets. The

Kong et al., [54] discovered some discrepancies in Roy�s method and came up with

correct revised version of the numerical algorithm. For the revised algorithm, they

employed the Grey relational analysis on fuzzy soft sets. Ça¼gman et al., [22] came

up with an alternate de�nition of a fuzzy soft set (involving fuzzy aggregate

operator) and their application for the process of decision making. Next, the

Ça¼gman et al., [18] introduced fuzzy parameterized (FP-) soft set whose

parameters are fuzzy sets. By using these products, AND-FP-soft decision making

and OR-FP-soft decision-making methods were constructed. The decision

algorithm was used to select the optimal objects. Ça¼gman et al., [17], de�ned the

concept of fuzzy parameterized fuzzy soft set (FPFS-set). The properties of fuzzy

parameterized fuzzy soft set are also discussed in detail. Kuang et al., [57, 58],

developed an interesting de�nition of the triangular fuzzy soft set and trapezoidal

56



2.5. Decision Making Techniques based on Theory of Soft sets

fuzzy soft sets. He not only investigated the relevant operating properties of the

mentioned sets but also built the corresponding decision-making model. The

decision-making process became more realistic, and the decision-making results

got by the integrated operation is more reliable.

To address the divergence of di¤erent opinions, Feng et al., [36] introduced level

soft sets and initiated an adjustable decision-making scheme using fuzzy soft sets.

Based on Feng�works, Basu et al., [9] further investigated the fuzzy soft set based

decision making and introduced a more e¢ cient fuzzy soft set based decision-making

method, namely, the mean potentiality approach. Kong et al., [55] gives fuzzy soft

set decision-making methods based on grey theory. In this method di¤erent decision

makers has di¤erent opinion in various aspects but they should have the common

goal to reach the destination. The most appropriate alternative is chosen from the

set of feasible alternatives. The results of the alternative are classi�ed according to

choice values.

2.5.2 Decision making through intuitionistic fuzzy soft set

In 2004, Maji et al., [64] introduced the notion of intuitionistic fuzzy soft set

theory. Di¤erent algebraic operations have also been studied in the context of the

intuitionistic fuzzy soft set. Cagman et al., [19], rede�ned the concept of

intuitionistic fuzzy soft sets and studied some of its algebraic structure on

intuitionistic fuzzy soft sets. Jiang et al., [42] generalized the adjustable approach

to decision-making problem based on intuitionistic fuzzy soft set. For this

purpose, the level soft sets of intuitionistic fuzzy soft sets were employed. The

notion of weighted intuitionistic fuzzy soft sets gave a practical framework to

decision-making problem. Finally, Das and Kar in a [30], gave a method to solve

group decision problem by intuitionistic fuzzy soft set. For instance, on a
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particular disease, several experts gave their expert opinion. Then a con�dent

weight is assigned to each of the experts which depend on their prescribed

opinions. Moreover, the concept of cardinal has been used to compute the weight

for �nal consensus.

2.5.3 Decision making through neutrosophic soft sets

Maji [63] proposed a hybrid structure is called neutrosophic soft set, which is a

combination of neutrosophic set [96] and soft sets. They de�ned several operations

on neutrosophic soft sets and made a theoretical study on the theory of neutrosophic

soft sets. After the emergence of neutrosophic soft set, many scholars have made a

lot of contributions in this �eld, for instance see [13, 14, 32, 48, 86, 87]. In recent

times, the Deli in [32] has de�ned the notion of neutrosophic soft set relation and

application of neutrosophic soft set operations to make more functional [33]. After

the introduction of relation on neutrosophic soft set Broumi et al., [15] examined

relations of the interval-valued neutrosophic soft set and de�ned the algorithm for

decision making. Many interesting applications of the neutrosophic set theory have

been combined with soft sets in [16, 33].
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Chapter 3

Decision making and grading of

S-boxes based on interval valued

fuzzy soft sets

The key aim of the chapter is put into action the method for the selection of secure

S-box by using interval-valued fuzzy soft set to the decision making. Each analysis

parameter is transformed into the interval value fuzzy set. By giving an application

in decision making which can re�ne our choice on a selection of most feasible S-box.
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3.1 Interval-valued fuzzy set

The interval-valued fuzzy set was �rstly introduced, in [106], and further developed

by Yang et al., [104]. The Yang studied the interval-valued set along with soft

set theory and gave a new destination in the soft set known as an interval-valued

fuzzy soft set theory. The focus on the fuzzy function provided the results which

may not be clear for decisions. Therefore, we introduce the notion of an upper and

lower degree of interval-valued fuzzy sets. It turns out that the interval-valued fuzzy

soft set approach for comparison of data provides an e¢ cient way to approach the

decision. Finally, the decision of the best S-box has been made over the ranking of

computed values.

Throughout this work, S denotes universal set, E is the set of parameters. For

fundamentals of Soft set theory we refer to [72].

De�nition 3.1.1. [106] An interval-valued fuzzy set ~F is de�ned as;

~F : E �! Int([0; 1])

where Int([0; 1]) denotes the set of all closed subintervals of [0; 1].

For all x 2 U; �(x) = [�+(x); ��(x)] is called the degree of membership of an

element x 2 U , where �+(x) and ��(x) are the lower and upper degrees membership

of x to U respectively such that

0 � �+(x) � ��(x) � 1:

Next we give a formal de�nition of interval-valued fuzzy soft set.
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De�nition 3.1.2. [104] An interval-valued fuzzy soft set (F;E) over a universe U

is a mapping that maps E into P (U) i.e.

F : E �! P (U);

where P (U) for the set of all closed subintervals fuzzy sets of U .

Cryptographic Properties of Boolean functions

The security of modern cryptographic networks relies heavily on the various

kind of the algebraic structures. Our aim here is to choose the most e¢ cient

S-box, based on interval-valued fuzzy soft sets. In order to make the optimally

e¢ cient choice, we will employ the non-linearity, BIC, SAC, BIC-SAC, Di¤erential

approximation probability and linear approximation probability analysis. For the

detailed description of mentioned list of analyses, we refer the reader to section 2

of chapter 1. Here in this section, we have to take these analysis results of some

renowned S-boxes. The di¤erential approximation probability for di¤erent S-boxes

is given in Table 1; 2; 3 and 4.

S-boxes Nonlinearity SAC

Max Min Avg. Max Min Avg.

S1 4 2 3:5 0:6250 0:3750 0:4922

S2 4 2 3:5 0:7500 0:2500 0:5000

S3 4 4 4 0:5000 0:5000 0:5000

S4 4 2 3:5 0:6250 0:3750 0:4531

S5 4 4 4 0:6250 0:2500 0:4375

S6 4 2 3:5 0:7500 0:2500 0:4688

Table 3:1:Nonlinearity and SAC analyses for small S-boxes.
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S-boxes BIC-Nonlinearity BIC-SAC

Max Min Avg. Max Min Avg

S1[27] 4 0 2.5 0.6250 0.4167 0.5052

S2[74] 4 0 2.5 0.5833 0.4167 0.4688

S3[12] 4 0 2.75 0.5833 0.4167 0.4688

S4[71] 4 0 2.5 0.5833 0.4167 0.5000

S5[10] 4 0 2.5 0.5417 0.4167 0.5000

S6[34] 4 0 3.0 0.5417 0.4167 0.4739

Table 3:2 : BIC-Nonlinearity and BIC-SAC for small S-boxes

S-boxes Di¤erential Approximation Probability Linear Approximation Probability

Max Min Avg. Max Min Avg

S1[27] 1 0.250 0.3672 0.375 0.375 0.375

S2[74] 1 0.250 0.3672 0.25 0.25 0.25

S3[12] 1 0.250 0.3281 0.25 0.25 0.25

S4[71] 1 0.250 0.3516 0.375 0.375 0.375

S5[10] 1 0.125 0.0305 0.375 0.375 0.375

S6[34] 1 0.125 0.3125 0.375 0.375 0.375

Table 3:3 : Di¤erential approximation probability and linear approximation probability.
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S-boxes N.L SAC BIC B/S DAP LAP

S1[27] 3.5 0.4922 2.5 0.5052 0.3672 0.375

S2[74] 3.5 0.5000 2.5 0.4688 0.3672 0.25

S3[12] 4 0.5000 2.75 0.4688 0.3281 0.25

S4[71] 3.5 0.4531 2.5 0.5000 0.3516 0.375

S5[10] 4 0.4375 2.5 0.5000 0.0305 0.375

S6[34] 3.5 0.4688 3.0 0.4739 0.3125 0.375

Table 3:4 : The average nonlinearity, SAC, BIC-Nonlinearity,

BIC-SAC, Di¤erential approximation probability and Linear

approximation probability.

Before proceeding further, let us recall the de�nition interval-valued fuzzy set

and interval-valued fuzzy soft set with related terms.

3.2 Proposed interval valued fuzzy soft set in

decision making

In this section, we are going to suggest and put in action a decision-making algorithm

based on interval-valued fuzzy soft set operator. Let me provide a detailed step by

step account of the algorithm.

Algorithm Assume that we have been a set of S-box and a set of parameters. Then

following set of steps should be followed for an e¢ cient optimal decision.

Step 1. Insert the data set for each object Si 2 U .

Step 2. Compute the lower and upper degrees of membership e 2 E; where

0 � ��i (e) � �+i (e) � 1.
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Step 2. Transform an interval-valued fuzzy sets into soft set.

Step 3. Compute the sum of lower and upper degrees of membership for e 2 E.

Step 4. Compute the result di. The optimal decision is max
1�i�n

fdig.

Input Data
set

Cryptographic properties

SACNonlinearity BIC DAP LAP

Interval
Valued Fuzzy

Soft Set

Utilizing lower
and upper

membership

Summation
of upper and
lower degree

Optimal
choice of

Sbox

Classification of SBoxes using
IVFS

Fig. 3.1 : Flow chart of proposed selection criteria.

3.3 Interval valued fuzzy soft set for classifying

the strength of S-box

Let fS1; S2; � � � ; S6g be a set of S-boxes mentioned in above section and

E = fe1; e2; � � � ; e6g be the set of parameters stands for non-linearity, SAC, BIC,
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BIC-SAC, DAP, LAP. Table 4 is used as a data set. Now we will give the

computational formulas of computing the lower and upper grades for each

analysis.

3.3.1 Formula for computing the lower and upper degrees

The interval valued fuzzy set for each analyses parameter of S-box are de�ned as

follows;

Interval valued fuzzy set for Non-linearity

[��1 (Si); �
+
1 (Si)] =

�
max(e1)

avg(e1)
;
min(e1)

6 � avg(e1)

�
;

where e1 stands for non-linearity of S-boxes.

Interval valued fuzzy set for SAC

[��2 (Si); �
+
2 (Si)] =

�
avg(e2)

max(e2)
; (avg(e2)�min(e2))

�
;

where e2 stands for SAC of S-boxes.

Interval valued fuzzy set for BIC

[��3 (Si); �
+
3 (Si)] =

�
avg(e3)

max(e3)
;
max(e3)� avg(e3)

4 �min(e3)

�
;

where

e3 stands for BIC of S-boxes.

Interval valued fuzzy set for BIC-SAC

[��4 (Si); �
+
4 (Si)] =

�
avg(e4)

max(e4)
;
max(e4)� avg(e4)

6

�
;

where e4 stands for BIC-SAC of S-boxes.

Interval valued fuzzy set for DAP

[��5 (Si); �
+
5 (Si)] =

�
(max(e5)� avg(e5));

avg(e5)�min(e5)
6

�
;

where e5 stands for DAP of S-boxes.
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Interval valued fuzzy set for LAP

[��6 (Si); �
+
6 (Si)] =

�
(1� avg(e6));

avg(e6)

2

�
;

where e6 stands for LAP of S-boxes.

3.3.2 Interval-valued fuzzy soft set

Consider the following set of tables based on above mentioned formulas. The

interval-valued fuzzy soft set describes the analyses parameters of the candidates

as follows,

S-boxes ��1 �+1 ��2 �+2 ��3 �+3

S1 0:0952 0:875 0:1172 0:7875 0:25 0:625

S2 0:0952 0:875 0:25 0:6667 0:25 0:625

S3 0:1667 1 0 1 0:2083 0:6875

S4 0:0952 0:875 0:0781 0:725 0:25 0:625

S5 0:1667 1 0:1875 0:7 0:25 0:625

S6 0:0952 0:875 0:2188 0:6251 0:1667 0:75

Table 3:5(i) : Interval valued fuzzy soft set.
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S-boxes ��4 �+4 ��5 �+5 ��6 �+6

S1 0:0148 0:8083 0:1828 0:6328 0:1875 0:625

S2 0:0087 0:8037 0:1828 0:6328 0:125 0:75

S3 0:0087 0:8037 0:1882 0:6719 0:125 0:75

S4 0:0139 0:8572 0:185 0:6484 0:1875 0:625

S5 0:0139 0:923 0:1213 0:9695 0:1875 0:625

S6 0:0095 0:8748 0:0953 0:6875 0:1875 0:625

Table 3:5(ii) : Interval valued fuzzy soft set.

3.3.3 Summation of lower and upper degree

The lower degree sum and upper degree sum of each S-box Si are calculated by

using the following formula,

��i =
6P

i=1

��i ;

�+i =
6P

i=1

�+i :

where i 2 E and 1 � i � 6.
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S-boxes ��i �+i

S1 0:8475 4:3536

S2 0:9118 4:3532

S3 0:6969 4:9131

S4 0:8097 4:3556

S5 0:9269 4:8425

S6 0:7729 4:4374

Table 3:6 : Summation of lower and upper degrees

3.3.4 Analysis result

The result of an object will be given as,

di = �
+
i � ��i

where i 2 E and 1 � i � 6.

S-boxes di

S1 3:5061

S2 3:4414

S3 4:2162

S4 3:5459

S5 3:9157

S6 3:6644

Table 3:7 : Decision result of soft set
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3.3.5 Grading results

Table 3:7 results are compiling in ascending order to classify the S-boxes. The

highest value represent the optimal S-box and is designed as most secure, where as

the least valued gives vice versa.

S-boxes Grading

S3 4:2162

S5 3:9157

S6 3:6644

S4 3:5459

S1 3:5061

S2 3:4414

Table 3:8 : Grading the S-boxes as per values

The S3 S-box is appropriate one because it is the maximum of rest. Hence using the

previously described algorithm for grading S-boxes, we have successfully classi�ed

the best S-box for further real applications. Fundamentally, a table is used for

drawing the decision for the selection of good S-box.
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Chapter 4

Decision making and grading of

S-boxes based on intuitionistic

fuzzy soft set

Our aim in this chapter is to introduce a new level of classi�cation, by analyzing

the eight popular S-boxes on di¤erent images. The simulation results of S-boxes on

standard images of Airplane and Baboon of size 512 � 512 (pixels) are employed.

Furthermore, putting in action our proposed Intuitionistic Fuzzy Soft set based

algorithm, we are going to employ a modi�ed version algorithm for the choice of
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optimally secure S-boxes. Finally, we have answered the question that is a single S-

box can equally work for all images, or we need di¤erent S-box for di¤erent images?

The �ow of the chapter is as follows. To make the work accessible to the

reader, the �rst section has been devoted to preliminaries and necessary

explanations. Moreover, in the second section decision-making approach is

described in detail. Finally, in the third section, the experiment is performed on

the MLC analyzes of the enciphered images of Airplane and Baboon, by di¤erent

S-boxes. Moreover, the suitable S-box has been sorted out. It turns out that the

Xyi S-box has been being the most appropriate in enciphering of the both image,

which shows the consistency of our method. Also, we have graded the scores in

descending order, to compare the image encryption quality of di¤erent S-boxes.

4.1 Intuitionistic Fuzzy Soft set

Throughout this work, S denotes universal set, E is the set of parameters. For

fundamentals of Soft set theory we refer to [72]. Cagman and Karatas [23, De�nition

1], de�ned Intuitionistic Fuzzy Soft set and their operations in following manner.

De�nition 4.1.1. Let P (U) be the set of all Intuitionistic Fuzzy sets over U . An

Intuitionistic Fuzzy Soft set (IFS-set) �E over P (U) is a set de�ned as following.

A function

E : E �! P (U);

is called an approximate function of the IFS-set �E. The value E(x), is an

Intuitionistic Fuzzy set called x�element of �E and it is de�ned as

E(x) = f(ui; �E(x)(ui); �E(x)(ui)) : ui 2 Ug for all x 2 E:

Here, the functions �E and �E respectively denote the membership and non

membership degrees of ui 2 U . The �E and �E are maps from U to [0; 1]
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satisfying,

0 � �E(x)(ui) + �E(x)(ui) � 1, for all ui 2 U:

We denote IFS-set over P (U) by,

�E := f(x; E(x)) : x 2 Eg: (4.1.2)

We now introduce few notions which will be frequently used in our proposed

IFS-set decision making method.

De�nition 4.1.2. The Upper and Lower Evaluations value of ui 2 U are

de�ned as;

��E(ij) : = �E(xj)(ui); (4.1.3)

�+E(ij) : = 1� vE(xj)(ui):

for all xj 2 E and ui 2 U , respectively.

De�nition 4.1.3. The Evaluation Interval can be given as:

[��E(ij); �
+
E(ij)]: (4.1.4)

Furthermore, Sum of lower value and upper evaluations value of ui 2 U can be

computed as;

�E(i) : =
nP
j=1

��E(ij); (4.1.5)

vE(i) : =
nP
j=1

�+E(ij):

Hence the individually Evaluation Scores for S-boxes can be given as,

si : =
nP
j=1

[(�E(i) � �E(j)) + (vE(i) � vE(j))];

= n
�
�E(i) + vE(i)

�
�

nP
j=1

(�E(j) + vE(j)): (4.1.6)
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Here si is evaluation score of each �i for 1 � i � n. Therefore an optimal

Evaluation is de�ned as,

s := max
1�i�n

fsig: (4.1.7)

4.2 Proposed intuitionistic fuzzy soft set based

algorithm for optimal choice of S-box

We propose to carry out following algorithm on data of given seven S-boxes.

Step 1: Choose feasible subsets A and B of the set of parameters E.

Step 2: Construct IFS-sets �A and �B.

Step 3: Write the evaluation interval [��A^B(ij); �
+
A^B(ij)].

Step 4: Compute the evaluation scores si.

Step 5: Obtain an evaluation s.

Thus the above �ve steps are used for decision making method. The best

evaluation is chosen as maximum of all evaluation scores. Following is the �ow
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chart of above mentioned algorithm,

Fig. 1. Flow Chart

4.2.1 Intuitionistic fuzzy soft set for classifying the strength

of S-box

Let U = fu1; u2; � � � ; u7g be the universal set, where the objects u1; u2; � � � ; u7
respectively indicate S-boxes such as AES, APA, residue prime, S8-AES, Gray,

Xyi, and SKIPJACK S-boxes respectively. The parametric set E = fe1; e2; � � � ; e5g

represents Entropy, Energy, Correlation, Homogeneity and Contrast. We consider

di¤erent standard images and then classify that, which S-box is suitable in a

particular image cipher.

Before tuning in to original calculations, probably, it will be worth recalling

some of fundamental details of above mentioned parameters for Intuitionistic fuzzy

set.

Function for Entropy The Entropy, scrutinizes the degree of occurrence among
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the grey level pixels. The IFS-Set for entropy can measured by following

described membership and non-membership functions respectively,

��E(e1)(ui) =
e1(P )

e1(ui)
; (4.2.1)

v�E(e1)(ui) = 2� e1(ui)
e1(P )

:

Where e1(P ) is the entropy of the plain image and e1(ui) is the entropy of

ciphered image for the S-box ui, where 1 � i � 7.

Function of Energy It measures uniformity in an image by the amount of square

elements from GLMC. The intuitionistic fuzzy set for energy is measured by

following described membership and non-membership functions respectively,

��E(e2)(si) = 1� e2(ui)
e2(P )

; (4.2.2)

v�E(e2)(si) =
e2(P )� e1(ui)
e2(P ) + e1(ui)

:

Here e2(P ) is the energy of the plain image and e2(ui) is the energy of ciphered

image for the S-box ui and 1 � i � 7.

Functions for Correlation The Correlation coe¢ cient determines the similarity

between original data and coded data. The IFS set for correlation is denoted

by e3 and corresponding membership and non-membership functions,

respectively, can be given as,

��E(e3)(si) = e3(P )� e3(ui); (4.2.3)

v�E(e3)(si) =
e3(ui)

e3(P )
:

Here e3(P ) is the correlation of the plain image and e3(ui) is the correlation

of ciphered image for the S-box ui and 1 � i � 7.

Function of Homogenity The distribution of elements in the GLMC with

respect to main diagonal is used to measure the Homogeneity. The IFS set
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for homogeneity is denoted by e4 and corresponding membership and

non-membership functions, respectively, can be given as,

��E(e4)(si) =
e4(P )

e4(P ) + e4(ui)
; (4.2.4)

v�E(e4)(si) =
e4(ui)

e4(P )
:

where e4(P ) is the homogeneity of the plain image and e4(ui) is the

homogeneity of ciphered image for the S-box ui and 1 � i � 7.

Function of Contrast The parameter Contrast is signi�cant because of fact

that it can e¢ ciently measure the variation in the enciphered text. The

intuitionistic fuzzy set for contrast is denoted by e5 and is de�ned as;

��E(e5)(si) =
e5(ui)� e5(P )
e5(ui) + e5(P )

; (4.2.5)

v�E(e)(si) =
1

e5(ui)� e5(P )
:

Where e5(P ) is the contrast of the plain image and e5(ui) is the contrast of

ciphered image for the S-box ui and 1 � i � 7.

4.3 Decision making algorithm in action

In this section, we have considered di¤erent standard S-boxes and used the image

encryption technique to analyze them. Furthermore, the decision making steps are

carried out to grade the S-boxes.

4.3.1 Decision making on performance indexes of Airplane

image

Airplane First let us consider the image of airplane. The results of di¤erent S-

boxes are as follow;
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MLC Entropy Energy Correlation Homogeneity Contrast

Plain Image 6.7025 0.2687 0.9429 0.9229 0.2052

AES 6.7178 0.0229 0.0887 0.4904 6.9874

APA 6.7178 0.0243 0.1553 0.5127 6.6436

Prime 6.7178 0.0231 0.1188 0.4826 7.5812

S8-AES 6.712 0.0297 0.0862 0.4879 7.5812

Gray 6.7178 0.0215 0.1393 0.4836 6.9559

Xyi 6.7178 0.0222 0.0544 0.4698 9.005

SkipJack 6.7178 0.0209 0.0958 0.487 8.2207

Table 4.1. Characteristics of di¤erent S-boxes with respect to airplane image

Following Fig. 4:2 gives the comparison of analyses on various S-boxes

corresponding to enciphered images.

Fig. 4:2 : Comparison of analyses on various S-boxes

The �gure shows that entropy and contrast of enciphered images shows the similar

trend, in which the performance of Xyi S-box is comparable to that of APA S-box.

The energy exhibits the highest result of AES and APA S-boxes. The energy results

of S8 and SkipJack S-boxes are comparative better than that of Xyi S-box.
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The Xyi S-box is capable to measure the correlation to the highest level, whereas

APA shows the low level performance. It is seen that homogeneity of Xyi S-box is

better than SkipJack and Residue Prime S-boxes. The homogeneity of APA S-box

is the weak reading as compare to others.

Enciphered images of airplane

A 512 � 512 (pixel) image of an airplane is considered for encryption and the

standard S-boxes are taken for image encryption. Following are the enciphered

images of airplane.

Fig. 4.3. Plain image of

Airplane

Fig. 4.4 AES

transformation
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Fig. 4.5. APA

transformation

Fig. 4.6. Prime

transformation

Fig. 4.7. S-8

transformation

Fig. 4.8. Gray

transformation
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Fig. 4.9. Xyi

transformation

Fig. 4.10. SkipJack

transformation

IFS set Choose the IFS-set �E over the universe IF (U). The data from the table 1

has been used for membership and non-membership functions (4.2.1)-(4.2.5).

The IFS-set (4.1.2) is represented in following tabular form.

Table 4.2: Intuitionistic fuzzy soft set

The appropriate S-box is chosen by using the membership and

non-membership functions of the IFS-set. To make the table 4:2 more clearer we

consider the graphical representation of it in �gure 4:11. The horizontal axis

represents the membership and non-membership functions of the parametric set.

The vertical axis represents the scale which vary from 0 to 1. The graph describe

the inter relation between the parametric value of IFS-set and S-boxes.
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Fig. 4:11 : Relationship between the parametric value of IFS-set and

S-boxes.

Evaluation interval of IFS-set The membership and non-membership functions

of IFS-set from table 4:2 is apply in equation (4.1.4) and (5.2.4) for lower and

upper evaluations. Then using lower and upper evaluations in equation (5.2.5)

for evaluation interval. The evaluation intervals are presented in following

tabular form;

Table 4.3: Evaluation intervals

The �gure 4:12 shows the the evaluation interval of each S-box. The variation of

lower and upper evaluation are gathered in table 4:3. The horizontal axis represents

the S-boxes, the membership and non-membership values of the intervals of are

graphically more clearly shown. The comparison of �gure 4:11 with �gure 4:12 shows

that di¤erence between membership and non-membership function are signi�cantly
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less.

Fig.4:12 : Evaluation interval of di¤erent S-boxes

Sum of lower and upper evaluations Once again using the tables computed in

table 4:3 into equation (4.1.5), we get following table of the membership and

non-membership functions for each S-box,

Table 4.4: Sum of upper and lower evaluations
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Evaluation scores The evaluation scores for each object si is calculated by using

the sum of lower and upper evaluations of above table 4:4 with the formula

(4.1.6).

Table 4.5:

Scores of

di¤erent

S-boxes.

Fig 4.13:

Graphical representation of score.

In Table 4:5, the �nal score of each S-box given. The �gure 4:13 shows the graphical

representation of score. On horizontal axis S-boxes are mentioned and scale for score

is mentioned on vertical axis.

83



4.3. Decision making algorithm in action

4.3.2 Grading results for encrypted images of Airplane

The score of S-box represents is being sorting in descending order shows the

signi�cance of S-box.

Table 4:6 : Grading the scores from

highest to lowest values.

Maximum Score The maximum score sort out the appropriate S-box for image

encryption. It is denoted by s, and de�ned in equation (4.1.7) the result is;

s = s6 = 0:1384

which represents the Xyi S-box as the optimal.

4.3.3 Decision making on performance indexes of Baboon

image

Baboon The second image to test the decision making analysis is the image of

Baboon. The results of di¤erent S-boxes are as follow;
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MLC Entropy Energy Correlation Homogeneity Contrast

Plain Image 7.3583 0.1094 0.8232 0.8098 0.5085

AES 7.7067 0.0183 0.0196 0.4267 8.4229

APA 7.7067 0.0183 0.0581 0.4327 8.081

Prime 7.7067 0.0171 0.0323 0.4211 8.9211

S8-AES 7.6932 0.0178 0.0275 0.429 8.1915

Gray 7.7067 0.0187 0.0196 0.4301 8.3561

Xyi 7.7067 0.018 0.0069 0.4239 8.2848

SkipJack 7.7067 0.0189 0.0267 0.4318 7.8404

Table 4.7: Characteristics of di¤erent S-boxes with respect to Baboon image

Following are the comparison of parameters corresponding to di¤erent S-boxes.

Fig 4.14: Comparison of di¤erent analyses of S-boxes.

The horizontal axis show the parametric set and its variation on di¤erent S-boxes.

The variation of S-boxes on entropy and contrast are nearly same, whereas

homogeneity of di¤erent S-box shows small variation with respect to plain image.

The energy analysis show that Prime and Gray S-boxes are squeeze than other

mentioned S-boxes. Correlation analysis of AES and Gray are better, while the

APA S-box show the worse result.
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Enciphered images of Baboon

A 512 � 512 (pixel) image of an baboon is taken for encryption. The standard

S-boxes are taken for image encryption. Following are the enciphered images of

Baboon.

Fig. 4.15: Plain image of

Baboon

Fig. 4.16: AES

transformation

Fig. 4.17: APA

transformation

Fig. 4.18: Prime

transformation
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Fig. 4.19: S-8

transformation

Fig. 4.20: Gray

transformation

Fig. 4.21: Xyi

transformation

Fig. 4.22: SkipJack

transformation

IFS set Choose the IFS-set �E over the universe IF (U). The data from the table

4:7 has been used for membership and non-membership functions
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(6.2.1)-(6.2.5). The IFS-set (4.1.2) is represented in following tabular form.

Table 4.8: Intuttionistic fuzzy soft set (IFS-set)

The appropriate S-box is chosen by using the membership and non-membership

functions of the IFS-set. To make analysis more clearer consider the graphical

representation of IFS-set is given �gure 4:23. In this graph the membership and

non-membership function of each parameter is mentioned on horizontal axis and the

vertical axis gives the scale which is from 0 to 1. The graph gives the comparison

of di¤erent S-boxes with respect to membership and non-membership values of

parameters.

Fig. 4:23 : Comparison of di¤erent S-boxes with respect:

Evaluation interval of IFS-set The membership and non-membership

functions of IFS-set from table 4:8 is apply in equation (4.1.4) and (5.2.4) for

lower and upper evaluations. Then using lower and upper evaluations in
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equation (5.2.5) for evaluation interval.

Table 4.9: Evaluation intervals.

Figure 4:24 and Table 4:9 shows the evaluation interval of each S-box with

respect to the parametric membership and non-membership values. It is seen

that the variation between parameters ahead to decision making.

Fig.4:24 : Evaluation interval of each S-box.

Sum of lower and upper evaluations Once again using the values computed in

table 4:9 into equation (4.1.5), we get following table of the membership and
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non-membership functions for each S-box,

Table 4.10: Sum of upper and lower evaluations

Evaluation scores The evaluation scores for each object si by using the values of

table 4:10 in the formula given in equation (4.1.6).

Table 4:11 : Scores

Fig. 4.25: Graphical

represntation of S-boxes.

Figure 4:25 and Table 4:11 mention the score of each S-box. From the given

score we select the appropriate S-box. In the graph the behavior of S-boxes
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in image encryption is clearly shown.

4.3.4 Grading results for encrypted images of Baboon

The score of S-box represents in descending order shows the signi�cance of S-box.

Table 4:12 : Grading scores from

highest to lowest.

Maximum Score The maximum score sort out the appropriate S-box for image

encryption. It is denoted by s, and de�ned in equation (4.1.7) the result is;

s = s3 = 0:078

which represents the Prime S-box as the appropriate one. It is observe from

Table 4:7 that the Prime S-box have signi�cantly better results than other

S-boxes.

We have attempted to analyses the quality of S-boxes by applying a decision

making algorithm based on Intuitionistic fuzzy soft set. Signi�cant evidence have

been found, when proposed methodology is applied on two di¤erent images i.e.

airplane and Baboon, then it turns out that, for the airplane, the Xyi S-box is the

best S-box and prime S-box for Baboon image. This also re�ects the scrutiny of the

methodology is quite e¢ cient.
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Chapter 5

Decision making and grading of

S-boxes based on neutrosophic

fuzzy soft sets

In this chapter, we are mainly concerned with the MLC-parameters which includes

Entropy, Contrast, Correlation, Energy, Homogeneity. Each of the mentioned

analyses can, individually, but also provides evidence of a concrete secure S-box.

Moreover collective consideration the mentioned MLC parameters makes our

method better and reliable than the existing methods. It is worth noticing that
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our algorithm is based on, Neutrosophic Soft Set (NSS) and uses the all available

MLC parameters communally. The other methods suggested for examining the

quality of an S-box like root mean square error (RMSE), a number of pixels

change (PNCR) etc., are very time-consuming and are not user-friendly.

Therefore, their is need of a method which is less time consuming and is easy to

analyze the S-box.

We take the decision-making algorithm to a new level of classi�cation, by

analyzing the seven popular S-boxes on di¤erent images. Several standard images

like Airplane, Pepper, Lena, Baboon etc. of size 512 � 512 (pixels) are employed.

Furthermore, by carrying out the analyses via our proposed NSS based approach,

we sort out the best S-boxes for each image. We also study that whether the

results suggest a single S-box for all images, or di¤erent for di¤erent images.

The chapter comprises of two sections. The �rst section has been devoted to

preliminaries. In section two, we describe in detail our proposed NSS based

method for the decision making. The average deviation of membership,

intermediate and non-membership functions, for objects (parameters) under

consideration, will be presented. Later, comparison tables will be constructed by,

previously, de�ned membership, intermediate and non-membership functions of

the parameters. Moreover, Neutrosophic Soft Set will be formed by computing the

weight functions, along with that, the evaluation interval and evaluation score are

de�ned. Finally in the fourth section, we will practically demonstrate our

proposed method, by applying it to the enciphered image of Airplane and Baboon.

Then we will sort out the suitable S-box for mentioned images. It turns out that

Xyi S-box will be the appropriate S-box, in enciphering of the both images, this

also re�ects the consistency of our method. We also grade the score in descending

order to provide the comparison of image encryption methods. Lastly, a
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comprehensive study is given, in which the comparison of the results of given

method with the results of IFS-method mentioned results are being discussed.

5.1 Neutrosophic Soft Set

Throughout this work, S be the universal set, E is the set of parameters. Recall that,

the Soft Set theory was initiated by Molodtsov in [72]. The notions of Neutrosophic

Set (NS) and Neutrosophic Soft Set (NSS) were introduced by Maji, in [63] and

[16], in following manner.

De�nition 5.1.1. Let NS(S) be the set of all Neutrosophic subsets of S. Then the

Neutrosophic Set � over E, can be de�ned as:

� = f(e; �E (e) ; E (e) ; vE (e)) : e 2 Eg (5.1.1)

where �E (e) : E �! [0; 1] ; E (e) : E �! [0; 1] and vE (e) : E �! [0; 1] ; denote

degree of membership, degree of indeterminacy and degree of non membership

respectively.

We denote Neutrosophic Soft Set (NSS) by �E := �E = f(e; �E(e))g : Where

map �E : E �! NS(S) is de�ned as,

�E(e) =
��
s; ��E(e)(s); �E(e)(s); v�E(e)(s)

�
: s 2 S

	
(5.1.2)

for all e 2 E. Here the functions ��E(e)(s) : S �! [0; 1] ; �E(e)(s) : S �! [0; 1] and

v�E(e)(s) : S �! [0; 1] denote degree of membership, degree of indeterminacy and

degree of non membership respectively.

Note that in [70] instead of taking the Neutrosophic Set, with values from real

standard or non-standard subset of ]�0; 1+[, they considered values from the subset

of [0; 1].
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5.2 Neutrosophic soft set for decision making

In this section we will present a NSS-decision making method.

De�nition 5.2.1. If �E is the NSS and ��E(e)(si); �E(e)(si) and v�E(e)(si) denote

the membership degree, indeterminacy degree and non-membership degree for each

object si respectively. Then the average deviation of membership, indeterminacy

and non-membership are;

���E(si) =
1

n

X
j��E(e)(si)� ���E(e)(s)j; (5.2.1)

��E(si) =
1

n

X
j�E(e)(si)� ��E(e)(s)j;

v��E(si) =
1

n

X
jv�E(e)(si)� �v�E(e)(s)j;

where for each si 2 S, and ���E(e)(s); ��E(e)(s) and �v�E(e)(s) are mean of

��E(e)(si); �E(e)(si) and v�E(e)(si). We denote this mean by

< ���E(si); 
�
�E
(si); v

�
�E
(si) >; (5.2.2)

De�nition 5.2.2. A comparison table for membership function, denoted by �;

is a table in which, the number of rows are equal to the number of columns, rows

and columns both are labeled by the parameters e1; e2; � � � ; en. The entries are

xij; i; j = 1; 2; � � � ; n; given by

xij = the number, for which the member degree of ei is (5.2.3)

important by the membership degree of ej

Note that 0 � xij � p; xii = p+1 for all i; j and p is the number of objects presented.

Comparison table for intermediate function is denoted by �. It is a table in

which number of rows are equal to the number of columns, rows and columns both
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are labeled by he parameters e1; e2; � � � ; en. The entries are yij; i; j = 1; 2; � � � ; n;

given by

yij = the number, for which the intermediate degree of ei is (5.2.4)

important by the intermediate degree of ej

where 0 � yij � p; and yii = p+ 1 for all i; j, here p denotes the number of objects

present in the universal set.

Finally, 	 is a comparison table of non-membership function, in which number

of rows are equal to the number of columns. Moreover, rows and columns both are

labeled by the parameters e1; e2; � � � ; en. The entries are zij; i; j = 1; 2; � � � ; n; given

by

zij = the number, for which the non-membership degree of ei is (5.2.5)

important by the non-membership degree of ej

where 0 � zij � p and zii = p+1; for all i; j, here p is the number of objects present

in the universal set.

De�nition 5.2.3. The membership function rows and columns sum of a parameter

ei, denoted by �ri and �ci respectively and de�ned as

�ri =

nX
j=1

xij; (5.2.6)

�ci =
nX
j=1

xij:

The intermediate function rows and columns of a parameter ei, is presented by �ri

and �ci respectively and de�ned as

�ri =
nX
j=1

yij; (5.2.7)

�ci =
nX
j=1

yij:
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The negative function rows and columns of a parameter ei, is presented by 	ri and

	ci respectively and de�ned as

	ri =
nX
j=1

zij; (5.2.8)

	ci =

nX
j=1

zij:

De�nition 5.2.4. The Positive Weight of each parametric set ei 2 E, can be

computed from following formula:

�E(ei) :=
(�ri ��ci)

6
: (5.2.9)

The Intermediate weight of the parametric set ei 2 E can be computed as:

E(ei) :=
(�ri � �ci)

6
: (5.2.10)

Similarly, the Negative weight of the parametric set ei 2 E can be given as,

vE(ei) :=
(	ri �	ci)

6
: (5.2.11)

Finally, for all ei 2 E; the Neutrosophic Set (NS) over E, is as follows;

� := f(e; �E (ei) ; E (ei) ; vE (ei)) : ei 2 Eg : (5.2.12)

De�nition 5.2.5. If �E be theNSS over S and � isNS over E, then the evaluation

value of si can be calculated from,

�E(i)(si) : = maxf���E(ej)(si) � �E (ej) : ej 2 Eg; (5.2.13)

E(i)(si) : = medianf��E(ej)(si) � E (ej) : ej 2 Eg;

vE(i)(si) : = minfv��E(ej)(si) � vE (ei) : ej 2 Eg;

where 1 � i � n and 1 � j � m. Once we obtained the evaluation value, then we

can write the evaluation set in following manner,�
�E(i); E(i); vE(i)

�
; (5.2.14)
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for all si 2 S and ej 2 E.

De�nition 5.2.6. Let �E be the NSS over S. The evaluation score for each

object si 2 S, can be computed from the evaluation interval in following manner:

ŝi = �E(i) + E(i) � vE(i); (5.2.15)

for 1 � i � n. Moreover the �nal evaluation score can be obtained from following,

s = max
1�i�n

fŝig: (5.2.16)

We will further proceed by describing the algorithm for decision making criterion.

We propose following NSS based algorithm for the selection of appropriate S-box:

1. Choose the NSS �E over the universe NS(U).

2. Compute average deviation of NSS for each si 2 S.

3. Compute the comparison tables �;� and 	.

4. Compute positive, intermediary and negative weight value for each parameter.

5. Construct the NS-set � over the parametric set E.

6. Construct the evaluation set for each object si.

7. Compute the evaluation scores ŝi.

8. Find s, for which s = max
1�i�n

fŝig.

5.2.1 Neutrosophic soft set for classifying the strength S-

box

Treat the S as Universal set consisting of the S-boxes for enciphering

S = fu1; u2; � � � ; u7g ;

where u1; u2; � � � ; u7, respectively represents AES, APA, residue prime, S8-AES,

Gray, Xyi, and SKIPJACK S-boxes.
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Assume that E denotes the set of parameters i.e.

E = fe1; e2; � � � ; e5g;

where e1; e2; � � � ; e5 respectively denote the entropy, energy, correlation,

homogeneity and contrast parameters. We consider di¤erent standard images and

classify that, which of S-box is suitable for a particular image encryption.

These parameters for Neutrosophic sets are formulized in following manner.

Neutrosophic set for each Parameter

To work on decision making, we have to �nd Neutrosophic value for each of the

parameter. We begin by providing brief descriptions of each of the parameters and

then we are going use them for the neutrosophic soft set (NSS).

Function for Entropy The entropy coe¢ cient measures the uncertainty in the

data. Corresponding neutrosophic set for soft set can be given by the following

formulas,

��E(e1)(si) = 2�
e1(si)
e1(P )

; (5.3.1)

�E(e1)(si) = e1(si)(mod 1);

v�E(e1)(si) =
e1(si)

e1(si) + e1(P )
;

where e1(P ) is the entropy of the plain image and e1(si) is the entropy of ciphered

image for the S-box si and 1 � i � 7.

Function of Energy The amount of square elements from GLMC is used to assess

the energy coe¢ cient. The neutrosophic set for energy can be obtain in the

following manner,

��E(e2)(si) =
e2(si)
e2(P )

+ e2(P ); (5.3.2)

�E(e2)(si) =
e2(si) + e2(P )

2
;

v�E(e2)(si) =
e2(si)
e2(P )

;
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where e2(P ) denotes the energy of the plain image and e2(si) is the energy of

ciphered image for the S-box si and 1 � i � 7.

Functions for Correlation The correlation coe¢ cient is sort of source to specify

the amount of similarity between two neighboring pixels. The neutrosophic

set for correlation can be described by in below given manner;

��E(e3)(si) = e3(P ) � e3(si); (5.3.3)

�E(e3)(si) =
e3(P ) � e3(si)
e3(P ) + e3(si)

;

v�E(e3)(si) =
e3(si)
e3(P )

;

where e3(P ) represents the correlation of the plain image and e3(si) is the

correlation of ciphered image for the S-box si and 1 � i � 7.

Function of Homogenity The analysis determines the natural event of

established structure within the cipher text. The neutrosophic set for

homogeneity is denoted by e4 and is as follow;

��E(e4)(si) =
e4(si)
e4(P )

; (5.3.4)

�E(e4)(si) =
e4(P ) � e4(si)
e4(P ) + e4(si)

;

v�E(e4)(si) =
e4(P )

e4(P ) + e4(si)
;

where e4(P ) is the homogeneity of the plain image and e4(si) is the homogeneity

of ciphered image for the S-box si and 1 � i � 7.

Function of Contrast Local variation in the encrypted image is measured by

contrast. The neutrosophic set for contrast is denoted by e5 and is de�ned
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as;

��E(e5)(si) =
e5(si) � e5(P )
e5(si) + e5(P )

; (5.3.5)

�E(e5)(si) = e5(si)(mod 1);

v�E(e)(si) =
e5(P )
e5(si)

;

where e5(P ) is the contrast of the plain image and e5(si) is the contrast of

ciphered image for the S-box si and 1 � i � 7.

5.3 Decision making algorithm in action

In this section, we considered di¤erent standard S-boxes and use the image

encryption technique to analyze them. We perform this experiment on di¤erent

images to see the result of our image encryption works or not. Furthermore, the

decision-making steps of NSS is applied to grade the S-boxes.

5.3.1 Decision making on performance indexes of Airplane

image

Airplane First let us consider the image of Airplane. The results encrypted image

of di¤erent S-boxes are as follow;
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MLC Entropy Energy Correlation Homogeneity Contrast

Plain Image 6.7025 0.2687 0.9429 0.9229 0.2052

AES 6.7178 0.0229 0.0887 0.4904 6.9874

APA 6.7178 0.0243 0.1553 0.5127 6.6436

Prime 6.7178 0.0231 0.1188 0.4826 7.5812

S8-AES 6.712 0.0297 0.0862 0.4879 7.5812

Gray 6.7178 0.0215 0.1393 0.4836 6.9559

Xyi 6.7178 0.0222 0.0544 0.4698 9.005

SkipJack 6.7178 0.0209 0.0958 0.487 8.2207

Table 5.1: Analyses results of Airplane

Following are the graphical self-explaining comparison of parameters on di¤erent

S-boxes corresponding to enciphered images.

Fig. 5.1. Fig. 5.2.

Fig. 5.3. Fig. 5.4.
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5.3. Decision making algorithm in action

Fig. 5.5.

Enciphered images of airplane

A 512� 512 (pixel) image of an airplane is taken for encryption. The standard

S-boxes are taken for image encryption. Following are the enciphered images of

airplane.

Fig 5.6: Plain image of

airplane

Fig 5.7: AES S-box

transformation
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Fig. 5.8: APA S-box

transformation

Fig. 5.9: Prime S-box

transformation

Fig. 5.10: S-8 S-box

transformation

Fig. 5.11: Gray S-box

transformation
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Fig. 5.12: Xyi S-box

transformation

Fig. 5.13: SkipJack S-box

transformation

can observe that Xyi S-box, Skip jack S-box, S-8 S-box and gray S-box quite

ambiguous and protected encipher images

Neutrosophic soft set (NSS) Choose the NSS �E over the universe NS(U).

The data from the table 5:1 has been used to transform in membership,

indeterminacy and non-membership functions (6.4.1)-(6.4.5). The NSS in

table 5:2 can be represented in following tabular form.

Table 5.2: Neutrosophic soft set
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The graphical representation of NSS is as follow;

Fig. 5.14: Graphical representation.

The membership, intermediate and non-membership functions of the seven

S-boxes are separately presented. This show the variation of each function

according to their image encryption result.

Average deviation The NSS �E from previous table is used to calculate the

average deviation. The formula of average deviation is given in equation

(5.2.2), and average deviation of the membership, intermediate and

non-membership functions are represented as follows;

Avgdev(�E)


���E ; 

�
�E
; ���E

�
s1 h0:2347; 0:2969; 0:2435i

s2 h0:2165; 0:2288; 0:2287i

s3 h0:2324; 0:2218; 0:2395i

s4 h0:2297; 0:2767; 0:2300i

s5 h0:2296; 0:2768; 0:2365i

s6 h0:2482; 0:3091; 0:2531i

s7 h0:2376; 0:2601; 0:2445i

Table 5.3: Average deviation.
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Comparision tables Let us now compute the, comparison table, for membership,

intermediate and non-membership functions �;� and 	 by using the method

given in (5.2.3),(5.2.4) and (5.2.5).

� e1 e2 e3 e4 e5

e1 8 16 16 16 16

e2 8 8 8 8 8

e3 8 16 8 16 8

e4 8 16 8 8 8

e5 8 16 16 16 8

Table 5.4: Membership comparison.

� e1 e2 e3 e4 e5

e1 8 16 9 16 11

e2 8 8 8 8 9

e3 15 16 8 16 11

e4 8 16 8 8 9

e5 10 15 10 15 8

Table 5.5: Indeterminacy comparison.

	 e1 e2 e3 e4 e5

e1 8 16 16 8 8

e2 16 8 8 8 16

e3 8 12 8 16 16

e4 16 16 16 8 16

e5 8 8 8 8 8

Table 5.6: Non-membership comparison.
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Weight Parameters The positive, intermediate and negative weight values are

calculated by using equations (5.2.8)-(5.2.11) by using equation (5.2.6) to

(5.2.8).

�ri �ci �ri ��ci �E

e1 72 40 32 5.333

e2 40 72 -32 -5.333

e3 56 56 0 0

e4 48 64 -16 -2.667

e5 64 48 16 2.667

Table 5.7: Membership weight parameters.

�ri �ci �ri � �ci E

e1 60 49 11 1.833

e2 41 71 -30 -5

e3 66 43 23 3.833

e4 49 63 -14 -2.333

e5 58 48 10 1.667

Table 5.8: Intermediate weight parameters.

	ri 	ci 	ri �	ci �E

e1 56 56 0 0

e2 56 60 -4 -0.667

e3 60 56 4 0.667

e4 72 48 24 4

e5 40 64 -24 -4

Table 5.9: Non-membership weight parameters.

NS-set The NS-set � over the parametric set E is constructed by as given in

equation (5.2.12). The results of tables 5:7, 5:8 and 5:9 are used to build
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NS-set.
�

�
�
E
; 

E
; �

E

�
e1 (5:333; 1:8333; 0)

e2 (�5:333;�5;�0:6667)

e3 (0; 3:8333; 0:6667)

e4 (�2:6667;�2:3333; 4)

e5 (2:6667; 1:6667;�4)

Table 5.10: NS-set.

Evaluation sets Next the evaluation set for each object si by using the formula

given in equation (5.2.13) and represent in the form of (5.2.14).

�E
�
�E(i); E(i); �E(i)

�
s1 [1:2518; 0:4948;�0:9739]

s2 [1:1549; 0:3814;�0:9146]

s3 [1:2397; 0:3697;�0:9579]

s4 [1:2249; 0:4612;�0:9599]

s5 [1:2245; 0:4614;�0:9458]

s6 [1:3236; 0:5166;�1:0123]

s7 [1:2671; 0:4334;�0:9782]

Table 5.11: Evaluation set.

Evaluation scores To compute the evaluation scores ŝi equation (5.2.15) has been

used.
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Score

ŝ1 2.7205

ŝ2 2.4509

ŝ3 2.5673

ŝ4 2.6461

ŝ5 2.6317

ŝ6 2.8525

ŝ7 2.6787

Table 5.12: Evaluation score.

Maximum Score The maximum score sort out the appropriate S-box for image

encryption. It is denoted by s, and de�ned in equation (5.2.16) the result is;

s = ŝ6 = 2.8525

which represents the Xyi S-box.

Fig. 5.15: Score of di¤erent

S-boxes

5.3.2 Grading results for encrypted images of Airplane

The scores of S-boxes, are sorted in descending order, to show their performance

accordingly.
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Score

ŝ6 2.8525

ŝ1 2.7205

ŝ7 2.6787

ŝ4 2.6461

ŝ5 2.6317

ŝ3 2.5673

ŝ2 2.4509

Table 5.13: Grading score in descending order.

Comparison Now we compare the results obtained NSS-based algorithm with

intuitionistic fuzzy soft set from table 4:6: (4.3.1). The score of both

methods are as follow;

Score

ŝ6 0.1384

ŝ1 0.0804

ŝ7 0.0177

ŝ4 0.0006

ŝ5 -0.0377

ŝ3 -0.0843

ŝ2 -0.1152

Table 4.6: IFS-score

Score

ŝ6 2.8525

ŝ1 2.7205

ŝ7 2.6787

ŝ4 2.6461

ŝ5 2.6317

ŝ3 2.5673

ŝ2 2.4509

Table 5.13: NSS-score

Here we see that the Xyi S-box and S8 S-box are lead in both decision making

methods. As Xyi S-box turns out to be the best S-box so it consistent with IFS

based algorithm. While other S-boxes are graded di¤erently. One drawback in

IFS based approach was that it does not involve indeterminacy function while here

111



5.3. Decision making algorithm in action

one can clearly observe that, in our proposed NSS decision making method, which

involves indeterminacy function, has put a signi�cant impact on score.

5.3.3 Decision making on performance indexes of Baboon

image

Baboon Now we repeat the same procedure with another image of Baboon, to

observe that whether the results are consistent with the previously carried

out analysis on airplane image. The results of di¤erent S-boxes are as follow;

MLC Entropy Energy Correlation Homogeneity Contrast

Plain Image 7.3583 0.1094 0.8232 0.8098 0.5085

AES 7.7067 0.0183 0.0196 0.4267 8.4229

APA 7.7067 0.0183 0.0581 0.4327 8.081

Prime 7.7067 0.0171 0.0323 0.4211 8.9211

S8-AES 7.6932 0.0178 0.0275 0.429 8.1915

Gray 7.7067 0.0187 0.0196 0.4301 8.3561

Xyi 7.7067 0.018 0.0069 0.4239 8.2848

SkipJack 7.7067 0.0189 0.0267 0.4318 7.8404

Table 5.14: Image encryption analyses of Baboon.

Enciphered images of Baboon

A 512 � 512 (pixel) image of Baboon is taken for encryption. The standard

S-boxes are taken for image encryption. Following are the enciphered images of
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baboon.

Fig. 5.16: Plain image of

Baboon.

Fig.. 5.17: AES

transformation of Baboon.

Fig. 5.18: APA

transformation of Baboon.

Fig. 5.19: PRIME

transformation of Baboon.
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Fig. 5.20: S8

transformation of Baboon.

Fig. 5.21: Gray

transformation of Baboon.

Fig. 5.22: Xyi

transformation of Baboon.

Fig. 5.23: SKIPJACK

transformation of Baboon.

One can clearly observe that results of enciphered images are almost similar to the

results in case of airplane image. Again Xyi S-box, Skip jack S-box, S-8 S-box and

gray S-box did well by providing secure images.

The data from the table 16 has been used to for �nding membership,

indeterminacy and non-membership functions (6.4.1)-(6.4.5).

Neutrosophic soft set (NSS) Choose the NSS �E over the universe NS(U).

The data from the table 16 has been used to for membership, indeterminacy
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and non-membership functions (6.4.1)-(6.4.5). The NSS is representing in

following tabular form.

Table 5.15. NSS

The graphical representation of NSS is as follow;

Fig. 5.24.

This show the membership, intermediate and non-membership function of

each S-box and will lead to scoring the appropriate one.

Average deviation The NSS �E from previous table is used to calculate the

average deviation. The formula of average deviation is given in equation

(5.2.2), and average deviation of the membership, intermediate and

non-membership functions are as follows;
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Avgdev(�E)


���E ; 

�
�E
; ���E

�
u1 h0:2299; 0:2709; 0:2397i

u2 h0:2213; 0:3062; 0:2311i

u3 h0:2332; 0:3184; 0:2403i

u4 h0:2289; 0:3009; 0:2382i

u5 h0:2296; 0:2768; 0:2365i

u6 h0:2332; 0:3091; 0:2428i

u7 h0:2247; 0:2601; 0:2361i

Table 5.16. Average deviation

Comparision tables Compute the comparison table for membership,

intermediate and non-membership functions �;� and 	 by using the

method given in (5.2.3),(5.2.4) and (5.2.5).

� e1 e2 e3 e4 e5

e1 8 16 16 16 16

e2 8 8 8 8 8

e3 8 16 8 8 8

e4 8 8 8 8 8

e5 8 16 16 16 8

Table 5.17. Membership comparison
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� e1 e2 e3 e4 e5

e1 8 16 8 16 16

e2 8 8 8 8 8

e3 16 16 8 16 16

e4 8 16 8 8 12

e5 8 16 8 13 8

Table 5.18. Intermediate comparison

	 e1 e2 e3 e4 e5

e1 8 16 16 8 16

e2 8 8 16 8 16

e3 8 8 8 8 8

e4 16 16 16 8 16

e5 8 8 16 8 8

Table 5.19. Non-membership comparison

Weight Parameters The positive, intermediate and negative weight values are

calculated by using equations (5.2.8)-(5.2.11) by using equation (5.2.6) to

(5.2.8).

�ri �ci �ri ��ci �E

e1 72 40 32 5.333

e2 40 64 -24 -4

e3 48 56 -8 -1.333

e4 40 56 -16 -2.667

e5 64 48 16 2.667

Table 5.20. Membership weight parameters
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�ri �ci �ri � �ci E

e1 64 48 16 2.667

e2 40 72 -32 -5.333

e3 72 40 32 5.333

e4 52 61 -9 -1.5

e5 53 60 -7 1.167

Table 5.21. Intermediate weight parameters

	ri 	ci 	ri �	ci �E

e1 64 48 16 2.667

e2 56 56 0 0

e3 40 72 -32 -5.333

e4 72 40 32 5.333

e5 48 64 -16 -2.667

Table 5.22. Non-membership weight parameters

NS-set The NS-set � over the parametric set E is constructed as given in equation

(5.2.12). The results of table 5:20, 5:21 and 5:22 are used.

�
�
�
E
; 

E
; �

E

�
e1 (5:333; 2:6667; 2:6667)

e2 (�4;�5:333; 0)

e3 (�1:333; 5:333;�5:333)

e4 (�2:6667;�1:5; 5:3333)

e5 (2:6667;�1:1667;�2:6667)

Table 5.23. NS-set

Evaluation set The evaluation set for each object si by using the formula given
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in equation (5.2.13) and represent in the form of (5.2.14).

�E
�
�E(i); E(i); �E(i)

�
s1 [1:2262;�0:3162;�1:2785]

s2 [1:1800;�0:3573;�1:2324]

s3 [1:2435;�0:3714;�1:2814]

s4 [1:2207;�0:3509;�1:2707]

s5 [1:2154;�0:3293;�1:2726]

s6 [1:2435;�0:3498;�1:2951]

s7 [1:1983;�0:3605;�1:2592]

Table 5.24. Evaluation set

Evaluation scores To compute the evaluation scores ŝi equation (5.2.15) is taken.

Score

ŝ1 2.1886

ŝ2 2.0552

ŝ3 2.1535

ŝ4 2.1403

ŝ5 2.1589

ŝ6 2.1888

ŝ7 2.0969

Table 5.25. Evaluation score

Maximum Score The maximum score sort out the appropriate S-box for image

encryption. It is denoted by s, and de�ned in equation (5.2.16) the result is;

s = ŝ6 = 2.1888
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which represents the Xyi S-box.

Fig. 5.25

5.3.4 Grading results for encrypted images of Baboon

The scores of S-box, sorted out in descending order, show the performance of S-

boxes.

Score

ŝ6 2.1888

ŝ1 2.1886

ŝ5 2.1589

ŝ3 2.1535

ŝ4 2.1403

ŝ7 2.0969

ŝ2 2.0551

Table 5.26. Grading the score

We end by providing is a comparison of NSS-decision making method with IFS-

decision making method provided in table 4:12 (4.3.3) for the image of Baboon.
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The score from upper to lower order of both the method is given as;

Score

ŝ3 0.0708

ŝ5 0.0239

ŝ2 0.0231

ŝ1 0.0152

ŝ4 -0.0263

ŝ6 -0.0473

ŝ7 -0.0594

Table 4.12. IFS-score

Score

ŝ6 2.1886

ŝ1 2.0552

ŝ5 2.1535

ŝ3 2.1403

ŝ4 2.1589

ŝ7 2.1888

ŝ2 2.0969

Table 5.26. NSS-score

Here we see that the score of both are signi�cantly di¤erent. Here the results show

that NSS decision making algorithm is better than IFS-decision making algorithm.

5.3.5 Decision making on performance indexes of Pepper

image

Pepper The standard S-boxes results for the image of Pepper are as follows;
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MLC Entropy Energy Correlation Homogeneity Contrast

Plain Image 5.8597 0.2140 0.9768 0.1763 0.9388

AES 7.3388 7.9274 0.0241 0.0191 0.4377

APA 7.3388 7.3363 0.0577 0.0204 0.4552

Prime 7.3388 9.1005 0.0364 0.0172 0.4202

S8-AES 7.3318 7.5407 0.0344 0.0210 0.4441

Gray 7.3388 7.9515 0.0310 0.0193 0.4348

Xyi 7.3388 8.5151 0.0138 0.0187 0.4321

SkipJack 7.3388 8.1139 0.0584 0.0184 0.4372

Table 5.27. Image encryption analyses of Pepper

Enciphered Image of Pepper Following are the enciphered image of the Pepper.

Fig. 5.26. Plain image

Pepper

Fig. 5.27. AES

transformation of Pepper
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Fig. 5.28. APA

transformation of Pepper

Fig. 5.29. Prime

transformation of Pepper

Fig. 5.30. S8

transformation of Pepper

Fig. 5.31. Gray

transformation of Pepper

Fig. 5.32. Xyi

transformation of Pepper

Fig. 5.33. Skipjack

transformation of Pepper

123



5.3. Decision making algorithm in action

Evaluation scores Repeating the same steps from (5.1.1) to (5.2.16) for the image

of Pepper. We get the score;

Score

ŝ1 109.0637

ŝ2 100.8376

ŝ3 125.4098

ŝ4 103.6748

ŝ5 109.3957

ŝ6 117.2579

ŝ7 111.6658

Table 5.28. Evaluation score

5.3.6 Grading results for encrypted images of Pepper

The scores of S-box, sorted out in descending order, show the performance of

S-boxes.
Score

ŝ3 125.4098

ŝ6 117.2579

ŝ7 111.6658

ŝ5 109.3957

ŝ1 109.0637

ŝ4 103.6748

ŝ2 100.8376

Table 5.29: Grading the score

Here we see that the Prime S-box is the appropriate S-box.
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5.3.7 Decision making on performance indexes of Lena

image

Lena The standard S-boxes results for the image of Lena are as follows;

MLC Entropy Energy Correlation Homogeneity Contrast

Plain Image 5.0902 0.1017 0.9881 0.2505 0.9388

AES 7.2531 7.5509 0.0554 0.0202 0.4377

APA 7.2531 8.1195 0.1473 0.0183 0.4552

Prime 7.2531 7.6236 0.0855 0.0202 0.4202

S8-AES 7.2357 7.4852 0.1235 0.0208 0.4441

Gray 7.2531 7.5283 0.0586 0.0193 0.4348

Xyi 7.2531 8.3108 0.0417 0.0187 0.4321

SkipJack 7.2531 7.7058 0.1025 0.0184 0.4372

Table 5.30. Image encryption analyses of Lena

Enciphered images of Lena Following are the Plain image and enciphered

images of standard S-boxes.

Fig. 5.34. Plain image of

Lena

Fig. 5.35. AES

transformation of Lena
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Fig. 5.36. APA

transformation of Lena

Fig. 5.37. Prime

transformation of Lena

Fig. 5.38. S8

transformation of Lena

Fig. 5.39. Gray

transformation of Lena

Fig. 5.40. Xyi

transformation of Lena

Fig. 5.41. SkipJack

transformation of Lena
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Evaluation scores Repeating the same steps from (5.1.1) to (5.2.16) for the image

of Pepper. We get the score;

Score

ŝ1 221.1078

ŝ2 237.9101

ŝ3 223.2559

ŝ4 219.1829

ŝ5 220.4362

ŝ6 243.5272

ŝ7 225.6909

Table 5.32. Evaluation score

5.3.8 Grading results for encrypted images of Lena

The scores of S-box, sorted out in descending order, show the performance of S-

boxes.
Score

ŝ6 243.5272

ŝ2 237.9101

ŝ7 225.6909

ŝ3 223.2559

ŝ1 221.1078

ŝ5 220.4362

ŝ4 219.1829

Table 5.33. Grading the score

The Xyi S-box is the appropriate one.
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Chapter 6

A new decision making and

grading of S-boxes based on

neutrosophic fuzzy soft sets

In the previous chapter, the NSS decision-making concept is used in for selecting the

appropriate S-box. In this chapter, we intend to use an improved version of decision-

making on neutrosophic fuzzy soft set (NFSS), for the selection of the optimally

secure S-box. The inconsistency can be e¢ ciently measured. by NFSS, whereas

fuzzy and intuitionistic fuzzy soft set cannot handle the indeterminate information.
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The idea of this chapter is mainly to securitize optimal S-box among the huge list

of S-boxes For the sake of completeness, the next section is devoted to preliminaries

and necessary explanations. In [92], construction of S-boxes is based on the action of

the projective general linear group PGL (2; GF (28)) on Galois �eld GF (28),which

gives us an algorithm to generates a huge number of S-boxes. These S-boxes applied

on an image which gives us the table of MLC analysis. The we create a new decision-

making method on NFSS. Then the steps are proposed to apply decision-making

method on the table of MLC analysis of S-boxes. In the end, the scores are the grade

in descending order, to compare the image encryption quality of di¤erent S-boxes.

6.1 Chaotic S-boxes generation algorithm

The construction of S-boxes is based on the idea of linear fractional transformations

of the projective general linear group. The initial seed for the con�guration of S-

boxes in the algorithm is derived from the two-dimensional chaotic maps, that is,

the Tinkerbell map, the Baker�s map, and the Du¢ ng map.

Four values are generated through Tinkerbell map which is used as seed values

of the Baker�s map and the Du¢ ng map. Random values are generated by these two

maps and are allocated to the parameters a; b; c and d which used by linear fractional

transformations. The linear fractional transformation used in the con�guration of

S-boxes is:

PGL
�
2; GF

�
28
��
�GF

�
28
�
! GF

�
28
�

The algebraic construction used here is; g (z) = az+b
cz+d

such a; b; c; d 2 GF (28) and

g 2 PGL (2; GF (28)) with ad � bc is non square. The algorithm proposed for the

synthesis of chaotic S-boxes for this action is given in detail [92].
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Tinkerbell Map

The Tinkerbell map [43], is a two dimensional chaotic map whose iterations give rise

to a complex pattern. It is a discrete-time dynamical system given by the equations

xn+1 = x2n � y2n + axn + byn;

yn+1 = 2xnyn + cxn + dyn;

where a = 0:9; b = �0:6013; c = 2:0 and d = 0:5. The are the Tinkerbell map

iterate for n = 4h; where h 2 Z+.

Let H1 contains all values for n = 4h0; H2 for n = 4h0 + 1; H3 for n = 4h0 + 2

and H4 for n = 4h0 + 3; while h0 � h.

RSA algorithm aids in the generation of initial seed for Tinkerbell map.

The computational steps of RSA algorithm for seed generation are:

1. Generation of two large primes p and q:

2. Calculation of n; where n = p� q:

3. Calculation of totient function �(n) = (p� 1)� (q � 1):

4. Selection of encryption exponent e such that gcd(�(n); e) = 1:

5. Calculation of decryption exponent d such that d = (e�1) (mod�(n)):

Let M represents our message. Then we can transform M into another integer

C which will represent our ciphertext by the following modular exponent:

C =M e(modn),

where C can be expressed as

C = c1c2:::ck; where ci 2 Z+.

If

t = c1 + c2 + :::+ ck;
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then

C1 = CCC:::Ct.

Now convert C1 into binary form

C1Binary = b1b2b3:::bj; with b1; b2; :::bj 2 Z2.

Taking

k1 =

jX
l=1

bl

j
; where bl are the 10s in C1Binary ,

and

k2 = 1� k1.

If

k1 = 1;

then put

C1 = CCC:::CtCt+1.

Consequently, the initial value for Tinkerbell map would be

x0 = k1; y0 = k2

Baker�s Map

The Baker�s map in [84] is de�ned as:

x0n+1 =

8<: �ax
0
n if y0n < �

1� �a + �bx0n if y0n > �
;

y0n+1 =

8<:
y0n
�

if y0n < �
y0n��
�

if y0n > �
:

Here we have, � = 1� �; �a + �b � 1; 0 � x0 � �a and (1� �a) � x0 � 1:
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The initial seed for Baker�s map is calculated as:

x00 =

0BBBBB@
4h0X
i=0

h1i

h

1CCCCCA (mod 1) ;where h1i 2 H1;

y00 =

0BBBBB@
4h0+1X
i=0

h2i

h

1CCCCCA (mod 1) ;where h2i 2 H2.

Du¢ ng Map (Holme�s Map)

The Du¢ ng map is de�ned as:

x00n+1 = y00n;

y00n+1 = ��x00n + �y00n � y003n ;

where � = 2:75 and � = 0:15:

The initial seed values for Du¢ ng map are calculated as

x000 =

0BBBBB@
4h0+2X
i=0

h3i

h

1CCCCCA (mod 1) ; where h3i 2 H3;

y000 =

0BBBBB@
4h0+3X
i=0

h4i

h

1CCCCCA (mod 1) ; where h4i 2 H4.
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6.1.1 Algorithm for checking the nonlinearity of S-boxes

In the proposed algorithm, a pro�cient way for the collection of better S-boxes is

being introduced. Here a nonlinearity check is induced in the algorithm which yields

S-boxes along with their nonlinearity value. Now we are able to collect processed

S-boxes with respect to nonlinearity. The purpose of this work is:

1. To analyze the strength of S-boxes with respect to nonlinearity.

2. To collect S-boxes having desired traits of nonlinearity.

3. To check whether the value of nonlinearity criterion a¤ects the values of other

criteria or not.

4. To calculate the number of S-boxes having particular nonlinearity, from the

huge number of S-boxes gained through the algorithm obtained by Tinkerbell map,

Baker�s map and the Du¢ ng map.
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Fig. 6.1: Flow chart of Algorithm
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6.1.2 S-boxes and enciphering

By using the previous algorithm we select di¤erent S-boxes, which are presenred as

follows:

S-box 1 S-box 2

S-box 3 S-box 4
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S-box 5 S-box 6

S-box 7 S-box 8

S-box 9 S-box 10
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S-box 11 S-box 12

S-box 13 S-box 14

S-box 15
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6.2 Neutrosophic soft set for decision making

In this section, we elaborate the NSS-decision making method for this we propose

a few important de�nitions.

De�nition 6.2.1. If �E is the NSS and ��E(e)(si); �E(e)(si) and v�E(e)(si) denote

the membership degree, indeterminacy degree and non-membership degree of object

si respectively. Then the average deviation of membership, indeterminacy and non-

membership are;

���E(si) =
1

n

X
j��E(e)(si)� ���E(e)(s)j; (6.2.1)

��E(si) =
1

n

X
j�E(e)(si)� ��E(e)(s)j;

v��E(si) =
1

n

X
jv�E(e)(si)� �v�E(e)(s)j;

Then for each si 2 S, and ���E(e)(s); ��E(e)(s) and �v�E(e)(s) are mean of

��E(e)(si); �E(e)(si) and v�E(e)(si). It is presented as follows;

< ���E(si); 
�
�E
(si); v

�
�E
(si) > : (6.2.2)

De�nition 6.2.2. A comparison table for membership function, denoted by �;

is a table in which, the number of rows are equal to the number of columns, rows

and columns both are labeled by the parameters e1; e2; � � � ; en. The entries are

xij; i; j = 1; 2; � � � ; n; given by

xij = the number, for which the member degree of ei is (6.2.3)

important by the membership degree of ej

=

8<: 2 if ei > ej;

1 if ei < ej:
(6.2.1)

Note that 0 � xij � p; xii = p for all i; j and p is the number of objects presented.
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Comparison table for intermediate function is denoted by �. It is a table in

which number of rows are equal to the number of columns, rows and columns both

are labeled by he parameters e1; e2; � � � ; en. The entries are yij; i; j = 1; 2; � � � ; n;

given by

yij = the number, for which the intermediate degree of ei is (6.2.4)

important by the intermediate degree of ej

=

8<: 2 if ei > ej;

1 if ei < ej:
(6.2.2)

where 0 � yij � p; yii = p for all i; j and p is the number of objects present in the

universal set.

Finally, 	 is a comparison table of non-membership function, in which number

of rows are equal to the number of columns. Moreover, rows and columns both are

labeled by the parameters e1; e2; � � � ; en. The entries are zij; i; j = 1; 2; � � � ; n; given

by

zij = the number, for which the non-membership degree of ei is (6.2.5)

important by the non-membership degree of ej

=

8<: 2 if ei > ej;

1 if ei < ej:
(6.2.3)

where 0 � zij � p and zii = p; for all i; j and p is the number of objects present in

the universal set.

De�nition 6.2.3. The membership function row and column sum of a parameter

ei, denoted by �ri and �ci respectively and de�ned as

�ri : =
nX
j=1

xij;

�ci : =
nX
j=1

xij: (6.2.6)
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The intermediate function row and column of a parameter ei, is presented by �ri

and �ci respectively and de�ned as

�ri : =
nX
j=1

yij;

�ci : =

nX
j=1

yij: (6.2.7)

The negative function row and column of a parameter ei, is presented by 	ri and

	ci respectively and de�ned as

	ri : =
nX
i=1

zij;

	ci : =
nX
j=1

zij: (6.2.8)

De�nition 6.2.4. The Positive Weight of each parametric set ei 2 E, can be

computed from following formula:

�E(ei) :=
(�ri ��ci)

6
: (6.2.9)

The Intermediate weight of the parametric set ei 2 E can be computed as:

E(ei) :=
(�ri � �ci)

6
: (6.2.10)

Similarly, the Negative weight of the parametric set ei 2 E can be given as,

vE(ei) :=
(	ri �	ci)

6
: (6.2.11)

Finally, for all ei 2 E; the Neutrosophic Set (NS) over E, is as below;

� := f(e; �E (ei) ; E (ei) ; vE (ei)) : ei 2 Eg : (6.2.12)
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De�nition 6.2.5. If �E be the NSS over S and � is NS over E, then the

evaluation value of si can be calculated from,

�E(i)(si) : = maxf���E(ej)(si) � �E (ej) : ej 2 Eg; (6.2.13)

E(i)(si) : = medianf��E(ej)(si) � E (ej) : ej 2 Eg;

vE(i)(si)L = minfv��E(ej)(si) � vE (ei) : ej 2 Eg;

where 1 � i � n and 1 � j � m. The evaluation set is de�ned as follows;

�
�E(i); E(i); vE(i)

�
; (6.2.14)

for all si 2 S and ej 2 E.

De�nition 6.2.6. Let �E be the NSS over S. The evaluation score of si 2 S, is

calculated from the evaluation set as;

ŝi = �E(i) + E(i) � vE(i); (6.2.15)

for 1 � i � n. Moreover the �nal evaluation score can be obtained from following,

s = max
1�i�n

fŝig: (6.2.16)

6.3 A new decision making procedure based on

neutrosophic soft set

Decision making is the process of choosing the best among the available alternatives.

We will proceed further by de�ning the algorithm for the decision-making criterion.

The steps for the decision of selecting an appropriate choice are:

1. Choose the NSS �E over the universe NS(U).

2. Compute average deviation of NSS for each si 2 S.
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3. Compute the comparison tables �;� and 	.

4. Compute positive, intermediary and negative weight value for each parameter.

5. Construct the NS-set � over the parametric set E.

6. Construct the evaluation intervals for each object si.

7. Compute the evaluation scores ŝi.

8. Find s, for which s = max
1�i�n

fŝig.

Flow chart of new decision making using NSS

Decision making for selecting appropriate Sbox

Average
deviation

NSset of E

Evaluation
score

Maximum score

Comparison tables
for E

Weight functions

Evaluation Interval;

Construct NSS over S

Fig. 6.2: Flow chart of new decision

making by using neutrosophic soft set
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6.4 A new decision making on neutrosophic soft

set for selecting the suitable S-box

The decision-making process is one which involves various objects along with certain

analyses parameters, followed by choosing the best one among them. The S-box has

a particular importance in crypto-system, without it, attackers would compromise

the system with ease. The fundamental objective of S-box is to construct a nonlinear

mapping between the original text and encrypted text. The e¤ectiveness of the S-

box is investigated by using various parameters used in the literature. In [92],

the algebraic and statistical analysis are used for the encrypted image of Lena.

Though, in this study by using statistical analysis, an NSS-decision making criterion

is constructed for the selection of the most e¤ective S-box from a given set of S-

boxes. The �ndings of NSS-decision making criterion are better than the output

obtained by IFS (that is, Intuitionistic Fuzzy Sets) analysis.

The following table presents some image encryption analysis such as entropy,

energy, correlation, homogeneity and contrast for �fteen S-boxes formed in section

6:1:2.
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S-box Entropy Energy Correlation Homogeneity Contrast

Plain Image 7.246 0.1615 0.9073 0.8995 0.2805

S-box 1 7.5841 0.0207 0.1444 0.4897 6.9398

S-box 2 7.5841 0.0203 0.0971 0.4776 7.5808

S-box 3 7.5841 0.0199 0.1301 0.4827 7.2333

S-box 4 7.5841 0.0191 0.1348 0.4778 7.5838

S-box 5 7.5841 0.0203 0.133 0.4845 7.0992

S-box 6 7.5841 0.0187 0.1305 0.4766 8.0428

S-box 7 7.5841 0.0193 0.1098 0.4753 7.7116

S-box 8 7.5841 0.0193 0.141 0.4788 7.3847

S-box 9 7.5841 0.0204 0.1432 0.485 7.1097

S-box 10 7.5841 0.0205 0.1271 0.489 7.595

S-box 11 7.5841 0.0197 0.1409 0.4844 7.4919

S-box 12 7.5841 0.0198 0.1338 0.485 7.4289

S-box 13 7.5841 0.0193 0.1224 0.4764 7.6968

S-box 14 7.5841 0.0208 0.1306 0.4867 7.1906

S-box 15 7.5841 0.0196 0.1267 0.4825 7.7758

Table 6.1: Image encryption analyses of S-box

Following are the graphical representation of various S-boxes corresponding to

di¤erent image encryption analysis obtained by table 6:1.
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Fig. 6.3: Entropy analyses of tested S-boxes. Fig. 6.4: Energy analyses of tested S-boxes.

Fig. 6.5: Correlation analyses of tested

S-boxes.

Fig. 6.5. Homogenity analyses of tested

S-boxes.
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Fig. 6.6: Contrast analyses of tested S-boxes.

Enciphered images

In this work, we have used the simulation results for �fteen S-boxes for the

analysis. The Fig 6:8, shows the original image and others are enciphered images.

The e¤ects of the nonlinear substitution can be observed by visually examining the

transformed images resulting from the original image.

Fig 6.7: Plain image of Lena
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Fig 6.8: Enciphered

S-box 1

Fig 6.9: Enciphered

S-box 2

Fig 6.10: Enciphered

S-box 3

Fig 6.11: Enciphered

S-box 4

Fig 6.12: Enciphered

S-box 5

Fig 6.13: Enciphered

S-box 6

Fig 6.14: Enciphered

S-box 7

Fig 6.15: Enciphered

S-box 8

Fig 6.16: Enciphered

S-box 9
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Fig 6.17: Enciphered

S-box 10

Fig 6.18: Enciphered

S-box 11

Fig 6.19: Enciphered

S-box 12

Fig 6.20: Enciphered

S-box 13

Fig 6.21: Enciphered

S-box 14

Fig 6.22: Enciphered

S-box 15

We treat S = fs1; s2; s3; � � � ; s15g as the universal set of S-boxes, where

si 2 U ; 1 � i � 15, represents �fteen di¤erent S-boxes. The S-boxes are

characterized by the set of parameters E = fe1; e2; e3; e4; e5g, where the

parameters ej, 1 � j � 5; stands for the evaluation criteria of entropy, energy,

correlation, homogeneity and contrast respectively. By using Neutrosophic set, we

de�ne the membership, intermediate and non-membership value of each S-box.

Subsequently, we use a method based on NSS, for making a decision to choose an

S-box of pro�cient nature.
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6.4.1 Formula for computing the neutrosophic set (NS)

In this section, we begin by providing the reader, the details of the techniques to

analyze the properties of S-boxes and their Neutrosophic set.

Neutrosophic set (NS) for Entropy

The entropy coe¢ cient measures the uncertainty in the data. This coe¢ cient

scrutinizes the encrypted process. The neutrosophic set for soft set is measured by

the following method:

��E(e1)(si) = 2�
e1(si)
e1(P )

; (6.4.1)

�E(e1)(si) = e1(si)(mod 1);

v�E(e1)(si) =
e1(si)

e1(si) + e1(P )
;

where e1(P ) is the entropy of the plain image and e1(si) is the entropy of ciphered

image for the S-box si and 1 � i � 7.

Neutrosophic set (NS) for Energy The amount of square elements from

GLMC has been used to assess the energy coe¢ cient. The neutrosophic set

for energy is measured by the following method:

��E(e2)(si) =
e2(si)
e2(P )

+ e2(P ); (6.4.2)

�E(e2)(si) =
e2(si) + e2(P )

2
;

v�E(e2)(si) =
e2(si)
e2(P )

;

where e2(P ) is the energy of the plain image and e2(si) is the energy of ciphered

image for the S-box si and 1 � i � 7.

Neutrosophic set (NS) for Correlation

The correlation coe¢ cient is applied to specify the amount of similarity between

two neighboring pixels. The correlation coe¢ cient tells us the similarity between the
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original and coded information are identical. The neutrosophic set for correlation

is denoted by e3 and is de�ned as:

��E(e3)(si) = e3(P ) � e3(si); (6.3.3)

�E(e3)(si) =
e3(P ) � e3(si)
e3(P ) + e3(si)

;

v�E(e3)(si) =
e3(si)
e3(P )

;

where e3(P ) is the correlation of the plain image and e3(si) is the correlation of

ciphered image for the S-box si and 1 � i � 7.

Neutrosophic set (NS) for Homogenity

The analysis determines the evenness of established structure within the

ciphertext. The neutrosophic set for homogeneity is denoted by e4 and is as

follows:

��E(e4)(si) =
e4(si)
e4(P )

; (6.4.4)

�E(e4)(si) =
e4(P ) � e4(si)
e4(P ) + e4(si)

;

v�E(e4)(si) =
e4(P )

e4(P ) + e4(si)
;

where e4(P ) is the homogeneity of the plain image and e4(si) is the homogeneity of

ciphered image for the S-box si and 1 � i � 7.

Neutrosophic set (NS) for Contrast

Local variation in the encrypted image is measured by contrast. The

neutrosophic set for contrast is denoted by e5 and is de�ned as:

��E(e5)(si) =
e5(si) � e5(P )
e5(si) + e5(P )

; (6.4.5)

�E(e5)(si) = e5(si)(mod 1);

v�E(e)(si) =
e5(P )
e5(si)

;

where e5(P ) is the contrast of the plain image and e5(si) is the contrast of ciphered

image for the S-box si and 1 � i � 7.
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6.4.2 Neutrosophic soft set (NSS)

The equations from (6.4.1-6.4.5) are used to de�ne the NS of each parameters by

taking the data from table 6:1. Using these NS, we form NSS and represent it in

the following tabular form;

Table 6.2: Neutrosophic soft set

6.4.3 Average deviation

By using the data from previous table 6:2, into equation (6.2.1), the average

deviation is calculated. The computed values are expressed in (6.2.2) and average
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deviation is represent in the following table;

Avgdev(�E)


���E ; 

�
�E
; ���E

�
s1 h0:2273; 0:2672; 0:2256i

s2 h0:2429; 0:2201; 0:2363i

s3 h0:2338; 0:2199; 0:2301i

s4 h0:2350; 0:2103; 0:2308i

s5 h0:2320; 0:2404; 0:2288i

s6 h0:2369; 0:2493; 0:2324i

s7 h0:2417; 0:2370; 0:2354i

s8 h0:2330; 0:1907; 0:2293i

s9 h0:2294; 0:2347; 0:2268i

s10 h0:2318; 0:2165; 0:2295i

s11 h0:2308; 0:1954; 0:2283i

s12 h0:2322; 0:1875; 0:2294i

s13 h0:2383; 0:2314; 0:2331i

s14 h0:2214; 0:2271; 0:2285i

s15 h0:2349; 0:2442; 0:2314i

Table 6.3: Average deviation.
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6.4.4 Comparison tables

The comparison table 6:2 of NSS is computed by the method given in equations

(6.2.3-6.2.5), we get following tables of interval;

� e1 e2 e3 e4 e5

e1 15 30 30 30 30

e2 15 15 15 15 15

e3 15 30 15 30 30

e4 15 30 15 15 30

e5 15 30 15 15 15

Table 6.4: Membership comparison parameters.

� e1 e2 e3 e4 e5

e1 15 30 15 30 24

e2 15 15 15 15 29

e3 30 30 15 30 28

e4 15 30 15 15 20

e5 20 29 17 23 15

Table 6.5: Intermediate comparison parameters.

	 e1 e2 e3 e4 e5

e1 15 30 30 15 30

e2 30 15 30 15 30

e3 15 30 15 15 30

e4 30 30 30 15 30

e5 15 15 15 15 15

Table 6.6: Non-membership comparison parameters.
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6.4.5 Weight function

Once again using the tables 6:4�6:6 into equations (6.2.6-6.2.11) we get values of

weight functions of the membership, intermediate and non-membership functions

for each parameter,

�ri �ci �ri ��ci �E

e1 135 75 60 10

e2 75 135 -60 -10

e3 120 90 30 5

e4 105 105 0 0

e5 90 120 -30 -5

Table 6.7: Positive weight.

�ri �ci �ri � �ci E

e1 114 95 19 3.1667

e2 89 134 -45 -7.5

e3 133 77 56 9.3333

e4 95 113 -18 -3

e5 104 116 -12 -2

Table 6.8: Intermediate weight.

	ri 	ci 	ri �	ci �E

e1 120 105 15 2.5

e2 120 120 0 0

e3 105 120 -15 -2.5

e4 135 75 60 10

e5 75 135 -60 -10

Table 6.9: Negative weight.
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6.4.6 Neutrosophic set (NS)

The NS of tables computed from above tables 6:7�6:9, are arranged in the form

given in (6.2.12) and represent NS in following table;

�
�
�
E
; 

E
; �

E

�
e1 (10; 3:1667; 2:5)

e2 (�10;�7:5; 0)

e3 (5; 9:333;�2:5)

e4 (0;�3; 10)

e5 (�5;�2;�10)

Table 6.10: NS-set.

6.4.7 Evaluation set

Using the values of table 6:3 and previous table 6:10 into equation (6.2.13) to

calculate evaluation values. These values are further put into equation (6.2.14)
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and represent as follows;

�E
�
�E(i); E(i); �E(i)

�
s1 [2:2725;�0:5345;�2:2569]

s2 [2:4295;�0:4402;�2:3635]

s3 [2:3376;�0:4398;�2:3006]

s4 [2:3503;�0:4206;�2:3087]

s5 [2:3208;�0:4808;�2:2883]

s6 [2:3685;�0:4988;�2:3249]

s7 [2:4166;�0:4740;�2:3546]

s8 [2:3301;�0:3815;�2:2930]

s9 [2:2936;�0:4695;�2:2688]

s10 [2:3183;�0:4331;�2:2958]

s11 [2:3081;�0:3908;�2:2837]

s12 [2:3222;�0:3749;�2:2941]

s13 [2:3828;�0:4628;�2:3310]

s14 [2:3144;�0:4541;�2:2859]

s15 [2:3494;�0:4885;�2:3141]

Table 6.11: Evaluation set.
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suitable S-box

6.4.8 Evaluation score

Next using the above table 6:11 into equation (6.2.15) we get the �nal evaluation

score each of objects si, given as in form of following table;

Score

ŝ1 3.9951

ŝ2 4.3528

ŝ3 4.1984

ŝ4 4.2384

ŝ5 4.1283

ŝ6 4.1947

ŝ7 4.2972

ŝ8 4.2417

ŝ9 4.0931

ŝ10 4.1810

ŝ11 4.2010

ŝ12 4.2414

ŝ13 4.2509

ŝ14 4.1462

ŝ15 4.1751

Table 6.12: Evaluation score.
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6.4. A new decision making on neutrosophic soft set for selecting the
suitable S-box

The graphical representation of score is as follows;

Fig. 6.23: Score of each S-box.

We can analyze from the graph that, since S-box 2 has the highest evaluation score so

it turns out to be the best S-box for secure communication. Similarly, S-box 1 having

the least evaluation score of all, re�ects that it had performed poorly as compared

to rest of S-boxes. The second best S-box is turns out to be S-box 7. The group of

consisting of S-boxes 13, 8; 12 and 4 have almost similar values, consequently their

performance is almost similar. We can also say that group consisting of S-boxes

11; 3; 6 have similar performances.

6.4.9 Maximum score

Thus, the maximum score gives us the appropriate S-box. Using equation (6.2.15)

we get;

s = ŝ2 = 4.3528

Hence, the best result is achieved in the evaluation for s2. Thus S-box 2 is an

appropriate one.
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6.4. A new decision making on neutrosophic soft set for selecting the
suitable S-box

6.4.10 Grading result

Score

ŝ2 4.3528

ŝ7 4.2972

ŝ13 4.2509

ŝ8 4.2417

ŝ12 4.2414

ŝ4 4.2384

ŝ11 4.2010

ŝ3 4.1984

ŝ6 4.1947

ŝ10 4.1810

ŝ15 4.1751

ŝ14 4.1462

ŝ5 4.1283

ŝ9 4.0931

ŝ1 3.9951

Table 6.13; Grading the S-boxes

The above table �nally ranks the S-boxes as per their evaluation scores and

hence their performance. The score justi�es the fact that, when we apply our

proposed algorithm, we don0t need lengthy manual work which re�ects that

less computational complexity is required to choose the best quality of S-box.
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Chapter 7

Application of soft rings and soft

modules in decision making

problems of cryptography

The motivation for this chapter comes from the notion of the soft ring. The main

objective is to construct a technique of the soft Galois ring and going to provide

a cryptographic application of the constructed example. More precisely, we intend

to employ a fuzzy bipolar soft decision-making algorithm based on soft Galois ring

on selecting a secure S-box. Substitution boxes (S-boxes) is the simple yet critical
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component of substitution-permutation network (S-P network) to hide information

while sending data. S-box is a technique that maps n bits to m bits. There are

several techniques to construct an S-box [49, 50, 51, 52]. Shah et al.�in [90] gave a

technique of construction of S-boxes by maximal cyclic subgroup Gs of the group of

units in Galois ring extension GR(22; 2) and GR(22; 22). These S-boxes increase the

intricacy of image encryption. Further Shah et al., [91] presents the methodology

to obtain maximal cyclic subgroups of the groups of units of �nite Galois rings

GR(2k; h). In this chapter, initially, we extend the concepts of soft ideals in a soft

ring to soft irreducible ideals, soft prime ideals, soft maximal ideals, soft primary

ideals and soft radical ideals. Ultimately the primary decomposition of soft rings and

soft modules is proven. Furthermore, the ascending and descending chain conditions

on soft ideals and soft sub-modules of soft rings and soft modules are presented.

Accordingly, we are enabled to cultivate the notions of soft Noetherian rings and soft

Noetherian modules. Next, we had constructed some examples of soft primary ideal

and sub-module using the de�ned soft Galois rings and soft modules, respectively.

By constructing a soft Z2k-module over Galois ring (GR (23; 8)) and the soft primary

decomposition of soft Z2k-sub-modules. This theory has been extended to the soft

group to form soft subgroups and then S-boxes has been constructed over elements

of the soft subgroup. This process gives rise to two S-boxes of 4 � 4 bit S-box

has been deal in this paper and 8 � 8 bits S-box. The optimal S-box is chosen by

using the fuzzy bipolar soft set decision making algorithm given in [75]. We de�ne

a method of membership and non-membership functions for each parameter. By

employing the decision-making algorithm, we choose the best S-box.
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7.1. Soft prime ideal, soft maximal ideal, soft primary ideal, soft radical
ideal

7.1 Soft prime ideal, soft maximal ideal, soft

primary ideal, soft radical ideal

The notion of soft ring and soft ideal are de�ned by [2]. Here we de�ned the concept

of soft prime ideal, soft maximal ideal, soft primary ideal, soft radical and further

the notion of primary decomposition soft rings and its operation are de�ned.

De�nition 7.1.1. Let (F;A) be a soft ring over the ring R. A non-null soft set (; I)

over R is called soft prime ideal of (F;A), which will be denoted by (; I)�p (F;A)

if it satis�es the following conditions:

(a) I � A.

(b) (x) is an ideal of F (x) 8 x 2 Supp(; I).

(c) For F (a); F (b) 2 (F;A); F (a) � F (b) 2 (; I) ) either F (a) 2 (; I) or

F (b) 2 (; I).

De�nition 7.1.2. Let (F;A) be a soft ring over a ring R. A non-null soft set

(; I) over the ring R is called soft maximal ideal of (F;A) which will be denoted by

(; I)�m (F;A) if it satis�es the following conditions;

(a) I � A.

(b) (x) is maximal ideal of F (x) 8 x 2 Supp(; I).

De�nition 7.1.3. Let (F;A) be a soft ring over the ring R. A non-null soft set (; I)

over R is called soft primary ideal of (F;A), which will be denoted by (; I)�p
0
(F;A)

if it satis�es the following conditions:

(a) I � A.

(b) (x) is an ideal of F (x) for all x 2 Supp(; I).

(c) 8 F (a); F (b) 2 (F;A); F (a) � F (b) 2 (; I) ) either F (a) 2 (; I) or

(F (b))n 2 (; I), for some n 2 Z+.
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7.2. Primary decomposition of soft rings

De�nition 7.1.4. Let (; I) be a soft ideal of (F;A) over the ring R. Then radical

of the soft ideal (; I) is denoted by rad((; I)) and is de�ned as

rad((; I)) = fF (a) 2 (F;A) : (F (a))n 2 (; I)g.

Proposition 7.1.5. The radical of soft primary ideal is soft prime ideal.

7.2 Primary decomposition of soft rings

We initiate in this section the notion of primary decomposition of soft rings and

establish some relevant results. Furthermore, ascending and descending chain

conditions on a soft ring are investigated, which are used to de�ne the notion of

soft Notherian rings.

De�nition 7.2.1. A soft ring (F; A) over R is said to have a primary

decomposition (resp. a Laskerian soft ring) if each soft ideal of (F; A) has a

primary decomposition (resp. �nite primary decomposition).

De�nition 7.2.2. A primary decomposition of a soft ring (F;A) is said to be

reduced or irredundant if (; I) = ei2N (i; Ii) ; where (i; Ii) are soft primary

ideals,

(a) rad ((i; Ii)) 6=rad
��
j; Ij

��
, for all i; j 2 N; i 6= j;

(b) (i; Ii) ! ej2Nni
�
j; Ij

�
, for all i; j 2 N:

De�nition 7.2.3. Let (F; A) be a soft ring over R and (; I) be soft ideal of (F;A)

then (; I) is soft irreducible if (; I) = (1; I1)e (2; I2), where (1; I1) and (2; I2)

be a soft ideals of (F;A), and either (; I) = (1; I1) or (; I) = (2; I2) :

De�nition 7.2.4. Let (; I) and (; J) be two soft ideals of a soft ring (F;A) then

(; I) is said to be (; J)-primary if:
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7.2. Primary decomposition of soft rings

(a) (; I) is soft primary.

(b) rad ((; I)) = (; J):

De�nition 7.2.5. Let (1; I1) and (2; I2) be two soft ideals of (F; A) over R:

Denote soft ideal quotient by the set

((1; I1) : (2; I2)) = fF (a) : F (a) (2; I2) � (1; I1)g, where the product

F (a) � 2 (b) 2 (1; I1) for all 2 (b) 2 (2; I2) ; implies that ((1; I1) : (2; I2)) is a

soft ideal of (F;A) :

Theorem 7.2.6. Let (F; A) be a soft ring over R and (i; Ii)i2N be soft ideals of

(F; A). The following conditions are equivalent:

1. Every ascending chain of soft ideals is stationary, i.e.

(a) The set of subsets Ii of a given set A are ordered by inclusion.

(b) 1(x) � 2(x) � 3(x) � � � � such that n(x) = n+1(x); for all

x 2 Supp(\i2N(i; Ii))

and (1; I1) � (2; I2) � (3; I3) � � � � � (n; In) � (F; A).

2. Every non empty set of ideals in (F;A) has a maximal element.

Proof. Let S be a set of proper soft ideals in a soft ring (F;A) over a ring R. (a)

implies that every ascending chain of soft ideal in S has an upper bound in S. By

Zorn�s lemma, S contains a soft maximal element. The soft maximal element is a

proper soft ideal of (F;A), that is, soft maximal ideal for inclusion among all proper

soft ideals.

Conversely, assume that (1; I1) � (2; I2) � (3; I3) � � � � be an ascending

chain of soft ideals. Suppose (; I) = ~[i2N(i; Ii), S is a set of soft ideals contained

in (; I). Therefore, it contains a maximal element. For some n 2 N, each (i; Ii)

belongs to (n; In).

(n; In) =
�
n+1; In+1

�
=
�
n+2; In+2

�
= � � � = (; I) :
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7.2. Primary decomposition of soft rings

Remark 7.2.7. Let (F; A) be a soft ring over a ring R called soft Noetherian and

which (i; Ii)i2N be soft ideals of (F;A) :

1.If every ascending chain condition on soft ideals is stationary, that is,

(a) I1 � I2 � I3 � � � � there exist a positive integer n such that In = In+1:

(b) 1(x) � 2(x) � 3(x) � � � � such that n(x) = n+1(x), for all

x 2 Supp (\i2N(i; Ii))

and it can be represented as

(1; I1) � (2; I2) � (3; I3) � � � � � (n; In) � (F; A) :

2. Every non-empty set of soft ideals of (F; A) is contained in soft maximal ideal:

Example 7.2.8. Let (1; I1) and (2; I2) be soft ideals of a soft ring (F;A) over

a ring R. Consider the ring R = A = Z; and I1 = I2 = I3 = Z � f0g: Let us

consider the set-valued function F : A �! P (R) given by F (x) = xZ. (F;A) is

a soft ring over R. Now consider the functions i : Ii ! P (R), for 1 � i � 3,

given by 1(x) = 8xZ; 2(x) = 4xZ, 3(x) = 2xZ where x 2 Supp (i; Ii).Thus

(1; I1) � (2; I2) � (3; I3) � (F;A) and (3; I3) is a soft maximal ideal of

(F;A).

Remark 7.2.9. Ascending chain of soft ideals need not to be stationary. For

instance consider the ring R = Z +XQ [X] ; A = Q and Ii = 1
2i
Z: Consider the

set valued function F : A �! P (R) such that

F (a) =
��

X
a

�
; a 2 Supp (F; A)

	
: Consider the function i : Ii ! P (R) given

i(a) =
��

X
a

�
; a 2 Supp (i; Ii)

	
: This gives I1 � I2 � I3 � � � �

and 1(x) � 2(x) � 3(x) � � � � . So,

(1; I1) � (2; I2) � (3; I3) � (4; I4) � � � � . Hence, we get a non-terminating
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7.2. Primary decomposition of soft rings

ascending chain of soft ideals. This is a non Noetherian ring. Here the soft

maximal ideal of the soft ring is (F; A) itself.

De�nition 7.2.10. Let (F;A) be a soft ring over a ring R and (; I) be soft prime

ideal of (F;A) : (; I) is minimal soft prime ideal if it is minimal in Spec (F;A) with

respect to inclusion.

Remark 7.2.11. The following conditions hold for conductor ideals.

(a) (; I) � ((; I) : (�; J)) :

(b) ((; I) : (�; J))�\ (�; J) � (; I) :

(c) ((; I) : (�; J)) : (�; L) = ((; I) : (�; J))�[ (�; L) :

(d) ((; I) : (�; J)) = e1n=1 ((n; In) : (�; J)) where (; I) = e1n=1 (n; In) :

(e) ((; I) : (�; J)) = e1n=1 ((; I) : (�n; Jn)) where (�; J) = �\ (�n; Jn) for n 2 N.

Theorem 7.2.12. Let (F; A) be a soft Noetherian ring over R. Each soft ideal of

(; I) of (F; A) over R is �nite intersection of soft irreducible ideals.

Proof. Suppose, on contrary, that the soft ideal (; I) can�t be written as a �nite

intersection of soft irreducible ideals. Set ~N = f(; I) j (; I) cannot be written

as �nite product of soft irreducible idealsg. Since (F; A) is a soft Noetherian, 9 a

maximal ideal
�

0
; I

0� 2 ~N , such that
�

0
; I

0�
can�t be written as a �nite product

of soft irreducible ideals.

Also
�

0
; I

0�
is not a soft irreducible ideal, there exists (1; I1) and (2; I2)

such that the restricted intersection of (1; I1) e (2; I2) =
�

0
; I

0�
implies either�


0
; I

0� � (1; I1) or �0 ; I 0� � (2; I2). The maximality of �0 ; I 0� implies that
(1; I1) =2 ~N and (2; I2) =2 ~N . This implies (1; I1) and (2; I2) can be written

as the �nite intersection of soft irreducible ideals i.e.
�

0
; I

0�
can be written as

the �nite intersection of soft irreducible ideals which is a contradiction. Hence,

proved. �
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7.2. Primary decomposition of soft rings

Theorem 7.2.13. Let (F; A) be a soft noetherian ring over a ring R. Every soft

irreducible ideal of (F; A) is a soft primary ideal of (F; A).

Proof. Let (; I) be a soft irreducible ideal over (F;A), then for F (a), F (b) 2 (F;A),

such that F (a)F (b) 2 (; I) but F (b) =2 (; I). Moreover,

((; I) : F (a)) � ((; I) : F (a)2) � ((; I) : F (a)3 � � � � is an ascending chain of

soft ideals of (F; A) over R. Since (F; A) is Noetherian, there exist n 2 N, such

that

((; I) : F (a)n) = ((; I) : F (a)n+1), for all n 2 N. We have to show that

(; I) = ((; I)�\ F (a)n � (F; A)) e ((; I)�\ F (b) � (F; A)) ; for all n 2 N:

Consider an element  (a) 2 (; I),  (a) �  (a) + F (a)n F (c) and

 (a) �  (a) + F (b)n F (d) ; F (c) ; F (d) 2 (F; A) :

This implies

(; I) � ((; I)�\ F (a)n � (F; A)) e ((; I)�\ F (b) � (F;A)) :

Conversely, assume that

 (c) 2 ((; I)�\ F (a)n � (F;A)) e ((; I)�\ F (b) � (F;A))

and

 (c) =  (bi) + F (a)
n F (c) =  (bj) + F (b)F (d) :

For c 2 Supp (; I)

 (c) � F (a) =  (bi) � F (a) + F (a)n+1 F (c) =  (bj) � F (a) + F (a)F (b)F (d) :
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7.2. Primary decomposition of soft rings

Since F (a)F (b) 2 (; I), so, F (a)n+1 F (c) 2 (; I). Also,

F (c) 2 ((; I)�\ F (a)n � (F; A)) and  (c) 2 (; I), therefore,

((; I)�\ F (a)n � (F;A)) e ((; I)�\ F (b) � (F;A)) � (; I) :

Since (; I) is irreducible and (; I) � (; I) �\ F (b) � (F;A), due to the fact that

F (b) =2 (; I). So,

(; I) = ((; I)�\ F (a)n � (F; A)) :

This proves that F (a)n 2 (; I) is primary. �

Theorem 7.2.14. Every soft noetherian ring is a soft Laskerian ring.

Proof. Follows directly from Theorems 7.2.12 and 7.2.13. �

Theorem 7.2.15. If (1; I1) and (2; I2) be primary decomposition ideals of a soft

ring (F;A) over a ring R. (1; I1)�[ (2; I2) is a primary decomposition soft ideal

of (F;A) if I1 \ I2 = �.

Proof. Obvious. �

Theorem 7.2.16. Let (1; I1) and (2; I2) be primary decomposition ideals of a soft

ring (F;A) over R. (1; I1)ê(2; I2) need not to be a primary decomposition ideal
of (F;A).

Proof. Obvious. �

Remark 7.2.17. Let (1; I1) and (2; I2) be primary decomposition of soft ideals of

a soft ring (F;A) over R. Then

(a) (1; I1)�\ (2; I2) needs not be a primary decomposition soft ideal of (F;A).

(b) (1; I1)�\ (2; I2) needs not be a primary decomposition soft ideal of (F;A).

(c) (1; I1) e (2; I2) needs not be a primary decomposition soft ideal of (F;A).
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7.2. Primary decomposition of soft rings

Theorem 7.2.18. Every soft ideal of a soft noetherian ring contains the power of

its soft radical.

Proof. Let (; I) be a soft ideal of a soft ring (F; A). Take F (ai) 2 rad(; I);

where ai 2 Supp (F; A) : Then F (ai)
ni 2 (; I), for some ni 2 N: Put

n = 1 +
P
(ni � 1) ; then (; I)n is generated by

F (a1)
m1 � F (a2)m2 � F (a3)m3 � � � � � F (ai)mi where

P
mi = n: At least one of

mi � ni making each F (ai)mi an element of (; I): Hence (; I)n � (; I): �

Theorem 7.2.19. Restricted product of two soft ideals is contained in their

restricted intersection.

Proof. Let (1; I1) and (2; I2) be two soft ideals of soft ring (F;A) over a ring R:

Take 1 (a) 2 (a) 2 (1; I1)�\ (2; I2) where 1 (a) 2 (1; I1), 2 (a) 2 (2; I2) and

a 2 Supp ((1; I1)�\ (2; I2)) : Since a 2 I1 \ I2, hence 1 (a) 2 (a) 2 (1; I1) and

1 (a) 2 (a) 2 (2; I2) : Thus 1 (a) 2 (a) 2 (1; I1) e (2; I2) :

Hence,

(1; I1)�\ (2; I2) � (1; I1) e (2; I2) :

�

Proposition 7.2.20. Let (; I) be a soft prime ideal and

(1; I1) ; (2; I2) ; � � � ; (n; In) any n soft ideals of (F;A) : The following statements

are equivalent:

(a) (; I) contains
�
j; Ij

�
, for some j;

(b) eni=1 (i; Ii) � (; I) ;

(c) �\ (i; Ii) � (; I) for 1 � i � n:

Proof. Obvious. �

169



7.2. Primary decomposition of soft rings

Theorem 7.2.21. Let (; I) and (�; P ) be soft ideals of soft ring (F;A) over a ring

R: (; I) is a soft primary for (�; P ) if and only if

(a) (; I) � (�; P ) � rad (; I)

(b) If F (a)F (b) 2 (; I) and F (a) =2 (; I), then F (b) 2 (�; P ) :

Proof. Suppose (a) and (b) holds. If F (a)F (b) 2 (; I) and F (a) =2 (; I), then

F (b) 2 (�; P ) � rad (; I) : Thus F (b)n 2 (; I) for some n > 0: Therefore, (; I)

is soft primary. To show (; I) is soft primary for (�; P ) :We need only to show that

(�; P ) = rad (; I) : By (a), (�; P ) � rad (; I) : If F (b) 2 rad (; I), then for some

positive integer n such that F (b)n 2 (; I) : If n = 1, then F (b) 2 (; I) � (�; P ) :

If n > 1, then F (b)n�1 F (b) 2 (; I) with F (b)n�1 =2 (; I) by the minimality of n,

by (b), F (b) 2 (�; P ) : Thus F (b) 2 rad (; I) gives F (b) 2 (�; P ) : The converse

implication is obvious. �

Theorem 7.2.22. If (; I) ; (1; I1) ; (2; I2) ; � � � ; (n; In) ; are soft ideals of a

soft ring (F;A) : Then,

(a) rad(rad (; I)) = rad(; I)

(b) rad((1; I1)�\ (2; I2)�\ � � � �\ (n; In)) = eni=1rad (i; Ii) :

Proof. (a) Let F (a) 2 rad(rad (; I)). Then F (a)n 2 rad (; I). Hence,

(F (a)n)m 2 (; I) for n;m 2 N: Therefore F (a) 2 rad (; I) :

Conversely Let F (a) 2 rad (; I). This implies F (a)1 2 rad (; I). Hence

F (a) 2 rad(rad (; I)):

(b) Let F (a) 2 eni=1Rad (i; Ii). Then there are m1;m2; � � � ;mn > 0 such that

F (a)mi 2 (i; Ii), for each j. If m = m1 +m2 + � � �+mn, then

F (a) = F (a)m1 F (a)m2 � � �F (a)mn 2 (1; I1)�\ (2; I2)�\ � � � �\ (n; In) .

Hence

eni=1rad (i; Ii) � rad((1; I1)�\ (2; I2)�\ � � � �\ (n; In)):
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7.2. Primary decomposition of soft rings

Since

(1; I1)�\ (2; I2)�\ � � � �\ (n; In)) � eni=1 (i; Ii) ;

we have

rad((1; I1)�\ (2; I2)�\ � � � �\ (n; In)) � eni=1rad (i; Ii) :

�

Theorem 7.2.23. Let (F;A) be a soft ring over a ring R: If (i; Ii)1�i�n are soft

primary ideals for the soft prime ideal (�; P ) ; then eni=1 (i; Ii) is also a soft primary

ideal belonging to (�; P ) :

Proof. Let (; I) = eni=1 (i; Ii) : According to [Theorem 7.2.22]

rad (; I) = rad eni=1 (i; Ii) = eni=1rad (i; Ii) = eni=1 (�; P ) = (�; P ) ;

Using [Theorem 7.2.21], (; I) � (�; P ) � rad (; I). If F (a)F (b) 2 (; I) and

F (a) =2 (; I) ; then F (a)F (b) 2 (i; Ii) for some i: Since (i; Ii) is (�; P )-soft

primary, F (b) 2 (�; P ). Consequently, (; I) itself is (�; P )-soft primary. �

Theorem 7.2.24. Let (; I) be a soft ideal of a soft ring (F;A) over a ring R. If

(; I) has a primary decomposition of soft rings, then (; I) has a reduced primary

decomposition.

Proof. Let (; I) = (1; I1) e (2; I2) e � � � e (n; In) be intersection of soft primary

ideals and some (i; Ii) contains

(1; I1) e (2; I2) e � � � e
�
i�1; Ii�1

�
e
�
i+1; Ii+1

�
e � � � e (n; In)

so (; I) = (1; I1) e (2; I2) e � � � e
�
i�1; Ii�1

�
e
�
i+1; Ii+1

�
e � � � e (n; In) is also

a primary decomposition. By eliminating the super�uous (i; Ii) and reindexing

we have (; I) = (1; I1) e (2; I2) e � � � e (k; Ik) with no (i; Ii) containing the

intersection of others
�
j; Ij

�
: Let (�1; P1) (�2; P2) � � � (�h; Ph) be distinct prime
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ideals in the set frad (1; I1), rad (2; I2) ; � � � ,rad (k; Ik)g: Let
�

0
i; I

0
i

�
(1 � i � h)

be the intersection of all the (i; Ii) that belong to the prime (�i; Pi) : Each
�

0
i; I

0
i

�
is soft primary for (�i; Pi) : Clearly no

�

0
i; I

0
i

�
contains the intersection of all soft

primary ideals. Therefore, (; I) = eki=1 (i; Ii) = ehi=1
�

0
i; I

0
i

�
. Hence (; I) has a

reduced primary decomposition of soft rings. �

7.3 Primary decomposition of soft modules

In this section we introduce the algebraic notions such as soft noetherian module,

soft primary module and primary decomposition of soft modules. Throughout this

section all rings are commutative with identity and all modules are unitary.

Recall that a moduleM is said to be noetherian (resp. artinan) if every ascending

chain (resp. descending chain) of sub-modules of M is stationary. A proper sub-

module C of a R-module M is said to be a primary sub-module if r 2 R; b =2 M

and rb 2 C this gives rnM 2 C for some positive integer n. A soft set (G;B) over

a R�module M is called a soft module if each G (b) is a sub-module of M , for all

b 2 Supp (G;B) (see [99, De�nition 10]).

De�nition 7.3.1. Let (G;B) be a soft module over an R-module M . It is said to

be soft noetherian module; if the following conditions are equivalent,

1. Every ascending chain of soft sub-modules is stationary, that is,

(a) The set of subsets of Bi of a given set B are ordered by inclusion.

B1 � B2 � B3 � � � � such that Bn = BN ; for n � N:

(b) (G1; B1) � (G2; B2) � (G3; B3) � � � � :: there exist a positive integer n such

that (Gn; Bn) = (GN ; BN), for n � N and chain takes form

(G1; B1) � (G2; B2) � (G3; B3) � � � � � (Gn; Bn) :

2.Every non-empty set of soft sub-modules of (G;B) is contained in soft maximal

172



7.3. Primary decomposition of soft modules

sub-module:

De�nition 7.3.2. A soft module (F;A) satis�es the maximal condition [resp.

minimum condition] on soft sub-modules if every non-empty set of soft

sub-modules of (F;A) contains a maximal [resp. minimal] element (with respect to

set theoretic inclusion).

De�nition 7.3.3. Let (F;A) be a soft ring over a ring R and (G;B) be a soft

module over an R-module M:If (; I) is a soft prime ideal of (F;A),

(; I) � (G;B) = f (a)G (b) : a 2 Supp (; I) ; b 2 Supp (G;B)g is a soft

sub-module of (G;B) :

Example 7.3.4. For R = M = Z; A = B = N and I = 2N; let us consider the

set value function F : A �! P (R) given by F (x) = fxZ : x 2 Ag. (F;A) is a

soft ring over R. Also consider an R-module M and G : B �! P (M) given by

G (b) =M , for all b 2 B. (G;B) be a soft module over an R-module M: Now again

consider  : I �! P (R) given by  (x) = 3xZ. (; I) is a soft ideal of (F;A) : As

(; I)� (G;B) = 3xZ �Z = 3xZ, for x 2 Supp (; I) is a soft sub-module of (G;B) :

Theorem 7.3.5. A soft module (F;A) satis�es the ascending [resp. descending]

chain condition on soft sub-modules if and only if (F;A) satis�es the maximal [resp.

minimal] condition on soft sub-modules.

Proof. Suppose (F;A) satis�es the minimal condition on soft sub-modules and

(G1; B1) ~�(G2; B2) ~�(G3; B3) ~� � � �

is a chain of soft sub-modules. Then the set f(Gi; Bi) ji � 1g has a minimal

element, say (Gn; Bn) : Consequently, for i � n we have (Gn; Bn) ~� (Gi; Bi) by

hypothesis and (Gn; Bn) ~� (Gi; Bi) by minimality. Hence (Gn; Bn) = (Gi; Bi) for

each i � n: Therefore, (F;A) satis�es the descending chain condition. Conversely
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suppose (F;A) satis�es the descending chain condition and S is a non-empty set of

soft sub-modules of (F;A) : Then there exists (Go; Bo) 2 S: If S has no minimal

element, then for each soft sub-module (G;B) in S there exists at least one soft

sub-module
�
G

0
; B

0�
in S such that (G;B) ~�

�
G

0
; B

0�
: For each (G;B) in S,

choose one such
�
G

0
; B

0�
: This choice then de�nes a function f : S �! S by

B 7�! B
0
: There is a function ' : N �! S such that ' (0) = (Go; Bo) and

' (n+ 1) = f (' (n)) = '
�
n
0�
: Thus if (Gn; Bn) 2 S denotes ' (n) ; then there is a

sequence (Go; Bo) ~� (G1; B1) ~� (G2; B2) ~� (G3; B3) ~� � � � This contradicts the

descending chain condition. Therefore, S must have a minimal element. Hence

(F;A) satis�es minimum condition.

The proof for ascending chain condition and maximum conditions is

analogous. �

De�nition 7.3.6. Let (F;A) be a soft ring over a ringR and (G;B) be a soft module

over an R-module M: A non-null soft subset of (H;C) of soft module (G;B) is said

to be soft primary sub-module, if it satis�es the following conditions:

(a)C � B

(b) H (c) is sub-module of G (c) for all c 2 Supp (H;C)

(c) F (a) 2 (F;A) such that F (a)nG (b) 2 (H;C) for all G (b) 2 (G;B) and n 2 N:

Theorem 7.3.7. Let (F;A) be a soft ring over a ring R and (G;B) be a soft module

over an R-module M: (H;C) be a soft primary sub-module (G;B) such that,

(�;Q) = fF (a) 2 (F;A) : F (a) (G;B) � (H;C)g is soft primary ideal in (F;A) :

Proof. Let F (a1)F (a2) 2 (�;Q) and F (a2) =2 (�;Q) ; then F (a2) (G;B) =2 (H;C)

for all b 2 Supp (G;B) : Consequently, there exist G (b) 2 (G; b) ;

F (a2)G (b) =2 (H;C) but F (a1) (F (a2)G (b)) 2 (H;C) : Since (H;C) is a soft

primary sub-module F (a1) (G;B) � (H;C) for some n; that is, F (a1)
n 2 (�;Q) :

Therefore, (�;Q) is soft primary. �
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Example 7.3.8. For R = M = Z; A = B = N and C = 3N, let us consider the

set value function F : A �! P (R) given by F (x) = fxZ : x 2 Ag then (F;A) is

a soft ring over R. Also consider a R-module M and G : B �! P (M) given by

G (b) = M for all b 2 B. (G;B) be a soft module over a R-module M: Now again

consider H : C �! P (M) given by H (m) = 2mZ is soft sub-module of (G;B). It

is observe that (�;Q) = fF (2) ; F (4) ; � � � ; F (2n) : for n 2 Ng is a soft primary

sub-module of (G;B) :

De�nition 7.3.9. Let (F;A) be a soft ring over a ring R and (G;B) be a soft

module over an R-module M: A soft primary sub-module(H;C) of a soft module

(G;B), is said to be a (�; P )-soft primary sub-module of (G;B) if

(�; P ) = rad (�;Q) = fF (a) 2 (F;A) : F (a)n (G;B) � (H;C) for n > 0g where

(�;Q) = fF (a) 2 (F;A) : F (a) (G;B) � (H;C)g is soft primary ideal in (F;A) :

De�nition 7.3.10. Let (F;A) be soft ring over a ring R and (G;B) be soft

module over an R-module M: A soft sub-module (H;C) of (G;B) has a primary

decomposition if (H;C) = eni=1 (Hi; Ci) with each (Hi; Ci) is a (�i; Pi)-soft primary

sub-module of (G;B), for some soft prime ideal (�i; Pi) of (F;A) :

If no (Hi; Ci) � enj=1 (Hj; Cj) for i 6= j and if the soft ideals (�i; Pi) are all distinct

then the soft primary decomposition is said to be reduced primary decomposition.

Theorem 7.3.11. Let (F;A) be a soft ring over a ring R and (G;B) be a soft

module over an R-module M: If a soft sub-module (H;C) of (G;B) has a primary

decomposition, then (H;C) has a reduced primary decomposition.

Proof. Obvious �

Theorem 7.3.12. Let (F;A) be a soft ring over a ring R and (G;B) be a soft

module over an R-module M satisfying ascending chain condition on soft
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sub-modules. Every soft sub-module (H;C) of (G;B) has a reduced soft primary

decomposition.

Proof. Let S be the set of all soft sub-modules of (G;B) that doesn�t have a

primary decomposition. Clearly no soft primary sub-module in S: We show S is in

fact empty. Assume that S is nonempty, then S contains a soft maximal element

say (H;C) : Since (H;C) is not soft primary, there exist F (a) 2 (F;A) and

G (b) 2 (G;B) n (H;C) such that F (a)G (b) 2 (H;C) but F (a)nG (b) =2 (H;C)

for all n > 0: Consider (Gn; Bn) = fG (b) 2 (G;B) : F (a)nG (b) 2 (H;C)g : Then

each (Gn; Bn) is soft sub-module of (G;B) and (G1; B1) � (G2; B2) � � � � By

hypothesis there exists k > 0 such that (Gi; Bi) = (Gk; Bk) for i � k: Let

(K;D) = fG (b) : G (b) = F (a)kG (b0)+H (c) : b0 2 Supp (G;B) ; c 2 Supp (H;C)g be

soft sub-module of (G;B) : Clearly (H;C) � (Gk; Bk) e (K;D) : Conversely, if

G (b) 2 (Gk; Bk) e (K;D) then G (b) = Gk (b0) +K (d) and

F (a)kG (b) = F (a)kGk (b
0) + F (a)kK (d) 2 (H;C) : Therefore,

(H;C) = (Gk; Bk) e (K;D) : Now by maximality of (H;C) in S, (Gk; Bk) and

(K;D) must have primary decomposition. Thus S is empty and every soft

sub-module has a primary decomposition. �

Lemma 7.3.13. Let (F;A) be a soft ring over a ring R and (G;B) be a soft module

over an R-module M: Let (; I) be a soft prime ideal of (F;A) and (H;C) is (; I)-

soft primary sub-module of soft noetherian module (G;B), then there exist a smallest

integer m such that (; I)m � (G;B) � (H;C) :

Proof. Recall that there exist primary ideal (�;Q) such that rad (�;Q) = (; I),

for some soft primary sub-module (H;C) : Suppose  (a) 2 (; I) such that

 (a)ni G (b) 2 (H;C), for all b 2 Supp (G;B) and ni � 1: Take

m = max (n1; n2; � � � ; ni), hence for all a 2 Supp (; I) we get
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 (a)mG (b) 2 (H;C), for all b 2 Supp (G;B) : Thus

(; I)m � (G;B) � (H;C) : �

Now we present the Krull intersection theorem in soft sense.

Theorem 7.3.14. Let (F;A) be a soft ring over a ring R, (; I) be a soft ideal of

(F;A) and (G;B) be a soft module over a R�module M: If

(H;C) = e1n=1 (; I)n � (G;B) ; then (; I)� (H;C) = (H;C) :

Proof. If (; I)� (H;C) = (G;B) ; then (; I)� (H;C) � (H;C).

Hence (H;C) = (G;B) :

If (; I) � (H;C) 6= (G;B) ; then by lemma 7.3.13 (; I) � (H;C) has a soft

primary decomposition, that is, (; I)�\ (H;C) = eni=1 (Hi; Ci) ;where each (Hi; Ci)

is (�i; Pi) soft primary sub-module of (G;B), for some soft prime ideal (�i; Pi) of

(F;A) : Since (; I)�(H;C) � (H;C), we need to show that (H;C) � (; I)�(H;C)

for every i:

Let i (1 � i � n) be �xed. Suppose that (; I) � (�i; Pi) : By Lemma 7.3.13,

there is an integer m such that, (�i; Pi)
m � (G;B) � (Hi; Ci) : Hence

(H;C) = e1n=1 (; I)n � (G;B) � (; I)m � (G;B) � (�i; Pi)m � (G;B) � (Hi; Ci) :

If (H;C) � (Hi; Ci) ; then there exists c 2 Supp (H;C) and a 2 Supp (; I) such

that  (a)H (c) 2 (; I) � (H;C) � (Hi; Ci) and (Hi; Ci) is soft primary,

 (a) (G;B) � (Hi; Ci) for some n > 0: Thus (H;C) � (Hi; Ci), this gives,

(H;C) � (; I)� (H;C) :

�

De�nition 7.3.15. Let (F;A) be a soft ring over the ring R and (G;B) be a soft

module over an R-module M . If (; I) be a soft prime ideal of (F;A), then

(; I)� (G;B) = f (a)G (b) : a 2 Supp(; I) ^ b 2 Supp(G;B)g
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is a soft sub-module of (G;B).

De�nition 7.3.16. Let (F;A) be a soft ring over a ring R and (G;B) be a soft

module over an R-moduleM . A soft primary sub-module (H;C) is said to be (�; P )-

soft primary sub-module of (G;B). If

(�; P ) = rad (�;Q) = fF (a) : F (a) 2 (F;A) ^ F (a)n (G;B) � (H;B) for n � 0g

where

(�;Q) = fF (a) : F (a) 2 (F;A) ^ F (a) (G;B) � (H;B)g

De�nition 7.3.17. Let (F;A) be soft ring over a ring R and (G;B) be a soft

module over an R-module M . A soft sub-module (H;C) of (G;B) has a primary

decomposition if (H;C) = e (Hi; Ci) is a (�i; Pi)-soft primary sub-module of (G;B) ;

where (�i; Pi) is a soft prime ideal of (F;A).

7.4 Soft Galois rings and modules

Let us consider p be a prime number and k be a positive integer, Zpk is a �nite

local ring corresponding to residue �eld Zp. The polynomial extension of Zpk is

Zpk [X] = fa0 + a1X + a2X
2 + � � � + anXn : ai 2 Zpk ; n 2 Z+g. Let f (x) is basic

irreducible polynomial of degree r in Zpk [X] and
Z
pk
[X]

hf(x)i = fa0 + a1X + a2X
2 + � � � + ah�1Xh�1 : ai 2 Zpk [X]g be the set of residue

classes of polynomial X over Zpk modulo f(X). The ring is denoted by GR(pk; r)

and is known as Galois ring. The Galois ring GR(pk; 1) is isomorphic to Zpk and

GR(p; r) is isomorphic to GF (pr) a Galois �eld. If s divides r, then GR(pk; s) is

subring of GR(pk; r) which is also a Galois ring. This ascending chain of Galois

subrings becomes Zpk � GR(pk; s1) � GR(pk; s2) � � � � � GR(pk; r), while the

ascending chain of Galois �eld is Zp � GF (ps1) � GF (ps2) � � � � � GF (pr); where
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si divides r. If we study the following structure on module over commutative

rings, then the ascending chain of Zpk-sub-modules is

Zpk � GR(pk; s1) � GR(pk; s2) � � � � � GR(pk; r): The ascending chain of

Zp-Galois subspaces Zp � GF (ps1) � GF (ps2) � � � � � GF (pr).

In this section the soft rings and soft modules are being speci�ed to soft Galois

rings and soft modules. Further, their properties are studied, which are useful in

the forthcoming discussion.

De�nition 7.4.1. Let R = GR(pk; r) be the Galois ring. The soft ring over the

Galois ring R is map F : A �! P (R), de�ned as; F (ai) = GR(pk; ai); where A is

the parametrized set and A = fai : ai divides rg. Each F (ai) is subrings of R and

we call the soft ring (F;A) as the soft Galois ring.

De�nition 7.4.2. Let (F;A) be soft Galois ring de�ned over R. The soft ideal of

(F;A) is the mapping  : I �! P (R), where I � A ,  (ai) is an ideal of F (ai) for

ai 2 I and  (ai) = 0 for ai =2 I. Then soft ideal of (F;A) is denoted by (; I).

Example 7.4.3. Take the Galois ring R = GR(24; 8). The soft ring (F;A) is

F : A �! P (R) is de�ned as F (ai) = GR(24; ai); where A = fai : ai divides 8g.

The soft ideal (; I) with I = A is de�ned as  (ai) = pF (ai) = pGR(24; ai).

We now construct the example of soft primary ideal and the de�nition of soft

primary ideal is given in 7.1.3.

Example 7.4.4. Take R = A = Z8. The soft ring (F;A) is de�ned as

F : A �! P (R), F (ai) = aiZ8, where ai 2 A. Consider (; I) with I = Anf0g

and is de�ned as  (ai) = aiZ8 is a soft primary ideal of (F;A).
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From the de�nition of [99, De�nition 10], the soft module is de�ned as follows;

De�nition 7.4.5. Let us consider the module (resp. algebra) M = GR(pk; r) over

the ring R = Zpk . The soft module (resp. soft algebra) is the mapping

G : B �! P (M) where M is R.

We now construct the example of soft sub-module over soft module and the

de�nition of soft sub-module is given in (7.3.3).

Example 7.4.6. Take the ring R = Z8. The M = GR(23; 8) is an R-module. The

soft ring (F;A) is given by F : A �! P (R) and is de�ned as F (ai) = aiZ8; where

A = fai : ai divides 8g. A soft prime ideal (; I) in the soft ring (F;A) such that

for given mapping  : I �! P (R), where I = fq : q = 2; 4g � A , (q) = qZ8.

Now consider the R-module M and the mapping G : B �! P (G) is de�ned as

G (bi) = GR(23; bi), where B = fbi : bi divides 8g, (G;B) becomes a soft module

over an R-module M . Then the soft sub-module of (G;B) is

(; I)� (G;B) = (q) �G (b) = qZ8 �GR(23; bi).

7.5 A connection between S-Boxes and soft

Z2k�module

In this section we develop a connection between the S-box and the soft ring and

studied their properties. The construction of S-box over GR(23; 4) and analyze

statistical such as contrast, homogeneity, entropy, correlation and energy.

In particular, the ring R = Z23 is considered. The soft ring is the mapping

F : A �! P (R) and is de�ned as F (ai) = (ai). The soft ring becomes

(F ; A) = f(0) ; (2) ; (4)g ; where the set of attributes A = f0; 2; 4g. Soft primary

ideal (�; I) over the ring R is de�ned as � (a) = (a). Thus (�; I) = f(2)g ; where
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a 2 I = f2g � A. Now consider a new set of parameters B = f2; 4; 8g for

Z2k�module GR(23; 8): The soft Z2k�module (G; B) becomes

(G; B) = fGR(23; 2); GR(23; 4); GR(23; 8)g. The soft Z2k�sub-module is

(H; C) = fGR(23; 4); GR(23; 8)g ; where C = f4; 8g � B. The (H; C) is soft

primary Z23�sub-module; indeed

(�; P ) = fF (a) : F (a) � (G; B) � (H; C)g = fF(2);F (4)g ;

where F (a) � (G; B) =

8<: F (2)G(2);F (2)G(4);F (2)G(8);

F (4)G(2);F (4)G(4);F (4)G(8)

9=; ;
=

8<: 2GR(23; 2); 2GR(23; 4); 2GR(23; 8);

4GR(23; 2); 4GR(23; 4); 4GR(23; 8)

9=; ;
� fH (4) ;H (8)g = (H; C) :

(�; I) = rad (�; P ) ;

= fF (a) : F (a)n � (G; B) � (H; C)g ;

= fF (2)g :

Thus (�; I) = fF (2)g is soft primary ideal and (H; C) is (�; I)�soft primary

Z23�sub-module.

Now we de�ne the another soft Z23�sub-module

(K; C) = f2GR(23; 4); 2GR(23; 8)g. Also, (K; C) is soft Z23�sub-module of (H; C)

and it is (�; I)�soft primary Z2k�sub-module. Therefore using the de�nition of

soft primary decomposition of soft modules (de�nition 7.3.10), we have

(K; C) = (H; C) e (K; C). Further, by applying the soft compliment operation

(2.1.15) and is denoted by(; C);

(H; C)�C (K; C) = fH(4)�K (4) ;H(8)�K(8)g ;

(; C) = fR�4; R�8g :

181



7.5. A connection between S-Boxes and soft Z2k�module

Whereas R�4; R
�
8 are respectively the set of units of the Galois rings GR(2

3; 4) and

GR(23; 8). Here it is notice that (; C) soft group based on multiplicative groups

R�4; R
�
8:

Further we extend our study to soft groups. Let (�;D) be a soft group over a

group R�8, where D = fi : i is order of subgroups of R�8g : Each element

� (i) 2 P (R�8) is a subgroup of R�8 of order i. The soft subgroup (�1; D1) of soft

group (�;D), where D1 = fj : j is order of cyclic subgroups of R�8g � D.

Therefore, each �1 (j) is cyclic subgroup of R�8. Let us consider another soft

subgroup (�2; D2) and D2 = fj 2 D1 : j = 15; 255g � D1: Then

(�2; D2) = fG15; G255g is soft subgroup of soft group (; C). The maximal cyclic

subgroups of R�4 and R
�
8 are respectively G15 and G255. The order of maximal

cyclic subgroup G15 is 24 � 1; however the maximal cyclic subgroup G255 has order

28 � 1.

We consider (�2; D2) to construct S-boxes. An 8�8 S-box by using the maximal

cyclic subgroup G255 of the Galois ring GR(23; 8) is given in [93]. However for the

sake of this work, we construct 4� 4 S-box by the maximal cyclic subgroup G15 of

the group of units of Galois ring GR(23; 4).

Statistical analysis of 8� 8 S-box:

Consider the maximal cyclic subgroup G255 contained in soft subgroup

(�2; D2). The S-box in G255 is constructed by de�ned the mappings from

G255 [ f0g to G255 [ f0g [93]. The result of these analyses of proposed S-box for

color components of original and encrypted images are given in following tables.
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color components of original and encrypted images are given in following tables.

Texture features Gray scale image

Contrast

Homogeneity

Entropy

Correlation

Energy

0.36394

0.881055

7.76601

0.920316

0.122742

Table 7:1 : Texture features of original image

Texture features Gray scale image

Contrast

Homogeneity

Entropy

Correlation

Energy

4.98983

0.499004

7.8011

0.0867383

0.0285312

Table 7:2 : Texture features of encrypted image

Statistical analysis of S-box over G15 :

Let us consider the maximal cyclic subgroup G15 of soft subgroup (�2; D2).The

idea of construction of S-box based on G15 is the composition of linear functions.

The following mappings from G15 [ f0g to G15 [ f0g.

1. The inverse map I is de�ned as I (a) = a�1.

2. The scalar multiplication function f is de�ned as f (a) = ca, where c is the

scalar taken from G15.

The concept of S-box is basically by taking the composition of these two functions

as I � f (a) = (ca)�1. This implies that by taking di¤erent scalars from G15, we can

construct 15 di¤erent S-boxes because 15 distinct scalar multiples are taken from



7.5. A connection between S-Boxes and soft Z2k�module

G15. The following table of 4 � 4 S-box is constructed by taking one particular

scalar.

0000 7005 3712 0433

4414 1075 2103 4176

0364 7557 1210 7700

1000 0171 5725 6603

Table 7:3 : S-boxes based on Galois ring

The analysis result of following S-box is as follows:

Contrast 0.3939

Homogeneity 0.8811

Entropy 7.7660

Correlation 0.9203

Energy 0.1227

Table 7:4 : Texture features of original image

Contrast 2.8294

Homogeneity 0.7974

Entropy 5.7005

Correlation 0.0417

Energy 0.4829

Table 7:5 : Texture features of encrypted image

184



7.6. Proposed decision making method

The plain and encrypted image is as follows;

Fig. 7.1. Original image Fig 7.2. Encrypted image

In the following an approach is given, which integrate the soft subgroup (�2; D2)

and decision making technique for the selection of an appropriate S-box. Consider

the soft subgroup (�2; D2) � (�;D). The 4 � 4 and 8 � 8 S-boxes respectively

constructed through the maximal cyclic subgroups G15 and G255. Statistical

analyses are performed over these S-boxes which show the reboutness of the

encryption scheme. The decision making problem consider in this study is to

select the most appropriate S-box which has better tendency to hide the image in

transmission of data.

7.6 Proposed decision making method

In our proposed approach, we consider the statistical analyses as set of parameters

and S-boxes as object. The decision is decompose into the following steps;

i: Select the desired number of S-boxes for input and statistical analyses for

parametric set.

ii: Construct a fuzzy bipolar formula for each of the parameter.
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iii: Structure the fuzzy bipolar soft set (�; E).

iv: Compute the comparison table for the bipolar functions.

v: Compute the positive and negative score for each object.

vi: Compute the �nal score.

The input set are the S-boxes constructed over the soft subgroup (�2; D2), that

is fS4; S8g. Whereas the set of parameters E = fe1; e2; e3; e4; e5g are contrast,

homogeneity, entropy, correlation and energy. Before tuning into decision making

steps it is worth recalling some details about the above mention parameters for

bipolar soft set.

Function for contrast The bipolar fuzzy set for contrast is de�ned as;

��E(e1) (si) = e1(Psi) � e1(Osi) (mod 1) ;

��:E(:e1) (si) =
e1(Psi)

e1(Osi)
(mod 1) ;

where e1(Psi) is value of encrypted image of contrast and e1(Osi) is value of

original image of contrast.

Function for homogenity The bipolar fuzzy set for homogeneity is de�ned as;

��E(e2) (si) = e2(Psi) � e2(Osi);

��:E(:e2) (si) =
e2(Psi)

e2(Osi)
;

where e2(Psi) is value of encrypted image of homogeneity and e2(Osi) is value

of original image of homogeneity.

Function for entropy The bipolar fuzzy set for entropy is de�ned as;

��E(e3) (si) = (e3(Psi)� e3(Osi))mod 1;

��:E(:e3) (si) =
e3(Psi)

e3(Osi)
;
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where e3(Psi) is value of encrypted image of entropy and e3(Osi) is value of

original image of entropy.

Function for correlation The bipolar fuzzy set for correlation is de�ned as;

��E(e4) (si) = e4(Osi)� e4(Psi);

��:E(:e4) (si) = 1� (e4(Osi) + e4(Psi)) ;

where e4(Psi) is value of encrypted image of correlation and e4(Osi) is value

of original image of correlation.

Function for energy The bipolar fuzzy set for energy is de�ned as;

��E(e1) (si) = 1� (e5(Osi) + e5(Psi)) ;

��:E(:e1) (si) =
e5(Psi)

e5(Osi)
;

where e5(Psi) is value of encrypted image of energy and e5(Osi) is value of

original image of energy.

7.6.1 Fuzzy bipolar soft set

[75]A fuzzy bipolar soft set (�E;�:E; E) over U; where �E and �:E are mappings

such that �E : E �! FP (U) and �:E : :E �! FP (U) such that

0 � �E (x) + �:E(x) � 1 for all e 2 E.

�E e1 e2 e3 e4 e5

S4 0.1145 0.7026 0.0655 0.8786 0.3944

S8 0.8159 0.4397 0.0351 0.8336 0.8488

Table 7:6 : Positive fuzzy bipolar soft set

187



7.6. Proposed decision making method

:�E :e1 :e2 :e3 :e4 :e5
S4 0.1042 0.5591 0.1776 0.0261 0.8821

S8 0.3712 0.1821 0.9978 0.0339 0.5897

Table 7:7 : Negative fuzzy bipolar soft set

Comparision Table

[75, De�nition 20] Let (�E;�:E; E) be a fuzzy bipolar soft set de�ned over the

set U . A comparison table for �E is a square table in which the numbers of rows

and numbers of columns are equal, rows and columns both are labeled by the object

names S4; S8 of the initial universe U , and the entries are xij; i; j = 1; 2 given by

xij = the number, for which the positive membership function of ei is

important by the membership degree of ej (7.6.1)

=

8<: 1 if ei > ej;

0 if ei < ej;
(7.6.2)

Note that 0 � xij � 5; xii = 5 for all i; j and 5 is the number of parameters

presented in E.

	 S4 S8

S4 5 3

S8 2 5

Table 7:8: Comparison positive.

Comparison table for negative membership function is denoted by �. It is a table in

which number of rows are equal to the number of columns, rows and columns both
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are labeled by he parameters e1; e2; � � � ; e5. The entries are yij; i; j = 1; 2: given by

yij = the number, for which the negative membership function of ei is (3.4)

important by membership function of ej

=

8<: 1 if ei > ej;

0 if ei < ej;
(7.6.3)

where 0 � yij � p; yii = 5 for all i; j and 5 is the number of parameters present in

E.

� S4 S8

S4 5 2

S8 3 5

Table 7:9 : Comparison negative.

Score [75, De�nition 21] The positive row sum is denoted by ri and positive column

sum is denoted by ci. The formula for calculating positive row and column

sum is ri =
5P
i=1

xij; ci =
5P
i=1

xij. The positive score xi of S-box Si is calculated

xi = ri � ci.

In the following table positive score is calculated as;

+ ri ci xi

S4 8 7 1

S8 7 8 -1

Table 7:10 : Positive score.

The negative row sum is denoted by r0i and negative column sum is denoted by c
0
i.

The formula for calculating negative row and column sum is ri =
5P
i=1

yij; ci =
5P
i=1

yij.

The negative score yi of S-box Si is calculated yi = r0i � c0i. In the following table

negative score is calculated as;

189



7.6. Proposed decision making method

- r0i c0i yi

S4 7 8 -1

S8 8 7 1

Table 7:11 : Negative score.

7.6.2 Grading and �nal result

[75, De�nition 22] The �nal score zi of S-box Si will be given by zi = xi � yi. The

maximum value represents the optimal one.

zi xi � yi
S4 2

S8 -2

Table 7:12 : score.

We �nd out the S4 is the best. The evaluation method based on fuzzy bipolar

soft set theory is being presented which sort out the appropriate S-box constructed

over soft subgroup (�;C).
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Chapter 8

Conclusion

In literature and lifespan, we untimely pursue, not the conclusion but beginnings.

Therefore, to conclude thesis, a summary of research performed is presented in

the �rst section of this chapter which is followed by discussions of possible future

directions that could explain this research as mentioned in the �nal section of this

chapter.

The construction of the secure S-boxes with complete cryptographic features is

extremely important for constructing dominant encryption systems. There is list of

available algorithms to construct the e¢ cient S-boxes but the major aim of S-box is

to construct the nonlinear component of block ciphers. To measure the encryption

quality of the S-box di¤erent decision-making algorithms have been devised. In this
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work, we used the soft set along with the di¤erent already soft set theories to deal

with uncertainty.

Initially, we have investigated the characterization of S-boxes by using

interval-valued fuzzy soft sets. A decision-making scheme is constructed by using

the technique to separately deal with lower and upper approximation. The

interval-valued fuzzy soft set approaches for comparison of data and easy way to

approach the decision. The ranking of S-boxes by interval-valued fuzzy

decision-making result is an alternative way to judge the quality of S-box.

The decision-making process is related to construct more accurate intuitionistic

fuzzy soft set decision benchmarks which are used to deals with computing and

measuring the performance of S-boxes. Di¤erent images are used to judge the

quality and consistency of S-boxes in the digital medium. The formulation of

membership and non-membership function for each parameter is used to determine

the performance of analyses parameters. Some signi�cant evidence is found, when

we have applied our proposed testing standards on available images in literature.

The intuitionistic fuzzy soft set fundamentally based on membership and non-

membership utilities. The work is re�ned by using the neutrosophic fuzzy soft

set which not only deals with membership and non-membership functions but also

there is an intermediate function in between these both functions. The neutrosophic

fuzzy soft set decision-making method is introduced to characterize the S-boxes.

The enciphered results of four di¤erent images are taken and by carrying out our

proposed analysis, the optimal S-box for each image is chosen. The comparison of

the results of the already available algorithm with the outcomes of the intuitionistic

fuzzy soft set method is being discussed.

Further, we introduced an improved decision-making technique. The average

deviation was used to gauge the neutrosophic soft set. We have used the property
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of basic operation of central tendency. The property of basic operation of central

tendency is applied. These operations enabled us to classify the S-boxes. The

method for the construction of S-boxes was based on the action of the projective

general linear group over Galois �eld. This method generates a huge number of S-

boxes which is re�ned by inducing a non-linearity check in the proposed algorithm

to collect the desired S-boxes. For the assessment of the strength of the generated

S-boxes, we analyzed their characteristics through statistical analyses. The new

decision-making method for the neutrosophic fuzzy soft set, with functions de�ned

in the proposed analysis, are accustomed to the statistical analysis for the selection

of the nonlinear component of block cipher which is not vulnerable and ability to

provide confusion in security systems. With this work, we established novel results

in the �eld of intuitionistic fuzzy soft set and information security.

The notion of soft prime ideal, soft primary ideal, soft radical ideal and primary

decomposition of soft rings is introduced. Further, the idea of soft modules is used

to de�ne the primary decomposition of soft modules. This indication of soft rings

and soft modules is further developed and de�ned the particular soft Galois ring

and soft Galois modules. Then by using the theory of soft Galois modules to de�ne

the S-box which is used in decision-making algorithm. The projected procedure for

selecting best S-box permits us to classify the best S-box which de�nitely reduces

the cost and time of execution of our machine. These sorts of selection criteria can

be embedded in systems in order to protect cost which is a growing issue of existing

green world ideology.

To the best of our knowledge and deep �ndings, our proposed methodologies

contribute e¢ ciently to the selection of the optimal S-box. Our proposed idea

essentially provides a bridge between fuzzy soft set theory and information security

namely cryptographic algorithm. Through this classi�cation, one can easily classify
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the central component of block ciphers which is surely S-boxes. This work provides

a new area of research for the oncoming researcher and entered the fuzzy soft idea

into a completely new era.

Future work will entail re�ning our model by exploiting data on the di¤erent

model which gives more accurate results. The research is continuing in this

direction, in future the work can be extended to the technique for order

preferences by similarity to ideal solution (TOPSIS) model along with soft set

theory and its generalized form. We do believe that present �ndings based on

applying decision-making algorithm, will surely support us, to e¢ ciently handle

diverse problems of cryptology, watermarking and steganography.
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