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“Do not the unbelievers see that the heavens and the earth was a
closed-up mass then WE clove them asunder?"

(Al-Anbya, 21:30, Quarn)

“And WE have built the heavens with OUR own hands; and, verify, it is WE
who are steadily expanding it."

(Adh-Dhariyat, 51:47, Quarn)
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Abstract

In this work, the possibility of the Standard Model Higgs inflation is considered. Similar
to the other models of inflation, if the minimal coupling of Higgs with gravity is consid-
ered, it is necessary to assume an extremely small self-coupling of Higgs (of the order
of 10−13), which leads to the required mass limit of the Higgs particle below the accept-
able range. In order to solve the small self-coupling problem of the Higgs particle, it
is required to add a non-minimal coupling term, ξφ2R/2, with a very large coupling
constant, ξ= 104. Calculations are made in the Einstein frame using a conformal trans-
formation. The classical results for inflationary parameters are also revised which come
out to be independent of the Higgs mass and are in good agreement with the cosmo-
logical data. However, the quantum analysis is not only strongly affected by the various
parameters of the Standard Model but also the energy scale of inflation becomes larger
than the cutoff scale, which is a challenge in this analysis. To resolve this challenge, the
Higgs field is perturbed around a non-zero background field value. Consequently, the
energy scale of inflation comes within the cutoff scale range.
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Chapter 1

Introduction

Cosmology is one of the oldest sciences known to mankind. Man has always been curious

to know more about his position and neighbours in space. In the 20th century advances

were made in the �eld of cosmology and a theory of Big Bang was developed which gave

a satisfactory explanation of the beginning and time evolution of the universe. Despite

of all its accuracy the standard model of cosmology was unable to account for certain

observations like the large scale homogeneity, �atness of the universe, absence of magnetic

monopoles etc. In order to account for all of these observed facts, a set of initial conditions

was required which was to be put in by hands.

To counter the problem of initial conditions, an American physicist, Alan Guth gave

the idea of Cosmic In�ation in 1981. Cosmic in�ation is a rapid exponential expansion

of the early universe, driven by vacuum energy density having a negative pressure . It

appeared about 10�36 seconds after the event of Big Bang and lasted for some time

after that. During this period, universe expanded by a huge amount doubling in size

after every 10�34 seconds, which is the value of the time constant of the exponential

expansion. After the in�ationary period, the universe continued to expand at a slower

rate.

The idea of cosmic in�ation is a modi�cation of the standard Big Bang theory. In�a-

tionary theory explains why the temperatures and curvatures of di¤erent regions in the
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universe are so nearly equal, and it predicts that the total curvature of space at constant

global time is zero. Most strikingly, in�ation allows us to calculate the minute di¤erences

in temperature of di¤erent regions, from quantum �uctuations during the in�ationary era

and these predictions have also been con�rmed by experimental observations. Nowadays,

no theory of universe is complete without a reference to in�ation. In�ation achieved this

success not only because it resolves many puzzles about the nature of the Universe, but

also because it did so using the grand uni�ed theories (GUTs) along with quantum �eld

theory developed by particle physicists. Thus, in�ation is sort of a marriage of particle

physics and cosmology and this marriage seems to provide an explanation of how the

Universe began and evolved. In�ation is thus regarded as the most important develop-

ment in cosmology since the discovery that the Universe began in a Big Bang, which

came from the observation that it is expanding.

An important quest is to �nd from the known particles, the �eld that drove in�a-

tion, called the in�aton �eld. The properties of the in�aton �eld are obtained by the

observations of the Cosmic Microwave Background (CMB) Radiations. Observations tell

that the in�aton has to be a scalar �eld. Many approaches are being followed to �nd

this scalar �eld. One of the approaches, the one which I am working on, is to consider

a particle from the Standard Model (SM) of the Particle Physics. Higgs is the only

scalar particle present in SM. In order to have successful in�ation with Higgs �eld, it is

required to consider a non-minimal coupling between the Higgs �eld and gravity through

the term ��2R=2. The non-minimal coupling constant represented by � is required to be

very large, of the order of � 104. With this non-minimal coupling the calculations can

no longer be done in the Einstein frame under general relativity which works on the min-

imal coupling scheme and so the Lagrangian is written in the Jordan frame, however the

classical calculations can be transformed into the Einstein frame, through a conformal

transformation, where the coupling is minimal.

Quantum corrections arise due to non-minimal coupling and so they are treated in

the Jordan frame. The mass of the Higgs �eld required to have observable values of the
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in�ationary parameters comes out to be mH > 230GeV:In order to reduce it we include
the renormalization group improvement which gives the following range for the Higgs

mass:

135:62GeV � mH � 184:49GeV

which is acceptable. Hence the quantum corrections bring the results in harmony

with the observations.

Observations of the Planck satellite are expected to come soon. They together with

the results of the Higgs boson search at the LHC will decide the �nal status of this

in�ationary model. For the time being, with uncertainty in the Higgs mass and the

values of the in�ationary parameters, the model seems promising.
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Chapter 2

The Standard Model of Cosmology

2.1 The Big Bang Theory

In the 20th century, cosmology began with the work of Einstein. His theory of General

Relativity (GR) describes gravity as the distortion of the geometry of space and time and

is consistent with the ideas of special relativity. Within a year after the publication of

general relativity, Einstein applied it to the universe as a whole. Einstein realized that it

was impossible to build a static model of the universe consistent with general relativity.

Therefore he modi�ed his equations by including a term called a "cosmological term",

a kind of universal repulsion which prevents the distribution of matter from collapsing

under the force of gravity. This term �ts neatly into the equations.

In the late 1960s and early 1970s, three British astrophysicists, Steven Hawking,

George Ellis, and Roger Penrose started working on the theory of relativity and its im-

plications regarding our understanding of time. In 1968 and 1970, they published papers

in which they extended Einstein�s theory of general relativity to include measurements

of time and space. According to their calculations, time and space had a �nite beginning

that corresponded to the origin of matter and energy. The singularity didn�t appear in

space; rather, space began inside the singularity. Nothing existed, before the singularity.

This was the beginning of the universe. This theory is a successful description of the
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evolution of the universe.

The hot big bang cosmology is a remarkable achievement. It gives a reliable account of

the universe from about 10�2 seconds to the present. The Big Bang model of cosmology

has been tested with precision and the results have proved to be correct. The precision

of these tests provides con�dence that the picture of the expansion is basically correct.

2.1.1 Evidence Supporting the Big Bang Theory

First evidence in favour of the Big Bang theory is the observation of the Cosmic Mi-

crowave Background (CMB) radiations. The early universe was at a very high tempera-

ture and so it would have been permeated by the glow of light emitted by the hot matter,

as the universe expanded, the wavelengths of these photons also expanded and so this

light would have redshifted. The universe still is bathed by the radiation which have now

redshifted into the microwave region of the spectrum.

The second evidence in support of the Big Bang theory is associated with the big bang

nucleosynthesis. The early universe was so hot that even nuclei were not stable. At about

2 minutes after the Big Bang there were virtually no nuclei at all. The universe was �lled

with hot gas of photon and neutrinos, with a much smaller density of protons, neutrons

and electrons. As the universe cooled, the protons and neutrons began to coalesce to

form nuclei. From the reaction rates, one can calculate the expected abundance of the

di¤erent types of nuclei that would have formed. The observations made today support

the results from calculations. If there was never a Big Bang, there would be no reason

whatsoever to expect that Helium-4 would be 108 times as abundant as Lithium-7, it

might just as well have been the other way round but when calculated in the context of

the Big Bang theory, the ratio works out just right.

The Big Bang model of cosmology is based on the FRW (Friedmann Robertson

Walker) metric.
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2.2 FRW Cosmology

The homogeneous and isotopic universe is represented by the Friedmann Robertson

Walker metric [1]

ds2 = �dt2 + a(t)2
�

dr2

1� �r2
+ r2(d�2 + sin2 �d�

�
(2.1)

where, a(t) characterizes the relative size of the universe at di¤erent times and � is

the curvature parameter, which is

k =

8>>><>>>:
+1 for closed universe

0 for flat universe

�1 for open universe

Figure 2-1: Geometery of the universe with respect to di¤erent values of curvature
parameter k .
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2.2.1 Hubble Parameter

The expansion rate of the universe is given by the quantity known as the Hubble para-

meter, de�ned as

H =
_a

a
(2.2)

where a is the scale factor of the universe.

H has the units of inverse time and its value is negative for shrinking universe and

positive for the expanding one.

2.2.2 Einstein Equations

The dynamics of the universe in FRW cosmology are determined by the Einstein Equation

[2]

G�� = 8�GT�� (2.3)

where G�� is the Einstein tensor and T�� is the energy momentum tensor.

2.2.3 Friedmann Equations

After simpli�cation and making assumptions of homogeneity and isotropy, the Einstein

Equations take the form of two ordinary di¤erential equations called the Friedmann

Equations.

The �rst and the second Friedmann equation is obtained by calculating the G00 and

the Gij; component of the Einstein equation respectively [3].

The �rst Friedmann equation is,

H2 �
�
_a

a

�2
=
1

3
�� �

a2
(2.4)
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where � is the energy density of the universe. The other equation is;

_H +H2 � �a

a
= �1

6
(�+ 3p) (2.5)

in units of } = c = 8�G = mp = 1; where p is isotropic pressure.

2.3 Shortcomings of the Standard Big Bang Picture

The CMB radiation and the big bang nucleosynthesis calculations probe the history

of the universe at di¤erent periods of time. The CMB samples the conditions in the

universe about 105 years after the bang when the universe became cool enough for the

plasma of free nuclei and electrons to condense into neutral atoms. The plasma that �lled

the universe at earlier times was opaque to photons. With formation of neutral atoms,

the universe became highly transparent. On the other hand nucleosynthesis calculations

probe the history at much earlier times. It considers the abundance of nuclei that occurred

at times ranging from about 1 second to 4 minutes after the Bang. Nonetheless, the

standard Big Bang model has serious shortcomings.

In the Standard Big Bang theory, initial homogeneity and isotropy of the universe is

assumed and this gives rise to a number of fundamental problems, such as:

1. Homogeneity Problem or the Horizon Problem

2. The Flatness Problem

3. Monopole Density Problem

2.3.1 The Horizon Problem

The extreme homogeneity at the cosmological scales seems to be violating the casualty

principle. Observations of the CMB show that the inhomogeneities were smaller at earlier
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times and the observed small scale inhomogeneities were formed later by gravitational

clumping. For the universe to attain a uniform temperature, it should be left undis-

turbed for long enough time that the distant points come in casual contact with each

other. Thus the uniformity of the universe requires a connection between the causally

disconnected regions but in Standard Big Bang theory, the universe evolves so quickly

that it is impossible for any physical process to create uniformity.

Using the two Friedmann equations, the equation of state can be derived. It is given

as:

d�

dt
= �3H�

�
1 +

p

�

�
(2.6)

This can also be written in a slightly di¤erent form as

d ln �

d ln a
= �3 (1 + !) (2.7)

where ! � p=� . Solution to the above equation is

� / a�3(1+!) (2.8)

Plugging this in the �rst Friedmann equation, we get

_a / a�
1
2
(1+3!) (2.9)

From the de�nitions of Hubble parameter

_a = Ha

and the quantity (aH)�1 is termed as the comoving Hubble radius. Combining this

with the above equation, the comoving Hubble radius can be written as:

9



(aH)�1 / a
1
2
(1+3!) (2.10)

This shows that the behaviour of Hubble radius depends upon the value of !:

The comoving particle horizon, which is the maximum distance a light signal can

travel from the initial time ti to some given time t;is given by

� =

Z t

ti

dt

a(t)
(2.11)

Using

H =
1

a

da

dt

we get

dt

da
=

1

Ha

and thus for ti = 0 and t = a; we have

� =

Z a

0

da

a2H
=

Z a

0

d ln a

�
1

aH

�
(2.12)

Substituting the expression for (aH)�1 from equation (2:10) in the above expression

for � ; we get

� / a
1
2
(1+3!) (2.13)

This shows that the comoving horizon grows with time which implies that scales

entering the horizon now, have been far outside the horizon at photon decoupling. Why

then we �nd high level of uniformity in the CMB ? This is known as the Horizon problem.
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2.3.2 Homogeneity Problem

The homogeneity and isotropy of the universe was an assumption, known as the Cos-

mological Principle. The universe that we observe is very inhomogeneous, stars and

galaxies form a lumpy distribution. Cosmologically, all of this structure in the universe

is on a very small scale. If one averages over large scale of about 300 million light years

then the universe appears to be very homogeneous. This large-scale homogeneity is most

evident in the CMB for which temperature �uctuations are observed to be of the order

dT=T s 10�5:

Inhomogeneities are gravitationally unstable so they grow with time and therefore if

there were initial inhomogeneities they should have grown to massive scales today but it

is not so, on the contrary we observe homogeneous universe. Therefore in the Standard

Cosmology we are required to assume uniformity as an initial condition.

2.3.3 The Flatness Problem

The �atness problem is related to the mass density of the universe. The mass density is

measured relative to the "critical density", which is de�ned in terms of the expansion of

the universe. If the mass density exceeds the critical density, then the gravitational pull

will be strong enough to stop the expansion and the universe would eventually collapse.

On the other hand, if the mass density is less than the critical density, the universe will

expand forever.

This problem concerns the spatial �atness of the present-day universe. The observa-

tions indicate that the curvature term of the Friedmann equation is consistent with zero.

In general relativity, the space-time curves in response to matter in universe but still we

approximate universe by �at Euclidean space. In order to understand the severity of the

problem, we consider the Friedmann equation, (2:4), written as

1� 
 = ��
(aH)2

(2.14)
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where


 � �

�crit
(2.15)

is called cosmological density parameter and

�crit = 3H
2 (2.16)

is the energy density for the �at universe (� = 0).

Therefore, from equation (2:14) ; if 
 is ever exactly equal to 1, it will remain equal to

1 forever. In Standard Cosmology, the comoving Hubble radius, (aH)�1, grows with time

and the quantity j
� 1j must thus diverge with time. Hence the near-�atness observed

today (
 s 1) requires an extreme �ne-tuning of 
 close to 1 in the infant universe. The

deviation from 
 = 1 (�atness) during the Big Bang Nucleosynthesis (BBN) at GUT

and the Planck scale is respectively given by

j
 (aBBN)� 1j � O
�
10�16

�
j
 (aGUT )� 1j � O

�
10�55

�
j
 (aPlan)� 1j � O

�
10�61

�

The Flatness and the Horizon problems are severe shortcomings in the predictive

power of the Big Bang theory because �atness and large-scale homogeneity of the universe

has to be assumed.

2.3.4 Magnetic Monopole Problem

All Grand Uni�ed Theories (GUTs) predict the presence of magnetic monopoles which

are massive particles carrying a net magnetic charge. By combining GUTs with classical
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cosmology without in�ation, Preskill in 1979 found that in the conventional Big Bang

theory, magnetic monopoles would be produced in such high amounts that they would

outweigh everything else in the universe by a factor of about 1012: But this case is

grossly at odds with observations. The Big Bang theory is unable to give a satisfactory

explanation of the very low density of magnetic monopoles in the universe today.

2.3.5 Ratio of the Number of Photons to the Number of Nu-

cleons

Photons are found mainly in the CMB and the nucleons (protons and neutrons) form the

atomic nuclei of matter. The observed universe contains about 1010 photons for about

every proton or neutron. The Standard Big Bang theory does not explain this ratio, but

this has to be assumed as initial conditions.
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Chapter 3

Cosmic In�ation

A representation of the evolution of the universe over 13.77 billion years. The

far left depicts the earliest moment we can now probe, when a period of "in�ation"

produced a burst of exponential growth in the universe. (Courtesy NASA/WMAP

Science Team.)
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3.1 The General Idea of In�ation

The idea of Cosmic In�ation was presented as a solution to the problems of the initial

conditions of the Standard Big Bang theory. The in�ationary scenario was proposed by

Alan Guth in 1981 [4]. The original model had a problem. A variation that avoided that

�aw was later proposed by Andre Linde [5].

The basic idea of in�ation is that at early times the universe underwent a period of

exponential expansion de�ned as a period when

�a > 0 (3.1)

where a is the scale factor of the universe.

The e¤ect of this acceleration was to quickly expand a small region of space to a huge

size, diminishing spatial curvature in the process and making the universe extremely

close to a �at one. In addition the horizon size, given by (aH)�1; was greatly increased

so that distant points in the universe were in causal contact and unwanted excitations

were diluted. Moreover, quantum �uctuations prevented in�ation to smooth out the

universe perfectly and hence the universe contained the seeds for large scale structures.

3.2 Conditions for In�ation

The three conditions required for in�ation are [6]:

1. Comoving Hubble radius must decrease

d

dt

�
1

aH

�
< 0 (3.2)

2. Accelerated expansion
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d2a

d2t
> 0 (3.3)

3. Negative pressure i.e. violation of the strong energy condition .

p < �1
3
� (3.4)

where p is the pressure and � is the mass density. During the in�ationary era, ! = �1:

3.2.1 Decreasing Comoving Hubble Radius

The concept of comoving Hubble radius is important in the idea of in�ation. According

to relation (2:10)

(aH)�1 / a
1
2
(1+3!) (3.5)

This shows that the behaviour of Hubble radius depends upon the sign of the expo-

nent, hence as ! = �1 during in�ation, the Hubble radius decreases.

3.2.2 Accelerated Expansion

Using the de�nition of H; we have

(Ha)�1 = _a�1

which gives

16



d

dt
(aH)�1 = � �a

( _a)2
= � �a

(aH)2
(3.6)

so if [d (aH)�1 =dt] < 0 then �a > 0. It means that the shrinking comoving Hubble

radius implies accelerated expansion

d2a

dt2
> 0 (3.7)

This explains why in�ation is known as a period of exponential expansion.

3.2.3 Negative Pressure

We have one of the Friedmann equations as

_H +H2 =
�a

a
= �1

6
(�+ 3P ) (3.8)

which implies that the accelerated expansion (�a > 0) requires the pressure to be

negative (P < ��=3):

The in�ationary mechanism produces an entire universe starting from essentially noth-

ing. The energy of the universe actually came from the gravitational �eld [7]. The uni-

verse did not begin with energy stored in the gravitational �eld, but the gravitational

�eld can supply the energy because its energy can become negative without bound

[8]. As the positive energy materialized in the form of an ever-growing region �lled with a

high energy scalar �eld, negative energy materialized in the form of an expanding region

�lled with a gravitational �eld. The total energy remained constant at some very small

value or even at zero. There is nothing known that places any limit on the amount of

in�ation that can occur while the total energy remains exactly zero.
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3.3 Evidence for In�ation

There is now a great deal of evidence con�rming the existence of a very hot and extremely

dense early stage of the universe. Major portion of this data comes from a detailed study

of the CMB radiation measured by NASA�s WMAP satellite. Irrespective of the form

of in�ation which is considered, the evidence that our universe underwent a period of

in�ation is more or less the same. Few observations supporting the theory of in�ation

are as under.

3.3.1 The Vast Universe

It is a general observation that the universe is incredibly large. The visible part of the

universe contains about 1090 particles [9]. In standard FRW cosmology, without in�ation,

one has to postulates the presence of 1090 from the beginning. A valid theory has to give a

satisfactory explanation for the existence of such a large number of particles. The easiest

way to obtain a large number, in result with a small numbers as input, is to calculate using

an exponential. The exponential expansion of the universe, during in�ation, reduces the

problem of explaining 1090 particles to the problem of explaining 50 to 60 e-foldings [8].

Therefore, the theory of in�ation suggests that although the universe is huge today,

it may have begun from a small patch.

3.3.2 The Hubble Expansion

The Hubble expansion is known from earliest readings in cosmology. In standard FRW

cosmology, the Hubble expansion is present in the list of postulates that de�ne the ini-

tial conditions. On the other hand, in�ationary theory explains the reasons for Hubble

expansion. According to the theory, "the repulsive gravity associated with the false vac-

uum started the Hubble expansion" [7]. It provides the kind of force needed to drive the
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universe into a form of motion such that each pair of particles is moving apart with a

velocity v that is proportional to the distance d of their separation, i.e.

v = Hd (3.9)

where H is the Hubble parameter.

3.4 Solution to the Problems of Standard Cosmology

3.4.1 Solution of the Horizon Problem

In�ation resolves the causal connection problem existing in the Standard Big Bang theory,

by explaining how the apparently causally disconnected regions were in contact in the

early universe. We saw that during in�ation the comoving Hubble radius decreases in

contrast to its behavior in the Standard scenario.
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Figure 3-1: Evolution of comoving Hubble radius during in�ation.

Thus all comoving scales were smaller than the Hubble radius during in�ation, hence
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all regions were within the horizon and were causally connected. After in�ation Hubble

radius began to increase again but at a smaller rate and so those scales seem to be coming

inside the horizon today.

3.4.2 Homogeneity and Isotropy Explained

The CMB was released about 300,000 years after the Big Bang [7], when the universe

cooled enough so that the opaque plasma neutralized into a transparent gas and the

photons decoupled from the rest of matter-radiation soup [10]. Therefore, the observed

uniformity of the radiations implies that the observed universe had become uniform in

temperature by that time. Theory of in�ation explains that the uniformity was actually

created on microscopic scales, by normal thermal-equilibrium processes, and then during

in�ation the regions of uniformity were stretched to such large size that they encompassed

the observed universe.

3.4.3 Solution of the Flatness Problem

The theory of in�ation naturally predicts the extraordinary �atness of the early universe.

As mentioned in the previous chapter, the Friedmann Equation can be put in the form

( with � = 1) as:

j1� 
j = 1

(aH)2
(3.10)

According to in�ation, the decreasing comoving Hubble radius drives the universe

toward �atness, by de�ning 
 = 1 as an "attractor" during in�ation. So, the universe

may have begun with any value for 
 but during in�ation it was exponentially driven

towards 
 = 1 rather than away from it.

Thus, as long as there is a long enough period of in�ation, universe can start at any

value for 
, and it will be driven to unity by the exponential expansion [2].
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3.4.4 Solution of the Monopole Problem

In�ation is certainly the simplest known mechanism to eliminate monopoles from the vis-

ible universe, although they are still in the spectrum of possible particles. In in�ationary

theory monopoles are eliminated by arranging the parameters such that in�ation took

place during or after the monopole production, and so during in�ation the monopole

density was diluted to a completely negligible level [3].

3.4.5 CMB Anisotropy Explained

Despite of the fact that the intensity of the CMB radiations is 99.999% isotropic, it still

contains small temperature anisotropies. In�ationary theory has the explanation. The

universe was smoothed out by the process of rapid expansion, but the density perturba-

tions were generated due to the quantum �uctuations of the in�aton �eld. This resulted

in the formation of these anisotropies. New observations are arriving, but so far the data

is in an excellent agreement with the predictions of the in�ationary models.

Figure 3-2: WMAP picture of the CMB anisotropies.

21



3.5 New and Old In�ation

The �eld studied in the original model of in�ation was false vacuum, because it behaves

as if it were the state of lowest possible energy density. Classically this state would be

stable, as there would be no state of lower energy available for the �eld to decay. However,

this false vacuum can decay by quantum tunneling. In the initial days, it was hoped that

the process of tunneling could end in�ation, but it was found that the randomness of

decay can produce inhomogeneities.

In Guth�s 1981 paper [4], where he introduced the idea of in�ation, it was mentioned

that in�ation is not easy to end. The metastable false vacuum decays through bubble

formation. Bubbles expand at speeds approaching the speed of light, but the false vacuum

regions that separate them expand even faster. Thus, the bubbles (regions where in�ation

ends) never �ll the entire space and in�ation never ends. This is the graceful exit problem

of the old in�ationary scenario [11].
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Figure 3-3: Old infation potential. The scalar �eld makes transition from false to true
vacuum by tunneling process.

This �graceful exit� problem was solved by the invention of the new in�ationary
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universe model by Linde [12] and by Albrecht and Steinhardt [13]. New in�ation achieved

enormous success. In this theory, in�ation is driven by a scalar �eld, called the in�aton,

perched on a plateau of the potential energy diagram [14]. If the plateau is �at enough,

such a state can be stable enough for successful in�ation. Later, Linde showed that the

in�aton potential need not have either a local minimum or a gentle plateau and he named

this model of in�ation as chaotic in�ation.
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Figure 3-4: New in�ation potential. In here, transition from false to true vacuum
is made by the scalar �led through quantum �uctuations. � = 0 corresponds to value of
�eld at which potential has a global minimum.

3.6 How In�ation Works

As mentioned earlier, in�ation provides a brief prequel to the theory of Standard Big

Bang cosmology. The exponential expansion of the universe started about 10�34 second

after the �bang�, when initially the universe was in a phase of dense hot plasma, termed

as the radiation dominated era, in which the energy density (�) decreased as a�1=4 [7]:

During in�ation, the scale factor was given by a � exp(Ht) and the energy density of the
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universe was independent of the scale factor ( � � a0); which is an equivalent statement

to the violation of the strong energy condition i.e. P = �� or ! = �1: The process of

in�ation lasted for another fraction of a second and ended with a reheating phase. We

don�t have any direct observation of the processes that took place during in�ation but

we expect that the incidences which occurred then followed the physical laws justi�ed

by the theories that we have today, although the universe was in a state of very high

temperature with enormously high density.

3.6.1 False Vacuum

Theory of in�ation can explain the outward propulsion of the infant universe on the basis

of gravitational repulsion, which is a property of matter having negative pressure [8]. The

combination of modern particle physics and general relativity predicts that at very high

energies, forms of matter that can create gravitational repulsion may exist. In�ation

assumes that a patch of such repulsive gravity material existed in the early universe

which is sort of a correct assumption because the universe then was in a state of its

highest energy ever. If in�ation took place at the GUT energy scale (� 1016 GeV ) then

the patch needs to be only as large as 10�28 cm [8]. Since any such patch is enlarged by

in�ation, the initial density of the patch need not be very high. According to in�ation, the

gravitational repulsion drove the universe into the exponential expansion, doubling in size

after every 10�37 second or so. The patch expanded exponentially by a factor of at least

1028 which corresponds to about 65 time constants which, in the terms of in�ationary

theory, are called "number of e-folds". In�ation lasted for about 10�36 seconds and at the

end, the universe was of the size of a marble. The repulsive gravity material is unstable

and it decayed, calling an end to in�ation. The decay released energy which produced

ordinary particles. The density of the repulsive gravity material was not lowered as it

expanded. Although more and more energy appeared as the repulsive gravity material

expanded but the total energy remained conserved. It is due to the fact that the energy

of a gravitational �eld is negative.
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3.6.2 GUTs, Higgs Particle and Theory of In�ation

According to the Standard Big Bang theory, the expansion of the universe started from

a state of enormously high density and at a temperature which was much higher than

the critical temperature of a phase transition. So the symmetry between the strong and

electroweak interactions in the Grand Uni�ed Theories (GUTs) was restored in very early

stages of the evolution of universe.

According to the general de�nition, a spontaneously broken symmetry is the one

which is present in the theory describing a system, but is hidden when the system is in

equilibrium state. For GUTs, the symmetry relates the behavior of one type of particle

to the behavior of another. The symmetry of GUTs implies that the three interactions

of the Standard Model of particle physics i.e. U(1); SU(2) and SU(3); are really a

single one, and hence indistinguishable. The symmetry also implies that the individual

particles, which are normally distinguished from each other by how they participate in

these interactions, will necessarily lose their identity. In particular, GUTs propose that

the underlying laws of physics make no distinction between an electron, a neutrino or

a quark. In GUTs, a set of �elds is added for the speci�c purpose of spontaneously

breaking the symmetry. These �elds are called as Higgs �elds, after Peter W. Higgs of

the University of Edinburgh, and the spontaneous symmetry breaking mechanism, which

occurs in a variety of particle physics theories, is known as the Higgs mechanism.

The Higgs �elds are on equal footing with the other fundamental �elds, such as

the electromagnetic �eld. It is postulated that these �elds exist and that they evolve

according to a speci�ed set of equations. While the electromagnetic �eld gives rise to

photons, the Higgs �elds give rise to Higgs particles. The Higgs particles associated with

the breaking of the grand uni�ed symmetry are expected to have masses corresponding

to energies in the vicinity of 1014 GeV , which means that they are far too massive to be

produced in the foreseeable future. Higgs is a scalar �eld and it existed at the time when

we expect in�ation to have taken place, we may consider it to have acted as an in�aton.
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3.6.3 Spontaneous Symmetry Breaking and Phase Transitions

in a Hot Universe

In the GUT sector of studies, spontaneous symmetry breaking is accomplished by de-

veloping the theory in such a way that the Higgs �elds have non-zero values in vacuum.

The other particles in the theory interact with the Higgs �elds, producing the apparent

distinction between the U(1); SU(2) and SU(3) interactions and also between electrons,

neutrinos and quarks. The distinct properties that we observe for electron, neutrinos

and quark are not fundamental, instead they represent the di¤erent ways in which that

particles can interact with the Higgs �eld.

According to GUTs, a phase transition occurs at a temperature of the order of 1027

Kelvin. At temperatures higher than this value, the Higgs �eld enters a di¤erent phase.

The Higgs �eld would oscillate wildly under thermal agitation, but the mean value of

each �eld would be zero, so grand uni�ed symmetry would be restored. In this phase, the

U(1), SU(2) and SU(3) interactions would all merge into a single interaction. This phase

transition is closely linked to the spontaneous symmetry breaking i.e. at temperature

greater than 1027 Kelvin, there is only one type of interaction and at temperatures below

that value, the grand uni�cation symmetry is broken and the U(1), SU(2) and the SU(3)

interactions acquire their separate identities.

When the universe cooled down to the temperature of the phase transition, there are

two possibilities that might have happened. The phase transition might have occurred

instantaneously or have been delayed, occurring after a large amount of supercooling.

If the correct GUT and the values of its parameters were known, there would be no

ambiguity about the nature of the phase transition. In the absence of this knowledge,

however, either of the two possibilities are plausible. If the phase transition occurred

immediately, then its cosmological consequences would be very problematical. In that

case a large number of magnetic monopoles would be produced. For the most of the

GUTs, these monopoles would survive to the present day, leading to predictions which

are at odds with observations.
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The in�ationary scenario is based on the possibility that the phase transition was

delayed and the universe underwent extreme supercooling. When the gas �lling the

universe supercooled to temperatures below the temperature of the phase transition, a

false vacuum state would have been approached. The energy density required to produce

this false vacuum is about 60 orders of magnitude larger than the density of the atomic

nucleus [8]. Due to the gravitational repulsion, this false vacuum state underwent in�ation

at a rate which was larger than the expansion rate given by the Standard Cosmology.

As a result, the universe doubled in size in about 10�34 seconds and continued to double

in size during each successive interval of 10�34 seconds until the universe remained in

false vacuum state. Eventually the phase transition occurred and the energy density

of the false vacuum was released, which was the latent heat of phase transition. This

energy produced particles which reheated the universe back to the temperature of phase

transition, about 1027 Kelvin. After this phase transition, the universe was �lled with

a hot gas of particles, exactly as postulated in the initial conditions of the Standard

Big Bang theory and from here the two models agree in explaining the evolution of the

universe.

3.7 Quantum Fluctuations During In�ation

Basic quantum mechanics follows the uncertainty principle

�E�t > ~
2

During in�ation, the universe expanded over large regions driving itself into homo-

geneity but still we have local concentration of matter announcing the local inhomo-

geneity. It is due to the fact that the �eld that drived in�ation, like all quantum �elds,

underwent quantum �uctuations in accordance with the Heisenberg uncertainty prin-

ciple. During in�ation, these quantum �uctuations were stretched proportional to the
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scale factor, a(t), and so they grew rapidly to macroscopic scales. As a result, we have a

set of almost scale-invariant perturbations having a huge range of wavelengths [8]. The

spectrum of primordial perturbations are parameterize by a spectral index, ns. A spec-

trum that is scale-invariant would have ns = 1. In�ationary models generically predict

ns = 1 to within 10%. The latest measurements of these perturbations by WMAP reveal

ns = 0:977 + 0:039(8)� 0:025.

3.7.1 Creation and Evolution of Fluctuations
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Figure 3-5: Creation and evolution of perturbation during in�ation and af-
terwards. Quatum perturbations are generated at sub-horizon scales. During in�ation,
when comoving Hubble radius decreases and comoving scales remain �xed, the �uctua-
tions come outside the horizon. The perturbations remain frozen until the time of horizon
re-entry, after which they evolve into anisotropies in the CMB.

Fluctuations are created quantum mechanically and have a wave number k (�gure

3-5): Cosmologically relevant �uctuations are those which are born inside the horizon

(Hubble radius) i.e. at the sub-horizon scales:
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sub-horizon : k � aH (3.11)

and in here

k�1 � (aH)�1

i.e. wavelengths are within the Hubble radius.

However, while the comoving wave number is constant, the comoving Hubble radius

shrinks during in�ation. So the �uctuations exit the horizon eventually.

super � horizon : k < aH (3.12)

3.7.2 Large Scale Structure from Quantum Fluctuations

Primordial �uctuations in the �eld grew with exponential expansion during in�ation for

about �rst 4 e-folds and after few e-folds, � > aH , the perturbations exit the horizon.

Casual physics cannot act on super-horizon scales so they froze, forming a scale invariant

spectra.

These �uctuations re-entered the horizon and when the photons decoupled, these

�uctuations were imprinted on CMB as temperature anisotropy in the form of hotter

and colder regions. These quantum �uctuations caused the time delay in the time at

which in�ation ended in di¤erent regions as a result of which temperature �uctuations

�T were developed during reheating. After the photon decoupling when the radiation

era ended, these �uctuations �T caused density �uctuations �� which, under the action

of gravity, ampli�ed the inhomogeneities.

Inhomogeneities in CMB are small, revealing that at the time of photon decoupling

universe was nearly homogeneous having small inhomogeneities. Therefore �uctuations

can be analyzed as linear perturbations around a homogeneous back ground. Important

�uctuations are in two quantities, matter and metric. Matter �uctuations are scalar
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and metric �uctuations are tensor in nature. They can be traded for each other by a

gauge transformation. Scalar �uctuations are observed as density �uctuations and tensor

�uctuations led to the formation of gravitational waves in the later universe [6]. After

radiation-dominated era, when pressure was negligible and only gravitational force was

at action, these density perturbations grew under the action of gravitational force and

resulted in the formation of galaxies, superclusters, giant voids and all the large scale

structures.

3.7.3 Power Spectrum of Perturbations

Power spectrum of the scalar �uctuations is given by the two point correlation function

of the �uctuation�s amplitude

hRkRk0i = (2�)3� (k � k0)PR (k) (3.13)

and

�2
s � �2

R =
k3

2�2
PR (k) '

H2
�

(2�)2
H2
�
_�
2

�

(3.14)

Where the subscript (::)� denotes the values at the time of �rst horizon crossing or

the horizon exit i.e. at scale k = aH:

The scale dependence of the power spectrum is de�ned by the scalar spectral index

ns � 1 �
d ln�2

s

d ln�
(3.15)

where scale invariance corresponds to the value ns = 1:We my also de�ne the running

of the spectral index by
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�s �
dns
d ln�

(3.16)

The tensor �uctuations contain two polarization modes hij if h = hy, h� , their power

spectrum is

hhkhk0i = (2�)3� (k � k0)Ph (k) (3.17)

and

�2
h =

k3

2�2
Ph (k) (3.18)

Power spectrum of the tensor perturbations is de�ned as the sum of the power spectra

for the two polarizations

�2
t � 2�2

h '
2

�2
H2
�

m2
p

(3.19)

It is customary to normalize the tensor �uctuations relative to the amplitude of scalar

�uctuations. The tensor-to-scalar ratio (r) is given as

r � �2
t

�2
s

(3.20)

3.8 Slow-Roll In�ation

Slow-roll approximation is a technique used for the analysis of in�ation. This technique

is used in most of the in�ationary models. The slow-roll approximation is based on the

assumption of accelerated expansion.
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Figure 3-6: Mechanism of slow-roll in�ation. �� represents quantum �uctuations in
the in�aton �eld and �e is the value of �eld at which in�ation ends.
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3.8.1 Scalar Field Dynamics

Scalar �elds are an important ingredient in the particle physics theories. The dynamics

of an in�aton �eld, minimally coupled to gravity, have the following action integral:

S =

Z
d4x
p
�g
�
1

2
R+ 1

2
g��@��@��� V (�)

�
(3.21)

i.e. the Lagrangian is

L� =
1

2
R+ 1

2
g��@��@��� V (�) (3.22)

where R is the Ricci scalar of general relativity.

The stress-energy tensor is given by
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T�� = �2
@L�
@g��

+ g��L� (3.23)

where

T00 � energy density

T0i = Ti0 � momentum density

Tij = Tji � stress tensor

The stress-energy tensor (3:23) for the above scalar �eld is

T�� = @��@��� g��

�
1

2
g��@��@��+ V (�)

�
(3.24)

Thus the energy density and the pressure of the in�aton �eld can be respectively

described as

� =
_�
2

2
+ V (�) (3.25)

P =
_�
2

2
� V (�) (3.26)

and from the de�nition of !; (! � p=� ), we have

! =
1
2
_�
2 � V (�)

1
2
_�
2
+ V (�)

(3.27)

Substituting the expression for �; from equation (3:25) ; in the Friedmann equation

(2:4) for �at universe (� = 0), we get

H2 =
1

3

�
1

2
_�
2
+ V (�)

�
(3.28)
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and the equation determining the dynamics of the scalar �eld is obtained as follows

��+ 3H _�+ @�V (�) = 0 (3.29)

3.8.2 Slow-Roll Parameters

Using the de�nition of !; the Friedmann second equation (2:4) ; for universe dominated

by homogeneous scalar �eld with � = 0; is re-written as

�a

a
= �1

2
�

�
1

3
+ !

�
(3.30)

As for �at universe, � = �crit = 3H
2, so

�a

a
= H2

�
1� 3

2
(! + 1)

�

= H2 (1� ") (3.31)

if we de�ne

" � 3

2
(!� + 1) (3.32)

and this " is the �rst slow-roll parameter.

Comparing the two expressions for the Friedmann equation, (2:5) and (3:31) ; we get

" = �
_H

H2
(3.33)

34



The various other ways of expressing " are

" � 3

2
(!� + 1) = �

_H

H2
= �d lnH

dN
=

_�
2

2H2
(3.34)

The second slow-roll parameter, �; is de�ned as:

� � �
��

H _�
(3.35)

Using equation (3:34), � can be written in terms of " as

� = "� 1

2"

d"

dN
(3.36)

3.8.3 Slow-Roll Conditions

Accelerated expansion requires �a(t) and so H2 to be large, which implies that " < 1.

From equations (3:34) and (3:28) ; it means that

_�
2 � H2 (3.37)

� V (�) (3.38)

or in other words, the potential energy is dominant over the kinetic energy of the

�eld.

Besides the accelerated expansion , the duration of this expansion must also be long

enough, for which �� should be small. Equivalently, we get the condition

j��j � j3H _�j; j@�V j (3.39)
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which from equation (3:35) implies that j�j < 1 and this means that the change in "

over time is small.

The conditions " < 1 and j�j < 1 are known as the slow-roll conditions.

3.8.4 Potential Slow-Roll Parameters

In addition to the Hubble slow-roll parameters, the potential slow-roll parameters are

de�ned as "v and �v. They give the constraints on the shape of the in�ationary potential

[2]. They are given as (restoring mp temporarily):

"v =
m2
p

2

�
V;�
V

�2
(3.40)

and:

�v = m2
p

V;��
V

(3.41)

In the slow-roll approximation, they are

"v � 1 , j�vj � 1 (3.42)

and relation between Hubble and potential slow-roll parameters is

" � "v , � � �v � "v (3.43)

3.8.5 Number of e-Folds

If we de�ne

dN = Hdt = dlna (3.44)

36



which is the measure of the number of e-foldings (N) of in�ationary expansion, then

" is rede�ned as

" = �
_H

H2
= �d lnH

dN
(3.45)

So N(�) becomes

N (�) =

teZ
t

Hdt =

�eZ
�

Hd�
dt

d�
(3.46)

Using inequality (3:37) in equation (3:28) ; we get

H2 ' 1

3
V (�)

and using equations (3:38) in (3:29)

_� ' � V;�
3H

Putting the expressions for H2 and
�
_�
��1

in the above equation (3:46), it becomes

N (�) � �
�eZ
�

V

V;�
d� (3.47)

Using the de�nition of slow-roll parameter ", equation (3:45) ; this expression for

N (�) modi�es to

N (�) =

�Z
�e

1p
2�v

d� �
�Z

�e

1p
2�
d� (3.48)

where we �nd the value of the �e from the end of in�ation condition.
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3.8.6 Power Spectra Revisited

Power spectra of the scalar and tensor �uctuations in terms of slow-roll parameters are

given as

�2
s � �2

R =
1

8�2
H2

m2
p

1

"
(3.49)

�2
t � 2�2

h =
2

�2
H2

m2
p

(3.50)

Both the expressions are valid at the horizon crossing condition i.e. k = aH:

The tensor-to-scalar ratio becomes

r = 16"� (3.51)

where the subscript (::)� denotes k = aH:

3.9 Models of In�ation

There are varieties of in�ationary models e.g. new, chaotic, extended, power-law, hybrid,

natural, supernatural, eternal, D-term, F-term, brane, oscillating, trace-anomaly driven

etc. These models are di¤erentiated on the basis of the properties of scalar particle

employed in the theory and by the form of their potentials. In�ationary models are

classi�ed as follows:
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3.9.1 Single Field Models

Large Field Models

The �rst class is the �large �eld�models. In this class the initial value of the in�aton

�eld is large � �� > mp and it rolls down towards the potential minimum. Chaotic

in�ation [15] is also classi�ed as a large �eld model.

ΦΦcmbend

δ Φ

Φ

∆Φ

V(Φ )

Figure 3-7: An example of large-�eld in�ation. Here �� > Mpl:

Chaotic In�ation

The chaotic in�ation model is described by the potentials of the �n type, where a single

monomial term dominates the potential [2]. Most commonly used potentials are quadratic

V (�) =
1

2
m2�2

or quartic
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V (�) =
1

4
��4

in�aton potential.

The term �chaotic�means that the initial conditions of the in�aton �eld are distrib-

uted chaotically and there is no strict restriction upon the slope of the in�aton potential.

In this scenario, the region which underwent su¢ cient amount of in�ation gave rise to

our universe. If the �eld evolution is super-Planckian, the gravitational waves produced

by in�ation should be observed in the near future.

Small Field Models

The second class is the �small �eld�models. In this class the in�aton �eld is initially

small i.e. �� < mp and it slowly evolves toward the minimum of the potential at larger

�. New in�ation and natural in�ation [16, 17] are the examples of this type.

Natural In�ation

Natural in�ation model is characterized by Pseudo Nambu-Goldstone Bosons (PNGBs),

which appear when an approximate global symmetry is spontaneously broken. The

PNGB potential is expressed as

v (�) = m4

�
1 + cos

�
�

f

��
(3.52)

where two mass scales m and f characterize the height and width of the potential,

respectively. The typical mass scales are of order f � mpl � 1019GeV and m � mGUT

� 1016 GeV.
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3.9.2 Hybrid In�ation Model

In such a model, in�ation ends by the phase transition that is triggered by the presence

of another scalar �eld.

Linde�s Hybrid In�ation

The in�ationary model consisting of multiple scalar �elds was also proposed by Linde

[18, 19]. Linde�s hybrid in�ation model is described by the following potential:

V (�) =
�

4

�
�2 � M2

�

�2
+
1

2
g2�2�2 +

1

2
m2�2 (3.53)

When �2 is large, the �eld tends to roll down toward the potential minimum at � = 0:
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Chapter 4

Standard Model Higgs as an In�aton

Early attempts to model in�ation using a self-interacting Higgs like scalar �eld minimally

coupled to gravity faced the necessity, dictated by the amplitude of the primordial CMB

perturbations, to assume an extremely small self-interaction quartic coupling constant

� � 10�13. As the mass of the Higgs particle is related to the � by the relation
p
2��,

therefore such small coupling leads to a small value of the Higgs mass. Such a model of

in�ation is ruled out by the present observational data. It was observed that the problem

of an exceedingly small self-coupling can be solved by adding a non-minimal coupling

term, ��2R=2; with a large non-minimal coupling constant �: In this case, the CMB

anisotropy i.e. �T=T , is given by the ratio
p
�=� [20]. Therefore even for the value of

� near 1, the small value of the anisotropy can be obtained.

4.1 Lagrangian

Consider the Standard Model (SM) Lagrangian non-minimally coupled to gravity

L = LSM +
m2

2
R+�HyHR
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where H is the Higgs doublet and � is the non-minimal coupling constant between

gravity and the Higgs �eld. The Higgs sector is described by the following Lagrangian:

Lh = � j@Hj+ �2HyH� �
�
HyH

�2
+ �HyHR (4.1)

where � is self-coupling of Higgs and � is the parameter for Higgs mass.

We consider � as the neutral, real component of the Higgs doublet H that remains

after the Higgs mechanism. The general form of the action integral for the scalar �eld

non-minimally coupled to gravity through the Ricci scalar R, in the Jordan frame is [21]

S =

Z
d4x
p
�g
�
1

2
m2
pf (�)R�

1

2
k (�) (@�)2 � V (�)

�
(4.2)

where f (�) is a general function of the scalar �eld, k (�) is a general coe¢ cient of

kinetic energy and V (�) is some general potential function.

4.2 Classical Calculations

4.2.1 Conformal Transformation

The minimal coupling between � andR can be converted into a non-minimal one through

a conformal transformation that will take the above action from the Jordan frame to the

Einstein frame. In the Einstein frame, the gravity term is canonical i.e. it has the form

mpR=2. The transformation is made by de�ning a new metric as

gE�� = f (�) g�� (4.3)

where gE�� is the metric in the Einstein frame.
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Under this transformation, the determinant of metric transforms as [22]:

gE = f (�)4 g

and so

p
�g �!

p
�gE

f (�)2
(4.4)

and the Ricci scalar undergoes the following transformation [23]:

R = f (�)RE � 6gE��@�f (�)
1
2 @�f (�)

1
2 (4.5)

Calculating term-wise

@�f (�)
1
2 =

1

2f (�)
1
2

f 0 (�) @��

and so

gE��@
�f (�)

1
2 @�f (�)

1
2 =

1

4f
[f 0 (�)]

2
(@�)2

Substituting this in equation (4:5) ; the transformation for the Ricci scalar becomes

R! f (�)RE � 3
2
f 0 (�)2 (@�)2 (4.6)

Further, under the above transformation

(@�)2 ! f (�) (@�)2
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Putting these transformations in the above action integral, equation (4:2) ; we get the

same action in the Einstein frame:

SE =

Z
d4x

p
�gE

f (�)2

�
1

2
m2
pf (�)

�
f (�)RE � 3

2
f 0 (�)2 (@�)2

�
�1
2
k (�) (@�)2 � V (�)

�
(4.7)

or

SE =

Z
d4x
p
�gE

"
1

2
m2
pRE � 3

2
m2
p

f 0 (�)2

f (�)2
(@�)2�1

2

k (�)

f (�)
(@�)2 � V (�)

f (�)2

#
(4.8)

Now we may de�ne

V E � V (�)

f (�)2
(4.9)

and a new �eld as

(d
)2 � 3

2
m2
p

f 0 (�)2

f (�)2
(@�)2 +

k (�)

f (�)
(@�)2

or more explicitly

�
d


@�

�2
=
3

2
m2
p

f 0 (�)2

f (�)2
+
k (�)

f (�)
(4.10)

Substituting the expressions from equations (4:9) and (4:10) in equation (4:8) ; we get

SE =

Z
d4x
p
�gE

"
1

2
m2
pRE�1

2

�
d


d�

�2
� V E

#
(4.11)
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This is the �nal form of the action integral in the Einstein frame.

4.2.2 Slow-Roll Parameters

The shape of the potential determines the in�ationary dynamics and the cosmological

predictions. As given in the previous chapter, the �rst and the second slow-roll parame-

ters are de�ned respectively as

" =
1

2
m2
p

 
V E
;


V E

!2
(4.12)

� = m2
p

 
V E
;



V E

!
(4.13)

For the present case, as we have de�ned the action and hence the Lagrangian in terms

of another �eld 
; therefore

dV E

d�
=
@V E

@


@


@�
=) @V E

@

=
dV E

d�

�
@


@�

��1
(4.14)

or

@V E

@

= V

E0
�
@


@�

��1
(4.15)

where V 0 is the derivative of V with respect to �: In the similar way

d2V E

d�2
=

@

@�

�
@V E

@


@


@�

�

=

�
@2V E

@
2
@


@�

�
@


@�
+
@V E

@


@2


@�2
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Plugging the expression for (@V=@
) from equation (4:15) ; we get

V E
00
=
d2V E

d�2
=
@2V E

@
2

�
@


@�

�2
+ V E

0
�
@


@�

��1
@2


@�2

or

@2V E

@
2
=

"
V E

00
� V E

0
�
@


@�

��1
@2


@�2

#�
@


@�

��2
(4.16)

Putting the expressions for (@V=@
) from equation (4:15) in equation (4:12) for "

gives

" = 1
2
m2
p

�
V
E0

V E

�2 �
@

@�

��2
(4.17)

and on substituting the expression for (@2V=@
2) from equation (4:16) in equation

(4:12) for �, we get

� = m2
p

�
V E

00

V E

�
@

@�

��2
� V E

00

V E

�
@

@�

��3
@2

@�2

�
(4.18)

where d
=@� is given by equation (4:10) :

4.2.3 Form of the Potential

The potential from the Higgs sector is

V (�) =
�

4

�
�2 � �2

�2 � �

4
�4 (4.19)
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where � is the Higgs self-coupling and � is the symmetry breaking scale. As we are

assuming that in�ation took place at GUT energy scale, therefore � � � and so we

ignore �. Specializing to gauge invariant, dimension less than 4 operators and without

the higher derivatives, f (�) must have the following form:

f (�) = 1 +
��2

m2
p

(4.20)

where � is the non-minimal coupling constant between gravity and the Higgs �eld.

Now from equations (4:9) and (4:20), we have

V E =
�
4
�4�

1 + ��2

m2
p

�2 (4.21)

These expressions can be simpli�ed if expressed in terms of a dimensionless variable

 , de�ned as

 �
p
�

mp

� (4.22)

with this the above expressions become

f (�) = 1 +  2 (4.23)

and

V E =
�m4

p

4�2

"
 4�

1 +  2
�2
#

(4.24)
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4.2.4 Calculation of Slow-Roll Parameters

Calculation of "

Using the expression for V E in equation (4:24) ; we have

V E
0
=
�m3

p

4�
3
2

"
4 3

�
1 +  2

�2 � 4 5 �1 +  2��
1 +  2

�4
#

(4.25)

and

V E
0

V E
=

p
�

mp

"
4

 
�
1 +  2

�# (4.26)

so

 
V E

0

V E

!2
=

�

m2
p

"
4

 
�
1 +  2

�#2 = �

m2
p

"
16

 2
�
1 +  2

�2
#

(4.27)

The expression for (d
=@�)2 is given in equation (4:10) ; by using which we get

�
d


@�

�2
=
3

2
m2
p

f 0 (�)2

f (�)2
+

1

f (�)
(4.28)

Using the expression for f (�) in equation (4:23)

f 0(�) = 2 

�p
�

m

�

we have

f 0(�)

f (�)
=

2 �
1 +  2

� �p�
m

�
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and hence

�
f 0(�)

f (�)

�2
=

�

m2

4 2�
1 +  2

�2 (4.29)

Plugging the expressions for (f 0(�)=f (�))2and f (�) in equation (4:28), the expression

becomes

�
d


@�

�2
=
1 +  2 + 6� 2�
1 +  2

�2 (4.30)

therefore

�
d


@�

��2
=

�
1 +  2

�2
1 +  2 + 6� 2

(4.31)

According to equation (4:17) ; " is given by

" =
1

2
m2
p

�
V 0

V

�2�
@


@�

��2

Putting the expressions for (V 0=V )2 and (d
=@�)�2 from equations (4:27) and (4:31)

respectively, we get

" =
1

2
m2
p

"
�

m2

 
16

 2
�
1 +  2

�2
! �

1 +  2
�2

1 +  2 + 6� 2

#

which simpli�es to

" = 8�
1�

1 +  2 + 6� 2
�
 2
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The expression further simpli�es if we consider the large � limit which is the physical

case, hence

"for large � ! " � 8�

6� 4

or

" � 4
3 4

(4.32)

Calculation of �

� is given by equation (4:18)

� = m2
p

"
V E

00

V E

�
@


@�

��2
� V E

0

V E

�
@


@�

��3
@2


@�2

#

Now from the expression of V E

V E
00
=

d

d�

"
�m3

4�
3
2

 
4 3

�
1 +  2

�2 � 4 5 �1 +  2��
1 +  2

�4
!#

(4.33)

=
�m2

4�

"
12 2

�
1 +  2

�6 � 36 4 �1 +  2�5 + 24 6 �1 +  2�4�
1 +  2

�8
#

(4.34)

so

V E
00

V E
=

�

m2 4

"
12 2

�
1 +  2

�6 � 36 4 �1 +  2�5 + 24 6 �1 +  2�4�
1 +  2

�6
#

which simpli�es to
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V E
00

V E
=
12�

m2

" �
1�  2

�
 2
�
1 +  2

�2
#

(4.35)

Using the expression for (d
=@�)�2 ; we obtain

�
@


@�

��3
=

�
1 +  2

�3�
1 +  2 + 6� 2

� 3
2

(4.36)

and
�
@2
=@�2

�
is calculated using equation (4:30) as follows:

@2


@�2
=

d

d�

"p
1 +  2 + 6� 2�
1 +  2

� #

=

p
�
m�

1�  2
�2
24 (6� � 1)�  3 (6� + 1)�

1 +  2 + 6� 2
� 1
2

35 (4.37)

Now, from equations (4:35) and (4:31)

V E
00

V E

�
@


@�

��2
=

12�

m2

" �
1�  2

�
 2
�
1 +  2

�2
# �

1 +  2
�2

1 +  2 + 6� 2

=
12�

�
1�  2

�
m2 2

�
1 +  2 + 6� 2

� (4.38)

and using equations (4:25), (4:36) and (4:37) ; we get
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V E
00

V E

�
@


@�

��3
@2


@�2
=

p
�

m

"
4

 
�
1 +  2

�#
24 �

1 +  2
�3�

1 +  2 + 6� 2
� 3
2

35�
p
�
m�

1�  2
�2
24 (6� � 1)�  3 (6� + 1)�

1 +  2 + 6� 2
� 1
2

35

which simpli�es to

V E
00

V E

�
@


@�

��3
@2


@�2
=
4�

m2

"
(6� � 1)�  2 (6� + 1)�
1 +  2 + 6� 2

�2
#

(4.39)

Putting the expression from equations (4:38) and (4:39) in the expression for �; equa-

tion (4:18) ; we get

� = m2
p

"
12�

�
1�  2

�
m2 2

�
1 +  2 + 6� 2

� � 4�

m2

"
(6� � 1)�  2 (6� + 1)�
1 +  2 + 6� 2

�2
##

simpli�cation yields

� = 4�

"
3 + 18� 2 � 3 4 � 18� 4 � 6� 2 +  2 + 6� 4

 2
�
1 +  2 + 6� 2

�2
#

=
4�

 2
�
1 +  2 + 6� 2

�2 �3 + 12� 2 � 12� 4 � 3 4 2�

Again considering the large � limit:
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�for large � ! � =
4�

36�2 6
�
12� 2 � 12� 4

�

=
4 2

3 6
�
1�  2

�

which can be put in a more illuminating form as:

� = �4
3 2

h
1� 1

 2

i
(4.40)

4.2.5 Number of e-Folds

The number of e-folds during in�ation is given by

Ne =
1p
2m

Z �

�e

d�p
"

�
d


d�

�
(4.41)

where �e is the value of �eld at which in�ation ends and � is its value during in�ation.

�e is obtained using the slow-roll approximation i.e.

" � 1

from equation (4:32)

 e =

�
4

3

� 1
4

(4.42)

Putting the expressions for " and (d
=@�) in equation (4:41)
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Ne =
1p
2m

Z �

�e

d�q
4
3 4

p
1 +  2 + 6� 2�
1 +  2

�
=

p
3

2
p
2m

�
mp
�

�  Z
 e

d 
 2
p
1 +  2 + 6� 2�
1 +  2

�
=

p
3

2
p
2�

 Z
 e

d 
 2
p
1 +  2 + 6� 2�
1 +  2

�

Solving this integral, the result obtained with all parameters to be positive is

Ne =
3

4

��[ 2 � ln �1 +  2�]�� 
 e

applying the limits

Ne =
3

4
[ 2 �  2e � ln

�
1 +  2

1 +  2e

�
(4.43)

If we take Ne = 60 , as is required by majority of the in�ationary models, then this

equation can give us the expression for the unknown  during in�ation. The equation

(4:43) becomes

60 =
3

4
[ 2 �

�
4

3

� 1
2

� ln

0@ 1 +  2

1 +
�
4
3

� 1
2

1A
or

 2 � ln
�
1 +  2

�
= 80 + 1:1155� 0:76765
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From this equation we get the value for  2

 2 = 84:32

and

 = 9:20 (4.44)

4.2.6 Numerical Values of the Slow-Roll Parameters

Putting the value for  in the expressions for " and � yield their numerical values which

are used to �nd the values of the scalar spectral index ns and the tensor-to-scalar ratio r.

The values of ns and r are then compared with the observed values of these parameters

from the WMAP satellite.

The value of " comes out to be

" =
4

3 (9:182995387)4
= 1:875� 10�4 (4.45)

and that of � is

� =
�4

3 (9:182995387)2

�
1� 1

(9:182995387)2

�

= �0:0156233888 (4.46)
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4.2.7 Calculation of ns and r

The expressions for ns is

ns = 1� 6"+ 2� (4.47)

and that for r is

r = 16" (4.48)

Substituting the values of " and � in equation (4:47)

ns = 1� 6
�
1:875� 10�4

�
+ 2 (�0:0156233888)

= 0:968 (4.49)

Substituting the values of " in equation (4:48)

r = 16
�
1:875� 10�4

�

= 3:0� 10�3 (4.50)

Thus the classical results come out to be independent of the parameters of the Stan-

dard Model, in particular the Higgs mass and the Higgs self coupling �. But these results

are in good agreement with the cosmological data. They lie within the 1� bound of the

most recent WMAP 9 data [24].
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4.3 Quantum Analysis

Now we consider how quantum corrections modify the classical results. For this we need

to compute the action including the e¤ects of the interactions of Higgs �eld with the

particles of the Standard Model of particle physics through quantum loops. These calcu-

lations are done in the Jordan frame. The quantum corrections modify the expressions

for f (�) ; k (�) and V (�).

Lagrangian of the graviton-in�aton sector is

L =1
2
f (�)R�k (�)

2
(@�)2 � V (�) (4.51)

where

f (�) = 1 +
��2

m2
p

(4.52)

and

V (�) =
�

4

�
�2 � �2

�2
(4.53)

and the Higgs �eld � has a strong non-minimal coupling with � � 1.

The quantum corrections to the kinetic energy term, which is taken as k (�) = 1 in

classical case, comes from wave-function renormalization and are approximately indepen-

dent of �. Corrections to k (�) comes with a factor of 1=� and is also suppressed by loop

factors and couplings [21].

Quantum corrections to the potential are very important. They provide the upper

bound to the Higgs mass. Higgs lighter than 230 GeV can not act as an in�aton because

the corresponding spectral index is ruled out by the WMAP data.
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4.3.1 First Order Radiative Corrections

The quantum e¤ective action, without the contribution of higher derivatives, reads

S =

Z
d4x
p
�g
�
U(�)R�1

2
G (�) (r�)2 � V (�)

�
(4.54)

where

U(�) �
m2
p

2
f(�) (4.55)

The �rst-order radiative correction to the potential in equation (4:54) is

V(1�loop) (�) = � (�1)
m4(�)

64�2
ln
m2(�)

�2
=

�A

128�2
�4 ln

�2

�2
+ :::: (4.56)

where A is the anomalous scaling factor which appears in quantum treatment of the

problem. It is a special combination of the coupling constants present in the Standard

Model of particle physics. Due to the large value of the non-minimal coupling constant

�; all the quantum corrections are determined by A. For � � 1; the dominant correction

to U (�) is

U(1�loop) (�) =
3��

32�2
�2 ln

�2

�2
+ :::: (4.57)

The anomalous scaling A and the corrections to U (�) determine the in�ationary

dynamics.

As in�ation is easy to analyze in the Einstein frame, so we transform the quantum

results in the Einstein frame, where the new potential takes the form
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V =
�m4

p

4�2

�
1�

2m2
p

��2
+

Ai
16�2

ln
�

�

�
(4.58)

where Ai is the in�ationary anomalous scaling, which arises as a result of the modi-

�cation in A due to quantum corrections.

The expressions for in�ationary parameters i.e. " and � include Ai. This quantity Ai

also enters in the expressions for the scalar spectral index ns and the tensor-to-scalar ratio

r and therefore from the observational constraints over the values of these parameters we

can calculate the CMB compatible range for the scaling Ai;which is

�12 < Ai < 14 (4.59)

In the Standard Model, the scale factor A is given in terms of the coupling constants.

Using the 1-loop corrections to the potential, equation (4:56); the expression for A comes

out to be

A =
3

8�
[2g4 + (g2 + g02)2 � 16y4t ] + 6� (4.60)

For the accepted range of the Higgs mass i.e. [25]

115 6 mH 6 180 (4.61)

A belongs to the following range

�48 < A < �20 (4.62)

at the electroweak scale. Comparison of this range with the range obtained using the

CMB observational constraints (4:59) shows that they strongly contradict each other.
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This implies that the radiative corrections alone can not make the theory compatible

with the known mass range of the Higgs �eld. In order to add more precision to the

theory, Renormalization Group (RG) Improvement is added.

4.3.2 Renormalization Group (RG) Improvement

According to the technique used by Coleman and Weinberg [26], the action with 1-loop

RG improvement is given by

S =

Z
d4xg

1
2

�
�V (�) = U (�)R�1

2
G(�) (r�)2 + ::::

�
(4.63)

with V (�); U(�) and G(�) are given as:

V (�) =
� (t)

4
Z4 (s)�4 (4.64)

U(�) =
1

2

�
m2
p + � (s)Z2�2

�
(4.65)

G(�) = Z2 (s) (4.66)

where Z (s) is the �eld renormalization. Here the running scale s = ln(�=�) is

normalized at the top quark mass, � = mtop:

The couplings � (t), � (t) and Z (t) belong to the solution of RG equations

dgi
dt
= �gg (4.67)

dZ

dt
= Z (4.68)
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Considering only the Higgs coupling to the other �elds, the 1-loop beta functions are

obtained in terms of the suppression factor ! as [27]

�� =
�

16�2
�
18!2�+ A (t)

�
� 4� (4.69)

�� =
6�

16�2
�
1 + !2

�
�� 2� (4.70)

�yt =
yt
16�2

�
�2
3
g02 � 8g2s + (1 +

!

2
)y2t

�
� yt (4.71)

�g = �
(39� !) g3

(12) 16�2
(4.72)

�g0 =
(18 + !) g03

(12) 16�2
(4.73)

�gs = �
7gs
16�2

(4.74)

where  is the anomalous dimension of the Higgs �eld and is given by a standard

expression

 =
1

16�2

�
9g2

4
+
3g02

4
� 3y2t

�
(4.75)
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RG Improved Results

The RG improvement of the action reveals that this action coincides with the tree level

action for a new �eld

' = Z(s)� (4.76)

Then from equations (4:64) and (4:65) ; the RG improved potentials take the form of

1-loop potential, equation (4:58) ; for ' with normalization being at point � = 'end: In

this case, the parameters of the theory are determined by the running anomalous scaling

Ai(s) taken at send and the running of A(s) depends upon � (s) :

Ai(s) varies from large negative values at the electroweak scale towards the smaller

negative values at in�ation. This makes the observational data from the CMB compatible

with the generally accepted range of the Higgs mass. The RG �ow allows to calculate

the power spectrum as a function of Higgs mass mH . The scalar spectral index drops

below ns = 0:94 for more negative values of the running scale, which happens only when

mH approaches the instability bound or mH > 180GeV . So we get the bounds on mH .

Both the lower and upper bound is obtained from the lower bound on the CMB data.

The range obtained from the numerical analysis, for mH ; is [27]

135:62GeV 6 mH 6 184:49GeV (4.77)

4.3.3 Quantum Results

It is seen that the in�ationary parameters in the quantum case varies with the Higgs

mass. Radiative corrections are enhanced by a large value of �: In the RG improved

theory, the scalar spectral index ns depends upon the Standard Model parameters, in

particular on the Higgs mass and the mass of the top quark. This is shown in �gure 4-1.
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Figure 4-1: Plot of the scalar spectral index ns as a function of Higgs mass mH for
three di¤erent values of top quark mass mt [28].

4.4 Cuto¤ Problem In Quantum Calculations

The energy scale at which in�ation took place is approximately

Ei �
mpp
�

(4.78)

Considering the term in the Lagrangian, (�=mp)�
2��, amplitude for the 2� ! 2�

scattering in high energy limit is

A �
�
�

mp

�2
E2

where the factor (�=mp)
2 comes from the vertex contribution and as amplitude is

dimensionless, therefore the other factor is energy. Now as the amplitudes sum up to

unity so we have
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A �
�
�

mp

�2
E2 6 1

this implies the energy scale to be

E 6 mp

�
(4.79)

which is de�ned as the cuto¤ point of the theory i.e. [29]

� � mp

�
(4.80)

above which the Standard Model has to be replaced by a more fundamental theory.

This makes Higgs in�ation unnatural [27]. As � is large, this cuto¤ � is far below the

Planck mass mp and so it is considerably smaller than the value of the Higgs �eld �

during in�ation. Comparing equations (4:79) and (4:80)

�� Ei (4.81)

This arises a question on the self-consistency of Higgs in�ation.

4.4.1 Cuto¤ Problem Revisited

To get rid of this cuto¤ problem, one needs to determine the energy domain in which

the theory is valid with large non-minimal coupling. The energy domain E < � depends

on the background value of the Higgs �eld � and for � = 0; it has the upper bound

� � mp=�: A cuto¤ that is obtained by a non-zero background value of the �eld has

the upper bound higher than the energy scales characterizing the dynamics of in�ation.

Furthermore, � coincides with mp during in�ation.
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4.4.2 Calculation of Cuto¤ in the Jordan Frame

To obtain the cuto¤ scale, scalar �eld � and metric g�� are expanded around their

background values having the subscript (...)b

� = �b + �� (4.82)

g�� = (g��)b + h�� (4.83)

where �� and h�� are the perturbations. The second order Lagrangian for the per-

turbations has the form [29]

L = �
m2
p + ��2b
8

�
h���h�� + 2@�h��@h� � 2@�h��@�h� h�h

�
+

1

2
(@���)

2 + ��b (�h� @�@h�) �� (4.84)

The terms up to two derivatives are retained because they determine the high energy

scattering amplitudes and hence the cuto¤ scale. In this approach of non-trivial back-

ground �eld, there is a large mixing of scalar perturbations and the metric. The kinetic

term can be diagonalized by the following change of variables

�� =

s
m2
p + ��2b

m2
p + ��2b + 6�

2�2b
��̂

and

h�� =
1q

m2
p + ��2b

ĥ�� �
2��bq�

m2
p + ��2b

� �
m2
p + ��2b + 6�

2�2b
� (g��)b ��̂
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The cuto¤ scale is now read out of the operators with dimensions greater than four.

The leading order term is the interaction ��h (��)2 ; which has the form

�
q
m2
p + ��2b�

m2
p + ��2b + 6�

2�2b
� ���̂�2�ĥ

The inverse of the coe¢ cient is identi�ed as the cuto¤ in the Jordan frame

�j (�b) =

�
m2
p + ��2b + 6�

2�2b
�

�
q
m2
p + ��2b

(4.85)

This expression for cuto¤ simpli�es di¤erently for three di¤erent regions of the back-

ground �eld:

�b�
mp

�
or the Low Field Region

This small �eld region corresponds to the present universe. In this region the cuto¤ is

�j '
mp

�
(4.86)

which is similar to the previous result with zero background. It is smaller than the

Planck mass mp; but it is way above the present energy content.

mp

�
� �b�

mpp
�
or the Intermediate Region

This intermediate region is relevant for the reheating era. The cuto¤ scale in this region

is

�j '
��2b
mp

(4.87)
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which is below the Planck mass mp; but starts to grow further.

�b�
mpp
�
or the Large Field Region

The large �eld region corresponds to the in�ationary period. Here the cuto¤ becomes

�j '
p
�� (4.88)

This value of the cuto¤ is much higher than its value in the case when the background

�eld was absent. So the problem of cuto¤ is resolved by expanding the �eld around a

non zero background.

4.5 Conclusion

In contrast to the classical analysis, the quantum mechanical study of the case tells

that the in�ationary parameters depend on the Higgs mass. Radiative corrections are

enhanced by the large value of �: In the RG improved theory, the scalar spectral index

ns depends upon the Standard Model parameters, particularly on the masses of Higgs

particle and the top quark. This fact is illustrated in the �gure 4-1, showing the behaviour

of the scalar spectral index with the change in the Higgs mass.

Now as the results from LHC have been arrived, we know that the possible Higgs

particle has the mass value of 125.6 GeV [30, 31]. When we compare this value to the

CMB compatible range of the Higgs mass, it is apparent that the LHC value falls short of

the range. Moreover, recent results from the ESA�s Planck [32] do not alter the existing

value of the scalar spectral index ns and so with the current parameters of the Standard

Model and the LHC mass value of the Higgs particle, this model of in�ation does not

seem to be successful.
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