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Abstract

The origin of approximation theory is dated to the middle of twentieth century
[49] and rests in the consideration of researchers to setup existence of approximate
solutions for the operator equations of the type m = Om. It is significant that the
best proximity point theory took off based on work of Eldred and Veeramani [47].
The best proximity points are generally employed to discover approximate solution
of the operator equation Om = m, which is optimal, when some contraction O fails
to have fixed point.

The motivation behind the dissertation is to explore best proximity points of
various proximal contraction operators in metric and metric-like spaces. We prove
best proximity point theorems for some new generalized multivalued proximal con-
tractions. We study nonself Presic-type operator and the presence of optimal ap-
proximate solution for them. Also we give several examples to explain our results.
We get some fascinating fixed point outcomes for Presic operator as consequence
of our results. We demonstrate best proximity point results in few generalizations
of metric space for example; modular metric space and gauge space, for operators
satisfying new type of contraction inequality. We introduce fuzzy multiplicative met-
ric space and prove best proximity points for Feng-Liu type multivalued proximal

contraction.



Preface

Analysis is the field of Mathematics in which we analyze classes of functions and
equations having general properties. The field of analysis has been developed into
various distinct but related fields such as Fourier analysis, complex analysis, real
analysis, numerical analysis and functional analysis etc. Fixed point theory is per-
haps the most dynamic territories of functional analysis. The theory originated in
response to needs of non-linear analysis with the method of successive approxima-
tions that was used to establish existence and uniqueness of solutions of differential
equations. Many authors including Charles Emile in 1890 and Joseph Liouville in
1837 contributed for the same.

Metric fixed point theory started with an interesting and valuable result, known
as Banach contraction principle, given by Stephen Banach in 1922 [19]. The prin-
ciple of Banach contraction is important because it not only gives the presence and
uniqueness of solution but also provides the sequence of successive approximations
that converges to the solution of the problem that can be modeled in the form
x = f(x). Metric fixed point theory is now expanding its domain due to its diversi-
fied applications in Mathematics like existence of solutions of differential equations,
integral equations [97, 117] just as in various fields like mathematical economics [95],
game theory [28], computer science [68], engineering, physics, telecommunication [9],
and many others [70, 116, 127]. A critical observation of literature depicts that the

principle of Banach contraction has been extended in following manner;

(i) Generalizing the operator or contraction conditions of the operator(See for ex-
ample [32, 39, 66, 78, 115]).

(ii) Generalizing the metric space(See for example [41, 69, 83, 75]).
(iii) Development of metric-like spaces(See for example [24, 92, 87])

Best proximity point theory is generalization of fixed point theory as best prox-

imity point theorem bring down to fixed point theorem if the nonself map reduces



to self map. The theory evolved with the work of K. Fan in 1969 [49]. Some ex-
tensions of the theorem are then given by Prolla [112],Seghal and Singh [122] and
Vetrivel [132]. In first chapter, we have given brief introduction of best proximity
point theory, some generalizations of metric space, some metric-like spaces and of
contraction operator that we have to use in upcoming chapters.

The theory of best proximity points now become field of attention for the re-
searchers working in the field of analysis. In 2012, S. Basha [23] introduced the
proximal contractions of nonself maps and established best proximity point theo-
rems. Several authors then used the concept and shows the presence of best prox-
imity points of different generalizations of proximal contractions [12, 74, 101, 107].
A useful generalization of Banach contraction Principle is fixed point theorem for
multivalued contraction which is given by S. B. Nadler [106]. In first section of
chapter two, we used a class of auxiliary functions, written as JF, introduced by
Wardowski [137]. We proved best proximity point theorems for a new class of mul-
tivalued generalized proximal contractions. With the help of example, we also have
shown that our results generalize some existing results.In second section, we have
proved best proximity point theorems for Presic type proximal contractions in the
framework of metric space endowed with graph. As consequences of our results, we
also have shown presence of fixed points of Presic type operators in the metric space
furnished with graph.

Since we mentioned earlier that generalization of metric space is a manner to
extend principle of Banach contraction. Modular metric space is the generalization
of metric space as modular metric reduces to metric if A is taken as 1. Fixed point
theorems in the framework of modular metric space with applications are provided
by several authors [2, 30, 38, 43]. Our chapter three contains best proximity point
theorems of proximal contractions of first kind and second kind defined using the
class of functions F, in the framework of modular metric space. Pseudo-metric is
a metric in which the distance between two distinct elements can be zero. A re-
markable observation is that every metric space is a pseudo metric space. Although
pseudo-metrics are rare than metrics but pseudo-metrics have their own importance
as they emerge in a characteristic manner in the theory of hyperbolic complex man-

ifolds and in functional analysis [88]. Gauge spaces are thoroughly discussed in [46]



that are generated by the collection of balls of family of pseudo-metrics. In 2000,
Frigon [55] proved fixed point theorems in the framework of complete gauge space.
Jleli et al. [76] in 2015 proved some fixed point theorems and showed their applica-
tions in gauge spaces. In second part of chapter three, we have shown existence of
best proximity points in gauge spaces of proximal contractions defined by using a
class of auxiliary functions.

In metric spaces, if a space is exceptional instance of another space then the
latter is termed generalization of first one. For instance metric space is exceptional
instance of modular metric space. There are some spaces that are not generalizations
of metric space but are analogous to metric space, for instance, fuzzy metric space,
multiplicative metric space etc.Fuzzy metric space was presented by Kramosil and
Michalek [92]. Fixed point theorems and best proximity point theorems of single
valued and multivalued contractions in fuzzy metric space were presented by many
authors [60, 119, 33, 123, 133, 134, 42, 50, 52, 57, 58, 61, 62, 86, 100]. In chapter
four we introduced fuzzy multiplicative metric space and some related terminologies.
We proved best proximity point theorems for some single valued and multivalued

proximal contractions in the newly introduced space.
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Chapter 1
Preliminaries and basic concepts

This chapter introduces basic concepts regarding some generalizations of metric
space and contraction operators. The definitions and some essential outcomes from

literature are incorporated that will be helpful in the entire dissertation.

1.1 Best Proximity Point Theory

The theory of fixed points is concerned with determining adequate conditions for
the presence and uniqueness of the functions that satisfy non-linear equations de-
noted by Om = m, when O is a function mapping a subset of metric space or
some relevant framework to itself. The equations may not have solutions for some
nonlinear operator O. This one, for example, has no solution if O : G — H and
G N H = ¢. In this case, we may identify a point m € G which is close to Om,
that is, the distance between Om and m is shortest among the G elements. Such a
point m € G is termed best proximity point of O. A point m € G, where G and H
are subsets of a metric space (M, d), is termed best prozimity point of O : G — H
if d(m,Om) = d(G,H). Fan [49] was one who first proposed the concept of best
proximity point. The definitions and findings for the study of best proximity point

theory are listed below;
Definition 1.1.1. [22] Allow (M, d) to be a metric space. For G, H C M;
d(G,H) =inf{d(g,h) : g € G,h € H}

1



Go={9€G:d(G,H)=d(g,h) for some h € H}
Hy={h e H:d(G,H) =d(g,h) for some g € G}

Definition 1.1.2. [22] The set H is termed approximatively compact concerning the
set G, if each {v,} in H with d(m,v,) — d(m, H) for some m € G has a convergent

subsequence.

The theory of best proximity points for different versions of contractions has
been studied [5, 10, 20, 21, 47]. The accompanying best proximity point theorem

demonstrated by Basha and Shahzad [23] for generalized proximal contraction:

Theorem 1.1.1. Allow G and H to be closed non-empty subsets of a complete
metric space (M,d). Let Gq is not empty and O : G — H is a mapping such that
for each my, mo, uy, us € G with d(uy, Omy) = d(G, H) = d(uy, Oms), we have

d(uy,ug) < qrd(my, ma)+d(my, ur)+ssd(ma, ug)+ss[d(my, ug)+d(ma,uq)] (1.1.1)

where <1,62,53,51 > 0 satisfying 1 + < + 3 + 254 < 1. Further, consider the accom-

panying conditions:
(i) H is approzimatively compact with respect to G,
(i1) O(Gy) is contained in Hy.

Then O possesses best proximity point.

1.2 Gauge Spaces

Pseudo metric is the generalized concept of metric satisfies the property that two
distinct points may not be separated. The topological space generated by the family
of pseudo metrics is called gauge space. Following are some basic definitions in the

perspective of gauge space;

Definition 1.2.1. [34] Consider a nonempty set M, a function d : M x M — [0, 00)
such that for each m,n,p € M,

(i) d(m,m) = 0 for each m € M,



(i) d(m,n) = d(n,m),
(ili) d(m, p) < d(m,n) 4 d(n,p).
The function d then termed as pseudometric in M.

Definition 1.2.2. [34] Consider (M, d) be a pseudo metric. The set
B(m,d,e) ={n € M :d(m,n) < €}.
is termed d-ball having radius € > 0 and center m € M.

Definition 1.2.3. [34] Consider a family B = {d,|b € U} of pseudo metrics. If for
each pair (m,n) with m # n, there exists d, € P with dy(m,n) # 0, then the family
B is termed separating.

Definition 1.2.4. [34] Let P = {dy|b € UV} be a family of pseudo metrics on a
nonempty set M. Let the family of balls

B(P) = {B(m,dp,e) :m € M,d, €P and € > 0}

being subbases generates the topology T (), termed topology induced by B. The
set M with topology T () is termed gauge space. It is noticed that the gauge space
(M, %(B)) is Hausdorft if the family B is separating.

Definition 1.2.5. [34] Consider a family P = {d,|b € U} of pseudometrics on a set
M # ¢ which induces a gauge space (M, T(P)). Let {m,} be a sequence in M and
m e M;

(i) if for each € > 0 and b € ¥, there is some a; € N such that d(m,, m) < € for
each a > a; then the sequence {m,} is termed convergent to m . Symbolically

we write it as m, —% m,

(i) if for each € > 0 and b € U, there is some a; € N such that d,(m,, mg) < € for

each a,d > a; then the sequence {m,} is termed Cauchy sequence,

(i) (M,%(B)) is complete if a sequence in (M, T(P)) is Cauchy then it must

converge in M,

(iv) A subset C of M is termed closed if each sequence of elements of C' converges
in C.



1.3 Modular Metric Spaces

Chistyakov([37] proposed and built up the theory of modular metric space in 2008.
Modular metric space is the generalization of metric space. Roughly we can say that
the quantity w(u, m,n) is the absolute value of velocity between m and n in time
> 0.

Here we define some terminologies in modular metric space that will be useful

in third chapter;

Definition 1.3.1. [37, 2] A function w : (0,00) x M x M — [0, 00| termed mod-
ular metric on a non-empty set M, in the event that it fulfills the accompanying

conditions, for all m,n,p € M:
(1) m = n if and only if w(pu, m,n) =0 Vu > 0;
(17) w(p,m,n)=w(p,n,m),Vu > 0;
(1i1) w(p+v,m,n) <w(p,m,p)+w,p,n) forall u,v>0.
If the following condition, as replacement of (7), is satisfied:
(1) : wlp,m,m) = 0,Yu > 0,m e M

then w is termed pseudomodular metric. A regular modular metric is weaker form

of modular metric where condition (7) is weakened as follows;
m = n if and only if w(u, m,n) = 0 for some p > 0.

Example 1.3.1. [37, 2] Let M = R and w is defined by w(p, m,n) = oo if u < 1,

_ m=n]|

and w(u, m,n) if > 1, it is simple to verify that w is regular however not

modular metric on M.

Definition 1.3.2. [2] Consider a pseudomodular w on a non-empty set M. For

fixed mg € M, the set
M,={m e M :w(\m,my) — 0as A - oo}

is termed modular space.



Definition 1.3.3. [2] Consider a modular metric space (M, w).

(1) The sequence {m,} in M, is termed w-convergent to m € M, if and only if

w(l,mg,m) — 0, as a — oc.
(77) The sequence {m,} in M, is termed w-Cauchy if w(1, m,, m;) — 0, as a,b — occ.

(737) If any w-Cauchy sequence in a subset W of M, is w-convergent in W then W

is termed w-complete.

(iv) If each sequence of elements of W is w-convergent in W then the subset W of

M, is termed w-closed .

(v) A subset W of M, is termed w-bounded if we have
0w(W) = sup{w(l,m,n) :m,n € W} < oo.

(vi) A subset W of M, is termed w-compact if there is some subsequence {m,, }

and m € W for any sequence {m,} in W with w(1, m,,,m) — 0 as k — oc.

Definition 1.3.4. [110] Let (M,w) be a modular metric space and {m,} be a se-
quence in M,,. We state that w fulfills the A/-condition if lim, j— 00 w(a—b, my, m,) =

0 for (a,b € N,a > b) implies limg 0 w(ft, My, My) = 0 for all > 0.

Definition 1.3.5. [72] If for any two sequences {m,} and {n,} w-convergent to m

and n in a modular metric space (M,w), the accompanying condition hold true
w(l,m,n) <liminf,,. w(1, M4, ng)

then w is termed to possess Fatou property .

1.4 Multiplicative Metric Space

In [24] Bashirov et al. brought up the attention of researchers to multiplicative cal-
culus which was remained unimportant from 1972, when first book on multiplicative
calculus was published by Grossman and Katz [65]. Bashirov in [25] encouraged the

researchers to investigate the materiality of multiplicative calculus in variuos fields
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by presenting some valuable applications in finance, economics and social sciences.
Applications in different fields are being studied by [53, 54, 104, 98].

By using the concept of multiplicative distance, Ozavsar and Cevikal [108] de-
veloped the theory of multiplicative metric space. Here we give some basic termi-

nologies.

Definition 1.4.1. [108] A non-empty set M with a mapping d : M x M — R is

termed multiplicative metric space if d fulfills the accompanying axioms;
(i) d(m,n) > 1 for all m,n € M and d(m,n) = 1 if and only if m = n,
(ii) d(m,n) = d(n,m) for all m,n € M,
(iii) d(m,p) < d(m,n).d(n,p) for all m,n,p € M
Example 1.4.1. Let d* : (RT)* x (RT)* — R be described as

d*(m,n) = [T |52 [ Re ]

where m = (mq, ma, ms, ...,m,) and n = (ny,ng, N3, ...,n,) € (RT)* and |.|* : R™ —

R™ is characterized as follows;

i rifr>1
r[* =
%ifr<1

Then d* satisfies all axioms of multiplicative metric and hence (R™)* with d* is a

multiplicative metric space.

Definition 1.4.2. [108] For a multiplicative metric space (M,d), m € M and € > 1,

the following set
Bc={ne€ M :d(m,n) <€}

is termed multiplicative open ball, where radius is € and center is m.

The following set
B.={ne€M:dm,n) <e}

is termed multiplicative closed ball.



Definition 1.4.3. [108] Consider a sequence {m,} in a multiplicative metric space
(M,d) and m € M. The sequence {m,} is termed multiplicative convergent to m,
if there is some a; € N with m, € B.(m) for all a > a; and for any multiplicative

open ball B.(m). Symbolically it is written as m, —, m as a — oc.

Lemma 1.4.1. [108] Consider a multiplicative metric space (M, d), a sequence {mg}
in M and m € M. Then m, —. m as a — oo if and only if d(mg,m) —, 1 as

a — 0.

Lemma 1.4.2. [108] The multiplicative limit point of a multiplicative convergent

sequence {my} in multiplicative metric space (M, d) is unique.

Definition 1.4.4. [108] A sequence {m,} in a multiplicative metric space (M, d) is
termed multiplicative Cauchy sequence if, for all € > 1, there exist a; € N such that

d(mg,my) < € for all a,b > a;.

Lemma 1.4.3. [108] Consider a sequence {m,} in a multiplicative metric space
(M,d). The sequence {m,} is multiplicative Cauchy if and only if d(mg,mp) —>. 1

as a,b — oo.

Theorem 1.4.4. [108] Consider two sequences {m,} and {ny} in a multiplica-
tive metric space (M,d) such that mg —. m and n, —, n as a,b — oco. Then

(d(mg,mp)) —+ d(m,n) as a,b — oco.

Definition 1.4.5. [108] Consider a multiplicative metric space (M, d) and G C M.
Then a point m € G is termed a multiplicative interior point of G if there exist an
€ > 1 such that B.(m) C G. The collection of all multiplicative interior points of G,

symbolically written int(G), is termed multiplicative interior of G.

Definition 1.4.6. [108] Consider a multiplicative metric space (M,d) and G C M.
If G = int(G) i.e. every point of G is multiplicative interior point of G, then G is

termed multiplicative open set.

Definition 1.4.7. [108] Consider a multiplicative metric space (M,d). If all limit
points of a subset G C M are contained in it then G is termed multiplicative closed
in (M,d).



Theorem 1.4.5. [108] Consider a subset G in a multiplicative metric space (M, d).
Then the complement of G in M is multiplicative open if and only if G is multi-

plicative closed.

Theorem 1.4.6. [108] Consider a subset G in a multiplicative metric space (M, d).
Then (G, d) is complete if and only if G is multiplicative closed.

Definition 1.4.8. [103] Consider a subset G of a multiplicative metric space (M, d).
If any sequence {m,} in G with d(n,m,) —. d(n,G) as a — oo for some n € H
possesses a subsequence which is convergent in G then G termed multiplicative

approximatively compact concerning H.

1.5 Fuzzy Metric Space

Definition 1.5.1. [121] A continuous ¢-norm is a binary operation x : [0, 1] — [0, 1]

satisfying;

(i) * is continuous,

(i) * is associative and commutative,

(iii) f w <y and 2 < z then w* x < y * z for each w, z,y, z € [0, 1],
(iv) xx1 =z for all z € [0, 1]

Some typical examples of a continuous t-norm are x *; y = min{z,y}, T oy =

i for 0 <A< 1l,z4%3y=maz{r+y—1,0},z x4y = 2y.

mazx{z,y,\}

Definition 1.5.2. [58] Consider M an arbitrary set. A 3-tuple (M, Fis, %) is termed
fuzzy metric space if x is continuous t—norm and F is a fuzzy set on M x M x (0, 00)

fulfilling; for all m,n,p € M and t,s > 0,
FM1: Fy(m,n,t) >0,

FM2: Fy(m,n,t) =1 if and only if m = n,



FM3: Fy(m,n,t) = Fy(n,m,t),
FM4: Fy(m,p,t+s) > Fy(m,n,t)* Fy(n,p, s),
FMS5: Fy(m,n,.): (0,00) — [0,1] is continuous.

The idea of fuzzy set provides the interpretation of Fj;(m,n,t) as amount of
closeness of m and n regarding ¢, since we stated that Fy; is a fuzzy set on M? x
0, 00).

It is notable that Fy/(m,n,.) is a nondecreasing mapping on (0, co) for each m,n €
M.

Definition 1.5.3. [58] Consider a fuzzy metric space (M, Fys,x). For t > 0, the set
B(m,e,t) ={ne€ M : Fyf(m,n,t) >1—¢€}
is termed an open ball B(m,¢,t) with center m € M and radius ¢,0 < € < 1.

Definition 1.5.4. [58] Consider a fuzzy metric space (M, Fys,*). We state that a
sequence {m,} in M is convergent which converges to m if and only if there exist

a; € N with Fy(mg, m,t) > 1 — € for all @ > a; and for each € > 0,¢ > 0.

Theorem 1.5.1. [58] Consider a sequence {m,} in a fuzzy metric space (M, Fyr, %),
m € M. Then {m,} is convergent to m if and only if Fyr(mg,m,t) — 1 as a — oo
for each t > 0.

Definition 1.5.5. [58] A sequence {m,} in a fuzzy metric space (M, Fi, ) is termed
Cauchy sequence if and only if there exist a; € N such that Fy(mg, mp,t) > 1 —¢€
for all a,b > a; and for each € > 0,t > 0.

Theorem 1.5.2. [58] Allow (M, Fyr,%) to be a fuzzy metric space and {m,} a
sequence in M. Then {m,} is Cauchy if and only if Fyr(ma, mp, t) — 1 as a,b — o0
for each t > 0.

Definition 1.5.6. [58] A subset G of a fuzzy metric space (M, Fi,*) is termed

closed if m € G, for each convergent sequence {m,} in G with m, — m.

Lemma 1.5.3. [86] Allow (M, Fyy,*) to be a fuzzy metric space such that for m,n €
M;t>0and h > 1



limg oo %22, Fas(m,n, th') =1
Suppose {m,} is a sequence in M such that for all a € N
Frr(ma, may1, at) > Fa(mg_1,mq, )
where 0 < a < 1. Then {m,} is a Cauchy sequence.

Definition 1.5.7. [133] Let G, H # ¢ be two subsets of a fuzzy metric space
(M, Fyp,%). For t > 0;

Go(t) ={m € G : Fyy(m,n,t) = Fy (G, H,t) for some n € H},
Hy(t) ={n € H: Fyy(m,n,t) = Fy(G, H,t) for some m € G}

where,
Fy(G,H, t) = sup{Fy(m,n,t) :meG,ne H}

Definition 1.5.8. [118] Allow (M, Fiy;, ) to be a fuzzy metric space and G, H are
two subsets of M which are not empty. A set H is said to be fuzzy approximatively
compact concerning G if Fy(m,n,,t) — Fy(m, H,t) implies that m € Gy(t) for

every sequence {n,} in H and for some m € G.

1.6 Contractions via Auxiliary Functions

There are many contractions in the literature that have been generalized using dif-
ferent auxiliary functions. In this section, we define some auxiliary functions and
contraction type operators that have been generalized using the auxiliary functions.

Following class of functions was introduced by M.U. Ali [11]. The author used

the class of functions and proved implicit type fixed point theorems:

Definition 1.6.1. Let ¢ : [0, 00) — [0, 00) be a non-decreasing function satisfying;
Y(r) < ,Vo > 0 and for all z > 0, > _,¥%x) < oco. A class of continuous
mappings ¢ : (RT)* — RT holding the accompanying statements;

(i) In each coordinate, ¢ is nondecreasing,

10



(ii) Let my,my € RT such that if m; < mg and my < @(msg, mg, my, my), then

my < P(mg). If mqy > my and my < ¢(mq, mg, mq, my), then my =0,
(iif) If m € R with m < ¢(0,0,m, 3m), then m = 0,
is represented by ®,;.

Example 1.6.1. Following are some examples of ¢ € ®, that are all taken from
[11]:

(1) Let ¢1(my, mo, m3, my) = amax(my, mg, mg, my) with (z) = ax, where o €

0, 00).
(11) Let ¢o(my, mo, m3, my) = amy with ¥(z) = ax, where o € [0, 00).

(1i1) Let ¢3(my, mg, m3, my) = amax(my, mg, mg) with ¢(z) = ax, where o €
[0, 00).

(1v) Let ¢pq(mq, mg, ms, my) = amax(msg, ms) with ¢(z) = ax, where a € [0, 00).

(v) Let ¢5(mq, mg, ms, my) = amy with ¢(x) = ax, where « € [0, 00).

(vi) Let ¢g(m1, ma, msg, my) = §(meo 4+ mg) with ¢(z) = Sz, where a € [0, 00).

(vii) Let ¢7(mi1, ma, ms, ms) = amax(my, 5(ms +ms), my) with ¢(z) = az, where

a € [0,00).

(viii) Let ¢g(my, ma, mg, mg) = qymy+sa(ma+ms)+sz3myg with () = (¢1+s2+<3)x,

where <1, 62, ¢3 are non-negative real numbers such that ¢; + ¢ + 3 € [0, 00).

(iz) Let ¢g(my, ma, ms, my) = s1ma+soms+s3my with ¢(x) = (g1 +s2+¢3)x, where

61,62 and ¢3 are non-negative real numbers such that ¢; + ¢ + 3 € [0, 00).

Wardowski [137] generalized the principle of Banach contraction by defining the
notion of F-contraction. For this purpose he first introduced the specific type of

functions denoted by F. These functions are defined as following:

Definition 1.6.2. Let a function F' : (0,00) — R hold the accompanying state-

ments:
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(F1) every sequence {m,} in (0, co) satisfy, lim, o m, = 0if and only if lim,_, o, F'(m,) =

—00,
(Fy) there exists a number k € (0, 1) such that lim,,_,o+ m*F(m) =0,
(F3) F is strictly increasing on (0, 00).
The notation § is used for the family of all such functions.
Example 1.6.2. Following functions belong the family §

(i)F(m) =1nm

(ii)) F(m) =Inm +m.

1.7 Presi¢ Type Operators
Let O be a continuous operator from J*¥ C R¥ into J C R then the equation
Mark = O(Ma, Mai1, Masr2y ooy Mark—1) (1.7.1)

is called the nonlinear difference equation of order k and a point m € J is termed as
equilibrium point of equation (1.7.1), if m = O(m, m,m,...,m). Different iteration
methods like homotopy perturbation method and the method of variational itera-
tion [17, 138] are used to find equilibrium point of nonlinear difference equations.
Presié¢ [111] proved that the sequence mentioned in (1.7.1) converges that inevitably
guarantees the presence of equilibrium point of nonlinear difference equation.

Presié¢ in [111] presented an operator defined on product spaces:

Definition 1.7.1. Allow (M, d) to be a metric space and k, a positive integer then
a mapping O : M* — M satisfying;

k
d(O(my,ma, ..., my), O(ma, M3, ....myy1)) < Zaid(mi,miﬂ) (1.7.2)
i=1

for every mq,mo,...,mpr1 € M where aq,as,...,a; are non-negative scalars with

Zle a; < 1 is called Presié¢ type operator.
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Presi¢ also proved a result which states that;

Theorem 1.7.1. Allow (M, d) to be a metric space which is complete, k be a positive
integer and O : M* — M be Presié¢ type operator. Then there exist a unique point
m € M such that O(m,m,...,m) = m. Moreover, for my,ma,....,my € M and each
a € N, we have;

Motk = O(Mg, Mai1, ooy Mark—1) (1.7.3)
then the sequence {m,} converges and limm, = O(limm,, lim m,, ..., limm,).
This theorem is reduced to the notion of Banach contraction if the value of k is

taken as 1. So, it is the generalization of the principle of Banach contraction. An

extension of this result was given by Ciri¢ and Pregic¢[40] as:

Theorem 1.7.2. Allow (M, d) to be a complete metric space, k be a positive integer

and O : M* — M be a mapping such that:
d(O(my, ma, ....mg), O(ma,mg, ..., mpy1)) < Amax{d(m;,m;1): 1 <i <k}

for every my,ma,...,mgr1 € M, where A € (0,1). Then there exist a point m € M
with O(m,m,...,m) = m. Moreover, if my,ma,...,my are arbitrary elements in M

and
Motk = O(mm Ma+t1y -0y ma—l—k—l)

for each a € N, then the sequence {m,} converges and limm, = O(lim m,, lim m,, ..., limm,).
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Chapter 2

Best proximity points of some
generalized proximal contractions

on metric space

The approximation theory evolved with the result of K. Fan [49]. But solutions
produced by best approximation theorems may not be optimal solutions. The need
to guarantee the presence of optimal approximations innovate best proximity point
results that give adequate conditions to fulfil the need. To demonstrate best prox-
imity point theorems, the notion of a very useful property was introduced by S.
Raj [113] called P-property. By employing the notion of P-property, best proxim-
ity point results for various contractive mappings were studied [18, 29, 91]. The
modification of notion of P-property, was introduced by Sadiq Basha [22], named as
proximal contraction of first kind and proximal contraction of second kind. Several
authors then introduced generalizations of proximal contractions [4, 101, 107]. In
this chapter we introduced some new generalizations of proximal contractions and

showed the presence of best proximity points.
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2.1 Some generalizations of multivalued proximal

contractions

An extensive powerful generalization of Banach contraction principle is the multi-
valued version of contraction map due to S. B. Nadler [106]. Another very useful
generalization is due to Ciric [40], who generalized the contraction condition of a self
map. Hardy and Rogers also generalized the contraction condition [66]. Motivation
and inspiration of these researches compelled us to introduce some new general-
izations of multivalued contractions. We introduced several new F' type proximal
contractions in this section and for such contractions, we demonstrated some best
proximity theorems. We also used examples to demonstrate our findings. Our find-
ings are generalisation of several previous best proximity results. Theorem 1.1.1, in
particular, becomes a specific instance of one of our results(Theorem 2.1.1). The

results in this section have been published in [82].

Definition 2.1.1. Allow (M, d) to be a metric space and G, H # ¢ be subsets of
M. A Hardy Rogers type ap-proximal contraction is a mapping O : G — CB(H)
if there exist a constant 7 > 0 and two functions F' € §, a : G x G — [0,00)

such that for each 1,79, us,uy € G and vy € Ory,v9 € Ory with «a(ry,73) > 1 and
d(u1,v1) = d(G, H) = d(uz, v2), we have;

a(ug,ug) > 1 and 7+ F(d(uy,ug)) < F(N(ry,72)) (2.1.1)
whenever min{d(uy,us), N(ry,r2)} > 0, where
N(ri,73) = qd(ry,m2) + @d(r1, ur) + G3d(ra, uz) + cald(r1, ug) + d(ra, uy)]
with 61,62, 63,64 > 0 satisfying ¢; + ¢ + ¢35 + 26 = 1 and ¢3 # 1.

Here, we prove a result which guarantees presence of best proximity point of

proximal contraction defined above.

Theorem 2.1.1. Consider a metric space (M,d) which is complete and G, H # ¢
be subsets of M. Assume Gy to be not empty and O : G — CB(H) be a Hardy

Rogers type ap-proximal contraction fulfilling the below mentioned assumptions:
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(i) for each r € Gy, Or C Hy,

(ii) there exist ri,ro € Gy and vy € Ory such that a(ry,re) > 1 and d(re,vy) =
d(G,H),

(i1i) H is approzimatively compact concerning G,

(iv) any sequence {r,} C G converging to r such that a(rq,rey1) > 1, Ya € N,
satisfies a(rq,r) > 1, Va € N, or,

O s continuous.
Then O possess best proximity point.
Proof. Hypothesis (ii) yields, r1,7 € Gy and v; € Ory for which
a(ry,me) > 1 and d(re,v1) = d(G, H).
As vy € Ory C Hy, there is r3 € G satisfying
d(rs,ve) = d(G, H).
From 2.1.1, we get a(rg,73) > 1 and
T+ F(d(r2,m3)) < F(ad(ri,re) + ed(ri,m2) + s3d(r2, r3) + cad(r1,73) + d(r2, 72)])

F(aid(r1,7r2) + sod(r1, r2) + S3d(12,73) + Sa[d(11,72) + d(7r2,73)])
F((s1 + s2 4+ ca)d(r1,72) + (3 + sa)d(r2,73)). (2.1.2)

IN

As F is strictly increasing, using inequality 2.1.2, we get
d(ra,m3) < (s1 + G2 +<u)d(r1,7m2) + (G5 + 4)d(r2, 73).
That is,
(1 =g —q)d(ry,r3) < (1 + S+ <4)d(r1,72).
As ¢1 + ¢ + 63+ 2¢4 = 1 and ¢3 # 1, the above inequality implies that

d(’l”z, 7"3) < d(’f’l, 7”2)
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Thus 2.1.2 yields,
T+ F(d(rg, r3)) < F(d(r1,72))- (2.1.3)

From above we have ry, 13 € Gy and vy € Ory satisfying
a(re,r3) > 1 and d(rs, ve) = d(G, H).
As v3 € Ors C Hy, there is r4 € G satisfying
d(ry,v3) = d(G, H).
From 2.1.1, we get a(rs,r4) > 1 and
T+ F(d(rs,ry)) < F(ad(re,r3) + wd(r, r3) + c3d(r3,74) + sa[d(r2, 74) + d(r3,73)])

< F(ad(ra,r3) + s2d(re, 73) + s3d(13, 4) + Sald(12,73) 4+ d(13,74)])
F((s1+ <2+ sa)d(ra,73) + (3 + <a)d(13,74)).

After simplification we get
T+F(d(7“3,7“4)) S F(d(’l"g,’f’g)). (214)
From 2.1.4 and 2.1.3, we obtain

F(d(rs,ry)) < F(d(ry,r9)) — 27.
We get sequences {r,} in Gy and {v,} in Hy by repeating the same process such
that v, € Org, a(ra,Tar1) > 1,d(res1,v.) = d(G, H) and

F(d(rq,re41)) < F(d(r1,72)) — a7 for each a € N\ {1}. (2.1.5)

Letting @ — oo in 2.1.5, we get lim, o0 F'(d(74,74+1)) = —oo. The property (F})
then implies that lim, o d(74,7411) = 0. Let dy, = d(rq,7441) for each a € N. Then
using (F}), there is some k € (0,1) such that

limg_ o d“ F(d,) = 0.

From 2.1.5 we have
d"F(d,) — d*F(dy) < —dfar <0 (2.1.6)

Letting a — oo in 2.1.6, we get
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limg oo ad’a“ =0.

This implies that there is some a; € N such that ad’; < 1 for each a > a;. Thus, we
have
1
d, < Y for each a > a;. (2.1.7)

We now claim that {r,} is a Cauchy sequence in G. Let a,b € Nwith b > a > a;.
Firstly using the triangular inequality and then using 2.1.7, we get;

d(re,me) < d(ra;Tat1) + d(Tax1, Tas2) + oo + d(rp—1,75)
b—1 0o 0
1
1

Hence, {r,} is a Cauchy sequence in G because of convergence of the series .~ 7
So, there is some r* in G such that r, — r* as a — oo because G is closed subset
of a complete metric space. As d(rq11,v,) = d(G, H), we have lim, ., d(r*,v,) =
d(G,H). As H is approximatively compact concerning G, we get a subsequence

{vq, } of {v,} with v,, € Or,, that converges to v*. As a result,

d(r*,v*) = lim, oo d(74y,, Vo, ) = d(G, H).
Assumption (iv), O is continuous, yields v* € Or*. Hence, d(G, H) < d(r*,0r*) <
d(r*,v*) = d(G, H). This implies that d(G, H) = d(r*, Or*).

We now show the theorem for other part of assumption (iv), that is a(r,,7*) > 1
for each @ € N. Since r* € Gg, then Or* C Hy. This suggests that for z* €
Or*, there is w* € Gy satisfying d(w*, 2*) = d(G,H). Also, keep in mind that
d(res1,v,) = d(G, H).

We assert that d(r*, w*) = 0.

Contrarily assume that d(r*, w*) # 0. Then 2.1.1, yields

d(TaJrla w*) < §1d<Ta> T*) + §2d(7’a, Ta+1) + §3d(’l“*, U)*) Ry [d(Ta, U)*) + d(?"*, Ta+1)].
Letting a — oo, we get
d(r*,w*) < (g3 + ¢q)d(r*, w*),
which could be possible only when d(r*, w*) = 0. As a result,

d(G,H) <d(r*,0r*) <d(r*,z*) = d(G, H),
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and the proof is completed. O]
Remark 2.1.1. Theorem 1.1.1 is unique instance of Theorem 2.1.1.

Proof. Let G, H # ¢ C M of a complete metric space (M,d). Assuming Gy is not
empty. Also consider a(ry,ry) = 1, F(r) = Inr for each r € (0,00) and CB(H) = H.
Then the contraction operator O : G — C'B(H) in definition 2.1.1 reduces to

7+ In(d(u1,ug)) < In(Gid(ri,m2) + Gd(r1, ur) + s3d(ra, ug) + suld(r1, uz) + d(ra, up)])
for each 11,79, u1,us € G and d(uy,Ory) = d(G, H) = d(ug, Ors)
and hence

(d(ur,us)) < (c1d(r1,72) + G2d(r1,u1) + 3d(r2, uz) + sald(r1, uz) + d(ra, uq1)])
Now the proof can be completed by performing similar steps as of theorem 2.1.1. [

Example 2.1.1. Let M = RxR and a metric on M be defined as d((r1,72), (51, $2)) =
|1y — s1| + |r2 — sof for each r,s € M. Take G = {(0,r) : =1 < r < 1} and
H={(1,r): =1 <r <1}. Define O : G — CB(H) as;

1,1 if r >
oom = [0 itz
{(1,7),(1,7%)}, otherwise,
and a: G x G — [0, 00) as;

1, ifr,s€[0,1]

0, otherwise,

Oz((o, 7“), (07 5)) = {

Proof. d(G,H) = 1.
For each (0,m) € G there exist (1,m) € H such that

d((0,m),(1,m)) =1=d(G, H).

Take 7 = 3 and F(m) = Inm for each m € (0, 00).

By taking ¢; = 1 and ¢ = ¢3 = ¢4 = 0, we now check that O is ap-proximal con-
traction of Hardy Rogers type.

Case:I Let (0,my), (0,m2) € G for my, my >0
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Then O((0,1m1)) = {(1, ™)} and O((0,ms)) = {(1, ™5)}
So vy = (1, 24H) and v, = (1, 23H)
We need u; and us such that d(uy,v1) = d(G, H) = d(us, vs) for each v; € Omy, vy €

Omg.

m1+1

d(ubvl) = d(<07u1>? (17 9 )) =1
my + 1
= 10— 1|+ |u, — 12 | =1
my+ 1
:>1+”U/1— 12 ’ = 1
my + 1
= |uy — 12 | =0
ow = my + 1
! 2
Similarly,
u2:m22+1
Now,

For a((0,my), (0,mz)) = 1 since both my, ms > 0
We have «((0,u1), (0,us)) = 1 since both uy,us >0

Also
T+ F(d(0,u1), (0,up)) = %+F(|u1—uQ|)
:% F(|m12—|—1_m22—i—1|)
O (i)
= 5 i)

< In(|my — msl)

= F(d(0,my), (0,ms2))

Case:II Let (0,m4), (0,mq) € G for my < 0,my >0
Then O((Ovml)) = {(Lml)’ (17m%)} and O((O>m2)) = {(17 m2T+1)}
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Take v; = (1,m;) and v, = (1, %)
We need u; and us such that d(uy,v1) = d(G, H) = d(us, vs) for each vy € Omy, vy €
Omg

d(uy,v1) =d((0,u1),(1,my) = 1

=1+ |U1 — m1| = 1
= ’Ul — ml\ =0
= U = my
Similarly,
Uy = m22+1
Now,

For a((0,m;1), (0,mz)) = 0 since my < 0,ms >0

Also
1
T+F(d(07ul)7(07u2)) = 5 +F(|U1 _U'Q’)
1 me + 1
= §+F(|m1— 22 )
. ]. <2m1 —m2+ ].)
2 2
1 2my —mo + 1
— T2
5 + In( 5 )
< In(mg —ms)
= F(d(05m1)7(07m2))
Take v; = (1,m?) and vy = m2T+1 We need u; and uy such that d(up,v;) =

d(G, H) = d(us, vq) for each vy € Omy, vy € Omgy
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d(ul,vl):d((o,ul),(l,mf) =1

= 0= 1 +Jus —mi] = 1
= 14|u—m? = 1
= U = m%
Similarly,
Uy = m22+1
Now,

For a((0,m;), (0,mz)) = 0 since my < 0,mg >0
Also

7+ F(d(0,u1), (0,up)) = %+F(|u1—u2|)

1 m2+1
= S+ F(mi - =)
1 2m2—m2+1
— oy p(/t e -
5+ 5 )
1 2mi — 1
_ 5 ln( mi 2m2+ )

< In(my —me)

= F(d(0,my), (0,my2))

For each m € Gy, we have Om C H,. Also for m; = (O,%) € Gy and v; =
(1,3) € Omy, we have my = (0,3) such that a(mi,ms) = 1 and d(ms,v1) =
d(G, H). Moreover, for any sequence {m,} C G such that m, — m as a — oo and
a(mg, mgy1) = 1 for each a € N, we have a(m,,m) = 1 for each a € N. Further
note that H is approximatively compact concerning G, therefore, O possess best

proximity point, by Theorem 2.1.1. 0

Remark 2.1.2. It is noticed that the above example is not valid for the Theorem

1.1.1. Therefore, our theorem properly generalizes Theorem2.1.1
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Definition 2.1.2. Allow (M,d) to be a metric space and G, H # ¢ be subsets
of M. A Ciri¢ type ap-prozimal contraction is an operator O : G — CB(H)
if there exist a constant 7 > 0 and two functions F € §, a : G x G — [0,00)

such that for each r1,79,u1,us € G and vy € Ory,v9 € Ory with a(ry,r) > 1 and
d(uy,v1) = d(G, H) = d(uz, vy), we have

a(up,ug) > 1 and 7 + F(d(uy, uz)) < F(M(ry,132)) (2.1.8)
whenever min{d(uy,us), M (ry,r9)} > 0, where
M — d d d d(’/‘l,UQ)-‘rd(?“Q,ul)
(7”1,7’2) maX{ (7'1,7’2), (rhul)’ (r27u2)7 2 }

Theorem 2.1.2. Allow (M,d) to be a metric space which is complete and G, H #
¢ C M. Assume that Gy is non-empty and O : G — CB(H) is a Cirié type

ap-prozimal contraction satisfying the below mentioned conditions:
(i) for each r € Gy, Or C Hy,

(i1) there exist r1,79 € Gy and vy € Ory such that a(ry,m9) > 1 and d(re,v1) =
d(G,H),

(11i) H is approximatively compact concerning G,

(iv) O is continuous, or,

any sequence {r,} C G converging to r such that a(re,7e11) > 1, Va € N,
satisfies a(rq,r) > 1, Va € N.

Then O possess best proximity point.

Proof. Hypothesis (ii) yields, r1,7s € G and v; € Ory for which
a(ry,me) > 1 and d(re,v1) = d(G, H)
As vy € Ory C Hy, there is r3 € G satisfying

d(?"g, 1}2) = d(G, H)
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From 2.1.8, we get a(rg,r3) > 1 and

d(ri,r3) + d(re, )
2

T+ F(d(rg,r3)) < F(max{d(ri,r2),d(r1,rs),d(rs,13),
= F(max{d(ry,re),d(r2,13)})
= F(d(ry,r)), (2.1.9)

)

otherwise we have a contradiction. From above, we have ry, 73 € Gy and vy € Ors

satisfying;
a(rg,r3) > 1 and d(rs,v2) = d(G, H).
As vy € Ors C Hy, there is r4 € G satisfying;
d(ry,v3) = d(G, H).
From 2.1.8, we get a(rs,r4) > 1 and

d(?ﬁg, 7‘4) + d(r37 7"3)
2

T+ F(d(rs,ry)) < F(max{d(ry,73),d(re,r3),d(rs,r4),
= F(max{d(re,r3),d(rs,74)})
= F(d(’l“g,?”g)), (2110)

)

otherwise, we have a contradiction. From inequalities 2.1.9 and 2.1.10, we have
F(d(rs,ry)) < F(d(ry,r9)) — 27.
Proceeding with a similar procedure we get sequences {r,} in Gy and {v,} in Hy
such that v, € Or,, a(ry,ray1) > 1,d(res1,v,) = d(G, H) and
F(d(ra,res1)) < F(d(r1,72)) — a7 for each a € N\ {1}.

Sine the above inequality looks same as 2.1.5 so, by following the steps of Theorem
2.1.1 proof, it tends to be demonstrated that {r,} is a Cauchy sequence in G. As a
result, there is some r* in G such that r, — r* as a — oo because, G is closed subset
of a complete metric space. As d(r,41,v,) = d(G, H), we have lim,_,o d(*,v,) =

d(G,H). As H is approximatively compact concerning G, we get a subsequence

{vq, } of {v,} with v,, € Or,, that converges to v*. As a result,

d(r*,v*) = lim, o d(7ay,, Vo, ) = d(G, H).
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Assumption (iv), O is continuous, yields v* € Or*. Hence, d(G, H) < d(r*,0r*) <
d(r*,v*) = d(G, H). Now, assume that a(r,,r*) > 1 for each a € N. Since r* € Gy,
then Or* C H,. This suggests that for z* € Or*, we have w* € G satisfying
d(w*, z*) = d(G, H). Also keep in mind that d(r,41,v,) = d(G, H).

We assert that d(r*,w*) = 0.

Contrarily, we make assumption that d(r*, w*) # 0. Then 2.1.8 yields,

T+ F(d(rep1, w*)) < F(max{d(rq, "), d(ra, ras1), d(r*, w*), d(r“’w*)Jrzd(r*’T““)}).

Letting a — oo, we get
T+ Fd(r,w)) < F(d(r*, w")),
which is only possible when d(r*,w*) = 0. As a result,
d(G,H) <d(r*,0r*) < d(r*,z*) = d(G, H),
and the proof is accomplished. O

Example 2.1.2. Let M = R xR and a metric defined on M as d((r1,72), (s1,52)) =
|11 — s1| + |re — sof for each r,s € M. Take G = {(0,r) : r € [-1,1]} and H =
{(1,r):r € [-1,1]}. Define O : G — CB(H) as;

0(0,7) = { (LD (L)}, ifm>0

{(1,7),(1,7%)}, otherwise,
and a : G x G — [0,00) as;

1, ifr,s€|0,1]

0, otherwise,

a((oa ’I“), (07 S)) = {

Define F(r) = Inr for each r € (0,00) and 7 = %. It is definitely not hard to see
that O is Ciri¢ type ap-proximal contraction. For each r € G, we have Or C H,,.
Also for 1y = (0,3) € Gy and v; = (1,%) € Ory, we have r5 = (0, %) such that
a(ry,re) = 1 and d(rq,v1) = d(G, H). Further, note that H is approximatively
compact concerning GG. Moreover, for each a € N, «a(r,,r,41) = 1 and for any
sequence {r,} C G such that r, — r as a — oo, we have a(r,,r) = 1 for each a € N.

Therefore, O possess best proximity point by Theorem 2.1.2.
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2.1.1 Consequences

Our results are immediately followed by the following two theorems if a(r,s) = 1

for each r, s € G.

Theorem 2.1.3. Allow G and H to be subsets of a complete metric space (M,d)
which are not empty. Make assumptions that Gy # ¢ and O : G — CB(H) is a

mapping for which there is some constant 7 > 0 and a continuous function F €
§ such that for each r1,719,u1,us € G and v; € Ory,ve € Ory and d(uy,vy) =
d(G,H) = d(us,vs), we have

T+ F(d(ur,u2)) < F(N(ry,72))
whenever min{d(uy,us), N(ri,r2)} > 0, where
N(ry,79) = qud(ry,7a) + Ged(ry, ur) + s3d(ra, ug) + ald(r1, ug) 4 d(re, u1)]

with <1, 62,63,54 > 0 satisfying ¢1 + so + 3+ 264 = 1 and 3 # 1. Further consider

that the accompanying assumptions hold:

(1) for each r € Gy, we have Or C Hy;

(11) H is approzimatively compact concerning G.
Then O possesses best proximity point.

Theorem 2.1.4. Allow G and H to be subsets of a complete metric space (M, d)
which are not empty. Make assumptions that Gy is non-empty and O : G — CB(H)
s a mapping for which there exist a constant T > 0 as well as a continuous function
F € § such that for each ri,r9,u1,us € G and vy € Ory,ve € Ory with ary,ry) > 1
and d(uy,v1) = d(G, H) = d(ug, v2), we have

T+ F(d(uy,ug)) < F(M(ry,rs))
whenever min{d(uy,us), M(ry,r2)} > 0, where
M (ry,m9) = max{d(ry,r2), d(r1, u1), d(ra, ug), —d(rl’uﬂ;d(mul)}-

Further consider that the accompanying assumptions hold:
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(i) H is approzimatively compact concerning G,
(ii) for each r € Gy, we have Or C H,.
Then O possesses best proximity point.

If G = H = M, then the accompanying fixed point theorems are gotten from

our outcomes.

Theorem 2.1.5. Allow (M,d) to be a complete metric space. Make assumption
that O : M — CB(M) is a mapping for which there is a constant T > 0 as well as
two functions a : M x M — [0,00) and F' € § such that for each ri,r9 € M and

uy € Ory,us € Ory with a(ry,re) > 1, we have
a(u,ug) > 1 and 7+ F(d(uy,uz)) < F(N(rq,72))
whenever min{d(uy,us), N(ri,r2)} > 0, where
N(ry,79) = q1d(r1,79) + God(r1, ur) + s3d(re, us) + s4[d(ry, uz) + d(ra, uq)]

with 61,6, 63,64 > 0 satisfying <1 + G + 3+ 254 = 1 and ¢3 # 1. Further assume that
O is continuous, any sequence {r,} C G converging to r such that a(rq,re11) > 1,

Va € N, satisfies a(rq,7) > 1, Ya € N. Then O possesses a fized point.

Theorem 2.1.6. Allow (M,d) to be a complete metric space. Make assumption
that O : M — CB(M) is a mapping for which there is a constant 7 > 0, « :
M x M — [0,00) and a continuous function F' € § such that for each ri,r9 € M

and uy € Ory,uy € Ory with a(ry,re) > 1, we have
a(up,ug) > 1 and 7+ F(d(uy,uz)) < F(M(ry,132))
whenever min{d(uy,us), M(ry,72)} > 0, where

M (ry,7m9) = max{d(ry,r2), d(r1, u1), d(ra, ug), —d(m’u?);d(mul)}-

Further, assume that O is continuous, any sequence {r,} C G converging to r such
that a(rq,res1) > 1, Ya € N, satisfies a(rq,r) > 1, Ya € N. Then O possesses a
fixed point.
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2.2 Best proximity points of Presi¢ Type proxi-

mal contractions

As we have stated Presié¢ type operator O : M* — M satisfying equation 1.7.2 and
representation of k® order nonlinear difference equation 1.7.1 in Chapter 1. It can
be observed that the equilibrium points of difference equation 1.7.1 are same as the
fixed points of O. Therefore, the study of fixed points of Presic type operators be-
came as important as the equilibrium points of nonlinear difference equations. The
importance of study of nonlinear difference equations can be envisioned in model-
ing various problems appearing in Probability theory, Biology, Economics, Psychol-
ogy, and others (See for example [48],[89], [90],[128],[129]). Some generalizations
of Presié¢’s results are proved by some renowned authors [27],[84],[109],[124, 125].
Shukla in [124] also showed applications of Presic type operators to second order
difference equation.

This part of the chapter showed the presence of an approximate solution of the
equation 7 = O(r,r,...,7), where O : G¥ — H. The solution of this equation only
possible if G N H # ¢, otherwise it has no solution; hence, if G N H = ¢ then the

approximate solution is only possible debate.

The approximate solution of the equation r = O(r,r, ...,r) with the error d(G, H)
is termed best proximity point of O : G* — H.

All the results in this section are published in [15].

All through this section, we will use the notation & = (V, E) for a directed graph
characterized on a metric space (M,d), where V and E is the set of vertices and
edges respectively, with V' = M and E comprises of all loops excluding parallel
edges.

Definition 2.2.1. Allow G and H to be non-empty subsets of metric space (M, d)
endowed with the graph &. A mapping O : G x G — H is termed as path admissible
if;

d(u1,0(g1,92)) = d(G, H)

d(us,O(g1,90)) = d(G,H) = (u1,us) € E (2.2.1)

91Pgs
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where g1, g2, g3, u1, us € G. Here g; Pg3 means, for the above mentioned g1, g2, g3 €

V' we have (g1, ¢92) € F and (g2, 93) € E.

Theorem 2.2.1. Consider a complete metric space (M,d) furnished with graph &
and let G, H be nonempty closed subsets of M. Let O : GXG — H be a mapping such
that for each g1, g2, gs, w1, uz € G with g1 Pgs, that is (91, 92) € E and (g2,93) € E,

and d(uy,O(g1, g2)) = d(G, H) = d(uz,0(g2,93)), we have:

d(uy,uz) < ymax{d(gi, g2),d(g2,93) } (2.2.2)

where v € [0,1). Also, consider the below mentioned assumptions:
(i) Gy is non-empty,
(1) there exist go, g1, 92 € G satisfying d(g2,O(g0,91)) = d(G, H) and goPga,
(111) H is approzimatively compact concerning G,
(iv) O(G x Gy) C Hy,
(v) O is path admissible,

(vi) let a sequence {m,} in M satisfying m,Pmg,o for each a € N and m, — m

as a — oo, then (mqy,m) € E for alla € N and (m,m) € E.

Then O possess a best proximity point, that is d(g*,O(g*,g*)) = d(G, H) for some
g eq.

Proof. From hypothesis (ii) we have go,g1,92 € G satisfying d(g2,0(g0,91)) =
d(G,H) and goPgo, that is (go,01),(91,92) € E. Hypothesis (iv) implies that
O(g1,92) € Hp, and by definition of Hy,as defined in Definition 1.1.1, we have
g3 € Gy satisfying d(g3,0(g1,92)) = d(G, H). Since O is path admissible, so by
Definition 2.2.1, we have (g2,93) € E. Thus g, Pgs. By proceeding with a similar

procedure, we obtain a sequence {g, }.>2 € Go satisfying;
d(Ga+1,0(ga-1,94)) = d(G, H) for each a € N

and:
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Ga—1Pgar1, that is (ga—1, 9a), (gas gar1) € F for each a € N,

The inequality 2.2.2 yields,

d(Gas gar1) < ymax{d(ga—2, Ja—1),d(ga—1, ga)} for each a = 2,3,4, ... (2.2.3)

For convenience, we take d, = d(ga, gay1) for each a € NU{0}. By using induction,

we can get:
do—1 < Zy* for each a € N (2.2.4)

where ¢ = y"/? and Z = max{dy /v, d;/*}. Clearly, dy < Z¢ and d; < Z2)?. We

obtain:

dy < vymax{dy,d;} <ymax{Z, sz} <~NZ = Zy3.

dp < ymax{dy_1,dp_o} < ymax{Zy® Zp*1} < yZyYtt = ZyttL

Thus, d, 1 < Zy*® for each a € N. With the help of triangular inequality, for each
b,q € N, we get:

IN

d(gy; go+1) + A(Gos1, Gor2) + - + A(Gotg—15 Go1q)
Z¢b+1 4 Z¢b+2 + Zwarq

@/Jb+1
1—9

Note that 1) = /2 < 1. Therefore, {g,} in G is a Cauchy sequence. Since M is

d(gv, Go+q)

IN

IN

Z

complete and G C M is a closed. So, there exist a point ¢g* € G such that g, — g*.

Furthermore,
dg", H) < d(g",0(ga-1,9a)) (2.2.5)
< d(g*a ga—l—l) + d(ga—‘rly O(ga—b ga>> (226)
= d(g*7 ga+1) —|— d(G, H)
< d(9", gas1) +d(g", H).
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Therefore, d(g*, go+1) — d(g*, H) as a — oo. Since H is approximatively compact
concerning G, then by Definition 1.1.2, the sequence {O(g,_1, g.) } has a subsequence
{O(gay,—1, 9a, )} convergent to a point h* € H. This implies that:

d(g*, h*) = limiood(Gay, 1> O(Gar-1, 9oy, ) = d(G, H).
Here g* € Gy. As we know O(g,, g*) € Hy, there exist u € G such that d(u, O(ga, %)) =
d(G, H). Hypothesis (vi) implies that (g,, ¢*) € F for each a € N. Thus, we have
ga—1Pg*, that is (ga—1,94),(9a,g") € E, for all a € N. Hence, inequality 2.2.2
implies:
d(ga+1,v) < ymax{d(ga-1,9a),d(ga,g*)} for each a € N.

Now by letting a approaches to infinity, we come by d(¢*,u) = 0, that is u = g*.
Moreover, notice that O(g*, g*) € Hy, hypothesis (iv) facilitates that for some s € G,
d(s,0(g%,¢*)) = d(G, H). Using hypothesis (vi), we have (¢*,¢*) € E. Hence,
d(g*,0(9a,9%)) = d(G, H),d(s,0(g", g%)) = d(G, H), and g, Pg", that is (ga, 9°) € E
and (¢g*,¢*) € E. Thus, from 2.2.2 we come by the accompanying inequality:

d(g*,s) < ymax{d(ga, g%),d(g*,g")} for each a € N.

We get d(g*,s) = 0 by applying limit a tends to infinity, and hence, s = g*. Thus,
we have d(¢g*,0(¢%, ¢9*)) = d(G, H). O

Example 2.2.1. Let M = R x R and metric d((mq,ms2), (n1,n2)) = |my — ny| +
|mg — na| for each m,n € M endowed with graph & be defined as V' = M and
E = {((my,m2), (n1,n9)) : my,ma,ny,ne € [0,1]} U {(m,m) : m € M}. Take
G={(0,m):me[-2,2]} and H = {(1,m) : m € [-2,2]}. Define O: Gx G — H
as:

(1, mtnt2), if m,n>0

(1,|m +n| —2), otherwise.

O((()?m)v (07 TL)) = {

Then, for each g1 = (0791)7g_2 = (07g2)7% = (07g3>7u_1 = (07 ul) = (07 %)7_2 =
(0,u2) = (0, 2H22) € G with g1 Pgs and d(w1, O(71, ) = d(G, H) = (w2, 0(%2, 53)),

we have:

d(ur,w3) = a1 — gs| = ymax{d(g7, 32), d(2, 75) }
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where v = 3. Consider g1 = (0,91),92 = (0,92),95 = (0,93) € G such that

EP% and d((07u1)70<<0791)7(0792))) - d(G7 H) = d((07u2)70((0792)7(0793)))7

then (0,u1),(0,us) € E. Since (0,u;) = (0, ZF2%2) and (0,up) = (0, LHLE42)

Thus, O is path admissible. We also have g7 = (0,0) and g2 = (0,1/2), and
g5 = (0,2) such that d((0,5/8),0((0,0),(0,1/2))) = d(G, H) and gy Pgs. Moreover,
H is approximatively compact concerning G and each sequence {g,} in M satisfies
9aPgaso for each a € N and g, — m as a — oo, then (g,,m) € E for each a € N

and (m,m) € E. Hence, O possess best proximity point as all suppositions of the
Theorem 2.2.1 are fulfilled.

Theorem 2.2.2. Allow G, H # ¢ to be closed subsets of a complete metric space
(M,d) furnished with graph &. Let O : G x G — H be a mapping such that for
each g1, g2, g3, u1,us € G with g1Pgs, that is (g1,92) € E and (g2,93) € E, and
d(u1,0(g1,92)) = d(G, H) = d(uz,O(g2,93)), we have:

d(g?nu?) S ’ymax{d(glaQQ)vd(g%ul)} (227)

where v € [0,1). Moreover, consider the below assumptions:
(1) Gy is non-empty,
(1) there ezist go, 1,92 € G satisfying d(g2, O(g0,91)) = d(G, H) and goPgs,
(i1i) H is approximatively compact with respect to G,
(iv) O(G x Gy) C Hy,
(v) O is path admissible,

(vi) if {my} is a sequence in M satisfying mqPmg.o for each a € N and m, — m

as a — 0o, then (mg,m) € E for each a € N and (m,m) € E.

Then, there exist g* € G satisfying d(g*,O(g*, ¢*)) = d(G, H) that is, O possess best

proximity point.

Proof. By proceeding on steps similar to that of theorem 2.2.1, a sequence {g, : a €

N\ {1}} can be constructed in Gy satisfying:
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d(Ga+1,0(ga-1,94)) = d(G, H) for each a € N
and:
Ga—1Pgat1, that is (ga—1, 9a), (9a, gasr1) € E for each a € N.

From 2.2.7, we have:

d(Gay gat1) < ymax{d(ga—2,9a-1);d(ga—1,9a)} for each a = 2,3,4, ... (2.2.8)

Since, inequality 2.2.8 looks same as 2.2.3, therefore using the same arguments as
of the proof of theorem 2.2.1, we reach at the conclusion that {g,} is a Cauchy
sequence in G and g, — ¢* where ¢* € Gy. As O(g,,9%) € Hy, from hypothesis
(iv) there is some u € G such that d(u, O(g4,9*)) = d(G, H). By hypothesis (vi),
(ga,g*) € E for all a € N. Thus, we have g, 1Pg*, that is (gs—1, 9a), (94, 9*) € E,
for all a € N. Hence, from 2.2.7:

d(g*,u) < ymax{d(gas—1,9a),d(ga, gar1)} for all a € N.
JLI?O d(g*,u) < WmaX(}LIgo{d(ga_l,ga), d(Gay gas1)} for all a € N
d(g*,u) < ymax{d(g*,g"),d(g",g")} for all a € N.
Hence, d(g*,u) = 0, implies that u = ¢g*. Further, note that O(g*,¢*) € Hy, so
there is some s € G such that d(s,O(g*,¢*)) = d(G, H). Hypothesis (vi) implies
that (¢*,¢*) € E. Hence, d(¢*,0(g4,9%)) = d(G, H),d(s,0(¢*, ¢*)) = d(G, H), and
9gaPg*, that is (g4, ¢") € E and (g%, ¢g*) € E. Thus from 2.2.7 we come by:

d(g*,s) < ymax{d(ga,g"),d(g", g*) Hor eacha € N.
lim d(g*, s) < ymax lim {d(gq, g%),d(g", g") Hor eacha € N,
a—0o0 a—r00
d(g",s) < ymax{d(g",g"),d(g", g") Hor eacha € N.
Hence, d(g*, s) = 0, implies that, s = ¢g*. Thus d(g*,O(¢*, ¢*) = d(G, H) ]

Example 2.2.2. Let M = R xR be furnished with a metric d((my, ms), (n1,ns)) =
|mq — ny| + |ma — ng| for each m,n € M and a graph & be defined as V = M
and E = {((my,ma), (n1,n2)) : my,ma,ny,ne € [0,1]} U{(m,m) : m € M}. Take
G={0,m):me[-2,2]} and H ={(1,m) :m € [-2,2]}. Define O: G x G — H

as:
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O((0,m), (0,n)) = (1,n) for each (0,m), (0,n) € G.

Then7 for each E = (0791)7% = (0792)7% = (0,93),U_1 = (O)ul) = (0’92)7U_2 -

we have:

d(g3,u2) = 0 < ymax{d(g1,52), d(g2,u1) }

where v = % All other suppositions of Theorem 2.2.2 are obvious. Thus O possess

a best proximity point.

Remark 2.2.1. By using g1 = (0,2),9z = (0, 3) and g3 = (0,0) in inequality 2.2.2,
it can be verified that the above example does not ensures the presence of best point

under the hypotheses of theorem 2.2.1

Theorem 2.2.3. Allow G, H to be nonempty closed subsets of a complete metric
space (M,d) endowed with graph &. Let O : G x G — H be a mapping such that

for each g1, ga, g3, u1,uz € G with g1 Pgs, that is (g1, 92) € E and (g2,93) € E, and
d(uhO(glng)) = d(G, H) - d(u270(92ag3)); we have:

d(O(g2, u1), O(g3, u2)) < vd(O(g1, g2), O(92, g3)) (2.2.9)
where v € [0,1). Moreover, consider the below assumptions:
(i) Gy is non-empty,
(ii) there exist go, g1, 92 € G satisfying d(g2, O(g0, 91)) = d(G, H) and goPgs,
(11i) G is approximatively compact concerning H,
(iv) O(G x Gy) C H,,
(v) O is path admissible,

(vi) if {go} and {ga} are sequences in M with g, — g and g — G, then O(ga, Ga) —
O(9,9)-

Then, there exist g* € G satisfying d(g*, O(g*, g*)) = d(G, H) that is O possess best

prozimaty point.
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Proof. By proceeding on steps similar to that of theorem 2.2.1, a sequence {g, : a €

N\ {1}} can be constructed in Gy satisfying:
d(gas1, O(ga-1,92)) = d(G, H) for each a € N
and:
Ga—1Pgay1, that is (ga—1, 94), (9a, gasr1) € E for each a € N.
From 2.2.9, we have:
d(O(Ga-1,9a), O(gas gat1)) < ¥d(O(Ga-2, Ga-1), O(ga—1, g2)) for each a = 2,3,4, ...
Inductively, we get:
d(0(ga-1,9a), O(9a, Gas1)) < 7" 7'd(O(g0,91), O(g1. g2)) for each a = 2,3,4, ...

(2.2.10)

By triangular inequality, for each b, ¢ € N, we have:

d(o(glnngrl)a O(9b+c79b+c+1)) < 2?:5_1 d(O(QinH)’ O(g¢+1,gi+2))

Using inequality 2.2.10 in the above inequality;

d(O(gbs Gb+1)5 O(Goses Gorer1)) < d(O(go, 91), O(g1, g2)) Z?I,f_l 7

which shows that {O(ga-1, g4)} is a Cauchy sequence in H. Hence, O(g4—1, gs) — h*

for some h* € H because H is closed subset of complete metric space M. Further,

we have:
dh*,G) < d(h*,gas1) (2.2.11)
< d(h*,0(ga-1,9a)) + A(O(Ga-1,9a), Gas1) (2.2.12)
= d(h*ao(ga—lvga)) + d(Ga H)
S d<h*70(ga—1vga>> + d(h*’G)

Therefore, d(h*, go41) — d(h*,G) as a — oco. Since G is approximatively compact
concerning H, a subsequence {g,, } of the sequence {g,} converges to a point ¢* in
G. Hence,

d(g*a O(g*, g*)) = limy 00 d<gak+17 O(gak_17 gak)) - d(G7 H)7

which completes the proof. O]

35



Example 2.2.3. Let M = R x R be furnished with a metric d((mq, ms2), (n1,n2)) =
|m1 — ny| + |me — no| for each m,n € M and a graph & be defined as V = M
and E = {((my,m2), (n1,n2)) : my,ma,ny,ne € [0,1]} U{(m,m) : m € M}. Take
G={(0,m):me[-2,2]} and H = {(1,m) : m € [-2,2]}. Define O:Gx G — H

O((0,m), (0,n)) = (1, %) for each (0,m), (0,n) € G.

Then7 for each E = (Oagl)aﬁ = (0792)7% = (0793)7u_1 = (07u1) = (0,972),11_2 =
(0,u2) = (0,%) € G with d(ur, O(g1, 52)) = d(G, H) = d(uz,O(gz2,93)), we have:

0@ ™), 0@ ®) = d(1.5).1.9)
= %|g2—g3|
1 g2 g3
= §d((173)7(17§))
= 7d(O(g1,92), O(g2, 93))

where 7 = % All other suppositions of Theorem 2.2.3 can easily be verified. Thus

O possess a best proximity point.

Theorem 2.2.4. Allow G, H to be nonempty closed subsets of a complete metric
space (M,d) furnished with graph &. Let O : G x G — H be a mapping such that
for each g1, 92, g3, u1,us € G with g1Pgs, that is (g1,92) € E and (g2,93) € E, and
d(u1,0(g1,92)) = d(G, H) = d(ug,O(g2,93)), we have:

d(0(927 ul)v 0(937 uﬂ)) S Y max{d(O(gla 92), 0(927 93))7 d(O(g% gB)a O(ula U2))}
(2.2.13)

where v € [0,1). Also, consider the below assumptions:
(i) Gy is non-empty,
(ii) there exist go, g1, 92 € G satisfying d(g2, O(g0, 91)) = d(G, H) and gy Py,
(111) G is approzimatively compact concerning H,

(iv) O(G x Gy) C Hy,
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(v) O is path admissible,
(vi) if {ga} and {Ga} are sequences in M with g, — g and Gz — G, then O(ga, Ga) —
0(9,9).
Then, there exist g* € G satisfying d(g*, O(g*,g*)) = d(G, H) that is O possess best
prozimaty point.
Proof. 1t is explained in theorem 2.2.1 that a sequence {g, : a € N\ {1}} in Gy can
be constructed which satisfies:
d(gas1, O(Ga-1,92)) = d(G, H) for each a € N
and:
Ga—1Pgat1, that is (ga—1, 9a), (9a, gasr1) € E for each a € N.

From 2.2.13, we have:

d(O(ga-1,9a), O(gas gat1)) < ymax{d(O(ga-1,9a-1), O(ga-1,9a))
d(O(ga—l’ ga>’ O(gau ga—l—l))}
= vd(O(ga-1,9a-1), O(ga—1,9a)) for each a = 2,3,4, ...

else we have an inconsistency. Iteratively, we get:

d(O(ga—b ga>7 O(ga7 ga+1)) S 7a_1d<0(907 91); O<gl7 92)) for each a = 27 37 47
The proof can be completed by following the same process as of theorem 2.2.3. [
Theorem 2.2.5. Allow G, H to be nonempty closed subsets of a complete metric

space (M, d) endowed with graph &. Let O : G x G — H be a mapping such that

for each g1, 92, g3, u1,us € G with g Pgs, that is (¢1,92) € E and (g2,93) € E, and
d(ul?O(glagQ)) = d<G7 H) = d(u270(g2ag3))7 we have:

d(O(g2, 93), O(u1,uz)) < ymax{d(O(g1, g2), O(92, 93)), d(O(g2, u1), O(gs, u2)) }
(2.2.14)

where v € [0,1). Also, consider the below assumptions:

(1) O is path admissible,
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(i1) there ezist go, g1, 92 € G satisfying d(g2, O(g0,91)) = d(G, H) and goPgs,
(11i) G is approximatively compact concerning H,

(iv) O(G x Gy) C Hy,

(v) Gy is non-empty,

(vi) if {go} and {ga} are sequences in M with g, — g and g — G, then O(ga,Ga) —
O(9,9)-

Then, there exist g* € G satisfying d(g*, O(g*, g*)) = d(G, H) that is O possess best

proximaty point.

Proof. This theorem can be demonstrated likewise to the proof of Theorem 2.2.4. [

2.2.1 Best Proximity Point Theorems of extended Presic

Type proximal contractions

This section contains the augmentations, for the operators from G* into H, where

k € N, of previously mentioned theorems .

Theorem 2.2.6. Allow G, H to be nonempty closed subsets of a complete metric

space (M, d) endowed with graph &. Let O : G* — H be a mapping such that for each

91,92, 935 -+, Gk, Gk+1, U1, U2 € G with gngk-i-l; that s (91792)7 (92793)7 ERE) (gk7gk’+1> €
E, and d(uy,O(q1, g2, ..., g9x)) = d(G, H) = d(ug,O(g2, g3, ---, gr+1)), satisfies one of

the below mentioned inequalities:
d(uy, up) < ymax{d(gi, gi+1) : 1 <0 <k}
d(grt1,u2) < ymax{d(gi, git1) : 1 <i <k —1,d(ge,u1)}
where v € [0,1). Also, consider the below assumptions:
(i) Gy is non-empty,

(“) there exist 9o, 91,92, -, gk € G satzsfymg d(gk70(907gl7"‘7gk—1)) = d<G7 H)
and goP g,
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(i11) H is approximatively compact with respect to G,
(ZU) O(Gk_l X GQ) - Ho,
(v) O is path admissible,

(vi) if {ga} is a sequence in M such that g,Pg.. for each a € N and g, — g as
a — oo, then (gq,9) € E for each a € N and (g,9) € E.

Then there ezist g* € G satisfying d(g*,0(g*, g%, g%, ...,q%)) = d(G, H) that is O

possess best proximity point.

Proof. Following the same procedure as of theorems 2.2.1 and 2.2.2, we can demon-

strate this theorem. O

Theorem 2.2.7. Allow G, H to be nonempty closed subsets of a complete metric
space (M, d) endowed with graph &. Let O : G* — H be a mapping such that for each

915925 935 -5 Gk, Jk+1, U1, U2 € G with glpgk+17 that is (91792)7 (92793)7 ) (gkvgk’-i-l) €
E, and d(uy,0(g1, 92, .-, gx)) = d(G, H) = d(uz, O(ga, g3, ---, gr+1)) Satisfies one of

the below mentioned inequalities:

d(0(927 ooy Gk U’l)7 O<g37 cJk+1, U’2>) S 7d<0(g17 g2, -, gk)7 O(g27 g3, -y ngrl));

d(0(927 -y Gk, ul)a 0(937 vy Gk+1, UQ)) S Vmax{d(o(gla g2, .- gk)) O(QQa g3, - gk-i—l))a
d(0(927 g3, .- gk+1)7 0(947 95, -y Jk+1, UL, u?))}7

d(0(927 g3, .- gk—i—l)v 0(947 95, -5 Gk+1, UL, UQ)) S ’ymaX{d(O(gl, g2, .-, gk), 0(927 g3, .- gk—i—l));
d(0(927 <y Gk u1)7 0(937 ooy G415 Ug))},

where v € [0,1). Also, consider the below assumptions:
(i) Gy is non-empty,
(”) there exist 90,91, 92 € G satzsfymg d(927 O(g()a gl)) = d(G7 H) and gOPQQJ

(111) G is approzimatively compact concerning H,
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(ZU) O(Gk_l X Go) - Ho,
(v) O is continuous with respect to each coordinate,
(vi) O is path admissible.

Then, there exist g* € G satisfying d(g*, O(g*, g*)) = d(G, H) that is O possess best

proximaty point.

Proof. By proceeding on similar steps as of theorems 2.2.3 and 2.2.4, we can demon-

strate this theorem. O

Remark 2.2.2. The map O : G¥ — H is path admissible if for each g1, g2, g3, ..., gr,

Grt1,u1, Uy € G with g1 Pgyyy that is (g1, 92), (92, 93), -+ (gk> grt1) € £ and
d(u170(917927 79/6)) = d(Ga H) = d(u270(92ag3a "'7.gk‘+1>>’ we have (u17u2) €E.

2.2.2 Consequences

Considering G = H = M in Theorems 2.2.6 and 2.2.7, following fixed point theorems
are obtained for the operator O : M* — M.

Theorem 2.2.8. Consider a complete metric space (M,d) furnished with graph
&. Let O : M* — M be a mapping such that for each 11,79,75, ... Th, Thy1r € M
with 1 Priyq, that is (r1,72), (r2,73), ..., (i, 7er1) € E,satisfies one of the below

mentioned inequalities:

d(O(r1,7r9, ..y 1), O(r2, 73, ooy Tka1)) < ymax{d(r;,rip1) : 1 <i <k}
d(rgs1, O(ra2, 3, ooy Tea1)) < ymax{d(ry, riy1) : 1 <i <k —1,d(rg, O(r1, 79, ..., 7%)) }
where v € [0,1). Also, consider the below conditions:

(i) T1 Priyy that is (r1,72), (12, 73), ..., (Tk, Tkt1) € E, then we have;
O<r17r27 ...,Tk), O<T273 ) "'7Tk+1) € E7
(ii) there exist ro, 1,79, ....,T, € M with r, = O(r1, 79, ..., 7k_1)and roPry,
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(111) if {ro} is a sequence in M such that roPrqyy for each a € N and r, — r as

a — 00, then (rq,r) € E for each a € N and (r,r) € E.
Then O possess a fized point in M, that is v* = O(r*,r*,r*,...;r*) for some r* € M.

Theorem 2.2.9. Consider (M,d) be a complete metric space furnished with graph
&. Let O : M* — M be an operator such that for each pir, fio, thg, ..., b, fis1 € M
with i Py, that s (ja, ), (1o, 13), — (ks fies1) € B, satisfies one of the below

inequalities:
d<O(M27 ooy Mk O(,ula M2, -y ll’k))a O(/’l‘37 ooy Hk41, O(,u% M3, - Mk—l—l))) S
’yd(O(va M2, ..ey :U’k)a O(Mg, K35 -y Mk—}—l));

d(O(:uQ? ey My O(:uh M2, ey /,Lk)), O(/,Lg, ooy M1, O(:u27 M3y ey :uk+1>)) S
’ymax{d(O(,ul, M2, ey ,uk)a O(H’Qa M3y .eey ,uk—i—l))a d(O(,UZa K3y --ey H/k:—i—l)a
O(,LL4, M5y eny HE41, O(/'Lla M2y -eey Mk)u O(:u27 M35 ey :uk+1)))}’

d(O(M27 M35 ey Nk-‘rl)? O(/'L47 M5y ey k41,5 O(:U’h M2, .-ey Mk), O(:u27 K3y --ey Mk+1) ) S
’ymax{d(O(ul, M2,y -ens Nk)7 O(/'I’27 K3y ey :uk+1>)7 d(O(,u% ceey Mk O(,uh M2y -ees k))7
O(H’?n ooy ME41,5 O(M?a H3, ... H’k’—i—l)))}a

where v € [0,1). Also, consider following conditions:
(i) p1 Ppgsr that is (pa, p2), (o, p13), oy (ks k1) € E, then we have;
O(:“/l? M2y -ees :uk>7 O(,u% M3y ey /LkJrl) c E7

(71) there exist pg, i1, o, -, fie € M with px = O(p1, fho, -, pi—1) and po P,
(111) O is continuous in each coordinate.

Then, there exist u* € M satisfying p* = O(u*, u*, p*, ..., u*) that is, O possess a
fixed point in M.
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Remark 2.2.3. If O : M* — Mis an operator which satisfies the Theorem 2.2.8 or
Theorem 2.2.9 and {y,} is a sequence in M such that p, Py for each b > a € N and
Patki1 = O(H11a, horas - fira) for each a € N, then {u,} converges and hence, O

possess fixed point.
Let the graph & = (V| E) be characterized as V. = M and E = M x M, then

Theorem 2.2.6 and Theorem?2.2.7 boils down to the below corollaries, respectively.

Corollary 2.2.10. Let O : M*¥ — M be an operator, where (M,d) is a complete
metric space and for each piy, o, b3, ..., fbi, k1 € M, one of the below mentioned

inequalities is satisfied:
d(O(,LLl, M2, ..ey Mk)? O(MQ? M3y ey Mk—i—l)) S ’)/HlaX{d(,U,i, :ui—‘rl) 1 S { S k}

d(prsr1, O(pi2, p3, s prr1)) < ymax{d(gi, giy1) : 1 <i <
k— 17 d(,uk7 O(/"LIJ M2,y ey ll’k))}
where v € [0,1). Then O possess a fized point in M, that is there exist u* € M
satisfying p* = O(w*, ", p*s ..., w*).
Corollary 2.2.11. Let O : M¥ — M be an operator which is continuous in each co-

ordinate, where (M, d) is a complete metric space and for each iy, fio, [13, ...y [y g1 €

M one of the below inequalities is satisfied:

d(O(ph2, -y s O fh2y o5 fir))5 O3, i1, O(pha, p3, oy pr1))) <
7d<O(M17 M2, -y :U’k)a O(:U’Qv K35 -y ,ukJrl));

d(0<,u27 ey My O(/Lb K2y -y ,Uk))7 O(M?n ooy k415 O(ﬂZ? K3y -y Mk+1)>>
S 7max{d(0(u1, M2y -eey Mk)a O(M?) M3y ey ;uk—‘rl)))
d(O(M% M35 ey ,U/k+1)7 O(,u47 M5y ey Hk4-1, O(/*le H2y ey N’k)? O(,u% M3y ey /’Lk-i-l)))})

d(O(M27 3y -ens /'L/C-l-l)? O(Mlla K5y ooy foE41, O(,ula K2y .-y Mk)7 O(M?a K3y .-y :uk-i-l)))
S fymax{d(O(,ul, M2y .eny Mk)? O(/'I’27 K3, -eey :u’k+1>>7
d(O(IUQa ceoy M O(:ula M2, -y ,uk))7 O(/Ag, ooy Hl+15 O(:u27 M35 -y ,uk-l-l)))}?

where v € [0,1). Then O possess a fixed point.
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Chapter 3

Best Proximity Points in some

Generalized Metric spaces

The generalisation of metric space is a novel technique to studying fixed point theory
and best proximity point theory. There are many generalizations of metric space
e.g. modular metric space, b-metric space etc.

Researchers addressed the presence of fixed points for mappings satisfying the
proximal contraction conditions including various auxiliary functions, as research in
the field of fixed point theory progressed. The theory of contractions via auxiliary
functions was developed by Lim [96] when he characterized Mier-Keeler contraction
[99] by a mapping using a class of functions(L-functions). Many researchers then
proved fixed point theorems for contractions via auxiliary functions ([67],[71],[120],
[130], [93], [59]).

This chapter comprises of two sections. We developed best proximity point
theorems for generalised F-proximal contractions in modular metric spaces in the
first section. In the second part, we used the class of auxiliary functions described in
Definition 1.6.1 to propose non-self proximal contraction requirements and proved
best proximity point theorems for contractions in gauge space setting. We also
used examples to demonstrate our findings and looked into the implications of our

findings for self-mappings.
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3.1 Best Proximity Point Theorems in Modular
Metric Spaces

Mongkolkeha [102] proved fixed point theorems for contraction mapping in modular
metric space. The fixed point property in modular metric space has been character-
ized and examined by numerous researchers( See for example [3],[8],[31]).

Firstly we introduce some notions that we need in our results.

A strongly regular modular metric w on M is weaker form of modular metric

satisfying;
m = n if and only if w(1,m,n) = 0.

instead of (i) of Definition 1.3.1. Let G, H # ¢ subsets of a modular metric space
(M,w) then

w(l,g,H) =inf{w(l,9,h): h € H}
dist(G,H) = inf {w(1l,g9,h): g € G,h € H}
Go={me G :w(l,m,n) =dist(G,H), for somen € H}
Hy={n€ H :w(l,m,n) =dist(G, H), for some m € G}.

Definition 3.1.1. Allow G and H to be subsets of modular metric space (M, w)
which are not empty. Then H is termed approximatively w-compact concerning G if
each {v,} in H with w(1,m,v,) — w(1,m, H) for some m in G, has a w-convergent

subsequence.

Presently we present another contraction termed generalized F-proximal con-

traction of type I.

Definition 3.1.2. Let G, H # ¢ subsets of a modular metric space (M,w). A
mapping O : G — H is a generalized F-proximal contraction of type I if there
is a constant 7 > 0 and a function F' € § satisfying for each mqy, mo, ui,us € G
w(l,uy,Omy) = dist(G, H) = w(1, uz, Omy), implies

T+ F(w(l,uy,uz)) < F(W(my,ms)) (3.1.1)
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whenever min{w(1, uy, us), W(mq,ms)} > 0, where
W(m17 m2) - glw(17 mq, m2) + §2(.L)(1, maq, ul) + §3w<1, ma, uQ) + §4{w<27 mq, u2) + w(17 ma, ul)]
with 61,62, 3,61 > 0 satisfying ¢; + ¢ + 63 + 26 = 1 and ¢3 # 1.

Theorem 3.1.1. Let M be a set which is not empty furnished with w as a strongly
reqular modular metric that fulfills the Apr-condition [Definition1.5.4] as well as the
Fatou property [Definition1.8.5]. Allow W to be w-complete as well as w-bounded
subset [Definition1.3.3] of M,,. Further, G and H are nonempty w-closed subsets of
W. Also assume that Gy is not empty and O : G — H is a generalized F-proximal

contraction of type I satisfies;
(i) H is approzimatively w-compact concerning G,
(ii) O(Gy) is contained in Hy.

Then O posses a best proximity point.

Proof. Let my € Go. Hypothesis (ii) yields, Omg € Hy, thus we have m; € Gy such
that w(1,my,Omy) = dist(G, H). Similarly for m; € Gy we have Om, € H,, thus
we have my € Gg such that w(1,my, Omy) = dist(G, H). Continuing this process

we have m,, m,y1 € Gy such that
w(1l,mgy1,0m,) = dist(G, H) for each a € N.
Thus, from inequality (3.1.1), we have;

T+ Fw(l,me,mer1)) < F(qw(l,me_1,mq) + cow(1,ma_1,mq) + s3w(1, mg, may1)
+a[w(2,ma—1, Mar1) +w(1, ma, my)])

< F((s0+ 2+ sa)w(l, ma-1,ma) + (53 + sa)w(1, my, mai1))
for each a € N. (3.1.2)

By using strictly increasing property of F' and above inequality, we have

w1, Mg, Mar1) < (1+s2+s0)w(1, mg_1,ma)+(s3+1)w(1, Mg, Mgy 1) for each a € N,
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That is,
(1 =g —)w(l,me, mar1) < (s1+ S2 + sa)w(l, my_1,m,) for each a € N.
Since ¢; + ¢ + 63 + 2¢4 = 1 and ¢ # 1, the above inequality implies that
w(l,mg, may1) < w(l,mg_1,m,) for each a € N.

Thus, from inequality (3.1.2), we have;

T+ F(w(l,mg, mes1)) < F(w(1l,mq_1,m,)) for each a € N.
Iteratively, we get

F(w(l,mg, mgi1)) < F(w(1,mg,my)) — ar for each a € N. (3.1.3)

Letting a — oo in the above inequality, we get lim, o, F(w(1,mg, mgy1)) = —00.
Thus, by property (F1), we have lim, o w(1,mg,mgr1) = 0. Let for each a € N
we = w(1, Mg, Mgey1), then (Fy) yields that there is some k € (0, 1) such that

lim w®F(w,) = 0.

a—r0o0

The inequality (3.1.3) yields
WP F(wy) — whF(w)) < —wFar <0 for each a € N. (3.1.4)
Letting a — oo in (3.1.4), we get
lim aw” = 0.
a0

That is, there is some a; € N such that awf < 1 for each a > a;. Thus, we have;

W, < for each a > a;. (3.1.5)

Take arbitrary a,b € N with b > a > a;. By using the triangular inequality and
(3.1.5), we have

(,d(b - a7ma7mb> < w(17ma7 ma—‘rl) + C{)(l, ma+17ma+2) ++ w(]-?mb—la mb)
b—1 00 00
1
- Zwi < Zwi < Zil/k'
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Since Y7, Zﬁ is convergent series. Thus, lim, 0o w(b—a, m,, my) = 0. Because of
A pr-condition, this implies that lim, pe0 w(1, M4, mp) = 0. Hence {m,} is w-Cauchy
sequence in GG. Since W is w-complete and G is w-closed in W, there exists m* in
G such that {m,} is w-convergent to m*. That is, lim,_, w(1,m,, m*) = 0. Also,

we have

w(l,m*, H)

IN

w(1l,m*,Omy,)

1

W(g, m*amaJrl) + w(§7ma+17 Oma)
1

w(ﬁ, m*,mgi1) + dist(G, H)
1

w(g, m*,mgi1) +w(l,m*, H)

IN

IN

In the aforementioned inequality if we set a — oo, we get w(1, m*,Om,) — w(1,m*, H).
As H is approximatively w-compact concerning G, we have a subsequence {Om,, }
of {Om,} which w-converges to v*. This implies that

w(l,m*,v*) < lim w(1,mg,41,0my,, ) = dist(G, H).

k—00
Thus we have w(1l,m*,v*) = dist(G, H). Since m* € Gy, we have Om* € H,,
this infers that there is w* € Gy with w(1,w*,Om*) = dist(G, H). Also, we have
w(l,mgy1,0m,) = dist(G, H). We claim that w(1, m*,w*) = 0. Contrarily suppose
w(1l,m*, w*) # 0. Then, (3.1.1) yields

w(l,mey1,w*) < qw(l,me,m") + w(l,mg, mar1) + ssw(l, m* w")

IN

( )

+a[w(2, Mg, w*) + w(1,m*, mgyq)]

Gw(l,mg,m*) + cw(1, mg, may1) + Gsw(l, m*, w*)
[

Fsaw(l, me, m™) +w(l,m*, w*) + w(l,m*, may1)].
Letting a — oo in the above expression, we come by;
w(l,m", w*) < (g3 + q)w(l,m*,w*) < w(l,m*,w").

which contradicts our assumption. Hence, w(1, m*, w*) = 0. That is m* = w*. As a
result, we have w(1,m*, Om*) = dist(G, H). O
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Example 3.1.1. Let M = R x R furnished with a strongly regular modular metric
w(X,m,n) = +(|n1 —m| + |ny — mol) for all m = (my, ms) and n = (n1,ns) € M.
Very simple calculation shows that M, = M, so, d);-condition and Fatou property
are satisfied. Consider W = [0,4] x [0,4] C M,. Then W is w-closed and w-
bounded. Let G = {(0,m) :0<m <1} and H = {(1,m) : 0 < m < 1}. Then, we
have dist(G,H) = 1 and Gy = G, Hy = H. Clearly H is approximatively compact
concerning G and G and H are w-closed subsets of W. Define O : G — H as

(1,™)if0<m<1

(1,0 if m =

O(0,m) =

It is simple to verify that, with respect to F'(m) = Inm, O is generalized F-proximal
contraction of type I with 7 = %, Gl =G =¢g = % and ¢4 = 0. Also O(Gy) C H,.
Thus, Theorem 3.1.1 is satisfied. Hence, O has best proximity point.

Presently, we present generalized F-proximal contraction of type II.
Definition 3.1.3. Allow G and H to be nonempty subsets of a modular metric
space (M,w). If there is a constant 7 > 0 and a function F' € §, then a mapping

O : G — H is a generalized F-proximal contraction of type II if it satisfies for each
my, Mo, Uy, us € G with w(1,u;, Omy) = dist(G, H) = w(1, ug, Omsy), implies

T+ F(w(1,Ouy, Oug)) < F(W(Omq,Oms)) (3.1.6)
whenever min{w(1, Ouy, Ouy), W(Omy,Oms)} > 0, where

W(Omlaomﬂ) = glw(]-)Oml)OmQ) +§2w(]—a0m1a0u1) +§3W(1,0m2,0U2)
+64[w(2,0my, Oug) + w(1, Oma, Ouy )]

with ¢, ¢, 63,54 > 0 satisfying ¢; + ¢o + 63 + 264 = 1 and ¢3 # 1.

Theorem 3.1.2. Allow M to be a set which is not empty furnished with w as a
strongly reqular modular metric that fulfills Fatou property as well as A yr-condition.
Allow W to be w-bounded as well as w-complete subset of M,,. Further, G and H are
nonempty w-closed subsets of W. Also suppose that G is not empty and O : G — H

18 a generalized F'-proximal contraction of type Il satisfies;
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(i) G is approzimatively w-compact concerning H,
(i1) O is continuous,

(i1i) O(Gy) is contained in Hy.
Then O posses a best proximity point.

Proof. Let my € Gy. Hypothesis (iii) allows us to construct a sequence {m,} in Gy

such that
w(l,mgy1,0m,) = dist(G, H) for each a € N.

Thus, from (3.1.6), for each a € N we have

T+ F(w(1,0mg,Omei1)) < F(qw(l,0mq_1,0m,) + sw(l,0m,_1,0m,)
+3w(1, Omg, Omgyq)

+6a[w(2,0mg—1, Omg 1) + w(l, Omg, Omy)])
F((s1+ s+ ss)w(l,0my_1,0my) (3.1.7)
+(s3 + sa)w (1, Oma, Oming1)).

IN

From above inequality and (F3) of definition 1.6.2, we have
w(1,0mg, Omgi1) < (s1+s2+s1)w(1, Omg_1, Omy)+(s3+<4)w(1, Om,, Omg, 1) for each a € N.
That is,
(1 =g —<)w(l,0my,Omgiq) < (614 2 + 4)w(1,Omy_1,0m,) for each a € N.
Since ¢; + ¢ + 63 + 254 = 1 and ¢3 # 1, the above inequality implies that
w(l,0mq, Omgyq) < w(l,0m,_1,0m,) for each a € N.
Thus, from (3.1.7), we have

7+ F(w(1,0mg,Omgy1)) < F(w(l,0m,_1,0m,)) for each a € N.
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Iteratively, we get
F(w(1,0mg,,Omgey1)) < F(w(1l,0mg,Om,)) — at for each a € N.  (3.1.9)

Letting @ — oo in the above expression, we come by lim,_,o, F'(w(1,0m,, Omg.1)) =
—o00. Thus, by property (F}), we have lim,_,o, w(1, Om,, Om,,1) = 0. Let, for each
a €N, w, =w(l,0mg, Omgy1). Then (Fy) yields that there is k € (0, 1) satisfying

lim w®F(w,) = 0.

a—r0o0

The inequality (3.1.9) yields,
WP F(wy) — whF(w)) < —wFar <0 for each a € N. (3.1.10)
Letting a — oo in (3.1.10), we get

lim aw” = 0.
a—r0o0

That is, there is some a; € N such that awf < 1 for each a > a;. Thus, we have

Wy < ——
a_al/k7

for each a > a;. (3.1.11)
Take arbitrary a,b € N with b > a > a;. By using the triangular inequality and

(3.1.11), we have

w(b—a,0mq,0m,) < w(l,0me, Omai1) + w(1, Omgy1, Omgyo) + - -+ + w(l, Omp_1, Omy)
b—1 S) 00
1
= Zwi < Zwi < Zm
Since Y2, 21% is convergent series. Thus, lim, oo w(b — a, Om,, Om;) = 0. Due
to Ap-condition, this implies that lim, 0 w(1, Omg, Omy) = 0. Hence {Om,} is
w-Cauchy sequence in H. Since W is w-complete and H is w-closed in W, there
exists n* in H with {Om,} w-convergent to n*. That is, lim, ., w(1, Omg, n*) = 0.

Also, we have

w(l,n*, G)

IA

W(l, n*7 mtl—i-l)

1 1
w(§7 n*u Oma) + (,{)(5, Oma7 ma+1)

1
= w(§, n*, Om,) + dist(G, H)

1
w(§,n*, Om,) +w(1,n*,G).

IA

IA
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Letting a — oo in the above expression, we come by w(l,n*,m,) — w(l,n* G).
As G is approximatively w-compact concerning H, we have a subsequence {m,, } of
{m,} which w-converges to m*. This implies that

w(l,m*;n*) < lim w(l,mg,+1,0m,, ) = dist(G, H).

k—o00

Thus we have w(1,m*,n*) = dist(G, H). As m,, — m* and O is continuous, then
we have Om,, — Om*. Since the limit point is unique so we have n* = Om*. As a
result, w(1,m*,Om*) = dist(G, H)

[

Example 3.1.2. Let M = R x R furnished with a strongly regular modular metric
w(X,m,n) = +(|n1 —m| + |ny — mol) for all m = (my, ms) and n = (n1,ns) € M.
Very simple calculation shows that M, = M, so, d);-condition and Fatou property
are satisfied. Consider W = [0, 3] x [0, 3] C X,,. Then W is w-closed and w-bounded.
Let G={(0,m):0<m <1} and H={(t,m):1<t<2and 0 <m <1}. Then,
we have dist(G,H) = 1 and Gy = G, Hy = {(1,m) : 0 <m < 1}. Clearly G and
H are w-closed subsets of W and G is approximatively w-compact concerning H.
Define O : G — H as

O(0,m) = (1,7).

It can be easily checked that O is generalized F-proximal contraction of type IT
concerning F(m) =Inm, 7 = 3, ¢ =1l and ¢ = ¢3 = ¢ = 0. Also O(Go) C H,
and O is continuous. Thus, Theorem 3.1.2 is satisfied. Hence O has best proximity

point.

3.2 Best proximity point theorems in gauge spaces

Fixed point results for generalised contractions on gauge spaces were proved by
Frigon in [55, 56]. Others [13, 35, 36, 73, 94] also proved fixed point theorems on
gauge spaces.

(M, Z(B)) is a gauge space concerning the family B = {d,|b € U} of pseudo

metrics on M in this section. The notations that follow have the same meanings.
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Definition 3.2.1. Given that G, H # ¢ subsets of a metric space M. Then

db(G,H) = 1nf{db(g,h) rgeG,he H}
Go={9€ G:dy(g,h) =dy(G, H) for each b € U, for some h € H}
Ho={h € H :dy(g,h) = dp(G, H) for each b € U, for some g € G}

The definition that follows is an expanded version of Basha and Shahzad’s[22]
definition 1.1.1.

Definition 3.2.2. Let G, H # ¢ subsets of M. Then H is termed approzimatively
compact concerning G if each {v,} in H with dy(m,v,) — dp(m, H) for all b € ¥

for some m € G, has a convergent subsequence.

Following that, we give implicit generalised proximal contraction mappings of
the first and second kinds, and show the best proximity point theorem in gauge

space for the mappings. This section contains the results published in [16].

Definition 3.2.3. Allow G and H to be non-empty subsets of M. An implicit type
generalized proximal contraction of first kind is a mapping O : G — H such that
for each ¢, g2, u1,us € G, there exist ¢ € @, satistying dy(uy,Og1) = dp(G, H) =
dp(uz, Oge) implies

dp(ur,u2) < @(di(91,92), do(91,u1), dy(g2, uz),
1/2(dy (g2, ur) + dy(gr,uz))) (3.2.1)

for each b € 9

Theorem 3.2.1. Consider B = {dy|b € U} a family of pseudometrics which is
separating and (M, T(P)) a complete gauge space induced by P. Let G and H be
non-empty closed subsets of M such that Gy # ¢ and H is approzimatively compact
concerning G. Let O : G — H be implicit type generalized proximal contraction of
first kind and O(Go) € Hy. Then O possesses a best proximity point, that is there
exist m € G such that dy(m,Om) = dp(G, H)Vb € 5.

Proof. Let mg € Gy. Since O(Ggo) C Hy, so Omgy € Hy, thus we have m; € G such
that dy(mq,Omg) = dp(G, H),¥b € 0. Similarly, for m; € Gy we have Om; € H,,
thus we get mo € G such that dy(mq, Omy) = dp(G, H),Vb € U. We have, for each

a € N, by continuing this process, m,, mq,+1 € Go such that
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db(ma+1, Oma) = db(Ga H),Vb €y

Assume that m, # mg1, otherwise m, is a best proximity point. As a result, (3.2.1)

yields

dp(Ma; Mat1) < @(dp(ma—1,ma), dp(Mma—1,ma),
dy(Ma, mar1), 1/2(dy(ma_1,Mar1) + dp(ma, my)))
= ¢(dp(Mma-1,Ma), dp(Ma—1,mq),
dy(ma, Mat1),1/2(dp(1ma-1,Ma+1)))
Pldy(Mma—1,Ma), dp(Ma—1,Ma),

db(maa ma+1>7 1/2(db(ma717 ma) + db(ma> maJrl))]

IA

(3.2.2)

We claim that dy(mg, mar1) < dp(me—1,me)Vb € U for each a € N. Suppose on
contrary that dy(mg,mai1) > dp(me_1,m,)Vb € U for some a. We can use non-
decreasing of ¢ in (3.2.2),

db<ma7 ma+1) S (,b(db(mlu ma+1)7 db(ma—la ma>7 db<ma7 ma+1)7 (db(ma7 ma—i—l)))
(3.2.3)
for all b € U. We get in (3.2.3) by using property (ii) of @y,

dy(mg, may1) = 0Vb € 0

which contradicts our assumption, since mq1 # m, for each a € NU {0}.

Thus dy(mq, Mar1) < dp(me_1,ma)Vb € U for each a € N.Therefore (3.2.2) becomes

db(may ma—l—l) < ¢[db(ma—la ma)a db(ma—la ma)7 db<maa ma+l)7 (db(ma—la ma))]
(3.2.4)
By using (3.2.4) and property (ii) of ®, from definition 1.6.1 for each a € N we have

db<ma7 ma+1) S w[db(ma,h ma)]Vb S m
Consequently, for each a € N we get

dp (Mg, May1) < P dy(mg, my)]Vb € 0.
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Let a > a/, we have

IN

dy(Mar, Marg1) + dp(Mary1, Marg2) + ...+ dy(Ma—1,Mq)
< ¥ (dy(mo, ma)) + P T (dy(mo, ma)) + .o+ Y (dy (M0, M)
= (D)W (dy(mo,m1)) < coVb € V. (3.2.5)

i=a’

db (ma/ ) ma)

As a result, in (M, T(B)), {m.} is Cauchy sequence. Because G is closed in M

and M is complete. So, there is a point m* in GG such that m, — m*. Moreover,

dy(m*, H) < dy(m*,0Om,)
< dp(m, mas1) + dp(Mas1, Oma)
= dy(m*,mes1) +dy(G, H)
< dy(m*,may1) + dp(m™, H)

Therefore, d,(m*, Om,) — dy(m*, H)Vb € U as a — oo. Since, H is approximatively
compact concerning G, there is a subsequence {Om,, } of the sequence {Om,} which

converges to some point n* in H. Hence
dy(m*,n*) = limg o0 dy(Ma,,,, Omy,) = dy(G, H).

Since, for m* € Gy, we have Om* € Hy, thus we have u € G such that dy(u, Oz*) =
dy(G, H)Vb € G. Thus, from 3.2.1, we have

db(ma—f—ly U) < ¢[db(maa m*>a db(maa ma—‘rl)) db<m*a U), 1/2<db(ma7 U) + db(m*a ma+1))]7
for all b € Y. In the inequality above, applying a — oo yields,
db<m*a U) S ¢(O7 07 db(m*7 U), 1/2db(m*7 u))Vb €Y.

Axiom (i77) of ¢ gives, dy(m*, u) = 0Vb € U. We can deduce that m* = u because

M is separating gauge space. Therefore

dp(m*, Om*) = dp(u, Om*) = dp(G, H)Vb € J.
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Example 3.2.1. Consider the space encompassing all pairs of bounded and con-
tinuous real functions defined on the interval [0, 10] denoted as M = C([0, 10], R) x
C([0, 10], R) which is endowed with pseudo metrics dy(m(t), n(t)) = maxyepop{|mi(t)—
ni(t)| + |ma(t) — nao(t)|} for all m(t) = (mq(t), ma(t)), n(t) = (n1(t),n2(t)) € M and
be{l1,2,3,...,10}. Define G = {(0,m(t)) : t € [0,10]} and H = {(10,m(t)) : t €
[0,10]}. Let O : G — H by

O(0,m(t)) = (10, @) for each t € [0, 10].

Consider ¢(uy,us, u3,us) = %.Then all the conditions of the Theorem3.2.1 holds

Thus O possesses best proximity point.

Corollary 3.2.2. Consider B = {dp|b € B} a family of pseudometrics which is
separating and (M, T(P)) a complete gauge space induced by B. Let G and H be
closed subsets of M which are not empty such that Gy # ¢ and H is approximatively
compact concerning G. Moreover, suppose that a mapping O : G — H meets the

following requirements

(a) For all uy,us, my,my in G, there exists a non-negative real number o < 1 such
that

dy(u1,0my) = dp(G, H) = dp(ug, Omy) = dy(uq, uz) < ady(mq, ms),

(b) O(Gy) C Hy

Then O possesses a best proximity point, that is, dy(m,Om) = dy(G, H)Yb € U for

some element m in G.

Proof. Take ¢(uq,us, us, uy) = auy with ¥(t) = at, where @ € [0,1). From (3.2.1),
we have dy(u1,Omy) = dy(G, H) = dp(uz, Oma) = dp(uy, uz) < ady(my, me)Vb € 0
for all uy, us, my, ms € G. As aresult of Theorem 3.2.1, O possesses a best proximity
point m € G that is dy(m,Om) = dy(G, H)Vb € B. O

Definition 3.2.4. Allow GG and H to be non-empty subsets of M. An implicit type

generalized proximal contraction of second kind is a mapping O : G — H such that
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for each my, mo, ur, us € G, there exist ¢ € O, satistying dy(uy, Omy) = dpy(G, H) =
dy(ug, Oms) implies
dy(Ouy, Oug) < @(dp(Omy, Oms), dy(Omy, Ouy), dy(Oma, Ous),

1/2(db(0m2,0u1) +db(0m1,0u2))) (326)

for each b € °U.

Theorem 3.2.3. Consider P = {dp|b € BV} a family of pseudometrics which is

separating and (M, T(PB)) a complete gauge space induced by P. Let G and H be

non-empty closed subsets of M such that Gy # ¢ and H is approximatively compact

concerning G. Consider implicit type generalized proximal contraction of second kind

O : G — H which is continuous such that O(Gy) C Hy. Then O possesses a best
prozimity point, that is there exist m € G such that dy(m,Om) = dy(G, H)Vb € 0.

Proof. Let my € Gy. Then we can find a sequence m, in Gy by following the same
steps as in Theorem3.2.1 such that for all « € NU {0}
dy(may1,Omy,) = dy(G, H)Vb € 8.

Assume that Om, # Om, for each a € NU{0}, otherwise m,1 is a best proximity
point. As a result, (3.2.6) yields,

dy(Oma, Omay1) < ¢ldy(Omg—1,0my), dy(Omg-—1,Omy),

dy(Omg, Omai1), 1/2(dp(Omg-—1, Omgi1) + dp(Oma, Om,))]
d(dp(Omeg_1,0myg), dy(Omg_1,0my,),

dy(Omg, Omgy1), 1/2(dy(Omg—1, Omgy1)))
¢[db(0ma—1, Oma)> db(Oma—la Oma);
dy(Omg, Omey1),1/2(dy(Omg_1,0my) + dy(Omg, Omg.1))]

(3.2.7)

IN

IN

We claim that d,(Omg, Omg.1) < dpy(Omg_1,0m,)Vb € U for each a € NU {0}.
Suppose on contrary that d,(Omg, Omgy1) > dy(Omg_1,0m,)Vb € U and some
a. Using non-decreasing of ¢ in (3.2.7) yields,

db(Oma7 Oma+1) S ¢(db(0ma7 Oma-l—l)a db(Om(z—17 Om(l)7 db(Oma7 Oma+1)7 (db(oma7 Oma+1))>
(3.2.8)
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Using property (i) of @, in (3.2.8), we have
dy(Omg, Omgyq) = 0Vb € 0
which contradicts our assumption, i.e. Omg,1 # Om, for each a € NU {0}. Thus

dy(Omg, Omgyq) < dp(Omg—1,0m,)Vb € B for all a.Therefore (3.2.7) becomes

dy(Omg, Omgi1) < ¢ldy(Omg_1,0my), dpy(Omg_1,0my), dy(Omg, Omg.q), (dy(Omge_1,Omy,))]
(3.2.9)
By using (3.2.9) and property (ii) of ®,, we have

dy(Omg, Omgiq) < Y[dy(Omge_1,0m,)|Vb € U for all a € N.
Consequently, we get
dy(Omg, Omgi1) < °%dp(Omg, Omy)]Vb € U for each a € NU {0}

Let a > a/, we have

dy(Omg,Omg) < dy(Omg,Omegi1) + dpy(Omgrq, Omgria) + ... + dp(Omg_1,Omy,)
< ¥ (dy(Omg, Omy)) + %™ T (dy(Omg, Omy)) + ... + 7 (dy(Omg, Omy))
a—1
= Y ¢'(dy(Omg, Omy)) < 0o¥b € .

Hence {Om,} is Cauchy sequence in H. Because (M, T(P)) is complete gauge
space and H is closed in M. So, {Om,} converges to n* in H. We get the following

by utilising triangular inequality,

*

)

dy(n”, G) dy
dy(n*, Omg_1) + dp(Omg_1,my)
(
(n*

IAIA

db n*,Oma 1) +db(G H)
dy(n*,Omg_1) + dp(n*, G)

IN

Therefore, dy(n*, m,) — dy(n*, G)¥b € Y. Since G is approximatively compact
concerning H, so there is a subsequence {m,, } of the sequence {m,} which converges

to some point m* in G. By using continuity of O, we get the following

27



dp(m*, Om*) = limy_,o0 dy(May1, Omy,) = dp(G, H)Vb € 0.

]

Corollary 3.2.4. Consider B = {dp|b € B} a family of pseudometrics which is
separating and (M, T(B)) a complete gauge space induced by P. Let G and H
be non-empty closed subsets of M such that Gy # ¢ and H is approximatively
compact concerning G. Further assume that the mapping O : G — H fulfills the

accompanying assumptions:

(a) For all uy,us, my, my in G, there is some nonnegative real number o < 1 such
that,

dy(u1,0my) = dp(G, H) = dy(ug, Omg) = dy(Ouy, Ous) < ady(Omy, Omy)

for all b €3,
(b) O(Go) € H,
(c) O is continuous.

Then there is some element m in G with dy(m,Om) = dy(G, H).

3.2.1 Consequences

Suppose a complete metric space (M, d). A gauge space can be generated from the
family P = {d, = d : b € U} which is complete as well as separating. Accord-
ingly, from Theorem 3.2.1 and Theorem 3.2.3 respectively, we get the accompanying

outcomes.

Theorem 3.2.5. Allow (M,d) to be complete metric space and G,H # ¢ C M
be closed with G as approximatively compact concerning H and Gg is non-empty.

Suppose that the mapping O : G — H satisfies the accompanying assumptions:

(1) There exist ¢ € O,y and d(ur,Omy) = d(G, H) = d(ug, Omy) implies

d(uy,ug) < @(d(my, ma), d(my,uq), d(mag, us), 1/2(d(mq, us) + d(ma,ur)));
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for each my, mo,ui,us € G
(ii) O(Gy) C Ho.
Then a best proximity point is possessed by O.

Theorem 3.2.6. Allow (M,d) to be complete metric space and G, H # ¢ C M be
closed such that Gy is non-empty and H is approximatively compact concerning G.

Suppose that the mapping O : G — H satisfies the accompanying assumptions:
(i) There ezist ¢ € @y, and d(uy, Omy) = d(G, H) = d(ug, Omy) implies

d(Oul, O’UQ) S
¢(d(0m1, Omg), d(Oml, OU1>, d(Omg, OUQ>, 1/2(d(0m1, OUQ) +
d(0m27 Oul)))

for each my, mo, ui,us € G,
(i1) O is continuous,
(i1i) O(Gy) C Hp.

Then O possesses a best proximity point.
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Chapter 4

Best Proximity Point Theorems in

Metric-like Spaces

Multiplicative calculus introduced by Grossman and Kartz during 1967 and 1970
[65], but unfortunately it remained unpopular for many years. In 2008, Bashirov
et al. [24] brought up the researcher’s attention to the multiplicative calculus by
demonstrating its usefulness in the branch of analysis and presented multiplicative
metric. He also presented few examples of multiplicative metric space in his article.
Ozavsar and Cevikel [108] then investigated the topological properties of multiplica-
tive metric space and emphasized its importance by showing that R is complete
multiplicative metric space while it is not complete in the sense of usual metric.
In the same article they demonstrated few fixed point theorems of multiplicative
contraction mappings. In multiplicative metric space, fixed point theorems of differ-
ent contractions are explored [1]. Some interesting surveys on multiplicative metric
space are written [6, 7, 44, 45, 126]. The theorems to demonstrate presence of best
proximity points for multiplicative proximal contractions are given by [103].

Then again fuzzy metric, presented by Kramosil and modified by George and
Veeramnai [57], are of great importance because of its usefulness in a variety of
applications such as color image filtering [77, 105]. As of late, Gregori et al. [64]
indicated some intriguing applications of fuzzy metric in engineering methods. Fixed
point theory studied by many researchers [100, 60, 134, 62].

In this chapter we established fuzzy multiplicative metric space with few of its
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topological aspects. We also given best proximity point theorems for the proximal
contraction and multivalued contraction of Feng-Liu type. This chapter is published

as research article [51].

4.1 Fuzzy multiplicative metric spaces

Definition 4.1.1. A fuzzy multiplicative metric space is a 3-tuple (M, Fyar, %) if *
is continuous t— norm, M is arbitrary set and Fiyyy is fuzzy set on M x M x (1, 00)

fulfilling the accompanying conditions for all m,n,p € M,t,s > 1
FMM1: Fyp(m,n,t) >0
FMM2: m = n if and only if Fypr(m,n,t) =1
FMMS3: Fyar(m,n,t) = Fya(n,m,t)
FMM4: Fyp(m,p,t.s) > Ey(m,n,t) * Fypr(n, p, s)
FMMS5: Fyp(m,n,.): (1,00) — [0, 1] is continuous.
Here we have an example of fuzzy multiplicative metric which can not be fuzzy

metric.

Example 4.1.1. Let M = R* and Fyp(m,n,t) = % and consider a continuous

t—norm % : [0,1] x[0,1] — [0, 1] as z*y = xy. Then M is fuzzy multiplicative metric

space.

Remark 4.1.1. 1. Allow (M, Fyrar,*) to be a fuzzy multiplicative metric space.
Whenever Fyp(m,n,t) > 1—¢eformne M andt > 1,0 < e <1, we can
find a tg, 1 <ty <t such that Fypr(m,n,tg) > 1 —e.

2. Let €1, €9,€3,€4,€5 € (0,1). For any €; > €z, we are able to locate an €3 such

that €; x €3 > €5 and for any €4 we can find an €5 such that e5 x €5 > 4.

Here we discuss fuzzy multiplicative metric space with its some topological prop-

erties.
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Definition 4.1.2. Allow (M, Fyar, *) to be a fuzzy multiplicative metric space and

0 < € < 1 then an open ball of centre m and radius e is defined as
B(m,e,t) ={ne€ M : Fyp(m,n,t) > 1 — €}

Definition 4.1.3. Allow (M, Fyp,x) to b fuzzy multiplicative metric space and
G C M. Then G is called open set if and only if for every m € G, there exist an
open ball B(m,e,t) for t > 1 and 0 < € < 1 such that B(m,e,t) C G.

Proposition 4.1.1. Fvery open ball in fuzzy multiplicative metric space is an open

set.

Proof. Allow B(m,e,t) to be an open ball and let n € B(m,€,t). This implies that
Fuya(myn,t) > 1—e€. Since Fyp(m,n,t) > 1 — ¢, using Remark 4.1.1, we can find
atg, 1 <ty <t,such that Fyrpr(m,n,tg) > 1 —e. Let g = Fypr(m,n, tg) > 1—e.
Since €y > 1 — ¢, therefore by using Remark 4.1.1, we are able to locate an ¢y,
0 < € < 1, such that ¢¢ > 1 —¢ > 1 —¢€. Now for a given ¢ and ¢; satisfying
€p > 1 — €1, we are able to locate €5,0 < €5 < 1 such that ¢y xe3 > 1 — ;. Now,
think about the ball B(n,1 — e, %) We claim that

B(n,1 — e, ) C B(m,e,t).

Now, p € B(n, 1 — €, ;) implies that Fasar(n, p, o) > €2. Therefore,

Fyy(m,p,t) > FMM(m:n:tO)*FMM<napa%)
> €k €
> 1—¢g
> 1—e

Therefore, p € B(m,¢,t) and hence,
B(n,1— e, ) C B(m,e,t).

]

Proposition 4.1.2. Allow (M, Fyrar,x) to be a fuzzy multiplicative metric space.
Define
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T={G CM:m e G if and only if B(m,e,t) CG fort>1and 0 <e < 1}.
The set T is then a topology on M.

Theorem 4.1.3. Hausdorff axioms are fulfilled by every fuzzy multiplicative metric

space .

Proof. Assume that (M, Faar, %) is a given fuzzy multiplicative metric space. Allow
m,n to be distinct points of M, then 0 < Fyrpr(m,n,t) < 1. Let Fypr(m,n,t) = e,
0 < e < 1. For each ¢, € < ¢g < 1, using Remark 4.1.1, we can find an ¢; such that
€1 % €1 > €9. Now think about the open balls B(m,1 — e, t%) and B(n,1 — €, t%).
Obviously,

B(m,1—e,t2) N B(n,1— ¢y, t2) = ¢.
Because, if there is

peB(m,1—e,t2)NB(n,1— e, t2)

Then

[
|

FMM(m, n, t)
1
2

v

1
FMM(mapat )*FMM<p7n7t§)

Vv

€1 %X €1

v

€0

V

€,
which is a contradiction. Therefore, (M, Fyr, x) is Hausdorff. O

Definition 4.1.4. In a fuzzy multiplicative metric space (M, Fyar, %), a sequence
{m,} is a convergent sequence which converges to m if and only if there is some

a; € N with M(mg,,m,t) > 1 — € for all a > a; and for each € > 0,¢ > 1.

Theorem 4.1.4. Allow (M, Fyrar, %) to be a fuzzy multiplicative metric space, m €
M and {m,} be a sequence in M. Then {m,} converges to m if and only if

Fyy(mg,m,t) — 1 as a — oo for each t > 1.
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Proof. Suppose that m, — m. Then for each ¢ > 1 and ¢ € (0,1), there exist
a natural number a; such that Fyp(mg, m,t) > 1 — € for all a > a;. We have
1 — Fyar(mg, m,t) < r. Hence, Fyrpr(mg, m,t) — 1 as a — oo.

Conversely, suppose that Fyp(mg, m,t) — 1 as a — oo. Then for each ¢ > 1 and
e € (0,1), there exist a natural number a; such that 1 — Fypr(mg, m,t) < € for all

a > ay. In that case, Fyrp(mg, m,t) > 1 — €. Hence, m, — m as a — oc. O

Definition 4.1.5. Let a sequence {m,} in a fuzzy multiplicative metric space
(M, Fyag, ). If for each € > 0,¢ > 1, there exist a; € N such that Fyyps(mg, mp, t) >

1 — € for all a,b > ay then {m,} is termed Cauchy sequence in M.

Theorem 4.1.5. Let (M, Fyar, %) be a fuzzy multiplicative metric space, m € M and
{m,} be a sequence in M. Then {m} is Cauchy if and only if Fynr(me, mp,t) — 1

as a,b — oo for each t > 1.

Proof. Suppose that m, is a Cauchy sequence in M. Then for each ¢ > 1 and
€ € (0,1), there exist a natural number a; such that Fyp(mg, my,t) > 1 — € for
all a,b > a;. We have 1 — Fyp(mg, mp, t) < €. Hence, Fyrpr(mg,mp,t) — 1 as
a,b — oo.

Conversely, suppose that Fya(mg, mp,t) — 1 as a,b — oo. Then for each ¢ > 1
and € € (0,1), there exist a natural number a; such that 1 — Fyrpr(mg, mp, t) < €
for all a,b > a;. In that case, Fpar(mg, my,t) > 1 — €. Hence, m, is a Cauchy

sequence. ]

Proposition 4.1.6. In a fuzzy multiplicative metric space (M, Fyrpr, %), if a se-

quence {m,} converges in M, then {m,} is Cauchy.

Proof. Let € and t be real numbers with € € (0,1),¢ > 1. Since ¢ € (0,1), there
is some ¢y € (0,1) such that (1 —€y) x (1 — €9) > 1 — €. Also suppose that {m,}
converges in M, say it converges to m € M. Then there exists ay € N such that for

each a > ag;

FMM(ma,m,t%) >1—¢
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Thus for a,b > ag we have

FMM(ma,m,t%)*FMM(mb,m,t%)

> (1 —¢€)*(1—¢€)

> 1—e¢ (4.1.1)

v

Frine(mg, my, )

That is {m,} is a Cauchy sequence. O

Definition 4.1.6. A fuzzy multiplicative metric space (M, Fisa, %) is termed com-

plete if and only if every sequence in M which is Cauchy must converge in M.

Definition 4.1.7. Allow (M, Fypr, *) to be a fuzzy multiplicative metric space. A
subset G of M is closed if for each sequence {m,} in G which is convergent with

mg — m, we have m € G.

Allow (M, Farar, ) to be a complete fuzzy multiplicative metric space. A subset

G of M is closed if and only if (G, Fyar, *) is complete.

Lemma 4.1.7. Allow (M, Faryr, %) to be a fuzzy metric space such that for m,n €
M;t>1and h >1

limg o0 %32, Earar(m, m, thi) = 1.
A sequence {m,} in M is Cauchy if for alla € N and 0 < a < 1
Frn(ma, mai1,t%) > Fayn(ma—1, mq, t).
Proof. Each a € N and ¢t > 1 yields

Frn(meg, megr,t) > FMM(ma—lamaaté> > FMM(ma—%ma—lato‘%) > .2

1
FMM(m07 my, fao=t )
Thus for each a € N we get
1
Farve(ma, Mag1,t) > Farar(mo, ma, toe=T) (4.1.2)

a1
Settle the numbers h > 1 and [ € N such that ha < 1 and Y °°, L = T < 1 Hence
h

i=l ht
forb>a

1,1 1
Fapng (i, my, t 0w )

v

Farv(me, my, t)
1 1
> Fran(ma, Mayr, t07) % Faa(Magr, Mapa, ERFT) % ..

ey (M1, My, £75) (4.1.3)
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Using 4.1.2 in above inequality, we come by;

FMM(maa myp, t) Z

1 1 1
FMM(mg, my, taa—TInl ) * FMM(mo, my, taanl+l ) *x ... % FMM(mo, my, t ab=2pl+b-a=2 )
That is;

FMM(maamb;t) Z
1 1 1
FMM(mO, m, ACOL ) * FMM(m(), maq, t (em)® ) * ...k FMM(mo, mq, t(o‘h)b72)

The above expression can be simplified as;
Frnr(mg, myp, t) > *;’iaFMM(mo,ml,tWh)%)
Then from the above, we have
limg oo Fnrng (M, mp, t) > limy o0 %52, Enrag (Mo, ma, tﬁ) =1
for each t > 1. Hence for each t > 1
limg psoo Frrng (Mg, mp, t) =1

which shows that {m,} is a Cauchy sequence. O

Definition 4.1.8. Consider a fuzzy multiplicative metric space (M, Fy,*) and
G,H C M then for all ¢t > 1;

Go={m e G : Fyy(m,n,t) = Fyn(G, H,t), for some n € H}
Ho={n€ H: Fyy(m,n,t) = Fyu(G, H,t), for some m € G}

where
Fum (G, H t) = Sup{Fyy(m,n,t),m € G,n € H} for all t > 1.

Definition 4.1.9. Allow (M, Fyar, %) to be a fuzzy multiplicative metric space and
G,H C M. If every sequence {m,} of G fulfilling the condition that Fips(n, ma,t) —
Fyar(n,m,t) for some n in H and for all ¢ > 1 has a convergent subsequence then

G is termed approximatively compact concerning H
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4.2 Best proximity point theorems in fuzzy mul-

tiplicative metric spaces

Definition 4.2.1. Allow (M, Fir, %) to be a fuzzy multiplicative metric space and
G,H C M. A mapping O : G — H is named as multiplicative contraction of first
kind if there exists « € [0,1) such that for all u,v,m,n € G

FMM(U, Om,t) = FMM<G, H, t) and FMM(’U,OTL,t) = FMM(G, H, t) =
Fyrv(u,v,t%) > Faar(m,n, t)

Theorem 4.2.1. Allow (M, Fyp,x) to be a complete fuzzy multiplicative metric
space and G, H C M such that H is approximatively compact concerning G. Assume
that limy_, Farpr(m,n,t) = 1. Let O : G — H be multiplicative contraction of first
kind and O(Gy) C Hy. Then O possesses best proximity point.

Proof. Let my € Gg then for Omgy € OGy C Hj there exist m; € Gy such that
Fry(my, Omg, t) = Fyn (G, H, 1)

Further, since Om, € OGy C Hy there exist my € GGy such that
Fryv(me, Omy, t) = Fyy (G, H, t)

Similarly for Omsy € OGy C Hj there exist mg € GGy such that
Fr(ms, Oma, t) = Fya (G, H, t)

By continuing the similar steps we get;
Frn(mayr,Omg,t) = Fyu (G, H,t) for all a € N (4.2.1)

By successive application of fuzzy multiplicative contraction we have for all a €
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NuU {0}

v

Frinr(ma, Mg, t%) Frinr(mg—1,mg, t)

v

Frive(ma—o, ma_1, fl/a)

Y

FMM (ma—37 meg—2, tl/az)

v

Fun(mo, my, /%) (4.2.2)
For any ¢ € N;
FMM (mw Matq, t) Z FMM<ma7 mMea41, tl/q>*FMM (ma+17 Ma+2, tl/q)*---*FMM<ma+q—17 Matq, tl/q)

Using 4.2.2 in above inequality

aa“) a+q71)

Frnve(Ma, Matq, t) > Farn(mo, ma, t1/ae” V% F s (mg, ma, ti/a *.. Kk Fapar (mo, ma, ¢1/ae

By assumption limy_,o Farar(m,n,t) =1
limg oo Frrnr(Ma, Mayg,t) =1x1x.ox1=1

As a result, {m,} is a Cauchy sequence. The completeness of fuzzy multiplicative

metric space (M, Fyp, +) implies that {m,} converges to m* € G that is
limg oo Farnr(mg, m*,t) =1 for all ¢t > 1

Take a note that

FMM(’ITL, H,t) F M m,Oma,t)
F

v (

wine (M, M1, 8%) % Fagag (g1, Omg, t77)
(
(

v

I
=

M\T, Ta+1, tl/z) * FMM(G7 H7 t)

v

FMM m,ma+1,tl/2) *FMM(m, H,t)

Therefore Fyrpr(m, Omg,t) — Fyar(m, H, t) as a — oo. Since H is approximatively

compact concerning G, so {Om,} has a convergent sequence {Om,, } converging to
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some p € H. Further for each k € N we have

Fuu(G, H,t)

v

FMM<m7p7 t)
> FMM(m7 mak_Ha tl/g) * FMM(mak_H) Omakv tl/g) * FMM(Omak7p7 tl/g)

— FMM(m7 mak+1a t1/3) * FMM(G; H) t1/3) * FMM(Omak y D, t1/3)

Letting & — oo, we get Fyn(m,p,t) = Fyn (G, H,t) which implies that m €
Go and O(Gy) C Hy implies that Om € H,, there exist m* € G such that
Fyy(m*,0Om,t) = Fya (G, H,t). This equation and equation 4.2.1 implies that

Frving (Magr, m* 1) > Faa(mg, m, t4/9)

Applying limit a — oo to above inequality gives Fyas(m, m*,t) = 1 which implies
that m = m*. Hence Fyp(m,Om,t) = Fyn (G, H,t) which demonstrates that O

possesses best proximity point m. O

Example 4.2.1. Let M = Rt x R and Fyp(m,n,t) = H;&’n) where d(m,n) =
|27 52" for m o= (mq,m2) and n = (n1,ns). Then (M, Fyar,*) is complete
fuzzy multiplicative metric space with x : [0,1]*> — [0,1] defined as a xb = ab. Let
G={(1,m):meR }and H = {(2,n) : n € RT} then G and H are closed subsets

of M and Fy (G, H,t) = 2 Gy =G, Hy = H. Define O: G — H as

t+2°

2

O(1,m) = (2,2)

2
Let m = (1,m),n = (1,n) € G then u = (1,%2) and v = (1,%2) € G such that
Fyn(u,Om,t) = Fyn (G, H t) = Faypr(v,Om,t). It can be easily checked that O
is proximal contraction in fuzzy multiplicative metric space M with a = % Also
the condition limy_,o, Frar(m,n,t) = 1 holds.

Since all statements of theorem 4.3.1 hold so, O possesses best proximity points.

Theorem 4.2.2. Allow (M, Fyyr, ) to be complete fuzzy multiplicative metric space.
G,H C M be two non-empty closed subsets of M having P-property and Gy # ¢.
Let O : G — C(H) be a mapping such that O(Gy) C Hy and for all m € Gy and
n € Om there exist p € Gy satisfying

FMM(TL7p, t) = FMM(G, H, t)andFMM(n,Op, tc) Z FMM(m,p, t) (423)
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for some ¢ € (0,1) and t > 1. Suppose (M, Fyrar,x) satisfy

lim *2, Fanr(m,n, t") =1 (4.2.4)

a—0o0

for everym,n € M,t > 1 and h > 1. Then O has best proximity point in G provided

that f(m,n) = Fyy(n,Om,t) is upper semi-continuous.
Proof. Allow mg € Gy to be an arbitrary point. Choose ng € Omg. Then by
assumption there exist m; € G such that
Frya(ng, my,t) = Fyu (G, H,t) and Fiya(ng, Omy, t€) > Fa(mo, my, t)
Presently let b € (¢, 1), then we can discover ny € Om; such that
Farar(no, na, t) > Faar(ng, Omy, t°)
Again by assumption there exist mo € G such that
Fry(ng,mo,t) = Fyn (G, H,t) and Fyp(ng, Ome, t€) > Fyp(my, me, t)
Also we can find ny € Omy such that
Farnr(ny,ma,t) > Fua(ng, Oma, t0)

Proceeding in similar manner we develop two sequences {m,} and {n,} in G and H

respectively, with m, € Gy , n, € Om, and

FMM(na,maH,t) = FMM(G, H, t) (425)
FMM(na,OmaH,tC) Z FMM(ma,maH,t) (426)
Fryni(a, nas1, ) > Fun(ng, Omgg,t) (4.2.7)

for all @ € N and t > 1. Then again, since G and H have P-property so from
equation 4.2.6 we get

Frinve(ma, mas1,t) = Faar(na—1, N, t)

Therefore from inequality 4.2.7 we have

FMM(ma,maH,t) = FMM(na,l,na,t) (428)
> FMM(na—lvOmavtb)



From inequality 4.2.7 we have

Fyy(ng_1,0mg,t) > FMM(ma,l,ma,t%) (4.2.9)
Combining inequality 4.2.8 and 4.2.9 we get

Farnr (Mo, May1,t) > Faag(ma_ 1, ma, <) (4.2.10)

foralla >1and t > 1.
Let k = 7 then 0 < k < 1. The inequality 4.2.10 gives
Faing (ma, Magr, %) > Fagnr(ma—1, ma, t)

for 0 < k <1 and ¢t > 1 By our assumption 4.2.4 and lemma 4.1.7 {m,} is Cauchy
sequence.

Now from inequality 4.2.7 and 4.2.8 we have

Frn(ng, Omg1,t9) > Fayn(mg, Mg, t)
> Fyn(na_1,0mg, t%)
= FMM(na,OmaH,t) Z FMM(na_l,Oma,t%) (4211)

Also from inequality 4.2.7 and 4.2.11 we have

v

FMM (na, Oma+1, t)
b

FMM(na—la Omaa tc)

1
FMM(”G,) Na+1, tﬂ)

v

= Fuyn(Nas Nay1,t°) > Fuya(ng—1,Omg, t)

for 0 < ¢ <1 and t > 1. Hence {n,} is Cauchy sequence.

Since G, H are closed subsets of complete fuzzy metric space so, {m,},{n.} are
convergent sequences in G and H respectively. Thus, there exist m* € G and
n* € H such that m, — m* and n, — n* as a — oco.

Letting a — oo in equation 4.2.6 we have
FMM(m*, TL*, t) == FMM(G, H, t)

for ¢t > 1. The inequality 4.2.11 shows that the sequence f(mga, n4) = Farpr(ng, Omg, t)

is increasing and it converges to 1. Since f(m,n) is upper semi-continuous so,
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1 =limsup, . f(mg,ng) < f(m*,n*) <1

implies to the fact that f(m* n*) = 1 that is Fy(n*,Om* t) = 1 and hence
n* € Om”.

Therefore,

Fuu (G, H,t)

v

FMM(m*, OTTL*, t)
> FMM(m*,n*, t)

Fuu (G, H,t)

that is Fyp(m*,Om*, t) = Fy (G, H,t). This shows that O possesses best prox-

imity point m*. O

4.3 Best proximity point theorems of Feng-Liu
type mappings in fuzzy metric space

Theorem 4.3.1. Allow (M, Fy,x) to be complete fuzzy metric space. G, H # ¢ C
M be closed having P-property and Gy # ¢. Let O : G — C(H) be a mapping such
that O(Gy) C Hy and for all m € Gy and n € Om there exist p € Gy satisfying

Fuy(n,p,t) = Fy (G, H,t) and Fy(n,Op,ct) > Fy(m,p,t) (4.3.1)
for some ¢ € (0,1) and t > 0. Suppose (M, Fyr,x) satisfy

lim %52, Fs(m,n,th') =1 (4.3.2)

a—00

for everyt > 0,h > 1 and m,n € M. Then O possesses best proximity point in G

provided that f(m,n) = Fp(n,Om,t) is upper semi-continuous.

Proof. Allow mgy € Gy to be arbitrary point. Choose ng € Omg. Then by assump-

tion there exist m; € Gy such that
Frr(ng,my, t) = Fy (G, H, t) and Fiy(ng, Omy, ct) > Fy(mg, my, t)
Presently let b € (¢, 1), then we can discover n; € Om; such that

Fr(ng, ma,t) > Far(ng, Omy, bt)
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Again by assumption there exist mo € G such that
Fr(ng,me,t) = Fyy (G, H, t) and Fy(ng, Omag, ct) > Fy(mq, ma,t)
Also we can find ny € Omsy such that
Fu(ng,ng, t) > Fy(ng, Omg, bt)

Proceeding in similar manner we develop two sequences {m,} and {n,} in G and H

respectively, with m, € Gy , n, € Om, and

FM(na,mHl,t) = FM(G,H, t) (433)
Frf(ng, Omgiq,ct) > Fpy(mg,mair,t) (4.3.4)
Fy(ng,ngi1,t) > Fy(ng, Omgyq,t) (4.3.5)

for all @ € N and t > 0. Then again, since G and H have P-property so from
equation 4.3.4 we get

FM(mm mMea+1, t) = FM(na—la N, t)
Therefore from inequality 4.3.5 we have

Fy(mg,mayr,t) = Fy(ng—1,ng,t) (4.3.6)
> FM(na—laommbt)

From inequality 4.3.5 we have
1
Fr(ng—1,0mg,t) > Fp(ma—1,mg, —t) (4.3.7)
c
Combining inequality 4.3.6 and 4.3.7 we get
b

Fr(mg, may1,t) > Far(ma—1,mg, —t) (4.3.8)
c

forall a > 1 and ¢ > 0.
Let k = 7 then 0 < k < 1. The inequality 4.3.8 gives

Far(ma, mas1, kt) 2 Fay(ma—1, ma, t)
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for 0 < k <1 and ¢ > 0 By our assumption 4.3.2 and lemma 4.1.7 {m,} is Cauchy
sequence.

Now from inequality 4.3.5 and 4.3.6 we have

Fryf(ng, Omegiq,ct) > Fy(mg,mair,t)
Z FM(”a—h Oma7 bt)
b
= FM(na,OmaH,t) > FM(na_l,Oma, —t) (439)
C

Also from inequality 4.3.5 and 4.3.9 we have

1
FM(”G) Na+1, Et> 2 FM(naa Oma—l—la t)

Vv

b
FM(na_l, Oma, Et)

= Fy(ng,ngr1,ct) > Fy(ng_1,0mg,t)

for 0 < ¢ <1 and t > 0. Hence {n,} is Cauchy sequence.

Since G, H are closed subsets of complete fuzzy metric space so, {m,},{n.} are
convergent sequences in G and H respectively. Thus, there is some m* € G and
n* € H such that m, — m* and n, — n* as a — oo.

Letting a — oo in equation 4.3.4 we have
FM(m*, n*,t) = FM(G, H, t)
for ¢t > 0. The inequality 4.3.9 shows that the sequence f(mg,n,) = Far(ng, Omg, t)

is increasing sequence, so it converges to 1. Since f(m,n) is upper semi-continuous

S0,
1 =limsup,_, ., f(ma,n.) < f(m*,n*) <1

implies to the fact that f(m*,n*) = 1 that is Fy/(n*,Om*,t) = 1 and hence n* €
Oom*.

Therefore,

FM(G7H7t)

v

Fuy(m*,Om* t)
> Fy(m*,n*t)

FM(GaHat)
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that is Fy(m*, Om* t) = Fy (G, H,t). This shows that O possesses best proximity
point m*. ]

Example 4.3.1. Let J ={0,1} U {55 :n € N} and M = J x J,

Fy(m,n,t) = and d(m,n) = |my — nq| + |ma — no|

t
t+d(m,n)

for m = (my,me) and n = (ny,ne) € M Then (M, Fy,*) is complete fuzzy metric
space where % : [0,1]> — [0,1] defined by a xb = ab. Let G = {(0,5) : a €

N} U {(0,0),(0,1)} and H = {(1,5) : a € N} U{(1,0),(1,1)}. Then G = G,
Hy= H and Fy (G, H,t) = 5. Define O : G — C(H) as

0, =), 0, D)}ifm==L,a=0,1,2,..
o my = [ (@5 0.0} itm =

{(0,0), (0, 1)} if m = 0.

For all m,n € M,lim,_,o %32, Far(m,n, th?) = 1 which implies that M satisfies 4.3.2
.Let m=(1,5) € Gy and n = (0, 557) € Om = O(1, 57) then for p = (1, 71) € G

) 2a
we have
Fy(n,p,t) = Fy (G, H,t) and Fy(n,Op,t) =1 > Fy(m,n,t)
Also
—L4— for m = (1, La)
fm,n) = Fy(n,Om,t) = m _ t+2a+1 2

1 for m = (1,0),(1,1)

is continuous. Because the theorem’s 4.3.1 requirements are all met, so, best prox-

imity points for O exists. Furthermore, for u = (1, 5%),v = (1,0) € Gy

) 2a

Hp,, (01, 5),0(1,0), ct) = =%+ and Fy((1, ), (1,0),1) = -

) 9a ct_;'_% t+

|~

Assume that for ¢ € (0,1), Hp,,(O(1, 5),0(1,0), ct) > Fu((1, 5), (1,0),t) That is

which implies that ¢ > 297! for @ € N which is a contradiction. This shows that O

does not satisfies contraction condition of Nadler’s multivalued mapping.
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As corollary of Theorem 4.1, we obtain a result which was proved in [14]. We

get the corollary by taking A = B = M.

Corollary 4.3.2. Allow (M, Fy, ) to be complete fuzzy metric space. Let O : M —
C(M) be a mapping, for allm € M andn € IJ" (where I" = {n € Om|Fy(m,n,t) >
Fr(m,Om,bt)} C M for some b € (0,1)) satisfying

FM(”a OTL,Ct) > FM<m7n7t)

for some ¢ € (0,1) and t > 1. Then O possesses fixed point provided that ¢ < b and

f(m) = Fy(m, Om,t) is upper semi-continuous.

4.4 Conclusion

Zadeh [139] introduced the notion of fuzzy logic to cope with the problem of un-
certainty, that occurs essentially while studying real life problem. Many researcher
found easiness to study the phenomenon of different fields that were too complex
to be analyzed by conventional techniques. Fuzzy metric introduced by Kaleva [81]
measures the imprecision of distance between elements. Fuzzy metric has been ap-
plied in variety of applications like color image filtering [105] and in engineering
methods [64]. Multiplicative calculus has its great applications in various fields, few
of which are in biomedical image analysis [53], contour detection in images [104].
We introduced fuzzy multiplicative metric space in this chapter and demonstrated
some best proximity point and fixed point results in this new framework. The above

discussion shows the possible applications in this framework in future.
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