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Abstract

The origin of approximation theory is dated to the middle of twentieth century

[49] and rests in the consideration of researchers to setup existence of approximate

solutions for the operator equations of the type m = Om. It is significant that the

best proximity point theory took off based on work of Eldred and Veeramani [47].

The best proximity points are generally employed to discover approximate solution

of the operator equation Om = m, which is optimal, when some contraction O fails

to have fixed point.

The motivation behind the dissertation is to explore best proximity points of

various proximal contraction operators in metric and metric-like spaces. We prove

best proximity point theorems for some new generalized multivalued proximal con-

tractions. We study nonself Presic-type operator and the presence of optimal ap-

proximate solution for them. Also we give several examples to explain our results.

We get some fascinating fixed point outcomes for Presic operator as consequence

of our results. We demonstrate best proximity point results in few generalizations

of metric space for example; modular metric space and gauge space, for operators

satisfying new type of contraction inequality. We introduce fuzzy multiplicative met-

ric space and prove best proximity points for Feng-Liu type multivalued proximal

contraction.



Preface

Analysis is the field of Mathematics in which we analyze classes of functions and

equations having general properties. The field of analysis has been developed into

various distinct but related fields such as Fourier analysis, complex analysis, real

analysis, numerical analysis and functional analysis etc. Fixed point theory is per-

haps the most dynamic territories of functional analysis. The theory originated in

response to needs of non-linear analysis with the method of successive approxima-

tions that was used to establish existence and uniqueness of solutions of differential

equations. Many authors including Charles Emile in 1890 and Joseph Liouville in

1837 contributed for the same.

Metric fixed point theory started with an interesting and valuable result, known

as Banach contraction principle, given by Stephen Banach in 1922 [19]. The prin-

ciple of Banach contraction is important because it not only gives the presence and

uniqueness of solution but also provides the sequence of successive approximations

that converges to the solution of the problem that can be modeled in the form

x = f(x). Metric fixed point theory is now expanding its domain due to its diversi-

fied applications in Mathematics like existence of solutions of differential equations,

integral equations [97, 117] just as in various fields like mathematical economics [95],

game theory [28], computer science [68], engineering, physics, telecommunication [9],

and many others [70, 116, 127]. A critical observation of literature depicts that the

principle of Banach contraction has been extended in following manner;

(i) Generalizing the operator or contraction conditions of the operator(See for ex-

ample [32, 39, 66, 78, 115]).

(ii) Generalizing the metric space(See for example [41, 69, 83, 75]).

(iii) Development of metric-like spaces(See for example [24, 92, 87])

Best proximity point theory is generalization of fixed point theory as best prox-

imity point theorem bring down to fixed point theorem if the nonself map reduces



to self map. The theory evolved with the work of K. Fan in 1969 [49]. Some ex-

tensions of the theorem are then given by Prolla [112],Seghal and Singh [122] and

Vetrivel [132]. In first chapter, we have given brief introduction of best proximity

point theory, some generalizations of metric space, some metric-like spaces and of

contraction operator that we have to use in upcoming chapters.

The theory of best proximity points now become field of attention for the re-

searchers working in the field of analysis. In 2012, S. Basha [23] introduced the

proximal contractions of nonself maps and established best proximity point theo-

rems. Several authors then used the concept and shows the presence of best prox-

imity points of different generalizations of proximal contractions [12, 74, 101, 107].

A useful generalization of Banach contraction Principle is fixed point theorem for

multivalued contraction which is given by S. B. Nadler [106]. In first section of

chapter two, we used a class of auxiliary functions, written as F , introduced by

Wardowski [137]. We proved best proximity point theorems for a new class of mul-

tivalued generalized proximal contractions. With the help of example, we also have

shown that our results generalize some existing results.In second section, we have

proved best proximity point theorems for Presic type proximal contractions in the

framework of metric space endowed with graph. As consequences of our results, we

also have shown presence of fixed points of Presic type operators in the metric space

furnished with graph.

Since we mentioned earlier that generalization of metric space is a manner to

extend principle of Banach contraction. Modular metric space is the generalization

of metric space as modular metric reduces to metric if λ is taken as 1. Fixed point

theorems in the framework of modular metric space with applications are provided

by several authors [2, 30, 38, 43]. Our chapter three contains best proximity point

theorems of proximal contractions of first kind and second kind defined using the

class of functions F , in the framework of modular metric space. Pseudo-metric is

a metric in which the distance between two distinct elements can be zero. A re-

markable observation is that every metric space is a pseudo metric space. Although

pseudo-metrics are rare than metrics but pseudo-metrics have their own importance

as they emerge in a characteristic manner in the theory of hyperbolic complex man-

ifolds and in functional analysis [88]. Gauge spaces are thoroughly discussed in [46]



that are generated by the collection of balls of family of pseudo-metrics. In 2000,

Frigon [55] proved fixed point theorems in the framework of complete gauge space.

Jleli et al. [76] in 2015 proved some fixed point theorems and showed their applica-

tions in gauge spaces. In second part of chapter three, we have shown existence of

best proximity points in gauge spaces of proximal contractions defined by using a

class of auxiliary functions.

In metric spaces, if a space is exceptional instance of another space then the

latter is termed generalization of first one. For instance metric space is exceptional

instance of modular metric space. There are some spaces that are not generalizations

of metric space but are analogous to metric space, for instance, fuzzy metric space,

multiplicative metric space etc.Fuzzy metric space was presented by Kramosil and

Michalek [92]. Fixed point theorems and best proximity point theorems of single

valued and multivalued contractions in fuzzy metric space were presented by many

authors [60, 119, 33, 123, 133, 134, 42, 50, 52, 57, 58, 61, 62, 86, 100]. In chapter

four we introduced fuzzy multiplicative metric space and some related terminologies.

We proved best proximity point theorems for some single valued and multivalued

proximal contractions in the newly introduced space.
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Chapter 1

Preliminaries and basic concepts

This chapter introduces basic concepts regarding some generalizations of metric

space and contraction operators. The definitions and some essential outcomes from

literature are incorporated that will be helpful in the entire dissertation.

1.1 Best Proximity Point Theory

The theory of fixed points is concerned with determining adequate conditions for

the presence and uniqueness of the functions that satisfy non-linear equations de-

noted by Om = m, when O is a function mapping a subset of metric space or

some relevant framework to itself. The equations may not have solutions for some

nonlinear operator O. This one, for example, has no solution if O : G → H and

G ∩ H = φ. In this case, we may identify a point m ∈ G which is close to Om,

that is, the distance between Om and m is shortest among the G elements. Such a

point m ∈ G is termed best proximity point of O. A point m ∈ G, where G and H

are subsets of a metric space (M,d), is termed best proximity point of O : G→ H

if d(m,Om) = d(G,H). Fan [49] was one who first proposed the concept of best

proximity point. The definitions and findings for the study of best proximity point

theory are listed below;

Definition 1.1.1. [22] Allow (M,d) to be a metric space. For G,H ⊆M ;

d(G,H) = inf{d(g, h) : g ∈ G, h ∈ H}

1



G0 = {g ∈ G : d(G,H) = d(g, h) for some h ∈ H}
H0 = {h ∈ H : d(G,H) = d(g, h) for some g ∈ G}

Definition 1.1.2. [22] The set H is termed approximatively compact concerning the

set G, if each {va} in H with d(m, va)→ d(m,H) for some m ∈ G has a convergent

subsequence.

The theory of best proximity points for different versions of contractions has

been studied [5, 10, 20, 21, 47]. The accompanying best proximity point theorem

demonstrated by Basha and Shahzad [23] for generalized proximal contraction:

Theorem 1.1.1. Allow G and H to be closed non-empty subsets of a complete

metric space (M,d). Let G0 is not empty and O : G → H is a mapping such that

for each m1,m2, u1, u2 ∈ G with d(u1, Om1) = d(G,H) = d(u2, Om2), we have

d(u1, u2) ≤ ς1d(m1,m2)+ς2d(m1, u1)+ς3d(m2, u2)+ς4[d(m1, u2)+d(m2, u1)] (1.1.1)

where ς1, ς2, ς3, ς4 ≥ 0 satisfying ς1 + ς2 + ς3 + 2ς4 < 1. Further, consider the accom-

panying conditions:

(i) H is approximatively compact with respect to G,

(ii) O(G0) is contained in H0.

Then O possesses best proximity point.

1.2 Gauge Spaces

Pseudo metric is the generalized concept of metric satisfies the property that two

distinct points may not be separated. The topological space generated by the family

of pseudo metrics is called gauge space. Following are some basic definitions in the

perspective of gauge space;

Definition 1.2.1. [34] Consider a nonempty set M , a function d : M×M → [0,∞)

such that for each m,n, p ∈M ;

(i) d(m,m) = 0 for each m ∈M ,

2



(ii) d(m,n) = d(n,m),

(iii) d(m, p) ≤ d(m,n) + d(n, p).

The function d then termed as pseudometric in M .

Definition 1.2.2. [34] Consider (M,d) be a pseudo metric. The set

B(m, d, ε) = {n ∈M : d(m,n) < ε}.

is termed d-ball having radius ε > 0 and center m ∈M .

Definition 1.2.3. [34] Consider a family P = {db|b ∈ V} of pseudo metrics. If for

each pair (m,n) with m 6= n, there exists db ∈ P with db(m,n) 6= 0, then the family

P is termed separating.

Definition 1.2.4. [34] Let P = {db|b ∈ V} be a family of pseudo metrics on a

nonempty set M . Let the family of balls

B(P) = {B(m, db, ε) : m ∈M,db ∈ P and ε > 0}

being subbases generates the topology T(P), termed topology induced by P. The

set M with topology T(P) is termed gauge space. It is noticed that the gauge space

(M,T(P)) is Hausdorff if the family P is separating.

Definition 1.2.5. [34] Consider a family P = {db|b ∈ V} of pseudometrics on a set

M 6= φ which induces a gauge space (M,T(P)). Let {ma} be a sequence in M and

m ∈M ;

(i) if for each ε > 0 and b ∈ V, there is some a1 ∈ N such that db(ma,m) < ε for

each a ≥ a1 then the sequence {ma} is termed convergent to m . Symbolically

we write it as ma →F m,

(ii) if for each ε > 0 and b ∈ V, there is some a1 ∈ N such that db(ma,má) < ε for

each a, á ≥ a1 then the sequence {ma} is termed Cauchy sequence,

(iii) (M,T(P)) is complete if a sequence in (M,T(P)) is Cauchy then it must

converge in M ,

(iv) A subset C of M is termed closed if each sequence of elements of C converges

in C.

3



1.3 Modular Metric Spaces

Chistyakov[37] proposed and built up the theory of modular metric space in 2008.

Modular metric space is the generalization of metric space. Roughly we can say that

the quantity ω(µ,m, n) is the absolute value of velocity between m and n in time

µ > 0.

Here we define some terminologies in modular metric space that will be useful

in third chapter;

Definition 1.3.1. [37, 2] A function ω : (0,∞) ×M ×M → [0,∞] termed mod-

ular metric on a non-empty set M , in the event that it fulfills the accompanying

conditions, for all m,n, p ∈M :

(i) m = n if and only if ω(µ,m, n) = 0 ∀µ > 0;

(ii) ω(µ,m, n) = ω(µ, n,m),∀µ > 0;

(iii) ω(µ+ ν,m, n) ≤ ω(µ,m, p) + ω(ν, p, n) for all µ, ν > 0.

If the following condition, as replacement of (i), is satisfied:

(́i) : ω(µ,m,m) = 0,∀µ > 0,m ∈M

then ω is termed pseudomodular metric. A regular modular metric is weaker form

of modular metric where condition (i) is weakened as follows;

m = n if and only if ω(µ,m, n) = 0 for some µ > 0.

Example 1.3.1. [37, 2] Let M = R and ω is defined by ω(µ,m, n) = ∞ if µ < 1,

and ω(µ,m, n) = |m−n|
µ

if µ ≥ 1, it is simple to verify that ω is regular however not

modular metric on M .

Definition 1.3.2. [2] Consider a pseudomodular ω on a non-empty set M . For

fixed m0 ∈M , the set

Mω = {m ∈M : ω(λ,m,m0)→ 0 as λ→∞}

is termed modular space.

4



Definition 1.3.3. [2] Consider a modular metric space (M,ω).

(i) The sequence {ma} in Mω is termed ω-convergent to m ∈ Mω if and only if

ω(1,ma,m)→ 0, as a→∞.

(ii) The sequence {ma} in Mω is termed ω-Cauchy if ω(1,ma,mb)→ 0, as a, b→∞.

(iii) If any ω-Cauchy sequence in a subset W of Mω is ω-convergent in W then W

is termed ω-complete.

(iv) If each sequence of elements of W is ω-convergent in W then the subset W of

Mω is termed ω-closed .

(v) A subset W of Mω is termed ω-bounded if we have

δω(W ) = sup {ω(1,m, n) : m,n ∈ W} <∞.

(vi) A subset W of Mω is termed ω-compact if there is some subsequence {mak}
and m ∈ W for any sequence {ma} in W with ω(1,mak ,m)→ 0 as k →∞.

Definition 1.3.4. [110] Let (M,ω) be a modular metric space and {ma} be a se-

quence inMω. We state that ω fulfills the ∆M -condition if lima,b→∞ ω(a−b,mb,ma) =

0 for (a, b ∈ N, a > b) implies lima,b→∞ ω(µ,mb,ma) = 0 for all µ > 0.

Definition 1.3.5. [72] If for any two sequences {ma} and {na} ω-convergent to m

and n in a modular metric space (M,ω), the accompanying condition hold true

ω(1,m, n) ≤ lim infa→∞ ω(1,ma, na)

then ω is termed to possess Fatou property .

1.4 Multiplicative Metric Space

In [24] Bashirov et al. brought up the attention of researchers to multiplicative cal-

culus which was remained unimportant from 1972, when first book on multiplicative

calculus was published by Grossman and Katz [65]. Bashirov in [25] encouraged the

researchers to investigate the materiality of multiplicative calculus in variuos fields

5



by presenting some valuable applications in finance, economics and social sciences.

Applications in different fields are being studied by [53, 54, 104, 98].

By using the concept of multiplicative distance, Ozavsar and Cevikal [108] de-

veloped the theory of multiplicative metric space. Here we give some basic termi-

nologies.

Definition 1.4.1. [108] A non-empty set M with a mapping d : M ×M → R is

termed multiplicative metric space if d fulfills the accompanying axioms;

(i) d(m,n) ≥ 1 for all m,n ∈M and d(m,n) = 1 if and only if m = n,

(ii) d(m,n) = d(n,m) for all m,n ∈M ,

(iii) d(m, p) ≤ d(m,n).d(n, p) for all m,n, p ∈M

Example 1.4.1. Let d∗ : (R+)a × (R+)a → R be described as

d∗(m,n) = |m1

n1
|∗.|m2

n2
|∗...|ma

na
|∗

where m = (m1,m2,m3, ...,ma) and n = (n1, n2, n3, ..., na) ∈ (R+)a and |.|∗ : R+ →
R+ is characterized as follows;

|r|∗ =

r if r ≥ 1

1
r

if r < 1

Then d∗ satisfies all axioms of multiplicative metric and hence (R+)a with d∗ is a

multiplicative metric space.

Definition 1.4.2. [108] For a multiplicative metric space (M,d), m ∈M and ε > 1,

the following set

Bε = {n ∈M : d(m,n) < ε}

is termed multiplicative open ball, where radius is ε and center is m.

The following set

Bε = {n ∈M : d(m,n) ≤ ε}

is termed multiplicative closed ball.

6



Definition 1.4.3. [108] Consider a sequence {ma} in a multiplicative metric space

(M,d) and m ∈ M . The sequence {ma} is termed multiplicative convergent to m,

if there is some a1 ∈ N with ma ∈ Bε(m) for all a ≥ a1 and for any multiplicative

open ball Bε(m). Symbolically it is written as ma →∗ m as a→∞.

Lemma 1.4.1. [108] Consider a multiplicative metric space (M,d), a sequence {ma}
in M and m ∈ M . Then ma →∗ m as a → ∞ if and only if d(ma,m) →∗ 1 as

a→∞.

Lemma 1.4.2. [108] The multiplicative limit point of a multiplicative convergent

sequence {ma} in multiplicative metric space (M,d) is unique.

Definition 1.4.4. [108] A sequence {ma} in a multiplicative metric space (M,d) is

termed multiplicative Cauchy sequence if, for all ε > 1, there exist a1 ∈ N such that

d(ma,mb) < ε for all a, b ≥ a1.

Lemma 1.4.3. [108] Consider a sequence {ma} in a multiplicative metric space

(M,d). The sequence {ma} is multiplicative Cauchy if and only if d(ma,mb) →∗ 1

as a, b→∞.

Theorem 1.4.4. [108] Consider two sequences {ma} and {nb} in a multiplica-

tive metric space (M,d) such that ma →∗ m and nb →∗ n as a, b → ∞. Then

(d(ma, nb))→∗ d(m,n) as a, b→∞.

Definition 1.4.5. [108] Consider a multiplicative metric space (M,d) and G ⊆M .

Then a point m ∈ G is termed a multiplicative interior point of G if there exist an

ε > 1 such that Bε(m) ⊆ G. The collection of all multiplicative interior points of G,

symbolically written int(G), is termed multiplicative interior of G.

Definition 1.4.6. [108] Consider a multiplicative metric space (M,d) and G ⊆M .

If G = int(G) i.e. every point of G is multiplicative interior point of G, then G is

termed multiplicative open set.

Definition 1.4.7. [108] Consider a multiplicative metric space (M,d). If all limit

points of a subset G ⊆M are contained in it then G is termed multiplicative closed

in (M,d).

7



Theorem 1.4.5. [108] Consider a subset G in a multiplicative metric space (M,d).

Then the complement of G in M is multiplicative open if and only if G is multi-

plicative closed.

Theorem 1.4.6. [108] Consider a subset G in a multiplicative metric space (M,d).

Then (G, d) is complete if and only if G is multiplicative closed.

Definition 1.4.8. [103] Consider a subset G of a multiplicative metric space (M,d).

If any sequence {ma} in G with d(n,ma) →∗ d(n,G) as a → ∞ for some n ∈ H

possesses a subsequence which is convergent in G then G termed multiplicative

approximatively compact concerning H.

1.5 Fuzzy Metric Space

Definition 1.5.1. [121] A continuous t-norm is a binary operation ? : [0, 1]2 → [0, 1]

satisfying;

(i) ? is continuous,

(ii) ? is associative and commutative,

(iii) If w ≤ y and x ≤ z then w ? x ≤ y ? z for each w, x, y, z ∈ [0, 1],

(iv) x ? 1 = x for all x ∈ [0, 1]

Some typical examples of a continuous t-norm are x ?1 y = min{x, y}, x ?2 y =
xy

max{x,y,λ} for 0 < λ < 1, x ?3 y = max{x+ y − 1, 0}, x ?4 y = xy.

Definition 1.5.2. [58] Consider M an arbitrary set. A 3-tuple (M,FM , ?) is termed

fuzzy metric space if ? is continuous t−norm and FM is a fuzzy set on M×M×(0,∞)

fulfilling; for all m,n, p ∈M and t, s > 0,

FM1: FM(m,n, t) > 0,

FM2: FM(m,n, t) = 1 if and only if m = n,
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FM3: FM(m,n, t) = FM(n,m, t),

FM4: FM(m, p, t+ s) > FM(m,n, t) ? FM(n, p, s),

FM5: FM(m,n, .) : (0,∞)→ [0, 1] is continuous.

The idea of fuzzy set provides the interpretation of FM(m,n, t) as amount of

closeness of m and n regarding t, since we stated that FM is a fuzzy set on M2 ×
[0,∞).

It is notable that FM(m,n, .) is a nondecreasing mapping on (0,∞) for each m,n ∈
M .

Definition 1.5.3. [58] Consider a fuzzy metric space (M,FM , ?). For t > 0, the set

B(m, ε, t) = {n ∈M : FM(m,n, t) > 1− ε}

is termed an open ball B(m, ε, t) with center m ∈M and radius ε, 0 < ε < 1.

Definition 1.5.4. [58] Consider a fuzzy metric space (M,FM , ?). We state that a

sequence {ma} in M is convergent which converges to m if and only if there exist

a1 ∈ N with FM(ma,m, t) > 1− ε for all a ≥ a1 and for each ε > 0, t > 0.

Theorem 1.5.1. [58] Consider a sequence {ma} in a fuzzy metric space (M,FM , ?),

m ∈M . Then {ma} is convergent to m if and only if FM(ma,m, t)→ 1 as a→∞
for each t > 0.

Definition 1.5.5. [58] A sequence {ma} in a fuzzy metric space (M,FM , ?) is termed

Cauchy sequence if and only if there exist a1 ∈ N such that FM(ma,mb, t) > 1 − ε
for all a, b ≥ a1 and for each ε > 0, t > 0.

Theorem 1.5.2. [58] Allow (M,FM , ?) to be a fuzzy metric space and {ma} a

sequence in M . Then {ma} is Cauchy if and only if FM(ma,mb, t)→ 1 as a, b→∞
for each t > 0.

Definition 1.5.6. [58] A subset G of a fuzzy metric space (M,FM , ?) is termed

closed if m ∈ G, for each convergent sequence {ma} in G with ma → m.

Lemma 1.5.3. [86] Allow (M,FM , ?) to be a fuzzy metric space such that for m,n ∈
M, t > 0 and h > 1
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lima→∞ ?
∞
i=aFM(m,n, thi) = 1.

Suppose {ma} is a sequence in M such that for all a ∈ N

FM(ma,ma+1, αt) ≥ FM(ma−1,ma, t)

where 0 < α < 1. Then {ma} is a Cauchy sequence.

Definition 1.5.7. [133] Let G,H 6= φ be two subsets of a fuzzy metric space

(M,FM , ?). For t > 0;

G0(t) = {m ∈ G : FM(m,n, t) = FM(G,H, t) for some n ∈ H},
H0(t) = {n ∈ H : FM(m,n, t) = FM(G,H, t) for some m ∈ G}

where,

FM(G,H, t) = sup{FM(m,n, t) : m ∈ G, n ∈ H}

Definition 1.5.8. [118] Allow (M,FM , ?) to be a fuzzy metric space and G,H are

two subsets of M which are not empty. A set H is said to be fuzzy approximatively

compact concerning G if FM(m,na, t) → FM(m,H, t) implies that m ∈ G0(t) for

every sequence {na} in H and for some m ∈ G.

1.6 Contractions via Auxiliary Functions

There are many contractions in the literature that have been generalized using dif-

ferent auxiliary functions. In this section, we define some auxiliary functions and

contraction type operators that have been generalized using the auxiliary functions.

Following class of functions was introduced by M.U. Ali [11]. The author used

the class of functions and proved implicit type fixed point theorems:

Definition 1.6.1. Let ψ : [0,∞)→ [0,∞) be a non-decreasing function satisfying;

ψ(x) < x,∀x > 0 and for all x ≥ 0,
∑

a=1 ψ
a(x) < ∞. A class of continuous

mappings φ : (R+)4 → R+ holding the accompanying statements;

(i) In each coordinate, φ is nondecreasing,
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(ii) Let m1,m2 ∈ R+ such that if m1 < m2 and m1 ≤ φ(m2,m2,m1,m2), then

m1 ≤ ψ(m2). If m1 ≥ m2 and m1 ≤ φ(m1,m2,m1,m1), then m1 = 0,

(iii) If m ∈ R+ with m ≤ φ(0, 0,m, 1
2
m), then m = 0,

is represented by Φψ.

Example 1.6.1. Following are some examples of φ ∈ Φψ that are all taken from

[11]:

(i) Let φ1(m1,m2,m3,m4) = αmax(m1,m2,m3,m4) with ψ(x) = αx, where α ∈
[0,∞).

(ii) Let φ2(m1,m2,m3,m4) = αm4 with ψ(x) = αx, where α ∈ [0,∞).

(iii) Let φ3(m1,m2,m3,m4) = αmax(m1,m2,m3) with ψ(x) = αx, where α ∈
[0,∞).

(iv) Let φ4(m1,m2,m3,m4) = αmax(m2,m3) with ψ(x) = αx, where α ∈ [0,∞).

(v) Let φ5(m1,m2,m3,m4) = αm1 with ψ(x) = αx, where α ∈ [0,∞).

(vi) Let φ6(m1,m2,m3,m4) = α
2
(m2 +m3) with ψ(x) = α

2
x, where α ∈ [0,∞).

(vii) Let φ7(m1,m2,m3,m4) = αmax(m1,
1
2
(m2 +m3),m4) with ψ(x) = αx, where

α ∈ [0,∞).

(viii) Let φ8(m1,m2,m3,m4) = ς1m1+ς2(m2+m3)+ς3m4 with ψ(x) = (ς1+ς2+ς3)x,

where ς1, ς2, ς3 are non-negative real numbers such that ς1 + ς2 + ς3 ∈ [0,∞).

(ix) Let φ9(m1,m2,m3,m4) = ς1m2 +ς2m3 +ς3m1 with ψ(x) = (ς1 +ς2 +ς3)x, where

ς1, ς2 and ς3 are non-negative real numbers such that ς1 + ς2 + ς3 ∈ [0,∞).

Wardowski [137] generalized the principle of Banach contraction by defining the

notion of F -contraction. For this purpose he first introduced the specific type of

functions denoted by F . These functions are defined as following:

Definition 1.6.2. Let a function F : (0,∞) → R hold the accompanying state-

ments:
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(F1) every sequence {ma} in (0,∞) satisfy, lima→∞ma = 0 if and only if lima→∞ F (ma) =

−∞,

(F2) there exists a number k ∈ (0, 1) such that limm→0+ m
kF (m) = 0,

(F3) F is strictly increasing on (0,∞).

The notation F is used for the family of all such functions.

Example 1.6.2. Following functions belong the family F

(i)F (m) = lnm

(ii) F (m) = lnm+m.

1.7 Prešić Type Operators

Let O be a continuous operator from Jk ⊂ Rk into J ⊂ R then the equation

ma+k = O(ma,ma+1,ma+2, ...,ma+k−1) (1.7.1)

is called the nonlinear difference equation of order k and a point m ∈ J is termed as

equilibrium point of equation (1.7.1), if m = O(m,m,m, ...,m). Different iteration

methods like homotopy perturbation method and the method of variational itera-

tion [17, 138] are used to find equilibrium point of nonlinear difference equations.

Prešić [111] proved that the sequence mentioned in (1.7.1) converges that inevitably

guarantees the presence of equilibrium point of nonlinear difference equation.

Prešić in [111] presented an operator defined on product spaces:

Definition 1.7.1. Allow (M,d) to be a metric space and k, a positive integer then

a mapping O : Mk →M satisfying;

d(O(m1,m2, ...,mk), O(m2,m3, ...,mk+1)) ≤
k∑
i=1

aid(mi,mi+1) (1.7.2)

for every m1,m2, ...,mk+1 ∈ M where a1, a2, ..., ak are non-negative scalars with∑k
i=1 ai < 1 is called Prešić type operator.
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Prešić also proved a result which states that;

Theorem 1.7.1. Allow (M,d) to be a metric space which is complete, k be a positive

integer and O : Mk → M be Prešić type operator. Then there exist a unique point

m ∈ M such that O(m,m, ...,m) = m. Moreover, for m1,m2, ...,mk ∈ M and each

a ∈ N, we have;

ma+k = O(ma,ma+1, ...,ma+k−1) (1.7.3)

then the sequence {ma} converges and limma = O(limma, limma, ..., limma).

This theorem is reduced to the notion of Banach contraction if the value of k is

taken as 1. So, it is the generalization of the principle of Banach contraction. An

extension of this result was given by Ćirić and Prešić[40] as:

Theorem 1.7.2. Allow (M,d) to be a complete metric space, k be a positive integer

and O : Mk →M be a mapping such that:

d(O(m1,m2, ...,mk), O(m2,m3, ...,mk+1)) ≤ λmax{d(mi,mi+1) : 1 ≤ i ≤ k}

for every m1,m2, ...,mk+1 ∈ M , where λ ∈ (0, 1). Then there exist a point m ∈ M
with O(m,m, ...,m) = m. Moreover, if m1,m2, ...,mk are arbitrary elements in M

and

ma+k = O(ma,ma+1, ...,ma+k−1)

for each a ∈ N, then the sequence {ma} converges and limma = O(limma, limma, ..., limma).
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Chapter 2

Best proximity points of some

generalized proximal contractions

on metric space

The approximation theory evolved with the result of K. Fan [49]. But solutions

produced by best approximation theorems may not be optimal solutions. The need

to guarantee the presence of optimal approximations innovate best proximity point

results that give adequate conditions to fulfil the need. To demonstrate best prox-

imity point theorems, the notion of a very useful property was introduced by S.

Raj [113] called P -property. By employing the notion of P -property, best proxim-

ity point results for various contractive mappings were studied [18, 29, 91]. The

modification of notion of P -property, was introduced by Sadiq Basha [22], named as

proximal contraction of first kind and proximal contraction of second kind. Several

authors then introduced generalizations of proximal contractions [4, 101, 107]. In

this chapter we introduced some new generalizations of proximal contractions and

showed the presence of best proximity points.
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2.1 Some generalizations of multivalued proximal

contractions

An extensive powerful generalization of Banach contraction principle is the multi-

valued version of contraction map due to S. B. Nadler [106]. Another very useful

generalization is due to Ciric [40], who generalized the contraction condition of a self

map. Hardy and Rogers also generalized the contraction condition [66]. Motivation

and inspiration of these researches compelled us to introduce some new general-

izations of multivalued contractions. We introduced several new F type proximal

contractions in this section and for such contractions, we demonstrated some best

proximity theorems. We also used examples to demonstrate our findings. Our find-

ings are generalisation of several previous best proximity results. Theorem 1.1.1, in

particular, becomes a specific instance of one of our results(Theorem 2.1.1). The

results in this section have been published in [82].

Definition 2.1.1. Allow (M,d) to be a metric space and G,H 6= φ be subsets of

M . A Hardy Rogers type αF -proximal contraction is a mapping O : G→ CB(H)

if there exist a constant τ > 0 and two functions F ∈ F, α : G × G → [0,∞)

such that for each r1, r2, u1, u2 ∈ G and v1 ∈ Or1, v2 ∈ Or2 with α(r1, r2) ≥ 1 and

d(u1, v1) = d(G,H) = d(u2, v2), we have;

α(u1, u2) ≥ 1 and τ + F (d(u1, u2)) ≤ F (N(r1, r2)) (2.1.1)

whenever min{d(u1, u2), N(r1, r2)} > 0, where

N(r1, r2) = ς1d(r1, r2) + ς2d(r1, u1) + ς3d(r2, u2) + ς4[d(r1, u2) + d(r2, u1)]

with ς1, ς2, ς3, ς4 ≥ 0 satisfying ς1 + ς2 + ς3 + 2ς4 = 1 and ς3 6= 1.

Here, we prove a result which guarantees presence of best proximity point of

proximal contraction defined above.

Theorem 2.1.1. Consider a metric space (M,d) which is complete and G,H 6= φ

be subsets of M . Assume G0 to be not empty and O : G → CB(H) be a Hardy

Rogers type αF -proximal contraction fulfilling the below mentioned assumptions:
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(i) for each r ∈ G0, Or ⊆ H0,

(ii) there exist r1, r2 ∈ G0 and v1 ∈ Or1 such that α(r1, r2) ≥ 1 and d(r2, v1) =

d(G,H),

(iii) H is approximatively compact concerning G,

(iv) any sequence {ra} ⊆ G converging to r such that α(ra, ra+1) ≥ 1, ∀a ∈ N,

satisfies α(ra, r) ≥ 1, ∀a ∈ N, or,

O is continuous.

Then O possess best proximity point.

Proof. Hypothesis (ii) yields, r1, r2 ∈ G0 and v1 ∈ Or1 for which

α(r1, r2) ≥ 1 and d(r2, v1) = d(G,H).

As v2 ∈ Or2 ⊆ H0, there is r3 ∈ G0 satisfying

d(r3, v2) = d(G,H).

From 2.1.1, we get α(r2, r3) ≥ 1 and

τ + F (d(r2, r3)) ≤ F (ς1d(r1, r2) + ς2d(r1, r2) + ς3d(r2, r3) + ς4[d(r1, r3) + d(r2, r2)])

≤ F (ς1d(r1, r2) + ς2d(r1, r2) + ς3d(r2, r3) + ς4[d(r1, r2) + d(r2, r3)])

= F ((ς1 + ς2 + ς4)d(r1, r2) + (ς3 + ς4)d(r2, r3)). (2.1.2)

As F is strictly increasing, using inequality 2.1.2, we get

d(r2, r3) < (ς1 + ς2 + ς4)d(r1, r2) + (ς3 + ς4)d(r2, r3).

That is,

(1− ς3 − ς4)d(r2, r3) < (ς1 + ς2 + ς4)d(r1, r2).

As ς1 + ς2 + ς3 + 2ς4 = 1 and ς3 6= 1, the above inequality implies that

d(r2, r3) < d(r1, r2)
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Thus 2.1.2 yields,

τ + F (d(r2, r3)) ≤ F (d(r1, r2)). (2.1.3)

From above we have r2, r3 ∈ G0 and v2 ∈ Or2 satisfying

α(r2, r3) ≥ 1 and d(r3, v2) = d(G,H).

As v3 ∈ Or3 ⊆ H0, there is r4 ∈ G0 satisfying

d(r4, v3) = d(G,H).

From 2.1.1, we get α(r3, r4) ≥ 1 and

τ + F (d(r3, r4)) ≤ F (ς1d(r2, r3) + ς2d(r2, r3) + ς3d(r3, r4) + ς4[d(r2, r4) + d(r3, r3)])

≤ F (ς1d(r2, r3) + ς2d(r2, r3) + ς3d(r3, r4) + ς4[d(r2, r3) + d(r3, r4)])

= F ((ς1 + ς2 + ς4)d(r2, r3) + (ς3 + ς4)d(r3, r4)).

After simplification we get

τ + F (d(r3, r4)) ≤ F (d(r2, r3)). (2.1.4)

From 2.1.4 and 2.1.3, we obtain

F (d(r3, r4)) ≤ F (d(r1, r2))− 2τ .

We get sequences {ra} in G0 and {va} in H0 by repeating the same process such

that va ∈ Ora, α(ra, ra+1) ≥ 1, d(ra+1, va) = d(G,H) and

F (d(ra, ra+1)) ≤ F (d(r1, r2))− aτ for each a ∈ N \ {1}. (2.1.5)

Letting a → ∞ in 2.1.5, we get lima→∞ F (d(ra, ra+1)) = −∞. The property (F1)

then implies that lima→∞ d(ra, ra+1) = 0. Let da = d(ra, ra+1) for each a ∈ N. Then

using (F1), there is some k ∈ (0, 1) such that

lima→∞ d
k
aF (da) = 0.

From 2.1.5 we have

dkaF (da)− dkaF (d1) ≤ −dkaaτ ≤ 0 (2.1.6)

Letting a→∞ in 2.1.6, we get
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lima→∞ ad
k
a = 0.

This implies that there is some a1 ∈ N such that adka ≤ 1 for each a ≥ a1. Thus, we

have

da ≤
1

a1/k
, for each a ≥ a1. (2.1.7)

We now claim that {ra} is a Cauchy sequence in G. Let a, b ∈ N with b > a > a1.

Firstly using the triangular inequality and then using 2.1.7, we get;

d(ra, rb) ≤ d(ra, ra+1) + d(ra+1, ra+2) + ...+ d(rb−1, rb)

=
b−1∑
i=a

di ≤
∞∑
i=a

di ≤
∞∑
i=a

1

i1/k
.

Hence, {ra} is a Cauchy sequence in G because of convergence of the series
∑∞

i=1
1
i1/k

.

So, there is some r∗ in G such that ra → r∗ as a → ∞ because G is closed subset

of a complete metric space. As d(ra+1, va) = d(G,H), we have lima→∞ d(r∗, va) =

d(G,H). As H is approximatively compact concerning G, we get a subsequence

{vak} of {va} with vak ∈ Orak that converges to v∗. As a result,

d(r∗, v∗) = lima→∞ d(rak , vak) = d(G,H).

Assumption (iv), O is continuous, yields v∗ ∈ Or∗. Hence, d(G,H) ≤ d(r∗, Or∗) ≤
d(r∗, v∗) = d(G,H). This implies that d(G,H) = d(r∗, Or∗).

We now show the theorem for other part of assumption (iv), that is α(ra, r
∗) ≥ 1

for each a ∈ N. Since r∗ ∈ G0, then Or∗ ⊆ H0. This suggests that for z∗ ∈
Or∗, there is w∗ ∈ G0 satisfying d(w∗, z∗) = d(G,H). Also, keep in mind that

d(ra+1, va) = d(G,H).

We assert that d(r∗, w∗) = 0.

Contrarily assume that d(r∗, w∗) 6= 0. Then 2.1.1, yields

d(ra+1, w
∗) < ς1d(ra, r

∗) + ς2d(ra, ra+1) + ς3d(r∗, w∗) + ς4[d(ra, w
∗) + d(r∗, ra+1)].

Letting a→∞, we get

d(r∗, w∗) ≤ (ς3 + ς4)d(r∗, w∗),

which could be possible only when d(r∗, w∗) = 0. As a result,

d(G,H) ≤ d(r∗, Or∗) ≤ d(r∗, z∗) = d(G,H),
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and the proof is completed.

Remark 2.1.1. Theorem 1.1.1 is unique instance of Theorem 2.1.1.

Proof. Let G,H 6= φ ⊆ M of a complete metric space (M,d). Assuming G0 is not

empty. Also consider α(r1, r2) = 1, F (r) = ln r for each r ∈ (0,∞) and CB(H) = H.

Then the contraction operator O : G→ CB(H) in definition 2.1.1 reduces to

τ + ln(d(u1, u2)) ≤ ln(ς1d(r1, r2) + ς2d(r1, u1) + ς3d(r2, u2) + ς4[d(r1, u2) + d(r2, u1)])

for each r1, r2, u1, u2 ∈ G and d(u1, Or1) = d(G,H) = d(u2, Or2)

and hence

(d(u1, u2)) ≤ (ς1d(r1, r2) + ς2d(r1, u1) + ς3d(r2, u2) + ς4[d(r1, u2) + d(r2, u1)])

Now the proof can be completed by performing similar steps as of theorem 2.1.1.

Example 2.1.1. LetM = R×R and a metric onM be defined as d((r1, r2), (s1, s2)) =

|r1 − s1| + |r2 − s2| for each r, s ∈ M . Take G = {(0, r) : −1 ≤ r ≤ 1} and

H = {(1, r) : −1 ≤ r ≤ 1}. Define O : G→ CB(H) as;

O(0, r) =

{
{(1, r+1

2
)}, if r ≥ 0

{(1, r), (1, r2)}, otherwise,

and α : G×G→ [0,∞) as;

α((0, r), (0, s)) =

{
1, if r, s ∈ [0, 1]

0, otherwise,

Proof. d(G,H) = 1.

For each (0,m) ∈ G there exist (1,m) ∈ H such that

d((0,m), (1,m)) = 1 = d(G,H).

Take τ = 1
2

and F (m) = lnm for each m ∈ (0,∞).

By taking ς1 = 1 and ς2 = ς3 = ς4 = 0, we now check that O is αF -proximal con-

traction of Hardy Rogers type.

Case:I Let (0,m1), (0,m2) ∈ G for m1,m2 ≥ 0
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Then O((0,m1)) = {(1, m1+1
2

)} and O((0,m2)) = {(1, m2+1
2

)}
So v1 = (1, m1+1

2
) and v2 = (1, m2+1

2
)

We need u1 and u2 such that d(u1, v1) = d(G,H) = d(u2, v2) for each v1 ∈ Om1, v2 ∈
Om2.

d(u1, v1) = d((0, u1), (1,
m1 + 1

2
)) = 1

⇒ |0− 1|+ |u1 −
m1 + 1

2
| = 1

⇒ 1 + |u1 −
m1 + 1

2
| = 1

⇒ |u1 −
m1 + 1

2
| = 0

⇒ u1 =
m1 + 1

2

Similarly,

u2 = m2+1
2

Now,

For α((0,m1), (0,m2)) = 1 since both m1,m2 ≥ 0

We have α((0, u1), (0, u2)) = 1 since both u1, u2 ≥ 0

Also

τ + F (d(0, u1), (0, u2)) =
1

2
+ F (|u1 − u2|)

=
1

2
+ F (|m1 + 1

2
− m2 + 1

2
|)

=
1

2
+ F (|m1 −m2

2
|)

=
1

2
+ ln(|m1 −m2

2
|)

≤ ln(|m1 −m2|)

= F (d(0,m1), (0,m2))

Case:II Let (0,m1), (0,m2) ∈ G for m1 < 0,m2 ≥ 0

Then O((0,m1)) = {(1,m1), (1,m2
1)} and O((0,m2)) = {(1, m2+1

2
)}
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Take v1 = (1,m1) and v2 = (1, m2+1
2

)

We need u1 and u2 such that d(u1, v1) = d(G,H) = d(u2, v2) for each v1 ∈ Om1, v2 ∈
Om2

d(u1, v1) = d((0, u1), (1,m1) = 1

⇒ |0− 1|+ |u1 −m1| = 1

⇒ 1 + |u1 −m1| = 1

⇒ |u1 −m1| = 0

⇒ u1 = m1

Similarly,

u2 = m2+1
2

Now,

For α((0,m1), (0,m2)) = 0 since m1 < 0,m2 ≥ 0

Also

τ + F (d(0, u1), (0, u2)) =
1

2
+ F (|u1 − u2|)

=
1

2
+ F (|m1 −

m2 + 1

2
|)

=
1

2
+ F (

2m1 −m2 + 1

2
)

=
1

2
+ ln(

2m1 −m2 + 1

2
)

≤ ln(m1 −m2)

= F (d(0,m1), (0,m2))

Take v1 = (1,m2
1) and v2 = m2+1

2
. We need u1 and u2 such that d(u1, v1) =

d(G,H) = d(u2, v2) for each v1 ∈ Om1, v2 ∈ Om2
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d(u1, v1) = d((0, u1), (1,m2
1) = 1

⇒ |0− 1|+ |u1 −m2
1| = 1

⇒ 1 + |u1 −m2
1| = 1

⇒ |u1 −m2
1| = 0

⇒ u1 = m2
1

Similarly,

u2 = m2+1
2

Now,

For α((0,m1), (0,m2)) = 0 since m1 < 0,m2 ≥ 0

Also

τ + F (d(0, u1), (0, u2)) =
1

2
+ F (|u1 − u2|)

=
1

2
+ F (|m2

1 −
m2 + 1

2
|)

=
1

2
+ F (

2m2
1 −m2 + 1

2
)

=
1

2
+ ln(

2m2
1 −m2 + 1

2
)

≤ ln(m1 −m2)

= F (d(0,m1), (0,m2))

For each m ∈ G0, we have Om ⊆ H0. Also for m1 = (0, 1
2
) ∈ G0 and v1 =

(1, 3
4
) ∈ Om1, we have m2 = (0, 3

4
) such that α(m1,m2) = 1 and d(m2, v1) =

d(G,H). Moreover, for any sequence {ma} ⊆ G such that ma → m as a→∞ and

α(ma,ma+1) = 1 for each a ∈ N, we have α(ma,m) = 1 for each a ∈ N. Further

note that H is approximatively compact concerning G, therefore, O possess best

proximity point, by Theorem 2.1.1.

Remark 2.1.2. It is noticed that the above example is not valid for the Theorem

1.1.1. Therefore, our theorem properly generalizes Theorem2.1.1
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Definition 2.1.2. Allow (M,d) to be a metric space and G,H 6= φ be subsets

of M . A Ćirić type αF -proximal contraction is an operator O : G → CB(H)

if there exist a constant τ > 0 and two functions F ∈ F, α : G × G → [0,∞)

such that for each r1, r2, u1, u2 ∈ G and v1 ∈ Or1, v2 ∈ Or2 with α(r1, r2) ≥ 1 and

d(u1, v1) = d(G,H) = d(u2, v2), we have

α(u1, u2) ≥ 1 and τ + F (d(u1, u2)) ≤ F (M(r1, r2)) (2.1.8)

whenever min{d(u1, u2),M(r1, r2)} > 0, where

M(r1, r2) = max{d(r1, r2), d(r1, u1), d(r2, u2), d(r1,u2)+d(r2,u1)
2

}.

Theorem 2.1.2. Allow (M,d) to be a metric space which is complete and G,H 6=
φ ⊆ M . Assume that G0 is non-empty and O : G → CB(H) is a Ćirić type

αF -proximal contraction satisfying the below mentioned conditions:

(i) for each r ∈ G0, Or ⊆ H0,

(ii) there exist r1, r2 ∈ G0 and v1 ∈ Or1 such that α(r1, r2) ≥ 1 and d(r2, v1) =

d(G,H),

(iii) H is approximatively compact concerning G,

(iv) O is continuous, or,

any sequence {ra} ⊆ G converging to r such that α(ra, ra+1) ≥ 1, ∀a ∈ N,

satisfies α(ra, r) ≥ 1, ∀a ∈ N.

Then O possess best proximity point.

Proof. Hypothesis (ii) yields, r1, r2 ∈ G0 and v1 ∈ Or1 for which

α(r1, r2) ≥ 1 and d(r2, v1) = d(G,H)

As v2 ∈ Or2 ⊆ H0, there is r3 ∈ G0 satisfying

d(r3, v2) = d(G,H).
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From 2.1.8, we get α(r2, r3) ≥ 1 and

τ + F (d(r2, r3)) ≤ F (max{d(r1, r2), d(r1, r2), d(r2, r3),
d(r1, r3) + d(r2, r2)

2
})

= F (max{d(r1, r2), d(r2, r3)})

= F (d(r1, r2)), (2.1.9)

otherwise we have a contradiction. From above, we have r2, r3 ∈ G0 and v2 ∈ Or2

satisfying;

α(r2, r3) ≥ 1 and d(r3, v2) = d(G,H).

As v3 ∈ Or3 ⊆ H0, there is r4 ∈ G0 satisfying;

d(r4, v3) = d(G,H).

From 2.1.8, we get α(r3, r4) ≥ 1 and

τ + F (d(r3, r4)) ≤ F (max{d(r2, r3), d(r2, r3), d(r3, r4),
d(r2, r4) + d(r3, r3)

2
})

= F (max{d(r2, r3), d(r3, r4)})

= F (d(r2, r3)), (2.1.10)

otherwise, we have a contradiction. From inequalities 2.1.9 and 2.1.10, we have

F (d(r3, r4)) ≤ F (d(r1, r2))− 2τ .

Proceeding with a similar procedure we get sequences {ra} in G0 and {va} in H0

such that va ∈ Ora, α(ra, ra+1) ≥ 1, d(ra+1, va) = d(G,H) and

F (d(ra, ra+1)) ≤ F (d(r1, r2))− aτ for each a ∈ N \ {1}.

Sine the above inequality looks same as 2.1.5 so, by following the steps of Theorem

2.1.1 proof, it tends to be demonstrated that {ra} is a Cauchy sequence in G. As a

result, there is some r∗ in G such that ra → r∗ as a→∞ because, G is closed subset

of a complete metric space. As d(ra+1, va) = d(G,H), we have lima→∞ d(r∗, va) =

d(G,H). As H is approximatively compact concerning G, we get a subsequence

{vak} of {va} with vak ∈ Orak that converges to v∗. As a result,

d(r∗, v∗) = lima→∞ d(rak , vak) = d(G,H).
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Assumption (iv), O is continuous, yields v∗ ∈ Or∗. Hence, d(G,H) ≤ d(r∗, Or∗) ≤
d(r∗, v∗) = d(G,H). Now, assume that α(ra, r

∗) ≥ 1 for each a ∈ N. Since r∗ ∈ G0,

then Or∗ ⊆ H0. This suggests that for z∗ ∈ Or∗, we have w∗ ∈ G0 satisfying

d(w∗, z∗) = d(G,H). Also keep in mind that d(ra+1, va) = d(G,H).

We assert that d(r∗, w∗) = 0.

Contrarily, we make assumption that d(r∗, w∗) 6= 0. Then 2.1.8 yields,

τ + F (d(ra+1, w
∗)) < F (max{d(ra, r

∗), d(ra, ra+1), d(r∗, w∗), d(ra,w∗)+d(r∗,ra+1)
2

}).

Letting a→∞, we get

τ + F (d(r∗, w∗)) ≤ F (d(r∗, w∗)),

which is only possible when d(r∗, w∗) = 0. As a result,

d(G,H) ≤ d(r∗, Or∗) ≤ d(r∗, z∗) = d(G,H),

and the proof is accomplished.

Example 2.1.2. Let M = R×R and a metric defined on M as d((r1, r2), (s1, s2)) =

|r1 − s1| + |r2 − s2| for each r, s ∈ M . Take G = {(0, r) : r ∈ [−1, 1]} and H =

{(1, r) : r ∈ [−1, 1]}. Define O : G→ CB(H) as;

O(0, r) =

{
{(1, r

3
), (1, r

2
)}, if m ≥ 0

{(1, r), (1, r2)}, otherwise,

and α : G×G→ [0,∞) as;

α((0, r), (0, s)) =

{
1, if r, s ∈ [0, 1]

0, otherwise,

Define F (r) = ln r for each r ∈ (0,∞) and τ = 1
2
. It is definitely not hard to see

that O is Ćirić type αF -proximal contraction. For each r ∈ G0, we have Or ⊆ H0.

Also for r1 = (0, 1
2
) ∈ G0 and v1 = (1, 1

6
) ∈ Or1, we have r2 = (0, 1

6
) such that

α(r1, r2) = 1 and d(r2, v1) = d(G,H). Further, note that H is approximatively

compact concerning G. Moreover, for each a ∈ N, α(ra, ra+1) = 1 and for any

sequence {ra} ⊆ G such that ra → r as a→∞, we have α(ra, r) = 1 for each a ∈ N.

Therefore, O possess best proximity point by Theorem 2.1.2.
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2.1.1 Consequences

Our results are immediately followed by the following two theorems if α(r, s) = 1

for each r, s ∈ G.

Theorem 2.1.3. Allow G and H to be subsets of a complete metric space (M,d)

which are not empty. Make assumptions that G0 6= φ and O : G → CB(H) is a

mapping for which there is some constant τ > 0 and a continuous function F ∈
F such that for each r1, r2, u1, u2 ∈ G and v1 ∈ Or1, v2 ∈ Or2 and d(u1, v1) =

d(G,H) = d(u2, v2), we have

τ + F (d(u1, u2)) ≤ F (N(r1, r2))

whenever min{d(u1, u2), N(r1, r2)} > 0, where

N(r1, r2) = ς1d(r1, r2) + ς2d(r1, u1) + ς3d(r2, u2) + ς4[d(r1, u2) + d(r2, u1)]

with ς1, ς2, ς3, ς4 ≥ 0 satisfying ς1 + ς2 + ς3 + 2ς4 = 1 and ς3 6= 1. Further consider

that the accompanying assumptions hold:

(i) for each r ∈ G0, we have Or ⊆ H0;

(ii) H is approximatively compact concerning G.

Then O possesses best proximity point.

Theorem 2.1.4. Allow G and H to be subsets of a complete metric space (M,d)

which are not empty. Make assumptions that G0 is non-empty and O : G→ CB(H)

is a mapping for which there exist a constant τ > 0 as well as a continuous function

F ∈ F such that for each r1, r2, u1, u2 ∈ G and v1 ∈ Or1, v2 ∈ Or2 with α(r1, r2) ≥ 1

and d(u1, v1) = d(G,H) = d(u2, v2), we have

τ + F (d(u1, u2)) ≤ F (M(r1, r2))

whenever min{d(u1, u2),M(r1, r2)} > 0, where

M(r1, r2) = max{d(r1, r2), d(r1, u1), d(r2, u2), d(r1,u2)+d(r2,u1)
2

}.

Further consider that the accompanying assumptions hold:
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(i) H is approximatively compact concerning G,

(ii) for each r ∈ G0, we have Or ⊆ H0.

Then O possesses best proximity point.

If G = H = M , then the accompanying fixed point theorems are gotten from

our outcomes.

Theorem 2.1.5. Allow (M,d) to be a complete metric space. Make assumption

that O : M → CB(M) is a mapping for which there is a constant τ > 0 as well as

two functions α : M ×M → [0,∞) and F ∈ F such that for each r1, r2 ∈ M and

u1 ∈ Or1, u2 ∈ Or2 with α(r1, r2) ≥ 1, we have

α(u1, u2) ≥ 1 and τ + F (d(u1, u2)) ≤ F (N(r1, r2))

whenever min{d(u1, u2), N(r1, r2)} > 0, where

N(r1, r2) = ς1d(r1, r2) + ς2d(r1, u1) + ς3d(r2, u2) + ς4[d(r1, u2) + d(r2, u1)]

with ς1, ς2, ς3, ς4 ≥ 0 satisfying ς1 + ς2 + ς3 + 2ς4 = 1 and ς3 6= 1. Further assume that

O is continuous, any sequence {ra} ⊆ G converging to r such that α(ra, ra+1) ≥ 1,

∀a ∈ N, satisfies α(ra, r) ≥ 1, ∀a ∈ N. Then O possesses a fixed point.

Theorem 2.1.6. Allow (M,d) to be a complete metric space. Make assumption

that O : M → CB(M) is a mapping for which there is a constant τ > 0, α :

M ×M → [0,∞) and a continuous function F ∈ F such that for each r1, r2 ∈ M
and u1 ∈ Or1, u2 ∈ Or2 with α(r1, r2) ≥ 1, we have

α(u1, u2) ≥ 1 and τ + F (d(u1, u2)) ≤ F (M(r1, r2))

whenever min{d(u1, u2),M(r1, r2)} > 0, where

M(r1, r2) = max{d(r1, r2), d(r1, u1), d(r2, u2), d(r1,u2)+d(r2,u1)
2

}.

Further, assume that O is continuous, any sequence {ra} ⊆ G converging to r such

that α(ra, ra+1) ≥ 1, ∀a ∈ N, satisfies α(ra, r) ≥ 1, ∀a ∈ N. Then O possesses a

fixed point.
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2.2 Best proximity points of Prešić Type proxi-

mal contractions

As we have stated Prešić type operator O : Mk → M satisfying equation 1.7.2 and

representation of kth order nonlinear difference equation 1.7.1 in Chapter 1. It can

be observed that the equilibrium points of difference equation 1.7.1 are same as the

fixed points of O. Therefore, the study of fixed points of Presic type operators be-

came as important as the equilibrium points of nonlinear difference equations. The

importance of study of nonlinear difference equations can be envisioned in model-

ing various problems appearing in Probability theory, Biology, Economics, Psychol-

ogy, and others (See for example [48],[89], [90],[128],[129]). Some generalizations

of Prešić’s results are proved by some renowned authors [27],[84],[109],[124, 125].

Shukla in [124] also showed applications of Presic type operators to second order

difference equation.

This part of the chapter showed the presence of an approximate solution of the

equation r = O(r, r, ..., r), where O : Gk → H. The solution of this equation only

possible if G ∩ H 6= φ, otherwise it has no solution; hence, if G ∩ H = φ then the

approximate solution is only possible debate.

The approximate solution of the equation r = O(r, r, ..., r) with the error d(G,H)

is termed best proximity point of O : Gk → H.

All the results in this section are published in [15].

All through this section, we will use the notation G = (V,E) for a directed graph

characterized on a metric space (M,d), where V and E is the set of vertices and

edges respectively, with V = M and E comprises of all loops excluding parallel

edges.

Definition 2.2.1. Allow G and H to be non-empty subsets of metric space (M,d)

endowed with the graph G. A mapping O : G×G→ H is termed as path admissible

if; 
d(u1, O(g1, g2)) = d(G,H)

d(u2, O(g1, g2)) = d(G,H) ⇒ (u1, u2) ∈ E
g1Pg3

(2.2.1)
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where g1, g2, g3, u1, u2 ∈ G. Here g1Pg3 means, for the above mentioned g1, g2, g3 ∈
V we have (g1, g2) ∈ E and (g2, g3) ∈ E.

Theorem 2.2.1. Consider a complete metric space (M,d) furnished with graph G

and let G,H be nonempty closed subsets of M . Let O : G×G→ H be a mapping such

that for each g1, g2, g3, u1, u2 ∈ G with g1Pg3, that is (g1, g2) ∈ E and (g2, g3) ∈ E,

and d(u1, O(g1, g2)) = d(G,H) = d(u2, O(g2, g3)), we have:

d(u1, u2) ≤ γmax{d(g1, g2), d(g2, g3)} (2.2.2)

where γ ∈ [0, 1). Also, consider the below mentioned assumptions:

(i) G0 is non-empty,

(ii) there exist g0, g1, g2 ∈ G satisfying d(g2, O(g0, g1)) = d(G,H) and g0Pg2,

(iii) H is approximatively compact concerning G,

(iv) O(G×G0) ⊆ H0,

(v) O is path admissible,

(vi) let a sequence {ma} in M satisfying maPma+2 for each a ∈ N and ma → m

as a→∞, then (ma,m) ∈ E for all a ∈ N and (m,m) ∈ E.

Then O possess a best proximity point, that is d(g∗, O(g∗, g∗)) = d(G,H) for some

g∗ ∈ G.

Proof. From hypothesis (ii) we have g0, g1, g2 ∈ G satisfying d(g2, O(g0, g1)) =

d(G,H) and g0Pg2, that is (g0, g1), (g1, g2) ∈ E. Hypothesis (iv) implies that

O(g1, g2) ∈ H0, and by definition of H0,as defined in Definition 1.1.1, we have

g3 ∈ G0 satisfying d(g3, O(g1, g2)) = d(G,H). Since O is path admissible, so by

Definition 2.2.1, we have (g2, g3) ∈ E. Thus g1Pg3. By proceeding with a similar

procedure, we obtain a sequence {ga}a≥2 ∈ G0 satisfying;

d(ga+1, O(ga−1, ga)) = d(G,H) for each a ∈ N

and:
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ga−1Pga+1, that is (ga−1, ga), (ga, ga+1) ∈ E for each a ∈ N.

The inequality 2.2.2 yields,

d(ga, ga+1) ≤ γmax{d(ga−2, ga−1), d(ga−1, ga)} for each a = 2, 3, 4, ... (2.2.3)

For convenience, we take da = d(ga, ga+1) for each a ∈ N∪ {0}. By using induction,

we can get:

da−1 ≤ Zψa for each a ∈ N (2.2.4)

where ψ = γ1/2 and Z = max{d0/ψ, d1/ψ
2}. Clearly, d0 ≤ Zψ and d1 ≤ Zψ2. We

obtain:

d2 ≤ γmax{d0, d1} ≤ γmax{Zψ,Zψ2} ≤ γZψ = Zψ3.

.

.

.

dm ≤ γmax{db−1, db−2} ≤ γmax{Zψb, Zψb−1} ≤ γZψb−1 = Zψb+1.

Thus, da−1 ≤ Zψa for each a ∈ N. With the help of triangular inequality, for each

b, q ∈ N, we get:

d(gb, gb+q) ≤ d(gb, gb+1) + d(gb+1, gb+2) + ...+ d(gb+q−1, gb+q)

≤ Zψb+1 + Zψb+2 + Zψb+q

≤ ψb+1

1− ψ
Z

Note that ψ = γ1/2 < 1. Therefore, {ga} in G is a Cauchy sequence. Since M is

complete and G ⊆M is a closed. So, there exist a point g∗ ∈ G such that ga → g∗.

Furthermore,

d(g∗, H) ≤ d(g∗, O(ga−1, ga)) (2.2.5)

≤ d(g∗, ga+1) + d(ga+1, O(ga−1, ga)) (2.2.6)

= d(g∗, ga+1) + d(G,H)

≤ d(g∗, ga+1) + d(g∗, H).
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Therefore, d(g∗, ga+1) → d(g∗, H) as a → ∞. Since H is approximatively compact

concerning G, then by Definition 1.1.2, the sequence {O(ga−1, ga)} has a subsequence

{O(gak−1, gak)} convergent to a point h∗ ∈ H. This implies that:

d(g∗, h∗) = limk→∞d(gak+1
, O(gak−1, gak)) = d(G,H).

Here g∗ ∈ G0. As we knowO(ga, g
∗) ∈ H0, there exist u ∈ G such that d(u,O(ga, g

∗)) =

d(G,H). Hypothesis (vi) implies that (ga, g
∗) ∈ E for each a ∈ N. Thus, we have

ga−1Pg
∗, that is (ga−1, ga), (ga, g

∗) ∈ E, for all a ∈ N. Hence, inequality 2.2.2

implies:

d(ga+1, u) ≤ γmax{d(ga−1, ga), d(ga, g
∗)} for each a ∈ N.

Now by letting a approaches to infinity, we come by d(g∗, u) = 0, that is u = g∗.

Moreover, notice that O(g∗, g∗) ∈ H0, hypothesis (iv) facilitates that for some s ∈ G,

d(s,O(g∗, g∗)) = d(G,H). Using hypothesis (vi), we have (g∗, g∗) ∈ E. Hence,

d(g∗, O(ga, g
∗)) = d(G,H), d(s,O(g∗, g∗)) = d(G,H), and gaPg

∗, that is (ga, g
∗) ∈ E

and (g∗, g∗) ∈ E. Thus, from 2.2.2 we come by the accompanying inequality:

d(g∗, s) ≤ γmax{d(ga, g
∗), d(g∗, g∗)} for each a ∈ N.

We get d(g∗, s) = 0 by applying limit a tends to infinity, and hence, s = g∗. Thus,

we have d(g∗, O(g∗, g∗)) = d(G,H).

Example 2.2.1. Let M = R × R and metric d((m1,m2), (n1, n2)) = |m1 − n1| +
|m2 − n2| for each m,n ∈ M endowed with graph G be defined as V = M and

E = {((m1,m2), (n1, n2)) : m1,m2, n1, n2 ∈ [0, 1]} ∪ {(m,m) : m ∈ M}. Take

G = {(0,m) : m ∈ [−2, 2]} and H = {(1,m) : m ∈ [−2, 2]}. Define O : G×G→ H

as:

O((0,m), (0, n)) =

{
(1, m+n+2

4
), if m,n ≥ 0

(1, |m+ n| − 2), otherwise.

Then, for each g1 = (0, g1), g2 = (0, g2), g3 = (0, g3), u1 = (0, u1) = (0, g1+g2+2
4

), u2 =

(0, u2) = (0, g2+g+3+2
4

) ∈ G with g1Pg3 and d(u1, O(g1, g2)) = d(G,H) = d(u2, O(g2, g3)),

we have:

d(u1, u2) = 1
4
|g1 − g3| = γmax{d(g1, g2), d(g2, g3)}
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where γ = 1
2
. Consider g1 = (0, g1), g2 = (0, g2), g3 = (0, g3) ∈ G such that

g1Pg3 and d((0, u1), O((0, g1), (0, g2))) = d(G,H) = d((0, u2), O((0, g2), (0, g3))),

then (0, u1), (0, u2) ∈ E. Since (0, u1) = (0, g1+g2+2
4

) and (0, u2) = (0, g2+g+3+2
4

).

Thus, O is path admissible. We also have g1 = (0, 0) and g2 = (0, 1/2), and

g3 = (0, 5
8
) such that d((0, 5/8), O((0, 0), (0, 1/2))) = d(G,H) and g1Pg3. Moreover,

H is approximatively compact concerning G and each sequence {ga} in M satisfies

gaPga+2 for each a ∈ N and ga → m as a → ∞, then (ga,m) ∈ E for each a ∈ N
and (m,m) ∈ E. Hence, O possess best proximity point as all suppositions of the

Theorem 2.2.1 are fulfilled.

Theorem 2.2.2. Allow G,H 6= φ to be closed subsets of a complete metric space

(M,d) furnished with graph G. Let O : G × G → H be a mapping such that for

each g1, g2, g3, u1, u2 ∈ G with g1Pg3, that is (g1, g2) ∈ E and (g2, g3) ∈ E, and

d(u1, O(g1, g2)) = d(G,H) = d(u2, O(g2, g3)), we have:

d(g3, u2) ≤ γmax{d(g1, g2), d(g2, u1)} (2.2.7)

where γ ∈ [0, 1). Moreover, consider the below assumptions:

(i) G0 is non-empty,

(ii) there exist g0, g1, g2 ∈ G satisfying d(g2, O(g0, g1)) = d(G,H) and g0Pg2,

(iii) H is approximatively compact with respect to G,

(iv) O(G×G0) ⊆ H0,

(v) O is path admissible,

(vi) if {ma} is a sequence in M satisfying maPma+2 for each a ∈ N and ma → m

as a→∞, then (ma,m) ∈ E for each a ∈ N and (m,m) ∈ E.

Then, there exist g∗ ∈ G satisfying d(g∗, O(g∗, g∗)) = d(G,H) that is, O possess best

proximity point.

Proof. By proceeding on steps similar to that of theorem 2.2.1, a sequence {ga : a ∈
N \ {1}} can be constructed in G0 satisfying:
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d(ga+1, O(ga−1, ga)) = d(G,H) for each a ∈ N

and:

ga−1Pga+1, that is (ga−1, ga), (ga, ga+1) ∈ E for each a ∈ N.

From 2.2.7, we have:

d(ga, ga+1) ≤ γmax{d(ga−2, ga−1), d(ga−1, ga)} for each a = 2, 3, 4, ... (2.2.8)

Since, inequality 2.2.8 looks same as 2.2.3, therefore using the same arguments as

of the proof of theorem 2.2.1, we reach at the conclusion that {ga} is a Cauchy

sequence in G and ga → g∗ where g∗ ∈ G0. As O(ga, g
∗) ∈ H0, from hypothesis

(iv) there is some u ∈ G such that d(u,O(ga, g
∗)) = d(G,H). By hypothesis (vi),

(ga, g
∗) ∈ E for all a ∈ N. Thus, we have ga−1Pg

∗, that is (ga−1, ga), (ga, g
∗) ∈ E,

for all a ∈ N. Hence, from 2.2.7:

d(g∗, u) ≤ γmax{d(ga−1, ga), d(ga, ga+1)} for all a ∈ N.

lim
a→∞

d(g∗, u) ≤ γmax lim
a→∞
{d(ga−1, ga), d(ga, ga+1)} for all a ∈ N

d(g∗, u) ≤ γmax{d(g∗, g∗), d(g∗, g∗)} for all a ∈ N.

Hence, d(g∗, u) = 0, implies that u = g∗. Further, note that O(g∗, g∗) ∈ H0, so

there is some s ∈ G such that d(s,O(g∗, g∗)) = d(G,H). Hypothesis (vi) implies

that (g∗, g∗) ∈ E. Hence, d(g∗, O(ga, g
∗)) = d(G,H), d(s,O(g∗, g∗)) = d(G,H), and

gaPg
∗, that is (ga, g

∗) ∈ E and (g∗, g∗) ∈ E. Thus from 2.2.7 we come by:

d(g∗, s) ≤ γmax{d(ga, g
∗), d(g∗, g∗)}for eacha ∈ N.

lim
a→∞

d(g∗, s) ≤ γmax lim
a→∞
{d(ga, g

∗), d(g∗, g∗)}for eacha ∈ N.

d(g∗, s) ≤ γmax{d(g∗, g∗), d(g∗, g∗)}for eacha ∈ N.

Hence, d(g∗, s) = 0, implies that, s = g∗. Thus d(g∗, O(g∗, g∗) = d(G,H)

Example 2.2.2. Let M = R×R be furnished with a metric d((m1,m2), (n1, n2)) =

|m1 − n1| + |m2 − n2| for each m,n ∈ M and a graph G be defined as V = M

and E = {((m1,m2), (n1, n2)) : m1,m2, n1, n2 ∈ [0, 1]} ∪ {(m,m) : m ∈ M}. Take

G = {(0,m) : m ∈ [−2, 2]} and H = {(1,m) : m ∈ [−2, 2]}. Define O : G×G→ H

as:
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O((0,m), (0, n)) = (1, n) for each (0,m), (0, n) ∈ G.

Then, for each g1 = (0, g1), g2 = (0, g2), g3 = (0, g3), u1 = (0, u1) = (0, g2), u2 =

(0, u2) = (0, g3) ∈ G with g1Pg3 and d(u1, O(g1, g2)) = d(G,H) = d(u2, O(g2, g3)),

we have:

d(g3, u2) = 0 ≤ γmax{d(g1, g2), d(g2, u1)}

where γ = 1
2
. All other suppositions of Theorem 2.2.2 are obvious. Thus O possess

a best proximity point.

Remark 2.2.1. By using g1 = (0, 5
8
), g2 = (0, 1

2
) and g3 = (0, 0) in inequality 2.2.2,

it can be verified that the above example does not ensures the presence of best point

under the hypotheses of theorem 2.2.1

Theorem 2.2.3. Allow G,H to be nonempty closed subsets of a complete metric

space (M,d) endowed with graph G. Let O : G × G → H be a mapping such that

for each g1, g2, g3, u1, u2 ∈ G with g1Pg3, that is (g1, g2) ∈ E and (g2, g3) ∈ E, and

d(u1, O(g1, g2)) = d(G,H) = d(u2, O(g2, g3)), we have:

d(O(g2, u1), O(g3, u2)) ≤ γd(O(g1, g2), O(g2, g3)) (2.2.9)

where γ ∈ [0, 1). Moreover, consider the below assumptions:

(i) G0 is non-empty,

(ii) there exist g0, g1, g2 ∈ G satisfying d(g2, O(g0, g1)) = d(G,H) and g0Pg2,

(iii) G is approximatively compact concerning H,

(iv) O(G×G0) ⊆ H0,

(v) O is path admissible,

(vi) if {ga} and {ga} are sequences in M with ga → g and ga → g, then O(ga, ga)→
O(g, g).

Then, there exist g∗ ∈ G satisfying d(g∗, O(g∗, g∗)) = d(G,H) that is O possess best

proximity point.
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Proof. By proceeding on steps similar to that of theorem 2.2.1, a sequence {ga : a ∈
N \ {1}} can be constructed in G0 satisfying:

d(ga+1, O(ga−1, ga)) = d(G,H) for each a ∈ N

and:

ga−1Pga+1, that is (ga−1, ga), (ga, ga+1) ∈ E for each a ∈ N.

From 2.2.9, we have:

d(O(ga−1, ga), O(ga, ga+1)) ≤ γd(O(ga−2, ga−1), O(ga−1, ga)) for each a = 2, 3, 4, ...

Inductively, we get:

d(O(ga−1, ga), O(ga, ga+1)) ≤ γa−1d(O(g0, g1), O(g1, g2)) for each a = 2, 3, 4, ...

(2.2.10)

By triangular inequality, for each b, c ∈ N, we have:

d(O(gb, gb+1), O(gb+c, gb+c+1)) ≤
∑b+c−1

i=b d(O(gi, gi+1), O(gi+1, gi+2))

Using inequality 2.2.10 in the above inequality;

d(O(gb, gb+1), O(gb+c, gb+c+1)) ≤ d(O(g0, g1), O(g1, g2))
∑b+c−1

i=b γi

which shows that {O(ga−1, ga)} is a Cauchy sequence in H. Hence, O(ga−1, ga)→ h∗

for some h∗ ∈ H because H is closed subset of complete metric space M . Further,

we have:

d(h∗, G) ≤ d(h∗, ga+1) (2.2.11)

≤ d(h∗, O(ga−1, ga)) + d(O(ga−1, ga), ga+1) (2.2.12)

= d(h∗, O(ga−1, ga)) + d(G,H)

≤ d(h∗, O(ga−1, ga)) + d(h∗, G)

Therefore, d(h∗, ga+1) → d(h∗, G) as a → ∞. Since G is approximatively compact

concerning H, a subsequence {gak} of the sequence {ga} converges to a point g∗ in

G. Hence,

d(g∗, O(g∗, g∗)) = limk→∞ d(gak+1
, O(gak−1, gak)) = d(G,H),

which completes the proof.
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Example 2.2.3. Let M = R×R be furnished with a metric d((m1,m2), (n1, n2)) =

|m1 − n1| + |m2 − n2| for each m,n ∈ M and a graph G be defined as V = M

and E = {((m1,m2), (n1, n2)) : m1,m2, n1, n2 ∈ [0, 1]} ∪ {(m,m) : m ∈ M}. Take

G = {(0,m) : m ∈ [−2, 2]} and H = {(1,m) : m ∈ [−2, 2]}. Define O : G×G→ H

as:

O((0,m), (0, n)) = (1, n
2
) for each (0,m), (0, n) ∈ G.

Then, for each g1 = (0, g1), g2 = (0, g2), g3 = (0, g3), u1 = (0, u1) = (0, g2
2

), u2 =

(0, u2) = (0, g3
2

) ∈ G with d(u1, O(g1, g2)) = d(G,H) = d(u2, O(g2, g3)), we have:

d(O(g2, u1), O(g3, u2)) = d((1,
g2

4
), (1,

g3

4
))

=
1

4
|g2 − g3|

=
1

2
d((1,

g2

2
), (1,

g3

2
))

= γd(O(g1, g2), O(g2, g3))

where γ = 1
2
. All other suppositions of Theorem 2.2.3 can easily be verified. Thus

O possess a best proximity point.

Theorem 2.2.4. Allow G,H to be nonempty closed subsets of a complete metric

space (M,d) furnished with graph G. Let O : G × G → H be a mapping such that

for each g1, g2, g3, u1, u2 ∈ G with g1Pg3, that is (g1, g2) ∈ E and (g2, g3) ∈ E, and

d(u1, O(g1, g2)) = d(G,H) = d(u2, O(g2, g3)), we have:

d(O(g2, u1), O(g3, u2)) ≤ γmax{d(O(g1, g2), O(g2, g3)), d(O(g2, g3), O(u1, u2))}
(2.2.13)

where γ ∈ [0, 1). Also, consider the below assumptions:

(i) G0 is non-empty,

(ii) there exist g0, g1, g2 ∈ G satisfying d(g2, O(g0, g1)) = d(G,H) and g0Pg2,

(iii) G is approximatively compact concerning H,

(iv) O(G×G0) ⊆ H0,
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(v) O is path admissible,

(vi) if {ga} and {ga} are sequences in M with ga → g and ga → g, then O(ga, ga)→
O(g, g).

Then, there exist g∗ ∈ G satisfying d(g∗, O(g∗, g∗)) = d(G,H) that is O possess best

proximity point.

Proof. It is explained in theorem 2.2.1 that a sequence {ga : a ∈ N \ {1}} in G0 can

be constructed which satisfies:

d(ga+1, O(ga−1, ga)) = d(G,H) for each a ∈ N

and:

ga−1Pga+1, that is (ga−1, ga), (ga, ga+1) ∈ E for each a ∈ N.

From 2.2.13, we have:

d(O(ga−1, ga), O(ga, ga+1)) ≤ γmax{d(O(ga−1, ga−1), O(ga−1, ga))

d(O(ga−1, ga), O(ga, ga+1))}

= γd(O(ga−1, ga−1), O(ga−1, ga)) for each a = 2, 3, 4, ...

else we have an inconsistency. Iteratively, we get:

d(O(ga−1, ga), O(ga, ga+1)) ≤ γa−1d(O(g0, g1), O(g1, g2)) for each a = 2, 3, 4, ...

The proof can be completed by following the same process as of theorem 2.2.3.

Theorem 2.2.5. Allow G,H to be nonempty closed subsets of a complete metric

space (M,d) endowed with graph G. Let O : G × G → H be a mapping such that

for each g1, g2, g3, u1, u2 ∈ G with g1Pg3, that is (g1, g2) ∈ E and (g2, g3) ∈ E, and

d(u1, O(g1, g2)) = d(G,H) = d(u2, O(g2, g3)), we have:

d(O(g2, g3), O(u1, u2)) ≤ γmax{d(O(g1, g2), O(g2, g3)), d(O(g2, u1), O(g3, u2))}
(2.2.14)

where γ ∈ [0, 1). Also, consider the below assumptions:

(i) O is path admissible,
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(ii) there exist g0, g1, g2 ∈ G satisfying d(g2, O(g0, g1)) = d(G,H) and g0Pg2,

(iii) G is approximatively compact concerning H,

(iv) O(G×G0) ⊆ H0,

(v) G0 is non-empty,

(vi) if {ga} and {ga} are sequences in M with ga → g and ga → g, then O(ga, ga)→
O(g, g).

Then, there exist g∗ ∈ G satisfying d(g∗, O(g∗, g∗)) = d(G,H) that is O possess best

proximity point.

Proof. This theorem can be demonstrated likewise to the proof of Theorem 2.2.4.

2.2.1 Best Proximity Point Theorems of extended Prešić

Type proximal contractions

This section contains the augmentations, for the operators from Gk into H, where

k ∈ N, of previously mentioned theorems .

Theorem 2.2.6. Allow G,H to be nonempty closed subsets of a complete metric

space (M,d) endowed with graph G. Let O : Gk → H be a mapping such that for each

g1, g2, g3, ..., gk, gk+1, u1, u2 ∈ G with g1Pgk+1, that is (g1, g2), (g2, g3), ..., (gk, gk+1) ∈
E, and d(u1, O(g1, g2, ..., gk)) = d(G,H) = d(u2, O(g2, g3, ..., gk+1)), satisfies one of

the below mentioned inequalities:

d(u1, u2) ≤ γmax{d(gi, gi+1) : 1 ≤ i ≤ k}

d(gk+1, u2) ≤ γmax{d(gi, gi+1) : 1 ≤ i ≤ k − 1, d(gk, u1)}

where γ ∈ [0, 1). Also, consider the below assumptions:

(i) G0 is non-empty,

(ii) there exist g0, g1, g2, ..., gk ∈ G satisfying d(gk, O(g0, g1, ..., gk−1)) = d(G,H)

and g0Pgk,
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(iii) H is approximatively compact with respect to G,

(iv) O(Gk−1 ×G0) ⊆ H0,

(v) O is path admissible,

(vi) if {ga} is a sequence in M such that gaPga+k for each a ∈ N and ga → g as

a→∞, then (ga, g) ∈ E for each a ∈ N and (g, g) ∈ E.

Then there exist g∗ ∈ G satisfying d(g∗, O(g∗, g∗, g∗, ..., g∗)) = d(G,H) that is O

possess best proximity point.

Proof. Following the same procedure as of theorems 2.2.1 and 2.2.2, we can demon-

strate this theorem.

Theorem 2.2.7. Allow G,H to be nonempty closed subsets of a complete metric

space (M,d) endowed with graph G. Let O : Gk → H be a mapping such that for each

g1, g2, g3, ..., gk, gk+1, u1, u2 ∈ G with g1Pgk+1, that is (g1, g2), (g2, g3), ..., (gk, gk+1) ∈
E, and d(u1, O(g1, g2, ..., gk)) = d(G,H) = d(u2, O(g2, g3, ..., gk+1)) satisfies one of

the below mentioned inequalities:

d(O(g2, ..., gk, u1), O(g3, ...gk+1, u2)) ≤ γd(O(g1, g2, ..., gk), O(g2, g3, ..., gk+1));

d(O(g2, ..., gk, u1), O(g3, ..., gk+1, u2)) ≤ γmax{d(O(g1, g2, ..., gk), O(g2, g3, ..., gk+1)),

d(O(g2, g3, ..., gk+1), O(g4, g5, ..., gk+1, u1, u2))};

d(O(g2, g3, ..., gk+1), O(g4, g5, ..., gk+1, u1, u2)) ≤ γmax{d(O(g1, g2, ..., gk), O(g2, g3, ..., gk+1)),

d(O(g2, ..., gk, u1), O(g3, ..., gk+1, u2))},

where γ ∈ [0, 1). Also, consider the below assumptions:

(i) G0 is non-empty,

(ii) there exist g0, g1, g2 ∈ G satisfying d(g2, O(g0, g1)) = d(G,H) and g0Pg2,

(iii) G is approximatively compact concerning H,
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(iv) O(Gk−1 ×G0) ⊆ H0,

(v) O is continuous with respect to each coordinate,

(vi) O is path admissible.

Then, there exist g∗ ∈ G satisfying d(g∗, O(g∗, g∗)) = d(G,H) that is O possess best

proximity point.

Proof. By proceeding on similar steps as of theorems 2.2.3 and 2.2.4, we can demon-

strate this theorem.

Remark 2.2.2. The map O : Gk → H is path admissible if for each g1, g2, g3, ..., gk,

gk+1, u1, u2 ∈ G with g1Pgk+1 that is (g1, g2), (g2, g3), ..., (gk, gk+1) ∈ E and

d(u1, O(g1, g2, ..., gk)) = d(G,H) = d(u2, O(g2, g3, ..., gk+1)), we have (u1, u2) ∈ E.

2.2.2 Consequences

Considering G = H = M in Theorems 2.2.6 and 2.2.7, following fixed point theorems

are obtained for the operator O : Mk →M .

Theorem 2.2.8. Consider a complete metric space (M,d) furnished with graph

G. Let O : Mk → M be a mapping such that for each r1, r2, r3, ..., rk, rk+1 ∈ M

with r1Prk+1, that is (r1, r2), (r2, r3), ..., (rk, rk+1) ∈ E,satisfies one of the below

mentioned inequalities:

d(O(r1, r2, ..., rk), O(r2, r3, ..., rk+1)) ≤ γmax{d(ri, ri+1) : 1 ≤ i ≤ k}

d(rk+1, O(r2, r3, ..., rk+1)) ≤ γmax{d(ri, ri+1) : 1 ≤ i ≤ k − 1, d(rk, O(r1, r2, ..., rk))}

where γ ∈ [0, 1). Also, consider the below conditions:

(i) r1Prk+1 that is (r1, r2), (r2, r3), ..., (rk, rk+1) ∈ E, then we have;

O(r1, r2, ..., rk), O(r2,3 , ..., rk+1) ∈ E,

(ii) there exist r0, r1, r2, ..., rk ∈M with rk = O(r1, r2, ..., rk−1)and r0Prk,
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(iii) if {ra} is a sequence in M such that raPra+k for each a ∈ N and ra → r as

a→∞, then (ra, r) ∈ E for each a ∈ N and (r, r) ∈ E.

Then O possess a fixed point in M , that is r∗ = O(r∗, r∗, r∗, ..., r∗) for some r∗ ∈M .

Theorem 2.2.9. Consider (M,d) be a complete metric space furnished with graph

G. Let O : Mk → M be an operator such that for each µ1, µ2, µ3, ..., µk, µk+1 ∈ M
with µ1Pµk+1, that is (µ1, µ2), (µ2, µ3), ..., (µk, µk+1) ∈ E, satisfies one of the below

inequalities:

d(O(µ2, ..., µk, O(µ1, µ2, ..., µk)), O(µ3, ..., µk+1, O(µ2, µ3, ..., µk+1))) ≤
γd(O(µ1, µ2, ..., µk), O(µ2, µ3, ..., µk+1));

d(O(µ2, ..., µk, O(µ1, µ2, ..., µk)), O(µ3, ..., µk+1, O(µ2, µ3, ..., µk+1))) ≤

γmax{d(O(µ1, µ2, ..., µk), O(µ2, µ3, ..., µk+1)), d(O(µ2, µ3, ..., µk+1),

O(µ4, µ5, ..., µk+1, O(µ1, µ2, ..., µk), O(µ2, µ3, ..., µk+1)))};

d(O(µ2, µ3, ..., µk+1), O(µ4, µ5, ..., µk+1, O(µ1, µ2, ..., µk), O(µ2, µ3, ..., µk+1))) ≤

γmax{d(O(µ1, µ2, ..., µk), O(µ2, µ3, ..., µk+1)), d(O(µ2, ..., µk, O(µ1, µ2, ..., µk)),

O(µ3, ..., µk+1, O(µ2, µ3, ..., µk+1)))},

where γ ∈ [0, 1). Also, consider following conditions:

(i) µ1Pµk+1 that is (µ1, µ2), (µ2, µ3), ..., (µk, µk+1) ∈ E, then we have;

O(µ1, µ2, ..., µk), O(µ2, µ3, ..., µk+1) ∈ E,

(ii) there exist µ0, µ1, µ2, ..., µk ∈M with µk = O(µ1, µ2, ..., µk−1)and µ0Pµk,

(iii) O is continuous in each coordinate.

Then, there exist µ∗ ∈ M satisfying µ∗ = O(µ∗, µ∗, µ∗, ..., µ∗) that is, O possess a

fixed point in M .
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Remark 2.2.3. If O : Mk →M is an operator which satisfies the Theorem 2.2.8 or

Theorem 2.2.9 and {µa} is a sequence in M such that µaPµb for each b > a ∈ N and

µa+k+1 = O(µ1+a, µ2+a, ..., µk+a) for each a ∈ N, then {µa} converges and hence, O

possess fixed point.

Let the graph G = (V,E) be characterized as V = M and E = M ×M , then

Theorem 2.2.6 and Theorem2.2.7 boils down to the below corollaries, respectively.

Corollary 2.2.10. Let O : Mk → M be an operator, where (M,d) is a complete

metric space and for each µ1, µ2, µ3, ..., µk, µk+1 ∈ M , one of the below mentioned

inequalities is satisfied:

d(O(µ1, µ2, ..., µk), O(µ2, µ3, ..., µk+1)) ≤ γmax{d(µi, µi+1) : 1 ≤ i ≤ k}

d(µk+1, O(µ2, µ3, ..., µk+1)) ≤ γmax{d(gi, gi+1) : 1 ≤ i ≤
k − 1, d(µk, O(µ1, µ2, ..., µk))}

where γ ∈ [0, 1). Then O possess a fixed point in M , that is there exist µ∗ ∈ M

satisfying µ∗ = O(µ∗, µ∗, µ∗, ..., µ∗).

Corollary 2.2.11. Let O : Mk →M be an operator which is continuous in each co-

ordinate, where (M,d) is a complete metric space and for each µ1, µ2, µ3, ..., µk, µk+1 ∈
M one of the below inequalities is satisfied:

d(O(µ2, ..., µk, O(µ1, µ2, ..., µk)), O(µ3, ...µk+1, O(µ2, µ3, ..., µk+1))) ≤
γd(O(µ1, µ2, ..., µk), O(µ2, µ3, ..., µk+1));

d(O(µ2, ..., µk, O(µ1, µ2, ..., µk)), O(µ3, ..., µk+1, O(µ2, µ3, ..., µk+1)))

≤ γmax{d(O(µ1, µ2, ..., µk), O(µ2, µ3, ..., µk+1)),

d(O(µ2, µ3, ..., µk+1), O(µ4, µ5, ..., µk+1, O(µ1, µ2, ..., µk), O(µ2, µ3, ..., µk+1)))};

d(O(µ2, µ3, ..., µk+1), O(µ4, µ5, ..., µk+1, O(µ1, µ2, ..., µk), O(µ2, µ3, ..., µk+1)))

≤ γmax{d(O(µ1, µ2, ..., µk), O(µ2, µ3, ..., µk+1)),

d(O(µ2, ..., µk, O(µ1, µ2, ..., µk)), O(µ3, ..., µk+1, O(µ2, µ3, ..., µk+1)))},

where γ ∈ [0, 1). Then O possess a fixed point.
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Chapter 3

Best Proximity Points in some

Generalized Metric spaces

The generalisation of metric space is a novel technique to studying fixed point theory

and best proximity point theory. There are many generalizations of metric space

e.g. modular metric space, b-metric space etc.

Researchers addressed the presence of fixed points for mappings satisfying the

proximal contraction conditions including various auxiliary functions, as research in

the field of fixed point theory progressed. The theory of contractions via auxiliary

functions was developed by Lim [96] when he characterized Mier-Keeler contraction

[99] by a mapping using a class of functions(L-functions). Many researchers then

proved fixed point theorems for contractions via auxiliary functions ([67],[71],[120],

[130], [93], [59]).

This chapter comprises of two sections. We developed best proximity point

theorems for generalised F-proximal contractions in modular metric spaces in the

first section. In the second part, we used the class of auxiliary functions described in

Definition 1.6.1 to propose non-self proximal contraction requirements and proved

best proximity point theorems for contractions in gauge space setting. We also

used examples to demonstrate our findings and looked into the implications of our

findings for self-mappings.
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3.1 Best Proximity Point Theorems in Modular

Metric Spaces

Mongkolkeha [102] proved fixed point theorems for contraction mapping in modular

metric space. The fixed point property in modular metric space has been character-

ized and examined by numerous researchers( See for example [3],[8],[31]).

Firstly we introduce some notions that we need in our results.

A strongly regular modular metric ω on M is weaker form of modular metric

satisfying;

m = n if and only if ω(1,m, n) = 0.

instead of (i) of Definition 1.3.1. Let G,H 6= φ subsets of a modular metric space

(M,ω) then

ω(1, g,H) = inf {ω(1, g, h) : h ∈ H}
dist(G,H) = inf {ω(1, g, h) : g ∈ G, h ∈ H}

G0 = {m ∈ G : ω(1,m, n) = dist(G,H), for some n ∈ H}
H0 = {n ∈ H : ω(1,m, n) = dist(G,H), for some m ∈ G}.

Definition 3.1.1. Allow G and H to be subsets of modular metric space (M,ω)

which are not empty. Then H is termed approximatively ω-compact concerning G if

each {va} in H with ω(1,m, va)→ ω(1,m,H) for some m in G, has a ω-convergent

subsequence.

Presently we present another contraction termed generalized F -proximal con-

traction of type I.

Definition 3.1.2. Let G,H 6= φ subsets of a modular metric space (M,ω). A

mapping O : G → H is a generalized F -proximal contraction of type I if there

is a constant τ > 0 and a function F ∈ F satisfying for each m1,m2, u1, u2 ∈ G

ω(1, u1, Om1) = dist(G,H) = ω(1, u2, Om2), implies

τ + F (ω(1, u1, u2)) ≤ F (W (m1,m2)) (3.1.1)
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whenever min{ω(1, u1, u2),W (m1,m2)} > 0, where

W (m1,m2) = ς1ω(1,m1,m2) + ς2ω(1,m1, u1) + ς3ω(1,m2, u2) + ς4[ω(2,m1, u2) + ω(1,m2, u1)]

with ς1, ς2, ς3, ς4 ≥ 0 satisfying ς1 + ς2 + ς3 + 2ς4 = 1 and ς3 6= 1.

Theorem 3.1.1. Let M be a set which is not empty furnished with ω as a strongly

regular modular metric that fulfills the ∆M -condition [Definition1.3.4] as well as the

Fatou property [Definition1.3.5]. Allow W to be ω-complete as well as ω-bounded

subset [Definition1.3.3] of Mω. Further, G and H are nonempty ω-closed subsets of

W . Also assume that G0 is not empty and O : G→ H is a generalized F -proximal

contraction of type I satisfies;

(i) H is approximatively ω-compact concerning G,

(ii) O(G0) is contained in H0.

Then O posses a best proximity point.

Proof. Let m0 ∈ G0. Hypothesis (ii) yields, Om0 ∈ H0, thus we have m1 ∈ G0 such

that ω(1,m1, Om0) = dist(G,H). Similarly for m1 ∈ G0 we have Om1 ∈ H0, thus

we have m2 ∈ G0 such that ω(1,m2, Om1) = dist(G,H). Continuing this process

we have ma,ma+1 ∈ G0 such that

ω(1,ma+1, Oma) = dist(G,H) for each a ∈ N.

Thus, from inequality (3.1.1), we have;

τ + F (ω(1,ma,ma+1)) ≤ F (ς1ω(1,ma−1,ma) + ς2ω(1,ma−1,ma) + ς3ω(1,ma,ma+1)

+ς4[ω(2,ma−1,ma+1) + ω(1,ma,ma)])

≤ F ((ς1 + ς2 + ς4)ω(1,ma−1,ma) + (ς3 + ς4)ω(1,ma,ma+1))

for each a ∈ N. (3.1.2)

By using strictly increasing property of F and above inequality, we have

ω(1,ma,ma+1) < (ς1+ς2+ς4)ω(1,ma−1,ma)+(ς3+ς4)ω(1,ma,ma+1) for each a ∈ N.
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That is,

(1− ς3 − ς4)ω(1,ma,ma+1) < (ς1 + ς2 + ς4)ω(1,ma−1,ma) for each a ∈ N.

Since ς1 + ς2 + ς3 + 2ς4 = 1 and ς 6= 1, the above inequality implies that

ω(1,ma,ma+1) < ω(1,ma−1,ma) for each a ∈ N.

Thus, from inequality (3.1.2), we have;

τ + F (ω(1,ma,ma+1)) ≤ F (ω(1,ma−1,ma)) for each a ∈ N.

Iteratively, we get

F (ω(1,ma,ma+1)) ≤ F (ω(1,m0,m1))− aτ for each a ∈ N. (3.1.3)

Letting a → ∞ in the above inequality, we get lima→∞ F (ω(1,ma,ma+1)) = −∞.

Thus, by property (F1), we have lima→∞ ω(1,ma,ma+1) = 0. Let for each a ∈ N
ωa = ω(1,ma,ma+1), then (F2) yields that there is some k ∈ (0, 1) such that

lim
a→∞

ωkaF (ωa) = 0.

The inequality (3.1.3) yields

ωkaF (ωa)− ωkaF (ω1) ≤ −ωkaaτ ≤ 0 for each a ∈ N. (3.1.4)

Letting a→∞ in (3.1.4), we get

lim
a→∞

aωka = 0.

That is, there is some a1 ∈ N such that aωka ≤ 1 for each a ≥ a1. Thus, we have;

ωa ≤
1

a1/k
, for each a ≥ a1. (3.1.5)

Take arbitrary a, b ∈ N with b > a > a1. By using the triangular inequality and

(3.1.5), we have

ω(b− a,ma,mb) ≤ ω(1,ma,ma+1) + ω(1,ma+1,ma+2) + · · ·+ ω(1,mb−1,mb)

=
b−1∑
i=a

ωi ≤
∞∑
i=a

ωi ≤
∞∑
i=a

1

i1/k
.
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Since
∑∞

i=1
1
i1/k

is convergent series. Thus, lima,b→∞ ω(b−a,ma,mb) = 0. Because of

∆M -condition, this implies that lima,b→∞ ω(1,ma,mb) = 0. Hence {ma} is ω-Cauchy

sequence in G. Since W is ω-complete and G is ω-closed in W , there exists m∗ in

G such that {ma} is ω-convergent to m∗. That is, lima→∞ ω(1,ma,m
∗) = 0. Also,

we have

ω(1,m∗, H) ≤ ω(1,m∗, Oma)

≤ ω(
1

2
,m∗,ma+1) + ω(

1

2
,ma+1, Oma)

= ω(
1

2
,m∗,ma+1) + dist(G,H)

≤ ω(
1

2
,m∗,ma+1) + ω(1,m∗, H)

In the aforementioned inequality if we set a→∞, we get ω(1,m∗, Oma)→ ω(1,m∗, H).

As H is approximatively ω-compact concerning G, we have a subsequence {Omak}
of {Oma} which ω-converges to v∗. This implies that

ω(1,m∗, v∗) ≤ lim
k→∞

ω(1,mak+1, Omak) = dist(G,H).

Thus we have ω(1,m∗, v∗) = dist(G,H). Since m∗ ∈ G0, we have Om∗ ∈ H0,

this infers that there is w∗ ∈ G0 with ω(1, w∗, Om∗) = dist(G,H). Also, we have

ω(1,ma+1, Oma) = dist(G,H). We claim that ω(1,m∗, w∗) = 0. Contrarily suppose

ω(1,m∗, w∗) 6= 0. Then, (3.1.1) yields

ω(1,ma+1, w
∗) < ς1ω(1,ma,m

∗) + ς2ω(1,ma,ma+1) + ς3ω(1,m∗, w∗)

+ς4[ω(2,ma, w
∗) + ω(1,m∗,ma+1)]

≤ ς1ω(1,ma,m
∗) + ς2ω(1,ma,ma+1) + ς3ω(1,m∗, w∗)

+ς4[ω(1,ma,m
∗) + ω(1,m∗, w∗) + ω(1,m∗,ma+1)].

Letting a→∞ in the above expression, we come by;

ω(1,m∗, w∗) ≤ (ς3 + ς4)ω(1,m∗, w∗) < ω(1,m∗, w∗).

which contradicts our assumption. Hence, ω(1,m∗, w∗) = 0. That is m∗ = w∗. As a

result, we have ω(1,m∗, Om∗) = dist(G,H).
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Example 3.1.1. Let M = R×R furnished with a strongly regular modular metric

ω(λ,m, n) = 1
λ
(|n1 −m1| + |n2 −m2|) for all m = (m1,m2) and n = (n1, n2) ∈ M .

Very simple calculation shows that Mω = M , so, δM -condition and Fatou property

are satisfied. Consider W = [0, 4] × [0, 4] ⊂ Mω. Then W is ω-closed and ω-

bounded. Let G = {(0,m) : 0 ≤ m ≤ 1} and H = {(1,m) : 0 ≤ m ≤ 1}. Then, we

have dist(G,H) = 1 and G0 = G, H0 = H. Clearly H is approximatively compact

concerning G and G and H are ω-closed subsets of W . Define O : G→ H as

O(0,m) =

(1, m
4

) if 0 ≤ m < 1

(1, 0) if m = 1.

It is simple to verify that, with respect to F (m) = lnm, O is generalized F -proximal

contraction of type I with τ = 1
2
, ς1 = ς2 = ς3 = 1

3
and ς4 = 0. Also O(G0) ⊆ H0.

Thus, Theorem 3.1.1 is satisfied. Hence, O has best proximity point.

Presently, we present generalized F -proximal contraction of type II.

Definition 3.1.3. Allow G and H to be nonempty subsets of a modular metric

space (M,ω). If there is a constant τ > 0 and a function F ∈ F, then a mapping

O : G→ H is a generalized F -proximal contraction of type II if it satisfies for each

m1,m2, u1, u2 ∈ G with ω(1, u1, Om1) = dist(G,H) = ω(1, u2, Om2), implies

τ + F (ω(1, Ou1, Ou2)) ≤ F (W (Om1, Om2)) (3.1.6)

whenever min{ω(1, Ou1, Ou2),W (Om1, Om2)} > 0, where

W (Om1, Om2) = ς1ω(1, Om1, Om2) + ς2ω(1, Om1, Ou1) + ς3ω(1, Om2, Ou2)

+ς4[ω(2, Om1, Ou2) + ω(1, Om2, Ou1)]

with ς1, ς2, ς3, ς4 ≥ 0 satisfying ς1 + ς2 + ς3 + 2ς4 = 1 and ς3 6= 1.

Theorem 3.1.2. Allow M to be a set which is not empty furnished with ω as a

strongly regular modular metric that fulfills Fatou property as well as ∆M -condition.

Allow W to be ω-bounded as well as ω-complete subset of Mω. Further, G and H are

nonempty ω-closed subsets of W . Also suppose that G0 is not empty and O : G→ H

is a generalized F -proximal contraction of type II satisfies;
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(i) G is approximatively ω-compact concerning H,

(ii) O is continuous,

(iii) O(G0) is contained in H0.

Then O posses a best proximity point.

Proof. Let m0 ∈ G0. Hypothesis (iii) allows us to construct a sequence {ma} in G0

such that

ω(1,ma+1, Oma) = dist(G,H) for each a ∈ N.

Thus, from (3.1.6), for each a ∈ N we have

τ + F (ω(1, Oma, Oma+1)) ≤ F (ς1ω(1, Oma−1, Oma) + ς2ω(1, Oma−1, Oma)

+ς3ω(1, Oma, Oma+1)

+ς4[ω(2, Oma−1, Oma+1) + ω(1, Oma, Oma)])

≤ F ((ς1 + ς2 + ς4)ω(1, Oma−1, Oma) (3.1.7)

+(ς3 + ς4)ω(1, Oma, Omna+1)).

(3.1.8)

From above inequality and (F3) of definition 1.6.2, we have

ω(1, Oma, Oma+1) < (ς1+ς2+ς4)ω(1, Oma−1, Oma)+(ς3+ς4)ω(1, Oma, Oma+1) for each a ∈ N.

That is,

(1− ς3 − ς4)ω(1, Oma, Oma+1) < (ς1 + ς2 + ς4)ω(1, Oma−1, Oma) for each a ∈ N.

Since ς1 + ς2 + ς3 + 2ς4 = 1 and ς3 6= 1, the above inequality implies that

ω(1, Oma, Oma+1) < ω(1, Oma−1, Oma) for each a ∈ N.

Thus, from (3.1.7), we have

τ + F (ω(1, Oma, Oma+1)) ≤ F (ω(1, Oma−1, Oma)) for each a ∈ N.
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Iteratively, we get

F (ω(1, Oma, Oma+1)) ≤ F (ω(1, Om0, Om1))− aτ for each a ∈ N. (3.1.9)

Letting a→∞ in the above expression, we come by lima→∞ F (ω(1, Oma, Oma+1)) =

−∞. Thus, by property (F1), we have lima→∞ ω(1, Oma, Oma+1) = 0. Let, for each

a ∈ N, ωa = ω(1, Oma, Oma+1). Then (F2) yields that there is k ∈ (0, 1) satisfying

lim
a→∞

ωkaF (ωa) = 0.

The inequality (3.1.9) yields,

ωkaF (ωa)− ωkaF (ω1) ≤ −ωkaaτ ≤ 0 for each a ∈ N. (3.1.10)

Letting a→∞ in (3.1.10), we get

lim
a→∞

aωka = 0.

That is, there is some a1 ∈ N such that aωka ≤ 1 for each a ≥ a1. Thus, we have

ωa ≤
1

a1/k
, for each a ≥ a1. (3.1.11)

Take arbitrary a, b ∈ N with b > a > a1. By using the triangular inequality and

(3.1.11), we have

ω(b− a,Oma, Oma) ≤ ω(1, Oma, Oma+1) + ω(1, Oma+1, Oma+2) + · · ·+ ω(1, Omb−1, Omb)

=
b−1∑
i=a

ωi ≤
∞∑
i=a

ωi ≤
∞∑
i=a

1

i1/k
.

Since
∑∞

i=1
1
i1/k

is convergent series. Thus, lima,b→∞ ω(b − a,Oma, Omb) = 0. Due

to ∆M -condition, this implies that lima,b→∞ ω(1, Oma, Omb) = 0. Hence {Oma} is

ω-Cauchy sequence in H. Since W is ω-complete and H is ω-closed in W , there

exists n∗ in H with {Oma} ω-convergent to n∗. That is, lima→∞ ω(1, Oma, n
∗) = 0.

Also, we have

ω(1, n∗, G) ≤ ω(1, n∗,ma+1)

≤ ω(
1

2
, n∗, Oma) + ω(

1

2
, Oma,ma+1)

= ω(
1

2
, n∗, Oma) + dist(G,H)

≤ ω(
1

2
, n∗, Oma) + ω(1, n∗, G).
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Letting a → ∞ in the above expression, we come by ω(1, n∗,ma) → ω(1, n∗, G).

As G is approximatively ω-compact concerning H, we have a subsequence {mak} of

{ma} which ω-converges to m∗. This implies that

ω(1,m∗, n∗) ≤ lim
k→∞

ω(1,mak+1, Omak) = dist(G,H).

Thus we have ω(1,m∗, n∗) = dist(G,H). As mak → m∗ and O is continuous, then

we have Omak → Om∗. Since the limit point is unique so we have n∗ = Om∗. As a

result, ω(1,m∗, Om∗) = dist(G,H)

Example 3.1.2. Let M = R×R furnished with a strongly regular modular metric

ω(λ,m, n) = 1
λ
(|n1 −m1| + |n2 −m2|) for all m = (m1,m2) and n = (n1, n2) ∈ M .

Very simple calculation shows that Mω = M , so, δM -condition and Fatou property

are satisfied. Consider W = [0, 3]× [0, 3] ⊂ Xω. Then W is ω-closed and ω-bounded.

Let G = {(0,m) : 0 ≤ m ≤ 1} and H = {(t,m) : 1 ≤ t ≤ 2 and 0 ≤ m ≤ 1}. Then,

we have dist(G,H) = 1 and G0 = G, H0 = {(1,m) : 0 ≤ m ≤ 1}. Clearly G and

H are ω-closed subsets of W and G is approximatively ω-compact concerning H.

Define O : G→ H as

O(0,m) = (1, m
4

).

It can be easily checked that O is generalized F -proximal contraction of type II

concerning F (m) = lnm, τ = 1
2
, ς1 = 1 and ς2 = ς3 = ς4 = 0. Also O(G0) ⊆ H0

and O is continuous. Thus, Theorem 3.1.2 is satisfied. Hence O has best proximity

point.

3.2 Best proximity point theorems in gauge spaces

Fixed point results for generalised contractions on gauge spaces were proved by

Frigon in [55, 56]. Others [13, 35, 36, 73, 94] also proved fixed point theorems on

gauge spaces.

(M,T(P)) is a gauge space concerning the family P = {db|b ∈ V} of pseudo

metrics on M in this section. The notations that follow have the same meanings.
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Definition 3.2.1. Given that G,H 6= φ subsets of a metric space M . Then

db(G,H) = inf {db(g, h) : g ∈ G, h ∈ H}
G0 = {g ∈ G : db(g, h) = db(G,H) for each b ∈ V, for some h ∈ H}
H0 = {h ∈ H : db(g, h) = db(G,H) for each b ∈ V, for some g ∈ G}

The definition that follows is an expanded version of Basha and Shahzad’s[22]

definition 1.1.1.

Definition 3.2.2. Let G,H 6= φ subsets of M . Then H is termed approximatively

compact concerning G if each {va} in H with db(m, va) → db(m,H) for all b ∈ V

for some m ∈ G, has a convergent subsequence.

Following that, we give implicit generalised proximal contraction mappings of

the first and second kinds, and show the best proximity point theorem in gauge

space for the mappings. This section contains the results published in [16].

Definition 3.2.3. Allow G and H to be non-empty subsets of M . An implicit type

generalized proximal contraction of first kind is a mapping O : G → H such that

for each g1, g2, u1, u2 ∈ G, there exist φ ∈ Φψ satisfying db(u1, Og1) = db(G,H) =

db(u2, Og2) implies

db(u1, u2) ≤ φ(db(g1, g2), db(g1, u1), db(g2, u2),

1/2(db(g2, u1) + db(g1, u2))) (3.2.1)

for each b ∈ V

Theorem 3.2.1. Consider P = {db|b ∈ V} a family of pseudometrics which is

separating and (M,T(P)) a complete gauge space induced by P. Let G and H be

non-empty closed subsets of M such that G0 6= φ and H is approximatively compact

concerning G. Let O : G → H be implicit type generalized proximal contraction of

first kind and O(G0) ⊆ H0. Then O possesses a best proximity point, that is there

exist m ∈ G such that db(m,Om) = db(G,H)∀b ∈ V.

Proof. Let m0 ∈ G0. Since O(G0) ⊆ H0, so Om0 ∈ H0, thus we have m1 ∈ G0 such

that db(m1, Om0) = db(G,H), ∀b ∈ V. Similarly, for m1 ∈ G0 we have Om1 ∈ H0,

thus we get m2 ∈ G0 such that db(m2, Om1) = db(G,H), ∀b ∈ V. We have, for each

a ∈ N, by continuing this process, ma,ma+1 ∈ G0 such that
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db(ma+1, Oma) = db(G,H),∀b ∈ V

Assume that ma 6= ma+1, otherwise ma is a best proximity point. As a result, (3.2.1)

yields

db(ma,ma+1) ≤ φ(db(ma−1,ma), db(ma−1,ma),

db(ma,ma+1), 1/2(db(ma−1,ma+1) + db(ma,ma)))

= φ(db(ma−1,ma), db(ma−1,ma),

db(ma,ma+1), 1/2(db(ma−1,ma+1)))

≤ φ[db(ma−1,ma), db(ma−1,ma),

db(ma,ma+1), 1/2(db(ma−1,ma) + db(ma,ma+1))]

(3.2.2)

We claim that db(ma,ma+1) < db(ma−1,ma)∀b ∈ V for each a ∈ N. Suppose on

contrary that db(ma,ma+1) ≥ db(ma−1,ma)∀b ∈ V for some a. We can use non-

decreasing of φ in (3.2.2),

db(ma,ma+1) ≤ φ(db(ma,ma+1), db(ma−1,ma), db(ma,ma+1), (db(ma,ma+1)))

(3.2.3)

for all b ∈ V. We get in (3.2.3) by using property (ii) of Φψ,

db(ma,ma+1) = 0∀b ∈ V

which contradicts our assumption, since ma+1 6= ma for each a ∈ N ∪ {0}.
Thus db(ma,ma+1) < db(ma−1,ma)∀b ∈ V for each a ∈ N.Therefore (3.2.2) becomes

db(ma,ma+1) ≤ φ[db(ma−1,ma), db(ma−1,ma), db(ma,ma+1), (db(ma−1,ma))]

(3.2.4)

By using (3.2.4) and property (ii) of Φψ from definition 1.6.1 for each a ∈ N we have

db(ma,ma+1) ≤ ψ[db(ma−1,ma)]∀b ∈ V

Consequently, for each a ∈ N we get

db(ma,ma+1) ≤ ψa+1[db(m0,m1)]∀b ∈ V.
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Let a > a′, we have

db(ma′ ,ma) ≤ db(ma′ ,ma′+1) + db(ma′+1,ma′+2) + ...+ db(ma−1,ma)

≤ ψa
′
(db(m0,m1)) + ψa

′+1(db(m0,m1)) + ...+ ψa−1(db(m0,m1))

= (
∑
i=a′

)a−1ψi(db(m0,m1)) <∞∀b ∈ V. (3.2.5)

As a result, in (M,T(P)), {ma} is Cauchy sequence. Because G is closed in M

and M is complete. So, there is a point m∗ in G such that ma → m∗. Moreover,

db(m
∗, H) ≤ db(m

∗, Oma)

≤ db(m
∗,ma+1) + db(ma+1, Oma)

= db(m
∗,ma+1) + db(G,H)

≤ db(m
∗,ma+1) + db(m

∗, H)

Therefore, db(m
∗, Oma)→ db(m

∗, H)∀b ∈ V as a→∞. Since, H is approximatively

compact concerning G, there is a subsequence {Omak} of the sequence {Oma} which

converges to some point n∗ in H. Hence

db(m
∗, n∗) = lima→∞ db(mak+1

, Omak) = db(G,H).

Since, for m∗ ∈ G0, we have Om∗ ∈ H0, thus we have u ∈ G such that db(u,Ox
∗) =

db(G,H)∀b ∈ V. Thus, from 3.2.1, we have

db(ma+1, u) ≤ φ[db(ma,m
∗), db(ma,ma+1), db(m

∗, u), 1/2(db(ma, u) + db(m
∗,ma+1))],

for all b ∈ V. In the inequality above, applying a→∞ yields,

db(m
∗, u) ≤ φ(0, 0, db(m

∗, u), 1/2db(m
∗, u))∀b ∈ V.

Axiom (iii) of φ gives, db(m
∗, u) = 0∀b ∈ V. We can deduce that m∗ = u because

M is separating gauge space. Therefore

db(m
∗, Om∗) = db(u,Om

∗) = db(G,H)∀b ∈ V.
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Example 3.2.1. Consider the space encompassing all pairs of bounded and con-

tinuous real functions defined on the interval [0, 10] denoted as M = C([0, 10],R)×
C([0, 10],R) which is endowed with pseudo metrics db(m(t), n(t)) = maxt∈[0,b]{|m1(t)−
n1(t)|+ |m2(t)− n2(t)|} for all m(t) = (m1(t),m2(t)), n(t) = (n1(t), n2(t)) ∈M and

b ∈ {1, 2, 3, ..., 10}. Define G = {(0,m(t)) : t ∈ [0, 10]} and H = {(10,m(t)) : t ∈
[0, 10]}. Let O : G→ H by

O(0,m(t)) = (10, m(t)
2

) for each t ∈ [0, 10].

Consider φ(u1, u2, u3, u4) = u1
2

.Then all the conditions of the Theorem3.2.1 holds

Thus O possesses best proximity point.

Corollary 3.2.2. Consider P = {db|b ∈ V} a family of pseudometrics which is

separating and (M,T(P)) a complete gauge space induced by P. Let G and H be

closed subsets of M which are not empty such that G0 6= φ and H is approximatively

compact concerning G. Moreover, suppose that a mapping O : G → H meets the

following requirements

(a) For all u1, u2,m1,m2 in G, there exists a non-negative real number α < 1 such

that

db(u1, Om1) = db(G,H) = db(u2, Om2)⇒ db(u1, u2) ≤ αdb(m1,m2),

(b) O(G0) ⊆ H0

Then O possesses a best proximity point, that is, db(m,Om) = db(G,H)∀b ∈ V for

some element m in G.

Proof. Take φ(u1, u2, u3, u4) = αu1 with ψ(t) = αt, where α ∈ [0, 1). From (3.2.1),

we have db(u1, Om1) = db(G,H) = db(u2, Om2) ⇒ db(u1, u2) ≤ αdb(m1,m2)∀b ∈ V

for all u1, u2,m1,m2 ∈ G. As a result of Theorem 3.2.1, O possesses a best proximity

point m ∈ G that is db(m,Om) = db(G,H)∀b ∈ V.

Definition 3.2.4. Allow G and H to be non-empty subsets of M . An implicit type

generalized proximal contraction of second kind is a mapping O : G→ H such that
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for each m1,m2, u1, u2 ∈ G, there exist φ ∈ Φψ satisfying db(u1, Om1) = db(G,H) =

db(u2, Om2) implies

db(Ou1, Ou2) ≤ φ(db(Om1, Om2), db(Om1, Ou1), db(Om2, Ou2),

1/2(db(Om2, Ou1) + db(Om1, Ou2))) (3.2.6)

for each b ∈ V.

Theorem 3.2.3. Consider P = {db|b ∈ V} a family of pseudometrics which is

separating and (M,T(P)) a complete gauge space induced by P. Let G and H be

non-empty closed subsets of M such that G0 6= φ and H is approximatively compact

concerning G. Consider implicit type generalized proximal contraction of second kind

O : G → H which is continuous such that O(G0) ⊆ H0. Then O possesses a best

proximity point, that is there exist m ∈ G such that db(m,Om) = db(G,H)∀b ∈ V.

Proof. Let m0 ∈ G0. Then we can find a sequence ma in G0 by following the same

steps as in Theorem3.2.1 such that for all a ∈ N ∪ {0}

db(ma+1, Oma) = db(G,H)∀b ∈ V.

Assume that Oma 6= Oma+1 for each a ∈ N∪{0}, otherwise ma+1 is a best proximity

point. As a result, (3.2.6) yields,

db(Oma, Oma+1) ≤ φ[db(Oma−1, Oma), db(Oma−1, Oma),

db(Oma, Oma+1), 1/2(db(Oma−1, Oma+1) + db(Oma, Oma))]

≤ φ(db(Oma−1, Oma), db(Oma−1, Oma),

db(Oma, Oma+1), 1/2(db(Oma−1, Oma+1)))

≤ φ[db(Oma−1, Oma), db(Oma−1, Oma),

db(Oma, Oma+1), 1/2(db(Oma−1, Oma) + db(Oma, Oma+1))]

(3.2.7)

We claim that db(Oma, Oma+1) < db(Oma−1, Oma)∀b ∈ V for each a ∈ N ∪ {0}.
Suppose on contrary that db(Oma, Oma+1) ≥ db(Oma−1, Oma)∀b ∈ V and some

a. Using non-decreasing of φ in (3.2.7) yields,

db(Oma, Oma+1) ≤ φ(db(Oma, Oma+1), db(Oma−1, Oma), db(Oma, Oma+1), (db(Oma, Oma+1)))

(3.2.8)
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Using property (ii) of Φψ in (3.2.8), we have

db(Oma, Oma+1) = 0∀b ∈ V

which contradicts our assumption, i.e. Oma+1 6= Oma for each a ∈ N ∪ {0}. Thus

db(Oma, Oma+1) < db(Oma−1, Oma)∀b ∈ V for all a.Therefore (3.2.7) becomes

db(Oma, Oma+1) ≤ φ[db(Oma−1, Oma), db(Oma−1, Oma), db(Oma, Oma+1), (db(Oma−1, Oma))]

(3.2.9)

By using (3.2.9) and property (ii) of Φψ, we have

db(Oma, Oma+1) ≤ ψ[db(Oma−1, Oma)]∀b ∈ V for all a ∈ N.

Consequently, we get

db(Oma, Oma+1) ≤ ψa[db(Om0, Om1)]∀b ∈ V for each a ∈ N ∪ {0}

Let a > a′, we have

db(Oma′ , Oma) ≤ db(Oma′ , Oma′+1) + db(Oma′+1, Oma′+2) + ...+ db(Oma−1, Oma)

≤ ψa
′
(db(Om0, Om1)) + ψa

′+1(db(Om0, Om1)) + ...+ ψa−1(db(Om0, Om1))

=
a−1∑
i=a′

ψi(db(Om0, Om1)) <∞∀b ∈ V.

Hence {Oma} is Cauchy sequence in H. Because (M,T(P)) is complete gauge

space and H is closed in M . So, {Oma} converges to n∗ in H. We get the following

by utilising triangular inequality,

db(n
∗, G) ≤ db(n

∗,ma)

≤ db(n
∗, Oma−1) + db(Oma−1,ma)

= db(n
∗, Oma−1) + db(G,H)

≤ db(n
∗, Oma−1) + db(n

∗, G)

Therefore, db(n
∗,ma) → db(n

∗, G)∀b ∈ V. Since G is approximatively compact

concerning H, so there is a subsequence {mak} of the sequence {ma} which converges

to some point m∗ in G. By using continuity of O, we get the following
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db(m
∗, Om∗) = lima→∞ db(ma+1, Oma) = db(G,H)∀b ∈ V.

Corollary 3.2.4. Consider P = {db|b ∈ V} a family of pseudometrics which is

separating and (M,T(P)) a complete gauge space induced by P. Let G and H

be non-empty closed subsets of M such that G0 6= φ and H is approximatively

compact concerning G. Further assume that the mapping O : G → H fulfills the

accompanying assumptions:

(a) For all u1, u2,m1,m2 in G, there is some nonnegative real number α < 1 such

that,

db(u1, Om1) = db(G,H) = db(u2, Om2)⇒ db(Ou1, Ou2) ≤ αdb(Om1, Om2)

for all b ∈ V,

(b) O(G0) ⊆ H0,

(c) O is continuous.

Then there is some element m in G with db(m,Om) = db(G,H).

3.2.1 Consequences

Suppose a complete metric space (M,d). A gauge space can be generated from the

family P = {db = d : b ∈ V} which is complete as well as separating. Accord-

ingly, from Theorem 3.2.1 and Theorem 3.2.3 respectively, we get the accompanying

outcomes.

Theorem 3.2.5. Allow (M,d) to be complete metric space and G,H 6= φ ⊆ M

be closed with G as approximatively compact concerning H and G0 is non-empty.

Suppose that the mapping O : G→ H satisfies the accompanying assumptions:

(i) There exist φ ∈ Φψ and d(u1, Om1) = d(G,H) = d(u2, Om2) implies

d(u1, u2) ≤ φ(d(m1,m2), d(m1, u1), d(m2, u2), 1/2(d(m1, u2) + d(m2, u1)));
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for each m1,m2, u1, u2 ∈ G

(ii) O(G0) ⊆ H0.

Then a best proximity point is possessed by O.

Theorem 3.2.6. Allow (M,d) to be complete metric space and G,H 6= φ ⊆ M be

closed such that G0 is non-empty and H is approximatively compact concerning G.

Suppose that the mapping O : G→ H satisfies the accompanying assumptions:

(i) There exist φ ∈ Φψ and d(u1, Om1) = d(G,H) = d(u2, Om2) implies

d(Ou1, Ou2) ≤
φ(d(Om1, Om2), d(Om1, Ou1), d(Om2, Ou2), 1/2(d(Om1, Ou2) +

d(Om2, Ou1)))

for each m1,m2, u1, u2 ∈ G,

(ii) O is continuous,

(iii) O(G0) ⊆ H0.

Then O possesses a best proximity point.
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Chapter 4

Best Proximity Point Theorems in

Metric-like Spaces

Multiplicative calculus introduced by Grossman and Kartz during 1967 and 1970

[65], but unfortunately it remained unpopular for many years. In 2008, Bashirov

et al. [24] brought up the researcher’s attention to the multiplicative calculus by

demonstrating its usefulness in the branch of analysis and presented multiplicative

metric. He also presented few examples of multiplicative metric space in his article.

Ozavsar and Cevikel [108] then investigated the topological properties of multiplica-

tive metric space and emphasized its importance by showing that R+ is complete

multiplicative metric space while it is not complete in the sense of usual metric.

In the same article they demonstrated few fixed point theorems of multiplicative

contraction mappings. In multiplicative metric space, fixed point theorems of differ-

ent contractions are explored [1]. Some interesting surveys on multiplicative metric

space are written [6, 7, 44, 45, 126]. The theorems to demonstrate presence of best

proximity points for multiplicative proximal contractions are given by [103].

Then again fuzzy metric, presented by Kramosil and modified by George and

Veeramnai [57], are of great importance because of its usefulness in a variety of

applications such as color image filtering [77, 105]. As of late, Gregori et al. [64]

indicated some intriguing applications of fuzzy metric in engineering methods. Fixed

point theory studied by many researchers [100, 60, 134, 62].

In this chapter we established fuzzy multiplicative metric space with few of its
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topological aspects. We also given best proximity point theorems for the proximal

contraction and multivalued contraction of Feng-Liu type. This chapter is published

as research article [51].

4.1 Fuzzy multiplicative metric spaces

Definition 4.1.1. A fuzzy multiplicative metric space is a 3-tuple (M,FMM , ?) if ?

is continuous t− norm, M is arbitrary set and FMM is fuzzy set on M ×M × (1,∞)

fulfilling the accompanying conditions for all m,n, p ∈M, t, s > 1

FMM1: FMM(m,n, t) > 0

FMM2: m = n if and only if FMM(m,n, t) = 1

FMM3: FMM(m,n, t) = FMM(n,m, t)

FMM4: FMM(m, p, t.s) > FMM(m,n, t) ? FMM(n, p, s)

FMM5: FMM(m,n, .) : (1,∞)→ [0, 1] is continuous.

Here we have an example of fuzzy multiplicative metric which can not be fuzzy

metric.

Example 4.1.1. Let M = R+ and FMM(m,n, t) = t+1
t+|m

n
|∗ and consider a continuous

t−norm ? : [0, 1]× [0, 1]→ [0, 1] as x?y = xy. Then M is fuzzy multiplicative metric

space.

Remark 4.1.1. 1. Allow (M,FMM , ?) to be a fuzzy multiplicative metric space.

Whenever FMM(m,n, t) > 1 − ε for m,n ∈ M and t > 1, 0 < ε < 1, we can

find a t0, 1 < t0 < t such that FMM(m,n, t0) > 1− ε.

2. Let ε1, ε2, ε3, ε4, ε5 ∈ (0, 1). For any ε1 > ε2, we are able to locate an ε3 such

that ε1 ? ε3 ≥ ε2 and for any ε4 we can find an ε5 such that ε5 ? ε5 ≥ ε4.

Here we discuss fuzzy multiplicative metric space with its some topological prop-

erties.
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Definition 4.1.2. Allow (M,FMM , ?) to be a fuzzy multiplicative metric space and

0 < ε < 1 then an open ball of centre m and radius ε is defined as

B(m, ε, t) = {n ∈M : FMM(m,n, t) > 1− ε}.

Definition 4.1.3. Allow (M,FMM , ?) to b fuzzy multiplicative metric space and

G ⊆ M . Then G is called open set if and only if for every m ∈ G, there exist an

open ball B(m, ε, t) for t > 1 and 0 < ε < 1 such that B(m, ε, t) ⊆ G.

Proposition 4.1.1. Every open ball in fuzzy multiplicative metric space is an open

set.

Proof. Allow B(m, ε, t) to be an open ball and let n ∈ B(m, ε, t). This implies that

FMM(m,n, t) > 1− ε. Since FMM(m,n, t) > 1− ε, using Remark 4.1.1, we can find

a t0, 1 < t0 < t, such that FMM(m,n, t0) > 1 − ε. Let ε0 = FMM(m,n, t0) > 1 − ε.
Since ε0 > 1 − ε, therefore by using Remark 4.1.1, we are able to locate an ε1,

0 < ε1 < 1, such that ε0 > 1 − ε1 > 1 − ε. Now for a given ε0 and ε1 satisfying

ε0 > 1 − ε1, we are able to locate ε2, 0 < ε2 < 1 such that ε0 ? ε2 ≥ 1 − ε1. Now,

think about the ball B(n, 1− ε2, tt0 ). We claim that

B(n, 1− ε2, tt0 ) ⊂ B(m, ε, t).

Now, p ∈ B(n, 1− ε2, tt0 ) implies that FMM(n, p, t
t0

) > ε2. Therefore,

FMM(m, p, t) ≥ FMM(m,n, t0) ? FMM(n, p,
t

t0
)

≥ ε0 ? ε2

≥ 1− ε1
> 1− ε.

Therefore, p ∈ B(m, ε, t) and hence,

B(n, 1− ε2, tt0 ) ⊂ B(m, ε, t).

Proposition 4.1.2. Allow (M,FMM , ?) to be a fuzzy multiplicative metric space.

Define
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τ = {G ⊂M : m ∈ G if and only if B(m, ε, t) ⊂ G for t > 1 and 0 < ε < 1}.

The set τ is then a topology on M .

Theorem 4.1.3. Hausdorff axioms are fulfilled by every fuzzy multiplicative metric

space .

Proof. Assume that (M,FMM , ?) is a given fuzzy multiplicative metric space. Allow

m,n to be distinct points of M , then 0 < FMM(m,n, t) < 1. Let FMM(m,n, t) = ε,

0 < ε < 1. For each ε0, ε < ε0 < 1, using Remark 4.1.1, we can find an ε1 such that

ε1 ? ε1 ≥ ε0. Now think about the open balls B(m, 1 − ε1, t
1
2 ) and B(n, 1 − ε1, t

1
2 ).

Obviously,

B(m, 1− ε1, t
1
2 ) ∩B(n, 1− ε1, t

1
2 ) = φ.

Because, if there is

p ∈ B(m, 1− ε1, t
1
2 ) ∩B(n, 1− ε1, t

1
2 )

Then

ε = FMM(m,n, t)

≥ FMM(m, p, t
1
2 ) ? FMM(p, n, t

1
2 )

≥ ε1 ? ε1

≥ ε0

> ε,

which is a contradiction. Therefore, (M,FMM , ?) is Hausdorff.

Definition 4.1.4. In a fuzzy multiplicative metric space (M,FMM , ?), a sequence

{ma} is a convergent sequence which converges to m if and only if there is some

a1 ∈ N with M(ma,m, t) > 1− ε for all a ≥ a1 and for each ε > 0, t > 1.

Theorem 4.1.4. Allow (M,FMM , ?) to be a fuzzy multiplicative metric space, m ∈
M and {ma} be a sequence in M . Then {ma} converges to m if and only if

FMM(ma,m, t)→ 1 as a→∞ for each t > 1.
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Proof. Suppose that ma → m. Then for each t > 1 and ε ∈ (0, 1), there exist

a natural number a1 such that FMM(ma,m, t) > 1 − ε for all a ≥ a1. We have

1− FMM(ma,m, t) < r. Hence, FMM(ma,m, t)→ 1 as a→∞.

Conversely, suppose that FMM(ma,m, t) → 1 as a → ∞. Then for each t > 1 and

ε ∈ (0, 1), there exist a natural number a1 such that 1 − FMM(ma,m, t) < ε for all

a ≥ a1. In that case, FMM(ma,m, t) > 1− ε. Hence, ma → m as a→∞.

Definition 4.1.5. Let a sequence {ma} in a fuzzy multiplicative metric space

(M,FMM , ?). If for each ε > 0, t > 1, there exist a1 ∈ N such that FMM(ma,mb, t) >

1− ε for all a, b ≥ a1 then {ma} is termed Cauchy sequence in M .

Theorem 4.1.5. Let (M,FMM , ?) be a fuzzy multiplicative metric space, m ∈M and

{ma} be a sequence in M . Then {ma} is Cauchy if and only if FMM(ma,mb, t)→ 1

as a, b→∞ for each t > 1.

Proof. Suppose that ma is a Cauchy sequence in M . Then for each t > 1 and

ε ∈ (0, 1), there exist a natural number a1 such that FMM(ma,mb, t) > 1 − ε for

all a, b ≥ a1. We have 1 − FMM(ma,mb, t) < ε. Hence, FMM(ma,mb, t) → 1 as

a, b→∞.

Conversely, suppose that FMM(ma,mb, t) → 1 as a, b → ∞. Then for each t > 1

and ε ∈ (0, 1), there exist a natural number a1 such that 1 − FMM(ma,mb, t) < ε

for all a, b ≥ a1. In that case, FMM(ma,mb, t) > 1 − ε. Hence, ma is a Cauchy

sequence.

Proposition 4.1.6. In a fuzzy multiplicative metric space (M,FMM , ?), if a se-

quence {ma} converges in M , then {ma} is Cauchy.

Proof. Let ε and t be real numbers with ε ∈ (0, 1), t > 1. Since ε ∈ (0, 1), there

is some ε0 ∈ (0, 1) such that (1 − ε0) ? (1 − ε0) > 1 − ε. Also suppose that {ma}
converges in M , say it converges to m ∈M . Then there exists a0 ∈ N such that for

each a ≥ a0;

FMM(ma,m, t
1
2 ) > 1− ε0
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Thus for a, b ≥ a0 we have

FMM(ma,mb, t) ≥ FMM(ma,m, t
1
2 ) ? FMM(mb,m, t

1
2 )

> (1− ε0) ? (1− ε0)

> 1− ε (4.1.1)

That is {ma} is a Cauchy sequence.

Definition 4.1.6. A fuzzy multiplicative metric space (M,FMM , ?) is termed com-

plete if and only if every sequence in M which is Cauchy must converge in M .

Definition 4.1.7. Allow (M,FMM , ?) to be a fuzzy multiplicative metric space. A

subset G of M is closed if for each sequence {ma} in G which is convergent with

ma → m, we have m ∈ G.

Allow (M,FMM , ?) to be a complete fuzzy multiplicative metric space. A subset

G of M is closed if and only if (G,FMM , ?) is complete.

Lemma 4.1.7. Allow (M,FMM , ?) to be a fuzzy metric space such that for m,n ∈
M, t > 1 and h > 1

lima→∞ ?
∞
i=aFMM(m,n, th

i
) = 1.

A sequence {ma} in M is Cauchy if for all a ∈ N and 0 < α < 1

FMM(ma,ma+1, t
α) ≥ FMM(ma−1,ma, t).

Proof. Each a ∈ N and t > 1 yields

FMM(ma,ma+1, t) ≥ FMM(ma−1,ma, t
1
α ) ≥ FMM(ma−2,ma−1, t

1
α2 ) ≥ ... ≥

FMM(m0,m1, t
1

αa−1 )

Thus for each a ∈ N we get

FMM(ma,ma+1, t) ≥ FMM(m0,m1, t
1

αa−1 ) (4.1.2)

Settle the numbers h > 1 and l ∈ N such that hα < 1 and
∑∞

i=l
1
hi

=
1

hl

1− 1
h

< 1 Hence

for b ≥ a

FMM(ma,mb, t) ≥ FMM(ma,mb, t
( 1

hl
+ 1

hl+1 +...+ 1

hl+b
))

≥ FMM(ma,ma+1, t
1

hl ) ? FMM(ma+1,ma+2, t
1

hl+1 ) ? ...

?FMM(mb−1,mb, t
1

hl+b ) (4.1.3)
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Using 4.1.2 in above inequality, we come by;

FMM(ma,mb, t) ≥
FMM(m0,m1, t

1

αa−1hl ) ? FMM(m0,m1, t
1

αahl+1 ) ? ... ? FMM(m0,m1, t
1

αb−2hl+b−a−2 )

That is;

FMM(ma,mb, t) ≥
FMM(m0,m1, t

1
(αh)a−1 ) ? FMM(m0,m1, t

1
(αh)a ) ? ... ? FMM(m0,m1, t

1

(αh)b−2 )

The above expression can be simplified as;

FMM(ma,mb, t) ≥ ?∞i=aFMM(m0,m1, t
1

(αh)i−1 )

Then from the above, we have

lima,b→∞ FMM(ma,mb, t) ≥ lima→∞ ?
∞
i=aFMM(m0,m1, t

1

(αh)i−1 ) = 1

for each t > 1. Hence for each t > 1

lima,b→∞ FMM(ma,mb, t) = 1

which shows that {ma} is a Cauchy sequence.

Definition 4.1.8. Consider a fuzzy multiplicative metric space (M,FMM , ?) and

G,H ⊂M then for all t > 1;

G0 = {m ∈ G : FMM(m,n, t) = FMM(G,H, t), for some n ∈ H}
H0 = {n ∈ H : FMM(m,n, t) = FMM(G,H, t), for some m ∈ G}

where

FMM(G,H, t) = Sup{FMM(m,n, t),m ∈ G, n ∈ H} for all t > 1.

Definition 4.1.9. Allow (M,FMM , ?) to be a fuzzy multiplicative metric space and

G,H ⊂M . If every sequence {ma} ofG fulfilling the condition that FMM(n,ma, t)→
FMM(n,m, t) for some n in H and for all t > 1 has a convergent subsequence then

G is termed approximatively compact concerning H
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4.2 Best proximity point theorems in fuzzy mul-

tiplicative metric spaces

Definition 4.2.1. Allow (M,FMM , ?) to be a fuzzy multiplicative metric space and

G,H ⊂ M . A mapping O : G → H is named as multiplicative contraction of first

kind if there exists α ∈ [0, 1) such that for all u, v,m, n ∈ G

FMM(u,Om, t) = FMM(G,H, t) and FMM(v,On, t) = FMM(G,H, t)⇒
FMM(u, v, tα) ≥ FMM(m,n, t)

Theorem 4.2.1. Allow (M,FMM , ?) to be a complete fuzzy multiplicative metric

space and G,H ⊂M such that H is approximatively compact concerning G. Assume

that limt→∞ FMM(m,n, t) = 1. Let O : G→ H be multiplicative contraction of first

kind and O(G0) ⊂ H0. Then O possesses best proximity point.

Proof. Let m0 ∈ G0 then for Om0 ∈ OG0 ⊂ H0 there exist m1 ∈ G0 such that

FMM(m1, Om0, t) = FMM(G,H, t)

Further, since Om1 ∈ OG0 ⊂ H0 there exist m2 ∈ G0 such that

FMM(m2, Om1, t) = FMM(G,H, t)

Similarly for Om2 ∈ OG0 ⊂ H0 there exist m3 ∈ G0 such that

FMM(m3, Om2, t) = FMM(G,H, t)

By continuing the similar steps we get;

FMM(ma+1, Oma, t) = FMM(G,H, t) for all a ∈ N (4.2.1)

By successive application of fuzzy multiplicative contraction we have for all a ∈
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N ∪ {0}

FMM(ma,ma+1, t
α) ≥ FMM(ma−1,ma, t)

≥ FMM(ma−2,ma−1, t
1/α)

≥ FMM(ma−3,ma−2, t
1/α2

)

.

.

.

≥ FMM(m0,m1, t
1/αa−1

) (4.2.2)

For any q ∈ N;

FMM(ma,ma+q, t) ≥ FMM(ma,ma+1, t
1/q)?FMM(ma+1,ma+2, t

1/q)?...?FMM(ma+q−1,ma+q, t
1/q)

Using 4.2.2 in above inequality

FMM(ma,ma+q, t) ≥ FMM(m0,m1, t
1/qαa)?FMM(m0,m1, t

1/qαa+1

)?...?FMM(m0,m1, t
1/qαa+q−1

)

By assumption limt→∞ FMM(m,n, t) = 1

lima→∞ FMM(ma,ma+q, t) = 1 ? 1 ? ... ? 1 = 1

As a result, {ma} is a Cauchy sequence. The completeness of fuzzy multiplicative

metric space (M,FMM , ?) implies that {ma} converges to m∗ ∈ G that is

lima→∞ FMM(ma,m
∗, t) = 1 for all t > 1

Take a note that

FMM(m,H, t) ≥ FMM(m,Oma, t)

≥ FMM(m,ma+1, t
1/2) ? FMM(ma+1, Oma, t

1/2)

= FMM(x, xa+1, t
1/2) ? FMM(G,H, t)

≥ FMM(m,ma+1, t
1/2) ? FMM(m,H, t).

Therefore FMM(m,Oma, t)→ FMM(m,H, t) as a→∞. Since H is approximatively

compact concerning G, so {Oma} has a convergent sequence {Omak} converging to
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some p ∈ H. Further for each k ∈ N we have

FMM(G,H, t) ≥ FMM(m, p, t)

≥ FMM(m,mak+1
, t1/3) ? FMM(mak+1

, Omak , t
1/3) ? FMM(Omak , p, t

1/3)

= FMM(m,mak+1
, t1/3) ? FMM(G,H, t1/3) ? FMM(Omak , p, t

1/3)

Letting k → ∞, we get FMM(m, p, t) = FMM(G,H, t) which implies that m ∈
G0 and O(G0) ⊆ H0 implies that Om ∈ H0, there exist m∗ ∈ G such that

FMM(m∗, Om, t) = FMM(G,H, t). This equation and equation 4.2.1 implies that

FMM(ma+1,m
∗, t) ≥ FMM(ma,m, t

1/α)

Applying limit a → ∞ to above inequality gives FMM(m,m∗, t) = 1 which implies

that m = m∗. Hence FMM(m,Om, t) = FMM(G,H, t) which demonstrates that O

possesses best proximity point m.

Example 4.2.1. Let M = R+ × R+ and FMM(m,n, t) = t+1
t+d(m,n)

where d(m,n) =

|m1

n1
|∗.|m2

n2
|∗ for m = (m1,m2) and n = (n1, n2). Then (M,FMM , ?) is complete

fuzzy multiplicative metric space with ? : [0, 1]2 → [0, 1] defined as a ? b = ab. Let

G = {(1,m) : m ∈ R+} and H = {(2, n) : n ∈ R+} then G and H are closed subsets

of M and FMM(G,H, t) = t+1
t+2

, G0 = G,H0 = H. Define O : G→ H as

O(1,m) = (2, m
2

2
)

Let m = (1,m), n = (1, n) ∈ G then u = (1, m
2

2
) and v = (1, n

2

2
) ∈ G such that

FMM(u,Om, t) = FMM(G,H, t) = FMM(v,Om, t). It can be easily checked that O

is proximal contraction in fuzzy multiplicative metric space M with α = 2
3
. Also

the condition limt→∞ FMM(m,n, t) = 1 holds.

Since all statements of theorem 4.3.1 hold so, O possesses best proximity points.

Theorem 4.2.2. Allow (M,FMM , ?) to be complete fuzzy multiplicative metric space.

G,H ⊆ M be two non-empty closed subsets of M having P -property and G0 6= φ.

Let O : G → C(H) be a mapping such that O(G0) ⊆ H0 and for all m ∈ G0 and

n ∈ Om there exist p ∈ G0 satisfying

FMM(n, p, t) = FMM(G,H, t)andFMM(n,Op, tc) ≥ FMM(m, p, t) (4.2.3)
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for some c ∈ (0, 1) and t > 1. Suppose (M,FMM , ?) satisfy

lim
a→∞

?∞i=aFMM(m,n, th
i

) = 1 (4.2.4)

for every m,n ∈M, t > 1 and h > 1. Then O has best proximity point in G provided

that f(m,n) = FMM(n,Om, t) is upper semi-continuous.

Proof. Allow m0 ∈ G0 to be an arbitrary point. Choose n0 ∈ Om0. Then by

assumption there exist m1 ∈ G0 such that

FMM(n0,m1, t) = FMM(G,H, t) and FMM(n0, Om1, t
c) ≥ FMM(m0,m1, t)

Presently let b ∈ (c, 1), then we can discover n1 ∈ Om1 such that

FMM(n0, n1, t) ≥ FMM(n0, Om1, t
b)

Again by assumption there exist m2 ∈ G0 such that

FMM(n1,m2, t) = FMM(G,H, t) and FMM(n1, Om2, t
c) ≥ FMM(m1,m2, t)

Also we can find n2 ∈ Om2 such that

FMM(n1, n2, t) ≥ FMM(n1, Om2, t
b)

Proceeding in similar manner we develop two sequences {ma} and {na} in G and H

respectively, with ma ∈ G0 , na ∈ Oma and

FMM(na,ma+1, t) = FMM(G,H, t) (4.2.5)

FMM(na, Oma+1, t
c) ≥ FMM(ma,ma+1, t) (4.2.6)

FMM(na, na+1, t) ≥ FMM(na, Oma+1, t) (4.2.7)

for all a ∈ N and t > 1. Then again, since G and H have P -property so from

equation 4.2.6 we get

FMM(ma,ma+1, t) = FMM(na−1, na, t)

Therefore from inequality 4.2.7 we have

FMM(ma,ma+1, t) = FMM(na−1, na, t) (4.2.8)

≥ FMM(na−1, Oma, t
b)
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From inequality 4.2.7 we have

FMM(na−1, Oma, t) ≥ FMM(ma−1,ma, t
1
c ) (4.2.9)

Combining inequality 4.2.8 and 4.2.9 we get

FMM(ma,ma+1, t) ≥ FMM(ma−1,ma, t
b
c ) (4.2.10)

for all a ≥ 1 and t > 1.

Let k = c
b

then 0 < k < 1. The inequality 4.2.10 gives

FMM(ma,ma+1, t
k) ≥ FMM(ma−1,ma, t)

for 0 < k < 1 and t > 1 By our assumption 4.2.4 and lemma 4.1.7 {ma} is Cauchy

sequence.

Now from inequality 4.2.7 and 4.2.8 we have

FMM(na, Oma+1, t
c) ≥ FMM(ma,ma+1, t)

≥ FMM(na−1, Oma, t
b)

⇒ FMM(na, Oma+1, t) ≥ FMM(na−1, Oma, t
b
c ) (4.2.11)

Also from inequality 4.2.7 and 4.2.11 we have

FMM(na, na+1, t
1
b ) ≥ FMM(na, Oma+1, t)

≥ FMM(na−1, Oma, t
b
c )

⇒ FMM(na, na+1, t
c) ≥ FMM(na−1, Oma, t)

for 0 < c < 1 and t > 1. Hence {na} is Cauchy sequence.

Since G,H are closed subsets of complete fuzzy metric space so, {ma}, {na} are

convergent sequences in G and H respectively. Thus, there exist m∗ ∈ G and

n∗ ∈ H such that ma → m∗ and na → n∗ as a→∞.

Letting a→∞ in equation 4.2.6 we have

FMM(m∗, n∗, t) = FMM(G,H, t)

for t > 1. The inequality 4.2.11 shows that the sequence f(ma, na) = FMM(na, Oma, t)

is increasing and it converges to 1. Since f(m,n) is upper semi-continuous so,
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1 = lim supa→∞ f(ma, na) ≤ f(m∗, n∗) ≤ 1

implies to the fact that f(m∗, n∗) = 1 that is FMM(n∗, Om∗, t) = 1 and hence

n∗ ∈ Om∗.
Therefore,

FMM(G,H, t) ≥ FMM(m∗, Om∗, t)

≥ FMM(m∗, n∗, t)

= FMM(G,H, t)

that is FMM(m∗, Om∗, t) = FMM(G,H, t). This shows that O possesses best prox-

imity point m∗.

4.3 Best proximity point theorems of Feng-Liu

type mappings in fuzzy metric space

Theorem 4.3.1. Allow (M,FM , ?) to be complete fuzzy metric space. G,H 6= φ ⊆
M be closed having P -property and G0 6= φ. Let O : G→ C(H) be a mapping such

that O(G0) ⊆ H0 and for all m ∈ G0 and n ∈ Om there exist p ∈ G0 satisfying

FM(n, p, t) = FM(G,H, t) and FM(n,Op, ct) ≥ FM(m, p, t) (4.3.1)

for some c ∈ (0, 1) and t > 0. Suppose (M,FM , ?) satisfy

lim
a→∞

?∞i=aFM(m,n, thi) = 1 (4.3.2)

for every t > 0, h > 1 and m,n ∈ M . Then O possesses best proximity point in G

provided that f(m,n) = FM(n,Om, t) is upper semi-continuous.

Proof. Allow m0 ∈ G0 to be arbitrary point. Choose n0 ∈ Om0. Then by assump-

tion there exist m1 ∈ G0 such that

FM(n0,m1, t) = FM(G,H, t) and FM(n0, Om1, ct) ≥ FM(m0,m1, t)

Presently let b ∈ (c, 1), then we can discover n1 ∈ Om1 such that

FM(n0, n1, t) ≥ FM(n0, Om1, bt)
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Again by assumption there exist m2 ∈ G0 such that

FM(n1,m2, t) = FM(G,H, t) and FM(n1, Om2, ct) ≥ FM(m1,m2, t)

Also we can find n2 ∈ Om2 such that

FM(n1, n2, t) ≥ FM(n1, Om2, bt)

Proceeding in similar manner we develop two sequences {ma} and {na} in G and H

respectively, with ma ∈ G0 , na ∈ Oma and

FM(na,ma+1, t) = FM(G,H, t) (4.3.3)

FM(na, Oma+1, ct) ≥ FM(ma,ma+1, t) (4.3.4)

FM(na, na+1, t) ≥ FM(na, Oma+1, t) (4.3.5)

for all a ∈ N and t > 0. Then again, since G and H have P -property so from

equation 4.3.4 we get

FM(ma,ma+1, t) = FM(na−1, na, t)

Therefore from inequality 4.3.5 we have

FM(ma,ma+1, t) = FM(na−1, na, t) (4.3.6)

≥ FM(na−1, Oma, bt)

From inequality 4.3.5 we have

FM(na−1, Oma, t) ≥ FM(ma−1,ma,
1

c
t) (4.3.7)

Combining inequality 4.3.6 and 4.3.7 we get

FM(ma,ma+1, t) ≥ FM(ma−1,ma,
b

c
t) (4.3.8)

for all a ≥ 1 and t > 0.

Let k = c
b

then 0 < k < 1. The inequality 4.3.8 gives

FM(ma,ma+1, kt) ≥ FM(ma−1,ma, t)
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for 0 < k < 1 and t > 0 By our assumption 4.3.2 and lemma 4.1.7 {ma} is Cauchy

sequence.

Now from inequality 4.3.5 and 4.3.6 we have

FM(na, Oma+1, ct) ≥ FM(ma,ma+1, t)

≥ FM(na−1, Oma, bt)

⇒ FM(na, Oma+1, t) ≥ FM(na−1, Oma,
b

c
t) (4.3.9)

Also from inequality 4.3.5 and 4.3.9 we have

FM(na, na+1,
1

b
t) ≥ FM(na, Oma+1, t)

≥ FM(na−1, Oma,
b

c
t)

⇒ FM(na, na+1, ct) ≥ FM(na−1, Oma, t)

for 0 < c < 1 and t > 0. Hence {na} is Cauchy sequence.

Since G,H are closed subsets of complete fuzzy metric space so, {ma}, {na} are

convergent sequences in G and H respectively. Thus, there is some m∗ ∈ G and

n∗ ∈ H such that ma → m∗ and na → n∗ as a→∞.

Letting a→∞ in equation 4.3.4 we have

FM(m∗, n∗, t) = FM(G,H, t)

for t > 0. The inequality 4.3.9 shows that the sequence f(ma, na) = FM(na, Oma, t)

is increasing sequence, so it converges to 1. Since f(m,n) is upper semi-continuous

so,

1 = lim supa→∞ f(ma, na) ≤ f(m∗, n∗) ≤ 1

implies to the fact that f(m∗, n∗) = 1 that is FM(n∗, Om∗, t) = 1 and hence n∗ ∈
Om∗.

Therefore,

FM(G,H, t) ≥ FM(m∗, Om∗, t)

≥ FM(m∗, n∗, t)

= FM(G,H, t)
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that is FM(m∗, Om∗, t) = FM(G,H, t). This shows that O possesses best proximity

point m∗.

Example 4.3.1. Let J = {0, 1} ∪ { 1
2n

: n ∈ N} and M = J × J ,

FM(m,n, t) = t
t+d(m,n)

and d(m,n) = |m1 − n1|+ |m2 − n2|

for m = (m1,m2) and n = (n1, n2) ∈ M Then (M,FM , ?) is complete fuzzy metric

space where ? : [0, 1]2 → [0, 1] defined by a ? b = ab. Let G = {(0, 1
2a

) : a ∈
N} ∪ {(0, 0), (0, 1)} and H = {(1, 1

2a
) : a ∈ N} ∪ {(1, 0), (1, 1)}. Then G0 = G,

H0 = H and FM(G,H, t) = t
t+1

. Define O : G→ C(H) as;

O(1,m) =

{(0, 1
2a+1 ), (0, 1)} if m = 1

2a
, a = 0, 1, 2, ...

{(0, 0), (0, 1
2
)} if m = 0.

For all m,n ∈M, lima→∞ ?
∞
i=aFM(m,n, thi) = 1 which implies that M satisfies 4.3.2

. Let m = (1, 1
2a

) ∈ G0 and n = (0, 1
2a1

) ∈ Om = O(1, 1
2a

) then for p = (1, 1
2a1

) ∈ G0

we have

FM(n, p, t) = FM(G,H, t) and FM(n,Op, t) = 1 ≥ FM(m,n, t)

Also

f(m,n) = FM(n,Om, t) = t
t+d(n,Om)

=


t

t+ 1
2a+1

for m = (1, 1
2a

)

1 for m = (1, 0), (1, 1)

is continuous. Because the theorem’s 4.3.1 requirements are all met, so, best prox-

imity points for O exists. Furthermore, for u = (1, 1
2a

), v = (1, 0) ∈ G0

HFM (O(1, 1
2a

), O(1, 0), ct) = ct
ct+ 1

2

and FM((1, 1
2a

), (1, 0), t) = t
t+ 1

2a

Assume that for c ∈ (0, 1), HFM (O(1, 1
2a

), O(1, 0), ct) ≥ FM((1, 1
2a

), (1, 0), t) That is

ct
ct+ 1

2

≥ t
t+ 1

2a

which implies that c ≥ 2a−1 for a ∈ N which is a contradiction. This shows that O

does not satisfies contraction condition of Nadler’s multivalued mapping.
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As corollary of Theorem 4.1, we obtain a result which was proved in [14]. We

get the corollary by taking A = B = M .

Corollary 4.3.2. Allow (M,FM , ?) to be complete fuzzy metric space. Let O : M →
C(M) be a mapping, for all m ∈M and n ∈ Imb (where Imb = {n ∈ Om|FM(m,n, t) ≥
FM(m,Om, bt)} ⊂M for some b ∈ (0, 1)) satisfying

FM(n,On, ct) ≥ FM(m,n, t)

for some c ∈ (0, 1) and t > 1. Then O possesses fixed point provided that c < b and

f(m) = FM(m,Om, t) is upper semi-continuous.

4.4 Conclusion

Zadeh [139] introduced the notion of fuzzy logic to cope with the problem of un-

certainty, that occurs essentially while studying real life problem. Many researcher

found easiness to study the phenomenon of different fields that were too complex

to be analyzed by conventional techniques. Fuzzy metric introduced by Kaleva [81]

measures the imprecision of distance between elements. Fuzzy metric has been ap-

plied in variety of applications like color image filtering [105] and in engineering

methods [64]. Multiplicative calculus has its great applications in various fields, few

of which are in biomedical image analysis [53], contour detection in images [104].

We introduced fuzzy multiplicative metric space in this chapter and demonstrated

some best proximity point and fixed point results in this new framework. The above

discussion shows the possible applications in this framework in future.
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[40] L. B. Ćirić, S. B. Prešić, On Prešić type generalization of Banach contraction

principle, Acta Math. Univ. Comen., LXXV I(2007), 143− 147.

[41] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform.

Univ. Ostrav., 1(1993), 5− 11.

[42] A. Deb Ray, P. K. Saha, Fixed point theorems on generalized fuzzy metric

spaces, Hacettepe J. math. Stat., 39(2010)

80



[43] H. Dehghan, M. E. Gordji, A. Ebadin, comment on fixed point theorems for

contraction mappings in modular metric spaces, Fixed Point Theory Appl.,

2012(2012) Art. ID: 144.

[44] T. Dosenovic, S. Radenovic, Some crirtical remarks on the paper:”An essential

remark on fixed point results on multiplicative metric spaces”, J. Adv. Math.

Stud., 10(2017), 20− 24.

[45] T. Dosenovic, M. Postolache, S. Radenovic, On multiplicative metric spaces;

Survey, Fixed Point Theory Appl., 92(2016).

[46] J. Dugundji, Topology, Allyn and Bacon, Boston, (1966).

[47] A. Eldred, P. Veeramani, Existence and convergence of best proximity points,

J. Math. Anal. Appl., 323(2006), 1001− 1006.

[48] H. El-Metwally, E. A. Grove, G. Ladas, R. Levins, M. Radin, On the difference

equation xn+1 = α + βxn−1e
−xn , Nonlinear Anal., 47(2001), 4623− 4634.

[49] K. Fan, Extensions of two fixed point theorems of F. E. Browder, Math. Z.,

112(1969), 234− 240.

[50] J. X. Fang, On fixed point theorems in fuzzy metric spaces, Fuzzy Sets Syst.,

46(1992), 107− 113.

[51] M. Farheen, T. Kamran, A. Hussain, “Best proximit point theorems for sin-

gle and multivalued mappings in fuzz multiplicative metric space”, J. Func.

Spaces, vol. 2021, (2021), doi: 10.1155/2021/1373945.

[52] Y. Feng, S. Liu, Fixed point theorems for multivalued contractive mappings

and multivalued Caristi type mappings, J. Math. Anal. Appl., 317(2006), 103−
112.

[53] L. Florack, H. van Assen, Multiplicative calculus in biomedical image analysis,

J. Math. Imaging Vision, 42(2012), 64− 75.

81



[54] L. Florack, Regularization of positive definite matrix fields based on multi-

plicative calculus, The 3rd Int. Conf. on t-Scale Space and Vriational Methods

in Computer Vision, Ein-Gedi Resort, Dead sea, Israel, 6667(2012).

[55] M. Frigon, Fixed point results for generalized contractions in gauge spaces and

applications, Proc. Amer. Math. Soc., 128(2000), 2957− 2965.

[56] M. Frigon, On some generalizations Ekeland’s principle and inward contrac-

tions in gauge spaces, J. Fixed Point Theory Appl., 10(2011), 279− 298.

[57] A. George, P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets

Syst., 64(1994), 395− 399.

[58] A. George, P. Veeramani, On some results of analysis for fuzzy metric spaces,

Fuzzy Sets Syst., 90(1997), 365− 368.

[59] M. Geraghty, On contractive mappings, Proc. Amer. Math. Soc., 40 :

2(1973), 604− 608.

[60] D. Gopal, M. Imdad, C. Vetro, M. Hasan, Fixed point theory for cyclic weak

φ−contraction in fuzzy metric spaces, J. Nonlinear Anal. Appl., 2012(2012),

ID:jnaa-001100

[61] M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Sets Syst.,

27(1983), 385− 389.

[62] V. Gregori, A. Sapena, On fixed point theorems in fuzzy metric spaces, Fuzzy

Sets Syst., 125(2002), 245− 252.

[63] V. Gregori, A. S. Romageura, Some properties of fuzzy metric spaces, Fuzzy

Sets Syst., 115(2000), 485− 489.

[64] V. Gregori, S. Morillas, A. Sapena, Examples of fuzzy metrics and applica-

tions, Fuzzy Sets Syst., 170(2011), 95− 111.

[65] M. Grossman, R. Katz, Non-Newtonian Calculus, Lee Press Pigeon Cove, MA

(1972).

82



[66] G. E. Hardy, T. D. Rogers, A generalization of a fixed point theorem of Reich,

Canadian Mathematical Bulletin, 16(1973), 201− 206.

[67] J. Harjani, B. Lopez, K. Sadarangani, A fixed point theorem for Mier-Keeler

contractions in ordered metric spaces, Fixed Point Theory Appl., 83(2011).

[68] A. J. Hasanzade, S. Rezapour, N. Shahzad, On fixed points of α −
ψ−contractive multifunctions, Fixed Point Theory and Appl., 212(2012).

[69] P. Hitzler, A. K. Zeda, Dislocated topologies, J. Electr. Eng., 51 : 12(2000), 3−
7.

[70] G. Isac, X. Z. Yuan, K. K. Tan, I. Yu, The study of minimax inequalities,

abstract economics and applications to variational inequalities and nash equi-

libria, Acta Appl. Math., 54 : 2(1998), 135− 166.

[71] J. Jachymski, Equivalent conditions and Mier-Keeler type theorems, J. Math.

Anal. Appl., 194(1995), 293− 303.

[72] D. Jain, A. Padcharoen, P. Kumam, D. Gopal, A new approach to study fixed

point of multivalued mappings in modular metric spaces and applications.

Mathamatics, 4 : 51(2016).

[73] M. Jleli, E. Karapinar, B. Samet, Fixed point results for α−ψλ-contractions on

gauge spaces and applications, Abstr. Appl. Anal., 2013(2013) Art. ID:730825.

[74] M. Jleli, B. Samet, Best proximity point for α− ψ-proximal contraction type

mappings and applications, Bull. Sci. Math., 137(2013), 977− 995.

[75] M. Jleli, B. Samet, A generalized metric space and related fixed point theo-

rems, Fixed Point Theory Appl., 61(2015) doi: 10.1186/s13663−015−0312−7.

[76] M. Jleli, B. Samet, C. Vetro, F. Vetro, A note on some fundamental results in

complete gauge spaces and application, Fixed Point Theory Appl., 62(2015),

doi: 10.1186/s13663− 015− 0311− 8.

83



[77] Joan-Gerard Camarena, V. Gregori, S. Morillas, A. Sapena, Fast detection

and removal of impulsive noise using peer groups and fuzzy metrics, J. Visual

Com. Image Rep., 19(2008), 20− 29.

[78] R. Kannan, Some results on fixed points, bulletin of Calcutta Mathematical

Society, 60(1968), 71− 76.

[79] Z. Kadelburg, S. Radenovic, Mier-Keelre type conditions in abstract metric

spaces, Appl. Math. lett. 24(2011), 1411− 1414.

[80] Z. Kadelburg, S. Radenovic, A note on some recent best proximity point results

for nonself mappings, Gulf J. Math., 1(2013), 36− 41.

[81] O. Kaleva, S. Seikkala, “On fuzzy metric spaces,” Fuzzy Sets Syst., vol. 12,
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