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Preface 
The absolute achievements of information sciences in last few decades are extensive 

deployment of soft and small computing devices in general public along with the speedy 

communication channel. An easy approach to valuable digital data had to face some security 

apprehensions. Frequent transmission and communication of information bears problems like 

copyright protection, false ownership claims and alteration in valued information, integrity, 

confidentiality, non-repudiation, access control and authenticity. All of these and many more 

of this type of security issues are the matter of concern for researchers as well as for officials. 

The security of data is preserved in such vulnerable situations by making use cryptography. 

Cryptography works generally on mechanisms of converting meaningful information into non 

readable form and vice versa. There are two main types of cryptography are symmetric and 

asymmetric key cryptography. These two types bifurcated on the basis of keys. Same key is 

used for encryption and decryption in a symmetric key cryptography whereas different set of 

keys are used in both these procedures in asymmetric key cryptosystems. Stream ciphers and 

block ciphers are the two broad categories of symmetric key cryptography. In block 

cryptograms, the procedure of enciphering is done for blocks of data with different sizes. The 

only nonlinear and complex part of block cryptosystem capable of generating hurdles for 

cryptanalysts is the substitution box (S-box). 

After the development of advanced encryption standard, the need of new encryption standard 

is diminished because of its robustness and strength against cryptanalyses. However, its 

security can be enhanced by using chaos based S-boxes instead of algebraic S-boxes. S-box is 

the nonlinear component of block cipher responsible for creating confusion in the systems. It 

can have different dimensions depending upon the need of algorithm. It is produced in the form 

of square matrix from a mathematical structure. Nonlinear mathematical systems are suitable 

candidates for the generation of S-boxes. 

In literature, large number of articles are available expressing research work of scientists 

related to cryptography and chaos. But they are more vulnerable to cyber threats like brute 

force and linear attacks due to the low key space, small chaotic range and involvement of fewer 

number of variables. These drawbacks motivated many cryptographers to use nonlinear 

algebraic systems, which hamper all such deficiencies and threats. 

 This thesis primarily focuses on the generation of S-boxes from non-associative structures and 

the second aim is to design encryption and watermarking techniques by using these nonlinear 



components of block cipher. At the first stage of this thesis, block ciphers and non-associative 

structures are mainly discussed. Moreover, important properties of S-box on the perspective of 

mathematics are also discussed. A new non-associative structure power associative loop is used 

for the construction of S-boxes are introduced in chapter second of this thesis. This scheme is 

used for the construction of highly non-linear components of block ciphers. This scheme 

provides both confusion and diffusion characteristics. Investigational conclusions authenticate 

the competence of the predicted algorithms. 

Chapter 3 introduces the construction of the S-box from another type of non-associative 

structure. Compared with other complex structure-based constructions, this method of 

developing a strong encryption S-box utilizes a simple and single transformation. The main 

advantage of using a non-associative structure in stable communication is that it can provide 

you with more unpredictable and random data. 

An application of image encryption and watermarking are discussed in chapter four. In chapter 

five of this thesis, a new cryptographic scheme is proposed whose model is the same as 

presented in Rijndael algorithm by Joan Daemen and Vincent Rijmen. In the design of this 

cipher, we have used inverse property loop instead of extended binary Galois field. The 

complete description of encryption and decryption of this cryptographic scheme is given in this 

chapter. In chapter six of this thesis, another transformation that is Mobius transformation is 

applied on a non-associative structure for the construction of highly non-linear substitution 

boxes. This transformation helps us to achieve maximum nonlinearity of substitution boxes 

over non-associative structures. A novel image encryption scheme is presented in chapter 

seven. For this scheme, an encryption standard is proposed whose model is the same as 

presented by Eli Biham, Ross Anderson, and Lars Knudsen. The proposed method is simple 

and speedy in terms of computations, meanwhile, it affirms higher security and sensitivity. All 

the standard analyses were found promising in analysing the suggested scheme of encryption.  

This thesis has been ended with chapter eight which includes the conclusions and the future 

directions. 
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Chapter 1  

Block Ciphers and some Non-associative Algebraic 

Structures: An Overview  
 

The objective of secure communication in today's world is the well-defined goal of every 

communicating party. The primitive idea in attaining this objective is the generation of nonlinear 

components of block cipher designed with the help of non-associative structures the main concern 

of this thesis. In this chapter, a brief discussion about non-associative structures and cryptography 

is given right after highlighting the objective and structure of this thesis. Secondly, the Substitution 

box (S-box) and its cryptographic properties along with the basics of cryptography are given.  

 

1.1 Introduction 

           Due to the progress of multimedia technologies the world is shrinking into a global village. 

With the access of multimedia data to everyone through the internet and many other existing 

sources, the security of multimedia data has become a challenge. This challenge attracted 

researchers to strengthen the security of multimedia data through secure algorithms. In past, when 

communication is mostly done through textual data, the security of data was still an issue. Now the 

communication of data through different advanced mediums is still unsecure. To reduce the 

security threats, the researchers utilized cryptographic techniques for secure communication. These 

techniques are available in the literature. 

Cryptography provides all the necessary tools to secure multimedia data. Cryptography 

offers the luxury of confidentiality, integrity, and authentication of data. Confidentiality kept your 

data private and secured from illegal access. Integrity makes sure that the data is unaltered in its 
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original form. It makes sure that the data cannot be changed unintentionally or intentionally. 

Authentications make sure that the receiver is an authorized person. 

The encryption schemes are categorized by the dimensions of the input stream and key 

distribution rules. Single key sharing schemes between sender and receiver are symmetric ciphers, 

whereas pairs of keys utilized disjointedly for encryption and decryption between communicating 

parties are named asymmetric ciphers. Stream and block ciphers are two main types of symmetric 

ciphers depending on the nature of the input stream (continuous bitstream or blocks of data) used. 

Cipher construction is the main focus of researchers to prevent the data from unauthorized 

access. As mentioned earlier, the intentions of hackers are to have illegal access to the information 

and secretly change the original information and claim for fake authentication. Hackers may also 

intend to destroy original data or modifications in original data, that the happening of some specific 

event.  A weak constructed cipher intended to secure data may be permitted these actions to occur, 

or it may also be possible that some portion of cipher is made weak intentionally. Strong 

cryptanalytic attacks against cipher systems have been verified to be successful under the right 

circumstances.  

The strength of every single part of the construction of a cipher determined the overall 

security strength of the cipher. For example, the information storage capacity, the key management, 

the nature of cipher and the construction procedure of cipher etc. So, the security of every single 

part of the cipher mechanism contributes to the overall security strength of the cipher. Deficiency 

in any part of cipher can cause the failure of security.  

S-boxes and Boolean functions are the fundamental part of modern cryptographic cipher 

mechanisms and are widely utilized nowadays. The relative relation between all these cipher 

frameworks describes through the output string. More generally, a S-box is usually intricate with 
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dissimilar Boolean functions with a single output. It is similar to a Boolean function mapped on a 

single bit. 

Stream ciphers utilized Boolean functions regularly to generate keystream. Stream ciphers 

used Boolean functions because they produce a single keystream by combining the linear input 

feedback shift securely. These Boolean functions preserve cryptographic properties, and they 

secure the keystream from different attacks. 

Hash functions are combinedly used with Boolean functions for their iterative 

characteristics which result as compression. Due to compression, the computational process 

becomes extremely fast. 

Block ciphers have an outstanding role in the designing of any cryptosystem. In 

cryptography, the nonlinearity in the system is provided through S-boxes. In block ciphers, the 

encryption process is carried out in blocks of a fixed length, so the immediate choice for this deed 

is S-boxes. They provide a technique for substituting numerous input bits of information to attain 

a different resulting bits string.  

1.2 Aims of this Research 

The study presented in this dissertation has the following key aims: 

1. To design constraint-free models for S-boxes based on algebraic structures. 

2. To apply new algebraic structures to designed novel techniques for the construction of a 

bunch of S-boxes appropriate for several cryptographic ciphers. 

3. To design those S-boxes that have confusion as well as diffusion capability. Due to this 

ability, they are named S-boxes. 

4. To provide mathematical justification of bit permutations.  
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5. To design new methods for obtaining a large number of S-boxes using different algebraic 

structures and the designed component of block cipher. This segment will be a S-box having 

suitable cryptographic properties. The challenge of acquiring such features consists of the 

production and designing of S-boxes which have proven the mandatory measure of 

residences as nicely as of a suitably expansive size that they can resistant against threats in 

the lengthy run. Also, the methods for accomplishing such robust cryptosystems ought to be 

computationally effective.  

6. To construct new methods for image processing (image encryption, steganography, and 

watermarking) with the usage of 1, 2, 3, 4, and 5. To execute these consequences as 

alternative and replacement procedure in the diagram of quite a number of block ciphers 

for image handling. The reason is to make use of the opinions and information obtained 

from the investigational results in the growth of S-boxes to make greater the safety 

measures of existing ciphers as nicely as to layout new ciphers in the discipline of 

encryption and copyright protection.  

7. A new cryptographic scheme is proposed whose model is the same as presented in Rijndael 

Algorithm by Joan Daemen and Vincent Rijmen. In the design of this Cipher, we have used 

an Inverse Property Loop (IP-loop) instead of an Extended Binary Galois Field.  

1.3 Review of S-box Theory 

Before starting the review of S-box theory, hypotheses, and formulae about S-box, it is very 

crucial to discuss those notions which help us in the understanding of S-box theory. S-box theory 

is based upon the theory of Boolean functions. In the first part, we presented some dynamic ideas 

about the Boolean function. This includes the cryptographic properties of Boolean functions and 
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the relationship between different cryptographic properties. In the second part, we discussed the 

hypothesis about S-boxes and various cryptographic characteristics of S-boxes. 

1.3.1 Theory of Boolean Functions 

Boolean functions theory is an extensive area. This part does not mean the complete review 

of Boolean functions. Rather, the theory presented in this segment is a complete taxonomy of that 

which is essential for readers to comprehend this dissertation. Particularly, some important 

cryptographic qualities have been reviewed which are appropriate for this thesis. 

1.3.2 Characteristics of Boolean Functions 

The main theme of this section is to discuss some basic definitions and the most important 

theorems about the encryption properties of Boolean functions. This includes the definition of 

certain logical functions and various representations used to represent logical functions. 

Suppose 𝐺𝐹(2)𝑟 be an r-dimensional vector space.  A Boolean function 𝜏(𝑣) is a mapping. 

𝜏: 𝐺𝐹(2)𝑟 → 𝐺𝐹(2)  

where 𝐺𝐹(2)𝑟 is the Galois field consists of 2𝑟 elements and 𝑣 = (𝑣1, … , 𝑣𝑟). 

The total number of non-repeated r-variable Boolean functions is 22𝑟 . It is very interesting 

to observe that if r input bits increase, the total Boolean function output space increase rapidly. 

Boolean functions have many representations, but the truth table and the polarity truth are the most 

utilized forms. 

Definition 1.1 [1] Suppose 𝜏(𝑣) be a Boolean function of r-variable. The binary outcome as output 

vector of 𝜏(𝑣) is the truth table for 𝜏(𝑣) and it consists of 2𝑟 elements from 𝐺𝐹(2). 
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Definition 1.2 [1] Suppose  𝜏∗(𝑣) represents the polarity truth table of a Boolean function of r-

variable 𝜏(𝑣) then 𝜏∗(𝑣) consists of the 2𝑟 elements lies from the set {−1,1}. It can be obtained by 

mapping the Boolean function 0 to 1 and 1 to 1 or equivalent function using the truth table: 

𝜏∗(𝑣) = (−1)𝜏(𝑣) 

Another very useful Boolean function measurement tool is Hamming weights. The following 

definitions and results determine the effectiveness of Hamming weights related to Boolean 

capabilities and cryptographic properties of cryptanalysis. 

Definition 1.3 [1] Hamming weight (𝑊(𝜏∗) 𝑜𝑟 𝑊(𝜏)) of a Boolean function 𝜏(𝑣)  of r-variable is 

the number of 1s in the polarity truth table or the number of -1s in the truth table. 

𝑊(𝜏∗) = 2𝑟−1 − 0.5 ∑ 𝜏(𝑣)

𝑣

= ∑ 𝜏(𝑣)

𝑣

 

Hamming distance is used to find similarities between two Boolean functions. 

Definition 1.4 [1] Suppose the Hamming distance of two functions 𝜏 ∈ 𝑍2
𝑟 and 𝜏 , ∈ 𝑍2

𝑟 be 

represented by 𝑑(𝜏, 𝜏 ,). Then 𝑑(𝜏, 𝜏 ,) is categorized as the number of positions in the truth table 

where the functions differ. 

𝑑(𝜏, 𝜏 ,) = 𝑊(𝜏 ⊕ 𝜏 ,) 

The concept of correlation is very important because it provides an alternative method of 

determining the degree of similarity between two Boolean functions.  

Let 𝜏 and 𝜏 , be two Boolean functions, then they are uncorrelated if the value of the 

correlation coefficient between them is zero. Equivalently, if the valuation of 𝜏 is independent of 

the information of 𝜏 ,. However, if the valuation for the correlation coefficient to be 1or -1 ensures 

that there is the flawless positive connection (𝜏 = 𝜏 ,) individually or an impeccable negative 

connection (𝜏 = 𝜏 ,), between the two functions. 
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Definition 1.5 [1] Suppose 𝒞(𝜏, 𝜏 ,) represents the correlation between 𝜏 ∈ 𝑍2
𝑟 and 𝜏 , ∈ 𝑍2

𝑟, the two 

Boolean functions. It is given by: 

𝒞(𝜏, 𝜏 ,) = 2𝑃 ((𝜏 ,(v) = 𝜏(𝑣))) − 1 

= 2 [
2𝑟 − 𝑑(𝜏, 𝜏 ,)

2𝑟
] − 1 

= 2 (1 −
𝑑(𝜏, 𝜏 ,)

2𝑟
) − 1 

= 1 −
𝑑(𝜏, 𝜏 ,)

2𝑟−1
 

here 𝑑(𝜏, 𝜏 ,) indicates the distance between the Boolean functions 𝜏 and 𝜏 ,. It is also expressed as: 

𝒞(𝜏, 𝜏 ,) = 1 −
𝑑(𝜏, 𝜏 ,)

2𝑟−1
 

= 1 −
∑ (𝜏 ,(v) ⊕ 𝜏(𝑣))𝑣

2𝑟−1
 

=
2𝑟 − 2 ∑ (𝜏(𝑣) ⊕ 𝜏 ,(v))𝑣

2𝑟
 

=
∑ 1 − 2 ∑ (𝜏(𝑣) ⊕ 𝜏 ,(v))𝑣𝑣

2𝑟
 

=
∑ (1 − 2(𝜏(𝑣) ⊕ 𝜏 ,(v)))𝑣

2𝑟
 

=
∑ 𝜏∗(𝑣)𝜏 ,∗(𝑣)𝑣

2𝑟
 

Therefore, the correlation coefficient always lies in [-1, 1]. The outcome of the correlation 

coefficient gives 1 if the hamming distance between two functions is zero. Similarly, the value -1 

of a correlation coefficient is obtained if the hamming distance between the two functions is 2𝑟. 

The correlation becomes a very important tool especially in connection to the concept of an 

imbalance in a Boolean function when analysed in term of pair of functions. 
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Algebraic Normal Form (ANF) 

Algebraic normal form (ANF) is another important representation of Boolean functions. 

For each ANF representation, the Boolean function has only one truth table. ANF provides a 

Boolean function in the form of a unique XOR sum of AND product of input variables [2]. 

Definition 1.6 [1] If ANF representation of r-variables Boolean function 𝜏(𝑣) consists of all r 

variables then it is known as nondegenerate function and if it does not contain all r variables it is 

known as degenerate. 

The algebraic complexity and algebraic degree of Boolean function are directly proportional to 

each other. 

Definition 1.7 [1] Suppose deg(𝜏) represents the algebraic degree of a Boolean function, 𝜏(𝑣). An 

algebraic degree is defined as "the number of variables in the highest product term of the function's 

ANF having a nonzero coefficient.  

Lemma 1.8 [3] Suppose 𝜏(𝑣) be an r-variable Boolean function. Then deg(𝜏) < 𝑟 if and only if 

2 𝑊(𝜏)⁄ . 

Hamming weight should not be even for all r-variable Boolean functions of degree 𝑟 according to 

the above lemma. 

The connection between algebraic degree and hamming weight for a Boolean function is defined 

by the theorem [3] 

Theorem 1.9 [3] Suppose 𝜏(𝑣) be an r-variable Boolean function and deg(𝜏) > 0. Then 

2
⌊

𝑟−1

deg(𝜏)
⌋
𝑊(𝜏). 

The r-dimensional space of the Boolean function has a subspace of the set of all the affine 

functions. This affine function subspace also contains the linear functions. The algebraic degree of 

affine functions is one.  
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Definition 1.10 [3] Suppose 𝑎, 𝑏 be vectors in 𝑉2
𝑟. A Boolean function having representation  

ℐ𝑎(𝑏) = 𝑎. 𝑏 = 𝑎1𝑏1 ⊕ 𝑎2𝑏2 ⊕ … ⊕ 𝑎𝑟𝑏𝑟 is known as r-variable linear function. 

Here the product is just a dot product of vectors 𝑎, 𝑏 ∈ 𝑉2
𝑟. 

Any linear function and its complement are affine functions, but the converse does not hold in 

general. 

Definition 1.11 [3] Suppose 𝑎, 𝑏 be vectors in 𝑉2
𝑟 and 𝑎0 ∈ 𝑉2

𝑟. Then a Boolean function having 

representation  𝜏(𝑏) = 𝑎0 ⊕ ℐ𝑎(𝑏) = 𝑎0 ⊕ (𝑎. 𝑏) = 𝑎0 ⊕ 𝑎1𝑏1 ⊕ 𝑎2𝑏2 ⊕ … ⊕ 𝑎𝑟𝑏𝑟 is known 

as r-variable affine function. Clearly, 𝜏(𝑏) is even linear if 𝑎0 = 0. 

It is quite advantageous to have a transformation that preserves quite a lot of cryptographic 

properties and altering others. Affine transformation is categorized as such transformation. 

Definition 1.12 [3] Suppose 𝜏(𝑣) be r-variable Boolean function. Then the affine transformation 

is defined as the resulting function 𝜏(𝑣) by the following expression 

𝜏 ,(𝑣) = 𝜏(𝑇𝑣 ⊕ 𝑏) 

Where 𝑇 is a 𝑟 × 𝑟 binary invertible matrix and 𝑣, 𝑏 ∈ 𝑉2
𝑟. If 𝑏 = 0, it is again linear. Also, if for 

some 𝑎 ∈ 𝑉2
𝑟, the projected translation 𝜏 ,(𝑣) = 𝜏(𝑇𝑣 ⊕ 𝑏)⨁𝑎, the output vector will not nullify 

the affine transformation. Also, the sum of an affine Boolean function with a Boolean function is 

an affine transformation as a result. 

Definition 1.13 [3] Let 𝜏 and 𝜏 , be two distinct Boolean functions. Then 𝜏 and 𝜏 , to be in the same 

equivalence class if and only if there exists some 𝑐, 𝑑, 𝑓 and 𝑇 such that the following equivalence 

relation holds: 

𝜏 ,(𝑣) = 𝜏(𝑇𝑣 ⊕ 𝑐) ⊕ 𝑑. 𝑣 ⊕ 𝑓 

Where 𝑐, 𝑑 ∈ 𝐹2
𝑟, 𝑓 ∈ 𝐹2, and 𝑇𝑟×𝑟 is an invertible matrix. 
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1.3.2.1 Walsh Hadamard Transform  

Another very vital representation of the Boolean function which described the information 

differently is the Walsh Hadamard Transform (WHT). The WHT of each Boolean function is 

mutually exclusive, and the function is expressed as its correlation with all linear functions [3]. It 

is presented in the next section that the advantages of WHT indirectly determining some qualities 

and properties of Boolean functions. 

Definition 1.14 [3] Suppose that 𝐾(𝑎) be the WHT of the polarity truth table 𝜏∗(𝑣) of the Boolean 

function. WHT evaluates a function and its correlation with the set of all the linear functions. It is 

expressed as  

𝐾(𝑎) = ∑(−1)𝜏(𝑣)(−1)ℐ𝑎(𝑣)

𝑣

 

= ∑ 𝜏∗(𝑣)ℐ𝑎
∗(𝑣)

𝑣

 

Where ℐ𝑎
∗(𝑣) ∈ {−1,1} and 𝑎 ∈ 𝑉2

𝑟. Thus, for all 𝑎, 𝐾(𝑎) ∈ ℛ having a range [2−𝑟 , 2𝑟]. 

Definition 1.15 [3] Suppose ℓ𝑎(𝑣) represents a linear Boolean function and for some 𝑎 ∈ 𝑉2
𝑟, then 

it is expressed as: 

ℓ𝑎(𝑣) = 𝑎1𝑣1⨁𝑎2𝑣2⨁ … ⨁𝑎𝑟𝑣𝑟 

Where ⨁ represents addition modulo 2 and 𝑎𝑗𝑣𝑗  is bitwise AND for 𝑖𝑡ℎ bits of 𝑎 and 𝑣. 

1.3.2.2 Cryptographic properties of a Boolean function 

➢ Balance 

The most fundamental cryptographic properties anticipated to be shown by Boolean functions is 

balance. 

Definition 1.16 [3] An r-variable Boolean function 𝜏, is known as balanced if 𝑊(𝜏) =

2𝑟−1, 𝑜𝑟, #{𝑣:  𝜏(𝑣) = 0} = #{𝑣:  𝜏(𝑣) = 1}. 
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An r-variable Boolean function 𝜏 is imbalance if 𝑊(𝜏) ≠ 2𝑟−1. It is also defined as: 

𝕀(𝜏) = 2𝑟−1(𝒞(𝜏(𝑣), 0)) = |𝑊(𝜏) − 2𝑟−1| 

= 2𝑟−1 (1 −
𝑑(𝜏(𝑣), 0)

2𝑟−1
) 

= 2𝑟−1 − 𝑑(𝜏(𝑣), 0) 

= |2𝑟−1 − 𝑊(𝜏)| 

Where 0 is considered as the zero Boolean function. The scalar value between the zero Boolean 

function and correlation coefficient 𝜏 is proportional to 𝕀(𝜏). Any function having zero imbalance 

is balanced and with constant function, it does not correlate. 

➢ Nonlinearity 

Nonlinearity is one of the most important and ideal cryptographic characteristics of Boolean 

functions, which can be demonstrated by the hamming distance between the Boolean function and 

the position of each related function. The concept of nonlinearity of Boolean function is presented 

by W. Meier and O. Staffelbach [4]. 

Definition 1.17 [4] The minimum Hamming distance between the set of all r-variable affine 

functions and an r-variable Boolean function 𝜏. Mathematically, it is defined as 

𝑁𝐿(𝜏) = 0.5(2𝑟 − 𝐾𝑚𝑎𝑥)  

where 𝐾𝑚𝑎𝑥 is the maximum absolute value in the Walsh-Hadamard transform vector. 

Nonlinearity can be evaluated based on various existing standards for Boolean functions. It 

also contains the minimum distance to the affine function and the order of the Boolean function. 

every linear system can be easily cracked by linear cryptanalysis. The Boolean function is the most 

effective way to measure nonlinearity because it means that a small change in the truth table will 
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result in a small change in the minimum distance. To obtain more nonlinearity, the minimum 

distance must be reduced to an affine function [4]. 

An important description of Boolean functions in correspondence to their cryptographical 

features is in terms of the autocorrelation function. This feature of the Boolean function is attained 

through the derivative. The effect of the result of the Boolean function in the variable direction is 

realized by the derivative of the Boolean function according to the change of its input data. 

Definition 1.18 [1] Suppose 𝜏(𝑣) be the Boolean function and 𝓇(s) denote autocorrelation 

function of 𝜏(𝑣)  then 𝓇(s) is expressed as: 

𝓇(s) = ∑ 𝜏∗(𝑣)

𝑣

𝜏∗(𝑣⨁𝑠), 𝑣, 𝑠 ∈ {0,1, … , 2𝑟−1} 

The autocorrelation function describes that how much the directional derivative 

corresponding to the input of a Boolean function deviates concerning 𝑠, ∀ 𝑣 ∈ {0,1, … , 2𝑟−1}. The 

definition of autocorrelation categorizes two important features of Boolean functions parallels to 

the value of 𝑠. If 𝑠 ≠ 0, then 𝓇(s) = 2𝑟𝒞(𝜏(𝑣), 𝜏(𝑣⨁𝑠)) which means the correlation between 

𝜏(𝑣) and 𝜏(𝑣⨁𝑠) is proportional to autocorrelation. On the other side, if 𝑠 = 0 then AC is 2𝑟. This 

implies that there is no alteration in the function corresponding to 𝑠. Autocorrelation is essential 

for studying Boolean functions in cryptography because cryptanalysis abuses its unbalanced 

derivatives.  

The absolute index is the most important amount of cipher that the autocorrelation function 

can observe. It is used to evaluate the avalanche characteristics and states the absolute maximum 

value other than zero for the autocorrelation function |𝐴𝐶𝑚𝑎𝑥| such that 𝓇𝑚𝑎𝑥( 𝑠) ∈ [0, 2𝑟−1]. The 

AC function can also be utilized to derive the absolute indicator. 
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➢ Avalanche Property 

The avalanche characteristic is one of the most important characteristics of the Boolean 

function proposed by Feistel [5]. The Boolean function τ justify that the avalanche criterion is 

holding if and only if the change of the input bit changes half of the average output bit.  

The Avalanche property provides confusion in the expected result. It allows us to get 

randomness in the results. The effect of changing the input bit on the output bit of the Boolean 

function can be estimated by considering the derivative of the Boolean function. The derivative 

expression of the Boolean function is defined as follows. 

𝒹𝑠𝜏(𝑣) = 𝜏(𝑣)𝜏(𝑣⨁𝑠) 

Definition 1.19 [1] Suppose 𝒜𝑦𝑗
(𝜏) represents the avalanche effect for a Boolean function 𝜏(𝑣) 

corresponding to a variable 𝑦𝑗. Then 𝒜𝑦𝑗
 is expressed by the equation.  

𝒜𝑦𝑗
= 𝑝𝑟𝑜𝑏(𝜏(𝑣)⨁𝜏(𝑣⨁𝑦𝑗) = 1), ∀ 𝑣 

➢ Completeness 

The concept of the completeness property of a Boolean function is presented by Davida and 

Kam [6]. They claim that each output of the Boolean function depends on all the input bits of the 

Boolean function. According to the claim, "If there is a pair of input bits for each input y bit and 

output x bit of a Boolean function, they differ only in the y bit, but their output is different in the x 

bit, the function has a good completeness effect”. 

Definition 1.20 [1] A function ℤ2
𝑟 → ℤ2

𝑠  is complete if and only if  

∑ 𝜏(𝑣)⨁𝜏(𝑣⨁𝐶𝑗
𝑟) > (0,0, … ,0), ∀ 𝑗 = 1,2, … , 𝑟

𝑣∈𝑍2
𝑟

 

where the summation and greater-than (>) both are applied pair wise. 
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➢ Strict Avalanche Criteria 

The idea of SAC was originally proposed by Webster and Tavares [7]. In fact, they combine the 

characteristics of avalanches with the integrity of Boolean functions. When cryptographers want 

to map the τ r bit complexity to one bit, they use SAC. According to SAC, changing the single 

input bit may change half of the output bits. Therefore, the optimal probability of SAC is half [8]. 

Definition 1.21 [1] An r-variable Boolean function 𝜏 is known as fulfil SAC, if  ∀ 𝑠 𝑊(𝑠) =

1, ∑ 𝜏(𝑣)𝜏(𝑣⨁𝑠) = 2𝑟−1
𝑣 . 

➢ Correlation Immunity and Resilience 

Correlation immunity evaluates the degree of independence between the output bits of a Boolean 

function and the linear combination of inputs [8]. More precisely, a Boolean function 𝜏(𝑣) with a 

correlation of 𝑖𝑡ℎ order immune if it does not depend upon any of the subsets with input variable 

𝑖 (1 ≤ 𝑖 ≤ 𝑟). 

Definition 1.22 [1] For Boolean function 𝜏(𝑣) of r-variable having WHT polarity 𝐾∗(𝑥), it is a 

necessary and sufficient condition for the function to be of 𝑖𝑡ℎ order correlation immune that 

𝐾∗(𝑥) = 0 for each non-zero 𝑥,  𝑊(𝑥) ≤ 𝑟. In cryptography, it is very important to have a 

correlation immune Boolean function to provide resistance against divide and conquer attacks [8]. 

A function is Resilience if it is balanced and has correlation immune. 

Definition 1.23 [1] For an r-variable Boolean function 𝜏(𝑣) having WHT polarity 𝐾∗(𝑥). It is the 

necessary and sufficient condition for the function to be r-resilient that for all ∀ 𝑥 𝑤𝑖𝑡ℎ 𝑊(𝑥) ≤ 𝑟, 

we must have 𝐾∗(𝑥) = 0. 
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1.3.3 The S-box 

In this section, the S-box theory will be discussed. The basic description of the S-box theory is 

presented for the support of research development. This section also discusses the encryption 

capabilities of the S-box. 

➢ Definition of S-box 

S-box is a usual advancement from single input theory to multiple output Boolean 

functions. Using the ratio of input and output bits in terms of singularity and dimensionality, 

different types of S-boxes can be obtained. We have listed some important S-box definitions below 

and briefly described some of the important types of S-boxes. 

In this overview, a nonlinear transformation with 𝑚 input bits result in 𝑛 output bits is an 

𝑚 × 𝑛 S-box. 

𝐹: ℤ2
𝑚 → ℤ2

𝑛 

Therefore, a fixed combination of m unique output Boolean function is called an S-box.  The 

possible inputs and outputs for an 𝑚 × 𝑛 S-box are 2𝑚  and 2𝑛 respectively. An 𝑚 × 𝑛 S-box 𝐹 is 

indexed as 𝐹[𝑗] (𝑗 ∈ [0, 2𝑚−1]),  each input consists of 𝑛 bit composition is usually described as a 

rectangular 2
𝑚

2 × 2
𝑛

2   dimensional matrix. 

The position of the output bits of the Boolean function is described as follows:  

For the function 𝑔𝑗 assigned to a binary vector of length 2𝑚, consider the 𝑚 functions 

𝑔1, 𝑔2, … , 𝑔𝑚. Then 𝐹 = [𝑔1, 𝑔2, … , 𝑔𝑚] is the S-box with 𝑔𝑗 as the column vectors, usually 

described as a 2𝑚 × 𝑚 bit matrix. Any input 𝑢 = 𝑢1, 𝑢2, … , 𝑢𝑚 results as an output 𝑣 =

𝑣1, 𝑣2, … , 𝑣𝑚 through the assignment ℎ𝑗(𝑢1, 𝑢2, … , 𝑢𝑚) = 𝑣𝑗 . 

According to the input and output bits of the S-box, we can classify S-box into one-to-one, 

envelope, and bijection. The definition of each category is given below. 
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Consider an S-box  𝐹 with the dimension 𝑚 × 𝑛, here 𝑚 input and 𝑛 are output bits. For 

𝑚 < 𝑛 then 𝐹 is said to one-one S-box if it has different output entries. In this case, it is impossible 

for 𝐹 to have all outputs as its entries. 

If input bits are greater than the output bits of S-box 𝐹 then there is a repetition in the entries 

of the S-box. If  𝐹 covers all the outputs entries, then it is called onto. 

Lastly, the input and output bits are equal (𝑚 = 𝑛) then two possibilities occur. 

a) The S-box 𝐹 covers all input bits results as a different output bit which shows that it covers 

all possible distinct entries. 

b) The S-box 𝐹 mapped different input bits to similar output bits, then 𝐹 does not contain all 

entries and has repeated entries. 

For the first case with distinct entries, 𝐹 is called bijective. Similarly, 𝐹 is both one-to-one and 

onto then is called bijective. This situation arises only when both input and output bits are same 

and such a S-box is renown as invertible S-box.  

1.3.4 Cryptographic Properties of S-box 

1.3.4.1 Nonlinearity of S-box 

Suppose 𝐶𝑙 represents the set of all nontrivial linear combinations of the columns of an S-

box 𝑆, then the nonlinearity of 𝑆 will be 𝑁𝐿(𝑆) = min 𝑁𝐿(𝑔), where 𝑔 ∈ 𝐶𝑙. In a simpler way, the 

smallest possible Hamming distance between the entire affine functions of 𝑟 variables and the 

component function of S-box 𝑆 is equal to its nonlinearity 𝑁𝐿(𝑆). This generalization is carefully 

connected with linear attacks as in linear attack hackers try to drive linear equations to approximate 

the S-box. 

It is an important observation that the nonlinearity is left and right affine invariant for S-

boxes and its value will not be changed by adding an affine function to an S-box 𝑆. Similarly, for 
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𝑃: ℤ2
𝑞

→ ℤ2
𝑟to be an onto linear (or affine) function it can also be justified that 𝑁𝐿(𝑆 𝑜 𝑃) =

2𝑞=𝑟𝑁𝐿(𝑆). 

The equation connecting the nonlinearity of Boolean function and the maximum magnitude 

of the Walsh transform has the following comparison. 

𝑁𝐿(𝑆) = 2𝑟−1 − 0.5𝑚𝑎𝑥𝑥∈(𝑉2
𝑡) ;𝑧∈(𝑉2

𝑟) | ∑ (−1)𝑥.𝐹(𝑣)⨁𝑧.𝑣

𝑣∈𝑉2
𝑟

| 

Therefore, the nonlinearity of S-box 𝑆 and its inverse 𝑆−1 are equal if and only if 𝑆 is a 

bijection and 𝑟 = 𝑡. 

1.3.4.2 Algebraic Degree for an S-box 

The algebraic degree of an S-box should be high, in order to resist against cryptanalytic 

attacks. The next definition provides the description of the algebraic degree of an S-box. 

Definition 1.24 [1] Suppose an 𝑡 × 𝑟 S-box 𝑆 = (𝜏0, 𝜏1, … , 𝜏𝑟−1) with Boolean functions 

𝜏𝑖 (1 ≤ 𝑖 ≤ 𝑟 − 1) of 𝑡 variables and ℎ𝑗  contained all linear combinations of 𝜏𝑖  (ℎ = 0,1,2, … , 𝑟 −

1) (including 𝜏𝑖 ). Then algebraic degree, 𝑑𝑔(𝑆𝑡, 𝑟), for 𝑆 can be defined by the following 

expression. 

𝑑𝑔(𝑆𝑡, 𝑟) = 𝑚𝑖𝑛ℎ{𝑑𝑔(ℎ𝑗)} (1 ≤ 𝑗 ≤ 2𝑟 − 1) 

1.3.4.3 Autocorrelation of S-box 

The autocorrelation of an S-box is the supreme autocorrelation for all linear combinations 

of each Boolean function of an S-box.  

Suppose an 𝑡 × 𝑟 S-box 𝑆 = (𝜏0, 𝜏1, … , 𝜏𝑟−1) with Boolean functions 𝜏𝑖  (1 ≤ 𝑖 ≤ 𝑟 − 1) 

of t-variable and 𝐻𝑗 contains all linear combinations of each Boolean function of 𝑆. The 

autocorrelation, 𝐴𝐶(𝑆𝑡, 𝑟), for 𝑆 can be defined by the equation. 

𝐴𝐶(𝑆𝑡, 𝑟) =  𝑚𝑎𝑥𝐻{𝑓(𝐻𝑗)}(𝑗 = 1, … ,2𝑟 − 1) 
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Definition 1.25 [1] A function 𝜏: 𝑉2
𝑟 → 𝑉2

𝑡 is complete if and only if for every 𝑖 (1 ≤ 𝑖 ≤ 𝑟) 𝜏 must 

satisfy the inequality: 

∑ 𝜏(𝑣)⨁𝜏(𝑣⨁𝐶𝑖
𝑟) > (0,0,0, … ,0)

𝑣∈𝑉2
𝑟

 

Where 𝐶𝑖
𝑟 is the vector, whose hamming weight is the unit at the 𝑖𝑡ℎ position. 

This represents the necessity of each single output bit on the whole set of input bits. Hence 

for a complete function, it is a necessary condition that each expression of output bit depends on 

the input bits to comprehend all the input bits for a Boolean function. 

Definition 1.26 (Avalanche effect) [1]. A function 𝜏: 𝑉2
𝑟 → 𝑉2

𝑡 has avalanche effect if and if it 

satisfied the equation: 

∀ 𝑖, ∑ 𝑊(𝜏(𝑣)⨁𝜏(𝑣⨁𝐶𝑖
𝑟)) = 𝑟2𝑟−1,   (1 ≤ 𝑖 ≤ 𝑟)

𝑣∈𝑉2
𝑟

 

Where 𝐶𝑖
𝑟 is the vector, whose hamming weight is the unit at the 𝑖𝑡ℎ position. It mean nearly half 

of the output bits alter when we take the complement of one input bit. 

1.3.4.4 Strict Avalanche Criterion (SAC) 

If a single variation in input creates series of alterations in the entire substitution 

permutation network, the avalanche effect is observed that is nearly half of the resulting bits have 

change values by a single change. 

A function 𝜏: 𝑉2
𝑟 → 𝑉2

𝑟 satisfied SAC if the following relation holds: 

∀ 𝑖, ∑ 𝜏(𝑣)⨁𝜏(𝑣⨁𝐶𝑖
𝑟) = (2𝑟−1, 2𝑟−1, 2𝑟−1, … , 2𝑟−1)  (1 ≤ 𝑖 ≤ 𝑟)

𝑣∈𝑉2
𝑟

 

Especially, the function 𝜏: 𝑉2
𝑟 → 𝑉2

𝑟 satisfied SAC suggests that 𝜏 is a robust Boolean S-

box. It means the probability of complimenting one input bit should deviate nearly half of the 
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output bits. If an S-box satisfied SAC and has completeness property, then it is considered a robust 

S-box. 

If any relation between input and output bits exists, then cryptanalysts utilizing plaintext 

attacks can search for the secret key utilizing the relationship between input and output bits. 

1.3.4.5 Bit Independence Criterion (BIC) 

The independence of pair-wise avalanche vectors and the variations of input bit are the 

significant aspects of the bit independence criterion. The basic theme of the bit independence 

criterion (BIC) is the complementation of a single input bit. 

A function 𝜏: 𝑉2
𝑟 → 𝑉2

𝑟 satisfies BIC if ∀ 𝑚, 𝑛, 𝑡 ∈ {1,2,3, … , 𝑟} with 𝑛 ≠  𝑡, altering 𝑚 

input bits made 𝑛 and 𝑡 output bits to vary separately. It is very important in BIC analysis, to focus 

on avalanche vector 𝐴𝑒𝑚 which is the correlation of 𝑛𝑡ℎ and 𝑡 he modules in the output bits. 

The parameter 𝐴𝑗 of BIC affected by the change in the 𝑚𝑡ℎ input bit on the output bits 𝑛 

and 𝑡 is defined by [4]: 

𝐵𝐼𝐶(𝑝𝑡, 𝑝𝑚) = 𝑚𝑎𝑥1≤𝑛≤𝑟|𝒞(𝑝𝑡
𝑒𝑛, 𝑝𝑟

𝑒𝑛)| 

More generally: 

𝐵𝐼𝐶(𝜏) = 𝑚𝑎𝑥1≤𝑛,𝑡≤𝑟𝐵𝐼𝐶(𝑝𝑡, 𝑝𝑚) 

This relationship shows the closeness for 𝜏 to satisfy the BIC. The values for 𝐵𝐼𝐶(𝜏) remain in the 

interval [0,1]. The value 0 is considered as ideal and 1 as foulest. 

 

1.4 Basic Terminologies of Non-associative Structures 
Definition 1.27 [9] Let 𝑆 ≠ ∅ be set and “ ∗ ” be operation on 𝑆 then ∗ is called binary operation 

on 𝑆 if and only if 

∀ 𝑠1, 𝑠2 ∈ 𝑆 ⟹ 𝑠1 ∗ 𝑠2 ∈ 𝑆 
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If “ ∗ ” a binary operation on 𝑆, then (𝑆,∗) is called groupoid. 

Definition 1.28 [9] A groupoid (𝑆,∗)  is called Semigroup if it is associative, that is  

∀ 𝑠1, 𝑠2, 𝑠3 ∈ 𝑆,    (𝑠1 ∗ 𝑠2) ∗ 𝑠3 = 𝑠1 ∗ (𝑠2 ∗ 𝑠3) 

Definition 1.29 [9] A semigroup  (𝑆,∗)  is called a monoid if there is a unique element 𝑒 ∈ 𝑆 

satisfying.                                     𝑒 ∗ 𝑠 = 𝑠 ∗ 𝑒 = 𝑠  , ∀ 𝑠 ∈ 𝑆  

𝑒 is called the identity element of set 𝑆. 

Definition 1.30 [9] A monoid (𝑆,∗)  is called a group if, for each element 𝑠1 ∈ 𝑆, there is a unique 

element 𝑠2 in 𝑆 which satisfying     𝑠1 ∗ 𝑠2 = 𝑠2 ∗ 𝑠1 = 𝑒  . 

Example 1.1 The sets ℤ, ℚ, ℝ, 𝑎𝑛𝑑 ℂ are all groups under the binary operation of “ + ”. 

(ℤ𝑚, +𝑚𝑜𝑑 𝑚) is also group with 0 as an identity element, here ℤ𝑚 = {0,1,2, … , 𝑚 − 1}. For each 

𝑠1 ∈ ℤ𝑚 has an inverse – 𝑠1 which hold𝑠 𝑠1 + (−𝑠1) ≡ 0 𝑚𝑜𝑑(𝑚). But the set ℤ𝑚 𝑖𝑠 not a group 

under the binary operation “∙ “mod m.  

Remark 1.31 The sets (ℕ,∙)𝑎𝑛𝑑 (ℤ,∙) are monoid only but not groups. Here operation” ∙ ” is a 

simple multiplication of numbers. 

Definition 1.32 [9] Let 𝐿 be a non-void set together with a binary operation ∗ (𝑥, 𝑦) → 𝑥 ∗ 𝑦 . Then 

𝐿 is called quasigroup if the following axioms are satisfied. 

1. The equation 𝑥 ∗ 𝑦 = 𝑧 determines a unique element 𝑦 ∈ L for given x, z ∈ L. 

2. The equation 𝑥 ∗ 𝑦 = 𝑧 determines a unique element 𝑥 ∈ L for given y, z ∈ L. 

Example 1.2 

∗ 1 2 3 

1 3 1 2 

2 2 3 1 

3 1 2 3 
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Definition 1.33 [9] A quasigroup is said to be a loop if it has a two-sided identity element 𝑒 ∈ 𝐿 

for example. 

𝑒 ∗ 𝑥 = 𝑥 ∗ 𝑒 = 𝑥   for all 𝑥 ∈ 𝐿. 

Example 1.3 

∗ 0 1 2 3 4 

0 0 1 2 3 4 

1 1 3 0 4 2 

2 2 4 3 1 0 

3 3 2 4 0 1 

4 4 0 1 2 3 

 

Definition 1.34 [9] A subset 𝐻 of a loop (L,∗) is called a subloop if it is itself a loop under the 

same binary operation. 

Definition 1.35 [9] Suppose 𝐿 be a loop and 𝑎 ∈ 𝐿, Then a mappings 𝐿𝑎: 𝐿 ⟶ 𝐿 and 𝑅𝑎: 𝐿 ⟶ 𝐿 

s.t 𝐿𝑎(𝑥) = 𝑎𝑥 and 𝑅𝑎(𝑥) = 𝑥𝑎 are called the left and right translation respectively. 

Proposition1.36 [9] Suppose 𝐿 be a loop and 𝐻 is a non-void subset of 𝐿. Then the following 

axioms are equivalent 

1. H is a subloop of 𝐿. 

2. If x, y ∈ H, implies that xy, xR(y)−1and xL(y)−1are all in H. 

3. For any elements 𝑥, 𝑦, 𝑧 of loop 𝐿, in an equation 𝑥𝑦 = 𝑧 if any two of these are in 𝐻, 

Then the third element also belongs to H.   
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Remark 1.37 [10] Lagrange’s theorem does not hold in a loop. 

Example 1.4 

∗ e=1 2 3 4 5 6 7 

e=1 1 2 3 4 5 6 7 

2 2 3 1 6 7 5 4 

3 3 1 2 7 6 4 5 

4 4 7 6 5 1 2 3 

5 5 6 7 1 4 3 2 

6 6 4 5 3 2 7 1 

7 7 5 4 2 3 1 6 

 

a 1 2 3 4 5 6 7 

a-1 1 3 2 5 4 7 6 

 

This loop of order 7 has 3 subloops of order 3. 

 

∗ 1 2 3  ∗ 1 4 5  ∗ 1 6 7 

1 1 2 3 1 1 4 5 1 1 6 7 

2 2 3 1 4 4 5 1 6 6 7 1 

3 1 2 3 5 1 4 5 7 1 6 7 

Definition 1.38 [9] Suppose (𝐿,∗) be a loop and 𝑥, 𝑦 ∈ 𝐿. Then (𝑥, 𝑦) is called the commutator of 

𝑥, 𝑦 in 𝐿 and is defined as, 

𝑥𝑦 = (𝑦𝑥)(𝑥, 𝑦) 

Definition 1.39 [9] Suppose (𝐿,∗) be a loop and 𝑥, 𝑦, 𝑧 ∈ 𝐿. Then (𝑥, 𝑦, 𝑧) is called the Associator 

of 𝑥, 𝑦, 𝑧 in 𝐿 and is defined as, 

(𝑥𝑦)𝑧 = {𝑥(𝑦𝑧)}(𝑥, 𝑦, 𝑧) 

Definition 1.40 [9] The commutator-associators subloop of loop 𝐿, denoted as 𝐿′, is generated by 

a set of all associators and all commutator of loop L.So 
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𝐿′  = < (𝐿, 𝐿, 𝐿), (𝐿, 𝐿) > 

Definition 1.41 [9] Left nucleus of loop 𝐿 is an associative subloop of 𝐿 defined as 

Nλ(𝐿)={𝑥 ∈ 𝐿, (𝑥, 𝑎, 𝑏) = 1, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎, 𝑏 ∈ 𝐿} 

Definition 1.42 [9] Middle nucleus of loop  𝐿 is an associative subloop of 𝐿 defined as 

Nµ(𝐿)={𝑥 ∈ 𝐿, (𝑎, 𝑥, 𝑏) = 1, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎, 𝑏 ∈ 𝐿} 

Definition 1.43 [9] Right nucleus of loop  𝐿 is an associative subloop of 𝐿 defined as 

Nρ(𝐿)={𝑥 ∈ 𝐿, (𝑎, 𝑏, 𝑥) = 1, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎, 𝑏 ∈ 𝐿} 

Definition 1.44 [9] Nucleus of loop  𝐿 is an associative subloop of 𝐿 defined as 

N(𝐿)= Nλ(𝐿) ∩Nµ(𝐿)∩ Nρ(𝐿)  

Definition 1.45 [9] Center of the loop is denoted by 𝑍(𝐿)and defined as 

𝑍(𝐿)={𝑥 ∈ 𝑁(𝐿), (𝑎, 𝑥) = 1, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎 ∈ 𝐿} 

Definition 1.46 [9] Let (𝐿,∗) be loop and 𝐻 be subloop of loop 𝐿, then 𝐻 is called normal subloop 

if the following axioms hold. 

𝐻𝑎 = 𝑎𝐻, (𝐻𝑎)𝑏 = 𝐻(𝑎𝑏), (𝑎𝐻)𝑏 = 𝑎(𝐻𝑏)𝑎𝑛𝑑 𝑏(𝑎𝐻) = (𝑏𝑎)𝐻 

Definition 1.47 [9] A loop (𝐿,∗), where ∗ denotes the binary operation is called as IP-loop if 

∀ 𝑢, 𝑣 ∈ 𝐿 it satisfies following axioms: 

i. 𝑢 ∗ 𝑒 = 𝑢 = 𝑒 ∗ 𝑢 

ii. 𝑢 ∗ 𝑢−1 = 𝑒 = 𝑢−1 ∗ 𝑢 

iii. Left inverse property existence i.e.  𝑢−1 ∗ (𝑢 ∗ 𝑣) = 𝑣  

iv. Right inverse property existence i.e., (𝑣 ∗ 𝑢) ∗ 𝑢−1 = 𝑣  

 

Remark 1.48 The following properties hold in an IP-loop. 

▪ (𝑢−1)−1 = 𝑢           
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▪ (𝑢𝑣)−1 = 𝑣−1𝑢−1      

▪ N(𝐿)= Nλ(𝐿) =Nµ(𝐿)= Nρ(𝐿) 

Definition 1.49 [9] Let (𝐿,∗)be a loop then for three elements 𝑢, 𝑣, 𝑤 ∈ 𝐿  is termed to be Weak 

Inverse Property (WIP) if the following two equations are satisfied: 

▪ 𝑢𝑣 ∗ 𝑤 = 𝑒 

▪ 𝑢 ∗ 𝑣𝑤 = 𝑒 

Definition 1.50 [9] The loop (𝐿,∗)  is said to be PA-loop if the subloop generated by any element 

𝑎 of 𝐿  is a cyclic subgroup. i.e. 

𝑎 ∗ 𝑎2 = 𝑎2 ∗ 𝑎 

Thus, the cyclic groups are a special case of this class. As in PA-loops, every subloop generated 

by a single element is a cyclic subgroup. 

1.5 Boolean Operations 
Definition 1.51 [11] AND Operation 

Suppose 𝑋 = {0,1}, then a mapping ∧: 𝑋 × 𝑋 → 𝑋 is called AND Operation. Its output is 1 

only when both inputs are 1 otherwise its output is 0. Its truth table is given below: 

𝒔 𝐭 𝐬 ∧ 𝐭 

1 1 1 

 1 0 0 

0 1 0 

0 0 0 

 

Definition 1.52 [11] OR Operation 

Suppose 𝑋 = {0,1}, then a mapping ∨: 𝑋 × 𝑋 → 𝑋 is called OR Operation. Its output is 0 only 

when both inputs are 0 otherwise its output is 1. Its truth table is given below: 
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S T 𝐬 ∨ 𝐭 

1 1 1 

1 0 1 

0 1 1 

0 0 0 

 

 

Definition 1.53 [11] XOR Operation 

Suppose 𝑋 = {0,1}, then a mapping ⊕: 𝑋 × 𝑋 → 𝑋 is called XOR Operation. Its output is 1 

when both inputs are different otherwise its output is 0. Its truth table is given below: 

 

𝐬 𝐭 𝐬 ⊕ 𝐭 

1 1 0 

1 0 1 

0 1 1 

0 0 0 
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Chapter 2 

Construction Scheme of S-boxes over IP-loops 

This chapter is organized as follows: Section 1, contains an introduction. Section 2 describes the 

algebraic structure of IP-loop and proposed S-boxes and the methods to analyses the newly 

developed S-boxes are presented and a comparison of these S-boxes with some of the prevalent S-

boxes used in different security systems is discussed in section 4. 

 

2.1 Introduction 

With the access of information to every corner of the world through the internet, securing 

information and the procedures of securing information are the most important themes presently. 

Every moment, trillions of PINs are created throughout the world for information protection. Any 

advancement in this area will not be enough. To serve this cause, the most prominent studies are 

in the field of cryptography. The role of cryptography is very important as it hides the original 

information and converts it to an unreadable form (cipher text).  Only lawful persons can interpret 

it by using an exact secret key. Occasionally the information is scratched by cryptanalysis, mostly 

known as codebreaking. Of late, most of the cryptographic systems are indestructible. In advanced 

cryptography block ciphers contribute a key role in symmetric (private key-based) cryptosystems. 

In such cryptosystems, only the receiver and the sender know the key [12-13].  

In 1997, the National Institute of Standard and Technology (NIST) first started the symmetric key 

encryption or decryption algorithm. Later in 2001, NIST esteemed the Rijndael method as the 
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Advanced Encryption Standard (AES) [14] as it is unbreakable as compared to Data Encryption 

Standard (DES) [15].  

The S-box is the only nonlinear section of a block cipher, which is responsible for producing 

confusion. Numerous procedures are established for the construction of nonlinear mechanisms to 

rise confusion in recent block ciphers. Retrieval of the unidentified key sequence is convenient 

provided that the block cipher has a linear relationship between the plaintext and the ciphertext. 

[16-25]. The S-box design is mainly based on the Galois field with characteristic 2, so the basic 

algebraic structure needs to be improved and modified. To increase the complexity of S-boxes, it 

makes sense to replace the Galois field with a more general Galois ring configuration. Firstly, the 

Galois ring attained importance in algebraic coding theory in 1979, when Shankar [26] established 

a relationship among the BCH codes over local ring ℤ𝑝𝑘  and the prime field ℤ𝑝. Later in 1999, 

Andrade and Palazzo [23] constructed the BCH codes over finite unitary commutative rings. Both 

constructions are fixated to the maximal cyclic subgroup of the group of units of a Galois ring 

extension of a local ring.  Look at the construction of the S-box based on the Galois field and Galois 

ring, there is an inverse zero constraint. To solve this problem, a piecewise inversion map is used, 

which makes the calculation more complicated to understand. This deficiency is removed in this 

work. The IP-loops-based S-box shows good robustness in terms of its complexity and is very 

useful in cryptosystems. 

 

2.2 Why we use IP-loop 
This chapter proposes an innovative idea of constructing S-boxes over IP-loops of different orders. 

The non-associativity and the existence of zero-element inversion and the uniqueness of each 

element inversion are the main features of the proposed structures. With these characteristics, the 

structure is more generalized as compared with the Galois field and Galois ring. If you consider 



 

32 

the mathematical structure of the S-box based on the Galois field and the Galois ring, there is a 

deficiency of inverse of zero. To solve this problem, a piecewise inversion map is used, which 

makes the calculation more complicated, but this work overcomes this deficiency. The S-boxes 

constructed using this algebraic structure have good characteristics, which shows it is useful in 

cryptosystems. 

2.2.1 Non-group Smallest IP-loop 

The smallest IP-loop which is not a group is of order 7 it is given in Table 2.1. Notably, the order of 

the loop is not divisible by the order of the sub-loop. This structure has proper sub-loops 

{1,2,3}, {1,4,5}and {1,6,7}.  Associativity will not hold in this structure, for example, (2 ∗ 2) ∗ 4 =

3 ∗ 4 = 7 while2 ∗ (2 ∗ 4) = 2 ∗ 6 = 5. Non-associativity allow to construct more structures than 

what occurs for associative structures like Groups, Rings, and Fields. This phenomenon increases 

rapidly as the size increases. Table 2.2 shows how much fast increase is occurring when we are 

going up to order 8 and forwards [9, 10]. 

Table 2.1: The smallest IP-loop of order 7 with their inverses. 

 
 

 

 

 

 

 

 

 

 
 
 

∗ 𝒆 = 𝟏 𝟐 𝟑 𝟒 𝟓 𝟔 𝟕  𝒂 𝒂−𝟏 

𝒆 = 𝟏 1 2 3 4 5 6 7 1 1 

𝟐 2 3 1 6 7 5 4 2 3 

𝟑 3 1 2 7 6 4 5 3 2 

𝟒 4 7 6 5 1 2 3 4 5 

𝟓 5 6 7 1 4 3 2 5 4 

𝟔 6 4 5 3 2 7 1 6 7 

𝟕 7 5 4 2 3 1 6 7 6 
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Table 2.2: Comparison table of different structures of the given order. 

Size Associative 

Structure 

(Group) 

Non-

associative 

(IP-loop) 

Size Associative 

Structure (Group) 

Non-

associative (IP-

loop) 

𝟏 1 1 8 5 8 

𝟐 1 1 9 2 7 

𝟑 1 1 10 2 47 

𝟒 2 2 11 1 49 

𝟓 1 1 12 5 2684 

𝟔 2 2 13 1 10342 

𝟕 1 2 14 − − 

 

2.3 Model of IP-loop based S-boxes 

Many techniques can be used to create confusion in a security system, using an S-box is one of 

the most efficient technique. The S-boxes are constructed using formulas, systematic calculations, 

and mathematical tools. For the improvement of the worth, many people have worked in this field 

and so far, many S-boxes have been generated. The procedure of the S-box construction is given 

below in three steps. 

• Inversion function α: L → L  
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• linear scalar multiple function  β: L → L  

• β ∘ α: L → L. 

 

Fig. 2.1: Diagram of the proposed model 

In the first step, the inverse function mapped elements of the loop into their inverses. And secondly, 

the scalar linear multiple function is treated as a Left translation. Then taking XOR with the 

elements of the loop. In the third step by a composition of the first two steps gives us an S-box. By 

changing the elements of the loop, we obtained different S-boxes. 

Table 2.3: IP-loop L16. 
∗ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 1 2 3 0 7 10 13 12 14 6 15 8 4 9 11 5 

2 2 3 0 1 14 8 11 15 5 10 9 6 13 12 4 7 

3 3 0 1 2 12 15 9 4 11 13 5 14 7 6 8 10 

Consider an IP-loop L 

Applying α: L→L Applying β: L→L 

β◦α :L→L 

S-box 

End 
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4 4 7 11 15 5 6 0 14 10 3 1 13 9 8 2 12 

5 5 13 8 12 6 0 4 11 2 15 14 7 3 1 10 9 

6 6 10 14 9 0 4 5 1 13 12 8 2 15 11 7 3 

7 7 15 12 4 10 13 1 8 9 0 3 5 14 2 6 11 

8 8 11 5 14 15 2 12 9 0 7 13 1 6 10 3 4 

9 9 6 13 10 3 11 14 0 7 8 4 15 2 5 12 1 

10 10 9 15 6 13 1 7 2 4 14 11 12 0 3 5 8 

11 11 14 4 8 2 9 15 13 3 5 12 0 10 7 1 6 

12 12 5 7 13 8 14 3 6 15 1 0 10 11 4 9 2 

13 13 12 9 5 1 7 10 3 6 11 2 4 8 14 15 0 

14 14 8 6 11 9 12 2 10 1 4 7 3 5 15 0 13 

15 15 4 10 7 11 3 8 5 12 2 6 9 1 0 13 14 

In Table 2.3, the IP-loop of order sixteen is given. This IP-loop is non-associative and the inverse 

of zero is zero. The composition map is defined by the following equation. 

                                                          𝛽 ∘ 𝛼(𝑥) = 5𝑥−1 ⊕ 6                                                  (2.1) 

By using the following process entries of the S-box are obtained. Table 2.5 shows 16 distinct values 

of the 4 × 4 S-box. 

Table 2.4: Construction of proposed S-box over 𝐿16. 
L₁₆ 𝜷 ∘ 𝜶(𝒙) = 𝟓(𝒙)−𝟏 ⊕ 𝟔 Entries of Proposed S-box 

0 𝛽 ∘ 𝛼(0) = 5(0)−1 ⊕ 6 3 

1 𝛽 ∘ 𝛼(1) = 5(1)−1 ⊕ 6 10 

. . . 

. . . 

14 𝛽 ∘ 𝛼(14) = 5(14)−1 ⊕ 6 12 

15 𝛽 ∘ 𝛼(15) = 5(15)−1 ⊕ 6 7 
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Table 2.5: Proposed S-box over L16. 
3 10 14 11 

2 6 0 9 

4 13 5 1 

8 15 12 7 

Similarly, by using the IP-loop of order 256 (𝐿256), we construct 8 × 8 S-box by using 

equation 2.1 which is given below. 

𝜷 ∘ 𝜶(𝒙) = 𝟓(𝒙)−𝟏 ⊕ 𝟔 

Table 2.6: Construction of proposed S-box over 𝐿256. 
𝑳𝟐𝟓𝟔 𝜷 ∘ 𝜶(𝒙) = 𝟓(𝒙)−𝟏 ⊕ 𝟔 Entries of Proposed S-box 

𝟎 𝛽 ∘ 𝛼(0) = 5(0)−1 ⊕ 6 3 

𝟏 𝛽 ∘ 𝛼(1) = 5(1)−1 ⊕ 6 1 

. . . 

. . . 

. . . 

𝟐𝟓𝟒 𝛽 ∘ 𝛼(254) = 5(254)−1 ⊕ 6 209 

𝟐𝟓𝟓 𝛽 ∘ 𝛼(255) = 5(255)−1 ⊕ 6 80 

 

Table 2.7: Proposed S-box over L256. 
3 1 13 64 185 246 67 94 123 71 144 201 153 156 59 24 

14 235 175 39 18 216 215 100 56 152 194 242 135 124 33 7 

53 134 219 245 52 68 82 181 98 226 87 178 223 148 137 29 

164 173 91 50 77 74 101 4 119 206 34 252 203 171 151 191 
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189 184 157 121 227 231 233 195 165 15 150 57 139 69 78 2 

118 131 17 20 99 40 180 212 83 103 164 126 141 202 192 239 

75 247 51 243 158 30 230 45 222 104 32 93 198 142 55 111 

251 155 107 21 120 90 63 62 161 47 146 162 72 183 228 127 

129 159 48 92 35 136 95 229 5 115 211 125 138 37 170 205 

65 61 160 70 79 112 23 250 38 196 8 19 9 253 156 240 

197 224 0 46 66 132 109 110 73 97 143 102 108 26 128 31 

255 217 25 89 236 182 113 172 237 163 84 114 49 179 186 193 

190 210 27 238 106 122 28 220 174 96 213 234 54 187 188 147 

249 44 154 76 177 225 16 41 167 130 12 105 85 208 254 214 

200 58 36 6 241 140 248 88 133 116 218 117 60 207 145 199 

43 221 86 244 149 204 11 10 81 232 22 168 169 42 209 80 

 

2.4 Statistical and differential Analyses 

In this section, we perform the necessary evaluations so that the newly constructed S-box fulfils 

the standard conditions and compares it with some cryptographically strong S-boxes, namely: AES 

S-box, APA S-box, and Gray S-box [25, 52-53].  S-box 4x4 based on 16-order IP-loop has a 

maximum nonlinearity of 4, a minimum of 2, and an average of 3, as shown in Table 2.8. The 

nonlinearity of the 8×8 S-boxes has a default value. The upper limit is 112 and the lower limit is 

100; in our case, the average value is 103.75 (S-box on IP-loop of order 256). As the Strict 

Avalanche Criterion (SAC) studies encryption performance, it measures the encryption strength 

and the degree of change of the output bit when the input bit changes. If the input bit changes 

slightly, it may be mandatory. The SAC comparison is shown in Table 2.9. The comparison shows 

that the value of AES S-box is 0.504, which is the same as the S-box through IP-loop of order 256. 

Thus, the SAC analysis of the proposed S-box is better than Skipjack, Prime, and Xyi [46,47,51]. 

The results of the differential approximation probability (DP) analysis of IP-loop based S-box has 
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a value of 0.03906. Table 2.9 shows DP analysis of our proposed S-box and comparison with other 

well-known S-boxes. Table show DP analysis of our proposed S-box is better [46,47,51]. 

Table 2.8: Nonlinearity of proposed 4 × 4 S-box over IP-loop of order 16. 

0 1 2 3 

2 3 4 4 

 

Table 2.9: Comparison of Nonlinearity, SAC and DP analyses. 

 

S-boxes 

 

SAC  

Nonlinearity 

DP 

Average Min. Value Square 

Deviation 

Max DP 

Proposed 0.5046 0.3906 103.75 0.0246 0.03906 

Ref [25] 0.504 0.48 112 0.011 0.0156 

Ref [46] 0.499 0.464 105.75 0.018 0.0468 

Ref [47] 0.502 0.47 99.5 0.017 0.281 

Ref [51] 0.503 0.47 105 0.015 0.0468 

 

According to the Bit Independence Criterion (BIC) to extract information about the validity of 

variables, we compare these variables in pairs, here we exchange the input bits and check the 

independence of the output bits. The feature of bit independence is more popular because the more 

bit parity increases, the greater the problem of identifying the security structure. The following 

table 2.10 compares BIC with some cryptographically strong S-boxes, it can be seen that the BIC 

results have a minimum value and an average value of 98 and 103.929 respectively. The standard 

deviation analysis of our proposed S-box is 2544, which is better and better than [46,47,51].  
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Table 2.10: BIC and LP Analyses of proposed S-box. 

 

S-boxes 

BIC LP 

Average Min value Square 

Deviation 

Max LP Max value 

IP-loop 103.929 98 2.5344 0.1289 161 

Ref [25] 112 112 0 0.062 144 

Ref [46] 101.71 94 3.53 0.132 162 

Ref [47] 104.14 102 1.767 0.109 156 

Ref [51] 103.78 98 2.743 0.156 168 

 

The method of linear approximation probability (LP) is used to investigate the imbalance of an 

incident. The LP method is very useful for determining the maximum imbalance in event results. 

Table 2.10 shows the LP results of some more advanced S-boxes. The maximum LP of the 

proposed S-box is 161, which shows that linear attacks can be countered. These S-boxes are 

comparable to the best S-boxes on the market.  

2.4.1 Differential Attacks 

Hackers usually try to make small changes to the original image and use the proposed technique to 

encrypt the original image; after the encryption process is over, they compare the encrypted image 

with changes and the encrypted image without changes; in this way, they try to find the connection 

between the original image and the encrypted image. These types of attacks are called differential 

attacks. In order to calculate the impact of pixel changes in the original image on the encrypted 

image, this is calculated based on two prominent analyses, NPCR and UACI.  
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Table 2.11: Differential analyses of the proposed structure. 
S-boxes Proposed Ref [25] Ref [30] Ref [46] Ref [51] 

NPCR 99.7222 99.6826 99.7192 99.6155 99.5972 

UACI 33.4960 34.1209 35.4084 33.5205 33.3427 

 

Table 2.11 shows that the NPCR analysis of the proposed S-box is superior to all other S-boxes 

shown in the comparison. These S-boxes are AES, S8 AES, Prime and Xyi respectively 

[25,30,46,51]. The optimal NPCR is 99.99, and the proposed S-box NPCR is almost optimal as 

compared to other S-boxes. The required UACI value is 33.33. Table 2.11 shows that the proposed 

S-box UACI is closed to the UACI value of AES, S8-AES, Prime, and Xyi. The comparison shows 

that compared with these S-boxes the proposed S-box has higher resistance against differential 

attacks. 



 

41 

Chapter 3 

Watermarking and Image Encryption Applications of 

IP-loop based S-boxes  

This chapter is organized as follows: Introduction of watermarking is given in section 1, In section 

2, applications of watermarking have been discussed. In section 3, types of watermarking are 

discussed. Techniques of watermarking are presented in section 4. Section 5 designates the 

methodology for the novel watermarking technique by using the application of the proposed S-

box. Section 6 presents the statistical analyses of the proposed S-box.  

 

3.1 Introduction 

In the modern era, the ways for transferring data have been changed due to the vast 

technology of the internet and communication. Due to this vast technology, the disputes raise for 

reliability and integrity of information or data. In recent epochs, for passing data digital 

communication plays a vital role it. To communicate secretly a lot of internet tactics are used. So, 

the refuge of information against unlawful access has prime importance in this era. Hence, for the 

security of this data, many techniques would be used to hide data. In order to hide data, the most 

commonly used techniques are image encryption, watermarking, cryptography, and steganography. 

As the exertion of the S-box is generally seen in many ciphers like DES and AES. Whereas the use 

of S-box in applications of encryption is broadly accomplished, a fascinating approach to the digital 

watermarking process is presented in this chapter. 
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3.2 Secure Information Transmission 
The hiding of information means to communicate information with the help of any digital 

media or by hiding.  Digital media includes images, audio, a video, or simply a plain text file. 

Information hiding is a universal term covering many sub-disciplines. The most used techniques 

for hiding messages, information, or data are Steganography, Cryptography, and watermarking [62, 

67, 68]. 

 

3.2.1 Steganography 

The art of converting communications is termed steganography.  By the alteration of 

properties of message or data, steganography embeds the message within an alternative object 

which is referred to as cover work. The output given by them is known as stegogramme. 

3.2.2 Cryptography 

In cryptography, with the use of an encryption key the conversion of plaintext message to 

ciphertext should be similarly done by the sender, the receiver decrypts the ciphertext to plain text. 

3.2.3 Watermarking 

The technique used for the insertion of information into data or images is known as digital 

watermarking. Later, this information could be detected by using computing operations for making 

allegations about data. In host data, the watermark is hidden in such a way that it's difficult to 

separate it from data and so it is impervious to several operations not degrading the host file. The 

system of a digital watermarking system involves two types of a watermark embedder and a 
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watermark detector.  In watermark embedding, it embeds a watermark into the cover signal and the 

detector watermark detects the existence of signal of the watermark. In the process of watermark 

detection and embedding a key known as a watermark key is used which has a one-to-one 

correspondence with the signal of a watermark. For every watermark signal, a unique key is used. 

The used key is private which should be known to only authorized parties and it also gives surety 

for the detection of watermark signals by the authorized parties.   

 

3.3 Types of Digital Watermarking 

Digital watermarking can be categorized into three types [67]: 

▪ Visible watermarking 

▪ Robust(invisible) watermarking 

▪ Fragile(invisible) watermarking 

▪ Visible Watermarking 

In visible watermarking a transparent coat is applied onto the image which is visible to the viewer. 

It is used for ownership indication protection for copyright. 

▪ Fragile Watermarking 

If the hidden watermark in the host signal is damaged by passing through certain manipulations 

then it is known as a fragile watermark. 

 



 

44 

▪ Robust Watermarking 

In Robust watermark information embedding into a file could not be destroyed or damaged easily. 

Though no mark is indestructible, the robustness of the system is measured by the required number 

of alterations used to remove the mark which exhibits the file as unworkable. Hence the mark 

should be hidden in that part of the file where the removal can easily be observed. 

Watermark Embedding 

Mostly, a watermark consists of a sequence of binary data which is inserted with the help of a key 

into the host signal. In this process, the embedding information routine executes bit changes in 

signal, resolute by the watermark and key to produce a watermarked signal. 

 

Watermark Extraction 

Watermark extraction is a technique that attempts to extract the watermark from the 

attacked signal. During transmission, if the signal was unchanged then the watermark present in it 

should be easily extracted. In the extraction process, the inputs are watermarked images and private 

or public keys. 
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3.4 Techniques of Watermarking 

   According to the embedding of data, the watermarking techniques are categorized into two types: 

i. Spatial domain technique  

ii. Transform domain technique 

▪ Spatial Domain Technique 

In the spatial domain technique, the image is presented in terms of pixels. By the 

modification of colour and intensity value for few selected pixels, this watermarking technique 

embeds a watermark. With the comparison to transform domain technique spatial domain 

watermarking technique is very simple, having a less computing time but against algebraic attacks, 

it is less strong. To any image, it could be easily applied. The most significant methodology of this 

technique is the least significant bit (LSB) [68]. 
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▪ Least Significant Bit 

The easiest and simplest technique of spatial domain watermarking is LSB in which by 

selecting any random pixel of the cover image can embed a watermark in LSB's.  The following 

are the steps used for embedding watermark in the original image with the help of LSB are: 

i. Conversion of RGB image into Gray-scale-image 

ii. Create double accuracy for the image. 

iii. Shifting high significant bits of watermark image to less significant bits. 

iv. Making host image LSB’s zero. 

v. Adding (step 3) watermarked image shifting version to modified host image (step4). 

▪ Transform Domain Technique 

 In this watermarking technique, relatively to a pixel value, the coefficients transform coefficients 

are modified. For the detection of the watermark, the inverse transformation is applied. The most 

commonly used transform techniques are DCT (Discrete Cosine Transform), DWT (Discrete 

Wavelet Transform), DFT (Discrete Fourier Transform) etc. 

3.5 Watermarking Application of Proposed S-box 

The detailed algorithm of the suggested S-box is illustrated in Fig 3.1. By the establishment 

of a matrix consisting of unit pixels, the image has been processed.  After this, convert each element 

of the matrix in binary form. The induced watermarking algorithm on the image offered in this 

dissertation consists of per pixel 8 bits. In this algorithm, the S-box transformation is appealed over 

4 LSB's of every image pixel. By Fig. 3.1, it can be seen that in this process the partition of 4 LSB’s 

in two paired LSB’s should be done, the values possible range in these pairs is {0,1,2,3}. Those 

values help in the selection of the S-box column or row for the identification of substituted 

elements. So, the image bits should be replaced with bits taken from S-box, hence it completes the 
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nonlinear transformation. This way should be repeated for each pixel in the image. Then transform 

the resulting matrix into the image after that display and save the watermarked image. 

 

Fig. 3.1: Watermarking algorithm of suggested S-box. 

    

Original image Original Histogram 
Proposed 

Watermarked 
Proposed Histogram 

    

[16] Watermarked [16] Histogram [17] Watermarked [17] Histogram 

Fig. 3.2: The original image, watermarked images, and their histograms. 
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Table 3.1: MLC analysis of original and watermarked image of Lena with different S-boxes. 
MLC Entropy Contrast Correlation Energy Homogeneity 

Original 

Image 

7.4881 0.8650 0.8163 0.0948 0.8110 

Proposed 

Watermarked 

7.4682 0.8550 0.8362 0.0903 0.8230 

Watermarked 

Image [16] 

7.0014 0.7145 0.6591 0.0722 0.8152 

Watermarked 

Image [17] 

7.3244 0.8145 0.8115 0.0837 0.8112 

 

3.6 Image Encryption of IP-loop based S-boxes 

In [30] Shah et al. (2011) have given a majority logic criterion (MLC). MLC analysis 

measures the suitability of S-box in the encryption process. In MLC, statistical analysis is 

performed on plain and encrypted data. MLC is very useful for studying statistical prospects such 

as encryption methods, data manipulation, changes, etc. MLC defines an evaluation standard for 

evaluating the results of various statistical analyses, such as energy, homogeneity, correlation, 

entropy, contrast and the last one is absolute average deviation. 

3.6.1 Homogeneity 

The data image has a natural distortion having a relation to that image contents. The analysis 

of homogeneity measures the nearness of elements distribution in Grey-level co-occurrence matrix 

(GLCM) to GLCM diagonal. This process is called a spatial Gray tone-dependent matrix. The 

further extension of this process should be done from GLCM in process entries. The mathematical 

form of homogeneity is as follows: 
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Ƕ = ∑ ∑
Ƞ(𝑘,𝑙)

1+|𝑘−𝑙|𝑙𝑘                                                                      (3.1) 

Here 𝑘, 𝑙 presents the pixels in image, and Ƞ is the presentation of several GLCM matrices [30]. 

3.6.2 Energy 

For the calculation of encrypted image, energy analysis should be used. In this process 

GLCM is used, square elements sum in GLCM is termed as energy. The mathematical formulation 

of energy analysis is given as: 

Ę =  ∑ ∑ Ƞ2|𝑘, 𝑙|𝑙𝑘                                                                (3.2) 

For constant images, it should be 1. 

3.6.3 Correlation  

In this analysis three different types are involved: horizontal, vertical, and diagonal. For the 

partial regions' analysis, the whole image includes in the process. It measures the neighbor 

correlation pixels with the attention of the whole image texture. Its mathematical form is given as: 

Ķ = ∑
(𝑘−𝜋𝑘)(𝑙−𝜋𝑙)Ƞ(𝑘,𝑙)

𝜌𝑘𝜌𝑙
𝑘,𝑙                                                         (3.3) 

3.6.4 Contrast 

The contrast value allows the viewer to detect the hidden object in the image. An amount 

of level contrast in an image steeps the artifacts which allow identification of the image clearly. 

When the image passes through encryption the level of randomness increased, which results in the 

increment of high contrast value. Due to the substitution of non-linear mappings the objects present 

in the image are completely distorted. The whole reading concludes that the high level of contrast 

in encrypted image depicts strong encryption power. In mathematical form, contrast is defined as: 

Ć = ∑ ∑ (𝑘 − 𝑙)2Ƞ(𝑘, 𝑙)𝑙𝑘                                                         (3.4) 
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3.6.5 Entropy 

The measured amount of randomness can be evaluated by entropy. The high amount of 

randomness cause difficulty in detection of image [25]. The non-linear part of the S-box increased 

the amount of randomness of image, its mathematical representation is as follows: 

Ѐ = ∑ Ƞ(𝑢𝑘)𝑛
𝑘=0 log𝑎Ƞ( 𝑢𝑘)                                          (3.5) 

Where 𝑢𝑘is signification of histogram calculations. 

Table 3.2 and Table 3.3 shows that the MLC of  4 × 4  S-box proposed by IP-loop is comparable 

to the S-boxes constructed by Galois field and Galois ring. This shows that the proposed S-box 

satisfies all the criteria appropriate for the standard and can be used for secure communication. 

Table 3.4 Shows the MLC of our 16 × 16 S-box over IP-loop and a comparison of results is made 

with others well-known standard S-boxes like AES, S8 AES, 𝑋𝑦𝑖  and Prime is shown in Table 3.4. 

The proposed S-box has better results than some of the standard S-boxes, which is observed from 

Table 3.4. Fig. 3.3 and Fig. 3.4 show encryption of Lena image with our proposed S-boxes and 

comparable with different S-boxes and corresponding Histogram, respectively. 

Table 3.2: MLC of LSB’s of Lena grey 512×512 image by S-boxes over IP-loop, 𝐺𝐹(24) and GR(4,4) 
MLC 

MSB Image 

Contrast Correlation Energy Homogeneity Entropy 

Plain image 0.2293 0.9502 0.1316 0.9055 7.4455 

IP-loop 

S-box 

2.2665 0.9788 0.1632 0.9178 5.8599 

S-box 

on 𝑮𝑭(𝟐𝟒) 

0.2491 0.9778 0.1689 0.9181 5.9698 

S-box on 

𝑮𝑹(𝟒, 𝟒) 

3.322085 0.087904 0.024477 0.483523 4.73018 
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Table 3.3: MLC of MSB’s of Lena grey 512×512 image by S-boxes over IP-loop, 𝐺𝐹(24) and GR(4,4) 
MLC→ 

MSB Image↓ 

Contrast Correlation Energy Homogeneity Entropy 

Plain image 0.2293 0.9502 0.1316 0.9055 7.4455 

IP-loop S-box 2.5615 0.7980 0.1670 0.8230 5.8582 

S-box 

on 𝑮𝑭(𝟐𝟒) 

1.6909 0.8864 0.1887 0.8477 5.7457 

S-box on 

𝑮𝑹(𝟒, 𝟒) 

2.0590 0.7962 0.3258 0.8729 5.0659 

 

Table 3.4: Statistical analysis results used by MLC of  16 × 16 S-box. 
S-boxes Entropy Contrast Correlation Energy Homogeneity MAD 

Proposed 7.9633 8.5969 0.0019 0.0174 0.4070 38.5638 

Ref [25] 7.7301 7.3220 0.0879 0.0244 0.4835 36.3631 

Ref [30] 7.7094 8.1685 0.2309 0.0227 0.4870 43.5660 

Ref [46] 7.6595 6.3683 0.0996 0.0260 0.4984 36.3082 

Ref [51] 7.6850 7.0652 0.1384 0.0310 0.4928 27.4974 
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Original Proposed S-box Ref [25] 

   
Ref [30] Ref [46] Ref [51] 

Fig. 3.3: Plain image and encrypted image by using various S-boxes. 

   
Original  Proposed S-box  Ref [25] 

   

Ref [30] Ref [46] Ref [51] 
Fig. 3.4: Histogram of the corresponding images in Fig. 3.3
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Chapter 4 

IP-loops Modifying AES   
 

This chapter is described as follows: Section 1, presents an introduction. Section 2 offers the 

design of n × n proposed S-boxes. The detailed encryption scheme of the proposed model is 

discussed in section 3, while section 4 presents the decryption model of the proposed scheme. 

The key schedule for the new model is presented in section 5 and in section 6 cipher example this 

new model is discussed.  

 

4.1  Introduction 

Communication over the globe is becoming a basic need of populaces. Fast-growing 

technological-based soft computing devices for this purpose are being invented by various 

companies in a bulk quantity every passing day. A variety of messages in terms of pictures, 

notifications of civil governments, secret and confidential military movement information, and 

medical reports are transported by individuals as well as organizations via electronic media. The 

ultimate loss and theft of valuable data are causing serious concern among populaces. 

Secure communication has attracted many research centres including the national institute of 

standards NIST and military cyber units etc. to intervene in this grim matter. This journey is not 

very old as it started in the late sixty's. Many recent developments in this field include various 

encryption standards. Several encryption standards like data encryption standard DES [15], triple 

DES [69] and advanced encryption standard AES [70]. Among them, AES is the most secure 

until now.  
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The construction of the nonlinear component of block cipher also known as S-box in AES is 

based on extended binary Galois field. This section produces confusion in the cryptosystem. It is 

one of the desired attributes declared by the theory of Shannon [71], whereas the second one is 

diffusion which is achieved via column mixing, repetition of rounds, and permutation. These two 

are used to gauge the strength of a cipher. Keeping this analogy, many recent developments have 

been published for the design of the S-box [72-75].  

4.2 Design for 𝒏 × 𝒏 S-boxes 
The S-boxes are the basic building blocks in private key cryptosystems. All the symmetric key 

cryptosystems use the process of S-boxes to create confusion in the algorithm. As a result, several 

methods are appeared to design S-box. For this purpose, cryptographers use different algebraic 

structures and try to increase the security of these S-box. So, Binary Galois Field Extension 

𝐺𝐹(28), Local associative Algebras, Pseudo-Random Number Generators (PRNG), and Elliptic 

curves have been used to construct S-box. Here an S-box is constructed over the IP-loop. 

Following transformations have been used in the design of S-box. 

1- Inversion map: Inverts the elements of IP-loop by using the mapping,  𝜎: 𝐿 → 𝐿 as: 

𝜎(𝑥) =  𝑥−1 ,      ∀  𝑥 ∈ 𝐿                                     (4.1) 

2- Right Translation map: Operate right translation map with a fixed element of the loop to 

inverse generating in 1st step by mapping,  𝜑𝑢  ∶ 𝐿 → 𝐿 as: 

𝜑𝑢(𝑥) = (𝑢 ∗ 𝑥) ⊕ 𝑣 ,   𝑥 ∈ 𝐿                                 (4.2) 

where 𝑢, 𝑣 are fixed elements of 𝐿. 

3- Compose both mappings  𝜑𝑢 ⃘𝜎 ∶ 𝐿 → 𝐿 as: 

𝜑𝑢(𝜎(𝑥)) = ( 𝑢 ∗  𝑥−1 ) ⊕ 𝑣                             (4.3) 
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The 1st step inverts the elements of 𝐿 and 2nd step perform the left translation with XOR of the 

fixed element of 𝐿. The composition of these two steps gives us the elements of the required S-

box. We can produce a variety of S-boxes by changing the values of elements 𝑢, 𝑣 ∈ 𝐿. Table 

4.1 gives the IP-loop of order 16. This is a non-associative Loop in which the inverse of zero 

element is itself. 

Table 4.1: IP-loop of order 16.  

The mapping to construct elements of the S-box is given by the following equation. 

𝜑𝑢(𝜎(𝑥)) = 7 ∗ (𝑥)−1 ⊕ 11                                        (4.4) 

 

 

∗ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 1 2 3 0 7 10 13 12 14 6 15 8 4 9 11 5 

2 2 3 0 1 14 8 11 15 5 10 9 6 13 12 4 7 

3 3 0 1 2 12 15 9 4 11 13 5 14 7 6 8 10 

4 4 7 11 15 5 6 0 14 10 3 1 13 9 8 2 12 

5 5 13 8 12 6 0 4 11 2 15 14 7 3 1 10 9 

6 6 10 14 9 0 4 5 1 13 12 8 2 15 11 7 3 

7 7 15 12 4 10 13 1 8 9 0 3 5 14 2 6 11 

8 8 11 5 14 15 2 12 9 0 7 13 1 6 10 3 4 

9 9 6 13 10 3 11 14 0 7 8 4 15 2 5 12 1 

10 10 9 15 6 13 1 7 2 4 14 11 12 0 3 5 8 

11 11 14 4 8 2 9 15 13 3 5 12 0 10 7 1 6 

12 12 5 7 13 8 14 3 6 15 1 0 10 11 4 9 2 

13 13 12 9 5 1 7 10 3 6 11 2 4 8 14 15 0 

14 14 8 6 11 9 12 2 10 1 4 7 3 5 15 0 13 

15 15 4 10 7 11 3 8 5 12 2 6 9 1 0 13 14 
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Table 4.2: Construction of proposed S-box over 𝐿16. 
L₁₆ 𝝋𝒖(𝝈(𝒙)) = 𝟕 ∗ (𝒙)−𝟏 ⊕ 𝟏𝟏 Entries of Proposed S-box 

0 𝜑𝑢(𝜎(0)) = 7 ∗ (0)−1 ⊕ 11 12 

1 𝜑𝑢(𝜎(1)) = 7 ∗ (1)−1 ⊕ 11 15 

. . . 

. . . 

. . . 

14 𝜑𝑢(𝜎(14)) = 7 ∗ (14)−1 ⊕ 11 13 

15 𝜑𝑢(𝜎(15)) = 7 ∗ (15)−1 ⊕ 11 9 

 

The generated S-box over 𝐿16 is given by the following table. 

Table 4.3: Proposed S-box in the form of 4 × 4 matrix. 
12 15 7 4 

10 6 1 11 

2 3 5 14 

8 0 13 9 

In the same way, the S-box used in the AES algorithm can be generated from the non-associative 

IP-loop of order 256. Here we construct the S-box by fixing the elements 231, 181  ∈ 𝐿. 

The composition map is given by the equation: 

                            𝜑231(𝜎(𝑥)) = ( 231 ∗  𝑥−1)  ⊕  181                                      (4.5) 

The process is given as follows: 

 

 



 

57 

Table 4.4: Construction of proposed S-box over 𝐿256. 
   𝑳𝟐𝟓𝟔 𝝋𝟐𝟑𝟏(𝝈(𝒙)) = ( 𝟐𝟑𝟏 ∗ 𝒙−𝟏) ⊕ 𝟏𝟖𝟏 𝑷𝒓𝒐𝒑𝒐𝒔𝒆𝒅 𝑺 − 𝒃𝒐𝒙  

𝟎    𝜑231(𝜎(0)) = ( 231 ∗  0−1) ⊕ 181     147 

𝟏 𝜑231(𝜎(1)) = ( 231 ∗  1−1) ⊕ 181 71 

𝟐 𝜑231(𝜎(2)) = ( 231 ∗  2−1) ⊕ 181   1 

. . . 

. . . 

. . . 

𝟐𝟓𝟒 𝜑231(𝜎(254)) = ( 231 ∗  254−1) ⊕  181 117 

𝟐𝟓𝟓 𝜑231(𝜎(255)) = ( 231 ∗  254−1) ⊕  181 121 

 

Table 4.5: Proposed S-box in the form of 16 × 16 matrix. 
147 71 1 167 142 122 244 186 216 224 114 62 192 76 88 102 

173 61 157 170 221 93 152 150 144 160 222 131 85 75 128 42 

108 96 237 86 57 44 81 138 72 164 137 195 111 64 46 94 

112 38 208 139 31 51 74 110 80 171 34 12 207 21 169 225 

54 146 95 78 248 166 213 4 56 129 35 26 104 37 140 97 

48 22 136 103 43 69 30 0 19 151 193 14 203 55 99 65 

36 185 87 196 202 23 91 77 40 233 209 251 17 218 217 125 

82 32 141 236 239 47 179 50 219 132 119 205 6 254 187 252 

27 124 84 204 161 228 29 176 24 155 223 188 68 15 79 92 

73 83 49 105 39 2 45 245 11 172 220 9 189 199 148 162 

28 52 130 194 159 70 198 5 135 235 229 242 238 191 107 175 

206 156 59 8 13 190 60 183 197 149 100 154 7 174 123 182 

18 101 89 184 165 163 53 158 41 249 113 67 200 215 246 214 

210 133 247 253 98 168 90 58 16 153 115 10 118 25 120 145 
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20 134 63 177 230 226 240 241 227 3 231 143 181 211 234 201 

250 109 116 33 243 178 180 106 66 127 212 255 232 126 117 121 

 

Similarly, we construct the bulk of S-boxes by using different values of 𝑢, 𝑣 ∈ 𝐿. 

4.3 Description of Encryption Algorithm 
In this cipher, the encryption scheme consists of 10 iterative rounds. The input of 128-bits is taken 

as a state array. Before the start of 1st round, the encipher key is operated which was initially 

selected to encrypt data, and then the round function is performed. In this cipher, the round 

function consists of 10 rounds. The final round is slightly different from others. After doing all 

of these rounds the result is output. Each round is performed with different keys which are 

generated in a key schedule by using the initial encipher key. The encryption scheme uses the 

following transformation for encryption. 

SubBytes (), ShiftRows (), MixColumns (), RoundKeyBinding (). In 10th round, the MixColumn 

() operation is not performed. 

4.3.1 SubBytes () Transformation: 

In this transformation, the bytes of state are substituted with bytes of S-box (The process of S-

box designing is given above). It is a non-linear step. i.e. for the bytes 𝑘𝑖 and 𝑘𝑗 of the state    

𝑆𝑢𝑏𝐵𝑦𝑡𝑒(𝑘𝑖) ∗ 𝑆𝑢𝑏𝐵𝑦𝑡𝑒(𝑘𝑗) ≠ 𝑆𝑢𝑏𝐵𝑦𝑡𝑒(𝑘𝑖 ∗ 𝑘𝑗). In this transformation, an invertible S-box is 

used. The SubBytes () transformation is bijective. Each element of loop 𝐿 is mapped onto some 

element of loop 𝐿. So, each element of loop 𝐿 can be inverted in the decryption process. 

For example, the byte of a state i.e. 𝑘𝑖 =  (65)16 can be substituted by using S-box in Table 4.3 

as: 

𝑆((65)16) =  (54)16 

ℎ0,0
∗  ℎ0,1

∗  ℎ0,2
∗  ℎ0,3

∗  

ℎ1,0
∗  ℎ1,1

∗  ℎ1,2
∗  ℎ1,3

∗  

ℎ2,0
∗  ℎ2,1

∗  ℎ2,2
∗  ℎ2,3

∗  

ℎ3,0
∗  ℎ3,1

∗  ℎ3,2
∗  ℎ3,3

∗  
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S-box has no fixed points i.e. there is no byte in 𝐿 such that 𝑆(𝑘𝑖) =  𝑘𝑖. Even the identity element 

of loop 𝐿 is substituted to some element of 𝐿, other than the identity element. 

𝑆((0)16) = (147)16 

4.3.2 ShiftRows () Transformation 

In the process of the ShiftRows (), there is a byte shift that is cyclic across the rows of state. 1st 

row will be unchanged. The ShiftRows () transformation is given as follows: 

                   𝑗𝑟,𝑐
∗  =  𝑗𝑟,(𝑐+𝑠ℎ𝑖𝑓𝑡(𝑟,𝑁𝑏))𝑚𝑜𝑑𝑁𝑏 ,       0 ≤ 𝑟 < 4,    0 ≤ 𝑐 < 𝑁𝑏                       (4.6) 

Here 𝑁𝑏 = 4 and 𝑟 show the row number which decides 𝑠ℎ𝑖𝑓𝑡(𝑟 , 𝑁𝑏) (shift value). Shift value 

is given by. 

𝑠ℎ𝑖𝑓𝑡(1 , 4) = 1 ;           𝑠ℎ𝑖𝑓𝑡(2 , 4) = 2 ;        𝑠ℎ𝑖𝑓𝑡(3 , 4) = 3 ; 

ShiftRows () operation rotates the bytes of rows towards the right according to the rule given 

above. In this operation, Row 𝑛 is moved 𝑛 rounds right. So, every new column which is 

generated after this operation is created with bytes from all columns of state. This transformation 

keeps the columns away from linear independence. The ShiftRows () transformation weakens the 

division of cipher into four independent block ciphers. 

4.3.3 MixColumns () Transformation 

It is a column-wise transformation. This transformation is performed with the help of di-

associative property of the IP-loop. We have divided this transformation into further three sub-

transformations. In the sub-transformation, two bytes of a column are mixed at a time. 

Mathematically the transformations are given as follows: 

𝑙𝑟,𝑐
2  ∗  𝑙𝑟+1,𝑐 =  𝑙𝑟,𝑐

∗                                        (4.7) 

𝑙𝑟,𝑐 ∗  𝑙𝑟+1,𝑐
2 =  𝑙𝑟+1,𝑐

∗                                      (4.8) 

By using the above transformations, the 1st Sub-transformation is given in following Fig. 
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Fig. 4.1: MixColumns () 1st Sub operation 

The 2nd Sub-transformation is given in following Fig.4.1. In this transformation we let  

𝑙𝑖,𝑗
2 ∗ 𝑙ℎ,𝑘 = 𝑚𝑖,𝑘                                    (4.9) 

 

 

 
 
 
 

Fig. 4.2: MixColumns () 2nd Sub Operation 

The 3rd Sub-transformation is given in the following Fig.4.2. In this transformation we let 

𝑚𝑖,𝑗
2 ∗ 𝑚ℎ,𝑘 = 𝑛𝑖,𝑘                              (4.10) 

 

 

 

 
 

Fig. 4.3: MixColumns () 3rd Sub Operation 

This transformation operates on four bytes as input and the resulting output is also four bytes and 

uses an invertible linear transformation. In this transformation, each input byte modifies the four 

𝒍𝟎,𝟎 𝒍𝟎,𝟏 𝒍𝟎,𝟐 𝒍𝟎,𝟑 

𝒍𝟏,𝟎 𝑙1,1 𝑙1,2 𝑙1,3 

𝒍𝟐,𝟎 𝑙2,1 𝑙2,2 𝑙2,3 

𝒍𝟑,𝟎 𝑙3,1 𝑙3,2 𝑙3,3 

 

𝒍𝟎,𝟎
𝟐 ∗ 𝒍𝟏,𝟎 𝒍𝟎,𝟏

𝟐 ∗ 𝒍𝟏,𝟏 𝒍𝟎,𝟐
𝟐 ∗ 𝒍𝟏,𝟐 𝒍𝟎,𝟑

𝟐 ∗ 𝒍𝟏,𝟑 

𝒍𝟎,𝟎 ∗ 𝒍𝟏,𝟎
𝟐  𝑙0,1 ∗ 𝑙1,1

2  𝑙0,2 ∗ 𝑙1,2
2  𝑙0,3 ∗ 𝑙1,3

2  

𝒍𝟐,𝟎
𝟐 ∗ 𝒍𝟑,𝟎 𝑙2,1

2 ∗ 𝑙3,1 𝑙2,2
2 ∗ 𝑙3,2 𝑙2,3

2 ∗ 𝑙3,3 

𝒍𝟐,𝟎 ∗ 𝒍𝟑,𝟎
𝟐  𝑙2,1 ∗ 𝑙3,1

2  𝑙2,2 ∗ 𝑙3,2
2  𝑙2,3 ∗ 𝑙3,3

2  

 

 

 

𝒎𝟎,𝟎 𝒎𝟎,𝟏 𝒎𝟎,𝟐 𝒎𝟎,𝟑 

𝒎𝟏,𝟎 𝑚1,1 𝑚1,2 𝑚1,3 

𝒎𝟐,𝟎 𝑚2,1 𝑚2,2 𝑚2,3 

𝒎𝟑,𝟎 𝑚3,1 𝑚3,2 𝑚3,3 

 

𝒎𝟎,𝟎
𝟐 ∗ 𝒎𝟐,𝟎 𝒎𝟎,𝟏

𝟐 ∗ 𝒎𝟐,𝟏 𝒎𝟎,𝟐
𝟐 ∗ 𝒎𝟐,𝟐 𝒎𝟎,𝟑

𝟐 ∗ 𝒎𝟐,𝟑 

𝒎𝟏,𝟎
𝟐 ∗ 𝒎𝟑,𝟎 𝑚1,1

2 ∗ 𝑚3,1 𝑚1,2
2 ∗ 𝑚3,2 𝑚1,3

2 ∗ 𝑚3,3 

𝒎𝟎,𝟎 ∗ 𝒎𝟐,𝟎
𝟐  𝑚0,1 ∗ 𝑚2,1

2  𝑚0,2 ∗ 𝑚2,2
2  𝑚0,3 ∗ 𝑚2,3

2  

𝒎𝟏,𝟎 ∗ 𝒎𝟑,𝟎
𝟐  𝑚1,1 ∗ 𝑚3,1

2  𝑚1,2 ∗ 𝑚3,2
2  𝑚1,3 ∗ 𝑚3,3

2  

 

 

 

𝒏𝟎,𝟎 𝒏𝟎,𝟏 𝒏𝟎,𝟐 𝒏𝟎,𝟑 

𝒏𝟏,𝟎 𝑛1,1 𝑛1,2 𝑛1,3 

𝒏𝟐,𝟎 𝑛2,1 𝑛2,2 𝑛2,3 

𝒏𝟑,𝟎 𝑛3,1 𝑛3,2 𝑛3,3 

 

𝒏𝟎,𝟎
𝟐 ∗ 𝒏𝟑,𝟎 𝒏𝟎,𝟏

𝟐 ∗ 𝒏𝟑,𝟏 𝒏𝟎,𝟐
𝟐 ∗ 𝒏𝟑,𝟐 𝒏𝟎,𝟑

𝟐 ∗ 𝒏𝟑,𝟑 

𝒏𝟏,𝟎
𝟐 ∗ 𝒏𝟐,𝟎 𝑛1,1

2 ∗ 𝑛2,1 𝑛1,2
2 ∗ 𝑛2,2 𝑛1,3

2 ∗ 𝑛2,3 

𝒏𝟏,𝟎 ∗ 𝒏𝟐,𝟎
𝟐  𝑛1,1 ∗ 𝑛2,1

2  𝑛1,2 ∗ 𝑛2,2
2  𝑛1,3 ∗ 𝑛2,3

2  

𝒏𝟎,𝟎 ∗ 𝒏𝟑,𝟎
𝟐  𝑛0,1 ∗ 𝑛3,1

2  𝑛0,2 ∗ 𝑛3,2
2  𝑛0,3 ∗ 𝑛3,3

2  
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bytes of output.  ShiftRows () and MixColumns () transformations combined provide diffusion in 

the cipher. 

4.3.4 Round Key Binding () Transformation 

Round Key Binding () transformation is the loop operation in which the bytes of state matrix are 

combined with bytes of the key. If 𝑘𝑖,   0 ≤ 𝑖 < 16 are key bytes and 𝑠𝑖,     0 ≤ 𝑖 < 16 are the 

state byte. Round Key Binding () transformation is as follows: 

𝑅𝑘𝑖
(𝑠𝑖) =  𝑘𝑖 ∗  𝑠𝑖                                      (4.11) 

Each Round Key consists of 4 words. In each round, different keys are used which is constructed 

by the process of Key Schedule.  4 words of round key and the columns of state combined as 

follows: 

[𝑙0,𝑐
∗  , 𝑙1,𝑐

∗  , 𝑙2,𝑐
∗  , 𝑙3,𝑐

∗ ] =  [𝑤𝑟𝑜𝑢𝑛𝑑∗𝑁𝑏+𝑐] ∗  [𝑙0,𝑐  , 𝑙1,𝑐  , 𝑙2,𝑐  , 𝑙3,𝑐]        0 ≤ 𝑐 < 4 

Here, keywords are denoted by  [𝑤𝑖] and number of  𝑟𝑜𝑢𝑛𝑑  is in the range 0 ≤ 𝑟𝑜𝑢𝑛𝑑 ≤ 𝑁𝑟. 

Before the start of the round function, the initial key is added where 𝑟𝑜𝑢𝑛𝑑 = 0. In all rounds, 

the round keys are added where 1 ≤ 𝑟𝑜𝑢𝑛𝑑 ≤ 𝑁𝑟 and 𝑙 = 𝑟𝑜𝑢𝑛𝑑 .  𝑁𝑏. 

4.4 Inverse Cipher 
All the transformations used above are invertible and one can easily find the plaintext from the 

ciphertext applying the inverse process. The inverse cipher or Decryption cipher of the encryption 

algorithm consists of the following transformations InvShiftRows (), InvSubBytes (), 

InvMixColumns () and InvRoundkeyBinding (). These transformations are explained in the 

following paragraphs. 

4.4.1 InvShiftRows () Transformation 

The inverse process of ShiftRows () is the InvShiftRows () transformation. In this transformation, 

the bytes of the state are rotated left cyclically according to the rule except for the 1st row. 1st row 
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𝑟 = 0 will be unchanged. The rotation of bytes of the following rows are given by 𝑁𝑏 −

𝑠ℎ𝑖𝑓𝑡 ( 𝑟, 𝑁𝑏 ) and  𝑠ℎ𝑖𝑓𝑡 ( 𝑟, 𝑁𝑏 ) depends upon the row numbers as follows: 

𝑠ℎ𝑖𝑓𝑡(1 , 4) = 1 ;           𝑠ℎ𝑖𝑓𝑡(2 , 4) = 2 ;        𝑠ℎ𝑖𝑓𝑡(3 , 4) = 3 ; 

4.4.2 InvSubBytes () Transformation 

InvSubBytes () operation is the inverse process of the SubBytes () transformation, in which the 

bytes of the state are updated from the bytes of the inverse S-box. The process of constructing the 

inverse S-box is the same as constructing S-box by using the inverse map. First applying the 

inverse of the linear map and then apply the inversion map for the construction of the inverse S-

box. 

(𝜑𝑢(𝜎(𝑥)))
−1

= 𝜎−1(𝜑𝑢
−1(𝑥)) = (𝑢−1 ∗ (𝑥 ⊕ 𝑣))

−1
                  (4.12) 

Where 𝑢, 𝑣 ∈ 𝐿 are the fixed elements of IP-loop which are used for the construction of the S-

box. 

As 𝑢, 𝑣 ∈ 𝐿 are the fixed elements of IP-loop. So the used structure of IP-loop is known by 

the authorized person at the decryption end and he can easily find the inverse of 𝑢 and then find 

the inverse S-box for decryption. 

In the S-box, we have constructed in Sub bytes (), 𝑢 = 231 and 𝑣 = 181   used as fixed elements 

of IP-loop. The inverse of 231 is 141 in IP-loop we have used. So, the inverse mapping for the 

construction of inverse S-box in InvSubBytes () step is given by: 

𝜎−1(𝜑𝑢
−1(𝑥)) = (231−1 ∗ (𝑥 ⊕ 181))

−1
= (141 ∗ (𝑥 ⊕ 181))

−1
 

The inverse S-box is given in the following table. 
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Table 4.6: Proposed inverse S-box in the form of 16 × 16 matrix. 
165 216 29 114 142 192 244 88 71 224 167 62 122 76 186 102 

173 144 157 222 221 85 152 128 61 160 170 131 93 75 150 42 

108 72 237 137 57 111 81 46 96 164 86 195 44 64 138 94 

112 80 208 34 31 207 74 169 38 171 139 12 51 21 110 225 

54 56 95 35 248 13 213 140 146 129 78 26 166 37 4 97 

48 19 136 193 43 203 30 99 22 151 103 14 69 55 147 65 

36 40 87 209 202 17 91 217 185 233 196 251 23 218 77 121 

82 219 141 119 239 6 179 187 32 132 236 205 47 254 50 252 

27 24 84 223 161 68 1 79 124 155 204 188 228 15 176 92 

73 11 49 220 39 189 45 148 83 172 105 9 2 199 245 162 

28 135 130 229 159 238 198 107 52 235 194 242 70 191 5 175 

206 197 59 100 104 7 60 123 156 149 8 154 190 174 183 182 

18 41 89 113 0 200 53 246 101 249 184 67 163 215 158 214 

210 16 247 115 98 118 90 120 133 153 125 10 168 25 58 145 

20 227 63 231 230 181 240 234 134 3 177 143 226 211 241 201 

250 66 116 212 243 232 180 117 109 127 33 255 178 126 106 253 

 

4.4.3 InvMixColumns () Transformation 

InvMixColumns () is inverse process of MixColumns () operation. This transformation applies 

on the state in column-wise manner. The MixColumn () transformations are given by: 

𝑙𝑟,𝑐
2  ∗  𝑙𝑟+1,𝑐 =  𝑙𝑟,𝑐

∗                                     (4.13) 

𝑙𝑟,𝑐 ∗  𝑙𝑟+1,𝑐
2 =  𝑙𝑟+1,𝑐

∗                                   (4.14) 

Here, 𝑙𝑟,𝑐
∗ , 𝑙𝑟+1,𝑐

2  are the output values. By using the power-associativity and di-associativity of 

the IP-loop, the inverse of MixColumn () transformation can be easily done, which is described 

as follows: 

From 𝐸𝑞. (4.13), we can get. 
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𝑙𝑟,𝑐 =  𝑙𝑟+1,𝑐
∗ ∗  (𝑙𝑟+1,𝑐

−1 )
2
                            (4.15) 

By using this value 𝐸𝑞. (4.14),  we get. 

(𝑙𝑟+1,𝑐
∗ ∗  (𝑙𝑟+1,𝑐

−1 )
2

)
2

 ∗  𝑙𝑟+1,𝑐 =  𝑙𝑟,𝑐
∗  

(𝑙𝑟+1,𝑐
∗ )

2
∗  (𝑙𝑟+1,𝑐

−1 )
4

 ∗  𝑙𝑟+1,𝑐 =  𝑙𝑟,𝑐
∗  

(𝑙𝑟+1,𝑐)
3

=  (𝑙𝑟+1,𝑐
∗ )

2
∗  (𝑙𝑟,𝑐

∗ )
−1

 

𝑙𝑟+1,𝑐 =  ((𝑙𝑟+1,𝑐
∗ )

2
∗  (𝑙𝑟,𝑐

∗ )
−1

)
1

3⁄

 

𝑙𝑟,𝑐 ∗  (((𝑙𝑟+1,𝑐
∗ )

2
∗  (𝑙𝑟,𝑐

∗ )
−1

)
1

3⁄

)

2

=  𝑙𝑟+1,𝑐
∗  

𝑙𝑟,𝑐 =  𝑙𝑟+1,𝑐
∗ ∗  ((𝑙𝑟,𝑐

∗ ∗  ((𝑙𝑟+1,𝑐
∗ )

2
)

−1

)

1
3⁄

)

2

                   (4.16) 

4.4.4 InvRoundKeyBinding () Transformation 

The inverse process of RoundKeyBinding () transformation is called InvRoundKeyBinding () 

transformation.  This transformation is also a loop operation in which the state matrix bytes are 

combined with inverses key bytes. If 𝑘𝑖 ,   0 ≤ 𝑖 < 16 are key bytes and 𝑠𝑖,     0 ≤ 𝑖 < 16 are state 

bytes. InvRoundKeyBinding () transformation is given as follows: 

𝑅𝑘𝑖
−1(𝑠𝑖) =  𝑘𝑖

−1  ∗  𝑠𝑖                                                     (4.17) 

 4 inverse round keywords are combined with state columns as follows: 

[𝑙0,𝑐
∗  , 𝑙1,𝑐

∗  , 𝑙2,𝑐
∗  , 𝑙3,𝑐

∗ ] =  [𝑤𝑟𝑜𝑢𝑛𝑑∗𝑁𝑏+𝑐]−1 ∗  [𝑙0,𝑐 , 𝑙1,𝑐 , 𝑙2,𝑐 , 𝑙3,𝑐]        0 ≤ 𝑐 < 4 

Here, keywords are denoted by [𝑤𝑖] and the number of 𝑟𝑜𝑢𝑛𝑑 is in the range 0 ≤ 𝑟𝑜𝑢𝑛𝑑 ≤ 𝑁𝑟. 

4.5 Key Schedule 
In the Encryption algorithm, a 128-bit key is used, which is combined with the state in each round 

as there are 10 rounds in the cipher and key ties with state 10 times in each encryption process. It 
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is a detriment to tie the same key in each round. Some transformations are applied on the key to 

making nonlinearity in key to use it in different rounds. This process of key transformation is 

known as the Key Schedule. Here, we discuss the expansion of cipher key 𝐾 of length 128-bits 

and generates 11 subkeys (one initial key and 10 new subkeys), one key (initial key) is for key 

whitening used before the start of the round function, and the remaining 10 subkeys for 10 rounds.  

The algorithm takes the cipher key 𝐾 as input and breaks it in four blocks or rows of 16 

bytes, called words 𝑤 [ ]. Then apply the transformations known as WordRotation (), SubWord 

(), and RoundConstantBinding[i] and generates 44 words denoted by 

𝑤[0], 𝑤[1], … … … , 𝑤[42], 𝑤[43]. The bytes of the initial key are 𝑘0, 𝑘1 ,   𝑘2, … … … 𝑘15. Where 

𝐾0 is the original key selected for the encryption. The bytes of this key generated the first four 

elements of the key array 𝑤. The other elements of array can be computed as follows: 

It is clear from Fig. that the first word of the subkey 𝑤[4𝑖],    𝑖 = 1, 2, 3, … … 10. Is computed as 

follows: 

𝑤[4𝑖] = 𝑤[4(𝑖 − 1)] ∗   𝑔( 𝑤[4𝑖 − 1] )                            (4.18) 

Here 𝑤( ) is a linear function. It takes four bytes as input and output are also four bytes. A 

recursive process is used to construct the other three words of the subkey. 

𝑤[4𝑖 + 𝑗] = 𝑤[4 (𝑖 − 1) ] ∗  𝑤[4𝑖 − 1 + 𝑗] ,        𝑖 = 1, 2, … … , 10 ,     𝑗 = 1, 2, 3 

The function 𝑔( ) consists of the 3 operations SubWord (), WordRotation () and 

RoundConstantBinding[i]. 

Subword () is an operation in which the input word consists of four bytes and manipulates each 

of these bytes from the S-box and produces a four-byte output word.  

WordRotation () operation takes a four-byte input word i.e. [𝑎0, 𝑎1, 𝑎2, 𝑎3] and applies a cyclic 

permutation on the bytes of the word, and produces a four-byte output word i.e. [𝑎1, 𝑎2, 𝑎3,   𝑎0]. 



 

66 

RoundconstantBinding[i] operation consists of around constant word array [{𝑖𝑖}, {00}, {00}, {00}] 

where {𝑖𝑖} is an element of 𝐿 and apply as Right translation to the 1st byte of the word 𝑤[4𝑖]. The 

values of round coefficient {𝑖𝑖} for the subkeys of the different rounds of the are given by: 

𝑅𝑜𝑢𝑛𝑑𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑇𝑖𝑒[1] =  (11)16 

𝑅𝑜𝑢𝑛𝑑𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑇𝑖𝑒[2] =  (22)16 

𝑅𝑜𝑢𝑛𝑑𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑇𝑖𝑒[1] =  (33)16 

⋮ 

𝑅𝑜𝑢𝑛𝑑𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑇𝑖𝑒[10] =  (𝐴𝐴)16 

This function 𝑤( ) is used for two purposes: 

1- To add the nonlinearity in the Key Schedule. 

2- To remove the symmetry in the AES. 

4.5.1 Inverse Key Schedule 

Inverse Key Schedule is the inverse process of Key Schedule. All the transformations in Key 

Schedule are invertible and easily inverted by using inverse mappings. The inverse process of 

Word Rotation () is the same as an inversion of the SubBytes () step as explained in the previous 

section. The inverse of the SubWord () step is also the same as the inverse of the SubBytes () step 

is explained in the previous section. 

The operation of Binding Round Constant () is invertible. Let 𝑦 =  {𝑖𝑖} is the round constant 

and operated to the 1st-byte 𝑥 of the word  𝑤[4𝑖] and the new byte generated is 𝑧 and given by: 

𝑧 = 𝑦 ∗ 𝑥 

Since 𝑦 is the element of 𝐿 and 𝐿 is IP-loop. So, its inverse is also an element of IP-loop 𝐿. 

i.e. 𝑦−1  ∈ 𝐿. The inverse mapping is given by: 

𝑦−1 ∗ 𝑧 =  𝑦−1 ∗ ( 𝑦 ∗ 𝑥 ) 
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𝑥 =  𝑦−1 ∗ 𝑧                                              (4.19) 

Here, 𝑦 is the round constant and 𝑧 is the output byte, both are known by the person at the 

decryption end. So, he can easily find the original byte by the process mentioned above. 

4.5.2 Security Analyses of Proposed Encryption Algorithm 

All the cryptographic primitives are used for the sack of information security. With the modern 

advancement in cryptanalysis techniques and computation speeds, the security of many 

cryptosystems is compromised. So, the cryptographers are working to construct new secure 

cryptographic primitives and improving the structures of the existing cryptographic primitives to 

meet the security needs of this era. Therefore, new techniques are applied in this field such as the 

arrival of quantum cryptography. In quantum cryptography, quantum bits are used, whose values 

are not restricted at 0 and 1 but can be varied between o and 1. This is the most advanced form of 

cryptography and many cryptographers are working in this field. Some new foundations are also 

introduced in modern cryptography. 

In this chapter, we have presented a new scheme for encryption in the symmetric key 

cryptosystem. This new scheme worked on the lines of the Rijndael Algorithm (AES) but was 

based on a different algebraic structure. It also uses a key of length 128-bits and encrypts a 128-

bit block of data at a time. The encryption scheme consists of 10 rounds as AES. Each round 

contains the four components SubBytes () Transformation, ShftRows () Transformation, 

MixColumns () Transformation and RoundKeyBinding () Transformation. 10 different subkeys 

are generated by a Key Schedule to use in each round of round function. Therefore, as for the 

internal structure of this scheme, it has the same security parameters as in AES. But in this cipher, 

we have used a different algebraic structure known as Non-associative IP-loop of order 256 

instead of the Galois field 𝐺𝐹28. Which makes it different from AES and in some prospectus 

more secure. In the complete cipher scheme, we have used the binary operation, from which the 
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Non-associative IP-loop is formed, Binary multiplication under modulo primitive irreducible 

polynomial. 

Table 4.7: Comparison of no. of binary Galois fields and non-associative IP-loop. 
𝒏 𝟖 𝟏𝟔 𝟑𝟐 𝟔𝟒 𝟏𝟐𝟖 𝟐𝟓𝟔 

𝑴(𝒏) 0 5 71 4262 ? ? 

𝑮𝑭(𝒏) 1 1 3 3 9 8 
 

The main points of the new algorithm are:  

1-  This algorithm also uses the key of 128 bits which is enough secure under the brute force 

attack due to the large key space of 2128.  

2-  It is a simple and flexible cipher with good performance.  

3-  The cipher is designed expecting to protect against known attacks and with conservative 

design.  

4-  The new cipher does not have only 128 bits key. But the loop of order 256 is also used as 

a key. Because without any knowledge of Loop used in Cipher, No one can decipher the text even 

if he knows a key.  

5- In AES, we have only limited structures of Binary Galois Field of order 256. But in this 

cipher, we have used IP-loop of order 256, of which we have a large number of Moufang loops 

of order 256.  

6-  Since in this cipher, the binary operation depends upon the Loop, which is used in our 

encryption scheme. This loop is non-commutative, in which the same numbers operated in 

different ways can give us different results. So, it is also difficult to get any information from the 

energy consumed in this operation.  

7-  This study will bring the cryptographers toward the algebraic structures other than Binary 

Galois Field and diversify the basis of the symmetric cryptography from the Binary Galois Field.  
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8-  This study will also boost up the research in the Non-associative Algebraic Structures and 

their uses in different scientific and technology areas.  

4.6 Cipher Example 
 The following diagram shows the values in the State array as the Cipher progresses for a block 

length and a Cipher Key length of 16 bytes each (i.e., Nb = 4 and Nk = 4). 

𝐼𝑛𝑝𝑢𝑡 =   𝐿𝑜𝑔𝑖𝑐𝑎𝑙 𝑇ℎ𝑜𝑢𝑔ℎ𝑡𝑠 

𝐼𝑛 𝐻𝑒𝑥𝑎𝑑𝑒𝑐𝑖𝑚𝑎𝑙 𝑓𝑜𝑟𝑚:    76  111  67  69  63  61  108  20  54  68  111  75  67  68  74  73 

𝐶𝑖𝑝ℎ𝑒𝑟 𝐾𝑒𝑦 =   𝑃𝑢𝑟𝑒 𝑀𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑠 

𝐼𝑛 𝐻𝑒𝑥𝑎𝑑𝑒𝑐𝑖𝑚𝑎𝑙 𝑓𝑜𝑟𝑚:   50  75  72  65  20  77  61  74  68  65  109  61  74  69  63  73  

The values of round keys are taken from the Round Key Schedule Given in the previous section. 

Legend for Cipher (Encrypt) 

Input:  Cipher Input 

s_box:  State after SubBytes () 

s_row: State after ShiftRows () 

m_col: State after MixColumns () 

rk_bd: State after RoundKeyBinding () 

output: Cipher Output 

AES-128(Nk=4, Nr=10) 

 

Logical Thoughts 

Pure Mathematics 

Round 0 

input[76, 111, 103, 105, 99, 97, 108, 32, 84, 104, 111, 117, 103, 104, 116, 115] 

k_sch[80, 117, 114, 101, 32, 77, 97, 116, 104, 101, 109, 97, 116, 105, 99, 115] 

rk_bd[16, 48, 65, 26, 71, 126, 81, 56, 88, 25, 0, 66, 39, 1, 67, 22] 

Round1 

s_box[209, 1, 90, 114, 162, 134, 154, 118, 238, 26, 141, 30, 206, 173, 70, 213] 

s_row[209, 1, 90, 114, 134, 154, 118, 162, 141, 30, 238, 26, 213, 206, 173, 70] 

m_col[209, 1, 90, 114, 134, 154, 118, 162, 141, 30, 238, 26, 213, 206, 173, 70] 
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k_sch[23, 186, 163, 47, 87, 163, 200, 111, 123, 156, 185, 116, 27, 173, 216, 91] 

rk_bd[208, 31, 80, 57, 84, 15, 216, 187, 113, 202, 94, 175, 137, 135, 246, 29] 

Round2 

s_box[239, 197, 210, 74, 117, 77, 124, 227, 193, 144, 230, 163, 59, 23, 180, 217] 

s_row[239, 197, 210, 74, 77, 124, 227, 117, 230, 163, 193, 144, 217, 59, 23, 180] 

m_col[239, 197, 210, 74, 77, 124, 227, 117, 230, 163, 193, 144, 217, 59, 23, 180] 

k_sch[255, 242, 45, 81, 250, 97, 213, 96, 149, 253, 118, 64, 240, 30, 242, 39] 

rk_bd[22, 119, 249, 52, 31, 92, 60, 82, 96, 9, 31, 189, 249, 90, 110, 163] 

Round3 

s_box[213, 78, 192, 129, 197, 254, 109, 242, 137, 46, 197, 91, 192, 158, 38, 204] 

s_row[213, 78, 192, 129, 254, 109, 242, 197, 197, 91, 137, 46, 204, 192, 158, 38] 

m_col[213, 78, 192, 129, 254, 109, 242, 197, 197, 91, 137, 46, 204, 192, 158, 38] 

k_sch[69, 65, 239, 176, 247, 78, 88, 128, 116, 227, 74, 236, 248, 237, 148, 251] 

rk_bd[176, 173, 54, 80, 149, 174, 1, 195, 222, 79, 170, 30, 119, 124, 134, 141] 

Round4 

s_box[12, 223, 181, 210, 251, 167, 173, 96, 39, 226, 156, 157, 78, 142, 19, 67] 

s_row[12, 223, 181, 210, 167, 173, 96, 251, 156, 157, 39, 226, 67, 78, 142, 19] 

m_col[12, 223, 181, 210, 167, 173, 96, 251, 156, 157, 39, 226, 67, 78, 142, 19] 

k_sch[190, 132, 31, 116, 29, 182, 75, 204, 17, 93, 21, 44, 221, 162, 129, 187] 

rk_bd[186, 217, 147, 191, 152, 162, 168, 65, 11, 178, 229, 74, 60, 54, 128, 91] 

Round5 

s_box[183, 64, 235, 71, 80, 212, 236, 90, 62, 4, 123, 146, 109, 181, 143, 198] 

s_row[183, 64, 235, 71, 212, 236, 90, 80, 123, 146, 62, 4, 198, 109, 181, 143] 

m_col[183, 64, 235, 71, 212, 236, 90, 80, 123, 146, 62, 4, 198, 109, 181, 143] 

k_sch[63, 27, 238, 71, 116, 193, 185, 251, 81, 214, 142, 183, 198, 0, 15, 18] 

rk_bd[180, 145, 167, 173, 46, 146, 57, 33, 69, 89, 63, 142, 168, 115, 130, 84] 

Round6 

s_box[116, 155, 151,223,113, 243, 74, 201, 222, 218, 69, 103, 236, 177, 135, 117] 

s_row[116, 155, 151, 223, 243,74,201, 113, 69, 103, 222, 218, 117, 236, 177, 135] 

m_col[116, 155, 151, 223, 243, 74,201,113, 69, 103, 222, 218, 117, 236, 177, 135] 

k_sch[209, 40, 59, 175, 189, 161, 144, 102, 206, 3, 58, 189, 88, 3, 61, 151] 

rk_bd[147, 69, 108, 84, 26, 93, 141, 64, 93, 128, 171, 88, 119, 168, 160, 43] 

Round7 

s_box[235, 222, 10, 117, 114, 194, 67, 110, 194, 143, 196, 238, 78, 236, 168, 50] 

s_row[235, 222, 10, 117, 194, 67, 110, 114, 196, 238, 194, 143, 50, 78, 236, 168] 

m_col[235, 222, 10, 117, 194, 67, 110, 114, 196, 238, 194, 143, 50, 78, 236, 168] 

k_sch[103, 21, 134, 77, 140, 214, 34, 7, 86, 213, 28, 212, 110, 212, 117, 35] 

rk_bd[154, 45, 96, 251, 96, 182, 222, 42, 120, 243, 176, 92, 58, 185, 155, 158] 

Round8 

s_box[112, 25, 137, 176, 137, 16, 39, 102, 9, 179, 12, 254, 18, 187, 104, 240] 

s_row[112, 25, 137, 176, 16, 39, 102, 137, 12, 254, 9, 179, 240, 18, 187, 104] 

m_col[112, 25, 137, 176, 16, 39, 102, 137, 12, 254, 9, 179, 240, 18, 187, 104] 

k_sch[35, 91, 35, 55, 211, 193, 17, 30, 141, 122, 77, 182, 155, 238, 2, 157] 

rk_bd[99, 211, 83, 57, 218, 255, 235, 55, 129, 231, 134, 251, 84, 116, 64, 108] 

Round9 
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s_box[161, 199, 234, 74, 100, 32, 68, 225, 175, 79, 19, 176, 117, 42, 110, 10] 

s_row[161, 199, 234, 74, 32, 68, 225, 100, 19, 176, 175, 79, 10, 117, 42, 110] 

m_col[161, 199, 234, 74, 32, 68, 225, 100, 19, 176, 175, 79, 10, 117, 42, 110] 

k_sch[160, 252, 175, 71, 103, 21, 136, 121, 148, 91,193, 139, 115, 165, 195, 104] 

rk_bd[3, 206, 136, 9, 192, 28, 16, 29, 49, 135, 133, 61, 111, 227, 151, 51] 

Round10 

s_box[189, 84, 3, 46, 0, 237, 209, 217, 57, 23, 75, 89, 34, 107, 207, 97] 

s_row[189, 84, 3, 46, 237, 209, 217, 0, 75, 89, 57, 23, 97, 34, 107, 207] 

m_col[189, 84, 3, 46, 237, 209, 217, 0, 75, 89, 57, 23, 97, 34, 107, 207] 

k_sch[112, 244, 173, 212, 67, 205, 1, 237, 235, 196, 194, 28, 142, 49, 17, 48] 

rk_bd[199, 195, 134, 165, 95, 231, 88, 96, 38, 241, 151, 5, 230, 3, 158, 9] 

 

output in string   Ã├åÑ_þX`&±ùENQµETX×HT 
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Chapter 5 

S-boxes over Power Associative Loop: A first step 

towards use of Non-associative Algebra  
 

The chapter is arranged as follows: Section 1 presents an introduction; the algebraic structure of 

PA-loops and the construction of proposed S-boxes are discussed in section 2. In section 3, the 

strength of the newly proposed S-boxes is assessed and compared with other well-known S-boxes. 

The application of proposed S-boxes in the image encryption scheme and majority logic criterion 

is performed in Section 4. 

 

5.1   Introduction  

In symmetric-key cryptography, the purpose of the S-box is to create confusion and increasing the 

security of the whole cryptographic system. For this reason, many algebraic S-boxes are 

constructed on algebra associative of Galois field. The PA-loop is used for the construction of S-

boxes in this chapter. Compared with cyclic groups and Galois fields, this new structure has 

outstanding characteristics, including the inversion of zero element, non-associativity, and fewer 

constraints. Compared with existing S-boxes, PA-loop based S-boxes are relatively easy to 

construct, and the above-mentioned properties provide many structures for the construction of 

highly non-linear S-boxes. The various algebraic and statistical analyses are used to evaluate the 

proposed S-boxes. The Proposed S-box is cryptographically stronger and can be used in various 

secure communication techniques. 
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5.2 Design of Proposed Model 
In any cryptosystem, confusion can be generated with the help of different methods. However, S-

box is considered the best source of confusion. In the literature, we have seen many S- boxes 

merely depend on the Galois field. Few structures depend upon the algebra  ℤ2
𝑛

 of n copies of the 

binary field ℤ2. Both classes are associative and hence have limited impact as depicted in Table 

5.1. Due to the property of non-associativity, the number of PA-loops is quite larger than the 

groups and the Galois field.  It provides more choices to design a variety of S-boxes by using 

different structures of PA-loops [28]. 

Any of the cryptosystems would become more secure and able to resist malicious attacks with this 

diversity of S-boxes. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Quasi 

Groups 

Power 

Associative 

Loops 

Moufang 

Loops 
Rings Fields 

Groups 

 

Inverse 

Property 

Loops 

Loops 

            Fig. 5.1: Graphical description of associative and non-associative structures. 
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Table 5.1: Classification of associative and non-associative structures of order n.  
n. Loop of order n Non-Associative Loops of order n Groups of order n 

8 11 6 5 

12 8 3 5 

15 3 2 1 

16 2052 2038 14 

18 6 1 5 

20 8 3 5 

21 4 2 2 

24 ≥103 ≥88 15 

27 13 8 5 

28 7 3 4 

30 ≥6 ≥2 4 

 

The steps for the formation of S-box by using PA-loops 𝐿 is defined as: 

1) Firstly, we have to give an inversion mapping. 

Β: 𝐿 →  𝐿 as β (𝑦) = 𝑦−1, where 𝑦 ∈   𝐿.                                                        (5.1) 

2) Secondly, the linear scalar multiple mapping 

𝛾 ∶  𝐿 →  𝐿 is given by 𝛾 (𝑦) =  𝑐𝑦 ⊕  𝑑                                                        (5.2) 

where 𝑦, 𝑐, 𝑑 ∈  𝐿, and 𝑐 ≠  0, 𝑑 are arbitrary scalars and ⊕ is an XOR operation.   

3) The composition mapping 𝛾օβ: 𝐿 →  𝐿 is obtained by 𝛾օβ(𝑦) =  𝑐𝑦−1  ⊕  d. 

4) Apply S16 permutation on given 4 × 4  and 16 × 16 table. 
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5.2.1 Symmetric Group of degree 16 

Symmetric group S16 is a group of permutations of degree 16 which is used to create more 

randomness in our obtained S-boxes. It also gives us more variety of highly non-linear S-boxes by 

using different permutations. We got 16! (20922789888000) different S-boxes with the help of this 

permutation group. In the case of  4 × 4 S-box, the S16 permutation will be operated on all entries 

of the S-box. While in the case of 16 × 16 S-box, we have to apply the permutation on each row 

or column. 

Now we take a PA-loops L of order 16 which is given in Table 5.2. Define a mapping 𝛾օ𝛽: L →  L 

by 𝛾օ𝛽(𝑦) =  7𝑦−1 ⊕ 13 here ⊕ is an XOR of two numbers. Table 5.3 gives the mechanism for 

the construction of the S-box. In Fig. 5.2, the flow chart shows the construction scheme of  4 × 4 

S-boxes. This Table also depicts different 4 × 4 S-boxes by applying different permutations of S16. 

Similarly, we can construct 16 × 16 S-boxes over a PA-loop of order 256 as depicted in Table 5.4. 

We apply different permutations of order 16 like  permutation-1  

(1,13,5,11,9,0,3,12,7,4,15,10,6,14,8,2), permutation-2 (1,6,2,4,0,5,12,3,8,11,14,10,9)(7,15,13), 

permutation-3 (1,5,2,15,6,14,11,10,3,0)(4,13,8,9,12,7) on rows of 16 × 16 S-box as shown in Fig. 

5.3 and then shift the first row into last row, second row into second last row and so on to get the 

permuted S-box. This used permutation is named permutation 1. Fig. 5.3 shows the flow chart and 

different S- boxes after applying different permutations of S16. 

Table 5.2: PA-loop of order 16. 
* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 1 0 3 2 11 6 5 8 7 12 13 4 9 10 15 14 

2 2 3 4 10 6 9 0 1 12 14 7 5 15 8 11 13 

3 3 2 11 13 5 12 1 0 9 15 8 6 14 7 4 10 

4 4 11 6 5 0 3 2 15 14 13 12 1 10 9 8 7 
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5 5 6 1 9 3 10 11 4 13 7 14 2 8 15 0 12 

6 6 5 0 12 2 13 4 11 10 8 15 3 7 14 1 9 

7 7 8 12 0 15 11 10 13 4 5 2 14 6 3 9 1 

8 8 7 9 1 14 4 13 10 11 6 3 15 5 2 12 0 

9 9 12 14 15 13 7 8 5 6 0 11 10 1 4 2 3 

10 10 13 7 8 12 14 15 2 3 11 0 9 4 1 5 6 

11 11 4 5 6 1 2 3 14 15 10 9 0 13 12 7 8 

12 12 9 15 14 10 8 7 6 5 1 4 13 0 11 3 2 

13 13 10 8 7 9 15 14 3 2 4 1 12 11 0 6 5 

14 14 15 13 11 8 0 9 12 1 2 5 7 3 6 10 4 

15 15 14 10 4 7 1 12 9 0 3 6 8 2 5 13 11 

 
Table 5.3: S-box over PA-loop of order 16. 

𝒚 𝜸օ𝜷(𝒚) =  𝟕𝒚−𝟏  ⊕  𝟏𝟑 S-box 

0 7(0)−1  ⊕  13 = 7(0) ⊕ 13 10 

1 7(1)−1  ⊕  13 = 7(1) ⊕ 13 5 

2 7(2)−1  ⊕  13 = 7(6) ⊕ 13 7 

3 7(3)−1  ⊕  13 = 7(7) ⊕ 13 0 

. . . 

. . . 

. . . 

15 7(15)−1  ⊕ 13 = 7(8) ⊕ 13  9 

 
          Table 5.4: S-box over PA-loop of order 256. 

𝒚 𝜸օ𝜷(𝒚) =  𝟕𝒚−𝟏  ⊕  𝟏𝟑 S-box 

0 7(0)−1  ⊕  13 = 7(0) ⊕ 13 10 

1 7(1)−1  ⊕  13 = 7(1) ⊕ 13 81 

2 7(2)−1  ⊕  13 = 7(3) ⊕ 13 32 



 

77 

3 7(3)−1  ⊕  13 = 7(2) ⊕ 13 53 

. . . 

. . . 

. . . 

255 7(255)−1  ⊕ 13 = 7(254) ⊕ 13 198 

 

Fig. 5.2: Flow chart of newly designed 4 × 4  S-boxes. 

PA-loop of order 16 

𝛾: 𝐿 → 𝐿 

𝛾(𝑦) = 7𝑦 ⊕ 13 

𝛾օ𝛽: 𝐿 → 𝐿 

𝛾օ𝛽(𝑦) = 7𝑦−1 ⊕ 13 
 

𝛽: 𝐿 → 𝐿 

𝛽(𝑦) = 𝑦−1 
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Fig. 5.3: Flow chart of newly designed 16 × 16 S-boxes 

PA-loop of order 256 

𝛾: 𝐿 → 𝐿 

𝛾(𝑦) = 7𝑦 ⊕ 13 

𝛾օ𝛽: 𝐿 → 𝐿 

𝛾օ𝛽(𝑦) = 7𝑦−1 ⊕ 13 
 

𝛽: 𝐿 → 𝐿 
𝛽(𝑦) = 𝑦−1 
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5.3 Analyses of S-box 
It is mandatory to analyses the strength of newly constructed S-boxes. Here, we analyse the S-boxes 

by using different algebraic, statistical, differential and histogram analyses. These analyses are 

discussed in the upcoming subsections. 

5.3.1 Algebraic Analyses of S-box 

1) Nonlinearity 

It is the most imperative property of a cryptosystem. Principally, the nonlinearity of an 

outstanding cryptographic system is higher [30]. It measures the confrontation of a system being 

expressed as a set of linear equations and hence confirms resistance against linear cryptanalysis. 

Using the theory of Boolean functions, for a Boolean function 𝑢, the nonlinearity is defined as 

follow: 

                                         𝑁𝐿𝑢 = 𝑑(𝑢, 𝑓𝑖) = min 𝑑 (𝑢, 𝛿);                 𝛿 ∈ 𝑓𝑖                             (5.3) 

where 𝑓𝑖  is the collection of affine Boolean transformations. 

Table 5.5 shows the nonlinearity of our new S-box in comparison with various existing S-boxes.       

Moreover, Fig. 5.4 is the graphical illustration of nonlinearity analyses. 

2) Bit Independent Criterion 

The statistical property of output bit independent criterion (BIC) for an S-box given by Webster and 

Tavares [33] is delineated as, for a certain collection of avalanche vectors, altogether the avalanche 

variables should be pairwise autonomous. This principle gives the impression to highlight the 

proficiency of the confusion function. 

Table 5.6 gives the outcomes of the BIC analysis of our new S-box. The BIC of the new S-box is 

up to the standard as compared to different S-boxes. Moreover, the minimum, average and square 

deviation value of BIC analysis is given in Table 5.7. This table also provides a comparison of the 

new S-box with other reputed S-boxes. Fig. 5.5 is the graphical representation of this comparison. 
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3) Strict Avalanche Criterion Analytically 

For any of the S-box, strict avalanche criterion (SAC) is satisfied if a change in a single input bit 

gives an impact on half of the output bits. When S-box is applied to build an S-P network, then a 

single change on the input of the network causes an avalanche of changes [30]. Table 5.8 shows the 

outcomes of the SAC analysis of the proposed S-box. In addition to this, the average, minimum, 

and square deviation values of SAC in comparison with other S-boxes are shown in Table 5.9. In 

Fig. 5.6 the graphical representation of the SAC comparison between proposed and other S-boxes 

are provided.

             Table 5.5: Nonlinearity Analysis of newly designed S-box with other S-boxes. 
S-boxes F0 F1 F2 F3 F4 F5 F6 F7 Average 

Proposed S-box 108 105 110 104 106 106 106 110 106.87 

Ref [16] 110 106 104 98 108 106 104 96 104 

Ref [17] 104 106 106 106 110 104 100 108 105.5 

Ref [18] 106 108 110 110 108 104 100 108 106.75 

Ref [24] 104 105 105 105 102 103 102 104 103.75 

Ref [25] 112 112 112 112 112 112 112 112 112 

Ref [44] 106 106 106 106 106 106 108 108 106.5 

Ref [45] 112 110 112 112 112 110 112 112 111.5 

Ref [46] 104 104 108 108 108 104 104 106 105.75 

Ref [47] 94 100 104 104 102 100 98 94 99.5 
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Fig. 5.4: Nonlinearity Analysis 

 
Table 5.6: Bit Independent Criterion of newly designed S-box. 

- 107.000 108.000 104.000 108.000 108.000 108.000 106.000 

107.000 - 107.000 103.000 105.000 109.000 105.000 107.000 

108.000 107.000 - 106.000 108.000 106.000 108.000 104.000 

104.000 103.000 106.000 - 108.000 106.000 108.000 104.000 

108.000 105.000 108.000 108.000 - 108.000 104.000 106.000 

108.000 109.000 106.000 106.000 108.000 - 102.000 104.000 

108.000 105.000 108.000 108.000 104.000 102.000 - 104.000 

106.000 107.000 104.000 104.000 106.000 104.000 104.000 - 

 

Table 5.7: BIC Analysis of newly designed S-box with other S-boxes. 
S-boxes Average Minimum Value Square Deviation 

Proposed 106.107 102 1.87729 

Ref [16] 106.27 104 1.578 

Ref [17] 106 102 2.138 

Proposed
S-box

Ref [16] Ref [17] Ref [18] Ref [24] Ref [25] Ref [44] Ref [45] Ref [46] Ref [47]

Average 106.87 104 105.5 106.75 103.75 112 106.5 111.5 105.75 99.5
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114
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Ref [18] 106.27 104 1.578 

Ref [24] 103.929 101 2.052 

Ref [25] 112 112 0 

Ref [44] 104.071 100 2.2349 

Ref [45] 111.3 110 0.934 

Ref [46] 104.14 102 1.767 

Ref [47] 101.71 94 3.53 

 

 

Fig. 5.5: Bit Independent Criterion Analysis 

 

Table 5.8: Strict Avalanche Criterion of newly designed S-box. 
0.507 0.539 0.507 0.445 0.492 0.492 0.507 0.515 

0.492 0.523 0.523 0.476 0.476 0.460 0.507 0.531 

0.539 0.429 0.523 0.460 0.507 0.523 0.445 0.515 

0.554 0.476 0.523 0.492 0.539 0.507 0.492 0.515 

0.539 0.492 0.523 0.523 0.492 0.476 0.507 0.515 

0

20

40

60

80

100

120

Propose
d S-box

Ref [16] Ref [17] Ref [18] Ref [24] Ref [25] Ref [44] Ref [45] Ref [46] Ref [47]

Average 106.107 106.27 106 106.27 103.929 112 104.071 111.3 101.71 104.14

Minimum 102 104 102 104 101 112 100 110 94 102

Sq. Devi 1.877 1.578 2.138 1.578 2.052 0 2.234 0.934 3.53 1.767

BIC Analysis

Average Minimum Sq. Devi
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0.523 0.460 0.507 0.523 0.523 0.539 0.523 0.531 

0.523 0.523 0.523 0.523 0.539 0.507 0.507 0.515 

0.523 0.507 0.507 0.492 0.507 0.429 0.507 0.500 

 

Table 5.9: SAC Analysis of newly designed S-box with other S-boxes. 
S-boxes Minimum Value Average Square Deviation 

Proposed S-box 0.437 0.509 0.013 

Ref [16] 0.390 0.493 0.020 

Ref [17] 0.462 0.500 0.015 

Ref [18] 0.401 0.504 0.018 

Ref [24] 0.429 0.505 0.013 

Ref [25] 0.484 0.504 0.018 

Ref [44] 0.421 0.500 0.018 

Ref [45] 0.437 0.505 0.016 

Ref [46] 0.499 0.464 0.018 

Ref [47] 0.502 0.47 0.017 
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Fig. 5.6: Strict Avalanche Criterion Analysis 

5.3.2 Differential Analyses 
To assess the strength of the cryptosystem, we have examined the impact of differential attacks on 

our system. The differential attack comes into the category of plaintext chosen attacks where the 

attacker evaluates the outcomes that come back to the known ciphertext. Here, the results of the 

two most renowned tests i.e., Unified Averaged Changed Intensity (UACI) and Number of Pixel 

Change Rate (NPCR) are discussed to identify the resistance of the system against differential 

attacks [34]. These tests are given below: 

1) UACI Analysis  

The representation of this analysis can be given as: 

                        𝒰(𝐸1, 𝐸2) =
1

𝐿1×𝑊1
[∑

|𝐸1(𝑥1,𝑦1,)−𝐸2(𝑥1,𝑦1,)|

255𝑥1,𝑦1
] × 100%                          (5.4) 

                                   𝐷𝑏(𝑥1,𝑦1,) = {
0, 𝑖𝑓   𝐸1(𝑥1,𝑦1,) = 𝐸2(𝑥1,𝑦1,)  

   1, 𝑖𝑓    𝐸1(𝑥1,𝑦1,) ≠ 𝐸2(𝑥1,𝑦1,)  
                            (5.5) 

2) NPCR Analysis  

The NPCR analysis is represented as: 

0

0.1

0.2

0.3

0.4

0.5

0.6

Mini.Value Average Sq. Devi

SAC Analysis

Proposed Ref [16] Ref [17] Ref [18] Ref [24]

Ref [25] Ref [44] Ref [45] Ref [46] Ref [47]
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                                           𝒩(𝐸1, 𝐸2) = ∑
𝐷𝑏(𝑥1,𝑦1,)

𝐿1×𝑊1
×  100%𝑥1,𝑦1

                              (5.6) 

Where 𝐿1 and 𝑊1 show the width and height of an image respectively. The symbol 𝐷𝑏 represents 

the bipolar array. Moreover, 𝐸1 and 𝐸2 depict two encrypted images. For 𝐸1 = 𝐸2, value of  𝐷𝑏 =

0 else 𝐷𝑏 = 1. The values of UACI and NPCR of the proposed S-box in comparison with other 

well-known S-boxes are given in Table 5.10. In Table 5.11, the comparative analyses of the 

proposed method with AES are given.

                Table 5.10: NPCR and UACI Analyses of newly designed S-box with other S-boxes. 
Algorithms NPCR UACI 

Proposed 99.61 33.08 

Ref [32] 99.58 28.62 

Ref [33] 98.47 32.21 

Ref [34] 99.42 24.94 

Ref [35] 99.54 28.27 

Ref [36] 99.60 33.42 

Ref [48] 99.30 33.40 

Ref [49] 99.59 33.45 

Ref [50] 99.60 33.46 

 

Table 5.11: Comparison of NPCR and UACI Analyses of the proposed technique with AES.  
Images Loc. NPCR UACI 

Proposed AES Proposed AES 

 First 99.60 99.61 30.56 33.54 

Cameraman Mid 99.63 99.62 37.43 33.53 
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 Last 99.62 99.59 34.55 33.53 

 First 99.01 99.61 30.56 33.54 

Lena Mid 99.62 99.62 37.42 33.53 

 Last 99.63 99.59 34.56 33.53 

 First 99.02 99.61 30.59 33.54 

Baboon Mid 99.63 99.62 37.43 33.53 

 Last 99.61 99.59 34.55 33.53 

5.3.3 Cryptanalysis 

1) Linear Approximation Probability 

It estimates the extreme quantity of the imbalance of an incident. The similarity of the input bits 

chosen by the mask Γx and the similarity of the output bits chosen by the mask Γy must be equal. 

According to [30], the probability of bias of a given S-box is defined as:  

                                               𝐿𝑃 = # max
 Γx ,Γy≠0

|
#{𝑥|𝑥∙Γx=𝑆(𝑥)Γy

2𝑠 −
1

2
|                                              (5.6)           

Where Γx & Γy are the contributions and production masks, respectively, 2𝑠 is a total entity. Table 

5.12 shows the comparison of the LP value of the proposed S-box in comparison with other S-

boxes. Whereas Fig. 5.7 is the graphical representation of this comparison. 

2)  Differential Approximation Probability 

The differential approximation probability of a given S-box (i.e., DPs) is a measure for differential 

uniformity and is defined as: 

                                              𝐷𝑃(∆𝑥 → ∆𝑦) = [
#{𝑥𝜖𝑋|𝑆(𝑥)⊕𝑆(𝑥⊕∆𝑥)=∆𝑦}

2𝑚
]                              (5.7) 
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Table 5.13 depicts the DP values of the proposed S-box and Table 5.14 is the comparison of the 

maximum DP value of the new S-box with other S-boxes. Fig. 5.8 shows the graph of Table 5.14 

comparisons.

Table 5.12: Linear Approximation Probability Analysis of S-boxes. 
S-

boxes 

Proposed 

S-box 

Ref 

[16] 

Ref 

[17] 

Ref 

[18] 

Ref 

[24] 

Ref 

[25] 

Ref 

[44] 

Ref 

[45] 

Ref 

[46] 

Ref 

[47] 

Max 

Value 

157 160 160 161 159 144 162 146 166 156 

Max 

LP 

0.113 0.125 0.132 0.125 0.121 0.062 0.132 0.070 0.148 0.109 

 

 

Fig. 5.7: Linear Approximation Probability Analysis 

Table 5.13: Differential Approximation Probability of newly designed S-box. 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

.015 .015 .015 .015 .023 .023 .023 .015 .023 .023 .023 .023 .015 .015 0.023 0.015 

.023 .015 .015 .023 .023 .023 .031 .023 .023 .015 .031 .023 .015 .015 0.015 0.015 

0
20
40
60
80

100
120
140
160
180

Propos
ed S-
box

Ref [16] Ref [17] Ref [18] Ref [24] Ref [25] Ref [44] Ref [45] Ref [46] Ref [47]

Max. Value 157 160 160 161 159 144 162 146 166 156

Max. LP 0.113 0.125 0.132 0.125 0.121 0.062 0.132 0.07 0.148 0.109

LP Analysis

Max. Value Max. LP
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.015 .031 .023 .015 .023 .015 .023 .023 .023 .023 .023 .023 .015 .023 0.023 0.015 

.015 .015 .031 .015 .023 .023 .023 .023 .023 .031 .031 .023 .015 .023 0.031 0.023 

.023 .015 .023 .023 .023 .015 .023 .015 .023 .023 .031 .023 .023 .031 0.023 0.023 

.023 .023 .023 .015 .023 .031 .023 .023 .031 .015 .023 .023 .023 .023 0.023 0.015 

.023 .015 .023 .023 .023 .031 .031 .023 .015 .023 .023 .031 .023 .023 0.023 0.015 

.023 .023 .023 .031 .023 .039 .023 .023 .031 .023 .023 .023 .023 .015 0.015 0.015 

.015 .023 .031 .015 .023 .023 .023 .023 .015 .031 .023 .023 .023 .023 0.023 0.015 

.023 .023 .031 .023 .023 .015 .023 .015 .023 .023 .023 .031 .023 .023 0.023 0.023 

.015 .023 .023 .023 .015 .031 .023 .023 .031 .023 .031 .023 .023 .023 0.031 0.023 

.023 .023 .031 .023 .023 .023 .023 .031 .023 .023 .031 .023 .023 .023 0.023 0.015 

.023 .023 .023 .015 .023 .023 .023 .015 .023 .023 .023 .023 .023 .031 0.023 0.023 

.015 .023 .023 .039 .023 .023 .023 .023 .031 .023 .023 .023 .023 .023 0.023 0.023 

.015 .023 .015 .023 .015 .023 .023 .031 .023 .023 .023 .031 .023 .023 0.023 0.015 

.023 .023 .023 .023 .023 .023 .023 .023 .031 .023 .023 .031 .023 .015 0.015 - 

 

Table 5.14: Comparison of DP Analysis of newly designed S-box with other S-boxes. 
S-

boxes 

Proposed 

S-box 

Ref 

[16] 

Ref 

[17] 

Ref 

[18] 

Ref 

[24] 

Ref 

[25] 

Ref 

[44] 

Ref 

[45] 

Ref 

[46] 

Ref 

[47] 

Max 

DP 

0.0312 0.125 0.0242 0.0267 0.0390 0.011 0.039 0.015 0.0468 0.281 
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Fig. 5.8: Differential Approximation Probability Analysis 

5.3.4 Histogram Analysis 
The graphical comparison of plaintext and encrypted image can be given by histogram analysis. 

Any of the cryptosystems encrypts plaintext image into an image that has random pixels. After the 

process of encryption, the purpose of histogram analysis is to show the dispersal of these pixels 

[37]. In this work, Fig. 5.9 (a) and 5.9 (b) show the plaintext and encrypted images (encrypted with 

proposed S-box) of Lena respectively. Fig.5.9 (b) is encrypted well enough to give not a hint of the 

original image. Moreover, Fig. 5.9 (c) and 5.9 (d) are the histograms of plaintext and encrypted 

images. The histogram of the cipher image in Fig. 5.9(d) is uniformly distributed and hence assures 

the quality of our S-box encryption.   
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a b 

  

c d 

  

Fig. 5.9: a) Original Lena image b) Encrypted Lena image c) Lena image histogram d) Encrypted Lena image 

histogram. 

5.4 Majority Logic Criterion Test  
In [30], the detailed explanation of the majority logic criterion (MLC) is represented. These 

analyses give a comparison of plaintext images and encrypted images and hence give the true 

assessment of an encryption scheme. Generally, homogeneity, energy, correlation, contrast, and 

entropy are used for MLC analyses. The outcomes of these analyses indicate the strength of the 

encryption scheme and hence involved S-box. The results show that our proposed S-boxes are 

secure and best suited for the encryption process. The 256×256 image of Lena is used for these 

analyses. Table 5.15 and Table 5.16 give the MLC results of the Lena image with the help of 

proposed 4 × 4 while Table 5.17 shows the MLC results 16× 16 PA-loop S-box, respectively. These 

tables also indicate the comparison of the proposed technique with other existing S-boxes. 

Moreover, Fig. 5.10 shows encrypted images (with proposed S-box and other well-known S-boxes) 

and their histograms. 
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Table 5.15:  Results of MLC Analyses on Lena grey image. 
LSB MLC 

Image Homogeneity Entropy Energy Contrast Correlation 

Plain image 0.9055 7.4455 0.1316 0.2293 0.9502 

Proposed 0.9090 5.9629 0.1613 0.2876 0.9770 

Ref [24] 0.9178 5.8599 0.1632 2.2665 0.9788 

GF (24) 0.9181 5.9698 0.1689 0.249 0.9778 

GR (4,4) 0.4835 4.7302 0.0245 3.322 0.0879 

 
Table 5.16: Results of MLC Analyses on Lena grey image. 

MSB MLC 

Image Homogeneity Entropy Energy Contrast Correlation 

Plain image 0.9055 7.4455 0.1316 0.2293 0.9502 

Proposed 0.7935 5.9217 0.2036 2.9692 0.7590 

Ref [24] 0.8230 5.8582 0.1670 2.5615 0.7980 

GF (24) 0 .8477 5.7457 0.1887 1.6909 0.8864 

GR (4,4) 0.8729 5.0659 0.3258 2.0590 0.7962 

 
Table 5.17: Results of MLC Analyses by 16×16 S-box. 

S-boxes Entropy Contrast Correlation Energy Homogeneity MAD 

Proposed 7.9353 9.9764 0.0487 0.0161 0.4131 38.4556 

Ref [24] 7.9633 8.5969 0.0019 0.0174 0.4070 38.5639 

Ref [25] 7.7301 7.3220 0.0879 0.0244 0.4835 36.3630 

Ref [30] 7.7094 8.1685 0.2309 0.0227 0.4870 43.5662 

Ref [47] 7.6595 6.3683 0.0996 0.0260 0.4984 36.3084 
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Original Proposed Ref [24] 

   

Ref [25] Ref [30] Ref [47] 

   

                 Original                    Proposed                      Ref [24] 

   

Ref [25] Ref [30] Ref [47] 

   

Fig. 5.10: Encrypted images and 8 respective histograms. 
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Chapter 6 

Designing of Non-linear Block Cipher’s Component 

over PA-loop through Mobius Transformation   
 

This chapter is set as follows: Introduction is given in section 1. In section 2 preliminaries and 

construction scheme with the help of Mobius transformation. In section 3 we examine the strength 

of our S-boxes and compared them with other well-known S-boxes using algebraic and statistical 

analyses. In section 4, we used our proposed S-boxes in image encryption and assess the strength 

of newly designed S-boxes using the majority logic criterion. 

6.1  Introduction  
The role of the S-box is to create confusion in symmetric cryptography and hence support the 

security of the whole system. Due to this reason, several statistical and algebraic S-boxes are 

constructed over different structures. Most of them are based on associative structures. In this 

chapter, the PA-loop utilizing Mobius transformation is utilized for the erection of S-boxes. This 

structure consists of admirable features including the non-associativity, inverse of zero, and more 

variety of Cayley's tables as compared to associative structure local rings and Galois field. As 

compared to existing S-boxes in the literature the S-boxes based on PA-loop are comparatively 

easy to construct and have a bulk of nonlinear components of block cipher due to more variety of 

structures due to above mention properties. The strength of newly designed S-boxes is measured 

using different standard algebraic and statistical analyses available in the literature. The proposed 

construction successfully cleared all these tests.  
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6.2 Preliminaries  
In this section, the definition of Mobius transformation is presented.  

    Mobius Transformation 

Mobius transformation is mathematically express as 

𝜑(𝑦) =
𝛼𝑦+𝛽

𝛾𝑦+𝜎
, 𝑤ℎ𝑒𝑟𝑒 𝛼, 𝛽, 𝛾, 𝜎 ∈ 𝐿        (6.1) 

Where 𝐿 is PA-loop and  𝛼𝜎 − 𝛽𝛾 ≠ 0. 

6.2.1 Design of S‑Boxes over PA‑loop 

In different cryptosystems, different methods are used to generate confusion in the data. However, 

S-boxes are the best source for confusion in the literature. Most of these structures are depend upon 

the Galois field and some are belonging to ℤ2
𝑛  which is n topples of binary field  ℤ 2. These classes 

are associative therefore show limited impact as shown in Table 6.1. PA-loop has more structures 

as compared to groups and Galois field due to non-associative, which give us different choices to 

design S-boxes. 

Table 6.1: Classification of Associative and Non-Associative structures of order n.  
n. IP-loop of 

order n 

Non-Associative 

Loops of order n 

Groups of order n Fields of order n 

1 1 0 1 1 

2 1 0 1 1 

3 1 0 1 1 

4 2 0 2 1 

5 1 5 1 1 

6 2 109 2 0 

7 2 746 1 1 
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8 8 982 5 1 

10 49 1245 2 0 

11 50 1987 1 1 

12 2689 2684 5 0 

13 1034 2342 1 0 

16 1884 2038 14 1 

  

The variety of S-boxes makes the cryptosystems secure and helps to resist spiteful attacks. For the 

constructions of S-boxes, many techniques are given the literature from which Mobius 

transformation is one of them. To create several different S-boxes by Mobius transformation which 

is the action of a projective general linear group on a PA-loop of order 16 and 256. The 

mathematical expression of this technique is given below:  

𝜑: 𝑃𝐺𝐿(2, 𝐿𝑛) × 𝐿𝑛 → 𝐿𝑛                                            (6.2) 

𝜑(𝑦) =
𝑎∗𝑦 ⊕ 𝑏

𝑐∗𝑦 ⊕ 𝑑
, 𝑎 ∗ 𝑑 − 𝑏 ∗ 𝑐 ≠ 0, 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝐿𝑛                 (6.3) 

Value of 𝑎 𝑎𝑛𝑑 𝑐 are to be fixed 4 and 9 respectively but 𝑏 and 𝑑 vary from 0 to 𝑛 − 1. Take the 

values of 𝑦 = 0: n − 1   then use the table of PA-loop see value corresponding to 𝑎 ∗ 𝑦 , 𝑐 ∗ 𝑦 after 

that convert the system into a binary number. Apply XOR in numerator and denominator and 

simplify utilizing the table of PA-loop. After simplification exponent gives us a new transformed 

S-box. We construct 131028 S-boxes by varying the values of 𝑏 and 𝑑. The flow chart of this 

scheme is given in Fig. 6.1.   

In table 6.2 we consider a PA-loop order 16. Define an equation (6.2) as: 

𝜑: 𝑃𝐺𝐿(2, 𝐿16) × 𝐿16 → 𝐿16 

by  
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𝜑(𝑦) =
𝑎∗𝑦 ⊕ 𝑏

𝑐∗𝑦 ⊕ 𝑑
, 𝑎 ∗ 𝑑 − 𝑏 ∗ 𝑐 ≠ 0, 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝐿256                      (6.4) 

here * is a binary operation on PA-loop, 𝑎 = 4 , 𝑐 = 9 and ⊕ is a XOR of two numbers. The 

construction mechanism of the S-box is given in table 3 for fixed values of 𝑏 = 5, 𝑑 = 13. Table 

6.4 shows the new design small S-box. 

Table 6.2: 16 order PA-loop. 
* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 1 0 3 2 11 6 5 8 7 12 13 4 9 10 15 14 

2 2 3 4 10 6 9 0 1 12 14 7 5 15 8 11 13 

3 3 2 11 13 5 12 1 0 9 15 8 6 14 7 4 10 

4 4 11 6 5 0 3 2 15 14 13 12 1 10 9 8 7 

5 5 6 1 9 3 10 11 4 13 7 14 2 8 15 0 12 

6 6 5 0 12 2 13 4 11 10 8 15 3 7 14 1 9 

7 7 8 12 0 15 11 10 13 4 5 2 14 6 3 9 1 

8 8 7 9 1 14 4 13 10 11 6 3 15 5 2 12 0 

9 9 12 14 15 13 7 8 5 6 0 11 10 1 4 2 3 

10 10 13 7 8 12 14 15 2 3 11 0 9 4 1 5 6 

11 11 4 5 6 1 2 3 14 15 10 9 0 13 12 7 8 

12 12 9 15 14 10 8 7 6 5 1 4 13 0 11 3 2 

13 13 10 8 7 9 15 14 3 2 4 1 12 11 0 6 5 

14 14 15 13 11 8 0 9 12 1 2 5 7 3 6 10 4 

15 15 14 10 4 7 1 12 9 0 3 6 8 2 5 13 11 
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Table 6.3: Designing structure of new design S-box over PA-loop of order 16. 
𝒙 

𝝋(𝒙) =
𝟒 ∗ 𝐱 ⊕ 𝟓 

  𝟗 ∗ 𝐱 ⊕  𝟏𝟑
 

S-box 

0 4 ∗ (0) ⊕ 5 

9 ∗  (0) ⊕  13
=

1 

4 
 

4 

1 4 ∗ (1) ⊕ 5 

9 ∗ (1) ⊕  13
=

15 

 1
 

15 

2 4 ∗ (2) ⊕ 5 

9 ∗ (2) ⊕  13
=  

3 

 3
 

1 

3 4 ∗ (3) ⊕ 5 

9 ∗ (3) ⊕  13
=

0 

 2
 

0 

. . . 

. . . 

. . . 

15 4 ∗ (15) ⊕ 5 

9 ∗ (15) ⊕  13
=

7 

 14
 

6 

 
Table 6.4: New design 4 × 4 S-box. 

4 15 1 0 

5 2 11 14 

10 13 9 7 

3 12 8 6 
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No YES 

NO YES 

No

O 

NO 

YES 

YES 

START 

𝜑: 𝑃𝐺𝐿(2, 𝐿𝑛)  × 𝐿𝑛 → 𝐿𝑛 

For 𝑛 = 16 𝑜𝑟 256, 𝑎 = 4 , 𝑐 = 9 

For 𝑏 = 0: 𝑛 − 1 

For 𝑑 = 0: 𝑛 − 1 

 

If (𝑎 ∗ 𝑑 − 𝑏 ∗ 𝑐 ≠ 0) 

For 𝑦 = 0: 𝑛 − 1 

 

dec2bin (𝑍𝑎 , 𝑍𝑐 , 𝑏, 𝑑)=(𝑍𝑎1, 𝑏1, 𝑍𝑐1, 𝑑1,) 

S-box= (𝜑(0), 𝜑(1), … , 𝜑(𝑛 − 1)) 

𝑍𝑎 = 𝑎 ∗ 𝑦 𝑎𝑛𝑑 𝑍𝑐 = 𝑐 ∗ 𝑦 

 

𝜑(𝑦) =
𝑍𝑎1 ⊕ 𝑏1

𝑍𝑐1 ⊕ 𝑑1
⁄ = bin2dec 

𝑦 = 𝑦 + 1 

If 𝑦 ≤ 𝑛 − 1 

𝑑 = 𝑑 + 1 

If 𝑑 ≤ 𝑛 − 1 

𝑏 = 𝑏 + 1 

If 𝑏 ≤ 𝑛 − 1 

END 
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Fig. 6.1: Flow chart of newly designed S-boxes. 

Similarly, we can construct 8 bits S-boxes over a PA-loop of order 256 as explained in Table 6.5. 

We may change the values of 𝑎, 𝑏, 𝑐, 𝑎𝑛𝑑 𝑑 for getting more varieties of S-boxes. Here we give 

examples of three different S-boxes obtained by changing the value of parameters of a mapping.  

Table 6.5: Designing structure of new S-box over PA-loop of order 256. 
𝒙 

𝝋(𝒙) =
𝟒 ∗ 𝐱 ⊕ 𝟓 

𝟗 ∗ 𝐱 ⊕  𝟏𝟑
 

S-box 

0 4 ∗ (0) ⊕ 5 

9 ∗ (0) ⊕  13
 

194 

1 4 ∗ (1) ⊕ 5 

9 ∗ (1) ⊕  13
 

76 

2 4 ∗ (2) ⊕ 5 

9 ∗ (2) ⊕  13
 

235 

3 4 ∗ (3) ⊕ 5 

9 ∗ (3) ⊕  13
 

222 

. . . 

. . . 

. . . 

255 4 ∗ (255) ⊕ 5 

9 ∗ (255) ⊕  13
 

162 

 

Table 6.6(a): New design 16 × 16 S-box 1. 
194 76 235 222 143 183 21 83 120 170 198 47 247 177 54 1 

40 130 68 107 218 236 237 253 221 223 157 151 23 19 112 42 

28 195 92 203 220 207 191 149 87 27 240 46 161 22 3 80 

67 88 168 134 39 49 50 98 74 200 140 231 61 209 60 193 

215 31 147 116 73 152 164 101 121 186 230 45 241 62 129 20 



 

100 

197 127 153 180 69 123 250 238 173 245 93 219 252 205 255 157 

163 86 11 208 44 225 30 131 84 75 216 172 229 125 217 188 

113 58 226 78 171 214 15 179 118 9 144 36 97 26 224 14 

115 122 234 206 175 181 85 91 248 174 165 117 89 184 166 37 

63 145 52 65 24 160 6 35 82 104 138 196 111 185 182 5 

189 213 95 155 244 77 251 254 141 0 29 211 124 201 156 199 

126 137 148 71 59 242 110 169 150 7 51 114 106 202 204 239 

38 33 18 96 16 192 12 227 94 139 212 79 187 246 13 243 

57 178 102 41 146 100 105 154 228 109 249 190 133 119 25 176 

70 43 210 108 233 158 135 55 17 48 34 66 72 136 132 103 

10 32 2 64 8 128 4 99 90 232 142 167 53 81 56 162 

 
Table 6.6(b): New design 16 × 16 S-box 2. 

165 216 29 114 142 192 244 88 71 224 167 62 122 76 186 102 

173 144 157 222 221 85 152 128 61 160 170 131 93 75 150 42 

108 72 237 137 57 111 81 46 96 164 86 195 44 64 138 94 

112 80 208 34 31 207 74 169 38 171 139 12 51 21 110 225 

54 56 95 35 248 13 213 140 146 129 78 26 166 37 4 97 

48 19 136 193 43 203 30 99 22 151 103 14 69 55 147 65 

36 40 87 209 202 17 91 217 185 233 196 251 23 218 77 121 

82 219 141 119 239 6 179 187 32 132 236 205 47 254 50 252 

27 24 84 223 161 68 1 79 124 155 204 188 228 15 176 92 

73 11 49 220 39 189 45 148 83 172 105 9 2 199 245 162 

28 135 130 229 159 238 198 107 52 235 194 242 70 191 5 175 

206 197 59 100 104 7 60 123 156 149 8 154 190 174 183 182 

18 41 89 113 0 200 53 246 101 249 184 67 163 215 158 214 



 

101 

210 16 247 115 98 118 90 120 133 153 125 10 168 25 58 145 

20 227 63 231 230 181 240 234 134 3 177 143 226 211 241 201 

250 66 116 212 243 232 180 117 109 127 33 255 178 126 106 253 

 

Table 6.6(c): New design 16 × 16 S-box 3. 
29 216 1 149 142 192 244 88 71 224 167 62 122 76 186 102 

173 144 157 222 221 85 152 128 61 160 170 131 93 75 150 42 

108 72 237 137 57 111 81 46 96 164 86 195 44 64 138 94 

112 80 208 34 31 207 74 169 38 171 139 12 51 21 110 225 

54 56 95 35 248 104 213 140 146 129 78 26 166 37 4 97 

48 19 136 193 43 203 30 99 22 151 103 14 69 55 147 65 

36 40 87 209 202 17 91 217 185 233 196 251 23 218 77 121 

82 219 141 119 239 6 179 187 32 132 236 205 47 254 50 252 

27 24 84 223 161 68 114 79 124 155 204 188 228 15 176 92 

73 11 49 220 39 189 45 148 83 172 105 9 2 199 245 162 

28 135 130 229 159 238 198 107 52 235 194 242 70 191 5 175 

206 197 59 100 13 7 60 123 156 0 8 154 190 174 183 182 

18 41 89 113 165 200 53 246 101 249 184 67 163 215 158 214 

210 16 247 115 98 118 90 120 133 153 125 10 168 25 58 145 

20 227 63 231 230 181 240 234 134 3 177 143 226 211 241 201 

250 66 116 212 243 232 180 117 109 127 33 255 178 126 106 253 
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6.3 Analyses of S-box 
The strength of newly designed S-boxes is examined with the help of standard statistical, 

differential, algebraic, and histogram analyses. We reviewed these analyses in the forthcoming 

subsections. The outcomes of these analyses validate that our proposed S-boxes have satisfied all 

the criteria and show resistance against different attacks. These S-boxes are used for secure 

communication in different cryptosystems.  

6.3.1 Algebraic Analyses of S-box 

➢ Nonlinearity 

The nonlinearity of our new S-boxes is given in table 6.7 and shows a comparison with various 

existing S-boxes. The graphical representation of nonlinearity analysis is given in Fig. 6.2. 

 
Table 6.7: Comparison nonlinearity analysis with other S-boxes of newly designed S-boxes. 

S-boxes 0 1 2 3 4 5 6 7 Average 

Proposed S-box 1 108 105 110 104 106 106 106 110 106.87 

Proposed S-box 2 110 112 110 112 110 110 112 110 110.75 

Proposed S-box 3 110 112 112 112 112 112 110 112 111.5 

Ref. [25] 112 112 112 112 112 112 112 112 112 

Ref. [27] 112 112 112 112 112 112 112 112 112 

Ref. [18] 106 108 110 110 108 104 100 108 106.75 

Ref. [24] 104 105 105 105 102 103 102 104 103.75 

Ref. [46] 104 104 108 108 108 104 104 106 105.75 

Ref. [47] 94 100 104 104 102 100 98 94 99.5 
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Fig. 6.2: Nonlinearity analysis. 

➢ Bit independent criterion 

The nonlinearity of BIC analysis of the newly designed S-box is given in table 6.8. Moreover, the 

comparison of BIC in terms of minimum, average, square deviation values is given in Table 6.9. 

The graphical representation of BIC analysis is given in Fig. 6.3. 

Table 6.8: Bit Independent Criterion of newly designed S-box 3. 
- 112.000 112.000 112.000 112.000 112.000 112.000 112.000 

112.000 - 112.000 112.000 112.000 112.000 112.000 110.000 

112.000 112.000 - 110.000 112.000 112.000 112.000 112.000 

112.000 112.000 110.000 - 112.000 112.000 112.000 110.000 

112.000 112.000 112.000 112.000 - 112.000 110.000 112.000 

112.000 112.000 112.000 110.000 112.000 - 112.000 112.000 

112.000 112.000 112.000 112.000 112.000 112.000 - 112.000 

112.000 110.000 112.000 110.000 112.000 112.000 112.000 - 
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Table 6.9: BIC Analysis of newly designed S-box with other S-boxes. 
S-boxes Average Minimum Value Square Deviation 

Proposed S-box 1 106.107 102 1.87729 

Proposed S-box 2 110.5 108 1.14953 

Proposed S-box 3 111.5 110 0.69985 

Ref. [25] 112 112 0 

Ref. [27] 112 112 0 

Ref. [18] 106.27 104 1.578 

Ref. [24] 103.929 101 2.052 

Ref. [46] 101.71 94 3.53 

Ref. [47] 104.14 102 1.767 

 

 

Fig. 6.3: Bit independent criterion analysis. 

➢ Strict avalanche criterion (SAC) 

If the solo input bit creates a change in almost half of the output bits, SAC is considered 

satisfactory. When the S-P network is constructed using the S-box, then a solo change on the input 

0

50

100

150

BIC Comparsion

S-box 1 S-box 2 S-box 3 Ref. [25] Ref. [27]

Ref. [18] Ref. [24] Ref. [46] Ref. [47]
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of the network causes an avalanche of changes. The results of SAC analysis of the proposed S-box 

are given in table 6.10. Moreover, the average, minimum, and square deviation values of SAC of 

newly designed S-boxes and comparison with other S-boxes are enumerated in Table 6.11. Fig. 6.4 

shows the pictorial representation of the proposed S-boxes and comparison with other S-boxes of 

SAC analysis. 

Table 6.10: Strict Avalanche Criterion of newly designed S-box. 

.5000 .4375 .4843 .4843 .5000 .4531 .4687 .5156 

.5000 .4531 .4687 .4843 .5468 .4531 .4687 .4531 

.4531 .4843 .5781 .5781 .4375 .4418 .4531 .4687 

.4843 .5156 .4531 .4531 .4531 .4531 .5000 .5156 

.5156 .5156 .5000 .4843 .4531 .4843 .4687 .4843 

.4375 .5000 .4843 .4843 .4531 .4843 .4843 .5000 

.5312 .5000 .5468 .5468 .4843 .5000 .5000 .5451 

.4687 .5468 .4843 .4843 .4843 .4843 .4531 .5156 

 

Table 6.11: SAC analysis of newly designed S-box with other S-boxes. 
S-boxes Minimum Value Average Square Deviation 

Proposed S-box 1 .437 .509 .013 

Proposed S-box 2 .489 .534 .017 

Proposed S-box 3 .487 .545 .016 

Ref. [25] .390 .493 .020 

Ref. [27] .462 .500 .015 

Ref. [18] .401 .504 .018 
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Ref. [24] .429 .505 .013 

Ref. [46] .502 .47 .017 

Ref. [47] .499 .464 .018 

 

 

Fig. 6.4: Strict avalanche criterion analysis. 

6.3.2 Differential Analysis 

In differential analysis, we inspected the impact of differential attacks on our system. Differential 

attacks categorize as a chosen-plaintext attack where the attacker tries to recognize the original text 

from the ciphertext. Here, the two most valuable tests i.e., Unified averaged changed intensity 

(UACI) and Number of changing pixel rate (NPCR) are presented to determine the resistance of 

the system against differential attacks.  

For the newly designed S-boxes values of UACI and NPCR and evaluation with other well-known 

S-boxes are given in Table 6.12. Table 6.13 shows the relative analysis of newly designed S-boxes 

with AES is given. 

 

0

0.1

0.2

0.3

0.4

0.5
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Table 6.12: NPCR AND UACI Analysis of newly designed S-box with other S-boxes. 
Algorithms NPCR UACI 

Proposed S-box 1  99.61 33.08 

Proposed S-box 2  99.65 33.17 

Proposed S-box 3 99.66 33.3 

Ref.  [29] 99.58 28.62 

Ref.  [30] 98.47 32.21 

Ref. [31] 99.42 24.94 

Ref. [32] 99.54 28.27 

Ref.  [33] 99.60 33.42 

Ref. [34] 99.30 33.40 

Ref. [35] 99.59 33.45 

 

Table 13: Comparison of NPCR and UACI Analysis of newly designed S-boxes with AES.  
 

Images 

 

Loc. 

NPCR UACI 

Proposed Ref. [25] Proposed Ref. [25] 

 First 99.60 99.61 30.56 33.54 

Camera man Mid 99.63 99.62 37.43 33.53 

 Last 99.62 99.59 34.55 33.53 

 First 99.01 99.61 30.56 33.54 

Lena Mid 99.62 99.62 37.42 33.53 

 Last 99.63 99.59 34.56 33.53 

 First 99.02 99.61 30.59 33.54 

Baboon Mid 99.63 99.62 37.43 33.53 

 Last 99.61 99.59 34.55 33.53 
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6.3.3 Cryptanalysis 

➢ Linear Approximation Probability (LP) 

The LP value of newly designed S-boxes and comparison with other S-boxes are given in table 

6.14 whereas, the graphical representation of this comparison is shown in Fig. 6.5. 

 
Table 6.14: LP Analysis of newly designed S-boxes with other S-boxes. 

S-

boxes 

Proposed 

S-box 1 

Proposed 

S-box 2 

Proposed 

S-box 3 

Ref. 

[25] 

Ref. 

[27] 

Ref. 

[18] 

Ref. 

[25] 

Ref. 

[46] 

Ref. [47] 

Max 

Value 

157 150 146 144 144 161 159 166 156 

Max 

LP 

0.113 0.085 0.070 0.062 0.062 0.125 0.121 0.148 0.109 

 

 

Fig. 6.5: Linear approximation probability analysis. 
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Ref. [47]
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Max.
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Max.
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LP Comparison

S-box 1 S-box 2 S-box 3 Ref. [25] Ref. [27]
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➢ Differential approximation probability (DP) 

Tables 6.15 and 6.16 display the DP values of newly designed S-boxes and the comparison of 

maximum DP value of newly designed S-boxes with other S-boxes. The graphical representation 

of table 16 is shown in Fig. 6.6.  

Table 6.15: Differential approximation probability of newly designed S-box. 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

.015 .007 .015 .015 .015 .015 .015 .015 .007 .015 .015 .007 .015 .015 .015 .015 

.015 .015 .007 .007 .015 .015 .015 .015 .015 .015 .015 .015 .015 .015 .015 .015 

.015 .015 .015 .015 .015 .015 .015 .015 .015 .015 .015 .015 .015 .015 .015 .015 

.015 .015 .015 .015 .015 .015 .07 .015 .015 .015 .015 .015 .015 .015 .015 .015 

.015 .015 .015 .015 .015 .015 .015 .015 .015 .015 .015 .015 .015 .015 .015 .015 

.015 .015 .015 .015 .015 .015 .015 .007 .015 .015 .015 .015 .015 .015 .015 .015 

.015 .015 .015 .015 .015 .015 .015 .015 .015 .015 .015 .015 .015 .015 .015 .015 

.015 .015 .015 .015 .015 .015 .015 .015 .015 .015 .015 .015 .015 .015 .015 .015 

.015 .015 .015 .015 .007 .015 .015 .015 .015 .015 .015 .015 .015 .015 .015 .015 

.015 .015 .015 .015 .015 .015 .015 .015 .015 .015 .015 .015 .015 .015 .015 .015 

.015 .015 .015 .015 .007 .015 .015 .015 .015 .015 .015 .015 .015 .007 .015 .015 

.015 .015 .015 .015 .015 .015 .015 .015 .015 .015 .015 .015 .015 .015 .015 .015 

.015 .015 .015 .015 .015 .015 .007 .015 .015 .015 .015 .007 .015 .015 .015 .015 

.015 .015 .015 .015 .015 .015 .015 .015 .015 .015 .015 .015 .015 .015 .007 .015 

.015 .015 .015 .015 .015 .015 .015 .015 .015 .015 .015 .015 .015 .015 .015 .015 

.015 .007 .015 .015 .015 .015 .015 .015 .015 .015 .015 .015 .015 .015 .015 .015 

Table 6.16: DP Analysis of newly designed S-box with other S-boxes. 
S-

boxes 

Proposed 

S-box 1 

Proposed 

S-box 2 

Proposed 

S-box 3 

Ref. 

[25] 

Ref. 

[27] 

Ref. 

[18] 

Ref. 

[25] 

Ref. 

[46] 

Ref. 

[47] 

Max 

DP 

0.0312 0.0234 0.0234 0.0156 0.0156 0.0267 0.390 0.281 0.0468 
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Fig. 6.6: Differential approximation probability analysis. 

6.4 Histogram Analysis 
Histogram analysis measures the dispersal of pixels after the encryption of digital data pixel. In 

Fig. 6.7 plain image and encrypted images of Lena, which are encrypted with newly designed S-

boxes are given. Moreover, histograms of plain images and encrypted images are also given in Fig. 

6.7. The uniform distribution of encrypted images histogram assures the encryption quality of 

newly designed S-boxes.    

               a                                     b                                     c                                 d 
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DP Comparison
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               e                                    f                                      g                                     h 

Fig. 6.7: a) Original Lena image b-d) Encrypted Lena image by S-box 1-3  

e) Histogram of Lena image f-h) Histogram of Lena image Encrypted by S-box 1-3. 

6.5 Majority Logic Criterion Test 
The majority logic criterion (MLC) explains the comparison between plain image and encrypted 

image and gives an accurate evaluation of the encryption scheme. The results of these analyses 

show the performance and strength of the encryption scheme and hence used S-boxes. For these 

analyses, we used here 256×256-pixel Lena image. Table 6.17 and Table 6.18 shows the MLC 

analysis of Lena grey image encrypted by 4 × 4 S-box while Table 6.19 represents the MLC 

analysis Lena grey image encrypted by 16× 16 S-box. In all three tables comparisons with other 

well-known S-boxes are also given which show that our proposed technique has better results and 

is good for encryption. Encrypted image and histogram of Lena with newly designed S-box and 

comparison with other well-known S-boxes are given in Fig. 6.8.    

Table 6.17:  Results of MLC analyses on Lena grey image with 4 × 4 S-box. 
 

LSB Image 

MLC     

Homogeneity Entropy Energy Contrast Correlation 

Plain image 0.9055 7.4455 0.1316 0.2293 0.9502 

Proposed 0.9090 5.9629 0.1613 0.2876 0.9770 

Ref. [24] 0.9178 5.8599 0.1632 2.2665 0.9788 



 

112 

GF (24) 0.9181 5.9698 0.1689 0.2491 0.9778 

GR (4,4) 0.4835 4.7302 0.0245 3.3221 0.0879 

 

Table 6.18: Results of MLC analyses on Lena grey image with 4 × 4 S-box. 
MSB Image MLC     

 Homogeneity Entropy Energy Contrast Correlation 

Plain image .9055 7.4455 .1316 0.2293 .9502 

Proposed .7935 5.9217 .2036 2.9692 .7590 

Ref. [24] .8230 5.8582 .1670 2.5615 .7980 

GF (24) .8477 5.7457 .1887 1.6909 .8864 

GR (4,4) .8729 5.0659 .3258 2.0590 .7962 

 
Table 6.19: Results of MLC analyses by 16×16 S-box. 

S-boxes Entropy Contrast Correlation Energy Homogeneity MAD 

Proposed 7.9353 9.9764 .0487 .0161 .4131 38.3543 

Ref. [24] 7.9633 8.5969 .0019 .0174 .4070 38.5639 

Ref. [25] 7.7301 7.3220 .0879 .0244 .4835 36.3630 

Ref. [27] 7.7094 8.1685 .2309 .0227 .4870 43.5662 

Ref. [47] 7.6595 6.3683 .0996 .0260 .4984 36.3084 
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Original Proposed Ref. [24] 

   

Ref. [25] Ref. [27] Ref. [47] 

   

Original Proposed Ref. [24] 

   

Ref. [25] Ref. [27] Ref. [47] 

   

Fig. 6.8: Encrypted images and their respective histograms. 
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Chapter 7 

Redefining Serpent Algorithm by PA-loop with Image 

Encryption Application   
This chapter is set as follows: Introduction of image encryption is given in section 1. Section 2 

elaborates the proposed scheme. In section 3 investigational upshots and simulation analyses 

examine the strength of our cipher scheme and compared it with other well-known schemes. 

Histogram and differential analyses are given in sections 4 and 5, Chi-square test and time 

execution performance of proposed scheme are discussed in section 6,7 and last section 8 

information entropy test for the proposed scheme is discussed. 

 

7.1 Introduction 
Extensive deployment of soft computing devices has changed the overall communication pattern 

around the globe. All these devices are connected via the internet relying on an unsecure medium. 

The exponential growth of soft computing devices has got some disadvantages like insecure 

communications, violation of copyright protection, and alteration of invaluable information. Even 

the communication in terms of images is also exaggerated by such threats. Generally, to reduce the 

impact of these, encryption is considered a healthier tactic to attain a higher security level. For that 

reason, image encryption has achieved extensive importance in Internet communication, medical 

imaging, multimedia systems, telemedicine, etc. 

Encryption schemes are usually categorized into two main divisions, spatial domain and frequency 

domain. The permutation of positions, the transformation of pixel values, and their amalgamation 

is used in the spatial domain. Literature reveals many encryption schemes in this domain, but the 
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prominent schemes are 2D cellular automata-based methods [91], tree structure-based schemes 

[92], and chaos-based crypt systems [93-95]. In [96], the quadtree structure is used for encryption 

which in result reduced the processing time of both encryption and decryption. But it has not gained 

space in international standards.  Similarly, many chaos-based schemes [97-99] are proposed due 

to specific attributes like sensitivity to initial conditions, randomness, ergodicity and complex 

bifurcation pattern. Certain loopholes appearing in such cryptosystems can be minimized by using 

higher-dimensional chaotic systems. Usual encryption schemes based on chaotic maps generally 

use two processes i.e. substitution and diffusion, that are iterated for a certain value. Pixels of 

images are substituted by the outcomes from chaotic maps which are altered in the diffusion stage 

by a certain sequential rearrangement. One small alteration in pixels results in total dissimilar 

output after certain iterations. Such kinds of schemes are very common in literature [100]. Some 

techniques make use of their proposed structure. Still, speed and security is an issue in such 

schemes. These drawbacks create space for new cryptosystems.   

After spending a successful period, DES [15] algorithm at the start of 21st century lost its 

popularity. The first allegation on it was of shorter key length i.e. 256-bit key, which can be traced 

by exhaustive key search in the ever-increasing growth of fast computing devices. Although, this 

was addressed by introducing triple DES. But another objection was its application in software 

encryption, although its creation was designed for hardware enciphering.    

Due to this drawback, NIST in the US welcomed the new and vibrant inheritor algorithm, which 

was later called advanced encryption standard (AES). The distinction of AES on predecessor was 

due to the two reasons, first, it was speedy enough to cope up with new technological development 

of the 21st century and meanwhile, it did not compromise on security. Moreover, the variation in 

key size as well as block size made it more interesting as well as challenging to attackers.  
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Image encryption using block cipher-based serpent algorithm is presented in [91] A proposal 

algorithm for images protection is depending on the block cipher serpent algorithm in Feistel 

network structure. Then another scheme for the improvement of serpent algorithm and design to 

RGB image encryption implementation is present in [102]. 

In the struggle of creating new variants, many researchers have focused themselves to block size. 

The variation in block size like doubling it to 256 bits in one way or the other is desired. A similar 

procedure is used to create a block cipher of 512 bits. 

7.2 Cipher Scheme 
We encrypt a 128-bit plaintext M to a 128-bit ciphertext C in 16 rounds under the control of S-

boxes which are constructed over PA-loop in [89] and using a group of permutations of degree 16 

(S16 ) as a Key. First, we change 128-bit to 16-byte and then convert it into decimal which gives 16 

numbers {𝑚1, 𝑚2,  𝑚3,…,  𝑚16} between 0 𝑡𝑜 255. Now the round 1 is starting from here. The 

first row of S-box which has 16 entries {𝑠1, 𝑠2,  𝑠3,…,  𝑠16}are applied on 𝑚𝑖 ∗ 𝑠𝑖 , where ∗ is a 

binary operation on PA-loop 𝐿256 and 𝑖 = 1,2,3, … , 16. 𝑚𝑖 ∗ 𝑠𝑖𝜖𝐿256 = {0,1,2, … ,255}, after it a 

permutation 𝑃1𝜖𝑆16 is applied on it which permute 𝑚𝑖 ∗ 𝑠𝑖 , 𝑖 = 1,2,3, … , 16. In this way, the first 

round is completed and we have 16 numbers {𝑛1, 𝑛2,  𝑛3,…,  𝑛16} between 0 𝑡𝑜 255. In round 2, 

the second row of S-box and permutation 𝑃2 is used and the above method is repeated for {𝑛1, 𝑛2,  

𝑛3,…,  𝑛16}, similarly, we perform the 16th round, in the last round we select the 16th row of S-box 

and permutation 𝑃16 for further utilization using the same pattern to obtained {𝑦1, 𝑦2,  𝑦3,…,  𝑦16} 

that lies in the range 0 𝑡𝑜 255. This is 16 bytes or 128-bit ciphertext. In an image encryption scheme 

we use three different S-boxes which are constructed by using the scheme in [17] for the encryption 

of different layers are given below. 
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Table 7.1(a): S-box 1. 
194 76 235 222 143 183 21 83 120 170 198 47 247 177 54 1 

40 130 68 107 218 236 237 253 221 223 157 151 23 19 112 42 

28 195 92 203 220 207 191 149 87 27 240 46 161 22 3 80 

67 88 168 134 39 49 50 98 74 200 140 231 61 209 60 193 

215 31 147 116 73 152 164 101 121 186 230 45 241 62 129 20 

197 127 153 180 69 123 250 238 173 245 93 219 252 205 255 157 

163 86 11 208 44 225 30 131 84 75 216 172 229 125 217 188 

113 58 226 78 171 214 15 179 118 9 144 36 97 26 224 14 

115 122 234 206 175 181 85 91 248 174 165 117 89 184 166 37 

63 145 52 65 24 160 6 35 82 104 138 196 111 185 182 5 

189 213 95 155 244 77 251 254 141 0 29 211 124 201 156 199 

126 137 148 71 59 242 110 169 150 7 51 114 106 202 204 239 

38 33 18 96 16 192 12 227 94 139 212 79 187 246 13 243 

57 178 102 41 146 100 105 154 228 109 249 190 133 119 25 176 

70 43 210 108 233 158 135 55 17 48 34 66 72 136 132 103 

10 32 2 64 8 128 4 99 90 232 142 167 53 81 56 162 

 
Table 7.1(b):  S-box 2. 

165 216 29 114 142 192 244 88 71 224 167 62 122 76 186 102 

173 144 157 222 221 85 152 128 61 160 170 131 93 75 150 42 

108 72 237 137 57 111 81 46 96 164 86 195 44 64 138 94 

112 80 208 34 31 207 74 169 38 171 139 12 51 21 110 225 

54 56 95 35 248 13 213 140 146 129 78 26 166 37 4 97 

48 19 136 193 43 203 30 99 22 151 103 14 69 55 147 65 

36 40 87 209 202 17 91 217 185 233 196 251 23 218 77 121 

82 219 141 119 239 6 179 187 32 132 236 205 47 254 50 252 

27 24 84 223 161 68 1 79 124 155 204 188 228 15 176 92 

73 11 49 220 39 189 45 148 83 172 105 9 2 199 245 162 

28 135 130 229 159 238 198 107 52 235 194 242 70 191 5 175 
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206 197 59 100 104 7 60 123 156 149 8 154 190 174 183 182 

18 41 89 113 0 200 53 246 101 249 184 67 163 215 158 214 

210 16 247 115 98 118 90 120 133 153 125 10 168 25 58 145 

20 227 63 231 230 181 240 234 134 3 177 143 226 211 241 201 

250 66 116 212 243 232 180 117 109 127 33 255 178 126 106 253 
 
Table 7.1(c):  S-box 3. 

29 216 1 149 142 192 244 88 71 224 167 62 122 76 186 102 

173 144 157 222 221 85 152 128 61 160 170 131 93 75 150 42 

108 72 237 137 57 111 81 46 96 164 86 195 44 64 138 94 

112 80 208 34 31 207 74 169 38 171 139 12 51 21 110 225 

54 56 95 35 248 104 213 140 146 129 78 26 166 37 4 97 

48 19 136 193 43 203 30 99 22 151 103 14 69 55 147 65 

36 40 87 209 202 17 91 217 185 233 196 251 23 218 77 121 

82 219 141 119 239 6 179 187 32 132 236 205 47 254 50 252 

27 24 84 223 161 68 114 79 124 155 204 188 228 15 176 92 

73 11 49 220 39 189 45 148 83 172 105 9 2 199 245 162 

28 135 130 229 159 238 198 107 52 235 194 242 70 191 5 175 

206 197 59 100 13 7 60 123 156 0 8 154 190 174 183 182 

18 41 89 113 165 200 53 246 101 249 184 67 163 215 158 214 

210 16 247 115 98 118 90 120 133 153 125 10 168 25 58 145 

20 227 63 231 230 181 240 234 134 3 177 143 226 211 241 201 

250 66 116 212 243 232 180 117 109 127 33 255 178 126 106 253 
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Fig. 7.1. Proposed encryption scheme. 

𝒊
=

𝟏
6 

Pe
rm

ut
ed

 b
lo

ck
s o

f 1
28

 

bi
t. 

B
lo

ck
s o

f 1
28

 b
it.

 
Pe

rm
ut

at
io

ns
 (K

ey
)  

 

C
ip

he
re

d 
Bl

ue
 

L
ay

er
 

R
ow

 i 
of

 S
-b

ox
 S

1 

B
lu

e 
La

ye
r 

sp
lit

 in
to

 b
lo

ck
s o

f 1
28

 b
its

. 

16
th

 by
te

 
𝒎

𝟏
𝟔

∗
𝒔 𝟏

𝟔
 

 
3rd

 b
yt

e 
𝒎

𝟑
∗

𝒔
𝟑

 

 

2nd
 b

yt
e 

𝒎
𝟐

∗
𝒔

𝟐
 

 

1st
 b

yt
e 

𝒎
𝟏

∗
𝒔

𝟏
 

 

C
ol

ou
r 

Im
ag

e 

𝟐
𝟓

𝟔
×

𝟐
𝟓

𝟔
 

Pe
rm

ut
ed

 b
lo

ck
s o

f 1
28

 

bi
t. 

B
lo

ck
s o

f 1
28

 b
it.

 
Pe

rm
ut

at
io

ns
 (K

ey
)  

 

C
ip

he
re

d 

G
re

en
 L

ay
er

 

R
ow

 i 
of

 S
-b

ox
 

S 2
 

G
re

en
 L

ay
er

 

sp
lit

 in
to

 b
lo

ck
s o

f 1
28

 b
its

. 

16
th

 by
te

 
𝒎

𝟏
𝟔

∗
𝒔 𝟏

𝟔
 

3rd
 

by
te

 
𝒎

2nd
 b

yt
e 

𝒎
𝟐

∗
𝒔

𝟐
 

 

1st
 b

yt
e 

𝒎
𝟏

∗
𝒔

𝟏
 

 

Pe
rm

ut
ed

 b
lo

ck
s o

f 

12
8 

bi
t. 

B
lo

ck
s o

f 1
28

 b
it.

 
Pe

rm
ut

at
io

ns
 (K

ey
)  

 

C
ip

he
re

d 
R

ed
 

L
ay

er
 

R
ow

 i 
of

 S
-b

ox
 S

3 

 

R
ed

 L
ay

er
 

sp
lit

 in
to

 b
lo

ck
s o

f 1
28

 b
its

. 

16
th

 by
te

 
𝒎

𝟏
𝟔

∗
𝒔 𝟏

𝟔
 

 
3rd

 b
yt

e 
𝒎

𝟑
∗

𝒔
𝟑
 

 

2nd
 b

yt
e 

𝒎
𝟐

∗
𝒔

𝟐
 

 

1st
 b

yt
e 

𝒎
𝟏

∗
𝒔

 

𝒊
=

𝟏
 

𝒊
=

𝟏
 

𝑖
=

1
 

𝒊
=

𝟏
6 

𝒊
=

𝟏
𝟔

 

E
nc

ry
pt

ed
 C

ol
ou

r 
Im

ag
e 

𝟐
𝟓

𝟔
×

𝟐
𝟓

𝟔
 



 

120 

  
Fig. 7.2. Original and Encrypted Lena Image of dimension 256 × 256 

 
A B C 

   
D E F 

   
Fig. 7.3.  Layer-wise original images of Lena (A)-Blue, (B)-Green, (C)-Red, (D)-Encrypted Blue, 

(E)- Encrypted Green, (F)- Encrypted Red 
 

 
 
 
 
 
 
 
 

 
Fig. 7.4. Original and Encrypted Baboon Image of size 256 × 256. 
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7.3 Investigational Upshots and Simulation Analyses 
In any investigation of designed cryptosystems, the ultimate gauge is to measure the outcomes of 

different analyses. The astonishing fact connected to any research is the disclosure of false 

outcomes after a long and hectic tiresome job. Sometimes, for scientists and engineers, it becomes 

hard to identify the wrong step. Still, it's an interesting task for many. The efficacy of any scheme 

is established right after the complete investigation of analyses. For this argument, simulation 

analyses of the proposed scheme are given hereafter.  

7.3.1 Key Space Analysis 

In this analysis, the total number of keys used in the algorithm is debated. If the total volume of 

keys used in a cryptosystem is higher than it bears more strength against any exhaustive key search. 

For a chaotic cryptosystem, the key space greater than 2100 [104] is proposed as secure enough.  

7.3.2 Key Sensitivity Analysis 

Key sensitivity is an essential criterion to be fulfilled by a robust cryptosystem. This assures that 

any wrong guess will change the output obtained from enciphering algorithm. Conversely, with a 

wrong set of keys, the decryption should generate a different and wrong original input. IP-loop 

used in this article successfully satisfies the sensitivity test.  

7.3.3 Correlation Analysis 

Pixels are building blocks of images. These are numeric values that are highly correlated with 

neighboring pixels in all three directions i.e. horizontally, vertically, and diagonally. In an 

enciphered image, the correlation values must approach zero. This is the main objective of the 

cryptographic algorithm to achieve in any scheme of image encryption proposed by researchers. 

As result, the rearrangement of pixel values to the original one becomes extremely difficult for an 

assaulter. 

 



 

122 

Original Lena Image Encrypted Lena Image by 
Proposed Scheme 

Decrypted Lena Image by 
Proposed Scheme 

   

   

   

   
Fig. 7.5: layer-wise analysis of Lena image and their histograms. 

    Table 7.2 Correlation analysis of proposed scheme compare other well-known schemes. 
 

Image 
 

Layer 
 

Horizontal Vertical Diagonal 

Blue Green Red Blue Green Red Blue Green Red 

 
 

Original Lena 
image 

Blue 0.826 0.781 0.591 0.928 0.872 0.671 0.839 0.829 0.613 

Green 0.840 0.928 0.609 0.911 0.945 0.616 0.786 0.890 0.611 

Red 0.629 0.817 0.937 0.823 0.833 0.958 0.623 0.833 0.957 

Encrypted 
Lena Image by 
the proposed 

scheme 

Blue 0.0069 0.022 0.0001 0.0055 0.781 0.591 0.0006 -0.0262 -0.0175 

Green -0.0023 -0.022 -0.0175 0.00034 0.928 0.609 0.0001 0.0078 0.0006 
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Red -0.0055 -0.0002 0.0003 0.00023 -0.0262 -0.022 -0.0023 0.0003 0.0002 

Encrypted 
Lena Image by 

Ref. [102] 

Blue -0.0024 -0.0032 0.0035 0.0002 -0.0034 0.0092 0.0081 -0.0052 -0.0031 

Green -0.0261 -0.0055 0.0069 0.0631 0.0002 -0.0302 -0.0043 0.0123 0.0002 

Red -0.0183 -0.022 0.0078 0.0003 0.0055 0.0078 -0.0021 -0.0023 -0.0031 

Encrypted 
Lena Image by 

Ref. [100] 

Blue -0.0001 0.0002 0.0001 -0.0002 0.0002 0.0003 0.00023 0.00034 -0.0002 

Green -0.0004 -0.0004 0.0005 -0.0003 0.0006 -0.0005 0.0006 -0.0005 -0.0005 

Red 0.0001 0.0007 -0.0006 0.0002 -0.0005 0.0006 -0.0005 0.0008 0.0002 

Encrypted 
Lena Image by 

Ref. [104] 

Blue -0.0099 -0.0034 -0.0066 -0.0035 -0.0067 -0.0097 -0.0068 -0.0095 -0.0038 

Green -0.0260 -0.0220 -0.0175 -0.0023 -0.0176 -0.0262 -0.0176 -0.0262 -0.0225 

Red -0.0072 -0.0201 -0.0016 -0.0205 -0.0017 -0.0073 -0.0017 -0.0073 -0.0203 

 

7.4 Histogram Analysis 
Histogram analysis of an image provides information about tonal distribution. This graph is 

obtained by plotting the total amount of pixels in a certain tone along the y-axis whereas the x-axis 

represents a single tonal value. The lighter and darker portion of images is represented on the left 

and right side of graph respectively. The scheme of encryption tries to distort the original 

combination of pixels which makes the histogram flat as well after these operations.  

 
 

  
Fig. 7.6: Histogram of original Lena image. 
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Blue Image (Original) Blue Image (Original) Red Image (Original) 

   
Histogram of Blue layer Histogram of Green layer Histogram of Red layer 

   
Fig. 7.7: Layer wise view of Lena image and their histograms 

 
Encrypted Image (Blue) Encrypted Image (Green) Encrypted Image (Red) 

   
Histogram of Blue layer Histogram of Green layer Histogram of Red layer 

   
Fig. 7.8: Encrypted Lena image layer-wise and their histograms. 
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Original Baboon image Original Histogram 

  
Encrypted Baboon image Encrypted Histogram 

  
Fig. 7.9: Histogram Analysis of the original and Encrypted Baboon image. 

 
7.5 Differential Analyses 
Differential analyses are sometimes also known as sensitivity analyses. These are used to 

retrace/retrieve an original image. There are two major divisions of these namely number of pixels 

change rate (NPCR) and unified average changing intensity (UACI).  

7.5.1 NPCR AND UACI 

NPCR measures the effect of change on an encrypted image by varying only a single bit. It tells us 

the number of pixels changed by this increment [87]. Its standard value showing a good encryption 

scheme lies nearer to 99 using its formula mentioned at the end of this paragraph. This affirms its 

strength against differential analysis. Whereas unified average change intensity (UACI) measures 

the difference of intensities between original and enciphered images. Its value that is considered 

acceptable lies nearer to 33%. 
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         Table 7.3 NPCR and UACI analyses of the proposed scheme. 
 
Images 

 
Layer 

               NPCR UACI 
Proposed Ref 

[102] 
Ref 
[104] 

Proposed Ref 
[102] 

Ref 
[104] 

 
Lena 

Blue 99.61 99.60 99.63 33.54 30.56 33.63 
Green 99.62 99.62 99.64 33.53 34.42 33.51 
Red 99.59 99.58 99.60 33.53 34.56 33.57 

 
Baboon 

Blue 99.61 99.01 99.57 33.54 30.59 33.51 
Green 99.62 99.62 99.61 33.53 33.43 33.59 
Red 99.59 99.63 99.62 33.53 34.55 33.66 

 
Airplane 

Blue 99.61 99.02 99.60 33.54 30.56 33.60 
Green 99.62 99.63 99.63 33.53 33.43 33.59 
Red 99.59 99.61 99.62 33.53 34.55 33.63 

 

7.6 Chi-Square Test 
Since pixels are building blocks of digital images. These are highly correlated with each other in 

neighboring regions to produce a certain kind of shade. Their distribution in terms of uniformity is 

measured statistically by using the Chi-square test while the same is analyzed pictorially in 

histogram analysis. In the Chi-square test, the observed and expected values are used to attain a 

significance level. The formula is given as:  

𝑋2 = ∑
(𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒−𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒)2

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒
    255

𝑖=0                                   (7.1) 

Here, i represent the intensity level of the image and the expected value is 256 for 256 × 256 

images. The outcomes are verified in the chi-square distribution table with 0.05 and 0.01 

significance levels. For 255 degrees of freedom, the critical values with 0.05 and 0.01 probability 

are 293.2478 and 310.457 respectively. Table 7.4 shows the chi-square values generated from the 

encrypted Lena image using the proposed scheme. It also reveals that the hypothesis is accepted 

with 0.05 and 0.01 levels of significance, which means the pixel distribution is uniform. 
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Table 7.4 CHI-SQUARE Analyses of the proposed scheme. 

Image Layer 𝑿𝟐 − 𝑽𝒂𝒍𝒖𝒆 𝑷 − 𝑽𝒂𝒍𝒖𝒆 Decision 
 

Original 
Image 

Blue 256.00 0.529 Accepted 

Green 255.9883 0.529 Accepted 

Red 250.9375 0.439 Accepted 

 
Encrypted 

Image 

Blue 244.8673 0.329 Accepted 

Green 245.6417 0.325 Accepted 

Red 244.4384 0.323 Accepted 

 

7.7 Time Execution Performance 
The present-day world is focusing on the time taken by the machines to complete their assignment. 

Old fashioned devices consume more time and hence energy in achieving their goals. The same is 

the idea here that any proposed scheme should execute its job in a short interval of time. For bigger 

real-life data, the execution time should be minimized to seconds and even lesser. For calculating 

the time of the proposed work, we use a system having Processor: Intel R CoreTMi7-8565U CPU 

@ 1.8GHz 1.99 GHz, RAM: 8 GB, and operating system: 64 Bit operating system ×64-based 

processor. The language used here is python version 3.6.  

Table 7.5 Time execution Analyses of the proposed scheme. 
Images Used Schemes Encryption Time 

(sec) 
Decryption Time 

(sec) 
 
 
 

Lena Image 

Proposed 8.92672 8.89861 

Ref [102] 10.07052 10.1475 

Modified Serpent Ref [104] 31.31250 15.3593 

Classical Serpent Ref [104] 63.0000 63.8281 

Classical AES Ref [25] 52.68941 52.52367 
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7.8 Information Entropy 

This analysis deals with the level of randomness achieved. The amount of randomness gives the 

impression of the true efficacy of a cryptosystem. Information entropy (IE) calculates this 

randomness and unpredictability as defined by the equation defined below, where the probability 

of random variable 𝑢𝑗  is used to calculate IE. The best optimal value of an encrypted image is 8. 

Any kind of enciphering technique generating the outcomes of IE nearer to 8 is considered as robust 

and secure. Such encrypted images are when observed pictorially, generate a flat histogram curve 

i.e. authenticating randomness and unpredictability. Table 7.6 represents the outcomes of IE of the 

proposed scheme vs some well-known cryptosystems.  

𝐼𝐸(𝐻) = − ∑ 𝑃(𝑢𝑗)𝑙𝑜𝑔2𝑃(𝑢𝑗)                                                           (7.2) 

Where 𝑃(𝑢𝑗) denotes the probability of a r.v 𝑢 at 𝑗𝑡ℎ index. 

        Table 7.6 Information Entropy Analyses of the proposed scheme. 

Images Layer Proposed Ref [102] Ref [100] Ref [104] 

 
 

Lena Image 

Blue 7.9895 7.9888 7.9889 7.9885 

Green 7.9894 7.9890 7.9982 7.9882 

Red 7.9891 7.9882 7.9981 7.9893 

 
 

Baboon Image 

Blue 7.9987 7.9990 7.9977 7.9985 

Green 7.9988 7.9989 7.9974 7.9969 

Red 7.9978 7.9987 7.9981 7.9973 

 
 

Pepper Image 

Blue 7.9972 7.9988 7.9968 7.9987 

Green 7.9990 7.9991 7.9972 7.9977 

Red 7.9989 7.9992 7.9986 7.9972 
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Chapter 8 

Conclusion and Future Directions 
 

A brief and accurate description of the results obtained in this dissertation is discussed in this 

chapter. Moreover, some questions that arise during this research work are also included. 

The main objectives achieved by this research presented here can be categorized into the following 

four categories. 

1. Introducing non-associative algebraic structures for the construction of strong and secure 

S-boxes to enhance encryption security level incorporating them. 

2. The aim is to construct a more secure and large number of S-boxes instead of achieving a 

single S-box using a group of permutation and group action techniques over non-associative 

structures. 

3. By utilizing these non-associative structures modify the designs of the Rijndael algorithm 

presented by Joan Daemen and Vincent Rijmen and the Serpent algorithm presented by Eli 

Biham, Ross Anderson, and Lars Knudsen. 

4. To design novel image encryption and watermarking techniques in multimedia security 

using these S-boxes. 
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8.1 Conclusion  
In the beginning, non-associative structure IP-loop, is introduced for the design of a highly 

nonlinear component of a block cipher. The ultimate goal is to enhance the security level of various 

crypto algorithms. The interesting feature of this structure is the availability of a large number of 

IP-loops due to the non-associativity. For example, S-boxes over IP-loop with 256 elements, it 

takes millions of years to find all possible IP-loops of order 256. These constructions have better 

security analysis and portray a high level of randomness. 

As for as chapter three is concerned, a watermarking scheme and majority logic criterion are used 

to examine the strength of S-boxes constructed over IP-loop. The ways for transferring data have 

been changed due to the vast technology of the internet and communication. Due to this vast 

technology, disputes arise for the reliability and integrity of information or data. These S-boxes 

show excellent confusion and diffusion properties in image encryption. In the proposed technique 

of watermark, the plain image is not necessarily needed amid the extraction procedure. Mostly it 

is observed that a private key is used to generate the arbitrary arrangement during the insert process. 

Which shows that the projected technique lies in the category of blind watermarking. The 

simulation results have made sure the strength against different signal attacks and strategies of the 

suggested scheme.  

In chapter four a cryptographic encryption standard is proposed whose model is the same as 

presented in Rijndael Algorithm by Joan Daemen and Vincent Rijmen. The modification lies in the 

design of the cipher, we have used IP-loop instead of extended binary Galois field. The encryption 

and decryption scheme are modified using a single binary operation of IP-loop and the XOR 

Boolean operator. Our proposed mathematical structure is superior to Galois field in terms of 

complexity and can create arbitrary randomness due to a larger key space. Moreover, IP-loop is 

non-isomorphic and has more than one Cayley table representation as compared to the Galois field. 
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This in result confirms the resistance against cryptanalytic attacks specifically on mathematical 

structures.  

As for as chapter five is concerned construction technique for S-boxes by utilizing a PA-loop 

another non-associative structure is presented. This includes fewer constraints as compared to the 

Galois field and cyclic groups like non-associativity and inverse of zero element and it is more 

general than IP-loop. This technique generates more S-boxes as compared to the many other 

existing algorithms. In addition to this, the implementation of an asymmetric group enhances the 

quantity of these components having competitive strength with well-known S-boxes. 

In chapter six of this dissertation, Mobius transformation is used to construct highly nonlinear S-

boxes over PA-loop. The utilization of these structures for the construction of S-boxes yielded 

fruitful results like high nonlinearity, appropriate BIC and SAC outcomes and excellent LP and DP 

values. This encourages to utilization of non-associative structures in AES, DES, Serpent, and as 

well as any other cryptosystems.  

In the last chapter, an image encryption scheme based on the serpent algorithm is presented. In this 

scheme, we used the S-boxes which we constructed in chapter six. This scheme has less round due 

to which time execution is shorted as compared to serpent but show better results. The advantage 

of using this structure is it includes 128 bits keys along with a PA-loop of order 256. If an attacker 

has the knowledge of the key but does not have any information about the loop, he cannot succeed 

to break this. Moreover, the proposed mathematical system is noncommutative making it harder to 

break. Different analyses were used to investigate the proposed scheme to verify its strength. All 

the standard tests were showing fruitful results ensuring their practical applications. 
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8.2 Future directions 
While going through this research work few questions come to mind but remained unanswered. 

These questions may be an extension of this research done in our dissertation or may be well 

thought out in the future. Some of these questions are given below. 

1. Construct robustness and secure component for block ciphers (S-boxes) using non-

associative structures having optimal nonlinearity and a greater number of input bits to 

resist the several linear and differential attacks. 

2. To utilize these special types of block ciphers in multimedia security such as image 

encryption application, watermarking, audio and video steganography. 

3. Utilization of various non-associative structures like Moufang loop, Weak IP-loop for the 

construction of S-boxes.
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