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Preface 

Transport of fluid through porous space is quite important topic. Such 

importance is quite prevalent in various engineering process. Mathematical and 

analytical techniques to model flows in porous media vary from algebraic 

expressions to fluid models. Extensive studies have been undertaken for porous 

medium employing classical Darcy’s expression. Darcy assumes a continuum 

approximation of both medium and fluid to study the fluid transport in porous 

media. Additional features are incorporated to increase its accuracy and validity 

for a wider range of porous media. Darcy-Forchheimer, Darcy-Brinkman and 

Darcy-Brinkman-Forchheimer are few examples which incorporate inertia and 

boundary features additionally. Modified Darcy’s law is another continuum 

approach which is based on rheological properties of fluid. Rotating flows has 

significance in the field of meteorology and oceanography. It is because of the 

effects of Coriolis and centrifugal forces. Thus it is imperative to study the 

effect of rotating flows by continuously moving surfaces. In applications related 

to transport of blood, foam, emulsion or suspension the no slip boundary 

condition is not appropriate. In these situations, it is essential to use slip 

conditions which defines a relation between particles adjacent to surface to 

normal component of velocity at surface. Prescribed heat flux condition at the 

boundary is also utilized in this thesis. 

Present thesis focuses on the characteristics of nonlinear models through Darcy-

Forchheimer porous space. For more general view of engineering applications, 

the flows by different surfaces are also studied. This thesis is structured as 

follows:  

Chapter one provides a detailed literature review and fundamental expressions. 

Chapter two discussed the rotating flow of two-phase nanofluid through porous 

space.  Velocity and thermal slip conditions are employed at the boundary. 



Darcy-Brinkman expression is utilized to capture the effect of porous space. 

Inclined magnetic field is applied. Heat transfer aspects are studied in presence 

of viscous dissipation. Numerical solutions are computed through NDSolve 

technique. The contents of this chapter are submitted in Numerical 

Methods for Partial Differential Equations. 

Darcy-Forchheimer flow of nanofluid subject to rotating frame is analyzed in 

Chapter three. Nanofluid consisting of carbon nanotubes is utilized. Exponential 

stretching sheet creates disturbance in flow. Prescribed heat flux condition is 

employed at the boundary. Behaviors of emerging variables on flow and 

physical quantities are physically interpreted.  The relevant observations are 

published in Physica Scripta 96 (2021) 025217. 

Chapter four aims to compute optimal series solutions for chemically reactive 

flow of carbon nanotubes through Darcy-Forchheimer porous space. Carbon 

nanotubes consisting of single and multiple layers of graphene are used in 

analysis. Heat generation/absorption and viscous dissipation are also accounted. 

Entropy generation in a system is modelled through second law of 

thermodynamics. Comparative results are obtained for single wall and multi 

wall carbon nanotubes. Optimal solutions are approximated through OHAM. 

The data of this chapter is published in Physica Scripta 96 (2021) 095209. 

Chapter five presents the numerical investigation of carbon nanotubes through 

porous space. Carbon nanotubes namely single and multi walls are utilized in 

the analysis. Disturbance in flow is generated by the stretching sheet whose 

curvature is altered in a controllable manner. Flow in porous space is 

characterized by Darcy-Forchheimer relation. Graphical illustration for behavior 

of emerging variables on flow fields is provided. Materials of this chapter are 

published in Journal of Central South University 26 (2019) 865-872. 



Chapter six elaborates the impact of prescribed heat flux condition in flow of 

water-based carbon nanotubes. Exponential curved stretching sheet creates 

disturbance in flow. Heat transfer aspect is analyzed in presence of heat 

generation/absorption. Porous space effect is characterized by Darcy-

Forchheimer relation. NDSolve technique is employed for computation of 

numerical solutions. The contents of this chapter are published in Physica A: 

Statistical Mechanics and its Applications 554 (2020) 124002.  

Features of hybrid nanofluid through Darcy-Forchheimer porous space is 

illustrated in Chapter seven. Molybdenum disulfide and Silicon dioxide are 

utilized in flow analysis. Comparative results are obtained for hybrid nanofluid 

and nanofluid. Porous space with variable characteristics is analyzed. 

Additional effects of nonlinear thermal radiation, heat generation/absorption 

and viscous and porous dissipation are considered. Entropy generated in a 

system is modelled by second law of thermodynamics. Observations of this 

chapter are published in Entropy 23 (2021) 89. 

Chapter eight provides the comparative analysis for flow of carbon nanotubes 

due to a rotating disk. Boundary conditions for velocity and temperature are set 

so that slip effects are not ignored. Flow in porous space is described by Darcy-

Forchheimer relation. Viscous dissipation is also considered. Optimum series 

solutions are computed by optimal homotopy analysis technique. Data of this 

chapter is published in International Communications in Heat and Mass 

Transfer 116 (2020) 104641. 

Chapter nine develops the numerical solution for nanofluid flow filling porous 

space with variable characteristics. Mass transfer aspect is studied in presence 

of activation energy. Buongiorno model is utilized for nanoliquid transport 

phenomenon. Permeability and porosity of porous space are linear functions of 

space variable. Disturbance in flow is created by rotating disk. Variations of 



flow fields against emerging variables are interpreted through graphs. 

Numerical data of physical quantities is obtained and analyzed. Material of this 

chapter is published in International Communications in Heat and Mass 

Transfer 119 (2020) 104904.  

Simultaneous features of thermal stratification and nonlinear thermal radiation 

in flow of hybrid nanofluid are interpreted in Chapter ten. Nanoparticles of two 

types namely Titanium dioxide and Aluminum oxide are accounted. Velocity 

slip conditions are employed at the boundary. Variable aspects of porosity and 

permeability are utilized through porous space effect. Contents of this chapter 

are published in Alexandria Engineering Journal 60 (2021) 3047-3056. 

Chapter eleven aims to analyze the features of Carreau fluid through porous 

space with variable characteristics. Flow is created by a rotating disk. Flow 

properties are discussed subject to viscous dissipation. Rate of entropy 

generation is also calculated. Keeping in view the rheological characteristics of 

Carreau fluid, modified Darcy’s law is utilized to capture the effect of porous 

space. Numerical solutions are computed. Observations of this chapter are 

published in International Communications in Heat and Mass Transfer 120 

(2021) 105073. 

Chapter twelve consists of the concluding remarks of present thesis. 
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Chapter 1

Literature review and methodologies

1.1 Introduction

This chapter provides the background related to porous space, nanofluid, non-Newtonian fluids,

entropy generation and heat and mass transfer. Governing equations of fluid flow and heat and

mass transfer are also included.

1.1.1 Nomenclature

 surface stretching velocity

0 0 positive constant

(  ) velocity components

( ) space coordinates

(  ) space coordinates

(  ) space coordinates

 ( =   ) kinematic viscosity

() ( =    ̌) heat capacity

 ( =   ̌) electrical conductivity

 ( =     ̌) density

 ( =    ̌) thermal conductivity

 ( =  ) thermal diffusivity

 inclination angle

5



 temperature exponent

 nanoparticle volume fraction

 angular frequency

 non-uniform inertia coefficient

∗ permeability of porous space

 drag coefficient

 radius of curvature

 reference length

 pressure

 porosity

∞ ∞ constant porosity and permeability

 ∗ variable porosity and permeability

 measure of unsteadiness

0 zero shear rate viscosity

̊ second-order invariant strain tensor

Γ  Carreau fluid parameters

 heat generation/absorption

 mean absorption coefficient

 Brownian diffusion

 thermophoresis

̃ Stefan Boltzmann coefficient

12 slip coefficients for velocity and temperature

̃ ̃ dimensional constants

 chemical reaction constant

 constant exponent

 activation energy

̃ Boltzmann constant

  rate constants for homogeneous-heterogeneous reactions

1 2 concentration of chemical species

6



̆1  ̆2 diffusion coefficients of 1 and 2

 concentration exponent

000 entropy generation

 mean temperature

̆ universal gas constant

( 0 )    dimensionless ((velocities), temperature, concentration)

 dimensionless variable

 local porosity parameter

Ω local rotational parameter

 magnetic parameter

 inertia coefficient

  unsteadiness parameters

 Peclet number

 parameter

 curvature parameter

 Weissenberg number

1 2 velocity and temperature slip parameter

   skin friction coefficients

 dimensionless pressure

 Brownian motion parameter

 thermophoresis parameter

 thermal stratification parameter

 Eckert number

Pr Prandtl number

∗ heat generation/absorption parameter

 temperature ratio parameter

 Brinkman number

 radiation parameter

 local Nusselt number
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Re local Reynolds number

Λ reaction rate parameter

 activation energy parameter

1 temperature difference parameter

 Schmidt number

̂ strength of homogeneous reactions

̂ strength of heterogeneous reactions

Ψ ratio of diffusion coefficients

 local Sherwood number

 entropy generation rate

1 2 diffusion parameters with respect to homogeneous and heterogeneous reactions

∗ arbitrary constants

̆ integer

N non-linear operator

 total squared residual error

1.1.2 Subscript

 condition at surface

∞ ambient condition

 base fluid

 nanofluid

 carbon nanotube

 hybrid nanofluid

̌ nanoparticle

1.2 Literature review

In engineering fluid mechanics, prediction of drag forces on surfaces of tubes, pipes, pumps,

wings of aircraft and turbines is considered as an important task. These drag forces are gen-

erated due to fluid viscosity which causes shear stress on the surface. In 1904, Prandtl [1]

revolutionized it by giving a concept of boundary layer theory which mainly focuses on how
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far from the surface viscosity dominates the flow field. Boundary layer theory is significantly

utilized in literature to analyze the behavior of fluids over various surfaces such as stretching

surfaces, circular cylinder and rotating disk. It is due to its applications in chemical, scientific

and biological sciences. Blasius [2] employed boundary layer theory to flows over a plate and

circular cylinder. Sakiadis [3] considered the flow over a continuos flat surface moving with uni-

form speed. Flows over a stretching sheet is initially analyzed by Crane [4]. Wang [5] extended

the work of Crane for three-dimensional flows due to a stretching surface. He considered linear

velocity distribution of stretching surface. However, it is not necessary for a stretching sheet to

move with linear velocity. Several studies are conducted to study the flow for different types

of stretching velocities and sheets such as unsteady, curved, power-law and exponential. Ali [6]

analyzed the flow over a porous stretching sheet moving with power-law velocity. Magyari and

Keller [7] illustrated the flow past an exponential stretching sheet. Flow past an exponential

stretching in rotating frame is elaborated by Javed et al. [8]  Nadeem and Lee [9] discussed

the flow of nanofluid by an exponential stretching surface. Mukhopadhay [10] examined the

flow over such sheet with thermal radiation and MHD. Three-dimensional flow over an expo-

nential stretching surface is provided by Liu et al. [11]  Rosali et al. [12] investigated flow by

an exponentially porous stretching surface. Mustafa et al. [13] considered effects of thermal

radiation over such surfaces. Flow of ferrofluid over an exponentially porous stretching surface

is deliberated by Jusoh et al. [14]  Lund et al. [15] computed quadruple solutions for mixed

convective flow of nanofluid by an exponential stretching surface. Flow of viscoelastic fluid over

exponential stretching sheet with Cattaneo-Christov heat flux model is interpreted by Malik

et al. [16]. Sajid et al. [17] illustrated the flow over a stretching sheet whose curvature is

altered in a controllable manner. Such sheets are useful in making of stretch-forming machines

with curving jaws. Rosca and Pop [18] provided unsteady flow by porous curved stretching

sheet. Thermally radiative flow of nanofluid by curved stretching sheet is illustrated by Abbas

et al. [19]  Okechi et al. [20] elaborated flow over exponential curved stretching sheet. Alblawi

et al. [21] utilized Buongiorno’s model for flow over exponentially curved sheet. Thermally

radiative flow of Casson fluid over exponentially curved sheet is scrutinized by Kumar et al.

[22]  Kempannagari et al. [23] interpreted flow of non-Newtonian fluid by exponentially curved

sheet. Fluid flow near a rotating disk is encountered in industrial processes such as spin coating,
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centrifugal pumps, air cleaning machines and electrical power generating system. Von-Karman

[24] was the first one who formulated such problems. He introduced similarity transformations

to convert system of partial differential to system of ordinary differential equations of such

problems. The work of Karman is the basis for several studies conducted in this direction (see

refs. [25− 34]).
Heat transfer plays crucial role in different systems such as domestic refrigerators, automo-

biles, electronic devices, buildings and heat exchangers. The optimum performance of these

equipment depends on the rate heat is transferred. Low thermal conductivity of conventional

fluids such as ethylene glycol, water and oil is a limitation in improving the performance. A

suitable technique of heat transfer enhancement is required to optimize energy devices. Choi

[35] introduced a technique by dispersion of small solid particles such as metals, carbide ceram-

ics, carbon nanotubes and oxide ceramics in base material known as nanofluid. Since nanofluids

have higher thermal conductivity when compared with conventional fluids. Thus these can re-

markably enhance the heat transfer performance of engineering devices especially for cooling

of electronic devices. Convective heat transfer of nanofluids can be modelled by using single

phase or two-phase approach. The relative velocity between fluid and particles may not be

zero in single phase approach. Slip in velocity is caused by seven mechanisms as suggested by

Buongiorno [36]. Slip mechanism includes fluid drainage, inertia, magnus effect, thermophore-

sis, Brownian diffusion, diffusiophoresis and gravity. Several studies are conducted to study

the characteristics of Bunogiorno’s model in flow over different geometries. Few of them can

be consulted via refs. [37− 42]. Two-phase approach assumes no slip condition between fluid
and nanometer sized particles. In two-phase approach, the governing equations with their spe-

cific heat, density, viscosity and thermal conductivity are modified differently through different

models. Brinkman [43] provided a model for viscosity of nanofluid that takes into account the

percentage of nanoparticles suspended in base fluid. Maxwell presented a theoretical model for

thermal conductivity of nanomaterial which is based on spherical shaped particles. Hamilton

and Crosser [44] provided the modified form of Maxwell’s model. They observed the effect of

nanoparticle shape on thermal efficiency of nanofluid. Xue [45] employed polarization theory to

analyze the effect of interface interaction between bulk liquid and carbon nanotubes. Specific

heat of a nanomaterial is modelled by Pak and Cho [46]. Later on, Eastman et al. [47] em-
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ployed the concept of heat capacity and presented a model for it Turkyilmazoglu [48] provided

numerical simulation for nanofluid film flow and heat transfer. Entropy generation analysis of

nanomaterial is elucidated by Hayat et al. [49]. Kumar et al. [50] illustrated chemically reactive

flow of carbon nanotubes with entropy generation. Effects of Newtonian heating and chemical

reaction in flow of nanofluid is explored by Aleem et al. [51]. Reddy and Sreedevi [52] studied

the thermally radiative flow of nanofluid in a square chamber.

A new class of nanofluids is introduced with enhanced thermophysical characteristics namely

hybrid nanofluid. In hybrid nanofluids, two dissimilar nanoparticles are suspended in base fluid.

The appropriate composition of nanoparticles has to be chosen to enhance the positive com-

patible features of each other. Sundar et al. [53] discussed heat transfer enhancement in

MWCNT-Fe3O4/water nanofluid. Viscosity of hybrid nanofluid using different nanoparticles is

analyzed by Meybodi et al. [54]  They have considered Al2O3 TiO2 SiO2 and CuO nanopar-

ticles. Mansour et al. [55] provided entropy generation analysis of Al2O3−Cu/water nanofluid
with MHD. Influence of thermal deposition in flow of C3H8O2 based MoS2−SiO2 nanofluid
is seen by Shaiq et al. [56]  Manjunatha et al. [57] studied heat transfer characteristics of

hybrid nanofluid with variable viscosity. Aladdin et al. [58] examined flow of Cu-Al2O3water

nanofluid over a permeable sheet. Stagnation point flow of hybrid nanomaterial is interpreted

by Abbas et al. [59]. Mabood et al. [60] presented entropy generation analysis of water based

Cu-Al2O3 with melting heat transfer.

Interest of researchers in analyzing the flow of fluids whose viscosity changes with the shear

rate increases substantially in 20th century. Such fluids are referred as non-Newtonian fluids.

Salt solutions, toothpaste, ketchup, paint, grease and blood are few examples of non-Newtonian

fluids which are used extensively in everyday life. The characteristics of such fluids can not

be described by a single fluid model. The rheological variables with differential system of

higher order increases the complexity of non-Newtonian fluids. Thus, various fluid models

are presented in literature to describe the non-Newtonian fluid depending on their rheological

characteristics. Carreau [61 62] fluid model is one of them which demonstrate power law as

well as Newtonian behavior at high and low shear rates. Carreau fluid model has involvement

in manufacturing processes such as aqueous, melts and polymer solutions. Vajravelu et al. [63]

analyzed the flow of Carreau fluid in a non-uniform channel. Khan and Azam [64] studied
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unsteady flow of Carreau fluid over porous stretching sheet. Animasaun and Pop [65] provided

numerical simulation for flow of Carreau fluid over paraboloid surface. Flow of Carreau fluid

with heat generation/absorption is elaborated by Rehman et al. [66]  Mahanthesh et al. [67]

illustrated the convective flow of dusty Casson and Carreau fluids. Nazir et al. [68] utilized

Cattaneo-Christov heat flux model for flow of Carreau fluid. Temperature dependent diffusion

coefficients is also considered. Irreversibility analysis of Carreau fluid with Ohmic heating is

addressed by Khan et al. [69]  Elayarani et al. [70] considered gyrotactic microorganisms in

flow of Carreau nanofluid.

Porous medium is a solid matrix consisting of interconnected voids distributed in such

a way that it occupies measurable fraction of its volume. Wood, cork, bones, soil, aquifer,

biological tissues and human lung are some examples of porous medium. Movement of fluid

through porous medium is of utmost interest due to its implications in various scientific and

technical fields such as atherosclerosis, gaseous diffusion in binary mixtures, artificial dialysis,

geo-energy production, catalytic converters, gas turbines and electrochemical systems. The

efficient utilization of such medium requires a careful study for modelling momentum and energy

transport. In 1856, Darcy [71] suggested a model that relates pressure gradient in flow direction

to fluid velocity through viscosity of fluid and permeability of space. Traditional Darcy’s law is

widely used for elaborating flows in porous media. However, validity of Darcy’s law is restricted

to incompressible, laminar, purely viscous, isothermal Newtonian flow. Several modifications

such as Darcy-Forchheimer, Darcy-Brinkman and Darcy-Brinkman-Forchheimer models are

suggested to overcome this limitation. The first non-Darcy model is presented by Forchheimer

[72] by addition of square velocity term to account for inertial effects. Later on, Muskat [73]

entitled this modification as Forchheimer term. Bakar et al. [74] analyzed stagnation-point flow

through Darcy-Forchheimer porous space. Radiative flow of carbon nanotubes through Darcy-

Forchheimer porous space is examined by Shah et al. [75]  Audu et al. [76] utilized finite

element method for flow through porous space. Huda et al. [77] studied Cattaneo-Christov

heat flux model through Darcy-Forchheimer porous space. Brinkman [78 79] further modified

the Darcy’s model for viscous forces by the addition of Darcy resistance term which is known

as Darcy-Brinkman expression. Nield [80] studied the importance of viscous dissipation in

Darcy, Forchheimer and Brinkman models. Combined convective flow along a non-isothermal
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wedge through porous space is examined by Ibrahim and Hassanien [81]. Hadharami et al. [82]

provided another model for viscous dissipation in porous media. Partial slip in flow through

Darcy-Brinkman porous space is elaborated by Kausar et al. [83]. Darcy-Brinkman flow of

couple-stress fluid is discussed by Yadav et al. [84]. By adjoining Darcy-Brinkman and Darcy-

Forchheimer models, a generalized model entitled Darcy-Brinkman-Forchheimer [85] model is

presented. Umavathi et al. [86] developed expressions for flow of nanofluid through Darcy-

Brinkman-Forchheimer relation. Heat and mass transfer of two-phase nanofluid invoking Darcy-

Brinkman-Forchheimer porous space is interpreted by Bhatti et al. [87]  Farooq et al. [88]

developed flow of Casson fluid through Darcy-Brinkman-Forchheimer porous space. Above

mentioned modifications are valid when the considered fluid is purely viscous in nature.

Since the flow phenomena through porous space becomes more complex when non-Newtonian

fluid are involved. Thus Darcy’s law is modified differently to describe more accurately such

flows. Tan and Masuoka [89] employed modified Darcy’s law for the flow of second grade fluid.

Flow of generalized Burger’s fluid through porous space with MHD is analyzed by Khan et al.

[90]. Hayat et al. [91] provided exact expressions in flow of generalized Burger’s fluid subject

to rotating frame. Flow of micropolar fluid through porous space is examined by Khan et al.

[92]  Flow is generated by a rotating disk. Tanveer et al. [93] studied flow of Carreau fluid in

a curved channel through porous space. Haq et al. [94] utilized modified Darcy’s law for flow

of generalized second grade fluid through porous space.

In above discussed literature, the permeability and porosity of medium are considered con-

stant. Schwartz and Smith [95] observed that porosity is not constant but varies from wall to

interior which also affects permeability. Vafai [96] studied the flow and heat transfer in variable

porous media. Experimental analysis of heat transfer in variable porous space is examined

by Vafai et al. [97]  Chandrasekhra and Namoboudiri [98] illustrated the characteristics of

variable porous space in flow over inclined surfaces. Combined convection in flow over a non-

isothermal wedge through porous space is analyzed by Ibrahim and Hassanien [99]  Rees and

Pop [100] discussed vertical free convective flow through variable characteristic porous space.

Flow through variable permeability porous layers is developed by Hamdan and Kamel [101].

Saif et al. [102] explored the impact of inclined magnetic field in flow through porous space

with variable characteristics.
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Entropy is defined as a disorderliness is a system which explains the number of states a

system can take in a conversion process. A system loses energy when converting from one state

to another. Since degradation of energy reduces the thermal efficiency and increases entropy

generated in a system. Thus, entropy minimization becomes a significant topic in thermo-fluid

field. Main sources of entropy generation in a system are electrical conduction, heat and mass

transfer, viscosity loses and chemical reaction. First and second law of thermodynamic are used

to describe entropy generation in a system. However, second law of thermodynamics is more

accurate because it relates heat associated with a system to entropy change in that system. The

first attempt in this regard was by Bejan [103], who observed that entropy generation results

in extreme decline of irreversibility in a system. Shojaeian and Kosar [104] investigated partial

slip in Newtonian and non-Newtonian fluid with entropy generation. Thermally radiative flow

of Carreau nanomaterial subject to entropy generation is interpreted by Bhatti et al. [105] 

Kefayati and Tang [106] analyzed entropy generation analysis of Carreau nanofluid with double

diffusive natural convection. Flow of hybrid nanofluids with entropy generation is studied by

Huminic and Huminic [107]. Khan et al. [108] discussed flow of Carreau fluid with entropy

generation. Yusuf et al. [109] explored the influence of thermal radiation in flow of hybrid

nanofluid with entropy generation. Darcy-Forchheimer flow of fluid with entropy generation

is examined by Muhammad et al. [110]. Sahoo and Nandkeolyar [111] considered entropy

generation in flow of Casson nanofluid. Entropy generation analysis of magneto nanofluid is

presented by Reddy and Sreedevi [112] 

During the past few decades, researchers emphasized on the interaction of electrically con-

ducting fluids and magnetic field. The exertion of magnetic field in a thermo-fluid system

manipulates the suspended particles and rearranges their concentration. Such change in con-

centration of nanoparticles affects the heat transfer. Magnetic field can be applied in direction

of flow as well as to the transverse direction of flow. However, it is observed that the mag-

netic field applied in transverse direction of flow acts directly on fluid and maybe more active

in controlling the flow. In order to predict the transport of MHD fluid, both Maxwells and

Navier-Stokes equations are mutually coupled through various laws. Important works on flow

influenced by magnetic field are cited through [113− 121]  From prevailing literature, it is

analyzed that less attention has been given to the fluid flows caused by insertion of inclined
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magnetic field. Few significant studies on flow with inclined magnetic field can be seen through

refs. [122− 129] 
Mass transfer is a natural phenomenon in which species of higher concentration region travels

to region of lower concentration. Diffusion of nutrients in tissues, food processing, purification

of blood in liver and kidneys, cooling towers and thermal insulation are some procedures which

involves mass transfer. Mas transfer and chemical reactions have been given attention in the

literature due to complex interactions between them. Initially Bestman [130] was the one who

analyzed boundary layer flow in presence of chemical reaction. In chemical engineering, thermal

oil recovery and nuclear reactor cooling, chemical reactions with finite Arrhenius activation

energy are utilized. Activation energy is considered as an energy barrier between products and

reactants of a reaction which has to be crossed to start a chemical reaction. Hsiao [131] utilized

parameter control method for thermally radiative flow of Carreau nanofluid with activation

energy. Second order slip in MHD flow with activation energy is discussed by Majeed et al.

[132]  Hamid et al. [133] elaborated the unsteady flow of magneto-Williamson with activation

energy. Few recent attempts in this direction can be studied via refs. [134− 139] 

1.3 Basic conservation laws

1.3.1 Mass conservation

Equation of continuity is mathematically expressed as




+∇ (V) = 0 (1.1)

For an incompressible fluid Eq. (11) reduces to

∇V = 0 (1.2)

1.3.2 Momentum conservation

Law of conservation of linear momentum in differential form is


V


= div τ̆+b̆ (1.3)
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where τ̆ represents the Cauchy stress tensor and b̆ the body force.

Viscous fluid

Cauchy stress tensor for an incompressible viscous fluid is

τ̆ = −I+ A1 (1.4)

where

A1 = L+ L
  (1.5)

Carreau fluid model

Cauchy stress tensor for Non-Newtonian fluids is

τ̆ = −I+ S (1.6)

where extra stress tensor for Carreau fluid is

S = (̊)A1 =

µ
∞ + (0 − ∞)

³
1 + (Γ̇)2

´−1
2

¶
A1 (1.7)

̇ =

r
1

2
A21 (1.8)

In above expressions, 0 depicts the zero shear rate viscosity, ∞ the infinite shear rate viscosity,

S the extra stress tensor,  and Γ the Carreau fluid parameters and ̇ the second invariant rate

of strain tensor. For ∞ = 0 Eq. (17) reduces to

S =

µ
0

³
1 + (Γ̇)2

´−1
2

¶
A1 (1.9)

1.3.3 Energy conservation

Energy conservation law is based on first law of thermodynamics. Mathematically,





= τ̆ L−∇ (−∇ )+̃ (1.10)
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in which ̃ is the source term for heat transport. It is used to represent heat generation/absorption,

non-linear thermal radiation, viscous dissipation, thermophoresis, Brownian motion and porous

media resistance throughout the thesis.

1.3.4 Concentration equation

Concentration equation is derived from Fick’s first and second law. Mathematically




= ∇2 (1.11)

Here  depicts the concentration of species and  for mass diffusivity.

1.4 Porous media models

The flow through porous medium is characterized by following models:

1.4.1 Darcy’s law

Darcy’s flow model states that flow rate at any point in reservoir is given by fluid permeability,

viscosity and pressure gradient. Mathematically

∇ = − 

∗V (1.12)

1.4.2 Darcy-Forchheimer law

It is the modification of traditional Darcy’s law to accounts for the pressure drop due to inertial

losses at sufficiently high velocity. Mathematically one has

∇ = − 

∗V−V |V|  (1.13)

17



1.4.3 Modified Darcy’s law

The rheological characteristics of non-Newtonian fluids varies with the strain rate. To account

for such characteristics in porous space, we have

∇ = − (̊)
∗ V (1.14)

1.5 Solution techniques

1.5.1 Optimal homotopic analysis technique

Optimal homotopy analysis technique (OHAM) is an efficient tool for highly nonlinear differ-

ential equations. Here one or more auxiliary parameters are utilized for the convergence of

approximate series solutions. These parameters can be determined by minimizing the certain

function. OHAM is computationally efficient than other techniques. To understand it, we

assume a non-linear differential equation

N [̂ ()] = 0 (1.15)

where ̂ () is the unknown function,  the independent variable and N the non-linear operator.

Zeroth-order deformation problems

(1− )L [̂ (; )− ̂0 ()] = ~N [̂ (; )]  (1.16)

in which ̂ (; ) represents the unknown function of  and  L the auxiliary linear operator,
̂0 () the initial approximation, ~ the nonzero auxiliary parameter and  ∈ [0 1] the embedding
parameter.

mth-order deformation problems

mth-order deformation can be calculated by

L [̂ ()− ̂−1 ()] = ~R ()  (1.17)
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R () =
1

(− 1)!
N [̂ (; )]



¯̄̄̄
=0

 (1.18)

where

 =

⎧⎨⎩ 0  ≤ 1
1   1

 (1.19)

By choosing  = 0 and  = 1, we have

̂ (; 0) = ̂0 () and ̂ (; 1) = ̂ ()  (1.20)

By using Taylor series expansion, the solution ̂ (; ) is given as

̂ (; ) = ̂0 () +

∞X
=1

̂ () 
 ̂ () =

1

!

̂ (; )



¯̄̄̄
=0

 (1.21)

For  = 1 we have

̂ () = ̂0 () +

∞X
=1

̂ ()  (1.22)

Optimal convergence control parameters

Liao [140] computed the optimal data of auxiliary variable ~ by using the concept of mini-

mization. He employed global optimization approach in which all the parameters are optimized

simultaneously at last order for approximation. Optimal data of auxiliary variables is computed

by Mathematica BVPh 2.0. The average squared residual error is given as

 =
1

̆ + 1

̆X
=0

⎡⎣N Ã
X
=0

̂ ()

!
=

⎤⎦2  (1.23)

where  depicts the total squared residual error.

1.5.2 NDSolve technique

NDSolve is a built-in function in mathematica which computes numerical approximations of

solution to coupled differential equations. NDSolve provides an error-controlled solution of

the differential equations. Error is controlled by reducing the step size until it finds solutions

accurately. The default technique for boundary value problem is finite difference technique with
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Richardson extrapolation.
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Chapter 2

Partial slip in rotating flow of

nanomaterial through porous space

This chapter elaborates the analysis of velocity and thermal slip conditions in nanomaterial

flow. Whole system in rotating frame is taken. Darcy’s relation models the porous space.

An exponential stretching surface is used for disturbance of flow. Salient features of inclined

magnetic field and dissipation are investigated. Adequate transformations are considered to

dimensionless the problem. Resulting non-linear problem is solved numerically. Graphical

description of involved variables is illustrated in detail. Skin friction coefficients and local

Nusselt number are examined numerically.

2.1 Model development

Here rotating flow of nanomaterial through Darcy-Brinkman porous space is examined. An

inclined magnetic field with angle  and strength 0 is applied Momentum and thermal slip

conditions are employed. Viscous dissipation is taken. Stretching sheet at  = 0 is stretched

with velocity  = 0

  Flow geometry is sketched in Fig. 2.1 Relevant equations for the
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problems are:

Fig. 2.1: Flow configuration.




+




+




= 0 (2.1)





+ 




+ 




− 2 = 

µ
2

2

¶
− 

∗ −


2
0



¡
 sin2  −  sin cos

¢
 (2.2)





+ 




+




+ 2 = 

µ
2

2

¶
− 

∗  −


2
0



¡
 cos2  −  sin cos

¢
 (2.3)



+  


+  


= 

³
2
2

´
+


()

³¡



¢2
+
¡



¢2´
+


()

∗
¡
2 + 2

¢


(2.4)

 =  +1



  = 0  = 0  =  = ∞ + 0


2 +2




at  = 0 (2.5)

→ 0  → 0  → ∞ as  →∞ (2.6)

Model for two-phase nanofluid satisfies [49] :

 =


(1−)25   =



  =  (1− ) + ̆

 =


()
 () = () (1− ) + ()̆ 




= 1 +

3


̆

−1



̆

+2


−

̆

−1
  


=

̆+2−2(−̆)
̆+2+(−̆)



⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(2.7)

22



Table 2.1: Thermophysical characteristics [54].

Physical properties Base fluid Nanoparticles

2 Si2 23


¡
3

¢
9971 2650 3970

 () 0613 15 40

 () 4179 730 765

 (Ω)−1 005 10−21 1× 10−10

Consider

 = 0


()


  = 0

  ( )   = −

q
0
2



2

³
 + 

()


+ 2 


´


 = ∞ + 0

2  ( )   = 

³
0
2

´12



2   = 

(2.8)

Applying above transformations the incompressibility condition is trivially satisfied and remain-

ing equations become

1

(1−)25

1−+ ̆




 ³3
3
− 2





´
− 2

³



´2
+  2

2
+ 4Ω


−

2



1−+ ̆





⎛⎝1 + 3


̆

−1



̆

+2


−

̆

−1

⎞⎠³


sin2  −  sin cos

´
= 2

³



2


− 


2

2

´


(2.9)

1

(1−)25

1−+ ̆




 ³2
2
− 2



´
− 2


 +  


− 4Ω




−

2



1−+ ̆





⎛⎝1 + 3


̆

−1



̆

+2


−

̆

−1

⎞⎠³ cos2  − 


sin cos

´
= 2

³





− 





´


(2.10)

1
1−+()̆

()


 


2
2

+ Pr 2−

2

(1−)25

1−+()̆

()


 µ³2
2

´2
+
³



´2¶
+

2 Pr1−

2

(1−)25

1−+()̆

()


 µ³


´2
+ 2

¶
+Pr  


− Pr 


= 2

³





− 





´


(2.11)

 ( 0) = −2 ( 0)



 ( 0)


= 1+1

√

2 ( 0)

2
  ( 0) = 0  ( 0) = 1+2

 ( 0)




(2.12)
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 (∞)


→ 0  (∞)→ 0  (∞)→ 0 (2.13)

We have

 =


∗0  Ω =

0
  =

20

0
 1 = 1

³
0
2

´12
  =

20
0()



2 = 2

³
0
2

´12
 Pr =





(2.14)

2.1.1 First order of truncation

In first order of truncation, the terms including
()


are assumed to be very small and may be

approximated by zero. Thus Eqs. (29)− (213) becomes

1

(1−)25

1−+ ̆




 ³ 000 − 2

 0
´
− 2 02 +  00 + 4Ω


−

2



1−+ ̆





⎛⎝1 + 3


̆

−1



̆

+2


−

̆

−1

⎞⎠ ¡ 0 sin2  −  sin cos

¢
= 0

(2.15)

1

(1−)25

1−+ ̆




 ³00 − 2


´
− 2 0 + 0 − 4Ω


 0−

2



1−+ ̆





⎛⎝1 + 3


̆

−1



̆

+2


−

̆

−1

⎞⎠ ¡ cos2  −  0 sin cos

¢
= 0

(2.16)

1
1−+(

)̆
()



 


00 + Pr 2−

2

(1−)25

1−+(

)̆
()



 ¡ 002 + 02
¢
+

2 Pr1−

2

(1−)25

1−+()̆

()


 ¡ 02 + 2
¢
+Pr 0 − Pr 0 = 0

(2.17)

 ( 0) = 0  0 ( 0) = 1 + 1
√
 00 ( 0)   ( 0) = 0  ( 0) = 1 + 2

√
0 ( 0)  (2.18)

 0 (∞)→ 0  (∞)→ 0  (∞)→ 0 (2.19)

2.1.2 Second order of truncation

To approach non-similarity solutions of Eqs. (29)− (213)  we introduce

∗ =



 ∗ =




 ∗ =




and

∗


=

∗


=

∗


= 0 (2.20)
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Taking partial derivatives of Eqs. (29)− (213) with respect to  we have

1

(1−)25

1−+ ̆




 ³∗000 − 2

∗0 + 2 

2
 0
´
− 4 0∗0 + ∗00 + ∗ 00−

2



1−+ ̆





⎛⎝1 + 3


̆

−1



̆

+2


−

̆

−1

⎞⎠ ¡∗0 sin2  − ∗ sin cos

¢
+

2
2


1−+ ̆





⎛⎝1 + 3


̆

−1



̆

+2


−

̆

−1

⎞⎠ ¡ 0 sin2  −  sin cos

¢
+

4Ω

∗ − 4 Ω

2
 = 2 ( 0∗0 − ∗ 00) + 2

¡
∗02 − ∗∗00

¢


(2.21)

1

(1−)25

1−+ ̆




 ³∗00 − 2

∗ + 2 

2

´
− 2 0∗ − 2∗0 + ∗0 + ∗00−

2



1−+ ̆





⎛⎝1 + 3


̆

−1



̆

+2


−

̆

−1

⎞⎠ ¡∗ cos2  − ∗0 sin cos

¢
+

2
2


1−+ ̆





⎛⎝1 + 3


̆

−1



̆

+2


−

̆

−1

⎞⎠ ¡ cos2  −  0 sin cos

¢
+

4 Ω
2
 0 − 4Ω


∗0 = 2 (∗0 − ∗ 0) + 2 (∗∗0 − ∗0∗) 

(2.22)

1
1−+()̆

()


 


∗00 +
¡
2− 

2

¢
Pr 1−


2

(1−)25

1−+()̆

()


 ¡ 002 + 02
¢
+

Pr 2−

2

(1−)25

1−+()̆

()


 (2 00∗00 + 20∗0) + 2 ¡1− 
2

¢
Pr−


2

(1−)25

1−+()̆

()


 ¡ 02 + 2
¢

2 Pr1−

2

(1−)25

1−+()̆

()


 (2 0∗0 + 2∗) + Pr ∗0 +Pr ∗0−
Pr∗ 0 − Pr∗0 = 2Pr ¡∗0 − ∗ 0

¢
+ 2Pr

¡
∗∗0 − ∗∗0

¢


(2.23)

∗ ( 0) = 0 ∗0 ( 0) = 1
2
√

 00 ( 0) + 1

√
∗00 ( 0)  ∗ ( 0) = 0

∗ ( 0) = 1
2
√

0 ( 0) + 1

√
∗0 ( 0) 

(2.24)

∗0 (∞)→ 0 ∗ (∞)→ 0 ∗ (∞)→ 0 (2.25)

where  is the constant prescribed variable at any streamwise location.
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2.2 Physical quantities

We have skin friction coefficients and local Nusselt number in the forms

¡
Re
2

¢12
 =

1√


1

(1−)25 
00 ( 0) ¡

Re
2

¢12
 =

1√


1

(1−)25 
0 ( 0) ¡

Re
2

¢−12
 = −



√
 ln 0 ( 0) 

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (2.26)

in which Re = 0


indicates local Reynolds number.

2.3 Solution methodology

NDSolve technique of mathematica is employed to compute numerical approximations for so-

lutions of nonlinear equations NDSolve finds a numerical solution to the ordinary differential

equations by adapting its step size so that the estimated error in the solution is just within

the tolerances specified. Table 2.2 provides a comparison of present results with those in [8] 

A good agreement with comparative study of [8] is found
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Table 2.2: Comparative values of
¡
Re
2

¢12
 and

¡
Re
2

¢12
 against Ω

Ω − ¡Re
2

¢12
 − ¡Re

2

¢12


Keller-box [8] Shooting [8] NDSolve Keller-box [8] Shooting [8] NDSolve

00 −1 −1 128437 0 0 0

02 134742 134742 133573 037015 037015 036791

05 151941 151941 150581 076251 076251 077428

10 180246 180246 179066 121796 121796 123433

20 228279 228279 227418 184850 184850 186418

2.4 Discussion

This section provides the graphical description of emerging variables such as (), (Ω), (), ()

(1), () and () on velocities and thermal field. Comparative analysis is done for SiO2-water

and Al2O3-water nanofluid. Fig. 22 displayed curves of 
0() subject to ()  0 () is decreasing

function of higher () for both SiO2-water and Al2O3-water nanofluid. In fact presence of porous

space disturbed fluid boundary layer which produces resistance in fluid flow causes reduction

in velocity  (). Fig. 23 depicts plots of  0 () for higher estimation of (Ω) It is analyzed

that (Ω) lowers  0 () for both SiO2-water and Al2O3-water nanofluids. Reduction in velocity

field  0 () is noted through higher () for both SiO2-water and Al2O3-water nanofluids (see

Fig. 24). Fig. 25 captured the influence of () on  0 (). It is seen that an enhancement

in () give rise to higher  0 () for both SiO2-water and Al2O3-water nanofluids. Fig. 26 is

sketched to inspect the behavior of () on  0 ()  Here inclination angle () offers resistance

to the fluid flow due to Lorentz force which lowers the velocity field. Velocity  0 () is more

for SiO2-water nanofluid in comparison to Al2O3-water nanomaterial. Fig. 27 illustrates the

impact of (1) on  0 ()  Clearly  0 () decays for (1) for both SiO2-water and Al2O3-water

nanofluid. Fig. 28 presents characteristics of () on velocity  ()  Clearly  () reduces for

higher () for both SiO2-water and Al2O3-water nanofluids. Fig. 29 declared attributes of (Ω)

on  ()  An enhancement in (Ω) produces oscillation in fluid flow due to rotating frame which

causes higher  () for both SiO2-water and Al2O3-water nanofluids. From Fig. 210 it is noticed

that higher () corresponds to lower  () for both SiO2-water and Al2O3-water nanofluids.
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Fig. 211 is sketched for impact of () on  (). Higher velocity  () is observed through

() for both SiO2-water and Al2O3-water. Significant behavior of () on  () is declared in

Fig. 212 An enhancement in  () is noticed through () for SiO2-water and Al2O3-water.

Fig. 213 highlighted outcomes of (1) on velocity  ()  Clearly (1) lowers the velocity  ()

for SiO2-water and Al2O3-water. An increment in () correspond to stronger thermal field

 () for both SiO2-water and Al2O3-water nanomaterials (see Fig. 214). Fig. 215 presents

the role of () on  ()  Stronger  () and more related layer thickness is noted through ()

for both SiO2-water and Al2O3-water. Physically, thermal conductivity of fluid increases due

to insertion of nanoparticles which yield stronger  (). Figs. 216 and 217 are drawn to

deliberate influence of () and () on thermal field  ()  Opposite trend is observed through

() and () for both SiO2-water and Al2O3-water. Fig. 2.18 depicted the attributes of (2) on

thermal field  ()  It is noted that higher (2) give rise to stronger  () for both SiO2−water
and Al2O3−water. Tables 23 and 24 are designed to analyze characteristics of skin friction
coefficients for emerging variables. Skin friction coefficients enhances through () and (Ω) while

reverse trend is noted for (1) Similar results are noted for both SiO2-water and Al2O3-water.

Table 25 examined the features of local Nusselt number against ()  ()  (), (Ω) ()  ()

and ()  Local Nusselt number reduces against ()  ()  (), (Ω) () and () while (2)

possesses opposite trends for both SiO2-water and Al2O3-water nanomaterials.
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Fig. 2.2: Sketch of  0 () against 

28



W = 0.0, 0.3, 0.6

l = 0.2, M = 0.2, b = p 4, x = 0.05, g1 = 0.1, Ec = 0.7, A = 0.1

SiO2 -water

Al2 O3 -water

0 1 2 3 4

0.0

0.2

0.4

0.6

0.8

z

f
'z



Fig. 2.3: Plot of  0 () against Ω
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Fig. 2.4: Plot of  0 () against 
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Fig. 2.5: Plot of  0 () against 
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Fig. 2.6: Plot of  0 () against 
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Fig. 2.7: Sketch of  0 () against 1
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Fig. 2.8: Sketch of  () against 
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Fig. 2.9: Sketch of  () against Ω
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Fig. 2.10: Sketch of  () against 
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Fig. 2.11: Plot of  () against 
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Fig. 2.12: Plot of  () against 
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Fig. 2.13: Plot of  () against 1
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Fig. 2.14: Sketch of  () against 
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Fig. 2.15: Sketch of  () against 
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Fig. 2.16: Sketch of  () against 
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Fig. 2.17: Sketch of  () against 
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Fig. 2.18: Sketch of  () against 2
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Table 2.3: Values for skin friction coefficient
¡
Re
2

¢12
 against    Ω  and 1

   Ω  1 − ¡Re
2

¢12


SiO2−water Al2O3−water
00 02 005 01 4 01 127202 130121

01 133674 136393

03 145547 147942

02 00 005 01 4 01 134984 137662

01 137475 140083

03 142291 144766

02 02 001 01 4 01 128334 128835

002 131077 132083

003 133896 135412

02 02 005 00 4 01 139021 141523

02 141896 144564

03 145026 147852

02 02 005 04 0 01 134883 137556

6 137427 140032

3 142336 144812

02 02 005 04 4 00 166943 170692

02 120928 122793

03 106948 108384
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Table 2.4: Values for skin friction coefficient
¡
Re
2

¢12
 against    Ω  and 1

   Ω  1 − ¡Re
2

¢12


SiO2−water Al2O3−water
00 02 005 01 4 01 010709 011537

01 009793 010591

03 008452 009189

02 00 005 01 4 01 016823 017455

01 016292 016925

03 015353 015982

02 02 001 01 4 01 007486 007641

002 007872 008182

003 008263 008726

02 02 005 00 4 01 001149 001605

02 024212 025538

03 038117 039903

02 02 005 04 0 01 015737 016365

6 015762 016392

3 015804 016436

02 02 005 04 4 00 009932 010783

02 008382 009086

03 007835 008491
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Table 2.5: Values for local Nusselt number
¡
Re
2

¢−12
 against    Ω    and

1

   Ω    2 − ¡Re
2

¢−12


SiO2−water Al2O3−water
00 02 005 01 4 07 01 02 220981 22439

01 208128 211787

03 185385 189375

02 00 005 01 4 07 01 02 201133 204963

01 198425 202267

03 193179 197037

02 02 001 01 4 07 01 02 202286 202972

002 200818 202233

003 199334 201521

02 02 005 00 4 07 01 02 197852 201883

02 191405 194778

03 184143 186877

02 02 005 04 0 07 01 02 201465 205315

6 198583 202435

3 193032 196882

02 02 005 04 4 08 01 02 188709 192533

09 181104 184905

10 173499 177276

02 02 005 04 4 07 00 02 171803 175586

02 221481 225304

03 247369 251068

02 02 005 04 4 07 01 00 133049 138925

01 158605 164014

03 257545 256746
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Chapter 3

Rotating flow of carbon nanotubes

subject to prescribed heat flux

condition

This chapter intends to describe the three-dimensional flow of nanofluid in rotating frame.

Carbon nanotubes (CNTs) are adopted. Disturbance in flow is generated by an exponentially

stretching sheet. Prescribed heat flux condition is considered. Darcy-Forchheimer relation

is employed to characterize the flow in porous space. System of dimensionless equations is

obtained by utilizing adequate transformations. Solutions are computed by Optimal homotopy

analysis algorithm (OHAM). Physical interpretation of emerging variables on flow fields and

physical quantities is discussed.

3.1 Model development

We examine rotating flow of carbon nanotubes dispersed in water through porous space. Dis-

turbance in flow in created by an exponentially stretching sheet. Darcy-Forchheimer expression

is employed for flow through porous space. Here the fluid occupies the domain   0 and the

stretching surface is aligned in −direction. Surface is exponentially stretching with velocity
 () = 0

 (see Fig. 3.1) Fluid is rotating with constant angular velocity  about −axis.
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The boundary layer equations for 3D flow satisfy

Fig. 3.1: Flow configuration.




+




+




= 0 (3.1)





+ 




+ 
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
− 2 = 

µ
2

2

¶
− 

∗ − 
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2 + 2 (3.2)



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+ 
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


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µ
2

2

¶
− 

∗  − 2
p
2 + 2 (3.3)





+ 




+




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2

2
 (3.4)

 =  () = 0
  = 0  = 0 − 

µ




¶


= 0
(+1)

2 at  = 0 (3.5)

→ 0  → 0  → ∞ as  →∞ (3.6)

Xue suggested a theoretical model satisfying [45]

 =


(1−)25   =



  =


()
  =  (1− ) +  

() = () (1− ) + () 


=

(1−)+2 
−

ln
+

2

(1−)+2 
−

ln
+

2



⎫⎪⎪⎬⎪⎪⎭ (3.7)
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Table 3.1: Thermophysical characteristics [45].

Physical properties Base fluid Nanoparticles

Water  


¡
3

¢
9971 2600 1600

 () 0613 6600 3000

 () 4179 425 796

Considering

 = 0


()


  = 0

  ( )   = −

q
0
2



2

³
 +  


+ 2 



´


 = ∞ + 0

2

q
2

0
 ( )   = 

³
0
2

´12



2   = 

(3.8)
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1
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(3.10)

1³
1−  +

()

()

´ 


2

2
+Pr 




− Pr


= 2Pr 

µ







− 







¶
 (3.11)

 ( 0) = −2 ( 0)



 ( 0)


= 1  ( 0) = 0

 ( 0)


= − 


 (3.12)

 (∞)


→ 0  (∞)→ 0  (∞)→ 0 (3.13)

Here equation (31) is identically justified. Emerging flow parameters can be stated as:

 =


∗0
  =



∗12 Ω =


0
 Pr =




 (3.14)
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3.1.1 First order of truncation

In first order of truncation, the terms including
()


are assumed to be very small and may be

approximated by zero. Thus Eqs. (39)− (313) becomes

1

(1− )25
³
1−  +

̆


´ µ 000 − 2


 0
¶
− 2 02 +  00 + 4

Ω


 − 2

µ
 02 +

1

2
2
¶
= 0 (3.15)

1

(1− )25
³
1−  +

̆


´ µ00 − 2




¶
− 2 0 + 0 − 4Ω


 0 − 2

µ
2 +

1

2
 02
¶
= 0 (3.16)

1³
1−  +

()̆
()


´ 


00 +Pr 0 − Pr 0 = 0 (3.17)

 ( 0) = 0  0 ( 0) = 1  ( 0) = 0 0 ( 0) = − 


 (3.18)

 0 (∞)→ 0  (∞)→ 0  (∞)→ 0 (3.19)

3.1.2 Second order of truncation

To approach non-similarity solutions of Eqs. (39)− (313)  we consider

∗ =



 ∗ =




 ∗ =




and

∗


=

∗


=

∗


= 0 (3.20)

Taking partial derivatives of Eqs. (39)− (313) with respect to  we have

1

(1−)25

1−+ ̆




 ³∗000 − 2

∗0 + 2 

2
 0
´
− 4 0∗0 + ∗00 + ∗ 00−

4Ω

∗ − 4 Ω

2
 − 2 ( 0∗0 + ∗) = 2 ( 0∗0 − ∗ 00) + 2

¡
∗02 − ∗∗00

¢


(3.21)

1

(1−)25

1−+ ̆




 ³∗00 − 2

∗ + 2 

2

´
− 2 0∗ − 2∗0 + ∗0 + ∗00−

4 Ω
2
 0 − 4Ω


∗0 − 2 (2∗ +  0∗0) = 2 (∗0 − ∗ 0) + 2 (∗∗0 − ∗0∗) 

(3.22)
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1
1−+()̆

()


 


∗00 +Pr ∗0 +Pr ∗0 − Pr∗ 0 − Pr∗0 = 2Pr ¡∗0 − ∗ 0
¢
+

2Pr
¡
∗∗0 − ∗∗0

¢


(3.23)

∗ ( 0) = 0 ∗0 ( 0) = 0 ∗ ( 0) = 0 ∗ ( 0) = 0 (3.24)

∗0 (∞)→ 0 ∗ (∞)→ 0 ∗ (∞)→ 0 (3.25)

in which  is the constant prescribed variable at any streamwise location.

3.2 Physical quantities

Expressions of physical quantities are

¡
Re
2

¢12
 =

1√


1

(1−)25 
00 ( 0) ¡

Re
2

¢12
 =

1√


1

(1−)25 
0 ( 0) ¡

Re
2

¢−12
 =

√
 ln 

(0)


⎫⎪⎪⎪⎬⎪⎪⎪⎭ (3.26)

Here Re = 0


symbolizes local Reynolds number.

3.3 OHAM Solutions

Obtained system of nonlinear equations is solved by employing OHAM. Initial approximations

and operators satisfy

L = 3

3
− 


 L = 2

2
−  L = 2

2
−  (3.27)

0() = 1− −  0 () = 0 0() =
1



−  (3.28)

with characteristics

L
h
̆∗1 + ̆∗2 

 + ̆∗3
−
i
= 0 L

h
̆∗4 

 + ̆∗5
−
i
= 0 L

h
̆∗6 

 + ̆∗7
−
i
= 0 (3.29)
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3.4 Solutions convergence

The momentum and energy equations are solved by utilizing BVPh2.0. These expressions

contain ~  ~ and ~ which plays significant role in computation of approximate series solutions.

The optimal data of convergence control variables can be evaluated by taking minimum error.

At mth-order of approximation, average squared residual error are given as [140] :

 =
1

̆ + 1

̆X
=0

⎡⎣N

⎛⎝ X
=0

 () 

X
=0

 ()

⎞⎠
=

⎤⎦2  (3.30)

 =
1

̆ + 1

̆X
=0

⎡⎣N

⎛⎝ X
=0

 () 

X
=0

 ()

⎞⎠
=

⎤⎦2  (3.31)

 =
1

̆ + 1

̆X
=0

⎡⎣N

⎛⎝ X
=0

 () 

X
=0

 () 

X
=0

 ()

⎞⎠
=

⎤⎦2  (3.32)

 =  +  +  (3.33)

At 2nd order of approximations, the numerical data of convergence control variables in SWCNTs

and MWCNTs cases are ~ = −0987276 ~ = −114483, ~ = −0536343 and ~ = −0922204
~ = −10583 and ~ = −0545242. The total residual error in SWCNTs and MWCNTs cases
are  = 674× 10−4 and  = 819× 10−4. Figs. 32 and 33 are plotted to characterize the
total residual error in case of SWCNTs and MWCNTs. Individual average squared residual

errors at 2nd order of deformation are provided in Tables 32 and 33 Decrease in average
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squared residual error is noted with higher order approximation.
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Fig. 3.2: Plot of total residual error for SWCNTs-water.
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Fig. 3.3: Sketch of total residual error for MWCNTs-water.
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Table 3.2: Optimal data of average squared residual errors for SWCNTs.

 

 


 

2 273× 10−4 148× 10−4 253× 10−4

6 314× 10−5 172× 10−5 237× 10−5

10 124× 10−5 573× 10−6 686× 10−6

14 684× 10−6 259× 10−6 281× 10−6

16 540× 10−6 186× 10−6 195× 10−6

Table 3.3: Optimal data of average squared residual errors for MWCNTs.

 

 


 

2 237× 10−4 182× 10−4 400× 10−4

6 283× 10−5 234× 10−5 278× 10−5

10 115× 10−5 829× 10−6 626× 10−6

14 644× 10−6 396× 10−6 214× 10−6

16 513× 10−6 292× 10−6 138× 10−6

3.5 Discussion

This section analyzes the characteristics of different emerging flow variables like ()  (Ω) 

(), () and () on the velocities  0 () and  () and temperature  () fields. Velocity

field  0 () shows decreasing trend for higher () in SWCNTs and MWCNTs situations (see

Fig. 34). Physically fluid viscosity and () varies directly so for larger () the viscosity

improves which lowers the velocity  0 ()  Fig. 35 scrutinizes the change in velocity  0 ()

for varying ()  Larger () produces resistance between the fluid particles which decreases

velocity  0 () in SWCNTs and MWCNTs. Fig. 36 elaborates the consequences of () for

velocity field  0 ()  Higher estimation of () produces higher velocity field  0 () in SWCNTs

and MWCNTs situations. Fig. 37 is portrayed to describe the behavior of (Ω) on  0 ()  It

has been analyzed that higher estimation of (Ω) causes higher rotation rate which leads to

lower velocity field  0 (). Fig. 38 presents that larger () produces lower velocity field  () in
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SWCNTs and MWCNTs situations. Fig. 39 analyzed that velocity  () decreases for higher

() in SWCNTs and MWCNTs situations. Behavior of () on velocity  () is analyzed in

Fig. 310 It is analyzed that  () enhances via () in SWCNTs and MWCNTs situations.

Physically an increase in volume fraction of nanoparticles causes more collisions between the

nanoparticles which corresponds to higher velocity  (). Fig. 311 illustrates the role of (Ω)

on velocity field  ()  Local rotational parameter plays an important role in stimulating the

flow along −direction which produces oscillatory trend in  0 (). Fig. 312 captured the

behavior of () on temperature field  ()  By increasing (), more heat is produced due to the

resistance between particles which causes stronger  () and thicker thermal layer thickness is

observed in SWCNTs and MWCNTs situations. Fig. 313 is portrayed to deliberate the effect

of () on temperature  ()  Larger estimation of () yield an increase of  () and its related

layer thickness through SWCNTs and MWCNTs. Fig. 314 is portrayed to describe impact

of () against  ()  Higher estimation of () yield weaker thermal field  () in SWCNTs and

MWCNTs situations. Fig. 315 displayed that by enhancing (), temperature  () is reduced

in SWCNTs and MWCNTs. Figs. 316− 319 plotted the skin friction coefficients ¡Re
2

¢12


and
¡
Re
2

¢12
 for varying   and 

¡
Re
2

¢12
 and

¡
Re
2

¢12
 are incriminated for larger

estimation of (). Figs. 320 and 321 are for local heat transfer rate
¡
Re
2

¢−12
 via distinct

values of   and  Here magnitude of
¡
Re
2

¢−12
 is higher for larger estimation of () 

Table 3.4 illustrates the validation of present results of skin friction coefficients with existing
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[12]  A good agreement here is noticed
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Fig. 3.4: Plot for  0 () against .
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Fig. 3.5: Plot for  0 () against .
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Fig. 3.6: Plot for  0 () against .
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Fig. 3.7: Plot for  0 () against Ω.
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Fig. 3.8: Sketch for  () against .
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Fig. 3.9: Sketch for  () against 
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Fig. 3.10: Sketch for  () against 
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Fig. 3.11: Sketch for  () against Ω.
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Fr = 0.1, W = 0.1, x = 0.1, A = 0.5, Pr = 6.2

l = 0.3, 0.5, 0.7

SWCNTs-water
MWCNTs-water

0 2 4 6 8

0.00

0.05

0.10

0.15

0.20

0.25

z

q
z

Fig. 3.12: Sketch for  () against .
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Fig. 3.13: Sketch for  () against .
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Fig. 3.14: Sketch for  () against .
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Fig. 3.15: Sketch for  () against .
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Fig. 3.16: Sketch for
¡
Re
2

¢12
 against  and .
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Fig. 3.17: Sketch of
¡
Re
2

¢12
 against  and .
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Fig. 3.18: Sketch of
¡
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¢12
 against  and .
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Fig. 3.19: Sketch of
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¢12
 against  and .
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Fr = 0.1, W = 0.1, A = 0.5, Pr= 6.2
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Fig. 3.20: Plot for
¡
Re
2

¢−12
 against  and .
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Fig. 3.21: Plot for
¡
Re
2

¢−12
 against  and .
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Table 3.4: Comparative values of
¡
Re
2

¢12
 and

¡
Re
2

¢12
 against distinct values of Ω

when  =  =  = 0.

Ω − ¡Re
2

¢12
 − ¡Re

2

¢12


Keller-box [12] Shooting [12] OHAM Keller-box [12] Shooting [12] OHAM

00 1 1 128170 0 0 0

02 134742 134744 134632 037023 037020 036973

05 151941 151943 151852 076254 076252 076093

10 180251 180254 178883 121793 121793 119724
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Chapter 4

Irreversibility analysis of carbon

nanotubes subject to rotating frame

This chapter interprets the chemically reactive rotating flow of water-based carbon nanotubes.

Homogeneous-heterogeneous reactions are considered. Heat transport is studied in presence

of heat generation/absorption and viscous dissipation. Flow in porous space is investigated

through nonlinear Darcy-Forchheimer relation. Carbon nanotubes of two types (namely single

wall SWCNTs and multi wall MWCNTs) are utilized. Optimal solutions are derived by Opti-

mal homotopy analysis method (OHAM). Roles of sundry parameters on flow fields, physical

quantities and entropy generation rate are interpreted. It is witnessed that rate of entropy

generation increases through homogeneous and heterogeneous reaction parameters.

4.1 Model development

Here rotating flow of carbon nanotubes dispersed in water past an exponentially stretched sur-

face is considered. Homogeneous-heterogeneous reactions and viscous dissipation are accounted.

Darcy-Forchheimer expression is employed to specify the porous space. Cartesian coordinate

frame is chosen such that flow is in −direction and the surface is stretched in −direction.
The viscous fluid filling half space   0 rotates uniformly with constant angular velocity 
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(see Fig. 41). Let  () = 0
 denotes the stretching velocity.

Fig. 4.1: Flow configuration.

In cubic autocatalysis, the characteristics of homogeneous reaction is defined as

1 + 22 → 32  = 1
2
2

The first-order isothermal reaction at catalyst surface is

1 → 2  = 1

Resulting equations are




+




+




= 0 (4.1)





+ 




+ 




− 2 = 

2

2
− 

∗ − 
p
2 + 2 (4.2)





+ 




+ 




− 2 = 

2

2
− 

∗  − 
p
2 + 2 (4.3)





+ 




+ 




= 

2

2
+



()
( − ∞) +



()

Ãµ




¶2
+

µ




¶2!
 (4.4)


1


+ 

1


+ 

1


= ̆1

21

2
− 1

2
2 (4.5)
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
2


+ 

2


+ 

2


= ̆2

22

2
+ 1

2
2 (4.6)

 =  = 0
  =  = 0  =  = ∞+0


2  ̆1

1


= 1 ̆2

2


= −1 at  = 0

(4.7)

→ 0  → 0  → ∞ 1 → 0
2 2 → 0 as  →∞ (4.8)

By Xue model [45] we have

 =


(1−)25   =



  =


()
  =  (1− ) +  

() = () (1− ) + () 


=

(1−)+2 
−

ln
+

2

(1−)+2 
−

ln
+

2



⎫⎪⎪⎬⎪⎪⎭ (4.9)

Table 4.1: Thermophysical characteristics [45].

Physical characteristics Base fluid Nanoparticles

Water SWCNTs MWCNTs


¡
3

¢
9971 2600 1600

 () 0613 6600 3000

 () 4179 425 796

Selecting

 = 0


()


  = 0

  ( )   = −

q
0
2



2

³
 +  


+ 2 



´
  = 

 = ∞ + 0
2 ( )  1 = 0

2 ( )  2 = 0
2 ( )   = 

³
0
2

´12



2 

(4.10)

we have
1

(1−)25

1−+ 




 ³3
3
− 2





´
+  2

2
+ 4Ω


 − 2

³



´2
−

2

µ³



´2
+ 1

2
2
¶
= 2

³



2


− 


2

2

´


(4.11)

1

(1−)25

1−+




 ³2
2
− 2



´
+  


− 2


 − 4Ω




−

2

µ
2 + 1

2

³



´2¶
= 2

³





− 





´


(4.12)

61



1
1−+()

()


 


µ
2
2

+ 2Pr∗ + 22−

2 

(1−)25

µ³
2

2

´2
+
³



´2¶¶
+Pr  


−

Pr 

= 2Pr 

³





− 





´


(4.13)

1



2

2
+ 




−




− 2 ̂

1−
2 = 2

µ







− 







¶
 (4.14)

Ψ



2

2
+ 




−




+ 2

̂

1−
2 = 2

µ







− 







¶
 (4.15)

 ( 0) = −2 (0)



(0)


= 1  ( 0) = 0  ( 0) = 1

(0)


= ̂√

 ( 0) 

(0)


= −Ψ ̂√

 ( 0) 

(4.16)

 (∞)


→ 0  (∞)→ 0  (∞)→ 0  (∞)→ 1  (∞)→ 0 (4.17)

Here equation (41) is trivially justified. Considering same diffusion coefficients of chemical

species 1 and 2 i.e. ̆1 = ̆2 (or ̌ = 1) and thus

+  = 1 (4.18)

From Eqs. (414) and (415)  we have

1



2

2
+ 




+




(1− )− 2 ̂

1−
 (1− )2 = 2

µ







− 







¶
 (4.19)

with boundary condition

 ( 0)


= ̂ ( 0)   (∞)→ 1 (4.20)

We define

 =


∗0  Ω =

0
  =



∗12
 ∗ = 0

()


0
 ̂ =


2
0

0


 =
20

0()
 ̂ =

³
2

0

´12

̆1

 Ψ =
̆1

̆2

 Pr =


  =



̆1


(4.21)
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4.1.1 First order of truncation

In first order of truncation, the terms including
()


are assumed to be very small and may be

approximated by zero. We have

1

(1− )25
³
1−  +

̆


´ µ 000 − 2


 0
¶
− 2 02 +  00 + 4

Ω


 − 2

µ
 02 +

1

2
2
¶
= 0 (4.22)

1

(1− )25
³
1−  +

̆


´ µ00 − 2




¶
− 2 0 + 0 − 4Ω


 0 − 2

µ
2 +

1

2
 02
¶
= 0 (4.23)

1³
1−  +

()̆
()


´ µ


00 +

2


∗ Pr  + 22−


2



(1− )25

¡
 002 + 02

¢¶
+Pr 0 − Pr 0 = 0

(4.24)

1


00 + 0 + 0 (1− )− 2 ̂

1−
 (1− )2 = 0 (4.25)

 ( 0) = 0  0 ( 0) = 1  ( 0) = 0  ( 0) = 1 0 ( 0) =
̂√

 ( 0)  (4.26)

 0 (∞)→ 0  (∞)→ 0  (∞)→ 0  (∞)→ 1 (4.27)

4.1.2 Second order of truncation

For non-similarity solutions of Eqs. (411)− (420)  one may express that

∗ =



 ∗ =




 ∗ =




 ∗ =




and

∗


=

∗


=

∗


=

∗


= 0 (4.28)

Taking partial derivatives of Eqs. (411)− (420) with respect to  we obtain

1

(1−)25

1−+ ̆




 ³∗000 − 2

∗0 + 2 

2
 0
´
− 4 0∗0 + ∗00 + ∗ 00−

4Ω

∗ − 4 Ω

2
 − 2 ( 0∗0 + ∗) = 2 ( 0∗0 − ∗ 00) + 2

¡
∗02 − ∗∗00

¢


(4.29)

1

(1−)25

1−+ ̆




 ³∗00 − 2

∗ + 2 

2

´
− 2 0∗ − 2∗0 + ∗0 + ∗00−

4 Ω
2
 0 − 4Ω


∗0 − 2 (2∗ +  0∗0) = 2 (∗0 − ∗ 0) + 2 (∗∗0 − ∗0∗) 

(4.30)
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1
1−+()̆

()



⎛⎜⎝ 


∗00 − 2

2
Pr∗ + 2


Pr∗∗ + 2

¡
2− 

2

¢
1−


2 

(1−)25
¡
 002 + 02

¢
+

22−

2 

(1−)25 (2
00∗00 + 20∗0)

⎞⎟⎠
Pr ∗0 +Pr ∗0 − Pr∗ 0 − Pr∗0 = 2Pr ¡∗0 − ∗ 0

¢
+ 2Pr

¡
∗∗0 − ∗∗0

¢


(4.31)

1

∗00 + ∗0 + ∗0 − 2 ̂

1−

³
∗ + 32∗ − 4∗ − 1−



¡
1− 2

¢´
+

∗0 (1− )− 0∗0 = 2
¡
∗0 − ∗ 0

¢
+ 2

¡
∗∗0 − ∗∗0

¢


(4.32)

∗ ( 0) = 0 ∗0 ( 0) = 0 ∗ ( 0) = 0 ∗ ( 0) = 0 ∗0 ( 0) = −1
2

̂

32
 ( 0)+

̂

12
∗ ( 0) 

(4.33)

∗0 (∞)→ 0 ∗ (∞)→ 0 ∗ (∞)→ 0 ∗ (∞)→ 0 (4.34)

in which  is the constant prescribed variable at any streamwise location.

4.2 Entropy generation

Entropy generation for considered flow problem is
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Applying transformations (410)  above equation reduces to
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where
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4.3 Physical quantities

Expressions of skin friction coefficients and local Nusselt number satisfy
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in which Re =
0


depicts local Reynolds number.

4.4 OHAM solutions

It is found that a nonlinear system is involved in formulation. OHAM employed for computa-

tions. For that
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4.5 Solutions convergence

BVPh2.0 is utilized for the solutions. The solutions consists of ~  ~ ~ and ~ Optimal

data of ~  ~ ~ and ~ can be determined by taking minimum error. For saving CPU time,

average squared residual error has been computed at mth-order of deformation i.e.
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 =  +  +  +  (4.46)

The optimal values of convergence control variables at 2nd order of deformation for SWCNTs

and MWCNTs yield ~ = −0255005 ~ = −0288118 ~ = −0406414 ~ = −202207 and
~ = −0242898 ~ = −0277511 ~ = −0434528, ~ = −203455 respectively. The total
averaged squared residual error in SWCNTs and MWCNTs cases are  = 016 and 


 = 016

respectively. Total residual errors in SWCNTs and MWCNTs case are illustrated in Figs.

42 and 43 Numerical values of individual average squared residual error at 2nd order of

deformation for SWCNTs and MWCNTs cases are deliberated in Tables 42 and 43 Clearly

average squared residual error decreases for higher order deformations.
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Fig. 4.2: Total residual error for SWCNTs-water.
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MWCNTs-water
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Fig. 4.3: Total residual error for MWCNTs-water.

Table 4.2: Optimal convergence control parameters and total average squared residual errors

in SWCNTs case.

 

 


  




2 517× 10−2 443× 10−3 010× 10−1 149× 10−4

6 506× 10−3 323× 10−4 158× 10−2 622× 10−5

10 802× 10−4 462× 10−4 461× 10−3 428× 10−5

14 242× 10−4 119× 10−5 171× 10−3 353× 10−5

16 160× 10−4 729× 10−6 117× 10−3 331× 10−5

Table 4.3: Optimal convergence control parameters and total average squared residual errors

in MWCNTs case.

 

 


  




2 489× 10−2 423× 10−3 106× 10−1 156× 10−4

6 457× 10−3 299× 10−4 135× 10−2 684× 10−5

10 737× 10−4 448× 10−5 329× 10−3 488× 10−5

14 234× 10−4 135× 10−5 983× 10−4 413× 10−5

16 157× 10−4 856× 10−6 604× 10−4 392× 10−5
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4.6 Discussion

This section inspects the behavior of velocities  0 ()   ()  temperature  () and concentration

 () fields for emerging flow variables. Characteristics of () on  0 () is captured in Fig. 44

Here  0 () enhances through () in both SWCNTs and MWCNTs. Fig. 45 sketches (Ω)

effect for  0 ()  Higher (Ω) give rise to an augmentation in  0 () regarding SWCNTs and

MWCNTs. From Figs. 46 and 47 it is recognized that  0 () decreases for larger () and

() in SWCNTs and MWCNTs cases. Fig. 48 elaborates consequences of () on velocity

 ()  Here  () decays for higher estimation of () in SWCNTs and MWCNTs situations. By

increasing (Ω)  an enhancement in  () is noticed in SWCNTs and MWCNTs situations (see

Fig. 49). Velocity  () against () is shown in Fig. 410 Larger () indicates decrease in  ()

for both cases of SWCNTs and MWCNTs. Aspects of () on  () is elaborated in Fig. 411

 () depict decreasing trend for higher () in SWCNTs and MWCNTs situations. From Figs.

412 and 413 it is recognized that larger () and (Ω) show an enhancement in temperature

 () in SWCNTs and MWCNTs. Fig. 414 depicts the behavior of  () against ()  Here  ()

enhances against () in SWCNTs and MWCNTs cases. Fig. 415 indicates that how  () gets

affected with change in ()  Higher values of () yields  () enhancement and related layer

thickness. Fig. 416 addresses temperature field  () for (∗). Here (∗  0) represents heat

generation and (∗  0) for heat absorption. Clearly both  () and related layer thickness

are increased for higher estimation of (∗) in SWCNTs and MWCNTs situations. Fig. 417

is portrayed for impact of () on  ()  An augmentation in  () is noticed for higher ()

in SWCNTs and MWCNTs. Fig. 418 elaborates the change in  () for distinct values of

()  Higher () yield weaker  () in SWCNTs and MWCNTs cases. Fig. 419 elucidates that

 () is weaker for larger () in SWCNTs and MWCNTs situations. Fig. 420 characterized

the consequences of (Ω) on concentration  ()  An increment in (Ω) shows enhancement in

 () in SWCNTs and MWCNTs situations. Concentration field  () is reduced for larger

() and () in both SWCNTs and MWCNTs (see Figs. 421 and 422). Role of (
∗) on

concentration  () is presented in Fig. 423 Higher (∗) correspond to weaker  () in both

SWCNTs and MWCNTs. Concentration  () via () is displayed in Fig. 424 Note that  ()

and associated layer thickness are increasing function of ()  Fig. 425 portrays variation of
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³
̂
´
on concentrations  ()  It is noticed that  () reduces for higher

³
̂
´
in both SWCNTs

and MWCNTs. Fig. 426 addressed concentration  () for
³
̂

´
 Higher

³
̂

´
give rise

to stronger  () in SWCNTs and MWCNTs. Fig. 427 illustrates that concentration  ()

is higher for larger () in SWCNTs and MWCNTs cases. Curves of  () against (
∗) is

displayed in Fig. 428  () enhances against (
∗) in both SWCNTs and MWCNTs cases.

Aspects of  () through
³
̂
´
and

³
̂

´
are portrayed in Figs. 429 and 430 Similar trend

of  () is observed through
³
̂
´
and

³
̂

´
in both SWCNTs and MWCNTs case. Impact

for () on  () is elaborated in Fig. 431 An augmentation in  () is witnessed through

() in both SWCNTs and MWCNTs situations. Similar trend of  () is noted for (1)

and (2) in both SWCNTs and MWCNTs cases (see Figs. 432 and 433) Fig. 434 captured

the consequences of (1) on  ()  An enhancement is noticed for (1) in both SWCNTs and

MWCNTs situations.. Roles of (Ω)  () and () on skin friction coefficients
¡
Re
2

¢12
 and¡

Re
2

¢12
 are elaborated in Figs. 435 − 438 Magnitudes of

¡
Re
2

¢12
 and

¡
Re
2

¢12
 are

enhanced for higher estimation of (Ω)  () and () in SWCNTs and MWCNTs. From Figs.

439 and 440 here local heat transfer rate is increased against (Ω)  () and () in both case

of SWCNTs and MWCNTs.
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Fig. 4.4: Plot for  0 () against 
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Fig. 4.5: Plot for  0 () against Ω
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Fig. 4.6: Plot for  0 () against 
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Fig. 4.7: Plot for  0 () against 
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Fig. 4.8: Sketch for  () against 
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Fig. 4.9: Sketch of  () against Ω
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Fig. 4.10: Plot for  () against 
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Fig. 4.11: Plot for  () against 
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Fig. 4.12: Sketch for  () against 
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Fig. 4.13: Plot for  () against Ω
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Fig. 4.14: Plot for  () against 
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Fig. 4.15: Sketch for  () against 
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Fig. 4.16: Plot for  () against ∗
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Fig. 4.17: Sketch for  () against 
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Fig. 4.18: Plot for  () against 
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Fig. 4.19: Plot for  () against 

SWCNTs-water

MWCNTs-water

l = 0.4, Fr = 0.3, x = 0.1, B = 0.3, Q* = 0.2, K
`
= 0.2, Ks

`
= 0.3,

Sc = 0.9, A = 0.01

W = 0.05, 0.3, 0.7

0 2 4 6 8 10

0.6

0.7

0.8

0.9

z

f
z

Fig. 4.20: Plot for  () against Ω
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Fig. 4.21: Plot for  () against 
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Fig. 4.22: Plot for  () against 
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Fig. 4.23: Sketch for  () against ∗
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Fig. 4.24: Sketch for  () against 
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Fig. 4.25: Plot for  () against ̂
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Fig. 4.26: Plot for  () against ̂
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Fig. 4.27: Sketch for  () against 
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Fig. 4.28: Plot for  () against 
∗
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Fig. 4.29: Plot for  () against ̂
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Fig. 4.30: Sketch for  () against ̂
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Fig. 4.31: Sketch for  () against 
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Fig. 4.32: Plot for  () against 1
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Fig. 4.33: Plot for  () against 1

SWCNTs-water

MWCNTs-water

l = 0.4, Fr = 0.3, x = 0.1, W = 0.1, B = 0.3, Q* = 0.2, K
`
= 0.2,

Ks
`
= 0.3, Sc = 0.9, A = 0.01, L1 = 0.3, L2 = 0.2, Br = 0.5

a1 = 0.1, 0.4, 0.7

0 2 4 6 8 10

0

1

2

3

4

z

N
g
z

Fig. 4.34: Sketch for  () against 1
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Fig. 4.36: Sketch of
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 against Ω and 
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Fig. 4.37: Sketch of
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 against Ω and 
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Fig. 4.38: Sketch of
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¢12
 against Ω and 
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Chapter 5

Flow of carbon nanotubes induced

by curved stretching sheet

This chapter provides a numerical study for Darcy-Forchheimer flow of carbon-water nanofluid.

Flow is induced by an exponential stretched curved sheet. Viscous liquid is described by Darcy-

Forchheimer relation in porous space. Numerical arrangements of governing frameworks are

set up by NDSolve procedure. Outcomes of different sundry parameters on temperature and

velocity are examined. Skin friction and heat transfer rate are also shown and analyzed.

5.1 Model development

We assume flow of carbon-water nanofluid. Flow is induced by an exponential extending bended

sheet coiled in circle of radius  (see Figure 5.1). Permeable space by Darcy-Forchheimer model

is considered. Here () = 0
 depicts the exponential velocity with 0  0. Resulting

relations are
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Fig. 5.1: Flow configuration.
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 = 0
  = 0  =  = ∞ + 0

2 at  = 0 (5.5)

→ 0



→ 0  → ∞ as →∞ (5.6)

Xue [45] model gives:

 =


(1−)25   =
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

  =
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Table 5.1: Thermophysical features of carbon nanotubes and water [45].

Physical properties Water Nanoparticles

 


¡
3

¢
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(5.8)

Now, Eq. (51) is trivially verified and Eqs. (52)− (57) yield
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 ( 0) = −2 ( 0)



 ( 0)


= 1  ( 0) = 1 (5.12)
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2 (∞)

2
→ 0  (∞)→ 0 (5.13)

Here  is the constant prescribed variable at any streamwise location. To attain similar solutions

we assume that the terms including
()

are sufficiently small and may be approximated by zero.
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Thus, we have

1³
1−  +





´ 0 =

1√


1

 +
 02 (5.14)

1

(1−)25

1−+ 




 ³ 000 + 1√


1
+

 00 − 1


1

(+)2
 0 − 2


 0
´
− 2 02−


+

³
2+
+

 02 − 2 00 − 1
+

 00
´
= − 1

(1−)+





+

(4 +  0) 
(5.15)

1

Pr

1

1−  +
()

()






µ
00 +

1√


1

 +
0
¶
+



 +

¡
0 − 0

¢
= 0  (5.16)

Eqs. (514) and (515) after elimination of  give

1

(1−)25

1−+ 





⎛⎝   + 1


1

+
 000 + 1√


1

+
 000 − 1


1

(+)2
 00−

2


³
 00 + 1

+
 0
´

⎞⎠+


+

³
 000 + 1

+
 00 − 1

(+)2
 0 + 2+

(+)2
 02 − 1√


4+5

(+)2
 02 − 3+

+
 0 00 − 1√


2

+
 0 00

´
−

2

³
2 0 00 + 1

+
 0
2
´
= 0

(5.17)

 ( 0) = 0  0 ( 0) = 1  ( 0) = 1, (5.18)

 0 (∞)→ 0  00 (∞)→ 0  (∞)→ 0 (5.19)

Emerging flow variables are:

 =

µ
0

2

¶12
  =



∗0
  =



∗12  Pr =



 (5.20)

5.2 Physical quantities

Skin friction coefficient and local Nusselt number are

¡
Re
2

¢12
 =

1


1

(1−)25
¡√

 00 ( 0)− 1

 0 ( 0)

¢
¡

Re
2

¢−12
 = −



√
 ln 0 ( 0) 

⎫⎬⎭ (5.21)

with Re = 0


as local Reynolds number.
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5.3 Discussion

Local-similar arrangements of system of nonlinear equations are figured numerically by utilizing

NDSolve method. This portion outlines impacts of ()  (), (), () and () on velocity 
0 ()

and temperature  () fields. The outcomes are accomplished for SWCNTs and MWCNTs.

Features of () on velocity  0 () are plotted in Fig. 52. Larger () causes higher velocity

field  0 () for SWCNTs and MWCNTs. Fig. 53 is interpreted to analyze outcome for ()

on velocity field  0 (). It is analyzed that an increment in () shows higher velocity field

 0 () for both SWCNTs and MWCNTs. In Fig. 54, it is clearly examined that lower velocity

field  0 () is generated by using larger () for both SWCNTs and MWCNTs. Outcome of

() on  0 () is shown in Fig. 55. Here  0 () reduces for higher () for both SWCNTs and

MWCNTs. Fig. 56 shows impact of () on  (). It is revealed that increment in () enhances

temperature  () for SWCNTs and MWCNTs. The variation of () on temperature field  ()

is depicted in Fig. 57. By increasing (), a reduction in temperature field  () for SWCNTs

and MWCNTs is observed. Fig. 58 depicts that how () affects temperature field  (). Here

higher () leads to enhancement in temperature  () for SWCNTs and MWCNTs. Fig. 59

displays that larger () yields stronger temperature field  () for SWCNTs and MWCNTs.

Fig. 510 is sketched to characterize the consequences of () on temperature field  (). Clearly

higher () cause weaker  () for SWCNTs and MWCNTs. Skin friction coefficient
¡
Re
2

¢12


for various pertinent flow variables such as (), () and () is plotted in Figs. 511 and 512.

Here skin friction is higher for increasing estimations of () for both SWCNTs and MWCNTs.

Figs. 513 and 514 elucidate local Nusselt number
¡
Re
2

¢−12
 for SWCNTs and MWCNTs.

We concluded that local Nusselt number is increased for higher ()  () and (). Table 52

is developed to validate present outcomes with existing outcomes by Okechi et al. [20]. Here

we examined that present NDSolve solution is in good agreement with the existing solution by
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Okechi et al. [20].
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Fig. 5.2: Sketch of  0 () against 

l = 0.3, Fr = 0.4, x = 0.1, A = 0.4, Pr= 6.2
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Fig. 5.3: Sketch for  0 () versus 
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Fr = 0.4, K = 0.7, x = 0.1, A = 0.4, Pr= 6.2
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Fig. 5.4: Sketch for  0 () versus 
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Fig. 5.5: Sketch for  0 () versus 
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l = 0.3, Fr = 0.4, x = 0.1, A = 0.4, Pr = 6.2
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Fig. 5.6: Sketch for  () versus 

l = 0.3, Fr = 0.4, x = 0.1, A = 0.4, Pr= 6.2

K = 0.3, 0.6, 0.9
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Fig. 5.7: Sketch for  () versus 
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Fr = 0.4, K = 0.7, x = 0.1, A = 0.4, Pr = 6.2
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Fig. 5.8: Sketch for  () versus 

SWCNTs-water

MWCNTs-water

l = 0.3, K = 0.7, x = 0.1, A = 0.4, Pr= 6.2
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Fig. 5.9: Sketch for  () versus 
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l = 0.3, Fr = 0.4, K = 0.7, x = 0.1, Pr = 6.2

A = 0.0, 0.3, 0.6
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Fig. 5.10: Sketch for  () versus 

l = 0.3, Fr = 0.3, A = 0.4, Pr = 6.2
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Fig. 5.11: Sketch for
¡
Re
2

¢12
 versus  and 
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Fr = 0.3, K = 0.4, A = 0.4, Pr= 6.2

x = 0.2, 0.3, 0.4

SWCNTs-water

MWCNTs-water
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Fig. 5.12: Sketch for
¡
Re
2

¢12
 versus  and 

l = 0.4, K = 0.4, A = 0.4, Pr= 6.2
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Fig. 5.13: Sketch for
¡
Re
2

¢−12
 versus  and 
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Fr = 0.3, K = 0.4, A = 0.4, Pr = 6.2

x = 0.2, 0.25, 0.3
SWCNTs-water

MWCNTs-water
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Fig. 5.14: Sketch of
¡
Re
2

¢−12
 against  and 

Table 5.2: Comparative data of − ¡Re
2

¢12
 for varying  when  =  =  = 0

− ¡Re
2

¢12


 NDSolve Okechi et al. [20]

5 141962 141964

10 134672 134673

20 131353 131352
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Chapter 6

Impact of heat flux condition in

Darcy-Forchheimer nanofluid flow

Flow of water-based carbon nanotubes past an exponentially stretching curved sheet is mod-

elled. Analysis is carried out for imposed flux condition and heat generation/absorption. Darcy-

Forchheimer expression is used to characterize the flow in porous space. Carbon nanotubes of

two types (recognized as SWCNT and MWCNT) are utilized. Adequate transformations cor-

respond to system of coupled differential equations. The resulting nonlinear system is solved

by NDSolve technique. Influences of various pertinent variables for quantities of interest are

examined.

6.1 Formulation

Flow of carbon nanotubes dispersed in water induced by curved sheet stretched exponentially

coiled in a circle of radius  (see Fig. 61) is considered. An incompressible fluid filling porous

space is studied by Darcy-Forchheimer relation. Non-uniform heat generation/absorption is

accounted. Thermal radiation is not considered. Here  () = 0
 is the stretching velocity

with 0  0. Governing expressions are:
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Fig. 6.1: Flow configuration [17].




(( +) ) +




= 0 (6.1)

2

 +
=

1






 (6.2)





+



 +




+



 +
= − 1





 +




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µ
2

2
+

1

 +




− 

( +)2

¶
− 

∗ − 2 (6.3)





+ 







 +
= 

µ
2

2
+

1

 +





¶
+



()
( − ∞)  (6.4)

The prescribed conditions are:

 = 0
  = 0 − 

µ




¶


= 0
(+1)2 at  = 0 (6.5)

→ 0



→ 0  → ∞ as →∞ (6.6)
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The theoretical model suggested by Xue [45] gives:

 =


(1−)25   =


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  =  (1− ) +  

() = () (1− ) + () 
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

⎫⎪⎪⎬⎪⎪⎭ (6.7)

Table 6.1: Thermophysical characteristics of water and CNTs [45].

Physical characteristics Base fluid Nanoparticles

Water  


¡
3

¢
9971 2600 1600

 () 0613 6600 3000

 () 4179 425 796
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(6.8)

Equation (61) is trivially verified and Eqs. (62)− (67) yield
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 ( 0) = −2 ( 0)



 ( 0)


= 1

 ( 0)
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 (∞)


→ 0
2 (∞)

2
→ 0  (∞)→ 0 (6.13)

Here  is the constant prescribed variable at any streamwise location. To attain similar solu-

tions, we assume that the terms including
()
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are sufficiently small and may be approximated

by zero. Thus, we have
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
+

³
2+
+

 02 − 2 00 − 1
+

 00
´
= − 1

(1−)+





+

(4 +  0) 
(6.15)

1

Pr

1

1−  +
()

()


µ




µ
00 +

1√


1

 +
0
¶
+ 2Pr

∗




¶
+



 +

¡
0 − 0

¢
= 0

(6.16)

Eqs. (614) and (615) after elimination of  give

1

(1−)25

1−+ 





⎛⎝   + 1


1

+
 000 + 1√


1

+
 000 − 1


1

(+)2
 00−

2


³
 00 + 1

+
 0
´

⎞⎠+


+

³
 000 + 1

+
 00 − 1

(+)2
 0 + 2+

(+)2
 02 − 1√


4+5

(+)2
 02 − 3+

+
 0 00 − 1√


2

+
 0 00

´
−

2

³
2 0 00 + 1

+
 0
2
´
= 0

(6.17)

 ( 0) = 0  0 ( 0) = 1 0 ( 0) = − 


, (6.18)

 0 (∞)→ 0  00 (∞)→ 0  (∞)→ 0 (6.19)

Involved flow variables are:

 =


∗0
  =



∗12   =

µ
0

2

¶12
 ∗ =



0 ()
 Pr =




 (6.20)
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6.2 Quantities of interest

Coefficient of skin friction and local Nusselt number are

¡
Re
2

¢12
 =

1


1

(1−)25
¡√

 00 ( 0)− 1

 0 ( 0)

¢
¡

Re
2

¢−12
 =

√
 ln 

(0)


⎫⎬⎭ (6.21)

in which Re = 0


depicts local Reynolds number.

6.3 Discussion

The local similar solutions of obtained system of equations are computed by employing shooting

technique. The behaviors of sundry variables on velocity  0 () and temperature  () are

interpreted here The results are attained for two classes of carbon nanotubes (namely single

walled carbon nanotubes (SWCNTs) and multi walled carbon nanotubes (MWCNTs). Fig. 62

portrayed the velocity  0 () for ()  Here higher estimation of () enhances the velocity field

 0 () for SWCNTs and MWCNTs situations. Fig. 63 interprets that velocity  0 () enhances

for larger estimation of () in SWCNTs and MWCNTs situations It is revealed from Fig. 64

that velocity  0 () reduces for increasing () for SWCNTs and MWCNTs. Curves of velocity

field  0 () for () estimations is interpreted in Fig. 65 It is analyzed that velocity  0 () decays

for larger () in SWCNTs and MWCNTs situations Outcome of () on  () is interpreted in

Fig. 66 Higher () constitute weaker temperature field  () in SWCNTs and MWCNTs cases.

Characteristics of () on  () are displayed through Fig. 67 Here stronger temperature field

 () is observed for larger estimation of () in SWCNTs and MWCNTs situations Behavior

of temperature field  () for () is shown in Fig. 68 Clearly temperature  () enhances

via ()  Stronger  () and more related layer thickness is noticed through () for SWCNTs

and MWCNTs cases (see Fig. 69). Fig. 610 depicts outcome for (∗) on temperature  () 

Clearly (∗  0) leads to heat generation and (∗  0) corresponds to heat absorption For

higher estimation of (∗) the temperature field  () shows increasing trend in SWCNTs and

MWCNTs situations. Fig. 611 interprets that an increase in () yields weaker temperature

field  () in SWCNTs and MWCNTs situations. Table 62 is constructed to illustrate skin

friction coefficient − ¡Re
2

¢12
 for numerous values of ()  ()  () and ()  It is observed
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that − ¡Re
2

¢12
 reduces for higher ()  () and () in SWCNTs and MWCNTs situations

Numerical data of
¡
Re
2

¢−12
 for numerous values of ()  ()  (

∗)  ()  () and () is

elaborated in Table 63 An augmentation in
¡
Re
2

¢−12
 is analyzed through ()  () and ()

in SWCNTs and MWCNTs situations Table 64 provides the validation of present results with

existing by Okechi et al. [20] under some special cases Presented analysis agree very well with

Okechi et al. [20] 

l = Fr = 0.1, x = 0.2, A = 0.3, Q* = 0.2, Pr= 6.2

K = 0.1, 0.25, 0.5

SWCNTs-water

MWCNTs-water
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Fig. 6.2: Sketch of  0 () against 

l = Fr = 0.1, K = 0.6, A = 0.3, Q* = 0.2, Pr = 6.2

x = 0.1, 0.4, 0.7

SWCNTs-water

MWCNTs-water
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Fig. 6.3: Plot for  0 () against 

105



Fr = 0.0, 0.3, 0.6

SWCNTs-water

MWCNTs-water

l = 0.1, K = 0.6, x = 0.2, A = 0.3, Q* = 0.2, Pr = 6.2
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Fig. 6.4: Plot for  0 () against 

l = 0.0, 0.3, 0.5

Fr = 0.1, K = 0.6, x = 0.2, A = 0.3, Q* = 0.2, Pr = 6.2

SWCNTs-water

MWCNTs-water
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Fig. 6.5: Sketch of  0 () against 
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l = Fr = 0.1, x = 0.2, A = 0.3, Q* = 0.2, Pr = 6.2

K = 1.2, 1.5, 1.8

SWCNTs-water

MWCNTs-water
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Fig. 6.6: Plot for  () against 

l = Fr = 0.1, K = 0.6, A = 0.3, Q* = 0.2, Pr = 6.2

x = 0.05, 0.1, 0.2

SWCNTs-water

MWCNTs-water
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Fig. 6.7: Plot for  () against 
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l = 0.1, K = 0.6, x = 0.2, A = 0.3, Q* = 0.2, Pr= 6.2

Fr = 0.1, 0.3, 0.5

SWCNTs-water

MWCNTs-water
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Fig. 6.8: Plot for  () against 

Fr = 0.1, K = 0.6, x = 0.2, A = 0.3, Q* = 0.2, Pr = 6.2

l = 0.1, 0.3, 0.5

SWCNTs-water

MWCNTs-water
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Fig. 6.9: Plot for  () against 
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SWCNTs- water

MWCNTs- water

l = Fr = 0.1, K = 0.6, x = 0.2, A = 0.3, Pr= 6.2

Q* = -0.1, 0.0, 0.1
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Fig. 6.10: Plot for  () against ∗

l = Fr = 0.1, K = 0.6, x = 0.2, Q* = 0.2, Pr= 6.2

A = 0.1, 0.2, 0.3

SWCNTs-water

MWCNTs-water
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Fig. 6.11: Plot for  () against 
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Table 6.2: Numerical data of − ¡Re
2

¢12
 for various values of    and 

    − ¡Re
2

¢12


SWCNTs MWCNTs

001 01 01 06 004434 007564

01 036564 038611

02 054443 059501

02 02 01 06 061885 012284

03 012821 002032

04 005439 000493

02 01 02 06 063233 067710

03 051760 058713

04 045857 050308

02 01 01 07 152993 059638

08 136500 055251

09 125715 049249
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Table 6.3: Values for
¡
Re
2

¢−12
 against various values of   

∗   and 

   ∗  
¡
Re
2

¢−12


SWCNTs MWCNTs

02 01 02 01 03 06 336296 309644

03 483869 364728

04 544634 513991

01 02 02 01 03 06 348793 323967

03 345115 320464

04 341711 317192

01 01 001 01 03 06 229168 226971

01 258148 252452

02 299048 286827

01 01 02 02 03 06 337912 308438

03 168195 108041

05 157049 097028

01 01 02 01 04 06 376823 352554

05 400299 376717

06 423246 400261

01 01 02 01 03 07 349251 328944

08 297679 330772

09 293339 332725
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Table 6.4: Comparison for − ¡Re
2

¢12
 against  when  = ∗ =  =  = 0

 − ¡Re
2

¢12


Present results Okechi et al. [20]

10 134682 134673

30 130283 130284

50 129443 129442

100 128872 128812

200 128561 128501
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Chapter 7

Outcome of entropy generation in

hybrid nanomaterial

Salient characteristics of hybrid nanofluid (MoS2-SiO2/water) is analyzed. Variable aspects of

permeability and porosity in porous medium are considered. Heat transfer analysis is stud-

ied with additional aspects of heat generation/absorption, nonlinear radiation and dissipation.

Disturbance in flow is caused by an exponentially stretched curved sheet. Adequate transfor-

mations lead to ordinary differential system. Entropy generation is examined. Comparative

analysis is done for nanofluid (MoS2-water and SiO2-water) and hybrid (MoS2-SiO2/water)

nanofluid.

7.1 Model development

Here flow of hybrid nanofluid by Darcy-Forchheimer-Brinkman porous is analyzed. Viscous

dissipation, heat generation/absorption and non-linear thermal radiation are also taken. Dis-

turbance is flow is created by a curved stretching sheet. Sheet is stretched with an exponential

velocity  () = 0
 (see Fig. 7.1). Here curvilinear coordinates frame is adopted. Relevant
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equations for considered problem are:

Fig. 7.1: Flow configuration [17].




(( +) ) +




= 0 (7.1)

2

 +
=

1






 (7.2)

 

+ 

+


+ 

+
= − 1




+



+



³
2
2

+ 1
+



− 

(+)2

´
− 

()

∗()−


2()

(∗())12
2

(7.3)

 

+ 




+
= 

³
2
2

+ 1
+




´
+


()

³


− 

+

´2
+


()

( − ∞)− 1
()




¡−16̃
3
 3 



¢
+


()

()

∗()
2+


()


2()

(∗())12
3

(7.4)

 = 0
  = 0  =  = ∞ + 0

2 at  = 0 (7.5)

→ 0



→ 0  → ∞ as →∞ (7.6)

where

∗ () = ∞
³
1 + 

− 


´
 (7.7)

 () = ∞
³
1 + ∗−




´
 (7.8)

114



Model for hybrid nanofluid is [55] :

 =


(1−1−2)25
  =




  =  (1− 1 − 2) + 11 + 22

 =


()
 () = () (1− 1 − 2) + ()1 1 + ()2 2




=
11+22+2+2(11+22)−2(1+2)2
11+22+2−(11+22)+(1+2)2



⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (7.9)

Here 1 signifies solid volume fraction of Si2, 2 the solid volume fraction of 2, 1 the

density of Si2, 2 the density of 2, 1 the thermal conductivity of Si2 and 2 the

thermal conductivity of 2. Following Table [55] consists of characteristics of base liquids

and nanoparticles.

Physical properties Base fluid Nanoparticles

2 Si2 2


¡
3

¢
9971 2650 5060

 () 0613 15 345

 () 4179 730 397746

Considering

 = 0
 ()


  = − 

+

q
0 



2

³
 + 2 


+  



´
  =

³
0



2

´12


 = ∞ + 0

2  ( )   = 

2
0
2 ( )   = 

(7.10)

we have

1³
1− 1 − 2 +

1

1 +

2

2

´ 


=
1

 +

µ




¶2
 (7.11)
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 ( 0) = −2 ( 0)



 ( 0)


= 1  ( 0) = 1 (7.14)

 (∞)


→ 0
2 (∞)

2
→ 0  (∞)→ 0 (7.15)

Here  is the constant prescribed variable at any streamwise location. To attain similar solu-

tions, we assume that the terms including
()


are sufficiently small and may be approximated

by zero. Therefore one obtains
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Here Eq. (71) is trivially verified. Eqs. (716) and (717) after omission of  yield
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 ( 0) = 0  0 ( 0) = 1  ( 0) = 1, (7.20)

 0 (∞)→ 0  00 (∞)→ 0  (∞)→ 0 (7.21)
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7.2 Entropy generation

Entropy generation expression for considered flow problem is
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Applying transformations (710)  above expression reduces to
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where
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7.3 Physical quantities

The following expressions of coefficient of skin friction and local Nusselt number hold
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7.4 Discussion

This section interprets the characteristics of velocity  0 ()  temperature  () and entropy

generation rate  () through ()  ()  (), (
∗)  ()  ()  ()  (), () and (∗) 

Comparison is made between hybrid nanofluid (MoS2-SiO2/water) and nanofluid (MoS2/water

and SiO2/ water). The consequences of 
0 () against () are in Fig. 72. An enhancement in is

observed through for both hybrid nanofluid and nanomaterial. Physically the bend of the curved

stretching sheet contributes in accelerating the flow. The impact of () on  0 () is illustrated in

Fig. 73. Here  0 () is a decreasing function of () for both hybrid nanofluid and nanomaterial.

Reverse trend of  0 () is noted for () and (∗) in both hybrid nanofluid and nanomaterial

(see Figs. 74 and 75). Fig. 76 is plotted for the features of  0 () through ()  Higher

estimation of () lead to a reduction in  0 () for both hybrid nanofluid (MoS2-SiO2/water)

and nanomaterial (MoS2/water and SiO2/ water). Fig. 77 addressed  () against ()  By

increasing () reduction is observed in  () for both hybrid nanofluid and nanomaterial. Fig.

78 captured consequences of  () against ()  Here enhancement in  () is analyzed through

higher () for both hybrid nanofluid and nanomaterial. Behaviors of  () through () and (∗) is
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portrayed in Figs. 79 and 710. An enhancement in  () is observed through (∗) while opposite

trend is seen against () for both hybrid nanofluid and nanomaterial. Aspects of  () against

() is deliberated in Fig. 711. Higher () produces resilience in the fluid motion due to which

more heat is produced which strengthens the thermal field  () for both hybrid nanofluid (MoS2-

SiO2/water) and nanofluid (MoS2/water and SiO2/ water). Fig. 712 cleared that  () is an

increasing function of () for both hybrid nanofluid and nanomaterial. Physically () has

a direct relation with heat generation by fluid friction which causes stronger  (). Significant

behavior of  () through () is drawn in Fig. 713. Higher () produces weaker  () in both

hybrid nanofluid and nanomaterial. Curves of  () against () is elucidated in Fig. 714.

Higher estimation of () strengthen  () and more related layer thickness for both hybrid

nanofluid and nanomaterial. Variation of  () through () is shown in Fig. 715. Here higher

() enhance  () for both hybrid nanofluid (MoS2-SiO2/water) and nanomaterial (MoS2/water

and SiO2/ water). Role of (
∗) on  () is highlighted in Fig. 716. Here an augmentation in

 () is observed through (∗) for both hybrid nanofluid and nanomaterial. Influence of () on

 () is depicted in Fig. 717. Entropy generation rate decreases due to higher () for both

hybrid nanofluid and nanomaterial. Fig. 718 and 719 analyzed the behavior of  () against

() and ()  Similar trend of  () is witnessed through () and () for both hybrid

nanofluid and nanomaterial. Fig. 720 illustrates that  () increases for higher () for both

hybrid nanofluid (MoS2-SiO2/water) and nanomaterial (MoS2/water and SiO2/ water). Impact

of (∗) on  () is sketched in Fig. 721. Higher (
∗) produces augmentation in  () due

to rise in surface temperature for both hybrid nanofluid and nanomaterial. Consequences of

(1) on  () is highlighted in Fig. 722. Here  () is an increasing function of (1) for

both hybrid nanofluid and nanomaterial. Contribution of involved variables on skin friction

coefficient
¡
Re
2

¢12
 is displayed in Table 72 Reduction in

¡
Re
2

¢12
 is seen through () 

() and () for both hybrid nanofluid and nanofluid. Significant behavior of
¡
Re
2

¢−12


through influential parameters is shown in Table 73 Here ()  ()  () and () strengthen

the
¡
Re
2

¢−12
 for both hybrid nanofluid and nanomaterial. Table 74 is drawn to compare
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the values of skin friction coefficient with Okechi et al. [20]. Comparison is excellent.

l = 1.1, Fr = 0.2, d = 3.0, d * = 1.5, A = Q* = 0.1, qw = 1.6,

Rd = Br = 0.3
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Fig. 7.2: Sketch of  0 () against 

l = 0.1, 0.5, 1.0

Fr = 0.2, d = 3.0, d * = 1.5, K = 2.0, qw = 1.6, A = Q* = 0.1,
Rd = Br = 0.3
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Fig. 7.3: Plot for  0 () against 
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l = 1.1, Fr = 0.2, d * = 1.5, K = 2.0, A = Q* = 0.1, qw = 1.6,

Rd = Br = 0.3

d = 1.0, 2.0, 3.0
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Fig. 7.4: Plot for  0 () against 

l = 1.1, Fr = 0.2, d = 3.0, K = 2.0, A = Q* = 0.1, qw = 1.6,
Rd = Br = 0.3

d * = 0.0, 1.0, 2.0
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Fig. 7.5: Plot for  0 () against ∗

121



l = 1.1, d = 3.0, d * = 1.5, K = 2.0, A = Q* = 0.1, qw = 1.6,
Rd = Br = 0.3

Fr = 0.1, 0.3, 0.5
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Fig. 7.6: Plot for  0 () against 

K = 1.0, 1.3, 1.6

l = 1.1, Fr = 0.2, d = 3.0, d * = 1.5, Q* = A = 0.1,

Rd = Br = 0.3, qw = 1.6
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Fig. 7.7: Plot for  () against 
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Fr = 0.2, d = 3.0, d * = 1.5, K = 2.0, qw = 1.6, Q* = A = 0.1,

Br = Rd = 0.3,

l = 0.5, 1.0, 2.0
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Fig. 7.8: Plot for  () against 

l = 1.1, Fr = 0.2, d * = 1.5, K = 2.0, Q* = A = 0.1,

Rd = Br = 0.3, qw = 1.6

d = 1.0, 2.0, 3.0

Hybrid nanofluid

MoS2 -water

SiO2 -water

0 1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

z

q
z

Fig. 7.9: Plot for  () against 
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l = 1.1, Fr = 0.2, d = 3.0, K = 2.0, Q* = A = 0.1,
Rd = Br = 0.3, qw = 1.6

d * = 0.0, 1.0, 2.0
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Fig. 7.10: Plot for  () against ∗

Fr = 0.1, 0.3, 0.5

l = 1.1, d = 3.0, d * = 1.5, K = 2.0, qw = 1.6, Q* = A = 0.1,

Rd = Br = 0.3
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Fig. 7.11: Plot for  () against 
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l = 1.1, Fr = 0.2, d = 3.0, d * = 1.5, K = 2.0, qw = 1.6,

Rd = 0.3, Q* = A = 0.1

Br = 0.5, 0.7, 0.9
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Fig. 7.12: Plot for  () against 

l = 1.1, Fr = 0.2, d = 3.0, d * = 1.5, K = 2.0, qw = 1.6,

Rd = Br = 0.3, Q* = 0.1

A = 0.0, 0.2, 0.4
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Fig. 7.13: Plot for  () against 
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l = 1.1, Fr = 0.2, d = 3.0, d * = 1.5, K = 2.0, qw = 1.6,
Br = 0.3, Q* = A = 0.1

Rd = 0.0, 0.4, 0.8
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Fig. 7.14: Plot for  () against 

l = 1.1, Fr = 0.2, d = 3.0, d * = 1.5, Q* = A = 0.1,

Br = Rd = 0.3, K = 2.0

qw = 1.4, 1.6, 1.8
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Fig. 7.15: Plot for  () against 
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l = 1.1, Fr = 0.2, d = 3.0, d * = 1.5, K = 2.0, qw = 1.6,
Rd = Br = 0.3, A = 0.1

Q* = -0.2, 0.0, 0.2
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Fig. 7.16: Plot for  () against ∗

l = 1.1, Fr = 0.2, d = 3.0, d * = 1.5, qw = 1.6, A = Q* = 0.1,

Rd = Br = 0.3, a1 = 0.3

K = 1.0, 1.5, 2.0
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Fig. 7.17: Plot for  () against 
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l = 1.1, Fr = 0.2, d = 3.0, d * = 1.5, K = 2.0, qw = 1.6, Rd = 0.3,

A = Q* = 0.1, a1 = 0.3

Br = 0.5, 0.7, 0.9
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Fig. 7.18: Plot for  () against 

l = 1.1, Fr = 0.2, d = 3.0, d * = 1.5, K = 2.0, qw = 1.6, a1 = 0.3,
Br = 0.3, A = Q* = 0.1

Rd = 0.1, 0.2, 0.3
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Fig. 7.19: Plot for  () against 
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l = 1.1, Fr = 0.2, d = 3.0, d * = 1.5, K = 2.0, A = Q* = 0.1,

Rd = Br = 0.3, a1 = 0.3

qw = 1.4, 1.6, 1.8
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Fig. 7.20: Plot for  () against 

l = 1.1, Fr = 0.2, d = 3.0, d * = 1.5, K = 2.0, qw = 1.6, a1 = 0.3,
Rd = Br = 0.3, A = 0.1

Q* = -0.1, 0.0, 0.1
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Fig. 7.21: Plot for  () against 
∗
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l = 1.1, Fr = 0.2, d = 3.0, d * = 1.5, K = 2.0, A = Q* = 0.1,
qw = 1.6, Rd = Br = 0.3

a1 = 0.1, 0.5, 0.9
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Fig. 7.22: Sketch of  () against 1
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Table 7.2: Skin friction coefficient
¡
Re
2

¢12
 for    ∗ and 

   ∗  − ¡Re
2

¢12


Hybrid nanofluid MoS2-water SiO2-water

10 11 30 15 02 384238 385225 379266

13 341971 343047 336545

15 323852 324971 318205

20 05 30 15 02 277804 279077 271364

10 304036 305193 298189

20 346423 347433 341334

20 11 10 15 02 324720 325959 318459

20 306787 307997 300672

30 295453 296646 289425

20 11 30 00 02 264363 265338 259446

10 284189 285292 278613

20 307546 308842 300990

20 11 30 15 00 274260 275107 269994

01 285047 286073 279873

03 305515 306865 298681
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Table 7.3: Local Nusselt number
¡
Re
2

¢−12
 for    ∗     and ∗

   ∗     ∗
¡
Re
2

¢−12


Hybrid nanofluid MoS2-water SiO2-water

10 11 30 15 02 03 03 16 01 078812 077888 078773

13 095609 094689 096164

16 106312 105373 107280

20 05 30 15 02 03 03 16 01 112602 111725 113271

10 110578 109692 111589

20 094486 093801 094759

20 11 10 15 02 03 03 16 01 095681 094929 096096

20 107907 107021 108903

30 115619 114646 116977

20 11 30 00 02 03 03 16 01 136447 135379 138047

10 123024 122030 124414

20 107829 106870 109196

20 11 30 15 00 03 03 16 01 128077 127229 128646

01 121696 120783 122679

03 109811 108785 111512

20 11 30 15 02 05 03 16 01 075746 075223 074922

06 055799 055499 053882

07 035843 035767 032834

20 11 30 15 02 03 00 16 01 109425 108172 111263

04 119772 118872 121607

08 125805 124707 127647

20 11 30 15 02 03 03 14 01 118662 117787 119835

16 119562 118716 120711

18 119871 119025 121112

20 11 30 15 02 03 03 16 −02 155119 153599 157635

00 130480 129301 132259

02 097895 097161 098815
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Table 7.4: Skin friction coefficient − ¡Re
2

¢12
 for distinct values of .

 − ¡Re
2

¢12


Okechi et al. [20] Present

5 141962 1457033

10 134671 1368192

20 131351 1328104

30 130282 1315362

40 129750 1309121

50 129444 1305391

100 128812 1298042

200 128502 1294433

1000 128263 1291524
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Chapter 8

Nanofluid flow by rotating disk with

slip conditions

This chapter intends to illustrate the velocity and thermal slip effects in Darcy-Forchheimer

flow by a rotating disk. Viscous dissipation is considered. Carbon nanotubes of two types

(recognized as SWCNTs and MWCNTs) are utilized. Suitable variables are introduced for

conversion of partial differential expressions into ordinary differential system. Computation of

nonlinear system is arranged by Optimal homotopic analysis technique (OHAM). Behaviors of

involved variables on quantities of interest are graphically examined.

8.1 Model development

Flow of carbon nanotubes saturating porous medium is analyzed. Rotating disk at  = 0 creates

the flow. Velocity and temperature slip conditions are implemented. Viscous dissipation is also

accounted. Disk rotates subject to constant angular frequency . Here (  ) denote velocity
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components along (  ). Relevant equations for 3D flow satisfy

Fig. 8.1: Flow configuration.




+




+




= 0 (8.1)





− 2


+ 




= 

µ
2

2

¶
− 

∗ − 
p
2 + 2 (8.2)





+




+ 




= 

µ
2

2

¶
− 

∗  − 
p
2 + 2 (8.3)





+ 




= 

µ
2

2

¶
− 

()

"µ




¶2
+

µ




¶2#
 (8.4)

 = 1



  =  +1




  = 0  =  +2




at  = 0 (8.5)

→ 0  → 0  → ∞ as  →∞ (8.6)

By Xue model [45] one has

 =


(1−)25   =



  =


()
  =  (1− ) +  

() = () (1− ) + () 


=

(1−)+2 
−

ln
+

2

(1−)+2 
−

ln
+

2



⎫⎪⎪⎬⎪⎪⎭ (8.7)
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Table 8.1: Characteristics for water and CNTs [45] 

Physical properties Water Nanoparticles

 


¡
3

¢
9971 2600 1600

 () 0613 6600 3000

 () 4179 425 796

We set

 = 
()


  = ( )  = −
q


2

³
 +  



´


( ) = −∞
−∞   =

³
2


´12
  = 

̄


(8.8)

Equation (81) is trivially verified and Eqs. (82)− (87) yield

1
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
1−+ 
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

 ³23
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+ 2 2

2
−
³

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+ 2 − 

µ³
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2
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=


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(8.9)
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
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(8.10)
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
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´
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(8.11)

2 ( 0) = − (0)



(0)


= 1
2(0)


  ( 0) = 1 + 1

(0)




 ( 0) = 1 + 2
(0)



(8.12)

 (∞)


→ 0  (∞)→ 0  (∞)→ 0. (8.13)

We set variables as

1 = 1

q
2

 2 = 2

q
2

  =



∗12
̄  =


∗ 

 = ̄22

(−∞)()  Pr =




(8.14)
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8.1.1 First order of truncation

In first order of truncation, the terms including
()


are assumed to be very small and may be

approximated by zero. We have

1

(1− )25
³
1−  +





´ ¡2 000 −  0

¢
+ 2 00 −  02 + 2 − 

µ
 02 +

1

2
2
¶
= 0 (8.15)

1

(1− )25
³
1−  +





´ ¡200 − 

¢
+ 20 − 2 0 − 

µ
2 +

1

2
 02
¶
= 0 (8.16)

2

Pr

1

1−  +
()

()





00 + 20 +

22

(1− )25
³
1−  +

()

()

´ ¡ 002 + 02

¢
= 0 (8.17)

 ( 0) = 0  0 ( 0) = 1
00 ( 0)   ( 0) = 1 + 1

0 ( 0)   ( 0) = 1 + 2
0 ( 0)  (8.18)

 0 (∞)→ 0  (∞)→ 0  (∞)→ 0. (8.19)

8.1.2 Second order of truncation

In order to approach non-similarity solutions of Eqs. (89)− (813)  we write

∗ =



 ∗ =




 ∗ =




and

∗


=

∗


=

∗


= 0 (8.20)

Taking partial derivatives of Eqs. (89)− (813) with respect to  we have

1

(1−)25

1−+ 




 (2∗000 − ∗0) + 2∗ 00 + 2∗00 − 2∗0 + 2∗ − 
¡
 02 + 1

2
2
¢−

 (2
0∗0 + ∗) =  0∗0 − ∗ 00 + 

¡
∗02 − ∗∗00

¢


(8.21)

1

(1−)25

1−+ 




 (2∗00 − ∗) + 2∗0 + 2∗0 − 2∗ 0 − 2∗0 − 
¡
2 + 1

2
 02
¢−

 (2
∗ +  0∗0) = ∗0 −  0∗ +  (∗∗0 − ∗∗0) 

(8.22)
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2
Pr

1

1−+()

()





∗00 + 2∗0 + 2∗0 + 22

(1−)25

1−+()

()


 (2 00∗00 + 20∗0)+
4

(1−)25

1−+()

()


 ¡ 002 + 02
¢
=  0∗ − ∗0 + 

¡
∗0∗ − ∗0∗

¢


(8.23)

∗ ( 0) = 0 ∗0 ( 0) = 1
∗00 ( 0)  ∗ ( 0) = 1

∗0 ( 0)  ∗ ( 0) = 2
∗0 ( 0)  (8.24)

∗0 (∞)→ 0 ∗ (∞)→ 0 ∗ (∞)→ 0. (8.25)

8.2 Physical quantities

Coefficients of skin friction and local Nusselt number obey

¡
Re
2

¢12
 =

1


1

(1−)52 
00 ( 0) ¡

Re
2

¢12
 =

1


1

(1−)52 
0 ( 0) ¡

Re
2

¢−12
 = − 


0 ( 0) 

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (8.26)

Here Re = ̄2


shows local Reynolds number. It is observed that present investigation reduces

to classical Von-Karman flow when  =  = 1 = 2 =  = 0

8.3 OHAM Solutions

The optimal series arrangement of nonlinear system is developed by optimal homotopic analysis

algorithm (OHAM). We select

0() = 0 0() =
1

1 + 1
−  0() =

1

1 + 2
−  (8.27)

L = 3

3
− 


 L = 2

2
−  L = 2

2
−  (8.28)

L
h
̆∗1 + ̆∗2 

 + ∗3
−
i
= 0 L

h
̆∗4 

 + ̆∗5
−
i
= 0 L

h
̆∗6 

 + ̆∗7
−
i
= 0 (8.29)

The deformation problems of zeroth and mth-order are easily defined in view of above operators

by BVPH2.0 of Mathematica.
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8.4 Solutions convergence

BVPh2.0 is utilized for computation of optimal solutions. These solution expressions contain

~  ~ and ~ which play important role in homotopic expressions. The optimal values of ~ 

~ and ~ can be computed by taking minimum error. Average squared residual error is given

as

 =
1

̆ + 1

̆X
=0

⎡⎣N

Ã
X
=0

 () 

X
=0

 ()

!
=

⎤⎦2  (8.30)

 =
1

̆ + 1

̆X
=0

⎡⎣N

Ã
X
=0

 () 

X
=0

 ()

!
=

⎤⎦2  (8.31)

 =
1

̆ + 1

̆X
=0

⎡⎣N

Ã
X
=0

 () 

X
=0

 () 

X
=0

 ()

!
=

⎤⎦2  (8.32)

Following Liao [140] :

 =  +  +  (8.33)

At 2nd order of deformations, the optimal data of convergence control variables in SWCNTs and

MWCNTs cases are ~ = −0790686 ~ = −0609323, ~ = −0493612 and ~ = −0710962
~ = −0556358, ~ = −0484269 while total averaged squared residual error in SWCNTs
and MWCNTs cases are  = 497 × 10−2 and  = 552 × 10−2 respectively. Plots of total
residual error for both cases of CNTs (SWCNTs and MWCNTs) are shown in Figs. 82 and

83. Numerical data of average squared residual errors in case of SWCNTs and MWCNTs at

 = 2 are presented in Tables 82 and 83 Clearly averaged squared residual error decreases
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for higher order deformations.
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Fig. 8.1: Total residual error for SWCNTs-water.
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Fig. 8.2: Total residual error for MWCNTs-water.
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Table 8.2: Total average squared residual errors in SWCNTs case.

 

 


 

2 394× 10−3 246× 10−2 479× 10−3

6 316× 10−3 208× 10−2 597× 10−4

10 302× 10−3 188× 10−2 346× 10−4

14 288× 10−3 175× 10−2 228× 10−4

16 282× 10−3 169× 10−2 190× 10−4

Table 8.3: Total average squared residual errors in MWCNTs case.

 

 


 

2 361× 10−3 269× 10−2 533× 10−3

6 297× 10−3 226× 10−2 495× 10−4

10 285× 10−3 205× 10−2 101× 10−4

14 273× 10−3 190× 10−2 206× 10−5

16 268× 10−3 184× 10−2 980× 10−6

8.5 Discussion

Main attention is to analyze velocities  0 (),  () and temperature  () for sundry variables like

()  ()  (1)  ()  (2) and ()  Outcomes are obtained for two cases of carbon nanotubes

(recognized as SWCNTs and MWCNTs). Fig. 84 addresses velocity field  0 () for ()  By

increasing (), the fluid becomes viscous and resistance between fluid particles increases which

depicts lower  0 (). It is also analyzed that  0 () is less for MWCNTs than SWCNTs. Figs.

85 and 86 declared the consequences of  0 () against () and ()  Here  0 () is a decreasing

function of () and () in both SWCNTs and MWCNTs cases. From Fig. 87, the  0 () is

reduced via higher estimation of (1) in SWCNTs and MWCNTs situations. Physically, higher

(1) cause more resistance between fluid particles and rotating disk which consequently yields

lower velocity. Velocity field  () and associated layer thickness are increasing functions of ()

(see Fig. 88). Similar behavior is noticed in SWCNTs and MWCNTs situations. Fig. 89
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portrayed the variation of  0 () against ()  Higher estimation of () produces lower  0 () for

both SWCNTs and MWCNTs. From Fig. 810, it is analyzed that higher () yields reduction

in  0 () in both SWCNTs and MWCNTs cases. Fig. 811 is delineated for behavior of (1)

on  ()  Larger (1) indicate decrease in  () for SWCNTs and MWCNTs cases. More  ()

is observed by higher () in both SWCNTs and MWCNTs situations (see Fig. 812). Role of

() on  () is shown in Fig. 813 An increment in () causes more fluid friction between

adjacent layers of fluid due to which conversion from kinetic energy into heat energy occurs.

This conversion produces enhancement in  () for SWCNTs and MWCNTs cases. Fig. 814

characterized consequences of (2) on  ()  It is recognized that for higher estimation of (2),

the heat transfer from surface towards adjacent layers of fluid decreases which yields weaker

temperature  () in SWCNTs and MWCNTs cases. Features of ()  (1) and () on skin

friction coefficients
¡
Re
2

¢12
 and

¡
Re
2

¢12
 are interpreted in Figs. 815−818 It is reported

that
¡
Re
2

¢12
 and

¡
Re
2

¢12
 depict increasing trend for higher estimation of ()  (1) and

()  Figs. 819 and 820 are interpreted to scrutinize the impact of ()  (2) and () on local

Nusselt number − ¡Re
2

¢−12
 Local Nusselt number has increasing trend against higher (2)

and ()  Validation of current results with existing numerical results by Naqvi et al. [33] is

depicted in Table 84 when  = 0 Reasonable agreement with results of Naqvi et al. [33] is

found
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Fig. 8.4: Plot for  0 () against 
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l = 0.0, 0.2, 0.4
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Fig. 8.5: Plot for  0 () against 
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Fig. 8.6: Plot for  0 () against 
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Fig. 8.7: Plot for  0 () against 1
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Fig. 8.8: Sketch of  () against 
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l = 0.1, 0.3, 0.5
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Fig. 8.9: Sketch of  () against 
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Fig. 8.10: Sketch of  () against 
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g1 = 0.2, 0.35, 0.5
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Fig. 8.11: Sketch of  () against 1
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Fig. 8.12: Plot for  () against 
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l = 0.2, Fr = 0.3, x = 0.09, g1 = 0.4, g2 = 0.5, Pr= 6.2

Ec = 0.1, 0.3, 0.5

SWCNTs-water

MWCNTs-water

0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

z

q
z

Fig. 8.13: Plot for  () against 
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Fig. 8.14: Plot for  () against 2
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Fig. 8.15: Plot for
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¢12
 against  and 

l = 0.2, Fr = 0.3, g2 = 0.5, Ec = 0.7, Pr = 6.2

SWCNTs-water

MWCNTs-water

x = 0.01, 0.05, 0.1

0.0 0.2 0.4 0.6 0.8 1.0

0.05

0.10

0.15

0.20

0.25

g1

R
e 2
12

C
f

Fig. 8.16: Plot for
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¢12
 against  and 1
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Fig. 8.17: Plot for
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 against  and 
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Fig. 8.18: Plot for
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¢12
 against  and 1

149
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Fig. 8.19: Plot for
¡
Re
2

¢−12
 against  and 
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Fig. 8.20: Plot for
¡
Re
2

¢−12
 against  and 2
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Table 8.4: Skin friction coefficients for distinct   and 1 when  = 0

  1
¡
Re
2

¢12
 − ¡Re

2

¢12


OHAM Naqvi et al. [33] OHAM Naqvi et al. [33]

00 02 02 027961 030051 048585 064605

05 018428 026436 057798 074946

12 013822 023697 072787 083632

02 00 02 023575 033311 023113 063023

05 021077 022813 055613 077968

10 019005 014961 062742 096925

02 02 00 030222 043478 055473 078139

05 015323 017157 044021 056649

10 009813 009212 035495 043068
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Chapter 9

Unsteady flow of nanomaterial

subject to variable characteristics

This chapter analyzed the salient characteristics of activation energy and porous space on

unsteady flow of nanofluid. Darcy-Forchheimer relation with variable porosity and permeability

is accounted. Disturbance in flow is caused by a stretchable rotating disk. Nanofluid properties

are due to Brownian motion and thermophoresis. Heat transfer in flow of nanofluids are more

prominent in industries and technological advances. Transportation, atomic reactors, hardware,

vitality and medication are few such processes. Appropriate transformations are adopted for

reduction purpose. Numerical solutions of resulting nonlinear system are computed. Graphs are

plotted to interpret outcomes for velocities, temperature and concentration. Physical quantities

are analyzed through numerical results.

9.1 Model development

Unsteady three dimensional flow by stretchable rotating disk is examined. Darcy-Forchheimer

relation with variable properties is considered. Concentration expression is subject to an activa-

tion energy. Attributes of Brownian motion and thermophoresis are analyzed. Time dependent

angular velocity is 0 () = 
1− (see Fig. 91) Cylindrical coordinate frame (  ) is adopted.
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Relevant equations for the problems are:

Fig. 9.1: Flow configuration [27].




+




+




= 0 (9.1)
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


+ 




+ 




= 

µ
2

2

¶
+
()

()

Ã


µ








¶
+



∞

µ




¶2!
 (9.4)



+ 


+  


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³
2
2

´
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³
2
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´
−

2 ( − ∞)
³


∞

´

−
̃ 

(9.5)

 =
0

1− 
  =



1− 
  = 0  =   =  at  = 0 (9.6)

→ 0  → 0  → ∞  → ∞   →∞ (9.7)

where [81]

∗ () = ∞
³
1 + 

− 


´
 (9.8)

 () = ∞
³
1 + ∗−




´
 (9.9)
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Considering
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we have
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Here incompressibility equation is trivially verified and  is the constant prescribed variable at

any streamwise location. To attain similar solutions, we assume that the terms including
()
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are sufficiently small and may be approximated by zero. Thus, we have
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 ( 0 ) = 0  0 ( 0 ) =   ( 0 ) = 1  ( 0 ) = 1  ( 0 ) = 1 (9.21)

 0 (∞ )→ 0  (∞ )→ 0  (∞ )→ 0  (∞ )→ 0. (9.22)

Emerging parameters are stated as
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9.2 Physical quantities

Coefficients of skin friction and local Nusselt and Sherwood numbers take the form
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(9.19)

9.3 Discussion

Purpose of this section is to interpret the graphical description of sundry variables such as

(), ()  ()  ()  ()  (
∗)  ()  ()  (Pr), (Λ)  (1)  () and () on velocities 

0 ()

and  (), thermal  () and concentration  () fields Fig. 92 is sketched to scrutinize the

behavior of  0 () through ()  An enhancement in  0 () is observed through higher ()  Fig.

93 elaborates the characteristics of () on  0 ()  Here  0 () is lower for ()  Figs. 94 and 95

highlighted the impacts of () and (∗) on  0 ()  It is seen that  0 () possesses opposite trend

for () and (∗)  Fig. 96 witnessed that () lowers the velocity  0 ()  Plot of  0 () against

() is illustrated in Fig. 97 Clearly  0 () is enhanced for higher ()  Fig. 98 elaborated the

role of () on  ()  It is seen that higher estimation of () correspond to more velocity  () 
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Attributes of  () against () is presented in Fig. 99 Higher  () is observed through ()  An

increment in () and (∗) produces opposite trend in velocity  () (see Figs. 910 and 911) Fig.

912 presents variations of  () for ()  Reduction in  () is noted through higher ()  Fig.

913 presents estimation of  () for ()  Here higher estimation of () gives lower  () and less

related layer thickness Outcome of () on thermal field  () is plotted in Fig. 914 Clearly

higher () strengthen the thermal field  ()  Features of  () through () is displayed in

Fig. 915  () shows decreasing behavior for ()  Fig. 916 sketched the attributes of  ()

for ()  Reduction in  () is seen through higher ()  Characteristics of () and () on  ()

are portrayed in Figs. 917 and 918. Opposite trend of  () is noted through () and () 

Fig. 919 displayed behavior of  () against ()  Clearly higher estimation of () lowers

 ()  Similar trend of  () is seen through (Λ) and (1) (see Figs. 920 and 921). Fig. 922

displayed behavior of () on  ()  Higher () leads to stronger  () and more associated

layer thickness. Role of () on  () is elaborated in Fig. 923. Here concentration  () is

a decreasing function of ()  Table 91 is developed to analyze significant behavior of skin

friction coefficients for involved variables. Skin friction coefficients reduces through () while

reverse behavior is seen through ()  () and (
∗)  Higher values of local Nusselt number are

noted via () and (Pr) (see Table 92). Table 93 illustrated behavior of local Sherwood number

against emerging flow variables. Clearly local Sherwood number through ()  (Λ)  (1)  ()

and () enhances Comparison of present results with existing [28 34] are presented in Tables
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94 and 95 An agreement with present results is found with [28 34] 

l = 0.2, d = 3.0, d * = 1.5, Fr = 0.2, d = 0.1, Nb = 0.2, Nt = 0.3,

Pr= 0.8, Sc = 0.9, E = 0.4, L = 0.2, a1 = 1.1, m = 0.5

S = 0.0, -1.0, -2.0
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Fig. 9.2: Sketch of  0 () against 

d = 3.0, d * = 1.5, Fr = 0.2, S = -0.1, d = 0.1, Nb = 0.2, Nt = 0.3,

Pr = 0.8, Sc = 0.9, E = 0.4, L = 0.2, a1 = 1.1, m = 0.5

l = 3.0, 3.5, 4.0
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Fig. 9.3: Plot for  0 () against 
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l = 0.2, Fr = 0.2, d * = 1.5, d = 0.1, S = -0.1, Nb = 0.2, Nt = 0.3,

Pr= 0.8, Sc = 0.9, E = 0.4, L = 0.2, a1 = 1.1, m = 0.5

d = 0.0, 1.0, 2.0
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Fig. 9.4: Plot for  0 () against 

l = 0.2, Fr = 0.2, d = 3.0, d = 0.1, S = -0.1, Nb = 0.2, Nt = 0.3,

Pr= 0.8, Sc = 0.9, E = 0.4, L = 0.2, a1 = 1.1, m = 0.5

d * = 1.0, 1.4, 1.8
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Fig. 9.5: Plot for  0 () against ∗
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l = 0.2, d = 3.0, d * = 1.5, d = 0.1, S = -0.1, Nb = 0.2, Nt = 0.3,

Pr= 0.8, Sc = 0.9, E = 0.4, L = 0.2, a1 = 1.1, m = 0.5

Fr = 0.0, 0.5, 1.0
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Fig. 9.6: Plot for  0 () versus 
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l = 0.2, Fr = 0.2, d = 3.0, d * = 1.5, S = -0.1, Nb = 0.2, Nt = 0.3,

Pr = 0.8, Sc = 0.9, E = 0.4, L = 0.2, a1 = 1.1, m = 0.5
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Fig. 9.7: Sketch of  0 () versus 
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l = 0.2, d = 3.0, d * = 1.5, Fr = 0.2, d = 0.1, Nb = 0.2, Nt = 0.3,
Pr = 0.8, Sc = 0.9, E = 0.4, L = 0.2, a1 = 1.1, m = 0.5

S = 0.0, -1.0, -2.0
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Fig. 9.8: Sketch of  () versus 

d = 3.0, d * = 1.5, Fr = 0.2, d = 0.1, S = -0.1, Nb = 0.2, Nt = 0.3,

Pr = 0.8, Sc = 0.9, E = 0.4, L = 0.2, a1 = 1.1, m = 0.5

l = 0.5, 1.0, 2.0
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Fig. 9.9: Sketch of  () versus 
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l = 0.2, d * = 1.5, Fr = 0.2, d = 0.1, S = -0.1, Nb = 0.2, Nt = 0.3,
Pr = 0.8, Sc = 0.9, E = 0.4, L = 0.2, a1 = 1.1, m = 0.5

d = 0.0, 1.0, 2.0
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Fig. 9.10: Sketch of  () versus 

l = 0.2, d = 3.0, Fr = 0.2, d = 0.1, S = -0.1, Nb = 0.2, Nt = 0.3,
Pr = 0.8, Sc = 0.9, E = 0.4, L = 0.2, a1 = 1.1, m = 0.5
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Fig. 9.11: Sketch of  () against ∗
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l = 0.2, d = 3.0, d * = 1.5, d = 0.1, S = -0.1, Nb = 0.2, Nt = 0.3,

Pr = 0.8, Sc = 0.9, E = 0.4, L = 0.2, a1 = 1.1, m = 0.5

Fr = 0.0, 0.5, 1.0
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Fig. 9.12: Plot for  () against 

l = 0.2, d = 3.0, d * = 1.5, Fr = 0.2, d = 0.1, Nb = 0.2, Nt = 0.3,

Pr= 0.8, Sc = 0.9, E = 0.4, L = 0.2, a1 = 1.1, m = 0.5

S = -0.5, -1.0, -2.0
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Fig. 9.13: Plot for  () against 
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l = 0.2, d = 3.0, d * = 1.5, Fr = 0.2, A = 0.1, S = -0.1, Nt = 0.3,

Pr = 0.8, Sc = 0.9, E = 0.4, L = 0.2, a1 = 1.1, m = 0.5

Nb = 0.1, 0.4, 0.8

0 5 10 15

0.0

0.2

0.4

0.6

0.8

1.0

z

q
z

Fig. 9.14: Plot for  () against 

l = 0.2, d = 3.0, d * = 1.5, Fr = 0.2, d = 0.1, Nb = 0.2, S = -0.1,

Pr= 0.8, Sc = 0.9, E = 0.4, L = 0.2, a1 = 1.1, m = 0.5

Nt = 0.1, 1.5, 1.0
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Fig. 9.15: Sketch of  () against 
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l = 0.2, d = 3.0, d * = 1.5, Fr = 0.2, d = 0.1, Nb = 0.2, Nt = 0.3,

Pr = 0.8, Sc = 0.9, m = 0.4, E = 0.4, L = 0.2, a1 = 1.1

S = -1.0, -1.5, -2.0
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Fig. 9.16: Sketch of  () against 

l = 0.2, d = 3.0, d * = 1.5, S =-0.1, Fr = 0.2, d = 0.1, Nt = 0.3,
Pr = 0.8, Sc = 0.9, m = 0.4, E = 0.4, L = 0.2, a1 = 1.1

Nb = 0.4, 1.0, 1.8
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Fig. 9.17: Sketch of  () against 
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l = 0.2, d = 3.0, d * = 1.5, S = -0.1, Fr = 0.2, d = 0.1, Nb = 0.2,

Pr= 0.8, Sc = 0.9, m = 0.4, E = 0.4, L = 0.2, a1 = 1.1

Nt = 0.0, 0.1, 0.2
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Fig. 9.18: Sketch of  () against 

l = 0.2, d = 3.0, d * = 1.5, Fr = 0.2, d = 0.1, S = -0.1, Nb = 0.2,

Nt = 0.3, Pr = 0.8, m = 0.4, E = 0.4, L = 0.2, a1 = 1.1

Sc = 1.0, 1.5, 2.0
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Fig. 9.19: Sketch for  () against 
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l = 0.2, d = 3.0, d * = 1.5, Fr = 0.2, d = 0.1, S = -0.1, Nb = 0.2,
Nt = 0.3, Pr = 0.8, Sc = 0.9, E = 0.4, a1 = 1.1, m = 0.5

L = 0.1, 0.3, 0.5
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Fig. 9.20: Sketch of  () against Λ

l = 0.2, d = 3.0, d * = 1.5, Fr = 0.2, d = 0.1, S = -0.1, Nb = 0.2,

Nt = 0.3, Pr= 0.8, Sc = 0.9, E = 0.4, L = 0.2, m = 0.5

a1 = 0.1, 1.0, 2.0
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Fig. 9.21: Plot for  () against 1
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l = 0.2, d = 3.0, d * = 1.5, Fr = 0.2, d = 0.1, S = -0.1, Nb = 0.2,

Nt = 0.3, Pr = 0.8, Sc = 0.9, L = 0.2, a1 = 1.1, m = 0.5

E = 0.0, 0.4, 0.8
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Fig. 9.22: Plot for  () against 

l = 0.2, d = 3.0, d * = 1.5, Fr = 0.2, d = 0.1, S = -0.1, Nb = 0.2,
Nt = 0.3, Pr = 0.8, Sc = 0.9, E = 0.4, L = 0.2, a1 = 1.1

m = 0.0, 0.6, 1.2
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Fig. 9.23: Sketch of  () against 
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Table 9.1: Skin friction coefficients
¡
Re
2

¢12
 and

¡
Re
2

¢12
 against    

∗  and



   ∗   − ¡Re
2

¢12
 − ¡Re

2

¢12


00 02 30 15 02 01 023799 194439

−10 036466 180939

−20 045900 167553

−01 10 30 15 02 01 −014353 112722

11 −013369 115367

12 −012440 117972

−01 02 00 15 02 01 027884 336512

10 015476 249785

20 008891 210607

−01 02 30 00 02 01 000179 132595

03 000964 144002

06 001811 155137

02 02 04 15 00 01 002727 177506

01 003061 182371

03 003844 191813

−01 02 30 15 02 02 023278 192553

03 043019 197928

04 063621 203269
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Table 9.2: Local Nusselt number
¡
Re
2

¢−12
 against    and Pr 

   Pr
¡
Re
2

¢−12


00 02 03 08 004825

−02 018298

−03 022606

−01 01 03 08 013537

03 012015

04 011312

−01 02 00 08 014209

01 013704

02 013220

−01 02 03 09 013192

10 013570

11 013898
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Table 9.3: Numerical data of local Sherwood number
¡
Re
2

¢−12
 against    Λ

1   and 

   Λ 1   
¡
Re
2

¢−12


00 02 03 02 11 04 09 05 050855

−02 049944

−03 049269

−01 00 03 02 11 04 09 05 048714

01 051569

03 051926

−01 02 00 02 11 04 09 05 051259

01 050891

02 050765

−01 02 03 00 11 04 09 05 008581

01 035329

03 062579

−01 02 03 02 10 04 09 05 049861

12 051829

13 052784

02 02 03 02 11 01 09 05 055108

02 053664

03 052247

−01 02 03 02 11 04 08 05 050595

10 051117

11 051379

−01 02 03 02 11 04 09 01 043892

02 045706

03 047469
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Table 9.4: Values for  00 (0) against  and .

   00 (0)

NDSolve HAM [34] Numerical solution [28]

0 −01 045011 053081

−05 051813 061433

−10 061179 071982

10 −01 −097795 −093712 −091892
−05 −086371 −090621 −080071
−10 −135688 −076731 −065204

20 −01 −317457 −297292 −311782
−05 −301887 −296013
−10 −282301 −276223

Table 9.5: Comparative values of 0 (0) for distinct values of  and 

  −0 (0)
NDSolve Numerical solution [28]

0 −01 063586 057894

−05 048479 042841

−10 029261 034522

10 −01 14936 146565

−05 140871 137973

−10 121444 127163

20 −01 206844 205302

−05 200626 199011

−10 192767 191114
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Chapter 10

Flow of hybrid nanofluid saturating

porous medium of variable

characteristics

This chapter provides numerical simulation for flow of TiO2−Al2O3/water nanofluid filling
porous medium. Combined effects of thermal stratification and nonlinear thermal radiation is

studied. Velocity slip conditions are taken at the boundary. Rotating disk is used to generate

disturbance in flow. Variable characteristics of porosity and permeability are characterized

in porous space through Darcy-Forchheimer expression. NDSolve technique is employed for

solution development of nonlinear equations. Graphical description is provided for the behavior

of involved variables on flow fields. Role of emerging variables on physical quantities is discussed

through numerical data. Our results reveal that heat transfer rate of TiO2/water is higher in

comparison to TiO2−Al2O3/water nanofluid.

10.1 Model development

Three-dimensional (3D) steady flow of hybrid nanofluid induced by a rotating disk is taken.

Velocity slip is accounted. Nonlinear thermal radiation and thermal stratification are accounted.

Disk rotates subject to constant angular velocity  Here (  ) are velocity components in
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(  ) directions Resulting equations for 3D flow satisfy:

Fig. 10.1: Flow configuration [27].




+




+




= 0 (10.1)



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− 2


+ 




= 

µ
2

2

¶
−  ()

∗ ()
− 

2 ()p
∗ ()


p
2 + 2 (10.2)





+




+ 




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µ
2

2

¶
−  ()

∗ ()
 − 

2 ()p
∗ ()


p
2 + 2 (10.3)





+ 




= 

µ
2

2

¶
− 1

()




 (10.4)

 = 1



  =  +1




  = 0  =  = 0 + ̃ at  = 0 (10.5)

→ 0  → 0  → ∞ = 0 + ̃ as  →∞ (10.6)

where

∗ () = ∞
³
1 + 

− 


´
 (10.7)

 () = ∞
³
1 + ∗−




´
 (10.8)

 = −4̃
3

 4


= −16̃

3
 3




 (10.9)
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The energy equation becomes





+ 




= 

µ
2

2
+
1






+

2

2

¶
+

1

()

16̃

3





µ
 3





¶
 (10.10)

Theoretical model for hybrid nanofluid is [55] :

 =


(1−1−2)25
  =




  =  (1− 1 − 2) + 11 + 22

 =


()
 () = () (1− 1 − 2) + ()1 1 + ()1 1




=
11+22+2+2(11+22)−2(1+2)2
11+22+2−(11+22)+(1+2)2



⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (10.11)

In above expressions, 1 is the solid volume fraction of TiO2, 2 the solid volume fraction of

Al2O3 1 the density of TiO2, 2 the density of Al2O3, 1 the thermal conductivity of TiO2

and 2 the thermal conductivity of Al2O3.

Table 10.1: Characteristics of water and nanoparticles [54].

Physical properties Water Nanoparticles

TiO2 Al2O3


¡
3

¢
9971 4230 4000

 () 0613 84 40

 () 4179 692 773

Considering

 = 
()


  = ( )  = −
q


2

³
 +  



´


( ) = −∞
−0   =

³
2


´12
  = 

̄


(10.12)

with  = ( − 0) +∞ the equation (101) is automatically verified and Eqs. (102)−(1010)
give

1
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
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´


(10.13)
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1
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−


(1+∗−)

2

√
1+−

µ
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2

³

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(10.14)

2
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()1
()

1+
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2

 


³³

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3
 [ ( + ) + ]

3
´




´
+ 2Pr  


=

Pr
³





− 





´


(10.15)

2 ( 0) = − ( 0)



 ( 0)


= 1

2 ( 0)


  ( 0) = 1 + 1

 ( 0)


  ( 0) = 1− 

(10.16)

 (∞)


→ 0  (∞)→ 0  (∞)→ 0. (10.17)

Flow variables are given as

1 = 1

q
2

  =

 ∞
∞   =


2∞̄√
∞

  = RePr 1

=
q




12

̄


 =
0
̃̄

  =
̃

̃
  =

4̃(̃̄)
3


 Pr =





(10.18)

10.1.1 First order of truncation

In first order of truncation, the terms including
()


are assumed to be very small and may be

approximated by zero. We have

1

(1−)25
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(10.19)
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(1+∗−)

2

√
1+−
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 02
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(10.20)

1

1−  +
()

()


µµ



+
4

3
 [ ( + ) + ]

3

¶
0
¶0
+Pr 0 = 0 (10.21)

 ( 0) = 0  0 ( 0) = 1
00 ( 0)   ( 0) = 1 + 1

0 ( 0)   ( 0) = 1−  (10.22)

 0 (∞)→ 0  (∞)→ 0  (∞)→ 0. (10.23)
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10.1.2 Second order of truncation

For non-similarity solutions of Eqs. (1013)− (1017)  one considers

∗ =



 ∗ =




 ∗ =




and

∗


=

∗


=

∗


= 0 (10.24)

Taking partial derivatives of Eqs. (1013)− (1017) with respect to  one arrives at

1
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2
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2
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(10.25)
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(10.26)
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(10.27)

∗ ( 0) = 0 ∗0 ( 0) = 1
∗00 ( 0)  ∗ ( 0) = 1

∗0 ( 0)  ∗ ( 0) = 0 (10.28)

∗0 (∞)→ 0 ∗ (∞)→ 0 ∗ (∞)→ 0. (10.29)

10.2 Quantities of interest

Components of skin friction and local Nusselt number yield

¡
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2
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1

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Re
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1


1

(1−1−2)25
0 ( 0) ¡

Re
2

¢−12
 = −

³



+ 4
3
 ( + )

3
´
0 ( 0) 

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (10.30)

in which Re = ̄2


stands for local Reynolds number.
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10.3 Analysis

This section intends to demonstrate the behavior of emerging flow variables on velocities

and temperature fields. Results are achieved for both TiO2−Al2O3water hybrid nanofluid
(1 = 001 2 = 005), Al2O3−water nanofluid (1 = 00 2 = 006) and TiO2−water nanofluid
(1 = 006 2 = 00). Fig. 102 interpreted the role of (1) on velocity field  0 ()  Here reduc-

tion in velocity field  0 () is noticed through larger (1) for hybrid nanofluid and nanomaterial.

Role of () on  0 () is illustrated in Fig. 103 Here larger () correspond to lower velocity

field  0 () for hybrid nanofluid and nanofluid. Consequences of () and (∗) on velocity  0 ()

is captured in Figs. 104 and 105 Here velocity  0 () is an increasing function of () while

reverse trend is observed for (∗) for both hybrid nanofluid (TiO2−Al2O3water) and nanofluid
(TiO2−water and Al2O3−water). Here  0 () against () is shown in Fig. 106 Here it is

investigated that an enhancement in () produces resilience in fluid motion which corresponds

to reduction in  0 () for hybrid nanofluid (TiO2−Al2O3water) and nanofluid (TiO2−water
and Al2O3−water). Significant behavior of (1) on  () is depicted in Fig. 107 Since (1) is

inversely related to kinematic viscosity. Thus higher values of (1) encountered more resistance

between fluid and disk which produce lower  () for both hybrid nanofluid and nanomaterial.

Fig. 108 elaborated the impact of () on  ()  Here  () is an increasing function of () for

both hybrid nanofluid and nanomaterial Figs. 109 and 1010 describe outcomes of () and (∗)

on  ()  It is noticed that  () possesses opposite trend for () and (∗) for hybrid nanofluid

and nanomaterial. Decreasing trend of  () is noted through () for both hybrid nanofluid and

nanomaterial (see Fig. 1011). Fig. 1012 characterized consequences of () on  ()  An incre-

ment in () give rise to stronger  () and more associated layer thickness for hybrid nanofluid

and nanofluid. Outcomes of () and (∗) on  () is illustrated in Figs. 1013 and 1014 An en-

hancement in  () is analyzed through () while opposite behavior is seen through (∗). Higher

estimation of () yield an enhancement in  () for hybrid nanofluid (TiO2−Al2O3water) and
nanofluid (TiO2−water and Al2O3−water) (see Fig. 1015). Fig. 1016 is devoted to examine
the contribution of () on temperature  ()  Clearly  () enhances for higher estimation of

() for hybrid nanofluid and nanomaterial. It is due to the fact that more heat is transferred

due to the transmission of waves. Role of () on  () is pointed out in Fig. 1017 Temper-

ature  () decays through () for hybrid nanofluid (TiO2−Al2O3water) and nanomaterial
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(TiO2−water and Al2O3−water). Variation of () on  () is sketched in Fig. 1018 Physically
thermal stratification is the formation of two discrete layers of fluid at different temperatures.

Temperature difference between layers increases due to higher () which consequently reduces

 () for hybrid nanofluid and nanofluid. Numerical data of drag force at the surface
¡
Re
2

¢12


and − ¡Re
2

¢12
 for distinct values of (1)  ()  ()  (

∗) and () is characterized in Ta-

bles 102 and 103. Higher
¡
Re
2

¢12
 is noted through () while opposite trend holds for

− ¡Re
2

¢12
 Table 104 elaborated the local Nusselt number

¡
Re
2

¢−12
 through ()  ()

and ()  Local Nusselt number is reduced through larger () and () while opposite trend is

noticed for () in both hybrid nanofluid and nanomaterial. Table 105 is arranged to validate

the current results with Miklavcic and Wang [27]. Results are in an excellent consensus.

l = 0.3, Fr = 0.4, d = 3.0, d * = 1.5, Rd = 0.3,

qw = 1.8, St = 0.5

g1 = 0.1, 0.3, 0.5

Hybrid nanofluid

Al2 O3 -water

TiO2 -water

0 1 2 3 4 5 6

0.000

0.005

0.010

0.015

z

f
'z



Fig. 10.2: Sketch of  0 () against 1
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l = 0.5, 0.7, 0.9

Fr = 0.4, d = 3.0, d * = 1.5, g1 = 0.2, Rd = 0.3,
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Fig. 10.3: Plot for  0 () against 

l = 0.3, Fr = 0.4, d * = 1.5, g1 = 0.2, Rd = 0.3,
qw = 1.8, St = 0.5
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Fig. 10.4: Plot for  0 () against 
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l = 0.3, Fr = 0.4, d = 3.0, g1 = 0.2, Rd = 0.3,
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Fig. 10.5: Plot for  0 () against ∗

l = 0.3, d = 3.0, d * = 1.5, g1 = 0.2, Rd = 0.3,

qw = 1.8, St = 0.5
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Fig. 10.6: Plot for  0 () versus 
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Fig. 10.7: Sketch of  () versus 1
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Fig. 10.8: Sketch of  () versus 
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d = 1.0, 1.5, 2.0
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Fig. 10.9: Sketch of  () versus 

d * = 0.0, 0.5, 1.0

l = 0.3, Fr = 0.4, d = 3.0, g1 = 0.2, Rd = 0.3,
qw = 1.8, St = 0.5
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Fig. 10.10: Sketch of  () versus ∗
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l = 0.3, d = 3.0, d * = 1.5, g1 = 0.2, Rd = 0.3,
qw = 1.8, St = 0.5
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Fig. 10.11: Sketch of  () versus 
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Fig. 10.12: Sketch of  () versus 
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Fig. 10.13: Sketch of  () versus 

l = 0.3, Fr = 0.4, d = 3.0, g1 = 0.2, Rd = 0.3,
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Fig. 10.14: Sketch of  () versus ∗
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Fig. 10.15: Sketch of  () versus 

l = 0.3, Fr = 0.4, d = 3.0, d * = 1.5, g1 = 0.2,

qw = 1.8, St = 0.5
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Fig. 10.16: Sketch for  () against 
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qw = 1.4, 2.8, 4.2

l = 0.3, Fr = 0.4, d = 3.0, d * = 1.5, g1 = 0.2,
Rd = 0.3, S = 0.5
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Fig. 10.17: Sketch of  () against 

l = 0.3, Fr = 0.4, d = 3.0, d * = 1.5, g1 = 0.2,

Rd = 0.3, qw = 1.8

St = 0.0, 0.05, 0.1
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Fig. 10.18: Sketch of  () against 
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Table 10.2: Numerical data of skin friction coefficient
¡
Re
2

¢12
 against  

∗ 1  and



  ∗  1
¡
Re
2

¢12


Hybrid nanofluid Al2O3-water TiO2-water

01 30 15 04 02 000925 000922 000918

02 003551 003545 003583

04 005799 005790 005848

03 10 15 04 02 001785 001782 001801

20 003399 003393 003428

40 005986 005976 006036

03 30 00 04 02 012702 012679 012812

05 009909 009892 009995

10 007268 007256 007331

03 30 15 01 02 009073 009056 009155

02 007586 007572 007653

03 006157 006146 006211

03 30 15 04 00 008606 008590 008682

01 006309 006297 006363

03 003722 003716 003754
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Table 10.3: Numerical data of skin friction coefficient − ¡Re
2

¢12
 against    

∗

and 1

  ∗  1 − ¡Re
2

¢12


Hybrid nanofluid Al2O3-water TiO2-water

01 30 15 04 02 066901 066846 067175

02 068709 068656 068972

04 072321 072273 072558

03 10 15 04 02 134011 133993 134101

20 118856 118836 118953

40 102263 102242 102371

03 30 00 04 02 082854 082839 082933

05 091843 091827 091925

10 100631 100613 100721

03 30 15 01 02 102401 102391 102452

02 104735 104721 104804

03 106987 106969 107073

03 30 15 04 00 137408 137371 137593

01 121575 121548 12171

03 099152 099136 099231
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Table 10.4: Numerical values of local Nusselt number
¡
Re
2

¢−12
 against   and 

  
¡
Re
2

¢−12


Hybrid nanofluid Al2O3-water TiO2-water

00 18 05 007952 007788 008846

01 010287 010092 011004

02 012600 012426 012945

03 18 05 014731 014597 015012

24 013636 013461 013979

30 012774 012574 013475

03 18 01 025027 024934 025786

02 021937 021774 023537

03 019872 019908 020607

Table 10.5: Skin friction coefficient
¡
Re
2

¢12
 against 1 when 1 = 2 =  =  =  = ∗ =

0

1 (Re
2
)12

Miklavcic and Wang [27] Present

00 051023 035719

01 042145 031149

02 035258 027322

05 022384 019218

10 012792 012044

20 006101 006208

50 001858 001992

100 000681 000721

200 000236 000232
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Chapter 11

Entropy generation analysis of

Carreau fluid with entire new

concepts of modified Darcy’s law

and variable characteristics

This chapter studied the characteristics of nonlinear partial slip in flow of Carreau fluid. Fluid

saturates the porous medium. Modified Darcy’s law is employed in modeling. Variable char-

acteristics in modeling are accounted. Entropy generation rate is formulated. Heat transfer is

analyzed with viscous dissipation. Relevant equations are presented by boundary layer theory.

The resulting problems are nonlinear not in terms of equations but also through boundary con-

ditions. Dimensionless equations are obtained through adequate transformations. Velocities,

temperature and entropy generation rate are discussed. Numerical computations of skin fric-

tion coefficients and local Nusselt number are arranged. Physical interpretation of influential

variables is arranged.
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11.1 Model development

Here flow of Carreau fluid by a rotating disk is investigated. Partial slip condition in modeling

is taken. Flow is modelled by modified Darcy’s law. Variable characteristics of porous space

are considered. Disk is at  = 0 (see Fig. 11.1) Viscous dissipation is taken. Here cylindrical

coordinate frame (  ) is adopted. Resulting equations for the considered problem are:

Fig. 11.1: Flow configuration.




+




+




= 0 (11.1)
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−  ()

∗ ()

µ
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µ
1 +

− 1
2

(Γ̊)2
¶¶

 (11.3)


¡


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

¢
= 

³
2
2

´
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³
1 + −1

2
(Γ̊)2

´³¡

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+¡
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¢2´
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∗()

³
0

³
1 + −1

2
(Γ̊)2

´´ ¡
2 + 2

¢


(11.4)

−1̆ = 0  −1̆ =   = 0  =  at  = 0 (11.5)

→ 0  → 0  → ∞ as  →∞ (11.6)
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where

̆ =

µ



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
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¶µ
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µ
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2
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 (11.7)
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s
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µ
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∗ () = ∞
³
1 + 

− 
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´
 (11.9)

 () = ∞
³
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


´
 (11.10)
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 = 
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 (∞)


→ 0  (∞)→ 0  (∞)→ 0, (11.16)

Here Eq. (111) is identically justified. Involved flow parameters are given as:
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11.1.1 First order of truncation

In first order of truncation, the terms including
()


are assumed very small and may be ap-

proximated by zero. We thus express that
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 0 (∞)→ 0  (∞)→ 0  (∞)→ 0. (11.22)

11.1.2 Second order of truncation

For non-similarity solutions of Eqs. (1112)− (1116)  one considers
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Differentiation of Eqs. (1112)− (1116) with respect to  yields
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¢
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⎛⎜⎜⎜⎝
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1+− 
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2
2
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(11.24)
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∗−
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2
2 0
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⎞⎠ = ∗0 −  0∗ +  (∗∗0 − ∗∗0) 

(11.25)
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¢


(11.26)

∗ ( 0) = 0 ∗ ( 0) = 0

∗0 ( 0)− 1

⎛⎝1 + −1
2
2

⎛⎝ 12 02 + 42∗02+

10 0∗0

⎞⎠⎞⎠ ∗00 ( 0)−

1
−1
2
2

⎛⎝ 24 0∗0 + 8∗02+

10 0∗00 + 10∗0∗00

⎞⎠  00 ( 0) = 0

∗ ( 0)− 1

⎛⎝1 + −1
2
2

⎛⎝ 12 02 + 42∗02+

10 0∗0

⎞⎠⎞⎠ ∗0 ( 0)−

1
−1
2
2

⎛⎝ 24 0∗0 + 8∗02+

10 0∗00 + 10∗0∗00

⎞⎠ 0 ( 0) = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11.27)

∗0 (∞)→ 0 ∗ (∞)→ 0 ∗ (∞)→ 0. (11.28)
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11.2 Entropy generation

Entropy generation equation for considered flow is

000 =


 2

µ

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¶2
| {z }
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+
 ()
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

(11.29)

Using transformations, Eq. (1119) reduces to

 () = 21
02 + 22

¡
1 + −1

2
2

¡
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¢
+

2 1+
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2
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¢¢ ³
 0
2
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´
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(11.30)

where

1 =
 − ∞


  =





000
1

 (11.31)

11.3 Physical quantities

Coefficients of skin friction and local Nusselt number are

¡
Re
2

¢12
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1


¡
1 + −1

2
2

¡
12 02 ( 0) + 42∗02 ( 0) + 10 0∗0 ( 0)

¢¢
∗ ( 0) ¡

Re
2

¢12
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1


¡
1 + −1

2
2

¡
12 02 ( 0) + 42∗02 ( 0) + 10 0∗0 ( 0)

¢¢
0 ( 0) ¡

Re
2

¢−12
 = −0 ( 0) 

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(11.32)

11.4 Solution methodology

Numerical approximations for solutions of nonlinear equations are obtained by NDSolve tech-

nique of mathematica. The solutions of nonlinear equations in terms of interpolating function

are given as a table of values of unknown function for different independent variable. ND-

Solve finds a numerical value of the function for a specific value of independent variable by

interpolation in this table.
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11.5 Discussion

This section provides graphical outcomes of emerging variables against velocities  0 ()   () 

temperature  () and entropy generation rate  ()  Fig. 112 depicted the variation of

 0 () for ()  Clearly () reduces the velocity  0 ()  Figs. 113 and 114 witnessed contrary

behavior of  0 () for () and (∗)  Fig. 115 illustrates the curves of  0 () for ()  Higher

() correspond to an increase in relaxation time of fluid. Such increase in relaxation time

causes resistance between fluid particles and consequently velocity  0 () decreases Fig. 116

presents the outcomes of (1) on velocity 
0 ()  Higher estimation of (1) produces resistance

between the fluid particles and rotating disk. Such resistance causes decay in velocity  0 () 

Features of  () through () is plotted in Fig. 117 Clearly higher () strengthen the velocity

 ()  Role of () on velocity  () is analyzed in Fig. 118 Higher estimation of () show an

enhancement in  ()  Behavior of  () against (∗) is portrayed in Fig. 119 Velocity  ()

is a decreasing function of (∗)  Impact of () on velocity  () are depicted in Figs. 1110

Increasing trend of  () is observed through ()  Features of  () for (1) is sketched in

Fig. 1111 Higher (1) yields reduction in  ()  Characteristics of () on  () is highlighted

in Fig. 1112 Higher () weakens the temperature  () and thermal layer thickness. Since

the presence of porous medium disturbed the boundary layer flow of liquid. Thus resistance is

created in the fluid flow which decays the temperature Significant behaviors of () and (∗)

on  () are declared in Figs. 1113 and 1114 Higher () and (∗) yield adverse trend of  () 

Fig. 1115 witnessed that  () is an increasing function of ()  Fig. 1116 captured the

effect of () on  ()  Here higher () strengthen the temperature  () and related layer

thickness. Variation of () on  () is declared in Fig. 1117. An increment in () depicts

reduction of  ()  Higher estimation of () decay  () whereas reverse holds against (
∗)

(see Figs. 1118 and 1119). Role of () on  () is pointed out in Fig. 1120 Here

 () is an increasing function of ()  Physically more heat loss is observed during motion

of particles due to enhancement in relaxation time  () against () is portrayed in Fig.

1121 Enhancement in  () is witnessed through ()  Physically () is the ratio of heat

generated by fluid friction to heat transfer via molecular conduction. Higher () lead to more

heat generation which causes disorderedness in the system Contribution of (1) on  ()

is captured in Fig. 1122 It describes that  () enhances for (1)  Characteristics of skin
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friction coefficients
¡
Re
2

¢12
 and

¡
Re
2

¢12
 against sundry variables are elaborated in Table

111 It is analyzed that
¡
Re
2

¢12
 and

¡
Re
2

¢12
 have opposite trend for ()  ()  (

∗) and

(). Table 112 declared the contributions of ()  ()  (∗)  () and (1) on local Nusselt

number
¡
Re
2

¢−12
 Clearly () strengthens local Nusselt number. Comparative values of local

Nusselt number with existing studies [26 69] is presented in Table 113 Acceptable agreement

with these studies is noted [26 69] 
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Fig. 11.2: Sketch of  0 () versus 

l = 1.0, d * = 1.5, We = 0.5, g1 = 0.3, n = 1.2, Br = 0.3
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Fig. 11.3: Sketch of  0 () versus 
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l = 1.0, d = 3.0, We = 0.5, g1 = 0.3, n = 1.2, Br = 0.3

d * = 0.0, 0.5, 1.0
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Fig. 11.4: Sketch of  0 () versus ∗
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Fig. 11.5: Sketch of  0 () versus 
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l = 1.0, d = 3.0, d * = 1.5, We = 0.5, n = 1.2, Br = 0.3
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Fig. 11.6: Sketch of  0 () versus 1

d = 3.0, d * = 1.5, We = 0.5, g1 = 0.3, n = 1.2, Br = 0.3
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Fig. 11.7: Sketch of  () versus 

200



l = 1.0, d * = 1.5, We = 0.5, g1 = 0.3, n = 1.2, Br = 0.3
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Fig. 11.8: Sketch of  () versus 

l = 1.0, d = 3.0, We = 0.5, g1 = 0.3, n = 1.2, Br = 0.3

d * = 0.0, 1.0, 2.0
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Fig. 11.9: Sketch of  () versus ∗
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l = 1.0, d = 3.0, d * = 1.5, g1 = 0.3, n = 1.2, Br = 0.3
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Fig. 11.10: Sketch of  () versus 
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Fig. 11.11: Sketch of  () versus 1
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d = 3.0, d * = 1.5, We = 0.5, g1 = 0.3, n = 1.2, Br = 0.3
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Fig. 11.12: Sketch of  () versus 

l = 1.0, d * = 1.5, We= 0.5, g1 = 0.3, n = 1.2, Br = 0.3
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Fig. 11.13: Sketch of  () against 
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l = 1.0, d = 3.0, We = 0.5, g1 = 0.3, n = 1.2, Br = 0.3
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Fig. 11.14: Plot for  () versus ∗
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Fig. 11.15: Plot for  () versus 
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Br = 0.5, 0.7, 0.9
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Fig. 11.16: Plot for  () against 
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Fig. 11.17: Plot for  () against 
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l = 1.0, a1 = 1.1, d * = 1.5, We = 0.5, n = 1.2, Br = 0.3
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Fig. 11.18: Plot for  () against 

l = 1.0, a1 = 1.1, d = 3.0, We = 0.5, n = 1.2, Br = 0.3

d * = 0.1, 1.0, 2.0
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Fig. 11.19: Plot for  () against 
∗
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l = 1.0, a1 = 1.1, d = 3.0, d * = 1.5, n = 1.2, Br = 0.3

We = 0.1, 0.5, 1.0
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Fig. 11.20: Plot for  () against 

l = 1.0, d = 3.0, d * = 1.5, We = 0.5, n = 1.2, a1 = 1.1

Br = 0.5, 0.7, 0.9
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Fig. 11.21: Plot for  () against 
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l = 1.0, d = 3.0, d * = 1.5, We = 0.5, n = 1.2, Br = 0.3

a1 = 1.0, 1.3, 1.6, 1.9
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Fig. 11.22: Sketch of  () against 1

Table 11.1: Numerical computation of skin friction coefficients
¡
Re
2

¢12
 and

¡
Re
2

¢12
.

  ∗  1
¡
Re
2

¢12
 − ¡Re

2

¢12


11 30 15 05 03 013355 057487

12 012778 058856

13 012244 060193

10 00 15 05 03 008548 075491

10 011489 063611

20 013316 058075

10 30 00 05 03 017213 048760

03 016646 049994

06 016102 051213

10 30 15 00 03 014608 054725

01 014608 054727

02 014607 054734

10 30 15 05 00 024928 064272

01 020611 061044

02 017249 057835
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Table 11.2: Values for local Nusselt number
¡
Re
2

¢−12
.

  ∗   − ¡Re
2

¢−12


11 30 15 05 03 003904

12 002910

13 001996

10 00 15 05 03 002168

10 003997

20 005229

10 30 00 05 03 007936

03 007551

06 007180

10 30 15 00 03 004838

01 004786

02 004627

10 30 15 05 05 −003251
06 −007948
07 −012646

Table 11.3: Comparison for −0 (0) through distinct Pr when  = ∗ =  = = 0

Pr Runge-Kutta method [26] Shooting method [69] NDSolve

071 03286 03054 03505

10 03963 03396 03575

10 11341 11540 05819

75 28672 23144 18519
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Chapter 12

Conclusions

Theme here is to investigate nonlinear models through porous space. Flow is caused by an ex-

ponential stretching sheet, exponential curved stretching sheet and rotating disk. Both single-

phase and two-phase models of nanofluid are utilized to interpret nanoliquid transport phenom-

ena. Darcy-Brinkman, Darcy-Forchheimer and modified Darcy’s law are utilized to characterize

the flow in porous space. Flows in porous space with both constant and variable characteris-

tics are elaborated. Entropy generation analyses of carbon nanotubes, hybrid nanofluid and

Carreau nanofluid are provided. Slip and prescribed heat flux conditions are employed at the

boundary. Inclined magnetic field, nonlinear radiation, heat generation/absorption, chemical

reactions and activation energy impact are examined. Governing equations are constructed by

employing boundary layer phenomenon. Reduction method is utilized for conversion of partial

differential equations into ordinary differential equations. OHAM and NDSolve technique con-

struct the solutions. Graphical analysis is performed for behavior of emerging variables on flow

fields and entropy generation. Physical quantities of interest are also obtained and analyzed.

Major outcomes of current thesis are:

• Augmentation in () and () leads to decay of velocities.

• Decreasing trend of velocity is noted through () and () 

• Improvement in velocities is noted through () and (Ω) 

• Impacts of
³
̂
´
and

³
̂

´
on concentration are opposite.
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• Behaviors of (∗) and () on temperature field are reverse.

• Velocities have opposite scenario for () and (∗) 

• Temperatures against () and () have similar trend.

• Reduction in temperature is observed through (2)  (), () and () 

• Concentration via (Λ) and (1) possesses similar trend.

• Features of () and () on temperature are quite similar.

• Augmentation in temperature is analyzed through () 

• Entropy generation rate enhances for ()  (∗)  (1)  (2) and (1) 

• Skin friction coefficient enhances for () and () 

• Local Nusselt number reduces against ()  () and () 

• Augmentation in local Sherwood number is noted through (Λ)  (1) and () 

• Heat transfer rate for SWCNTs is much higher as compared to other nanoparticles.
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