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In this work, we have studied the shielding potential (41) of a test charge in plasma by 

using the kinetic theory approach. We found that for slowly moving test charge 

(compared with the thermal velocity of ions and electrons), the test charge is shielded 

both by electrons and Ions. For a fast moving test charge (compared wi th the velocity of 

electrons), no Shielding was observed. For a test charge moving with the intelmediate 

speed (greater than ions but less chan electrons thermal velocity) , only electrons were 

found to take part in the shielding. Next, we have calculated the shielding potential in 

dusty plasma by using the linear dielectric theory. The electrostatic potential for two 

projectiles is computed for different values ofKo (normalize effective wave number) and 

R (the separation between the two projectiles) retaining two ion correlation effects and 

then it is compared with that of single ion projectile case. Further. we extend it for multi­

component plasma. Here we also employ the test charge approach to calculate the 

shielding potential. The constit\lents of multi-component plasma are the Boltzmarm 

distributed electrons, mobile positive and negative ions, and immobile positive/negative 

dust particles. The shielded pot~ntia( is found to be modified due to the presence of 

negative ions in plasma. We have calculated the Debye screening and wake potential. It is 

found that the presence of negative ions significantly modify the dust-ion-acoustic speed. 
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Chapter 1 

Introduction 

In this chapter, we discuss the basic parameters of pla..sma and the historical background of test 

charge projectiles in plaBma, potential produced, wake potential and eneryy loss m plasma. 

1.1 What is Plasma 

The tenn plasma is a Greek word which means formed or molded. This term was introduced by 

Czech Physiologist Jan. Evangelista Purkinje. He used the word plasma to denote a clear fluid 

which remains after the removal of all the corpuscular material in blood [lJ. [0 1922 American 

scientist Irving Langmuir proposed that the electrons, ions and Ileutrals in an ionized gas could 

similarly be considered as corpuscular material entertained in some kind of fluid medium and 

called this entertaining 01 p lasma ". Any ionized gas cannot be called a plasma, there is always 

some degree of ionizat ion requjred for it. !! A plasma is a quasineutral gas of charged and 

neutral particles which shows coUective bebavior"\2J. The p lasma is "quasineutral" that is 

neutral enough that ODe can say that ni ~ ne ~ n, where n is the plaama density, but plasma is 

not so neutral that aU interesting electromagnetic forces vanish. Plasma contains the charged 

particles, as these charged particles moves around, they can generate local concentrations of 

positive or negative charges, which give rise to electric fields. Motion of charged particles also 

generates current, which produces magnetic field. These fields affect tlte motion of other charged 

particles far away. These forces explains the phenomena o[ coUective behavior. The plasma 

represents a macroscopically neutral gas containing many interacting particles (electrons and 
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ions) and neut rals. It is likely that 99% of matter in our universe is in the form of a plasma. 

The term forth state oC matter foUows from the idea. that as the heat is added to a solid, 

it undergoes a phase transition to a new state, usually liquid. If heat is added to a liquid, 

it undergoes a phase transition to gaseous state. The addition of still more energy to the gas 

results in the ionization of some atoms. At a temperature above 100,000° K , most of the matter 

e.xist in nn ionized state, tllis ionized state of matter is caUcd the fort.h state. A plasma. state 

can exist at temperature lower than 100, 0000 K prov ided there is a mechanism for ionizing the 

gas, a.nd if the density is low enough so that recombination is not rapid. 

1.2 D ebye Shield ing 

It is well known that a fundamental characteristics of a plasma is its ability to shield out the 

electric field of an individual charged particle or of a surface that is a.t some non-zero potentiaL 

This characteristic provides a measure of the distance (called Oebye radius) over which the 

inB.uence of the electric field of an individual charged part icle (or of a swface t.hat has a non­

zero potential) is felt by other charged particles inside the plasma. The charged particles arrange 

themselvP"! in such a way as to effuctively shield any elec~rosti'l. tic fi eld v,' ithin a distance of t.hE 

order o( the Debye length. This shielding of electrostatic field is a consequence of the collective 

effects of the plasma particles. The Dcbye length can also be regarded as a measure of the 

distance over which B.uctuating electric potentials ma.y appear in a plasma, corresponding to 

conversion of thermal particle kinetic energy into electrostatic potential energy [31. 

Let us aasume that an electric field is applied by inserting a charged ball inside a plasma 

whose constituents are electrons and ions. The ball would attract particles of opposite charges, 

i.e., if it is positive, a cloud of electrons and if it is negative, a cloud of positive ions. We also 

assume that recombination of the plasma particles do not occur on the surface of the ball. If 

the plasma were cold means that there were no agitation.s of charged particles, there would be 

just as many charges in the cloud as in the baU. This case corresponds to a perfect shielding 

Le., no electric field would be present in the body of the plasma outside the cloud. On the other 

hand, if the temperature is finite , those particles which are at the edge of the cloud where the 

electric field is weak, would have enough thermal energy to escape from the cloud, The edge of 
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the cloud then occurs at the radius where the potential energy is approx.imately equal to the 

thermal energy I<TOt of the particles (K is the Boltzmann constant and To is the temperature 

of the plasma species 0). This corresponds to an incomplete shielding and a finite electric 

potential. We now calculate a.n apprmamate thickness of such a charged cloud (sheath) 121 . 
The Poison equation can be written as 

(\.1) 

where fli, nil' tP, eo are the ions number density, electrons number density, electrostatic potential 

and t he permittivity oC free space. 

Assuming electron follows Boltzmann distribution 

(1.2) 

Eq. (1.1) in ono-dimension can be writ-ten e.:J 

d?¢ r (.+ ) 1 !O dxl -== eno • exp I(T~ - 1. (1.3) 

Expanding the exponential term in the region wbere the potential energy is very small ~hal 

is le¢j I(T,,1 « 1, we get 

J'¢ [(e¢ ) l( e¢)' 1 t'o dx2 - ena J(T" + '2 I(T" + ," 

Keeping only the linear terms in the above Eq.(1.4), \ve get 

This is a second order linear differential equation. Let us define a term >'D such that 

The solution of Eq.(1.5) is 

( )'/, \ _ t'oKT" 
'\D - 2 

no· 
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Figure 1-1 : Debye shielding in plasma 

¢= ¢o exp(-Ixl / AD) (1. 7) 

It may be noted here that we have ignored the exponentially growing solution because it 

represent unphysical result. The quantity AD, called the Debye length, is a measure of the 

shielding distance or thickness of the sheath. 

When a boundary surface is introduced in a plasma the perturbation produced extends 

only upto a distance of the order of AD from the surface. In the neighborhood of any surface 

inside the plasma there is layer of width of order of AD, known as plasma sheath, inside which 

the condition of macroscopic electrical neutrality needs not to be satisfied. Beyond the plasma 

sheath region there is the plasma region where the macroscopic neutrality is maintained [3]. 

1.3 Plasma Criterion 

First criterion 
The Debye shielding effect is a characteristic of all plasmas, although it does not occur 

in every media that contains charged particles. A necessary and obvious requirement for the 
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~5tence of plasma is tha t t he physical dimensions of the system be large compared to ), 0 -

Otherwise the sltialding would not be perfect U L is tbe characteristic dimension of t.he plasma, 

the "first criterion" for a plasma is 131. 

(1,8) 

Second criterion 
Since the shielding process is the result of collective particle behavior inside a. Debye sphere, 

it is also necessary that the number of electrons participating in the shielding process be very 

large. If there are only one or two particles in the sheath region, Debye shielding would not 

be a statistically valid concept. We can calculate the number of electrons N D, inside a Ocbye 

sphere as 

(1.9) 

The second criterion for plasma is 

( LlO) 

ThIS menns that there must be large number of charged particles in a Debye sphere to shield 

out the oppo.~ite charge. 

Third criterion 
We can also consider macroscopic charge neutrality es a II third criterion" for the existence 

of a plasma. Although it is not an independent one, and can be expressed as 

(1.11) 

Fourth criterion 
Plasma frequency 

Macroscopic space charge neutrality is an important property of plasma. When a plasma 

is disturbed from equilibrium condition, the resulting internal space charge field give rise to 

coUective particle motion which tend to restore the original space charge neutrality. Because 

of their inertia, electrons will overshoot aud osciUate around their equilibriwn position with 
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frequency kno'vn as " plasma jrequency"[3] 

(1.12) 

Collision between electron and neutral particles tend to stop these oscillations and gradually 

decrease their amplitude. It is necessary that the electron neutral collision frequency, lien be 

smaller than the plasma frequency 

(1.13) 

Eq. (1. 13) is known as the" fourth criterion" for the existence of plasma. This can also be 

written in another form 

WT > 1, 

where T = l /llen is the average time of collision between electron and neutral particles. 

1.4 What is Dusty Plasma 

Dusty plasma consists of plasma particles (electrons, ions and neutrals) and dust grainlrsmall 

solid particles which can be dielectric or conductors. The main difference of dusty plasma from 

many component plasmas is that the dust charge is not fixed but is determined by the plasma 

parameters in their surroundings [4]. Dust represents much of the solid matter in the universe; 

on the other hand, plasmas (the statistical system comprising a mixture of electrons, ions, and 

the neutrals) almost cover 99% of the universe. Thus the dust co-exist with plasma and forms 

a "Dusty Plasma", also known as "Complex Plasma" [5 , 6]. A dusty plasma is normal electron­

ion plasma with an additional charged component of small micron sized particulates. This e..xtra 

component, which increases the complexity of the system even further, is responsible for the 

name "Complex PIMma". The interaction between dust and plMma\cads to variety of physical 

a.od dynamical consequences. The presence of small dust particles in plasma, besides the usual 

negative and positive ions and mobile electrons, leads to new types of plasma waves [7]. The 

presence of these dust pa.rticles in the plasma leads to change the basic plasma. parameters such 
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as ele<:troo densiby and temperature. Dependiog on the plasma parameters, Coulomh crystal 

[8, 9} can be formed . 

Dust grains of various sizes, origin and occur in nature as well as in the space environmenhi 

[la, 11, 12, 13J. The dust grains are extremely massive as compared to electrons and ioos . 

Mass mel of the dust grains is typically mel > (1()8 - 101:!) mI" (m" is the mass of proton) and 

the dus t mass mel ...... (10- 2 - 10-15) g. The size of the grain is in the range of I lJ.ffi - 1em. In 

reference [12] this range is given as lOnm - l OO/-Lm. T he charge on the dust grain is also large , 

com pared to the electron charge. Typically, it is of the order of Zele .... (103 - 106) e, e is the 

electronic charge. 

1.4.1 NIaCl'oscopic Ch arge neutrali ty 

Dusty plasmas are characterized as a low-temperature ionized gas whose constituents 8re elec­

trons, ions and micron-sized dust particulates, The presence of dust particles (grains) changes 

the plasma parameters and affects the collective processes in such plasma systems . In partic­

ular. the charged dust grains can effectively collect electrons and ions from the background 

plasma. Thus in the state of equilibrium the electron nod ion densities are determined by ~he 

neutrality condition wbich is given by 114[. 

(1.14) 

where ne",d is t.he concentration of plasma elect rons, ioos and d ust particles, respecti vely! e is the 

magnitude of electron charge and IJd = Zth.( -Zde) is the amount of charge present on the dust 

grain surface when the grains arc positively (nega.tively) charged with Zd being the number of 

charges residing 011 the surface of dust grain . Note tha~ the charge of the dust particle can vary 

significantly depending on plasma parameters. In studying the bflSic physics of dusty plasmas, 

this third term in equation (1.14) carries very interesting implications, The presence of the 

dust particles in the plasma, alters the local plasma potential profile, modifies the transport of 

particles in the plasma, modifies certain types of ion plasma waves, and introduces new type of 

dust plasma modes, 
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1.4.2 Debye Shielding in Dusty Plasma 

The phenomenon of Oebye shielding is investigated in a. dusty plasma. consisting of Boltzmann 

electrons and ions, a.nd negatively charged , massive dust grains (15) . It is well known that one 

of the fundamental charactedstics of a plasma is its ability to shield out the electric field of 

an individual charged particle or of a surface that is inserted in plasma. This cbaracterist.ic 

provides a measure of the distance (called Debye radius) over wbich the influence of the electric 

field of an individual charged particle (or of a surface that has a non-zero potential) is felt 

by other charged particles inside the plasma. Let us assume tha.~ an electric field is applied 

by inserting a charged ball inside a dusty plasma whose constituents are electrons, ions and 

positively or negatively charged dust particles. The ball would attract pa.rticles of opposite 

charges, I.e., if it is positive, a cloud of electrons and dust particles (if they are negatively 

charged) would sm-round it and vice versa. We also assume that recombination of the plasma 

particles does not occur on the surface of the ball. If the plasma were cold means that there 

were no agitations of charged particles, there would be just as many charges in the cloud as in 

the ball. This case corresponds to a perfect shielding, i.e., no electric field would be present in 

the body of plasma outside the cloud. On the other hand, if the temperature is finite, tllOse 

particles which are at the edge of the cloud where t he electric field is weak, would have enough 

thermal energy to escape from the cloud. The edge of the cloud then occurs at a radius where 

the potential energy is approximately equal to the thermal energy KTa of the particles (1< is 

the Boltzmann constant and Ta is the temperatm-e of the plasma species Ct). This corresponds 

to an incomplete shielding and a finite electric potential. We now calculate an approximate 

thickness of such a charged cloud (sheath). 

We also assume that the dust-ion mass ratio md!mi is also large that the inertia of the 

dust particles prevents them from moving significantly. The massive dust particles form only 

a uniform backgroWld of negative charges. The electrons and ions are assumed to be in lo­

cal thermodynamics equilibriwn, and their number densities, n~ and ni, obey the Boltzmann 

distribution, namely 

( 
e¢. ) 

ne = n.eO exp kBTe (1,15) 

11 



and 

(1.16) 

where neoand niO are the electron and ion number densities, respectively, far from the cloud. 

For our present system the Poisson's equation can be written as 

(1.17) 

where nd is the dust particle number density. In equilibrium, the charge neutrality condition for 

dusty plasma can be written as qdndO = en eo - enio. Substituting equations (1.15) and (1.16) 

into equation (1.17) and assuming erPa/kBTe « 1 and erPa/kBTi « 1, we get 

2 _ (1 1) 
'V rPa - \ .A2 + .A2 . rPa, 

\ De D. 
(1.18) 

where .ADe = VkBTe/41rneoe2 and .ADi = VkBTi/41rnioe2 are the electron and ion Debye radii, 

respectively. For spherical symmetric case, the solution of Eq. (1.18) in one-dimensional case 

can be written as rPa = rPaO exp ( -r /.AD) with 

(1.19) 

The quantity .AD is a measure of the shielding distance or the thickness of the sheath. For 

a dusty plasma with negatively charged dust grains, we have neo « nio and Te 2': Ti, i.e . 

.ADe > > .ADi . Accordingly, we have .AD ~ .ADi. This means that shielding distance or the 

thickness of the sheath in a dusty plasma is mainly determined by the temperature and number 

density of the ions. However, when the dust particles are positively charged and most of the 

ions are attached onto the dust grain surface, i.e. when Tenio « Tineo , we have .ADe « .ADi. 

This corresponds to .AD ~ .ADe . In this case the shielding distance or the thickness of the 

sheath is mainly determined by the temperature and density of the electrons. 
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1.5 Dusty P lasma in Space and Laboratory 

The physics of dusty plasmas bas appeared as one of tile rapiclly growing fields of science. Dusty 

plasmas are important in technological applications and in astrophysical situations. They can 

be formed under laboratory conditions (e.g., plasma processing reactors, laboratory experi­

ments, fusion experiments) with sizes of the dust cloud of a few millime:ters to astrophysical 

systems (e.g., planetary rings, comet tails, nebula) that are millions of kilometers across. Ln the 

roUowing, we shall discuss briefly about the presence of dusty plasmas in space and laboratory. 

1.5.1 Dusty Plasma in Space 

We now focus our attention on dusty plasmas in space. It is well known t hat the dusty plasmas 

are ionized gases embedded with charged fine dust particles in space and occur in a wide variety 

of environments. Dust is present in such diverse objects as interstellar clouds. solar system, 

cometary tails, planetary rings. Since, charged dust grains are common in low earth orbit and 

in the interplanetary medium, the presence of this charged material ca.n cause both physical 

damage and electrical problems for spacecraft. However. charged dust particles in space plasmas 

111{1.y al~Q help to explain the formation of planetary rin.gs, comet tails and nebula",. Tu~ Ju.,L is 

contained in st.reams of particles that flows through our solar system, and scientists are anxious 

to study it so they CM learn more about the forma.tion of earth, other planets and life. Because 

of the variety of areas in which a dusty plasma may playa role, it is important to understand 

the physical properties of this plasma system in space. Outer space is divided into many levels 

and the one that separates the stars is called interstellar space. It is often a misconception that 

space is a. vacuum or simply empty. Space is a nearly perfect vacuum, even better than the 

best ones made in labs on earth, bu t- it i.s not void. The fact is that space is filled with tiny 

particles called cosmic dust and elements like hydrogen and helium. This applies for interstellar 

space also and all the mentioned particles make up what is known as the "interstellar medium". 

The interstellar medium is mainly made of hydrogen atoms. The actual density of hydrogen 

as it exist in interstellar space is on the average of about 1 atom per cubic centimeter. In 

the extremes, as low as 0.1 atom per cubic centimeter has been found in the space between 

the spiral arms and as high as 1000 atoms per cubic centimeter are known to exist near the 
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galactic core. The interstellar medium also conta ins cosmic dust. These pa.rticles are much 

bigger Iha.n hydrogen atoms However , there are far fey,'el" particles of cosmic dust than there 

are hydrogen atoms in t.he same volume of space. It is estimated that cosmic dust is 1000 

times less common than hyd rogen atoms in the intersteUar mediwll . The dust grains in the 

interstellar or circumstellar clouds are dielectric (ices, silicates, etc.) and metallic (graphite, 

magnetite, amorphous carbons etc.). 

Our solar system which consists of the sun and all the objects that orbit around it, is also 

believed to contain n.ln.rge amount of dust grain and the od gios of these dust grains in the solar 

system could possibly be, for example, micrometeoroids, space debris, mnn·made pollution and 

lunar ejecta, etc. 

1.5.2 Dusty P lasm a in Laboratory 

Since our work in this chapter is mainly concerned with the theoretical studies of test projectiles 

in dusty plasmas and it seems unreasonable to discuss laboratory dusty plasmas. So, we are 

giving a brief introduction to the laboratory dusty plasma. 

Dusty plasma research involves the study of the interaction between the charged dust par­

ticles and plasma in which the dust particles are suspended. The presence of dusty plasmas 

in space as discussed a.bove can be considered as a starting point for tbe understanding of 

laboratory dusty plasmas in the sense tha.t there are two main features which differentiate lab­

oratory dusty plasmas from space and astrophysical plasmas. Firstly laboratory discharge have 

geometric boundaries whose properties like structure, composition, temperature, conductivity 

etc. can have an influence on the formation and transport of the dust grains and secondly! the 

external circuit which maintains the dusty plasma, imposes varying boundary conditions on 

the dusty discharge. In the following we shall discuss briefly about the presence/occurrence of 

dusty plasmas in the laboratory devices, particularly in direct current (de) and radio-frequency 

(d) discharges , plasma processing reactors and fusion plasma devices. 

Historically, many of the first dusty plasma investigations were performed using If glow 

plasma.. In these systems, the suspended mieroparticles often form regular two-dimensional 

lattice structures called plasma crystals. In de glow discharge dusty plasma experiments, the 

regular 2-D crystalline structures are often not observed. The suspended microparticies gener· 
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ally remain in 8. more fluld-like state. Experiments have focused on e.g., dust acoustic waves 

and dust. ion-acoustic waves, vortices, and lhree dimensional partide transport. 

The main aim of early dusty plasma investigations was obtair,ling a good control of coota­

mination in plasma-processing reactors, either by eliminating dust particles from the gas phase. 

or by preventing them from getting into contact with the surface. This task is almost been ac­

complished, and the knowledge gained in the course of elaborate studies can now be utilized in 

new rese(LIch directions. Application of macroscopic grains is one of the recent developments in 

the material science. The common use of low pressure plasma processing reactors and the avail­

ability of the laser light scattering diagnostics showed that many of these discharges produced 

and trapped large quantitie.'l of macroscopic dust grains. These dust particles in the plasma are 

not anymore considered as unwanted pollutants. Contrariwise, at present they have turned into 

production goods. Low-pressure plasmas have the unique property of dust trapping, so that the 

position and residence time of particles in the reactor CRn be controlled. This oH'ers numerous 

opportunities of particle processing, like surface modification (coating, etching) , bulk modifica­

tion (melting, crystallization), and many others. Particles generated in low-pressure discharges 

have typically very well-defined size and shape. Scanning electron microscopes (SEMs) of tho 

dust using a low-energy probe reveal narrow size distributions. 

Significant amount of small dust particles with sizes between a few nanometers and a few 

lO/-im are found in several fusion devices. Though it is not a. major problem today, dust iR 

considered a problem that could arise in future long pulse fusion devices. TIlis is primarily 

due to its radioactivity and due to its 'Very high chemical reactivity. These dust particles are 

also believed to be heavier than the hydrogen isotopes which are the fuel in the fusion devices. 

Though some mechanisms leading to the formation of dust in tokamaks such as desorption, 

sputtering and evaporation have been identified, their relative importance is not yet adequately 

understood . Very little is known about the transport and fate of dust particles, e.g., whether 

they interact repetitively with the fusion plasma. Recently, the dust particles were coUected 

from the TEXTOR-94 which is a medium sized tokamak [201. It; is not known yet that how 

quickly dust particles caD be transported in the tokamak interior. 
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1. 6 Historical Background 

The test charge approach is the most appropriate technique used to calculate the shielding 

potential of a projectile moving through a plasma and the energy of the test charge projectile 

tlll'ougb the plasma. The shielding of moving test charge particles through a plasma has been 

the subject of several theoretical investigations ever since the beginning of the century. In 1940 

Fermi [161 pointed out that the shielding of a fast particle due to the ionization of the material 

through which it is passing, considerably affected by t he density of the material. This is due 

to the alteration of the electric fie ld of the passing particle by the electric polarization of the 

medium. In 1948 [171 N. Bohr extended the study by incorporating the ion dynamics. They 

also calculated the structure of far-wake behind a charged particle moving through a rarefied, 

uniform plasma. In particular, the excitation of electrostatic ion waves. After the Bohr, Neufeld 

and Ritchi [181 were the first to calcula.te the potential distribution of test particle in an electron­

ion plasma with fixed ion background. In 1971 Sanmartin and Lam [19J have studied theofet ..... 

kallYI the shielding potential in electron-ion plasma. Then the potential of a slowly moving 

test charge in a collisional plasma, studied by the Stenfio and Shukla [201, and found that far 

field potential may fall off as the inverse square of the distance when the collision frequency is 

large!' than the plasma frequency. In 1973 Chen et al. [211, have studied the wake potential due 

to a charge moving faster than the ion acoustic velocity. The energy loss of streaming beam 

particles to the background plasma by exciting a wake plasma wave in inertial confinement 

fusion (ICF) and magnetic confinement fusion (MCF) has also been discussed. In recent years, 

munber of experiments have been performed in which micron sized dust particulates were artifi­

cially grown from ion cluster in the plasma to produce a dusty plasma [22 , 231 and the scientist 

calculated the shielding potential of test charge projectile in the dusty plasma. The analytical 

and numerical results for the shielding potential of two heavy projectile ions passing through a 

multicomponent dusty plasma has also been reported recently [24], which is useful to explain 

the crystallization of dust grains in astrophysical and laboratory plasmas. Nasim et al. [25, 261~ 

calculated the shielding potential of a test charge in dusty plasma with dust charge fluctua­

tions both analytically as well as numerically, which is helpful for Wlderstanding coagulation of 

dust grains in space and laboratory plasmas. Further more tbe shielding potential for a slowly 

moving test charged projectile has also been investigated [27]. A large amplitude wake field is 
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observed which propagates ahead of the test charge in the large dust-neutral collision frequency 

limit. The energy loss of a test charge in an Wlmagnetized dusty plasmn is estimated for differ­

ent dust parameters (such as dust charge state, dust.. number density, dust charge Buctuations 

and dust-neutral collisions) using Kl'Ook and BGK·type collisional models [28]. For .higher the 

dust-charge-state, the more pronounced wake-field (which extends up to several Oebye lengths) 

is produced. The variation of the dust number density shows a similar behavior. For large dust­

neutral collisions a weakly damped large amplitude wake-field ahead of the test charge position 

is observed for higher coUision frequencies. The dust neutral collisions are also found to en­

hance the energy loss for test charge velocities greater than the dust acoustic speeds in contrast 

with the dust charge fluctuations which enhances the energy loss only for test charge velocities 

smaller than the dust acoustic speeds [29) . By employing a dielectric approach, the energy tOSS 

of a pair of test charged projectiles passing through a multicomponent dusty plasma, retaining 

Lwo iou correlation effects is computed. On the other hand, Yaqoob et at. [30L calculated the 

shielded potential and the energy loss of N'l projectiles propagating through a multicomponent 

dusty plasma. Analytical expressions for the shielded potential as well as energy loss have been 

obtained by taking into aCCO\.lUt the two-body correlation effects. It is found that ~he correlation 

effect causes distortion in the potential profile depending upon t he separation between the two 

projectiles. The distortion becomes pronounced for separation smaller than the Debye length. 

They also calculated the dielectric response function for modified dust acoustic waves [31) by 

incorporating the dipole moment and moment of inertia. of finite sized elongated dust grains. 

Using this dielectric constant, generalized expressions for t.he Debye potential and for the wake 

potential are obtained due to a. cluster of N 2 dust grain projectiles moving with a constant ve­

locity along the z-axis through a multi-component dusty plasma. A negative wake potential is 

observed behind each projectile in different geometries. Ali et al. [32), calculated the analytical 

and numerical results for the slowing down of a pair of heavy test charge projectiles througb 

a multicomponent , dust-contaminated plasma. The correlation and interference effects of tv.·o 

collinear and noncollinear projectiles on electrostatic potential and energy loss are studied for a 

Maxwellian distribution and for a special class of physically reusonable size distributions. The 

energy loss behavior versus projectile velocity of ooncollinear projectiles is also examined for 

various orientations. It is found that the energy loss for Maxwellian distribution for large value 
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of spectral index (K) is larger compared to that for generalized Lorentzian distribution. It is alser 

observed that for smaller values of K. , the test charge projectile gains energy instead of losing. 

These results would be useful for understanding the energy loss mechanism, wruch might be 

responsible for the coagulation of dust particles in molecular d ouds , in the ion-beam driven 

inertial confinement fusion scheme and in dust plasma crystal formation , etc. The shielded 

potential and the energy loss for a variety of arrays of dust grain projectiles, arranged in dif­

ferent orientations and separation distance moving with a constant velocity are calculated [33J, 

By employing the dielectric theory, the Debye and wake potentials are calculMed for the said 

system. [t is found that a projectile moving with high speed forms a negative wake behind and 

a wave front ahead of it. A generalized expression for the Debye potential and the wake field 

potential due to an I:Ioxial propagation of dust grain has also been calculated [34]. The dust grain 

projectiles are assumed to lie on sets of concentric circles propagating through the dusty plasma 

with a constant velocity along the z a..xis. Some specific cases of electrostatic potential due to 

four and eight projectiles are studied both analytically and numerically. Then the electrostatic 

potential and the energy loss fo r N x M projectiles propagating through a dusty plasma are 

studied using tht! dielectric theory for different dust parameters of interest [35]. These resu lts 

are useful to explalD the coagulation of dust grains in laboratory and spnce plasma as well as in 

the field of ion-beam driven reF scheme. They also calculated the shielded potential and the 

energy loss by N x M projectiles passing through a collisional dust-contaminated plasma with 

dust-charge Buctuations and grain-size distribution. Then the general expressions are obtained 

for the shielded potential and for the energy loss by considering two-body correlation effects, 

An interference contribution of these projectiles to the potential and energy loss was observed 

which depends upon their orientation and separation distance. T he dust-charge fluctuation 

produces a potential well instead of Coulomb-type potential for a slowly moving test charge 

with slow charge relaxation rate and energy is gained by the charged projectiles. However, fast 

charge relaxation enhances the energy loss and some peaks are observed showing the excitation 

of some electrostatic modes. On the other hand, the dust neutral collisions also enhance the en­

el'gy loss for projectile velocities greater than the dust. acoustic speed for a Maxwellian plasma, 

They also included the effects of self gravitation of massive dust grains and shielded potential 

and the energy loss of pair of charged projectiles passing through a dust-contaminated plasma. 

18 



It is found that for two collinear projectiles the potential is enhanced by increasing the dust 

Jeans frequency for separation less than Debye length and the energy loss decreases with the 

increase of Jeans frequency for arbitrary separation. The present investigation would be useful 

to e.xplain the coagulation of dust particles in the molecular clouds and in the ion~beam~driven 

inertial confinement fusion approach [36, 371. T he shielding potential by the pair of test charge 

projectiles passing through a multicomponent, self~gravitating, dusty plasma with a general­

ized Lorentzian distribution is also presented in [381. Ali et ai. [39], calculated the electrostatic 

potential for II. test charge in a multicomponent dusty plasma, whose constituent,s are the Boltz~ 

mann distributed elect-rons, mobile positive and negative ions, and immobile positive/negative 

charged dust particles. By using the modified dielectric constaot of the dust-ion-acoustic (OIA) 

waves, the Debye screening and wake potentials are obtained. It is found that the presence of 

mobile negative ions significantly modify the DIA wave and the wake potentiaL Then Shukla 

et al. [401 . extend the work to calculate the electrostatic potential in dense plasma. By using 

the dielectric response funct ion of quantum electron plasmas, potentia.! distributions around a. 

moving test charge a.re calculated. The near-field potential follows the modified Debye-Huckel 

potential, while the far-field potential turns out to be oscillatory. Both the Oebye-Hilcke! and 

wake potentials strongly depend 00 the Fermi energy and the electron quantum correlation 

strength . The relevance of the present investigation to semiconductor plasmas is discussed. 

Then Shukla and Stenfio [41] have calculated the shielded potential of n slowly mov:ing test 

charge in a quantum plasma. It is shown that, besides the Ocbye HUckel near-field potential, 

there i5 a. far-field potential which decays with tbe inverse cube of the distance between the ori­

gin of the test charge and the location of the observer. They discussed the screening and wake 

potentials around a test charge in an electron ion quantum plasma) by using the linear dielec­

tric response formalism. The short range screening potential in quantum plasma is found to be 

significantly different from the Debye HUckel shielding potential, while the wake potential has a 

long-range oscillatory behavior. Both short and long range potentials may lead to the trapping 

of other charges of the same polarity (421. Shukla et al. [43], calculated the test charge potential 

involving the electron dust acoustic oscillations in a two-component plasma whose constitucn~3 

are hot electrons and positive nanoparticles. The hot degenerate inertialess electrons are as­

swned to follow the T homas Fermi distribution, while positive nanoparticles a.re inertial. The 
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expressions for the Debye-Hockel and wake potentials due to n moving t.est charge are obte.ined. 

Furthermore, the effects of ~he Fermi t!Oergy, the number density of hot degenerate electrons. 

and the test charge speed on the potential profiles are numerically examined. 

The thermodynamic properties of plasma in equilibrium can be calculated from the knowl­

edge of two-particle correlation function. Extensive \ .... ork has been done to evaluate the two­

particle correlation function in variety of plasmas using various methods. Experimentally mea­

sured pair correlation functions are used to determine the charge, the screening radius, and the 

interaction potential [44J . 

1.7 Motivations 

Shielding in plasma is very important area of research. One of the main objective of tb.is study 

is to improve the existing analytical work for the calculation of the elec.t.rostMic potent-ial, 

and extend it for a multicomponent plasma. We have used Vlasov and Poisson's system of 

equations for the calculation of electrostatic potential, with the help of space time Fourier 

transform. [n recent years, there has been renewed interest i.n the charge particle interaction 

with til!' dpf'! :'!p plesm!l [45 , 4.6] dl!!! to its importance in the context of intcrtia.1 confinemcn;. 

fusion (leF) upproach where one may use fast heavy ion beams to drive O-T fuel target. The 

most impor~ant process io the interaction between the test. charge particle (Lod plasma is the 

phenomena. of euergy loss of test charge, due to localized coltisions and the e.xcitation of wake 

field and the collective modes in the plasma. It is shown that charged particulates can attract 

each other due to collective interactions involving the dust acoustic waves. 

In this thesis we reviewed earlier work on the shielding potential of test charge in dusty 

plasma. The correlation effects of the two projectiles on the electrostatic potential are also 

presented. A comparison has been made for correlated and un-correlated nwnerical results 

of electrostatic potential. We also studied the electrostatic potentjal and wake potential in 

a multicomponent dusty plasma with the belp of kinetic theory of plasma, wb.ich consists of 

inertialess Boltzmannia.n electrons, positive-negative ions, ROd positive and negative dust. 

It is important to mention here that the relevance of such type of work, calculating the 

electrostatic potential of test charge, is not limited to reF alone but bas applications in space, 
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astrophysica.l as well as in laboratory plasmas. 

1.8 Layout of D issertation 

T he present chapter contai.ns introduction to plasma and some basic parameters of plasma such 

as macroscopic neutrality, Debye shielding and characteristic frequency. Historical background 

of the test charge projectiles in plasma and their interaction with the plasma and wake po­

tential generated by the test charge projectile in plasma. The next chapter is devoted to the 

development of theoretical background for understanding the dielectric theory and its role in 

the calculation of the electrostatic potential . A brief introduction of the test charge approach 

and the Debye screening of the test charge in the plasma and theoretical calculation of the di­

electric consta.nt is also given. In chapter 31 a general overview of the presence of dusty plasmas 

in space and laboratory is presented. We calculate the electrost.at.ic potential of test charge 

projectile in dusty plasma and presents numerical results of shielding in dusty plasma. Chapter 

4 contains the theoretical background which is helpful in finding the electrostatic potential d ue 

to the motion of test charge projectile in multi~component plasma. We have calculated the 

w\l.k~ pnt.f:·Tl~i~ ! dm' th .. motion of te:;t chsrge projectile in multi-component plaama. 
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Chapter 2 

Shielding in Plasma 

"En this chapter, we have developed a theof-etical background and to calculate the electrostatic 

potential by u.sing test charge appmach with the help of kinetic theory 0/ plasma ", 

2.1 Why Kinetic T heory 

In any macroscopic physical system containing many individual particles, there are basically 

three levels of description, ODe is the II Exact microscopic description", second Olle is the Ii 

Kinetic theory", and the last one is " the Macroscopic or Rujd description ", 

In microscopic description, one may start writing down Newton's law (F =ma) for large 

number of plasma particles (typically of the order of 1020 particles). To define a state of 1020 

particles and to keep the track of all these particles is a hopeless task. Even a supercomputer 

can not do this job. 

The next technique is to use fluid theory, the fluid variables are number density, fluid ve­

loclty and pressure, which are functions of x and t only. This is possible because the velocity 

distribution of each species about some mean velocity can be written as M!lX\velliaa, which is 

uniquely specified by the two parameters, namely the density and temperature. In the hydro­

dynamics of ordinary fluids and gases, interparticle coUisions are usually sufficiently frequent 

to maintain Maxwellian distribution of particles everywhere in the fluid. In the blgh tempera­

ture plasma, however, interparticle collisions are relatively infrequent, and deviation from local 

thermodynaro.ic equilibrium can be maintained for long times. 
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In tb.e case where there are no collisions, the plasma particles will Irecly stream to large 

distances along the field. To treat such problems, we need kinetic tbeory, in which individual 

particle velocities are taken into account. Such a theory will be needed to treat problems 

involving How across the magnetic field, especiaUy when the magnetic field is very weak. In 

this case, the gyration period and gyration radius Bre not small compared with characteristic 

t ime-scales and lengtb~scnles of the Bow [471. 

In summary, therefore, kinetic theory is needed to treat (i) problems involving flow along a 

magnetic field ( or in the absence of magnetic field) in the ClLSe of long mean-free path and (ii) 

problems of high-frequency and/or short-wavelength flow across a magnetic field. 

2 .2 P lasma as D ielectric Medium 

The plasma has been defined as a statistical ensemble of mobile charged particles. These charged 

particles move randomly in the system, interact with each other through electromagnetic forces, 

and respond to the electromagnetic disturbance which might be externally applied or self­

generated. A plasma is therefore inherently capable of slLStaining rich classes of electromagnetic 

phenomenl\. 

A proper descrjption of such electromagnetic phenomella may be obtained if we know the 

mAcroscopic pllLSma response to a given electromagnetic disturba.nce. The function which char­

acterizes these responses is known as plasma response function. All the macroscopic properties 

of the plasma (as a. medium) are contained in these response functions. If t he external distur­

bance to the plasma is a time dependent electric field E, then the response function appears in 

the form of the displacement D. The relationship between the displacement and Beld given by 

the dielectric constant such that D = EE. 

The dielectric function ~ is complete in the sense that it contains all the information about 

the linear electromagnetic properties of the plasma. This dielectric response function describes 

essentially the longitudinal properties of the plasma, and effectively describe the collective 

behavior of the plasma. In the next section, we shall calculate this dielectric response function 

(dielectric constant), using a kinetic treatment of the plasma. 
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2.3 P h ase Space 

Considering a system of N-particles moving according to the laws of classical mechanics. ".1\ 

state of the system at any instant of time t is specified. by means of 3N-pooition coordinates 

ql , (J'l, qJ , ···q'JN and 3N-momentum coordinates PI, 'P'l, Pl , .. ·PaN . The 7N-dimensiono.l space is 

known as the phase space of the system" . 

A poinL represented by (qiI Pi) where i = 1,2,3, .... 3N represents a particular state of 

the system in phase space. T he point (%Pi) is called a phase point o r representat ive point. 

Some times 3N-position components are referred to separately as configuration space and 3N· 

momentum components as the momentum space. Thus the compl~Le phase space is the sum of 

the configuration space and momentum space. 

2.4 Distribution Function 

The basic element in the kinetic description of a plasma IS the distribution function lo(r, V, t) 

which describes the particle distribution both in physical and velocity spnce. A plasma in ther­

mal equilibrium is characterized by a homogeneous, isotropic and time indepenoent distribution 

function [481. A single particle distribution function or simply distribution function fn( r: , V, t), 

is defined as the number of particles per unit volume or phase space that are prescnt, at t ime 

t, in any infinitesimally 8ruaU volume of space, centered at the point in the phase space (r , v ). 

Most of the essential information about the plasma is contai ned in the single particle distribu­

tion function, lo(r ,v ,t), where the position vector t , snd velocity vector v, and t ime t all are 

independent variables, 

( ) 
. number of particles of type 0' in 6 V 

iot, v, t = lim AV 
6v-oO u 

(2.1) 

In other words, Ir;r(r, v , t) is the number of type-a, situated between r and t + Ar:, and 

between V and v + 6v as shown in the Fig. 2.1. 

The single particle distribution function can be found by solving Boltzmann equation, whicll 

cau itseU be derived from the individual particle picture by using kinetic tbeory. 
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Figure 2~1 : Left: A configuration space volume element d3x = d:r:dydz at spatial po.sition x. 
Right: equivalent velocity space volwue element . 

2.5 Boltzmann Eq uatioD 

2.5.1 Collisionless Boltzmann Equation 

The different ial equation that governs the temporal and spo,tiai variation of the distribution 

function uodel' the action of external forces and collisions, known 8.8 the Boltzmann equation , 

When we calculate the average value of the particle physical property that is a macroscopic 

variable of interest , it is very important to have information about the dist ribution function for 

the system under consideration. The dependence of the distribution function on the independent 

variables f , v and t is also governed by the Boltzmann equation. We are going to discuss here 

a. derivation of the collisioruess Boltzmann equation and the general form it takes when the 

effects of the particle interactions are not taken into account [31. Let £l6nn Cr, v ,t) represents 

the number of particles of type fl' within a volume element d3rd3v of phase space about (r , v) 

(2.2) 

Suppose there is no interaction between the particles and a particle of type fl' in the pbase 

space, is present at (r , v) in time t and after time dt the particle will be found at new position 

(r', Vi) in the phase space such that 
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o~---------------------------v--

Figure 2-2: When there is no collision, the paticles in volume element d3rd3v in phase space at 
time t will be same in a new volume element d3r'd3v' after time dt 

r' (t + dt) = r (t) + vdt (2.3) 

v' (t + dt) = v (t) + adt (2 .4) 

In the presence of external force F , all the particles of type a which are present inside a 

volume element d3rd3v in the phase space at time t will occupy a new volume element d3r'd3v' 

after time dt. Since we are considering the same particles at t and t + dt, so we can write 

(2.5) 

[fa (r + vdt, v + adt,t + dt) - f a (r, v,t)] d3rd3v = 0 (2.6) 

Using Taylor series expansion to expand the first term of the Eq. (2.6) , we get 

(2.7) 

Where Eq. (2 .7) is the generalized expression of the Taylor series with n variables . After 
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using the Taylor series, we obtain the simplified form of Eq. (2.6) given by. 

81. Tt + V · V!~ + a · Vv/o. = 0 (2.8) 

Eq.(2.8) is known as the Boltzmann equation in the absence of collisions, IVhere a is the 

acceleration of the particle of type a , located at a position x aod posse$sing a velocity v . Note 

that a includes t.he effect of all noncollisiooal forces on the particles. Where 't7 and 't7 v are Del. 

operators in the configuration space and in the velocity space respectively. The acceleration a 

can be written in terms of external force F =m.a acting or applied on the particle species. For 

plasmas, the dominant force is electromagnetic, wbich is Lorentz force, 

(
V x B) F =q E+-,- =ma (2.9) 

So, finally collisionless Boltzmann equation can be written as 

8la q [ v x B] m+v · 't7!o.+m E+-,- ,Vv/",=O, (2.10) 

where 

(2.11) 

and 

(2.12) 

2.5.2 Collisional Boltzmann Equation 

Now we are taking into account tbe effects, due to the interaction of the pal·ticles. With the 

effect of collisions some of the particles of type ex which exists initially in the volume element 

d3rd3v of the phase space may leave that volume element. Some particles which were initially 

outside the volume element d3rd3
t) can come in the volume element [31 as shown ill the Fig.2 . 

So the number of particles are different in the two volume elements of phase space due to 

the interaction of particles . We can express this net gain or loss of particles of type cr, as a 
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(t+dt) 

O~---------------------------v--+ 

Figure 2-3: When collisions are taking into acount, particles at time t in a volume element 
d3rd3v in phase space, are different in a new volume element d3r'd3v' after time dt 

result of collisions during the time interval dt, in the volume element d3rd3v, by 

(Of; ) C d
3
rd

3
vdt , (2.13) 

where (of /M) c shows the rate of change of fa due to collisions of the particles. So , when the 

collisions are considered Eq. (2.6) will becomes 

(2.14) 

Again using Taylor series expansion, Eq. (2.14) can be written as 

(2.15) 

This is the collisional Boltzmann equation, which takes into account the collision effects of 

plasma particles 

2.6 Vlasov Equation 

In the Vlasov theory of plasmas, the microfields produced by plasma particles are replaced 

by the average field that the particles produce at a given space point [48]. The distribution 

function of plasma particles is calculated in the presence of self-generated fields. 
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The Vlasov equation , would correctly describe the behavior of cotlisionless plasma. 

{)fa qa [ V X B] -a + .... · V/er +- E+-- ·VvJti. = O 
t rna C 

(2.16) 

This is the well known Vlasov equation Cor the evolution of distribution function ta(x, v, t) 

in a cotlisionless plasma. 

2.6.1 Ma:xwell-V lasov Model 

In ~he presence of electric (E) and magnetic (B) fie lds, the net force acting on a charged particle 

9 is given by q [E + v x B ]. These fields could be externally applied fields or self-generated fields. 

In order to ha.ve a closed set of equations, we must find some way of finding the self-generated 

electric and magnetic fields derivable from the distribution Cunction that desc ri bes the plasma 

particles {47J. The Maxwell equation in terms of distribution fwtct ion can be written as 

v . E =4rr L noqa J Jadv+4rrp~ 
a 

l aB 
V x E =--­

cat 

(2.17) 

(2.18) 

(2.19) 

(2. 20) 

where Pat and j ed are external charge and current. densities. We can write the charge and 

current density of the plasma in terms of the distribution function Jti.(x, v , t) {491 given by 

(2. 21) 

(2.22) 

where P is the volwne charge density of plasma, j is the current density of plasma, aod 90. 
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is the charge of the o:th-species. 

2.7 The Linearized Vlasov Equation 

We are assuming a small pertwbation from equilibriwn value. The electron and ion equilibrium 

distribution functions !r:.o must be chosen such tbA.t the electron and ion number densities are 

equal, so that they correspond to a physical system in which the plasma is Quasineutral. There 

will be then no electric field in equilibrium state. The electric field will arise only when the 

plasma became pertwbed. The electric E and magnetic B fields depends upon the distribution 

function !Q, so the Vlasov equation (2. 16) is a nonlinear partial differential equation for f(i. It 

is difficult to solve this nonlinear Vlasov equation. Instead of solving the Vlasov equation for 

the exact distribution fUllction fQ' the behavior of small perturbation fo.! (rom some plasma 

equilibrium state 100 can be calculated using the linearized Vlasov equation. After solving these 

linearized Vlnsov equation, we get linearized solution, these solution must satisfy the conditions 

imposed in driving the approximate equations. 

When the plasma is in the equilibrium state, the Vlasov and Maxwell equations can be 

written f\S 

8/0 0 q. [ v x Bo] ~+v . VfQo+- Eo+ 'VvfQ{J = O 
vt mOl C 

V · Eo=4w L 'nag(i J fr:.o dv +47rPo.ui 
• 

(2.23) 

(2.24) 

(2.25) 

These are the equations when plasma is in equilibrium state and jo,e:t, Po,OUL are the equi­

libriwn current densities and charged densities, respectively. 

Suppose that there is a small pcrtwbation in the distribution function fQ from the cquilib­

riwn state such os fol ' There arc small pertwbatiollll in the electric E and ma.gnetic B fields 

from their equilibrium state. These perturbations are expressed as 
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(2.26) 

E(x,t) ~ EO(x,t)+gEI(x,t), (2.27) 

B(x,t)~ Bo()<, t)+<BI (X,t), (2.28) 

where E is the pertlUbation coefficient, which measures the weakness of the perturbation, Sub-

stituting Eqs, (2.26) - (2.28) in Eqs. (2.16) - (2.19) and neglecting the terms of the order of 

c: 2 , we get 

(:t + V· V) [J .. (x, v,t) +gfol(x , v,t)1 

+~ I{EQ(x,t) + gEl (x,t)}] . V , (f .. (x, v ,t) + gf. l (x, v,t)) 
mo 

~ [VX (Bo(x,t) + gBI (X,tn]. ~ (' ( ) f ( )) _ 0 + v " JoO x , v ,t +c: nl X , v,t -
m. c 

(2.29) 

V · [Eo (x ,t ) + EEL (x,t») = 411" L ItQqo J [Joo(:x, v ,t) + E/ol (x, v ,l )1 dv 
o 

~ IB ( ) B ( )I-! 8 IEo(x,t) + gEI(x,t)1 
v X 0 x,t + € 1 X,t - c at 

+ 4; L noqQ / v [Joo(x, v,e) +E:!Q!(x, v ,t)jdv+ 4; UO,e:et +c:k e.o:t\ (2.31) 
o 

The linearized Vlasov equations for the perturbed distribution function fOil and the per­

turbed El aod B 1 fields can be expressed as, 
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(
fl ) q. ( v X B') g. ( v x BO) at + v , V ft:>.l+m

O 
E 1 + c ' V uft:oO+

m
" Eo + c · 'V..,/nl =O (2.32) 

V · E\=47r L n nqo f fQldv+41TPl,t!"'~ 
• 

(2.33) 

(2.34) 

where j l,ezt, PJ,~t are the perturbed em-fent densities and charge densities in the plasma due 

to small perturbations. The above set of linearized equations can be solved by conventional 

methods so as to investigate the plasma properties. 

2.7.1 Solut ion of the Linearized Vlasov Equation 

Consider a uniform field-free plasma that obeys the equilibrium Vlnsov equations, that is , 

Eo= Bo= 0 and foo (V;{;f vY ' vz). This statement implies that there is no net charge and currell!. 

in the plasma 8yStem. 

Suppose that at time t = 0, if a amaH charge is projected in plasma, then the total distrib­

ution function can be written as 

(2.35) 

For electrostatic perturbations, the charge imbalance mFLy give rise a. perturbed el~tric field , 

such tha.t 

(2.36) 

IT we define ¢lo (x,t = 0) as equilibrium electrostatic potential and Wl (x,t) as perturbed electro­

static potential then the total electrostatic potential ¢ (x, t) can be written as 

• (x, t) ~.o (x,t ~ 0) + 1, (x,t). (2.37) 
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The perturbed electrostatic field and potential satisfy the following relation 

(2.38) 

For electrostat ic perturbations, the linearized Vlosov equation becomes 

(2.39) 

If we assume that Pe)(t is also a perturbed quantity due to projected charge, then Eq. (2. 33) 

can be written as 

0' 

V · EJ =41T 2:n o;qo; J /o;ldv+ 41TP1, .. ;r:t ' 

a 

_V2¢1 = 411" L no;qn J / .. ldv+4nPext ' 
a 

the above equation is known B.S Poisson's equation. 

(2.40) 

The system of Eqs. (2.39) and (2.40) is called linearized Vlasov-Poisson's system of equa­

tions. The electrostatic potential call" be obtained by solving t.he linearized Vlasov-Poisson 's 

system of equations, 

We shall use the meth.od of space-time Fourier transform to solve the linearized Vlasov­

Poisson's system of equations, which would reduce to simple algebraic equations. The space­

time Fourier transform of a. fmIction II' (x,t) can be defined as 

- J~ J~ w (K ,w)= _~ dt _~ dxw (x,t)exp l-i(K .x- wt)l , (2.41) 

find the inverse t ransform as 

1 J~ J~ -w (x,t) ~ --, '"" dl{ w (K,w)exp Ii (K · x -wt)l. 
(211") -00 -00 

(2.42) 
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Taking the space-time Fourier transform of Eq. (2.39), we get 

1: d, 1: dx (:, + V",) I., (x, v,')exp!-i(K · x-w')! 

1~ 1~ q 
- -00 dt -00 dx

m
Q

Q 

<::J¢ l (x,t)· <::J"/no(v)exp!-i(K· x-wt) ]. (2.43) 

From Eq. (2.43). we obtain 

(w- K·v) 1: dt 1: dx/., (x,v,')exp[-i(K· x-wt)[ 

- - d, dx-"-¢,(x,t)K · "vl.o(v)exp!- i(K · x - wt)[ , !~ 1~ q 

-00 -00 "TnQ 

Furtber simplification gives 

- q. K"vl .. (v)-
I.,(K, v,w) = - ( ) ¢ , (K ,w). 

mQ w K ·v 
(2.44) 

Similarly, by taking the space-time Fourier traoS£orm of Eq. (2.40), we get 

}(2il (K.w) = 41r Lq"noO J I:) (K , v w) dv +4?rp"", ("{{ ,I.l) , 
• 

(2 45) 

where K is the wave vector, w is the wave frequency and Poxt is the Fourier transform of Pext -Substituting the value of J01 (K, v,w) from Eq. (2.44) in Eq.(2.45}, we get 

0 ' 

:;: ( ) 471" Pext 
'fII K ,w = f( K ,w) K2' (2.46) 

where f"( I< ,w) is the dielectric response function , which plays a very important role to descri.be 

the behavior of the plasma and is written as 

) "w:. f K "v/.o (v ) 
E(K,w=l + wI<'J dv(w K.v)' 

• 
(2.47) 

where w;" = 411"q!njo / mo is the plasma frequency of the ath species. 
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We -assume that at t __ 00, the pla$m81 is homogeneous and in a stationary sta.te, the part;icle 

distribution function is Maxwellian 

( rn. )3/' (-mov') 
100 (v) = 21fT", exp 2T", ' (2.48) 

where T(l' is the temperature in energy units. The one-dimensional dielectric response function 

and the equilibrium Maxwellian distribution function caD be written as 

(2.49) 

with 

iQ()(vz ) = (2:;ay/\xp(-~itJ;), 
Equation (2,49) , can also ne rewritten as 

«K,w) = 

(2.50) 

• 

where K v", = wpo./Vto is the Debye wave-number and is the inverse of Debye-Iength ),vo = 

vlTa/41t'q~noOi Vt", = viTa/mOl is the thermal veiociry, Z", = w/ (J<\.'t .. ) , x'" ([( ,w) = (K'ba/I<2) 

x W (Za) is the susceptibility of the plasma and W (Z) is the plasma dispersion function, such 

that 

W(Z) _1 1~ dx_x exp (_ x') 
v'2'7r -00 x - Z 2 

= l+Zexp( - n [i~- f dyexp(~')l (2.5l) 
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2.8 Shielding of a Particle using Test Charge Approach 

Pl63ma consists of freE electrons and ions both randomly moving because of their thermal 

motion. Due to mobility of electrons and ions, any excess charge created in a plasma teod to 

be rapidly neutralized and plasma can maintain its charge neutrality. Whenever electrons and 

ions diffuse at different rates, an electric field will be setup to ensure that both electrons and 

ions diffuse at the same rate. An important consequence of the mobil ity of electrons and ions 

is the effective screening of the electric field due to a charge placed in plasma. 

The idea of calculating the shielding potential of cbarged particle is very much interesting 

and is very large area of the research in plasma physics [50, 51, 52 , 531. In this topic, we discuss 

the shielding potentia) of a test charge projectile by using the test charge approach, when 

1. The pa.rticle is stationary 

2. The particle is moving 

In the first case, we shall calculate the shielded potential o r a stationary test charge particle 

and shall show that. it produces the usual Debye shielded potential. In the second case, we 

shall calculate the shielded potential of a moving test charge particle and shaH show that the 

effective field of a moving test charge in an isotropic plasmll changes with the speed of the test 

charge. In order to calculate shielded potential of test charge, we may consider a point test 

charge moving with a uniform speed Ve through a Vlasov plasma and calculate the shielding 

potential. We asswne that in the absence of test cbarge, the plasma. is uniform and field free. 

We also assume tbat. t.he test charge is moving in !l straight line wit.h velocit.y ~ aIld its location 

at time t is given by 

(2.52) 

where xl, is the position of the test charge at t ime t = O. The charge density of the point test 

charge 1491 can be represented as: 

(2.53) 
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whe.re o(x - Xo - v/t) is a three dimensional Dirac delta fund.iot) and qt is the t.es~ charge... 

This test charge can either be one of the plMma particle or a particle from t,be external hearn , 

singled out as Ii test particle. When "he test charge is moving thl'Ough a plasma with velocity 

\It then the space·charge density associated with it is represented by Eq. (2.53), so that its 

Fourier transformed charged density can be expressed as 

p=,(K,w) = q, i: d' i: dxo(x - ><0 - V,')exp [-i(K· x-w')1 (2.54) 

p=,(K ,w) = 2~q,exp (-iK · ><OJ o(w - K· V ,) (2.55) 

Using this value of space charge density in E,q. (2.46). the perturbed electrostatic potential 

would take the foUowing form, 

where 

;;: (K w) = 8,'q,exp [-iK· xol o(w - K· V ,) 
'JIl ' e(K,w) [(2 ' 

"w;. J K-Vvf.o (v) 
,(K,w) = 1 + L-J(' dv (w-K v) 

• 

(2.561 

(2.57) 

is known as the dielectric response function, For a.. moving test charge, plasma beha.ves as a 

dielectric medium with dielectric function f(K ,w). Taking the inverse transformation of Eq. 

(2.56), we obtain the following result 

<pl(x,t)=871"2q~ roe dw roe dKexP[-iK·xb]exp!\(K ,x-wt) )o(w-K . V t ) (2.58) 
(2,) J_= J_= K '([(,w) 

Performing w-integration, we get 

~ ( ) = ~ roo dK exp l-iK · ><01 exp [iI<- (x - V,t)1 
n x,t 271"2 1_00 K2€(K,K· V t ) 

(2.59) 

Using Eq. (2.52), \ve get the pot.ential in the following form 

q, roo exp [iK- (x - x)1 
¢, (x,,) = 2,' J_= dK [(',([(, K . V, ) (2.60) 
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The above eQuation is the general e.-xpressioD for the shielded pot.entiat of a test charge in 

plasma. In the Dext section, we shall study the sbie1ding effect on 8. stationary test charge a.nd 

ca.lculate the sb ielded potential of a stationary test charge. 

2.8.1 Shielding of St ationary Test Charge 

In the previous section, we have calculated the general expression for the shielded potent.ial of 

a eest charge q, in plasma moving with velocity Vt which is located at. a position x', that is 

q, l OQ exp IiI< · (x - x')] 
tPl(x,t)= 211"2 _OQ dI{ J<2f (J<, I< . V

t
) ' 

(2.61) 

where the dielectric flmetion €( J< , I< . Vd is given by 

(2 .62) 
• 

Now we consider that test charge particle is stationary located. at origin, so we put x' =0 and 

VI = 0 in Eq. (2.61) so as to calculate the shielded potential of a stationary test charge, that 

i, 

(2.63) 

and response (dielectric) function can be written as 

,(J( ) = 1 + r; l<];" . 
o 

0 ' 

(2.64) 

where 
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is the effective Oebye wave-number and is t.he inverse of Oehye-Iength. Usi.ng s~herical coordi­

nates, we can write Eq. (2.63) as; 

q 100 

[(2dJ< 1" 1'" ¢1(X)=2 t2 (2 2) s in OdBexp(iI(:z;cosO) dr.p . 
1l" 0 [( + )"D 0 0 

Performing the r.p integration. we get 

where M = cos (J and 8 is angle between K and x. Performing the J.I. and J( integrat ions . we gel. 

tPl (x) = -exp -- . q, [Ixll 
Ixl AD 

(2.65) 

This potential is called Debye-HUckel potential and can also be rewritten as: 

(2.66) 

The Debye-HUckel potential along-with Coulomb potential (¢c (x) = qd IxD is shown in 

Fig.(2.3). Tbe space-charge d istribution induced in the plasma. is determined not only from the 

Coulomb potential ¢c (x), but also {l'Om the effective potential in a self consistent fashion. For 

distances much smaller than the Debye length, the effective potential is essentially equivalent 

to the Coulomb potential. while for distance larger than the Oebye length, the potential field 

decrease exponentially. The potential field around a test point charge is effectively shielded by 

the induced space-charge field in the one component plasma. 

2.8.2 Shielding of a Slowly Moving Test Charge 

In this section, we shall investigate the shielding effect on a. slowly moving test charge and shaU 

calcula.te the shielded potential of a slowly moving test charge. If we consider a two component 

electron·ion (0 = e, i) plasma through which a test charge is moving slowly, such that 

Vi: « Vi; , 
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Figure 2-4: Debye-Htickel potential 

where vti is the thermal velocity of the ions, Then the dielectric function becomes 

where Xa (K,K· V t ) = (Kha/K2) W (Za) and Za = K· Vt/Kvta . Since vt « vti, then 

Za c::: 0 , and W (Za) is obtained from Eq. (2.52) such that 

So we can write dielectric function as: 

E (K, K . V t ) = 1 + L ( ~a ) 
a 

or 

(2.67) 
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Substituting the above value of dieleclric function into Eq. (2 .61») we get 

(2.68) 

Bere, Y! = ~ + V tt , By writing d.K in spherical coordinates and performing fJ- integra.tion, we 

get 

¢ (x,)~ 2q, roo I<'dI< (sinIK lx- x'II) . 
1, 11" io ([(2+>'02) [(Ix-x'i 

Next, we perform K integratioll, and obtained the following result 

q, [ lx-xl] 
¢ 1 (x,t) = Ix xii exp - >'D ' (2.69) 

where 

Equation (2.69) is the expression [or the shielded potential of a test cha.rge moving slowly 

in an electron·ioo plasma. It is clear from equat.ion (2.69) that both electrons and ions equal~y 

participate in the shielding process. In the ne.xt section . we shall calculate the shielded potentle.! 

of a fas t moving test charge in plasma by assuming that the test charge velocity is much larger 

than the electron thermal velocity. 

2.8.3 Shielding of a Fast Moving Test Charge 

In this section, we shall ca.1culate thesruelded potential of a fast moving test charge. To calculate 

the shielded potential of a fast moving test charge, we shall start with the genera.l expression 

for the shielded potential given by Eq. (2.60) 

where the expression for the dielectric function is 

,([(, K .V,)~ 1 + L:x.(K,K. V,) , 
• 
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o. 
"w~ J K"vl .. (v ) 

!(f( ,K V t )= 1+ uK2 dVCK . V ,_ K . v ) 
• 

(2.70) 

Let us consider n. t.wo component etectron~ion (cr = e, i) plasma through which a fast moving 

test charge propagates, such that 

where Vee: is the thermal velocity of the electrons. As Vt » Vie then we can write &t. (2.71) as 

FUrther simplification gives 

(2. 71) 

Using the binomial series expansion, we can write the above equa tion as 

For VI >- lit",. the above expression becomes 

,([(,K · V,) '" 1. 

Therefore, we can write the expression for the shielded potential or a fast moving test charge 

¢, (x,t) 

Performing the K.integration ... ·;e get 

¢, (x,l) ~ Ix - ~'- V,W (2. 72) 
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This is the desired expression for the shielded potential of a fast moving test charge. It is 

evident from the above expression that there is no shielding at all when the test charge moves 

much more faster than the electron therma.l velocity since the plasma particles don't get enough 

time to shield ou t the test charge. 

2.8.4 Shielding of a Test Charge of Intermediate Speed 

In the previous two subsections, we have calculated the shielded potential of a slowly moving, 

and fas t moving test charge respectively. Now we want to calculate the shielded potential of a 

test charge which is moving with a speed greater than the ion thermal speed and less than the 

electron thermal speed, that is moving with intermediate speed. The range of the speed of the 

particle will be 

We shall start with Eq. (2.59) for the shielded potential 

(2,73) 

where the expression for t he dielectric function is 

'(K,K ' V,)~ l + L X.(K, K ,V ,) 
D 

0' 

(2,74) 

Since Vii «: lit, then above equation can be written as 

,(K, K , V,) 
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Since Vti .;:: Vi , we can write the above equation as 

Proceeding steps from Eq. (2.57) to Eq. (2.60) ~ we get 

,([(, I< , V,) = 1 + •• ([(,1< ,V,), (2,75) 

where Xc (K, K · V t ) = (Kbe/ K2) W (Ze) is the susceptibility of the electron, where Ze = 

(I<, V ,) / ([(V,.), and 

Since v,. -< Vie, SO Eq. (2.75) can be writt.en as 

(2,76) 

with 

where w!e = 47l'e2n.eO/me is the electron plasma frequency. 

Equations (2.73) and (2.76) give the following result for the shielded potential, 

¢ (x t) = ~ 1~ dKexP [il(. (x - ,e)[ , 
1, 21l'2 -00 K'l + A'i} (2,77) 

Here, x = ~ + V ~t. By writing dK in spherical coordinates and performing J.I. integration, we 

get 
<I> (xt): 2q, r~ [('d[( ('in[[([X - x'lJ) , 

1 , 'If Jo K2 + A'il K Ix xiI 

Next, we perform K integration, and obtained the following result 

<1>, (x,t) = [ q, '[ exp [-Ix - x'i (w",/Vt.)j , x-x 
(2,78) 
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The Equation (2.78) is the expression for the shielded potential of a test charge moving­

with intermediate speed. It is clear from this expression that if the test particle is moving with 

intermediate sp~d then the shielding is done predominantly by the electrons. 

2.9 Summary 

Since plasma is a collection of very large number of microscopic particles and we are studying 

the interaction of these microscopic particle and how these charge particles are shielded in 

plasma. That is the reasoo, we discuss the kinetic theory of plasma io this chapter. We 

also discuss in this chapter, how plasma behave as a dielectric medium. In this chapter we 

have calculated shielded potential of a test charge projectile in electron-ion plasma by using 

Vlasov-Poiason's model. Since in most of the space and experimental plasma, the presence of 

dust charge particles is well known. In the next chapter, we shall discuss t.he shielding of lese 

charges in the dust-contaminated plasma. 
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Chapter 3 

Shielding in Dusty Plasma 

"In this chapter, ,we shall discuss the shield.ed potential of single and double test-charge proJec­

tiles in dust contaminated plasma II, 

3.1 Shielded Pot ential of T wo Test Charges 

Let us consider a multicomponent dusty p lasma composed of electrons, singly ionized positive 

ions, Iilld negatively charged dust grains with a fixed charge state Zd and the mass met. The dusty 

plasma is characterized by the equilibrium number density noo and the temperature Tn. where 

a equals e for electrons, i for ions, and d for the dust, througb which two- point projectile ions 

with effective positive charges Z\e and Z2e, and the masses MI and M"l move witb the sa me 

velocity Vp along the x-axis. The equilibrium quasineutrality condition is njQ = nea +ndQZd. For 

axial symmetric case, the projectile trajectories XI<: (k = 1, 2) can be written as Xl (t) = Vptt::r; 

and X2 (t) = Vp (t - 7") e:z;, where T is the delay time of the second projectile and e:z; is the unit 

vector along the x-axis. 

The dynamics of negatively charged dust grains is governed by the VJasov equation 

(3, 1) 

where fd is the dust distribution function l e is the magnitude of the electron charge, and ¢ is 

the shielded potential. 

46 



To close the system of equatioru;, we may use Gauss's law 

(3.2) 

where Pp = -cne+eTli-Zde f fd (x, v , t) dv is the chargedensi~y in plasma aod p, = Zled" (x - V pt) 

+Z2ed (x - V p (t - r)) is the charge density of test charge projectile in dusty plasma, and 

V· E = - '\]2rPl then Eq. (3.2) can be written as: 

_V2¢ = 41'1"c (n; - n .. ) - 4'71"Zde / !d (x, v, t)dv+4rrZlcJ (x-Vpt) + 4rrZ';,!co (x- Vp (t - T)), 

(3.3) 

where J (x - Vpt) and 6" (x - V p (t - r» are the Dirac delta fWlctions fo r the two-point pro­

jectiles. Equations (3.1) - (3.3) form the basis of dielectric theory. We solve these equations 

for the electrostatic potential in order to study the shielding effect on the two projectiles. 

Now we calculate the electrostatic (£8) potential for one dimensional (ill) case by using 

die1ectric theory. We perform a preliminary analysis of the ES potential of multispecies plasma 

by assuming that the system remains uniform and unperturbed ill the Cy, z) plane perpendicular 

to the direction of motion of pmjectile (i.e., along the x-axis) . The one-dimensional distnbution 

f\Ulction for dust particle is la (x,'fJol" t) 6" (y) 6" (z) which satisfies the Vlasovequation. We have 

used the following normalization: 

x , v. 
x - , va: --... v,-' 

ADd fd 

, (' , ') , , 
III. x Ivz,t - Vtdfd (x, Vol', t) IndO, t _twpd, nit = ne/ ZdndO, 

¢' = Z"¢/T,, Z~ = ZtlNdZrJ <:: 1, 11~ = n,jZdndfj 

where Z~ is the normalized effective charged state of kth projectile (Le., k = 1, 2) , wpd. = 

J41rZ~e2ndtJ/md is the dust plasma frequency, Vtd = VTd./md is the dust tllermai speed, 

Nil. = na'l)ADd is the number of dust particles in Debye sphere, ADd = jTd/4rr Z;e2ndO is the 

dust Oebye length. The one-dimensional form of Eq. (3.1) is given by 
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By normalizing the above equation, we get the following result 

(3.4) 

In the absence of test charged projectiles, the plasma is uniform and field-free. The plasma 

is slightly perturbed by the charged projectiles, then Eq. (3.4) can be linearized as: 

(3 .5) 

where fdo (vx ) is the distribution function at equilibrium. The normalized and linearized form 

of Boltzmann density distribution for electrons and ions can be written as 

, 
( K~, )' ¢' ( ") (3.6) n el ~ K 1 x , t , 

Dd 

, 
_ ( K~, )' ¢' ( ") (3.7) nil ~ K 1 x,t , 

Dd 

where K~e = .J 47rneoe2 /Te, K~i = .J 47rnioe2 ITi and K Dd = j 47r Z~ndo e2 lTd is the wave 

number of electron, ion and dust grain respectively. T he normalized form of Eq. (3.3) after 

linearization is 

(3.8) 

The electrostatic potential in one-dimensional approximation can be solved by using space­

time Fourier transform of Eqs. (3.5) - (3.8), and then taking the inverse transform. Fourier 

transform of Eq. (3.5) is 

{'Xl 'Joo ' ( a ,a), (' ") [( , ')] Jo dt -00 dx at' +vxax' fdl x ,vx , t exp -i Kx -wt 

100 'Joo ,a¢' a f~o ( v~ ) [( , ')] + dt dx a; a ' exp -i K x -wt = 0 . 
o -00 x Vx 

(3 .9) 
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Eq. (3.9) would take the following form: 

(W - Kv;) f dt' i: <lx'I;, (x ,v;/) exp [-; (J(x -WI')] 

- f d''i: dx'¢; (x ,,' ) [(a!~v~v;) eXo[-i (I<x'-w")] 

Further simplification gives 

(310) 

By taking Fourier transform of Eqs. (3.6), (3 .7) and (3.8) , we obtain the following results 

, 
n<l ~ ( , )' -1(De ' 

KOd ¢, (K,w). (3.11) 

, 
nil ~ ( , )' -1<D. I 

- [(Od ¢, (K,w) . (3.12) 

-
1<2"/1 (K ,w) = , , !' ( , )" ) nil-n"l - Idl J(, v~, w dv:z:+211'ZlO(W - !(Vp (3.13) 

+21l'Z;O (w- [(Vp) exp (ij(Vp'T) . 

Prom Eqs. (3.10) - (3.13), we get 

2 I 2 I JdO :c - - ( a" (v') 
K ., (K,w) +]('o¢dI<,w) + ! av~ (w 

= 2. (z; +Z;exP(i[(V,r) ) Q(w-[(V,) , 

where K6 is the square of effective nonnalized wave number of electron aod ion plasma, given 

by 

F\U'ther simplification gives 

'2 '2 
}('2 _ [(OJ + 1<0" 
0- K2 . 

Od 
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where 

_ Ka 1 /8/~('~ ) K • 
~(](,w)_ l + J<'l + [(2 aV~ (w I(v~) dv", (3.16) 

is the dielectric function. By taking the inverse Fourier transrormatLon of Eq. (3.15) , the 

electrostatic potential would take the following form 

(3.17) 

By performing the w- integration, we get 

(3. 18) 

We obtain the electrostatic potential in a reference frame in which both the projectiles are 

assumed to be at rest and the leading projectile is considered to be at the origin: 

(3.19) 

If we assume that the distribution function of dust particle is Ma.:'(wellian. 

( 
1 )'/2 [, ( V)'] iclO (v) = 21f~~ exp - 2 \lid . (3.20) 

The normalized and one-dimensional form of above equation can be written as; 

By differentiating this equation with respect to Vz , we get 

8/;" \V;) = _~_' exp [ _ ~ (v~)21 . 
OUz ..tii ndO 2 

(3.21) 

Then the integral in the dielectric constant is simply the plasma dispel'Sion function and is 
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given as 

J 8f;' (V~) 
av~ (w 

(3.22) 

(3.23) 

where X (rR1) and Y (rRT) are the real a.nd imaginary parts of the plasma. dispersion function, 

respectively. The dielectric fWlction (3.16) can be written as 

(3.24) 

where 

w (~) ~ W (Z) ~ _1_ J v·xp [- y'/21 d 
IKI J2;i (V Z) V 

(3.25) 

is the plasma dispersion function, where Z = rRl' By further solving the Eq. (3.25) the 

(ollowing result will be obtained 

w (Z ) ~ 1+ Zexp U ') h/~ -t dy exp (un]· (3 .26) 

A cutoff parameter l(max musL be introduced to avoid logarithmic divergence at large K 

in Eq. {3.15}. T his divergence corresponds to the incapability of linearized Vlasov theory to 

treat close encoWlters between the projectile ions and the plasma species (electron, iOIlS, and 

dust grains) , where f(max = Ijbmin and bmin = ZIJ.e2jmr (Vp2 + Vf~) is the minimum impact 

parameter, Zk (k = 1,2) is the charge state of the kth projectile and mr is the reduced mass. 

It is instructive to first calculate the electrostatic shielded potential due to a single projectile, 

which is given by 

.,p' I '() Z' j,Krn_ exp [iK, ] 
,pI :t = 211" 0 dK J(2e (K, KVp) , (3.27) 

where rI>?' (x') is the electrostatic shielded potential due to a single projectile. 
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3.1.1 Electl'ostatic PotentiaJ for 3D Case 

In this section, we shall study the behavJOr of the electTostatlc poteotial in a three-dimeuS10(l 

in which the dust distribution function id (x, v, t) would satisfy the Vlasov MaxweIJ system of 

equations. We normalize the parameters for three-dimensional case as: 

, 
x 

X 

ADd I 

V~f (x, v , t) IndO, 

, v 
v~-

vt/ 
t' _ twpd. 

and choose the frame in which both the projectile ions are at rest, and the leading projectile is 

at origin. The linearized and dimensionless form of Eq.(3.1) is 

( 8 ,8), (' ") " " ( ') Bt' +V' ax' ttl1 x,v,t +'Vr/>I''VyfdIJ v =0. (3.28) 

The normalized. and linearized form of Boltzmann density d istribution for electrons and ions 

can be written as 

(3 29) 

(3.30) 

The linearized !lnd dimensionless form of Eq. (3.3) is 

(3.31) 

The Pow'ier transform of Eqs. (3.28) - (3.31) can be written as: 

, , ( ') "'; , K·\7v/dQ v ""; 
1,1 (K, v ,w) ~ ( ' ) ¢,(J(,w) , 

w- K · v 
(3.32) 

(3.33) 
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(3.34) 

and 

2' I I J 7( ')' , f( ¢l([('W) - nil - n el- idl K ,v,w dv+2?rZ1d(w-J{ ·Vp ) 

+2rrZ;o (w-K ' V p) exp (iK· V pT) , (3.35) 

Substituting f~l' n:1 and n~l by using Eqs . (3.32) - (3.34) in Eq. (3.35), we get 

(3.36) 

By tak ing the inverse Four ier transform of 8q . (3.36), the electrostatic potential becomes 

Performing w-illtegration, we obtain 

Writing x' and K in spherica.l coordinates; 

then 

x _ (x'sinfhcoS i.pl. x'sin(hsin 'f'l ' x/cosOI) 

K = (KsinBcos,{), Ksin8sin lfJ. Kcos8) 

K · ( x ' - V pt') = Kx' sin 81 sin (;I cos (cp -/PI) + K (X -Vi) cos (J 

~ Kp\/! - ~2cos(~-~1)+KJ«, 

(3. 38) 

where p. = cos (} = cos (1(, Vp) I X = x' cos {h I P = x' sin Bi l and ~ = X - vi is the position in a 
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reference frame in which both the projectile ions are at rest. The electrostatic potential would 

takes the foUowing form: 

where r.p - foP, = foP. For azimuthal symmetric case, the zeroth order Bessel function has the 

following form: 

where r (~) = .,fi. Therefore electrostat,ic potentiaJ can be re-written as: 

, ( ') 1 11<-- l' dl'e(;I<"'1 ( ) (" ) ~, x ~ --, dK (K K . V /0 Kp,jl - 1" Z, + Z,exp(iK · R) , (211'") 0 _, e , p 

(3.40) 

where R = V pT is the separation between the two projectiles. For a single projectile, we can 

wrilp ejPctrostati r: pC'tentiaJ. as: 

Z' 1K
-- l' d,lel;""'1 ( ) = ~ dK ([( K V /0 [(p,jl - ", . (211') a _\ € , ' p 

(3.41 ) 

3,2 Numerical Results and Discussions 

In this dissertation, we also presents the numerical results of the electrostatic shielding potential 

of test charge projectiles and discuss the modification in the shielding potential. Propagating 

velocity of test charge projectiles is, Vp = 2Vtd , n,: = 1010cm-3, nd = l05cm-3, Zd = 103 - 104 . 

We first plot the normalized electrostatic potential of Eq.{3.41} versus the normalized axial 

(-20 < { < 20) and the radial distance (-20 < p < 20) of a single projectile shown ill the 

Figure 3-1. This shielded potential is symmetric both in radial and axial direction as vievved 
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1.2x10-3 

S.Ox10-4 ~I 

0.0 

-S.Ox10-4 

P 

't, 

Figure 3-1: Shielding of a single test charge projectile 

from a frame moving with the velocity of the projectile. We also presents numerical results of 

the shielded potential for the different values of Rand Vp. We numerically solve Eqs. (3.42) 

and (3 .43) for the potential of two collinear and non-collinear projectiles and the results are 

shown in Figs. (3-5)-(3-7). 

3.2.1 Shielding Potential for Collinear Case 

When the two projectiles are moving in a straight line i.e., one behind the other with the same 

velocity Vp along the z-axis, having B = VpT fixed separation between the two projectiles, 

the potential is given as 

r t 
_ _ _ 1 _ 1Kmax 11 Jo (K p~) e(iKJ1{) ( ) 

,I, ( ) Z 'l + Z2' eiKJ-Lf. dKdll. 
'1-'1 , - (2'71l 0 -1 c(K,K·Vp ) ,-

(3.42) 
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Figure 3-2: Shielded potential of a test charge projectile with different velocities. 

1.5x1O..J 

Ko 
1.0x10..J -- 0.0 

- - 0.3 
... 0.5 

5.0x10-4 -·- 0.7 

<1>/ 0.0 

-5.0x10-4 

-1.0x10-J 

-30 -20 -10 0 10 

~ 

Figure 3-3: Shielded potential with different values of KD. 
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Figure 3-4: Shielded potential with different values of separation distance between test charge 
projectiles 

3.2.2 Shielding Potential for No -collinear Case 

When the two projectiles noncollinear motion, the separation vector R between them can be 

resolved in two components Band D, along and perpendicular to the direction of propagation 

of projectiles. The vector R is given by 

R=B-D 

The shielding potential for the non-collinear case can be written as 

Z' 1Kmax /1 1 ( 
( ) 

_ 1 ~) (iK~) <P1 r, t - --2 (K K . V ) Jo K py 1 - W e dK dj..L 
(2rr) 0 -1 E:, P 

+ Z~ 2 (Kmax /1 1 Jo (K (p _ D)~) eiKp.(HB)dKdj..L (3.43) 
(2rr) Jo -1 E: (K, K · V p ) 
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Figure 3-5: Shieding potential when the distance between the test charge projectles is smaUer 
than the effective Oebye length. 
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Figure 3-6: When the t"-'O projectiles are collinear and the separation distance is larger than 
the effective Debye length. 
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Figure 3-7: Shieded potential of two non-collinear test charge projectiles 
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3.3 Summary 

In this chapter we studied , how t.he plasma. shield out two test charge projectiles. Wh!\t are 

effects of these two test charges on the shielding, is also studied in this chapter. How the 

shielding potential modify when these test charge projectiles are collinear is also presented 

here. We also discuss the shielding when the test charge projectiles makes some angle with 

each other. Numerical results of shielding in plasma are also shown in this chapter. In the next 

chapter we shall study the shielding in a multicomponent plasma. 
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Chapter 4 

Shielding in Multicomponent Plasma 

" This chapter is devoted to a study of multicomponent pla3ma, and the shielded potential due 

to moving test charge projectile and the wake potential 0/ moving test charge projectile ", 

4.1 Introduction 

The calculation of electrostatic potential of a moving test charge in a multi component plaswa 

is one of the most fundamental and extensively studied problem ilL plasma physics. When a test 

charge is introduced in a. plasma, it polarizes the plasma and produces a shield cloud around 

the charge. IT the plasma is cold and there is no thermal agitation then the shielding would be 

perfect and potential of a test charge drops to zero outs ide the cloud. The test charge would 

be electrically neutraL However, if the plasma is oat cold, there would few particles at the 

edge of the cloud that would have enough thermal energy to escape from the cloud, so that the 

shielding would not be complete. 

In this chapter we have considered an unmagnetized collisionless multicomponent plasma 

consisting of the Boltzmann distributed electrons , mobile positive and negative ions, and immo­

bile positive/negative charged dust grai ns. By employing the Vlasov-Poisson system containing 

a test charge density, we calculate the electrostatic potential for the test charge moving with a 

constant speed along the z-axis. Further, the Debre screening and wake potentials are obtained 

in the presence of mobile negative and positive ions. Here, the occurrence of negative iODS 

is very much important [55, 56, 57, 58, 59, 60, 61 , 62J. It is worth mentioning here that the 
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dust-ion-acoustic speed (DIA) and oscillatory wake potential are significantly modified due to 

the negative ions. The mobile negative ions could playa significant role in attracting the same 

polarity charges in the wake potential regions and in making the ordered crystalline structures. 

The results should be useful in the context of charged particle repulsion and attraction in mi­

croelectronic plasmas and in polar mesosphere [54]. We are discussing here the wake field and 

Dcbyc screening in a multicomponent plasmtt. which ctt.o be produced in the labora.tory [55, 621 , 

4.2 Mathematical Model 

Since we are dealing with the small amplitude wave, it is appropriate to use linearize Vlasov 

equation (2.16) 

all q ' -aJ + v -v IiI + -'-E1 • Vv/jo (V ) = 0, 
t mj 

(4.1 ) 

where hI is the perturbed part of the distri bution function and E( - V ¢) is the induced electric 

field, qj and mj are the cbarge and mass. 

The electrostatic potential ¢l satisfy the Poisson's equation 

- V 2¢1 = 41r(Ppl<l.fma + Pled) 

_V2¢) = 411' ~qinjO J /jldN + 41rq, 6(1" - Vtt) , 

Taking the space time Fourier transform of Eq.(4,1), we get 

0' 
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(4.3) 



1ntegrating by parts,we get the following result 

Now taking the space time Fourier transform of Eq. (4,2), we have 

-i: dt i: dr (17'¢, exp I' (k. I ' - wt)J] = 

4~Lqjnjo i:dti: dr[j !j1dv]exPI.(k . r -wt)1 
J 

+4~q, i: d, I: dr [o(r - V,t)[exp[.(k ' l' - wtl] 

Integrating by parts the right hand side of Eq. (4 ,7), we get 

(4.5) 

(4.6) 

(4.7) 

k'¢,(k,w)= hLqjnjo J jjl(k ,w) dV +4~q, i: dtexpl.(k·V,t-wt)[ (4.8) , 
or 

k'¢1 (k,w) - 4~ LqjnjO J 1;, (k,w) dV = 4~q, i: dtexp[-.(w - k · Vtl tl (4.9) , 
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Substituting the perturbed distribution function jj1 into Eq. (4.9), 

k2¢1 (k,w) + 4rr ~ njoqj 2 J [k· VvfJo (V)] -;P1 (k,w) dV 
L.J mj (w-k · v) 

J 

= 4rrqt i: dtexp [ -~ (w - k · V t ) t] (4 .10) 

or 

where 

e (k w) - 1 + ~ 4rr njoqj 2 J [k · V v!jO (V)] dV 
, - L.J mj k2 (w - k . v) 

J 

and 

Equation (4.11) becomes 

( 4.12) 

Taking the inverse space time Fourier transform of Eq. (4.12), we get 

8rr
2
qt 100 100 

d (w - k . V t ) ¢dr, t) = --4 dk dw k2 (k k. V ) exp [-~ (k · r - wt)] 
(2rr) -00 -00 e, p 

(4.13) 

Now performing w-integration, we get 

(4.14) 

where the dielectric function can be written as 
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0' 

" KI, e(k, k . V,)= 1+ L- k,'W(Cj) 
j 

MaX'lveltian distribution in on dimension is 

( 
m' )'" (-m'v') /jo (v",) = 2~; exp 2~j!l: I 

and 

( ' )'" ( 1 ) (-m'v' ) (-V ) Vv/;o(v",)= 2-rr Vtj e.'q) xf,} % VJ 

Now tbe dielectric response function can be writ.ten BS 

. . . _ ~ ~(2.)'I'(2..) JkexP(-mjV;/2Tj)(-V>;/ ~~) 
... (k, k V t ) _1+ ~ k2 21f l/tj (w - k . V ) dtJ~ , 

Let us define q2 = v;/2Vt1, then Eq .. (4.18) can be written as 

or 

£ (k, k . V,) = 1 + L: w1 (-;-) (2.) 'I' J exp( - .')( - q)dq , 
j k Vij h (w/.J'ikYej - q) 

K' 
e(k ,k · VtJ= l+ ~ k~jW(Cj} , 
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(4.16) 

(4.17) 

(4.18) 

(4.19) 

(4.20) 



Here, C,j = w/V2kvtj , Kbj = (w;jl\'~;) , W(Cj) is the plasma dispersion function and can 

be written as 

W(C.) = (~)1/2 J qexp(-q2)dQ . 
,J 7r (q - C,j) 

We are using W (Cj) in the double factorial form 

For Z « 1, we can write the plasma dispersion function as 

{if ( _Z2 ) 2 Z4 (_1)n+1z2n+2 
W(Z)=LY2"Zexp -2- +l-Z +3+ .. .. (2n+1)!! 

For Z» 1, 

(if ( _Z2 ) 1 3 (2n+1)!! 
W(Z) = Ly 2"Zexp -2- - Z2 + Z4 +.... z2n 

For kvtp,kvtn« W« kvte, the dielectric function (4.20) can be written as 

1 
(4.21) 

c (k,k · Vt) 
= 

( 4.22) 

where w;d = Kbd~; is the plasma frequency of the dust and w~ = k2 A he (w~ + w~n) / (1 + k2 A he) w2 

is dispersion relation for the DIA wave which is modified with wpn . Here, wpn = (47rnnOZ~e2 /mn) 1/2 
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is the negative ion frequency and wpp = (4'1r7lpOZ;e2 Imp) 1/2 is the positive iou plasma frequency , 

mn('TILp) is the m.a.ss of negative (positive) ions, and ADe. = (Te/4ifn..oe2) 1/ 2 is the electron Oebye 

length. 

Electrostatic potential of the test charge projectile bccome 

(4.23) 

(4.24) 

Here tPD (rl t ) represents the Debye part of eleclorostatic potential and tbw (r, t ) represents 

~be wake part of the electrostatic potential. Next we lVant to simplify the wake part of the 

electrostatk potential and the resul t:.s would be presented in the next section. 

4.2.1 Debye Potentia1 in a M ulti-compone nt P lasma 

When the test charge projectile moves in a multi-component plasmal the charged particles ~r.Y 

to shield the test charge. In the previous section, we have obtained the Debye shielded potential 

as 

¢o (r , t) = 2Q" 1= dk [ ~~., j exp [-Lk. (r - V,t)[ 
11" -00 l +k AVe 

(4.25) 

This expression for the Dehye shielding can be simplified by using t he spherical polar oooe-

dinates and we can obtain t he express ion of standard Debye potential. 

4.2.2 Wake Potential in a Multi-component Plasma 

tPw (r, t) = 2Q
" 1= dk [( >,~" 2 ) W\ 2] exp I-we (r - Vtt )! (4.26 ) 

11" -DO l +k>'~ (k · Vd -wI< 

The simplifying the wake part of potential, we use the cylindrical co-ordinates 
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Since we are using single test charge projectile approach moving along the z..a.xis, such tha. ~ 

where 

The wake potential can be written as 

0' 

(4.27) 

where 

M= C +A~~bJ ·(w-2;'W"_~L.w~1~) (4.28) 

Now simplifying the Eq. (4 .28) as 
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M 

,2 2 
_ ADeWk 

- (Krr + Kl + 1) (v,? /Abe) [Krr - (w~p + w~p) (KIT + Kl) / (Krr + Kl + 1) (Abe/V?)] 

Abe (w~ + w;p) (KIT + Kl) 

Now substituting the value of M in Eq. (4.27), the expression of the wake potential will 

become 

¢w (r, t) 

Expressing dk in cylindrical co-ordinates, and writing dk = k.Ldkl..dklld¢ in the above 

equation, we get 

Performing the ¢ integration and using the zeroth order Bessel function 10 [Kl..p/ADe], we 

get 
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(q,) AD, (W;" + w;,,) r~ [) 
rPw(r, t) = -; (~2) J-oa K.l.dJ(..L dJ<llexp - Lkll{/ADe X 

JO lI<.Lp/ .lD.1 (Kl + [(1) 

where 

wh~re Jo {J(.l.p! ADel is thO! zeroth ord~r Bessel function defined below, 

Let us first simplify the Eq. (4.34), we get 

N _ KI~ (K,~+Kl + 1) - (w;" +w~) (K~ +1<1) (~be/ \'t2) = 

1<11 + KffKl + K~ - (w~ + w~) Kl (~bIJ ''t2) 

- (w;" +w;") [(I (.lj"IV,' ) 

71 

(4.32) 

(4.33) 

(4.35) 



N - Klf+K1l1+Kl - (w~,,+w;")(Al,.I V,')] 

- (w;n +w;,,) Kl (>'be/V?) 

Eq. (4.36) is quadratic in [(11, the roots of the quadratic equation arc 

Now substituting Eq. (4.36) into Eq. (4.33) , we get 

Performing J(II integration a.nd using the residue theorem, we get 

(4.36) 

(4.37) 

(4.38) 

(4.39) 

Here we have obtained the wake potential in Kl., for simplifying equation (4.38), we used 

assumption KI « 1. Where K_ and K+ can be written as 
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and 

I<lp2 1 (I<1.p)' 
Jo[K1P/!.D.1 = 11 - -:;-;;-+ 64 -,- HI 

4Ao... ADe 

Here, we have also used the series of the zeroth order Bessel function in terms o[ Gamma 

function , 

X"[ :;r,2 x~ 1 
.I"{x) = 2" r {" + 1) 1 - 2{2n + 1) + 2.4{2n + 2)(2n + 4) H 

( 4.40) 

The wake potential takes the following form: 

(4 .41 ) 

or 

[ 
( ' 2) ' ] - ' 1 - wpn +~r ADe 

(442) 

with 

(4.43) 

Using the condition 0» I, we obtain the required result for the wake potential [38). 
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(4.44) 

4.3 Summary 

In this dissertation , we present the concept of shielding in plasma. In chapter 1, basic parameters 

of plasma are discussed. Some basic concepts of dusty plasma are presented. We also discuss 

in this chapter the history of shielding in plasma. In chapter 2, we have studied the shielding 

o[ test charge propagnted through the plasma using the Vlasov-Poisson model. Our numerical 

ca,1culahion shows that electrostatic potential is Oebye Hucke1 type when the t.est charge velocity 

(V,,) is greater than the dust thermal speed (vtd) and becomes Coulomb type when lip» Vtd.. 

Next, in tbe chapter 3, we present the shielding in dusty plasma and the correlat ion effects 

of two test charge projectile case. T hese two projectiles are moving with the same velocity 

but with a time delay (7"). T wo cases are considered here (i) the two projectiles moving one 

behind the other along the same direction (li) they are moving a.loug the same direction making 

some angle with each other. We observed that when the separation distance between the two 

projectiles is smaller than the AD, the projectiles behave as a single projectile having charge 

equal to the sum of the charges of the two projectiles. When R is very large, the motion of the 

two projectiles is completely uncorrelated. In chapter 4, we have considered a multicomponent 

plasma consisting of Boltzmann distributed electrons , mobile positive and negative ions, and 

immobile positive/negative charged dust grains. By employing the Vlasov-Poisson system of 

equations containing a test charge, We calculate the electrostatic potential for the test charge 

moving with a constant speed along the z-axis. Further, the Oebye screening and wake potentials 

are calculated in the presence of mobile negative aud positive ions. It is important to note here 

that the DlA speed and oscillatory wake potential are significantly modlfied due to the presence 

of negative ions. The mobile negative ions could playa significant role in attracting the same 

polarity charges in the wake potential regions and in making regular crystalline structure. 
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