Electron-Acoustic Waves with Orbital
Angular Momentum

Khurram Shahzad

Department of Physics
Quaid-i-Azam University
Islamabad, Pakistan.
2013



Certificate

SN W
i AL

CULDEAZAM UNNIRSTT |
. s
ALAMALAD

This is to certify that Mr. Khurram Shahzad has carried out the theoretical work
contained in this dissertation under my supervision and is accepted in its present
form by the Department of Physics, Quaid-i-Azam University Islamabad as
certifying the dissertation requirement for the degree of Master of Philosophy in
Physics.

Submitted through Supervisor
Chairman
O(Za[w Mk i

L oot
Prof. Dr. Muhammad Zakaullah Dr. Shahid Ali
Department of Physics Assistant Professor
Quaid-i-Azam university National Centre for Physics
Islamabad, Pakistan. QAU Campus Islamabad,

Pakistan.



This thesis is dedicated to my loving parents and to my friends.



Contents

1

Introduction to Plasma 1
1 COriteiia Tor PIEBHOARE: . <o 0 v armos g0 o v o3 w5 v e e e & 2
12 MacweIES BGUALIONE: /& e i tvwnis dicd w8 sy o e oo 505 G & e e b 5
1.3 Plasrina as Dielectric MedImrii. o o.cov s o v o s 00 oo % 0 58 0t miam s o 5
Ll TEReEmal TRHABRARL € = b coms i e 2t o G0 n) o SRy st B f Sy oo B8 0 6
150 SSOTACRRERIRGY, 5. % b & Sere s d ST el b e e 5 e e B & T 57 D5 ol e st s TR o 6
146 RSP PIRRIR & 1 b & s R S B B g e e 15 e el Byt e T e 6
L7 PUEIOREPIREION, 15 % % B b B, 0 Bl o & alinn vomiotiiet| o 5 107 j aRns ol coihiosdt i To2 s s 7

L7A Tiager Produped PIasmim . . . v v o o o sie m oo & oo mosis e 5w v 7k
1.8 Applications and Motivations. . . . . . . . . .. . ... ... 8

AR INBEORAl PIaBIEBEA: . 5 & i e e 100 2 e BB el oo caLsietas o ok 1B 81 £ I 8
150 id Eauatl o B P IRSIIRE T 5 5 b b ke s e s e e s Il
1.10 Group and Phase VEIOCItIon . L w6 oo w omm v e & 5o om s b 58 & 5 8 12
TE ATRER TWHEORN & 3 5 crd b da 5m 4 W s TR B 1 O B i e B 56 6 s s 13
1512 Electron"P1asmn-WaVE 4 we e rsda i 5 0 5 dbe s s S rniiss i 56 s o5 14
1:13 Flectron-Acoustic Wave .. iprssivaventias i@ en omasom 14
114 Tor-Acoustic Wave ssmss s i L Vi odasEs s R aaumad e iesis 14
LS IRsht VYV o v % salifmrm e s id o o 54h & e % REalns e § 486 555 15
1.16 Planar and Helical Wavefronts « . s s s s vr oo s ssasnnonosssnsi 15

1361 ‘Planar Wavekronts. . s isasvsismmsdiasns paesndsses @ 15

1:16:2| Belical Wavefronts: : s iisssnmmisivashnmw s s sean 15
117 Lapnerre-Gaussian Beams « ; ;4 s s 5 5 vwis s o v ol walie s v 5 87555 & 17



1.18 Angular Momentum
1.19 Layout of Thesis

................................

...................................

Ion-Acoustic Waves with Orbital Angular Momentum

2.1 Introduction

.....................................

2.2 Dispersion Relation for Phonons (Ion-Acoustic Waves) . . ... ... ..

2.3 Paraxial Equation for Ion-Acoustic Waves/ Phonons

2.4 Electrostatic Potential Problem

2.5 Energy Flux and OAM Of Ion-Acoustic Wave
2.6 Numerical Analysisof JA Waves: . . ... .. 000 v v osann

----------------

Raman and Brillouin Backscattering of Light Beam Carrying OAM

3.1 Introduction

.....................................

3.2 Coupled Nonlinear Dispersion Relation for Electromagnetic Wave . . .

3.3 Nonlinear Dispersion Relation for Plasmons (Langmuir waves)

ooooo

3.4 Paraxial Equations for Electromagnetic and Electron Plasma Waves . .

3.4.1 Growth Rates of Backscattered Electromagnetic and Plasmon

Waves

.....................................

3.5 Brillouin Instability or lon-Acoustic Wave

3.6 Summary

.......................................

Electron-Acoustic Wave with Orbital Angular Momentum

41 Introduction

.....................................

4.2 Dispersion Relation of Electron-Acoustic Waves

4.3 Paraxial Equation for EA Waves

4.4 Electrostatic Potential Problem

4,5 Energy Flux and OAM for EA Waves

4.6 Numerical Results and Discussion for EA Modes

4.7 Summary

.......................................

28

33



List of Figures

1-1
1-2
1-3
1-4
1-5

2-1

24

VEn Allenoadintiobell . . o« o o vis w6 v aaew wim e 0w w e e s & o e i 10
CEETOTRICIODOE £ 505 . 5 TP e el e oL 18 ftorion 5 o8 o g o o B AR 00 o et i . 1 ¥ 11
GYOURNEIDCIRE 5.5 % I Lot oot G, e 1o (oo w0Raii & 17 (5795 e 01 v s 0 1 13
Light with planar wavefronts. . . . . . . .. . ... .. i, 16
Light with helical wavefronts . . . . . . . . . it it ittt e e 16
Shows LG potential profiles or a function of r for varying wg = 2\ (square doted
curve), wo = 3\ (small doted curve), wy = 4\ (small dashed curve), wg = 5\ (long
dashed curve), wg = 6A (solid curve) these are the pure Gaussian curves with
PR L=l oo s s e b e R e e e R R e 31
Shows the variation in the LG potential V(r) for varying radial mode number
p=0 (square doted curve), p=1 (small doted curve), p=2 (small dashed curve),
p=3 (long dashed curve) and p=4 (solid curve) with fixed angular mode number,
Yol GRS N M L BT & o o v A T B 3
Shows that the LG potential V(r) for varying angular mode number | = 0 (square
doted curve), = 1 (small doted curve), [ = 2 (small dashed curve), [ = 3 (long
dashed curve) and | = 4 (solid curve) with fixed radial mode number p = 0, the
AZIREAL BIEIB LT s v o v 0 8 € 3 b @ bR e B R e B A R AR 9 4 32
Shows the variation of LG potential profiles for fixed | = 1, and with changing,
p = 0 (square doted curve), p = 1 (small doted curve), p = 2 (small dashed
curve), p = 3 (long dashed curve), p = 4 (Solid curve), at a focal point for ¢ = 0,
=S PRNREAY. et s 5w W B e R T 5 R RS 5 32



4-1

4-3

4-4

Shows LG potential profiles or a function of r for varying wo = 2A (square doted
curve), wp = 3 (small doted curve), wp = 4\ (small dashed curve), wy = 5A (long
dashed curve), wg = 6A (solid curve) these are the pure Gaussian curves with
fixeddi=De=g (ssao89t i Ve iiveiaRiEiAsa/mMVEsssdism
Shows the LG potential profiles for changing radial mode number p = 0 (square
doted curve), p = 1 (small doted curve), p = 2 (small dashed curve), p = 3
(long dashed curve), p = 4 (solid curve) and with fixed | = 0, wg = 3\, where
A=DTHY eI s 69 G @e LR PR A WS $ 89 8 N6 QNNEE G e
Shows the LG potential profiles for varying the angular mode number { = 0
(square doted curve), | = 1 (small doted curve), | = 2 (small dashed curve),
l = 3 (long dashed curve), | = 4 (solid curve). with p=0,wg =3Aand p=m . .
Shows the LG potential profiles involving EA waves for p = 0 (square doted
curve) p = 1 (small doted curve), p = 2 (small dashed curve), p = 3 (long dashed

.......

pink curve), p = 4 (Solid curve). with fixed [ = 1, wg =3\, and p =7

5o



ACKNOWLEDGEMENTS

I owe my profoundest thanks to Allah Almighty, the most benevolent and merciful, Who
created the universe with the ideas of beauty, symmetry and harmony, as well as gave us the
abilities to discover the universe. I offer my humblest thanks to the Prophet Muhammad (peace
be upon him), who is forever the source of guidance and knowledge for humanity.

First and foremost, my utmost gratitude goes to Dr. Shahid Ali, Assistant Professor at
National Centre for Physics (NCP), who is my research supervisor. From the formative stages,
to the final draft, I owe immense debt of gratitude to my supervisor for his invaluable guidance
and support. Friendly discussion with him has always stimulated my mind and gave me insight
of research. I will never forget his sincerity and encouragement for research.

I am thankful to Dr. Hamid Saleem, DG (NCP) for his kind concern and consideration
regarding my studies at NCP.

1 am also grateful to the Chairman, Department of Physics, for providing me moral support
and the permission to work at NCP. Very special thanks are due to Prof. P. K. Shukla, Ruhr
University, and Dr. Arshad Majeed Mirza for useful discussions. My immense gratitude goes
to all the teachers of Physics Department as well.

My heartiest thanks to all members of Plasma Physics Group, at NCP, which includes of
Dr. Shabbir, Sadeeq, Abdul Rahman, Ishtiag, Miss. Nazia, Miss. Ammara, my class fellows,
Atif, Babar Ali, Asid Ali, Kashif and my all other university fellows who helped me one-way or
the other.

Special thanks to my good friends, Imran, Shoaib, Mushtaq and my cousins who encouraged
me a lot for research.

My sincere thanks to my loving parents, uncles, nice sisters, kind brothers for unconditional

love, guidance, and support.

(Khurram Shahzad)



Abstract

The electron-acouetic (EA) waves carrying orbital angular momentum are investigated in a
collisionless, unmagnetized uniform plasma. The latter is basically a two-temperature electron
plasma composed of two populations of electrons, e.g. the inertial cold electrons and the
Boltzmann distributed hot electrons with a neutralizing background of static ions. By employing
the fluid equations, the dispersion relation for the EA waves is solved for a beam type solution
under the paraxial approximation and also discussed the Laguerre-Gaussian (LG) solutions. An
approximate solution for the electrostatic potential problem is obtained and the electric field
components are now expressed in terms of LG potential representing the field lines as helical
structures. Furthermore, the energy flux and orbital angular momentum states carried by the
EA beam are studied in terms of LG potential perturbations. Numerically, it is revealed that
the radial and angular mode indices strongly modify the profiles of the LG potential. The
present results are important in the context of trapping and transporting the plasma particles
and energy by the EA beams involving the orbital angular momentum states in laser produced

plasma as well as in space plasmas, where two distinct populations of electrons exist.



Chapter 1

Introduction to Plasma

The electromagnetic forces are very important in the structure formation for example the stable
atoms, molecules, and crystalline solids. It is well-known that there are three states of matter,
such as the solid, liquid, and gas. In general, any one of these states can be converted into
other through the exchange of energy. Water molecule HoO is a remarkable example, which
is found in all these states. Obviously, when energy is supplied to matter in its solid form, it
decomposes and the solid will be converted into liquid and then liquid into gaseous state, by
further increasing the energy up to atomic ionization state. Due to thermal decomposition, the
interatomic bonds break before ionizing, which decomposing the matter into ions and electrons.
These oppositely charged particles exhibit a collective behavior and such an assemblage is called
plasma. On the other hand, in the reverse process the energy is extracted out from the matter.
The degree of ionization of a plasma is defined as, “ the ratio between the number of ionized
atoms and the total number of atoms in a unit volume,” showing that the plasma is ionized
completely, strongly or weakly. When a gas is ionized, the new forces arise in the plasma
between the plasma particles and the dynamical behavior is influenced by the external electric
and magnetic fields.

In the earlier age of the Universe, it was assumed that everything was plasma. In fact, it is
thought that almost 99% of our Universe exists in the state of plasma. All the stars, nebulae,
including sun are composed of an ionized gas. Thus, solar winds coming from the sun, consist
of charged particles as streams. The Earth is totally covered with charged particles that are

trapped in the magnetic field of the Earth. Besides, interstellar spaces, are also filled with



plasma. However, it is not very difficult to find the plasma on the Earth. Liquid and solid
systems can be considered sometime to express collective electromagnetic effects describing the
ionized gas, viz. liquid Mercury. The plasma also occurs within the Huorescent lamps and in
the lightning, as well as in many laboratory experiments, and in industrial processes. The glow

discharge has recently become a backbone of micro-circuit fabrication industry.

1.1 Criteria for Plasmas

The motion of charged particles produce an electric currents which in turn leads to magnetic
field, and by which, plasma particles are influenced by the fields of each other, which oversee
their collective behaviour with several degrees of freedom [1, 2]. The criteria for a plasma state
can be governed by the following characteristics [3, 4J:

1) Plasma frequency

2) Plasma approximation

3) Bulk interactions

1) The oscillation frequency of the plasma particles (the electrons oscillate around the ions
with a frequency called the electron plasma frequency) is larger than the frequency due to
collisions of the electrons and the neutral particles, viz. wy. > v.,. This criterion is satisfied
when the electrostatic interactions take over the processes of common gas kinetics.

2) The electrons and positively charged ions are strongly affected by the fields of one another,
as they are very closed to each other and that also influence many other charged particles in
their vicinity. Since the charged particles are not [ree and therefore are bound, that is why the
crowed of the charged particles behaves collectively. Charged particles show a collective motion
of large vim and complexity. The plasma approximation becomes important when the number
of charged particles in the effective Debye sphere is much greater than unity representing the
plasma collective behavior. The effective sphere may be known as the Debye sphere with a
radius as the Debye shielding length. The average number of charge particles within the Debye
sphere is represented by a Greek letter called Lambda, * A ”. This condition also tells us
that colonial effects are not too large and the plasma dynamics are dominated by the collective

forces. However, in a strongly coupled plasma, this condition is relaxed.



3) Initially, the word “ Quasi-neutrality " was used in the context of Chemistry in 1907.
However, Tonks and Langmuir [5] used this word in Plasma Physics in 1929, For the bulk
interactions, it is essential that the Debye screening length of the Debye sphere must be shorter
than the dimension (size) of plasma. It means that the interactions due to bulk of plasma
are significant as compared to the interactions at the boundaries, where the boundary effects
are included. When this condition is satisfied, the plasma will be quasi-neutral. Generally,
a plasma is produced due to ionization of neutral gases, and approximately, consists of equal
number densities of electrons and positive ions. The positive and negative charge fluids are
firmly coupled and must counter balance one another. For a large scale length, they tend
to electrically neutralize each other and total electric field within the plasma is zero. As a
consequence, the quasi-neutrality arises. Such type of plasma is known as the quasi-neutral
plasma. An unmagnitized collisionless plasma having no significant current is known as the
simplest plasma. The non-neutral regions are strongly confined and usually situated close to the
boundaries. Quasi-neutrality becomes significant at a distance depending on the temperature
and the number density of a plasma. The zone of quasi-neutrality becomes smaller if the charged
density of a plasma is larger, because it has an equal number of positive and negative charge
carriers. The quasi-neutrality breaks down over the Debye length ( which is denoted by \p).
Naturally, the Debye length is less than one millimeter. For different cases, the maximum charge
separation or minimum charged neutrality distance can be of the order, for example (6], 10 m
for interstellar medium, 10~* m for Tokamak, 10~3 m for Ionosphere, 10° m for Intergalactic
medium, 10 m for Solar wind, 10~* m for gas discharge tube, 10~!' m for Solar core, 10? m for
Magnetosphere, ete.

In a rotating plasma, the breaking of quasi-neutrality has been detected when a vortex is
formed, called plasma hole [7]. It is noted that the quasi-neutrality breaks down at the center
of the plasma hole [8]. Recently, a vortex structure [9] has been studied in a rotating nonplanar
magnetoplasma. The spontaneous breaking of charge-neutrality condition takes place in the
bulk plasma.

For an ideal plasma, we assume a plasma with equal number of electrons and positive ions.
The electronic mass is denoted by m. and charge by "-e", while M stands for ion’s mass with a

positive charge "+e". We do not essentially mandate for the system to get thermal equilibrium,



but however we have,

1
T=§m,-<u§- >, (1.1)
this equation gives a kinetic temperature in the energy units. The kinetic temperature of the
particles is necessarily the average kinetic energy of the charged particles and < v; > represents
an average particle speed. The charge-neutrality condition demands that
T ™ Nag =N (1.2)

We suppose that the ions and electrons are at equal temperature, (viz. T, ~ T; ~ T'), then the

particle thermal speed can be expressed as

U = (2T/mj)”2 (13)

The electron thermal speed is usually much larger than the ion thermal speed due to their large
mass difference (i.e. m; = 1836m,). That is why, we have

v = (me/mi)? v, (1.4)

where 1, = (2T/m,)” 2 On the other hand, The electron plasma frequency can be defined, as

i (4«?1&2)1!2. (1.5)

Me

This is the most basic time-scale in plasma physics, which arises essentially due to charge
separation of plasma particles. Similarly, the electron Debye length (viz. The length time
scale) may be expressed, as

S (4—:;2—) il (1.6)

Thus, an ionized gas ( plasma ) must satisfy the following necessary conditions:

Ape << L, (1.7)



and

Tp << T (1.8)

Here, L and 7 show the typical length and time-scales of the system under observation.

1.2 Maxwell’s Equations

We consider a set of Maxwell equations in a vacuum as,

V - E =p/e, (1.9)

V x E = —§,B, (1.10)
V-B=0, (1.11)

V x B =g (J4+€00,B), (1.12)

where p4 and €y are the permeability and permittivity in a free space, respectively. p is the
charge density and J is the current density. The above equations in the presence of a medium

having permeability u,, and permittivity € can be expressed as,
V- E=ple, VxE=-3B,V-B=0, V xB=pu,, (J+eE), (1.13)

where E (B) is the electric field (magnetic field). Plasma is quite different from other the
media. Plasma particles behave in a complex manner and their effects in the medium are not

countable. Therefore, usually the vacuum equations are used to study the plasma physics.

1.3 Plasma as Dielectric Medium

In order to assume the plasma as dielectric medium, we first define the displacement vector by

the relation:

D =eE + P, (1.14)



where P is the polarization vector and can be expressed in terms of electric field vector E as
P = eox,FE, (1.15)
where x, is the electric susceptibility. Using (1.15) into (1.14), we obtain
D = ¢ (1+x,) E =€E, (1.16)

where € = ¢y (14 x,) is a dielectric constant or plasma response function. All the macroscopic

properties of the plasma (as a medium) are hidden in the dielectric constant or plasma response

function.

1.4 Thermal Plasma

These plasmas have the electron number density in the range n. ~ (10** — 10'?) em™ and the
electron temperature T, ~ (0.1 — 2) eV, Both the electrons and ions are nearly in thermal equi-
librium having the same temperatures, i.e. T, ~ T;. This approximation is valid in laboratory

plasmas and under the certain conditions, the local thermal equilibrium can be achieved.

1.5 Cold Plasma

The cold plasmas have the electron temperature 7, ~ (1 —10)eV and the electron number
density in the range n. ~ (10° — 10'®) em~2. The electrons are hotter than ions and are not in
thermal equilibrium T, >> T; because ions have high density and high heat capacity relative
to the electrons, therefore, the total heat transmitted to the walls of container and to the

background gas is very small. The cold plasma means small amount of heat transmitted to

container or gas.

1.6 Dusty Plasma

Dusty plasma is composed of nano-meter or micro-meter particles hanged in it. These dust

particles may be electrically charged either negatively or positively depending upon the charging



processes. Thus, a dusty plasma is a plasma containing dust particles, in addition to ions and
free electrons. The charge and mass of dust particles may vary as g4 ~ (10% —10%) e, and
my ~ (1072 — 10“15) g, respectively. Dusty plasma is sometimes known as the complex plasma

due to complexities regarding the size, mass, charge, and shape.

1.7 Fusion Plasma

In 1952, after the formation of Hydrogen bomb, there was a great motivation of ordered ther-
monuclear fusion, as a powerful source of energy. The main work to study the fusion plasma,
the physicists are trying to know how it can be confined to produce the energy and to use it for
peaceful purposes. However, there are two best methods to confine a plasma, one is the inertial

confinement fusion (ICF) and the other is the magnetic confinement fusion (MCF).

1.7.1  Laser Produced Plasma

After the invention of high powered laser and its interaction with a solid materials, a new field of
physics is opened up known as laser produced plasma physics. The latter has received a great
deal of interest of the researchers in recent years. Strong electric fields are produced, when
a high powered laser beam interacts with plasma. The plasma particles are accelerated with
high energies. High-energy physicists have the large expectations that this plasma technique
to accelerate the charged particles can be used to reduce the cost and size of the particle
accelerators, In case of fusion, when laser beam hits the solid target, the solid material is
ablated and plasma is produced at the surface between the target and laser beam. The laser
produced plasma mainly depends on the density of solid target, which is not as very important
in most of conventional plasmas as in laser produced plasma. The main focus of laser produced
plasma is the ICF, in which the laser beam is focused to explode a tiny solid target up to the
temperatures and densities representative of nuclear fusion. The laser beam can enter up to the
critical density of plasma, when laser frequency becomes equal to the plasma frequency. For
the Nd laser light [10] with A = 1.06 pm, the critical surface density exists at 10*' em ™3, and

the critical surface density occurs at 10" em ™2 for COslaser with a wavelength A = 10.6 pum.



1.8 Applications and Motivations

Initially, the word plasma was used for an ionized gas by Langmuir [1881-1957]. In the ionized
gases, the electrons, ions, and neutral particles reminded him like a blood plasma carried
red and white (cells) and germs [11]. Langmuir and Tonks were looking into the science of
Tungsten-filament light-bulbs, while establishing the theory of plasma sheath. Langmuir found
that there are definite periodic variations of electron number density in a plasma discharge
tube, which was later known as Langmuir waves. Now-a-days, the Langmuir's work provides
the basis in most of the plasma processing, which forms the theoretical basis for manufacturing
the combined circuits, After, the Langmuir work, plasma study over the time expanded to

many other directions and some of which are narrated in the following:

1.8.1 Natural Plasmas

Theory of evolution of Universe assumes that initially, there was a fireball of fully ionized
Hydrogen plasma and Universe came into being after a brutal blast about 10 billion years ago.
However, some matter was not in the state of plasma. Most of the stars consist of plasma, like
interiors and atmosphere of hot stars, interstellar, planetary nebula, interplanetary media, the
outer atmospheres of planets, ete. The natural plasma does not exist on the earth and only
occurs in cosmic objects, because in those cosmic objects, plasma has very low number density
and very high temperature as compared to the number density and temperature, respectively,
on the earth. Moreover, plasma can also be produced in the laboratories. In stars, plasma is
bounded by the gravitational force and in the interiors by thermonuclear fusion reactions causing
to emit a huge amount of energy, and this energy is transferred in the form of radiations to
the outer surface. The magnetic fields exist in all the universe of plasma. The average surface
magnetic field of the Sun is nearly of the order 1 to 2 G, but it becomes large in entry and

departure points (magnetic fluctuations). Some of the regions, where the plasma naturally

exists have been explained below:



Earth’s Ionosphere

Earth’s ionosphere has the vital role in the context of radio signal broadcasting. It reflects or
absorbs the harmful radiations coming out from the sun and acts as a shield against the harmful
radiations to protect our life on the earth. Our sun is constantly releasing the radiations which
are very intense and consist of Ultra-radiations, X —rays and v—rays. When solar wind reaches
to the earth’s upper atmosphere, it ionizes the upper atmosphere and making a partially ionized
gas layer of the Earth known as ionosphere [12]. When the transmitter is over the horizon and
emits the radio signal, the latter is reflected back by the plasma in the ionosphere only if the
frequency of the radio signal is less than plasma frequency in the ionosphere, therefore the

ionosphere is important for communication purposes.

Van Allen Radiation Belts

A belt situated in space in the inner zone of the Earth’s magnetosphere and is trapped between
the earth’s magnetic force lines. James Van Allen had discovered this belt and is now named as
Van Allen Radiation Belt. It is a tours containing energetic particles of the plasma around the
Earth that come from cosmic rays and solar winds [13]. It is observed that sun and many other
stars have also such types of belts. Van Allen Radiation Belt can be divided into two distinct
regions. The inner belt contains the combination of energetic protons and high concentration of
electrons with energy more than 100 MeV with hundreds of keV, respectively. These are more
strongly bounded by the magnetic field than in outer belt [14]. The outer belt contains the
energetic electrons and is generally formed by the inward radial diffusion [15, 16|, acceleration
at local [17], because of allocation of energy from the whistler to the electrons of the outer
belt. The electrons of the outer belt may be continuously removed by the collisions of neutral

particles of atmosphere [18] and due to the outward radial diffusion.

Aurora

Aurora is a natural light known as the northern and southern lights appearing in the sky about
50 miles above the surface of the Earth. The charged particles are accelerated into the upper
atmosphere of earth parallel to the magnetic field lines of the earth, colliding with a large

energy. Atoms are excited and light photons are emitted during the de-excitation. Generally,
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Figure 1-1: Van Allen radiation belt
aurora appears in a band known as auroral zone [19, 20].

Corona

It is the plasma in the atmosphere of the sun; corona is present outside the chromospheres and
spreads into the solar wind. There is a temperature of million Kelvins around the sun in the
corona region. In spite of energy reduction due to conduction and radiation, the temperature
of this region remains at the million Kelvin. Actually, it is a challenging assignment for the
researchers to discover the solar corona heating source. The active regions are the loop arrange-
ment joining the points in the photosphere of opposite magnetic polarity, are known coronal
loops. The density varies from 10° to 10'° particles/ cm®, with an average temperature in the
range (2-4) million Kelvin. The active regions contain all the incidents directly associated to
the magnetic field, existing at various heights on the surface of the Sun [21], Corona is the main
arrangement of the coronal loops. These coronal loops actually contain closed magnetic flux
counterpart of the open magnetic flux observed in solar wind and coronal polar zone, spreading

up in the form of loops from solar body [22].

10



Figure 1-2: Coronal loops

H II Regions

In the neighborhood of a hot star, some medium known as the interstellar medium completely
comprised of fully ionized Hydrogen gas. The temperature of this region is so high, and the
Hydrogen gas is ionized by the ultraviolet radiations of the neighboring star. Such zones are
known as H IT regions. Far away from interstellar medium, there are big neutral Hydrogen
clouds, and are known as H I regions, while the cosmic rays and dust particles are the remaining

parts of the interstellar medium.

1.9 Fluid Equation in Plasmas

In the fluid model, the fluid behavior of the particles is studied instead of individual particle
behavior. Let us suppose that a plasma fluid with n;, the mumber density of the jth species (j
equals e for electrons, and ¢ for ions) and fluid velocity v;. Then, the continuity equation can

be written as,

onj + V- (njvy) =0, (1.17)
The momentum equation is
; % B Vp;
Bty Vivy= W (py IE 2 Y0 (1.18)
7 7 1 ?ill C Hj‘.l.iLJ'

11



and the Poisson equation, as

V-E=dr)  gn; (1.19)
7

where the pressure force term (Vp;) is due to thermal motion of the plasma species and the pres-
sure p; = njkpTj. T; is the temperature and kp is the Boltzmann constant. E = —VV/(r,t) is
the induced electric field with an electrostatic potential V. However, by neglecting the magnetic
field effects and using the linear theory, i.e. nj = njo+nj1 , v =vj;, E=E;, and V = V),

the linearized fluid equations becomes

Aimj1 +njoV - v =0, (1.20)
Ovi = Lig, - kel Vnji, (1.21)
L TR0
and
V- -E= 41rz:anj1, (1.22)
i

On the ion time-scale, the electrons can be assumed as massless, or inertialess in comparison

with ions and can be described by the linearized Boltzmann equation as,

V;
Nel = Nep EXP (;}% ) (1.23)
e

1.10 Group and Phase Velocities

To study the waves in plasmas, one must know about the velocities of the waves, i.e. the group
velocity and the phase velocity. Phase velocity is the velocity at which the planes of wave move
with constant phase. It is very astonishing and unbelievable thing to know that in plasma the
phase velocity of a wave frequently surpasses the velocity of light. However, modulated waves
propagate with group velocity instead of phase velocity. Group velocity is always smaller than
the light speed ¢. In quantum mechanics, the velocity of a confined particle is called its group
velocity [26]. Because it changes with wave vector k, the particle becomes less confined, and
the wave packet’s shape expands [27] as shown in the Fig. 1.3.

The phase and group velocities (27, 28, 29, 30] can be given in terms of wave frequency and
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Figure 1-3: Group velocity

wave number, respectively, as

vp = w/k, vy = dw/dk. (1.24)

It is noted that if the angular frequency of wave is directly proportional to wavenumber, then
the group velocity of wave is absolutely equal to its phase velocity. The refractive index may

be defined in terms of phase velocity by the relation n = ¢/v, = ck/w.

1.11 Alfven Theory

The Astrophysicists know that most of the Universe comprises of plasma that is why, they feel
that there should be a better grip on plasma physics to solve the astrophysical phenomena.
Hannes Alfvén established a magnetohydrodynamics (MHD) theory [23] in 1940 for which,
he got the Nobel Prize in 1970 in physics, In his theory, the plasma is basically assumed
as a conducting fluid and when it is kept in a constant magnetic field, the electromagnetic
forces are produced by the every movement of fluid, giving rise to electrical currents, which
provide the mechanical forces through which the fluid's state of motion changes. Thus, a joint
hydrodynamic-electromagnetic wave is generated [24]. This is a very successful theory and is
used to study the star formation, solar wind, solar flares, and sunspots. The MHD theory can

be important in the context of dynamo theory and in the magnetic reconnection. The Alfven
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waves are extremely low frequency waves (25| which occur in the presence of a magnetic field.

1.12 Electron Plasma Wave

The electron wave is mainly produced due to dynamics of electrons in plasma in the presence
of static ions. In order to study the electron plasma wave, the phase speed must be larger than
electron thermal speed, viz. w > kS.. The dispersion relation for the electron wave can be

expressed, as
3
2

2

w?=w? + Sk*S2, (1.25)

where S, = (2kBT¢/m,)1ﬂ is the electron thermal speed and wp. = (4ﬂn¢oea/mg)u % is the

electron plasma frequency.

1.13 Electron-Acoustic Wave

This type of wave is produced in a two-temperature plasma. The ions are treated as stationary
particles whereas the cold electrons are mobile and the hot electrons are assumed to obey the
Boltzmann distribution. The phase velocity of the wave lies between the thermal speed of
cold and hot electrons, (viz. S, << w/k << Sy). Where S. = (2KpT./m.)"/? and S) =
(2K BT;,/mh)V # are the cold and hot electron thermal speeds. T} (T}) is the cold (hot) electron

temperature. The electron-acoustic (EA) wave has a dispersion relation, as

kCg
. (1+ k223, /2 =
Dh

where C, = (wpcApy) is the EA speed, Apj is the hot electron Debye length, and wp, is the
cold electron plasma frequency.

1.14 JIon-Acoustic Wave

We are interested in the dynamics of ions, the later as compared to electrons. At such a time-
scale the electrons are assumed to follow the Boltzmann distribution. The phase speed of IA
wave lies in between the electron and ions thermal speeds as, S; < w/k < S,. The dispersion
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relation for TA wave is given by

s _kc*_m (1.27)
(1+k223,)

where Cs = wpiApe is the IA speed and Ap, is the electron Debye length.

1.15 Light Wave

Light wave comprises of a stream of photons and is an electromagnetic wave. The dispersion

relation for light wave in a plasma medium is given by

2e + K22, (1.28)

where w (k) is the angular frequency (wave number) of light wave.

1.16 Planar and Helical Wavefronts

The wavefronts of the laser beams can be assumed as planar and helical depending on the

following properties:

1.16.1 Planar Wavefronts
e In laser light, the wavefronts are usually planar with uniform phase.
e The wavevectors and linear momentum of the photons are directed along the beam axis.

e BFach photon has angular momentum of o /i aligned parallel or antiparallel to the direction

of propagation.

* Alignment of all the photon spins gives rise to circularly polarized light beam.

1.16.2 Helical Wavefronts

* Laser beams with helical wavefronts have wavevectors which spiral around the beam axis

and give rise to OAM.



Figure 1-4; Light with planar wavefronts,

Figure 1-5: Light with helical wavefronts

* Helical wavefronts are also circularly polarized and showing the total angular momentum

(I + @2 )h per photon [31].
® [ is the number of intertwind helices and o, is the spin polarization.

* Helical wavefronts [32] can be represented in a basis set of orthogonal Laguerre-Gaussian
(LG) beams.

¢ Each LG beam is associated with a well-defined state of photon OAM.

With the invention of laser beam, the photon OAM and many other optical phenomena
have been studied (32, 33, 34, 35].
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1.17 Laguerre-Gaussian Beams

Any laser beam can be described by a Laguerre Gaussian beam [37], which represents a general
solution of the paraxial wave equation in cylindrical geometry. By using the Laguerre poly-
nomials, the Laguerre Gaussian beam can be described in the form of cylindrical coordinates

(r,,2) as

cke (3 \" .2 0p2
et = 5 (565) = () ()

T2
wcexp (i ) exp(lg)exp-i(2p + 141G, (129

where ((z), R(2) and w (2) are the beam parameters. LH' are the generalized Laguerre polyno-
mials, Cé‘,c is an appropriate normalization constant, ! is the azimuthal quantum number and
p 2 0 is the radial quantum number. The characteristics of LG beams can be studied in the

following way:
* LG beams are the natural orthonormal basis set represented in cylindrical geometry.

e If the beam is not a perfect Gaussian, then higher order terms are included in the intensity

profiles of LG modes giving rise to OAM.

The LG beams are circular symmetric about the beam axis.

The phase structure is described by the azimuthal index “1 .

For [ # 0, the LG beams have helical wavefronts with a handedness which is linked to the

sign of “l ", can be chosen by convention.
* The phase variation around the beam centre is 2nl.
e The phase singularity on the beam axis leads to zero axial intensity for [ # 0.
o The radial structure is described by the radial index “ p ”.

e For p = 0, the LG beam gives a ring like profile and for higher values of p, the multi-ringed
profiles with (p + 1) rings are obtained-
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e For assuming | = 0 = p, the lowest order beam LG known as Gaussian beam can be

recovered.

1.18 Angular Momentum

Experimental studies [38] have confirmed the presence of the orbital angular momentum (OAM)
by inserting the spiral phase plate to change the Guassian modes into the Laguerre Guassian
modes containing the azimuthal phase term exp(ilyp). In 1936, Beth, experimentally studied
[39] the mechanical torque created due to the interchange of angular momentum to a half-wave
plate. The photon angular momentum [45] is essentially composed of two parts, one the spin
angular momentum due to polarization states and the other is the orbital angular momentum
which is produced due to angular phase structure of the wavefronts. Hence, the total angular
momentum involving the photon beam is the sum of the spin and orbital angular momenta i.e.
M = (l + o) h, where o.(= +1) indicates the left and right handed circularly polarized light.
The spin angular momentum becomes zero (o = 0) for linearly polarized light. Moreover,
l(= 0,41) is the quantum number of the orbital angular momentum, which corresponds to
the azimuthal index of the LG modes. It has been noticed that the electrostatic waves (like
plasmons [52], phonons [56], etc.) do not possess any spin angular momentum besides the orbital
angular momentum due to their longitudinal nature of propagation. Since the electromagnetic
waves (photons) are the transverse waves and therefore carry both spin and orbital angular
momenta. Very recently, Shukla [76] has explained the twisted shear Alfven waves with orbital

angular momentum states.

1.19 Layout of Thesis

In the first Chapter, we have studied about the plasma and briefly described its properties
and criteria. Different types of the plasmas have been explained and presented the dispersion
relations of well-known plasma waves, such as, the light waves, the electron waves, the ion-
acoustic waves, etc. Furthermore, the spin and orbital angular momenta, the Laguerre-Gaussian
beams, and the properties of the planar and helical wavefronts are discussed in details.

Second Chapter explains the of ion-acoustic waves (IA) or phonons with orbital angular
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momentum in an unmagnetized collisionless uniform plasma. For this purpose, fluid equations
for ions are employed derive a linear dispersion relation for phonons in the paraxial approxima-
tion. A beam as well as Laguerre Gaussian solutions are used to analyze the properties of LG
phonons. The electrostatic potential problem is solved in the context of paraxial approximation
to obtaining the electric field components in terms of LG potential. Furthermore, the energy
density, energy flux, and the angular momentum density of the phonon modes are computed
analytically and presented numerically.

Third Chapter the studies of the Raman and Brillouin backscattering of the beams carrying
the orbital angular momentum. For this, the nonlinear dispersion relations of electromagnetic
and electron plasma waves are derived and coupled together. Using the paraxial approximations,
the coupled equations are solved for Laguerre Gaussian modes and the growth rates for the
backscattered transverse and electrostatic waves are derived. We have also considered the
coupling of the electromagnetic waves with the ion-acoustic waves (phonons) and obtained the
growth rates.

The last Chapter discusses the extension of phonon beam’s study to electron-acoustic (EA)
wave carrying a finite amount of orbital angular momentum in a two-temperature electron
unmagnetized plasma. The usual dispersion relation of the EA wave is employed to obtain
an approximate paraxial equation for EA waves. The electrostatic potential problem is solved
for Laguerre-Gaussian beam solutions. The expressions for the energy flux and the angular
momentum involving EA waves are presented in an unmagnetized collisionless plasma. Numer-

ically, the Laguerre-Gaussian potential profiles are examined for the variation of azimuthal and

radial mode numbers,
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Chapter 2

Ion-Acoustic Waves with Orbital

Angular Momentum

2.1 Introduction

There is a growing interest relating to studying the light-matter interaction [40]. The inter-
actions or the exchange of angular momentum between the electrostatic and electromagnetic
waves has been studied extensively (41, 42, 43, 44| in a plasma. In 1936, Beth and Holbourn
experimentally computed [39] the mechanical torque by the exchange of angular momentum
to a half wave plate. Allen et al. [45] theoretically investigated the orbital angular momen-
tum (OAM) involving the photon beams by employing Laguerre-Gaussian beams. Just like
energy and momentum, the angular momentum can also be never created nor destroyed but
only be exchanged. First time, Mendonca et. al [46] presented the angular momentum states
for phonon and plasmon fields, which may be excited by the nonlinear wave mixing, involv-
ing the scattering phenomena. They derived nonlinearly coupled paraxial wave equations and
instability growth rates in the paraxial approximations. Brillouin and Raman instabilities are
very famous in the application of laser fusion [47]. Courtial et al. [48] explained the rotational
frequency shift, when the angular momenta (spin and orbital angular momentum) are added to
the plasma beam. It is found that the angular momentum associated with the electromagnetic
radiations comprises of two distinct parts, one is related to polarization (due to transverse part

of electromagnetic radiation) or spin and the other is the photon orbital part due to angular
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phase structure (32, 33, 34, 35, 49]. Similarly, photon beams carrying spin and orbital angular
momenta related to electromagnetic fields have been studied in both classical and quantum
electrodynamics |50, 51]. In this Chapter, we will be interested to study ion-acoustic waves
carrying a finite amount of OAM in an unmagnetized collisionless uniform plasma. For this
purpose, we will consider the dynamics of mobile ions and assuming the electrons as Boltzmann
distributed. The cherge-neutrality at equilibrium imposes the condition n.q = nj. Since we are
interested in the A waves on a time scale longer than the electron plasma period, therefore,

the wave phase speed can be described as S; €« w/k < S, where S; (S,) is the ion (electron)
thermal speed.

2.2 Dispersion Relation for Phonons (Ion-Acoustic Waves)

To calculate the dispersion relation of the ion-acoustic waves or phonons, we consider an un-
magnetized collisionless plasma containing the electrons and ions. The ions are described by the
fluid equations (The continuity and momentum equations), whereas the electrons are assumed
to follow the Boltzmann distribution. The linear dynamics of the ion-acoustic waves is governed

by the following fluid equations:

Gy +nigVvi = 0, (2.1)
2
Oyvir = iE—E’-Vﬂﬂ: (2.2)
my 0
and
V-E =4rne(nsy — ne). (2.3)

Here n;; shows ion number density perturbations with an equilibrium part nyg. E = ~VV(r,t)
is the electric field, V(r,t) is the induced electrostatic potential, S; = (kpTi/mi)'/? the ion
thermal speed, and v;; stands for the ion fluid velocity. The perturbed electron density may
be approximated by the Boltzmann distribution in the limit eV/kgT, << 1, as

eV

Mgl = ﬂeo'kB—T'. (2‘4)
(4
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Here ne) (< nyp) is the perturbed electron number density with equilibrium state n.q, 7. and
T; are the electron and ion temperatures, respectively, kg denotes the Boltzmann constant.

Taking the time derivative of Eq. (2.1), we obtain

a 1 an,-l
ZV v = Tn (2.5)
Equation (2.2) after taking divergence can be combined to (2.5), obtaining
. 5272 | ny = Ti0y2y (2.6)
az = '
Substituting (2.4) into (2.3), we get
_v2)2
(1__‘;&) V = dmn;, (2.7)
ADe

where \p, = (kpT./4men.)'/?. For long wave length limit, i.e. V2\%, <« 1, the electrostatic
potential gives
V =dmny A}, (2.8)

Assuming that 8%n;, /8t% > S?V?n,, and combining Eq. (2.8) with (2.6), we have

(% - cfv“) sy < (2.9)

Equation (2.9) describes the ion number density perturbations with an ion-acoustic speed Cy =
Wpirpe = (kpTe/mi)'/?.

2.3 Paraxial Equation for Ion-Acoustic Waves/ Phonons

In order to study orbital angular momentum and the paraxial equation for the ion-acoustic

waves, we consider a beam type solution as given in the following form:

ng(r, t) = np(r) exp (1k:z — wt) , (2.10)
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where 7ig(r) is a slowly varying amplitude in spatial coordinate describing the wave profile.
Decomposing the operator V in Eq. (2.9) into its perpendicular and parallel components, that

is, V=V, + 28/8z, one obtains a Helmholtz equation without any approximation
(V2 + k) i (r, ) = 0, (2.11)

where k(= w?/C?) is the longitudinal wave number squared and w is the angular wave fre-
quency of the IA mode. Equation (2.11) can be described as parsed Helmholtz equation

V2 &, ik B i) 2.12

17o(r) + ﬁng{r) +2i ,Ezm:.(r) = (), (2.12)

For the paraxial approximation i.e. 8%fig(r)/02% < 2ik,0ng(r)/0z, Eq. (2.12) reduces to

(v‘i + m,%) fig(r) = 0. (2.13)
Here, the paraxial approximation means that the wavelength (A = 27 /k;) associated to fig(r)
changes very little along the longitudinal direction (z-axis). Equation (2.13) also satisfies the
linear dispersion relation of the jon-acoustic waves w? = C?k? . The transverse Laplacian opera-
tor can be expressed into cylindrical coordinates, as V2 = (1/r)(8/8r)(r8/dr)+(1/7%)8% 8¢,
to obtain an axially symmetric beam solution in the form of Gaussian function, as

iker?
fole) = a(r,2) = No(z)exp 50 (214)

with Ng(z), the maximum amplitude associated with Gaussian beam, R(z), the complex beam

waist and r? = 2? 4-y? is the radial coordinate squared. Now using this solution into Eq. (2.13),

we obtain

L (1 1 dNg k%r? (dR = e
{oike (5+ 7 2) + o (T 1) ot =0, (2.15)
Equation (2.15) is thus satisfied, when Ny(z) = —N—"}%)Ri and R(z) = Rg+z— zg. Here Ny(0), the

maximum wave amplitude at focal position (z = zp) and Rg the minimum beam waist. Thus

the solution may be written in the following form
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= _— = No(0) 1 ik,r?
nﬂ(r) — nﬂ('l". 3) = mm{p (Em) : (2.16)

This is the lowest order mode of the LG solution carrying zero orbital angular momentum. For
incorporating the latter, we have to study the higher order modes of LG solutions involving
the well-defined orbital angular momenta. To express (2.13) in terms of LG functions, which

represents a more general solution for the paraxial equation. The LG solutions may be described

No_ [+

fio(r, @, z) = %X‘“L"' X) & (ily) (2.17)
o\”, 1, ‘_2\/1? p! p( exp 2 expliy), .

where X = r?/w?(z). w(z) denotes the IA beam width. Np stands for maximum amplitude

involving IA mode at focal position, = 0,+1,42, ... and p = 0,1,2, ... show the angular and
radial quantum numbers, and  is the azimuthal angle.

One can expressed the associated Laguerre polynomials into Rodrigues formula, as
Xtra
() = exp(0) 2 [ (x4 a0} (218)
Assuming a special case, p = 0, | = 0 and R(z) = ik.w?(z), the lowest order mode i.e. the

Gaussian beam solution can be retrieved [52]. Equation (2.17) in a more simple form can be

described as,

ng(r, t) = fu(z) exp(ily + ikz — iwt), (2.19)

where 7y (z) = NoFy(r, z) with Fy(r,z) = -ﬁ; {S%Fn}& X'”Lgl (X), the Laguerre Gaussian
or mode structure function. Thus, in the phonon beam, the wavefront would rotate around the
beam axis in a spiral, looking like a fusilli pasta and giving rise to zero intensity at the beam

centre.

2.4 Electrostatic Potential Problem

To investigate the 1A mode or phonon mode with a well-defined angular momentum (viz.

[ # 0), we demonstrate the electrostatic potential in term of LG functions. In this context, the



Poisson's equation is considered in which the electrons are assumed to follow the Boltzmann
distribution, whereas the ions are treated as dynamic. Thus, we may write the electrostatic

potential associated with the electron and ion density perturbations, as

V2V(r,t) = —4me(niy — ne) (2.20)

One can express the electrostatic potential V(r,t) in terms of LG functions as

V(r,t) = V(r, 2)eliletikss—ivt) (2.21)

where the amplitude of the electrostatic potential corresponds to Vy(r, z) = %Fp;(r, z). Substi-
tuting (2.4) and (2.21) into (2.20), a simplified form is obtained by noting V? = V% ~k2?+-2ik. Z,

as
V3 ik | — 52 — oy V(r,t) = —dmweny (2.22)
& *0z ! ,\2,_-,,_, : :

This equation can easily be solved by applying the paraxial equation similar to Eq. (2.13),
obtaining

(Vi + 211:,%) V(rt) =0, (2.23)

Thus, Eq. (2.22) may be reduced to

A )
V(l‘. t) = 4me (m%%—) L (224)
z De

This represents a relation between LG density perturbations and the amplitude of the LG

potential perturbations, LG density perturbations help to determine the amplitude

- dmeNoA%,

- : 2.25
T 1R, (345

Note that the amplitude of the LG potential is appreciably modified due to the occurrence of
the Boltzmann electrons through the Debye shielding length. Now we can express electric field
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in terms of Laguerre Gaussian potential by the relation

E(r.t) = —VV(r,1). (2.26)

With its components into cylindrical coordinates

V OFy
fe = _F_p; ar’
By = —ic, (2.27)
1 an;

Similarly, in the usual way, the electric field may be expressed, as
E = —ik, V(r,t). (2.28)
Here, k., stands for the effective wave number and is given by

- 1 BFP,') ~ e ] 5Fp} N

The radial, azimuthal, and axial unit vectors are denoted by &,, é,, and &., respectively. In

the following we shell calculate the energy flux and OAM associated with ion-acoustic mode or

phonon mode,

2.5 Energy Flux and OAM Of Jon-Acoustic Wave

When an ion-acoustic mode propagates in an unmagnetized collisionless uniform plasma, it
carries a finite amount of orbital angular momentum. The spin angular momentum associated
with the ion-acoustic wave is zero because of its electrostatic nature. The energy density [52]

for Laguerre-Gaussian IA mode can be obtained by considering the dispersive properties of the

plasma medium, as
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EI? 9

o LB &
b 8w &d(ew),

(2.30)

and energy flux is given [52] by
Tp = Wogles, (2.31)

where &, (= kes/ | key |) is the effective unit vector along the electric field, v, denotes the

group velocity of the IA wave. The dielectric response function of IA wave is giving by
2
1 Wi

Bl -
k=t g T

(2.32)

where Ape = Se/wpe. Thus, the expression for the energy density becomes, as

_|EP 1w (w? - S2k2)
W= e {1 + % 2 + (2 = S?k3)2 . (2.33)

To describe the energy density in terms of LG potential, we use the relation

|EP=E-E' =k, |V . (2.34)

One can express the angular momentum density in terms of average of linear momentum density

in cylindrical coordinates, as

M(r)=rx <P >, (2.35)
where
&
KBty ST 20y (2.36)
Combining Eqs. (2.33) and (2.34) and substituting into Eq. (2.36), we get
1, <| VB> 2 (2 4 S2k2
<P>= e 1+ 21 . s (W74 8¢ ;) 8es. (2.37)
8"“’9 ADekx (w’ = S?kf)

Using Eq. (2.37) into Eq. (2.35) and after doing some straightforward algebra, we obtain
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| ke <] V(r) 2> ﬁﬂ_ B i_f|lan; B i_r@F,,; B = ]
B - 8iuy o Fy Or +rks Fy 0= By Hi0)
2. (w? + S?k2
'\anz (w2 — S;zk?)

(2.38)
The axial part of (2.38) along the direction of propagation of the longitudinal IA beam is

practically important, which is proportional to the angular mode number /, similar to the case

of photons (53] as

M

(w? + S22
_ ke 1< V() 2> [1+ S Cal ) (2.39)

8 Xpek? © (w2 - 52K2)°
Note that M, is directly proportional to the magnitude of Laguerre Gaussian potential and
inversely proportional to the phonons group velocity., If we consider that the angular mode
number [ = 0, then angular momentum density vanishes. Hence the lowest order mode is a
pure Gaussian mode with no OAM. However, for higher order modes (! # 0), a finite amount
of OAM is associated with the IA beam. Equation. (2.25) exhibits that the amplitude of
Laguerre Gaussian potential is generally dependent on the ion density perturbations and the

electron Debye shielding length, playing an important role in the 1A orbital angular momentum

states,

2.6 Numerical Analysis of IA Waves:

In this section, we numerically plot LG potential V(r) associated with the IA waves (phonons)
as a function of “r ", and choose some typical values from the laboratory plasma [54] such as
Te =~ 3 x 10'K, and nep = njp =~ 10"em=3. By using these values, we find wp; ~ 1.4 x 10%s77,
Wpe = 2 X 10'%~1 and Ap, ~ 10~%¢m . Assuming that ion density perturbation, viz. Ng/nm ~
0.1, which leads to calculate the amplitude of LG potential as Vg ~ 8.3 x 10~4V with IA beam
waist wg = 3, where A = 10 em is the wavelength of phonons. Figure (2.1) depicts the variation
in LG potential V(r) caused by phonon beam, as a function of r at the focal point for ¢t = 0.

For assuming | = 0 = p, the lowest order of the LG potentials (Gaussian profiles) are obtained
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for varying IA beam width wg(= 2\, 3X,4A,5)\,6A). It is noted that the amplitude of the LG
potential remains the same but width of profiles increases with the increase in the IA beam
waist. However, for [ = 0 and p # 0, the profiles become a non-Gaussian. It is significant to
note that the amplitude of the Laguerre Gaussian potential due to the phonon modes remains
constant while TA beam width decreases for increasing radial index p. It is examined that the
number of nodes on both sides increases with increasing the value of radial index p as shown
in the Fig. 2.2. Firgure 2.3 shows the effect of angular mode number (I) on the LG potential
V(r). The latter represents positive LG profiles for the even values of angular mode number
(= 0,2) and the negative LG profiles are obtained for the odd values of angular mode number
(= 1,3), while fixing the azimuthal angle ¢ = , the ion beam waist wg = 3\, and p = 0. It is
also seen that the peak of LG potential increases when the angular mode number is increased
and the node points move toward a larger value of r. Figure 2.4 displays the effect of radial
mode number p(= 0, 1,2, 3,4) with fixed azimuthal angle ¢ = 7 on the LG potential profiles. It
is observed that at fixed [ = 1, the number of node points are increased giving rise to significant
modification in the LG potentials.

To study the LG potential profiles, we have used the following table to compute the Laguere

polynomials and Laguerre-Gaussian functions with different quantum mode numbers { and p.
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[ T - SN - S I -

ce =

10
11
12
13
14

. Laguerre Gaussian polynomials

L,'i' (z) = e{”)ﬂr-:li [ {attPel-2}]
LY(z) =1

L?(:r:) =1—z

z)=1-2z+%

L3(z) =1 -3z + §2? — }2°

£9(2) = 1 — 3z + §a? — 3 + Aot

Li(z) =1
Li(z) =1
L3(z) =1
Li(z) =1
Li(z) =1

Li(z) =3 - 3z + }2?
Li(z) = 4 — 6z + 22% — }a®
L}(z) = 5 — 10z + 522 — §2°

1.4
+5%

Laguerre Gaussian functions

Fy(r,2) = zh= {!'_:FE}” AL () el==12)
Foo(r,2) = 55 exp (-5)

Fio(r, 2) = 5(1 —z) exp (- )

Fyo(r,2) = 3 (1 -2+ 5—’) exp (—%)
Fso(r,2) = 5= (1 - 3z + §a* — §a*) exp (-3)
Fypo(r,2) = 2—&; (1-3z+ %zz = §x3 + 11!334)
xexp (~§)

Foy(r, 2) = #(a’) exp (%)

Fatr,) = 1% (s xp (-5)

Foy(r, z) = 5‘65; (z%) exp (%)

Fou(r, 2) = Jz(a) exp (~5)

Fu(r,2) = 3%z (1 —z)exp (-§)

Fu(r,2) = 3y3V32 (3 - 32+ §a7) exp (~§)
Bl ) = Jymd—be+ 22 jot) wp (-]
Fu(r,z) = %z (5 — 10z + 522 — #a° + Faf)
xexp (—3)
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Figure 2-1: Shows LG potential profiles or a function of r for varying wp = 2A (square doted
curve), wg = 3A (small doted curve), wp = 4\ (small dashed curve), wg = 5 (long dashed
curve), wp = 6A (solid curve) these are the pure Gaussian curves with fixed [ =0 = p.
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Figure 2-2: Shows the variation in the LG potential V(r) for varying radial mode number p=0
(square doted curve), p=1 (small doted curve), p=2 (small dashed curve), p=3 (long dashed

curve) and p=4 (solid curve) with fixed angular mode number, 1=0, and wy = 3A, and A = 10
3
cm
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Figure 2-3: Shows that the LG potential V(r) for varying angular mode number [ = 0 (square
doted curve), { = 1 (small doted curve), | = 2 (small dashed curve), [ = 3 (long dashed curve)
and [ = 4 (solid curve) with fixed radial mode number p = 0, the azimutal angle ¢ = =
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Figure 2-4: Shows the variation of LG potential profiles for fixed [ = 1, and with changing,
p = 0 (square doted curve), p = 1 (small doted curve), p = 2 (small dashed curve), p = 3 (long

dashed curve), p = 4 (Solid curve), at a focal point for ¢ = 0, ¢ = m, and wp(= 3)).
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Chapter 3

Raman and Brillouin Backscattering
of Light Beam Carrying OAM

3.1 Introduction

The exchange of angular momentum between the electrostatic and the electromagnetic waves
has recently been studied in an unmagnetized collisionless plasma [42]. In this respect, Beth
and Holbourn [39] computed experimentally the mechanical torque by exchange of angular
momentum to a half wave plate. Allen et al. [45] theoretically investigated the orbital an-
gular momentum of the Laguerre-Gaussian light beams. Mendonca et al. [52] computed the
orbital angular momentum of plasmons in an unmagnetized plasma. Ayub et al. [56] extended
the study of the orbital angular momentum for phonons. The exchange of angular momen-
tum between electrostatic and electromagnetic waves has been explained in a plasma under
the Brillouin and Raman backscattering processes. It is now established that [46] the angular
momentum of electromagnetic radiations comprises of two distinct parts, one related to the
polarization state due to transverse part of electromagnetic radiation or photon spin and the
other is the orbital angular momentum (OAM) caused by the phase structure. We shall study
the coupling of the light waves with the electrostatic modes like plasmons and phonons. For
this purpose, we shall derive the nonlinear dispersion for light waves, electron waves and IA
waves and we introduce the related concepts of photons, phonons and plasmons angular mo-

mentum states. These electrostatic and electromagnetic wave modes may be determined by the
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solutions of the paraxial equations. Furthermore, solve these nonlinear equations for Laguerre-
Gaussian mode solutions by coupling the incident and backscattered nonlinear equations in an
unmagnetized collisionless uniform plasma. The spin effects for the electrostatic oscillations are
not present, which means that their orbital angular momentum corresponds with their total
angular momentum. When the electromagnetic and electrostatic waves nonlinearly interact
with each other then the instability growth rates with OAM states are observed. Brillouin and
Raman instabilities are famous in the application of laser fusion [47]. Raman backscattering
is now distinguished as a dominant process for very high-intense laser plasma interactions in
the reference of inertial confinement fusion (ICF) research [57]. The orbital angular momen-
tum’s dependence experimentally has been observed in Brillouin scattering of radio waves in
ionosphere [69], which anticipates for a theoretical understanding. In all the ICF studies, the

photon orbital angular momentum in specific and angular momentum in common have been

orderly ignored.

3.2 Coupled Nonlinear Dispersion Relation for Electromagnetic

Wave

First of all, in order to study electromagnetic waves in a plasma, we consider the following

well-known Maxwell’s equations, as

Wt o208 (3.1)
¢ c Ot
1B
VxE= o (3.2)
and

B=VxA, (3.3)

where
Je = —neeve, (34)

is the electron current density, ¢ is the speed of light in vacuum and A is the vector potential.
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Equation (3.1) may be expressed, as

1 0E

47
R = oy ¥
—V A— o JE+C at ¥ (3 5)

where we have assumed Coulomb gauge i.e. V- A = 0. By using linear theory, we assume
that n, = ng+; and ve= v , ng is the electron density at equilibrium, 7i; is the electron density
perturbation and v, is the perturbed electric field velocity. Substituting these perturbations

the current density gives

Je — —nge.\'r;—ﬁl E\-ﬁ (36)
Putting Eq.(3.6) into Eq.(3.5), we get

47 4 19E
o 2 [ Vi ——T71 Y, _—— P
VA z ToeVi—— nlev1+c TR (3.7)

From (3.2) and (3.3) we express the electric field in terms of vector potential, as

10A
=—ca’ (38)
where the velocity gives
_ eA
vl:mec (3.9)
Substituting Eq. (3.8) and Eq. (3.9) into Eq. (3.7), we get
(67 — V2 +wi) A= —wf,s%;-A. (3.10)

where wpe = (47[71082/171;)”2 is the electron plasma frequency, and m, is the electron mass.
Equation (3.10), shows the propagation of electromagnetic waves in an unmagnetized plasma.
The term on the R.H.S represents the nonlinear contribution, while, the L.H.S gives linear
terms. Considering the linear part and assuming a plane wave solution and wp. — 0, we obtain

the usual dispersion relation of the electromagnetic waves as w? = c2k2.
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3.3 Nonlinear Dispersion Relation for Plasmons (Langmuir waves)

The dynamics of the electron waves or plasmon mode is governed by the following equations

The continuity equation for electrons

gy +ngV vy =0 (3.11)
The electron momentum equation,
5 % ke e
(8, +¥1- V) ¥ = e . SoBR Vity. (3.12)
Me mMeNnp
The Poisson equation
V: E = —dwemn _ (3.13)
Taking the divergence on both sides of Eq. (3.12), we obtain
1 kpT,
B (VW) + =V | # = ——V - E— 22 V%3, (3.14)
2 Me MeTg

where we have used v,V - v; = %Vz |1 2.
Now substituting the Poisson’s equation, the continuity equation, and vi=eA /m.c info

(3.14), a simplified equation is obtained

o’ 2172 2\ = noe’ o 2
It is the nonlinear dispersion relation of the electron waves, S, = (kgT. /‘mg)u % the electron
thermal speed with electron temperature T,. Right hand side shows a nonlinear contribution
to the linear dispersion relation on the L.H.S. Equation (4.15) can be solved by using a plane
wave solution while neglecting the nonlinear term to obtain w? = w2, + S2k?, where w(k) is the

angular wave frequency (wave number) of the electron waves.
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3.4 Paraxial Equations for Electromagnetic and Electron Plasma

Waves

Let us now suppose that the Electromagnetic and Electrostatic waves are propagating along

the z-axis and the solution to equations (3.10) and (3.15) are given by

A=) Ajexp(ik;z —iwjt) +c.c., (3.16)
j=1.2
and
it (r,t) =iy (r,t) exp (ik'z — iw't) + c.c. (3.17)

Here c.c. stands for complex conjugate, k; and w; are the wavenumbers and the frequencies of
two electromagnetic waves (the incident and scattered one). k' and «’ are the wavenumber and
wave frequency of electron waves,

Supposing that 7; and /fj are varying slowly on time and space scales and they are much
larger than the corresponding periods and wave length. Decomposing the operator V = V| +
2.2 and assuming the paraxial approximations viz. 8%f,/02% << 2ik;07 /02 and 8y <<

21w’ 9yny, the wave equation (3.10) may be written into two coupled equations, as

D o~
DAy =B 5 (3.18)
ng
and .
o0 A L 3 (3.19)
)
where
g O 2 (2 = 0 T - 2 .
Dy = 21w, 3t +c (VJ_ -+ 21!\.]'6—2) y Dy = 2'!0)2'5!: +c (VJ_ -+ 2'&’6262 (3.20)

Similarly, the equation (4.15) can also be written in the form, as

" K2 .
D'y =gz —— (Al ; AQ) , (3.21)
a
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where

0 0
Fi ooy ot 2 2 1t
D' = 24w T +c (V-L + 2ik _63)' (3.22)

where we have assumed 7 = 1,2, then the momentum and energy conservation give

ky = ko + k', and w; =wy+w (3.23)

The linear dispersion relations are satisfied for electrostatic and transverse modes, k™S? =
(w? - w2,) and k%c? = (w? — wl,), respectively, and if w' = wpe, then as a result the incident
wave frequency becomes twice of the value, i.e. wi > 2wp.. It is also seen that, in order to make
all these conditions well-matched with each other, we have to consider the two electromagnetic
modes move in the opposite directions, with &’ > 0 in case of electrostatic wave, with k; > 0,
and ky = — | kg |< 0, for the incident and backscattered waves, respectively. For ignoring the
coupling terms on the R.H.S, the linear approximation is obtained. The temporal dependence
of the amplitudes 77 and A'j will disappear and the linear equations may be converted into the

pure paraxial equations, having the form,

(vi + 23';;3-(%) A;=0 (3.24)
and
(vi + 2ik§,£) f(r) =0 (3.25)

Assuming the cylindrical coordinates 7 = (r, ¢, z), we express the paraxial solution of Eq. (3.24)

as the linear combination of the Laguerre Gaussian modes,

Aj(r) = ffp_,.gj (2) Fpyi; (1, 2) exp (iljp) + c.c., (3.26)

where [, (r, z) are the Laguerre Gaussian functions which are defined by,

1N (G407 iyl 1
Fy(r,z) = (2\/;,) { : pf) } Xl cxy (3.27)

The integers [, p; denote the azimuthal and radial quantum numbers, and ¢ stands for the
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azimuthal angle and X; = 3?:_85‘ where w;(z) is the beam waist. Associated Laguerre polyno-
mials can be defined as Lg} (X;) = X;l’/pj ['ﬁ’? Xti+Pi exp(— X,)}] exp(X;). The orthog-
onality relations of the Laguerre Gaussian modes can written as, [[*rdrF,, i, (r, z)Fy, 4, (1, 2)
X f{f" dpe'h=12)¢ = §, . 61, 1,, where § is the kronecker delta symbol. These solutions cor-
respond to the definite photon OAM states described by azimuthal quantum numbers [;. In
the same way, we can say that the solutions for the Eq. (3.25) give a superposition of the
plasmon angular momentum states, described by azimuthal and radial quantum numbers I
and p', respectively of the form, Fyy(r,z)e?'?, and the beam waist for both waves is consid-
ered to be the same, while the electrostatic waves have zero spin and angular momentum, no
intrinsic angular momentum, because (in contrast to the transverse photons) plasmons have
zero spin. Thus, angular momentum states of plasmons correspond with their total angular
momentum states. Therefore, the electric field fluctuations involving with the plasmon states
will stay purely electrostatic, while obeying the condition V x E = 0. The solutions in the
form E(r,t) = E(r) exp (ik'z — w't + il'yp) , also indicate the angular and radial components of
electric field. Thus, the solutions for the electron density fluctuations of LG modes can be

expressed as,

fir(r, ¢, 2) = Ay (2) Fye (r, z) exp(il'p + ik'z — iw't) + c.c. (3.28)

From Egs. (3.18) - (3.21), we note Lo see that even in the form of LG modes they express the
exchange of linear momentum as well as orbital angular momentum and exchange of energy,

between longitudinal and two electromagnetic waves.

Now solve Egs. (3.18), (3.19) and (3.21) by using Eqs. (3.26) and (3.28), respectively, as

2
Qiwy = g @ FE = ;F;’ @on) F' Fy Fyelf+Ha=h)e (3.29)
R S —l' 41y ~l3)
Qiwy g GaFy = @y F' AP ell='+h=la)e (3.30)
0

and

e
i —~n'F'2 no

5 2,_.2 K G g Fpelat -l (3.31)

where we have assumed that, Fj = Fy,(r, 2), F' = Fpp(r, 2), @; = }-l.pj.;j(z, t), n' = nyp(z,t).
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Now integrating over ¢ on both sides Egs. (3.29), (3.30) and (3.31), we obtain,

w2,/
F20,d) = —i-—2 G F' R (! + lp — 1),
Mgty
2 “-‘ge”“ 4 !
FyQydy = —i iy FY Ry Fod (=1 — g + 1
9 0pay 12nuw261 1 F20( 2+ h),
and
2102
Cnpek™ o, .
F20m! = —zﬁw(al VP EESS (=l = la + 1)

Integrating these three equations over the radial coordinate r on both sides, we get

8;5‘:1 = —iC],'n!az,
6;&:2 — —éczn"“'(il ar 6:&; = z'c:gn"ﬁ}‘,
and
6 Ny L Y —r
' = —ic'(dy - d3),
where we have assumed that
wge n ,  nge’k

— e = ———
7 2ngw; dmci'

and

R = R(2) “_-'f By Fy F'rdr.
0

We have also used the following orthogonality conditions,

oo (=] (».=]
/ Firdr ~ 1, / Firdr~1, f Frdr ~ 1,
0 0 0

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)

3.4.1 Growth Rates of Backscattered Electromagnetic and Plasmon Waves

In order to study, the stimulated Raman scattering by assuming the intense incident wave

with amplitude @; and to applying the parametric approximation 8a,/dt ~ 0, we consider
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the maximum coupling conditions corresponding to parallel polarization d@; || @. Then the

remaining two equations can easily be solved to obtain the growth rates as,

62
o =7, @40
and
d* 2
g2 =" aa, (342)
where
2 ek’R 2
=Wy 3.43
T = Wae 2'”13\/;?&.}_2 | a1 | { )

Equations (3.41) and (3.42) are the second order differential equations having unstable solutions

as,

az(z,t) = az(z,0)e , and n'(z,t) = n'(z,0)e™ (3.44)

These equations indicate the incident wave of amplitude a; exciting the Langmuir waves with
different angular momentum states. If we consider the plasmons carrying no angular momentum
then following state lp = —l;, will be the state of the backscattered wave, but it has been
observed that the lp # —[; is the state of backscattered signal, which indicates that the plasmons
are moving in the medium with non-zero AM states, then the Raman backscattering can be used
as an influential diagnostic method to observe the internal plasma vorticity. We suppose now a
motivating cases in which we use two counter propagating electromagnetic waves from outside
to excite the plasmons to well-defined angular momentum states. Going back to Eqs. (3.35),
(3.36) and (4.37) the amplitude of the perturbed plasmon state can be found, as a function
of az(z,0). We assume | a; || az | and apply the parametric approximation da;/dt = 0, for

parallel polarization, Eqgs. (3.35), (3.36) and (3.37) can be reduced to the following form,

Ay = icpn'@ye 0w, (3.45)

and

O’ = —id(d; - ay)e'd, (3.46)
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where a finite frequency mismatch Aw = wy —wq — w/ has been introduced, as the two electro-
magnetic wave modes have been executed from the outside, therefore the waves are essentially

not in a definite matching conditions. So, we may write

' = Pn’ +idwdn!, (3.47)
and similarly,
O ay = y'dy — iAwd,ds, (3.48)

where, ez | a3 |*= 4. Now solve these two equations with the initial conditions such that

n'(z,0) = 0, and for arbitrary ay(z,0), we can write the solutions in the following form

d@j(z, t) = @3(z,0) cosh(gt)el—A«4/2), (3.49)

or

dy(z,t) = (2, 0) cosh(gt)elA«t/2) (3.50)

and g = [y? - (Aw/2)]”2. Now putting the value of @3(z,t) from Eq. (3.49) into Eq. (3.46)
and then integrating w.r.t. time, the final result for density perturbation becomes

e 5
n(z,t) = ——i%ag(z,O) sinh(gt)e(i8«t/2) (3.51)

These two Eqgs. (3.50) and (3.51) explain the excitation of backscattered plasmon angular mo-
mentum state which is characterized by the azimuthal number I/ = [; —[3, and the backscattered
growth signal with OAM state l;. Growth rates are depended on the axial position z, which
means that very rapidly the axial profile of both the electrostatic modes and excited backscat-

tered will diverge from its linear solution, but the radial beam profile will not be changed.
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3.5 Brillouin Instability or Ion-Acoustic Wave

Here, we consider the dynamics of ion-acoustic waves (phonons) and derive a nonlinear equation

for phonons. For this purpose, we consider the momentum equations as

ad k
L RTINS ..
ot Me MeMe

Ve (3.52)

Taking the V- on the both sides and assuming inertialess electrons compared to ions so that we

obtain

eV E=-m.V?|va |? —%V"!ng;. (3.53)

el

The linearized momentum equation for cold ions is given by

6Vf1 e
i G 3.54
at M - by
The linearized continuity equation for ions,
a -
“—;1 = -1V - vi1, (3.55)

Taking the time and space derivative of equations (3.55) and (3.54), respectively as

621’1;'1 6 (V L Vn)

ol = g Y1) (3.56)

and
d (V . Vﬂ) = Ze
——g = (3.57)
Combining Eq. (3.56) and (3.57), we may write
6211{] Ze
—at2 = ~ﬂ10'ﬂv B, (3-58)

where Z is the charge number and M is the mass of ion. Substituting Eq. (3.53) into the Eq.

(3.58), we get

8n; Z kgT.
8?2’1 =niops (meV2 | ver 2 +%V2ne1) (3.59)
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As we also know that | vey [*= € | A |?/m2, Zngy = ne , and Znj = neo at equilibrium.

Substituting these values in Eq. (3.59), the final result gives

2 Zn.
(;2 GzV*’) ————j"; VA (3.60)

This is a nonlinear dispersion relation for the phonons, where Cy = (ZkgT./M )” 2 is the

ion-acoustic speed. Now considering the solution for ion-acoustic oscillations, as

i1 (r, t) = ng (r) exp(ikz — iw't) + e.c., (3.61)

and for electromagnetic wave equation (3.10), as

A(r,t) = D Aj(r) exp(ik;z — iw;t) + c.c. (3.62)
§=1.2

Applying the same procedure as done in case of plasmons, we solve Eq. (3.60), as

d D 2 Znige?k?
[2:.:.: 5 3 02 (Vi + 21}:’5;)] i = meo_(Al Ag], (3.63)
or
2&!2 -

D' #iyy = nyg =y (A - A3) (3.64)

where

g 2 2 0

D—Zzwa +05 | Vi +2k8 (3.65)

The differential operator I is the same as for the electron (plasmon) wave, but now the electron
thermal speed S, is replaced by the phonon's acoustic speed Cy. Now the parallel wavenumber &’
satisfies the ion-acoustic dispersion relation as, k’Cys = w' by applying the linear approximation,

the electrostatic paraxial equation is obtained

(V + 2ik] 36-) i (r) = (3.66)

This equation describes the angular momentum states for the ion-acoustic waves, similar to
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those of plasmons, and its solution can be defined as,
fiin(r, @, 2) = figp(2) Fpr(r, 2) exp(il'y +ik'z — iw't) + c.c (3.67)

Using these solutions into the nonlinear phonons Eq. (3.60), the time dependent phonon am-

plitude similar to the plasmon case is obtained as,

on’ : é
= —iCpa, a3, (3.68)
where
Znigek!
CB == ﬂlETC, (3‘69)

Equation (3.68) leads to the stimulated Brillonin backscattering solutions with a growth rate

in the following form
@ﬂ. =TT, (3'70)
with

7, =CgC2| & (3.71)

All those qualitative properties are repeated here which we have discussed for the Raman
backscattering process. Thus, we have studied stimulated Raman and Brillouin backscattering

of electromagnetic waves in an unmagnetized collisionless plasma involving OAM states.

3.6 Summary

In this Chapter, we have studied the coupling of the light waves with electrostatic modes
like plasmons and phonons. First, we have derived the nonlinear dispersions of the Langmuir
and IA waves and introduced the concepts of phonon and plasmon angular momentum states.
The electrostatic wave modes are found by the solutions of the paraxial equations, similar to
those expressing the electromagnetic wave beams close to the focal region. We have solved
these nonlinear equations for Laguerre-Gaussian mode solutions by coupling the incident and
backscattered nonlinear equations in the collisionless uniform plasma. Finally, the correspond-
ing growth rates are determined by applying the parametric approximation. An additional
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rule has been added for nonlinear wave interaction, related with the conservation of angular
momentum. Specially, we have shown that by using two counter propagating electromagnetic
waves with well-defined OAM, we can excite the definite states of non-zero phonon and plas-
mon angular momentum. The experimental confirmation of this theoretical model could be

important to study basic plasma physics.
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Chapter 4

Electron-Acoustic Wave with

Orbital Angular Momentum

4.1 Introduction

Numerous investigations [58, 59, 60, 61, 62, 63] have been carried out to investigate the existence
of two distinet groups of electrons, that are, the cold and hot electrons found in space and
laboratory plasmas. The hot electrons can be of the energy in the range (10 — 50) keV (kilo
electron volt) and the cold electrons may be of the energy (0.1—1) keV in laser produced plasmas
(58], when the intensity of the laser exceeds the value I ~ 10" W /em? for Neodymimum-glass
laser and I ~ 10'2W/cm? for COq laser. Such a plasma is called two-temperature electron
plasma, which supports the electron-acoustic (EA) waves and their properties are extensively
investigated [64, 65, 66]. In the EA wave, the restoring force comes from the Boltzmann
distributed hot electrons and the mass of the cold electrons provides inertia to maintain the
wave. The frequency of the EA wave is larger than the ion plasma frequency while the phase
velocity lies between the thermal speed of the hot and cold electrons ie. S, << w/k << S.
It is also found that the phase velocity of EA wave is unusually small in comparison with
the Langmuir waves. The EA mode is frequently found in space plasma (bow shock [70, 71],
polar regions of the Earth’s ionosphere [72, 73], solar corona [74] and the dayside cups region
[75]). About two decades ago, Allen et al. [32] explained the orbital angular momentum

(OAM) of the photons attributed to Laguerre-Gaussian laser beams. Mendonca et al. [46]
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investigated the electron plasma waves carrying OAM in an unmagnetized uniform plasma and
calculated the energy flux and electric field components suggesting an approximate solution for
the electrostatic potential problem. Latter, Ayub et al. [56] extended the work for phonons or
ion-acoustic waves and computed OAM states associating with the phonon modes.

In the following, we shall derive the OAM involving the EA modes in a two-temperature

electron plasma. We will also present an approximate solution to the potential problem under

the paraxial approximation.

4.2 Dispersion Relation of Electron-Acoustic Waves

To study the dispersion relation of the electron-acoustic (EA) wave, we consider a two-temperature
electron plasma containing the inertial cold electrons, and massless Boltzmann distributed hot
electrons with static ions. We shall be actually interested to study the orbital angular momen-
tum states associated with EA modes. At equilibrium, the charge-neutrality condition demands
nip = N + Npp, Wwhere ng (npg) is the cold electron (hot electron) unperturbed density.

The dynamics of the EA wave can be studied by employing the continuity equation

an
-+ nea (V- va) =0, (4.1)
t
the momentum equation
d —eE
avcg = e & E= —VV. (42)
and the Poisson equation
V- E 24"“3( — Ny — Ny + niﬂ): (4°3)

where the hot electron density perturbations obey the Boltzmann distribution

eV
K1 = Npo kT (4.4)

The electrostatic potential is denoted by V (r, t). Equation (4.4) can be derived when the electro-
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static force is balanced with the pressure force in the momentum equation of hot electrons. v
stands for the cold electron fluid velocity, ny1(< nyg) the perturbed hot-electron density with
equilibrium value nyg, while nq (<€ ny) is the perturbed (unperturbed) cold-electron number
density perturbation. T}, is the hot-electron temperature. Following the procedure as described
in Chapter 2, we first take the time derivative of Eq. (4.1) to obtain

LA Ls. ) (45)
and the divergence of the momentum equation gives
%v —— ;-:::v’v (4.6)
Combining Eqgs. (4.5) and (4.6), we get
g;nﬂ = —Ee:nanVQV (4.7)

Putting Eq. (4.4) into Eq. (4.3), we obtain the electrostatic potential in terms of 7. is written
as

(1 - V2%,) V = —dmena A}y, (4.8)

where Apy = (kgTh/dmnpoe?) 12 the hot electron Debye length. For long wave length limit
[67], we assume V)%, < 1 and eventually Eq. (4.8) may be reduced to

V = —dmena )b, (4.9)

Now combining Eq. (4.9) and Eq. (4.7), the linear dispersion relation of the EA waves is
obtained

(g - C39*) na =0 (4.10)

By using a plane wave solution of the form ng = nge'™ %) one may write (4.10) in the

following form

= Cgkxp (41 ].)
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where w (k) is the angular wave frequency (longitudinal wave number) of the electron-acoustic
1/2
wave Ce = WpeApp = (Eﬂ- 5-35"-) is the electron-acoustic speed and wp, = (drngpe?/ ’m.,:)” 4

stands for the cold electron plasma frequency. It is important to note that the electron-acoustic

speed is significantly modified by the ratio of the cold electron number density and hot electron

temperature.

4.3 Paraxial Equation for EA Waves

The usual plane wave solution does not carry orbital angular momentum and therefore we
consider a beam type solution in order to derive the paraxial equation for the EA waves as

given by

ne (1, t) = ngo(r) exp (ik. 2z — iwt). (4.12)

Here n.(r) denotes the amplitude in the spatial coordinates varying slowly. Using Eq. (4.12)

into (4.10), the wave equation becomes

2
(% = Cfv’*) nco(r) exp (ikzz — dwt) = 0, (4.13)

where k; (= w/C.). Expressing the operator V = V| + 28/8z and using the paraxial approx-

imation {viz.gsyncg(r) << 21:18;38;11‘1)(1?')} , one can derive a paraxial equation for EA waves

as

a
(23‘&,5 + Vi) neo(r) =0, (4.14)
where the solution of the above equation may be written in terms of LG functions as
fieo(r, 9, 2) = i 2) BptirgY exp il + iz — iwt), (4.15)

where fiy(2) = ﬁme;(r‘ z), N is the amplitude of the cold electron density perturbations,
1/2

Fu(r,2) = g4 {1‘—;[1?-'} ® WL et 2010) are flis TE Bunctions with X = P /us), wi(4)

is the EA beam waist, and ¢ denotes the azimuthal angle. [ and p are the azimuthal and radial

mode numbers and LE' is the Laguerre polynomials.
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4.4 Electrostatic Potential Problem

In order to characterize the EA waves, we solve the clectrostatic potential problem in uniform
plasma consisting of Boltzmann distributed hot electrons, the inertial cold electrons with sta-
tionary ions. Thus, the electrostatic potential in terms of density perturbations can be described
by the Poisson equation, as

V2V (r,t) = dwe(np + na), (4.16)

A direct solution to Eq. (4.106) is a difficult task and here we will be interested into an approx-

imate solution by using a paraxial approximation. The LG potential V(r,t) can be expressed

by the following relation

V(r,t) = Viy(r, z)eliletikes—ict) (4.17)

Substituting Eqgs. (4.4) and (4.17) into Eq. (4.16), we arrive at

{(vi + 2:‘!:,%) -k - pl—h} V(rt) = dmenc (4.18)
D

Equation (4.18) can be solved by satisfying the paraxial approximation, similar to Eq. (4.14)
ie. (Vi + 21‘k,§;) V(r,t) = 0. Hence the amplitude of the electrostatic potential from (4.17)
may be expressed as Viy(r, z) = Vo Fu(r, ).

Thus, the LG potential involving the EA wave becomes

V(r,t) = Ve Fpi(r, z)elile+ikas=iut) (4.19)
and (4.18) may reduce to 2
A
V(rt) =—4 Dh : 4.20
(r ) TEMNc] (m) ( )

Note that the LG potential becomes negative in contrast to phonon case [56]. The ampli-

tude involving LG potential perturbations in the presence of LG density perturbations, can be

obtained as . 5
)chNdJ
Vo= —4 4.21
O e+ k2D, (h2)

See that the amplitude of the LG potential is significantly modified due the presence of Boltz-
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mann distributed hot electrons through the hot electron Debye shielding length, the EA wave
number and the cold electron density perturbations.
Now using the relation E(r,i) = —VV, we can find the LG electric field components in

cylindrical coordinates (r, ¢, z) as

B = _Fiﬁ%

E, = _i%{

B, = — (a’k,, + Fiﬂ%}l) 4 (4.22)
However, the electric field can also be expressed in the usual way as E = —ik.sV(r,t), where

the effective wave vector is given as k.y = —ﬁ;—rggfiér + %éw + {!c, - ﬁ;gg-r'i} é,. Thus, we
conclude that the electric field components are significantly affected by the EA beam waist
through LG mode structure and the hot electron shielding length as well as the cold electron
density fluctuations. It is also worth mentioning here that the electric field lines for the EA
waves are in the form of helical structure with radial and azimuthal mode numbers as are

absent in the plane wave solutions showing straight lines for the electric field.

4.5 Energy Flux and OAM for EA Waves

When an electron-acoustic wave propagates in an unmagnetized collisionless uniform plasma,
it carries a finite amount of orbital angular momentum. The energy density for LG EA mode
can be calculated by taking into account the dispersive properties of the plasma medium, as

E|? 0

2 (ew), (4.23)

_ |
W = 87 Ow

where the dielectric constant for EA mode is given by

2

e(w, k) =1+ 3,12 —— k252"

(4.24)
‘:)?“(.'“E'\

The energy ﬂuxlfor EA mode can be defined [52] as Teq = Weqvg@eys, where &.5 (= key/ | ker |)

is the effective unit vector and v, is the group velocity of the EA mode.
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One may simplify energy density expression further as

| E? 1 g wW24K32S?
= — : : 2
Wea oy 1+ A%)hkg + Woe (wz = kfsg)’ (4 5)

The energy density can be written in terms of LG potential by writing

|EP=E-E' =k |V (4.26)
as
M(I‘) =TX < ch >| (4'27)
where
v g
Using Eq. (4.25) into the (4.28), we obtain
ki <|V P> 1 w? 4+ k3532
<P >s"—[1+ - | &y 4.29
h 8y Y T .

By employing Eq. (4.29) into Eq. (4.27) and doing some straightforward algebra, we get

_ kg IIVEST Iy, [y 0Fw . ir OFu
M(r) = Sne - o Fy O + 1k, Fy 0z 8y + (&,

2, 12a2

+ k%S
x [1+4 TR P ¢ ]
[ Apnk? P (w? — k252)?

(4.30)

The angular momentum density of EA beam along the axial direction [53] can be expressed as

2 2 2
M,=t-—|k‘-'|<lvi>{1+’\1 § 8 iy } (4.31)

o T
Note that M, depends not only on the square of magnitude of Laguerre Gaussian potential
but also the inverse of the group velocity of the EA wave. Equation (4.31) is now significantly
modified by the dielectric constant of the EA wave. For assuming that angular mode number

! = 0, which implies that M, = 0, leading to the lowest order mode or a pure Gaussian mode
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with no OAM. However, for higher order modes i.e. { # 0, a finite amount of OAM associated
with the EA waves can easily be investigated. Similarly, equation (4.19) through (4.21) also
concludes that the amplitude of the negative LG potential profiles caused by the EA mode is
strongly modified due to the cold-electron density perturbations and wave number k. carrying

the finite amount of OAM.

4.6 Numerical Results and Discussion for EA Modes

In this section, we have numerically plotted the LG potential V(r) associated with the EA mode
as a function of "r", we have also chosen some appropriate numerical values from the laboratory
two-temperature electron plasma [68], such as, the hot electron temperature 7}, =~ 2.1eV and
the cold electron temperature T, ~ 0.7eV, the hot electron density n; ~ 2 x 107em ™3 and
the cold electron density n. ~ 6 x 107em~3. By using these parameters, we can compute
the ion number density njg = 8 x 107em =3, the wave number k. = 8.788 c¢m, and the hot
electron Debye shielding length A%, = 1.4506 x 10 3¢m. We also assume that the cold-electron
density perturbation viz. Np/ne ~ 0.1, which makes the amplitude of LG potential to be
Veg ~ —5.18752 x 10~® V for the EA beam waist wg = 3\, where A ~ 0.7149 cmn. Figure 4.1
shows the variation of LG potential involving EA wave al a focal point for t=0. For changing
the EA beam waist wy = 2\, 3,4, 5),6A with fixed | = 0 = p, the pure Gaussian curves
are obtained, the width of the LG profiles increases while the amplitude remains constant.
However, the behavior of the EA wave is different from the IA wave. Non-Gaussian profiles
of LG potential are obtained for [ = 0 and p # 0, as can be seen in Fig. 4.2. It is examined
that the number of nodes on both sides increases for the increase of p value and hence the LG
potential amplitude remains almost constant but the width decreases with increasing p. Figure
4.3 exhibits the effect of angular mode number (I) on the LG potential V(r). The latter becomes
negative for the variation of even values of angular mode number [(= 0, 2) and becomes positive
for odd values [(= 1,3) with wy = 3, the azimuthal angle v = 7, and p = 0. It is observed
that the strength of LG potential increases when the angular mode number is increased. Figure
4.4 demonstrate the effect of the radial mode number p(= 0,1,2,3,4) at fixed | = 1,wp = 3,

and ¢ = 7. Note that the number of nodes and the strength of the LG potential increase with
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Figure 4-1: Shows LG potential profiles or a function of r for varying wg = 2) (square doted
curve), wg = 3\ (small doted curve), wp = 4\ (small dashed curve), wg = 5\ (long dashed
curve), wg = 6 (solid curve) these are the pure Gaussian curves with fixed [ = 0 = p.

increasing p. However, the behavior of the potential associated with EA wave profiles is seen

opposite to the potential involving phonons [56].

4.7 Summary

To summarize, we have studied the two-temperature electron plasma which is composed of
hot electrons, cold electrons, and positive ions. The hot electrons are assumed to follow the
Boltzmann distribution while the cold electrons as mobile with a background of stationary ions.
We have derived a linear dispersion relation for the electron-acoustic (EA) waves by using the
Laguerre Gaussian solutions giving rise to an orbital angular momentum, instead of plane wave
solution. Furthermore, the electrostatic potential problem is solved by employing the Laguerre
Gaussian beam solutions and the electric field components have been computed in terms of LG
potential suggesting that the helical field structures are formed. Similarly, the energy density
and orbital angular momentum of the EA modes have been determined by considering the
dispersive plasma medium. The numerical results for the LG potential involving the EA modes
have been discussed, which are of significant importance for understanding the KA waves with

OAM states in the context of laser produced and space plasmas.
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Figure 4-2: Shows the LG potential profiles for changing radial mode number p = 0 (square

doted curve), p = 1 (small doted curve), p = 2 (small dashed curve), p = 3 (long dashed curve),
p = 4 (solid curve) and with fixed [ = 0, wg = 3\, where A = 0.7149 em.

0‘m04_. —r —rTrrTrrr + r—r —r—rvTrrr

0.0003 | / \ /{ \

0.0002 ¢

V(r) ooootf / \ / \ 4
0.0000 } 2 L ..

—0.0001 | ]

Figure 4-3: Shows the LG potential profiles for varying the angular mode number | = 0 (square
doted curve), [ = 1 (small doted curve), | = 2 (small dashed curve), [ = 3 (long dashed curve),
l = 4 (solid curve). with p =0, wp = 3\,and p =7
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Figure 4-4: Shows the LG potential profiles involving EA waves for p = 0 (square doted curve)

p = 1 (small doted curve), p = 2 (small dashed curve), p = 3 (long dashed pink curve), p = 4
(Solid curve). with fixed | = 1, wp = 3\, and ¢ = .
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