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Abstract

The Randall Sundrum model (RS) was presented in 1999 to solve the
Higgs hierarchy problem of the particle physics. This model created
interest in the phenomenologist and theoreticians to work in the ex-
tra dimensions scenarios. In the present dissertation we will examine
the rare decay A, — Al*Tl™ in the context of SM and RS model with
custodial protection. We compute the physical observables like, differ-
ential branching ratio, forward-backward asymmetries and polarization
asymmetries of A baryon in SM and RS, model. By using low energy
effective Hamiltonian the hadronic matrix elements parametrized by
form factors that are calculated by QCD sum rules. We compare the
results of these ohservables obtained in the SM and RS, maodels,
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Chapter 1

Introduction

Since from its evolution in 1960 the Standard Model (SM) of parti-
cle physics provides the opportunity to physicist to learn about the
fundamental processes that are occurring in nature. The SM is ex-
traordinarily precise in its predictions and steady to most experimental
results. However, there are some deficiencies in the SM. One of them
that is important is the hierarchy problem (small Higgs mass) which
interrogates that why the weak force is 10% times stronger than the
gravity. The SM explains the weak, electromagnetic and strong forces
successfully but fails to explain gravity, which is very unsatisfactory
and indicates that there is a theory beyond the SM. So it is considered
as an incomplete theory till now.

According to the SM neutrinos are massless but now the experi-
ments have given the evidence for the neutrinos to have mass. These
small neutrino’s masses can not be incorporated in the mathematical
framework of standard model. The non zero mass of the neutrinos is
the direct experimental evidence for incompleteness of the SM.

There are also some indirect evidences [or physics beyond the SM,
such as dark matter. Most part of the universe is made of dark matter,
but it is very difficult to detect it and it can be detected only by the
gravitational effects. The SM also does not explain the nature of the
dark matter. The particle contents of the SM has been completed
alter the Higgs boson’s discovery in 2012 in the collider experiments.
The characteristics of the particles of the SM were disclosed slowly.
The top quark and Higgs boson masses are important among these
characteristics because they are used to determine the response of Higgs
quartic coupling.

According to recent experimental results, the Higgs boson mass
was found to be 125.09 + 0.21 GeV [1] and the top quark mass is
173.34 £ 0.76 GeV [2] .



To solve the problems that are mentioned above, many extensions in
the SM have been proposed such as supersymmetry (SUSY) in which
the bosonic and fermionic degree of freedom have been treated equally.
The hierarchy problem and unification of three couplings can be solved
by supersymmetry. Grand unified theory (GUT) is also the extension
of the SM in which the gauge sector of the SM is extended. By this
theory the tree gauge couplings are unified at a scale about 10'® GeV
that is called GUT scale.

There are also many others different extensions of the SM like
extra dimensions, string theory, effective theory etc. All these theories
(beyond the SM) are used to fll up the deficits of the SM but there are
no signs for these theories in the experiments till now.

In present dissertation, we will take the extension of SM in extra
dimensions in the form of Randall Sundrum (RS) model [3] which has
one compact extra dimension along the non factorisable anti-deSitter
(AdS5) metric. In this model there are two three-branes which act as
the boundries for the warped extra dimensions. There is a five dimen-
sional bulk (5D bulk) between these branes. An exponential hierarchy
is generated in the energy scales by the background AdS; metric. As
the Planck’s scale is at one brane (UV brane) and other at second brane
(IR brane). The plank’s scale is much larger than the other scale i.e.,
AU\' >> A[H 5
Then, we wil study the Randall Sundrum model with custodial pro-
tection (RS,) in which the gange group SU(2);, x U(1)y is enlarged to
SU(2)p x SU(2)r x U(1)x x Prr by which the harmful contributions
to T-parameter (peskin takeuchi parameter) can be cured and also the
Zbpby, vertex can be protected from extra correction. Later, we will
study the implications of RS, model in flavor sector.

This dissertation is organized as follows. In chapter 2, of this dis-
sertation we will discuss SM including mathematical framework, Higgs
mechanism and the limitations of the SM. In chapter 3, we will dis-
cuss briefly the RS model, Custodial symmetry and the RS model with
custodial protection. In chapter 4, we will study the the effective field
theory (EFT) which is the theory that includes the suitable degrees
of freedom to explain the physical phenomenon which is occurring at
a particular (chosen) energy scale or length scale and other degrees of
freedom are ignored that are out of this selected scale. We will also
study about different approaches of EFT like top down and bottom up
approach with the examples like SM as an effective theory and then
we will give some introduction of the renormalization theory and the
divergences. At the end of this chapter we will discuss the matching
conditions with examples. In chapter 5, we will study the rare de-
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cay Ay = Al*l™ and find out the different observables like differential
decay width, branching ratio, forward-backward asymmetries and po-
larization asymmetries for this decay in the SM and RS, model by
using the effective Hamiltonian and the parametrization of hadronic
matrix elements in terms of form factors calculated by QCD sum rule
and compare the results of both models . At the end of this chapter
we will also describe the conclusion.
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Chapter 2

The Standard Model (SM)

2.1 History

The first approach towards the SM was given by Glashow in 1961
to combine the weak and electromagnetic interactions at an energy
scale. This prediction require that there should exist four vector bosons
W#*, Z and + which are acquired by the rotation of weak mixing angle
fw. In addition the accurate structure of weak neutral current that is
mediated by the Z boson was also acquired. The W= and Z bosons
are taken as the mediators of weak forces. There is a serious prob-
lem with this model in the case of awarding masses to the W* and Z
bosons because according to gauge symmetry’s prediction they should
have zero masses. In the interaction Lagrangian, the parameters My
and Ay for the vector bosons were put by hand. The gauge symme-
try and normalizibility is spoiled by introducing the mass term in the
Lagrangian [or vector bosons. Another approach to build the SM was
made by Nambu in the form of Goldstone theorem in 1960. According
to this theorem there exist a particle with zero spin and zero mass due
to which the spontaneous breaking of global symmetries take place.
In 1964 P. Higgs, Englert and Brout Kibble and Guralnic studied the
spontaneous breaking of local gauge symmetries, that required for the
electroweak symmetry breaking.

The formulation of electroweak theory was done by Weinberg and
A. Salam who include the gauge group SU(2) x /(1) initiated by
Glashow. This theory is known as Glashow-Weinberg and Salam model
or the Standard Model (SM) of particle physics, that was established
by the assistance ol gauge principle and intermediate vector boson the-
ory. Actually, the SM is a gauge theory related to the electroweak
interactions whose basis lies on SU(2) x U(1) gauge group and the
intermediate vector bosons, W=, 4 and Z are the related four gauge
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bosons. The masses of gange bosons W* and Z are created by the
Higgs mechanism. The discovery of weak neutral currents in 1973 was
the first proof of the SM to be accurate theory of electroweak (EW)
interactions. The SM also predicted the masses for W and Z bosons
that was confirmed experimentally in 1983. With the discovery of Higgs
boson, we have now all the contents of the SM.

2.2 Particle Contents

There are many elementary particles that are present in the SM and can
be distinguished from each other by some properties like color charge.
The SM have following classes of particles. The elementary particles in
the SM are divided into three classes as shown in the figure 2.1 . Now
we explain these classes of particles one by one.

(i) Fermions

There are twelve spin hall elementary particles that are known as
fermions. These particles obey the Pauli exclusion principle. For every
fermion there is a corresponding anti-fermion,
The fermions are divided into two classes based on their interactions
that are quarks and leptons. There are six quarks and six leptons.
The property that define the quarks is color charge of quarks, so they
interact with each other by the strong force. The quarks form the
color-neutral particles known as hadrons by color confinement process.
Hadrons are further classified into mesons and baryons. Mesons are
formed by the combination of a quark and an anti-quark while the
baryons are formed by the combination of three quarks.
The other six fermions do not have any color charge and are known as
leptons. Neutrinos do not have electric charge, so it is very difficult to
detect them. While the electron, muon and tau carry electric charge so
they interact electromagnetically. There are three generations of quarks

(@), G, ), @)

and also three generations for leptons.

HE A 22)

All the ordinary matter is formed by the first generation of charged
particles because these particles do not decay. While the particles of
second and third generations have very short lifetime and only observed
at high energy scale.

13



(ii) Gauge bosons

Gauge bosons are used as mediators of fundamental interactions
in the SM. In physics, the particles effect the other particles with the
help of interactions. The SM describes that these forces results from
matter particles by exchanging other particles. All the gauge bosons of
the SM have spin 1(integer spin), so these are bosons and do not obey
the Pauli exclusion principle. The different types of gauge bosons are
explained below

e The force between the charged particles is the electromagnetic
force that is mediated by photon. The photon is massless particle
and have spin 1.

e The weak interactions are mediated by W* W~ and Z gauge
bosons. These gauge bosons are massive, W+ W~ have relatively
less mass than Z. The weak forces mediated by W#* act upon the
left handed particles and the right handed anti-particles. The Z
boson which is electrically nentral and interact with the both the
left-handed particles and right handed anti-particles.

e The strong interactions (between the quarks) are mediated by the
eight massless gluons. Gluons can also interact with each other
due to their effectual color charge. The interactions between all
the standard model particles are summarized in the figure 2.2,

14
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Figure 2.2: Fundamental interactions between elementary particles of the
SM.
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(iii) The Higgs boson

The Higgs particle is a single particle in the SM which has spin 0
and it has large mass compared to other standard particles. Due to
spin zero Higgs is classified as boson. The Higgs boson explains that
how the other massive particles get their masses excluding the gluons
and photon. Furthermore it also gives the explanation for photon to be
massless, The elementary particles get their masses by interacting with
Higgs particle. Becaunse of large mass, Higgs also interact with itsell.
The Higgs particle can be observed and recorded in a particle accel-
erator with very high energy because of its large mass and immediate
decay.

For the confirmation of Higgs boson experiments were started in
LHC in 2010 at CERN. The Higgs boson confirmed experimentally on
04 July 2012 by the two major experiments at LHC (CMS and AT-
LAS). These experiments reported that the mass of Higgs boson is
about 125 Gel//2.

2.3 Mathematical framework of SM

We have divided the mathematical framework of the SM into two sec-
tors, the gquantum chromodynamics sector and the electroweak sector.
Now we will explain both sectors below.

2.3.1 The Quantum chromodynamics sector of SM

The gauge group of the standard model is SU(3)ex SU(2), xU(1)y ,Where
(' represents color, L represents left-handed and Y denotes hyper charge.
The QCD sector of the SM explain the strong interactions . The QCD

is based upon the gauge group SU(3)e and is a non Abelian gauge
theory. Under SU(3)c quarks transform as triplet and belong to fun-
damental representation, while the gluons which mediate the strong
interactions belong to the adjoint representation of SU(3)c.

The Lagrangian for the QCD sector is [4].

Lgcp = —'_!1'(;;,,6:"+ W, (iv" D, — m)¥, , (2.3)
where
G = 0,6} — 0,G + 9./ CyGen (2.4)
is the field strength tensor, and
D, = 9,6 — ig, TG, , (2.5)

16



is the covariant derivative. g, is the coupling constant of strong in-
teractions and a=1,2,3....8 runs over the color. T, are considered as
generators of the gauge group and satisfy the following relation.

[Trn TL] = ifnlx-Tc '

Where [, represents the structure constant of the group. For SU(3)q
the relation of T, generators with the 3 x 3 Gell-Mann matrices [5] is
given below

The corresponding Lagrangian does not change under SU(3) infinites-
imal local gauge transformations.

2.3.2 The Electroweak sector of SM

The electroweak sector of the SM include the weak and electromagnetic
forces [6]. The gauge fields are the mediators of these forces. This
concept can be enlarged to massive gauge fields by launching the Higgs
mechanism that gives masses to the particles keeping gauge symmetries
invariant. We will describe here some theoretical aspects of electroweak
sector of the SM
(I) Gauge sector

Gange theories remain invariant under the global gange transfor-
malions i.e.,

v— UW

where U is a unitary matrix for non-Abelian gauge transformation that
will act upon the fermion field ¥.

To make the gauge theory invariant under local gange transformation
(which involve the dependence of space time coordinate ). We replace
the space time derivative d, by the covariant derivative D, in which
an additional vector field V), is included

i), —iD, — gV, ,

where g is the universal gauge coupling constant. The gauge field V,
transform by a rotation plus a shift under the local gauge transforma-
tions as given below.

V, = UV, U +ig '@ Uuu" .

17



In comparison with this, the curl of V,, represented by F.
F}w — —iQ"[D,.- Du] )

only rotates under the gauge transformation. The Lagrangian for spin
half particles and for vector fields of massless paticles is written below:

LW, V] = Wiy D, W - %’PTF'“ :

This include the following interactions.
Fermion-gauge bosons:

—gUVW .
Three boson coupling:
igTr(8,V, — a,V,) V., V.| .

Four boson coupling:

%gz‘l”r[l/:,, 74

(TT) The Higgs mechanism :

In gauge invariant theory to generate the masses for the vector
bosns the spontaneous symmetry breaking is extended to a mechanism
that is known as Higgs mechanism. The gauge invariance of the SM
gauge group SU(2) x V(1) requires that the masses of gauge bosons
should be zero but the Lagrangian has the mass term that spoils the
gauge invariance, The Higgs mechanism avoids this restriction by initi-
ating with a theory that is gauge invariant and has the massless gauge
bosons. The vector bosons W* and Z° attains their masses from the
spontaneous symmetry breaking of local gauge symmetry by

SUR2)xUQ1) — U(1)en -

that is achieved by introducing a complex scalar field that is sell inter-
acting and is denoted by @, and this field transform as SU(2) doublet.
Four independent fields are incorporated by the field ¢ and its complex
conjugate P

The spontaneous symmetry breaking is applicable il one of the four fun-
damental fields in the Lagrangian have non zero vacuum expectation
value.

(®) = (0[2[0) = 5 #0.,

before the spontaneous symmetry breaking, the three fields related to
W* and Z" become the longitudinal degree of freedom while the photon
combined with the symmetry group [U(1),,, and remain massless.

I8



2.3.3 Formulation of EW sector of the SM

(1) The matter sector

The left handed fermions with isospin doublets and right handed
fermions with isospin singlet appear in the fundamental representation
of the gange group SU(2) x U(1). It is perceived that the first, second
and third generation of fermions have the same symmetry pattern:

], Ll e, Ll 2], L]

We can not derive the symmetry structure in the SM. It is confirmed
experimentally that the parity conservation is violated in weak interac-
tions. The violation of parity in weak interactions is due to the different
isospin of the left handed and right handed fermion fields. Hence the
experimental observation is included in the natural way.
The relation between the basic quantum numbers and the electric
charge @ is reported by Gell-Mann-Nishijima relation.
2

(2) Interactions

The Lagrangian of electroweak sector of the SM is given below:

L=Lg+ Lp+ Ly . (2.6)

These three terms of the Lagrangian represents the fundamental inter-
actions of the SM. These terms are described one by one as follows.

(i) Gauge fields

The non-Abelian gauge group SU/(2) x U(1) is generated by the
isospin operators (/y, Iy, I3) and hypercharge Y. The iso singlet 3, and
iso triplet W2, where a=1, 2, 3 give the following field strength tensors,

"

wa

1

= QW2 + W2 + gacae WEWSE | (2.7)

By, = 9,B, —8,B, (2.8)

where g, is known as non-Abelian SU/(2) gauge group coupling con-
stant. Hence the Lagrangian for gauge fields has the following form

Lg = —Swe e _ }B B (2.9)

R

19



This Lagrangian remains invariant under the SU(2) x U(1) non-Abelian
gauge transformations.

(ii) Fermion fields and fermion — gauge interactions
Each lepton family has the following left handed fermion fields,

qJL
\I:;? = ( q’?.) :

which are grouped into SU(2) doublet with family index j with com-
ponent index ¢ = +, while the right handed fields are grouped into
singlet

R R
VLS

If the relatins given in Eq. (2.7) and Eq. (2.8) are fulfilled then each
right and left handed multiplet are the eigen state of Y (weak hyper
charge). The fermion gauge field interactions are included in the co-
variant derivative that is given below:

m:@—@mw+@§m. (2.10)

The fermion gauge field interactions are given by the following La-
grangian

Le =Y WigD, 0t + 3" WRiy'D,uk | (2.11)
7 o

where g, defines the coupling constant of Abelian gauge group (/(1).

(iii) Higgs field and the Higgs interactions

For the spontaneous symmetry breaking of the gauge group SU(2) x
/(1) to the group U(1).,, that remains unbroken , the gauge fields are
coupled to a single complex scalar field that is doublet.

¢m=(¥%). (2.12)
with hypercharge Y = 1 through
Ly = (D,®)'(D"®) — V(®) , (2.13)

where the covariant derivative is defined as

.D” = 8,, — ingnW“: + g %‘E ‘

20



The self interactions of Higgs field
V(®) = — 1280 + %(d"tl’)’ (2.14)

are constructed in such a manner that ® has non zero vacuum expec-
tation value, Le. |

where

_ 2
v=—x (2.15)

We can write the field ®(x) that is given in Eq. (2.12) as follow

B(z) = ( h.ﬁfil(;;ff.)m) , (2.16)

The vacuum expectation values of the &+, H, \ components of field are
Zero.

The invariance of Lagrangian implies that ®*, y components can be
gauged away which makes them unphysical (Higgs sector or would be
Goldstone bosons). For such particular gauge the form of Higgs field
is given below

(=) = % ( " +0H(:r)) '

The physical Higgs is defined by the real H(z) that explain the small
vibrations around the ground state.

The fermions get their masses by interacting with Higgs through Yukawa
coupling that are given below

Ly anees = g;(w,‘b"'ln 4 I_Rq,_l!;, = FL‘I'“[R + IRQU'Q) . (21?)

The mass term of fermion follows from the v part of ®° [6]. The physics
laws related to the weak and electromagnetic interactions between the
leptons are summarized in the Lagrangian L. It also gives the predic-
tion about the self interaction form of gauge ficlds. Furthermore, the
fundamental particles like gauge bosons, fermions and Higgs itsell get
their masses through Higgs mechanism [7].
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2.3.4 Masses and mass eigen states of particles

To get mass from Higgs boson, we replace

oo

in the Lagrangian of Higgs boson given in Eq. (2.13). By doing this it
appears that the symmetry SU(2) is lost but this is only apparent and
exist in hidden form. The local gange symmetry [/(1),,, is preserved
in the resulting Lagrangian [7].

SU(2) x U(1) — U(1)em

(i) Mass of gauge bosons
In the basis (B, W), the mass matrix for gauge bosons is

2
4 Jw
{has
J"!Er = -'1'2 Jizj" 2 I
1 Jiv  awow
' 2
aw Gw .‘!fv
In the non diagonal form this matrix gives mass to the vector bosons.

The charged weak gauge bosons receive the mass by the following equa-
tion

1 L) L

Més = ngvv"' : (2.18)

The boson state W* can also be defined as

1
W= E[W,{ + W3 . (2.19)
The mass term for the neutral gauge bosons gives the following matrix
1 2, A

Ma = 9w 9% J“’) ; 2.20
=1 ( ot "8 2

As the determinant of above matrix is zero, so one eigen value of :'H’EFN
is obviously zero. The diagonalization of the above matrix by the
following definition of fields Z,,, A, gives

.‘1‘, = C0S 91"8,, + sin Gwl'V‘:‘! . (221)

and

Z.IJ = —sin Ay Bp -+ cos 9]1'“:': . (222)
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The above Eq. in matrix form can also be written as

/‘l,, — cos 3W sin ﬁw B}‘
(Z_u) o ( — Sillgw COSgw) (W‘?) : (223)
Then we got
M2=0.

This implies that A, is representing the photon (massless particle).

1
M3 = 7(gh + gl

j..‘\

1

1 '
1‘1'{2 = = 2_! 2 » v,
1 () (224)
Here -
tan By = W (2.25) —-
qw

i.e., the ratio of couplings of SU(2) and U/(1) define the mixing angle

Ow .
By introducing a parameter

_ My
o M7 cos 63,

and using the expression for A%, we obtain
p=1.

This shows that Higgs field is doublet under SU(2),, [8].

The mixing angle appear to have large value experimentally i.e., sin® Oy ~
0.23. This value is far away from limits 0 or 1, which shows that mixing
effect is large. This result explains that the weak and electromagnetic
interactions are actually the demonstration of unified electroweak in-
teractions. From here we can also conclude that the weak and electro-
magnetic interactions are unified truly in the electroweak sector of the
SM. The relation between the value of ground state of Higgs field and
Fermi coupling constant is

Gr _ 9w
V2 8Mj
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In the 7 decay and by combining with the following mass relation
L & &
My = 4‘9{&"«"

we can derive the value of v

1
v=[———
V V20

v =246 GeV

(ii) The masses of fermions
The fermions i.e., leptons attain their mass by interacting with
ground state of Higgs field through Yukawa interactions.

v
My = .‘?IE '

where gy is the coupling constant for Yukawa interactions and v is the
ground state (vacuwm expectation) value of Higgs.

(iii) The mass of Higgs boson

The real field H(z) that illustrates the small vibrations around
the ground state of Higgs inform us about the physical spin 0 neutral
particle having mass

I
v = —
My = -7 Vv
where A is the coupling constant. This session is conclude by the re-
marks given below
1) The presence of weak neutral current having the same effectual cou-
pling constant as that of charged give explicit prediction of the unifi-
cation of electromagnetic and weak interactions. This current is con-
firmed experimentally.
2) There is only one free parameter in the theory that is sin® fyy.

2.4 Limitations of the Standard Model

The SM is a successful model as it well match with the experimental
data obtained from particle accelerators. The evidences for the physics
beyond the SM are very small from the experimental point of view but
the SM has many theoretical deficits that should not be appear in a
basic theory. Some deficits are as follow:
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e As SM has only left handed neutrinos and not right handed, so
the Higgs mechanism can not give mass to neutrinos. So generally
mass for neutrino is a problem in the SM.

e Asymmetry between matter -antimatter can not be explained by
the SM.

e There is no quantum interpretation of gravity, we have no way
that the SM include general relativity in terms of QFT.

e Also the gauge hierarchy problem is not explained by the SM
i.e., the large energy gap between the Planck scale related to
gravity and electroweak scale at which the electromagnetic and
weak forces combine.

e Without some restrictions the SM can not be an applicant for the
unification of all forces at a certain energy if such a theory exist.

So the above points shows that the SM is a low energy demonstration
of a theory which is more fundamental. There are some theories which
are proposed for physics beyond the SM like grand unification theories
(GUTS), technicolor, supersymmetry (SUSY) and extra dimensions
to name the few, In present dissertation we will focus on the extra
dimension framework specially Randall Sundrum model (RS), that is
explained in detail in the next chapter.
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Chapter 3

The Randall Sundrum model

The hierarchy between the Planck scale and weak scale receive the new
explanation in the model given in [10,11] by Lisa Randall and Raman
Sundrum in 1999, which is known as Randall Sundrum (RS) mdel.

3.1 Setup

This model considers the presence of an extra dimension that is com-.-

pactified on a circle. The above and below halves of the circle are
identified in figure 3.1. given below.

- 2zR

Figure 3.1: §'/Z, orbifold

This means that work is done in S'/Z, orbifold. Where Z, is

26



multiplicative group {—1,1} and S! is representing the sphere having
one dimension (i.e., circle). This construction require two points which
are fixed, one at y = 0 (origin) and other at y = 7R = L. There is
four dimensional world on each of these points. These worlds having
(341) dimensions bounding the five dimensional (5D) bulk are known
as 3-branes. These two 3-branes are separated from each other by a
distance L as shown in Fig. 3.2

5D bulk
B iy
TGP ,.\
v RS
A . > ft
- 'I
6 ]

Figure 3.2: Randall Sundrum setup

3.2 The Einstein Hilbert Action:

The Einstein Hilbert action in general theory of relativity give the
Einstein field equation.

1 / 4 1
S — .

k2 =8rGc™4,

where G is gravitational constant and c is speed of light and R is Ricci
scalar.

3.3 The warped metric

First of all we search for a metric that corresponds to the above setup.
As we are searching for that solutions of Einstein equations which may
suitable for the real world.
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If we derive 4D universe from this theory then it should be flat and
static. This gives following Ansatz

ds? = e~ AWy dzidz” + dy? (3.2)

where 7, =diag(-1,1,1,1) is the 4D Minkowski metric and the factor
¢~ 240 is known as warp factor. The above metric is non-factorizable
because it depends upon the y which is extra dimension coordinate,
This implies that, it can not be written as the multiple of a manifold
extra dimension and Minkowski metric. To determine A(y) we have to
determine 5D Einstein field equations.

3.4 Derivation Of Einstein Field Equations
Let's start with the action

S=SH+SM.

where Sy and Sy are representing Eisenstein Hilbert action and mat;p‘f'
part of action respectively.

+L
S= / ex [ dy\/—(—H-!-LM). (3.3)

The action principle give us information that variation of above action
with respect to inverse metric is giving zero, i.e,,

05=0,

252 Jg""

(

=/| 1 ( " RJ(\/_)) 6(‘/—_91“")]63""\/—_9![‘4\’,

59’“’ vV—g0g" " /—gdg"”
Above equation is true for every ¢"*. So
RJ‘/ _ =25%(y/=gLwm) (3.4)

69"" T ggr T Jgog”
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The above Eq. (3.4) is the equation of motion for the metric field. Its
right hand side is directly proportional to Stress-energy tensor i.e.,

T — —‘25(\.!—9[1“) _ —2{5(-\/—9‘5;.;)
fers _—gts_qf"’ (ng“’ H

 —2/=g6(Lay)

T;w N T e g;wLM ’

V=489

—26 Ly

g

T:uu = + g#uLA-I .

3.4.1 Variation of Riemann tensor, the Ricci tensor and Ricci
scalar

We define Riemmann tensor as follow

RS = 800 — 0,8, + T4, — T,

oy va fra v pa °

As Riemann Carvature tensor is the function of Levi-Civita (T'*.), so

its variations can be determined as

aR?

‘T

= Qudr%, — 8,00, + 6T0, TS, + 04T

STP A £ STA
vo i A e ()Fu/\r‘,ud - Fw\d]‘

o *

The variation in Christoffel symbols (6I'2,) can be obtained by the

5 { : Y . .
difference of two connections, and this is the tensor, so its covariant
derivative can be determined as

Va(OTf,) = 8x(0T%,) + T5,0T5, — L5561, — T¥,6T%, .

v v

Correspondingly the variation in Riemann curvature tensor can be ex-
pressed as below

achrpu = v!-‘(érﬁa) = v!-‘(d‘rﬁrr) . [35)
Defining the Ricci Scalar as follow
R=g"R,, ,

The variation in Ricci Scalar by the inverse metric is given as

SR = R,,00" + g"™8R,, , (3.6)

SR, = V,(6T%,) — V,(6T%,) -

jas [E{e 8
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By contraction of indices we can simplify the change in curvature ten-
sor, as follows

SR, = OR?

Hpv

= V,(8T%,) — V(6T

ol

OR = Ry, 80" + V(g oL, — g™ 0TY,) .
As
Azg" =0 (3.7)
and by multiplying above equation by\/—g, we get total derivative as
V=gV, A" = 8,(V-gA") (3.8)

Integrating and using Strokes Theorem will give us the boundary term
only. The change in metric dg"” disappear at infinity. therefore, this
term does not take part in the variation of action. This gives.

O0R = R,.0¢"" ,
and so

R

3.4.2 Variation of the determinant

dg = 6det(gp.,) = ,q,t}‘”"'ﬁ!};w

_ 09 =9(9"09u) _ —v—9(9w09"")
0/—g = =t 5 = 5 (3.10)
In above equations we used

Gudg" = —g"og" .

Using the rules of differentiation, the inverse of the metric is

89" = —g"*(89a8)9™ .

V=9 _ —9w
= : 0
V=TT iy
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The eqution of motion is

_ gl _ 87GT,,

Ry 2 ct

1
Ruw = S0 R = KT

i s
Gun = Runx — *2-9:\:;\'1? = &*Tun , (3.12)

where the M and N have values 0, 1, 2, 3 and 5 and 5D Newton
constant is defined as

1
2 __
AT

The energy momentum tensor is defined as
T = —26S
MN = V—g0gMN

50 in the action the term which is like /=¢V where V' is constant
related to an energy momentum tensor equal to V.

The Einstein tensor corresponds to the metric whose parametrization
is done in the Eq. (3.2) and has been done in next section.

3.5 Einstein tensor

We want to determine the Einstein tensor for the following metric,

ds’ = e Wy drida® + dy?

ds* = gun(y)datde”
where
aun(y) = e *Wn, + 83,6% (3.13)
Its inverse is
g""(y) = MV, + 518 (3.14)
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3.5.1 Christoffel Symbol

1 .
Tiin = §9PR(5MQNR + OngrM — ORGMN) (3.15)
gmn only depends on extra dimension.

ALgmn = Osgmn = OsGuw (3.16)

so non vanishing Chrostoffel symbols are of two types only.
Take M = pu, N = v, P = 5. So Eq. (3.15) can be written as follow

I‘iu = %gﬁR(_aRgpv) 1
Take R = 5, one gets
F;sw = %955(—359;19) ’ (317)

then

559;:1: = 85(6_2A[y)7?pv)
—2e 24035 (A(y)) M -

putting it in Eq. (3.17), we get

5, = Al(y)e 2400y, (3.18)
using I” = v, M = p, N = 5, the Christoffel symbols becomes

Ihs = 39" (8s9ns)

Now take R = p

;5 = %(ezA?}'”P)(asﬂpp) . (3.19)
But

Gpu = B—M{y)Ww

Therefore

05(99;:) = 85(6_2A(y)’?pp) = _QA’(U)B_zd(y)ffp#

and inserting it in Eq. (3.19), we get
F;s = “‘A'??"”??pp )
s = —A, (3.20)

1h
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3.5.2 Ricei Tensor

The Ricei tensor in 5d. can be expressed as
Ran = 0pTyy — OnTipp + rgQF%N = FK!QF?{P
Take R=0,0=5,P=5Q=0,M = u,N = v, we get
Bla= 82

(e

— &I, +T7IS, —T5 T2 (3.21)

Ha oo vo pub

Before proceeding, one has to keep in mind that

51", =0

o

Now use the values of Christoffel symbols calculated previously

Ry = 08s(Ae™q,,) + (A8 (Ae ) — (A’e‘g”‘n,,a)(—A’rSﬁ)

Ry = (A" —2A%)e 4y, — A% A, — (Ae™*4n,,)(—A'83)
T (An - 2311!2)6_2‘4??;.-.1: - Aﬁze—Q.ﬂlmw + Amﬁ_%ﬂwt
As
Mw = —Nep
Therefore,
Rpp o (A” - 2A12)6—2_4n}m - -4.*26—‘231_”#” o AQG_QA??#U
Ry = (A —44%y,,
We have
Juv = C‘_M?hm
By using above expression, we get
R, = (A" —-4A%g,, (3.22)
Ry = 0
= Gus = 0
Rss = —0sI'5, —Tg,I%,
= 4A"—4A"
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3.5.3 Ricci scalar
With Ricei tensor in hand, we can define the Ricei scalar in Hd as

R =i gMN H_.-\.; N (323)

H = .'7“” R;ﬂr +ﬂ’55 RSE 3
Using the expression for R, and Rss

R = gﬁ“’(A” L 4‘,41»‘2)9;”} 4 955(414” _ 4;4’2)
R — Q“"Q;;;;(A” o 4/_1;2) =2 955(4/‘1” . 4;2) . (324)

As g" g, =4 and g”° = 1, therefore,
R = 4(A" —4A?) +4A" — 4A"
8A" —20A"7 . (3.25)

3.5.4 Derivation of Einstein tensor
We know that

1
G = Ry = 59 B (3.26)

using the values of R, from Eq. ( 3.22) and of R from Eq. (3.25) in
above expression, we gel

G = (6A” — 34")g,, ,
and

1
Gss = Rss — 55’553 .

Using values R and Rs5 from Eq. (3.25) and Eq. (3.22) respectively in
above expression, we get

G5 = 6A" (3.27)
As
Gun = Run — s9unR = *Tyy
therefore
=G = KTo = zda(Tt) (3.28)
and
Tss = —A .
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So we can write

_ —A
T 2M3
Above equation shows that the real solution is possible only for A if
the value of cosmological constant is negative. So the space which lies
between the branes is anti-desitter space (AdS5) i.e., a space having

negative curvature.
By equating Eq. (3.27) and Eq. (3.29), we get

A% = =2 (3.30)

Gss (3.29)

Taking square root on both sides, we get

A =4x.
Therefore
dA
= 31
i +r (3.31)

integrate both sides w.r.t y, we get

fdA = :I:re/dy,

Aly) = +ry. (3.32)

We require a solution that is invariant if we replace y by —y, so we
take

A(y) = &lyl -

Eventually, the parametrization of metric in the RS model can be done
as

ds® = e Wy, dz"dz” + dy? (3.33)

Where—L < y < L. The expression for Einstein tensor that we have
found is

G = (64% -3A4")g,, ,
Also we have
Aly) = £xy .
Differentiating above w.r.t y, we get,

A'(y) = sgn(y)s . (3.34)
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By using the heaviside function we can write the term sgn (y) as
sgn(y) = 0(y) — 0(—y)
Taking derivative in Eq. (3.34), we have
A" = 266(y) ,

The above delta function comes due to twist of A at the brane that is
placed at y = 0 and there also comes another delta that arises due to
twist at the second brane that is placed at y = L, so the expression for
A" becomes

A" =2k(d(y) — oy — L)) .
Inserting these expressions in the Einstein tensor, we get
G = 6K2,, — 65(6(y) — 0y — L)) g (3.35)
therefore, we have
G =K T

The leading term of Eq. (3.35) corresponds to energy momentum ten-
sor. This implies that

. —A
2 - = R
K T:rw = myﬂ!i = 6k g;m
Aly) A'ly) A(y)
A A A
(T
L
>y
0 L 0 L 0 =

Figure 3.3: The function A(y) and its first and second derivatives.

36



The second term of Eq. (3.35) does not match to any term, so this
problem is solved by contributing the energy densities of both branes
one at y = 0 and other at y = L. These are also known as brane
tensions. We can do it by by contributing a term for each brane in the
action. The energy densities of brane first (y = 0) and brane second
(y = L) are \; and Ay, respectively. Writing

S =— /d‘].c\/—yl)\l = —/dd;:;dy\/ —g\0(y)

, (3.36)
Sy =— /d.“‘r\/—gg)xg = — / d*zdy/—gra6(y — L)

where g, and g, are representing the determinant of metrics correspond-
ing to first and second brane, respectively.

Distances across the branes can be defined by the matrices induced on
the branes, i.e.,

0 S . S ) I T
ds® = g, da'"dx

ds® = G, y; )da" dz”

where i = 1,2 and y; = 0, y» = L. Comparing above equation with
metric of Eq. (3.33), we getg; = ¢go(y) and go = gd(y — L).
As

gss =1,
to assure Einstein equations, we require to apply following relation
A = =g = 126M3 | (3.37)
Scuaring both sides, we get

N = (1oMe)P?

£ T =A
T 1o
by using it in above equation, we get
A2 .
A=——-7— 3.38
1203 ( )

From Eq. (3.37) and Eq. (3.38) we are able to know that 4D universe is
smooth and steady. To obtain a disappearing effectual 4D cosmological
constant the 4D brane origins are compensated by 5D cosmological
constant
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3.6 Exponential Hierarchy

The next task is to know about the physical scales for case when all
the matter fields limited on the second brane. Let's take a scalar field
(say Higgs). The Lagrangian for Higgs field is

L= (D"¢")(D,¢) — At — v*)?

¢ — H ot — Ht

=
l

DPH DB — MHVH — o*)?
98" D HID,H — N(H'H —?)?

Action for Higgs scalar field is
Shiggs = / d*z\/—ga L (3.39)

Here \/—gs is used so that volume did not change under Lorentz Trans-
formation. Using value of L, we get

Shiiggs = / dra/=ga {g{;"D“HTD,,H — MH'H — v?)?

We have
g.:.w = BQH]?}I??,'H) ‘
for brane at y = L, it becomes

v 25l v

g = e*n

So the action becomes

SHiggs = f d e/~ g2 [e'f’fﬂﬂuﬂ*"oﬂ HYD,H — \(H'H — -1;2)1
= / dize~ kL {ez"l’-r}“”D#HTD,,H —X(H'H — v2)2]

For canonically normalized action, use

H= eH,

SHiygs ko /déwe-—‘ln[. [EJH.LT?;WDF ﬁTD,,ﬁ 3, /\(E2RLE-T)F_;( - '112)2:| 1
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after simplification, we get
Stigas = f d' [vf“‘D,.Ff*D..ﬁ — MH'H - (e""-)’)ﬁ] . (3.40)

The above action is done for normalized Higgs scalar field, The vacuum
expectation value can be expressed exponentially as

Vepr = ey, (3.41)

Since all the mass parameters get mass from the vacuum expectation
value of Higgs in the SM, so all the mass parameters have suppressed
exponentially on the brane that is present at y = L (second brane).
The apparent Higgs mass will goes to weak scale for the magnitude
of bare Higgs mass of Planck scale order. Due to this, the brane that
is present at y = 0 is known as “Planck brane” and brane that is at
y = L is known as “TeV” brane. My = 107'*Mpjy.4, the suitable
magnitude of extra dimension’s size is

kL ~Inl10" ~ 35 .

To know that this exponential expression is fruitful to solve the hierar-
chy problem or not, it must be known that what is the effect of extra
dimension on the gravity’s effective scale. We can get this information
by the process that the 5D action gives the 4D action.

If we perturbed the action of Eq. (3.1) about the background metric
that is used in Eq. (3.2), we get an expression which has following
sechamatic form, as

L
§3 M / d'z / dye~ 2l \/— glO) RAP (p )
-L
L
= M“f e""l"[dy/d":r\/ _g(ﬂlR‘"(hﬁﬂf)
=L

Since _f_"‘L dye~*W is symmetric and is an even integral. So

L
/ . dye W = 2 f;‘ dye=2W

Therefore
L

L -
/ dye™ 2 = 2f e
= ] -2K

0
-2l _ 80)

Il

1
_E(c
| O

2
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Hence,

) I = e—-?h‘[. n
S = M3( = ) /(14:1'\/ —gOR*D(h,,,(0)) , (3.42)
Z| <
Si| £
p 7
Planck » | M -~ Mﬂ £ |
P, =
P l 7 I
p | < i |
[ | | = |
Z
‘ | I 3 |
| | Z 4
(  hidden s [ /
s >
| d -
| 4 | v TeV
s 7/
1% 54 {7
e s >
0 L

Figure 3.4: The generation of exponential hierarchy

Above expression is related with the 4D action. From above ex-
pression the effecetive 4D Planck mass has value

. . i e—-‘EHL
This shows that if value of kL is large, the Planck’s mass depends
weakly on the extra dimension’s size.

From two results that are given in Eq. (3.41) and Eq. (3.43), we
observe that the weak scale is suppressed exponentially down the extra
dimensions. However gravity scale mainly did not depend on it, as
shown in Fig. 3.4.

In conclusion, an exponential hierarchy could be created among the
weak scale and gravity scale in a theory in which magnitude of all bare
parameters could be calculated by Plank scale. Hence the RS model
gives actual solution for hierarchy problem. Effective Planks mass lasts
finite also for decompactification limit I, — oco. For the limit L —
oo we have only single brane and is called RS Model II.

3.7 Graviton modes

To know about the working of gravity in the RS model, we should first
know about the gravitons and their mathematical expression that is
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related with the little fluctuations hyy(x, y) about the following back
ground metric

ds® = e_g"iyl?hmd;t:”dl"’ +dy? .
This can be obtained by calculating the solution for linearized Einstein

equation.

3.8 Conformally flat metric

Conformally flat metric is a metric that is proportionate with the flat
space. To get it we relate the previous extra dimension variable“y”
with a new variable “z" by

dy? = e 2Wld2? |

By integrating above equation, we get a constant that we set in such a
way that for zero value of “z" we get zero value of “y". This leads to
the following result

Kklz| = el — 1
Kl|z| +1 = ™l

1 — okl
k2| + 1 -

1

(k]2 +1)?

The metric for this new variable becomes

: 1 ,
ds® = m(rhwdﬂ:”dr' +dy?) .

So the conformally flat metric is written as follow
ds® = e‘mm?]!\,;er:f:Md:r:N , (3.44)
where 2° = z and A(z) is specified as
8—2./1(2] = 1

(k]z| +1)2
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—2A(z) = In(k|z| +1)?,
= —2n(k|z|+1),
A(z) = In(k|z|+1).

Now, we find derivative of A(z) w.r.t z

sgn(z)k

Al(z) = e (3.45)
and by taking double derivative of A(z), we get
"_ sgn'(z)k K2
klz]| +1  (s(2)+1)2°
Finally
: . P 2
A= 2h(a(zr)c]z:|({|(rzl =l (n.|zr-|— 127 (3:46)

where we used

sgn'(z) = 26(z2) .

3.8.1 Linearized Einstein Equations

If the conformal transformation of a metric gy y is the metric gy,
ie.,

. a2A .
gMN = € T gMN , # A

or . : ] }
gun = e*guy .
Then the specific Einstein Tensors are affiliated by
Gun(gun) = éMN(ﬁMN) +(n— 2)[€’MA€’NA + Vi AVNA

. e = e
~Gun (VaV" = VAV RA) (3.47)

where n represents number of space time dimensions. Now we derive
the expression given in Eq. (3.47). We know that

= ~2A%
gMN = € GMN
~M N~ MN

g gnp= Gnp -
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In above eqs. Vs corresponds to gyny and Vi corresponds to gaw.
Vr andV,; are related by following equation

Vauwy = Viwy — IR ywr (3.48)
where

1 = - _
TN = QQRS[VMQNS + Vngms — Vsgmn] - (3.49)

If we reverse the rules for V and V in above equations, then we get

= R
Vuwy = Vywy — Ty nwr

or
Dy = %ﬁns[vmﬁws + Vngms — Vsgmn]- (3.50)
As
Vugnr =0,
and
Var(Gyr) = Va(e* gvr) = 26> gvrVuA |
we have

?}*RS = E—M!}RS ’

Using all these values in Eq. (3.50), we get
Tiin = 9% gns VA + g™ gusVnA — g% gnsVsA
as g™ gns = 68 so above equation finally becomes
Ty =0NVnA+85VNA— g™ gyunVsA . (3.51)

It can also be written as

Py =26%(uVn)A — g™ gunVsA .
Now we will to perceive the relation for RY,,. We have

VuVnwr — VaVywr = Rynpws - (3.52)
As

: S
VN(JJR — (91\;0}9 S FNHUJS ¥
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SO
Vu(Vvwr) = 0 (Vawr) — Tuvey (Vvwnr)
Inserting the value of Vywpg, we get

VMVNQ)R = E)M(E)NLUR — Pi‘rﬂws) = F?\:[N(E}TL‘JR = Pf—'Rws)
—Pf\m(af\’w‘l' = P}C{YTWS)

Similarly

VaVauwr = On(Omwr — Tipws) — D (Orwr — T pws)
—Pf\rﬁ(aMwT == FJSMT‘*’S)

Inserting these expressions in Eq. (3.52) and using I'}, = T'%,,. After
simplification, we get

5 & A5G &8 T -8 T ™S
Rynpws = —OumDygpws + OnTipws + Ty plygws — iy pliyrws

and it can also be written as

S 4 ) 5 S T S T s
RMNR = RMN.‘-R e VMFNH + er;\-m T Fn-mT‘NT “ FNRFMT

Using Eq. (3.51), we get

Rive = Ring— Vn(05VNA+03VRA — g% gyrVrA)
+VN(§§VMA + 5§IVRA — gSTgn.;RVq-A)
+(0RVMA+ 03, VRA — "  gurV pA)

(5;VNA & 5§V;A == gSF_(]NTVFA)
—(6RVNA+ 64V RA — g™  gnrV P A)
62V A+ 05, VrA — ¢°F gur Vi A) (3.53)

Rine = Rying—03VuVNA =85V uVrA+ ¢ gnrVn VA + 65V NV A
+05 VNV A — 65T grVN VT A + 0565V AV N A + 656%V a AVT A
—0r9° T gnrV AV p A + 61,05V RAV NA + Sy T3V rAdr A
~03,9°  gnrV RAV R A — g"F gurV p AV N ASF — QTFQMRVFAV'{!é‘sﬁ .
— ROV NAV A — 6503, VNAV A + 0505  gurVNAV R AL

—03 07V RAV A — 6300 SV RAVTA + 61,9° 9r1rV RAVRA g
+9" " gnrV AV MAS) + g"F gnpV p AV ASY — ' " QNRQ,SVQMT,VFAVVA
+9"  9r1rg®  gnr VAV A . o (3.54)- 1

."
@
s

44



In above equation we interchange N <+ M in term (22) and N <> R in
term (24) and then simply we obtain the following equation.

Ryve = Ryng—O08VuVaA+g™ gyrVuVrA+ 65 VyVeA
-*gSTgﬂ.,'RVNVT‘A + 5§;V;.;AVRA - gSFgNHVn,;AVFA -} 5f;VRAVNA
—gSFgNHVH.*iV;‘-A =+ rS;f,;VRAVNA e thVH_AVMA -— ySFQNMvHAV;-‘A
—_(}TFQMRV;:/\VN/HE, — ()ﬁrv;v AV g A + _qSFgMRVNAVFA = 5}%VR/\VM/I
—V VRAVNA+ 0% gynVRAVEA + g gy rV AV ASY, .

Again by doing some simplifications, we obtain

+9° T gV Ve A + VARV A — VAV, VR A
~VmAgnrg® VrA+ Vi Agryrg® Vi A
—9rMONg "V rAVNA + grndng" V pAVEA

By contracting over N and S, we obtain

Rur = Rur+ 05 VNVRA -85V VrA — g% gayVsVrA
+9" grsVuVrA + Vi AdgVrA — VvAVY, VA
9sng EV AV EA + VsAgarg® Vi A
_QRM(i:ggTFvFAvNA -+ QRS(S:E[QTPVFAVTA .

Ryr = Rupr+VuVeA—nVyVeA— g% gryVsVrA
"f_(ﬁ;vﬂ'!v'."fl s ﬂ-vMAVRA — Vﬂ.fAVRA

— 0BV M AV A + grrrg® T Vs AV R A
—ﬂ.GR;\-f.f}TFVFAVTA . QRM!]TFVFAVTA .

or

Ryr = Rur+VuVeA—nVyVrA— ¢ gpyVsVrA
+VuVrA+nVyyAVRA — VAV RA
—VuAVrA + g,r._.,f,rngFvTAVpA
—ngrmg’ TV pAVTA + grag" TV R AVEA

After more simplification, we get

ﬁM R = RMR = (??. — 2)V,\.-,rv;;j-l 1 (n = Q)V_.\-,r/lv,qfi — gSTg,\.;RVsVTA
—('H. = 2)93\.”{957\75,4V1-A 5
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We have

:é'ﬂf}i’ = E—Zf\gﬁlfﬂ ;

S0

"R Ryr = e‘g"‘ﬁf‘m{ﬁnm = (n=2)VuVeA+ (n - 2)Vy AVRA
— 0T gra VsV A — (n — Q)QHM{}STVSAVTA} :

We know that
7" Ryr=R,

therefore,
R = 24 {{;MRRMR —(n— Q)QR'!RVM VrA+ (n— Q)gMRvMAVRA
— g5 g g0 VsV A — (n — Q)HM”’5h1-uz.5'STVsu4V*rA} :

Also
g gyur=mn,

R = (3_2‘4{ R— (n—2)g"BV VA + (n — 2)gMEV AV RA
~ngSTVsVpA —n(n — Q)Q‘QJ"VSAVTA}

. By changing T — R and S — M, we have

R = ¢4 { R— (n—2)gMEVy VeA + (n — 2)gMEV AV RA
—ngMBV VA — n(n — 2)9“"'RVMAVRA} .

By simplifying, we obtain

R = (2_2‘4{1? = 2(?3. S Q)QMRVMVR.’l =t (n S 1)(?1 = Q)QA'IRVJL.;AVRA} ;
(3.55)
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The Einstein equation is

~ ~ A
Gur = Rugr— §!IMHR ; (3.56)

Using the definitions of these conformal transformations, we have

Gur = BRur+(n—2) [ —VuVRA + VMAVRAJ — gmry” VsV A
—(n—2)gmrg° Vs AV A
—;gﬂme“e‘m{ﬁ —2(n—1)gMiV 3 VrA = (n—2)(n — l)gn"'RVMAVRA}
(3.57)

By rearranging the above equation and replacing M — S and R — T,
we get
-2 1 L it
G;,.;R — RMR — §QMHR e ('H. = 2) [ - VMVRA + V,\.;AVRA] = g‘q" V’ VTA
~(ni— Q)QA-!RVTAVTA + gﬂ-ﬂf.@ST(ﬂ' —1)VsVrA
(n—2)(n—1)
+%gﬂﬂ?95f V‘,AV;'A

= Gyr+(n—2) { —VuVeA+VuA+ VRAJ - g;\.;RVTVTA

—2)(n—1
—(n — 2)gurVT AV A 4+ gurVT VA — 1) + L)éﬂ—)gﬂ_.,ﬁvsAvTA

F

= Gﬂ_-‘fR -+ (H. == 2) [ — VMVRA -+ VMAVRA:] + ('?’.'. —-1- l)g,-,;RV""VTA

" [(n —2)(n—1)

5 == 2)] gurV AVA

= Gur+n—2) [ —~ VuVrA+ VyAVRA + gV VA

n—23
_l-.

Qn-mVTAV'."A] i

- ST AvAY| .

GMR = éﬁ.m - ('ﬂ. - 2) [ —VuVrA+VyuAVrA — QMR{—VTVTA -
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VMA = —%M A
and

VMVNA = —-eme,\r/l

VnAVNA = (=V ) A)(-VyA)
By using above definition, we get
Gur = Gur—(n—2) [ﬁﬂfﬁﬁA + Vi AVRA

" 3GT AV A)

—GMR{VTV A -

The RS model described above is the simplest RS model in which there
is a great problem for the electroweak precision parameters because
the mass of lowest lying KK modes is of the order of 10 TeV which is
beyond the reach of LHC. This problem can be solved with enlarged
custodial symmetry by which the RS model become steady with the
electroweak precision data for KK scales even as low as (2-3) TeV.
The increament in the mass of lowest lying KK modes in the case
of simplest RS model is due to harmful contribution to 7' parameter
and contribution of excessively large corrections to left handed Zbb
vertex.So with the enlarge custodial symmetry both the Zbb vertex
and T-parameter are protected.

3.9 Custodial Symmetry
The Higgs Lagrangian is

Ltiggs = (Dn‘is)tDp‘p = V(‘f’) ) (3.58)

where »

V(g) = —1*'o+ Ad'¢)* (3.59)
is the Higgs potential and

Du(¢) = (9, + -.azga.w,, + iib‘ﬂ)d) (3.60)

2
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is the covariant derivative.

The Higgs Lagragian does not change under SU/(2),, x U/(1)y symmetry,
but there can be an accidental (approximate) global symmetry in the
Higgs Lagrangian also. To check it we use the following process

+
6= (‘;u) ' (3.61)
where ¢ is the doublet field of the Higgs and ¢* and ¢~ are its com-
ponents and
¢” )
= 62
0 (_ o (3.62)
is also doublet under SU(2),. The Higgs field in terms of matrix is

=Ly L[ o
o=@ =2 (% %) (3.69

So the Higgs Lagrangian corresponding to the matrix field is

Litiges = Tr(D,®) (D, ®) — V(D) . (3.64)
Here
V(D) = —2Trd'® + N(Trd'e)* | (3.65)
and
D, = (8, +iZo.W, b — z'%a,. Parg) - (3.66)

The third term in the last equation have o3 which is due to opposite hy-
percharge of ¢ and ¢¢*. The Higgs matrix field under gauge symmetry
SU(2);, x U(1)y is written as follow:

SU(2)y : ® — L (3.67)

Uy : ® — peos? (3.68)

the o3 in the exponential appear because ¢ and ¢¢* have opposite
hypercharges. So the term

Tr(D,®)' D*® = Tr(D,®) L'LD"® = Tr(D,®)' D'®  (3.69)

is invariant under SU(2),. To obtain the approximate global symmetry
obviously, it is necessary that the hypercharge coupling disappear ¢’ —
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0. By this limit the Higgs Lagrangian remains in the same form as given
in Eq. (3.58), but the gauge covariant derivative changes to following
form

D,® = (3, + 'E%J.H”p)(b . (3.70)

Therefore, in this limit, we obtain that the Lagrangian has global
SU(2)p symmetry. It can be written as follows

SU@2)p: @ — BR'. (3.71)
This implies the term
Tr(D,®)'(D'®) — TrR(D,®)(D'®)R! = Tr(D,®)!(D'd) (3.72)

not changes under SU(2)z. Hence there is a global symmetry SU(2),, x
SU(2)p in the Higgs sector for limit g' — 0

SU(2), x SU(2)z: & — LOR'. (3.73)
In terms of vacuum expectation value,
1 (v 0
cos=i(y ) o
Both SU(2), and SU(2)x are broken by the vacuum expectation value
L<®>#<® > <®>R#<® > | (3.75)

but the subgroup SU(2) 1. is not broken by vacuum expectation value,
associated simultaneously to the transformation of SU(2);, and SU(2)
with L = R,

L<d>Lt=<®d> . (3.76)

Hence the global symmetry is broken by the vacuum expectation value
in the following way

ST, % SUR)p—+8U(2) par (3.77)

This is known as “custodial symmetry”. There are 3 generators that

are broken (3+3-3=3) , because SU(2) is a three dimensional group

and due to these three generators there arises three Goldstone bosons

which are eaten by the massless W™, 1W~ and Z bosons to attain masses
through Higgs mechanism.

Mp; = %921;2

N (3.78)
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this implies

My & 4
M'% = 92 +g’2 = COS 0“.' v (379)
Henee
M3

T T T (3.80)

at tree level, We can also know about the characteristics of a theory
that is beyond the tree level by the assist of custodial symmetry because
of the symmetry SU(2).4r that remain unbroken for ¢ — 0. The
radiative corrections because of the Higgs and gauge bosons to the
p parameter have to be proportionate to ¢g”. e.g. because of Higgs
boson’s loops there is leading correction in the the p parameter in the
MS scheme.

GrMZsin® Oy, mj,

3.81
24/2x2 M3 (SE1)

for ¢ — 0 (sin’fy — 0), the above correction disappear. So the
parameter p = 1 is protected by the custodial symmetry from radiative
corrections.

3.10 The Randall Sundrum model with custodial
protection (RS.)

There are many changes that have been suggested in the model and
each one add some new characteristics in the simplest RS model. In
present case we take the scenario where the SM gauge group is extended
to the the following gauge group

SU(3)e x SU(2) x SU(2)r x U(1)x x Prg (3.82)

The Randall Sundrum model with custodial protection (RS,) [12-14]
is defined by above group together with metric given in Eq (3.2).

The custodial protection is perceived by forcing the discrete Py g sym-
metry, that gives the mirror actions of two SU(2), z groups which
protects the Z couplings to left handed fermions [15] from the exces-
sively large corrections. Also this enlargement of gauge group made
RS model steady with electroweak precision observables for lightest
KK excitation’s masses that are of the order of few TeV, that can be
achieved by LHC. Here two symmetry breaking take place, first one is
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this that the gauge group given in Eq. (3.82) breaks to SM gauge group
and enforce some acceptable boundary condition on the UV brane [16]

SU2)r x U(1)x — U(1)y

The second one is the spontaneous symmetry breaking that takes place
by the Higgs on the IR brane.

SU(?)L X SU(2)R = SU(2)L+R

This gives the custodial symmetry that secure the 7' parameter[17, 18].
Here All the SM fields are given the permission to move in the bulk
excluding the Higgs field that is restricted to IR brane at y = L.



Chapter 4

Effective Field Theory (EFT)

4.1 Introduction

In our living world there are many amazing things and one of them
is the existence of fascinating physics at every scale. When we medi-
tate on that scales of energy, time or distance which are not explored
already, we discover new physical phenomena. From the lifetime of Z
or W (10~*sec) to the age of the universe that is nearly 10'®sec there
exist different physical phenomena. If we want to study a particular
phenomenon then it is convenient to separate that from all others. For
this purpose the possibility is to divide the whole space into different
areas. So in each area there is a different suitable explanation of im-
portant physics which is known as “effective theory”,

The word “important” is used as a key-word because the relevant phys-
ical processes differ from each other place by place in space. The word
“suitable” is also used as a key-word because there is not any single
explanation of physies which is applicable in whole space.

The simple idea is this that if we have parameters which are extremely
large or extremely small to our interesting physical quantities then we
can achieve the simple illustration of physics by setting the parameters
which are extremely large to infinity or extremely small to zero. Then
the effects of parameters which are near about to the point of our in-
terest are taken to be as a small perturbation about that point, This
trick is old, but without this trick the understanding of current physics
would be very hard if not impossible. This trick is used without think-
ing about it. For example, the Newtonian mechanics is still taught as
separate subject without taking it as limit of the relativistic mechanics
for small velocities. The relativity can be ignored in that region of
space where the velocities are very small as compared to speed of light.
This does not mean that treating the mechanics in the full relativistic
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fashion is wrong but it became easy if we do not include relativity in
the case where it is of no need. It is not compulsory to use effective
theory if full theory is known. Anything can be calculated in full theory
by cleverness. However, the use of effective theory is convenient. The
calculations become easy by using effective field theory because we only
concentrate on the physics of interest in EFT. When we use the EFT
in particle physics then the parameter that is relevant is a “distance
scale”. Trying a procedure where the parameters which are small as
compared to “distance scale” are shrinked down to zero. By this proce-
dure, we get the simple and useful shape of important physics. Just to
solve as an example, one such procedure has already been used while
studying the multi-pole expansion in the electrodynamics. However,
the construction of the EFT is interesting in the case of relativistic
quantum field theory where the creation and annihilation of particles
occur. In general the EFT are used in two distinct approaches.

1)Top down
2) Bottom up

4.1.1 Top-down

The top down approach begins by a known theory (high energy the-
ory) and then by removing the degrees of freedom related to energies
above some particular energy scale, say F,. Our goal is to get a low
energy theory which authorize one to calculate the required observables
related to the energies below Ey more easily than the original high en-
ergy theory. There are a few parameters to deal in calculations of low
energy effective theory than the high energy theory. Hence the calcu-
lations are more easy in low energy effective theory than the known
high energy theory. However, the establishment of such a low energy
effective theory which fulfils this is done simply by removing the high
energy degrees of freedom but they can be entangled up in non trivial
way with the corresponding low energy degrees of freedom. One way
to disentangle the low energy and high energy degree of freedom was
given by Wilson and some others in 1970. This method is known as the
Wilsonian approach of effective field theory. It include two steps: (i)
identify the high energy degree of freedom and remove them from the
action. The degrees of freedom of high energy refer to the heavy fields
or high momenta. By integrating out high energy degree of freedom an
effective action is obtained which describes the non local interactions

between low energy degrees of freedom i.e., light fields or low momenta.*

(ii) The second step is to get a local effective action from the the effec-
tive action of first step by expanding it in local operators. These steps
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are described below in more detail [19].

(1): Suppose we have a theory that has a particular energy scale Fy and
is described by an action (say S) and we want to know about physics
at an energy scale E that is lower as compared to Fy i.e, £ << E,.
First of all we select a cutoff A at or just below Ejy and split the field
¢ w.r.t A into low and high momenta components such as

¢=¢u+oéL,

where the momenta of ¢y is k > A and ¢;, have momenta k < A. Now
we integrate out (remove) the fields of higher momenta by using path
integral formalism

/DéLfD¢HetSI¢H|¢Ll o /’D(bLe!Sn[qu] )

Here, the Wilsonian effective action is stated by
piSAlbr] — / DepyeiSWbudl
Hence the Lagrangian density is stated as

A / APrLeylr]

where D is representing the space time dimension.

(2): Typically, integrating out the heavy fields give the non local effec-
tive action which we expand in terms of local operators as

SA o) S{](A,g¥) o Z /dD$giOi 3

where O;’s are the local operators and ¢'’s are coupling constants. For
weak coupling, expansion point Sy can be considered as {ree action of
initial theory, such that g* = 0.

Examples :

i) One example is in the QCD. If we take the QCD just for any pro-
cess, some parts are perturbative and some are non perturbative. While
working for such kind of theories we can construct the low energy theory
which only have non perturbative scale and remove all the perturbative
scales. By this simple procedure one can figure out what is perturba—
tive and what is non perturbative physics.

ii) Integrating out heavy particles like W, Z and top quark to sepa.rate

%3] p

¥,

R Y
-—
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the perturbative and non perturbative physics is an example of “top
down”effective theory. Heavy quark effective theory (for bottom and
charm quarks) is also an example of “top-down” EFT.

iii) Non relativistic QED and non relativistic QCD and SCEFT (Soft
Collinear Effective Field Theory) are also examples of the top down
approach.

In this perspective, the high energy theory is not known but still we
can construct an effective theory. For this purpose we can use the idea
that there exist important interactions at different energy scales, few
of them are very large so that they can not be seen till now and may
not be seen in near future. However, an effective field theory could be
used to describe physics at a particular energy scale, say E with a given
accuracy ¢ in terms of QFT having finite set of parameters. Without
knowing what is going on at high energies we can construct an EFT.
We have listen about the finite set of parameters in renormalizibility
but the new features in effective field theory like dependence on energy
scale E and accuracy ¢ appears because we do not know what is going
on at high energies. At high energy scale | the effect of physics can be
explained by the tower of interactions with integral mass dimensions
from two to infinity, starting from ordinary interactions and going on
to incorporate non renormalizable interactions of high dimensions.
The tower of interactions are governed by the following principles.

1) We have finite set of parameters to describe the interactions having
dimension k — 4.

2) The interaction terms with dimensions & — 4 have the co-efficients
that are less or of the order of

1
ME’
where £ < M for mass M that is independent of k&. The above two
states are the principles of effective field theory. They make sure that
the calculations of the physical observables at a particular energy scale

E with an accuracy ¢ require a finite set of parameters because the
contribution of interactions with dimension k is proportional to

(%)
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Hence, we require to contribute terms only upto dimension k,. i.e.,

E k
(M) L

. _n(1/e)
= In(M/E) "

So as we move up in energy the non re-normalizable interactions be-
come more important as k, increases. That is the signal for approaching
to new physics. Before we reach the energies that are of the order of
M, the non re-normalizable interactions vanish and are disclosed as re-
normalizable or less non re-normalizable interactions still having higher
scale say M'. The examples of bottom up approach are the low energy
Fermi theory of weak interactions and according to some physicist the
SM also falls in this category. Now we discuss it in detail in the next
section

4.2 Standard Model (SM) as an EFT

Let’s try to understand SM as an effective theory. Foliowing the
method of expansion

Y I =IO+ 1M+ .
n

where L is the SM Lagrangian and L',.... are the corresponding
corrections. In SM, we have massive gauge bosons and [ermions in
addition the photon and gluons which are massless.

4.2.1 Fermions

For the fermions there is a broad mass spectrum. The masses of quarks
and leptons are given in tables 4.1 and 4.2 respectively.

Quarks Masses

wr, UR 1.5-3.3 MeV
dp.dp 3.5-6.0 MeV
SLySR 100 = 30 MeV
CL,CR 1.37 £ 0.03 GeV
br,br 4.20 £ 0.12 GeV
tr tr | 173.34 £ 0.76 GeV

Table 4.1: Masses of qaurks of the SM



The corresponding gauge couplings are different for left and right
handed fermions.

Leptons Masses
€L, ER 0.511 MeV
Iy IR 105.6 MeV
TL, TR 171.7 MeV
Ve, | <1x107% GeV
Vups | < 0.0002 GeV
Vr, < 0.02 GeV

Table 4.2: Masses of leptons of the SM

So even in the SM there are large number of different mass scales
and if we think from the EFT point of view then the suitable choice
is the top down approach. Firstly, we will integrate the top quark and
then the W and Z boson and we proceed down to the bottom quark etc.
We can construct the EFT by integrating out one degree of freedom
and we get new effective field theory by integrating out another degree
of freedom every time.

Let’s think in a different context. We have all the stuff (masses of
the SM particles) and we are interested in physics at high energy scale
beyond the scale of weak bosons and top quarks. For this purpose we
use bottom-up approach. Writing.

L(UJ = LGu-u_r;u + Lpermi + LHi_qys o LNR ' (41)

where Ly, is the Lagrangian for right handed neutrinos and Ly, is
for Higgs particle, The different L’s can be written as:

1 1

1 2
Laauge = —ZB""BW - ZWe W — ZGA amw

4 v

LF'ermf. = Z @Lil}ﬂu D}!wL + Z ﬂ_’Ri“fp D#'J"R )
L VR

iDy =i, + 1 B,Y + gaWiT* + gATT? |

where D, is covariant derivative for gauge fields and g, represents the
gauge coupling for hypercharge and g, for SU(2)eqr and g for SU(3)..
Power counting in this down-up approach corresponds to what we left
out.

Define

- Mgy
A'ﬂl‘-"f

58



Ajew represents the things we left over to describe. The expansion
is made in this ¢ and the power counting depends upon the powers of
Avew In the numerator there comes the things like the top quark mass,
W boson mass, Z boson mass and the Higgs mass. In the denomina-
tor we have something like Mpja, Mer, and Mgy sy which are scales
corresponding to high energy. So from the EFT point of view anything
that is left out of the SM description (generate at high energy scale)
goes in the denominator of expansion.

The term LY describes the corrections that corresponds to the
physics beyond the SM. Physics at high energy scale is described by
the higher dimensional operator (operator having dimensions greater
than four) which are built from the SM fields.

4.3 Marginal, Relevant, Irrelevant Operators:

Consider an effective field theory for scalar in d-dimensions

1 1 2.0 A 768
S(oﬁ] = /.(ld;\’(-éayw¢ = ﬁﬂi (o T - F 5 ) ' (4.2)
where }¢, 000 represents the standard kinetic term and jm?¢” repre-
sents the mass term.
We can look at the mass dimensions of various operators here. The
action method is

d—2

2
So the mass dimensions of field in d-dimensions is !1;—2

[¢] =

[X) = —d [Al]=4-d [m?®] =2 [f]=6-2d.
As an example we want to study the correlation function
< 9(X1)- e 0(Xy) >
at long distance (small momenta). Define
¢(X) =55 (X) (4.3)

@'(X") is the real field but rescaled by a s parameter. The corresponding
action in terms of ¢' field becomes

S'(¢') = / d";\"[%ﬂ"q&'aﬂfﬁ' - %m'-'s%" - %s"”"q)"" - é.aﬂ-%'ﬂ + crens)(4.4)
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Let’s look at the correlation function in terms of ¢/

ni{2—d)

< G8X)oornp(8X) >= 5" < @(X])ourrnnt(XL) > . (4.5)

We could study this in various dimensions. For simplicity take the
most common case of our interest i.e.,“d = 4" and ask the question
what happened when s gets large . This is something we often do
while studying EFT to figure out how we can study the large distance
behavior,

In the limit § — oc:

e The term 3m*s*¢* becomes more and more important because
we have explicitly s? in this term. So ¢? is called relevant.

e 7 is less important because the power of s is in negative and A\
term is equal important as before.

So we could say that ¢ is the relevant operator, ¢* is marginal and ¢%
is irrelevant operator.

¢* — is relevant dimensions< d  [m?] > 0
¢' = is marginal dimensions=d [ A] =0
@" = is irrelevant dimensions>d [ 7] <0

For Finite s (but large) the dimensions of operators (parameters) tells
us about the importance of different terms. For power counting we see
the dimensions of parameters

(m?) ~ (Afsw) + A~ (Ades) T~ (Apey)™?
and we can do power counting in this A,.,. Long distance s — oo
means small momenta, therefore, in terms of momentum.

p<< Ancw-

As the power of A, is negative for 7, hence it corresponds to irrelevant
operator.

4.4 Renormalization

Renormalization is a technique which is used to deal with infinities
appearing in the calenlated quantities. There is a large number of
infinities in relativistic field theory, so these infinities should be removed
before comparing the theoretical and experimental predictions.

The renormalization is a skill that systematically isolates and then
eliminates all such infinities from the observables which are physically
measurable. Keep in mind that renormalization is not just only for
relativistic field theory but it a general theory. For example | suppose
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an electron is moving in a solid and if the electron is weakly interacting
with the solid lattice then an effective mass m* can be used to describe
its reaction to an external force and m* (effective mass) is surely dif-
ferent from the mass m which is measured outside the solid. In such a
straightforward case both mass m* and m are measurable and so are
finite. The condition is same for the field theory but there are two ma-
jor differences. (i) Because of interactions there appear to be infinities
relating to the divergent loop diagrams. Such infinities are appearing
due to the contribution of high momenta for weak interactions. (ii) The
interactions between the particles and observables can not be switched
off because it is impossible to measure bare quantities in the absence of
these interactions. In renormalization all divergences are shuffled into
bare quantities. i.e. ,the non-measurable quantities can be re-defined.
In this way we can absorb these divergences to different parameters to
make those observables finite which are physically measurable. So, the
theories in which all divergences can be absorbed by redefining some
physical parameters are known as re-normalizable theories. The theo-
ries which do not have this property are known as non-re-normalizable
theories. By this criteria we can select a right theory easily.

4.4.1 Divergences:

We start from Feynman diagrams that generally have divergences.
Let’s have two four point interaction which are labeled by A.

Figure 4.1: Two-Two particle scattering.

The corresponding loop integral can be written as
[ )2 / d'k
(k2 — m2? +i0)(k? — m2 +io)

This integral diverges as AY~*, where d — 4 is the degree of divergence.
In d = 4 dimension

dik dk 1
ap S N 2 47
I f 1 f : InA < ; (4.7)
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in dimensional regularization d = 4 — 2¢ and if we think about what it
does 7 The the answer is that it is some thing that renormalizes the
Aot operator and we add the counter term

(=]
=

Figure 4.2

Now, what happen if we keep the 7 term and a A\ term simultane-
ously.

Figure 4.3: Four-T'wo particles scattering

The loop integral in this case becomes

dk
[~ /\T/ (—)~(~5 : (4.8)

which renormalizes 7¢°. It gets the same divergence but now the re-
normalizing operator is an operator with the 6-point in the outside.
Inserting one A and one 7 we get back the renormalization of 7.



Figure 4.4

Now we can also include two 7's

Figure 4.5: Four-Four particles scattering

This leads to
" d
1 ~ T2 m i (49)

which renormalizes ¢®.
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Figure 4.6

Since ¢® is not in S[¢] (without +.....) so the theory can not be
renormalized in traditional sense that is classical way of thinking. In
the effective theory way of thinking , other operators we have in this
diagram will become relevant.

If

1

ho

new

T

the p?r is very small, so theory can be renormalized systematically in

a\{.lﬂ., but it is necessary to add ¢%operator at order A} . To contribute
. —or = we require to contribute all operators with

dimensions [0] < d +r.

So here we can place more powerful argument that power counting is

all corrections to
e “"
always connected to dimensions.

4.5 Matching Condition

The connection between the coupling enforced by the demand that the
two EFTs describe the same physics is known as matching condition.
These conditions are assessed in both theories by the renormalization
scale y of the order of boundary mass to remove the large logarithms.
Suppose we have two theories, one is high energy theory and other
is low energy theory and we are interested to do matching at some
scale pt = jt,, = M. The requirement for the matching at this scale is
that the parameters of both theories should be related with each other
in such a way that the description of physics above and below the
boundary line (Matching line shown in diagram given below) remain
the same i.e., physics remains same in both theories. In lowest order
matching for the QCD this condition is elaborated as the coupling
constants of the interactions having light fields should be continuous
across the matching line (boundary) so that the theory above and below
the threshold (matching line) is same.
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L. O condition

— { "

My g lina

o
rinng i :

o 2 = )
Mb —e Match U-‘lji-lbl - ulh‘h}

d,;“ atL.o
running {

M . match

&
e}

Figure 4.7: Matching condition at lowest order

Whenever we reach the threshold we do matching, we switch the
field contents and get a new effective field theory with new coupling
constants as shown in above diagram. In the above figure the arrows
are representing the running of coupling constants while the lines are
representing the matching between the two theories.

The matching condition at b-quark scale is

“55}(#b)=it.[s4)(#a) at leading order (L.O).
That is a leading order matching condition. Where ju, ~ M, or ju, =

fl-iﬁ,, -"%r", 21"1*‘&,
The above matching condition is not true at higher orders.

(3) 2 (5)
o ,—1. p g 11 11, 1 My
Cl‘i4}(,££!,) - 61'55)(#!;)[1 + pe (_6 JH—A;:!) = (——*ﬂ_ )2(‘5 =t -ﬂhzﬁ/—[b i 3_6-3?12%) b ] .
b

We ensure that the theory with five flavor ( with coupling constant ais])
has the same description of physics as the theory with four flavors (with

coupling constant n-g") , but the diagrams differ in both theories.

Now we discuss the general procedure of matching related to masses
here.

4.5.1 General Procedure

Let suppose we have n particles having masses in the following order

My >> My >> M3 >> ciiiiineiinn >> M,



and we want to pass through Ly, Ly, Ly, ........... L,. This process in-

clude the following steps.

1) First of all we match L, at scale 1, = M, with L.

This matching conditions determines the corresponding parameters.

2) Then we require to determine the S-function and irregular dimen-

sions in Ly and evolve the couplings down.

(3)Now we do matching at scale = M, between L, and Lg.and so on.

We stop at the order where we are interested in i.e. ,at g~ M,.
Everything up to that stage is just to determine the theory £, and

the value of coupling constants by knowing the information at higher

scale.i.e, knowing the information in high energy theory we propagate

the knowledge down to the low energies consistently. Then we find the

parameters in theory L,,.

4.5.2 Example

For the explanation of the matching condition we consider the example
of b — ciid in the SM. The Lagrangian corresponding to this transition
is

Lsy = %W: i Vegady.

The tree diagram of b — ciid is

Figure 4.8: Tree diagram of b — ciid

and the tree level matching is
1

i NS S [ kR —¢ ~¢ m
A= (%)2(_3)‘%&"1‘6(9' - )’Vfﬁ; )(kg o J‘!E'; )[?l '7,,31;"][!; ‘?” Hu ]

(4.10)
where & = p|l — pi! = pli + pjj is the momentum transfer.
The momentum going through propagator is of the order of mass of

bottom quark,
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momenta ~ M,

As the momentum is small as compared to the mass of W-boson, so

we can expand propagator and the leading term of the propagator is
(—ig") M
(—M3,) M,

+0(—=)
We drop the higher order terms like O( -ﬁ%f-)

The Feynman rules for the effective theory after integrating the
W boson from the above high energy theory (SM) are.

Figure 4.9: Point diagram of b — ciid

LGP =
A= —-147-;['11“7,.!’;,1:,,][:;47" Pu"| (4.11)

It means that by integrating out the heavy particles from the Standard
Model (high energy theory) we obtain the Fermi theory (low energy
effective theory). So by matching the SM and the low energy EFT
(Fermi theory), we can find the value of coupling constant in terms of
the parameters of high energy theory (SM).i.e.,

V23
Cr= g2,

67



Chapter 5

Analysis of Ay — AT~ in SM
and RS, Model

Rare decays occur through flavor changing neutral current (FCNC)
b — s,d transitions. SM can be tested at loop level by these decays.
Due to this cause, the B-factories Belle, BaBar [20] and the LHCb have
included these decays in their major research directions. We can get
important information concerning the earlier studied features of the
SM, like Cabibo-Kobayashi-Maskawa malrix elements.

After radiative decay b — sy measured by CLEO [21], the focal point
is the rare decays that are induced by b — sl*l~ transitions . These
transitions have comparatively large branching ratio in the SM. Rare
decays are much sensitive to the new physics effects beyond the SM
and hence constitutes a reasonable method to look about such effects.
As the NP in semileptonic b-decays can can come through two ways,
(i) The operator basis remains the same as that of the SM and NP
comes only throngh modification of Wilson coefficients of the SM e.g.,
[22-24,27]. RS, model belong to this class of models. (ii) The new
operators along with the new Wilson coefficients also appear in addi-
tion to the modification of Wilson coefficients already present in the
SM. SUSY is a common example of this class of models. The interest-
ing question which follow next is what happens in the case of heavy
baryon to light baryon transitions and which physical quantity is more
sensitive to the effects of NP.

In this chapter we will study the baryonic A, — Al*l™ decay where the
particular forms is the study of physical observables such as , differen-
tial decay width differential branching ratio, lepton forward-backward
asymmetry and A polarization in the SM and Randall Sundrim model
with custodial protection.
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5.1 Effective Hamiltonian

After integrating out the heavy particles like top quark, Z and W=
for a scale above p = O(my), we get the effective Hamiltonian for
b— sl*l~ in the SM [26]

Hoyy(b— s*7) = - [Zp Oi(1) + Cra (1O (1)

+Cs6 (1) Osa (1) + Ca() Og (1) + Cro(12) Or0(11)
(5.1)
where O, () are the four-quark operators and () are the related Wil-
son coefficients. Here the terms proportional to V,, V.5 are neglected

YusWis| < 0.02. The operators that are nsed in the A, — AlTI™

for
U Ve Vi

transitions are given below

Current-current (tree) operators :

O = (Sacs)v-a(Csba),  Of = (Saca)V — A(Gsbp)

(5.2)
The QCD penguin operators :
OB == (Eubu)l-'—f‘nZ(ﬁﬁqg)v—.‘l
04 — Sﬁbtv —A Z(Q{YQH V—-A
05 = (Saba)v-a Z qpqs) v+
q
Oﬁ = (Eﬂbcx)if—}l Z(&fo,@)\r’+:1 (53)
q
The magnetic penguin operators :
Ory = = ,,.50_.“,(175;,]1’+m L)bF*
Osqg = %Em;,sa,w(m.z,ﬂ + msL)bG"
(5.4)
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The Semi leptonic operators :

O!]'l." = (gnbn)\-’-z’l(n)\"e ()10.4 — (sr:ba)\"—f'l(ﬂ).‘l . (55)

Here R = (14+%) , L = (1 =) , 0w = 5[] and, a and
A are representing the color indices. The electromagnetic interac-
tions are represented by coupling constant ¢ and strong interactions
by coupling constant g, ¢ represents the quark at scale p = O(ny,)
and(Gags)v-a = Gavu(l — 75)qs is the definition of left handed cur-
rent while the expression (Gags)via = Gavu(1 + ¥5)gs define the right
handed current.

The decay amplitude of free quarks by using the above definitions can
be written as follow

Gpa
\/_

—}—C"’”sm,w( (my P+ m Py)b(I4"1 )}

M — sltl)=-—

where we have used P, = £ and Py = % and the elements Vy, . V!
belongs to Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix, ¢* is
the squared momentum transfer, G'p is LllP fermi constant, while o
represents fine structure constant and C; C" and C'g are Wilson's
coefficients belonging to different il‘ltul‘.‘l(?i]l()lh Thl Wilson’s coefficient
C5!7 is given by [27,28]

el () = CNPR(u) + Ysp(z, §), (5.7)

where z = m./my, § =q¢*/m? and Ysp(z, ') is defined as follow
« by 1 b

V“’Vf"{cﬂ ! (59, PLb)(In"1) + Cro(57, Prb) (19" ysl)

(5.6)

Ysp(z,8') = h(z 8")(BC1 (1) + Ca(p) + 3Cs(u) + Cy(p) + 3C5(p) + Co(p))

= —h(l s')(4C3(p) +4Cs(p) + 30'(# ) + Cs(1))

—-h(O ') (Cs(p) + 3C4(p)) + = (303(#) + Cy(p) + 3C5(p) + Co(p)),

with
4 ln| T—z+1| _ .
Ba) = ‘gl“”%*a“‘§(2+—r)|1—.r|”2{ E| i
o, Qarctanﬁ
8 8 my 4 4.
T T TR
h(0,s") 5 9ln g s'+ gim

(5.8)

forz=42%/s' <1
for z =42%/s' > 1

(5.9)



(‘NDR

In naive dimensional regularization (NDR) scheme €' “" is written as

Y SM

v 475M 4 pppSM (5.10)
W

C;vun - PONDR+
where

YSM(:Eg) = Yﬂ(t) = icn(a:hmn)l

n=|]

Z2M(zy) = Zn(t)+i6'.,(a:h;r,.). (5.11)
n=|

Now the the parameters of Eq. (5.11) and are specified below

ﬂl’("‘d 3.1'1 ]

SMy, -
Yo(e) = 8 |lz—1 " (@—1p

182} — 16327 + 25927 — 108z, 322! — 3827 + 2527 — 18z, 1
g SM ¢, t [ ] ¢ ¢ t ¢ -
2o (x) 144(z, — 1) s [ 2(z, — 1)} 9] .
g T T+ T,
Culzy, ) = 23(.r,—-il)2 [3',2 — 8z, + 7+ (34 32, + Tx,, = 2x,) In l:+:z., ]

(5.12)

As Pp is of very small order so we neglect P term. and we have
PFPR =2,60+0.25 , YSM =098, Z5M = 0.679 and sin® 6 = 0.23
(29 31]. The expression for 7(s’) is as follow

n(s") =1+ %lw(é') (5.13)
where
Bt _Apan By oy BHdE L oy
w(s) = 9" 3ng(s’) 3fns’In(l s') 3(1+2§’)£n(1 s')

29(1+8)(1—28), - 5495 —65
3(1 — s)2(1 + 2¢) aii (1-s)(1 +2?ff'“)

and

a,(Z)
1 — fy2elmed in(mz)

(5.15)

a,(z) =

(!



with a,(mz) = 0.118 and By = 2. The Wilsons's coefficients that have

been appeared in Eq. (5.8) can be found by following expression:

B
Cj=) kiun" (G =1,...6), (5.16)
=1

kj; are given as

0 ),

0),

1 1
'll‘li - (O' 01 51 i 51 0! 0-. 0:
_ 1 1
krf = Ul Us g w2 ) " )
2i ( 7 5 0 0, 0
1 1
kx = (0, 0, — 30 g 00510, — 01403, — 00113, 0.0054 ),
1 1
ki = (0, 0, — 57, — 5, 00984, 01214, 00156, 0.0026 ),
ke = (0, 0, 0 0,-0.0397, 0.0117, — 0.0025, 0.0304 ),
ke = (0, 0, 0 0, 00335, 0.0239, — 0.0462 ,-0.0112 ),

The Wilson's coefficient (Vg is specified as follow

SM
CvSM , RN Y
T = - .
0 Sl‘ll2 HW

(5.18)

Finally the effective coefficient C-:f” is defined as

" 16 8 1 16 d o
C7 () = 77 Cr(uw) + gln® — n%)Cs(jw) + Calpw) D hin5.19)
i=1
where
Qg ( ;‘..E-i.lr)

n=——2= 5.20

: a's(»ub) ( )
and

1 1
Co(pw) =1 Cr(pw) = =5 D) Cy(uw) = —35 Ep(a(5.21)

The wilson’s coeffients that are in above equation are defined in leading
logarithm approximation. The py corresponds to the scale of W-boson
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mass. The parameters that are appeared in the expression of C;'f I are
given below

0.1456

3 1
hi = (22996, — 1.0880, — 7 TIgr T 0.6494 , — 0.0380, — 0.0186, — 0.0057
14 16 6 12
a; = ( 23 B 1313 0.4086 , — 0.4230 , — 0.8994 ,

The functions Dfj(z,) andF(z,) that are only defined for extra dimen-
sions scenario can be found in [32 34] and are written as

(82} + 5af — Tay)  a7(2— 3xy)

Di(zy) = — ." :
ol 12(1 — z,)? 2(1 — ) . (528)
v (2} — bry, — 2) 34?
Ei(x) = —lt(lt : ¢ x v
o) iT—a) +2(1—1‘,)“ Inxz, (5.24)

Now we study the decay Ay, — Al*l™ in RS, model. The effective
Hamiltonian corresponding to RS, model can be expressed as

e Gpc em * e Se p= B oy e $f s T
Hid, = — \"/gﬁ V-‘-hVts{CUH'RSL(S"H“PI,E’J(f’}" 1) + Cg 1% (5, Prb) (I1)

O RS (3, P10) () + Gl (3, ) ()

2.2' v _
—q—EC-f”'RS“EiJW%('m.;,PR + mgPr) (14"1)

2 v =
= q—;Cff’rf'RS”'.ﬁo,w q? (my P, + ms Pr)(I4"1) }

(5.25)

In the case of Randall Sundrum model the Wilson’s coefficients are
modified, and the corresponding modification in the Wilson’s coeffi-
cients is given below

G = PR BREE =050, (5.26)
Here
AY,
ACy = —— —4AZ,|,
: L&n2 B ”] '
A}f-"
ACy = |—= —4AZ;|, 5.27
£ [si112 0., s] (5:21)
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AY,

AC. — Tl )
¥ sin® 6,
and
_ AY!
ACl,, = ——2-
30 sin®6,, '
with
A4 (X) —Ak(X)
AYy = ¢ EESAR(
Vw‘/ Z AMZ g%y AL
Al(X) — Al(X)
AY! = i
: mV Z AM3 g2y Ai(X)
1 A“(){)
AZ! . - R Abn X
+V,th; = 8M3.g2,, sin’ O, £(X)
and

1 Al(X)

AZ, = + -
: Vs Vis % 8M3 g2, sin’ Oy

AR(X) .

(5.28)

(5.29)

(5.30)

(5.31)

Also X = Z,Zy, 2" and AY) and g5, = %lﬂ—qi‘;gﬂ— With 0, is the
Weinberg angle. The functions that are used above in the expressions

of AY;, AY! AZ, and AZ are given in references [35-43] .

For AC‘;” 3 &C‘-?) [;,l',h) = 0.4;29AC’-§’)(H:?'KK) + DlQSA(,}g}(ﬁlh ;{) is used

which include the following three contributions [37]

(AC): = iQur Y [A+2mi(A' + B)] [DLY**-(}’**)W"IJR

F=uc,t 23
8
(AC?)2 = —iQq 1r'35‘-(g;"°)2 Z [Io+ A+ B+4m3(I) + A"+ B')|
F=dsb
[DLRLY“RRDR]
23

o @
(ACs)s = iQa rg(g:“)ﬂ > m,:.w[fu-:-A+B]{[DLR;,‘RL}"“DR]

F=d sb
4o [’D‘ YdRRRR’DR] }
23

5
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(ACH): = iQur Y [A+2mp(A'+ B [DL(W)*W(Y“)’DL]
F=u,ct 23
8
(AC): = —iQurz(6lP) D o+ A+ B+dmi(ly+ A+ B)]
F=dsb
[DLRR(Yd)TRLDL] (5.32)
23

@C = iQurget”? 3 melho+ A+ BI{ [DiRARA(VY'D)

F=d,sb

2 [pg(yd)rn,,n,,pf,] } (5.33)
ms 23

Il

(ACs): ir Yy [A+2mp(A'+ B [D'LY“(Y")*Y“DR]

F=u,ct 23

2 -
(ACs)s = —i-rg(g;wf "7 3 [A+ B+2mb(A + B)]
L P i
[DLYdRR(Yd)fRLYdDR]
23
(ACg)3 = —ir%(gﬁnf’ﬁ > [A+ B+ 2mi(A'+ B
F=d,sb

[DLRLWRRDR] (5.34)

23

(ACE), ir Y [A+2mi(A' + B [DL(Y“)*Y“(Y“)*’DL

F=u,ct 23

2

W . 9 Y - - _ ;
(ACL), = -u-n'g(g:DP Ty [A+B+2mi.(A’+B')]i

s b

[DL(Y“)TRL(Y‘*)RR(Y“)T'DL]

23

—irg- (93P) 73 z [A+ B +2mi(A' + B')
F=d,sb

(AC)s

I

[DLRR(W)TRLDL] (5.35)
23



the parameters r = Tr and T3 = fn dylg(y))*. Q. expresses

the charge of up quark while Q4 represents the electric charge of down
quark. The functions I(), AU BY can be written as

I In(1)
el = (47)* M ( gt B (t- 1)2) ,
Ity = i 1 1+¢  In(t)
0N (Ar)2 M}{.K A(t—1)2 (t—1)3)"°

B : 1 t—3 21In(t)
Al = By = (Jm)g M ((5 =1 R (- 1)3) |

- / i 1 t2—5t—2 In(t)
Ay = BN = MKK(" Gl —1p (¢-1)4)*

I i 1 ( 3t—-1 _ 22n(t)

Ry = B(t) (4m)? MJ\ K ( (t—-1) ¥ (t— 1)3) '
o i1 [(Bt+1 24(2+1)In()
AW = B0 = gy, = et ) ‘

(5.36)

<

where, [ = ;5. By fitting the parameters for the B — K*u*p~ The
KK

modified Wilson's Coefficient are given in the Table 5.1

AC; | AC. | AC, | ACE | ACi | ACK
Values | 0,046 | 0.05 | 0.0023 | 0.038 | 0.030 [ 0.50

Table 5.1: The Values of modifications in Wilson's Coefficients in RS, model
used in the analysis.

5.2 Parametrization of hadronic matrix elements

If we know the decay amplitude for the free quark, then we can deter-
mine the decay amplitude for the decay Ay, — Al*l™ at hadron level
by inserting the amplitude of free quarks between the final and initial
states of baryons.There are four hadronic matrix elements correspond-
ing to our amplitude given below, i.e.,

(AP)[EvblA(P+q)) (A(P)57.750lAu(P + @),
(A(P)|50,ublAy(P+q)) ,  (A(P)|50,, 70| Ay(P + q)), (5.37)
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The above matrix elements are usnally parametrized in terms of a series
of form [actors [44 48]. These can be written as

(AP)[5%bA(P +a)) = AMP) v + 92i0,4" + 939,) Ao(P + q),
(5.38)
(AP 570l A(P +q)) = K(P)(Gl'hs + Goiouq” + Gygu)sM(P + q),
(5.39)
(A(P)]ﬁdﬁuq"MAh(P -+ 9)) = K(P)(fl']’p + f2"l-a}.wqp e fohl)Ah(P + ),
(5.40)
(A(P)|Siouvsq"blA(P +4q)) = A(P)Fyy, + Faiouq” + Fiqu) v M(P + q),
(5.41)
The parameters g, G, [; and F; are representing the form factors and
are the functions of ¢* (momentum transfer square), Because of conser-
vation of vector current, as ¢l = 0. the form factors fy and F; do
not take part in the decay amplitude of A, — Al*1".
The matrix elements including the scalar $b and psendo-scalar $y5b

currents are also parametrized in terms of form factors,which we can
be get by contracting ¢” to the both sides of Eq. (5.38) and Eq. (5.39).

; \ 1 - . 2
(A(P)|3blA(P +q)) = ot m‘f\lP)[!hf"M. —my) + gsq” |Ae( P + q),
; 1 o .
(A(P)|53vb|AW(P 4+ q)) = A(P)[G(ma, +my) - G;;q’]'mA;,(P +q).

my — My
(5.42)

We can also combine the above matrix elements with each other ac-
cording to our requirement.

(MPY5%(1 = w)IA(P +q)) = APyl — Giys) + iou(g2 = Gavs)g”

+(g3 — G3vs)aqu) AP + q), (5.43)
(MP)5%,(1 + w)b|As(P +q)) = A(P)vulgr + Ciws) +i0,u(g2 + Gars)q”
+(g3 + Gav5)qu) Au(P + q), (5.44)

(A(P)[5ioyuwg" (1 — w)blA(P +4)) = A(P)[vu(fi — Fi15) + ioyu(fa = F21s)
0" + (fs — Favs)au)As(P +q),  (5.45)

(M(P)|5iaug"(1+1)blA(P +q)) = A(P)lvu(fs + Fim) + iou(fa + Fays)
¢ + (fs + Fsw)auAu(P +q), (5.46)

AP = AP+ ) = — (Pl + Gurehma, + (=1 + Gr)
ma + (93 + G3va) ) AP + q), (5.47)
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5.3 Formula for Observables

In this section we will present the formulas for different physical ob-
servable. In order to do that the decay amplitude corresponding to
Ay — AlTI™ in the SM can be expressed as

G o
Mp, s Athi- — ViVl [T (™) + T2y s0)] , (5.48)
T over
where the functions T ’]r’“J can be written as

"o

T,i = K(P) {'}’p (91— Gl’}"ﬁ) + io,wqu (92 . Gz";’s) + (5}3 i Gs’)ﬂs)ﬁ‘n} CSH'SM

+{ f,!t (Jl - Glﬁ}u) i to’;wq (!}z = G‘.E fa) + (JJ + G375)q;;} -"Eff,SM'

1 q_g{"f;: [fi(my, + my) + Fy(my, — myg)vs] + i0q” [ folmy + my)
e W
+ 5 (my, — n'm.,,)"gs]}(,-f’r’r'SM - q—z{";ﬂ [/1(my + my) — Fy(my — mg)7ys)

+i0,,q" [ fa(mu, + my) — Fa(my, —my) ;d]}(“"e” S‘”] Ay (P+q),

(5.49)

Tj = A(P) {7;& ( Gl7a) T ?J;wri' (9'2 -G )‘Ts) .4 (g.i o G_;"‘(‘,) Qﬂ} CSM

Tt { Tu ({?1 t (-'l"}‘a) + fﬂ;m'? (02 5 CQ"K.J) I (qd =+ Gd fa) (Lu} (‘!SM:I Ab (P o Q) s
(5.50)

For simplicity, the decay amplitude can also be written in the following
form.

G{(‘a * 1 T
Mp,sari- = ~ oo VioVis [T (I9"1) + T (Iv*ysd)]

Tl = R(P)[ﬂ}'p(“ll G AQ’Yﬁ) T io’;wq"(Bl T 8').’?5) T Q;:.(Dl &g D')Hfﬁ)]Ab(P +Q):
Tz = I\(P)[’}‘JI(AJ + A4175) + :":J_fmq”(BIi I B‘ﬂf‘ﬁ) ik Q;:(D:i T D475)]Ab(P+ Q)a
(5.51)

The functions A;, B; and D; are given by
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e i 2(my +m . e _
Al = ((WJISJ" £ C.:, ff,S.M) - ( qu s)fl (C;ff.Sﬂf + C-l: ff.Sﬂl)’

y F 2(my, +m wff.5
Ay = Gy(—CLHSM o letssmy _ (lhq o) f(CEHSM _ clettismy,

2(my, + m,)

¢
2(my, + my)
2

Bl = yQ(Cl‘gff'Sﬂl’ ) Cgrff..‘iﬂ‘.f) f (Ccff"u'lf &% CMII‘SM)

32 = G;g(-C’;IIIan +C;fff-SM) - R)(C-';II'SM . C;eu.SM),

Dy = gy(CSHSM 4 crettshy _ 2(my, + my) Fo(CEHTSM el 1My

¢
] 2(my +m . i
D, = Gg(-C’”‘S“ +C;e!f.su) - %F};(an’s“ - C;‘”'S“),

'43 = q‘(Cﬁ'a‘f +C;.g.|\f i
A-I C ( C!SA, _’_C#Sﬂf :
83 .h(('-lsd" +C’SM’ .
B.; e ('-2( (v‘)‘M ;‘{ﬁ“

Il

where C7//*" =0, C57"*"' =0 and Cf3M=0.
Now the Decay amplitude for Ay — ATl in context of RS, is

G em s - "
MO 2’\‘;1 VoV [MAAM) + My l)], (5.53)

where the functions M} M 2 are defined below.

"

M} = K(P)| {9 (91 = G13s) +ia” (g2 — Gas) + (g3 — Gyys)au} C/

" {’Yp (g1 + Grvys) +10,q” (92 + Gavs) + (g3 + Gays )} Cy N

{ Y [ 1 (my + my) + Fy(my, — my)ys] + i0,,q" [fa(mu, + my)
+F2(m5 — my s JOFTHRS — ?{’Yp [fy (my + m,) = Fy(my, — my)7s)

+“’m q [f?(’nla i ms) o F"("lb == ms)'\'ﬁ]} ':”' RS:] A:, (P + Q) '
(5.54)
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M2 = N(P)| {7 (91 — Gi7s) +iguq” (92 — Gavs) + (95 — Gvs) qu} O ©

s {'}',u (91 I Gl'}’a) + ?a;wq (92 ya 02'}’5) B (JS £ CJ’Y.J) Qn} C’RS'

Ay (P+q),
(5.55)

where

CpfR% = RSN L AGY
C;e ff RS, Creff,Sr‘.-.’ 4 AC‘; !
;SII.RSr CelISM 4 Ay
EPiM . gl
C3M 4+ ACh
CrRS.. iz C""'”+AC’QQ.

Il

I

Q
e
=
b
&
"
l

0
=
e

Il

For the ease, the decay amplitude can also be written as follow.

GpL
My, sarki- = — 2

&

Vs (AT + MAE 1),
with
n[;i = K(P) [’Y,u(AI =t -A‘Z'YS) + ’-*30;:»(}"(51 + BZ’YS) 717 q;:.(Dl T D?W&)]Ab(P “t5 Q)!

Mf: = i_\(P) [ (As + Ayvs) +io,q" (Bs + Bays) + 4u(Ds + Days) | Ao(P + q),
(5.56)

The functions A;, B; and D; are given by

' . 2(my +m .
Al — gl(cvgf_f,ﬁﬁc + Cr;} II‘RSc) e ( bqg -5) ( C ff.RS, 'S C."Bff,RS.—)
_A2 o Gl(_Cgff-RSc + CE"«‘-'H.RS.:) q f ((wﬂ,RSe, oy C;BH-RSc)’

E(mb )

1

Bi il gg(C;ff,RSc ={l Cr;zj'_f.RS._.) . f (Csff RS, s C(feff‘ﬁg‘-)

" 2 "
BQ e G'Q(—C;ff‘Rsc e (j;;gfflRSC) - (n?b )F ((}IE!I HSg C;eff.ﬁbr_-)‘

D, = gg(cgff'RS“+G;cff'RS"),

D2 = G:}(_C‘;ILHS‘: +C‘;ﬁff‘nslr)’
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A= (Ol + OB,
Ai = Gi(=C*+05™),
By = gaCly* +Cig™),
By = Gy(—=Cig* + Cig™),
Dy = g(Cio* +Cip ),
Dy = Gy(—Cig*+Ci5™),
(5.57)

5.3.1 The differential decay rates of A, — A"~

We can write the differential decay rate of Ay, — AITl™ in the rest frame
of Ay baryon [49] as:

dU(Ay = NF) 1 1 fumer 2
~ (@) 32m; Mp,snrvi-|*du, — (5.58
ag’ (2m)% 32m3, Amm | Ma,—ar+i-|"du (5.58)
where
w = (pr+p-).
and

s = (pt+p-)=¢,

with pa representing the four momentum of A,while p;+ anEL pi- rep-
resent the four-momenta vectors of [T and [~ respectively. My, -
represents the decay amplitude after performing the integration over
the angle between the A baryon and /=, The lower and upper limits of
u are written as

Umee = (Brx+E})?— (\/E_K2 —m3 — \/;r':',’;"2 —m?)?,

tin = (Bp+B)? = (B2 —md + /B —m})?, (5.59)

with ) representing the energies of A and E; denote the energies of
[~ in the rest frame of [T,

. 7 9
m m ()
ol 4, g N (5.60)

2\/¢ L
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Using everything, we can get the decay rate of Ay, — A"~ as

@ N IZSmA ?Tl \/'\ m,\ M, G7) X

{ +mamu(L+2mi/q)((may, —m} = O)(f3 + 920°) — 4f2920"m,)

e e e e 2
(e + et ”)+q ((m+3 mi(1+2m? /q*)(A2/3 + g34°)

2
cel! |

+3q*(m}, +mi — ¢*)([2 +93¢°) + 6fag20”ma(miy, — m} + 7))

1 . . .
=1+ 2mi /a*)(Af3 + 2030°) + 3q°(m3, +m3 — ) (f3 + 534°)

-rffr

+6 ]'gngg-mt;\(-nr'i,:"\I —m3 +¢%)

+= (((1 +2mi/¢* )\ + 3(1 — 2m}/q? )(mAb +m3i —¢*))f2 — 934°(1 — 4mi /%)

(/\ — S(URM —m3)*+ (m .M +m3)g?)) + 6 f2924" ma (1l — 4mt /¢’ )("""""A:, —mi +¢%))

|Chol” } (5.61)
Here,

20 o AN . 4 2 .2 2.9 2.2
A= ANm3,,m3, ¢*) = my, +mj +q" — 2mj, m} — 2miq® — 2¢°m},.

(5.62)
Some input parameters | Values |
my, 0.10565 GeV
e 1.77682 GeV
Me 1.27540.025 GeV
my, 4.18 4+ 0.03 GeV
ny 173.21 = 0.51 £ 0.71 GeV
my 80.385 + 0.015 GeV
ma, 5.6195 + 0.0004 GeV
A 1.11568 GeV
Ty (1451 4+0.013) x 10~ s
h 6.85 x 10~GeV 2
Yem 1‘%‘7"
Vi Vs 0.040

Table 5.2: The values of input parameters that are required in our caleula-
tions.
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parameter COZ FZOZ  QCDSR twist-3 up to twist-6

f2(0) 0.74%50¢ 0875007 045 0. 14+§ B 0. 1r”‘r°‘§,§

a 0.0170aS 208TaEE  DEY 29120 2,947 5

as 1397048 141t 3,; 018 226105 2411014
92(0)(10~2GeV-T) —2470% 28707 -14 047790 135

ay 9768020 2RO 206 0 ganige 2 91+“ 1>

as 2055523 21204 148 2.983 002 2 244:3,13

Table 5.3: Numerical values of the form factors used in our calculations

In order to calculate the numerical values of the branching ratio,
the numerical values of form factors are given in Table 5.3. and the
values of the parameters are described in Table 5.2
The branching ratio of the decay A, — Al™{™ as a function of di-lepton
momentum transfered square ¢% in the SM and RS, model is given in
the following figure.

1.5% 1070

'S

g -6
o 1.%10

+

-

T

-

-~

Z 7

= 5.%x10”

ol P
0 5 10 15 20

Figure 5.1: The branching ratio of Ay — Aptp~ in SM and RS model. The
solid line corresponds to the SM results with central values of form factors.
The dashed line is for RS..
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From the above graphs we can say that the predictions of the SM
and the Randall Sundrum model with custodial protection are almost
same excluding some values of ¢* where the predictions of SM and RS..
have little difference in the case of branching ratio, which is not enough
for the NP predictions.

5.3.2 FBAs of A, — ALt~

Now we can traverse the FBAs of Ay, — AlTl~, which is an important
hint for the possible NP. To determine the forward-backward asymme-
try, we take the double differential decay rate formula given below for
the process Ay — Al*Tl~

T a4 z 1 1 4dm?
rfr,E?qriz ) - (2m)3 64m3, AV (mm,m,\,q W1- ;_lﬂ[’\b_““ﬂ *
(5.63)
Following references [50,51], the normalized and differential FBAs for
the semi-leptonic decay A, — AlT[™ are defined as

dApg( 2) d’T'(¢% 2) T (¢, 2)
—_— d dz 5.64
the o=tz e~z
lg? Jo o dgPdz / lg?d: 200
g I dz d?I(qg%2) I ds AT (g%,2)
A ( 2) i =gz dq?dz (5 65)
2ARBNG ) = J d _hu'zl"(r,rz‘z! f i d2l(g%,z) g
0 " dg?dz dg?dz

Using the decay amplitude that is given in Eq. (5.6), the forward
backward asymmetries for the Ay, — A transition can be determined as

= Ve i )\ ' 1-—)R 5.66
dq? 256!’!1_,\b o ("?1,\,,1??lmff I q? ) ra(¢") ( )
where
Reple®) = 2 [(m_gm,\ +myma,) f3 — mg(mi —m3i, + a°) f292

+(mgmy — -m.i,m,\h)qQ_qg} Re((??”(,'f“

- [(fz — gamp)® — g%mih} Re(Cy Cf, (5.67)

By taking form factors along their uncertainties and plotting the for-
ward backward asymmetry of A, — Ap*u~ dependence on ¢? for the
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under consideration decay in SM and RS, model.

0.15
0.10
=
F
= o.s} ]
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=
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-
~0.05
0 5 10 15 20

Figure 5.2: The forward backward asymmetry of Ay, — Apgtp~ in SM and
RS model. The legends are same as in Fig. 5.1.

The zero position of ¢* is given as [53]

w(et10) -3 S ).

that depends upon the my, the ratio of effective Wilson’s coefficients

cel! s ; : "
—%1@) _ and ratio of form factors as shown in the above equation.

Re C;ff mz)

The ratios of form factors present in the above equation are indepen-
dent of hadronic uncertainty. Hence, the accuracy of the zero position
of forward-backward asymmetry is calculated by the accuracy of ra-
tio of Wilson’s effective coefficients and my,. The above graphs show
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the dependence of forward-backward asymmetry (Appg) on the dilepton
momentum transfer ¢2. From these graphs we can see that the zero
position of App for Ay — ApT ™ is sensitive to the extra dimensions

e., the zero position of App is moved to the left as compared to the
SM predictions. So App can be used as the probe for NP.

5.3.3 A polarization in A, — Al

If we want to know the spin polarization of A, then it is necessary to
write the four spin vector A in terms of a unit vector £ in the direction
of the A spin in its rest frame, like [52].

PA - o 50 3
Sg = , §=&+ —=——pP, 5.68
9 nma § Ex + ma 2y ( )

where the unit vectors are chosen in the direction of transverse, longi-
tudinal and the normal components of the polarization of the A |

5. . PR
Bl = T=Tj
Al
g PA X (P~ X Pa)
&y = —
[Pa x (5= % pa)|"
)
ér = "i—%\
|7 X Pal

The polarization asymmetries of A baryon in Ay — Al*l™ are defined

as
dr dl" "_
P(:F)(S) dq? ( i F) dq? '5 il )
* o A ri -

dl: (é ) - (£ = )

where i = L, N, T and € are representing the direction of spin along

the A. The polarized differential decay rate of A, baryon in the decay

Ay — AlTl™ along any spin direction £ is associated to the unpolarized

differential decay rate Eq. (5.58) by the relation given below

(5.69)

T i
(dé? = (;q ) [l—l— P;B,' -+ PNBN -+ )D]E!) E] (570)
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The expressions of the longitudinal and normal polarizations of A
baryon are given below :

B y T s * 9 2 " :
Pi(d®) = (1/rﬂ.))“26fﬂ‘|"’b""' 7 A(mE,, m%. %) - 4!_,: }
dq? 6dmpm? :rr5q 7

+mama,mui(2m3 + s)(g3s — RVS(Cy CE + sl oyl

m;i | ma . . . i
-+;[J?ummdwﬁ—nmdﬁ+£¢n—&ﬂ&—nﬁ+n&ﬂﬁ—g%ﬁ

Ami
+(1 - ?)(qg +ma — m,g\,,)(fzg “3'9%92))]

q> .
+I—2 12m2marv/q2((|Chol* —
+mav/ @ (f3 + g30)(3(¢ —m} +mj,) — (1 -

212 |2 N 2
i @GR |VeViEl™ /Am3,, mX, ¢%) A2
( b (1 "”l' )
= X
g0 £ 4 4
dq? 512??1;,':?13{};:’“ Vi 7

{ —myq*(m3, — mi + ) (maf; — ga(mi —mi, +¢*) fa + amat)(CLls ! + ¢4

2
cel! ‘

2 W W
@”hﬁ+£wﬁfﬂﬁnaﬁ—whﬂﬁ+mi

4mj ef!

)(?”n —mm+q H)( + |«

Rilg®) = {1/

+dmyma, ¢ (—maf3 + go(maf3 — go(mi — mi, +¢°) fo+ g2mxt)(CioC! +C3,

+dmyma, @*(—maf3 + g2(m3 —m3, +0*) fo — PEmat)(CraCr7 + C’i’UC}’”)},

where the expression for the A(m3,, m3, ¢*) is same as we defined before
in Eq. (5.62) and for more compact expression the mass of strange
quark is neglected .

In present case I’r(q?) = 0 because here the scalar currents are not
possible. Now we plot the dependence of longitudinal polarization of A
baryon on dilepton momentum transfer ¢ in the SM and RS, model
scenario.
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Figure 5.3: The Longitudinal Polarization asymmetry of A baryon in the
SM and RS, model The legends are same as in Fig. 5.1
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Figure 5.4: The Transverse Polarization asymmetry of A baryon in the SM
and RS, model. The legends are same as in Fig. 5.1.
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The above diagrams show the longitudinal and normal polariza-
tion asymmetries of A baryon both in RS, model and SM. From these
graphs we can observe that there is no reasonable difference between
the predictions of the SM and the RS, model. So, we can say that the
polarization asymmetries are not useful for establishing NP.

5.4 Conclusion

In this dissertation, we examine the rare Ay, — A"~ decay channel in
the SAM and the RS, model. We prefer to examine the bottom decays
because these decays are sensitive to the flavor structure which leads
to very rich phenomenology. The hadronic matrix elements involved in
the decay A, — Al*l~ are parametrize in terms of form factors which
are calculated by light cone sum rules (LCSR). It is found that there is
a reasonable difference between the zero position of Agg of the SM and
RS, model which is due to the ratio of effective Wilson's coeficients
and the mass of bottom quark my. So, forward-backward asymmetry is
sensitive to the extra dimensions and it can be used for the exploration
of NP effects. However, the polarizations of A baryon are not sensitive
to the extra dimensions. So. polarization gives no signal for the NP
effects. In the case of branching ratio the predictions of the SM and
the RS, are also almost the same except some values of ¢* where a
very small difference has been observed, which is not enough for the
NP predictions.
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