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Abstract

Surface waves are electromagnetic waves that are guided by an interface of two
dissimilar materials. If one of the two partnering materials is a metal, the surface
waves are called surface-plasmon-polariton (SPP) waves. If both partnering mate-
rials are dielectric with at least one being anisotropic, the surface waves are called
Dyakonov surface waves. In this thesis, the excitation of both the SPP waves and
Dyakonov surface waves was studied when the partnering dielectric material is
either uniaxial or biaxial. The biaxial material used here is a columnar thin film
(CTF). CTFs are porous and have a columnar morphology with columns lying in a
plane called the morphologically significant plane. The excitation of surface waves
guided by a CTF deposited on either a one-dimensional metallic surface-relief grat-
ing, or a one-dimensional isotropic dielectric surface-relief grating was studied,
when the grating plane, the plane of incidence, and the morphologically signifi-
cant plane of the CTF are all different. The incident plane wave in this grating-
coupled configuration can be either p- or s-polarized. The absorptances were plot-
ted against the polar angle of incidence at a fixed value of the free-space wave-
length and absorptance peaks were correlated with the solution of the dispersion
equation of the underlying canonical boundary-value problem for the identifica-
tion of surface waves. Both the p-polarized and s-polarized plane waves can excite
surface waves, provided that either the plane of incidence and/or the morpholog-
ically significant plane of the CTF do not coincide with the grating plane. No, one,
or multiple surface-wave excitations are possible, depending on the orientations
of the grating plane and the morphologically significant plane with respect to the
plane of incidence. The direction of propagation of surface wave thus excited may
not wholly lie in the plane of incidence.

The excitation of SPP waves guided by a CTF deposited on a one-dimensional
metallic surface-relief grating was investigated for sensing the refractive index of a
fluid infiltrating that CTF. The Bruggemann homogenization formalism was used
to determine the relative permittivity scalars of the CTF infiltrated by the fluid.
Change in the refractive index of the fluid was sensed by determining the change
in the incidence angle for which an SPP wave is excited on illumination by a p-
polarized plane wave, when the plane of incidence is taken to coincide with the
grating plane but not with the morphologically significant plane of the CTF. Multi-
ple excitations of the same SPP wave were found to be possible depending on the

i
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refractive index of the fluid, which could help increase the reliability of the results
by sensing the same fluid with more than one excitations of the SPP wave.

Also, the excitation of the high-phase-speed Dyakonov surface waves guided by a
surface-relief grating of a uniaxial dielectric material and an isotropic dielectric ma-
terial was theoretically studied for illumination by p- and s-polarized plane waves.
Both p- and s-polarized plane waves can excite the high-phase-speed Dyakonov
surface waves. No, one, or multiple excitations of high-phase-speed Dyakonov
surface waves are also possible, depending upon the choice of the partnering ma-
terials and the period of the surface-relief grating. Excitation of a high-phase-speed
Dyakonov surface wave as a specular Floquet harmonic was also conjectured.

The purpose of this research was to study the propagation and excitation of the sur-
face waves. It was found that (i) the excitation of surface waves is dependent on the
orientation of the grating plane, morphologically significant plane of the CTF, and
the plane of incidence; (ii) multiple surface waves can be excited for p-polarized
and s-polarized incidence, depending on the orientation of different planes; (iii)
for certain orientations of the grating plane, morphologically significant plane, and
plane of incidence, no surface wave may be excited; (iv) no, one, or multiple ex-
citations of high-phase-speed Dyakonov surface wave are possible with the phase
speed higher than the phase speed of light in the partnering bulk materials; (v) the
excitation of high-phase-speed Dyakonov surface waves as a specular Floquet har-
monics is also possible; and (vi) multiple excitations of an SPP wave can be used
for sensing the refractive index of a fluid infiltrating the CTF.
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Chapter 1

Introduction

Surface waves are electromagnetic waves guided by an interface of two dissimilar materials.
The energy of a surface wave is confined to the vicinity of the interface. This localization prop-
erty of the surface waves is exploited in designing extremely sensitive sensors of the change
in the refractive index of the partnering material near the interface [1, 2]. The electromagnetic
surface waves guided by the planar interface of a metal and a dielectric material are called
surface plasmon-polariton (SPP) waves [3, 4]. The partnering dielectric material can be either
isotropic [3, 4] or anisotropic [4, 5], and either homogeneous [3, 4] or nonhomogeneous [6].
Surface waves can also be supported by the interface of two dielectric materials if at least one
of them is lossy or anisotropic. If both partnering materials are lossless dielectric, with at least
one being anisotropic, the surface waves are called Dyakonov surface waves. The SPP waves
decay along the direction of propagation, whereas Dyakonov surface waves propagate with
negligible losses.

If one of the partnering materials is anisotropic, the propagation of surface waves can be
engineered with greater flexibility than with isotropic partnering dielectric materials. Also,
the presence of an anisotropic partnering dielectric material gives rise to direction-dependent
properties of surface waves such as the angular existence domain (AED) in the interface plane.
Although we have many naturally occurring anisotropic materials that are homogeneous con-
tinuums at macroscopic length scales, the degree of anisotropy of these natural anisotropic
materials tends to be very small. Composite materials such as columnar thin films (CTFs) [3, 4]
can be designed and manufactured artificially with specific anisotropy. This thesis concerns
the excitation of surface waves with uniaxial and biaxial anisotropic materials. The biaxial
material chosen for numerical results in this thesis was taken to be a CTF. The physical vapour
deposition (PVD) of a bulk material results the formation of CTFs. During the PVD, a colli-
mated vapor flux is directed at an angle χv to the substrate to grow a CTF with columns tilted
at an angle χ ≥ χv [7]. The plane containing the tilt of the columns is called the morphologi-
cally significant plane of the CTF. CTFs of diverse materials can be grown over topologically
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decorated substrates for a wide range of tilt angles [8–11].

The effect of the morphology of the CTF on the propagation of surface waves was con-
sidered in 2008 by Polo et al. [12] for a canonical boundary-value problem. In a canonical
boundary-value problem, both partnering materials occupy half spaces. In this thesis, practi-
cal configuration is taken up to delineate the effect of morphology. The practical configuration
chosen in this thesis is the grating-coupled configuration as opposed to the more common
prism-coupled configuration. The main objective of this thesis is to study the effect of orien-
tation of the morphologically significant plane of the CTF on the excitation of surface waves
in the grating-coupled configuration. In the grating-coupled configuration, both partnering
materials are of finite thickness but their interface is an undulating surface. The excitation of
SPP waves at the CTF/metal interface in the grating-coupled configuration has been studied
previously [13]. In that work, the grating plane was kept congruent with the morphologically
significant plane of the CTF [13]. The SPP waves were found to be excited as a Floquet har-
monic of different orders by p-polarized light incident from different directions. However,
incident s-polarized light could not excite SPP waves.

In this thesis, the excitation of surface waves guided by a CTF deposited on one-dimensional
surface-relief grating (metal and dielectric) was studied, provided that either the plane of inci-
dence and/or the morphologically significant plane of the CTF do not coincide with the grat-
ing plane. The plane wave of either p- or s-polarization state was made incident on the CTF
backed by a surface-relief grating. The absorptance was calculated using rigorous coupled-
wave approach (RCWA) [14, 15]. The RCWA is very suitable for the grating-coupled config-
uration as it is based on Fourier series representation of permittivity dyadics and electromag-
netic fields.

Electromagnetic fields of surface waves are strong on and in the proximity of the interface
but decay away from the interface. The most widely studied type of the surface waves is
the SPP wave. The energy density of an SPP wave far away from the interface is essentially
negligible. Therefore, the properties of surface waves do not depend upon the thickness (after
a certain thickness threshold has been achieved) of the partnering dielectric material. Surface
waves are equipped with a localization property that makes them prolific for optical sensors.
They are highly responsive to minor changes in the electromagnetic properties of the material
near the interface. Keeping in view this fact, SPP-wave-based sensors are more proficient in
detecting molecules in pollutants, analytes, and proteins that are in small concentrations in
a given solution [1, 2, 16]. A CTF is used as the partnering dielectric material because of its
porosity that can be used in sensing. The inter-columnar void regions of a CTF have to be
infiltrated with the fluid to be sensed [17, 18].

Surface-wave propagation guided by the planar interface of a uniaxial dielectric material
and anisotropic dielectric material was also studied in this thesis. The phase speed of the sur-
face wave is inversely proportional to the real part of the wavenumber, and is usually smaller
than the phase speed of a plane wave propagating in either of the two partnering materials.
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However, the phase speed of the surface wave can be sometime higher than the phase speed
of the plane wave in the bulk medium, especially when one of the partnering dielectric medi-
ums is periodically nonhomogeneous [19]. High-phase-speed Dyakonov surface waves have
also recently been found to exist at the interface of a dissipative uniaxial dielectric medium
and a nondissipative isotropic dielectric medium [20]. In that work, both partnering mediums
were taken to occupy adjacent half spaces, which is clearly a physically unrealizable configu-
ration. The excitation of these high-phase-speed Dyakonov surface waves in grating-coupled
configuration was also examined for air/uniaxial-dielectric interface, since this problem is a
special case of the isotropic-dielectric/CTF interface for Dyakonov surface waves studied in
this thesis.

In the remainder of this chapter, basic concepts and mathematical formulations for the
canonical boundary-value problems are provided: surface waves and their types in Sec. 1.1,
fabrication and applications of CTFs in Sec. 1.2, mathematical formulation of the canonical
boundary-value problem of surface waves for metal/isotropic dielectric interface and met-
al/CTF interface in Sec. 1.3 and Sec. 1.4, respectively, different practical configurations used
for the excitation of surface waves in Sec. 1.5, and applications of surface waves in Sec. 1.6.
Finally, the objectives and plan of this thesis are presented in Sec. 1.7.

Throughout the thesis, exp (−iωt) dependency on time t is used with angular frequency
ω and i =

√
−1. The free-space wavenumber is denoted by k0 =ω

√
µ0ε0 and the free-space

wavelength by λ0 = 2π/k0, where ε0 is the permittivity and µ0 is the permeability of free
space. All vectors are in boldface, dyadics are underlined twice, and column vectors are in
boldface and enclosed within square brackets. The unit vectors in the Cartesian coordinate
system are identified by ûx, ûy and ûz.

1.1 Surface Waves

More than a century ago, a special type of electromagnetic wave was explored by Uller [21] in
1903 and Zenneck in 1907 [22]. They explored the possibility of electromagnetic surface waves
guided by the interface of air and water [21] and interface of air and ground [22], respec-
tively, for radio transmission. An electromagnetic surface wave is localized to the interface
and decays away from the interface, and propagates in a direction parallel to the interface. The
surface waves are categorized on the basis of partnering materials. Usually, at least one part-
nering material is a dielectric material. Surface waves usually have phase speed lower than
the speed of light in the bulk partnering materials. Therefore, these waves cannot be excited
by impinging light on planar interface. Different practical configurations are used to excite
surface waves. These practical configurations involve prisms [23, 24], waveguides [25, 26],
or surface-relief gratings [3, 27]. Grating-coupled configuration is particularly attractive since
direct illumination of the partnering dielectric material can be used to excite surface waves.

The surface waves investigated in this thesis are SPP waves and Dyakonov surface waves.
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1.1.1 Surface Plasmon-Polariton (SPP) Waves

The non-radiative electromagnetic surface waves that propagate in a direction parallel to the
interface guided by a negative permittivity material and a dielectric are said to be the SPP
waves [3, 4]. The SPP waves have the longest history of theoretical development and appli-
cations [28, 29]. In general, the partnering material that contributes a negative real value of
permittivity is considered to be a metal [3, 4]; however, the metal may be substituted by a
semiconductor material [31], or an alloy [30]. The energy losses of electrons taking place at
the metal film’s surfaces [32] due to striking of electrons on metal film can be described in
terms of electronic-plasma oscillations, the quantum of these oscillations is called the surface
plasmon (SP). These surface plasmon propagate along the interface of metal and vacuum and
can be treated classically as a surface plasmon (SP) wave. If the partnering vacuum is replaced
by a dielectric material, then the quasi-particles are called surface plasmon-polaritons with a
polariton component in the dielectric material and a plasmonic component in the metal. A
plasmon is the quantum of plasma oscillations and polariton is the quantum of polarization in
dielectric material [33].

The choice for the partnering material with positive real permittivity has a wide range due
to the availability of many different types of dielectric materials. The partnering dielectric
material can be either isotropic or anisotropic [3–5], and either homogeneous or nonhomoge-
nous [3, 4, 6]. The choice of an anisotropic homogeneous dielectric partnering material and
periodically nonhomogeneous dielectric material has been considered and studied by many
researchers [2, 5, 34–40]. Excitation of multiple SPP waves is one of the remarkable properties
of the SPP waves guided by the interface of metal and a periodically nonhomogeneous dielec-
tric material [41, 42]. The behaviour of the SPP wave is explained graphically in Fig. 1.1 where
the dielectric material is either isotropic or anisotropic, but homogeneous [3–5].

1.1.2 Dyakonov Surface Waves

A Dyakonov surface wave is guided by the planar interface of two homogeneous dielectric
materials of which at least one is anisotropic. Theoretical predictions of this surface wave were
made in the 1980s for one partnering material being isotropic and the other a uniaxial dielectric
material [43], both being lossless. Since then, Dyakonov surface waves have been predicted
for the planar interfaces of several combinations of dielectric materials [3, 44]: isotropic/bi-
axial [12, 45], uniaxial/uniaxial [46, 47], biaxial/biaxial [48], and gyrotropic/gyrotropic [49].
The Dyakonov surface wave was first observed in 2009 [50], and a confirmatory experimental
result was reported in 2014 [51]. In these experiments, the interface of an isotropic dielectric
material and a biaxial dielectric material was incorporated in a prism-coupled configuration
[3, 23, 24]. The incident light made to enter a high-refractive-index coupling material on its in-
terface with the isotropic dielectric material, this second interface being parallel to the guiding
interface. When dissipation in both partnering materials is negligibly small, theory predicts
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Figure 1.1: Schematic variation of the amplitude of the electric field phasor |E| of an SPP wave
as a function of distance from the interface plane at z = 0.

and experiments have confirmed that Dyakonov surface waves can propagate in very narrow
ranges of directions in the interface plane [44, 50, 52]. In other words, the AED of Dyakonov
surface waves in the interface plane is tiny. Enlargement of AED is possible when at least
one of the partnering dielectric materials is either active or dissipative [53–57]. Theory indi-
cates that the combination of dissipative and active dielectric materials can support amplifying
Dyakonov surface waves in certain directions and attenuating in other directions [58]. Paren-
thetically, the use of partnering materials with magnetic properties [59–61] can also deliver
larger AED, but the focus of the research conducted here is on dielectric partnering materi-
als. Whether dissipation in the partnering dielectric materials is significant or negligible, the
characteristics of a Dyakonov surface wave are always strongly dependent upon the direction
of propagation in the interface plane. This superdirectivity combined with sharp absorption
peaks indicative of the excitation of these surface waves offer new possibilities for applications
in light transmission, sensing, and waveguiding [62–66]. The behaviour of Dyakonov surface
waves along the interface is given in Fig. 1.2.

Certain constraints have to be satisfied by the constitutive parameters of the two partnering
materials for the existence of the Dyakonov surface wave; however, different set of constraints
are obtained that allow the propagation of surface waves of a new type. The fields of the
Dyakonov surface waves only decay exponentially in the anisotropic medium, whereas the
fields of this novel form of surface waves decay as the product of a linear and an exponential
function of the distance from the interface in the anisotropic medium. When the correspond-
ing propagation matrix cannot be diagonalized, the behaviour of the surface wave fields is
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Figure 1.2: Schematic variation of the amplitude of the electric field phasor |E| of Dyakonov
surface wave as a function of distance from the interface plane at z = 0.

very similar to the Voigt wave that propagates in an unbounded anisotropic medium [67, 68].
The amplitude of a Voigt wave is the product of a linear function and an exponential func-
tion of the propagation distance. Due to the similarity with Dyakonov surface waves and
Voigt waves, these new type of surface waves are called Dyakonov—Voigt surface waves [69].
Dyakonov surface wave and Dyakonov–Voigt surface wave both are guided by the planar
interface of non-dissipative dielectric mediums, one of which is anisotropic. But, unlike the
Dyakonov surface waves, Dyakonov–Voigt surface waves propagate only in one direction in
each quadrant of the interface plane [70]. Also the wavenumber of a Dyakonov–Voigt surface
wave can be found analytically, but not of Dyakonov surface waves.

1.1.3 Other Types of Surface Waves

The surface waves guided by the interface of two dielectric materials, at least one of which is
periodically nonhomogeneous in the direction normal to the interface are called Tamm waves
[71]. These surface waves have been experimentally observed [72, 73] and can be exploited
for optical biosensing [74]. Several p-polarized as well as s-polarized Tamm–wave modes
can be obtained with proper choice of the two partnering dielectric materials [19, 75]. The
partnering periodically nonhomogeneous dielectric material can be either continuously non-
homogeneous [19, 75], or it can be piecewise homogeneous [71–74, 76, 77].

A surface wave that is guided by the interface of two dielectric materials, of which at least
one is both anisotropic and periodically nonhomogeneous in the direction normal to the inter-

6



INTRODUCTION

face is called Dyakonov–Tamm wave [78–81]. Multiple Dyakonov–Tamm waves are routinely
observed [79, 80, 82, 83]. The AED for Tamm–waves is 360◦ showing that these surface waves
can propagate along any direction in the interface plane. The SPP waves decay along the di-
rection of propagation, whereas Tamm waves and Dyakonov–Tamm waves propagate with
negligible losses.

Figure 1.3: Schematic variation of the amplitude of the electric field phasor |E|of Dyakonov-
voigt wave as a function of distance from the interface plane at z = 0.

1.2 Columnar Thin Films (CTFs)

A CTF is a biaxial material that can be utilised to excite SPP waves as well as Dyakonov surface
waves. A CTF is fabricated when a well-collimated vapor flux is directed towards a planar
substrate in a low-pressure chamber at a suitable temperature and pressure [84, 85]. In this
process, the deposited material is organized in parallel columns as shown in Fig. 1.4, where χ
is the angle between the axis of columns and the substrate plane and χv is the angle between
the direction of the vapor flux and the substrate plane. By proper selection of χv, the columns
can be tilted at any angle χ ∈ [20◦, 90◦] to the substrate plane. The value of angle χ depends
on angle χv, lower values of χv are anticipated to lead lower values of χ. There are a few
materials for which empirically proven relationships between the tilt angle χ and the vapour
flux angle χv are available [86], however, these relationships are most likely dependent on the
specific CTF production apparatus.
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Figure 1.4: Schematic of the physical vapor deposition of the CTF. The xz plane is the morpho-
logically significant plane of the CTF.

At optical frequencies, a CTF appears as a homogeneous continuum. The CTF can only
be 10 µm thick, but for polymeric materials, the CTF might be several times thicker and its
columnar diameter would be proportionally larger [87].

Columnar growth is inherently anisotropic. The relative permittivity dyadic of a CTF can
be written as [13]

εCTF = Sy
•
(
εAa ûzûz +εAb

ûxûx +εAc ûyûy
)
• S−1

y , (1.1)

where εAa , εAb
, and εAc are three principal relative permittivity scalars. The dyadic

Sy = (ûxûx + ûzûz) cosχ+ (ûzûx − ûxûz) sinχ+ ûyûy (1.2)

involves χ∈ (0◦, 90◦]. Decreasing χv from 90◦ increases the porosity and exacerbates anisotropy.
Thus, a CTF’s optical response characteristics are greatly influenced by the choice of χv during
fabrication.

The ability to choose εAa , εAb
, εAc , and χ over a continuous range should allow a greater

degree of flexibility in designing interfaces for surface wave propagation. This is one reason
for choosing the CTF for this thesis. CTFs of diverse materials can be grown over topologi-
cally decorated substrates for a wide range of tilt angles [8–11], making the theoretical inves-
tigations amenable to experimental implementation. The porous structure of a CTF can be
embedded with a material to alter its optical properties [88, 89]. The CTF growth process is
amenable to the study of SPP waves and Dyakonov surface waves because the substrate can
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be chosen as anisotropic dielectric material or a metal. As CTFs are porous, they can be used
for optical sensing of infiltrant analytes [17, 18]. Macroscopically, CTFs are biaxial dielectric
continuums with orthorhombic symmetry [88–91].

The CTF used in this thesis was taken to be made of tantalum oxide (Ta2O5) with [7, 86]

εAa = [1.1961 + 1.5439ν − 0.7719ν2]2

εAb
= [1.4600 + 1.0400ν − 0.5200ν2]2

εAc = [1.3532 + 1.2296ν − 0.6148ν2]2

χ = tan−1(3.1056 tanχv)


, (1.3)

at λ0 = 633 nm, where ν = 2χv/π and χv is in radian. These expressions emerged from op-
tical measurements on CTFs fabricated by directing a collimated vapor flux of Ta2O5 at an
angle χv ∈ (20◦, 90◦) with respect to a substrate inside a low-pressure chamber designed to
implement the electron-beam evaporation technique [86].

1.3 Canonical Boundary-Value Problem for Metal/Dielectric

Interface

Figure 1.5: Schematic of the canonical boundary-value problem of two dissimilar materials
with relative permittivities εm and εd.
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In the canonical boundary-value problem, a planar interface is considered between two half
spaces filled with two different materials. The only waves that could propagate are surface
waves if we require the electromagnetic waves to have decaying amplitude away from the
interface. Therefore, all existing solutions of this problem represent surface waves. Here,
the interface of an isotropic homogeneous dielectric material and a metal is considered. The
dielectric material is considered lossless with relative permittivity εd = ε

′
d and the metal is

considered lossy with εm = ε
′
m + iε

′′
m. Here, the relative permittivity εm is complex-valued

with non zero imaginary part ε
′′
m that shows the losses. Let the half space z < 0 be filled with

the lossless dielectric material with relative permittivity εd and the half space z > 0 be filled
with the metal. Both materials are non-magnetic. The source-free Maxwell curl postulates in
the frequency domain are:

∇×H(r) + iωε0εdE(r) = 0

∇× E(r)− iωµ0H(r) = 0

}
, z < 0, (1.4)

and
∇×H(r) + iωε0εmE(r) = 0

∇× E(r)− iωµ0H(r) = 0

}
, z > 0. (1.5)

Without loss of generality, assume that the SPP wave propagates parallel to x axis in the xz
plane. The Maxwell curl postulates give six differential equations in each half space that can be
grouped into two sets of coupled equations as s- and p-polarized fields. For the p-polarization
state, the Maxwell equations can be written as:

∂Hy

∂z
= iωε0εdEx

∂Ex

∂z
− ∂Ez

∂x
= iωµ0Hy

∂Hy

∂x
= −iωε0εdEz


, z < 0, (1.6)

and
∂Hy

∂z
= iωε0εmEx

∂Ex

∂z
− ∂Ez

∂x
= iωµ0Hy

∂Hy

∂x
= −iωε0εmEz


, z > 0. (1.7)
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Similarly for the s-polarization state,

∂Ey

∂z
= −iωµ0Hx

∂Hx

∂z
− ∂Hz

∂x
= −iωε0εdEy

∂Ey

∂x
= iωµ0Hz


, z < 0, (1.8)

and
∂Ey

∂z
= −iωµ0Hx

∂Hx

∂z
− ∂Hz

∂x
= −iωε0εmEy

∂Ey

∂x
= iωµ0Hz


, z > 0. (1.9)

1.3.1 s-Polarization State

For the s-polarization state, the electric and magnetic field in the dielectric material can be
written as:

E(d) = ûyEd
0 exp [i(qx + k(d)z z)]

H(d) =
Ed

0
ωµ0

(qûz − k(d)z ûx)exp [i(qx + k(d)z z)]

 , z < 0, (1.10)

where
[q]2 + [k(d)z ]

2
= εdk2

0 . (1.11)

The electric and magnetic fields on the metal side can be written as:

E(m) = ûyEm
0 exp [i(qx + k(m)

z z)]

H(m) =
Em

0
ωµ0

(qûz − k(m)
z ûx)exp [i(qx + k(m)

z z)]

 , z > 0, (1.12)

where
q2 + [k(m)

z ]
2
= εmk2

0 . (1.13)

The decay of field away from the interface requires Im[k(d)z ]< 0 and Im[k(m)
z ]> 0. The bound-

ary conditions at the interface z = 0 require that

ûy • E(d)(z = 0) = ûy • E(m)(z = 0), (1.14)

ûx • H(d)(z = 0) = ûx • H(m)(z = 0). (1.15)

The boundary conditions for s-polarization state cannot be satisfied by surface waves when
both partnering materials are homogeneous. So, s-polarized SPP waves do not exist.

11



INTRODUCTION

1.3.2 p-Polarization State

For the p-polarization state, the electric and magnetic fields in the dielectric material can be
written as:

E(d) =
Hd

0
ωε0εd

(k(d)z ûx − qûz)exp [i(qx + k(d)z z)]

H(d) =ûyHd
0 exp [i(qx + k(d)z z)]

 , z < 0, (1.16)

and on the metal side the fields can be written as:

E(m) =
Hm

0
ωε0εm

(k(m)
z ûx − qûz)exp [i(qx + k(m)

z z)]

H(m) =ûyHm
0 exp [i(qx + k(m)

z z)]

 , z > 0. (1.17)

The decay of field away from the interface requires Im[k(d)z ]< 0 and Im[k(m)
z ]> 0. The bound-

ary conditions at the interface z = 0 require that

ûx • E(d)(z = 0) = ûx • E(m)(z = 0), (1.18)

ûy • H(d)(z = 0) = ûy • H(m)(z = 0). (1.19)

Using Eqs. (1.16)-(1.17) in Eqs. (1.18) and (1.19), the following equation emerges

k(d)z

εd
=

k(m)
z

εm
. (1.20)

Substituting Eq. (1.20) in Eqs. (1.11) and (1.13), k(d)z and k(m)
z can be eliminated and the surface

wavenumber q is obtained as

q = k0

√
εdεm

εd +εm
. (1.21)

After finding q, the z component of the surface wave vector can easily be found as

[k(d)z ]2 = εdk2
0 − q2 =

ε2
dk2

0
εm +εd

, z < 0, (1.22)

[k(m)
z ]2 = εdk2

0 − q2 =
ε2

mk2
0

εm +εd
, z > 0. (1.23)

1.4 Canonical Boundary-Value Problem for Isotropic Materi-

al/CTF Interface

To confirm the excitation of surface waves, the wavenumbers of the surface wave excited in
the grating-coupled configuration should be matched with the wavenumber of the canonical
boundary-value problem. Therefore, the underlying canonical boundary-value problem for
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isotropic dielectric/CTF interface has been presented for the planar interface between a CTF
and an isotropic material. When the isotropic partnering material is a metal, the surface waves
are called SPP waves; when isotropic partnering material is a dielectric material, the surface
waves are called Dyakonov surface waves. The mathematical formulation for the canonical
boundary-value problem given here is used in next chapters for the confirmation of surface
wave in the grating-coupled configurations.

Let me now consider the schematic of the boundary-value problem given in Fig. 1.6. The

Figure 1.6: Schematic of the boundary-value problem solved for the canonical problem. The
CTF is symbolically represented by a single row of columns.

region z > 0 is occupied by an isotropic material B (could be a metal) with refractive index
nB =

√
εB and the region z ≤ 0 is occupied by an anisotropic medium A with relative permit-

tivity dyadic [13]

εCTF = Sz(γ)
• Sy

•
(
εAa ûzûz +εAb

ûxûx +εAc ûyûy
)
• S−1

y
• S−1

z (γ) , (1.24)

where εAa , εAb
, and εAc are the principal relative permittivity scalars, the dyadic Sy is given

in Eq. (1.2) and the dyadic

Sz = (ûxûx + ûyûy) cosγ + (ûyûx − ûxûy) sinγ + ûzûz (1.25)

involves the angle γ ∈ [0◦, 360◦) between the grating plane and the morphologically signif-
icant plane, the latter plane being jointly defined by the unit vectors Sz

• ûx and ûz. Let the
surface wave propagates parallel to ûx cosψ+ ûy sinψ in the interface plane z = 0. The elec-
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tromagnetic field phasors can be written for all z as

E(r) = [Ex(z)ûx + Ey(z)ûy + Ez(z)ûz]exp[iq(x cosψ+ y sinψ)], (1.26)

H(r) = [Hx(z)ûx + Hy(z)ûy + Hz(z)ûz]exp[iq(x cosψ+ y sinψ)]. (1.27)

The source-free, frequency-domain Maxwell curl postulates are

∇×H(r) + iωε0εCTF
• E(r) = 0

∇× E(r)− iωµ0H(r) = 0

}
, z < 0, (1.28)

and
∇×H(r) + iωε0εBE(r) = 0

∇× E(r)− iωµ0H(r) = 0

}
, z > 0. (1.29)

The substitution of Eqs. (1.26) and (1.27) in Eqs. (1.28) and (1.29) results in a set four first-
order differential equations and two algebraic equations. The four differential equations can
be rearranged in a matrix equation as

d
dz

[f(z)] = i[PA(q,ψ)] • [f(z)], z < 0, (1.30)

d
dz

[f(z)] = i[PB(q,ψ)] • [f(z)], z > 0, (1.31)

where [f(z)] = [Ex(z), Ey(z), Hx(z), Hy(z)]T is a column vector, [PA(q,ψ)] and [PB(q,ψ)] are
given as

[PA(q,ψ)] =


P11 P12 P13 P14

P21 P22 P23 P24

P31 P32 P33 P34

P41 P42 P43 P44

 , (1.32)

14



INTRODUCTION

where

P11 = q cosψ
(εAa −εAb

) cosγ cosχ sinχ

εAa cos2 χ+εAb
sin2 χ

, (1.33)

P12 = q cosψ
(εAa −εAb

) sinγ cosχ sinχ

εAa cos2 χ+εAb
sin2 χ

, (1.34)

P13 =
q2 cosψ sinψ

ωε0(εAa cos2 χ+εAb
sin2 χ)

, (1.35)

P14 =ωµ0 −
q2 cos2ψ

ωε0(εAa cos2 χ+εAb
sin2 χ)

(1.36)

P21 = q sinψ
(εAa −εAb

) cosγ cosχ sinχ

εAa cos2 χ+εAb
sin2 χ

, (1.37)

P22 = q sinψ
(εAa −εAb

) sinγ cosχ sinχ

εAa cos2 χ+εAb
sin2 χ

, (1.38)

P23 = −ωµ0 +
q2 sin2ψ

ωε0(εAa cos2 χ+εAb
sin2 χ)

, (1.39)

P24 = −
q2 cosψ sinψ

ωε0(εAa cos2 χ+εAb
sin2 χ)

, (1.40)

P31 =
ωε0 cosγ

[
εAb

εAc +εAa(εAc − 2εAb
) + (εAa −εAb

)εAc cos 2χ
]

sinγ

2(εAa cos2 χ+εAb
sin2 χ)

(1.41)

− q2 cosψ sinψ
ωµ0

,

P32 = −ωε0εAc cos2γ +
q2 cos2ψ

ωµ0
−ωε0 sin2γ(εAb

cos2 χ+εAa sin2 χ) (1.42)

+
ωε0(εAa −εAb

)2 cos2 χ sin2γ sin2 χ

εAa cos2 χ+εAb
sin2 χ

,

P33 = q sinψ
(εAa −εAb

) sinγ cosχ sinχ

εAa cos2 χ+εAb
sin2 χ

, (1.43)

P34 = q cosψ
(εAb

−εAa) sinγ cosχ sinχ

εAa cos2 χ+εAb
sin2 χ

, (1.44)
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P41 =ωε0εAc sin2γ +
ωε0εAaεAb

cos2γ

εAa cos2 χ+εAb
sin2 χ

− q2 sin2ψ

ωµ0
, (1.45)

P42 =
ωε0 cosγ

[
−εAb

εAc −εAa(εAc − 2εAb
)− (εAa −εAb

)εAc cos 2χ
]

sinγ

2(εAa cos2 χ+εAb
sin2 χ)

(1.46)

+
q2 cosψ sinψ

ωµ0
,

P43 = q sinψ
(εAb

−εAa) cosγ sinχ cosχ

εAa cos2 χ+εAb
sin2 χ

, (1.47)

P44 = q cosψ
(εAa −εAb

) cosγ cosχ sinχ

εAa cos2 χ+εAb
sin2 χ

. (1.48)

Similarly, the 4× 4 matrix [PB(q,ψ)] is

[PB(q,ψ)] =



0 0 q2 sin 2ψ
2ωε0εB

k2
0εB−q2 cos2ψ

ωε0εB

0 0
−k2

0εB+q2 cos2ψ

ωε0εB
− q2 sin 2ψ

2ωε0εB

− q2 sin 2ψ
2ωµ0

−k2
0εB+q2 cos2ψ

ωµ0
0 0

k2
0εB−q2 cos2ψ

ωµ0
q2 sin 2ψ

2ωµ0
0 0


. (1.49)

The matrix [PB(q,ψ)] has two eigenvalues

αB = ±i
√

q2 − k2
0εB . (1.50)

In Eq. (1.50), the Im{αB} > 0 is selected for surface-wave propagation, keeping in mind that
the electromagnetic field of surface wave should decay away from the interface. The corre-
sponding eigenvectors of [PB(q,ψ)] are

[νB1] =



k2
0εB−q2 cos2ψ

k2
0εB

− q2 cosψ sinψ
k2
0εB

0
αB
ωµ0

 , (1.51)

[νB2] =



q2 cosψ sinψ
k2
0εB

q2 cos2ψ−k2
0εB

k2
0εB
αB
ωµ0

0

 . (1.52)

The solutions of the Eqs. (1.30) and (1.31) for the decaying fields as z −→ ±∞ in term of
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unknowns GA1,A2 and GB1,B2 are:[
f(z)

]
= GA1[νA1]exp(iαA1z) + GA2[νA2]exp(iαA2z), z < 0, (1.53)[

f(z)
]
=
(
GB1[νB1] + GB2[νB2]

)
exp(iαBz), z > 0, (1.54)

where [υA1] and [υA2] are the eigenvectors, andαA1 andαA2 are the corresponding eigenval-
ues of [PA(q,ψ)]. In order for solution to correspond to the electromagnetic surface waves,
the inequalities Im{αA1,2} < 0 must be satisfied. Coefficients GA1 and GA2 are determined by
applying the boundary conditions at z = 0. Four conditions are imposed by the continuity of
tangential components of the electric and magnetic field phasors across the interface at z = 0.
These conditions are compactly written as:[

f(0−)
]
=
[
f(0+)

]
, (1.55)

with [
f(0−)

]
=
[
υA1 υA2

]
•

[
GA1

GA2

]
, (1.56)

and [
f(0+)

]
=
[
υB1 υB2

]
•

[
GB1

GB2

]
. (1.57)

Using Eqs. (1.56) and (1.57) in Eq. (1.55) results in

[M(q,ψ)] •


GA1

GA2

GB1

GB2

 =


0
0
0
0

 . (1.58)

The matrix [M(q,ψ)] has four column vectors. Two columns are eigenvectors of a 4× 4 matrix
[PA(q,ψ)] and the remaining two are eigenvectors of matrix [PB(q,ψ)]. The matrix [M(q,ψ)]
must be singular for surface-wave propagation i.e.,

det{[M(q,ψ)]} = 0. (1.59)

Equation (1.59) is the dispersion equation for the electromagnetic surface-wave propagation
that can be solved numerically for surface wave number q. The most practical way to solve
Eq. (1.59) is to use the Newton–Raphson technique. Since the function

ζ(q,ψ) = det{[M(q,ψ)]}. (1.60)

Although ζ(q,ψ) cannot be determined analytically, its derivative with respect to q can be
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calculated by using the forward difference formula

z(q,ψ) =
ζ(q + δq,ψ)−ζ(q,ψ)

δq
, (1.61)

where δ is a real number and magnitude of δ� 1. Then,

q← q− ζ(q,ψ)
z(q,ψ)

. (1.62)

Equation (1.62) can be quantitatively solved using the initial guess for the solution of Eq. (1.59).
After finding q from Eq. (1.59) for a specific ψ and replacing that q by a numerical value in
Eq. (1.58), the field phasors corresponding to a particular solution can be determined. Then,
Eq. (1.58) has three algebraic equations that are linearly independent and can only be solved
for determining the three coefficients. Therefore, GA1 or GA2 should be set equal to unity, and
by the solution of any three of the four algebraic equations, the remaining three coefficients
are then found.

1.5 Excitation of Surface Waves

Excitation of a surface wave with Re(q) > k0 is not possible by direct coupling of the beam
of light due to the mismatch in wavelengths of the surface wave 2π/Re(q) and the wave-
length of plane waves in the bulk partnering materials. This is due to the fact that surface
waves usually have phase speed ω/Re(q) smaller than the phase speed in the bulk partner-
ing materials. Therefore, some coupling configurations have to be used to excite surface wave.
These configurations include prism-coupled configurations, grationg-coupled configuration,
and waveguide-coupled configuration. These configurations are suitable for different appli-
cations.

1.5.1 Prism-Coupled Configurations

In 1959, Turbadar [92] used a thin aluminium film deposited on a glass prism to study the
reflectance of a p-polarized plane wave and concluded that the reflectance of the p-polarized
plane wave exhibited a sharp dip where the magnitude of dip in the reflectance could be
controlled by changing the thickness of the metal film and could be made null by a proper
choice of the metal film thickness [93]. Turbadar [92, 93] observed the dependence of the
reflectance on the thickness of the metallic film but did not connect the reflectance dip with the
excitation of SPP waves. This connection was made by Otto in 1969 [23]. Their configuration
is known as Turbadar–Otto configuration and is shown in Fig. 1.7. Kretschmann and Raether
[24] proposed the excitation of SPP waves in an inverted geometry. This is called Turbadar-
Kretschmann-Rather (TKR) configurations and is shown in Fig. 1.8. Both configurations are
considered as practical methods to excite the SPP waves using evanescent waves generated by
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total internal reflection. Energy from the evanescent wave is absorbed causing a reduction in
the intensity of reflected light in a process known as frustrated total reflection or attenuated
total reflection [94].

1.5.1.1 Turbadar–Otto Configuration

Figure 1.7: Schematic for the Turbadar–Otto configuration.

In the Turbadar–Otto configuration, a thin metal film having refractive index nm =
√
εm

with the partnering dielectric material with refractive index nd =
√
εd is deposited on the base

of a prism made of refractive index np [1, 23], as shown in Fig. 1.7. The partnering dielectric
material with refractive index nd is selected that satisfies the condition np > nd. When light
is incident on the prism/dielectric interface at an angle greater than the critical angle for the
total internal reflection, an evanescent wave appears in the partnering dielectric material. If the
dielectric film is sufficiently thin, an SPP wave is guided by the metal/dielectric interface when
the component of the wavenumber parallel to the interface is same as Re(q). The Turbadar–
Otto configuration can be used to excite Dyakonov surface waves by replacing the metal thin
film by an isotropic or anisotropic dielectric material just like Dyakonov–Tamm waves [95].

1.5.1.2 Turbadar–Kretschmann–Raether (TKR) Configuration

If the metal and dielectric thin films in the Turbadar–Otto configuration are interchanged, the
new configuration is known as TKR configuration [24], as shown in Fig. 1.8. The partnering
dielectric material with refractive index nd is still selected that satisfies the condition np > nd.
When light is incident on the prism/metal interface, a part of the light is reflected back into
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Figure 1.8: Schematic for the TKR configuration.

the prism and a part is refracted into the metal. The refracted wave travel perpendicular to the
prism/metal interface and decays exponentially. If the metal film is thin, the refracted wave
penetrates through the metal and couples with the surface-plasmon of the metal at the met-
al/dielectric interface. At a certain incidence angle, the electromagnetic boundary conditions
are satisfied to excite the SPP wave. The TKR and Turbadar–Otto configurations essentially be-
come the same for the excitation of Dyakonov surface waves since both partnering materials
are dielectric.

1.5.2 Grating-Coupled Configuration

The excitation of any surface wave requires the matching of the wavenumber q of that surface
wave with the magnitude of the component of the wave vector of the incident light parallel to
the interface plane. In the prism-coupled configuration [3, 4, 96], this can happen for a very
narrow range of the incidence angle, when both partnering materials have either small or neg-
ligible dissipation. However, in the grating-coupled configuration [1, 3], the matching can hap-
pen at more than one value of the incidence angle [13] since diffraction from a grating involves
a multiplicity of non-specular Floquet harmonics [97]. Additionally, the grating-coupled con-
figuration removes the need for a high-refractive-index material to couple incident light to
surface waves. The SPP waves, which are normally nonradiative, can be efficiently coupled
with light in the reverse process using the grating-coupled configuration [98] and allows better
incorporation of SPP wave-based chemical sensors [99]. In the grating-coupled configuration,
both partnering materials are of finite thickness but their interface is an undulating surface
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Figure 1.9: Schematic for the grating-coupled configuration.

z = g(x, y) = g(x± L), where L is the period along the x axis instead of plane. The schematic
of the grating-coupled configuration is presented in Fig. 1.9. By illuminating the periodic cor-
rugations of a metallic surface-relief grating coupled with the dielectric material, SPP waves
can be excited in grating-coupled configuration. The electromagnetic fields in grating-coupled
configuration must be represented as linear superpositions of Floquet harmonics. If the com-
ponent of the wave vector of a Floquet harmonic in the grating plane is same as that of the SPP
wave, then SPP wave of that Floquet harmonic is excited. In this thesis, a CTF [13, 84, 91] or
a uniaxial [20] material is partnered with an isotropic material in the grating-coupled configu-
ration.

1.5.3 Waveguide-Coupled Configuration

A less common technique for exciting SPP waves is through an optical dielectric waveguide.
Typically, a dielectric waveguide is integrated with a metal/dielectric interface, as shown
schematically in Fig. 1.10. When a waveguide mode propagating in the dielectric waveguide
has the same phase speed ω/Re(q) as that of an SPP wave guided by the metal/dielectric
interface, the electromagnetic energy from the waveguide mode in the dielectric waveguide
couples with the SPP wave guided by the metal/dielectric interface. This configuration has the
advantage of exciting SPP waves directly into the metal/dielectric interface. The waveguide-
coupled configuration can potentially be used for the excitation of Dyakonov surface waves
as well.
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Figure 1.10: Schematic of the waveguide-coupled configuration.

1.6 Applications of Surface Waves

Out of the various types of surface waves, the SPP waves are widely used in practical applica-
tions. Researchers are focused on applications of these waves for optical sensing [1], imaging
[100, 101], communications [102, 103], and harvesting light in solar cells [104]. The character-
istics of the SPP waves are sensitive to the refractive index of the partnering dielectric material
and can detect a small change in refractive index of partnering dielectric material near the in-
terface [105–108]. Due to this property, surface plasmon resonance (SPR) can detect the change
as low as 3× 10−7 in the refractive index of the partnering dielectric material [2]. For sensing
molecules and analytes near the interface, the prism-coupled configuration is suitable; how-
ever, TKR is used more than Turbadar–Otto configuration due to ease of implementation.

Two different techniques are used in sensing: angular interrogation technique and fre-
quency interrogation technique. In angular interrogation, the free space wavelength of the
incident light is fixed and the shift in angle of incidence caused by the analyte’s presence in
the partnering dielectric material is observed at which the external light couples to the SPP
wave. In frequency interrogation technique, the wavelength that couples to the SPP wave
shifts when a light source with a variable free-space wavelength is oriented at a fixed angle.
Sensors based on Tamm waves have also been exploited for optical sensing [74]. Virus, bacte-
ria and explosives can be sensed using the SPR-based sensors. The SPP waves can also be used
in microscopic imaging [109] as two-dimensional [110] as well as three-dimensional SPR mi-
croscopes. Other applications include, imaging techniques used for lithography [4]; screening
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of bioaffinity interactions with carbohydrates, DNA, and proteins using sensing technologies
[111]; and high-speed communication of information on computer chips [112].

In order to obtain an image all at once, some researchers employ scanning method [113],
while others prefer to use wide-field microscopy [114]. In both cases, SPR microscopy has
an additive advantage with capabilities of capturing images of objects with extremely low
contrast without the usage of markers or dyes. This is mainly because the SPP wave is highly
sensitive and has strong field in the region near to the interface. Consequently, SPR microscopy
is a good candidate for monitoring living organisms with lateral resolution of order less than
a micrometer and a line of sight resolution in nanometers. SPR microscopy is often used in
conjunction with fluorescent methods to achieve better results [115].

Applications of SPP waves in communications are on the horizon [99, 102]. In recent
decades, optical fibres have revolutionised communications by providing greater bandwidth
and transfer speeds than electrical currents over cables. The use of SPP waves have the po-
tential to extend the advantages of optical fibres to the nanoscale and beyond when used for
signal transmission and processing. While optical fibres are fast, diffraction limits downsizing
to half a wavelength, which is enormous in contrast to today’s nanoscale technologies. Us-
ing plasmonic waveguides with significantly smaller diameters, signals can be delivered both
within and between components on a chip [116]. Recent research suggests that active plas-
monic devices [117] and on-chip generators of SPP waves [118] may be feasible in the near
future. In near future, a shift to photonic/plasmonic communication technology may be con-
ceivable. Hence, plasmonics is a hot topic among many researchers these days. The SPP waves
driven by subwavelength-scale structures are seen as a way to create dense, high-speed elec-
tronics by several researchers. Some suggested designs [119] aim to increase field intensity in
the dielectric material while minimising it in the metal, thereby lowering dissipation. Surface
waves steered by dielectric/dielectric interfaces may further minimise dissipation, supporting
long-range communication.

In the optical regime, the technical exploitation of surface waves other than SPP waves is
still in its early stages. Tamm waves have only lately been used for optical bio-sensing [74], de-
spite the fact that they were discovered more than three decades ago [72]. Only recently have
Dyakonov surface waves been experimentally observed for the first time [50]. The Dyakonov-
Tamm wave [78] has yet to be exploited for applications. There are few instances of non-SPP
surface wave applications in practice, there are many interesting ideas for prospective appli-
cations. Over 30 years had passed from the discovery [92] of optical methods to generate
SPP waves before a commercial SPR sensor was introduced in 1990. Forecasting scientific and
technological growth is always dangerous, but it appears that surface-wave applications are
on the verge of becoming commonplace, especially given the present rapid advance in nan-
otechnology [120, 121]. Dyakonov, Tamm, and Dyakonov-Tamm waves are generally directed
by interfaces made of dielectric materials. The loss of the dielectric materials of concern here is
generally many orders of magnitude lower than that of metals. As a result, these waves have
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significantly less attenuation than SPP waves, resulting in much longer propagation lengths.
This raises the possibility of communications applications. In comparison to the more robust
SPP wave, many other surface waves are significantly more sensitive to propagation direction
and/or dielectric characteristics of an isotropic partnering material. Perhaps these character-
istics will be used in the next generation of sensors to increase sensitivity.

1.7 Objectives of the Thesis

The focus of the research conducted for this thesis was on the excitation of the SPP waves
and Dyakonov surface waves in the grating-coupled configuration with CTF and a uniaxial
material AZO/silicon as partnering material for the excitation of these surface waves. The
objectives of the research carried out for this dissertation were to;

(i) quantify the effect of the orientation of the morphologically significant plane of a CTF on
the excitation of SPP waves and Dyakonov surface waves;

(ii) demonstrate the excitation of high-phase-speed Dyakonov surface waves in the grating-
coupled configuration; and

(iii) explore the characteristics of the optical sensors based on SPP waves in the grating-
coupled configuration and its dependence on the morphologically significant plane of
the CTF.

1.8 Organization of the Thesis

To achieve these objectives, the excitation of SPP waves guided by a CTF deposited on a
one-dimensional metallic surface-relief grating is studied in Chap. 2, when either the p- or
s-polarized light is incident on surface-relief grating of a matal and CTF. It is considered that
the plane of incidence and/or the morphologically significant plane of the CTF do not coincide
with the grating plane.

In Chap. 3, the metal is replaced with an isotropic dielectric material for the excitation of
Dyakonov surface waves. The wavenumbers of the possible Dyakonov surafce waves that can
be supported by the glass/CTF interface are found as functions of the incident angle for dif-
ferent values of the vepor deposition angle χv from the associated canonical-boundary value
problem. The excitation of Dyakonov surface waves guided by a CTF deposited on a one-
dimensional dielectric surface-relief grating is studied, when either the p- or s-polarized light
is incident on the surface-relief grating of a dielectric (glass) and CTF.

In Chap. 4, the wavenumbers of the possible Dyakonov surafce waves that can be sup-
ported by the air/uniaxial interface are found. The uniaxial material is considered to be a
laminar composite material comprising alternating electrically thin sheets of aluminum-doped
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zinc oxide (AZO) and silicon. Some of the solutions of the boundary-value problem indicated
the existence of Dyakonov surface waves with a phase speed greater than the speed of light,
that is vph =ω/Re(q) > c0, where c0 = 1/

√
ε0µ0. The grating-coupled configuration is used

to demonstrate the excitation of high-phase-speed Dyakonov surface waves.
An optical sensor for sensing the refractive index of a fluid infiltrating a CTF is investigated

in Chap. 5. For this purpose, an optical sensor is analyzed for the plane-wave illumination of
a CTF on top of a one-dimensional metallic surface-relief grating.
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Chapter 2

Excitation of SPP waves at
CTF/Metal Interface

The surface plasmon-polariton (SPP) waves are electromagnetic surface waves that can be
excited by various practical configurations as discussed in Chap. 1. In a previous theoretical
study [13] involving a columnar thin film (CTF) grown on a one-dimensional metallic grating
with the grating plane congruent with the morphologically significant plane of the CTF, it was
found that the SPP wave was excited as a Floquet harmonic of different orders for p-polarized
incidence only and not for s-polarized incidence. The incidence plane, grating plane, and the
morphologically significant plane of the CTF were all the same in that study [13].

When the plane of incidence is congruent with the morphologically significant plane, the
solution of the underlying canonical boundary-value problem indicates that the SPP wave
must be p-polarized [122]. But when the two planes are non-congruent, the SPP wave cannot
be accorded a specfic polarization state; labeling its polarization state as hybrid [123] is inapt
[124] because the field inside the CTF comprises two extraordinary components [125, 126] that
cannot be labeled as of either the p- or the s-polarization state. Therefore, it is possible that
incident s-polarized light can also excite an SPP wave when the plane of incidence, the grating
plane, and the morphologically significant plane are all different. This issue motivated the
work reported in this chapter: the mathematical formulation of the boundary-value problem
is described in Sec. 2.1, where the rigorous coupled-wave approach (RCWA) is adopted to
solve the problem. Numerical results are presented and discussed in Sec. 2.2. Conclusions are
presented in Sec. 2.3.

This chapter is based on: K. Mujeeb, M. Faryad, J. V. Urbina, and A. Lakhtakia. Effect of orientation on excitation of
surface plasmon-polariton waves guided by a columnar thin film deposited on a metal grating. Optical Engineering,
59(5): 055103, 2020; errata: 59(6): 069801, 2020.
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EXCITATION OF SPP WAVES AT CTF/METAL INTERFACE

2.1 Boundary-Value Problem

Let me now consider the schematic of the boundary-value problem shown in Fig. 3.1. The
region 0 < z < Lc is occupied by a CTF, the region Lc + Lg < z < Lt by a metal of relative per-
mittivityεm, and the half-spaces z < 0 and z > Lt are occupied by air, where Lt = Lc + Lg + Lm.
The intermediate region Lc < z < Lc + Lg by a one-dimensional metallic grating with the CTF
inside the troughs of the grating. The xz plane is the grating plane with L being the pe-
riod along the x axis. The relative permittivity dyadic of the CTF is stated in Eq. (1.24) in
Chap. 1. The relative permittivity dyadic εgr(x, z) = εgr(x ± L, z) in the intermediate region

Figure 2.1: Schematic of the boundary-value problem solved for the grating-coupled configu-
ration. The CTF is symbolically represented by a single row of nanocolumns.

Lc < z < Lc + Lg is specified as

εgr(x, z) =

{
εm I −

(
εm I −εCTF

)
Υ[Lg + Lc − z− f (x)], x ∈ [0, L1),

εCTF, x ∈ (L1, L],
,

z ∈ (Lc, Lc + Lg) , (2.1)
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where L1 ∈ (0, L], the identity dyadic I = ûxûx + ûyûy + ûzûz, and the unit step function,

Υ(ξ) =

1, ξ ≥ 0,

0, ξ < 0,
(2.2)

and grating shape function is

f (x) = Lg sin(πx/L1), L1 ∈ [0, L] , (2.3)

for all numerical results presented here.

ε(x, z) = ∑
n∈Z

ε(n)(z) exp(i2nπx/L), z ∈ (0, Lt), (2.4)

where Z = {0,±1,±2, ......} and the Fourier coefficients

ε(n)(z) =


1
L
∫ L

0 εgr(x, z)exp(−in2πx/L)dx, z ∈ (Lc, Lc + Lg),

0, z /∈ (Lc, Lc + Lg),
(2.5)

for n 6= 0 but

ε(0)(z) =


εCTF, z ∈ (0, Lc),
1
L
∫ L

0 εgr(x, z)dx, z ∈ (Lc, Lc + Lg),

εm I, z ∈ (Lc + Lg, Lt).

(2.6)

Consider the interface z = 0 to be illuminated by a plane wave propagating at the azimuthal
angleψ ∈ [0◦, 360◦) (with respect to the x axis in the xz plane) and the polar angleθ ∈ [0◦, 90◦)
(with respect to the z axis). Thus, the plane of incidence is jointly defined by the unit vectors
ûx cosψ+ ûy sinψ and ûz. The field phasors of the incident, reflected, and transmitted plane

28



EXCITATION OF SPP WAVES AT CTF/METAL INTERFACE

wave in terms of Floquet harmonics [3] can be written as

Einc(r) = ∑
n∈Z

(sna(n)s + p+
n a(n)p )exp[i(k(n)x x + k(0)y y + k(n)z z)], z < 0, (2.7)

η0Hinc(r) = ∑
n∈Z

(p+
n a(n)s − sna(n)p )exp[i(k(n)x x + k(0)y y + k(n)z z)], z < 0, (2.8)

Eref(r) = ∑
n∈Z

(snr(n)s + p−n r(n)p )exp[i(k(n)x x + k(0)y y− k(n)z z)], z < 0, (2.9)

η0Href(r) = ∑
n∈Z

(p−n r(n)s + snr(n)p )exp[i(k(n)x x + k(0)y y− k(n)z z)], z < 0, (2.10)

Etr(r) = ∑
n∈Z

(snt(n)s + p+
n t(n)p )exp{i[k(n)x x + k(0)y y + k(n)z (z− Lt)]}, z > Lt, (2.11)

η0Htr(r) = ∑
n∈Z

(p+
n t(n)s + snt(n)p )exp{i[k(n)x x + k(0)y y + k(n)z (z− Lt)]}, z > Lt, (2.12)

where

k(n)x (θ,ψ) = k0 cosψ sinθ+ 2nπ/L, (2.13)

k(0)y (θ,ψ) = k0 sinψ sinθ, (2.14)

k(n)xy (θ,ψ) = +

√
(k(n)x )2 + (k(0)y )2, (2.15)

k(n)z (θ,ψ) =


√

k0
2 − (k(n)xy )2, k0

2 > (k(n)xy )2,

i
√
(k(n)xy )2 − k0

2, k0
2 < (k(n)xy )2,

(2.16)

sn(θ,ψ) =
−k(0)y ûx + k(n)x ûy

k(n)xy

, (2.17)

and

p±n (θ,ψ) = ∓ k(n)z

k0

(
k(n)x ûx + k(0)y ûy

k(n)xy

)
+

k(n)xy

k0
ûz, (2.18)

are functions of angle θ and ψ. The field phasors in the region 0 ≤ z ≤ Lt in terms of Floquet
harmonics may be written as

Etr(r) = ∑
n∈Z

[
E(n)

x (z)ûx + E(n)
y (z)ûy + E(n)

z (z)ûz]exp[i(k(n)x x + k(0)y y)
]
, (2.19)

Htr(r) = ∑
n∈Z

[
H(n)

x (z)ûx + H(n)
y (z)ûy + H(n)

z (z)ûz]exp[i(k(n)x x + k(0)y y)
]
. (2.20)

Substituting Eq. (2.4) and Eqs. (2.19)-(2.20) in the frequency-domain Maxwell curl postulates, a
system of four ordinary differential equations and two algebraic equations has been obtained
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and given as follows:

d
dz

E(n)
x (z) = ik0η0H(n)

y (z) + ik(n)x E(n)
z (z), (2.21)

d
dz

E(n)
y (z) = −ik0η0H(n)

y (z) + ik(0)y E(n)
z (z), (2.22)

d
dz

H(n)
x (z) = ik(n)x H(n)

z (z)− i
k0

η0
(2.23)

× ∑
n∈Z

[ε
(n−m)
yx E(n)

x (z) +ε(n−m)
yy E(n)

y (z) +ε(n−m)
yz E(n)

z (z)],

d
dz

H(n)
y (z) = ik(0)y H(n)

z (z) + i
k0

η0
(2.24)

× ∑
n∈Z

[ε
(n−m)
xx E(n)

x (z) +ε(n−m)
xy E(n)

y (z) +ε(n−m)
xz E(n)

z (z)],

and two algerbaic equations

k(0)y E(n)
x − k(n)x E(n)

y (z) = −k0η0H(n)
z (z), (2.25)

k(0)y H(n)
x − k(n)x H(n)

y (z) =
k0

η0
(2.26)

× ∑
n∈Z

[ε
(n−m)
zx E(n)

x (z) +ε(n−m)
zy E(n)

y (z) +ε(n−m)
zz E(n)

z (z)].

During all computations , n ≤ Ns was restricted. Equations (2.21)–(2.26) holds for all z ∈
(0, Lt). Using Eq. (2.25) and Eq. (2.26) in Eqs. (2.21)–(2.24) results in the four ordinary differen-
tial equations, and can be demonstrated as

d
dz

[f(z)] = i[P(z)] • [f(z)], (2.27)

where [P(z)] is given as

[P(z)] =


[P11(z)] [P12(z)] [P13(z)] [P14(z)]
[P21(z)] [P22(z)] [P23(z)] [P24(z)]
[P31(z)] [P32(z)] [P33(z)] [P34(z)]
[P41(z)] [P42(z)] [P43(z)] [P44(z)]

 . (2.28)
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Consider [P
αβ

(z)] = [P
αβ

] and

[P11] = −[Kx]
• [εzz(z)]−1 • [εzx(z)], (2.29)

[P12] = −[Kx]
• [εzz(z)]−1 • [εzy(z)], (2.30)

[P13] =
k(0)y

k0
[Kx]

• [εzz(z)]−1, (2.31)

[P14] = k0[I]−
1
k0
[Kx]

• [εzz(z)]−1 • [Kx], (2.32)

[P21] = −k(0)y [εzz(z)]−1 • [εzx(z)], (2.33)

[P22] = −k(0)y [εzz(z)]−1 • [εzy(z)], (2.34)

[P23] = −k0[I] +
k(0)

2

y

k0
[εzz(z)]−1, (2.35)

[P24] = −
k(0)y

k0
[εzz(z)]−1 • [Kx], (2.36)

[P31] = −k0[εyx(z)] + k0[εyz(z)] • [εzz(z)]−1 • [εzx(z)]−
k(0)y

k0
[Kx], (2.37)

[P32] = −k0[εyy(z)] + k0[εyz(z)] • [εzz(z)]−1 • [εzy(z)] +
1
k0
[Kx]

2, (2.38)

[P33] = −k(0)y [εyz(z)] • [εzz(z)]−1, (2.39)

[P34] = [εyz(z)] • [εzz(z)]−1 • [Kx], (2.40)

[P41] = k0[εxx(z)]− k0[εxz(z)] • [εzz(z)]−1 • [εzx(z)]−
k(0)

2

y

k0
[Kx], (2.41)

[P42] = k0[εxy(z)]− k0[εxz(z)] • [εzz(z)]−1 • [εzy(z)] +
k(0)

2

y

k0
[Kx], (2.42)

[P43] = k(0)y [εxz(z)] • [εzz(z)]−1, (2.43)

[P44] = −[εxz(z)] • [εzz(z)]−1 • [Kx], (2.44)

where [Kx] = diag[k(n)x ], and [f(z)] is the column vector. The column vector [f(z)] has 4(2Ns +

1) components and is defined as

[f(z)] = [[Ex(z)]T , [Ey(z)]T ,η0[Hx(z)]T ,η0[Hy(z)]T ]. (2.45)

The column vector f(z) can be computed at z = 0 and z = Lt using the field Eqs. (2.7)–(2.12) as

[f(0)] =

[
[Y(inc)

e ] [Y(ref)
e ]

[Y(inc)
h ] [Y(ref)

h ]

]
•

[
[A]

[R]

]
, (2.46)
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and

[f(Lt)] =

[
[Y(inc)

e ]

[Y(inc)
h ]

]
• [T], (2.47)

with

[Y(inc)
e ] =

−
k(0)y

k(n)xy

k(n)z
k0

k(n)x

k(n)xy

k(n)x

k(n)xy

k(n)z
k0

k(0)y

k(n)xy

 , (2.48)

[Y(ref)
e ] =

−
k(0)y

k(n)xy
− k(n)z

k0
k(n)x

k(n)xy

k(n)x

k(n)xy
− k(n)z

k0

k(0)y

k(n)xy

 , (2.49)

[Y(inc)
h ] =


k(n)z
k0

k(n)x

k(n)xy

k(0)y

k(n)xy

k(n)z
k0

k(0)y

k(n)xy
− k(n)x

k(n)xy

 , (2.50)

and

[Y(ref)
h ] =

−
k(n)z
k0

k(n)x

k(n)xy

k(0)y

k(n)xy

− k(n)z
k0

k(0)y

k(n)xy
− k(n)x

k(n)xy

 . (2.51)

[A], [R], and [T] used in above equations are given as

[A] =[a(−Ns)
s , a(−Ns+1)

s , a(−Ns+2)
s , ..........., a(0)s , ..............., a(Ns−2)

s , , a(Ns−1)
s , a(Ns)

s

a(−Ns)
p , a(−Ns+1)

p , a(−Ns+2)
p ..........a(0)p , ..............., a(Ns−2)

p , a(Ns−1)
p , a(Ns)

p ]T .
(2.52)

[R] =[r(−Ns)
s , r(−Ns+1)

s , r(−Ns+2)
s ..........r(0)s , ..............., r(Ns−2)

s , r(Ns−1)
s , r(Ns)

s

r(−Ns)
p , r(−Ns+1)

p , r(−Ns+2)
p ..........r(0)p , ..............., r(Ns−2)

p , r(Ns−1)
p , r(Ns)

p ]T ,
(2.53)

[T] =[t(−Ns)
s , t(−Ns+1)

s , t(−Ns+2)
s , ..........t(0)s , ..............., t(Ns−2)

s , t(Ns−1)
s , t(Ns)

s

t(−Ns)
p , t(−Ns+1)

p , t(−Ns+2)
p ..........t(0)p , ..............., t(Ns−2)

p , t(Ns−1)
p , t(Ns)

p ]T .
(2.54)

In order to devise a stable algorithm to evaluate the unknown [R] and [T] for known [A]

[3, 127], the region 0 ≤ z ≤ Lt is divided into slices. The region 0 ≤ z ≤ Lc is divided into Nc

slices, Lc ≤ Lc + Lg into Ng slices, and Lc + Lg ≤ z ≤ Lt is divided into Nm slices. The above
division of regions provide Nc + Ng + Nm slices and Nc + Ng + Nm + 1 interfaces. In the `th
slice, bounded by the planes z = z`−1 and z = z`, where ` ∈ [1, Nc + Ng + Nm], approximate
[P(z)] as

[P(z)] = [P]` =
[

P
( z`−1 + z`

2
)]

, z ∈ (z`, z`−1). (2.55)
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Equation (2.27) can be written as [128]

[f(z`−1)] = [V]` • exp{−id`[D]`} • [V]−1
`

• [f(z`)]. (2.56)

In Eq. (2.56), d` = z` − z`−1, [V]` is a square matrix with eigenvectors of matrix [P]` as its
columns and [D]` is a diagonal matrix with eigenvalues of [P]`. The auxiliary column vector
[T]` and the transmission matrix [Z]low

` can be defined as [129]

[f(z`−1)] = [Z]` • [T]`, ` ∈ [0, Nc + Ng + Nm], (2.57)

where

[T]Nc+Ng+Nm = [T], (2.58)

[Z]Nc+Ng+Nm =

[
[Y(inc)

e ]

[Y(inc)
h ]

]
. (2.59)

Solving Eq. (2.56) and (2.57)

[Z]`−1 • [T]`−1 = [V]` •

[
exp{−id`[D]

upp
` } 0

0 exp{−id`[D]low
` }

]
• [V]−1

`
• [Z]` • [T]` ,

` ∈ [1, Nc + Ng + Nm] ,

(2.60)

[D]
upp
` is the upper diagonal submatrix of [D]` and [D]low

` is lower diagonal submatrix of [D]`,
provided that the imaginary part of the eigenvalues of matrix [D]` are arranged in decreasing
order. Since both [T]` and [Z]low

` are unknown and cannot be determined simultaneously from
Eq. (2.60), so formulate

[T]`−1 = exp{−id`[D]
upp
` } • [X]

upp
`

• [T]` , (2.61)

where [X]low
` and [X]

upp
` are defined via[

[X]
upp
`

[X]low
`

]
= [V]−1

`
• [Z]`. (2.62)

Substituting Eq. (2.61) in Eq. (2.60)

[Z]`−1 =[V]` •

[
[I]

exp{−id`[D]low
` } • [X]low

`
• {[X]

upp
` }−1 • exp{id`[D]

upp
` }

]
,

` ∈ [1, Nc + Ng + Nm].

(2.63)
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From Eq. (2.62) and Eq. (2.63), [Z]0 is found in terms of [Z]Nc+Ng+Nm . After partitioning, the
matrix [Z]0 is written as the lower submatrix [Z]low

0 and upper submatrix [Z]low
0 as

[Z]0 =

[
[Z]upp

0
[Z]low

0

]
. (2.64)

[R] and [T]0 are found using Eqs. (2.46)–(2.57)

[
[T]0
[R]

]
=

[
[Z]upp

0 −[Y(ref)
e ]

[Z]low
0 −[Y(ref)

h ]

]−1

•

[
[Y(inc)

e ]

[Y(inc)
h ]

]
• [A]. (2.65)

Equation (2.65) was obtained by enforcing the boundary conditions across the plane z = 0.
After [T]0 is known [T] = [T]Nc+Ng+Nm is found by reversing the sense of iteration in Eq. (2.61).

The unknown amplitudes r(n)s , r(n)p , t(n)s , and t(n)p have to be determined in terms of the known

a(n)s and a(n)p

a(n)s = āsδn0,

a(n)p = āpδn0,

}
z ∈ [0, Lt] , (2.66)

where δnm is the Kronecker delta, āp = 0 for an incident s-polarized plane wave, and ās = 0
for an incident p-polarized plane wave. In the above RCWA, the electric and magnetic field
phasors in the region 0 < z < Lt are expanded in terms of Floquet harmonics with unknown
coefficients [14, 15]. The Floquet harmonics express the x-dependences using the functions
exp(ik(n)x x), the unknown coefficients are functions of z, and the y-dependence is simply
exp(ik(0)y y). After the expansions of the field phasors as well as the Fourier series given in
Eq. (2.4) are substituted in the frequency-domain Maxwell curl postulates, the piecewise-
uniform approximation is used. All expansions are truncated to exclude |n| > Ns > 0. A
stable algorithm is then used to determine the unknown coefficients r(n)s , r(n)p , t(n)s , and t(n)p for
n ∈ [−Ns, Ns] in terms of ās and āp [3]. The results are compactly expressed using the matrix
equations[

r(n)s

r(n)p

]
=

[
r(n)ss r(n)sp

r(n)ps r(n)pp

][
ās

āp

]
,

[
t(n)s

t(n)p

]
=

[
t(n)ss t(n)sp

t(n)ps t(n)pp

][
ās

āp

]
, (2.67)

where r(n)sp , etc., are reflection coefficients and t(n)sp , etc., are transmission coefficients. Co-
polarized coefficients have both subscripts identical, but cross-polarized coefficients do not.
Reflectances of nth order are determined as

R(n)
sp = |r(n)sp |2 Re

[
k(n)z /k(0)z

]
, (2.68)
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etc., and transmittances likewise as

T(n)
sp = |t(n)sp |2 Re

[
k(n)z /k(0)z

]
, (2.69)

etc. The absorptance for p-polarized incident plane wave is

Ap = 1−
Ns

∑
n=−Ns

[
R(n)

sp + R(n)
pp + T(n)

sp + T(n)
pp

]
∈ [0, 1], (2.70)

and that for s-polarized incident plane wave is

As = 1−
Ns

∑
n=−Ns

[
R(n)

ss + R(n)
ps + T(n)

ss + T(n)
ps

]
∈ [0, 1] . (2.71)

If both materials in the region 0 < z < Lt are non-dissipative, the principle of conservation of
energy requires that Ap = As = 0.

2.2 Numerical Results and Discussion

The free space wavelength λ0 = 633 nm was fixed for all data presented here. The CTF was
taken to be made of tantalum oxide [7, 86] with permittivity given in Eq. (1.3) in Chap. 1. The
vapor deposition angle χv = 20◦ was fixed for all data presented here. The metal was taken
as silver with refractive index nm =

√
εm = 0.05096 + 3.92451i. The dimensions L = 900 nm,

Lm = 30 nm, and Lg = 20 nm were kept fixed for all calculations along with γ = 15◦ and
γ = 30◦.

2.2.1 Canonical Boundary-Value Problem

In the underlying canonical boundary-value problem [3], the CTF occupies the half-space z <
0, the metal occupies the half-space z > 0, and the SPP wave propagates along the direction
ûx cosψ̄+ ûy sinψ̄. The complex-valued wavenumber q of the SPP wave is a function of ψ̄ due
to the anisotropy of the CTF, as has been shown elsewhere [122]. Only one value of q exists
for each value of ψ̄, which means that only one SPP wave can be excited for propagation in
a direction specified by ψ̄. Also, if an SPP wave is excited for a given value of ψ̄ ∈ [0◦, 90◦],
then it is also excited for 180◦ ± ψ̄ and 360◦ − ψ̄. Fields in both partnering materials vary as
exp [iq(x cosψ̄+ y sinψ̄) + iαz] with Im(α) < 0 in the CTF and Im(α) > 0 in metal so that the
fields decay as z→±∞.

The symmetry of the problem enjoins the solutions of the dispersion equation [3, 12] for
SPP-wave propagation to be identical for ψ̄ and 180◦ ± ψ̄. Furthermore, the morphologically
significant plane of the CTF forms a natural reference plane. Hence, the focus here was onφ=

ψ̄− γ ∈ [0◦, 90◦], where φ is the angle subtended by the direction of propagation on the mor-
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Figure 2.2: Real and imaginary parts of the normalized SPP wavenumber q/k0 as functions
of φ = ψ̄ − γ in the canonical boundary-value problem. The metal has relative permittivity
εm = (0.05096 + 3.92451i)2 and the CTF is made of tantalum oxide [7, 86].

phologically significant plane. A combination of search and Newton–Raphson method [136]
was employed to solve the dispersion equation for obtaining the complex-valued wavenum-
ber q as a function of ψ̄ for fixed γ. The Matlab™ program for finding the complex-valued
wavenumber q is provided in Appendix A.1. It was assumed that εm = (0.05096 + 3.92451i)2

and λ0 = 633 nm.

The real part and imaginary parts of the relative wavenumber q/k0 are presented in Figs. 2.2(a)
and 2.2(b), respectively, as functions of φ ∈ [0◦, 90◦]. These figures show that SPP waves can
exist for everyφ ∈ [0◦, 90◦]. In fact, it was found that the SPP waves can exist for propagation
in any direction in the interface plane, i.e., ψ̄ ∈ [0◦, 90◦].

2.2.2 Grating-Coupled Excitation

In the grating-coupled configuration, the in-plane component of the wave vector of the nth or-
der of Floquet harmonic is given by ûxk(n)x + ûyk(0)y ; it is clearly a function ofθ andψ. Whereas
ψ is fixed by the direction of propagation of the incident plane wave, candidate values of θ for
the excitation of an SPP wave are given by the locations of the peaks when the absorptances
Ap and As are plotted as functions of θ. Only those absorptance peaks are acceptable candi-
dates if their locations on the θ axis are independent of the thickness Lc of the CTF beyond a
threshold. If the in-plane component of the wave vector of a Floquet harmonic for a specific
peak thus identified then matches the wavenumber of an SPP wave obtained from the solu-
tion of the underlying canonical boundary-value problem, the excitation of the SPP wave in
the grating-coupled configuration is confirmed. In other words, matching condition [130, 131]

Re[q(ψ̄)]
(
ûx cosψ̄+ ûy sinψ̄

)
= ûxk(n)x (θ,ψ) + ûyk(0)y (θ,ψ), (2.72)
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must be satisfied reasonably well for a specific pair {ψ̄, n} by a candidate absorption peak.
When |ψ̄−ψ| /∈ {0◦, 180◦}, the direction of propagation of the SPP wave does not lie wholly
in the plane of incidence. Let me also note that sinψ = 0 implies that sinψ̄ = 0 because the
wavenumbers in Eqs. (2.72) can not be null valued. The thickness Lc was kept variable be-
tween 1000 and 3000 nm. Both Ap and As were calculated using a program implemented on
the Matlab™ platform on an HP Spectre 360 laptop computer, for θ varying in steps of 0.1◦

and for ψ varying in steps ≥ 0.1◦. The Matlab™ program is provided in Appendix A.3. The
Ns = 10 was fixed after checking that both absorptances converged with a tolerance limit of
±0.1%. Furthermore, adherence to the principle of conservation of energy was tested by con-
firming that that Ap = As = 0 when all four of εAa , εAb

, εAc , and εm are real and positive.
Although Ap and As were calculated for θ ∈ [0◦, 89◦] and ψ ∈ [0◦, 90◦], data are presented
here only for smaller ranges ofθ in which the excitation of an SPP wave in the grating-coupled
configuration was confirmed.

2.2.2.1 p-Polarized Incident Plane Wave

ψ = 0◦

Figure 2.3(a) shows angular spectra the absorptance Ap (i.e., the variations of these absorp-
tance with the polar angle of incidence θ) for three different values of the CTF thickness Lc

when the plane of incidence coincides with the grating plane (i.e.,ψ = 0◦) and γ = 15◦. These
plots exemplify the excitation of the same SPP wave for three different values of θ. The first
excitation occurs at θ1 ' 19.2◦, regardless of Lc ≥ 1000 nm, when the in-plane wavenum-
ber k(2)xy = 1.7355k0 of the Floquet harmonic of order n = 2 matches the canonical solution
Re[q(ψ̄1)] = 1.7422k0 at ψ̄1 = 0◦. This is in accord with Eq. (2.72) which mandates ψ̄ =ψ and
n > 0 when ψ = 0◦. The second excitation occurs at θ2 ' 21.7◦, regardless of Lc ≥ 1000 nm,
when k(−3)

xy = 1.7403k0 matches Re[q(ψ̄2)] = 1.7422k0 at ψ̄2 = 180◦. This is in accord with
Eq. (2.72), whereby ψ̄ = 180◦ +ψ and n < 0 when ψ = 0◦. In the canonical problem, the same
SPP wave is excited for ψ̄1 and ψ̄2 = 180◦ + ψ̄1. The third excitation occurs at θ3 ' 24◦, when
k(−3)

xy = 1.7033k0 matches Re[q(ψ̄3)] = 1.7422k0 at ψ̄3 = 180◦, again in accord with Eq. (2.72).
The situation is similar in Fig. 2.3(b) for the excitation of an SPP wave at three angular

locations when γ = 30◦. The canonical problem yields Re[q(ψ̄)] = 1.7459k0 for ψ̄ ∈ {0◦, 180◦}.
The figure demonstrates the excitation of the SPP wave, first at θ1 ' 19.8◦, when the in-plane
wavenumber k(2)xy = 1.7454k0, second at θ2 ' 21.7◦ when the in-plane wavenumber k(−3)

xy =

1.7403k0, as a Floquet harmonic of order n = 2 and n =−3, respectively, matches the canonical
solution. The third excitation occurs at θ3 ' 23.8◦ as a Floquet harmonic of order n = −3
because a k(−3)

xy = 1.7065k0 matches Re[q(ψ̄3)] = 1.7459k0.
It was conclude that multiple excitation of an SPP wave, previously demonstrated for

γ = 0◦ [13], can occur even when the morphologically significant plane of the CTF does not
coincide with the grating plane.

The absorptance plots in Fig. 2.3(a) and Fig. 2.3(b) indicate that the excitations of the SPP
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Figure 2.3: Absorptance Ap as a function of incidence angle θ for Lc ∈ {1000, 2000, 3000} nm,
when χv = 20◦, ψ = 0◦, L = 900 nm, and Lm = 30 nm. (a) γ = 15◦, and (b) γ = 30◦. A
downward arrow identifies the excitation of an SPP wave as a Floquet harmonic of order n,
which is indicated alongside the arrow.

wave are stronger at θ1 and θ2 than at θ3. This conclusion is also supported by the differences∣∣∣k(2)xy (ψ1)−Re [q(ψ̄1)]
∣∣∣ and

∣∣∣k(−3)
xy (ψ2)− Re [q(ψ̄2)]

∣∣∣ being smaller that
∣∣∣k(−3)

xy (ψ3)− Re [q(ψ̄3)]
∣∣∣.

ψ = 30◦

The foregoing calculations were repeated for γ = 15◦ and ψ = 30◦. Now the plane of inci-
dence does not coincide with the grating plane. The plots in Fig. 2.4(a) illustrate the excita-
tion of an SPP wave for three different values of θ. The first excitation occurs at θ1 ' 21.3◦,
regardless of Lc ≥ 1000 nm, when the in-plane wavenumber k(2)xy = 1.7308k0 of the Floquet
harmonic of order n = 2 matches the canonical solution Re[q(ψ̄1)] = 1.7413k0 at ψ̄1 = 6.0235◦,
in accord with Eq. (2.72). The second excitation occurs at θ2 ' 24◦, when k(−3)

xy = 1.7695k0

matches Re[q(ψ̄2)] = 1.7436k0 at ψ̄2 = 173.4004◦. The third excitation occurs at θ3 ' 26.8◦,
when k(−3)

xy = 1.7342k0 matches Re[q(ψ̄3)] = 1.7438k0 at ψ̄3 = 172.5308◦.

The plots in Fig. 2.4(b) illustrate the excitation of an SPP wave for three different values
of θ for γ = 30◦. The first excitation occurs at θ1 ' 21.5◦, regardless of Lc ≥ 1000 nm, when
the in-plane wavenumber k(2)xy = 1.7338k0 of the Floquet harmonic of order n = 2 matches
the canonical solution Re[q(ψ̄1)] = 1.7442k0 at ψ̄1 = 6.0672◦, in accord with Eq. (2.72). The
second excitation occurs at θ2 ' 24◦, when k(−3)

xy = 1.7695k0 matches Re[q(ψ̄2)] = 1.7480k0

at ψ̄2 = 173.4004◦. The third excitation occurs at θ3 ' 26.1◦, when k(−3)
xy = 1.7429k0 matches

Re[q(ψ̄3)] = 1.7482k0 at ψ̄3 = 172.7496◦. Given the small difference between 180◦ − ψ̄1, ψ̄2,
and ψ̄3, the SPP waves excited at θ1, θ2, and θ3 have quantitatively close but not identical
attributes.
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Figure 2.4: Absorptance Ap as a function of incidence angle θ for Lc ∈ {1000, 2000, 3000} nm,
when χv = 20◦, ψ = 30◦, L = 900 nm, and Lm = 30 nm. (a) γ = 15◦, and (b) γ = 30◦. A
downward arrow identifies the excitation of an SPP wave as a Floquet harmonic of order n,
which is indicated alongside the arrow.

ψ > 30◦

Figure 2.5(a) provides evidence of SPP-wave excitation at θ1 ' 64.05◦, when ψ = 89.5◦ and
γ= 15◦. This SPP wave is excited as a Floquet harmonic of order n = 2 because k(2)xy = 1.6761k0

matches Re[q(ψ̄1)] = 1.7426k0 at ψ̄1 = 32.4423◦.

Figure 2.5: Absorptance Ap as a function of incidence angle θ for Lc ∈ {1000, 2000, 3000} nm,
when χv = 20◦, L = 900 nm, and Lm = 30 nm. (a) γ = 15◦, ψ = 89.5◦, and (b) γ = 30◦ and
ψ= 88.1◦. A downward arrow identifies the excitation of an SPP wave as a Floquet harmonic
of order n, which is indicated alongside the arrow.

Figure 2.5(b) provides evidence of SPP-wave excitation at θ1 ' 66.1◦, when ψ = 88.1◦ and
γ= 30◦. This SPP wave is excited as a Floquet harmonic of order n = 2 because k(2)xy = 1.7029k0
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matches Re[q(ψ̄1)] = 1.7409k0 at ψ̄1 = 32.4516◦. No SPP wave was found to be excited for
ψ ∈ (89.5◦, 90◦] when γ = 15◦, and ψ ∈ (88.1◦, 90◦] when γ = 30◦.

2.2.2.2 s-Polarized Incident Plane Wave

ψ = 0◦

No depolarization can occur when the incidence plane is congruent with the morphologically
significant plane of the CTF, i.e, when γ =ψ. Having fixed γ = 0◦ and ψ = 0◦, Chiadini et al.
[13] therefore they did not have to consider the excitation of an SPP wave due to illumination
by an s-polarized incident plane wave. However, depolarization will occur if γ 6= ψ [2, 36],
as confirmed for the grating-coupled configuration of Fig. 3.1. Therefore, the evidence were
found for the excitation of SPP waves by s-polarized illumination forψ= 0◦ and eitherγ= 15◦,
or γ = 30◦. Figure 2.3(a) provides evidence of SPP-wave excitation at θ1 = 19.2◦, θ2 = 21.7◦,
and θ3 = 24◦ due to p-polarized illumination.

Figure 2.6: Absorptance As as a function of incidence angle θ for Lc ∈ {1000, 2000, 3000} nm,
when χv = 20◦,ψ= 0◦, L = 900 nm, and Lm = 30 nm. (a)γ= 15◦ and (b)γ= 30◦. A downward
arrow identifies the excitation of an SPP wave as a Floquet harmonic of order n, which is
indicated alongside the arrow.

Figure. 2.6(a) contains As-peaks for SPP-wave excitation atθ1 = 20.1◦ (when Lc = 3000 nm)
and θ2 = 21.7◦, but not at θ3, for s-polarized illumination. Figure 2.3(b) provides evidence of
SPP-wave excitation at θ1 = 19.8◦, θ2 = 21.7◦, and θ3 = 23.8◦ due to p-polarized illumination.
These values of θ are also candidates for SPP-wave excitation due to s-polarized illumination.
Indeed, Fig. 2.6(b) contains As-peaks for SPP-wave excitation at θ1 (when Lc = 3000 nm) and
θ2, but not at θ3, for s-polarized illumination. Comparison of Figs. 2.3 and 2.6 suggests that
s-polarized illumination excites weaker SPP waves than p-polarized illumination, which may
explain the very low values of As at θ3.
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ψ = 30◦

Figure 2.7(a) shows the absorptance spectrum As for three different values of the CTF thickness
Lc when γ = 15◦. This figures demonstrates the first excitation of an SPP wave at θ1 ' 22.1◦,
regardless of Lc ≥ 1000 nm, when the in-plane wavenumber k(2)xy = 1.7427k0 of the Floquet
harmonic of order n = 2 matches the canonical solution Re[q(ψ̄1)] = 1.7413k0 at ψ̄1 = 6.1969◦.
The second excitation of an SPP wave occurs at θ2 ' 23.9◦ when the in-plane wavenum-
ber k(2)xy = 1.7692k0 of the Floquet harmonic of order n = 2 matches the canonical solution

Re[q(ψ̄2)] = 1.7412k0 at ψ̄2 = 6.5748◦. The third excitation occurs at θ3 ' 26.2◦ when k(−3)
xy =

1.7417k0 is close to the canonical solution Re[q(ψ̄3)] = 1.7437k0 at ψ̄3 = 172.7184◦. The fourth
excitation takes place at θ4 ' 28.9◦ when k(−3)

xy = 1.7086k0 matches Re[q(ψ̄4)] = 1.7439k0 at
ψ̄4 = 171.8698◦.

Figure 2.7: Absorptance As as a function of incidence angle θ for Lc ∈ {1000, 2000, 3000} nm,
when χv = 20◦, ψ = 30◦, L = 900 nm, and Lm = 30 nm. (a) γ = 15◦ and (b) γ = 30◦. A
downward arrow identifies the excitation of an SPP wave as a Floquet harmonic of order n,
which is indicated alongside the arrow.

Figure 2.7(b) shows the absorptance As as a function of θ for three different values of the
CTF thickness Lc when γ = 30◦ . Figure 2.7(b) provides evidence of SPP-wave excitation
at θ1 ' 22.1◦, θ2 ' 23.9◦, θ3 ' 26.2◦, and θ4 ' 28.9◦ regardless of Lc ≥ 1000 nm, with the
canonical solution Re[q(ψ̄1)] = 1.7442k0, Re[q(ψ̄2)] = 1.7386k0, Re[q(ψ̄3)] = 1.7482k0, and
Re[q(ψ̄4)] = 1.7485k0, respectively. Figure 2.7(b) provides evidence of SPP-wave excitation
excitation at the same angular locations as in Fig. 2.7(a) except the fact that s-polarized illumi-
nation excites stronger SPP waves for γ = 15◦ than γ = 30◦.

A comparison of Figs. 2.4 and 2.7 shows that s-polarized illumination can excite four SPP
waves, whereas p-polarized illumination can excite three SPP waves, as θ is swept from 0◦

to 90◦. Also, the values of θ1 to θ3 are different for the two different polarization states of
illumination. Both differences highlight the role of depolarization that must occur in the CTF
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due to its anisotropy.

ψ > 30◦

The plots of As versus θ in Fig. 2.8(a) for ψ = 89.5◦ when γ = 15◦ illustrate the excitation
of an SPP wave at θ1 ' 63.7◦, when the in-plane wavenumber k(2)xy = 1.6746k0 of the Floquet
harmonic of order n = 2 matches the canonical solution Re[q(ψ̄1)] = 1.7426k0 at ψ̄1 = 32.3650◦.

Figure 2.8: Absorptance As as a function of incidence angle θ for Lc ∈ {1000, 2000, 3000} nm,
when χv = 20◦, L = 900 nm, and Lm = 30 nm. (a) γ = 15◦ and ψ = 89.5◦, (b) γ = 30◦ and
ψ= 88.1◦. A downward arrow identifies the excitation of an SPP wave as a Floquet harmonic
of order n, which is indicated alongside the arrow.

Figure 2.8(b) examplify the excitation of an SPP wave forψ= 88.1◦ when γ = 30◦. The SPP
wave is excited at θ1 ' 65.7◦, when the in-plane wavenumber k(2)xy = 1.7013k0 of the Floquet
harmonic of order n = 2 matches the canonical solution Re[q(ψ̄1)] = 1.7409k0 at ψ̄1 = 32.3724◦.
The excitation of SPP wave for γ = 30◦ is weaker than the excitation of SPP wave for γ = 15◦.

No SPP wave was found to be excited forψ∈ (89.5◦, 90◦] whenγ= 15◦, andψ∈ (88.1◦, 90◦]
when γ = 30◦.

2.3 Conclusions

The excitation of SPP waves by plane-wave illumination of a one-dimensional metallic surface-
relief grating coated with a homogeneous biaxial dielectric material was theoretically investi-
gated. The grating profile was taken to be invariant along a fixed axis. The plane of incidence
could be different from the grating plane. The biaxial dielectric material was taken to be a CTF
whose morphologically significant plane could differ from the grating plane as well as the
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plane of incidence. The RCWA was adopted to solve the boundary-value problem to calcu-
late the plane-wave absorptance as a function of the incidence direction, the orientation of the
morphologically significant plane, and the linear polarization state of the illuminating plane
wave. The following conclusions emerged from our numerical studies:

• Only p-polarized plane waves excite SPP waves, if both the plane of incidence and the
morphologically significant plane of the CTF are congruent with the grating plane [13].

• Both p-polarized and s-polarized plane waves can excite SPP waves, provided that either
the plane of incidence and/or the morphologically significant plane of the CTF do not
coincide with the grating plane.

• No, one, or multiple SPP-wave excitations are possible for a fixed direction of propaga-
tion of the incident plane wave.

• The propensity for multiple excitation decreases as the incidence direction becomes nor-
mal to the grating plane, i.e., as ψ increases towards 90◦.

• The direction of propagation of an SPP wave excited may not wholly lie in the plane of
incidence.

43



Chapter 3

Excitation of Dyakonov Surface
Waves

A Dyakonov surface wave is guided by the interface of two homogeneous dielectric ma-
terials of which at least one is anisotropic. The excitation of any surface wave requires the
matching of the wavenumber of that surface wave with the magnitude of the component of
the wave vector of the incident light parallel to the interface plane. The Dyakonov surface
waves have been experimentally observed in prism-coupled configuration [50]. In the prism-
coupled configuration, the matching happens for a very narrow range of the incidence angle,
when both partnering materials have either small or negligible dissipation. However, in the
grating-coupled configuration [3], the matching can happen at more than one value of the inci-
dence angle [13, 135] since diffraction from a grating comprises a multiplicity of non-specular
Floquet harmonics [97]. Additionally, the grating-coupled configuration removes the need
for a high-refractive-index material to couple incident light to surface waves. Therefore, the
theoretically investigate was set out ti find the excitation of Dyakonov surface waves using
grating-coupled configuration of an isotropic dielectric material and a biaxial dielectric mate-
rial. The biaxial material was chosen to be a columnar thin film (CTF).

In this chapter, to fully understand the excitation of Dyakonov surface waves in the grating-
coupled configuration, a very general setting possible for a CTF deposited over a one-dimensional
grating has been used. The plane of incidence, the morphologically significant plane of the
CTF, and the grating plane are taken to be arbitrarily oriented with respect to each other. The
absorptance is computed using the rigorous coupled-wave approach (RCWA) [3, 14, 15] used
in Chap. 2. Note that the mathematical formulation of the Dyakonov surface wave excitation is
isomorphic to the SPP-wave excitation, therefore, the theory for the Dyakonov surface wave is

This chapter is based on: K. Mujeeb, M. Faryad, A. Lakhtakia, and J. V. Urbina. Theory of grating coupled
excitation of Dyakonov surface waves. Optical Engineering, 59(7): 070503, 2020; errata: 60(6): 069801, 2021.
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omitted here. The plan of the chapter is as follows: the boundary-value problem is described
in Sec. 3.1, and numerical results are presented and discussed in Sec. 3.2. Conclusions are
presented in Sec. 3.3.

3.1 Boundary-Value Problem

A schematic of the boundary-value problem is shown in Fig. 3.1. The region 0 < z < Lc is
occupied by a CTF, the region Lc + Lg < z < Lt by a homogeneous isotropic dielectric mate-
rial of relative permittivity εd, and the half-spaces z < 0 and z > Lt are occupied by air, where
Lt = Lc + Lg + Ld. The intermediate region Lc < z < Lc + Lg is occupied by a one-dimensional
dielectric grating with the CTF assumed to fully occupy the troughs of the grating. The xz
plane is the grating plane with L being the spatial period along the x axis. The interface z = 0

Figure 3.1: Schematic of the boundary-value problem solved for the grating-coupled configu-
ration. Only the nanocolumns of the CTF in its morphologically significant plane are depicted.

is considered to be illuminated by a plane wave propagating at the polar angle θ (with respect
to the z axis) and the azimuthal angle ψ (with respect to the x axis in the xy plane). Thus, the
plane of incidence is jointly defined by the unit vectors ûx cosψ+ ûy sinψ and ûz. The electric
and magnetic field phasors in the region 0 < z < Lt are expanded in terms of specular and
non-specular Floquet harmonics with unknown coefficients [3, 14, 15]. The theoretical formu-
lation of the boundary-value problem using the rigorous coupled-wave approach (RCWA) is
explained in detail in Chap. 2, and is not repeated in this chapter.
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3.2 Numerical Results and Discussion

3.2.1 Canonical Boundary-Value Problem

Before presenting the results for the grating-coupled configuration, the results of the under-
lying canonical boundary-value problem of Dyakonov surface waves guided by the planar
interface of a CTF and an isotropic dielectric material occupying half-spaces on either side of
that interface [3, 12] are presented. Theory for the canonical boundary-value problem has
already been discussed in Chap. 1. Let the Dyakonov surface wave propagate in the in-
terface plane parallel to the unit vector ûx cosψ̄ + ûy sinψ̄. Then the surface wavenumber
q ≡ q(ψ̄) depends on the direction of propagation. Fields in both partnering materials vary
as exp [iq(x cosψ̄+ y sinψ̄) + iαz] with Im(α) < 0 in the CTF and Im(α) > 0 in the isotropic
dielectric material so that the fields decay as z→±∞. It was assumed thatεd = (1.5+ 0.001i)2

and λ0 = 633 nm. The code for the program is provided in Appendix A.4.
The real and imaginary parts of the relative wavenumber q/k0 are presented in Figs. 3.2(a)

and 3.2(b), respectively, as functions of φ ∈ [0, 90◦] for different values of χv. These figures
show that Dyakonov surface waves can exist for φ ∈ [23.1◦, 34◦), φ ∈ [38.7◦, 65.7◦], and φ ∈
[37.9◦, 90◦], respectively for χv = 20◦, χv = 25◦, and χv = 30◦. However, for χv = 40◦ and
χv = 45◦, Dyakonov surface waves can exist for every φ ∈ [0◦, 90◦]. In fact, the Dyakonov
surface waves can exist for propagation in any direction in the interface plane, i.e., ψ̄∈ [0◦, 90◦],
when χv ≥ 35.1◦. Thus, the angular existence domain (AED), i.e., the admissible range ofψ, of
Dyakonov surface waves can be very large, not surprisingly because Im(εd) > 0 even though
it is much smaller than Re(εd).

Figure 3.2: Real and imaginary parts of the normalized Dyakonov surface wavenumber q/k0
as functions of ψ̄− γ in the canonical boundary-value problem for various values of the colli-
mated vapor flux angle χv of the CTF. The isotropic dielectric partner has relative permittivity
εd = (1.5 + 0.001i)2 and the CTF is made of tantalum oxide [7, 86].
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3.2.2 Grating-Coupled Excitation

The absorptance

Ap = 1−
Nt

∑
n=−Nt

[
R(n)

sp + R(n)
pp + T(n)

sp + T(n)
pp

]
∈ [0, 1], (3.1)

for a p-polarized incident plane wave with a(n)s = 0 and a(n)p = δn0 and the absorptance

As = 1−
Nt

∑
n=−Nt

[
R(n)

ss + R(n)
ps + T(n)

ss + T(n)
ps

]
∈ [0, 1] (3.2)

for a s-polarized incident plane wave with a(n)p = 0 and a(n)s = δn0.

To delineate the excitation of Dyakonov surface waves, both absorptances As and Ap are
computed as functions of θ for various thicknesses Lc and Ld of the two partnering dielectric
materials, with ψ, γ, L, Lg, χv, εd, and λ0 fixed. Then those thickness-independent absorp-
tance peaks are identified whose angular location (on theθ axis) matches a prediction from the
canonical problem. This match is nontrivial as the direction of propagation of the Dyakonov
surface wave (given by angle ψ̄ with respect to the x axis) in the interface plane does not nec-
essarily lie in the incidence plane that makes an angleψwith respect to the xz plane because of
the existence of nonspecular Floquet harmonics unless sinψ= 0. Therefore, the real part of the
Dyakonov surface wavenumber for some admissible ψ̄ has to match the in-plane wavenumber
of one of the Floquet harmonics. Thus, the matching conditions [130, 131, 135]

Re[q(ψ̄)] cosψ̄ = k0 sinθ cosψ+ 2nπ/L

Re[q(ψ̄)] sinψ̄ = k0 sinθ sinψ

 (3.3)

must be satisfied reasonably well for a specific pair {ψ̄, n} by a candidate absorption peak
for the fixed ψ and γ. The in-plane wavenumber of the Floquet harmonic of order n is given
by

k(n)xy = +
√

k2
0 sin2θ+ (2nπk0/L) cosψ sinθ+ (2nπ/L)2 . (3.4)

For representative results, χv = 20◦, L = 500 nm and Lg = 50 nm were fixed. Then, the ab-
sorptances Ap and As were computed for four combinations of Lc and Ld with γ = 15◦ fixed.
The calculated absorptances are provided as functions of θ in Figs. 3.3 and 3.4 for p- and s-
polarized incident plane waves, respectively. Whereas ψ = 35◦ for Fig. 3.3(a), ψ = 37◦ for
Fig. 3.3(b), and ψ = 46◦ for Fig. 3.3(c) for p-polarized incident plane wave. For s-polarized
incident plane waves ψ = 39.7◦ for Fig. 3.4(a) and ψ = 44◦ for Fig. 3.4(b). All expansions in
RCWA were truncated to include only n ∈ [−10, 10] (i.e., Ns = 10), after checking that both Ap

and As converged with maximum tolerance limit of ±0.1%. Figure 3.3(a) shows the excitation
of a Dyakonov surface wave at θ1 ' 18.9◦ when ψ = 35◦, because the Ap-peak is indepen-
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dent of the chosen values of Lc and Ld, and the in-plane wavenumber k(−1)
xy = 1.0178k0 of

the Floquet harmonic of order n =−1 matches the canonical solution Re[q(ψ̄1)] = 1.0506k0 at
ψ̄1 = 169.5◦, i.e., φ ∈ {25.5◦, 154.5◦}. The other peaks present in Fig. 3.3(a) represent waveg-
uide modes [27, 133] because their angular locations are dependent upon on the thicknesses
of the isotropic and the anisotropic dielectric partnering materials; furthermore, their angular
locations do not satisfy Eq. (3.3).

Figure 3.3(b) shows the excitation of a Dyakonov surface wave as a Floquet harmonic of
order n = −1 at two different values of θ. The first excitation of a Dyakonov surface wave at
θ1 ' 19.4◦ when ψ = 37◦, because the Ap-peak is independent of the chosen values of Lc and

Ld, and the in-plane wavenumber k(−1)
xy = 1.0205k0 of the Floquet harmonic of order n = −1

matches the canonical solution Re[q(ψ̄1)] = 1.0540k0 at ψ̄1 = 168.7◦, i.e., φ ∈ {26.3◦, 153.7◦}.
The second Dyakonov surface wave is excited at θ2 ' 20.8◦ whenψ= 37◦, where the in-plane
wavenumber k(−1)

xy = 1.0054k0 of the Floquet harmonic of order n =−1 matches the canonical
solution Re[q(ψ̄2)] = 1.0585k0 at ψ̄2 = 167.7◦, i.e., φ ∈ {27.3◦, 152.7◦}. Figure 3.3(b) shows
that Dyakonov waves of same order of the Floquet harmonic is excited for different values of
θ.

Figure 3.3(c) shows the excitation of a Dyakonov surface wave at two different values
of θ when ψ = 46◦. The first excitation occurs at θ1 ' 16.8◦, because the Ap-peak is inde-

pendent of the chosen values of Lc and Ld, and the in-plane wavenumber k(−1)
xy = 1.0853k0

matches the canonical solution Re[q(ψ̄1)] = 1.0529k0 at ψ̄1 = 169◦, i.e., φ ∈ {26◦, 154◦}. The
second excitation occurs at θ2 ' 21.8◦, when k(−1)

xy = 1.0428k0 matches the canonical solution
Re[q(ψ̄2)] = 1.0710k0 at ψ̄2 = 165.2◦, i.e., φ ∈ {29.8◦, 150.2◦}. Since the values of q are signif-
icantly different for the two excitations, it can not be considered that the same Dyakonov sur-
face wave has been excited twice. Excitation of different Dyakonov surface waves for the same
value of the azimuthal angle by varying the polar angle was also found for some other values
of ψ. From similar calculations for other values of ψ (for the same value of γ), it was found
that Dyakonov surface waves can be excited by p-polarized illumination for allψ ∈ [33◦, 47◦],
but not for values of ψ outside of this interval. Also, note that all three peaks in Fig. 3.3 iden-
tified with the excitation of Dyakonov surface waves change their angular locations slightly
when the thicknesses of the partnering materials are changed, because of the interaction of the
three bimaterial interfaces. With Re[q(ψ̄)] exceeding k0, each Dyakonov surface wave spills
evanescent fields into the two half-spaces occupied by air.

Excitation of Dyakonov surface waves by s-polarized incident plane waves was identified
using the same method as described for p-polarized incidence. Figure 3.4(a) demonstrates the
excitation of a Dyakonov surface wave at θ1 ' 16.05◦ when ψ = 39.7◦, because the As-peak
is independent of Lc and Ld, and the in-plane wavenumber k(−1)

xy = 1.0680k0 of the Floquet
harmonic of order n =−1 matches the canonical solution Re[q(ψ̄1)] = 1.0463k0 at ψ̄1 = 170.5◦,
i.e.,φ ∈ {24.5◦, 155.5◦}. Figure 3.4(b) demonstrates the excitation of a Dyakonov surface wave
at θ1 ' 16.9◦ when ψ = 44◦, and the in-plane wavenumber k(−1)

xy = 1.0760k0 of the Floquet
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Figure 3.3: Absorptance Ap as a function of incidence angle θ for Lc ∈ {2000, 3000} nm and
Ld ∈ {200, 300} nm in the grating-coupled configuration, when γ = 15◦, χv = 20◦, L = 500
nm, and Lg = 50 nm. (a) ψ = 35◦, (b) ψ = 37◦, and (c) ψ = 46◦. A downward arrow identifies
the peak that indicates the excitation of a Dyakonov surface wave as a Floquet harmonic of
order n, which is indicated alongside the arrow.

harmonic of order n =−1 matches the canonical solution Re[q(ψ̄1)] = 1.0519k0 at ψ̄1 = 169.2◦,
i.e.,φ ∈ {25.8◦, 154.2◦}. By making similar analyses at other values ofψ, it was found that the
Dyakonov surface waves are excited by s-polarized plane waves in a smaller angular range for
the same value of γ= 15◦ than for the p-polarized incident plane waves i.e., 39.7◦ ≤ψ≤ 44.9◦.
Any instance of multiple excitations of Dyakonov surface waves was could not be found by
varying the polar angle while keeping the azimuthal angle fixed, when the incident plane
wave is s-polarized. All Dyakonov surface waves identified in this section are guided by the
isotropic-dielectric/CTF interface because the wavenumbers of the Floquet harmonics and the
possible Dyakonov surface waves for this interface match through Eq. (3.3), as explained in the
foregoing paragraphs. Surface-wave propagation cannot be supported by the interface of air
and the isotropic dielectric material, and any solutions for the air/CTF interface could not be
found for the values of χ and ψ used for Figs. 3.3 and 3.4.
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Figure 3.4: Absorptance As as a function of incidence angle θ for Lc ∈ {2000, 3000} nm and
Ld ∈ {200, 300} nm in the grating-coupled configuration, when γ= 15◦, χv = 20◦, L = 500 nm,
and Lg = 50 nm. (a) ψ = 39.7◦ and (b) ψ = 44◦. A downward arrow identifies the peak that
indicates the excitation of a Dyakonov surface wave as a Floquet harmonic of order n, which
is indicated alongside the arrow.

3.3 Conclusions

Grating-coupled excitation of Dyakonov surface waves was investigated for the plane-wave
illumination of a columnar thin film on top of a one-dimensional dielectric surface-relief grat-
ing. The grating plane, the incidence plane, and the morphologically incident planes were
taken to be arbitrarily different from each other. The absorptances As and Ap were computed
using the rigorous coupled-wave approach for various combinations of the thicknesses of the
isotropic and the anisotropic partnering dielectric materials. The absorptance peaks indepen-
dent of the thicknesses of the partnering dielectric materials were identified and the in-plane
wavenumbers of the possible Floquet harmonics were compared with the wavenumber of the
Dyakonov surface wave. A successful match was used as an indication of the excitation of a
Dyakonov surface wave as a Floquet harmonic of a specific order.

• When the incidence plane is not congruent with the grating plane (i.e., ψ /∈ {0◦, 180◦})
and the incident plane wave is p polarized, Dyakonov surface waves can be excited for
multiple values of the polar angle of incidence.

• It was found that p-polarized incident plane waves can excite Dyakonov surface waves
in a wider range of directions in the interface plane than s-polarized incident plane
waves.
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Chapter 4

Excitation of High-Phase-Speed
Dyakonov Surface Waves

Electromagnetic surface waves are guided by the interface of two dissimilar materials.
Surface-wave propagation is supported by a large variety of combinations of isotropic, ho-
mogenous, anisotropic, and periodically nonhomogeneous materials except for the interface
of two lossless, isotropic dielectric materials [3, 137, 138]. The amplitudes of the electric and
magnetic field phasors of a surface wave decay away from the interface, either monotonically
[139, 140] or in a piecewise manner [3, 141]. The characteristics of a surface wave—such as
phase speed, attenuation rate, degree of localization, and polarization state—depend upon
the two partnering materials. Propagation of the surface wave can be either with attenuation
if at least one of the two partnering materials is dissipative [140–143], or without attenuation
if both partnering materials are nondissipative [43, 144].

The surface wave that are guided by an interface of two homogeneous dielectric materials
of which at least one is anisotropic are commonly called Dyakonov surface waves [12, 43–
45, 51, 145–147], although there are antecedent works by others [144, 148]. An anisotropic
dielectric material may be either uniaxial [43, 144], biaxial [12, 45, 147], or gyrotropic [49, 149].

If at least one of the two partnering materials is dissipative, the wavenumber of the sur-
face wave is, in general, complex-valued [54, 56] with the phase speed, which is inversely
proportional to the real part of the wavenumber, usually smaller than the phase speed of any
plane wave propagating in either of the partnering materials. However, the phase speed of
the surface wave can be sometime higher than the phase speed of the plane wave in the bulk
material, especially when one of the partnering dielectric materials is periodically nonhomo-
geneous [19].

This chapter is based on: K. Mujeeb, M. Faryad, A. Lakhtakia, and J. V. Urbina. Grating-coupled excitation of
high-phase-speed Dyakonov surface waves. Journal of the Optical Society of America B, 39(2): 474–480, 2022.
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High-phase-speed Dyakonov surface waves have recently been found to exist at the inter-
face of a dissipative uniaxial dielectric material and a nondissipative isotropic dielectric ma-
terial [20]. In that work, both partnering materials were taken to occupy adjacent half spaces,
which is clearly a physically unrealizable configuration.

In this chapter, the practical configuration was set to examine the excitation of these high-
phase-speed Dyakonov surface waves. There are two practical configurations to couple an
incident plane wave to a surface wave [3], one involving a prism, the other a surface-relief
grating. I chose the latter, because the prism-coupled configuration require a prism made of
a material of suitable refractive index, which may not always be possible. Furthermore, the
wavenumber of a high-phase-speed Dyakonov surface wave has a real part that is sufficiently
small so that a prism may be unnecessary. But that is already available through the grating-
coupled configuration which offers coupling through both specular and nonspecular modes
[3].

The plan of this chapter is as follows: the boundary-value problem is described briefly in
Sec. 4.1, numerical results are presented and discussed in Sec. 4.2, and conclusions in Sec. 4.3.

Figure 4.1: Schematic of the boundary-value problem solved for the grating-coupled configu-
ration. The structure is made of a laminar composite material comprising alternating electri-
cally thin sheets of AZO and silicon, which can be homogenized into a uniaxial material.

4.1 Boundary-Value Problem

Let me consider the boundary-value problem shown schematically in Fig. 4.1. The half-spaces
z < 0 and z > Lu + Lg are vacuous. The region 0 < z < Lg is a one-dimensional surface-relief
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grating made of alternating bars of vacuum and a uniaxial material labeled A. These bars are
invariant along the y axis but have a rectangular cross section in the xz plane. The period is
denoted by L, and the cross section of the bars of material A is of dimensions L1 × Lg with
L1 ∈ (0, L). The region Lg < z < Lu + Lg is occupied by the material A. Thus, the xz plane is
the grating plane.

The uniaxial material A is chosen to be a laminar composite material comprising alter-
nating electrically thin sheets of aluminum-doped zinc oxide (AZO) and silicon identified as
“AZO/silicon” in Fig. 4.1. This material was fabricated and optically characterized as a ho-
mogenized composite material by Takayama et al. [150]. Its relative permittivity dyadic is
given by

εA = εs
A(ûyûy + ûzûz) +ε

t
Aûxûx . (4.1)

L1 = 0.5L was fixed throughout the chapter. The relative permittivity dyadic εgr(x, z) =
εgr(x± L, z) in the region 0 < z < Lg + Lu is represented as a Fourier series, i.e.,

εgr(x, z) = ∑
n∈Z

ε(n)(z)exp(2inπx/L) , z ∈ (0, Lg + Lu) , (4.2)

where Z = {0,±1,±2, ......} and the Fourier coefficients

ε(n)(z) =

 i
2nπ (εA − I) [(−1)n − 1] , z ∈ (0, Lg),

0, z ∈ (Lg, Lg + Lu),
(4.3)

for n 6= 0 but

ε(0)(z) =

 1
2 (εA − I) + I, z ∈ (0, Lg),

εA, z ∈ (Lg, Lg + Lu),
(4.4)

The interface z = 0 is illuminated by a plane wave propagating at the polar angle θ ∈
[0◦, 90◦) with respect to the z axis and the azimuthal angle ψ ∈ [0◦, 360◦) with respect to the
x axis in the xz plane. The incident, reflected, and transmitted electric field phasors can be
written as [3, 135]

Einc(r) = ∑
n∈Z

{
(sna(n)s + p+

n a(n)p ) (4.5)

×exp[i(k(n)x x + k(0)y y + k(n)z z)]
}

, z < 0,

Eref(r) = ∑
n∈Z

{
(snr(n)s + p−n r(n)p ) (4.6)

×exp[i(k(n)x x + k(0)y y− k(n)z z)]
}

, z < 0,
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and

Etr(r) = ∑
n∈Z

(snt(n)s + p+
n t(n)p ) (4.7)

×exp{i[k(n)x x + k(0)y y + k(n)z (z− Lg − Lu)]}, z > Lg + Lu,

where

k(n)x = k0 sinθ cosψ+ 2nπ/L, (4.8)

k(0)y = k0 sinθ sinψ, (4.9)

k(n)xy = +

√
(k(n)x )2 + (k(0)y )2, (4.10)

k(n)z =


√
(k0)2 − (k(n)xy )2, (k0)

2 > (k(n)xy )2,

i
√
(k(n)xy )2 − (k0)2, (k0)

2 < (k(n)xy )2,
(4.11)

sn =
−k(0)y ûx + k(n)x ûy

k(n)xy

, (4.12)

and

p±n = ∓ k(n)z

k0

(
k(n)x ûx + k(0)y ûy

k(n)xy

)
+

k(n)xy

k0
ûz. (4.13)

In Eq. (4.5),
a(n)s = āsδn0

a(n)p = āpδn0

}
, (4.14)

where δnm is the Kronecker delta, āp = 0 for an incident s-polarized plane wave, and ās =

0 for an incident p-polarized plane wave. The unknown reflection amplitudes r(n)s and r(n)p

in Eq. (4.6) and the unknown transmission amplitudes t(n)s and t(n)p in Eq. (4.7) have to be
determined in terms of ās and āp, for which purpose the rigorous coupled-wave approach
(RCWA) [3, 14, 15] is very well suited.

The electric and magnetic field phasors in the region 0 < z < Lg + Lu are expanded in
terms of Floquet harmonics with unknown coefficients. The Floquet harmonics express the x-
dependences using the functions exp(ik(n)x x), the y-dependence is simply exp(ik(0)y y), and the
unknown coefficients are functions of z. Non-specular Floquet harmonics are of order n 6= 0,
whereas the specular Floquet harmonic is of order n = 0. After the expansions of the field
phasors as well as the Fourier series (4.2) are substituted in the frequency-domain Maxwell
curl postulates, all expansions were truncated to exclude |n| > Ns > 0. A stable algorithm is
then used to determine the unknown coefficients r(n)s , r(n)p , t(n)s , and t(n)p for n ∈ [−Ns, Ns] in
terms of ās and āp [3].
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Table 4.1: Relative permittivity scalars of material A [20] and the solutions of the canonical
boundary-problem for ψ = 22◦.

λ0 (µm) εt
A εs

A
1st solution

q/k0 vph/c0
2.0000 +0.8999+2.0437i +7.0227+0.5299i 0.9507+0.1575i 1.0519
2.8928 -0.9819+6.5875i +5.7128+1.6085i 0.9941+0.0578i 1.0059
3.7855 +0.6351+13.0825i +4.4029+3.0573i 0.9872+0.0356i 1.0130
8.9797 +16.9301+19.9579i -1.7747+16.0555i 0.9882+0.01647i 1.0119

2nd solution
q/k0 vph/c0

2.2972 + 0.6771i 0.4353
2.4429+ 0.5966i 0.4094
2.1935 + 0.8119i 0.4559

——– ——–

The results are compactly expressed using the matrix equations[
r(n)s

r(n)p

]
=

[
r(n)ss r(n)sp

r(n)ps r(n)pp

][
ās

āp

]
(4.15)

and [
t(n)s

t(n)p

]
=

[
t(n)ss t(n)sp

t(n)ps t(n)pp

][
ās

āp

]
, (4.16)

where r(n)sp , etc., are reflection coefficients and t(n)sp , etc., are transmission coefficients.

Reflectances of nth order are determined as

R(n)
sp = |r(n)sp |2 Re

[
k(n)z /k(0)z

]
, (4.17)

etc., and transmittances likewise as

T(n)
sp = |t(n)sp |2 Re

[
k(n)z /k(0)z

]
, (4.18)

etc. The absorptances for p-polarized and s-polarized incidences are calculated as

Ap = 1−
Ns

∑
n=−Ns

[
R(n)

sp + R(n)
pp + T(n)

sp + T(n)
pp

]
∈ [0, 1] (4.19)

As = 1−
Ns

∑
n=−Ns

[
R(n)

ss + R(n)
ps + T(n)

ss + T(n)
ps

]
∈ [0, 1] . (4.20)
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The absorptances are zero if material A is not dissipative [151]

4.2 Numerical Results and Discussion

The canonical boundary-value problem for surface-wave propagation guided by the planar
interface of the chosen material A and vacuum has been solved by Mackay et al. [20]. The
Matlab™ program is provided in Appendix A.5. The experimentally determined values of the
relative permittivity scalars εt

A and εs
A [150] are given in Table 4.1 for four different values of

the free-space wavelength λ0 = 2π/k0. At a specific value of λ0, Re
(
εA

)
can be either positive

definite or indefinite, but Im
(
εA

)
is positive definite only.

Two solutions were found in Ref. 20 for λ0 ∈ {2, 2.8928, 3.7855} µm and one for λ0 =

8.9797 µm. For each solution, q is the surface wavenumber and vph =ω/Re(q) is the phase
speed. A solution can be considered to be a high-phase-speed solution if vph > c0, where
c0 = 1/

√
ε0µ0 is the phase speed in vacuum. As can be gathered from Table 4.1, a high-phase-

speed solution exists for

• indefinite Re
(
εA

)
corresponding to λ0 ∈ {2.8928, 8.9797} µm and

• positive definite Re
(
εA

)
corresponding to λ0 ∈ {2, 3.7855} µm.

Here, the focus is on the grating-coupled excitation of these high-phase-speed surface waves.
To identify the excitations of Dyakonov surface waves, the angular spectra of the absorp-

tances Ap and As (i.e., the variations of these absorptances with the polar angle of incidence
θ) have to be examined. The code for program is same as provided in Appendix A.3. An ab-
sorptance peak whose angular location is independent of Lu beyond a threshold value when
Lg > 0 may indicate the excitation of a Dyakonov surface wave. In order to confirm, that an-
gular location has to be compared to the angular locations predicted by the solutions of the
canonical boundary-value problem; confirmation requires a reasonable match [130, 135, 147].

In the remainder of this section, the absorptance spectra is presented and analyzed when
a grating is present (i.e., Lg > 0) and when it is absent (i.e., Lg = 0). The corresponding ab-
sorptance spectra without the grating are used to identify the peaks arising from the excitation
of Dyakonov surface waves. Note that the absorptances are non-zero only due to Im(εs

A) > 0
and/or Im(εt

A) > 0; see Table 4.1.

4.2.1 p-Polarized Incidence

Figure 4.2 shows the absorptance Ap as a function of θ for different wavelengths when L =

0.75 λ0, L1 = 0.5L, Lg ∈ {0, 200} nm, Lu = 3 µm, and ψ = 22◦.
According to Fig. 4.2(a), a Dyakonov surface wave is excited for λ0 = 2 µm when Lg >

0, provided that θ1 ' 16.2◦, because Ap has a peak and the in-plane wavenumber k(−2)
xy =

2.4103k0 of the Floquet harmonic of order n = −2 matches the canonical solution Re(q) =
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2.2972k0 with an error less than 5%. Figure 4.2(b) shows that a Dyakonov surface wave is
excited at θ1 ' 17.6◦ for λ0 = 2.8928 µm when Lg > 0, because the in-plane wavenumber

k(−2)
xy = 2.3890k0 of order n = −2 matches the canonical solution Re(q) = 2.4429k0 with an

error less than 2.5%. The absorptance spectra for Lg = 0 in Figs. 4.2(a) and 4.2(b) do not contain
peaks in the vicinities of 16.2◦ and 17.6◦, respectively, indicating the necessity of a grating to
excite a Dyakonov surface wave as a Floquet harmonic of order n 6= 0.

Figure 4.2: Absorptance Ap as a function of incidence angle θ when L = 0.75 λ0, L1 = 0.5L,
Lg ∈ {0, 200} nm, Lu = 3 µm, andψ= 22◦. (a) λ0 = 2 µm, (b)–(c) λ0 = 2.8928 µm, (d)–(e) λ0 =
3.7855 µm, and (f) λ0 = 8.9797 µm. A downward arrow identifies the excitation of a Dyakonov
surface wave and an asterisk identifies the excitation of high-phase-speed Dyakonov surface
wave.

Figure 4.2(c) shows the possible excitation of a high-phase-speed Dyakonov surface wave at
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θ1 ' 66.1◦ for λ0 = 2.8928 µm when Lg > 0, because the in-plane wavenumber k(0)xy = 0.9143k0

of the Floquet harmonic of order n = 0 matches the canonical solution Re(q) = 0.9941k0 with
about 8.7% error. As the error is close to 10%, this is just a conjecture since the absorptance
spectra for Lg = 0 and Lg > 0 are quite similar, decreasing the confidence in attributing the
peak solely to the excitation of a surface wave. Indeed, similar confusion persisted [152] in
proving the excitation of Uller–Zenneck surface waves [22, 153] that also have a phase speed
higher than the speed of light in the partnering materials [3]. The excitation of Uller–Zenneck
waves was convincingly shown only with Floquet harmonics of non-zero order [154, 155].

Figure 4.2(d) shows the excitation of a high-phase-speed Dyakonov surface wave for λ0 =

3.7855 µm when Lg = 200 nm. This excitation occurs at θ1 ' 19.8◦, because the in-plane

wavenumber k(−1)
xy = 1.0271k0 matches the canonical solution Re(q) = 0.9872k0 with an error

less than 3.9%. Figure 4.2(e) shows the possible excitation of the same Dyakonov surface wave
at θ2 ' 71.3◦ since the in-plane wavenumber k(0)xy = 0.9472k0 of the Floquet harmonic of order
n = 0 closely matches the canonical solution Re(q) = 0.9872k0 with an error of about 4.2%.
Thus, it is possible for a Dyakonov surface wave to be excited twice as the incidence angle θ
increases, once as a non-specular Floquet harmonic and once as a specular Floquet harmonic.

The possible excitation of a high-phase-speed Dyakonov surface wave is also evident from
the absorptance spectrum in Fig. 4.2(f) for λ0 = 8.9797 µm when Lg = 200 nm. The excitation

occurs at θ1 ' 78◦, when the in-plane wavenumber k(0)xy = 0.9781k0 of the Floquet harmonic of
order n = 0 is within 1.05% of the canonical solution Re(q) = 0.9882k0.

Figure 4.3 shows the angular spectra of Ap for λ0 ∈ {2.8928, 3.7855, 8.9797}µm, L= 0.75λ0,
L1 = 0.5L, Lg ∈ {0, 300} nm, Lu = 3µm, andψ= 22◦. The evidence of excitation of a Dyakonov
surface wave could not be found for λ0 = 2 µm for these choices of structural parameters with
the incident plane wave being p-polarized.

Figure 4.3(a) shows the excitation of a Dyakonov surface wave at θ1 ' 16.9◦ for λ0 =

2.8928 µm when Lg = 300 nm, because the in-plane wavenumber k(−2)
xy = 2.3996k0 of the

Floquet harmonic of order n = −2 differs from Re(q) = 2.4429k0 by only 1.8%. In addition,
the excitation of a high-phase-speed Dyakonov surface wave is conjectured atθ2 ' 67.2◦ when
Lg = 300 nm, since the in-plane wavenumber k(0)xy = 0.9219k0 of the specular Floquet harmonic
differs from Re(q) = 0.9941k0 by 7.83%.

Double excitation of a high-phase-speed Dyakonov surface wave is observed in Figs. 4.3(b)
and 4.3(c) for λ0 = 3.7855 µm when Lg > 0. The first excitation occurs at θ1 ' 19.3◦, when

k(−1)
xy = 1.0343k0 matches the canonical solution Re(q) = 0.9872k0 with an error of 4.5%. The

second excitation occurs at θ2 ' 70.3◦, when k(0)xy = 0.9415k0 differs by 4.8% from Re(q) =
0.9872k0. Although the double excitation of a surface wave had been noted earlier [13, 135],
this is the first report of the double excitation of a high-phase-speed surface wave.

Figure 4.3(d) and 4.3(e) demonstrate the double excitation of a high-phase-speed Dyakonov
surface wave for λ0 = 8.9797 µm when Lg > 0, the canonical boundary-value problem yield-

ing Re(q) = 0.9882k0 for it. The first excitation occurs at θ1 ' 21.1◦ with k(−1)
xy = 1.0086k0
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Figure 4.3: Absorptance Ap as a function of incidence angle θ when L = 0.75λ0, L1 = 0.5L,
Lg ∈ {0, 300} nm, Lu = 3 µm, and ψ = 22◦. (a) λ0 = 2.8928 µm, (b)–(c) λ0 = 3.7855 µm, and
(d)–(e) λ0 = 8.9797 µm. A downward arrow identifies the excitation of a Dyakonov surface
wave and an asterisk identifies the excitation of high-phase-speed Dyakonov surface wave.

[Fig. 4.3(d)], and the second excitation at θ2 ' 77.4◦, with k(0)xy = 0.9759k0 [Fig. 4.3(e)], with
errors of 2.02% and 1.3%, respectively.

Figure 4.4 shows plots of Ap as a function of θ for λ0 ∈ {2.8928, 3.7855, 8.9797} µm, L =

3 µm, L1 = 0.5L, Lg ∈ {0, 300} nm, Lu = 3 µm, and ψ = 22◦. No Dyakonov surface wave was
found to be excited for λ0 = 2 µm for these choices of structural parameters.

Figure 4.4(a) shows the excitation of a high-phase-speed Dyakonov surface wave at θ1 '
67.9◦ for λ0 = 2.8928 µm when Lg > 0, since the in-plane wavenumber k(0)xy = 0.9265k0 of
the Floquet harmonic of order n = 0 differs from the canonical solution Re(q) = 0.9941k0
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by 7.3%. Figure 4.4(b) demonstrates that two different Dyakonov surface waves are excited
for λ0 = 3.7855 µm when Lg > 0. The first surface wave is excited at θ1 ' 14.2◦, when

k(−2)
xy = 2.2981k0 matches the canonical solution Re(q) = 2.1935k0 with an error of 4.5%. The

second surface wave is excited at at θ2 ' 69.2◦, when k(0)xy = 0.9348k0 differs by 5.6% from the
canonical solution Re(q) = 0.9872k0. Finally, Fig. 4.4(c) indicates the possible excitation of a
high-phase-speed Dyakonov surface wave at θ1 ' 75.6◦, with k(0)xy = 0.9686k0 matching the
canonical solution Re(q) = 0.9882k0 with an error of 2% for λ0 = 8.9797 µm.

Figure 4.4: Absorptance Ap as a function of incidence angle θ when L = 3 µm, Lg =
{0, 300} nm, Lu = 3 µm, and ψ = 22◦. (a) λ0 = 2.8928 µm, (b) λ0 = 3.7855 µm, and (c)
λ0 = 8.9797 µm. A downward arrow identifies the excitation of a Dyakonov surface wave
and an asterisk identified the excitation of high-phase-speed Dyakonov surface wave.

4.2.2 s-Polarized Incidence

Figure 4.5 shows the angular spectra of the absorptance As for λ0 ∈ {3.7855, 8.9797} µm,
when L = 3 µm, L1 = 0.5L, Lg ∈ {0, 300} nm, Lu = 3 µm, and ψ = 22◦. A high-phase-speed
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Dyakonov surface wave is possibly excited atθ1 ' 20.4◦ as a Floquet harmonic of order n =−1
for λ0 = 3.7855 µm when Lg > 0 in Fig. 4.5(a), because k(−1)

xy = 1.0185k0 differs from the canon-
ical solution Re(q) = 0.9872k0 by 3.1%. Figure 4.5(b) indicates the possible excitation of a
high-phase-speed Dyakonov surface wave atθ1 ' 21.1◦ for λ0 = 8.9797 µm when Lg > 0, since

k(−1)
xy = 1.0086k0 matches the canonical solution Re(q) = 0.9882k0 with an error less than 2.1%.

No Dyakonov surface wave was found to be excited at λ0 ∈ {2, 2.8928} µm by an s-polarized
incident plane wave.

Figure 4.5: Absorptance As as a function of incidence angle θ when L = 3 µm, L1 = 0.5L,
Lg ∈ {0, 300} nm, Lu = 3 µm, and ψ = 22◦. (a) λ0 = 3.7855 µm and (b) λ0 = 8.9797 µm. A
downward arrow identifies the excitation of a Dyakonov surface wave and an asterisk identi-
fies the excitation of a high-phase-speed Dyakonov surface wave.

Figure 4.6 shows the angular spectra of the absorptance As as a function ofθ for λ0 = 2 µm,
when L = 3 µm, L1 = 0.5L, Lg ∈ {0, 300} nm, Lu = 3 µm, and ψ = 22◦. The excitation occurs

at θ1 ' 21.1◦ as a Floquet harmonic of order n =−4, because k(−4)
xy = 2.3353k0 differs from the

canonical solution Re(q) = 2.2972k0 by 1.6%.

The excitation of a Dyakonov surface wave with s-polarized incident light in Figs. 4.5 and
4.6 is quite weak in comparison to excitation with p-polarized incident light in Figs. 4.2–4.4.
Furthermore, excitation with s-polarized incident light was found to be rare with high values
of Lu, e.g., 3 µm as chosen in Sec. 4.2.1 for p-polarized incident light.

However, for small values of Lu, the excitation of Dyakonov surface waves with s-polarized
incidence was found to be frequent, possibly due to the coupling of both faces of the grating.
As an example, Fig. 4.7 shows the absorptance As as a function of θ for λ0 ∈ {2, 3.7855} µm,
when L = 3 µm, L1 = 0.5L, Lg ∈ {0, 100} nm, Lu = 200 nm, and ψ = 22◦. Double excitation

of a Dyakonov surface wave occurs at θ1 ' 20.5◦ with k(3)xy = 2.3284k0 matches the canoni-

cal solution with an error of 1.3%, and θ2 ' 24.1◦ with k(−4)
xy = 2.2932k0 closely matches the

canonical solution with an error less than 1%, as Floquet harmonics of order n = 3 and n =−4,
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Figure 4.6: Absorptance As as a function of incidence angle θ for λ0 = 2 µm, when L = 3 µm,
L1 = 0.5L, Lg ∈ {0, 300} nm, Lu = 3 µm, and ψ = 22◦. A downward arrow identifies the
excitation of a Dyakonov surface wave.

respectively, for λ0 = 2 µm in Fig. 4.7(a), when Lg > 0. The phase speed of this surface wave is
less than c0. The excitation of a a high-phase-speed Dyakoonov surface wave is also indicated
in Fig. 4.7(b) at θ1 ' 16◦ for λ0 = 3.7855 µm when Lg > 0, when k(−1)

xy = 1.0116k0 differs from
the canonical solution Re(q) = 0.9872k0 by 2.5%.

4.3 Conclusions

Grating-coupled excitation of high-phase-speed Dyakonov surface waves was investigated for
the plane-wave illumination of an isotropic dielectric material (air) on top of a one-dimensional
uniaxial dielectric surface-relief grating. The absorptances Ap and As were computed as
functions of the incidence. Those absorptance peaks were identified for which the in-plane
wavenumber of some Floquet harmonic matched reasonable well with the wavenumber of a
Dyakonov surface wave delivered by the solution of the underlying canonical boundary-value
problem.

It was concluded that:

• Both p-polarized and s-polarized plane waves can excite high-phase-speed Dyakonov
surface waves.

• Multiple excitations of the high-phase-speed Dyakonov surface waves are also possible.
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Figure 4.7: Absorptance As as a function of incidence angle θ, when L = 3 µm, L1 = 0.5L,
Lg ∈ {0, 100} nm, Lu = 200 nm, andψ= 22◦. (a) λ0 = 2 µm and (b) λ0 = 3.7855 µm. A down-
ward arrow identifies the excitation of a Dyakonov surface wave and an asterisk identified the
excitation of high-phase-speed Dyakonov surface wave.

• High-phase-speed Dyakonov surface wave can be excited as a specular and/or a non-
specular Floquet harmonic.
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Chapter 5

A CTF-based Surface Plasmonic
Sensor

The electromagnetic fields of an SPP wave are strong on and in the proximity of the inter-
face but decay away from the interface. This localization property makes them useful for op-
tical sensors because these surface waves are sensitive to the small changes in the electromag-
netic properties of the partnering dielectric material near the interface. The surface-plasmonic
(i.e., SPP-wave-based) sensors can thus be used to sense pollutants, molecules in analytes, and
small concentration of proteins or assays in a solution [1, 2, 16].

The surface-plasmonic sensors operating in the angular interrogation mode [1, 3] mea-
sure the change in the direction of propagation of an incident plane wave that excites the SPP
wave. However, the SPP wave cannot be excited merely by illuminating a metallic film on
top of the partnering dielectric material. The excitation of an SPP wave is due to a resonance
phenomenon [32] that is engendered by a match of the SPP wavenumber to the magnitude of
the component of the wave vector of the incident plane wave parallel to the interface plane.
The grating-coupled configuration can even be used for multiple excitations of an SPP wave
[13, 135], thereby providing the opportunity to enhance the reliability and sensitivity of the
sensor. The higher reliability is due to the fact that two or more manifestations of surface plas-
monic resonance can be used to sense the same analyte. Therefore, SPP-wave-based sensing
using the grating coupled-configuration has been studied extensively [156–160].

The optical characteristics of both the metallic and the dielectric partnering materials affect
the characteristics of the SPP waves that can be guided by the interface. In the sensing applica-
tion, the dielectric material plays a critical role not just because the fluid-to-be-sensed usually
infiltrates it, but also because of the variety of choices available for it. The partnering dielectric

This chapter is based on: K. Mujeeb, M. Faryad, A. Lakhtakia, and J. V. Urbina. Surface-plasmonic sensor using a
columnar thin film in the grating-coupled configuration. Chinese Optics Letters, 19(8): 083601, 2021.
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material can be either isotropic [3, 4] or anisotropic [3, 5], and either homogeneous [3, 4] or
nonhomogeneous [3, 6]. The usual choice is an isotropic dielectric material [1, 2]. However,
anisotropic partnering dielectric materials [17, 18] offer flexibility in designing optical sensors
because the permittivity dyadic has more than one scalar parameters to tune the sensitivity.

Therefore, a biaxial dielectric material is chosen that is also porous, for this work. A biaxial
dielectric material that is also porous is a columnar thin film (CTF) [84, 90]. The inter-columnar
void regions of a CTF have to be infiltrated with the fluid to be sensed [17, 18]. The plan of
this chapter is as follows: the boundary-value problem for the grating-coupled configuration
is briefly discussed in Sec. 5.1, detailed treatment being available in Chap. 2. Numerical results
are presented and discussed in Sec. 5.2 and conclusions are provided in Sec. 5.3.

5.1 Boundary-Value Problem

A schematic of the boundary-value problem is shown in Fig. 5.1. The region 0 < z < Lc is
occupied by a CTF (whether infiltrated with a fluid or not), the region Lc + Lg < z < Lt by
a metal of relative permittivity εm, and the half-spaces z < 0 and z > Lt are vacuous, where
Lt = Lc + Lg + Lm. The intermediate region Lc < z < Lc + Lg is occupied by a one-dimensional
metallic grating with the CTF inside the troughs of the grating. The grating profile is wholly
describable in xz plane (i.e., grating plane), and L is the period along the x axis. The as-

Figure 5.1: Left: Schematic of the boundary-value problem solved for the surface-plasmonic
sensor based on grating-coupled configuration. The CTF is symbolically represented by a
single row of nanocolumns, each of which is modeled as a string of electrically small ellipsoids
with semi-axes in the ratio 1 : γb : γτ .
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deposited CTF is made of a material of refractive index ns and a fluid of refractive index n`

is present in the void regions of the CTF. The relative permittivity dyadic of the CTF can be
written as [13]

εCTF = Sz
• Sy

•
(
εa ûzûz +εb ûxûx +εc ûyûy

)
• S−1

y
• S−1

z , (5.1)

where the principal relative permittivity scalars εa,b,c depend on ns, n`, and the porosity of the
CTF [161].

Without loss of generality, the interface z = 0 is illuminated by a plane wave propagating at
the polar angle θ with respect to the z axis and propagating in the xz plane. Although the inci-
dent plane wave can be arbitrarily polarized, it was fixed to be p-polarized (i.e., Einc • ûy = 0)
because that polarization state is commonly used in SPP-wave-based sensors. Since the plane
of incidence (i.e., the xz plane) coincides with the grating plane, the reflected and transmit-
ted electromagnetic fields in the half-spaces z < 0 and z > Lt, respectively, are independent
of y. The rigorous coupled-wave approach (RCWA) [3, 162, 163] was used to calculate the
absorptance Ap of the metal-CTF structure as a function of the incidence angle θ of a p-
polarized plane wave [135]. In the RCWA, the electric and magnetic field phasors everywhere
are expanded as an infinite series of Floquet harmonics of both p- and s-polarization states.
For the chosen problem, the Floquet harmonics of order n ∈ {0,±1,±2,±3 ...} express the
x-dependence of the field phasors using exp

[
ik(n)x x

]
, where

k(n)x = k0 sinθ+ n2π/L . (5.2)

The relative permittivity dyadic is expanded as a Fourier series with respect to x for every
z ∈ (0, Lt) and substituted in the frequency-domain Maxwell curl postulates. The result is an
infinite number of coupled ordinary differential equations. These are truncated so that Floquet
harmonics of order |n| > Ns + 1, Ns ≥ 1, are ignored, and a finite number of resulting ordi-
nary differential equations are then solved by applying the piecewise-uniform approximation
[3] given in Chap. 2 in the region 0 < z < Lt. Specular and non-specular reflectances and trans-
mittances of orders n ∈ [−Ns, Ns] are determined using a stable algorithm, from which the
absorptance is obtained by applying the principle of conservation of energy [13, 135]. When
the thickness Lm significantly exceeds the skin depth [164] in the chosen metal, the transmitted
electric and magnetic fields are negligibly small in magnitude. Care must be taken to ensure
that convergent results are obtained as Ns is increased from unity.
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5.2 Numerical Results and Discussion

5.2.1 CTF Homogenization

The sensor considered here essentially estimates the change in the refractive index n` of the
fluid infiltrating the CTF because of changes in the relative permittivity scalars εa,b,c. These
three scalars were numerically estimated using a homogenization formalism. There are sev-
eral homogenization formalisms, including the Maxwell-Garnett formalism [165], the Bragg–
Pippard formalism [91], and the Bruggeman formalism [90]. The Bruggeman formalism is
more reliable and widely used in optics [166, 167] because it treats all constituent materials
equally, unlike the other two formalisms. The Bruggeman formalism was also used in this
work to estimate εa,b,c as functions of n` [161]. A Matlab™ code for calculating εa,b,c using
Bruggeman formalism is provided in Appendix A.6.

Made of a material of refractive index ns, each nanocolumn of the CTF was represented as
a string of electrically small ellipsoids with semi-axes in the ratio 1 : γb : γτ so that their shape
is characterized by the dyadic [90]

U = Sz
• Sy

•
(
ûzûz + γτ ûxûx + γbûyûy

)
• S−1

y
• S−1

z , (5.3)

with γb in the vicinity of unity and γτ � 1, as shown in Fig. 5.1. The selected uninfiltrated
(i.e., n` = 1) CTF to have been made by evaporating tantalum oxide with fixed χv = 15◦; hence,
χ = 39.77◦. The Bruggeman formalism was implemented here.

Let me introduce the dyadic

b = f as + (1− f )a
`
= 0 . (5.4)

Here, b is the volume-fraction-weighted sum of the two polarizability density dyadics [90]

as,` = ε0(εs,` I −εre f )
• [I + iωε0Ds,`

• (εs,` I −εre f )]
−1, (5.5)

where Ds,` is the depolarization dyadic [90]

Ds,` =
∫ π/2

φ=0

∫ π/2

υ=0
sinυ

×

(
cosυ
γ
(s,`)
τ

)2

ûxûx +

(
sinυ sinφ
γ
(s,`)
b

)2

ûyûy + (sinυ cosφ)2ûzûz

(sinυ cosφ)2εa +

(
cosυ
γ
(s,`)
τ

)2

εb +

(
sinυ sinφ
γ
(s,`)
b

)2

εc

,
(5.6)

computed by using Gauss-Legendre Quadrature integration scheme.
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5.2.2 Inverse Bruggeman Formalism

Provided that εAa ,εAb
,εAc of a CTF have all been measured using appropriate optical exper-

iments and given in Eq. 1.3 of Chap. 1 and γτ > 10 has been fixed, ns, f , and γb are found by
using an inverse Bruggeman homogenization procedure [90]. For CTF, Eq. (5.4) can be written
as:

b = bx(ns, f ,γb)ûxûx + by(ns, f ,γb)ûyûy + bz(ns, f ,γb)ûzûz, (5.7)

with
bx(ns, f ,γb) = 0

by(ns, f ,γb) = 0

bz(ns, f ,γb) = 0

 , (5.8)

solved for known εAa ,εAb
,εAc . The Eqs. (5.8) may computed using any numerical technique

for finding the unknowns {ns, f ,γb}. Here, a modified Newton–Raphson technique is used to
compute {n(k+1)

s , f (k+1),γ(k+1)
b } at step k + 1, using {n(k)

s , f (k),γ(k)b }, at step k, as follows:

n(k+1)
s = n(k)

s −
bx(n

(k)
s , f (k),γ(k)b )

∂

∂ns
bx(n

(k)
s , f (k),γ(k)b )

f (k+1) = f (k) −
by(n

(k+1)
s , f (k),γ(k)b )

∂

∂ f by(n
(k+1)
s , f (k),γ(k)b )

γ
(k+1)
b = γ

(k)
b −

bz(n
(k+1)
s , f (k+1),γ(k)b )

∂

∂γb
bz(n

(k+1)
s , f (k+1)γ

(k)
b )


. (5.9)

For the modified Newton–Raphson technique to converge, the most difficult task is to guess
the initial estimate that should be sufficiently close to the true solution. The forward Brugge-
man formalism may be exploited for finding a suitable initial guess for modified Newton–
Raphson technique.

Let εa, εb, and εc denote the estimate of the CTF relative permittivity parameters εAa ,Ab ,Ac .
The forward Bruggeman formalism is employed to compute these parameters. The parameters
are computed for physically reasonable range of nanoscale parameters i.e., ns ∈ (nL

s , nU
s ), f ∈

( f L, f U), and γb ∈ (γL
b ,γU

b ). Then:

1. Fix ns = (nL
s + nU

s )/2 and γb = (γL
b + γU

b )/2 for a range of f , i.e., f ∈ ( f L, f U), identify
the new f+ for which

∆ =
√
(εAa −εa)2 + (εAb

−εb)2 + (εAc −εc)2, (5.10)

is minimized.

2. Update f = f+ and γb = (γL
b + γU

b )/2 for ns ∈ (nL
s , nU

s ), identify the new value n+
s for
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which the value of ∆ is minimized.

3. In this step update f = f+ and ns = n+
s for a specific range of γb i.e., γb ∈ (γL

b ,γU
b ),

compute ∆ and identify the new value of γ+b for which the value of ∆ is minimized and
update γb = γ+b .

Repeat the above steps (1)− (3) by substituting ns = n+
s and γb = γ

+
b in step (1), and γb =

γ+b in step (2) until ∆ becomes sufficiently small. Numerical experiments indicate that n+
s ,

γ+b , and f+ are thought to be the suitable initial estimates for the modified Newton–Raphson
technique when ∆� 0.01. After evaluating {ns, f ,γb} for a CTF, it is then uniformly infiltrated
by a fluid of refractive index n`. The permittivity dyadic of the fluid-infiltrated CTF shall be

εCTF = Sy
•
(
εa ûzûz +εb ûxûx +εc ûyûy

)
• S−1

y , (5.11)

The inverse Bruggeman formalism yielded ns = 2.2999, f = 0.4439, and γb = 2.4322 for
χv = 15◦. These data were then employed in the forward Bruggeman formalism [161] to find
εa,b,c as functions of n` > 1.

5.2.3 Canonical Boundary-Value Problem

As mentioned previously, the basic principle of a surface-plasmonic sensor is sensing the
change in the incidence angle θ where an SPP wave is excited when the refractive index n`

of the infiltrating fluid changes. The excitation of the SPP wave can be best inferred by iden-
tifying those peaks in the angular spectrum of Ap that do not change location on the θ axis
when the thickness of the partnering dielectric material is changed above a threshold value
[168], since SPP waves are localized to their interface. The angular locations of the thickness-
independent absorptance peaks must be matched against the SPP waves that are solutions of
the underlying canonical boundary-value problem [6, 130]. In this canonical problem, only a
single interface between the two partnering materials occupying half spaces is present to rule
out the excitation of waveguide modes [27, 133]. Therefore, the solution of the underlying
canonical problem are presented before the data calculated for the grating-coupled surface-
plasmonic sensor.

In this canonical problem, one half-space is occupied by the fluid-infiltrated CTF whereas
a metal occupies the other half-space [12]. Let the SPP wave propagate parallel to the unit
vector ûx in the interface plane. The electric and magnetic field phasors vary spatially as
exp [i (qx +αz)], with Im(α)< 0 in the fluid-infiltrated CTF and Im(α)> 0 in the metal so that
the field phasors decay as |z|→∞. The complex-valued wavenumber q yields the phase speed
and the attenuation rate in the direction of propagation. A combination of search and Newton–
Raphson methods [136] was employed to solve the dispersion equation for SPP waves in order
to determine the corresponding values of q. The metal was assumed as silver with relative
permittivity εm = −15.4 + 0.4i [169] and that the CTF is made by evaporating tantalum oxide
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[86]; furthermore, γ = 30◦ and λ0 = 650 nm. The code for the program is same as provided
in Appendix A.1. Only one solution of the dispersion equation was found for any value of n`.

Figure 5.2: Real and imaginary parts of q/k0 of the SPP wave propagating along the x axis
as functions of the refractive index n` of the infiltrating fluid computed using the canonical
boundary-value problem. Whereas χv = 15◦, γ = 30◦, and εm = −15.4 + 0.4i, see Secs. 5.2.1
and 5.2.3 for other relevant parameters.

Thus, only one SPP wave propagating along the x axis can be excited, although it can have
multiple excitations in the grating-coupled configuration [13].

The real and imaginary parts of the relative wavenumber q/k0 of the SPP wave propagat-
ing along the x axis are presented in Figs. 5.2(a) and 5.2(b), respectively, as functions of the
refractive index n`. These plots show an approximately linear relationship between q and n`,
which is desirable for a good sensor.

5.2.4 Grating-based Sensor

To delineate the excitation of the SPP wave in the grating-coupled surface-plasmonic sensor as
a function of the fluid refractive index n`, the absorptance Ap was computed the as a function
of the incidence angle θ using the RCWA. Nt = 15 was fixed after checking that Ap converged
within a tolerance limit of ±0.1%. As in Secs. 5.2.1 and 5.2.3, λ0 = 650 nm, χv = 15◦, γ =

30◦, εm = −15.4 + 0.4i, and γτ = 15 were fixed. Furthermore, L1 = 0.5L, Lm = 30 nm, and
Lg = 20 nm were also fixed, but Lc was kept variable between 1000 and 4000 nm. A Matlab™
program for computing Ap and As is provided in Appendix A.7. The plots in Fig. 5.3 present
Ap as a function of θ for Lc ∈ {1000, 2000, 3000, 4000} nm and n` ∈ {1, 1.27, 1.37, 1.43, 1.70}
when L = 500 nm. Either one or two or three absorptance peaks are present in each angular
spectrum. The absorptance peaks with thickness-independent locations on the θ axis were
correlated with the data available in Fig. 5.2. For this correlation, it was decided that |1 −
k(n)x /Re(q)| ≤ 0.05 for some n ∈ [−Ns, Ns] at an absorptance peak for that peak to be attributed
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Figure 5.3: Absorptance Ap as a function of incidence angle θ for Lc ∈
{1000, 2000, 3000, 4000} nm and L = 500 nm in the grating-coupled configuration. Whereas
(a) n` = 1, (b) n` = 1.27, (c) n` = 1.37, (d) n` = 1.43, and (e, f) n` = 1.70, see Secs. 5.2.1 and
5.2.4 for other relevant parameters. A downward arrow identifies the excitation of the SPP
wave as a Floquet harmonic of order n, which is indicated alongside the arrow.

to the excitation of an SPP wave as a Floquet harmonic of order n [13]. When n` = 1 (i.e., air
infiltrates the CTF), Fig. 5.3(a) shows that the SPP wave with q = (1.6561+ 0.0037i)k0 is excited
at

(i) θ1 ' 24.4◦ because the in-plane wavenumber k(1)x = 1.7131k0 of the Floquet harmonic of
order n = +1, and
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(ii) θ2 ' 62.6◦ because the in-plane wavenumber k(−2)
x = 1.7122k0 of the Floquet harmonic

of order n = −2

match Re(q) well according to the 5%-criterion adopted by here. This double excitation of
the SPP wave is advantageous for reliable sensing with schema relying on artificial neural
networks [170].

The absorptance spectrums in Fig. 5.3(b) illustrate the excitation of an SPP wave for n` =

1.27 at θ1 ' 40.5◦, when the in-plane wavenumber k(1)x = 1.9494k0 of the Floquet harmonic
of order n = +1 matches the solution of the canonical problem with q = (1.8753 + 0.0056i)k0.
There is no evidence for the second excitation of the SPP wave for n` = 1.27.

However, Fig. 5.3(c) again shows that the excitation of the SPP wave is possible for two val-
ues of the incidence angle as two different Floquet harmonics for n` = 1.37. The first excitation
occurs at θ1 ' 34.6◦, when the in-plane wavenumber k(−2)

x = 2.0322k0 matches the canonical
solution with q = (1.9618 + i0.0064i)k0. The second excitation occurs at θ2 ' 46.7◦, when
k(1)x = 2.0278k0 of the Floquet harmonic of order n = +1 is a good match. When n` = 1.43,
the absorptance spectrums in Fig. 5.3(d) demonstrate that the SPP wave with q = (2.0142 +

0.0069i)k0 is excited at

(i) θ1 ' 30.1◦ because the in-plane wavenumber k(−2)
x = 2.0985k0 of the Floquet harmonic

of order n = −2, and

(ii) θ2 ' 52.6◦ because the in-plane wavenumber k(1)x = 2.0944k0 of the Floquet harmonic of
order n = +1

match Re(q) reasonably well.
Finally, when n` = 1.70, Figs. 5.3(e) and 5.3(f) demonstrate that the SPP wave with q =

(2.2555 + 0.0097i)k0 is excited at

(i) θ1 ' 16.5◦ because the in-plane wavenumber k(−2)
x = 2.3160k0 of the Floquet harmonic

of order n = −2,

(ii) θ2 ' 22.9◦ because the in-plane wavenumber k(−2)
x = 2.2109k0 of the Floquet harmonic

of order n = −2, and

(iii) θ3 ' 65.7◦ because the in-plane wavenumber k(1)x = 2.2114k0 of the Floquet harmonic of
order n = +1

match Re(q) reasonably well. Contained in this triple excitation is a doublet: the same SPP
wave is excited at two different angular locations but as the same Floquet harmonic (n = −2
when n` = 1.70). It was observed that the excitation at one angle of incidence is less effi-
cient than at the other in a doublet. In Fig. 5.3(e), the doublet appears at θ1 ' 16.5◦ and
θ2 ' 22.9◦ when n` = 1.70, with higher Ap and, therefore, stronger excitation at θ1 ' 16.5◦

than at θ2 ' 22.9◦. Evidence of the doublet in the grating-coupled configuration has already
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been reported [13]. The triple excitation of the SPP wave is going to be even more advanta-
geous for reliable sensing than double excitation, in schema relying on artificial neural net-
works [170]. The results of Fig. 5.3 allow to conclude that, as θ is varied, the SPP wave can be

Figure 5.4: Absorptance Ap as a function of incidence angle θ when (a) n` ∈ [1.00, 1.20], (b)
n` ∈ [1.21, 1.29], (c) n` ∈ [1.30, 1.39], and (d) n` ∈ [1.40, 1.50]. Whereas Lc = 3000 nm and
L = 500 nm, see Secs. 5.2.1 and 5.2.4 for other relevant parameters. The horizontal arrows
show the direction of the shift of peaks representing the excitation of the SPP wave.

multiply excited, depending upon the value of the refractive index n` of the infiltrating fluid.
In order to examine the effect of n` in detail, Fig. 5.4 shows the angular spectrums of Ap when
Lc = 3000 nm and L = 500 nm for diverse values of n`; all other parameters are the same as
mentioned at the beginning of Sec. 5.2.4.

Figure 5.4(a) contains two absorptance peaks indicating SPP-wave excitation when n` ∈
[1.00, 1.20]. For each n`, one peak is for n = +1 when k(1)x ' Re(q) and the other peak is for
n = −2 when k(−2)

x ' Re(q), where q is the wavenumber of the possible SPP wave gleaned
from Fig. 5.2. Figure 5.4(b) has a solitary absorptance peak signifying the excitation of the SPP
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wave as a Floquet harmonic of order n = +1 when n` ∈ [1.21, 1.29]. A similar absorptance
peak for n = −2 is absent, and it was found that double excitation of the SPP wave is not
possible for n` ∈ [1.20, 1.29]. When n` = 1.30, the absorptance peak for n = +1 is not present
in Fig. 5.4(c). Two absorptance peaks for each value of n` appear again in Figs. 5.4(c) and (d)
when n` ∈ [1.31, 1.50]: one peak for n =+1 when k(1)x ' Re(q) and the second peak for n =−2
when k(−2)

x ' Re(q). The shifts in the angular locations of the two absorptance peaks indicate
that these peaks begin far apart from each other from small values of n` and comes closer as n`

increases. At intermediates value of n`, the peaks merge and only one peak is observed. When
n` increases further, the single peak divides into two peaks that get farther apart when n` is
increased further. To analyze the usefulness of the peaks for optical sensing, the sensitivity
was computed as

S =
∆θ
∆n`

, (5.12)

where θ is the n`-dependent angular location of an absorptance peak and ∆θ is the change
in θ when the refractive index of the infiltrating fluid changes by ∆n`. The sensitivity was
computed from the absorptance plots for the excitation of the SPP wave as a Floquet harmonic
of order n ∈ {−2, 1}, and is presented in Fig. 5.5 as a function of n` for Lc = 3000 nm and
L = 500 nm. Additionally, S was computed from the canonical problem by solving Re(q) =
k0 sinθ+ 2nπ/L for θ as a function of n` and then using Eq. (5.12).

The predicted sensitivity and the sensitivity computed from the absorptance spectrums
are in good agreement. From Fig. 5.5, it was observe that the sensitivities of the absorptance
peaks corresponding to n = +1 are higher than those of the absorptance peaks corresponding
to n = −2.

So far, the presented results are in an analytical sense that tell the angular location θ of an
absorptance peak (that indicates the excitation of an SPP wave) when n` is known. However,
in practice, the reverse task have to accomplish, i.e., find the value of n` from the knowledge of
the angular location of the peak absorptance. To make this easier, Fig. 5.6 showsθ as a function
of n` for both types of absorptance peaks in Fig. 5.4. Once the angular spectrum of absorptance
has been measured for an unknown fluid, the angular locations of the absorptance peaks can
be found and then those locations can be used to find n` from Fig. 5.6. The requirement of
matching two values ofθ (for many values of n`) with one value of n` makes the measurement
of the refractive index more reliable than the case when only one absorptance peak is present.

There is only one absorptance peak indicating SPP-wave excitation for n` ∈ [1.21, 1.31] ∪
[1.92, 2.21], two such absorptance peaks for n` ∈ [0.3, 1.20]∪ [1.32, 1.60]∪ [1.68, 1.69]∪ [1.75, 1.91],
and three absorptance peaks n` ∈ [1.61, 1.67] ∪ [1.70, 1.74]. When three absorptance peaks
are possible, two of those peaks form a doublet because both of those peaks satisfy the 5%-
criterion for the same n [13]. The doublet is for n = +1 when n` ∈ [1.61, 1.67], but for n = −2
when n` ∈ [1.70, 1.74].

The n`-ranges for single, double, and triple excitation of the SPP wave depends upon the
selection of grating period L. Thus, for L = 600 nm, it was determined that single excitation

74



A CTF-BASED SURFACE PLASMONIC SENSOR

Figure 5.5: Sensitivity S as a function of the refractive index n` of the infiltrating fluid. The
sensitivity, given by Eq. (5.12), was computed from the absorptance plots like the ones given
in Fig. 5.4 with Lc = 3000 nm and L = 500 nm. Doublet excitation is possible for some ranges
of n` in Fig. 5.5(c). The predicted sensitivity was computed using the solutions of the canonical
problem in Re(q) = k0 sinθ + 2nπ/L to find predicted θ as a function of n`. All parameters
were kept the same as for Fig. 5.4.

occurs for n` ∈ [1.30, 1.31]∪ [1.92, 2.45], double excitation for n` ∈ [0.3, 1.29]∪ [1.46, 1.91], and
triple excitation for n` ∈ [1.33, 1.45]. Likewise, for L = 700 nm, single excitation occurs for
n` = 1.33, double excitation for n` ∈ [1.30, 1.32] ∪ [1.95, 2.50], and triple excitation for n` ∈
[0.3, 1.29] ∪ [1.90, 1.94]. Therefore, L should be chosen to obtain double or triple excitation for
the suspected range of n` for a certain fluid.
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Figure 5.6: The angular location θ of an absorptance peak indicating the excitation of the SPP
wave, as a function of the refractive index n` ∈ [0.3, 2.5] of the infiltrating fluid. All parameters
are the same as for Fig. 5.4. Triple excitation of the SPP wave occurs in the blue-shaded re-
gions, double excitation in the grey-shaded regions, and single excitation in the green-shaded
regions.

Figure 5.6 indicates that multiple excitation can result in ambiguity when determining n`.
For instance, if θ1 ' 27◦ and θ2 ' 58◦ are found for a sample, then both n` = 1.05 and n` = 58
are possible according to Fig. 5.6. The ambiguity can be eliminated by repeating the experi-
ment after diluting the sample. Another way to eliminate the ambiguity is by incorporating
Ap-vs.-θ data for a wide enough θ-range in a schema comprising an artificial neural network
[170]. Yet another way may be to use two or more sensors with different values of the grating
period L.

Before concluding this section, address two issues. First, the air/CTF/metal structure can
function as an open-face waveguide [27, 133, 171] whose modes can also be used for sensing
an infiltrant fluid. However, as the propagation characteristics of a waveguide mode will
depend strongly on the CTF thickness Lc, the angular location of an absorptance peak due to
the excitation of that waveguide mode will be highly susceptible to a change in Lc. In contrast,
the angular location of an absorptance peak due to the excitation of an SPP wave guided by
the metal/CTF interface is weakly dependent on Lc (beyond a threshold value) [18], which
confers the advantage of reliability against manufacturing variabilities. Second, although the
air/CTF interface could guide surface waves [3], any pertinent solutions were not found for
the relevant canonical boundary-value problem [12, 45] for the chosen CTF, whether infiltrated
or not.
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5.3 Conclusions

An optical sensor was theoretically analyzed for the plane-wave illumination of a CTF on top
of a one-dimensional metallic surface-relief grating. The incident plane wave was taken to
be p polarized and the plane of incidence to coincide with the grating plane but not neces-
sarily with the morphologically significant plane of the CTF. The absorptance was computed
as a function of the angle of incidence for different thicknesses of the CTF, using the rigor-
ous coupled-wave approach. The thickness-independent absorptance peaks were identified
and the in-plane wavenumbers of the possible Floquet harmonics were compared with the
wavenumber of the SPP wave predicted by the associated canonical boundary-value problem.
The change in the angular location of the the absorptance peak representing SPP-wave excita-
tion as a function of the refractive index of the fluid infiltrating the CTF was determine to find
the sensitivity.

• Double and triple excitations of the same SPP wave were found to be possible, depend-
ing on the refractive index of the fluid, which can help increase the reliability of results
by sensing the same fluid with more than one excitations of the SPP wave, possibly with
schema that incorporate artificial neural networks.

• In multiple excitations, the same SPP wave is excited as Floquet harmonic of various
orders. It is even possible that the excitation occurs at different angles of incidence but
as the Floquet harmonic of the same order; however, all excitations are not going to be
equally efficient.

• It is concluded that higher sensitivity can be achieved using the grating-coupled config-
uration than a prism-coupled configuration [17, 18, 89].
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Chapter 6

Conclusions and Suggestions for
Future Work

6.1 Conclusions

The major goal of this dissertation was to explore the effect of morphology of an anisotropic
material on the excitation of SPP waves and Dyakonov surface waves. Moreover, I have ex-
plored the characteristics of the optical sensors based on SPP waves in the grating-coupled
configuration. In this chapter, I am going to sum up the most important contributions of this
thesis.

The excitation of SPP waves and Dyakonov surface waves guided by the interfaces of two
dissimilar materials were theoretically studied. In all the boundary-value problems investi-
gated for this thesis, at least one of the partnering materials was supposed to be anisotropic
coupled with one-dimensional grating. The anisotropic material could be biaxial or uniaxial.
The biaxial material used here was a columnar thin film (CTF) made of tantalum oxide, and
uniaxial material was a laminar composite material comprising alternating electrically thin
sheets of aluminum-doped zinc oxide (AZO) and silicon. The excitation of SPP waves by a
CTF grown on a one-dimensional metallic grating had been studied by Chiadini et al. [13]. In
their study, it was shown that a CTF on top of a metal grating can support excitation of the
SPP waves of different orders with p-polarized incident plane wave, but it does not support
SPP waves with s-polarized incident plane wave. Their study also showed that the excitation
of doublet (the SPP wave with same wavenumber and order excited at two distinct angular
locations) was possible but their excitation efficiency was dependent upon the angle of inci-
dence. However, they considered only a special geometrical configuration where the grating
plane was congruent with the morphologically significant plane of the CTF.

For the work reported in this thesis, the incidence plane, the grating plane, and the mor-
phologically significant plane of the CTF were oriented arbitrarily with respect to each other.
When the grating plane and morphologically significant plane of the CTF are taken to be non-
congruent, the surface wave cannot be accorded a specific polarization state; labeling its polar-
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ization state as hybrid [123] is inapt [124]. Therefore, it was possible to excite the surface wave
using s-polarized incident light as well when the plane of incidence, the grating plane, and
the morphologically significant plane were all different. To delineate the excitation of surface
waves in the grating-coupled configuration, the absorptance for p- and s-polarized incident
light was computed as a function of the incidence angleθ using the rigorous coupled-wave ap-
proach (RCWA). The excitation of the surface wave was inferred by identifying those peaks in
the angular spectrum of absorptance that did not change location on theθ axis when the thick-
ness of the partnering dielectric material was changed above a threshold value [168]. The an-
gular locations of the thickness-independent absorptance peaks were matched with the solu-
tions of the underlying canonical boundary-value problem [6, 130]. The solution of boundary-
value problem for excitation of SPP waves guided by a CTF deposited on a one-dimensional
metallic surface-relief grating employing the RCWA is presented in Chap. 2. A plane wave of
either p- or s-polarization state was considered as incident wave on an interface consisting of
CTF and metallic surface-relief grating. The present investigation confirmed that the Floquet
harmonics of different orders can be excited by incidence of p-polarized light at various inci-
dent angles in a co-planer configuration i.e., when all planes coincide with each other. How-
ever, my investigation revealed that the excitation of surface wave by an s-polarized incident
light is also possible when the plane of incidence, the grating plane, and the morphologically
significant plane do not coincide with each other. Multiple excitations of the same SPP wave
at different angular location for p-polarized as well as s-polarized incidence were found.

In Chap. 3, an interface consisting of a CTF deposited on a one-dimensional dielectric
surface-relief grating was considered and the excitation of Dyakonov surface waves were con-
firmed in this configuration. No, one or multiple excitations of the same Dyakonov surface
wave were found.

In Chap. 4, an interface of air and a uniaxial material was considered for demonstrating the
excitation of high-phase-speed Dyakonov surface waves in the grating-coupled configuration.
Multiple high-phase-speed Dyakonov surface waves were found to be excited with both p-
polarized and s-polarized incident plane waves as a specular and/or a non-specular Floquet
harmonics.

In Chap. 5, an optical sensor was proposed and investigated using a CTF on top of a
one-dimensional metallic surface-relief grating. The incident plane wave was taken to be p-
polarized and the plane of incidence coincided with the grating plane but not with the mor-
phologically significant plane of the CTF. The change in the angular location of the absorptance
peaks representing the SPP-wave excitation as a function of the refractive index of the fluid in-
filtrating the CTF was determined to find the sensitivity of the sensor. It was seen that higher
sensitivity can be achieved using the grating-coupled configuration than a prism-coupled con-
figuration [17, 18, 89].

In summary, it was found that

(i) the excitation of surface wave by an s-polarized incident light is also possible when the
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plane of incidence, the grating plane, and the morphologically significant plane do not
coincide with each other;

(ii) no, one, or multiple SPP-wave excitations are possible for p-polarized and s-polarized
incidence;

(iii) multiple excitations of Dyakonov surface wave are possible for p-polarized incidence
only;

(iv) the CTF-based grating-coupled configuration can be used for optical sensors to achieve
higher sensitivity as compared to a prism-coupled configuration;

(v) the excitation of multiple high-phase-speed Dyakonov surface waves with a plane-wave
illumination is possible when a partnering dielectric material is a uniaxially anisotropic;
and

(vi) high-phase-speed Dyakonov surface wave can be excited as a specular and/or a non-
specular Floquet harmonic for p-polarized and s-polarized incidence.

6.2 Suggestions for Future Work

The study of surface waves in the grating-coupled configuration is still in its infancy, and
there is considerable room available to work both theoretically and experimentally. The work
reported in this thesis can be used to gain further understanding of surface waves and to
analyze other cases for the excitation of Dyakonov surface waves.

The grating-coupled configurations are attractive in sensing applications because these de-
vices offer much higher miniaturization and integration capabilities. Below, I describe a few
important grating- problems that can be solved easily based on the formulation provided in
this thesis. The solution to these problems can further enhance our understanding of the prop-
erties of surface waves and their applications.

6.2.1 Excitation of Surface Waves with CTF/CTF Interface

The interface of a CTF with another CTF provides a phenomenologically rich landscape for
Dyakonov surface waves. The mathematical formulation provided in Chap. 2 and Chap. 3
can be employed to tackle this problem. The present work suggests that a CTF/CTF interface
will provide more degree of freedom on control parameters and one may obtain interesting
results. Experimental data for various CTFs fabricated of titanium, tantalum and zirconium
oxides are available that can be used for this problem. Experimetally, it is possible to fabricate
the grating-coupled configuration for two different CTFs.
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6.2.2 Optical Sensors based on Surface Waves with 2D-Gratings

The work reported in this thesis was based on one-dimensional surface-relief gratings. We
considered the grating plane, the incidence plane, and the morphologically planes to be non-
congruent. However, if 1D-grating is replaced by 2D-grating, similar results for the excitation
of surface waves (both SPP and Dyakonov waves) can be obtained without rotating the grat-
ing plane. However, this configuration will increase the possibilities of exciting multiple SPP
waves and waveguide modes. Subsequently, the guided-wave propagation could occur in
several directions that are not restricted to lie in the incidence plane. The 2D-gratings can be
made experimentally and the proposed optical sensor can be designed.

6.2.3 Optical Sensor based on Dyakonov Surface Waves

SPP-wave based optical sensor has been discussed in Chap. 5. Similarly, an optical sensor ex-
ploiting Dyakonov surface waves can be designed. This sensor can provide more flexibility
than the one based on SPP waves since the fluid-to-be sensed can either infiltrate the part-
nering CTF or can be the partnering isotorpic dielectric material or both. This can be done
theoretically with the same formulation as provided in Chap. 5, except the permittivity of the
metal will require to be replaced with of the suitable dielectric material.
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Appendix A

Matlab™ Codes

A.1 Newton-Raphson Method to Find q in the Canonical Boundary-
Value Problem

%* * * * * * * * * Canonical So lut ion f o r Metal/CTF I n t e r f a c e * * * * * * * * * * * * %
% * * * * * * * Half space z > 0 occupied by a metal * * * * * * * * %

% * * * * * * * * * * * * * * * z < 0 occupied by a CTF * * * * * * * * * * * * * * %
c l c
c l e a r a l l
format long
%* * * * * * * * * * * * Defining Inputs * * * * * * * * * * * * * * %
nm=10ˆ −9; % nanometers
lambda0 = 633*nm;
knot =(2* pi ) /lambda0 ; % Free space wave umber
ps i= 30* pi /180

d e l t a =10ˆ( −14) ;
e r r o r =10ˆ( −8) ; % Defining e r r o r

%* * * * * * * * * * * * I n i t i a l guess * * * * * * * * * * * * * * %
q =(1+0 .01*1 i ) * knot ;
%* * * * * * * * * * * * * * * * * * Newton Raphson Method * * * * * * * * * * * * * * %
f o r i =1:200

detM= f u n c t f ( q , lambda0 , ps i ) ; % Findind determinent of matrix M
detMd= f u n c t f ( q+ d e l t a *q , lambda0 , ps i ) ;

d f f =(detMd−detM ) /( d e l t a * q ) ; % Findind d e r i v a t i v e of det{M}
f =q−detM/ d f f ; % Newton−Raphson Method

e r r =abs ( detM ) ;
%* * * * * * * checking the amount of e r r o r a t each i t e r a t i o n

* * * * * * * * * %
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i f err<=e r r o r
break
end
% Update q
q= f ;
disp ( q/knot ) ;
disp ( i ) ;

end

%* * * * * * * * Function f o r Solving the Dispersion Equation * * * * * * * * * * %
funct ion detr= f u n c t f ( q , lambda0 , ps i )
%* * * * * * * * Defining Inputs * * * * * * * * %
muo=4* pi *10 ˆ −7 ; % Free space permeabi l i ty
epso = 8 . 8 5 4 * 1 0 ˆ − 1 2 ; % Free space p e r m i t t i v i t y
e ta0 = s q r t (muo/epso ) ; %Impedence of f r e e space
gamma = ( 3 0 * pi ) /180;
chiv =20* pi /180;
ch i=atan ( 3 . 1 0 5 6 * tan ( chiv ) ) ;
v=2* chiv/pi ;
epsa= ( 1 . 1 9 6 1 +1 .5439* v − 0 . 7 7 1 9 * v ˆ 2 ) ˆ 2 ;
epsb= ( 1 . 4 6 0 0 + 1 . 0 4 0 0 * v −0 .5200* v ˆ 2 ) ˆ 2 ;
epsc= ( 1 . 3 5 3 2 + 1 . 2 2 9 6 * v − 0 . 6 1 4 8 * v ˆ 2 ) ˆ 2 ;
ns =0.05096+1 i * 3 . 9 2 4 5 1 ;
knot =(2* pi ) /lambda0 ;
omg=knot/ s q r t (muo* epso ) ;
% * * * * * * * * * * * * * * [ P ] Matrix f o r CTF * * * * * * * * * * * * * * * * * * * * * * * * * * * * %
pa 11 =(q * ( epsa −epsb ) * cos (gamma) * cos ( ch i ) * cos ( ps i ) * s i n ( ch i ) ) /( epsa *

cos ( ch i ) ˆ2+ epsb * s i n ( ch i ) ˆ 2 ) ;
pa 12 =(q * ( epsa −epsb ) * cos ( ch i ) * cos ( ps i ) * s i n (gamma) * s i n ( ch i ) ) /( epsa *

cos ( ch i ) ˆ2+ epsb * s i n ( ch i ) ˆ 2 ) ;
pa 13 = ( ( q ˆ 2 ) * cos ( ps i ) * s i n ( ps i ) ) /( epso *omg* ( epsa * cos ( ch i ) ˆ2+ epsb * s i n (

ch i ) ˆ 2 ) ) ;
pa 14=omg*muo−(q ˆ 2 * cos ( ps i ) ˆ 2 ) /(omg* epso * ( epsa * cos ( ch i ) ˆ2+ epsb * s in (

ch i ) ˆ 2 ) ) ;
pa 21 =(q * ( epsa −epsb ) * cos (gamma) * cos ( ch i ) * s i n ( ch i ) * s i n ( ps i ) ) /( epsa *

cos ( ch i ) ˆ2+ epsb * s i n ( ch i ) ˆ 2 ) ;
pa 22 =(q * ( epsa −epsb ) * cos ( ch i ) * s i n (gamma) * s i n ( ch i ) * s i n ( ps i ) ) /( epsa *

cos ( ch i ) ˆ2+ epsb * s i n ( ch i ) ˆ 2 ) ;
pa 23=−omg*muo+(q ˆ 2 * s in ( ps i ) ˆ 2 ) /(omg* epso * ( epsa * cos ( ch i ) ˆ2+ epsb * s i n (

ch i ) ˆ 2 ) ) ;
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pa 24 = −((q ˆ 2 ) * cos ( ps i ) * s in ( ps i ) ) /(omg* epso * ( epsa * cos ( ch i ) ˆ2+ epsb * s in
( ch i ) ˆ 2 ) ) ;

pa 31 = (omg* epso * cos (gamma) * ( ( epsb * epsc ) +( epsa * ( epsc −2* epsb ) ) +( epsa
−epsb ) * epsc * cos ( 2 * ch i ) ) * s in (gamma) ) / ( 2 * ( epsa * cos ( ch i ) ˆ2+ epsb * s in (
ch i ) ˆ 2 ) ) −((q ˆ 2 ) * cos ( ps i ) * s i n ( ps i ) ) /(omg*muo) ;

pa 32=−omg* epso * epsc * cos (gamma) ˆ 2 + ( ( q ˆ 2 ) * cos ( ps i ) ˆ 2 ) /(omg*muo) −omg*
epso * ( s i n (gamma) ˆ 2 ) * ( epsb * cos ( ch i ) ˆ2+ epsa * s i n ( ch i ) ˆ 2 ) +(omg* epso

* ( ( epsa −epsb ) ˆ 2 ) * ( cos ( ch i ) ˆ 2 ) * ( s i n (gamma) ˆ 2 ) * ( s i n ( ch i ) ˆ 2 ) ) /( epsa *
cos ( ch i ) ˆ2+ epsb * s in ( ch i ) ˆ 2 ) ;

pa 33 =(q * ( epsa −epsb ) * cos ( ch i ) * s i n (gamma) * s i n ( ch i ) * s i n ( ps i ) ) /( epsa *
cos ( ch i ) ˆ2+ epsb * s i n ( ch i ) ˆ 2 ) ;

pa 34 =(q*( − epsa+epsb ) * cos ( ch i ) * s i n (gamma) * s i n ( ch i ) * cos ( ps i ) ) /( epsa *
cos ( ch i ) ˆ2+ epsb * s in ( ch i ) ˆ 2 ) ;

pa 41=omg* epso * epsc * s in (gamma) ˆ 2+ (omg* epso * epsa * epsb * cos (gamma) ˆ 2 ) /(
epsa * cos ( ch i ) ˆ2+ epsb * s in ( ch i ) ˆ 2 ) −q ˆ 2 * s i n ( ps i ) ˆ 2/ (omg*muo) ;

pa 42 =(omg* epso * ( 2 * epsa * epsb−epsa * epsc −epsb * epsc −( epsa −epsb ) * epsc *
cos ( 2 * ch i ) ) * s i n ( 2 *gamma) ) / ( 4 * ( epsa * cos ( ch i ) ˆ2+ epsb * s i n ( ch i ) ˆ 2 ) )
+ ( ( q ˆ 2 ) * cos ( ps i ) * s i n ( ps i ) ) /(omg*muo) ;

pa 43= ( q*( − epsa+epsb ) * cos (gamma) * s in ( ch i ) * s in ( ps i ) * cos ( ch i ) ) /( epsa *
cos ( ch i ) ˆ2+ epsb * s i n ( ch i ) ˆ 2 ) ;

pa 44 =(q * ( epsa −epsb ) * cos (gamma) * cos ( ch i ) * cos ( ps i ) * s i n ( ch i ) ) /( epsa *
cos ( ch i ) ˆ2+ epsb * s i n ( ch i ) ˆ 2 ) ;

pa=[ pa 11 pa 12 pa 13 pa 14 ; pa 21 pa 22 pa 23 pa 24 ; pa 31 pa 32
pa 33 pa 34 ; pa 41 pa 42 pa 43 pa 44 ] ;

%* * * S e l e c t i o n of Eigenvalues and Eigenvectors f o r z<0 ****%
[Ga , Da]= e ig ( pa ) ;
D2a=diag (Da) ;
Da imag=imag ( D2a ) ;
Da real= r e a l ( D2a ) ;
[ D3a , sor t index3 ]= s o r t ( Da imag , ’ descend ’ ) ;
Da real1=Da real ( sor t index3 ) ;
Da=Da real1 +1 i *D3a ;
Dam=diag (Da) ;
tna=Ga ( : , sor t index3 ) ;
t 1=tna ( 1 : 4 , 1 ) ;
t 2=tna ( 1 : 4 , 2 ) ;
%%
%* * * * * * S e l e c t i o n of e igenvalues and e i ge n ve c t or s z>0 * * * * * * * * %
alpha s= s q r t ( knot ˆ 2 * ns ˆ2 −q ˆ 2 ) ;
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i f imag ( a lpha s )<0
a lpha ss=−alpha s ;
a lpha s=a lpha ss ;

end
fn =[− s in ( ps i ) a lpha s * cos ( ps i ) /knot ; cos ( ps i ) a lpha s * s i n ( ps i ) /knot

; a lpha s * cos ( ps i ) /( knot * e ta0 ) ns ˆ 2 * s i n ( ps i ) /eta0 ;
a lpha s * s in ( ps i ) /( knot * e ta0 ) −ns ˆ 2 * cos ( ps i ) /eta0 ] ;

M=[ t1 t2 −fn ] ; %Finding the matrix M
detr=det (M) ; %Finding determinent of M
end

A.2 Absorptance Ap in the Grating-Coupled Configuration for
ψ = γ = 0◦

c l c
c l e a r a l l
c l o s e a l l
g loba l e p c t f epm d1 d2 d3 L L1 z1 z2 z3 N ts ;
%* * * * * * * Defining Var iab les * * * * * * * %
mu 0=4* pi *10 ˆ −7 ;
ep 0 = 8 . 8 5 4 * 1 0 ˆ − 1 2 ;
nm=10ˆ( −9) ;
lambda 0 = 633*nm;
e t a 0 = s q r t ( mu 0/ep 0 ) ;
epm=(0 .05096+3 .9245*1 i ) ˆ 2 ;
L = 900*nm;
f o r dd=1:3

i f dd==1
d1 =1000*nm;

e l s e i f dd==2
d1 =2000*nm;

e l s e
d1 =3000*nm;

end
d2 = d1 + 20*nm;

d3 = d2 + 30*nm;
L1 = 0 . 5 * L ;
N ts = 1 5 ;
Nd = 5 0 ;
Ng = 3 0 ;
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Nm=10;
Ns = Nd + Ng;
gamma deg = ( 3 0 * pi ) /180;
sz = [ cos ( gamma deg ) −s i n ( gamma deg ) 0 ; s i n ( gamma deg ) cos (

gamma deg ) 0 ; 0 0 1 ] ;
chiv =20* pi /180;

ch i=atan ( 3 . 1 0 5 6 * tan ( chiv ) ) ;
v=2* chiv/pi ;
sy= [ cos ( ch i ) 0 −s i n ( ch i ) ; 0 1 0 ; s i n ( ch i ) 0 cos ( ch i ) ] ;
epa= ( 1 . 1 9 6 1 +1 .5439* v − 0 . 7 7 1 9 * v ˆ 2 ) ˆ 2 ;
epb= ( 1 . 4 6 0 0 + 1 . 0 4 0 0 * v −0 .5200* v ˆ 2 ) ˆ 2 ;
epc= ( 1 . 3 5 3 2 + 1 . 2 2 9 6 * v − 0 . 6 1 4 8 * v ˆ 2 ) ˆ 2 ;

epref =[ epb 0 0 ; 0 epc 0 ; 0 0 epa ] ;
e p c t f =sz * sy * epref * inv ( sy ) * inv ( sz ) ;

knot =(2* pi ) /lambda 0 ;
vv =1;
ps i =30* pi /180;
% * * * * * * End Defining Var iab les * * * * * * %
%%
di =0;
dt = 0 . 1 ;
df =89;
vv= 1 ;
f o r NN=di : dt : df

t h e t a =NN* pi /180;
disp (NN) ;
y1 =0;

%* * * * * * Begin Finging wavenumbers *****%
f o r n1=−N ts : 1 : N ts

y1=y1 +1;
kxnn ( y1 ) =knot * cos ( ps i ) * s i n ( t h e t a ) +( n1 * 2 * pi ) /L ;
i f knot ˆ2 >= kxnn ( y1 ) ˆ2

kzn ( y1 ) = s q r t ( knot ˆ2 − kxnn ( y1 ) ˆ 2 ) ;
e l s e i f knot ˆ2 < kxnn ( y1 ) ˆ2

kzn ( y1 ) = 1 i * s q r t ( − knot ˆ2 + kxnn ( y1 ) ˆ 2 ) ;
end
end

kx = diag ( kxnn ) ;
%* * * * * * * * * * * * End Finging wavenumbers * * * * * * * * * * * * * * * * * * * * * * * * %
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%* * * * * * * * * * * * * * Finding Y Matr ices * * * * * * * * * * * * * * * * * %
ype=[− diag ( ( 1 / knot ) . * kzn ) ] ;

yne =[ diag ( (1 / knot ) . * kzn ) ] ;
yph=[ −eye ( 2 * N ts +1) ] ;
ynh=[−eye ( 2 * N ts +1) ] ;

ypos =[ ype ; yph ] ;
yneg =[ yne ; ynh ] ;
Z1=[ ype ; yph ] ;
temp1=(Ns+Nm+ 1: − 1 : 1 ) ;
mm=length ( temp1 ) ;
matr ix zz {Nd+Ng+Nm+1} = Z1 ;
f o r n=Ns+Nm: − 1 : 1

%%
%* * * * * * * * * * * * * * * * * * * * * * * P e r m i t t i v i t y For metal Region

* * * * * * * * * * * * * * %
i f n>Ns

d e l t a ( n ) =(d3−d2 ) /Nm;
x1 = d2− ( d2 − d3 ) * ( n − Ns) /Nm;

x2 = d2 − ( d2 − d3 ) * ( n − 1 − Ns) /Nm;
z1 = 0 . 5 * ( x1 + x2 ) ;

f o r n3 = 0 : 2 * N ts
eparxx ( n3 +1)=permctf ( z1 , n3 , 0 , epm, d1 , d2 , L , L1 ) ;
eparxxn ( n3 +1)=permctf ( z1 , −n3 , 0 , epm, d1 , d2 , L , L1 ) ;
eparxy ( n3 +1)=permctf ( z1 , n3 , 0 , 0 , d1 , d2 , L , L1 ) ;
eparxyn ( n3 +1)=permctf ( z1 , −n3 , 0 , 0 , d1 , d2 , L , L1 ) ;
eparxz ( n3 +1)=permctf ( z1 , n3 , 0 , 0 , d1 , d2 , L , L1 ) ;
eparxzn ( n3 +1)=permctf ( z1 , −n3 , 0 , 0 , d1 , d2 , L , L1 ) ;
eparyx ( n3 +1)=permctf ( z1 , n3 , 0 , 0 , d1 , d2 , L , L1 ) ;
eparyxn ( n3 +1)=permctf ( z1 , −n3 , 0 , 0 , d1 , d2 , L , L1 ) ;
eparyy ( n3 +1)=permctf ( z1 , n3 , 0 , epm, d1 , d2 , L , L1 ) ;
eparyyn ( n3 +1)=permctf ( z1 , −n3 , 0 , epm, d1 , d2 , L , L1 ) ;
eparyz ( n3 +1)=permctf ( z1 , n3 , 0 , 0 , d1 , d2 , L , L1 ) ;
eparyzn ( n3 +1)=permctf ( z1 , −n3 , 0 , 0 , d1 , d2 , L , L1 ) ;
eparzx ( n3 +1)=permctf ( z1 , n3 , 0 , 0 , d1 , d2 , L , L1 ) ;
eparzxn ( n3 +1)=permctf ( z1 , −n3 , 0 , 0 , d1 , d2 , L , L1 ) ;
eparzy ( n3 +1)=permctf ( z1 , n3 , 0 , 0 , d1 , d2 , L , L1 ) ;
eparzyn ( n3 +1)=permctf ( z1 , −n3 , 0 , 0 , d1 , d2 , L , L1 ) ;
eparzz ( n3 +1)=permctf ( z1 , n3 , 0 , epm, d1 , d2 , L , L1 ) ;
eparzzn ( n3 +1)=permctf ( z1 , −n3 , 0 , epm, d1 , d2 , L , L1 ) ;
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end
exx= t o e p l i t z ( eparxx , eparxxn ) ;
exy= t o e p l i t z ( eparxy , eparxyn ) ;

exz= t o e p l i t z ( eparxz , eparxzn ) ;
eyx= t o e p l i t z ( eparyx , eparyxn ) ;

eyy= t o e p l i t z ( eparyy , eparyyn ) ;
eyz= t o e p l i t z ( eparyz , eparyzn ) ;

ezx= t o e p l i t z ( eparzx , eparzxn ) ;
ezy= t o e p l i t z ( eparzy , eparzyn ) ;
ezz= t o e p l i t z ( eparzz , eparzzn ) ;

%* * * * * * * * * * * * * * * * End Metal P e r m i t t i v i t y * * * * * * * * * * * * * * * * * * * * * %
e l s e i f n<=Nd+Ng && n>Nd

% * * * * * * * * * * S t a r t Grating P e r m i t t i v i t y * * * * * * * * * * * * * * * % % %
d e l t a ( n ) =(d2−d1 ) /Ng;

x3 = d1 − ( d1 − d2 ) * ( n − Nd) /Ng;
x4 = d1 − ( d1 − d2 ) * ( n − 1 − Nd) /Ng;
z2 = 0 . 5 * ( x3 + x4 ) ;

f o r q3 = 0 : 2 * N ts
eparxx ( q3 +1)=permctf ( z2 , q3 , e p c t f ( 1 , 1 ) ,epm, d1 , d2 , L , L1 ) ;
eparxxn ( q3 +1)=permctf ( z2 , −q3 , e p c t f ( 1 , 1 ) ,epm, d1 , d2 , L , L1 ) ;

eparxy ( q3 +1)=permctf ( z2 , q3 , e p c t f ( 1 , 2 ) , 0 , d1 , d2 , L , L1 ) ;
eparxyn ( q3 +1)=permctf ( z2 , −q3 , e p c t f ( 1 , 2 ) , 0 , d1 , d2 , L , L1 ) ;

eparxz ( q3 +1)=permctf ( z2 , q3 , e p c t f ( 1 , 3 ) , 0 , d1 , d2 , L , L1 ) ;
eparxzn ( q3 +1)=permctf ( z2 , −q3 , e p c t f ( 1 , 3 ) , 0 , d1 , d2 , L , L1 ) ;

eparyx ( q3 +1)=permctf ( z2 , q3 , e p c t f ( 2 , 1 ) , 0 , d1 , d2 , L , L1 ) ;
eparyxn ( q3 +1)=permctf ( z2 , −q3 , e p c t f ( 2 , 1 ) , 0 , d1 , d2 , L , L1 ) ;
eparyy ( q3 +1)=permctf ( z2 , q3 , e p c t f ( 2 , 2 ) ,epm, d1 , d2 , L , L1 ) ;
eparyyn ( q3 +1)=permctf ( z2 , −q3 , e p c t f ( 2 , 2 ) ,epm, d1 , d2 , L , L1 ) ;

eparyz ( q3 +1)=permctf ( z2 , q3 , e p c t f ( 2 , 3 ) , 0 , d1 , d2 , L , L1 ) ;
eparyzn ( q3 +1)=permctf ( z2 , −q3 , e p c t f ( 2 , 3 ) , 0 , d1 , d2 , L , L1 ) ;

eparzx ( q3 +1)=permctf ( z2 , q3 , e p c t f ( 3 , 1 ) , 0 , d1 , d2 , L , L1 ) ;
eparzxn ( q3 +1)=permctf ( z2 , −q3 , e p c t f ( 3 , 1 ) , 0 , d1 , d2 , L , L1 ) ;
eparzy ( q3 +1)=permctf ( z2 , q3 , e p c t f ( 3 , 2 ) , 0 , d1 , d2 , L , L1 ) ;
eparzyn ( q3 +1)=permctf ( z2 , −q3 , e p c t f ( 3 , 2 ) , 0 , d1 , d2 , L , L1 ) ;
eparzz ( q3 +1)=permctf ( z2 , q3 , e p c t f ( 3 , 3 ) ,epm, d1 , d2 , L , L1 ) ;
eparzzn ( q3 +1)=permctf ( z2 , −q3 , e p c t f ( 3 , 3 ) ,epm, d1 , d2 , L , L1 ) ;

end
exx= t o e p l i t z ( eparxx , eparxxn ) ;
exy= t o e p l i t z ( eparxy , eparxyn ) ;
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exz= t o e p l i t z ( eparxz , eparxzn ) ;
eyx= t o e p l i t z ( eparyx , eparyxn ) ;
eyy= t o e p l i t z ( eparyy , eparyyn ) ;
eyz= t o e p l i t z ( eparyz , eparyzn ) ;
ezx= t o e p l i t z ( eparzx , eparzxn ) ;
ezy= t o e p l i t z ( eparzy , eparzyn ) ;
ezz= t o e p l i t z ( eparzz , eparzzn ) ;

%* * * * * * * * * * * * * P e r m i t t i v i t y f o r CTF * * * * * * * * * * * * * %
e l s e i f n<= Nd

d e l t a ( n ) =d1/Nd;
x5 = ( d1 ) *n/Nd;
x6 = ( d1 ) * ( n− 1)/Nd;
z3 = 0 . 5 * ( x5 + x6 ) ;

f o r j 1 = 0 : 2 * N ts
eparxx ( j 1 +1)=permctf ( z3 , j1 , e p c t f ( 1 , 1 ) , 0 , d1 , d2 , L , L1 ) ;
eparxxn ( j 1 +1)=permctf ( z3 , − j1 , e p c t f ( 1 , 1 ) , 0 , d1 , d2 , L , L1 ) ;
eparxy ( j 1 +1)=permctf ( z3 , j1 , e p c t f ( 1 , 2 ) , 0 , d1 , d2 , L , L1 ) ;
eparxyn ( j 1 +1)=permctf ( z3 , − j1 , e p c t f ( 1 , 2 ) , 0 , d1 , d2 , L , L1 ) ;

eparxz ( j 1 +1)=permctf ( z3 , j1 , e p c t f ( 1 , 3 ) , 0 , d1 , d2 , L , L1 ) ;
eparxzn ( j 1 +1)=permctf ( z3 , − j1 , e p c t f ( 1 , 3 ) , 0 , d1 , d2 , L , L1 ) ;
eparyx ( j 1 +1)=permctf ( z3 , j1 , e p c t f ( 2 , 1 ) , 0 , d1 , d2 , L , L1 ) ;
eparyxn ( j 1 +1)=permctf ( z3 , − j1 , e p c t f ( 2 , 1 ) , 0 , d1 , d2 , L , L1 ) ;
eparyy ( j 1 +1)=permctf ( z3 , j1 , e p c t f ( 2 , 2 ) , 0 , d1 , d2 , L , L1 ) ;
eparyyn ( j 1 +1)=permctf ( z3 , − j1 , e p c t f ( 2 , 2 ) , 0 , d1 , d2 , L , L1 ) ;

eparyz ( j 1 +1)=permctf ( z3 , j1 , e p c t f ( 2 , 3 ) , 0 , d1 , d2 , L , L1 ) ;
eparyzn ( j 1 +1)=permctf ( z3 , − j1 , e p c t f ( 2 , 3 ) , 0 , d1 , d2 , L , L1 ) ;
eparzx ( j 1 +1)=permctf ( z3 , j1 , e p c t f ( 3 , 1 ) , 0 , d1 , d2 , L , L1 ) ;
eparzxn ( j 1 +1)=permctf ( z3 , − j1 , e p c t f ( 3 , 1 ) , 0 , d1 , d2 , L , L1 ) ;
eparzy ( j 1 +1)=permctf ( z3 , j1 , e p c t f ( 3 , 2 ) , 0 , d1 , d2 , L , L1 ) ;
eparzyn ( j 1 +1)=permctf ( z3 , − j1 , e p c t f ( 3 , 2 ) , 0 , d1 , d2 , L , L1 ) ;
eparzz ( j 1 +1)=permctf ( z3 , j1 , e p c t f ( 3 , 3 ) , 0 , d1 , d2 , L , L1 ) ;
eparzzn ( j 1 +1)=permctf ( z3 , − j1 , e p c t f ( 3 , 3 ) , 0 , d1 , d2 , L , L1 ) ;

end
exx= t o e p l i t z ( eparxx , eparxxn ) ;
exy= t o e p l i t z ( eparxy , eparxyn ) ;
exz= t o e p l i t z ( eparxz , eparxzn ) ;
eyx= t o e p l i t z ( eparyx , eparyxn ) ;
eyy= t o e p l i t z ( eparyy , eparyyn ) ;
eyz= t o e p l i t z ( eparyz , eparyzn ) ;
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ezx= t o e p l i t z ( eparzx , eparzxn ) ;
ezy= t o e p l i t z ( eparzy , eparzyn ) ;
ezz= t o e p l i t z ( eparzz , eparzzn ) ;

end
eps i lon {n}=ezz ;
b1{n}=z1 ;
b2{n}=z2 ;
b3{n}=z3 ;

%* * * * * * * * * * * * C a l cu l a t in g P Matrix * * * * * * * * * %
p 11=−kx * inv ( ezz ) * ezx ;
p 14=knot * eye ( 2 * N ts +1) −(1/ knot ) * kx * inv ( ezz ) * kx ;
p 41=knot * exx−knot * exz * inv ( ezz ) * ezx ;
p 44=−exz * inv ( ezz ) * kx ;
pp=[ p 11 p 14 ; p 41 p 44 ] ;
%* * * * * * * * * * * * * * * * * * * * * End P Matrix * * * * * * * * * * * * * * * * * * * * * %

[G1 , D1] = e ig ( pp ) ;
D2=diag (D1) ;
D imag=imag (D2) ;
D real= r e a l (D2) ;
[D3 , sor t index3 ]= s o r t ( D imag , ’ descend ’ ) ;
D real1=D real ( sor t index3 ) ;
D=D real1 +1 i *D3 ;
Dm=diag (D) ;
Du{n}=diag (D( 1 : 2 * N ts +1) ) ;
Dl{n}=diag (D( 2 * N ts + 2 : 4 * N ts +2) ) ;
G=G1 ( : , sor t index3 ) ;

i f n==Ns+Nm
W=inv (G) *Z1 ;

e l s e
W=inv (G) *Z ;

end
wu{n}=W( 1 : 2 * N ts + 1 , 1 : 2 * N ts +1) ;
wl{n}=W( 2 * N ts + 2 : 4 * N ts + 2 , 1 : 2 * N ts +1) ;
Z=G* [ eye ( 2 * N ts +1) ; expm( −1 i * d e l t a ( n ) * Dl{n} ) * wl{n}* inv (wu{n} ) * expm

(1 i * d e l t a ( n ) *Du{n} ) ] ;
matr ix zz {n} = [Z ] ;
end

%%
% * * * * * * * * * * * * * * * Finging T0 and R f o r Inc idence Ap
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* * * * * * * * * * * * * * * %
Ap=zeros ( 2 * N ts +1 ,1) ;
Ap( N ts +1 ,1) =1;
zu=Z ( 1 : 2 * N ts +1 , 1 : 2 * N ts +1) ;
z l =Z( 2 * N ts + 2 : 4 * N ts + 2 , 1 : 2 * N ts +1) ;
f1 =[zu −yne ; z l −ynh ] ;
YP=[ ype ; yph ] ;
TR=inv ( f1 ) *YP*Ap;
T0=TR ( 1 : 2 * N ts +1 ,1) ;
R=TR( 2 * N ts + 2 : 4 * N ts +2 ,1) ;
m a t r i x t t {1}=T0 ;

%* * * * * * * c a l c u l a t i n g T matrix * * * * * * * * * * * * * * * * * * * * * * %
T=T0 ;
f o r nnn=1:Nd+Ng+Nm

T=inv (wu{nnn} ) *expm(1 i * d e l t a ( nnn ) *Du{nnn} ) *T ;
m a t r i x t t {nnn+1}=T ;

end
%* * * * * * * * * * * * * * * * * * * * * * * * End T Matrix * * * * * * * * * * * * * * * * * * * %

sumR=0;
sumT=0;

f o r n1 = 1 : 2 * N ts+1
kzr= r e a l ( kzn . / ( knot * cos ( t h e t a ) ) ) ;
Rpp=( abs (R( n1 ) ’ ) ˆ 2 ) * kzr ( n1 ) ;
Tpp=( abs ( T ( n1 ) ’ ) ˆ 2 ) * kzr ( n1 ) ;
sumR=sumR+Rpp ;
sumT=sumT+Tpp ;

end
App( vv ) =1−(sumR+sumT) ;
vv=vv +1;

end
i f dd==1;
h1= p l o t ( di : dt : df , App, ’ k ’ , ’ l inewidth ’ , 4 ) ;
e l s e i f dd==2;
h2= p l o t ( di : dt : df , App, ’ −.b ’ , ’ l inewidth ’ , 4 ) ;
e l s e
h3= p l o t ( di : dt : df , App, ’ : r ’ , ’ l inewidth ’ , 4 ) ;
end
hold a l l
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end
x l a b e l ( ’ $\ t h e t a $ ( deg ) ’ , ’ I N t s e r p r e t e r ’ , ’ l a t e x ’ , ’ FoN tsSize ’ , 24) ;
y l a b e l ( ’ $A {p}$ ’ , ’ I N t s e r p r e t e r ’ , ’ l a t e x ’ , ’ FoN tsSize ’ , 24) ;
ax=gca ;
ax . FoN tsSize =20;
h = legend ( [ h1 , h2 , h3 ] ,{ ’ L {c}= 1000 nm ’ , ’ L {c}= 2000 nm ’ , ’ L {c}=

3000 nm ’ } , ’ l o c a t i o n ’ , ’ north ’ ) ;
h . I N t s e r p r e t e r = ’ l a t e x ’
s e t ( h , ’ I N t s e r p r e t e r ’ , ’ t ex ’ )
legend show

%* * * * * * * * Function f o r Finding P e r m i t t i v i t y * * * * * * * * %
funct ion epsn= e p s c t f ( z , n , epd , epm, d1 , d2 , L , L1 )
CD=d2−d1 ;
y=(L1/pi ) * as in ( ( d2−z ) /CD) ;
B=epm−epd ;
%%
%* * * * * * * * P e r m i t t i v i t y f o r n=0 * * * * * * * * %

i f n == 0
i f z<=d1

epsn=epd ;
e l s e i f z<d2 && z>d1

epsn =(epd * ( L − L1 + 2* y ) +epm* ( L1 − 2* y ) ) /L ;
e l s e i f z>=d2

epsn=epm ;
end
end
%%

% * * * * * * * * P e r m i t t i v i t y f o r n#0 * * * * * * * * %
i f n˜= 0

i f z<d2 && z>d1
epsn = ( B* exp( −1 i *n * ( L1 − y ) * 2 * pi/L ) −B* exp( −1 i *n* y * 2 * pi/L ) )

* 1 i /(n * 2 * pi ) ;
e l s e i f z<=d1

epsn =0;
e l s e i f z>=d2

epsn =0;
end
end

end
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A.3 Absorptance Ap and As in the Grating-Coupled Configu-
ration

c l c
c l e a r a l l
c l o s e a l l
g loba l e p c t f epm d1 d2 d3 L L1 z1 z2 z3 N ts ;
%* * * * * * * Defining Var iab les * * * * * * * %
mu 0=4* pi *10 ˆ −7 ; % Permabi l i ty of f r e e space
ep 0 = 8 . 8 5 4 * 1 0 ˆ − 1 2 ; % P e r m i t i v i t y of f r e e space
nm=10ˆ( −9) ;
lambda 0 = 633*nm; % Free space wavelength
e t a 0 = s q r t ( mu 0/ep 0 ) ; % Impedance of the f r e e space
epm=(0 .05096+3 .9245*1 i ) ˆ 2 ; % P e r m i t t i v i t y of metal
L = 900*nm;
f o r dd=1:3

i f dd==1
d1 =1000*nm; % Thickness of CTF

e l s e i f dd==2
d1 =2000*nm;

e l s e
d1 =3000*nm;

end
d2 = d1 + 20*nm; % Grating t h i c k n e s s

d3 = d2 + 30*nm; % Metal f i lm t h i c k n e s s
L1 = 0 . 5 * L ;
N ts = 1 5 ;
Nd = 5 0 ;
Ng = 3 0 ;
Nm=10;
Ns = Nd + Ng;
gamma deg = ( 3 0 * pi ) /180; %Angle of morphology
sz = [ cos ( gamma deg ) −s i n ( gamma deg ) 0 ; s i n ( gamma deg ) cos (

gamma deg ) 0 ; 0 0 1 ] ;
chiv =20* pi /180; % Vapor depos i t ion angle

ch i=atan ( 3 . 1 0 5 6 * tan ( chiv ) ) ;
v=2* chiv/pi ;
sy= [ cos ( ch i ) 0 −s i n ( ch i ) ; 0 1 0 ; s i n ( ch i ) 0 cos ( ch i ) ] ;

% CTF P e r m i t t i v i t y
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epa= ( 1 . 1 9 6 1 +1 .5439* v − 0 . 7 7 1 9 * v ˆ 2 ) ˆ 2 ;
epb= ( 1 . 4 6 0 0 + 1 . 0 4 0 0 * v −0 .5200* v ˆ 2 ) ˆ 2 ;
epc= ( 1 . 3 5 3 2 + 1 . 2 2 9 6 * v − 0 . 6 1 4 8 * v ˆ 2 ) ˆ 2 ;

epref =[ epb 0 0 ; 0 epc 0 ; 0 0 epa ] ;
e p c t f =sz * sy * epref * inv ( sy ) * inv ( sz ) ;

knot =(2* pi ) /lambda 0 ; % wave number of f r e e space
vv =1;
ps i =30* pi /180; % i n c i d e n t angle
% * * * * * * End Defining Var iab les * * * * * * %
%%
di =0;
dt = 0 . 1 ;
df =89;
vv= 1 ;
f o r NN=di : dt : df

t h e t a =NN* pi /180;
disp (NN) ;
y1 =0;

%* * * * * * Begin Finging wavenumbers *****%
f o r n1=−N ts : 1 : N ts

y1=y1 +1;
kxnn ( y1 ) =knot * cos ( ps i ) * s i n ( t h e t a ) +( n1 * 2 * pi ) /L ;
ky=knot * s in ( ps i ) * s i n ( t h e t a ) ;
kxy ( y1 ) = s q r t ( kxnn ( y1 ) ˆ2+ky ˆ 2 ) ;

i f ky==0 && kxnn ( y1 )<0
kxy ( y1 ) =− s q r t ( kxnn ( y1 ) ˆ2+ky ˆ 2 ) ;

e l s e
kxy ( y1 ) = s q r t ( kxnn ( y1 ) ˆ2+ky ˆ 2 ) ;

end
i f knot ˆ2 >= kxy ( y1 ) ˆ2

kzn ( y1 ) = s q r t ( knot ˆ2 − kxy ( y1 ) ˆ 2 ) ;
e l s e i f knot ˆ2 < kxy ( y1 ) ˆ2

kzn ( y1 ) = 1 i * s q r t ( − knot ˆ2 + kxy ( y1 ) ˆ 2 ) ;
end

end
kx = diag ( kxnn ) ;
%* * * * * * * * * * * * End Finging wavenumbers * * * * * * * * * * * * * * * * * * * * * * * * %
%* * * * * * * * * * * * * * Finding Y Matr ices * * * * * * * * * * * * * * * * * %
yph=[− diag ( ( 1/ knot ) . * kzn . * kxnn ./ kxy ) diag ( ky ./ kxy ) ; −diag ( (1 / knot )
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. * kzn . * ky ./ kxy ) −diag ( kxnn ./ kxy ) ] ;
ynh=[ diag ( ( 1 / knot ) . * kzn . * kxnn ./ kxy ) diag ( ky ./ kxy ) ; diag ( (1 / knot ) . *

kzn . * ky ./ kxy ) −diag ( kxnn ./ kxy ) ] ;
ype=[− diag ( ky ./ kxy ) −diag ( ( 1 / knot ) . * kzn . * kxnn ./ kxy ) ; diag ( kxnn ./

kxy ) −diag ( ( 1/ knot ) . * kzn . * ky ./ kxy ) ] ;
yne=[− diag ( ky ./ kxy ) diag ( (1 / knot ) . * kzn . * kxnn ./ kxy ) ; diag ( kxnn ./ kxy )

diag ( (1 / knot ) . * kzn . * ky ./ kxy ) ] ;
ypos =[ ype ; yph ] ;
yneg =[ yne ; ynh ] ;
Z1=[ ype ; yph ] ;
temp1=(Ns+Nm+ 1: − 1 : 1 ) ;
mm=length ( temp1 ) ;
matr ix zz {Nd+Ng+Nm+1} = Z1 ;
f o r n=Ns+Nm: − 1 : 1

%%
%* * * * * * * * * * * * * * * * * * * * * * * P e r m i t t i v i t y For metal Region

* * * * * * * * * * * * * * %
i f n>Ns

d e l t a ( n ) =(d3−d2 ) /Nm;
x1 = d2− ( d2 − d3 ) * ( n − Ns) /Nm;
x2 = d2 − ( d2 − d3 ) * ( n − 1 − Ns) /Nm;
z1 = 0 . 5 * ( x1 + x2 ) ;

f o r n3 = 0 : 2 * N ts
eparxx ( n3 +1)=permctf ( z1 , n3 , 0 , epm, d1 , d2 , L , L1 ) ;
eparxxn ( n3 +1)=permctf ( z1 , −n3 , 0 , epm, d1 , d2 , L , L1 ) ;
eparxy ( n3 +1)=permctf ( z1 , n3 , 0 , 0 , d1 , d2 , L , L1 ) ;
eparxyn ( n3 +1)=permctf ( z1 , −n3 , 0 , 0 , d1 , d2 , L , L1 ) ;
eparxz ( n3 +1)=permctf ( z1 , n3 , 0 , 0 , d1 , d2 , L , L1 ) ;
eparxzn ( n3 +1)=permctf ( z1 , −n3 , 0 , 0 , d1 , d2 , L , L1 ) ;
eparyx ( n3 +1)=permctf ( z1 , n3 , 0 , 0 , d1 , d2 , L , L1 ) ;
eparyxn ( n3 +1)=permctf ( z1 , −n3 , 0 , 0 , d1 , d2 , L , L1 ) ;
eparyy ( n3 +1)=permctf ( z1 , n3 , 0 , epm, d1 , d2 , L , L1 ) ;
eparyyn ( n3 +1)=permctf ( z1 , −n3 , 0 , epm, d1 , d2 , L , L1 ) ;
eparyz ( n3 +1)=permctf ( z1 , n3 , 0 , 0 , d1 , d2 , L , L1 ) ;
eparyzn ( n3 +1)=permctf ( z1 , −n3 , 0 , 0 , d1 , d2 , L , L1 ) ;
eparzx ( n3 +1)=permctf ( z1 , n3 , 0 , 0 , d1 , d2 , L , L1 ) ;
eparzxn ( n3 +1)=permctf ( z1 , −n3 , 0 , 0 , d1 , d2 , L , L1 ) ;
eparzy ( n3 +1)=permctf ( z1 , n3 , 0 , 0 , d1 , d2 , L , L1 ) ;
eparzyn ( n3 +1)=permctf ( z1 , −n3 , 0 , 0 , d1 , d2 , L , L1 ) ;
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eparzz ( n3 +1)=permctf ( z1 , n3 , 0 , epm, d1 , d2 , L , L1 ) ;
eparzzn ( n3 +1)=permctf ( z1 , −n3 , 0 , epm, d1 , d2 , L , L1 ) ;

end
exx= t o e p l i t z ( eparxx , eparxxn ) ;
exy= t o e p l i t z ( eparxy , eparxyn ) ;

exz= t o e p l i t z ( eparxz , eparxzn ) ;
eyx= t o e p l i t z ( eparyx , eparyxn ) ;

eyy= t o e p l i t z ( eparyy , eparyyn ) ;
eyz= t o e p l i t z ( eparyz , eparyzn ) ;

ezx= t o e p l i t z ( eparzx , eparzxn ) ;
ezy= t o e p l i t z ( eparzy , eparzyn ) ;
ezz= t o e p l i t z ( eparzz , eparzzn ) ;

%* * * * * * * * * * * * * * * * End Metal P e r m i t t i v i t y * * * * * * * * * * * * * * * * * * * * * %
e l s e i f n<=Nd+Ng && n>Nd

% * * * * * * * * * * S t a r t Grating P e r m i t t i v i t y * * * * * * * * * * * * * * * % % %
d e l t a ( n ) =(d2−d1 ) /Ng;
x3 = d1 − ( d1 − d2 ) * ( n − Nd) /Ng;
x4 = d1 − ( d1 − d2 ) * ( n − 1 − Nd) /Ng;
z2 = 0 . 5 * ( x3 + x4 ) ;

f o r q3 = 0 : 2 * N ts
eparxx ( q3 +1)=permctf ( z2 , q3 , e p c t f ( 1 , 1 ) ,epm, d1 , d2 , L , L1 ) ;
eparxxn ( q3 +1)=permctf ( z2 , −q3 , e p c t f ( 1 , 1 ) ,epm, d1 , d2 , L , L1 ) ;
eparxy ( q3 +1)=permctf ( z2 , q3 , e p c t f ( 1 , 2 ) , 0 , d1 , d2 , L , L1 ) ;
eparxyn ( q3 +1)=permctf ( z2 , −q3 , e p c t f ( 1 , 2 ) , 0 , d1 , d2 , L , L1 ) ;
eparxz ( q3 +1)=permctf ( z2 , q3 , e p c t f ( 1 , 3 ) , 0 , d1 , d2 , L , L1 ) ;
eparxzn ( q3 +1)=permctf ( z2 , −q3 , e p c t f ( 1 , 3 ) , 0 , d1 , d2 , L , L1 ) ;
eparyx ( q3 +1)=permctf ( z2 , q3 , e p c t f ( 2 , 1 ) , 0 , d1 , d2 , L , L1 ) ;
eparyxn ( q3 +1)=permctf ( z2 , −q3 , e p c t f ( 2 , 1 ) , 0 , d1 , d2 , L , L1 ) ;
eparyy ( q3 +1)=permctf ( z2 , q3 , e p c t f ( 2 , 2 ) ,epm, d1 , d2 , L , L1 ) ;
eparyyn ( q3 +1)=permctf ( z2 , −q3 , e p c t f ( 2 , 2 ) ,epm, d1 , d2 , L , L1 ) ;
eparyz ( q3 +1)=permctf ( z2 , q3 , e p c t f ( 2 , 3 ) , 0 , d1 , d2 , L , L1 ) ;
eparyzn ( q3 +1)=permctf ( z2 , −q3 , e p c t f ( 2 , 3 ) , 0 , d1 , d2 , L , L1 ) ;
eparzx ( q3 +1)=permctf ( z2 , q3 , e p c t f ( 3 , 1 ) , 0 , d1 , d2 , L , L1 ) ;
eparzxn ( q3 +1)=permctf ( z2 , −q3 , e p c t f ( 3 , 1 ) , 0 , d1 , d2 , L , L1 ) ;
eparzy ( q3 +1)=permctf ( z2 , q3 , e p c t f ( 3 , 2 ) , 0 , d1 , d2 , L , L1 ) ;
eparzyn ( q3 +1)=permctf ( z2 , −q3 , e p c t f ( 3 , 2 ) , 0 , d1 , d2 , L , L1 ) ;
eparzz ( q3 +1)=permctf ( z2 , q3 , e p c t f ( 3 , 3 ) ,epm, d1 , d2 , L , L1 ) ;
eparzzn ( q3 +1)=permctf ( z2 , −q3 , e p c t f ( 3 , 3 ) ,epm, d1 , d2 , L , L1 ) ;

end
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exx= t o e p l i t z ( eparxx , eparxxn ) ;
exy= t o e p l i t z ( eparxy , eparxyn ) ;
exz= t o e p l i t z ( eparxz , eparxzn ) ;
eyx= t o e p l i t z ( eparyx , eparyxn ) ;
eyy= t o e p l i t z ( eparyy , eparyyn ) ;
eyz= t o e p l i t z ( eparyz , eparyzn ) ;
ezx= t o e p l i t z ( eparzx , eparzxn ) ;
ezy= t o e p l i t z ( eparzy , eparzyn ) ;
ezz= t o e p l i t z ( eparzz , eparzzn ) ;

%* * * * * * * * * * * * * P e r m i t t i v i t y f o r CTF * * * * * * * * * * * * * %
e l s e i f n<= Nd

d e l t a ( n ) =d1/Nd;
x5 = ( d1 ) *n/Nd;
x6 = ( d1 ) * ( n− 1)/Nd;
z3 = 0 . 5 * ( x5 + x6 ) ;

f o r j 1 = 0 : 2 * N ts
eparxx ( j 1 +1)=permctf ( z3 , j1 , e p c t f ( 1 , 1 ) , 0 , d1 , d2 , L , L1 ) ;
eparxxn ( j 1 +1)=permctf ( z3 , − j1 , e p c t f ( 1 , 1 ) , 0 , d1 , d2 , L , L1 ) ;
eparxy ( j 1 +1)=permctf ( z3 , j1 , e p c t f ( 1 , 2 ) , 0 , d1 , d2 , L , L1 ) ;
eparxyn ( j 1 +1)=permctf ( z3 , − j1 , e p c t f ( 1 , 2 ) , 0 , d1 , d2 , L , L1 ) ;
eparxz ( j 1 +1)=permctf ( z3 , j1 , e p c t f ( 1 , 3 ) , 0 , d1 , d2 , L , L1 ) ;
eparxzn ( j 1 +1)=permctf ( z3 , − j1 , e p c t f ( 1 , 3 ) , 0 , d1 , d2 , L , L1 ) ;
eparyx ( j 1 +1)=permctf ( z3 , j1 , e p c t f ( 2 , 1 ) , 0 , d1 , d2 , L , L1 ) ;
eparyxn ( j 1 +1)=permctf ( z3 , − j1 , e p c t f ( 2 , 1 ) , 0 , d1 , d2 , L , L1 ) ;
eparyy ( j 1 +1)=permctf ( z3 , j1 , e p c t f ( 2 , 2 ) , 0 , d1 , d2 , L , L1 ) ;
eparyyn ( j 1 +1)=permctf ( z3 , − j1 , e p c t f ( 2 , 2 ) , 0 , d1 , d2 , L , L1 ) ;
eparyz ( j 1 +1)=permctf ( z3 , j1 , e p c t f ( 2 , 3 ) , 0 , d1 , d2 , L , L1 ) ;
eparyzn ( j 1 +1)=permctf ( z3 , − j1 , e p c t f ( 2 , 3 ) , 0 , d1 , d2 , L , L1 ) ;
eparzx ( j 1 +1)=permctf ( z3 , j1 , e p c t f ( 3 , 1 ) , 0 , d1 , d2 , L , L1 ) ;
eparzxn ( j 1 +1)=permctf ( z3 , − j1 , e p c t f ( 3 , 1 ) , 0 , d1 , d2 , L , L1 ) ;
eparzy ( j 1 +1)=permctf ( z3 , j1 , e p c t f ( 3 , 2 ) , 0 , d1 , d2 , L , L1 ) ;
eparzyn ( j 1 +1)=permctf ( z3 , − j1 , e p c t f ( 3 , 2 ) , 0 , d1 , d2 , L , L1 ) ;
eparzz ( j 1 +1)=permctf ( z3 , j1 , e p c t f ( 3 , 3 ) , 0 , d1 , d2 , L , L1 ) ;
eparzzn ( j 1 +1)=permctf ( z3 , − j1 , e p c t f ( 3 , 3 ) , 0 , d1 , d2 , L , L1 ) ;

end
exx= t o e p l i t z ( eparxx , eparxxn ) ;
exy= t o e p l i t z ( eparxy , eparxyn ) ;
exz= t o e p l i t z ( eparxz , eparxzn ) ;
eyx= t o e p l i t z ( eparyx , eparyxn ) ;
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eyy= t o e p l i t z ( eparyy , eparyyn ) ;
eyz= t o e p l i t z ( eparyz , eparyzn ) ;
ezx= t o e p l i t z ( eparzx , eparzxn ) ;
ezy= t o e p l i t z ( eparzy , eparzyn ) ;
ezz= t o e p l i t z ( eparzz , eparzzn ) ;

end
eps i lon {n}=ezz ;
b1{n}=z1 ;
b2{n}=z2 ;
b3{n}=z3 ;

%* * * * * * * * * * * * C a l cu l a t in g P Matrix * * * * * * * * * %
p 11=−kx * inv ( ezz ) * ezx ;
p 12=−kx * inv ( ezz ) * ezy ;
p 13 =(ky/knot ) * kx * inv ( ezz ) ;
p 14=knot * eye ( 2 * N ts +1) −(1/ knot ) * kx * inv ( ezz ) * kx ;
p 21=−ky * inv ( ezz ) * ezx ;
p 22=−ky * inv ( ezz ) * ezy ;
p 23=−knot * eye ( 2 * N ts +1) +(kyˆ2/ knot ) * inv ( ezz ) ;
p 24 =−(ky/knot ) * inv ( ezz ) * kx ;
p 31=−knot * eyx+knot * eyz * inv ( ezz ) * ezx −(ky/knot ) * kx ;
p 32 =(1/ knot ) * kxˆ2 − knot * eyy+knot * eyz * inv ( ezz ) * ezy ;
p 33=−ky * eyz * inv ( ezz ) ;
p 34=eyz * inv ( ezz ) * kx ;
p 41=knot * exx−knot * exz * inv ( ezz ) * ezx −(kyˆ2/ knot ) * eye ( 2 * N ts +1) ;
p 42=knot * exy−knot * exz * inv ( ezz ) * ezy +(ky/knot ) * kx ;
p 43=ky * exz * inv ( ezz ) ;
p 44=−exz * inv ( ezz ) * kx ;
p=[ p 11 p 12 p 13 p 14 ; p 21 p 22 p 23 p 24 ; p 31 p 32 p 33 p 34 ;

p 41 p 42 p 43 p 44 ] ;
%* * * * * * * * * * * * * * * * * * * * * End P Matrix * * * * * * * * * * * * * * * * * * * * * %

[G1 , D1] = e ig ( p ) ;
D2=diag (D1) ;
D imag=imag (D2) ;
D real= r e a l (D2) ;
[D3 , sor t index3 ]= s o r t ( D imag , ’ descend ’ ) ;
D real1=D real ( sor t index3 ) ;
D=D real1 +1 i *D3 ;
Dm=diag (D) ;
Du{n}=diag (D( 1 : ( 4 * N ts ) +2) ) ;
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Dl{n}=diag (D( ( 4 * N ts ) + 3 : ( 8 * N ts ) +4) ) ;
G=G1 ( : , sor t index3 ) ;

i f n==Ns+Nm
W=inv (G) *Z1 ;

e l s e
W=inv (G) *Z ;

end
wu{n}=W( 1 : 4 * N ts + 2 , 1 : 4 * N ts +2) ;
wl{n}=W( 4 * N ts + 3 : 8 * N ts + 4 , 1 : 4 * N ts +2) ;
Z=G* [ eye ( 4 * N ts +2) ; expm( −1 i * d e l t a ( n ) * Dl{n} ) * wl{n}* inv (wu{n} ) * expm(1

i * d e l t a ( n ) *Du{n} ) ] ;
matr ix zz {n} = [Z ] ;

end
%%

% * * * * * * * Finging T0 and R f o r Inc idence Ap * * * * * * * * %
Ap=zeros ( 4 * N ts +2 ,1) ;
Ap( 3 * N ts +2 ,1) =1;
zu=Z ( 1 : 4 * N ts +2 , 1 : 4 * N ts +2) ;
z l =Z( 4 * N ts + 3 : 8 * N ts + 4 , 1 : 4 * N ts +2) ;
f1 =[zu −yne ; z l −ynh ] ;
YP=[ ype ; yph ] ;
TR=inv ( f1 ) *YP*Ap;
T0=TR ( 1 : 4 * N ts +2 ,1) ;
R=TR( 4 * N ts + 3 : 8 * N ts +4 ,1) ;
m a t r i x t t {1}=T0 ;
%* * * * * * * c a l c u l a t i n g T matrix * * * * * * * * * * * * * * * * * * * * * * %

T=T0 ;
f o r nnn=1:Nd+Ng+Nm

T=inv (wu{nnn} ) *expm(1 i * d e l t a ( nnn ) *Du{nnn} ) *T ;
m a t r i x t t {nnn+1}=T ;

end
%* * * * * * * * End T Matrix * * * * * * * * %

%* * * * * * * * $p$ I n c i d e n t , $s$ R e f l e c t e d * * * * * * * * %
r s=R ( 1 : 2 * N ts +1 ,1) ;

%* * * * * * * * $p$ I n c i d e n t , $p$ R e f l e c t e d * * * * * * * * %
rp=R( 2 * N ts + 2 : 4 * N ts +2 ,1) ;

%* * * * * * * * $p$ I n c i d e n t , $s$ Transmitted * * * * * * * * %
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t s =T ( 1 : 2 * N ts +1 ,1) ;
%* * * * * * * * $p$ I n c i d e n t , $p$ R e f l e c t e d * * * * * * * * %

tp=T ( 2 * N ts + 2 : 4 * N ts +2 ,1) ;
sumR=0;
sumT=0;
f o r n1 = 1 : 2 * N ts+1

kzr= r e a l ( kzn . / ( knot * cos ( t h e t a ) ) ) ;
Rsp=( abs ( r s ( n1 ) ’ ) ˆ 2 ) * kzr ( n1 ) ;
Rpp=( abs ( rp ( n1 ) ’ ) ˆ 2 ) * kzr ( n1 ) ;
Tsp =( abs ( t s ( n1 ) ’ ) ˆ 2 ) * kzr ( n1 ) ;
Tpp=( abs ( tp ( n1 ) ’ ) ˆ 2 ) * kzr ( n1 ) ;
sumR=sumR+Rpp+Rsp ;
sumT=sumT+Tpp+Tsp ;

end
% * * * * * * * * * * * Finging T0 and R f o r Inc idence As * * * * * * * * * * * * * * %

As=zeros ( 4 * N ts +2 ,1) ;
As ( N ts +1 ,1) =1;
zus=Z ( 1 : 4 * N ts +2 , 1 : 4 * N ts +2) ;
z l s =Z( 4 * N ts + 3 : 8 * N ts + 4 , 1 : 4 * N ts +2) ;
f 1 s =[ zus −yne ; z l s −ynh ] ;
YPs=[ ype ; yph ] ;
TRs=inv ( f 1 s ) * YPs *As ;
T0s=TRs ( 1 : 4 * N ts +2 ,1) ;
Rs=TRs ( 4 * N ts + 3 : 8 * N ts +4 ,1) ;
m a t r i x t t s {1}=T0s ;

%%
Ts=T0s ;

%* * * * * * * * * * * * * * * * * * * c a l c u l a t i n g T matrix * * * * * * * * * * * * * * * * %
f o r nnn=1:Nd+Ng+Nm

Ts=inv (wu{nnn} ) *expm(1 i * d e l t a ( nnn ) *Du{nnn} ) * Ts ;
m a t r i x t t s {nnn+1}=Ts ;
end

%* * * * * * * * * * * * * * * * * * * * * * * * End T Matrix * * * * * * * * * * * * * * * * * * * %
%%
%* * * * * * * * $s$ I n c i d e n t , $s$ R e f l e c t e d * * * * * * * * %
rs1=Rs ( 1 : 2 * N ts +1 ,1) ;
%* * * * * * * * $s$ I n c i d e n t , $p$ R e f l e c t e d * * * * * * * * %

rp1=Rs ( 2 * N ts + 2 : 4 * N ts +2 ,1) ;
%* * * * * * * * $s$ I n c i d e n t , $s$ Transmitted * * * * * * * * %
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t s 1 =Ts ( 1 : 2 * N ts +1 ,1) ;
%* * * * * * * * $s$ I n c i d e n t , $p$ Transmitted * * * * * * * * %
tp1=Ts ( 2 * N ts + 2 : 4 * N ts +2 ,1) ;

sumRs=0;
sumTs=0;
f o r n1 = 1 : 2 * N ts+1

kzr= r e a l ( kzn . / ( knot * cos ( t h e t a ) ) ) ;
Rss =( abs ( rs1 ( n1 ) ’ ) ˆ 2 ) * kzr ( n1 ) ;
Rps=( abs ( rp1 ( n1 ) ’ ) ˆ 2 ) * kzr ( n1 ) ;
Tss =( abs ( t s 1 ( n1 ) ’ ) ˆ 2 ) * kzr ( n1 ) ;
Tps =( abs ( tp1 ( n1 ) ’ ) ˆ 2 ) * kzr ( n1 ) ;
sumRs=sumRs+Rss+Rps ;
sumTs=sumTs+Tss+Tps ;

end
%* * * * * * * * Absorptance As * * * * * * * * %

Ass ( vv ) =1−(sumRs+sumTs ) ;
%* * * * * * * * Absorptance Ap * * * * * * * * %
App( vv ) =1−(sumR+sumT) ;

vv=vv +1;
end
i f dd==1;
h1= p l o t ( di : dt : df , App, ’ k ’ , ’ l inewidth ’ , 4 ) ;
e l s e i f dd==2;
h2= p l o t ( di : dt : df , App, ’ −.b ’ , ’ l inewidth ’ , 4 ) ;
e l s e
h3= p l o t ( di : dt : df , App, ’ : r ’ , ’ l inewidth ’ , 4 ) ;
end
hold a l l

end
x l a b e l ( ’ $\ t h e t a $ ( deg ) ’ , ’ I N t s e r p r e t e r ’ , ’ l a t e x ’ , ’ FoN tsSize ’ , 24) ;

y l a b e l ( ’ $A {p}$ ’ , ’ I N t s e r p r e t e r ’ , ’ l a t e x ’ , ’ FoN tsSize ’ , 24) ;
ax=gca ;
ax . FoN tsSize =20;

h = legend ( [ h1 , h2 , h3 ] ,{ ’ L {c}= 1000 nm ’ , ’ L {c}= 2000 nm ’ , ’ L {c}=
3000 nm ’ } , ’ l o c a t i o n ’ , ’ north ’ ) ;

h . I N t s e r p r e t e r = ’ l a t e x ’
s e t ( h , ’ I N t s e r p r e t e r ’ , ’ t ex ’ )
legend show
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%* * * * * * * * Function f o r Finding P e r m i t t i v i t y * * * * * * * * %
funct ion epsn= e p s c t f ( z , n , epd , epm, d1 , d2 , L , L1 )
CD=d2−d1 ;
y=(L1/pi ) * as in ( ( d2−z ) /CD) ;
B=epm−epd ;
%%
%* * * * * * * * P e r m i t t i v i t y f o r n=0 * * * * * * * * %

i f n == 0
i f z<=d1

epsn=epd ;
e l s e i f z<d2 && z>d1

epsn =(epd * ( L − L1 + 2* y ) +epm* ( L1 − 2* y ) ) /L ;
e l s e i f z>=d2

epsn=epm ;
end
end
%%

% * * * * * * * * P e r m i t t i v i t y f o r n#0 * * * * * * * * %
i f n˜= 0

i f z<d2 && z>d1
epsn = ( B* exp( −1 i *n * ( L1 − y ) * 2 * pi/L ) −B* exp( −1 i *n* y * 2 * pi/L ) )

* 1 i /(n * 2 * pi ) ;
e l s e i f z<=d1

epsn =0;
e l s e i f z>=d2

epsn =0;
end
end

end

A.4 Newton-Raphson Method to Find q in the Canonical Boundary-
Value Problem

%* * * * * * * * * Canonical So lut ion f o r Glass/CTF I n t e r f a c e * * * * * * * * * * * * %
% * * * * * * * * * * * * * * * z > 0 occupied by a g l a s s * * * * * * * * * * * * * * %

% * * * * * * * * * * * * * * * z < 0 occupied by a CTF * * * * * * * * * * * * * * %
c l c
c l e a r a l l
format long
%* * * * * * * * * * * * Defining Inputs * * * * * * * * * * * * * * %
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nm=10ˆ −9;
lambda0 = 633*nm;
knot =(2* pi ) /lambda0 ;
ps i= 30* pi /180

d e l t a =10ˆ( −14) ;
e r r o r =10ˆ( −8) ;

%* * * * * * * * * * * * I n i t i a l guess * * * * * * * * * * * * * * %
q =(1+0 .01*1 i ) * knot ;
%* * * * * * * * * * * * * * * * * * Newton Raphson Method * * * * * * * * * * * * * * %
f o r i =1:200

detM=fun dyak ( q , lambda0 , ps i ) ;
detMd=fun dyak ( q+ d e l t a *q , lambda0 , ps i ) ;

d f f =(detMd−detM ) /( d e l t a * q ) ;
f =q−detM/ d f f ;

e r r =abs ( detM ) ;
%* * * * * * * checking the amount of e r r o r a t each i t e r a t i o n

* * * * * * * * * %
i f err<=e r r o r
break
end
q= f ;
disp ( q/knot ) ;
disp ( i ) ;

end

%* * * * * * * * * * * * * Function f o r Solving the Dispersion Equation

* * * * * * * * * * %
funct ion detr= fun dyak ( q , lambda0 , ps i )
%* * * * * * * * * * * * * * * * Defining Inputs * * * * * * * * * * * * * * * * * * * * * %
% p er me sb i l i t y of f r e e space
muo=4* pi *10 ˆ −7 ;
%f r e e space p e r m i t t i v i t y
epso = 8 . 8 5 4 * 1 0 ˆ − 1 2 ;
e ta0 = s q r t (muo/epso ) ;
gamma = ( 1 5 * pi ) /180;
chiv =20* pi /180;
ch i=atan ( 3 . 1 0 5 6 * tan ( chiv ) ) ;
v=2* chiv/pi ;
epsa= ( 1 . 1 9 6 1 +1 .5439* v − 0 . 7 7 1 9 * v ˆ 2 ) ˆ 2 ;
epsb= ( 1 . 4 6 0 0 + 1 . 0 4 0 0 * v −0 .5200* v ˆ 2 ) ˆ 2 ;
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epsc= ( 1 . 3 5 3 2 + 1 . 2 2 9 6 * v − 0 . 6 1 4 8 * v ˆ 2 ) ˆ 2 ;
ns =1 .5+0 .001*1 i ;
knot =(2* pi ) /lambda0 ;
omg=knot/ s q r t (muo* epso ) ;
% * * * * * * * * * * * * * * [ P ] Matrix f o r CTF * * * * * * * * * * * * * * * * * * * * * * * * * * * * %
pa 11 =(q * ( epsa −epsb ) * cos (gamma) * cos ( ch i ) * cos ( ps i ) * s i n ( ch i ) ) /( epsa *

cos ( ch i ) ˆ2+ epsb * s i n ( ch i ) ˆ 2 ) ;
pa 12 =(q * ( epsa −epsb ) * cos ( ch i ) * cos ( ps i ) * s i n (gamma) * s i n ( ch i ) ) /( epsa *

cos ( ch i ) ˆ2+ epsb * s i n ( ch i ) ˆ 2 ) ;
pa 13 = ( ( q ˆ 2 ) * cos ( ps i ) * s i n ( ps i ) ) /( epso *omg* ( epsa * cos ( ch i ) ˆ2+ epsb * s i n (

ch i ) ˆ 2 ) ) ;
pa 14=omg*muo−(q ˆ 2 * cos ( ps i ) ˆ 2 ) /(omg* epso * ( epsa * cos ( ch i ) ˆ2+ epsb * s in (

ch i ) ˆ 2 ) ) ;
pa 21 =(q * ( epsa −epsb ) * cos (gamma) * cos ( ch i ) * s i n ( ch i ) * s i n ( ps i ) ) /( epsa *

cos ( ch i ) ˆ2+ epsb * s i n ( ch i ) ˆ 2 ) ;
pa 22 =(q * ( epsa −epsb ) * cos ( ch i ) * s i n (gamma) * s i n ( ch i ) * s i n ( ps i ) ) /( epsa *

cos ( ch i ) ˆ2+ epsb * s i n ( ch i ) ˆ 2 ) ;
pa 23=−omg*muo+(q ˆ 2 * s in ( ps i ) ˆ 2 ) /(omg* epso * ( epsa * cos ( ch i ) ˆ2+ epsb * s i n (

ch i ) ˆ 2 ) ) ;
pa 24 = −((q ˆ 2 ) * cos ( ps i ) * s in ( ps i ) ) /(omg* epso * ( epsa * cos ( ch i ) ˆ2+ epsb * s in

( ch i ) ˆ 2 ) ) ;
pa 31 = (omg* epso * cos (gamma) * ( ( epsb * epsc ) +( epsa * ( epsc −2* epsb ) ) +( epsa

−epsb ) * epsc * cos ( 2 * ch i ) ) * s in (gamma) ) / ( 2 * ( epsa * cos ( ch i ) ˆ2+ epsb * s in (
ch i ) ˆ 2 ) ) −((q ˆ 2 ) * cos ( ps i ) * s i n ( ps i ) ) /(omg*muo) ;

pa 32=−omg* epso * epsc * cos (gamma) ˆ 2 + ( ( q ˆ 2 ) * cos ( ps i ) ˆ 2 ) /(omg*muo) −omg*
epso * ( s i n (gamma) ˆ 2 ) * ( epsb * cos ( ch i ) ˆ2+ epsa * s i n ( ch i ) ˆ 2 ) +(omg* epso

* ( ( epsa −epsb ) ˆ 2 ) * ( cos ( ch i ) ˆ 2 ) * ( s i n (gamma) ˆ 2 ) * ( s i n ( ch i ) ˆ 2 ) ) /( epsa *
cos ( ch i ) ˆ2+ epsb * s in ( ch i ) ˆ 2 ) ;

pa 33 =(q * ( epsa −epsb ) * cos ( ch i ) * s i n (gamma) * s i n ( ch i ) * s i n ( ps i ) ) /( epsa *
cos ( ch i ) ˆ2+ epsb * s i n ( ch i ) ˆ 2 ) ;

pa 34 =(q*( − epsa+epsb ) * cos ( ch i ) * s i n (gamma) * s i n ( ch i ) * cos ( ps i ) ) /( epsa *
cos ( ch i ) ˆ2+ epsb * s in ( ch i ) ˆ 2 ) ;

pa 41=omg* epso * epsc * s in (gamma) ˆ 2+ (omg* epso * epsa * epsb * cos (gamma) ˆ 2 ) /(
epsa * cos ( ch i ) ˆ2+ epsb * s in ( ch i ) ˆ 2 ) −q ˆ 2 * s i n ( ps i ) ˆ 2/ (omg*muo) ;

pa 42 =(omg* epso * ( 2 * epsa * epsb−epsa * epsc −epsb * epsc −( epsa −epsb ) * epsc *
cos ( 2 * ch i ) ) * s i n ( 2 *gamma) ) / ( 4 * ( epsa * cos ( ch i ) ˆ2+ epsb * s i n ( ch i ) ˆ 2 ) )
+ ( ( q ˆ 2 ) * cos ( ps i ) * s i n ( ps i ) ) /(omg*muo) ;

pa 43= ( q*( − epsa+epsb ) * cos (gamma) * s in ( ch i ) * s in ( ps i ) * cos ( ch i ) ) /( epsa *
cos ( ch i ) ˆ2+ epsb * s i n ( ch i ) ˆ 2 ) ;
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pa 44 =(q * ( epsa −epsb ) * cos (gamma) * cos ( ch i ) * cos ( ps i ) * s i n ( ch i ) ) /( epsa *
cos ( ch i ) ˆ2+ epsb * s i n ( ch i ) ˆ 2 ) ;

pa=[ pa 11 pa 12 pa 13 pa 14 ; pa 21 pa 22 pa 23 pa 24 ; pa 31 pa 32
pa 33 pa 34 ; pa 41 pa 42 pa 43 pa 44 ] ;

%* * * S e l e c t i o n of Eigenvalues and Eigenvectors f o r z<0 ****%
[Ga , Da]= e ig ( pa ) ;

D2a=diag (Da) ;
Da imag=imag ( D2a ) ;
Da real= r e a l ( D2a ) ;
[ D3a , sor t index3 ]= s o r t ( Da imag , ’ descend ’ ) ;
Da real1=Da real ( sor t index3 ) ;
Da=Da real1 +1 i *D3a ;
Dam=diag (Da) ;
tna=Ga ( : , sor t index3 ) ;
t 1=tna ( 1 : 4 , 1 ) ;

t 2=tna ( 1 : 4 , 2 ) ;
%%
%* * * * * * S e l e c t i o n of e igenvalues and e i ge n ve c t or s z>0 * * * * * * * * %
alpha s= s q r t ( knot ˆ 2 * ns ˆ2 −q ˆ 2 ) ;
i f imag ( a lpha s )<0

a lpha ss=−alpha s ;
a lpha s=a lpha ss ;

end
fn =[− s in ( ps i ) a lpha s * cos ( ps i ) /knot ; cos ( ps i ) a lpha s * s i n ( ps i ) /knot

; a lpha s * cos ( ps i ) /( knot * e ta0 ) ns ˆ 2 * s i n ( ps i ) /eta0 ;
a lpha s * s in ( ps i ) /( knot * e ta0 ) −ns ˆ 2 * cos ( ps i ) /eta0 ] ;

M=[ t1 t2 −fn ] ;
detr=det (M) ;

end

A.5 Finding q for High-Phase-Speed Dyakonov Surface Waves

%* * * * Canonical So lut ion f o r Uniaxia l/Air I n t e r f a c e ****%
% * * * * * * * * * * z < 0 occupied by a a i r * * * * * * * * * * * * * * %
% * * * * * * * * * * z > 0 occupied by AZO/ s i l i c o n * * * * * * * * * * * * * * %
c l c
c l e a r a l l
c l o s e a l l
format long
%* * * * * * * * * * * * * * * * * * Defining Inputs * * * * * * * * * * * * * * * * * %
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nm=10ˆ −9;
%* * * * * * * * * * * * P e r m i t t i v i t y a t d i f f e r e n t wavelengths * * * * * * * * %
% lambdao = 2 . 0 0 0 0 * 1 0 ˆ − 6 ;
% epba =7 .0227+0 .5299*1 i ;
% epbb =0.8999+2 .0437*1 i ;
% epbc= epba ;
%%
%* P e r m i t t i v i t y of u n i a x i a l m a t e r i a l a t lambdao= 2.8928*10ˆ −6*%
% lambdao = 2 . 8 9 2 8 * 1 0 ˆ − 6 ;
% epba =5 .7128+1 .6085*1 i ;
% epbb = −0.9819+6.5875*1 i ;
% epbc= epba ;
%%
%* P e r m i t t i v i t y of u n i a x i a l m a t e r i a l a t lambdao = 3 . 7 8 5 5 * 1 0 ˆ ( − 6 )*%
lambdao = 3 . 7 8 5 5 * 1 0 ˆ ( − 6 ) ;
epba =4.4029+3 .0573*1 i ;
epbb =0.6351+13 .0825*1 i ;
epbc=epba ;
%%
%* P e r m i t t i v i t y of u n i a x i a l m a t e r i a l a t lambdao = 8 . 9 7 9 7 * 1 0 ˆ ( − 6 )*%
% lambdao = 8 . 9 7 9 7 * 1 0 ˆ ( − 6 ) ;
% epba = −1.7747+16.0555*1 i ;
% epbb =16 .9301+19 .9579*1 i ;
% epbc=epba ;
%%
knot =(2* pi ) /lambdao ;
d e l t a =10ˆ( −14) ;

e r r o r =10ˆ( −10) ;
%* * * * * * * * * * * * * * * * * * End Defining Inputs * * * * * * * * * * * * * * * * * %
q =(1+0 .1*1 i ) * knot ;
f o r i =1:20

detM=can azo ( q , epba , epbb , epbc , lambdao , knot ) ;
detMd=can azo ( q+ d e l t a *q , epba , epbb , epbc , lambdao , knot ) ;

d f f =(detMd−detM ) /( d e l t a * q ) ;
f =q−detM/ d f f ;

e r r =abs ( detM ) ;
%* * * * * * * * * checking the amount of e r r o r a t each i t e r a t i o n * * * * * * * * * * %
i f err<=e r r o r
break
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end
q= f ;
disp ( q/knot ) ;
disp ( i ) ;

end

%* * * Function f o r Solving the Dispersion Equation ***%
funct ion detr azo= can azo ( q , epba , epbb , epbc , lambdao , knot )
muo=4* pi *10 ˆ −7 ;
epso = 8 . 8 5 4 * 1 0 ˆ − 1 2 ;
etao = s q r t (muo/epso ) ;
omg=knot/ s q r t (muo* epso ) ;
ps i =22* pi /180;
%* * * * * * * * * * * * * P e r m i t t i v i t y f o r AZO/ S i l i c o n * * * * * * * * * * * * * * * %
epb =[ epbb 0 0 ; 0 epbc 0 ; 0 0 epba ] ;

%* * [ P ] Matrix f o r AZO/ S i l i c o n **%
pb 11 =(q * ( epsa −epsb ) * cos (gamma) * cos ( ch i ) * cos ( ps i ) * s i n ( ch i ) ) /( epsa *

cos ( ch i ) ˆ2+ epsb * s i n ( ch i ) ˆ 2 ) ;
pb 12 =(q * ( epsa −epsb ) * cos ( ch i ) * cos ( ps i ) * s i n (gamma) * s i n ( ch i ) ) /( epsa *

cos ( ch i ) ˆ2+ epsb * s i n ( ch i ) ˆ 2 ) ;
pb 13 = ( ( q ˆ 2 ) * cos ( ps i ) * s i n ( ps i ) ) /( epso *omg* ( epsa * cos ( ch i ) ˆ2+ epsb * s i n (

ch i ) ˆ 2 ) ) ;
pb 14=omg*muo−(q ˆ 2 * cos ( ps i ) ˆ 2 ) /(omg* epso * ( epsa * cos ( ch i ) ˆ2+ epsb * s in (

ch i ) ˆ 2 ) ) ;
pb 21 =(q * ( epsa −epsb ) * cos (gamma) * cos ( ch i ) * s i n ( ch i ) * s i n ( ps i ) ) /( epsa *

cos ( ch i ) ˆ2+ epsb * s i n ( ch i ) ˆ 2 ) ;
pb 22 =(q * ( epsa −epsb ) * cos ( ch i ) * s i n (gamma) * s i n ( ch i ) * s i n ( ps i ) ) /( epsa *

cos ( ch i ) ˆ2+ epsb * s i n ( ch i ) ˆ 2 ) ;
pb 23=−omg*muo+(q ˆ 2 * s in ( ps i ) ˆ 2 ) /(omg* epso * ( epsa * cos ( ch i ) ˆ2+ epsb * s i n (

ch i ) ˆ 2 ) ) ;
pb 24 = −((q ˆ 2 ) * cos ( ps i ) * s in ( ps i ) ) /(omg* epso * ( epsa * cos ( ch i ) ˆ2+ epsb * s in

( ch i ) ˆ 2 ) ) ;
pb 31 = (omg* epso * cos (gamma) * ( ( epsb * epsc ) +( epsa * ( epsc −2* epsb ) ) +( epsa

−epsb ) * epsc * cos ( 2 * ch i ) ) * s in (gamma) ) / ( 2 * ( epsa * cos ( ch i ) ˆ2+ epsb * s in (
ch i ) ˆ 2 ) ) −((q ˆ 2 ) * cos ( ps i ) * s i n ( ps i ) ) /(omg*muo) ;

pb 32=−omg* epso * epsc * cos (gamma) ˆ 2 + ( ( q ˆ 2 ) * cos ( ps i ) ˆ 2 ) /(omg*muo) −omg*
epso * ( s i n (gamma) ˆ 2 ) * ( epsb * cos ( ch i ) ˆ2+ epsa * s i n ( ch i ) ˆ 2 ) +(omg* epso

* ( ( epsa −epsb ) ˆ 2 ) * ( cos ( ch i ) ˆ 2 ) * ( s i n (gamma) ˆ 2 ) * ( s i n ( ch i ) ˆ 2 ) ) /( epsa *
cos ( ch i ) ˆ2+ epsb * s in ( ch i ) ˆ 2 ) ;

107



MATLAB™ CODES

pb 33 =(q * ( epsa −epsb ) * cos ( ch i ) * s i n (gamma) * s i n ( ch i ) * s i n ( ps i ) ) /( epsa *
cos ( ch i ) ˆ2+ epsb * s i n ( ch i ) ˆ 2 ) ;

pb 34 =(q*( − epsa+epsb ) * cos ( ch i ) * s in (gamma) * s i n ( ch i ) * cos ( ps i ) ) /( epsa *
cos ( ch i ) ˆ2+ epsb * s i n ( ch i ) ˆ 2 ) ;

pb 41=omg* epso * epsc * s in (gamma) ˆ 2+ (omg* epso * epsa * epsb * cos (gamma) ˆ 2 ) /(
epsa * cos ( ch i ) ˆ2+ epsb * s in ( ch i ) ˆ 2 ) −q ˆ 2 * s i n ( ps i ) ˆ 2/ (omg*muo) ;

pb 42 =(omg* epso * ( 2 * epsa * epsb−epsa * epsc −epsb * epsc −( epsa −epsb ) * epsc *
cos ( 2 * ch i ) ) * s i n ( 2 *gamma) ) / ( 4 * ( epsa * cos ( ch i ) ˆ2+ epsb * s i n ( ch i ) ˆ 2 ) )
+ ( ( q ˆ 2 ) * cos ( ps i ) * s i n ( ps i ) ) /(omg*muo) ;

pb 43= ( q*( − epsa+epsb ) * cos (gamma) * s in ( ch i ) * s in ( ps i ) * cos ( ch i ) ) /( epsa *
cos ( ch i ) ˆ2+ epsb * s i n ( ch i ) ˆ 2 ) ;

pb 44 =(q * ( epsa −epsb ) * cos (gamma) * cos ( ch i ) * cos ( ps i ) * s i n ( ch i ) ) /( epsa *
cos ( ch i ) ˆ2+ epsb * s i n ( ch i ) ˆ 2 ) ;

pb=[ pb 11 pb 12 pb 13 pb 14 ; pb 21 pb 22 pb 23 pb 24 ; pb 31 pb 32
pb 33 pb 34 ; pb 41 pb 42 pb 43 pb 44 ] ;

% * * * * * * * * * * * * * * End [ P ] Matrix f o r AZO/ S i l i c o n * * * * * * * * * * * * * * * * %
%* * S e l e c t i o n of Eigenvalues and Eigenvectors f o r z<0 ***%
[Gb, Db] = e i g s ( pb ) ;

D1b=diag (Db) ;
Db imag=imag ( D1b ) ;
Db real= r e a l ( D1b ) ;

[ D2b , sor t index2 ]= s o r t ( Db imag , ’ descend ’ ) ;
Db real1=Db real ( sor t index2 ) ;
Db=Db real1 +1 i *D2b ;
Db m=diag (Db) ;
tnb=Gb ( : , sor t index2 ) ;

t 1=tnb ( 1 : 4 , 3 ) ;
t 2=tnb ( 1 : 4 , 4 ) ;
%* * * S e l e c t i o n of Eigenvalues and Eigenvectors f o r z<0 **%
ns =1;
a lpha s= s q r t ( knot ˆ 2 * ns ˆ2 −q ˆ 2 ) ;
i f imag ( a lpha s )>0

a lpha ss=−alpha s ;
a lpha s=a lpha ss ;

end
fn =[− s in ( ps i ) a lpha s * cos ( ps i ) /knot ; cos ( ps i ) a lpha s * s i n ( ps i ) /knot

; a lpha s * cos ( ps i ) /( knot * etao ) ns ˆ 2 * s i n ( ps i ) /etao ;
a lpha s * s in ( ps i ) /( knot * etao ) −ns ˆ 2 * cos ( ps i ) /etao ] ;

M=[ t1 t2 −fn ] ;
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detr azo=det (M) ;
end

A.6 Forward Bruggemann Homogenization Formalism

c l c
c l e a r a l l
c l o s e a l l
format long
%% def in ing input parameters
mu0 = 4* pi *10 ˆ −7 ; % permebi l i ty of f r e e space
ep0 = 8 . 8 5 4 * 1 0 ˆ − 1 2 ; % permit ivety of f r e e space
% lmda0 = 650*10ˆ −9 ; % wave length
% chiv= 1 5 * ( pi /180) ; % vapor depos i t ion angle
% chi = atan ( 3 . 1 0 5 6 * tan ( chiv ) ) ; % angle of i n c l i n a t i o n
%% Nanoscale parameters f o r Bruggeman homogenization
eps = ( 2 . 2 9 9 9 ) ˆ 2 ; % p e r m i t i v i t y f o r s o l i d region
epv = ( 1 . 8 5 ) ˆ 2 ; % p e r m i t i v i t y f o r void region
f s = 0 . 4 4 3 9 ; % s o l i d volume f r a c t i o n
fv=1− f s ; % void volume f r a c t i o n
gts =15; % shape parameter
gbs = 2 . 4 3 2 2 ;
gtv =1;
gbv =1;
gt =15; % shape parameter minor a x i s f o r void
%% Bruggemann Homogenization
%* * * * * * * * i n t i a l i z a t i o n of p e r m i t i v i t y * * * * * * * * %
ident = eye ( 3 , 3 ) ;
epr1 = ident * ( epv * fv + eps * ( 1 − fv ) ) ;
i t =1 ;

%* * * * * * * * using j a c o b i i t e r a t i o n method * * * * * * * * %
f o r m1=1:20

i t = i t +1
%%

%* * * * * * * * d e p o l a r i z a t i o n dyadic f o r void region * * * * * * * * %
Dv = fun void ( epr1 , gbv , gtv , gt ) ;
%%

%* * * * * * * * Depolar izat ion dyadic f o r s o l i d region * * * * * * * * %
Ds = f u n s o l i d ( epr1 , gbs , gts , gt ) ;
%%
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%* * * * * * * * main algorithm of i t e r a t e d funct ion * * * * * * * * %

As = ident + Ds . * ( eps * ident − epr1 ) ; % f a c t o r f o r s o l i d
Av = ident + Dv . * ( epv * ident − epr1 ) ; % f a c t o r f o r void
epBR = ( inv ( f s *Av + fv *As ) ) . * ( f s * eps *Av + fv * epv *As ) ;
epr = epBR ;
%%

%* * * * * * * * d e p o l a r i z a t i o n dyadic f o r void region * * * * * * * * %
Dv1 = fun void ( epr , gbv , gtv , gt ) ;
%%

%* * * * * * * * Depolar izat ion dyadic f o r s o l i d region * * * * * * * * %
Ds1 = f u n s o l i d ( epr , gbs , gts , gt ) ;
%%

%* * * * * * * * main algorithm of i t e r a t e d funct ion * * * * * * * * %
As1 = ident + Ds1 . * ( eps * ident − epr ) ; % f a c t o r f o r s o l i d
Av1 = ident + Dv1 . * ( epv * ident − epr ) ; % f a c t o r f o r void
epBR1 = ( inv ( f s *Av1 + fv * As1 ) ) . * ( f s * eps *Av1 + fv * epv * As1 ) ;
epr1 = epBR1 ;

i f abs ( epr1 ( 1 , 1 ) ) −abs ( epr ( 1 , 1 ) ) <=10ˆ( −20) && abs ( epr1 ( 2 , 2 ) ) −abs ( epr
( 2 , 2 ) ) <=10ˆ( −20) && abs ( epr1 ( 3 , 3 ) ) −abs ( epr ( 3 , 3 ) ) <=10ˆ( −20)
disp (” Got the s o l u t i o n ”)

break
end

display ( i t )
end
epa = epr1 ( 1 , 1 ) ;
epb = epr1 ( 2 , 2 ) ;
epc = epr1 ( 3 , 3 ) ;

%%
%* * d e p o l a r i z a t i o n dyadic f o r s o l i d region of CTF ***%
funct ion Ds= f u n s o l i d ( epr , gbs , gts , gt )
format long
i t e r =24;

%%
%* * * * * * * * c a l c u l a t i o n of Depolar iza t ion dyadic * * * * * * * * %
% gts =15;
[ nds , wts ]= leg ( −1 ,1 , i t e r ) ; %funct ion f o r f inding weights and nodes

%* * * * * * * * points on which funct ion evaluate * * * * * * * * %
f o r n=1: i t e r
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twt ( n ) =( pi /4) * wts ( n ) ; % t h e t a weights f o r d i f f e r e n t
i n t e r v a l

tnd ( n ) =( pi /4) * ( nds ( n ) +1) ; % t h e t a x−points f o r d i f f e r e n t
i n t e r v a l

pwt ( n ) =( pi /4) * wts ( n ) ; % phi weights f o r d i f f e r e n t
i n t e r v a l

pnd ( n ) =( pi /4) * ( nds ( n ) +1) ; % phi x−points f o r d i f f e r e n t
i n t e r v a l

end
f o r p=1: i t e r

f o r q =1: i t e r
%% inplementat ion of d e p o l a r i z a t i o n dyadic equation
%% f o r the s o l i d region
den2 ( p , q ) =epr ( 1 , 1 ) * ( cos ( pnd (m) ) ˆ 2 ) * ( s i n ( tnd ( n ) ) ˆ 2 ) +epr ( 2 , 2 )

* ( cos ( tnd ( n ) ) ˆ 2 ) /( g ts ˆ 2 ) +epr ( 3 , 3 ) * ( s i n ( pnd (m) ) ˆ 2 ) * ( s i n (
tnd ( n ) ) ˆ 2 ) /( gbs ˆ 2 ) ;

fn2 ( p , q ) =( cos ( pnd (m) ) ˆ 2 ) * ( s i n ( tnd ( n ) ) ˆ 3 ) /( den2 ( p , q ) ) ;
f t 2 ( p , q ) =( cos ( tnd ( n ) ) ˆ 2 ) * ( s i n ( tnd ( n ) ) ) / ( ( g t s ˆ 2 ) * ( den2 ( p , q ) ) )

;
fb2 ( p , q ) =( s i n ( pnd (m) ) ˆ 2 ) * ( s i n ( tnd ( n ) ) ˆ 3 ) / ( ( gbs ˆ 2 ) * den2 ( p , q ) )

;
d3n2 ( p , q ) =twt ( n ) *pwt (m) * fn2 ( p , q ) ;
d3t2 ( p , q ) =twt ( n ) *pwt (m) * f t 2 ( p , q ) ;
d3b2 ( p , q ) =twt ( n ) *pwt (m) * fb2 ( p , q ) ;

end
end
d3n 2=sum(sum( d3n2 ) ) ;
d3t 2=sum(sum( d3t2 ) ) ;
d3b 2=sum(sum( d3b2 ) ) ;
Ds = ( 8 * [ d3n 2 0 0 ; 0 d3t 2 0 ; 0 0 d3b 2 ] ) /(4* pi ) ; % d e p o l a r i z a t i o n

dyadic
end

%%
%* * * * * * * * d e p o l a r i z a t i o n dyadic f o r CTF * * * * * * * * %
funct ion Dv=fun void ( epr , gbv , gtv , gt )
format long

% shape parameter major a x i s f o r void
i t e r =24;
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%% c a l c u l a t i o n of Depolar izat ion dyadic
% gts =15;
[ nds , wts ]= leg ( −1 ,1 , i t e r ) ; %funct ion f o r f inding weights and nodes
%* * * * * * * * points on which funct ion evaluate * * * * * * * * %

f o r n=1: i t e r
twt ( n ) =( pi /4) * wts ( n ) ; % t h e t a weights f o r d i f f e r e n t

i n t e r v a l
tnd ( n ) =( pi /4) * ( nds ( n ) +1) ; % t h e t a x−points f o r d i f f e r e n t

i n t e r v a l
pwt ( n ) =( pi /4) * wts ( n ) ; % phi weights f o r d i f f e r e n t

i n t e r v a l
pnd ( n ) =( pi /4) * ( nds ( n ) +1) ; % phi x−points f o r d i f f e r e n t

i n t e r v a l
end
f o r p=1: i t e r

f o r q =1: i t e r

%%
%* * inplementat ion of d e p o l a r i z a t i o n dyadic equation **%
%%
%* * * * * * * * f o r the void region * * * * * * * * %

den1 ( p , q ) =epr ( 1 , 1 ) * ( cos ( pnd (m) ) ˆ 2 ) * ( s i n ( tnd ( n ) ) ˆ 2 ) +epr ( 2 , 2 )

* ( cos ( tnd ( n ) ) ˆ 2 ) /( gtv ˆ 2 ) +epr ( 3 , 3 ) * ( s i n ( pnd (m) ) ˆ 2 ) * ( s i n (
tnd ( n ) ) ˆ 2 ) /(gbv ˆ 2 ) ;

fn1 ( p , q ) =( cos ( pnd (m) ) ˆ 2 ) * ( s i n ( tnd ( n ) ) ˆ 3 ) /( den1 ( p , q ) ) ;
f t 1 ( p , q ) =( cos ( tnd ( n ) ) ˆ 2 ) * ( s i n ( tnd ( n ) ) ) / ( ( gtv ˆ 2 ) * ( den1 ( p , q ) ) )

;
fb1 ( p , q ) =( s i n ( pnd (m) ) ˆ 2 ) * ( s i n ( tnd ( n ) ) ˆ 3 ) / ( ( gbv ˆ 2 ) * den1 ( p , q ) )

;
d3n1 ( p , q ) =twt ( n ) *pwt (m) * fn1 ( p , q ) ;
d3t1 ( p , q ) =twt ( n ) *pwt (m) * f t 1 ( p , q ) ;
d3b1 ( p , q ) =twt ( n ) *pwt (m) * fb1 ( p , q ) ;

end
end
d3n 1=sum(sum( d3n1 ) ) ;
d3t 1=sum(sum( d3t1 ) ) ;
d3b 1=sum(sum( d3b1 ) ) ;
Dv= ( 8 * [ d3n 1 0 0 ; 0 d3t 1 0 ; 0 0 d3b 1 ] ) /(4* pi ) ; % d e p o l a r i z a t i o n

dyadic
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end

A.7 Absorptance Ap in the Grating-Coupled Configuration for
Optical Sensor

c l c
c l e a r a l l
g loba l ECTF epm d2 d1 L L1 d3 z1 z2 z3 N t ;
mu 0=4* pi *10 ˆ −7 ;
ep 0 = 8 . 8 5 4 * 10ˆ −12;
nm=10ˆ( −9) ;
lambda 0 = 650*nm;
e t a 0 = s q r t ( mu 0/ep 0 ) ;
epm=(0.05096+1 i * 3 . 9 2 4 5 1 ) ˆ 2 ;
L = 500*nm;
f o r f r =1:4

i f f r ==1
d1 = 1000*nm;

e l s e i f f r ==2
d1 = 2000*nm;

e l s e i f f r ==3
d1 = 3000*nm;

e l s e
d1 = 4000*nm;

end
d2 = d1 + 20*nm;
d3 = d2 + 30*nm;
L1 = 0 . 5 * L ;
N t = 1 5 ;
Nd = 3 0 ;
Ng = 3 0 ;
Nm=10;
Ns = Nd + Ng;
gamma deg = ( 3 0 * pi ) /180;
sz = [ cos ( gamma deg ) −s i n ( gamma deg ) 0 ; s i n ( gamma deg ) cos (

gamma deg ) 0 ; 0 0 1 ] ;
chiv =15* pi /180;

ch i=atan ( 3 . 1 0 5 6 * tan ( chiv ) ) ;
v=2* chiv/pi ;
sy= [ cos ( ch i ) 0 −s i n ( ch i ) ; 0 1 0 ; s i n ( ch i ) 0 cos ( ch i ) ] ;
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%% nl =1.33
epa =2 .845219423 ;
epb =3 .17749538 ;
epc =3 .17749538 ;
%%

epref =[ epb 0 0 ; 0 epc 0 ; 0 0 epa ] ;
ECTF=sz * sy * epref * inv ( sy ) * inv ( sz ) ;

knot =(2* pi ) /lambda 0 ;
vv =1;
ps i =0* pi /180;
% * * * * * * * * * * End Defining Var iab les * * * * * * * * * * * * * * * * * * * %
%%
di =0;
dt = 0 . 1 ;
df =89;
f o r NN=di : dt : df

t h e t a = NN* pi /180;
disp (NN) ;
y1 =0;
f o r n1=−N t : 1 : N t

y1=y1 +1;
kxnn ( y1 ) =knot * cos ( ps i ) * s i n ( t h e t a ) +( n1 * 2 * pi ) /L ;

ky=knot * s i n ( ps i ) * s in ( t h e t a ) ;
kxy ( y1 ) = s q r t ( kxnn ( y1 ) ˆ2+ky ˆ 2 ) ;
i f knot ˆ2 >= kxy ( y1 ) ˆ2
kzn ( y1 ) = s q r t ( knot ˆ2 − kxy ( y1 ) ˆ 2 ) ;

e l s e i f knot ˆ2 < kxy ( y1 ) ˆ2
kzn ( y1 ) = 1 i * s q r t ( − knot ˆ2 + kxy ( y1 ) ˆ 2 ) ;

end
end

kx = diag ( kxnn ) ;
%* * * * * * * * * * * * * * * * End Finding kzn * * * * * * * * * * * * * * * * * * * * * * * %
%%
%* * * * * * * * * * * * * * Finding Y Matr ices * * * * * * * * * * * * * * * * * %
yph=[− diag ( ( 1/ knot ) . * kzn . * kxnn ./ kxy ) diag ( ky ./ kxy ) ; −diag ( (1 / knot )

. * kzn . * ky ./ kxy ) −diag ( kxnn ./ kxy ) ] ;
ynh=[ diag ( ( 1 / knot ) . * kzn . * kxnn ./ kxy ) diag ( ky ./ kxy ) ; diag ( (1 / knot ) . *

kzn . * ky ./ kxy ) −diag ( kxnn ./ kxy ) ] ;
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ype=[− diag ( ky ./ kxy ) −diag ( ( 1 / knot ) . * kzn . * kxnn ./ kxy ) ; diag ( kxnn ./
kxy ) −diag ( ( 1/ knot ) . * kzn . * ky ./ kxy ) ] ;

yne=[− diag ( ky ./ kxy ) diag ( (1 / knot ) . * kzn . * kxnn ./ kxy ) ; diag ( kxnn ./ kxy )
diag ( (1 / knot ) . * kzn . * ky ./ kxy ) ] ;

ypos =[ ype ; yph ] ;
yneg =[ yne ; ynh ] ;
Z1=[ ype ; yph ] ;
temp1=(Ns+Nm+ 1: − 1 : 1 ) ;
mm=length ( temp1 ) ;
matr ix zz {Nd+Ng+Nm+1} = Z1 ;
f o r n=Ns+Nm: − 1 : 1

%%
%* * * * * * * * * * * * * * * * * * * * * * * P e r m i t t i v i t y For metal Region

* * * * * * * * * * * * * * %
i f n > Ns

d e l t a ( n ) =(d3−d2 ) /Nm;
x1 = d2− ( d2 − d3 ) * ( n − Ns) /Nm;

x2 = d2 − ( d2 − d3 ) * ( n − 1 − Ns) /Nm;
z1 = 0 . 5 * ( x1 + x2 ) ;

f o r n3 = 0 : 2 * N t
eparxx ( n3 +1)= f u n c t f ( z1 , n3 , 0 , epm, d1 , d2 , L , L1 ) ;
eparxxn ( n3 +1)= f u n c t f ( z1 , −n3 , 0 , epm, d1 , d2 , L , L1 ) ;
eparxy ( n3 +1)= f u n c t f ( z1 , n3 , 0 , 0 , d1 , d2 , L , L1 ) ;
eparxyn ( n3 +1)= f u n c t f ( z1 , −n3 , 0 , 0 , d1 , d2 , L , L1 ) ;
eparxz ( n3 +1)= f u n c t f ( z1 , n3 , 0 , 0 , d1 , d2 , L , L1 ) ;
eparxzn ( n3 +1)= f u n c t f ( z1 , −n3 , 0 , 0 , d1 , d2 , L , L1 ) ;
eparyx ( n3 +1)= f u n c t f ( z1 , n3 , 0 , 0 , d1 , d2 , L , L1 ) ;
eparyxn ( n3 +1)= f u n c t f ( z1 , −n3 , 0 , 0 , d1 , d2 , L , L1 ) ;
eparyy ( n3 +1)= f u n c t f ( z1 , n3 , 0 , epm, d1 , d2 , L , L1 ) ;
eparyyn ( n3 +1)= f u n c t f ( z1 , −n3 , 0 , epm, d1 , d2 , L , L1 ) ;
eparyz ( n3 +1)= f u n c t f ( z1 , n3 , 0 , 0 , d1 , d2 , L , L1 ) ;
eparyzn ( n3 +1)= f u n c t f ( z1 , −n3 , 0 , 0 , d1 , d2 , L , L1 ) ;
eparzx ( n3 +1)= f u n c t f ( z1 , n3 , 0 , 0 , d1 , d2 , L , L1 ) ;
eparzxn ( n3 +1)= f u n c t f ( z1 , −n3 , 0 , 0 , d1 , d2 , L , L1 ) ;
eparzy ( n3 +1)= f u n c t f ( z1 , n3 , 0 , 0 , d1 , d2 , L , L1 ) ;
eparzyn ( n3 +1)= f u n c t f ( z1 , −n3 , 0 , 0 , d1 , d2 , L , L1 ) ;
eparzz ( n3 +1)= f u n c t f ( z1 , n3 , 0 , epm, d1 , d2 , L , L1 ) ;
eparzzn ( n3 +1)= f u n c t f ( z1 , −n3 , 0 , epm, d1 , d2 , L , L1 ) ;

end
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exx= t o e p l i t z ( eparxx , eparxxn ) ;
exy= t o e p l i t z ( eparxy , eparxyn ) ;

exz= t o e p l i t z ( eparxz , eparxzn ) ;
eyx= t o e p l i t z ( eparyx , eparyxn ) ;

eyy= t o e p l i t z ( eparyy , eparyyn ) ;
eyz= t o e p l i t z ( eparyz , eparyzn ) ;

ezx= t o e p l i t z ( eparzx , eparzxn ) ;
ezy= t o e p l i t z ( eparzy , eparzyn ) ;
ezz= t o e p l i t z ( eparzz , eparzzn ) ;

%* * * * * * * * * * * * * * * * End Metal P e r m i t t i v i t y * * * * * * * * * * * * * * * * * * * * * %
e l s e i f n <= Nd+Ng && n > Nd
% * * * * * * * * * * S t a r t Grating P e r m i t t i v i t y * * * * * * * * * * * * * * * % % %

d e l t a ( n ) =(d2−d1 ) /Ng;
x3 = d1 − ( d1 − d2 ) * ( n − Nd) /Ng;

x4 = d1 − ( d1 − d2 ) * ( n − 1 − Nd) /Ng;
z2 = 0 . 5 * ( x3 + x4 ) ;

f o r q3 = 0 : 2 * N t
eparxx ( q3 +1)= f u n c t f ( z2 , q3 , ECTF ( 1 , 1 ) ,epm, d1 , d2 , L , L1 ) ;
eparxxn ( q3 +1)= f u n c t f ( z2 , −q3 , ECTF ( 1 , 1 ) ,epm, d1 , d2 , L , L1 ) ;

eparxy ( q3 +1)= f u n c t f ( z2 , q3 , ECTF ( 1 , 2 ) , 0 , d1 , d2 , L , L1 ) ;
eparxyn ( q3 +1)= f u n c t f ( z2 , −q3 , ECTF ( 1 , 2 ) , 0 , d1 , d2 , L , L1 ) ;

eparxz ( q3 +1)= f u n c t f ( z2 , q3 , ECTF ( 1 , 3 ) , 0 , d1 , d2 , L , L1 ) ;
eparxzn ( q3 +1)= f u n c t f ( z2 , −q3 , ECTF ( 1 , 3 ) , 0 , d1 , d2 , L , L1 ) ;

eparyx ( q3 +1)= f u n c t f ( z2 , q3 , ECTF ( 2 , 1 ) , 0 , d1 , d2 , L , L1 ) ;
eparyxn ( q3 +1)= f u n c t f ( z2 , −q3 , ECTF ( 2 , 1 ) , 0 , d1 , d2 , L , L1 ) ;
eparyy ( q3 +1)= f u n c t f ( z2 , q3 , ECTF ( 2 , 2 ) ,epm, d1 , d2 , L , L1 ) ;
eparyyn ( q3 +1)= f u n c t f ( z2 , −q3 , ECTF ( 2 , 2 ) ,epm, d1 , d2 , L , L1 ) ;

eparyz ( q3 +1)= f u n c t f ( z2 , q3 , ECTF ( 2 , 3 ) , 0 , d1 , d2 , L , L1 ) ;
eparyzn ( q3 +1)= f u n c t f ( z2 , −q3 , ECTF ( 2 , 3 ) , 0 , d1 , d2 , L , L1 ) ;

eparzx ( q3 +1)= f u n c t f ( z2 , q3 , ECTF ( 3 , 1 ) , 0 , d1 , d2 , L , L1 ) ;
eparzxn ( q3 +1)= f u n c t f ( z2 , −q3 , ECTF ( 3 , 1 ) , 0 , d1 , d2 , L , L1 ) ;
eparzy ( q3 +1)= f u n c t f ( z2 , q3 , ECTF ( 3 , 2 ) , 0 , d1 , d2 , L , L1 ) ;
eparzyn ( q3 +1)= f u n c t f ( z2 , −q3 , ECTF ( 3 , 2 ) , 0 , d1 , d2 , L , L1 ) ;
eparzz ( q3 +1)= f u n c t f ( z2 , q3 , ECTF ( 3 , 3 ) ,epm, d1 , d2 , L , L1 ) ;
eparzzn ( q3 +1)= f u n c t f ( z2 , −q3 , ECTF ( 3 , 3 ) ,epm, d1 , d2 , L , L1 ) ;

end
exx= t o e p l i t z ( eparxx , eparxxn ) ;
exy= t o e p l i t z ( eparxy , eparxyn ) ;
exz= t o e p l i t z ( eparxz , eparxzn ) ;
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eyx= t o e p l i t z ( eparyx , eparyxn ) ;
eyy= t o e p l i t z ( eparyy , eparyyn ) ;
eyz= t o e p l i t z ( eparyz , eparyzn ) ;
ezx= t o e p l i t z ( eparzx , eparzxn ) ;
ezy= t o e p l i t z ( eparzy , eparzyn ) ;
ezz= t o e p l i t z ( eparzz , eparzzn ) ;

%%
%* * * * * * * * * * * * * P e r m i t t i v i t y f o r CTF %%%%%%%%%%%%%%%%%%%

e l s e i f n <= Nd
d e l t a ( n ) =d1/Nd;

x5 = ( d1 ) *n/Nd;
x6 = ( d1 ) * ( n− 1)/Nd;
z3 = 0 . 5 * ( x5 + x6 ) ;

f o r j 1 = 0 : 2 * N t
eparxx ( j 1 +1)= f u n c t f ( z3 , j1 , ECTF ( 1 , 1 ) , 0 , d1 , d2 , L , L1 ) ;
eparxxn ( j 1 +1)= f u n c t f ( z3 , − j1 , ECTF ( 1 , 1 ) , 0 , d1 , d2 , L , L1 ) ;
eparxy ( j 1 +1)= f u n c t f ( z3 , j1 , ECTF ( 1 , 2 ) , 0 , d1 , d2 , L , L1 ) ;
eparxyn ( j 1 +1)= f u n c t f ( z3 , − j1 , ECTF ( 1 , 2 ) , 0 , d1 , d2 , L , L1 ) ;

eparxz ( j 1 +1)= f u n c t f ( z3 , j1 , ECTF ( 1 , 3 ) , 0 , d1 , d2 , L , L1 ) ;
eparxzn ( j 1 +1)= f u n c t f ( z3 , − j1 , ECTF ( 1 , 3 ) , 0 , d1 , d2 , L , L1 ) ;
eparyx ( j 1 +1)= f u n c t f ( z3 , j1 , ECTF ( 2 , 1 ) , 0 , d1 , d2 , L , L1 ) ;
eparyxn ( j 1 +1)= f u n c t f ( z3 , − j1 , ECTF ( 2 , 1 ) , 0 , d1 , d2 , L , L1 ) ;
eparyy ( j 1 +1)= f u n c t f ( z3 , j1 , ECTF ( 2 , 2 ) , 0 , d1 , d2 , L , L1 ) ;
eparyyn ( j 1 +1)= f u n c t f ( z3 , − j1 , ECTF ( 2 , 2 ) , 0 , d1 , d2 , L , L1 ) ;

eparyz ( j 1 +1)= f u n c t f ( z3 , j1 , ECTF ( 2 , 3 ) , 0 , d1 , d2 , L , L1 ) ;
eparyzn ( j 1 +1)= f u n c t f ( z3 , − j1 , ECTF ( 2 , 3 ) , 0 , d1 , d2 , L , L1 ) ;

eparzx ( j 1 +1)= f u n c t f ( z3 , j1 , ECTF ( 3 , 1 ) , 0 , d1 , d2 , L , L1 ) ;
eparzxn ( j 1 +1)= f u n c t f ( z3 , − j1 , ECTF ( 3 , 1 ) , 0 , d1 , d2 , L , L1 ) ;
eparzy ( j 1 +1)= f u n c t f ( z3 , j1 , ECTF ( 3 , 2 ) , 0 , d1 , d2 , L , L1 ) ;
eparzyn ( j 1 +1)= f u n c t f ( z3 , − j1 , ECTF ( 3 , 2 ) , 0 , d1 , d2 , L , L1 ) ;
eparzz ( j 1 +1)= f u n c t f ( z3 , j1 , ECTF ( 3 , 3 ) , 0 , d1 , d2 , L , L1 ) ;
eparzzn ( j 1 +1)= f u n c t f ( z3 , − j1 , ECTF ( 3 , 3 ) , 0 , d1 , d2 , L , L1 ) ;

end
exx= t o e p l i t z ( eparxx , eparxxn ) ;
exy= t o e p l i t z ( eparxy , eparxyn ) ;
exz= t o e p l i t z ( eparxz , eparxzn ) ;
eyx= t o e p l i t z ( eparyx , eparyxn ) ;
eyy= t o e p l i t z ( eparyy , eparyyn ) ;
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eyz= t o e p l i t z ( eparyz , eparyzn ) ;
ezx= t o e p l i t z ( eparzx , eparzxn ) ;
ezy= t o e p l i t z ( eparzy , eparzyn ) ;
ezz= t o e p l i t z ( eparzz , eparzzn ) ;

end
%%
%* * * * * * * * * C a l cu l a t in g P Matrix * * * * * * * * * * * * * * %
p 11=−kx * inv ( ezz ) * ezx ;

p 12=−kx * inv ( ezz ) * ezy ;
p 13 =(ky/knot ) * kx * inv ( ezz ) ;
p 14=knot * eye ( 2 * N t +1) −(1/ knot ) * kx * inv ( ezz ) * kx ;
p 21=−ky * inv ( ezz ) * ezx ;
p 22=−ky * inv ( ezz ) * ezy ;
p 23=−knot * eye ( 2 * N t +1) +(kyˆ2/ knot ) * inv ( ezz ) ;
p 24 =−(ky/knot ) * inv ( ezz ) * kx ;
p 31=−knot * eyx+knot * eyz * inv ( ezz ) * ezx −(ky/knot ) * kx ;
p 32 =(1/ knot ) * kxˆ2 − knot * eyy+knot * eyz * inv ( ezz ) * ezy ;
p 33=−ky * eyz * inv ( ezz ) ;
p 34=eyz * inv ( ezz ) * kx ;
p 41=knot * exx−knot * exz * inv ( ezz ) * ezx −(kyˆ2/ knot ) * eye ( 2 * N t +1) ;
p 42=knot * exy−knot * exz * inv ( ezz ) * ezy +(ky/knot ) * kx ;
p 43=ky * exz * inv ( ezz ) ;
p 44=−exz * inv ( ezz ) * kx ;
p=[ p 11 p 12 p 13 p 14 ; p 21 p 22 p 23 p 24 ; p 31 p 32 p 33 p 34 ;

p 41 p 42 p 43 p 44 ] ;
%* * * * * * * * * End P Matrix * * * * * * * * * * * * * * * * * * * %
%%

[G1 , D1] = e ig ( p ) ;
D2=diag (D1) ;
D imag=imag (D2) ;
D real= r e a l (D2) ;
[D3 , sor t index3 ]= s o r t ( D imag , ’ descend ’ ) ;
D real1=D real ( sor t index3 ) ;
D=D real1 +1 i *D3 ;
Dm=diag (D) ;
Du{n}=diag (D( 1 : ( 4 * N t ) +2) ) ;
Dl{n}=diag (D( ( 4 * N t ) + 3 : ( 8 * N t ) +4) ) ;
G=G1 ( : , sor t index3 ) ;

i f n==Ns+Nm
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W=inv (G) *Z1 ;
e l s e

W=inv (G) *Z ;
end

wu{n}=W( 1 : 4 * N t + 2 , 1 : 4 * N t +2) ;
wl{n}=W( 4 * N t +3 : 8 * N t + 4 , 1 : 4 * N t +2) ;

Z=G* [ eye ( 4 * N t +2) ; expm( −1 i * d e l t a ( n ) * Dl{n} ) * wl{n}* inv (wu{n} ) * expm
(1 i * d e l t a ( n ) *Du{n} ) ] ;
matr ix zz {n} = [Z ] ;

end
%%

% * * * * * * * * * * * * * * * * * * Finging T0 and R f o r Inc idence Ap

* * * * * * * * * * * * * * * * * * * * * * %
Ap=zeros ( 4 * N t +2 ,1) ;

Ap( 3 * N t +2 ,1) =1;
zu=Z ( 1 : 4 * N t +2 , 1 : 4 * N t +2) ;

z l =Z( 4 * N t +3 : 8 * N t + 4 , 1 : 4 * N t +2) ;
f1 =[zu −yne ; z l −ynh ] ;
YP=[ ype ; yph ] ;
TR=inv ( f1 ) *YP*Ap;
T0=TR ( 1 : 4 * N t +2 ,1) ;
R=TR( 4 * N t +3 : 8 * N t +4 ,1) ;

m a t r i x t t {1}=T0 ;
%%
T=T0 ;
%* * * * * * * c a l c u l a t i n g T matrix * * * * * * * * * * * * * * * * * * * * * * %

f o r nnn=1:Nd+Ng+Nm
T=inv (wu{nnn} ) *expm(1 i * d e l t a ( nnn ) *Du{nnn} ) *T ;

m a t r i x t t {nnn+1}=T ;
end

%* * * * * * * * * * * * * * * * * * * * * * * * End T Matrix * * * * * * * * * * * * * * * * * * * %
%%
r s=R ( 1 : 2 * N t +1 ,1) ;

rp=R( 2 * N t +2 : 4 * N t +2 ,1) ;
t s =T ( 1 : 2 * N t +1 ,1) ;
tp=T ( 2 * N t +2 : 4 * N t +2 ,1) ;

sumR=0;
sumT=0;
f o r n1 = 1 : 2 * N t+1
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kzr= r e a l ( kzn . / ( knot * cos ( t h e t a ) ) ) ;
Rsp=( abs ( r s ( n1 ) ’ ) ˆ 2 ) * kzr ( n1 ) ;
Rpp=( abs ( rp ( n1 ) ’ ) ˆ 2 ) * kzr ( n1 ) ;
Tsp =( abs ( t s ( n1 ) ’ ) ˆ 2 ) * kzr ( n1 ) ;
Tpp=( abs ( tp ( n1 ) ’ ) ˆ 2 ) * kzr ( n1 ) ;
sumR=sumR+Rpp+Rsp ;
sumT=sumT+Tpp+Tsp ;

end
App( vv ) =1−(sumR+sumT) ;

vv=vv +1;
end
i f f r ==1;
h1= p l o t ( di : dt : df , App, ’ k ’ , ’ l inewidth ’ , 4 ) ;
e l s e i f f r ==2;
h2= p l o t ( di : dt : df , App, ’ −.b ’ , ’ l inewidth ’ , 4 ) ;
e l s e i f f r ==3;
h3= p l o t ( di : dt : df , App, ’ −.b ’ , ’ l inewidth ’ , 4 ) ;
e l s e
h4= p l o t ( di : dt : df , App, ’ : r ’ , ’ l inewidth ’ , 4 ) ;
end
hold a l l

end
x l a b e l ( ’ \ t h e t a ( deg ) ’ , ’ FoN tSize ’ , 16) ;

y l a b e l ( ’ A {p} ’ , ’ FoN tSize ’ , 16) ;
ax=gca ;
ax . FoN tSize =16;

h = legend ( [ h1 , h2 , h3 , h4 ] ,{ ’ L {c}= 1000 nm ’ , ’ L {c}= 2000 nm ’ , ’ L {c}=
3000 nm ’ , ’ L {c}= 4000 nm ’ } , ’ l o c a t i o n ’ , ’ north ’ ) ;

h . I N t e r p r e t e r = ’ l a t e x ’
s e t ( h , ’ I N t e r p r e t e r ’ , ’ l a t e x ’ )
legend show

funct ion e p s n c t f = f u n c t f ( z , n , epd , epm, d1 , d2 , L , L1 )
CD=d2−d1 ;
y=(L1/pi ) * as in ( ( d2−z ) /CD) ;
B=epm−epd ;
%% P e r m i t t i v i t y f o r n=0

i f n == 0
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i f z<=d1
e p s n c t f =epd ;

e l s e i f z<d2 && z>d1
e p s n c t f =(epd * ( L − L1 + 2* y ) +epm* ( L1 − 2* y ) ) /L ;

e l s e i f z>=d2
e p s n c t f =epm ;
end

end
%% P e r m i t t i v i t y f o r n˜=0

i f n˜= 0
i f z<d2 && z>d1

e p s n c t f = ( B* exp( −1 i *n * ( L1 − y ) * 2 * pi/L ) −B* exp( −1 i *
n* y * 2 * pi/L ) ) * 1 i /(n * 2 * pi ) ;

e l s e i f z<=d1
e p s n c t f =0;

e l s e i f z>=d2
e p s n c t f =0;

end
end
end
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wave-packets at the boundary of metallodielectric lattices,” IEEE J. Sel. Top. Quantum Elec-
tron. 19(3), 4601408 (2013).

[54] T. G. Mackay and A. Lakhtakia, “Temperature–mediated transition from Dyakonov sur-
face waves to surface–plasmon–polariton waves,” IEEE Photon. J. 8(5), 1–13 (2016).

[55] M. Faryad and F. Abbas, “On the Dyakonov waves guided by the interface with a colum-
nar thin film,” 12th International Congress on Artificial Materials for Novel Wave Phenomena–
Metamaterials, Espoo, Finland, Aug. 27–Sept. 1 (2018).

[56] J. A. Sorni, M. Naserpour, C. J. Zapata-Rodrı́guez, and J. J. Miret, “Dyakonov surface
waves in lossy metamaterials,” Opt. Commun. 355, 251–255 (2015).

[57] F. Tian, D. Guo, B. Liu, Q. Zhang, Q. Tian, R. Ullah, and X. Xin, “A novel concatenated
coded modulation based on GFDM for access optical networks,” IEEE Photonics J. 10(2),
1–8 (2018).

[58] T. G. Mackay and A. Lakhtakia, “Simultaneous existence of amplified and attenuated
Dyakonov surface waves,” Opt. Commun. 427(1), 175–179 (2018).

[59] L.-C. Crasovan, D. Artigas, D. Mihalache, and L. Torner, “Optical Dyakonov surface
waves at magnetic interfaces,” Opt. Lett. 30(22), 3075–3077 (2005).

[60] L.-C. Crasovan, O. Takayama, D. Artigas, S. K. Johansen, D. Mihalache, and L. Torner,
“Enhanced localization of Dyakonov-like surface waves in left-handed materials,” Phys.
Rev. B 74(15), 155120 (2006).

[61] D. Artigas and L. Torner, “Dyakonov surface waves in photonic metamaterials,” Phys.
Rev. Lett. 94(1), 013901 (2005).

[62] O. Takayama et al., “Dyakonov surface wave resonant transmission,” Opt. Exp. 19(7),
6339–6347 (2011).

[63] O. Takayama, D. Artigas, and L. Torner, “Practical dyakonons,” Opt. Lett. 37(20), 4311–
4313 (2012).

[64] L. Torner et al., “Nonlinear hybrid waves guided by birefringent interfaces,” Electron.
Lett. 29(13), 1186–1188 (1993).

[65] L. Torner, J. P. Torres, and D. Mihalache, “New type of guided waves in birefringent
media,” IEEE Photon. Technol. Lett. 5(2), 201–203 (1993).

[66] L. Torner et al., “Hybrid waves guided by ultrathin films,” J. Lightwave Technol. 13(10),
2027–2033 (1995).

126



BIBLIOGRAPHY

[67] S. Pancharatnam, “The propagation of light in absorbing biaxial crystals—I. Theoretical,”
Proc. Ind. Natl Sci. Acad. 42(2), 86–109 (1955).

[68] J. Gerardin and A. Lakhtakia, “Conditions for Voigt wave propagation in linear, homoge-
neous, dielectric mediums,” Optik 112(10), 493–495 (2001).

[69] T. G. Mackay, C. Zhou, and A. Lakhtakia, “Dyakonov–Voigt surface waves,” Proc. R. Soc.
A 475(2228), 20190317 (2019).

[70] C. Zhou, T. G. Mackay, and A. Lakhtakia, “Singular existence of a Dyakonov–Voigt sur-
face wave: Proof,” Results Phys. 24, 104140 (2021).

[71] P. Yeh, A. Yariv, and C.-S. Hong, “Electromagnetic propagation in periodic stratified me-
dia. I. General theory,” J. Opt. Soc. Am. 67(4), 423–438 (1977).

[72] P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl.
Phys. Lett. 32(2), 104–105 (1978).

[73] W. M. Robertson and M. S. May, “Surface electromagnetic wave excitation on one-
dimensional photonic band-gap arrays,” Appl. Phys. Lett. 74(13), 1800–1802 (1999).

[74] V. N. Konopsky and E. V. Alieva, “Photonic crystal surface waves for optical biosensors,”
Anal. Chem. 79(12), 4729–4735 (2007).

[75] D. P. Pulsifer, M. Faryad, and A. Lakhtakia, “Grating-coupled excitation of Tamm waves,”
J. Opt. Soc. Am. B 29(9), 2260–2269 (2012).

[76] J. Martorell, D. W. L. Sprung, and G. V. Morozov, “Surface TE waves on 1D photonic
crystals,” J. Opt. A: Pure Appl. Opt. 8(8), 630 (2006).

[77] F. Villa-Villa, J. A. Gaspar-Armenta, and A. Mendoza-Suárez, “Surface modes in one di-
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[153] K. Uller, Beiträge zur Theorie der Elektromagnetischen Strahlung Ph.D. Thesis, Universität
Rostock, Germany, (1903); Chapter XIV.

[154] M. Faryad and A. Lakhtakia, “Grating-coupled excitation of the Uller–Zenneck surface
wave in the optical regime,” J. Opt. Soc. Am. B 31(7), 1706–1711 (2014).

[155] M. Faryad and A. Lakhtakia, “Observation of the Uller–Zenneck surface waves,” Opt.
Lett. 39(17), 5204–5207 (2014).
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