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Nomenclature

ε̄ dielectric permittivity tensor

ε1, ε2, εz dielectric permittivity parameters

ω operating frequency

ωp plasma frequency

ωc cyclotron (gyro) frequency

e electric charge

Ne ion concentration

Hdc magnitude of geo-magnetic field vector

Hz magnetic field perpendicular to the plane

ηs surface impedance

η0 free surface impedance

ε0 electric permittivity in vacuum

µ0 magnetic permeability in vacuum

l length parameter for strip and width parameter for slit

keff propagation constant

k wave-number

θ0 incidence angle

θ observation angle

EM electromagnetic
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Chapter 1

Introduction

1.1 Motivation

The literature survey made it clear that researchers were interested in analyz-

ing the effects of cold plasma on scattering of EM-waves. Now a day’s interest of

researchers towards the scattering of EM-waves in the existence of non-plasma has

made a very few investigations under the consideration of various aspects. Therefore,

in our thesis we aim to explore the exact and asymptotic solutions for the scattered

far field by considering different geometries. Also, to gain thorough insight towards

the physics of the models proposed, the effects of the physical parameters will be

presented and discussed briefly.

Analysis of diffraction and scattering of waves by planes, half-planes, finite planes

and strips is a worthwhile subject matter regarding electromagnetic theory and mod-

ern optics. A lot of exact, asymptotic, analytical and numerical techniques are worked

out and have been applied to evaluate the results for diffraction phenomena for dif-

ferent geometries. Wiener-Hopf method is one of the strongest techniques to tackle

such a large class of problems modelled for diffraction of waves by different types of

obstacles.

Electromagnetic waves propagate through an ionized gas and get affected due

to interaction with ionized gas. This made the researchers curious. Particularly,
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researchers started extensive study and investigation about the waves that radio

waves got reflected from and got transmitted through the ionosphere containing cold

plasma. This ionized gas is termed as plasma because it is electrically neutral as

well as the electron and ion densities are substantially the same. The problem pro-

posed to explore the antenna characteristics, journey of waves through plasma, and

radars catching signals are worthwhile. Characteristics of Antenna and artificial

satellites regarding wave propagation or communicating signals through ionosphere

between vehicle and earth station are also worthwhile. The often existence of DC-

magnetic field (geomagnetic field) in plasma makes it an-isotropic medium and named

as magneto-plasma. For example, earth magnetic field is effective in ionosphere. As-

suming the small effect of temperature and pressure variations in plasma reduces it to

non-thermal plasma. The characteristics of an-isotropic medium due to plasma are

examined by magneto-ionic theory. In the view of this theory, effects of finite tem-

perature and pressure variations can be ignored, because their action is usually small

that is why it is reasonable to deal with the plasma at low temperature. Hence, the

magneto-ionic theory may be used as a tool to deal with a cold plasma. Methodology

of solution is briefly discussed.The literature survey made it clear that researchers

were interested in analyzing the non-plasma’s effects on scattering of EM-waves. Now

a day’s interest of researchers towards the scattering of EM-waves in the existence of

non-thermal plasma has made a very few investigations under the consideration of

various aspects. Therefore, in our thesis we aim to explore the exact and asymptotic

solutions for the scattered far field by considering different geometries.

1.2 Background

The study of scattering of EM-waves is a topic of great interest to the researchers

due to wide-ranging application of solar photo-ionization, X-ray radiations of soft

nature and communication of EM- signals from an artificial satellite. Poincare [1]

and Sommerfeld [2] worked out for the half-plane problems which explored the new
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ideas for deep analysis about electromagnetic waves and scattering of sound waves.

The Wiener-Hopf method [3,4] used for the solution of different types of waves asso-

ciated with canonical geometries was studied rigorously. Riemann- Hilbert method

had been considered for the diffraction-propagation theory of electromagnetic waves

[5]. For rigorous study of electromagnetic (EM) wave scattering, the mode-matching

method is used [6]. Several problems on the analysis of line/source diffraction of elec-

tromagnetic (EM) waves had been investigated which presented a canonical problem

corresponding to the model for GTD (geometrical theory diffraction). Kobayashi [7]

studied and then investigated the diffracted wave by a strip in using Wiener-Hopf

technique to evaluate the exact and asymptotic solutions. Kobayashi and Eizawa

used Wiener-Hopf technique in order to study the diffraction of waves by considering

sinusoidal grating [8]. We can look in historical aspects of Wiener-Hopf technique in

[9]. Diffraction phenomena of the plane waves by a finite strip under the assumption

of impedance on both sides of the surface of strip was investigated using Wiener-Hopf

technique [10].

The models proposed to elaborate the diffraction phenomena of electromagnetic

(EM) waves by slit with infinite width in the conductible screen have been brought

under the rigorous investigation through mathematical analysis. Morse and Ruben-

stein [11] used the method of separation of variables for investigation of acoustic

waves diffracted by slits and ribbon. Clemmow [12] proposed a mathematical model

for diffraction by slit in which he derived a dual integral equation using spectrum de-

scription of electromagnetic (EM) fields. He assumed the width of slit much larger or

greater than the wavelength giving the two complementary cases under the approx-

imate analysis. Hongo [13] investigated the diffraction phenomena due to parallel

slits in the conducting screen in which he used the Kobayashi potential technique.

Imran et al. extended the Hongo’s work to the slits in an impedance plane. He used

the Kobayashi’s potential technique to investigate the problem rigorously [14].

The EM-waves (electromagnetic waves) propagating across an ionized gas has got

the significant attention of researchers for many years. The scientists have studied
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extensively on the radio waves or signals reflected from and transmitted through

the ionosphere [15-17]. It is known that plasma is such an ionized gas which is

electrically neutral and consists of substantially the same electron and ion densities.

The study of the problems modeled for the antenna characteristics, propagation of

waves through the plasma and radar cross section are of great importance. The wave

propagation and antenna characteristics of artificial satellites perform a vital func-

tion in transmitting the signals between the earth station and vehicles. A frequent

existence of geomagnetic field in plasma allows it to behave as an an-isotropic, the

best example is here that the earth magnetic field is effective in non-thermal plasma.

The small as well as negligible effect of pressure variations and finite temperature

make plasma to behave as a non-thermal plasma. Many researchers work out the

effects of cold plasma during analyzing the diffraction waves. Keeping focus on that

idea, scientists worked on the scattering of electromagnetic for different structures

in the consideration of non-thermal plasma. The diffracted electromagnetic (EM)

plane-wave embedded with impedance had been studied to inspect the effects of

non-thermal plasma using Wiener-Hopf technique [18]. Khan et al. inspected the

diffracted electrically-polarized plane wave by parallel plate wave-guide with imposi-

tion of impedance immersed in cold plasma, Wiener-Hopf technique along with mode

matching analysis was used [19]. Ayub et al. investigated the affecting non-thermal

plasma on the dominant TEM-wave radiated by parallel plate wave-guide with im-

position of impedance, radiator behaving as a horn type launcher of surface wave

and a horn with impedance loaded [20]. An EM-plane wave’s diffraction caused by a

finite strip under the effects of non-thermal plasma was inspected using Wiener-Hopf

technique by assuming Dirichlet as well as Neumann conditions on the same strip

[21, 22]. Later, Ayesha et al. extended the analysis made in [21] by considering the

symmetric plate [23].

8



1.3 Dissertation Catalog

In this thesis our work is summarized as

In chapter 2, we discussed the some basic definitions and methodologies based

on plane waves, electromagnetic waves, cold plasma , Fourier transform, boundary

conditions, Modeling of Helmholtz Equation, asymptotic expansion, analytic contin-

uation, Watson’s lemma, Gamma function, Generalized Gamma function, decom-

position theorem, factorization theorem, stationary phase method, decent steepest

method, Wiener-Hopf technique.

In chapter 3, we have taken the incident wave in the existence of non-thermal

plasma on a finite symmetric strip embedded with Dirichlet boundary conditions. By

employing the Fourier transformation on Helmholtz equation we get the boundary

value problem. The Wiener-Hopf technique is used to solve the proposed problem.

To obtain high-frequency signal, we have assumed that ω ≫ ωc leading to ε2 → 0

throughout the analysis. The separated field is evaluated and then effects of various

physical parameters are discussed through graphical analysis in the existence of non-

thermal plasma. Our research describes that symmetric length of plate has increased

the amplitudes and the separated field’s oscillations as compared to non symmetric

length in the previous article [19]. On analyzing the results, it is observed that

diffraction is affected by (a) different angles of incidence, (b) changing the k. (c)

extending the 2l, (d) permittivity of non-thermal plasma.

In chapter 4, we have taken the incident wave in the existence of non-thermal

plasma on a finite symmetric strip embedded with Neumann boundary conditions.

By the use of Fourier transform on Helmholtz equation, we get the boundary value

problem. The Wiener-Hopf technique is used to solve the proposed problem. To

obtain high-frequency signals, we have assumed condition ω ≫ ωc leading to ε2 → 0

throughout the analysis. The separated field is evaluated and then effects of var-

ious physical parameters are discussed through graphical analysis in the existence

of non-thermal plasma. Our research describes that symmetric length of plate has
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increased the amplitudes and number of field’s oscillations. On analyzing the results,

it is observed that diffraction is affected by (a) different θ0, (b) changing the k, (c)

extending the 2, (d) permittivity of non-thermal plasma.

In chapter 5, we discussed the diffracted H-polarized plane wave incident at the

sinusoidal-shaped grating of finite-length in the presence of nonthermal plasma is

analyzed by Wiener-Hopf technique along with perturbation method. Helmholtz

equation has been formulated by using Maxwell equations along with non-thermal

plasma parameters to inspect the effects of non-thermal plasma on scattered far field

intensity. The small corrugation amplitude as compared to wavelength is assumed

and scattered field has been expanded in the terms of the perturbation series to

lessen the problem to diffraction due to flat-strip embedded with mixed boundary

condition. Wiener-Hopf equations of zero- and first-order are formulated with the

aid of approximate boundary condition. The decomposition procedure is used to

proceed these Wiener-Hopf equations which then yields the exact solutions with

high-frequency.

Implementation of the inverse Fourier transformation along with the asymptotic

method of saddle point, the scattered field function has been derived which shows

validity for arbitrary angles of observation as well as incidence. We have accom-

plished graphical analysis of field intensity on the basis of results and investigated

the diffraction by flat strip and sinusoidal grating in the existence and non-existence

of non-thermal plasma in detail. On analyzing the plots, it is observed that the

number of oscillations increase due to increasing the number of gratings. Also, non-

thermal plasma is responsible in reduction of amplitude’s oscillations.

In chapter 6 and 7, We discuss the diffraction of electromagnetic plane-waves

due to a slit in the existence of non-thermal plasma. The slit is assumed to be of

finite width with Dirichlet and Neumann boundary conditions. Using the Fourier

transformation to the Helmholtz equation along with boundary condition, we get the

Wiener-Hopf equations which are further solved via the stationary phase method. To

obtain a frequency signal, we have assumed that ω ≫ ωc leading to ε2 → 0 throughout

10



the analysis. The separated field is calculated and then effects of various physical

parameters are discussed through graphical analysis in the existence of non-thermal

plasma. Observation describes that finite width of slit has increased the amplitudes

and field’s oscillations. On analyzing the results, it is observed that diffraction is

affected by (a) different θ0, (b) changing the k, (c) extending the 2l, (d) permittivity

of non-thermal plasma.
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Chapter 2

Mathematical Preliminaries

2.1 Plane Wave

The plane waves are represented by the function of following form

ψ(x, y, z, t) = Re
{
ψ0 exp(±i⃗k · r⃗ − iωt)

}

The sign of + indicates the outgoing waves propagating in the direction of k⃗ =

[kx, ky, kz] whereas the sign of minus represents the incoming waves propagating in

the opposite direction of k⃗ = [kx, ky, kz].

2.2 Electromagnetic Waves

Electromagnetic waves are created when electric field come in contact with mag-

netic field. These waves travelled with constant velocity in vaccum. These waves are

tranverse i.e electric field is perpendicular to magnetic field and they are measured

by their amplitude and wavelength.

2.3 Types of Electromagnetic Waves

Generally, there are seven types of electromagnetic waves:
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2.3.1 Radio waves: Instant Communication

These are EM waves of low frequency. These waves are emitted by many natural

and man made objects. For example radio, television, atara, planeta and other cosmic

bodies emit radio waves.

2.3.2 Microwaves: Data and Heat

In the EM spectrum microwaves are the second-lowest frequency waves. These

waves can measure from a few centimeters up to a foot. Due to their higher frequency,

microwaves can penetrate obstacles that interfere with radio waves such as clouds,

smoke and rain. Microwaves uaed for cooking food and carry radar, landline phone

calls and computer data transmissions.

2.3.3 Infrared Waves: Invisible Heat

In the EM spectrum infrared waves are in the lower-middle range of frequencies,

between microwaves and visible light. The size of infrared waves varies from a few

millimeters down to microscopic lengths. The shorter-wavelength infrared rays do not

produce much heat and are used in remote controls and imaging technologies, where

as longer-wavelength infrared waves produce heat and include radiation emitted by

fire, the sun and other heat-producing objects.

2.3.4 Visible Light Rays

The different frequencies of visible light are experienced by people as the colors

of the rainbow. The frequencies move from the lower wavelengths, detected as reds,

up to the higher visible wavelengths, detected as violet hues. The most noticeable

natural source of visible light is, of course, the sun.
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2.3.5 Ultraviolet Waves: Energetic Light

Ultraviolet waves has shorter wavelength then visible light. These are the cause

of sunburn and can cause of cancer. These are emitted from television microwaves

mobile phones etc.

2.3.6 X-rays: Penetrating Radiation

These rays are emitted by the sources which produces very high temperature like

the sun’s corona, which is much hotter then the aurface of the sun. These are used

in medical acience to view bone in the body.

2.3.7 Gamma Rays: Nuclear Energy

Gamma waves are the highest-frequency EM waves. These are emitted by only

the most energetic comic objects such as neutron stars, supernova, pulsars, and black

holes. Terrestrial sources include lightning, nuclear explosions and radioactive decay.

The wavelengths of these waves are measured on the subatomic level and can actually

pass through the empty space within an atom. These rays can destroy living cells;

fortunately, the Earth’s atmosphere absorbs any gamma rays that reach the planet.

2.4 Sinusoidal Grating

According to the sine curve y = sinx a grating having the luminance of the image

surge along an axis, increasing and decreasing at a regular spatial frequency is called

sinusoidal grating.

2.5 Cold Plasma (Non-thermal Plasma)

Plasma being a fourth or gaseous state of matter is an ionized gas which is elec-

trically neutral medium and contains substantially the same densities of ions and

electrons. If the effects of variations of the finite pressure force and temperature are
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taken to be small and ignored then plasma is termed as cold plasma. For example,

cold plasma can be found in the flow discharge in a fluorescent tube.

2.6 Boundary Conditions

The boundary conditions are linear if it ia taken as a linear equation between

ϕ and its derivative on the boundary. there are, generally, three types of boundary

conditions; (1) : Natural or Dirichlet boundary condition

(2) : Normal or Neumann or Essential boundary condition. (3) : Mixed or Robins

boundary condition.

2.6.1 Natural or Dirichlet boundary condition

The boundary condition that specifies the values of the unknown function ϕ on

the boundary is called Natural or Dirichlet boundary condition, i.e:

ϕ = p,

2.6.2 Normal or Neumann or Essential boundary condition

If the derivative of ϕ in the normal direction to the boundary is specifies on the

boundary, i.e;

∂ϕ

∂n
= q

2.6.3 Mixed or Robins boundary condition

A linear relation between ϕ and its normal derivative on the boundary is called

Mixed or Robins boundary condition, i.e:

∂ϕ

∂n
+ kϕ = r, k > 0
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2.7 Fourier Transform

This method of complex integral transformation is a mathematical tool which

helps in solving the differential equations. This mathematical tool can be utilized for

majority of the problems of finite and infinite domain. First suppose that a is real

then usual Fourier integral transform of f(x) for all x ∈ R can be defined as

F (α) =

∫ ∞

−∞
f(x)eiαxdx

and inversion can be defined as

f(x) =
1

2π

∫ ∞

−∞
F (α)e−iωxdα

Now suppose that α = σ + iτ is a complex variable. We can define generalized

Fourier transform under suitable conditions on f . By starting with half-range trans-

form, |f(x)| < A1e
τ−x as x → ∞ and f(x) = 0, for x < 0, where A1 > 0 and

τ- are constanta, then we have following function

F+(α) =

∫ ∞

0

f(x)eiαxdx

of F+(α) can found as

f(x) =
1

2π

∫
C

F (α)e−iαxdα

where C is a path of integration lying in the region of analyticity on which varies

from −∞ to ∞

In the same way, if we assume that f(x) = 0 for x > 0, and |f(x)| < A2e
τ+x as

x→ −∞, where A2 > 0 and τ+ are constant, then

F−(α) =

∫ 0

−∞
f(x)eiaxdx

which is analytic in the region τ < τ+ of complex α-plane. Now the inverse Fourier
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transform of F−(α) can found as

f(x) =
1

2π

∫
C

F−(α)e
iαxds,

where C is a path of integration lying in the region of analyticity on which varies

from −∞ to ∞. Combining above results, we get

|f(x)| <

 A1e
τ−x as x→ ∞

A2e
τ+x as x→ −∞

with τ < τ+, then Fourier transform given in (1.5) is the analytic function in the

strip τ− < τ < τ+ and inverse Fourier transform is defined by (1.6).

2.8 Gamma Function

The Gamma function Γ(η) for a complex variable η is defined

Γ(η) =

∫ ∞

0

tη−1e−1dt

for Re η > 0, where tη−1 is taken as principle value. The conditions Re η > 0 on right

hand aide of Eq(1.12) shows the convergence of the infinite integral. The Gamma

function is very important special function used in many branches of mathematical

physics and is investigated in detail in a number of literature.

2.9 Generalized Gamma Function

Let us consider the complex-variablesη and ξ with Re η > 0, |ξ| > 0 and | arg

ξ |< π, and a new special function Γm(η, ξ) as

Γm(η, ξ) =

∫ ∞

0

tη−1e−1

(t+ ξ)m
dt
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where m be a positive integer, where tη−1 is again presented as principal value.

The conditions |ξ| > 0 and | arg ξ| < π have been introduced in order to avoid the

case where a pole of order m of the integrand in Eqq.(1.10) at t = −ξ lies on the

integration path. The condition Re η > 0 has the same meaning as that required for

the definition of the Gamma function. Since the Γm(η, ξ) reduces to Γ(η) by taking

m = 0 we shall call Γm(η, ξ) as a generalized Gamma function.

Although analytical properties of Γm(η, ξ) have not yet been sufficiently investi-

gated so far. this function is of great importance in the wave scattering and diffraction

theory as related to the Wiener-Hopf technique, since the multiple edge diffraction

process can be defined explicitly in terms of this special function.

Kobayashi in his paper [25] worked on Generalized Gamma function in detail and

investigated several important analytical properties such as regularity with respect to

the variables η and ξ, asymptotic expansion for large |ξ|, analytic continuations in ξ−

plane, generalized incomplete Gamma function and discuss fundamental properties

briefly.

2.10 Asymptotic Expansions

Consider z with α ≤ arg(z) ≤ β and

∞∑
n=0

an
zn

=
∞∑
n=0

anz
−n

be a convergent or divergent series.

Definition: This series is called an asymptotic power series of f(z) for |z| → ∞ and

α ≤ arg(z) ≤ β if for each n ∈ {1, 2, 3, . . .}

f(z) =
n−1∑
k=0

akz
−k +Rn(z)

where

Rn(z) = O
(
z−n

)
for |z| → ∞ and α ≤ arg(z) ≤ β
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Theorem : A function f has an asymptotic expansion of the form () for |z| → ∞ and

α ≤ arg(z) ≤ β if and only if for each n ∈ {1, 2, 3, . . . .}

zn

[
f(z)−

n−1∑
k=0

akz
−k

]
→ an for |z| → ∞ and α ≤ arg(z) ≤ β

Hence a function f has at most one asymptotic expansion of the form () for α ≤

arg(z) ≤ β. Assymptotic expansion might be different for distinct regions, however

distinct functions will have same assymptotic expansion in some region. For example,

if for some δ > 0

f(z) ∼
∞∑
n=0

anz
−n for |z| → ∞ and arg(z) ≤ π

2
− δ <

π

2

and, f(z) + e−z have the same asymptotic expansions.

2.11 Watson’s Lemma:

Let f be a complex valued function of a real variable t such that

(1). f is continuous on (0,∞), (2).

f(t) ∼
∞∑
n=0

ant
λn−1 for t→ 0

with

0 < λ0 < λ1 < λ2 < . . . ..

and (3). for some c > 0

f(t) = O
(
ect

)
for t→ ∞

Then we have

F (z) =

∫ ∞

0

e−ztf(t)dt ∼
∞∑
n=0

an
Γ (λn)

zλn
for t→ ∞ and arg(z) ≤ π

2
− δ <

π

2
,
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for some δ such that 0 < δ < π
2
. Proof: We have

F (z) =

∫ ∞

0

e−ztf(t)dt

the integral converges for Re z > c.

∣∣∣∣∣f(t)−
∞∑
n=0

ant
λn−1

∣∣∣∣∣ ≤MtλN−1 for t→ 0

where M > 0 is constant. Applying () we get

∣∣∣∣∣f(t)−
∞∑
n=0

ant
λn−1

∣∣∣∣∣ ≤ KecttλN−1 for t > 0

where K > 0 is some constant. we have

∣∣∣∣∣
∫ ∞

0

e−ztf(t)dt−
N−1∑
n=0

e−zttλn−1dt

∣∣∣∣∣ ≤ K

∫ ∞

0

e−(Re −c)ttλ
N−1

dt

for Re z > 0 ∫ ∞

0

e−zttλn−1dt =
1

zλn

∫ ∞

0

e−ττλn−1dτ =
Γ (λn)

zλn

we get

∣∣∣∣∣F (z)−
N−1∑
n=0

an
Γ (λn)

zλn

∣∣∣∣∣ ≤ K
Γ (λn)

(Re z − c)λN
= K

Γ (λn)

zλn

(
|z|

(Re z − c)

)λN

Since | arg(z)| ≤ π
2
− δ < π

2
, we have Re z ≥ |z| sin δ which implies that Re z − c ≥

1
2
|z| sin δ for |z| large enough. Thus we have

F (z)−
N−1∑
n=0

an
Γ (λn)

zλn
= O

(
z−λn

)
which proves Watson’s lemma.
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2.12 Asymptotic Expansion of Certain Branch Cuts

Let f(β) be a function with the following conditions: (i) f(β) be the analytic

function in |β − k| < r0 < θ where k is complex number with both of its imaginary

and real part are positive and r0 ̸= 0. (ii) f(β) holds f(β) = O
[
(β − k)δ

]
such that

|β − k| ≥ R with R < ∞ and, δ is some real constant. (iii) f(β) be a continues

function of β on any bounded part of the straight path from k to k + i∞ in the

β-plane.

Let us consider α in such a way that |α+ k| > 0 and −π/2 < arg(α+ k) < 3π/2,

and introduce Fmov(l, α) as

Fmv(l, α) =
1

πi

∫ k+i∞

k

eiβl
(β − k)vf(β)

(β + α)m
dβ

for l > 0,Re v > −1 and positive integer m, where arg(β − k) = π/2 the condition

l > 0, Re v > −1 ensures the indefinite integral’s absolute convergence in Eq. (1.14)

whereas |α + k| > 0 and −π/2 < arg(α + k) < 3π/2, are required to ignore the

case where a pole of order m of the integrand at β = −α lies on the contour. The

condition arg (β − k) = π/2 has also appeared in the definition of Fmv(l, α), which

has been introduced in order that (β− k)v be a single-valued function of non integer

v.

2.13 Analytic Continuation

If f(z) is an analytic function in a domain D and F (z) is analytic in a domain D

such that F (z) = f(z) in D and D∩D, then F is said to be an analytic continuation

of f .

Now we can say that analytic continuation is a process of extending an analytic

function defined in a domain to a larger domain. For example, the geometric series

at zero is given by

f(z) = 1 + z + z2 + z3 . . . ..
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which is convergent in the open disk as D = {|z| < 1}. Multiplication of (1.1)by z

and subtraction of result from (1.15) gives

(1− z)f(z) = 1 ⇒ f(z) =
1

1− z

which is analytic in D = C\{1}. Since {|z| < 1} ⊂ C\{1} i.e D ⊂ D and F (z) =

f(z), therefore, F (z) is analytic continuation of f(z).

2.14 Asymptotic expansions

2.14.1 Method of Stationary Phase

Consider a function of the form

f(x) =

∫ b

a

eixh(t)g(t)dt

where h(t) is a real function (known as phase function) and g(t) can be complex

or real function and integration is along the real axis over the interval (a, b). The

stationary phase method helps in finding an asymptotic representation of (1.25).

Assume that there is one point t0 ∈ (a, b) such that h′ (t0) = 0 but h′′ (t0) ̸= 0. In

accordance with the idea of the method of stationary phase, we assume that only the

neighborhood of t0 is of significance, and we write

ixh(t) ∼= ix

{
h (t0) +

1

2
h′′ (t0) (t− t0)

2

}
.

Then

f(x) ∼
∫ ∞

−∞
g (t0) exp

[
ix

{
h (t0) +

1

2
h′′ (t0) (t− t0)

2

}]
dt

This gives

f(x) ∼
[

2π

x |h′′ (t0)|

]1/2
g (t0) exp

[
ixh (t0)± i

π

4

]
,
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where the sign of + or − corresponds to h′′ (t0) > 0 or h′′ (t0) < 0, respectively. For

detailed analysis about this method, see [23, 24]

2.14.2 Steepest Decent Method

To find the asymptotic behavior of the following integral

I(k) =

∫
C

f(z)ekϕ(z)dz, k → ∞

where f(z) and ϕ(z) are complex analytic functions. To reform the contour C to

another contour Ċ (Cauchy theorem) in which the imaginary part of the exponent is

constant, by taking the analytic character of the functions. As the integral take the

form of a Laplace integral, we apply the rigorous Laplace method to get

ϕ(z) = u(x, y) + iv(x, y), z = x+ iy

Taking, Im{ϕ} = v is constant in contour C then,

I(k) =

∫
C

f(z)ekϕ(z)dz =

∫
Ċ

eikvf(z)ekudz

In order to choose the contour Ċ, we take the path of steepest decent passing through

z0 in which ϕ̇ (z0) = 0 (saddle point). We find where the major contributions comes

from after choosing the path. The main contributions will happen at critical points

ϕ̇(z) = 0, singular points and end points, then we analyze the Laplace integral at

these points.

Steepest Path

Let ϕ(z) = u(x, y) + iv(x, y), with z = x + iy, then the paths passing through the

points z = z0 ( where v(x, y) = v (x0, y0)) are the paths where the imaginary part of

ϕ is constant. The direction of decent is from z0 is along Re(ϕ(z)) is decreasing; when

this decrease is maximal, the path is called steepest decent. Similarly, the direction

of ascent is a direction away from z0 in which u is increasing; when this increase is
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maximal, the path is called steepest ascent. We know that in calculus if u (z0) and

∇u ̸= 0, then −∇u is the steepest path decreasing away from u (z0). It can easily

shown that the curves defined by v(x, y) = v (x0, y0) are curves of steepest decent or

ascent. Let δϕ as the change of the function ϕ from the point z0, then

δϕ = ϕ(z)− ϕ (z0) = δu+ iδv → |δu| ≤ |δϕ|

Equality occurs when δu is maximal, so δv = 0 → v(x, y) = v (x0, y0). This, in fact,

shows why we need the steepest path. The Saddle Point The point z = z0 is a saddle

point of order N for the function ϕ if:

dmϕ

dzm

∣∣∣∣
z=z0

= 0, m = 1, 2, . . . ..N,
dN+1ϕ

dzN+1
̸= 0

How to Find Steepest Paths

If z0 is a saddle point of order N , then we can write:

ϕ(z) = ϕ (z0) ∼
(z − z0)

N+1 dN+1ϕ

(N + 1)!dzN+1

∣∣∣∣∣
z=z0

Letting dN+1ϕ
dzN+1

∣∣∣
z=z0

= aeiα and z − z0 = ρeiθ, then

ϕ(z) = ϕ (z0) ∼
ρN+1ei(N+1)θ

(N + 1)!
×aei(N+1)α = [cos(α+(N+1)θ)+i sin(α+(N+1)θ)]× ρN+1a

(N + 1)!

Steepest direction:

Im

{
ϕ(z)− ϕ (z0) = 0 → sin(α + (N + 1)θ) → α + (N + 1)θ = mθ → θ = − α

N + 1
+m

π

N + 1
,m = 0, 1 . . . N

Steepest decent direction:

Re

{
ϕ(z)− ϕ (z0) < 0 → cos(α + (N + 1)θ) < 0 → θsd = − α

N + 1
+ (2m+ 1)

π

N + 1
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Steepest ascent direction:

Re

{
ϕ(z)− ϕ (z0) < 0 → cos(α + (N + 1)θ) < 0 → θsa = − α

N + 1
+m

π

N + 1

Decomposition Theorem: Let F (α) be a regular function in the strip τ− < Im(α) <

τ+and F (α) → 0 as α → ∞ in the strip then F (α) can be decompose as

F (α) = F−(α) + F+(α)

where

F+(α) =
1

2πi

∫ ∞+ic

−∞+ic

f(ξ)

(ξ − α)
dξ τ− < c < τ < τ+,

is non zero and regular in the upper half plane (α) > τ−

F−(α) = − 1

2πi

∫ ∞+id

−∞+id

f(ξ)

(ξ − α)
dξ τ− < d < τ < τ+,

is non zero and regular in the lower half plane (α) < τ+. 2.0.19 Factorization theorem

Let Ψ(α) be a non zero and regular function in the strip τ− < Im(α) < τ+. If

|Ψ(α)| → 1 as α → ∞ in the atrip then Ψ(α) can be factorize as

Ψ(α) = Ψ− (α)Ψ + (α)

where

Ψ+(α) = exp

[
1

2πi

∫ ∞+ic

−∞+ic

f(ξ)

(ξ − α)
dξ

]
τ− < c < τ < τ+

is analytic in the region defined by (α) > τ−

Ψ−(α) = exp

[
− 1

2πi

∫ ∞+id

−∞+id

f(ξ)

(ξ − α)
dξ

]
τ− < d < τ < τ+

is analytic in the region defined by (α) < T+. 2.0.20 Wiener-Hopf Technique This

technique was initially utilized to solve the integral equation which presents most of
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physical problema. An integral equation of that form is given by

∫ θ

0

K(x− y)f(y)dy = g(x), 0 < x <∞

where the kernel difference K(x− y) and g(x) are known functions while the f(x) is

the function to be evaluated. The readera interested to know about this technique

generally, can study the aalient points which are briefly outlined here. To proceed

the method, domain of integral equation is extended to negative real values of x that

is ∫ θ

0

K(x− y)f(y)dy =

 g(x), 0 < x <∞

h(x), −∞ < x < 0

where h(x) is an unknown function. Applying the Fourier transform on (1.46) we get

the Wiener-Hopf functional equation

G+ (α) +H−(α) = K(α)F+(α)

in which G+(α) and K(α) are half-range and full-range Fourier tranaform of known

functions g(x) and K(x), reapectively whereas the quantities H−(α) and F (α) are

half-range Fourier transform of unknown functions h(x) and f(x), reapectively. The

right side of (1.18) is product form which comes from integral operator being a

convolution-type. The functions with subscript + and − are the analytic in their

corresponding regions, respectively and they overlap to form a strip or band of ana-

lyticity. The Wiener-Hopf procedure depends on the product factorization of trans-

formed kernel function, in K(α) the form

K(α) = K+(α)K−(α)

Use of (1.48) enables to re-write (1.47) as

1

K−(α)
[G+(α) +H−(α)] = K+(α)F+(α)
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Note that R.H.S is analytic in its indicated region of analyticity. For left hand side,

first term needs to be tackled, therefore, defining the sum-factorization for firat term

on the left hand side, in the form of

G+(α)

K−(α)
= L+(α) + L−(α).

Inserting (1.50) in (1.49) and re-expressing the resulting equation as

L−(α) +
H−(α)

K−(α)
= K+(α)F+(α) + L+(α),

in which left hand side shows analytic behavior in the lower-half of complex α-plane

and right hand aide shows analytic behavior in the overlapping upper-half plane of

complex α-plane. Analytic continuation allows to equate both sides of (1.51) to an

entire function, say J(α). Now J(α) may be evaluated by assuming the behavior of

functions f(x), g(x), h(x) as x→ 0 and their corresponding transformed functions in

(1.29) as |α| → ∞, and hence, F+(α) and H−(α) are distinctively evaluated. The

inverse Fourier transform results the required unknown function f(x).

2.15 Modeling of Helmholtz Equation

In the view of non-thermal plasma, the dielectric permittivity tensor is:

ε̄ =


ε1 −ιε2 0

ιε2 ε1 0

0 0 εz

 ,

where

ε1 =
1−

(ωp

ω

)2
1−

(
ωc

ω

)2 , ε2 =
(ωp

ω

)2
[
ω

ωc

− ωc

ω

]−1

, εz = 1−
(ωp

ω

)2

with

ω2
p =

Nee
2

mε0
, ωc =

|e|µ0Hdc

m
.
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For the formulation modeled here, the magnetic and electric fields vectors are H⃗ =

Hz êz and be E⃗ = Exêx + Eyêy, respectively. Ex (x, y) and Ey (x, y) containing

Hz (x, y), embedded with ε̄, can be derived from Maxwell’s equations:

Ex =
iε1

ωε0 (ε21 − ε22)
∂yHz(x, y) +

ε2
ωε0 (ε21 − ε22)

∂xHz(x, y)

Ey =
ε2

ωε0 (ε21 − ε22)
∂yHz(x, y)−

iε1
ωε0 (ε21 − ε22)

∂xHz(x, y)

Also, from Maxwell’s equation,

∇⃗ × E⃗ = −µ0∂tH⃗

Use of (1.20), (1.21) in (1.22) and following up the time as exp(−iωt), the Helmholtz’s

equation of Hz is as follows:

∂xxHz + ∂yyHz + k2effHz = 0

where

keff = k

√
ε21 − ε22
ε1

, k = ω
√
ε0µ0

Here, keff dependents on k, ε1 and ε2. Time dependence is taken as behaving har-

monically as exp(−ωt) and will be followed up throughout the study.
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Chapter 3

Non-thermal Plasma Effects on

Diffraction of EM-Wave by a

Finite Symmetric Plate with

Dirichlet Conditions

This chapter addresses the investigation of electromagnetic plane wave diffraction

by a conducting plate of finite length in cold plasma. The boundary value problem

along with Fourier transform for the corresponding is used to formulate Wiener-Hopf

equation which is then solved by using Wiener-Hopf procedure in a standard way. The

separated field is evaluated for an an-isotropic medium using asymptotic expansion

and modified stationary phase method. The results for the isotropic medium can be

achieved by taking ε1 −→ 1, ε2 −→ 0. Graphical results are discussed for separated

field against observation angle for various physical parameters in isotropic and an-

isotropic media.

3.1 Problem’s Statement

We have investigated the diffraction pattern of plane electromagnetic waves due

to a finite-length strip in non-thermal plasma, as illustrated in Fig. 3.1. Furthermore,
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Figure 3.1: Simplified figure of the problem.

Dirichlet surfaces are assumed on the strip and angle of incidence is θ0. The total

field can be represented in terms of incident, refracted and diffracted fields as:

H tot
z (x, y) = H inc

z (x, y) +Hz(x, y), (3.1)

where the incident field is defined as

H inc
z (x, y) = e−ikeff (x cos θ0+y sin θ0), (3.2)

Suppose that medium is slightly lossy, and constant Keff appearing in above equa-

tions is complex in such a way (0 < Im{keff} ≪ Re{keff}). At the end, for real

Keff solution could be determine by taking its imaginary part to zero. The entire

field H tot
z (x, y) meeting the Helmholtz equation is

[∂xx + ∂yy + k2eff ]H
tot
z (x, y) = 0, (3.3)

Substituting the value of H tot
z (x, y) from (3.1), we get the equation for diffracted field

as:

[∂xx + ∂yy + k2eff ]Hz(x, y) = 0, (3.4)
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To formulate the Wiener-Hopf equation, conditions at x − ±l in conjunction with

continuity relations are used. Dirichlet boundary conditions on a finite-width slit are

specified as

H tot
z = 0, for −l ≥ x ≥ l, at y = 0±, (3.5)

along with

H tot
z (x, 0+) = H tot

z (x, 0−), for |x| > l, at y = 0, (3.6)

∂yH
tot
z (x, 0+) = ∂yH

tot
z (x, 0−), for |x| > l, at y = 0. (3.7)

3.2 Problem Transformation

Following results can be obtained with the use of Fourier Transforms.

F(β, y) =
1√
2π

∞∫
−∞

eiβxHz(x, y)dx

= eiβlF+(β, y) + e−iβlF−(β, y) + Fl(β, y), (3.8)

where β = σ + iτ .

Figure 3.2: Illustration of Analytic-Continuation.
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For high values of x, the diffracted field is interpreted as follows:

Hz(x, y) =


O(e−ikeffx),

O(e−keffx cos θ0).

(3.9)

The regions of regularity in the complex plane for F+(β, y) and F−(β, y) are Im{β} >

−Im{keff} and Im{β} < Im{keff cos θ0}. From Fig ??, we can see the common

region −Im{keff} < Im{β} < Im{keff cos θ0} of analyticity, where the function

Fl(β, y) is also holomorphic and hence, we can define

F±(β, y) = ± 1√
2π

±∞∫
±l

eiβ(x∓l)Hz(x, y)dx (3.10)

Fl(β, y) =
1√
2π

l∫
−l

eiβxHz(x, y)dx (3.11)

F inc(β, y) =
exp(−iykeff sin θ0)√

2π

(
exp[il(β − keff cos θ0)]− exp[−il(β − keff cos θ0)]

i(β − keff cos θ0)

)
.

(3.12)

F ref (β, y) =
exp(iykeff sin θ0)√

2π

(
exp[il(β − keff cos θ0)]− exp[−il(β − keff cos θ0)]

(β − keff cos θ0)

)
.

(3.13)

The following transformed boundary value problem could be obtained by applying

the Fourier transformation to Eqs. (7.5− 7.7) .

(
d2

dy2
+ γ2

)
F = 0 (3.14)

where γ(β) =
√
k2eff − β2.

F(β, 0+) = F ref (β, 0)−F inc(β, 0)

F(β, 0−) = 0
, (3.15)

and

F±(β, 0
+) = 0 = F±(β, 0

−). (3.16)
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3.3 Solution of the Wiener-Hopf Equation

The solution of transformed boundary value problem (7.14), fulfilling the radiation

conditions is,

F(β, y) =


A1(β) exp(−iγy) y ≥ 0,

A2(β) exp(iγy) y < 0.

(3.17)

Now using Eqs. (7.15− 7.17), following Wiener-Hopf equation is obtained.

exp(iβl)F ′
+(β, 0) + exp(−iβl)F ′

−(β, 0) +K(β)F̃l(β, 0) = −iG(β), (3.18)

where,

K(β) = iγ, (3.19)

F̃l(β, 0) =
1

2

(
Fl(β, 0

+)−Fl(β, 0
−)
)

(3.20)

G(β) = exp[il(β − keff cos θ0)]− exp[−il(β − keff cos θ0)]√
2π(β − keff cos θ0)

, (3.21)

The Kernel function defined in Eq. 7.19 can be written as:

K(β) =
1

iγ(β)
= K±(β) with γ(β) = γ±(β), (3.22)

where K±(β) are,

K±(β) =
exp(−iπ

4
)

γ±(β)
with γ±(β) =

√
keff±β. (3.23)

It must be noted that the functions, K±(β) have region of regularity are Im{β} >

−Im{keff} and Im{β} < Im{keff cos θ0} and similarly for γ±(β). From Eq. (7.18),

equating the terms which are regular in their corresponding regions, creates a common

region of analyticity. Hence, by analytic continuation, we get an entire function P(β)

and by Liouville’s theorem, P(β) must be equal to zero[12], yielding the following

results.
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F±(β, 0) =
A√
2π

[K±(β)G1,2(±β) +K±(β)T (±β)C1,2], (3.24)

where

G1,2(β) =
exp(∓ikeff l cos θ0)
α∓keff cos θ0

(
1

K+(β)
− 1

K+(±keff cos θ0)

)
−exp(±ikeff l cos θ0)R1,2(β),

(3.25)

C1,2 = K+(keff )
G2,1(keff ) +K+(keff )G1,2(keff )T (keff )

1−K2
+(keff )T 2(keff )

, (3.26)

R1,2(β) =
E−1

2πi(β ∓ keff cos θ0)
[W−1(−i(keff ± keff cos θ0))−W−1(−i(keff + β))],

(3.27)

T (β) =
E−1

2π
W−1[−i(keff + β)l], E−1 = 2

√
l

i
eikeff+β, (3.28)

Wn−1/2(q) =

∞∫
0

vne−v

v + q
dv = Γ(n+ 1)e(

q
2)q(n−1)/2W−(n+1)/2,n/2(q), (3.29)

where q = −i(keff + β)l, n = −1
2
and W is the Whittaker function. Solving Eqs.

7.17 and 7.18, diffracted field is,

F(β, y) = − 1

K(β)

[
exp(iβl)F+(β, 0) + exp(−iβl)F−(β, 0) + Fl(β, 0)

]
e−iγ|y|,(3.30)

where

Fl(β, 0) = iG(β), (3.31)

Inverse Fourier transformation of Eq. (7.30), yields the diffracted field as:

Hz(x, y) =
1√
2π

∞∫
−∞

F(β, y)e−iβx−iγ|y|dβ. (3.32)

Inserting (7.30) in (7.32), we get

Hz(x, y) = − 1√
2π

∞∫
−∞

1

K(β)

 eiβlF+(β, 0) + e−iβlF−(β, 0)+

+F̃l(β, 0)

 e−iβx−iγ|y|dβ.

(3.33)
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Diffracted field Hz(x, y) further bifurcate in the separated and interaction fields

Hsep
z (x, y) and H int

z (x, y), respectively as,

Hz(x, y) = Hsep
z (x, y) +H int

z (x, y), (3.34)

where

Hsep
z (x, y) =

1

2π

∞∫
∞

A
K(β)


K+(β) exp[i(β−keff cos θ0)l]

K+(keff cos)(β−keff cos θ0)

−K+(−β) exp[−i(β−keff cos θ0)l]

K+(−keff cos)(β−keff cos θ0)

 exp(−iβx− iγ|y|)dβ,

(3.35)

H int
z (x, y) =

1

2π

∞∫
−∞

A
K(β)



exp(iβl)K+(β)T (β)C1

− exp[i(β + keff cos θ0)l]K+(β)R1(β)

+ exp(−iβl)K−(β)T (−β)C2

− exp[−i(β + keff cos θ0)l]K−(β)R2(−β)


exp(−iβx−iγ|y|)dβ.

(3.36)

The separated field given by (7.35) depicts diffraction separately at the edges. The

H inct
z (x, y) represented by Eq. (7.36) explains the interaction of one end with the

other.

3.4 Diffracted Field

The diffracted field due to slit of finite width for the far-field can be obtained by

coping with the integral appearing in (7.32). Polar coordinates are introduced for

the evaluation of Eq. 7.32 with the following transformation.

β = −keff cos(ϕ+ iη), 0 < ϕ < π, −∞ < η <∞. (3.37)
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Now when the method of stationary phase [32] is used for (7.32), the following result

are obtained:

Hz(r, ϕ) =
ikeff√
keffr

F(−keff cosϕ,±r sinϕ) sinϕ exp
(
ikeffr + i

π

4

)
. (3.38)

Using the same polar coordinates, the transformation and subsequently the method

of stationary phase are used to assess and yield the separated field and interaction

fields as follows:

{Hsep
z , H int

z }(r, ϕ) = 1√
2π

ikeff√
keffr

{fsep,−fint}(−keff cosϕ) sinϕ exp
(
ikeffr + i

π

4

)
,

(3.39)

where

fsep(−keff cosϕ) =
A

K(−keff cosϕ)


K+(−keff cosϕ) exp[−ikeff l(cosϕ+cos θ0)]

K+(keff cos θ0)(−keff cosϕ−keff cos θ0)

− K+(keff cosϕ) exp[ilkeff (cosϕ+cos θ0)]

K+(−keff cos θ0)(−keff cosϕ−keff cos θ0)

 (3.40)

fint(−keff cosϕ) =
A

K(−keff cosϕ)



exp(−ikeff l cosϕ)K+(−keff cosϕ)

×T (−keff cosϕ)C1

− exp[il(−keff cosϕ+ keff cos θ0)]

×K+(−keff cosϕ)R1(−keff cosϕ)

+K−(−keff cosϕ) exp(ikeff l cosϕ)

×T (keff cosϕ)C2

− exp [−il(−keff cosϕ+ keff cos θ0)]

×K−(−keff cosϕ)R2(keff cosϕ)


(3.41)

From Eq. (7.38), we can clearly see that the asymptotic expressions for far field can

be obtained by letting keffr → ∞ and the resulting expressions will be holds true for

any observational angle. The separated field of an EM-wave is investigated in order to

characterise both the field diffracted by the corners of a strip and the influence of the

geometrical wave field. The separated field that results gives physical evidence for the
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non-thermal plasma concept. Interacted-field, on the other hand, provides no physical

information due to contact at edge to edge, which has formerly been enumerated by

Hsep. As a result, we’ve only talked about the separated field because it conveys

a full physical comprehension of EM-wave diffraction at the established boundaries.

Additionally, we discovered that the interaction field is created by diffraction from

the corners of strip at x = ±l. Furthermore, when the strip width is increased to ∞,

the role due to interaction field terms disappears, leaving just the Hsep terms in the

H. As a consequence, we merely examine the separated field, as illustrated visually

in the next section.

3.5 Discussion and Numerical Results

In this section, we examined the EM-waves by finite-length strip as graphically

by the variation of physical parameters in an an-isotropic media with Dirichlet con-

ditions versus the observational angle. For the ionosphere, we take the value of ωp

as 56.4MHz and ωc as 8.78 MHz. Now, the values of ε1 and ε2 are computed nu-

merically against ω to verify the considered model. Also, the values of ω are taken

between 80MHz and 600MHz given in Table-3.1. It can be notice from Table-3.1,

that the value of ε2 is comparably very small from ε1 with the boost up of ω in the

frequency range. For isotropic medium, we can take ε1 = 1 and ε2 = 0, While the

parameters ε1 and ε2 for the an-isotropic media (non-thermal plasma) can indeed be

selected from Table-1.

ω (in MHz) ε1 ε2
80.15 0.504834 0.054242
99.50 0.678699 0.028352
145.75 0.850259 0.009020
245.15 0.947071 0.001895
375.50 0.97744 0.000527
480.50 0.986222 0.000251
599.75 0.991157 0.000129

Table 3.1: Values of ε1 and ε2 for corresponding ω.

The graphical analysis is elaborated to explore the influence of physical param-
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eters on diffracted field due to a finite-length strip lying in the ionosphere of non-

thermal plasma. These physical parameters are θ0, k, 2l and ε1. Fig. 3.3 represents

the pattern of the separated field for variation of θ0, and it gets maxima for θ0 = π/3,

π/4, π/6 occurring at θ = 2π/3, 3π/4, 5π/6, respectively. These maxima actually

predict the shadow of reflected field. Fig. 3.4 reveals the separated field for k. It is

notable that the field has a direct dependence upon k because the field gets amplified

for k. Since the frequency is directly related to k, so it excites the frequency of wave

towards the high range. As extension of the slit-width is actually the expansion of

aperture which is responsible for the diffraction of electromagnetic radiations, and

so, separated field gets amplified as well as more oscillated as can be seen in Fig.

3.5. This amplified amplitude could be controlled by introducing the ionosphere as

can be observed through Fig. 3.5b. By comparing Figs. 3.3b, 3.4b and 3.5b of the

separated field in the an-isotropic medium with their respective Figs. 3.3a, 3.4a and

3.5a in the isotropic medium. It is explained that an-isotropy of the medium caused

by non-thermal plasma influenced the separation field, in both amplitude reduction

and wavelength contraction. Fig. 3.6 explores the trend of the field for ε1, while its

mathematical interpretation predicts its physical nature. It is expressed by Eq. (??)

and can be described as ωc has no big difference in the values in the different parts

of Earth and ωp has direct relation with the square root of Ne (ion concentration),

which fluctuates massively with the variation of seasons and days to night. Therefore,

without fluctuation on ω, ε1 can be fluctuate. Since ε1 has inverse relation with ω,

so increase in Ne with fixed ω, ε1 declines and wavelength will be increase. It means

that the separated field with longer wavelength will occur for increasing Ne in the

medium.

38



0 Π

6

Π

3

Π

2

2 Π

3

5 Π

6
Π

-80

-60

-40

-20

0

20

40

60

80

Observation angle @radianD

Se
pa

ra
te

d
F

ie
ld

@d
B

D

8k = 5.0, l = 5.0, r = 2.0, ¶1 = 1.0, ¶2 = 0<

Θ0 = Π�3

Θ0 = Π�4

Θ0 = Π�6

(a)

0 Π

6

Π

3

Π

2

2 Π

3

5 Π

6
Π

-80

-60

-40

-20

0

20

40

60

80

Observation angle @radianD

Se
pa

ra
te

d
F

ie
ld

@d
B

D

8k = 5.0, l = 5.0, r = 2.0, ¶1 = 0.6, ¶2 = 0.002<

Θ0 = Π�3

Θ0 = Π�4

Θ0 = Π�6

(b)

Figure 3.3: The separated field for θ0 in the (a) isotropic and (b) an-isotropic medium.
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Figure 3.4: The separated field for k in the (a) isotropic and (b) an-isotropic medium.
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Figure 3.5: The separated field for 2l in the (a) isotropic and (b) an-isotropic medium.
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Figure 3.6: The separated field for ε1.
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3.6 Conclusions

On the basis of above deep analysis, it is figured out that the diffraction behavior

of EM-plane wave incident on finite-length strip under the assumptions of Dirichlet

surface is affected rigorously by parameters controlling behavior in the existence of

non-thermal plasma. It is deeply figured out that the function Hsep is amplified by

different θ0, k, 2l, ε1 and reduced by ε2.
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Chapter 4

Diffraction Affected by Cold

Plasma with Neumann Conditions

on Finite Plate

Present chapter elaborates the investigation of diffraction phenomenon of EM-

plane wave by a non-symmetric plate of finite length in cold plasma. The Wiener-

Hopf equation is formulated with the aid of boundary value problem along with

Fourier transform for present model. The theory of Wiener-Hopf procedure is used

to cope with resulting equation. Asymptotic expansion and method of stationary

phase are used to obtain the result for diffracted field by finite plate (separated field)

under the assumption of Neumann boundary conditions in the an-isotropic medium.

The case of isotropic medium has been discussed by assigning the particular values

to elements of permittivity tensor. Impact of physical parameters has been discussed

graphically for the isotropic and an-isotropic medium.

4.1 Problem Statement

We have investigated the diffraction pattern of plane electromagnetic waves due

to a finite-width slit in non-thermal plasma, as illustrated in Fig. 5.1. Furthermore,

Neumann conditions are assumed on the slit and angle of incidence is θ0. The total
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Figure 4.1: Simplified figure of the problem.

field could be expressed in terms of incident and diffracted fields,

H tot
z (x, y) = H inc

z (x, y) +Hz(x, y), (4.1)

where the incident field is defined as

H inc
z (x, y) = e−ikeff (x cos θ0+y sin θ0), (4.2)

Suppose that medium is slightly lossy, and constant Keff appearing in above equa-

tions is complex in such a way (0 < Im{keff} ≪ Re{keff}). At the end, for real

Keff solution could be determine by taking its imaginary part to zero. The entire

field H tot
z (x, y) meeting the Helmholtz equation is

[∂xx + ∂yy + k2eff ]H
tot
z (x, y) = 0, (4.3)

Substituting the value of H tot
z (x, y) from (7.1), we get the equation for diffracted field

as:

[∂xx + ∂yy + k2eff ]Hz(x, y) = 0, (4.4)
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To formulate the Wiener-Hopf equation, conditions at x − ±l in conjunction with

continuity relations are used. Neumann boundary conditions on a finite-length strip

are specified as

∂yH
tot
z (x, y) = 0, |x| ≤ l, y = 0±, (13)

and

H tot
z (x, 0+) = H tot

z (x, 0−), |x| > l, y = 0, (4.5)

∂yH
tot
z (x, 0+) = ∂yH

tot
z (x, 0−), |x| > l, y = 0. (4.6)

4.2 Problem Transformation

Following results can be obtained with the use of Fourier Transforms.

F(β, y) =
1√
2π

∞∫
−∞

eiβxHz(x, y)dx

= eiβlF+(β, y) + e−iβlF−(β, y) + Fl(β, y), (4.7)

where β = σ + iτ .

Figure 4.2: Illustration of Analytic-Continuation.
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For high values of x, the diffracted field is interpreted as follows:

Hz(x, y) =


O(e−ikeffx),

O(e−keffx cos θ0).

(4.8)

The regions of regularity in the complex plane for F+(β, y) and F−(β, y) are Im{β} >

−Im{keff} and Im{β} < Im{keff cos θ0}. From Fig 4.2, we can see the common

region −Im{keff} < Im{β} < Im{keff cos θ0} of analyticity, where the functions

Fl(β, y) are also analytic and hence, we can define

F±(β, y) = ± 1√
2π

±∞∫
±l

eiβ(x∓l)Hz(x, y)dx (4.9)

Fl(β, y) =
1√
2π

l∫
−l

eiβxHz(x, y)dx (4.10)

F inc(β, y) =
exp(−iykeff sin θ0)√

2π

(
exp[il(β − keff cos θ0)]− exp[−il(β − keff cos θ0)]

i(β − keff cos θ0)

)
.

(4.11)

F ref (β, y) =
exp(iykeff sin θ0)√

2π

(
exp[il(β − keff cos θ0)]− exp[−il(β − keff cos θ0)]

(β − keff cos θ0)

)
.

(4.12)

The following transformed boundary value problem could be obtained by applying

the Fourier transformation to Eqs. (7.5− 7.7) .

(
d2

dy2
+ γ2

)
F = 0 (4.13)

where γ(β) =
√
k2eff − β2.

F(β, 0+) = F ref (β, 0)−F inc(β, 0)

F(β, 0−) = 0
, (4.14)

and

F±(β, 0
+) = 0 = F±(β, 0

−). (4.15)
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4.3 Solution of the Wiener-Hopf Equation

The solution of transformed boundary value problem (7.14), fulfilling the radiation

conditions is,

F(β, y) =


A1(β) exp(−iγy) y ≥ 0,

A2(β) exp(iγy) y < 0.

(4.16)

Now using Eqs. (7.15− 7.17), following Wiener-Hopf equation is obtained.

eiβlF ′
+(β, 0) + e−iβlF ′

−(β, 0) +K(β)F̃l(β, 0) = −iG(β), (4.17)

where,

K(β) = iγ, (4.18)

F̃l(β, 0) =
1

2

(
Fl(β, 0

+)−Fl(β, 0
−)
)

(4.19)

G(β) = exp[il(β − keff cos θ0)]− exp[−il(β − keff cos θ0)]√
2π(β − keff cos θ0)

, (4.20)

The Kernel function defined in Eq. 7.19 can be written as:

K(β) =
1

iγ(β)
= K±(β) with γ(β) = γ±(β), (4.21)

where K±(β) are,

K±(β) =
exp(−iπ

4
)

γ±(β)
with γ±(β) =

√
keff±β. (4.22)

It must be noted that the functions, K±(β) have region of regularity are Im{β} >

−Im{keff} and Im{β} < Im{keff cos θ0} and similarly for γ±(β). From Eq. (7.18),

equating the terms which are regular in their corresponding regions, creates a common

region of analyticity. Hence, by analytic continuation, we get an entire function P(β)

and by Liouville’s theorem, P(β) must be equal to zero[12], yielding the following

results.
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F±(β, 0) =
A√
2π

[K±(β)G1,2(±β) +K±(β)T (±β)C1,2], (4.23)

where

G1,2(β) =
exp(∓ikeff l cos θ0)
α∓keff cos θ0

(
1

K+(β)
− 1

K+(±keff cos θ0)

)
−exp(±ikeff l cos θ0)R1,2(β),

(4.24)

C1,2 = K+(keff )
G2,1(keff ) +K+(keff )G1,2(keff )T (keff )

1−K2
+(keff )T 2(keff )

, (4.25)

R1,2(β) =
E−1

2πi(β ∓ keff cos θ0)
[W−1(−i(keff ± keff cos θ0))−W−1(−i(keff + β))],

(4.26)

T (β) =
E−1

2π
W−1[−i(keff + β)l], E−1 = 2

√
l

i
eikeff+β, (4.27)

Wn−1/2(q) =

∞∫
0

vne−v

v + q
dv = Γ(n+ 1)e(

q
2)q(n−1)/2W−(n+1)/2,n/2(q), (4.28)

where q = −i(keff + β)l, n = −1
2
and W is the Whittaker function. Solving Eqs.

7.17 and 7.18, diffracted field is,

F(β, y) = − 1

K(β)

[
exp(iβl)F+(β, 0) + exp(−iβl)F−(β, 0) + Fl(β, 0)

]
e−iγ|y|,(4.29)

where

Fl(β, 0) = iG(β), (4.30)

Inverse Fourier transformation of Eq. (7.30), yeilds the diffracted field as:

Hz(x, y) =
1√
2π

∞∫
−∞

F(β, y) exp(−iβx− iγ|y|)dβ. (4.31)

Inserting (7.30) in (7.32), we get

Hz(x, y) = − 1√
2π

∞∫
−∞

1

K(β)

 eiβlF+(β, 0) + e−iβlF−(β, 0)+

+F̃l(β, 0)

 e−iβx−iγ|y|dβ.

(4.32)
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Diffracted field Hz(x, y) further bifurcate in the separated and interaction fields

Hsep
z (x, y) and H int

z (x, y), respectively as,

Hz(x, y) = Hsep
z (x, y) +H int

z (x, y), (4.33)

where

Hsep
z (x, y) =

1

2π

∞∫
∞

A
K(β)


K+(β) exp[i(β−keff cos θ0)l]

K+(keff cos)(β−keff cos θ0)

−K+(−β) exp[−i(β−keff cos θ0)l]

K+(−keff cos)(β−keff cos θ0)

 exp(−iβx− iγ|y|)dβ,

(4.34)

H int
z (x, y) =

1

2π

∞∫
−∞

A
K(β)



exp(iβl)K+(β)T (β)C1

− exp[i(β + keff cos θ0)l]K+(β)R1(β)

+ exp(−iβl)K−(β)T (−β)C2

− exp[−i(β + keff cos θ0)l]K−(β)R2(−β)


exp(−iβx−iγ|y|)dβ.

(4.35)

The separated field given by (7.35) depicts diffraction separately at the edges. The

H inct
z (x, y) represented by Eq. (7.36) explains the interaction of one end with the

other.

4.4 Diffracted Field

The diffracted field due to finite-length strip for the far-field can be obtained by

coping with the integral appearing in (7.32). Polar coordinates are introduced for

the evaluation of Eq. 7.32 with the following transformation.

β = −keff cos(ϕ+ iη), 0 < ϕ < π, −∞ < η <∞. (4.36)
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Now when the method of stationary phase [32] is used for (7.32), the following result

are obtained:

Hz(r, ϕ) =
ikeff√
keffr

F(−keff cosϕ,±r sinϕ) sinϕ exp
(
ikeffr + i

π

4

)
. (4.37)

Using the same polar coordinates, the transformation and subsequently the method

of stationary phase are used to assess and yield the separated field and interaction

fields as follows:

{Hsep
z , H int

z }(r, ϕ) = 1√
2π

ikeff√
keffr

{fsep,−fint}(−keff cosϕ) sinϕ exp
(
ikeffr + i

π

4

)
,

(4.38)

where

fsep(−keff cosϕ) =
A

K(−keff cosϕ)


K+(−keff cosϕ) exp[−ikeff l(cosϕ+cos θ0)]

K+(keff cos θ0)(−keff cosϕ−keff cos θ0)

− K+(keff cosϕ) exp[ilkeff (cosϕ+cos θ0)]

K+(−keff cos θ0)(−keff cosϕ−keff cos θ0)

 (4.39)

fint(−keff cosϕ) =
A

K(−keff cosϕ)



exp(−ikeff l cosϕ)K+(−keff cosϕ)

×T (−keff cosϕ)C1

− exp[il(−keff cosϕ+ keff cos θ0)]

×K+(−keff cosϕ)R1(−keff cosϕ)

+K−(−keff cosϕ) exp(ikeff l cosϕ)

×T (keff cosϕ)C2

− exp [−il(−keff cosϕ+ keff cos θ0)]

×K−(−keff cosϕ)R2(keff cosϕ)


(4.40)

From Eq. (7.38), we can clearly see that the asymptotic expressions for far field can

be obtained by letting keffr → ∞ and the resulting expressions will be holds true for

any observational angle. The separated field of an EM-wave is investigated in order to

characterise both the field diffracted by the corners of a strip and the influence of the

geometrical wave field. The separated field that results gives physical evidence for the
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non-thermal plasma concept. Interacted-field, on the other hand, provides no physical

information due to contact at edge to edge, which has formerly been enumerated by

Hsep. As a result, we’ve only talked about the separated field because it conveys

a full physical comprehension of EM-wave diffraction at the established boundaries.

Additionally, we discovered that the interaction field is created by diffraction from

the corners of strip at x = ±l. Furthermore, when the strip width is increased to ∞,

the role due to interaction field terms disappears, leaving just the Hsep terms in the

H. As a consequence, we merely examine the separated field, as illustrated visually

in the next section.

4.5 Discussion and Numerical Results

In this section, we examined the EM-waves by finite-length strip as graphically

by the variation of physical parameters in an an-isotropic media with Neumann

conditions versus the observational angle. For the ionosphere, we take the value of

ωp as 56.4MHz and ωc as 8.78 MHz. Now, the values of ε1 and ε2 are computed

numerically against ω to verify the considered model. Also, the values of ω are taken

between 80MHz and 600MHz given in Table-4.1. It can be notice from Table-4.1,

that the value of ε2 is comparably very small from ε1 with the boost up of ω in the

frequency range. For isotropic medium, we can take ε1 = 1 and ε2 = 0, While the

parameters ε1 and ε2 for the an-isotropic media (non-thermal plasma) can indeed be

selected from Table-1.

ω (in MHz) ε1 ε2
80.15 0.504834 0.054242
99.50 0.678699 0.028352
145.75 0.850259 0.009020
245.15 0.947071 0.001895
375.50 0.97744 0.000527
480.50 0.986222 0.000251
599.75 0.991157 0.000129

Table 4.1: Values of ε1 and ε2 for corresponding ω.

The graphical analysis is elaborated to explore the influence of physical parame-
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ters on diffracted field due to a finite-width slit lying in the ionosphere of non-thermal

plasma. These physical parameters are θ0, k, 2l and ε1. Fig. 4.3 represents the pat-

tern of the separated field for variation of θ0, and it gets maxima for θ0 = π/3, π/4,

π/6 occurring at θ = 2π/3, 3π/4, 5π/6, respectively. These maxima actually predict

the shadow of reflected field. Fig. 4.4 reveals the separated field for k. It is notable

that the field has a direct dependence upon k because the field gets amplified for

k. Since the frequency is directly related to k, so it excites the frequency of wave

towards the high range. As extension of the slit-width is actually the expansion of

aperture which is responsible for the diffraction of electromagnetic radiations, and

so, separated field gets amplified as well as more oscillated as can be seen in Fig.

??. This amplified amplitude could be controlled by introducing the ionosphere as

can be observed through Fig. 4.5b. By comparing Figs. 4.3b, 4.4b and 4.5b of the

separated field in the an-isotropic medium with their respective Figs. 4.3a, 4.4a and

4.5a in the isotropic medium. It is explained that an-isotropy of the medium caused

by non-thermal plasma influenced the separation field, in both amplitude reduction

and wavelength contraction. Fig. 4.6 explores the trend of the field for ε1, while its

mathematical interpretation predicts its physical nature. It is expressed by Eq. (??)

and can be described as ωc has no big difference in the values in the different parts

of Earth and ωp has direct relation with the square root of Ne (ion concentration),

which fluctuates massively with the variation of seasons and days to night. Therefore,

without fluctuation on ω, ε1 can be fluctuate. Since ε1 has inverse relation with ω,

so increase in Ne with fixed ω, ε1 declines and wavelength will be increase. It means

that the separated field with longer wavelength will occur for increasing number of

free charges in the medium.
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Figure 4.3: The separated field for θ0 in the (a) isotropic and (b) an-isotropic medium.
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Figure 4.4: The separated field for k in the (a) isotropic and (b) an-isotropic medium.
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Figure 4.5: The separated field for 2l in the (a) isotropic and (b) an-isotropic medium.
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Figure 4.6: The separated field for ε1.
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4.6 Conclusions

From above rigorous analysis, it is wrapped-up that the diffraction behavior of

H inc incident finite-symmetric strip embedded with Neumann surface is affected rig-

orously by behavior changing parameters in the existence of non-thermal plasma. It

is deeply explored that the function Hsep is amplified by different θ0, k, 2l, ε1 and

reduced by ε2.
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Chapter 5

Scattering of Electromagnetic

Plane Wave Incident on a Finite

Corrugated Grating in

Non-thermal Plasma

In the present chapter, the scattering of magnetically polarized waves due to

sinusoidal grating is investigated in the context of non-thermal plasma under the

consideration of high frequency signal. Assumption of small depth of grating as com-

pared to the wavelength and approximation of boundary conditions on the grating

surface leads to the reduction of model for diffraction problem of flat-strip embedded

with mixed boundary conditions. Applying the Fourier transform and approximating

the boundary conditions along with perturbation series expansion, the Wiener-Hopf

equations of zero-order and first-order are formulated. Wiener-Hopf technique along

with perturbation method is used to tackle this model. The scattered field is ex-

plicitly derived by applying the inverse Fourier transformation and then using the

saddle point method. For high frequency signals, operating frequency is considered

to be very large as compared to cyclotron frequency, at the same order with plasma

frequency. Numerical values for permittivity elements controlling cold plasma are
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computed for corresponding operating frequency. The characteristics of scattering

in the existence and non-existence of non-thermal plasma by grating are graphically

discussed.

5.1 Description Of The Model

𝜌

𝑦

𝑥

𝑃𝑙𝑎𝑛𝑒 𝑊𝑎𝑣𝑒

−𝑙 𝑙

ℎ

−ℎ

θ0

𝐶𝑜𝑙𝑑 𝑃𝑙𝑎𝑠𝑚𝑎

Figure 5.1: Simplified figure of the problem.

H-Polarized plane-waves are being incident on the surface as shown in Fig. 1. In

present scenario, the surface is taken as perfectly conducting, uniform and infinitely

thin lying along the x−direction, which is defined by

y = h sinmx, |x| ≤ l (5.1)

with 2h (h > 0) being the distance between crust and trough or grating depth, and

m > 0 being the periodicity measurement parameter. The magnetic field is taken

to be parallel to z−axis with consideration of grating geometry. This leads to the

two-dimensional scattering problem regarding.

Let the total magnetic field H tot
z (x, y) be defined by

H tot
z (x, y) = H inc

z (x, y) +Hscat
z (x, y), (5.2)
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where H inc
z is the incident field satisfying the Helmholtz equation, is given by

H inc
z (x, y) = e−ikeff (x sin θ0+y cos θ0), 0 < θ0 < π/2 (5.3)

where keff is given by (8). The two-dimensional Helmholtz equation of scattered

field Hz (x, y) is given by

(
∂2x + ∂2y + k2eff

)
Hscat

z (x, y) = 0 (5.4)

The total electric field Etot
tan having tangential components satisfies, the boundary

conditions.

Etot
tan = ∂nH

tot
z (x, h sinmx) = 0, |x| < l (5.5)

Here ∂n denotes the normal derivative. Assume that the grating depth 2h is tiny in

comparison to the wavelength and extend the (6) in terms of the Taylor series. Then,

in the Taylor series, omitting the terms of order O (h2), we get

∂yH
tot
z (x, 0) + h

[
sinmx∂2yH

tot
z (x, 0)−m cosmx∂xH

tot
z (x, 0)

]
+O (h2) = 0, |x| < l

(5.6)

where (14) depicts the boundary condition and will be utilized to proceed the re-

maining part of analysis.

Let us expand the unknown scattered field Hz(x, y) through the perturbation tech-

nique as:

Hz (x, y) = H(0)
z (x, y) + hH(1)

z (x, y) +O
(
h2
)
, (5.7)

where H
(0)
z (x, y) is the zero-order and H

(1)
z (x, y ) is the first-order unknown terms

in the scattered field.

H
(n)
z for n = 0, 1 appearing (15) satisfy

(
∂2x + ∂2y + k2eff

)
H(n)

z (x, y) = 0, (5.8)
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with continuity relations

H(0)
z (x,+0) = H(0)

z (x− 0)
[
≡ H(0)

z (x, 0)
]
, (5.9)

∂yH
(0)
z (x,+0) = ∂yH

(0)
z (x,−0)

[
≡ ∂yH

(0)
z (x, 0)

]
, (5.10)

H(1)
z (x,+0) = H(1)

z (x,−0)
[
≡ H(1)

z (x, 0)
]
, (5.11)

∂yH
(1)
z (x,+0) = ∂yH

(1)
z (x,−0)

[
≡ ∂yH

(1)
z (x, 0)

]
, (5.12)

for |x| > l, and

H(0)
z (x,+0)−H(0)

z (x,−0) = j(0) (x, 0) , (5.13)

∂yH
(0)
z (x, 0) = ikeff sin θ0e

−ikeffx cos θ0 , (5.14)

H(1)
z (x,+0)−H(1)

z (x,−0) = j(1) (x, 0) , (5.15)

∂yH
(1)
z (x, 0) + sinmx∂2yH

(0)
z (x, 0)−m cosmx∂xH

(0)
z (x, 0)

=
ikeff
2

[
keff sin

2 θ0
∑2

n=1(−1)ne−ikeffx cos θn −m cos θ0
∑2

n=1 e
−ikeffx cos θn

] (5.16)

for |x| < l

cos θ1 = cos θ0 −m/k, cos θ2 = cos θ0 +m/k. (5.17)

The terms j(0) (x, 0) and j(1) (x, 0) in their respective equations (21) and (23),

presenting the unknown currents at the surface, respectively. As it can be visualized

from above argument that zero-order function leads to the diffraction problem by

flat-strip whereas the first-order corresponds to the problem of wave diffracted by

sinusoidal corrugation of finite length.

5.2 Modeling of Wiener-Hopf Equations.

For ease of analysis, the medium is assumed to be slightly lossy as in keff =

Re {keff} + iIm {keff} with 0 < Im {keff} ≪ Re {keff}. The solution of present

model for real value of keff is achieved by taking Im {keff} −→ +0 at the end of

analysis. For Eq. (15) considering the radiation condition, the asymptotic behavior
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of the H(n) (x, y) for n = 0, 1 is given by

H(n)
z (x, y) = O

(
e−Im{keff}|x| cos θ0

)
, |x| −→ ∞ (5.18)

Employing the Fourier transformation on H
(n)
z (x, y), we have

F (n) (α, y) = (2π)−1/2

∫ ∞

−∞
H(n)

z (x, y) eiαxdx, (5.19)

where α is taken as complex. Eqs. (26) and (27) show that H
(n)
z (α, y) for n = 0, 1

behave as regular functions for α in the strip |τ | < Im{keff} cos θ0 of the complex

α−plane. Let us introduce the Fourier integrals as

F (n)
± (α, y) = ± (2π)−1/2

∫ ±∞

±l

H(n)
z (x, y)eiα(x∓a)dx, (5.20)

F (n)
l (α, y) = (2π)−1/2

∫ l

−l

H(n)
z (x, y) eiαxdx, (5.21)

F (n)
S (α, 0) = (2π)−1/2

∫ l

−l

H(n)
z (x, 0) eiαxdx (5.22)

As F (n)
± (α, y) are regular in τ ≷ ∓Im {keff} cos θ0 where as F (n)

l (α, y) and F (n)
S (α, 0)

are entire functions. From Eqs. (27)− (29), we get

F (n) (α, y) = e−iαlF (n)
− (α, y) + F (n)

l (α, y) + eiαlF (n)
+ (α, y) (5.23)

Using Fourier transformation of Eq. (16) along Eq. (26), we get

[
d2/dy2 − γ2 (α)

]
F (n) (α, y) = 0, (5.24)

where γ (α) =
(
α2 − k2eff

)1/2
with Re {γ (α)} > 0. γ (α) is a double-valued function

of α such that γ (α) = −ikeff for α = 0 so we can have proper choice of branch. The
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solution of (32) is presented as

F (n) (α, y) =

 U (n) (α) e−γ(α)y, y > 0

V(n) (α) eγ(α)y, y < 0,
(5.25)

where the arbitrary functions appearing in the Eq (33) U (n) (α) and V(n) (α) for

n = 0, 1 will be evaluated. Using Eqs. (17)− (24), we have

U (0) (α)

V(0) (α)

 = ±F (0)
S (α)

2
(5.26)

U (1) (α)

V(1) (α)

 = ±F(1)
S (α)

2
+ 1

4iγ(α)

 [γ2 (α +m)−m (α +m)]F (0)
S (α +m)

− [γ2 (α−m) +m (α−m)]F (0)
S (α−m)

 ,

(5.27)

where

F (0)
S (α) = F (n)

l (α,+0)−F (n)
l (α,−0) (5.28)

for n = 0, 1. Putting Eq. (34)and Eq. (35) into Eq. (33), we get the following for

y ≷ 0 :

F (0) (α, y) = ±F (0)
S (α)

2
e∓γ(α)y, (5.29)

F (1) (α, y) = ±F(1)
S (α)

2
e∓γ(α)y

+ 1
4iγ(α)

 [γ2 (α +m)−m (α +m)]F (0)
S (α +m)

− [γ2 (α−m) +m (α−m)]F (0)
S (α−m)

 e∓γ(α)y.
(5.30)

Equations (37) and (38) express the transformed scattered fields of the zero- and

first-order, respectively. Plugging y = ±0 in (29) and (30) and using the boundary

conditions, we have

e−iαlS− (α) +K (α)F (0)
S (α) + eiαlS(+) (α) = 0, (5.31)

e−iαlD− (α) +K (α)F (1)
S (α) + eiαlD(+) (α) = 0, (5.32)
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for |τ | < Im{keff} cos θ0, where

S− (α) = F (0)′
− (α, 0) +

U0

α− keff cos θ0
, (5.33)

S(+) (α) = F (0)′
+ (α, 0)− V0

α− keff cos θ0
, (5.34)

D− (α) = F− (α)−
2∑

n=1

(−1)n
UnCn

α− keff cos θn
, (5.35)

D(+) (α) = F+ (α) +
2∑

n=1

(−1)n
VnCn

α− keff cos θn
, (5.36)

K (α) =
γ (α)

2
, (5.37)

F± (α) = F (1)′
± (0, α)

+ 1
2i


[γ2 (α +m)−m (α +m)] e±imlF (0)

± (α +m, 0)

− [γ2 (α−m)−m (α−m)] e∓imlF (0)
± (α−m, 0)

± (2π)−1/2m cosmlH
(0)
z (0, l)


(5.38)

U0

V0

 =
−keff sin θ0e±ikeff l cos θ0

√
2π

, (5.39)

Un

Vn

 =
e±ikeff l cos θn

√
2π

, n = 1, 2 (5.40)

Cn = (keff/2)
[
keff sin

2 θ0 − (−1)nm cos θ0
]
, n = 1, 2 (5.41)

where the prime represent the derivative with respect to y. Eqs. (39) and (40) are

Wiener-Hopf equations of zero- and first-order, respectively.
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5.3 Exact and Asymptotic Results

For exact and asymptotic solutions, we solve the Wiener-Hopf equations of the

zero- and first-order. The product decomposition of K (α) given in (45) presented as

K (α) = K+ (α)K−(α). (5.42)

The factors appearing in (50) are evaluated as

K± (α) =
e−iπ/4 (keff ± α)1/2√

2
. (5.43)

Multiplying e±iαl/K± (α) on both sides of (39) and using the decomposition method,

we get

S(+) (α) = K+ (α)

(
− U0

K+ (keff cos θ0) (α− keff cos θ0)
+

1

2
[us (α)− ud (α)]

)
,

(5.44)

S− (α) = K− (α)

(
V0

K− (keff cos θ0) (α− keff cos θ0)
+

1

2
[us (−α) + ud (−α)]

)
,

(5.45)

where

us,d (α) =
1

πi

∫ keff+i∞

keff

e2iβaSs,d
(+) (β)

(β + α)K− (β)
dβ, (5.46)

Ss,d
(+) (α) = S(+) (α)± S− (−α) . (5.47)

Eqs. (52) and (53) comprise of branch-cut integrals involving unknown functions

Ss,d
(+) (β) as the integrands. Using an asymptotic method, we explicitly find a high-

frequency solution as

S− (α) ∼ − U0 (α− keff )
1/2

(keff cos θ0 − keff )
1/2 (α− keff cos θ0)

+K− (α)
[
Cu
1 ξ (−α) + V0η

b
0 (−α)

]
,

(5.48)

S(+) (α) ∼
V0 (α + keff )

1/2

(keff cos θ0 + keff )
1/2 (α− keff cos θ0)

+K+ (α) [Cu
2 ξ (α) + U0η

a
0 (α)] ,

(5.49)
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for keff l → ∞, where

Cu
1,2 =

K+ (keff )
[
χa,b
0 (keff ) +K+ (keff ) ξ (keff )χ

b,a
0 (keff )

]
1−K2

+ (keff ) ξ2 (keff )
, (5.50)

ξ (α) = −2a1/2e2ikeff l

π
Γ1 (1/2,−2i (α + keff ) l) , (5.51)

ηa,b0 (α) =
ξ (α)− ξ (±keff cos θ0)

α∓ keff cos θ0
, (5.52)

with

χa
0(α) = U0η

a
0 (α) + V0L

b
0 (α) , (5.53)

χb
0 (α) = V0η

b
0 (α) + U0L

a
0 (α) , (5.54)

La,b
0 (α) =

1

α± keff cos θ0

[
1

K+ (α)
− 1

K∓ (keff cos θ0)

]
. (5.55)

In (51), Γ1 (., .) is the gamma function in generalized form calculated by Kobayashi

[21] and is defined

Γs (u, v) =

∫ ∞

0

tu−1e−t

(t+ v)p
dt. (5.56)

with p being the positive integer, and Re{u} > 0, |v| > 0, |arg v| < π. This is

the complete solution for Wiener-Hopf zero-order (39). Similarly, for the first-order

Wiener-Hopf equation (40), same procedure may be used. The procedure of decom-

position and factorization yields the solution of first-order Wiener-Hopf equation (40)

with following result:

D− (α) = −K− (α)

{
2∑

n=1

(−1)n
UnCn

K− (keff cos θn) (α− keff cos θn)
+

1

2
[vs (−α) + vd (−α)]

}
,

(5.57)

D(+) (α) = K+ (α)

{
2∑

n=1

(−1)n
VnCn

K+ (keff cos θn) (α− keff cos θn)
+

1

2
[vs (α)− vd (α)]

}
,

(5.58)

where

vs,d (α) =
1

πi

∫ keff+i∞

keff

e2iβlDs,d
(+) (β)

(β + α)K− (β)
dβ, (5.59)
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with

Ds,d
(+) (α) = D(+) (α)±D− (−α) . (5.60)

Evaluating (67) asymptotically and then arranging the results, we obtain

D− (α) ∼ −
∑2

n=1 (−1)n
Cneikeff l cos θn(α−keff)

1/2

(2π)1/2(keff cos θn−keff)
1/2

(α−keff cos θn)

+K− (α)
[
Pv

1 ξ (−α) + V1η
b
1 (−α) + V2η

b
2 (−α)

]
,

(5.61)

D(+) (α) ∼ −
∑2

n=1 (−1)n Cne−ikeff l cos θn (α+k)1/2

(2π)1/2(keff cos θn+keff)
1/2

(α−keff cos θn)

+K+ (α)
[
Pv

2 ξ (α) + U1η
b
1 (α) + U2η

b
2 (α)

]
,

(5.62)

as keff l → ∞, where

Pv
1,2 =

K+ (keff )

1−K2
+ (keff ) ξ2 (keff )

2∑
n=1

[
χa,b
n (keff ) +K+ (keff ) ξ (keff )χ

b,a
n (keff )

]
,

(5.63)

ηa,bn (α) = − (−1)n Cn
ξ (α)− ξ (±keff cos θn)

α∓ keff cos θn
, (5.64)

χa
n (α) = Unη

a
n (α)− (−1)n VnCnLb

n (α) , (5.65)

χb
n (α) = Vnη

b
n (α)− (−1)n UnCnLa

n (α) , (5.66)

La,b
n (α) =

1

α± keff cos θn

[
1

K+ (α)
− 1

K∓ (keff cos θn)

]
. (5.67)

for n = 1, 2. Eqs. (56), (57) and (69), (70) give the asymptotic solutions of equations

(39) and (40) for high-frequency, respectively.

5.4 Scattered Far Field

With the aid of results evaluated in above section, we drive the analytical expres-

sions for scattered field. The inverse Fourier transform is applied on F (n) (α, y) to

obtain the result for scattered field Hn
z (x, y) with n = 0, 1 which is defined as

H(n)
z (x, y) =

1√
2π

∫ ∞+id

−∞+id

e−iαxF (n)(α, y)dα, (5.68)
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where d is a constant such that |d| < Im{keff cos θ0}. Now we shall derive the explicit

asymptotic expressions for the scattered far fields of the zero- and first-order.

For scattered far field of zero-order, we express F (0)
S (α) explicitly from (39) that is

F (0)
S (α) =

−e−iαlS− (α)− eiαlS(+) (α)

K (α)
. (5.69)

Substituting (77) into (37) we obtain

F (0) (α, y) = ±
(
−e−iαlS− (α)− eiαlS(+) (α)

2K (α)

)
e∓γ(α)y, (5.70)

Substitution of (78) in (76) with n = 0 leads to an integral expression for the

scattered field of the zero-order H
(0)
z (x, y) is presented as

H(0)
z (x, y) = ∓ (2π)−1/2

∫ ∞+id

−∞+id

e−ilαS− (α) + eilαS+ (α)

γ
e∓γ(α)y−iαxdα, (5.71)

for y ≷ 0, where d is a constant such that |d| < Im{keff cos θ0} and γ = 2K (α) .

Since the integral presented by (79) includes branch points at α = ±keff , therefore,

in general, it is difficult to get solution in closed form. However, we may tackle (79)

utilizing the saddle point method to get an asymptotic expression. Now we introduce

the polar coordinates as:

x = ρ cos θ, y = ρ sin θ, − π < θ < π (5.72)

The expression of H0
z (x, y) can be derived by using Saddle point method as:

H
(0)
z (ρ, θ) ∼ ∓ e

ikeff l cos θS−(−keff cos θ)+e
−ikeff l cos θS(+)(−keff cos θ)

2K(−keff cos θ)

×keff sin |θ| e
i(keff ρ−π/4)√

keffρ

(5.73)

for y ≷ 0 as keffρ → ∞. Substituting the (56) and (57) in (81), the results will be

achieved for scattered far field with high-frequency for large |keff | l.

In the similar manner,an integral form of H
(1)
z (x, z) can be derived by substituting
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(38) in (76) and utilizing (39) and (40), we get

H(1)
z (x, y) = H(1)

z,v (x, y) +H(1)
z,u (x, y) , (5.74)

where

H(1)
z,v (x, y) = ∓ (2π)−1/2

∫ ∞+id

−∞+id

e−iαlD− (α) + eiαlD(+) (α)

2K (α)
e∓γ(α)y−iαxdα, (5.75)

H
(1)
z,u (x, y) = −(2π)−1/2

∞+id∫
−∞+id

1

8iπK (α)



[γ2 (α +m)−m (α +m)]

× e−i(α+m)lS−(α+m)+ei(α+m)lS(+)(α+m)

K(α+m)

− [γ2 (α−m)−m (α−m)]

× e−i(α−m)lS−(α−m)+ei(α−m)lS(+)(α−m)

K(α−m)


×e∓γ(α)y−iαxdα.

(5.76)

Now with the aid of saddle point method along with polar coordinates defined by

(80), the H
(1)
z,v (x, y) is evaluated asymptotically as

H
(1)
z,v (ρ, θ) ∼ ∓ e

ikeff l cos θD−(−keff cos θ)+e
−ikeff l cos θD(+)(−keff cos θ)

2K(keff cos θ)

×keff sin |θ| e
i(keff ρ−π/4)

(keffρ)
1/2 ,

(5.77)

for y ≷ 0 as keffρ→ ∞.

For H
(1)
z,u (x, y) given by (84), in general it is difficult to evaluate asymptotic expres-

sion, because α = ±keff + m, ±keff − m and α = ±keff are the branch points

occurring in (84). To proceed further, we consider |m/keff | ≪ 1 which leads to

larger period of grating than the wavelength and can be evaluated asymptotically by

the saddle point method. It’s asymptotic expression is as follows:
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H
(1)
z,u (ρ, θ) ∼ 1

8iK(keff cos θ)

2∑
n=1

(−1)n
[
4K2

(
keff cos θ

(n)
)
− (−1)nmkeff cos θ

(n)
]

× e
ikeff l cos θ(n)

S−(−keff cos θ(n))+e
−ikeff l cos θ(n)

S(+)(−keff cos θ(n))
K(keff cos θ(n))

keff sin |θ| e
i(keff ρ−π/4)√

keffρ

(5.78)

for y ≷ 0 as keffρ→ ∞, where

θ(1,2) = cos−1 (cos θ ∓m/keff ) . (5.79)

Introducing Eqs (85) and (86) into (82), the asymptotic expression of first-order

field is,

H
(1)
z (ρ, θ) ∼ ∓ e

ikeff l cos θD−(−keff cos θ)+e
−ikeff l cos θD(+)(−keff cos θ)

2K(keff cos θ)
× keff sin |θ| e

i(keff ρ−π/4)√
keffρ

+ 1

8iK(keff cos θ)

2∑
n=1

(−1)n


[
4K2

(
keff cos θ

(n)
)
− (−1)nmkeff cos θ

(n)
]

× e
ikeff l cos θ(n)

S−(−keff cos θ(n))+e
−ikeff l cos θ(n)

S(+)(−keff cos θ(n))
K(keff cos θ(n))


×keff sin |θ| e

i(keff ρ−π/4)√
keffρ

,

(5.80)

for y ≷ 0 as keffρ → ∞. With careful observation, that (88) expresses the uniform

asymptotic expression for H
(1)
z (ρ, θ)

5.5 Numerical Results and Discussion

In this section, the intensity of far field and characteristics of scattering by grating

is elaborated mathematically and numerically as well. For ease, the normalized
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function of far field intensity is introduced as in

|Hz(ρ, θ)|[dB] = 20 log10

[ lim
ρ→∞

|(keffρ)1/2Hz(ρ, θ)|

max
|θ|<π

lim
ρ→∞

|(keffρ)1/2Hz(ρ, θ)|

]
, (5.81)

where

Hz(ρ, θ) = H(0)
z (ρ, θ) + hH(1)

z (ρ, θ). (5.82)

Scattered field given by (81) is computed using the expressions given by (73) and (79).

Under the assumption of small-depth approximations of Leontovich type boundary

conditions, original model for grating is reduced to diffraction phenomena of a flat

strip. The boundary condition expressed in (7) may be utilized to simulate corrugated

surface by taking the grating depth 2h which satisfies for 2h ≤ 0.1λ. In this paper,

we have taken depth (of grating) 2h = 0.1λ to consider the sinusoidal surface. On the

other hand, the ratio m
keff

has been chosen as m
keff

≤ 0.2 for validity of the assymptotic

expression of H
(1)
z,u(x, y) given in (77). Under this condition, the process of asymptotic

evaluation of (77) gives rise to the branch point’s appearance at α = ±k + m,

α = ±k −m leading to the contributions of branch-cut integrals which play a little

role but not greater than the saddle point involvement and therefore, (77) may be

employed with suitable accuracy. The characteristic values of ωp and ωc can be

computed as ωp = 56.4MHz and ωc = 8.78MHz. Further, result for high frequency

signal is obtained by setting ω ≫ ωc and following the same order for ωp. This yields

ε1 ≈ 1− (ωp/ω)
2 and ε2 → 0 in the limiting case. For numerical analysis, ω is chosen

between 80MHz and 600MHz. For verification of this assumption, the values of ε1

and ε2 computed for corresponding ω are gien in Table 1.

Presence of cold plasma is considered by taking ε1 = 0.6 and ε2 = 0.001 whereas

for the absence of cold plasma we have chosen particular values as ε1 = 1.0 and

ε2 = 0. Figs. 2 and 5, 3 and 6, 4 and 7 show the plots for scattered far field intensity

versus θ for respective grating length 2l = 10λ, 25λ, 45λ with N = 2l/λ
m/keff

being the

number of periods of grating and θ0 being the incidence angle fixed as 60. In Figs.
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ω (in MHz) ε1 ε2
80.50 0.50913 0.05353
95.75 0.65303 0.03181
130.15 0.81221 0.01266
210.25 0.92804 0.003005
300.60 0.96479 0.001028
440.50 0.98360 0.000326
595.50 0.99103 0.000132

Table 5.1: Values of ε1 and ε2 for corresponding operating frequency.

(2−4), blue and red lines show the scattered field in the existence and non-existence

of non-thermal plasma, respectively, on the other hand, in Figs. (5−7), blue and red

lines show the scattered far field for flat as well as corrugated grating, respectively.

The depth (of grating) has been taken as 2h = 0.1λ to investigate the effects due to

sinusoidal structure of grating in Figs. 2(b), 3(b), 4(b), 5, 6 and 7. Another important

parameter is the periodicity parameter m
keff

which is taken as 0.1 in Figs. 2, 5 and as

0.2 in Figs. 3, 4, 6, 7. The comparative study of scattering features between flat strip

and sinusoidal grating is of significance. Figs. 2(a), 3(a), 4(a) are displayed to study

the comparison between effects due to absence and presence of cold plasma for flat

strip, on the other hand Figs. 2(b), 3(b), 4(b) are plotted to investigate the existence

and non-existence of non-thermal plasma for sinusoidal grating. Figs. 5(a), 6(a),

7(a) show the comparative analysis of scattered field due to flat strip and sinusoidal

grating in absence of cold plasma whereas Figs. 5(b), 6(b), 7(b) show the analysis for

presence of cold plasma.

From all the figures, it can be seen that far field show maximum peaks at two distinct

angles θ = −120, and 120 corresponding to the shadow boundaries of incident and

reflected fields, respectively. Now we discuss the comparison of sinusoidal-shaped

grating in Figs. 2(b), 3(b), 4(b) with flat strip in Figs. 2(b), 3(b), 4(b). It can be

seen that in case of finite sinusoidal grating, nullity of far field intensity is lesser than

those of flat strip. Also, behavior of oscillations for sinusoidal grating is different from

those for the flat strip. Most noticeable behavior in Figs. 2− 4 is the effects of cold

plasma. It can be observed that presence of non-thermal plasma (red lines) has lessen
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the sharp peaks occurring at θ = −120, and 120, and number of oscillations too. This

means that presence of non-thermal plasma avoids the waves from dispersion.

Now we briefly explain the plots of intensity far field shown in Figs. 5 − 7 for

flat strip versus sinusoidal grating in the existence and nonexistence of non-thermal

plasma. On comparing Fig. 5(b), 6(b) with that of 5(a), 6(b), respectively, we see that

existence of non-thermal plasma has reduced the amplitude, number of oscillations

and nullity at θ = 0 of far field intensity. Also, the sharp peaks occurring in the

neighborhood of maximum peaks at θ = −120, and 120 shown in Fig. 6(a) are

reduced by inclusion of non-thermal plasma in Fig. 6(b). A particular oscillating

behavior for sinusoidal grating (red lines) at θ = 0 is shown by subplot in Fig. 7(b),

which is an opposite behavior of far field intensity for sinusoidal grating at θ = 0 in

Fig. 7(a). If we analyze the Figs. 2, 5 forN = 1, and Figs. 3, 6 forN = 5 and Figs. 4,

7 for N = 9, we find that for larger values of N numbers of oscillations are increased.

This happens because of the structure approaching an infinite sinusoidal grating for

enhancement of N and hence, waves are strongly excited along the directions of

propagation.
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Figure 5.2: Behavior of H (x, y) for θ0 = 60, N = 1, 2l = 10λ, m/keff = 0.1 (a)
h = 0 (b) 2h = 0.1λ.
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Figure 5.3: Behavior of H (x, y) for θ0 = 60, N = 5, 2l = 25λ, m/keff = 0.2 (a)
h = 0 (b) 2h = 0.1λ.
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Figure 5.4: Behavior of H (x, y) for θ0 = 60, N = 9, 2l = 45λ, m/keff = 0.2 (a)
h = 0 (b) 2h = 0.1λ.
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Figure 5.5: Behavior of H (x, y) for θ0 = 60, N = 1, 2l = 10λ, m/k = 0.1 (a) absence
of cold plasma (b)presence of cold plasma.
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Figure 5.6: Behavior of H (x, y) for θ0 = 60, N = 5, 2l = 25λ, m/keff = 0.2 (a)
absence of cold plasma (b)presence of cold plasma.
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Figure 5.7: Behavior of H (x, y) for θ0 = 60, N = 9, 2l = 45λ, m/keff = 0.2 (a)
absence of cold plasma (b)presence of cold plasma.
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5.6 Conclusion

In this article, diffracted H-polarized plane wave incident at the sinusoidal-shaped

grating of finite length in the presence of cold plasma is analyzed by Wiener-Hopf

technique along with perturbation method. Helmholtz equation has been formulated

by using Maxwell equations along with non-thermal plasma tensor to analyze the

effects of non-thermal plasma on scattered far field intensity. The small corrugation

amplitude as compared to wavelength is assumed and scattered field has been ex-

panded via perturbation series to reduce the problem to diffraction behavior for flat

strip embedded the surface with mixed conditions. Wiener-Hopf equations of zero-

and first-order are formulated with the aid of approximate boundary condition. The

decomposition procedure is used to proceed these Wiener-Hopf equations which then

yields the exact solutions with high-frequency.

Implementation of the inverse Fourier transformation along with the asymptotic

method of saddle point, the scattered field is devised which shows validity for ar-

bitrary angles of observation as well as incidence. We have accomplished graphical

analysis of field intensity on the basis of results and investigated the diffraction by

flat strip and sinusoidal grating in existing and non-existing non-thermal plasma in

detail. On analyzing the plots, it is observed that the number of oscillations increase

due to increasing the number of gratings. Also, the existence of non-thermal plasma

has reduced the peaks of the field oscillations. Model can be thought of an artificial

satellite in the space or a screen with sinusoidal shape.
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Chapter 6

EM-Wave Incident on the Slit of

Finite Width with Dirichlet

Conditions in An-isotropy of

Non-thermal Plasma

This chapter thoroughly investigate the interaction of wave field due to a finite-

width slit with Dirichlet boundary conditions in the context of non-thermal plasma.

After applying the Fourier transform to the Helmholtz equation, the boundary value

problem is established. To solve the challenge stated for this model, the Wiener-Hopf

analysis is used. At the completion of the analysis, the separated field computed

along with its numerical findings are elaborated to further investigate the impacts of

variation in physical parameters in an an-isotropic medium.

6.1 Problem Statement

We have investigated the diffraction pattern of plane electromagnetic waves due

to a finite-width slit in non-thermal plasma, as illustrated in Fig. 6.1. Furthermore,

Dirichlet conditions are assumed on the slit and angle of incidence is θ0. The total
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Figure 6.1: Simplified figure of the problem.

field can be represented in terms of incident, refracted and diffracted fields as:

H tot
z (x, y) = H inc

z (x, y) +Href
z (x, y) +Hz(x, y), (6.1)

where the incident and refracted fields are defined as

H inc
z (x, y) = e−ikeff (x cos θ0+y sin θ0), (6.2)

Href
z (x, y) = e−ikeff (x cos θ0−y sin θ0). (6.3)

Suppose that medium is slightly lossy, and constant Keff appearing in above equa-

tions is complex in such a way (0 < Im{keff} ≪ Re{keff}). At the end, for real

Keff solution could be determine by taking its imaginary part to zero. The entire

field H tot
z (x, y) meeting the Helmholtz equation is

[∂xx + ∂yy + k2eff ]H
tot
z (x, y) = 0, (6.4)

Substituting the value of H tot
z (x, y) from (7.1), we get the equation for diffracted field

as:

[∂xx + ∂yy + k2eff ]Hz(x, y) = 0, (6.5)
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In order to establish the Wiener-Hopf equation, conditions at x−±l in conjunction

with continuity relations are used. Neumann boundary conditions on a finite-width

slit are specified as

H tot
z = 0, for −l ≥ x ≥ l, and y = 0±, (6.6)

along with

H tot
z (x, 0+) = H tot

z (x, 0−) = 0, at |x| < l, y = 0, (6.7)

6.2 Problem Transformation

Following results can be obtained with the use of Fourier Transforms.

F(β, y) =
1√
2π

∞∫
−∞

eiβxHz(x, y)dx

= eiβlF+(β, y) + e−iβlF−(β, y) + Fl(β, y), (6.8)

where β = σ + iτ .

Figure 6.2: Illustration of Analytic-Continuation.

84



For high values of x, the diffracted field is interpreted as follows:

Hz(x, y) =


O(e−ikeffx),

O(e−keffx cos θ0).

(6.9)

The regions of regularity in the complex plane for F+(β, y) and F−(β, y) are Im{β} >

−Im{keff} and Im{β} < Im{keff cos θ0}. From Fig 6.2, we can see the common

region −Im{keff} < Im{β} < Im{keff cos θ0} of analyticity, where the functions

Fl(β, y) are also analytic and hence, we can define

F±(β, y) = ± 1√
2π

±∞∫
±l

eiβ(x∓l)Hz(x, y)dx (6.10)

Fl(β, y) =
1√
2π

l∫
−l

eiβxHz(x, y)dx (6.11)

F inc(β, y) =
exp(−iykeff sin θ0)√

2π

(
exp[il(β − keff cos θ0)]− exp[−il(β − keff cos θ0)]

i(β − keff cos θ0)

)
.

(6.12)

F ref (β, y) =
exp(iykeff sin θ0)√

2π

(
exp[il(β − keff cos θ0)]− exp[−il(β − keff cos θ0)]

(β − keff cos θ0)

)
.

(6.13)

The following transformed boundary value problem could be obtained by applying

the Fourier transformation to Eqs. (7.5− 7.7) .

(
d2

dy2
+ γ2

)
F = 0 (6.14)

where γ(β) =
√
k2eff − β2.

F(β, 0+) = F ref (β, 0)−F inc(β, 0)

F(β, 0−) = 0
, (6.15)

and

F±(β, 0
+) = 0 = F±(β, 0

−). (6.16)
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6.3 Solution of the Wiener-Hopf Equation

The solution of transformed boundary value problem (7.14), fulfilling the radiation

conditions is,

F(β, y) =


A1(β) exp(−iγy) y ≥ 0,

A2(β) exp(iγy) y < 0.

(6.17)

Now using Eqs. (7.15− 7.17), following Wiener-Hopf equation is obtained.

exp(iβl)F ′
+(β, 0) + exp(−iβl)F ′

−(β, 0) +K(β)F̃l(β, 0) = −keff sin θ0G(β), (6.18)

where,

K(β) = iγ, (6.19)

F̃l(β, 0) =
1

2

(
Fl(β, 0

+)−Fl(β, 0
−)
)

(6.20)

G(β) = exp[il(β − keff cos θ0)]− exp[−il(β − keff cos θ0)]√
2π(β − keff cos θ0)

, (6.21)

The Kernel function defined in Eq. 7.19 can be written as:

K(β) =
1

iγ(β)
= K±(β) with γ(β) = γ±(β), (6.22)

where K±(β) are,

K±(β) =
exp(−iπ

4
)

γ±(β)
with γ±(β) =

√
keff±β. (6.23)

It must be noted that the functions, K±(β) have region of regularity are Im{β} >

−Im{keff} and Im{β} < Im{keff cos θ0} and similarly for γ±(β). From Eq. (7.18),

equating the terms which are regular in their corresponding regions, creates a common

region of analyticity. Hence, by analytic contnuation, we get an entire function P(β)

and by Liouville’s theorem, P(β) must be equal to zero[12], yielding the following

results.
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F±(β, 0) =
A√
2π

[K±(β)G1,2(±β) +K±(β)T (±β)C1,2], (6.24)

where

G1,2(β) =
exp(∓ikeff l cos θ0)
α∓keff cos θ0

(
1

K+(β)
− 1

K+(±keff cos θ0)

)
−exp(±ikeff l cos θ0)R1,2(β),

(6.25)

C1,2 = K+(keff )
G2,1(keff ) +K+(keff )G1,2(keff )T (keff )

1−K2
+(keff )T 2(keff )

, (6.26)

R1,2(β) =
E−1

2πi(β ∓ keff cos θ0)
[W−1(−i(keff ± keff cos θ0))−W−1(−i(keff + β))],

(6.27)

T (β) =
E−1

2π
W−1[−i(keff + β)l], E−1 = 2

√
l

i
eikeff+β, (6.28)

Wn−1/2(q) =

∞∫
0

vne−v

v + q
dv = Γ(n+ 1)e(

q
2)q(n−1)/2W−(n+1)/2,n/2(q), (6.29)

where q = −i(keff + β)l, n = −1
2
and W is the Whittaker function. Solving Eqs.

7.17 and 7.18, diffracted field is,

F(β, y) = − 1

K(β)

[
exp(iβl)F+(β, 0) + exp(−iβl)F−(β, 0) + Fl(β, 0)

]
e−iγ|y|,(6.30)

where

Fl(β, 0) = −AG(β), and A = −keff sin θ0 (6.31)

Inverse Fourier transformation of Eq. (7.30), yields the diffracted field as:

Hz(x, y) =
1√
2π

∞∫
−∞

F(β, y) exp(−iβx− iγ|y|)dβ. (6.32)

Inserting (7.30) in (7.32), we get

Hz(x, y) = − 1√
2π

∞∫
−∞

1

K(β)

 exp(iβl)F+(β, 0) + exp(−iβl)F−(β, 0)+

+F̃l(β, 0)

 exp(−iβx−iγ|y|)dβ.

(6.33)
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Diffracted field Hz(x, y) further bifurcate in the separated and interaction fields

Hsep
z (x, y) and H int

z (x, y), respectively as,

Hz(x, y) = Hsep
z (x, y) +H int

z (x, y), (6.34)

where

Hsep
z (x, y) =

1

2π

∞∫
∞

A
K(β)


K+(β) exp[i(β−keff cos θ0)l]

K+(keff cos)(β−keff cos θ0)

−K+(−β) exp[−i(β−keff cos θ0)l]

K+(−keff cos)(β−keff cos θ0)

 exp(−iβx− iγ|y|)dβ,

(6.35)

H int
z (x, y) =

1

2π

∞∫
−∞

A
K(β)



exp(iβl)K+(β)T (β)C1

− exp[i(β + keff cos θ0)l]K+(β)R1(β)

+ exp(−iβl)K−(β)T (−β)C2

− exp[−i(β + keff cos θ0)l]K−(β)R2(−β)


exp(−iβx−iγ|y|)dβ.

(6.36)

The separated field given by (7.35) depicts diffraction separately at the edges. The

H inct
z (x, y) represented by Eq. (7.36) explains the interaction of one end with the

other.

6.4 Diffracted Field

The diffracted field due to slit of finite width for the far field can be obtained

asymptotically by coping with the integral appearing in (7.32). Polar coordinates

are introduced for the evaluation of Eq. 7.32 with the following transformation.

β = −keff cos(ϕ+ iη), 0 < ϕ < π, −∞ < η <∞. (6.37)
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Now when the method of stationary phase [32] is used for (7.32), the following result

are obtained:

Hz(r, ϕ) =
ikeff√
keffr

F(−keff cosϕ,±r sinϕ) sinϕ exp
(
ikeffr + i

π

4

)
. (6.38)

Using the same polar coordinates, the transformation and subsequently the method

of stationary phase are used to assess and yield the separated field and interaction

fields as follows:

{Hsep
z , H int

z }(r, ϕ) = 1√
2π

ikeff√
keffr

{fsep,−fint}(−keff cosϕ) sinϕ exp
(
ikeffr + i

π

4

)
,

(6.39)

where

fsep(−keff cosϕ) =
A

K(−keff cosϕ)


K+(−keff cosϕ) exp[−ikeff l(cosϕ+cos θ0)]

K+(keff cos θ0)(−keff cosϕ−keff cos θ0)

− K+(keff cosϕ) exp[ilkeff (cosϕ+cos θ0)]

K+(−keff cos θ0)(−keff cosϕ−keff cos θ0)

 (6.40)

fint(−keff cosϕ) =
A

K(−keff cosϕ)



exp(−ikeff l cosϕ)K+(−keff cosϕ)

×T (−keff cosϕ)C1

− exp[il(−keff cosϕ+ keff cos θ0)]

×K+(−keff cosϕ)R1(−keff cosϕ)

+K−(−keff cosϕ) exp(ikeff l cosϕ)

×T (keff cosϕ)C2

− exp [−il(−keff cosϕ+ keff cos θ0)]

×K−(−keff cosϕ)R2(keff cosϕ)


(6.41)

From Eq. (7.38), we can clearly see that the asymptotic expressions for far field can

be obtained by letting keffr → ∞ and the resulting expressions will be holds true for

any observational angle. The separated field of an EM-wave is investigated in order

to characterise both the field diffracted by the corners of a slit and the influence of

the geometrical wave field. The separated field that results gives physical evidence
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for the non-thermal plasma concept. Separated-field, on the other hand, provides no

physical information due to contact at one edge with the other, which has already

been enumerated by separated-field. As a result, we’ve only talked about the sepa-

rated field because it conveys a full physical comprehension of EM-wave diffraction

at the established boundaries. Additionally, we discovered that the interaction field

is created by diffraction from the corners of slit at x = ±l. Furthermore, when the

slit width is increased to ∞, the contribution due to H inct
z terms disappears, leaving

just the separated field terms in the diffracted field. As a consequence, we merely

examine the separated field, as illustrated visually in the next section.

6.5 Discussion and Numerical Results

In this section, we examined the EM-waves by finite-width slit as graphically

by the variation of physical parameters in an an-isotropic media with Neumann

conditions versus the observational angle. For the ionosphere, we take the value of

ωp as 56.4MHz and ωc as 8.78 MHz. Now, the values of ε1 and ε2 are computed

numerically against ω to verify the considered model. Also, the values of ω are taken

between 80MHz and 600MHz given in Tab 6.1. It can be notice from Table-6.1,

that the value of ε2 is comparably very small from ε1 with the boost up of ω in the

frequency range. For isotropic medium, we can take ε1 = 1 and ε2 = 0, While the

parameters ε1 and ε2 for the an-isotropic media (non-thermal plasma) can indeed be

selected from Table-1.

ω (in MHz) ε1 ε2
80.15 0.504834 0.054242
99.50 0.678699 0.028352
145.75 0.850259 0.009020
245.15 0.947071 0.001895
375.50 0.97744 0.000527
480.50 0.986222 0.000251
599.75 0.991157 0.000129

Table 6.1: Values of ε1 and ε2 for corresponding ω.

The graphical analysis is elaborated to explore the influence of physical parame-
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ters on diffracted field due to a finite-width slit lying in the ionosphere of non-thermal

plasma. These physical parameters are θ0, k, 2l and ε1. Fig. 6.3 represents the pat-

tern of the separated field for variation of θ0, and it gets maxima for θ0 = π/3, π/4,

π/6 occurring at θ = 2π/3, 3π/4, 5π/6, respectively. These maxima actually predict

the shadow of reflected field. Fig. 6.4 reveals the separated field for k. It is notable

that the field has a direct dependence upon k because the field gets amplified for

k. Since the frequency is directly related to k, so it excites the frequency of wave

towards the high range. As extension of the slit-width is actually the expansion of

aperture which is responsible for the diffraction of electromagnetic radiations, and

so, separated field gets amplified as well as more oscillated as can be seen in Fig.

6.5. This amplified amplitude could be controlled by introducing the ionosphere as

can be observed through Fig. 6.5b. By comparing Figs. 6.3b, 6.4b and 6.5b of the

separated field in the an-isotropic medium with their respective Figs. 6.3a, 6.4a and

?? in the isotropic medium. It is explained that an-isotropy of the medium caused

by non-thermal plasma influenced the separation field, in both amplitude reduction

and wavelength contraction. Fig. 6.6 explores the trend of the field for ε1, while its

mathematical interpretation predicts its physical nature. It is expressed by Eq. (??)

and can be described as ωc has no big difference in the values in the different parts

of Earth and ωp has direct relation with the square root of Ne (ion concentration),

which fluctuates massively with the variation of seasons and days to night. Therefore,

without fluctuation on ω, ε1 can be fluctuate. Since ε1 has inverse relation with ω,

so increase in Ne with fixed ω, ε1 declines and wavelength will be increase. It means

that the separated field with longer wavelength will occur for increasing number of

free charges in the medium.
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Figure 6.3: The separated field for θ0 in the (a) isotropic and (b) an-isotropic medium.
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Figure 6.4: The separated field for k in the (a) isotropic and (b) an-isotropic medium.
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Figure 6.5: The separated field for 2l in the (a) isotropic and (b) an-isotropic medium.
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Figure 6.6: The separated field for ε1.
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6.6 Conclusions

From above analysis, it is concluded that the diffraction behavior of H inc
z on

finite-width slit with Dirichlet surface is affected rigorously by parameters controlling

behavior in the existence of non-thermal plasma. It is deeply figured out that the

function Hsep is amplified by different θ0, k, 2l, ε1 and reduced by ε2.
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Chapter 7

EM-Wave Incident on

Finite-Width Slit with Neumann

Conditions in An-isotropy of

Non-thermal Plasma

This chapter thoroughly investigate the interaction of wave field due to finite-

width slit by assuming the Neumann boundary conditions in the context of non-

thermal plasma. After applying the Fourier transform to the Helmholtz equation,

the boundary value problem is established. To solve the challenge stated for this

model, the Wiener-Hopf analysis is used. At the completion of the analysis, the

separated field computed along with its numerical findings are elaborated to further

investigate the impacts of variation in physical parameters in an an-isotropic medium.

7.1 Problem Statement

We have investigated the diffraction pattern of plane electromagnetic waves due

to a finite-width slit in non-thermal plasma, as illustrated in Fig. 7.1. Furthermore,

Neumann conditions are assumed on the slit and angle of incidence is θ0. The total
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Figure 7.1: Simplified figure of the problem.

field can be represented in terms of incident, refracted and diffracted fields as:

H tot
z (x, y) = H inc

z (x, y)−Href
z (x, y) +Hz(x, y), (7.1)

where the incident and refracted fields are defined as

H inc
z (x, y) = e−ikeff (x cos θ0+y sin θ0), (7.2)

Href
z (x, y) = e−ikeff (x cos θ0−y sin θ0). (7.3)

Suppose that medium is slightly lossy, and constant Keff appearing in above equa-

tions is complex in such a way (0 < Im{keff} ≪ Re{keff}). At the end, for real

Keff solution could be determine by taking its imaginary part to zero. The entire

field H tot
z (x, y) meeting the Helmholtz equation is

[∂xx + ∂yy + k2eff ]H
tot
z (x, y) = 0, (7.4)

Substituting the value of H tot
z (x, y) from (7.1), we get the equation for diffracted field

as:

[∂xx + ∂yy + k2eff ]Hz(x, y) = 0, (7.5)
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In order to establish the Wiener-Hopf equation, conditions at x − ±l in conjuction

with continuity relations are used. Neumann boundary conditions on a finite-width

slit are specified as

H tot
z = 0, for −l ≥ x ≥ l, and y = 0±, (7.6)

along with

H tot
z (x, 0+) = H tot

z (x, 0−) = 0, at |x| < l, y = 0, (7.7)

7.2 Problem Transformation

Following results can be obtained with the use of Fourier Transforms.

F(β, y) =
1√
2π

∞∫
−∞

eiβxHz(x, y)dx

= eiβlF+(β, y) + e−iβlF−(β, y) + Fl(β, y), (7.8)

where β = σ + iτ .

Figure 7.2: Illustration of Analytic-Continuation.
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For high values of x, the diffracted field is interpreted as follows:

Hz(x, y) =


O(e−ikeffx),

O(e−keffx cos θ0).

(7.9)

The regions of regularity in the complex plane for F+(β, y) and F−(β, y) are Im{β} >

−Im{keff} and Im{β} < Im{keff cos θ0}. From Fig 7.2, we can see the common

region −Im{keff} < Im{β} < Im{keff cos θ0} of analyticity, where the functions

Fl(β, y) are also analytic and hence, we can define

F±(β, y) = ± 1√
2π

±∞∫
±l

eiβ(x∓l)Hz(x, y)dx (7.10)

Fl(β, y) =
1√
2π

l∫
−l

eiβxHz(x, y)dx (7.11)

F inc(β, y) =
exp(−iykeff sin θ0)√

2π

(
exp[il(β − keff cos θ0)]− exp[−il(β − keff cos θ0)]

i(β − keff cos θ0)

)
.

(7.12)

F ref (β, y) =
exp(iykeff sin θ0)√

2π

(
exp[il(β − keff cos θ0)]− exp[−il(β − keff cos θ0)]

(β − keff cos θ0)

)
.

(7.13)

The following transformed boundary value problem could be obtained by applying

the Fourier transformation to Eqs. (7.5− 7.7) .

(
d2

dy2
+ γ2

)
F = 0 (7.14)

where γ(β) =
√
k2eff − β2.

F(β, 0+) = F ref (β, 0)−F inc(β, 0)

F(β, 0−) = 0
, (7.15)

and

F±(β, 0
+) = 0 = F±(β, 0

−). (7.16)
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7.3 Solution of the Wiener-Hopf Equation

The solution of transformed boundary value problem (7.14), fulfilling the radiation

conditions is,

F(β, y) =


A1(β) exp(−iγy) y ≥ 0,

A2(β) exp(iγy) y < 0.

(7.17)

Now using Eqs. (7.15− 7.17), following Wiener-Hopf equation is obtained.

exp(iβl)F ′
+(β, 0) + exp(−iβl)F ′

−(β, 0) +K(β)F̃l(β, 0) = −iG(β), (7.18)

where,

K(β) = iγ, (7.19)

F̃l(β, 0) =
1

2

(
Fl(β, 0

+)−Fl(β, 0
−)
)

(7.20)

G(β) = exp[il(β − keff cos θ0)]− exp[−il(β − keff cos θ0)]√
2π(β − keff cos θ0)

, (7.21)

The Kernel function defined in Eq. 7.19 can be written as:

K(β) =
1

iγ(β)
= K±(β) with γ(β) = γ±(β), (7.22)

where K±(β) are,

K±(β) =
exp(−iπ

4
)

γ±(β)
with γ±(β) =

√
keff±β. (7.23)

It must be noted that the functions, K±(β) have region of regularity are Im{β} >

−Im{keff} and Im{β} < Im{keff cos θ0} and similarly for γ±(β). From Eq. (7.18),

equating the terms which are regular in their corresponding regions, creates a common

region of analyticity. Hence, by analytic contnuation, we get an entire function P(β)

and by Liouville’s theorem, P(β) must be equal to zero[12], yielding the following

results.
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F±(β, 0) =
A√
2π

[K±(β)G1,2(±β) +K±(β)T (±β)C1,2], (7.24)

where

G1,2(β) =
exp(∓ikeff l cos θ0)
α∓keff cos θ0

(
1

K+(β)
− 1

K+(±keff cos θ0)

)
−exp(±ikeff l cos θ0)R1,2(β),

(7.25)

C1,2 = K+(keff )
G2,1(keff ) +K+(keff )G1,2(keff )T (keff )

1−K2
+(keff )T 2(keff )

, (7.26)

R1,2(β) =
E−1

2πi(β ∓ keff cos θ0)
[W−1(−i(keff ± keff cos θ0))−W−1(−i(keff + β))],

(7.27)

T (β) =
E−1

2π
W−1[−i(keff + β)l], E−1 = 2

√
l

i
eikeff+β, (7.28)

Wn−1/2(q) =

∞∫
0

vne−v

v + q
dv = Γ(n+ 1)e(

q
2)q(n−1)/2W−(n+1)/2,n/2(q), (7.29)

where q = −i(keff + β)l, n = −1
2
and W is the Whittaker function. Solving Eqs.

7.17 and 7.18, diffracted field is,

F(β, y) = − 1

K(β)

[
exp(iβl)F+(β, 0) + exp(−iβl)F−(β, 0) + Fl(β, 0)

]
e−iγ|y|,(7.30)

where

Fl(β, 0) = iG(β), (7.31)

Inverse Fourier transformation of Eq. (7.30), yeilds the diffracted field as:

Hz(x, y) =
1√
2π

∞∫
−∞

F(β, y) exp(−iβx− iγ|y|)dβ. (7.32)

Inserting (7.30) in (7.32), we get

Hz(x, y) = − 1√
2π

∞∫
−∞

1

K(β)

 exp(iβl)F+(β, 0) + exp(−iβl)F−(β, 0)+

+F̃l(β, 0)

 exp(−iβx−iγ|y|)dβ.

(7.33)
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Diffracted field Hz(x, y) further bifurcate in the separated and interaction fields

Hsep
z (x, y) and H int

z (x, y), respectively as,

Hz(x, y) = Hsep
z (x, y) +H int

z (x, y), (7.34)

where

Hsep
z (x, y) =

1

2π

∞∫
∞

A
K(β)


K+(β) exp[i(β−keff cos θ0)l]

K+(keff cos)(β−keff cos θ0)

−K+(−β) exp[−i(β−keff cos θ0)l]

K+(−keff cos)(β−keff cos θ0)

 exp(−iβx− iγ|y|)dβ,

(7.35)

H int
z (x, y) =

1

2π

∞∫
−∞

A
K(β)



exp(iβl)K+(β)T (β)C1

− exp[i(β + keff cos θ0)l]K+(β)R1(β)

+ exp(−iβl)K−(β)T (−β)C2

− exp[−i(β + keff cos θ0)l]K−(β)R2(−β)


exp(−iβx−iγ|y|)dβ.

(7.36)

The separated field given by (7.35) depicts diffraction separately at the edges. The

H int
z represented by Eq. (7.36) explains the interaction of one end with the other.

7.4 Diffracted Field

The diffracted field due to slit of finite width for the far field can be obtained

asymptotically by coping with the integral appearing in (7.32). Polar coordinates

are introduced for the evaluation of Eq. 7.32 with the following transformation.

β = −keff cos(ϕ+ iη), 0 < ϕ < π, −∞ < η <∞. (7.37)

103



Now when the method of stationary phase [32] is used for (7.32), the following result

are obtained:

Hz(r, ϕ) =
ikeff√
keffr

F(−keff cosϕ,±r sinϕ) sinϕ exp
(
ikeffr + i

π

4

)
. (7.38)

Using the same polar coordinates, the transformation and subsequently the method

of stationary phase are used to assess and yield the separated field and interaction

fields as follows:

{Hsep
z , H int

z }(r, ϕ) = 1√
2π

ikeff√
keffr

{fsep,−fint}(−keff cosϕ) sinϕ exp
(
ikeffr + i

π

4

)
,

(7.39)

where

fsep(−keff cosϕ) =
A

K(−keff cosϕ)


K+(−keff cosϕ) exp[−ikeff l(cosϕ+cos θ0)]

K+(keff cos θ0)(−keff cosϕ−keff cos θ0)

− K+(keff cosϕ) exp[ilkeff (cosϕ+cos θ0)]

K+(−keff cos θ0)(−keff cosϕ−keff cos θ0)

 (7.40)

fint(−keff cosϕ) =
A

K(−keff cosϕ)



exp(−ikeff l cosϕ)K+(−keff cosϕ)

×T (−keff cosϕ)C1

− exp[il(−keff cosϕ+ keff cos θ0)]

×K+(−keff cosϕ)R1(−keff cosϕ)

+K−(−keff cosϕ) exp(ikeff l cosϕ)

×T (keff cosϕ)C2

− exp [−il(−keff cosϕ+ keff cos θ0)]

×K−(−keff cosϕ)R2(keff cosϕ)


(7.41)

From Eq. (7.38), we can clearly see that the asymptotic expressions for far field can

be obtained by letting keffr → ∞ and the resulting expressions will be holds true for

any observational angle. The separated field of an EM-wave is investigated in order

to characterise both the field diffracted by the corners of a slit and the influence of

the geometrical wave field. The separated field that results gives physical evidence
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for the non-thermal plasma concept. Separated-field, on the other hand, provides no

physical information due to contact at one edge with the other, which has already

been enumerated by separated-field. As a result, we’ve only talked about the sepa-

rated field because it conveys a full physical comprehension of EM-wave diffraction

at the established boundaries. Additionally, we discovered that the interaction field

is created by diffraction from the corners of slit at x = ±l. Furthermore, when the

slit width is increased up to ∞, the contribution of H int
z terms disappears, leaving

just the separated field terms in the diffracted field. As a consequence, we merely

examine the separated field, as illustrated visually in the next section.

7.5 Discussion and Numerical Results

In this section, we examined the EM-waves by finite-width slit as graphically by

the variation of physical parameters in an anisotropic media with Neumann condi-

tions versus the observational angle. For the ionosphere, we take the value of ωp

as 56.4MHz and ωc as 8.78 MHz. Now, the values of ε1 and ε2 are computed nu-

merically against ω to verify the considered model. Also, the values of ω are taken

between 80MHz and 600MHz given in Table-7.1. It can be notice from Table-7.1,

that the value of ε2 is comparably very small from ε1 with the boost up of ω in the

frequency range. For isotropic medium, we can take ε1 = 1 and ε2 = 0, While the

parameters ε1 and ε2 for the anisotropic media (non-thermal plasma) can indeed be

selected from Table-1.

ω (in MHz) ε1 ε2
80.15 0.504834 0.054242
99.50 0.678699 0.028352
145.75 0.850259 0.009020
245.15 0.947071 0.001895
375.50 0.97744 0.000527
480.50 0.986222 0.000251
599.75 0.991157 0.000129

Table 7.1: Values of ε1 and ε2 for corresponding ω.

The graphical analysis is elaborated to explore the influence of physical parame-
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ters on diffracted field due to a finite-width slit lying in the ionosphere of non-thermal

plasma. These physical parameters are θ0, k, 2l and ε1. Fig. ?? represents the pattern

of the separated field for variation of θ0, and it gets maxima for θ0 = π/3, π/4, π/6

occurring at θ = 2π/3, 3π/4, 5π/6, respectively. These maxima actually predict the

shadow of reflected field. Fig. ?? reveals the separated field for k. It is notable that

the field has a direct dependence upon k because the field gets amplified for k. Since

the frequency is directly related to k, so it excites the frequency of wave towards the

high range. As extension of the slit-width is actually the expansion of aperture which

is responsible for the diffraction of electromagnetic radiations, and so, separated field

gets amplified as well as more oscillated as can be seen in Fig. ??. This amplified am-

plitude could be controlled by introducing the ionoshpere as can be observed through

Fig. ??. By comparing Figs. ??, ?? and ?? of the separated field in the anisotropic

medium with their respective Figs. ??, ?? and ?? in the isotropic medium. It is ex-

plained that anisotropy of the medium caused by non-thermal plasma influenced the

separation field, in both amplitude reduction and wavelength contraction. Fig. ??

explores the trend of the field for ε1, while its mathematical interpretation predicts

its physical nature. It is expressed by Eq. (??) and can be described as ωc has no

big difference in the values in the different parts of Earth and ωp has direct relation

with the square root of Ne (ion concentration), which fluctuates massively with the

variation of seasons and days to night. Therefore, without fluctuation on ω, ε1 can

be fluctuate. Since ε1 has inverse relation with ω, so increase in Ne with fixed ω,

ε1 declines and wavelength will be increase. It means that the separated field with

longer wavelength will occur for increasing number of free charges in the medium.
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Figure 7.3: The separated field for θ0 in the (a) isotropic and (b) an-isotropic medium.
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Figure 7.4: The separated field for k in the (a) isotropic and (b) an-isotropic medium.
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Figure 7.5: The separated field for 2l in the (a) isotropic and (b) an-isotropic medium.

109



0 Π

6

Π

3

Π

2

2 Π

3

5 Π

6
Π

-80

-60

-40

-20

0

20

40

60

80

Observation angle @radianD

Se
pa

ra
te

d
F

ie
ld

@d
B

D

8k = 5.0, l = 5.0, r = 2.0, ¶2 = 0.002, Θ0 = Π�4<

¶1 = 0.90

¶1 = 0.75

¶1 = 0.60

Figure 7.6: The separated field for ε1.
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7.6 Conclusions

On the basis of deep analysis, it is concluded that the diffraction behavior of H inc
z

incident on finite-width slit under the assumptions of Neumann surface is affected

rigorously by parameters controlling behavior in the existence of non-thermal plasma.

It is deeply figured out that the function Hsep is amplified by different θ0, k, 2l, ε1

and reduced by ε2.
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