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Nomenclature

g dielectric permittivity tensor

€1, €2, €4 dielectric permittivity parameters

w operating frequency

Wp plasma frequency

We cyclotron (gyro) frequency

e electric charge

N, ion concentration

Hy. magnitude of geo-magnetic field vector
H, magnetic field perpendicular to the plane
s surface impedance

Mo free surface impedance

€0 electric permittivity in vacuum

o magnetic permeability in vacuum

[ length parameter for strip and width parameter for slit
Kers propagation constant

k wave-number

0o incidence angle

0 observation angle

EM electromagnetic




Chapter 1

Introduction

1.1 Motivation

The literature survey made it clear that researchers were interested in analyz-
ing the effects of cold plasma on scattering of EM-waves. Now a day’s interest of
researchers towards the scattering of EM-waves in the existence of non-plasma has
made a very few investigations under the consideration of various aspects. Therefore,
in our thesis we aim to explore the exact and asymptotic solutions for the scattered
far field by considering different geometries. Also, to gain thorough insight towards
the physics of the models proposed, the effects of the physical parameters will be
presented and discussed briefly.

Analysis of diffraction and scattering of waves by planes, half-planes, finite planes
and strips is a worthwhile subject matter regarding electromagnetic theory and mod-
ern optics. A lot of exact, asymptotic, analytical and numerical techniques are worked
out and have been applied to evaluate the results for diffraction phenomena for dif-
ferent geometries. Wiener-Hopf method is one of the strongest techniques to tackle
such a large class of problems modelled for diffraction of waves by different types of
obstacles.

Electromagnetic waves propagate through an ionized gas and get affected due

to interaction with ionized gas. This made the researchers curious. Particularly,



researchers started extensive study and investigation about the waves that radio
waves got reflected from and got transmitted through the ionosphere containing cold
plasma. This ionized gas is termed as plasma because it is electrically neutral as
well as the electron and ion densities are substantially the same. The problem pro-
posed to explore the antenna characteristics, journey of waves through plasma, and
radars catching signals are worthwhile. Characteristics of Antenna and artificial
satellites regarding wave propagation or communicating signals through ionosphere
between vehicle and earth station are also worthwhile. The often existence of DC-
magnetic field (geomagnetic field) in plasma makes it an-isotropic medium and named
as magneto-plasma. For example, earth magnetic field is effective in ionosphere. As-
suming the small effect of temperature and pressure variations in plasma reduces it to
non-thermal plasma. The characteristics of an-isotropic medium due to plasma are
examined by magneto-ionic theory. In the view of this theory, effects of finite tem-
perature and pressure variations can be ignored, because their action is usually small
that is why it is reasonable to deal with the plasma at low temperature. Hence, the
magneto-ionic theory may be used as a tool to deal with a cold plasma. Methodology
of solution is briefly discussed.The literature survey made it clear that researchers
were interested in analyzing the non-plasma’s effects on scattering of EM-waves. Now
a day’s interest of researchers towards the scattering of EM-waves in the existence of
non-thermal plasma has made a very few investigations under the consideration of
various aspects. Therefore, in our thesis we aim to explore the exact and asymptotic

solutions for the scattered far field by considering different geometries.

1.2 Background

The study of scattering of EM-waves is a topic of great interest to the researchers
due to wide-ranging application of solar photo-ionization, X-ray radiations of soft
nature and communication of EM- signals from an artificial satellite. Poincare [1]

and Sommerfeld [2] worked out for the half-plane problems which explored the new



ideas for deep analysis about electromagnetic waves and scattering of sound waves.
The Wiener-Hopf method [3,4] used for the solution of different types of waves asso-
ciated with canonical geometries was studied rigorously. Riemann- Hilbert method
had been considered for the diffraction-propagation theory of electromagnetic waves
[5]. For rigorous study of electromagnetic (EM) wave scattering, the mode-matching
method is used [6]. Several problems on the analysis of line/source diffraction of elec-
tromagnetic (EM) waves had been investigated which presented a canonical problem
corresponding to the model for GTD (geometrical theory diffraction). Kobayashi [7]
studied and then investigated the diffracted wave by a strip in using Wiener-Hopf
technique to evaluate the exact and asymptotic solutions. Kobayashi and Eizawa
used Wiener-Hopf technique in order to study the diffraction of waves by considering
sinusoidal grating [8]. We can look in historical aspects of Wiener-Hopf technique in
[9]. Diffraction phenomena of the plane waves by a finite strip under the assumption
of impedance on both sides of the surface of strip was investigated using Wiener-Hopf
technique [10].

The models proposed to elaborate the diffraction phenomena of electromagnetic
(EM) waves by slit with infinite width in the conductible screen have been brought
under the rigorous investigation through mathematical analysis. Morse and Ruben-
stein [11] used the method of separation of variables for investigation of acoustic
waves diffracted by slits and ribbon. Clemmow [12] proposed a mathematical model
for diffraction by slit in which he derived a dual integral equation using spectrum de-
scription of electromagnetic (EM) fields. He assumed the width of slit much larger or
greater than the wavelength giving the two complementary cases under the approx-
imate analysis. Hongo [13] investigated the diffraction phenomena due to parallel
slits in the conducting screen in which he used the Kobayashi potential technique.
Imran et al. extended the Hongo’s work to the slits in an impedance plane. He used
the Kobayashi’s potential technique to investigate the problem rigorously [14].

The EM-waves (electromagnetic waves) propagating across an ionized gas has got

the significant attention of researchers for many years. The scientists have studied



extensively on the radio waves or signals reflected from and transmitted through
the ionosphere [15-17]. It is known that plasma is such an ionized gas which is
electrically neutral and consists of substantially the same electron and ion densities.
The study of the problems modeled for the antenna characteristics, propagation of
waves through the plasma and radar cross section are of great importance. The wave
propagation and antenna characteristics of artificial satellites perform a vital func-
tion in transmitting the signals between the earth station and vehicles. A frequent
existence of geomagnetic field in plasma allows it to behave as an an-isotropic, the
best example is here that the earth magnetic field is effective in non-thermal plasma.
The small as well as negligible effect of pressure variations and finite temperature
make plasma to behave as a non-thermal plasma. Many researchers work out the
effects of cold plasma during analyzing the diffraction waves. Keeping focus on that
idea, scientists worked on the scattering of electromagnetic for different structures
in the consideration of non-thermal plasma. The diffracted electromagnetic (EM)
plane-wave embedded with impedance had been studied to inspect the effects of
non-thermal plasma using Wiener-Hopf technique [18]. Khan et al. inspected the
diffracted electrically-polarized plane wave by parallel plate wave-guide with imposi-
tion of impedance immersed in cold plasma, Wiener-Hopf technique along with mode
matching analysis was used [19]. Ayub et al. investigated the affecting non-thermal
plasma on the dominant TEM-wave radiated by parallel plate wave-guide with im-
position of impedance, radiator behaving as a horn type launcher of surface wave
and a horn with impedance loaded [20]. An EM-plane wave’s diffraction caused by a
finite strip under the effects of non-thermal plasma was inspected using Wiener-Hopf
technique by assuming Dirichlet as well as Neumann conditions on the same strip
[21, 22]. Later, Ayesha et al. extended the analysis made in [21] by considering the

symmetric plate [23].



1.3 Dissertation Catalog

In this thesis our work is summarized as

In chapter 2, we discussed the some basic definitions and methodologies based
on plane waves, electromagnetic waves, cold plasma , Fourier transform, boundary
conditions, Modeling of Helmholtz Equation, asymptotic expansion, analytic contin-
uation, Watson’s lemma, Gamma function, Generalized Gamma function, decom-
position theorem, factorization theorem, stationary phase method, decent steepest
method, Wiener-Hopf technique.

In chapter 3, we have taken the incident wave in the existence of non-thermal
plasma on a finite symmetric strip embedded with Dirichlet boundary conditions. By
employing the Fourier transformation on Helmholtz equation we get the boundary
value problem. The Wiener-Hopf technique is used to solve the proposed problem.
To obtain high-frequency signal, we have assumed that w > w, leading to €5 — 0
throughout the analysis. The separated field is evaluated and then effects of various
physical parameters are discussed through graphical analysis in the existence of non-
thermal plasma. Our research describes that symmetric length of plate has increased
the amplitudes and the separated field’s oscillations as compared to non symmetric
length in the previous article [19]. On analyzing the results, it is observed that
diffraction is affected by (a) different angles of incidence, (b) changing the k. (c)
extending the 2[, (d) permittivity of non-thermal plasma.

In chapter 4, we have taken the incident wave in the existence of non-thermal
plasma on a finite symmetric strip embedded with Neumann boundary conditions.
By the use of Fourier transform on Helmholtz equation, we get the boundary value
problem. The Wiener-Hopf technique is used to solve the proposed problem. To
obtain high-frequency signals, we have assumed condition w > w,. leading to e — 0
throughout the analysis. The separated field is evaluated and then effects of var-
ious physical parameters are discussed through graphical analysis in the existence

of non-thermal plasma. Our research describes that symmetric length of plate has



increased the amplitudes and number of field’s oscillations. On analyzing the results,
it is observed that diffraction is affected by (a) different 6y, (b) changing the k, (c)
extending the 2, (d) permittivity of non-thermal plasma.

In chapter 5, we discussed the diffracted H-polarized plane wave incident at the
sinusoidal-shaped grating of finite-length in the presence of nonthermal plasma is
analyzed by Wiener-Hopf technique along with perturbation method. Helmholtz
equation has been formulated by using Maxwell equations along with non-thermal
plasma parameters to inspect the effects of non-thermal plasma on scattered far field
intensity. The small corrugation amplitude as compared to wavelength is assumed
and scattered field has been expanded in the terms of the perturbation series to
lessen the problem to diffraction due to flat-strip embedded with mixed boundary
condition. Wiener-Hopf equations of zero- and first-order are formulated with the
aid of approximate boundary condition. The decomposition procedure is used to
proceed these Wiener-Hopf equations which then yields the exact solutions with
high-frequency.

Implementation of the inverse Fourier transformation along with the asymptotic
method of saddle point, the scattered field function has been derived which shows
validity for arbitrary angles of observation as well as incidence. We have accom-
plished graphical analysis of field intensity on the basis of results and investigated
the diffraction by flat strip and sinusoidal grating in the existence and non-existence
of non-thermal plasma in detail. On analyzing the plots, it is observed that the
number of oscillations increase due to increasing the number of gratings. Also, non-
thermal plasma is responsible in reduction of amplitude’s oscillations.

In chapter 6 and 7, We discuss the diffraction of electromagnetic plane-waves
due to a slit in the existence of non-thermal plasma. The slit is assumed to be of
finite width with Dirichlet and Neumann boundary conditions. Using the Fourier
transformation to the Helmholtz equation along with boundary condition, we get the
Wiener-Hopf equations which are further solved via the stationary phase method. To

obtain a frequency signal, we have assumed that w > w, leading to e, — 0 throughout
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the analysis. The separated field is calculated and then effects of various physical
parameters are discussed through graphical analysis in the existence of non-thermal
plasma. Observation describes that finite width of slit has increased the amplitudes
and field’s oscillations. On analyzing the results, it is observed that diffraction is
affected by (a) different 6, (b) changing the k, (¢) extending the 2, (d) permittivity

of non-thermal plasma.
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Chapter 2

Mathematical Preliminaries

2.1 Plane Wave

The plane waves are represented by the function of following form

Y(z,y,2,t) = Re {1/10 exp(&ik - 7 — iwt)}

The sign of + indicates the outgoing waves propagating in the direction of k=
|k, ky, k.| whereas the sign of minus represents the incoming waves propagating in

the opposite direction of k= [k, ky, k).

2.2 Electromagnetic Waves

Electromagnetic waves are created when electric field come in contact with mag-
netic field. These waves travelled with constant velocity in vaccum. These waves are
tranverse i.e electric field is perpendicular to magnetic field and they are measured

by their amplitude and wavelength.

2.3 Types of Electromagnetic Waves

Generally, there are seven types of electromagnetic waves:

12



2.3.1 Radio waves: Instant Communication

These are EM waves of low frequency. These waves are emitted by many natural
and man made objects. For example radio, television, atara, planeta and other cosmic

bodies emit radio waves.

2.3.2 Microwaves: Data and Heat

In the EM spectrum microwaves are the second-lowest frequency waves. These
waves can measure from a few centimeters up to a foot. Due to their higher frequency,
microwaves can penetrate obstacles that interfere with radio waves such as clouds,
smoke and rain. Microwaves uaed for cooking food and carry radar, landline phone

calls and computer data transmissions.

2.3.3 Infrared Waves: Invisible Heat

In the EM spectrum infrared waves are in the lower-middle range of frequencies,
between microwaves and visible light. The size of infrared waves varies from a few
millimeters down to microscopic lengths. The shorter-wavelength infrared rays do not
produce much heat and are used in remote controls and imaging technologies, where
as longer-wavelength infrared waves produce heat and include radiation emitted by

fire, the sun and other heat-producing objects.

2.3.4 Visible Light Rays

The different frequencies of visible light are experienced by people as the colors
of the rainbow. The frequencies move from the lower wavelengths, detected as reds,
up to the higher visible wavelengths, detected as violet hues. The most noticeable

natural source of visible light is, of course, the sun.
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2.3.5 Ultraviolet Waves: Energetic Light

Ultraviolet waves has shorter wavelength then visible light. These are the cause
of sunburn and can cause of cancer. These are emitted from television microwaves

mobile phones etc.

2.3.6 X-rays: Penetrating Radiation

These rays are emitted by the sources which produces very high temperature like
the sun’s corona, which is much hotter then the aurface of the sun. These are used

in medical acience to view bone in the body.

2.3.7 Gamma Rays: Nuclear Energy

Gamma waves are the highest-frequency EM waves. These are emitted by only
the most energetic comic objects such as neutron stars, supernova, pulsars, and black
holes. Terrestrial sources include lightning, nuclear explosions and radioactive decay.
The wavelengths of these waves are measured on the subatomic level and can actually
pass through the empty space within an atom. These rays can destroy living cells;

fortunately, the Earth’s atmosphere absorbs any gamma rays that reach the planet.

2.4 Sinusoidal Grating

According to the sine curve y = sin x a grating having the luminance of the image
surge along an axis, increasing and decreasing at a regular spatial frequency is called

sinusoidal grating.

2.5 Cold Plasma (Non-thermal Plasma)

Plasma being a fourth or gaseous state of matter is an ionized gas which is elec-
trically neutral medium and contains substantially the same densities of ions and

electrons. If the effects of variations of the finite pressure force and temperature are

14



taken to be small and ignored then plasma is termed as cold plasma. For example,

cold plasma can be found in the flow discharge in a fluorescent tube.

2.6 Boundary Conditions

The boundary conditions are linear if it ia taken as a linear equation between
¢ and its derivative on the boundary. there are, generally, three types of boundary
conditions; (1) : Natural or Dirichlet boundary condition
(2) : Normal or Neumann or Essential boundary condition. (3) : Mixed or Robins

boundary condition.

2.6.1 Natural or Dirichlet boundary condition

The boundary condition that specifies the values of the unknown function ¢ on

the boundary is called Natural or Dirichlet boundary condition, i.e:
¢ =p,

2.6.2 Normal or Neumann or Essential boundary condition

If the derivative of ¢ in the normal direction to the boundary is specifies on the

boundary, i.e;

99 _
8n_q

2.6.3 Mixed or Robins boundary condition

A linear relation between ¢ and its normal derivative on the boundary is called

Mixed or Robins boundary condition, i.e:

a—¢+k:¢:r, k>0
on

15



2.7 Fourier Transform

This method of complex integral transformation is a mathematical tool which
helps in solving the differential equations. This mathematical tool can be utilized for
majority of the problems of finite and infinite domain. First suppose that a is real

then usual Fourier integral transform of f(x) for all € R can be defined as

Fla) = /_ : F@)e™dy

and inversion can be defined as

f@) =5 [ Fla)enda

:g N

Now suppose that o = o + ¢7 is a complex variable. We can define generalized
Fourier transform under suitable conditions on f. By starting with half-range trans-

form, |f(x)] < A" ™" as x — oo and f(z) = 0, for z < 0, where A; > 0 and

T_ are constanta, then we have following function

Fo(a) = /0  F@)eorda

of F(a) can found as
1

= %/(;F(a)emxda

where C is a path of integration lying in the region of analyticity on which varies

f(z)

from —oo to oo
In the same way, if we assume that f(x) = 0 for x > 0, and |f(z)| < A" 1" as

xr — —o00, where Ay > 0 and 7+ are constant, then

0
F («) —/ f(z)e“dx
which is analytic in the region 7 < 74 of complex a-plane. Now the inverse Fourier

16



transform of F_(«a) can found as

@) = 5= [ P,

where C is a path of integration lying in the region of analyticity on which varies

from —oo to oo. Combining above results, we get

AeT%  as 1 — 00
|f(z)] <

Ase™®  as  x — —00
with 7 < 7+, then Fourier transform given in (1.5) is the analytic function in the

strip 7 < 7 < 74 and inverse Fourier transform is defined by (1.6).

2.8 Gamma Function

The Gamma function I'(n) for a complex variable 7 is defined

F(n):/ t"tedt
0

for Re n > 0, where t7~! is taken as principle value. The conditions Re n > 0 on right
hand aide of Fq(1.12) shows the convergence of the infinite integral. The Gamma
function is very important special function used in many branches of mathematical

physics and is investigated in detail in a number of literature.

2.9 Generalized Gamma Function

Let us consider the complex-variablesn and ¢ with Ren > 0,|¢| > 0 and | arg

¢ |< m, and a new special function I',, (7, ) as

00 tnflefl
Fm(ﬁ,f)—/o mdt

17



where m be a positive integer, where ¢t7~! is again presented as principal value.
The conditions [£| > 0 and |arg&| < 7 have been introduced in order to avoid the
case where a pole of order m of the integrand in Eq,.(1.10) at t = —¢ lies on the
integration path. The condition Re n > 0 has the same meaning as that required for
the definition of the Gamma function. Since the I',, (7, §) reduces to I'(n) by taking
m = 0 we shall call I',,,(n,£) as a generalized Gamma function.

Although analytical properties of T',,(n, ) have not yet been sufficiently investi-
gated so far. this function is of great importance in the wave scattering and diffraction
theory as related to the Wiener-Hopf technique, since the multiple edge diffraction
process can be defined explicitly in terms of this special function.

Kobayashi in his paper [25] worked on Generalized Gamma function in detail and
investigated several important analytical properties such as regularity with respect to
the variables n and £, asymptotic expansion for large |£|, analytic continuations in £ —
plane, generalized incomplete Gamma function and discuss fundamental properties

briefly.

2.10 Asymptotic Expansions

Consider z with o < arg(z) < § and

S

o) o)
no__ -n
D =D

n=0 n=0

N

be a convergent or divergent series.
Definition: This series is called an asymptotic power series of f(z) for |z| — oo and
a < arg(z) < g if for each n € {1,2,3,...}

n—1

f(z) = Z a2+ R,(2)

k=0

where

R,(z) =0 (27") for |z] = o0 and a < arg(z) < 3

18



Theorem : A function f has an asymptotic expansion of the form () for |z| — oo and

a < arg(z) < g if and only if for each n € {1,2,3,....}

n—1
Z" [f(z) — Zakz_k] — a, for |z| = oo and a < arg(z) < 3
k=0

Hence a function f has at most one asymptotic expansion of the form () for a <
arg(z) < . Assymptotic expansion might be different for distinct regions, however
distinct functions will have same assymptotic expansion in some region. For example,

if for some § > 0

-0 <

| N
!

f(z) ~ Zanz’” for |z| = 0o and arg(z) <
n=0

and, f(z) + e * have the same asymptotic expansions.

2.11 Watson’s Lemma:

Let f be a complex valued function of a real variable ¢ such that

(1). f is continuous on (0, c0), (2).

f(t) ~ Zant)‘"_l fort -0

n=0

with

0<)\0</\1</\2<.....

and (3). for some ¢ > 0

f(t)y=0(e*) fort— oo

Then we have

o0 = TI'(\,
F(z) = / e F f(t)dt ~ E an% for ¢t — oo and arg(z) < g —0< g,
0 n=0 .

19



for some § such that 0 < § < 5 Proof: We have

F(z) = /OO e P f(t)dt

0

the integral converges for Re z > c.

< M"W-1 for t—0

F) = apt!

‘ %
n=0

where M > 0 is constant. Applying () we get

< Ket\W-1 for t>0

|f(t) -3

n=0

where K > 0 is some constant. we have

N-1

/ e f(t)dt — Y e Tdt| < K / e (Re = AV gy
0 — 0
for Rez > 0
o 1 o '\,
/ efzttAnfldt — S / e*T,,_)\nfldT — ()\ )
0 = Jo =
we get
N-1 A
' (An) ' (An) ' (An) || "
Fiz)= S a, <K\ g
(2) nZ:o A = (Rez — )M~ 22 \(Rez —¢)

Since |arg(z)| < 5 —0 < §

5, we have Rez > [z|sind which implies that Rez — ¢ >

£|z|sind for |z| large enough. Thus we have

FE) = Y an ) =0 (=)

which proves Watson’s lemma.
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2.12 Asymptotic Expansion of Certain Branch Cuts

Let f(B) be a function with the following conditions: (i) f(5) be the analytic
function in |5 — k| < ro < 6 where k is complex number with both of its imaginary
and real part are positive and ro # 0. (i) f(8) holds f(3) = O [(8 — k)°] such that
| — k| > R with R < oo and, 0 is some real constant. (iii) f(3) be a continues
function of # on any bounded part of the straight path from k& to k + ioo in the
[-plane.

Let us consider « in such a way that o+ k| > 0 and —7/2 < arg(a + k) < 37/2,

and introduce Fy,oy (1, ) as

L s (B k) F(B)
Foo(l, ) = E/k eﬂleﬁ

for I > 0,Rev > —1 and positive integer m, where arg(8 — k) = 7/2 the condition
[ >0, Re v > —1 ensures the indefinite integral’s absolute convergence in Eq. (1.14)
whereas | + k| > 0 and —7/2 < arg(a + k) < 37/2, are required to ignore the
case where a pole of order m of the integrand at 5 = —« lies on the contour. The
condition arg (8 — k) = 7/2 has also appeared in the definition of F,,,(l,«), which
has been introduced in order that (5 — k)" be a single-valued function of non integer

V.

2.13 Analytic Continuation

If f(2) is an analytic function in a domain D and F(z) is analytic in a domain D
such that F'(z) = f(z) in D and DN D, then F is said to be an analytic continuation
of f.

Now we can say that analytic continuation is a process of extending an analytic
function defined in a domain to a larger domain. For example, the geometric series
at zero is given by

N=14+z2+22+2%.....
f(2)
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which is convergent in the open disk as D = {|z| < 1}. Multiplication of (1.1)by z

and subtraction of result from (1.15) gives

1
1—2z

(1=2)f(z) =1=f(2) =

which is analytic in D = C\{1}. Since {|z| < 1} € C\{1} i.e D C D and F(z) =

f(2), therefore, F'(2) is analytic continuation of f(z).

2.14 Asymptotic expansions

2.14.1 Method of Stationary Phase

Consider a function of the form

where h(t) is a real function (known as phase function) and ¢(¢) can be complex
or real function and integration is along the real axis over the interval (a,b). The
stationary phase method helps in finding an asymptotic representation of (1.25).
Assume that there is one point ty € (a,b) such that ' (ty) = 0 but A" (ty) # 0. In
accordance with the idea of the method of stationary phase, we assume that only the

neighborhood of ¢, is of significance, and we write

izh(t) = ix {h (to) + %h” (to) (t — to)z} :

Then
(@) ~ / o lto) exp {zx {h (o) + %h (to) (t — WH dt

—00

This gives

f(z) ~ {%1 v g (to) exp [z’xh (to) £ zﬂ ,
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where the sign of 4+ or — corresponds to A" (t3) > 0 or h” (tg) < 0, respectively. For

detailed analysis about this method, see [23, 24]

2.14.2 Steepest Decent Method

To find the asymptotic behavior of the following integral

I(k) = /Cf(z)e"wﬁ(z)dz7 k — oo

where f(z) and ¢(z) are complex analytic functions. To reform the contour C' to
another contour C (Cauchy theorem) in which the imaginary part of the exponent is
constant, by taking the analytic character of the functions. As the integral take the

form of a Laplace integral, we apply the rigorous Laplace method to get

o(2) =u(x,y) +iv(z,y), z=x+1y

Taking, Im{¢} = v is constant in contour C' then,

I(k):/Cf(z)ekd’(z)dz:/Ceik”f(z)ek“dz

In order to choose the contour C, we take the path of steepest decent passing through
2o in which ¢ (z5) = 0 (saddle point). We find where the major contributions comes
from after choosing the path. The main contributions will happen at critical points
qb(z) = 0, singular points and end points, then we analyze the Laplace integral at
these points.

Steepest Path

Let ¢(z) = u(z,y) + iv(z,y), with z = x + iy, then the paths passing through the
points z = zy ( where v(x,y) = v (x¢,yo)) are the paths where the imaginary part of
¢ is constant. The direction of decent is from zj is along Re(¢(z)) is decreasing; when
this decrease is maximal, the path is called steepest decent. Similarly, the direction

of ascent is a direction away from zy in which w is increasing; when this increase is
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maximal, the path is called steepest ascent. We know that in calculus if u (zo) and
Vu # 0, then —Vu is the steepest path decreasing away from wu (zg). It can easily
shown that the curves defined by v(z,y) = v (z¢, yo) are curves of steepest decent or

ascent. Let d¢ as the change of the function ¢ from the point zj, then
0¢ = ¢(2) — ¢ (20) = du+idv — |du| < [6¢]

Equality occurs when du is maximal, so v = 0 — v(x,y) = v (2, yo). This, in fact,
shows why we need the steepest path. The Saddle Point The point z = 2, is a saddle

point of order N for the function ¢ if:

dN+1¢

"¢
- LN A0

m
dz i

=0, m=12,..

How to Find Steepest Paths
If zy is a saddle point of order N, then we can write:

(Z . ZO)N+1 dN+1¢
(N 1 1)ldz+

z=z0

. N+1 . .
Letting w = ae’ and z — 7z = pe'?, then
2=z0

N+1i(N+1)8 N+1

_ P e T i(NHa _ . s
é(2) = ¢ (20) &) X ae [cos(a+(N+41)0)+isin(a+(N+1)6)] x N 1)
Steepest direction:
: a m
Im{gb(z) —¢(20) =0—=sin(a+(N+1)f) »a+(N+1)f=mb — 0 = NI +mN+1,m-

Steepest decent direction:

Re {¢(z) — ¢ (20) <0—=cos(a+ (N+1)0) <0— by = _NLH + (2m + 1)NLle
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Steepest ascent direction:

o . T
— m
N+1 N+1

Re {¢(z) —¢(2) <0—=cos(a+ (N+1)0) <0— b, =

Decomposition Theorem: Let F'(«) be a regular function in the strip 7~ < Im(a) <

7Tand F(a) — 0 as & — oo in the strip then F(«) can be decompose as
F(a)=F_(a)+ Fi(a)

where

F.(a) ! /OOHC O dé 77 <c<tT<Th,

N 2_7'('2 —oo+ic (5 - CE)

is non zero and regular in the upper half plane () > 7~

1 co+id f (5)

2mi —eotid (§ — @)

F (a)= dé 7 <d<T<7,

is non zero and regular in the lower half plane (o) < 7. 2.0.19 Factorization theorem
Let U(«) be a non zero and regular function in the strip 7= < Im(a) < 7. If

|¥(a)| = 1 as @ — oo in the atrip then U(«) can be factorize as

V(o) =V — (a)¥ + (a)

where

U, () = exp [ ! /OOHC 1O df] TT<e<T<T"

2_71"i oco-tic (5 - Oé)

is analytic in the region defined by («) > 7~

U_(a) = exp {—L /OOHd ) dg} Tm<d<t<tt

2m —oo-+id (5 - Oé)

is analytic in the region defined by () < T". 2.0.20 Wiener-Hopf Technique This

technique was initially utilized to solve the integral equation which presents most of
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physical problema. An integral equation of that form is given by

0
/0 K(e — y)f(y)dy = g(2),0 < 2 < o

where the kernel difference K (x — y) and g(x) are known functions while the f(z) is
the function to be evaluated. The readera interested to know about this technique
generally, can study the aalient points which are briefly outlined here. To proceed
the method, domain of integral equation is extended to negative real values of x that
is

g(x), 0<z<oo

/0 Kz — ) f(y)dy =

h(z), —oco<z<0

where h(x) is an unknown function. Applying the Fourier transform on (1.46) we get

the Wiener-Hopf functional equation
G+ (a)+ H (o) = K(a)Fy (o)

in which G + (o) and K («) are half-range and full-range Fourier tranaform of known
functions g(x) and K (z), reapectively whereas the quantities H_(«) and F'(«) are
half-range Fourier transform of unknown functions h(z) and f(x), reapectively. The
right side of (1.18) is product form which comes from integral operator being a
convolution-type. The functions with subscript + and — are the analytic in their
corresponding regions, respectively and they overlap to form a strip or band of ana-
lyticity. The Wiener-Hopf procedure depends on the product factorization of trans-

formed kernel function, in K (a) the form
K(a) = Ky ()K_(a)

Use of (1.48) enables to re-write (1.47) as

1
K_(«)

(G () + H()] = K+ (a)Fy (o)
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Note that R.H.S is analytic in its indicated region of analyticity. For left hand side,
first term needs to be tackled, therefore, defining the sum-factorization for firat term

on the left hand side, in the form of

in which left hand side shows analytic behavior in the lower-half of complex a-plane
and right hand aide shows analytic behavior in the overlapping upper-half plane of
complex a-plane. Analytic continuation allows to equate both sides of (1.51) to an
entire function, say J(a). Now J(«a) may be evaluated by assuming the behavior of
functions f(x), g(x), h(z) as x — 0 and their corresponding transformed functions in
(1.29) as |a] — oo, and hence, Fy(a) and H_(«) are distinctively evaluated. The

inverse Fourier transform results the required unknown function f(x).

2.15 Modeling of Helmholtz Equation

In the view of non-thermal plasma, the dielectric permittivity tensor is:

€1 —teg O

€= LEY &1 0 ;
0 0 e,
where
wp \ 2 _
1— (%) B <wp>2 [w wc] ! B (wp>2
€1 = 3, S2=\— T ) 52'_1_ -
1— (%) w We W w
with
2 N.e? - le|poHae
w, = —, =
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For the formulation modeled here, the magnetic and electric fields vectors are H =
H.é, and be E = E,é, + E,é,, respectively. E, (z,y) and E, (z,y) containing

H, (z,y), embedded with &, can be derived from Maxwell’s equations:
1€ 1

E,=—-—+—-0,H.(x,
weg (€2 —e2) () +

€2

weg (e — €3)
1€

- weg (3 —<3)

0. H.(z,y)

g
Ey = —Zasz(xa y)

2 _

= H
weg (62 — €2) OaH.(w,y)

Also, from Maxwell’s equation,
6 X E = —Moatﬁ

Use of (1.20), (1.21) in (1.22) and following up the time as exp( —iwt), the Helmholtz’s

equation of H, is as follows:

Oua . + Oy H. + k2 H, = 0

e

where

2 2
€1 — &5

kepp =k , k= wy/Eouo

€1

Here, k.s; dependents on k,e; and e5. Time dependence is taken as behaving har-

monically as exp(—wt) and will be followed up throughout the study.
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Chapter 3

Non-thermal Plasma Effects on
Diffraction of EM-Wave by a
Finite Symmetric Plate with

Dirichlet Conditions

This chapter addresses the investigation of electromagnetic plane wave diffraction
by a conducting plate of finite length in cold plasma. The boundary value problem
along with Fourier transform for the corresponding is used to formulate Wiener-Hopf
equation which is then solved by using Wiener-Hopf procedure in a standard way. The
separated field is evaluated for an an-isotropic medium using asymptotic expansion
and modified stationary phase method. The results for the isotropic medium can be
achieved by taking ¢ — 1, eg — 0. Graphical results are discussed for separated
field against observation angle for various physical parameters in isotropic and an-

isotropic media.

3.1 Problem’s Statement

We have investigated the diffraction pattern of plane electromagnetic waves due

to a finite-length strip in non-thermal plasma, as illustrated in Fig. 3.1. Furthermore,
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Figure 3.1: Simplified figure of the problem.

Dirichlet surfaces are assumed on the strip and angle of incidence is ¢y. The total

field can be represented in terms of incident, refracted and diffracted fields as:
H(2,y) = H(2,y) + H.(2,y), (3.1)
where the incident field is defined as
H"(z,y) = e~ hess(@cosbotysinto) (3.2)

Suppose that medium is slightly lossy, and constant K.;; appearing in above equa-
tions is complex in such a way (0 < Jm{k.sr} < Re{kesr}). At the end, for real
K s solution could be determine by taking its imaginary part to zero. The entire

field H"(z,y) meeting the Helmholtz equation is
[Ona + Oyy + k2 ;| H (2, 9) = 0, (3.3)

Substituting the value of H!!(z,y) from (3.1), we get the equation for diffracted field
as:

[a:m + 8yy + kgff]Hz(xa y) = 07 (34)
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To formulate the Wiener-Hopf equation, conditions at x — 4/ in conjunction with

continuity relations are used. Dirichlet boundary conditions on a finite-width slit are

specified as

H" =0, for —l>z>1, at y=0%,

along with

H!'(x,07) = H(2,07), for |z|>1, at y =0,

O,HY (,0") = 9,H (x,07), for |z|>1, at y=0.

3.2 Problem Transformation

Following results can be obtained with the use of Fourier Transforms.

F(B,y) = \/%—ﬂ/ew%(x,y)d:v

= F(B,y)+ e P F_(B,y) + Fi(B,y),

where 8 =0 + iT.

Figure 3.2: Illustration of Analytic-Continuation.
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For high values of x, the diffracted field is interpreted as follows:

O efikeffx 7
H.(z,y) = ( ) (3.9)

O(e—keff:vcosao)_

The regions of regularity in the complex plane for F, (5, y) and F_(8,y) are Im{S} >
—Jm{kesr} and Im{B} < TJm{k.srcosbp}. From Fig ??, we can see the common
region —Jm{kesr} < Im{B} < TIm{k.sscosfy} of analyticity, where the function

Fi(B,y) is also holomorphic and hence, we can define

+oo
FelBoy) = i\/% i/l P (2, y)de (3.10)
X I
Filp1) = <= / S H (2, y)da (3.11)
ine exp(—iykesssinby) (explil(8 — kepycosty)] — exp[—il(B — keyy cos )]
(5:9) = Nez: ( i(B = kegg cos o) ) '

(3.12)

Fref(B,y) exp(iykess sin ) (exp[il(ﬁ — kegpcosby)] — exp[—il(S — keyy cos 90)]>
T (B = kg cos b) |

(3.13)
The following transformed boundary value problem could be obtained by applying

the Fourier transformation to Egs. (7.5 —7.7) .

d2
(d_y2 + 72> F=0 (314)

where v(8) = \/kZ;; — 5%

F(670+> :]:Tef(ﬁv()) _]_‘inc(ﬂ)())
F(B8,07) =0

, (3.15)

and

Fi(B,07) =0=Fi(B,07). (3.16)
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3.3 Solution of the Wiener-Hopf Equation

The solution of transformed boundary value problem (7.14), fulfilling the radiation

conditions is,

Ay (B) exp(—ivy) y >0,
F(B,y) = (3.17)
Ax(B)expl(ivy)  y<O0.

Now using Eqs. (7.15 — 7.17), following Wiener-Hopf equation is obtained.

exp(iB1)F.(8,0) + exp(—iBL)F' (8,0) + K(B)F(B,0) = —iG(B), (3.18)

where,
K(B8) =i, (3.19)
F(6,0) = 5 (F(5,09) = F(5,0°) (3:20)
_explil(B — keggcosby)] — exp[—il( — kegy cosby)]
G(B) = Va6 —Furs conbo) , (3.21)
The Kernel function defined in Eq. 7.19 can be written as:

K(9) = =55 = Ks(8) with 5(8) = 75(8), (322

where K. (f3) are,

_exp(—ig) _

K+(B) = 2 B) with v4(8) = \/ker£8. (3.23)

It must be noted that the functions, K4 () have region of regularity are Jm{g} >
—Jm{kesr} and Jm{S} < Im{k.sscosby} and similarly for v (5). From Eq. (7.18),
equating the terms which are regular in their corresponding regions, creates a common
region of analyticity. Hence, by analytic continuation, we get an entire function P(53)
and by Liouville’s theorem, P(8) must be equal to zero[12], yielding the following

results.
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A

F(B,0) = \/——[ +(8)G12(£8) + K+ (B)T (£8)C12], (3.24)
where
X 1Kot el 0 1 1 .
Gra(8) = - ‘;(;F,Zeh{’; o ( TR A QO))—exp&zkefflcos 00)R12(5),
(3.25)
Go1(Kepy) + Koy (kepr)Gra(kers) T (Kegy)
Cio=Ki(ke , 3.26
v + ff) 1 - ,C—zl-(keff)TQ(keff) ( )
E_
Ri2(8) = TEE: ke;f — W_i(—i(kesy & kepy cos b)) — W-i(—i(kess + B))],
(3.27)
T(B) = b;—_W 1[=ilkess +B)], E_1= 2\ﬁ thegs 4P, (3.28)
Wi-1/2(q / —dv = D(n+ 1)e(8)g/ W i1y j2,0/2(a), (3.29)
0

where ¢ = —i(kesr + 5)l, n = —% and W is the Whittaker function. Solving Egs.
7.17 and 7.18, diffracted field is,

F(B,y) =—

1 : , —inlyl,(3.30
() [PPUBDF(5,0) + exp( i) F-(5,0) + Fi(5,0)] v1(3.30)

where

Fi(8,0) = 1G(B), (3.31)

Inverse Fourier transformation of Eq. (7.30), yields the diffracted field as:

[e.9]

_ 1 —iBa—irly|
Ao = 7 [ F3gpeioetias, (3.32)
Inserting (7.30) in (7.32), we get
1 [ 1| EFEB0 e PE B0+ |
H.(v,y) = ——= | == ) e~ Pr=ilulgp,
var L +7(5,0)
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Diffracted field H,(z,y) further bifurcate in the separated and interaction fields

HsP(z,y) and H™(x,y), respectively as,

where
1 S A §+E§)exp[i()ﬁ(/;k2ff cos&’oo)l;
[ 5ep — AN +(kefycos)(B—keyfcosbo o - d
2May) = o / KB | olmesplitGtggeosay [ P87 = Dlyl)ds,
() K (—kegscos)(B—kesscosbo)
(3.35)
exp(i80) K+ (8)T (8)Cy

1 [ A — expli(B + kegy cos 0o)lJIC1 (B)RA(5) o

Hz t(l’,y) = % / w exp(—zﬁx—zﬂyl)dﬁ.
. +exp(—iB)K_(B)T(—5)Ca
| - exp[—i(B + kesy cos Op)|K_(B)Ra(—P)

Vs

(3.36)
The separated field given by (7.35) depicts diffraction separately at the edges. The
H"(z,y) represented by Eq. (7.36) explains the interaction of one end with the

other.

3.4 Diffracted Field

The diffracted field due to slit of finite width for the far-field can be obtained by
coping with the integral appearing in (7.32). Polar coordinates are introduced for

the evaluation of Eq. 7.32 with the following transformation.

B = —kespcos(p+in), 0<op<m, —0oo0<n<o0. (3.37)
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Now when the method of stationary phase [32] is used for (7.32), the following result

are obtained:

ke . : : :
H.(r,¢) = et (—keggcos ¢, £rsin ¢) sin ¢ exp (zkeffr + z%) . (3.38)

\/k'effT

Using the same polar coordinates, the transformation and subsequently the method
of stationary phase are used to assess and yield the separated field and interaction

fields as follows:

, 1 ik
[H7, HIY (1, 0) = —=—2IL

B E\/keffT

{f86p7 _fint}(_keff COs ¢) sin ¢exp (ikeffr + Z%) 5
(3.39)

where

A K (—keys cos @) exp[—ikeyl(cos ¢p+cos )]
s cos _ K (kesscosp)(—keyycosp—kesscosbp) 3.40
fsep( eff ¢> /C(—k?eff COs gb) K (key cos ¢) explilkef £ (cos ¢+cos fo)] ( )
K (—kegscosbo)(—kesfcosp—keyycosbp)

( )

exp(—ikeysl cos 9)Ki(—keys cos §)
XT (=kerg cos 9)Cy
—explil(—kesr cos ¢ + kegppcosby)]
A XK (—kesy cos 9)Ri(—kegs cos §)
K(—herr cosd) | Lk (“kepy cos 6) explikes sl cos o)
XT (kesscos ¢)Co

fint(—kegy cos @) =

— exp [—il(—keff cos @ + k:eff COs 00)]
XK (—keyy cos @)Ro(kess cos @)

J

(3.41)
From Eq. (7.38), we can clearly see that the asymptotic expressions for far field can
be obtained by letting k. — 0o and the resulting expressions will be holds true for
any observational angle. The separated field of an EM-wave is investigated in order to
characterise both the field diffracted by the corners of a strip and the influence of the

geometrical wave field. The separated field that results gives physical evidence for the
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non-thermal plasma concept. Interacted-field, on the other hand, provides no physical
information due to contact at edge to edge, which has formerly been enumerated by
H*?,  As a result, we’ve only talked about the separated field because it conveys
a full physical comprehension of EM-wave diffraction at the established boundaries.
Additionally, we discovered that the interaction field is created by diffraction from
the corners of strip at x = 4+[. Furthermore, when the strip width is increased to oo,
the role due to interaction field terms disappears, leaving just the H*®? terms in the
H. As a consequence, we merely examine the separated field, as illustrated visually

in the next section.

3.5 Discussion and Numerical Results

In this section, we examined the EM-waves by finite-length strip as graphically
by the variation of physical parameters in an an-isotropic media with Dirichlet con-
ditions versus the observational angle. For the ionosphere, we take the value of w,
as 56.4M Hz and w,. as 8.78 MHz. Now, the values of €; and &, are computed nu-
merically against w to verify the considered model. Also, the values of w are taken
between 80M Hz and 600M H z given in Table-3.1. It can be notice from Table-3.1,
that the value of €5 is comparably very small from €; with the boost up of w in the
frequency range. For isotropic medium, we can take ¢; = 1 and e, = 0, While the
parameters 1 and e for the an-isotropic media (non-thermal plasma) can indeed be

selected from Table-1.

w (in MHz) €1 €9

80.15 0.504834 0.054242
99.50 0.678699 0.028352
145.75 0.850259 0.009020
245.15 0.947071 0.001895
375.50 0.97744 0.000527
480.50 0.986222 0.000251
999.75 0.991157 0.000129

Table 3.1: Values of 1 and &, for corresponding w.

The graphical analysis is elaborated to explore the influence of physical param-
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eters on diffracted field due to a finite-length strip lying in the ionosphere of non-
thermal plasma. These physical parameters are 6y, k, 2l and e;. Fig. 3.3 represents
the pattern of the separated field for variation of y, and it gets maxima for 6y = 7/3,
m/4, m/6 occurring at 6 = 27/3, 3w/4, 5w /6, respectively. These maxima actually
predict the shadow of reflected field. Fig. 3.4 reveals the separated field for k. It is
notable that the field has a direct dependence upon k because the field gets amplified
for k. Since the frequency is directly related to k, so it excites the frequency of wave
towards the high range. As extension of the slit-width is actually the expansion of
aperture which is responsible for the diffraction of electromagnetic radiations, and
so, separated field gets amplified as well as more oscillated as can be seen in Fig.
3.5. This amplified amplitude could be controlled by introducing the ionosphere as
can be observed through Fig. 3.5b. By comparing Figs. 3.3b, 3.4b and 3.5b of the
separated field in the an-isotropic medium with their respective Figs. 3.3a, 3.4a and
3.5a in the isotropic medium. It is explained that an-isotropy of the medium caused
by non-thermal plasma influenced the separation field, in both amplitude reduction
and wavelength contraction. Fig. 3.6 explores the trend of the field for 1, while its
mathematical interpretation predicts its physical nature. It is expressed by Eq. (?7)
and can be described as w,. has no big difference in the values in the different parts
of Earth and w, has direct relation with the square root of N, (ion concentration),
which fluctuates massively with the variation of seasons and days to night. Therefore,
without fluctuation on w, £; can be fluctuate. Since £; has inverse relation with w,
so increase in N, with fixed w, €; declines and wavelength will be increase. It means
that the separated field with longer wavelength will occur for increasing N, in the

medium.
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Figure 3.3: The separated field for 6 in the (a) isotropic and (b) an-isotropic medium.
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Figure 3.4: The separated field for k in the (a) isotropic and (b) an-isotropic medium.
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Figure 3.5: The separated field for 21 in the (a) isotropic and (b) an-isotropic medium.
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Figure 3.6: The separated field for ¢.
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3.6 Conclusions

On the basis of above deep analysis, it is figured out that the diffraction behavior
of EM-plane wave incident on finite-length strip under the assumptions of Dirichlet
surface is affected rigorously by parameters controlling behavior in the existence of
non-thermal plasma. It is deeply figured out that the function H*? is amplified by

different 6y, k, 2[, 1 and reduced by &.
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Chapter 4

Diffraction Affected by Cold
Plasma with Neumann Conditions

on Finite Plate

Present chapter elaborates the investigation of diffraction phenomenon of EM-
plane wave by a non-symmetric plate of finite length in cold plasma. The Wiener-
Hopf equation is formulated with the aid of boundary value problem along with
Fourier transform for present model. The theory of Wiener-Hopf procedure is used
to cope with resulting equation. Asymptotic expansion and method of stationary
phase are used to obtain the result for diffracted field by finite plate (separated field)
under the assumption of Neumann boundary conditions in the an-isotropic medium.
The case of isotropic medium has been discussed by assigning the particular values
to elements of permittivity tensor. Impact of physical parameters has been discussed

graphically for the isotropic and an-isotropic medium.

4.1 Problem Statement

We have investigated the diffraction pattern of plane electromagnetic waves due
to a finite-width slit in non-thermal plasma, as illustrated in Fig. 5.1. Furthermore,

Neumann conditions are assumed on the slit and angle of incidence is 6y. The total
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Figure 4.1: Simplified figure of the problem.

field could be expressed in terms of incident and diffracted fields,

H(2,y) = H"(2,y) + H.(2,y), (4.1)
where the incident field is defined as

He(, ) = e~ kers @cosbotysinto) (4.2)

Suppose that medium is slightly lossy, and constant K sy appearing in above equa-
tions is complex in such a way (0 < Jm{k.sr} < Re{kesr}). At the end, for real
K.¢s solution could be determine by taking its imaginary part to zero. The entire

field HI"(z,y) meeting the Helmholtz equation is
[aacz + ayy + k‘gff]HEOt(xa y) = 07 (43)

Substituting the value of H!!(x,y) from (7.1), we get the equation for diffracted field
as:

[aa:a; + ayy + kgff]Hz(I7 y) = 07 (44)
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To formulate the Wiener-Hopf equation, conditions at x — 4/ in conjunction with

continuity relations are used. Neumann boundary conditions on a finite-length strip

are specified as

GyH§Ot(x,y) =0, |z|<Il, y= 0F,

and

H"(z,0") = H"(2,07), |z|>1, y=0,

@Hﬁ“(m,(ﬁ') = 8yH§Ot(x,O_), lz| > 1, y=0.

4.2 Problem Transformation

Following results can be obtained with the use of Fourier Transforms.

F(B,y) = \/%—ﬂ/ew%(x,y)d:v

= F(B,y)+ e P F_(B,y) + Fi(B,y),

where 8 =0 + iT.

Figure 4.2: Illustration of Analytic-Continuation.
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For high values of x, the diffracted field is interpreted as follows:

O efikeffx 7
H.(z,y) = ( ) (4.8)

O(e—keff:vcosao)_

The regions of regularity in the complex plane for F, (5, y) and F_(8,y) are Im{S} >
—Jm{kesr} and Im{B} < Im{k.sscosbp}. From Fig 4.2, we can see the common
region —Jm{kesr} < Im{S} < Im{k.sscosby} of analyticity, where the functions

Fi(B,y) are also analytic and hence, we can define

+o0
Fi(By) = i\/%i/l PEF [ (2, y)d (4.9)
. I
Filp1) = <= / O H. (2, y)da (1.10)
ine exp(—iykesssinby) (explil(8 — kepycosty)] — exp[—il(B — keyy cos )]
6,9) = V27 ( i(8 — kegy cos bo) ) '

(4.11)

f-ref(ﬁ ) _ eXp(iykeff sin 00) (exp[il(ﬁ - keff COS 90)] - eXp[—il(ﬁ — keff Ccos 90)]>
T (B — hegy cos o) |

(4.12)
The following transformed boundary value problem could be obtained by applying

the Fourier transformation to Egs. (7.5 —7.7) .

d2
(d_y2 + 72> F=0 (413)

where v(8) = \/kZ;; — 5%

F(670+> :]:Tef(ﬁv()) _]_‘inc(ﬂ)())
F(B8,07) =0

, (4.14)

and

Fi(B,07) =0=FL(B,07). (4.15)

47



4.3 Solution of the Wiener-Hopf Equation

The solution of transformed boundary value problem (7.14), fulfilling the radiation
conditions is,

Ai(B) exp(—i >0,
F(.y) = (B)exp(—ivy) y=>0 (416

Ay(B)explivy)  y <O,

Now using Eqs. (7.15 — 7.17), following Wiener-Hopf equation is obtained.

ePFL(B,0) + e P F(8,0) + K(B)Fi(8,0) = —iG(B), (4.17)
where,
K(B8) =i, (4.18)
F(6,0) = 5 (F(5,09) = F(5,0°) (4.19)
_explil(B — keggcosby)] — exp[—il( — kegy cosby)]
G(8) = VI8 —Fogs cos o) : (4.20)
The Kernel function defined in Eq. 7.19 can be written as:

K(9) = =55 = Ks(8) with 5(8) = 75(8), (121)

where K. (f3) are,

_exp(—ig) _

K+(B) = 2 B) with v4(8) = \/ker£8. (4.22)

It must be noted that the functions, K4 () have region of regularity are Jm{g} >
—Jm{kesr} and Jm{S} < Im{k.sscosby} and similarly for v (5). From Eq. (7.18),
equating the terms which are regular in their corresponding regions, creates a common
region of analyticity. Hence, by analytic continuation, we get an entire function P(53)
and by Liouville’s theorem, P(8) must be equal to zero[12], yielding the following

results.
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A

Fi(8,0) = \/——[ +(8)G12(E£8) + K+ (B)T(£8)C1 2], (4.23)
where
exp(Fikesyl cos ) I 1 B ,
G12(8) = aFkeyrcosby (IC+(B) K (£kesy cos 00)) exp(ikes sl 08 O0)Ra2(5),
(4.24)
_ Goi(kerr) + Ko (ker)Gro(Keps)T (esy)
Cro = Ki(kesys) = ,Ci(kefﬂTQ(keff) , (4.25)
E_
Ri2(8) = TEE: ke;f — W_i(—i(kess & key cos o)) — Woi(—ikers + B))],
(4.26)
T(8) = E;—‘W i[=ilkess + B, E-1= 2\ﬁ theps+8, (4.27)
W,—1/2(q / - L(n+1)e (%)q(n_l)/2wf(n+1)/2,n/2(q)> (4.28)
0

where ¢ = —i(kesr + 5)l, n = —% and W is the Whittaker function. Solving Egs.

7.17 and 7.18, diffracted field is,

F(B,y)=— [exp(iB1) F+ (B, 0) + exp(—iB1) F_(8B,0) + Fi(, O>]€—m\y|,(4.29)

1
K(B)
where

Fi(B,0) =1G(B), (4.30)

Inverse Fourier transformation of Eq. (7.30), yeilds the diffracted field as:
1 o0
H,(x, :—/f ) exp(—ifx — i dp. 4.31
(.9) = 7= | F(B.y)exp(=ifz —irlyl)ds (4.31)

Inserting (7.30) in (7.32), we get

[e.e]

1 1 ePLFL(B,0) + e PLF_(5,0)+ _
Hz , = —— [ —Zﬁ$—z’y\y|d )
RO 2, KiP) +Fi(8,0) e ’

(4.32)
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Diffracted field H,(z,y) further bifurcate in the separated and interaction fields

HsP(z,y) and H™(x,y), respectively as,

where
1 S A §+E§)exp[i()ﬁ(/;k2ff cos&’oo)l;
[ 5ep — AN +(kefycos)(B—keyfcosbo o - d
2May) = o / KB | olmesplitGtggeosay [ P87 = Dlyl)ds,
() K (—kegscos)(B—kesscosbo)
(4.34)
exp(i80) K+ (8)T (8)Cy

1 [ A — expli(B + kegy cos 0o)lJIC1 (B)RA(5) o

Hz t(l’,y) = % / w exp(—zﬁx—zﬂyl)dﬁ.
. +exp(—iB)K_(B)T(—5)Ca
| - exp[—i(B + kesy cos Op)|K_(B)Ra(—P)

Vs

(4.35)
The separated field given by (7.35) depicts diffraction separately at the edges. The
H"(z,y) represented by Eq. (7.36) explains the interaction of one end with the

other.

4.4 Diffracted Field

The diffracted field due to finite-length strip for the far-field can be obtained by
coping with the integral appearing in (7.32). Polar coordinates are introduced for

the evaluation of Eq. 7.32 with the following transformation.

B = —kespcos(p+in), 0<op<m, —0oo0<n<o0. (4.36)
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Now when the method of stationary phase [32] is used for (7.32), the following result

are obtained:

ik
H.(r,¢) = et (—Fkepycos ¢, £rsin ¢) sin ¢ exp (ikeffr + z%) . (4.37)

\/k'effT

Using the same polar coordinates, the transformation and subsequently the method
of stationary phase are used to assess and yield the separated field and interaction

fields as follows:

, 1 ik
[H7, HIY (1, 0) = —=—2IL

B E\/keffT

{f86p7 _fint}(_keff COs ¢) sin ¢exp (ikeffr + Z%) 5
(4.38)

where

A K (—keys cos @) exp[—ikeyl(cos ¢p+cos )]
s cos _ K (kesscosp)(—keyycosp—kesscosbp) 4.39
fsep( eff ¢> /C(—k?eff COs gb) K (key cos ¢) explilkef £ (cos ¢+cos fo)] ( )
K (—kegscosbo)(—kesfcosp—keyycosbp)

( )

exp(—ikeysl cos 9)Ki(—keys cos §)
XT (=kerg cos 9)Cy
—explil(—kesr cos ¢ + kegppcosby)]
A XK (—kesy cos 9)Ri(—kegs cos §)
K(—herr cosd) | Lk (“kepy cos 6) explikes sl cos o)
XT (kesscos ¢)Co

fint(—kegy cos @) =

— exp [—il(—keff cos @ + k:eff COs 00)]
XK (—keyy cos @)Ro(kess cos @)

J

(4.40)
From Eq. (7.38), we can clearly see that the asymptotic expressions for far field can
be obtained by letting k. — 0o and the resulting expressions will be holds true for
any observational angle. The separated field of an EM-wave is investigated in order to
characterise both the field diffracted by the corners of a strip and the influence of the

geometrical wave field. The separated field that results gives physical evidence for the

51



non-thermal plasma concept. Interacted-field, on the other hand, provides no physical
information due to contact at edge to edge, which has formerly been enumerated by
H*?,  As a result, we’ve only talked about the separated field because it conveys
a full physical comprehension of EM-wave diffraction at the established boundaries.
Additionally, we discovered that the interaction field is created by diffraction from
the corners of strip at x = 4+[. Furthermore, when the strip width is increased to oo,
the role due to interaction field terms disappears, leaving just the H*®? terms in the
H. As a consequence, we merely examine the separated field, as illustrated visually

in the next section.

4.5 Discussion and Numerical Results

In this section, we examined the EM-waves by finite-length strip as graphically
by the variation of physical parameters in an an-isotropic media with Neumann
conditions versus the observational angle. For the ionosphere, we take the value of
wp as 56.4M Hz and w, as 8.78 MHz. Now, the values of ¢; and e, are computed
numerically against w to verify the considered model. Also, the values of w are taken
between 80M Hz and 600M Hz given in Table-4.1. It can be notice from Table-4.1,
that the value of €5 is comparably very small from ¢; with the boost up of w in the
frequency range. For isotropic medium, we can take ¢; = 1 and e, = 0, While the
parameters 1 and e for the an-isotropic media (non-thermal plasma) can indeed be

selected from Table-1.

w (in MHz) €1 €9

80.15 0.504834 0.054242
99.50 0.678699 0.028352
145.75 0.850259 0.009020
245.15 0.947071 0.001895
375.50 0.97744 0.000527
480.50 0.986222 0.000251
999.75 0.991157 0.000129

Table 4.1: Values of ; and &, for corresponding w.

The graphical analysis is elaborated to explore the influence of physical parame-
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ters on diffracted field due to a finite-width slit lying in the ionosphere of non-thermal
plasma. These physical parameters are 6y, k, 2l and ;. Fig. 4.3 represents the pat-
tern of the separated field for variation of #y, and it gets maxima for 6y = 7/3, 7/4,
/6 occurring at 6 = 27 /3, 37/4, 57/6, respectively. These maxima actually predict
the shadow of reflected field. Fig. 4.4 reveals the separated field for k. It is notable
that the field has a direct dependence upon k because the field gets amplified for
k. Since the frequency is directly related to k, so it excites the frequency of wave
towards the high range. As extension of the slit-width is actually the expansion of
aperture which is responsible for the diffraction of electromagnetic radiations, and
so, separated field gets amplified as well as more oscillated as can be seen in Fig.
?7?. This amplified amplitude could be controlled by introducing the ionosphere as
can be observed through Fig. 4.5b. By comparing Figs. 4.3b, 4.4b and 4.5b of the
separated field in the an-isotropic medium with their respective Figs. 4.3a, 4.4a and
4.5a in the isotropic medium. It is explained that an-isotropy of the medium caused
by non-thermal plasma influenced the separation field, in both amplitude reduction
and wavelength contraction. Fig. 4.6 explores the trend of the field for 1, while its
mathematical interpretation predicts its physical nature. It is expressed by Eq. (?7)
and can be described as w,. has no big difference in the values in the different parts
of Earth and w, has direct relation with the square root of N, (ion concentration),
which fluctuates massively with the variation of seasons and days to night. Therefore,
without fluctuation on w, £; can be fluctuate. Since £; has inverse relation with w,
so increase in N, with fixed w, €; declines and wavelength will be increase. It means
that the separated field with longer wavelength will occur for increasing number of

free charges in the medium.
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Figure 4.3: The separated field for 6 in the (a) isotropic and (b) an-isotropic medium.
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Figure 4.4: The separated field for k in the (a) isotropic and (b) an-isotropic medium.
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Figure 4.5: The separated field for 21 in the (a) isotropic and (b) an-isotropic medium.

96



{k=50,1=50,r=20, 6y =x/4)

40 |-
&1 = 0.60
—_— £ =075
% 20}
= | |- £, = 0,90
-
O
L oL
g
o
&
§ o
| ‘l
=40 %=
| | | | | | |
0 z z z 2z 5= n
6 3 2 3 3

Observation angle [radian]

Figure 4.6: The separated field for ¢.
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4.6 Conclusions

From above rigorous analysis, it is wrapped-up that the diffraction behavior of
H¢ incident finite-symmetric strip embedded with Neumann surface is affected rig-
orously by behavior changing parameters in the existence of non-thermal plasma. It
is deeply explored that the function H*°? is amplified by different 6y, k, 21, e; and

reduced by &s.
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Chapter 5

Scattering of Electromagnetic
Plane Wave Incident on a Finite
Corrugated Grating in

Non-thermal Plasma

In the present chapter, the scattering of magnetically polarized waves due to
sinusoidal grating is investigated in the context of non-thermal plasma under the
consideration of high frequency signal. Assumption of small depth of grating as com-
pared to the wavelength and approximation of boundary conditions on the grating
surface leads to the reduction of model for diffraction problem of flat-strip embedded
with mixed boundary conditions. Applying the Fourier transform and approximating
the boundary conditions along with perturbation series expansion, the Wiener-Hopf
equations of zero-order and first-order are formulated. Wiener-Hopf technique along
with perturbation method is used to tackle this model. The scattered field is ex-
plicitly derived by applying the inverse Fourier transformation and then using the
saddle point method. For high frequency signals, operating frequency is considered
to be very large as compared to cyclotron frequency, at the same order with plasma

frequency. Numerical values for permittivity elements controlling cold plasma are
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computed for corresponding operating frequency. The characteristics of scattering
in the existence and non-existence of non-thermal plasma by grating are graphically

discussed.

5.1 Description Of The Model

Cold Plasma

Plane Wave

Figure 5.1: Simplified figure of the problem.

H-Polarized plane-waves are being incident on the surface as shown in Fig. 1. In
present scenario, the surface is taken as perfectly conducting, uniform and infinitely

thin lying along the z—direction, which is defined by

y = hsinmz, lz] <1 (5.1)

with 2h (h > 0) being the distance between crust and trough or grating depth, and
m > 0 being the periodicity measurement parameter. The magnetic field is taken
to be parallel to z—axis with consideration of grating geometry. This leads to the
two-dimensional scattering problem regarding.

Let the total magnetic field H'" (x,y) be defined by

H,EOt(x7y) = H;‘nc(x, y) + H,jcat(x7y)v (52)
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where H™ is the incident field satisfying the Helmholtz equation, is given by
Hinc (l’,y) — e—ik:eff(xsineo-f—ycoseo)’ O < 00 < 7T/2 (53)

where k.rs is given by (8). The two-dimensional Helmholtz equation of scattered

field H, (x,y) is given by
(02 + 02+ kZpp) HE (z,y) =0 (5.4)

The total electric field E having tangential components satisfies, the boundary

conditions.

Elt = 0, H (z, hsinmx) = 0, |z <1 (5.5)

tan

Here 0,, denotes the normal derivative. Assume that the grating depth 2h is tiny in
comparison to the wavelength and extend the (6) in terms of the Taylor series. Then,

in the Taylor series, omitting the terms of order O (h?), we get

Oy H" (2,0) + h [sin madiH (2,0) — m cos mad, H (z,0)] + O (h?) =0,  |z| <
(5.6)
where (14) depicts the boundary condition and will be utilized to proceed the re-
maining part of analysis.
Let us expand the unknown scattered field H,(x,y) through the perturbation tech-
nique as:

H, (v,y) = H” (v,y) + hHY (z,y) + O (h?), (5.7)

where H"” (x,y) is the zero-order and H W (x,y ) is the first-order unknown terms
in the scattered field.

H™ for n = 0,1 appearing (15) satisfy

(02+ 02+ kZ;p) H™ (z,y) = 0, (5.8)
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with continuity relations

g (z,40) = HO (z — 0) [= HO (2,0)] (5.9)
Oy H" (z,+0) = 0,H" (z,-0) [= 0,H" (2,0)] , (5.10)
HY (2,4+0) = HY (z,—0) [= HY (2,0)] (5.11)
o, HM (2,40) = 9,HY (x, —0) [= 9,HY (2,0)] (5.12)
for |z| > [, and
HO (2,+0) = HY (z,-0) = j¥ (2,0), (5.13)
Oy H™ (,0) = ik, s sin e~ Rerszeosto, (5.14)
HWY (z,+0) — HY (x,-0) = ;Y (2,0), (5.15)
(%Hél) (x,0) + sin maﬁ;HéO) (,0) —mcos mad, (x,0) (5.16)
— Zke% [keff sin2 00 Zi:1<_1)ne—ikeffzcos On m COS 90 Zi:l e—ikeffx COSGni|
for |z| <1
cosfy = cosby —m/k, cos by = cos by +m/k. (5.17)

The terms j© (2,0) and j® (z,0) in their respective equations (21) and (23),
presenting the unknown currents at the surface, respectively. As it can be visualized
from above argument that zero-order function leads to the diffraction problem by
flat-strip whereas the first-order corresponds to the problem of wave diffracted by

sinusoidal corrugation of finite length.

5.2 Modeling of Wiener-Hopf Equations.

For ease of analysis, the medium is assumed to be slightly lossy as in k. =
Re {kesr} + iTm{kepp} with 0 < Im{k.pr} < Re{kesr}. The solution of present
model for real value of k.ss is achieved by taking Jm{k.;;} — 40 at the end of

analysis. For Eq. (15) considering the radiation condition, the asymptotic behavior
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of the H™ (z,y) for n = 0,1 is given by

H™ (2,y) = O (efﬂm{keff}lwlcoseo) Lz — oo (5.18)

z

Employing the Fourier transformation on H ) (z,y), we have

F (a,y) = (27r)1/2/ H™ (z,y) e"**dz, (5.19)

—00

where o is taken as complex. Eqs. (26) and (27) show that H{™ (o, y) for n = 0,1
behave as regular functions for a in the strip |7| < Jm{k.ss} cosy of the complex

a—plane. Let us introduce the Fourier integrals as

+oc0
F (a,y) =+ (2m) 7 H® (z,y)e@F) dg, (5.20)
+1
l .
F® (a,y) = (2m)"? / H (2,y) o7z, (5.21)
—1
l
fén) (v, 0) = (2%)1/2/ H™ (,0) e dx (5.22)
-1

As F\ (a, y) are regular in 7 = FIm {kos;} cos 6y where as F™ (a,y) and F” (v, 0)

are entire functions. From Eqgs. (27) — (29), we get
F (a,y) = e F (a,y) + F (o y) + e F (a,y) (5.23)
Using Fourier transformation of Eq. (16) along Eq. (26), we get
[d?/dy? —~* ()] F (a,y) =0, (5.24)

where v (a) = (a? — kgff)l/z with Re {7 (o)} > 0. v () is a double-valued function

of a such that v () = —ikess for o = 0 so we can have proper choice of branch. The
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solution of (32) is presented as

U™ () e (@, y>0
FM (o, ) = () (5.25)
WD) () ew(a)y’ y <0,

where the arbitrary functions appearing in the Eq (33) U™ (a) and V™ (a) for

n = 0,1 will be evaluated. Using Eqgs. (17) — (24), we have

UO (o (0)
@ _ 7 (@) (5.26)
VO (q) 2
U@ | _ s, ) DHatm)-mlatm)F (@+m)
2 4iv(a ’
YO (a) " — 2@ = m) (e —m)] FO (o —m)
(5.27)
where
F (a) = F" (o, +0) — F™(a, —0) (5.28)

for n = 0,1. Putting Eq. (34)and Eq. (35) into Eq. (33), we get the following for

y=20:
(0) (a)
FO (a,y) = =5 5 eFr @y (5.29)
f(l) (Oé y) — iweq}%a)y
’ 2
2 (a+m) = m (a+m)] FS (a+m) (5.30)

1

+ i eFr(a)y

— [ (= m) +m (@ = m)] F§ (e —m)
Equations (37) and (38) express the transformed scattered fields of the zero- and
first-order, respectively. Plugging y = £0 in (29) and (30) and using the boundary

conditions, we have

e S (a) + K () F () + €984y () = 0, (5.31)
e D (a) + K () FS (a) + €Dy (a) = 0, (5.32)

64



for |7| < Jm{k.ss} cos by, where

U
S_ — I(O)/ O 0 .
() = F2 (@, 0) + — P (5.33)
Sta (@) = ' (a,0) - —2° (5.34)
* ’ o — keppcosby’
- u,c
D - F . 1 n nbn .
() = F_ (o) Z_j Ay ST (5.35)
Divy (a) = Fi (a) + i (—1)7 — YnCn (5.36)
) U 1 oz—k:effcosen’ '
K(a) = @ (5.37)
Fe(a) = FL(0,0)
[V* (a+m) — m (a+m)] eiimlfio) (a +m,0) (538
50 —hEa—m) —m (@ —m)] e (= m,0) |
+ (27) "% m cos mlHY (0,1)
3
U _ —ke sin Gpetikersicosbo | (5.30)
Vo V2T
Vs
\
n e:I:z'k:efflcos On
=—0 =1,2 5.40
Y, V2T " ( )
J
Cp = (kegs/2) [kegpsin®fy — (—1)" mcosby], n=1,2 (5.41)

where the prime represent the derivative with respect to y. Egs. (39) and (40) are

Wiener-Hopf equations of zero- and first-order, respectively.
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5.3 Exact and Asymptotic Results

For exact and asymptotic solutions, we solve the Wiener-Hopf equations of the

zero- and first-order. The product decomposition of I («) given in (45) presented as
K(a) =K (o) K_(a). (5.42)

The factors appearing in (50) are evaluated as

e im/4 (k‘eff + Oz)l/2

K:i (Oz) = \/§

(5.43)

Multiplying e /K, () on both sides of (39) and using the decomposition method,

we get
Up 1
St (@) = K. 0) (T e e + 3 (@)~ @)]).
(5.44)
Vo
S-(a) =K-(a) (IC_ (kepfcosBy) (o — kegcosty) o 2 [y (=a) +ua(=a)] )
(5.45)
where
Ll g ()
Us,d (Oé) - E /keff (ﬁ + Oé) K_ (5) g, (546)
S (@) =8y (@) £ S (—a). (5.47)

Egs. (52) and (53) comprise of branch-cut integrals involving unknown functions
S(Sf) (B) as the integrands. Using an asymptotic method, we explicitly find a high-

frequency solution as

Uy (o — kegy)'?

Sl + K (a) [CYE (—a) + Vong (—a)]
( ) (,I{jeff COS 80 o keff)l/z (a . keff COS 00) ( ) [ 15( ) 0/)70 ( ):|
(5.48)
S (OC) VO (Oé + keff)l/Q + K (a) [Cué (a) 4+ u 770, (Oé)]
" (Kegs cos b + keff)l/Q (ov — kegycosty) * 2 07lo )
(5.49)
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for kessl — 0o, where

K (heps) 6" (keps) + Ko (eps) € (hegs) X6* (Fepy)

cu. — , 5.50
b2 1— K2 (kegr) &2 (Keps) (550
9 1/22ike sl

6(04) = _Trl (1/27_2i <05+keff) l)? (551)

b § (o) — & (Fkeys cos by)
by 52
o (@) a F kegycosby ’ (5-52)

with
X6 () = Uon (a) + VoL (a) (5.53)
X6 (@) = Vo (o) + Up L (o) (5.54)
o 1 1 1

Fo (@) = a £ kespcosty llC+ (@) Kz (keppcosby) | (5:55)

In (51), I'1 (.,.) is the gamma function in generalized form calculated by Kobayashi

[21] and is defined
o] tu—le—t
Iy (u,v) :/ —dt. (5.56)
0

(t+v)?
with p being the positive integer, and Re{u} > 0, |v| > 0, |argv| < w. This is
the complete solution for Wiener-Hopf zero-order (39). Similarly, for the first-order
Wiener-Hopf equation (40), same procedure may be used. The procedure of decom-
position and factorization yields the solution of first-order Wiener-Hopf equation (40)

with following result:

- . U,Cyn 1
D ()= —K_(a) {Z O e (T ey W {CSETORRIE)
(5.57)
Dy (@) =K+ (@) {nz:l (=1)" Ky (kess cos 92};(60? — kegpcosB,) + % s (@) = va(e)] ¢
(5.58)
where
o 1 /keff‘f’ioo eziﬁlD(sf) (B) 48 (5.50)
ST ), Brak (3) |
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with

D (@) = Dy (@) £ D (—a). (5.60)

Evaluating (67) asymptotically and then arranging the results, we obtain

cneikefflcos On (a_keff)l/Q

D_(a)~=%2_ (-1)" —
( ) Zn—l( ) (2#)1/2(keff6059n—keff) / (c—Fkeyy cosOn) (561)
+E- (o) [PrE (=) + Vini (=) + Vo (—a)]

—ike g rlcosOn 1/2
D Q) ~ — 2_ 1) Cne” eff (atk)
(+) ( ) ZTL—]_ ( ) (27r)1/2(k5ff C059n+kgff)1/2(06—kgff COSgn) (562)

Iy (@) [PYE (@) + Uil () + Ustih ()]

as keprl — 0o, where

2

v ]C+ (keff) a, ,a
Pl =1 K (hoyy) € (i) ; [Xi? (kegr) + ICy (Kepp) € (keps) X (Kegp)]
(5.63)
@b (o) = _ (1) € (a) — & (Lkegscosby,)
(@) = = (=1)"Cmm—r e (5.64)
X (@) = Unnfy (@) = (=1)" VuCu L], (@), (5.65)
X (@) = Vam, (@) = (=1)"UnC, L5, (@) (5.66)
£o0 () = ! L ! (5.67)

atkegreost, |[Ky(a)  Kg(kespcosty,)]|
forn = 1,2. Egs. (56), (57) and (69), (70) give the asymptotic solutions of equations

(39) and (40) for high-frequency, respectively.

5.4 Scattered Far Field

With the aid of results evaluated in above section, we drive the analytical expres-
sions for scattered field. The inverse Fourier transform is applied on F™ (a,y) to

obtain the result for scattered field H? (x,y) with n = 0,1 which is defined as

1 oco+id )
HO @) = o= [ e o). (5.68)
—0o0+1
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where d is a constant such that |d| < Jm{k.ss cosf}. Now we shall derive the explicit
asymptotic expressions for the scattered far fields of the zero- and first-order.

For scattered far field of zero-order, we express F, éo) (o) explicitly from (39) that is

FO (o) = 275 (OJQJM% = (5.69)

Substituting (77) into (37) we obtain

_ fiozls_ o ialS
FO (q,y) = + ( € (20;% (Oj (+) (a)) 1@y, (5.70)

Substitution of (78) in (76) with n = 0 leads to an integral expression for the

scattered field of the zero-order H.” (z,y) is presented as

eFr@y—iazgy (571

HY (2,y) = F (2m) "/ / S (o) + 1S, (o)
—oo+id v

for y 2 0, where d is a constant such that |d| < Jm{k.sscostp} and v = 2K («).

Since the integral presented by (79) includes branch points at o = %k.s, therefore,

in general, it is difficult to get solution in closed form. However, we may tackle (79)

utilizing the saddle point method to get an asymptotic expression. Now we introduce

the polar coordinates as:
r=pcosh, y=psing, —w<O<m (5.72)

The expression of H?(z,y) can be derived by using Saddle point method as:

eikefpleosbg (_keff cos 9)+e_ik6ffl cos 98(+) <_keff cos 9)
QIC(—keff cos 9)

HO (p,0) ~ F -
5.73

'L(keffpfw/él)

k in |f| &—Frnr——-
X effSlIl| | \/m

for y 2 0 as k.rrp — oo. Substituting the (56) and (57) in (81), the results will be
achieved for scattered far field with high-frequency for large |kes¢|l.

In the similar manner,an integral form of H" (x, z) can be derived by substituting
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(38) in (76) and utilizing (39) and (40), we get
HY (z,y) = H) (z,y) + HY) (2,y) | (5.74)

where

oco+id e—ioal'D_ (Oé) 4 eialD(+) (Oé)

HY) (x,y) = F (2m) / eFr@w—iozgy  (575)

—oo+id 2K (O{)
( )\
[v? (@ +m) —m (o +m)]
oo-id o HHMIS (atm) et mIS ) (atm)
H(l) (x y) _ —(271')_1/2 / ; K(a+m)
A 8imkC
L BT 2 (0= m) = m (o - m)

e~ila—m)lg (afm)Jre"(a*m)lSH)(afm)

\ X K(a—m) 7

X e:;:y(a)y—iam da

(5.76)
Now with the aid of saddle point method along with polar coordinates defined by
(80), the HLY) (x,y) is evaluated asymptotically as
etkeprloostp (—keff cos 9)+e_ikeffl°°s QD(H (—keff cos 9)

2/C(keff cos 6)
i(keffp—‘rr/4

HY (p,0) ~ F

(5.77)
Xk’eff sin |0| =

for y 2 0 as kegrp — o0.

For H. z(lqz (x,y) given by (84), in general it is difficult to evaluate asymptotic expres-
sion, because o = Lkerr +m, £kesr —m and o = Lk.py are the branch points
occurring in (84). To proceed further, we consider |m/k.ss| < 1 which leads to
larger period of grating than the wavelength and can be evaluated asymptotically by

the saddle point method. It’s asymptotic expression is as follows:
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2
HY) (p,0) ~ W Z (—1)" [4K? (keps cos0™) — (=1)" mkey s cos 6]

n=1

ket COSG(W)S, (—kﬁff cos 9(”))+e_ikeffl cos (™) S (—keff cos 0(")) '(kEfff’—W/4>

- K (ke g g cos6()) e sin |9 < Vhkersp
(5.78)
for y 2 0 as kegrp — 0o, where
012 = cos™! (cos O F m/kess) - (5.79)

Introducing Eqgs (85) and (86) into (82), the asymptotic expression of first-order
field is,

H(l) (IO 9) N :Feikefflcosgp—<*keff COSG)+€7ikefflCOSG'D(+)(7keff COSQ)
z )

i(keffpf‘rr/4)
ZIC(keff cos 9)

k in [6| ¢
X effSlIl|| \/m

[4K? (Kepp cos0™) — (=1)" mkesy cos 6]
+8il€(k5;f cos@) Z (-1)”

= 7 cos (n —1 cos O\
n=1 e'Fefpleost >S,(—keffcosﬁ("))+e ke g pleos 0f )5(+)<—kcffC050(n>>

K(keff cos 9("))

i ke —m/4
xkeffsin|9]e( i )

\/keffp ’

X

(5.80)
for y 2 0 as kesrp — co. With careful observation, that (88) expresses the uniform

asymptotic expression for H ,gl)(p, 0)

5.5 Numerical Results and Discussion

In this section, the intensity of far field and characteristics of scattering by grating

is elaborated mathematically and numerically as well. For ease, the normalized
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function of far field intensity is introduced as in

lim |(kefyp)'/2H.(p.0)|

H,(p,0)|[dB] = 201 r 5.81
| (10 )H ] OglO max hm |(k’ ffp)l/QH (p 9)| ( )
|0|<m p—oo
where
H.(p,0) = HO(p,0) + hRH{ (p, 0). (5.82)

Scattered field given by (81) is computed using the expressions given by (73) and (79).
Under the assumption of small-depth approximations of Leontovich type boundary
conditions, original model for grating is reduced to diffraction phenomena of a flat
strip. The boundary condition expressed in (7) may be utilized to simulate corrugated
surface by taking the grating depth 2h which satisfies for 2h < 0.1A. In this paper,
we have taken depth (of grating) 2h = 0.1 to consider the sinusoidal surface. On the
other hand, the ratio - has been chosen as T < 0.2 for validity of the assymptotic
expression of H Z,g(x, y) given in (77). Under this condition, the process of asymptotic
evaluation of (77) gives rise to the branch point’s appearance at a« = £k + m,
a = +k — m leading to the contributions of branch-cut integrals which play a little
role but not greater than the saddle point involvement and therefore, (77) may be
employed with suitable accuracy. The characteristic values of w, and w. can be
computed as w, = 56.4MHz and w. = 8.78MHz. Further, result for high frequency
signal is obtained by setting w > w. and following the same order for w,. This yields
£1~ 1—(w,/w)? and £5 — 0 in the limiting case. For numerical analysis, w is chosen
between 80MHz and 600MHz. For verification of this assumption, the values of ¢,

and e, computed for corresponding w are gien in Table 1.

Presence of cold plasma is considered by taking ¢; = 0.6 and 5 = 0.001 whereas
for the absence of cold plasma we have chosen particular values as ¢; = 1.0 and
g5 = 0. Figs. 2 and 5, 3 and 6, 4 and 7 show the plots for scattered far field intensity

21/,\

versus 6 for respective grating length 21 = 10\, 25\, 45\ with N = belng the

number of periods of grating and 6y being the incidence angle fixed as 60. In Figs.
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w (in MHz) €1 €2

80.50 0.50913 0.05353
95.75 0.65303 0.03181
130.15 0.81221 0.01266
210.25 0.92804 0.003005
300.60 0.96479 0.001028
440.50 0.98360 0.000326
595.50 0.99103 0.000132

Table 5.1: Values of 1 and &5 for corresponding operating frequency.

(2—4), blue and red lines show the scattered field in the existence and non-existence
of non-thermal plasma, respectively, on the other hand, in Figs. (5—7), blue and red
lines show the scattered far field for flat as well as corrugated grating, respectively.
The depth (of grating) has been taken as 2h = 0.1\ to investigate the effects due to
sinusoidal structure of grating in Figs. 2(b), 3(b), 4(b), 5, 6 and 7. Another important
parameter is the periodicity parameter ﬁ which is taken as 0.1 in Figs. 2, 5 and as
0.2 in Figs. 3, 4, 6, 7. The comparative study of scattering features between flat strip
and sinusoidal grating is of significance. Figs. 2(a), 3(a), 4(a) are displayed to study
the comparison between effects due to absence and presence of cold plasma for flat
strip, on the other hand Figs. 2(b), 3(b), 4(b) are plotted to investigate the existence
and non-existence of non-thermal plasma for sinusoidal grating. Figs. 5(a), 6(a),
7(a) show the comparative analysis of scattered field due to flat strip and sinusoidal
grating in absence of cold plasma whereas Figs. 5(b), 6(b), 7(b) show the analysis for
presence of cold plasma.

From all the figures, it can be seen that far field show maximum peaks at two distinct
angles § = —120, and 120 corresponding to the shadow boundaries of incident and
reflected fields, respectively. Now we discuss the comparison of sinusoidal-shaped
grating in Figs. 2(b), 3(b), 4(b) with flat strip in Figs. 2(b), 3(b), 4(b). It can be
seen that in case of finite sinusoidal grating, nullity of far field intensity is lesser than
those of flat strip. Also, behavior of oscillations for sinusoidal grating is different from
those for the flat strip. Most noticeable behavior in Figs. 2 — 4 is the effects of cold

plasma. It can be observed that presence of non-thermal plasma (red lines) has lessen
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the sharp peaks occurring at § = —120, and 120, and number of oscillations too. This
means that presence of non-thermal plasma avoids the waves from dispersion.

Now we briefly explain the plots of intensity far field shown in Figs. 5 — 7 for
flat strip versus sinusoidal grating in the existence and nonexistence of non-thermal
plasma. On comparing Fig. 5(b), 6(b) with that of 5(a), 6(b), respectively, we see that
existence of non-thermal plasma has reduced the amplitude, number of oscillations
and nullity at § = 0 of far field intensity. Also, the sharp peaks occurring in the
neighborhood of maximum peaks at § = —120, and 120 shown in Fig. 6(a) are
reduced by inclusion of non-thermal plasma in Fig. 6(b). A particular oscillating
behavior for sinusoidal grating (red lines) at = 0 is shown by subplot in Fig. 7(b),
which is an opposite behavior of far field intensity for sinusoidal grating at § = 0 in
Fig. 7(a). If we analyze the Figs. 2, 5 for N = 1, and Figs. 3, 6 for N = 5 and Figs. 4,
7 for N = 9, we find that for larger values of N numbers of oscillations are increased.
This happens because of the structure approaching an infinite sinusoidal grating for
enhancement of N and hence, waves are strongly excited along the directions of

propagation.
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Figure 5.2: Behavior of H (z,y) for 6y = 60, N = 1, 2l = 10\, m/kesr = 0.1 (a)
h=0(b) 2h = 0.1\,
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Figure 5.3: Behavior of H (z,y) for 6y = 60, N = 5, 2l = 25\, m/kesr = 0.2 (a)
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Figure 5.5: Behavior of H (z,y) for 6, = 60, N = 1, 2l = 10\, m/k = 0.1 (a) absence
of cold plasma (b)presence of cold plasma.
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5.6 Conclusion

In this article, diffracted H-polarized plane wave incident at the sinusoidal-shaped
grating of finite length in the presence of cold plasma is analyzed by Wiener-Hopf
technique along with perturbation method. Helmholtz equation has been formulated
by using Maxwell equations along with non-thermal plasma tensor to analyze the
effects of non-thermal plasma on scattered far field intensity. The small corrugation
amplitude as compared to wavelength is assumed and scattered field has been ex-
panded via perturbation series to reduce the problem to diffraction behavior for flat
strip embedded the surface with mixed conditions. Wiener-Hopf equations of zero-
and first-order are formulated with the aid of approximate boundary condition. The
decomposition procedure is used to proceed these Wiener-Hopf equations which then
yields the exact solutions with high-frequency.

Implementation of the inverse Fourier transformation along with the asymptotic
method of saddle point, the scattered field is devised which shows validity for ar-
bitrary angles of observation as well as incidence. We have accomplished graphical
analysis of field intensity on the basis of results and investigated the diffraction by
flat strip and sinusoidal grating in existing and non-existing non-thermal plasma in
detail. On analyzing the plots, it is observed that the number of oscillations increase
due to increasing the number of gratings. Also, the existence of non-thermal plasma
has reduced the peaks of the field oscillations. Model can be thought of an artificial

satellite in the space or a screen with sinusoidal shape.
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Chapter 6

EM-Wave Incident on the Slit of
Finite Width with Dirichlet

Conditions in An-isotropy of

Non-thermal Plasma

This chapter thoroughly investigate the interaction of wave field due to a finite-
width slit with Dirichlet boundary conditions in the context of non-thermal plasma.
After applying the Fourier transform to the Helmholtz equation, the boundary value
problem is established. To solve the challenge stated for this model, the Wiener-Hopf
analysis is used. At the completion of the analysis, the separated field computed
along with its numerical findings are elaborated to further investigate the impacts of

variation in physical parameters in an an-isotropic medium.

6.1 Problem Statement

We have investigated the diffraction pattern of plane electromagnetic waves due
to a finite-width slit in non-thermal plasma, as illustrated in Fig. 6.1. Furthermore,

Dirichlet conditions are assumed on the slit and angle of incidence is 6y. The total
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/ Reflected Field , \

\ —o<x<-I o I<x<o !

Figure 6.1: Simplified figure of the problem.

field can be represented in terms of incident, refracted and diffracted fields as:
H(w,y) = H"(w,y) + HI (2, y) + H.(2,y), (6.1)
where the incident and refracted fields are defined as
He(, ) = e~ kers @cosbotysingo) (6.2)

H;ef<x,y) — efikeff(xcoseofysin%)‘ (63)

Suppose that medium is slightly lossy, and constant K.¢; appearing in above equa-
tions is complex in such a way (0 < Jm{k.sr} < Re{kesr}). At the end, for real
K¢s solution could be determine by taking its imaginary part to zero. The entire

field H™(z,y) meeting the Helmholtz equation is
[a:c:c + ayy + szf]HEOt(xa y) - O’ (64)

Substituting the value of H!!(z,y) from (7.1), we get the equation for diffracted field

as:

(O + By + k2pp Ho(2,y) = 0, (6.5)
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In order to establish the Wiener-Hopf equation, conditions at x — £/ in conjunction
with continuity relations are used. Neumann boundary conditions on a finite-width

slit are specified as
H!" =0,for —I>x>1land y =07, (6.6)

along with

H2,07) = H(2,07) =0, at |z|]<l, y=0, (6.7)

6.2 Problem Transformation

Following results can be obtained with the use of Fourier Transforms.

F(B,y) = \/%/e’ﬂ%(m,y)dx

= Biﬁlf+(6,y) -+ G_iﬁlf_(ﬂ, y) + E(ﬁ7y)7 (68)

where 8 =0 + iT.

Figure 6.2: Illustration of Analytic-Continuation.
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For high values of x, the diffracted field is interpreted as follows:

O e—ikeffx ’
H.(z,y) = | ! (6.9)

O(e—keff:vcosao)_

The regions of regularity in the complex plane for F, (5, y) and F_(8,y) are Im{S} >
—Jm{kesr} and Im{B} < Im{k.sscosbp}. From Fig 6.2, we can see the common
region —Jm{kesr} < Im{S} < Im{k.sscosby} of analyticity, where the functions

Fi(B,y) are also analytic and hence, we can define

+oo
FelBoy) = i\/% i/l P (2, y)de (6.10)
X I
Filp1) = <= / S H (2, y)da (6.11)
ine exp(—iykesssinby) (explil(8 — kepycosty)] — exp[—il(B — keyy cos )]
(5:9) = Nez: ( i(B = kegg cos o) ) '

(6.12)

Fref(B,y) exp(iykess sin ) (exp[il(ﬁ — kegpcosby)] — exp[—il(S — keyy cos 90)]>
T (B = kg cos b) |

(6.13)
The following transformed boundary value problem could be obtained by applying

the Fourier transformation to Egs. (7.5 —7.7) .

d2
(d_y2 + 72> F=0 (614)

where v(8) = \/kZ;; — 5%

F(670+> :]:Tef(ﬁv()) _]_‘inc(ﬂ)())
F(B8,07) =0

, (6.15)

and

Fi(B,07) =0=Fi(B,07). (6.16)
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6.3 Solution of the Wiener-Hopf Equation

The solution of transformed boundary value problem (7.14), fulfilling the radiation

conditions is,

Ay (B) exp(—ivy) y =0,
F(B,y) = (6.17)
Ax(B)expl(ivy)  y<O0.

Now using Eqs. (7.15 — 7.17), following Wiener-Hopf equation is obtained.

exp(i31)F"(3,0) + exp(—iBl)F (3,0) + K(B)Fi(B,0) = —kesssin0G(B), (6.18)

where,
K(B8) =i, (6.19)
F(6,0) = 5 (F(5,09) = F(5,0°) (6:20)
_explil(B — keggcosby)] — exp[—il( — kegy cosby)]
G(B) = Va6 —Furs conbo) , (6.21)
The Kernel function defined in Eq. 7.19 can be written as:

K(9) = =55 = Ks(8) with 5(8) = 75(8), (622

where K. (f3) are,

_exp(—ig) _

K+(B) = 2 B) with v4(8) = \/ker£8. (6.23)

It must be noted that the functions, K4 () have region of regularity are Jm{g} >
—Jm{kesr} and Jm{S} < Im{k.sscosby} and similarly for v (5). From Eq. (7.18),
equating the terms which are regular in their corresponding regions, creates a common
region of analyticity. Hence, by analytic contnuation, we get an entire function P(53)
and by Liouville’s theorem, P(8) must be equal to zero[12], yielding the following

results.
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A

F(B,0) = \/——[ +(8)G12(£8) + K+ (B)T (£8)C12], (6.24)
where
X 1Kot el 0 1 1 .
Gra(8) = - ‘;(;F,Zeh{’; o ( TR A QO))—exp&zkefflcos 00)R12(5),
(6.25)
_ Go1(Kepy) + Koy (kepr)Gra(kers) T (Kegy)
Cra = Ko lhers) 1= ICZ (ke ) T (Kesy) ’ (6.26)
E_
Ri2(8) = TEE: ke;f — W_i(—i(kesy & kepy cos b)) — W-i(—i(kess + B))],
(6.27)
T(B) = E;—_W 1[=ilkess +B)], E_1= 2\ﬁ thegs 4P, (6.28)
Wi-1/2(q / —dv = D(n+ 1)e(8)g/ W i1y j2,0/2(a), (6.29)
0

where ¢ = —i(kesr + 5)l, n = —% and W is the Whittaker function. Solving Egs.

7.17 and 7.18, diffracted field is,

.F(ﬁ7 y) = - [exp(iﬁl)]-ﬁr(ﬁ, O) + exp(-iﬁl}f’i (ﬁ’ 0) + -Fl(ﬁ, 0)] efi'y\y|,(6.30)

1
K(B)
where

Fi(B,0) = —AG(B), and A= —kesssinb, (6.31)

Inverse Fourier transformation of Eq. (7.30), yields the diffracted field as:
1 o0
H.(z,y) = — | F(B,y)exp(—ifxr —1i dp. 6.32
(@) = == [ Fl@.s)expl=ifa ~inly)ds (6:32

Inserting (7.30) in (7.32), we get

o0

1 1 exp(181) F1(B,0) + exp(—iBl) F_(3,0)+
H,(x,y) = ——= —_ exp(—ifx—iv|y|)dp
var J *) +74(8,0)

(6.33)
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Diffracted field H,(z,y) further bifurcate in the separated and interaction fields

HsP(z,y) and H™(x,y), respectively as,

where
1 S A £+E,’i’)exp[i()ﬁ(;szfcosé’%)l;
L sep _ A +(kef s cos)(B—key s cosbo s o d
2May) = o / KB oltesplitGtggeosty [ P87 = Dlyl)ds,
() K (—kegscos)(B—kesscosbo)
(6.35)
exp(i8) K+ (8)T(8)Cy
. 7 —expl|i(f + kerrcosby)l|C R
HM(r,y) = o / —/cflﬂ) U e costMEOIRAE). g intulyas
. +exp(—iB)K_(B)T(-B)Cq
| —exp[—i(B + kegy cos O )IJK_(B)Ra(—5)

Vs

(6.36)
The separated field given by (7.35) depicts diffraction separately at the edges. The
H"“(z,y) represented by Eq. (7.36) explains the interaction of one end with the

other.

6.4 Diffracted Field

The diffracted field due to slit of finite width for the far field can be obtained
asymptotically by coping with the integral appearing in (7.32). Polar coordinates

are introduced for the evaluation of Eq. 7.32 with the following transformation.

B = —kespcos(p+in), 0<p<m, —oo0<n<o0. (6.37)
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Now when the method of stationary phase [32] is used for (7.32), the following result

are obtained:

ke . : : :
H.(r,¢) = et (—keggcos ¢, £rsin ¢) sin ¢ exp (zkeffr + z%) . (6.38)

\/k'effT

Using the same polar coordinates, the transformation and subsequently the method
of stationary phase are used to assess and yield the separated field and interaction

fields as follows:

, 1 ik s
H? H"™\(r ¢) = — eff sens — fint }(—Kkerr COS @) sin ¢ ex (ik:e r —|—i—> ,
{ z z }( gb) m\/@{f P f t}( ff ¢) ¢ p I 4
(6.39)
where
A IC+((—keff cos ¢>))(exp[—ikeffl(cos p+cos 00))]
» _ke COS _ K (keyfcosbto)(—keyycosp—kesscosbo 6.40
f p( 1 ¢) /C(—k‘eff COs gb) K (keyy cos ¢) explilkef £ (cos ¢+cos fo)] ( )
K (—kegscosbo)(—kesfcosp—keyycosbp)
( 3
exp(—ikesrl cos @)Ky (—kesp cos @)
XT (—kess cos ¢)Cy
— explil(—kesr cos @ + kegpcosby)]
A XICo(—keprcos @)Ri(—kess cos @)
Jint(=kers cos @) = K(—kesscos o)
eff +K_(—kesscos @) exp(ikessl cos @)
XT (kesscos ¢)Cy
—exp [—il(—kepscos @+ kesscosbp)]
| XK_(—keprcos 9)Ro(kesscosd)

(6.41)

From Eq. (7.38), we can clearly see that the asymptotic expressions for far field can
be obtained by letting k. — 0o and the resulting expressions will be holds true for
any observational angle. The separated field of an EM-wave is investigated in order
to characterise both the field diffracted by the corners of a slit and the influence of

the geometrical wave field. The separated field that results gives physical evidence
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for the non-thermal plasma concept. Separated-field, on the other hand, provides no
physical information due to contact at one edge with the other, which has already
been enumerated by separated-field. As a result, we’ve only talked about the sepa-
rated field because it conveys a full physical comprehension of EM-wave diffraction
at the established boundaries. Additionally, we discovered that the interaction field
is created by diffraction from the corners of slit at * = 4+[. Furthermore, when the
slit width is increased to oo, the contribution due to H" terms disappears, leaving
just the separated field terms in the diffracted field. As a consequence, we merely

examine the separated field, as illustrated visually in the next section.

6.5 Discussion and Numerical Results

In this section, we examined the EM-waves by finite-width slit as graphically
by the variation of physical parameters in an an-isotropic media with Neumann
conditions versus the observational angle. For the ionosphere, we take the value of
wp as 56.4M Hz and w, as 8.78 MHz. Now, the values of ¢; and e, are computed
numerically against w to verify the considered model. Also, the values of w are taken
between 80M Hz and 600M Hz given in Tab 6.1. It can be notice from Table-6.1,
that the value of €5 is comparably very small from ¢; with the boost up of w in the
frequency range. For isotropic medium, we can take ¢; = 1 and e, = 0, While the
parameters 1 and e for the an-isotropic media (non-thermal plasma) can indeed be

selected from Table-1.

w (in MHz) €1 €9

80.15 0.504834 0.054242
99.50 0.678699 0.028352
145.75 0.850259 0.009020
245.15 0.947071 0.001895
375.50 0.97744 0.000527
480.50 0.986222 0.000251
999.75 0.991157 0.000129

Table 6.1: Values of 1 and &, for corresponding w.

The graphical analysis is elaborated to explore the influence of physical parame-
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ters on diffracted field due to a finite-width slit lying in the ionosphere of non-thermal
plasma. These physical parameters are 6y, k, 2l and ;. Fig. 6.3 represents the pat-
tern of the separated field for variation of #y, and it gets maxima for 6y = 7/3, 7/4,
/6 occurring at 6 = 27 /3, 37/4, 57/6, respectively. These maxima actually predict
the shadow of reflected field. Fig. 6.4 reveals the separated field for k. It is notable
that the field has a direct dependence upon k because the field gets amplified for
k. Since the frequency is directly related to k, so it excites the frequency of wave
towards the high range. As extension of the slit-width is actually the expansion of
aperture which is responsible for the diffraction of electromagnetic radiations, and
so, separated field gets amplified as well as more oscillated as can be seen in Fig.
6.5. This amplified amplitude could be controlled by introducing the ionosphere as
can be observed through Fig. 6.5b. By comparing Figs. 6.3b, 6.4b and 6.5b of the
separated field in the an-isotropic medium with their respective Figs. 6.3a, 6.4a and
?7? in the isotropic medium. It is explained that an-isotropy of the medium caused
by non-thermal plasma influenced the separation field, in both amplitude reduction
and wavelength contraction. Fig. 6.6 explores the trend of the field for 1, while its
mathematical interpretation predicts its physical nature. It is expressed by Eq. (?7)
and can be described as w,. has no big difference in the values in the different parts
of Earth and w, has direct relation with the square root of N, (ion concentration),
which fluctuates massively with the variation of seasons and days to night. Therefore,
without fluctuation on w, £; can be fluctuate. Since £; has inverse relation with w,
so increase in N, with fixed w, €; declines and wavelength will be increase. It means
that the separated field with longer wavelength will occur for increasing number of

free charges in the medium.
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Figure 6.3: The separated field for 6 in the (a) isotropic and (b) an-isotropic medium.
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Figure 6.4: The separated field for k in the (a) isotropic and (b) an-isotropic medium.
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Figure 6.5: The separated field for 21 in the (a) isotropic and (b) an-isotropic medium.
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Figure 6.6: The separated field for £.
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6.6 Conclusions

From above analysis, it is concluded that the diffraction behavior of H!™¢ on
finite-width slit with Dirichlet surface is affected rigorously by parameters controlling
behavior in the existence of non-thermal plasma. It is deeply figured out that the

function H*? is amplified by different 0, k, 2[, €, and reduced by es.
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Chapter 7

EM-Wave Incident on
Finite-Width Slit with Neumann
Conditions in An-isotropy of

Non-thermal Plasma

This chapter thoroughly investigate the interaction of wave field due to finite-
width slit by assuming the Neumann boundary conditions in the context of non-
thermal plasma. After applying the Fourier transform to the Helmholtz equation,
the boundary value problem is established. To solve the challenge stated for this
model, the Wiener-Hopf analysis is used. At the completion of the analysis, the
separated field computed along with its numerical findings are elaborated to further

investigate the impacts of variation in physical parameters in an an-isotropic medium.

7.1 Problem Statement

We have investigated the diffraction pattern of plane electromagnetic waves due
to a finite-width slit in non-thermal plasma, as illustrated in Fig. 7.1. Furthermore,

Neumann conditions are assumed on the slit and angle of incidence is 6. The total
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/ Reflected Field , \

\ —o<x<-I o I<x<o !

Figure 7.1: Simplified figure of the problem.

field can be represented in terms of incident, refracted and diffracted fields as:
H (2,y) = H"(w,y) — HIY (2,y) + H.(z,y), (7.1)
where the incident and refracted fields are defined as
He(, ) = e~ kers @cosbotysingo) (7.2)

H;ef<x,y) — efikeff(xcoseofysin%)‘ (73)

Suppose that medium is slightly lossy, and constant K.¢; appearing in above equa-
tions is complex in such a way (0 < Jm{k.sr} < Re{kesr}). At the end, for real
K¢s solution could be determine by taking its imaginary part to zero. The entire

field H™(z,y) meeting the Helmholtz equation is
[a:c:c + ayy + szf]HEOt(xa y) - O’ (74)

Substituting the value of H!!(z,y) from (7.1), we get the equation for diffracted field

as:

[azx + ayy + kgff]Hz(x7 y) = Oa (75)
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In order to establish the Wiener-Hopf equation, conditions at x — £/ in conjuction
with continuity relations are used. Neumann boundary conditions on a finite-width

slit are specified as
H!" =0,for —I>x>1land y =07, (7.6)

along with

H2,07) = H(2,07) =0, at |z|]<l, y=0, (7.7)

7.2 Problem Transformation

Following results can be obtained with the use of Fourier Transforms.

F(B,y) = \/%/e’ﬂ%(m,y)dx

= Biﬁlf+ (6, y) -+ e_iﬁlf_ (5, y) + -F.l(ﬁ7 y)a (78)

where 8 =0 + iT.

Figure 7.2: Illustration of Analytic-Continuation.
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For high values of x, the diffracted field is interpreted as follows:

O e—ikeffx ’
H.(z,y) = | ! (7.9)

O(e—keff:vcosao)_

The regions of regularity in the complex plane for F, (5, y) and F_(8,y) are Im{S} >
—Jm{kesr} and Im{B} < Im{k.sscosbp}. From Fig 7.2, we can see the common
region —Jm{kesr} < Im{S} < Im{k.sscosby} of analyticity, where the functions

Fi(B,y) are also analytic and hence, we can define

+oo
FelBoy) = i\/% i/l P (2, y)de (7.10)
X I
Filp1) = <= / S H (2, y)da (7.11)
ine exp(—iykesssinby) (explil(8 — kepycosty)] — exp[—il(B — keyy cos )]
(5:9) = Nez: ( i(B = kegg cos o) ) '

(7.12)

Fref(B,y) exp(iykess sin ) (exp[il(ﬁ — kegpcosby)] — exp[—il(S — keyy cos 90)]>
T (B = kg cos b) |

(7.13)
The following transformed boundary value problem could be obtained by applying

the Fourier transformation to Egs. (7.5 —7.7) .

d2
(d_y2 + 72> F=0 (714)

where v(8) = \/kZ;; — 5%

F(670+> :]:Tef(ﬁv()) _]_‘inc(ﬂ)())
F(B8,07) =0

, (7.15)

and

Fi(B,07) =0=Fi(B,07). (7.16)
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7.3 Solution of the Wiener-Hopf Equation

The solution of transformed boundary value problem (7.14), fulfilling the radiation

conditions is,

Ay (B) exp(—ivy) y =0,
F(B,y) = (7.17)
Ax(B)expl(ivy)  y<O0.

Now using Eqs. (7.15 — 7.17), following Wiener-Hopf equation is obtained.

exp(iB1)F.(8,0) + exp(—iBL)F' (8,0) + K(B)F(B,0) = —iG(B), (7.18)

where,
K(B8) =i, (7.19)
F(6,0) = 5 (F(5,09) = F(5,0°) (7.20)
_explil(B — keggcosby)] — exp[—il( — kegy cosby)]
G(B) = Va6 —Furs conbo) , (7.21)
The Kernel function defined in Eq. 7.19 can be written as:

K(9) = =55 = Ks(8) with 5(8) = 75(8), (722

where K. (f3) are,

_exp(—ig) _

K+(B) = 2 B) with v4(8) = \/ker£8. (7.23)

It must be noted that the functions, K4 () have region of regularity are Jm{g} >
—Jm{kesr} and Jm{S} < Im{k.sscosby} and similarly for v (5). From Eq. (7.18),
equating the terms which are regular in their corresponding regions, creates a common
region of analyticity. Hence, by analytic contnuation, we get an entire function P(53)
and by Liouville’s theorem, P(8) must be equal to zero[12], yielding the following

results.
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A

F(B,0) = \/——[ +(8)G12(£8) + K+ (B)T (£8)C12], (7.24)
where
X 1Kot el 0 1 1 .
Gra(8) = - ‘;(;F,Zeh{’; o ( TR A QO))—exp&zkefflcos 00)R12(5),
(7.25)
_ Go1(Kepy) + Koy (kepr)Gra(kers) T (Kegy)
Cra = Ko lhers) 1= ICZ (ke ) T (Kesy) ’ (7.26)
E_
Ri2(8) = TEE: ke;f — W_i(—i(kesy & kepy cos b)) — W-i(—i(kess + B))],
(7.27)
T(B) = E;—_W 1[=ilkess +B)], E_1= 2\ﬁ thegs 4P, (7.28)
Wi-1/2(q / —dv = D(n+ 1)e(8)g/ W i1y j2,0/2(a), (7.29)
0

where ¢ = —i(kesr + 5)l, n = —% and W is the Whittaker function. Solving Egs.

7.17 and 7.18, diffracted field is,

F(B,y) =—

1 . - —1y|yl, 7.30
(g [P UBDF(3,0) + exp(=iBOF-(5,0) + (5, 0] (7:30)

where

Fi(8,0) = 1G(B), (7.31)

Inverse Fourier transformation of Eq. (7.30), yeilds the diffracted field as:
1 o0
H.(z,y) = — | F(B,y)exp(—ifx —1 dp. 7.32
(@) = == [ Fl@.s)expl=ifia ~inly)ds (732

Inserting (7.30) in (7.32), we get

o0

1 1 exp(181) F1(B,0) + exp(—iBl) F_(3,0)+
H,(x,y) = ——= —_ exp(—ifx—iv|y|)dp
var J *) +74(8,0)

(7.33)
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Diffracted field H,(z,y) further bifurcate in the separated and interaction fields

HsP(z,y) and H™(x,y), respectively as,

where
1 S A £+E,’i’)exp[i()ﬁ(;szfcosé’%)l;
L sep _ A +(kef s cos)(B—key s cosbo s o d
2May) = o / KB oltesplitGtggeosty [ P87 = Dlyl)ds,
() K (—kegscos)(B—kesscosbo)
(7.35)
exp(i8) K+ (8)T(8)Cy
. 7 —expl|i(f + kerrcosby)l|C R
HM(r,y) = o / —/cflﬂ) U e costMEOIRAE). g intulyas
. +exp(—iB)K_(B)T(-B)Cq
| —exp[—i(B + kegy cos O )IJK_(B)Ra(—5)

Vs

(7.36)
The separated field given by (7.35) depicts diffraction separately at the edges. The

H"* represented by Eq. (7.36) explains the interaction of one end with the other.

7.4 Diffracted Field

The diffracted field due to slit of finite width for the far field can be obtained
asymptotically by coping with the integral appearing in (7.32). Polar coordinates

are introduced for the evaluation of Eq. 7.32 with the following transformation.

B = —kepcos(p+in), 0<¢p<m —oo<n<o0. (7.37)
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Now when the method of stationary phase [32] is used for (7.32), the following result

are obtained:

ke . : : :
H.(r,¢) = et (—keggcos ¢, £rsin ¢) sin ¢ exp (zkeffr + z%) . (7.38)

\/k'effT

Using the same polar coordinates, the transformation and subsequently the method
of stationary phase are used to assess and yield the separated field and interaction

fields as follows:

: 1 ik s
H? H"™\(r ¢) = — eff sens — fint }(—kerrcos@)sin g exp | ikerer —|—i—> ,
{ z z }( gb) m\/@{f P f t}( ff ¢) ¢ p( rf 4
(7.39)
where
A IC+((—keff cos ¢>))(exp[—ikeffl(cos p+cos 00))]
» _ke COS _ K (keyfcosbto)(—keyycosp—kesscosbo 740
f p( s ¢) K(_keff CcOS gb) - Kt (ke s cos ¢) explilke s f (cos ¢p4-cos fp)] ( )
K (—kegscosbo)(—kesfcosp—keyycosbp)
( 3
exp(—ikesrl cos @)Ky (—kesp cos @)
XT (—kess cos ¢)Cy
— explil(—kesr cos @ + kegpcosby)]
A XICo(—keprcos @)Ri(—kess cos @)
Jint(=kers cos @) = K(—kesscos o)
eff +K_(—kesscos @) exp(ikessl cos @)
XT (kesscos ¢)Cy
—exp [—il(—kepscos @+ kesscosbp)]
| XK_(—keprcos 9)Ro(kesscosd)

(7.41)

From Eq. (7.38), we can clearly see that the asymptotic expressions for far field can
be obtained by letting k. — 0o and the resulting expressions will be holds true for
any observational angle. The separated field of an EM-wave is investigated in order
to characterise both the field diffracted by the corners of a slit and the influence of

the geometrical wave field. The separated field that results gives physical evidence
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for the non-thermal plasma concept. Separated-field, on the other hand, provides no
physical information due to contact at one edge with the other, which has already
been enumerated by separated-field. As a result, we’ve only talked about the sepa-
rated field because it conveys a full physical comprehension of EM-wave diffraction
at the established boundaries. Additionally, we discovered that the interaction field
is created by diffraction from the corners of slit at * = 4+[. Furthermore, when the
slit width is increased up to oo, the contribution of H™ terms disappears, leaving
just the separated field terms in the diffracted field. As a consequence, we merely

examine the separated field, as illustrated visually in the next section.

7.5 Discussion and Numerical Results

In this section, we examined the EM-waves by finite-width slit as graphically by
the variation of physical parameters in an anisotropic media with Neumann condi-
tions versus the observational angle. For the ionosphere, we take the value of w,
as 56.4M Hz and w,. as 8.78 MHz. Now, the values of €; and &, are computed nu-
merically against w to verify the considered model. Also, the values of w are taken
between 80M Hz and 600M Hz given in Table-7.1. It can be notice from Table-7.1,
that the value of €5 is comparably very small from €; with the boost up of w in the
frequency range. For isotropic medium, we can take ¢; = 1 and e, = 0, While the
parameters £; and eo for the anisotropic media (non-thermal plasma) can indeed be

selected from Table-1.

w (in MHz) €1 €9

80.15 0.504834 0.054242
99.50 0.678699 0.028352
145.75 0.850259 0.009020
245.15 0.947071 0.001895
375.50 0.97744 0.000527
480.50 0.986222 0.000251
999.75 0.991157 0.000129

Table 7.1: Values of 1 and &, for corresponding w.

The graphical analysis is elaborated to explore the influence of physical parame-
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ters on diffracted field due to a finite-width slit lying in the ionosphere of non-thermal
plasma. These physical parameters are 0y, k, 2l and ;. Fig. 7?7 represents the pattern
of the separated field for variation of 6y, and it gets maxima for 6y = 7/3, 7/4, 7/6
occurring at 6 = 27/3, 3w /4, 57 /6, respectively. These maxima actually predict the
shadow of reflected field. Fig. ?? reveals the separated field for k. It is notable that
the field has a direct dependence upon £ because the field gets amplified for k. Since
the frequency is directly related to k, so it excites the frequency of wave towards the
high range. As extension of the slit-width is actually the expansion of aperture which
is responsible for the diffraction of electromagnetic radiations, and so, separated field
gets amplified as well as more oscillated as can be seen in Fig. ??. This amplified am-
plitude could be controlled by introducing the ionoshpere as can be observed through
Fig. ??7. By comparing Figs. 77, 7?7 and 77 of the separated field in the anisotropic
medium with their respective Figs. 7?7, 7?7 and 77 in the isotropic medium. It is ex-
plained that anisotropy of the medium caused by non-thermal plasma influenced the
separation field, in both amplitude reduction and wavelength contraction. Fig. ?7?
explores the trend of the field for £;, while its mathematical interpretation predicts
its physical nature. It is expressed by Eq. (??) and can be described as w, has no
big difference in the values in the different parts of Earth and w, has direct relation
with the square root of N, (ion concentration), which fluctuates massively with the
variation of seasons and days to night. Therefore, without fluctuation on w, £; can
be fluctuate. Since £; has inverse relation with w, so increase in N, with fixed w,
g1 declines and wavelength will be increase. It means that the separated field with

longer wavelength will occur for increasing number of free charges in the medium.
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Figure 7.3: The separated field for 6 in the (a) isotropic and (b) an-isotropic medium.
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Figure 7.4: The separated field for k in the (a) isotropic and (b) an-isotropic medium.
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7.6 Conclusions

On the basis of deep analysis, it is concluded that the diffraction behavior of H*
incident on finite-width slit under the assumptions of Neumann surface is affected
rigorously by parameters controlling behavior in the existence of non-thermal plasma.
It is deeply figured out that the function H* is amplified by different 6y, k, 21, &,

and reduced by es.
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