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Preface  

It is well established fact that peristalsis is employed in esophagus, intestine and stomach. This 

phenomenon is also used in blood pump machines, chyme in the gastrointestinal tract, sanitary 

materials transportation, roller and finger pumps and many others. Thermal management is major 

issue in a variety of industries including transportation, microelectronics, manufacturing and 

metrology. One of the most important approaches to accomplish faster cooling for many 

applications is to improve the heat transfer capabilities of standard heat transfer fluids. Scientists 

have recently concentrated on nanofluid for an increase about the heat transportability of 

traditional fluids by adding tiny nanoparticles. Nanofluids with high thermal conductivity and 

low viscosity, even at low particle concentrations, are important for heat transport applications. 

In addition the peristalsis of non-Newtonian fluids in channel with compliant walls has 

significance in biomechanics and engineering. We therefore focus about this topic here. This 

thesis has ten chapters. 

Relations of Cauchy stress tensors of non-Newtonian fluids and background information about 

literature review are given in chapter one. 

Chapter two examines peristalsis of nanoliquid in a compliant wall channel. Mixed convection 

and Hall current analysis are present. Partial slip and convective conditions are simultaneously 

discussed. Numerical computations have been executed for the velocity, nanoparticles 

concentration, temperature, and coefficient of heat transfer. Graphical analysis is presented. This 

chapter are published in International Communications in Heat and Mass Transfer 121 

(2021) 105121. 

Chapter three elaborates the bioconvective peristaltic transport of nanoliquid with gyrotactic 

microorganisms. Channel walls are considered symmetric and elastic nature. Partial slip 



conditions are imposed. Thermal radiation is present in the energy equation. The results for 

velocity, concentration, temperature, heat transfer coefficient and density of motile 

microorganism are examined graphically. Results of this chapter are available in International 

Communications in Heat and Mass Transfer 129 (2021) 105693. 

Chapter four addresses MHD peristaltic motion of couple stress nanofluid in a channel with 

compliant walls. Influences of Ohmic heating and viscous dissipation are analyzed. Zero mass 

nanoparticle flux and convective condition are also imposed on channel walls. A numerical 

solution is obtained for large wavelength and small Reynolds numbers. The impacts of pertinent 

parameters of interest on concentration, temperature, and coefficient of heat transfer are 

scrutinized graphically. The result of this research is submitted in Mathematical Methods in the 

Applied Sciences. 

Chapter five describes impacts of wall flexibility on MHD peristaltic flow of Eyring–Powell 

nanofluid. Convective conditions are employed. No slip conditions are imposed on channel 

walls. Nanofluid model is considered by taking the impacts of thermophoresis and Brownian 

motion. Influences of pertinent variables on axial velocity, temperature, concentration and 

coefficient of heat transfer are inspected graphically. Material here is published in Journal of 

Thermal Analysis and Calorimetry 144 (2021) 1199-1208. 

Sixth chapter explores first-order chemical reactions and activation energy on MHD peristaltic 

activity of Eyring-Powell nanomaterial. Mathematical modelling for generation/absorption is 

organized. Velocity slip is imposed. Numerical results for velocity, concentration, temperature, 

rate of heat transfer and trapping are analyzed. Material of this study is published in 

International Communications in Heat and Mass Transfer 116 (2020) 104655. 



Chapter seven discusses slips aspects for peristaltic motion of fourth-grade nanoliquid. Elastic 

characteristics of channel walls are studied. Velocity, concentration and thermal slip effects are 

imposed. Thermal radiation and dissipation are studied. Comprehensive study for heat transfer 

coefficient, velocity, concentration of nanoparticles, temperature, velocity and trapping is 

arranged. Moreover the results for skin friction coefficient and Sherwood number are focused. 

The contents here are published in International Communications in Heat and Mass Transfer 

119 (2020) 1046976. 

Chapter eight addresses impacts of entropy generation and Joule heating on MHD peristaltic 

activity of fourth-grade nanofluid. Analysis carried out by taking the effects of radiation and 

Arrhenius activation energy. Numerical technique is used to solve the resulting problem. 

Detailed analysis of the emerging parameters of interest on velocity, temperature, concentration, 

coefficient of heat transfer and entropy are graphically examined. The findings of this study have 

been submitted for publication in Applied Mathematics and Mechanics. 

Chapter nine inspected mixed convection peristaltic motion of tangent hyperbolic nanoliquid. 

Partial slip characteristics are imposed on flexible channel walls. We evaluated the transportation 

of heat for nonlinear thermal radiation. The roles of sundry variables on velocity, concentration, 

temperature and coefficient of heat transfer are examined graphically. Finally, key points of the 

analysis are organized. The results of this research have been submitted for publication in The 

European Physical Journal Plus. 

Chapter ten addresses peristaltic flow of MHD Sutterby nanomaterial with entropy generation 

and Hall aspects. Convective conditions are imposed for flexible channel walls. Energy and 

concentration equations are arranged in presence of Joule heating, thermal radiation, dissipation 

and activation energy. Resulting nonlinear system is numerically solved. Graphical analysis for 



velocity, temperature, concentration, heat transfer rate and entropy generation is analyzed. The 

contents of this chapter are published in Journal of Thermal Analysis and Calorimetry 143 

(2021) 1867-1880. 
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Chapter 1

Literature review and basic laws

1.1 Introduction

This chapter deals with the basic concept of equations and literature survey of peristalsis,

nanofluid, non-Newtonian fluid models, compliant walls and mixed convection. Different types

of constitutive relations for non-Newtonian fluid models like Couple-stress, Eyring-Powell,

Fourth-grade, Sutterby and Hyperbolic tangent are included.

1.2 Literature survey

Peristalsis is the process of muscular tissue contraction and relaxation that enables for material

movement. This mechanism has applications in physiology and engineering. These applications

comprise like chewing of food via the esophagus, sanitary fluid transport, chyme activity in in-

testine and vasomotion of blood vessels. Many biological applications like heart-lung devices

and blood pumps for dialysis are due to this activity. The subject has received considerable

attention from researchers due to its widespread occurrence in medical, engineering and elec-

tronics. Latham [1] presented a seminal study for viscous fluid on peristalsis. Burns and Parkes

[2] examined peristaltic flow of viscous fluid considering different geometries. Shapiro et al. [3]

represented the fundamental principle and reflect the importance of this flow mechanism for

various physical variables. This analysis was extensively explained employing long wavelength

and low Reynold number. Dodds et al. [4] discussed peristaltic movement in the esophagus

6



with dry and wet swallows. Srivastava and Srivastava [5] addressed the peristaltic flow of vis-

cous fluid through a two-layered model. Shehawey and Husseny [6] reported the peristalsis

of incompressible viscous fluid filling porous space. Misra and Pandey [7] studied the math-

ematical modeling of peristaltic activity for Casson fluid. Mekheimer [8] examined peristaltic

transport of blood flow by taking magnetic features in a non-uniform channel. Hayat et al.

[9] discussed peristaltic transport of Jeffrey liquid with an endoscope aspect. Ali et al. [10]

scrutinized features of slip in MHD peristalsis with variable viscosity. Peristalsis of Maxwell

liquid is reported by Tripathi et al. [11]. Mustafa et al. [12] analyzed the peristaltic flow of

nanofluid with partial slip effects. Abbasi et al. [13] examined numerical investigation for peri-

staltic activity of copper—water nanomaterial through porous space. Hayat et al. [14] analyzed

impacts of thermal radiation and convective conditions for peristalsis of nanofluid. Ellahi et

al. [15] explored peristaltic transport of couple stress fluid in a non-uniform rectangular duct.

Size of trapped bolus declines for couple stress fluid variable. Sinnott et al. [16] discussed

peristaltic activity in a small intestine through particulate suspension. From this study it is

noted that high fluid pressures in advance of the moving contraction induce considerable wall

dilatation shortly downstream inside the relaxation period for solely liquid content. Bhatti et

al. [17] focused heat and mass transfer for MHD peristaltic flow of Sisko fluid by considering

Darcy-Brinkman-Forchheimer porous space. Velocity enhances via Darcy aspect. Hayat et al.

[18] examined peristaltic motion of nanoliquid in a curved channel with Hall aspects. Velocity

of fluid enhances for Hall effect.

Nanofluids are significant due to their use in industry and thermal engineering. Nanofluids

incorporate the nanoparticles that are suspended with diameters (100nm). These materials

are used for increased thermal conductivity. The nanoparticles normally used are usually made

of oxides (Tio), carbides (Sic), metals (Cu, Ag), or non-metallic carbon nanotubes. Nanoflu-

ids have applications such as thermal absorption, machine processes, cooling and chillers heat

transfer efficiency, microelectronics, boiling processes and nuclear reactor etc. These are of-

ten used in the delivery of medications and in patients with radiation. Choi [19] combined

nanoparticles with base fluid and found that the resulting fluids had a significant difference

in thermal conductivity. Kang et al. [20] experimentally examined this argument. Later on

Buongiorno [21] studied a non-homogeneous equilibrium model. It shows that the presence of
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thermophoresis and random diffusions improve the thermal conductivity of conventional fluids.

Akbar et al. [22] analyzed peristalsis of nanofluid with slip aspects. Consequence of convec-

tive heat transfer of Al2O3/water nanoliquid in a circular duct is studied by Heris et al. [23].

Ebaid and Aly [24] computed exact solution for peristaltic flow of nanoliquid in an asymmetric

channel with flexible boundaries. Numerical investigation for peristaltic activity of Carreau

nanomaterial is studied by Akbar et al. [25]. Temperature of fluid increases through Brownian

motion and thermophoresis variables. Tripathi and Bég [26] explored the mixed convection

analysis in peristaltic pumping of nanofluid. This study is very much applicable in drug de-

livery structures. Hayat et al. [27] addressed slip aspects for peristaltic flow of nanoliquid

through Soret and Dufour effects. Kothandapani and Prakash [28] explored magnetic field and

radiation aspects for peristaltic flow of nanomaterial filling porous space. Akbar et al. [29]

investigated heat source/sink features in peristaltic flow by addition of nanoparticles. Reddy

and Makinde [30] analyzed the characteristics of nanofluid with a peristaltic motion of Jeffrey

material. Numerical simulation regarding peristaltic activity of water-based nanoliquid con-

sidering temperature-dependent viscosity is studied by Hayat et al. [31]. Tripathi et al. [32]

examined electroosmotically modulated peristalsis of nanomaterial. Ohmic heating aspects also

present in this study. Abbasi et al. [33] developed numerical solution for peristaltic transport

of nanoliquid by considering boron nitride-ethylene glycol. In this study temperature rises via

Hartman number. Mekheimer et al. [34] examined blood flow analysis by considering the gold

nanoparticles in peristaltic motion. In this study, they examined how gold nanoparticles are

useful in cancer treatment. Rafiq et al. [35] focused peristalsis of nanomaterial subject to

ion-slip and Hall aspects. This study is useful for biomedical purposes.

Recently the researchers have concentrated their attention on investigating the features of

non-Newtonian matters owing to their major usefulness in numerous chemical and mechanical

industries. The functional implementations found in non-Newtonian fluids include processing

cheap soft material, greases, paints, sugar solution, polymer melts and many more. The ap-

plications of non-Newtonian fluids in the fields of chemical industries, biomedical processes,

particles mixing and filtration of devices etc. Various relations of non-Newtonian fluids are

present considering different assumptions. Srivastava [36] discussed the peristaltic motion with

couple-stress fluid. Ramesh [37] discussed the slip features in the peristalsis of couple stress
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fluid filling porous space. Velocity and temperature are enhanced against Couple stress fluid

parameter. Hayat et al. [38] studied the aspects of convective conditions in peristaltic activity

through Eyring-Powell fluid with chemical reaction. Temperature is decayed with the increment

of Biot number. Bhatti et al. [39] studied MHD peristaltic transport of Ree—Eyring liquid with

flexible walls. Mehmood et al. [40] demonstrated peristaltic activity with fourth-grade mate-

rial in an inclined channel. Soret and Dufour aspects in mixed convective peristaltic activity

is due to Mustafa et al. [41]. Akbar et al. [42] explored peristalsis of Sutterby liquid within

small intestines. Abbasi et al. [43] scrutinized comparative study of peristalsis of Sutterby and

Eyring-Prandtl fluids. Akram and Nadeem [44] analyzed mixed convective peristaltic flow of

hyperbolic tangent nanofluid. Velocity of fluid decline via magnetic variable. Abbasi et al. [45]

developed the numerical solutions about MHD peristaltic flow of Carreau—Yasuda material

through a curved channel with Hall current.

Mechanism of peristalsis through compliant channel is popular in applications regarding

physiological flows and engineering. Hence Mitra and Prasad [46] firstly discussed the effect

of wall properties in peristalsis. Radhakrishnamacharya and Srinivasulu [47] examined com-

pliant wall aspects for peristaltic of heat transfer. Srinivas et al. [48] explored variations of

slip conditions, wall properties and heat transfer on MHD peristaltic motion. Srinivas and

Kothandapani [49] highlighted the influence of heat and mass transfer on MHD peristaltic flow

through a porous space with compliant walls. Impacts of wall properties are reported by Hayat

et al. [50]. Mustafa et al. [51] examined numerical investigation peristaltic transport of nano-

material in a symmetric channel with wall properties. He compared the numerical solution with

Homotopy(HAM) method through good agreement. Hayat et al. [52] studied the influence of

compliant walls on peristalsis of power-law fluid. Gad [53] discussed influence of Hall current

on peristalsis in a channel with wall effects. Nadeem et al. [54] scrutinized features regarding

elastic walls for Williamson nanoliquid in a curved channel. Sucharitha et al. [55] reported

MHD peristaltic transport of nanomaterial with compliant wall chrematistics. In this study the

authors analyzed the aspects of Ohmic heating and viscous dissipation.

Forced convection might not be enough to evaporate all the heat in very high-power out-

put devices. In these situations, the combination of natural convection and forced convection

(mixed convection) can better produce the desired results. This mechanism refers to the process
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of heat transmission in fluids in which the flow field is much different than it would be under

normal circumstances of uniform density due to differences in gravitational body force associ-

ated with non-uniformity of density within the system. The mechanisms involved are typically

viewed in terms of fluid buoyancy and the consequences are sometimes referred to as buoy-

ancy effects on heat transmission. Mixed convection usually occurs in many industrial and

technological applications. Examples of mixed convection phenomena include a low-speed heat

exchanger, solar cells, ventilator-cooled electronic devices, and nuclear reactor cooling during an

emergency shutdown. Umavathi et al. [56] explored the analysis of mixed convection through

vertical porous medium. Brinkman—Forchheimer extended Darcy equations are employed to

model flow in this study too. Akbarinia and Behzadmehr [57] have discussed the mixed con-

vection analysis by considering the features of nanomaterial in curved tubes. Eldabe et al.

[58] analyzed mixed convective peristalsis of Biviscosity liquid with viscosity dependence on

temperature. Srinivas et al. [59] calculated exact solution for peristaltic activity with mixed

convection. Akram et al. [60] investigated peristaltic flow of nonlinear liquid in an asymmetric

channel subject to mixed convection. Hayat et al. [61] examined MHD peristaltic motion with

mixed convection. Viscosity features are taken in this investigation as a variable. Slip impact

for peristaltic transport of nanofluid with mixed convection is analyzed by Noreen et al. [62].

Magnetic field and dissipation have been accounted. Mokhtari et al. [63] developed numerical

investigation for mixed convective flow considering different Fin arrangements with the hori-

zontal channel. Turkyilmazoglu [64] calculated the exact solutions for MHD mixed convection

flow with stretching walls.

The role of thermal radiation is very important in industrial operations and space tech-

nologies. Thermal radiation must be evaluated in the current study since it demonstrates a

remarkable synchronization of system temperature/changing heat transfer rate. Thermal radi-

ation is also used in medical treatments. Pal [65] examined the effects of radiation and heat

sink/source for flow by unsteady stretching surface. Hayat and Alsaedi [66] studied Ohmic

heating and thermal radiation for MHD Oldroyd-B fluid. Ara et al. [67] investigated the ra-

diative analysis for flow of Powell- Eyring material. Kothandapani and Prakash [68] studied

radiation effects on the peristaltic transport of nanofluids. Latif et al. [69] analyzed thermal

radiation and viscous dissipation for peristaltic activity. Prakash and Tripathi [70] reported the
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electroosmotic flow of Williamson fluid with peristaltic activity by taking the aspect of thermal

radiation.

When a fluid comes in contact with a solid surface and takes on the velocity of that surface,

this is referred to as a no-slip state. This is because fluids have a viscous characteristics. The

no-slip requirement, on the other hand, is insufficient for fluid to pass through permeable walls,

slotted plates, rough and coated surfaces, foam etc. The slip condition is applicable in such

fluids. The fluid flows subject to partial slip are significant in polymers and polishing the

valves of an artificial heart. Chu and Fang [71] introduced slip flow in peristalsis first time.

Ali et al. [72] examined slip impacts on the peristaltic transport of MHD liquid. Chaube et

al. [73] pointed out the slip features in peristalsis of micropolar liquid. Tripathi et al. [74]

studied peristaltic activity through slip aspects in fractional Burger’s material. Impacts of slip

and thermally radiation are reported by Akbar et al. [75]. Sucharitha et al . [76] discussed

magnetic field and slip consequences on convective peristaltic flow of Bingham liquid with

compliant wall.

1.3 Basic equations

Here we include some fundamental expressions which will be employed in modeling of problems.

1.3.1 Mass conservation

For a compressible liquid, the mathematical expression of continuity is

∇ (V) + 


= 0 (1.1)

in which density, time and velocity are represented by   and V respectively. For incompress-

ible fluid ( =  tan ) and one obtains

∇V = 0 (1.2)
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1.3.2 Momentum conservation

Momentum expressions satisfies


V


= b+∇τ  (1.3)

where τ = S−I depicts Cauchy-stress tensor, I the identity tensor,  the pressure, S the extra
stress tensor and b depicts the body force.

1.3.3 Energy conservation

Energy expression for nanofluid is



µ



+V∇

¶
 = −∇q+∇j (1.4)

In above expression left hand side represent internal energy and  and j represent specific

enthalpy and diffusion mass flux of nanomaterials. Here

q = −∇T+j (1.5)

j = −
∇T

− ∇C (1.6)

where  and  shows Brownian and thermophoresis coefficients and  the mean temper-

ature. By employing (1.6) and (1.7), the energy expression reduces to



µ



+V∇

¶
 = ∇2 + 

∙



∇∇ +∇∇

¸
 (1.7)

1.3.4 Concentration equation

Equation of concentration for nanofluids is

µ



+V∇

¶
 =




∇2 +∇2 (1.8)

where  shows the nanoparticles concentration.
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1.4 Models of fluids

1.4.1 Viscous fluid

Cauchy stress tensor  for incompressible viscous fluid is represented by

T =− I+ A1 (1.9)

where I the identity tensor,  the pressure,  the dynamic viscosity and 1 the first Rivlin-

Ericksen tensor defined as

A1 = (gradV)
 + (gradV) (1.10)

where

gradV =

⎡⎢⎢⎢⎣



























⎤⎥⎥⎥⎦ (1.11)

and so

A1 =

⎡⎢⎢⎢⎣
2




+ 




+ 





+ 


2




+ 





+ 




+ 


2


⎤⎥⎥⎥⎦ (1.12)

1.4.2 Non-Newtonian fluids

Cauchy stress tensor for incompressible non-Newtonian fluid models is

T =− I+  (1.13)

Extra stress tensor  varies for different models.

Eyring-Powell model

Extra stress tensor for Eyring-Powell model is defined by [38]

 = 



+

1

∗∗
sinh−1

µ
1

∗∗




¶
   = 1 2 (1.14)
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where  = 1  = 2  = 1 and  = 2

sinh−1
µ
1

∗∗




¶
=

1

∗∗



− 1
6

µ
1

∗∗




¶3


¯̄̄̄
1

∗∗




¯̄̄̄
¿ 1 (1.15)

Here ∗∗ and ∗∗ are the material constants of Eyring-Powel liquid and  the coefficient of

viscosity.

Fourth grade model

For fourth-grade model extra stress tensor is [40]

 = A1 + 
0
1A2 + 

0
2A

2
1 + 

0
1A3 + 

0
2(A1A2 +A2A1) + 

0
3(A

2
1)A1 + 

0
1A4 +


0
2(A1A3 +A3A1) + 

0
3A

2
2 + 

0
4(A

2
1A2 +A2A

2
1) + 

0
5(A2)A2 + 

0
6(A2)A

2
1 +

(
0
7A3 + 

0
7(A2A1))A1 (1.16)

where 
0
( = 1 2) 

0
( = 1− 3) and 

0
( = 1− 8) are material constants of fourth-grade where

and Rivilin-Ericksen tensors are [40]

A =
A−1


+ (gradV)A−1 +A−1 (gradV)    1 (1.17)

Sutterby model

Extra stress tensor for Sutterby model is defined through [42]

 =


2

⎡⎣sinh−1(−̇)
−
̇

⎤⎦∗A1 (1.18)

̇ =

r
1

2
A21 (1.19)

where
−
 and∗ denote material constants,  the fluid dynamic viscosity and A1 the first Rivlin

Ericksen tensor.
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Hyperbolic tangent model

Extra stress tensor for hyperbolic tangent model is defined [44]

 =
h
∞ + (∞ + 0) tanh(Γ

̇)
i
̇ (1.20)

̇ =

r
1

2
A21 (1.21)

We consider in this case the infinite shear rate viscosity ∞ = 0 and Γ̇  1. Thus  takes

the form

 =
h
0(Γ

̇)
i
̇ =

h
0(1 + (Γ̇ − 1)

i
̇ (1.22)

where Γ denote material constants,  the power law index, 0 the zero shear rate viscosity and

A1 the first Rivlin Ericksen tensor.

Couple-Stress fluid model

Constitutive equations for a couple-stress fluid are [37 38]





=  +  (1.23)



 + +  = 0 (1.24)

 = −+ 2∗  (1.25)

 = 41 + 4
0
1 (1.26)

Here  denotes velocity,  the body force per unit mass,  moment of body per unit mass,

 couple-stress tensor, 
∗
 symmetric part gradient of the velocity,  the vorticity vector,

and 1 and 01 are constants connected with the couple stress. 

 and  are antisymmetric

and symmetric parts of the tensor  respectively.

1.4.3 Compliant wall

When a compressing source is removed, the tendency of an organ to return to its previous

pattern is measured. A compliant wall is one that is flexible, stretchable, dampening, and
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elastic in nature. It’s also capable of retaining fluid. When the pressure in the fluid is disturbed

in such a way that the deflection of the wall is minimal, the rigid wall assumption remains valid

in most physical events. However, if the channel wall is expected to be fragile (i.e., less than

0.05 of the radius) or constructed of deformable material, the compliant wall option produces

excellent consequences.

For a flexible wall, the governing equation of motion is as follows:

() = − 0

 =

∙
− 2

2
+

2

2
+ 1





¸
 (1.27)

where  denotes the operator for depicting the movements of a stressed membrane. Because

of muscle tension, 0 is the pressure outside the wall. We take 0 = 0 for inextensible channel

walls. Further   and 1 depicts mass per unit area, elastic tension and viscous damping

coefficient respectively.
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Chapter 2

Peristalsis of nanofluid by mixed

convection and wall properties

2.1 Introduction

Present chapter highlights novel aspects of mixed convection and Hall current on the peristaltic

movement of nanomaterial in a symmetric channel. Fluid through the porous medium is taken.

Here channel boundaries are compliant. Moreover slip condition is employed for velocity. Con-

vective conditions are imposed for temperature and concentration. Numerical solutions for

resulting problems are obtained by shooting technique. Influences of variables of interest on

concentration, temperature, velocity and heat transfer rate are graphically illustrated.

2.2 Physical model

Peristaltic flow of viscous nanofluid in a symmetric channel of width 21 is studied. Flow is

induced by waves propagation along the boundaries of channel. Here the cartesian coordinates

the  and −axis appears are along and normal to the boundaries of channel.
The walls shapes are [51]

 = ±( ) = ±[1 +  sin
2


(− )] (2.1)
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in which  depicts the wavelength,  the amplitude of wave,  the time and  the wave speed.

Fluid is conducted electrically with a constant strength through an applied magnetic field

0. Neglecting an induced magnetic field, the Hall current contribution is retained. Thus by

generalized Ohm’s expression [18]

J = [− 1


(J×B) +E+ (V×B)] (2.2)

Here  denotes electrical conductivity, E the electric field, V the velocity,  the charge of

electron and  the mass of electron. We have

J×B = − 20
1 +2

[(−) ( +) 0] (2.3)

Expressions governing the proposed problem are




+




= 0 (2.4)




+ 




+ 




= − 1






+ 

µ
2

2
+

2

2

¶
− 20

 (1 +2)
(−)

− 

1
+  ( − 0) + ( − 0) (2.5)




+ 




+ 




= − 1






+ 

µ
2

2
+

2

2

¶
− 20

 (1 +2)
( +) (2.6)




+ 




+ 




= 

µ
2

2
+

2

2

¶
+





"
2

µ




¶2
+

µ



+





¶2
+ 2

µ




¶2#

+

"


µ







+









¶
+





(µ




¶2
+

µ




¶2)#
 (2.7)




+ 




+ 




=

µ
2

2
+

2

2

¶
 +

µ
2

2
+

2

2

¶



 (2.8)

Relevant boundary conditions are

± 

µ



+





¶
= 0 − 




= 1

½
1 − 

 − 0

¾
 −




= 2

½
1 −

 −0

¾
 at  = ± (2.9)
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∙
−1 3

3
+1

3

2
+ 

2



¸
 = 

µ
2

2
+

2

2

¶
− 

µ



+ 




+ 





¶

− 20
 (1 +2)

(−)− 

1
+  ( − 0) + ( − 0)   = ± (2.10)

We consider the stream function  =  and  = − and the following non-dimensional

variables

∗ =



 ∗ =




 ∗ =




 ∗ =



1
 ∗ =




 ∗ =



1

∗ =


1
 ∗ =

21


  =

 − 0

1 − 0
  =

 − 0

1 − 0
 (2.11)

Incompressibility constrain (24) is trivially satisfied while the other equations after invoking

lubrication approach and dropping asterisks yield

4

4
−
µ

2

1 +2
+
1



¶
2

2
+




+




= 0 (2.12)

1

Pr

µ
2

2

¶
+








+

µ




¶2
+

µ
2

2

¶2
= 0 (2.13)

2

2
+





µ
2

2

¶
= 0. (2.14)

The boundary conditions are




± 

2

2
= 0 at  = ±  (2.15)∙

1
3

3
+2

3

2
+3

2



¸
 =

3

3
−
µ

2

1 +2
+
1



¶



+

 + at  = ± (2.16)




=

½−1(1− )

−1
¾




=

½−2(1− )

−2
¾
 at  = ± (2.17)

with  as the amplitude ratio,  wave number,  the Brownian variable,  the thermophoresis

parameter, Re Reynolds number,  the schmidt number,  the porosity parameter, Pr the

Prandtl number,  the Eckert variable, 1 thermal biot number, 2 mass biot number, 

the Hartman number, (1 2 3) the wall parameters,  concentration Grashof number,
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 thermal Grashof number,  the velocity slip parameter defined below

 =


1
  =

1


  =

(1 − 0)


  =

 (1 − 0)


 Re =

1



 =



  =

1

21
 Pr =




  =

2

 (1 − 0)
 1 =

11


 2 =

21




 =

r



01 1 =

−31
3

 2 =
1

3
1

3
 3 =

31

2
  =

( − 0)
2
1




 =
 ( − 0)

2
1


 ∗ =



1
 (2.19)

2.3 Numerical method

Excpressions (212) − (214) with boundary conditions (215) − (217) are solved numerically.
The technique works with minimum error for small step size. Thus both  and  are equally

modified by a size of step 0.01. The outcomes are provided in the next section.

2.4 Graphical findings

This portion explored axial velocity, temperature, nanoparticles concentration and heat transfer

rate. Figs. 21− 228 are plotted for this purpose.

2.4.1 Velocity

In Figs. 21 − 27 the behaviors of distinct parameters on velocity are investigated. Fig. 21
shows that velocity grows when value of slip parameter  enhances. Clearly more velocity

occurs in neighbourhood of channel walls. Influence of porosity () on velocity is indicated

in Fig. (22) Velocity is increased by . This happens because porous medium will provide

less resistance to fluid flow (resulting in a rise of fluid velocity). In Fig. 23 opposite behavior

is observed for velocity through different values of Hartman number  In fact more resistive

force through larger Lorentz force causes decrease in fluid motion. Behaviors of heat and

mass Grashof numbers  and  are sketched in Figs. 24 and 25 respectively. Increase of

these parameters means increased buoyancy forces (leading to higher velocity distribution). As

expected the velocity is enhanced. Variation of Hall parameter  on velocity has been sketched
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in Fig. 26 Clearly velocity is an increasing function of  The Hall effects physically actually

offset the magnetic force of the applied magnetic field. Influences of flexible wall variables (1

2 3) are presented in Fig. 27 Here larger 1 and 2 enhances the velocity. However there

is velocity decay for 3Velocity in all plots is of parabolic shape.

2.4.2 Temperature

Figs. 28 − 216 represent the influences of pertinent variables on temperature. Fig. 28

sketched effects of thermal Biot number 1 on temperature. Here temperature is an increasing

function of 1 Due to non-uniform temperature field within the fluid we considered large

values of thermal Biot number. Fig. 29 depicts that temperature increases for larger Prandtl

number . The temperature increases efficiently when Pr enhances due to the existence

of strong viscous dissipation impacts. In Fig. 210 we noticed that temperature reduces by

an enhancement in Hall parameter  By increasing the Hall parameter, the current density

of the fluid increases, allowing the temperature to increase. Fig. 211 demonstrates that

increasing  lead to temperature rise. Fig. 212 illustrates that for higher Eckert number the

temperature is enhanced. For higher , frictional heating collects additional kinetic energy in

liquid particles. Temperature upgrades for rising . In Fig. 213 we capture the combined

effects of thermophoresis parameters  and Brownian motion  Here temperature enhances

for both parameters. It is due to the random movement of nanoliquid particles from channel

walls to material. Impacts of thermal and concentration Grashof numbers are shown in Figs.

214 and 215 It is noted through these Figs. that temperature enhances for an increase in both

the parameters. Such behaviors physical explanation is due to the buoyancy force resulting from

the temperature difference within the flow domain. This force rapidly causes the fluid flow.The

wall parameters 1 and 2 increase the temperature whereas 3 reduces. (see Fig. 216).

2.4.3 Concentration

Figs. 217− 222 have been organized for the outcomes of concentration with respect to mass
Biot number 2 thermophoresis parameter  thermal Grashof number  concentration

Grashof number  porosity  and wall parameters 1 2 3 Fig. 217 is portrayed to

see impacts of concentration Biot number 2 Here concentration increases for larger values
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of 2 Fig. 218 reveals that concentration is an increasing function of  Similar behavior

for concentration Grashof number  is observed through Fig. 219 In Fig. 220 we noticed

that concentration decays for porosity parameter  Fig. 221 elucidates that concentration

decreases by increasing thermophoresis parameter  The intensity of thermophoretic impacts

is rising gradually. This results in a greater mass flux due to the concentration gradient. This

reduces the concentration of nanoparticles. Fig. 222 captures variation of compliant wall

parameters 1 2 3 on concentration. Here concentration has increasing behavior for 1

and 2 while opposite response observed for 3

2.4.4 Coefficient of heat transfer

Impacts of several distinct variables on heat transfer coefficient () = () are inspected by

Figs. 223−228 Fig. 223 assures that larger thermal Biot number 1 show a decrease in heat
transfer rate. As 1 rises, thermal conductivity at the wall will reduces and the heat transfer

rate will declines. Fig. 224 depicts that  decreases for thermal Grashof number  Fig.

225 shows that heat transfer rate is reduced via concentration Grashof numbers  Fig. 226

displays  against porosity parameter  Here heat transfer coefficient is increased with higher

 Effects of Hall parameter  is sketched in Fig. 227 Clearly  is an increasing function of

this parameter. A rise in heat transfer coefficient is because of Hall effects which tend to rise

in fluid temperature. Influence of Brownian motion  and thermophoresis parameters  are

displayed in Fig. (228) Heat transfer rate with respect to  and  is enhanced. As the

Brownian motion effect strengthens, this correlates to the efficient migration of nanoparticles

from the wall to liquid, and consequently the transfer enhances.
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Fig. 2.1: Variation of  on velocity when  =  = 02  = 01  = 06  = 05  = 2

Pr = 69  = 1  =  = 03  = 04  = 07 1 = 003 2 = 002 3 = 001

1 = 3 2 = 5

K = 0.5, 0.9, 1.3, 1.7
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Fig. 2.2: Variation of  on velocity when  =  = 02  = 01  = 02  = 05  = 2

Pr = 69  = 1  =  = 03  = 04  = 07 1 = 003 2 = 002 3 = 001

1 = 3 2 = 5
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M = 0.5, 1, 1.5, 2
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Fig. 2.3: Variation of  on velocity when  =  = 02  = 01  = 02  = 06  = 2

Pr = 69  = 1  =  = 03  = 04  = 07 1 = 003 2 = 002 3 = 001

1 = 3 2 = 5

Gr = 0.3, 0.6, 0.9, 1.2
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Fig. 2.4: Variation of  on velocity when  =  = 02  = 01  = 02  = 06 = 05

 = 2 Pr = 69  = 1  =  = 03  = 07 1 = 003 2 = 002 3 = 001 1 = 3

2 = 5
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Gc = 0.3, 0.7, 1.1, 1.5

-1.0 -0.5 0.0 0.5 1.0

0.4

0.6

0.8

1.0

1.2

y

u

Fig. 2.5: Variation of  on velocity when  =  = 02  = 01  = 02  = 06  = 05

 = 2 Pr = 69  = 1  =  = 03  = 04 1 = 003 2 = 002 3 = 001 1 = 3

2 = 5
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Fig. 2.6: Variation of  on velocity when  =  = 02  = 01  = 02  = 06  = 05

 = 2 Pr = 69  = 1  =  = 03  = 04  = 07 1 = 003 2 = 002

3 = 001 1 = 3 2 = 5
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Fig. 2.7: Variation of 1 2 3 on velocity when  =  = 02  = 01  = 02  = 06

 = 05  = 2Pr = 69  = 1  =  = 02  = 05  = 13 1 = 3 2 = 5

Bi 1 = 1, 2, 3, 4

-1.0 -0.5 0.0 0.5 1.0

0.2

0.4

0.6

0.8

1.0

y

q

Fig. 2.8: Variation of 1 on temperature when  =  = 02  = 01  = 02  = 06

 = 05  = 2 Pr = 69  = 1  =  = 03  = 04  = 07 1 = 003 2 = 002

3 = 001 2 = 5
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Pr = 6.9, 7.1, 7.2, 7.5
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Fig. 2.9: Variation of Pr on temperature when  =  = 02  = 01  = 02  = 06

 = 05  = 2  = 1  =  = 03  = 04  = 07 1 = 003 2 = 002

3 = 001 1 = 3 2 = 5
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Fig. 2.10: Variation of  on temperature when  =  = 02  = 01  = 02  = 05

 = 06 Pr = 69  = 1  =  = 03  = 04  = 07 1 = 003 2 = 002

3 = 001 1 = 3 2 = 5
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K = 0.5, 1, 1.5, 2
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Fig. 2.11: Variation of  on temperature when  =  = 02  = 01  = 02  = 05

 = 2 Pr = 69  = 1  =  = 03  = 04  = 07 1 = 003 2 = 002

3 = 001 1 = 3 2 = 5
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Fig. 2.12: Variation of  on temperature when  =  = 02  = 01  = 02  = 06

 = 05  = 2 Pr = 69  =  = 03  = 04  = 07 1 = 003 2 = 002

3 = 001 1 = 3 2 = 5
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Nb, Nt = 0.5, 1, 1.5, 2
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Fig.2.13: Variation of  on temperature when  =  = 02  = 01  = 02  = 06

 = 05  = 2 Pr = 69  = 1  = 04  = 07 1 = 003 2 = 002 3 = 001

1 = 3 2 = 5
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Fig. 2.14: Variation of  on temperature when  =  = 02  = 01  = 02

 = 06 = 05  = 2 Pr = 69  = 1  =  = 03  = 07 1 = 003 2 = 002

3 = 001 1 = 3 2 = 5
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Gc = 0.1, 0.4, 0.7, 1
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Fig. 2.15: Variation of  on temperature when  =  = 02  = 01  = 02  = 06

 = 05  = 2 Pr = 69  = 1  =  = 03  = 04 1 = 003 2 = 002

3 = 001 1 = 3 2 = 5

Fig. 2.16: Variation of 1 2 3 on temperature when  =  = 02  = 01  = 02

 = 06  = 05  = 2 Pr = 69  = 1  =  = 03  = 04  = 07 1 = 3

2 = 5
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Bi2 = 1, 2, 3, 4
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Fig. 2.17: Variation of 2 on concentration when  =  = 02  = 01  = 02  = 06

 = 05  = 2 Pr = 69  = 1  =  = 03  = 04  = 07 1 = 003 2 = 002

3 = 001 1 = 3 2 = 5

Gr = 0.5, 1, 1.5, 2
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Fig. 2.18: Variation of  on concentration when  =  = 02  = 01  = 02  = 06

 = 05  = 2 Pr = 69  = 1  =  = 03  = 07 1 = 003 2 = 002

3 = 001 1 = 3 2 = 5
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Gc = 0.1, 0.4, 0.7 , 1
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Fig. 2.19: Variation of  on concentration when  =  = 02  = 01  = 02  = 06

 = 05  = 2 Pr = 69  = 1  =  = 03  = 04 1 = 003 2 = 002

3 = 001 1 = 3 2 = 5

K = 0.5, 1, 1.5, 2
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Fig. 2.20: Variation of  on concentration when  =  = 02  = 01  = 02  = 05

 = 2 Pr = 69  = 1  =  = 03  = 04  = 07 1 = 003 2 = 002

3 = 001 1 = 3 2 = 5
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Nt = 0.1, 0.2, 0.3, 0.4
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Fig. 2.21: Variation of  on concentration when  =  = 02  = 01  = 02  = 06

 = 05  = 2Pr = 69  = 1  = 03  = 04  = 07 1 = 003 2 = 002

3 = 001 1 = 3 2 = 5

Fig. 2.22: Variation of 1 2 3 on concentration when  =  = 02  = 01  = 02

 = 06 = 05  = 2 Pr = 69  = 1  =  = 03  = 04  = 07 1 = 3

2 = 5
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Bi1= 1, 2, 3, 4
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Fig. 2.23: Variation of 1 on heat transfer coefficient when  =  = 02  = 01  = 02

 = 06  = 05  = 2 Pr = 69  = 1  =  = 03  = 04  = 07 1 = 003

2 = 03 3 = 03 2 = 5
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Fig. 2.24: Variation of  on heat transfer coefficient when  =  = 02  = 01  = 02

 = 06  = 05  = 2 Pr = 69  = 1  =  = 03  = 07 1 = 003 2 = 002

3 = 03 1 = 3 2 = 5
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Gc = 0.3, 0.6, 0.9, 1.2
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Fig. 2.25: Variation of  on heat transfer coefficient when  =  = 02  = 01  = 02

 = 06  = 05  = 2 Pr = 69  = 1  =  = 03  = 04 1 = 003 2 = 002

3 = 03 1 = 3 2 = 5
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Fig. 2.26: Variation of  on heat transfer coefficient when  =  = 02  = 01  = 02

 = 05  = 2 Pr = 69  = 1  =  = 03  = 04  = 07 1 = 003 2 = 002

3 = 03 1 = 3 2 = 5
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Fig. 2.27: Variation of  on heat transfer coefficient when  =  = 02  = 01  = 02

 = 05  = 06 Pr = 69  = 1  =  = 03  = 04  = 07 1 = 003

2 = 002 3 = 03 1 = 3 2 = 5

Nb, Nt = 0.5, 1, 1.5, 2
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Fig. 2.28: Variation of    on heat transfer coefficient when  =  = 02  = 01

 = 02  = 06  = 05  = 2 Pr = 69  = 1  = 04  = 07 1 = 003

2 = 002 3 = 03 1 = 3 2 = 5

2.5 Closing remarks

Main points are listed below.
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• Influences of  and  on velocity are similar.

• Effects of ( = 1 2) on concentration, temperature and velocity are quite opposite to

that of 3

• Hartman  and Hall  variables on temperature and velocity have reverse outcomes.

• Temperature is qualitatively similar for  and 

• Temperature is reduced by thermal Biot number 1

• Concentration and temperature have opposite impacts for  and 

• Effects of and  on concentration are quite reverse when compared with 2

• Outcomes of 1 and  on heat transfer coefficient are quite opposite than   and


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Chapter 3

Bioconvection analysis for peristalsis

of nanofluid

3.1 Introduction

The current chapter examined the aspects of bioconvecitve MHD peristaltic flow of nanofluid

containing gyrotactic organisms. Impacts of Hall current and thermal radiation are also exam-

ined in the present study. Velocity, thermal and concentration slip conditions are imposed on

elastic channel. Numerical solutions are obtained foe velocity, temperature, concentration, heat

transfer coefficient and motile organism density. Related graphs arranged the minor findings.

3.2 Problem development

Here we studied MHD peristaltic flow of viscous nanoliquid in a symmetric channel of width

21 Disturbance in fluid is due to sinusoidal wave train which propagates with constant speed

. Fluid is conducting by a constant magnetic field of strength 0. Electric field effects are

neglected. Geometry of the wall surface with the wavelength  and amplitude  is defined as

 = ± ( ) = ±
∙
1 +  sin

2


(− )

¸
 (3.1)
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By Ohms law, the Lorentz force FB is calculated as follows:

FB=[− 20
1 +2

(−)− 20
1 +2

( +) 0] (3.2)

where  denotes electrical conductivity and  is the Hall parameter. We have relavent expres-

sions




+




= 0 (3.3)



µ



+ 




+ 





¶
= −


+ 

µ
2

2
+

2

2

¶
− 20
(1 +2)

(−)

+(1− 0) ( − 0)− ( −  )( − 0)− ( −  )( − 0) (3.4)



µ



+ 




+ 





¶
= −


+ 

µ
2

2
+

2

2

¶
− 20
(1 +2)

( +) (3.5)



µ



+ 




+ 





¶
= 

µ
2

2
+

2

2

¶
+ 

"µ



+





¶2
+ 2

µ




¶2
+ 2

µ




¶2#

+

"


µ







+









¶
+





(µ




¶2
+

µ




¶2)#

−


+
20

(1 +2)
(2 + 2) (3.6)




+ 




+ 




= 

µ
2

2
+

2

2

¶
+

µ
2

2
+

2

2

¶



 (3.7)




+ 




+ 




= 

µ
2

2
+

2

2

¶
− 

(1 − 0)

µ




µ





¶
+





µ





¶¶
 (3.8)

Boundary conditions are as follows:

± 1

µ



+





¶
= 0 at  = ± (3.9)

 ± 2



=

½
1

0

¾
  ± 3




=

½
1

0

¾
  =

½
0

1

¾
at  = ± (3.10)

∙
−1 3

3
+1

3

2
+ 

2



¸
 = 

µ
2

2
+

2

2

¶
− 

µ



+ 




+ 





¶
−
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20
 (1 +2)

(−)− (1− 0) ( − 0) + ( −  )( − 0)−

( −  )( − 0) at  = ± (3.11)

Here ( ) are components of velocity in ( ) directions,  the thermal conductivity,  the

dynamic viscosity,  the pressure,  the nanofluid density,  the density of nanoparticles,

 the density of motile microorganisms,  the gravity,  the thermophoretic coefficient of

diffusion,  the Brownian movement,  the microorganisms diffusion coefficient,  the

average volume of microorganisms,  the mean temperature, 1 mass per unit area,  the

viscous damping coefficient,  the maximum cell swimming speed, 1 the elastic tension,

(1 2 3) the slip parameters,  the chemotaxis constant, (0 1) and (0 1) the lower and

upper walls concentration and temperatures respectively. Further (0 1) the volume fraction

at upper and lower walls.

Now we consider non-dimensional quantities and stream function  in above system of

equations by

∗ =



 ∗ =




 ∗ =




 ∗ =



1
 ∗ =




 ∗ =


1
( = 1− 3)

∗ =


1
 ∗ =

21


  =

 − 0

1 − 0
  =

 − 0

1 − 0
  =

 − 0

1 − 0


 =



  = −


 (3.12)

The incompressibility constraint (33) is easily satisfied, whereas the other equations after in-

volving the lubrication technique and omitting asterisks yield [3]

4

4
−
µ

2

1 +2

¶
2

2
+




−




−




= 0 (3.13)

µ
1

Pr
+

¶
2

2
+








+

µ




¶2
+

2

1 +2

µ




¶2
+

µ
2

2

¶2
= 0 (3.14)





µ
2

2

¶
+

2

2
= 0. (3.15)

2

2
− 








− 

2

2
− 

2

2
= 0 (3.16)
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The boundary conditions are expressed in the following way:




± 1

2

2
= 0 at  = ±  (3.17)∙

1
3

3
+2

3

2
+3

2



¸
 =

3

3
−
µ

2

1 +2

¶



+

 −− at  = ± (3.18)

 ± 2



=

½
1

0

¾
 ± 3




=

½
1

0

¾
  =

½
0

1

¾
at  = ± (3.19)

with  as the amplitude ratio,  wave number,  the Brownian variable,  the thermophoresis

parameter, Re Reynolds number,  the Eckert variable, the Hartman number,  buoyancy

ratio parameter, Pr the Prandtl number,  bioconvection Rayleigh number, (1 2 3) the

wall parameters,  local Grashof number,  bioconvection Peclet number,  the biconvection

constant and  the radiation parameter defined below

 =


1
  =

1


  =

(1 − 0)


  =

 (1 − 0)


 Re =

1




 =
2

 (1 − 0)
  =

r



01  =

( −  )(1 − 0)
2
1


 Pr =






 =
( −  )(1 − 0)

2
1


 1 =

−31
3

 2 =
1

3
1

3
 3 =

31

2


 =
 (1− 0) (1 − 0)

2
1


  =




  =

0

1 − 0
  =

16
−
 30

3
−


 (3.20)

3.3 Numerical method

Finding the exact solution to governing equations is extremely difficult. Thus here we employed

NDSolve technique through Runge-Kutta method of fourth order (shooting technique). This

makes it easy to acquire the solution of the governing problem. Therefore equations (313) −
(316) with the related boundary conditions (317) − (319) are numerically solved. For small
step sizes, this method works with minimal error. As a result, the size of step 001 affects both

 and  equally. The next section contains the results.
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3.4 Graphical outcomes and discussion

This portion investigated axial velocity, concentration, temperature, heat transfer coefficient

and density of motile microorganism. Figures 1− 34 are portrayed for this aim.

3.4.1 Velocity

Figs. 31 − 38 represent the influences of pertinent variables on axial velocity. Fig. 31

examined the consequences of velocity slip variable 1 The fluid’s velocity intensifies via larger

1 Aspects of Grashof number  against velocity is revealed in Fig . 32 Velocity is shown

to be strengthened by large amounts of . Fig. 33 sketched effects of buoyancy ratio  on

velocity. Here velocity enhances through  Fig. 34 is portrayed to capture the outcomes of

bioconvection Rayleigh variable  Decaying behavior is observed via larger  Consequence

of Hartman variable on axial velocity is revealed in Fig. 35 This figure reveals that velocity

of the material decays. Actually, rise in  increases the Lorentz force that turns in direction

contrary to flow. This resistance force reduces liquid motion that eventually reduced velocity.

Fig. 36 shows the aspects of Hall parameter  against velocity. The velocity enlarges with the

growing values of  Influence of bioconvection Peclet number  on velocity profile is pointed

out in Fig. 37 The plot shows that the bioconvection Peclet number  gains the velocity

of fluid. Fig. 38 captures variation of compliant wall parameters 1 2 3 against velocity.

Related Fig. illustrates that the velocity for 1 and 2 is increasing, however the contrary

response seen for 3

3.4.2 Temperature

The role of various variables on temperature are addressed in Figs 39− 317 Consequences of
thermal slip variable 2 against temperature are examined in Fig. 39 Through higher 2 the

temperature enhances. Fig. 310 assures that larger Prandtl number  show an increase in

temperature of liquid. Significances of Brownian movement  and thermophoresis parameters

 are portrayed in Fig 311We witnessed from this figure that temperature enhances against

both these variables. Fig. 312 is designed to see the influence of radiation variable  on

temperature. The findings of this graph demonstrated that as  rises, the temperature of the
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liquid decreases. Consequence of Grashof variable  on temperature is illustrated in Fig. 313

Outcomes of this result find that temperature of fluid rises via  Fig. 314 represents outcome

of Hall variable  on velocity. Temperature increases when  large. Fig. 315 demonstrates

the influence of Eckert number Ec on temperature. This figure demonstrated that temperature

increases for Eckert variable  Influence of bioconvection Peclet number  on temperature

is depicted in Fig. 316 When  increases the temperature rises. Fig. 3.17 is created to

investigate consequence of wall parameters (1 2 3) on temperature. Here temperature of

fluid enhances via larger 1 and 2 while it drops for 3

3.4.3 Concentration

Impacts of several distinct variables on nanoparticle concentration are inspected by Figs. 318−
323 Influence of thermophoresis parameters  is displayed in Fig. 318 A careful examination

of this figure clearly reveals decrease in the concentration of nanoparticles. Fig. 319 illustrates

influence of 3 for concentration. It is noted that concentration of fluid declines for larger

3 From Fig. 320 we detected that concentration reduces for buoyancy ratio parameter 

Fig. 321 is sketched to elaborate the effect of  on concentration. Decaying behavior is

observed for concentration against . Fig. 322 is portrayed to see the outcome of bioconvection

Peclet number  on concentration. An enhancement in  leads to decay of concentration of

nanofluid. Fig. 323 simulates the features of wall variables (1 2 3) against concentration.

It is found that the concentration displays rising trend with the enhancement of 1 and 2 and

it declines for 3

3.4.4 Coefficient of heat transfer

Fig. 324−330 represent the activity of coefficient of heat transfer  Effect of Grashof number
 is demonstrated in Fig. 324 It is noticed that heat transfer coefficient improves with

higher Grashof number  Fig. 325 is depicted to examine the consequences of bioconvection

Rayleigh variable  against  An increment in  is seen due to  Fig. 326 demonstrates

that when 2 increases, the heat transfer coefficient increments. Fig. 327 describes the results

of Brownian motion  and thermophoresis parameters  From this figure we noticed that

coefficient of heat transfer enhances with increment both the parameters. Outcome of radiation
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number  on the heat transfer rate is illustrated in Fig. 328 Decline behavior is witnessed

from this graph. Fig. 329 visualizes the consequence of bioconvection Peclet number  on heat

transfer coefficient. Higher Peclet number  increases  Fig. 330 portrays the heat transfer

rate for different values of Hall variable  With increasing , the heat transfer coefficient

highers.

3.4.5 Density of motile microorganism

Consequences of various distinct variables on motile microorganism  are inspected through

by Figs. 331 − 334 Effects of bioconvection Rayleigh variable  are depicted through Fig.
331 Clearly  enhances against  Fig. 332 is plotted to show the variations in motile

microorganism for bioconvection parameter  An increase is noticed in motile microorganism

density. Fig. 333 explains the motile microorganism density against Peclet number  It is

found that enhancement of motile microorganism density occurs for  Fig. 334 demonstrates

the motile microorganism density versus thermophoresis parameters  By increasing the

thermophoresis parameters  the density of motile microorganism declines.
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Fig. 31: Variation of 1 on 
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Fig. 32: Variation of  on 
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Fig. 33: Variation of  on 
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Fig. 34: Variation of  on 
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Fig. 35: Variation of  on 
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Fig. 36: Variation of  on 
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Fig. 37: Variation of  on 

Fig. 38: Variations of 1 2 and 3 on 
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Fig. 39: Variation of 2 on 
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Fig. 310: Variation of Pr on 
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Fig. 311: Variations of  and  on 
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Fig. 312: Variation of  on 
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Fig. 313: Variation of  on 
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Fig. 314: Variation of  on 
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Fig. 315: Variation of  on 
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Fig. 316: Variation of  on 

Fig. 317: Variations of 1 2 and 3 on 
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Fig. 318: Variation of  on 
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Fig. 319: Variation of 3 on 
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Fig. 320: Variation of  on 
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Fig. 321: Variation of  on 
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Fig. 322: Variation of  on 

Fig. 323: Variations of 1 2 and 3 on 
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Fig. 324: Variation of  on 
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Fig. 325: Variation of  on 
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Fig. 326: Variation of 2 on 
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Fig. 327: Variations of  and  on 
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Rn = 0.5, 1, 1.5, 2
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Fig. 328: Variation of  on 
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Fig. 329: Variation of  on 
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Fig. 330: Variation of  on 
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Fig. 331: Variation of  on 
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Fig. 332: Variation of  on 
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Fig. 333: Variation of  on 
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Fig. 334: Variation of  on 

3.5 Conclusions

Majors outcomes are as follows.

• Velocity enhances for 1  and 

• Opposite behavior is observed for velocity agaianst  and 

•  and  increase the temperature.

• Both thermophoresis  and Brownian motion  have rising impacts of temperature.

• Influences of  and  on temperature are dissimilar.

• Concentration of fluid declines for  and 

• Velocity, temperature and concentration are increased with higher 1 and 2 while these
quantities decrease for 3

• Heat transfer coefficient enhances against larger  , 2 and 

• Effects of  on coefficient of heat transfer are reverse when compared with 

• Density of motile microorganisms shows decreasing behavior of  and 
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Chapter 4

Peristalsis of couple stress nanofluid

with wall characteristics

4.1 Introduction

Here examined the peristaltic motion of couple stress naofluid. Energy equation is retained

with viscous dissipation and thermal radiation aspects. Further chemical reaction between a

chemical species and the nanofluid may be significant. Therefore we considered the Buongiorno

nanofluid model with chemical reaction. Zero mass flux and thermal convective conditions

are incorporated. Numerical solutions are developed for the governing problem. Finally the

concentration, temperature and heat transfer coefficient are scrutinized through graphs.

4.2 Formulation

An incompressible couple-stress nanoliquid in a channel of width 21 is taken. Flow generated

is by sinusoidal waves propagating with uniform speed We select rectangular coordinate ( )

such that  is parallel to wall and  is transverse to it. A magnetic field of strength of 0 is

exerted in −direction. The wall shapes are

 = ± ( ) = ±
∙
1 +  sin

2


(− )

¸
 (4.1)
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where  and  denote amplitude and wavelength respectively. (See Fig. 4.1).
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Fig. 4.1. Problem

The relevant equations for problem under consideration are
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2
+

2

2

¶



− 1( − 0) (4.6)

Heat flux radiation  is defined as

 = −4
−


3
−


 4


 (4.7)
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Expanding  4 by using Taylor series we have

 4 = 4 30  − 3 40  (4.8)

Since the couple stress is presumed because of the suspended particles, the transparent fluid

obviously cannot be sustained by couple stresses at the wall, we have therefore tacitly concluded

that the couple stress tensor components vanish at the wall along with no slip and compliant

walls i.e.

 = 0
2

2
= 0 at  = ± (4.9)

∙
−1 3

3
+1

3

2
+ 

2



¸
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+ 2

4
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4

4

¶
−


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+ 




+ 





¶
− 2 at  = ± (4.10)

Further zero mass flux and thermal convective conditions are defined as

−


= 

½
 − 0

0 − 

¾
 




+








= 0 at  = ± (4.11)

Considering stream function  = ,  = −() and using the non-dimensional variables

∗ =  ∗ =   ∗ =  1
∗ =  ∗ =  1

∗ = 

∗ = 21 = 0 =  − 0 (1 − 0) =  −0 (4.12)

Now adopting low Reynolds number and large wavelength assumptions [3] in equations (43)−
(46) we obtain after omitting asterisks
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= 0 (4.13)
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(4.14)
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µ
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2

¶
+

2

2
−  = 0 (4.15)
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The boundary conditions become


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
= 0 at  = ± (4.18)

Continuity equation (42) is satisfied automatically. Here     Re     

   (1 2) and 3 are amplitude ratio, wave number, Prandtl variable, Eckert variable,

, Reynolds number, Schmidt number, Hartman number, Brownian movement variable, ther-

mophoresis variable, Biot number, couple-stress variable, chemical reaction variable, Radiation

parameter, elasticity parameters and damping parameter, These are defined by
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2
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
  =

16
−
 30

3
−


 1 = − 31

3
 2 =

1
3
1

3
 3 =

31

2
 (4.19)

4.3 Numerical method and analysis

Problems (413) − (418) are tackled numerically by shooting technique via using NDSolve
command with fourth order Runge-kutta technique in the MATHEMATICA. For boundary

value problems, the performance of this technique is excellent. This method seems effective

in small steps size and tiny errors. In addition, the  and  change in a step size of 001

uniformly. Set with 10−6 error tolerance. Graphical analysis of concentration, temperature and

heat transfer rate against pertinent variables are examined in this section.

4.3.1 Temperature

Variations for physical variables on temperature  have been displayed in Figs. 42 − 49
Fig. 42 indicates that temperature decreases against larger Hartman number  This is
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because the magnetic field functions as an agent of retardation. An effect of couple stress fluid

variable  is seen in Fig. 43 Distribution of temperature increments with the enhancement

of variable couple-stress fluid  Temperature in Fig. 44 is decreased for higher values of

radiation variable  It’s because fluid temperature is more than walls temperature. Due to

dissipation of heat, the temperature drops here. Fig. 45 displays the outcomes of Eckert variable

 on temperature. Temperature boosts by higher values of Eckert number. The change in

temperature is observable due to the strong influence of viscous dissipation. Temperature

enhances by increasing the values of Prandtl number  (see Fig. 46). It is because of

the momentum ’s high diffusiveness. In Fig. 47 combination of Brownian motion  and

thermophoresis  parameters are reported. As we increase values of both the parameters we

can see that temperature increases. The increase in Brownian diffusion highers the average

kinetic energy of fluid and fluid temperature enhances. Influence of thermal Biot number 

against temperature is portrayed in Fig. 48 Here temperature decays when increased  The

Biot number  improves the convective heating at the surface and reduces wall temperature.

Biot number is more than one. This shows the non-uniform temperature fields inside the liquid.

Fig. 49 is captured to see the behavior of compliant wall variables (1 2 3) on temperature.

We observed that temperature enhances via 1 and 2 enhances it decays for 3

4.3.2 Concentration

Impacts of different embedded parameters on concentration field  are examined through Figs.

410−416 Fig. 410 is portrayed to analyze the variation of concentration for chemical reaction
parameter  Clearly large chemical reaction  gives enhancement in concentration profile .

This happens because chemical reaction increases the rate of interfacial mass transfer which

causes the increment of concentration. Concentration in Fig. 411 is diminished for large couple-

stress fluid parameter  Fig. 412 reveals the influence of Brownian motion  parameter on

concentration . In this Figure we noticed that by rising values of  concentration increases.

Opposite behavior for concentration field  is observed for thermophoresis parameter  in

Fig. 413 Physically, higher strength of thermophoretical effects leads to the enhanc volume

flow by increasing the concentration of nanoparticles due to the temperature gradient. Fig.

414 prepared the concentration  for larger Schmidt number  the concentration rises when
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the thermophoresis parameter enlarged. There is increase in concentration for 1 and 2 while

concentration decreases for 3 (see Fig. 415) Radiation effect  is shown in the Fig. 416

for the field of concentration. It is evident that by increasing  concentration of nanofluid at

the center of channel increases.

4.3.3 Coefficient of heat transfer

Figs. 417−424 show the variations of pertinent variables on coefficient of heat transfer () =
() Fig. 417 examined the effects of couple-stress fluid parameter  An increase of  gives

rise to heat transfer coefficient. The variation of Eckert number  on heat transfer coefficient 

is demonstrated by Fig. 418 Higher Eckert number  give rise to the heat transfer coefficient.

Fig. 419 contains heat transfer coefficient with regard to radiation parameter  Eor an

improvement in  the heat transfer rate lessens. Fig. 420 is sketched to see the behavior of

Prandtl number  on coefficient of heat transfer  The internal resistance of fluid particles

increases because of  which enhances the rate of heat transfer. Fig. 421 includes the effect

of Biot number . Here heat transfer coefficient highers against . Fig. 422 shows the

variation of Hartman number against coefficient of heat transfer. It is evident from this Fig.

that coefficient of heat of transfer declines. Fig. 423 depicts heat transfer coefficient  via

thermophoresis  parameter and Brownian movement parameter  Here  enhances when

both  and  are increased. Such rise in coefficient of heat transfer  is because the motion

of nanoparticles to the fluid from the wall when both parameters are enhanced. In Fig. 424

thet heat transfer coefficient rises by chemical reaction parameter Moreover, we observed that
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 has oscillating behavior because of the wave travelling along the boundaries of the channel.
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Fig. 42: Variation of  on 
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Fig. 43: Variation of  on 
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Rn = 0.5, 1, 1.5, 2

-1.0 -0.5 0.0 0.5 1.0

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

y

q

Fig. 44: Variation of  on 
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Fig. 45: Variation of  on 
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Fig. 46: Variation of Pr on 
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Nb, Nt = 0.5, 1.5, 2.5, 3.5
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Fig. 47: Variations of  and  on 
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Fig. 48:  variation on 

Fig. 49: Variations of 1 2 and 3 on 
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Fig. 410: Variation of  on 
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Fig. 411: Variation of  on 
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Fig. 412: Variation of  on 
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Nt = 0.5, 1, 1.5, 2
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Fig. 413: Variation of  on 
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Fig. 414: Variation of  on 

Fig. 415: Variations of 1 2 and 3 on 
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Rn = 0.5, 1, 1.5, 2
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Fig. 416: Variation of  on 
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Fig. 417: Variation of  on 
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Fig. 418: Variation of  on 
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Rn = 0.3, 0.7 , 1.1, 1.5
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Fig. 419: Variation of  on 
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Fig. 420: Variation of Pr on 
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Fig. 421: Variation of  on 
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Fig. 422: Variation of  on 
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Fig. 423:  against  and 
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Fig. 424: Variation of  on 
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4.4 Concluding remarks

We noted the following key points.

• Outcomes of  and  on temperature are reverse than 

• Temperature for Prandtl  and Eckert  numbers are qualitatively similar.

• Impact of couple-stress fluid parameter  and chemical reaction parameter  on concen-
tration are opposite.

• Behavior of 3 on concentration and temperature is opposite than 1 and 2

• Increment in Brownian movement  and thermophoresis  variables yields rise in

temperature while decline observed for radiation parameter 

• Outcome of  and Prandtl number  on  are similar.

• Opposite trend is noted for heat transfer coefficient against Hartman number and Biot

number 
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Chapter 5

Significance of convective conditions

for peristalsis of Eyring-Powell

nanoliquid

5.1 Introduction

Main interest here to discuss radiative heat transfer in magnetohydrodynamic (MHD) peristaltic

transport of Eyring-Powell nanofluid. Heat and mass convective conditions, Joule heating and

dissipation are highlighted in modelling and discussion. Further the channel boundaries are

taken of compliant nature. The nonlinear problem has been analyzed for the heat transfer coef-

ficient, temperature, concentration and velocity. Fourth order Runge-Kutta algorithm through

NDSolve of Mathematica is implemented. Major findings are concluded.

5.2 Formulation

Two-dimensional peristaltic flow of nanofluid in a compliant wall channel of width 21 is taken.

Modeling is based upon relation of Eyring-Powell liquid. Peristaltic motion occurs due to

sinusoidal waves with speed  and amplitude  The −axis is assumed parallel to channel walls
and −axis normal to it. Flow field is taken under the influence of uniform magnetic field 0
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towards −axis. The waves shapes satisfies

 = ±( ) = ±[1 +  sin
2


(− )] (5.1)

where  denotes wavelength and  the time. For Eyring-Powell liquid the extra stress tensor

obeys:
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where  = 1  = 2  = 1 and  = 2 Also
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in which ∗∗ and ∗∗ are the material constants of Eyring-Powel liquid and  is the coefficient

of shear viscosity. Related problems have statements in the forms
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 = 0 at  = ± (5.9)
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∙
−1 3

3
+1

3

2
+ 

2



¸
 =




+




−



µ



+ 




+ 





¶
− 2   = ± (5.10)

−


= 1

½
1 − 

 − 0

¾
 −




= 2

½
1 −

 −0

¾
 at  = ± (5.11)

Here ( ) denote the velocity components, ( ) stands for density of nanofluid, () for pressure,

() for thermal conductivity, () for kinematic viscosity, () for electric conductions of fluid

and last two terms on R.H.S. of Eq. (57) represent radiation and Joule heating. Further ()

depicts Brownian movement ( ) for thermophoresis diffusion coefficient, (1) for mass per

unit area, (1) for elastic tension, () for mean temperature, () for viscous damping coeffi-

cient, 1 0 and 1 0 respectively the upper and lower walls temperature and concentration.

Further     are the extra stress tensor.

In view of Rossland approximation, the radiative heat flow satisfies

 = −4
−


3
−


 4


 (5.12)

in which
−
 and

−
 denote absorption and Stefan-Boltzmann constant coefficients respectively.

After utilizing Taylor series for  4 about 0 and neglected the higher order expressions one has

for

 4 ≈ 4 30  − 3 40  (5.13)

Energy equations now yields



µ



+ 




+ 





¶
= 

µ
2

2
+

2

2

¶
+




 +




 +

µ



+





¶


+

"




(µ




¶2
+

µ




¶2)
+

µ







+









¶#

+
16
−
 30

3
−


2

2
+ 2

2 (5.14)
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Writing stream functions  = 

,  = − 


and using

 = ∗  = ∗  = ∗  = 1
∗  = ∗  = 1

∗ (5.15)

21 = ∗ (1 − 0) =  − 0 (1 −0) =  − 0

one can write the following problems

(1 +)
4

4
− 

3

2

2

µ
2

2

¶3
−2

2

2
= 0 (5.16)

(1 +Pr)
2

2
+Pr

µ
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

¶µ




¶
+Pr

µ




¶2

+Pr

"
(1 +)

µ
2

2

¶2
−

µ
2

2

¶4
+2

µ




¶2#
= 0 (5.17)

2

2
+





µ
2

2

¶
= 0 (5.18)

with the boundary conditions




= 0 at  = ± (5.19)∙

1
3

3
+2

3

2
+3

2



¸
 = (1 +)

3

3
− 

3





µ
2

2

¶3
−2


at  = ± (5.20)




=

½−1(1− )

−1
¾




=

½−2(1− )

−2
¾
 at  = ± (5.21)

Expression (53) is satisfied trivially . Note that in writing above problems, the assumptions

of large wavelength and low numbers of Reynolds are invoked. Here    Re Pr  

    ()  1 2 (1 2) and 3 amplitude ratio, wave number, thermal

diffusivity, Reynolds number, Prandtl number, Eckert number, Hartman number, effective heat

capacity ratio of nanoparticle material to liquid heat capacity, Schmidt number, thermophoresis

parameter, Brownian diffusion parameter, Erying fluid parameters, radiation parameter, ther-

mal Biot number, mass Biot number, elasticity parameters and damping parameter, These are
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defined by

 =


1
  =

1


  =




 Re =

1


Pr =




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2
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

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
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621
∗∗2 
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11


 2 =

21


  =

16
−
 30

3
−


 1 = − 31

3
 2 =

1
3
1

3
 3 =

31

2
 (5.22)

5.3 Results and discussion

Resulting problems consisting of Eqs. (516)−(521) are solved numerically by built-in function
via shooting technique through the command NDSolve with Runge-kutta fourth order method

in Mathematica.

5.3.1 Velocity

Here variation of velocity is presented through Figs. 51− 55 Outcome for Eyring-Powell fluid
parameter  on axial velocity is examined in Fig. 51 Here velocity rises for Eyring-Powell

fluid parameter  Fig. 52 demonstrates that the velocity decreases against Eyring-Powell

liquid parameter . It can be considered as characteristic of the Eyring-Powell fluid. Fig. 53

depicts the effects of 1, 2 and 3 on velocity. Velocity enhances for 1 and 2 whereas

opposite happens via 3 Because walls are flexible, and possess elastic behavior causes less

flow resistance. Fig. 54 illustrates variation of Hartman number  on velocity. Clearly higher

Hartman number  yield decay of velocity. Actually the rate of transport declines by rising

magnetic parameter since the Lorentz force resisted fluid motion. Fig. 55 develops velocity

for different values of amplitude ratio  Investigation of this Fig. shows that by growing  the

velocity rises.

5.3.2 Temperature

Figs. 56 − 514 show the behaviour of temperature. Influence of  is shown in Fig. 56.

This Fig. witnesses that temperature rises for higher . It is due to the existence of strong

momentum diffusivity. Effect of Eckert number  on temperature is displayed in Fig. 57.
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Here temperature rises against  This is due to increased internal fluid particle resistance

which enhances fluid temperature. We next move to investigate the influences of  and 

on temperature through Fig. 58 Random movement of nanoparticles increases for higher

Brownian motion parameter and thus fluid temperature enhances. As a result of the collision

of nanoparticles, the Brownian motion is produced (causing the particles to move at random).

Particle collision whether collective or with liquid molecules is improved by inward contraction

of elastic walls. Temperature against Eyring fluid parameter  is shown in Fig. 59 Clearly

temperature strengthens when Eyring liquid parameter  rises. Figure 510 depicts Eyring

fluid parameter  effects on temperature. Temperature by  is increased. Figure 511 displays

temperature for different values of Hartman number  Temperature decays for higher 

Figure 512 illustrates the effect of wall parameters (1 2 3) on temperature. Influences of

1 and 2 on temperature is quite opposite to that of 3 Figure 513 indicates temperature

against radiation parameter  Temperature decays when  increased. It is because the

fluid temperature is higher than the walls, and due to the heat dissipation, the temperature is

decreased. Higher Biot number 1 give decay of temperature (see Fig. 514). This occurs due

to non-uniform temperature of the fluid.

5.3.3 Concentration

Figs. 515− 519 describe concentration for sundry variables. Concentration for Erying-Powell
fluid parameter  is shown in Figs. 515 It is observed that concentration decays for higher

 Radiation parameter  impact on concentration of nanoparticles is shown in Fig. 516

As observed from the figure, the concentration distribution of the nanofluid is seen higher

with an increase in the radiation parameter . Here concentration through higher  is

enhanced. Fig. 517. witnessed that by increasing values of rigidity 1 and stiffness 2

variables the nanoparticle concentration enhances while it decreases against damping force

parameter 3 Mass Biot parameter 2 influence on nanoparticle concentration is presented

in Fig. 518 An enhancement in concentration for 2 is found. Concentration for  is

shown in Fig. 519. Higher  leads to the concentration increases. Physically, a progressive

rise in thermophoresical effect intensity would contribute to the larger mass flux due to the

temperature gradient that increases the concentration of nanoparticles.
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5.3.4 Heat transfer coefficient

Influence of coefficient of heat transfer () = () is shown graphically in Figs. 520−524
Fig. 420 plots heat transfer coefficient  versus Prandtl number  Heat transfer coefficient

 for higher  is increased. It is because of the strong diffusiveness of momentum. Fig.

521 captures the effects of heat transfer coefficient  for Brownian movement variable and the

thermophoresis variable respectively. We witnessed that  is an increasing function of both

parameters  and  Infact there is lead in effective motion of nanoparticles from the channel

to the liquid as the influence of Brownian motion increases. As a result, there is a enormous

increase in the rate of heat transfer. On the other hand the heat transfer coefficient  decreases

by radiation parameter  (see Fig 522). Figure 523 is drawn for impact of thermal Biot

variable 1 on  An increasing behavior of  is noticed for higher 1 Figure 524 shows

heat transfer coefficient  for distinct values of Hartman number  It is apparent from this

Fig. that heat transfer rate of fluid decays in view of Lorentz force resisting the heat transfer

rate.
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Fig. 51: Variation of  on 
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B = 0.3, 0.5, 0.8, 1.1
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Fig. 52: Variation of  on 

Fig. 53: 1 2 and 3 variations on 
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Fig. 54: Variation of  on 
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Fig. 55: Variation of  on 
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Fig. 56: Variation of  on 
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Fig. 57: Variation of  on 
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Nb, Nt = 0.5, 1.2, 1.8, 2.5
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Fig. 58: Variation of  and  on 
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Fig. 59: Variation of  on 
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Fig. 510: Variation of  on 
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Fig. 511:  Variation on 

Fig. 512: Variation of 1 2 and 3 on 
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Fig. 513: Variation of  on 
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Bi1 = 1, 2, 3, 5
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Fig. 514: Variation of 1 on 
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Fig. 515: Variation of  on 
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Fig. 516:  variation on 
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Fig. 517: 1 2 and 3 variations on 

Fig. 518: Variation of 2 on 
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Fig. 519: Variation of  on 
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Fig. 520: Variation of  on 
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Fig. 521: Variations of  and  on 
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Fig. 522: Variation of  on 
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Fig. 523: Variation of 1 on 
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Fig. 524: Variation of  on 
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5.4 Validation of the result

To check the validation of our numerical result we construct Table. 51 It is obvious from this

table the current results show good agreement with [51]when (1 2)→∞

  Present Work Present Work Mustafa et al. [51] Mustafa et al. [51]

 =  = =  = 0  =  = =  = 0

 at  =   at  =   at  =   at  = 

112 02 −0211788 1104649 −0211789 1104646

129 05 −5523596 6298794 −5523598 6298792

Table 51 Comparison of numerical results with ref. [51]
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5.5 Conclusions

Following results are worth mentioning.

• Velocity rises for larger  and  and it decreases by higher 

• Behaviors of  and  on temperature are same.

• Temperature for  and  is enhanced.

• Increasing  shows temperature decay and enhancement of concentration.

• Behavior of 3 on concentration and temperature is reverse than 1 and 2

• Rate of heat transfer intensifies for   and 1

• Coefficient of heat transfer shows similar effects for  and .
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Chapter 6

Peristalsis of Eyring-Powell

nanofluid with activation energy and

heat generation/absorption

6.1 Introduction

This chapter addresses the effects of heat generation / absorption and activation energy on

MHD peristalsis of Eyring-Powell nanofluid in a flexible channel. Velocity slip is taken. Energy

equation is modeled by taking the effects of viscous dissipation, Joule heating and thermal

radiation. Further the convective equations are imposed for temperature. Channel walls have

different concentration. Problem with assumption of low Reynold number and long wavelength

is presented. Governing problems have been solved by NDSolve technique. The velocity, con-

centration, temperature and heat transfer coefficient are explored.

6.2 Formulation

Peristaltic flow of Eyring-Powell fluid in a two-dimensional symmetric flexible channel is focused.

Brownian motion and thermophoresis are accounted. Here channel width is 21 The flow

considred for transversely applied constant magnetic field of strength 0 Induced magnetic
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field is neglected. The waves form propagating along the channel walls are:

 = ±( ) = ±[1 +  sin
2


(− )] (6.1)

where    and  are amplitude, wavelength, wave speed and time respectively. Extra stress

tensor for Eyring-Powell model is defined by

 = 
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
+

1
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sinh−1

µ
1
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

¶
   = 1 2 (6.2)

where  = 1  = 2  = 1 and  = 2
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¶
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1

∗∗
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− 1
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1

∗∗
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¶3


¯̄̄̄
1

∗∗




¯̄̄̄
¿ 1 (6.3)

Here ∗∗ and ∗∗ are the material constants of Eyring-Powel liquid,  the coefficient of viscosity.

The appropriate equations for the current problem are listed below:




+




= 0 (6.4)



µ



+ 




+ 





¶
= −


+




+




− 20 (6.5)



µ



+ 




+ 





¶
= −


+




+




 (6.6)
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+ 
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

¶
= 

µ
2
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2
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


+ 




+ 

µ



+





¶
+

"(µ




¶2
+

µ




¶2)



+

µ







+









¶#
−




+ 2

2 +0 ( − 0)  (6.7)
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µ
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2

2

¶
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



µ
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2
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2

2

¶
−
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µ


0

¶

exp

µ
−



¶
2  (6.8)
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The boundary conditions are

±  = 0 at  = ± (6.9)

∙
−1 3

3
+1

3

2
+ 

2



¸
 =




+




−



µ



+ 




+ 





¶
− 2   = ± (6.10)

−


= 

½
1 − 

 − 0

¾
  =

½
1

0

¾
 at  = ± (6.11)

where ( ) i the velocities in ( ) directions,  pressure,  the thermal conductivity,  the kine-

matic viscosity,  the electric conductions,  the Brownian movement,  the thermophoretic

diffusion coefficient,  the density of the nanofluid, 0 the heat generation/absorption parame-

ter, 1 the mass per unit area, 1 the elastic tension,  the mean temperature,  coefficient of

viscous damping,  the velocity slip parameter,  the chemical reaction rate,  the activation

energy,  the Boltzmann constant,  the fitted rate constant, (1 0) and (1 0) respectively

the upper and lower walls temperature and concentration and extra stress tensor components

    for the Eyring-Powell can be defined through expression (62) Last term in

equation (68) appeared due to chemical reaction and activation energy

By following approximation of Rosseland, the radiative heat flux  is described as

 = −4
−


3
−


 4


 (6.12)

in which
−
 represents the constant Stefan — Boltzmann, and

−
 the coefficient of absorption.

We expect that the changes in temperature inside the flow are lower enough to characterize

 4 as a function of temperature in linear form. Considering Taylor series for  4 about 0 and

ignoring the expressions of higher order one has

 4 = 4 30  − 3 40  (6.13)
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and thus
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Now introducing stream functions  =   = − and invoking non-dimensional variables

∗ =



 ∗ =




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


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

1
 ∗ =




 ∗ =



1
 ∗ =



1

∗ =
21


  =

 − 0

1 − 0
  =

 − 0

(1 − 0)
 ∗ =

1


  (6.15)

we obtain after dropping asterisks
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The boundary conditions become
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in which small Reynolds number and large wavelength approximation are utilized. Conti-

nuity equation (63) is identically satisfied. Further 
³
= 

1

´
is amplitude ratio, 

³
= 1



´
wave number, 

³
= 

 

´
thermal diffusivity, Pr

¡
=




¢
the Prandtl number, Re

³
=

 1



´
Reynolds number, 

³
= 2

 (1−0)
´
the Eckert number, 

³
= 



´
the Schmidt number,


³
=
q



01

´
the Hartman number, 

³
=

 

 

´
the effective heat capacity ratio of nanopar-

ticle material to liquid heat capacity, 
³
=

(1−0)


´
the Brownian diffusion parameter,


³
=

 (1−0)


´
the thermophoresis parameter,

³
 = 2

621
∗∗2   = 1

∗∗∗∗

´
the Erying liq-

uid parameters, 

µ
=

16
−
30

3
−


¶
the radiation parameter, 

³
= 1



´
the thermal Biot number,


³
=

0
2
1

 

´
the heat generation/absorption parameter, 

³
=

2
2
1



´
the chemical reaction para-

meter, Ω
³
= 1

0

´
the temperature ratio parameter, 

³
= − 

0

´
the activation energy parame-

ter and³
1 = − 31

3
 2 =

1
3
1

3
 3 =

31

2

´
the wall parameters.

6.3 Numerical outcomes and discussion

In this study we employed MATHMATICA tool NDSolve to compute system of Eqs. (616)−
(618) subject to (619) − (621) This technique is built-in which is based on Runge-Kutta
fourth method. Efficiency of this technique is good for boundary value problems.

6.3.1 Velocity

Figs. 62 − 66 organize behavior of velocity for numerous pertinent parameters. Fig. 62
depicts outcome of Eyring-Powell fluid parameter  on velocity. Here velocity rises when  is

increased. The velocity against Erying fluid parameter  has been depicated through Fig. 63

Velocity reduces when Erying liquid parameter  enhances. Fig. 64 portrays  outcome on

the velocity field. This Fig. shows increasing behavior of velocity with respect to  In fact

more velocity occurs near walls of channel. Fig. 65 clarifies that for higher  the velocity

decays. In fact more resistance offered to the fluid particles and so velocity decreases. Fig. 66

Illustrates the effect of wall variables (1 2 3) on velocity. This Fig. show that velocity

increases with higher 1 and 2 whereas as opposite behavior holds for 3
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6.3.2 Temperature

Influence of various physical variables on temperature is revealed in Figs. 67− 616 Outcome
for thermal Biot number  on temperature is shown in Fig. 67 As expected higher values of

 give decline in temperature. Variation for  versus temperature is shown in Fig. 68 We

have seen the increasing behavior of temperature with higher  Larger  has lower thermal

diffusivity and thus fluid becomes more viscous. It leads to an enhancement of temperature. Fig.

69 portrays the outcome of temperature for various values of Eckert number  Temperature

increases because high Eckert numbers strengthens the viscous dissipation effects. In Fig.

610 the consequence of radiation variable  on temperature is illustrated. It is found that

with increasing thermal radiation the temperature falls. Figs. 611 and 612 show how heat

generation/absorption variable  influenced the temperature distribution. Here heat generation

corresponds to   0 and for heat absorption   0 From Fig. 611 temperature enhances for

heat generation   0 while opposite behavior holds for heat absorption   0 (see Fig. 612)

Fig. 613 depicts consequence for Hartman number  on temperature. There is a reduction

in temperature is for higher Hartman number  Magnetic force is a resistive force that slows

down the liquid particle drift. Fig. 614 shows the effects of temperature for rigidity parameter

1 the stiffness parameter 2 and the viscous damping force parameter 3 It is noticed that

an increase in 1 and 2 parameters rises the temperature but it reduces through higher 3

Fig. 615 represents impacts of Brownian movement  and thermophoresis  variables. It

is apparent from these Figs. that higher values of these parameters correspond to temperature

enhancement. Such increase in temperature is due to the occurrence of nanofeatures when

enhancing the effects of both parameters. Fig. 616 elucidates the influence of  against

temperature. We observed that temperature increases for higher 

6.3.3 Concentration

Variation of pertinent variables on concentration is presented in Figs. 617 − 623 Fig. 617
presents that concentration is an increasing function of thermophoresis parameter  Fig.

618 elaborates effects of nanoparticle concentration for radiation  Here concentration of

nanoparticles is observed to diminish when radiation effect intensifies. Fig. 619 depicts decay

of concentration for  Mathematically  is ratio of rate of momentum to the rate of mass
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diffusions. For higher  the rate of mass diffusion is smaller. It leads to decay of concentra-

tion. Decay in concentration is found for higher chemical reaction parameter  in Fig. 620

Nanoparticle concentration versus activation energy  is depicted in Fig. 621 Here we ob-

served that concentration enhances via higher  Fig. 622 shows concentration for distinct

values of temperature ratio parameter Ω Concentration decreases against Ω Fig. 623 elabo-

rates consequences of wall parameter 1 2 and 3 on concentration. These Figs. show that

concentration enhances with increasing 1 and 2 but reverse holds against 3

6.3.4 Heat transfer coefficient

Figs. 624 − 632 are sketched for coefficient of heat transfer () = () for the involved

parameters. Fig. 624 explores influence of Biot parameter  on heat transfer coefficient 

 enhances for higher  Fig. 625 summarized effects of radiation parameter  on heat

transfer coefficient  A decreasing trend is noted for  when  rises. Influence of  on  is

visualized in Fig. 626 It evidently displays that coefficient of heat transfer  rises for higher

 Outcomes of  on  is investigated in Fig. 627 It is found that rise in  increases the

coefficient of heat transfer  Figs. 628 and 629 represent how coefficient of heat transfer 

is affected through the heat generation / absorption  Here we witnessed that  increases for

  0 while it decreases when   0 Fig. 630 indicates heat transfer coefficient  against

activation energy parameter  Here  enhances for higher  Fig. 631 reveals the influence

of ratio of temperature variable Ω on coefficient of heat transfer  Fig. 632 depicts  against

larger Brownian motion parameter  We noticed that larger  shows an improvement of

heat transfer coefficient  Activity of  is also oscillatory.

6.3.5 Trapping

Plots for trapping are drawn in Figs. 633− 635 Fig. 633 ( ) is plotted for Eyring-Powell
fluid parameter  In this Fig. we noticed that trapped bolus size tends to decrease for higher 

Influence of Eyring-Powell fluid parameter  on streamline is demonstrated in Figs.634( )

An increment in  results in increase of size of bolus. Hartman number  caused reduction

in bolus size (see Fig. 635( )) It is also observed that bolus disappears for larger 
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6.4 Physical quantities

The skin friction, Nusselt number and Sherwood number denoted by ( ), () and () are

defined as

 = (1 +)
2

2
− 

3

µ
2

2

¶3
  = −(1 +)




  = −


at  =  (6.22)

-

Parameters Results

          

01 02 01 01 01 1 1 05 −0732675 −0834599 −106642
02 02 01 01 01 1 1 05 −0729784 −0834318 −106674
01 03 01 01 01 1 1 05 −0733158 −0846092 −106181
01 04 01 01 01 1 1 05 −0733567 −0855874 −105788
01 02 03 01 01 1 1 05 −0698864 −0834225 −106601
01 02 05 01 01 1 1 05 −0640051 −0835298 −106476
01 02 01 05 05 1 1 05 −0732675 −0610371 −115343
01 02 01 08 08 1 1 05 −0732675 −0474901 −121069
01 02 01 01 01 15 1 05 −0732675 −076107 −109585
01 02 01 01 01 2 1 05 −0732675 −0687527 −112531
01 02 01 01 01 1 15 05 −0732675 −0833448 −127126
01 02 01 01 01 1 2 05 −0732675 −0832703 −139404
01 02 01 01 01 1 1 1 −0732675 −083550 −0983048
01 02 01 01 01 1 1 2 −0732675 −0836973 −0854028

Table 6.1. Numerical outcomes of ( ) () and () when ( = 02  = 01  = 02  =

02 1 = 001, 2 = 002 3 = 001  = 09  = 03  = 1 Ω = 2  = 3)
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Fig. 62: Variation of  on 

B = 0.1, 0.2, 0.3, 0.4
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Fig. 63: Variation of  on 
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Fig. 64: Variation of  on 
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M = 0.1, 0.5, 0.9, 1.3
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Fig. 65: Variation of  on 

Fig. 66: Variations of 1 2 and 3 on 

Bi = 1, 2, 3, 4
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Fig. 67: Variation of  on 
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Pr = 7.3, 7.8, 8.2, 8.5
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Fig. 68: Variation of  on 

Ec = 0, 1, 2, 3
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Fig. 69: Variation of  on 

Rn = 0.5, 1, 1.5, 2
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Fig. 610: Variation of  on 
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Q= 0.1, 0.3, 0.7, 1
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Fig. 611: Variation of   0 on 
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Fig. 612: Variation of   0 on 
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Fig. 613:  against 
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Fig. 614: 1 2 and 3 Variation for 

Nb, Nt = 0.3, 0.7 , 1.1, 1.5
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Fig. 615: Variations of  and  on 
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Fig. 616: Variation of  on 
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Nt = 0.3, 0.6, 0.9, 1.2
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Fig. 617:  variation on 

Rn = 0.5, 0.8, 1.1, 1.5
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Fig. 618: Variation of  on 
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Fig. 619: Variation of  on 
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z = 1, 2, 3, 4
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Fig. 620: Variation of  on 
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Fig. 621: Variation of  on 
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Fig. 622:  against Ω
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Fig. 623: 1 2 and 3 variation on 
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Fig. 624: Variation of  on 

Rn = 0.5, 1, 1.6, 2.2
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Fig. 625: Variation of  on 
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Pr = 7.4, 7.7, 8, 8.3
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Fig. 626: Variation of  on 
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Fig. 627: Variation of  on 

Q = 0.1, 0.3, 0.5, 0.8
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Fig. 628: Variation of   0 on 
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Q= -0.1, -0.3, -0.5, -0.8
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Fig. 629: Variation of   0 on 

E = 0.5, 1, 1.7 , 2.5

0.0 0.2 0.4 0.6 0.8

-0.5

0.0

0.5

X

Z

Fig. 630: Variation of  on 
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Fig. 631: Variation of Ω on 
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Nb = 0.5, 1, 1.8, 2.6
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Fig. 632:  against 

Fig. 633(): Variation of  when  = 01
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Fig. 633(): Variation of  when  = 02

Fig. 634(): Variation of  when  = 03
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Fig. 634(): Variation of  when  = 05

Fig. 635(): Variation of  when  = 07
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Fig. 635(): Variation of  when  = 12

6.5 Conclusion

The key consequences for the current analysis are summarized below.

• Velocity rises for  and  and it reduces against  and 

• Temperature is increased through   and 

• Temperature decreases by increasing  while it increases for 

• Impacts of  on concentration and temperature are reverse.

• Higher   and  lead to decay of concentration.

• Concentration has reverse behavior for both  and Ω

• Higher 1 and 2 enhance the temperature and concentration while these decay for 3

• Behaviors of Prandtl  and Eckert  numbers on heat transfer coefficient are qualita-
tively similar.

• Coefficient of heat transfer boosts for both  and 
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• Effects of Eyring-Powell fluid variables  and  are opposite for trapping.

• Reverse behavior is noticed for skin friction coefficient against  and 

• Nusselt number reduces for higher  and . Similar trend is found for Sherwood

number against 
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Chapter 7

Peristaltic activity of fourth grade

nanofluid with slip and radiation

7.1 Introduction

This chapter intends to examine the peristalsis of fourth grade nanomaterial with chemical re-

action. Thermal radiation, Ohmic heating and dissipation are present in the energy equations.

Heat source/sink is also accounted. Slip constrains for velocity, temperature and concentration

are invoked. Problem is evaluated for low Reynolds number and long wavelength. The reduced

nonlinear systems are solved numerically. Detailed analysis is arranged for velocity, concentra-

tion, temperature, heat transfer coefficient and trapping. Key observations are concluded.

7.2 Formulation

Two-dimensional radiative peristaltic motion of magnetohydrodynamic(MHD) fourth-grade

nanofluid is taken into account in a channel. Here channel of width 21 has flexible walls,

 the wavelength, and  the speed of wave and  the amplitude. Cartesian coordinates ( )

are implemented such that −axis along the channel wall and −axis orthogonal to it. Flow
is conducted with magnetic field of strength 0. Here we neglected an induced magnetic field.

Brownian motion, thermophoresis and Joule heating are examined. Chemical reaction is also
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present. The waves propagating along the channel walls are defined below.

 = ±( ) = ±[1 +  sin
2


(− )] (7.1)

Fourth-grade model extra stress tensor is [41]

 = A1 + 
0
1A2 + 

0
2A

2
1 + 

0
1A3 + 

0
2(A1A2 +A2A1) + 

0
3(A

2
1)A1 + 

0
1A4 +


0
2(A1A3 +A3A1) + 

0
3A

2
2 + 

0
4(A

2
1A2 +A2A

2
1) + 

0
5(A2)A2 + 

0
6(A2)A

2
1 +

(
0
7A3 + 

0
7(A2A1))A1 (7.2)

where the Rivilin-Ericksen tensors are [41]

A1 = (gradV)
 + gradV (7.3)

A =
A−1


+ (gradV)A−1 +A−1 (gradV)    1 (7.4)

The relevant equations for problem under consideration are




+




= 0 (7.5)



µ



+ 


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+ 
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¶
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


+
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− 20 (7.6)
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


+ 
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
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2
+
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¶
−

−1( − 0) (7.9)

The appropriate boundary conditions are

± 1 = 0 at  = ± (7.10)
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¶
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 ± 2



=

½
1

0

¾
  ± 3




=

½
1

0

¾
at  = ± (7.12)

where ( ) are the velocity components in ( ) directions,  the pressure,  the density of

nanofluid,  the kinematic viscosity,  the thermal conductivity,  the electric conductions, 

the Brownian movement,  the thermophoretic diffusion coefficient, 0  0 and 0  0 for

the heat generation and heat absorption,  coefficient of viscous damping, (1 2 3) the slip

parameters,1 mass per unit area,  the mean temperature, 1 elastic tension, 1 the chemical

reaction rate and (1 0) and (1 0) respectively the upper and lower walls temperature and

concentration. Material constants of fourth-grade are 
0
( = 1 2) 

0
( = 1−3) and 

0
( = 1−8)

Further extra stress tensor components     for the fourth-grade fluid can be

defined through expression (72) Last term in Eq. (79) is due the effect of chemical reaction.

Radiative heat flux  is depicted as follows:

 = −4
−


3
−


 4


 (7.13)

in which
−
 represents the Stefan — Boltzmann constant, and

−
 the constant of absorption.

Expanding  4 about 0 by using Taylor expansion and ignoring the expressions of higher

order we have

 4 = 4 30  − 3 40  (7.14)
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Using (714) into (713) one has

 =
16
−
 30

3
−





 (7.15)

Now if (  ) represents the stream function then by defining  =   = − and following

non-dimensional variables

 = ∗  = ∗  = ∗  = 1
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0
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3 (7.16)

we get after utilizing long wavelength (i.e. wave number ' 0) and low Reynolds number

approximations the following problems
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Equation of continuity (75) is identically satisfied. Here  shows amplitude ratio,  the thermal

diffusivity,  the wave number, Pr the Prandtl number, Re the Reynolds number,  the Eckert

variable,  the Schmidt variable,  the Hartman variable,  the efficient heat capacity ratio

of nanoparticular material to fluid heat capacity,  the Brownian diffusion variable,  the

thermophoresis parameter,  the radiation number,  the heat source/sink variable,  the

chemical reaction number, (1 2 3) the wall variables and Γ the Deborah parameter. We

have
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7.3 Numerical outcomes and discussion

We employed MATHMATICA tool NDSolve to compute system of Eqs. (717) − (722) This
technique is built-in which based on Runge-Kutta fourth method. Efficiency of this technique

is good for boundary value problems.

7.3.1 Velocity

Figs. 71 − 74 are organized to see variation of velocity against various relevant variables.
The velocity against velocity slip variable 1 is exhibited in Fig. 71 It is noted that velocity

decreases when 1 enhances. Impacts of wall variables (1 2 3) on velocity profile are shown

in Fig. 72 From this Fig. the velocity rises for increasing values of (1 2) whereas contrary

trend is found for 3 Fig. 73 reveals consequence of Deborah number Γ on velocity profile.

Here velocity profile increases for higher Γ Fig. 74 displays the effect of magnetic variable 

on velocity. Here an increment for  reduces the velocity.
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7.3.2 Temperature

Effects of various thermo physical variables on temperature are illustrated in Figs. 75− 714
Fig. 75 demonstrates the impacts of Brownian movement  and thermophoresis  parame-

ters. It is clear that by enhancing the values of both the parameters the temperature enhances.

Higher values of both parameters cause more randomness. This fact increases the temperature.

Fig. 76 is drawn for analysis of temperature against Prandtl number  Graph shows that

rising behavior is observed in this case. Fig. 77 depicts effect of radiation  on temperature.

Decaying behavior of temperature is witnessed. Fig. 78 elucidates thermal slip parameter 2

impact. Clearly larger values of 2 enhanced the temperature. Impact of magnetic parameter

 is represented in Fig. 79 Obviously temperature declines when increases. Eckert number

effect on temperature is demonstrated in Fig. 710 Eckert variable in view of dissipation leads

to growth of fluid temperature. Figs. 711 and 712 show how heat generation/absorption vari-

able  influenced the distribution of temperature. Temperature for heat generation (  0)

enhances while opposite scenario holds for heat absorption (  0) in Fig. 712 Fig. 713

displays activity of wall properties on temperature. Temperature of fluid enhances with 1 and

2 and it decays against 3 Fig. 714 elaborates the consequences of Deborah number Γ on

temperature. It can be concluded from this figure that higher values of Γ number give more

fluid temperature.

7.3.3 Concentration

Influence of numerous parameters for concentration are reported in Figs 715− 721 Effect of
concentration slip parameter 3 is sketched in Fig.715 Concentration is decreasing function

of 3 Fig. 716 explores the influence of Deborah number Γ on concentration. Concentration

of fluid is decreased for higher Γ Impact of chemical reaction  on concentration is shown

in Fig.717 Here we observed that concentration diminishes for higher  Fig. 718 exposes

influence of Brownian motion parameter  on concentration. Concentration grows for higher

 Fig. 719 describes the consequence of thermophoresis parameter  Here concentration of

nanoparticles is decreased when thermophoresis intensifies. Nanoparticle concentration against

Schmidt number  is portrayed in Fig. 720We noticed that larger  decreased concentration.

 is the proportion of the dynamic diffusion to the rate of mass diffusion. Rate of mass
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diffusion is decreases for larger  It yields concentration declines. Variation of wall properties

on concentration is depicted in Fig. 721 Clearly the concentration is enhanced by increasing

1 and 2 while reverse holds for 3

7.3.4 Coefficient of heat transfer

Outcomes of () = () are shown in Figs. 722 − 731 Consequence of Prandtl variable
 on  is investigated in Fig. 722 It is found that rise in  increases the coefficient of

heat transfer  Outcome of Hartman number  on  is portrayed in Fig. 723 Coefficient

of heat transfer decreases against higher  Fig. 724 elucidates the thermal slip parameter

2 on heat transfer coefficient  We have seen the increasing behavior of  against higher 2

A decreasing trend is noted for  when chemical reaction parameter  higher (see Fig. 725).

Fig. 726 portrays heat transfer rate  for larger Brownian movement  and thermophoresis

parameters  Here we observed that higher  and  indicate an enhancement of heat

transfer coefficient  Fig. 727 is made for the outcome of Deborah number Γ on  It is seen

that an enhancement of Γ leads to rise in  Heat transfer coefficient  against heat generation

absorption  is shown in Figs. 728 and 729 Here  rises with (  0) while it declines for

(  0) Role of  on the heat transfer coefficient  is illustrated in Fig. 730 In this case the

findings indicate decline in  Fig. 731 depicts the effects of Eckert number  on coefficient

of heat transfer  Enhancement in  is observed via larger 

7.3.5 Skin friction Coefficient

Impact of skin friction coefficient  = 

³
() + 2Γ

¡
()

¢3´
is discussed through Figs.

732 − 734 Fig. 732 is plotted to see the effect of Deborah number Γ against   Decaying

behavior of  is noticed. Fig. 733 shows that for skin friction coefficient  diminishes when

1 increments. Fig. 734 illustrates influence for Hartman number on   It is observed that

 increases when  higher.

7.3.6 Sherwood number

Figs. 735 − 737 are portrayed to see effects of Sherwood number  = () for different

physical parameters. Fig. 735 demonstrates the impact of  on Sherwood number  Larger
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values of  caused decay of  Figs. 736 and 737 display the impacts of thermophoresis

 and chemical reaction parameters  respectively against  Sherwood number  shows

increasing trend for both parameters.

7.3.7 Trapping

Trapping is sketched through Figs. 738 and 739 Figs 738() and 738() we have plotted

to see impacts for Deborah number Γ As expected the trapped bolus size increases when Γ

enhances. Effects of velocity slip variable 1 on bolus size are given in Figs. 739 ( ) Size of

bolus decreases for higher 1
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Fig. 71: Variation of 1 on 

Fig. 72: Variations of 1 2 and 3 on 
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Fig. 73: Variation of Γ on 
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Fig. 74: Variation of  on 
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Fig. 75:  and  variation on 
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Fig. 76: Variation of  on 
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Fig. 77: Variation of  on 
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Fig. 78: Variation of 2 on 
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Fig. 79: Variation of  on 
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Fig. 710: Variation of  on 
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Fig. 711: Variation of ̇  0 on 
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Fig. 712: Variation of ̇  0 on 
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Fig. 713: Variations of 1 2 and 3 on 
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Fig. 714: Variation of Γ on 
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Fig. 715: Variation of 3 on 
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Fig. 716: Variation of Γ on 
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Fig. 717: Variation of  on 
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Fig. 718: Variation of  on 
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Fig. 719: Variation of  on 
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Fig. 720: Variation of  on 

Fig. 721: Variations of 1 2 and 3 on 
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Fig. 722: Variation of Pr on 
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Fig. 723: Variation of  on 

b2 = 0.1, 0.2, 0.3, 0.4

0.0 0.2 0.4 0.6 0.8

-0.5

0.0

0.5

X

Z

Fig. 724: Variation of 2 on 
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Fig. 725: Variation of  on 
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Fig. 727: Variations of  and  on 

G = 0.5, 1, 1.5, 2

0.0 0.2 0.4 0.6 0.8

-1.0

-0.5

0.0

0.5

1.0

X

Z

Fig. 728: Variation of Γ on 
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Fig. 729: Variation of   0 on 
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Fig. 730: Variation of   0 on 
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Fig. 731: Variation of  on 
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Fig. 732: Variation of Γ on 
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Fig. 733: Variation of 1 on 
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Fig. 734: Variation of  on 
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Fig. 735: Variation of  on 
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Fig. 736: Variation of  on 
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Fig. 737: Variation of  on 
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Fig. 738(): Variation of  when Γ = 01

Fig. 738(): Variation of  when Γ = 03
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Fig. 739(): Variation of  when 1 = 01

Fig. 739(): Variation of  when 1 = 02

7.4 Conclusions

Following points are important.

• Velocity rfor M has reverse trend when compared with Γ and 1
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• Temperature and heat transfer coefficient increase with (  0) while opposite holds for

(  0)

• Temperature for higher  and  has similar outcome.

• Temperature against   and Γ is enhanced.

• Effects of 2 on temperature and 3 on concentration are quite opposite.

• Higher   and  reduces the concentration.

• Heat transfer coefficient for Pr, Γ and 2 is similar.

•  and  decreased heat transfer coefficient.

• Skin friction coefficient for Γ and 1 is similar.

• Trapped bolus size declines for larger 1
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Chapter 8

Entropy generation in mixed

convective peristalsis of fourth grade

nanofluid

8.1 Introduction

The key emphasis here is to analyze of entropy generation in MHD peristaltic flow of fourth

grade nanofluid. Activation energy, Hall current, mixed convection and slip features are con-

sidred. Related nonlinear differential system is solved numerically and analyzed.

8.2 Formulation

We have an interest to analyze the mixed convective peristalsis flow of fourth-grade nanofluid

for outcomes of activiation energy and Hall current. Following the notations of previous chapter

we write directly the related system




+




= 0 (8.1)
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

µ



+ 




+ 





¶
= −


+




+




− 20
(1 +2)

(−)

+ ( − 0) + ( − 0) (8.2)



µ



+ 




+ 





¶
= −


+




+




− 20
(1 +2)

( +) (8.3)


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+ 
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
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
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2
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20
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(2 + 2) (8.4)
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
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2
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µ


0

¶

exp

µ
−



¶
 (8.5)

The boundary conditions are

± 1 = 0 at  = ± (8.6)

∙
−1 3

3
+1

3

2
+ 

2



¸
 =




+




− 

µ



+ 




+ 





¶
−

20
(1 +2)

+  ( − 0) + ( − 0) at  = ± (8.7)

 ± 2



=

½
1

0

¾
  ± 3




=

½
1

0

¾
at  = ± (8.8)

in which (1 2 3) the slip parameters,  the mean temperature,  the activation energy,

 the chemical reaction rate,  the fitted rate constant,  the Boltzmann constant and (1 0)

and (1 0) respectively the upper and lower walls temperature and concentration. Here 

the Hall paramater.

Taking stream functions  =   = − and setting
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 = ∗  = ∗  = ∗  = 1
∗  = ∗  = 1

21 = ∗ 1∗ = ( = 1− 3) (1 − 0) =  − 0

∗ = 1  1
∗
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0
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2
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∗ = 
0

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∗
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0

3 (8.9)

one arrives at
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boundary conditions become
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Here
³
=

 (−0)21


´
thermal Grashof number, 

³
=

(−0)21


´
concentration Grashof

number,
³
Γ = 

0
2 + 

0
3

´
the Deborah number, Ω

³
= 1

0

´
the temperature ratio parameter,


³
= − 

0

´
the activation energy parameter and 

³
=

1
2
1



´
the chemical reaction parame-

ter.
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8.3 Numerical results

The system (810)− (812) with appropriate conditions (813)− (815) is simulated by NDSolve
in MATHMATICA.

8.3.1 Velocity

The impacts of various physical variables on velocity are shown in Figs. 81 − 85 Fig. 81
exhibits that velocity of fluid enhances by increasing thermal Grashof parameter  Fig. 82

shows consequence of velocity for several values of mass Grashof number  Decreasing trend

is noticed for velocity via larger  Fig. 83 describes velocity against Hall variable  It is

obvious from this Fig. that velocity increases by rising values of  The consequences of 1 via

velocity is portrayed in Fig. 84 Velocity of the fluid increases by higher 1 Fig. 85 shows

the relationship between Deborah number Γ and velocity. We noticed decreasing activity of

velocity with higher Γ

8.3.2 Temperature

Variation of pertinent variables on temperature is presented in Figs. 86− 89 Consequence of
thermal Grashof variable  is demonstrated in Fig. 86 Here temperature increases via larger

 Hall parameter  versus temperature is portrayed in Fig. 87 We found that temperature

is more via higher  Fig. 88 is plotted to see the effect of thermal slip variable 2 against

temperature. Result shows an increment of temperature. Influence of fourth grade fluid variable

Γ is exhibited in Fig. 89 Larger values of Γ shows an increase in temperature.

8.3.3 Concentration

Figs. 810 − 812 are sketched for behavior of concentration. Fig. 810 reveals the influence
of activation energy parameter  It is evident from this Fig. that concentration is enhanced

via larger  Fig. 811 summarized effects of mass Grashof number  on concentration 

A decreasing trend is noted for  when  rises.The inspiration of concentration slip parame-

ter 3 over concentration is scrutinized in Fig. 812 An increment in 3 causes declines of

concentration.
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8.3.4 Heat transfer coefficient

Figs. 813−815 are portrayed to see the impacts of coefficient of heat transfer () = ().

Influence of activation energy parameter  on  is pictured in Fig. 813 Here  is enhanced

for larger  Fig. 814 showed the impact of thermal Grashof number  on coefficient of heat

transfer. We observed that higher  leads to an enhancement of  Fig. 815 represents the

impact of Hall parameter  on  An increase in  is observed for higher 

8.3.5 Entropy

Entropy is explored here. Impact of coefficient of diffusion  is displayed in Fig. 816 Increased

 causes thermal conductivity to decrease. The temperature and entropy increase is apparent.

Impacts of Hall parameter  versus entropy is displayed in Fig. 817 There is a decreasing

trend in entropy. Variation of temperature difference variable Λ on entropy is outlined in Fig.

818 Entropy of fluid decreases when Λ rises. Influence of concentration difference variable

∗ on entropy  is revealed in Fig. 819 This Fig. designates that the entropy of fluid

increased. Fig. 820 is plotted to see the consequence of thermal Grashof number . Here

 enhances for higher  Entropy  versus activation energy  is depicted in Fig. 821

Here we found entropy increase through larger  Fourth-grade fluid parameter Γ outcome

on entropy is notified in Fig. 822 Entropy of fluid enhances for larger Γ Implementation of

entropy with a Brinkman number  is illustrated in Fig. 823 We found that increasing 

enhanced entropy. Fig. 824 is prepared for radiation parameter  against entropy. By higher

 the entropy of fluid boosts.

8.4 Expression for entropy generation

Mathematically the entropy generation satisfies:
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Viscous dissipation Φ is given by

Φ = 

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+ 
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
+ 

µ
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¶
 (8.17)

In dimensionless form we have

 =

000



000


= (1 +)

µ




¶2
+



Λ

µ




¶µ




¶
+

∗

Λ2

µ




¶2
+


Λ


2

2
+

2

Λ(1 +2)

µ




¶2
 (8.18)

where


000
 =

 (1 − 0)
2

 2
2

 Λ =
1 − 0


 ∗ =

1 − 0


  =

 (1 − 0)
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 (8.19)
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Fig. 81: Variation of  on 
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Fig. 82: Variation of  on 
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Fig. 83: Variation of  on 
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Fig. 84: Variation of 1 on 
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Fig. 85: Variation of Γ on 
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Fig. 86: Variation of  on 

Fig. 87: Variation of  on 
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Fig. 88: Variation of 2 on 
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Fig. 89: Variation of Γ on 
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E = 0.5, 1, 1.5, 2
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Fig. 810: Variation of  on 
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Fig. 811: Variation of  on 

Fig. 812: Variation of 3 on 
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Fig. 813: Variation of  on 

Fig. 814: Variation of  on 

Fig. 815: Variation of  for 
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Fig. 816: Variation of  on 

Fig. 817: Variation of  on 

Fig. 818: Variation of Λ on 
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Fig. 819: Variation of ∗ on 

Fig. 820: Variation of  on 
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Fig. 821: Variation of  on 
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Fig. 822: Variation of Γ on 

Fig. 823: Variation of  on 

Fig. 824: Variation of  on 
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8.5 Conclusions

The salient points about current study are given below.

• Velocity for Γ is opposite when compared with  and 1.

• Temperature enhances for 

• Temperature of the fluid decreases by 

• Behaviors of activation energy  on  and  are similar.

• Higher  and 3 lead to decay in concentration.

• Entropy enhances for larger  and 

• Reverse behavior of  is noticed for  and 
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Chapter 9

Peristaltic activity of hyperbolic

tangent nanofluid with non-linear

radiation

9.1 Introduction

Here we investigate magnetohydrodynamic ( MHD) peristalsis of hyperbolic tangent nanomate-

rial with mixed convection. Partial slip constraints on flexible channel walls are employed. Heat

transfer analysis is accounted with viscous dissipation and Ohmic heating. Chemical reaction

and nonlinear thermal radiation are accounted. Buongiorno’s nanoliquid model is employed by

considering the aspects of Brownian movement and thermophoresis. Appropriate use of long

wavelength and small Reynolds approximation is made. System is numerically solved. The out-

comes for the velocity, concentration, temperature and heat transfer rate for different physical

variables are addressed through graphs.

9.2 Formulation

Two-dimensional flow of tangent hyperbolic nanofluid in a symmetric channel of width 21 is

considered. Here we choose Cartesian coordinates ( ). Waves are propagating in −direction
with constant speed  having amplitude  and wavelength  Channel boundaries are taken of
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compliant nature. Fluid is conducted by involvement of a constant magnetic field of strength

0. Magnetic field induced is ignored. Velocity, thermal and concentration slip conditions are

imposed on channel walls. The lower and upper walls have concentrations 0 1 and tem-

peratures 0 1 respectively. Heat transfer analysis involved the effects of viscous dissipation,

Brownian motion, thermophoresis along with nonlinear radiation. First order chemical reaction

is present in the concentration equation. The channel walls are represented by:

 = ±( ) = ±[1 +  sin
2


(− )] (9.1)

Stress tensor S for hyperbolic tangent liquid is outlined by [44]

S =
h
∞ + (∞ + 0) tanh(Γ

̇)
i
̇ (9.2)

̇ =

r
1

2
A21 (9.3)

A1 = (grad ) + (grad )
 (9.4)

We consider in this case the infinite shear rate viscosity ∞ = 0 and Γ̇  1. Thus (92) takes

the form

 =
h
0(Γ

̇)
i
̇ =

h
0(1 + (Γ̇ − 1)

i
̇ (9.5)

where Γ denote material constants,  the power law index, 0 the zero shear rate viscosity and

A1 the first Rivlin Ericksen tensor. The related expressions are
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The related boundary conditions are

± 1 = 0 at  = ± (9.11)
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where  is the velocity component in  direction and  the velocity in  direction,  the pressure,

 the kinematic viscosity,  the thermal conductivity,  the electrical conductivity,  the density

of nanofluid,  the thermophoretic diffusion,  the Brownian movement, (1 2 3) the

slip parameters, 1 elastic stress,  viscous damping coefficient, 1 mass per unit area,  the

mean temperature, 1 chemical reaction parameter,  the stress tensor components for the

hyperbolic tangent liquid and  defined by nonlinear radiated heat flux satisfies
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¶
 (9.14)

Now we take the stream function  as ( ) = (−) and the following non-dimensional

quantities
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= ∗  (9.15)
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
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= ∗ ( = 2− 3)
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Utilizing aforementioned terms and then invoking the long wavelength and low Reynolds, we

get the system of equations after dropping asterisks as follows
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= 0 (9.17)


2

2
+

µ
2

2

¶
− = 0 (9.18)

with the non-dimensional boundary conditions




± 1 [1 + (̇ − 1)] 

2

2
= 0 at  = ± (9.19)

∙
1

3

3
+2

3

2
+3

2



¸
 =

3

3
[1 + (̇ − 1)]−

2


+ + at  = ± (9.20)

 ± 2



=

½
1

0

¾
 ± 3




=

½
1

0

¾
at  = ± (9.21)

Notice that the continuity equation (99) is satisfied automatically. Here  depicts the wave

number,  amplitude ratio,  thermal diffusivity,  the concentration Grashof number, 

the thermal Grashof number, Pr the Prandtl number, Re the Reynolds number,  the Eckert

number,  the Schmidt variable,  the thermophoresis parameter,  the Hartman variable,

 the Brownian diffusion parameter,  the Weissenberg number,  the radiation parame-

ter,  the temperature ratio variable,  the chemical reaction parameter 1 is the velocity slip

variable and (1 2 3) the wall parameters defined below
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 =


1
  =

1


  =




  =

( − 0)
2
1

0
  =

 ( − 0)
2
1

0


Pr =
0


 Re =

1
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  =

2
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
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  =
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

 =

r


0
01  =

(1 − 0)


  =

Γ

21
  =

16
−
 30

3
−


  =
1

0


 =
1

2
1


 1 =

∗10
1

 1 = − 31

30
 2 =

1
3
1

30
 3 =

31

20


9.3 Results and discussion

The resulting problem is highly nonlinear. Exact solution to this problem seems difficult.

Therefore we utilized numerical technique for the nonlinear problem. We employed the scheme

built-in in MATHEMATICA called NDSolve. This technique is based on Runge-Kutta fourth

order method. It is convenient-to-use and cares about convergence automatically.

9.3.1 Velocity

The impacts of various variables on velocity are shown in Figs. 91− 97 Outcome of thermal
Grashof number  on velocity is portrayed in Fig. 91 Here velocity rises when  increased.

Impact of mass Grashof number  versus velocity is illustrated in Fig. 92 An increasing

trend is observed for velocity when  highers. Outcome of Weissenberg number on velocity is

demonstrated in Fig. 93 It is observed that velocity is higher against  Fig. 94 is prepared

for impacts of power law index  on velocity. Clearly velocity rises for larger  Fig. 95

elucidates the variation of velocity slip parameter 1 versus velocity. Velocity increases by 1

Fig. 96 elaborates consequences of wall parameters 1 2 and 3 on velocity. These Figs

indicate that velocity enhances for 1 and 2 but opposite holds against 3 Fig. 97 shows

Hartman number  effect on the velocity. Higher Hartman number  indicate a decrease in

velocity.
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9.3.2 Temperature

Plots for temperature against numerous physical variables are drawn in Figs. 98 − 917 Fig.
98 explores of thermal slip parameter 2 on velocity. This Fig. reveals that velocity of

fluid rises for larger 2 Impact of thermal Grashof number  against temperature is present

in Fig. 99 Temperature of liquid rises for larger  Fig. 910 illustrates effect of Prandtl

number  versus temperature. Result shows that an enhancement is observed in this case.

Fig. 911 depicts that larger Eckert number enhance the viscous dissipation effect. This rises

the temperature. Fig. 912 demonstrated a combined study of Brownian movement  and

thermophoresis  variables. Larger values of  are correlated with higher random movement

of the nanoparticles via wall to liquid that takes to a temperature uprise. Fig. 913 depicts

temperature for larger radiation parameter  It indicates that temperature of fluid decreases

when  rises. Fig. 914 shows that higher values of  diminish temperature. Consequences of

Weissenberg number are shown in Fig. 915 For higher an enhancement in temperature

of fluid is observed. Fig. 916 declares outcome of wall parameters (1 2 3) on temperature.

Results show that temperature enhances with higher 1 and 2 where as opposite behavior

ocures for 3 Fig. 917 is sketched to see the impacts of Hartman variable via temperature.

There is a decreasing trend when  increases.

9.3.3 Concentration

Figs. 918−925 portrayed the concentration for numerous pertinent parameters. Concentration
against mass concentration slip parameter 3 is portrayed in Fig. 918We noticed a reduction

in concentration through 3. Fig. 919 demonstrates that concentration decreases in absolute

sense when  enlarges. Brownian motion parameter  against concentration is described in

Fig. 920 Concentration enhances for higher estimation of  On the other hand opposite

trend is witnessed on concentration via thermophoresis variable  (see Fig. 921). Figs.

922 and 923 demonstrate features of chemical reaction parameter  and Schmidt variable 

versus concentration. Both  and  causes reduction in concentration. Fig. 924 depicts the

concentration for the rigidity parameter 1, the tension parameter 2 and 3 It is observed

that an increment in 1 and 2 variables boosts the concentration but it falls through larger

3 Plot for Weissenberg number  on concentration is captured in Fig. 925 We observed
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that concentration decreases for larger 

9.3.4 Heat transfer coefficient

Results of various physical variables on coefficient of heat transfer () = ()  are revealed

in Figs. 926− 933 Fig. 926 investigated the significance 2 for  It reveals that  enhances
via larger 2 Fig. 927 presents the impact of Weissenberg number  on  It is observed

that rise in  decays coefficient of heat transfer  Impact of radiation variable  for  is

portrayed in Fig. 928  has reducing pattern when  highers. The decrease in coefficient of

heat transfer  is also noticed for  (see Fig. 929). Fig. 930 demonstrates coefficient of heat

transfer  verses Prandtl number Pr  Here  enhances for higher Pr  Fig. 931 describes  for

larger thermophoresis  and Brownian motion parameter We observed that higher values

of both the variables show an enhancement in  Effect of thermal Grashof parameter  on

coefficient of heat transfer  is sketched in Fig. 932 Here  rises for higher  Variation of

Hartman parameter  is elaborated in Fig. 933 We observed that  diminishes with rise in


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Fig. 91: Variation of  on 

Fig. 92: Variation of  on 

Fig. 93: Variation of  on 
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Fig. 94: Variation of  on 

Fig. 95: Variation of 1 on 

Fig. 96: Variations of 1 2 and 3 on 
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Fig. 97: Variation of  on 

Fig. 98: Variation of 2 on 

Fig. 99: Variation of  on 
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Fig. 910: Variation of  on 

Fig. 911:  variation on 

Fig. 912:  and  variation on 
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Fig. 913: Variation of  on 

Fig. 914: Variation of  on 

Fig. 915: Variation of  on 
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Fig. 916: Variations of 1 2 and 3 for 

Fig. 917: Variation of  for 

Fig. 918: Variation of 3 on 
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Fig. 919: Variation of  on 

Fig. 920: Variation of  on 

Fig. 921: Variation of  on 
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Fig. 922: Variation of  on 

Fig. 923: Variation of  on 

Fig. 924: Variations of 1 2 and 3 on 
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Fig. 925: Variation of  on 

Fig. 926: Variation of 2 on 

Fig. 927: Variation of  on 
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Fig. 928: Variation of  on 

Fig. 929: Variation of  on 
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Fig. 930: Variation of  on 
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Fig. 931: Variation of  and  on 

Fig. 932: Variation of  for 

Fig. 933: Variation of  on 
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9.4 Conclusions

The key results of the present study are summarized as follows.

• Velocity rises through 1  and  while it reduces against 

• Impact of  on velocity and temperature is qualitatively same.

• Increasing outcomes of  2 and  are noticed.

• Reduction in temperature and heat transfer coefficient for via  and  is observed.

• Concentration is decreased through 3 and 

•  against 2 and  has reverse results

• Reduction is observed for  against  and  .
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Chapter 10

Peristalsis of Sutterby nanofluid

with Hall current and entropy

generation

10.1 Introduction

This cahpter examined magnetohydrodynamic (MHD) mixed convection peristaltic flow of a

Sutterby nanofluid with entropy generation. Convective conditions, Ohmic heating, mixed

convection and radiation effects are considered. Brownian motion and thermophoresis are

considered. A lubrication approach is employed. Governing problems are solved numerically

with NDSolve. Physical quantities of interest are analyzed.

10.2 Formulation

We analyze two-dimensional peristaltic motion of Sutterby nanofluid in symmetric channel hav-

ing width 21 Here  and  coordinates are perpendicular to each other. The wave propagates

in the −direction along channel wall. Flexible nature of channel walls is considered. Hall
current, partial slip conditions for velocity and activation energy are also present. The walls

shape satisfy:
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 = ±( ) = ±[1 +  sin
2


(− )] (10.1)

where  denotes wavelength  the amplitude,  the time and  wave speed. Extra stress tensor

for Sutterby model is [42]

 =


2

⎡⎣sinh−1(−̇)
−
̇

⎤⎦∗A1 (10.2)

̇ =

r
1

2
A21 (10.3)

A1 = (grad ) + (grad )
 (10.4)

where
−
 and∗ denote material constants,  the fluid dynamic viscosity and A1 the first Rivlin

Ericksen tensor. The related expressions are




+




= 0 (10.5)
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


+




− 20
(1 +2)

(−) (10.6)

 ( − 0) + ( − 0)
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
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
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+
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+
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(2 + 2)− 


 (10.8)

171
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 (10.9)

±  = 0 at  = ± (10.10)
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+  ( − 0) + ( − 0) at  = ± (10.11)

−


= 1

½
1 − 

 − 0

¾
 −




= 2

½
1 − 

 −0

¾
= 0 at  = ± (10.12)

where ( ) are the velocity component in ( ) directions,  the pressure,  the thermal

conductivity,  the kinematic viscosity,  the density of nanoliquid,  electrical conductivity,

 Brownian movement,  thermophoresis diffusion coefficient,  the Hall parameter,  the

slip parameter,  coefficient of viscous damping,  the chemical reaction rate, 1 the elastic

tension,  the activation energy,1 mass per unit area,  the Boltzmann constant,  fitted rate

constant, (1 0) and (1 0) are the concentration and temperature at the upper and lower

walls respectively and stress tensor components     for the Sutterby material

can be determined through expression (102) Last term in equation (109) appeared due to

chemical reaction and activation energy.

By using the approximation of Rosseland, the radiative heat flux  obeys

 = −4
−


3
−


 4


 (10.13)

in which
−
 = 56697× 10−8−2−4 represents the constant Stefan — Boltzmann, and

−
 the

coefficient of absorption. We expect that the changes in temperature inside the flow are lower

enough to characterize  4 as a temperature function in linear form. Using Taylor series for  4

about 0 and ignoring the expressions of higher order one obtains

 4 =  40 + 4
3
0 ( − 0) + 6

2
0 ( − 0)

2 (10.14)
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Thus (1014) reduces to

 4 ' 4 30 ( − 0) (10.15)

From (1013) and (1015) one can write

 = −16
−

 30

3
−





 (10.16)

Consider stream function  as  =   = − and non-dimensional variables are
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 (10.17)

By lubrication approach and above definations we can obtain"
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= 0 at  = ± (10.21)
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


=

½−1(1− )

−1
¾




=

½−2(1− )

−2
¾
 at  = ± (10.23)

in which asterisk has been suppressed for simplicity. Note that equation of continuity (105)

is satisfied identically. Further 
³
= 

1

´
depicts amplitude ratio, 

³
= 1



´
wave number,


³
= 

 

´
thermal diffusivity, 

³
=

 (−0)21


´
thermal Grashof number, 

³
=

(−0)21


´
concentration Grashof number, Pr

¡
=




¢
the Prandtl number, Re

³
=

 1



´
Reynolds num-

ber, 
³
= 2

 (1−0)
´
the Eckert number,  = Pr the Brinkman number, 

³
= 



´
the

Schmidt variable, 
³
=

 

 

´
the effective heat capacity ratio of nanoparticle material to liquid

heat capacity, 
³
=

(1−0)


´
the Brownian diffusion parameter, 

³
=

 (1−0)


´
the

thermophoresis parameter, ∗
Ã
= 2∗

−


2

621

!
the Sutterby liquid parameter, 

³
=
q



01

´
the Hartman number, 

µ
=

16
−
 30

3
−


¶
the radiation parameter, 1

³
= 11



´
the thermal Biot

number, 2

³
= 21



´
the mass Biot number, 

³
=

1
2
1



´
the chemical reaction parameter,

Ω
³
= 1

0

´
the temperature ratio parameter, 

³
= − 

0

´
the activation energy parameter 

³
= ∗

21

´
the velocity slip parameter and

³
1 = − 31

3
 2 =

1
3
1

3
 3 =

31

2

´
the wall parameters.

10.3 Expression for entropy generation

Mathematically the entropy generation is defined as:
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¶
 (10.24)

Here viscous dissipation Φ given by

Φ = 



+ 




+ 

µ



+





¶
 (10.25)
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In dimensionless form we have

 =

000
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
000
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where


000
 =

 (1 − 0)
2

 2
2
1

 Λ =
1 − 0


 ∗ =

1 − 0


  =

 (1 − 0)


 (10.27)

10.4 Numerical outcomes and discussion

In this study we employed the MATHMATICA tool NDSolve to solve system of Eqs. (1018)−
(1020) with the relevant boundary condition (1021)− (1023) This method is useful for small
steps with small errors. Further more, both  and  modify uniformly through a step size of

001 Error tolerance is fixed upto 10−6

10.4.1 Velocity

Influence of various physical variables on velocity is revealed through Figs. 101 − 107 Here
larger  give rise to an enhancement of velocity (see Fig. 101). Higher velocity appeares in

the neighbourhood of walls. Fig. 102 depicts outcome of Sutterby fluid parameter ∗ on

velocity. Velocity rises when  is increased. In Fig. 103 the consequence of  on velocity is

illustrated. It is found that with increasing  the velocity enhances. Increase of this parameter

means higher buoyancy forces, which lead to higher velocity distribution. Fig. 104 portrays

mass Grashof number  on the velocity. Velocity of fluid decreases for higher  Fig. 105

Illustrates the outcome of wall parameters (1 2 3) on velocity. This Fig. shows that

velocity increases with higher 1 and 2 whereas opposite behavior for 3 Infect the walls are

compliant in nature and have elastic attitude. This activity creates less resistance to the flow

and therefore increases the velocity. Fig. 106 shows outcome of velocity for Hall parameter 

Velocity enhanced for 
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10.4.2 Temperature

Fig. 107 is sketched to see the Effect of thermal Biot number 1 is shown in Fig 107 on

temperature. It reveals that temperature falls for higher 1 Biot number lessens thermal

conductivity, which leads to reduce the temperature of fluid. In Fig. 108 we observed that

temperature increases with higher Sutterby fluid parameter ∗. This means that the Sutterby

fluid temperature is stronger than that of the viscous fluid. Fig. 109 represents temperature

for various values of thermal Grashof parameter  It depicts from Fig. that when  in-

creases then temperature of fluid enhances. Fig. 1010 explains effect of Hall parameter 

on temperature. Clearly temperature rises with higher  An enhancement in Hall parameter

corresponds to increase of velocity and consequently temperature.

10.4.3 Concentration

Influence of various physical variables on concentration is revealed in Figs. 1011−1014 Effect
of Sutterby fluid variable  is presented in Fig. 1011 It is evident from this Fig. that concen-

tration increases. Fig 1012 shows the plots of mass Grashof number  on concentration. It

indicates an increasing trend of concentration. Nanoparticles concentration versus mass Biot

number 2 is depicted in Fig. 1013 Here we observed that concentration enhances via higher

2 Fig. 1014 depicts the consequence of activation energy  on concentration. Outcome

shows that an enhancement is noticed in this case. Larger  enabled the Arrhenius activation

energy factor to decrease. As a result of which the chemical reaction rate increases.

10.4.4 Coefficient of Heat transfer

Figs. 1015−1018 portrayed the heat transfer coefficient () = () for numerous pertinent

parameters. Effect of Sutterby fluid parameter  on heat transfer coefficient  is investigated

through Fig. 1015 Result found that rise in  declines the coefficient of heat transfer  Fig.

1016 demonstrates that larger values of thermal Grashof number  tend to increase the 

Fig. 1017 summarized effects of thermal Biot number 1 on heat transfer coefficient  An

increasing trend is noted for  when 1 highers. Fig. 1018 depicts heat transfer coefficient 

verses activation energy parameter  Here  increases for higher 
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10.4.5 Entropy generation

Plots for entropy generation are drawn in Figs. 1019−1025 Fig. 1019 is developed to see the
impact of radiation parameter on entropy generation Ns. It shows that entropy increases near

center of channel for higher  Fig. 1020 reveals the increasing response of  for higher

Brinkman number  In Fig 1021 an enhancement is observed in entropy  for higher

concentration difference parameter ∗ Fig. 1022 shows the behavior of temperature difference

parameter Λ on entropy  Decreasing behavior for  is noticed. Fig. 1023 depicts impacts

on entropy  for diffusion coefficient parameter  It is revealed from this Fig. that decreasing

behavior of entropy occurs for raising  Outcome of Sutterby fluid variable ∗ on entropy is

plotted in Fig. 1024 Entropy rises for larger  Impacts of Hall parameter  is sketched in

Fig. 1025 It is noted that entropy for  reduces

10.5 Validation of the problem

We provide Table. 101 to verify the validation of our results. This table shows good agreement

of the current results with [51] when (∗ = =  =  =  =  = 0 and ((1 2)→∞)

  Current work Current work ref. [51] ref. [51]

 at  =   at  =   at  =   at  = 

02 112 −0211788 1104649 −0211789 1104646

05 129 −5523596 6298794 −5523598 6298792

Table 101 Comparison of numerical results.
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Fig. 101: Variation of  on 
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Fig. 102: Variation of ∗ on 
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Fig. 103: Variation of  on 
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Gc = 0.3, 0.6, 0.9, 1.2

-1.0 -0.5 0.0 0.5 1.0
0.00

0.05

0.10

0.15

0.20

0.25

0.30

y

u

Fig. 104:  variation on 

Fig. 105: Variations of 1 2 and 3 on 
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Fig. 106: Variation of  on 
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Fig. 107: Variation of 1 on 

B* = 0.01, 0.02, 0.03, 0.04

-1.0 -0.5 0.0 0.5 1.0

0.2

0.4

0.6

0.8

1.0

y

q

Fig. 108: Variation of ∗ on 
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Fig. 109: Variation of  on 

180



m = 1, 2, 3 , 4

-1.0 -0.5 0.0 0.5 1.0

0.2

0.4

0.6

0.8

y

q

Fig. 1010: Variation of  on 
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Fig. 1011: Variation of ∗ on 
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Fig. 1012: Variation of  on 
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Fig. 1013: Variation of 2 on 
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Fig. 1014: Variation of  on 
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Fig. 1015: Variation of ∗ on 
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Fig. 1016: Variation of  on 

Bi1 = 1, 2, 3, 4

0.0 0.2 0.4 0.6 0.8

-0.5

0.0

0.5

X

Z

Fig. 1017: Variation of 1 on 
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Fig. 1018: Variation of  on 
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Fig. 1019: Variation of  on 
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Fig. 1020: Variation of  on 
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Fig. 1021: Variation of ∗ on 
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Fig. 1022: Variation of Λ on 
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Fig. 1023: Variation of  on 
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Fig. 1024: Variation of ∗ on 

185



m = 1, 2, 3, 4

-1.0 -0.5 0.0 0.5 1.0

0.5

1.0

1.5

2.0

2.5

3.0

y

Ns

Fig. 1025: Variation of  on 

10.6 Conclusions

The key points of current study are summarized below.

• Velocity is increased through  ∗ and 

• Temperature rises with  and 

• Concentration is decreased through ∗

• Impact of  on concentration and heat transfer coefficient is qualitatively similar.

• Coefficient of heat transfer increases through larger 1  and 

• Entropy generation enhances for higher  and ∗

• Decreasing trend is noted for entropy generation against   and Λ
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