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Abstract

The electromagnetic waves that propagate along the interface of two dissimilar ma-
terials are called surface waves. The surface plasmon-polariton (SPP) waves are the
surface waves that are guided by an interface of the partnering plasmonic material.
The surface waves propagate parallel to the interface and decay away from the inter-
face. The surface waves also decay along the direction of propagation if one or both of
the partnering materials are lossy. The main purpose of this thesis is to theoretically
investigate the propagation and excitation of the SPP waves with isotropic chiral
materials and uniaxially bianisotropic chiral materials. Firstly, the characteristics of
the SPP waves with these materials are reported by investigations of the canonical
boundary-value problems where both partnering materials are taken to fill up the
half-spaces. Afterwards, the excitation of these SPP waves is shown with both types
of prism-coupled configurations, i.e., the Turbadar—Kretschmann—Raether (TKR)
configuration and the Turbadar—Otto configuration. The effects of the complex-
valued chirality parameter on the SPP-waves excitation are also investigated.

Three basic problems are solved numerically in this thesis. The first deals with
finding the characteristics of surface waves propagating along the interface of two
isotropic chiral materials. The second problem deals with the interface of isotropic
chiral material and a plasmonic material. After developing an understanding of the
isotropic chiral medium, I moved on to investigate the SPP-waves excitation with the
interface of uniaxially chiral bianisotropic material and a plasmonic material.

The SPP waves propagating along the interface of isotropic chiral material and
a plasmonic material were found to exist only when the chirality was smaller than a
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threshold value. These waves could be excited using both prism-coupled configura-
tions, though the Turbadar—Otto configuration was found better than the TKR in
delineating the excitation of the SPP waves. For the uniaxially chiral, bianisotropic
materials, similar phenomenon was observed where the SPP waves could exist only
when the chirality pseudoscalar was less than a threshold value. Though, this thresh-
old value in the bianisotropic material can be tuned by changing other parameters of
this material. The SPP waves studied in this thesis can be used for designing optical
sensors to sense chirality of the materials. Furthermore, the existence of threshold
value can be used to design plasmonic switches. Also, the finding of hybrid polarized
SPP waves with chiral materials can be useful for optical circuits.
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Chapter 1

Introduction

The surface electromagnetic waves propagate along the interface of two dissimilar
materials [1]. These waves date back to the start of the twentieth century when the
concept of surface waves along the interface of the nondissipative dielectric material
(air) and the dissipative sea water was investigated by Uller [2]. Afterward, Zenneck
proposed that a surface electromagnetic wave might also propagate along the interface
of air and ground in the radio frequency regime [3]. Sommerfeld [4] and Bouwkamp [5]
investigated the surface waves proposed by Zenneck in detail. These surface waves
have recently been dubbed as Uller–Zenneck waves [6, 7].

The energy profile of surface waves, as shown in Fig. 1.1, concentrates near the in-
terface and decays away from that interface. This property of surface electromagnetic
waves is exploited in optical sensing of chemical and bio-chemical species [8]. Since
surface waves are responsive to the permittivity of partnering materials, a change in
the permittivity of either material affects the wavenumber of the surface wave. This
change in the wavenumber is measured to determine the change in the permittivity.
This is the basic principle of optical sensing using surface waves.

The objective of the research conducted for this thesis is to theoretically inves-
tigate the excitation and propagation of surface electromagnetic waves. The most
famous surface electromagnetic waves are surface plasmon-polariton (SPP) waves.
The SPP waves are surface waves propagating along the interface of a plasmonic
material and another material. The other material is usually a dielectric but not

1



2

always. A vast majority of research on the SPP waves concerns the interface of a
dielectric material and a plasmonic material. However, this thesis concerns surface
electromagnetic waves propagating along the interfaces of isotropic chiral and bian-
isotropic chiral materials. Chiral materials are composed of constituents with broken
mirror-symmetry, like helixes. The SPP waves are highly confined to the interface
with their fields decay perpendicular to the direction of propagation [9–11]. The char-
acteristics of these SPP waves like wavelength, degree of confinement to the interface,
attenuation rate along the direction of propagation, and the angular range in the in-
terface plane within which the SPP waves can exist, depend mostly upon the material
chosen to partner with the plasmonic material [11]. This partnering material can be
isotropic, anisotropic, or bianisotropic [12]. In addition to the choice of anisotropy,
the partnering material can be either homogeneous or periodically nonhomogeneous
parallel [13] or perpendicular [14, 15] to the interface. The periodic nonhomogeneity
perpendicular to the interface engenders many SPP waves of distinct phase speeds,
polarization states, and degrees of localization, all at the same frequency. [14–18]. The
anisotropy of the dielectric material generally affects the angular range of existence
of the SPP waves, their degrees of localization, and sensitivity to the permittivity
dyadic in addition to the polarization states. The partnering anisotropic or bian-
isotropic materials may also give rise to the SPP waves that cannot have any definite
linear polarization state. The hyperbolic anisotropy underpins extremely sensitive
plasmonic sensors both with the homogeneous dielectric partners and the periodi-
cally nonhomogeneous partners [19]. The SPP waves [9, 20] find utilities for optical
sensing [10], biosensing [21, 22], bio-chemical sensing [23], near-field optics [24, 25],
spectroscopy [26], far-field optics [27], nanocrystals and hybrid nanostructures [28],
and imaging [29].

The SPP waves are of p-polarization state and propagate with the same properties
in the interface plane when excited using the isotropic and homogeneous dielectric
materials partnered with a plasmonic material [9,30,31]. However, when the isotropic
dielectric material is replaced with an anisotropic dielectric material [12, 32–34], the
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SPP waves exhibit different properties in different directions. The SPP-waves prop-
agation has been investigated with several bianisotropic dielectric materials includ-
ing anisotropic [12], uniaxial [35, 36], biaxial [36], isotropic chiral [37], uniaxial chi-
ral [38], chiral omega [38], magnetic gyrotropic media [39], uniaxially bianisotropic
enantiomeric media [40], and uniaxial bianisotropic media [41,42]. The complex ma-
terials offer rich possibilities to engineer the properties of the SPP waves for a wide
variety of applications. The optical properties of these waves are exploited in circular
dichroism [43], hybrid surface plasmon-polariton wave [44], etc. In this thesis, the sur-
face electromagnetic waves are chiefly studied with homogeneous isotropic chiral and
homogeneous uniaxially chiral bianisotropic materials. The research reported in this
thesis was mainly motivated by the longing to be able to launch surface waves with
chiral materials for expanding the range of the applications of surface waves, e.g., en-
hancing the applications of sensing, imaging, and plasmonic communications. Apart
from the interfaces of different chiral materials, the surface waves chiefly considered
are the SPP waves.

In this chapter, basic concepts required for the rest of the thesis are provided. This
chapter is arranged as follows: A literature review and applications of the SPP waves
are penned in detail in Sec. 1.1. The isotropic chiral materials are introduced in Sec.
1.2. The columnar thin films (CTFs) and uniaxial materials are introduced in Sec.
1.3 as a preliminary context for the next section. The uniaxially chiral, bianisotropic
materials are introduced in detail in Sec. 1.4. The canonical boundary-value problem
for finding the characteristics of the SPP waves propagating along the interface of two
different homogeneous partnering materials is explained in Sec. 1.5. The introduction
of practical setups is given in Sec. 1.6. The objectives of the thesis are highlighted in
Sec. 1.7. Lastly, the overview of this thesis is provided in Sec. 1.8.

In this thesis, the time dependency is taken as exp(−iωt) implicitly, the perme-
ability and permittivity of free space are designated as µ0 and ε0, respectively. The
wavenumber in free-space is represented by k0 = ω

√
ε0µ0 with λ0 = 2π/k0 as the

free-space wavelength and the angular frequency is given by ω, the phase speed in
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the free-space is specified by c = 1/
√
ε0µ0 and the free-space impedance is given by

η0 =
√

µ0

ε0
. The imaginary and real parts of the complex-valued quantities are rep-

resented by Im {·} and Re {·}, respectively, and i =
√
−1. The triad of unit vectors{

ûx, ûy, ûz
}

show alignment with the Cartesian axes. The vectors are underlined
once and unit vectors are additionally decorated with a hat. The matrices are doubly
underlined and confined in square brackets. The dyadics are underlined twice.

Figure 1.1: The typical profile of magnitude of the electric field of a surface wave is
plotted versus z axis that is perpendicular to the interface. Both partnering mediums
are considered homogeneous and isotropic for this.

1.1 Surface Plasmon-Polariton (SPP) Waves

Among the various types of surface electromagnetic waves, the SPP waves are the
most investigated regarding their applicability and theoretical development [5, 45],
however, rigorous work on the SPP waves [9,46–48] started 60 years ago [49]. The SPP
wave [8] is a surface electromagnetic wave that is propagated along the interface of
a dielectric material and a plasmonic material [1]. The partnering dielectric material
on the other side of the plasmonic material can be homogeneous, periodically non-
homogeneous [50,51], isotropic, or anisotropic [50,52], such as a chiral sculptured thin
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film (CSTF) [14, 52, 53] and a sculptured nematic thin film (SNTF) [14, 50, 54].
The SPP waves can be useful in a number of applications like sensing single

molecules [55,56], carrying various signals in one optical beam [57], intrinsic amplifi-
cation of weak signals [58], remote measurement capability, and high sensitivity. The
SPP waves can sense chemical and biochemical molecules in the optical regime [10,59].
Using sensing techniques based on the SPP waves; the bioaffinity interactions with
proteins, phage display libraries, DNA, carbohydrates, and peptides have been well
studied [60].

The SPP waves are highly confined to the interface. The confinement to the
interface supports its use in optical sensing because a significant change in the char-
acteristics of the SPP wave results from a slight change in the dielectric properties
of one of the two materials near the interface [51]. This change is usually exhibited
as a shift in either the free-space wavelength or the angle of incidence of the incident
electromagnetic wave exciting the surface wave in the prism coupling techniques [61].
Although, the dielectric material can be a porous material with a fluid containing the
analyte to be sensed, infiltrating the material. Interestingly, the dynamic sensitivity
of a prism/metal/porous material with infiltrating liquid/fluid setup measured ex-
perimentally has been found to significantly exceed the theoretical sensitivity of the
prism/metal/fluid setup [50].

The SPP waves also find applications in imaging systems for highly efficient anal-
ysis of interactions between biomolecules, e.g., for proteomics, pathway elucidation,
and drug discovery [62,63]. Lithography can also be enhanced by using imaging tech-
niques based on these SPP waves [9, 64]. The SPP waves also find applications in
the field of communication by providing high-speed information exchange on com-
puter chips [65]. Furthermore, ohmic losses for the SPP-wave-based transmission
system [46] are small as compared to the wired-based transmission systems. So, the
long-range communications can be enhanced by developing the communication sys-
tems based on the SPP waves [66]. Optical tweezers [67] and near-field optics [68] are
a few more applications of plasmonics.
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1.2 Isotropic Chiral Materials

A few decades ago, strong chirality was not available. But, now the chiral metamate-
rials with strong enough chirality [69, 70] for applications, particularly in the optical
domain [71], are possible. Natural isotropic chiral materials/substances include glu-
cose and aspartame.

In this thesis, the isotropic chiral materials are explored for surface-wave propaga-
tion due to their inherent magneto-electric coupling in Chaps. 2 and 3. The isotropic
chiral material can be well explained as random distribution of helixes or other chiral
objects in a dielectric host [72].

The Tellegen constitutive relations in the frequency-domain of an isotropic chiral
material [73] are given by the following equation

D(r, ω) = ε0εE(r, ω) + i
√
ε0µ0ξH(r, ω)

B(r, ω) = −i√ε0µ0ξE(r, ω) + µ0µH(r, ω)

 . (1.2.1)

The relative permittivity scalar is represented by ε, the relative chirality pseudoscalar
by ξ, and the relative permeability scalar by µ. Generally, these parameters are
complex-valued and frequency dependent, per the causality principle represented by
the Kramers–Kronig relations [74].

Because of the gyrotropic properties exhibited by isotropic chiral materials owing
to their magneto-electric coupling, these materials are also known as optically ac-
tive materials [75, 76]. Thus, the gyrotropic effects such as optical rotation, circular
birefingence, and circular dichroism are manifestation of these chiral materials [77].

There is relatively little literature work available on the surface waves supported
by chiral materials to date [78]. Pattanayak in 1981 dealt with finding of general struc-
ture of the electromagnetic fields in an optically active medium (chiral medium) oc-
cupying any arbitrary volume. The dispersion relation was obtained for surface waves
propagating along the interface of a vacuum and a magnetoelectric half-space [75].
Another work presented by Nader Engheta in 1991 was on investigation of surface
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waves in homogeneous sheets of chiral materials. The solution of the dispersion equa-
tion and the components of the electric field for guided surface waves were presented
for a symmetric chiral slab waveguide and a grounded chiral slab waveguide. The ef-
fects of chirality were discussed and the potential applications of these chiral layered-
structures in integrated optical devices, directional couplers and switches, microstrip
antennas, and radar technology were addressed [79]. Fantino reported the work which
presents the feasibility of surface-waves excitation at an interface of a chiral medium
and achiral isotropic plasmonic material by exploiting the range of chirality parame-
ter in which surface waves could be initiated. For this study, the dispersion relation
of that interface was solved numerically [80]. A recent work combined a birefringent
surface defect with a one-dimensional photonic crystal supporting chiral surface elec-
tromagnetic waves for improved circular dichroism. Thus, by exploiting the chiral
properties of the probing electromagnetic field, the surface-enhanced spectroscopies
in combination with the electromagnetic superchirality can be achieved. This has
applications in microfluidic networks, lab-on-chip technologies and the analysis of the
structures in proteins [43].

These materials can also be useful in the designing of directional couplers [76,81],
switches, chirowaveguides [81–83], chirostrip antennas [84], integrated optical devices
and advanced radar technology [85]. Hybrid modes [79,81] and hybrid SPP waves [44]
have also been studied with these chiral metamaterials.

1.3 Columnar Thin Films

The basic theory on anisotropic nanostructured columnar thin films (CTFs) is pre-
sented here as a preliminary context for the next section on bianisotropic materi-
als. These thin films are explored for SPP-wave propagation in both the prism-
coupled configurations and the research is reported in the Appendix of this thesis.
The CTFs are porous films of columnar morphology with all columns parallel to a
straight line [86]. Using the physical vapor deposition (PVD) technique, these films
are deposited by steering a vapor flux at a substrate at an oblique angle as depicted
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in Fig. 1.2 [87].
The permittivity dyadic of the CTF is represented by

ε
ctf

= ε0Sy
·
(
εaûzûz + εbûxûx + εcûyûy

)
· S−1

y
(1.3.1)

where the dyadic

S
y
= cosχ (ûxûx + ûzûz) + sinχ (ûzûx − ûxûz) + ûyûy (1.3.2)

represents the rotation by an angle χ in the xz plane around the y axis, the εa, εb,
and εc are known as principal relative permittivity scalars and the unit vectors in the
Cartesian coordinate system are represented by ûx, ûy, and ûz. The principal relative
permittivity scalars for the porous anisotropic CTF depends on whether the CTF is
un-infiltrated or infiltrated by a liquid infiltrating the vacant spaces of the CTF.

Already amorphous silicon, amorphous germanium, oxides of aluminum, silicon,
titanium, tantalum, tungsten, zirconium, bismuth, chromium, copper, iron, plat-
inum, fluorides of calcium and magnesium, polymers of parylene, teflon, pyrolytic
graphite, and silicon carbide have been experimented for the growth of thin films
morphologies [87]. Firstly, the chiral morphology of STFs was reported and exper-
imented by Young and Kowal [88, 89] in the mid-decade of the twentieth century.
They deliberately rotated the substrate about the reference axis constantly during
growth and created morphology of helically deposited thin films of calcium fluoride.
The novel effect of optical activity was reported then. Afterwards, the novel ef-
fects of circular birefringence, circular dichroism, and circular Bragg phenomenon
were also reported. These novel effects of chirality of the chiral nanostructures have
potential applications in optical filters [90], laser mirrors [91, 92], bandwidth engi-
neering [93–95], wave plates [96, 97], spectral hole filters [98, 99], optical fluid sen-
sors [100–102], liquid crystals (LCs) displays [103], optical interconnects [104, 105],
optical pulse-shapers [106, 107], biochips [108], biosensors [109], transverse architec-
tures [110–114], and ultrasonic applications [115–120]. The scope of chiral nanos-
tructured morphologies is not limited to these applications only, but their range of
utilities can also be extended to the desired techno-scientific needs.
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Uniaxial materials are the simplest anisotropic materials and a special case of a
CTF with εb = εc. A uniaxial material has only one crystallographic axis. The pro-
jection of its relative permittivity dyadic on that axis is different from the projection
of that dyadic in any direction normal to the axis. CTFs made of columns of circular
cross-section are uniaxial materials because εb = εc. Also, many crystalline mate-
rials such as quartz and calcite are uniaxial. The permittivity dyadic of a uniaxial
metamaterial is represented by

ε = ε0
[
εb(ûxûx + ûyûy) + εaûzûz

]
, (1.3.3)

where
√
εa and

√
εb are the refractive indices parallel and perpendicular to the optic

axis, respectively.
Uniaxial materials show birefringence that is used to control light in a wide range

of applications. For example, it is widely used in making optical components like
beam splitters, optical interleavers, circulators, and optical isolators [121]. Uniaxial
materials are also used as brightness enhancers in illumination systems [121]. The
Raman scattering is also observed by phonon polariton phenomenon that takes place
in uniaxial crystals [122, 123].

Figure 1.2: The schematic of a CTF is shown.

The SPP-waves excitation at the interface of a plasmonic material and a CTF
has been studied for designing plasmonic optical sensors [124,125]. The CTFs are the
porous anisotropic films and have advantage over isotropic dielectric partnering ma-
terial when it comes to optical sensing. The sensitivity can be enhanced significantly
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by infiltrating the porous anisotropic partnering material with metallic particles [126]
or by making the anisotropic partnering material as a hyperbolic medium [127].

1.4 Uniaxially Chiral, Bianisotropic Materials

The uniaxially chiral, bianisotropic materials are explored for SPP-wave propagation
in Chaps. 4 and 5. The uniaxially chiral bianisotropic material [41, 42, 128] can be
realized as an assembly of parallel circular nano helixes, as shown in Fig. 1.3, in
the host dielectric medium where the period and thickness of these helixes should be
smaller than one-tenth of the operating wavelength of the electromagnetic wave inside
the material [41,42,129–131]. Such a material is a special case of linear bianisotropic
material and can be easily fabricated using PVD techniques [87]. Uniaxial chiral
material is the simplest of chiral bianisotropic material combining the periodicity and
the anisotropy in a special fashion.

The Tellegen constitutive relations in the frequency-domain [11] of homogeneous,
uniaxially chiral, bianisotropic material are given as

D(r, ω) = ε · E(r, ω) + ξ ·H(r, ω)

B(r, ω) = µ ·H(r, ω)− ξT · E(r, ω)

 . (1.4.1)

The permittivity dyadic of the uniaxially chiral bianisotropic medium [130, 131] is
specified as

ε = ε0 Sy
·
[
εaûzûz + εbûxûx + εbûyûy

]
· S−1

y
, (1.4.2)

the permeability dyadic [130, 131] is given as

µ = µ0 Sy
·
[
µaûzûz + µbûxûx + µbûyûy

]
· S−1

y
, (1.4.3)

and the dyadic modeling magnetoelectric properties [130, 131] is given as

ξ = ξ0 Sy
·
[
ξaûzûz + ξbûxûx + ξbûyûy

]
· S−1

y
, (1.4.4)
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where the rotation dyadic

S
y
=


cosχ 0 − sinχ

0 1 0

sinχ 0 cosχ

 , (1.4.5)

incorporates the tilt χ of the optic axis of the medium with respect to the xz plane,
as shown in Fig. 1.4. Whereas εa and εb represent the relative permittivity scalars of
the uniaxial medium, µa and µb represent the relative permeability scalars, and the
relative magnetoelectric properties of the medium are modeled by ξa and ξb. These
parameters are complex-valued and frequency dependent per the causality principle
represented by the Kramers–Kronig relations [74]. If the medium is assumed to be
non-magnetic then µ = µ0I, as I have taken in Chap. 4.

These materials have potential applications in the microwave regime [132, 133]
as reciprocal phase shifter [134], non-reflecting shields and antenna radomes [135].
They show optical activity [136], polarization transformation [137–139], circular bire-
fringence and dichroism [140], and absorption [141]. The helicoidal periodicity and
structural handedness of these materials can be exploited in a number of realistic
applications. For example, these materials can be used in the production of wave
plates.

Figure 1.3: The schematic of the uniaxial chiral bianisotropic material when the
circular nano helixes are assembled perpendicular to the substrate.
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Figure 1.4: The schematic of the uniaxial chiral bianisotropic material when the
circular nano helixes are assembled at some angle χ to the substrate.

1.5 Canonical Problem

The propagation of electromagnetic surface waves can be unambiguously delineated
using the canonical problem of wave propagation by the planar interface formed by the
semi-infinitely thick partnering materials. The geometry for the canonical problem
of surface-wave propagation is set up by the interface z = 0 plane, while the two
partnering materials, filling each of half-space on both sides as depicted in Fig. 1.5
for SPP waves.

With the geometry being set up, the next stage is to write expressions for the
fields in both half-spaces. Therefore, the fields can be represented in terms of two
planewaves of orthogonal polarization states. Since isotropic chiral material supports
circularly polarized modes of planewaves, the general field in isotropic chiral mate-
rial can be written as sum of two circularly polarized modes. However in isotropic
dielectric material, such as a metal the two modes can be either linear or circularly
polarized. The surface waves must have their tangential electric and magnetic fields
continuous across the planar interface z = 0. The dispersion relation is then obtained
and solved using the boundary conditions and the expressions for field phasors satis-
fying Maxwell postulates. A condition on the fields is also imposed to make sure the
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fields decay perpendicular to the interface. The solution of the dispersion relation
determines the wavenumber of the surface wave. The wavenumber of a surface wave is
used to determine other quantities that give a deep understanding of the properties of
the surface wave. For example, the two quantities describing the surface-wave prop-
agation related to the wavenumber are the phase speed and the propagation length.
I present the formulation in Chap. 2.

The solution of the canonical problem obtained as a result of the mathematical
manipulation of the dispersion relation can serve as a guide, either for the elucidation
of both experimental and theoretical results or to guide the implementation in the
prism-coupled configurations.

Figure 1.5: The SPP-wave propagation along the interface of an isotropic chiral half-
space and a metallic half-space is shown schematically in the canonical problem.
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1.6 Prism-Coupled Configurations

The realization of half spaces used in canonical problem is not possible. So, practical
setups using finite thickness of materials are used in actual excitation of surface wave.
These setups include (i) the most commonly used Turbadar—Kreschmann—Raether
(TKR) prism-coupled configuration, (ii) Turbadar—Otto prism-coupled configura-
tion, (iii) Grating-coupled configuration, and (iv) Waveguide-coupled configuration.
The choice of experimental setup depends upon the type of application according to
the feasibility of the fabrication of the configuration. I have investigated both types of
experimental setups of prism-coupled configurations in this thesis. The prism-coupled
configurations are the simplest types of configurations to excite the SPP waves. The
prism in prism coupling is used for matching the wavenumber of the SPP wave and
that of the incident light at the interface of the partnering materials. This matching
is a required condition in the excitation of the SPP waves. Furthermore, the solution
of the canonical problem helps in the authentic interpretation of the experimental or
calculated results obtained in the experimental setups of prism couplings because it
provides the wavenumbers of possible surface waves that can exist at the chosen in-
terface. The prism-coupled configurations essentially use evanescent waves to excite
the SPP waves. The two types of prism-coupled configurations (i) the Turbadar–
Kretschmann–Raether (TKR) configuration [142, 143], and (ii) the Turbadar–Otto
configuration [142, 144] are explained in the following subsections.

1.6.1 TKR configuration

The easiest method for the excitation of surface waves is using evanescent wave. It
is usually implemented with the TKR configuration. This setup consists of a prism
coupled with the isotropic chiral/uniaxially chiral bianisotropic material via a thin
metallic layer. A collimated planewave is made incident on one of the two tilted
planes of the prism. The metal film should be thin enough so the amplitude of the
light emerging from the other side of the metallic film is not too small to excite the
surface wave. The θinc has to be greater than the critical angle inside the prism at
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the prism-metal interface for total internal reflection to occur so that the incident
wave enters the coupled isotropic chiral/uniaxially chiral bianisotropic material as an
evanescent wave. Also, the refractive index of the prism should be greater than the
ratio of the Re(q) of the SPP wave to the free-space wavenumber k0. The SPP-wave
excitation occurs at that incidence angle where the magnitude of k parallel to the
interface matches the wavenumber of the possible SPP wave at that interface. When
the SPP wave is excited, the absorptance increases (reflectance decreases) and an
absorptance peak appears in the angular spectrum of absorptance. Figure 1.6 shows
the geometry of the TKR configuration. The TKR configuration is famous because of
its easier adaptation to optical sensing of fluids that replaces the partnering isotropic
chiral/uniaxially chiral bianisotropic material or infiltrates it.

Figure 1.6: The schematic of the Turbadar–Kretschmann–Raether (TKR) configura-
tion.

1.6.2 Turbadar–Otto configuration

An alternative to the TKR configuration is the Turbadar–Otto configuration. In
Turbadar–Otto configuration, both the partnering materials are interchanged [11].
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The isotropic chiral/uniaxially chiral bianisotropic partnering material is coupled be-
tween the metallic film and the prism. The generation of the evanescent waves requires
a thinner layer of the isotropic chiral/uniaxially chiral bianisotropic material to appear
at the metal with adequate amplitude. Typically, this thickness is of a few hundred
nanometers in the optical regime. This configuration offers a clearer and easier iden-
tification of the reflectance dips than the TKR prism coupling for the excitation of
the SPP waves for an isotropic chiral/uniaxially chiral bianisotropic material. The
Turbadar–Otto configuration is more amenable to implementation for the sensing of
gases than the liquids. The Turbadar–Otto configuration is shown schematically in
Fig. 1.7.

Figure 1.7: The schematic of the Turbadar–Otto configuration.

1.7 Objectives of the Thesis

The objectives of the research conducted for this thesis were to:

1. find the fundamental properties of the partnering chiral materials that are re-
sponsible for the propagation and excitation of surface waves;



17

2. to identify the parametric range of chirality of these partnering chiral materials
that support the excitation of surface waves;

3. study the SPP-waves excitation in both the prism-coupled experimental setups
with partnering isotropic chiral and bianisotropic chiral materials;

4. the effects of morphology of the partnering uniaxially chiral bianisotropic ma-
terials on the characteristics of the SPP waves; and

5. to find out the parametric conditions for the hybrid polarized SPP waves sup-
ported by these chiral materials.

1.8 Overview of the Thesis

To achieve objectives (1) and (2), the canonical problem of the electromagnetic
surface-wave propagation along the planar interface of two different homogeneous
isotropic chiral half-spaces is formulated and solved in Chap. 2. A dispersion relation
is obtained and solved to find the complex-valued wavenumbers for surface waves
which can propagate along the chiral/chiral interface. The power profiles are also
given to validate the existence of the SPP waves.

In Chap. 3, the canonical and prism-coupled configurations are formulated and
solved to find the wavenumbers of the possible SPP waves, which can be supported
by the metal/isotropic chiral material interface. The reflectances plots and power
profiles are also given for objectives (2) and (3).

For objectives, (2), (3), and (5), the SPP-wave excitation at the planar interface
of a non-magnetic uniaxially chiral, bianisotropic/plasmonic material is considered in
Chap. 4 when the circular nano helixes are assembled perpendicular to the interface
and assumed non-magnetic. The SPP waves propagating along the interface are
assumed perpendicular to the direction of the chirality and uniaxiality. The effects
of variation of the complex-valued chirality parameter on the excitation and nature
of the SPP waves are also studied with both the prism-coupled configurations. The
power profiles are also given. This chapter lays the foundation for Chap. 5.
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The investigation of the excitation and propagation of the SPP wave that can
exist at the planar interface of an an obliquely mounted, magnetic uniaxially chiral,
bianisotropic and plasmonic material is conducted in Chap. 5 to achieve objectives
(2), (3), (4), and (5) when the circular nano helixes are assembled at an angle with
the interface. The canonical problem is formulated and numerically solved to find
the characteristics of the possible SPP waves for various values of the tilt angle χ of
the nano helixes with the substrate for several values of the chirality parameter and
a threshold value is found to exist for all tilt angles. The prism-coupled boundary-
valued problems are also formulated and solved. The direction of propagation of
the SPP waves is restricted to be in the morphologically significant plane of the
bianisotropic material that contained tilted helixes. The power profiles are also given.
Finally, the summary of the thesis and some suggestions for future work are presented
in Chap. 6.

Also, the prism-coupled configurations are investigated and presented in Appendix
A of this thesis for the SPP-waves excitation at the interface of a CTF and a plasmonic
material as a preliminary context for investigation with uniaxially chiral bianisotropic
materials.
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Chapter 2

Two Isotropic Chiral Materials

This thesis is concerned with electromagnetic surface waves propagating along the
interfaces of isotropic chiral and uniaxially bianisotropic chiral materials. Therefore,
I start with the simple case of the surface-wave propagation by an interface of two
isotropic chiral materials. The characteristics of surface waves propagating along the
planar interface of isotropic chiral materials A and B is studied using the setting of
the canonical boundary-value problem. The material B is taken to be a homogenized
composite material made by the homogenization of an isotropic achiral, nonmagnetic
component material and isotropic chiral material. The achiral material is specified
by εBa as the relative permittivity. The properties of the surface waves are then
investigated to elucidate the effect of the volume fraction.

Chapter 2 is planned as follows: Introduction and related literature review is given
in Sec. 2.1 and the formulation for the canonical problem is provided in Sec. 2.2. The
illustrative numerical results are presented and discussed in Sec. 2.3. Conclusions are
given in Sec. 2.4.

2.1 Introduction

The planar interface of two different materials can support the surface-waves prop-
agation. Since the early 1900s, several different surface waves have been discovered.

The work reported in this chapter is published in: J. Opt. Soc. Am. B 36, F1-F8 (2019).
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The type assigned to a given surface wave depends upon whether the materials are
dissipative or nondissipative, isotropic or anisotropic, homogeneous or nonhomoge-
neous, etc. [1]. The interface of a dielectric material and a plasmonic material guides
the SPP wave [2, 3], which is the most well-known type of surface electromagnetic
waves. The partnering materials for SPP waves may be isotropic or anisotropic [4].
Uses for these waves are found in optical sensing [5, 6]. Another well-known type of
surface electromagnetic waves is the Dyakonov wave [7, 8], which is guided by the
isotropic dielectric-anisotropic dielectric interface [9, 10]. Dyakonov waves are gener-
ally associated with small angular existence domains [11] but larger angular existence
domains can be supported if the partnering materials are dissipative [12–15]. Surface
waves that are intermediate in properties, in part alike to SPP waves and in part
alike to Dyakonov waves, can be supported by hyperbolic materials [4, 16, 17].

Owing to their inherent magneto-electric coupling, chiral materials [18] allow
broader possibilities for surface-wave propagation than achiral materials. To date,
surface-wave propagation guided by chiral materials has not been widely studied
[19–22], in comparison to achiral materials. Most of these studies have concentrated
on interfaces of non-dissipative chiral materials and isotropic plasmonic materials.
The surface waves in these studies are essentially SPP waves. Recently, surface waves
propagating along the planar interfaces of anisotropic achiral materials and chiral ma-
terials were explored numerically [23]. In Ref. [23], surface waves alike to Dyakonov
waves were found to be supported when the achiral material was a dielectric material
while surface waves alike to SPP waves were found to be supported when the achiral
material was taken as a metal.

In this chapter, I consider the previously unexplored case of surface-wave propaga-
tion along the interface of two isotropic chiral materials. The dispersion relation cor-
responding to the canonical problem [1] is derived and solutions are extracted numer-
ically. To allow greater flexibility for numerical investigations, both isotropic chiral
partnering materials are modeled as homogenized composite materials (HCMs) [24].
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Furthermore, a new type of chiral material that can support amplification and atten-
uation of planewaves is utilized. The amplification or attenuation depends upon the
polarization state of the planewaves [25].

2.2 Canonical Problem

Let me consider the canonical problem for surface electromagnetic waves [1] prop-
agating along the interface of two different chiral materials as shown in Fig. 2.1.
Both materials are taken as homogeneous. An isotropic chiral material, named as A,

Figure 2.1: The interface of two isotropic chiral materials A and B is shown schemat-
ically as a canonical problem. Since material A occupies half space z > 0.

occupies the half-space z > 0 and is specified by Tellegen constitutive relations in the
frequency-domain [18]

D(r, ω) = ε0ε
AE(r, ω) + i

√
ε0µ0ξ

AH(r, ω)

B(r, ω) = −i√ε0µ0ξ
AE(r, ω) + µ0µ

AH(r, ω)

 , z > 0, (2.2.1)
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while an isotropic chiral material, named as B, occupies the half-space z < 0 and is
specified by Tellegen constitutive relations in the frequency-domain [18]

D(r, ω) = ε0ε
BE(r, ω) + i

√
ε0µ0ξ

BH(r, ω)

B(r, ω) = −i√ε0µ0ξ
BE(r, ω) + µ0µ

BH(r, ω)

 , z < 0. (2.2.2)

The relative permittivity scalars εA,B, the relative permeability scalars µA,B, and
the relative chirality pseudoscalars ξA,B are generally complex-valued and frequency
dependent, per the causality principle represented by the Kramers–Kronig relations
[26].

The field phasors of the electromagnetic wave in the materials A and B are rep-
resented by

E ℓ(r) = E ℓ exp (ik ℓ · r)

H ℓ(r) = H ℓ exp (ik ℓ · r)

 , ℓ ∈ {A,B} . (2.2.3)

The amplitude vectors E ℓ, H ℓ and wave vector k ℓ are complex-valued, in general.
Let me assume that the surface wave propagates parallel to ûx in the xy plane.

The Maxwell curl postulates yield

k ℓ × E ℓ − ω
(
−i√ε0µ0ξ

ℓE ℓ + µ0µ
ℓH ℓ

)
= 0

k ℓ ×H ℓ + ω
(
ε0ε

ℓE ℓ + i
√
ε0µ0ξ

ℓH ℓ

)
= 0

 , (2.2.4)

with ℓ = A for half-space z > 0 and ℓ = B for half-space z < 0. The wave vector

k ℓ ≡

 kA = k0 (q ûx + iαAûz ) , z >0

k B = k0 (q ûx − iαBûz ) , z <0
, (2.2.5)

with Re{αℓ} > 0 (ℓ ∈ {A,B}) for surface-wave propagation. On merging Eq. (2.2.4)
and Eq. (2.2.5), a dispersion relation arises for αℓ (ℓ ∈ {A,B}). The two αℓ roots
with non-negative real parts are classified as

αℓ2 =
√
q2 − κ2ℓL

αℓ1 =
√
q2 − κ2ℓR

 , (2.2.6)



38

with the complex-valued scalars

κℓL =
√
εℓµℓ − ξℓ

κℓR =
√
εℓµℓ + ξℓ

 (2.2.7)

being correlated with the relative wavenumbers for left and right circularly-polarized
light, respectively, in an unbounded chiral medium [18]. Accordingly, the amplitudes
of the electromagnetic field-phasor are represented as

E ℓ = Cℓ1 E ℓ1 + Cℓ2 E ℓ2

H ℓ =
√

ε0
µ0

√
εℓ

µℓ (Cℓ1H ℓ1 + Cℓ2H ℓ2)

 , ℓ ∈ {A,B} , (2.2.8)

where the vectors
E A1 = αA1 ûx + κAR ûy + iq ûz

E A2 = −αA2 ûx + κAL ûy − iq ûz

HA1 = −iαA1 ûx − iκAR ûy + q ûz

HA2 = −iαA2 ûx + iκAL ûy + q ûz


, (2.2.9)

and
E B1 = −αB1 ûx + κBR ûy + iq ûz

E B2 = αB2 ûx + κBL ûy − iq ûz

HB1 = iαB1 ûx − iκBR ûy + q ûz

HB2 = iαB2 ûx + iκBL ûy + q ûz


. (2.2.10)

The four scalars CA1,2 and CB1,2 introduced in Eq. (2.2.8), as well as the relative
wavenumber q/k0, are found by using boundary conditions across the z = 0 planar
interface, as follows. Standard boundary conditions on the electromagnetic field pha-
sors impose four conditions. These four boundary conditions result from equating the
tangential components of the electromagnetic field phasors across the planar interface
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z = 0, which are,
ux · E(z = 0−) = ux · E(z = 0+)

uy · E(z = 0−) = uy · E(z = 0+)

ux · H(z = 0−) = ux · H(z = 0+)

uy · H(z = 0−) = uy · H(z = 0+)


. (2.2.11)

These result in
ûx · (E B1 + E B2) = ûx · (E A1 + E A2)

ûy · (E B1 + E B2) = ûy · (E A1 + E A2)

ûx · (HB1 +HB2) = ûx · (HA1 +HA2)

ûy · (HB1 +HB2) = ûx · (HA1 +HA2)


, (2.2.12)

which may be expressed compactly as

[
Y
]
·


CA1

CA2

CB1

CB2

 =


0

0

0

0

 , (2.2.13)

wherein the 4× 4 matrix

[
Y
]
=



αA1 −αA2 αB1 −αB2

κAR κAL −κBR −κBL

αA1

√
εA
µA

αA2

√
εA

µA αB1

√
εB

µB αB2

√
εB

µB

−κAR

√
εA

µA κAL

√
εA

µA κBR

√
εB

µB −κBL

√
εB

µB


. (2.2.14)

The matrix
[
Y
]

must be singular for a nontrivial solution to Eq. (2.2.13). Hence the
dispersion equation

det[Y ] = 0 (2.2.15)
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arises, from which q/k0 can be derived by numerical methods [28]. After q/k0 is found,
relative values of the four scalars CA1,2 and CB1,2 can be obtained from Eq. (2.2.13)
by straightforward algebraic manipulations.

2.3 Numerical Studies

The materials A and B are both isotropic chiral materials [18], per the Tellegen consti-
tutive relations (2.2.1). To allow flexibility in specifying the constitutive parameters
for these materials, both materials A and B are modeled as HCMs. Specifically,
material ℓ ∈ {A,B} arises from the homogenization of two component materials,
namely component material ℓa which is an achiral, nonmagnetic, isotropic material
characterized by the relative permittivity εℓa and component material ℓb which is an
isotropic chiral material characterized by the relative constitutive parameters εℓb, µℓ

b,
and ξℓb per the Tellegen constitutive relations (2.2.1). Both component materials in
each half-space z ≶ 0 are assumed to be randomly distributed as electrically small
spheres, with the volume fraction of component material ℓa being f ℓ

a and that of
component material ℓb being f ℓ

b = 1− f ℓ
a.

Estimates of the constitutive parameters of the materials A and B, namely εℓ, µℓ,
and ξℓ (ℓ ∈ {A,B}), are provided by the Bruggeman homogenization formalism [24,
29]. This process involves numerically solving the following nonlinear matrix equation:

f ℓ
a

([
Kℓ

a

]
−

[
Kℓ

])
·
{[
I
]
+
[
Dℓ

]
·
([
Kℓ

a

]
−
[
Kℓ

])}−1

=

f ℓ
b

([
Kℓ

]
−

[
Kℓ

b

])
·
{[
I
]
+
[
Dℓ

]
·
([
Kℓ

b

]
−

[
Kℓ

])}−1

, (2.3.1)
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wherein the constitutive 2× 2 matrices[
Kℓ

a

]
=

[
εℓa 0

0 1

]
[
Kℓ

b

]
=

[
εℓb iξℓb

−iξℓb µℓ
b

]
[
Kℓ

]
=

[
εℓ iξℓ

−iξℓ µℓ

]


, (2.3.2)

the depolarization 2× 2 matrix

[
Dℓ

]
=

1

3
[
εℓµℓ + (ξℓ)2

] [ µℓ −ξℓ

ξℓ εℓ

]
, (2.3.3)

and
[
I
]

represents the 2× 2 identity matrix.
For the isotropic chiral component material, for both materials A and B, the rel-

ative constitutive parameters εAb = εBb = 3 + 0.01i, µA
b = µB

b = 0.95 + 0.0002i, and
ξAb = ξBb = 0.1 + 0.001i were fixed. These values are consistent with certain mildly
dissipative, isotropic chiral metamaterials [30]. For the isotropic achiral component
material for partnering material A, I fixed εAa = 2−0.02i. Thus, the component mate-
rial Aa is an active material. The selected value of εAa falls within the range commonly
used for active components of metamaterials in the visible regime. For example, a
mixture of Rhodamine 800 and Rhodamine 6G, yields a relative permittivity with the
real part in the range (1.8, 2.3) and the imaginary part in the range (−0.15,−0.02)

for the frequency range 440 − 500 THz, depending upon the relative concentrations
and the external pumping rate [31]. The volume fraction of component material Aa

was fixed at fA
a = 0.3. Consequently, the Bruggeman equation (2.3.1) delivers the

constitutive parameter estimates εA = 2.6721− 0.0007i, µA = 0.9645 + 0.0001i, and
ξA = 0.0675 + 0.0006i. Hence, material A is an isotropic chiral material that simul-
taneously supports amplification and attenuation of planewave, depending upon the
state of circular polarization [25]. Several manifestations of simultaneous amplifica-
tion and attenuation of planewave have been reported recently [32], including within
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the context of surface waves [33, 34].
Let the presentation of numerical results begin with the case where the achiral

component material Ba is specified by the relative permittivity εBa = 2− 0.02di. Con-
sidering d ∈ {−0.2,−0.5,−1} for which component material Ba is a weakly dissipative
dielectric material and d ∈ {0.2, 0.5, 1} for which component material Ba is an active
dielectric material. Estimates of the relative constitutive parameters of material B, as
provided by the Bruggeman equation (2.3.1), are plotted against the volume fraction
fB
a in Fig. 2.2. The Re

{
εB
}

, Re
{
µB}, and Re

{
ξB
}

are almost independent of the
parameter d; they vary in an approximately linear manner as fB

a varies. The Im
{
εB
}

is negative-valued for d > 0 and positive-valued for d < 0. The magnitude
∣∣Im{

εB
}∣∣

is larger when the magnitude of d is larger. The imaginary parts of µB and ξB are
both much less sensitive to d than is Im

{
εB
}

; both are positive-valued for all values
of d and both decay to zero in the limit fB

a → 1.
For the canonical problem under consideration, if the dispersion equation (2.2.15)

yields a solution then a surface wave is found. Specifically, for d ∈ {−1,−0.5,−0.2, 0.2, 0.5, 1},
a surface wave is supported for certain ranges of volume fraction fB

a . The Re {q/k0}
and Im {q/k0} for these surface waves are plotted against fB

a in Fig. 2.3. The volume
fraction ranges that support surface waves are as follows: fB

a ∈ (0.75, 1] for d = −1,
fB
a ∈ (0.78, 1] for d = −0.5, fB

a ∈ (0.83, 1] for d = −0.2, fB
a ∈ (0.90, 1] for d = 0.2,

fB
a ∈ (0.73, 1] for d = 0.5, and fB

a ∈ (0.70, 1] for d = 1. Notably, surface waves are not
supported at all for small values of fB

a . The real parts of q/k0 decrease approximately
linearly as fB

a increases, and these values are almost independent of d. The imaginary
parts of q/k0 decrease slightly as fB

a increases, with the magnitude |Im {q/k0}| being
greater when the magnitude of d is greater. Also Im {q/k0} > 0 when d < 0 and
Im {q/k0} < 0 when d > 0; that is, the surface wave attenuates in the direction of
propagation when the component material Ba is dissipative and the surface wave is
amplified in the direction of propagation when the component material Ba is active.

Further illumination on the nature of these surface waves is offered in Fig. 2.4
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Figure 2.2: Bruggeman estimates of the Re {·} and Im {·} parts of the relative
constitutive parameters εB, µB, and ξB plotted against volume fraction fB

a for
εBa = 2 − 0.02di. Key: d = 1.0 (thick dashed red curve), 0.5 (thick broken dashed
blue curve), 0.2 (thick solid green curve), −0.2 (thin dashed red curve), −0.5 (thin
broken dashed blue curve), and −1.0 (thin solid green curve).
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Figure 2.3: Re {·} and Im {·} parts of the relative wavenumber q/k0 plotted versus
volume fraction fB

a for εBa = 2 − 0.02di. Key: d = 1.0 (thick dashed red curve), 0.5
(thick broken dashed blue curve), 0.2 (thick solid green curve), −0.2 (thin dashed red
curve), −0.5 (thin broken dashed blue curve), and −1.0 (thin solid green curve).

Figure 2.4: Magnitudes of EA,B(zûz) · n, and HA,B(zûz) · n, along with PA,B(zûz) · n,
plotted against z/λ0, when εBa = 2− 0.02di, fB

a = 0.85, d = 0.5, and CA 1 = 1 Vm−1.
Key: n = ûx (solid red curves); n = ûy (dashed blue curves); n = ûz (broken dashed
green curves).
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Figure 2.5: Bruggeman estimates of the Re {·} and Im {·} parts of the relative
constitutive parameters εB, µB, and ξB plotted against volume fraction fB

a for
εBa = −2 + 0.02di. Key: d = 50 (solid red curve), 100 (dashed blue curve), and
200 (broken dashed green curve).
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Figure 2.6: Re {·} and Im {·} parts of the relative wavenumber q/k0 plotted versus
volume fraction fB

a for εBa = −2 + 0.02di. Key: d = 50 (solid red curve), 100 (dashed
blue curve), and 200 (broken dashed green curve).

Figure 2.7: Magnitudes of E A,B(zûz) ·n, and H A,B(zûz) ·n, along with P A,B(zûz) ·n,
plotted against z/λ0, when εBa = −2+0.02di, fB

a = 0.85, d = 100, and CA1 = 1 Vm−1.
Key: n = ûx (solid red curves); n = ûy (dashed blue curves); n = ûz (broken dashed
green curves).
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wherein variation of the spatial profiles of the electromagnetic field phasors are pro-
vided. Specifically, plotted are |E ℓ(zûz) · n| and |H ℓ(zûz) · n|, ℓ ∈ {A,B}, against
z/λ0 for n ∈

{
ûx, ûy, ûz

}
, when d = 0.5 and fB

a = 0.85, with CA1 = 1 V m−1. The
corresponding variation of the three Cartesian components P ℓ(zûz) · n, ℓ ∈ {A,B}
and n ∈

{
ûx, ûy, ûz

}
, of the power density (time-averaged Poynting vector) [27] are

also plotted using

P ℓ(r) =
1

2
Re [E ℓ(r)×H∗

ℓ(r) ] , ℓ ∈ {A,B} , (2.3.4)

where the asterisk signifies the complex conjugate. The surface electromagnetic wave
is rather loosely confined to the z = 0 planar interface, with prominent spreading of
the fields into both the half-spaces z > 0 and z < 0 even at z = ±40λ0. The surface
electromagnetic wave is a little more tightly bound to the planar interface z = 0 in
the half-space z > 0 than in the half-space z < 0. Profiles of the field phasors are
qualitatively similar for the other values of d considered here.

Next, let me consider the case when the achiral component material Ba is a
plasmonic material. To this end, the relative permittivity εBa = −2 + 0.02di with
d ∈ {50, 100, 200} is selected. In Fig. 2.5, estimates of the relative constitutive pa-
rameters of partnering material B, as provided by the Bruggeman equation (2.3.1),
are plotted as functions of volume fraction fB

a . The real parts of εB and ξB are gen-
erally larger when the parameter d is larger, especially for mid-range values of fB

a ,
whereas Re

{
µB} is almost independent of d. The Im

{
εB
}

is larger for larger values
of d. In contrast, the imaginary parts of µB and ξB are larger for smaller values of d
and these quantities both decay to zero in the limit fB

a → 1.
With the plasmonic component material Ba and d ∈ {50, 100, 200}, a surface wave

is supported for wide ranges of volume fraction fB
a , but not for all values of fB

a . The
Re {q/k0} and Im {q/k0} for these surface waves are plotted against fB

a in Fig. 2.6.
Surface waves are supported for the following ranges of volume fraction: fB

a ∈ (0.06, 1]

for d = 50, fB
a ∈ (0.06, 1] for d = 100, and fB

a ∈ (0.05, 1] for d = 200. Notably,
surface waves are not supported in the limit fB

a → 0. The Re {q/k0} increases quite
sharply as fB

a increases, depending upon the value d. Likewise, the imaginary parts
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of q/k0 increase as fB
a increases, with the largest values of Im {q/k0} arising when the

magnitude of d is smallest. Also, for all values of d, Im {q/k0} > 0 which indicates
that the surface waves are attenuated in the direction of propagation.

Profiles of the electromagnetic field phasors are presented in Fig. 2.7 for the case
where component material Ba is a plasmonic material, shedding further light on the
nature of these surface waves. For these computations, d = 100 and fB

a = 0.85, with
CA1 = 1 V m−1. The corresponding variation of the three Cartesian components of
the power density are also plotted. The surface electromagnetic wave is quite tightly
localized to the z = 0 planar interface, much more so than the corresponding surface
electromagnetic wave represented in Fig. 2.4, with the surface electromagnetic wave
being essentially confined to the region −λ0 < z < λ0. The surface electromagnetic
wave is rather more tightly bound to the z = 0 planar interface in the half-space z < 0

than in the half-space z > 0. Profiles of the field phasors are qualitatively similar for
the other values of d considered here.

2.4 Conclusions

The interface of two isotropic chiral materials is shown to support surface-wave prop-
agation for specific constitutive parameter ranges. Surface waves were found only for
specific ranges of fB

a . Within these ranges, only one surface wave, identified by its
relative wavenumber q/k0 was supported at each value of fB

a . For Re
{
εBa
}
> 0, as∣∣Im{

εBa
}∣∣ increased, surface waves were found for larger ranges of fB

a , and |Im {q/k0}|
for these surface waves increased. For Re

{
εBa
}
< 0, as Im

{
εBa
}

increased, the ranges
of fB

a that supported surface-wave propagation were almost unchanged, but Im {q/k0}
for these surface waves decreased. The surface waves found when Re

{
εBa
}
< 0 may be

regarded as alike to surface plasmon-polariton (SPP) waves, but those found for when
Re

{
εBa
}
> 0 may not. When the component material Ba was a plasmonic material,

the surface wave was similar to SPP wave subject to constrain Re
{
εA

}
×Re

{
εB
}
< 0.

But, when the component material Ba was a dielectric material, the surface wave was
not similar to the SPP wave, since Re

{
εA

}
> 0 and Re

{
εB
}
> 0. Furthermore, when
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the component material Ba was a dielectric material, the surface wave was not similar
to a Dyakonov wave, since both partnering materials were isotropic. These surface
waves were not akin to any of the well-established types of surface waves [1]. More-
over, when the component material Ba was taken as a dissipative dielectric material,
the surface waves could be considered similar to the Uller–Zenneck waves.

Slightly magnetic chiral materials were selected for the numerical studies presented
in Sec. 2.3. Qualitatively similar results may be obtained when the chiral materials
are non-magnetic.

Notably, for all surface-wave solutions reported herein, the constitutive parameters
of the materials A and B were complex-valued with non-zero imaginary parts. The
surface-wave propagation was not found possible for the case in which the constitutive
parameters of the materials A and B were positive real numbers. This is in line with
the fact that the interface of two non-dissipative dielectric materials cannot support
suraface wave [1].

Parenthetically, the choice of complex-valued constitutive parameters (with non-
zero imaginary parts) for the chiral partnering materials was not a matter of conve-
nience. Since optical rotation and circular dichroism were related via the Kramers–
Kronig relations [35, 36], complex-valued constitutive parameters were essential for
the sake of realism.
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Chapter 3

Metal and Isotropic Chiral
Medium

In this chapter, the SPP-waves excitation at the interface of an isotropic chiral mate-
rial and a plasmonic material is investigated in the practical setups of prism couplings.
The characteristics of the SPP waves in both the TKR and the Turbadar–Otto con-
figurations are studied. The associated canonical problem is also solved numerically
for the confirmation of the findings of the prism-coupled configurations.

Chapter 3 is planned as follows: The introduction and related literature review is
given in Sec. 3.1. The theoretical formulation of the canonical problem is presented
in Sec. 3.3. The theoretical formulation of the prism coupling technique is presented
in Sec. 3.2. The numerical results of the canonical problem and the prism couplings
for the SPP-waves excitation are presented and discussed in Sec. 3.4. The conclusions
are given in Sec. 3.5.

3.1 Introduction

Most of the applications of the SPP waves use isotropic dielectric material as part-
nering material with a plasmonic material. However, the scope for the applications
of the SPP waves can be increased by using complex chiral materials [1]. Hence, the
SPP waves have also been investigated with partnering material taken as isotropic

The work reported in this chapter is published in: Eur. Phys. J. Plus 135, 724 (2020).
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chiral materials [2] or isotropic homogenized composite chiral materials [3–6]. The
isotropic chiral materials are made by randomly suspending nano helixes in a host
dielectric material where the period of the suspended nano helixes should be smaller
than one-tenth of the operating wavelength of the electromagnetic wave [7, 8]. For
example, isotropic chiral materials, such as glucose and aspartame, can be made by
mixing chiral molecules in an isotropic host medium, such as water. These isotropic
chiral materials can be used to design other metamaterials also [9].

The chiral materials offer phenomenologically richer characteristics for surface-
wave propagation than achiral materials due to their intrinsic magneto-electric cou-
pling. The isotropic chiral materials are known as optically active materials because of
their gyrotropic properties owing to the magneto-electric coupling [10–12]. Therefore,
they have potential applications in coupling devices [11,13] and have potential usage
in directional couplers, switches, chirostrip antennas [14], chirowaveguides [11,12,15],
integrated optical devices and advanced radar technology [16]. Zhang and Li in-
vestigated the properties of the SPP-waves-based waveguiding structure using asym-
metric chiral-metal-chiral layers that are exploited for stronger confinement and en-
hanced propagation of light. Thus, these materials open up new possibilities in the
development of cutoff-based mode-selective waveguides. The cutoffs that exist for
the chiral-metal-chiral structures enable the possibility of new features for nanopho-
tonic devices [17]. Similar work on the exploration of the properties of the SPP
waves for enhanced propagation and better cutoff frequency but based on metal-
chiral-metal plasmonic waveguide is presented in [18]. These materials also support
hybrid modes. [1, 11]. Recently, hybrid surface-wave propagation has been studied
using chiral metamaterials [19,20]. Gyrotropic effects such as the circular dichroism,
the optical rotation, and the circular birefringence are exhibited by isotropic chiral
medium [21]. The characteristics of the SPP waves, such as the propagation length
and the dependence on the cutoff frequency and chirality parameter at a chiral-metal
surface, are studied in [22] for enantiomeric detection and on-chip chiral sensing. An-
other interesting application of plasmonics is reported in [23, 24] for the separation
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of chiral enantiomers and biomolecules and their manipulation using lateral optical
force and torque induced by the quantum spin Hall effect of light.

The propagation of surface waves along the interface of a chiral medium and a
plasmonic material has already been investigated theoretically in the canonical prob-
lem by Fantino in 1996 [25]. However, the canonical problem can not be implemented
experimentally since the partnering materials fill up the half spaces. For experimen-
tal implementation, the prism coupling is the simple technique to couple the incident
light with the SPP waves. Since there are two types of prism coupling techniques, I
have investigated both types of prism-coupled configurations to see if the SPP waves
can be excited using isotropic chiral materials.

3.2 Theory of Prism-Coupled Configurations

Consider the geometry of the problem as presented in Fig. 3.1. The half-space z ≤ 0 is
the incidence half-space filled up by an unbounded isotropic homogeneous dielectric
material (prism) with refractive index np. The region 0 ≤ z ≤ LA is occupied
by the isotropic homogeneous material A. The region LA ≤ z ≤ LΣ = LA + LB

is occupied by another isotropic homogeneous material B and the half-space z ≥
LΣ is the transmission half-space filled up by an unbounded isotropic homogeneous
dielectric material with refractive index nt.

The isotropic homogeneous chiral material is characterized by Tellegen constitu-
tive relations in the frequency-domain [8],

D(r, ω) = ε0ε(z)E(r, ω) + i
√
ε0µ0ξ(z)H(r, ω)

B(r, ω) = −i√ε0µ0ξ(z)E(r, ω) + µ0µ(z)H(r, ω)

 , (3.2.1)

where

ε(z) =

{
εA , 0 ≤ z ≤ LA

εB , LA ≤ z ≤ LA + LB
, (3.2.2)
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is the relative permittivity,

µ(z) =

{
µA , 0 ≤ z ≤ LA

µB , LA ≤ z ≤ LA + LB
, (3.2.3)

is the relative permeability, and

ξ(z) =

{
ξA , 0 ≤ z ≤ LA

ξB , LA ≤ z ≤ LA + LB
, (3.2.4)

is the relative chirality pseudoscalar. The relative constitutive parameters ε(z),

Figure 3.1: A general schematic for the SPP-waves excitation at the interface of two
different homogeneous isotropic mediums is shown representing the prism coupling.

µ(z), and ξ(z) are complex-valued. Also, these parameters are frequency depen-
dent per the causality principle represented by the Kramers–Kronig relations [26–28].
The isotropic homogeneous chiral material is characterized by these constitutive pa-
rameters. However, when the homogeneous isotropic material considered as a non-
magnetic plasmonic material, it is specified only by its complex-valued relative per-
mittivity with negative real-valued part, and the constitutive relations assume the
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following form in the frequency-domain,

D(r, ω) = ε0εmet(z)E(r, ω)

B(r, ω) = µ0H(r, ω)

 , (3.2.5)

where εmet(z) is the relative permittivity characterizing the non-magnetic plasmonic
medium.
In the TKR configuration, material A is a plasmonic material, and material B is
an isotropic chiral material. In the Turbadar–Otto configuration, the role of these
materials is interchanged. Therefore, the formulation provided in this section can be
used for both prism coupling techniques by appropriately selecting the materials.

Let me consider an electromagnetic wave propagating in the half-space z ≤ 0

and making an angle θ ∈ [0, π/2) with the z axis in the xz plane, be incident at
the interface z = 0. This will excite the SPP wave propagating parallel to ûx in the
xy plane. The incident, reflected, and the transmitted electric field phasors of the
electromagnetic waves can be written as

Einc(r) =
(
asûy + app+

)
exp[i (xκ+ zk0np cos θ)] , z ≤ 0

Eref (r) =
(
rsûy + rpp−

)
exp[i (xκ− zk0np cos θ)] , z ≤ 0

Etr(r) =
(
tsûy + tppt

)
exp[i (xκ+ k0nt cos θt(z − LΣ))] , z ≥ LΣ

 , (3.2.6)

where κ = k0np sin θ, LΣ = LA+LB, p
+
= −ûx cos θ+ ûz sin θ, p− = ûx cos θ+ ûz sin θ,

p
t
= −ûx cos θt + ûz sin θt , where

θt = sin−1(
np

nt

sin θ) (3.2.7)

is the transmission angle; as and ap represent the scalar amplitudes of the s- and p-
polarized electromagnetic waves, respectively. Similarly, rs and rp are the reflection
coefficients and the transmission coefficients are denoted by ts and tp. The correspond-
ing incident, reflected, and the transmitted magnetic field phasors of a planewave are
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derived from Maxwell’s curl postulates as follows

H inc(r) =
np

η0

(
asp+ − ap ûy

)
exp[i (xκ+ zk0np cos θ)] , z ≤ 0

Href (r) =
np

η0

(
rsp− − rp ûy

)
exp[i (xκ− zk0np cos θ)] , z ≤ 0

H tr(r) =
nt

η0

(
tspt − tp ûy

)
exp[i (xκ+ k0nt cos θt(z − LΣ))] , z ≥ LΣ

 . (3.2.8)

The electromagnetic field phasors in both materials can be written as

E(r) =
[
ex(z)ûx + ey(z)ûy + ez(z)ûz

]
exp (iκ x)

H(r) =
[
hx(z)ûx + hy(z)ûy + hz(z)ûz

]
exp (iκ x)

 . (3.2.9)

Substitution of Eqs. (3.2.5) and (3.2.9) in Maxwell curl postulates, i.e.,

∇× E(r, ω) = iωB(r, ω)

∇×H(r, ω) = −iωD(r, ω)

 , (3.2.10)

results in the two algebraic equations for a plasmonic medium as follows,

ezm(z) = − κ
ωε0εmet

hy(z)

hzm(z) =
κ

ωµ0
ey(z)

 , (3.2.11)

and four partial differential equations are also obtained, which can be re-arranged as
the matrix ordinary differential equation

d

dz
[f(z)] = i[P

met
] · [f(z)] , (3.2.12)

where

[f(z)] =


ex(z)

ey(z)

hx(z)

hy(z)

 (3.2.13)
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and

[P
met

] = ω


0 0 0 µ0

0 0 −µ0 0

0 −ε0εmet 0 0

ε0εmet 0 0 0



+
κ2

ωµ0ε0εmet


0 0 0 −µ0

0 0 0 0

0 ε0εmet 0 0

0 0 0 0

 . (3.2.14)

Substitution of Eqs. (3.2.1) and (3.2.9) in Maxwell curl postulates, for a homogeneous
isotropic chiral medium gives

d

dz
[f(z)] = i[P

ch
] · [f(z)] , (3.2.15)
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with

[P
ch
] = k0


0 −iξ 0 0

iξ 0 0 0

0 0 0 −iξ
0 0 iξ 0



+ω


0 0 0 µ0µ

0 0 −µ0µ 0

0 −ε0ε 0 0

ε0ε 0 0 0



+
κ2

ω
√
µ0ε0[εµ− ξ2]


0 −iξ 0 0

0 0 0 0

0 0 0 −iξ
0 0 0 0



+
κ2

ωµ0ε0[εµ− ξ2]


0 0 0 −µ0µ

0 0 0 0

0 ε0ε 0 0

0 0 0 0

 , (3.2.16)

and the two algebraic equations are obtained as follows,

ez(z) =
µκ

ω ε0[ξ2−εµ]
hy(z) +

i κ ξ
k0 [ξ2−εµ]

ey(z)

hz(z) = − ε κ
ω µ0[ξ2−εµ]

ey(z) +
i κ ξ

k0 [ξ2−εµ]
hy(z)

 . (3.2.17)

The incident and reflected electric field phasors (3.2.6) and the corresponding
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magnetic field phasors (3.2.8) give [f(0−)] = [K
inc

] · [as ap rs rp]T , where

[K
inc

] =


0 − cos θ 0 cos θ

1 0 1 0

−np

η0
cos θ 0 np

η0
cos θ 0

0 −np

η0
0 −np

η0

 . (3.2.18)

Similarly, the transmitted electric and magnetic field phasors give [f(LΣ+)] = [K
tr
] ·

[ts tp 0 0]T , where

[K
tr
] =


0 − cos θt 0 cos θt

1 0 1 0

−nt

η0
cos θt 0 nt

η0
cos θt 0

0 −nt

η0
0 −nt

η0

 . (3.2.19)

At the same time, the solution of the MODE (3.2.12) gives,

[f(LΣ−)] = ei[PB
]LB · ei[PA

]LA · [f(0+)] (3.2.20)

where [PA] is the [P (z)] matrix for material A and [PB] is the [P (z)] matrix for ma-
terial B.
Using the standard boundary conditions [29]

[f(0−)] = [f(0+)]

[f(LA−)] = [f(LA+)]

[f(LΣ−)] = [f(LΣ+)]

 (3.2.21)

gives 
ts

tp

0

0

 = [K
tr
]−1 · ei[PB

]LB · ei[PA
]LA · [K

inc
] ·


as

ap

rs

rp

 . (3.2.22)
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To find the reflection and transmission coefficients, Eq. (3.2.22) can be written as
ts

tp

0

0

 =
[
M

]
·


as

ap

rs

rp

 , (3.2.23)

where

[M ] = [K
tr
]−1 · ei[PB

]LB · ei[PA
]LA · [K

inc
]

=


m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44

 .

(3.2.24)

Therefore, using the bottom two rows of Eq. (3.2.23), I get

[
rs

rp

]
= −

[
m33 m34

m43 m44

]−1

·

[
m31 m32

m41 m42

]
·

[
as

ap

]
. (3.2.25)

After finding the reflection amplitudes from Eq. (3.2.25), the transmission amplitudes
can be obtained from the top two rows of Eq. (3.2.22).

The absorptances can then be determined with the help of the reflection and
transmission amplitudes by using [30]

As = 1− |rs|2 + |rp|2 + (|ts|2 + |tp|2)F
|as|2

, ap = 0 , (3.2.26)

for s-polarized incident light, and

Ap = 1− |rs|2 + |rp|2 + (|ts|2 + |tp|2)F
|ap|2

, as = 0 , (3.2.27)
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for p-polarized incident light, where

F =
Re [nt cos θt]

np cos θ
. (3.2.28)

3.3 Theory of Canonical Problem

In Chap. 2, the formulation of the canonical problem was presented for the two
homogeneous isotropic chiral half-spaces. However, in this section, the formulation of
the canonical problem is presented for two isotropic homogeneous materials, of which
one is a plasmonic material and the other is an isotropic chiral material. Figure 3.2
shows the schematic of the canonical problem. Let the half-space z ≤ 0 be filled up
by the isotropic and homogeneous plasmonic material characterized by the relative
permittivity εmet which is complex-valued. The half-space z ≥ 0 is filled up by the
isotropic homogeneous chiral material. Without loss of generality, the SPP-wave

Figure 3.2: A general schematic for the SPP-waves propagation along the interface
of two different isotropic homogeneous half-spaces is shown.

propagation is along the x-axis propagating along the planar interface z = 0, and
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attenuates as z → ±∞. Therefore, in the region z ≤ 0, the wave vector can be
written as

kmet = qûx − αmetûz (3.3.1)

where q2 + α2
met = k20εmet, q is complex-valued, and Im(αmet) > 0 for attenuation

as z → −∞. Correspondingly, the field phasors in the plasmonic half-space can be
represented as,

E(r) =

[
ap

(
αmet

k0

ûx +
q

k0

ûz

)
+ as ûy

]
exp(ikmet · r), z ≤ 0 , (3.3.2)

and

H(r) = η−1
0

[
as

(
αmet

k0

ûx +
q

k0

ûz

)
− ap εmet ûy

]
exp(ikmet · r), z ≤ 0 , (3.3.3)

where the subscripts s and p represent the s− (perpendicular-) and p- (parallel-)
polarization states with respect to the xz plane, respectively. Here as and ap are
unkown scalars.

The electromagnetic field phasors in the half-space z > 0 is given as E(r) =

e(z) exp (iκ x) and H(r) = h(z) exp (iκ x) where e(z) = ex(z)ûx + ey(z)ûy + ez(z)ûz

and h(z) = hx(z)ûx + hy(z)ûy + hz(z)ûz. The components ez(z) and hz(z) of the
electromagnetic field phasors can be obtained in terms of the other two components
as follows,

ez(z) =
µB κ

ω ε0[(ξB)2−εBµB]
hy(z) +

i κ ξB

k0 [(ξB)2−εBµB]
ey(z) , z > 0

hz(z) = − εB κ
ω µ0[(ξB)2−εBµB]

ey(z) +
i κ ξB

k0 [(ξB)2−εBµB]
hy(z) , z > 0

 , (3.3.4)

where εB is the relative permittivity, µB is the relative permeability, and ξB represents
the relative chirality pseudoscalar of the isotropic chiral material. The other two
components of electromagnetic field phasors can be expressed in vector form as,

[f(z)] =


ex(z)

ey(z)

hx(z)

hy(z)

 (3.3.5)
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which satisfies the matrix ordinary differential equation as,

d

dz
[f(z)] = i[PB] · [f(z)] , z > 0 , (3.3.6)

where 4× 4 matrix

[PB] = k0


0 −iξB 0 0

iξB 0 0 0

0 0 0 −iξB

0 0 iξB 0



+ω


0 0 0 µ0µ

B

0 0 −µ0µ
B 0

0 −ε0εB 0 0

ε0ε
B 0 0 0



+
κ2

ω
√
µ0ε0[εBµB − (ξB)2]


0 −iξB 0 0

0 0 0 0

0 0 0 −iξB

0 0 0 0



+
κ2

ωµ0ε0[εBµB − (ξB)2]


0 0 0 −µ0µ

B

0 0 0 0

0 ε0ε
B 0 0

0 0 0 0

 . (3.3.7)

Let the eigenvector corresponding to the nth eigenvalue αn of [PB], be [t](n), n ∈ [1, 4].
After labeling the eigenvalues of [PB] constrained to the condition Im(α1,2) > 0, the
corresponding two eigenvectors can be used to write,

[f(0+)] =
[ [

t(1)
] [

t(2)
] ]

·

[
c1

c2

]
. (3.3.8)

for the propagation of the SPP wave, where c1 and c2 are unknown scalars (dimen-
sionless). The other two eigenvalues of [PB] pertain to the amplified wave as z → ∞
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and therefore, have no contribution to the existence of the SPP wave. At the same
time, [f(0−)] can be found from Eqs. (3.3.2) and (3.3.3), as given in matrix form

[f(0−)] =


0 αmet

k0

1 0

αmet

k0η0
0

0 − εmet

k0η0

 ·

[
as

ap

]
. (3.3.9)

The SPP waves must have their tangential electric and magnetic fields continuous
across the planar interface z = 0, requires that [f(0−)] = [f(0+)], which can be
re-arranged as the matrix equation

[Y ] ·


as

ap

c1

c2

 =


0

0

0

0

 . (3.3.10)

The 4× 4 [Y ] matrix must be singular to get the nontrivial solution, so that

det[Y ] = 0 (3.3.11)

is the dispersion relation for the SPP wave. This equation is solved to find out the
solution for the SPP wave.

3.4 Results and Discussion

Representative numerical results are illustrated here to show the SPP-waves excitation
at the interface of isotropic chiral material with the permittivity of that of water at
λ0 = 633 nm and an aluminum (relative permittivity = −56 + 21i). Both materials
are taken to be non-magnetic with µA = µB = 1. Let me begin with the canonical
problem and then follow up with two prism-coupled configurations.

3.4.1 Canonical problem

Before presenting the findings of the prism coupling techniques, let me consider the
solution to the underlying canonical problem. As stated earlier, in the canonical
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problem, the propagation of the SPP wave along the interface of a metallic half-space
and the half-space filled up by a homogeneous isotropic chiral medium is considered.
The solution of the dispersion relation found for the canonical problem is shown in Fig.
3.3 as a function of the real part of the chirality pseudoscalar. The metal (material A)
was taken to be aluminum and the chiral material was chosen with εB = 1.77 + 0.01i

and Im(ξB) was fixed at 0.0001. The figure shows that

• the SPP wave exists only when Re(ξB) ≤ 0.04, and

• the Re(q/k0) almost remains the same but the imaginary part approaches zero
as Re(ξB) → 0.04.

The threshold value of Re(ξB) = 0.04, shown in Fig. 3.3, depends upon the partnering
metal and the permittivity of the chiral medium. As found in Fantino’s paper [25], the
surface waves cannot be observed along with the interface of two lossless media. Also,
the threshold value of the Im(ξB) of the chiral medium up to which the excitation of
the SPP waves is possible was strongly dependent upon the permittivity of the chiral
medium.
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Figure 3.3: The Re {·} and Im {·} parts of the relative wavenumber of the SPP wave
versus real part of ξB in the canonical problem. The imaginary part of ξB was fixed at
0.0001. Furthermore, εB = 1.77+0.01i, µA = µB = 1, ξA = 0, εA = εAmet = −56+21i,
and λ0 = 633 nm.
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3.4.2 Conditions for the excitation of the SPP waves

The SPP waves cannot be excited by mere incidence of a planewave on an interface.
To excite these waves, a material of refractive index higher than the ratio of the
Re(q) of the SPP wave to free-space wavenumber is required. This material is usually
referred to as the prism. At a particular angle of incidence, the component of wave
vector of the incident planewave along the interface matches that of the possible
SPP wave and the SPP wave is launched. At this angle of incidence, a peak in the
absorptance spectrum appears signifying the coupling of the incident energy to this
SPP wave. The absorptance spectrum refers to the plots of absorptance as a function
of the incidence angle, as given in Fig. 3.4. However, since the waveguide modes can
also be excited in the finitely thick layers of the partnering materials, following three
conditions [31, 32] have to be met by the absorptance peak to signify the SPP-wave
excitation and to eliminate the waveguide modes:
(i) The wavenumber along the interface, κ in this case, must match the Re(q) obtained
from the canonical problem.
(ii) The angular location of the peak should also not change when the thickness of
the partnering materials is changed because the SPP wave is highly confined to the
interface and does not care if thicker partnering materials are present as long as the
thickness is large enough to contain the SPP wave in the transverse direction.
(iii) The spatial profiles of the three Cartesian components of the Poynting vector
should indicate the localization of the power of the SPP wave to the interface.
In the following two sections, these three tests are adopted to verify the excitation of
the SPP waves.

3.4.3 TKR prism coupling

Turbadar–Kretschmann–Raether (TKR) configuration [33, 34] is a commonly used
experimental setup to excite the SPP wave in which a metal (material A) is sand-
wiched between a sufficiently thick isotropic and homogeneous high-refractive-index
dielectric material (prism) and a finitely-thick material (isotropic chiral medium B).



70

This can be experimentally implemented by depositing a thin metallic film on top of
a glass slide. The chiral medium can either be deposited on top of the metallic film
or can be placed as a liquid. The other side of the glass slide is affixed to a prism
with an index matching oil in between to avoid air film. I chose a prism with high
refractive index np = 2.6 and the transmission medium is taken as air with refractive
index ntr = 1.

For representative numerical results, material A is chosen as aluminum and ma-
terial B as an isotropic chiral medium (relative permittivity = 1.77 + 0.01i). The
absorptance Ap against the incidence angle was computed and presented in Fig. 3.4
for fixed LA = 15 nm and LB = 500 nm for various values of the chirality pseudoscalar.
When Re(ξB) ≤ 0.04, the absorptance peak at θ ∼ 31.6◦ in Fig. 3.4 represents the
SPP waves since κ/k0 ∼ 1.36 at θ = 31.5◦ is nearly the same as Re(q/k0) ∼ 1.35

and this peak was discerned to be independent of the thickness of the chiral material.
The nearly constant angular location of the absorptance peak for various values of
the chirality pseudoscalar is in line with Fig. 3.3, demonstrating the near-constant
Re(q/k0) of the SPP waves in the canonical problem. The other peak with significant
amplitude at almost θ = 25.3◦ in the absorptance spectra for Re(ξB) ≤ 0.04 repre-
sents the waveguide mode because it changed its angular location when the thickness
of the chiral material was changed. When Re(ξB) > 0.04, the absorptance peak be-
gins to drop and eventually vanish indicating the presence of a threshold value of the
chirality parameter. The absence of any significant discernible peak in the spectra of
absorptance for the s-polarized incidence in Fig. 3.5 shows that the SPP waves are
not being excited by the s-polarized incident electromagnetic wave.

The SPP waves must be confined to the metal/chiral-medium interface. To see
this, the absorptance Ap in Fig. 3.6 is plotted vs. the incidence angle for a fixed
ξB = 0.03 + 0.0001i and LA = 15 nm but different thicknesses of the chiral medium
for the p-polarized incidence. Figure 3.6 shows that the angular location of the
absorptance peak does not change with the change in the thickness of the chiral
medium. This fixed angular position of the absorptance peak at θ = 31.5◦ shows the
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confinement of the SPP wave to the interface in the chiral medium. Whereas, the
other absorptance peak changes its angular location, indicating that it represents the
waveguide modes. The fixed angular position can also be seen in the plot of total
reflectance

Rp =
|rs|2 + |rp|2

|ap|2

∣∣∣∣
as=0

, (3.4.1)

for p-polarized incidence as shown in Fig. 3.7 showing a reflectance dip. The re-
flectance dip representing the SPP-wave excitation is generally referred to as the
attenuated total reflectance (ATR).
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Figure 3.4: The absorptance Ap plotted versus the incidence angle θ for p-polarized
incident electromagnetic wave in the TKR configuration when np = 2.6, nt = 1,
LA = 15 nm, LB = 500 nm, εA = εAmet = −56 + 21i, εB = 1.77 + 0.01i, ξA = 0, and
Im(ξB) = 0.0001. The downward arrow pinpoints the absorptance peak that signifies
the SPP-wave excitation.

To further confirm the SPP-waves excitation and the localization to the interface,
the spatial variation of the three Cartesian components of power density

P (r) =
1

2
Re [E(r)×H∗(r) ] (3.4.2)

are shown in Fig. 3.8 for (a) ξB = 0.00 + 0.0001i and (b) ξB = 0.02 + 0.0001i when
θ = 31.5◦. The figure shows the strong confinement of the SPP waves to the interface
of the plasmonic material and the isotropic chiral medium. The information about
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Figure 3.5: Same as Fig. 3.4 except that the absorptance is computed for the s-
polarized incident planewave.
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Figure 3.6: Same as Fig. 3.4 except that the absorptance is computed for different
thicknesses of the chiral material and for fixed ξB = 0.03 + 0.0001i and LA = 15.
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Figure 3.7: The total reflectance Rp plotted versus the incidence angle θ for p-
polarized incident electromagnetic wave in the TKR configuration when np = 2.6,
nt = 1, LA = 15 nm, εA = εAmet = −56 + 21i, εB = 1.77 + 0.01i, ξA = 0, and
ξB = 0.03 + 0.0001i for different values of LB. The downward arrow pinpoints the
reflectance dip that signifies the SPP-wave excitation.
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Figure 3.8: Magnitudes of the three Cartesian components of power density P (0, 0, z)
versus z in the TKR configuration when p-polarized electromagnetic wave is incident
at the metal/chiral-medium interface for (a) ξB = 0.00+ 0.0001i and (b) ξB = 0.02+
0.0001i when the incidence angle θ = 31.5◦. The other parameters are the same as
given in Fig. 3.4. The x-, y-, and z-components are denoted, respectively, by a solid
red line, a dashed blue line, and a chain-dashed black line.
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the polarization states (p- or s-) of the SPP waves can be deduced from the field
profiles (not shown here).

3.4.4 Turbadar–Otto prism coupling

The Turbadar–Otto configuration [33,35] is an alternative to the TKR configuration.
In this configuration, material A is the isotropic chiral medium and material B is
the metal. The absorptances Ap for this configuration are presented in Fig. 3.9 for
fixed LA = 500 nm and LB = 30 nm for various values of the chirality pseudoscalar.
For Re(ξA) ≤ 0.04, the absorptance peaks at θ ∼ 31.2◦ with κ/k0 ∼ 1.35 matches
the solution in the canonical problem confirming the excitation of the SPP wave
for p-polarized incidence. When Re(ξA) > 0.04, the peak begins to diminish, just
like in the TKR configuration. However, this figure shows that the absorptance
peaks or reflectance dips are easy to identify in the Turbadar–Otto than in the TKR
configuration. The angular locations of the absorptance peaks were found to be
independent of the thickness of the chiral medium. A representation of this is provided
in Fig. 3.10 for fixed ξA = 0.03+0.0001i and LB = 30 nm but different thicknesses of
the chiral medium for the p-polarized incident light. The same angular independence
is also indicated by the plots of the total reflectance Rp in Fig. 3.11.

Further confirmation comes from the magnitudes of the three Cartesian compo-
nents of the power density presented in Fig. 3.12 plotted against distance z perpen-
dicular to the interface for p-polarized incident planewave as shown in Fig. 3.12(a)
and Fig. 3.12(b) for ξA = 0.00 + 0.0001i and 0.02 + 0.0001i, respectively, at the
incidence angle θ = 31.1◦ of the absorptance peak identified earlier. The SPP-waves
excitation can be discerned by strong localization of the three Cartesian components
of the power density at the chiral-medium/metal interface.

To see if s-polarized incidence could excite the SPP waves in the Turbadar–Otto
configuration, the plots of the absorptance for the s-polarized incident planewave were
also computed and shown in Fig. 3.13. However, the angular locations of the absorp-
tance peaks in the plots of As in Fig. 3.13 were found to depend on the thickness of the
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Figure 3.9: The absorptance Ap plotted versus the incidence angle θ for p-polarized
electromagnetic wave in the Turbadar–Otto configuration when np = 2.6, nt = 1,
LA = 500 nm, LB = 30 nm, εA = 1.77 + 0.01i, εB = εBmet = −56 + 21i, Im(ξA) =
0.0001, and ξB = 0. The downward arrow pinpoints the absorptance peak that
signifies the SPP-wave excitation.
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Figure 3.10: Same as Fig. 3.9 except that the absorptance is computed for different
values of the thickness of the chiral medium for fixed ξA = 0.03+0.0001i and LB = 30
nm. The downward arrow pinpoints the absorptance peak that signifies the SPP-wave
excitation.
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Figure 3.11: The total reflectance Rp plotted versus the incidence angle θ for p-
polarized electromagnetic wave in the Turbadar–Otto configuration when np = 2.6,
nt = 1, LB = 30 nm, εA = 1.77 + 0.01i, εB = εBmet = −56 + 21i, Im(ξA) = 0.0001,
and ξB = 0. The downward arrow pinpoints the reflectance dip that signifies the
SPP-wave excitation.
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Figure 3.12: Magnitudes of the three Cartesian components of power density P (0, 0, z)
versus z in the Turbadar–Otto configuration when p-polarized electromagnetic wave
is incident at the chiral-medium/metal interface for (a) ξA = 0.00 + 0.0001i and (b)
ξA = 0.02+0.0001i when the incidence angle θ = 31.1◦. The other parameters are the
same as given in Fig. 3.9. The x-, y-, and z-components are denoted, respectively,
by a solid red line, a dashed blue line, and a chain-dashed black line.
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Figure 3.13: Same as Fig. 3.9 except that the absorptance is computed for the s-
polarized incident planewave.
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Figure 3.14: Magnitudes of the three Cartesian components of power density P (0, 0, z)
versus z in the Turbadar–Otto configuration when s-polarized light is incident at the
chiral-medium/metal interface for (a) ξA = 0.00+0.0001i and (b) ξA = 0.02+0.0001i
when the incidence angle θ = 27◦. The other parameters are the same as given in
Fig. 3.9. The x-, y-, and z-components are denoted, respectively, by a solid red line,
a dashed blue line, and a chain-dashed black line.
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chiral medium. Therefore, these absorptance peaks symbolize the waveguide modes,
as it is also verified from the profiles of the three Cartesian components of the power
density given in Fig. 3.14 for two values of the chirality pseudoscalar. The figure
clearly shows the propagation of the waveguide modes. Therefore, the s-polarized
incident electromagnetic wave cannot excite the SPP waves at the interface of an
isotropic homogeneous chiral medium and metal in the Turbadar–Otto configuration.

3.5 Conclusions

In this chapter, the SPP-waves excitation at the interface of a plasmonic material and
a homogeneous isotropic chiral medium in the two prism couplings was theoretically
established. Both the TKR and the Turbadar–Otto configurations can be used to
excite the SPP waves. However, the results for the SPP-wave excitation in later con-
figuration were easily discernible than the former. Moreover, the SPP waves existed
only when the chirality pseudoscalar was smaller than a threshold value. The SPP
waves could only be excited by the p-polarized planewave and not by the s-polarized
incident planewave in both the configurations. The profiles of the three Cartesian
components of power density showed that the SPP waves were found strongly local-
ized to the planar interface of the plasmonic material and the chiral medium.
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Chapter 4

Metal and Non-Magnetic
Uniaxially Chiral, Bianisotropic
Material

In Chap. 3, I studied the excitation and the SPP-waves propagation along the inter-
face of isotropic chiral material and the plasmonic material in the canonical problem
and prism coupling. In this chapter, the excitation and the SPP-waves propagation
along the planar interface of a plasmonic material and a non-magnetic, uniaxially
chiral, bianisotropic material is investigated. The characteristics of the SPP waves
in two prism-coupled configurations are studied and verified by the spatial profiles
when the direction of propagation was assumed perpendicular to the direction of the
chirality and uniaxiality. The associated canonical problem is also solved numerically
for the confirmation of the findings of the prism-coupled configurations.

Chapter 4 is planned as follows: The introduction and related literature review
is given in Sec. 4.1. The theoretical formulation of the prism-coupled problem is
provided in Sec. 4.2. The illustrative numerical results of the canonical problem and
prism coupling for the SPP-waves excitation are discussed and presented in Sec. 4.3.
Conclusions are given in Sec. 4.4.

The work reported in this chapter is published in: Opt. Commun. 465, 125611 (2020). Erratum:
465, 126279 (2020).
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4.1 Introduction

The uniaxial bianisotropic medium is a special case of the linear bianisotropic medium
[1]. The non-magnetic uniaxially chiral, bianisotropic material [1–3] can be thought
of as an assembly of parallel dielectric nano helixes in the host dielectric medium [1,2]
when the period and thickness of these helixes are smaller than one-tenth of the op-
erating wavelength of the electromagnetic wave inside the material. Such a medium
can be easily fabricated using physical vapor deposition techniques [4]. For this work,
the direction of uniaxiality and chirality of the chosen medium is assumed perpendic-
ular to the direction of the propagation of the SPP waves guided by the interface [3].
The SPP-wave propagation supported by the interface of the non-magnetic uniaxially
chiral medium and a plasmonic material has already been investigated theoretically
in the canonical problem by [3]. Can the SPP-wave excitation be made possible at
the interface of the non-magnetic uniaxially chiral, bianisotropic material and a plas-
monic material in an experimental setup using two prism-coupled configurations, i.e.,
Turbadar–Kretschmann–Raether (TKR) [5,6] configuration, and Turbadar–Otto [5,7]
configuration for s- and p-polarized incidence light? This chapter presents the results
of theoretical investigations to answer this question. In this chapter, I consider a
non-magnetic medium since magnetic effects are usually small. I will consider the
general case in Chapter 5.

4.2 Theory: Prism-Coupled Configurations

A general formulation of the boundary-value problem of the prism-coupled config-
uration for two different homogeneous non-magnetic materials, namely, material A
and material B, is presented. Consider the geometry of the problem as depicted
in Fig. 4.1. The half-space z ≤ 0 is the incidence half-space filled up by an un-
bounded isotropic homogeneous dielectric material (prism) with np as refractive in-
dex. The region 0 ≤ z ≤ LA is occupied by the homogeneous material A. The region
LA ≤ z ≤ LΣ = LA + LB is occupied by another homogeneous material B and the
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half-space z ≥ LΣ is the transmission half-space filled up by the unbounded isotropic
homogeneous dielectric material with refractive index nt.

Figure 4.1: A general schematic for the SPP-waves excitation at the interface of two
different homogeneous materials is shown in the prism coupling.

The homogeneous non-magnetic, uniaxially chiral, bianisotropic material is char-
acterized by Tellegen constitutive relations in the frequency-domain [8] as

D(r, ω) = ε0 {εb(z)E(r, ω) + [εa(z)− εb(z)] ûzEz(r, ω)}+ iγ(z)ûzHz(r, ω)

B(r, ω) = µ0µb(z)H(r, ω)− iγ(z)ûzEz(r, ω)

 ,

(4.2.1)
where

τ(z) =

{
τA , 0 ≤ z ≤ LA

τB , LA ≤ z ≤ LA + LB
, (4.2.2)

with τ = {εa, εb, µb, γ}, where εa(z) and εb(z) represent the relative permittivity
scalars of the uniaxial medium, µb(z) represents the relative permeability scalar, and
the chirality pseudoscalar of the material is represented by γ(z). These parameters



86

are complex-valued and frequency dependent per the causality principle represented
by the Kramers–Kronig relations [9].

The formulation for the prism-coupled configurations is the same as devised in
Sec. 3.2. Therefore, these equations are not repeated here except

ez(z) =
iκγ(z) ey(z)+µ0µb(z)κhy(z)

ω{[γ(z)]2−ε0µ0εa(z)µb(z)}

hz(z) =
−ε0εa(z)κ ey(z)+iκγ(z)hy(z)

ω{[γ(z)]2−ε0µ0εa(z)µb(z)}

 , (4.2.3)

and

[P (z)] = ω


0 0 0 µ0µb(z)

0 0 −µ0µb(z) 0

0 −ε0εb(z) 0 0

ε0εb(z) 0 0 0



+
κ2

ω
{
[γ(z)]2 − ε0µ0εa(z)µb(z)

}


0 iγ(z) 0 µ0µb(z)

0 0 0 0

0 −ε0εa(z) 0 iγ(z)

0 0 0 0

 ,

(4.2.4)

which are different from Sec. 3.2.

4.3 Numerical Results and Discussion

Representative numerical results are now presented to show the SPP-wave excita-
tion at the interface of aluminum and a non-magnetic uniaxially chiral, bianisotropic
material for correspondence with the underlying canonical problem in Ref. [3]. The
materials assumed are non-magnetic and λ0 = 633 nm was fixed. I begin with pre-
senting the solution of the canonical boundary-value problem.
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4.3.1 Canonical boundary-value problem

In the underlying canonical problem, the propagation of the SPP wave propagating
along the interface of a homogeneous isotropic metallic half-space with εA = εAmet =

−56 + 21i and the homogeneous non-magnetic uniaxially chiral, bianisotropic half-
space with εBa = 2, εBb = 3, and µB

b = 1 was considered.
To investigate the effect of the complex-valued chirality parameter, the relative

wavenumbers q/k0 of the possible SPP waves were obtained by solving the dispersion
relation [3] against the Re(γBc) = γB/

√
ε0µ0, using the Newton–Raphson technique.

The Re {·} and Im {·} parts of q/k0 of the SPP waves are presented in Fig. 4.2 as a
function of the real part of (γBc) = γB/

√
ε0µ0 while the imaginary part was fixed at

0.0001. The solutions for the SPP wave could only be found for Re(γBc) ≤ 0.1631.
Moreover, the imaginary part of the solution approaches zero as Re(γBc) → 0.1631.
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Figure 4.2: The (a) Re {·} and (b) Im {·} parts of the relative wavenumber q/k0

plotted versus the real part of the relative chirality parameter (γBc) = γB/
√
ε0µ0.

The imaginary part of the parameter was fixed at Im(γBc) = 0.0001.

4.3.2 TKR prism coupling

To excite the SPP waves, the Turbadar–Kretschmann–Raether (TKR) configuration
is a commonly used experimental setup in which a thin metallic film (material A)
is placed between a sufficiently thick, homogeneous, isotropic high refractive index
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dielectric material (prism) and a finitely-thick dielectric material (material B). For
the calculations in this section, the prism was chosen with refractive index np = 1.73

and the transmission medium was taken as made up of the same material as that
of the prism with refractive index nt = np. Furthermore, aluminum was chosen as
the partnering metal (material A) and non-magnetic uniaxially chiral, bianisotropic
material was taken as material B. These materials are specified by the following
values of the constitutive parameters:

εAa = εAb = −56 + 21i ,

γA = 0 ,

µA
b = 1 ,

εBa = 2 ,

εBb = 3 ,

µB
b = 1 .


(4.3.1)

The SPP-wave excitation in the prism-coupled configurations is elucidated using
the absorptance spectrum and identifying the absorptance peaks that are independent
of the thickness of the partnering bianisotropic material. The magnitude of wave
vector of the electromagnetic wave along the direction of propagation must also match
the Re(q) found by the underlying canonical problem. The same approach is adopted
here.

Before discussing the SPP-waves excitation in the TKR configuration, let me
compute the θinc where the SPP waves are predicted to be excitable by the canonical
problem. The incidence angle of excitation of the SPP wave θSPP

inc was computed by

θSPP
inc = sin−1[Re(q)/npk0] (4.3.2)

and plotted as a funciton of the real part of the relative chirality parameter in Fig.
4.3 whereas the imaginary part was fixed at 0.0001.

The absorptances against the incidence angle and the chirality parameter were
computed for the planewave incidence in the TKR configuration and are presented in
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Figure 4.3: The angle of incidence of the SPP-wave excitation plotted versus the
real part of the relative chirality parameter (γBc) = γB/

√
ε0µ0 predicted by canonical

problem.

Figs. 4.4(a) and (b) when the electromagnetic wave is p- and s-polarized, respectively,
for LA = 15 nm and LB = 400 nm. The absorptance band at θ ∼ 58◦ in the plot
of Ap represents the excitation of the SPP waves since it did not change its position
when LB = 500 nm or LB = 600 nm used (figures not shown). The wavenumber
κ = 1.467k0 also matches the real part of q obtained in the canonical problem [3].
The angular location of the absorptance band also agrees with Fig. 4.3. It can be
noted that the absorptance band is present only when Re(γBc) ≲ 0.15. This is in line
with the prediction of the canonical problem as it was found there that the solution of
the dispersion equation existed only when Re(γBc) ≲ 0.16. Furthermore, Fig. 4.4(b)
shows that the s-polarized incident electromagnetic wave does not excite any SPP
wave in the TKR configuration as no evidence of absorptance band is found.

To see the confinement of the SPP waves to the interface, the three Cartesian
components of power density

P (r) =
1

2
Re [E(r)×H∗(r) ] (4.3.3)

are presented in Fig. 4.5 for Re(γBc) = (a) 0 and (b) 0.1. Both the profiles in Fig.
4.5 show strong localization of the SPP waves in the non-magnetic uniaxially chiral,
bianisotropic medium. However, the efficiency of the excitation decreases for larger
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Figure 4.4: Absorptances plotted versus the incidence angle θ and chirality parameter.
The absorptances for the TKR configuration are given for (a) p-polarized incident
planewave and (b) s-polarized incident planewave when np = nt = 1.73, LA = 15 nm,
LB = 400 nm, εA = −56 + 21i, εBa = 2, εBb = 3, γA = 0, and Im(γBc) = 0.0001.
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Figure 4.5: Magnitudes of the three Cartesian components of power density in the
TKR configuration when (a) θ = 58.7◦ and (b) θ = 58.9◦. The other parameters are
np = nt = 1.73, LA = 15 nm, LB = 400 nm, εA = −56 + 21i, εBa = 2, εBb = 3, γA = 0,
and Im(γBc) = 0.0001 for p-polarized incidence. The Px, Py, and Pz components
are shown by a solid red line, a dashed blue line, and a chain-dashed black line,
respectively.

values of Re(γBc). The p-polarized nature of the SPP wave was deduced from the field
profiles (not provided here) when chirality was negligible but, the SPP wave begins
to deviate from the p-polarization state as the chirality increases. Furthermore, the
figures unveil that the SPP wave is found localized to within 200 nm of the interface.

4.3.3 Turbadar–Otto prism coupling

The Turbadar–Otto configuration is an alternative experimental setup to excite the
SPP waves. In this configuration, the material A is a non-magnetic, uniaxially chiral,
bianisotropic material and the material B was assumed as aluminum metal. These
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materials are specified by their constitutive parameters:

εAa = 2 ,

εAb = 3 ,

µA
b = 1 ,

µB
b = 1 ,

γBc = 0 ,

εBa = εBb = −56 + 21i .


(4.3.4)

To analyze the SPP-waves excitation in the Turbadar–Otto prism coupling, the ab-
sorptances against the incidence angle and the chirality parameter were computed
and presented in Fig. 4.6(a) and (b) for p- and s-polarized planewaves, respectively,
for LA = 400 nm and LB = 30 nm. The absorptance band at θ ∼ 56.4◦ that existed
for smaller values of the chirality parameter in the plots of the Ap represent the SPP
waves excited by p-polarized incidence light. However, this excitation takes place only
when Re(γAc) ≲ 0.15. The absorptance band matches Fig. 4.3. The wavenumber
κ = 1.441k0 also matches Re(q) obtained in the canonical problem [3].

In the plots of As in Fig. 4.6(b); however, another band for larger values of the
chirality exists that also signify the SPP waves, in contrast to the TKR configuration
where s-polarized incidence did not excite the SPP waves. Therefore, the SPP waves
in the Turbadar–Otto prism coupling are excited by both the p- and s-polarized
incidence light though only p- excites for the lower values of the chirality parameter
and only s- excites for the larger values of the chirality parameter.

The SPP-waves excitation in the Turbadar–Otto configuration is further confirmed
by the magnitudes of the three Cartesian components of the power density and pre-
sented in Figs. 4.7 and 4.8, respectively, for the p- and the s-polarized incidence. Both
the smaller as well as larger values of Re(γAc) are considered for both the polarization
states. Fig. 4.7 shows that the SPP waves are excited when Re(γAc) = 0 and 0.1 but
no evidence of the SPP-wave excitation when Re(γAc) = 0.2 and 0.3. However, Fig.
4.8 shows that the s-polarized incident planewave can excite the SPP waves even
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(a) Turbadar–Otto (p-polarized)
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Figure 4.6: Absorptances plotted versus the incidence angle θ and chirality parameter
in the Turbadar–Otto configuration for (a) p-polarized incident planewave and (b) s-
polarized incident planewave when np = nt = 1.73, LA = 400 nm, LB = 30 nm,
εAa = 2, εAb = 3, εB = −56 + 21i, Im(γAc) = 0.0001, and γB = 0.
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(b) Re(γAc) = 0.1
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(c) Re(γAc) = 0.2
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(d) Re(γAc) = 0.3

Figure 4.7: Magnitudes of the three Cartesian components of power density in the
Turbadar–Otto configuration when (a) θ = 56.4◦, (b) θ = 55.6◦, (c) θ = 39.8◦, and (d)
θ = 38.1◦ for p-polarized incidence when np = 1.73, nt = 1, LA = 400 nm, LB = 30
nm, εAa = 2, εAb = 3, εB = −56 + 21i, Im(γAc) = 0.0001, and γB = 0. Px, Py, and
Pz components are shown by a solid red line, a dashed blue line, and a chain-dashed
black line, respectively.
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(b) Re(γAc) = 0.3

Figure 4.8: Same as Fig. 4.7 except that the incident planewave is s-polarized and
(a) θ = 54.8◦ and (b) θ = 52.6◦.

when Re(γAc) = 0.2 and 0.3. The SPP-waves excitation by the s-polarized incident
electromagnetic wave is because of the coupling of s- and p-polarized waves inside the
chiral medium.

4.4 Conclusions

The SPP-waves excitation at the planar interface of a non-magnetic, uniaxially chiral,
bianisotropic material and a plasmonic material was investigated in the TKR and the
Turbadar–Otto prism couplings. In the TKR configuration, only p-polarized incident
planewave could excite the SPP waves, but in the Turbadar–Otto prism coupling, both
the s- and the p-polarized planewaves could excite the SPP waves. However, only
p-polarized incident light could excite the SPP waves when the chirality parameter
was small and only s-polarized incident light could excite the SPP waves when the
chirality parameter was large. Also, the SPP waves were found to be neither p- nor
s-polarized in nature when the chirality parameter assumed large values.
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Chapter 5

Metal and Obliquely Mounted,
Uniaxially Chiral, Bianisotropic
Material

In Chap. 4, I considered the excitation and the SPP-waves propagation along the
planar interface of a plasmonic material and the non-magnetic, uniaxially chiral,
bianisotropic materials whereas the waves were guided by the interface perpendicular
to the direction of the uniaxiality and chirality. In this chapter, the SPP-waves
excitation is considered when bianisotropic material is magnetic with its optic axis
making an arbitrary angle with the interface plane. Such a material can be fabricated
as a parallel assembly of helixes with the axis of the helixes making an arbitrary tilt
angle with the metallic substrate. The canonical problem as well as the two prism-
coupled configurations are investigated. The SPP-wave propagation was restricted to
be in the morphologically significant plane of the bianisotropic material that contains
tilted helixes.

Chapter 5 is planned as follows: The introduction and related literature review is
given in Sec. 5.1. The canonical problem is formulated and solved in Sec. 5.2. The
formulation and the results for the prism-coupled configurations are provided in Sec.
5.3. Conclusions are given in Sec. 5.4.

The work reported in this chapter is published in: J. Electromagn. Waves Appl. 34, 1756–1770
(2020).
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5.1 Introduction

Bianisotropic chiral materials combine the periodicity and the anisotropy in a special
fashion where the period of the composing parallel helixes is much smaller than the
wavelength of interest of electromagnetic waves. The isotropic chiral mediums have
randomly oriented helixes in a dielectric host [1–4], but in a bianisotropic chiral
medium, the helixes are oriented parallel to each other [5]. The simplest bianisotropic
chiral medium is a uniaxially chiral, bianisotropic medium which can be realized with
the parallel assembly of circular helixes [6–9] provided that the pitch of the helixes are
much smaller than the wavelength of the SPP waves. These materials have potential
applications in the microwave regime [10, 11], optical activity [12], reciprocal phase
shifter [13], polarization transformation [14–16], non-reflecting shields and antenna
radomes [17], radar-absorbing layers [18], and circular birefringence and dichroism
[19], to name a few.

In chapter 4, I studied the SPP-waves propagation along the interface of a plas-
monic material and the non-magnetic uniaxially chiral, bianisotropic medium, for a
special case when the axis of uniaxiality was assumed perpendicular to the interface,
both in the canonical problem [20] and in the prism-coupled configurations [21]. In
that chapter, the permittivity dyadic was taken to be uniaxial, but the permeability
dyadic was taken to be a scalar multiple of the identity dyadic. In the present work,
I lift the restrictions on the “optic axis” and allow it to have an arbitrary angle with
the metallic interface. Moreover, I have used a more realistic permeability dyadic,
that is, as a uniaxial dyadic. I present both the canonical and the prism-coupled
configurations in this chapter.

5.2 Canonical Problem

A canonical problem is a theoretical approach of finding the dispersion relation
for the propagation of surface waves propagating along the interface of two half-
spaces [22, 23]. Here, I am interested in the SPP waves when one half-space is filled
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by a plasmonic material and the other by an obliquely mounted uniaxially chiral,
bianisotropic material.

Figure 5.1: The SPP-waves propagation along the interface of a plasmonic mate-
rial and the uniaxially chiral, bianisotropic medium is shown schematically in the
canonical problem.

Figure 5.1 shows the canonical problem schematically. The half-space z < 0

is occupied by a plasmonic material with εmet as relative permittivity. The half-
space z > 0 is occupied by an obliquely mounted homogeneous, uniaxially chiral,
bianisotropic medium specified by Tellegen constitutive relations [4]

D(r, ω) = ε · E(r, ω) + ξ ·H(r, ω)

B(r, ω) = µ ·H(r, ω)− ξT · E(r, ω)

 , z ≥ 0 . (5.2.1)

The permittivity dyadic [8, 9]

ε = ε0 Sy
·
[
εaûzûz + εbûxûx + εbûyûy

]
· S−1

y
, (5.2.2)

and the permeability dyadic [8, 9]

µ = µ0 Sy
·
[
µaûzûz + µbûxûx + µbûyûy

]
· S−1

y
, (5.2.3)



101

of the uniaxially chiral medium depend upon the rotation dyadic

S
y
= cosχ (ûxûx + ûzûz) + sinχ (ûzûx − ûxûz) + ûyûy , (5.2.4)

that incorporates the tilt χ of the helixes of the medium with respect to the y axis.
The magneto-electric constitutive dyadic is taken as [8, 9]

ξ = S
y
· iγ ûzûz · S−1

y
, (5.2.5)

where the complex-valued chirality parameter γ depends upon the constitution of
the bianisotropic medium fabricated as parallel helixes in a host medium [8, 9]. The
standard physical vapor deposition technique by directing a vapor flux at a substrate
rotating about the z axis can be used for fabrication of the helicoidal morphology. The
substrate is placed at an angle χv < π/2 to the incident vapor flux. A wide variety
of helicoidal morphologies can be made possible by controlling the two fundamental
axes of substrate rotation [24].

5.2.1 Formulation of the dispersion equation

The SPP wave is assumed to propagate along the x axis. Therefore, the propagation
of the SPP wave is in the plane containing the tilted helixes. The field phasors in the
plasmonic half-space can be specified as [25, 26]

Emet(r) =
[
asûy + ap

(
αmet

k0
ûx +

q
k0
ûz

)]
exp (iqx)

Hmet(r) =
1
η0

[
as

(
αmet

k0
ûx +

q
k0
ûz

)
− apεmetûy

]
exp (iqx)

 , z ≤ 0 , (5.2.6)

where q2+α2
met = k20εmet. The wavenumber q of the SPP wave is complex-valued. The

amplitudes of the s- and p-polarized components of the SPP waves are represented
by as and ap, respectively, which are unknown scalars. The condition Im(αmet) > 0

must be satisfied for the SPP-waves propagation to ensure the decay of field phasors
in the metal perpendicular to the interface as z → −∞.

The electromagnetic field phasors in the uniaxially chiral, bianisotropic medium
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can be written as [25]

E(r) =
[
ex(z)ûx + ey(z)ûy + ez(z)ûz

]
exp (iqx)

H(r) =
[
hx(z)ûx + hy(z)ûy + hz(z)ûz

]
exp (iqx)

 . (5.2.7)

Substitution of Eqs. (5.2.1) and (5.2.7) in Maxwell curl postulates results in four
partial differential equations and two algebraic equations. The algebraic equations
give

ez =
sin(2χ)

2Q

[
ε0µ0µab(εa − εb)− γ2 cos2 χ

]
ex −

iγq cos2 χ

ωQ
ey

−iγµ0 sin(2χ)

2Q

[
(µa − µb) cos

2 χ− µab

]
hx −

µ0µabq

ωQ
hy , (5.2.8)

hz =
iγε0 sin(2χ)

2Q

[
cos2 χ(εa − εb)− εab

]
ex +

ε0εabq

ωQ
ey

+
sin(2χ)

2Q

[
ε0µ0εab(µa − µb)− γ2 cos2 χ

]
hx −

iγq cos2 χ

ωQ
hy , (5.2.9)

where

εba = εb cos
2 χ+ εa sin

2 χ , (5.2.10)

εab = εa cos
2 χ+ εb sin

2 χ , (5.2.11)

µba = µb cos
2 χ+ µa sin

2 χ , (5.2.12)

µab = µa cos
2 χ+ µb sin

2 χ , (5.2.13)

Q = ε0µ0εabµab − γ2 cos4 χ . (5.2.14)

The four differential equations can be re-arranged as the matrix ordinary differ-
ential equation [24, 25]

d

dz
[f(z)] = i[P ].[f(z)] , (5.2.15)

where

[f(z)] =


ex(z)

ey(z)

hx(z)

hy(z)

 (5.2.16)
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and

[P ] =
ω

Q


0 0 0 µ0µbQ

0 0 µ0µb(−ε0µ0εaεab + γ2 cos2 χ) 0

0 −ε0εbQ 0 0

ε0εb(ε0µ0εaµab − γ2 cos2 χ) 0 0 0



+
qε0µ0 cosχ sinχ

Q


(εa − εb)µab 0 0 0

0 (µa − µb)εab 0 0

0 0 (µa − µb)εab 0

0 0 0 (εa − εb)µab



+
iγωε0µ0εbµb sin

2 χ

Q


0 0 0 0

1 0 0 0

0 0 0 0

0 0 1 0

+
iγ q cosχ sinχ

Q


0 0 µ0µb 0

0 0 0 µ0µb

−ε0εb 0 0 0

0 −ε0εb 0 0



−q γ
2 cos3 χ sinχ

Q


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

+
q2

ωQ


0 −iγ cos2 χ 0 −µ0µab

0 0 0 0

0 ε0εab 0 −iγ cos2 χ
0 0 0 0

 . (5.2.17)

Equation (5.2.15) can be solved to get [24]

[f(z)] = exp
{
iz[P ]

}
· [f(0+)] , z > 0 . (5.2.18)

To write the fields in terms of the modes that represent the SPP waves, I need to
find the eigenvectors and eigenvalues of the matrix [P ]. Let [t(n)] be the eigenvectors
corresponding to the eigenvalues αn, n ∈ [1, 4], of the [P ] matrix. The fields of
the SPP waves have to be written in terms of those eigenvectors of [P ] that have
Im(α1,2) > 0 so that the fields decay as z → ∞, as [25, 26]

[f(0+)] =
[
[t](1) [t](2)

]
·

[
c1

c2

]
, z > 0 , (5.2.19)
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where c1 and c2 are unknown scalars. On the other side of the interface z ≤ 0, the
fields can be written as [25, 26]

[f(0−)] =


0 αmet

k0

1 0

αmet

k0η0
0

0 − εmet

η0

 ·

[
as

ap

]
(5.2.20)

using Eq. (5.2.6). The SPP waves must have their tangential electric and magnetic
fields continuous across the planar interface z = 0, requires that [f(0+)] = [f(0−)],

which can be re-arranged to get

[Y ] ·


as

ap

c1

c2

 =


0

0

0

0

 . (5.2.21)

The [Y ] matrix must be singular for a nontrivial solution, so that

det[Y ] = 0 (5.2.22)

is the dispersion relation for the SPP waves. This equation need to be solved for the
determination of the wavenumber q of the SPP waves. Thereafter, the fields can be
found using Eqs. (5.2.6) and (5.2.18).

5.2.2 Solution of the dispersion equation

I solved the dispersion equation using Newton–Raphson method and searched the
solutions q against the tilt angle χ by keeping εa = 2.3 + 0.023i, εb = 3.7 + 0.037i,
µa = 0.8 + 0.008i, and µb = 1+ 0.01i at λ0 = 633 nm. Furthermore, the chirality pa-
rameter was chosen to have values γ = 0.1(1 + i0.001), 0.12(1 + i0.001), 0.15(1 +

i0.001), 0.2(1 + i0.001), and 0.3(1 + i0.001). These values were motivated by the
experimentally obtained parameters for the uniaxially chiral bianisotropic medium
fabricated in the microwave range reported in Refs. [8, 9]. Even though the values
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were obtained in the microwave regime, I believe that similar values can be obtained
in the optical spectral domain since these values of permittivity are typical in the
optical regime and by scaling the dimensions of the helixes, similar values of the
constitutive parameters can be obtained. Therefore, the chosen material is experi-
mentally realizable. The partnering plasmonic material was assumed aluminum with
εmet = −56 + 21i.

Since this chapter is penned to focus on the chirality of the bianisotropic material,
I solved the dispersion equation as a function of the tilt angle χ for several values
of the complex-valued chirality parameter. Let me recall that I am investigating
the SPP waves propagating in the morphologically significant plane (xz plane) that
contains the helixes of the material. The Re {·} and Im {·} parts of (q/k0) of the SPP
waves are shown in Fig. 5.2(a,b), for five values of the chirality parameter. The figure
indicates that the angular range of existence for the SPP waves is strongly dependent
upon the chirality parameter. Indeed, I found that the SPP waves can exist for
any tilt angle of the helixes in the range [0◦, 90◦] when the chirality parameter had
Re(γ)≤ 0.11

√
ε0µ0 with its imaginary part being 1% of the real part. For the higher

magnitudes of the chirality parameter, the SPP waves can exist for a narrower range
which gets narrower as the magnitude of γ increases. Essentially, the solutions of the
canonical problem for tilt angle χ are the same as for 180◦ −χ, and if q is a solution,
then −q is also a solution.

To see the degree of confinement of the SPP waves to the interface, I computed
the magnitudes of the three Cartesian components of power density

P (r) =
1

2
Re [E(r)×H∗(r) ] (5.2.23)

for several solutions as a function of z. The variations of the three components of
P (r) are presented in Fig. 5.3 for a representative solution. The figure shows that
the solutions of the dispersion relation indeed affirm the SPP waves because of decay
of the components of P (r) away from the interface. Furthermore, the SPP wave is
found to be strongly localized because it decays fully within about 300 nm in the
bianisotropic medium, which is smaller than the typical decay length in an isotropic



106

(a) (b)

Figure 5.2: The Re {·} and Im {·} parts of q/k0 of the SPP waves plotted against
the tilt angle χ when εmet = −56 + 21i, εa = 2.3 + 0.023i, εb = 3.7 + 0.037i, µa =
0.8 + 0.008i, and µb = 1 + 0.01i were chosen.
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Figure 5.3: Magnitudes of the three Cartesian components of power density of the
SPP wave when χ = 75◦, γ = (0.3 + 0.003i)

√
ε0µ0, and q/k0 = 1.9364 + 0.03306i.

The data were calculated by setting ap = 1 V/m. The other parameters are the same
as given in Fig. 5.2. The Px, Py, and Pz components are shown by solid red, dashed
blue, and chain-dashed black lines, respectively.
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dielectric partnering material [25].

5.3 Prism-Coupled Configurations

The prism coupling available for the SPP-waves excitation are of two types. The
general schematic of the prism coupling is presented in Fig. 5.4. A prism of high
refractive index is affixed to two layers of materials A and B. In the prism coupling
[27,28], the layer A adjacent to the prism is metallic and the layer B is the uniaxially
chiral, bianisotropic material. In the Turbadar–Otto configuration [27,29], layer A is
the uniaxially chiral, bianisotropic material and layer B is metallic. In the following,
the formulation is presented that is valid for both the configurations.

Let me choose the half-space (prism) z ≤ 0 as the incidence half-space filled up
by a homogeneous medium of high refractive index np. The region 0 ≤ z ≤ LA is
occupied by the homogeneous material A. The region LA ≤ z ≤ LΣ = LA + LB

is occupied by another homogeneous material B and the half-space z ≥ LΣ is the
transmission half-space filled up by the isotropic homogeneous dielectric material
with refractive index nt.

Let me consider a planewave propagation in the half-space z ≤ 0 making an angle
θ ∈ [0, π/2) to the z-axis, be incident at the interface z = 0. The incidence plane
is xz plane, which is also the morphologically significant plane of the bianisotropic
material occupying either layer A or B. This can excite the SPP wave parallel to
ûx in xy plane. The formulation of this problem is presented in Sec. 3.2 and is not
repeated here.

The SPP-waves excitation in the prism-coupled configurations is discerned from
the absorptance spectra by identifying the absorptance peaks that do not change
with the change in the thickness of the partnering bianisotropic material. In the next
section, I present the numerical results of the two prism couplings.

For all the illustrative numerical results in this section, the wavelength was as-
sumed as λ0 = 633 nm and the partnering plasmonic material was chosen to be
aluminum, just as in the previous section for the canonical problem. Furthermore,
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Figure 5.4: The schematic of the prism coupling for the SPP-waves excitation is
shown.

the prism was taken with refractive index Np = 2.6, and the transmission medium
was considered to be vacuum with nt = 1.

5.3.1 TKR configuration

For the TKR configuration, the formulation can be used by taking material A as
aluminum with εAmet = −56 + 21i of thickness LA = 15 nm, and material B as the
uniaxially chiral, bianisotropic medium with εBa = 2.3 + 0.023i, εBb = 3.7 + 0.037i,
µB
a = 0.8 + 0.008i, µB

b = 1 + 0.01i, and γB = (0.3 + 0.003i)
√
ε0µ0 [8, 9] and thickness

LB = 400 nm.
The absorptance spectra against the incidence angle θ and tilt angle χ for p-

polarized and s-polarized incidence is shown in Figure 5.5(a,b). The absorptance
band in Fig. 5.5(a) starting at χ = 90◦ and θ ∼ 48.7◦ found to be independent of the
thickness of the partnering bianisotropic material LB. Therefore, this band represents
the SPP-waves excitation since the wavenumber κ ∼ 1.9k0 closely matched the real
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part of relative wavenumber Re(q/k0) ∼ 1.9 when χ ∈ (60◦, 90◦). Furthermore, a
comparison of Figs. 5.2 and 5.5(a) show that the SPP waves exist only in a finite
range of χ as predicted by the canonical problem. The absence of any absorptance
band in Fig. 5.5(b) affirms that the SPP wave has not been excited by the s-polarized
incident planewave.

The excitation of the SPP wave at the band identified in Fig. 5.5(a) was further
confirmed by the examination of the spatial variations of the three components Px(z),
Py(z), and Pz(z) of power density as presented in Fig. 5.6 for a representative value of
χ and θ. The figure shows the strong confinement of the SPP waves to the interface.
The power flow is predominantly along the unit vector ûx, and the predominantly
p-polarized nature of the SPP wave was deduced from the field profiles (not shown
here).
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Figure 5.5: Absorptances plotted against the incidence angle θ and tilt angle χ in
the TKR configuration. The absorptances for the TKR configuration are given for
(a) p-polarized incident electromagnetic wave and (b) s-polarized incident wave when
np = 2.6, nt = 1, LA = 15 nm, εAmet = −56 + 21i, LB = 400 nm, εBa = 2.3 + 0.023i,
εBb = 3.7 + 0.037i. µB

a = 0.8 + 0.008i, µB
b = 1 + 0.01i, and γB = (0.3 + 0.003i)

√
ε0µ0.
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Figure 5.6: Magnitudes of the three Cartesian components of the power density in
the TKR configuration vs. z when θ = 48.7◦ and χ = 75◦. The other parameters are
np = 2.6, nt = 1, LA = 15 nm, LB = 400 nm, εAmet = −56 + 21i, εBa = 2.3 + 0.023i,
εBb = 3.7 + 0.037i. µB

a = 0.8 + 0.008i, µB
b = 1 + 0.01i, and γB = (0.3 + 0.003i)

√
ε0µ0

for p-polarized incidence. The components Px, Py, and Pz are shown by solid red,
dashed blue, and chain-dashed black lines, respectively.

5.3.2 Turbadar–Otto configuration

The Turbadar–Otto configuration is an alternative prism coupling technique where
the dielectric material is sandwiched between the metallic layer and the prism. The
theoretical formulation developed in Sec. 3.2 can be used by taking the material A as
the uniaxially chiral, bianisotropic material with εAa = 2.3+0.023i, εAb = 3.7+0.037i,
µA
a = 0.8+0.008i, µA

b = 1+0.01i, γA = (0.3+0.003i)
√
ε0µ0 [8,9], and LA = 400 nm.

Material B is taken as aluminum with εBmet = −56 + 21i, and thickness LB = 30 nm.
To delineate the SPP-waves excitation, the absorptance spectra as a function of

the θinc and the tilt angle are presented in Figure 5.7(a,b) for p-polarized and s-
polarized incident planewave, respectively. The figures show an absorptance band
in the spectrum of Ap but multiple absorptance bands in the spectrum of As. The
angular location of the absorptance band in the spectrum of Ap at θ ∼ 47.8◦ agrees
with the solution of the canonical problem for incident planewave (p-polarized), since
the wavenumber κ ∼ 1.9k0 matches with the Re(q/k0) ∼ 1.9 found by the canonical
problem. Furthermore, this band was found to be independent of thickness LA.
Therefore, this band represents the SPP-waves excitation. However, all the bands
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in the spectrum of As were dependent upon the thickness of bianisotropic material
and cannot represent the SPP waves but represent excitation of waveguide modes.
To further confirm this, the three Cartesian components of power density are shown
in Fig. 5.8 at a selected value of θ and χ for p-polarized incident light and in Fig.
5.9 for s-polarized incidence. The figures show that the p-polarized planewave indeed
excites the SPP wave at the chosen value of χ and θ at the absorptance band, whereas
s-polarized incidence excited a waveguide mode.
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Figure 5.7: Absorptances plotted against the incidence angle θ and tilt angle χ in
the Turbadar–Otto configuration for (a) p-polarized incident electromagnetic wave
and (b) s-polarized incidence when np = 2.6, nt = 1, LA = 400 nm, LB = 30
nm, εAa = 2.3 + 0.023i, εAb = 3.7 + 0.037i, µA

a = 0.8 + 0.008i, µA
b = 1 + 0.01i,

γA = (0.3 + 0.003i)
√
ε0µ0, and εBmet = −56 + 21i.
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Figure 5.8: The components of power density in the Turbadar–Otto configuration
when θ = 47.8◦ and χ = 75◦ for p-polarized incidence when np = 2.6, nt = 1,
LA = 400 nm, LB = 30 nm, εAa = 2.3+0.023i, εAb = 3.7+0.037i and µA

a = 0.8+0.008i,
µA
b = 1 + 0.01i, γA = (0.3 + 0.003i)

√
ε0µ0, and εBmet = −56 + 21i. The components

Px, Py, and Pz are shown by solid red, dashed blue, and chain-dashed black lines,
respectively.
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Figure 5.9: Same as Fig. 5.8 except that the planewave is s-polarized when θ = 45.1◦.



113

5.4 Conclusions

The excitation and SPP-wave propagation along the planar interface of a uniaxially
chiral, bianisotropic material and a plasmonic material were established for the case
when the optic axis of the bianisotropic medium was oriented along an arbitrary
angle with the interface plane. However, the propagation direction was restricted
in the morphologically significant plane of the bianisotropic material. The canonical
problem was solved to find the wavenumbers of the possible SPP waves as a function
of the tilt angle of the helixes for several values of the chirality parameter and a
threshold value was found for the SPP waves to exist for all tilt angles. It was found
that the chirality parameter of the bianisotropic material had to have a magnitude
smaller than a threshold for the SPP waves to exist for all tilt angles. The SPP-
waves excitation in the TKR and the Turbadar–Otto configurations showed that the
p-polarized incidence could excite the SPP waves, but the s-polarized incidence could
not.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

The objectives of the research conducted for this thesis, as was stated in Chap. 1,
were to:

1. find the fundamental properties of the partnering chiral materials that are re-
sponsible for the propagation and the excitation of surface waves;

2. to identify the parametric ranges of chirality of these partnering chiral materials
that support the excitation of surface waves;

3. study the SPP-waves excitation in both the prism coupled experimental setups
with partnering isotropic chiral and bianisotropic chiral materials;

4. the effects of morphology of the partnering uniaxially chiral bianisotropic ma-
terials on the characteristics of the SPP waves;

5. to find out the parametric conditions for the hybrid polarized SPP waves sup-
ported by these chiral materials.

To achieve these objectives, the propagation and excitation of the surface electro-
magnetic waves propagating along the interfaces of two dissimilar homogeneous ma-
terials were theoretically studied. The SPP-waves excitation with chiral materials
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was extensively studied. The three canonical boundary-value problems and the four
prism-coupled problems each in two configurations were investigated to find out the
solutions for the surface electromagnetic waves. The excitation of the SPP waves in
both the TKR and the Turbadar–Otto prism-coupled configurations was also studied,
taking into the effects of the chirality parameter and anisotropy.

In Chap. 2, the numerical solution of the canonical boundary-value problem
showed the propagation of surface electromagnetic waves supported by the planar in-
terface of two isotropic chiral composite materials with complex constitutive paramet-
ric ranges. When one component material of the isotropic chiral composite material
was taken as a dissipative dielectric material interfaced with another isotropic chiral
composite material, the surface waves supported by the interface could be considered
similar to Uller–Zenneck waves. Furthermore, when one component material of any
partnering isotropic chiral composite material was plasmonic, the propagation of the
SPP waves was supported by the interface. Moreover, the SPP-waves excitation was
shown at the planar interface of a plasmonic material and the isotropic chiral material
in Chap. 3, in both the TKR and Turbadar–Otto prism-coupled configurations. The
SPP-waves excitation was shown to exist from the appearance of the peaks in the
absorptance spectrum. These peaks were found independent of the thickness of the
partnered materials. Also, the excitation of the SPP waves was verified by the power
profiles. It was shown that the SPP waves could only be excited by the p-polarized
incident planewave and not by the s-polarized planewave. However, the SPP wave
could exist only when the chirality pseudoscalar was smaller than a threshold value.
This finding can be helpful in the design of plasmonic switches.

The SPP-wave excitation at the planar interface of a non-magnetic uniaxially chi-
ral, bianisotropic material and a plasmonic material was studied in Chap. 4. The
formulation and representative numerical results of both the prism-coupled configu-
rations were presented. Moreover, the numerical results were also presented for the
SPP waves in the canonical boundary-value problem. In the TKR configuration, only
p-polarized incident planewave could excite the SPP wave, but in the Turbadar–Otto
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configuration, both the p- and s-polarized planewaves could excite the SPP waves.
However, only p-polarized planewave could excite the SPP wave when the complex-
valued chirality parameter was small, and only s-polarized incident planewave could
excite the SPP wave when the complex-valued chirality parameter was large. More-
over, the SPP wave could also be excited that was neither s- nor p-polarized.

The above-stated findings were followed by an investigation of the excitation of
the SPP wave at the interface of a plasmonic material and an obliquely-mounted
uniaxially chiral, bianisotropic material with an optic axis making an arbitrary angle
with the interface plane in Chap. 5. The canonical boundary-value problem was
solved to investigate the wavenumbers of the possible SPP waves as a function of the
tilt angle of the helixes for several values of the chirality parameter. The direction
of propagation of the SPP wave was confined to be in the morphologically significant
plane of the bianisotropic material. However, it was found that the complex-valued
chirality parameter had to have a magnitude smaller than a threshold value for the
SPP wave to exist for all the tilt angles of helixes. Secondly, the SPP-wave excitation
in the TKR and the Turbadar–Otto configurations showed that only the p-polarized
incident planewave could excite the SPP wave but not the s-polarized incidence for
an obliquely mounted, uniaxially chiral, bianisotropic material.

In summary, the following conclusions were inferred:

1. The planar interface of two different isotropic chiral materials can support the
surface waves for specific parametric ranges and can simultaneously support the
amplification and attenuation of the surface electromagnetic waves.

2. The threshold value for the complex-valued chirality exists for the excitation of
the surface electromagnetic waves.

3. The p-polarized incident planewave can support the SPP-waves excitation in
both the TKR and the Turbadar–Otto prism-coupled configurations. However,
the s-polarized incident planewave can support the SPP-waves excitation in the
Turbadar–Otto configuration.
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4. The morphology of the chiral materials affects the threshold value for the exci-
tation of SPP waves.

5. The SPP waves that are neither s- nor p-polarized can exist for the large values
of the complex-valued chirality parameter.

These findings relate to the objectives (1)-(5) in the same order.

6.2 Future Work

This thesis lays down the foundation for work on the surface electromagnetic waves
guided by the interfaces with the chiral materials. In particular, I propose the fol-
lowing work.

• The design of optical sensors to sense chirality parameter of these materials and
use them in applications of the SPP waves.

• The presence of threshold value of the chirality in both the isotropic and bian-
isotropic chiral media for the existence of the SPP waves can be used to design
plasmonic switches.

• The methodology can be used to set up the canonical and the prism-coupled
problems to investigate the SPP waves guided by more complex materials.

• The excitation and propagation of the SPP waves with chiral materials can be
studied in the grating-coupled and waveguide-coupled configurations for inte-
grated optical components.

• The possibility of multiple surface waves can be investigated by making the
chiral materials periodically nonhomogeneous.



Appendix A

Metal and Columnar Thin Film

If the chirality pseudoscalar of the chiral uniaxial bianisotropic material is made zero,
then the medium exhibits the properties of the simple uniaxial dielectric material.
The work reported in this Appendix is meant to be an aiding prologue for grasping
a good understanding of the behavior of the uniaxial bianisotropic materials. In this
work, the study of the SPP-waves excitation with columnar thin films (CTFs) in
both the TKR and Otto configurations is presented. The CTFs generalize uniaxial
dielectric materials since CTFs are biaxial. This Appendix presents a comparison
of the excitation of the SPP waves using the two possible prism couplings. This
Appendix is planned as follows: The introduction and related literature review is
given in Sec. A.1. The illustrative numerical results are discussed and presented in
Sec. A.2. The conclusions are given in Sec. A.3.

A.1 Introduction

There are two types of prism-coupled configurations to excite the SPP waves using
evanescent waves: (i) The TKR configuration [1, 2] and (ii) the Turbadar–Otto con-
figuration [2, 3]. The TKR configuration, as shown in Fig. A.1, is very popular in
exciting the SPP waves because of its easier adaptation to optical sensing of fluids
that replaces the partnering dielectric material or infiltrates it. In this technique, the

The work reported in this appendix is published in: J. Nanophoton. 13, 036001 (2019).
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prism is coupled to a thick dielectric material through a very thin metal layer [4]. In
the Turbadar–Otto prism coupling, the dielectric partnering material is sandwiched
between the metallic film and the prism as shown in Fig. A.2. The generation of
the evanescent waves in the Turbadar–Otto prism coupling requires a thinner dielec-
tric layer. A comparison of the TKR and the Turbadar–Otto configurations for an
isotropic dielectric material shows that the latter offers a clearer and easier identifi-
cation of the reflectance dips than the former for the identification of the SPP-waves
excitation.

The columnar thin films (CTFs) are porous films of columnar morphology with
all columns parallel to a straight line [5]. These films are normally deposited using
the physical vapor deposition technique by directing a vapor flux at a substrate at an
oblique angle [6]. The SPP-waves excitation at the interface of a plasmonic material
and a CTF in the TKR configuration [7, 8] has been studied for designing plasmonic
optical sensors [9, 10] since the CTFs are the porous anisotropic films with a permit-
tivity dyadic that depends on the fluid infiltrating the vacant spaces in the CTF.
The anisotropic porous dielectric partnering materials, such as the CTF, can some-
time have advantages over isotropic dielectric partnering materials when it comes to
optical sensing. For example, the sensitivity can be enhanced significantly by infiltrat-
ing the anisotropic partnering material with metallic particles [11] or by making the
anisotropic partnering material as a hyperbolic medium [12]. The alternative to the
TKR is the Turbadar–Otto configuration, which is the focus of this work. Does the
Turbadar–Otto configuration offer any advantage over the TKR when the anisotropic
dielectric materials are used? The research reported in this Appendix was endeavored
to answer this question.

The TKR configuration is advantageous to the Turbadar–Otto configuration when
sensing liquids since the homogeneous infiltration of the not-very-thick CTF would
be very difficult in the Turbadar–Otto configuration because of the capillary forces if
the infiltration has to be done from the sides. However, for the gases, this problem
will not be present. So, the Turbadar–Otto configuration discussed here will be more
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amenable to implementation for the sensing of the gases than the liquids. For the
liquids, an experimental strategy will have to be developed for easier and homogeneous
infiltration of the CTF.

Figure A.1: The schematic of the TKR configuration is shown. A linearly polarized
electromagnetic wave is incident at the metal-CTF bilayer. The CTF is infiltrated
by a fluid of which the refractive index is to be sensed.

A.2 Results and Discussion
A.2.1 Problem description

Consider the geometry of the problem for the Turbadar–Otto configuration as de-
picted in Fig. A.2. The half-space z ≤ 0 is filled up by an unbounded isotropic homo-
geneous dielectric material (prism) with a refractive index np. The region 0 ≤ z ≤ Lctf

is occupied by a CTF with permittivity dyadic given by

ε
ctf

= ε0Sy
·
(
εaûzûz + εbûxûx + εcûyûy

)
· S−1

y
(A.2.1)

where εa, εb, and εc are the relative permittivity scalars, and

S
y
= cosχ (ûxûx + ûzûz) + sinχ (ûzûx − ûxûz) + ûyûy (A.2.2)
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Figure A.2: The schematic of the Turbadar–Otto configuration is shown. A linearly
polarized electromagnetic wave is incident at the CTF-metal bilayer from the CTF
side.

represents the rotation in the xz plane around the y axis, and the principal relative
permittivity scalars are chosen for a CTF made of titanium oxide, with ûx, ûy, and
ûz representing the unit vectors in the Cartesian coordinate system. The relative
permittivity scalars for the uninfiltrated CTF are taken to be that of titanium oxide
as [13]

εa = [1.0443 + 2.7394v − 1.3697v2]2

εb = [1.6765 + 1.5649v − 0.7825v2]2

εc = [1.3586 + 2.1109v − 1.0554v2]2

 (A.2.3)

with
v = 2χv/π

χ = tan−1[2.8818 tanχv]

 , (A.2.4)

where χv ∈ [0, π/2) is the angle of projection of physical vapors with the substrate.
The inclination of the nano-columns of the CTF with the substrate is denoted by
χ. The morphologically significant plane is taken as the xz plane for the CTF and
the incident electromagnetic wave is directed at an angle θ ∈ [0, π/2) to the z axis.
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The region Lctf ≤ z ≤ Lctf + Lmet is occupied by a plasmonic material with εm as
relative permittivity, and the half-space z ≥ Lctf +Lmet is again filled up by the same
unbounded isotropic homogeneous dielectric material as that of the prism. Corre-
spondingly, the characterization of the homogeneous anisotropic non-magnetic CTF
is given by the constitutive relations in the frequency-domain as follows

D(r, ω) = ε
ctf

· E(r, ω)

B(r, ω) = µ0H(r, ω)

 , (A.2.5)

where ε
ctf

is the permittivity dyadic of the CTF. The homogeneous isotropic non-
magnetic plasmonic material is characterized by the following constitutive relations
in the frequency domain as follows,

D(r, ω) = ε0εmE(r, ω)

B(r, ω) = µ0H(r, ω)

 , (A.2.6)

and is specified only by its complex-valued relative permittivity εm.
The formulation of the canonical problem of planewave reflection and transmission

is as follows. Let me consider a planewave propagating in the half-space z ≤ 0 at an
angle θ ∈ [0, π/2) with the z axis in the xz plane, and making an angle ψ with the x
axis in the xy plane; be incident at the interface z = 0. This will excite the SPP wave
propagating along the unit vector û1 = cosψ ûx+sinψ ûy in the interface plane. The
unit vector perpendicular to û1 and ûz is given by û2 = − sinψ ûx + cosψ ûy. The
incident, reflected, and transmitted electric field phasors of a planewave are derived
as,

Einc(r) =
(
ass+ app+

)
exp[i (û1κ+ ûzk0np cos θ) · r] , z ≤ 0

Eref (r) =
(
rss+ rpp−

)
exp[i (û1κ− ûzk0np cos θ) · r] , z ≤ 0

Etr(r) =
(
tss+ tpp+

)
exp[i (û1κ+ ûzk0np cos θ) · (r − ûzLΣ)] , z ≥ LΣ

 , (A.2.7)

where Lctf + Lmet = LΣ, κ = k0np sin θ, s = û2, p+ = −û1 cos θ + ûz sin θ, and p− =

û1 cos θ+ ûz sin θ; as and ap represent the scalar amplitudes of the s- and p-polarized
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components of the incident planewave, rs and rp are the reflection coefficients and the
transmission coefficients are denoted by ts and tp. The boundary-value problem is
solved to determine the reflection and the transmission coefficients in terms of as and
ap. The corresponding incident, reflected, and transmitted magnetic field phasors of
a planewave are derived from Maxwell’s curl postulates as follows,

H inc(r) =
np

η0

(
asp+ − ap s

)
exp[i (û1κ+ ûzk0np cos θ) · r] , z ≤ 0

Href (r) =
np

η0

(
rsp− − rp s

)
exp[i (û1κ− ûzk0np cos θ) · r] , z ≤ 0

H tr(r) =
np

η0

(
tsp+ − tp s

)
exp[i (û1κ+ ûzk0np cos θ) · (r − ûzLΣ)] , z ≥ LΣ

 .

(A.2.8)
The electromagnetic fields in the region 0 ≤ z ≤ LΣ are represented in phasor

form as,

E(r) = e(z) exp (iκû1 · r)]
H(r) = h(z) exp (iκû1 · r)]

}
, 0 ≤ z ≤ LΣ . (A.2.9)

Substitution of Eqs. (A.2.6) and (A.2.9) in Maxwell curl postulates, i.e.,

∇× E(r, ω) = iωB(r, ω)

∇×H(r, ω) = −iωD(r, ω)

 , (A.2.10)

results in the two algebraic equations as follows,

ezm(z) = − κ
ωε0εm(z)

[hy(z) cosψ − hx(z) sinψ]

hzm(z) =
κ

ωµ0
[ey(z) cosψ − ex(z) sinψ]

 , Lctf < z < LΣ , (A.2.11)

and four partial differential equations are also obtained, which can be re-arranged in
the matrix ordinary differential equation form (MODE) as,

d

dz
[f(z)] = i[P (z)] · [f(z)] , (A.2.12)
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where

[f(z)] =


ex(z)

ey(z)

hx(z)

hy(z)

 (A.2.13)

and [P (z)] is the 4× 4 [P
met

] matrix inside the plasmonic medium with

[P
met

] = ω


0 0 0 µ0

0 0 −µ0 0

0 −ε0εm 0 0

ε0εm 0 0 0



+
κ2

ωε0εm


0 0 cosψ sinψ − cos2 ψ

0 0 sin2 ψ − cosψ sinψ

0 0 0 0

0 0 0 0



+
κ2

ωµ0


0 0 0 0

0 0 0 0

− cosψ sinψ cos2 ψ 0 0

− sin2 ψ cosψ sinψ 0 0

 . (A.2.14)

When Eqs. (A.2.5) and (A.2.9) are substituted in Maxwell curl postulates, i.e.,
Eq.(A.2.10), for a CTF, the same form, as given in Eq. (A.2.12), is obtained ex-
cept that the [P (z)] matrix is replaced with [P

ctf
] matrix in the CTF with
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[P
ctf

] = ω


0 0 0 µ0

0 0 −µ0 0

0 −ε0εc 0 0

ε0εd 0 0 0



+κ
εd[εa − εb]

εaεb
sinχ cosχ


cosψ 0 0 0

sinψ 0 0 0

0 0 0 0

0 0 − sinψ cosψ



+
κ2

ωε0

εd
εaεb


0 0 cosψ sinψ − cos2 ψ

0 0 sin2 ψ − cosψ sinψ

0 0 0 0

0 0 0 0



+
κ2

ωµ0


0 0 0 0

0 0 0 0

− cosψ sinψ cos2 ψ 0 0

− sin2 ψ cosψ sinψ 0 0

 , (A.2.15)

and the two algebraic equations are obtained as follows,

ez(z) =
εd[εa−εb] sinχ cosχ

εaεb
ex(z) +

κ
ωε0

εd
εaεb

[hx(z) sinψ − hy(z) cosψ

hz(z) = − κ
ωµ0

[ex(z) sinψ − ey(z) cosψ]

 , (A.2.16)

where
εd = εaεb/εa cos

2 χ+ εb sin
2 χ . (A.2.17)

The incident and reflected electric field phasors (A.2.7) and the corresponding
magnetic field phasors (A.2.8) give

[f(0−)] = [K] · [as ap rs rp]T , (A.2.18)
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where

[K] =


− sinψ − cosψ cos θ − sinψ cosψ cos θ

cosψ − sinψ cos θ cosψ sinψ cos θ

−(np

η0
) cosψ cos θ (np

η0
) sinψ (np

η0
) cosψ cos θ (np

η0
) sinψ

−(np

η0
) sinψ cos θ −(np

η0
) cosψ (np

η0
) sinψ cos θ −(np

η0
) cosψ

 . (A.2.19)

Similarly, the transmitted electric and magnetic field phasors give

[f(LΣ+)] = [K] · [ts tp 0 0]T . (A.2.20)

A.2.2 Turbadar–Otto configuration

The solution of the MODE (A.2.12) in the Turbadar–Otto configuration, results in

[f(LΣ−)] = ei[Pmet
]Lmet · ei[P ctf

]Lctf · [f(0+)] . (A.2.21)

Using the standard boundary conditions

[f(0−)] = [f(0+)]

[f(Lctf−)] = [f(Lctf+)]

[f(LΣ−)] = [f(LΣ+)]

 (A.2.22)

across the interfaces, i.e., equating the tangential components of electromagnetic field
phasors, result in the following equation,

ts

tp

0

0

 = [K]−1 · ei[Pmet
]Lmet · ei[P ctf

]Lctf · [K] ·


as

ap

rs

rp

 . (A.2.23)

The reflection and transmission coefficients can be obtained by simple mathematical
manipulation of Eq. (A.2.23). The absorptances can then be determined with the
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help of the reflection and transmission coefficients by using,

As = 1− |rs|2 + |rp|2 + |ts|2 + |tp|2

|as|2
, ap = 0 , (A.2.24)

for s-polarized incident light, and

Ap = 1− |rs|2 + |rp|2 + |ts|2 + |tp|2

|ap|2
, as = 0 , (A.2.25)

for p-polarized incident light.

A.2.3 Numerical results for Turbadar–Otto configuration

The excitation of surface waves can be discerned from the angular spectrum of
planewave absorption. Those peaks in the absorptance spectrum represent the ex-
citation of the SPP waves whose angular location is independent of the thickness of
the dielectric partnering materials beyond a threshold thickness. Furthermore, the
wavenumber of the incident electromagnetic wave at the angle where the absorption
peak is supposed to excite the SPP wave should match the Re(q/k0) of the SPP wave
that is predicted by the underlying canonical problem. In the canonical problem,
both the partnering materials (metal and the CTF in the present case) are assumed
to fill up the half-spaces, and the possible SPP waves that can propagate at their
planar interface are found.

For the illustrative numerical results in this section, I chose εm = −56 + 21i

(aluminum), χv = 30 deg, and ψ = 20 deg, where ψ ∈ [0, 2π) is the angle between
the incidence plane and the morphological significant plane of the CTF (xy plane).
The prism material was chosen as zinc selenide with refractive index np = 2.6. The
wavenumber q of the SPP waves can be found by solving the underlying canonical
problem [7, 8] for the chosen parameters. For the uninfiltrated CTF, the canonical
problem gave q = (2.0989 + 0.0225i)k0.

To see the SPP-waves excitation in the Turbadar–Otto prism coupling, the ab-
sorptances were computed and are shown in Fig. A.3 as a function of the θinc for fixed
Lmet = 30 nm but different thicknesses of the CTF for both the p- and s-polarized
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incident electromagnetic waves. The figure shows that an absorptance peak is present
for all three thicknesses in the absorptance spectrum for the p-polarized incident elec-
tromagnetic wave. No absorptance peak is present for the s-polarized incidence. The
θpeak (the angular location of the absorptance peak) changes very little with the thick-
ness of the CTF as shown in Table A.1. The component of the wave vector of the
electromagnetic wave travelling parallel to the direction of propagation of the SPP
wave κ = npk0 sin θpeak also matches the real part of q. Therefore, the absorptance
peak signifies the SPP-wave excitation.

Figure A.3: The absorptances plotted against the incidence angles θ for various thick-
nesses of the CTF when ψ = 20 deg, χv = 30 deg, λ0 = 633 nm, Lmet = 30 nm,
εm = −56 + 21i, and np = 2.6. The CTF was chosen to be made of titanium oxide
and uninfiltrated.

To further confirm the SPP-waves excitation and the localization to the interface,
the spatial variation of the three components of power density

P (r) =
1

2
Re [E(r)×H∗(r) ] , (A.2.26)

were examined, where the asterisk delineates the complex conjugate. Figure A.4
shows the strong confinement of the SPP waves to the CTF/metal interface.
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Figure A.4: The magnitudes of the three components of power density P (0, 0, z) vs.
z in the Turbadar–Otto configuration when p-polarized planewave is incident on the
CTF-metal interface at θ = 53.2◦, and Lctf = 200 nm. The other parameters are the
same as given in Fig. A.3. The components parallel to û1, û2, and ûz, are shown by
a solid red line, a dashed blue line, and a chain-dashed black line, respectively.

A.2.4 TKR configuration

The solution of the MODE (A.2.12) in the TKR configuration results in

[f(LΣ−)] = e
i[P

ctf
]Lctf · ei[Pmet

]Lmet · [f(0+)] . (A.2.27)

Using the standard boundary conditions

[f(0−)] = [f(0+)]

[f(Lmet−)] = [f(Lmet+)]

[f(LΣ−)] = [f(LΣ+)]

 (A.2.28)

across the interfaces, i.e., equating the tangential components of electromagnetic field
phasors, result in the following equation,
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
ts

tp

0

0

 = [K]−1 · ei[P ctf
]Lctf · ei[Pmet

]Lmet · [K] ·


as

ap

rs

rp

 . (A.2.29)

The reflection and transmission coefficients can be obtained by simple mathematical
manipulation of Eq. (A.2.29). The absorptances can then be found by using the
same Eqs. (A.2.24) and (A.2.25) for s-polarized and p-polarized incident planewaves,
respectively.

A.2.5 Comparison with TKR configuration

To compare the excitation in the Turbadar–Otto configuration with the TKR con-
figuration, the absorptances in the TKR configuration are shown in Fig. A.5 for
Lmet = 15 nm. The figure shows the SPP-waves excitation for the p-polarized inci-
dence. The values of the incidence angles for all three values of the CTF thickness
and the angular location are also provided in Table A.1. The data presented in the ta-
ble clearly show that full-width at half-maximum (FWHM) of the absorptance peaks
indicating the SPP-wave excitation is much smaller for the Turbadar–Otto config-
uration than for the TKR configuration. Furthermore, the change in the angular
location of the absorptance peak is smaller for the Turbadar–Otto than for the TKR
configuration when the thickness of the CTF is increased. It is probably due to the
minimum dissipation on the incidence side as the incident light is coupled with the
anisotropic CTF medium in the Turbadar–Otto configuration, compared to the TKR
configuration where the incident light is coupled with the metallic thin film (lossy
material). That’s why the values of κ are well matched to Re(q) in Table A.1, but
the TKR values of κ are not. The smaller peak width offers clearer identification of
the SPP-wave excitation and can help design more sensitive optical sensors using the
Turbadar–Otto configuration than the TKR configuration.



135

Figure A.5: Same as Fig. A.3 except that the absorptances are computed in TKR
configuration for Lmet = 15 nm.

A.2.6 Sensing in the Turbadar–Otto configuration

To demonstrate the optical sensing using the Turbadar–Otto configuration, the ab-
sorptance spectra were computed against the refractive index nℓ of the fluid infiltrat-
ing the vacant spaces of the CTF. The permittivities for the CTF for nℓ ̸= 1 were
used from Ref. [9] computed from Bruggemann formalism after finding the nanoscale
parameters of the CTF from the inverse Bruggemann formalism implemented upon
the CTF with nℓ = 1 [6, 14]. The absorptance profiles presented in Fig. A.6 clearly
show the potential for sensing of the Turbadar–Otto configuration. Moreover, the
absorptance peak showing the SPP-wave excitation clearly remains sharp as nℓ in-
creases.

The values of the θpeak where the absorptance peak occurs, are tabulated in Table
A.2. Also provided in the table is the sensitivity

ρ =
∆θpeak
∆nℓ

, (A.2.30)

where ∆θpeak is the shift in the angular location of the peak showing the SPP-waves
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Table A.1: The values of the θpeak, FWHM (∆θ), and the wavenumber κ =
npk0 sin θinc, are given for different thicknesses of the CTF for the TKR and the
Turbadar–Otto configurations. The solution of the underlying canonical problem is
q = (2.0989 + 0.0225i)k0.

TKR (Lmet = 15 nm) Turbadar–Otto (Lmet = 30 nm)
Lctf (nm) θpeak (deg) FWHM κ/k0 θpeak (deg) FWHM κ/k0

150 61.2 30 2.2784 53.5 11.9 2.0901
200 58.3 28.6 2.2121 53.2 7.8 2.0818
250 56.8 27.4 2.17558 53.3 5.5 2.0847

excitation when the refractive index of the fluid infiltrating the CTF increases by 0.1,
i.e., ∆nℓ = 0.1. The value of the sensitivity ρ in Table A.2 is typical of the basic
sensor based on the SPP waves and, in principle, should be the same as that in the
TKR configuration.

Table A.2: The incidence angle θpeak where the absorptance peak shows the excitation
of the SPP waves and the sensitivity vs. the refractive index nℓ of the fluid infltrating
the CTF.

nℓ 1 1.1 1.2 1.3 1.4 1.5
θpeak (deg) 53.7263 55.2654 56.8561 60.1694 62.0675 64.3559
ρ (deg/RIU) 15.3910 15.9070 33.1330 18.9810 22.8840 −

The advantage of the Turbadar–Otto configuration over the TKR configuration is
the narrower absorptance peak of the angular absorptance spectrum obtained in the
Turbadar–Otto configuration.
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Figure A.6: Same as Fig. A.3 except that the CTF is now infltrated with a fluid of
refractive index nℓ = {1, 1.1, 1.2, 1.3, 1.4, 1.5}, and Lctf = 200 nm for the p-polarized
incidence.

A.3 Conclusions

The SPP-waves excitation at the planar interface of columnar thin films and a plas-
monic material in an experimental setup of Turbadar–Otto prism-coupled configura-
tion was reported theoretically. The numerical results showed that the Turbadar–
Otto prism-coupled configuration has an edge over the typically used experimental
setup of the TKR configuration for the clearer and easier identification of absorp-
tance peaks in the angular absorptance spectrum as absorptance peaks found in the
former were narrower and easier to discern for the SPP-waves excitation. Turbadar–
Otto configuration was found to be more amenable to implementation for the sensing
of the gases than the liquids since the homogeneous infiltration of the thin CTFs
would be very difficult. However, the development of experimental technique will
pave the way for easier and homogeneous infiltration of the CTFs. The usefulness
of the Turbadar–Otto configuration was also shown for the optical sensing of a fluid
infiltrating the vacant spaces of the CTF.
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