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Prneface
Peristalsis is an impertant activity that is invelved extensively in weal life situations.
Physiological situations greatly witnessed the existence of this phencmencn. Chyme
mavement in stemach, Gile movement, spevmatic tanspontation, cvum movement,
wiine tianspext in bladder etc. axe few activities found in this vegard. This infievent
prapety is wesponsible for tuanspostation of materials from one past te cthers. Due
to its novel involuement in physiclogy it is found convenient to build the clinical
devices based en this principte. This is feund aduantageous in the way of diagnesis
and cune of contain diseases. This esulls in vast majesities of new innevations in the
fiebds of biemedical sciences. Many medical devices (ifie heast bung machine (used in
open heart suigewy supplics the exygenated blood te actta that delive it to vest bedy
past), dialysis machine (thwough which blood is filter and toxin and sclutes ave
vemoved from Blood), endescope (used as diagnesis pusposes) etc. worh undex
peristalsis. Many pumping devices tific woller pumps, finger and hose pumps etc.
are alse mentioned in this diection. Human physiclogy systems are found very
complex, opontaneous and ivevevsible. Duning these complex processes, encigy
convension has aluways been witnessed, which alse vesults in loss of energy in many
physiclogical situations. QUL these processes cause change in thevmodynamics of the
system. This may alse leads to disorderliness of the system. Fox stablle system it is
very essential to study the system and found the facters fox these diserdertiness and
obtain the ways to optimize these. This system’s disorderliness is wefevied as entropy.
Mathematical madeting is found very beneficial te study these analyses and to get
an estimate about the factor to inciease entropy. Seme measures ave detesmined to
contuol these. Mathematical madeling alse vesubts in veduction of the eaxperimental
expenses and time. Jn this way fiustly data is analyzed theoretically thiough



mathematical madel then on the basis of estimate the experiments and further testing
techniques are adopted. Fere second law of thevmodynamics is adepted for entuapy
iveversibility via magnetic field v radiation, diffusion ivevewsibility etc. are seme
factons that may lead to change in entiopy. FHence in this thesis different factor axe
cheched for entnopy genevation in field of peristalsis. Different types of matevials
with nanofluid features are examined. Effect of different embedded parametews on
entropy are absewed and anabyzed physically. This thesis is stusctwied as follows:

Chapter ane includes the basic nowledge and litevature abiout the concepts wsed in
this divection. This centains the detailed analysis of pevistalsis, nen- Newtenian
Pluids, nancfluids, magnetohydwodynamics (MID ) and cuvent, chemical veaction,
poraus medium, olip conditions, compliant walls, mized conuection, feat and mass
tuansfer and entiopy. Ghis chapter alse covers the basic laws for the analysis

including mass, mementum, energy and cencentration consewation laws.

Chapten twe contains the mixed convective flow due to pesistalsis. Siluen water
nancfluid has been evaluated in this study. Fall effect and wadiation axe abse
studied. Slip conditions are employed at the channel walls. Comparisen is set fox
different shapes of nanematevial including buicks, cylinders and platelets. Entropy
analysis is attempted for different shaped nansparticles. Fechnique of pertwibiation
is adopted for solution of system. Effect of sunduy parameters on Bejan numbex and
tuapping is alse accounted. Contents of this chaptew are pubilished in Joumal of
Molecubon Liguids, 248 (2017 ) 447-458.

conwection and viscows dissipation are alse censidered. Second order slip cenditions



are accounted at the boundany. Entvapy generation and Bejan number are evaluated.
Stueambines are alse part of the study. (nalysis is based on the compavison letueen
Mazwell and Hamilton Crossen madels. Fhe content of this chapten is accepted and
in puess in Scientia Juanica, 27 (2020 ) 3434-3446.

Chapter four aims to couer the concept of hybrid nanefluid. Study is analyzed fox
titanium ozides and copper nanspanticles with water as base fluid. Secondary
velacity is alse studied in view of notating fuame. Fall effect and porous medium ave
present. Convective boundary conditions are accounted. Non-uniform fear source|
sinf and nadiation are alse present. Maauwell-Garnetts model alse help to
investigate the theunal. conductivity for fybrid nancfluid. Entropy genevation is abse
eaamined. NdSclue of Mathematica is adepted as solution methology. The contents
of this chapter are published in Joumnal of Thevmal (nalysis and Calorimetuy, 143
(2021) 1231-1249.

Chapter five neports the investigation on entwopy in a channel with inclined magnetic
motion and theumophonesis effects is utilized. Compliant wall of channel are
consideved. Further slip effects at boundany are investigated. Entropy anfaysis
this chaptev are veported in Physica Scipta, 94 (2019) 10.1088[1402-
4896/at3467.

Chapter six addresses the pevistaltic phenomencn in cuwed configuration.
Williamson fluid with well-fnown Seret and Dufour effects are incovponated.
MIED chanactevistics are examined by applying it in wadial divection. Corvilinear
coardinates are chasen to model the puolilem. Flewible wall charactevistics are



incovponated in teums of elastance, vigidity and stiffness. Partial slip is acceunted.
Cansidered flow analysis is solued via pertwibation. Wessienberg numbex is adopted
te prepae the zevath and fiust exder approaimations. Steamfines axe alse plotted to
investigate the bolus size. Results of this chaptev ave published in Computer
Methods and Proguams in Biomedicine, 180 (2019 ) 105013.

Chapter seven communicates the pevistalsis for Sisho nanofluid. This chapter funther
hightights the effects of nonlinear thewmal wadiation and Joule heating. Slip
conditions are alse employed. Entropy genevation is investigated for viscous
dissipation, nenlinear thevmal nadiation and diffusion and Joule feating
ivevensiiilitics. NDSelve is emploged as solution technique which gave the
convergent wesults in less computation time. Results are alse validated by
compavison. This chaptern is published in Jowmal of Thevmal Analysis and
Calarimetry, 139 (2020) 2129-2143.

Chapter cight inuestigates the study of endoscope impact on peristalsis in present of
porous medium. Sishoe fluid is utilized for shean thinning effects. Modified Darcy
Caw is inconporated for neparting the parous medium effects. Entrapy is accounted
for different peinent parameters. Convective conditions ave accounted heve. he
findings of this analysis are neported in Physica @, 536 (2019 ) 120846.

Chapter nine puovide attention en entwapy genevation fox Rabinowitsch nancfluid. @
companative study based on viscous, sheax thickening and shear thinning fluid is
neparted. Chemical neaction is studied. (U non-unifoum fieat sowice|sinfe parameter is
inuolued in the enevgy equation with viscous dissipation and Brewnian metien and
theumophonesis effects. Slip is alse considered on the boundany. Velocity,
tempenature, concentration, entvapy and feat tuansfer coefficient are examined for



comparisen. Jhe wesulls of this weseanch is pubilished in Upplied nancscience, 10
(2020) 4177—4190.

Chapter ten covers the entrapy analysis for hemogeneous-feterageneous veaction.
Prandtl nanofluid is utilized in pevistabsis. Magnetic field is applied in the
penpendicuban dinection to flow. Joule heating is alse consideved. Buengiowne modet
is utilized. Second taw of thevmadynamics is emploged to study entvapy genevation.
Cuaphs are plotted fon velocity, tempevature, homogeneous-fietevageneous veaction
and feat tuansfer coefficient and entropy. The findings of this chapter are weperted
in Euwnepean Jouwnal Physical Plus, 135 (2020) 296.

Chapten eleven investigates the entwapy in view of variable theunal conductivity.
Fhind grade fluid for pevistalsis is adepted. MHD and Joule feating are
considered. Compliant chanactevistics of channel walls ave cutlined. Guaphs ane
plotted numerically via NDSclve of Mathematica. Mixed convection is invelued in
this otudy. Results ane examined guaphically. Tnapping is alse examined via
stueamlines. This study is published in Ewopean Jounal Physical Flus, 135
(2020) 421.
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Re Reynolds number
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Rd Radiation parameter

M Hartman number

v Stream function

0 Dimensionless temperature
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Be Bejan number
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Q Angular frequency

Phnf Density of hybrid nanofluid
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Khnf Thermal conductivity of hybrid nanofluid

(pCp)hnt Effective heat capacity of hybrid nanofluid
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Bi1, B2 Heat transfer coefficients at the wall
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T Taylor number

S Heat source or sink parameter

Bi,, Bi, Biot numbers

X Inclination angle for magnetic field

T Capacity ratio

o Thermal diffusivity

Ds Brownian motion coefficient

Dr Thermophoretic diffusion coefficient
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We Weissenberg number

€ Amplitude ratio

o Wave number

Sc Schmidt number

Nb, Nt Brownian motion parameter, thermophoresis
parameter

R Dimensional parameter



L, Ly, Lo Diffusion coefficient parameter, Diffusion
coefficient parameters for case of homogeneous

and heterogeneous reactions

A Temperature difference parameter
¢ Concentration difference parameter
D Coefficient of molecular diffusion
Kr Thermal diffusion ratio

Cs Concentration susceptibility

k Curvature parameter

Sr Soret number

Du Dufour number

B1 Sisko fluid parameter

Da Darcy number

Y1 Chemical reaction parameter

Ke, Ks Rate constants

C:, Gt Concentrations of species

H, K Strength of heterogeneous and homogeneous

reactions respectively
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Chapter 1

Fundamental concepts and literature

survey

Here our aim is to provide the background about some relevant concepts utilized in the sub-
sequent chapters. This includes the concepts of peristalsis, entropy, nanofluid and some basic

law and equations related to fluid flow.

1.1 Background

The word peristalsis is originated from the Greek word “peristaltikos” which means “clasping
and compressing”. This type of motility is responsible for transportation among different parts
of body. In this mechanism the material is propelled through the progressive waves consisting
of contraction and expansion (as first presented by Bayliss and Starling [1]) and this helps in
movement of the material. These waves may be short or long in length. It is based on the
involuntary characteristic of the smooth muscles that are involved in peristalsis. Hence this
mechanism cannot be controlled by someone by choice but smooth muscles works when they
are stimulated to do so. This motility is very useful in digestion and some other situations
witnessed in physiology.

In living beings this activity is found in transport of food particle through esophagus, chyme
movement in stomach, urine transport from kidney, movements involved in the small and large

intestines, vasomotion of blood vessels, bile movement in duct, spermatic movement, ovum



movement in fallopian tube etc. This activity is initiated in the human beings when any food
stuff is chewed and swallowed through the esophagus. At this stage the peristaltic wave start
from the upper position of tube and propagate along the complete length and transfer this food
to stomach and here epiglottis also helps to route this bolus into esophagus instead of entering
this into windpipe. This is also termed as esophageal peristalsis. Afterwards this chewed food
stuff is churns through peristalsis and mix it with gastric juices. The gastric juices help to
dissolve this food through chemical and mechanical actions. At last after few hours this food
becomes the chyme which is the semi-solid like mixture. Then through peristalsis this material
is forced to small intestine where nutrients are absorbed through intestinal walls into blood
streams. At last final absorption took place in large intestine when peristalsis carried this
material to large intestine where waste material also eliminated through it.

Reverse peristalsis also occurs in cub- chewing animals including cows, sheep, camels etc.
where chewed material is brought back to mouth for chewing again. In human beings the
reverse peristalsis does not occur normally. This happens under certain circumstance like food
poisoning that caused disturbance in stomach and activate the emetic centre of brain that
results in immediate vomiting.

Beside the contribution of peristalsis in living organisms, this activity is involved in many
industrial, engineering and biomedical applications. At industrial level this activity is adopted
for the transportation of toxic liquid, sanitary fluid transport etc. It is also employed in the
transportation of nuclear waste material. It is also used in pumping phenomenon like roller
pumps, finger and hose pumps etc. Moreover these pumps are utilized in mining and metallurgy,
food and beverage, biopharmaceutical etc. Heart lung machine, dialysis machine and endoscopy
also involve peristalsis.

Due to such applicability of the topic in the field of physiology, medical devices, industrial
applications persuaded the mathematicians, physicists and engineers to investigate more in
this arena. The myogenic theory of peristalsis goes back to Engelmann [2] who investigated
this activity in ureter. He concluded that there is no ganglias in the muscular layer but few
at the end of the ureter. Afterward some initial attempts were endeavored by Lapides [3]
and Boyarsky [4]. They studied the physiology of human ureter. The significance behind any

mathematical modeling of physiological fluid flows is to get a better understanding for the



specific flow that is being modeled. As the peristaltic flow is evident in mostly physiological
situations so the precise mathematical analysis may help to study the flow in human body.
Latham [5] did the pioneer work on peristalsis. He considered the viscous fluid for study of
peristalsis in ureter. He compared the experimental results with theoretical research. These
are found in good comparison. After him Shapiro et al. [6] did the study for peristalsis in two-
dimensional channel. They examined the series of waves in inertia free flow by adopting the
long wavelength and small Reynolds number approach. Theoretical results are also validated
experimentally for axisymmetric and plane configurations. Burns and Parkes [7] analyzed the
peristalsis in view of lubrication approach. They obtained the series solution. Their model
was best suited for creeping flow as they have neglected the inertial terms from Navier-Stokes
equations. Barton and Raynor [8] accounted the peristaltic activity in tubes for the study
of movement of chyme to small intestine. Fung and Yih [9] and Hanin [10] also analyzed
peristalsis. Peristaltic activity in circular shape cylindrical tubes is investigated by Yin and
Fung [11], Li [12] and Chow [13]. They have considered the viscous fluid. Li [12] gave a
comparison for axisymmetric and two-dimensional channel by obtaining a series solution. Chow
[13] also analyzed the axisymmetric flow by series solution. Here the flow is induced by Hagen-
Poiseuille flow. Meginniss [14] discussed the peristalsis in a roller pump tube in presence of
low Reynolds number. Lykoudis and Roos [15] studied the peristaltic flow in ureter. They
have utilized the lubrication approximation. Zien and Ostrach [16] also applied the lubrication
theory to their problem by considering viscous, two-dimensional and incompressible fluid. At
zero mean volume flow rate inertial effects in Navier-Stokes equations has been studied. They
declared that their model is appropriate for the case of ureter. Results for peristalsis in view
of experimental and theoretical sense are also validated by Yin [17], Eckstein [18], Weinberg
[19] and Yin and Fung [20]. Weinberg [19] mentioned that his results are in good comparison
with ureteral analysis. Weinberg et al. [21] studied the impacts on ureter by imposing different
waves. Jaffrin and Shapiro [22, 23] investigated the pumping and reflux in peristalsis. Lew
et al. [24] investigated flow in the small intestine. Circular cylindrical axisymmetric tube
has been taken for the analysis. They obtained two series form solution. One for the case
of peristalsis compression without net fluid transport and other when peristalsis generated

deprived of net pressure gradient. Lew and Fung [25] collaborated for work on peristalsis in



valve vessels for small Reynolds number. Fung [26] examined the peristaltic wave in ureter by
evaluating the muscles action. He considered the tissues elasticity as exponential type. Hill
modified equations were utilized for muscles. Flow was considered axisymmetric having the
small wavelength. Peristalsis in a tube by utilizing the finite-element technique is examined by
Tong and Vawter [27]. Jaffrin [28] examined the peristaltic transport in inertial system. He
accounted the streamline curvature effects. His investigation can be applied to roller pumps
and alimentary canal. Peristaltic activity by using the Frobenius techniques in two-dimensional
geometry is examined by Mitra and Parasad [29]. Negrin et al. [30], Manton [31], Gupta and
Seshadri [32] and Liron [33] also put forward their attempts. In this regard, Brown and Hung
[34] also executed the study on experimental and computational bases. In another study [35]
they have solved the Navier stokes equations numerically in curvilinear coordinates. Kaimal
[36] and Bestman [37] dealt with this activity by utilizing long wavelength strategy. Rath [38]
planned the study for lobe shape tube. Results for pressure flow and velocity are calculated
and compared. Some other studies from literature can be referred through studies [39-50].
Until now, we have given the attention to discuss the literature on the peristalsis of viscous
fluid. However in real life problems, all the fluids do not exhibit the viscous fluid characteristics
(direct and linear relationship between shear stress and deformation rate). Mostly natural phe-
nomenon witnessed the involvement of non-Newtonian fluids. As peristalsis is found extensively
in human body, where we observed that the chewable food, blood, chyme etc. all lie in the
category of non-Newtonian fluids. Besides these, different oils, ketchup, lubricants, shampoo,
toothpaste, honey, custard, muds, paints, polymer solutions, industrial materials etc. all behave
as non-Newtonian fluids. All the non-Newtonian fluids depend on their rheological properties.
Hence these cannot be mathematically modelled through single constitutive relation. Differ-
ent models has been presented ([51, 52]) and utilized by the researchers depending on the fluid
characteristics. Raju and Devanathan [53] provided their first attempt for power law fluid. This
fluid model describes the pseudoplastic, dilatant and Newtonian fluid for changing the values of
power law index. They treat the blood as pseudoplastic fluid during the flow in axisymmetric
tube. Becker [54] gave a detailed description of different non-Newtonian fluids. He also exam-
ined different types of flow problems. Deiber and Schowalter [55] investigated the peristalsis of

viscoelastic material in a tube. They also accounted the porous medium. Viscoelastic materials



are also employed by Bohme and Friedrich [56] in planar channel. They investigated the inertia
free fluid subject to lubrication approach. Approximate solutions are obtained up to second
order of approximation for amplitude ratio. Pressure discharge and pumping efficiency were the
focus of their study. Micropolar fluid is also attended by Devi and Devanathan [57]. Pressure
gradient and micro-rotation is examined. Srivastava and Srivastava [58] look for the peristalsis
of Casson fluid. They considered blood as two-layer suspension of Casson fluid and peripheral
layer of plasma. Results were compared with studies for without peripheral layer. Investigation
for second order fluid flow in a tube is due to Siddiqui and Schwarz [59]. They deduced their
results for the special case of axisymmetric Newtonian fluid. Misra and Pandey [60, 61] talked
about the non-Newtonian fluids by utilizing the power law fluid model as food bolus in one of
their studies for esophagus. Mernone et al. [62] attended the Casson fluid model and calculated
the perturbation solutions. Herschel-Bulkley model has been explored by Vajravelu et al. [63].
Trapping and pressure rise were also investigated. Hayat and Ali [64, 65] scrutinized the third
grade and power law models for peristalsis. Horoun [66, 67] designed the analysis for third and
fourth grade fluids by taking the asymmetric and inclined asymmetric geometries respectively.
Reddy et al. [68] examined the power law model for asymmetric peristalsis. They considered
the waves traveling with different amplitudes for asymmetry in geometry. Hayat et al. employed
different fluid models (Burger [69], micropolar [70], Carreau [71]) for peristalsis by moderating
different flow assumptions. Wang et al. [72] attended Sisko model. This predicts the shear
thinning and shear thickening effects for different values of power law index. Mekheimer and
Elmaboud [73] carried out the study for couple stress fluid. They modelled the study in an
annulus. Frictional forces, pressure rise and trapping were focused. They emphasized on the ap-
plication of endoscope. Hariharana et al. [74] presented an investigation for Burger and power
law models in a tube. They employed the different wave forms including square, trapezoidal,
multi sinusoidal and sinusoidal. They utilized the Fourier series in their analyses. Path lines
were also drawn to investigate the reflux. Muthu et al. [75] discussed micropolar model for fluid
in a tube. Hayat et al. [76, 77] continued to extend the literature by attaining the attempts
for Maxwell and Johnson-Segalman models. Tripathi et al. [78] focused on viscoelastic mate-
rials by employing the fractional Maxwell technique. Hayat et al. [79] studied the third grade
fluid in curved geometry. They analyzed the heat and mass transfer. Third grade fluid is the
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differential type fluid. This model describes the shear thinning, shear thickening and normal
stresses. Alsaedi et al. [80] addressed the Prandtl fluid to examine peristalsis. Convection
transfer of heat has been also investigated. Hayat et al. [81] examined the Eyring Powell fluid
with convection on the boundary. Chemical reaction has been also carried out. This model
predicts the results accurately at high and low shear rates. Some studies reported by Hayat
et al. [82, 83, 84, 85] on non-Newtonian fluids are also useful. Here the authors have utilized
the Soret, Dufour, radial magnetic field, rotation effects. Sadaf and Noreen [86] carried out the
investigation for Rabinowitch fluid. Rabinowitch model describes the viscous, shear thinning
and shear thickening effects.

Amelioration of heat transfer capability is the need of time and required in every field. It is
primary apprehensions for scientist nowadays. Peristalsis with heat transfer effects is necessary
from the biomedical point of view. Whenever a process runs it involves heat loss. From the
past era there is much more interest found in the field of nanotechnology. The reason behind
this is the enhancement in heat transfer efficiency. Nanofluid are the new class of advanced
heat transfer fluid that are homogeneous mixture of base fluid and suspended particles in it.
These are not just prepared by mixing the nanoparticles in host fluids but involve the chemical
processes. Utilizing the nanoparticles of millimeter or micro size caused eventual sedimentation
and corrosion. Hence nano size particles (1-100 nm) are used. This will helps to minimize the
gravitational effects and enhances the stability of mixture. For nanofluid the contact surface
area is greater when compared with microparticles. This will cause quick thermal response
and hence enhances the heat transfer. Size, material and shape of the particles are the main
factor that effected the thermophysical properties of nanofluid. With same volume fraction of
different nanoparticles, the efficiency of nanoliquids can be different. Different nanoparticles
ceramics (Alumina, Silicon carbide etc.), metals (Aluminium, copper etc.) Carbon (Graphene
etc.) are utilized in traditional liquids i.e. water, oils etc. Choi [87] gave the name “nanofluid”
to this material. Nanoliquids are used for cooling purposes like cooling in automotive engine,
solar energy, refrigeration, electronic cooling, drug delivery, aerospace, cooling and heating of
buildings, oil recovery, desalination, lubrication, drilling, nuclear cooling, boiler etc. These new
fluids have enhanced thermal properties when compared with traditional liquids. Due to its

stability and little settling the nanofluids are found more proficient. Besides the industrial and
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engineering applicability, the nanoliquids are also being used in biomedical field. Iron based
nano materials are utilized as delivery vehicle up the blood stream to tumor. This will help to
deliver the drugs in cancer patients. Nanoporous membranes with help of Ultraviolet source
can kill the virus and bacteria from water. Due to such ample novelty the different models
are used by the researchers. Maxwell [88] model for spherical shaped particles, Hamilton and
Crosser [89] for different shapes of nanomaterial, Xue [90] for nanotubes particles are important
to mention here. In these models the characteristics of fluid and particles are separately pro-
vided. Buongiorno [91] model was based on seven slip mechanisms for convective transport. He
proposed that among these only Brownian motion and thermophoresis are prominent. Birkman
[92] gave the model for viscosity of the nanofluids. Khanafer and Vafai [93] provided a critical
synthesis for the nanoliquids characteristics. Sheikholeslami et al. [94-96] developed analyses
in presence of MHD and radiation for different conditions. Shehzad et al. [97] addressed the
peristaltic flow of nanofluid in presence of Joule heating. Abbasi et al. [98] reported the effect
of spherical and cylindrical particles. Bhatti et al. [99] addressed the Sisko fluid treating it
as blood and Titanium nanoparticles for endoscope application. Sayed et al. [100] examined
the non-Newtonian nanofluid in an inclined asymmetric geometry. Some more attempts can be
highlighted via refs. [101-110]. The utilization of hybrid nanofluid can be seen through refs.
[111-115].

Magnetohydrodynamics is the study of dynamics of fluids when magnetic field is involved.
It is the property of electrical conducting fluid that it become polarized and change the MHD
itself. This property has significant importance and note worthy applications in the field of
biomedical engineering. As blood behaves as the conducting fluid so this characteristic of blood
has been considered in certain clinical applications. MHD is applied to reduce the bleeding in
case of severe injuries. As magnetic field slows down the flow. This property is also accounted in
surgical operation to drop blood flow. Magnetic resonance imaging (MRI) has been employing
for diagnosis purposes. Further it is found for cancer treatment [116] method to guide the iron-
based nanomaterials. Super paramagnetic iron oxide nanoparticles are found proficient for drug
delivery. Trapping phenomenon may cause thrombus in blood vessels that can be disappeared
with the help of MHD. Its applicability can also be seen in hyperthermia [117], intestinal

disorders and magnetic endoscopy. Industrial processes may include solar power technique,
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remote sensing to screen the non-proliferation, geothermal extractions, signal processing, power
generation processes, MHDs sensors etc. In natural phenomenon like Earth magnetic field to
solar wind, magnetic field of stars and planets this activity is also observed. During MHD
another physical aspect has been also inspected named as Joule heating, which occurs as a
result of implication of magnetohydrodynamic aspect. The result of current through conductor
produces heating. Many common applications are working on this principle, like hair dryer,
electric heater, iron to remove wrinkle etc. Different researches have been carried out on the
concept of magnetohydrodynamics. Magnetic field during blood pumping has been studied by
Stud et al. [118]. Shehawey and Husseny [119] presented a study of peristalsis by employing
magneto fluid. Perturbation solution has been constructed in presence of porous boundaries.
Mekheimer [120] studied the blood flow in non-uniform channel. Naby et al. [121] examined
the trapping in presence of MHD. Eldabe et al. [122] analyzed bioviscosity fluid for MHD
characteristics. Hayat and Ali [123] also investigated hydrodynamic flow. In another analysis
Hayat et al. [124] covered the endoscope problem for Jeffrey fluid by employing magnetic
field. Ebaid [125] carried out a numerical analysis for MHD peristalsis of biofluid with varying
viscosity. Some more attempts here can be viewed (refs. [126-131]). It is also observed that
Hall current cannot be ignored for situations associated with strong magnetic field (see refs.
[132-139)).

In natural phenomenon chemical reactions also takes place. It may be of constructive or
destructive type which depend on the nature of reactants that take part in chemical reaction.
These reactions are homogeneous if the reactants are in same state otherwise named as het-
erogeneous reaction, which are of keen importance in medical field because of production of
biodiversity. In peristalsis there are many processes where chemical reaction clearly involved,
named as metabolism. During some reactions, the energy released is used by cell to proceed life
e.g. during the breakdown of glucose, while for later energy is absorbed including the process of
formation of protein. Catalytic reactions are also observed in living beings. Basically, catalyst
is an agent that enhances the speed of reaction. In living organisms, enzymes play the role as
catalyst. Without these enzymes the process of metabolisms is too slow that it will take even
centuries to complete, hence there is no chance of survival. As temperature and concentration

of the reactants is less to react itself. Enzymes helps to reduce the activation energy required.
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There are different enzymes each worked with a particular substrate. Missing enzymes may
lead to metabolic disorders. Beside these applicability catalysis converter has been utilized
to produce Ammonia. Fog formation, batteries, production of polymer, electrolytic cells, hy-
drometallurgical industry witnessed some applicability of chemical reaction. Initial studies on
homogeneous-heterogeneous reactions [140, 141] have been reported by Merkin and Chaudhary
and Merkin respectively. Merkin investigated the first order heterogeneous and cubic auto-
catalytic homogeneous reaction. Further Hayat et al. [142, 143] put forward their analysis for
chemical reaction, convective conditions and Hall effects. Awais et al. [144] commenced a study
for chemical reactions in tapered channel by using two phase nanoliquids. They have utilized
the silver and copper nanomaterial. More relevant studies in this direction can be seen via
studies [145-149].

Porous material is characterized as having voids or pores in it. Many natural materials like
soil rocks, zeolites, ceramics and cements, biological materials such as bones, cork, capillaries,
filters etc. witnessed the examples of porous materials. This concept is utilized in different
engineering branches such as petroleum engineering, construction engineering, geoscience, ma-
terial science, biophysics, biology etc. Fluid flow via porous medium has gained a lot of interest
and importance and it becomes a separate branch. Fluid flow from porous media is influenced
by certain properties of media, tensile strength, permeability, porosity etc. Experimental work
on flow via porous medium is experienced by Darcy [150]. Classical Darcy law works well for
viscous flow. Simple relation between pressure gradient and flow rate is elucidated through this
relation. These postulates are valid for the flow in tubes, capillaries and some other applica-
tions in earth sciences. For non-Newtonian fluids the modified Darcy law preserves the surface
tension force. Johansen and Dunning [151] commenced a study for capillary system by focus-
ing on wettability. Affifi and Gad [152] reported a study on porous medium for pulsatile fluid
peristalsis. Rao and Mishra [153, 154] examined the porous medium for peristalsis. They [153]
employed porous tube filled with power law fluid. In another study [154] porous peripheral layer
for gastrointestinal tract has been investigated. Elshehawey et al. [155] canvassed the study for
peristalsis in tapered pore by considering viscous fluid. They considered the compressible fluid.
They deduced the fact that induced net flow is strongerly influenced by liquid compressibility.

Tan and Masuoka [156, 157] reported their studies for porous medium by using second grade
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and Oldroyd-B-fluid. They analyzed the Stoke’s first problem. Vajravela et al. [158] attended
peristalsis in porous annulus. By commencing the studies for porous medium Hayat et al.
[159, 160] accounted the effects of Hall and rotation in peristalsis of Oldroyd-B-fluid and Stokes
first problems for third grade fluid. Further studies [161-164] also gave a look on literature for
highlighting the novelty of porous space.

For fluid flow problems there are two main boundary conditions namely no-slip and slip
boundary conditions. No-slip condition has been validated through theory for viscous fluids
according to which the fluid will adhere to wall and there in no relative velocity among them.
Moreover, shear stress arises due to distortion of fluid particles. However, for certain conditions
such as fluid flow in capillary vessels, polymer melts extrusion etc. where no-slip conditions
are no more valid. In human body where flow also dissatisfied the no-slip conditions, slip
conditions are adopted. This technique is significant to polish the artificial heart valve, polymer
industry, paints etc. In slip there is direct relation between velocity and shear stress of the
fluid. Depending upon the fluid’s nature, slipping of fluid at the wall varies. Hayat et al.
[165] presented the study for peristalsis in porous medium. They have chosen the partial slip
conditions on boundary. Adomian decomposition technique has been used to find solution.
Trapping and pumping have been also discussed. Ali et al. [166] also encountered the problem
for peristalsis with slip conditions, MHD and variable viscosity. Series solution have been
developed in this case. Ebaid [167] captured the effects for slip conditions in presence of MHD in
an asymmetric geometry. Srinivas et al. [168] also reported the slip and magnetohydrodynamics
in peristalsis. Johnson Segalman fluid model for slip conditions has been focused by Akbar et al.
[169]. Mustafa et al. [170] attended slip effects for viscous nanofluid. Sayed et al. [171] explored
the slip conditions for velocity. Tangent hyperbolic nanofluid model and copper water material
has been investigated by Hayat el al. [172, 173]. Another type of boundary conditions has also
been accounted during flow problems. These are collection of Fourier law and Newton law of
cooling. Some literature is mentioned here for view. Ramesh [174] employed the convective
conditions for couple stress fluid. He also accounted the porous media. Hayat et al. [175]
adopted the convective boundary conditions in peristalsis through curved channel. Shahzadi
and Nadeem [176] also employed these conditions for metallic nanoparticles.

Compliance as medical terminology is defined as the capability of vessel to bulged as a
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result of pressure on it and persist its original position. On other side it is related to material’s
ability to deform elastically as a result of an applied force. It is the inherent property of
capillaries, arteries, valves, veins and muscles in living organisms. This property of blood
veins is responsible for blood pressure changing. This characteristics has been appealed by
the researchers as compliant nature of surfaces cause reduction in drag force. As peristalsis
is involved in physiology and clinical applications. Therefore this property has advantages to
utilize. For mathematical modelling the compliant nature is describes in terms of elastance,
rigidity and stiffness through mathematical expressions. This will help to treat these walls as
membrane. Many studies have been conducted in this way. Mittra and Prasad [177] conducted
an initial study by adopting flexible wall. Srivastava and Srivastava [178] presented the study
by adopting the viscoelastic features of the wall geometry. Particulate phase effect has been
investigated on qualitative and quantitative basis. Elnaby and Haroun [179] also pay attention
to this effect. Javed et al. [180] addressed the study by using Burger fluid in flexible wall
channel. Jyothi et al. [181] reported the investigation on MHD Johnson fluid in complaint
wall channel. Hayat et al. [182] portrayed the study for endoscope analysis while adopting slip
and flexible walls. The studies [183, 184] examined the wall properties effects under magnetic
field and variable liquid characteristics. Javed and Naz [185] treated the realistic fluid in flow
geometry having compliance characteristics.

Heat and mass transfer always occur during the process of flow. Heat transfer modes include
conduction, convection and radiation. All these processes are involved during fluid flow. The
conduction during fluid flow has been analyzed through Fourier’s law. Convection is dominant
mode in fluids for transfer of heat. Influence of gravity in different scenario also plays significant
role. Sometimes these effects are so prominent and cannot be ignored. At horizontal surfaces
these effects are not effective to study as compared to vertical and inclined geometry involved
in laboratory and real-life situations. As a result of gravity natural convection occurs. Mixed
convection is the combination of natural and forced convection. Mixed convection activity has
been greatly carried out for heat transfer processes including process of nuclear impurities,
MHD generators, chemical plants etc. Srinivas et al. [186, 187] modeled the mixed convection
phenomenon. They have given the attention to heat and mass transfer effects and chemical

reaction in their respective studies. Hayat et al. [188] commenced a study for mixed convective
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flow with slip boundary conditions. Assumptions of Joule heating and Soret and Dufour effects
have been modeled. Mustafa et al. [189] addressed mixed convective flow of fourth grade fluid
with Soret and Dufour effects. Water based nanoliquids in presence of mixed convection has
been studied by Hayat et al. [190]. Convective boundary conditions, Hall effects and Joule
heating have been accounted. In another study [191] they accounted the mixed convection
phenomenon in tapered asymmetric channel. Tanveer et al. [192] reported a study in view of
mixed convection effect for Eyring Powell fluid in curved configuration. Radiation is also another
mode of heat transfer nowadays applicable in many biomedical applications. All these modes
maintained a healthy temperature and remove the extra heat from body if necessary. Sweating,
vasoconstriction, vasodilation, through urine etc. are all different way of heat transfer. Heat
and mass transfer effects have gained importance due to its existence and applicability. Srinivas
and Kothandapani [193] talked about heat transfer aspect in asymmetric channel. Mekhemier
and Elmaboud [194] elaborated the heat transfer in a vertical annulus. Nadeem and Akbar [195,
196] also worked for heat transfer aspects. Further studies about this aspect can be noticed
from the refs. [197-200].

Natural activities are spontaneous, irreversible and complex. During fluid flow many processes
involve fluid friction, Joule heating, chemical reactions etc. This caused change in system’s
thermodynamics. These kinds of activities caused disorderliness in the system. Study of dis-
orderliness of the system is named as entropy. The concept of entropy goes back to Rudolf
Clausius, who defined the entropy in the thermodynamic sense. Second law of thermodynamics
is utilized for entropy. This law shows that entire actual processes are irreversible and this
irreversibility can be assessed through entropy generation analysis. Heat transfer laws and fluid
mechanics principles are combined to ascertained strategies for entropy generation optimization.
Foremost target behind the designing of different devices and system is to provide the maximum
output and to minimize the entropy. In thermodynamic sense this is related to enhance heat
transportation rate and estimating the performance of a system. To obtain the sophisticated
energy efficiency the researchers have moved to the thermodynamic approach EGM (entropy
generation minimization) in thermal engineering system and devices. This approach is quite
beneficial in designing the engineering devices. This great applicability and ample application

can be seen through its utilization in reactors [201], chillers [202], microchannels [203], air sepa-
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rators [204], fuel cells [205], helical coils [206], evaporative cooling [207], curved pipes [208], gas
turbines [209] etc. Besides these with reference to peristalsis the study of entropy is very crucial,
as physiological processes are complex and spontaneous. From the medical point of view, it
is necessary to venture the factor that causes the greater irreversibility and find measures to
control them.

Bejan [210] employed the thermodynamics second law to estimate the irreversibility in
the processes of heat transfer. His paper comprises of two parts. Firstly he investigated the
production of irreversibility. In other part he reviewed the second law for heat exchangers in
classical engineering. He presented the analytic methods for irreversibility minimization. In
another study [211] he gave the method for EMG in thermodynamics systems. Sheikholeslami
and Ganji [212] scrutinized a study of entropy for nanofluids. Akbar [213] reported a study for
irreversibility analysis in a tube. MHD characteristics have been also accounted. Akbar et al.
[214] also paid attention to planar channel by employing water based nanoliquids. Abbass et
al. [215] presented the study for irreversibility analysis in flexible wall channel. Hayat et al.
[216, 217] studied entropy by employing single and multi-walled CNTs and Jeffrey fluid. More
studies in this area can be highlighted through [218-225]. It is noticed that the literature on
entropy analysis with reference to peristalsis is scarce yet. Researchers have started working in

this field because of its utility and novelty.

1.2 Basic laws and fundamental equations

Real situations of fluid flow can be captured through mathematical modeling in terms of physical

laws. These laws are:

1.2.1 Mass conservative law

This law witnessed the conservation of mass. For the case of no source/sink and compressible

fluid, equation of continuity is
dp

div(pV) + 5%

0, (1.1)

where p, t and V = (u,v,w) portrayed the respective density, time and velocity field.
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For incompressible fluid it becomes

u v ow_
or Oy 0z
For Cylindrical coordinates
Ou u Ow_,
o r 0z
For curved geometry we have
0 ou
— R* R*— =0.
or [(r+ Bl + oz
1.2.2 Momentum conservative law
Equation of motion satisfies
av
— =pb :
P = Pot v.r,

here b, T depicts the body force and Cauchy stress tensor.

T=-pI+8S,

where p the pressure and S the extra stress tensor which varies for different fluid.

For two phase nanoliquids

dV
Peff g = Peffb+ V.1,

where

Pefr = (L= 8")ps+ ¢*pp,

where p,, and p; are densities of nanomaterial and base liquid.

1.2.3 Energy conservative law
It is expressed in the form

dT
pCpE = —V.q+Q.
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Here q, T, C, denote heat flux, temperature and specific heat. ) term describes heat charac-

teristics, including viscous dissipation, radiation etc.
q=—rVT, (1.10)

where k elucidate the thermal conductivity.

For two phase model for nanoliquids

dT
(Cp)ess = = ke V2T +Q, (1.11)

where

(Pcp)eff = (1- ¢*)(pcp)f + ¢ (pChp)p;

Keff _ Fpt (n* = 1ks— (n* = 1)¢"(ky — /sp). (112)
K kp + (" — kg + ¢*(ky — Kp)

Here subscript p and f represent the notation for nano solid material and base liquid and n* is
shape factor.

For Buongiorno model

dT S
(0Cp)p —= = =V.a+ 1,V ]y, (1.13)

where in and 7, highlight specific enthalpy and diffusion mass flux of nano materials. Here

q=—-xkVT+ fzpjp,

R vT
Ip = —ppDTﬂ - pp_DBVC, (1].4.)

where T,,, Dr, Dp are respective mean temperature, thermophoresis and Brownian coefficients.

Inserting for q and simplifying, we get

dT R
(PC) 7 = KV2T — Cpjp.VT. (1.15)
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Finally utilizing j,, one arrives at

ar VT.NT
(PCy)y = = V2T + (Cpp),, Dr——— + (Cyp),, DpVC.VT. (1.16)
1.2.4 Concentration law
Here one has
d
d—f = DV?C + o, (1.17)

in which ¢ denotes the source term that may be in form of chemical reaction etc.

Concentration equation for nanoparticles is

dC 1
— = ——V.},. 1.18
dt oy V.p ( )
Utilizing the expression for j,, we arrive at
dC V2T
— = Dr—— + DpV?2C. (1.19)

dt T

1.2.5 Compliant walls

Compliance is linked to capability of an objects to bulged or recoil back to its original position.
This property can be described in terms of elastance, rigidity and stiffness. Living organisms
naturally include such muscular structure through which it is more feasible to exchange nutrient,
water etc. The flexible walls is also known as Compliant walls. Mathematically we expressed
as

L*(n) =p — po, (1.20)

where pg is the pressure outside the wall due to muscles tension and L* the characteristics of
walls to consider them as membranes defined by
0? 0? 0

L"=—7"—+4+m'"— +d

Ox? oz ot (1.21)

in which elastance (—7%), mass per unit area (m*) and damping (d}) characteristics are taken

into consideration. Study of peristalsis with and without compliant characteristics are valid
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where disturbance due to pressure is negligible. However the compliant characteristics are

more suitable in case of deformable walls.
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Chapter 2

Entropy generation in peristalsis
with different shapes of

nanomaterial

2.1 Introduction

This chapter analyzed the peristalsis in a vertical channel by using different shapes of nanoma-
terial. The nanomaterial utilized for this purpose is silver (Ag) with water as base fluid. The
study is based on the comparison amongst different shapes of nanoparticles (bricks, cylinders
and platelets). The walls of channel are of flexible nature. Study is done in the light of long
wavelength and low Reynolds number approximations. Solution technique utilized here is per-
turbation with Grashof number as small parameter. Entropy generation analysis is also carried
out with different shapes of nanoparticles. The graphs of Bejan number, entropy generation,
velocity and temperature are drawn for the sake of comparison through considered nanoparti-
cles. Streamlines are also studied. The results lead to the fact that an increase in nanomaterial
volume fraction decays velocity and temperature of nanofluid. The Hall parameter and Hart-
man number show opposite behavior for velocity, temperature, entropy generation and Bejan
number. Highest values of temperature, Bejan number and entropy generation have been seen

for brick shaped particles and smallest for platelet shaped particles.
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2.2 Flow configuration

Here a vertical channel of width 2d is considered. The channel walls are considered flexible.
The walls are at the positions y = +n. A wave travels with speed ¢ along the walls which propel
the fluid in motion. This wave has wavelength A and amplitude a (see Fig. 2.1). The walls
has temperature Ty. Moreover base fluid and nanoparticles are considered thermally consistent
with respect to each other. A magnetic field of strength By is applied in a normal direction to
flow. Induced magnetic field is ignored because of small magnetic Reynolds number.

The Lorentz force is defined as

F =J xB, (2.1)

in which B = [0,0, B,], and J are the applied magnetic field and current density respectively.

When Hall effects are taken into account then current density satisfies

1

ene

J=0c; |E+V xXB~— [J x BJ|. (2.2)

Here o.f elucidates the effective electric conductivity of nanofluid, E is used for electric field,
the velocity field V =[u (z,y), v (z,y) ,0], e represents the electron charge and n. the number

density of free electrons. Electric field is absent and thus

1
J =0eff l:V x B — [J X B]:| . (23)
ene
The Lorentz force then takes the form as:
e B2 e Bo —Ue B2 e Bo
F— | <—u+ (T )v) ,—l o <v+ (ZeffZo )u> ol (24
1+ (_861%11;_0)2 ene 1+ (_861%11;_0)2 €Ne

The two-phase model of effective electric conductivity of nanofluid is represented below [135,

190]:

3(Z22 —1)¢"
Teff _ 4 7f 2.5
oy @)@ (29

Here o), and o are the electric conductivity of nanomaterial and base fluid respectively and ¢*
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is used for nanoparticle volume fraction. Now we have

AlO'fB2 —A10‘f32
F— | 297 (44 e A
1+(A1m)2( U+ lmv)’1+(A1m)2(v+ 1mu)50 )
where A; and the Hall parameter m are defined by:
CeB 32— 1)g°
m=—— A1=1+— —~ =
ene T2 - (Z -1

Shape of the peristaltic wall is

2
y==xn(z,t)== d—l—asin%(x—ct) .

0

Fig. 2.1: Flow Configuration

The governing equations are:
ou n ov 0
or Oy
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Here u and v are used to represent the velocity components in x and y directions, T' the

. (2.12)

temperature, p the pressure, p,.¢; the effective density, p ¢ the effective viscosity, (PBT)ess

the effective thermal expansion, (pCj).rs the effective heat capacity, ks the effective thermal

conductivity of nanofluid and ¢, (= 73‘2‘1* 88—7;) the radiative heat flux.

The expressions for p.¢, (0Cp)ers, (PBT)effs Meps and kKepy are:

Peff = (1- ¢*)pf + ¢*Pp7 (Pcp)eff =(1- ¢*)(P0p)f + ¢*<P0p)p7
(PBr)ess = (L= (pBr) + " (0Br)y:  hegs = #
Regy st (00— Dy = (0~ 16" — rp) (2.13)

s fip + (0* = D) + " (kg — Fip)

Table 1 given below represents the thermophysical properties of utilized base fluid and

nanomaterial.

Table 1: Thermophysical parameters of water and nanoparticle [190]

p (gm™®) G (ke 'KY & (WmKY) Ay (I/K) x 1078
H,O 997.1 4179 0.613 210
Ag 10500 235 429 18.9

Shape factor and sphericity of different shapes of nanomaterial are given in Table 2 below

106
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Nanomaterial shape | Sphericity | Shape factor

Brick 0.81 3.7
Cylinder 0.62 4.9
Platelet 0.52 5.7

The quantities in dimensionless form are given by

« T .Y x_ U e |
a: - A? y - d? u - C7 v - C? - A? ?7 - d7
* 61:“’ * g * d2p
51 = —fv 2 — _27 b =
d d CApg
d — C
iy Ty Ky
2 Td2
Ee = —% _ Br=PrEe, GTZM, M= /2B,
(Cp)fTO Clby Ky
160*T3 o o
d = —-0 = = _§—. 2.14
k 3k*ky “ oy’ Y Ox (2.14)

Here Re, Pr, Ec, Br, Gr and M are Reynolds, Prandtl, Eckert, Brinkman, Grashof and
Hartman numbers respectively. Moreover Rd is the radiation parameter.
After invoking large wavelength and low Reynolds number assumptions [135, 190] the con-

tinuity equation is identically satisfied and others equations lead to

o 1 foatll AM? 0y
o2 = T s O T (P oy o
op
o (2.16)
920 Br 9%\ %0
(PBr)
A = 1 - (,b* + ¢* . )
3 (PﬂT)f
K Kp + (n* — 1)’1f —(n" - 1)¢(Hf _ Kp). (2.18)

o+ (7 — Drig + 0y — rp)



The velocity slip, compliant walls and thermal slip conditions are

Ut &Sy =0 at y = +mn, (2.19)
—*8—3+m* o +di o = 85’”y+85”— @—l—u%—kv%
T 943 ozorz " “otox | T Toy T ox Mot T Yar Yoy
Aio;B2
+9(pBr)ess (T = To) = Triaime (u— Almv)(?'Q(])
at y = %,
T+ 522—5 =Tp at y = £n. (2.21)

where £; and &, are dimensional slip parameters for velocity and temperature respectively.

The dimensionless forms of boundary conditions are

o & P a0 _
Oy + (1—¢*)25 ay2 0, 6+¢& dy 0, at y = =+, (2.22)
o3 93 92 1 83,¢} A1M2 81[1
Prow * Pasar T Paias | "~ T=gm oy TN T T @amr ey M VT
(2.23)

Here FE4(= —T*d3//\30uf), Eq(= m*cd3/)\3,uf) and E3(= d’{d3/)\2uf) are the flexible walls

parameters.

2.2.1 Entropy generation and viscous dissipation

Viscous dissipation effect is given by

cr (@) @) GRS e

Dimensional form of volumetric entropy generation in defined as

2 2 *3 2
Za Iieff a_T 8_T L160' TO a_T g
Sgen = T2 ((83:) + <8y tm e \ay) "I (2.25)
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The entropy generation in dimensionless form becomes:

111

S, 00\ > Br
Ny =2 — (K1 4+ Rd) | —
s SG: ( 1+ ) ay + A(l _ ¢)2.5
S/// o K}fTO2 A _ TO
¢ T2az T,
Here T, elucidates the mean temperature.
Bejan number is:

Be — Nscond )

Nscond + Nsyise

(g;f) g (2.26)

(2.27)

(2.28)

Here Eq. (2. 25) can be split into two parts. One part comprises of entropy generation which is

due to finite temperature difference (N s.onq) and the other part includes the entropy generation

because of viscous dissipation effects (N Syisc)-

2.3 Solution methodology

Perturbation technique is applied for small Grashof number. The equations and solutions for

the cases of zeroth and first orders systems are:

2.3.1 Zeroth order systems and solutions

1= ot 1+ (Am) o2 (2.29)
960 Br 1y ? 920,
f Oy? i (1—¢%)%® ( Oy? ) + Rd 02 0, (2.30)
2
e AL 0, at y=d=mn, (2.31)

oy — (1 —0")%5 oy?

3 o3 0? 1 031, AIM? Oy
P1ow T P guae E38t8x} 1= =g o Tt (Amp oy’ o Y=*0
(2.32)
0o + 522—9; =0, aty=d=n. (2.33)
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The solutions expressions are

Py =

A/ Ag+AgAZm2
AgBre otApArm

VAT My 2,/A1 My
/ 2,2 \/722
Aoe A0+A0A1m (1+A%m2) e A0+A0Alm Cl+02

—2,/A1 My 44/ A1 My
A/ Ag+AgAZm2
C2+C2e otApArm

)<1+A%m2>
AL M2 + 40102?/2

0o = —

F F5.
e + 11+ yre

2.3.2 First order systems and solutions

Here we have

1 oMy |, 960 AME 9%
(1—¢")25 oyt Toy 1+ (Am)? a2

8291 Br 82w0 62w1 6291
2 - - =
a2 T =g ( dy* Oy? ) *Hd N
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Oy . & 9%,
oy — (1—¢")%5 oy?

0,

Ky

=0, at y==n,

1 O3y AIM? Oy
A= o 0 T m oy

=0 at y=d4n,

001
01 £&— =0, at y = £n.
1 Qay n

The solution expressions are

Py =

—2/AT My
1 5 o ) \/Ag+AgATIm?2
W(l + Alm )(A0A3B7”€

(14 A2m?)/Ag + AgA2m2 + 12432 As Fy KK, M2 +

—:{AlMy
8AgA>2 MP(— A3 BrCyCoyP + 3¢ VAot Aoain?
2 /A My
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e A T
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(2.34)

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)



1 A
0 = —(Hi— HyKp — H3Ky + Hyy® — 3Ag AsCoe V0 10t

H
1{A11Wy
Hs — 12A9BrC1Cay/ Ag + AgA2m2y) + 3AgAzCreVAo+t404im? (1 4 A2 2)2

Hg + 6/ A1 F5 KoM
(— 6+ \/A_lj\j 2M) + 1249 BrC1Cs4/ Ag + AOA%m2y)) + G1 4 yGa, (2.42)
1

in which Ci’s, Fi's, Bi's, Gi's and Hi's are constants that can be evaluated through Mathe-

matica. Here Ko = K7 + Rd.

2.4 Discussion

This section includes the graphs and related analyses for different embedded parameters. This
section contains the graphs for velocity, temperature, streamlines, Bejan number and entropy
generation. Each graph gives a comparison among different shapes of nanomaterial for the per-
tinent parameter. Fig. 2.2 is drawn for the comparative study of effective thermal conductivity
of different shapes of nanomaterial when nanomaterial volume fraction varies. This Fig. clearly
indicated that effective thermal conductivity for the case of platelet shaped particle is higher
in all cases than brick and cylindrical shaped particles. The brick shaped particles have lowest

effective thermal conductivity.

Fig. 2.2: Comparison of effective thermal conductivity for different shaped nanomaterials
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Fig. 2.3 is sketched for the case of velocity when volume fraction of nanomaterial varies. As
expected the velocity is decreased via nanoparticle volume fraction. As higher volume fraction
enhance the shear rate, which provide resistance to flow so velocity decreases. Fig. 2.4 illustrates
the Hartman number impact on velocity. Velocity is decreasing function of Hartman number.
As Lorentz force provides obstruction to fluid flow. Hence the velocity reduces. Hall parameter
influence on velocity can be seen through Fig. 2.5. It shows the increasing behavior of velocity
for Hall parameter. Same impact is obtained for velocity slip parameter and Grashof number
(see Fig. 2.6 and Fig. 2.7). Grashof number arises due to mixed convection which is also in the
favor of velocity. In nuclear reactor cooling the mixed convection is utilized to dissipate energy
when force convection not enough to do so. Wall properties behavior on velocity is increasing
for elastance parameters while there is decreasing effect for damping parameter (see Fig. 2.8).
In all the cases of velocity profile it is found through comparative study of different shaped
nanoparticles that velocity remains lowest for case of bricks shaped particles and it is highest

for cylindrical shaped particles.

Fig. 2.3 Fig. 2.4

Fig. 2.3. u versus ¢* when E7; = 0.02, E5 =0.01, £3 =0.01,t=0.1, z = 0.2, ¢ = 0.2,
M =1.0,m=1.0, Br=5.0, Gr =0.1, {; =0.01, &, = 0.01, Rd = 0.5.

Fig. 2.4. u versus M when E; = 0.02, E, =0.01, E3=0.01,t=0.1, x = 0.2, ¢ = 0.2,
¢*=0.1, m=1.0, Br=5.0, Gr =0.9, £, = 0.01, & = 0.01, Rd = 0.5.
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Fig. 2.5 Fig. 2.6

Fig. 2.5. u versus m when E1 = 0.02, £, =0.01, £3 =0.01,t{=0.1, x = 0.2, ¢ = 0.2,
¢*=0.1, M =1.0, Br =5.0, Gr =0.1, £, = 0.01, & = 0.01, Rd = 0.5.

Fig. 2.6. u versus &; when Fy = 0.02, £» =0.01, F3=0.01,t=0.1, 2 = 0.2, e = 0.2,
M =1.0, m=1.0, Br =5.0, Gr = 0.9, ¢* = 0.1, {;, = 0.01, Rd = 0.5.

Fig. 2.7 Fig. 2.8

Fig. 2.7. u versus Gr when E; = 0.02, E» =0.01, E3=0.01,¢t=0.1, z = 0.2, ¢ = 0.2,
M =1.0,m=1.0, Br =5.0, ¢* =0.1, £, = 0.01, & = 0.01, Rd = 0.5.
Fig. 2.8. u versus Fy, Fo, F3 whent =0.1, x =0.2,¢ =0.2, M = 1.0, m = 1.0, Br = 5.0,
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Gr=0.1, ¢* = 0.1, & = 0.01, & = 0.01, Rd = 0.5.

Behavior of temperature is shown through Figs. 2.9-2.14. Fig. 2.9 explained influence of
¢* on 6. Temperature is decreasing function of volume fraction of nanomaterial. Due to similar
reason the nanofluids are utilized for coolant purposes. As higher volume fraction of nanopar-
ticles enhance the heat transfer capability, so temperature decreases. Through comparison it is
concluded that temperature distribution remains highest for bricks shaped nanoparticles and
lowest for platelets shaped nanomaterials. The results of Hall parameter and Hartman number
on the temperature are opposite (see Figs. 2.10 and 2.11). Enhancement is seen for Hall para-
meter whereas decay is noticed for Hartman number. As Hall effect facilitate the flow, so flow
with higher mean kinetic energy has greater heat loss and hence increase in temperature is no-
ticed. Similarly regarding force the flow slows and hence less heat loss through fluid movement.
Finally decay is noticed. The Grashof number and temperature slip parameter give increasing
behavior for temperature (see Fig. 2.12 and 2.13). Radiation parameter effects on temperature

is illustrated through Fig. 2.14. Decrease in temperature is noticed in this case.

Fig. 2.9 Fig. 2.10

Fig. 2.9. 0 versus ¢* when E; = 0.02, B, =0.01, £53=0.01,t=0.1,z = 0.2, e = 0.2,
M =1.0,m=1.0, Br=5.0, Gr =0.1, {; = 0.01, £, = 0.01, Rd = 0.5.

Fig. 2.10. 6 versus m when Fy = 0.02, E5 =0.01, B3 =0.01,t=0.1, 2 = 0.2, ¢ = 0.2,
M =1.0, ¢* =0.2, Br =5.0, Gr = 0.1, £, = 0.01, & = 0.01, Rd = 0.5.
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Fig. 2.11 Fig. 2.12

Fig. 2.11. 6 versus M when F1 = 0.02, E5 =0.01, £33 =0.01,t=0.1, z = 0.2, e = 0.2,
¢*=0.1, m=1.0, Br=5.0, Gr =0.1, £, = 0.01, & = 0.01, Rd = 0.5.

Fig. 2.12. 0 versus Gr when F; = 0.02, F5 = 0.01, £33 =0.01,t=0.1, x = 0.2, ¢ = 0.2,
M =1.0,m=1.0, Br =5.0, ¢* =0.1, £, = 0.01, & = 0.01, Rd = 0.5.

Fig. 2.13 Fig. 2.14

Fig. 2.13. 0 versus £y when E1 = 0.02, E, =0.01, £3 =0.01,t =0.1, z = 0.2, ¢ = 0.2,
M =1.0,m =1.0, Br =5.0, Gr =0.1, £&; = 0.01, ¢* = 0.1, Rd = 0.5.
Fig. 2.14. 6 versus Rd when E; = 0.02, F, =0.01, £3 =0.01,t=0.1, x = 0.2, ¢ = 0.2,
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M =1.0,m =10, ¢* =0.1, Br = 5.0, Gr = 0.1, £, = 0.01, & = 0.01.

The observation for entropy generation and Bejan number is covered here. Fig. 2.15 is
prepared for entropy generation versus ¢*. In view of this Fig. decrease in entropy generation
is seen for volume fraction of the nanoparticle. As less disorderliness is noticed with small
temperature effects. Fig. 2.16 is drawn for Hartman number variation on entropy generation
and Fig. 2.17 for Hall parameter. Decay is seen for Hartman number while an enhancement
is observed for larger Hall parameter. The reason can be directly related with temperature.
Both Gr and the ratio of Br to A have displayed the increasing behavior for entropy generation
(see Figs. 2.18 and 2.19). Fig. 2.20 is prepared for radiation parameter on entropy generation.
Entropy generation decreases for radiation parameter (Rd). Through all graphs it is found
that brick shaped particles have higher values and platelet shaped particles have least entropy

generation.

Fig. 2.15 Fig. 2.16

Fig. 2.15. Ns versus ¢* when F1 = 0.02, E5 =0.01, E3=0.01,t=0.1, x = 0.2, e = 0.2,
M =1.0,m=1.0, BrA~' = 1.0, Gr = 0.1, £, = 0.01, &, = 0.01, Rd = 0.5.

Fig. 2.16. Ns versus M when F; = 0.02, E5 =0.01, £33 =0.01,t{=0.1, 2 = 0.2, ¢ = 0.2,
¢* =0.1, m= 1.0, BrA~' =1.0, Gr = 0.1, £&; = 0.01, £, = 0.01, Rd = 0.5.
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Fig. 2.17 Fig. 2.18

Fig. 2.17. Ns versus m when Fq = 0.02, E5 = 0.01, £3 =0.01,t=0.1, z=0.2, e = 0.2,
M =1.0, ¢* =0.1, BrA=1 = 1.0, Gr = 0.1, £, = 0.01, £, = 0.01, Rd = 0.5.

Fig. 2.18. Ns versus Gr when Fy = 0.02, F» =0.01, £3=0.01,t=0.1, 2 =0.2, e = 0.2,
M =1.0,m=1.0, BrA~' = 1.0, ¢* =0.1, &, = 0.01, &, = 0.01, Rd = 0.5.

Fig. 2.19 Fig. 2.20

Fig. 2.19. Ns versus BrA~—! when E; = 0.02, F> =0.01, B35 =0.01, t =0.1, = 0.2, ¢ = 0.2,
M =1.0,m=1.0, ¢"=0.1, Gr =0.1, £, = 0.01, & = 0.01, Rd = 0.5.
Fig. 2.20. Ns versus Rd when E; = 0.02, Es = 0.01, B3 =0.01, ¢* =0.1,t =0.1, z = 0.2,
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=02 M=10,m=10, BrA~! = 1.0, Gr = 0.1, & = 0.01, &, = 0.01.

Bejan number observation is analyzed in this paragraph. In view of these graphical results
we have seen that decay is seen via ¢* (see Fig. 2.21). This result seems to be same here
as in the case of temperature. The Bejan number result for change in Hartman number is
observed via Fig. 2.22. This Fig. elucidates that Bejan number decreases with an enhancement
of Hartman number. Fig. 2.23 shows that Hall parameter has increasing behavior for Bejan
number. Moreover increasing impact of Bejan number is also observed for larger Grashof
number and ratio of Br to A (see Figs. 2.24 and 2.25). Fig. 2.26 is prepared for impact of
radiation parameter. The effects here are qualitatively similar to that of temperature. In all
the above mentioned graphs for Bejan number we noticed that the values for nanoliquids with

brick shape is larger than cylindrical and platelet shapes nanomaterials.

Fig. 2.21 Fig. 2.22

Fig. 2.21. Be versus ¢* when F; = 0.02, E5 =0.01, £33 =0.01,t=0.1, x = 0.2, e = 0.2,
M =1.0, m=1.0, BrA~' = 1.0, Gr = 0.1, £, = 0.01, & = 0.01, Rd = 0.5.

Fig. 2.22. Be versus M when F, = 0.02, E» = 0.01, E3=0.01,t=0.1, z =0.2, e = 0.2,
¢* =0.1, m=1.0, BrA~! =1.0, Gr = 0.1, £, = 0.01, £, = 0.01, Rd = 0.5.
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Fig. 2.23 Fig. 2.24

Fig. 2.23. Be versus m when F1 = 0.02, E» = 0.01, £3=0.01,t=0.1, = 0.2, e = 0.2,
M =1.0,¢*=0.1, BrA~! =1.0, Gr = 0.1, £, = 0.01, &, = 0.01, Rd = 0.5.
Fig. 2.24. Be versus Gr when E; = 0.02, F» =0.01, £3=0.01,t=0.1, x = 0.2, e = 0.2,

M =1.0,m=1.0, BrA~' = 1.0, ¢* = 0.1, &, = 0.01, &, = 0.01, Rd = 0.5.

Fig. 2.25 Fig. 2.26

Fig. 2.25. Be versus BrA~! when E; = 0.02, F3 = 0.01, B3 =0.01, ¢t =0.1, z = 0.2, ¢ = 0.2,

M =1.0,m=1.0, ¢"=0.1, Gr =0.1, £, = 0.01, & = 0.01, Rd = 0.5.
Fig. 2.26. Be versus Rd when Fp = 0.02, E; = 0.01, E3 =0.01, ¢* = 0.1, t = 0.1, x = 0.2,
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=02 M=10,m=10, BrA~! = 1.0, Gr = 0.1, & = 0.01, &, = 0.01.

For the sake of trapping the streamlines are prepared. Figs. 2.27 (a-c) are drawn for the sake
of shape factor . It is noted that the size of trapped bolus is lower for brick shaped than others.
Figs. 2.28 (a and b) corresponding to brick shaped, Figs. 2.28 (¢ and d) are constructed to
cylindrical shaped and Figs. 2.28 (e and f) to platelet shaped nanofluids for change in Hartman
number. It is noted that increase in strength of magnetic field decreases trapped bolus size.
This bolus size is smaller for the fluid containing brick shaped nanomaterials. Figs. 2.29 (a and
b) are sketched to brick shaped, Figs. 2.29 (c and d) hold to cylindrical shaped and Figs. 2.29
(e and f) to platelet shaped nanofluids have been prepared for change in Hall parameter. It is
noted that with higher Hall parameter caused decrease in the size of trapped bolus. This bolus

size is smallest for brick shaped nanomaterials.

Fig. 2.27 (a) (b)
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()
Fig. 2.27. 1 versus n* when F; = 0.02, F» = 0.01, E3=0.01,t =0, =0.2, ¢* = 0.1,
M =1.0,m=1.0, Br =5.0, Gr = 0.1,  =0.01, v = 0.01.(a) n* = 3.7 (b) n* = 4.9 (¢)
n* =5.7.

Fig. 2.28 (a) (b)

Fig. 2.28. 1) versus M for nanofluid with brick shaped nanoparticles when F; = 0.02,
E> =0.01, E3=0.01, ¢* =0.1,t =0, =0.2, m = 1.0, Br =5.0, Gr = 0.1, £&; = 0.01,
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&, =0.01. (a) M

1.0 (b) M = 3.0.

Fig. 2.28 (c) (d)

Fig. 2.28. 1) versus M for nanofluid with cylindrical shaped nanoparticles when E; = 0.02,
Ey, =0.01, E3 =0.01, ¢* =0.1,t =0, =0.2, m = 1.0, Br = 5.0, Gr = 0.1, {; = 0.01,
&5, =0.01. (¢) M =1.0 (d) M = 3.0.

Fig. 2.28 (e) ()

Fig. 2.28. 1 versus M for nanofluid with platelet shaped nanoparticles when F; = 0.02,
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By =0.01, E3 =0.01, ¢* =0.1,t =0, = 0.2, m = 1.0, Br = 5.0, Gr = 0.1, £, = 0.01,
€, =0.01. (e) M =1.0 (f) M = 3.0.

Fig. 2.29 (a) (b)

Fig. 2.29. ¢ versus m for nanofluid with brick shaped particles when F; = 0.02, E5 = 0.01,
Es3=0.01,¢*=0.1,t =0, =0.2, m= 1.0, Br =5.0, Gr =0.1, {; = 0.01, &, = 0.01. (a)
m = 1.0 (b) m = 3.0.
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(c) (d)

Fig. 2.29. ¢ versus m for nanofluid with cylindrical shaped nanoparticles when E; = 0.02,
Ey; =0.01, B3 =0.01, ¢* =0.1,t =0, =0.2, m = 1.0, Br = 5.0, Gr = 0.1, & = 0.01,
&5, =0.01. (¢) m=1.0 (d) m = 3.0.

Fig. 2.29 (e) (f)

Fig. 2.29. ¢ versus m for nanofluid with platelet shaped nanoparticles when F; = 0.02,
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Ey =0.01, B3 =0.01, ¢* = 0.1, t =0, = 0.2, M = 1.0, Br = 5.0, Gr = 0.1, & = 0.01,

2.5

&5, =0.01. () m=1.0 (f) m = 3.0.

Conclusions

Some key points of present study are:

Enhancement in nanomaterial volume fraction leads to decay in velocity, temperature,

entropy generation and Bejan number.
Hall parameter and Hartman number have opposite behaviors in all cases.
Grashof number has increasing impact in all cases.

The behaviors for temperature, entropy generation and Bejan numbers are qualitatively

similar.

The temperature, Bejan number and entropy generation have highest values for brick

shaped particles and smallest for platelet shaped particles.

Size of bolus is smaller for brick shaped nanofluids than others particles.
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Chapter 3

Investigation of entropy generation
in peristalsis of magneto-nanofluid

with second order slip conditions

3.1 Introduction

This chapter considers the peristalsis of magneto- nanoparticles suspended in water. Explicitly
Fe3O4—water nanofluid is utilized for two-dimensional flow in a symmetric channel with com-
plaint walls. Uniform magnetic field is applied. Temperature is arranged for viscous dissipation.
Second order velocity and thermal slip conditions are utilized. Small Grashof number leads to
perturbation solution. Examination of entropy generation is also made in this study. Maxwell
and Hamilton-Crosser models are used. Analysis is based on the comparative study of these
two models representing the cylindrical and spherical shaped particles. Graphs for velocity,
temperature, entropy generation and Bejan numbers are plotted under the influence of sundry

variables. Streamlines are plotted for the sake of trapping phenomenon.

3.2 Flow Configuration

Peristaltic flow of an incompressible nanofluid composing of FezO4 and water is considered. The

channel (with width 2d) is considered symmetric. Flexible walls channel placed at the positions
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y = +n where 4+ and — denote the right and left walls respectively. The rectangular coordinates
system is settled such as the z-axis lies along the channel length where the position of the y-axis
is in the direction perpendicular to the z-axis. The temperature of the walls is maintained at Tg.
Contribution due to constant applied magnetic field is taken into account. Induced magnetic
and electric fields effects are omitted. Mixed convection and viscous dissipation are studied.
Sinusoidal waves have wavelength A\, amplitude a and speed c. The shape of wave is defined by

equation given below:

2
y=4n(z,t) ==+ d—l—asin%(m—ct) . (3.1)
x/
d
n —n
n
A
o y

Fig. 3.1: Flow Geometry

Expressions for the considered flow configuration are:

ou Ov
B + a—y =0, (3.2)
0 0 0 Op Pu  0%u
Peff(a tug -+ Ua—y)u = —gp T Hefs [@ + a—y2:| — 0epsBou+ g(pBr)ess (T —To), (3.3)
0 0 0 op v 0%
peff(a—i_u%—i_va_y)v:_@_y—i_ue” [W+a_jy2:| , (3.4)
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o 9. 2 PT | T ou\? (o)
st g et = s ] ar 2 ((52) + (5)
(0, o)
Oy Oz

The quantities used in the above mentioned equations are defined as: u and v for components

: (3.5)

of velocity in the z and y directions, p. s for effective density, p the pressure, p, s, the effective
viscosity, o.rs the effective thermal conductivity, g the acceleration due to gravity, (p87)es/,
(pCp)ers and keys for effective thermal expansion, the effective heat capacity and the effective
thermal conductivity of nanofluids respectively. Here T is used to define temperature and ¢ for
time.

The expressions of p.rr, (0Cp)ers, (PBT)effs Meffs Tefy and kegy for the two phase models

are:
Peff = (1- <Z5*)Pf + <Z5*Ppa (PCp)ers = (1 = &™) (pCp) s + ¢ (pCh)p,
* * H
(bBr)ess = (L= pBr)r + 6" (Brls  tess = =55
Op *
Oeff = 14+ 3(o'f )¢
o E+2)-(Z Do
. Uir — 26*(kf —
Keff _ Fpt 2Ky (f (g = Fip) for Maxwell’s model and
Kf K+ 26f 4+ " (Kf — Kp)
e * 1 _ * 1 * _
Feff _ Kot (n *)Kf (n - J0"(ry — rp) for Hamilton-Crosser’s model,(3.6)
K kp + (n —1)Hf+¢ (Iif—lip)

in which the symbols f and p in the subscript are used to represent the fluid and nanoparticles
whereas ¢* depicts volume fraction of nanoparticles. In this study two models of effective
thermal conductivity are used in above equation. The Hamilton- Crosser model is used for the
cylindrical shaped particles for n* = 6 whereas Maxwell model is used for spherical shaped
particles. Here n* represents the shape of nanoparticles. It is defined by 3/¥ where ¥ depicts
the sphericity of nanoparticles. Value W = 0.5 is used for cylindrical shaped particles whereas
W = 1 for spherical shaped particles.

Thermophysical properties of base fluid and nanoparticles are mentioned below in Table 1.

Table 1: Thermophysical parameters of water and nanoparticles
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p (kg m™3) Cp, (ke ! K1) £ (Wm K1) Br (/k) x 1076 o (Q.m)!
H>O 997.1 4179 0.613 210 0.05
FesO4 5200 670 80.6 13 25000
The dimensionless quantities are introduced as:
P R A
- )\7 y - d7 - cv - C’ - )\ ) T] - d’
* 5lu‘f * 52 * 64#‘]0 * 65
51 = d ’ 2:E7 54: a2 55:ﬁ7
d? d — C
b= p) Re — Pr€ 7 H:T To? Pr:('u p)f7
CAg pf To K
2 T d2
Be = —S Breprpe o= 30PN [T
(C,)sTo Chiy 7
oY oY
- r = _§==. 3.7
U ay 9y v ax ( )

Here Re, Pr, Fc, Br, M and Gr denote the Reynolds, Prandtl, Eckert, Brinkman, Hartman

and Grashof numbers respectively.
After long wavelength and small Reynolds number assumptions one has
D3P

Ip _ 1 2
e (1 _¢*)2.5 &y3 + GrAsf — M= A

9
oy’

9 _
oy

520 Br 92\ 2
A s o <0y2> =0

0,

3(22 - 1)¢*
1+ /

(32 +2) = (32— 1¢"
Kp+26f — 20" (Kf — Kp)
kip + 265 + ¢* (K — Kip)
o (0 = Dy = (0* = 16 (7 — )

R (0 — g 4 6 (k7 — i)

oo (1)

Ky for Maxwell’s model and

for Hamilton-Crosser’s model.
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The dimensionless form of boundary conditions are:

oy SR & 0% _ o0 . 0% _ -
ay L (1 _ ¢*)2.5 ayZ (1 . ¢*)2.5 393 - 07 0+ 52 ay + 5582/2 — 07 at Yy = j:T], (312)

o 8 92 1 oy
o T PgaE TR

_ oY
Sotoz | T (1— ¢)25 9y’

+ GrAsf — MQAla—y, at y=+4n.
(3.13)
Here F4(= —T*d?’/)\?’c,uf), Es(= m*cd?’/)\?’,uf) and E3(= d*{d3/)\2,uf) are the walls parameters.

Er

Here velocity and temperature slip parameters in dimensionless form is denoted by &;, £, and

&9, &5 respectively.

3.2.1 Entropy generation and viscous dissipation

Viscous dissipation is represented by

b)) ] o

Dimensional form of volumetric entropy generation is

2 2
" Iieff 6T 8T P
S oy = —5= —_— — P 3.15
gen T% ((8(13) +<ay +Tm ( )
Entropy generation in dimensionless form becomes
S 90\ Br A
Ns=#=A3<—> + ( ) : 3.16
S oy A(1 — ¢)25 \ 9y? (3.16)
Sl N (3.17)
¢ T2d2 T’ '
Bejan number is:
Be = — NScond (3.18)
B Nscond + Nsyisc ' .

Here Eq. (3.15) can be split into two parts. One part comprises of entropy generation which is
due to finite temperature difference (N s.onq) and the other part includes the entropy generation

because of viscous dissipation effects (N Syisc)-

50



3.3 Solution methodology

We adopted the perturbation technique for the solution. We choose the small Grashof number
as perturbation parameter. The equations and solutions for the cases of zeroth and first orders

are:

3.3.1 Zeroth order systems and solutions

(1- ;*)2-5 a;;po MEA; 80% =0 (3.19)

K1%2920 . B;*)% < 85 ) =0, (3.20)

88@20 + i _5(;*)2‘5 382;20 4 i _5;*)2.5 8;’;#30 0, at y=dn, (3.21)

Elaa—; B2 8:5;2 + B 8?;] T ;*)2.5 8;’5)0 M? Ay 38120 at y=d4n, (3.22)
0o + &, %90 + &5 6(;50 0, aty=-. (3.23)

The solutions of stream function and temperature are

—/A My 2¢/A1 My
Age VAo (e Vi O + Cg)
o = o 1 Cs+ yCi, (3.24)
1 —2\/A1 My 4/A1 My
0 = _WAOBr (e VA (CF 4 Cle VA )) + Fy + y k. (3.25)

3.3.2 First order systems and solutions

Here we have

1 9%y 900 24 Py _
1= 25 gyt A33—y_M Ay 317 =0, (3.26)
3201 Br 0?1y 01y
K y? ( — )25 <2 2 0y> > =0, (3.27)
2 3
8’% 4 51 d ¢1 4 54 0 1/}1 — O, at y = :l:n; (328)

oy T T=¢% O2 ~ (1- 6770 0y
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i ;*)2_5 a;;él + Asflo — MZAlaa—il =0 at y=+n, (3.29)
0, £ 52%—9; + 558;—;21 =0, aty=d4n. (3.30)
The solution expressions are
Ag%AgBre V4o (C% —C%e VA )
v, = _2414%}(1]\45( o — 1241 A3 K1 MPy? + 8Ag Ay M?

—1£A1]\/Iy 2,/A1 My
(AgBT0102y3 — 36 \/% K1(6 \/% Bl + Bg))) + yB4 + Bg,

5 —3,/A1 My 5 3y/A1 My
0. — 1 ABT(AgAgBrCSe Vo _AgAgBrCfe Vo B
! 942K, M50 3vVAM 3VAI M
9 —2,/A] My 9 2/A] My

AoAlBlCle \/A_O K1M2—

—/A My
QA%(Bgcl + Bng)K1M4 2_ 34v/ AgA3Cae VAo

3
(\/Ao(—25A§ BrCi1Cy + 6\/A1F2K1M)
VALM

VMY Ao A% B VALF KM
3\/A_0A3016 VAo )( 0( 5 0 7“0132]—26 1472731 )
V A1

§AOA132026 \/A_O K1M2 - 5

3
— 12A3 BrC’ngy) —

3
—12A3 BrC1Cay) + G1 + yGa. (3.32)

Here Ci' s, Fi's, Bi's and Gi's are constants that can be evaluated through Mathematica.

3.4 Discussion

This portion is devoted to the analysis of velocity, temperature, entropy generation, Bejan

number and stream lines. Each quantity is analyzed in different subsections.

3.4.1 Analysis of velocity

In this subsection behavior of velocity is discussed under the influence of different important

parameters. Fig. 3.2 represents impact of nanoparticle volume fraction for velocity profile.
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This graphs shows the decreasing behavior which is related to the fact that by increasing the
quantity of nanoparticles (as ¢* = 0.01, 0.03, 0.05, 0.07) resistance to the fluid increases so fluid
velocity decays. Here the values for Hamilton-Crosser’s model is greater than the Maxwell’s
model. Fig. 3.3 has been plotted against Hartman number. It elucidates that velocity has
decreasing behavior for larger Hartman number (M = 2, 3, 4, 5). Infact the Lorentz force acts
as the resistive force. Grashof number behavior can be notified through Fig. 3.4. Here we
see an increment in velocity profile by enhancing Grashof number (Gr = 0.1 — 0.7). It is due
to increase in buoyancy forces which facilitates the flow. Velocity profile for wall parameters
can be observed through Fig. 3.5. The results illustrate that the velocity has the increasing
behavior for elastance parameters (E7 = 0.01, 0.02) and (E = 0.02, 0.04) where as decreasing
behavior for the damping parameter (E3 = 0.01, 0.02). Obviously elastance parameters provide
less resistance so velocity increases whereas as damping resists the flow more. Slip parameters
result is demonstrated through Figs. 3.6 and 3.7. Here we have observed that the velocity
profile shows enhancement when we increase the slip parameters (§; = 0.1, 0.3, 0.5, 0.7) and
(&, =—-0.1, -0.3, —0.5, —0.7). We also noticed that this behavior is more prominent for second
order slip parameter than the first order. Further the velocity profile is noted higher for case

of Hamilton-Crosser’s than the Maxwell’s model.

Fig. 3.2 Fig. 3.3
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Fig. 3.2. u via ¢* when Ey = 0.02, E» = 0.01, E3 = 0.01, t = 0.1, z = 0.2, ¢ = 0.2, M = 1.0,
Br=3.0, Gr =0.03, &, = 0.01, £, = —0.01, &, = 0.01, & = —0.01.

Fig. 3.3. w via M when Ey = 0.02, E; = 0.01, E3 = 0.01, t = 0.1, z = 0.2, ¢ = 0.2, ¢* = 0.01,
Br =3.0, Gr =0.03, & = 0.01, £, = —0.01, & = 0.01, & = —0.01.

Fig. 3.4 Fig. 3.5

Fig. 3.4. uw via Gr when F; = 0.02, F; =0.01, E3 =0.01,¢t=0.1, 2 =0.2, e = 0.2, M = 1.0,
¢* =0.1, Br =3.0, &, =0.01, {4, = —0.01, £, = 0.01, &5 = —0.01.
Fig. 3.5. u via E1, Es, E3 whent =0.1, x = 0.2, ¢ = 0.2, M = 1.0, ¢* = 0.1, Br = 3.0,
Gr =0.03, & =0.01, £, = —0.01, £, = 0.01, {5 = —0.01.
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Fig. 3.6 Fig. 3.7

Fig. 3.6. u via £, when E; = 0.02, Ey = 0.01, B3 = 0.01, t = 0.1, 2 = 0.2, ¢ = 0.2, M = 1.0,
¢* = 0.1, Br = 3.0, Gr = 0.03, £, = —0.01, & = 0.01, & = —0.01.

Fig. 3.7. u via &, when Ey = 0.02, E» = 0.01, B3 = 0.01, t = 0.1, 2 = 0.2, ¢ = 0.2, M = 1.0,
¢* = 0.1, Br =3.0, Gr = 0.03, &, = 0.01, & = 0.01, & = —0.01.

3.4.2 Analysis of temperature

In this subsection the temperature profile for different pertinent parameters are displayed. Fig.
3.8 provides graphs for ¢* (= 0.01, 0.03, 0.05, 0.07) versus temperature distribution. This
graph represents that the temperature profile is decreasing function of ¢*. As increase in ¢*
enhances the thermal conductivity and cooling capabilities as well. Moreover the temperature
is higher for Maxwell’s model than Hamilton’s-Crosser’s expression. Fig. 3.9 plots the impact
of Hartman number on . This Fig. demonstrates decreasing behavior of temperature where
Hartman number increases from (2—5). An increment is seen for temperature profile by varying
Grashof number (as 0.1 —0.7) (see Fig. 3.10). As Gr increases the velocity so the mean kinetic
energy of the particles. Hence an increase in temperature. Wall parameters impact is elucidated
through Fig. 3.11. It shows the similar behavior as in case of velocity profile when we varies the
parameters as (F; = 0.01, 0.02), (E2 = 0.02, 0.04) and (E3 = 0.01, 0.02). The reasons can be

linked to velocity. First and second order thermal slip parameters outcomes are seen through
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Figs. 3.12 and 3.13. For an increase of first order thermal slip (5 = 0.01, 0.03, 0.05, 0.07) the
temperature increases throughout the channel where as for second order thermal slip parameter
(&5 = —0.01 to —0.07) the temperature increases near the centre. A comparative study reveals

that the temperature remains higher for spherical shaped particles than cylindrical shaped ones.

Fig. 3.8 Fig. 3.9

Fig. 3.8. 0 via ¢* when E; = 0.02, E = 0.01, B3 = 0.01, t =0.1, 2 = 0.2, e = 0.2, M = 1.0,
Gr =0.03, Br = 3.0, & = 0.01, £ = —0.01, & = 0.01, & = —0.01.

Fig. 3.9. 6 via M when E; = 0.02, E» = 0.01, E3 = 0.01, t = 0.1, z = 0.2, ¢ = 0.2, Gr = 0.03,
¢* =0.1, Br = 3.0, & = 0.01, £ = —0.01, & = 0.01, & = —0.01.
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E,.E;.E; =0.01,0.02,0.01
Ey E;.E5=0.02.0.02.001

— MMaxwell

--- H-C

20f E1.E, E5=0.01.0.04.001
: E; E; Es =0.01,0.02,002

Fig. 3.10 Fig. 3.11

Fig. 3.10. 0 via Gr when E; = 0.02, By = 0.01, B3 = 0.01, £ = 0.1, 2 = 0.2, £ = 0.2, M = 1.0,
¢* = 0.1, Br = 3.0, &, = 0.01, £, = —0.01, & = 0.01, &5 = —0.01.
Fig. 3.11. 0 via FEy, Ey, E3 when t = 0.1, x = 0.2, e = 0.2, M = 1.0, ¢* = 0.1, Gr = 0.03,
Br =3.0, & = 0.01, £ = —0.01, & = 0.01, &5 — —0.01.

Fig. 3.12 Fig. 3.13

Fig. 3.12. 0 via &, when Ey = 0.02, E; = 0.01, E3 =0.01, t = 0.1, 2 = 0.2, ¢ = 0.2, M = 1.0,
Gr =0.03, ¢* = 0.1, Br = 3.0, £, = 0.01, £, = —0.01, & = —0.01..
Fig. 3.13. 6 via & when Fy = 0.02, By = 0.01, E3 =0.01, t = 0.1, z = 0.2, e = 0.2, M = 1.0,
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Gr =0.03, ¢* = 0.1, Br = 3.0, £, = 0.01, £, = —0.01, &, = 0.01.

3.4.3 Analysis of entropy generation and Bejan number

This subsection consists of entropy generation and Bejan number for different embedded pa-
rameters. To explain the impact of ¢* on entropy generation the Fig. 3.14 is sketched. The
results display that the entropy generation decreases with larger values of ¢* i.e. 0.01, 0.03, 0.05,
0.07. It is due to decrease in temperature for larger nanoparticles volume fraction as entropy
of system is directly linked with temperature. Fig. 3.15 portrayed the results for Hartman
number. Through larger values of Hartman number (as 1.0, 1.5, 2.0, 2.5) the entropy genera-
tion decreases. Grashof number has increasing impact on Ns as Gr takes the values between
(0.1 —0.7) (see Fig. 3.16). Result in this case is qualitatively similar to temperature. Entropy
generation enhances when the ratio of Br to A enlarges (0.1 —0.7) (see Fig. 3.17). To notify
the influence of wall parameters the Fig. 3.18 is sketched. Entropy generation is increasing
function of E; (= 0.01, 0.02) and E2 (= 0.02, 0.04) whereas it is decreasing function of Ej
(= 0.01, 0.02). For all cases the values for Hamilton-Crosser’s model is greater than Maxwell’s
model.

For the behavior of Bejan numbers on pertinent parameters the Figs. 3.19-3.23 are drawn.
Fig. 3.19 displays the nanoparticle volume fraction impact on Bejan number. The inverse
relation is seen between Bejan number and nanoparticle volume fraction i.e. increment in ¢*
(0.1 — 0.7) decreases Bejan number. For Hartman number as varied between 1.0 — 2.5 a decay
is noticed (see Fig. 3.20). Fig. 3.21 is drawn for results of Grashof number (0.1 — 0.7) versus
Bejan number. This Fig. portrayed that the direct relation is seen between Bejan and Grashof
numbers. Bejan number enhances via enhancement in ratio of Br to A as 0.1 — 0.7 (see Fig.
3.22). The wall parameters results are revealed by Fig. 3.23. An enhancement is seen for larger
elastance parameters £y (= 0.01, 0.02) and E3 (= 0.02, 0.04) whereas decay is observed for the
case of larger damping parameter F3 (= 0.01, 0.02). It can be seen that with an enhancement in
pertinent parameter the increase in Bejan number demonstrates that heat transfer irreversibility
is higher than the total irreversibility due to fluid friction and heat transfer. Moreover, in all

cases the values of Hamilton-Crosser’s model is less than Maxwell’s relation.
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Fig. 3.14 Fig. 3.15

Fig. 3.14. Ns via ¢* when F; = 0.02, E» = 0.01, E3 =0.01,t =0.1, x = 0.2, € = 0.2,
M = 1.0, BrA~! = 1.0, Gr = 0.03, Br = 3.0, £, = 0.01, £, = —0.01, &, = 0.01, &5 = —0.01.
Fig. 3.15. Ns via M when E; =0.02, E5 =0.01, £3=0.01,t=0.1, x = 0.2, e = 0.2,
¢* = 0.1, BrA~' = 1.0, Gr = 0.03, Br = 3.0, £; = 0.01, £, = —0.01, & = 0.01, &5 = —0.01.

Fig. 3.16 Fig. 3.17

Fig. 3.16. Ns via Gr when Fy = 0.02, F» =0.01, £3=0.01,t=0.1, 2 =0.2, e = 0.2,
¢* =0.1, BrA~' = 1.0, M = 1.0, Br = 3.0, &, = 0.01, £, = —0.01, &, = 0.01, &5 = —0.01.
Fig. 3.17. Ns via BrA~! when E; = 0.02, E, = 0.01, B3 =0.01,t=0.1, 2 =0.2, e = 0.2,
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¢* =0.1, M = 1.0, Gr = 0.03, Br = 3.0, &, = 0.01, £, = —0.01, & = 0.01, & = —0.01.

Fig. 3.18 Fig. 3.19

Fig. 3.18. Ns via Ey, Eo, E3 whent =0.1, x = 0.2, e = 0.2, ¢* = 0.1, BrA~' = 1.0, M = 1.0,
Gr =0.03, Br = 3.0, £, =0.01, £, = —0.01, & = 0.01, &5 = —0.01.
Fig. 3.19. Be via ¢* when F; = 0.02, F» = 0.01, E3 =0.01,t =0.1, x = 0.2, ¢ = 0.2,
M =1.0, BrA=! = 1.0, Gr = 0.03, Br = 3.0, £, = 0.01, £, = —0.01, &, = 0.01, &5 = —0.01.

Fig. 3.20 Fig. 3.21

Fig. 3.20. Be via M when E; = 0.02, E» = 0.01, E5 = 0.01, t = 0.1, z = 0.2, ¢ = 0.2,
¢* =0.1, BrA~' = 1.0, Gr = 0.03, Br = 3.0, &, = 0.01, £, = —0.01, & = 0.01, &5 = —0.01.
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Fig. 3.21. Be via Gr when E; = 0.02, E, = 0.01, F5 = 0.01, t = 0.1, 2 = 0.2, ¢ = 0.2,
¢* =0.1, BrA~' = 1.0, M = 1.0, Br = 3.0, £, = 0.01, £, = —0.01, & = 0.01, &5 = —0.01.

Fig. 3.22 Fig. 3.23

Fig. 3.22. Be via BrA~=! when E; = 0.02, B, = 0.01, B3 =0.01,t=0.1, 2 =0.2, e = 0.2,
¢*=0.1, M = 1.0, Gr =0.03, Br = 3.0, £&; = 0.01, £, = —0.01, &£, = 0.01, & = —0.01.
Fig. 3.23. Be via Ey, Eo, E3 whent =0.1, x = 0.2, e = 0.2, ¢* = 0.1, BrA~! = 1.0,
Gr =0.03, Br = 3.0, £, =0.01, £, = —0.01, & = 0.01, {5 = —0.01.

3.4.4 Streamlines

The streamlines are plotted for description of trapping. Fig. 3.24 (a) and (b) displayed the
impact of Hartman number for Maxwell model whereas Fig. 3.24 (c) and (d) portrayed the
influence for Hamilton Crosser model. For both cases the size of trapped bolus increases with
higher values of Hartman number (M = 1.0, 2.0). Figs. 3.25 and 3.26 (a) -(d) are sketched
for behavior of first and second order slip parameters. These streamlines indicate that trapped
bolus size enhances via increase in first order slip as (0.01, 0.03) and second order slip parameter
as (—0.01, —0.03). Walls parameters impact for Maxwell model can be observed via Fig. 3.27
(a)-(d). However Figs. 3.27 (e)-(h) are for Hamilton-Crosser model. Both models show same
behavior for these parameters i.e. trapped bolus size increases for Fy (= 0.7, 0.9) and Es (= 0.4,

0.6) whereas decrease is noticed for E3 (= 0.2, 0.5).
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Fig. 3.24 (a) (b)

() (d)

Fig. 3.24. ¢ via M for Maxwell model when F; = 0.02, Es = 0.01, E3=0.01,t =0, =0.2,
¢* =0.1, Gr =0.03, Br = 3.0, {; = 0.01, £, = —0.01, & = 0.01, &5 = —0.01. (a) M = 1.0. (b)
M =2.0.

Fig. 3.24. ¢ via M for Hamilton- Crosser model when 1 = 0.02, E» = 0.01, E3 = 0.01, ¢t =0,
e =02, ¢* =0.1, Gr =0.03, Br = 3.0, &, = 0.01, £, = —0.01, £, = 0.01, {5 = —0.01. (¢)
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M =1.0. (d) M = 2.0.

Fig. 3.25 (a) (b)

() (d)

Fig. 3.25. ¢ via £; for Maxwell model when E; = 0.02, F5 = 0.01, B3 =0.01,t =0, ¢ = 0.2,
¢*=0.1, M = 1.0, Gr = 0.03, Br = 3.0, £, = —0.01, £, = 0.01, {5 = —0.01. (a) &; = 0.01. (b)
& = 0.03.

Fig. 3.25. ¢ via £; for Hamilton- Crosser model when E; = 0.02, E» = 0.01, E3 = 0.01, t =0,
e=02,¢"=0.1, M =1.0, Gr =0.03, Br = 3.0, {, = —0.01, &, = 0.01, &5 = —0.01. (¢)
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¢, = 0.01. (d) & = 0.03.

Fig. 3.26 (a) (b)

() (d)

Fig. 3.26. ¢ via &, for Maxwell model when E; = 0.02, F5 = 0.01, F3 =0.01,t =0, ¢ = 0.2,
¢*=0.1, M = 1.0, Gr = 0.03, Br = 3.0, £&; = 0.01, £, = 0.01, {5 = —0.01. (a) &, = —0.01. (b)
&, = —0.03.

Fig. 3.26. ¢ via &, for Hamilton- Crosser model when F; = 0.02, E» = 0.01, F3 = 0.01, t =0,
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e =0.2, ¢* =01, M = 1.0, Gr = 0.03, Br =3.0, 51 =0.01, 62 = 0.01, 55 — _0.01. (C)
&4 = —0.01. (d) & = —0.03.

Fig. 3.27 (a) (b)
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() (h)

Fig. 3.27. ¢ via Eq, Fy, E3 for Maxwell model when ¢t =0, e = 0.2, ¢* = 0.1, M = 1.0,
Gr =0.03, Br = 3.0, {; = 0.01, £, = —0.01, £&, = 0.01, &5 = —0.01 (a) E1 = 0.7, B, = 0.4,
E3=0.2.(b) E1 =09, E2 =04, E3=0.2. (¢) 1 =0.7, E = 0.6, E3 =0.2. (d) E1 = 0.7,

E> =0.4, E3 =0.5.

Fig. 3.27. ¢ via Eq, Es, E3 for Hamilton- Crosser model when t =0, ¢ = 0.2, ¢* = 0.1,
M =1.0, Gr =0.03, Br =3.0, £, = 0.01, £, = —0.01, £, = 0.01, {5 = —0.01 (e) E; = 0.7,
By =04, B3 =0.2. (f) E1 = 0.9, By = 0.4, B3 = 0.2. (g) By = 0.7, E5 = 0.6, E3 = 0.2. (h)
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E1 = 0.7, By = 0.4, E5 = 0.5.

3.5 Conclusions
The key findings of this chapter are:

e Enhancement in velocity is seen for both first order and second order velocity slip in both

models whereas reduction is observed for case of nanoparticle volume fraction.

e The values in Hamilton-Crosser model remain higher than Maxwell’s model especially

near the centre of channel for the case of velocity profile.
e Grashof and Hartman numbers for velocity have opposite effect.

e Results obtained indicate that temperature in Maxwell’s model exceed than Hamilton-

Crosser model.

e Enhancement is observed in entropy generation number for larger BrA~—! and Grashof
number. Moreover inverse behavior of entropy generation number is obtained for the case

of Hartman number and nanoparticle volume fraction.

e Bolus sizes increases in trapping phenomenon for the case of both first and second order

velocity slip parameters.

e Bolus size reduces for F3 and it enhances for F; and E5 in both models.
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Chapter 4

Modeling and analysis of peristalsis
of hybrid nanofluid with entropy

generation

4.1 Introduction

This chapter intends to explore the peristaltic transport of rotating fluid in a channel. The
channel is considered symmetric with flexible walls and porous medium. In this analysis hybrid
nanofluids consisting of titanium oxides and copper particles. Water is used as the base fluid.
MHD and Hall effects are employed in this problem. Formulation of energy equation is based
on radiation and non uniform heat source or sink. Convective conditions are utilized. Ther-
modynamics second relation is employed for entropy generation. Maxwell-Garnetts model of
thermal conductivity is employed. Numerical analysis is carried out using NDSolve of Mathe-
matica. Graphs are plotted for the axial velocity, secondary velocity, temperature and entropy
generation. Bar graphs are made for the analysis of heat transfer rate at the wall. Streamlines
are displayed for trapping phenomenon. This study declares that enhancement in rotation pa-
rameter caused increase in secondary velocity. Moreover higher values of nanoparticle volume
fraction caused decay in fluid velocity, temperature and entropy. This study further disclosed

that heat transfer rate by higher volume fraction of nanoparticles enhances and more porous
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structure lead to enhancement in fluid velocity, temperature and entropy.

4.2 Problem modeling

Here we consider the peristalsis of rotating fluid in a symmetric channel (see Fig. 4.1). The
walls of channel have flexible characteristics. Porous medium is saturated by the fluid. MHD
with Hall effects and Joule heating is accounted. Non-uniform heat source and sink parameter
is present. The channel and fluid are in rigid body rotation. The hybrid nanofluid comprising of
T'iO5 and C'u nanoparticles with water as base liquid is utilized. The selection of the coordinates
are considered in such a way that x-axis is taken along the flow direction whereas z-axis normal
to it. The walls of channel are taken at temperature 77 and Ty respectively. Thermal radiation
is also present. Rotation is about z-axis with the angular frequency 2. Peristaltic wave of
involuntary contraction and expansion is responsible for the fluid flow. Wave shape is defined
as follows:

2
z=4n(x,t) ==+ d+asin77r(a:—ct) , (4.1)

where d represents the width of channel, a the wave amplitude, A the wavelength and ¢ wave

speed.

Fig. 4.1: Schematic Diagram

Related equations satisfy

ou Ow
% + E =0. (4.2)
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Op Pu | 0%u]  Huast | owngB3
Pl R 2 T a2l T —u+ K. 4.
Phng {dt v} g+ Hhnf {8332 * 822} k1 1 + (Kym)? (—u+ Kqmv), (4.3)

dv op v 0% M fV Ohn s B2
=4 o0u| = -2 A . - K 4.4
Phnf [dt + U} oy + By |:al,2 + az2:| ko 1+ (Kam)? (v+ Kymu), (4.4)
dw Op Pw 0w FopnfW
== — 4.
Phnf [dt] 5, + Hhng [83:2 T3 o (4.5)

(C’) E — 82_T_|_02_T + 2 % 2_|_ 5_71} ’
Prp)hnt dt —  [fehnf 0x2 = 022 Hinf Oz 0z

uhnf(u2 + 02 +w?)

Y CCECTA W P
0z Oz 0 0 k1
aQT UhnfBg 2 2
The modified pressure is given by
N PP R
p=p— 5P (" +y7). (4.7)

The velocity components in x, y and z directions are given by [u(z, z,t), v(z, 2,t), w(x, z,t)]. T

denotes the temperature whereas ¢, (= %{‘881; 4) represents the radiative heat flux. The py,, ¢

for the density, g, viscosity, (pCp)hns the heat capacity and kppn¢ the thermal conductivity

of hybrid nanofluid. These definitions are

Phng = (L= (dcu + D71:i0,))Pf + ScuPou + OTi0,PTiON
(Pcp)hnf = (1= (pcu+ ¢Ti02))(pcp)f + Pcn, (PCp)Cua +¢Ti02 (pCp)TiOz’

fhng = al

inf (1 = (¢cu + b1i0,)) %5’
(¢ uk u+¢ i RTq )
Khnf - (gcﬁ;T?;Z)T 225 4 265 = 2bey + D1i0,)Rf + 2bcukicu + Srio,FTios)
- (¢ ul u+¢ i RT4q ) ’

s < ($Cu+;T?;2)T 225 4 26 + (beu + O1i0,)k 5 — (boukicu + brioyFTios)

$CuTCutPri0,0TiO
s _ 3( P 2—¢Cu—¢TzOZ)

oy (acu-:;ﬂoz i 2) _ (¢C1/,U'Cu+f;‘i020'Ti02 — o — ¢Ti02) .

(4.8)

Numerical values of hybrid nanofluid are given in Table 1.
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Table 1: Thermophysical parameters of water and nanoparticles [190].

p (kg m™3) C, (kg P K1) £ (Wm K1) o (Qm)~!

HO 997.1 4179 0.613 0.05
Cu 8933 765 401 5.96x 107
TiOy 4250 686.2 8.9538 1x10712

The boundary conditions for the considered flow are

u=20 at z = +n, (4.9)

v=0 at z = +n, (4.10)

& & o? Pu  Pul  PangU | opnsBd
_ *_ *— *— I I _ _ K
"B T ror T lﬁt&c} M= Hang [a;ﬂ * 322] T T (g (U Kamv)

du

— & — 20w

at z = 40,

T —B(T-T
/ihnfa_ = 1l 1) at z = £mn. (4.12)

0z —By(Ty — T)

in which B; (i=1, 2) are heat transfer coefficients, 7%, m* and dj are the compliant walls
coefficients.

The quantities in dimensionless form are given by

T N A .

x - )\7 y 7A7 ’Z 7d? u - C? v 767 7)\7

) wooa et n k&

w — —_ = — = — = — =
C? )\7 TI d’ 1 d27 CA/,Lf
T-T, o o

0 — _ 9% — v 4.13
Tl—TQ7 “ Z7 v or ( )

After using the non-dimensional parameters and utilizing stream function and lubrication ap-

proach we arrive at

8]7 ’
P _ o7 Fgw + KLY
oz WG T 0 T T (Kam)?

—— + Kymv

= (4.14)

P K0y,  Kib? <a¢ )
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Op oy v Ky K,M?

8_y =27 Kga + KQ@ — k—l'l} — W (U + K4mu) (415)
p
= = 4.1
020 0%\ ” 520
0 = Kigys+ Bk (W) T RAGE

BrK, o\ ? 9 BrK4M? A 2
e ((20) ) 2O (00 )

where
B T bri0y )65 + 2(¢cukicu + G1io, FTio,)
Kl — ((p Cu +¢T102 ) ,
ulfCu 0o WTiO
< (¢Cu+$£;2) =+ 265 + (Gcu + 01i0,) 51 — (Pcukicu + ri0,KTi0,)
1
Ky, =

(1 = (¢cu + P1i0,))*°

(bCupCu + ¢Ti0 PTio
K3 = (1 - (¢Cu+¢Ti02)) + 2 27

Pf
3 (%uaaﬁf:iozaﬂ% — bcu — ¢T¢Oz>
Ki = 14 e ; SouroT TN : (4.18)
o7 +2)— o7 — ¢cu — Pri0,
where the non-dimensional parameters are
, ReQd 160*T3 B
T = 22 Ri=2"9 M= [HByd, m=2L2
c 3k*k g pf ene
C 2 d2
pr = p)f, Ec= c . Br—prie, §=9L (4.19)
Ky (Cp); (T1 = Tp) K

Here T" denotes the Taylor number, Rd the radiation parameter, M the Hartman number, m
the Hall parameter, Pr the Prandtl number, Ec the Eckert number, Br the Brinkman number

and S the heat source or sink parameter. Note that asterisks have been omitted for brevity.
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The conditions now become

3—111 = 0, v=0, at z==£n,
0z
00  Biy
12211 = =
3 e 0—-1) 0, at z=m,
00  Biy
Z ) = t = — 4.2
S =0 at =y, (4:20)
3 3 0? / By Ky O
Erge T Bguan t Bigiap |1 = H vt g — 4G,
_KaM? (0
+1+(;{4m)2 ( 0z +K4mv) ) (4‘21)
at z=4n.

in which Biy (= Bid/ky) and Biy (= Bad/ky) are the Biot numbers whereas the wall parameters
Ei(= —T*d?’/)\3cuf), Ey(= m*cd3/)\3uf) and Fs3(= df{dg//\Quf) are respective elastance and
damping coefficients.

4.2.1 Entropy generation

Entropy generation is given by

S/// _ Khnf a_T 2 + 8_T 2 i i 160'*Tg’ a_T 2 I /‘Lhnf(UQ + 'U2 + ’lU2) n 2
gen T2 oz 0z T2  3k* 0z T k1 T

1 O'hnfB2 1
- <TK4131>2 (u? + 02)> + o QT - Ty)). (4.22)

Expression for viscous dissipation is

® = (U [2 ((%)2 + (%)j + (% + 2—1;1)2] : (4.23)
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In dimensionless form

11

S 00\? BrK, (9*\> BrK, { [ov\?
— Pgen _ @ o 2
N, = i (K1+Rd)<az> +— <322> + 5 (az> +v

KsM?%  Br [ (0\? 5\ S0
(5 2= 4.24
TT (Kam)? A ((82) L (4.24)
m k(i —To)? Ty —Tp
Se. =g A=—F— (4.25)

4.3 Analysis

Here we have adopted the NDSolve techniques of Mathematica 9.0 for the solutions. The com-
putation has been carried out by varying the value in the following range: nanoparticle volume
fraction (0.01-0.08), Taylor number (0.1-4.0), Hartman number (0.5-3.5), porosity parameter
(1.0-4.0), Hall parameter (0.1-4.0), radiation parameter (0.1-3.5), Brinkman number (1.0-4.0)

source parameter (0.1-1.0), Biot numbers (4.0-10.0) and wall parameters (0.01-0.3).

4.3.1 Velocity

This subsection has been arranged for velocity. The subsections are arranged here to avoid

complexity.

Axial velocity

This subsection contains information about the results of axial velocity via nanoparticle volume
fraction, Taylor number, Hartman number, porosity parameter, Hall parameter and wall para-
meters. Increasing values of nanoparticle volume fraction enhance the resistance to flow. It is
due to the fact that shear rate increases by enhancing the nanoparticle volume fraction. This
may lead to decrease in axial velocity. Similar behavior is captured here for hybrid nanofluid
through Fig. 4.2. Fig. 4.3 is made for the influence of Taylor number on axial velocity. As
rotation caused the fluid motion in the secondary direction. It leads to decay the velocity in
the axial direction. Hartman number effect can be seen via Fig. 4.4. Higher value of it caused

decrease in the axial velocity as fluid offers more resistance because of Lorentz force. Fig. 4.5
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portrayed the effect of porosity parameter on axial velocity. As more pores assist the velocity
of fluid. So enhancement is observed. Fig. 4.6 presented the Hall parameter influence on ve-
locity. It leads to enhancement in velocity profile. Moreover as elastance parameters provide
less obstacles to fluid flow so axial velocity enhances for F; and Es whereas damping resists

the motion of fluid so velocity decays against Fs3 (see Fig. 4.7)

Fig. 4.2 Fig. 4.3

Fig. 4.2. Axial velocity distribution for ¢¢,, and ¢p;0, when E1 = 0.03, Ez = 0.03, E3 = 0.01,
T'=01,t=01,2=02¢=02 M=1.0,m=1.0, S = 1.0, Bi; =4, Biy =6, Br = 3.0,
k1 =1, Rd=1.

Fig. 4.3. Axial velocity distribution for T' when E; = 0.03, E> = 0.03, F5 = 0.01, t = 0.1,
r=02,e=02, ¢¢cy, = dp;0, = 0.01, M = 1.0, m = 1.0, S = 1.0, Biy = 4, Biz = 6, Br = 3.0,
k1=1, Rd=1.
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Fig. 4.4 Fig. 4.5

Fig. 4.4. Axial velocity distribution for M when E; = 0.03, F» = 0.03, F53 = 0.01, T =0.1,
t=0.1,2=02,¢=02, ¢c, = ¢7;0, = 0.01, m = 1.0, S = 1.0, Biy =4, Biz = 6, Br = 3.0,
ki =1, Rd=1.

Fig. 4.5. Axial velocity distribution for k; when F; = 0.03, E» = 0.03, E3 = 0.01, T =0.1,
t=01,2=02¢=02 ¢c, = drio, = 0.0, M = 1.0, m = 1.0, S = 1.0, Biy = 4, Biy = 6,
Br =3.0, Rd=1.

Fig. 4.6 Fig. 4.7

Fig. 4.6. Axial velocity distribution for m when F; = 0.03, Ey = 0.03, E5 = 0.01, T =0.1,
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t=01,2r=02¢=02, ¢c, = d1i0, = 0.01, M = 1.0, S = 1.0, Biy = 4, Bis = 6, Br = 3.0,
ki=1, Rd=1.

Fig. 4.7. Axial velocity distribution for E;, Es and E3 when T' = 0.1, t = 0.1, z = 0.2, ¢ = 0.2,

bcu = Prio, = 0.01, M =1.0, m = 1.0, S = 1.0, Biy =4, Bis =6, Br =3.0, ky = 3, Rd = 1.

Secondary velocity

This subsection includes the graphical interpretation of secondary velocity that has been induced
by the rotation 2. Graphs are plotted for nanoparticle volume fraction, Taylor number, Hartman
number, porosity parameter, Hall parameter and wall parameters on secondary velocity. Fig.
4.8 depicts influence of nanoparticle volume fraction on v. Qualitatively similar impact for
secondary velocity is viewed as for axial velocity. Resistance produced by adding nanoparticles
slows down the secondary velocity as well. As rotation is responsible to induce this secondary
velocity therefore an increase in rotation enhances v (see Fig. 4.9). Hartman number effect for
v is similar to u (see Fig. 4.10). Here fluid also slows down in view of Lorentz force. Fig. 4.11
displayed the results for k1 which is related to porosity parameter. Enhancement in k; leads to
increase of secondary velocity. Here pores also assist the secondary velocity. Fig. 4.12 presented
the increasing influence of Hall parameter on secondary velocity. Fig. 4.13 is constructed for
wall parameters. It is clearly seen that the elastance parameters decrease the secondary velocity

whereas opposite holds for damping.

Fig. 4.8 Fig. 4.9

7



Fig. 4.8. Secondary velocity distribution for ¢¢,, and ¢1,0, when Ey = 0.0002, E> = 0.0001,
E3=00L,T =0.1,t=01,2=02,¢=02 M=10,m=1.0, S = 1.0, Bi; = 4, Bis = 6,
Br =30,k =1, Rd=1.

Fig. 4.9. Secondary velocity distribution for 7" when E; = 0.0002, Es = 0.0001, E3 = 0.01,
t=01,2=02¢=02, ¢c, = ¢ri0, = 0.0, M = 1.0, m = 1.0, § = 1.0, Biy = 4, Biz = 6,
Br =30,k =1, Rd=1.

Fig. 4.10 Fig. 4.11

Fig. 4.10. Secondary velocity distribution for M when F; = 0.0002, E5 = 0.0001, E5 = 0.01,
T'=01,t=01,2=02 =02, dp, = ¢ri0, = 0.01, m = 1.0, S = 1.0, Bi; = 4, Bis = 6,
Br =30,k =1, Rd=1.

Fig. 4.11. Secondary velocity distribution for k; when E7 = 0.0002, E, = 0.0001, E3 = 0.01,
T'=01,t=01,2=02¢=02, ¢o, = ¢7ri0, = 0.01, M =1.0, m = 1.0, S = 1.0, Bi; =4,
Biy =6, Br =3.0, Rd = 1.
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Fig. 4.12 Fig. 4.13

Fig. 4.12. Secondary velocity distribution for m when F; = 0.0002, E; = 0.0001, E3 = 0.01,
T'=01,t=01,2=02¢=02, ¢o, = dri0, = 0.01, M = 1.0, S = 1.0, Biy =4, Biy = 6,
Br =30,k =1, Rd=1.

Fig. 4.13. Secondary velocity distribution for Ey, Fy and Ez when T' = 0.1, t = 0.1, z = 0.2,
=02, ¢c, = ¢1i0, = 0.0, M = 1.0, m = 1.0, S = 1.0, Biy = 4, Bip =6, Br = 3.0, ky = 1,
Rd = 1.

4.3.2 Temperature

Temperature containing hybrid nanoparticles are studied in this subsection. Fig. 4.14 is pre-
pared to observe the change in temperature via increasing values of volume fraction. Addition
of nanoparticles in base fluid enhances the heat transfer ability of fluid. It leads to decay the
temperature. Taylor number effect on 6 is checked through Fig. 4.15. T  leads to decrease
the temperature. Fig. 4.16 witnessed the result for Hartman number M. Temperature en-
hancement is possible here. This is possible in view of Joule heating. Fig. 4.17 reveals the
radiation parameter effect on temperature. Decay is observed clearly. Larger values of poros-
ity parameter lead to enhance the temperature (see Fig. 4.18). Physical reasoning is directly
related to velocity of fluid. Fig. 4.19 shows Brinkman number impact which is responsible for

an enhancement of #. Brinkman number is directly related to viscous dissipation which results
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in increase of temperature. Fig. 4.20 depicted the results for Hall parameter on temperature.
Enhancement is observed here. The results can be related with velocity. Heat source parameter
effect on temperature can be viewed via Fig. 4.21. Obviously heat source parameter leads to
enhancement in 6. Figs. 4.22 and 4.23 displayed the results for Biot numbers. In both cases the
temperature profile decays. Fig. 4.24 elucidates the wall parameters influence on 6. Damping

coeflicient leads to decrease the temperature whereas opposite is seen for elastance variable.

Fig. 4.14 Fig. 4.15

Fig. 4.14. Temperature distribution for ¢¢,, and ¢7,0, when By = 0.3, E; = 0.3, E3 = 0.01,
T'=1.0,t=01,2=02¢=02 M=10,m=1.0, S =0.5, Biy =8, Biy = 10, Br = 3.0,
ki=1, Rd=1.

Fig. 4.15. Temperature distribution for T’ when Ey = 0.3, Es = 0.3, F5 = 0.01, ¢ = 0.1,
r=02¢=02, ¢c, = ¢1i0, = 0.01, M = 1.0, m = 1.0, S = 0.5, Bi; =8, Biz = 10,
Br=3.0,k =1, Rd=1.
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Fig. 4.16 Fig. 4.17

Fig. 4.16. Temperature distribution for M when E; = 0.3, E» = 0.3, F£3 = 0.01, T = 1.0,
t=01,2=02¢=02, ¢c, = ¢ri0, = 0.0, m=1.0, S = 0.5, Biy =8, Biz =10, Br = 3.0,
ki=1, Rd=1.

Fig. 4.17. Temperature distribution for Rd when F; = 0.3, Fy = 0.3, E3 = 0.01, T = 1.0,
t=01,r=02¢=02, ¢cy = Pri0, = 0.01, M = 1.0, m = 1.0, S = 0.5, Biy =8, Biz = 10,
Br =30, k =1.

Fig. 4.18 Fig. 4.19

Fig. 4.18. Temperature distribution for k; when Fy = 0.3, Fo = 0.3, E3 = 0.01, T = 1.0,
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t=0.1,2=02¢=02, ¢c, = ¢ri0, = 0.01, M = 1.0, m = 1.0, S = 0.5, Biy = 8, Biz = 10,
Br =3.0, Rd=1.
Fig. 4.19. Temperature distribution for Br when E; = 0.3, Ey = 0.3, F3 = 0.01, T' = 1.0,
t=0.1,2=02¢=02, ¢c, = ¢ri0, = 0.01, M = 1.0, m = 1.0, S = 0.5, Biy = 8, Biz = 10,
ki =1, Rd=1.

Fig. 4.20 Fig. 4.21

Fig. 4.20. Temperature distribution for m when Ey = 0.3, E, = 0.3, E5 = 0.01, T = 1.0,
t=01,2=02¢=02, ¢c, = O1i0, = 0.01, M = 1.0, S = 0.5, Biy =8, Biz = 10, Br = 3.0,
ki1=1, Rd=1.

Fig. 4.21. Temperature distribution for S when E; = 0.3, Ey = 0.3, E3 = 0.01, T' = 1.0,
t=0.1,2=02¢=0.2, ¢, = ¢7;0, = 0.01, M = 1.0, m = 1.0, Biy = 8, Biz = 10, Br = 3.0,
ki1=1, Rd=1.
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Fig. 4.22 Fig. 4.23

Fig. 4.22. Temperature distribution for Bi; when Fy = 0.3, F» = 0.3, F3 = 0.01, T = 1.0,
t=01,r=02¢=02, ¢c, = ¢ri0, = 0.01, M = 1.0, m = 1.0, S = 0.5, Biz = 10, Br = 3.0,
ki1=1, Rd=1.

Fig. 4.23. Temperature distribution for Bis when Fy = 0.3, F» = 0.3, F5 = 0.01, T = 1.0,
t=01,2=02¢=02, ¢c, = ¢ri0, = 0.01, M = 1.0, m = 1.0, S = 0.5, Biy = 8, Br = 3.0,
ki=1, Rd=1.

Fig. 4.24

Fig. 4.24. Temperature distribution for E;, Fo and E3 when T'=1.0,t=0.1,z=0.2,
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£=0.2, ¢oy = drio, = 0.01, M = 1.0, m = 1.0, S = 0.5, Bi; = 8, Biy = 10, Br = 3.0, k; = 1,
Rd=1.

4.3.3 Entropy generation analysis

Figs. 4.25-4.32 are plotted in this subsection for the analysis of entropy of system. Fig. 4.25 is
sketched for the nanoparticle volume fraction on Ns. An increase in nanoparticle volume fraction
reduces the temperature and hence entropy. Similar reasoning is satisfied for the Taylor number
(see Fig. 4.26). Fig. 4.27 provides the results of k1 on entropy. In this case the porosity is
directed linked with temperature. Fig. 4.28 clearly indicates that viscous dissipation leads to
an increase in # and Ns. Fig. 4.29 states that Hartman number increases the entropy due to
Joule heating. Heat source parameter leads to increase in entropy (see Fig. 4.30). Fig. 4.31
presents the Hall parameter influence. Enhancement is noticed in this case. Fig. 4.32 displays

that with E;(i = 1,2) the entropy enlarges whereas F3 leads to decrease the entropy.

Fig. 4.25 Fig. 4.26

Fig. 4.25. Entropy generation for ¢, and ¢r;0, when Ey = 0.02, E; = 0.01, E3 = 0.01,
T'=01,t=01,2=02 =02 M=1.0,m=10,S =0.5 Bi; =8, Biy = 10, Br = 3.0,
ki=1, Rd=1, A=0.5.

Fig. 4.26. Entropy generation for T' when E; = 0.02, £ =0.01, £33 =0.01,t=0.1, z = 0.2,
e =02, ¢¢y = Prip, = 0.01, M =1.0, m = 1.0, S = 0.5, Bi; =8, Bip = 10, Br = 3.0, k1 = 1,
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Rd=1, A=0.5.

Fig. 4.27 Fig. 4.28

Fig. 4.27. Entropy generation for k1 when E; = 0.02, F» = 0.01, F3 = 0.01, T = 0.1, ¢t =0.1,
r=02,¢=02, ¢c, = ¢1;0, = 0.01, M = 1.0, m = 1.0, § = 0.5, Biy = 8, Biz = 10,
Br=3.0, Rd=1, A =0.5.

Fig. 4.28. Entropy generation for Br when E; = 0.02, F5 = 0.01, F5 = 0.01, T = 0.1, t = 0.1,
rx=02,¢=02, ¢c, = ¢1;0, = 0.0, M = 1.0, m = 1.0, § = 0.5, Biy = 8, Biz =10, k; =1,
Rd=1,A=0.5.

Fig. 4.29 Fig. 4.30
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Fig. 4.29. Entropy generation for M when E; = 0.02, E; = 0.01, F3 =0.01, 7" = 0.1, t = 0.1,
x=02,¢=02, ¢c, = 10, = 0.0, m=1.0, § = 0.5, Biy =8, Biz =10, Br = 3.0, k; = 1,
Rd=1,A=0.5.

Fig. 4.30. Entropy generation for S when E; = 0.02, Fy = 0.01, E3 = 0.01, 7" = 0.1, t = 0.1,
r=02¢=02, ¢c, = ¢1i0, = 0.0, M = 1.0, m = 1.0, Biy =8, Biz =10, Br = 3.0, k; =1,

Rd=1,A=0.5.
30F T T T T T

ol E1=0.02,0.03

b E;=0.01.0.03

E3=001.0.02

Ns

Fig. 4.31 Fig. 4.32

Fig. 4.31. Entropy generation for m when E; = 0.02, F» = 0.01, E£3 = 0.01, T = 0.1, t = 0.1,
r=02,¢=02, ¢c, = ¢ri0, = 0.01, M = 1.0, Br = 3.0, S = 0.5, Biy =8, Biz =10, ky = 1,
Rd=1, A=0.5.

Fig. 4.32. Entropy generation for Fy, Fs and F5 when T = 0.1,t=0.1,2=0.2,e =0.2,
bou = Prio, = 0.01, M = 1.0, m =1.0, S = 0.5, Biy =8, Big =10, Br =3.0, ky = 1, Rd =1,
A=0.5.

4.3.4 Heat transfer rate

In this subsection we have arranged the bar graphs to analyze the heat transfer rate at the wall.
Fig. 4.33 shows that heat transfer rate at the wall has larger values as the volume fraction of
nanoparticles enlarges. Since the enhancement in nanoparticles volume fraction increases the

cooling capabilities so enhance the heat transfer rate higher. Fig. 4.34 is plotted against Taylor
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number effect. Rotation leads to decrease the heat transfer rate. Hartman number increased
the heat transfer rate at the wall (see Fig. 4.35). Fig. 4.36 portrayed the effect of porosity
parameter on heat transfer rate. An increase in pores enhances the temperature. It means
that there is less heat transfer rate at the wall. Fig. 4.37 demonstrated increasing value of
heat transfer rate at the wall with higher values of Hall parameter. Fig. 4.38 depicted the heat
transfer rate for Brinkman number. Heat transfer rate at wall increases for higher Brinkman
number. Fig. 4.39 is constructed to see the influence of Rd on heat transfer rate. Heat transfer

rate decreases with higher radiation parameter.

Fig. 4.33

Fig. 4.33. Heat transfer rate at the wall (—K10 (n)) for ¢*(=¢c, + éri0,) when E1 = 0.03,
By =003, B3 =0.01, T =2.0,t=01,2=0,c=02, M=20,m=2.0,S=1.0, Bi; =8,
Bis = 10, Br = 3.0, k; = 3, Rd = 0.5.
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Fig. 4.34

Fig. 4.34. Heat transfer rate at the wall (—K16 (1)) for T when E; = 0.03, F = 0.03,
By =001,t=01,2=0 c=02 ¢o, = dr0, = 0.0, M =20, m =20, S = 1.0, Biy =8,
Bis = 10, Br = 3.0, k; = 3, Rd = 0.5.

Fig. 4.35
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Fig. 4.35. Heat transfer rate at the wall (—K160 (1)) for M when E; = 0.03, E = 0.03,
E3=0.01,T =20,t=0.1,2=0,e =02, ¢c, = b0, = 0.0, m = 0.1, S = 1.0, Bij =8,
Biy =10, Br = 3.0, k1 = 3, Rd = 0.5.

Fig. 4.36

Fig. 4.36. Heat transfer rate at the wall (—K160 (1)) for ki when E; = 0.03, Ey = 0.03,
By =001, T =20,t=01,2=0,¢ =02, ¢c, = bpio, =0.01, M = 2.0, m = 2.0, S = 1.0,
Bi, =8, Biy = 10, Br = 3.0, Rd = 0.5.
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Fig. 4.37

Fig. 4.37. Heat transfer rate at the wall (—K16 (1)) for m when E; = 0.03, E = 0.03,
By =001, T =20,t=01,2=0,c =02, ¢cp = brio, = 0.0, M = 2.0, S = 1.0, Biy = 8,
Bis = 10, Br = 3.0, ki = 3, Rd = 0.5.

Fig. 4.38
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Fig. 4.38. Heat transfer rate at the wall (—K10' (1)) for Br when E; = 0.03, Ey = 0.03,
E3=001,T =20,t=0.1,2=0, &= 0.2, o, = dri0, = 0.01, M = 2.0, m = 2.0, S = 1.0,
Biy =8, Bip =10, k; = 3, Rd = 0.5.

Fig. 4.39

Fig. 4.39. Heat transfer rate at the wall (—K16 (7)) for Rd when E; = 0.03, Ey = 0.03,
By =001, T =20,t=01,2=0,¢ =02, ¢0, = bpio, = 0.01, M =2.0, m = 2.0, S = 1.0,
Biy =8, Biy = 10, Br = 3.0, k; = 3.

4.3.5 Streamlines

Trapping phenomenon has been analyzed in this subsection. Streamlines has been plotted for
this purpose. Fig. 4.40 (a) and (b) describe the impact of volume fraction for hybrid nanofluid.
In is seen that the size of trapped bolus increases as the volume fraction of nanoparticles
enhances. Fig. 4.41 (a) and (b) show the bolus results for increasing values of Taylor number
for hybrid nanofluid. In this case bolus sizes decrease for increasing values of Taylor number.
Porosity parameter effect on streamlines can be seen via Fig. 4.42 (a) and (b) for hybrid
nanofluid. Bolus sizes show a decrease for increasing values of k. Figs. 4.43, 4.44 (a) and (b)
represent the impact of Hartman number and Hall parameter on bolus size. Decrease is noticed

in both cases.
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Fig. 4.40 (a) (b)

Fig. 4.40. ¢ via ¢* for hybrid nanofluid when E; = 0.003, Fy = 0.003, E3 = 0.01, 7" = 0.01,
t=0,e=02 M=10,m=1.0,5=1.0, Biy =4, Bio =6, Br=3.0, k1 =1, Rd = 1. (a)
bcu = Srio, = 0.05 (b) ¢cy = dri0, = 0.09.

Fig. 4.41 (a) (b)
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Fig. 4.41. ¢ via T for hybrid nanofluid when E; = 0.003, F, = 0.003, E3 = 0.01, t =0,
=02 M=10,m=10,5=10, ¢c, = ¢7i0, = 0.01, Biy =4, Bis =6, Br = 3.0, k1 =1,
Rd=1.(a) T =0.1 () T' =0.2.

Fig. 4.42 (a) (b)

Fig. 4.42. ¢ via kq for hybrid nanofluid when F; = 0.003, Es = 0.003, F5 = 0.01, T =0.1,
t=0,e=02, M =10, m=1.0,5=10, ¢¢c, = d1;0, = 0.01, Biy = 4, Biz =6, Br = 3.0,
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Fig. 4.43 (a) (b)

Fig. 4.43. v via M for hybrid nanofluid when E; = 0.003, E; = 0.003, E3 = 0.01, T" = 0.1,
t=0,e=02,m=10,5 =10, ¢c, = 7,0, = 0.01, Biy =4, Biz =6, Br = 3.0, k1 =1,
Rd=1.(a) M=1(b) M =2.

12

Fig. 4.44 (a) (b)

94



Fig. 4.44. v via m for hybrid nanofluid when E; = 0.003, E; = 0.003, E3 = 0.01, T" = 0.1,
t=0,e=0.2, M =1.0, S =1.0, ¢¢, = ¢1;j0, = 0.01, Biy =4, Biz =6, Br = 3.0, k1 = 1,
Rd=1.(a) m=1(b) m=2.

4.4 Conclusions

In this study we scrutinized the hybrid nanofluid in a rotating frame. MHD and Hall effects are
incorporated in the momentum equation. Energy equation includes non-uniform heat source
or sink parameter, radiation and Joule heating. Porous medium is considered in this problem.

Main results of this analysis are concluded as follows.

e Non-Uniform heat source parameter leads to increase in temperature and entropy.

e Hall parameter and Hartman number effects on temperature and entropy are qualitatively

similar.

e Nanoparticle volume fraction enhancement caused decay in temperature, axial and sec-

ondary velocities and entropy.
e Porosity parameters gives rise to axial and secondary velocities, temperature and entropy.

e Enhancement in the rotation caused increase in the secondary velocity whereas opposite

behavior has been observed for axial velocity, temperature and entropy generation.
e Heat transfer rate enhances when we increase the nano particle volume fraction.

e Size of bolus increases for larger volume fraction of nanoparticles whereas it reduces for

Taylor and porosity parameters.
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Chapter 5

Entropy generation in peristaltic

How of Williamson nanofluid

5.1 Introduction

In this chapter the influences of an inclined magnetic field and Joule heating on peristalsis of
Williamson nanofluid in a complaint walls channel are examined. Analysis is presented when
no-slip conditions for velocity, temperature and concentration are no longer hold. Entropy gen-
eration is discussed. Formulated problem is numerically solved for large wavelength and small
Reynolds number. Main emphasis is given to the outcomes of velocity, temperature, concen-

tration, heat transfer coefficient and entropy generation. The results are discussed graphically.

5.2 Formulation

We examine flow of an electrically conducting Williamson nanofluid in a symmetric channel of
width 2d. The channel walls at y = +n are compliant in nature. Here y = 7 corresponds to
the upper wall whereas the lower wall is taken at y = —n (see Fig. 5.1). Salient features of
Brownian movement and thermophoresis are accounted. Here z-axis is taken along the channel
whereas y-axis being normal to . Temperature and concentration of the upper and lower walls

are maintained 77, Ty and C1, Cy respectively. The sinusoidal waves traveling along the channel
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walls are responsible for mechanism of peristalsis. Mathematical shape of such waves [172]:
. 27
y=4n(z,t) == d—l—asmT(x—ct) . (5.1)

Here a is the amplitude of wave, A the wavelength, ¢ the speed of wave and t the time.

Fig. 5.1: Schematic diagram
An inclined magnetic field with inclination x is taken. Induced magnetic field for low magnetic

Reynolds number is not accounted. Electric field is absent. Then [172]:
B =[Bysinx, Bycos x, 0], (5.2)
where By represents magnetic field strength. Lorentz force (F = J x B) now yields [82]:
J x B = [~0Bj cos x(ucos x — vsin x), 0 B sin y(ucos x — vsinx), 0] . (5.3)

Here 0, J(=0(V x B)) and V(= [u,v,0]) are used to signify the electrical conductivity, current

density and velocity of the fluid. The expressions which can govern the flow are [172]:

ou Ov
Lo A4
5 T 9 0, (5.4)

ou Ou  Ou  10p 108,  10S, 1 _, ,
5 T Yo, Uay = 8$+pf e —i—pf By prBO cos x(ucosxy —vsiny), (5.5)
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v, v Ov_ 10p 1035, 105,

1
— V— = + —o B2 sin y(ucos xy — vsin ), 5.6
ot ox Ay pr0y  py Ox pr Oy Pf 0 ( ) (5.6)

where p depicts the pressure, S;; the component of extra stress tensor and p; the fluid density.

Expressions of temperature and concentration satisfy [172]:

or ua—T—i-va—T = o 82T+82T ! S %4-5 @—l-@ v
ot Ox oy 0x2 = Oy? (PCyp) 4 O Y\oy Oz Y oy
+7 D a_ca_T + a_ca_T + & 8_T ’ + a_T ’
B\ or oz Oy Oy T oz dy
1
+ oB2(ucosx — vsiny)?, 5.7
oC oC oC 0’C  9°C Dy (0?°T 0°T
E—Fu%—i-va—yDB(W—i-a—yQ) ﬂ(W—i_@_ﬁ) (5.8)

Here o* denotes the thermal diffusivity and C), the specific heat. Moreover Dpg, D7, and
T, define the respective Brownian motion coefficient, thermophoretic diffusion coefficient and
mean temperature of nanofluid. 7 (= (pCy), / (pCp) ;) is the ratio of specific heat capacity for
nanomaterial and fluid. Symbols T and C are used for temperature and concentration of fluid.

For Williamson liquid, the extra stress tensor S satisfies [82, 84]:

S = [Hoo + (110 + 1100) (1 — T%) Ay, (5.9)

where py and p., correspond to zero shear rate and infinite shear rate viscosities and I' the

. -

A; =grad V + (grad V)7, (5.11)

time constant. Here 4 and A; are

IT = tr(A3?). (5.12)

Assuming that ., = 0 and I'Y < 1 then expression of stress tensor for Williamson fluid becomes
S = pol(1 +T9)]Ar. (5.13)
For I' = 0 the above expression reduces to incompressible viscous fluid. From Eq. (5.13) we
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have

N
S:ca: - 2:“0(1 + F7>%> (5'14)
L [Ou  Ov
Say = po(1+ 1) <a_y + %) ; (5.15)
. Ov
Syy = 2mo(1+ D) 5 (5.16)

. v\ ou\ 2 o ou\?
= () o () (2 510

The boundary conditions for problem are :

Ut &Sy =0 at y = +£mn, (5.18)
—r*a—3+m* ” +d; s _ 95y +an” - @—l—u@—b—v%
923 azo2 T Mooz |" T Tay oz ot T "ox T Vay
—0 B2 cos x(ucos x — vsin ), at y = £(5.19)
T T
ree, L) at y = £, (5.20)
8y TO
C
cre, 201" at y = 1. (5.21)
oy Co

In above equations 7", m*, and d] represent the elastic tension, mass per unit area and the
coefficient of viscous damping respectively. Extra stress tensor components are given by Syz, Szy
and Sy, whereas {1, 5 and {3 denote slip parameters for velocity, temperature and concentration
respectively.

We set the dimensionless quantities as

A7 Yy = d, - Ca - C? - )\7 n = d7
S d d2p c C - Cy
S* = J *— A= * — W =I- ==
(%) C/,LO’ 767 p CA/_,LO’ € d? QS Cl _007
T—Ty A o
0 = = — —0—. 5.22
Tl—Tg 8y’ Ox ( )
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After utilizing the non-dimensional quantities we get the following equations and boundary

conditions:
Py O I A ¢ Op | OSzz | OSzy 2 o 0P
Re {687583; +68_y8338y — 5%8_3;2] = —%4—5 o +8—y_M cosx(cosxa—y —1—55 sin x),
(5.23)
0?1 o 0% 0?1 op 508 aS oy O
52T s T 52 — P 522y sTYY 2 S NN Vi
Red [ ) T ) 3y 022 0 &r@y} ay+6 o +4 Dy +oM 51nx(cosxay +68x sin y),
(5.24)
2 ool ool ,0%0 0%
RePr [5& 05 o ﬁy} - [5 02 " o2
0% P 0% &
b 35y 5 (5 =558 ~ S
900 d¢ 00 AN A
200 00 09 00 2 (00 oo
+NbPr ((5 5 O + oy 8y> + NtPr (5 <8z> + <8y>
oY o .\’
2 9% o
+M*Br <8y cosx + 581‘ 5111)() , (5.25)
09 , 0009 0909\ _ (0% 0%\ Nt (0% 0%
Re Sc <5 5t + 3y Oz 58x 8y> = <(5 922 + 52 + Vb ) 92 + 92 ) (5.26)
. 0%
0%
0%
with
. 0%y \? 200 | PP\ 02 \*
T (L R e B
o .
— ££15 =0, at y = £n = £(1 + esin 27 (z — 1)), (5.31)

dy

100



3 03 0? 02 oY 0% O 01
Eioe T P2 gn0p +E38t(9:p] n = —Re [ toy "y ozoy  Cox og®
08z | OSzy g2
degEe + oy M~ cos x (5.32)
(cos X%% + 53—? siny), at y=4n,
00 1
0+¢,20 — at y = £, 5.33
S2g, . y =+n (5.33)
o+ 53% = at y = +mn. (5.34)
8y 0

The quantities involved above include the amplitude ratio e(= a/d), 6(= d//\) wave number,
Re(= pyed/pgy) Reynolds number, M = /0 /119 Bod Hartman number and We Williamson fluid
parameter known as Weissenberg number. The Brownian motion parameter, thermophoresis
parameter, Schmidt number, Prandtl number and Brinkman number are Nb(= TprB(Cl —
Co)/o)s Nt(= 7pp Dr(T1i—=To)/ 11Tm), Sc(= po/ psDp)s Pr(= po (Cp) ; /), and Br(= pug/k(T1—
Tp)) respectively. The dimensionless parameters representing the compliant nature of walls are
Ey(= —7m*d3/N3cuy), Fa(= m*cd®/ 3 uy) and E3(= did>®/ \*pg). Furthermore the slip parame-
ters for velocity, temperature and concentration are £} = & po/d, £5 = &3/d and £5 = £5/d.

The systems subject to large wavelength and low Reynolds number are reduced to the

following set of equation whereas the continuity equation is satisfied identically.

05, oy

y 2 2. Y7
9~ oy M? cos X@y’ (5.35)
op
7, = (5.36)
@—FBTS 82—¢+NbPr%@+NtPr 96 2+M2Br 9 cos 2—0 (5.37)
0y o2 dy dy ay oy “°X) T '
0%¢ Nt %0
o7 " Noag " 3%
Spe = 0= Sy, (5.39)
0%
Say = (1+ Wev)a—yg, (5.40)
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. _ Y

o a5 (5.41)
oy ,
a—yiéley =0, at y = +n = (1 4+ esin 2w (z — t)), (5.42)
83 83 82 8Sxy 2 2 3¢
El@ + Egm + Fs 50w | 1= oy M* cos Xa_y’ at  y = =+, (5.43)
00 1
0+, — at y = 47, 5.44
f2g, . y =+ (5.44)
o¢
+&— = at y = +£n. 5.45
o+, . y = (5.45)
From Egs. (5. 35) and (5.36) we get
0 [0Szy s o OU]
a5 | oy M? cos X@y =0. (5.46)

Now we numerically solve the Eqgs. (5.37), (5.38) and (5.46) by utilizing the boundary conditions
mentioned in Eqgs. (5.42-5.45). NDSolve of Mathematica is utilized for this purpose. The results
are analyzed numerically.

5.2.1 Determination of Entropy generation

Viscous dissipation expression is

ou ov ou 0Ov

Dimensional volumetric entropy generation is

" K T\ ? T\ ? o B2(ucosy — vsinx)? d
oo (@ @) e,

m
., N~~~

Joule friction irreversibility  Fluid friction irreversibility

Thermal i;rreversibility
+@ % 2+ @ ’ +@ @8_T+@8_T (5 48)
Cm Ox oy T, \Ox 0x Oy Oy ’

~
Dif fusion irreversibility
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In dimensionless form one has

S, 00\? BrM?2 [ oy 2 pr 0%
_ gen __ [ 27 - - —__
N, = Sg _<8y> + A <8yCOSX> + ASxy<8y2>
2
Y

) @) 5

with

S/// . H(Tl - T())2
¢ e T K Crm

5.3 Analysis

Here the velocity, temperature, concentration, heat transfer coefficient and entropy are exam-
ined via graphs for influence of different parameters. Problem is solved by using NDSolve of

Mathematica. For detail analysis of the results we further divide this section into subsections.

5.3.1 Velocity

This subsection intends to analyze the velocity. Fig. 5.2 (a) has been plotted for Hartman
number (M) effect. Here decreasing behavior of axial velocity by larger Hartman number is
notified. Such behavior of velocity under the influence of Hartman number is because of resistive
characteristic of Lorentz force. Fig. 5.2 (b) elucidated the influence of slip parameter on velocity.
We have noticed that increasing behavior is seen for velocity against slip parameter. It is due
to less resistance offered by fluid to flow. Fig. 5.2 (c) has been drawn to see the behavior
of wall parameters. Enhancement in elastance parameters F; and Fo give rise to velocity. It
is because of decrease in resistance by increasing wall elastance parameters. An enhancement
in wall damping coefficient E3 decreases velocity of fluid. Behavior of inclination of magnetic
field x on velocity is observed through Fig. 5.2 (d). Increasing behavior has been noticed for
velocity by larger x. Effect of Weissenberg number on axial velocity is analyzed in Fig. 5.2 (e).

Weissenberg number for velocity has mixed behavior.
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Fig. 5.2 (a) Fig. 5.2 (b)

Fig. 5.2 (c) Fig. 5.2 (d)
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Fig. 5.2 (e)

Fig. 5.2. Graphs for v when F; = 0.02, F5 =0.01, E53 =0.01,t{=0.1, x = 0.2, ¢ = 0.2,
We=0.0L & =0.1, & = 0.1, & = 0.1, Nt = 0.1, Nb= 0.1, Pr = 1.5, Br = 2.0, M = 1.0,
x = 7/4.(a) M impact on u (b) &£; impact on u (¢) Ey, Es, E5 impact on u (d) x impact on «

(e) We impact on u

5.3.2 Temperature

This subsection examined temperature for slip parameter (£5), Hartman number (M), Brownian
motion (Nb), thermophoresis parameter (Nt) and magnetic field inclination parameter (x) on
the temperature distribution. Fig. 5.3 (a) characterized temperature for Hartman number.
An enhancement in temperature is observed at center of channel for larger Hartman number.
An increase in temperature is caused by Joule heating phenomenon. Fig. 5.3 (b) has been
prepared just to view the effect of thermal slip parameter on temperature. Enhancement is
seen in temperature by larger slip parameter. The reason can be directly linked with velocity.
Influences of Brownian motion and thermophoresis parameters have been studied through Figs.
5.3 (c) and (d). Temperature is an increasing function of both parameters. As increase in
random motion of particles enhances the mean kinetic energy of the particles and consequently
the temperature. Impact of magnetic field inclination angle y on temperature has been observed

via Fig. 5.3 (e). Temperature is enhanced by x. Obviously magnetic field perpendicular to flow
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is more effective and it caused more resistance to fluid, here increases the temperature.

Fig. 5.3 (a) Fig. 5.3 (b)

Fig. 5.3 (c) Fig. 5.3 (d)
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Fig. 5.3 (e)

Fig. 5.3. Graphs for § when E; = 0.02, F», =0.01, £3=0.01,t{=0.1, x = 0.2, ¢ = 0.2,
We=0.0L & =0.1, & = 0.1, & = 0.1, Nt = 0.1, Nb= 0.1, Pr = 1.5, M = 1.0, Br = 2.0,
x = 7/4. (a) M impact on 0 (b) &, impact on 8 (¢) Nb impact on 6 (d) Nt impact on 6 (e) x

impact on 6

5.3.3 Concentration

Here concentration is examined with respect to various influential parameters. Fig. 5.4 (a)
displayed concentration for Hartman number. Clearly concentration is an increasing function
of Hartman number. Increase in concentration slip parameter decreases concentration (see Fig.
5.4 (b)). Figs. 5.4 (c) and (d) elucidated effects of Brownian motion and thermophoresis on
concentration. Concentration has opposite behavior for these both parameters. An inverse

relation of these parameters has been observed in the concentration expression.
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Fig. 5.4 (a) Fig. 5.4 (b)

Fig. 5.4 (c) Fig. 5.4 (d)

Fig. 5.4. Graphs for ¢ when E; = 0.02, F, = 0.01, £3 =0.01,t=0.1, x = 0.2, e = 0.2,
We =001, 8=0.1,& =01, & =0.1, & = 0.1, Nt = 0.1, Nb = 0.1, Pr = 1.5, Br = 2.0,
M =1.0, x =n/4. (a) M impact on ¢ (b) {3 impact on ¢ (c) Nb impact on ¢ (d) Nt impact
on ¢
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5.3.4 Heat transfer coefficient

This subsection has been organized for the description of outcomes of various parameters on
heat transfer coefficient (7). Impact of Hartman number on Z is shown in Fig. 5.5 (a). There
is a decrease in Z for larger M. Further an increase in x leads to an enhancement of Z. (see
Fig. 5.5 (b)). Furthermore through Figs. 5.5 (c¢) and (d) the heat transfer coefficient via change
in Nb and Nt has been analyzed. Opposite behavior of heat transfer coefficient through these

parameters is observed. These Figs. witness for an oscillatory behavior.

Fig. 5.5 (a) Fig. 5.5 (b)

Fig. 5.5 (c) Fig. 5.5 (d)
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Fig. 5.5. Graphs for Z when E; = 0.02, F3 =0.01, F53 =0.01,t=0.1, ¢ = 0.2, We = 0.01,
£, =01,& =01, & =0.1, Nt = 1.0, Nb = 1.0, Pr = 1.5, Br = 2.0, M = 1.0, y = 7/4. (a)
M impact on Z (b) x impact on Z (¢) Nb impact on Z (d) Nt impact on Z

5.3.5 Entropy generation

This subsection has been prepared to analyze the entropy generation. Thus Figs. 5.6 (a~c) have
been plotted for this purpose. Fig. 5.6 (a) described the influence of Hartman number (M)
on Ns. It is worth mentioning that Ns is an increasing function of M. It is in view of Joule
heating aspect. Brownian motion (Nb) and thermophoresis impacts have been seen via Figs.
5.6 (b) and (c). Increasing results are noticed for both variables. These results can be verified

in view of directly linked with temperature.

Fig. 5.6 (a) Fig. 5.6 (b)
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Fig. 5.6 (c)

Fig. 5.6. Graphs for Ns when F; = 0.02, E5 = 0.01, F3=0.01,t=0.1, 2 = 0.2, £ = 0.2,
We=0.01, & =0.1, & = 0.1, £ = 0.1, Nb = 0.1, Nt = 0.1, Br = 2.0, L = 0.5, ( = 0.5,
A=0.5, M =1.0, Pr=15, x =m/4. (a) M impact on Ns (b) Nb impact on Ns (c) Nt

impact on Ns

5.3.6 Validation of problem

Fig. 5.7: Validation of the problem
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Fig. 5.7. 0 via change in Nb and Nt when Fy, = 0.01, F» = 0.02, £3 =0.01,¢t=0.1, z = 0.2,
e=02,We=00,& =0.1,& =0.1,£ =01, Pr=1.0, Br=1.0, M = 0.0, x = 0.0.

The purpose of Fig. 5.7 is to validate our results. Here we have chosen a study by Mustafa
et al. [170]. The authors here have studied the nanofluid flow through Buongiorno model. They
have utilized the homotopy analysis method to solve their proposed problem. In our problem
if we exclude the inclined magnetic field and replace the Williamson fluid by viscous fluid we

obtained the results of paper [170].

5.4 Conclusions
Major findings here include the following,.

e Velocity is decreasing function of Hartman number and wall damping coefficient (FE3)

whereas it is increasing function of F7, Fy and velocity slip parameter.
e Nb and Nt has same behavior on temperature.

e Temperature has same behavior for larger thermal slip parameter and Hartman number

(M).

e Concentration has opposite behavior for concentration slip parameter when compared

with Hartman number (M).

e Heat transfer coefficient for inclination angle for magnetic field has opposite response to

that of Hartman number (M).

e Nb and Nt have opposite behavior on heat transfer coefficient.
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Chapter 6

Effects of radial magnetic field and
entropy on peristalsis of Williamson

fluid in curved channel

6.1 Introduction

This chapter aims to analyze the peristaltic activity of Williamson fluid in curved configuration.
Flow formulation is made by employing radial magnetic field and Soret and Dufour effects.
Slip conditions for velocity, temperature and concentration are applied. Entropy analysis is
also carried out. Modeling is given using lubrication approach. Stream function, velocity,
temperature and concentration solutions have been derived. Effects of different parameters
are analyzed on flow quantities of interest. Moreover streamlines are examined for different
embedded parameters. Result reveals that Lorentz force tends to slow down the fluid velocity.
The slip parameters for velocity and temperature lead to enhancement in corresponding profile
whereas opposite behavior is noticed for concentration. Soret and Dufour effect lead to increase
the temperature as well as entropy of the system. Compliant nature walls increase the fluid

velocity for elastance parameters where as damping nature reduces the fluid velocity.
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6.2 Modeling

Consider a curved configuration having channel width 2d, which is coiled in a circle with centre
at O and has radius R*(see Fig. 6.1). A incompressible electrically conducting Williamson fluid
in channel is taken. Walls of the channel are considered flexible. In radial direction a magnetic
field is applied whose strength is taken B,. Coordinate system has been taken such as that
both z-axis and r-axis lie normal to each other. u(r, z,t) and v(r, z,t) are the respective axial

and radial velocity components. The walls shape satisfies the following expression [50]
. 2T
r=4n(x,t) =+ d—l—asmT(m—ct) , (6.1)

in which a, A and c elucidate the respective amplitude, wavelength and speed of the wave and

t denotes the time.

Fig. 6.1: Sketch of the geometry

The applied magnetic field can be expressed as follows [84]:

- [ R*B,

2
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where By represents the magnetic field strength. The Lorentz force (F = J x B) yields 50]

U(R*)ngu

JxB=]0,-—
% " (r+R*)?%’

(6.3)

Here 0 and J(=0c(V x B)) are used to describe the electrical conductivity and current density

of the fluid. The continuity equation and components of velocity satisfy [50, 84]

O[(r + R*)v] ou

ov ov uR* Ov u? dp 1 0 N
ﬂ[a“aﬂw*%vw*] = o Tramar TS

R*  0Sgr Sex
+T+R* or r+ R* (6.:5)

ou ou uR* Ou uv B R* Op 1 0 2

p{8t+v8r+r+R*8x+r+R*] - r+ ROz (r_i_R*)Q@r{(T"‘R)Sm}
R* 0Syz o(R*)?B2u

+7“ + R* Oz (r+ R*)2’ (6.6)

where p is the pressure, S;; are the component of extra stress tensor and p the fluid density.
The temperature and concentration equations with Soret and Dufour effects become [84,

189]:

C 8_T+U8_T+U—Rka_T = S @4‘ R’ @_ u +
Porior "or Tr+R oz  ""\or " r+R0zr r+R

ov R* \? 9 9

(Srr —S;,; )E + <7’+—R*> UBOU +

K

Pr_ 1 or [ w \er
or2  r+ R* Or r+ R*) 0Ox2

(DR (0°C 1 0C [ B jAS (6.7)
C, or2  r+ R* Or r+ R*) 0zx2 '
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ot " Vor Trim ooz o Trxra T \orr) 92
DKr [ 9T 1 oT R* \20%T
T <8r2+r+R*E+<T+R*> ox2 |7 (6:8)

in which C), is the specific heat, x denotes the thermal conductivity and D, K, Cs and T},

aC  dC  wR* aC (a?c 1 aC <R* >282C>
- D +

represent the respective mass diffusivity, thermal diffusion ratio, concentration susceptibility
and mean temperature of fluid. Here symbols T" and C are used to define the temperature and
concentration of the considered fluid respectively.

Williamson fluid extra stress tensor is [84]

S = [Hoo + (o + f100) (1 — F;Y)il]Ah (6.9)

where p and p., are the zero shear rate and infinite shear rate viscosities and I' denotes the

time constant. Further 4 and A are defined below [84]:

. o

A; =grad V + (grad V)7, (6.11)
IT = tr(A%). (6.12)
By taking p., = 0 and I'¥y < 1, the extra stress tensor yields [84]

S = pl(1+ T4)] A (6.13)

Notice that I' = 0 shows the case of viscous fluid. In component form the above expression

gives [84]
. R* Ov U ou
STI—M0<1+F’)/) (T—FR*%_ T‘—i—R* +E> , (614)
) v R* Ou
Suw = 2419(1 + T) (r et %> : (6.15)
Sor = 2p1g(1+ TH) 2 (6.16)

or’
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o (Y oo BN (R v w Ou)?
7= or r+R* r+ R*Ox r+R*0x r+R* Or)

(6.17)
The boundary conditions for the analysis are [198]
ut&;S,; =0 at r = +mn, (6.18)
03 o3 0? 1 0 oS
* | ok 7 * d* — e *\2 . * xrx
S I R e R v o Ky o MU A
—p(r + R*) %—i—v@-i- uh” Ou -
g ot "or Tr+ ROz rHR
o(R*)?B2u
S S g Vg =+ 1
i) r =4, (6.19)
T T
T+ 522— - at 7 = %7, (6.20)
T TO
C
C+ 5388—0 = ' at r = =£n. (6.21)
T Oo

Here p is the pressure, R* shows the curvature parameter, 7%, dj, and m* describe the respec-

tive elastic tension, coefficient of viscous damping and mass per unit area whereas the extra

stress tensor S components are denoted by Sy, Sy, and Sy;. Moreover &, &,, and &5 are

the slip parameters for velocity, temperature and concentration respectively. Temperature and

concentration at the upper and lower walls of the channel are T7, Ty and Cy, Cj respectively.

Dimensionless quantities are mentioned below:

* z * r * u * v * ct * Ui
prg — = — = — _ — t _ — = —
x A’ T d’ u c7 v C? A’ 77 d?
dS;; R* . .d d?p c
SE = J k= = Ao * = We =T=
Z] CMO? d? ,Y ’Yca p C)\/,LO’ d’
0 — T—Th _C-Cy
T -Ty G —Cy
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Using the dimensionless quantities Eqgs. (6.5-6.8) and (6.14-6.21) take the forms

ov ov oku Ov u? 8p 1 0 ké 0S, Saa
fre 5[5a_+ E*Hk%_wk] “or 5[r+k5{(r+k)5”}+r+k du Ttk
(6.23)
ou Oou  Oku Ou uv k2 9 k  Op
Re[5§+ Eﬂ%%ﬂwk} = xR e
1 0 ké 0Six
ma{(r—i-k) Sz} + —— Tk On , (6.24)
2 STT_SJ::I: @4_
RePr 5%+ @—i- ukd 99 - (L M?Bru? + Br ( {)dr +
ot or r+kox r+k S <@_’_k5@_i>
T\ or r+k Ox r+k
N 829+ L 00 o _k 2 0%
or2  r+kor r+k x2
9% 1 o [k \? 8%
+DuPr<8T2 r+k8r+5 <r+k) 022 ) (6:25)
op  O¢p  ukéd a¢> B 920 1 ok \?0%
Re (58t+ 8r+r+k8x (aﬂ —i—k:Br ")

1 (8% 1 8¢ o k \?>0%
%(W—FT—FkE—F& <—7’—|-]€) W ) (626)

) ov u ou
Srz = (1 +We¥) (58_ ey + E) (6.27)
Spr =21+ W )@ (6.28)

" Vo '
: v kE  _Ou
where 4 in dimensionless form become
: v\ v koo ou\? k  _Ov u ou\?

7_\/2<5> +2<r+k+r+k6%) +<r+k5%_r+k‘+a>' (6.30)
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The boundary conditions in non-dimensional form are

ut& S, =0, at r =+n = +(1+esin2x7 (z — 1)), (6.31)
kEa—3+E > + E. o = —Re(r+k) 5%+ %+Uk5@+ -
03 " Pozor T Paox) T T T ot or Trykor r+k
+rap 2 {(r + k)%Spe} + 0k (6.3
—T]kozu, at r=4n,
00 1
0+¢& o . at r 7, (6.33)
1
o= 53% = at r = =£mn. (6.34)

0

In above equations (= a/d) is the amplitude ratio, Re(= pcd/ ) the Reynolds number, We
the fluid parameter for Williamson fluid also named as Weissenberg number, 6(= d//)\) the
wave number, k the dimensionless curvature parameter, M = MBgd the Hartman number
whereas expressions for Soret, Schmidt, Dufour, Brinkman and Prandtl numbers are given by
Sr(= pDKr(T1 —To)/ ptoTm(C1 — Co)), Sc(= po/pD), Du(= DK7(Cr — Co)/1oCpCs(T1 — To)),
Br(= Auy/k(Th — Tp)), and Pr(= uyCp/k) respectively. Moreover the non-dimensionalized
form of elastance parameters are described by Ej(= —7*d®/A3cpuy), Fa(= m*cd®/ 3uy) and
E3(= did®/)?pug) respectively. The velocity, temperature and concentration slip parameters
in dimensionless form are denoted by respective &, &, and &5 i.e. & = & up/d, &5 = &/d,
€3 = &3/d, in which £, &5, &5 are the dimensional slip parameters for the velocity, temperature
and concentration. We have omitted the asterisks for brevity.

Using the expression given below:

I
P (6.35)

the continuity Eq. is identically satisfied and Eqgs. (6.23-6.34 ) in view of lubrication approach
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yields
9 _

= =0, (6.36)

k  Op 1 0 9
rrkor T mar TR Sk

9% 1 00 W, E\? . 5 (02 9% 1 99\
a2 rrRor P [SM (—%* r+k>]+<r+k> M=Br (a—> FDubr <a_ * ma) =5

B0

T =0 (6.37)

(6.38)
% 1 0¢ 0%0 1 06
o T rawar oS (WMT@) =0 (6.39)
Y, &S =0, at r=4n==x(1+e¢esin2xn (v —1)), (6.40)
oa o3 ok 1 0 9 k2 500
4 By 4 By = ——— - 2= t 7=,
P R T +E38t83:] = R o (R Skt T M Bt m==m
(6.41)
00 1
- = = 42
6i§28r {0} at r = =+mn, (6.42)
1
o= 53% = { } at r = +n, (6.43)
or 0
Spr =0 = Sy, (6.44)
_ : 1 oy %
with
2
1 % _0W (6.46)

T ke o
6.3 Solution methodology

The system obtained is highly nonlinear. Therefore we find the series solution and use the

perturbation technique about the small Weissenberg number. We expand the quantities as
Y =1y + Wepy + O(We?), (6.47)

Syw = Sorz + WeStre + O(We?), (6.48)
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0 =0 +Web + O(We?), (6.49)
b= ¢y + Wep, + O(We?). (6.50)

The corresponding systems and their solutions are given as follows:

6.3.1 Zeroth order solutions

0 1 k 20| _
o [m—{(r-i-k’) Sorz} + —{—k:M W] =0, (6.51)

2
0 = {%Jr ! 89°]+Br [SOW <—¢OM+ Vor )}

o2 r+kd r+k
Py, 10 E N g (200
+DUPT(87‘2 +r+k 8r>+<r+k> M"Br (W) ’ (6:52)
02y 1 9¢, 020, 1 06\
87“2+7”+k8 +SS<82+T+]€E>_7 (6.53)
Yor &S0k =0, at r=4n, (6.54)
03 o3 0? 1 9 9 k2 0,

M E1 o T Begpap T 81583:] = gy (TR Sora b b MES At =,
(6.55)

1
0o + £g =2 %0 _ at r =+, (6.56)

or 0

Iy 1
bo T 538— = at r = =+, (6.57)

r 0

1 9y Py
Sore = r+k Or or? (6:58)
Solving the above systems one arrives at

_c Ok c r2 Cg(k} + T)lf\/lJer C (]{ + r)l+\/1+k:2 6.50
Vo = Cat Cabr + Cog + —— e Ve (6.59)
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o = —Di(k+r) 2VIHEM Dy 4 ) 2VIHEM By

Fylog[k + ] + D3log[k + 7%, (6.60)

¢g = Ho+ Hyloglk + 1] — ScSr(Fy — Dy(k +r) 2V1HHM

—Do(k 4 )2V M L By loglk 4 7] + D3 log[k + 7]2). (6.61)

6.3.2 First order solutions

Here
0 I ko a0Y]
20, 1 06, Star (~tor + 25 ) + P61 99
|:W+—ka_]+Br » +DuPI‘<821+ k8_1>
r r+k Or Sour (_wlrr 1 le) r r+ r
B\ 2 (50%0001Y _
32¢1 1 3¢1 8201 1 801 -
o Vrvkor T <a2+r+kﬁ>_0’ (6:64)
Vi, £S5 =0, at r=4n, (6.65)
0 k20U,
7’+k8r{< r+k)2S1. ) + —i—kM Wfo, at r=4mn, (6.66)
1
01 £ & — 90, _ { } at r = 4, (6.67)
or 0
1
¢, £ §3a¢1 = { } at r =+, (6.68)
0
G L ou Pu (1 Wy Pup)’ (6.69)
YT etk o o? \r+kor o) '
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and solution expressions are

Wy = Cs(k+r) 2VIEME Ly Gy 4 )2V IR
(k+r)1+v1+k2MzBl N (k:+r)1—x/l+k2M232 Bt B r2 B (6 70)
T - 5 .
1+ 1+ K202 1— 1+ k202 ST T

0r = —Au(k+r) VIR g () 2VIEREME A (g 4 ) TL3VIRREME
FA (k4 r)TIVIERME A (o) TIVIRREME | f g ) LBVIRREM?

+Go + G loglk + 7] + Ay7loglk + 72, (6.71)

¢, = Og+O1loglk+r] — ScSr(Ga — Ayy(k + r) 2V IFEMZ g0 ( + )2V IHREMZ
Alg(k‘ + T)—1—3\/1+k2M2 + A14(k’ + T)—l—\/1+k2M2 + A15(k' + r)—1+\/1+k2M2

+ Ak + )" HVIFREME G oglk + 1] + Az loglk + 7]?). (6.72)

The heat transfer coefficient at the wall is

+We(Eh + Arz(—1 = 3VT+ R2M?)(k + )27 3VIHR

[ (%1”_‘_2 1—|—k2M2)D1(k:+77)*1*2\/1+k2M2 _9 1+k2M2)D2(k+77)—1+2\/1+k:2M2 +

2D3 loglk+n] ]

(k+n)

Z =1y +2A1VT + K2M2?) (k 4 ) 1 2VIEREM2 L Ay (=1 — T+ KB2M2) (K 4 )2~ VTR M2

+Arg(—1 + VT B2MP) (k + )~ 2+3VIFRE . 2apioaltil )
(73)

where the constants Ci's (i =1 —6), Bis (i=1—-4), Gis (i=1-2), Firs (i =1—2),Hi's
(i=1-2), Ais (i=11—-17), Di’s (1 =1 —3)and Ow's (i = 1 — 2) are obtained with the help

of Mathematica.
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6.3.3 Entropy analysis

Entropy generation satisfies

5 no(OT R OT 2 N R* \? 0Bu?
gen T2 \or r+ R*0x r+ R* T
Thermal irreversibility Joule friction irreversibility

1 ov ou R* Ov U
e (e s e )

Fluid friction irreversibility

RD [3C R* 0C\?> RD (0CoT R* \2?0CoT
+== + + == — + — | (6.73)

Cn, \Or " r+ R0z T, \ or or r+R*) Oz ox

~
Dif fusion irreversibility

In dimensionless form

1"

g 2 9 2 2 2
S or A r+k or A r+kor Or?

G
L (80N (8¢ LC [0¢)\>
T (m) <8r> T2 <8r> ’ (6.74)
with
w &M -To)? . Ti—To _ RD(Cy — Cy) ~ (G —Cy)
SG - T72nd2 ) A= T, , L= K ) C - Ch (675)

6.4 Analysis

Here plots are displayed and discussed. Firstly we have examined the velocity profile under the
influence of pertinent parameters involved in problem. Fig. 6.2 (a) depicts the impact via M
on u. It is noted that the axial velocity is decreasing function of Hartman number (M). The
reason behind this act is the resistive nature of Lorentz force that caused decay in velocity for
larger M. Fig. 6.2 (b) captured the curvature parameter (k) influence on w. It can be seen
that k shows dual behavior on the axial velocity. Moreover, the axial velocity is seen to be
symmetric for larger curvature parameter (k). Fig. 6.2 (¢) has been displayed for impact of
Weissenberg number (We) on the velocity profile. Mixed behavior is also observed for We like

curvature parameter.
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Fig. 6.2 (a)
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(e)

Fig. 6.2. Velocity profile graphs when Ey = 0.02, E5 = 0.01, B3 =0.01,t=0.1, z = 0.2,
e=02,We=0.01, k=5.0, M =0.8, £, = 0.01. (a) Hartman number influence on u (b)
Curvature parameter influence on u (c¢) Weissenberg number influence on u (d) Slip parameter

influence on u (e) Compliant walls influence on u

Through Fig. 6.2 (d) the influence of velocity slip parameter (£;) is examined. Velocity is
seen an increasing function of (£;) . Physically the slip between walls and the fluid decreases the
resistance of the flow which causes increase in the axial velocity. Wall parameters behavior on
u is analyzed through Fig. 6.2 (e). Enhancement in axial velocity is examined for F; and Fs
whereas decrease is noticed for F3. Physically an increase in axial velocity for £y and F» is the
less resistance offered during flow because of the increase in elastic nature of walls. However
damping nature of the walls (wall damping coefficient F3) causes decay in fluid velocity.

To observe the impact of Hartman number, curvature parameter, Weissenberg number,
Brinkman number, Soret number, Dufour number, Schmidt number and thermal slip parame-
ter on temperature the Figs. 6.3 (a-h) are plotted. Fig. 6.3 (a) shows the influence of Hartman
number (M) on . We noticed an enhancement in temperature for an increase in Hartman
number. As resistance to the fluid produced heating that caused an enhancement in temper-
ature. Fig. 6.3 (b) indicates impact of curvature parameter (k) on temperature. Decay is

observed for increase in curvature parameter (k) on 6. Increase is observed for Weissenberg
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number (We) on 0 (see Fig. 6.3 (c)). Fig. 6.3 (d) elucidates the Brinkman number effect on
the temperature profile. Enhancing the value of Br causes rise in the temperature distribution.
It is due to the increase in resistance offered by shear in flow and as a result of generation of
heat produced because to viscous dissipation. Figs. 6.3 (e) and (f) represent the influence of
Sr and Du on 6 respectively. Increase is seen in temperature by making increment in values of
Soret and Dufour numbers. Basically enhancement in Sr produces the mass flux due to large
difference in concentration which enlarges the temperature. Here Du causes the enhancement
in concentration gradient which as a result increase the temperature. To examine the influence
of Schmidt number (Sc¢) the Fig. 6.3 (g) is plotted. Temperature distribution increases with
larger Schmidt number. Fig. 6.3 (h) is prepared to see influence of slip parameter (£,) on 6.
It is found that the fluid temperature increases by enhancing the thermal slip parameter. As
increase in slip caused increase in velocity that enhances the mean kinetic energy of the fluid.

As a result heat is produced that enhances the fluid temperature.

Fig. 6.3 (a) (b)
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(2) (h)

Fig. 6.3. Temperature profile graphs when Fy = 0.02, F» = 0.01, £3 =0.01, t =0.1, z = 0.2,
e =02, We=001, k=30, Br =30, M = 0.7, Pr = 2.0, Du = 0.1, S¢ = 0.2, Sr = 0.1,
&, =0.01, & = 0.01, &3 = 0.01. (a) Hartman number influence on 6 (b) Curvature parameter
influence on 0 (¢) Weissenberg number influence on 6 (d) Brinkman number influence on 6 (e)
Soret number influence on 6 (f) Dufour number influence on 6 (g) Schmidt number influence

on 6 (h) Thermal slip parameter influence on 6

For influences regarding behavior of different embedded variables on concentration the Figs.
6.4 (a-f) are plotted. From Figs. 6.4 (a) and (b) inverse behavior is observed for curvature
parameter (k) and Weissenberg number (We) on concentration. Figs. 6.4 (c) and (d) elucidate
the influence of Sr and Du. Decay is noticed in both cases. Similar behavior is noticed for Sec
(see Fig. 6.4 (e)) . As increase in Schmidt number reduced the fluid density hence ¢ decreases.
From Fig. 6.4 (f) it is observed that by enhancing the concentration slip parameter the ¢

decreases.
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Fig. 6.4 (a)
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(e) ()

Fig. 6.4. Concentration profile graphs when Fy = 0.02, F» = 0.01, £3 = 0.01, ¢t =0.1, x = 0.2,
=02 We=0.01, M =2.0, k=5.0, Br =3.0, Pr =2.0, Du= 0.2, Sc = 0.3, Sr = 0.2,
& =0.01, & =0.01, 3 = 0.01. (a) Curvature parameter influence on ¢ (b) Weissenberg
number influence on ¢ (c¢) Soret number influence on ¢ (d) Dufour number influence on ¢ (e)

Schmidt number influence on ¢ (f) Concentration slip parameter influence on ¢

Figs. 6.5 (a-f) are drawn to analyze the heat transfer rate for different parameters of interest.
Fig. 6.5 (a) illustrates the impact of M on Z. Here Z decreases by enhancing Hartman number.
It is seen that the curvature parameter (k) caused increase in heat transfer coefficient (see Fig.
6.5 (b)). Fig. 6.5 (c) illustrates that heat transfer rate increases for Br. On the other hand,
we can say that viscous dissipation influence is in favour of heat flux from the channel wall.
Increase is seen in Z(x) when Soret, Dufour and Schmidt numbers attain the larger values (see
Figs. 6.5 (d-f)). It is noticed from these Figs. that heat transfer coefficient shows oscillatory

behavior.
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Fig. 6.5 (a)
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(e) (f)

Fig. 6.5. Heat transfer coefficient graphs when E; = 0.02, Fo = 0.01, F3 = 0.01, ¢t = 0.1,
r=02,¢=02 We=0.01, k=50, M =2.0, Br =3.0, Pr =2.0, Du=0.2, Sc =0.3,
Sr=10.2,&; =0.01, & = 0.01, &3 = 0.01. (a) Hartman number influence on Z (b) Curvature
parameter influence on Z (c¢) Brinkman number influence on Z (d) Soret number influence on

Z (e) Dufour number influence on Z (f) Schmidt number influence on Z

The bolus is formed because of splitting of streamlines under various circumferences . This
phenomenon is know as trapping. Peristaltic wave completely enclosed this trapped bolus and
moves with the same velocity as that of peristaltic wave. Increase is found in trapped bolus
size when Hartman number becomes larger (see Figs. 6.6. (a),(b)). Curvature parameter (k)
and Weissenberg number (We) show opposite behavior for stream function (see Figs. 6.7 and
6.8 (a),(b)). Fig. 6.9 (a) and (b) verify the increasing behavior of trapped bolus for higher slip

parameter.
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(a) (b)

Fig. 6.6. Hartman number influence on ¢ when E; = 0.02, £, = 0.01, E3 = 0.01, ¢t =0,
k=5.0,¢=0.1, We=0.03, 8 =0.01. (a) M =5.0. (b) M =7.0.

(a) (b)

Fig. 6.7. Curvature parameter influence on ¢ when F; = 0.02, E» = 0.01, F3 =0.01, t =0,
M =4.0,e=0.1, We =0.03, {;, = 0.01. (a) k =3.0. (b) k =5.0.
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(a) (b)

Fig. 6.8. Weissenberg number influence on ¢ when Fqy = 0.02, F» = 0.02, 3 = 0.01, t =0,
k=5.0,e=0.1, M =7.0,& =0.01.. (a) We =0.01. (b) We = 0.03.

(a) (b)

Fig. 6.9. Slip parameter influence on v when E; = 0.02, F5 = 0.01, F3 =0.01, ¢t =0,
M =4.0,e=0.1, We=0.03, k =5. (a) §{&; = 0.0. (b) &; = 0.06.
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Figs. 6.10 (a—e) are plotted for analysis of entropy of the system. Hartman number effect
on Ns can be viewed through Fig. 6.10 (a). Increase is noticed at the center of channel. Fig.
6.10 (b) is sketched against Brinkman number. Entropy is increasing function of it. Figs. 6.10
(c-e) show the results for Dufour, Soret and Schmidt numbers on entropy. Increase has been
viewed in all cases. These results can be directly linked with temperature profile. An increase

in temperature caused more disorderedness hence enhancement in entropy.

Fig. 6.10 (a) (b)

136



(e)

Fig. 6.10. Entropy generation graphs when Fq = 0.02, E» = 0.01, E3 =0.01, ¢t =0.1, z = 0.2,
e =02, We=001, k=50, M =20, Pr = 2.0, Du = 0.2, Br = 3.0, S¢ = 0.5, Sr = 0.2,
&, =0.01, & =0.01, £ =0.01, A = 0.5, ¢ = 0.5, L = 0.5. (a) Hartman number influence on
Ns (b) Brinkman number influence on N's (¢) Dufour number influence on N's (d) Soret

number influence on Ns (g) Schmidt number influence on N's

6.4.1 Validation of the Problem
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Fig. 6.11
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Fig. 6.11. Velocity profile for influence of compliant walls when ¢ = 0.05, x = 0.2, ¢ = 0.3,
k=50 We=0, M=0,¢& =0.

It can be clearly seen via this Fig. that our results are in good comparison with the article by
Hayat et al. [50]. In this article the authors utilized the viscous fluid in the curved configuration.
No slip conditions have been utilized. Closed form of solution has been found. In our problem

if we put We =0, M =0 and &; = 0. then we obtained the same results in the study [50].

6.5 Conclusions

Here consideration is given to the peristaltic phenomenon in a curved channel. Effects of Soret

and Dufour in Williamson fluid is studied. Main points of this study are given below.

e Axial velocity decreases by increasing the Hartman number and Fs whereas it is an

increasing function for Fy, Fy and velocity slip parameter.
e Weissenberg number and curvature parameter show dual effect on velocity.

e Increasing behavior of temperature is noticed for Soret, Dufour, Schmidt, Brinkman and

Hartman number number.

e Opposite behaviors have been seen for concentration when compared with temperature

through Soret, Dufour, Schmidt and slip parameters.

e Trapped bolus size enhances for large curvature parameter (k), Hartman number (M),

slip parameter (£;) whereas it decreases with an increase in We.

e Entropy generation enhances for Dufour, Soret and Schmidt and Brinkman numbers.
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Chapter 7

Numerical study for peristalsis of
Sisko nanomaterials with entropy

generation

7.1 Introduction

Present chapter aims to examine peristalsis in a symmetric channel having flexible walls. Sisko
nanofluid is considered. Joule heating and non-linear thermal radiation are taken. Boundary
conditions are subject to the slip conditions for velocity, temperature and concentration. En-
tropy generation analysis for viscous dissipation, Joule heating and non-linear thermal radiation
is carried out. System is numerically computed through NDSolved of Mathematica. Graphical
analysis is made for velocity, temperature, concentration, heat transfer coefficient and entropy
generation. Conclusions are drawn through discussion. This study discloses that magnetic field
leads to slow down the fluid velocity and caused decay in heat transfer coefficient. Further
Brownian motion and thermophoresis parameter caused enhancement in temperature and en-
tropy generation rate. Slip parameters for velocity and temperature lead to enhancement in
the velocity and temperature whereas opposite impact is observed for concentration against

concentration slip coefficient.
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7.2 Problem formulation

Consider two-dimensional flow of Sisko nanofluid in a symmetric channel with flexible walls.
The upper and the lower walls have temperatures 77, T and concentration C7, Cy respectively.
Fluid is conducted subject to constant magnetic field of strength By. Brownian motion, ther-
mophoresis and nonlinear radiation are discussed. Joule heating is present. Flow is induced by
peristaltic waves which consists of contraction and expansion along channel walls. The wave
speed is denoted by ¢ and wavelength A. The problem is formulated using the Cartesian coor-
dinates system where x—axis is in the direction of flow and y—axis normal to z—axis (see Fig.

7.1). The wave geometry is given by:
. 27
y=4n(z,t) ==+ d—l—asmT(w—ct) , (7.1)

where n and —n represent the upper and the lower walls respectively. d half channel width and

symbol a the wave amplitude. Here ¢ is used for time.

Fig. 7.1: Schematic diagram
Flow is governed by [172]:

ou Ov
e + oy 0. (7.2)
ou ou Ou  10p 1 0S.z 1 0Sqzy 1 9
at " "ox +U8y ~ pp0x py Oz pp Oy prBOU’ (73)
ov ov ov 1 0Op iany i@Syy

E—Fu%—i_vﬁ_y_ psOy  py Ox

Py oy
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or or orT L [0°T 9T 1 ou ou Ov ov
+u—+v— = « + +( Seem=+Sey | 5=+ = | + 8

ot or Ay 0z2 ' 9y? pCy) o oy ' Oz Yoy
+ D 8_08_T + a_ca_T + & a_T ’ + a_T ’
"1YB\ oz oz oy Oy T ox oy
1 Oq, 1

oB2u?. (7.5)

(0Cr); Dy (oG,

oc  oC  oC 0’C  9*°C Dr (0*T  0°T
B , (7.6)

E—Fu%—kva—y:D W—i_a—y? T w—i_@—y?
Here symbols Dp and Dr in Egs. (7.5) and (7.6) are Brownian motion and thermophoretic
diffusion coefficients, u and v the velocity components, 7 equals (pCp),, / (pCy) s+ T the tem-
perature and C' the concentration. Furthermore S;j, pf, p, Tin, 0, a* elucidate the stress
components, nanofluid density, pressure, nanofluid mean temperature, electric conductivity

and thermal diffusivity respectively.

Extra stress tensor of Sisko fluid is [72]:

S — (a + g m"’l) Al (7.7)

where A and II are

1
Ay =gradV + (grad V)T, TI= §t7'A%, (7.8)

in which power law index is denoted by n, consistency index by 8* and shear rate viscosity by
.

Further

ou\ 2 ou  Ov\? ov\ 2 (=72 ou
sz =2 |a+ B (2 <%> + <a—y + %> +2 <3_y> > %7 (79)
(n—1)/2
ou\ 2 ou  Ov\? ov\ 2 ou Ov
%{W(?(a) (5 %) ”(a@)) ](a@*%)’ )
(n—1)/2
ou\ 2 ou  ov\? ov\? ov
_ ou gu OV o (Y 7 11
Syy =2 |:oz+ﬂ<2 <8x> +<8y+8x> + <8y> > ] oy’ (7.11)
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Boundary conditions are [172]:

Ut &Sy =0 at y = £, (7.12)
—*8—3+m* o +di o = asf”eraS”— @—l—u%—kv@
T 93 ozorz " “otox|" T oy " ox Mot “ar "o
—oB2u, at y = 4, (7.13)
T
ree, L) at y = £, (7.14)
ay TO
C
cre 281 ™ at y = 1. (7.15)
y Cy

Here &, &, and &5 are the slip parameters for velocity, temperature and concentration respec-
tively and 7, m*, and dJ represent the wall elastance and damping characteristics.

Non-dimensional parameters are represented as

R U S )
A d c c A
G b gl gla
. 2
Sy = dciij, p*ZZ\—Z’ ¢ = 001 C(;OO
0 = 71:1__1;%, u:g—zj, v=— gﬁi} (7.16)

After utilizing the non-dimensional quantities we get the following forms of equations:

Py 0 0 9woN]  Op | 0Sm  OSy 200
Re [58t(‘3y+ Dy 9z0y "oz 02 } = o 0 Tay My (7.17)
Oy GO0y L0 8% 9 | 208, . 0S
2 2 209 _ 2 U0uy vy
Re‘g[ “owor oy o O Gromoy| oy ) ar 0oy (718
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(n—1)/2
92 \2 0% 9% 9%\ 9%
_ 2 zr 2 2 v
S.w =26 {1+Bl (25 (81:834) +<8y 2% - 2) 1926 <8x8y> i

(7.21)
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(7.22)
2 oty 0% 2l 2y
Syy = —20 !1+ﬁ1 (252< > (--2528 2) + 267 )) 520y’
(7.23)

with boundary conditions

%igl Sy =0, at y = +n = (1 4+ esin2n (z — t)), (7.24)
o3 o3 o2 o Oy O O
E1$+E23xat2+E3awx]" = R [8t8y+58_y8x8y_ o2 "

082z OSay 20
- M =+ 2
) o + 3y y at y n, (7.25)

00 1
0+ §2a—y = . at y = £, (7.26)
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do | 1

o+ 538_31 = . at y = +£n. (7.27)

The dimensionless parameters are

d * n—1
I T T L Vo LW 5125_(5) 7
« a \d

d’ A a
Dp(Cy — C Dr(Ty — T,
Ny = TP B(C1 0)7 Np— TPt (T 0)7 So— —_
« ol prB
aCly Aa 160*T3 T,
g K ’ " K(Tl — Tg) ’ 3k*k ’ v To7
*d3 m*ed? drd3
E, = — , Fy=——, E3=-—3_. 7.28
! Aea 2 A3 s Ao ( )

Here ¢ depicts amplitude ratio, 6 wave number, Re Reynolds number, M Hartman number,
B, Sisko fluid parameter, Nb Brownian motion parameter, Nt thermophoresis parameter, Sc
Schmidt number, Pr Prandtl number, Br Brinkman number, Rd radiation parameter and FE,
Fs, E5 the compliant wall parameters.

Lubrication approach leads to

I _ Oy 200

oxr 0Oy oy’ (7:29)
op
7, =" (7.30)
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with boundary conditions

g—zifley =0, at y = +n = (1 4 esin 2w (z — t)), (7.35)
Elaa—; + B, a;f;ﬂ + B 8?;:15} n= aés*;y — M2‘;—1§, at  y = +n, (7.36)
0i§22—2 = { (1) } at y = =+, (7.37)

¢ ig?,z—j = { (1) } at y = . (7.38)

The above mentioned system via NDSolve of Mathematica 9.0 is computed.

7.2.1 Expression for entropy generation

Mathematical expressions for viscous dissipation is

ou ov ou Ov

Volumetric entropy generation in dimensional form is given by

S/// B i a_T 2 + 8_T 2 i 160* 8_T 2 4 O'BgU/Z + 2
gen T2 ox oy 3k*k \ Oy T T
Ne——— ~~

Thermal irreversibility Joule friction irreversibility — Fluid friction irreversibility

+@ 8_0 2+ a_c ’ +@ 8_08_T+8_08_T (740)
Cm Ox Oy T, \Ox Ox Oy Oy '

~
Dif fusion irreversibility

In dimensionless form

S 00\?* BrM? (0y\*? Br 0%
_ gen o 3 e e = iR
N, = _(1+Rd((0w 1)9+1))<3y> +— <8y> + ASIy<ay2>
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7.3 Analysis

The involved problem comprises non-linear system. Thus exact solution of this problem is
not possible. However an approximate solution can be found via any technique like numerical
technique or perturbation technique. To solve this problem built in command NDSolve of
Mathematica 9.0 is used. As this technique helps us to avoid the lengthy expressions and gave
the best results in minimum CPU time (3-4 min). Therefore graphical analysis is done for
velocity, temperature, concentration, heat transfer coefficient and entropy generation. For the

sake of convenience we have made subsections for each physical quantity.

7.3.1 Velocity

Velocity is discussed for the parameters of interest in this subsection. Fig. 7.2 manifested
the behavior of Hartman number on velocity. Decreasing behavior for velocity is noticed. For
enhancing the retarding force this acts as obstruction to flow. This investigation is employed to
reduce the blood flow during operations and severe injuries. Fig. 7.3 is plotted against velocity
slip parameter on velocity. Velocity enhances via increasing slip parameter. This happens due
to reduction in frictional effects. Fig. 7.4 elucidates results of fluid parameter effect on velocity.
Dual behavior is observed in this case. Compliant walls effect is seen via Fig. 7.5. Elastance
nature of walls leads to an increase in velocity whereas damping resists the fluid flow. Elastance
nature of walls allows the perfusion of blood in arteries and vein. These characteristics also

allow the exchange of nutrient and oxygen.
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Fig. 7.2 Fig. 7.3

Fig. 7.2. u via change in M when E; = 0.02, F5 =0.01, E3 =0.01,t=0.1, x = 0.2, ¢ = 0.2,
n =1.5,& =0.01, &, =0.01, £&5 = 0.01, Nt =0.1, Nb =0.1, 8, = 0.2, Pr = 1.5, Br = 2.0,
Rd =0.5, 0, = 1.1.

Fig. 7.3. u via change in &; when F; = 0.02, E2 =0.01, F3=0.01,t=0.1, x = 0.2, ¢ = 0.2,
n=1.5,& =0.01, & =0.01, Nt =0.1, Nb=0.1, 3, =0.2, Pr =1.5, Br =2.0, M =0.1,

Rd =0.5, 0, = 1.1.

Fig. 7.4 Fig. 7.5

Fig. 7.4. u via change in $; when F; = 0.02, F; = 0.01, £3 =0.01,¢t =0.1, z = 0.2, ¢ = 0.2,
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n=15,& =0.01, & =0.01, &5 =0.01, Nt =0.1, Nb=0.1, Pr=1.5, Br=2.0, M =0.1,
Rd =0.5, 0, = 1.1.
Fig. 7.5. u via change in Fq, Fs and F3 when t =0.1, x = 0.2, ¢ = 0.2, n = 1.5, £; = 0.01,
& =0.01,&=0.01, Nt =0.1, Nb=0.1, 5, =0.2, Pr=1.5, Br =2.0, M = 0.1, Rd = 0.5,
0, =1.1.

7.3.2 Temperature

Temperature behavior for pertinent parameters is discussed via Figs. 7.6-7.14. Fig. 7.6 in-
dicated that for larger Hartman number, 6 tends to increase at center of channel in view of
Joule heating effects. Fig. 7.7 is drawn for the sake of Brownian motion effects on tempera-
ture. Increasing Brownian motion parameter leads to higher temperature. Random motion of
the particles elevated the kinetic energy and molecular vibrations. Hence rise in 6 is verified.
Moreover thermophoresis (Nt) on 6 shows the same behavior (see Fig. 7.8). Thermal slip result
on 0 is notified through Fig. 7.9. It is clearly seen via this Fig. that thermal slip parameter
leads to an enhancement in temperature. As slip reduces the friction and hence rise in velocity
and in temperature. Fig. 7.10 demonstrates fluid parameter behavior. Here temperature is
increasing. Figs. 7.11 and 7.12 display the radiation parameter and Brinkman number impacts
on 6. Reverse behavior is seen for both cases. Basically Brinkman number measures the heat
loss due to viscous dissipation. This includes the conversion in internal energy results in heating
up the fluid. So temperature rises for more heat loss. Fig. 7.13 portrayed the influence of 6,,
on temperature. Result show that decay is observed in this case. Fig. 7.14 is drawn for Els
(1 = 1—3) influence on temperature. Here E; and Fs tend to increase the temperature whereas

E3 leads to decay of temperature. Reason can be linked with velocity in view of kinetic theory.
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Fig. 7.6 Fig. 7.7

Fig. 7.6. 0 via change in M when E; = 0.02, E» = 0.01, B3 = 0.01, t = 0.1, 2 = 0.2, ¢ = 0.2,
n=15& =001, & =001, & = 0.01, Nt = 0.1, Nb=0.1, 8, = 0.2, Pr = 1.5, Br = 2.0,
Rd=0.5, 0, =1.1.

Fig. 7.7. 0 via change in Nb when Ey = 0.02, Ey = 0.01, E3 = 0.01, t =0.1, z = 0.2, £ = 0.2,
n=15& =001, & = 0.01, & = 0.01, Nt =0.1, 8, = 0.2, Pr = 1.5, Br = 2.0, M = 0.1,
Rd=0.5, 0, =1.1.

Fig. 7.8 Fig. 7.9

Fig. 7.8. 6 via change in Nt when F7; = 0.02, F, = 0.01, £33 =0.01,t =0.1, x = 0.2, ¢ = 0.2,
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n=1.5,& =0.01, & =0.01, {3 = 0.01, Nb=0.1, 8, = 0.2, Pr =1.5, Br =2.0, M = 0.1,
Rd =0.5, 0, = 1.1.
Fig. 7.9. 0 via change in £ when E; = 0.02, F5 = 0.01, E3 =0.01,t =0.1, x = 0.2, ¢ = 0.2,
n=1.5,& =001, & =0.01, Nt =0.1, Nb=0.1, 5, =0.2, Pr = 1.5, Br =2.0, M =0.1,
Rd =0.5, 0, = 1.1.

Fig. 7.10 Fig. 7.11

Fig. 7.10. 6 via change in #; when F; = 0.02, E5 =0.01, B3 =0.01,t=0.1, x = 0.2, € = 0.2,
n=1.5,& =0.01, {& =0.01, {3 =0.01, Nt =0.1, Nb=0.1, Pr =1.5, Br =2.0, M =0.1,
Rd=0.5,0,=1.1.

Fig. 7.11. 0 via change in Rd when F; = 0.02, F5 = 0.01, £33 =0.01,t=0.1, x = 0.2, ¢ = 0.2,
n =1.5,& =0.01, {&, = 0.01, £&5 = 0.01, Nt =0.1, Nb =0.1, 8; = 0.2, Pr = 1.5, Br = 2.0,
M=0.1,86,=1.1.
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Fig. 7.12 Fig. 7.13

Fig. 7.12. 6 via change in Br when E; = 0.02, By = 0.01, F3 =0.01, t =0.1, 2 = 0.2, e = 0.2,
n=15 & =001, & =001, & = 0.01, Nt = 0.1, Nb=0.1, 8; = 0.2, Pr =15, M = 0.1,
Rd=0.5, 0, = 1.1.

Fig. 7.13. 6 via change in 6, when E; = 0.02, Fy = 0.01, B3 = 0.01, t = 0.1, 2 = 0.2, ¢ = 0.2,
n=15& =001, & =0.01, & = 0.01, Nt = 0.1, Nb=0.1, 8, = 0.2, Pr = 1.5, Br = 2.0,
M =0.1, Rd=0.5.
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y
Fig. 7.14

Fig. 7.14. 6 via change in Fy, E2 and F3 when t =0.1, x = 0.2, e = 0.2, n = 1.5, £; = 0.01,
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€, =0.01, & =0.01, Nt =0.1, Nb=0.1, 8, =0.2, Pr = 1.5, Br = 2.0, M = 0.1, Rd = 0.5,
0, = 1.1.

7.3.3 Nanoparticle concentration

This subsection contains the information about concentration under the influences of embedded
parameters of interest. Fig. 7.15 is prepared for the sake of concentration slip parameter on ¢.
It is seen that an enhancement in concentration slip parameter leads to decay in concentration.
Fig. 7.16 reveals the result that enhancement in 6, give rise to ¢. Figs. 7.17 and 7.18 display
decreasing behavior of radiation parameter (Rd) and thermophoresis parameter (Nt) respec-
tively. Fig. 7.18 displayed opposite behavior when compared with temperature. Brownian
motion parameter result on ¢ is seen opposite than Nt (see Fig. 7.19). For increasing Nb the
random motion of the particles enhances and rise in concentration is observed. Wall parameters
display decay for elastance parameters whereas enhancement is observed for damping variable

(see Fig. 7.20).

Fig. 7.15 Fig. 7.16

Fig. 7.15. ¢ via change in {5 when E7 = 0.02, £ = 0.01, B3 =0.01,t =0.1, z = 0.2, ¢ = 0.1,
n=1.5,& =001, & =0.01, Nt =0.1, Nb=0.1, 3, =0.2, Pr = 1.5, Br =2.0, M =0.1,
Rd = 0.5, 0, = 1.1.

Fig. 7.16. ¢ via change in 6,, when F; = 0.02, F» = 0.01, £3 =0.01, ¢t =0.1, x = 0.2, ¢ = 0.1,
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n=15& =0.01, & =001, & = 0.01, Nt = 0.1, Nb=0.1, 8; = 0.2, Pr = 1.5, Br = 2.0,
M =0.1, Rd = 0.5.

Fig. 7.17 Fig. 7.18

Fig. 7.17. ¢ via change in Rd when F; = 0.02, F» = 0.01, £33 =0.01,t=0.1, x = 0.2, ¢ = 0.1,
n=15,& =0.01, £& =0.01, £&5 =0.01, Nt =0.1, Nb=0.1, 3, = 0.2, Pr = 1.5, Br = 2.0,
M=0.1,860,=1.1.

Fig. 7.18. ¢ via change in Nt when F; = 0.02, F», = 0.01, E3 =0.01,¢=0.1, x = 0.2, £ = 0.1,
n=1.5,& =0.01, {& =0.01, {3 = 0.01, Nb=0.1, 8, =0.2, Pr =1.5, Br =2.0, M = 0.1,
Rd=0.5,0,=1.1.
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Fig. 7.19 Fig. 7.20

Fig. 7.19. ¢ via change in Nb when Fy = 0.02, F» = 0.01, E3 =0.01,t=0.1, x = 0.2, ¢ = 0.1,
n =1.5,& =0.01, & =0.01, £ =0.01, Nt =0.1, 8, =0.2, Pr =1.5, Br =2.0, M = 0.1,
Rd =0.5, 0, = 1.1.

Fig. 7.20. ¢ via change in F1, F5 and E3 when F1 = 0.02, 5 = 0.01, F5 = 0.01, t = 0.1,
r=02,¢=01n=15,¢& =0.01, & =0.01, &5 = 0.01, Nt =0.1, Nb =0.1, 5, = 0.2,
Pr=15, Br=20, M =0.1, Rd= 0.5, ,, = 1.1.

7.3.4 Entropy generation analysis

In this subsection the analysis of entropy generation is presented for pertinent parameters of
interest. Fig. 7.21 is drawn for the analysis of entropy generation in view of Hartman number.
Entropy increases near center of channel in view of Joule heating. Nt and Nb behaviors on
entropy are observed via Figs. 7.22 and 7.23. Both cases show enhancement as in case of
temperature. Enhancement in kinetic energy of the particles create more disorderliness. Fig.
7.24 elucidates radiation parameter results on entropy. Radiation caused enhancement in the
disorderedness. Fig. 7.25 illustrates that larger values of 8, tend to decrease in entropy. For
larger values of concentration difference parameter (¢), Fig. 7.26 is plotted. Enhancement is
observed in this case. Influence of diffusion coefficient parameter L on N s is viewed via Fig. 7.27.

Entropy is an increasing function of L. An increase in L causes decrease of thermal conductivity.
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It shows an increase in temperature and entropy. Temperature difference parameter leads to
decay in entropy (see Fig. 7.28). Thermal slip effect on entropy is plotted against Fig. 7.29.

Results reveals decaying behavior here.

Fig. 7.21 Fig. 7.22

Fig. 7.21. Ns via change in M when F; = 0.02, F», = 0.01, £3 =0.01, ¢t =0.1, x = 0.2,
e=0.2,n=15,& =0.01, & =0.01, & = 0.01, Nt =0.1, Nb =0.1, 8; = 0.2, Pr = 1.5,
Br =2.0, Rd=0.5,0, =11, A=0.5,(=0.5, L =0.5.

Fig. 7.22. Ns via change in Nt when Fy = 0.02, Fs = 0.01, £3 =0.01, ¢t =0.1, z = 0.2,
e=02,n=15& =0.01, { =0.01, &5 =0.01, Nb =0.1, 5, =0.2, Pr = 1.5, Br = 2.0,
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M =0.1, Rd=0.5, 0, =11, A=05, (=05 L=0.5.

Fig. 7.23 Fig. 7.24

Fig. 7.23. Ns via change in Nb when F; = 0.02, F; = 0.01, E3 =0.01, ¢t =0.1, z = 0.2,
e=0.2,n=15,& =0.01, & =0.01, &5 = 0.01, Nt = 0.1, 8; = 0.2, Pr = 1.5, Br = 2.0,
M =0.1, Rd=0.5,0, =11, A=0.5,( =0.5, L =0.5.

Fig. 7.24. Ns via change in Rd when F; = 0.02, E5 = 0.01, F53 =0.01,t = 0.1, z = 0.2,
e=0.2,n=15& =0.01, & =0.01, & =0.01, Nt =0.1, Nb =0.1, 8; = 0.2, Pr = 1.5,
Br=20,M=0.1,0,=11,A=0.5,(=0.5, L =0.5.

Fig. 7.25 Fig. 7.26

Fig. 7.25. Ns via change in 0, when F; = 0.02, F5 = 0.01, F3 =0.01, t = 0.1, x = 0.2,
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e=0.2,n=15,& =0.01, &, =0.01, £ =0.01, Nt =0.1, Nb =0.1, 8, = 0.2, Pr = 1.5,
Br=20,M=0.1, Rd=0.5, A=0.5,(=0.5, L =0.5.
Fig. 7.26. Ns via change in ¢ when F; = 0.02, F; =0.01, £3 =0.01,t=0.1, x = 0.2, ¢ = 0.2,
n =1.5,& =0.01, {&, = 0.01, &5 = 0.01, Nt =0.1, Nb=0.1, 8, = 0.2, Pr = 1.5, Br = 2.0,
M =0.1, Rd=0.5,0, =11, A=0.5, L =0.5.

Fig. 7.27 Fig. 7.28

Fig. 7.27. Ns via change in L when F; = 0.02, F5 = 0.01, F3 =0.01,t = 0.1, z = 0.2,
e=02,n=15& =0.01, & =0.01, &5 =0.01, Nt =0.1, Nb =0.1, 8; = 0.2, Pr = 1.5,
Br=20,M=0.1, Rd=0.5, 0, =1.1, A = 0.5, ( = 0.5.

Fig. 7.28. Ns via change in A when F; = 0.02, Fo, = 0.01, £33 =0.01,t=0.1, x = 0.2,
e=02,n=15& =0.01, & =0.01, &5 =0.01, Nt =0.1, Nb =0.1, 8; = 0.2, Pr = 1.5,
Br=20,M=0.1, Rd=0.5, 6, =1.1, ( = 0.5, L =0.5.
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Fig. 7.29

Fig. 7.29. Ns via change in &, when F; = 0.02, £5 = 0.01, B3 =0.01, ¢t = 0.1, x = 0.2,
€e=02,n=15& =0.01, & =0.01, Nt =0.1, Nb=0.1, 8; = 0.2, Pr = 1.5, Br = 2.0,
M =01, Rd=0.5,60, =11, A=0.5,(=0.5, L=0.5.

7.3.5 Heat transfer coefficient

Plots for heat transfer coefficient are drawn through Figs. 7.30-7.35. Fig. 7.30 represents the
M behavior. Heat transfer coefficient decreases via M. Results for Nb and 6,, can be seen via
Figs. 7.31 and 7.32. Decay in heat transfer coefficient are seen. Radiation parameter portrayed
an enhancement in Z (see Fig. 7.33). Thermal slip parameter caused reduction in Z whereas

walls parameters results are qualitatively similar to temperature (see Figs. 7.34 and 7.35).

158



Fig. 7.30 Fig. 7.31

Fig. 7.30. Z via change in M when E; = 0.02, F5 = 0.01, F5 =0.01,t=0.1, e = 0.2, n = 1.5,
¢, =0.01, & =0.01, &5 =0.01, Nt =0.1, Nb=0.1, 8; = 0.2, Pr =1.5, Br =2.0, Rd = 0.5,
0, =1.1.

Fig. 7.31. Z via change in Nb when F; = 0.02, E» = 0.01, B3 =0.01,¢t=0.1, ¢ = 0.2,

n =1.5,& =0.01, &, =0.01, {5 =0.01, Nt =0.1, 5, = 0.2, Pr =1.5, Br =2.0, M = 0.1,
Rd =0.5, 0, = 1.1.

Fig. 7.32 Fig. 7.33

Fig. 7.32. Z via change in 6,, when E; = 0.02, Fo, = 0.01, F3 =0.01,t=0.1, e = 0.2, n = 1.5,
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€ =0.01, & =0.01, & = 0.01, Nt = 0.1, Nb=0.1, 8, = 0.2, Pr = 1.5, Br = 2.0, M = 0.1,
Rd=0.5.
Fig. 7.33. Z via change in Rd when E; = 0.02, Ey = 0.01, E3 = 0.01, t = 0.1, e = 0.2,
n=15& =001, & =001, & = 0.01, Nt = 0.1, Nb=0.1, 8; = 0.2, Pr = 1.5, Br = 2.0,
M =01, 6, = 1.1.

Fig. 7.34 Fig. 7.35

Fig. 7.34. Z via change in £, when F7; = 0.02, F5 = 0.01, £3 =0.01, ¢t = 0.1, ¢ = 0.2, n = 1.5,
£ =001, & =0.01, Nt =01, Nb=0.1, 5, =0.2, Pr=1.5, Br =20, M =0.1, Rd = 0.5,
0 =1.1.

Fig. 7.35. Z via change in Fq, Es and F3 whent =0.1,¢ =0.2, n = 1.5, £, = 0.01, &, = 0.01,
&3 =0.01, Nt =0.1, Nb=0.1, 8y =0.2, Pr =15, Br =2.0, M =0.1, Rd = 0.5, 0, = 1.1.

7.3.6 Trapping

In this subsection the results for trapping are arranged under different parameters. Figs. 7.36
(a) and (b) are plotted for slip parameters. Trapped bolus size increases in this case. Hartman
number effects on bolus size are given through Figs. 7.37 (a) and (b). Bolus size decreases for
larger M. Figs. 7.38 (a) and (b) are drawn for fluid parameter. Slight decrease is noticed for
larger fluid parameter. Figs. 7.39 (a)-(d) are prepared for compliant walls parameters. Size

of trapped bolus tend to decrease for damping coefficient whereas it increases for elastance
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coefficients.
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Fig. 7.36. ¢ via change in &; when Ey = 0.02, E; =0.01, E3 =0.01,¢ =0.0, e =0.2, n = 1.5,
& =0.01, &3 =0.01, Nt =0.1, Nb=0.1, 5, =0.2, Pr=1.5, Br =20, M = 0.1, Rd = 0.5,
0, =1.1. (a) & = 0.01. (b) &; = 0.03.
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Fig. 7.37. ¢ via change in M when E; = 0.02, F2 = 0.01, F53 =0.01,t =0.0, e = 0.2, n = 1.5,
£ =001, & =0.01, {5 =0.01, Nt =0.1, Nb=0.1, B; = 0.2, Pr =1.5, Br =2.0, Rd = 0.5,
Oy =1.1.(a) M =0.1. (b)) M =0.2.

L L L L
08 10 0.8 10 12

X X

Fig. 7.38 (a) (b)

Fig. 7.38. 1 via change in 8, when Ey = 0.02, E, = 0.01, E3 = 0.01, ¢ = 0.0, ¢ = 0.2, n = 1.5,
€, =0.01, & = 0.01, &, = 0.01, Nt = 0.1, Nb=0.1, Pr = 1.5, Br = 2.0, M = 0.1, Rd = 0.5,
0 = 1.1. (a) B, = 0.02. (b) B, = 0.04.
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Fig. 7.39. 1 via change in Ey, Ea, F3 when ¢t = 0.0, £ = 0.2, n = 1.5, £, = 0.01, &, = 0.01,
€=0.01, Nt =0.1, Nb=0.1, 3, =0.2, Pr = 1.5, Br =2.0, M = 0.1, Rd = 0.5, 6, = 1.1.
(a) By = 0.02, By = 0.01, F3 = 0.01. (b) E; = 0.03, Ey = 0.01, B3 = 0.01, (¢) E; = 0.02,
Ey =0.03, E3 = 0.01. (d) Ey = 0.02, E; = 0.01, E3 = 0.02.
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7.3.7 Validation of problem

Fig. 7.40

Fig. 7.40. 0 via change in Nb and Nt when F; = 0.01, Fs = 0.02, £3 =0.01, ¢t =0.1, z = 0.2,
€=02,¢6=01,£,=01,£,=0.1,8, =0, Pr=10, Br=1.0, M =0, Rd = 0.

This Fig. is sketched for the effect of Brownian motion and thermophoresis parameter on
temperature which validates our results. In our problem we have taken 8, =0, M =0, Rd =0
and get the result of study by Mustafa et. al. [170]. In this study the authors have taken the
nanofluid, slip conditions and wall properties. They solved the problem by using homotopy
analysis method (HAM). We observed that our results are in good agreement with limiting

results of [170].

7.4 Conclusions

Key observations of present chapter are mentioned below.
e Velocity slip and Hartman number have opposite behaviors for velocity.
e Influences of Nb and Nt on temperature are similar.
e Radiation parameter and Brinkman number have opposite results on fluid temperature.
e Concentration slip parameter leads to decay in concentration.
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e Entropy enhancement is noted for concentration difference and diffusion coefficient para-

meters.
e Radiation parameter and thermal slip parameter results on Z are opposite.

e Bolus size increases with larger slip parameter.
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Chapter 8

Entropy generation and endoscopic
effects on peristalsis with modified

Darcy’s law

8.1 Introduction

Present chapter highlights the outcomes of endoscopy and entropy generation in MHD peri-
staltic flow of Sisko fluid. Unlike the traditional approach, the flow modeling for porous medium
is based upon modified Darcy’s law. Salient features of Joule heating and viscous dissipation
are investigated. Convective conditions for heat transfer are utilized. The problem after invok-
ing long wavelength approximation is numerically solved. Graphical analysis provides physical
insight. Graphs are plotted for velocity, temperature, entropy generation, Bejan number and
heat transfer coefficient for the pertinent parameters of interest. Results discloses that the
enhancement in Darcy number increases the fluid velocity and temperature. It also caused an
enhancement in entropy generation and Bejan number. Magnetic field leads to enhance the
temperature and entropy generation. Moreover the flexible wall parameters show increasing

trend for elastance coefficients whereas damping coefficient decays the fluid velocity.
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8.2 Modeling

Here magnetohydrodynamic flow of Sisko fluid between two coaxial uniform tubes is considered.
Inner tube (at 7 = r1) is fixed while the outer tube (at r = 73) is subject to peristaltic wave

[213]

r = rp=»a, (8.1)

2
r o= r2:d+asin77r(z—ct). (8.2)

Here d and b are radii of outer and inner tubes. Further wavelength, wave amplitude, wave speed
and time are symbolized as A, a, ¢ and ¢ respectively (see Fig. 8.1). Cylindrical coordinate (r,
z) are selected such that r along radial direction and z perpendicular to r. Viscous dissipation

and Ohmic heating are present.

Fig. 8.1: Flow Configuration

Fluid is electrically conducting using constant magnetic field. Electric field consideration is not
attended. Small magnetic Reynolds number leads to omission of induced magnetic field. In
addition incompressible Sisko fluid fills the porous space. Thus by modified Darcy’s law one

has for pressure drop [217]:

Vp == (a + \/WH) Vv, (8.3)
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in which porosity and permeability of medium are > and k; respectively. Here o and 5* are

material constants. Keeping above expression in mind, the resistance satisfies [217]:

R = —k—”l (a + 5*\/@”’1) Vv, (8.4)
which in component form yields

R, = _k_%l (a + B \/ﬁ"‘l) u, (8.5)

n—1
R. = —kﬁ (a + 8/ ) w, (8.6)
1
where u and w are the velocities in r and z—directions. We have following expressions [124]:

ou u Ow

du o Bp 1 8(7"57‘7‘) 8(57”2) S@
g (dt> o t7 or * 0z rT i 59

dw o 8}? 1 8(7'57*,2) 8(SZZ) 2
p(dt>__8z+r or * 0z —obowt R, (89)

C g — 82_T+18_T+82_T _|_S_E
Pp dt - or?2  ror 022 00 .

ou ow ow Ou
+ST‘TE + Szz% + Srz (E + @)
+oB2w?. (8.10)

In above equations 7' represents the temperature. p for density of fluid, S, Sgz, Sy, and S, the
extra stress components, p the pressure and x the thermal conductivity.

Expression of S for Sisko material is [72]:

S — (a + B \/ﬂ”_l) Al (8.11)
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in which the first Rivlin-Ericksen tensor (Aj) is:

A =VV 4+ (VV), (8.12)
and
= %m«A% (8.13)

It should be noted that Sisko material contains two fluid models i.e. for @ = p and * = 0 this
model reduces to viscous fluid. On the other hand for « = 0 and 5* = p this model recovers
power law model. Here power law index n describes shear thinning effect for 0 < n < 1 and
shear thickening for n > 1.

The appropriate boundary conditions for present problem are:

w=0 at r=r=¢ w=0 at r=ry, (8.14)
—na—T =h (T —-Tp) at r=r3 =¢, (8.15)
or
—f-za—T =ho(To—T) at r =ro, (8.16)
or
(—T @ +m 02012 +d1 8t8z> ro = &, (817)

where Eq. (8.14) defines the no slip condition for velocity. Egs. (8.15) and (8.16) are the con-
vective boundary conditions. Here h; and ho are the heat transfer coefficients and compliance
of walls are depicted through 7%, m* and dj.

The non-dimensional quantities are

o= Lo 2 oo uA
- d N ¢’ ~de’
d’p 71 b T9
* == —_— * = — = = = 1 * = —
p C)\O[’ rl d d 5 < 9 r2 d )
dsS;; ct T—-1Tp
e == 0 = . 1
Sij o e T (8.18)
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Non-dimensionlized form of system is

Re 6% <% + u% + w%) = —% ga(gi”) + 528(5:) - g—z (1+ B/ ) u— 5?,
(8.19)
(8.20)
RePrd <% +u% +w%> = (% + %% +52%> + M?Bru?
+Br55'zzaa—z) + answ% + Br&S@%
+BrS,. (g—f +5%> : (8.21)
w=0 at r=r;=¢§( w=0 at r=ry (8.22)
% +Biif=0at r=r =& (8.23)
% —Bisf=0at r=ry, (8.24)
Elaa_; + Ezaf—;t? - E3af—;2 ry = %8%57:”) - 68<5j) —Red <%—ZJ - u%—t’f - w%—f)
L (1 + ﬁn/@"*l) w (5.25)
—M?*w, atr=r;=¢ and 7 =ro,
with
Re = 2 a— /7By, pr=2%
« K
Ec — OjTO, Br =PrEe, Da= ;—1, 5= %
- nomet s a

Here Re depicts Reynolds number, M the Hartman number, Pr the Prandtl number, Ec the
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Eckert number, Br (product of Eckert and Prandtl numbers) the Brinkman number, Da the
Darcy number, ¢ the wave number, 3; the fluid parameter, Bi's (i = 1,2) the Biot numbers
and Els (i = 1 — 3) the compliance wall parameter.

Definition of stream function is

_ oy _ 109
u=-—Co WECoo (8.27)

Employing above expression and lubrication approach we arrive at

op
S =0, (8.28)
dp 19(rS,.) M?oyp 1 10% 1 a¢ nl 1 azp
oz r Or r dr Da L+6 ror2 r2 Br r 87" (8.29)
0%0 1 ae 10%) 1 0v M?Br (O
a2 oy T DTS <‘a— - _a_> = (a_> (8.30)
= (145 (L - LY (187  1ovy (831)
e \ror2 r20r ror2  r20r )
o . 9y _
E_O at r=r; =¢, 87'_0 at r=ry, (8.32)
? L BihO=0 at r=r =¢ (8.33)
a0
o Bis =0 at r=ry, (8.34)
100S) - 1 (5 (1% LouN""\ (10w _ M?0y
r or Da \ror2 r20r r or r or
3 03 0?
[Elﬁ + E28z8t2 + E38t8 ] 2, atr=ry=¢ and r=rs. (8.35)

where incompressibility condition is automatically justified. From Egs. (8.28) and (8.29), one

can write
o [10(rS,.) M2oyp 1 1% 1op\" "\ [1ow\]| _
or [r or  r or Da 61 ror:  r2or ror )| 0 (8.36)
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8.2.1 Entropy generation

Mathematical expressions for viscous dissipation is

ou u ow ow  OJu
O=85,—+Sp—+S.0—+Sr: | —+=— |- 8.37
TT8T+ 00r+ 0z + TZ<@7“ 8z> (8.37)
Volumetric entropy generation satisfies [213]:
" K 8T 2 8T 2 O'B2'LU2 0]
g = - 0 — . (8.38
gen T2 <<8r> +<82> )+ T + T (8.38)
Thermal irreversibility Joule friction irreversibility — Fluid friction irreversibility
Dimensionless form of entropy generation is
Sy 80\*> BrM?> Br_ [dw
N, =22 == —— + S5 | — 8.39
=57 \ar) T T \ar ) (8.39)
S/// . ﬁTg A _ TO (8 40)
¢ T242 T '
Bejan number is given by [213]:
Be — Entropy generation due to heqt transfer (8.41)
Total entropy generation
or (@ )
Be = L . (8.42)

8.3 Solution methodology

Arising system of equations is nonlinear. Hence it seems difficult to find the exact solution of
considered problem. Thus an approximate solution can be evaluated via perturbation technique
or numerical technique. To avoid lengths solution expressions we have solved this problem
numerically by NDSolve in Mathematica. This also saves time as it provides best computing

results with minimum CPU time (3-4 min).
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8.4 Analysis

This section contains information about graphical interpretation of the results. We firstly
discuss the velocity function for Darcy number (Da), Hartman number (M), fluid parameter
(B1) and compliant wall parameters (E; = 1 — 3). Fig. 8.2 (a) depicts Da influence on velocity.
Velocity is an increasing function of Da. Obviously more pores aid the flow speed. Fig. 8.2 (b)
is plotted for velocity against M. As expected the applied magnetic field provides a reduction in
velocity. This is because of enhancement in resistive force offered to fluid. Fig. 8.2 (¢) witnesses
dual behavior of velocity for material parameter. Compliant nature is discussed via Fig. 8.2
(d). An enhancement in velocity is observed for E; and Fs whereas damping force leads to
decrease of velocity. This situation in quite useful in blood perfusion process in arteries and

veins.
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() (d)
Fig. 8.2. Plots for velocity when Fq = 0.02, Es = 0.01, £3=0.01,t=0.1, z=0.2, e = 0.2,
n=0.5, M =1.0, Da=0.2, 5; =0.2, Biy =8, Biy = 10, Br = 4.0.(a) Da effect on w (b) M
effect on w (c) B effect on w (d) Ey, Es, E3 effects on w

Temperature for different parameters is discussed via Figs. 3 (a-f). These Figs. include
the influences of Darcy number (Da), Brinkman number (Br), Hartman number (M), fluid
parameter (5;) and Biot numbers (Bjs). Fig. 8.3 (a) elucidates the results for increasing
values of Darcy number. Temperature is enhanced for Da. As higher values of Da lead to
more permeability which gave rise to the velocity of the fluid and as a result heat generation is
possible. Hence the temperature of the fluid rises. Fig. 8.3 (b) depicts temperature variation
for Brinkman number. Results reveal that temperature is an increasing function of Br. This
happens in view of viscous dissipation effect. Hartman number (M) shows an enhancement of
temperature (see Fig. 8.3 (c)). Joule heating aspect is responsible for this act. Behavior of fluid
parameter on thermal field is qualitatively similar to that of velocity (see Fig. 8.3 (d)). Biot
numbers results on temperature are demonstrated through Figs. 8.3 (e) and (f). Temperature

is enhanced for both Biot numbers.
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(¢) (f)
Fig. 8.3. Plots for temperature when F; = 0.02, E5 = 0.01, E3 =0.01, ¢ =0.1, z = 0.2,
e=02,n=05 M =10, Da=0.2, 8, =0.2, Bi; =8, Biy =10, Br = 4.0.(a) Da effect on 6
(b) Br effect on 0 (c) M effect on 0 (d) 3, effect on 0 (e) Bi; effect on 6 (f) Big effect on 6

Figs. 8.3 (a-d) have been prepared for examination of entropy generation. Fig. 8.4 (a)
declared that Darcy number (Da) leads to an enhancement in entropy generation. As more
heat is produced with increase in permeability, that corresponds to more disorderliness. Fig.
8.4 (b) illustrated the results of Hartman number (M). Here larger M give rise to entropy
generation. It is because of the fact that temperature is directly related to Ns. Brinkman
number influence on entropy generation is portrayed via Fig. 8.4 (c). Graphical analysis leads
to the fact that enhancement in entropy generation is observed in presence of viscous dissipation.
Fig. 8.4 (d) displayed the result of entropy generation through A. Reduction in Ns is noticed
for larger A.
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(c) (d)

Fig. 8.4. Plots for entropy generation when E; = 0.02, Fo = 0.01, F3 =0.01, ¢t = 0.1, 2 = 0.2,

e=0.2,n=05 M=10, Da=0.2, 8, =0.2, Bi; =8, Bip =10, A = 0.5, Br =1.0.(a) Da
effect on Ns (b) M effect on Ns (c) Br effect on Ns (d) A effect on N's

Variation of Bejan number (Be) for sundry variables is shown in the Figs. 8.5 (a-d). Fig.
8.5 (a) is prepared for impact of Darcy number on Be. Enhancement is seen for Bejan number
for larger Da. Fig. 8.5 (b) is plotted for Brinkman number. It is noted that larger Br caused
an enhancement in Be. Opposite results for M and A are seen for Bejan number (see Figs. 8.5

(c) and (d)). Here Bejan number enhancement in fact means that heat transfer irreversibility
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is high when compared with total heat transfer irreversibility.

(c) (d)
Fig. 8.5. Plots for Bejan number when F; = 0.02, E2 = 0.01, F3 =0.01,¢t=0.1, 2 = 0.2,
e=02,n=0.5 M=10, Da=0.2, 5, =0.2, Bi; =8, Bip =10, A = 0.5, Br = 1.0.(a) Da
effect on Be (b) Br effect on Be (c) M effect on Be (d) A effect on Be

Figs. 8.6 (a—e) capture the results of heat transfer coefficient. Fig. 8.6 (a) is arranged for
Darcy number. Here larger Da reveal an enhancement in heat transfer coefficient. Brinkman
number outcome is seen through Fig. 8.6 (b). Clearly heat transfer coefficient is increased for

Brinkman number. Heat transfer coefficient has decreasing impact for M (see Fig. 8.6 (c)).
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Biot numbers have opposite behavior for heat transfer coefficient (see Figs. 8.6 (d) and (e)).
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()
Fig. 8.6. Plots for heat transfer coefficient when Fqy = 0.02, F» = 0.01, £3 = 0.01, t = 0.1,
e=02,n=05, M =10, Da=0.2, 8, =0.2, Bi; =8, Bis =10, Br = 1.0.(a) Da effect on
Z (b) Br effect on Z (¢) M effect on Z (c) Biy effect on Z (d) Big effect on Z

Now we display streamlines for trapping phenomenon. Figs. 8.7 (a, b) describe the Hartman
number influence on bolus size. It is noted that size of trapped bolus reduces for larger strength
of applied magnetic field. Figs. 8.8 (a , b) are plotted for impact of Da on size of trapped
bolus. Bolus size shows an increase for larger Da. Figs. 8.9 (a , b) illustrate that bolus size is

an increasing function of fluid parameter.
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Fig. 8.7. M effect on ¢ when By = 0.002, Es = 0.001, E3 = 0.01, t =0, e = 0.2, Da = 0.2,
n=0.5, 8, = 0.02, Biy = 2, Biy = 3, Br = 1.0. (a) M = 1.0. (b) M = 3.0.
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Fig. 8.8. Da effect on ¢ when F1 = 0.002, F3 = 0.001, £3 =0.01,t =0, =0.2, n =0.5,
M =1.0, 5, =0.02, Biy =2, Big =3, Br = 1.0. (a) Da =0.1. (b) Da =0.2.
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Fig. 8.9. 3, effect on ¢ when Ey = 0.002, E» = 0.001, E5 = 0.01, t = 0, e = 0.2, Da = 0.2,
n=0.5, M =10, Biy =2, Bip =3, Br = 1.0. (a) 8, = 0.02. (b) 8, = 0.04.

8.5 Conclusions
We have following findings from the presented analysis.

e Darcy number has similar effects for entropy generation and Bejan number.

Hartman number for temperature and velocity has opposite effects.

Biot numbers have increasing impact for temperature.

Increasing values of Br lead to enhancement of temperature, entropy generation and

Bejan number.

Heat transfer coefficient for Da increases.

Bolus size for M tends to decrease.
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Chapter 9

Entropy optimization for peristalsis

of Rabinowitsch nanomaterial

9.1 Introduction

This chapter models peristaltic activity of Rabinowitsch material in a compliant walls channel.
Energy equation is accounted in presence of viscous dissipation and heat source/sink. Chem-
ical reaction is included in concentration expression. Nanomaterial characteristics are due to
Brownian motion and thermophoresis. Slip condition are utilized for velocity, temperature and
concentration. Exact solution is obtained for velocity. Further NDSolve is utilized for the
graphical analysis of temperature, concentration, entropy and heat transfer coefficient at the
wall. Results are also analyzed for viscous, shear thickening and shear thinning fluids. This
study reveals that the shear thinning fluids move with higher velocity than the viscous and shear
thickening fluids. Similarly temperature and entropy generation are also higher for shear thin-
ning case when compared with others. Further heat source parameter enhances the temperature
whereas sink parameter leads to decay. Slip parameter for velocity and temperature caused an
increase in the respective velocity and temperature. Moreover chemical reaction parameter
leads to enhancement in temperature and entropy generation for viscous, shear thickening and

shear thinning fluids. However shear thinning fluids are found prominent.
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9.2 Problem formulation

We have an interest to examine peristaltic flow of Rabinowitsch liquid in a symmetric channel
with compliant boundaries. The walls are maintained at temperature 7. Brownian motion and
thermophoresis are discussed. Heat generation/absorption and chemical reaction are attended.
The partial slip constraints for velocity, temperature and concentration are studied. Flow is

due to travelling wave along the channel walls. Wall form is
. 27
y=4n(z,t) ==+ d—l—asmT(w—ct) , (9.1)

where we take the channel width 2d, wave amplitude a, speed ¢, wavelength A. This phenomenon

is shown via Fig. 9.1.

Fig. 9.1: Schematic Diagram

Flow problem is governed by the expressions [91, 108]

ou  Ov

—~ 1+ ZZ 0. 2

7 9y 0 (9.2)
ou  Ou Ou  109p  10Sy, 1 0S8y
ot " “ox +U€9y -~ ppdx pp Ox + pr Oy’ (9:3)
v + u% + v@ __ 1% 105, 105, (9.4)

ot ox  dy  ppOy  pp Ox  pp Oy
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a—T—l-ua—T—l-va—T = o 82T+62T = S @—i-S @—F@ Gv
ot Ox oy ox2 = Oy? (PCyp) 4 O Y\oy Oz Y oy
+7 D a_ca_T + a_ca_T + & a_T ’ + a_T ’
B\ or oz oy Oy T ox oy
1
+ T —1Tp). 9.5
(pC’p)fQO( 0) (9.5)
oC oC oC 0’C  9*°C Dr (0*°T 0°T .
E—i_u%—i_va_y —DB <W+8_y2> ﬁ (W 8_y2> —/C1<C—Co). (9.6)

Here energy Eq. (9.5) is taken by including heat source/ sink parameter. Brownian motion
and thermophoresis effects. These are represented by Dp and Dr respectively. (u,v) the
velocity component, ¢ the time, 7 is (pCp)p / (pCp) 7+ T’ temperature, C the concentration, Qg
the heat generation/absorption coefficient, k] the strength of chemical reaction and Sgz, Sz,
Syy the stress components. Further py, o, Tj,, p are the fluid density, thermal diffusivity,
mean temperature of nanofluid and pressure respectively.

Boundary conditions are [81, 86]

g—z =0, at y =0, u+&Sy =0 at y =1, (9.7)

_T*a_3+m* o3 ra 92 . OSsy . OSua o ou  Ou_  Ou aty—n (9.8)
0x3 OxOt? Otox oy Ox ot Ox oy

Z—Z—o, at y =0, T+§QZ—Z—TO at y = 1, (9.9)

% =0, aty=0, C+£3% =Co at y =, (9.10)

in which 7%, m*, and dj elucidate the wall characteristics in terms of elastic and damping coeffi-

cients while £, £5 and &5 represent the velocity, temperature and concentration slip parameters.
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Non-dimensional variables are

o = = L t*—c—t
- )\7 y - d’ - C’ - C7 - )\7
x S T ST
51 d 9 52 - d? 63_ d’ 77 - d?
. ds; . 2 C—Co . B
Sz] - Zj: p = pv ¢ 07 B _BM3 )
cp CAL Co d
T—1Ty oY oY
0 = = — = —0—. 9.11
T() ’ 8y’ v oz ( )

After invoking Eq. (9.11), our system of equations (9.3-9.6) reduce to

9, ;08w , OSuy

9% Y 9% oY 0%
Re [587583/ 05y By _5%8_3/2} = % TToy (9.12)
2 Lo 00 O Op 08, .0S
_ 52 2 vY Y ¥ 277 S 2 zy yy
Red[ ST T i v R Gxﬁy] w oo 0y OB
824
00 ovol v 89} [ L 0% 829} 58
RePr[5—+5———5—— = |[0*—+—| +Br Y
0600 9600
2_— — —
+NbPr (5 5 O + oy 83/)
90\  [00\?
2 — —
NtPr (5 (m«) + (8y> >+59, (9.14)

_ (0% 90\ Nt (0% 0%

- (05 )+ (0 + ) s 019

AT

9 oy 0y O¢
Resc(éat By O %a@)

with boundary conditions

P _ %

52 0, aty=0, 8—y+£15my:0, at y=n= (1+esin2x (z —t)), (9.16)
03 03 0? 0% oY 0% o 01
Ervgm T Prggm T B 8t8x] n = —Re [58t8y 05, ooy o o2
O0Szz  O0Say B
o + a9y at y=m, (9.17)
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00 00
8—y:0, at y =0, 0—1—526 at y =, (9.18)
O o9
a—y:O, at y =0, qﬁ—l—fga aty =mn. (9.19)
with
d cd d?
e = 9, 0=, Re:pf—, S:QO ,
d A 1 K
DgC DrT;
Ny = IPPBC0 Ny TerDrio o #Gr
% i K
2 * J2
1 c kid
S¢e = —, Br=————, = ,
PfDB Iﬁ;(Tl —T(]) n 1%
T*d3 m*cd® did?
By = ——5—, EBy=——, B3=-—. (9-20)
Aol AL AL

Here 1 denotes the stream function, # the temperature, ¢ the concentration, ¢ amplitude ratio,
0 wave number, Re Reynolds number, S heat source sink parameter, Nb and Nt the Brownian
motion and thermophoresis parameters, Pr Prandtl number, Sc¢ Schmidt number, Br Brinkman
number, v; chemical reaction parameter and Ey, Fa, F3 the compliant wall parameters.

Invoking lubrication approach we obtain

O 0S

= (9.21)
g—z — 0, (9.22)
O—giye—i-BrSmygjjé} + NbPr g—jg—erNtP (gi) + 50, (9.23)
g‘;@b N xz 222 y1Sed = 0, (9.24)

with boundary conditions
%:0, at y =0, g—f+§15my20, at y=n=(14+esin2r (z — 1)), (9.25)
Elaa—; + E» 89?(;2 + E3 8?;317 n= ag;ya at y=m, (9.26)
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09 00

_ = _—= = .2
a9y 0, aty=0, 0+ 3y 0 at y =, (9.27)
Jd¢ 09
Y — == — =n. 2
where
ou
Suy + B(Sey)? = % (9.29)

9.2.1 Solution of the problem

As in eq. (9.29) Suy is in implicit form. To obtain an explicit expression we will make use of

eq. (9.21). By eq. (9.8) we can write:

3 3 2
ap _ [ I 9 }n. (9.30)

e | " am T grae T Y aias

This will be used to find S.

We will now solve eq. (9.21) subject to slip condition of velocity. We arrive at

u(y) = % <y2 > 772) +8 (%)3 <y4 > 774) — & <%> (9.31)

The energy and concentration equations for nanofluid involve of thermophoresis and Brownian

motion effects. To tackle these equations we have utilized the NDSolve technique in Math-
ematica. This algorithm gives the solutions in less computation time and avoid the lengthy
expressions.

9.2.2 Expression for entropy generation

Viscous dissipation here is

ou ov

ou Ov
P = Sm% + Syya—y + Szy (8_3/ + %> . (9.32)
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Dimensional form is

7 K 3T 2 8T 2 o 1
Sgen = T2 <<%> + (8_y> ) tr - E(QO(T_TO))
+@ 8_0 2+ 8_0 ’ +@ 8_08_T+8_08_T (9 33)
Chm Ox Oy T, \Ox Ox Oy Oy ’

In dimensionless form

S 2 2
Ny = 7= (%) + s, <a_¢> 204

Se, dy A oy? A
L (00N [0\ LC [06\>
X <3y> (51/) TR <5y> ’ (9:34)
Z Iﬁ',zﬂlo2 o TO o RDC() o C()
S T T2 AiTm’ L= PR C*Cm- (9.35)

9.3 Analysis

This section contains the graphical analysis of velocity, temperature, concentration, entropy

and heat transfer coefficient. Separate subsections are organized for this purpose.

9.3.1 Velocity

This subsection is organized for the results of velocity profile. Slip parameter results can be
viewed through Fig. 9.2. Higher slip parameter leads to velocity enhancement. It is due to less
friction. Figs. 9.3 and 9.4 represent behavior for wall elastance parameters. Enhancement of
velocity is seen in both cases. Result of damping parameter for wall behavior can be noticed
via Fig. 9.5. As damping nature of wall resists the fluid to move that causes decay in velocity
of fluid. It is also observed that for 5 > 0 (shear thinning) cases the velocity is higher than
viscous (8 = 0) and shear thickening (8 < 0) cases. This behavior is quite obvious as thick

fluid flows slowly than thin material.
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Fig. 9.2 Fig. 9.3

Fig. 9.2. u via change in &; when Fy = 0.02, E2 =0.01, £3=0.01,t=0.1, x = 0.2, ¢ = 0.1.
Fig. 9.3. u via change in Fy when Fy =0.01, F3 =0.01, ¢ =0.1, x = 0.2, ¢ = 0.1, £ = 0.01.

Fig. 9.4 Fig. 9.5

Fig. 9.4. u via change in Fy when By =0.02, F3 =0.01, ¢t =0.1, x = 0.2, ¢ = 0.1, £ = 0.01.
Fig. 9.5. u via change in F3 when Fj = 0.02, F2 =0.01,t=0.1, x = 0.2, e = 0.1, £&; = 0.01.
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9.3.2 Temperature

This subsection contains the information about temperature of considered system. Fig. 9.6
illustrates the result for heat source /sink parameter on temperature. It is clearly seen that
for case of source parameter (S > 0) temperature of fluid enhances whereas for case of sink
(S < 0) 0 decreases. Moreover shear thinning fluid has higher temperature than viscous and
shear thickening materials. Shear thinning fluid has higher velocity and so higher mean kinetic
energy. Therefore higher temperature than shear thickening fluids. Similarly like velocity slip
parameter caused enhancement in mean kinetic energy thermal slip parameter leads to increase
in temperature (see Fig. 9.7). Br effect can be observed with Fig. 9.8. An increase in heat
loss enhances the temperature. Fig. 9.9 demonstrates the impact of €. Clearly wave with larger
amplitude causes increase in velocity and temperature as well. Larger values of Prandtl number
lead to increase of 6 (see Fig. 9.10). Viscous force also plays a vital role in enhancement
of temperature. Infact viscous effects dominating the heat loss, signify the enhancement of
temperature. Fig. 9.11 portrayed the impact of chemical reaction parameter. Clearly higher v,
yields temperature enhancement. Physical aspects is linked with chemical reaction parameter
and kinematic viscosity. Thermophoretic parameter caused an increase in 6 (see Fig. 9.12).
Fig. 9.13 displays the Nb effect on 6. In this case for higher values of Nb the temperature
increases. However in this case the increment is not prominent. Elastance parameters caused
enhancement of temperature (see Figs. 9.14, 9.15). Fig. 9.16 displays Ej3 effect on 6. Decay is
observed here. In all cases shear thinning fluid has higher values of temperature when compared

with viscous and shear thickening materials.
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Fig. 9.6 Fig. 9.7

Fig. 9.6. 0 via change in S when F; = 0.02, £5 = 0.01, F3 =0.01,t=0.1, z = 0.2, ¢ = 0.2,
&, =0.01, & =0.01, £ =0.01, Nt =1.5,v; =0.1, Nb = 1.5, Sc = 0.5, Pr = 1.5, Br = 2.0.

Fig. 9.7. 6 via change in £, when E; = 0.02, F5 = 0.01, F3 =0.01,t =0.1, x = 0.2, ¢ = 0.2,
S =0.5,¢& =001, & =0.01, Nt =15, v, =0.1, Nb =15, Sc = 0.5, Pr = 1.5, Br = 2.0.

Fig. 9.8 Fig. 9.9

Fig. 9.8. 0 via change in Br when F; = 0.02, F» =0.01, £33 =0.01,¢t=0.1, z = 0.2, e = 0.2,
S =0.5,& =0.01, £ =0.01, &5 =0.01, Nt = 1.5, v; = 0.1, Nb = 1.5, Sc = 0.5, Pr = 1.5.
Fig. 9.9. 0 via change in € when Fy = 0.02, F» =0.01, £3=0.01,¢t=0.1, z = 0.2, S = 0.5,
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€, =0.01, & =0.01, & = 0.01, Nt = 1.5, v, = 0.1, Nb = 1.5, Sc = 0.5, Pr = 1.5, Br = 2.0.

Fig. 9.10

Fig. 9.11

Fig. 9.10. 0 via change in Pr when Fy = 0.02, F» = 0.01, B3 =0.01,t=0.1, 2 = 0.2, e = 0.2,
S=0.5,¢& =0.01, & =0.01, (&5 = 0.01, Nt = 1.5, v; = 0.1, Nb = 1.5, Sc = 0.5, Br = 2.0.
Fig. 9.11. 6 via change in y; when E; = 0.02, E; = 0.01, E3 =0.01, ¢t =0.1, z = 0.2, ¢ = 0.2,
S =0.5,¢& =0.01, & =0.01, £ =0.01, Nt = 1.5, Nb = 1.5, Sc = 0.5, Pr = 1.5, Br = 2.0.

Fig. 9.12
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y
Fig. 9.13

Fig. 9.12. 0 via change in Nt when F; = 0.02, E5 = 0.01, F3=0.01,t=0.1, 2 = 0.2, £ = 0.2,
S =0.5,¢& =0.01, & =0.01, &5 =0.01, v, = 0.1, Nb = 1.5, Sc = 0.5, Pr = 1.5, Br = 2.0.
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Fig. 9.13. 6 via change in Nb when F; = 0.02, E2 = 0.01, F3=0.01,t=0.1, x = 0.2, € = 0.2,
S =0.5,¢& =0.01, &, =0.01, (&5 =0.01, Nt = 1.5, v; = 0.1, Sc = 0.5, Pr = 1.5, Br = 2.0.

Fig. 9.14 Fig. 9.15

Fig. 9.14. 6 via change in F1 when Fy = 0.01, £3 =0.01,t=0.1, x =0.2, e = 0.2, S = 0.5,
& =0.01, & =0.01, {3 =0.01, Nt = 1.5, v; = 0.1, Nb = 1.5, Sc = 0.5, Pr = 1.5, Br = 2.0.
Fig. 9.15. 6 via change in Fs when Fy = 0.02, £3 =0.01,t=0.1, . =0.2, e = 0.2, S = 0.5,
&, =0.01, & =0.01, &5 =0.01, Nt =1.5, v, = 0.1, Nb = 1.5, Sc = 0.5, Pr = 1.5, Br = 2.0.

Fig. 9.16

Fig. 9.16. 6 via change in F3 when Fy = 0.02, F5 =0.01,t=0.1, x =0.2, e = 0.2, S = 0.5,
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€, =0.01, & =0.01, & = 0.01, Nt = 1.5, v, = 0.1, Nb = 1.5, Sc = 0.5, Pr = 1.5, Br = 2.0.

9.3.3 Concentration field

Graphical analysis of concentration is presented in this subsection. Slip effect on concentration
can be viewed via Fig. 9.17. Decay is observed for larger slip parameter. Concentration is in-
creasing function of Schmidt number (see Fig. 9.18). Viscous effects elevated the concentration.
Similarly resemblance is observed here. By viewing Figs. 9.19 and 9.20 opposite impacts of Nb
and Nt on ¢ are observed. Larger values of Nb caused increase of ¢. Fig. 9.21 is prepared
to see the result for chemical reaction parameter. Enhancement is also seen here. Reason is
directly related to chemical reaction coefficient. Graphical illustration for amplitude ratio and
heat source/sink parameter can be noticed through Figs. 9.22 and 9.23. Both show decaying
trend for ¢. Elastance parameters for walls lead to decay in concentration. These observations
can be noticed with Figs. 9.24 and 9.25. Damping coefficient result can be elucidated with
Fig. 9.26. FEj5 caused increase in ¢. In all cases under discussion it can be clearly noticed
that concentration for the shear thinning fluid is lower than the viscous and shear thickening

materials.

Fig. 9.17 Fig. 9.18

Fig. 9.17. ¢ via change in &5 when 1 = 0.02, E; = 0.01, E3 =0.01,¢t =0.1, 2 = 0.2, ¢ = 0.2,
S =0.5,¢& =001, & =0.01, Nt =15, v, =0.1, Nb =15, Sc = 0.5, Pr = 1.5, Br = 2.0.
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Fig. 9.18. ¢ via change in Sc when E; = 0.02, F, = 0.01, £53 =0.01,¢t=0.1, x = 0.2, ¢ = 0.2,
S =0.5,& =0.01, & =0.01, &5 =0.01, Nt =1.5, v; = 0.1, Nb = 1.5, Pr = 1.5, Br = 2.0.

Fig. 9.19 Fig. 9.20

Fig. 9.19. ¢ via change in Nb when F; = 0.02, F» = 0.01, E3 =0.01,t=0.1, x = 0.2, ¢ = 0.2,
S =0.5,¢& =0.01, & = 0.01, £&5 = 0.01, Nt =1.5, v, =0.1, Sc = 0.5, Pr =1.5, Br = 2.0.
Fig. 9.20. ¢ via change in Nt when E; = 0.02, F, = 0.01, £3=0.01,t=0.1, x = 0.2, £ = 0.2,
S =0.5,¢& =0.01, & =0.01, &5 =0.01, v, = 0.1, Nb = 1.5, Sc = 0.5, Pr = 1.5, Br = 2.0.

Fig. 9.21 Fig. 9.22

Fig. 9.21. ¢ via change in v; when F; = 0.02, F; = 0.01, E3 =0.01,¢t=0.1, 2 = 0.2, ¢ = 0.2,
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S=0.5,¢& =0.01, & =0.01, (&5 =0.01, Nt =15, Nb =15, Sc =4, Pr = 1.5, Br = 2.0.
Fig. 9.22. ¢ via change in € when E; = 0.02, F5 = 0.01, F53 =0.01,t=0.1, x = 0.2, S = 0.5,
&, =0.01, & =0.01, {3 =0.01, Nt =1.5, v, =0.1, Nb =1.5, Sc = 0.5, Pr = 1.5, Br = 2.0.

Fig. 9.23 Fig. 9.24

Fig. 9.23. ¢ via change in S when F; = 0.02, F; =0.01, £3 =0.01,¢t=0.1, x = 0.2, ¢ = 0.2,
&, =0.01, & =0.01, £ =0.01, Nt =1.5,v; = 0.1, Nb = 1.5, Sc = 0.5, Pr = 1.5, Br = 2.0.
Fig. 9.24. ¢ via change in £ when Fs = 0.01, £33 =0.01,¢t=0.1, 2 =0.2, e = 0.2, S = 0.5,
£, =0.01, & =0.01, {5 =0.01, Nt =1.5, v, =0.1, Nb =1.5, Sc = 0.5, Pr = 1.5, Br = 2.0.

Fig. 9.25 Fig. 9.26
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Fig. 9.25. ¢ via change in Fs when Ey = 0.02, E5 =0.01,¢t=0.1, z =0.2, e = 0.2, S = 0.5,
&, =0.01, & =0.01, {5 =0.01, Nt =1.5, v, =0.1, Nb =1.5, Sc = 0.5, Pr = 1.5, Br = 2.0.
Fig. 9.26. ¢ via change in F3 when F1 = 0.02, F5 =0.01,¢t=0.1, 2 =0.2, e = 0.2, S = 0.5,
&, =0.01, & =0.01, £ =0.01, Nt =1.5,v; =0.1, Nb = 1.5, Sc = 0.5, Pr = 1.5, Br = 2.0.

9.3.4 Entropy generation analysis

This subsection contains information about entropy analysis of the considered system for promi-
nent parameters of our study. Fig. 9.27 portrayed the effect of chemical reaction on Ns. For
higher chemical reaction parameter the entropy enhances similar as in case of temperature.
Brinkman number also enhances the entropy as this parameter occurs due to the effect of vis-
cous dissipation which is responsible for enhancement of temperature and entropy (see Fig.
9.28). Fig. 9.29 witnessed increasing effect of heat source parameter. As expected the heat
source parameter enhances temperature and hence entropy. Influences of Nt and A on Ns are
opposite (see Figs. 9.30 and 9.31). Fig. 9.32 displays the impact of diffusion coefficient para-
meter L. Increasing trend of Ns is noticed in this case. In all graphs it can be observed that
shear thinning fluids have higher entropy than the viscous and shear thickening materials. It is
due to the fact that shear thinning fluid has higher mean kinetic energy than shear thickening

materials which caused more disorderliness.

Fig. 9.27 Fig. 9.28
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Fig. 9.27. Ns via change in v; when Ey = 0.02, E» = 0.01, £3 =0.01,t=0.1, z = 0.2,
€=0.2,5=0.5,¢& =0.01, & =0.01, &5 =0.01, Nt =1.5, Nb =1.5, Sc =3, Pr = 1.5,
Br=2.0,L=0.5,A=0.5,(=0.5.

Fig. 9.28. Ns via change in Br when F; = 0.02, E5 = 0.01, F53 =0.01,t = 0.1, z = 0.2,
€=0.2,5=0.5,¢& =0.01, £ =0.01, &5 = 0.01, Nt = 1.5, v; = 0.1, Nb = 1.5, Sc = 0.5,
Pr=15,L=05 A=0.5,¢=0.5.

Fig. 9.29 Fig. 9.30

Fig. 9.29. Ns via change in .S when E; = 0.02, F3 = 0.01, B3 =0.01,t=0.1, z = 0.2, e = 0.2,
&, =0.01, & =0.01, £ =0.01, Nt =1.5, v, =0.1, Nb = 1.5, Sc = 0.5, Pr = 1.5, Br = 2.0,
L=05,A=0.5,¢=0.5.

Fig. 9.30. Ns via change in Nt when Fy = 0.02, Fs = 0.01, £3 =0.01,t =0.1, z = 0.2,
e=02,5=0.5¢& =0.01, & =0.01, (&3 =0.01, v, = 0.1, Nb = 1.5, Sc = 0.5, Pr = 1.5,
Br=2.0,L=0.5,A=0.5,¢=0.5.
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Fig. 9.31 Fig. 9.32

Fig. 9.31. Ns via change in A when Fy = 0.02, F» = 0.01, £3=0.01,t=0.1, z = 0.2,
€=0.2,5=0.5,¢& =0.01, £ =0.01, &5 =0.01, Nt = 1.5, v; = 0.1, Nb = 1.5, Sc = 0.5,
Pr=15, Br=20,L=0.5,¢=0.5.

Fig. 9.32. Ns via change in L when F; = 0.02, E; = 0.01, E3 =0.01, ¢t =0.1, z = 0.2,
€=0.2,5=0.5,¢& =0.01, & =0.01, £ =0.01, Nt = 1.5, v; = 0.1, Nb = 1.5, Sc = 0.5,
Pr =15, Br=2.0,A=0.5,(=0.5.

9.3.5 Heat transfer coeflicient

Graphs for heat transfer coefficient are displayed here for some influential parameters of our
study. These graphs are plotted for the shear thinning, viscous and shear thickening cases. It
can be seen that these graphs show oscillatory behavior which is due to peristaltic phenomenon.
Fig. 9.32 is arranged to see effect of chemical reaction. An increase is noticed here. Result
for Br on Z can be viewed from Fig. 9.33. Enhancement is observed. Fig. 9.34 displays
the increasing trend of Z for heat source. In all cases it can be clearly noticed that shear
thinning fluids have higher values for heat transfer coefficient than viscous and shear thickening

materials.
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Fig. 9.33 Fig. 9.34

Fig. 9.33. Z via change in v; when E; = 0.02, E» = 0.01, £3 =0.01,t=0.1, e = 0.2, § = 0.5,
&, =0.01, & =0.01, £ =0.01, Nt =1.5, Nb=1.5, Sc = 0.5, Pr = 1.5, Br = 2.0.
Fig. 9.34. Z via change in Br when F; = 0.02, E2 = 0.01, F53 =0.01, t = 0.1, € = 0.2,
S =0.5,& =0.01, £ =0.01, &5 =0.01, Nt =1.5, v = 0.1, Nb = 1.5, Sc = 0.5, Pr = 1.5.

Fig. 9.35

Fig. 9.35. Z via change in S when Fy = 0.02, F» = 0.01, £3=0.01,t=0.1, e = 0.2,
&, =0.01, & =0.01, £ =0.01, Nt =1.5, v, =0.1, Nb = 1.5, Sc = 0.5, Pr = 1.5, Br = 2.0.
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9.4 Conclusions

Major findings are listed below.

e Velocity and thermal slip parameters lead to an increase in velocity and temperature.

e Velocity for shear thinning material is higher when compared with viscous and shear

thickening fluids.
e Heat source parameter caused an increase in temperature and entropy.

e Temperature and entropy for shear thinning fluids are higher than viscous and shear

thickening materials.
e Heat transfer coefficient enhances for chemical reaction parameter.

e Concentration for shear thickening fluids is higher than viscous and shear thinning mate-

rials.
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Chapter 10

Entropy analysis in peristalsis with

homogeneous-heterogeneous reaction

10.1 Introduction

Homogeneous-heterogeneous reactions in peristalsis of Prandtl fluid are examined. Magnetic
field is applied in the perpendicular direction to the flow. Joule heating effect is also considered
in this analysis. Buongiorno nanofluid model has been used which incorporates two prominent
slip mechanisms i.e. Brownian motion and thermophoresis. Second law of thermodynamics has
been utilized for entropy generation analysis. No slip boundary conditions are employed for
the considered analysis. NDSolve command of Mathematica 9.0 is employed for the solution of
problem. Graphs for pertinent parameters are plotted and analyzed. These graphs contain ve-
locity, temperature, homogeneous-heterogeneous reaction, entropy and heat transfer coefficient.

Key points are summarized in the conclusion.

10.2 Problem formulation

MHD peristaltic low of the incompressible Prandtl nanofluid is considered. Peristaltic wave
travel along the flexible walls of channel. Wall’s temperature are maintained at 77 and Ty and
concentration C7 and Cy respectively (see Fig. 10.1). Homogeneous- heterogeneous reaction is

considered for the considered problem. Nanofluid slip mechanisms, Brownian motion and ther-
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mophoresis are considered. Joule heating and viscous dissipation are also accounted. Peristaltic
wave shape is

2
y==4n(z,t) == d—l—asin%(m—ct) . (10.1)

Here wall shape is denoted by +n with d, a, t and ¢ denote the half channel width, wave

amplitude, time and wave speed.

e

\44‘# A 4#4/
ot

Bo

Fig. 10.1: Flow configuration

The model equations for homogeneous-heterogeneous equations are
A+2B — 3B, rate k.C;C3, (10.2)

in which k. and ks elucidate the rate constants. We consider the single first order isothermal

reaction. On the surface of catalyst we have
A— B, rate ksC7 (10.3)
where C}, C5 are the respective concentration of the species A and B. Flow expressions are

ou Ov
B + 8_y =0, (10.4)

ou ou Ou 1 0p 1 905z 1 OSuy 1 9
ot " ox U@y - ppdx py Bz pp Oy prBou’ (10.5)
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ov ov ov 10p 108, 108y,
U F U = —— e — + 10.6
ot ox 8y ps0y  py Ox ps Oy (10.6)

oT or  oT 82T 2T 1 ou ou Qv v
—tu—+v— = o +( ), Sex7— + Say + = +Syya—y

ot Ox Oy 8:52 oy? pCp Tz dy | Oz
NEC T
-
b (@1 +(g))
1
+ oB2u?, (10.7)
(Pcp)f ‘
aCs oCs ocy . (9*°Ct  9°C} . oe  Dr [0*T 0T
_D ke et e AT
5 +u P +o 9y <8x2 + 2 k.CTC5" + 92 + 92 (10.8)
ocy  9c;  acy . (03 9C3 2T 8T
T +u e +v 9y =Dp < 52 + 72 + k.CrC3* el + = oy (10.9)

Here u, v, T' describe respective velocity components and temperature. p the pressure, p;
density, Syz, Sgzy, Syy the stress components of the considered Prandtl fluid. a* the thermal
diffusivity, 7 (= (0Cp), / (pCp);) the ratio of specific heat capacity of nanoparticles and base
fluid, Dp the Brownian motion and Dy the thermophoretic diffusion coefficients, T;,, the mean
temperature of the fluid, and D4 and Dp the diffusion species coefficients for the species A and
B respectively.

Prandtl fluid can be expressed by the following relation:

where the component S, is given by
) 1
2
A* arcsin (% [(%) + (%)Q] ) .
5 1
0 ov\2| 2
(%) + @]

Sy = (10.11)

With the boundary conditions
u=0 at y = %, (10.12)
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Ty
T = at y = &£, (10.13)
Tp

. ICF

Da ayl—ks(]{:o at y=mn, Cf—Cy at y=—n, (10.14)
80
82 at y=mn 063 —0 at y=—n, (10.15)

The equation mentioned below describe the decomposition of applied pressure in terms of

compliant walls characteristics.

_*a_3_|_ * 0* + d* 0 — %_l_asmz_ @+ @4_ @
T o3 T aroz T o021 T Tay T ax PMar T Yar T Voy
—oBgu, at y = £, (10.16)

Non-dimensional parameters are

a:. - A ) y - d’ u - C ) U c b - A )
x Q T— TO * dSZj g
n - d’ 0 Tl TO S’Lj ci ) f CO ’
cy . d N 59
- 2 - 10.1
h c P T ow By tpe (10.17)
After utilizing non-dimensional parameters, we obtained the following systems
02 oY 0% O 0?1 Ip oS, oS, oY
—— +0— — | = §—= 4 M 10.1
Re{ dtoy "oy ozoy s 8y2] "2z T T oy dy’ (10.18)
0% o) 04 oY 0% 8p oS, 0Syy
20 QOVOTY | 0 2 O xy
Red [ o EIEr 0 3y 922 ) B 8x8y} 8 +4 g +0——= 8y (10.19)
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00 oy 00 oY 00

2 2
RePr 5——1—(5———(5—_] — [5289 39}

ot ' “Oyox Oz oy 02 ' oy2
0% Oy ,0% %Y
o {”maway + Sy <a_y2 -0 W) - yyaxay}

+NbPr (52g% - 9196 - 5200 99 - Oh 89)

Ox 0x Oy Oy Oz Oz 8_y8_y

, (00\? [00)\? o (092
+NtPr (5 <%> + (a_y) >+M Br <a—y)(],o.20)

aof  opof ovof 1 [L0%f  O%f o 1 Nt[,0% 0%
AT St Y St Al I v S ATt I e M v A
Re[68t+58y8x 583:83/] Sc [‘5 2 o TR Ve T
(10.21)
Oh OUOh  D0OR] | € [0 O] o LNt L%
Re[58t+58y8x 68x8y}5014 [5 x2+ Y2 + KR +Sch 58x2+8y2 ’
(10.22)
Py Bl (PUNT | (9P| (9%
oy = a1 2 (2 ey vy, 10.2
S =gt <8y2> 0 (3332) <6y2 (1023)
o .
y =0, at y = £n = £(1 + esin 27 (z — 1)), (10.24)
3 03 0? 02 O 0% O 0?1
E1$+E23xat2+E3awx]” = Re [58t8y+58_y8x8y_ %8—3/2}
0Szz  O0Say 5 O
— — M ==+ 10.2
56x+8y y at y n, (10.25)
1
0= at y = +m, (10.26)
0
of
8_y_Hf:0 aty=mn, f=1 at y = —n, (10.27)
LOh
§a—y+Hh:O aty=mn, h=0 at y = —n, (10.28)
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with

cd
Re = pf_7 :_’ M= \/’Bod 822’
I d
Dr(T1 — Tt DgpC
Nt — TPsDr(Ti - 0)7 N — TPPBCo
I
C 2
Pr = a p)f, Br = cr
K (Th — To)
a1C
g = , Scy , H=
C*d? A ppDa
* 713 * ., 13
El = _7—3_da E2:m30d7 ESZ
Acp A’

(10.29)

where Re depicts Reynolds number, § wave number, M Hartman number, € amplitude ratio, Nt

thermophoresis parameter, Nb Brownian motion parameter, Sc¢ Schmidt number, Pr Prandtl

number, Br Brinkman number, a; and 3 are fluid parameters for Prandtl fluid, Sc 4 Diffusion

Schmidt number, H and K measures the strength of respective heterogeneous and homogeneous

reactions and E7, FEy, F3 the compliant walls coefficients. Here we have omitted the asterisks

for simplicity.

After employing the theory of long wavelength and low Reynolds number assumptions we

obtain
O _ 05,
or Oy
op
ay

Ty ay2

2
+NtPr <@> + M?Br (8—
Yy

Jy

1 0*f

& 82h

2
S g TR
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)

(10.30)

(10.31)

(10.32)

(10.33)

(10.34)



0%y B[P\’
S =gt (3?/)’
2_15:07 at y = +n = +(1 + esin 27 (z — t)),
3 o3 0?2 oS oY
Ey—+E E =—4 M= ==+
9 T om0 T 3atax]" ay gy’ 2 Y=
1
9: aty::tn,
0
of —Hf=0 aty=mn, f=1 at y = —mn,
Ay
f*g—Z+Hh—0 aty=mn, h=0 at y = —n.

(10.35)

(10.36)

(10.37)

(10.38)

(10.39)

(10.40)

In general the diffusion coefficient of the chemical species A and B are of comparable size. For

application point of view this leads to the assumption that they are equal i.e. D4 = Dp and

hence £* =

these equations via NDSolve of Mathematica.

10.2.1 Entropy generation

Entropy expression obeys
" K 8T
Sgen - ﬁ ((8.1'
RDy4 acl
Lo (( Bz
RD
+ B 802
Cm 83:

where @ is given by

ox

2 2 P
Tm

T
+ 2 RDy4 C1 or | 9Ci IT
T 896 896 oy 8y

+ 2 RDB 802 or | 9C3 0T

T, ox 83:

yya

oy Ox
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gB = 1, and we have the relation f+ h = 1. After utilizing this relation, We solved
A

10.41

(10.42)



Dimensionless form satisfies

SIII 2 2 2 2
N, = 2= <@> Lo (a—> + 5, <a @b)

0

L 2

Ly (90 (0F) | Li¢ (0F)*

A \ Oy oy A2 \ Oy

Ly (00N [Oh\  LoC [Oh\?
A < y) <3y)+ ? < y) ’ 04)

J— 2 J— A
SICI; = R(1;172d21b) ’ A= TlT T07 1= RD:CO, 2 = RD:CO? C: % (1044)

10.3 Analysis

Here we adopted the technique (NDSolve command of Mathematica) which gave the convergent
solution in less computation time. Moreover this technique avoids the lengthy complicated
expressions. Graphs are plotted directly for the physical analysis. These graphs include velocity,
temperature, entropy and heat transfer coefficient. Figs. 10.2 and 10.3 displayed the results
for fluid parameter on velocity. Decay in both cases is observed. Same results can be seen via
studies [84, 85]. Magnetic field effect (utilized in ECG for synchronization purposes) can be
observed via Fig. 10.4. As Lorentz force caused resistance in fluid flow. So decrease in fluid
velocity has been observed. Fig. 10.5 manifested the effect of wall parameters. Decrease is
noticed via damping nature of walls whereas an increase in velocity is observed for elastance
characteristics of walls. These results have quite resemblance with the flow in blood vessels
where the elastance nature enhances the blood velocity and damping nature reduced the blood

velocity.
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Fig. 10.2 Fig. 10.3

Fig. 10.2. u for @y when E1 =0.02, E» =0.01, E3=0.01,¢t=0.1, 2 =0.2, e = 0.2, 3 = 0.5,
M =01, H=05,K=05, Sc=5c; =05, Nt =0.1, Nb=0.1, Pr = 1.5, Br = 2.0.
Fig. 10.3. u for 8 when Fy = 0.02, F» =0.01, F3=0.01,t=0.1, 2 =0.2, e = 0.2, a1 = 2.0,
M =01, H =05, K=0.5, S5c=Sc;=0.5, Nt =0.1, Nb =0.1, Pr = 1.5, Br = 2.0.

Fig. 10.4 Fig. 10.5

Fig. 10.4. u for M when E; = 0.02, F, =0.01, E3=0.01,t=0.1, x = 0.2, ¢ = 0.2, a1 = 2.0,
p=05 H=0.5 K=05,Sc=S8c; =05, Nt =0.1, Nb=0.1, Pr = 1.5, Br = 2.0.
Fig. 10.5. u for 1, Es and F3 whent =0.1, 2 =0.2, e = 0.2, a1 = 2.0, 8 = 0.5, M = 0.1,
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H=05,K =05, Sc=Sc;=0.5, Nt =0.1, Nb= 0.1, Pr = 1.5, Br = 2.0.

Temperature profile for effect of fluid parameters («, §) can be viewed through Figs. 10.6
and 10.7. Decrease is noticed in these cases as can be seen through studies [84, 85]. As
enhancement in mean kinetic energy of the particles leads to increase in temperature. Here
higher values of fluid parameters slow down the fluid velocity so particles have less molecular
vibrations and thus less temperature as well. Influence of Brinkman number on 8 is notified via
Fig. 10.8. Note that resistance among fluid particle due to viscous effects produced heat. It
results in enhancement of temperature of fluid. Fig. 10.9 elucidates the magnetic field influence
on 6. Applied magnetic field provide resistance to fluid which produce heating and caused an
increase in temperature. Figs. 10.10 and 10.11 are manifested for the behaviors of Nb and Nt
on temperature. Larger values for both parameters caused an increase in temperature of fluid.
Nb is related to random motion of the particles. Larger values of it indicate more randomness
and hence more heat loss which leads to increase in temperature. Fig. 10.12 displays the
results for homogeneous reaction parameter on temperature. Decrease in seen in this case. As
concentration deceases in this case so less concentrated fluid have less heat loss. Compliant wall
characteristics are seen qualitatively similar with u (see Fig. 10.13). Compliant characteristics
of walls are important as when wall are elastic it easily allows the exchange of water, oxygen

and other nutrients.

Fig. 10.6 Fig. 10.7
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Fig. 10.6. 0 for a; when Ey = 0.02, F» = 0.01, F3 = 0.01, t = 0.1, 2 = 0.2, ¢ = 0.2, 8 = 0.5,
M =0.1, H=05, K =05, Sc=Sc; = 0.5, Nt = 0.1, Nb = 0.1, Pr = 1.5, Br = 2.0,
Fig. 10.7. 0 for 8 when E; = 0.02, By = 0.01, B3 = 0.01, t = 0.1, 2 = 0.2, ¢ = 0.2, a; = 2.0,
M =01, H=05, K =05, Sc= Sc; = 0.5, Nt = 0.1, Nb = 0.1, Pr = 1.5, Br = 2.0,

Fig. 10.8 Fig. 10.9

Fig. 10.8. 6 for Br when E; = 0.02, E; = 0.01, E3 = 0.01, t = 0.1, z = 0.2, £ = 0.2, oy = 2.0,
B=05 M=0.1, H=05 K =05, Sc=Sc; =05, Nt =0.1, Nb = 0.1, Pr = 1.5.
Fig. 10.9. 6 for M when Ey = 0.02, E» = 0.01, F5 = 0.01, t = 0.1, 2 = 0.2, ¢ = 0.2, a; = 2.0,
B=05 H=05 K=05 Sc=Sc; =05 Nt =0.1, Nb=0.1, Pr = 1.5, Br = 2.0.
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Fig. 10.10 Fig. 10.11

Fig. 10.10. 0 for Nb when Ey = 0.02, B> = 0.01, E3 = 0.01, t = 0.1, z = 0.2, £ = 0.2,
ar =20, =05 M=0.1, H=05, K =0.5, Sc = Sc; = 0.5, Nt = 0.1, Pr = 1.5, Br = 2.0.
Fig. 10.11. 6 for Nt when E; = 0.02, E» = 0.01, E3 = 0.01, t = 0.1, = 0.2, e = 0.2, a;; = 2.0,
B=05 M=01,H=05 K =05, Sc=Sc; =05, Nb=0.1, Pr = 1.5, Br = 2.0.

Fig. 10.12 Fig. 10.13

Fig. 10.12. 0 for K when E; = 0.02, F, =0.01, E3=0.01,t=0.1, x = 0.2, ¢ = 0.2, a1 = 2.0,
p=05 M=0.1, H=0.5 Nt=0.1, Sc= Sc;=0.5, Nb =0.1, Pr = 1.5, Br = 2.0.
Fig. 10.13. 0 for Ey, Fo, E3 whent =0.1, x =02, =0.2, a3 = 2.0, 5 =0.5, M =0.1,
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H=05,K =05, Sc=Sc;=0.5, Nt =0.1, Nb= 0.1, Pr = 1.5, Br = 2.0.

Figs. 10.14 and 10.15 are plotted to observe the effect of heterogeneous and homogeneous
reaction parameters on f. Decaying behavior of these parameters on concentration has been
noticed. As increase in heterogeneous reaction parameter enhances the reaction rate which
results in decrease of diffusion rate and hence concentration decreases whereas enhancement
in homogeneous reaction parameter caused reduction in viscosity and hence in concentration.
Fig. 10.16 is prepared for M (Hartman number) effect on concentration. Enhancement in
concentration is seen here. Larger values of Schmidt number caused decay in concentration (see
Fig. 10.17). As density of the fluid decreases. So less dense particles attained higher speed and

it lessons the fluid concentration.

Fig. 10.14 Fig. 10.15

Fig. 10.14. f for H when E; = 0.02, F, =0.01, £3=0.01,t=0.1, x = 0.2, e = 0.2, a7 = 2.0,
p=05 M=01, K=0.5,Sc=Sc; =05, Nt =0.1, Nb = 0.1, Pr = 1.5, Br = 2.0.
Fig. 10.15. f for K when E; =0.02, F3 = 0.01, £3 =0.01,t=0.1, 2 = 0.2, ¢ = 0.2, oy = 2.0,
f=05 M=0.1, H=0.5 Sc=Sc; =05 Nt =0.1, Nb = 0.1, Pr = 1.5, Br = 2.0.
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Fig. 10.16 Fig. 10.17

Fig. 10.16. f for M when E; = 0.02, F5 =0.01, £33 =0.01,t=0.1, x = 0.2, e = 0.2, a; = 2.0,
B =05 H=05 K=0.5,Sc=Sc;=05, Nt =0.1, Nb = 0.1, Pr = 1.5, Br = 2.0.
Fig. 10.17. f for Sc, Sc4 when Ey = 0.02, F2 = 0.01, B3 =0.01,t=0.1, 2 = 0.2, = 0.2,
a1 =20,8=05 M=0.1, H=0.5, K=0.5, Nt =0.1, Nb =0.1, Pr = 1.5, Br = 2.0.

Entropy analysis for different embedded parameters has been carried out through Figs.
10.18-10.30. Hartman number impact can be observed via Fig. 10.18. As magnetic field provide
resistance that produced heating so temperature enhances at the center of channel. Fig. 10.19
portrayed the results for Nb on Ns. Random motion of particles create more disorderedness
hence entropy enhances for higher Nb. Similar behavior has been seen for Nt via Fig. 10.20.
Entropy for Schmidt number is decreased (see Fig. 10.21). As less concentrated fluid has
no more disorderedness. Fig. 10.22 demonstrated that increase in heterogeneous reaction
caused enhancement in entropy generation. L; and Lo results are displayed via Fig. 10.23.
Enhancement is observed here. Fig. 10.24 is prepared for the study of Brinkman number
impact on entropy. Obviously increase is noticed in this case. As increase in viscous dissipation
produces more heating and thus increase in entropy. Opposite impacts for ( and A have
been observed (see Figs. 10.25 and 10.26). Fluid parameters for Prandtl number results are
illustrated via Figs. 10.27 and 10.28. Decrease is noticed like in the case of temperature.

Entropy analysis for homogeneous reaction parameter can be observed through Fig. 10.29.
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Decay is observed through reason directly linked to temperature. Compliant wall results are
seen increasing for elastance coefficients whereas decreasing for damping coefficient (see Fig.

10.30).

Fig. 10.18 Fig. 10.19

Fig. 10.18. Ns for M when E; = 0.02, E; = 0.01, E3 =0.01, t = 0.1, 2 = 0.2, £ = 0.2,
a; =02, =05, H=05, K =05, Sc= Sc;=0.1, Nt = 0.1, Nb = 0.1, Pr = 1.5,
Br=20,A=05,( =05, L = Ly = 0.5.
Fig. 10.19. Ns for Nb when Ey = 0.02, E, = 0.01, E3 = 0.01, t = 0.1, = 0.2, £ = 0.2,
a; =20, 8=05 M=01, H=05, K =05, Sc= Sc; =05, Nt = 0.1, Pr = 1.5, Br = 2.0,
A=05,(=05, L = Ly=0.5.
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Fig. 10.20 Fig. 10.21

Fig. 10.20. Ns for Nt when E; = 0.02, F3 = 0.01, £3 =0.01,t =0.1, x = 0.2, ¢ = 0.2,
a; =2.0,8=05 M=01 H=05, K=05,5=S5c; =05 Nt =0.1, Nb = 0.1, Pr = 1.5,
Br=20,A=0.5,(=0.5,L; =Ly =0.5.
Fig. 10.21.Ns for Se¢, Sc; when Ey = 0.02, E; = 0.01, E3 =0.01, t =0.1, z = 0.2, ¢ = 0.2,
a; =2.0,8=05 M=0.1 H=05K=0.5, Nt =0.1, Nb=0.1, Pr = 1.5, Br = 2.0,
A=0.5,(=0.5,L; = Ly=0.5.

Fig. 10.22 Fig. 10.23

Fig. 10.22. Ns for H when F; = 0.02, E5 = 0.01, F53 =0.01,t=0.1, x = 0.2, ¢ = 0.2,
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a; =20, =05 M =01, K =05, Sc = Sc; = 0.5, Nt = 0.1, Nb = 0.1, Pr = 1.5,
Br=20,A=05,(=05,L =Ly =0.5.
Fig. 10.23. Ns for Ly, Ly when Ey = 0.02, By = 0.01, E3 = 0.01, t =0.1, 2 = 0.2, e = 0.2,
ar =20, 3=05, M =0.1, H=0.5, K =05, Sc= Sc; = 0.5, Nt = 0.1, Nb = 0.1, Pr = 1.5,
Br=2.0,A=05,¢=0.5.

Fig. 10.24 Fig. 10.25

Fig. 10.24. Ns for Br when E; = 0.02, F5, =0.01, E3 =0.01,t=0.1, x = 0.2, ¢ = 0.2,
a; =20,8=05 M=01,H =05, K=0.5, Sc=Sc;=0.5, Nt =0.1, Nb = 0.1, Pr = 1.5,
A=05,(=05,L1 =L =0.5.
Fig. 10.25. Ns for ( when F; = 0.02, E5 =0.01, F3=0.01,t=0.1, 2 = 0.2, ¢ = 0.2,
a; =20,8=05 M=0.1,H =05, K=0.5, Sc=Sc;=0.5, Nt =0.1, Nb =0.1, Pr = 1.5,
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Br=20,A=05, L1 = Ly = 0.5.

Fig. 10.26 Fig. 10.27

Fig. 10.26. Ns for A when E; = 0.02, E3 = 0.01, B3 =0.01, t =0.1, z = 0.2, £ = 0.2,
a; =20,8=05 M=01, H=05, K =05, Sc = Sc; = 0.5, Nt = 0.1, Nb = 0.1, Pr = 1.5,
Br =2.0,( =05, Ly = Ly = 0.5.
Fig. 10.27. Ns for oy when Ey = 0.02, E; = 0.01, E3 =0.01, t = 0.1, z = 0.2, £ = 0.2,
B=05 M=01,H=05 K =05, Sc=Sc;=0.5 Nt = 0.1, Nb= 0.1, Pr = 1.5,
Br=20,A=05,( =05, L = Ly = 0.5.

Fig. 10.28 Fig. 10.29

Fig. 10.28. N's for 8 when F; = 0.02, E5 = 0.01, F3 =0.01, t = 0.1, = 0.2, ¢ = 0.2,
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a; =20, M =0.1, H=05, K = 0.5, Sc = Sc; = 0.5, Nt = 0.1, Nb = 0.1, Pr = 1.5,
Br=20,A=05,( =05, L = Ly =0.5.

Fig. 10.29. Ns for K when E; = 0.02, B = 0.01, E3 =0.01, t = 0.1, 2 = 0.2, ¢ = 0.2,

a; =20, M =0.1, H=05, =05, Sc= Sc; = 0.5, Nt = 0.1, Nb = 0.1, Pr = 1.5,
Br=20,A=05,(=05, Ly = Ly =0.5.

Fig. 10.30

Fig. 10.30. Ns for Ey, E5, B3 whent =0.1, x = 0.2, e = 0.2, a1 = 2.0, 8 = 0.5, M = 0.1,
H =05, K=05,Sc=Sc;=05, Nt =0.1, Nb=0.1, Pr = 1.5, Br =2.0, A =0.5, ( = 0.5,
Li=Ly=0.5.

Figs. 10.31-10.34 are plotted for investigation of heat transfer coefficient under influence
of pertinent parameters. Fluid parameter for Prandtl fluid results can be discussed via Figs.
10.31 and 10.32. Increasing trend of Z is noticed for both parameters. Brinkman number effect
can be seen through Fig. 10.33. Larger values of Br increases the heat transfer coefficient.
Hartman number effect can be portrayed via Fig. 10.34. Decay in heat transfer coefficient is

noticed for higher M.
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Fig. 10.31 Fig. 10.32

Fig. 10.31. Z for a; when E; = 0.02, F5 = 0.01, £3 =0.01, ¢t =0.1, ¢ = 0.2, 8 = 0.5,
M =3.0, H=05, K=0.5, Sc=Sc;=0.5, Nt =0.1, Nb=0.1, Pr = 1.5, Br = 2.0.
Fig. 10.32. Z for B when F1 = 0.02, F5 = 0.01, F3 =0.01,t=0.1, e = 0.2, a1 = 0.5,
M =3.0,H =05, K=0.5, S5c=Sc;=0.5, Nt =0.1, Nb =0.1, Pr = 1.5, Br = 2.0.

Fig. 10.33 Fig. 10.34

Fig. 10.33. Z for Br when E1; = 0.02, F», =0.01, £33 =0.01,¢{=0.1, e = 0.2, a1 = 0.5,
=05 M=3.0,H=05K=05,Sc=Sc; =05, Nt =0.1, Nb=0.1, Pr = 1.5.
Fig. 10.34. Z for M when E; = 0.02, E5 = 0.01, F3 =0.01,t=0.1, e = 0.2, a1 = 0.5,
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B=05 H=05 K =05 Sc=Scg =05 Nt =0.1, Nb=0.1, Pr = 1.5, Br = 2.0.

10.3.1 Validation of problem:

To validate the results of our problem we have compared the results with study by Alsaedi et
al [80]. They have utilized the perturbation method to solve their problem. We have made a
comparison about velocity profile. In our problem if we exclude the nanofluid and homogeneous-

heterogeneous reaction then our results are in good comparison with the study [80].

Fig. 10.35: Validation of the Problem

Fig. 10.35. u for M when F1 =1, F5 =0.5, F3=0.5,t=0.1, x =0.3, ¢ = 0.2, ay = 1.0,
=01, H=0, K=0, Nt =0, Pr =1.5, Br =2.0.

10.4 Conclusions

This study discloses the phenomenon of peristalsis with homogeneous-heterogeneous reaction.

Entropy analysis has been carried out. Some important observations for the considered analysis

can be summed up as follows:

e Prandtl number has decaying behavior for velocity, temperature and entropy generation.

e Magnetic field slows down the fluid velocity whereas it provides heating to the fluid and

increase the system’s entropy.
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Heterogeneous reaction parameter enhances the entropy.

Temperature increases for Nt, Nb and Br. Qualitatively similar behavior is observed for

entropy.
Homogeneous reaction parameter has same result on temperature and entropy.
Concentration decreases for homogeneous and heterogeneous reaction parameters.

Heat transfer coefficient rises for fluid parameter and Brinkman number whereas it de-

creases for Hartman number.
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Chapter 11

Entropy analysis for the peristaltic
flow of third grade fluid with

variable thermal conductivity

11.1 Introduction

This chapter is based on the study of entropy analysis in fluid transport phenomenon by peri-
stalsis. Mixed convective flow in compliant wall channel is considered. Here third grade fluid
is considered. Effect of gravity is also encountered. Magnetohydrodynamics and Joule heating
are part of flow modeling. Energy equation is addressed subject to viscous dissipation and
variable thermal conductivity. Resulting system is solved with the help of NDSolve command
in Mathematica. Proper attention is given to the study of velocity, temperature and entropy
analysis. This analysis is carried out via graphical results for different embedded parameters.

Graphs for heat transfer coefficient are also plotted and analyzed.

11.2 Modeling

Here we modeled the peristaltic phenomenon of an incompressible third grade fluid. The channel
is considered vertical. Here x-axis lies along the flow direction and y-axis perpendicular to it

(see Fig. 11.1). As the channel is vertical so effects of gravity cannot be ignored. Thus mixed
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convection is also taken into account in this study. The channel walls are flexible. MHD and
Joule heating phenomena are accounted. Here peristaltic waves are propagating in x-direction.
Wave amplitude is a with speed ¢, wavelength A and channel width 2d. Temperature of the left
wall is maintained at Ty and right wall by 77. Shape of wall is given by:

2
y==4n(z,t) ==+ d+asin7ﬂ(m—ct) . (11.1)
x/'
d
n AN
n
A
a Y

Fig. 11.1: Flow Diagram

An extra stress tensor for thermodynamic compatible third grade fluid is [79]
S = A1 + 1Ay + agAd + Btr(A3) A, (11.2)
in which material parameters satisfy the conditions

a1 >0, >0, |ag+a <+/24up8, (11.3)

The definitions of first and second Rivilin-Ericksen tensors are [79]

dA
A =VV+(VV) | Ay = d—tl +AL(VV) +(VV)T Ay, (11.4)

where material derivative % is given by (% + u% + va%).
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Flow configuration is described by the following set of equations [100, 181]
Continuity equation is:

ou Ov
7 oy =" (11.5)

Momentum equation in presence of MHD and mixed convection satisfies

Y oz + y

, <8u ou U@u) _Op N OSze | OSzy oB2u+ gpByp(T — Ty), (11.6)

ov ov dv\ = Op  0Sy = 0Sy
p( >_ dy  Ox oy’ (11.7)

Energy expression in presence of variable thermal conductivity, Joule heating and viscous dis-

sipation leads to

oT oT oT 0 oT 0 oT ou ou Ov ov
(Gt ) = () 4 (M5 ) st s (G4 ) 4 iy

OB, (1L8)

The boundary conditions are stated as follows

u=0, at y==£n, (11.9)
Ty
T= at y==4n, (11.10)
Ty
—7*8—3 +m* ” +d3 o _ ey | 0% Ou u@ + v@
023 ozor2 " “otox | T oy T ox ot "oz Yoy
—oBiu+ gpBr(T — Tp), at y = +n(11.11)

Here u and v are the velocity components in the = and y directions, p the pressure, x(T') the
variable thermal conductivity, p the density, C), the specific heat, By the strength of magnetic
field, o the electric conductivity, S;; the components of third grade fluid, g the gravity, B,
the thermal expansion coefficient, T for temperature and 7", m* and dj the compliant walls

coeflicients that describes the elastic and damping characteristics of the walls.
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Non-dimensional quantities are

o = = Y2l e 2l t*—c—t
- )\7 y - d? - C? - C’ - A’
oo _ A0 g 8y . dp
n - d’ Iﬁ(@)— Ko ’ Sij_ L y b= C)\M’
o Be T2 0 0y
g = ik Hle_TO, ufay, v = 58x' (11.12)
Utilizing (11.12) one has in terms of stream function (¢) as
0% oy 0% O 01 Op = .0Szz  O0Szy 5 O
Re [5—87583/ —|—5a—y 8x8y - %8—3/2:| = —% +5 Oz + —83/ - M a—y +G7“9, (11.13)
0% o % oy 0%y Op oS oS
v 2V v 277 _ _ZF 2 zy yy 11.14
Re(s[ otor gy 0 8m8x8y} oy T oe Ty (11.14)
0 ool  opod] 5,0 a0 9 a0
RePr [(5(% +5ay pe 58x 83/] =9 e <m(9)a$) + 3y (m(6)8y> +
0% Py 0% 0%
+Br |:6S:cx 8.%'82/ + Szy <a—y2 -9 W) - 5Syya.’1}8y:|
oy\?
2 —
+M?*Br (83/) , (11.15)
oY .
y =0, at y = £n = £(1 + esin 27 (z — 1)), (11.16)
ok ok 0? 0% Ny 0% o 0%
Erge T Pguap T 18 8t8x] n o= —Re [58t8y 0y oy Car o] T

0Sze  OSgy 9 0
Pzy A2Zt
oz + y oy

1
0 = { } at y = &£, (11.18)
0

0

+Grf, at y=Hpl.17)
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where

5 = —, M= \/73061 5:9, Re — 2.
n
2
Br — pr=tC g _ 9pBr(T1 —To)d 7
Ho(Tl T()) RO (&%)
*d3 m*ed® did®
By, = ——4—, Ey=——, E3=-21—. (11.19)
Aep A% A

Here 0 denotes wave number, M Hartman number, ¢ amplitude ratio, Re Reynolds number,
Br Brinkman number, Pr Prandtl number, Gr Grashof number and F1, Fs, E3 the compliant
walls coefficients.

Employing long wavelength and low Reynolds number assumptions, one obtains

O _ 0wy 29

oz oy gy T (11.20)
op
oy~ (11.21)
5, 926 02 o (9p\?
~ oy BrSy M?Br(—-) , 11.22
' 8y< 05 )+ Py (ay> (11.22)
0% 0%
Sey = Gz T8 < ) ; (11.23)
b ‘
8_y =0, at y = 4n=+(1+esin22n (z —t)), (11.24)
P O P05y 00
E1@+E26x8t2 +E38t8x} n= ay 3y +Grf, at y==n, (11.25)
1
0= at y = £, (11.26)
0

Here x(0) is used for temperature dependent thermal conductivity i.e. x(f) = 1 + ¢f. Solution

is obtained via Mathematica 9.0 with NDSolve technique.
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11.2.1 Entropy generation

Mathematical expression for entropy analysis is [214]:

wo w&(T) [ (OT\? [OT\? o B3u? ®
Seen=—=5 =) +(=) |+ + —,
12 ox oy Tim T
Thermal irreversibility Joule friction irreversibility — Fluid friction irreversibility
(11.27)
where @ is given by
ou v ou  Ov
O=85,,—+Syy—+Su | =—+=—). 11.28
9z " "Way T y(8y+8z> (11.28)
In dimensionless form
S, 00\%> BrM? (9¢\? Br %
Ny =2 — k(6 (—) + <—) + =8, <—> , 11.29
SG ( ) 8y A ay A Y 8@/2 ( )
Z KO (Tl — T0)2 . T1 - T()
Sgy = E A== (11.30)

11.3 Analysis

Here NDSolve of Mathematica is used for the solution of nonlinear system. Graphical results

with physical interpretations are arranged in the separate subsections for simplicity.

11.3.1 Velocity

This subsection contains the information about velocity. Results of some physical parameters
including Gr, M, ¢, 3, € and Ej, Es, F3 are examined. Grashof number behavior can be
portrayed via Fig. 11.2. The buoyancy forces facilitate the flow. An increase is noticed clearly
in this case. Opposite result for Hartman number is noticed via Fig. 11.3. As the resistive
nature forces caused reduction in flow. Here Lorentz force plays this role. Applied magnetic
field provides resistance to fluid particles. This fact is utilized for reduction of bleeding during
surgeries and cancer tumor treatment. Influence of variable thermal conductivity parameter is
seen via Fig. 11.4. Increase in ¢ caused an enhancement of velocity. Fig. 11.5 is prepared for
fluid parameter result. Fluid parameter leads to an increase of velocity. It is because of decrease

in viscosity parameter. Here € leads to an enhancement in fluid velocity (see Fig. 11.6). Same
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results can be seen through study [79] for the cases of 8 and e. Obviously as increase in wave
amplitude caused an enhancement of fluid velocity. Flexible characteristics of walls impacts
can be viewed via Fig. 11.7. Elastance parameters facilitate the flow whereas damping leads to

slow down the fluid particles. These characteristics of walls have association with blood vessels.

Fig. 11.2 Fig. 11.3

Fig. 11.2. u versus Gr when Fy = 0.02, F» =0.01, £3=0.01,t=0.1, 2 = 0.2, e = 0.2,
¢=0.01, 5=0.01, M = 1.0, Br = 2.0.

Fig. 11.3. u versus M when Fq = 0.02, E5 = 0.01, F3 =0.01,t=0.1, z = 0.2, e = 0.2,
¢=20.01, 5 =0.01, Gr = 0.1, Br = 2.0.
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Fig. 11.4 Fig. 11.5

Fig. 11.4. uw versus ¢ when F7 = 0.02, E5 =0.01, £33 =0.01,t=0.1, 2 = 0.2, ¢ = 0.2,
8 =0.01, Gr =0.1, M = 1.0, Br = 2.0.

Fig. 11.5. u versus 8 when F; = 0.02, E5 =0.01, F3=0.01,t=0.1, 2 =0.2, e = 0.2,
¢=20.01, Gr =0.1, M = 1.0, Br = 2.0.

Fig. 11.6 Fig. 11.7

Fig. 11.6. u versus € when E; = 0.02, F5 = 0.01, £3 =0.01, ¢t =0.1, x = 0.2, ¢ = 0.01,
8 =0.01, Gr =0.1, M = 1.0, Br = 2.0.
Fig. 11.7. w versus E1, Fo and F3 when t =0.1, z = 0.2, £ = 0.2, ¢ = 0.01, 3 = 0.01,
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Gr =0.1, M = 1.0, Br = 2.0.

11.3.2 Temperature

This subsection contains information about temperature for different embedded parameters.
Grashof number results can be seen via Fig. 11.8. Temperature is known as average kinetic
energy. Thus an increase in the mean kinetic energy of the particles caused higher fluid tem-
perature. Fluid parameter () leads to decrease of temperature (see Fig. 11.9). As increase in
fluid parameter decreases the viscosity. There is less heat loss and temperature decays. Study
[79] reports the same observation. Hartman number caused an increase in temperature of fluid
near the center of channel. It is due to Joule heating (see Fig. 11.10). Behavior for variable
thermal conductivity parameter has been seen via Fig. 11.11. An increase in temperature
is observed for this case. As increase in ¢ enhances the conductance property of fluid which
increases temperature as well. Same result for variable thermal conductivity parameter has
been examined in study [77]. Fig. 11.12 elucidated the behavior of € on 6. Larger values of
amplitude lead to an enhancement of temperature. This is also caused by an increase of mean
kinetic energy of particles. Fig. 11.13 portrayed Br impact on 6. Clearly an increase is viewed
through view of viscous dissipation. Fig. 11.14 displays the results of flexible characteristics of

walls. Here E7, F» results are opposite to that of Ej3.

Fig. 11.8 Fig. 11.9
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Fig. 11.8. 6 versus Gr when E; = 0.02, E; = 0.01, £3 =0.01,t=0.1, 2 = 0.2, ¢ = 0.2,
¢=0.01, 5=0.01, M = 1.0, Br = 2.0.

Fig. 11.9. 0 versus 8 when E; = 0.02, E5 =0.01, £33 =0.01,t=0.1, z = 0.2, ¢ = 0.2,
¢=20.01, Gr =0.1, M = 1.0, Br =2.0.

Fig. 11.10 Fig. 11.11

Fig. 11.10. 0 versus M when E; = 0.02, E5 = 0.01, £5=0.01,¢t=0.1, z = 0.2, ¢ = 0.2,
¢=0.01, 5 =0.01, Gr =0.1, Br = 2.0.

Fig. 11.11. 6 versus ¢ when F1 = 0.02, E» = 0.01, £3=0.01,t=0.1, = 0.2, e = 0.2,
8 =0.01, Gr =0.1, M = 1.0, Br = 2.0.
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Fig. 11.12 Fig. 11.13

Fig. 11.12. 0 versus € when E; = 0.02, E5 = 0.01, F3 =0.01,t =0.1, z = 0.2, ¢ = 0.01,
8 =0.01, Gr =0.1, M = 1.0, Br = 2.0.

Fig. 11.13. 0 versus Br when Fy = 0.02, E5 =0.01, £3=0.01,t=0.1, 2 =0.2, e = 0.2,
¢=0.01, 3=0.01, Gr =0.1, M = 1.0.

Fig. 11.14

Fig. 11.14. 0 versus Fq, Fo, F3 whent=0.1, 2 =0.2, ¢ = 0.2, ¢ = 0.01, 5 = 0.01, Gr = 0.1,
M =1.0, Br = 2.0.

235



11.3.3 Entropy analysis

This subsection covers the entropy analysis for the considered system. Graphs for embedded
parameters provide the information about entropy (Ns) of the system. Figs. 11.15-11.22 are
plotted for this purpose. Grashof number impact can be viewed via Fig. 11.15. It can be
seen that high temperature also leads to an increase of system’s entropy. Clearly Joule heating
phenomenon rises the temperature of fluid and thus entropy enhances (see Fig. 11.16). Fig.
11.17 describes the effect of A on Ns. Larger values of A caused decay in Ns. Fluid parameter
results can be observed with the help of Fig. 11.18. Clearly increasing values of § tend to
decrease the entropy of system. Such fact can be verified by relating it with temperature.
Fig. 11.19 is prepared to study effect of € on temperature. An enhancement in Ns is noticed
clearly. Variable thermal conductivity parameter impact can be elucidated via Fig. 11.20. The
results are seen qualitatively similar to that of temperature. Larger values of Brinkman number
enhance the entropy of system (see Fig. 11.21). As more viscous dissipation lead to increase of
temperature and hence more disorderliness. Walls parameters behavior has quite resemblance

with temperature (see Fig. 11.22).

Fig. 11.15 Fig. 11.16

Fig. 11.15. Ns versus Gr when F; = 0.02, Fo = 0.01, E3 =0.01,t=0.1, x = 0.2, € = 0.2,
¢=0.01, =0.01, M =1.0, Br=2.0, A=0.5.
Fig. 11.16. Ns versus M when F; = 0.02, F5 = 0.01, F53 =0.01,t=0.1, x = 0.2, ¢ = 0.2,
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¢ =0.01, 3=0.01, Gr =0.1, Br = 2.0, A = 0.5.

Fig. 11.17 Fig. 11.18

Fig. 11.17. Ns versus A when F; = 0.02, E5 = 0.01, F3=0.01,t=0.1, 2 = 0.2, ¢ = 0.2,
¢=0.01, 5=0.01, Gr =0.1, M = 1.0, Br = 2.0.

Fig. 11.18. Ns versus 8 when E1 =0.02, E» = 0.01, E3=0.01,t=0.1, = 0.2, e = 0.2,
¢=0.01, Gr=0.1, M = 1.0, Br =2.0, A =0.5.

Fig. 11.19 Fig. 11.20

Fig. 11.19. Ns versus € when F; = 0.02, E» = 0.01, F53 =0.01,t = 0.1, x = 0.2, ¢ = 0.01,
68=0.01,Gr=0.1, M =1.0, Br=2.0, A=0.5.
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Fig. 11.20. Ns versus ¢ when F; = 0.02, F5, =0.01, E3=0.01,t=0.1, x = 0.2, ¢ = 0.2,
68=0.01,Gr=0.1, M =1.0, Br =2.0, A=0.5.

Fig. 11.21 Fig. 11.22

Fig. 11.21. Ns versus Br when F; = 0.02, F5 = 0.01, F3 =0.01,t{=0.1, 2 = 0.2, ¢ = 0.2,
¢=0.01, 3=0.01, Gr=0.1, M =1.0, A =0.5.
Fig. 11.22. Ns versus F1, Fs and F3 when t =0.1, x = 0.2, e = 0.2, ¢ = 0.01, 5 = 0.01,
Gr=0.1, M =10, Br=2.0, A=0.5.

11.3.4 Heat transfer coefficient

This subsection is devoted to the results for heat transfer coefficient. Fig. 11.23 portrayed
the effect of Gr on Z. Grashof number is an increasing function of heat transfer coefficient.
Opposite behavior of Hartman number on heat transfer coefficient is observed (see Fig. 11.24).
Figs. 11.25 and 11.26 display the influences of ¢ and  on heat transfer coefficient (Z). Both
parameters depict similar impact on Z. Fig. 11.27 represents the Br influence on Z. Heat
transfer coefficient increases for Br. These observations for 8 and Br are similar to that as in
ref. [79]. E; (i = 1,2) show increasing trend and Fj3 illustrate decreasing effect of Z (see Fig.
11.28).
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Fig. 11.23 Fig. 11.24

Fig. 11.23. Z versus Gr when E; = 0.02, F5 = 0.01, E3 =0.01, ¢t =0.1, £ = 0.2, ¢ = 0.01,
8 =0.01, Br=2.0, M = 1.0.

Fig. 11.24. Z versus M when E; = 0.02, Fo = 0.01, F3 =0.01,t=0.1, ¢ = 0.2, ¢ = 0.01,
8 =0.01, Gr =0.1, Br = 2.0.

Fig. 11.25 Fig. 11.26

Fig. 11.25. Z versus ¢ when F; = 0.02, F; = 0.01, £3 =0.01,¢t=0.1, ¢ = 0.2, § = 0.01,
Gr=0.1, M =1.0, Br =2.0.

Fig. 11.26. Z versus 8 when E; = 0.02, F» = 0.01, £3 =0.01,¢t=0.1, £ = 0.2, ¢ = 0.01,
Gr=0.1, M =1.0, Br =2.0.
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Fig. 11.27 Fig. 11.28

Fig. 11.27. Z versus Br when Fy = 0.02, E» = 0.01, £3 =0.01,¢t =0.1, e = 0.2, ¢ = 0.01,
8 =0.01, Gr=0.1, M = 1.0.
Fig. 11.28. Z versus E1, Fo, E3 when t = 0.1, e = 0.2, ¢ = 0.01, 5 =0.01, Gr = 0.1, M = 1.0,
Br =2.0.

11.3.5 Trapping

Trapping is discussed in this subsection for some prominent parameters. Decrease is noticed
for the size of trapped bolus for larger Hartman number (see Fig. 11.29 (a) and (b)). Gr
impact on bolus size can be noticed via Fig. 11.30 (a) and (b). Bolus size increases in this
case. Fig. 11.31 (a) and (b) displayed that bolus size decreases for the case of variable thermal

conductivity parameter.
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Fig. 11.29 (a) (b)

Fig. 11.29. ¢ versus M when Fqy = 0.02, F» = 0.01, £3 =0.01,t =0.0, ¢ = 0.2, ¢ = 0.01,
B =0.01, Br=2.0. (a) M =1.0, (b) M = 1.5.

Fig. 11.30 (a) (b)

Fig. 11.30. ¢ versus Gr when Fy = 0.02, F; = 0.01, £3 =0.01,¢t = 0.0, e = 0.2, ¢ = 0.01,
B =0.01, M =1.0, Br =2.0. (a) Gr =0.1, (b) Gr = 0.5.
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Fig. 11.31 (a) (b)

Fig. 11.31. ¢ versus ¢ when Fy; = 0.02, F» = 0.01, E3 =0.01, ¢t =0.0, ¢ = 0.2, 5 = 0.01,
M = 1.0, Br =2.0. (a) s =0.1, (b) ¢ = 0.3.

11.4 Conclusions

Important points of present study can be summarized as follows:

e Variable thermal conductivity parameter increases the velocity, temperature and entropy

of system.

e Hartman number caused decay in velocity but it increases the entropy and temperature

near the center of channel.
e Br effect on temperature, entropy and heat transfer coefficient are same.

e Bolus size decreases for M.
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