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Preface 

Peristalsis is an important activity that is involved extensively in real life situations. 

Physiological situations greatly witnessed the existence of this phenomenon. Chyme 

movement in stomach, bile movement, spermatic transportation, ovum movement, 

urine transport in bladder etc. are few activities found in this regard. This inherent 

property is responsible for transportation of materials from one part to others. Due 

to its novel involvement in physiology it is found convenient to build the clinical 

devices based on this principle. This is found advantageous in the way of diagnosis 

and cure of certain diseases.  This results in vast majorities of new innovations in the 

fields of biomedical sciences. Many medical devices like heart lung machine (used in 

open heart surgery supplies the oxygenated blood to aorta that deliver it to rest body 

part), dialysis machine (through which blood is filter and toxin and solutes are 

removed from blood), endoscope (used as diagnosis purposes) etc. work under 

peristalsis. Many pumping devices like roller pumps, finger and hose pumps etc. 

are also mentioned in this direction. Human physiology systems are found very 

complex, spontaneous and irreversible. During these complex processes, energy 

conversion has always been witnessed, which also results in loss of energy in many 

physiological situations. All these processes cause change in thermodynamics of the 

system. This may also leads to disorderliness of the system. For stable system it is 

very essential to study the system and found the factors for these disorderliness and 

obtain the ways to optimize these. This system’s disorderliness is referred as entropy. 

Mathematical modeling is found very beneficial to study these analyses and to get 

an estimate about the factor to increase entropy. Some measures are determined to 

control these. Mathematical modeling also results in reduction of the experimental 

expenses and time. In this way firstly data is analyzed theoretically through 



mathematical model then on the basis of estimate the experiments and further testing 

techniques are adopted. Here second law of thermodynamics is adopted for entropy 

analysis. During fluid flow analysis the fluid friction, chemical reactions, thermal 

irreversibility via magnetic field or radiation, diffusion irreversibility etc. are some 

factors that may lead to change in entropy. Hence in this thesis different factor are 

checked for entropy generation in field of peristalsis. Different types of materials 

with nanofluid features are examined. Effect of different embedded parameters on 

entropy are observed and analyzed physically. This thesis is structured as follow: 

Chapter one includes the basic knowledge and literature about the concepts used in 

this direction. This contains the detailed analysis of peristalsis, non- Newtonian 

fluids, nanofluids, magnetohydrodynamics (MHD) and current, chemical reaction, 

porous medium, slip conditions, compliant walls, mixed convection, heat and mass 

transfer and entropy. This chapter also covers the basic laws for the analysis 

including mass, momentum, energy and concentration conservation laws. 

Chapter two contains the mixed convective flow due to peristalsis. Silver water 

nanofluid has been evaluated in this study. Hall effect and radiation are also 

studied. Slip conditions are employed at the channel walls. Comparison is set for 

different shapes of nanomaterial including bricks, cylinders and platelets. Entropy 

analysis is attempted for different shaped nanoparticles. Technique of perturbation 

is adopted for solution of system. Effect of sundry parameters on Bejan number and 

trapping is also accounted. Contents of this chapter are published in Journal of 

Molecular Liquids, 248 (2017) 447-458. 

Chapter three covers the magneto-nanoparticles in water based nanoliquids. Mixed 

convection and viscous dissipation are also considered. Second order slip conditions 



are accounted at the boundary. Entropy generation and Bejan number are evaluated. 

Streamlines are also part of the study. Analysis is based on the comparison between 

Maxwell and Hamilton Crosser models. The content of this chapter is accepted and 

in press in Scientia Iranica, 27 (2020) 3434-3446. 

Chapter four aims to cover the concept of hybrid nanofluid. Study is analyzed for 

titanium oxides and copper nanoparticles with water as base fluid. Secondary 

velocity is also studied in view of rotating frame. Hall effect and porous medium are 

present. Convective boundary conditions are accounted. Non-uniform hear source/ 

sink and radiation are also present. Maxwell-Garnetts model also help to 

investigate the thermal conductivity for hybrid nanofluid.  Entropy generation is also 

examined. NdSolve of Mathematica is adopted as solution methology. The contents 

of this chapter are published in Journal of Thermal Analysis and Calorimetry, 143 

(2021) 1231-1249. 

Chapter five reports the investigation on entropy in a channel with inclined magnetic 

field. Williamson nanofluid is utilized here. Buongiorno model with Brownian 

motion and thermophoresis effects is utilized. Compliant wall of channel are 

considered. Further slip effects at boundary are investigated. Entropy anlaysis 

contains the thermal, Joule, fluid friction and diffusion irreversibilities. Contents of 

this chapter are reported in Physica Scripta, 94 (2019) 10.1088/1402-

4896/ab34b7. 

Chapter six addresses the peristaltic phenomenon in curved configuration. 

Williamson fluid with well-known Soret and Dufour effects are incorporated. 

MHD characteristics are examined by applying it in radial direction. Curvilinear 

coordinates are chosen to model the problem. Flexible wall characteristics are 



incorporated in terms of elastance, rigidity and stiffness. Partial slip is accounted. 

Considered flow analysis is solved via perturbation. Wessienberg number is adopted 

to prepare the zeroth and first order approximations. Steamlines are also plotted to 

investigate the bolus size. Results of this chapter are published in Computer 

Methods and Programs in Biomedicine, 180 (2019) 105013. 

Chapter seven communicates the peristalsis for Sisko nanofluid. This chapter further 

highlights the effects of nonlinear thermal radiation and Joule heating. Slip 

conditions are also employed. Entropy generation is investigated for viscous 

dissipation, nonlinear thermal radiation and diffusion and Joule heating 

irreversibilities. NDSolve is employed as solution technique which gave the 

convergent results in less computation time. Results are also validated by 

comparison. This chapter is published in Journal of Thermal Analysis and 

Calorimetry, 139 (2020) 2129–2143. 

Chapter eight investigates the study of endoscope impact on peristalsis in present of 

porous medium. Sisko fluid is utilized for shear thinning effects. Modified Darcy 

law is incorporated for reporting the porous medium effects. Entropy is accounted 

for different pertinent parameters. Convective conditions are accounted here. The 

findings of this analysis are reported in Physica A, 536 (2019) 120846. 

Chapter nine provide attention on entropy generation for Rabinowitsch nanofluid. A 

comparative study based on viscous, shear thickening and shear thinning fluid is 

reported. Chemical reaction is studied.  A non-uniform heat source/sink parameter is 

involved in the energy equation with viscous dissipation and Brownian motion and 

thermophoresis effects. Slip is also considered on the boundary. Velocity, 

temperature, concentration, entropy and heat transfer coefficient are examined for 



comparison. The results of this research is published in Applied nanoscience, 10 

(2020) 4177–4190. 

Chapter ten covers the entropy analysis for homogeneous-heterogeneous reaction. 

Prandtl nanofluid is utilized in peristalsis. Magnetic field is applied in the 

perpendicular direction to flow. Joule heating is also considered. Buongiorno model 

is utilized. Second law of thermodynamics is employed to study entropy generation. 

Graphs are plotted for velocity, temperature, homogeneous-heterogeneous reaction 

and heat transfer coefficient and entropy. The findings of this chapter are reported 

in European Journal Physical Plus, 135 (2020) 296. 

Chapter eleven investigates the entropy in view of variable thermal conductivity. 

Third grade fluid for peristalsis is adopted. MHD and Joule heating are 

considered. Compliant characteristics of channel walls are outlined. Graphs are 

plotted numerically via NDSolve of Mathematica. Mixed convection is involved in 

this study.  Results are examined graphically. Trapping is also examined via 

streamlines. This study is published in European Journal Physical Plus, 135 

(2020) 421.  

 



NOMEN CLATURE 

±η Channel walls 

d Half width of channel 

t Time 

a  Wave amplitude  

c Wave speed 

λ Wavelength  

B₀ Strength of applied magnetic field 

g Gravitational acceleration  

T₀ , T₁ , Tm Walls temperature and mean temperature 

C₀ , C₁ , Cm Walls concentration and mean concentration 

u, v ,w Velocity field 

σeff , σp, σf Electric conductivity of nanofluid, nanoparticles 

and base fluid respectively 

μeff, μf Viscosity of nanofluid and base fluid 

ρeff, ρf, ρp Density of nanofluid, base fluid and nanoparticles 

respectively 

κeff, κf, κp Thermal conductivity of nanofluid, base fluid and 

nanoparticles respectively 



n∗ Nanoparticle shape factor 

σ∗ Stephan-Boltzman constant 

J, E, F Current density, electric field, Lorentz force 

e, ne Electron charge, number density of free electrons 

T, C Temperature, Concentration 

(ρCp)eff, (ρCp)f, (ρCp)p Heat capacity of nanofluid, base fluid and 

nanoparticles 

(ρβT)eff, (ρβT)f, (ρβT)p Effective thermal expansion of nanofluid, base 

fluid and nanoparticles 

p Pressure 

ξ₁, ξ₄ First and second order velocity slip parameters 

respectively 

ξ₂, ξ₅ First and second order thermal slip parameters 

respectively 

ξ₃ Concentration slip parameter 

qr Radiative heat flux 

k∗ Mean absorption coefficient 

φ∗ Volume fraction of nanoparticles 

m Hall parameter 



Re Reynolds number 

Pr Prandtl number 

Ec Eckert number 

Br Brinkman number 

Gr Grashof number 

Rd Radiation parameter 

M Hartman number 

Ψ Stream function 

θ Dimensionless temperature 

φ Dimensionless concentration 

Ns Entropy generation 

Be Bejan number 

E₁, E₂, E₃ Compliant wall parameters 

Ω Angular frequency 

ρhnf Density of hybrid nanofluid 

σhnf  Electric conductivity of hybrid nanofluid 

μhnf Viscosity of hybrid nanofluid  

κhnf Thermal conductivity of hybrid nanofluid 

(ρCp)hnf Effective heat capacity of hybrid nanofluid 



Q₀ Heat generation or absorption coefficient 

B1, B2  Heat transfer coefficients at the wall 

k₁ Porosity parameter 

T′ Taylor number 

S Heat source or sink parameter 

Bi₁, Bi₂ Biot numbers 

χ Inclination angle for magnetic field 

𝜏 Capacity ratio 

α∗ Thermal diffusivity 

DB Brownian motion coefficient  

DT Thermophoretic diffusion coefficient 

A₁ First Rivilin Erickson tensor 

We Weissenberg number 

ε Amplitude ratio 

δ Wave number 

Sc Schmidt number 

Nb, Nt Brownian motion parameter, thermophoresis 

parameter 

R Dimensional parameter 



L, L1, L2 Diffusion coefficient parameter, Diffusion 

coefficient parameters for case of homogeneous 

and heterogeneous reactions 

Λ Temperature difference parameter 

ζ Concentration difference parameter 

D Coefficient of molecular diffusion 

KT Thermal diffusion ratio 

Cs Concentration susceptibility 

k Curvature parameter 

Sr Soret number 

Du Dufour number 

β₁ Sisko fluid parameter 

Da Darcy number 

γ₁  Chemical reaction parameter 

kc , ks Rate constants 

C₁∗, C₂∗ Concentrations of species 

H, K  Strength of heterogeneous and homogeneous 

reactions respectively 

α₁  Prandtl fluid parameter 



𝛽 Fluid parameter 

A₂ Second Rivilin-Ericksen 

ς Variable thermal conductivity parameter 

 



Contents

1 Fundamental concepts and literature survey 6

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Basic laws and fundamental equations . . . . . . . . . . . . . . . . . . . . . . . . 18

1.2.1 Mass conservative law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.2.2 Momentum conservative law . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.2.3 Energy conservative law . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.2.4 Concentration law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.2.5 Compliant walls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Entropy generation in peristalsis with different shapes of nanomaterial 23

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Flow configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.1 Entropy generation and viscous dissipation . . . . . . . . . . . . . . . . . 28

2.3 Solution methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.1 Zeroth order systems and solutions . . . . . . . . . . . . . . . . . . . . . . 29

2.3.2 First order systems and solutions . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3 Investigation of entropy generation in peristalsis of magneto-nanofluid with

second order slip conditions 46

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Flow Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

1



3.2.1 Entropy generation and viscous dissipation . . . . . . . . . . . . . . . . . 50

3.3 Solution methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3.1 Zeroth order systems and solutions . . . . . . . . . . . . . . . . . . . . . . 51

3.3.2 First order systems and solutions . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4.1 Analysis of velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4.2 Analysis of temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4.3 Analysis of entropy generation and Bejan number . . . . . . . . . . . . . 58

3.4.4 Streamlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 Modeling and analysis of peristalsis of hybrid nanofluid with entropy gener-

ation 68

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2 Problem modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2.1 Entropy generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3.1 Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3.2 Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3.3 Entropy generation analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3.4 Heat transfer rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.3.5 Streamlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5 Entropy generation in peristaltic flow of Williamson nanofluid 96

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.2 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.2.1 Determination of Entropy generation . . . . . . . . . . . . . . . . . . . . . 102

5.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.3.1 Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.3.2 Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

2



5.3.3 Concentration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.3.4 Heat transfer coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.3.5 Entropy generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.3.6 Validation of problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6 Effects of radial magnetic field and entropy on peristalsis of Williamson fluid

in curved channel 113

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.2 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.3 Solution methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.3.1 Zeroth order solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.3.2 First order solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.3.3 Entropy analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.4.1 Validation of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7 Numerical study for peristalsis of Sisko nanomaterials with entropy genera-

tion 139

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.2.1 Expression for entropy generation . . . . . . . . . . . . . . . . . . . . . . 145

7.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.3.1 Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.3.2 Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.3.3 Nanoparticle concentration . . . . . . . . . . . . . . . . . . . . . . . . . . 152

7.3.4 Entropy generation analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 154

7.3.5 Heat transfer coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

7.3.6 Trapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

7.3.7 Validation of problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

3



7.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

8 Entropy generation and endoscopic effects on peristalsis with modified Darcy’s

law 166

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

8.2 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

8.2.1 Entropy generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

8.3 Solution methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

8.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

8.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

9 Entropy optimization for peristalsis of Rabinowitsch nanomaterial 183

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

9.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

9.2.1 Solution of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

9.2.2 Expression for entropy generation . . . . . . . . . . . . . . . . . . . . . . 188

9.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

9.3.1 Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

9.3.2 Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

9.3.3 Concentration field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

9.3.4 Entropy generation analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 198

9.3.5 Heat transfer coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

9.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

10 Entropy analysis in peristalsis with homogeneous-heterogeneous reaction 203

10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

10.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

10.2.1 Entropy generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

10.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

10.3.1 Validation of problem: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

10.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

4



11 Entropy analysis for the peristaltic flow of third grade fluid with variable

thermal conductivity 225

11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

11.2 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

11.2.1 Entropy generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

11.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

11.3.1 Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

11.3.2 Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

11.3.3 Entropy analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

11.3.4 Heat transfer coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

11.3.5 Trapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

11.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

5



Chapter 1

Fundamental concepts and literature

survey

Here our aim is to provide the background about some relevant concepts utilized in the sub-

sequent chapters. This includes the concepts of peristalsis, entropy, nanofluid and some basic

law and equations related to fluid flow.

1.1 Background

The word peristalsis is originated from the Greek word “peristaltikos” which means “clasping

and compressing”. This type of motility is responsible for transportation among different parts

of body. In this mechanism the material is propelled through the progressive waves consisting

of contraction and expansion (as first presented by Bayliss and Starling [1]) and this helps in

movement of the material. These waves may be short or long in length. It is based on the

involuntary characteristic of the smooth muscles that are involved in peristalsis. Hence this

mechanism cannot be controlled by someone by choice but smooth muscles works when they

are stimulated to do so. This motility is very useful in digestion and some other situations

witnessed in physiology.

In living beings this activity is found in transport of food particle through esophagus, chyme

movement in stomach, urine transport from kidney, movements involved in the small and large

intestines, vasomotion of blood vessels, bile movement in duct, spermatic movement, ovum
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movement in fallopian tube etc. This activity is initiated in the human beings when any food

stuff is chewed and swallowed through the esophagus. At this stage the peristaltic wave start

from the upper position of tube and propagate along the complete length and transfer this food

to stomach and here epiglottis also helps to route this bolus into esophagus instead of entering

this into windpipe. This is also termed as esophageal peristalsis. Afterwards this chewed food

stuff is churns through peristalsis and mix it with gastric juices. The gastric juices help to

dissolve this food through chemical and mechanical actions. At last after few hours this food

becomes the chyme which is the semi-solid like mixture. Then through peristalsis this material

is forced to small intestine where nutrients are absorbed through intestinal walls into blood

streams. At last final absorption took place in large intestine when peristalsis carried this

material to large intestine where waste material also eliminated through it.

Reverse peristalsis also occurs in cub- chewing animals including cows, sheep, camels etc.

where chewed material is brought back to mouth for chewing again. In human beings the

reverse peristalsis does not occur normally. This happens under certain circumstance like food

poisoning that caused disturbance in stomach and activate the emetic centre of brain that

results in immediate vomiting.

Beside the contribution of peristalsis in living organisms, this activity is involved in many

industrial, engineering and biomedical applications. At industrial level this activity is adopted

for the transportation of toxic liquid, sanitary fluid transport etc. It is also employed in the

transportation of nuclear waste material. It is also used in pumping phenomenon like roller

pumps, finger and hose pumps etc. Moreover these pumps are utilized in mining and metallurgy,

food and beverage, biopharmaceutical etc. Heart lung machine, dialysis machine and endoscopy

also involve peristalsis.

Due to such applicability of the topic in the field of physiology, medical devices, industrial

applications persuaded the mathematicians, physicists and engineers to investigate more in

this arena. The myogenic theory of peristalsis goes back to Engelmann [2] who investigated

this activity in ureter. He concluded that there is no ganglias in the muscular layer but few

at the end of the ureter. Afterward some initial attempts were endeavored by Lapides [3]

and Boyarsky [4]. They studied the physiology of human ureter. The significance behind any

mathematical modeling of physiological fluid flows is to get a better understanding for the
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specific flow that is being modeled. As the peristaltic flow is evident in mostly physiological

situations so the precise mathematical analysis may help to study the flow in human body.

Latham [5] did the pioneer work on peristalsis. He considered the viscous fluid for study of

peristalsis in ureter. He compared the experimental results with theoretical research. These

are found in good comparison. After him Shapiro et al. [6] did the study for peristalsis in two-

dimensional channel. They examined the series of waves in inertia free flow by adopting the

long wavelength and small Reynolds number approach. Theoretical results are also validated

experimentally for axisymmetric and plane configurations. Burns and Parkes [7] analyzed the

peristalsis in view of lubrication approach. They obtained the series solution. Their model

was best suited for creeping flow as they have neglected the inertial terms from Navier-Stokes

equations. Barton and Raynor [8] accounted the peristaltic activity in tubes for the study

of movement of chyme to small intestine. Fung and Yih [9] and Hanin [10] also analyzed

peristalsis. Peristaltic activity in circular shape cylindrical tubes is investigated by Yin and

Fung [11], Li [12] and Chow [13]. They have considered the viscous fluid. Li [12] gave a

comparison for axisymmetric and two-dimensional channel by obtaining a series solution. Chow

[13] also analyzed the axisymmetric flow by series solution. Here the flow is induced by Hagen-

Poiseuille flow. Meginniss [14] discussed the peristalsis in a roller pump tube in presence of

low Reynolds number. Lykoudis and Roos [15] studied the peristaltic flow in ureter. They

have utilized the lubrication approximation. Zien and Ostrach [16] also applied the lubrication

theory to their problem by considering viscous, two-dimensional and incompressible fluid. At

zero mean volume flow rate inertial effects in Navier-Stokes equations has been studied. They

declared that their model is appropriate for the case of ureter. Results for peristalsis in view

of experimental and theoretical sense are also validated by Yin [17], Eckstein [18], Weinberg

[19] and Yin and Fung [20]. Weinberg [19] mentioned that his results are in good comparison

with ureteral analysis. Weinberg et al. [21] studied the impacts on ureter by imposing different

waves. Jaffrin and Shapiro [22, 23] investigated the pumping and reflux in peristalsis. Lew

et al. [24] investigated flow in the small intestine. Circular cylindrical axisymmetric tube

has been taken for the analysis. They obtained two series form solution. One for the case

of peristalsis compression without net fluid transport and other when peristalsis generated

deprived of net pressure gradient. Lew and Fung [25] collaborated for work on peristalsis in
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valve vessels for small Reynolds number. Fung [26] examined the peristaltic wave in ureter by

evaluating the muscles action. He considered the tissues elasticity as exponential type. Hill

modified equations were utilized for muscles. Flow was considered axisymmetric having the

small wavelength. Peristalsis in a tube by utilizing the finite-element technique is examined by

Tong and Vawter [27]. Jaffrin [28] examined the peristaltic transport in inertial system. He

accounted the streamline curvature effects. His investigation can be applied to roller pumps

and alimentary canal. Peristaltic activity by using the Frobenius techniques in two-dimensional

geometry is examined by Mitra and Parasad [29]. Negrin et al. [30], Manton [31], Gupta and

Seshadri [32] and Liron [33] also put forward their attempts. In this regard, Brown and Hung

[34] also executed the study on experimental and computational bases. In another study [35]

they have solved the Navier stokes equations numerically in curvilinear coordinates. Kaimal

[36] and Bestman [37] dealt with this activity by utilizing long wavelength strategy. Rath [38]

planned the study for lobe shape tube. Results for pressure flow and velocity are calculated

and compared. Some other studies from literature can be referred through studies [39-50].

Until now, we have given the attention to discuss the literature on the peristalsis of viscous

fluid. However in real life problems, all the fluids do not exhibit the viscous fluid characteristics

(direct and linear relationship between shear stress and deformation rate). Mostly natural phe-

nomenon witnessed the involvement of non-Newtonian fluids. As peristalsis is found extensively

in human body, where we observed that the chewable food, blood, chyme etc. all lie in the

category of non-Newtonian fluids. Besides these, different oils, ketchup, lubricants, shampoo,

toothpaste, honey, custard, muds, paints, polymer solutions, industrial materials etc. all behave

as non-Newtonian fluids. All the non-Newtonian fluids depend on their rheological properties.

Hence these cannot be mathematically modelled through single constitutive relation. Differ-

ent models has been presented ([51, 52]) and utilized by the researchers depending on the fluid

characteristics. Raju and Devanathan [53] provided their first attempt for power law fluid. This

fluid model describes the pseudoplastic, dilatant and Newtonian fluid for changing the values of

power law index. They treat the blood as pseudoplastic fluid during the flow in axisymmetric

tube. Becker [54] gave a detailed description of different non-Newtonian fluids. He also exam-

ined different types of flow problems. Deiber and Schowalter [55] investigated the peristalsis of

viscoelastic material in a tube. They also accounted the porous medium. Viscoelastic materials
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are also employed by Bohme and Friedrich [56] in planar channel. They investigated the inertia

free fluid subject to lubrication approach. Approximate solutions are obtained up to second

order of approximation for amplitude ratio. Pressure discharge and pumping efficiency were the

focus of their study. Micropolar fluid is also attended by Devi and Devanathan [57]. Pressure

gradient and micro-rotation is examined. Srivastava and Srivastava [58] look for the peristalsis

of Casson fluid. They considered blood as two-layer suspension of Casson fluid and peripheral

layer of plasma. Results were compared with studies for without peripheral layer. Investigation

for second order fluid flow in a tube is due to Siddiqui and Schwarz [59]. They deduced their

results for the special case of axisymmetric Newtonian fluid. Misra and Pandey [60, 61] talked

about the non-Newtonian fluids by utilizing the power law fluid model as food bolus in one of

their studies for esophagus. Mernone et al. [62] attended the Casson fluid model and calculated

the perturbation solutions. Herschel-Bulkley model has been explored by Vajravelu et al. [63].

Trapping and pressure rise were also investigated. Hayat and Ali [64, 65] scrutinized the third

grade and power law models for peristalsis. Horoun [66, 67] designed the analysis for third and

fourth grade fluids by taking the asymmetric and inclined asymmetric geometries respectively.

Reddy et al. [68] examined the power law model for asymmetric peristalsis. They considered

the waves traveling with different amplitudes for asymmetry in geometry. Hayat et al. employed

different fluid models (Burger [69], micropolar [70], Carreau [71]) for peristalsis by moderating

different flow assumptions. Wang et al. [72] attended Sisko model. This predicts the shear

thinning and shear thickening effects for different values of power law index. Mekheimer and

Elmaboud [73] carried out the study for couple stress fluid. They modelled the study in an

annulus. Frictional forces, pressure rise and trapping were focused. They emphasized on the ap-

plication of endoscope. Hariharana et al. [74] presented an investigation for Burger and power

law models in a tube. They employed the different wave forms including square, trapezoidal,

multi sinusoidal and sinusoidal. They utilized the Fourier series in their analyses. Path lines

were also drawn to investigate the reflux. Muthu et al. [75] discussed micropolar model for fluid

in a tube. Hayat et al. [76, 77] continued to extend the literature by attaining the attempts

for Maxwell and Johnson-Segalman models. Tripathi et al. [78] focused on viscoelastic mate-

rials by employing the fractional Maxwell technique. Hayat et al. [79] studied the third grade

fluid in curved geometry. They analyzed the heat and mass transfer. Third grade fluid is the
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differential type fluid. This model describes the shear thinning, shear thickening and normal

stresses. Alsaedi et al. [80] addressed the Prandtl fluid to examine peristalsis. Convection

transfer of heat has been also investigated. Hayat et al. [81] examined the Eyring Powell fluid

with convection on the boundary. Chemical reaction has been also carried out. This model

predicts the results accurately at high and low shear rates. Some studies reported by Hayat

et al. [82, 83, 84, 85] on non-Newtonian fluids are also useful. Here the authors have utilized

the Soret, Dufour, radial magnetic field, rotation effects. Sadaf and Noreen [86] carried out the

investigation for Rabinowitch fluid. Rabinowitch model describes the viscous, shear thinning

and shear thickening effects.

Amelioration of heat transfer capability is the need of time and required in every field. It is

primary apprehensions for scientist nowadays. Peristalsis with heat transfer effects is necessary

from the biomedical point of view. Whenever a process runs it involves heat loss. From the

past era there is much more interest found in the field of nanotechnology. The reason behind

this is the enhancement in heat transfer efficiency. Nanofluid are the new class of advanced

heat transfer fluid that are homogeneous mixture of base fluid and suspended particles in it.

These are not just prepared by mixing the nanoparticles in host fluids but involve the chemical

processes. Utilizing the nanoparticles of millimeter or micro size caused eventual sedimentation

and corrosion. Hence nano size particles (1-100 nm) are used. This will helps to minimize the

gravitational effects and enhances the stability of mixture. For nanofluid the contact surface

area is greater when compared with microparticles. This will cause quick thermal response

and hence enhances the heat transfer. Size, material and shape of the particles are the main

factor that effected the thermophysical properties of nanofluid. With same volume fraction of

different nanoparticles, the efficiency of nanoliquids can be different. Different nanoparticles

ceramics (Alumina, Silicon carbide etc.), metals (Aluminium, copper etc.) Carbon (Graphene

etc.) are utilized in traditional liquids i.e. water, oils etc. Choi [87] gave the name “nanofluid”

to this material. Nanoliquids are used for cooling purposes like cooling in automotive engine,

solar energy, refrigeration, electronic cooling, drug delivery, aerospace, cooling and heating of

buildings, oil recovery, desalination, lubrication, drilling, nuclear cooling, boiler etc. These new

fluids have enhanced thermal properties when compared with traditional liquids. Due to its

stability and little settling the nanofluids are found more proficient. Besides the industrial and
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engineering applicability, the nanoliquids are also being used in biomedical field. Iron based

nano materials are utilized as delivery vehicle up the blood stream to tumor. This will help to

deliver the drugs in cancer patients. Nanoporous membranes with help of Ultraviolet source

can kill the virus and bacteria from water. Due to such ample novelty the different models

are used by the researchers. Maxwell [88] model for spherical shaped particles, Hamilton and

Crosser [89] for different shapes of nanomaterial, Xue [90] for nanotubes particles are important

to mention here. In these models the characteristics of fluid and particles are separately pro-

vided. Buongiorno [91] model was based on seven slip mechanisms for convective transport. He

proposed that among these only Brownian motion and thermophoresis are prominent. Birkman

[92] gave the model for viscosity of the nanofluids. Khanafer and Vafai [93] provided a critical

synthesis for the nanoliquids characteristics. Sheikholeslami et al. [94-96] developed analyses

in presence of MHD and radiation for different conditions. Shehzad et al. [97] addressed the

peristaltic flow of nanofluid in presence of Joule heating. Abbasi et al. [98] reported the effect

of spherical and cylindrical particles. Bhatti et al. [99] addressed the Sisko fluid treating it

as blood and Titanium nanoparticles for endoscope application. Sayed et al. [100] examined

the non-Newtonian nanofluid in an inclined asymmetric geometry. Some more attempts can be

highlighted via refs. [101-110]. The utilization of hybrid nanofluid can be seen through refs.

[111-115].

Magnetohydrodynamics is the study of dynamics of fluids when magnetic field is involved.

It is the property of electrical conducting fluid that it become polarized and change the MHD

itself. This property has significant importance and note worthy applications in the field of

biomedical engineering. As blood behaves as the conducting fluid so this characteristic of blood

has been considered in certain clinical applications. MHD is applied to reduce the bleeding in

case of severe injuries. As magnetic field slows down the flow. This property is also accounted in

surgical operation to drop blood flow. Magnetic resonance imaging (MRI) has been employing

for diagnosis purposes. Further it is found for cancer treatment [116] method to guide the iron-

based nanomaterials. Super paramagnetic iron oxide nanoparticles are found proficient for drug

delivery. Trapping phenomenon may cause thrombus in blood vessels that can be disappeared

with the help of MHD. Its applicability can also be seen in hyperthermia [117], intestinal

disorders and magnetic endoscopy. Industrial processes may include solar power technique,
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remote sensing to screen the non-proliferation, geothermal extractions, signal processing, power

generation processes, MHDs sensors etc. In natural phenomenon like Earth magnetic field to

solar wind, magnetic field of stars and planets this activity is also observed. During MHD

another physical aspect has been also inspected named as Joule heating, which occurs as a

result of implication of magnetohydrodynamic aspect. The result of current through conductor

produces heating. Many common applications are working on this principle, like hair dryer,

electric heater, iron to remove wrinkle etc. Different researches have been carried out on the

concept of magnetohydrodynamics. Magnetic field during blood pumping has been studied by

Stud et al. [118]. Shehawey and Husseny [119] presented a study of peristalsis by employing

magneto fluid. Perturbation solution has been constructed in presence of porous boundaries.

Mekheimer [120] studied the blood flow in non-uniform channel. Naby et al. [121] examined

the trapping in presence of MHD. Eldabe et al. [122] analyzed bioviscosity fluid for MHD

characteristics. Hayat and Ali [123] also investigated hydrodynamic flow. In another analysis

Hayat et al. [124] covered the endoscope problem for Jeffrey fluid by employing magnetic

field. Ebaid [125] carried out a numerical analysis for MHD peristalsis of biofluid with varying

viscosity. Some more attempts here can be viewed (refs. [126-131]). It is also observed that

Hall current cannot be ignored for situations associated with strong magnetic field (see refs.

[132-139]).

In natural phenomenon chemical reactions also takes place. It may be of constructive or

destructive type which depend on the nature of reactants that take part in chemical reaction.

These reactions are homogeneous if the reactants are in same state otherwise named as het-

erogeneous reaction, which are of keen importance in medical field because of production of

biodiversity. In peristalsis there are many processes where chemical reaction clearly involved,

named as metabolism. During some reactions, the energy released is used by cell to proceed life

e.g. during the breakdown of glucose, while for later energy is absorbed including the process of

formation of protein. Catalytic reactions are also observed in living beings. Basically, catalyst

is an agent that enhances the speed of reaction. In living organisms, enzymes play the role as

catalyst. Without these enzymes the process of metabolisms is too slow that it will take even

centuries to complete, hence there is no chance of survival. As temperature and concentration

of the reactants is less to react itself. Enzymes helps to reduce the activation energy required.
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There are different enzymes each worked with a particular substrate. Missing enzymes may

lead to metabolic disorders. Beside these applicability catalysis converter has been utilized

to produce Ammonia. Fog formation, batteries, production of polymer, electrolytic cells, hy-

drometallurgical industry witnessed some applicability of chemical reaction. Initial studies on

homogeneous-heterogeneous reactions [140, 141] have been reported by Merkin and Chaudhary

and Merkin respectively. Merkin investigated the first order heterogeneous and cubic auto-

catalytic homogeneous reaction. Further Hayat et al. [142, 143] put forward their analysis for

chemical reaction, convective conditions and Hall effects. Awais et al. [144] commenced a study

for chemical reactions in tapered channel by using two phase nanoliquids. They have utilized

the silver and copper nanomaterial. More relevant studies in this direction can be seen via

studies [145-149].

Porous material is characterized as having voids or pores in it. Many natural materials like

soil rocks, zeolites, ceramics and cements, biological materials such as bones, cork, capillaries,

filters etc. witnessed the examples of porous materials. This concept is utilized in different

engineering branches such as petroleum engineering, construction engineering, geoscience, ma-

terial science, biophysics, biology etc. Fluid flow via porous medium has gained a lot of interest

and importance and it becomes a separate branch. Fluid flow from porous media is influenced

by certain properties of media, tensile strength, permeability, porosity etc. Experimental work

on flow via porous medium is experienced by Darcy [150]. Classical Darcy law works well for

viscous flow. Simple relation between pressure gradient and flow rate is elucidated through this

relation. These postulates are valid for the flow in tubes, capillaries and some other applica-

tions in earth sciences. For non-Newtonian fluids the modified Darcy law preserves the surface

tension force. Johansen and Dunning [151] commenced a study for capillary system by focus-

ing on wettability. Affifi and Gad [152] reported a study on porous medium for pulsatile fluid

peristalsis. Rao and Mishra [153, 154] examined the porous medium for peristalsis. They [153]

employed porous tube filled with power law fluid. In another study [154] porous peripheral layer

for gastrointestinal tract has been investigated. Elshehawey et al. [155] canvassed the study for

peristalsis in tapered pore by considering viscous fluid. They considered the compressible fluid.

They deduced the fact that induced net flow is strongerly influenced by liquid compressibility.

Tan and Masuoka [156, 157] reported their studies for porous medium by using second grade
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and Oldroyd-B-fluid. They analyzed the Stoke’s first problem. Vajravela et al. [158] attended

peristalsis in porous annulus. By commencing the studies for porous medium Hayat et al.

[159, 160] accounted the effects of Hall and rotation in peristalsis of Oldroyd-B-fluid and Stokes

first problems for third grade fluid. Further studies [161-164] also gave a look on literature for

highlighting the novelty of porous space.

For fluid flow problems there are two main boundary conditions namely no-slip and slip

boundary conditions. No-slip condition has been validated through theory for viscous fluids

according to which the fluid will adhere to wall and there in no relative velocity among them.

Moreover, shear stress arises due to distortion of fluid particles. However, for certain conditions

such as fluid flow in capillary vessels, polymer melts extrusion etc. where no-slip conditions

are no more valid. In human body where flow also dissatisfied the no-slip conditions, slip

conditions are adopted. This technique is significant to polish the artificial heart valve, polymer

industry, paints etc. In slip there is direct relation between velocity and shear stress of the

fluid. Depending upon the fluid’s nature, slipping of fluid at the wall varies. Hayat et al.

[165] presented the study for peristalsis in porous medium. They have chosen the partial slip

conditions on boundary. Adomian decomposition technique has been used to find solution.

Trapping and pumping have been also discussed. Ali et al. [166] also encountered the problem

for peristalsis with slip conditions, MHD and variable viscosity. Series solution have been

developed in this case. Ebaid [167] captured the effects for slip conditions in presence of MHD in

an asymmetric geometry. Srinivas et al. [168] also reported the slip and magnetohydrodynamics

in peristalsis. Johnson Segalman fluid model for slip conditions has been focused by Akbar et al.

[169]. Mustafa et al. [170] attended slip effects for viscous nanofluid. Sayed et al. [171] explored

the slip conditions for velocity. Tangent hyperbolic nanofluid model and copper water material

has been investigated by Hayat el al. [172, 173]. Another type of boundary conditions has also

been accounted during flow problems. These are collection of Fourier law and Newton law of

cooling. Some literature is mentioned here for view. Ramesh [174] employed the convective

conditions for couple stress fluid. He also accounted the porous media. Hayat et al. [175]

adopted the convective boundary conditions in peristalsis through curved channel. Shahzadi

and Nadeem [176] also employed these conditions for metallic nanoparticles.

Compliance as medical terminology is defined as the capability of vessel to bulged as a
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result of pressure on it and persist its original position. On other side it is related to material’s

ability to deform elastically as a result of an applied force. It is the inherent property of

capillaries, arteries, valves, veins and muscles in living organisms. This property of blood

veins is responsible for blood pressure changing. This characteristics has been appealed by

the researchers as compliant nature of surfaces cause reduction in drag force. As peristalsis

is involved in physiology and clinical applications. Therefore this property has advantages to

utilize. For mathematical modelling the compliant nature is describes in terms of elastance,

rigidity and stiffness through mathematical expressions. This will help to treat these walls as

membrane. Many studies have been conducted in this way. Mittra and Prasad [177] conducted

an initial study by adopting flexible wall. Srivastava and Srivastava [178] presented the study

by adopting the viscoelastic features of the wall geometry. Particulate phase effect has been

investigated on qualitative and quantitative basis. Elnaby and Haroun [179] also pay attention

to this effect. Javed et al. [180] addressed the study by using Burger fluid in flexible wall

channel. Jyothi et al. [181] reported the investigation on MHD Johnson fluid in complaint

wall channel. Hayat et al. [182] portrayed the study for endoscope analysis while adopting slip

and flexible walls. The studies [183, 184] examined the wall properties effects under magnetic

field and variable liquid characteristics. Javed and Naz [185] treated the realistic fluid in flow

geometry having compliance characteristics.

Heat and mass transfer always occur during the process of flow. Heat transfer modes include

conduction, convection and radiation. All these processes are involved during fluid flow. The

conduction during fluid flow has been analyzed through Fourier’s law. Convection is dominant

mode in fluids for transfer of heat. Influence of gravity in different scenario also plays significant

role. Sometimes these effects are so prominent and cannot be ignored. At horizontal surfaces

these effects are not effective to study as compared to vertical and inclined geometry involved

in laboratory and real-life situations. As a result of gravity natural convection occurs. Mixed

convection is the combination of natural and forced convection. Mixed convection activity has

been greatly carried out for heat transfer processes including process of nuclear impurities,

MHD generators, chemical plants etc. Srinivas et al. [186, 187] modeled the mixed convection

phenomenon. They have given the attention to heat and mass transfer effects and chemical

reaction in their respective studies. Hayat et al. [188] commenced a study for mixed convective
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flow with slip boundary conditions. Assumptions of Joule heating and Soret and Dufour effects

have been modeled. Mustafa et al. [189] addressed mixed convective flow of fourth grade fluid

with Soret and Dufour effects. Water based nanoliquids in presence of mixed convection has

been studied by Hayat et al. [190]. Convective boundary conditions, Hall effects and Joule

heating have been accounted. In another study [191] they accounted the mixed convection

phenomenon in tapered asymmetric channel. Tanveer et al. [192] reported a study in view of

mixed convection effect for Eyring Powell fluid in curved configuration. Radiation is also another

mode of heat transfer nowadays applicable in many biomedical applications. All these modes

maintained a healthy temperature and remove the extra heat from body if necessary. Sweating,

vasoconstriction, vasodilation, through urine etc. are all different way of heat transfer. Heat

and mass transfer effects have gained importance due to its existence and applicability. Srinivas

and Kothandapani [193] talked about heat transfer aspect in asymmetric channel. Mekhemier

and Elmaboud [194] elaborated the heat transfer in a vertical annulus. Nadeem and Akbar [195,

196] also worked for heat transfer aspects. Further studies about this aspect can be noticed

from the refs. [197-200].

Natural activities are spontaneous, irreversible and complex. During fluid flow many processes

involve fluid friction, Joule heating, chemical reactions etc. This caused change in system’s

thermodynamics. These kinds of activities caused disorderliness in the system. Study of dis-

orderliness of the system is named as entropy. The concept of entropy goes back to Rudolf

Clausius, who defined the entropy in the thermodynamic sense. Second law of thermodynamics

is utilized for entropy. This law shows that entire actual processes are irreversible and this

irreversibility can be assessed through entropy generation analysis. Heat transfer laws and fluid

mechanics principles are combined to ascertained strategies for entropy generation optimization.

Foremost target behind the designing of different devices and system is to provide the maximum

output and to minimize the entropy. In thermodynamic sense this is related to enhance heat

transportation rate and estimating the performance of a system. To obtain the sophisticated

energy efficiency the researchers have moved to the thermodynamic approach EGM (entropy

generation minimization) in thermal engineering system and devices. This approach is quite

beneficial in designing the engineering devices. This great applicability and ample application

can be seen through its utilization in reactors [201], chillers [202], microchannels [203], air sepa-
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rators [204], fuel cells [205], helical coils [206], evaporative cooling [207], curved pipes [208], gas

turbines [209] etc. Besides these with reference to peristalsis the study of entropy is very crucial,

as physiological processes are complex and spontaneous. From the medical point of view, it

is necessary to venture the factor that causes the greater irreversibility and find measures to

control them.

Bejan [210] employed the thermodynamics second law to estimate the irreversibility in

the processes of heat transfer. His paper comprises of two parts. Firstly he investigated the

production of irreversibility. In other part he reviewed the second law for heat exchangers in

classical engineering. He presented the analytic methods for irreversibility minimization. In

another study [211] he gave the method for EMG in thermodynamics systems. Sheikholeslami

and Ganji [212] scrutinized a study of entropy for nanofluids. Akbar [213] reported a study for

irreversibility analysis in a tube. MHD characteristics have been also accounted. Akbar et al.

[214] also paid attention to planar channel by employing water based nanoliquids. Abbass et

al. [215] presented the study for irreversibility analysis in flexible wall channel. Hayat et al.

[216, 217] studied entropy by employing single and multi-walled CNTs and Jeffrey fluid. More

studies in this area can be highlighted through [218-225]. It is noticed that the literature on

entropy analysis with reference to peristalsis is scarce yet. Researchers have started working in

this field because of its utility and novelty.

1.2 Basic laws and fundamental equations

Real situations of fluid flow can be captured through mathematical modeling in terms of physical

laws. These laws are:

1.2.1 Mass conservative law

This law witnessed the conservation of mass. For the case of no source/sink and compressible

fluid, equation of continuity is

div(V) +



= 0 (1.1)

where   and V = (  ) portrayed the respective density, time and velocity field.
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For incompressible fluid it becomes




+




+




= 0 (1.2)

For Cylindrical coordinates




+




+




= 0 (1.3)

For curved geometry we have




[( +∗)] +∗




= 0 (1.4)

1.2.2 Momentum conservative law

Equation of motion satisfies


V


= b+∇τ  (1.5)

here b τ depicts the body force and Cauchy stress tensor.

τ = −I+ S (1.6)

where  the pressure and S the extra stress tensor which varies for different fluid.

For two phase nanoliquids


V


= b+∇τ  (1.7)

where

 = (1− ∗) + ∗ (1.8)

where  and  are densities of nanomaterial and base liquid.

1.2.3 Energy conservative law

It is expressed in the form





= −∇q+ (1.9)
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Here q   denote heat flux, temperature and specific heat.  term describes heat charac-

teristics, including viscous dissipation, radiation etc.

q = −∇ (1.10)

where  elucidate the thermal conductivity.

For two phase model for nanoliquids

()



= ∇2 + (1.11)

where

() = (1− ∗)() + ∗()




=

 + (
∗ − 1) − (∗ − 1)∗( − )

 + (∗ − 1) + ∗( − )
 (1.12)

Here subscript  and  represent the notation for nano solid material and base liquid and ∗ is

shape factor.

For Buongiorno model

()



= −∇q+ ̂∇̂ (1.13)

where ̂ and ̂ highlight specific enthalpy and diffusion mass flux of nano materials. Here

q = −∇ + ̂̂

̂ = −
∇

− ∇ (1.14)

where   ,  are respective mean temperature, thermophoresis and Brownian coefficients.

Inserting for q and simplifying, we get

()



= ∇2 −̂∇ (1.15)
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Finally utilizing ̂, one arrives at

()



= ∇2 + ()

∇∇


+ ()∇∇ (1.16)

1.2.4 Concentration law

Here one has




= ∇2 +  (1.17)

in which  denotes the source term that may be in form of chemical reaction etc.

Concentration equation for nanoparticles is




= − 1


∇̂ (1.18)

Utilizing the expression for ̂ we arrive at




= 

∇2


+∇2 (1.19)

1.2.5 Compliant walls

Compliance is linked to capability of an objects to bulged or recoil back to its original position.

This property can be described in terms of elastance, rigidity and stiffness. Living organisms

naturally include such muscular structure through which it is more feasible to exchange nutrient,

water etc. The flexible walls is also known as Compliant walls. Mathematically we expressed

as

∗ () = − 0 (1.20)

where 0 is the pressure outside the wall due to muscles tension and ∗ the characteristics of

walls to consider them as membranes defined by

∗ = −∗ 
2

2
+∗

2

2
+ ∗1




 (1.21)

in which elastance (−∗), mass per unit area (∗) and damping (∗1) characteristics are taken
into consideration. Study of peristalsis with and without compliant characteristics are valid
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where disturbance due to pressure is negligible. However the compliant characteristics are

more suitable in case of deformable walls.
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Chapter 2

Entropy generation in peristalsis

with different shapes of

nanomaterial

2.1 Introduction

This chapter analyzed the peristalsis in a vertical channel by using different shapes of nanoma-

terial. The nanomaterial utilized for this purpose is silver () with water as base fluid. The

study is based on the comparison amongst different shapes of nanoparticles (bricks, cylinders

and platelets). The walls of channel are of flexible nature. Study is done in the light of long

wavelength and low Reynolds number approximations. Solution technique utilized here is per-

turbation with Grashof number as small parameter. Entropy generation analysis is also carried

out with different shapes of nanoparticles. The graphs of Bejan number, entropy generation,

velocity and temperature are drawn for the sake of comparison through considered nanoparti-

cles. Streamlines are also studied. The results lead to the fact that an increase in nanomaterial

volume fraction decays velocity and temperature of nanofluid. The Hall parameter and Hart-

man number show opposite behavior for velocity, temperature, entropy generation and Bejan

number. Highest values of temperature, Bejan number and entropy generation have been seen

for brick shaped particles and smallest for platelet shaped particles.
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2.2 Flow configuration

Here a vertical channel of width 2 is considered. The channel walls are considered flexible.

The walls are at the positions  = ±. A wave travels with speed  along the walls which propel
the fluid in motion. This wave has wavelength  and amplitude  (see Fig. 2.1). The walls

has temperature 0 Moreover base fluid and nanoparticles are considered thermally consistent

with respect to each other. A magnetic field of strength 0 is applied in a normal direction to

flow. Induced magnetic field is ignored because of small magnetic Reynolds number.

The Lorentz force is defined as

F = J×B (2.1)

in which B = [0 0 ] and J are the applied magnetic field and current density respectively.

When Hall effects are taken into account then current density satisfies

J =

∙
E+V ×B− 1


[J×B]

¸
 (2.2)

Here  elucidates the effective electric conductivity of nanofluid, E is used for electric field,

the velocity field V =[ ( ),  ( )  0]  represents the electron charge and  the number

density of free electrons. Electric field is absent and thus

J =

∙
V ×B− 1


[J×B]

¸
 (2.3)

The Lorentz force then takes the form as:

F =

"


2


1 + (



)2

µ
−+ (


)

¶

−2

1 + (



)2

µ
 + (




)

¶
 0

#
 (2.4)

The two-phase model of effective electric conductivity of nanofluid is represented below [135,

190]:




= 1 +

3(


− 1)∗

(


+ 2)− (


− 1)∗  (2.5)

Here  and  are the electric conductivity of nanomaterial and base fluid respectively and 
∗
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is used for nanoparticle volume fraction. Now we have

F =

∙
1

2


1 + (1)2
(−+1) 

−12
1 + (1)2

( +1)  0

¸
 (2.6)

where 1 and the Hall parameter  are defined by:

 =



 1 = 1 +

3(


− 1)∗

(


+ 2)− (


− 1)∗  (2.7)

Shape of the peristaltic wall is

 = ± ( ) = ±
∙
+  sin

2


(− )

¸
 (2.8)

Fig. 2.1: Flow Configuration

The governing equations are:




+




= 0 (2.9)
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 (



+




+




) = −


+

∙
2

2
+

2

2

¸
+( ) ( − 0)− 1

2


1 + (1)2
(−1) 

(2.10)

 (



+ 




+ 




) = −


+ 

∙
2

2
+

2

2

¸
− 1

2


1 + (1)2
( +1)  (2.11)

() (



+ 




+ 




) = 

∙
2

2
+

2

2

¸
+ 

"
2

Ãµ




¶2
+

µ




¶2!

+

µ



+





¶2#
− 


 (2.12)

Here  and  are used to represent the velocity components in  and  directions,  the

temperature,  the pressure,  the effective density,  the effective viscosity, ( )

the effective thermal expansion, () the effective heat capacity,  the effective thermal

conductivity of nanofluid and  (=
−4∗
3∗

 4


) the radiative heat flux.

The expressions for   ()  ( )   and  are:

 = (1− ∗) + ∗ () = (1− ∗)() + ∗()

( ) = (1− ∗) ( ) + ∗ ( )   =


(1− ∗)25





=

 + (
∗ − 1) − (∗ − 1)∗( − )

 + (∗ − 1) + ∗( − )
 (2.13)

Table 1 given below represents the thermophysical properties of utilized base fluid and

nanomaterial.

Table 1: Thermophysical parameters of water and nanoparticle [190]

 (kg m−3)  (j kg−1 K−1) 
¡
W m−1K−1

¢
 (l/k) × 10−6

2 997.1 4179 0.613 210

 10500 235 429 18.9

Shape factor and sphericity of different shapes of nanomaterial are given in Table 2 below

[106]
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Nanomaterial shape Sphericity Shape factor

Brick 0.81 3.7

Cylinder 0.62 4.9

Platelet 0.52 5.7

The quantities in dimensionless form are given by

∗ =



 ∗ =




 ∗ =




 ∗ =




 ∗ =




 ∗ =






∗1 =
1


 ∗2 =

2

 ∗ =

2




Re =



  =

 − 0

0
 Pr =

()




 =
2

() 0
  = Pr  =

 ( ) 0
2


  =

r





 =
16∗ 30
3∗

  =



  = −


 (2.14)

Here , ,    and  are Reynolds, Prandtl, Eckert, Brinkman, Grashof and

Hartman numbers respectively. Moreover  is the radiation parameter.

After invoking large wavelength and low Reynolds number assumptions [135, 190] the con-

tinuity equation is identically satisfied and others equations lead to




=

1

(1− ∗)25
3

3
+3 − 1

2

1 + (1)2



 (2.15)




= 0 (2.16)

1
2

2
+



(1− ∗)25

µ
2

2

¶2
+

2

2
= 0 (2.17)

3 = 1− ∗ + ∗
Ã
( )

( )

!


1 =
 + (

∗ − 1) − (∗ − 1)( − )

 + (∗ − 1) + ( − )
 (2.18)
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The velocity slip, compliant walls and thermal slip conditions are

± 1 = 0 at  = ± (2.19)

∙
−∗ 

3

3
+∗

3

2
+ ∗1

2



¸
 =




+




− 

∙



+ 




+ 





¸
+( ) ( − 0)− 1

2


1+(1)2
(−1) 

at  = ±
(2.20)

 ± 2



= 0 at  = ± (2.21)

where 1 and 2 are dimensional slip parameters for velocity and temperature respectively.

The dimensionless forms of boundary conditions are




± 1
(1− ∗)25

2

2
= 0  ± 2




= 0 at  = ± (2.22)

∙
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3
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¸
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1
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2

1 + (1)2



 at  = ±

(2.23)

Here 1(= −∗33 ) 2(= ∗33 ) and 3(= ∗1
32 ) are the flexible walls

parameters.

2.2.1 Entropy generation and viscous dissipation

Viscous dissipation effect is given by

Φ = 

"
2

Ãµ
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µ
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¶2#
 (2.24)

Dimensional form of volumetric entropy generation in defined as


000
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16∗ 30
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µ
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+
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 (2.25)
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The entropy generation in dimensionless form becomes:

 =

000



000


= (1 +)

µ




¶2
+



Λ(1− )25

µ
2

2

¶2
 (2.26)


000
 =


2
0

 2
2
 Λ =

0


 (2.27)

Here  elucidates the mean temperature.

Bejan number is:

 =


 +
 (2.28)

Here Eq. (2. 25) can be split into two parts. One part comprises of entropy generation which is

due to finite temperature difference () and the other part includes the entropy generation

because of viscous dissipation effects ().

2.3 Solution methodology

Perturbation technique is applied for small Grashof number. The equations and solutions for

the cases of zeroth and first orders systems are:

2.3.1 Zeroth order systems and solutions

1

(1− ∗)25
40
4

− 1
2

1 + (1)2
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2

= 0 (2.29)
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= 0 (2.30)

0
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(1− ∗)25
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(2.32)

0 ± 2
0


= 0 at  = ± (2.33)

29



The solutions expressions are
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2.3.2 First order systems and solutions

Here we have
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= 0 at  = ± (2.40)

The solution expressions are
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in which Ci0 , 0 0 0 and 0 are constants that can be evaluated through Mathe-

matica. Here 2 = 1 +

2.4 Discussion

This section includes the graphs and related analyses for different embedded parameters. This

section contains the graphs for velocity, temperature, streamlines, Bejan number and entropy

generation. Each graph gives a comparison among different shapes of nanomaterial for the per-

tinent parameter. Fig. 2.2 is drawn for the comparative study of effective thermal conductivity

of different shapes of nanomaterial when nanomaterial volume fraction varies. This Fig. clearly

indicated that effective thermal conductivity for the case of platelet shaped particle is higher

in all cases than brick and cylindrical shaped particles. The brick shaped particles have lowest

effective thermal conductivity.

Fig. 2.2: Comparison of effective thermal conductivity for different shaped nanomaterials
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Fig. 2.3 is sketched for the case of velocity when volume fraction of nanomaterial varies. As

expected the velocity is decreased via nanoparticle volume fraction. As higher volume fraction

enhance the shear rate, which provide resistance to flow so velocity decreases. Fig. 2.4 illustrates

the Hartman number impact on velocity. Velocity is decreasing function of Hartman number.

As Lorentz force provides obstruction to fluid flow. Hence the velocity reduces. Hall parameter

influence on velocity can be seen through Fig. 2.5. It shows the increasing behavior of velocity

for Hall parameter. Same impact is obtained for velocity slip parameter and Grashof number

(see Fig. 2.6 and Fig. 2.7). Grashof number arises due to mixed convection which is also in the

favor of velocity. In nuclear reactor cooling the mixed convection is utilized to dissipate energy

when force convection not enough to do so. Wall properties behavior on velocity is increasing

for elastance parameters while there is decreasing effect for damping parameter (see Fig. 2.8).

In all the cases of velocity profile it is found through comparative study of different shaped

nanoparticles that velocity remains lowest for case of bricks shaped particles and it is highest

for cylindrical shaped particles.

Fig. 2.3 Fig. 2.4

 23  versus ∗ when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02

 = 10  = 10  = 50  = 01 1 = 001 2 = 001  = 05

  24  versus  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02

∗ = 01  = 10  = 50  = 09 1 = 001 2 = 001  = 05
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Fig. 2.5 Fig. 2.6

 25  versus  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02

∗ = 01  = 10  = 50  = 01 1 = 001 2 = 001  = 05

  26  versus 1 when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02

 = 10  = 10  = 50  = 09 ∗ = 01 2 = 001  = 05

Fig. 2.7 Fig. 2.8

 27  versus  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02

 = 10  = 10  = 50 ∗ = 01 1 = 001 2 = 001  = 05

  28  versus 1 2 3 when  = 01  = 02  = 02  = 10  = 10  = 50

33



 = 01 ∗ = 01 1 = 001 2 = 001  = 05

Behavior of temperature is shown through Figs. 2.9-2.14. Fig. 2.9 explained influence of

∗ on  Temperature is decreasing function of volume fraction of nanomaterial. Due to similar

reason the nanofluids are utilized for coolant purposes. As higher volume fraction of nanopar-

ticles enhance the heat transfer capability, so temperature decreases. Through comparison it is

concluded that temperature distribution remains highest for bricks shaped nanoparticles and

lowest for platelets shaped nanomaterials. The results of Hall parameter and Hartman number

on the temperature are opposite (see Figs. 2.10 and 2.11). Enhancement is seen for Hall para-

meter whereas decay is noticed for Hartman number. As Hall effect facilitate the flow, so flow

with higher mean kinetic energy has greater heat loss and hence increase in temperature is no-

ticed. Similarly regarding force the flow slows and hence less heat loss through fluid movement.

Finally decay is noticed. The Grashof number and temperature slip parameter give increasing

behavior for temperature (see Fig. 2.12 and 2.13). Radiation parameter effects on temperature

is illustrated through Fig. 2.14. Decrease in temperature is noticed in this case.

Fig. 2.9 Fig. 2.10

 29  versus ∗ when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02

 = 10  = 10  = 50  = 01 1 = 001 2 = 001  = 05

  210  versus  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02

 = 10 ∗ = 02  = 50  = 01 1 = 001 2 = 001  = 05

34



Fig. 2.11 Fig. 2.12

 211  versus  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02

∗ = 01  = 10  = 50  = 01 1 = 001 2 = 001  = 05

  212  versus  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02

 = 10  = 10  = 50 ∗ = 01 1 = 001 2 = 001  = 05

Fig. 2.13 Fig. 2.14

 213  versus 2 when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02

 = 10  = 10  = 50  = 01 1 = 001 
∗ = 01  = 05

  214  versus  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02
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 = 10  = 10 ∗ = 01  = 50  = 01 1 = 001 2 = 001

The observation for entropy generation and Bejan number is covered here. Fig. 2.15 is

prepared for entropy generation versus ∗. In view of this Fig. decrease in entropy generation

is seen for volume fraction of the nanoparticle. As less disorderliness is noticed with small

temperature effects. Fig. 2.16 is drawn for Hartman number variation on entropy generation

and Fig. 2.17 for Hall parameter. Decay is seen for Hartman number while an enhancement

is observed for larger Hall parameter. The reason can be directly related with temperature.

Both  and the ratio of  to Λ have displayed the increasing behavior for entropy generation

(see Figs. 2.18 and 2.19). Fig. 2.20 is prepared for radiation parameter on entropy generation.

Entropy generation decreases for radiation parameter (). Through all graphs it is found

that brick shaped particles have higher values and platelet shaped particles have least entropy

generation.

Fig. 2.15 Fig. 2.16

 215  versus ∗ when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02

 = 10  = 10 Λ−1 = 10  = 01 1 = 001 2 = 001  = 05

  216  versus  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02

∗ = 01  = 10 Λ−1 = 10  = 01 1 = 001 2 = 001  = 05
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Fig. 2.17 Fig. 2.18

 217  versus  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02

 = 10 ∗ = 01 Λ−1 = 10  = 01 1 = 001 2 = 001  = 05

  218  versus  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02

 = 10  = 10 Λ−1 = 10 ∗ = 01 1 = 001 2 = 001  = 05

Fig. 2.19 Fig. 2.20

 219  versus Λ−1 when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02

 = 10  = 10 ∗ = 01  = 01 1 = 001 2 = 001  = 05

  220  versus  when 1 = 002 2 = 001 3 = 001 
∗ = 01  = 01  = 02
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 = 02  = 10  = 10 Λ−1 = 10  = 01 1 = 001 2 = 001

Bejan number observation is analyzed in this paragraph. In view of these graphical results

we have seen that decay is seen via ∗ (see Fig. 2.21) This result seems to be same here

as in the case of temperature. The Bejan number result for change in Hartman number is

observed via Fig. 2.22. This Fig. elucidates that Bejan number decreases with an enhancement

of Hartman number. Fig. 2.23 shows that Hall parameter has increasing behavior for Bejan

number. Moreover increasing impact of Bejan number is also observed for larger Grashof

number and ratio of  to Λ (see Figs. 2.24 and 2.25). Fig. 2.26 is prepared for impact of

radiation parameter. The effects here are qualitatively similar to that of temperature. In all

the above mentioned graphs for Bejan number we noticed that the values for nanoliquids with

brick shape is larger than cylindrical and platelet shapes nanomaterials.

Fig. 2.21 Fig. 2.22

 221  versus ∗ when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02

 = 10  = 10 Λ−1 = 10  = 01 1 = 001 2 = 001  = 05

  222  versus  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02

∗ = 01  = 10 Λ−1 = 10  = 01 1 = 001 2 = 001  = 05
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Fig. 2.23 Fig. 2.24

 223  versus  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02

 = 10 ∗ = 01 Λ−1 = 10  = 01 1 = 001 2 = 001  = 05

  224  versus  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02

 = 10  = 10 Λ−1 = 10 ∗ = 01 1 = 001 2 = 001  = 05

Fig. 2.25 Fig. 2.26

 225  versus Λ−1 when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02

 = 10  = 10 ∗ = 01  = 01 1 = 001 2 = 001  = 05

  226  versus  when 1 = 002 2 = 001 3 = 001 
∗ = 01  = 01  = 02
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 = 02  = 10  = 10 Λ−1 = 10  = 01 1 = 001 2 = 001

For the sake of trapping the streamlines are prepared. Figs. 2.27 (a-c) are drawn for the sake

of shape factor . It is noted that the size of trapped bolus is lower for brick shaped than others.

Figs. 2.28 (a and b) corresponding to brick shaped, Figs. 2.28 (c and d) are constructed to

cylindrical shaped and Figs. 2.28 (e and f) to platelet shaped nanofluids for change in Hartman

number. It is noted that increase in strength of magnetic field decreases trapped bolus size.

This bolus size is smaller for the fluid containing brick shaped nanomaterials. Figs. 2.29 (a and

b) are sketched to brick shaped, Figs. 2.29 (c and d) hold to cylindrical shaped and Figs. 2.29

(e and f) to platelet shaped nanofluids have been prepared for change in Hall parameter. It is

noted that with higher Hall parameter caused decrease in the size of trapped bolus. This bolus

size is smallest for brick shaped nanomaterials.

Fig. 2.27 (a) (b)
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(c)

 227  versus ∗ when 1 = 002 2 = 001 3 = 001  = 0  = 02 
∗ = 01

 = 10  = 10  = 50  = 01  = 001  = 001() ∗ = 37 () ∗ = 49 ()

∗ = 57

Fig. 2.28 (a) (b)

 228  versus  for nanofluid with brick shaped nanoparticles when 1 = 002

2 = 001 3 = 001 
∗ = 01  = 0  = 02  = 10  = 50  = 01 1 = 001

41



2 = 001 ()  = 10 ()  = 30

Fig. 2.28 (c) (d)

 228  versus  for nanofluid with cylindrical shaped nanoparticles when 1 = 002

2 = 001 3 = 001 
∗ = 01  = 0  = 02  = 10  = 50  = 01 1 = 001

2 = 001 ()  = 10 ()  = 30

Fig. 2.28 (e) (f)

 228  versus  for nanofluid with platelet shaped nanoparticles when 1 = 002
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2 = 001 3 = 001 
∗ = 01  = 0  = 02  = 10  = 50  = 01 1 = 001

2 = 001 ()  = 10 ()  = 30

Fig. 2.29 (a) (b)

 229  versus  for nanofluid with brick shaped particles when 1 = 002 2 = 001

3 = 001 
∗ = 01  = 0  = 02  = 10  = 50  = 01 1 = 001 2 = 001 ()

 = 10 ()  = 30
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(c) (d)

 229  versus  for nanofluid with cylindrical shaped nanoparticles when 1 = 002

2 = 001 3 = 001 
∗ = 01  = 0  = 02  = 10  = 50  = 01 1 = 001

2 = 001 ()  = 10 ()  = 30

Fig. 2.29 (e) (f)

 229  versus  for nanofluid with platelet shaped nanoparticles when 1 = 002
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2 = 001 3 = 001 
∗ = 01  = 0  = 02  = 10  = 50  = 01 1 = 001

2 = 001 ()  = 10 ()  = 30

2.5 Conclusions

Some key points of present study are:

• Enhancement in nanomaterial volume fraction leads to decay in velocity, temperature,
entropy generation and Bejan number.

• Hall parameter and Hartman number have opposite behaviors in all cases.

• Grashof number has increasing impact in all cases.

• The behaviors for temperature, entropy generation and Bejan numbers are qualitatively
similar.

• The temperature, Bejan number and entropy generation have highest values for brick
shaped particles and smallest for platelet shaped particles.

• Size of bolus is smaller for brick shaped nanofluids than others particles.
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Chapter 3

Investigation of entropy generation

in peristalsis of magneto-nanofluid

with second order slip conditions

3.1 Introduction

This chapter considers the peristalsis of magneto- nanoparticles suspended in water. Explicitly

34−water nanofluid is utilized for two-dimensional flow in a symmetric channel with com-
plaint walls. Uniform magnetic field is applied. Temperature is arranged for viscous dissipation.

Second order velocity and thermal slip conditions are utilized. Small Grashof number leads to

perturbation solution. Examination of entropy generation is also made in this study. Maxwell

and Hamilton-Crosser models are used. Analysis is based on the comparative study of these

two models representing the cylindrical and spherical shaped particles. Graphs for velocity,

temperature, entropy generation and Bejan numbers are plotted under the influence of sundry

variables. Streamlines are plotted for the sake of trapping phenomenon.

3.2 Flow Configuration

Peristaltic flow of an incompressible nanofluid composing of 34 and water is considered. The

channel (with width 2) is considered symmetric. Flexible walls channel placed at the positions
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 = ± where + and − denote the right and left walls respectively. The rectangular coordinates
system is settled such as the -axis lies along the channel length where the position of the -axis

is in the direction perpendicular to the -axis. The temperature of the walls is maintained at 0

Contribution due to constant applied magnetic field is taken into account. Induced magnetic

and electric fields effects are omitted. Mixed convection and viscous dissipation are studied.

Sinusoidal waves have wavelength  amplitude  and speed . The shape of wave is defined by

equation given below:

 = ± ( ) = ±
∙
+  sin

2


(− )

¸
 (3.1)

Fig. 3.1: Flow Geometry

Expressions for the considered flow configuration are:




+




= 0 (3.2)

 (



+ 




+ 




) = −


+ 

∙
2

2
+

2

2

¸
− 

2
+ ( ) ( − 0)  (3.3)

 (



+ 




+ 




) = −


+ 

∙
2

2
+

2

2

¸
 (3.4)
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() (



+ 




+ 




) = 

∙
2

2
+

2

2

¸
+ 

"
2

Ãµ




¶2
+

µ




¶2!

+

µ



+





¶2#
 (3.5)

The quantities used in the above mentioned equations are defined as:  and  for components

of velocity in the  and  directions,  for effective density,  the pressure,  the effective

viscosity,  the effective thermal conductivity,  the acceleration due to gravity, ( ) ,

() and  for effective thermal expansion, the effective heat capacity and the effective

thermal conductivity of nanofluids respectively. Here  is used to define temperature and  for

time.

The expressions of   ()  ( )     and  for the two phase models

are:

 = (1− ∗) + ∗ () = (1− ∗)() + ∗()

( ) = (1− ∗)( ) + ∗( )  =


(1− ∗)25





= 1 +

3(


− 1)∗

(


+ 2)− (


− 1)∗ 




=

 + 2 − 2∗( − )

+ 2 + ∗( − )
for Maxwell’s model and




=

 + (
∗ − 1) − (∗ − 1)∗( − )

 + (∗ − 1) + ∗( − )
for Hamilton-Crosser’s model,(3.6)

in which the symbols  and  in the subscript are used to represent the fluid and nanoparticles

whereas ∗ depicts volume fraction of nanoparticles. In this study two models of effective

thermal conductivity are used in above equation. The Hamilton- Crosser model is used for the

cylindrical shaped particles for ∗ = 6 whereas Maxwell model is used for spherical shaped

particles. Here ∗ represents the shape of nanoparticles. It is defined by 3Ψ where Ψ depicts

the sphericity of nanoparticles. Value Ψ = 05 is used for cylindrical shaped particles whereas

Ψ = 1 for spherical shaped particles.

Thermophysical properties of base fluid and nanoparticles are mentioned below in Table 1.

Table 1: Thermophysical parameters of water and nanoparticles
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 (kg m−3)  (j kg−1 K−1) 
¡
W m−1K−1

¢
 (l/k) × 10−6  (Ω . )−1

2 997.1 4179 0.613 210 0.05

34 5200 670 80.6 13 25000

The dimensionless quantities are introduced as:

∗ =



 ∗ =




 ∗ =




 ∗ =




 ∗ =




 ∗ =






∗1 =
1


 ∗2 =

2

 ∗4 =

4

2
 ∗5 =

5
2


∗ =
2


 Re =




  =

 − 0

0
 Pr =

()




 =
2

()0
  = Pr  =

( )0
2


  =

r





 =



  = −


 (3.7)

Here Re, Pr ,   and  denote the Reynolds, Prandtl, Eckert, Brinkman, Hartman

and Grashof numbers respectively.

After long wavelength and small Reynolds number assumptions one has




=

1

(1− ∗)25
3

3
+3 −21




 (3.8)




= 0 (3.9)

1
2

2
+



(1− ∗)25

µ
2

2

¶2
= 0 (3.10)

1 = 1 +
3(



− 1)∗

(


+ 2)− (


− 1)∗  3 = 1− ∗ + ∗

Ã
()

()

!


1 =
 + 2 − 2∗( − )

 + 2 + ∗( − )
for Maxwell’s model and

1 =
 + (

∗ − 1) − (∗ − 1)∗( − )

 + (∗ − 1) + ∗( − )
for Hamilton-Crosser’s model. (3.11)
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The dimensionless form of boundary conditions are:




± 1
(1− ∗)25

2

2
± 4
(1− ∗)25

3

3
= 0  ± 2




± 5

2

2
= 0 at  = ± (3.12)

∙
1

3

3
+2

3

2
+3

2



¸
 =

1

(1− ∗)25
3

3
+3 −21




 at  = ±

(3.13)

Here 1(= −∗33 ) 2(= ∗33 ) and 3(= ∗1
32 ) are the walls parameters.

Here velocity and temperature slip parameters in dimensionless form is denoted by 1 4 and

2 5 respectively.

3.2.1 Entropy generation and viscous dissipation

Viscous dissipation is represented by

Φ = 
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2

Ãµ

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
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µ
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



¶2#
 (3.14)

Dimensional form of volumetric entropy generation is


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 (3.15)

Entropy generation in dimensionless form becomes

 =

000



000


= 3

µ




¶2
+



Λ(1− )25

µ
2

2

¶2
 (3.16)


000
 =


2
0

 2
2
 Λ =

0


 (3.17)

Bejan number is:

 =


 +
 (3.18)

Here Eq. (3.15) can be split into two parts. One part comprises of entropy generation which is

due to finite temperature difference () and the other part includes the entropy generation

because of viscous dissipation effects ().
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3.3 Solution methodology

We adopted the perturbation technique for the solution. We choose the small Grashof number

as perturbation parameter. The equations and solutions for the cases of zeroth and first orders

are:

3.3.1 Zeroth order systems and solutions

1

(1− ∗)25
40
4

−21
20
2

= 0 (3.19)
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µ
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2

¶2
= 0 (3.20)
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20
2

± 4
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30
3

= 0 at  = ± (3.21)
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0 ± 2
0


± 5

20

2
= 0 at  = ± (3.23)

The solutions of stream function and temperature are
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3.3.2 First order systems and solutions

Here we have
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41
4

+3
0


−21

21
2

= 0 (3.26)
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21
2
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= 0 at  = ± (3.28)
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1
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31
3

+30 −21
1
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= 0 at  = ± (3.29)
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The solution expressions are
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Here Ci0 , 0 0 and 0 are constants that can be evaluated through Mathematica.

3.4 Discussion

This portion is devoted to the analysis of velocity, temperature, entropy generation, Bejan

number and stream lines. Each quantity is analyzed in different subsections.

3.4.1 Analysis of velocity

In this subsection behavior of velocity is discussed under the influence of different important

parameters. Fig. 3.2 represents impact of nanoparticle volume fraction for velocity profile.
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This graphs shows the decreasing behavior which is related to the fact that by increasing the

quantity of nanoparticles (as ∗ = 001 003 005 007) resistance to the fluid increases so fluid

velocity decays. Here the values for Hamilton-Crosser’s model is greater than the Maxwell’s

model. Fig. 3.3 has been plotted against Hartman number. It elucidates that velocity has

decreasing behavior for larger Hartman number ( = 2 3 4 5). Infact the Lorentz force acts

as the resistive force. Grashof number behavior can be notified through Fig. 3.4. Here we

see an increment in velocity profile by enhancing Grashof number ( = 01 − 07). It is due
to increase in buoyancy forces which facilitates the flow. Velocity profile for wall parameters

can be observed through Fig. 3.5. The results illustrate that the velocity has the increasing

behavior for elastance parameters (1 = 001 002) and (2 = 002 004) where as decreasing

behavior for the damping parameter (3 = 001 002). Obviously elastance parameters provide

less resistance so velocity increases whereas as damping resists the flow more. Slip parameters

result is demonstrated through Figs. 3.6 and 3.7. Here we have observed that the velocity

profile shows enhancement when we increase the slip parameters (1 = 01 03 05 07) and

(4 = −01 −03 −05 −07). We also noticed that this behavior is more prominent for second
order slip parameter than the first order. Further the velocity profile is noted higher for case

of Hamilton-Crosser’s than the Maxwell’s model.

Fig. 3.2 Fig. 3.3
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 32  via ∗ when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02  = 10

 = 30  = 003 1 = 001 4 = −001 2 = 001 5 = −001
  33  via  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02 

∗ = 001

 = 30  = 003 1 = 001 4 = −001 2 = 001 5 = −001

Fig. 3.4 Fig. 3.5

 34  via  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02  = 10

∗ = 01  = 30 1 = 001 4 = −001 2 = 001 5 = −001
  35  via 1 2 3 when  = 01  = 02  = 02  = 10 ∗ = 01  = 30

 = 003 1 = 001 4 = −001 2 = 001 5 = −001
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Fig. 3.6 Fig. 3.7

 36  via 1 when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02  = 10

∗ = 01  = 30  = 003 4 = −001 2 = 001 5 = −001
  37  via 4 when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02  = 10

∗ = 01  = 30  = 003 1 = 001 2 = 001 5 = −001

3.4.2 Analysis of temperature

In this subsection the temperature profile for different pertinent parameters are displayed. Fig.

3.8 provides graphs for ∗ (= 001 003 005 007) versus temperature distribution. This

graph represents that the temperature profile is decreasing function of ∗ As increase in ∗

enhances the thermal conductivity and cooling capabilities as well. Moreover the temperature

is higher for Maxwell’s model than Hamilton’s-Crosser’s expression. Fig. 3.9 plots the impact

of Hartman number on . This Fig. demonstrates decreasing behavior of temperature where

Hartman number increases from (2−5). An increment is seen for temperature profile by varying
Grashof number (as 01− 07) (see Fig. 3.10). As  increases the velocity so the mean kinetic
energy of the particles. Hence an increase in temperature. Wall parameters impact is elucidated

through Fig. 3.11. It shows the similar behavior as in case of velocity profile when we varies the

parameters as (1 = 001 002), (2 = 002 004) and (3 = 001 002). The reasons can be

linked to velocity. First and second order thermal slip parameters outcomes are seen through
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Figs. 3.12 and 3.13. For an increase of first order thermal slip (2 = 001 003 005 007) the

temperature increases throughout the channel where as for second order thermal slip parameter

(5 = −001 to −007) the temperature increases near the centre. A comparative study reveals
that the temperature remains higher for spherical shaped particles than cylindrical shaped ones.

Fig. 3.8 Fig. 3.9

 38  via ∗ when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02  = 10

 = 003  = 30 1 = 001 4 = −001 2 = 001 5 = −001
  39  via  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02  = 003

∗ = 01  = 30 1 = 001 4 = −001 2 = 001 5 = −001
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Fig. 3.10 Fig. 3.11

 310  via  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02  = 10

∗ = 01  = 30 1 = 001 4 = −001 2 = 001 5 = −001
  311  via 1 2 3 when  = 01  = 02  = 02  = 10 ∗ = 01  = 003

 = 30 1 = 001 4 = −001 2 = 001 5 = −001

Fig. 3.12 Fig. 3.13

 312  via 2 when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02  = 10

 = 003 ∗ = 01  = 30 1 = 001 4 = −001 5 = −001
  313  via 5 when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02  = 10

57



 = 003 ∗ = 01  = 30 1 = 001 4 = −001 2 = 001

3.4.3 Analysis of entropy generation and Bejan number

This subsection consists of entropy generation and Bejan number for different embedded pa-

rameters. To explain the impact of ∗ on entropy generation the Fig. 3.14 is sketched. The

results display that the entropy generation decreases with larger values of ∗ i.e. 001 003 005

007 It is due to decrease in temperature for larger nanoparticles volume fraction as entropy

of system is directly linked with temperature. Fig. 3.15 portrayed the results for Hartman

number. Through larger values of Hartman number (as 10 15 20 25) the entropy genera-

tion decreases. Grashof number has increasing impact on  as  takes the values between

(01− 07) (see Fig. 3.16). Result in this case is qualitatively similar to temperature. Entropy
generation enhances when the ratio of  to Λ enlarges (01 − 07) (see Fig. 3.17). To notify
the influence of wall parameters the Fig. 3.18 is sketched. Entropy generation is increasing

function of 1 (= 001 002) and 2 (= 002 004) whereas it is decreasing function of 3

(= 001 002) For all cases the values for Hamilton-Crosser’s model is greater than Maxwell’s

model.

For the behavior of Bejan numbers on pertinent parameters the Figs. 3.19-3.23 are drawn.

Fig. 3.19 displays the nanoparticle volume fraction impact on Bejan number. The inverse

relation is seen between Bejan number and nanoparticle volume fraction i.e. increment in ∗

(01− 07) decreases Bejan number. For Hartman number as varied between 10− 25 a decay
is noticed (see Fig. 3.20). Fig. 3.21 is drawn for results of Grashof number (01− 07) versus
Bejan number. This Fig. portrayed that the direct relation is seen between Bejan and Grashof

numbers. Bejan number enhances via enhancement in ratio of  to Λ as 01 − 07 (see Fig.
3.22). The wall parameters results are revealed by Fig. 3.23. An enhancement is seen for larger

elastance parameters 1 (= 001 002) and 2 (= 002 004) whereas decay is observed for the

case of larger damping parameter 3 (= 001 002). It can be seen that with an enhancement in

pertinent parameter the increase in Bejan number demonstrates that heat transfer irreversibility

is higher than the total irreversibility due to fluid friction and heat transfer. Moreover, in all

cases the values of Hamilton-Crosser’s model is less than Maxwell’s relation.
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Fig. 3.14 Fig. 3.15

 314  via ∗ when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02

 = 10 Λ−1 = 10  = 003  = 30 1 = 001 4 = −001 2 = 001 5 = −001
  315  via  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02

∗ = 01 Λ−1 = 10  = 003  = 30 1 = 001 4 = −001 2 = 001 5 = −001

Fig. 3.16 Fig. 3.17

 316  via  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02

∗ = 01 Λ−1 = 10  = 10  = 30 1 = 001 4 = −001 2 = 001 5 = −001
  317  via Λ−1 when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02
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∗ = 01  = 10  = 003  = 30 1 = 001 4 = −001 2 = 001 5 = −001

Fig. 3.18 Fig. 3.19

 318  via 1 2 3 when  = 01  = 02  = 02 ∗ = 01 Λ−1 = 10  = 10

 = 003  = 30 1 = 001 4 = −001 2 = 001 5 = −001
  319  via ∗ when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02

 = 10 Λ−1 = 10  = 003  = 30 1 = 001 4 = −001 2 = 001 5 = −001

Fig. 3.20 Fig. 3.21

 320  via  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02

∗ = 01 Λ−1 = 10  = 003  = 30 1 = 001 4 = −001 2 = 001 5 = −001
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 321  via  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02

∗ = 01 Λ−1 = 10  = 10  = 30 1 = 001 4 = −001 2 = 001 5 = −001

Fig. 3.22 Fig. 3.23

 322  via Λ−1 when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02

∗ = 01  = 10  = 003  = 30 1 = 001 4 = −001 2 = 001 5 = −001
  323  via 1 2 3 when  = 01  = 02  = 02 ∗ = 01 Λ−1 = 10

 = 003  = 30 1 = 001 4 = −001 2 = 001 5 = −001

3.4.4 Streamlines

The streamlines are plotted for description of trapping. Fig. 3.24 (a) and (b) displayed the

impact of Hartman number for Maxwell model whereas Fig. 3.24 (c) and (d) portrayed the

influence for Hamilton Crosser model. For both cases the size of trapped bolus increases with

higher values of Hartman number ( = 10 20). Figs. 3.25 and 3.26 (a) -(d) are sketched

for behavior of first and second order slip parameters. These streamlines indicate that trapped

bolus size enhances via increase in first order slip as (001 003) and second order slip parameter

as (−001 −003). Walls parameters impact for Maxwell model can be observed via Fig. 3.27
(a)-(d). However Figs. 3.27 (e)-(h) are for Hamilton-Crosser model. Both models show same

behavior for these parameters i.e. trapped bolus size increases for 1 (= 07 09) and 2 (= 04

06) whereas decrease is noticed for 3 (= 02 05)
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Fig. 3.24 (a) (b)

(c) (d)

 324  via  for Maxwell model when 1 = 002 2 = 001 3 = 001  = 0  = 02

∗ = 01  = 003  = 30 1 = 001 4 = −001 2 = 001 5 = −001 ()  = 10 ()

 = 20

  324  via  for Hamilton- Crosser model when 1 = 002 2 = 001 3 = 001  = 0

 = 02 ∗ = 01  = 003  = 30 1 = 001 4 = −001 2 = 001 5 = −001 ()
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 = 10 ()  = 20

Fig. 3.25 (a) (b)

(c) (d)

 325  via 1 for Maxwell model when 1 = 002 2 = 001 3 = 001  = 0  = 02

∗ = 01  = 10  = 003  = 30 4 = −001 2 = 001 5 = −001 () 1 = 001 ()
1 = 003

  325  via 1 for Hamilton- Crosser model when 1 = 002 2 = 001 3 = 001  = 0

 = 02 ∗ = 01  = 10  = 003  = 30 4 = −001 2 = 001 5 = −001 ()
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1 = 001 () 1 = 003

Fig. 3.26 (a) (b)

(c) (d)

 326  via 4 for Maxwell model when 1 = 002 2 = 001 3 = 001  = 0  = 02

∗ = 01  = 10  = 003  = 30 1 = 001 2 = 001 5 = −001 () 4 = −001 ()
4 = −003

  326  via 4 for Hamilton- Crosser model when 1 = 002 2 = 001 3 = 001  = 0
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 = 02 ∗ = 01  = 10  = 003  = 30 1 = 001 2 = 001 5 = −001 ()
4 = −001 () 4 = −003

Fig. 3.27 (a) (b)

(c) (d)
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(e) (f)

(g) (h)

 327  via 1 2 3 for Maxwell model when  = 0  = 02 ∗ = 01  = 10

 = 003  = 30 1 = 001 4 = −001 2 = 001 5 = −001 () 1 = 07 2 = 04
3 = 02 () 1 = 09 2 = 04 3 = 02 () 1 = 07 2 = 06 3 = 02 () 1 = 07

2 = 04 3 = 05

  327  via 1 2 3 for Hamilton- Crosser model when  = 0  = 02 ∗ = 01

 = 10  = 003  = 30 1 = 001 4 = −001 2 = 001 5 = −001 () 1 = 07
2 = 04 3 = 02 () 1 = 09 2 = 04 3 = 02 () 1 = 07 2 = 06 3 = 02 ()
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1 = 07 2 = 04 3 = 05

3.5 Conclusions

The key findings of this chapter are:

• Enhancement in velocity is seen for both first order and second order velocity slip in both
models whereas reduction is observed for case of nanoparticle volume fraction.

• The values in Hamilton-Crosser model remain higher than Maxwell’s model especially
near the centre of channel for the case of velocity profile.

• Grashof and Hartman numbers for velocity have opposite effect.

• Results obtained indicate that temperature in Maxwell’s model exceed than Hamilton-
Crosser model.

• Enhancement is observed in entropy generation number for larger Λ−1 and Grashof
number. Moreover inverse behavior of entropy generation number is obtained for the case

of Hartman number and nanoparticle volume fraction.

• Bolus sizes increases in trapping phenomenon for the case of both first and second order
velocity slip parameters.

• Bolus size reduces for 3 and it enhances for 1 and 2 in both models.
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Chapter 4

Modeling and analysis of peristalsis

of hybrid nanofluid with entropy

generation

4.1 Introduction

This chapter intends to explore the peristaltic transport of rotating fluid in a channel. The

channel is considered symmetric with flexible walls and porous medium. In this analysis hybrid

nanofluids consisting of titanium oxides and copper particles. Water is used as the base fluid.

MHD and Hall effects are employed in this problem. Formulation of energy equation is based

on radiation and non uniform heat source or sink. Convective conditions are utilized. Ther-

modynamics second relation is employed for entropy generation. Maxwell-Garnetts model of

thermal conductivity is employed. Numerical analysis is carried out using NDSolve of Mathe-

matica. Graphs are plotted for the axial velocity, secondary velocity, temperature and entropy

generation. Bar graphs are made for the analysis of heat transfer rate at the wall. Streamlines

are displayed for trapping phenomenon. This study declares that enhancement in rotation pa-

rameter caused increase in secondary velocity. Moreover higher values of nanoparticle volume

fraction caused decay in fluid velocity, temperature and entropy. This study further disclosed

that heat transfer rate by higher volume fraction of nanoparticles enhances and more porous
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structure lead to enhancement in fluid velocity, temperature and entropy.

4.2 Problem modeling

Here we consider the peristalsis of rotating fluid in a symmetric channel (see Fig. 4.1). The

walls of channel have flexible characteristics. Porous medium is saturated by the fluid. MHD

with Hall effects and Joule heating is accounted. Non-uniform heat source and sink parameter

is present. The channel and fluid are in rigid body rotation. The hybrid nanofluid comprising of

2 and  nanoparticles with water as base liquid is utilized. The selection of the coordinates

are considered in such a way that x-axis is taken along the flow direction whereas z-axis normal

to it. The walls of channel are taken at temperature 1 and 0 respectively. Thermal radiation

is also present. Rotation is about z-axis with the angular frequency Ω Peristaltic wave of

involuntary contraction and expansion is responsible for the fluid flow. Wave shape is defined

as follows:

 = ± ( ) = ±
∙
+  sin

2


(− )

¸
 (4.1)

where  represents the width of channel,  the wave amplitude,  the wavelength and  wave

speed.

Fig. 4.1: Schematic Diagram

Related equations satisfy




+




= 0 (4.2)
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

∙



− 2Ω

¸
= −


+ 

∙
2

2
+

2

2

¸
− 

1
+


2
0

1 + (4)2
(−+4)  (4.3)



∙



+ 2Ω

¸
= −


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∙
2

2
+

2

2

¸
− 

1
− 

2
0

1 + (4)2
( +4)  (4.4)



∙




¸
= −


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∙
2

2
+

2

2

¸
− 

1
 (4.5)

()

∙
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¸
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¸
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

¶2#
+0( − 0) +

 (
2 + 2 + 2)

1

−


+


2
0

1 + (4)2

¡
2 + 2

¢
 (4.6)

The modified pressure is given by

 = ̂− 1
2
Ω2(2 + 2) (4.7)

The velocity components in   and  directions are given by [(  ) (  ) (  )] 

denotes the temperature whereas  (=
−4∗
3∗

4


) represents the radiative heat flux. The 

for the density,  viscosity, () the heat capacity and  the thermal conductivity

of hybrid nanofluid. These definitions are

 = (1− ( + 2)) +  + 22 

() = (1− ( + 2))() + ()+2()2 

 =


(1− ( + 2))
25






=

(+2
2)

(+2
)

+ 2 − 2( + 2) + 2( + 22)

(+2
2)

(+2
)

+ 2 + ( + 2) − ( + 22)





= 1 +

3
³
+2

2


−  − 2

´
³
+2


+ 2
´
−
³
+2

2


−  − 2

´  (4.8)

Numerical values of hybrid nanofluid are given in Table 1.
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Table 1: Thermophysical parameters of water and nanoparticles [190]

 (kg m−3)  (j kg−1 K−1) 
¡
W m−1K−1

¢
 (Ω)−1

2 997.1 4179 0.613 0.05

 8933 765 401 5.96×107

2 4250 686.2 8.9538 1×10−12

The boundary conditions for the considered flow are

 = 0 at  = ± (4.9)

 = 0 at  = ± (4.10)

∙
−∗ 

3

3
+∗

3

2
+ ∗1

2



¸
 = 

∙
2

2
+

2

2

¸
− 

1
+


2
0

1 + (4)2
(−+4)

−
£


− 2Ω¤

at  = ±
(4.11)





=

⎧⎨⎩ −1( − 1)

−2(0 −  )

⎫⎬⎭ at  = ± (4.12)

in which  (i=1, 2) are heat transfer coefficients, 
∗ ∗ and ∗1 are the compliant walls

coefficients.

The quantities in dimensionless form are given by
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


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
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 (4.13)

After using the non-dimensional parameters and utilizing stream function and lubrication ap-

proach we arrive at
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= 2

0
3 +2
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1 + (4)2

µ
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¶
 (4.14)
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


= −2 0

3
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where

1 =
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where the non-dimensional parameters are


0
=

ReΩ


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16∗ 30
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  =
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() (1 − 0)
  = Pr  =

0
2


 (4.19)

Here 
0
denotes the Taylor number,  the radiation parameter,  the Hartman number, 

the Hall parameter, Pr the Prandtl number,  the Eckert number,  the Brinkman number

and  the heat source or sink parameter. Note that asterisks have been omitted for brevity.
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The conditions now become




= 0  = 0 at  = ±
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(4.21)

in which1 (= 1 ) and2 (= 2 ) are the Biot numbers whereas the wall parameters

1(= −∗33 ) 2(= ∗33 ) and 3(= ∗1
32 ) are respective elastance and

damping coefficients.

4.2.1 Entropy generation

Entropy generation is given by
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 =



 2

Ãµ




¶2
+

µ




¶2!
+

1

 2

16∗ 30
3∗

µ




¶2
+

 (
2 + 2 +2)

1
+
Φ



+
1



µ


2
0

1 + (4)2

¡
2 + 2

¢¶
+

1


(0( − 0))  (4.22)

Expression for viscous dissipation is

Φ = 
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In dimensionless form
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
000
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 2
2

 Λ =
1 − 0


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4.3 Analysis

Here we have adopted the NDSolve techniques of Mathematica 9.0 for the solutions. The com-

putation has been carried out by varying the value in the following range: nanoparticle volume

fraction (0.01-0.08), Taylor number (0.1-4.0), Hartman number (0.5-3.5), porosity parameter

(1.0-4.0), Hall parameter (0.1-4.0), radiation parameter (0.1-3.5), Brinkman number (1.0-4.0)

source parameter (0.1-1.0), Biot numbers (4.0-10.0) and wall parameters (0.01-0.3).

4.3.1 Velocity

This subsection has been arranged for velocity. The subsections are arranged here to avoid

complexity.

Axial velocity

This subsection contains information about the results of axial velocity via nanoparticle volume

fraction, Taylor number, Hartman number, porosity parameter, Hall parameter and wall para-

meters. Increasing values of nanoparticle volume fraction enhance the resistance to flow. It is

due to the fact that shear rate increases by enhancing the nanoparticle volume fraction. This

may lead to decrease in axial velocity. Similar behavior is captured here for hybrid nanofluid

through Fig. 4.2. Fig. 4.3 is made for the influence of Taylor number on axial velocity. As

rotation caused the fluid motion in the secondary direction. It leads to decay the velocity in

the axial direction. Hartman number effect can be seen via Fig. 4.4. Higher value of it caused

decrease in the axial velocity as fluid offers more resistance because of Lorentz force. Fig. 4.5
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portrayed the effect of porosity parameter on axial velocity. As more pores assist the velocity

of fluid. So enhancement is observed. Fig. 4.6 presented the Hall parameter influence on ve-

locity. It leads to enhancement in velocity profile. Moreover as elastance parameters provide

less obstacles to fluid flow so axial velocity enhances for 1 and 2 whereas damping resists

the motion of fluid so velocity decays against 3 (see Fig. 4.7)

Fig. 4.2 Fig. 4.3

 42 Axial velocity distribution for  and 2 when 1 = 003 2 = 003 3 = 001


0
= 01  = 01  = 02  = 02  = 10  = 10  = 10 1 = 4 2 = 6  = 30

1 = 1  = 1

  43 Axial velocity distribution for 
0
when 1 = 003 2 = 003 3 = 001  = 01

 = 02  = 02  = 2 = 001  = 10  = 10  = 10 1 = 4 2 = 6  = 30

1 = 1  = 1
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Fig. 4.4 Fig. 4.5

 44 Axial velocity distribution for  when 1 = 003 2 = 003 3 = 001 
0
= 01

 = 01  = 02  = 02  = 2 = 001  = 10  = 10 1 = 4 2 = 6  = 30

1 = 1  = 1

  45 Axial velocity distribution for 1 when 1 = 003 2 = 003 3 = 001 
0
= 01

 = 01  = 02  = 02  = 2 = 001  = 10  = 10  = 10 1 = 4 2 = 6

 = 30  = 1

Fig. 4.6 Fig. 4.7

 46 Axial velocity distribution for  when 1 = 003 2 = 003 3 = 001 
0
= 01
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 = 01  = 02  = 02  = 2 = 001  = 10  = 10 1 = 4 2 = 6  = 30

1 = 1  = 1

  47 Axial velocity distribution for 1 2 and 3 when 
0
= 01  = 01  = 02  = 02

 = 2 = 001  = 10  = 10  = 10 1 = 4 2 = 6  = 30 1 = 3  = 1

Secondary velocity

This subsection includes the graphical interpretation of secondary velocity that has been induced

by the rotation ΩGraphs are plotted for nanoparticle volume fraction, Taylor number, Hartman

number, porosity parameter, Hall parameter and wall parameters on secondary velocity. Fig.

4.8 depicts influence of nanoparticle volume fraction on  Qualitatively similar impact for

secondary velocity is viewed as for axial velocity. Resistance produced by adding nanoparticles

slows down the secondary velocity as well. As rotation is responsible to induce this secondary

velocity therefore an increase in rotation enhances  (see Fig. 4.9). Hartman number effect for

 is similar to  (see Fig. 4.10). Here fluid also slows down in view of Lorentz force. Fig. 4.11

displayed the results for 1 which is related to porosity parameter. Enhancement in 1 leads to

increase of secondary velocity. Here pores also assist the secondary velocity. Fig. 4.12 presented

the increasing influence of Hall parameter on secondary velocity. Fig. 4.13 is constructed for

wall parameters. It is clearly seen that the elastance parameters decrease the secondary velocity

whereas opposite holds for damping.

Fig. 4.8 Fig. 4.9
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 48 Secondary velocity distribution for  and 2 when 1 = 00002 2 = 00001

3 = 001 
0
= 01  = 01  = 02  = 02  = 10  = 10  = 10 1 = 4 2 = 6

 = 30 1 = 1  = 1

  49 Secondary velocity distribution for 
0
when 1 = 00002 2 = 00001 3 = 001

 = 01  = 02  = 02  = 2 = 001  = 10  = 10  = 10 1 = 4 2 = 6

 = 30 1 = 1  = 1

Fig. 4.10 Fig. 4.11

 410 Secondary velocity distribution for  when 1 = 00002 2 = 00001 3 = 001


0
= 01  = 01  = 02  = 02  = 2 = 001  = 10  = 10 1 = 4 2 = 6

 = 30 1 = 1  = 1

  411 Secondary velocity distribution for 1 when 1 = 00002 2 = 00001 3 = 001


0
= 01  = 01  = 02  = 02  = 2 = 001  = 10  = 10  = 10 1 = 4

2 = 6  = 30  = 1
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Fig. 4.12 Fig. 4.13

 412 Secondary velocity distribution for  when 1 = 00002 2 = 00001 3 = 001


0
= 01  = 01  = 02  = 02  = 2 = 001  = 10  = 10 1 = 4 2 = 6

 = 30 1 = 1  = 1

  413 Secondary velocity distribution for 1 2 and 3 when 
0
= 01  = 01  = 02

 = 02  = 2 = 001  = 10  = 10  = 10 1 = 4 2 = 6  = 30 1 = 1

 = 1

4.3.2 Temperature

Temperature containing hybrid nanoparticles are studied in this subsection. Fig. 4.14 is pre-

pared to observe the change in temperature via increasing values of volume fraction. Addition

of nanoparticles in base fluid enhances the heat transfer ability of fluid. It leads to decay the

temperature. Taylor number effect on  is checked through Fig. 4.15. 
0
leads to decrease

the temperature. Fig. 4.16 witnessed the result for Hartman number  Temperature en-

hancement is possible here. This is possible in view of Joule heating. Fig. 4.17 reveals the

radiation parameter effect on temperature. Decay is observed clearly. Larger values of poros-

ity parameter lead to enhance the temperature (see Fig. 4.18). Physical reasoning is directly

related to velocity of fluid. Fig. 4.19 shows Brinkman number impact which is responsible for

an enhancement of  Brinkman number is directly related to viscous dissipation which results
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in increase of temperature. Fig. 4.20 depicted the results for Hall parameter on temperature.

Enhancement is observed here. The results can be related with velocity. Heat source parameter

effect on temperature can be viewed via Fig. 4.21. Obviously heat source parameter leads to

enhancement in  Figs. 4.22 and 4.23 displayed the results for Biot numbers. In both cases the

temperature profile decays. Fig. 4.24 elucidates the wall parameters influence on  Damping

coefficient leads to decrease the temperature whereas opposite is seen for elastance variable.

Fig. 4.14 Fig. 4.15

 414 Temperature distribution for  and 2 when 1 = 03 2 = 03 3 = 001


0
= 10  = 01  = 02  = 02  = 10  = 10  = 05 1 = 8 2 = 10  = 30

1 = 1  = 1

  415 Temperature distribution for 
0
when 1 = 03 2 = 03 3 = 001  = 01

 = 02  = 02  = 2 = 001  = 10  = 10  = 05 1 = 8 2 = 10

 = 30 1 = 1  = 1
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Fig. 4.16 Fig. 4.17

 416 Temperature distribution for  when 1 = 03 2 = 03 3 = 001 
0
= 10

 = 01  = 02  = 02  = 2 = 001  = 10  = 05 1 = 8 2 = 10  = 30

1 = 1  = 1

  417 Temperature distribution for  when 1 = 03 2 = 03 3 = 001 
0
= 10

 = 01  = 02  = 02  = 2 = 001  = 10  = 10  = 05 1 = 8 2 = 10

 = 30 1 = 1

Fig. 4.18 Fig. 4.19

 418 Temperature distribution for 1 when 1 = 03 2 = 03 3 = 001 
0
= 10
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 = 01  = 02  = 02  = 2 = 001  = 10  = 10  = 05 1 = 8 2 = 10

 = 30  = 1

  419 Temperature distribution for  when 1 = 03 2 = 03 3 = 001 
0
= 10

 = 01  = 02  = 02  = 2 = 001  = 10  = 10  = 05 1 = 8 2 = 10

1 = 1  = 1

Fig. 4.20 Fig. 4.21

 420 Temperature distribution for  when 1 = 03 2 = 03 3 = 001 
0
= 10

 = 01  = 02  = 02  = 2 = 001  = 10  = 05 1 = 8 2 = 10  = 30

1 = 1  = 1

  421 Temperature distribution for  when 1 = 03 2 = 03 3 = 001 
0
= 10

 = 01  = 02  = 02  = 2 = 001  = 10  = 10 1 = 8 2 = 10  = 30

1 = 1  = 1
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Fig. 4.22 Fig. 4.23

 422 Temperature distribution for 1 when 1 = 03 2 = 03 3 = 001 
0
= 10

 = 01  = 02  = 02  = 2 = 001  = 10  = 10  = 05 2 = 10  = 30

1 = 1  = 1

  423 Temperature distribution for 2 when 1 = 03 2 = 03 3 = 001 
0
= 10

 = 01  = 02  = 02  = 2 = 001  = 10  = 10  = 05 1 = 8  = 30

1 = 1  = 1

Fig. 4.24

 424 Temperature distribution for 1 2 and 3 when 
0
= 10  = 01  = 02
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 = 02  = 2 = 001  = 10  = 10  = 05 1 = 8 2 = 10  = 30 1 = 1

 = 1

4.3.3 Entropy generation analysis

Figs. 4.25-4.32 are plotted in this subsection for the analysis of entropy of system. Fig. 4.25 is

sketched for the nanoparticle volume fraction onAn increase in nanoparticle volume fraction

reduces the temperature and hence entropy. Similar reasoning is satisfied for the Taylor number

(see Fig. 4.26). Fig. 4.27 provides the results of 1 on entropy. In this case the porosity is

directed linked with temperature. Fig. 4.28 clearly indicates that viscous dissipation leads to

an increase in  and  Fig. 4.29 states that Hartman number increases the entropy due to

Joule heating. Heat source parameter leads to increase in entropy (see Fig. 4.30). Fig. 4.31

presents the Hall parameter influence. Enhancement is noticed in this case. Fig. 4.32 displays

that with ( = 1 2) the entropy enlarges whereas 3 leads to decrease the entropy.

Fig. 4.25 Fig. 4.26

 425 Entropy generation for  and 2 when 1 = 002 2 = 001 3 = 001


0
= 01  = 01  = 02  = 02  = 10  = 10  = 05 1 = 8 2 = 10  = 30

1 = 1  = 1 Λ = 05

  426 Entropy generation for 
0
when 1 = 002 2 = 001 3 = 001  = 01  = 02

 = 02  = 2 = 001  = 10  = 10  = 05 1 = 8 2 = 10  = 30 1 = 1
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 = 1 Λ = 05

Fig. 4.27 Fig. 4.28

 427 Entropy generation for 1 when 1 = 002 2 = 001 3 = 001 
0
= 01  = 01

 = 02  = 02  = 2 = 001  = 10  = 10  = 05 1 = 8 2 = 10

 = 30  = 1 Λ = 05

  428 Entropy generation for  when 1 = 002 2 = 001 3 = 001 
0
= 01  = 01

 = 02  = 02  = 2 = 001  = 10  = 10  = 05 1 = 8 2 = 10 1 = 1

 = 1 Λ = 05

Fig. 4.29 Fig. 4.30
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 429 Entropy generation for  when 1 = 002 2 = 001 3 = 001 
0
= 01  = 01

 = 02  = 02  = 2 = 001  = 10  = 05 1 = 8 2 = 10  = 30 1 = 1

 = 1 Λ = 05

  430 Entropy generation for  when 1 = 002 2 = 001 3 = 001 
0
= 01  = 01

 = 02  = 02  = 2 = 001  = 10  = 10 1 = 8 2 = 10  = 30 1 = 1

 = 1 Λ = 05

Fig. 4.31 Fig. 4.32

 431 Entropy generation for  when 1 = 002 2 = 001 3 = 001 
0
= 01  = 01

 = 02  = 02  = 2 = 001  = 10  = 30  = 05 1 = 8 2 = 10 1 = 1

 = 1 Λ = 05

  432 Entropy generation for 1 2 and 3 when 
0
= 01  = 01  = 02  = 02

 = 2 = 001  = 10  = 10  = 05 1 = 8 2 = 10  = 30 1 = 1  = 1

Λ = 05

4.3.4 Heat transfer rate

In this subsection we have arranged the bar graphs to analyze the heat transfer rate at the wall.

Fig. 4.33 shows that heat transfer rate at the wall has larger values as the volume fraction of

nanoparticles enlarges. Since the enhancement in nanoparticles volume fraction increases the

cooling capabilities so enhance the heat transfer rate higher. Fig. 4.34 is plotted against Taylor
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number effect. Rotation leads to decrease the heat transfer rate. Hartman number increased

the heat transfer rate at the wall (see Fig. 4.35). Fig. 4.36 portrayed the effect of porosity

parameter on heat transfer rate. An increase in pores enhances the temperature. It means

that there is less heat transfer rate at the wall. Fig. 4.37 demonstrated increasing value of

heat transfer rate at the wall with higher values of Hall parameter. Fig. 4.38 depicted the heat

transfer rate for Brinkman number. Heat transfer rate at wall increases for higher Brinkman

number. Fig. 4.39 is constructed to see the influence of  on heat transfer rate. Heat transfer

rate decreases with higher radiation parameter.

Fig. 4.33

 433 Heat transfer rate at the wall (−1
0
()) for ∗(= + 2) when 1 = 003

2 = 003 3 = 001 
0
= 20  = 01  = 0  = 02  = 20  = 20  = 10 1 = 8

2 = 10  = 30 1 = 3  = 05
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Fig. 4.34

 434 Heat transfer rate at the wall (−1
0
()) for 

0
when 1 = 003 2 = 003

3 = 001  = 01  = 0  = 02  = 2 = 001  = 20  = 20  = 10 1 = 8

2 = 10  = 30 1 = 3  = 05

Fig. 4.35
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 435 Heat transfer rate at the wall (−1
0
()) for  when 1 = 003 2 = 003

3 = 001 
0
= 20  = 01  = 0  = 02  = 2 = 001  = 01  = 10 1 = 8

2 = 10  = 30 1 = 3  = 05

Fig. 4.36

 436 Heat transfer rate at the wall (−1
0
()) for 1 when 1 = 003 2 = 003

3 = 001 
0
= 20  = 01  = 0  = 02  = 2 = 001  = 20  = 20  = 10

1 = 8 2 = 10  = 30  = 05
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Fig. 4.37

 437 Heat transfer rate at the wall (−1
0
()) for  when 1 = 003 2 = 003

3 = 001 
0
= 20  = 01  = 0  = 02  = 2 = 001  = 20  = 10 1 = 8

2 = 10  = 30 1 = 3  = 05

Fig. 4.38
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 438 Heat transfer rate at the wall (−1
0
()) for  when 1 = 003 2 = 003

3 = 001 
0
= 20  = 01  = 0  = 02  = 2 = 001  = 20  = 20  = 10

1 = 8 2 = 10 1 = 3  = 05

Fig. 4.39

 439 Heat transfer rate at the wall (−1
0
()) for  when 1 = 003 2 = 003

3 = 001 
0
= 20  = 01  = 0  = 02  = 2 = 001  = 20  = 20  = 10

1 = 8 2 = 10  = 30 1 = 3

4.3.5 Streamlines

Trapping phenomenon has been analyzed in this subsection. Streamlines has been plotted for

this purpose. Fig. 4.40 (a) and (b) describe the impact of volume fraction for hybrid nanofluid.

In is seen that the size of trapped bolus increases as the volume fraction of nanoparticles

enhances. Fig. 4.41 (a) and (b) show the bolus results for increasing values of Taylor number

for hybrid nanofluid. In this case bolus sizes decrease for increasing values of Taylor number.

Porosity parameter effect on streamlines can be seen via Fig. 4.42 (a) and (b) for hybrid

nanofluid. Bolus sizes show a decrease for increasing values of 1 Figs. 4.43, 4.44 (a) and (b)

represent the impact of Hartman number and Hall parameter on bolus size. Decrease is noticed

in both cases.
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Fig. 4.40 (a) (b)

 440  via ∗ for hybrid nanofluid when 1 = 0003 2 = 0003 3 = 001 
0
= 001

 = 0  = 02  = 10  = 10  = 10 1 = 4 2 = 6  = 30 1 = 1  = 1 ()

 = 2 = 005 ()  = 2 = 009

Fig. 4.41 (a) (b)
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 441  via 
0
for hybrid nanofluid when 1 = 0003 2 = 0003 3 = 001  = 0

 = 02  = 10  = 10  = 10  = 2 = 001 1 = 4 2 = 6  = 30 1 = 1

 = 1 () 
0
= 01 () 

0
= 02

Fig. 4.42 (a) (b)

 442  via 1 for hybrid nanofluid when 1 = 0003 2 = 0003 3 = 001 
0
= 01

 = 0  = 02  = 10  = 10  = 10  = 2 = 001 1 = 4 2 = 6  = 30
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 = 1 () 1 = 1 () 1 = 2

Fig. 4.43 (a) (b)

 443  via  for hybrid nanofluid when 1 = 0003 2 = 0003 3 = 001 
0
= 01

 = 0  = 02  = 10  = 10  = 2 = 001 1 = 4 2 = 6  = 30 1 = 1

 = 1 ()  = 1 ()  = 2

Fig. 4.44 (a) (b)
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 444  via  for hybrid nanofluid when 1 = 0003 2 = 0003 3 = 001 
0
= 01

 = 0  = 02  = 10  = 10  = 2 = 001 1 = 4 2 = 6  = 30 1 = 1

 = 1 ()  = 1 ()  = 2

4.4 Conclusions

In this study we scrutinized the hybrid nanofluid in a rotating frame. MHD and Hall effects are

incorporated in the momentum equation. Energy equation includes non-uniform heat source

or sink parameter, radiation and Joule heating. Porous medium is considered in this problem.

Main results of this analysis are concluded as follows.

• Non-Uniform heat source parameter leads to increase in temperature and entropy.

• Hall parameter and Hartman number effects on temperature and entropy are qualitatively
similar.

• Nanoparticle volume fraction enhancement caused decay in temperature, axial and sec-
ondary velocities and entropy.

• Porosity parameters gives rise to axial and secondary velocities, temperature and entropy.

• Enhancement in the rotation caused increase in the secondary velocity whereas opposite
behavior has been observed for axial velocity, temperature and entropy generation.

• Heat transfer rate enhances when we increase the nano particle volume fraction.

• Size of bolus increases for larger volume fraction of nanoparticles whereas it reduces for
Taylor and porosity parameters.
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Chapter 5

Entropy generation in peristaltic

flow of Williamson nanofluid

5.1 Introduction

In this chapter the influences of an inclined magnetic field and Joule heating on peristalsis of

Williamson nanofluid in a complaint walls channel are examined. Analysis is presented when

no-slip conditions for velocity, temperature and concentration are no longer hold. Entropy gen-

eration is discussed. Formulated problem is numerically solved for large wavelength and small

Reynolds number. Main emphasis is given to the outcomes of velocity, temperature, concen-

tration, heat transfer coefficient and entropy generation. The results are discussed graphically.

5.2 Formulation

We examine flow of an electrically conducting Williamson nanofluid in a symmetric channel of

width 2. The channel walls at  = ± are compliant in nature. Here  =  corresponds to

the upper wall whereas the lower wall is taken at  = − (see Fig. 5.1). Salient features of
Brownian movement and thermophoresis are accounted. Here -axis is taken along the channel

whereas -axis being normal to . Temperature and concentration of the upper and lower walls

are maintained 1 0 and 1, 0 respectively. The sinusoidal waves traveling along the channel
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walls are responsible for mechanism of peristalsis. Mathematical shape of such waves [172]:

 = ± ( ) = ±
∙
+  sin

2


(− )

¸
 (5.1)

Here  is the amplitude of wave,  the wavelength,  the speed of wave and  the time.

Fig. 5.1: Schematic diagram

An inclined magnetic field with inclination  is taken. Induced magnetic field for low magnetic

Reynolds number is not accounted. Electric field is absent. Then [172]:

B = [0 sin0 cos 0]  (5.2)

where 0 represents magnetic field strength. Lorentz force (F = J×B) now yields [82]:

J×B = £−20 cos( cos−  sin) 20 sin( cos−  sin) 0
¤
 (5.3)

Here  J(=(V×B)) and V(= [  0]) are used to signify the electrical conductivity, current
density and velocity of the fluid. The expressions which can govern the flow are [172]:




+




= 0 (5.4)




+ 




+ 




= − 1






+
1






+
1






− 1


20 cos( cos−  sin) (5.5)
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


+ 




+ 




= − 1






+
1






+
1






+
1


20 sin( cos−  sin) (5.6)

where  depicts the pressure,  the component of extra stress tensor and  the fluid density.

Expressions of temperature and concentration satisfy [172]:




+ 




+ 




= ∗

∙
2

2
+

2

2

¸
+

1

()

∙





+ 

µ



+





¶
+ 





¸
+

"


µ







+









¶
+





Ãµ




¶2
+

µ




¶2!#
+

1

()
20( cos−  sin)2 (5.7)




+ 




+ 




= 

µ
2

2
+

2

2

¶
+





µ
2

2
+

2

2

¶
 (5.8)

Here ∗ denotes the thermal diffusivity and  the specific heat. Moreover    and

 define the respective Brownian motion coefficient, thermophoretic diffusion coefficient and

mean temperature of nanofluid.  (= ()  () ) is the ratio of specific heat capacity for

nanomaterial and fluid. Symbols  and  are used for temperature and concentration of fluid.

For Williamson liquid, the extra stress tensor S satisfies [82, 84]:

S = [∞ + (0 + ∞)(1− Γ̇)−1]A1 (5.9)

where 0 and ∞ correspond to zero shear rate and infinite shear rate viscosities and Γ the

time constant. Here ̇ and A1 are

̇ =

r
1

2
Π (5.10)

A1 = gradV+ (gradV)
  (5.11)

Π = (A21) (5.12)

Assuming that ∞ = 0 and Γ̇  1 then expression of stress tensor for Williamson fluid becomes

S = 0[(1 + Γ̇)]A1 (5.13)

For Γ = 0 the above expression reduces to incompressible viscous fluid. From Eq. (5.13) we
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have

 = 20(1 + Γ̇)



 (5.14)

 = 0(1 + Γ̇)

µ



+





¶
 (5.15)

 = 20(1 + Γ̇)



 (5.16)

̇ =

s
2

µ




¶2
+ 2

µ




¶2
+

µ



+





¶2
 (5.17)

The boundary conditions for problem are :

± 1 = 0 at  = ± (5.18)

∙
−∗ 

3

3
+∗

3

2
+ ∗1

2



¸
 =




+




− 

∙



+ 




+ 





¸
−20 cos( cos−  sin) at  = ±(5.19)

 ± 2



=

⎧⎨⎩ 1

0

⎫⎬⎭ at  = ± (5.20)

 ± 3



=

⎧⎨⎩ 1

0

⎫⎬⎭ at  = ± (5.21)

In above equations ∗, ∗, and ∗1 represent the elastic tension, mass per unit area and the

coefficient of viscous damping respectively. Extra stress tensor components are given by , 

and  whereas 1 2 and 3 denote slip parameters for velocity, temperature and concentration

respectively.

We set the dimensionless quantities as

∗ =



 ∗ =




 ∗ =




 ∗ =




 ∗ =




 ∗ =






∗ =


0
 ̇∗ = ̇




 ∗ =

2

0
  = Γ




  =

 − 0

1 − 0


 =
 − 0

1 − 0
  =




  = −


 (5.22)
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After utilizing the non-dimensional quantities we get the following equations and boundary

conditions:

Re

∙

2


+ 





2


− 





2

2

¸
= −


+




+



−2 cos(cos




+




sin)

(5.23)

Re 

∙
−2 

2


− 2





2

2
− 2

2



¸
= −


+2




+




+2 sin(cos




+




sin)

(5.24)

RePr

∙




+ 








− 









¸
=

∙
2
2

2
+

2

2

¸
+

∙


2


+ 

µ
2

2
− 2

2

2

¶
− 

2



¸
+Pr

µ
2







+









¶
+Pr

Ã
2
µ




¶2
+

µ




¶2!

+2

µ



cos+ 




sin

¶2
 (5.25)

Re

µ




+








− 









¶
=

µ
2
2

2
+

2

2

¶
+





µ
2
2

2
+

2

2

¶
 (5.26)

 = 2(1 +̇)
2


 (5.27)

 = (1 +̇)
2

2
 (5.28)

 = −2(1 +̇)
2


 (5.29)

with

̇ =

s
2

µ

2



¶2
+

µ
−2

2

2
+

2

2

¶2
+ 2

µ
− 2



¶2
 (5.30)




± 1 = 0, at  = ± = ±(1 +  sin 2 (− )) (5.31)
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∙
1

3

3
+2

3

2
+3

2



¸
 = −Re

∙

2


+ 





2


− 





2

2

¸
+

 


+


−2 cos

(cos

+  


sin) at  = ±

(5.32)

 ± 2



=

⎧⎨⎩ 1

0

⎫⎬⎭ at  = ± (5.33)

± 3



=

⎧⎨⎩ 1

0

⎫⎬⎭ at  = ± (5.34)

The quantities involved above include the amplitude ratio (= ), (= ) wave number,

Re(= 0) Reynolds number,  =
p
00 Hartman number and Williamson fluid

parameter known as Weissenberg number. The Brownian motion parameter, thermophoresis

parameter, Schmidt number, Prandtl number and Brinkman number are (= (1 −
0)0) (=  (1−0)0) (= 0) Pr(= 0 () ), and(= 20(1−
0)) respectively. The dimensionless parameters representing the compliant nature of walls are

1(= −∗330) 2(= ∗330) and 3(= ∗1
320) Furthermore the slip parame-

ters for velocity, temperature and concentration are ∗1 = 10 
∗
2 = 3 and ∗3 = 3

The systems subject to large wavelength and low Reynolds number are reduced to the

following set of equation whereas the continuity equation is satisfied identically.




=




−2 cos2 




 (5.35)




= 0 (5.36)

2

2
+

2

2
+Pr








+Pr

µ




¶2
+2

µ



cos

¶2
= 0 (5.37)

2

2
+





2

2
= 0 (5.38)

 = 0 =  (5.39)

 = (1 +̇)
2

2
 (5.40)
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̇ =
2

2
 (5.41)




± 1 = 0, at  = ± = ±(1 +  sin 2 (− )) (5.42)

∙
1

3

3
+2

3

2
+3

2



¸
 =




−2 cos2 




 at  = ± (5.43)

 ± 2



=

⎧⎨⎩ 1

0

⎫⎬⎭ at  = ± (5.44)

± 3



=

⎧⎨⎩ 1

0

⎫⎬⎭ at  = ± (5.45)

From Eqs. (5. 35) and (5.36) we get





∙



−2 cos2 





¸
= 0 (5.46)

Now we numerically solve the Eqs. (5.37), (5.38) and (5.46) by utilizing the boundary conditions

mentioned in Eqs. (5.42-5.45). NDSolve of Mathematica is utilized for this purpose. The results

are analyzed numerically.

5.2.1 Determination of Entropy generation

Viscous dissipation expression is

Φ = 



+ 




+ 

µ



+





¶
 (5.47)

Dimensional volumetric entropy generation is


000
 =



 2

Ãµ




¶2
+

µ




¶2!
| {z }

 

+
20( cos−  sin)2

| {z }
  

+
Φ

|{z}
  

+




Ãµ




¶2
+

µ




¶2!
+





µ







+









¶
| {z }

 

(5.48)
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In dimensionless form one has

 =

000



000


=

µ




¶2
+

2

Λ

µ



cos

¶2
+



Λ


µ
2

2

¶
+


Λ

µ




¶µ




¶
+



Λ2

µ




¶2
 (5.49)

with


000
 =

 (1 − 0)
2

 2
2

 Λ =
1 − 0


  =

 (1 − 0)


  =

(1 − 0)


 (5.50)

5.3 Analysis

Here the velocity, temperature, concentration, heat transfer coefficient and entropy are exam-

ined via graphs for influence of different parameters. Problem is solved by using NDSolve of

Mathematica. For detail analysis of the results we further divide this section into subsections.

5.3.1 Velocity

This subsection intends to analyze the velocity. Fig. 5.2 (a) has been plotted for Hartman

number () effect. Here decreasing behavior of axial velocity by larger Hartman number is

notified. Such behavior of velocity under the influence of Hartman number is because of resistive

characteristic of Lorentz force. Fig. 5.2 (b) elucidated the influence of slip parameter on velocity.

We have noticed that increasing behavior is seen for velocity against slip parameter. It is due

to less resistance offered by fluid to flow. Fig. 5.2 (c) has been drawn to see the behavior

of wall parameters. Enhancement in elastance parameters 1 and 2 give rise to velocity. It

is because of decrease in resistance by increasing wall elastance parameters. An enhancement

in wall damping coefficient 3 decreases velocity of fluid. Behavior of inclination of magnetic

field  on velocity is observed through Fig. 5.2 (d). Increasing behavior has been noticed for

velocity by larger . Effect of Weissenberg number on axial velocity is analyzed in Fig. 5.2 (e).

Weissenberg number for velocity has mixed behavior.
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Fig. 5.2 (a) Fig. 5.2 (b)

Fig. 5.2 (c) Fig. 5.2 (d)
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Fig. 5.2 (e)

 52 Graphs for  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02

 = 001 1 = 01 2 = 01 3 = 01  = 01  = 01  = 15  = 20  = 10

 = 4(a)  impact on  (b) 1 impact on  (c) 1 2 3 impact on  (d)  impact on 

(e)  impact on 

5.3.2 Temperature

This subsection examined temperature for slip parameter (2), Hartman number () Brownian

motion () thermophoresis parameter () and magnetic field inclination parameter () on

the temperature distribution. Fig. 5.3 (a) characterized temperature for Hartman number.

An enhancement in temperature is observed at center of channel for larger Hartman number.

An increase in temperature is caused by Joule heating phenomenon. Fig. 5.3 (b) has been

prepared just to view the effect of thermal slip parameter on temperature. Enhancement is

seen in temperature by larger slip parameter. The reason can be directly linked with velocity.

Influences of Brownian motion and thermophoresis parameters have been studied through Figs.

5.3 (c) and (d). Temperature is an increasing function of both parameters. As increase in

random motion of particles enhances the mean kinetic energy of the particles and consequently

the temperature. Impact of magnetic field inclination angle  on temperature has been observed

via Fig. 5.3 (e). Temperature is enhanced by  Obviously magnetic field perpendicular to flow
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is more effective and it caused more resistance to fluid, here increases the temperature.

Fig. 5.3 (a) Fig. 5.3 (b)

Fig. 5.3 (c) Fig. 5.3 (d)
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Fig. 5.3 (e)

 53 Graphs for  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02

 = 001 1 = 01 2 = 01 3 = 01  = 01  = 01  = 15  = 10  = 20

 = 4 (a)  impact on  (b) 2 impact on  (c)  impact on  (d)  impact on  (e) 

impact on 

5.3.3 Concentration

Here concentration is examined with respect to various influential parameters. Fig. 5.4 (a)

displayed concentration for Hartman number. Clearly concentration is an increasing function

of Hartman number. Increase in concentration slip parameter decreases concentration (see Fig.

5.4 (b)). Figs. 5.4 (c) and (d) elucidated effects of Brownian motion and thermophoresis on

concentration. Concentration has opposite behavior for these both parameters. An inverse

relation of these parameters has been observed in the concentration expression.
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Fig. 5.4 (a) Fig. 5.4 (b)

Fig. 5.4 (c) Fig. 5.4 (d)

 54 Graphs for  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02

 = 001  = 01 1 = 01 2 = 01 3 = 01  = 01  = 01  = 15  = 20

 = 10  = 4 (a)  impact on  (b) 3 impact on  (c)  impact on  (d)  impact

on 
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5.3.4 Heat transfer coefficient

This subsection has been organized for the description of outcomes of various parameters on

heat transfer coefficient () Impact of Hartman number on  is shown in Fig. 5.5 (a). There

is a decrease in  for larger  . Further an increase in  leads to an enhancement of  (see

Fig. 5.5 (b)). Furthermore through Figs. 5.5 (c) and (d) the heat transfer coefficient via change

in  and  has been analyzed. Opposite behavior of heat transfer coefficient through these

parameters is observed. These Figs. witness for an oscillatory behavior.

Fig. 5.5 (a) Fig. 5.5 (b)

Fig. 5.5 (c) Fig. 5.5 (d)
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 55 Graphs for  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 001

1 = 01 2 = 01 3 = 01  = 10  = 10  = 15  = 20  = 10  = 4 (a)

 impact on  (b)  impact on  (c)  impact on  (d)  impact on 

5.3.5 Entropy generation

This subsection has been prepared to analyze the entropy generation. Thus Figs. 5.6 (a-c) have

been plotted for this purpose. Fig. 5.6 (a) described the influence of Hartman number ()

on  It is worth mentioning that  is an increasing function of  It is in view of Joule

heating aspect. Brownian motion () and thermophoresis impacts have been seen via Figs.

5.6 (b) and (c). Increasing results are noticed for both variables. These results can be verified

in view of directly linked with temperature.

Fig. 5.6 (a) Fig. 5.6 (b)
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Fig. 5.6 (c)

 56 Graphs for  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02

 = 001 1 = 01 2 = 01 3 = 01  = 01  = 01  = 20  = 05  = 05

Λ = 05  = 10  = 15  = 4 (a)  impact on  (b)  impact on  (c) 

impact on 

5.3.6 Validation of problem

Fig. 5.7: Validation of the problem

111



 57  via change in  and  when 1 = 001 2 = 002 3 = 001  = 01  = 02

 = 02  = 00 1 = 01 2 = 01 3 = 01  = 10  = 10  = 00  = 00

The purpose of Fig. 5.7 is to validate our results. Here we have chosen a study by Mustafa

et al. [170]. The authors here have studied the nanofluid flow through Buongiorno model. They

have utilized the homotopy analysis method to solve their proposed problem. In our problem

if we exclude the inclined magnetic field and replace the Williamson fluid by viscous fluid we

obtained the results of paper [170].

5.4 Conclusions

Major findings here include the following.

• Velocity is decreasing function of Hartman number and wall damping coefficient (3)
whereas it is increasing function of 1 2 and velocity slip parameter.

•  and  has same behavior on temperature.

• Temperature has same behavior for larger thermal slip parameter and Hartman number
().

• Concentration has opposite behavior for concentration slip parameter when compared
with Hartman number ().

• Heat transfer coefficient for inclination angle for magnetic field has opposite response to
that of Hartman number ().

•  and  have opposite behavior on heat transfer coefficient.
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Chapter 6

Effects of radial magnetic field and

entropy on peristalsis of Williamson

fluid in curved channel

6.1 Introduction

This chapter aims to analyze the peristaltic activity of Williamson fluid in curved configuration.

Flow formulation is made by employing radial magnetic field and Soret and Dufour effects.

Slip conditions for velocity, temperature and concentration are applied. Entropy analysis is

also carried out. Modeling is given using lubrication approach. Stream function, velocity,

temperature and concentration solutions have been derived. Effects of different parameters

are analyzed on flow quantities of interest. Moreover streamlines are examined for different

embedded parameters. Result reveals that Lorentz force tends to slow down the fluid velocity.

The slip parameters for velocity and temperature lead to enhancement in corresponding profile

whereas opposite behavior is noticed for concentration. Soret and Dufour effect lead to increase

the temperature as well as entropy of the system. Compliant nature walls increase the fluid

velocity for elastance parameters where as damping nature reduces the fluid velocity.
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6.2 Modeling

Consider a curved configuration having channel width 2, which is coiled in a circle with centre

at  and has radius ∗(see Fig. 6.1). A incompressible electrically conducting Williamson fluid

in channel is taken. Walls of the channel are considered flexible. In radial direction a magnetic

field is applied whose strength is taken . Coordinate system has been taken such as that

both -axis and -axis lie normal to each other. (  ) and (  ) are the respective axial

and radial velocity components. The walls shape satisfies the following expression [50]

 = ± ( ) = ±
∙
+  sin

2


(− )

¸
 (6.1)

in which ,  and  elucidate the respective amplitude, wavelength and speed of the wave and

 denotes the time.

Fig. 6.1: Sketch of the geometry

The applied magnetic field can be expressed as follows [84]:

B =

∙
∗0
 +∗

 0 0

¸
 (6.2)
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where 0 represents the magnetic field strength. The Lorentz force (F = J×B) yields 50]

J×B =
∙
0−(

∗)220
( +∗)2

 0

¸
 (6.3)

Here  and J(=(V×B)) are used to describe the electrical conductivity and current density
of the fluid. The continuity equation and components of velocity satisfy [50, 84]

[( +∗)]


+∗



= 0 (6.4)



∙



+ 




+

∗

 +∗



− 2

 +∗

¸
= −


+

1

 +∗



{( +∗)}

+
∗

 +∗



− 

 +∗
 (6.5)



∙



+ 




+

∗

 +∗



+



 +∗

¸
= − ∗

 +∗



+

1

( +∗)2



{( +∗)2}

+
∗

 +∗



− (∗)220
( +∗)2

 (6.6)

where  is the pressure,  are the component of extra stress tensor and  the fluid density.

The temperature and concentration equations with Soret and Dufour effects become [84,

189]:



∙



+ 




+

∗

 +∗




¸
= 

µ



+

∗

 +∗



− 

 +∗

¶
+

( − )



+

µ
∗

 +∗

¶2
20

2 +



"
2

2
+

1

 +∗



+

µ
∗

 +∗

¶2
2

2

#

+




Ã
2

2
+

1

 +∗



+

µ
∗

 +∗

¶2
2

2

!
(6.7)
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


+ 




+

∗

 +∗



= 

Ã
2

2
+

1

 +∗



+

µ
∗

 +∗

¶2
2

2

!
+





Ã
2

2
+

1

 +∗



+

µ
∗

 +∗

¶2
2

2

!
 (6.8)

in which  is the specific heat,  denotes the thermal conductivity and     and 

represent the respective mass diffusivity, thermal diffusion ratio, concentration susceptibility

and mean temperature of fluid. Here symbols  and  are used to define the temperature and

concentration of the considered fluid respectively.

Williamson fluid extra stress tensor is [84]

S = [∞ + (0 + ∞)(1− Γ̇)−1]A1 (6.9)

where 0 and ∞ are the zero shear rate and infinite shear rate viscosities and Γ denotes the

time constant. Further ̇ and A1 are defined below [84]:

̇ =

r
1

2
Π (6.10)

A1 = gradV+ (gradV)
  (6.11)

Π = (A21) (6.12)

By taking ∞ = 0 and Γ̇  1 the extra stress tensor yields [84]

S = 0[(1 + Γ̇)]A1 (6.13)

Notice that Γ = 0 shows the case of viscous fluid. In component form the above expression

gives [84]

 = 0(1 + Γ̇)

µ
∗

 +∗



− 

 +∗
+





¶
 (6.14)

 = 20(1 + Γ̇)

µ


 +∗
+

∗

 +∗




¶
 (6.15)

 = 20(1 + Γ̇)



 (6.16)

116



̇ =

s
2

µ




¶2
+ 2

µ


 +∗
+

∗

 +∗




¶2
+

µ
∗

 +∗



− 

 +∗
+





¶2
 (6.17)

The boundary conditions for the analysis are [198]

± 1 = 0 at  = ± (6.18)

∗
∙
−∗ 

3

3
+∗

3

2
+ ∗1

2



¸
 =

1

 +∗



{( +∗)2}+∗





−( +∗)
∙



+ 




+

∗

 +∗



+



 +∗

¸
−(

∗)220
( +∗)

  = ± (6.19)

 ± 2



=

⎧⎨⎩ 1

0

⎫⎬⎭ at  = ± (6.20)

 ± 3



=

⎧⎨⎩ 1

0

⎫⎬⎭ at  = ± (6.21)

Here  is the pressure, ∗ shows the curvature parameter, ∗, ∗1, and ∗ describe the respec-

tive elastic tension, coefficient of viscous damping and mass per unit area whereas the extra

stress tensor S components are denoted by ,  and . Moreover 1 2 and 3 are

the slip parameters for velocity, temperature and concentration respectively. Temperature and

concentration at the upper and lower walls of the channel are 1 0 and 1 0 respectively.

Dimensionless quantities are mentioned below:

∗ =



 ∗ =




 ∗ =




 ∗ =




 ∗ =




 ∗ =






∗ =


0
  =

∗


 ̇∗ = ̇




 ∗ =

2

0
  = Γ






 =
 − 0

1 − 0
  =

 − 0

1 − 0
 (6.22)
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Using the dimensionless quantities Eqs. (6.5-6.8) and (6.14-6.21) take the forms

Re 

∙




+ 




+



 + 




− 2

 + 

¸
= −


+

∙
1

 + 




{( + )}+ 

 + 




− 

 + 

¸


(6.23)

Re

∙




+ 




+



 + 




+



 + 

¸
= − 2

( + )2
2− 

 + 





+
1

( + )2



{( + )2}+ 

 + 




 (6.24)

RePr

∙




+ 




+



 + 





¸
=

µ


 + 

¶2
22 +

⎡⎣ ( − )


+



³


+ 

+


− 

+

´
⎤⎦+

+

"
2

2
+

1

 + 




+ 2

µ


 + 

¶2
2

2

#

+Pr

Ã
2

2
+

1

 + 




+ 2

µ


 + 

¶2
2

2

!
 (6.25)

Re

µ




+ 




+



 + 





¶
= 

Ã
2

2
+

1

 + 




+ 2

µ


 + 

¶2
2

2

!
+

1



Ã
2

2
+

1

 + 




+ 2

µ


 + 

¶2
2

2

!
 (6.26)

 = (1 +̇)

µ




− 

 + 
+





¶
 (6.27)

 = 2(1 +̇)



 (6.28)

 = 2(1 +̇)

µ


 + 
+



 + 





¶
 (6.29)

where ̇ in dimensionless form become

̇ =

s
2

µ




¶2
+ 2

µ


 + 
+



 + 





¶2
+

µ


 + 




− 

 + 
+





¶2
 (6.30)
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The boundary conditions in non-dimensional form are

± 1 = 0, at  = ± = ±(1 +  sin 2 (− )) (6.31)



∙
1

3

3
+2

3

2
+3

2



¸
 = −Re( + )

∙




+ 




+



 + 




+



 + 

¸
+ 1

+


{( + )2}+  



− 2

+
2 at  = ±

(6.32)

 ± 2



=

⎧⎨⎩ 1

0

⎫⎬⎭ at  = ± (6.33)

± 3



=

⎧⎨⎩ 1

0

⎫⎬⎭ at  = ± (6.34)

In above equations (= ) is the amplitude ratio, Re(= 0) the Reynolds number, 

the fluid parameter for Williamson fluid also named as Weissenberg number, (= ) the

wave number,  the dimensionless curvature parameter,  =
p
00 the Hartman number

whereas expressions for Soret, Schmidt, Dufour, Brinkman and Prandtl numbers are given by

(=  (1−0)0(1−0)) (= 0) (=  (1−0)0(1−0))
(= 20(1 − 0)) and Pr(= 0) respectively. Moreover the non-dimensionalized

form of elastance parameters are described by 1(= −∗330) 2(= ∗330) and

3(= ∗1
320) respectively. The velocity, temperature and concentration slip parameters

in dimensionless form are denoted by respective 1, 2 and 3 i.e. ∗1 = 10 
∗
2 = 2

∗3 = 3 in which 1 2 3 are the dimensional slip parameters for the velocity, temperature

and concentration. We have omitted the asterisks for brevity.

Using the expression given below:

 = −


  =


 + 




 (6.35)

the continuity Eq. is identically satisfied and Eqs. (6.23-6.34 ) in view of lubrication approach
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yields




= 0 (6.36)

− 

 + 




+

1

( + )2



{( + )2}+ 2

( + )2
2


= 0 (6.37)

2

2
+

1

 + 




+

∙


µ
− +



 + 

¶¸
+

µ


 + 

¶2
2

µ




¶2
+Pr

µ
2

2
+

1

 + 





¶
= 0

(6.38)

2

2
+

1

 + 




+ 

µ
2

2
+

1

 + 





¶
= 0 (6.39)

 ± 1 = 0 at  = ± = ±(1 +  sin 2 (− )) (6.40)



∙
1

3

3
+2

3

2
+3

2



¸
 =

1

 + 




{(+ )2}+ 2

 + 
2


 at  = ±

(6.41)

 ± 2



=

⎧⎨⎩ 1

0

⎫⎬⎭ at  = ± (6.42)

± 3



=

⎧⎨⎩ 1

0

⎫⎬⎭ at  = ± (6.43)

 = 0 =  (6.44)

 = (1 +̇)

µ
1

 + 




− 2

2

¶
 (6.45)

with

̇ =
1

 + 




− 2

2
 (6.46)

6.3 Solution methodology

The system obtained is highly nonlinear. Therefore we find the series solution and use the

perturbation technique about the small Weissenberg number. We expand the quantities as

 = 0 +1 +(2) (6.47)

 = 0 +1 +(2) (6.48)
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 = 0 +1 +(2) (6.49)

 = 0 +1 +(2) (6.50)

The corresponding systems and their solutions are given as follows:

6.3.1 Zeroth order solutions





∙
1

( + )




{( + )20}+ 

 + 
20



¸
= 0 (6.51)

0 =

∙
20

2
+

1

 + 

0



¸
+

∙
0

µ
−0 +

0
 + 

¶¸
+Pr

µ
20
2

+
1

 + 

0


¶
+

µ


 + 

¶2
2

µ
0


¶2
 (6.52)

20
2

+
1

 + 

0


+ 

µ
20

2
+

1

 + 

0



¶
= 0 (6.53)

0 ± 10 = 0 at  = ± (6.54)



∙
1

3

3
+2

3

2
+3

2



¸
 =

1

 + 




{(+)20}+ 2

 + 
20


 at  = ±

(6.55)

0 ± 2
0


=

⎧⎨⎩ 1

0

⎫⎬⎭ at  = ± (6.56)

0 ± 3
0


=

⎧⎨⎩ 1

0

⎫⎬⎭ at  = ± (6.57)

0 =
1

 + 

0

− 20

2
 (6.58)

Solving the above systems one arrives at

0 = 4 + 3 +3
2

2
+

2( + )1−
√
1+22

1−√1+22
+

1( + )1+
√
1+22

1+
√
1+22

 (6.59)
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0 = −1( + )−2
√
1+22 −2( + )2

√
1+22

+ 2 +

1 log[ + ] +3 log[ + ]2 (6.60)

0 = 2 +1 log[ + ]− (2 −1( + )−2
√
1+22

−2( + )2
√
1+22

+ 1 log[ + ] +3 log[ + ]2) (6.61)

6.3.2 First order solutions

Here





∙
1

( + )




{( + )21}+ 

 + 
21



¸
= 0 (6.62)

∙
21

2
+

1

 + 

1



¸
+

⎡⎣ 1

³
−0 + 0

+

´
+

0

³
−1 + 1

+

´
⎤⎦+Pr

µ
21
2

+
1

 + 

1


¶

+

µ


 + 

¶2
2

µ
2
0


1


¶
= 0 (6.63)

21
2

+
1

 + 

1


+ 

µ
21

2
+

1

 + 

1



¶
= 0 (6.64)

1 ± 11 = 0 at  = ± (6.65)

1

 + 




{( + )21}+ 2

 + 
21


= 0 at  = ± (6.66)

1 ± 2
1


=

⎧⎨⎩ 1

0

⎫⎬⎭ at  = ± (6.67)

1 ± 3
1


=

⎧⎨⎩ 1

0

⎫⎬⎭ at  = ± (6.68)

1 =
1

 + 

1

− 21

2
+

µ
1

 + 

0

− 20

2

¶2
 (6.69)
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and solution expressions are

1 = 5( + )−2
√
1+22

+ 6( + )2
√
1+22

+
( + )1+

√
1+22

1

1 +
√
1 + 22

+
( + )1−

√
1+22

2

1−√1 + 22
+ 3 +3

2

2
+4 (6.70)

1 = −11( + )−2
√
1+22 −12( + )2

√
1+22

+13( + )−1−3
√
1+22

+14( + )−1−
√
1+22

+15( + )−1+
√
1+22

+16( + )−1+3
√
1+22

+2 +1 log[ + ] +17 log[ + ]2 (6.71)

1 = 2 +1 log[ + ]− (2 −11( + )−2
√
1+22 −12( + )2

√
1+22

+

13( + )−1−3
√
1+22

+14( + )−1−
√
1+22

+15( + )−1+
√
1+22

+16( + )−1+3
√
1+22

+1 log[ + ] +17 log[ + ]2) (6.72)

The heat transfer coefficient at the wall is

 = 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

( 1
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√
1+22 − 2

√
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√
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+
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+( 1
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+13(−1− 3
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√
1+22

+211
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√
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+14(−1−
√
1 + 22)( + )−2−

√
1+22

+15(−1 +
√
1 + 22)( + )−2+

√
1+22

+ 212
√
1 + 22( + )−1+2

√
1+22

+16(−1 + 3
√
1 + 22)( + )−2+3

√
1+22

+
217 log[+]

(+)
))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(73)

where the constants  ( = 1− 6),  ( = 1− 4),  ( = 1− 2)   ( = 1− 2)

( = 1− 2)  ( = 11− 17)  ( = 1− 3)and  ( = 1− 2) are obtained with the help
of Mathematica.
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6.3.3 Entropy analysis

Entropy generation satisfies
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In dimensionless form
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with


000
 =

 (1 − 0)
2

 2
2

 Λ =
1 − 0


  =

 (1 − 0)


  =

(1 − 0)


 (6.75)

6.4 Analysis

Here plots are displayed and discussed. Firstly we have examined the velocity profile under the

influence of pertinent parameters involved in problem. Fig. 6.2 (a) depicts the impact via 

on . It is noted that the axial velocity is decreasing function of Hartman number (). The

reason behind this act is the resistive nature of Lorentz force that caused decay in velocity for

larger  Fig. 6.2 (b) captured the curvature parameter () influence on . It can be seen

that  shows dual behavior on the axial velocity. Moreover, the axial velocity is seen to be

symmetric for larger curvature parameter ()  Fig. 6.2 (c) has been displayed for impact of

Weissenberg number () on the velocity profile. Mixed behavior is also observed for  like

curvature parameter.
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Fig. 6.2 (a) (b)

(c) (d)
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(e)

 62 Velocity profile graphs when 1 = 002 2 = 001 3 = 001  = 01  = 02

 = 02  = 001  = 50  = 08 1 = 001 (a) Hartman number influence on  (b)

Curvature parameter influence on  (c) Weissenberg number influence on  (d) Slip parameter

influence on  (e) Compliant walls influence on 

Through Fig. 6.2 (d) the influence of velocity slip parameter (1) is examined. Velocity is

seen an increasing function of (1)  Physically the slip between walls and the fluid decreases the

resistance of the flow which causes increase in the axial velocity. Wall parameters behavior on

 is analyzed through Fig. 6.2 (e). Enhancement in axial velocity is examined for 1 and 2

whereas decrease is noticed for 3 Physically an increase in axial velocity for 1 and 2 is the

less resistance offered during flow because of the increase in elastic nature of walls. However

damping nature of the walls (wall damping coefficient 3) causes decay in fluid velocity.

To observe the impact of Hartman number, curvature parameter, Weissenberg number,

Brinkman number, Soret number, Dufour number, Schmidt number and thermal slip parame-

ter on temperature the Figs. 6.3 (a-h) are plotted. Fig. 6.3 (a) shows the influence of Hartman

number () on . We noticed an enhancement in temperature for an increase in Hartman

number. As resistance to the fluid produced heating that caused an enhancement in temper-

ature. Fig. 6.3 (b) indicates impact of curvature parameter () on temperature. Decay is

observed for increase in curvature parameter () on . Increase is observed for Weissenberg
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number () on  (see Fig. 6.3 (c)). Fig. 6.3 (d) elucidates the Brinkman number effect on

the temperature profile. Enhancing the value of  causes rise in the temperature distribution.

It is due to the increase in resistance offered by shear in flow and as a result of generation of

heat produced because to viscous dissipation. Figs. 6.3 (e) and (f) represent the influence of

 and  on  respectively. Increase is seen in temperature by making increment in values of

Soret and Dufour numbers. Basically enhancement in  produces the mass flux due to large

difference in concentration which enlarges the temperature. Here  causes the enhancement

in concentration gradient which as a result increase the temperature. To examine the influence

of Schmidt number () the Fig. 6.3 (g) is plotted. Temperature distribution increases with

larger Schmidt number. Fig. 6.3 (h) is prepared to see influence of slip parameter (2) on .

It is found that the fluid temperature increases by enhancing the thermal slip parameter. As

increase in slip caused increase in velocity that enhances the mean kinetic energy of the fluid.

As a result heat is produced that enhances the fluid temperature.

Fig. 6.3 (a) (b)
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(c) (d)

(e) (f)
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(g) (h)

 63 Temperature profile graphs when 1 = 002 2 = 001 3 = 001  = 01  = 02

 = 02  = 001  = 30  = 30  = 07 Pr = 20  = 01  = 02  = 01

1 = 001 2 = 001 3 = 001 (a) Hartman number influence on  (b) Curvature parameter

influence on  (c) Weissenberg number influence on  (d) Brinkman number influence on  (e)

Soret number influence on  (f) Dufour number influence on  (g) Schmidt number influence

on  (h) Thermal slip parameter influence on 

For influences regarding behavior of different embedded variables on concentration the Figs.

6.4 (a-f) are plotted. From Figs. 6.4 (a) and (b) inverse behavior is observed for curvature

parameter () and Weissenberg number () on concentration. Figs. 6.4 (c) and (d) elucidate

the influence of  and . Decay is noticed in both cases. Similar behavior is noticed for 

(see Fig. 6.4 (e)) . As increase in Schmidt number reduced the fluid density hence  decreases.

From Fig. 6.4 (f) it is observed that by enhancing the concentration slip parameter the 

decreases.
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Fig. 6.4 (a) (b)

(c) (d)
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(e) (f)

 64 Concentration profile graphs when 1 = 002 2 = 001 3 = 001  = 01  = 02

 = 02  = 001  = 20  = 50  = 30 Pr = 20  = 02  = 03  = 02

1 = 001 2 = 001 3 = 001 (a) Curvature parameter influence on  (b) Weissenberg

number influence on  (c) Soret number influence on  (d) Dufour number influence on  (e)

Schmidt number influence on  (f) Concentration slip parameter influence on 

Figs. 6.5 (a-f) are drawn to analyze the heat transfer rate for different parameters of interest.

Fig. 6.5 (a) illustrates the impact of on . Here  decreases by enhancing Hartman number.

It is seen that the curvature parameter () caused increase in heat transfer coefficient (see Fig.

6.5 (b)). Fig. 6.5 (c) illustrates that heat transfer rate increases for  On the other hand,

we can say that viscous dissipation influence is in favour of heat flux from the channel wall.

Increase is seen in () when Soret, Dufour and Schmidt numbers attain the larger values (see

Figs. 6.5 (d-f)). It is noticed from these Figs. that heat transfer coefficient shows oscillatory

behavior.
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Fig. 6.5 (a) (b)

(c) (d)
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(e) (f)

 65 Heat transfer coefficient graphs when 1 = 002 2 = 001 3 = 001  = 01

 = 02  = 02  = 001  = 50  = 20  = 30 Pr = 20  = 02  = 03

 = 02 1 = 001 2 = 001 3 = 001 (a) Hartman number influence on  (b) Curvature

parameter influence on  (c) Brinkman number influence on  (d) Soret number influence on

 (e) Dufour number influence on  (f) Schmidt number influence on 

The bolus is formed because of splitting of streamlines under various circumferences . This

phenomenon is know as trapping. Peristaltic wave completely enclosed this trapped bolus and

moves with the same velocity as that of peristaltic wave. Increase is found in trapped bolus

size when Hartman number becomes larger (see Figs. 6.6. (a),(b)). Curvature parameter ()

and Weissenberg number () show opposite behavior for stream function (see Figs. 6.7 and

6.8 (a),(b)). Fig. 6.9 (a) and (b) verify the increasing behavior of trapped bolus for higher slip

parameter.
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(a) (b)

 66 Hartman number influence on  when 1 = 002 2 = 001 3 = 001  = 0

 = 50  = 01  = 003  = 001 ()  = 50 ()  = 70

(a) (b)

 67 Curvature parameter influence on  when 1 = 002 2 = 001 3 = 001  = 0

 = 40  = 01  = 003 1 = 001 ()  = 30 ()  = 50
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(a) (b)

 68 Weissenberg number influence on  when 1 = 002 2 = 002 3 = 001  = 0

 = 50  = 01  = 70 1 = 001 ()  = 001 ()  = 003

(a) (b)

 69 Slip parameter influence on  when 1 = 002 2 = 001 3 = 001  = 0

 = 40  = 01  = 003  = 5 () 1 = 00 () 1 = 006
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Figs. 6.10 (a—e) are plotted for analysis of entropy of the system. Hartman number effect

on  can be viewed through Fig. 6.10 (a). Increase is noticed at the center of channel. Fig.

6.10 (b) is sketched against Brinkman number. Entropy is increasing function of it. Figs. 6.10

(c-e) show the results for Dufour, Soret and Schmidt numbers on entropy. Increase has been

viewed in all cases. These results can be directly linked with temperature profile. An increase

in temperature caused more disorderedness hence enhancement in entropy.

Fig. 6.10 (a) (b)

(c) (d)
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(e)

 610 Entropy generation graphs when 1 = 002 2 = 001 3 = 001  = 01  = 02

 = 02  = 001  = 50  = 20 Pr = 20  = 02  = 30  = 05  = 02

1 = 001 2 = 001 3 = 001 Λ = 05  = 05  = 05 (a) Hartman number influence on

 (b) Brinkman number influence on  (c) Dufour number influence on  (d) Soret

number influence on  (g) Schmidt number influence on 

6.4.1 Validation of the Problem

Fig. 6.11
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 611 Velocity profile for influence of compliant walls when  = 005  = 02  = 03

 = 50  = 0  = 0 1 = 0

It can be clearly seen via this Fig. that our results are in good comparison with the article by

Hayat et al. [50]. In this article the authors utilized the viscous fluid in the curved configuration.

No slip conditions have been utilized. Closed form of solution has been found. In our problem

if we put  = 0  = 0 and 1 = 0 then we obtained the same results in the study [50].

6.5 Conclusions

Here consideration is given to the peristaltic phenomenon in a curved channel. Effects of Soret

and Dufour in Williamson fluid is studied. Main points of this study are given below.

• Axial velocity decreases by increasing the Hartman number and 3 whereas it is an

increasing function for 1, 2 and velocity slip parameter.

• Weissenberg number and curvature parameter show dual effect on velocity.

• Increasing behavior of temperature is noticed for Soret, Dufour, Schmidt, Brinkman and
Hartman number number.

• Opposite behaviors have been seen for concentration when compared with temperature
through Soret, Dufour, Schmidt and slip parameters.

• Trapped bolus size enhances for large curvature parameter (), Hartman number (),
slip parameter (1) whereas it decreases with an increase in 

• Entropy generation enhances for Dufour, Soret and Schmidt and Brinkman numbers.
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Chapter 7

Numerical study for peristalsis of

Sisko nanomaterials with entropy

generation

7.1 Introduction

Present chapter aims to examine peristalsis in a symmetric channel having flexible walls. Sisko

nanofluid is considered. Joule heating and non-linear thermal radiation are taken. Boundary

conditions are subject to the slip conditions for velocity, temperature and concentration. En-

tropy generation analysis for viscous dissipation, Joule heating and non-linear thermal radiation

is carried out. System is numerically computed through NDSolved of Mathematica. Graphical

analysis is made for velocity, temperature, concentration, heat transfer coefficient and entropy

generation. Conclusions are drawn through discussion. This study discloses that magnetic field

leads to slow down the fluid velocity and caused decay in heat transfer coefficient. Further

Brownian motion and thermophoresis parameter caused enhancement in temperature and en-

tropy generation rate. Slip parameters for velocity and temperature lead to enhancement in

the velocity and temperature whereas opposite impact is observed for concentration against

concentration slip coefficient.
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7.2 Problem formulation

Consider two-dimensional flow of Sisko nanofluid in a symmetric channel with flexible walls.

The upper and the lower walls have temperatures 1 0 and concentration 1, 0 respectively.

Fluid is conducted subject to constant magnetic field of strength 0. Brownian motion, ther-

mophoresis and nonlinear radiation are discussed. Joule heating is present. Flow is induced by

peristaltic waves which consists of contraction and expansion along channel walls. The wave

speed is denoted by  and wavelength  The problem is formulated using the Cartesian coor-

dinates system where −axis is in the direction of flow and −axis normal to −axis (see Fig.
7.1). The wave geometry is given by:

 = ± ( ) = ±
∙
+  sin

2


(− )

¸
 (7.1)

where  and − represent the upper and the lower walls respectively.  half channel width and
symbol  the wave amplitude. Here  is used for time.

Fig. 7.1: Schematic diagram

Flow is governed by [172]:
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2
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2
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 (7.6)

Here symbols  and  in Eqs. (7.5) and (7.6) are Brownian motion and thermophoretic

diffusion coefficients,  and  the velocity components,  equals ()  ()   the tem-

perature and  the concentration. Furthermore        
∗ elucidate the stress

components, nanofluid density, pressure, nanofluid mean temperature, electric conductivity

and thermal diffusivity respectively.

Extra stress tensor of Sisko fluid is [72]:

S =
³
+ ∗

p
|Π|−1

´
A1 (7.7)

where A1 and Π are

A1 = gradV+ (gradV)
  Π =

1

2
A21 (7.8)

in which power law index is denoted by  consistency index by ∗ and shear rate viscosity by



Further

 = 2
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 (7.9)
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 = 2
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Boundary conditions are [172]:

± 1 = 0 at  = ± (7.12)
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+
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+ 





¸
−20 at  = ± (7.13)

 ± 2



=

⎧⎨⎩ 1

0

⎫⎬⎭ at  = ± (7.14)

 ± 3



=

⎧⎨⎩ 1

0

⎫⎬⎭ at  = ± (7.15)

Here 1 2 and 3 are the slip parameters for velocity, temperature and concentration respec-

tively and ∗, ∗, and ∗1 represent the wall elastance and damping characteristics.

Non-dimensional parameters are represented as

∗ =



 ∗ =
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 (7.16)

After utilizing the non-dimensional quantities we get the following forms of equations:
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Re 

∙
−2 

2


− 2





2

2
+ 2





2



¸
= −


+ 2




+ 




 (7.18)
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RePr
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(7.23)

with boundary conditions




± 1 = 0, at  = ± = ±(1 +  sin 2 (− )) (7.24)
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⎫⎬⎭ at  = ± (7.26)
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± 3
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⎫⎬⎭ at  = ± (7.27)

The dimensionless parameters are
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 (7.28)

Here  depicts amplitude ratio,  wave number, Re Reynolds number,  Hartman number,

1 Sisko fluid parameter,  Brownian motion parameter,  thermophoresis parameter, 

Schmidt number, Pr Prandtl number,  Brinkman number,  radiation parameter and 1

2 3 the compliant wall parameters.

Lubrication approach leads to
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2
= 0 (7.32)

 = 0 =  (7.33)
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with boundary conditions




± 1 = 0, at  = ± = ±(1 +  sin 2 (− )) (7.35)

∙
1

3

3
+2

3

2
+3

2



¸
 =




−2


 at  = ± (7.36)
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⎫⎬⎭ at  = ± (7.38)

The above mentioned system via NDSolve of Mathematica 9.0 is computed.

7.2.1 Expression for entropy generation

Mathematical expressions for viscous dissipation is
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Volumetric entropy generation in dimensional form is given by
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In dimensionless form
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
000
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7.3 Analysis

The involved problem comprises non-linear system. Thus exact solution of this problem is

not possible. However an approximate solution can be found via any technique like numerical

technique or perturbation technique. To solve this problem built in command NDSolve of

Mathematica 9.0 is used. As this technique helps us to avoid the lengthy expressions and gave

the best results in minimum CPU time (3-4 min). Therefore graphical analysis is done for

velocity, temperature, concentration, heat transfer coefficient and entropy generation. For the

sake of convenience we have made subsections for each physical quantity.

7.3.1 Velocity

Velocity is discussed for the parameters of interest in this subsection. Fig. 7.2 manifested

the behavior of Hartman number on velocity. Decreasing behavior for velocity is noticed. For

enhancing the retarding force this acts as obstruction to flow. This investigation is employed to

reduce the blood flow during operations and severe injuries. Fig. 7.3 is plotted against velocity

slip parameter on velocity. Velocity enhances via increasing slip parameter. This happens due

to reduction in frictional effects. Fig. 7.4 elucidates results of fluid parameter effect on velocity.

Dual behavior is observed in this case. Compliant walls effect is seen via Fig. 7.5. Elastance

nature of walls leads to an increase in velocity whereas damping resists the fluid flow. Elastance

nature of walls allows the perfusion of blood in arteries and vein. These characteristics also

allow the exchange of nutrient and oxygen.
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Fig. 7.2 Fig. 7.3

 72  via change in  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02

 = 15 1 = 001 2 = 001 3 = 001  = 01  = 01 1 = 02  = 15  = 20

 = 05  = 11

  73  via change in 1 when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02

 = 15 2 = 001 3 = 001  = 01  = 01 1 = 02  = 15  = 20  = 01

 = 05  = 11

Fig. 7.4 Fig. 7.5

 74  via change in 1 when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02
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 = 15 1 = 001 2 = 001 3 = 001  = 01  = 01  = 15  = 20  = 01

 = 05  = 11

  75  via change in 1 2 and 3 when  = 01  = 02  = 02  = 15 1 = 001

2 = 001 3 = 001  = 01  = 01 1 = 02  = 15  = 20  = 01  = 05

 = 11

7.3.2 Temperature

Temperature behavior for pertinent parameters is discussed via Figs. 7.6-7.14. Fig. 7.6 in-

dicated that for larger Hartman number,  tends to increase at center of channel in view of

Joule heating effects. Fig. 7.7 is drawn for the sake of Brownian motion effects on tempera-

ture. Increasing Brownian motion parameter leads to higher temperature. Random motion of

the particles elevated the kinetic energy and molecular vibrations. Hence rise in  is verified.

Moreover thermophoresis () on  shows the same behavior (see Fig. 7.8). Thermal slip result

on  is notified through Fig. 7.9. It is clearly seen via this Fig. that thermal slip parameter

leads to an enhancement in temperature. As slip reduces the friction and hence rise in velocity

and in temperature. Fig. 7.10 demonstrates fluid parameter behavior. Here temperature is

increasing. Figs. 7.11 and 7.12 display the radiation parameter and Brinkman number impacts

on  Reverse behavior is seen for both cases. Basically Brinkman number measures the heat

loss due to viscous dissipation. This includes the conversion in internal energy results in heating

up the fluid. So temperature rises for more heat loss. Fig. 7.13 portrayed the influence of 

on temperature. Result show that decay is observed in this case. Fig. 7.14 is drawn for 0

( = 1−3) influence on temperature. Here 1 and 2 tend to increase the temperature whereas
3 leads to decay of temperature. Reason can be linked with velocity in view of kinetic theory.
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Fig. 7.6 Fig. 7.7

 76  via change in  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02

 = 15 1 = 001 2 = 001 3 = 001  = 01  = 01 1 = 02  = 15  = 20

 = 05  = 11

  77  via change in  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02

 = 15 1 = 001 2 = 001 3 = 001  = 01 1 = 02  = 15  = 20  = 01

 = 05  = 11

Fig. 7.8 Fig. 7.9

 78  via change in  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02
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 = 15 1 = 001 2 = 001 3 = 001  = 01 1 = 02  = 15  = 20  = 01

 = 05  = 11

  79  via change in 2 when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02

 = 15 1 = 001 3 = 001  = 01  = 01 1 = 02  = 15  = 20  = 01

 = 05  = 11

Fig. 7.10 Fig. 7.11

 710  via change in 1 when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02

 = 15 1 = 001 2 = 001 3 = 001  = 01  = 01  = 15  = 20  = 01

 = 05  = 11

  711  via change in  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02

 = 15 1 = 001 2 = 001 3 = 001  = 01  = 01 1 = 02  = 15  = 20

 = 01  = 11
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Fig. 7.12 Fig. 7.13

 712  via change in  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02

 = 15 1 = 001 2 = 001 3 = 001  = 01  = 01 1 = 02  = 15  = 01

 = 05  = 11

  713  via change in  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02

 = 15 1 = 001 2 = 001 3 = 001  = 01  = 01 1 = 02  = 15  = 20

 = 01  = 05

Fig. 7.14

 714  via change in 1 2 and 3 when  = 01  = 02  = 02  = 15 1 = 001
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2 = 001 3 = 001  = 01  = 01 1 = 02  = 15  = 20  = 01  = 05

 = 11

7.3.3 Nanoparticle concentration

This subsection contains the information about concentration under the influences of embedded

parameters of interest. Fig. 7.15 is prepared for the sake of concentration slip parameter on 

It is seen that an enhancement in concentration slip parameter leads to decay in concentration.

Fig. 7.16 reveals the result that enhancement in  give rise to  Figs. 7.17 and 7.18 display

decreasing behavior of radiation parameter () and thermophoresis parameter () respec-

tively. Fig. 7.18 displayed opposite behavior when compared with temperature. Brownian

motion parameter result on  is seen opposite than  (see Fig. 7.19). For increasing  the

random motion of the particles enhances and rise in concentration is observed. Wall parameters

display decay for elastance parameters whereas enhancement is observed for damping variable

(see Fig. 7.20).

Fig. 7.15 Fig. 7.16

 715  via change in 3 when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 01

 = 15 1 = 001 2 = 001  = 01  = 01 1 = 02  = 15  = 20  = 01

 = 05  = 11

  716  via change in  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 01
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 = 15 1 = 001 2 = 001 3 = 001  = 01  = 01 1 = 02  = 15  = 20

 = 01  = 05

Fig. 7.17 Fig. 7.18

 717  via change in  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 01

 = 15 1 = 001 2 = 001 3 = 001  = 01  = 01 1 = 02  = 15  = 20

 = 01  = 11

  718  via change in  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 01

 = 15 1 = 001 2 = 001 3 = 001  = 01 1 = 02  = 15  = 20  = 01

 = 05  = 11
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Fig. 7.19 Fig. 7.20

 719  via change in  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 01

 = 15 1 = 001 2 = 001 3 = 001  = 01 1 = 02  = 15  = 20  = 01

 = 05  = 11

  720  via change in 1 2 and 3 when 1 = 002 2 = 001 3 = 001  = 01

 = 02  = 01  = 15 1 = 001 2 = 001 3 = 001  = 01  = 01 1 = 02

 = 15  = 20  = 01  = 05  = 11

7.3.4 Entropy generation analysis

In this subsection the analysis of entropy generation is presented for pertinent parameters of

interest. Fig. 7.21 is drawn for the analysis of entropy generation in view of Hartman number.

Entropy increases near center of channel in view of Joule heating.  and  behaviors on

entropy are observed via Figs. 7.22 and 7.23. Both cases show enhancement as in case of

temperature. Enhancement in kinetic energy of the particles create more disorderliness. Fig.

7.24 elucidates radiation parameter results on entropy. Radiation caused enhancement in the

disorderedness. Fig. 7.25 illustrates that larger values of  tend to decrease in entropy. For

larger values of concentration difference parameter () Fig. 7.26 is plotted. Enhancement is

observed in this case. Influence of diffusion coefficient parameter  on is viewed via Fig. 7.27.

Entropy is an increasing function of  An increase in  causes decrease of thermal conductivity.
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It shows an increase in temperature and entropy. Temperature difference parameter leads to

decay in entropy (see Fig. 7.28). Thermal slip effect on entropy is plotted against Fig. 7.29.

Results reveals decaying behavior here.

Fig. 7.21 Fig. 7.22

 721  via change in  when 1 = 002 2 = 001 3 = 001  = 01  = 02

 = 02  = 15 1 = 001 2 = 001 3 = 001  = 01  = 01 1 = 02  = 15

 = 20  = 05  = 11 Λ = 05  = 05  = 05

  722  via change in  when 1 = 002 2 = 001 3 = 001  = 01  = 02

 = 02  = 15 1 = 001 2 = 001 3 = 001  = 01 1 = 02  = 15  = 20
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 = 01  = 05  = 11 Λ = 05  = 05  = 05

Fig. 7.23 Fig. 7.24

 723  via change in  when 1 = 002 2 = 001 3 = 001  = 01  = 02

 = 02  = 15 1 = 001 2 = 001 3 = 001  = 01 1 = 02  = 15  = 20

 = 01  = 05  = 11 Λ = 05  = 05  = 05

  724  via change in  when 1 = 002 2 = 001 3 = 001  = 01  = 02

 = 02  = 15 1 = 001 2 = 001 3 = 001  = 01  = 01 1 = 02  = 15

 = 20  = 01  = 11 Λ = 05  = 05  = 05

Fig. 7.25 Fig. 7.26

 725  via change in  when 1 = 002 2 = 001 3 = 001  = 01  = 02
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 = 02  = 15 1 = 001 2 = 001 3 = 001  = 01  = 01 1 = 02  = 15

 = 20  = 01  = 05 Λ = 05  = 05  = 05

  726  via change in  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02

 = 15 1 = 001 2 = 001 3 = 001  = 01  = 01 1 = 02  = 15  = 20

 = 01  = 05  = 11 Λ = 05  = 05

Fig. 7.27 Fig. 7.28

 727  via change in  when 1 = 002 2 = 001 3 = 001  = 01  = 02

 = 02  = 15 1 = 001 2 = 001 3 = 001  = 01  = 01 1 = 02  = 15

 = 20  = 01  = 05  = 11 Λ = 05  = 05

  728  via change in Λ when 1 = 002 2 = 001 3 = 001  = 01  = 02

 = 02  = 15 1 = 001 2 = 001 3 = 001  = 01  = 01 1 = 02  = 15

 = 20  = 01  = 05  = 11  = 05  = 05
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Fig. 7.29

 729  via change in 2 when 1 = 002 2 = 001 3 = 001  = 01  = 02

 = 02  = 15 1 = 001 3 = 001  = 01  = 01 1 = 02  = 15  = 20

 = 01  = 05  = 11 Λ = 05  = 05  = 05

7.3.5 Heat transfer coefficient

Plots for heat transfer coefficient are drawn through Figs. 7.30-7.35. Fig. 7.30 represents the

 behavior. Heat transfer coefficient decreases via  . Results for  and  can be seen via

Figs. 7.31 and 7.32. Decay in heat transfer coefficient are seen. Radiation parameter portrayed

an enhancement in  (see Fig. 7.33). Thermal slip parameter caused reduction in  whereas

walls parameters results are qualitatively similar to temperature (see Figs. 7.34 and 7.35).

158



Fig. 7.30 Fig. 7.31

 730  via change in  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 15

1 = 001 2 = 001 3 = 001  = 01  = 01 1 = 02  = 15  = 20  = 05

 = 11

  731  via change in  when 1 = 002 2 = 001 3 = 001  = 01  = 02

 = 15 1 = 001 2 = 001 3 = 001  = 01 1 = 02  = 15  = 20  = 01

 = 05  = 11

Fig. 7.32 Fig. 7.33

 732  via change in  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 15
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1 = 001 2 = 001 3 = 001  = 01  = 01 1 = 02  = 15  = 20  = 01

 = 05

  733  via change in  when 1 = 002 2 = 001 3 = 001  = 01  = 02

 = 15 1 = 001 2 = 001 3 = 001  = 01  = 01 1 = 02  = 15  = 20

 = 01  = 11

Fig. 7.34 Fig. 7.35

 734  via change in 2 when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 15

1 = 001 3 = 001  = 01  = 01 1 = 02  = 15  = 20  = 01  = 05

 = 11

  735  via change in 1 2 and 3 when  = 01  = 02  = 15 1 = 001 2 = 001

3 = 001  = 01  = 01 1 = 02  = 15  = 20  = 01  = 05  = 11

7.3.6 Trapping

In this subsection the results for trapping are arranged under different parameters. Figs. 7.36

(a) and (b) are plotted for slip parameters. Trapped bolus size increases in this case. Hartman

number effects on bolus size are given through Figs. 7.37 (a) and (b). Bolus size decreases for

larger  . Figs. 7.38 (a) and (b) are drawn for fluid parameter. Slight decrease is noticed for

larger fluid parameter. Figs. 7.39 (a)-(d) are prepared for compliant walls parameters. Size

of trapped bolus tend to decrease for damping coefficient whereas it increases for elastance
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coefficients.

Fig. 7.36 (a). (b)

 736  via change in 1 when 1 = 002 2 = 001 3 = 001  = 00  = 02  = 15

2 = 001 3 = 001  = 01  = 01 1 = 02  = 15  = 20  = 01  = 05

 = 11 () 1 = 001 () 1 = 003

Fig. 7.37 (a) (b)
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 737  via change in  when 1 = 002 2 = 001 3 = 001  = 00  = 02  = 15

1 = 001 2 = 001 3 = 001  = 01  = 01 1 = 02  = 15  = 20  = 05

 = 11 ()  = 01 ()  = 02

Fig. 7.38 (a) (b)

 738  via change in 1 when 1 = 002 2 = 001 3 = 001  = 00  = 02  = 15

1 = 001 2 = 001 3 = 001  = 01  = 01  = 15  = 20  = 01  = 05

 = 11 () 1 = 002 () 1 = 004
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Fig. 7.39 (a) (b)

(c) (d)

 739  via change in 1 2 3 when  = 00  = 02  = 15 1 = 001 2 = 001

3 = 001  = 01  = 01 1 = 02  = 15  = 20  = 01  = 05  = 11

() 1 = 002 2 = 001 3 = 001 () 1 = 003 2 = 001 3 = 001 () 1 = 002

2 = 003 3 = 001 () 1 = 002 2 = 001 3 = 002
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7.3.7 Validation of problem

Fig. 7.40

 740  via change in  and  when 1 = 001 2 = 002 3 = 001  = 01  = 02

 = 02 1 = 01 2 = 01 3 = 01 1 = 0  = 10  = 10  = 0  = 0

This Fig. is sketched for the effect of Brownian motion and thermophoresis parameter on

temperature which validates our results. In our problem we have taken 1 = 0  = 0  = 0

and get the result of study by Mustafa et. al. [170]. In this study the authors have taken the

nanofluid, slip conditions and wall properties. They solved the problem by using homotopy

analysis method (HAM). We observed that our results are in good agreement with limiting

results of [170].

7.4 Conclusions

Key observations of present chapter are mentioned below.

• Velocity slip and Hartman number have opposite behaviors for velocity.

• Influences of  and  on temperature are similar.

• Radiation parameter and Brinkman number have opposite results on fluid temperature.

• Concentration slip parameter leads to decay in concentration.
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• Entropy enhancement is noted for concentration difference and diffusion coefficient para-
meters.

• Radiation parameter and thermal slip parameter results on  are opposite.

• Bolus size increases with larger slip parameter.
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Chapter 8

Entropy generation and endoscopic

effects on peristalsis with modified

Darcy’s law

8.1 Introduction

Present chapter highlights the outcomes of endoscopy and entropy generation in MHD peri-

staltic flow of Sisko fluid. Unlike the traditional approach, the flow modeling for porous medium

is based upon modified Darcy’s law. Salient features of Joule heating and viscous dissipation

are investigated. Convective conditions for heat transfer are utilized. The problem after invok-

ing long wavelength approximation is numerically solved. Graphical analysis provides physical

insight. Graphs are plotted for velocity, temperature, entropy generation, Bejan number and

heat transfer coefficient for the pertinent parameters of interest. Results discloses that the

enhancement in Darcy number increases the fluid velocity and temperature. It also caused an

enhancement in entropy generation and Bejan number. Magnetic field leads to enhance the

temperature and entropy generation. Moreover the flexible wall parameters show increasing

trend for elastance coefficients whereas damping coefficient decays the fluid velocity.
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8.2 Modeling

Here magnetohydrodynamic flow of Sisko fluid between two coaxial uniform tubes is considered.

Inner tube (at  = 1) is fixed while the outer tube (at  = 2) is subject to peristaltic wave

[213]

 = 1 =  (8.1)

 = 2 = +  sin
2


( − )  (8.2)

Here  and  are radii of outer and inner tubes. Further wavelength, wave amplitude, wave speed

and time are symbolized as    and  respectively (see Fig. 8.1). Cylindrical coordinate (

) are selected such that  along radial direction and  perpendicular to . Viscous dissipation

and Ohmic heating are present.

Fig. 8.1: Flow Configuration

Fluid is electrically conducting using constant magnetic field. Electric field consideration is not

attended. Small magnetic Reynolds number leads to omission of induced magnetic field. In

addition incompressible Sisko fluid fills the porous space. Thus by modified Darcy’s law one

has for pressure drop [217]:

∇ = − κ
1

³
+ ∗

p
|Π|−1

´
V (8.3)
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in which porosity and permeability of medium are κ and 1 respectively. Here  and ∗ are

material constants. Keeping above expression in mind, the resistance satisfies [217]:

R = − κ
1

³
+ ∗

p
|Π|−1

´
V (8.4)

which in component form yields

 = − κ
1

³
+ ∗

p
|Π|−1

´
 (8.5)

 = − κ
1

³
+ ∗

p
|Π|−1

´
 (8.6)

where  and  are the velocities in  and −directions. We have following expressions [124]:




+




+




= 0 (8.7)



µ




¶
= −


+
1



()


+

()


− 


+ (8.8)



µ




¶
= −


+
1



()


+

()


− 20 + (8.9)



µ




¶
= 

µ
2

2
+
1






+

2

2

¶
+ 





+



+ 




+ 

µ



+





¶
+20

2 (8.10)

In above equations  represents the temperature.  for density of fluid,    and  the

extra stress components,  the pressure and  the thermal conductivity.

Expression of  for Sisko material is [72]:

S =
³
+ ∗

p
|Π|−1

´
A1 (8.11)
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in which the first Rivlin-Ericksen tensor (A1) is:

A1 =∇V+ (∇V)  (8.12)

and

Π =
1

2
A21 (8.13)

It should be noted that Sisko material contains two fluid models i.e. for  =  and ∗ = 0 this

model reduces to viscous fluid. On the other hand for  = 0 and ∗ =  this model recovers

power law model. Here power law index  describes shear thinning effect for 0    1 and

shear thickening for   1

The appropriate boundary conditions for present problem are:

 = 0 at  = 1 =   = 0 at  = 2 (8.14)

−


= 1( − 0) at  = 1 =  (8.15)

−


= 2(0 −  ) at  = 2 (8.16)µ
−∗ 

3

3
+∗

3

2
+ ∗1

2



¶
2 =




 (8.17)

where Eq. (8.14) defines the no slip condition for velocity. Eqs. (8.15) and (8.16) are the con-

vective boundary conditions. Here 1 and 2 are the heat transfer coefficients and compliance

of walls are depicted through ∗, ∗ and ∗1.

The non-dimensional quantities are

∗ =



 ∗ =




 ∗ =




 ∗ =






∗ =
2


 ∗1 =

1


=




=   1 ∗2 =

2




∗ =



 ∗ =




  =

 − 0

0
 (8.18)
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Non-dimensionlized form of system is

Re 3
µ



+ 




+ 





¶
= −


+





()


+ 2

()


− 2



³
1 + 1

p
|Π|−1

´
− 





(8.19)

Re 

µ



+ 




+





¶
= −


+
1



()


+ 

()


− 1



³
1 + 1

p
|Π|−1

´
 −2

(8.20)

RePr 

µ



+ 




+





¶
=

µ
2

2
+
1






+ 2

2

2

¶
+22

+



+




+





+

µ



+ 





¶
 (8.21)

 = 0 at  = 1 =   = 0 at  = 2 (8.22)




+1 = 0 at  = 1 =  (8.23)




−2 = 0 at  = 2 (8.24)

∙
1

3

3
+2

3

2
+3

2



¸
2 =

1



()


+ 

()


−Re 

µ



+ 




+ 





¶
− 1



³
1 + 1

p
|Π|−1

´


−2 at  = 1 =  and  = 2
(8.25)

with
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Here Re depicts Reynolds number,  the Hartman number, Pr the Prandtl number,  the
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Eckert number,  (product of Eckert and Prandtl numbers) the Brinkman number,  the

Darcy number,  the wave number, 1 the fluid parameter, 
0 ( = 1 2) the Biot numbers

and 0 ( = 1− 3) the compliance wall parameter.
Definition of stream function is

 = −1





  =

1






 (8.27)

Employing above expression and lubrication approach we arrive at


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= 0 (8.28)
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where incompressibility condition is automatically justified. From Eqs. (8.28) and (8.29), one

can write
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8.2.1 Entropy generation

Mathematical expressions for viscous dissipation is

Φ = 
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¶
 (8.37)

Volumetric entropy generation satisfies [213]:
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Dimensionless form of entropy generation is
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Bejan number is given by [213]:

 =
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or

 =

¡



¢2¡



¢2
+ 2

Λ
+ 

Λ


¡



¢  (8.42)

8.3 Solution methodology

Arising system of equations is nonlinear. Hence it seems difficult to find the exact solution of

considered problem. Thus an approximate solution can be evaluated via perturbation technique

or numerical technique. To avoid lengths solution expressions we have solved this problem

numerically by NDSolve in Mathematica. This also saves time as it provides best computing

results with minimum CPU time (3—4 min).
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8.4 Analysis

This section contains information about graphical interpretation of the results. We firstly

discuss the velocity function for Darcy number (), Hartman number (), fluid parameter

(1) and compliant wall parameters ( = 1− 3) Fig. 8.2 (a) depicts  influence on velocity.

Velocity is an increasing function of . Obviously more pores aid the flow speed. Fig. 8.2 (b)

is plotted for velocity against As expected the applied magnetic field provides a reduction in

velocity. This is because of enhancement in resistive force offered to fluid. Fig. 8.2 (c) witnesses

dual behavior of velocity for material parameter. Compliant nature is discussed via Fig. 8.2

(d). An enhancement in velocity is observed for 1 and 2 whereas damping force leads to

decrease of velocity. This situation in quite useful in blood perfusion process in arteries and

veins.

(a) (b)
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(c) (d)

 82 Plots for velocity when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02

 = 05  = 10  = 02 1 = 02 1 = 8 2 = 10  = 40(a)  effect on  (b) 

effect on  (c) 1 effect on  (d) 1 2 3 effects on 

Temperature for different parameters is discussed via Figs. 3 (a-f). These Figs. include

the influences of Darcy number () Brinkman number () Hartman number () fluid

parameter (1) and Biot numbers (
0
). Fig. 8.3 (a) elucidates the results for increasing

values of Darcy number. Temperature is enhanced for . As higher values of  lead to

more permeability which gave rise to the velocity of the fluid and as a result heat generation is

possible. Hence the temperature of the fluid rises. Fig. 8.3 (b) depicts temperature variation

for Brinkman number. Results reveal that temperature is an increasing function of . This

happens in view of viscous dissipation effect. Hartman number () shows an enhancement of

temperature (see Fig. 8.3 (c)). Joule heating aspect is responsible for this act. Behavior of fluid

parameter on thermal field is qualitatively similar to that of velocity (see Fig. 8.3 (d)). Biot

numbers results on temperature are demonstrated through Figs. 8.3 (e) and (f). Temperature

is enhanced for both Biot numbers.
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(a) (b)

(c) (d)
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(e) (f)

 83 Plots for temperature when 1 = 002 2 = 001 3 = 001  = 01  = 02

 = 02  = 05  = 10  = 02 1 = 02 1 = 8 2 = 10  = 40(a)  effect on 

(b)  effect on  (c)  effect on  (d) 1 effect on  (e) 1 effect on  (f) 2 effect on 

Figs. 8.3 (a-d) have been prepared for examination of entropy generation. Fig. 8.4 (a)

declared that Darcy number () leads to an enhancement in entropy generation. As more

heat is produced with increase in permeability, that corresponds to more disorderliness. Fig.

8.4 (b) illustrated the results of Hartman number (). Here larger  give rise to entropy

generation. It is because of the fact that temperature is directly related to . Brinkman

number influence on entropy generation is portrayed via Fig. 8.4 (c). Graphical analysis leads

to the fact that enhancement in entropy generation is observed in presence of viscous dissipation.

Fig. 8.4 (d) displayed the result of entropy generation through Λ. Reduction in  is noticed

for larger Λ
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(a) (b)

(c) (d)

 84 Plots for entropy generation when 1 = 002 2 = 001 3 = 001  = 01  = 02

 = 02  = 05  = 10  = 02 1 = 02 1 = 8 2 = 10 Λ = 05  = 10(a) 

effect on  (b)  effect on  (c)  effect on  (d) Λ effect on 

Variation of Bejan number () for sundry variables is shown in the Figs. 8.5 (a-d). Fig.

8.5 (a) is prepared for impact of Darcy number on . Enhancement is seen for Bejan number

for larger  Fig. 8.5 (b) is plotted for Brinkman number. It is noted that larger  caused

an enhancement in  Opposite results for  and Λ are seen for Bejan number (see Figs. 8.5

(c) and (d)). Here Bejan number enhancement in fact means that heat transfer irreversibility
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is high when compared with total heat transfer irreversibility.

(a) (b)

(c) (d)

 85 Plots for Bejan number when 1 = 002 2 = 001 3 = 001  = 01  = 02

 = 02  = 05  = 10  = 02 1 = 02 1 = 8 2 = 10 Λ = 05  = 10(a) 

effect on  (b)  effect on  (c)  effect on  (d) Λ effect on 

Figs. 8.6 (a—e) capture the results of heat transfer coefficient. Fig. 8.6 (a) is arranged for

Darcy number. Here larger  reveal an enhancement in heat transfer coefficient. Brinkman

number outcome is seen through Fig. 8.6 (b). Clearly heat transfer coefficient is increased for

Brinkman number. Heat transfer coefficient has decreasing impact for  (see Fig. 8.6 (c)).
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Biot numbers have opposite behavior for heat transfer coefficient (see Figs. 8.6 (d) and (e)).

(a) (b)

(c) (d)
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(e)

 86 Plots for heat transfer coefficient when 1 = 002 2 = 001 3 = 001  = 01

 = 02  = 05  = 10  = 02 1 = 02 1 = 8 2 = 10  = 10(a)  effect on

 (b)  effect on  (c)  effect on  (c) 1 effect on  (d) 2 effect on 

Now we display streamlines for trapping phenomenon. Figs. 8.7 (a , b) describe the Hartman

number influence on bolus size. It is noted that size of trapped bolus reduces for larger strength

of applied magnetic field. Figs. 8.8 (a , b) are plotted for impact of  on size of trapped

bolus. Bolus size shows an increase for larger  Figs. 8.9 (a , b) illustrate that bolus size is

an increasing function of fluid parameter.
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(a) (b)

 87  effect on  when 1 = 0002 2 = 0001 3 = 001  = 0  = 02  = 02

 = 05 1 = 002 1 = 2 2 = 3  = 10 ()  = 10 ()  = 30

(a) (b)

 88  effect on  when 1 = 0002 2 = 0001 3 = 001  = 0  = 02  = 05

 = 10 1 = 002 1 = 2 2 = 3  = 10 ()  = 01 ()  = 02
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(a) (b)

 89 1 effect on  when 1 = 0002 2 = 0001 3 = 001  = 0  = 02  = 02

 = 05  = 10 1 = 2 2 = 3  = 10 () 1 = 002 () 1 = 004

8.5 Conclusions

We have following findings from the presented analysis.

• Darcy number has similar effects for entropy generation and Bejan number.

• Hartman number for temperature and velocity has opposite effects.

• Biot numbers have increasing impact for temperature.

• Increasing values of  lead to enhancement of temperature, entropy generation and
Bejan number.

• Heat transfer coefficient for  increases.

• Bolus size for  tends to decrease.
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Chapter 9

Entropy optimization for peristalsis

of Rabinowitsch nanomaterial

9.1 Introduction

This chapter models peristaltic activity of Rabinowitsch material in a compliant walls channel.

Energy equation is accounted in presence of viscous dissipation and heat source/sink. Chem-

ical reaction is included in concentration expression. Nanomaterial characteristics are due to

Brownian motion and thermophoresis. Slip condition are utilized for velocity, temperature and

concentration. Exact solution is obtained for velocity. Further NDSolve is utilized for the

graphical analysis of temperature, concentration, entropy and heat transfer coefficient at the

wall. Results are also analyzed for viscous, shear thickening and shear thinning fluids. This

study reveals that the shear thinning fluids move with higher velocity than the viscous and shear

thickening fluids. Similarly temperature and entropy generation are also higher for shear thin-

ning case when compared with others. Further heat source parameter enhances the temperature

whereas sink parameter leads to decay. Slip parameter for velocity and temperature caused an

increase in the respective velocity and temperature. Moreover chemical reaction parameter

leads to enhancement in temperature and entropy generation for viscous, shear thickening and

shear thinning fluids. However shear thinning fluids are found prominent.
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9.2 Problem formulation

We have an interest to examine peristaltic flow of Rabinowitsch liquid in a symmetric channel

with compliant boundaries. The walls are maintained at temperature 0 Brownian motion and

thermophoresis are discussed. Heat generation/absorption and chemical reaction are attended.

The partial slip constraints for velocity, temperature and concentration are studied. Flow is

due to travelling wave along the channel walls. Wall form is

 = ± ( ) = ±
∙
+  sin

2


(− )

¸
 (9.1)

where we take the channel width 2 wave amplitude  speed  wavelength  This phenomenon

is shown via Fig. 9.1.

Fig. 9.1: Schematic Diagram

Flow problem is governed by the expressions [91, 108]
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Here energy Eq. (9.5) is taken by including heat source/ sink parameter. Brownian motion

and thermophoresis effects. These are represented by  and  respectively. ( ) the

velocity component,  the time,  is ()  ()   temperature,  the concentration, 0

the heat generation/absorption coefficient, ∗1 the strength of chemical reaction and  

 the stress components. Further   ∗   are the fluid density, thermal diffusivity,

mean temperature of nanofluid and pressure respectively.

Boundary conditions are [81, 86]




= 0 at  = 0 + 1 = 0 at  =  (9.7)

∙
−∗ 

3

3
+∗

3

2
+ ∗1

2



¸
 =




+




− 

∙



+ 




+ 





¸
at  =  (9.8)




= 0 at  = 0  + 2




= 0 at  =  (9.9)




= 0 at  = 0  + 3




= 0 at  =  (9.10)

in which ∗, ∗, and ∗1 elucidate the wall characteristics in terms of elastic and damping coeffi-

cients while 1 2 and 3 represent the velocity, temperature and concentration slip parameters.
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Non-dimensional variables are

∗ =



 ∗ =




 ∗ =




 ∗ =




 ∗ =






∗1 =
1


 ∗2 =

2

 ∗3 =

3

 ∗ =






∗ =



 ∗ =

2


  =

 −0

0
 ∗ =

33

3


 =
 − 0

0
  =




  = −


 (9.11)

After invoking Eq. (9.11), our system of equations (9.3-9.6) reduce to

Re

∙

2


+ 





2


− 





2

2

¸
= −


+ 




+




 (9.12)

Re 

∙
−2 

2


− 2





2

2
+ 2





2



¸
= −


+ 2




+ 




 (9.13)

RePr

∙




+ 








− 









¸
=

∙
2
2

2
+

2

2

¸
+

⎡⎣ 
2


+

³
2
2
− 2 

2
2

´
− 

2


⎤⎦
+Pr

µ
2







+









¶
+

Pr

Ã
2
µ




¶2
+

µ




¶2!
+  (9.14)

Re

µ




+








− 









¶
=

µ
2
2

2
+

2

2

¶
+





µ
2
2

2
+

2

2

¶
− 1 (9.15)

with boundary conditions

2

2
= 0 at  = 0




+ 1 = 0, at  =  = (1 +  sin 2 (− )) (9.16)

∙
1

3

3
+2

3

2
+3

2



¸
 = −Re

∙

2


+ 





2


− 





2

2

¸
+





+




 at  =  (9.17)

186






= 0 at  = 0  + 2




= 0 at  =  (9.18)




= 0 at  = 0 + 3




= 0 at  =  (9.19)

with

 =



  =




 Re =




  =

0
2




 =
0


  =

0


 Pr =






 =



  =

2

(1 − 0)
 1 =

∗1
2




1 = − ∗3

3
 2 =

∗3

3
 3 =

∗1
3

2
 (9.20)

Here  denotes the stream function,  the temperature,  the concentration,  amplitude ratio,

 wave number, Re Reynolds number,  heat source sink parameter,  and  the Brownian

motion and thermophoresis parameters, Pr Prandtl number,  Schmidt number,  Brinkman

number, 1 chemical reaction parameter and 1 2 3 the compliant wall parameters.

Invoking lubrication approach we obtain




=




 (9.21)




= 0 (9.22)

0 =
2

2
+

2

2
+Pr








+Pr

µ




¶2
+  (9.23)

2

2
+





2

2
− 1 = 0 (9.24)

with boundary conditions

2

2
= 0 at  = 0




+ 1 = 0, at  =  = (1 +  sin 2 (− )) (9.25)

∙
1

3

3
+2

3

2
+3

2



¸
 =




 at  =  (9.26)
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


= 0 at  = 0  + 2




= 0 at  =  (9.27)




= 0 at  = 0 + 3




= 0 at  =  (9.28)

where

 + ()
3 =




 (9.29)

9.2.1 Solution of the problem

As in eq. (9.29)  is in implicit form. To obtain an explicit expression we will make use of

eq. (9.21). By eq. (9.8) we can write:




=

∙
−∗ 

3

3
+∗

3

2
+ ∗1

2



¸
 (9.30)

This will be used to find 

We will now solve eq. (9.21) subject to slip condition of velocity. We arrive at

() =




µ
2 − 2

2

¶
+ 

µ




¶3µ
4 − 4

2

¶
− 1

µ




¶
(9.31)

The energy and concentration equations for nanofluid involve of thermophoresis and Brownian

motion effects. To tackle these equations we have utilized the NDSolve technique in Math-

ematica. This algorithm gives the solutions in less computation time and avoid the lengthy

expressions.

9.2.2 Expression for entropy generation

Viscous dissipation here is

Φ = 



+ 




+ 

µ



+





¶
 (9.32)
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Dimensional form is


000
 =



 2
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
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(9.33)

In dimensionless form

 =

000



000

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µ




¶2
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
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µ
2
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
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 +

+


Λ
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


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¶
+



Λ2

µ



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 (9.34)


000
 =

 20
 2

2
 Λ =

0


  =

0


  =

0


 (9.35)

9.3 Analysis

This section contains the graphical analysis of velocity, temperature, concentration, entropy

and heat transfer coefficient. Separate subsections are organized for this purpose.

9.3.1 Velocity

This subsection is organized for the results of velocity profile. Slip parameter results can be

viewed through Fig. 9.2. Higher slip parameter leads to velocity enhancement. It is due to less

friction. Figs. 9.3 and 9.4 represent behavior for wall elastance parameters. Enhancement of

velocity is seen in both cases. Result of damping parameter for wall behavior can be noticed

via Fig. 9.5. As damping nature of wall resists the fluid to move that causes decay in velocity

of fluid. It is also observed that for   0 (shear thinning) cases the velocity is higher than

viscous ( = 0) and shear thickening (  0) cases. This behavior is quite obvious as thick

fluid flows slowly than thin material.
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Fig. 9.2 Fig. 9.3

 92  via change in 1 when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 01

  93  via change in 1 when 2 = 001 3 = 001  = 01  = 02  = 01 1 = 001

Fig. 9.4 Fig. 9.5

 94  via change in 2 when 1 = 002 3 = 001  = 01  = 02  = 01 1 = 001

  95  via change in 3 when 1 = 002 2 = 001  = 01  = 02  = 01 1 = 001
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9.3.2 Temperature

This subsection contains the information about temperature of considered system. Fig. 9.6

illustrates the result for heat source /sink parameter on temperature. It is clearly seen that

for case of source parameter (  0) temperature of fluid enhances whereas for case of sink

(  0)  decreases. Moreover shear thinning fluid has higher temperature than viscous and

shear thickening materials. Shear thinning fluid has higher velocity and so higher mean kinetic

energy. Therefore higher temperature than shear thickening fluids. Similarly like velocity slip

parameter caused enhancement in mean kinetic energy thermal slip parameter leads to increase

in temperature (see Fig. 9.7).  effect can be observed with Fig. 9.8. An increase in heat

loss enhances the temperature. Fig. 9.9 demonstrates the impact of  Clearly wave with larger

amplitude causes increase in velocity and temperature as well. Larger values of Prandtl number

lead to increase of  (see Fig. 9.10). Viscous force also plays a vital role in enhancement

of temperature. Infact viscous effects dominating the heat loss, signify the enhancement of

temperature. Fig. 9.11 portrayed the impact of chemical reaction parameter. Clearly higher 1

yields temperature enhancement. Physical aspects is linked with chemical reaction parameter

and kinematic viscosity. Thermophoretic parameter caused an increase in  (see Fig. 9.12).

Fig. 9.13 displays the  effect on  In this case for higher values of  the temperature

increases. However in this case the increment is not prominent. Elastance parameters caused

enhancement of temperature (see Figs. 9.14, 9.15). Fig. 9.16 displays 3 effect on  Decay is

observed here. In all cases shear thinning fluid has higher values of temperature when compared

with viscous and shear thickening materials.
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Fig. 9.6 Fig. 9.7

 96  via change in  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02

1 = 001 2 = 001 3 = 001  = 15 1 = 01  = 15  = 05  = 15  = 20

  97  via change in 2 when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02

 = 05 1 = 001 3 = 001  = 15 1 = 01  = 15  = 05  = 15  = 20

Fig. 9.8 Fig. 9.9

 98  via change in  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02

 = 05 1 = 001 2 = 001 3 = 001  = 15 1 = 01  = 15  = 05  = 15

  99  via change in  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 05
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1 = 001 2 = 001 3 = 001  = 15 1 = 01  = 15  = 05  = 15  = 20

Fig. 9.10 Fig. 9.11

 910  via change in Pr when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02

 = 05 1 = 001 2 = 001 3 = 001  = 15 1 = 01  = 15  = 05  = 20

  911  via change in 1 when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02

 = 05 1 = 001 2 = 001 3 = 001  = 15  = 15  = 05  = 15  = 20

Fig. 9.12 Fig. 9.13

 912  via change in  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02

 = 05 1 = 001 2 = 001 3 = 001 1 = 01  = 15  = 05  = 15  = 20
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 913  via change in  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02

 = 05 1 = 001 2 = 001 3 = 001  = 15 1 = 01  = 05  = 15  = 20

Fig. 9.14 Fig. 9.15

 914  via change in 1 when 2 = 001 3 = 001  = 01  = 02  = 02  = 05

1 = 001 2 = 001 3 = 001  = 15 1 = 01  = 15  = 05  = 15  = 20

  915  via change in 2 when 1 = 002 3 = 001  = 01  = 02  = 02  = 05

1 = 001 2 = 001 3 = 001  = 15 1 = 01  = 15  = 05  = 15  = 20

Fig. 9.16

 916  via change in 3 when 1 = 002 2 = 001  = 01  = 02  = 02  = 05
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1 = 001 2 = 001 3 = 001  = 15 1 = 01  = 15  = 05  = 15  = 20

9.3.3 Concentration field

Graphical analysis of concentration is presented in this subsection. Slip effect on concentration

can be viewed via Fig. 9.17. Decay is observed for larger slip parameter. Concentration is in-

creasing function of Schmidt number (see Fig. 9.18). Viscous effects elevated the concentration.

Similarly resemblance is observed here. By viewing Figs. 9.19 and 9.20 opposite impacts of 

and  on  are observed. Larger values of  caused increase of . Fig. 9.21 is prepared

to see the result for chemical reaction parameter. Enhancement is also seen here. Reason is

directly related to chemical reaction coefficient. Graphical illustration for amplitude ratio and

heat source/sink parameter can be noticed through Figs. 9.22 and 9.23. Both show decaying

trend for  Elastance parameters for walls lead to decay in concentration. These observations

can be noticed with Figs. 9.24 and 9.25. Damping coefficient result can be elucidated with

Fig. 9.26. 3 caused increase in  In all cases under discussion it can be clearly noticed

that concentration for the shear thinning fluid is lower than the viscous and shear thickening

materials.

Fig. 9.17 Fig. 9.18

 917  via change in 3 when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02

 = 05 1 = 001 2 = 001  = 15 1 = 01  = 15  = 05  = 15  = 20
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 918  via change in  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02

 = 05 1 = 001 2 = 001 3 = 001  = 15 1 = 01  = 15  = 15  = 20

Fig. 9.19 Fig. 9.20

 919  via change in  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02

 = 05 1 = 001 2 = 001 3 = 001  = 15 1 = 01  = 05  = 15  = 20

  920  via change in  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02

 = 05 1 = 001 2 = 001 3 = 001 1 = 01  = 15  = 05  = 15  = 20

Fig. 9.21 Fig. 9.22

 921  via change in 1 when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02
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 = 05 1 = 001 2 = 001 3 = 001  = 15  = 15  = 4  = 15  = 20

  922  via change in  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 05

1 = 001 2 = 001 3 = 001  = 15 1 = 01  = 15  = 05  = 15  = 20

Fig. 9.23 Fig. 9.24

 923  via change in  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02

1 = 001 2 = 001 3 = 001  = 15 1 = 01  = 15  = 05  = 15  = 20

  924  via change in 1 when 2 = 001 3 = 001  = 01  = 02  = 02  = 05

1 = 001 2 = 001 3 = 001  = 15 1 = 01  = 15  = 05  = 15  = 20

Fig. 9.25 Fig. 9.26
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 925  via change in 2 when 1 = 002 3 = 001  = 01  = 02  = 02  = 05

1 = 001 2 = 001 3 = 001  = 15 1 = 01  = 15  = 05  = 15  = 20

  926  via change in 3 when 1 = 002 2 = 001  = 01  = 02  = 02  = 05

1 = 001 2 = 001 3 = 001  = 15 1 = 01  = 15  = 05  = 15  = 20

9.3.4 Entropy generation analysis

This subsection contains information about entropy analysis of the considered system for promi-

nent parameters of our study. Fig. 9.27 portrayed the effect of chemical reaction on . For

higher chemical reaction parameter the entropy enhances similar as in case of temperature.

Brinkman number also enhances the entropy as this parameter occurs due to the effect of vis-

cous dissipation which is responsible for enhancement of temperature and entropy (see Fig.

9.28). Fig. 9.29 witnessed increasing effect of heat source parameter. As expected the heat

source parameter enhances temperature and hence entropy. Influences of  and Λ on  are

opposite (see Figs. 9.30 and 9.31). Fig. 9.32 displays the impact of diffusion coefficient para-

meter  Increasing trend of  is noticed in this case. In all graphs it can be observed that

shear thinning fluids have higher entropy than the viscous and shear thickening materials. It is

due to the fact that shear thinning fluid has higher mean kinetic energy than shear thickening

materials which caused more disorderliness.

Fig. 9.27 Fig. 9.28
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 927  via change in 1 when 1 = 002 2 = 001 3 = 001  = 01  = 02

 = 02  = 05 1 = 001 2 = 001 3 = 001  = 15  = 15  = 3  = 15

 = 20  = 05 Λ = 05  = 05

  928  via change in  when 1 = 002 2 = 001 3 = 001  = 01  = 02

 = 02  = 05 1 = 001 2 = 001 3 = 001  = 15 1 = 01  = 15  = 05

 = 15  = 05 Λ = 05  = 05

Fig. 9.29 Fig. 9.30

 929  via change in  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02

1 = 001 2 = 001 3 = 001  = 15 1 = 01  = 15  = 05  = 15  = 20

 = 05 Λ = 05  = 05

  930  via change in  when 1 = 002 2 = 001 3 = 001  = 01  = 02

 = 02  = 05 1 = 001 2 = 001 3 = 001 1 = 01  = 15  = 05  = 15

 = 20  = 05 Λ = 05  = 05
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Fig. 9.31 Fig. 9.32

 931  via change in Λ when 1 = 002 2 = 001 3 = 001  = 01  = 02

 = 02  = 05 1 = 001 2 = 001 3 = 001  = 15 1 = 01  = 15  = 05

 = 15  = 20  = 05  = 05

  932  via change in  when 1 = 002 2 = 001 3 = 001  = 01  = 02

 = 02  = 05 1 = 001 2 = 001 3 = 001  = 15 1 = 01  = 15  = 05

 = 15  = 20 Λ = 05  = 05

9.3.5 Heat transfer coefficient

Graphs for heat transfer coefficient are displayed here for some influential parameters of our

study. These graphs are plotted for the shear thinning, viscous and shear thickening cases. It

can be seen that these graphs show oscillatory behavior which is due to peristaltic phenomenon.

Fig. 9.32 is arranged to see effect of chemical reaction. An increase is noticed here. Result

for  on  can be viewed from Fig. 9.33. Enhancement is observed. Fig. 9.34 displays

the increasing trend of  for heat source. In all cases it can be clearly noticed that shear

thinning fluids have higher values for heat transfer coefficient than viscous and shear thickening

materials.
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Fig. 9.33 Fig. 9.34

 933  via change in 1 when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 05

1 = 001 2 = 001 3 = 001  = 15  = 15  = 05  = 15  = 20

  934  via change in  when 1 = 002 2 = 001 3 = 001  = 01  = 02

 = 05 1 = 001 2 = 001 3 = 001  = 15 1 = 01  = 15  = 05  = 15

Fig. 9.35

 935  via change in  when 1 = 002 2 = 001 3 = 001  = 01  = 02

1 = 001 2 = 001 3 = 001  = 15 1 = 01  = 15  = 05  = 15  = 20
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9.4 Conclusions

Major findings are listed below.

• Velocity and thermal slip parameters lead to an increase in velocity and temperature.

• Velocity for shear thinning material is higher when compared with viscous and shear
thickening fluids.

• Heat source parameter caused an increase in temperature and entropy.

• Temperature and entropy for shear thinning fluids are higher than viscous and shear
thickening materials.

• Heat transfer coefficient enhances for chemical reaction parameter.

• Concentration for shear thickening fluids is higher than viscous and shear thinning mate-
rials.
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Chapter 10

Entropy analysis in peristalsis with

homogeneous-heterogeneous reaction

10.1 Introduction

Homogeneous-heterogeneous reactions in peristalsis of Prandtl fluid are examined. Magnetic

field is applied in the perpendicular direction to the flow. Joule heating effect is also considered

in this analysis. Buongiorno nanofluid model has been used which incorporates two prominent

slip mechanisms i.e. Brownian motion and thermophoresis. Second law of thermodynamics has

been utilized for entropy generation analysis. No slip boundary conditions are employed for

the considered analysis. NDSolve command of Mathematica 9.0 is employed for the solution of

problem. Graphs for pertinent parameters are plotted and analyzed. These graphs contain ve-

locity, temperature, homogeneous-heterogeneous reaction, entropy and heat transfer coefficient.

Key points are summarized in the conclusion.

10.2 Problem formulation

MHD peristaltic flow of the incompressible Prandtl nanofluid is considered. Peristaltic wave

travel along the flexible walls of channel. Wall’s temperature are maintained at 1 and 0 and

concentration 1 and 0 respectively (see Fig. 10.1). Homogeneous- heterogeneous reaction is

considered for the considered problem. Nanofluid slip mechanisms, Brownian motion and ther-
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mophoresis are considered. Joule heating and viscous dissipation are also accounted. Peristaltic

wave shape is

 = ± ( ) = ±
∙
+  sin

2


(− )

¸
 (10.1)

Here wall shape is denoted by ± with    and  denote the half channel width, wave

amplitude, time and wave speed.

Fig. 10.1: Flow configuration

The model equations for homogeneous-heterogeneous equations are

+ 2 → 3 rate 
∗
1

2∗
2  (10.2)

in which  and  elucidate the rate constants. We consider the single first order isothermal

reaction. On the surface of catalyst we have

→  rate 
∗
1 (10.3)

where ∗1  
∗
2 are the respective concentration of the species  and  Flow expressions are




+




= 0 (10.4)




+ 




+ 




= − 1






+
1






+
1






− 1


20 (10.5)
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


+ 




+ 




= − 1






+
1






+
1






 (10.6)




+ 




+ 




= ∗

∙
2

2
+

2

2

¸
+

1

()

∙





+ 

µ



+





¶
+ 





¸

+

⎡⎢⎣ 

³
∗1




+

∗1

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
+

∗2




+

∗2





´
+





µ¡



¢2
+
³



´2¶
⎤⎥⎦

+
1

()
20

2 (10.7)

∗1


+ 
∗1


+ 
∗1


= ́

µ
2∗1
2

+
2∗1
2

¶
− 

∗
1

2∗
2 +





∙
2

2
+

2

2

¸
 (10.8)

∗2


+ 
∗2


+ 
∗2


= ́

µ
2∗2
2

+
2∗2
2

¶
+ 

∗
1

2∗
2 +





∙
2

2
+

2

2

¸
 (10.9)

Here    describe respective velocity components and temperature.  the pressure, 

density,    the stress components of the considered Prandtl fluid. ∗ the thermal

diffusivity,  (= ()  () ) the ratio of specific heat capacity of nanoparticles and base

fluid,  the Brownian motion and  the thermophoretic diffusion coefficients,  the mean

temperature of the fluid, and ́ and ́ the diffusion species coefficients for the species  and

 respectively.

Prandtl fluid can be expressed by the following relation:

τ = −I+ S (10.10)

where the component  is given by

 =

∗ arcsin

Ã
1
∗

∙³



´2
+
¡



¢2¸ 12!
∙³




´2
+
¡



¢2¸ 12 


 (10.11)

With the boundary conditions

 = 0 at  = ± (10.12)
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 =

⎧⎨⎩ 1

0

⎫⎬⎭ at  = ± (10.13)

́
∗1

− 

∗
1 = 0 at  =  ∗1 → 0 at  = − (10.14)

́
∗2


+ 
∗
2 = 0 at  =  ∗2 → 0 at  = − (10.15)

The equation mentioned below describe the decomposition of applied pressure in terms of

compliant walls characteristics.

∙
−∗ 

3

3
+∗

3

2
+ ∗1

2



¸
 =




+




− 

∙



+ 




+ 





¸
−20 at  = ± (10.16)

Non-dimensional parameters are

∗ =



 ∗ =




 ∗ =




 ∗ =




 ∗ =






∗ =



  =

 − 0

1 − 0
 ∗ =




  =

∗1
0



 =
∗2
0

 ∗ =
2


  =




  = −


 (10.17)

After utilizing non-dimensional parameters, we obtained the following systems

Re

∙

2


+ 





2


− 





2

2

¸
= −


+ 




+




−2


 (10.18)

Re 

∙
−2 

2


− 2





2

2
+ 2





2



¸
= −


+ 2




+ 




 (10.19)
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RePr
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(10.20)
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2
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+
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(10.21)
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
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2
2
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¸
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1
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

∙
2
2

2
+
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2

¸


(10.22)

 = 1
2

2
+



6

"µ
2

2

¶2
+ 4

µ
2

2

¶2#µ
2

2

¶
 (10.23)




= 0, at  = ± = ±(1 +  sin 2 (− )) (10.24)

∙
1

3

3
+2

3

2
+3

2



¸
 = −Re

∙

2


+ 





2


− 





2

2

¸
+





+




−2


 at  = ± (10.25)

 =

⎧⎨⎩ 1

0

⎫⎬⎭ at  = ± (10.26)




− = 0 at  =   = 1 at  = − (10.27)

∗



+ = 0 at  =   = 0 at  = − (10.28)
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with

Re =



  =




  =

r



0  =






 =
 (1 − 0)


  =

0


  =






Pr =
 ()


  =

2

(1 − 0)
 1 =

∗

∗


 =
1

2

∗22
 

́
=



́

  =


́

  =


2
0
2




1 = − ∗3

3
 2 =

∗3

3
 3 =

∗1
3

2
 (10.29)

where Re depicts Reynolds number,  wave number, Hartman number,  amplitude ratio, 

thermophoresis parameter,  Brownian motion parameter,  Schmidt number, Pr Prandtl

number,  Brinkman number, 1 and  are fluid parameters for Prandtl fluid, 
́
Diffusion

Schmidt number,  and measures the strength of respective heterogeneous and homogeneous

reactions and 1 2 3 the compliant walls coefficients. Here we have omitted the asterisks

for simplicity.

After employing the theory of long wavelength and low Reynolds number assumptions we

obtain




=




−2


 (10.30)




= 0 (10.31)

2
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+

∙
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2
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¸
+Pr

µ







+


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

¶
+Pr

µ




¶2
+2

µ




¶2
= 0 (10.32)

1


́

2

2
−2 +

1







2

2
= 0 (10.33)

∗


́

2

2
+2 +

1







2

2
= 0 (10.34)
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 = 1
2

2
+



6

µ
2

2

¶3
 (10.35)




= 0, at  = ± = ±(1 +  sin 2 (− )) (10.36)

∙
1

3

3
+2

3

2
+3

2



¸
 =




−2


 at  = ± (10.37)

 =

⎧⎨⎩ 1

0

⎫⎬⎭ at  = ± (10.38)




− = 0 at  =   = 1 at  = − (10.39)

∗



+ = 0 at  =   = 0 at  = − (10.40)

In general the diffusion coefficient of the chemical species  and  are of comparable size. For

application point of view this leads to the assumption that they are equal i.e. ́ = ́ and

hence ∗ = ́

́
= 1 and we have the relation  + = 1 After utilizing this relation, We solved

these equations via NDSolve of Mathematica.

10.2.1 Entropy generation

Entropy expression obeys
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¶
 (10.41)

where Φ is given by

Φ = 



+ 




+ 

µ



+


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¶
 (10.42)
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Dimensionless form satisfies
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 (10.43)


000
 =

 (1 − 0)
2

 2
2

 Λ =
1 − 0


 1 =

́0


 2 =

́0


  =

0


 (10.44)

10.3 Analysis

Here we adopted the technique (NDSolve command of Mathematica) which gave the convergent

solution in less computation time. Moreover this technique avoids the lengthy complicated

expressions. Graphs are plotted directly for the physical analysis. These graphs include velocity,

temperature, entropy and heat transfer coefficient. Figs. 10.2 and 10.3 displayed the results

for fluid parameter on velocity. Decay in both cases is observed. Same results can be seen via

studies [84, 85]. Magnetic field effect (utilized in ECG for synchronization purposes) can be

observed via Fig. 10.4. As Lorentz force caused resistance in fluid flow. So decrease in fluid

velocity has been observed. Fig. 10.5 manifested the effect of wall parameters. Decrease is

noticed via damping nature of walls whereas an increase in velocity is observed for elastance

characteristics of walls. These results have quite resemblance with the flow in blood vessels

where the elastance nature enhances the blood velocity and damping nature reduced the blood

velocity.
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Fig. 10.2 Fig. 10.3

 102  for 1 when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02  = 05

 = 01  = 05  = 05  = 
́
= 05  = 01  = 01  = 15  = 20

  103  for  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02 1 = 20

 = 01  = 05  = 05  = 
́
= 05  = 01  = 01  = 15  = 20

Fig. 10.4 Fig. 10.5

 104  for  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02 1 = 20

 = 05  = 05  = 05  = 
́
= 05  = 01  = 01  = 15  = 20

  105  for 1 2 and 3 when  = 01  = 02  = 02 1 = 20  = 05  = 01
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 = 05  = 05  = 
́
= 05  = 01  = 01  = 15  = 20

Temperature profile for effect of fluid parameters ( ) can be viewed through Figs. 10.6

and 10.7. Decrease is noticed in these cases as can be seen through studies [84, 85]. As

enhancement in mean kinetic energy of the particles leads to increase in temperature. Here

higher values of fluid parameters slow down the fluid velocity so particles have less molecular

vibrations and thus less temperature as well. Influence of Brinkman number on  is notified via

Fig. 10.8. Note that resistance among fluid particle due to viscous effects produced heat. It

results in enhancement of temperature of fluid. Fig. 10.9 elucidates the magnetic field influence

on  Applied magnetic field provide resistance to fluid which produce heating and caused an

increase in temperature. Figs. 10.10 and 10.11 are manifested for the behaviors of  and 

on temperature. Larger values for both parameters caused an increase in temperature of fluid.

 is related to random motion of the particles. Larger values of it indicate more randomness

and hence more heat loss which leads to increase in temperature. Fig. 10.12 displays the

results for homogeneous reaction parameter on temperature. Decrease in seen in this case. As

concentration deceases in this case so less concentrated fluid have less heat loss. Compliant wall

characteristics are seen qualitatively similar with  (see Fig. 10.13). Compliant characteristics

of walls are important as when wall are elastic it easily allows the exchange of water, oxygen

and other nutrients.

Fig. 10.6 Fig. 10.7
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 106  for 1 when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02  = 05

 = 01  = 05  = 05  = 
́
= 05  = 01  = 01  = 15  = 20

  107  for  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02 1 = 20

 = 01  = 05  = 05  = 
́
= 05  = 01  = 01  = 15  = 20

Fig. 10.8 Fig. 10.9

 108  for  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02 1 = 20

 = 05  = 01  = 05  = 05  = 
́
= 05  = 01  = 01  = 15

  109  for  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02 1 = 20

 = 05  = 05  = 05  = 
́
= 05  = 01  = 01  = 15  = 20
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Fig. 10.10 Fig. 10.11

 1010  for  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02

1 = 20  = 05  = 01  = 05  = 05  = 
́
= 05  = 01  = 15  = 20

  1011  for  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02 1 = 20

 = 05  = 01  = 05  = 05  = 
́
= 05  = 01  = 15  = 20

Fig. 10.12 Fig. 10.13

 1012  for  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02 1 = 20

 = 05  = 01  = 05  = 01  = 
́
= 05  = 01  = 15  = 20

  1013  for 1 2 3 when  = 01  = 02  = 02 1 = 20  = 05  = 01
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 = 05  = 05  = 
́
= 05  = 01  = 01  = 15  = 20

Figs. 10.14 and 10.15 are plotted to observe the effect of heterogeneous and homogeneous

reaction parameters on  Decaying behavior of these parameters on concentration has been

noticed. As increase in heterogeneous reaction parameter enhances the reaction rate which

results in decrease of diffusion rate and hence concentration decreases whereas enhancement

in homogeneous reaction parameter caused reduction in viscosity and hence in concentration.

Fig. 10.16 is prepared for  (Hartman number) effect on concentration. Enhancement in

concentration is seen here. Larger values of Schmidt number caused decay in concentration (see

Fig. 10.17). As density of the fluid decreases. So less dense particles attained higher speed and

it lessons the fluid concentration.

Fig. 10.14 Fig. 10.15

 1014  for  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02 1 = 20

 = 05  = 01  = 05  = 
́
= 05  = 01  = 01  = 15  = 20

  1015  for  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02 1 = 20

 = 05  = 01  = 05  = 
́
= 05  = 01  = 01  = 15  = 20
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Fig. 10.16 Fig. 10.17

 1016  for  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02 1 = 20

 = 05  = 05  = 05  = 
́
= 05  = 01  = 01  = 15  = 20

  1017  for  
́
when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02

1 = 20  = 05  = 01  = 05  = 05  = 01  = 01  = 15  = 20

Entropy analysis for different embedded parameters has been carried out through Figs.

10.18—10.30. Hartman number impact can be observed via Fig. 10.18. As magnetic field provide

resistance that produced heating so temperature enhances at the center of channel. Fig. 10.19

portrayed the results for  on  Random motion of particles create more disorderedness

hence entropy enhances for higher  Similar behavior has been seen for  via Fig. 10.20.

Entropy for Schmidt number is decreased (see Fig. 10.21). As less concentrated fluid has

no more disorderedness. Fig. 10.22 demonstrated that increase in heterogeneous reaction

caused enhancement in entropy generation. 1 and 2 results are displayed via Fig. 10.23.

Enhancement is observed here. Fig. 10.24 is prepared for the study of Brinkman number

impact on entropy. Obviously increase is noticed in this case. As increase in viscous dissipation

produces more heating and thus increase in entropy. Opposite impacts for  and Λ have

been observed (see Figs. 10.25 and 10.26). Fluid parameters for Prandtl number results are

illustrated via Figs. 10.27 and 10.28. Decrease is noticed like in the case of temperature.

Entropy analysis for homogeneous reaction parameter can be observed through Fig. 10.29.
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Decay is observed through reason directly linked to temperature. Compliant wall results are

seen increasing for elastance coefficients whereas decreasing for damping coefficient (see Fig.

10.30).

Fig. 10.18 Fig. 10.19

 1018  for  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02

1 = 02  = 05  = 05  = 05  = 
́
= 01  = 01  = 01  = 15

 = 20 Λ = 05  = 05 1 = 2 = 05

  1019  for  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02

1 = 20  = 05  = 01  = 05  = 05  = 
́
= 05  = 01  = 15  = 20

Λ = 05  = 05 1 = 2 = 05
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Fig. 10.20 Fig. 10.21

 1020  for  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02

1 = 20  = 05  = 01  = 05  = 05  = 
́
= 05  = 01  = 01  = 15

 = 20 Λ = 05  = 05 1 = 2 = 05

  1021 for  
́
when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02

1 = 20  = 05  = 01  = 05  = 05  = 01  = 01  = 15  = 20

Λ = 05  = 05 1 = 2 = 05

Fig. 10.22 Fig. 10.23

 1022  for  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02
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1 = 20  = 05  = 01  = 05  = 
́
= 05  = 01  = 01  = 15

 = 20 Λ = 05  = 05 1 = 2 = 05

  1023  for 1 2 when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02

1 = 20  = 05  = 01  = 05  = 05  = 
́
= 05  = 01  = 01  = 15

 = 20 Λ = 05  = 05

Fig. 10.24 Fig. 10.25

 1024  for  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02

1 = 20  = 05  = 01  = 05  = 05  = 
́
= 05  = 01  = 01  = 15

Λ = 05  = 05 1 = 2 = 05

  1025  for  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02

1 = 20  = 05  = 01  = 05  = 05  = 
́
= 05  = 01  = 01  = 15
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 = 20 Λ = 05 1 = 2 = 05

Fig. 10.26 Fig. 10.27

 1026  for Λ when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02

1 = 20  = 05  = 01  = 05  = 05  = 
́
= 05  = 01  = 01  = 15

 = 20  = 05 1 = 2 = 05

  1027  for 1 when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02

 = 05  = 01  = 05  = 05  = 
́
= 05  = 01  = 01  = 15

 = 20 Λ = 05  = 05 1 = 2 = 05

Fig. 10.28 Fig. 10.29

 1028  for  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02
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1 = 20  = 01  = 05  = 05  = 
́
= 05  = 01  = 01  = 15

 = 20 Λ = 05  = 05 1 = 2 = 05

  1029  for  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02

1 = 20  = 01  = 05  = 05  = 
́
= 05  = 01  = 01  = 15

 = 20 Λ = 05  = 05 1 = 2 = 05

Fig. 10.30

 1030  for 1 2 3 when  = 01  = 02  = 02 1 = 20  = 05  = 01

 = 05  = 05  = 
́
= 05  = 01  = 01  = 15  = 20 Λ = 05  = 05

1 = 2 = 05

Figs. 10.31-10.34 are plotted for investigation of heat transfer coefficient under influence

of pertinent parameters. Fluid parameter for Prandtl fluid results can be discussed via Figs.

10.31 and 10.32. Increasing trend of  is noticed for both parameters. Brinkman number effect

can be seen through Fig. 10.33. Larger values of  increases the heat transfer coefficient.

Hartman number effect can be portrayed via Fig. 10.34. Decay in heat transfer coefficient is

noticed for higher 
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Fig. 10.31 Fig. 10.32

 1031  for 1 when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 05

 = 30  = 05  = 05  = 
́
= 05  = 01  = 01  = 15  = 20

  1032  for  when 1 = 002 2 = 001 3 = 001  = 01  = 02 1 = 05

 = 30  = 05  = 05  = 
́
= 05  = 01  = 01  = 15  = 20

Fig. 10.33 Fig. 10.34

 1033  for  when 1 = 002 2 = 001 3 = 001  = 01  = 02 1 = 05

 = 05  = 30  = 05  = 05  = 
́
= 05  = 01  = 01  = 15

  1034  for  when 1 = 002 2 = 001 3 = 001  = 01  = 02 1 = 05
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 = 05  = 05  = 05  = 
́
= 05  = 01  = 01  = 15  = 20

10.3.1 Validation of problem:

To validate the results of our problem we have compared the results with study by Alsaedi et

al [80]. They have utilized the perturbation method to solve their problem. We have made a

comparison about velocity profile. In our problem if we exclude the nanofluid and homogeneous-

heterogeneous reaction then our results are in good comparison with the study [80].

Fig. 10.35: Validation of the Problem

 1035  for  when 1 = 1 2 = 05 3 = 05  = 01  = 03  = 02 1 = 10

 = 01  = 0  = 0  = 0  = 15  = 20

10.4 Conclusions

This study discloses the phenomenon of peristalsis with homogeneous-heterogeneous reaction.

Entropy analysis has been carried out. Some important observations for the considered analysis

can be summed up as follows:

• Prandtl number has decaying behavior for velocity, temperature and entropy generation.

• Magnetic field slows down the fluid velocity whereas it provides heating to the fluid and
increase the system’s entropy.
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• Heterogeneous reaction parameter enhances the entropy.

• Temperature increases for   and  Qualitatively similar behavior is observed for

entropy.

• Homogeneous reaction parameter has same result on temperature and entropy.

• Concentration decreases for homogeneous and heterogeneous reaction parameters.

• Heat transfer coefficient rises for fluid parameter and Brinkman number whereas it de-
creases for Hartman number.
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Chapter 11

Entropy analysis for the peristaltic

flow of third grade fluid with

variable thermal conductivity

11.1 Introduction

This chapter is based on the study of entropy analysis in fluid transport phenomenon by peri-

stalsis. Mixed convective flow in compliant wall channel is considered. Here third grade fluid

is considered. Effect of gravity is also encountered. Magnetohydrodynamics and Joule heating

are part of flow modeling. Energy equation is addressed subject to viscous dissipation and

variable thermal conductivity. Resulting system is solved with the help of NDSolve command

in Mathematica. Proper attention is given to the study of velocity, temperature and entropy

analysis. This analysis is carried out via graphical results for different embedded parameters.

Graphs for heat transfer coefficient are also plotted and analyzed.

11.2 Modeling

Here we modeled the peristaltic phenomenon of an incompressible third grade fluid. The channel

is considered vertical. Here x-axis lies along the flow direction and y-axis perpendicular to it

(see Fig. 11.1). As the channel is vertical so effects of gravity cannot be ignored. Thus mixed
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convection is also taken into account in this study. The channel walls are flexible. MHD and

Joule heating phenomena are accounted. Here peristaltic waves are propagating in x-direction.

Wave amplitude is  with speed  wavelength  and channel width 2 Temperature of the left

wall is maintained at 0 and right wall by 1 Shape of wall is given by:

 = ± ( ) = ±
∙
+  sin

2


(− )

¸
 (11.1)

Fig. 11.1: Flow Diagram

An extra stress tensor for thermodynamic compatible third grade fluid is [79]

S = A1 + 1A2 + 2A
2
1 + (A21)A1 (11.2)

in which material parameters satisfy the conditions

1 ≥ 0  ≥ 0 |1 + 2| ≤
p
24 (11.3)

The definitions of first and second Rivilin-Ericksen tensors are [79]

A1 = ∇V+(∇V)  A2 =
A1


+A1(∇V) + (∇V) A1 (11.4)

where material derivative 

is given by ( 


+  


+  


)
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Flow configuration is described by the following set of equations [100, 181]

Continuity equation is:




+




= 0 (11.5)

Momentum equation in presence of MHD and mixed convection satisfies



µ



+ 




+ 





¶
= −


+




+




− 20+  ( − 0) (11.6)



µ



+ 




+ 





¶
= −


+




+




 (11.7)

Energy expression in presence of variable thermal conductivity, Joule heating and viscous dis-

sipation leads to



µ



+ 




+ 





¶
=





µ
( )





¶
+





µ
( )





¶
+ 




+ 

µ



+





¶
+ 





+20
2 (11.8)

The boundary conditions are stated as follows

 = 0 at  = ± (11.9)

 =

⎧⎨⎩ 1

0

⎫⎬⎭ at  = ± (11.10)

∙
−∗ 

3

3
+∗

3

2
+ ∗1

2



¸
 =




+




− 

∙



+ 




+ 





¸
−20+  ( − 0) at  = ±(11.11)

Here  and  are the velocity components in the  and  directions,  the pressure, ( ) the

variable thermal conductivity,  the density,  the specific heat, 0 the strength of magnetic

field,  the electric conductivity,  the components of third grade fluid,  the gravity, 

the thermal expansion coefficient,  for temperature and ∗ ∗ and ∗1 the compliant walls

coefficients that describes the elastic and damping characteristics of the walls.
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Non-dimensional quantities are

∗ =



 ∗ =




 ∗ =




 ∗ =




 ∗ =






∗ =



 () =

( )

0
 ∗ =




 ∗ =

2




∗ =
2

2
  =

 − 0

1 − 0
  =




  = −


 (11.12)

Utilizing (11.12) one has in terms of stream function () as

Re

∙

2


+ 





2


− 





2

2

¸
= −


+ 




+




−2


+ (11.13)

Re 

∙
−2 

2


− 2





2

2
+ 2





2



¸
= −


+ 2




+ 




 (11.14)

RePr

∙




+ 








− 









¸
= 2





µ
()





¶
+





µ
()





¶
+

+

∙


2


+ 

µ
2

2
− 2

2

2

¶
− 

2
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¸
+2

µ




¶2
 (11.15)




= 0, at  = ± = ±(1 +  sin 2 (− )) (11.16)

∙
1

3

3
+2

3

2
+3

2



¸
 = −Re

∙

2


+ 





2


− 





2

2

¸
+





+




−2


+ at  = ±(11.17)

 =

⎧⎨⎩ 1

0

⎫⎬⎭ at  = ± (11.18)
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where

 =



  =

r



0  =




 Re =






 =
2

0(1 − 0)
 Pr =



0
  =

 (1 − 0)
2




1 = − ∗3

3
 2 =

∗3

3
 3 =

∗1
3

2
 (11.19)

Here  denotes wave number,  Hartman number,  amplitude ratio, Re Reynolds number,

 Brinkman number, Pr Prandtl number,  Grashof number and 1 2 3 the compliant

walls coefficients.

Employing long wavelength and low Reynolds number assumptions, one obtains




=




−2


+ (11.20)




= 0 (11.21)

0 =




µ
()

2

2

¶
+

2

2
+2

µ




¶2
 (11.22)

 =
2

2
+ 6

µ
2

2

¶3
 (11.23)




= 0, at  = ± = ±(1 +  sin 2 (− )) (11.24)

∙
1

3

3
+2

3

2
+3

2



¸
 =




−2


+ at  = ± (11.25)

 =

⎧⎨⎩ 1

0

⎫⎬⎭ at  = ± (11.26)

Here () is used for temperature dependent thermal conductivity i.e. () = 1 +  Solution

is obtained via Mathematica 9.0 with NDSolve technique.
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11.2.1 Entropy generation

Mathematical expression for entropy analysis is [214]:


000
 =
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(11.27)

where Φ is given by

Φ = 
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In dimensionless form

 =

000
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
000
 =

0 (1 − 0)
2

 2
2

 Λ =
1 − 0


 (11.30)

11.3 Analysis

Here NDSolve of Mathematica is used for the solution of nonlinear system. Graphical results

with physical interpretations are arranged in the separate subsections for simplicity.

11.3.1 Velocity

This subsection contains the information about velocity. Results of some physical parameters

including ,  , , ,  and 1 2 3 are examined. Grashof number behavior can be

portrayed via Fig. 11.2. The buoyancy forces facilitate the flow. An increase is noticed clearly

in this case. Opposite result for Hartman number is noticed via Fig. 11.3. As the resistive

nature forces caused reduction in flow. Here Lorentz force plays this role. Applied magnetic

field provides resistance to fluid particles. This fact is utilized for reduction of bleeding during

surgeries and cancer tumor treatment. Influence of variable thermal conductivity parameter is

seen via Fig. 11.4. Increase in  caused an enhancement of velocity. Fig. 11.5 is prepared for

fluid parameter result. Fluid parameter leads to an increase of velocity. It is because of decrease

in viscosity parameter. Here  leads to an enhancement in fluid velocity (see Fig. 11.6). Same
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results can be seen through study [79] for the cases of  and  Obviously as increase in wave

amplitude caused an enhancement of fluid velocity. Flexible characteristics of walls impacts

can be viewed via Fig. 11.7. Elastance parameters facilitate the flow whereas damping leads to

slow down the fluid particles. These characteristics of walls have association with blood vessels.

Fig. 11.2 Fig. 11.3

 112  versus  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02

 = 001  = 001  = 10  = 20

  113  versus  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02

 = 001  = 001  = 01  = 20
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Fig. 11.4 Fig. 11.5

 114  versus  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02

 = 001  = 01  = 10  = 20

  115  versus  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02

 = 001  = 01  = 10  = 20

Fig. 11.6 Fig. 11.7

 116  versus  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 001

 = 001  = 01  = 10  = 20

  117  versus 1 2 and 3 when  = 01  = 02  = 02  = 001  = 001
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 = 01  = 10  = 20

11.3.2 Temperature

This subsection contains information about temperature for different embedded parameters.

Grashof number results can be seen via Fig. 11.8. Temperature is known as average kinetic

energy. Thus an increase in the mean kinetic energy of the particles caused higher fluid tem-

perature. Fluid parameter () leads to decrease of temperature (see Fig. 11.9). As increase in

fluid parameter decreases the viscosity. There is less heat loss and temperature decays. Study

[79] reports the same observation. Hartman number caused an increase in temperature of fluid

near the center of channel. It is due to Joule heating (see Fig. 11.10). Behavior for variable

thermal conductivity parameter has been seen via Fig. 11.11. An increase in temperature

is observed for this case. As increase in  enhances the conductance property of fluid which

increases temperature as well. Same result for variable thermal conductivity parameter has

been examined in study [77]. Fig. 11.12 elucidated the behavior of  on  Larger values of

amplitude lead to an enhancement of temperature. This is also caused by an increase of mean

kinetic energy of particles. Fig. 11.13 portrayed  impact on  Clearly an increase is viewed

through view of viscous dissipation. Fig. 11.14 displays the results of flexible characteristics of

walls. Here 1, 2 results are opposite to that of 3

Fig. 11.8 Fig. 11.9
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 118  versus  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02

 = 001  = 001  = 10  = 20

  119  versus  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02

 = 001  = 01  = 10  = 20

Fig. 11.10 Fig. 11.11

 1110  versus  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02

 = 001  = 001  = 01  = 20

  1111  versus  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02

 = 001  = 01  = 10  = 20
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Fig. 11.12 Fig. 11.13

 1112  versus  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 001

 = 001  = 01  = 10  = 20

  1113  versus  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02

 = 001  = 001  = 01  = 10

Fig. 11.14

 1114  versus 1 2 3 when  = 01  = 02  = 02  = 001  = 001  = 01

 = 10  = 20
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11.3.3 Entropy analysis

This subsection covers the entropy analysis for the considered system. Graphs for embedded

parameters provide the information about entropy () of the system. Figs. 11.15-11.22 are

plotted for this purpose. Grashof number impact can be viewed via Fig. 11.15. It can be

seen that high temperature also leads to an increase of system’s entropy. Clearly Joule heating

phenomenon rises the temperature of fluid and thus entropy enhances (see Fig. 11.16). Fig.

11.17 describes the effect of Λ on  Larger values of Λ caused decay in  Fluid parameter

results can be observed with the help of Fig. 11.18. Clearly increasing values of  tend to

decrease the entropy of system. Such fact can be verified by relating it with temperature.

Fig. 11.19 is prepared to study effect of  on temperature. An enhancement in  is noticed

clearly. Variable thermal conductivity parameter impact can be elucidated via Fig. 11.20. The

results are seen qualitatively similar to that of temperature. Larger values of Brinkman number

enhance the entropy of system (see Fig. 11.21). As more viscous dissipation lead to increase of

temperature and hence more disorderliness. Walls parameters behavior has quite resemblance

with temperature (see Fig. 11.22).

Fig. 11.15 Fig. 11.16

 1115  versus  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02

 = 001  = 001  = 10  = 20 Λ = 05

  1116  versus  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02
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 = 001  = 001  = 01  = 20 Λ = 05

Fig. 11.17 Fig. 11.18

 1117  versus Λ when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02

 = 001  = 001  = 01  = 10  = 20

  1118  versus  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02

 = 001  = 01  = 10  = 20 Λ = 05

Fig. 11.19 Fig. 11.20

 1119  versus  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 001

 = 001  = 01  = 10  = 20 Λ = 05
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 1120  versus  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02

 = 001  = 01  = 10  = 20 Λ = 05

Fig. 11.21 Fig. 11.22

 1121  versus  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 02

 = 001  = 001  = 01  = 10 Λ = 05

  1122  versus 1 2 and 3 when  = 01  = 02  = 02  = 001  = 001

 = 01  = 10  = 20 Λ = 05

11.3.4 Heat transfer coefficient

This subsection is devoted to the results for heat transfer coefficient. Fig. 11.23 portrayed

the effect of  on  Grashof number is an increasing function of heat transfer coefficient.

Opposite behavior of Hartman number on heat transfer coefficient is observed (see Fig. 11.24).

Figs. 11.25 and 11.26 display the influences of  and  on heat transfer coefficient () Both

parameters depict similar impact on  Fig. 11.27 represents the  influence on  Heat

transfer coefficient increases for  These observations for  and  are similar to that as in

ref. [79].  ( = 1 2) show increasing trend and 3 illustrate decreasing effect of  (see Fig.

11.28).
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Fig. 11.23 Fig. 11.24

 1123  versus  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 001

 = 001  = 20  = 10

  1124  versus  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 001

 = 001  = 01  = 20

Fig. 11.25 Fig. 11.26

 1125  versus  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 001

 = 01  = 10  = 20

  1126  versus  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 001

 = 01  = 10  = 20
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Fig. 11.27 Fig. 11.28

 1127  versus  when 1 = 002 2 = 001 3 = 001  = 01  = 02  = 001

 = 001  = 01  = 10

  1128  versus 1 2 3 when  = 01  = 02  = 001  = 001  = 01  = 10

 = 20

11.3.5 Trapping

Trapping is discussed in this subsection for some prominent parameters. Decrease is noticed

for the size of trapped bolus for larger Hartman number (see Fig. 11.29 (a) and (b)). 

impact on bolus size can be noticed via Fig. 11.30 (a) and (b). Bolus size increases in this

case. Fig. 11.31 (a) and (b) displayed that bolus size decreases for the case of variable thermal

conductivity parameter.
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Fig. 11.29 (a) (b)

 1129  versus  when 1 = 002 2 = 001 3 = 001  = 00  = 02  = 001

 = 001  = 20 ()  = 10 ()  = 15

Fig. 11.30 (a) (b)

 1130  versus  when 1 = 002 2 = 001 3 = 001  = 00  = 02  = 001

 = 001  = 10  = 20 ()  = 01 ()  = 05
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Fig. 11.31 (a) (b)

 1131  versus  when 1 = 002 2 = 001 3 = 001  = 00  = 02  = 001

 = 10  = 20 ()  = 01 ()  = 03

11.4 Conclusions

Important points of present study can be summarized as follows:

• Variable thermal conductivity parameter increases the velocity, temperature and entropy
of system.

• Hartman number caused decay in velocity but it increases the entropy and temperature
near the center of channel.

•  effect on temperature, entropy and heat transfer coefficient are same.

• Bolus size decreases for 
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