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Preface

One of the peculiarity of mathematics is that its thorniest contradictions bloom into beau-

tiful theories. According to Albert Einstein, "Pure mathematics is, in its way the poetry

of logical ideas." Mathematics (in particular pure mathematics) has gone through many

revolutionary changes over a period of almost one century and it morphed into new shapes

with time.

Initially, rings and algebra were considered to be associative and commmutative and in

some cases associative only. Since the mid of 19th century, many non-associative struc-

tures have been introduced so far. For instance, Octonions, cayely numbers, Lie algebras,

Jordan algebras, Lie structures, alternative rings, loops and loop rings. Non-associative

ring theory has flourished as an independent branch of algebra, having links with other

branches of mathematics and other fields for instance, biology, physics and other sciences.

In 1972, Kazim and Naseeruddin [77] presented a generalization of a commutative

semigroup and called it a left almost semigroup (LA-semigroup). An LA-semigroup is a

groupoid satisfying the identity: (ab)c = (cb)a, which is known as the left invertive law.

An LA-semigroup is non-associative and non-commutative, nevertheless it holds proper-

ties that are normally found in associative and commutative algebraic structures. Mushtaq

and Kamran [100] in the year 1996, extended the idea of an LA-semigroup to a left almost

group (LA-group). Despite being a non-associative algebraic structure, an LA-group in-

terestingly resembles to an abelian group. LA-semigroups and LA-groups are considered

by many authors to establish useful results to explore their properties and structures. In

2010, Shah and Rehman [131] combined the two structures to introduce a Left almost ring

(LA-ring). It is an additive LA-group and multiplicative LA-semigroup along with the two

distributive laws. They generalized a commutative semigroup ring to present an LA-ring,

which consists of finitely non-zero functions with domain a commutative semigroup and

co-domain an LA-ring.
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In the current decade, many researchers have put forward their contribution to the de-

velopment of this particular non-associative non-commutative structure and its generaliza-

tions. Major contributors include T. Shah and his co-researchers [113, 125, 128, 131–135],

who not only studied the structural properties of LA-rings and its generalizations, but ex-

plored their applications to intuitionistic fuzzy and soft sets. They introduced the concepts

of LA-integral domain, LA-field, LA-modules and a generalization of LA-rings called near

LA-ring. Furthermore, they discussed the properties of ideals in LA-rings and M-systems

in LA-rings. They proved the existence of a non-associative LA-ring and defined a Special

LA-ring. Moreover, Shah and Kousar [127] studied the intuitionistic fuzzy normal sub-

rings in LA-rings. Shah and Razzaque [129, 130], defined soft LA-rings and discussed

soft ideals and M-systems in soft LA-rings. Rehman and Razzaque [109, 112], discussed

the notions of projective and injective LA-modules, free LA-modules, split sequences in

LA-modules and later they extended the applications of soft set theory to LA-rings and

presented soft LA-modules and exact sequences of soft LA-modules. Hussain and his co-

authors [55–60], focused on congruences and the notions of direct product and direct sum

in LA-ring, LA-module and their generalizations. They introduced an LA-semiring as a

generalization of LA-ring.

A number of researchers studied LA-rings from different aspects, a brief look-over to

their work is mentioned in this thesis. The aim of this thesis is to explore those areas of LA-

ring theory which are still to be uncovered. Some notions have just been introduced but are

not further investigated in details by any researcher. For instance LA-domain, LA-fields

and special LA-rings. We not only promote these concepts but also provide their different

applications. The existing literature lacks examples of LA-rings with order greater than 18,

we formulate an algorithm to obtain LA-rings of greater orders using LA-rings with small

orders. Moreover, we study some new aspects of the soft LA-rings by investigating soft

intersection LA-rings. We fuse generalized rough sets with soft sets to define generalized

rough soft sets. We also introduce generalized rough and generalized rough soft LA-rings.

Further, we explore the applications of LA-rings to Coding theory by introducing DNA

codes over a special LA-field and to cryptography by constructing S-boxes over special

LA-rings.
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Chapter wise description

This thesis comprises of seven chapters:

Chapter 1 contains some basic concepts and results on LA-rings, soft sets, soft LA-

rings, rough sets, Coding theory, DNA codes, cryptography and S-box, which are directly

related to our work.

Chapter 2 is a detailed survey on LA-rings and its generalizations. It contains a com-

prehensive study of the progress of enduring literature on LA-rings and enumerates their

several applications in different directions so far. The information provided in this chapter

will be an unending source of motivation for future research on LA-ring theory.

Chapter 3 is devoted to our work regarding developments and enhancements in LA-

ring theory. Rehman et al. defined a special LA-ring in 2013, as a special case of an

LA-ring that is an additive abelian group. In Section 3.1, we compare the two notions and

use software MACE4 to find an example of a non-associative special LA-ring, we also find

example of an LA-ring that fails to become a special LA-ring. In 2011, Shah and Rehman

presented few basic characteristics and properties of LA-rings including some conditions

that cannot hold in an LA-ring, as they make it an additive abelian group. It was observed

that, these conditions when hold in an LA-ring, turns it into a special LA-ring. We present

these conditions as some criterion for an LA-ring to be a special LA-ring. Rehman et

al. in 2013 demonstrated the existence of non-associative LA-ring, they used MACE4 to

obtain different examples of non-associative LA-rings and LA-fields. MACE4 exhausted

at the Order 64 and they couldn’t explore examples of LA-rings having order greater than

18. Since our focus is on special LA-rings, we use the same software to find examples of

non-associative special LA-rings, but it gave up at order 49 and the greatest order special

LA-ring that we obtain has order 32. The urge to search for higher order special LA-rings

motivated us to the construction of an algorithm, that takes a special LA-ring of order n as

input and gives a special LA-ring of order nm+1 as output, where n ≥ 2 and m are positive

integers. Same algorithm can be used to obtain LA-rings (that are not special LA-rings)

of greater orders. Examples of special LA-rings and the above mentioned algorithm are

given in Section 3.2. In Section 3.3, we illustrate how a commutative and associative ring

R and an LA-semigroup L together give rise to a special LA-ring called an LA-semigroup

ring and denoted as R[L]. It contains finitely non-zero functions having R as codomain,

codomain, similar to a group ring, semigroup ring or a loop ring. The domain in our case
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is an LA-semigroup. The discussion in this section is based on the and basic results that

hold in R[L] and further depend on the properties of R and L. In Section 3.4, for the

first time the concept of concept of divisibility in LA-rings is discussed, we introduce the

notions of prime and irreducible elements, prime and maximal left ideals and study their

mutual connections. Few results directly follow from the commutative ring theory, but

some require the constraint of idempotency. An ordinary LA-ring cannot be idempotent,

as the condition of idempotency makes it a special LA-ring. But in case of special LA-

rings we have the liberty of considering the condition of idempotancy. The Section 3.5

is about polynomial formation over special LA-rings. The main idea of this section is to

discuss factorization of such polynomials. For this purpose we present Division Algorithm,

Remainder theorem and Factorization theorem for polynomials over a special LA-ring.

Due to lack of associativity and commutativity in a special LA-ring, these theorems are

stated and proved in a different manner from their classical versions. We also introduce

Euclidean LA-domain and special LA-field extensions in this section.

In Chapter 4, we explore some applications of LA-rings in soft set theory. The soft set

theory is a successful tool to study the vagueness in data, it is a relatively new approach to

handle uncertainty of the information in many situations. In Section 4.1, we connect the

generalized rough sets with soft sets to get a hybrid model of generalized rough soft sets or

T-rough soft sets. A decision making algorithm based on T-rough soft sets is constructed.

We introduce T-rough LA-rings and T-rough soft LA-rings and studied the properties of

their ideals. Some new notions are defined and a decision making method for T-rough soft

LA-rings is also included in this section. In Section 4.2, soft-intersection special LA-rings

are introduced and some fundamental properties of soft-intersection LA-rings and soft-

intersection ideals of LA-rings are discussed. We show how a soft-intersection ring and a

soft-intersection LA-semigroup give rise to a soft-intersection special LA-ring.

In Chapter 5, we find applications of LA-rings in Coding theory and construct linear

cyclic codes over special LA-rings. In Section 5.1, we briefly introduce special LA-vector

space as a generalization of LA-module. Section 5.2 provides the construction of linear

cyclic codes over special LA-fields and in Section 5.3, we study DNA cyclic codes over a

special LA-field of order 4 denoted FSLA4. FSLA4 is a reasonable choice for constructing

DNA codes as it has a one-to-one correspondence with the DNA alphabet {A,C,G, T},

where A, C, G and T denote Adenine, Cytosine, Guanine and Thymine which are the nu-
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cleotides or the building blocks of DNA. The joining of the two oppositely oriented strands

of DNA is facilitated by the bonding of the nucleotides present on each strand and is called

the process of hybridization. Several techniques have been proposed so far to construct a

set of DNA codewords that are not likely to make unwanted bonds with one another by

hybridization. An efficient Algorithm for the construction of reversible complement cyclic

codes over FSLA4 is included in this section. These codes are highly suitable for DNA

computations as they satisfy the ‘Hamming constraint’ and the ‘Reverse-complement con-

straint’ that ensure a reliable process of hybridization. The codes constructed in this section

are generalization of the reversible complement cyclic codes over the Galois field GF (4)

of order 4. For computational convenience, we choose to construct codes of odd lengths

only.

Chapter 6 is about the applications of LA-rings and algebras in Cryptography. Cryptog-

raphy is the way of keeping the information confidentiality using mathematical approaches

and methods. The substitution box (S-box) is one of the main components of symmetric

key cryptosystem. Typically, the S-boxes are constructed over a Galois field, hence a

Galois cyclic group and some other commutative and associative algebraic structures. In

Section 6.1, small (4 × 4) S-boxes are designed over a special LA-field of order 16, ac-

cordingly these will be utilized in light weight cryptography. The purpose of these S-boxes

designing is to increase the robustness due to non-associative and non-commutative behav-

ior of LA-rings. We have used the Majority Logic Criterion (MLC) to judge the strength

of these newly formed S-boxes in image encryption. Thus S-boxes are obtained are having

high resistance against existing cryptanalysis attacks. A watermarking application of these

S-boxes is given along with their comparison in the context.

In Section 6.2, A triplet of 8 × 8 S-boxes is designed using an LA-ring of order 512.

The motivation behind the designing of these S-boxes is to upsurge the robustness and

broaden the key space due to non-associative and non-commutative behavior of the alge-

braic structure under consideration and increase 65,536 times the key space. Thus, the

obtained S-boxes having significant level of resistance against existing cryptanalysis at-

tack. A novel color image encryption application is anticipated in which initially these

3 S-boxes are being used to produce confusion in three layers of a standard RGB image.

However, for the sake of diffusion 3D Arnold chaotic map is used in the proposed en-

cryption scheme. A comparison with some of existing chaos and S-box dependent color
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image encryption schemes specs the performance results of the anticipated RGB image

encryption and observed as approaching the standard prime level.

Lastly in Chapter 7 we give conclusion of our work and also give some future prospects

of this study.
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Chapter 1

Background and Preliminaries

This chapter serves as the introduction of our research work. The basic concepts and defi-

nitions are included that provide background information for the material in the proceeding

chapters. The concise history and basic properties of LA-rings, soft sets, soft LA-rings,

rough sets, coding theory, DNA coding, cryptography and S-boxes are discussed in this

chapter. The preliminaries of these structures, definitions and some fundamental results

are provided which have direct relation with our work. This chapter has four sections. In

the first section, some basic definitions and results of LA-rings which are repeatedly used

in further discussion are provided. The second section deals with soft sets, soft LA-rings

and rough sets. Third section is about Coding theory, DNA structure and DNA computa-

tions. In the last section, we throw some light upon basics of cryptography.

1.1 Left Almost Rings (LA-rings)

A groupoid satisfying the condition "(ab)c = (cb)a" (known as the left invertive law), is

said to be an LA-semigroup [77]. Clearly, a commutative semigroup is an LA-semigroup.

Later this concept was extended and LA-group [100] was defined as an LA-semigroup L

containing a left identity element ‘e’ and inverses of each of its elements. In case of an

additive LA-group the left identity would be called left zero element and would be denoted

by ‘0.’ For more details on LA-groups we recommend: [124]. The two concepts gave rise

to LA-ring [131] as a new kind of non-associative rings, which is in fact a non-empty set

RLA equipped with an operation of addition that makes it an "LA-group," a multiplication

operation with respect to which it is an "LA-semigroup" and the two distributive laws of
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multiplication over addition. Shah and Shah [134], discovered some fundamental proper-

ties of LA-rings. For instance, they proved that an LA-ring always satisfies the "medial

law (ab)(cd) = (ac)(bd)" and in case if it has (multiplicative) left identity element ‘e’ then

it satisfies the "paramedial law (ab)(cd) = (db)(ca)." Shah and Rehman [131], developed

the notion of zero divisors in LA-rings as an analogue of the same for associative rings.

An LA-integral domain is an LA-ring having a left identity element and holding no zero

divisors, while an LA-field is an LA-ring which contains left identity element and the in-

verse of each of its non zero elements. A subset of an LA-ring with at least one element is

called its sub LA-ring if it is itself an LA-ring. A left (right) ideal of an LA-ring RLA is a

sub LA-ring S such that RLAS ⊆ S (SRLA ⊆ S). A left as well as a right ideal is called

an ideal. Further, Shah and Rehman [132], defined a "principal left ideal" generated by an

element a ∈ RLA, as the set < a >= RLAa = {ra : r ∈ RLA} where RLA is an LA-ring

with left identity. If an element 0 6= a ∈ RLA possesses multiplicative inverse it would be

called a unit in RLA. Rehman [110], showed that the set of all units in an LA-ring is an

LA-group.

Though the idea of a quotient LA-ring was already introduced in [131], Shah and Raees

[128], defined a quotient LA-ring using a left ideal. Let RLA be an LA-ring with left

identity and K be a left ideal of RLA, RLA/K = {K + r : r ∈ RLA} is an LA-ring

containing K+e as left identity. Here ‘e’ is the left identity element in RLA. The elements

in RLA/K are called additive cosets and satisfy the following two properties:

1. for a ∈ RLA, K + a = K iff a ∈ K.

2. for a, b ∈ RLA, K + a = K + b iff b− a ∈ K.

1.2 Soft Sets, Soft LA-rings and Rough Sets

The Fuzzy set theory is one of the ancient tools used to handle vagueness and uncertainties

in the data. Molodtsov [97], presented the soft set theory as a generalization of the fuzzy

set theory, which deals with such problems in a parametric fashion. Many applications

of this theory can observed in different fields such as operation research, game theory,

smoothness of functions, Perron integration, Riemann integration, probability theory and

measure theory. Maji et al. [90], stepped forward and applied soft sets to find solution of a

decision making problem. They presented different operations on soft sets. The theory was
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further enhanced by many researchers, several new notions and operations were discovered

[14, 119]. An important step was the introduction of soft relations and functions that was

achieved by Babitha and Sunil in [19].

Molodtsov [97] defined a soft set as a parameterised family of sets. For an initial

universeU with power set denoted by P (U) and a subsetA of a collectionE of parameters,

(f,A) denotes a soft set where f is a function from A into P (U). Later Çaǧman and

Enginoǧlu redefined soft sets and their operations. The new operations are more practical

for further study of soft set theory and improvement of many results. Following definitions

of soft set and related operations are taken from [28].

Definition 1.2.1. "A soft set gA over U is a set defined by a function gA representing a

mapping gA : E → P (U) with gA(a) = ∅ for all elements a of E which are not in A.

A soft set over U can be represented by the set of ordered pairs

gA = {(a, gA(a)) : a ∈ E, gA(a) ∈ P (U)}.

Clearly soft set is a parameterized family of subsets of the set U. Throughout, S(U) would

denote the set of all soft sets over U."

Definition 1.2.2. "Let gA be a soft set over U, then

1. If gA(a) = ∅ for each a ∈ E, then gA is called a empty soft set, denoted by g∅.

2. If gA(a) = U ; for all x ∈ A, then gA is called A-universal soft set, denoted by gÃ. If

A = E, then the A-universal soft set is called universal soft set denoted by gẼ."

Definition 1.2.3. "For two soft sets gA and gB be over U,

1. gA is called a soft subset of gB, denoted gA⊆̃gB, if gA(a) ⊆ gB(a) for each a ∈ E.

2. gA and gB are said to be soft equal denoted gA = gB, if gA(a) = gB(a) for all a ∈ E.

3. the union of gA and gB is denoted by gA∪̃gB is the soft set defined by the approxi-

mation function gA∪̃B(a) = gA(a) ∪ gB(a), for each a ∈ E.

4. the intersection of gA and gB is denoted by gA∩̃gB is the soft set defined by the

approximation function gA∩̃B(a) = gA(a) ∩ gB(a), for each a ∈ E, such that

gA(a), gB(a) 6= ∅.
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5. the ∧−product of gA and gB, denoted by gA∧̃gB, is the soft set defined by the func-

tion gA∧̃B : E × E → P (U), gA∧̃B(x, y) = gA(a) ∩ gB(b), for all (a, b) ∈ E × E,

such that gA(a), gB(b) 6= ∅.

6. the ∨−product of gA and gB, denoted by gA∨̃gB, is the soft set defined by the func-

tion gA∨̃B : E × E → P (U), gA∨̃B(a, b) = gA(a) ∪ gB(b), for all (a, b) ∈ E × E."

1.2.1 Soft LA-rings

Aktaş and Çağman [9] are the first to find applications of soft set theory in algebra. They

defined a soft group and discussed it’s fundamental features. Then Acar et al. [3] presented

the idea of soft rings and the notion of a soft LA-semigroup was set forth by Aslam et al.

in [18]. To study more soft algebraic structures we recommend: [16, 29, 45, 72, 87].

Shah et al. [129, 130], made a new approach to extend the study of soft rings and

introduced soft LA-rings. Here we are restating the definitions of soft LA-rings and related

concepts from [129, 130], using Çağman’s definition for soft sets.

Definition 1.2.4. Let RLA be an LA-ring. A "soft LA-ring" over RLA is a non-empty soft

set gA over RLA with the property that for each a ∈ E, if gA(a) 6= ∅ then gA(a) is a sub

LA-ring of RLA.

Definition 1.2.5. An "idealistic soft LA-ring" over RLA is a non-empty soft set gA over

RLA such that; gA(a) is an ideal of RLA for each a ∈ E whenever gA(a) 6= ∅.

Definition 1.2.6. A non-empty subset gB of a soft LA-ring gA over RLA is said to be;

1. a soft M-system, if for every gB(a), gB(b) ∈ gB, there is some gA(x) ∈ gA such that

gB(a)(gA(x)gB(b)) ∈ gB.

2. a soft P-system, if for all gB(a) ∈ gB, there is some gA(x) ∈ gA with the property

that gB(a)(gA(x)gB(a)) ∈ gB.

1.2.2 Rough Sets and Generalized Rough Sets

Pawlak [106] introduced "rough set theory" as a novel branch of uncertainty mathematics

having close relation with the "fuzzy set theory." Both rough and soft sets are generaliza-

tions of classical sets and complement each other. The lower and upper rough approxi-

mation spaces are sets with multiple memberships, while fuzzy sets are concerned with
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partial memberships. The frequent progress of these two theories establishes a framework

for "soft computing," initiated by Zadeh [152]. Soft Computing not only includes rough

sets, but fuzzy logic, probabilistic reasoning, belief networks, neural networks, evolution-

ary computing, machine learning and chaos theory.

The theory presented by Pawlak is based on an equivalence relation τ on a non-empty

finite set U called the universe. The pair (U, τ) is termed as an approximation space.

Following are the definitions of the lower and upper approximations of a D ⊆ U.

τ(D) = {x ∈ U : [x]τ ⊆ D} (1.2.1)

τ(D) = {x ∈ U : [x]τ ∩D 6= ∅}. (1.2.2)

The pair (τ(D), τ(D)) is rough set. In case, if τ(D) = τ(D) then we say D is definable.

Fundamentals of rough sets can be seen in [106].

Pawlak’s approximations require some equivalence relation and sometimes due to in-

complete information, such an equivalence relation is hard to establish. To overcome this

problem, Couois et al. [33] introduced a T-rough set as a generalized Pawlak’s rough

set, which is based on a set valued mapping. Davvaz [37] further improved the notion of

generalized approximation spaces and discussed generalized rough sets.

Definition 1.2.7. [147] "For two non-empty sets V and W, and a set valued map T : V →

P ⋆(W ) (where P ⋆(W ) denotes the collection of all non-empty subsets of W ), the triplet

(V,W, T ) is called a generalized approximation space or generalized rough set. If L is a

subset of W, then the lower and upper approximations of L are defined as:

T (L) = {x ∈ V |T (x) ⊆ L} (1.2.3)

and

T (L) = {x ∈ V |T (x) ∩ L 6= ∅}. (1.2.4)

The pair (T (L), T (L)) is called a T-rough set (generalized rough set)."

For more details on generalized rough sets we recommend [13].

1.3 Coding Theory and DNA Computing

Coding theory is the science that deals with the detection and correction of errors that

occur when some information is transmitted through some communication channel.The
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data is usually carried in form of string of symbols or bits from a transmitter to a receiver.

Error-correcting codes are significant for achieving higher reliability that is required in

modern data transmission and storage systems. Some relevant definitions from [101] are

given below:

"If A is a finite set with q(> 1) symbols that can be transmitted, then any non-empty

subset C of An is called a q-ary code of length n over A. Where n is a positive integer

greater than 1, An is the set of all n-tuples of elements of A and A is called the alphabet of

transmission. Each element of C is called a codeword."

"The Hamming distance between two codewords of same length is the number of po-

sitions at which the corresponding symbols differ. It is named after the American mathe-

matician Richard Hamming." A linear code is defined to be a subspace of the vector space

F n over a finite field F. It is an error correcting code.

The mapping σ : F n → F n such that,

σ(a1, a2, ..., an) = (an, a1, ..., an−1) (1.3.1)

is a linear transformation and is called the cyclic shift. A linear code C, that is invariant

under the cyclic shift is called a cyclic code. That is, for all a ∈ C, σ(a) ∈ C.

1.3.1 The Structure of DNA and the Process of Hybridization

Deoxyribonucleic acid (DNA) is the fundamental programming unit of life with incredible

density of data. It carries all the genetic information and instructions required to build

and run a human body. DNA consists of two long strings called polynucleotides or DNA

strands, each consisting of four building blocks called nucleotides viz: "Adenine," "Cyto-

sine," "Guanine" and "Thymine" denoted by the letters A, C, G and T respectively, each

strand has distinct polar ends called 3’ end and 5’ end. The two oppositely oriented and

twisted strands of DNA form a double helix. Joining of the two strands is facilitated by the

formation of hydrogen bonds between the nucleotides. This process is called hybridization

or base pairing and it follows the Watson-Crick complement (WCC) model, which states

that each A joins with a T and each C with a G and conversely. The complements of

A,C,G and T are T,G,C and A respectively. The two strands are combined in opposite

direction and in reversed order. For instance, a DNA 5′ −ACGATTC − 3′ strand will be

coupled with strand 3′ − TGCTAAG− 5′.
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1.3.2 DNA Coding

DNA computing is a blend of genetic data analysis and computational science, so that

the computational difficulties may be addressed. Adleman [5], first demonstrated DNA

computing while solving a tough (NP-complete) computational problem. He utilized the

notion of DNA hybridization on which any DNA computation is based.

A DNA code has to satisfy at least one of the constraints, namely: "the Hamming

constraint for a distance d, the reverse constraint, the reverse-complement constraint, and

the fixed GC-constraint." For more details we recommend to see [92].

The advancements in the applications of algebraic coding to the DNA codes stimulated

the interest of coding theorists to use rings for the construction of DNA codes. Because

of having an equivalence with the DNA alphabet {A,C,G, T}, rings and fields consisting

of four elements are particularly used for DNA codes. In [117], Rykov et al. introduced

the DNA codes, that are quarternary reversible complement cyclic codes, they considered

the reverse constraint only. Gaborit and King [47], presented some new constructions for

additive and linear codes over four-letter alphabets, particularly, they constructed DNA

codes over GF (4). Their codes satisfy either a reversible complement constraint, a GC-

content constraint or both. Abualrub et al. [1], developed cyclic codes having large number

of codewords over GF (4). Then more DNA cyclic codes over the ring F2 + uF2 were

constructed in [53, 82]. Moreover, the construction of additive self dual codes over GF (4)

and Linear self dual codes over Z4 that are suitable for DNA computations were studied in

[137] and [43] respectively.

Gradually researcher’s interest shifted to the construction of DNA codes over fields and

rings of order 4n, where n ∈ N for DNA computing applications. For instance, in 2012,

Yildiz and Siap [151], for first time considered the ring F2[u]/(u
4 − 1) to develop DNA

"cyclic codes." Bennanni et.al in [21] generated DNA codes from the cyclic codes over

the ring F2[u]/(u
6), using edit distance. Bayram et al. [20], investigated linear, cyclic and

constacyclic codes over F4[v]/(v
2 − v), they provided some examples of DNA codes over

that ring that attain Griesmer bound. In [161], Zhu et al. studied the construction of the

DNA cyclic codes over F2+uF2+ vF2+uvF2. Dertli and Cengellenmis in [38], explored

the DNA codes generated from the cyclic codes over Z4+wZ4 and Z4+wZ4+vZ4+wvZ4,

they established a link with elements of these rings and DNA codons. Limbachiya et al.

[83] introduced some new families of DNA codes over the ring Z4 + wZ4.
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1.4 Cryptography

Cryptology is the science dealing with storage and data communication in secure and typ-

ically secret form. There are two further subdivisions of cryptology viz; cryptography and

cryptanalysis. Cryptography is the way of keeping the information secrecy using mathe-

matical methods. Whereas cryptanalysis is the art of cracking encrypted information by

the means of mathematical and computational devices. It is powerful enough to breach the

cryptographic security systems, without accessing the cryptographic key, and it obtains

permissions to the content of encrypted communications. Although, both cryptography

and cryptanalysis aim at the same target, however the methods and techniques for crypt-

analysis have been modified radically throughout the history of cryptography.

Some common terminologies are used in cryptography. An original message is called

plaintext and the coded message, a ciphertext. Encryption (or enciphering) is the pro-

cess through which a plaintext is converted into the ciphertext, while the conversion of

ciphertext into its original form is called decryption (or deciphering). The cryptography

secures the information through the encryption and decryption and it has two major kinds;

"symmetric key cryptography" and "asymmetric key cryptography."

"Symmetric key cryptography" involves the encryption and decryption of information

using a common confidential code, called the encryption key or simply a key. While in the

"asymmetric key cryptography," a pair of private and public keys is used for the encipher-

ing and deciphering of information respectively. A cryptographic technique or a cipher is

a safe procedure of transferring a confidential message over some line of communication.

It comprises a formal mathematical algorithm to encrypt or decrypt the data. Symmetric

key cryptosystems are either stream ciphers or block ciphers. A bit is most basic unit of

information in computing and a group of 8 bits is called a byte. The algorithm of a block

cipher works on fixed-length groups of bits, known as blocks. Typically, modern block

ciphers involve the operations of substitution and permutation on plain text data bytes and

in the process of substitution, a substitution box (S-box) is used to replace an input block

with another output block [15].
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1.4.1 Boolean Functions and their Properties

Boolean algebra, a branch of algebra named after the mathematician George Boole (1815-

1864) is a wide-ranging area in itself. In the following, we present some fundamentals on

Boolean functions that are necessary for the understanding of S-box theory.

Consider the m-dimensional vector space Zm2 over the Galois field Z2 = {0, 1}. Zm2
comprises of 2m binary sequences of length m and it is facilitated with the scalar product

< ., . >: Zm2 × Zm2 → Z2. Where

< x, y >= ⊕p
k=1xk � yk.

Here � and ⊕ denote respectively the multiplication and addition over Z2.

Definition 1.4.1. "A Boolean function is a function h from Zm2 to Z2. The truth table of h

is a (0,1)-sequence defined by (h(x0), h(x1), ..., h(x
m
2 − 1)), ordered by the lexicographic

ordering."

Definition 1.4.2. [35] "A linear Boolean function is a function Lγ : Zm2 → Z2 defined by

Lγ(x) = γ1x1 ⊕ γ2x2 ⊕ ...⊕ γmxm,

where γjxj is the bitwise AND of the j − th bits of γ and x, while ⊕ represents bitwise

XOR."

Definition 1.4.3. [61] "Affine Boolean functions is a collection of linear Boolean functions

together with their compliments

Aγ,c = Lγ(x)⊕ c,

where x ∈ Zm2 . A sequence of affine (linear) functions is called an affine (linear) se-

quence."

Definition 1.4.4. [35] "The class of all single valued Boolean functions is given by

Gm = {g|g : Zm2 → Z2}. (1.4.1)

The collection of all affine Boolean functions in Gm is denoted as

Am = {g|g : g ∈ Gm and g is affine }, (1.4.2)

and the set of all linear Boolean functions in Gm is given by

Lm = {g|g : g ∈ Gm and g is linear }.” (1.4.3)
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Remark 1.4.5. All linear functions and their negations form the set of all affine functions.

Definition 1.4.6. " The nonlinearity of a Boolean function h is defined to be the distance

between h and the set of all affine linear functions."

1.4.2 Theory of S-box

Boolean functions provide a framework for symmetric cryptographic systems. They are

used to design S-boxes in block ciphers and are their nonlinear elements. Boolean func-

tions with higher nonlinearity and excellent cryptographic properties have great signifi-

cance in the construction of block ciphers.

A routine sequel of the single output Boolean function theory is to extend it to the

Boolean functions with multiple outputs, along with referred as a substitution box (S-

box) [144]. The connection betwixt the input and output bits regarding dimension and

inimitability engenders numerous S-boxes. An m × l S-box is a function φ : Z2
m → Z2

l

from m input to l output binary bits, while the total number of inputs and outputs are 2m

and 2l respectively. Then, an S-box is fair a collection of l single output Boolean functions

joint in a fixed manner. The dimension of an S-box has an upshot on the exclusivity of

the output and the input, which may affect the characteristics of S-box. In case, if we

have an S-box with dimension m × l, where l < m (that is the input bits are greater in

number compared to output bits), then there would be repetition of certain entries in the

S-box. However, an m×m S-box, might whichever contain different entries, where all the

inputs are mapped to distinct outputs, or some of them may duplicate various entries of the

S-box. Injective as well as surjective S-boxes are called bijective S-boxes and they possess

inverses (see [4, 61]). One of the key parts of all the cryptosystems is S-box, which styles

the system non linear. While improving a symmetric (or private-key) cryptosystem, that is

built as a substitution-permutation network (S-P network) (DES or AES-like system), most

of the nonlinearity is felt in the S-boxes portion of the algorithm. This permits rest of the

algorithm to be linear. Modest softness in the S-boxes can hence result in cryptosystems,

that are just broken. S-boxes are used as an irritating scheme that authorises robustness

of cryptographic algorithms. Hence, in order to figure a secure cryptosystem the design

of S-boxes have to be cryptographically resilient [4, 66, 144]. In traditional and modern

cryptography, the S-boxes are normally built over finite Galois fields (GF (2m) for 2 ≤
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m ≤ 8), such as AES [36], Residue Prime S-box [67], Gray S-box [138], APA S-box [34],

Xyi S-box [148], Skipjack S-box [81] and S8 AES S-box.
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Chapter 2

A Survey on LA-ring Theory and its

Generalizations

Until the mid of 19th century, the rings and algebras considered were only the associative

(and commutative) rings and algebras, for instance, numbers rings, functions rings, and the

rings of abelian group endomorphisms. Later on, the introduction of non-associative rings

and algebras brought a significant change.

Non-associative ring has flourished as a stand alone branch of algebra, having connec-

tions with several branches of mathematics and other fields, for instance, biology, physics

and other sciences.

In the year 1843, J.T. Graves introduced the very first non-associative rings, called Oc-

tonions. In 1845, Arthur Cayley constructed an abstract non-associative ring consisting of

Cayley numbers. Later in 1870, Sophus Lie introduced an interesting class of non associa-

tive rings called Lie theory. Furthermore, in 1930 a German researcher, Zorn opened up a

discussion on Alternative rings [157–160]. For details see: ‘Jacobson’ [69], ‘Albert’ [11]

and ‘Dubisch and Perlis’ [40]. Further in 1932-1933, a German researcher Jordan intro-

duced some non-associative structures, which were named after him as Jordan structures.

These structures play a pivotal role in quantum group theory and also appear in recent fun-

damental physics theories. Further, the non-associative structure of loop was introduced

in 1930’s [107]. The details of loop theory can be found in [10, 11, 23, 25]. Bruck [24],

introduced a non-associative loop ring in 1944.

In 1972, Kazim and Naseeruddin [77], introduced a left almost semigroup (LA-semi-

group) (also known as an Abel Grassman-groupoid (AG-groupoid)) and defined it to be
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a groupoid S satisfying the left invertive law i.e. for each a, b, c in S, (ab)c = (cb)a.

An LA-semigroup is a mid way structure between a semi group and a groupoid. In the

year 1996, Mushtaq and Kamran outstretched the concept of Left almost semigroup to left

almost group (LA-group or AG-group) [100]. An LA-semigroup S becomes an LA-group

when it contains a left identity element and each element of S possesses an inverse within

S. Some basic properties of LA-groups are presented in [124].

In the year 2010, Shah and Rehman [131], extended the notions of LA-group and

LA-semigroup to present a new ring structure, where the operations ‘+’ and ‘·’ are non-

associative, and named it as a left almost ring (LA-ring). It is in fact an upshot of LA-group

and LA-semigroup. Due to their non-commutative and non-associative nature, LA-rings

have been emergent as a utilitarian non-associative class which instinctively would have

practical contributions to the development of the non-associative ring theory. It is defined

as: "a non-empty set RLA having more than one element, such that (RLA,+) is an LA-

group and (RLA, ·) is an LA-semigroup and holds both left and right distributive laws."

An LA-ring (R,⊕, ·) can always be obtained from a commutative ring (R,+, ·), where

a⊕ b = b− a and the operation of multiplication ‘·’ is same as in R. For detailed study of

structure of LA-rings and their generalizations we recommend: [108, 110, 133, 134].

2.1 2010-2011

In [131], the authors generalized the notion of a commutative semigroup ring R[X;S] of

a commutative semigroup S over an associative ring R and constructed a non-associative

LA-ring RLA[X
s; s ∈ S] comprising of finitely nonzero functions from a semigroup S

into an LA-ring RLA. They also defined the concepts of degree and order of an element in

RLA[X
s; s ∈ S] parallel to R[X;S]. However, it also contains associative ring structures.

They gave definitions of LA-field and LA-integral domain and in the same paper, they

presented the ideas of an LA-module, quotient LA-ring and LA-ring homomorphism. In

the same year, Shah et al. [135] introduced topological LA-groups and topological LA-

rings as generalized topological groups and topological rings respectively. They proved

that "the product of any collection of topological LA-rings is again a topological LA-ring

and a sub LA-ring of a topological LA-ring inherits the property of being a topological

LA-ring."
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Shah and Shah [134], in the year 2011, presented some fundamental properties and

useful facts about LA-rings that are helpful to understand the basic structure of LA-rings.

The results studied by them are useful for future research and developments. Along with

basic results, they proved that an LA-ring can never be idempotent and also right distribu-

tive property implies left distributive property in an LA-ring with left identity ‘e’. Later

in 2011, Shah et al. [128] proceeded to promote the concept of LA-module introduced

in [131] and developed the substructures of LA-modules, their operations and elementary

properties. They also defined quotient of an LA-module by its LA-sub module. They

also demonstrated the dissimilarity of an LA-module to the standard idea of a module. In

the same year, Shah et al. [133] presented a generalization of LA-rings and introduced

the concept of near left almost rings (nLA-rings) (RLA,+, ·). Here RLA is an additive

LA-group and with respect to multiplication it is an LA-semigroup, where one sided dis-

tributive property holds. They observed that many properties that usually hold in near

rings and LA-rings are also valid for nLA-rings but unlike near-ring, in an nLA-ring the

zero symmetric part and the constant part do not exist. In wake of its structural properties

an nLA-ring behaves similar to a commutative ring and a commutative near ring yet it is

non-commutative and non-associative. In addition, Shah et al. [125] in 2011 gave a char-

acterization of nLA-rings through their ideals. They presented the necessary and sufficient

conditions for an nLA-ring to be direct sum of its ideals. Moreover, they discovered that

the sum of ideals is again an ideal but the product of ideals is just a left ideal.

2.2 2012-2013

In the year 2012, Shah and Rehman [132] provided some characterizations of LA-rings

relative to several properties of their ideals. They established the necessary and sufficient

conditions for an LA-ring to be fully prime. Furthermore, they included some discus-

sion on M-system, P-sysetm, I-system, substracting sets in an LA-ring and proved the

conditions under which a left ideal becomes an M -system, P-system or an I -system. Fur-

thermore, they showed that "a subtractive subset of an LA-ring is semi-subtractive and a

quasi-prime ideal of an LA-ring with left identity is semi-subtractive."

In 2012, Shah et al. [127] extended the notion of fuzzy normal subrings in associative

rings to define intuitionistic fuzzy normal LA-subrings of LA-rings. The authors broaden
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the notions for LA-rings and established some concepts for intuitionistic fuzzy normal LA-

subrings of LA-rings. They also investigated the conditions under which an intuitionistic

fuzzy set becomes an intuitionistic fuzzy normal sub LA-ring of an LA-ring RLA.

In 2013, Rehman et al. [113] made a major development, when they established the

existence of a non-associative LA-ring by giving some non-trivial examples. They used

a mathematical software Mace 4 to establish these examples. The authors, due to the

existence of non-trivial LA-rings, were able to nullify the confusion regarding associative

multiplication since the first examples of LA-rings were trivial. They also introduced in the

same paper, a special LA-ring as: an additive abelian group, multiplicative LA-semigroup

with both distributive laws. Later in 2013, Gaketem [48] worked on a generalization of an

LA-ring called a P-regular nLA-ring and explored some properties of its quasi-ideals.

2.3 2014-2015

Alghamdi and Sahraoui [12] in 2014, established a tensor product of LA-modules as an

expansion of the notion of an LA-module introduced in [131]. The newly constructed

structure acts similar to the conventional tensor product of typical modules over a ring,

albeit the LA-groups and LA-modules are not required to be abelian. They provided some

generalizations of fundamental results of the ordinary tensor. In the same year, Yiarayong

[149], carried out a study on left ideals, left primary and weakly left primary ideals in

LA-rings and studied their mutual relationships. Gaketem in 2014 [49], prefered to call a

left almost ring (LA-ring) as Abel-Grassmann ring (AG-ring), defined c-prime, 3-prime,

weakly prime ideal of AG-ring and studied their mutual relation. Also in 2014, Kellil in

his paper [78], introduced the notions of an LA-semiring, a strong LA-semiring and then

a ∗-LA-semiring. Many results obtained for semirings are also valid in the new setting.

The author investigated the relationship between the additive and multiplicative idempo-

tents and also proved that in case of a strong LA-semiring S, the set of multiplicative

idempotents; E∗(S) is closed under multiplication and so (S,+, ·) is an orthodox strong

LA-semiring.

In the year 2015, Hussain and Khan [58] used congruence relations to provide some

new characterizations of LA-rings and demonstrated that how each LA-ring homomor-

phism gives rise to a congruence relation on LA-rings using some good examples. Further,
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they discussed quotient LA-rings and proved isomorphism theorems for LA-rings. In the

same year, Shah and Razzaque [129], for the first time investigated soft LA-rings and

explored their several algebraic properties. Previously the applications of soft set theory

were restricted to associative structures only. The authors introduced soft M-systems, soft

P-systems, soft I-systems and studied soft irreducible ideals, soft strongly irreducible ide-

als soft quasi-prime ideals and soft quasi-semiprime ideals for their properties. Later in

2015, Hussain et al. in their paper [60], extended the notion of congruences on semigroups

to the congruences of LA-modules and proved the corresponding analogs of isomorphism

theorems. They defined internal and external direct sum of the LA-submodules and estab-

lished an isomorphism between them.

2.4 2016-2018

In the year 2016, Shah et al. [130] extended the idea of soft rings from theoretical view-

point. They developed some more applications of soft set theory to LA-rings and instituted

the notions of soft ideals and soft prime ideals in soft LA-rings. They also investigated ide-

alistic soft LA-rings, soft LA-ring homomorphism and presented several good examples

for the illustration of these concepts. In the same year, Hussain and Firdous [55] defined

the direct product of LA-rings, which is itself an LA-ring. They used properties of direct

product to give a characterization of LA-rings. In the same year, Rahman et al. [108] pre-

sented left almost semirings (LA-semirings) as another generalization of LA-rings. They

defined congruence relation and homomorphism of LA-semirings and proved that each

homomorphism defines a congruence relation on an LA-semiring. In the same paper, they

also provided analogs of isomorphism theorems. Also in 2016, Yiarayong et al. [150]

promoted some already defined notions of LA-semirings and further developed the sub-

structures and operations on substructures for an LA-semiring. Further in 2016, Rehman

et al. [111], investigated the notions of (α, β)-fuzzy (bi-, generalized bi-, quasi-, interior)

ideals in LA-rings. They identified lower and upper parts of these structures and charac-

terized regular LA-rings using the identified properties of these structures.

In the year 2017, Hussain et al. [57] characterized nLA-rings by using ideals, defined

a fully idempotent near left almost ring and discussed some of their properties. They

instituted the concepts of prime ideals, fully prime ideals, irreducible ideals, M-systems, P-
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systems and I-systems in a near left almost ring and explored their properties. In the same

year, Rehman and Razzaque [112], discussed the notions of projective and injective LA-

modules, free LA-modules, split sequences in LA-modules and proved several associated

results.

Also in 2017, Rehman et al. in their paper [114] introduced LA-hyperrings and ex-

plored some of their useful characterizations through their hyperideals and hypersystems.

Razzaque and Rehman in 2017 [109], extended the applications of soft set theory to LA-

rings and presented the ideas of soft LA-modules, soft homomorphisms, exact sequences

of soft LA-modules and investigated some of their properties. They also obtained a charac-

terization theorem of soft LA-modules. In the same year, Ahmed [6] introduced the notion

of an LA-Noetherian in an LA-ring and near left almost ring. Furthermore, they extended

the notion of ideal in an LA-ring and LA-module over LA-ring and its substructure to

LA-Noetherian.

Hussain et al. in 2018 [56], generalized the concept of congruences from left almost

rings [55] to near left almost rings. They showed that from every homomorphism one

can get a congruence relation on near left almost rings and provided analogues of the

isomorphism theorems.

2.5 2019-2020

In the year 2019, Hussain et al. [59] expanded the notion of quasi and bi-ideals from LA-

semigroups to LA-rings and explored many interesting and elegant properties of quasi and

bi-ideals. Further, they discussed quasi and bi-ideals in regular LA-rings and intra regular

LA-rings. In the same year, Omayao [103] extended the idea of k-ideals and full k-ideals

of semiring to near left almost ring. They defined an additive inversive near left almost ring

and proved some properties similar to semirings. Moreover, they focused on restriction in

k-ideals and established some results of full k-ideals and k-closure in an additive inversive

nLA-ring.

Kauser et al. have significant contributions to the theory of LA-rings in the years 2019

and 2020. In their paper [73], they defined the notion of direct product of finite fuzzy nor-

mal subrings over nonassociative and non-commutative rings (LA-ring) and investigated

the some basic properties of direct product of fuzzy normal subrings. Later in [74], they
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extended the characterizations of fuzzy bi-ideal and fuzzy quasi-ideal in an associative ring

to fuzzy left (resp. right, interior, quasi-, bi-, generalized bi-) ideals in LA-rings. They also

characterized regular (intra-regular, both regular and intra-regular) LA-rings in terms of

such ideals. In the same year, Kauser et al. [76] initiated study on the generalization of the

fuzzification of ideals in LA-ring and characterized different classes of LA-ring in terms

of intuitionistic fuzzy left (resp. right, bi-, generalized bi-, (1, 2)-) ideals. In the contin-

uation, they studied LA-rings by their anti fuzzy bi-ideals [75] in the year 2020. They

characterized the different classes of LA-rings in terms of anti fuzzy left (resp. right, bi-,

generalized bi-, (1, 2)-) ideals. Recently in 2020, Khachorncharoenkul et al. [79] intro-

duced left almost seminearrings which generalize LA-semirings, nLA-rings and LA-rings.

Some related properties of left almost seminearrings are investigated. Moreover, the ideal

structure and its properties are studied and the isomorphism theorems are also included.
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Chapter 3

Developments in LA-ring Theory

The LA-ring theory is progressing rapidly since its inception. A good number of re-

searchers have contributed to its evolution and several new notions regarding LA-rings

have been introduced so far. Still there is big margin for discoveries in this area and in this

chapter we include some of our contributions.

3.1 LA-rings to Special LA-rings

Rehman et al. [131], proved the existence of non-associative LA-rings and LA-fields, and

discussed their several special cases. They introduced a special LA-ring and provided an

example of a special LA-ring comprising of 8 elements, using a software MACE 4 [95].

Where a special LA-ring is an LA-ring that is additive abelian group. Clearly, a special

LA-ring is an LA-ring but an LA-ring may not be a special LA-ring. In this section, we

give certain constraints under which an LA-ring becomes a special LA-ring.

Following example is an illustration of a non-associative special LA-ring having order

8. This example is obtained using MACE 4.

Example 3.1.1. Consider RSLA = {0, 1, 2, 3, 4, 5, 6, 7}, with addition and multiplication

tables on next page.

It can be easily observed from the operation tables that, with respect to addition,RSLA is an

abelian group and with respect to multiplication, RSLA is a non associative LA-semigroup.

The two distributive laws are satisfied and hence (RSLA,+, ·) is a non-associative special

LA-ring.
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+ 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

1 1 0 3 2 5 4 7 6

2 2 3 0 1 6 7 4 5

3 3 2 1 0 7 6 5 4

4 4 5 6 7 0 1 2 3

5 5 4 7 6 1 0 3 2

6 6 7 4 5 2 3 0 1

7 7 6 5 4 3 2 1 0

· 0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7

2 0 4 1 5 2 6 3 7

3 0 5 3 6 6 3 5 0

4 0 2 4 6 1 3 5 7

5 0 3 6 5 5 6 3 0

6 0 6 5 3 3 5 6 0

7 0 7 7 0 7 0 0 7

A special LA-ring is an LA-ring, but the converse doesn’t holds. Following is the

example of an LA-ring which is not a special LA-ring.

Example 3.1.2. [113] Consider RSLA = {0, 1, 2, 3, 4, 5, 6, 7} with addition and multipli-

cation as:

+ 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

1 2 0 3 1 6 4 7 5

2 1 3 0 2 5 7 4 6

3 3 2 1 0 7 6 5 4

4 4 5 6 7 0 1 2 3

5 6 4 7 5 2 0 3 1

6 5 7 4 6 1 3 0 2

7 7 6 5 4 3 2 1 0

· 0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0

1 0 4 4 0 0 4 4 0

2 0 4 4 0 0 4 4 0

3 0 0 0 0 0 0 0 0

4 0 3 3 0 0 3 3 0

5 0 7 7 0 0 7 7 0

6 0 7 7 0 0 7 7 0

7 0 3 3 0 0 3 3 0

Then (RLA,+) is a non-associative LA-group and (RLA, ·) is a non associative LA-semigroup.

Although an LA-ring may not be a special LA-ring but we can counter few situations,

where LA-rings with certain condition becomes a special LA-ring.

Theorem 3.1.3. An LA-ring RLA becomes a special LA-ring if and only if the following

condition is satisfied:

(µ+ ν) + ω = ν + (µ+ ω) for all µ, ν, ω ∈ R.
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Proof. Let RLA be a special LA-ring then commutativity and associativity of addition

together imply that (µ+ ν) + ω = ν + (µ+ ω).

Conversely, let RLA be an LA-ring with the given condition. Taking ν = 0 we have

(µ+ 0) + ω = 0 + (µ+ ω) = µ+ ω. using the left invertive law we have (µ+ 0) + ω =

(ω + 0) + µ = 0 + (ω + µ) = ω + µ. (R,+) is commutative as well as associative and

hence (RLA,+, .) is a special LA-ring.

Proposition 3.1.4. An LA-ringRLA containing left identity ‘e’ becomes a special LA-ring

if e+ e = e.

Proof. From [134], for an LA-ringRLA (µ+ν)(ω+ς) = (ν+µ)(ς+ω) for all µ, ν, ω, ς ∈

RLA. Now if e+ e = e, then taking µ = ν = e in the above equation gives ω + ς = ς + ω

for all ω, ς ∈ RLA. This implies that (RLA,+) is an abelian group.

Proposition 3.1.5. A cancellative LA-ring RLA containing left identity ‘e’ becomes a spe-

cial LA-ring if e + e 6= 0. (Where a cancellative LA-ring is an LA-ring in which both

cancellation laws hold).

Proof. From [134] in an LA-ring RLA, (µ+ ν)(ω + ς) = (ν + µ)(ς + ω) for all µ, ν, ω ∈

RLA. If e + e 6= 0, then taking ω = ς = e in the above equation and by cancellation we

have µ+ν = ν+µ for each µ, ν ∈ RLA. This implies that (RLA,+) is an abelian group.

Proposition 3.1.6. An LA-ring RLA with µ2 = µ for all µ ∈ RLA is a special LA-ring.

Proof. From [134] for all µ in an LA-ring RLA, µ
2 = (µ+ 0)2. So µ = µ2 = (µ+ 0)2 =

µ+ 0. This implies that (RLA,+) is an abelian group.

An element µ in an LA-ring RLA, is said to be idempotent if µ2 = µ and RLA is called

idempotent if its each element is idempotent.

Theorem 3.1.7. An idempotent LA-ring RLA is a special LA-ring.

Proof. Let µ ∈ RLA, then our hypothesis and Corollary 6 [134], µ = µ2 = (µ+0)2 = µ+0

imply that RLA is an additive abelian group.
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3.2 Examples of a Non-associative Special LA-ring and

Extensions of LA-rings

While proving the existence of a non-associative LA-ring, Rehman et al. [113], explored

some good examples of LA-rings. By investigating the tables up to order 63 using Mace4

[95], they could obtain examples of non-associative LA-rings of order 8,9,12 and 18 only.

Due to memory exhaustion, MACE 4 exit at order 64. So the question "what is the next

order after 18 for which non-associative LA-ring exists?" remained unanswered.

In this section, we first discuss the existence of non-associative special LA-rings us-

ing MACE 4. Moreover, we construct non-associative special LA-rings of higher or-

ders by extending previously known special LA-rings. We construct a special LA-ring∑l=m
l=0 w

lRSLAn with order nm+1. Here ‘m’ is a positive integer and RSLAn is a special

LA-ring of order ‘n’. We propose a computational method for this purpose and provide

an algorithm. Using this algorithm we construct examples of special LA-rings of higher

orders in small time. The similar approach can be used to obtain LA-rings of higher orders.

Throughout this section we denote a special LA-ring of order n by RSLAn.

3.2.1 Examples of Special LA-rings of Smaller Orders

Following is an example of a special LA-ring of order 4.

Example 3.2.1. We consider the following non-associative special LA-ring RSLA4 =

{0, 1, 2, 3} with left identity 1. It is any easy observation that RSLA4 is a special LA-field.

+ 0 1 2 3

0 0 1 2 3

1 1 0 3 2

2 2 3 0 1

3 3 2 1 0

· 0 1 2 3

0 0 0 0 0

1 0 1 2 3

2 0 3 1 2

3 0 2 3 1

Through MACE 4 we find that, the least possible order of a special LA-ring is 4. Using

MACE4 and checking the tables, we get to know that non-associative special LA-rings

only exist of orders 4,8,9,12,16,18,24 and 32. Due to memory exhaustion, MACE4 exits at
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order 49. Therefore the order after 32 for which non-associative special LA-ring exists was

not found at this stage. This is an intriguing problem to figure out. To continue search for

non-associative special LA-rings of higher orders we establish the extensions of previously

known special LA-rings.

3.2.2 Constructing the Special LA-ring
∑l=m

l=0 w
lRSLAn

Let RSLAn is a special LA-ring of order n. We can construct a set R =
∑l=m

l=0 w
lRSLAn

(with wm+1 = 0) consisting of the elements of the type
∑l=m

l=0 alw
l, where all al belong

to RSLAn and m is a positive integer. Now R is a special LA-ring with respect to the

following operations:

l=m∑
l=0

alw
l +

l=m∑
l=0

blw
l =

l=m∑
l=0

(al + bl)w
l (3.2.1)

and
l=m∑
l=0

alw
l ·

l=m∑
l=0

blw
l =

l=m∑
l=0

clw
l, (3.2.2)

for
∑l=m

l=0 alw
l,
∑l=m

l=0 blw
l in R. Where cl =

∑
i+j=l aibj and wm+1 = 0.

From Equations 3.2.1 and 3.2.2, it is clear that the operations in R follow from the

operations in RSLAn and it is not difficult to show that (
∑l=m

l=0 w
lRSLAn,+, ·) is a special

LA-ring. To understand the structure of the special LA-ring R, the addition and multi-

plication tables for R. We design the following algorithm to construct the addition and

multiplication tables for R.

Algorithm:

Input: A special LA-ring (RSLAn,+, .) and the addition and multiplication tables for

RSLAn.

Step 1 Generate nm+1 elements
∑l=m

l=0 alw
l for all al in RSLAn.

Step 2 Select one element from step 1 to get x =
∑l=m

l=0 alw
l.

Step 3 Iterate over elements in step 1 to get y =
∑l=m

l=0 blw
l.

Step 4 Add x and y to get x+ y.
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Step 5 Store results of step 4 in a row for x of step 2.

Step 6 Multiply x with y to get xy.

Step 7 Store results of step 6 in a row for x of step 2.

Step 8 Repeat steps 2 to 5 for each x in step 1 to get addition table.

Step 9 Repeat steps 2, 3, 6 and 7 for each x in step 1 to get multiplication table.

Following examples are two demonstrations of the above algorithm.

Example 3.2.2. Consider the non-associative special LA-field RSLA4 = {0, 1, 2, 3} of

order 4 from Example 3.2.1. Then RSLA4 + wRSLA4 = {0, 1, 2, 3, w, 1 + w, 2 + w, 3 +

w, 2w, 1 + 2w, 2 + 2w, 3 + 2w, 3w, 1 + 3w, 2 + 3w, 3 + 3w}, consisting of 42 = 16

elements. RSLA4+wRSLA4 is a non-commutative special LA-ring of characteristic 2 with

w2 = 0 or with the LA-ring isomorphism RSLA4 + wRSLA4
∼= RSLA4[x]/ < x2 > . In

RSLA4 +wRSLA4 an element a+ bw is a unit if and only if a 6= 0. So there are 12 units in

RSLA4+wRSLA4.Namely, 1, 2, 3, 1+w, 2+w, 3+w, 1+2w, 2+2w, 3+2w, 1+3w, 2+3w

and 3 + 3w.

+ 0 1 2 3 w 1+w 2+w 3+w 2w 1+2w 2+2w 3+2w 3w 1+3w 2+3w 3+3w

0 0 1 2 3 w 1+w 2+w 3+w 2w 1+2w 2+2w 3+2w 3w 1+3w 2+3w 3+3w

1 1 0 3 2 1+w w 3+w 2+w 1+2w 2w 3+2w 2+2w 1+3w 3w 3+3w 2+3w

2 2 3 0 1 2+w 3+w w 1+w 2+2w 3+2w 2w 1+2w 2+3w 3+3w 3w 1+3w

3 3 2 1 0 3+w 2+w 1+w w 3+2w 2+2w 1+2w 2w 3+3w 2+3w 1+3w 3w

w w 1+w 2+w 3+w 0 1 2 3 3w 1+3w 2+3w 3+3w 2w 1+2w 2+2w 3+2w

1+w 1+w w 3+w 2+w 1 0 3 2 1+3w 3w 3+3w 2+3w 1+2w 2w 3+2w 2+2w

2+w 2+w 3+w w 1+w 2 3 0 1 2+3w 3+3w 3w 1+3w 2+2w 3+2w 2w 1+2w

3+w 3+w 2+w 1+w w 3 2 1 0 3+3w 2+3w 1+3w 3w 3+2w 2+2w 1+2w 2w

2w 2w 1+2w 2+2w 3+2w 3w 1+3w 2+3w 3+3w 0 1 2 3 w 1+w 2+w 3+w

1+2w 1+2w 2w 3+2w 2+2w 1+3w 3w 3+3w 2+3w 1 0 3 2 1+w w 3+w 2+w

2+2w 2+2w 3+2w 2w 1+2w 2+3w 3+3w 3w 1+3w 2 3 0 1 2+w 3+w w 1+w

3+2w 3+2w 2+2w 1+2w 2w 3+3w 2+3w 1+3w 3w 3 2 1 0 3+w 2+w 1+w w

3w 3w 1+3w 2+3w 3+3w 2w 1+2w 2+2w 3+2w w 1+w 2+w 3+w 0 1 2 3

1+3w 1+3w 3w 3+3w 2+3w 1+2w 2w 3+2w 2+2w 1+w w 3+w 2+w 1 0 3 2

2+3w 2+3w 3+3w 3w 1+3w 2+2w 3+2w 2w 1+2w 2+w 3+w w 1+w 2 3 0 1

3+3w 3+3w 2+3w 1+3w 3w 3+2w 2+2w 1+2w 2w 3+w 2+w 1+w w 3 2 1 0

and
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· 0 1 2 3 w 1+w 2+w 3+w 2w 1+2w 2+2w 3+2w 3w 1+3w 2+3w 3+3w

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 2 3 w 1+w 2+w 3+w 2w 1+2w 2+2w 3+2w 3w 1+3w 2+3w 3+3w

2 0 3 1 2 3w 3+3w 1+3w 2+3w w 3+w 1+w 2+w 2w 3+2w 1+2w 2+2w

3 0 2 3 1 2w 2+2w 3+2w 1+2w 3w 2+3w 3+3w 1+3w w 2+w 3+w 1+w

w 0 w 2w 3w 0 w 2w 3w 0 w 2w 3w 0 w 2w 3w

1+w 0 1+w 2+2w 3+3w w 1 2+3w 3+2w 2w 1+3w 2 3+w 3w 1+2w 2+w 3

2+w 0 3+w 1+2w 2+3w 3w 3+2w 1+w 2 w 3 1+3w 2+2w 2w 3+3w 1 2+w

3+w 0 2+w 3+2w 1+3w 2w 2+3w 3 1+w 3w 2+2w 3+w 1 w 2 3+3w 1+2w

2w 0 3w w 2w 0 3w w 2w 0 3w w 2w 0 3w w 2w

1+2w 0 1+3w 2+w 3+2w w 1+2w 2 3+3w 2w 1+w 2+3w 3 3w 1 2+2w 3+w

2+2w 0 3+3w 1+w 2+2w 3w 3 1+2w 2+w w 3+2w 1 2+3w 2w 3+w 1+3w 2

3+2w 0 2+3w 3+w 1+2w 2w 2+w 3+3w 1 3w 2 3+2w 1+w w 2+2w 3 1+3w

3w 0 2w 3w w 0 2w 3w w 0 2w 3w w 0 2w 3w w

1+3w 0 1+2w 2+3w 3+w w 1+3w 2+2w 3 2w 1 2+w 3+3w 3w 1+w 2 3+2w

2+3w 0 3+2w 1+3w 2+w 3w 3+w 1 2+2w w 3+3w 1+2w 2 2w 3 1+w 2+3w

3+3w 0 2+2w 3+3w 1+w 2w 2 3+w 1+3w 3w 2+w 3 1+2w w 2+3w 3+2w 1

RSLA4 + wRSLA4 has only three ideals I0 = {0} ⊆ Iw ⊆ RSLA4 + wRSLA4. Where

Iw = (RSLA4 + wRSLA4)w = {0, w, 2w, 3w}. Clearly RSLA4 + wRSLA4 is a principal

ideal special LA-ring and also a local special LA-ring having Iw as its maximal ideal.

Since all the ideals of RSLA4 + wRSLA4 are in a chain so, RSLA4 + wRSLA4 is a chain

special LA-ring.

The notions of chain LA-ring, local LA-ring, principal ideal and maximal ideal are

analogs of the same concepts for associative rings.

Example 3.2.3. Consider the special LA-ring with identity RSLA8 = {0, 1, 2, 3, 4, 5, 6, 7}

with the additive and multiplicative tables on the next page.
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+ 0 1 2 3 4 5 6 7

0 6 5 0 2 7 4 3 1

1 5 6 1 7 2 3 4 0

2 0 1 2 3 4 5 6 7

3 2 7 3 6 5 1 0 4

4 7 2 4 5 6 0 1 3

5 4 3 5 1 0 2 7 6

6 3 4 6 0 1 7 2 5

7 1 0 7 4 3 6 5 2

· 0 1 2 3 4 5 6 7

0 4 0 2 1 3 7 6 5

1 3 4 2 0 1 5 6 7

2 2 2 2 2 2 2 2 2

3 1 3 2 4 0 7 6 5

4 0 1 2 3 4 5 6 7

5 5 7 2 5 7 6 2 6

6 6 6 2 6 6 2 2 2

7 7 5 2 7 5 6 2 6

Here the zero element is ‘2’ and the left identity element is ‘4’. Units in RSLA8 are:

0, 1, 3 and 4. The setR = RSLA8+wRSLA8+w
2RSLA8 (with w3 = 0) is a special LA-ring

with 83 = 512 elements.

As the addition and multiplication tables are large so we didn’t include them com-

pletely over here.

+ 0 + 0w + 0w2 ... 7 + 7w + 7w2

0 + 0w + 0w2 6 + 6w + 6w2 ... 1 + w + w2

. . ... .

. . ... .

. . ... .

7 + 7w + 7w2 1 + w + w2 ... 2 + 2w + 2w2

· 0 + 0w + 0w2 ... 7 + 7w + 7w2

0 + 0w + 0w2 4 + 6w + w2 ... 5 + 2w + 5w2

. . ... .

. . ... .

. . ... .

7 + 7w + 7w2 7 + 2w + 7w2 ... 6 + 2w + 6w2

We are adding few of our observations about that ring. The left identity element in R is

‘422’. a+ bw+ cw2 is a unit in R if and only if ‘a’ has inverse in RSLA8. So, there are 256

units in R. R = RSLA8 + wRSLA8 + w2RSLA8 is isomorphic to the quotient special LA-

ring RSLA8[x]/ < x3 > . R is not a local special LA-ring as the ideals R(2 + 0w + 0w2),

R(5+0w+0w2),R(5+0w+2w2),R(5+2w+0w2),R(5+2w+2w2), and R(6+0w+0w2)

are all maximal ideals. Furthermore, these ideals are not in a chain so R is not a chain

special LA-ring. Since the ideal < 2+ 6w+2w2, 2+ 6w+5w2 > is not a principal ideal,

hence R fails to be a principal ideal special LA-ring.

After a careful study of some example of the special LA-ring R =
∑l=m

l=0 w
lRSLAn,

for different values of m and n we observe some special features of R. There are some
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properties that are possessed by RSLAn, but they may not hold in R. Our observations and

findings about R stated below:

Observations

1. The special LA-ring R =
∑l=m

l=0 w
lRSLAn is isomorphic to the quotient special LA-

ring RSLAn[x]/ < xm+1 > .

2. The order of special LA-ring R =
∑l=m

l=0 w
lRSLAn is nm+1.

3. An element
∑l=m

l=0 alw
l is a unit in R =

∑l=m
l=0 w

lRSLAn if and only if a0 holds

inverse in RSLAn.

4. If RSLAn is a special LA-field, it is not necessary that R =
∑l=m

l=0 w
lRSLAn is a

special LA-field.

5. R =
∑l=m

l=0 w
lRSLAn is not necessarily a chain special LA-ring.

6. R =
∑l=m

l=0 w
lRSLAn is not necessarily a local special LA-ring.

7. Each ideal in R =
∑l=m

l=0 w
lRSLAn need not be a principal ideal.

Remarks on Running Times

We used a computer system with processor:

Intelr CoreTM i5− 2410M CPU@@2.30GHz × 4,

RAM: 6 GB and python version 3.6 for the computation process. For the special LA-rings∑l=m
l=0 w

lRSLAn with n = 4 and m = 1 the whole process of generating 16 elements and

then the construction of addition and multiplication tables took a fraction of a second. Sim-

ilar is the case when m = 2 and elements are 64. As we increase ‘n’ and ‘m’ the process

time increases. For instance, there are 1024 elements in
∑l=4

l=0w
lRSLA4 and total construc-

tion time is 30.28 seconds and for
∑l=6

l=0w
lRSLA4 with 16384 elements the processing time

is approximately 6 and a half hour. Moreover,
∑l=2

l=0w
lRSLA8 has 512 elements takes ap-

proximately 10 seconds but,
∑l=3

l=0w
lRSLA8 has 4096 elements and it takes approximately

12 minutes.
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3.3 LA-semigroup rings

This section is about LA-semigroup ring R[L], which consists of finitely non-zero func-

tions from an LA-semigroup L to a commutative and associative ring R. We observe that

R[L] is in fact a special LA-ring and it can be considered as an analog of the group ring

[96], semigroup ring [52] and loop ring [24]. and study the formation of its sub LA-rings,

ideals and homomorphisms using the same for the corresponding LA-semigroup L and

ring R. For the quasi, bi and interior ideals in an LA-semigroup L and R, we established

quasi, bi and interior ideals in an LA-semigroup ring R[L]. We also see that, if R is a

Noetherian (Artinian) ring, then so is the corresponding LA-semigroup ring R[L] for any

LA-semigroup L.

Throughout this section, R represents a commutative and associative ring and L de-

notes an LA-semigroup.

3.3.1 Basic Structure

Consider a commutative and associative ring (R,+, ·) and let L be an LA-semigroup under

binary operation ‘⋆’. Let N = {φ|φ : L → R, where φ are finitely nonzero }. Define the

binary operation ‘+’ in N as (φ+ψ)(s) = φ(s) +ψ(s). Then (N,+) is an abelian group.

As for φ, ψ ∈ N, φ(s), ψ(s) ∈ R (for each s ∈ L), so (φ+ψ)(s) = φ(s) +ψ(s) ∈ R and

hence φ+ ψ ∈ N.

Let φ, ψ ∈ N. As φ(s), ψ(s) ∈ R, so by the commutative law in (R,+), we have

(φ+ ψ)(s) =φ(s) + ψ(s)

=ψ(s) + φ(s)

=(ψ + φ)(s).

Hence φ+ ψ = ψ + φ.

Thus commutative law holds in N.
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Now for φ, ψ, ϑ ∈ N, φ(s), ψ(s), ϑ(s) ∈ R, and by the associative law in (R,+), we have

((φ+ ψ) + ϑ)(s) =(φ+ ψ)(s) + ϑ(s)

=(φ(s) + ψ(s)) + ϑ(s)

=φ(s) + (ψ(s) + ϑ(s))

=φ(s) + (ψ + ϑ)(s)

=(φ+ (ψ + ϑ))(s).

Hence (φ+ ψ) + ϑ = φ+ (ψ + ϑ).

Thus associative law for addition holds in N.

Consider the mapping o : L→ R with o(s) = 0 for each s ∈ L,

(o+ φ)(s) =0 + φ(s)

=φ(s).

⇒ o+ φ = φ.

Thus o is the additive identity in N.

For each φ ∈ N, there is a map −φ : L→ R such that (−φ)(s) = −φ(s) for every s ∈ L

and

((−φ) + φ)(s) =(−φ(s)) + φ(s)

=− φ(s) + φ(s)

=0

=o(s).

⇒ (−φ) + φ = o.

Thus, each element in (N,+) posses inverse and therefore, (N,+) is an abelian group.

Now we define binary operation ‘�’ in N as follows:

φ� ψ(s) =
∑
κ⋆u=s

φ(κ)ψ(u).

It can be shown that, (N,�) is an LA-semigroup. As for φ(κ) and ψ(u) ∈ R, κ, u ∈

(L, ⋆) and (R, ·) is a commutative and associative, (φ�ψ)(s) ∈ R. φ�ψ ∈ N, since φ, ψ

are finitely nonzero on L.
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For φ, ψ, ϑ ∈ N and s ∈ L, consider

[(φ� ψ)� ϑ](s) =
∑
κ⋆u=s

(φ� ψ)(κ)ϑ(u)

=
∑
κ∗u=s

[
∑
κ=ω∗ν

((φ(ω)ψ(ν))]ϑ(u)

=
∑

(ω⋆ν)⋆u=s

(φ(ω)ψ(ν))ϑ(u)

=
∑

(u⋆ν)⋆ω=s

(ϑ(u)ψ(ν))φ(ω).

As (L, ⋆) is an LA-semigroup, so (ω ⋆ ν) ⋆ u = (u ⋆ ν) ⋆ ω for all ω, ν, u ∈ (L, ⋆). Hence

[(φ� ψ)� ϑ](s) =
∑

(κ⋆ν)⋆u=s

(φ(κ)ψ(ν))ϑ(u)

=
∑

(u⋆ν)∗κ=s

(ϑ(u)ψ(ν))φ(κ)

=
∑
k′⋆κ=s

[
∑
k′=u⋆ν

(ϑ(u)ψ(ν))]φ(κ)

=
∑
k′⋆κ=s

(ϑ� ψ)(k′)φ(κ)

=[(ϑ� ψ)� φ](s).

Thus (N,�) is an LA-semigroup.

It is simple to establish that the operation ‘�’ is distributive over ‘+’. As φ(κ), ψ(u) and

ϑ(u) ∈ R and distributive laws hold in R, so

[φ� (ψ + ϑ)](s) =
∑
κ⋆u=s

φ(κ)(ψ + ϑ)(u)

=
∑
κ⋆u=s

φ(κ)(ψ(u) + ϑ(u))

=
∑
κ⋆u=s

(φ(κ)ψ(u) + φ(κ)ϑ(u))

=
∑
κ⋆u=s

φ(κ)ψ(u) +
∑
κ⋆u=s

φ(κ)ϑ(u)

=(φ� ψ)(s) + (φ� ϑ)(s)

=[φ� ψ + φ� ϑ](s).

Thus, φ� (ψ + ϑ) = φ� ψ + φ� ϑ. Similarly, (ψ + ϑ)� φ = ψ � φ + ϑ� φ. Hence,

(N,+,�) is a special LA-ring.
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3.3.2 Representation of Elements of N

Consider R to be an associative ring and L an LA-semigroup. We define R[L] to be the set

of all formal linear combinations of the form
∑

ϱ∈L µϱϱ, where µϱ ∈ R for all ϱ ∈ L and

µϱ are finitely non-zero.

The support of an element
∑

ϱ∈L µϱϱ in R[L] is defined to be the set of elements in L

that appear effectively in that expression, that is

Supp(
∑
ϱ∈L

µϱϱ) = {ϱ ∈ L : µϱ 6= 0} (3.3.1)

Thus support of any element in R[L] is a finite set. It follows from our definition that

the element
∑

ϱ∈L µϱϱ =
∑

ϱ∈L νϱϱ in R[L], if and only if µϱ = νϱ, for all ϱ ∈ L.

We define the sum of any two elements
∑

ϱ∈L µϱϱ and
∑

ϱ∈L νϱϱ in R[L] componentwise

as: ∑
ϱ∈L

µϱϱ+
∑
ϱ∈L

νϱϱ =
∑
ϱ∈L

(µϱ + νϱ)ϱ (3.3.2)

and their product by ∑
ϱ∈L

µϱϱ
∑
ϱ∈L

νϱϱ =
∑
ϱ,h∈L

µϱqhϱh (3.3.3)

The above formula can be modified as:∑
ϱ∈L

µϱϱ
∑
ϱ∈L

νϱϱ =
∑
u∈L

cuu where cu =
∑
ϱh=u

µϱqh. (3.3.4)

It is easy to verify that (R[L],+) is an additive abelian group and (R[L], ·) is a groupoid

and in case if R is a commutative ring then (R[L], ·) is an LA-semigroup and also the two

distributive laws hold. Hence R[L] is a special LA-ring.

We now define R × R[L] → R[L] as (c,
∑

ϱ∈L µϱϱ) →
∑

ϱ∈L(cµϱ)ϱ. From the fact

that R is an R−module, it follows that R[L] is also an R−module.

R[L] is infact the special LA-ring N . Where the function φ : L → R is represented as

φ =
∑

ϱ∈L φ(ϱ)ϱ or simply φ =
∑

ϱ∈L µϱϱ where µϱ = φ(ϱ) for all ϱ ∈ L.

In case if R contains identity 1, then i : L → R[L] such that for each x ∈ L, i(x) =∑
ϱ∈L µϱϱ, where µx = 1 and µϱ = 0 if ϱ 6= x is an embedding of L into R[L]. Thus L

can be regarded as a subset of R[L] and we can say that L is a basis of R[L] over R. As R

is commutative, the rank of a free module over R is well defined. Thus, if L is finite, the

rank(R[L]) over R is precisely |L|.
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If L has a left identity ‘e’ then we may consider the mapping π : R → R[L] given by:

π(k) =
∑

ϱ∈L µϱϱ, where µe = k and µϱ = 0 if ϱ 6= e. It is not difficult to show that π is

an LA-ring monomorphism and we can thus also regard R as a sub LA-ring of R[L].

In wake of the above identifications, for k ∈ R and ϱ ∈ L, rg = gr in R[L]. Following is

an evident example of an LA-semigroup ring.

Example 3.3.1. Let L = {s, u, v}, such that (L, .) is an LA-semigroup, where

· s u v

s s s s

u s s v

v s u s

Consider R = Z2 = {0, 1} then for φ ∈ Z2[L],

φ = µss+ µuu+ µvv

so that Z2[L] = {0, s, u, v, s + u, s + v, u + v, s + u + v} is an LA-semigroup ring with

the operations defined as:

+ 0 s u v s+ u s+ v u+ v s+ u+ v

0 0 s u v s+ u s+ v u+ v s+ u+ v

s s 0 s+ u s+ v u v s+ u+ v u+ v

u u s+ u 0 u+ v s s+ u+ v v s+ v

v v s+ v u+ v 0 s+ u+ v s u s+ u

s+ u s+ u u s s+ u+ v 0 u+ v s+ v v

s+ v s+ v v s+ u+ v s u+ v 0 s+ u u

u+ v u+ v s+ u+ v v u s+ v s+ u 0 s

s+ u+ v s+ u+ v u+ v s+ v s+ u v u s 0

and

· 0 s u v s+ u s+ v u+ v s+ u+ v

0 0 0 0 0 0 0 0 0

s 0 s s s 0 0 0 s

u 0 s s v 0 s+ v s+ v v

v 0 s u s s+ u 0 s+ u u

s+ u 0 0 0 s+ v 0 s+ v s+ v s+ v

s+ v 0 0 s+ u 0 s+ u 0 s+ u s+ u

u+ v 0 0 s+ u s+ v s+ u s+ v u+ v u+ v

s+ u+ v 0 s u v s+ u s+ v u+ v s+ u+ v
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Proposition 3.3.2. If I and J are two subsets of R then

I[L] ∩ J [L] = (I ∩ J)[L]. (3.3.5)

Proof. Let x ∈ I[L] ∩ J [L] then x ∈ I[L] and x ∈ J [L]. That is x =
∑

ϱ∈L µϱϱ with

all µϱ ∈ I and x =
∑

ϱ∈L νϱϱ with all νϱ ∈ J. So that,
∑

ϱ∈L µϱϱ =
∑

ϱ∈L νϱϱ. That is,

µϱ = νϱ ∈ I∩J for all ϱ ∈ L. This implies that, x =
∑

ϱ∈L µϱϱ =
∑

ϱ∈L νϱϱ ∈ (I∩J)[L].

Hence, I[L] ∩ J [L] ⊆ (I ∩ J)[L].

On the other hand, let y ∈ (I ∩ J)[L]. Then y =
∑

ϱ∈L µϱϱ where µϱ ∈ I ∩ J, that is

µϱ ∈ I and µϱ ∈ J for all ϱ ∈ L. So that y =
∑

ϱ∈L µϱϱ ∈ I[L] and y =
∑

ϱ∈L µϱϱ ∈ J [L]

and hence y =
∑

ϱ∈L µϱϱ ∈ I[L] ∩ J [L]. Which implies that, (I ∩ J)[L] ⊆ I[L] ∩ J [L].

Thus, I[L] ∩ J [L] = (I ∩ J)[L].

Proposition 3.3.3. If I and J are two subsets on R then

I[L] ∪ J [L] ⊆ (I ∪ J)[L]. (3.3.6)

Proof. Let x ∈ I[L] ∪ J [L] then x ∈ I[L] or x ∈ J [L]. That is x =
∑

ϱ∈L µϱϱ with all

µϱ ∈ I or x =
∑

ϱ∈L νϱϱwith all νϱ ∈ J. So there exist µϱ ∈ I∪J such that x =
∑

ϱ∈L µϱϱ

or there exist νϱ ∈ I ∪J such that x =
∑

ϱ∈L νϱϱ. In either case, x ∈ (I ∪J)[L] and hence,

I[L] ∪ J [L] ⊆ (I ∪ J)[L].

The converse of the above proposition may not hold in general and for illustration we

have the following example.

Example 3.3.4. Let R = Z6 = {0, 1, 2, 3, 4, 5} with subsets I = {2, 3} and J = {2, 5},

then I ∪ J = {2, 3, 5}. Consider the LA-semigroup L = {x, y, z} such that:

· x y z

x x x x

y z z z

z x x x

I[L] = {2x + 2y + 2z, 2x + 2y + 3z, 2x + 3y + 2z, 3x + 2y + 2z, 3x + 3y + 2z, 3x +

2y+3z, 2x+3y+3z, 3x+3y+3z} and J [L] = {2x+2y+2z, 2x+2y+5z, 2x+5y+

2z, 5x+ 2y + 2z, 5x+ 5y + 2z, 5x+ 2y + 5z, 2x+ 5y + 3z, 5x+ 5y + 5z}.

I[L]∪J [L] = {2x+2y+2z, 2x+2y+3z, 2x+3y+2z, 3x+2y+2z, 3x+3y+2z, 3x+
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2y+3z, 2x+3y+3z, 3x+3y+3z, 2x+2y+5z, 2x+5y+2z, 5x+2y+2z, 5x+5y+

2z, 5x+ 2y + 5z, 2x+ 5y + 3z, 5x+ 5y + 5z}.

On the other hand,

(I ∪ J)[L] = {2x+2y+2z, 2x+2y+3z, 2x+3y+2z, 3x+2y+2z, 3x+3y+2z, 3x+

2y+3z, 2x+3y+3z, 3x+3y+3z, 2x+2y+5z, 2x+5y+2z, 5x+2y+2z, 5x+5y+

2z, 5x + 2y + 5z, 2x + 5y + 3z, 5x + 5y + 5z, 2x + 3y + 5z, 2x + 5y + 3z, 3x + 2y +

5z, 5x + 2y + 3z, 3x + 5y + 2z, 5x + 3y + 2z, 3x + 3y + 5z, 3x + 5y + 3z, 5x + 3y +

3z, 3x+ 5y + 5z, 5x+ 3y + 5z, 5x+ 5y + 3z}.

Clearly, I[L] ∪ J [L] ⊆ (I ∪ J)[L] but (I ∪ J)[L] * I[L] ∪ J [L].

3.3.3 Sub LA-rings and Ideals in LA-semigroup Rings

There are some ideals in LA-semigroup rings which can be established from the ideals in

rings and LA-semigroups.

Proposition 3.3.5. Let T be a sub ring of a commutative and associative ring R and M be

a sub LA-semigroup of an LA-semigroup L, then:

1. T [L] = {
∑

ϱ∈L µϱϱ : µϱ ∈ T for all ϱ ∈ L} is a sub LA-ring of R[L].

2. R[M ] = {
∑

ϱ∈L µϱϱ : µϱ ∈ R for all ϱ ∈M} is a sub LA-ring of R[L].

3. T [M ] = {
∑

ϱ∈L µϱϱ : µϱ ∈ T for all ϱ ∈M} is a sub LA-ring of R[L].

Proof. The proof is straightforward so eliminated.

In the same manner, one can obtain ideals in an LA-semigroup ring using ideals of R

and L in different ways as given in the following proposition.

Proposition 3.3.6. If I is a left (right or two sided) ideal of a commutative and associative

ring R and B is a left (right or two-sided) ideal of an LA-semigroup L, then

1. I[L] = {
∑

ϱ∈L µϱϱ : µϱ ∈ I for all ϱ ∈ L} is a left (right or two-sided) ideal of

R[L].

2. R[B] = {
∑

ϱ∈L µϱϱ : µϱ ∈ R for all ϱ ∈ B} is a left (right or two-sided) ideal of

R[L].
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3. I[B] = {
∑

ϱ∈L µϱϱ : µϱ ∈ I for all ϱ ∈ B} is a left (right or two-sided) ideal of

R[L].

The succeeding example shows that it is not necessary that all the ideals in R[L] are of

the type I[L],R[B] or I[B] for any ideals I and B of R and L respectively.

Example 3.3.7. consider the LA-semigroup ring of the Example 3.3.1. Then R = Z2 =

{0, 1} has only two ideals I1 = {0} and I2 = {0, 1} = Z2. On the other hand, only ideals

of L are B1 = {x} and B2 = {x, y, z} = L. The ideals of Z2[L] are K1 = {0}, K2 =

{0, x} ,K3 = {0, x+ y, x+ z, y+ z} and K4 = {0, x, y, z, x+ y, x+ z, y+ z, x+ y+ z}

= Z2[L]. The idealK3 6= I[L], R[B] orI[B] for any ideals I andB ofR and L respectively.

Proposition 3.3.8. For a commutative and associative ring R and an LA-semigroup L,

if A = {
∑

ϱ∈L µϱϱ : µϱ ∈ R, ϱ ∈ L} is an ideal in the LA-semigroup ring R[L], then

B = {
∑
µϱ : ϱ ∈ L} is an ideal in R. Where L has left identity ‘e’.

Proof. By definition of an ideal, o =
∑

ϱ∈L µϱϱ (such that all µϱ = 0) belongs to A.

Thus for 0 ∈ R, 0 =
∑

ϱ∈L µϱ ∈ B where µϱ = 0 for all ϱ ∈ L. Hence B 6= ∅.

Now for
∑

ϱ∈L µϱ and
∑

ϱ∈L νϱ ∈ B, there exist
∑

ϱ∈L µϱϱ and
∑

ϱ∈L νϱϱ in A, such

that
∑

ϱ∈L µϱϱ −
∑

ϱ∈L νϱϱ =
∑

ϱ∈L(µϱ − νϱ)ϱ ∈ A because A is an ideal of R. So∑
ϱ∈L(µϱ − νϱ) ∈ B. That is

∑
ϱ∈L µϱ −

∑
ϱ∈L νϱ ∈ B. Further let k ∈ R and

∑
ϱ∈L µϱ ∈

B, where
∑

ϱ∈L µϱ ∈ A, then k(
∑

ϱ∈L µϱ) =
∑

ϱ∈L κµϱ. Since A is an ideal of R[L]

and k =
∑

ϱ∈L µϱϱ ∈ R[L] also, where µϱ = k, if ϱ = e and µϱ = 0 otherwise. Now

k(
∑

ϱ∈L µϱϱ) =
∑

ϱ∈L(κµϱ)ϱ ∈ A and
∑

ϱ∈L κµϱ ∈ B.

Proposition 3.3.9. Consider L be an LA-semigroup having left identity ‘e’. For an ideal

I of R, I = I∗, where

I∗ = {
∑
ϱ∈L

µϱ :
∑
ϱ∈L

µϱϱ ∈ I[L]}. (3.3.7)

Proof. Let µ ∈ I , then µ = µe +
∑

e̸=ϱ∈L 0ϱ ∈ I[L]. Also µ = µ +
∑

e ̸=ϱ∈L 0 ∈ I∗. This

implies that, I ⊆ I∗. Now let x ∈ I∗, then x =
∑

ϱ∈L µϱ ∈ I∗ where
∑

ϱ∈L µϱϱ ∈ I[L].

This implies that, µϱ ∈ I for all ϱ ∈ L. Since I is an ideal in R so
∑

ϱ∈L µϱ ∈ I and hence,

I∗ ⊆ I. Therefore I = I∗.

Proposition 3.3.10. Let T be a subset of R, if T [L] is an ideal in R[L] then T is an ideal

in R.
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Proof. As T [L] is an ideal in R[L] so 0 ∈ T [L] where 0 =
∑

ϱ∈L 0ϱ ∈ T [L]. Thus for

0 ∈ R, 0 ∈ T and T 6= ∅. Let µ, ν ∈ T then µe+
∑

e̸=ϱ∈L 0ϱ ∈ T [L] and νe+
∑

e̸=ϱ∈L 0ϱ ∈

T [L]. Since T [L] is an ideal in R[L], (µ− ν)e+
∑

e̸=ϱ∈L 0ϱ ∈ T [L] and µ− ν ∈ T. Now

let k ∈ R and µ ∈ T then, ke +
∑

e̸=ϱ∈L 0ϱ ∈ R[L] and µe +
∑

e̸=ϱ∈L 0ϱ ∈ T [L]. Since

T [L] is an ideal in R[L], (kµ)e +
∑

e̸=ϱ∈L 0ϱ ∈ T [L] This implies that κµ ∈ T. Also,

(µk)e+
∑

e̸=ϱ∈L 0ϱ ∈ T [L] and µκ ∈ T. Hence, T is an ideal in R.

Recall that a ringR is direct sum of its ideals I1, I2, ..., In denotedR = I1⊕I2⊕...⊕In,

if and only if R = I1 + I2 + ...+ In and Ii ∩ Ij = {0} if i 6= j.

Theorem 3.3.11. Let I1, I2, ..., In be ideals of a commutative and associative ring R such

that R = I1 ⊕ I2 ⊕ ...⊕ In, then for an LA-semigroup L, the LA-semigroup ring R[L] =

I1[L] ⊕ I2[L] ⊕ ... ⊕ In[L]. Where for each i = 1, ..., n, Ii[L] = {
∑

ϱ∈L µiϱϱ : µiϱ ∈

I for all ϱ ∈ L}.

Proof. For φ ∈ R[L], φ =
∑

ϱ∈L µϱϱ and since R = I1 ⊕ I2 ⊕ ... ⊕ In for each µϱ ∈ R,

there exists unique µiϱ ∈ Ii for all i = 1, ..., n such that, µϱ =
∑n

i=1 µiϱ. So, φ =∑
ϱ∈L(

∑n
i=1 µiϱ)ϱ =

∑n
i=1(

∑
ϱ∈L µigg) ∈ I1[L] + I2[L] + ... + In[L]. Thus R[L] is

contained in I1[L] + I2[L] + ...+ In[L]. But since each Ii[L] is an ideal in R[L], so I1[L] +

I2[L] + ...+ In[L] is contained in R[L]. Hence R[L] = I1[L] + I2[L] + ...+ In[L].

Now let i 6= j and x ∈ Ii[L] ∩ Ij[L], then x ∈ Ii[L] and x ∈ Ij[L]. That is x =
∑

ϱ∈L µiϱϱ

also x =
∑

ϱ∈L µjϱϱ, where µiϱ ∈ Ii, and µjϱ ∈ Ij, for all ϱ ∈ L. Thus µiϱ = µjϱ, for all

ϱ ∈ L. So, µiϱ, µjϱ ∈ Ii ∩ Ij = {0} for all ϱ ∈ L i.e. µiϱ = µjϱ = 0, for all ϱ ∈ L and

x = 0. So, Ii[L] ∩ Ij[L] = {0} and hence R[L] = I1[L]⊕ I2[L]⊕ ...⊕ In[L].

Definition 3.3.12. A Sub LA-ring Q of an LA-ring RLA is said to be its quasi ideal if

RLAQ ∩QRLA ⊆ Q.

Theorem 3.3.13. If A is a quasi-ideal of L then for a commutative and associative ring

R, R[A] is quasi-ideal of R[L], for any LA-semigroup L.

Where

R[A] = {
∑
ϱ∈L

µϱϱ : µϱ = 0 if ϱ /∈ A}. (3.3.8)

Proof. Being a quasi ideal of L, A is its sub LA-semigroup. By the Proposition 3.3.5,

R[A] is a sub LA-semigroup ring. Let x ∈ R[A]R[L] ∩R[L]R[A] then x ∈ R[A]R[L] and
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x ∈ R[L]R[A]. We have, x =
∑

finite φψ where, φ =
∑

ϱ∈A µϱϱ and ψ =
∑

ϱ∈L νϱϱ also

x =
∑

finite ϑδ where, ϑ =
∑

ϱ∈L ωϱϱ and δ =
∑

ϱ∈A ςϱϱ.

Now, x =
∑

finite φψ =
∑

finite(
∑

ϱ∈A µϱϱ
∑

ϱ∈L νϱϱ) =
∑

finite(
∑

ϱ∈A,h∈L µϱνhϱh) =∑
finite(

∑
u∈AS ϱuu).

Also, x =
∑

finite ϑδ =
∑

finite(
∑

ϱ∈L ωϱϱ
∑

ϱ∈A ςϱϱ) =
∑

finite(
∑

ϱ∈L,h∈A ωϱςhϱh) =∑
finite(

∑
u∈SA ϱuu). This implies that x ∈ R[AS] and x ∈ R[SA]. That is, x ∈ R[AS] ∩

R[SQ] = R[AS ∩ SA] ⊆ R[A]. Thus, R[A]R[L] ∩ R[L]R[A] ⊆ R[A]. Hence, R[A] is a

quasi-ideal of R[L].

Definition 3.3.14. A Sub LA-ringB of an LA-ringRLA is said to be its bi-ideal if (BRLA)B

⊆ B.

Theorem 3.3.15. If A is a bi-ideal of an LA-semigroup L then for a commutative and

associative ring R, R[A] is a bi-ideal of R[L], for any LA-semigroup L.

Proof. Since A is a bi-ideal of L, it is its sub LA-semigroup. By the Proposition 3.3.5,

R[A] is a sub LA-semigroup ring. Let α ∈ (R[A]R[L])R[A] then,

α =
∑

finite(
∑

finite φψ)ϑ where, φ =
∑

ϱ∈A µϱϱ, ψ =
∑

ϱ∈L νϱϱ and ϑ =
∑

ϱ∈A ωϱϱ.

Now, α =
∑

finite

∑
finite(φψ)ϑ =

∑
finite

∑
finite(

∑
ϱ∈A µϱϱ

∑
ϱ∈L νϱϱ)

∑
ϱ∈A ωϱϱ

=
∑

ϱ∈A,h∈L,ϱ∈A(µϱνh)ωϱ(ϱh)ϱ =
∑

u∈(AS)A kuu. This implies that, α ∈ R(AS)A ⊆ R[A]

so that α ∈ R[A]. Thus, (R[A]R[L])R[A] ⊆ R[A] and hence R[A] is a bi-ideal of R[L].

Definition 3.3.16. A Sub LA-ring A of an LA-ring RLA is called its Interior ideal if

(RLAA)RLA ⊆ A.

Theorem 3.3.17. If A is an interior ideal of L then for a commutative and associative ring

R, R[A] is an interior ideal of R[L], for any LA-semigroup L.

Proof. AsA is a an interior ideal ofL, it is its sub LA-semigroup. By the Proposition 3.3.5,

R[A] is a sub LA-semigroup ring. Let α ∈ (R[L]R[A])R[L] then α =
∑

finite(
∑

finite φψ)ϑ

where, φ =
∑

ϱ∈L µϱϱ, ψ =
∑

ϱ∈A νϱϱ, ϑ =
∑

ϱ∈L ωϱϱ.

Now, α =
∑

finite

∑
finite(φψ)ϑ =

∑
finite

∑
finite(

∑
ϱ∈L µϱϱ

∑
ϱ∈A νϱϱ)

∑
ϱ∈L ωϱϱ

=
∑

ϱ∈L,h∈A,ϱ∈L(µϱνh)cϱ(ϱh)ϱ =
∑

u∈(SA)L kuu. This implies that, α ∈ R[(SA)L] ⊆

R[A] and α ∈ R[A]. Thus, (R[L]R[A])R[L] ⊆ R[A] and R[A] is an interior ideal of

R[L].
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3.3.4 Homomorphisms and LA-Semigroup Rings

Ring homomorphisms and LA-semigroup homomorphisms provide us with different ex-

amples of LA-ring homomorphisms which are illustrated in the succeeding proposition:

Proposition 3.3.18. Let R and R′ be commutative and associative rings and let L and L′

be a LA-semigroups. If τ : R → R′ is a ring homomorphism and ϕ : L → L′ be an

LA-semigroup homomorphism then:

1. θ : R[L] → R′[L] is a LA-ring homomorphism, where for all φ =
∑

ϱ∈L µϱϱ ∈

R[L],

θ(φ) = θ(
∑
ϱ∈L

µϱ) =
∑
ϱ∈L

τ(µϱ)ϱ. (3.3.9)

And the kernel of θ is given by

ker(θ) = {φ =
∑
ϱ∈L

µϱϱ ∈ R[L] : µϱ ∈ ker(τ), for all ϱ ∈ L}. (3.3.10)

2. θ : R[L] → R[ϕ(L)] is an LA-ring homomorphism, where for all φ =
∑

ϱ∈L µϱϱ ∈

R[L],

θ(φ) = θ(
∑
ϱ∈L

µϱ) =
∑
ϱ∈L

µϱϕ(ϱ). (3.3.11)

The kernel of θ is given by

ker(θ) = {φ =
∑
ϱ∈L

µϱϱ ∈ R[L] : µϱ = 0, for all ϱ ∈ L}. (3.3.12)

3. θ : R[L] → R′[ϕ(L)] is an LA-ring homomorphism, where for all φ =
∑

ϱ∈L µϱϱ ∈

R[L],

θ(φ) = θ(
∑
ϱ∈L

µϱ) =
∑
ϱ∈L

τ(µϱ)ϕ(ϱ). (3.3.13)

The kernel of θ is given by

ker(θ) = {φ =
∑
ϱ∈L

µϱϱ ∈ R[L] : µϱ ∈ ker(τ), for all ϱ ∈ L}. (3.3.14)

Remark 3.3.19. 1. If τ and ϕ defined in the Proposition 3.3.18 are bijections, then so

is θ in each case.

2. If R ∼= R′ then R[L] ∼= R′[L].
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3. If L ∼= L′ then R[L] ∼= R[L′].

Note that if τ : R → R′ is a ring epimorphism and I is an ideal in R then τ(I) =

{τ(µ) : µ ∈ I} is an ideal in R′.

Proposition 3.3.20. Consider a commutative ring R and an LA-semigroup L. If, I is an

ideal in R, then

θ(I[L]) = (τ(I))[L]. (3.3.15)

Where θ is the LA-ring homomorphism defined in the Proposition 3.3.18 part 1 and τ is a

ring epimorphism.

From ring theory, if τ : R → R′ is a ring homomorphism and I ′ is an ideal in R′ then

τ−1(I ′) = {µ ∈ R : τ(µ) ∈ I ′} is an ideal in R.

Proposition 3.3.21. Let R and R′ be commutative and associative rings and let L be an

LA-semigroup. If I ′ is an ideal in R′ , then

θ−1(I ′[L]) = (τ−1(I ′))[L]. (3.3.16)

Where θ is the LA-ring homomorphism defined in the Proposition 3.3.18 part 1 and τ is a

ring homomorphism.

Also If ϕ : L → L′ is an LA-semigroup epimorphism and A is an ideal in L then

ϕ(A) = {ϕ(ϱ) : ϱ ∈ A} is an ideal in L′.

Proposition 3.3.22. Consider a commutative and associative ring R. Let L and L′ be two

LA-semigroups. If A is an ideal in L, then

θ(R[A]) = R[ϕ(A)]. (3.3.17)

Where θ is the LA-ring homomorphism defined in the Proposition 3.3.18 part 2 and ϕ is

an LA-semigroup epimorphism.

Recall that if ϕ : L → L′ is an LA-semigroup homomorphism and A′ is an ideal in L′

then ϕ−1(A′) = {ϱ ∈ L| ϕ(ϱ) ∈ B′} is an ideal in L.

Proposition 3.3.23. Let Land L′ be LA-semigroups and let R be a commutative and asso-

ciative ring, if A′ is an ideal in L′, then

θ−1(R[A′]) = R[ϕ−1(A′)]. (3.3.18)
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Where θ is the LA-ring homomorphism defined in the Proposition 3.3.18 part 2 and ϕ is

an LA-semigroup homomorphism.

The following two results are based on isomorphisms.

Theorem 3.3.24. Consider two commutative and associative rings R and R′ and let L be

an LA-semigroup. Then

(R×R′)[L] ∼= R[L]×R′[L].

Proof. Define θ : (R×R′)[L] → R[L]×R′[L], such that

θ(
∑
ϱ∈L

(µϱ, µ
′
ϱ)ϱ) = (

∑
ϱ∈L

µϱϱ,
∑
ϱ∈L

µ′
gg) (3.3.19)

Let
∑

ϱ∈L(µϱ, µ
′
ϱ)ϱ,

∑
ϱ∈L(νϱ, ν

′
ϱ)ϱ ∈ (R×R′)[L], then∑

ϱ∈L

(µϱ, µ
′
ϱ)ϱ+

∑
ϱ∈L

(νϱ, ν
′
ϱ)ϱ =

∑
ϱ∈L

(µϱ + νϱ, µ
′
ϱ + ν ′ϱ)ϱ

θ(
∑
ϱ∈L

(µϱ, µ
′
ϱ)ϱ+

∑
ϱ∈L

(νϱ, ν
′
ϱ)ϱ) =θ(

∑
ϱ∈L

(µϱ + νϱ, µ
′
ϱ + ν ′ϱ)ϱ)

=(
∑
ϱ∈L

(µϱ + νϱ)ϱ,
∑
ϱ∈L

(µ′
ϱ + ν ′ϱ)ϱ)

=(
∑
ϱ∈L

µϱϱ+
∑
ϱ∈L

νϱϱ,
∑
ϱ∈L

µ′
ϱϱ+

∑
ϱ∈L

ν ′ϱϱ)

=(
∑
ϱ∈L

µϱϱ,
∑
ϱ∈L

µ′
ϱϱ) + (

∑
ϱ∈L

νϱϱ,
∑
ϱ∈L

ν ′ϱϱ)

=θ(
∑
ϱ∈L

(µϱ, µ
′
ϱ)ϱ) + θ(

∑
ϱ∈L

(νϱ, ν
′
ϱ)ϱ).

and ∑
ϱ∈L

(µϱ, µ
′
ϱ)ϱ

∑
ϱ∈L

(νϱ, ν
′
ϱ)ϱ =

∑
ϱ∈L

(µϱ, µ
′
ϱ)(νh, ν

′
h)ϱh =

∑
ϱ,h∈L

(µϱνh, µ
′
ϱν

′
h)ϱh

θ(
∑
ϱ∈L

(µϱ, µ
′
ϱ)ϱ

∑
ϱ∈L

(νϱ, ν
′
ϱ)ϱ) =θ(

∑
ϱ,h∈L

(µϱνh, µ
′
ϱν

′
h)ϱh)

=(
∑
ϱ,h∈L

µϱνhϱh,
∑
ϱ,h∈L

µ′
ϱν

′
hϱh)

=(
∑
ϱ∈L

µϱϱ
∑
ϱ∈L

νϱϱ,
∑
ϱ∈L

µ′
ϱϱ

∑
ϱ∈L

ν ′ϱϱ)

=(
∑
ϱ∈L

µϱϱ,
∑
ϱ∈L

µ′
ϱϱ)(

∑
ϱ∈L

νϱϱ,
∑
ϱ∈L

ν ′ϱϱ)

=θ(
∑
ϱ∈L

(µϱ, µ
′
ϱ)ϱ)θ(

∑
ϱ∈L

(νϱ, ν
′
ϱ)ϱ).
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So θ is a homomorphism.

One can easily verify that θ is a bijection.

Theorem 3.3.25. Let I be an ideal of a commutative and associative ring R and let L be

an LA-semigroup. Then

R[L]/I[L] ∼= (R/I)[L]. (3.3.20)

Proof. R[L]/I[L] = {ψ+I[L]|ψ ∈ R[L]} and (R/I)[L] =
∑

ϱ∈L(µϱ+I)ϱ|µϱ+I ∈ R/I}

Define θ : R[L]/I[L] → (R/I)[L]

byθ(ψ + I[L]) = θ(
∑

ϱ∈L νϱ + I[L]) =
∑

ϱ∈L(νϱ + I)ϱ.

θ(φ+ I[L] + ψ + I[L]) =θ(φ+ ψ + I[L])

=θ(
∑
ϱ∈L

((µϱ + νϱ) + I[L]))

=
∑
ϱ∈L

(µϱ + νϱ + I)ϱ

=
∑
ϱ∈L

(µϱ + I)ϱ+
∑
ϱ∈L

(νϱ + I)ϱ

=θ(φ+ I[L]) + θ(ψ + I[L]).

Also

θ((φ+ I[L])(ψ + I[L])) =θ(φψ + I[L])

=θ((
∑
ϱ∈L

µϱϱ
∑
ϱ∈L

νϱϱ) + I[L])

=
∑
ϱ∈L

(µϱνh + I)gh

=
∑
ϱ∈L

(µϱ + I)(νh + I)gh

=(
∑
ϱ∈L

(µϱ + I)ϱ)(
∑
ϱ∈L

(νh + I)h)

=θ(φ+ I[L])θ(ψ + I[L]).

So θ is a homomorphism.

It is not difficult to see that θ is bijective.
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Definition 3.3.26. A Noetherian (an Artinian) LA-ring is an LA-ring RLA, that satisfies

the ascending (decending) chain condition for its ideals. In other words, provided any

chain of ideals in RLA;

I1 ⊆ · · · ⊆ Ik−1 ⊆ Ik ⊆ Ik+1 ⊆ · · · (I1 ⊇ · · · ⊇ Ik−1 ⊇ Ik ⊇ Ik+1 ⊇ · · ·) there exists

an index n such that:

In = In+1 = · · · .

Theorem 3.3.27. For a commutative and associative ring R, if R is Noetherian then so is

R[L] for any LA-semigroup L.

Proof. Let K1 ⊆ K2 ⊆ ... ⊆ Kn ⊆ ... be an ascending chain of ideals in R[L]. Then

Ki ⊆ Ki+1 ⇒ K̂i ⊆ K̂i+1, where, K̂ = {
∑

ϱ∈L µϱ :
∑

ϱ∈L µϱϱ ∈ K}. Because, if α ∈ K̂i

then α =
∑

ϱ∈L µϱ, where
∑

ϱ∈L µϱϱ ∈ Ki. Now, Ki ⊆ Ki+1 implies that
∑

ϱ∈L µϱϱ ∈

Ki+1. Then,
∑

ϱ∈L µϱ ∈ K̂i+1. Which implies that, K̂1 ⊆ K̂2 ⊆ ... ⊆ K̂n ⊆ ... be an

ascending chain of ideals in R. Since R is a noetherian ring so, there exists a positive

integer n, such that K̂n = K̂m for all m ≥ n. Now, let φ ∈ Kn then φ =
∑

ϱ∈L µϱϱ

and
∑

ϱ∈L µϱ ∈ K̂n = K̂m ⇒
∑

ϱ∈L µϱ ∈ K̂m. So that, φ =
∑

ϱ∈L µϱϱ ∈ Km. Thus,

Kn ⊆ Km. Similarly Km ⊆ Kn and this implies that Kn = Km for all m ≥ n. Hence,

R[L] is Noetherian.

Similarly, it is not hard to prove the following theorem.

Theorem 3.3.28. If R is Artinian then so is R[L] for any LA-semigroup L.

3.4 Divisibility Theory in LA-Domains

Divisibility has a great significance in commutative ring theory due to its relation with

the ideal structure of these rings. The concept of divisibility in LA-rings has not been

introduced so far. In this section, we establish the useful notion of divisibility for the LA-

rings and explore their ideal structure in more detail. This section includes the concepts of

prime and irreducible elements and prime and maximal ideals. Most of the results proved

in this chapter use ‘medial law’ and ‘paramedial law’ from [134].
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3.4.1 LA-field and LA-integral Domain

In order to start a study on divisibility theory in LA-rings, we first need to establish few

concepts and results regarding LA-fields and LA-integral domains.

Shah and Rehman in their paper [131], introduced the notions of LA-integral domain

or simply an LA-domain and an LA-field. In the following, we provide our findings for

the two.

The succeeding result is obvious, as cancellation laws imply non-existence of zero

divisors.

Theorem 3.4.1. An LA-ring is cancellative if and only if it is an LA-Integral Domain.

Theorem 3.4.2. Every LA-field is an LA-integral Domain.

Proof. Assume that RLA is an LA-field, then for each non-zero element µ ∈ RLA, its

multiplicative inverse µ−1 ∈ RLA. Let µ, ν ∈ RLA such that µν = 0 and ν 6= 0, then

ν−1 ∈ RLA. Now µν = 0 implies that (µν)ν−1 = 0ν−1 or (ν−1ν)µ = 0. That is µ = 0.

RLA has no right zero divisors.

Suppose µν = 0 with µ 6= 0. µν = 0 implies that (eµ)ν = 0, so, ⇒ (µν)e = 0. Since

RLA has no right zero divisors and e 6= 0, this implies that νµ = 0 and µ 6= 0, so again

due to non existence of right zero divisors in RLA, ν = 0. Hence, RLA has no left zero

divisors.

Following theorem is analogue of the same for associative rings.

Theorem 3.4.3. Every finite LA-integral domain is an LA-field.

Definition 3.4.4. An LA-integral domain is called a principal left ideal LA-integral domain

if each of its left ideals is a principal left ideal.

3.4.2 Prime and Maximal Left Ideals

Definition 3.4.5. A left ideal P of an LA-ring RLA is called a prime left ideal iff for any

left ideals I1, I2 of RLA, I1I2 ⊆ P implies that I1 ⊆ P or I2 ⊆ P .

The succeeding theorem yields an alternate definition of a prime left ideal.

Theorem 3.4.6. Let RLA be an LA-ring with ‘e’ as left identity. A left ideal P of RLA is

left prime ideal iff for any µ, ν ∈ RLA, µν ∈ P ⇒ µ ∈ P or ν ∈ P .
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Proof. Let P be a prime ideal. Consider µ, ν ∈ RLA with µν ∈ P . Then

(RLAµ)(RLAν) =(RLARLA)(µν)

=RLA(µν)

⊆RLAP

⊆P

As P is a prime ideal, so, RLAµ ⊆ P or RLAν ⊆ P . Hence, µ = eµ ∈ RLAµ ⊆ P ⇒ µ ∈

P or ν = eν ∈ RLAν ⊆ P ⇒ ν ∈ P

Converse is straightforward.

Definition 3.4.7. A proper left ideal M of an LA-ring RLA is called a maximal left ideal

if no proper left ideal of RLA contains M.

We now characterize prime ideals and maximal ideals in an LA-ring containing left

identity, by the quotient LA-rings formed by these ideals.

Theorem 3.4.8. Let RLA be an LA-ring with ‘e’ as left identity and P be a proper left

ideal of RLA. Then P is a prime left ideal iff RLA/P is an LA-integral domain.

Proof. Let P be a prime left ideal of RLA. Since RLA is an LA-ring with left identity, the

quotient ring RLA/P is also an LA-ring with left identity. We now show that RLA/P has

no zero divisors. Let P+µ,P+ν ∈ RLA/P , and (P+µ)(P+ν) = P . Then P+µν = P ,

which implies that µν ∈ P . Since P is a prime left ideal, either µ ∈ P or ν ∈ P , that is

either P + µ = P or P + ν = P . Thus RLA/P has no zero divisors. This implies that

RLA/P is an LA-integral domain.

Conversely, suppose RLA/P is an LA-integral domain. Let µν ∈ P then P = P +µν,

and P = (P + µ)(P + ν). As RLA/P is an integral domain, P + µ = P or P + ν = P .

Thus, µ ∈ P or ν ∈ P and so, P is a prime left ideal.

Theorem 3.4.9. Let RLA be an LA-ring with ‘e’ as left identity and M be a proper left

ideal of RLA. Then M is a maximal left ideal iff RLA/M is an LA-field.

Proof. Suppose that M is a maximal left ideal. Since RLA is an LA-ring with left identity,

RLA/M is an LA-ring with left identity ‘e’. Let M+µ ∈ RLA/M such that M+µ 6= M.

Consider

T = {κ+ µλ : κ ∈ M, λ ∈ RLA}
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then it is not difficult to show that T is a left ideal of RLA properly containing M. Since

M is a maximal left ideal, we have T = RLA, so there are elements κ ∈ M and ν ∈ R

such that e = κ+ µν. Thus, M+ (κ+ µν) = M+ e and so M+ µν = M+ e. Hence,

M+ µ has an inverse in RLA/M. This shows that each non-zero element of RLA/M is a

unit and so RLA/M is an LA-field.

Conversely, assume that RLA/M is an LA-field. Let J be a left ideal of RLA such that

M ⊂ J ⊆ RLA. There exists η ∈ J such that η 6= M. Then M + η 6= M and so there

exists M+ υ ∈ RLA/M such that (M+ υ)(M+ η) = M+ e. Thus, M+ υη = M+ e

which implies that e − υη ∈ M ⊂ J. Also since J is a left ideal of RLA, υη ∈ J. So

e = (e − υη) + υη ∈ J. This implies that J = RLA. Therefore, M is Therefore, M is

maximal.

Remark 3.4.10. In an LA-ring with left identity each maximal left ideal is a prime left

ideal.

3.4.3 Divisibility in LA-rings

From [124], it follows that commutativity implies associativity in LA-rings, the operation

‘·’ in an LA-ring is non-commutative. So the division in an LA-ring is not that simple as

it is in the case of a commutative and associative ring. An element µ in an LA-ring RLA

may divide another element ν in RLA either from left or from right or from both sides.

Definition 3.4.11. Let RLA be a LA-ring with left identity ‘e’. Then for µ, ν ∈ RLA, µ is

said to divide ν from left (right) denoted µ|Lν (µ|Rν) if there exists α ∈ RLA (ϱ ∈ RLA)

such that ν = µα(ν = ϱµ). An element µ is said to divide ν denoted µ|ν, if either µ|Lν or

µ|Rν. µ and ν are said to be associates of each other if µ|ν and ν|µ.

Proposition 3.4.12. Let RLA be a LA-ring with ‘e’ as left identity then for µ, ν, α ∈ RLA:

1. µ|µ, e|µ, µ|0.

2. If µ|ν and ν|α then µ|α.

3. µ|e iff µ is a unit.

4. If µ|Lν and ν|Lα then µ|Lα.

5. If α|Lµ and α|Lν then for all η, υ ∈ R, α|R(µη + νυ).
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Proof. 1. As µ = eµ, µ|Rµ and e|Lµ. So, µ|µ and e|µ. As for 0 ∈ RLA, 0 = 0µ = µ0,

therefore, µ|0.

2. If µ|ν then µ|Lν or µ|Rν and there exist ϱ1, ϱ2 ∈ RLA such that ν = µϱ1 or ν = ϱ2µ.

If ν|α then ν|Lα or ν|Rα and there exist ϱ3, ϱ4 ∈ RLA such that α = νϱ3 or α = ϱ4ν.

Now If ν = µϱ1 and α = νϱ3 then α = (µϱ1)ϱ3 = (ϱ3ϱ1)µ. If ν = µϱ1 and α = ϱ4ν

then α = ϱ4(µϱ1) = (eϱ4)(µϱ1) = (ea)(ϱ4ϱ1) = µ(ϱ4ϱ1). If ν = ϱ2µ and α = νϱ3

then α = (ϱ2µ)ϱ3 = (ϱ2µ)(eϱ3) = (ϱ2µ)(eϱ3) = µ((ϱ2e)ϱ3). If ν = ϱ2µ and

α = ϱ4ν then α = ϱ4(ϱ2µ) = (eϱ4)(ϱ2µ) = (µϱ4)(ϱ2e) = ((ϱ2e)ϱ4)µ. So in each

case µ|α.

3. Let µ be a unit then µµ−1 = e⇒ µ|e.

Conversely, let µ|e then µ|Le or µ|Re and there exist ϱ, α ∈ RLA such that either

e = µϱ or e = βµ. In either case µ is a unit.

4. Let µ|Lν and ν|Lα then there exist ϱ1, ϱ2 ∈ RLA such that ν = µϱ1 and α = νϱ2, so

that α = νϱ2 = (µϱ1)ϱ2 = (ϱ2ϱ1)µ. So µ|Lα.

5. Let α|La and α|Lν then there exist ϱ1, ϱ2 ∈ R such that µ = αϱ1 and ν = αϱ2, so

that µη+ νυ = (αϱ1)η+(αϱ2)υ = (ηϱ1)α = (yd2)α = (ηϱ1+ υϱ2)α. This implies

that α|Rµη + νυ.

Proposition 3.4.13. Let RLA be a LA-ring with ‘e’ as left identity if for µ, ν ∈ RLA, µ|Rν

then for an element α in RLA, µα|Rνα.

Proof. If µ|Rν then there exists ϱ ∈ RLA such that ν = ϱµ. Then να = (ϱµ)α =

(ϱµ)(eα) = (ϱe)(µα). So µα|Rνα.

Corollary 3.4.14. Let RLA be a LA-ring. If for µ, ν ∈ RLA, µ|Lν then for an idempotent

element α in RLA, µα|Lνα.

Proof. If µ|Lν then there exists ϱ ∈ RLA such that ν = µϱ. Then να = (µϱ)α =

(µϱ)(αα) = (µα)(ϱα) so µα|Lνα.

Proposition 3.4.15. Let µ, ν be elements in an LA-ring RLA with left identity ‘e’. Then

µ|Rν iff RLAν ⊆ RLAµ.
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Proof. Let µ|Rν then there exist α such that ν = ca. Let λ ∈ RLAν then λ = κν for some

κ ∈ RLA. Now λ = κ(αµ) = (eκ)(αµ) = (µκ)(αe) = ((αe)κ)µ ∈ RLAµ. This implies

that, RLAν ⊆ RLAµ.

Conversely, let RLAν ⊆ RLAµ then ν = eν ∈ RLAν ⊆ RLAµ ⇒ ν ∈ RLAµ. That is

ν = ϑµ for some ϑ ∈ RLA. Hence, µ|Rν

Corollary 3.4.16. Let µ, ν be elements in an LA-ring RLA with left identity ‘e’ with µ an

idempotent. Then µ|ν iff RLAν ⊆ RLAµ.

Proof. By Proposition 3.4.15, µ|Rν iff RLAν ⊆ RLAµ. Consider that µ|Lν then there

exists α ∈ RLA such that ν = µα, let λ ∈ RLAν then λ = ϱν for some ϱ ∈ RLA. Now

ϑ = ϱ(µα) = µ(ϱα) = (µµ)(ϱα) = ((ϱα)µ)µ ∈ RLAµ. We have, RLAν ⊆ RLAµ.

Conversely, let RLAν ⊆ RLAµ then ν = eν ∈ RLAν ⊆ RLAµ. This implies that,

ν ∈ RLAµ. That is ν = ϑµ for some ϑ ∈ RLA and hence, µ|ν.

Corollary 3.4.17. Let µ, ν be idempotent elements in an LA-ring RLA with left identity

‘e’. Then µ and ν are associates iff RLAν ⊆ RLAµ.

Theorem 3.4.18. Let RLA be an LA-ring with ‘e’ as left identity;

1. ϱ is a unit iff ϱ|λ for all λ ∈ RLA.

2. ϱ is a unit iff < ϱ >= RLAϱ = RLA.

3. If µ = νλ (with λ ∈ RLA is a unit) then µ and ν are associates.

Proof. 1. Let ϱ be a unit then ϱ−1ϱ = ϱϱ−1 = e. Let λ ∈ RLA, then λ = eλ =

(ϱϱ−1)λ = (λϱ−1)ϱ. This implies that ϱ|Rλ that is ϱ|λ, for all λ ∈ RLA.

Conversely, let ϱ|λ, for all λ ∈ RLA. then ϱ|e for e ∈ RLA. By the Proposition 3.4.12

λ is a unit.

2. Let ϱ be a unit then ϱϱ−1 = ϱ−1ϱ = e By part 1, ϱ|λ for all λ ∈ RLA. Let µ ∈ RLA,

µ = eµ = (ϱϱ−1)µ = (µϱ−1)ϱ ∈ RLAϱ =< ϱ > . So, RLA ⊆< ϱ > but < ϱ > is

an ideal of RLA, so < ϱ >= RLA.

Conversely, let ϱ be an element in RLA such that < ϱ >= RLA. Let λ ∈ RLA, then

λ ∈< ϱ >= RLAϱ and λ = ϑϱ for some ϑ ∈ RLA. This implies that ϱ|Rλ that us

ϱ|λ for all λ ∈ RLA. By part 1, ϱ is a unit.
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3. Let µ = νλwith λ ∈ RLA is a unit then ν|Lµ or ν|µ. µλ−1 = (νλ)λ−1 = (λ−1λ)ν =

eν = ν. So, µ|Lν or µ|ν. Hence µ and ν are associates.

3.4.4 Prime and Irreducible Elements

We now define prime and irreducible elements in an LA-rings and study their relationship

in a certain type of special LA-integral domain. Where, a special LA-integral domain is an

special LA-ring which is an LA-domain.

Definition 3.4.19. A non-zero and non-unit element ρ in an LA-ringRLA with left identity

‘e’ is called a prime element if for any µ, ν ∈ RLA, ρ|µν ⇒ ρ|µ or ρ|ν.

Definition 3.4.20. A non-zero and non-unit element β in an LA-ringRLA with left identity

‘e’ is called an irreducible element if for any µ, ν ∈ RLA, β = µν then either µ is a unit or

ν is a unit.

The following example illustrates that in an LA-ring with left identity ‘e,’ in general

there is no relationship between a prime and an irreducible element.

Example 3.4.21. Let RLA = {0, 1, 2, 3, 4, 5, 6, 7} be an LA-ring with the following addi-

tive and multiplicative tables:

+ 0 1 2 3 4 5 6 7

0 1 2 3 0 6 7 5 4

1 0 1 2 3 4 5 6 7

2 3 0 1 2 7 6 4 5

3 2 3 0 1 5 4 7 6

4 6 5 7 4 1 3 2 0

5 7 4 6 5 3 1 0 2

6 4 6 5 7 0 2 1 3

7 5 7 4 6 2 0 3 1

· 0 1 2 3 4 5 6 7

0 5 1 4 3 2 0 6 7

1 1 1 1 1 1 1 1 1

2 4 1 5 3 0 2 6 7

3 3 1 3 1 3 3 1 1

4 0 1 2 3 4 5 6 7

5 2 1 0 3 5 4 6 7

6 7 1 7 1 7 7 1 1

7 6 1 6 1 6 6 1 1

Here the left identity element is e = 4, 3 is prime as well as irreducible element and 6, 7

are irreducible but not prime elements.
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Now consider the LA-ring RLA = {0, 1, 2, 3, 4, 5, 6, 7} with the following additive and

multiplicative tables:

+ 0 1 2 3 4 5 6 7

0 2 3 0 1 6 7 4 5

1 3 2 1 0 5 4 7 6

2 0 1 2 3 4 5 6 7

3 1 0 3 2 7 6 5 4

4 6 5 4 7 2 1 0 3

5 7 4 5 6 1 2 3 0

6 4 7 6 5 0 3 2 1

7 5 6 7 4 3 0 1 2

· 0 1 2 3 4 5 6 7

0 1 4 2 5 7 3 6 0

1 0 1 2 3 4 5 6 7

2 2 2 2 2 2 2 2 2

3 3 5 2 6 3 6 2 5

4 7 0 2 5 1 3 6 4

5 5 3 2 6 5 6 2 3

6 6 6 2 2 6 2 2 6

7 4 7 2 3 0 5 6 1

Here the left identity element is e = 2, 3 and 5 are prime as well as irreducible elements

and 6 is a prime element that is not irreducible.

Proposition 3.4.22. If in an LA-ring RLA, ρ is an idempotent element in RLA. ρ is prime

element iff RLAρ is a prime left ideal.

Proof. Let µ, ν ∈ RLA such that µν ∈ RLAρ then µν = ϑρ for some ϑ ∈ RLA. This

implies that ρ|µν. Since ρ is a prime then ρ|µ or ρ|ν. If ρ|µ then there exist α1, α2 ∈ RLA

such that µ = ρα1 or µ = α2ρ. If µ = ρα1 then µ = (ρρ)α1 = (α1ρ)ρ ∈ RLAρ. Now,

if µ = α2ρ then µ ∈ RLAρ. Similarly, if ρ|ν then ν ∈ RLAρ. Hence, RLAρ is a left prime

ideal.

Conversely, assume that RLAρ be a prime left ideal. Let ρ|µν, this implies that there

exist α1, α2 ∈ RLA such that µν = ρα1 µν = α2ρ. Now, µν = ρα1 = (ρρ)α1 = (α1ρ)ρ ∈

RLAρ. As RLAρ is a prime left ideal so µ ∈ RLAρ or ν ∈ RLAρ. That ρ|µ orρ|ν. On the

other hand, µν = α2ρ ∈ RLAρ. As RLAρ is a prime left ideal so µ ∈ RLAρ or ν ∈ RLAρ.

That is ρ|µ or ρ|µ. Hence, ρ is a prime element.

Theorem 3.4.23. Let RLA be an idempotent LA-integral domain. An element β is irre-

ducible in RLA iff RLAβ is maximal in the set of all proper principal left ideals.

Proof. If β is irreducible then RLAβ is a proper ideal of RLA. Let RLAβ ⊆ RLAϱ,(where

RLAϱ is a proper principal left ideal). This implies that β ∈ RLAϱ and β = ηϱ for
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some η ∈ RLA. As β is irreducible, so either η is a unit. ϱ is a unit contradicts that

RLAϱ is a proper ideal of RLA. Hence η is a unit. η−1β = η−1(ηϱ) = η−1((ηη)ϱ) =

η−1((ϱη)η) = (ϱη−1)(ηη) = (ϱη−1)η = (ηη−1)ϱ = eϱ = ϱ. This shows that ϱ ∈ RLAβ

and RLAϱ ⊆ RLAβ. RLAβ = RLAϱ implies that RLAβ is maximal in the set of all proper

principal left ideals.

Conversely, suppose on the contrary that β is not irreducible then β = µν, where

neither µ nor ν is a unit. If µ ∈ RLAβ then µ = λβ for some λ ∈ RLA. β = µν =

(λβ)ν = (λ(ββ))ν = (β(λβ))ν = (ν(λβ))β. By the cancellation law, e = ν(λβ), but ν

is not a unit so µ /∈ RLAβ and RLAβ ⊂ RLAµ. Also RLAµ ⊂ RLA, as µ is not a unit. This

contradicts the maximality of proper principal ideals. Hence β is irreducible.

Corollary 3.4.24. If RLA is an idempotent principal left ideal LA-integral domain, then β

is irreducible in RLA iff RLAβ is a maximal left ideal.

Following theorem shows that in an idempotent LA-integral domain, every prime ele-

ment is irreducible.

Theorem 3.4.25. LetRLA be an idempotent LA-integral domain, then every prime element

is irreducible.

Proof. Let µ, ν ∈ RLA such that ρ = µν then ρ|µν. Since ρ is a prime element so ρ|µ

or ρ|ν. If ρ|µ then there exist α1, α2 ∈ RLA such that µ = ρα1 or µ = α2ρ. If µ = ρα1

then ρ = µν = (ρα1)ν = (να1)ρ or using cancellation law, e = να1 and hence ν is a

unit. If µ = α2ρ then ρ = µν = (α2ρ)ν = (α2(ρρ))ν = (ρ(α2ρ))ν = (ν(α2ρ))ρ or

eρ = (ν(α2ρ))ρ. By cancellation law unit.

On the other hand, if ρ|ν then there exist ϱ1, ϱ2 ∈ RLA such that ν = ρϱ1 or ν = ϱ2ρ.

If ν = ρϱ1 then ρ = µν = µ(ρϱ1) = ρ(µϱ1) = (ρρ)(µϱ1) = ((µϱ1)ρ)ρ = ((ρϱ1)µ)ρ

or ep = ((ρϱ1)µ)ρ. By cancellation law e = (ρϱ1)µ. Hence µ is a unit. If ν = ϱ2ρ

then ρ = µν = µ(ϱ2ρ) = µ(ϱ2(ρρ)) = µ(ρ(ϱ2ρ)) = ρ(µ(ϱ2ρ)) = (ρρ)(µ(ϱ2ρ)) =

((µ(ϱ2ρ))ρ)ρ = ((ρ(ϱ2ρ))µ)ρ or ep = ((ρ(ϱ2ρ))µ)ρ. By cancellation law e = (ρ(ϱ2ρ))µ.

Hence µ is a a unit. So in all the cases ρ is an irreducible element.

Theorem 3.4.26. Let RLA be an idempotent principal left ideal LA-integral domain. Then

an element in RLA is prime iff it is irreducible.

Proof. By Theorem 3.4.25, every prime is irreducible.
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Conversely, let β be irreducible then by the Corollary 3.4.24 RLAβ is a maximal left

ideal. By the Remark 3.4.10, RLAβ is prime left ideal and by the Proposition 3.4.22 β is a

prime.

3.5 Polynomial Formation of a Special LA-ring

This section is about the formation of polynomials (in one indeterminate) having coeffi-

cients from a special LA-ring as a finitely non-zero function from non-negative integers

into a special LA-ring. The collection of such polynomials is it self a special LA-ring.

In this section, we examine the division algorithm, remainder theorem and the factoriza-

tion theorem for these polynomials. This section also includes the notions of irreducible

polynomial over a special LA-ring, Euclidean special LA-domain and special LA-field

extension.

The Special LA-ring of polynomials over a special LA-ring is an analog of the poly-

nomial ring over associative rings. Shah and Rehman in [131] constructed an LA-ring of

finitely non-zero functions from a commutative semigroup into an LA-ring. In the similar

way we can construct a special LA-ring of finitely non-zero functions from the set of all

non-negative integers Z0 into a special LA-ring RSLA and call it the special LA-ring of

polynomials over a special LA-ring. We denote it by RSLA[t,Z0] or simply by RSLA[t],

where the symbol ‘t’ is a ‘variable’ or ‘indeterminant’ that is totally unrelated to the spe-

cial LA-ring RSLA and do not represent the elements of RSLA. Each element in RSLA[t] is

called a polynomial over RSLA and would be represented as :

p(t) = a0 + a1t+ a2t
2 + ...+ ant

n (3.5.1)

where each ai is an element in RSLA. If the special LA-ring has a left identity ‘e,’ then

we can identify the polynomial 0 + et+ 0t2 + 0t3 + ...+ 0tn with ‘t’. In that case t would

be treated as a special member of RSLA[t] and a polynomial whose leading coefficient

is ‘e’ is called a monic polynomial. We write etn simply as tn and (−an)tn as −antn.

If RSLA has left identity ‘e’ then, RSLA[t] also has ‘e’ as its left identity. The support

of p =
∑k

i=0 ait
i, is denoted as: Supp(p) = {i : ai 6= 0}. The order of p is defined

as ord(p) = min(supp(p)) and its degree as: deg(p) = max(supp(p)). Likewise the

polynomials over an associative ring, the degree of any nonzero polynomial is hence a
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non-negative integer; no degree is assigned to the zero polynomial. The non-zero constant

polynomials have degree 0.

Now we restate Lemma 2 [131], for a special LA-ring as:

Lemma 3.5.1. 1. IfRSLA is a special LA-ring with left identity, then for p, q ∈ RSLA[t],

deg(p · q) ≤ degp+ degq.

2. If RSLA is a special LA-integral domain, then deg(p · q) = degp+ degq.

Following example is an illustration of Lemma 3.5.1, part 1.

Example 3.5.2. Consider the special LA-ring RLA of the Example 3.1.1; Let p(t) = 3t3+

4t2 + t+ 7 and q(t) = 7t3 + 6t2 + 5t+ 2 then, degp = degq = 3 and p · q = (3t3 + 4t2 +

t+ 7)(7t3 + 6t2 + 5t+ 2) = 2t5 + t4 + t3 + t2 + 2t+ 7.

Here deg(p(t)q(t)) < degp+ degq.

It follows from Lemma 3.5.1, that if RSLA is a special LA-integral domain, then so

is its polynomial special LA-ring RSLA[t]. Though many properties of a special LA-ring

RSLA are carried over to the associated polynomial special LA-ring RSLA[t] but for no

special LA-ring RSLA does RSLA[t] forms a special LA-field. In fact, when RSLA is a

special LA-field (or for that matter a special LA-integral domain), no element of RSLA[t]

which has positive degree can hold a multiplicative inverse. For, suppose that p(t) ∈ R[t],

with degp(t) > 0; if p(t)q(t) = e for some q(t) ∈ R[t], we could obtain the contradiction

0 = deg(e) = deg(p(t)q(t)) = degp(t) + degq(t) 6= 0.

3.5.1 Factorization of the Polynomials over a Special LA-ring

To study the factorization of polynomials over a special LA-ring, we start with the division

algorithm for polynomials over a special LA-ring.

Theorem 3.5.3. (Division Algorithm) Let RLA be a Special LA-ring with left identity

and p1(t), p2(t) 6= 0 be polynomials in RSLA[t], with the leading coefficient of p2(t) a unit

element.

1. Then there exist unique polynomials q1(t), r1(t) ∈ RSLA[t] so that

P1(t) = q1(t)p2(t) + r1(t), where either r1(t) = 0 or deg(r1(t)) < deg(p2(t)).
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2. There exist unique polynomials q2(t), r2(t) ∈ RSLA[t] so that

p1(t) = p2(t)q2(t) + r2(t), where either r2(t) = 0 or deg(r2(t)) < deg(p2(t)).

Proof. 1. The proof of Part 1 is an analogue of proof of the classical division algorithm

see [26].

2. If p1(t) = 0 or degp1(t) < degp2(t), then it is obvious to take q1(t) = 0 and r1(t) =

p1(t). In case, when the degp1(t) ≥ degp2(t),we prove the result by induction on the

degp1(t) = n. If degp1(t) = degp2(t) = 0, then we have q1(t) = ((p2(t))
−1e)p1(t)

and r1(t) = 0. Now, assume that the result is true for all polynomials of degree less

than ‘n’. Let p1(t) = a0 + a1t + ... + ant
n be a polynomial with degree ‘n’ and

p2(t) = b0 + b1t+ ...+ bmt
m have degree m, with n ≥ m. The polynomial

p′1(t) = p1(t)− p2(t)(an(b
−1
m e))tn−m (3.5.2)

has degree less than ‘n’ since the coefficient of tn is an − bm(an(b
−1
m e)) = 0. There-

fore, by the induction hypothesis, there exist polynomials q′(t), r′(t) ∈ RSLA[t] such

that

p′1(t) = q′(t)p2(t) + r′(t), (3.5.3)

where r′(t) = 0 or degr′(t) < degp2(t). Substituting the representation of p′1(t) in

Equation 3.5.3 in to Equation 3.5.2 and solving for p1(t), we obtain

p1(t) =p2(t)(q
′ + an(b

−1
m e)tn−m) + r′(t)

=p2(t)q2(t) + r2(t),

where q2(t) = q′+an(b
−1
m e)tn−m and r2(t) = r′(t). This is the desired representation

of p1(t). Now we show the uniqueness of q2(t) and r2(t).

Suppose there are polynomials q′2(t) and r′2(t) ∈ RSLA[t] so that

p1(t) = p2(t)q2(t) + r2(t) = p2(t)q
′
2(t) + r′2(t),

where r2(t) = 0 or degr2(t) < degp2(t), r
′
2(t) = 0 or degr′2 < degp2(t). Then,

r2(t)− r′2(t) = p2(t)(q
′
2(t)− q2(t)).

Suppose r2(t)− r′2(t) 6= 0. Since the leading coefficient of p2(t) is a unit,

deg(p2(t)(q
′
2(t)− q2(t))) = deg(q′2(t)− q2(t)) + degp2(t) ≥ degp2(t).
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This implies that

deg(r2(t)− r′2(t)) ≥ degp2(t),

which is not possible since degr2(t), degr′2(t) < degp2(t). Therefore,

r2(t)− r′2(t) = 0 or r2(t) = r′2(t).

Thus,

0 = p2(t)(q
′
2(t)− q2(t)). (3.5.4)

As bm is a unit, deg(p2(t)(q′2(t) − q2(t))) ≥ 0 unless q′2(t) − q2(t) = 0. Thus from

Equation 3.5.4, q′2(t)− q2(t) = 0 or q′2(t) = q2(t).

Definition 3.5.4. For a polynomial p(t) ∈ RSLA[t], if p(t) = q(t)s(t) for some q(t), s(t) ∈

RSLA[t] then we say q(t) divides p(t) from left side. Similarly if p(t) = s(t)q(t) for some

q(t), s(t) ∈ RSLA[t] then we say q(t) divides p(t) from right side.

The polynomials q1(t) and r1(t) that appear in the division algorithm would be called

respectively, the quotient and the remainder on dividing p1(t) by p2(t) from right, while

q2(t) and r2(t) would be called correspondingly the quotient and the remainder on dividing

p1(t) by p2(t) from left. It is important to notice that if p2(t) is a monic polynomial or if

RSLA is a special LA-field then, we don’t need to suppose that the leading coefficient of

p2(t) is a unit.

Dobbs [39], presented the remainder theorem and factorization theorem for polynomi-

als over noncommutative but associative coefficient rings. Following his method of proof,

we present the following theorem.

Theorem 3.5.5. (Remainder Theorem) Let RSLA be a special LA-ring with left identity

‘e’. Let α ∈ RSLA, then p(t) =
∑n

i=0 ait
i ∈ RSLA[t] be a polynomial of degree n ≥ 1.

Then:

1. There exists unique polynomial q1(t) ∈ RSLA[t] of degree n − 1 and r1 ∈ RSLA

such that p(t) = q1(t)(t − α) + r1 with r1 = a0 + (a1e)α + (α(a2e))α + ... +

(α(α(...α(ane)))α.

2. There exists unique polynomial q2(t) ∈ RSLA[t] of degree n−1 and r2 ∈ RSLA such

that p(t) = (t−α)q2(t) + r2 with r2 = a0 +αa1 +α(αa2) + ...+α(α(α...(αan))).
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Proof. 1. By applying the division algorithm and dividing p(t) by t−α from right, we

have unique q1(t) and r1(t) in RSLA[t] such that p(t) = q1(t)(t− α) + r1(t), where

r1(t) = 0 or degr1 < 1. Hence r1(t) is a constant polynomial say r1. Let us suppose

that q1(t) =
∑n−1

i=0 bit
i ∈ RSLA[t]. Now p(t) = q1(t)(t− α) + r1(t) implies that:

ant
n + an−1t

n−1 + ...+ a0 = (bn−1t
n−1 + ...+ b0)(t− α) + r1.

Using the distributive law, expanding and then equating the corresponding coeffi-

cients of tn, tn−1, tn−2, ..., t2, t and 1, we get the following system of equations:

an =bn−1e

an−1 =− bn−1α + bn−2e

an−2 =− bn−2α + bn−3e

...

a2 =− b2α + b1e

a1 =− b1α + b0e

a0 =− b0α + r1

On simplification we get, an = bn−1e, ai = −biα+ bi−1e for i = n− 1, n− 2, ..., 1

and a0 = −b0α+r. From these equations, we get bn−1 = ane, bi−1 = (ai+biα)e for

i = 1, ..., n−1 and from the last equation, r1 = a0+ b0α. By successive substitution

of these values we get,

r1 = a0+((a1+b1α)e)α = a0+(a1e)α+(αb1)α = a0+(a1e)α+(α(a2+b2α)e)α =

a0 + (a1e)α + (α(a2e))α + (α(αb2))α = ... = a0 + (a1e)α + (α(a2e))α + ... +

(α(α(...α(ane)))α.

2. By analogous reasoning, starting with

ant
n + an−1t

n−1 + ...+ a0 = (t− α)(cn−1t
n−1 + ...+ c0) + r2, (3.5.5)

using the distributive law and equating the corresponding coefficients of the various

powers of t. Solving for r2 and ci−1, and then on successive substitution we get the

result r2 = a0 + αa1 + α(αa2) + ...+ α(α(...(αan))).
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Corollary 3.5.6. (Factorization Theorem) Let RSLA be a special LA-ring with left iden-

tity e, p(t) =
∑n

i=0 ait
i ∈ RSLA[t] and α ∈ RSLA. Then:

1. The following two conditions are equivalent:

(a) There exists q1(t) ∈ RSLA[t] such that p(t) = q1(t)(t− α);

(b) a0 + (a1e)α + (α(a2e))α + ...+ (α(α(...α(ane)))α = 0.

2. The following two conditions are equivalent:

(a) There exists q2(t) ∈ RSLA[t] such that p(t) = (t− α)q2(t);

(b) a0 + αa1 + α(αa2) + ...+ α(α(α...(αan))) = 0.

Proof. The proof is straightforward.

Following example shows that the polynomials q1(t) and q2(t) of Theorem 3.5.5 need

not be equal and also r1 and r2 of the same theorem may not be same.

Example 3.5.7. Consider the special LA-ring RSLA = {0, 1, 2, 3, 4, 5, 6, 7} of Example

3.1.1. Let p(t) = 7t3 + 4t2 + 5t + 2 and α = 3 ∈ RSLA. Then p(t) = q1(t)(t − 3) + r1

where q1(t) = 7t2 + 2t and r1 = 2. On the other hand p(t) = (t − 3)q2(t) + r2 where

q2(t) = 7t2 + 4t + 3 and r2 = 4. Clearly q1(t) is different from q2(t) and r1 is different

from r2.

The succeeding example is an instant application of the Factorization theorem.

Example 3.5.8. Consider the special LA-ring RSLA = {0, 1, 2, 3, 4, 5, 6, 7} of Example

3.1.1 with left identity e = 1. Let p(t) = 3t2 + 2t+ 1. As for α = 1 ∈ RSLA, 1 + (2e)α+

(α(3e))α = 0 so, by the factorization theorem t+1 divides p(t) from left side. On division

we have p(t) = (t+1)(3t+1). On the other hand, for α = 1 ∈ RSLA, 1+α2+α(α3) = 0

so, by the factorization theorem t + 1 divides p(t) from right side. On division we find

p(t) = (5t+ 1)(t+ 1).

The discussion now takes an interesting turn with the introduction of an irreducible

polynomial over a special LA-ring.

Definition 3.5.9. Let RSLA be a special LA-ring with left identity. We call a non-constant

polynomial p(t) ∈ RSLA[t] irreducible overRSLA, or an irreducible polynomial inRSLA[t],

if p(t) is not a product of two positive degree polynomials in RSLA[t]. Otherwise, p(t) is

termed reducible in RSLA[t].
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Definition 3.5.9 holds only for polynomials with positive degree; constant polynomials

are neither reducible nor irreducible. It is an easy observation that, any one degree poly-

nomial at+ b, a 6= 0, is irreducible in RSLA[t], where RSLA is a special LA-ring with left

identity. It may happen that a given polynomial is irreducible when viewed as an element

of one special LA-ring, yet reducible in another. So to mention whether a polynomial is re-

ducible or irreducible without specifying the coefficient special LA-ring involved doesn’t

make sense.

Example 3.5.10. The polynomial p(t) = 2t2 +3t+3 = (2t+3)(3t+1) so it is reducible

over the special LA-field RSLA4 of Example 3.2.1, but it is irreducible over the special

LA-ring RSLA of Example 3.1.1.

Remark 3.5.11. If n is odd then tn − 1 can be uniquely factorized as a product of distinct

irreducible polynomials.

3.5.2 Euclidean LA-domain and LA-field Extension

We now define the notion of a Euclidean norm on an LA-integral domain RLA. This is

essentially no more than a measure of size in RLA.

Definition 3.5.12. A Euclidean norm on an LA-integral domain RLA is a function υ map-

ping the non zero elements of RLA into the non negative integers satisfying the following

conditions:

1. For all a, b ∈ RLA with b 6= 0, there exist q1, q2, r1 and r2 in RLA such that a =

bq1+r1 and a = q2b+r2,where either r1 = 0, r2 = 0, υ(r1) < υ(b) or υ(r2) < υ(b).

2. For all a, b ∈ RLA, where neither a nor b is 0, υ(a) ≤ υ(ab) and υ(b) ≤ υ(ab).

An LA-integral domainRLA with a Euclidean norm on it is called a Euclidean LA-domain.

If FSLA is a special LA-field, then FSLA[t] is a Euclidean special LA-domain, for the

function υ defined by υ(f(t)) = 2(degree f(t)) for f(t) ∈ FSLA[t], and f(t) 6= 0 is a Eu-

clidean norm. Condition (1) holds by Theorem 3.5.3, and Condition (2) holds since the

degree of the product of two polynomials is the sum of their degrees.

Theorem 3.5.13. In a Euclidean Special LA-domain every left ideal is a principal left

ideal.
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Proof. Let RSLA be a Euclidean special LA-domain with Euclidean norm υ, and let N be

a left ideal in RSLA. If N = {0} then N =< 0 > and N is a principal left ideal in RSLA.

Now suppose that N 6= {0}. Then there exists b 6= 0 in N. Let us choose b such that υ(b)

is minimal among all v(t) for t ∈ N, we claim that N =< b > . Let a ∈ N. Then by

condition (1) of the Euclidean LA-domain, there exist q1, q2, r1 and r2 in RSLA such that

a = bq1+r1 and a = q2b+r2, where either r1 = 0, r2 = 0, υ(r1) < υ(b) or υ(r2) < υ(b).

Now from a = q2b + r2, r2 = a − q2b and a, b ∈ N, so that r2 ∈ N since N is an ideal.

Thus υ(r2) < υ(b) is impossible by our choice of b. Hence r2 = 0, so a = q2b. Since a

was arbitrarily chosen element from N, we see that N =< b > .

Remark 3.5.14. For a special LA-field FSLA, FSLA[t] is a principal left ideal LA-domain

by Theorem 3.5.13.

Definition 3.5.15. An LA-ring RLA is called an LA∗-Ring if it satisfies the following

identity. For all a, b, c ∈ RLA, (ab)c = b(ac).

Proposition 3.5.16. Let a, b be elements in an LA∗-ring RLA with left identity ‘e’. Then

a|b iff RLAb ⊆ RLAa.

Proof. Let a|Rb then there exist c such that b = ca. Let s ∈ Rb then s = kb for some

k ∈ RLA. Now s = k(ca) = (ek)(ca) = (ak)(ce) = ((ce)k)a ∈ RLAa⇒ RLAb ⊆ RLAa.

Consider that a|Lb then there exists c ∈ RLA such that b = ac, let s ∈ RLAb then

s = ub for some u ∈ RLA. Now t = u(ac) = (au)c = (cu)a ∈ RLAa⇒ RLAb ⊆ RLAa.

Conversely, Let RLAb ⊆ RLAa then b = eb ∈ RLAb ⊆ RLAa ⇒ b ∈ RLAa. That is

b = ta for some t ∈ RLA ⇒ a|Rb and hence a|b.

Theorem 3.5.17. Let RLA be an LA∗-integral domain. An element q is irreducible in RLA

iff RLAq is maximal in the set of all proper principal left ideals.

Proof. If q is irreducible then RLAq is a proper ideal of RLA. Let RLAq ⊆ RLAd,(where

RLAd is a proper principal left ideal). This implies that q ∈ RLAd and q = xd for some

t ∈ RLA. As q is irreducible, either d or t is a unit. d is a unit contradicts that RLAd is a

proper ideal of RLA. Hence t is a unit. t−1q = t−1(xd) = (xx−1)d = ed = d. This shows

that d ∈ RLAq and RLAd ⊆ RLAq. RLAq = RLAd implies that RLAq is maximal in the set

of all proper principal left ideals.
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Conversely, suppose on the contrary that q is not irreducible then q = ab, where neither

a nor b is a unit. If b ∈ RLAq then b = rq for some r ∈ RLA. q = ab = a(rq) = (ar)q. By

the cancellation law e = ar. But a is not a unit so b /∈ RLAq and by the Proposition 3.5.16,

RLAq ⊂ RLAb. Also RLAb ⊂ RLA, as b is not a unit. This contradicts the maximality of

RLAq in the set of all proper principal ideals. Hence q is irreducible.

Corollary 3.5.18. If RLA is a principal left ideal LA∗-integral domain then q is irreducible

in RLA iff RLAq is a maximal left ideal.

Remark 3.5.19. Its not difficult to observe that if a special LA-ring RSLA is an LA∗-Ring

then, the corresponding polynomial special LA-ring RSLA[t] is also an LA∗-Ring.

Theorem 3.5.20. Let FSLA be a specialLA∗-field and let f(t) be an irreducible polynomial

in FSLA[t]. Then there exists an extension special LA-field E of FSLA such that E =

FSLA[t]/ < f(t) > .

Proof. By Theorem 3.5.17 < f(t) > is a maximal left ideal in FSLA[t]. So FSLA[t]/ <

f(t) > is a special LA∗-field. We claim that FSLA can be identified with a sub special LA∗-

field of FSLA[t]/ < f(t) > in a natural way by use of the map π : FSLA → FSLA[t]/ <

f(t) > given by

π(a) = a+ < f(t) > (3.5.6)

for a ∈ FSLA. This map is one to one, for if π(a) = π(b), that is, if a+ < f(t) >= b+ <

f(t) > for some a, b ∈ FSLA, then (a − b) ∈< f(t) >, so a − b must be a multiple of

the polynomial f(t), which being irreducible has degree≥ 1. Now if a, b ∈ FSLA then

a− b ∈ FSLA. So we must have a− b = 0, so a = b. Its not hard to show that ψ is an LA-

ring homomorphism that maps FSLA one-to-one onto a subfield of FSLA[t]/ < f(t) > .

Example 3.5.21. Let FSLA be a special LA∗-field. Then f(t) = t is an irreducible poly-

nomial over FSLA so by the Theorem 3.5.20, FSLA[t]/ < t > is a special LA∗-field.
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Chapter 4

Developments in Soft LA-rings

4.1 Generalized Rough Soft LA-rings

Hybrid models combining Fuzzy sets, rough sets and soft sets have appeared in different

presentations and settings. For instance, Dubois and Prade [41] worked on fuzzy sets and

fuzzy rough set. Feng [46] combined fuzzy sets, rough sets and soft sets all together and

introduced some new concepts, such as rough soft sets, soft rough sets, soft rough fuzzy

sets. Maji et al. [91] presented fuzzy soft set theory. Many researchers found the applica-

tions of these hybrid models to the decision making (see: [44, 116, 143]), and few explored

their applications to some algebraic structures such as [104, 154]. In particular, Ghosh and

Samanta defined rough soft groups [51], Wang and Zhan studied rough soft semigroups

based on fuzzy ideals [142], Zhan and Davvaz introduced rough soft rings [153] and Zhan

et al. presented rough soft hemirings [155]. All these studies are based on the Pawlak’s

approximation spaces which depend upon some equivalence relation. Sometimes, due to

incomplete information such an equivalence relation is hard to establish. From this point

of view, we introduce upper and lower approximations of soft sets under a set valued map-

ping ‘T ’ and explored an application of generalized rough soft sets (T-rough soft sets) in

decision making. Since every Pawlak’s rough set can be considered as a generalized rough

set [147], every rough soft set may be considered as a T-rough soft set. So, the existing

rough soft algebraic structures may be considered as the respective T-rough soft structures.

In this section, we propose the idea of a generalized rough soft set or a T-rough soft

set. Also T-rough LA-rings are defined and their properties are discussed. Using the new

definition of soft LA-ring from Chapter 1, we define a T-rough soft LA-ring. T-rough soft

69



idealistic LA-rings are established and T-rough soft M-systems and P-systems in T-rough

soft LA-rings are also investigated. Algorithms for the decision making based on T-rough

soft sets and T-rough soft LA-ring are also constructed in this section.

4.1.1 Generalized Rough Soft Sets

We use Definition 1.2.7 to define a T-rough soft set and then explore few of its properties.

Definition 4.1.1. Consider two non-empty sets V and W and T : V → P ⋆(W ) be a

set valued mapping, (where P ⋆(W ) = P (W ) \ ∅). Let gA be a soft set over W. Then

T∗(gA) = gA∗ and T ∗(gA) = gA
∗ denote respectively the upper and lower approximations

of gA relative to T. Both are soft sets over V with the approximation functions given by;

gA∗(a) = T∗(gA(a)) = {b ∈ V |T (b) ⊆ gA(a)} (4.1.1)

and

gA
∗(a) = T ∗(gA(a)) = {b ∈ V |T (b) ∩ gA(a) 6= ∅}, (4.1.2)

where a ∈ A.We call the operators T∗ and T ∗, the lower and upper T-rough approximation

operators on soft sets.

Throughout this section, a T-rough soft set would be denoted by TRS set, P ⋆(W ) will

denote the collection of all non-empty subsets of W and the symbol T would represent a

set valued mapping.

The following theorem illustrates few properties of lower and upper T-rough approxi-

mation of soft sets.

Theorem 4.1.2. Consider two non-empty sets V and W with a set valued map T : V →

P ⋆(W ). Let gA and gB be soft sets over W. Then,

1. gA⊆̃gB ⇒ gA∗⊆̃gB∗ and gA∗⊆̃gB∗.

2. gA∩̃B∗ = gA∗∩̃gB∗.

3. gA∩̃B∗⊆̃gA∗∩̃gB∗.

4. gA∪̃B∗⊇̃gA∗∪̃gB∗.
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5. gA∪̃B∗ = gA
∗∪̃gB∗.

6. gA∧̃B∗ = gA∗∧̃gB∗.

7. gA∧̃B∗⊆̃gA∗∧̃gB∗.

8. gA∨̃B∗⊇̃gA∗∨̃gB∗.

9. gA∨̃B∗ = gA
∗∨̃gB∗.

Proof. The proof is straightforward so omitted.

Applications of TRS Sets in Decision Making

Zhan and Zhu [156] suggested a decision making algorithm for rough soft sets. Consider-

ing their technique as an inspiration, we present a TRS sets based decision making method.

This method would set a basis of generalized rough soft sets and decision making methods

in different fields such as: intelligent systems and information sciences and so on.

Algorithm

The novel method selects the finest parameter e of a given soft set gA over a universe U.

Equivalently, e is the most expected candidate on gA with respect to a set valued mapping

from one universe U ′ to the collection of non-empty subsets of another universe U.

LetU andU ′ be two universes andE be a collection of associated parameters. Consider

gA to be an original description soft set over U, where A = {e1, e2, ..., em} ⊆ E. For a

set valued mapping T : U ′ → P ⋆(U), consider T ∗ and T∗ to be the upper and lower T-

rough approximation operators. The algorithm for decision making for the TRS sets is as

follows:

Step 1 Input: the original description universe U and another universe U ′. T : U ′ →

P ⋆(U) a set valued mapping with T ∗ and T∗, the upper and lower T-rough approximation

operators. A soft set gA over U.

Step 2 Compute T∗(gA) = gA∗ and T ∗(gA) = gA
∗ on gA, the lower and upper TRS

approximation operators respectively.

Step 3 Form the weighted tables of the soft sets gA, gA∗ and gA∗ in accordance with the
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weights determined by the selection committee.

Step 4 Compute the different values of ‖gA(ei)‖ = |gA∗(ei)|−|gA∗(ei)|
|gA(ei)| × wi.

Step 5 Find the minimum value ‖gA(ek)‖ of ‖gA(ei)‖.

Step 6 The decision is ek.

The following example is an illustration of the method stated above.

Example 4.1.3. A restaurant in Pakistan has to select a chef closest to the desired cooking

skills. The set of desired skills is U = {u1, u2, u3, u4, u5, u6}. Where, ui stand for bak-

ing skills, knowledge of measurement units, presentation skills, work experience, knowl-

edge of continental recipes and knowledge of local recipes respectively. They are asked

to make the set U ′ = {t1, t2, t3, t4, t5, t6, t7} of recipes from the menu of the restau-

rant. Where, tj stand for the Pineapple cake, Sushi, Panna cotta, Chinese noodles, Pizza,

Chapli kebabs and Mexican enchiladas respectively. The mapping T : U ′ → P ⋆(U)

maps each recipe onto the skill required for it. Hence, T (t1) = {u1, u2, u3, u4}, T (t2) =

{u3, u4, u5}, T (t3) = {u3, u4, u5}, T (t4) = {u4, u5}, T (t5) = {u1, u4, u5}, T (t6) =

{u4, u6} and T (t7) = {u1, u2, u3, u4, u5}. Now, there are four candidates to be judged, de-

noted by A = {e1, e2, e3, e4}. Each candidate has the skills gA(e1) = {u1, u6}, gA(e2) =

{u1, u2, u4, u5, u6}, gA(e3) = {u3, u6} and gA(e4) = {u2, u4, u5}, respectively.

Now suppose that the weights considered by the restaurant for the parameters are as:

for the parameter e1, w1 = 0.7, for the parameter e2, w2 = 0.5, for the parameter e3,

w3 = 0.6 and for the parameter e4, w4 = 0.3. Then Table 4.1 represents the weighted soft

set gA. Following the above Algorithm and the Definition 4.1.1, we can find two soft sets

gA∗ and gA∗ over U ′ represented by the Table 4.2 and Table 4.3 respectively.

Calculating ‖gA(e1)‖ = 1.4, ‖gA(e2)‖ = 0.4, ‖gA(e3)‖ = 1.5 and ‖gA(e4)‖ = 0.6, we

get the minimum value of ‖gA(ei)‖ is ‖gA(e2)‖ = 0.4. Thus, e2 is the expected candidate

for selection.

4.1.2 Generalized Rough LA-rings

Here we introduce generalized LA-rings as a new approach to LA-ring theory. We define

set valued homomorphism (SV homomorphism) and strong set valued homomorphism

(SSV homomorphism) for the LA-rings as analogs of the same for the associative rings

defined in [147]. We discuss several properties held by the upper and lower approxima-

tions.
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U e1 e2 e3 e4

w1 w2 w3 w4

u1 1 1 0 0

u2 0 1 0 1

u3 0 0 1 0

u4 0 1 0 1

u5 0 1 0 1

u6 1 1 1 0

Table 4.1: table for weighted soft set gA

U ′ e1 e2 e3 e4

w1 w2 w3 w4

t1 0 0 0 0

t2 0 0 0 0

t3 0 0 0 0

t4 0 1 0 1

t5 0 1 0 0

t6 0 1 0 0

t7 0 0 0 0

Table 4.2: table for the soft set gA∗

Pawlak’s Roughness in LA-rings

Definition 4.1.4. [58] Let (RLA,+, ·) be an LA-ring and τ be a relation on RLA. If for all

µ, ν, α ∈ RLA, (µ, ν) ∈ τ implies that (α + µ, α + ν) and (α · µ, α · ν) ∈ τ then τ is

said to be left compatible. It is right compatible if (µ, ν) ∈ τ implies (µ + α, ν + α) and

(µ ·α, ν ·α) ∈ τ. τ is called compatible if for all µ, ν, α, β ∈ RLA, if (µ, ν) and (α, β) ∈ τ,

then (µ+α, ν+β) and (µ ·α, ν ·β) also belong to τ. A left (right) compatible equivalence

relation is said to be a left (right) congruence relation, while a compatible equivalence

relation is called a congruence relation.

Definition 4.1.5. Let τ be a congruence relation on an LA-ring RLA. Then the approx-

imation of RLA is defined by τ(D) = (τ(D), τ(D)) for each D ∈ P(RLA), (where
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U ′ e1 e2 e3 e4

w1 w2 w3 w4

t1 1 1 1 1

t2 0 1 1 1

t3 0 1 1 1

t4 0 1 0 1

t5 1 1 0 1

t6 1 1 1 1

t7 1 1 1 1

Table 4.3: table for the soft set gA∗

P ⋆(RLA) = P (RLA) \ ∅) and

τ(D) = {x ∈ U : [x]τ ⊆ D}

and

τ(D) = {x ∈ U : [x]τ ∩D 6= ∅}.

Generalized Roughness in LA-rings

Throughout this section, RLA and SLA would denote LA-rings and P ⋆(SLA), the set of all

non-empty subsets of SLA. The succeeding definition is an analogue of the definition 3.1

[147]

Definition 4.1.6. Let RLA and SLA be two LA-rings. A mapping TLA : R → P ⋆(SLA) is

called an SV-homomorphism if for all µ, ν ∈ RLA,

1. T (µ) + T (ν) ⊆ T (µ+ ν),

2. −T (µ) ⊆ T (−µ),

3. T (µ)T (ν) ⊆ T (µν).

T is called an SSV homomorphism if

1. T (µ) + T (ν) = T (µ+ ν),

2. −T (µ) = T (−µ),
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3. T (µ)T (ν) = T (µν),

for all µ, ν ∈ RLA.

Example 4.1.7. 1. Let I be an ideal of an LA-ringRLA. Then the mapping T : RLA →

P ⋆(RLA) defined by T (a) = I + a for all a ∈ RLA is an SV-homomorphism.

2. Let RLA and SLA be two LA-rings. Then the function T : RLA → P ⋆(SLA) defined

by T (a) = SLA, for all a ∈ RLA is an SV-homomorphism. If SLA has a left identity

e, then T is an SSV-homomorphism.

3. Let RLA, SLA be two LA-rings. Then T : RLA → P ⋆(SLA) defined by T (a) = {0}

for all a ∈ RLA is an SSV-homomorphism.

4. Let RLA be an LA-ring. Then the map T : RLA → P ⋆(RLA × RLA) such that

T (a) = {(a, 0)} for all a ∈ RLA is an SSV-homomorphism.

5. Let f : RLA → SLA be an LA-ring homomorphism. Then the function T : RLA →

P ⋆(SLA) defined by T (a) = {f(r)} for all a ∈ RLA is an SSV-homomorphism.

Let Z and N be two non-empty subsets of an LA-ring RLA. Then their product is

defined by

ZN = {
∑
finite

xiyi = (...((x1y1+x2y2)+x3y3)+...+xn−1yn−1)+xnyn; where xi ∈ Z and yi ∈ N}.

Proposition 4.1.8. Let T : RLA → P ⋆(SLA) be an SV homomorphism. If ∅ 6= Z,N ⊆

SLA, then:

1. T (Z) + T (N) ⊆ T (Z +N),

2. −T (Z) ⊆ T (−Z),

3. T (Z)T (N) ⊆ T (ZN).

Proof. 1. Let ‘α’ be an element in T (Z) + T (N). Then α = µ + ν, where µ belong

to T (Z) and ν belong to T (N). Then T (µ) ∩ Z 6= ∅ and T (ν) ∩ N 6= ∅. Thus we

have β, γ ∈ SLA such that β ∈ T (µ) ∩ Z and γ ∈ T (ν) ∩ N, which indicates that

β ∈ T (µ), β ∈ Z, γ ∈ T (ν) and γ ∈ N. Therefore, β+γ ∈ T (µ)+T (ν) ⊆ T (µ+ν)
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and β + γ ∈ Z +N. Thus, β + γ ∈ T (µ+ ν)∩Z +N. So, T (µ+ ν)∩Z +N 6= ∅.

Consequently, µ + ν ∈ T (Z + N). Hence, α ∈ T (Z + N) and T (Z) + T (N) ⊆

T (Z +N).

2. Let α be an element in −T (Z). Then α = −β,where β ∈ T (Z). Then T (β)∩Z 6= ∅.

Now T (α) = T (−β) ⊇ −T (β). So, −T (β)∩−Z 6= ∅ implies that T (α)∩−Z 6= ∅.

Hence, µ belongs to T (−Z) and therefore, −T (Z) ⊆ T (−Z).

3. Let α ∈ T (Z)T (N). Then α =
∑

finite µiνi, where all µi ∈ T (Z) and all νi ∈

T (N). Then for all i, T (µi)∩Z 6= ∅ and T (νi)∩N 6= ∅. Therefore, for each i, there

exist βi, γi ∈ SLA such that βi ∈ T (µi) ∩ Z and γi ∈ T (νi) ∩ N, which implies

that each βi ∈ T (µi), βi ∈ Z, γi ∈ T (νi) and γi ∈ N. Now from the definition

of T and ZN, we have
∑

finite βiγi ∈ T (
∑

finite µiνi) and
∑

finite βiγi ∈ ZN.

Thus,
∑

finite βiγi ∈ T (α) ∩ ZN, so T (α) ∩ ZN 6= ∅. It follows that α ∈ T (ZN);

therefore, T (Z)T (N) ⊆ T (ZN).

Proposition 4.1.9. For an SSV homomorphism T : RLA → P ⋆(SLA) and ∅ 6= Z,N ⊆

SLA,

1. T (Z) + T (N) ⊆ T (Z +N),

2. −T (Z) = T (−Z),

3. T (Z)T (N) ⊆ T (ZN).

Proof. 1. For an element α in T (Z)+T (N), there exist µ in T (Z) and ν in T (N), such

that α = µ+ ν. Therefore T (µ) ⊆ T (Z) and T (ν) ⊆ T (N). Thus, T (µ) + T (ν) ⊆

Z +N. Therefore T (µ+ ν) ⊆ Z +N. This implies that α ∈ T (Z +N) and hence,

T (Z) + T (N) ⊆ T (Z +N).

2. Let α ∈ −T (Z). Then α = −β, where β ∈ T (Z). Then T (β) ⊆ Z. Now

T (α) = T (−β) = −T (β) ⊆ −Z. So, T (α) ⊆ −Z. Hence, α ∈ T (−Z); therefore,

−T (Z) ⊆ T (−Z). Whereas, for α ∈ T (−Z), T (α) ⊆ −Z. That is, −T (α) ⊆ Z. It

follows that T (−α) ⊆ Z. This implies that −α ∈ T (Z) or α ∈ −T (Z); therefore,

T (−Z) ⊆ −T (Z). Hence, −T (Z) = T (−Z).
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3. Let α ∈ T (Z)T (N). Then α =
∑

finite µiνi, where all µi ∈ T (Z) and all νi ∈

T (N). Then for all i, T (µi) ⊆ Z and T (νi) ⊆ N. By the definition of T and ZN,we

have
∑

finite T (µi)T (νi) ⊆ ZN. Which implies thatT (α) ⊆ ZN. So, α ∈ T (ZN);

therefore, T (Z)T (N) ⊆ T (ZN).

The following example shows that equality in Proposition 4.1.8 and the Proposition

4.1.9 may not hold.

Example 4.1.10. Consider the LA-ring RLA = {0, 1, 2, 3, 4, 5, 6, 7} obtained using [95]

with the following additive and multiplicative tables on the next page.

+ 0 1 2 3 4 5 6 7

0 2 3 4 5 6 7 0 1

1 3 2 5 4 7 6 1 0

2 0 1 2 3 4 5 6 7

3 1 0 3 2 5 4 7 6

4 6 7 0 1 2 3 4 5

5 7 6 1 0 3 2 5 4

6 4 5 6 7 0 1 2 3

7 5 4 7 6 1 0 3 2

· 0 1 2 3 4 5 6 7

0 5 4 2 3 1 0 6 7

1 0 1 2 3 4 5 6 7

2 2 2 2 2 2 2 2 2

3 7 7 2 2 7 7 2 2

4 1 0 2 3 5 4 6 7

5 4 5 2 3 0 1 6 7

6 6 6 2 2 6 6 2 2

7 3 3 2 2 3 3 2 2

Here the left additive identity is 2. Consider the SSV-homomorphism of Example 4.1.7

part 4.

1. Let Z = N = {(2, 2)}∪{(1, x)|x ∈ RLA}. Then T (Z)+T (N) = {2}, T (Z+N) =

{2, 5} and T (Z) + T (N) = {2}, T (Z +N) = {2, 5}.

2. LetZ = {(3, 2)} andN = {(7, 2), (6, 1), (4, 5)}. Then T (Z)T (N) = {2}, T (ZN) =

{2, 7} and T (Z)T (N) = {2}, T (ZN) = {2, 7}.

Proposition 4.1.11. Let RLA and SLA be LA-rings and Z be a sub LA-ring of SLA.

1. If T : RLA → P ⋆(SLA) is an SV-homomorphism, then T (Z) is a sub LA-ring of

RLA.
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2. If T : RLA → P ⋆(SLA) is an SSV-homomorphism, then T (Z) is a sub LA-ring of

RLA.

Proof. 1. Let α, β ∈ T (Z). Then T (α) ∩ Z 6= ∅ and T (β) ∩ Z 6= ∅. Thus, there exist

elements µ, ν in SLA so that µ ∈ T (α)∩Z and ν ∈ T (β)∩Z. Thus µ ∈ T (α), µ ∈ Z

and ν ∈ T (β), ν ∈ Z. Therefore, µ−ν ∈ T (α)−T (β) ⊆ T (α−β), µ−ν ∈ Z and

µν ∈ T (α)T (β) ⊆ T (αβ), µν ∈ Z. So, T (α − β) ∩ Z 6= ∅ and T (αβ) ∩ Z 6= ∅.

Therefore, α− β ∈ T (Z) and αβ ∈ T (Z).

2. For α, β in T (Z), T (α) ⊆ Z and T (β) ⊆ Z. So that, T (α−β) = T (α)−T (β) ⊆ Z

and T (αβ) = T (α)T (β) ⊆ Z. Therefore, α− β ∈ T (Z) and αβ ∈ T (Z).

Proposition 4.1.12. Let RLA and SLA be LA-rings and Z be an ideal of SLA.

1. If T : RLA → P ⋆(SLA) is an SV-homomorphism, then T (Z) is an ideal of RLA.

2. If T : RLA → P ⋆(SLA) is an SSV-homomorphism, then T (Z) is an ideal of RLA.

Proof. 1. By the Proposition 4.1.11, T (Z) is a sub LA-ring of RLA. Let ρ ∈ RLA and

α ∈ T (Z). Then T (α) ∩ Z 6= ∅, and there is an element µ in SLA such that µ ∈

T (α)∩Z. Thus µ ∈ T (α) and µ ∈ Z. Since ρ ∈ RLA, there exists ϱ ∈ SLA such that

ϱ = T (ρ). Now, we have ϱµ ∈ T (ρ)T (α) ⊆ T (ρα) and µϱ ∈ T (α)T (ρ) ⊆ T (αρ).

That is ϱµ ∈ T (ρα) and µϱ ∈ T (αρ). On the other hand ϱµ ∈ T (ρ)µ ⊆ SLAZ ⊆ Z

and µϱ ∈ µT (ρ) ⊆ ZSLA ⊆ Z. Thus, ϱµ, µϱ ∈ Z. Therefore, T (ρα) ∩ Z 6= ∅ and

T (αρ) ∩ Z 6= ∅. This implies that ρα, αρ ∈ T (Z).

2. By the Proposition 4.1.11, T (Z) is a sub LA-ring of RLA. Let ρ ∈ RLA and α ∈

T (Z). Then T (α) ⊆ Z. Since ρ ∈ RLA, T (ρ) ⊆ SLA. It follows that T (ρα) =

T (ρ)T (α) ⊆ SLAZ ⊆ Z and T (αρ) = T (α)T (ρ) ⊆ ZSLA ⊆ Z. This implies that

ρα, αρ ∈ T (Z).

4.1.3 Generalized Rough Soft LA-rings

In this section, we make a new approach to the LA-ring theory via soft sets and rough

sets. We introduce and explore T-rough soft LA-rings (TRS LA-rings) , idealistic TRS
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LA-rings, T-rough soft M-systems (TRS M-systems) and T-rough soft P-systems (TRS P-

systems) over TRS LA-rings with the help of relevant examples obtained using Mace 4

[95].

Definition 4.1.13. Consider two LA-rings RLA and SLA and a set valued map T : RLA →

P ⋆(SLA). A non-empty soft set gA over SLA is said to be a lower (upper) TRS LA-ring

over SLA when T∗(gA) = gA∗ (T
∗(gA) = gA

∗) is a soft LA-ring over RLA. That is, gA∗(α)

(gA
∗(α)) is an Sub LA-ring of RLA for each α ∈ E. Moreover, if gA∗ and gA∗ are soft

LA-rings over RLA then gA would be called a TRS LA-ring.

Example 4.1.14. Let RLA = SLA = {0, 1, 2, 3, 4, 5, 6, 7} be the LA-ring from Example

3.1.2 and gA be a soft set over SLA, where E = A = RLA = SLA = {0, 1, 2, 3, 4, 5, 6, 7}

and gA(α) = {β ∈ SLA|α.β ∈ {0, 7}} for all α ∈ A Then, gA(0) = gA(3) = gA(5) =

gA(6) = {0, 1, 2, 3, 4, 5, 6, 7} and gA(1) = gA(2) = gA(4) = gA(7) = {0, 3, 5, 6}. De-

fine a function T : RLA → P ⋆(SLA) such that T (0) = T (3) = T (4) = T (7) =

{0, 3} and T (1) = T (2) = T (5) = T (6) = {0, 7}. Then, for all α ∈ A, gA
∗(α) =

{0, 1, 2, 3, 4, 5, 6, 7}, while gA∗(0) = gA∗(3) = gA∗(5) = gA∗(6) = {0, 1, 2, 3, 4, 5, 6, 7}

and gA∗(1) = gA∗(2) = gA∗(4) = gA∗(7) = {0, 3, 4, 7}. Which are sub LA-rings of RLA

and hence gA∗ and gA∗ are soft LA-rings over RLA implying that gA is a TRS LA-ring over

SLA.

Lemma 4.1.15. Let gA and gB be two soft LA-rings over an LA-ring RLA. Then, gA∩̃B =

gA∩̃gB is a soft LA-ring over RLA if it is non-empty.

Proof. The proof follows directly from Theorem 1 [130].

Theorem 4.1.16. Let RLA and SLA be two LA-rings and consider a set valued mapping

T : RLA → P ⋆(SLA). Consider two soft sets gA and gB over SLA where gA∗ and gB∗ are

soft LA-rings over RLA. Then, gA∩̃B∗ is a soft LA-ring over RLA if gA∗∩̃gB∗ is non-empty.

Proof. By Lemma 4.1.15, gA∗∩̃gB∗ is a soft LA-ring overRLA.By Theorem 4.1.2, fA∩̃B∗ =

gA∗∩̃gB∗, and so gA∩̃B∗ is a soft LA-ring over RLA.

Remark 4.1.17. In case of upper TRS LA-rings, the above theorem may not hold.

Example 4.1.18. Let RLA = SLA = {0, 1, 2, 3, 4, 5, 6, 7} be an LA-ring, with the follow-

ing additive and multiplicative tables:
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+ 0 1 2 3 4 5 6 7

0 2 3 4 5 6 7 0 1

1 3 2 5 4 7 6 1 0

2 0 1 2 3 4 5 6 7

3 1 0 3 2 5 4 7 6

4 6 7 0 1 2 3 4 5

5 7 6 1 0 3 2 5 4

6 4 5 6 7 0 1 2 3

7 5 4 7 6 1 0 3 2

· 0 1 2 3 4 5 6 7

0 5 4 2 3 1 0 6 7

1 0 1 2 3 4 5 6 7

2 2 2 2 2 2 2 2 2

3 7 7 2 2 7 7 2 2

4 1 0 2 3 5 4 6 7

5 4 5 2 3 0 1 6 7

6 6 6 2 2 6 6 2 2

7 3 3 2 2 3 3 2 2

Let gA and gB be two soft sets over SLA,whereE = RLA = SLA = {0, 1, 2, 3, 4, 5, 6, 7}

and A = B = {1, 3, 5, 7}. gA(1) = {3, 4} and gA(3) = gA(5) = gA(7) = {5, 6}, and

gB(1) = {4, 5, 6}, gB(3) = {4, 5} and gB(5) = gB(7) = {5, 6}.

Define a set valued mapping T : RLA → P ⋆(SLA) so that T (0) = T (1) = T (4) =

T (5) = {0}, T (2) = {4, 6}, T (3) = {0, 2}, T (6) = {3, 7} and T (7) = {1, 5, 6}.

Then, gA∗(1) = {2, 6} and gA∗(3) = gA
∗(5) = gA

∗(7) = {2, 7}. On the other hand,

gB
∗(1) = gB

∗(3) = gB
∗(5) = gB

∗(7) = {2, 7}. Which are all Sub LA-rings of RLA and

hence gA∗ and gB∗ are soft LA-rings over RLA.

Clearly, gA∗∩̃gB∗ is non-empty. By Lemma 4.1.15, gA∗∩̃gB∗ is a soft LA-ring over

RLA. Now gA∩̃gB = gA∩̃B, where gA∩̃B(α) = gA(α) ∩ gB(α) for each α ∈ E, such

that gA(α), gB(α) 6= ∅. Now, gA∩̃B(1) = {4}, gA∩̃B(3) = {5} and gA∩̃B(5) = gA∩̃B(7) =

{5, 6}. gA∩̃B∗(α) = {β ∈ RLA|T (β)∩gA∩̃B(α) 6= ∅} for all α ∈ E, such that gA(α), gB(α)

are non empty. Then, gA∩̃B∗(1) = {2}, gA∩̃B∗(3) = {7}, gA∩̃B∗(5) = gA∩̃B
∗(7) = {2, 7}.

As gA∩̃B∗(3) is not an Sub LA-ring of RLA. Hence gA∩̃B∗ is not a soft LA-ring over RLA.

Lemma 4.1.19. Let gA and gB be two soft LA-rings over an LA-ring RLA. Then, gA∪̃B =

gA∪̃gB is a soft LA-ring over RLA if gA⊆̃gB or gA⊇̃gB.

Proof. The proof follows directly from Theorem 3 [130].

Theorem 4.1.20. Let RLA and SLA be two LA-rings and T : RLA → P ⋆(SLA) be a

set valued mapping. Consider two soft sets gA and gB over SLA with gA∗ and gB∗ soft

LA-rings over RLA. Then, gA∪̃B∗ is a soft LA-ring over RLA if gA∗ ⊆ gB
∗ or gB∗ ⊆ gA

∗.
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Proof. If gA∗ ⊆ gB
∗ or gB∗ ⊆ gA

∗, then it follows from Lemma 4.1.19 that gA∗∪̃gB∗ is

a soft LA-ring over RLA. By Theorem 4.1.2, gA∪̃B∗ = gA
∗∪̃gB∗. Thus, gA∪̃B∗ is a soft

LA-ring over RLA.

Remark 4.1.21. For the lower TRS LA-rings, the above theorem may not hold.

Example 4.1.22. Let RLA = SLA = {0, 1, 2, 3, 4, 5, 6, 7} be the LA-ring of Example

4.1.18. Let gA and gB be two soft sets over SLA, where E = {0, 1, 2, 3, 4, 5, 6, 7} and

A = B = {1, 3, 5, 7} and gA(1) = {0, 2, 4, 5}, gA(3) = {0, 3, 4}, gA(5) = {0, 3, 4, 7} and

gA(7) = {0, 1, 2, 3, 4}. Also, gB(1) = {0, 2, 4}, gB(3) = {0, 3, 4, 6}, gB(5) = {0, 3, 4}

and gB(7) = {0, 1, 2, 3, 4, 5}.

Define a mapping T : RLA → P ⋆(SLA) such that T (0) = T (1) = {2, 6}, T (4) =

T (5) = {5, 7}, T (2) = {4}, T (3) = {0, 1}, T (6) = {0, 2} and T (7) = {0, 3}.

Then, gA∗(1) = {2, 6}, gA∗(3) = gA∗(5) = {2, 7} and gA∗(7) = {2, 3, 6, 7}. On the

other hand, gB∗(1) = {2, 6}, gB∗(3) = gB∗(5) = {2, 7} and gB∗(7) = {2, 3, 6, 7}. All

of these are sub LA-rings of RLA and hence gA∗ and gB∗ are soft LA-rings over RLA. By

Lemma 4.1.19, gA∗∪̃gB∗ is a soft LA-ring over RLA.

Now, gA∪̃gB = gA∪̃B, where gA∪̃B(α) = gA(α) ∪ gB(α) for all α ∈ E. Then,

gA∪̃B(1) = {0, 2, 4, 5, 7}, gA∪̃B(3) = {0, 3, 4, 6}, gA∪̃B(5) = {0, 3, 4, 7}, gA∪̃B(7) =

{0, 1, 2, 3, 4, 5}. gA∪̃B∗(α) = {β ∈ RLA|T (β) ⊆ gA∪̃B(α)} for all α ∈ E. Then we have

gA∪̃B∗(1) = {2, 4, 5, 6}, gA∪̃B∗(3) = gA∪̃B∗(5) = {2, 7} and gA∪̃B∗(7) = {2, 3, 6, 7}. As

gA∪̃B∗(1) is not an sub LA-ring of RLA. Therefore, gA∪̃B∗ is not a soft LA-ring over RLA.

Theorem 4.1.23. Let RLA and SLA be two LA-rings and T : RLA → P ⋆(SLA) be a set

valued mapping. Consider two soft sets gA and gB over SLA where gA∗ and gB∗ are soft

LA-rings over RLA. Then, gA∧̃B∗ is a soft LA-ring over RLA if gA∗∧̃gB∗ is non-empty.

Proof. By Theorem 1 [130], gA∗∧̃gB∗ is a soft LA-ring over RLA. By Theorem 4.1.2,

gA∧̃B∗ = gA∗∧̃gB∗, and so gA∧̃B∗ is a soft LA-ring over RLA.

Remark 4.1.24. In case of upper TRS LA-rings, the above theorem may not hold.

Example 4.1.25. In Example 4.1.18, we have two soft sets over SLA. Clearly gA∗∧̃gB∗,

is non-empty. Now gA∧̃gB = gA∧̃B, where gA∧̃B(α, γ) = gA(α) ∩ gB(γ) for all (α, γ) ∈

E×E, such that gA(α), gB(γ) 6= ∅. gA∧̃B∗(α, γ) = {β ∈ RLA|T (β)∩gA∧̃B(α, γ) 6= ∅} for

all (α, γ) ∈ E×E, such that gA(α), gB(γ) 6= ∅. Then, gA∧̃B(5, 3) = gA(5)∩ gB(3) = {5}
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and gA∧̃B∗(5, 3) = {7}, which is not an sub LA-ring of RLA. Hence gA∧̃B∗ is not a soft

LA-ring over RLA.

Lemma 4.1.26. Let gA and gB be two soft LA-rings over an LA-ring RLA. Then, gA∨̃B =

gA∨̃gB is a soft LA-ring over RLA if gA⊆̃gB or gA⊇̃gB.

Proof. gA∨̃gB = gA∨̃B where gA∨̃B(α, γ) = gA(α)∪̃gB(γ) for all (α, γ) ∈ C. Whether

gA⊆̃gB or gA⊇̃gB, in both cases gA∨̃B(α, γ) is a sub LA-ring ofRLA for all (α, γ) ∈ E×E.

Hence, gA∨̃gB is a soft LA-ring over RLA.

Theorem 4.1.27. Let RLA and SLA be two LA-rings and T : RLA → P ⋆(SLA) be a set

valued mapping. Let gA and gB be two soft sets over SLA such that gA∗ and gB∗ are soft

LA-rings over RLA. Then, gA∨̃B∗ is a soft LA-ring over RLA if gA∗⊆̃gB∗ or gA∗⊇̃gB∗.

Proof. If gA∗⊆̃gB∗ or gA∗⊇̃gB∗, then it follows from Lemma 4.1.26 that gA∗∨̃gB∗ is a soft

LA-ring over RLA. By Theorem 4.1.2, gA∨̃B∗ = gA
∗∨̃gB∗ and this implies that gA∨̃B∗ is a

soft LA-ring over RLA.

Remark 4.1.28. The above theorem may not be true for for lower TRS LA-rings.

Example 4.1.29. From Example 4.1.22, we have two soft sets over SLA. Clearly gA∗∨̃gB∗

is non-empty. Now gA∨̃gB = gA∨̃B, where gA∨̃B(α, γ) = gA(α) ∪ gB(γ) for all (α, γ) ∈

E × E. gA∨̃B∗(α, γ) = {β ∈ RLA|T (β) ⊆ gA∨̃B(α, γ)} for all (α, γ) ∈ E × E. Then,

gA∨̃B(5, 7) = gA(5) ∪ gB(7) = {0, 1, 2, 3, 4, 5, 7} and gA∨̃B∗(5, 7) = {2, 3, 4, 5, 6, 7}.

which is not an sub LA-ring of RLA. Hence gA∨̃B∗ is not a soft LA-ring over RLA.

Theorem 4.1.30. Let RLA and SLA be two LA-rings and T : RLA → P ⋆(SLA) be a set-

valued homomorphism. If gA is a soft LA-ring over SLA, then gA is an upper TRS LA-ring

over SLA.

Proof. Since gA is a soft LA-ring over SLA, gA(α) is a sub LA-ring of SLA, for each α ∈ E.

Now gA
∗(α) = {β ∈ RLA|T (β)∩ gA(α) 6= ∅}. Let µ, ν ∈ gA

∗(α), then T (µ)∩ gA(α) 6= ∅

and T (ν) ∩ gA(α) 6= ∅, then there exist η, δ ∈ RLA such that η ∈ T (µ) ∩ gA(α) and

δ ∈ T (ν) ∩ gA(α), that is, η ∈ T (µ), δ ∈ T (ν) and η, δ ∈ gA(α).

gA(α) is a sub LA-ring of SLA, then ηδ, η − δ ∈ gA(α). By Definition 4.1.6, η − δ ∈

T (µ)− T (ν) ⊆ T (µ− ν) and ηδ ∈ T (µ)T (ν) ⊆ T (µν). Thus, η− δ ∈ T (µ− ν)∩ gA(α)

and ηδ ∈ T (ab) ∩ gA(α), which implies, T (µ− ν) ∩ gA(α) 6= ∅ and T (µν) ∩ gA(α) 6= ∅.
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Then, µ− ν, ab ∈ gA
∗(α). This shows that gA∗(α) is a sub LA-ring of RLA for all α ∈ E.

Hence, gA∗ is a soft LA-ring over RLA, and so, gA is an upper TRS LA-ring over SLA.

Corollary 4.1.31. Let RLA and SLA be two LA-rings and T : RLA → P ⋆(SLA) be a

strong set-valued homomorphism. If gA is a soft LA-ring over SLA, then gA is an upper

TRS LA-ring over SLA.

Theorem 4.1.32. Let RLA and SLA be two LA-rings and T : RLA → P ⋆(SLA) be a strong

set-valued homomorphism. If gA is a soft LA-ring over SLA, then gA is a lower TRS

LA-ring over SLA.

Proof. Since gA is a soft LA-ring over SLA, and gA(α) is a sub LA-ring of SLA, for all

α ∈ E. Now for all α ∈ E, gA∗(α) = {β ∈ RLA|T (β) ⊆ gA(α)} Let µ, ν ∈ gA∗(α), then

T (µ) ⊆ gA(α) and T (ν) ⊆ gA(α).

gA(α) is a sub LA-ring of SLA, then by Definition 4.1.6, T (µ− ν) = T (µ)− T (ν) ⊆

gA(α) and T (µν) = T (µ)T (ν) ⊆ gA(α). Then, µ − ν, µν ∈ gA∗(α). This shows that

gA∗(α) is a sub LA-ring of RLA for all α ∈ E. Hence, gA∗ is a soft LA-ring over RLA, and

so, gA is a lower TRS LA-ring over SLA.

Idealistic TRS LA-rings

This section is about the investigation of idealistic TRS LA-rings.

Definition 4.1.33. A non-empty soft set gA over SLA is said to be a lower (upper) ide-

alistic TRS LA-rings over SLA, if gA∗ (gA
∗) is idealistic soft LA-ring over RLA, that is,

gA∗(α) (gA
∗(α)) is an ideal of RLA for all α ∈ E, such that gA∗(α) 6= ∅ (gA∗(α) 6= ∅).

Moreover gA is called an idealistic TRS LA-ring over SLA if gA∗ and gA∗ are idealistic soft

LA-rings over RLA.

Example 4.1.34. Consider the LA-ring RLA = SLA = {0, 1, 2, 3, 4, 5, 6, 7} of Exam-

ple 4.1.10. Let E = RLA = SLA = {0, 1, 2, 3, 4, 5, 6, 7} and let gA be a soft set over

SLA, where A = {1, 3, 5, 7}. gA(1) = {4, 5}, gA(3) = gA(5) = {4, 5, 6} and gA(7) =

{0, 4, 5, 6}. Define a set valued mapping T : RLA → P ⋆(SLA) such that T (0) = T (1) =

T (4) = T (5) = {1, 2}, T (2) = {4, 5}, T (3) = T (7) = {0, 6} and T (6) = {5, 6}.

Then, gA∗(1) = {2}, gA∗(3) = gA∗(5) = {2, 6} and gA∗(7) = {2, 3, 6, 7} and

gA
∗(1) = {2} and gA

∗(3) = gA
∗(5) = gA

∗(7) = {2, 3, 6, 7}. Which are all ideals of
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RLA and hence gA∗ and gA∗ are soft idealistic LA-rings over RLA implying that gA is an

idealistic TRS LA-rings over SLA.

Remark 4.1.35. Since it is evident from Example 9 [130], that a soft LA-ring over an LA-

ring RLA may not be an idealistic soft LA-ring over RLA. So, for another LA-ring SLA, if

T : RLA → P ⋆(SLA) is a set-valued mapping then a TRS LA-ring over SLA may not be a

idealistic TRS LA-ring over SLA.

Theorem 4.1.36. Let RLA and SLA be two LA-rings and T : RLA → P ⋆(SLA) be a set-

valued homomorphism. If gA is an idealistic soft LA-ring over SLA, then gA is an upper

idealistic TRS LA-ring over SLA.

Proof. If, gA is an idealistic soft LA-ring over SLA, then gA(α) is an ideal of SLA, for

all α ∈ E, such that gA(α) 6= ∅. Now gA
∗(α) = {β ∈ RLA|T (β) ∩ gA(α) 6= ∅}. Let

µ, ν ∈ gA
∗(α), then T (µ) ∩ gA(α) 6= ∅ and T (ν) ∩ gA(α) 6= ∅, so there exist η, δ ∈ RLA

such that η ∈ T (µ) ∩ gA(α) and δ ∈ T (ν) ∩ gA(α), that is, η ∈ T (µ), δ ∈ T (ν) and

η, δ ∈ gA(α).

Since gA(α) is an ideal of SLA, η − δ ∈ gA(α). By Definition 4.1.6, η − δ ∈ T (µ) −

T (ν) ⊆ T (µ− ν) and ηδ ∈ T (µ)T (ν) ⊆ T (µν). Thus, η − δ ∈ T (µ− ν)∩ gA(α), which

implies, T (µ− ν) ∩ gA(α) 6= ∅. Then, µ− ν ∈ gA
∗(α). Now let ρ ∈ RLA and ξ ∈ gA

∗(α)

then there exists ϑ ∈ T (ρ). Since ξ ∈ gA
∗(α), there exists ς ∈ T (ξ) ∩ gA(α). We have

ϑς ∈ T (ρ)T (ξ) ⊆ T (ρξ)(ςϑ ∈ T (ξ)T (ρ) ⊆ T (ξρ).) On the other hand, since gA(α) is an

ideal of SLA, ϑς, ςϑ ∈ gA(α). This implies that T (ρξ) ∩ gA(α) 6= ∅(T (ξρ) ∩ gA(α) 6= ∅)

and ρξ, ξρ ∈ gA
∗(α). This shows that gA∗(α) is an ideal of RLA for all α ∈ E, such

that gA∗ 6= ∅. Hence, gA∗ is an idealistic soft LA-ring over RLA, and so, gA is an upper

idealistic TRS LA-ring over SLA.

Corollary 4.1.37. Let RLA and SLA be two LA-rings and T : RLA → P ⋆(SLA) be an SV-

homomorphism. If gA is an idealistic soft LA-ring over SLA, then gA is an upper idealistic

TRS LA-ring over SLA.

Theorem 4.1.38. Let RLA and SLA be two LA-rings and T : RLA → P ⋆(SLA) be an SSV

homomorphism. If gA is an idealistic soft LA-ring over SLA, then gA is a lower idealistic

TRS LA-ring over SLA.
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Proof. If, gA is an idealistic soft LA-ring over SLA, then gA(α) is an ideal of SLA, for all

α ∈ E, such that gA(α) 6= ∅. Now gA∗(α) = {β ∈ RLA|T (β) ⊆ gA(α)} Let µ, ν ∈

gA∗(α), then T (µ) ⊆ gA(α) and T (ν) ⊆ gA(α).

Since gA(α) is an ideal of SLA, by Definition 4.1.6, T (µ−ν) = T (µ)−T (ν) ⊆ gA(α)

and then µ − ν ∈ gA∗(α). Now let ρ ∈ RLA and ξ ∈ gA∗(α). Since ξ ∈ gA∗(α), T (ξ) ⊆

gA(α). Since gA(α) is an ideal of SLA, T (ρξ) = T (ρ)T (ξ) ⊆ gA(α)(T (ξρ) = T (ξ)T (ρ) ⊆

gA(α).) So, ρξ, ξρ ∈ gA∗(α). This shows that gA∗(α) is an ideal of RLA for all α ∈ E,

such that gA∗(α) 6= ∅. Hence, gA∗ is an idealistic soft LA-ring over RLA, and so gA is a

lower idealistic TRS LA-ring over SLA.

TRS M-systems and P-systems over TRS Soft LA-rings

In this section we introduce TRS M-systems and P-systems in LA-rings.

Definition 4.1.39. Let RLA and SLA be two LA-rings and T : RLA → P ⋆(SLA) be a set

valued mapping, where P ⋆(SLA) represents the collection of all non-empty subsets of SLA.

Let gA be a TRS LA-ring over SLA. A non empty soft set gB over SLA is said to be a lower

(upper) TRS M-system over gA if,

1. gB is a soft subset of gA.

2. gB∗(gB
∗) is a soft M-system over gA∗(gA

∗) that is, for gB∗(µ), gB∗(ν) ∈ gB∗ there

exists gA∗(α) ∈ gA∗ such that gB∗(µ)(gA∗(α)gB∗(ν)) ∈ gB∗ (for gB∗(µ), gB
∗(ν) ∈

gB
∗ there exists gA∗(α) ∈ gA

∗ such that gB∗(µ)(gA
∗(α)gB

∗(ν)) ∈ gB
∗).

Moreover, gB is called a TRS M-system over gA if, gB∗ and gB∗ are soft M-systems

over gA∗ and gA∗ respectively.

Example 4.1.40. Consider the LA-ring RLA = {0, 1, 2, 3, 4, 5, 6, 7} of Example 4.1.14.

Let gA be a soft set over SLA, where E = A = RLA = SLA = {0, 1, 2, 3, 4, 5, 6, 7}.

gA(α) = {β ∈ SLA|α.β ∈ {0, 7}} for all α ∈ A Then, gA(0) = gA(3) = gA(5) =

gA(6) = {0, 1, 2, 3, 4, 5, 6, 7} and gA(1) = gA(2) = gA(4) = gA(7) = {0, 3, 5, 6}.Define a

set valued mapping T : RLA → P ⋆(SLA) such that T (0) = T (3) = T (4) = T (7) = {0, 3}

and T (1) = T (2) = T (5) = T (6) = {2, 7}. Then, gA∗(0) = gA∗(3) = gA∗(5) =

gA∗(6) = {0, 1, 2, 3, 4, 5, 6, 7} and gA∗(1) = gA∗(2) = gA∗(4) = gA∗(7) = {0, 3, 4, 7}.

On the other hand gA
∗(0) = gA

∗(3) = gA
∗(5) = gA

∗(6) = {0, 1, 2, 3, 4, 5, 6, 7} and
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gA
∗(1) = gA

∗(2) = gA
∗(4) = gA

∗(7) = {0, 3, 4, 7}, which are all sub LA-rings of RLA

and hence gA∗ and gA∗ are soft LA-rings over RLA implying that gA is a TRS LA-ring over

SLA.

Consider a soft subset gB of gA such that B = {1, 3, 5, 6, 7} ⊆ A and gB(1) =

gB(7) = {0, 3, 5, 6}, gB(3) = gB(5) = gB(6) = {0, 1, 2, 3, 4, 5, 6, 7}. Now gB∗(α) =

{β ∈ R|T (β) ⊆ gB(α)} and gB∗(α) = {β ∈ RLA|T (β) ∩ gB(α) 6= ∅}. Then, gB∗(1) =

gB∗(7) = {0, 3, 4, 7} and gB∗(3) = gB∗(5) = gB∗(6) = {0, 1, 2, 3, 4, 5, 6, 7}. On the other

hand, gB∗(1) = gB
∗(7) = {0, 3, 4, 7} and gB∗(3) = gB

∗(5) = gB
∗(6) = {0, 1, 2, 3, 4, 5, 6, 7}.

Here it can be seen that if gB∗(µ), gB∗(ν) ∈ gB then there exists gA(α) ∈ gA∗ such that

gB∗(µ)(gA∗(α)gB∗(ν)) ∈ gB. Hence gB∗ is a soft M-system over gA∗.

Similarly it can be seen that gB∗ is a soft M-system over gA∗. Hence gB is a TRS

M-system over the TRS LA-ring gA.

Definition 4.1.41. Let RLA and SLA be two LA-rings and T : RLA → P ⋆(SLA) be a set

valued mapping, where P ⋆(SLA) denotes the set of all non-empty subsets of SLA. Let gA

be a TRS LA-ring over SLA. A non empty soft set gC over SLA is said to be lower (upper)a

TRS P-system over gA if,

1. gC is a soft subset of gA.

2. gC∗(gC
∗) is a soft P-system over gA∗(gA

∗) that is, for all gC∗(µ) ∈ gC∗ there exists

gA∗(α) ∈ gA∗ such that gC∗(µ)(gA∗(α)gC∗(µ)) ∈ gC∗ (for gC∗(µ) ∈ gC
∗ there exists

gA
∗(α) ∈ gA

∗ such that gC∗(µ)(gA
∗(α)gC

∗(µ)) ∈ gC
∗.)

Furthermore, gC is called a TRS P-system over gA if, gC∗ and gC∗ are soft P-systems

over gA∗ and gA∗ respectively.

Example 4.1.42. Let RLA = S =LA {0, 1, 2, 3, 4, 5, 6, 7, 8} be an LA-ring taken from

[129], with the following additive and multiplicative tables on the next page.

Let gA be a soft set over SLA, where E = A = RLA = SLA = {0, 1, 2, 3, 4, 5, 6, 7, 8}

and gA(0) = gA(1) = gA(3) = gA(4) = {0, 3, 5, 6} and gA(2) = gA(5) = gA(6) =

gA(7) = gA(8) = {1, 2, 3, 4}. Define a set valued mapping T : RLA → P ⋆(SLA) such

that T (0) = T (8) = {0, 5}, T (1) = T (6) = {1, 2}, T (3) = {3} and T (2) = T (4) =

T (5) = T (7) = {7}. Then, gA∗(0) = gA∗(1) = gA∗(3) = gA∗(4) = {0, 3, 8} and

gA∗(2) = gA∗(5) = gA∗(6) = gA∗(7) = gA∗(8) = {1, 3, 6}. On the other hand, gA∗(0) =
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+ 0 1 2 3 4 5 6 7 8

0 3 4 6 8 7 2 5 1 0

1 2 3 7 6 8 4 1 0 5

2 1 5 3 4 2 0 8 6 7

3 0 1 2 3 4 5 6 7 8

4 5 0 4 2 3 1 7 8 6

5 4 2 8 7 6 3 0 5 1

6 7 6 0 1 5 8 3 2 4

7 6 8 1 5 0 7 4 3 2

8 8 7 5 0 1 6 2 4 3

· 0 1 2 3 4 5 6 7 8

0 3 1 6 3 1 6 6 1 3

1 0 3 0 3 8 8 3 0 8

2 8 1 5 3 7 2 6 4 0

3 3 3 3 3 3 3 3 3 3

4 0 6 7 3 5 4 1 2 8

5 8 6 4 3 2 7 1 5 0

6 8 3 8 3 0 0 3 8 0

7 0 1 2 3 4 5 6 7 8

8 3 6 1 3 6 1 1 6 3

gA
∗(1) = gA

∗(3) = gA
∗(4) = {0, 3, 8} and gA

∗(2) = gA
∗(5) = gA

∗(6) = gA
∗(7) =

gA
∗(8) = {1, 3, 6}, which are sub LA-rings of RLA and hence gA∗ and gA∗ are soft LA-

rings over RLA implying that gA is a TRS LA-ring over SLA.

Consider a soft subset gC of gA such that C = {1, 3, 5, 7} ⊆ A and gC(1) = gC(3) =

{0, 3, 5, 6}, gC(5) = gC(7) = {1, 2, 3, 4}. Now gC∗(α) = {β ∈ RLA|T (β) ⊆ gC(α)}

and gC
∗(α) = {β ∈ RLA|T (β) ∩ gC(α) 6= ∅}. Then, gC∗(1) = gC∗(3) = {0, 3, 8}

and gC∗(5) = gC∗(7) = {1, 3, 6}. On the other hand, gC∗(1) = gC
∗(3) = {0, 3, 8} and

gC
∗(5) = gC

∗(7) = {1, 3, 6}. Here it can be seen that if gC∗(µ) ∈ gC then there exists

gA∗(α) ∈ gA such that gC∗(µ)(gA∗(α)gC∗(µ)) ∈ gC . Hence gC∗ is a soft P-system over

gA∗.

Similarly it can be seen that gC∗ is a soft P-system over gA∗. Hence gC is a TRS P-

system over the TRS LA-ring gA.

Remark 4.1.43. Since it is clear from Example 3.4 [129], that a soft P-system over a soft

LA-ring may not be a soft M-system over it. So, for a TRS LA-ring gA over SLA, a TRS

P-system over gA may not be a TRS M-system over it.

4.2 Soft Intersection LA-rings

Çaǧman et al. [27] introduced the notion of soft intersection groups which is based on the

inclusion relation and the intersection of sets. They used the operations of soft sets defined

by Çaǧman and Enginoǧlu [28]. Several soft intersection algebraic structures have been
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defined so far, such as soft intersection rings by Çitak and Çaǧman [32], soft intersection

near rings by Sezgin et al. [120] and soft intersection LA-semigroups by Sezgin [118].

For more soft intersection algebraic structures we recommend: [8, 88, 89, 99, 121–123].

Motivated by [27] and [32], we introduce soft intersection LA-group and soft intersection

LA-rings, and explore some of their properties in this section.

Throughout this section, we would use the abbreviations; SI-LA-group, SI-LA-ring,

SI-LA-semigroup and SI-ring respectively, for soft intersection LA-group, LA-ring, LA-

semigroup and ring.

4.2.1 Soft Intersection LA-groups

This section provides introduction of soft intersection LA-groups. For further details on

LA-groups, see [124].

Definition 4.2.1. Let G be an LA-group and fG ∈ S(U). Then, fG is called a soft inter-

section groupoid over U if fG(xy) ⊇ fG(x) ∩ fG(y) for all x, y ∈ G.

fG is called an SI-LA-group over U if the soft intersection groupoid satisfies fg(x−1) =

fG(x) for all x ∈ G.

Example 4.2.2. Consider U = {0, 1, 2, 3, 4, 5, 6, 7} ⊆ Z is the universal set and the set of

parameters is G = {0, 1, 2, 3, 4, 5, 6, 7}, the LA-group of order 8, taken from [124] such

that:

· 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

1 3 0 1 2 6 7 5 4

2 2 3 0 1 5 4 7 6

3 1 2 3 0 7 6 4 5

4 6 4 7 5 2 0 1 3

5 7 5 6 4 0 2 3 1

6 4 7 5 6 3 1 2 0

7 5 6 4 7 1 3 0 2

Define a soft set fG over U by:

fG(x) =

 {x}, 0 ≤ x ≤ 3;

∅, 4 ≤ x ≤ 7.
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Then it can be easily shown that,

fG = {(0, {0}), (1, {1}), (2, {2}), (3, {3}), (4, ∅), (5, ∅), (6, ∅), (7, ∅)} is an SI-LA-Group

over U. But the soft set gG, defined by

gG(x) =


{x}, 0 ≤ x ≤ 3;

{x, x+ 1}, x = 4, 6;

{x− 1, x}, x = 5, 7.

such that:

gG = {(0, {0}), (1, {1}), (2, {2}), (3, {3}), (4, {4, 5}), (5, {4, 5}), (6, {6, 7}), (7, {6, 7})}

is not an SI-LA-Group over U, since gG(4 · 5) + gG(4) ∩ gG(5).

4.2.2 Soft Intersection LA-rings

Definition 4.2.3. Let RLA be an (a special) LA-ring with respect to the two binary op-

erations ‘+’ and ‘·’, and fRLA
∈ S(U). Then, fRLA

is called a soft intersection (special)

LA-ring denoted SI-LA-ring (SI-special LA-ring) over U, if for all µ, ν ∈ RLA

1. fRLA
(µ+ ν) ⊇ fRLA

(µ) ∩ fRLA
(ν);

2. fRLA
(−µ) = fRLA

(µ);

3. fRLA
(µν) ⊇ fRLA

(µ) ∩ fRLA
(ν).

That is fRLA
is an SI-LA-group (soft int-group) overU for the binary operation ‘+’ in S(U)

induced by ‘+’ in RLA, and fRLA
is a soft int-groupoid over U for the binary operation ‘·’

in S(U) induced by ‘·’ in RLA.

Since a special LA-ring is an LA-ring, an SI-special LA-ring is also an SI-LA-ring.

Theorem 4.2.4. Let RLA be an LA-ring and fRLA
∈ S(U). Then, fRLA

is an SI-LA-ring

over U iff

1. fRLA
(µ− ν) ⊇ fRLA

(µ) ∩ fRLA
(ν);

2. fRLA
(µν) ⊇ fRLA

(µ) ∩ fRLA
(ν).
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Proof. When fRLA
is an SI-LA-ring, then we have fRLA

(µ+ ν) ⊇ fRLA
(µ)∩ fRLA

(ν) and

fRLA
(−µ) = fRLA

(µ). Thus fRLA
(µ− ν) ⊇ fRLA

(µ) ∩ fRLA
(−ν) = fRLA

(µ) ∩ fRLA
(ν).

Furthermore, as fRLA
is a soft int-groupoid over U , we have fRLA

(ab) ⊇ fRLA
(µ) ∩

fRLA
(ν).

Conversely, suppose that fRLA
(µ−ν) ⊇ fRLA

(µ)∩fRLA
(ν) and fRLA

(ab) ⊇ fRLA
(µ)∩

fRLA
(ν) for all µ, ν ∈ RLA.Now choose µ = 0, then fRLA

(0−ν) = fRLA
(−ν) ⊇ fRLA

(ν).

On the other hand, fRLA
(ν) = fRLA

(0 − (−ν)) ⊇ fRLA
(−ν), for any ν ∈ RLA. Hence,

fRLA
(−µ) = fRLA

(µ) for all µ ∈ RLA. Moreover, fRLA
(µ + ν) = fRLA

(µ − (−ν)) ⊇

fRLA
(µ) ∩ fRLA

(−ν) = fRLA
(µ) ∩ fRLA

(ν).

Thus, fRLA
is an SI-LA-ring over U .

Example 4.2.5. Let RLA = {0, 1, 2, 3, 4, 5, 6, 7} = U be an LA-ring from Example 3.1.2.

Define a soft set fRLA
over U by,

fRLA
(0) = fRLA

(4) = fRLA
(3) = fRLA

(7) = R and fRLA
(1) = fRLA

(2) = fRLA
(5) =

fRLA
(6) = {0, 3, 4, 7}. Then it is easy to check that fRLA

is SI-LA-ring over U.

Definition 4.2.6. Let RLA be an LA-ring. Then, an SI-LA-ring fRLA
is called a soft in-

tersection left ideal or an SI-left ideal over U , if fRLA
(µν) ⊇ fRLA

(ν) for all µ, ν ∈ RLA

and fRLA
is called a soft intersection right ideal or an SI-right ideal over U , if fRLA

(µν) ⊇

fRLA
(µ) for all µ, ν ∈ RLA.

If fRLA
is an SI-left and SI-right ideal over U , then fRLA

is called an SI-ideal over U.

Theorem 4.2.7. Let RLA be an LA-ring and fRLA
∈ S(U). Then, fRLA

is an SI-ideal over

U, iff

1. fRLA
(µ− ν) ⊇ fRLA

(µ) ∩ fRLA
(ν);

2. fRLA
(µν) ⊇ fRLA

(µ) ∪ fRLA
(ν) for all µ, ν ∈ RLA.

Proof. Let fRLA
be an SI-ideal over U. Then by definition fRLA

(µ − ν) ⊇ fRLA
(µ) ∩

fRLA
(ν). Furthermore, fRLA

(µν) ⊇ fRLA
(µ) and fRLA

(µν) ⊇ fRLA
(ν), imply that fRLA

(µν) ⊇

fRLA
(µ) ∪ fRLA

(ν).

Conversely, suppose that fRLA
(µ−ν) ⊇ fRLA

(µ)∩fRLA
(ν) and fRLA

(µν) ⊇ fRLA
(µ)∪

fRLA
(ν) for all µ, ν ∈ RLA. So that, fRLA

(µν) ⊇ fRLA
(µ) ∪ fRLA

(ν) ⊇ fRLA
(µ) and

fRLA
(µν) ⊇ fRLA

(µ) ∪ fRLA
(ν) ⊇ fRLA

(ν). Finally, fRLA
(µν) ⊇ fRLA

(µ) ∩ fRLA
(ν).

Hence, fRLA
is an SI-ideal over U.
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Remark 4.2.8. Since each commutative and associative ring should be an LA-ring so in

that case the soft int-ring defined in [32] becomes a particular case of an SI-LA-ring.

Proposition 4.2.9. If fRLA
is an SI-LA-ring/ SI-ideal over U, then fRLA

(0) ⊇ fRLA
(µ) for

all µ ∈ RLA.

Proof. When fRLA
is an SI-LA-ring/ SI-ideal over U, for all µ ∈ RLA,

fRLA
(0) =fRLA

(µ− µ)

⊇fRLA
(µ) ∩ fRLA

(µ)

=fRLA
(µ).

Proposition 4.2.10. Let RLA be an LA-ring with left identity ‘e’. If fRLA
is an SI-ideal

over U, then fRLA
(µ) ⊇ fRLA

(e) for all µ ∈ RLA.

Proof. Suppose that fRLA
is an SI-ideal over U. Then, for all µ ∈ RLA,

fRLA
(µ) =fRLA

(eµ)

⊇fRLA
(e).

Theorem 4.2.11. LetRLA be an LA-field and fRLA
∈ S(U). Then fRLA

is an SI-ideal over

U if and only if fRLA
(µ) = fRLA

(e) ⊆ fRLA
(0) for all 0 6= µ ∈ RLA.

Proof. Let fRLA
be an SI-ideal over U. As fRLA

(0) ⊇ fRLA
(µ), for all µ ∈ RLA. Then in

particular fRLA
(0) ⊇ fRLA

(e).Now if 0 6= µ ∈ RLA, then fRLA
(µ) = fRLA

(eµ) ⊇ fRLA
(e)

and fRLA
(e) = fRLA

(µ−1µ) ⊇ fRLA
(µ). Implying that fRLA

(µ) = fRLA
(e) ⊆ fRLA

(0).

Conversely, let µ, ν ∈ RLA. If µ− ν 6= 0, then fRLA
(µ− ν) = fRLA

(e) = fRLA
(µ) ⊇

fRLA
(µ) ∩ fRLA

(ν), and if µ − ν = 0, then fRLA
(µ − ν) = fRLA

(0) ⊇ fRLA
(µ) ⊇

fRLA
(µ) ∩ fRLA

(ν).

Let µ, ν ∈ RLA. If µ 6= 0 and ν = 0, then fRLA
(µν) = fRLA

(0) ⊇ fRLA
(e) = fRLA

(µ)

and fRLA
(µν) = fRLA

(0) = fRLA
(ν). Thus, fRLA

(µν) ⊇ fRLA
(µ) ∪ fRLA

(ν). Now if

µ 6= 0 and ν 6= 0, then by the Theorem3.4.2, µν 6= 0. So, fRLA
(µν) = fRLA

(e) = fRLA
(µ)

and fRLA
(µν) = fRLA

(e) = fRLA
(ν). Thus fRLA

(µν) ⊇ fRLA
(µ)∪ fRLA

(ν) implying that

fRLA
is an SI-ideal over U.
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Theorem 4.2.12. Let fRLA
be an SI-special LA-ring/SI-ideal over U. If fRLA

(µ − ν) =

fRLA
(0), for any µ, ν ∈ RLA, then fRLA

(µ) = fRLA
(ν).

Proof. Let fRLA
(µ− ν) = fRLA

(0) for any µ, ν ∈ RLA. Then

fRLA
(µ) =fRLA

(µ− ν + ν)

⊇fRLA
(µ− ν) ∩ fR(ν)

=fRLA
(0) ∩ fRLA

(ν)

=fRLA
(ν).

Similarly, since fRLA
(0) = fRLA

(µ− ν) = fRLA
(−(ν − µ)) = fRLA

(ν − µ).

So,

fRLA
(ν) =fRLA

(ν − µ+ µ)

⊇fRLA
(ν − µ) ∩ fRLA

(µ)

=fRLA
(0) ∩ fRLA

(µ)

=fRLA
(µ).

Thus fRLA
(µ) = fRLA

(ν).

Theorem 4.2.13. Let fRLA
and fTLA

be two SI-LA-rings over U. Then, fRLA
∧ fTLA

is an

SI-LA-ring over U.

Proof. Let (µ1, ν1), (µ2, ν2) ∈ RLA × TLA. Then

(fRLA
∧ fTLA

)((µ1, ν1)− (µ2, ν2)) =(fRLA
∧ fTLA

)(µ1 − µ2, ν1 − ν2)

=fRLA
(µ1 − µ2) ∩ fTLA

(ν1 − ν2)

⊇(fRLA
(µ1) ∩ fRLA

(µ2)) ∩ (fTLA
(ν1) ∩ fTLA

(ν2))

=(fRLA
(µ1) ∩ fTLA

(ν1)) ∩ (fRLA
(µ2) ∩ fTLA

(ν2))

=(fRLA
∧ fTLA

)(µ1, ν1) ∩ (fRLA
∧ fTLA

)(µ2, ν2).

and

(fRLA
∧ fTLA

)((µ1, ν1)(µ2, ν2)) =(fRLA
∧ fTLA

)(µ1µ2, ν1ν2)

=fRLA
(µ1µ2) ∩ fTLA

(ν1ν2)

⊇(fRLA
(µ1) ∩ fRLA

(µ2)) ∩ (fTLA
(ν1) ∩ fTLA

(ν2))

=(fRLA
(µ1) ∩ fTLA

(ν1)) ∩ (fRLA
(µ2) ∩ fTLA

(ν2))

=(fRLA
∧ fTLA

)(µ1, ν1) ∩ (fRLA
∧ fTLA

)(µ2, ν2).
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Therefore, fRLA
∧ fTLA

is an SI-LA-ring over U.

Theorem 4.2.14. Let fRLA
and fTLA

be two SI-ideals over U. Then, fRLA
∧ fTLA

is an

SI-ideal over U.

Proof. We have seen in Theorem 4.2.13 that if fRLA
and fTLA

are SI-LA-rings over U, then

so is (fRLA
∧ fTLA

). Let (µ1, ν1), (µ2, ν2) ∈ RLA × TLA. Then

(fRLA
∧ fTLA

)((µ1, ν1)(µ2, ν2)) =(fRLA
∧ fTLA

)(µ1µ2, ν1ν2)

=fRLA
(µ1µ2) ∩ fTLA

(ν1ν2)

⊇fRLA
(µ1) ∩ fTLA

(ν1)

=(fRLA
∧ fTLA

)(µ1, ν1)

and

(fRLA
∧ fTLA

)((µ1, ν1)(µ2, ν2)) =(fRLA
∧ fTLA

)(µ1µ2, ν1ν2)

=fRLA
(µ1µ2) ∩ fTLA

(ν1ν2)

⊇fRLA
(µ2) ∩ fTLA

(ν2)

=(fRLA
∧ fTLA

)(µ2, ν2)

Therefore, fRLA
∧ fTLA

is an SI-ideal over U.

Definition 4.2.15. Let fRLA
, gTLA

be SI-LA-rings over U. Then, the product of SI-LA-

rings fRLA
and gTLA

is defined as fRLA
× gTLA

= hRLA×TLA
, where hRLA×TLA

(µ, ν) =

fRLA
(µ)× gTLA

(ν) for all (µ, ν) ∈ RLA × TLA.

Theorem 4.2.16. If fRLA
and gTLA

are SI-LA-rings over U, then so is fRLA
× gTLA

over

U × U.

Proof. By the Definition 4.2.15, let fRLA
× gTLA

= hRLA×TLA
, where hRLA×TLA

(µ, ν) =

fRLA
(µ)×gTLA

(ν) for all (µ, ν) ∈ RLA×TLA. Then, for all (µ1, ν1), (µ2, ν2) ∈ RLA×TLA,

hRLA×TLA
((µ1, ν1)− (µ2, ν2)) =hRLA×TLA

(µ1 − µ2, ν1 − ν2)

=fRLA
(µ1 − µ2) ∩ gTLA

(ν1 − ν2)

⊇(fRLA
(µ1) ∩ fRLA

(µ2))× (gTLA
(ν1) ∩ gTLA

(ν2))

=(fRLA
(µ1)× gTLA

(ν1)) ∩ (fRLA
(µ2)× gTLA

(ν2))

=hRLA×TLA
(µ1, ν1) ∩ hRLA×TLA

(µ2, ν2).
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and

hRLA×TLA
((µ1, ν1)(µ2, ν2)) =hRLA×TLA

(µ1µ2, ν1ν2)

=fRLA
(µ1µ2) ∩ gTLA

(ν1ν2)

⊇(fRLA
(µ1) ∩ fRLA

(µ2))× (gTLA
(ν1) ∩ gTLA

(ν2))

=(fRLA
(µ1)× gTLA

(ν1)) ∩ (fRLA
(µ2)× gTLA

(ν2))

=hRLA×TLA
(µ1, ν1) ∩ hRLA×TLA

(µ2, ν2).

Hence, fRLA
× gTLA

= hRLA×TLA
is an SI-LA-ring over U × U.

Definition 4.2.17. Let fRLA
be an SI-ideal of an LA-ring RLA and gTLA

be SI-ideal of an

LA-ring TLA over U. Then, the product of SI-ideals fRLA
and gTLA

is defined as fRLA
×

gTLA
= hRLA×TLA

,where hRLA×TLA
(µ, ν) = fRLA

(µ)×gTLA
(ν) for all (µ, ν) ∈ RLA×TLA.

Theorem 4.2.18. If fRLA
is an SI-ideal of an LA-ring RLA and gTLA

is an SI-ideal of an

LA-ring TLA over U, then fRLA
× gTLA

is an SI-ideal of RLA × TLA over U × U.

Proof. In the Theorem 4.2.16, we have shown that if fRLA
and gTLA

are SI-LA-rings over

U × U. Let (µ1, ν1), (µ2, ν2) ∈ RLA × TLA,

hRLA×TLA
((µ1, ν1)(µ2, ν2)) =hRLA×TLA

(µ1µ2, ν1ν2)

=fRLA
(µ1µ2) ∩ gTLA

(ν1ν2)

⊇fRLA
(µ1)× gTLA

(ν1)

=fRLA
(µ1)× gTLA

(ν1)

=hRLA×TLA
(µ1, ν1).

and

hRLA×TLA
((µ1, ν1)(µ2, ν2)) =hRLA×TLA

(µ1µ2, ν1ν2)

=fRLA
(µ1µ2) ∩ gTLA

(ν1ν2)

⊇fRLA
(µ2)× gTLA

(ν2)

=fRLA
(µ2)× gTLA

(ν2)

=hRLA×TLA
(µ2, ν2).

Hence, fRLA
× gTLA

= hRLA×TLA
is an SI-ideal of RLA × TLA over U × U.

94



Theorem 4.2.19. Let fRLA
and gRLA

be two SI-LA-rings over U. Then, fRLA
∩̃gRLA

is an

SI-LA-ring over U.

Proof. Let µ, ν ∈ RLA. Then,

(fRLA
∩̃gRLA

)(µ− ν) =fRLA
(µ− ν) ∩ gRLA

(µ− ν)

⊇(fRLA
(µ) ∩ fRLA

(ν)) ∩ (gRLA
(µ) ∩ gRLA

(ν))

=(fRLA
(µ) ∩ gRLA

(µ)) ∩ (fRLA
(ν) ∩ gRLA

(ν))

=(fRLA
∩̃gRLA

)(µ) ∩ (fRLA
∩̃gRLA

)(ν).

and

(fRLA
∩̃gRLA

)(µν) =fRLA
(µν) ∩ gRLA

(µν)

⊇(fRLA
(µ) ∩ fRLA

(ν)) ∩ (gRLA
(µ) ∩ gRLA

(ν))

=(fRLA
(µ) ∩ gRLA

(µ)) ∩ (fRLA
(ν) ∩ gRLA

(ν))

=(fRLA
∩̃gRLA

)(µ) ∩ (fRLA
∩̃gRLA

)(ν).

Therefore, fRLA
∩̃gRLA

is an SI-LA-ring over U.

Theorem 4.2.20. Let fRLA
and gRLA

be two SI-ideals over U. Then, fRLA
∩̃gRLA

is an SI-

ideal over U.

Proof. We have seen in Theorem 4.2.19 that if fRLA
and gRLA

are SI-LA-rings over U,

then so is fRLA
∩̃gRLA

. Let µ, ν ∈ RLA. Then

(fRLA
∩̃gRLA

)(µν) =fRLA
(µν) ∩ gRLA

(µν)

⊇fRLA
(µ) ∩ gRLA

(µ)

=(fRLA
∩̃gRLA

)(µ).

and

(fRLA
∩̃gRLA

)(µν) =fRLA
(µν) ∩ gRLA

(µν)

⊇fRLA
(ν) ∩ gRLA

(ν)

=(fRLA
∩̃gRLA

)(ν).

Therefore, fRLA
∩̃gRLA

is an SI-ideal over U.
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The following example shows that if fRLA
and gRLA

are two SI-LA-rings(SI-ideals)

over U then, fRLA
∪̃gRLA

need not be an SI-LA-ring (SI-ideal) over U.

Example 4.2.21. Assume that the universal set

U = S3 = {1, (1 2), (1 3), (2 3), (1 2 3), (1 3 2)}.

Let RLA = {0, 1, 2, 3, 4, 5, 6, 7} be the LA-ring from Example 3.1.2. We define an SI-LA-

ring (SI-ideal) fRLA
over U = S3 by

fRLA
(0) = fRLA

(3) = fRLA
(4) = fRLA

(7) = {1, (1 2), (1 3), (1 2 3)}

fRLA
(1) = fRLA

(2) = {1, (1 2), (1 2 3)}

fRLA
(5) = fRLA

(6) = {1, (1 2 3)}

and another SI-LA-ring (SI-ideal) gRLA
over U = S3 by

gRLA
(0) = gRLA

(3) = gRLA
(4) = gRLA

(7) = {1, (1 2), (2 3), (1 3 2)}

gRLA
(1) = gRLA

(2) = {1, (2 3), (1 3 2)}

gRLA
(5) = gRLA

(6) = {1, (1 3 2)}.

Then, fRLA
∪̃gRLA

is not an SI-LA-ring (SI-ideal) over U = S3.

Definition 4.2.22. Let RLA be an LA-ring and TLA be a sub LA-ring of RLA. Let fRLA
be

an SI-LA-ring over U and fTLA
be a non-empty soft subset of fRLA

over U. If fTLA
is itself

an SI-LA-ring over U, then fTLA
is said to be a SI-sub LA-ring of fRLA

over U.

Theorem 4.2.23. Let fRLA
be an SI-LA-ring over U, and fTLA

, fLLA
be two SI-sub LA-

rings of fRLA
over U. Then, fTLA

∩̃fLLA
is a soft int-sub LA-ring of fRLA

over U.

Proof. Let µ, ν ∈ RLA. Then,

(fTLA
∩̃fLLA

)(µ− ν) =fTLA
(µ− ν) ∩ fLLA

(µ− ν)

⊇(fTLA
(µ) ∩ fTLA

(ν)) ∩ (fLLA
(µ) ∩ fLLA

(ν))

=(fTLA
(µ) ∩ fLLA

(µ)) ∩ (fTLA
(ν) ∩ fLLA

(ν))

=(fTLA
∩̃fLLA

)(µ) ∩ (fTLA
∩̃fLLA

)(ν).

and

(fTLA
∩̃fLLA

)(µν) =fTLA
(µν) ∩ fLLA

(µν)

⊇(fTLA
(µ) ∩ fTLA

(ν)) ∩ (fLLA
(µ) ∩ fLLA

(ν))

=(fTLA
(µ) ∩ fLLA

(µ)) ∩ (fTLA
(ν) ∩ fLLA

(ν))

=(fTLA
∩̃fLLA

)(µ) ∩ (fTLA
∩̃fLLA

)(ν).
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Therefore, fTLA
∩̃fLLA

is an SI-LA-ring over U.

4.2.3 Construction of SI-special LA-rings and SI-ideals

In this section we study the construction of soft int-special LA-ring and soft int-ideals

using the SI-rings [32], SI-LA-semigroups [118] and their soft int-ideals.

Following is the construction of an SI-special LA-ring using an SI-ring.

Proposition 4.2.24. If fR is a soft int-ring of a commutative and associative ring R then

hR[L] is a soft int-special LA-ring of R[L], where for φ =
∑
ϱ∈L

µϱϱ ∈ R[L],

hR[L](φ) = ∩ϱ∈Supp(φ)fR(µϱ). (4.2.1)

Proof. Let φ and ψ ∈ R[L] then φ =
∑
ϱ∈L

µϱϱ and ψ =
∑
ϱ∈L

νϱϱ where µϱ, νϱ ∈ R for all

ϱ ∈ L.

hR[L](φ− ψ) =hR[L](
∑
ϱ∈L

µϱϱ−
∑
ϱ∈L

νϱϱ)

=hR[L](
∑
ϱ∈L

(µϱ − νϱ)ϱ)

= ∩ϱ∈Supp(φ−ψ) fR(µϱ − νϱ)

⊇ ∩ϱ∈Supp(φ−ψ) [fR(µϱ) ∩ fR(νϱ)]

=[∩ϱ∈Supp(φ)fR(µϱ)] ∩ [∩ϱ∈Supp(ψ)fR(νϱ)]

=hR[L](φ) ∩ hR[L](ψ).

hR[L](φψ) =hR[L](
∑
ϱ∈L

µϱϱ
∑
ϱ∈L

νϱϱ)

=hR[L](
∑
u∈L

cuu)( where cu =
∑
ϱh=u

µϱνh)

= ∩u∈Supp(φψ) fR(cu)

= ∩u∈Supp(φψ) fR(
∑
ϱh=u

µϱνh)

⊇ ∩u∈Supp(φψ) [∩u=ϱhfR(µϱνh)]

⊇ ∩u∈Supp(φψ) [∩u=ϱh(fR(µϱ) ∩ fR(νh))]

= ∩u∈Supp(φψ) [(∩u=ϱhfR(µϱ)) ∩ (∩u=ϱhfR(νh))]

⊇[∩ϱ∈Supp(φ)fR(µϱ)] ∩ [∩ϱ∈Supp(ψ)fR(νϱ)]

=hR[L](φ) ∩ hR[L](ψ).
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The next proposition gives an application of an SI-LA-semigroup to construct an SI-

special LA-ring.

Proposition 4.2.25. If gL is a soft int-LA-semigroup of an LA-semigroup L then hR[L] is

a soft int special LA-ring of R[L], where for φ =
∑
ϱ∈L

µϱϱ ∈ R[L],

hR[L](φ) = ∩ϱ∈supp(φ)gL(ϱ). (4.2.2)

Proof. Let φ and ψ ∈ R[L] then φ =
∑
ϱ∈L

µϱϱ and ψ =
∑
ϱ∈L

νϱϱ where µϱ, νϱ ∈ R for all

ϱ ∈ L.

hR[L](φ− ψ) =hR[L](
∑
ϱ∈L

µϱϱ−
∑
ϱ∈L

νϱϱ)

=hR[L](
∑
ϱ∈L

(µϱ − νϱ)ϱ)

= ∩ϱ∈Supp(φ−ψ) gL(ϱ)

= ∩ϱ∈Supp(φ−ψ) gL(ϱ)

⊇[∩ϱ∈Supp(φ)gL(ϱ)] ∩ [∩ϱ∈Supp(ψ)gL(ϱ)]

=hR[L](φ) ∩ hR[L](ψ).

hR[L](φψ) =hR[L](
∑
ϱ∈L

µϱϱ
∑
ϱ∈L

νϱϱ)

=hR[L](
∑
u∈L

cuu)( where cu =
∑
ϱh=u

µϱνh)

= ∩u∈Supp(φψ) gL(u)

= ∩u=ϱh∈Supp(φψ) gL(ϱh)

⊇ ∩ϱ∈Supp(φ)h∈supp(ψ) [gL(ϱ) ∩ gL(h)]

⊇ ∩ϱ∈Supp(φ)∪supp(ψ) [gL(ϱ) ∩ gL(ϱ)]

= ∩ϱ∈Supp(φ)∪supp(ψ) [gL(ϱ)]

⊇[∩ϱ∈Supp(φ)gL(ϱ)] ∩ [∩ϱ∈Supp(ψ)gL(ϱ)]

=hR[L](φ) ∩ hR[L](ψ).
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The succeeding proposition gives a soft int special LA-ring which is a combination of

a soft int ring and a soft int LA-semigroup.

Proposition 4.2.26. If fR is an SI-ring of a commutative and associative ring R and gL is

an SI-LA-semigroup of an LA-semigroup L then hR[L] is an SI-special LA-ring of R[L],

where for φ =
∑
ϱ∈L

µϱϱ ∈ R[L],

hR[L](φ) = (∩ϱ∈Supp(φfR(µϱ)) ∩ (∩ϱ∈supp(φ)gL(ϱ)). (4.2.3)

Proof. Let φ and ψ ∈ R[L] then φ =
∑
ϱ∈L

µϱϱ and ψ =
∑
ϱ∈L

νϱϱ where µϱ, νϱ ∈ R for all

ϱ ∈ L.

hR[L](φ− ψ) =hR[L](
∑
ϱ∈L

µϱϱ−
∑
ϱ∈L

νϱϱ)

=hR[L](
∑
ϱ∈L

(µϱ − νϱ)ϱ)

=[∩ϱ∈Supp(φ−ψ)fR(µϱ − νϱ)] ∩ [∩ϱ∈supp(φ−ψ)gL(ϱ)]

⊇[∩ϱ∈Supp(φ−ψ)fR(µϱ) ∩ fR(νϱ)] ∩ [∩ϱ∈supp(φ−ψ)gL(ϱ)]

⊇[[∩ϱ∈Supp(φ)fR(µϱ)] ∩ [∩ϱ∈Supp(ψ)fR(νϱ)]] ∩ [[∩ϱ∈Supp(φ)gL(ϱ)] ∩ [∩ϱ∈Supp(ψ)gL(ϱ)]]

=[[∩ϱ∈Supp(φ)fR(µϱ)] ∩ [∩ϱ∈Supp(φ)gL(ϱ)]] ∩ [[∩ϱ∈Supp(ψ)fR(νϱ)] ∩ [∩ϱ∈Supp(ψ)gL(ϱ)]]

=hR[L](φ) ∩ hR[L](ψ).

hR[L](φψ) =hR[L](
∑
ϱ∈L

µϱϱ
∑
ϱ∈L

νϱϱ)

=hR[L](
∑
ϱ∈L

cuu)( where cu =
∑
ϱh=u

µϱνh)

=[∩u∈Supp(φψ)fR(cu)] ∩ [∩u∈Supp(φψ)gL(u)]

=[∩u∈Supp(φψ)fR(
∑
ϱh=u

µϱνh)] ∩ [∩u=ϱh∈Supp(φψ)gL(ϱh)]

⊇[∩u∈Supp(φψ)[∩u=ϱhfR(µϱνh)]] ∩ ∩ϱ∈Supp(φ)h∈supp(ψ)[gL(ϱ) ∩ gL(h)]

⊇[∩u∈Supp(φψ)[∩u=ϱh(fR(µϱ) ∩ fR(νh))]] ∩ ∩ϱ∈Supp(φ)∪supp(ψ)[gL(ϱ) ∩ gL(ϱ)]

=[∩u∈Supp(φψ)[(∩u=ϱhfR(µϱ)) ∩ (∩u=ϱhfR(νh))]] ∩ ∩ϱ∈Supp(φ)∪supp(ψ)[gL(ϱ)]

⊇[∩ϱ∈Supp(φ)fR(µϱ)] ∩ [∩ϱ∈Supp(ψ)fR(νϱ)] ∩ [∩ϱ∈Supp(φ)gL(ϱ)] ∩ [∩ϱ∈Supp(ψ)gL(ϱ)]

=[[∩ϱ∈Supp(φ)fR(µϱ)] ∩ [∩ϱ∈Supp(φ)gL(ϱ)]] ∩ [[∩ϱ∈Supp(ψ)fR(νϱ)] ∩ [∩ϱ∈Supp(ψ)gL(ϱ)]]

=hR[L](φ) ∩ hR[L](ψ).
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Now we establish construction of an SI-ideal.

Proposition 4.2.27. If fR is an SI-left(right) ideal of a commutative and associative ring

R then hR[L] is an SI-left(right) ideal of R[L], where for φ =
∑
ϱ∈L

µϱϱ ∈ R[L],

hR[L](φ) = ∩ϱ∈Supp(φ)fR(µϱ). (4.2.4)

Proof. By Proposition 4.2.24 hR[L] is a soft int-special LA-ring of R[L] over U .

hR[L](φψ) =hR[L](
∑
ϱ∈L

µϱϱ
∑
ϱ∈L

νϱϱ)

=hR[L](
∑
ϱ∈L

cuu)( where cu =
∑
ϱh=u

µϱνh)

= ∩u∈Supp(φψ) fR(cu)

= ∩u∈Supp(φψ) fR(
∑
ϱh=u

µϱνh)

⊇ ∩u∈Supp(φψ) [∩u=ϱhfR(µϱνh)]

⊇ ∩u∈Supp(φψ) [∩u=ϱhfR(νh)]

= ∩ϱ∈supp(ψ) fR(νϱ)

=hR[L](ψ)

Proposition 4.2.28. If pL is an SI-left(right) ideal of an LA-semigroup L then hR[L] is an

SI-left(right) ideal of R[L], where for φ =
∑
ϱ∈L

µϱϱ ∈ R[L],

hR[L](φ) = ∩ϱ∈supp(φ)gL(ϱ). (4.2.5)

Proof. By Proposition 4.2.25 hR[L] is an SI-special LA-ring of R[L] over U .

hR[L](φψ) =hR[L](
∑
ϱ∈L

µϱϱ
∑
ϱ∈L

νϱϱ)

=hR[L](
∑
ϱ∈L

cuu)( where cu =
∑
ϱh=u

µϱνh)

= ∩u∈Supp(φψ) gL(u)

= ∩u=ϱh∈Supp(φψ) gL(ϱh)

⊇ ∩u=ϱh∈Supp(φψ) gL(h)

= ∩ϱ∈supp(ψ) gL(ϱ)

=hR[L](ψ)
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Proposition 4.2.29. If fR is an SI-left(right) ideal of a commutative and associative ring R

and gL is an SI-left(right) ideal of an LA-semigroup L then hR[L] is an SI-left(right) ideal

of R[L], where for φ =
∑
ϱ∈L

µϱϱ ∈ R[L],

hR[L](φ) = (∩ϱ∈Supp(φ)fR(µϱ)) ∩ (∩ϱ∈supp(φ)gL(ϱ)). (4.2.6)

Proof. By Proposition 4.2.26, hR[L] is an SI-special LA-ring of R[L] over U .

hR[L](φψ) =hR[L](
∑
ϱ∈L

µϱϱ
∑
ϱ∈L

νϱϱ)

=hR[L](
∑
ϱ∈L

cuu)( where cu =
∑
ϱh=u

µϱνh)

=[∩u∈Supp(φψ)fR(cu)] ∩ [∩u∈Supp(φψ)gL(u)]

=[∩u∈Supp(φψ)fR(
∑
ϱh=u

µϱνh)] ∩ [∩u=ϱh∈Supp(φψ)gL(ϱh)]

⊇[∩u∈Supp(φψ)[∩u=ϱhfR(µϱνh)]] ∩ [∩u=ϱh∈Supp(φψ)gL(ϱh)]

⊇[∩u∈Supp(φψ)[∩u=ϱhfR(νρ)]] ∩ [∩u=ϱh∈Supp(φψ)gL(h)]

=[∩ϱ∈supp(ψ)fR(νρ)] ∩ [∩ϱ∈supp(ψ)gL(ϱ)]

=hR[L](ψ)

Every SI-soft int-left(right) ideal is an SI-special LA-ring but the converse is not true.

In the following we have an example of a SI-special LA-ring that is neither an SI-left nor

an SI-right ideal.

Example 4.2.30. Consider the following LA-semigroup ring L = {x, y, z}, such that

(L, .) is an LA-semigroup such that:

· x y z

x x x x

y x x z

z x y x

withR = Z2 = {0, 1}R[L] = {0, x, y, z, x+y, x+z, y+z, x+y+z} is an LA-semigroup

ring with additive and multiplicative tables as:
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+ 0 x y z x+y x+z y+z x+y+z

0 0 x y z x+y x+z y+z x+y+z

x x 0 x+y x+z y z x+y+z y+z

y y x+y 0 y+z x x+y+z z x+z

z z x+z y+z 0 x+y+z x y x+y

x+y x+y y x x+y+z 0 y+z x+z z

x+z x+z z x+y+z x y+z 0 x+y y

y+z y+z x+y+z z y x+z x+y 0 x

x+y+z x+y+z y+z x+z x+y z y x 0

and

· 0 x y z x+y x+z y+z x+y+z

0 0 0 0 0 0 0 0 0

x 0 x x x 0 0 0 x

y 0 x x z 0 x+z x+z z

z 0 x y x x+y 0 x+y y

x+y 0 0 0 x+z 0 x+z x+z x+z

x+z 0 0 x+y 0 x+y 0 x+y x+y

y+z 0 0 x+y x+z x+y x+z y+z y+z

x+y+z 0 x y z x+y x+z y+z x+y+z

Now assume that U = L3 = {1, (12), (13), (23), (123), (132)} is the universe set. It is

easy to check that fR[L] is a soft int-special LA-ring over U = L3 where

fR[L](0) = L3

fR[L](x) = {1, (123)}

fR[L](y) = {1}

fR[L](z) = {1}

fR[L](x+ y) = {1, (12)}

fR[L](x+ z) = {1, (13)}

fR[L](y + z) = {1, (23)}

fR[L](x+ y + z) = {1, (132)}.

fR[L] is neither an SI-left nor an SI-right ideal as,

fR[L]((x+ y)(y + z)) + fR[L](x+ y) and fR[L]((x+ y)(y + z)) + fR[L](y + z).
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Chapter 5

Applications to Coding Theory

DNA computations over associative and commutative rings and fields have attracted many

researchers for more than two decades. DNA codes are commonly constructed over a four

letter alphabet. In this chapter, we change the trend by introducing DNA codes over a

non-commutative and non-associative four-element structure; a special LA-field FSLA4.

Linear cyclic codes are established over a special LA-field. In particular, the reversible

complement cyclic codes over FSLA4 with odd lengths are considered. This is an important

class of codes for DNA computing, as these codes satisfy the Hamming constraint and the

reversible complement constraint. We establish an algorithm to construct these codes and

obtain required codes of lengths 5, 7, 9 and 11. The motivation behind the construction of

such codes is taken from an article "Construction of Cyclic Codes over GF (4) for DNA

Computing," published in Journal of Franklin Institute, 2006. In this article, T. Abualrub et

al. [1] constructed the reversible complement cyclic codes over GF (4) with odd lengths.

5.1 Special LA-Vector Space

Shah and Rehman defined an LA-module in [131]. Similarly, a special LA-vector space

can be defined as:

Definition 5.1.1. Let (FSLA,+, .) be a special LA-field with left identity ‘e’. An abelian

group (V,+) is called a special LA-vector space over FSLA, if the map FSLA × V → V,

defined as (a, v) 7→ av ∈ V (where a ∈ FSLA and v ∈ V ), satisfies:

1. a(v1 + v2) = av1 + av2
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2. (a1 + a2)v = a1v + a2v

3. a1(a2v) = a2(a1v)

4. e.v = v, for each a, a1, a2 ∈ FSLA and v, v1, v2 ∈ V.

We call the elements of a special LA-vector space as special LA-vectors or simply

vectors.

Example 5.1.2. 1. Every special LA-field FSLA is a special LA-vector space over it

self.

2. Let FSLA be a special LA-field then it is not hard to show that for a positive integer n,

F n
SLA = {(a1, a2, ..., an) : all ai ∈ FSLA} is a special LA-vector space over FSLA.

Here the operations are defined component wise.

3. Let FSLA be a special LA-field andX be a non-empty set then the setMap(X,FSLA) =

{f : X → FSLA} is a special LA-vector space over FSLA.

4. Let V be the set of all polynomials over a special LA-field FSLA. Then V is a special

LA-vector space over FSLA.

Definition 5.1.3. An additive subgroup S of a special LA-vector space V over a special

LA-field FSLA is called a special LA-subspace over FSLA, if FSLAS ⊆ S, i.e., as ∈ S for

all a ∈ FSLA and s ∈ S.

The notions of basis and dimension for a special LA-vector space are defined in a way

that is similar to that for an ordinary vector space.

5.2 Linear Cyclic Codes over a Special LA-field for DNA

Computations

Since, the purpose of our study is to develop cyclic DNA codes over a special LA-field,

we first establish some theory for the linear and cyclic codes over special LA-fields.

A code over a special LA-field is a subset of the special LA-vector space F n
SLA. Linear

codes over associative fields have many interesting algebraic properties. For the first time,

we are defining a linear code over a special LA-field, taking the alphabet of symbol to be

a finite special LA-field FSLA.
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Definition 5.2.1. Let FSLA be a finite special LA-field and n a positive integer. A special

LA-subspace C of the special LA-vector space V = FSLA
n is said to be a linear code

over FSLA. If the dimension of C as a special LA-subspace is k, then we say that, C is an

[n, k]−code. Moreover, if the code C has minimum hamming distance d, it is called an

[n, k, d]−code.

Example 5.2.2. Consider the special LA-field FSLA4 = {0, 1, 2, 3}.

C1 = {000, 120, 230, 310} is a linear [3, 1, 2]−code over FSLA4. But the code C2 =

{000, 102, 223} over FSLA4 is not linear because 102 + 223 = 321, but 321 is not a code-

word.

A linear code C ⊂ FSLA
n is called a cyclic code if it is invariant under the mapping

σ : FSLA
n → FSLA

n given by

σ(ξ1, ξ2, ..., ξn) = (ξn, ξ1, ..., ξn−1). (5.2.1)

σ is called as a cyclic shift. For instance, On the special LA-field FSLA4,

C3 = {000, 111, 222, 333} and C4 = {000, 123, 231, 312} are cyclic [3, 1, 3]−codes and

the linear code C1 of Example 5.2.2 is not cyclic.

The set

FSLA[t]n = {a0 + a1t+ ...+ an−1t
n−1|a0, a1, ..., an−1 ∈ FSLA} (5.2.2)

is clearly a special LA-vector space over FSLA with dimension n. As a 7→ a(t) is an

LA-ring isomorphism between the special LA-vector spaces FSLAn and FSLA[t]n, hence-

forth we can identify FSLAn with FSLA[t]n. Thus, corresponding to each codeword ξ =

(ξ0, ..., ξn−1) we have a polynomial ξ(t) = ξ0 + ξ1t+ ...+ ξn−1t
n−1.

In Section 3.5.3, we established that the set FSLA[t] of all finitely non-zero functions

from the set of non-negative integers into a special LA-ring is also a special LA-ring and is

called the special LA-ring of Polynomials over FSLA. For any polynomial η(t) ∈ FSLA[t],

we can construct the special LA-ring FSLA[t]/ < η(t) > where, < η(t) > denotes the

principal left ideal generated by η(t). If η(t) has degree n, then FSLA[t]/ < η(t) > can

be identified with FSLA[t]n. The multiplication in the special LA-ring FSLA[t]n is modulo

η(t).

In particular taking η(t) = tn − 1, the quotient special LA-ring FSLA[t]/(tn − 1) is

identified with FSLA[t]n such that tn − 1 = 0. Thus FSLA[t]n is turned into a special LA-
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ring with relation that tn − 1 = 0. FSLA[t]n is a special LA-ring as well as a special LA-

vector space over FSLA and hence it is a special LA-algebra over FSLA. Let C ⊂ FSLA
n

be a linear code. Since we identify every codeword ξ = (ξ0, ..., ξn−1) to a polynomial

ξ(t) ∈ FSLA[t]n, so C ⊂ FSLA[t]n. The elements of C are now referred to as codewords

or code polynomials.

Theorem 5.2.3. LetC be a linear code over FSLA. ThenC is cyclic if and only if tξ(t) ∈ C

for every ξ(t) ∈ C. Where multiplication is performed modulo (tn − 1).

Proof. In the special LA-ring FSLA[t], where the operation of multiplication is performed

in the usual manner,

tξ(t) = t(ξ0 + ξ1t+ ...+ ξn−1t
n−1) = ξ0t+ ξ1t

2 + ...+ ξn−1t
n. (5.2.3)

In the special LA-ring FSLA[t]n, where the operation of multiplication is performed

modulo (tn − 1),

tξ(t) = ξn−1 + ξ0t+ ξ1t
2 + ...+ ξn−2t

n−1 ∈ C (5.2.4)

Thus, it is clear that multiplication by t in the special LA-ring FSLA[t]n corresponds to

cyclic shift σ in FSLAn.

Following theorem asserts that unlike associative fields and commutative rings, a cyclic

code over a special LA-field is a left ideal.

Theorem 5.2.4. Let C be a subset of FSLA[t]n, C is a cyclic code if and only if C is a left

ideal of the special LA-ring FSLA[t]n.

Proof. As C is a cyclic code, it is a linear code over FSLA. This implies that for all

ξ(t), ϑ(t) ∈ C and all λ ∈ FSLA, ξ(t) − ϑ(t) ∈ C and λξ(t) ∈ C. Since C is cyclic,

by Theorem 5.2.3, tξ(t) ∈ C for all ξ(t) ∈ C. Hence, t2ξ(t) ∈ C, and so on. Therefore,

for every ρ(t) = ρ0 + ρ1t+ ...+ ρn−1t
n−1 ∈ FSLA[t]n,

ρ(t)ξ(t) = ρ0ξ(t) + ρ1tξ(t) + ...+ ρn−1t
n−1ξ(t) ∈ C. (5.2.5)

Thus, C is proved to be a left ideal in the ring FSLA[t]n.

Conversely, suppose C is a left ideal. Let ξ(t), ϑ(t) ∈ C and λ ∈ FSLA. Then ξ(t) −

ϑ(t), λϑ(t) ∈ C since λ ∈ FSLA[t]n. Hence C is a linear code. Further ρ(t)ξ(t) ∈ C for

all ρ(t) ∈ FSLA[t]n. In particular, tξ(t) ∈ C and by Theorem 5.2.3, C is a cyclic code.
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Following is an example of a cyclic code over a special LA-field that is a left ideal but

not a two-sided ideal.

Example 5.2.5. Consider the special LA-field FSLA4. The code < 1 + 3t2 + t4 > over

FSLA4 is a left ideal of FSLA[t]5 but, it it fails to become a right ideal.

Following two propositions are generalizations of the propositions 8.1 and 8.2, [115].

Proposition 5.2.6. Let C be a cyclic code over FSLA. Then, there exists a unique monic

polynomial ϱ(t) such that, for each ξ(t) ∈ FSLA[t]n, ξ(t) ∈ C if and only if ϱ(t) divides

ξ(t) from right.

Proof. According to the requirements on ϱ(t), it must belong to C (as clearly ϱ(t) divides

ϱ(t) from right). Also, it is unique as it divides all other monic polynomials in C from

right). Consider ϱ(t) to be a non-zero, monic polynmial of smallest degree in C. For every

α(t) ∈ FSLA[t] we have α(t)ϱ(t)mod(tn − 1) ∈ C. Particularly, if α(t) ∈ FSLA[t]n, then

we have α(t)ϱ(t) ∈ C. Hence, all the multiples of ϱ(t) (from left side) by the polynomials

in FSLA[t]n belong to C.

Conversely, consider ξ(t) to be a codeword in C then, using division algorithm (Theo-

rem 3.5.3), ξ(t) = α(t)ϱ(t) + ρ(t) where degρ < degϱ. Now, both ξ(t) and α(t)ϱ(t) are

in C, because C is a left ideal of FSLA[t]n and so is ρ(t) = ξ(t)− α(t)ϱ(t). Since ϱ(t) has

least degree in C, we have ρ(t) equal to 0 i.e., ϱ(t) divides ξ(t) from right.

From the Proposition 5.2.6, we can write a cyclic codeC overFSLA as: C = {a(t)ϱ(t) :

a(t) ∈ FSLA[t]n}. Hence C is a principal left ideal of FSLA[t]n generated by ϱ(t), that is

C =< ϱ(t) > . We call ϱ(t), the generator polynomial of C.

Proposition 5.2.7. Let C be a cyclic code over FSLA with generator ϱ(t). Then, ϱ(t)

divides tn − 1 from right.

Proof. Using the division algorithm, we can write tn−1 = ϑ(t)ϱ(t)+ r(t), where degr <

degg. Now, ρ(t) = −ϑ(t)ϱ(t)mod(tn − 1) and therefore, from Proposition 5.2.6, we have

ρ(t) ∈ C. This indicates that ρ(t) = 0, as ϱ(t) is the smallest degree codeword in C.

The reciprocal of a polynomial ξ(t) = ξ0+ξ1t+...+ξmt
m with ξm 6= 0, is defined as the

polynomial ξ∗(t) = tmξ(1/t) = ξr+ξr−1t+ ...+ξ1t
r−1+ξ0t

r. Clearly degξ∗(t) ≤ degξ(t)

with equality when ξ0 6= 0. ξ(t) is said to be self-reciprocal if and only if ξ(t) = ξ∗(t).
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5.3 DNA Cyclic Codes over a Special LA-field

DNA comprises of sequences of letters from the alphabet {A,C,G, T}. A DNA code of

length n is defined to be a set of codewords (ξ0, ..., ξn−1) where ξi ∈ {A,C,G, T}.Because

of having a one-one correspondence with the DNA alphabet, Z4, GF (4) and F2 + uF2 are

the frequently used rings for DNA computations.

In this section, we shall construct codes over FSLA4 = {0, 1, 2, 3} and would associate

them with codes over {A,C,G, T}. We map A to 0, G to 3, C to 2 and T to 1. The Watson-

Crick complement is: Ac = T, T c = A, Cc = G and Gc = C. The reverse of a codeword

ξ = (ξ0, ..., ξn−1) is defined to be ξr = (ξn−1, ξn−2, ..., ξ0), the complement of ξ to be

ξc = (ξc0, ξ
c
1, ..., ξ

c
n−1) and the reverse complement to be ξrc = (ξcn−1, ξ

c
n−2, ..., ξ

c
0).

Definition 5.3.1. Let C be a linear code over a special LA-field of length n. C is said to

be

1. a reversible code, if ξr ∈ C for each ξ ∈ C.

2. a complement code, if ξc ∈ C for each ξ ∈ C.

Definition 5.3.2. We call a cyclic code C of length n and minimum distance d over a

special LA-field reversible complement if C is reversible and complement.

Example 5.3.3. The DNA cyclic codes of length 3 over FSLA4 are:

C1 =< TTT >= {AAA, TTT,CCC,GGG},

C2 =< TCG >= {AAA, TCG, CGT, GTC},

C3 =< TGC >= {AAA, CTG, TGC, GCT},

C4 =< ATT >= {AAA, CAC, TAT, TTA, ATT, GGA, AGG, GAG, CCA, ACC, CGT,

GCT, CTG, GTC, TCG, TGC},

C5 =< ATC >= {AAA, ATC, TCA, CAT, GTA, AGT, TAG, ACG, GAC, CGA, CCC,

GGG, CTG, GCT, TTT, TGC},

C6 =< ATG >= {AAA, TAC, ACT, CTA, GTC, CGT, TCG, CCC, GGG, TTT, AGC,

CAG, GCA, ATG, GAT, TGA}.

C1, C5 and C6 are complement codes. C1 and C4 are reversible codes and C1 is the

only reversible complement code.
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Now we categorise the family of reversible complement cyclic codes over FSLA4.

These codes have great significance as they satisfy the following constraints [1]:

1. The Hamming constraint: H(ξ, ϑ) ≥ d,where ξ and ϑ are two different codewords

in C. The purpose of this constraint is to limit the undesirable hybridization between

the Watson Crick complement of a codeword to a different codeword.

2. The reverse-complement constraint: H(ξc, ϑr) ≥ d, where ξ and ϑ are any two

codewords in C. The purpose of this constraint is to avoid the undesirable hybridiza-

tion betwixt a codeword and the reverse of another codeword.

Following theorem provides a criterion for a linear cyclic code over FSLA4 to be a re-

versible code. It is a generalization of Theorem 1, [93].

Theorem 5.3.4. Linear cyclic code C =< ϱ(t) > over FSLA4 is reversible if and only if

ϱ(t) is self reciprocal.

Proof. Let ξ(t) be a codeword from C with corresponding n-tuple ξ = (ξ0, ξ1, ..., ξn−1).

The reverse n-tuple ξr = (ξn−1, ξn−2, ..., ξ0) corresponds to the polynomial ξ∗(t) where

ξ∗(t) = tn−1ξ(1/t). As ξ(t) = η(t)ϱ(t),

ξ∗(t) =tn−1[η(1/t)ϱ(1/t)]

=[tn−r−1tr][η(1/t)ϱ(1/t)]

=[tn−r−1η(1/t)][trϱ(1/t)] (using the medial law).

The polynomial trϱ(1/t) is the reciprocal polynomial ϱ∗(t) of the polynomial ϱ(t). Now

the set of reversed codewords form a cyclic code generated by ϱ∗(t). This is same as the

original code generated by ϱ(t) if and only if ϱ∗(t) = ϱ(t).

Following Lemma is a reformulation of Lemma 19, [2] in terms of special LA-fields.

Lemma 5.3.5. Let η1(t), η2(t) be any two polynomials inFSLA4,with degη1(t) ≥ degη2(t).

Then

1. [η1(t)η2(t)]
∗ = η1(t)

∗η2(t)
∗; and

2. [η1(t) + η2(t)]
∗ = η1(t)

∗ + tdegη1−degη2η2(t)
∗.
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Proof. 1.

η1(t)
∗η2(t)

∗ =[tdegη1η1(1/t)][t
degη2η2(1/t)]

=[tdegη1tdegη2][η1(1/t)η2(1/t)](by medial law)

=tdegη1+degη2η1(1/t)η2(1/t)

=[η1(t)η2(t)]
∗.

2.

[η1(t) + η2(t)]
∗ =tdeg(η1+η2)[η1(1/t) + η2(1/t)]

=tdeg(η1+η2)[η1(1/t) + η2(1/t)]

=tdegη1 [η1(1/t) + η2(1/t)]

=tdegη1η1(1/t) + tdegη1η2(1/t)]

=tdegη1η(1/t) + tdegη1−degη2tdegη2η2(1/t)

=η1(t)
∗ + tdegη1−degη2η2(t)

∗.

Lemma 5.3.6. Let tn − 1 = η(t)β(t)ρ(t), where η(t) and β(t) are nontrivial polynomials

that divide tn − 1 in FSLA4[t]n. Then

1. if η(t) and β(t) are self-reciprocal then η(t)β(t) is self reciprocal,

2. if either η(t) or β(t) (but not both) is not self-reciprocal then η(t)β(t) is not self-

reciprocal,

Proof. The proof is an analog of the proof of Lemma 5, [1].

Following proposition is a generalization of Lemma 8, [1].

Proposition 5.3.7. A linear cyclic code C =< ϱ(t) > of length n (odd) over FSLA4 is

complement ⇔ t− 1 does not divide ϱ(t).

Proof. Let C =< ϱ(t) > to be cyclic code over FSLA4. Take a codeword ξ0 + ξ1t + ... +

ξn−1t
n−1 from C (where n is odd). ξc(t) = ξc0+ ξc1t+ ...+ ξcn−1t

n−1. Notice that, for any x

in FSLA4, x+ xc = 1. Thus, ξ(t) + ξc(t) = 1+ t+ ...+ tn−1 ∈ C ⇔ tn− 1/t− 1 ∈ C ⇔

tn − 1/t− 1 = p(t)ϱ(t) ⇔ tn − 1 = (p(t)ϱ(t))(t− 1) (for some polynomial p(t)). Since

n is odd, by Remark 3.5.11 tn − 1 has unique distinct irreducible factors. So, ξc(t) ∈ C if

and only if t− 1 does not divide ϱ(t).

110



Algorithm for the Construction of Reversible Complement Cyclic Codes

of Odd Lengths over FSLA4

We used the theory developed above and formulated the following algorithm to construct

reversible complement cyclic codes over FSLA4 of length n, where n = 5, 7, 9 and 11.

Input: A non-associative special LA-field FSLA4 = {0, 1, 2, 3}.

Step 1: Generate all the elements ϱ(t) of the special LA-ring FSLA4[t]n.

Step 2: Iterate over the elements in step 1, accept if; ϱ(t) = ϱ∗(t) (i.e., ϱ(t) is self recipro-

cal).

Step 3: Iterate over the elements in step 2, accept if; t− 1 doesn’t divide ϱ(t).

Step 4: Generate a left principal ideal C of FSLA4[t]n from each element in step 3.

Step 5: Store unique ideals C from step 4 as reversible complement cyclic codes over

FSLA4.

Using the above algorithm and found the following codes:

• Length 5: There are two codes given by:

C1 =< t2 + 2t+ 1 > .

C2 =< t4 + t3 + t2 + t+ 1 > .

• Length 7: There is only one code given by:

C =< t6 + t5 + t4 + t3 + t2 + t+ 1 > .

• Length 9: We get three codes as:

C1 =< t2 + t+ 1 > .

C2 =< t6 + t3 + 1 > .

C3 =< t8 + t7 + t6 + t5 + t4 + t3 + t2 + t+ 1 > .

• Length 11: The only code we obtained is given :

C =< t10 + t9 + t8 + t7 + t6 + t5 + t4 + t3 + t2 + t+ 1 > .

Remarks on Running Times

We used a computer system with processor: IntelrCoreTM i5−2410M CPU@@2.30GHz×

4, RAM: 6 GB and python version 3.6 for the computation process. The processing times

for n=5, 7, 9 and 11 are given in the following table:
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n T E G P

5 0.33 sec 1024 48 0.019 sec

7 29 sec 16384 192 0.45 sec

9 45 min 262144 768 10 sec

11 3 days 4194304 3072 4 min

where T = Total processing time, E = No. of elements in FSLA4[t]n, G = number of

generators with required constraints, and P = processing time for a single generator.
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Chapter 6

Applications to Cryptography

Cryptology deals with the secure storage and communication of data. It has two subdi-

visions; cryptography and cryptanalysis. Cryptography is the way of keeping the infor-

mation confidentiality using mathematical approaches, while cryptanalysis is the art of

cracking encrypted information using mathematical and computational devices without

accessing the cryptographic key. Though, both cryptography and cryptanalysis aim at the

same target, however cryptanalysis has transformed the techniques and methods radically

throughout the history of cryptography. There are many of techniques have been used

for cryptanalysis. Differential cryptanalysis is widely used for block ciphers. Differential

cryptanalysis is a study in which we analyze the concern of specific difference in plain-

text pairs on the difference of the consequent cipher text pairs. These differences are used

to allocate probabilities to the practicable keys and to find the nearly all possible keys

[22]. Literature review concludes that differential attack is the only attack which applies

on such S-boxes that are constructed by finite Galois field extension of binary field Z2.

The S-boxes are typically constructed over Galois field and some other commutative and

associative structures. In this chapter, we construct S-boxes of different orders over spe-

cial LA-rings. In wake of the non-associative and non-commutative behavior of the ring

structure, these S-boxes have increased resilience.

6.1 Cryptosystem Design over a Special LA-field

In this section, small S-boxes are designed over a special LA-field of order 16. The purpose

of these S-boxes designing is to increase the robustness due to non-commutative and non-
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associative behaviour of the LA-rings. We used the Majority Logic Criterion (MLC) to

determine the strength of these S-boxes in image encryption. A watermarking application

of these S-boxes is given along with their comparison in the context.

6.1.1 S-box Construction over a Non-associative LA-field of Order 16

We used MACE4 [95] to find the following example of a special LA- field FSLA of order

16. Let FSLA = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15} be an LA-field with the

operations of addition and multiplication defined by Table 6.1 and Table 6.2 respectively.

+ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 0 3 2 6 7 4 5 11 13 15 8 14 9 12 10

1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 3 2 1 0 7 6 5 4 14 15 13 12 11 10 8 9

3 2 3 0 1 5 4 7 6 12 10 9 14 8 15 11 13

4 6 4 7 5 1 3 0 2 9 8 12 13 10 11 15 14

5 7 5 6 4 3 1 2 0 10 12 8 15 9 14 13 11

6 4 6 5 7 0 2 1 3 13 11 14 9 15 8 10 12

7 5 7 4 6 2 0 3 1 15 14 11 10 13 12 9 8

8 11 8 14 12 9 10 13 15 1 4 5 0 3 6 2 7

9 13 9 15 10 8 12 11 14 4 1 3 6 5 0 7 2

10 15 10 13 9 12 8 14 11 5 3 1 7 4 2 6 0

11 8 11 12 14 13 15 9 10 0 6 7 1 2 4 3 5

12 14 12 11 8 10 9 15 13 3 5 4 2 1 7 0 6

13 9 13 10 15 11 14 8 12 6 0 2 4 7 1 5 3

14 12 14 8 11 15 13 10 9 2 7 6 3 0 5 1 4

15 10 15 9 13 14 11 12 8 7 2 0 5 6 3 4 1

Table 6.1: Addition table for LA-field FSLA
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· 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 4 1 3 5 8 10 9 12 15 7 0 14 11 2 13 6

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3 6 1 0 4 9 8 11 13 7 14 15 3 2 10 5 12

4 9 1 4 8 7 15 14 2 12 13 6 5 3 0 10 11

5 11 1 6 9 14 7 3 10 13 5 12 4 0 15 8 2

6 8 1 5 10 15 0 7 11 6 12 4 13 14 3 2 9

7 13 1 7 12 2 11 10 4 3 0 14 15 8 9 6 5

8 14 1 9 7 13 12 5 0 2 10 11 8 4 6 15 3

9 7 1 8 15 12 6 13 3 11 2 9 10 5 4 0 14

10 3 1 11 14 5 13 4 15 10 8 2 9 6 12 7 0

11 15 1 10 0 6 4 12 14 9 11 8 2 13 5 3 7

12 10 1 13 2 0 3 15 9 4 6 5 12 7 14 11 8

13 2 1 12 11 3 14 0 8 5 4 13 6 15 7 9 10

14 12 1 15 6 11 9 2 5 14 3 7 0 10 8 4 13

15 5 1 14 13 10 2 8 6 0 15 3 7 9 11 12 4

Table 6.2: Multiplication table for LA-field FSLA

4× 4 S-box over Galois Field GF (24)

The elements of Galois extension field GF (24) of order 16 are given in the Table 6.3:

Exp Polynomial Nibble Exp Polynomial Nibble Exp Polynomial Nibble

−∞ 0 0000 5 x+ x2 0110 11 1 + x3 1001

0 1 1000 6 x+ x3 0101 12 x3 0001

1 1 + x 1100 7 1 + x2 + x3 1011 13 1 + x+ x3 1101

2 1 + x2 1010 8 x2 0010 14 x+ x2 + x3 0111

3 1 + x+ x2 + x3 1111 9 x2 + x3 0011

4 x 0100 10 1 + x+ x2 1110

Table 6.3: Galois extension field GF (24)
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Now, let us construct a typical S-box on the Galois field extension GF (24). It could be

seen in Table 6.4, the most basic 4× 4 S-box and it satisfies all the fundamental properties

being an S-box.

0 11 12 6

0000 1011 1100 0110

3 8 4 2

0011 1000 0100 0010

1 9 13 15

0001 1001 1001 1111

14 7 10 5

1110 0111 1100 0101

Table 6.4: S-box on GF (24)

Construction Steps of 4× 4 S-box over LA-field of Order 16

1. Table FSLA, LA-field of order 16.

2. Define an inversion map f : FSLA − {1} → FSLA − {1}.

3. Define an Affine transformation g : FSLA → FSLA as: g(a) = 3a+ 10.

4. Compose the two functions f and g.

5. Construct a 4× 4 S-box by arranging the step 4 row wise.

Define the invertive map f : FSLA − {1} → FSLA − {1} as: f(a) = a−1.

a 0 2 4 5 6 7 8 9 10 11 12 13 14 15 4

a−1 13 2 7 15 14 4 8 9 10 11 3 0 6 5 7

Table 6.5: The multiplicative inverses chart of elements of FSLA

a 0 2 4 5 6 7 8 9 10 11 12 13 14 15 4

f(a) 13 2 7 15 14 4 8 9 10 11 3 0 6 5 7

Table 6.6: The function f
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Now define the Affine function g : FSLA → FSLA as: g(a) = 3a+ 10.

a 0 1 2 4 5 6 7 8 9 10 11 12 13 14 15 4

g(a) 14 10 15 12 3 5 7 2 11 6 0 9 13 1 8 4

Table 6.7: The function g

Thus, the composition g ◦ f : FSLA − {1} → FSLA is given in the Table 6.8.

a 0 2 4 5 6 7 8 9 10 11 12 13 14 15 4

g ◦ f(a) 1 15 13 2 4 8 3 11 6 0 9 12 14 7 5

Table 6.8: The Table for function g ◦ f

1 10 15 13

1 1010 1111 1101

2 4 8 3

10 100 1000 11

11 6 0 9

1011 110 0 1001

12 14 7 7

1100 1110 111 111

Table 6.9: The 4× 4 S-box over LA-field FSLA of order 16

The XOR operation for FSLA and GF (16) are given in Table 6.10 and Table 6.11.
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a b a XOR b a XOR b a b a XOR b a XOR b a b a XOR b a XOR b a b a XOR b a XORb

FSLA GF (16) FSLA GF (16) FSLA GF (16) FSLA GF(16)

0 0 0 0 2 0 2 2 4 0 4 4 6 0 6 6

0 1 1 1 2 1 3 5 4 1 5 15 6 1 7 11

0 2 2 2 2 2 0 0 4 2 6 10 6 2 4 3

0 3 3 3 2 3 1 6 4 3 7 7 6 3 5 2

0 4 4 4 2 4 6 10 4 4 0 0 6 4 2 12

0 5 5 5 2 5 7 1 4 5 1 8 6 5 3 9

0 6 6 6 2 6 4 3 4 6 2 12 6 6 0 0

0 7 7 7 2 7 5 12 4 7 3 3 6 7 1 10

0 8 8 8 2 8 10 15 4 8 12 5 6 8 14 14

0 9 9 9 2 9 11 11 4 9 13 14 6 9 15 5

0 10 10 10 2 10 8 4 4 10 14 2 6 10 12 7

0 11 11 11 2 11 9 9 4 11 15 13 6 11 13 1

0 12 12 12 2 12 14 7 4 12 8 6 6 12 10 4

0 13 13 13 2 13 15 14 4 13 9 11 6 13 11 15

0 14 14 14 2 14 12 13 4 14 10 9 6 14 8 8

0 15 15 15 2 15 13 8 4 15 11 1 6 15 9 13

1 0 1 1 3 0 3 3 5 0 5 5 7 0 7 7

1 1 0 0 3 1 2 9 5 1 4 2 7 1 6 14

1 2 3 5 3 2 1 6 5 2 7 1 7 2 5 12

1 3 2 9 3 3 0 0 5 3 6 11 7 3 4 4

1 4 5 15 3 4 7 7 5 4 1 8 7 4 3 3

1 5 4 2 3 5 6 11 5 5 0 0 7 5 2 13

1 6 7 11 3 6 5 2 5 6 3 9 7 6 1 10

1 7 6 14 3 7 4 4 5 7 2 13 7 7 0 0

1 8 9 10 3 8 11 13 5 8 13 4 7 8 15 11

1 9 8 3 3 9 10 1 5 9 12 6 7 9 14 15

1 10 11 8 3 10 9 12 5 10 15 15 7 10 13 6

1 11 10 6 3 11 8 5 5 11 14 3 7 11 12 8

1 12 13 13 3 12 15 10 5 12 9 14 7 12 11 2

1 13 12 12 3 13 14 8 5 13 8 7 7 13 10 5

1 14 15 7 3 14 13 15 5 14 11 12 7 14 9 1

1 15 14 4 3 15 12 14 5 15 10 10 7 15 8 9

Table 6.10: The XOR operations in LA-field FSLA and Galois field GF (24) of orders 16
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a b a XOR b a XOR b a b a XOR b a XOR b a b a XOR b a XOR b a b a XOR b a XORb

FSLA GF (16) FSLA GF (16) FSLA GF (16) FSLA GF(16)

8 0 8 8 10 0 10 10 12 0 12 12 14 0 14 14

8 1 9 10 10 1 11 8 12 1 13 13 14 1 15 7

8 2 10 15 10 2 8 4 12 2 14 7 14 2 12 13

8 3 11 13 10 3 9 12 12 3 15 10 14 3 13 15

8 4 12 5 10 4 14 2 12 4 8 6 14 4 10 9

8 5 13 4 10 5 15 15 12 5 9 14 14 5 11 12

8 6 14 14 10 6 12 7 12 6 10 4 14 6 8 8

8 7 15 11 10 7 13 6 12 7 11 2 14 7 9 1

8 8 0 0 10 8 2 1 12 8 4 9 14 8 6 6

8 9 1 12 10 9 3 13 12 9 5 8 14 9 7 4

8 10 2 1 10 10 0 0 12 10 6 3 14 10 4 11

8 11 3 7 10 11 1 14 12 11 7 15 14 11 5 10

8 12 4 9 10 12 6 3 12 12 0 0 14 12 2 5

8 13 5 3 10 13 7 9 12 13 1 1 14 13 3 2

8 14 6 6 10 14 4 11 12 14 2 5 14 14 0 0

8 15 7 2 10 15 5 5 12 15 3 11 14 15 1 3

9 0 9 9 11 0 11 11 13 0 13 13 15 0 15 15

9 1 8 3 11 1 10 6 13 1 12 12 15 1 14 4

9 2 11 11 11 2 9 9 13 2 15 14 15 2 13 8

9 3 10 1 11 3 8 5 13 3 14 8 15 3 12 14

9 4 13 14 11 4 15 13 13 4 9 11 15 4 11 1

9 5 12 6 11 5 14 3 13 5 8 7 15 5 10 10

9 6 15 5 11 6 13 1 13 6 11 15 15 6 9 13

9 7 14 15 11 7 12 8 13 7 10 5 15 7 8 9

9 8 1 12 11 8 3 7 13 8 5 3 15 8 7 2

9 9 0 0 11 9 2 2 13 9 4 10 15 9 6 7

9 10 3 13 11 10 1 14 13 10 7 9 15 10 5 5

9 11 2 2 11 11 0 0 13 11 6 4 15 11 4 12

9 12 5 8 11 12 7 15 13 12 1 1 15 12 3 11

9 13 4 10 11 13 6 4 13 13 0 0 15 13 2 6

9 14 7 4 11 14 5 10 13 14 3 2 15 14 1 3

9 15 6 7 11 15 4 12 13 15 2 6 15 15 0 0

Table 6.11: The XOR operations in LA-field FSLA and Galois field GF (24) of orders 16
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6.1.2 Majority Logic Criterion for the Analysis of S-Boxes

In [64, 126], a majority logic criterion (MLC) has been provided. The purpose of MLC is

the analysis of the statistical strength of the S-box, used in image encryption. Encryption

produces distortions in the image, and the type of these distortions determines the strong

composition of the algorithm. The entropy gauges the measure of randomness in a system.

The degree of entropy in an image is connected to the positioning of pieces, which enables

the human eye to recognise the image. Contrast licenses the watcher to identify the stuffs

in an image. Because of the technique used to encrypt the image, the amount of random-

ness upsurges ends up in the altitude of contrast level to a very tall value. The higher level

of contrast in the encrypted image reflects a robust encryption. Correlation is an investi-

gation that calculates the correlation of a pixel to its neighbor by ownership into account

the texture of the entire image. The closeness of the distribution of components in the

grey level co-occurrence matrix (GLCM) to GLCM diagonal is dealt by the homogeneity

analysis. The statistics of combinations of pixel brightness values or grey levels in tabular

form are displayed by the GLCM. For analysis, we measure the energy of the encrypted

images as conserved by several S-boxes. This measure offers the sum of square elements

in GLCM. The results of MLC, arranged in Table 6.12, display that the proposed S-boxes

fulfill all the criteria as much as the standard and can be utilized for safe communication.

Figure 6.1: Four 512× 512 plain images of Airplane; Baboon; Lena; Pepper

6.1.3 Differential Cryptanalysis on LA-field FSLA based S-box

In [54], it is demarcated that differential cryptanalysis constructs the high probability in

the differences of precise outcomes of plaintext and differences into the final round of the

cipher. Such as, observe a procedure with two inputs A′ and A′′ and resulting outputs B′
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LSB Airplane Baboon Lena Pepper

Image→

MLC↓

Contrast 0.275 0.5381 0.2491 0.2944

Correlation 0.939 0.9281 0.9778 0.9763

Energy 0.2712 0.1513 0.1689 0.1721

Homogeneity 0.9302 0.838 0.9181 0.9222

Entropy 5.5133 5.9673 5.9698 5.9901

LSB Airplane Baboon Lena Pepper

Image→

MLC↓

Contrast 0.311 0.6646 0.2763 0.3391

Correlation 0.9401 0.9401 0.9779 0.9756

Energy 0.3413 0.3413 0.1625 0.1925

Homogeneity 0.9245 0.9245 0.914 0.9113

Entropy 5.5077 5.5077 5.9538 5.9911

Table 6.12: MLC of LSB’s of four 512 × 512 images by S-boxes on Galois field GF (24)

and LA-field FSLA

and B′′ correspondingly. ∆A = A′ + A′′ and is known as input difference where signify

an addition defined in addition Table 6.1 and therefore,

∆A = [∆A1,∆A2, ...,∆An] (6.1.1)

whereas ∆A = A′+A′′ byA′ andA′′ on behalf of the ith bit ofA′ andA′′, correspondingly.

Similarly, ∆B = B′ +B′′ is the output difference and given as;

∆B = [∆B1,∆B2, ...,∆Bn]. (6.1.2)

Calculation of Difference Distribution Table of S-box

By taking the S-box of our cipher, for every input pair as (∆A = A′ + A′′), the resulting

values of ∆B were derived. We calculate the difference distribution tables of LA field

like differential attack on Mini-AES by using addition of LA field, instead of bitwise XOR

[50]. For an S-box we summarize the data in a "difference distribution table" in which ∆A

values (in decimal) arranged in rows and ∆B (in decimal) are in columns. These tables for

the S-boxes of Table 6.9 and Table 6.4 are given in Table 6.13 and Table 6.14 respectively.
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Difference Distribution Tables of S-boxes

Inputs Outputs

(A) (B)

2 10 8 13 9 0 5 1 12 4 11 15 3 7 14 6

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 2 0 1 1 1 1 1 1 1 1 1 1

3 1 1 1 2 1 0 1 1 1 1 1 1 1 1 1 1

4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

11 1 1 1 1 1 1 2 0 1 1 1 1 1 1 1 1

12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 6.13: Difference Distribution Table of S-box over LA-field FSLA

Inputs Outputs

(A) (B)

0 11 12 6 3 8 4 2 1 9 13 15 14 7 10 5

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 2 0 0 0 2 0 2 2 2 4 0 0 0 2

2 0 0 2 0 2 0 2 2 0 0 2 0 4 2 0 0

3 0 2 0 0 2 0 2 2 0 0 0 2 2 2 2 0

4 0 0 0 4 2 0 0 2 2 0 2 0 0 0 2 2

5 0 0 2 0 0 2 2 2 6 0 0 0 0 0 2 0

6 0 0 0 2 2 0 0 0 2 2 0 2 2 0 2 2

7 0 2 2 2 4 2 0 0 0 0 2 0 0 0 0 2

8 0 4 2 0 0 0 0 2 0 2 0 0 0 2 2 2

9 0 2 0 2 2 0 2 0 2 2 2 2 0 0 0 0

10 0 0 0 0 2 2 0 0 0 2 2 0 0 6 0 2

11 0 0 2 2 0 2 4 2 0 0 0 0 2 0 0 2

12 0 2 2 2 0 0 2 0 0 2 0 0 2 2 2 0

13 0 0 0 0 0 2 0 2 0 4 2 2 2 0 0 2

14 0 2 2 0 0 2 0 2 0 0 2 2 0 0 4 0

15 0 2 0 2 0 4 0 0 2 0 0 2 2 2 0 0

Table 6.14: Difference Distribution Table of S-box over Galois field GF (24)

In this difference distribution tables, each element illustrates quantity of results of the relat-

ing output difference ∆B value given the input difference ∆A, except for the exceptional

case ∆A = 0,∆B = 0. In Table 6.13, the highest value of (∆A,∆B) is 2. For instance,

we have talked about that there is a considerable measure of properties of the difference

distribution table that must be revealed. Initially, all elements sum in a row is 2n = 16.

Similarly, all column sum is 2n = 16. Also, in Table 6.13 the all elements sum in rows and

columns is 2n = 16, but all values are not even seen in Table 6.13 and it also contained

some odd values. Might be one consider that for occurrence of these odd values be the
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due to the S-box which are used here for calculating the difference distribution table are

constructed over different structure. By way of, lowest difference value in this Table 6.13,

because 0 means there is no change occur.

6.1.4 Propagation Ratio

Propagation ratio is also known as the probability. The highest and lowest probability of

S-boxes over LA-field FSLA and Galois field GF (24) are given in Table 6.15.

S-box over Highest probability Lowest probability

FLA 2/16 = 0.125 1/16 = 0.0625

GF (24) 4/16 = 0.25 2/16 = 0.125

Table 6.15: Highest and Lowest probability of S-boxes over LA-field FSLA and GF (24)

6.1.5 Watermarking Applications

With development in medium of information, digital media is now used extensively all

over the world. Digital libraries comprising enormous volume of information have been

molded. These libraries cover digital data (Books, images, magazines even video and

audio information) that can be get into by anyone in the world at any place. To prevent ill

use of this information, its holders and inventers use concealed digital signatures and other

practices. One of these techniques is the watermarking of an image. It is conceivable to

watermark an image using the S-box formed through the technique described in [138]. A

novel digital watermarking algorithm based on the chaotic map is given in [71] by which

the data is hidden in images using LSBs - a new digital watermarking algorithm based on

the chaotic map. This distinct type of watermark not only hides information in the image

nonetheless it also changes the shade of each pixel, altering the entire image as an outcome.

It also makes it impossible for a person to find the hidden information short of the original

image. Thus, in order to copy the image or use it, a person would have to ask for the

original image itself from the possessor. A considerable tender of newly constructed S-

boxes is that they could be cast off in watermarking of an image. One of the key features

of watermarking is that it does not condense the quality of the image. Therefore, keeping

this point in mind, the S-boxes transformations have been useful to the least significant
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bits (LSBs) of each pixel of an image, which will not change the quality of the image. In

Figure 6.2, the algorithm is explained.

Figure 6.2: Water Marking Algorithm

The changeless of histogram of a water marked image than the plain image is premium

feature for calculating the strength of an image water marking scheme. We give analysis

of the the color airplane, baboon, Lena and pepper images with dimension 512 × 512,

which have different contents along with their histograms. The histograms of water marked

pictures with respect to the proposed algorithm are correspondingly similar to the original

images. In Figures, 6.3 (i-xxiv), we have drawn 3-D histograms of the original and water

marked pictures to investigate the changelessness in water marked images. The histogram

of an image shows frequency of pixels intensity values. A flawless water marked image

should have a histogram same as to the histogram of the plain image.

6.2 LA-ring Based Construction of 8× 8 S-boxes with an

Image Encryption Application

In this section, using a non-associative ring of order 512 obtained by using computa-

tional techniques given in section 3.2, a triplet of 8 × 8 S-boxes is designed. The mo-

tivation behind this study was the article "Steps towards redesigning cryptosystems by a

non-associative algebra of IP-loops," published in the journal Wireless Personal Commu-

nications, in the year 2019. In this article, Naseer et al. [102] introduced a novel design of

S-boxes over the elements of inverse property loop. The attractive features of the structure

are; it is non-associativity and the existence of the inverse of zero elements. These prop-
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Figure 6.3: (i-xxiv): RGB image (3-dimensional matrix of pixels having intensities between 0

and 255) comparison of original image and watermarked image by 4 × 4 S-boxes from the 16

order structures of Galois field GF (24) and LA-field FSLA. The images of airplane, baboon, Lena

and pepper contain watermark in the four LSBs of each pixel of the each original image by the

transformation of 3 dimensional two 4× 4 S-boxes.
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erties increase the availability of the number of structures of IP-Loops. The purpose of

S-boxes constructed in this section is to increase the robustness due to non-associative and

non-commutative behavior of the LA-rings and increase 65,536 times the key space. Thus,

the obtained S-boxes having significant level of resistance against existing crypt analyses

attack.

In last two decades, the notion of chaos has found several applications in various sci-

ences. In Cryptography 8 × 8 S-boxes are also been produced by using chaotic maps

[65, 80]. Because of its low non-linearity, they do not get much significance like S-boxes

constructed through algebraic structures. Cryptography, which might be supposed to be a

branch of arithmetic and technology, has clutched a tremendous deal of consideration and

an oversize variety of analysis work, is devoted to the experience of chaos-based crypto-

logic algorithms [70, 80]. The qualities of chaotic maps stand after their use within the

smartness of such algorithms. These main options comprise highly sensitive dependence

on initial conditions and controlling parameter, ergodicity, randomness, mixing, etc., that

are alike the confusion and diffusion properties of Claude Shannon [136]. Precisely, the

random-like behavior of the outputs of chaotic maps brands them suitable bases to be used

in cryptographs. A lot of image encryption algorithms are built on chaotic systems, for in-

stance [42, 63, 141]. Whereas Liu et al. [85], anticipated a chaos-based color image block

encryption scheme using S-box. A novel color image encryption application is foreseen

in which primarily newly obtained 3 S-boxes are being castoff to crop confusion in three

layers of a standard RGB image. Though, for diffusion 3D Arnold chaotic map is used

in the proposed encryption scheme. A comparison with some of current chaos and S-box

reliant color image encryption schemes spectacles the performance results of the estimated

RGB image encryption and pragmatic as approaching the standard principal level.

6.2.1 Generating Algorithm for Pair of S-boxes

Consider the special LA-ring with identity RSLA8 = {0, 1, 2, 3, 4, 5, 6, 7} from Example

3.2.3. Here the zero element is ‘2’ and the left identity element is ‘4’. Units in RSLA8 are:

0, 1, 3, and 4. The set R = RSLA8+uRSLA8+u
2RSLA8 (with u3 = 0) is a special LA-ring

with 512 elements. The left identity element in R is ‘422’. An element a + bu + cu2is a

unit in R = RSLA8 + uRSLA8 + u2RSLA8 if and only if a is a unit in RSLA8. So, there are

256 units in R = RSLA8 + uRSLA8 + u2RSLA8. The list of units of the ring R is given in
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Table 6.16.

The scheme of the S-boxes triplets is based on a sub LA-module M of the special

LA-ring R and a multiplicative LA-group U(R) consisting of units in R. Where the sub

LA-module

M = {200, 201, ..., 277, 500, 501, ..., 577, 600, 601, ..., 677, 700, 701, ..., 777},

is decimal equivalent to {128, 129, ..., 191, 320, 321, ..., 511} and the multiplicative LA-

group

U(R) = {000, 001, ..., 077, 100, 101, ..., 177, 300, 301, ..., 377, 400, 401, ..., 477}

is expressed in decimal notation as: {0, 1, ..., 127, 192, 193, ..., 319}. The sub LA-module

M holds two operations; namely addition and scalar multiplication, but the LA-group

U(R) is facilitated only with only one operation that is the operation of multiplication.

The actions of PGL(2, GF (28)), the projective general linear group to the Galois field

GF (28) gives the ultimate S-boxes.

CASE I: Generating S-boxes over Sub-LA-module of R-LA-module R

As M is R-sub LA-module of R-module R, we can define an affine mapping θ : M →

M, θ(s) = rs + m, where r = 342 and m = 653 are fixed elements in U(R) and

M respectively. As the elements of M are 9 binary bits representation, so we define a

bijection σ :M → GF (28) by

σ(x) =

 x+ 64, if 128 ≤ x ≤ 191;

x− 320, if 320 ≤ x ≤ 511.
(6.2.1)

Finally, the linear fractional transformation is given as; ψ : PGL(2, GF (28))×GF (28) →

GF (28) defined as: ψ(x) = (ax+b)
(cx+d)

, where a = 158, b = 54, c = 20, d = 92 in GF (28)

such that ad − bc 6= 0. To construct this S-box, our algorithm starts using the sub LA-

module M of a special LA-ring R and GF (28). Eventually, the map ψ purposes the S-box

with the action of PGL(2, GF (28)) on GF (28). The newly constructed S-box, using the

suggested algorithm is a 16 × 16 look up table which can be used to process eight binary

bits of data. The S-box is given in Table 6.17.
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Sr. Units Sr. Units Sr. Units Sr. Units Sr. Units Sr. Units Sr. Units Sr. Units

1 000 33 040 65 100 97 140 129 300 161 340 193 400 225 440

2 001 34 041 66 101 98 141 130 301 162 341 194 401 226 441

3 002 35 042 67 102 99 142 131 302 163 342 195 402 227 442

4 003 36 043 68 103 100 143 132 303 164 343 196 403 228 443

5 004 37 044 69 104 101 144 133 304 165 344 197 404 229 444

6 005 38 045 70 105 102 145 134 305 166 345 198 405 230 445

7 006 39 046 71 106 103 146 135 306 167 346 199 406 231 446

8 007 40 047 72 107 104 147 136 307 168 347 200 407 232 447

9 010 41 050 73 110 105 150 137 310 169 350 201 410 233 450

10 011 42 051 74 111 106 151 138 311 170 351 202 411 234 451

11 012 43 052 75 112 107 152 139 312 171 352 203 412 235 452

12 013 44 053 76 113 108 153 140 313 172 353 204 413 236 453

13 014 45 054 77 114 109 154 141 314 173 354 205 414 237 454

14 015 46 055 78 115 110 155 142 315 174 355 206 415 238 455

15 016 47 056 79 116 111 156 143 316 175 356 207 416 239 456

16 017 48 057 80 117 112 157 144 317 176 357 208 417 240 457

17 020 49 060 81 120 113 160 145 320 177 360 209 420 241 460

18 021 50 061 82 121 114 161 146 321 178 361 210 421 242 461

19 022 51 062 83 122 115 162 147 322 179 362 211 422 243 462

20 023 52 063 84 123 116 163 148 323 180 363 212 423 244 463

21 024 53 064 85 124 117 164 149 324 181 364 213 424 245 464

22 025 54 065 86 125 118 165 150 325 182 365 214 425 246 465

23 026 55 066 87 126 119 166 151 326 183 366 215 426 247 466

24 027 56 067 88 127 120 167 152 327 184 367 216 427 248 467

25 030 57 070 89 130 121 170 153 330 185 370 217 430 249 470

26 031 58 071 90 131 122 171 154 331 186 371 218 431 250 471

27 032 59 072 91 132 123 172 155 332 187 372 219 432 251 472

28 033 60 073 92 133 124 173 156 333 188 373 220 433 252 473

29 034 61 074 93 134 125 174 157 334 189 374 221 434 253 474

30 035 62 075 94 135 126 175 158 335 190 375 222 435 254 475

31 036 63 076 95 136 127 176 159 336 191 376 223 436 255 476

32 037 64 077 96 137 128 177 160 337 192 377 224 437 256 477

Table 6.16: Units U(R) in the ring R = RSLA8 + uRSLA8 + u2RSLA8
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CASE II: Generating S-boxes over U(R)

We define the inverse and affine linear mappings φ′, θ′ : U(R) → U(R) by φ′(t) = t−1

and φ′(t) = r′t +m′, where r′ = 436 and m′ = 275 are fixed elements in U(R) and M

respectively. Accordingly the composition θ′ ◦φ′ : U(R) → U(R) of mappings is defined

by θ′ ◦φ′(t) = (r′t+m′)( − 1). As the elements of U(R) are 9 binary bits representation,

so we define a bijection σ′ : U(R) → GF (28) by

σ′(z) =

 z, if 0 ≤ z ≤ 255;

Rm + 128, if 320 ≤ x ≤ 511.
(6.2.2)

Rm denotes the remainder after division by 256. So, in the end, the linear fractional

transformation is given as; ψ′ : PGL(2, GF (28))×GF (28) → GF (28), ψ′(z) = (a′z+b′)
(c′z+d′)

,

where a′ = 210, b′ = 17, c′ = 84, d′ = 60 inGF (28) such that a′d′−b′c′ 6= 0. To construct

this S-box, the algorithm activates using the LA-group U(RSLA) of units or invertible

elements in the special LA-ring RSLA and GF (28). Ultimately, the map ψ′ generates the

S-box with the action of PGL(2, GF (28)) on GF (28). Table 6.18 shows the new S-box

constructed with the suggested algorithm, a 16 × 16 look up table that can be used to

process eight binary bits of data.

136 12 95 103 137 169 92 101 158 198 128 6 44 195 171 152

247 162 217 253 255 78 133 86 14 49 161 105 225 214 130 182

165 237 254 164 246 151 102 199 93 230 150 190 179 70 176 94

219 229 117 18 50 143 157 248 146 184 45 30 224 110 228 159

187 173 239 96 118 73 116 25 31 41 227 232 201 226 8 91

178 156 154 3 56 68 7 9 209 43 180 125 106 17 62 191

39 244 54 84 10 149 40 11 81 218 66 99 177 203 27 71

170 202 135 55 167 147 207 129 109 189 13 181 186 126 47 172

245 0 175 5 61 76 82 72 75 85 231 64 144 174 107 213

249 32 240 132 33 153 215 204 139 205 148 193 210 252 212 24

236 221 97 15 59 134 200 74 155 192 98 100 20 19 123 197

16 35 194 120 242 108 28 113 34 79 38 36 211 58 42 46

60 67 89 222 90 111 216 168 69 208 88 104 238 22 52 185

140 183 234 141 1 2 220 29 142 87 163 114 206 166 112 138

48 223 124 21 23 188 37 26 251 65 122 121 241 63 77 4

80 233 51 235 160 127 115 196 243 250 57 131 119 53 145 83

Table 6.17: S-box 1 designed over LA-sub-module of LA-ring R

To synthesize another S-box, we compose the above generated S-boxes and get an

S-box given in Table 6.19.

The flow chart for the algorithm is illustrated in Figure 6.4
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234 242 36 111 151 240 12 171 129 125 78 19 9 43 255 98

220 70 116 69 73 92 61 65 208 181 7 22 155 83 143 138

101 25 249 13 8 4 123 246 68 33 159 152 26 190 117 168

31 58 245 212 149 164 174 85 235 247 100 178 127 74 50 44

52 56 229 137 134 204 239 27 102 10 142 28 87 172 96 57

91 97 195 38 150 66 105 41 194 218 49 154 199 227 132 86

81 53 55 148 51 23 145 109 210 237 17 48 147 191 182 223

11 252 193 238 62 29 236 185 128 217 82 5 179 250 71 133

167 202 216 79 197 94 241 251 136 214 157 226 206 131 201 75

126 76 139 60 120 144 1 118 224 254 183 122 93 243 90 80

88 107 184 231 166 54 219 112 30 192 209 124 230 104 14 162

198 188 2 15 59 42 3 228 46 156 253 158 205 37 146 119

163 89 21 203 20 34 211 215 108 106 207 140 24 161 72 95

18 114 222 169 244 121 176 170 160 200 130 77 35 99 39 232

248 135 221 141 165 45 153 225 177 40 180 103 6 189 187 16

115 64 213 84 0 47 233 67 173 110 175 196 113 186 32 63

Table 6.18: S-box 2 designed over LA-group of units in LA-ring R

144 247 250 195 18 215 217 105 187 228 196 92 78 188 211 177

254 47 126 226 136 185 63 87 100 171 84 227 205 167 32 24

213 88 206 115 122 141 66 3 133 253 135 77 95 182 161 82

120 119 81 208 111 222 189 131 165 39 19 85 158 154 156 16

130 89 231 97 53 238 145 212 174 255 46 112 192 146 178 128

106 6 180 73 246 147 116 127 251 98 207 56 194 83 25 200

168 80 234 142 50 248 43 235 96 118 17 150 72 124 58 223

203 209 186 151 233 45 162 113 199 35 44 140 160 52 129 34

93 70 20 61 101 11 10 62 252 28 37 210 225 163 49 202

201 68 90 110 33 40 197 230 244 104 153 15 79 157 94 149

219 1 91 74 4 175 30 29 103 59 41 38 138 7 239 2

143 152 42 229 224 86 31 55 159 236 117 26 241 8 125 9

123 48 179 144 71 218 76 21 191 216 5 132 107 22 240 99

169 108 166 176 220 65 60 245 121 102 64 51 14 67 109 170

36 139 204 155 181 232 190 164 75 237 137 27 243 13 193 69

172 184 12 54 0 134 23 198 183 214 249 173 148 242 221 57

Table 6.19: S-box 3 (the composition of S-boxes 1, 2)

6.2.2 Key Space Analysis

In case when we consider the special LA-ring R = RSLA8 + uRRSLA8 + u2RSLA8, the

affine map g : U(R) → U(R) such that g(x) = ax + b for all x ∈ U(R) results 256

possible choices of the fixed unit element a in U(R) and 256 choices of the element b in

M.Hence, we obtained 256×256 = 65, 536 possible affine mappings. Accordingly, we get

65, 536 number of 9×9 pseudo S-boxes of dimension 16×16. These 9×9 pseudo S-boxes

are transforming into byte based 65, 536 vague random sequences by using the bijective

maps σ. Thus we are able to get a huge figure of 8 × 8 S-boxes with their diversified

strength.

The total number of unlike keys cast-off in the encryption or decryption process is

called the key space. A sufficiently large key space ensures an efficient cryptosystem to
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Figure 6.4: Flow chart for the generation of S-boxes pairs over the special LA-ring R

repel brute-force attacks. In the first case of suggested algorithm, 256! Number of choices

for affine function and from the action of PGL(2, GF (28)) on σ(U(R)) = GF (28), we

could design 16776960 number of S-boxes [17]. Though due to step 2 of the algorithm

256 choices for affine functions could be considered and thus 256 × (16776960) will be

the possible choices in computing 8×8 S-boxes. Consequently, considering all possibilities

together, we have large enough key space to armor contrary to brute force attack.

6.2.3 Performance analysis of S-boxes

An efficient S-box should satisfy some specific cryptographic criteria; bijectiveness, non-

linearity, outputs bit independence, strict avalanche and linear approximation probability.

We gadget diverse analyses for the proposed S-box to test their strong suit and standing

with respect to few other well-known S-boxes.
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Nonlinearity

The nonlinearity of a Boolean function f is the measures of the gap between f and the

collection of all affine linear functions. In other words, it indicates the count of bits in the

truth table of f that are changed to approach the nearby affine function. The nonlinearity

value (NL) [81] is its upper bound and is given by:

NL = 2n−1 − 2
n
2
−1, (6.2.3)

thus, the highest value of nonlinearity for n = 8, is 120. It is also observed from Table 6.20

that average nonlinearity of the suggested S-boxes 1 and 2 is 103.25 and 104.75 which are

better than Prime S-box.

Strict Avalanche Criteria

Webster and Tavares [144] were the first to familiarize the SAC in 1985. The concepts of

completeness and avalanche develop the SAC. It is satisfied if an alteration of a single bit

of input causes output bits to change with a probability of 1/2 In other words, while single

bit of input is altered, fifty percent of its respective output bits will change. It could be

verified from Table 6.20 that the suggested S-box successfully satisfied SAC.

Bit Independent Criterion

Webster and Tavares [144] were the pioneers to introduce BIC. This is one more essential

property for any cryptographic schemes. The outcomes of BIC analysis of the suggested

S-box are presented in the Table 6.20. The suggested S-box holds adequate BIC in the

sense of encryption strength. In Table 6.21, comparing the rank of our suggest S-box to

S-boxes from literature, we noticed that the our S-box satisfied BIC close to the optimal

value.

Linear Approximation Probability

The linear approximation probability is the highest value of the imbalance of an event.

The parity of the input bits selected by the mask Gx is equal to the parity of the output bits

selected by the mask Gy. Congruent to Matsui’s original definition [94], linear approxima-

tion probability of a given S-box is given by:

LP = maxGx,Gy ̸=0 −
{x ∈ X|x.Gx = S(x).Gy}

2n
− 1

2
, (6.2.4)
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where Gx and Gy are input and output covers, respectively, ‘X’ the set of all possible

inputs; and 2n is the number of elements of X. It is evident from Table 6.20 that the

average value of LP of the suggested S-boxes is 0.132813 that is strong enough against

linear attacks and of better from Xyi S-box and S-box constructed on residue of prime

numbers.

Differential Approximation Probability

The differential approximation probability (DP) of S-box is a measure for differential uni-

formity and is defined as:

DP (∆a→ ∆b) =
{a ∈ X|S(a)⊕ S(a⊕ δa) = ∆b}

2m
. (6.2.5)

This implies, an input differential ∆ai, should uniquely map to an output differential ∆bi,

thus ensuring a uniform mapping probability for each i. The average value of differen-

tial approximation probability for proposed S-boxes are 0.140625 and (see Table 6.20),

whereas the Table 6.21 shows the comparison of differential approximation probability of

proposed S-box with AES, APA, Gray, S8 AES, Skipjack, Xyi and residue prime S-boxes

and we observed that the results of DP of proposed box are relatively better from skip jack

Xyi S-box residue of prime and Lui S-boxes.

As there are 256 × 16776960 possible S-boxes depending on the choice of defined

parameters, so after variety of options one can obtain the best S-boxes having optimal

strength against statistical attacks.

6.2.4 RGB Image Encryption

The Arnold map is one the most important 2D Chaotic map [30, 31], specifically in image

encryption algorithms. The following equation signifies the 2D Arnold caotic map. For

xi, yi in the interval [0, 1), xi+1

yi+1

 =

1 1

1 2

xi
yi

mod1, (6.2.6)

Of course, the determinant of the matrix A =

1 1

1 2

 on the right-hand side of equa-

tion 6.2.6 is 1. Thus the map is area preserving. The eigen values λ1 = ln−(3+
√
5

2
) and
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Analysis for Max. Min. Average Square DeviationDifferential approximationLinear approximation

S-box 1 and probability (DP) probability (LP)

S-box 2

Nonlinearity 106 100 103.25

106 100 104.75

SAC 0.625 0.40625 0.504883 0.0218748

0.59375 0.375 0.498047 0.0216392

BIC 98 103.571 2.79577

96 102.714 3.08055

BIC- SAC 0.476563 0.500558 0.0139369

0.464844 0.498535 0.0155518

DP 0.0390625

0.0390625

LP 164

160 0.140625 0.132813

Table 6.20: Performance Indexes for proposed S-box

λ2 = ln−(3−
√
5

2
) of the matrix A represents the two Lyapunov exponents. The positive

Lyapunov exponent spectacles the chaotic behavior in equation 6.2.6 and hence its expo-

nential sensitivity to its initial conditions is observed. In [31], the generalized form of

equation 6.2.6 is given, i.e.,xi+1

yi+1

 =

1 a

b ab+ 1

xi
yi

mod1. (6.2.7)

Furthermore, the map of equation 6.2.7 is transformed to a 3D caotic map described as:

Xi+1 =


xi+1

yi+1

zi+1

 = A


xi

yi

zi

mod1. (6.2.8)

Where the matrix A is answerable for producing chaotic behavior, here

A =


3 1 4

8 3 11

6 2 9

 (6.2.9)
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S-boxes Nonlinearity SAC BIC–SAC BIC DP LP

AES S-box 112 0.5058 0.504 112 0.0156 0.062

APA S-box 112 0.4987 0.499 112 0.0156 0.062

Gray S-box 112 0.5058 0.502 112 0.0156 0.062

Skipjack S-box 105.7 0.498 0.499 104.1 0.0468 0.109

Xyi S-box 105 0.5048 0.503 103.7 0.0468 0.156

Residue Prime 99.5 0.5012 0.502 101.7 0.281 0.132

LuiS-box 105 0.499756 0.500698 104.071 0.0390625 0.128906

Proposed S-box 1 103.25 0.504883 0.500558 103.571 0.0390625 0.140625

Proposed S-box 2 104.75 0.498047 0.498535 102.714 0.0390625 0.132813

Table 6.21: Comparison of Performance indices of suggested S-box

The general form of matrix A is

A =


1 + axazby az ay + axaz + axayazby

bz + axby + axazbybz azbz + 1 aybz + axayazbybz + axazbz + axayby + ax

axbxby + by bx axaybxby + axbx + ayby + 1


(6.2.10)

In matrix A all ax, ay, az, bx, by, bz are considered to be the positive integers. It is trivial

to verify that matrix A is area preserving, that is |A| = 1. The Eigen values of A are

λ1 = 14.3789, λ2 = 0.4745 and λ3 = 0.1466. As the larger Eigen value is greater than 1,

so equation 6.2.8 shows chaotic behavior and thus holds all the characteristics of chaos.

To generate the chaotic sequence Xi+1, the initial values used in this work are x0 =

0.9557, y0 = 0.3494 and z0 = 0.6789.

S-boxes are considered as a main part of a block cipher, the only component of a cipher

that produces non-linearity and hence guarantee the resistance against linear and differen-

tial attacks. Currently, by advancement in techniques of cryptanalysis and in computer

technology, which enhances correspondingly support, generating S-boxes of good quality

is the subject of core attention. Due to uncertainty in communication and in storage of

RGB images, a need for the encryption is preferred. One of the basic aims of this work is

to encrypt RGB images using 3 S-boxes originated by a non-associative structure of LA-

ring. For the requirement of the RGB image encryption each layer is passed through the

different 8×8 S-box. In the subsequent step, the 3D Arnold caotic map is functional not to

correlate the adjacent pixel of the image. The procedure of this image encryption scheme
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is illustrated below.

Following are the steps for encrypting the image:

Substitute the S-boxes S1, S2 and S3 in Red, Green and Blue channels of the color image.

Thus, instead of a single S-box used for encryption our proposed scheme provides three

different S-boxes S1, S2 and S3.Use the 3D Arnold chaotic map to produce non-correlated

behavior between adjacent pixels of the image.

Figure 6.5 is the flow chart of the proposed color image encryption.

Figure 6.5: RGB image encryption scheme using S-boxes designed over LA-submodule

and LA-group of units of R

Figure 6.6: (a) Lena Original image. (b), (c) and (d) represent the histogram of red(R)

green(G) and blue(B) layer of (a).
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Figure 6.7: (a) Encrypted Lena image. (b), (c) and (d) show the histogram layers of R, G

and B channel of the encrypted image (a).

6.2.5 Texture Analysis of Image Encryption

Texture is among the further most significant parameters of a material that enlightens the

physical presentation of a material surface except its chromatic character. Texture may

be analyzed in diverse approaches but Fourier methodology among these techniques is

the most operative. A fascinating analysis, however, is intriguing as it relates to how the

human visual system realizes the texture, the first line of the texture, and is extensively

used in the segmentation of photograph. Over and done with this method we can calculate

5 diverse characteristics of image which are: Energy, Contrast, Entropy Homogeneity and

Correlation to elucidate texture.

Energy

Energy analysis measures the energy an encrypted image that discards the gray-level co-

occurrence matrix (GLCM), where energy is the sum of squared components in GLCM

and is given by:

E =
∑
m1

∑
m2

p2(m1,m2), (6.2.11)

where m1 and m2 are the image pixels. Note that for constant image the energy value is

unity.

Entropy

The measure of level of disorder and randomness in a system is called its entropy. The

maximal amount of randomness makes it difficult to recognize the image and the ran-

domness of an image can be amplified by considering its non-linear components which is
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defined as

H =
n∑
i=0

f(xi)logbfxi, (6.2.12)

where xi defines the Histogram calculations.

Contrast

To differentiate the objects of an image, the observer has to contrast it is used. Owed to im-

age encryption process, a robust encryption can be realized from the high level of contrast.

This factor has a direct relation with the confusion created by the S-box. Mathematically,

the formula for contrast is given by:

C =
∑
m1

∑
m2

(m1 −m2)
2f(m1,m2). (6.2.13)

Homogeneity

The closeness of distributed pixels of Gray Level Co-occurrence Matrix (GLCM) to GLCM

is measured in the Homogeneity analysis. It is also documented as gray tone spatial de-

pendency matrix. Mathematically, the look for homogeneity analyses is represented by the

equation:

H∗ =
∑
m1

∑
m2

f(m1,m2)

1− |m1 −m2|
. (6.2.14)

Correlation

The purpose of correlation analysis is to analyze the adjacent pixel correlation of an image.

Normally, three different types of analyses are carried out to ensure the strength of the

encrypted image. These are: the horizontal, the vertical and the diagonal correlation. The

following equation shows how to calculate the correlation:

K =
(m1 − αm1)(m2 − αm2)f(m1,m2)

σm1σm2

. (6.2.15)

For a healthier correlation value we need to achieve the number 1 or -1. Whereas for uncor-

related data, this figure is round about 0. It can be observed from the results in Table 6.22

that the suggested encyphering algorithm has strong enough for a successful encryption.

Table 6.23 signifies the entropy of 256 × 256 Lena color image. Obviously, the proposed

encryption procedure displays opposition to all the well-known attacks. Analyses reveal

that our proposed scheme has the entropy score close to the optimal values. In analogy,
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Original color components of image Encrypted color components of image

Red Green Blue Red Green Blue

Contrast 0.445343 0.659896 0.483655 9.96034 10.0962 10.2181

Homogeneity 0.857543 0.831937 0.845328 0.411186 0.404886 0.403524

Entropy 7.27958 7.63153 6.98912 7.99712 7.99725 7.99744

Correlation 0.910667 0.887815 0.804591 0.0516558 0.0379861 0.0239547

Energy 0.135318 0.0838048 0.156122 0.0157684 0.0157087 0.0157107

Table 6.22: Second order texture analyses for original and encrypted Lena image

Images Red Green Blue RGB Image

Proposed 7.99712 7.99725 7.99744 7.999

Ref.[85] 7.9901 7.9898 7.9899 7.9899

Ref.[86] 7.9913 7.9914 7.9916 7.9914

Ref.[84] 7.9808 7.9811 7.9914 7.9844

Ref.[145] 7.9901 7.9912 7.9921 7.9113

Ref.[98] 7.9949 7.9953 7.9942 7.9948

Table 6.23: Entropy comparison for Lena (256× 256) image

the comparison with chaos-based encryption scheme is also provided. Entropy of the pro-

posed scheme is finer than the rest. In Table 6.24, the result for correlation coefficient of

Lena 256× 256 color image is presented. Results ensure the potency of the suggested en-

cryption technique. The analyses suggest that the correlation results are up to the mark and

can be matched with other chaos-based encryption techniques. Information images trans-

mitting via digital communicating media have good similarity amongst their neighboring

pixels. For an incredibly well-connected image the estimated correlation coefficient is ±1,

while for an extra ordinary non-correlated image its values move toward 0. The pixels

correlation among original and encrypted Lena image is displayed in Table 6.24. The cor-

relation score shows that the pixels are good non-correlated as its value are more equally

0. Hence, the proposed algorithm gives extra ordinarily de connections the nearby pixels

of the encrypted image and meet on hopes of an effective encryption structure.
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Image
Horizontal Vertical Diagonal

R G B R G B R G B

Plain image 0.9491 0.9175 0.8561 0.9602 0.9528 0.8962 0.9025 0.8984 0.8715

Cipher image 0.0569 0.0658 -0.0014 0.0036 -0.0180 0.0132 -0.0499 0.0123 -0.0210

Table 6.24: Horizontal, Vertical and Diagonal Correlations among different layers of Plain

and Cipher images

Figure 6.8: (a-c):represent Horizontal Correlation pixels for R, G and B layers of original

256× 256 Lena image respectively

Figure 6.9: (a-c):shows the horizontal Correlation pixels for R, G and B layers of encrypted

Lena image

Figure 6.10: (a-c):represent vertical Correlation pixels for R, G and B layers of original

256× 256 Lena image respectively
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Figure 6.11: (a-c):shows the vertical Correlation pixels for R, G and B layers of encrypted

Lena image

Figure 6.12: (a-c):represent diagonal Correlation pixels for R, G and B layers of original

256× 256 Lena image respectively

Figure 6.13: (a-c):shows the diagonal Correlation pixels for R, G and B layers of encrypted

Lena image

Figure 6.8 to Figure 6.13 show the correlation distribution of horizontally, vertically

and diagonally adjacent pixels of a color image. Figure 6.8, Figure 6.10, Figure 6.12

(a,b,c) signify the correlation of the adjacent pixels of Lena original image whereas Figure

6.9, Figure 6.11, Figure 6.13 (a,b,c) look from the nearby pixels of Lena encrypted image.

Obviously, it is clear from the figures that there is a great dispassion between nearby pix-

els of the encrypted image which is intended to be one of the successes of the proposed

scheme. The approving correlation coefficient is computed for Lena original and encrypted

images and are shown in Table 6.24.
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6.2.6 Analyses of Experimental Work

Now we give the experimental analyses of the suggested technique for image encryption. A

standard 256×256×3 Lena image is chosen for encryption as shown in Figure 6.6. Where

Figure 6.7 represents the encrypted Lena image. Histogram of RGB layers of the original

and encrypted image are also displayed in parallel. Table 6.25 enlists the image quality

measures of the encrypted and original image using one round encryption by 3 S-boxes

and 3D Arnold Cat map. The modest performance of the proposed notion is displayed in

Table 6.25.

Mean Square Error (MSE)

The mean square error (MSE) or mean square deviation (MSD) of an image measures the

common of the squares of the errors. This means the arithmetic mean square distinction

between the calculable values and what’s estimated. MSE is a risk function, comparable

to the mean of the squared error loss. Followed [31], it judges the standard of an encrypted

image. It is given by the formula:

MSE =
1

M1 ×M2

M1∑
y=1

M2∑
x=1

[P (x, y)− E(x, y)]2, (6.2.16)

where P (x, y) and E(x, y) are respectively the plain and encrypted images with respective

dimensions M1 and M2. A greater amount of MSE may be acknowledged as the better

first-rate.

Peak Signal-To-Noise Ratio (PSNR)

Signal representation dependability can be affected by corrupting noise [68]. Thus the

ratio of the power of a signal to the power of corrupting noise is designated as Peak signal-

to-noise ratio (PSNR). It is expressed in terms of the logarithmic decibel gauge due to the

diverse dynamic range of signals. Occasionally, the PSNR is used to evaluate the quality of

restoration of the encrypted image. In this study, signal is characterized by original image

and noise is the distortion created by encryption. The PSNR value is directly proportional

to the rate of rebuilding of an image. It is defined as

PNSR = 10 log10
MAX2

1√
MSE

. (6.2.17)
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Normalized Cross-Correlation (NK)

The correlation function also gives the idea that how much two digital images are closed

to each other as shown in [139]. The normalized cross-correlation (NK) determines the

resemblance amongst two images and is computed by:

NK =

M1∑
y=1

M2∑
x=1

P (x, y)× E(x, y)∑M1

y=1

∑M2

x=1[P (x, y)]
2
, (6.2.18)

where P (x, y) is the original image, E(x, y) is the encrypted version and M1, M2 are

respectively the dimensions of the images.

Average Difference

The difference between reference signal and test image is given the name of Average dif-

ference (AD) [68]. AD is calculated by the formula:

AD =

∑M1

y=1

∑M2

x=1[P (x, y)− E(x, y)]

M1 ×M2

, (6.2.19)

where P (x, y) is the original picture, E(x, y) is the encrypted form and M1, M2 are the

dimensions of the pictures.

Structural Content

One of the correlation based measure is the structural content (SC) [68] and it computes

the resemblance among two images. SC is premeditated as

SC =

∑M1

y=1

∑M2

x=1[P (x, y)]
2∑M1

y=1

∑M2

x=1[E(x, y)]
2
, (6.2.20)

where P (x, y) is the original image, E(x, y) is the encrypted version and M1, M2 are

respectively the dimensions of the images.

Maximum Difference (MD)

Scheming maximum of the error signals gives what we call maximum difference (MD)

(difference between the test image and reference signal) (see [7]) and it is attained by

MD = max−|P (x, y)− E(x, y)|, (6.2.21)

where P (x, y) is the original image, E(x, y) is the encrypted version.
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Normalized Absolute Error

By [98], the Normalized absolute error betwixt the original and encrypted image is com-

puted as:

NAE =

∑M1

y=1

∑M2

x=1 |P (x, y)− E(x, y)|∑M1

y=1

∑M2

x=1 |P (x, y)|
, (6.2.22)

where P (x, y) is the original image, E(x, y) is the encrypted version and M1, M2 are the

dimensions of the images.

Root Mean Square Error (RMSE)

RMSE is the square root of the mean of the square of all the errors [98].The root-mean-

square error (RMSE) is a regularly times used method to measure the variations between

original image and the cipher image.

RMSE =

√∑M1

y=1

∑M2

x=1[P (x, y)− E(x, y)]2

M1 ×M2

, (6.2.23)

where P (x, y) represents the original image, E(x, y) is the encrypted version and M1, M2

are respectively the dimensions of the images.

Universal Quality Index (UQI)

According to [140], the UQI breaks the comparison between original and distorted image

into three comparisons: Contrast, luminance and structural comparisons. The UQI for

original image ‘P ’ and encrypted image ‘E’ might be defined as:

UQI(P,E) =
4µPµEµPE

(µ2
P − µ2

E)(σ
2
P − σ2

E)
, (6.2.24)

where µP , µE represent the mean values of original and distorted images and σP , σE denote

the standard deviation of plain and distorted images.

Mutual Information (MI)

To obtain the amount of information from encrypted image for the agreeing plain image is

termed as mutual information given in [140]. The mutual information of two images ‘P ’

and ‘E’ can be defined as:

MI(P,E) =
∑
y∈E

∑
y∈P

p(x, y) log2
p(x, y)

p(x)p(y)
, (6.2.25)
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where p(x, y) is the joint probability function of P and E, further p(x) and p(y) are the

marginal probability distribution functions of P and E respectively.

Structural Similarity (SSIM)

By [146], the structural similarity index is an enhanced edition of the universal quality in-

dex. Through this technique we determine the similarity between two images. The struc-

tural similarity index is calculated on various frames of an image. The measure between

two frames X and Y of common size M ×M is:

SSIM(X,Y ) =
(2µXµY + c1)(2σXσY + c2)

(µ2
X + µ2

Y + c1)(σ2
X + σ2

Y + c2)
, (6.2.26)

where average of Y andX is represented by µY and µX the variance of Y andX by σ2
Y and

σ2
X respectively. Whereas σXY is the covariance of X and Y, c1 = (k1L)

2 and c2 = (k2L)
2

are the variables to soothe the division with weak denominator. L is the range of the pixel

values and (k1, k2) = (0.01, 0.03) by default. The SSIM index lies between −1 and 1. For

similar images this value is 1.

Quality measure
Encryption by 3 S-boxes and 3D Arnold chaotic map Optimal values

Red Blue Green Red Blue Green

MSE 10626.4 9224.93 bf 7162.78 10057.2 9898.89 6948.19

PSNR 7.86695 8.48117 9.57999 8.106 8.1749 9.712

NCC 0.66015 0.993966 1.09709 0.6725 1.0031 1.0923

AD 52.1404 -28.6657 -22.7034 50.0448 -31.4276 -19.7989

SC 1.59967 0.582213 0.562247 1.5787 0.5582 0.5711

MD 250 234 216 236 210 210

NAE 0.467414 0.796259 0.671177 0.4537 0.831 0.6628

RMSE 103.084 96.0465 84.6332 100.286 99.4932 83.3558

UQI -0.00013497 -0.000714523 -0.0011433 -0.005 -0.0077 0.0107

MI 0.491086 0.689748 0.394636 5.6534 7.2283 6.0723

SSIM 0.00982045 0.0084672 0.00937046 0.0078 0.0053 0.0187

Table 6.25: Image Quality Measures for proposed RGB Image Encryption of Lena image

Table 6.25 shows that through our proposed RGB image encryption scheme the optimal

values of Image Quality Measures can be achieved.
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6.2.7 Security Measurement

Histograms

A uniform histogram for an image is the calmest and supreme approach to measure the

security strength of an encryption procedure against various attacks. Here, we analyze an

RGB Lena image of size 256 × 256 × 3. The histogram of the three channels of ciphered

image under the proposed scheme is likewise matching though for plain Lena image they

are dissimilar. Figure 6.6 and Figure 6.7 show histograms of different layers of plain

image and encrypted image respectively. A perfect encrypted image comprises of uniform

histogram trickles to sphere the opposing of separating any supportive data from the rocky

histogram. Subsequently, no statistical attack can die out this proposed encryption scheme.

Differential Analyses

To exploit the strong suit of differential analyses on an image encryption arrangement the

NPCR (Number of Pixels Change Rate) and UACI (unified average changing intensity)

analyses are implemented. It measures the normal power of contrast between the two

images i.e. original and encrypted image. To compare the encrypted images cryptanalysts

realize the bond among the plain image and ciphered image. Attack of this kind is famous

for differential attack. The NPCR and UACI are the two typically used tests to ensure

the strength of the encrypted scheme against differential analysis. For more details, see

[62, 140, 146].

• Number of Pixels Change Rate (NPCR) From [146], the impact of single pixel

change on the entire image ciphered using the suggested algorithm has been verified

by NPCR. It computes the number of pixels change rate of encrypted image when

a single pixel of the plain image is changed. Take an encrypted image "Img1" of

dimension M1 ×M2, whose respective plain image "Img2" has difference of only

one-pixel. The NPCR of these two images is defined as:

NPCR =

∑
i,j D(i, j)

M1 ×M2

, (6.2.27)

where

D(i, j) =

 0, if Img1(i, j) = Img2(i, j);

1, if Img1(i, j) 6= Img2(i, j).
(6.2.28)
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• Unified Average Changing Intensity (UACI) By [146], the unified average chang-

ing intensity of the given two (plain and ciphered) images estimates the average

intensity of the images. Take two enciphered images Img1 and Img2 of dimension

M1 ×M2. The UACI is defined by:

UACI =
1

M1 ×M2

∑
i,j

[
|Img1(i, j)− Img2(i, j)|

255
]. (6.2.29)

Schemes
NPCR UACI

Red Blue Green Red Blue Green

Proposed 0.995819 0.9961 0.995926 0.339945 0.338623 0.336869

Ref. [28] 0.996 99.5895 0.9961 0.3343 0.335 0.3343

Ref. [32] 0.9964 0.9962 0.9959 0.3353 0.3327 0.3343

Ref. [37] 0.9468 0.9568 0.9868 0.3346 0.345 0.3549

Ref. [38] 0.985 0.985 0.985 0.321 0.321 0.321

Ref. [39] 0.996 0.9963 0.9959 0.3343 0.3346 0. 3347

Table 6.26: Comparing Differential analyses Proposed Image Encryption scheme and ex-

isting encryption schemes for 256× 256 Lena image

Table 6.26 gives the NPCR and UACI measures of different channels of the color Lena

encrypted image. The comparison is taken with encryption schemes based on Chaos and

S-box. It verifies the robustness of the suggested Image encryption scheme via S-boxes 1,

2 and 3. Clearly, analyses show that the NPCR and UACI values of our novel encryption

technique give optimal values.

6.2.8 Randomness of Test for Cipher

The security strength of a cryptosystem is judged on the basis of some important prop-

erties such as: uniform distribution, Long period and high complexity of the output. By

a definitive objective to attain such prerequisites, we used NIST SP 800-22 [105] to test

the randomness of digital images. A portion of these tests counts in copious subclasses.

The distorted Lena digital image is cast-off to clasp all NIST tests. The encrypted data is

produced by the proposed RGB image encryption scheme of a colored Lena plain image

of dimension 256 × 256 × 3 and 3D a chaotic map. Table 6.27 displays the outcomes of

the tests.
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Noticeably our suggested digital image encryption tool proficiently passes the NIST

tests. Thus, as a result of proficient outcomes, the designed random cryptosystem used

for RGB Image encryption constructed via S-boxes from a non-commutative and non-

associative finite ring and 3D chaotic map might be professed that are very irregular in its

crop.
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Test P - values for color encryptions Results

Red Green Blue of ciphered image

Frequency 0.32694 0.80028 0.82481 Pass

Block frequency 0.74131 0.54713 0.97235 Pass

Rank 0.29191 0.29191 0.29191 Pass

Runs (M=10,000) 0.084845 0.09393 0.52759 Pass

Long runs of ones 0.67514 0.7127 0.7127 Pass

Overlapping templates 0.85988 0.85988 0.85988 Pass

No overlapping templates 1 0.9994 0.24017 Pass

Spectral DFT 0.77167 0.56166 0.38399 Pass

Approximate entropy 0.84462 0.85692 0.11867 Pass

Universal 0.99437 0.99976 0.99498 Pass

Serial p values 1 0.0083409 0.13423 0.34362 Pass

Serial p values 2 0.12342 0.5943 0.15727 Pass

Cumulative sums forward 0.14445 0.24644 0.24227 Pass

Cumulative sums reverse 0.89099 1.16 0.79042 Pass

Random excursions X = -4 0.79553 0.98021 0.66539 Pass

X = -3 0.37236 0.88823 0.16569 Pass

X = -2 0.57859 0.9465 0.41097 Pass

X = -1 0.22905 0.9464 0.78375 Pass

X = 1 0.48349 0.8282 0.44466 Pass

X = 2 0.13673 0.32154 0.33772 Pass

X = 3 0.6194 0.020103 0.39284 Pass

X = 4 0.70227 0.34143 0.62245 Pass

Random excursions variants X = -5 0.39287 0.0016344 0.46138 Pass

X = -4 0.66407 0.026809 0.59298 Pass

X = -3 0.96847 0.12819 0.52709 Pass

X = -2 0.44399 0.10171 0.91871 Pass

X = -1 0.33092 0.18588 0.92957 Pass

X = 1 0.65853 1 0.25054 Pass

X = 2 0.54029 1 0.30743 Pass

X = 3 0.81252 0.6726 0.40648 Pass

X = 4 0.50404 0.31731 0.59298 Pass

X = 5 1 0.37782 0.76828 Pass

Table 6.27: NIST test results for proposed encrypted image
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Chapter 7

Conclusions

This thesis is a compilation of three phases of research work. The first phase comprises of

a detailed survey on the developments in the class of non-associative rings known as LA-

rings to date and it is included in chapter 2. The second phase focuses on the contributions

of our work to the developments in classical LA-ring theory and application of soft set

theory to LA-rings. These conceptual ideas are elaborated in chapter 3 and 4. In our third

phase, we dealt with the applications of LA-ring theory to coding theory and cryptography

and these applications are given in chapters 5 and 6.

A left almost rings (acronym for LA-ring), is in real a generalization of commutative

ring. In spite of the reality that this structure is non-associative and non-commutative,

it entails properties which usually are valid in associative and commutative algebraic

structures. To have a comprehensive study of LA-rings we direct our readers to see

[58, 110, 125, 128, 132, 134].

In the fist phase of our study, we performed a survey on the maximum work done on

LA-rings and their generalizations to date and it is a source of inspiration and motivation

for the researchers to make advancements in the development of LA-ring theory. It is

observed that, LA-ring theory develops parallel to the commutative ring theory. Although

many concepts for commutative rings are generalized for LA-rings, using good techniques,

but still there is a lot to dig out. This motivated us to get into our next phase, that is to ex-

plore this class of non-associative rings in detail and to find its applications in different

areas. During our literature survey, we found the definition of a special LA-ring which

is an LA-ring satisfying the definition of an additive abelian group. We made a compar-

ison of LA-rings and special LA-rings and provided several criterion for an LA-ring to
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become a special LA-ring. To work further in this area, different examples of LA-rings

were required, but we observed that the softwares used by the researchers to find examples

are slow and they exhaust after a certain order. This compelled us to construct an algo-

rithm, which generated higher order extensions of LA-rings and special LA-rings. We also

constructed LA-semigroup ring as a generalization of a commutative semigroup ring. The

newly formed structure carries many properties of LA-semigroup as well as a commutative

associative ring.

The study of the concept of divisibility was previously restricted to commutative and

associative rings only. We introduced this idea for LA-rings and defined the notions of

prime elements, irreducible elements, prime and maximal left ideals etc. Many results

regarding these concepts were subject to the constraint of idempotency that holds in special

LA-rings but not in LA-rings. Furthermore, we established polynomial formation over

a special LA-ring. Our main goal was to define LA-field extension but it was partially

achieved due to requirement of a weak associativity. Since field extension theory is based

on irreducible polynomials, it was mandatory to study factorization of polynomials over

special LA-rings. But due to non associativity and non-commutativity of LA-rings, the

factorization of such polynomial was not that smooth. We proved Division algorithm,

Remainder theorem and Factorization theorem for this case, which have little similarity to

their classical versions. We also included the definition of Euclidean LA-domain.

Molodtsov [97], was the pioneer of the classical soft set theory. Soft set theory is a

relatively new approach to handle uncertainties. A soft set is a collection of approximate

description of an object. Applications of soft set theory to algebraic structures grabbed

the interest of many researchers throughout the world. Following Molodtsov’s definition

for soft sets, Shah et al. [130] introduced the basic notions of soft LA-rings, which are

actually a parameterized family of sub LA-rings of an LA-ring, over an LA-ring. Çaǧman

and Enginoǧlu [28] used a more practical approach and redefined the soft sets along with

their operations. Using their definitions, we redefined soft LA-rings and worked for some

more developments in soft LA-ring theory. Rough soft sets defined in [153], are based

on upper and lower approximations of soft sets with respect to some equivalence relation.

Since it’s not always possible to define an equivalence relation on a set, we approximated

soft sets using a set valued mapping T and introduced T-rough soft sets. Since a set valued

map gives rise to an equivalence relation, T- rough soft sets are generalizations of the
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existing rough soft sets. T-rough soft set theory is a new useful tool for the solution of many

problems that contain uncertainties and vagueness. In particular, we constructed a decision

making algorithm based on T- rough soft sets. Getting back to our goal, we defined T-

rough LA-rings and T-rough soft LA-rings and studied the properties of their ideals using

set valued and strong set valued homomorphisms. Further we established idealistic T-

rough soft LA-rings (idealistic TRS-LA-rings), T-rough soft M-systems (TRS-M-systems)

and T-rough soft P-systems (TRS-P-systems) in T-rough soft LA-rings (TRS-LA-rings).

The article "Soft Int-Rings and its Algebraic Applications" by Çitak and Çaǧman, [32]

published in the "Journal of fuzzy and intelligent systems" in the year 2015, motivated us

to present the idea of soft intersection LA-rings (SI-LA-rings). This new notion is very

practical for obtaining results by means of LA-rings. We introduced the notions of soft

intersection sub LA-rings and soft intersection ideals of an LA-ring. We constructed SI-

special LA-rings using SI-LA-semigroups [118] and SI-rings (associative) [32].

The third phase of our research comprises of applications of LA-rings in the field of

coding theory and cryptography. Coding was previously restricted to associative algebraic

structures only. The construction of Codes over finite (associative) fields motivated us to

establish codes over finite LA-fields. We studied Linear cyclic codes over special LA-fields

which are in fact special LA-vector spaces. We formulated an algorithm for the construc-

tion of reversible complement cyclic codes of odd lengths over a special LA-field FSLA4 of

order 4. This technique doesn’t take much time and generates a set of codewords which are

not likely to make undesired bonds with one another during the process of hybridization.

The inspiration behind this codes construction was taken from an article "Construction of

Cyclic Codes overGF (4) for DNA Computing," published in Journal of Franklin Institute,

2006. In this article, T. Abualrub et al. [1] constructed the reversible complement cyclic

codes over FLA4 with odd lengths over GF (4).

An S-box is the main component of the symmetric key cryptosystem. We designed

S-boxes over special LA-rings, while classically, the most S-boxes were constructed over

commutative and associative structures of Galois field and local rings. The main resolu-

tion of these S-boxes designing was to increase the resilience due to non-associative and

non-commutative conduct of special LA-rings. We constructed small S-boxes over a spe-

cial LA-field having order 16. The image encryption capacity of these newly constructed

S-boxes was judged through the MLC. In literature, differential cryptanalysis is just ap-
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plied on binary Galois field extensions. However,we shift it on S-boxes designed over a

special LA-field of order 16. The difference distribution tables have exhibited differential

probability which is better than that of the S-boxes depending on the 16 order Galois field.

A watermarking application of these S-boxes has been specified to go in conjunction with

their comparison in the framework. Furthermore, we constructed S-boxes through a spe-

cial LA-ring having order 512. The purpose of these S-boxes designing was to produce

256 times more 8 × 8 S-boxes created through linear fractional transformations having

excellent robustness. This study provides 256× (16776960) choices in constructing 8× 8

S-boxes of diverse strength. Thus, uniting all the possible cases, we get a sufficiently large

key space to guard brute force attack. A new color image encryption usage is estimated in

which firstly these 3 S-boxes were used in producing confusion in each layer of a standard

RGB color image. Nevertheless, for the purpose of diffusion 3D Arnold chaotic map is

utilized in the newly introduced encryption scheme. A comparison with some of existing

chaos and S-box dependent color image encryption schemes were given and the perfor-

mance outcomes of the estimated RGB image encryption and noted as approaching the

standard main level.

Future work

The future prospects relating this study hold a lot of void still to be filled. Some areas are

listed hereunder.

1. Construction of LA-field extension free of constraints.

2. Investigation of the generalized rough soft ideal structure in the generalized soft

LA-rings and generalized rough soft LA-modules.

3. Defining SI-Quasi ideals, SI-Bi-ideals and SI-Interior ideals. Further different ap-

plications of soft intersection like α-inclusion and soft intersection product can be

studied for SI-LA-rings.

4. The approach that we used for the construction of DNA codes over FSLA4 can be

applied to similar LA-rings.

5. Our search was restricted to the case of odd length for the sake of computational
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convenience. Conducting a search for even lengths is promising to yeild more new

codes over FSLA4.

6. Due to the most usefulness of light weight cryptography, our small S-boxes could

replace the position of small S-boxes used in Mini AES.

7. A successful development in constructing 256 elements LA-field will be more help-

ful in designing 8× 8 S-boxes over it.
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