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Preface 

Various base liquids such as ethylene, oil, water, and glycols etc. have low thermal conductivity. 

Thus, an improvement in the thermal efficiency of these liquids seems necessary in achieving the 

engineers and scientists’ expectations. Nanofluid consists of base liquid and nanoscale material 

(1-100 nm). In thermal engineering, heat exchangers, electronic chemical processes, cancer 

therapy and biomedicine, nanofluids are found very useful. Nanoparticles include namely 

𝛾𝐴𝑙2𝑂3, 𝐶2𝐻6𝑂2,oxides and carbides ceramics and semiconductors. Nanofluids are the new 

generation coolants which exhibit much better heat transfer performance than the ordinary liquid 

carrier. Especially two-phase flow problems used abundantly in petroleum, usage of waste water, 

combustion and smoke emission from automobiles process. Non-Newtonian fluids like second 

grade fluid model, third grade fluid model Jeffrey fluid model, Williamson and many others are 

regarded helpful in physiological phenomenon, pharmaceutical etc. Viscous fluid, second grade 

fluid model, third grade fluid model and Jeffrey fluid model, are incorporated in this thesis.  

Mechanism of heat transfer has involvement in industries such as nuclear reactor, energy 

production and mobile device etc. For relatively higher temperature the surfaces heat transfer 

requires simultaneous study of various heat transporation process. Such process by which heat can 

be transmitted faster by the fluid are melting, absorption, combustion, conduction, convection and 

dispersal of radiation. Technologies and industries have widespread utilizations of melting 

phenomenon. Researchers paid particular attention to improving effective, safe, and energy depot 

technologies. These technologies are interrelated with the repossession of excess fuel, solar, 

electricity and food from plants. For example, three energy storage procedures have been 

introduced including latent, thermal energy and chemical energy. The economically sustainable 

heat energy storage is latent heat via material phase adjustment. Melting phenomenon has 



applications in many fields namely heat exchanger coils, based pump, the freeze treatment, 

solidification, welding processes and many others. 

The boundary layer flows of viscous/non-Newtonian liquids over a stretched sheet have interest in 

various fields. Examples of these flows involve polymer sheet sectors, glass sheets, pharmacology, 

bioengineering, fusion technology, plastic wire making and emulsion of polymeric materials etc. 

Current product efficiency primarily depends on heat transfer rate and drag forces etc. Keeping all 

these dimensions in mind the main goal of this thesis is to study mathematical models with 

different aspect of heat transfer. The structure of this thesis is as follows. 

Chapter 1 consist of some basic law of conservations. Mathematical model and boundary-layer 

expressions for Newtonian fluid, second grade, third grade and Jeffrey fluids are incorporated. 

Three different techniques are used to deal the flow problems. Basic concepts of these techniques 

namely HAM, OHAM and shooting technique is also provided. 

Chapter 2 addresses the flow subject to effective Prandtl number and without effective Prandtl 

number via γAl₂O₃-H₂O and γAl₂O₃-C₂H₆O₂ nanoparticles. The resulting problem are solved 

through Optimal homotopy method (OHAM). Optimum values are determined for the auxiliary 

parameters. Impact of emerging parameters are graphically analyzed for (γAl₂O₃ -H₂O and γAl₂O₃ 

-C₂H₆O₂) nanoparticles. The contents of this chapter are published in Journal of Molecular 

Liquids 266 (2016) 814-823.   

Chapter 3 deals the Mixed convective dissipative flow of effective Prandtl number subject to 

entropy optimization and melting heat. The governing flow expressions with boundary conditions 

are solved via built-in-Shooting technique. Computational solutions are identified and analyzed 



utilizing plots. The outcomes are reported in International Communications in Heat and Mass 

Transfer 111(2020) 104454. 

Chapter 4 reports computational aspects for Entropy generation in MHD flow of viscous fluid 

subject to aluminum and ethylene glycol nanoparticles. Thermal radiation and Joule heating are 

examined. Electric field is absent. Uniform magnetic field is applied normal to the sheet. The 

relevant equation are solved via built-in- Shooting method. The various flow parameters are 

graphically discussed. The outcomes of this chapter are published in Computer methods and 

programs in biomedicine 182(2019) 105057. 

Chapter 5 examines Thermal radiation and heat source/sink impacts in stagnation point flow of 

viscous nanomaterial. Radiative heat and convective conditions are also analyzed. Inclined 

magnetic field is taken. Homotopy analysis method is employed to find the serious solution. The 

contents of this chapter are available in Indian Journal of Physics 94(2019) 657–664. 

Chapter 6 presents Computational analysis of 3D radiative Darcy-Forchheimer flow subject to 

suction/injection.  Porous medium is characterized by Darcy-Forchheimer relation. Radiation, 

convective condition and slip effect are addressed. Stagnation point flow is examined. Non-linear 

ordinary differential system are solved through shooting method. Graphical results are portrayed 

and scrutinized with distinct values of dimensionless variables. The chapter key results can be 

found in Computer Methods and Programs in Biomedicine 184(2020) 105104. 

Chapter 7 describes Utilization of entire modern aspect of Cattaneo-Christov model in mixed 

convective entropy optimized flow by Riga wall. Brownian motion and thermophoresis are 

adopted. Cattaneo-Christove model for heat and mass fluxes are used to examine the heat and mass 

transfer. Entropy generation is modeled. The numerical solutions are developed through ND solve 



technique. Graphical illustrations are given for the influence of sundry parameters. The outcomes 

of this chapter are submitted in Numerical Method for Partial Differential Equations for 

possible publication. 

Chapter 8 discloses a novel perspective of Cattaneo-Christov model in MHD second grade 

nanofluid flow. Heat and mass transfer are based upon Cattaneo-Christov (CC) theory. Results are 

developed via OHAM. The outcomes of this chapter are published in International 

Communications in Heat and Mass Transfer 119(2020) 104824. 

Chapter 9 describes Melting heat in Jeffrey fluid flow through permeable space. Energy equation 

is considered in the existence of melting heat and heat absorption/ generation. The results are 

constructed via OHAM. The outcomes of this chapter are published in Thermal Science 23(2019) 

3833-3842. 

Chapter 10 includes the Impact of entropy generation on third grade nanofluid flow over a 

stretchable Riga wall with Cattaneo-Christov double diffusions. Formulation also consists of heat 

generation and mixed convection. The key results of this chapter are submitted in Numerical 

Method for Partial Differential Equations for possible publication. 
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Chapter 1

Literature survey and methodologies

1.1 Introduction

Some literature surveys about stretching sheet, entropy generation, nanofluid, viscous fluid,

non-Newtonian fluids, radiative heat flux, heat generation, viscous dissipation and magneto-

hydrodynamic (MHD) boundary layer flow have been reviewed in this chapter. Viscous and

non-Newtonian liquids (second grade, third grade, Jeffrey model) constitutive relations are

included. Further, the basic concept of homotopy method, Optimal homotopy method and

built-in-Shooting method are incorporated for the series solutions and numerical analysis re-

spectively.
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1.1.1 Nomeclature

   Velocity Components along    directions respectively

qJ Heat and Mass flux

 Fluid(Temperature, Concentration)

  Surface(Temperature, Concentration)

∞ ∞ Ambient(Temperature, Concentration)

 ∞ Stretching and Ambient velocities

  (Melting,Characteristic) Temperature

 First Rivilin Erickson Tensor

   Positive Constants

   (Thermal, Solutal)Relaxation time

( =   ) Thermal Conductivity

( )( =  ) (Kinematic, Dynamic) Viscosity

( )( =   ) (Current, Fluid) Density

 Acceleration due to Gravity

 Drag Force Coefficient

 Volumetric Coefficient

∗ Porous Medium Permeability

  Specific Heat, Heat Capacity

∗ Cauchy Stress Tensor

(=) Permanent Variable Magnets Magnetization

1 Width for Electrodes and Magnets

 (Brownian motion, Thermophoresis diffusion) Coefficient

( =  ) Thermal Diffusivity

( =  ) Thermal Expansion Coefficient

 Stream Function

 Independent Variable

() Heat Capacity of Fluid

 Nanoparticles Volume Friction
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³
=

()
( )

´
Heat Capacity Ratio

 Distance along the Plate

 Distance Perpendicular to the Plate

 Heat Transfer Coefficient

 Thermal radiation

∗ Stefan-Boltzmann Constant

( =   ) Electric Conductivity

∗ Latent Heat of Fluid

1 Slip Constant

∗1 Absorption Constant

 Wall Shear Stress along  direction

 Heat Flux at Wall

 Surface Mass Flux

( 0 0)   Dimensionless ((Velocities), Temperature, Concentration)

  Identity Tensor, Pressure

∗ Extra Stress Tensor

 Entropy

 Bejan Number

 Skin Friction Coefficient

 Nusselt Number

 Sherwood Number

 Lewis Number

 Hartman Number

 Brownian Motion Parameter

 Thermophoresis Parameter

Pr Prandtl Number

−1 Inverse Darcy Number

 Mixed Convection Parameter

 Local Inertia Coefficient Parameter
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 Non-Dimensional Parameter

Re Local Reynold Number

 Chemical Reaction Parameter

1 Thermal Relaxation Parameter

2 Biot Number

3 Solutal Concentration Parameter

4 Concentration Difference Parameter

 Thickness Parameter

 Shape Parameter

 Stretching/Shrinking Parameter

 Heat Generation Parameter

 Brinkman Number

Ω Dimensionless Temperature Difference

 Diffusion Parameter

 Section/Injection Parameter

 Eckert Number

 Schmidt number

 Grashof Number

 Radiation Parameter

 Ratio Parameter

1 2 3 
∗
1
∗
2 

∗
3 Material Parameters

∗ Second Grade Fluid Parameter

∗1 
∗
2 

∗
3 Third Grade Fluid Parameters

2 Slip Parameter

 Deborah Number

1 Ratio of Relaxation and Retardation Times

2 Retardation Time
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 Trace

 Second Grade Nanofluid

 Third Grade Nanofluid

 Cattaneo Christov

 Magnetohydrodynamic

 Heat Transfer Rate

 Entropy Generation Minimization

23 Alumina

2 Water

262 Ethylene Glycol

1.1.2 Subscript

 Condition at Surface

∞ Ambient Condition

 Base Fluid

 Nano Solid Particles

 Nanofluid

 Melting at Surface

1.2 Background

Mechanism of heat transfer has involvement in industries such as nuclear reactor, energy pro-

duction and mobile device etc. For relatively higher temperature the surfaces heat transfer

requires simultaneous study of various heat transporation process. Such process by which

heat can be transmitted faster by the fluid are melting, absorption, combustion, conduction,

convection and dispersal of radiation. Fourier [1] primarily introduced the concept of heat

conduction. This leads to paradox of heat conduction. Thus Fourier’s expression is formerly

revised by Cattaneo [2] He introduced the concept of thermal relaxation time. Christov [3]

utilized the Oldroyed upper convective time derivative and thus relation is named as Cattaneo-

Christov (CC) model [2]. Ciarletta and Straughan found unique solution for temperature via

Cattaneo model [4]. Haddad [5] addressed the thermal volatility through porous medium via
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Cattaneo-Christov (CC) model. Current attempts about Cattaneo -Christov (CC) model can

be listed via refs. [6 − 8]. Effects of radiation are significant even in the sense of high tem-
perature process and space technology. Ozisik [9], Sparrow [10] and Arpaci [11] specifically

investigated the interaction between energy and convection through vertical sheet. Waleed et

al. [12] examined the flow of nonlinear radiative nanomaterials and the minimization of entropy

by a thin needle. Kumar et al. [13] investigated nanofluid stretched flow of nonlinear radiation.

Babu and Sandeep [14] provided bio-convective flow by stretchable sheet. Recent researches

about radiative heat flux can be seen via Refs. [15 − 17]. Technologies and industries have
widespread utilizations of melting phenomenon. Researchers paid particular attention to im-

proving effective, safe, and energy depot technologies. These technologies are interrelated with

the repossession of excess fuel, solar, electricity and food from plants. For example three energy

storage procedures have been introduced including latent, thermal energy and chemical energy.

The economically sustainable heat energy storage is latent heat via material phase adjustment.

Melting phenomenon has applications in many fields namely heat exchanger coils, based pump,

the freeze treatment, solidification, welding processes and many others. Rahman et al. [18]

addressed radiative MHD flow over an extended surface. Melting temperature of ice piece in

the cascade of hot air is addressed by Robert [19]. Das [20] reported MHD flow with melting

and radiation influences. Hayat et al. [21] examined the Cu-nanofluid flow in the presence of

viscous dissipation and Joule heating.

Various base liquids such as ethylene, oil, water, and glycols etc have low thermal con-

ductivity. Thus an improvement in the thermal efficiency of these liquids seems necessary in

achieving the engineers and scientists expectations. Choi [22] initially used the term nanofluid

to improve continuous-phase liquid thermal efficiency. Usman et al. [23] explored the Casson

nanoliquid due to stretchable cylinder. Sheikholeslami et al. [24] explored nanofluid flow over

a stretched surface in the presence of MHD. Gireesha et al. [25] analyzed nanofluid flow by

materializing ( ) model. Hayat et al. [26] investigated second grade flow in the existence

of MHD. Mixed convective nano-liquid flow with heat source is discussed by Khan et al. [27]

Haiao [28] examined the dissipative flow of micropolar liquid over stretchable surface.

The boundary layer flows of viscous/non-Newtonian liquids over a stretched sheet have

interest in various fields. Examples of these flows involve polymer sheet sectors, glass sheets,

11



pharmacology, bioengineering, fusion technology, plastic wire making and emulsion of polymeric

materials etc. Current product efficiency primarily depends on heat transfer rate and drag

forces etc. These processes depend entirely on the phenomenon of the boundary layer along

extended sheer and mass transfer rate. Rajagopal et al. [29] explored viscoelastic fluid flow

by an extended surface. Riley [30] examined MHD flow by vertical plate. Impact of uniform

fluid flow over an extended sheet with chemical reaction was analyzed by Fairbanks and Wike

[31]. Andersson et al. [32] studied flow with chemical reactive influence. Magyari and Keller

[33 34] investigated boundary layer flow flows caused by stretching walls. Recent researches

about stretching surface may be consulted via Refs. [35− 38].
Investigation of non-Newtonian liquids is an active research area for the pervious few years.

Numerous industrial materials are characterized as non-Newtonian fluids. Few examples include

oils, moisturizers, paints, polymers, polymeric fluids, and suspension fluids. The characteristics

of non-Newtonian liquids are distinct. Therefore many models in this direction are suggested.

It is noticed from existing literature that second and third grade fluids are studied much in

view of shear thinning/shear thickening and normal stress factors. Some developments about

these liquids may be examined by the studies [39− 43]. Recently Abbas et al.[44] explored the
Maxwell fluid model in the presence of permeable channel. Thermodynamic constraints for third

grade fluid are pointed out by Fosdick and Rajagopal [45]. Mastroberardino and Mahabaleswar

[46] constructed viscoelastic mixed convective by stretching surface. Adesanya and Makinde

[47] explored thermodynamics properties for third-grade liquid with internal heat generation.

Various studies about third grade fluid are examined via Refs [48− 52]. Jeffrey material is one
of the non-Newtonian liquids which can predict the retardation and relaxation times effects.

Non-Newtonian fluid model due to their applications in bio-engineering, geophysics, oil reservoir

process and chemical and nuclear technologies have remarkable importance [53− 56].
The fluid movement through permeable space is significant for thermal insulation, industrial

production of oil, power generation and others. The flows in porous channel are common in

groundwater discharge, oil revenue and many others. Darcy model is utilized for low velocity

flow rate whereas for high velocity flow rate this model is extended to Darcy-Forchheimer

relation with additional term in momentum equation [57]. Saddeek [58] inspected the dissipated

flow over a permeable extended sheet. Some recently investigations about Darcy-Forchheimer

12



medium can be found in Refs. [59− 62].
To minimize the irreversibility one can utilize the concept of thermodynamics second (2nd)

law. Entropy optimization (increase or decrease) is a principle of annihilation of current frame-

work. Analysis of entropy is accomplished to improve efficiency of system. Joule heating, dissi-

pation and mass and heat transfers etc., can be exploited as fundamentals of entropy generation

(EG). Design variable subject to thermal structures negotiate not only with heat transportation

improvement as well as with the quantity of intensity input in structures. Therefore determin-

ing of optimal obstinacy between the heat transportation rate (HTR) and need of intensity

input turn out to be premier intention about design approximations of a thermal structure. As-

sessment of the dynamical productivity of real structures is developed by an energy assessment

which can be used (energy) or correspondingly irreversible rate of entropy. Optimization and

comparison of working heat exchanger are measured by thermodynamic parameters [63 − 67]
and by specific economic parameters [68 − 72]. Technique enables the entropy production to
be modified through various mechanisms and design features in order to find optimum geo-

metric heat exchanger patterns [73]. Bejan [74] defined models of power plants functioning

at absolute capacity while providing the lowest entropy generation rate. Salamon et al. [75]

explained that in some structure conditions optimum power efficiency and minimum entropy

generation rate may become equal. Haseli [76] discussed the process of Brayton processes in

different configurations at a minimum EGM condition. Several investigators use energy storage

and entropy production minimization to induce optimum simulations for the thermal system

[77]. Torabi et al. [78] numerically calculated total entropy optimization rate in micro porous

channels subject to temperature jump and velocity slip. Das and Basak [79] studied discrete

solar heating methodologies subject to entropy optimization. They also examined heat transfer

through natural convection process in discretely heated square cavity. Entropy optimization

analysis for flow boiling condition in a helically coiled tube subject to constant heat flux is

analyzed by Abdous et al. [80].
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1.3 Viscous fluid

A fluid that follow Newton’s viscosity law is called viscous fluids. For viscous incompressible

fluid the Cauchy stress tensor (τ ∗) is

τ ∗ = −I+ A1 (1.1)

in which  denotes the pressure, I the identity tensor andA1 the first Rivlin-Ericksen tensor.

1.4 Non-Newtonian liquids

A fluid that does not follow Newton’s viscosity law is known as non-Newtonian liquids. Exam-

ples include ketchup, honey, custard, paint, toothpaste, shampoo and blood at low shear rate

etc.

1.4.1 Second grade fluid

The continuity, motion and second grade fluid relations are

∇V = 0 (1.2)


V


= div τ ∗ (1.3)

τ ∗ = −I+ S∗ (1.4)

where an extra stress tensor S∗ satisfies

S∗ = A1 + 1A1 + 1A2 + 2A
2
1 (1.5)

A =



A−1 +A−1(∇V) +A−1(∇V)   ≥ 1 (1.6)

A1 = (∇V)+(∇V)  (1.7)
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(∇V) =

⎡⎢⎢⎢⎣



























⎤⎥⎥⎥⎦  (1.8)

1.4.2 Third grade fluid

An extra stress tensor S∗ have obeys

S∗ = A1 + 1A1 + 1A2 + 2A
2
1 + ∗1A3 + ∗2A1A2 + ∗2A2A1 + ∗3(A

2
1)
ª
 (1.9)

where  denotes dynamic viscosity and ( = 1 2) and ( = 1 − 3) are the material
constants of fluid.

1.4.3 Jeffrey fluid model

Constitutive relation for an extra stress tensor S∗ satisfies

S∗ =


1 + 1

∙
+ 2

µ



+ (V ·∇)A

¶¸¾
 (1.10)

where 1 is the ratio of relaxation to retardation times and 2 the retardation time.

1.5 Methodologies

1.5.1 Homotopy analysis method (HAM)

In 1992, the homotopy method was first time given by Liao [92] for solutions of highly non-

linear partial/ordinary systems. This method uses the concept of homotopy to construct a

series solution for highly nonlinear systems. For nonlinear equation, we have

N [ ()] = 0 (1.11)

(1− ∗∗)L [(; ∗∗)− 0()] = ∗∗}N [(; ∗∗)]  (1.12)
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where } 6= 0 0 ≤ ∗∗ ≤ 1 L and 0() satisfying the boundary constrains. Put 
∗∗ = 0 and

∗∗ = 1 one has

(; 0)− 0() = 0 and (; 1)− () = 0 (1.13)

Applying the concept of Taylor series, we get

(; ∗∗) = 0() +

∞X
∗=1

∗() (
∗∗)

∗
 ∗() =

1

∗!


∗
(; ∗∗)

 (∗∗)
∗

¯̄̄̄
∗∗=0

 (1.14)

The  order expression is defined as

 [∗()− ∗∗−1()] = }R∗ (∗−1)  (1.15)

with

∗ (∗−1) =
1

(∗ − 1)!


∗−1(; ∗∗)
 (∗∗)

∗−1

¯̄̄̄
∗∗=0

 (1.16)

∗ =

⎧⎨⎩ 0 ∗ ≤ 1
1 ∗  1

(1.17)

The final solution converges to ∗∗ = 1 is obtained with the help of MATHEMATICA i.e.,

() = 0() +

∞X
∗=1

∗() (1.18)

1.5.2 Bulit-in-Shooting technique

We have implemented built-in-Shooting technique [92] in chapters 2, 3,4 and 7 to construct the

numerical solutions of differential equations in MATHEMATICA. This method directly solved

the differential systems.
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Chapter 2

Flow subject to effective Prandtl

number and without effective

Prandtl number via 23 −2

and 23 − 262 nanoparticles

Entropy generation and viscous dissipation in mixed convective radiative flow through a stretched sheet

are examined. Modeling is based upon second law of thermodynamics. Effective Prandtl number (EPN)

model is employed to analyze the features of entropy-generated flow. Nanomaterial subject to nanopar-

ticles (23 −2 and 23 −262) are considered. The resulting problem are solved

through Optimal homotopy method (OHAM). Optimum values are determined for the auxiliary pa-

rameters. Impact of emerging parameters are graphically analyzed for (23 −2 and 23

−262) nanoparticles. Major points are provided in concluding remarks.

2.1 Modeling

Mixed convective flow of viscous nanomaterial caused by stretching sheet is discussed. The

stretching surface is taken at  = 0 (21). Fluid occupies the space   0. Radiation,

dissipation and heat generation are present. Mathematical expressions for problem under con-
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sideration satisfy [81]:

Fig. 2.1: Flow diagram.




+




= 0 (2.1)





+ 




− 



2

2
− 

()


( − ∞) = 0 (2.2)

µ




+ 





¶
=



()

2

2
+

1

()

µ




¶
+



()

µ




¶2
+

0

()
( − ∞) (2.3)

with

 =  =   = 0  =  at  = 0

→ 0  → ∞ when  →∞

⎫⎬⎭ (2.4)

2.2 Thermophysical characteristics of 23 −2 and 23 −
262 nanoparticles [82-86].

Here one has
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= (1− ) + 




 (2.5)

()

()
= (1− ) + 

()

()
 (2.6)

()

()
= (1− ) + 

()

()
 (2.7)




= 1232 + 73+ 1 for 23 −2 (2.8)




= 3062 − 019+ 1 for 23 − 262 (2.9)




= 4972 + 272+ 1 for 23 −2 (2.10)




= 289052 + 28273+ 1 for 23 − 262 (2.11)

Pr

Pr
= 8212 + 39+ 1 for 23 −2 (2.12)

Pr

Pr
= 25432 + 3+ 1 for 23 −262 (2.13)

Table 1: Thermophysical features of ethylene glycol (262), water (2) and alumina

(23).

(
−1−1−1) (−3)  × 10−5 ¡−1¢ (−1−1)

Alumina (23) 765 3970 0.85 40

Water (2) 4182 998.3 20.06 0.60

Ethylene glycol (262) 2382 1116.6 65 0.249
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We consider the transformations

 =

r



  =  0()  = −√() () =  − ∞

( − ∞)
 (2.14)

2.3 Flow equations

Momentum and energy equations for both (23 −2 and 23 − 262) nanofluids

give

(1232 + 73+ 1) 000 +
³
1− + 




´
( 00 + 

02)

+
³
1− + 







´
() = 0 for 23 −2

⎫⎬⎭ (2.15)

(3062 − 019+ 1) 000 +
³
1− + 




´
( 00 + 

02)

+
³
1− + 







´
() = 0 for 23 − 262

⎫⎬⎭ (2.16)

(0) = 0  0(0) = 1  0(∞) = 0 (2.17)




£
(4972 + 272+ 1) +(1 + ( − 1))30()

¤
+Ψ

⎡⎢⎢⎢⎣
()0()−  0()() + 

1−+ ()
()

( 00())2

+ 
1−+ ()

()

()

⎤⎥⎥⎥⎦ = 0 for 23 −2

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(2.18)




£
(289052 + 28273+ 1) +(1 + ( − 1))30()

¤
+Ψ

⎡⎢⎢⎢⎣
()0()−  0()() + 

1−+ ()
()

( 00())2

+ 
1−+ ()

()

()

⎤⎥⎥⎥⎦ = 0 for 23 − 262

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(2.19)

(0) = 1 (∞) = 0 (2.20)

where Ψ for effective Prandtl number via 23−2 and 23−262 nanofluids
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satisfies

Ψ =
(Pr)

³
1− + 




´
(8212 + 39+ 1)

1232 + 73+ 1
 (2.21)

Ψ =
(Pr)

³
1− + 




´
(25432 − 3+ 1)

3062 − 019+ 1  (2.22)

In absence of effective Prandtl number via 23 −2 and 23 − 262 one has

Ψ =
(Pr)

³
1− + 




´
4972 − 272+ 1  (2.23)

Ψ =
(Pr)

³
1− + 




´
289052 + 28273+ 1

 (2.24)

2.4 Physically quantities

2.4.1 Drag force coefficient (C)

Skin friction in dimensional form is expressed as

 =



2


 (2.25)

where  is defined as

 = −2
¯̄
=0





¯̄̄̄
=0

 (2.26)

Putting Eq. (2.26) in Eq. (2.25), one has

1
2

√
Re = −

¡
1232 + 73+ 1

¢
 00(0) for 23 −2

1
2

√
Re = −

¡
3062 − 019+ 1¢  00(0) for 23 − 262

⎫⎬⎭ (2.27)

2.4.2 Nusselt number (Nu)

Mathematically we have

 =


 ( − ∞)
 (2.28)
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where  is expressed as

 = −
∙µ
1 +

16 3

3

¶µ




¶¸
=0

 (2.29)

Using Eq. (2.29) in Eq. (2.28) we have

(Re)
−12 =

⎡⎣ (4972 + 272+ 1)

+(1 + ( − 1)(0))30(0)

⎤⎦ for 23 −2

(Re)
−12 =

⎡⎣ (289052 + 28273+ 1)

+(1 + ( − 1)(0))30(0)

⎤⎦ for 23 − 262

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
 (2.30)

2.5 Entropy generation modelling

Current flow model volumetric entropy () and characteristic entropy ()0 can be written as

 =


 2∞

"




µ




¶2
+
16∗ 3∞
3

µ




¶2#
+



∞

µ




¶2
 (2.31)

()0 =


 2∞

(∆ )2

2
 (2.32)

Mathematically total entropy generation is described as

 =


()0
 (2.33)

Dimensionless form of above equation for both (23 − 2 and 23 − 262)

nanofluids are expressed as

 = 2() + Re

⎡⎣ (4972 + 272+ 1)+

(1 + ( − 1)(0))302(0)

⎤⎦
+
h
1232+73+1

4972+272+1

i

Ω
Re 

002
for 23 −2

⎫⎪⎪⎪⎬⎪⎪⎪⎭  (2.34)
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 = 2() + Re

⎡⎣ (289052 + 28273+ 1)+
(1 + ( − 1)(0))302(0)

⎤⎦
+
h

3062−019+1
289052+28273+1

i

Ω
Re 

002
for 23 − 262

⎫⎪⎪⎪⎬⎪⎪⎪⎭  (2.35)

Bejan number () in non-Dimensional form is defined by

 =
Re[(4972+272+1)+(1+(−1)(0))302(0)]

2()+Re

 (4972 + 272+ 1)

+(1 + ( − 1)(0))302(0)

+ 1232+73+1

4972+272+1



Ω
Re  002

for 23 −2

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
 (2.36)

 =
Re[(289052+28273+1)+(1+(−1)(0))302(0)]

2()+Re

 (289052 + 28273+ 1)

+(1 + ( − 1)(0))302(0)

+ 3062−019+1
289052+28273+1



Ω
Re  002

for 23 − 262

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
 (2.37)

2.6 Dimensionless parameters



³
=

16∗ 3∞
3

´
 

³
=

2


´
 
³
= 



´
 

³
=


∆

´


Ω
³
= ∆

∞

´
 

³
=

 

2

´
 Re

³
= 



´
⎫⎬⎭  (2.38)

2.7 Methodology

Initial approximations (0 ()  0 ()) and linear operators (L () L ()) are

0 () = 1− (−) 0 () = (−)

L () = 3
3
− 


 L () = 2

2
− 

⎫⎬⎭ (2.39)

Average residual errors for flow equations at  order are expressed as

( ) =
1

 + 1

X
=0

×
"

X
=0

()=Π

#2
 (2.40)
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(  ) =
1

 + 1

X
=0

×
"

X
=0

()=Π

X
=0

()=Π

#2
 (2.41)

where () is defined by

 =  + . (2.42)

Optimal estimations of convergence control variables are ( = −085698) and ( = −0312346).
Numerical estimation of total residual error () is

¡
920133× 10−6¢.

Table 2.1: Residual errors for various variables when  = 04  = 11  = 04

 = 01 Re = 03  = 02 Pr = 10 and  = 01

 

 

2 894180× 10−8 684831× 10−6

6 520171× 10−12 61285× 10−8

8 321087× 1013 515682× 10−8

10 358381× 10−15 508389× 10−10

16 12359× 10−21 258971× 10−11

22 25872× 10−24 380485× 10−12

24 158101× 10−27 59729× 10−14

2.8 Analysis

2.8.1 Velocity

Effect of nanoparticles volume fraction ( = 00 02 04 08) on velocity field is depicted in

Figs. 22( ). From Figs. 22( ) we noticed that () remarkably enhances the velocity  0()

for both 23 −2 and 23 − 262 nanofluids.
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2.8.2 Temperature distribution

Influence of () on (()) is demonstrated in Figs. 23( ). In Fig. 23() it is scrutinized

that (()) shows contrast behavior for effective Prandtl number (EPN) and without effective

Prandtl number for (23 −2) nanofluid. For higher ( = 000 001 002 003 004) the

temperature () decreases against effective Prandtl number (EPN) while an improvement is

evaluated through ( = 000 001 002 003 004) for without effective Prandtl number. Com-
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parable outcomes is seen through ( = 000 001 002 003 004) for effective and without

effective Prandtl numbers via 23 − 262 nanofluids (see Fig. 23()). Figs. 24() and

24() reveal the behavior of () via ( = 10 20 30 40). From Fig. 24() an enhancement

in (()) for 23 − 2 is noticed through higher (). Physically higher values of ()

give rise to a significant variation in thermal field due to frictional heating for both scenarios

23 −2 and 23 − 262 (see Figs. 24( ). Eckert number () also describes

the quantitative relation of kinetic energy and enthalpy. Higher () employ that dissipated

heat is contained in material which reduces temperature (()). Figs. 25( ) demonstrate

the consequence of () on (()). Temperature field is enhanced for larger () Physically

radiative variable enhances the heat flux at surface which is responsible for an enhancement in

thermal field for both cases of 23 −2 and 23 − 262 nanofluids.
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2.8.3 Entropy generation rate

Change in Brinkman number on (()) is depicted in Figs. 26( ). Clearly (()) is

an increasing function of () for both 23 − 2 and 23 − 262 nanofluids.

Infact significant quantity of heat releases within layer of liquid particles and as a result an

improvement in entropy is noticed. Figs. 26( ) illustrate impact of () on (()) for

both 23 − 2 and 23 − 262 nanofluids. Figs. 27( ) illustrated that an

enhancement in () leads to increase of (()). It is perceived that (()) dominates in

case of 23 −2 and 23 − 262 nanofluids. Significance of () on (()) is

shown in Figs. 28( ). Here (()) is an increasing function of () for both 23 −
2 and 23 − 262 nanofluids. For larger () the irreversibility rate of the system

enhances. As a result (()) is increased. Furthermore (()) dominants is case of effective

Prandtl number (EPN) when compared with without effective Prandtl number in the presence

of 23 −2 and 23 − 262 nanofluids.
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2.8.4 Bejan Number

Attribute of () on () is exhibited in Figs. 29( ). Clearly () is decreasing function

of () for both 23 −2 and 23 − 262 nanofluids. It is due to the fact that

viscosity dominants against larger (). That is why Bejan number reduces. Radiation variable

() on () is explored in Figs. 210( ). Here () enhances through higher () for both

23 − 2 and 23 − 262 nanofluids. Internal energy of system improves and
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consequently an augmentation is observed in Bejan number.
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2.9 Engineering quantities

2.9.1 Drag force () and heat transfer rate ()

Figs. 211( ) illuminate the impacts of ( ) through () and (). Skin friction ( ) increases

via an enhancement in ( = 00 01 02 03) and () for both 23 − 2 and 23 −
262 nanofluids (see Figs. 211( )). Nusselt number () through ( = 02 03 04 05)
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and () for both 23−2 and 23−262 nanofluids are sketched in Figs. 212( ).

Here () boosts in presence of () and () 
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2.10 Conclusions

Main findings are concluded as follows

•  0() is increased for larger .

• () shows different impact for effective and non-effective Prandtl numbers.

• For higher ,  and  the (()) is increased.
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• Influences of () and () on () are absolutely inverse.

• () leads to an increment in ( ) and ().
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Chapter 3

Mixed convective dissipative flow of

effective Prandtl number subject to

entropy optimization and melting

heat

This chapter investigates the outcomes of melting heat in mixed convective flow over a stretchable sheet.

Heat generation and Joule heating effects are also taken in energy equation. Here (23−2

and 23−262) nanofluids are considered. With and without effective Prandtl models are

analyzed for boundary layer flows. Entropy analysis is utilized from Second thermodynamics law. Various

parameters are discussed graphically. Additionally the skin friction and heat transport rate have been

discussed through tabulated values.

3.1 Mathematical formulation

Consider flows of (23 − 2 and 23 − 262) nanofluids. The assumption in

mathematical equations are as follows.

(1) We made that ( = ) is the velocity of stretching sheet.

(2) Neglects the induced magnetic field for very small Reynold number.
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(3) Melting temperature () at surface is less than ambient temperature (∞)

(4) Entropy generation is accounted.

(5) Thermal equilibrium between (23−2 and 23−262) nanoparticles and

base fluid is assumed. The governing equations are




= −


 (3.1)





=




20− 




+ 

()


( − ∞) +





2

2


¾
(3.2)

µ




+ 





¶
=



()

2

2
+



()
20

2 +
0

()
( − ∞) +



()

µ




¶2
 (3.3)

with

 =  =   = 0  =  at  = 0

 = 0  → ∞ when  →∞

⎫⎬⎭ (3.4)



µ




¶
=0

−  [
∗ +  ( − )] ( 0) = 0 (3.5)

3.2 Thermophysical properties of nanoparticles [82− 86]



= (1− ) + 




 (3.6)

()

()
= (1− ) + 

()

()
 (3.7)

()

()
= (1− ) + 

()

()
 (3.8)




=

⎡⎣1 + 3
³


− 1
´
³



+ 2
´
−
³


− 1
´


⎤⎦  (3.9)




= 1232 + 73+ 1 for 23 −2 (3.10)




= 3062 − 019+ 1 for 23 − 262 (3.11)
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Pr

Pr
= 8212 + 39+ 1 for 23 −2 (3.12)

Pr

Pr
= 25432 + 3+ 1 for 23 −262 (3.13)




= 4972 + 272+ 1 for 23 −2 (3.14)




= 289052 + 28273+ 1 for 23 − 262 (3.15)

Table 3.1: Numerical values of nanofluids.

(
−1−1−1) (−3)  × 10−5 ¡−1¢ (−1−1) (Ω−1−1)

(23) 765 3970 085 40 10−12

(2) 4182 9983 2006 006 005

(262) 2382 11166 65 0249 107× 10−7

Table 3.2: Comparative findings of current study with Rashidi ant Ishak et al [87 88]

 Pr Ishak et al. [87] Rashidi et al. [88] Present

0.72 0.8086 0.80883 0.80886

1.0 1.000 1.0001 1.0001

3.0 1.9273 1.92368 1.92221

7.0 3.0723 3.07225 3.07215

10 3.7207 3.72067 3.72167

100 12.2941 12.29408 12.29511

1 1 1.0873 1.08728 1.08721

2 1.1423 1.14234 1.14402

3 1.1853 1.18528 1.18512
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3.3 Non-Dimensional expressions

Consider the transformations




=

r







 0()
= 



()
= −√  () =  − 

(∞ − )
 (3.16)

The momentum and energy equations for both (23 − 2 and 23 − 262)

nanofluids take the following forms

(1232 + 73+ 1) 000 +
³
1− + 




´
( 00 +  0 0)+

+
³
1− + 







´
() +

⎡⎣1 + 3




−1





+2


−



−1



⎤⎦ () 0 0 = 0 for 23 −2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(3.17)

(3062 − 019+ 1) 000 +
³
1− + 




´
( 00 +  0 0)+³

1− + 






´
() +

⎡⎣1 + 3




−1





+2


−



−1



⎤⎦ () 0 0 = 0 for 23 −262

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(3.18)

(4972 + 272+ 1)00()

+Ψ
◦

⎡⎢⎢⎢⎣
³
1− + 

()
()

´
0() +

⎡⎣1 + 3




−1





+2


−



−1



⎤⎦ ()() 0 0

+
¡
1232 + 73+ 1

¢
()( 00())2 + ()

⎤⎥⎥⎥⎦ = 0
for 23 −2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
 (3.19)

(289052 + 28273+ 1)00()

+Ψ
◦

⎡⎢⎢⎢⎣
³
1− + 

()
()

´
0() +

⎡⎣1 + 3
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 (3.20)

(0) = 0  0(0)− 1 = 0  0(∞) = 0 (3.21)
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(0) = 0 (∞)− 1 = 0 (3.22)

(Pr)
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¶
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¢
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where Ψ
◦
in absence of effective Prandtl number via 23−2 and 23−262

nanofluids is given as

Ψ
◦
=
(Pr)

³
1− + 




´
4972 − 272+ 1  (3.27)

Ψ
◦
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(Pr)

³
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Ψ
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 (3.29)

Ψ
◦
=
(Pr)

³
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´
(25432 − 3+ 1)

3062 − 019+ 1  (3.30)

Note that incompressibility condition is satisfied.
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3.4 Engineering curiosity

3.4.1 Drag force (C)

Mathematical description of skin friction is define by

 =



2


 (3.31)

 = −2
¯̄
=0





¯̄̄̄
=0

)
 (3.32)

From above equations we get

1
2
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2
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¡
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⎫⎬⎭  (3.33)

3.4.2 Heat transfer rate

Mathematically we have

 =


 ( − ∞)
 (3.34)

where  is expressed as

 = −
µ




¶
=0

 (3.35)

Through Eqs. (3.34) and Eq. (3.35) we have
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£
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¤
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(Re)
−12 =

£
(289052 + 28273+ 1)0(0)

¤
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⎫⎬⎭ (3.36)

3.5 Entropy expression

Entropy rate () is the ratio of volumetric () to normal ()0 entropy rate i.e.,

 =


()0
 (3.37)
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Entropy generation in non-dimensional form for both (23−2 and 23−262)

nanofluids are
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In non-dimensional form, Bejan number is
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3.5.1 Dimensionless parameters
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3.6 Solution methodology

The governing flow expressions (317− 320) with boundary conditions (320− 321) are solved
via built-in-Shooting technique. Computational solutions are identified and analyzed utilizing

plots.

3.7 Results and discussion

3.7.1 Velocity components

Figs. [31() 31()] show the impact of () on ( 0 ()). Here we noted that for ( = 001 003 005 007 009)

the ( 0 ()) enhances for both 23 −2 and 23 − 262. Infact for deferment of

nano-sized particles in base fluid the cohesive forces between fluid particles become greater.

Figs. [32() 32()] describe the behavior of ( 0 ()) for ( = 00 03 06 09 12) Physically

magnetic parameter () is associated with Lorentz (electromagnetic) force so larger () pro-

duce more resistance therefore velocity declines. Performance of ( 0 ()) with respect to ()

is conscripted through Figs. [33() 33()] Velocity rapidly enhances for higher values of ()
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for both 23 −2 and 23 − 262 nanofluids.

Solid lines; Effective Prandtl number

Dashed lines; Without Effectve Prandtl number
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Fig. 31() :  on  0

Solid lines; Effective Prandtl number

Dashed lines; Without Effectve Prandtl number

For gAl2 O3 - Ethylene glycol
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Fig. 31() :  on  0.
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Solid lines; Effective Prandtl number

Dashed lines; Without Effectve Prandtl number

For gAl2 O3 - Water
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Fig. 32() : on  0.

Solid lines; Effective Prandtl number

Dashed lines; Without Effectve Prandtl number

For gAl2 O3 - Ethylene glycol
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Solid lines; Effective Prandtl number

Dashed lines; Without Effectve Prandtl number

For gAl2 O3 - Water
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Fig. 33() : on  0.

Solid lines; Effective Prandtl number

Dashed lines; Without Effectve Prandtl number
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Fig. 33() : on  0.

3.7.2 Temperature

Figs. [34() 34()] demonstrate the impact of volume fraction () on Temperature. Temper-

ature enhances in case of effective Prandtl number (EPN) whereas opposite scenario is noticed

in the absence of effective Prandtl number (EPN). Ethylene glycol thermal conductivity is

less than water. Impact of () on () is examined in Figs. [35() 35()]. Physically elec-

tromagnetic force gives more resistance to motion of fluid. Therefore more heat is produced
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inside the system and thus temperature increases. Outcomes of () on () is presented in

Figs. [36() 36()] Since melting causes surface and fluid temperature reduce therefore the

temperature () declines (see [Figs. [36() 36()]]).

Solid lines; Effective Prandtl number

Dashed lines; Without Effectve Prandtl number
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Fig. 34() :  on .

Solid lines; Effective Prandtl number

Dashed lines; Without Effectve Prandtl number

For gAl2 O3 - Ethylene glycol
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Fig. 34() :  on 
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Solid lines; Effective Prandtl number

Dashed lines; Without Effectve Prandtl number

For gAl2 O3 - Water
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Fig. 35() : on .
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Solid lines; Effective Prandtl number

Dashed lines; Without Effectve Prandtl number

For gAl2 O3 - Water
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Fig. 36() : on .

Solid lines; Effective Prandtl number

Dashed lines; Without Effectve Prandtl number

For gAl2 O3 - Ethylene glycol
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Fig. 36() : on .

3.7.3 Entropy and Bejan number

Figs. [37() 37()] and [38() 38()] are displayed for the behavior of () on () and 

respectively. For ( = 00 03 06 09 12) () is increased. Clearly electromagnetic force

produces extra disturbance in the system. Therefore () enhances for both 23 −2

and 23 − 262 nanofluids. Rate of heat transfer in both cases is less dominant than

total irreversibilities. As a result () is reduced (see Figs [38() 38()]).
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Figs. [39() 39()] and [310() 310()] show behaviors of (()) and () for increas-

ing values of () for both 23 − 2 and 23 − 262 nanofluids. Thermal en-

ergy of the elements as well as disorderliness inside the structure improves for larger ()

which subsequently upsurges (()). Figs. [310() 310()] present that  reduces for

( = 01 02 03 04 05). Figs. [311() 311()] and [312() 312()] show the increment of

Re on () and  Entropy increases for (Re = 01 02 03 04 05) however  decreases

for (Re = 01 02 03 04 05)  Physically for growing standards of (Re = 01 02 03 04 05)

extra disturbance in the liquid elements is noted. Thus more heat transfer upsurges (()).

Total heat transfer outcome is conquered by total entropy. That is why () is diminished.
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Fig. 37() : on .
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Solid lines; Effective Prandtl number

Dashed lines; Without Effectve Prandtl number

For gAl2 O3 - Ethylene glycol
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Fig. 37() : on .

Solid lines; Effective Prandtl number

Dashed lines; Without Effectve Prandtl number

For gAl2 O3 - Water
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Solid lines; Effective Prandtl number

Dashed lines; Without Effectve Prandtl number

For gAl2 O3 - Ethylene glycol
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Fig. 38() : on .

Solid lines; Effective Prandtl number

Dashed lines; Without Effectve Prandtl number

For gAl2 O3 - Water

Br=0.1

Br=0.2

Br=0.3

Br=0.4

Br=0.5

0 1 2 3 4 5 6
0.0

0.5

1.0

1.5

h

N
G

Fig. 39() :  on .
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Solid lines; Effective Prandtl number

Dashed lines; Without Effectve Prandtl number

For gAl2 O3 - Ethylene glycol
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Fig. 39() :  on .

Solid lines; Effective Prandtl number

Dashed lines; Without Effectve Prandtl number

For gAl2 O3 - Water
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Solid lines; Effective Prandtl number

Dashed lines; Without Effectve Prandtl number

For gAl2 O3 - Ethylene glycol
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Fig. 310() :  on .

Solid lines; Effective Prandtl number

Dashed lines; Without Effectve Prandtl number

For gAl2 O3 - Water
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Fig. 311() : Re on .
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Solid lines; Effective Prandtl number

Dashed lines; Without Effectve Prandtl number

For gAl2 O3 - Ethylene glycol
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Fig. 311():Re on .

Solid lines; Effective Prandtl number

Dashed lines; Without Effectve Prandtl number

For gAl2 O3 - Water
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Solid lines; Effective Prandtl number

Dashed lines; Without Effectve Prandtl number

For gAl2 O3 - Ethylene glycol
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Fig. 312():Re on .

3.8 Engineering curiosity

Tables (33) and (34) show outcomes of () () and () on  for both 23 − 2

and 23 − 262 nanofluids. Drag force enhances for larger () and () whereas re-

verse performance is noted for ( = 001 002 003). Tables (35 36) reveal that for ( =

01 02 03), ( = 01 02 03) and ( = 01 02 03) the heat transfer rate increases for

both 23 −2 and 23 − 262 nanofluids respectively.
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3.8.1 Table 3.3

    for (23 −2)

0.01

0.02

0.03

0.1

0.2

0.3
0.1

0.2

0.3

With effective Prandtl number Without effective Prandtl number

1.96568 5.94156

0.99038 1.13117

0.62106 0.78824

1.84676 2.28791

1.88411 2.33051

1.89012 2.37241

1.84676 2.28791

1.66873 2.58856

1.48412 2.78598

3.8.2 Table 3.4

   Skin friction subject to (23 − 262)

0.01

0.02

0.03

0.1

0.2

0.3
0.1

0.2

0.3

With effective Prandtl number Without effective Prandtl number

1.58137 0.74676

0.63572 1.42721

0.25109 1.52724

2.19881 2.32507

2.25331 2.38128

2.30667 2.43634

2.19881 2.32507

2.37271 2.48768

2.57872 2.67905
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3.8.3 Table 3.5

   Transfer rate subject to (23 −2)

0.1

0.2

0.3

0.1

0.2

0.3
0.1

0.2

0.3

With effective Prandtl number Without effective Prandtl number

2.53315 1.86582

2.56957 1.88775

2.60705 1.90925

2.53315 1.86582

2.54897 1.88486

2.56644 1.90522

2.21374 1.52907

2.32026 1.64006

2.42674 1.75232

3.8.4 Table 3.6

   Heat transfer rate subject to (23 − 262)

0.1

0.2

0.3

0.1

0.2

0.3
0.1

0.2

0.3

With effective Prandtl number Without effective Prandtl number

1.87578 1.40596

1.90829 1.43021

1.93996 1.45384

1.87578 1.40596

1.86725 1.41341

1.85915 1.42124

1.60562 1.19401

1.69539 1.26424

1.78551 1.33489
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3.9 Final remarks

• Velocity enhances for larger () and () for both 23−2 and 23−262

nanofluids.

• In melting case fluid temperature reduces.

• () reduces for (Re = 01 02 03 04 05) but opposite response is seen for ().

• ( ) is increased for higher ().

• Heat transfer rate upsurges for more () and ().
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Chapter 4

Entropy generation in MHD flow of

viscous fluid subject to aluminum

(23) and ethylene glycol

(262)nanoparticles

This chapter analyzed the MHD (2D) flow of viscous fluid with alumina-water (23 −2) and

ethylene-glycol (23 − 262) over a stretched surface. Thermal radiation and Joule heating are

examined. Electric field is absent. Uniform magnetic field is applied normal to the sheet. Momentum

slip is also taken into account for both (23 − 2  23 − 262) nanofluids. The

relevant equation are solved via built-in- Shooting method. The various flow parameters are graphically

discussed. Skin friction and Sherwood and Nusselt numbers are calculated numerically and analyzed

through Tables.

4.1 Modelling

We scrutinize MHD two-dimensional (2D) flow of (23 − 2 and 23 − 262)

nanofluids over a stretched surface. Extra heating factors like thermal radiation, Joule heating

and viscous dissipation is taken in energy equation. Slip effect is considered on boundary of
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sheet. Thermophysical properties of both nanoparticles are given in Table (41). Relevant

expressions are as follow.
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Table 4.1:

(
−1−1−1) (−3)  × 10−5 ¡−1¢ (−1−1) (Ω−1−1)

(23) 765 3970 0.85 40 10−12

(2) 4182 998.3 20.06 0.06 0.05

(262) 2382 1116.6 65 0.249 1.07×10−7

4.2 Thermophysical characteristics of (23−2 and 23−
262) nanofluids [82− 86]
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= 1232 + 73+ 1 for 23 −2 (4.10)
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We consider the suitable transformations
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4.3 Dimensionless forms of flow equations

Through momentum and energy equations for both (23 − 2 and 23 − 262)

nanofluids, we have
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where Ψ
◦
in absence of effective Prandtl number via 23−2 and 23−262

nanofluids is given below
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4.3.1 Skin friction

Mathematically skin friction is
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2


 (4.31)

where () is defined by
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Putting Eqs. (4.32) in Eq. (4.31), we have
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4.3.2 Heat transfer rate

Mathematically we have
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where  is expressed as
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Solving Eq. (4.35) and Eq. (4.34) we have
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4.4 Entropy modelling

Mathematically entropy of the system obeys

 =


()0
 (4.37)

where (() ()0) is volumetric and total entropy rates respectively.
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The non-dimensional forms of entropy () and Bejan number () for both (23 −2

and 23 − 262) nanofluids are expressed as follows:
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4.4.1 Dimensionless parameters
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4.5 Discussion

4.5.1 Velocity field

Figs. 41( ) is described to perceive the impact of () on  0(). Magnetic parameter decays

the velocity due to resistance produced by Lorentz force. Figs. 42() show the impact of 

0() with respect to
¡
−1

¢
. Since this parameter is associated with permeability of the medium

so increase in velocity is observed for both (23−2 and 23−262) nanofluids.
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Comparable result is seen for developed values of slip parameter parameter as revealed in Figs.

43( ). Impact of () on  0() is shown in Figs. 44( ). It is noted that  0() is increased

for ( = 00 01 02 03 04) through both (23−2 and 23−262) nanofluids.
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Solid lines; Effective Prandtl number

Dashed lines; Without Effectve Prandtl number
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Solid lines; Effective Prandtl number

Dashed lines; Without Effectve Prandtl number
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Solid lines; Effective Prandtl number

Dashed lines; Without Effectve Prandtl number
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4.6 Temperature field

Figs. 45( ) plots the temperature () for magnetic parameter ( = 00 02 06 08 10)

through both (23 −2 and 23 − 262) nanofluids. Lorentz force consequences

through collision of fluid elements augmented (). It is also shown via Fig . 46( ) that

( = 00 01 02 03 04) always enhances () of the system due to provision of more heat.

Influence of () through (Pr = 01 02 03 04 05) is plotted via Figs. 47( ). Increase in
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temperature distribution for 23 −2 is noted when compared with 23 − 262

It due the lower thermal conductivity of ethylene glycol than water.
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Solid lines; Effective Prandtl number

Dashed lines; Without Effectve Prandtl number
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For gAl2 O3 - H2 O
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4.7 Entropy and Bejan number

Entropy rate (()) through ( = 01 02 03 04 05) is given in Figs. 48( ). Lorentz

force causes extra disturbance inside the system growing the entropy of the entire structure.

Thermal entropy is less than total entropy which consequences a reduction in Bejan number

as shown in Figs. 49( ) for both (23 −2 and 23 − 262) nanofluids. The

performances of () as well as () with respect to (Re = 01 02 03 04 05) are shown in
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Figs. 410( ) and 411( ). Growing estimation of (Re = 01 02 03 04 05) inclines for

increasing () through Fig . 410( ). However reverse trend is perceived in case of ()

for both (23 −2 and 23 − 262) nanofluids.
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Solid lines; Effective Prandtl number

Dashed lines; Without Effectve Prandtl number
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For gAl2 O3 - C2 H6 O2
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Solid lines; Effective Prandtl number

Dashed lines; Without Effectve Prandtl number
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Solid lines; Effective Prandtl number

Dashed lines; Without Effectve Prandtl number
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Fig. 411() : Re on .
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4.8 Skin friction and Nusselt number

Tables 42 and 43 show the influences of () and
¡
−1

¢
on ( ). For ( = 00 01 02)

and (−1 = 00 01 02), skin friction reduces for both 23−2 and 23−262

nanofluids. Table 44 and 45 present the behaviors of (), () and () on Nusselt number

for both 23−2 and 23−262 nanofluids. Nusselt number increases for higher

values of ( = 00 01 02), ( = 01 02 03) and ( = 01 02 03)
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Table 4.2

 −1
Skin friction  (Re)

−05

(23 −2)

00

01

02
00

01

02

With effective Prandtl number Without effective Prandtl number

1.208 1.458

1.193 1.434

1.178 1.411

1.260 1.521

1.115 1.337

0.945 1.127

Table 4.3

 −1
Skin friction  (Re)

−05

(23 − 262)

0.0

0.1

0.2
0.0

0.1

0.2

With effective Prandtl number Without effective Prandtl number

1.878 1.866

1.874 1.862

1.874 1.862

1.648 1.633

1.290 1.277

0.848 0.829
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Table 4.4

  

Nusselt number (Re)
−05

(23 −2)

0.0

0.1

0.2

0.1

0.3

0.5
0.1

0.2

0.3

With effective Prandtl number Without effective Prandtl number

1.471 1.214

1.512 1.247

1.555 1.282

1.552 1.299

1.603 1.320

1.672 1.361

1.603 1.320

1.625 1.343

1.647 1.365

Table 4.5

  

Nusselt number (Re)
−05

(23 − 262)

0.0

0.1

0.2

0.1

0.3

0.5
0.1

0.2

0.3

With effective Prandtl number Without effective Prandtl number

1.618 1.315

1.683 1.366

1.756 1.422

1.791 1.449

1.840 1.487

1.904 1.539

1.777 1.426

1.798 1.447

1.819 1.467
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4.9 Final points

Major finding are given below.

• Velocity discriminant is absorbed for larger () as well as (2) for both (23−2)

and (23 − 262) nanofluids.

• Temperature is growing for larger magnetic and radiation parameters.

• Entropy enhances for (Re = 01 02 03 04 05) but reverse behavior is seen for ().

• ( ) reduces for higher (−1)

• () increases for larger () and ().
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Chapter 5

Thermal radiation and heat

source/sink impacts in stagnation

point flow of viscous nanomaterial

This chapter addresses the significances of stagnation point flow of nanomaterial towards non-linear

stretching surface. Stretching surface of variable thickness is considered. Thermophoresis and Brownian

movement impacts are accounted. Radiative heat and convective conditions are also analyzed. Inclined

magnetic field is taken. Homotopy analysis method is employed to find the serious solution. Impacts of

numerous physical variables are graphically discussed. Closing remarks are presented.

5.1 Modelling

We study MHD two-dimensional (2D) flow of viscous fluid past a stretching surface with velocity

( = (+ )) where  and  denote positive constants. Stretching sheet is along (− )

while ( − ) is normal to the sheet. Applied magnetic field is taken inclined. Induced

magnetic field for small magnetic Reynolds number is ommitted. The related problems are
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= 0 (5.1)
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→ () = (+ ∗)  → ∞  → ∞ when  →∞ (5.6)

The following transformation are used to reduce Eqs. [52− 56] into dimensionless expres-
sion;

 =

r
+ 1

2




(+ ∗)−1  =

q
2 (+ 1)−1 (+ ∗)+1 () (5.7)

 = (+ ∗) 0()  = −
r

+ 1

2
(+ ∗)−1[ () + 

− 1
+ 1

 0()]

Θ () =
 − ∞
 − ∞

 Φ () =
∞

 −∞
(5.8)

The incompressibility condition (51) is trivially satisfied whereas Eqs. [(52− 56)] take follow-
ing forms

 000 +  00 − ( 2
+ 1

) 02 + (
2

+ 1
) ∗ ∗ sin2 ( 0 − ) +

µ
2

+ 1

¶
2 = 0 (5.9)
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¶
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Θ00 = 0 (5.11)
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Here  = 

q
+1
2



 represents surface thickness parameter and  =  = (

q
+1
2



) the plate

surface. We define  () = (−) = () , Θ() = (−) = () and Φ() = (−) = ()

therefore governing Eqs. (59− 512) yield
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5.2 Engineering curiosity

Skin friction and heat transfer rate () are
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5.2.1 Dimensionless parameter
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5.3 Methodology

We employed homotopic procedure to solve these Eqs. suggested by Liao [92]. The initial

guesses and operators ((0 0 0), (L  LL)) for the dimensionless equations are

0() =
³
(1−

1+
) ∗ ∗  + (1−) ∗ (1− −)

´


0() =
³³

2
(1+2)

´
∗ −

´


0() =
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−( 2

(1+2)
) ∗ (−(




)∗)
¶


⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (5.21)

with

L =
¡
 000 −  0

¢
 L =

¡
00 − 

¢
 L =

¡
 00 − 

¢
 (5.22)

5.3.1 Convergence analysis

The auxiliary parameters ~  ~ and ~ have key role in convergence analysis. Ultimate the

values of assisting parameters for convergence are in the ranges −22 ≤ ~ ≤ 08 −20 ≤ ~ ≤
−13 and −22 ≤ ~ ≤ −15

Table (51): Convergence of series solutions when  = 01 = 2  = 05 Pr = 10

 =  = 02  = 02  = 03  = 03  = 11  = 02  =

2
  = 01 and  = 1

From table it is noted that 28 order of approximations is suitable for the convergence of

function  00(0) while 24 and 20 order of approximations are sufficient for the convergence of

0(0) and  0(0).
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Order of approximation − 00(0) −0(0)  0(0)

1 0.8785 0.08708 0.05805

3 0.8753 0.08397 0.05598

8 0.8588 0.08045 0.05364

10 0.8493 0.07964 0.05309

15 0.8386 0.07851 0.05235

16 0.8365 0.07842 0.05230

20 0.8354 0.07815 0.05224

24 0.8341 0.07810 0.05224

28 0.8338 0.07810 0.05224

32 0.8338 0.07810 0.05224

5.4 Outcomes

Here we take  = 05  = 04 Pr = 12  = 01 =   = 02 = 2  = 11  = 05

 = 05  = 04 and  = 02

Velocity profile: Fig. (51) is drawn for larger magnetic ( = 00 05 10 15 20) pa-

rameter on velocity profile ( 0()). Here we observed that ( 0()) decays against ( =

00 05 10 15 20). Fig. (52) demonstrated the features of ( = 00 10 20 30 40) on  0().

Velocity declines against ( = 00 10 20 30 40). Physically when we boost the values of (),

more instabilities arised in the material medium which produces resistance to the material

properties. Therefore velocity declines. Fig. (53) is proposed to deliberate the impact of

( = 10 15 20 25 30) on  0(). Here  0() boosts against ( = 10 15 20 25 30). Fig.

(54) describes the variation of ( = 00 01 02 03 04) on  0(). Clearly  0() boosts against

larger ( = 00 01 02 03 04).
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Fig. 54 :  on  0

Temperature distribution: Fig. (55) is sketched the relevant features of (Pr) on (()).

For rising approximations of (Pr = 13 15 17 19 21) thermal diffusion rate declines and as

a result thermal field reduces. Fig. (56) is depicted to deliberate the performance of () on

(()). Here (()) is increased via (). Since larger ratio variable ( = 11 20 30 40 50)

give more heat to the system. As a result the thermal field boosts. Outcomes of () on

(()) is depicted in Fig. (57). Since internal energy of system enhances for larger radiative
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variable. Therefore the temperature of entire system enhances. Fig. (58) shows the influence

of () on (()). It is perceived that an increment in ( = 00 03 06 09 12) corresponds

to improve the fluid temperature. Physically more heat is produced through larger (). Fig.

(59) is described to explore the features of (2) on (()). Here (()) boosts against larger

(2 = 11 13 15 17 19).
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Fig. 59 : 2 on 

Concentration profile: Figs. (510) and (511) represented the behaviors of ( = 00 01 02 03 04)

and ( = 05 07 09 11 13) on concentration (()). Here distinct impression is perceived

for (()) against larger () and ( ). Fig. (512) is designated for () on (()). For

larger ( = 00 02 04 06 08), molecular diffusion rate reduces. That is why concentration

enhances. Characteristic of (0) on (()) is emphasized in Fig. (513). Here both concentration

field and associated layer thickness upsurge versus higher (0).
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5.5 Engineering quantities

Table. (52) shows numerical values of skin friction ( ) against ( = 00 01 02)  ( = 00 01 02)

and ( = 00 05 15). Here ( ) enhances via ()  () and (). Table. (53) characterizes

() for larger ( = 12 14 16)  ( = 01 02 03), (2 = 01 03 05)  (Pr = 10 15 20)

and ( = 00 01 02). Clearly heat transfer rate enhances for larger ()  () and (2) and

it reduces via (Pr) and ().

Table 5.2: Influence of ()  (), () and () on ( ).
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√


0.0 0.7521

0.1 0.7608

0.2 0.7695

0.0 0.8285

0.2 0.7851

0.4 0.5666

0.0 0.7469

0.1 0.7504

0.2 0.7695

0.0 0.5172

0.5 0.7608

1.0 0.9520

Table 5.2: Influence of (Pr)  ()  ()  () and (2) on heat transfer rate
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    2 −
√
Re

1.0 0.1535

1.5 0.1528

2.0 0.1520

1.2 0.1638

1.4 0.1866

1.6 0.2115

0.1 0.1532

0.2 0.1628

0.3 0.1723

0.0 0.1578

0.1 0.1566

0.2 0.1555

0.1 0.0842

0.3 0.2101

0.5 0.2971

5.6 Final remarks

Key observations include the following points.

• Velocity enhances against higher () and ().

• There is decay in velocity versus () and () 

• Thermal field decays via (Pr) and opposite result is seen for higher ()  () and () 

• Concentration improves versus higher () and () but it reduces for ( ).

• Skin friction coefficient enhances for higher () and ()
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Chapter 6

Computational analysis of 3D

radiative Darcy-Forchheimer flow

subject to suction/injection

This chapter elaborates the three-dimensional (3D) radiative flow over non-linear stretched surface.

Porous medium is taken into account. Porous medium is characterized by Darcy-Forchheimer relation.

Radiation, convective condition and slip effect are addressed. Stagnation point flow is examined. Non-

linear ordinary differential system are solved through shooting method. Graphical results are portrayed

and scrutinized with distinct values of dimensionless variables. Drag force and Nusselt number are

computed and evaluated through Tables.

6.1 Mathematical description

We consider (3) stagnation point Darcy- Forchheimer flow subject to permeable stretched

surface. The ( ) axes are chosen parallel to stretched sheet and ( − ) normal to flow.

Let () is shrinking/stretching velocity, (( )) the mass flux velocity and ( ) the

surface temperature. The boundary layer equations and corresponding boundary condition are

[89− 91]
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 = 0  =  + 1


  = 

−  

=  ( −  ) at  = 0

 =   → 0  → ∞ at  →∞

⎫⎪⎪⎪⎬⎪⎪⎪⎭  (6.5)

We set the quantities as follows.

 = (+ ),  = −
√


¡
+1
2

¢
(+ )

−1
2   = (+ )

1 =
p



(+ )

1−
2   = ∞ + (+ )2−1

⎫⎬⎭  (6.6)

Letting

 = (+ ) 0()  = (+ )0()  = −2Ω1()
 = −√ (+ )

−1
2 [
¡
+1
2

¢
( + ) +

¡
−1
2

¢
( 0 + 0)]  = −∞

−∞   =
q



(+ )

−1
2 

⎫⎬⎭ 

(6.7)

The continuity equation is trivially satisfied while momentum, energy and corresponding

boundary conditions take the following forms

 000 +
µ
+ 1

2

¶
[ + ] 00 − [ 0 + 0] 0 + + + [−1 −  0] 0 = 0

¾
 (6.8)

000 +
µ
+ 1

2

¶
[ + ]00 − [ 0 + 0]0 − [−1 − 0]0 = 0

¾
 (6.9)

µ
1 +

3

4


¶
00 +Pr

∙
+ 1

2
[ + ]0 − (2− 1)( 0 + 0)

¸
= 0

¾
 (6.10)
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⎧⎪⎪⎪⎨⎪⎪⎪⎩
(0) = 0 (1) = 0  0(0) = 0 

0
(∞) = 1

(0) =  
0(0) = + 2

00(0) 0(∞) = 0
0(0) = −2[1− (0)] 0(∞) = 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭  (6.11)

6.1.1 Drag force

The drag force coefficients ( ) are defined below i.e

 =

Ã
 

 ()
2

!
=0

 (6.12)

 =

Ã
 

()2

!
=0

 (6.13)

The nondimensional form of skin friction coefficients are

p
Re =  00(0) (6.14)

p
Re = 00(0) (6.15)

6.1.2 Nusselt number

Magnitude of heat transfer rate is

1 =

µ
(+ )

 ( − ∞)

¶
 (6.16)

Nondimensional form gives



(Re)
= −

µ
1 +

4

3


¶
0(0) (6.17)

where Re

³
=

(+)


´
and Re

³
=

(+)


´
denote the local Reynold number along _.and

_ directions respectively.
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6.1.3 Dimensionless parameters

−1(= 
∗(+)−1) (=

4∗ 3∞


) (=  (+ ))

2(=



p


)  = (

1
2

) Pr =
³



´
(= 


) 2

¡
= 1

p



¢


⎫⎪⎪⎪⎬⎪⎪⎪⎭  (6.18)

6.2 Results and discussion

6.2.1 Velocity profile

Figs. [61− 64] describe the outcomes of suction (  0) and injection parameters (  0)

on both velocities (( 0()) and 0())). In suction case (  0) both velocities ( 0()) and

0()) develop whereas inverse behavior is apparent for injection case (  0). In fact for

suction variable the liquid film thickness declines on the extended sheet. Due to this inadequate

quantity of liquid moving faster past the stretching sheet. In case of injection (  0) constant

development of fluid mass decelerates the motion of liquid film. Figs. (65) and (66) reveal the

features of () on ( 0()) and 0()). Clearly the velocities ( 0()) and 0()) reduce for larger

values of ( = 00 01 02 03 04). Because resistive forces enhance in fluid movement in the

presence of permeable medium. Therefore both velocities ( 0()) and 0()) reduce. Similar

result has been seen for
¡
−1 == 00 01 02 03 04

¢
on velocities ( 0()) and 0()) see Figs.

(67) and (68) . Figs. (69) and (610) show the behavior of () on ( 0()) and 0()). Fluid
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velocity ( 0()) and 0()) enhances for higher values of ( = 00 01 02 03 04)
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Fig. 64 : (  0) on 0
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Fig. 66 :  on 0
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Fig. 67 : −1 on  0
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Fig. 68 : −1 on 0
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Fig. 69 :  on  0
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Fig. 610 :  on 0

6.2.2 Temperature

Figs. (611) and (612) explain temperature (()) against suction (  0)/injection (  0)

variable. When (  0) then (()) rises but converse behavior is seen for (  0). Fig. (613)

shows that an increase in () leads to enhance (()). Due to improvement in radiation more
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heat is discharged by the liquid that leads to boost the thermal field. Features of (2) on () is

explained in Fig. (614) . For rising estimations of (2 = 00 02 04 06 08) rate of convective

heat transport enhances. It leads to an enhancement of (). Fig. (615) describes effect of

(Pr) on (). Higher values of (Pr = 10 11 12 13 14) results in decays of temperature. Fig.

(616) shows the impact of ( = 00 10 20 30 40) on (). Temperature decreases via ().

As expected the cooling effects increases when ( = 00 10 20 30 40) enhances and hence

temperature reduces.
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6.2.3 Analysis of engineering quantities

Table (61) is for impact drag force coefficient ((Re)
05 and (Re)

05) against varying

() 
¡
−1

¢
 (  0)  (  0) and ()  It is noticed that (Re)

05 and (Re)
05

enhance for larger () 
¡
−1

¢
 (  0)  and () but it decreases for (  0)  Table (62)

demonstrates numerical values of Nusselt number via (  2 and ) It has been observed

that (− ()−05) increases for larger ( 2 and ) but opposite behavior is seen for

( = 15 20 25)
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Table 6.1

 −1   0 0  0  (Re)
05 (Re)

05

0.0 0.59711 0.04711

0.1 0.65634 0.55861

0.2 0.76648 0.55870

0.0 0.467954 0.16205

0.1 0.55073 0.16591

0.2 0.66817 0.16807

0.0 0.42298 0.33105

0.3 0.54724 0.34001

0.6 0.67533 0.35428

-0.1 0.36358 0.31633

-0.2 0.29043 0.30129

-0.3 0.18129 0.28490

0.0 0.27428 0.16807

0.1 0.37041 0.17036

0.2 0.46795 0.18549

Table 6.2
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  2 0 − ()−05

0.0 0.12117

0.1 0.15697

0.2 0.23068

1.5 0.09221

2.0 0.06391

2.5 0.05776

0.0 0.04037

0.1 0.11968

0.2 0.44349

0.3 0.18016

0.6 0.30414

0.9 0.39672

6.2.4 Concluding remarks

The key finding of this chapter are listed below.

• Both velocities ( 0()) and 0()) are decreasing functions of
¡
−1

¢
and ().

• For suction case ( 0() and 0()) enhance and for injection case both ( 0()) and 0())

are reduced.

• Larger values of () and (2) lead to temperature enhancement.

• Drag force reduces via injection parameter.

• Nusselt number enhances for larger ().
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Chapter 7

Utilization of entire modern aspect

of Cattaneo-Christov model in

mixed convective entropy optimized

flow by Riga wall

Present chapter investigates the steady mixed convective nanoliquid flow due to a stretchable Riga wall.

Porous medium is considered. stagnation point flow is addressed. Brownian motion and thermophoresis

are adopted. Cattaneo-Christove model for heat and mass fluxes are used to examine the heat and

mass transfer. Entropy generation is modeled. Convective condition of heat transfer is addressed. Zero

mass flux condition is imposed. Suitable transformation are employed to model the relevant ordinary

differential systems. The governing systems are solved by ND solve technique. The impacts of sundry

parameters are graphically examined.

7.1 Modeling

We discuss MHD two-dimensional (2D) flow of viscous liquid over a stretchable Riga wall.

Heat and mass transfer are examined through Cattaneo-Christov (CC) heat and mass fluxes.

Analysis of entropy production is considered according to the second thermodynamic law. The
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plate is stretching along (− ) while ( − ) is normal to the surface. Here ( = )

ambient fluid velocity. Heat generation/absorption and radiation are also taken into account.

The velocity, temperature and concentration fields are defined as

 = [( ) ( ) 0] (7.1)

 =  ( ) (7.2)

 = ( ) (7.3)

Heat and mass diffusion equations are

q+ (



+V · Oq− q · OV + (O ·V)q) = −OT (7.4)

C+  (



+V · OC−C · OV + (O ·V)C) = −OC (7.5)

For incompressible steady flow one has

 + (V · Oq− q ·OV) = −OT (7.6)

 +  (V · OC−C · OV) = −OC (7.7)

The governing expressions for the problems under consideration are
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Eliminating  and  from equations (76 710) and (77 711) we get
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In the above equations Ω and Ω are
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The subjected boundary conditions satisfy

 =  =   = 0 −  

=  ( −  ), 



+



= 0 at  = 0

 =  =   → ∞  → ∞ at  →∞

⎫⎬⎭  (7.16)

The suitable transformations are

 =  0()  = −√()  =
 − ∞
 − ∞

  =
 − ∞
 −∞

,  =

r





¾
 (7.17)
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The non-dimensional form of governing equations are as follows.

 000 +  00 −  02 + 2 +[−] + +−1 0 = 0
ª
 (7.18)

(1 +)
00 +Pr 0 +Pr 1( 00 +  0200 − 0 − 2 000)+

Pr 1(2
0 0 00 −  00 000)− (Pr) (1) () (

0 00 −  00)

−Pr (1) ()
000 − Pr 1

00 +
0 0 +

02 +Pr 002 +Pr ] = 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (7.19)
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7.2 Entropy generation rate

Entropy generation rate here is given by
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 (7.22)

Characteristic entropy rate is defined as follows


000
0 =

(∇ )2
2 2∞

(7.23)

Using transformations the non-dimensional form of entropy generation satisfies

 =
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000
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= Re(1 +)
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Re
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02 (7.24)
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Bejan number satisfies

 =
Re(1 +)

02 + Re4
Ω

0 0 +Re4 02

Re(1 +)02 + Re
Ω

 002 + Re4
Ω

0 0 +Re4 02
 (7.25)

7.3 Skin friction coefficient

Drag force coefficient ( ) is defined below as

 =

Ã


 ()
2

!
 (7.26)

and non-dimensional form of skin friction is

p
Re =  00(0) (7.27)

7.3.1 Dimensionless parameters
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 (7.28)

Table :1. Numerical values of ( ) for
¡
−1

¢
 () and () 

−1  
√
Re

0.5 0.2 0.4 0.36808

0.6 0.29513

0.7 0.21928

0.3 0.01 0.4 0.79609

0.02 0.78710

0.03 0.77817

0.3 0.2 0.2 0.58065

0.3 0.52983

0.4 0.47967
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7.4 Outcomes

In this section, the effect of various physical variables on  0(), (), (),  and  are

discussed. The values are selected as follows:  = 0.1,  = 0.2,  = 0.6,  =1.2,  = 1.0,

Re = 0.1, 1

= 0.2, Γ = 0.2,  = 0.1,  = 0.1, Ω = 0.4,  = 05  = 10  = 02 and 

= 0.5.

7.5 Velocity profile

Fig (71) shows the development of () on velocity For larger ( = 00 01 02 03 04)

the  0() enhances. In fact Lorentz force produces due to applied magnetic field. Fig. (72)

demonstrates the impact of
¡
1


¢
on  0(). Velocity is reduced for larger

¡
1


¢
. Here the

resistive force in the permeable medium enhances during fluid motion. Thus velocity decays

rapidly. Influence of () on  0() is depicted in Fig. (73). For ( = 00 02 04 06 08) the

 0() enhances. In fact higher () correspond to decrease of viscous forces and so velocity

enhances. Fig. 74 illustrates that for larger () the velocity increases. Physically higher values

of () convince a supporting ambient velocity that often tends to increase velocity.

Fig. 71 : on  0
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Fig. 72 : −1 on  0

Fig. 73 :  on  0
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Fig. 74 :  on  0

7.6 Temperature distribution

Impact of () on () is discloses in Fig. (75). Clearly () has decreasing trend against

() . Impact of (1 = 00 01 02 03 04) on () is depicted in Fig. (76). For larger (1)

fluid particles take extra time for transfer heat from heated region to cold one. Thus () is

reduced Influence of () on () is inspected in Fig. (77)  Higher ( = 00 01 02 03 04)

yield more heat in the fluid which enhances (). Fig. (78) reveals the impact of () on

() Physically for higher () more heat produces in fluid due to high friction forces between

fluid particle. Hence () enhances. Fig. (79) demonstrates that temperature enhances for

larger Biot number. Impact of () on () is discussed in Fig. (710)  Obviously () is

increased via  Physically working fluid creates more heat which causes in the temperature

rise. Impact of () on () is presented in Fig. (711). Temperature () enhances for

( = 10 11 12 13 14) This is because an uplift in the base fluid thermal conductivity

exists with greater( = 10 11 12 13 14). Therefore boundary layer becomes thicker and

thus rises in temperature (). Opposite trend is seen for larger values of  (see Fig. 712)
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7.7 Concentration

Fig. (713) shows that the increasing behavior of ( = 10 11 12 13 14) reduces concen-

tration. For higher () the collision between nanoparticles occur fastly in fluid Thus more

heat is emitted and therefore concentration decreases. Fig. (714) scrutinized the impact of

( = 01 02 03 04 05) on (). Here thermophoresis parameter is directly related with

temperature gradient. Hence fluid temperature enhances for ( = 01 02 03 04 05) so ()
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increases.
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7.8 Entropy () and Bejan number ()

Impact of () and () for variation of () is seen in Figs. [715 − 716] A increment in

() and () is accompanied by varying ( = 00 01 02 03 04). Higher estimation of

( = 01 02 03 04 05) on () and () is seen in Figs. [717 − 718]  is enhanced for

larger () Since for ( = 01 02 03 04 05) the diffusivity of fluid increases which enhance
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the disorderness in the fluid particles and thus entropy () increases. Entropy () and ()

via (Ω = 02 03 04 05 06) are discussed in Figs [719 − 720] More disorderness occurs for
larger (Ω = 02 03 04 05 06) therefore () enhances. However decaying behavior is seen

for () via Ω Fig. [721 − 722] revealed the impact of (4) on () and ()  Here an

reverse trend is seen for () and () respectively. Figs. [723 − 724] show result of ()
on entropy and Bejan number. For higher ( = 00 01 02 03 04) the () enhances while

opposite result is observed for (). () has direct relationship with heat through molecular

conduction produced by fluid friction and heat transfer. Therefore the system produces more

heat via higher () which increases the systems disorderliness. Hence () is enhanced. Fig.

(724) shows that() is decreased via ().
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7.9 Main points

The main outcomes are summarized as follows;

•  0() enhances for larger (), () and ().

• () reduces via (), (Pr) and ().

• Concentration is an increasing of .

• For higher diffusion and temperature difference parameters there is a rise in entropy
generation.

• For larger () and
¡
−1

¢
the ( ) reduces.
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Chapter 8

A novel perspective of

Cattaneo-Christov double diffusions

in MHD second grade nanofluid flow

MHD flow of second grade nano-fluid flow towards a stretched Riga wall is examined in this chapter.

Heat and mass transfer are based upon Cattaneo-Christov (CC) theory. These considerations are totally

different than classical heat and mass fluxes by Fourier and Fick’s laws. The fundamental concept of

the development of entropy is illustrated. Temperature expression consists of radiation, heat generation

and mixed convection. Governing equations are solved through (OHAM).

8.1 Mathematical description

We study MHD two-dimensional mixed convective steady flow of second grade liquid towards a

stretchable Riga wall. Heat and mass transporation are examined through Cattaneo-Christov

(CC) flux model. Entropy generation is also taken into account. The plate is stretching along

(− ) with stretching velocity ( = ). ( = ) is the free stream velocity. Here

 −  is perpendicular to − . The problems statement are




+




= 0 (8.1)
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Corresponding boundary conditions are

 =  =   = 0 at  = 0

 =  =  when  →∞

⎫⎬⎭  (8.3)

According to Cattaneo-Christove (CC) theory the heat flux satisfies

q+  ∗
µ
q


+V∗·Oq− q · OV∗+(O ·V∗)q

¶
= −OT (8.4)

For steady flow of an incompressible fluid Eq. [84] is reduced to

q+ (V
∗·Oq− q · OV∗) = −OT (8.5)

Energy expression in present situation satisfies
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Eliminating q from Eqs. (85) and (86) yields to the following relation for the temperature

field
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where Ω is given by
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The imposed boundary conditions are
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−  

=  ( −  ) at  = 0

 → ∞ when  →∞

⎫⎬⎭  (8.9)

According to Cattaneo-Christove model the mass flux obeys following expression

j+  ∗
µ



+V∗·Oj− j ·OV∗+(O ·V∗)j

¶
= −OC (8.10)

For steady flow of an incompressible fluid the Eq. (810) yields

j+  (V
∗·Oj− j · OV∗) = −OC (8.11)

Here concentration field satisfies
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Eliminating j from Eqs. (811) and (812) one arrives at
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in which Ω is given by
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The relevant boundary conditions are

 →  at  = 0

 → ∞ as  →∞

⎫⎬⎭  (8.15)

By considering transformations

 =  0()  = −√()  =
 − ∞
 − ∞

  =
 − ∞
 −∞

,  =

r





¾
 (8.16)
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the incompressibility condition is satisfied and problems now become

 000 +  00 −  02 + ∗
¡
2 0 000 − ( 00)2 −  0000

¢
+2 +[−] +  = 0

⎫⎬⎭  (8.17)

(1 +)
00 +Pr 1( 00 +  0200 − 0 − 2 000)− (Pr) (1) () (

0 00 −  00)

−Pr 1
000 − Pr 1

00 +
0 0 + 

02 +Pr ] + Pr 0 = 0

⎫⎬⎭ (8.18)

 00 +  0 +



00 − 3[

2 00 +  0 0]− 3



00 = 0

¾
 (8.19)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(0) = 0  0(0) = 1 

0
(∞) = 

0(0) = −2(1− (0)) (∞) = 0
(0) = 1 (∞) = 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭  (8.20)

8.1.1 Entropy generation

Entropy generation rate here is given by
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Characteristic entropy
³


000
0

´
rate is defined as follows


000
0 =

(∇ )2
2 2∞

 (8.22)

non-dimensional form of entropy generation

 =


000



000
0

= Re(1 +)
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Re4
Ω

0 0 +Re4
02 (8.23)

The skin friction coefficient is

 =

Ã


 ()
2

!
 (8.24)
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or p
Re =  00(0) + ∗

¡
3 0(0) 00(0)− (0) 000(0)

¢
 (8.25)

8.1.2 Dimensionless parameters
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8.2 Methodology (OHAM)

The series solutions are determined using the optimal method of homotopy (OHAM) analysis.



∗( ) =

1

 + 1

X
=0

∗
"

X
=0

()=Π

#2
 (8.27)

∗(   ) =
1

 + 1

X
=0

∗
"

∗X
=0

()=Π

∗X
=0

()=Π

∗X
=0

()=Π

#2
 (8.28)

∗(   ) =
1

 + 1

X
=0

∗
"

∗X
=0

()=Π

∗X
=0

()=Π

∗X
=0

()=Π

#2
 (8.29)


∗
∗ = 


∗ + ∗ + ∗ (8.30)

The optimal values of convergence-control parameters are  = −179862  = −0755535 and
 = −13454 Total residual error is ∗∗ = 00535156

Table; 8.1 Individual averaged squared residual errors considering optimal values of aux-

iliary parameters. It is observed that the averaged squared residual error reduces with higher
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order approximations.

∗ 

∗ ∗ ∗

2 0.0357456 0.0100224 0.137

6 0.0336475 0.00184235 0.0180257

8 0.0323631 0.000687534 0.00631931

10 0.0307158 0.000145842 0.00189651

14 0.0295988 0.0000438513 0.00124949

16 0.0291453 0.0000269803 0.00121365

8.3 Discussion

This subsection consists of impacts of physical variables for the velocity  0(), temperature (),

concentration () and entropy  These values selected in computations are  = 0.1,  =

0.2,  = 0.1,  =1.2,  = 0.5, Re = 0.1, 
∗ = 0.1, 1 = 2= 0.2, 3 = 03  = 0.1 and Ω

= 0.4.

8.4 Velocity profile

Fig (81) shows the variation of ( = 00 01 02 03 04 05) on  0() For larger () the

velocity enhances. In fact due to applied magnetic field Lorentz force produce. This force

provides resistance to fluid particles and thus velocity reduces. Influence of (∗) on  0() is

considered in Fig. (82). There is an increase in velocity via (). Fig. (83) illustrates ()

against  0(). Here  0() is increased for larger of ( = 07 08 09 10 11 12 13)  Influence

of () on  0() is depicted in Fig. (84).  0() enhances via ( = 00 02 04 06 08 10). In

fact higher () correspond to decay of viscous forces and so velocity increases.

135



M=0.0

M=0.1

M=0.2

M=0.3

M=0.4

M=0.5

0 2 4 6 8

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

h

f'

Fig. 81 : on  0

a*=0.0

a*=0.4

a*=0.8

a*=1.2

a*=1.6

a*=2.0

0 2 4 6 8

0.4

0.6

0.8

1.0

h

f'

Fig. 82 : ∗ on  0

136



S = 1.2

S = 1.1

S= 0.9

S = 0.8

S= 0.7

S= 1.3

S= 1.0

0 2 4 6 8
0.7

0.8

0.9

1.0

1.1

1.2

1.3

h

f'

Fig. 83 :  on  0

l=0.0

l=0.2

l=0.4

l=0.6

l=0.8

l=1.0

0 2 4 6 8

0.4

0.6

0.8

1.0

h

f'

Fig. 84 :  on  0

8.5 Temperature

Influence of (1 = 00 02 04 06 08 10) on () is represented in Fig. (85). Particles of fluids

take more time to transfer heated region to cold one. Therefore () is decays for larger (1) 

Fig. (86) exhibits that () reduces for larger (3 = 00 05 10 15 20 25). Fig. 87 witnesses

that (Pr = 10 20 30 40 50 60) leads to decline (). For higher (Pr) the momentum

diffusivity dominates the thermal diffusivity. Therefore temperature decays. Influence of ( =
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01 03 06 0912 15) on () is inspected in Fig. (88)  Higher () produce more heat in the

fluid which enhances temperature. Variation of () on () is discussed in Fig. (89) Obviously

() is increased via ( = 01 03 06 0912 15)  Impact of () for () is presented in Fig.

(810). () upsurges for larger ( = 01 05 10 12 20 25) Opposite result is seen for larger

( = 01 05 10 12 20 25) (see Fig. 811)
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8.6 Concentration

Fig. (812) demonstrates the impact of (3) on () Clearly () is reduced for larger (3 =

00 02 04 06 08 10) Physically for higher (3) the mass transfer diminishes from fluid to

surface. Impact of () on () is discussed in Fig. (813). The concentration reduces with

higher () Fig. (814) shows that the increasing behavior of ( = 01 05 10 15 20 25)

reduces concentration. Fig. (815) analyzed impact of ( = 01 05 10 15 20 25) on ().

Here () increases. In fact thermophoresis parameter is directly related with temperature

gradient. Therefore temperature of fluid enhances for ( = 01 05 10 15 20 25) so ()

increases.
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8.7 Entropy

Fig. (816) shows the outcome of () on (). For higher ( = 01 05 10 15 20 25)

the () boosts. Physically the higher fluid diffusivity increase the disorderness in the

fluid particles and therefore entropy enhances. The effect of (Re = 01 02 03 04 05 06)

on () is discussed in Fig. (817)  Our simulation shows that entropy is improved by

the greater estimation of (). Here viscous effects here are dominated by inertial forces.
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( = 01 02 03 04 05 06) via entropy (()) is plotted in Fig. (818)  Clearly ()

increased by varying ( = 01 02 03 04 05 06). Entropy generation rate (()) via (Ω)

is deliberated in Fig. 8 (19)  More disorderness occurs for higher (Ω = 01 02 03 04 05 06)

and so () increases. Fig. (820) disclosed the impact of (4 = 01 02 03 04 05 06) on

() Here entropy is increased via (4)
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8.8 Concluding remarks

• An increasing trend of velocity holds for (), (∗) and ().

• () is enhanced for larger () and (1).

• For larger () temperature enhances however opposite trend is noticed for concentration.

• Concentration is reduced via (2) and ().

• Effects of () and (4) on () are opposite to that of (Ω) 
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Chapter 9

Melting heat in Jeffrey fluid flow

through permeable space

This chapter examines MHD Jeffrey nano-fluid bounded by a non-linear stretching surface with variable

thickness. Permeable medium is also taken into account. Darcy-Forchheimer flow is investigated. Energy

equation is considered in the existence of melting heat and heat absorption/ generation. The govern-

ing PDEs (partial differential equations) are converted into ODEs (ordinary differential equations) by

using transformation. These non-dimensional equations are solved through Optimal homotopy method.

Outcomes of involved parameters are sketched through graphs and analyzed.

9.1 Mathematical modeling

We consider steady two dimensional (2D) flow of an incompressible Jeffrey nano-fluid past a

non-linear stretching sheet. Flow is due to stretching sheet at  = ∗( + )
1−
2 . Flow along

the (− ) has stretching velocity ( = (+ )). MHD and heat generation concepts

are utilized. Melting heat is examined. Brownian diffusion and thermophoresis are explained.

The problems statements are
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= 0 (9.1)
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2

2
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∞
(
2

2
) (9.4)

 =  () = (+ )  = 0,  =   =  at  = ∗(+ )
1−
2  (9.5)

→ 0  → ∞  → ∞ when  →∞ (9.6)

(



) = [∗ +( − 0)]( 0) at  = ∗(+ )

1−
2  (9.7)

where () = 0(+ ) the nonuniform heat generation/absorption, and () = 0(+ ) the

nonuniform magnetic field.

Consider

 =
q

+1
2




(+ )−1  =

q
2 (+ 1)−1 (+ )+1 ()

 = (+ ) 0()  = −
q

+1
2
(+ )−1[ () +  −1

+1
 0()]

⎫⎬⎭ (9.8)

Θ () =
 − 

∞ − 
 () =

 − ∞
∞

 (9.9)

equation (91) is trivially satisfied while Eqs. [(92− 96)] take the following forms

 000 + (1 + 2)
00 − ( 2

+1
)(1 + 2)

02 +[(+1
2
) 0  − (3−1

2
)

002 − (− 1) 0 000]
−( 2

+1
)(1 + 2)()

2 0 − ( 2
+1

)(1 + 2)−1 0 − ( 2
+1

)(1 + 2)
02 = 0

⎫⎬⎭ 

(9.10)

Θ00 +PrΘ0 +PrΘ
0Φ0 +PrΘ

02 + (
2

+ 1
)Pr Θ = 0 (9.11)

Φ00 + PrΦ0 +



Θ00 = 0 (9.12)

 0 () = 1 Θ () = 0 ()Θ
0
() + Pr () + Pr (−1

+1
) = 0

Φ() = 0 
0
(∞) = 0 Θ(∞) = 1 Φ(∞) = 0

⎫⎬⎭  (9.13)

Here  = 1

q
+1
2



 represents surface thickness parameter and  =  = (

q
+1
2



) represents

the plate surface. we define  () = (−) = ()Θ() = (−) = () Φ() = (−) =
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() therefore governing Eqs. (910− 913) yield

 000 + (1 + 2)
00 − ( 2

+1
)(1 + 2)

02 +[(+1
2
) 0  − (3−1

2
)

002 − (− 1) 0 000]
−( 2

+1
)(1 + 2)()

2 0 − ( 2
+1

)(1 + 2)−1 0 − ( 2
+1

)(1 + 2)
02 = 0

⎫⎬⎭ 

(9.14)

00 +Pr 
02 + (

2

+ 1
)Pr +Pr 0 +Pr

0 0 = 0 (9.15)

 00 + Pr  0 +



00 = 0 (9.16)

 0 (0) = 1  () = 0 () 
0
(0) + Pr (0) + Pr(−1

+1
) = 0 (0) = 0


0
(∞) = 0 (∞) = 1 (∞) = 0

⎫⎬⎭  (9.17)

9.2 Engineering curiosity

The skin friction, Nusselt number and local Sherwood number are define as

 =


22
  =

(+ )

(∞ − )
  =

(+ )

(∞)
 (9.18)

In non-dimensional form we get



p
Re = 2

r
+ 1

2

1

1 + 2
( 00(0) + 00(0)) (9.19)

√
Re

= −
r

+ 1

2
0(0) (9.20)

p
Re

= −
r

+ 1

2
 0(0) (9.21)
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9.2.1 Dimensionless parameters
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in which () is the melting heat.

9.3 Methodology

Optimal homotopy method (OHAM) is used to evaluate the series solutions.
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∗
"

X
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X
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X
=0

()=Π

#2
 (9.25)

 = 

 +  +  (9.26)

The values of convergence-control parameters are ( = −0967169  = −0518451  = −136582) 
The total residual error is

¡

∗
 = 715033× 108

¢
 Table (91) show that the averaged squared

residual error reduces with higher order approximations.

Table; 9.1

 

  

2 84516× 10−5 681238× 10−4 44501× 10−7

6 32315× 10−9 41032× 10−6 339785× 10−7

10 19392× 10−11 11216× 10−9 203086× 10−9

16 371564× 10−15 351569× 10−10 380485× 10−13

22 512567× 10−19 742344× 10−12 458971× 10−16

26 623623× 10−26 994954× 10−16 597298× 10−19
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9.4 Discussion

We fixed the values of non-dimensional variables for numerical solutions as  = 05, = 01, =

01,−1 = 01,  = 2, 2 = 01 = 04 = 03  = 02  = 04 = 02  = 10

and  = 10.

Velocity profile: Fig. (91) describe the impact of () on  0(). Velocity enhances against

higher power index (). It is due to the fact that stretching velocity increases by higher () which

produces more deformation in fluid. Fig. (92) shows  0() for different values of ().  0() in-

creases through (). Impact of
¡
−1

¢
on velocity is shown in Fig. (93). In fact the resistive

force enhances for larger
¡
−1 = 00 03 05 08 12

¢
and so  0() declines rapidly. Fig. (94)

designates the impact of inertial coefficient parameter (). Velocity  0() reduces for an increase

of ( = 00 04 08 12 16). Effect of () on  0() gradient is sketched in Fig. (95). Deborah

number () is directly related to the retardation time. Larger ( = 00 05 10 15 20) has

higher retardation time. Such higher retardation time gives upsurge to the fluid flow due to

which the velocity boosted. Fig. (96) illustrates the impact of (2) on 
0(). Velocity enhances

for larger (2) 
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Temperature: Fig. (97) shows the significance of () on (). An increment in

( = 00 05 10 15 20) corresponds to an increase of (). Fig. (98) portrays that vari-

ation of melting parameter () yields enhancement in temperature. Fig. (99) indicates

that () reduced for higher Prandtl number. In fact thermal diffusivity reduces by increasing

(Pr = 02 08 16 25 30) and thus the heat diffuses away gradually from the heated body. Fig.

(910) depicts () for various values of ( = 05 10 15 20 25) which shows that tempera-

ture enhanced when we increase the value of ()  Larger () has higher brownian diffusion

coefficient and smaller viscous forces that increase (). Behavior of () on temperature

distribution is similar to that of () (see Fig. 911).
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Concentration distribution: Fig. (912) shows that concentration (()) is an increasing

function of melting parameter ()  Fig. (913) addressed that higher values of ( = 00 05 10 15 20)

reduce the concentration. Lewis number () depends upon the Brownian diffusion coefficient.

An increase in the values of () leads to lower Brownian diffusion coefficient which shows a

weaker concentration. Fig. (914) illustrates that an upsurge in the thermophoresis parameter

leads to reduction of concentration.
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Fig. (915) illustrate the effect of () and () on ( ). It is clear that for increasing ()

and () the skin-friction coefficient reduces. Fig. (916) shows the performance of Deborah

number () and ratio of relaxation to retardation times (2) on skin friction coefficient. ( )

has decreasing trend for larger () and (2). Impact of () and (Pr) on () is illustrated

in Fig. (917). Nusselt number enhances via () and (Pr). Fig. (918) shows the impact of

() against ( ) and (). Nusselt number increases for higher thermophoresis parameter

( ) while opposite trend is noticed for higher values of (). Fig. (919) illustrate the effect
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of thermophoresis ( ) and Brownian motion variable () on local Sherwood number. It

is cleared that Sherwood number reduced for larger ( ) and (). Fig. (920) shows the

magnitude of mass transfer against (Pr) and (). Magnitude of mass transfer increases for

higher values of (Pr) while opposite trend is noticed for higher ().
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9.5 Concluding remarks

Key points are given below.

• Velocity increases for higher ().

• Although (()) is an increasing function of () but it reduced for larger (Pr) 
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• Concentration gradient reduces for higher values of () and ( ) but it increases for

() 

• Shape and second grade parameters on skin friction coefficient have decreasing trend..

• Similar trend of () and (Pr) is found for Nusselt number.

• Sherwood number shows increasing behavior for larger () but result is opposite for
( ).
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Chapter 10

Impact of entropy generation on

third grade nanofluid flow over a

stretchable Riga wall with

Cattaneo-Christov double diffusions

Flow of third grade nanofluid over a stretching Riga plate is addressed. Modeling is based through

Cattaneo-Christov (CC) heat and mass fluxes. These considerations are entirely different than classical

heat and mass fluxes by Fourier and Fick’s laws. Formulation also consists of heat generation and mixed

convection. Relevant transformations are used to develop ordinary differential system from partial

differential equations. Optimal homotopy analysis technique is utilized to find the solution of differential

equations. Total square residual error is computed.

10.1 Modelling

We analyze MHD two-dimensional mixed convective steady flow of third grade nanoliquid over

a stretchable Riga wall. Analysis of heat and mass transport is studied through Cattaneo-

Christov (CC) flux models. Here ( = ) be the stretching velocity along (− ) and

( − ) is perpendicular to (− ). Fig. 101( ) shows the flow diagram. The governing
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equations are

Fig. 10.1(a) : Structure of Riga wall

Fig. 10.1(b) : Flow geometry.

Continuity equation




+




= 0 (10.1)
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The momentum equation
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Corresponding boundary conditions are

 =  =   = 0 at  = 0

 =  =  when  →∞

⎫⎬⎭  (10.3)

Skin friction coefficient is
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According to Cattaneo-Christove (CC) theory the heat flux for steady (

= 0) and incom-

pressible (∇ ·V∗ = 0) fluid satisfies

q+ (V
∗·Oq− q · OV∗) = −OT (10.6)

temperature expression in current situation satisfies
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 (10.7)

annihilating q from Eqs. (106) and (107) yields to the following relation for the temperature

field
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The imposed boundary conditions are

 →  at  = 0

 → ∞ when  →∞

⎫⎬⎭  (10.9)

According to Cattaneo-Christove model the mass flux for steady and incompressible fluid

flow obeys following expression

j+  (V
∗·Oj− j · OV∗) = −OC (10.10)

Here concentration field satisfies
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Eliminating j from Eqs. (1010) and (1011) our arrives at
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The relevant boundary conditions are

 →  at  = 0

 → ∞ at  →∞

⎫⎬⎭  (10.13)
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Dimensionless formulation

By considering transformations

 =  0()  = −√()  =
 − ∞
 − ∞

  =
 − ∞
 − ∞

,  =

r





¾
 (10.14)

the Eq. [101] is trivially satisfied while Eqs. [102 103 108 109 1012 1013] becomes
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0 000 −  0 00 −  0000) + (∗1 + ∗2) 

00 00
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Skin friction coefficient satisfies

p
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10.2 Entropy rate

Mathematical expression for Entropy generation rate is
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Characteristic entropy
³


000
0

´
is given as
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Entropy generation after utilizing transformations yields
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10.2.1 Dimensionless parameters
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10.3 Solutions methodology

The series solutions are obtained by using the Optimal method of homotopy analysis. The

mathematical expressions for average squared residual errors are
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∗
∗ = 


∗ + ∗ + ∗ (10.27)

in which
¡

∗
∗ = 00518763

¢
denotes the total square residual error. Here ∗1 = 01 ∗2 =

02 ∗3 = 03  = 01, = 02,  = 01, Pr = 12,  = 05, Re = 01, 1 = 3 = 02,  = 01

and Ω = 04 The values of convergence-control parameters are  = −08273  = −01559
and  = −14712 Fig. 92 shows the total residual error graph.
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Table; 10.1

∗ 

∗ ∗ ∗

2 0.0345265 0.00781397 0.0768611

6 0.0314574 0.00135282 0.00597602

8 0.0306576 0.000855484 0.00300873

10 0.030006 0.000623588 0.00203128

14 0.0289533 0.000424908 0.0015619

16 0.0285086 0.000377863 0.00147933

20 0.027728 0.000324747 0.00129755

10.4 Discussion

This section describes the consequences of different physical variables for the velocity  0(),

temperature (), concentration () and entropy  The values selected in computations are

 = 0.1,  = 0.2,  = 0.1,  =1.2,  = 0.5, Re = 0.1, 
∗
1 = 01,

∗
2 = 01 

∗
2 = 01 1 =

2= 0.2,  = 02  = 01 3 = 03  = 0.1 and Ω = 0.4.
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10.5 Velocity profile

Figs (103), (104) and (105) examine analysis by taking into account the effects of (∗1)  (
∗
2)

and (∗3) respectively. With an increase of (
∗
1) the velocity of fluid is small near the plate

i.s within the range ((0 =  = 10))  Although it illustrates a reverse pattern followed by a

transformation at ( = 15). In facts the material parameters have inverse relation to viscos-

ity. Thus for larger values of (∗2 = 00 10 20 30 40 50) and (
∗
3 = 00 10 20 30 40 50)

thickness of fluid decreases and thus fluid motion enhances. This seems only meaningful ar-

gument behind this ascending progression of fluid velocity. Fig (106) shows the variation of

( = 00 01 02 03 04 05) on  0() For larger () the velocity enhances.
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Fig. 103 :  0 against ∗1
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10.6 Temperature

Effect of (1) on () is represented in Fig. (107). For larger (1) fluid particles take extra

time to move heat from the heated surface to the cold one. Therefore () decays for higher

(1)  Fig. (108) displays that temperature decays for larger ( = 00 05 10 15 20 25).

Fig. (109) exhibits that (Pr = 10 20 30 40 50 60) leads to reduce (). Influence of

( = 01 03 06 0912 15) on () is shown in Fig. (1010)  Higher () yield more heat in

fluid which enhances temperature. Influence of temperature () for () is plotted in Fig.

911. Here () upsurges for larger ( = 01 05 10 12 20 25) This is because an uplift

in the base fluid thermal conductivity exists with greater (). Therefore the boundary layer

becomes thicker and temperatures rise.
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10.7 Concentration

Fig. (1012) illustrates the effect of (2) on () Clearly () is reduced for larger (3 =

00 02 04 06 08 10) In fact higher (3) mass transfer decreases from liquid to the sur-

face. Fig. (1013) shows for larger ( = 01 05 10 15 20 25) reduces concentration.

There is fast movement and collisions of nanoparticles with higher () and thus more heat

is emitted and thus the concentration decreases. Fig. (1014) evaluated impact of ( =

01 05 10 15 20 25) on (). Clearly concentration increases.
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10.8 Entropy

Fig. (1015) shows the outcome of () on . For higher ( = 01 05 10 15 20 25) the 

enhances. More disorderness occure in the fluid when diffusivity increases and thus entropy

enhances. Fig. (1016) shows that () increases for larger of (Re = 01 02 03 04 05 06).

Here inertial impacts dominate the fluid viscosity. Impact of (Ω = 01 02 03 04 05 06) on

entropy () is discussed in Fig. (1017)  Higher temperature difference parameter (Ω) entropy

increases.
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10.9 Concluding remarks

Major conclusions include the points described below.

• Fluid velocity improves for larger () and third grade parameters.

• (()) enhances for larger () ( ) and () but opposite result is seen for (1).

• Concentration is reduced via (3) and ().

• For higher () concentration enhances.

• Effects of () and () on () are opposite to that of (Ω)
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