





























Preface

Various base liquids such as ethylene, oil, water, and glycols etc. have low thermal conductivity.
Thus, an improvement in the thermal efficiency of these liquids seems necessary in achieving the
engineers and scientists’ expectations. Nanofluid consists of base liquid and nanoscale material
(1-100 nm). In thermal engineering, heat exchangers, electronic chemical processes, cancer
therapy and biomedicine, nanofluids are found very useful. Nanoparticles include namely
YAl,03,C,Hs0, oxides and carbides ceramics and semiconductors. Nanofluids are the new
generation coolants which exhibit much better heat transfer performance than the ordinary liquid
carrier. Especially two-phase flow problems used abundantly in petroleum, usage of waste water,
combustion and smoke emission from automobiles process. Non-Newtonian fluids like second
grade fluid model, third grade fluid model Jeffrey fluid model, Williamson and many others are
regarded helpful in physiological phenomenon, pharmaceutical etc. Viscous fluid, second grade

fluid model, third grade fluid model and Jeffrey fluid model, are incorporated in this thesis.

Mechanism of heat transfer has involvement in industries such as nuclear reactor, energy
production and mobile device etc. For relatively higher temperature the surfaces heat transfer
requires simultaneous study of various heat transporation process. Such process by which heat can
be transmitted faster by the fluid are melting, absorption, combustion, conduction, convection and
dispersal of radiation. Technologies and industries have widespread utilizations of melting
phenomenon. Researchers paid particular attention to improving effective, safe, and energy depot
technologies. These technologies are interrelated with the repossession of excess fuel, solar,
electricity and food from plants. For example, three energy storage procedures have been
introduced including latent, thermal energy and chemical energy. The economically sustainable

heat energy storage is latent heat via material phase adjustment. Melting phenomenon has



applications in many fields namely heat exchanger coils, based pump, the freeze treatment,

solidification, welding processes and many others.

The boundary layer flows of viscous/non-Newtonian liquids over a stretched sheet have interest in
various fields. Examples of these flows involve polymer sheet sectors, glass sheets, pharmacology,
bioengineering, fusion technology, plastic wire making and emulsion of polymeric materials etc.
Current product efficiency primarily depends on heat transfer rate and drag forces etc. Keeping all
these dimensions in mind the main goal of this thesis is to study mathematical models with

different aspect of heat transfer. The structure of this thesis is as follows.

Chapter 1 consist of some basic law of conservations. Mathematical model and boundary-layer
expressions for Newtonian fluid, second grade, third grade and Jeffrey fluids are incorporated.
Three different techniques are used to deal the flow problems. Basic concepts of these techniques

namely HAM, OHAM and shooting technique is also provided.

Chapter 2 addresses the flow subject to effective Prandtl number and without effective Prandtl
number via yALOs-H.O and yAl:Os-C:HeO:. nanoparticles. The resulting problem are solved
through Optimal homotopy method (OHAM). Optimum values are determined for the auxiliary
parameters. Impact of emerging parameters are graphically analyzed for (yAl:Os -H20 and yAl2Os
-C2Hs0:) nanoparticles. The contents of this chapter are published in Journal of Molecular

Liquids 266 (2016) 814-823,

Chapter 3 deals the Mixed convective dissipative flow of effective Prandtl number subject to
entropy optimization and melting heat. The governing flow expressions with boundary conditions

are solved via built-in-Shooting technique. Computational solutions are identified and analyzed



utilizing plots. The outcomes are reported in International Communications in Heat and Mass

Transfer 111(2020) 104454,

Chapter 4 reports computational aspects for Entropy generation in MHD flow of viscous fluid
subject to aluminum and ethylene glycol nanoparticles. Thermal radiation and Joule heating are
examined. Electric field is absent. Uniform magnetic field is applied normal to the sheet. The
relevant equation are solved via built-in- Shooting method. The various flow parameters are
graphically discussed. The outcomes of this chapter are published in Computer methods and

programs in biomedicine 182(2019) 105057.

Chapter 5 examines Thermal radiation and heat source/sink impacts in stagnation point flow of
viscous nanomaterial. Radiative heat and convective conditions are also analyzed. Inclined
magnetic field is taken. Homotopy analysis method is employed to find the serious solution. The

contents of this chapter are available in Indian Journal of Physics 94(2019) 657-664.

Chapter 6 presents Computational analysis of 3D radiative Darcy-Forchheimer flow subject to
suction/injection. Porous medium is characterized by Darcy-Forchheimer relation. Radiation,
convective condition and slip effect are addressed. Stagnation point flow is examined. Non-linear
ordinary differential system are solved through shooting method. Graphical results are portrayed
and scrutinized with distinct values of dimensionless variables. The chapter key results can be

found in Computer Methods and Programs in Biomedicine 184(2020) 105104.

Chapter 7 describes Utilization of entire modern aspect of Cattaneo-Christov model in mixed
convective entropy optimized flow by Riga wall. Brownian motion and thermophoresis are
adopted. Cattaneo-Christove model for heat and mass fluxes are used to examine the heat and mass

transfer. Entropy generation is modeled. The numerical solutions are developed through ND solve



technique. Graphical illustrations are given for the influence of sundry parameters. The outcomes
of this chapter are submitted in Numerical Method for Partial Differential Equations for

possible publication.

Chapter 8 discloses a novel perspective of Cattaneo-Christov model in MHD second grade
nanofluid flow. Heat and mass transfer are based upon Cattaneo-Christov (CC) theory. Results are
developed via OHAM. The outcomes of this chapter are published in International

Communications in Heat and Mass Transfer 119(2020) 104824.

Chapter 9 describes Melting heat in Jeffrey fluid flow through permeable space. Energy equation
is considered in the existence of melting heat and heat absorption/ generation. The results are
constructed via OHAM. The outcomes of this chapter are published in Thermal Science 23(2019)

3833-3842.

Chapter 10 includes the Impact of entropy generation on third grade nanofluid flow over a
stretchable Riga wall with Cattaneo-Christov double diffusions. Formulation also consists of heat
generation and mixed convection. The key results of this chapter are submitted in Numerical

Method for Partial Differential Equations for possible publication.
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Chapter 1

Literature survey and methodologies

1.1 Introduction

Some literature surveys about stretching sheet, entropy generation, nanofluid, viscous fluid,
non-Newtonian fluids, radiative heat flux, heat generation, viscous dissipation and magneto-
hydrodynamic (MHD) boundary layer flow have been reviewed in this chapter. Viscous and
non-Newtonian liquids (second grade, third grade, Jeffrey model) constitutive relations are
included. Further, the basic concept of homotopy method, Optimal homotopy method and
built-in-Shooting method are incorporated for the series solutions and numerical analysis re-

spectively.



1.1.1 Nomeclature

U, U, W Velocity Components along x,y, z directions respectively
q,J Heat and Mass flux

T,C Fluid(Temperature, Concentration)
Tw, Cw Surface(Temperature, Concentration)
T, Cxo Ambient(Temperature, Concentration)
Uw,Usx Stretching and Ambient velocities

T, Ty (Melting,Characteristic) Temperature
A First Rivilin Erickson Tensor

a,b,c Positive Constants

O0p,0F (Thermal, Solutal)Relaxation time
ki(j =p, f,nf) Thermal Conductivity

(v, )5 = f,nf)

(Kinematic, Dynamic) Viscosity

(Jo, )i (G =p. f,nf)

(Current, Fluid) Density

g Acceleration due to Gravity

€ Drag Force Coefficient

By Volumetric Coefficient

k* Porous Medium Permeability

Cp, Cs Specific Heat, Heat Capacity

T* Cauchy Stress Tensor

Q(= M,zx) Permanent Variable Magnets Magnetization
ax Width for Electrodes and Magnets

Dpg, Dp (Brownian motion, Thermophoresis diffusion) Coefficient
a;(j=f,nf) Thermal Diffusivity

Bi(G = f,nf) Thermal Expansion Coefficient

P Stream Function

i Independent Variable

(pC) Heat Capacity of Fluid

10) Nanoparticles Volume Friction




Heat Capacity Ratio

Distance along the Plate

Y Distance Perpendicular to the Plate
hy Heat Transfer Coefficient
qr Thermal radiation
o* Stefan-Boltzmann Constant
oi(j =p, f,nf) | Electric Conductivity
A" Latent Heat of Fluid
B Slip Constant
k3 Absorption Constant
Ty Wall Shear Stress along y direction
Guw Heat Flux at Wall
Qm Surface Mass Flux
(f ' 1), t,J Dimensionless ((Velocities), Temperature, Concentration)
Ip Identity Tensor, Pressure
S* Extra Stress Tensor
Ng Entropy
Be Bejan Number
Cy Skin Friction Coefficient
Nu Nusselt Number
Sh Sherwood Number
Le Lewis Number
M Hartman Number
Np Brownian Motion Parameter
Nr Thermophoresis Parameter
Pr Prandtl Number
Da™1 Inverse Darcy Number
Mixed Convection Parameter
B Local Inertia Coefficient Parameter




B Non-Dimensional Parameter

Re, Local Reynold Number

Yo Chemical Reaction Parameter

71 Thermal Relaxation Parameter

Yo Biot Number

V3 Solutal Concentration Parameter
Ya Concentration Difference Parameter
« Thickness Parameter

n Shape Parameter

€ Stretching/Shrinking Parameter

0 Heat Generation Parameter

Br Brinkman Number

Q Dimensionless Temperature Difference
X Diffusion Parameter

Vo Section/Injection Parameter

Ec Eckert Number

Sc Schmidt number

Gr Grashof Number

Ry Radiation Parameter

S Ratio Parameter

a1, o, a3, B155, B3 | Material Parameters

o Second Grade Fluid Parameter

aj, 05, Q% Third Grade Fluid Parameters

B Slip Parameter

K Deborah Number

Al Ratio of Relaxation and Retardation Times
Ao Retardation Time




tr Trace
SGNF | Second Grade Nanofluid
TGNF | Third Grade Nanofluid

cc Cattaneo Christov

MHD Magnetohydrodynamic
HTR Heat Transfer Rate

EGM Entropy Generation Minimization

~vAl3O3 | Alumina
H>0 Water
C9HgO- | Ethylene Glycol

1.1.2 Subscript

w | Condition at Surface
oo | Ambient Condition
f | Base Fluid

p | Nano Solid Particles

nf | Nanofluid

m | Melting at Surface

1.2 Background

Mechanism of heat transfer has involvement in industries such as nuclear reactor, energy pro-
duction and mobile device etc. For relatively higher temperature the surfaces heat transfer
requires simultaneous study of various heat transporation process. Such process by which
heat can be transmitted faster by the fluid are melting, absorption, combustion, conduction,
convection and dispersal of radiation. Fourier [1] primarily introduced the concept of heat
conduction. This leads to paradox of heat conduction. Thus Fourier’s expression is formerly
revised by Cattaneo [2]. He introduced the concept of thermal relaxation time. Christov [3]
utilized the Oldroyed upper convective time derivative and thus relation is named as Cattaneo-
Christov (CC) model [2]. Ciarletta and Straughan found unique solution for temperature via

Cattaneo model [4]. Haddad [5] addressed the thermal volatility through porous medium via
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Cattaneo-Christov (CC) model. Current attempts about Cattaneo -Christov (CC) model can
be listed via refs. [6 — 8]. Effects of radiation are significant even in the sense of high tem-
perature process and space technology. Ozisik [9], Sparrow [10] and Arpaci [11] specifically
investigated the interaction between energy and convection through vertical sheet. Waleed et
al. [12] examined the flow of nonlinear radiative nanomaterials and the minimization of entropy
by a thin needle. Kumar et al. [13] investigated nanofluid stretched flow of nonlinear radiation.
Babu and Sandeep [14] provided bio-convective flow by stretchable sheet. Recent researches
about radiative heat flux can be seen via Refs. [15 — 17]. Technologies and industries have
widespread utilizations of melting phenomenon. Researchers paid particular attention to im-
proving effective, safe, and energy depot technologies. These technologies are interrelated with
the repossession of excess fuel, solar, electricity and food from plants. For example three energy
storage procedures have been introduced including latent, thermal energy and chemical energy.
The economically sustainable heat energy storage is latent heat via material phase adjustment.
Melting phenomenon has applications in many fields namely heat exchanger coils, based pump,
the freeze treatment, solidification, welding processes and many others. Rahman et al. [18]
addressed radiative MHD flow over an extended surface. Melting temperature of ice piece in
the cascade of hot air is addressed by Robert [19]. Das [20] reported MHD flow with melting
and radiation influences. Hayat et al. [21] examined the Cu-nanofluid flow in the presence of
viscous dissipation and Joule heating.

Various base liquids such as ethylene, oil, water, and glycols etc have low thermal con-
ductivity. Thus an improvement in the thermal efficiency of these liquids seems necessary in
achieving the engineers and scientists expectations. Choi [22] initially used the term nanofluid
to improve continuous-phase liquid thermal efficiency. Usman et al. [23] explored the Casson
nanoliquid due to stretchable cylinder. Sheikholeslami et al. [24] explored nanofluid flow over
a stretched surface in the presence of MHD. Gireesha et al. [25] analyzed nanofluid flow by
materializing (K'V L) model. Hayat et al. [26] investigated second grade flow in the existence
of MHD. Mixed convective nano-liquid flow with heat source is discussed by Khan et al. [27].
Haiao [28] examined the dissipative flow of micropolar liquid over stretchable surface.

The boundary layer flows of viscous/non-Newtonian liquids over a stretched sheet have

interest in various fields. Examples of these flows involve polymer sheet sectors, glass sheets,
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pharmacology, bioengineering, fusion technology, plastic wire making and emulsion of polymeric
materials etc. Current product efficiency primarily depends on heat transfer rate and drag
forces etc. These processes depend entirely on the phenomenon of the boundary layer along
extended sheer and mass transfer rate. Rajagopal et al. [29] explored viscoelastic fluid flow
by an extended surface. Riley [30] examined MHD flow by vertical plate. Impact of uniform
fluid flow over an extended sheet with chemical reaction was analyzed by Fairbanks and Wike
[31]. Andersson et al. [32] studied flow with chemical reactive influence. Magyari and Keller
[33, 34] investigated boundary layer flow flows caused by stretching walls. Recent researches
about stretching surface may be consulted via Refs. [35 — 38].

Investigation of non-Newtonian liquids is an active research area for the pervious few years.
Numerous industrial materials are characterized as non-Newtonian fluids. Few examples include
oils, moisturizers, paints, polymers, polymeric fluids, and suspension fluids. The characteristics
of non-Newtonian liquids are distinct. Therefore many models in this direction are suggested.
It is noticed from existing literature that second and third grade fluids are studied much in
view of shear thinning/shear thickening and normal stress factors. Some developments about
these liquids may be examined by the studies [39 — 43]. Recently Abbas et al.[44] explored the
Maxwell fluid model in the presence of permeable channel. Thermodynamic constraints for third
grade fluid are pointed out by Fosdick and Rajagopal [45]. Mastroberardino and Mahabaleswar
[46] constructed viscoelastic mixed convective by stretching surface. Adesanya and Makinde
[47] explored thermodynamics properties for third-grade liquid with internal heat generation.
Various studies about third grade fluid are examined via Refs [48 — 52|. Jeffrey material is one
of the non-Newtonian liquids which can predict the retardation and relaxation times effects.
Non-Newtonian fluid model due to their applications in bio-engineering, geophysics, oil reservoir
process and chemical and nuclear technologies have remarkable importance [53 — 56].

The fluid movement through permeable space is significant for thermal insulation, industrial
production of oil, power generation and others. The flows in porous channel are common in
groundwater discharge, oil revenue and many others. Darcy model is utilized for low velocity
flow rate whereas for high velocity flow rate this model is extended to Darcy-Forchheimer
relation with additional term in momentum equation [57]. Saddeek [58] inspected the dissipated

flow over a permeable extended sheet. Some recently investigations about Darcy-Forchheimer
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medium can be found in Refs. [59 — 62].

To minimize the irreversibility one can utilize the concept of thermodynamics second (2nd)
law. Entropy optimization (increase or decrease) is a principle of annihilation of current frame-
work. Analysis of entropy is accomplished to improve efficiency of system. Joule heating, dissi-
pation and mass and heat transfers etc., can be exploited as fundamentals of entropy generation
(EG). Design variable subject to thermal structures negotiate not only with heat transportation
improvement as well as with the quantity of intensity input in structures. Therefore determin-
ing of optimal obstinacy between the heat transportation rate (HTR) and need of intensity
input turn out to be premier intention about design approximations of a thermal structure. As-
sessment of the dynamical productivity of real structures is developed by an energy assessment
which can be used (energy) or correspondingly irreversible rate of entropy. Optimization and
comparison of working heat exchanger are measured by thermodynamic parameters [63 — 67]
and by specific economic parameters [68 — 72]. Technique enables the entropy production to
be modified through various mechanisms and design features in order to find optimum geo-
metric heat exchanger patterns [73]. Bejan [74] defined models of power plants functioning
at absolute capacity while providing the lowest entropy generation rate. Salamon et al. [75]
explained that in some structure conditions optimum power efficiency and minimum entropy
generation rate may become equal. Haseli [76] discussed the process of Brayton processes in
different configurations at a minimum EGM condition. Several investigators use energy storage
and entropy production minimization to induce optimum simulations for the thermal system
[77]. Torabi et al. [78] numerically calculated total entropy optimization rate in micro porous
channels subject to temperature jump and velocity slip. Das and Basak [79] studied discrete
solar heating methodologies subject to entropy optimization. They also examined heat transfer
through natural convection process in discretely heated square cavity. Entropy optimization
analysis for flow boiling condition in a helically coiled tube subject to constant heat flux is

analyzed by Abdous et al. [80].
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1.3 Viscous fluid

A fluid that follow Newton’s viscosity law is called viscous fluids. For viscous incompressible

fluid the Cauchy stress tensor (7*) is
7" = —pl + pAq, (1.1)

in which p denotes the pressure, I the identity tensor and A1 the first Rivlin-Ericksen tensor.

1.4 Non-Newtonian liquids

A fluid that does not follow Newton’s viscosity law is known as non-Newtonian liquids. Exam-
ples include ketchup, honey, custard, paint, toothpaste, shampoo and blood at low shear rate
etc.

1.4.1 Second grade fluid

The continuity, motion and second grade fluid relations are

V.V =0, (1.2)
P = div ™, (1.3)
"= —pl 4+ S%, (1.4)
where an extra stress tensor S* satisfies
S* = A1 +ajA; +ajAs + asA?, (1.5)
A, = %AH + A, 1(VV)+ A, (V)T n>1. (1.6)
A = (VV)+(VV)T, (1.7)
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Ju OJu Ju

95 Oy 0z
(VV) = % g—z % ) (1.8)
w Odw dw
or Oy 0z
1.4.2 Third grade fluid
An extra stress tensor S* have obeys
S* = pA1 + a1 A1 + a1As + asAT + B{As + B3A1A, + B3ALAL + Bi(trAl)}, (1.9)

where ;i denotes dynamic viscosity and a;(i = 1,2) and §;(j = 1 — 3) are the material

constants of fluid.

1.4.3 Jeffrey fluid model

Constitutive relation for an extra stress tensor S* satisfies

S* = 1fA1 [AHQ <%+(V-V)A)]}, (1.10)

where A1 is the ratio of relaxation to retardation times and A the retardation time.

1.5 Methodologies

1.5.1 Homotopy analysis method (HAM)

In 1992, the homotopy method was first time given by Liao [92] for solutions of highly non-
linear partial/ordinary systems. This method uses the concept of homotopy to construct a

series solution for highly nonlinear systems. For nonlinear equation, we have

N [u(n)] =0, (1.11)
(1 =) Lu(n; ¢*) —uo(n)] = ¢hN [u(n; ¢™)], (1.12)
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where i # 0, 0 < ¢** < 1, £ and wug(n) satisfying the boundary constrains. Put ¢** = 0 and
q** =1, one has

u(1;0) — uo(n) = 0, and u(n; 1) —u(n) =0, (1.13)

Applying the concept of Taylor series, we get

*x - *x\m* 1 am*u 777q**
w(; ) = uo(n) + D tme () (¢, e () = mﬂﬁ (1.14)
m*=1 ’ (q ) q**=0
The m!" order expression is defined as
L [tm=(0) = X um=—1(0)] = iR (tm=—1) , (1.15)
with
1 am*flu : ok
Ry (th—1) = (Zﬁl ) : (1.16)
(m - 1) 6 (q**) **=0
0, m*<l1,
1, m*>1.

The final solution converges to ¢** = 1 is obtained with the help of MATHEMATICA i.e.,
u(@) = uo(n) + > = (). (1.18)

1.5.2 Bulit-in-Shooting technique

We have implemented built-in-Shooting technique [92] in chapters 2, 3,4 and 7 to construct the
numerical solutions of differential equations in MATHEMATICA. This method directly solved

the differential systems.
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Chapter 2

Flow subject to effective Prandtl
number and without effective

Prandtl number via vAl,O3 — HyO
and vAl,O3 — CoHgO9 nanoparticles

Entropy generation and viscous dissipation in mixed convective radiative flow through a stretched sheet
are examined. Modeling is based upon second law of thermodynamics. Effective Prandtl number (EPN)
model is employed to analyze the features of entropy-generated flow. Nanomaterial subject to nanopar-
ticles (7AlyO3 —H20 and vAl30O3 —C9HgO32) are considered. The resulting problem are solved
through Optimal homotopy method (OHAM). Optimum values are determined for the auxiliary pa-
rameters. Impact of emerging parameters are graphically analyzed for (yAlyO3 —H20 and yAl203

—(C9HgO32) nanoparticles. Major points are provided in concluding remarks.

2.1 Modeling

Mixed convective flow of viscous nanomaterial caused by stretching sheet is discussed. The
stretching surface is taken at y = 0 (Fig.2.1). Fluid occupies the space y > 0. Radiation,

dissipation and heat generation are present. Mathematical expressions for problem under con-
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sideration satisfy [81]:

Fig. 2.1: Flow diagram.

ou Ov

— 4+ — = 21

oz * dy 0 (21)
ou ou iy O*u (PB) s

v T—Tx)=0, 2.2
or Oy  puy Oy? g pnf( ) (22)

or AT kny O°T 1 <6qr> [ f (8u>2 Qo
u— 4 v— | = + == — ) + 2 (T-Tw), (2.3
( Ox 8y) (pep)ny OY*  (pcp)py \ Oy ) (pcp),; \ Oy (pcp)nf( » (23)
with
u=Uy=0ax, v=0, T=T,aty=0,
(2.4)
u—0, T—Ty wheny— oo.

2.2 Thermophysical characteristics of Al,O3 — HyO and Al,O3 —
CyHgO2 nanoparticles [82-86].

Here one has
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i i
Eht-nand
A e
i—’j = 123¢% + T.3¢ + 1, for yALO3 — Hy0, (2.8)
‘;—T;J” = 30662 — 0.19¢ + 1 for yAl,03 — CoHgOs, (2.9)
kk—’;f = 4.97¢% + 2.72¢ + 1 for yAlsO3 — H0, (2.10)
kk—’;f = 28.905¢% + 2.8273¢ + 1 for yAlsO3 — C2HgOs, (2.11)
};f—lf;f = 82.1¢2 + 3.9¢ + 1 for vAl,O3 — H»0, (2.12)
P;—:ff = 254.3¢% + 3¢ + 1 for yAloO5 — CoHgOs, (2.13)

Table 1: Thermophysical features of ethylene glycol (CoHgO2), water (H20) and alumina
(Al203).

Cp(JE g P K1) | p(kgm™3) | Bx107° (K1) | k(Wm™tK™1)
Alumina (Al2O3) 765 3970 0.85 40
Water (H20) 4182 998.3 20.06 0.60
Ethylene glycol (CoHgO2) 2382 1116.6 65 0.249
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We consider the transformations
T— T
= ‘/ , U= ax —\/avy —_— 2.14

2.3 Flow equations

Momentum and energy equations for both (yAlsO3 — HyO and vAloO3 — CyHgO2) nanofluids

give

(123¢% + 730+ 1)f " + (1 —¢+¢;’—;) (Ff"+ 12 (2.15)

(1_¢+¢Pfﬁ_f> ( ):0, for ’}/AlgOg—HQO
(306¢% — 0.19¢ 4+ 1) f " + (1 — o+ ¢§;> ff"+f"? 216)

(1 — ¢ —+ (Z)pf B_f> (77) = 0, for ’7Al203 — CQHﬁOQ
f(0)=0, f(0)=1, f'(c0) =0, (2.17)
& [(4.97¢% +2.72¢ + 1) + Ry(1 + (6 — 1)) ()]
Ft' () = f'(m)t(n) + W(f "(n))? (2.18)
=/ er)s = 0, for 7Als03 — Hy0 '
+%t(n)
(l*¢+¢ (/565);)

& [(28.905¢% + 2.8273¢ + 1) + Ry(1 + (6w — 1)) ()]
fmt'(n) — f'(m)t(n) + ﬁ(i’ "(n))?

(Pcp)s
(PCp)f

+W =0, for ’}/A1203 — C9HgOo

)
+—0——1(n)
(1 ¢+¢>(Wp)g) (

(PCp

Vs

(2.19)

£0) =1 t(c0) =0, (2.20)

where W for effective Prandtl number via yAloO3 — H20O and yAlaO3 — Cy HgO2 nanofluids
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satisfies
(Pr); (1 b+ qsg—;) (82.1¢% + 3.9 + 1)

U= L
123¢% + 7.3 + 1

: (2.21)

(Pr); (1 — o+ ¢g—;> (254.3¢% — 36 + 1)

U= 2
30642 — 0.19¢ + 1

(2.22)

In absence of effective Prandtl number via vAlosO3 — HyO and vAlsO3 — C3HgO2 one has

Pr);(1— ¢+ ¢l
@:<f”£ ¢ ¢WX 023)
4.97¢% —2.72¢ + 1

(Pr) (1 -6 +02)

= 5 . (2.24)
28.905¢° + 2.8273¢ + 1
2.4 Physically quantities
2.4.1 Drag force coefficient (Cy)
Skin friction in dimensional form is expressed as
Tw
== 2.2
Cy RN (2.25)
where 7, is defined as
ou
_ ou 2.26
Tw :u’nf|y:0 8y y:07 ( )
Putting Eq. (2.26) in Eq. (2.25), one has
1VRe, O = — (123¢p% + 7.3¢ + 1) f "(0) for yAl,O3 — H>0, (2.27)
1 /Re,Cy = — (30692 — 0.19¢ + 1) f "(0) for yAly05 — CoHgOs. '
2.4.2 Nusselt number (Nu)
Mathematically we have
Lqw
=" 2.2
Nu Ry (T — To0), (2.28)
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where ¢, is expressed as

16013\ (0T
quw = —kn [(1 + —) <—>} . (2.29)
d kky ) \ oy )|,

Using Eq. (2.29) in Eq. (2.28) we have

(4.97¢% +2.72¢ + 1)
+Rg(1+ (8, — 1)t(0))3¢(0)
(28.905¢2 + 2.8273¢ + 1)
+Ra(1 + (6, — 1)t(0))3t(0)

(Rey) /2 Nu, =

] for vAlsO3 — H20,
(2.30)
(Rey) " Y2Nu, =

] for vAloO3 — CoHgOo

2.5 Entropy generation modelling

Current flow model volumetric entropy (Sg) and characteristic entropy (Sy)o can be written as

kp |kny (OT\?  160*T3 (OT\?|  tny (Ou)”
g — o | inf (22 o (22 MSLLYAR 2.31
T T2 | ke <8y> + 3kky oy +Too oy )’ (2:31)
knp (AT)?
(Sg)o = T—ng. (2.32)
Mathematically total entropy generation is described as
S
Ng = —2 (2.33)
(Sg)o

Dimensionless form of above equation for both (vAloO3 — H20 and vAloO3 — CaHgO2)

nanofluids are expressed as

(4.97¢ +2.726 + 1)+
Ra(1+ (6, — 1)t(0))3t"3(0) , (2.34)

123¢2+7.3¢+1 | Br 2 B
T 4.97¢2+2.72¢+1} g Re f = for yAl2O3 — H20O

Ng =t2%(n) + Re
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(28.905¢2 + 2.8273¢ 4 1)+
Ry(1+ (0w — 1)£(0))*¢”(0)

306¢°—0.194+1 Br 172 _
+ [28.905¢>2+2.8273¢+1] o Ref for yAl,O3 — C2HeOr

Ng =t2%(n) + Re

Bejan number (Be) in non-Dimensional form is defined by

Re|[(4.97¢%+2.72¢+1)+ Rq(1+(0,,—1)t(0))t'2(0) ]

Be =

, (4.97¢>2 +2.72¢+1) 123¢2+47.36+1 ] Br 2

£2(n)+Re 5 et | B Res
+Ra(1 + (0. — 1)£(0))%t(0)

for vAloO3 — H2O
Be — Re[(28.905¢2 +2.8273¢+1)+ Ra(1+(0., —1)¢(0))%'2(0)]
(28.905¢2 + 2.8273¢ + 1)
t2(n)+Re [282@%%] & Ref "

+Ra(1 + (0. — 1)£(0))3¢2(0)
for yAl;O3 — CoHgOo

2.6 Dimensionless parameters

(- 52). (- 2) (- ) o (o)
: ( |

2.7 Methodology

Initial approximations (fo (), to (1)) and linear operators (L (f), L (t)) are

fo(n)=1- =1 ¢, (n) = e(=m, }

3
L) =Gk~ L) = —t.

k:th

Average residual errors for flow equations at order are expressed as

N m 2
el (hy) = N;—H Z X [Z(fi)n—jﬂn] ’

j=0 i=0
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2

N m m
1
em(hy,he) = N1 SOx D (Fie=jmmy > (E)n=jmm | (2.41)
j=0  Li=0 =0
where (gX)) is defined by
ek =l +el. (2.42)

Optimal estimations of convergence control variables are (hy = —0.85698) and (h; = —0.312346).

Numerical estimation of total residual error (gF,) is (9.20133 x 1079).

Table 2.1: Residual errors for various variables when Ry = 0.4, 6, = 1.1, Br = 0.4,

0=0.1,Re=0.3, A=0.2, Pr=1.0 and Ec=0.1.

m el et

2 | 8.94180 x 1078 | 6.84831 x 10~¢
6 | 520171 x 1072 | 6.1285 x 1078

8 | 3.21087 x 10¥ | 5.15682 x 1078
10 | 3.58381 x 1071 | 508389 x 1010
16 | 1.2359 x 102! | 2.58971 x 10~ 1!
22 | 2.5872 x 10724 | 3.80485 x 10712
24 | 1.58101 x 10727 | 5.9729 x 10~

2.8 Analysis

2.8.1 Velocity

Effect of nanoparticles volume fraction (¢ = 0.0,0.2,0.4,0.8) on velocity field is depicted in
Figs. 2.2(a,b). From Figs. 2.2(a,b) we noticed that (¢) remarkably enhances the velocity f/(n)

for both vAl,O3 — H20 and v AlsO3 — Co HgO5 nanofluids.
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Solidlines;  Effective Prandtl number
Dashed lines; WithoutEffectve Prandtl number

7Al, 03 = H, O

0.6f

0.4¢

0.2

Fig. 2.2(a) : f’ versus ¢.

Solidlines;  Effective Prandtl number
Dashed lines; WithoutEffectve Prandtl number

#Al, 05 =Cy He O,

0.5¢

Fig. 2.2(b) : f’ versus ¢.
2.8.2 Temperature distribution

Influence of (¢) on (¢(n)) is demonstrated in Figs. 2.3(a,b). In Fig. 2.3(a) it is scrutinized
that (¢(n)) shows contrast behavior for effective Prandtl number (EPN) and without effective
Prandt]l number for (yAl3O3 — H20) nanofluid. For higher (¢ = 0.00,0.01,0.02,0.03,0.04) the
temperature t(n) decreases against effective Prandtl number (EPN) while an improvement is

evaluated through (¢ = 0.00,0.01,0.02,0.03,0.04) for without effective Prandtl number. Com-
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parable outcomes is seen through (¢ = 0.00,0.01,0.02,0.03,0.04) for effective and without
effective Prandtl numbers via 7AloO3 — Co HgO2 nanofluids (see Fig. 2.3(b)). Figs. 2.4(a) and
2.4(b) reveal the behavior of ¢(n) via (Ec = 1.0,2.0,3.0,4.0). From Fig. 2.4(a) an enhancement
in (t(n)) for 7AlaO3 — H30 is noticed through higher (Ec). Physically higher values of (Ec)
give rise to a significant variation in thermal field due to frictional heating for both scenarios
~vAl2O3 — Ho0O and vAlsO3 — CoHgO4 (see Figs. 2.4(a,b). Eckert number (Ec¢) also describes
the quantitative relation of kinetic energy and enthalpy. Higher (Fc) employ that dissipated
heat is contained in material which reduces temperature (¢(n)). Figs. 2.5(a,b) demonstrate
the consequence of (Rg;) on (¢(n)). Temperature field is enhanced for larger (R,;). Physically
radiative variable enhances the heat flux at surface which is responsible for an enhancement in

thermal field for both cases of vAloO3 — H2O and vAloO3 — Cs HgO2 nanofluids.

Solidlines;  Effective Prandtl number
0.8 Dashed lines; WithoutEffectve Prandtl number -

7Al,03 -H, 0

Fig. 2.3(a) : t versus ¢.
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Solid lines;  Effective Prandtl number
Dashed lines; Without Effectve Prandtl number
0.8

0.6 7A103-C, Hg Oy

Fig. 2.3(b) : t versus ¢.

Solidlines;  Effective Prandtl number
Dashed lines; Without Effectve Prandtl number

71,03 —H, 0

— Ec=0.0
— Ec=1.0
— Ec=2.0
— Ec=3.0

Fig. 2.4(a) : t versus Ec.
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Solid lines;  Effective Prandtl number
0.8 Dashed lines; Without Effectve Prandtl number

#Al;03-Cy Hg O,

1.0

Solid lines;  Effective Prandtl number
Dashed lines; Without Effectve Prandtl number

0.8f
A, 03 —H, O

0.6
— Rg=01
— Ryg=05
0.4+ — Rg=1.0

_ Ry=15

Fig. 2.5(a) : t versus Ry.
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p Solid lines;  Effective Prandtl number
W« Dashed lines; Without Effectve Prandtl number

08t |

#Al, 05 ~C3 Hg O,

0.6

0.4

0.2

Fig. 2.5(b) : t versus Ry.
2.8.3 Entropy generation rate

Change in Brinkman number on (Ng(n)) is depicted in Figs. 2.6(a,b). Clearly (Ng(n)) is
an increasing function of (Br) for both yAloO3 — HoO and vAlyO3 — CoHgOo nanofluids.
Infact significant quantity of heat releases within layer of liquid particles and as a result an
improvement in entropy is noticed. Figs. 2.6(a,b) illustrate impact of (R;) on (Ng(n)) for
both vAloO3 — H20 and vAlaO3 — CaHgO2 nanofluids. Figs. 2.7(a,b) illustrated that an
enhancement in (R;) leads to increase of (Ng(n)). It is perceived that (Ng(n)) dominates in
case of YAlpO3 — H20 and yAlpO3 — C2HgO2 nanofluids. Significance of (6,,) on (Ng(n)) is
shown in Figs. 2.8(a,b). Here (Ng(n)) is an increasing function of (6,,) for both vAloO3 —
H50 and vAl303 — CoHgO2 nanofluids. For larger (6,,) the irreversibility rate of the system
enhances. As a result (Ng(n)) is increased. Furthermore (Ng (7)) dominants is case of effective
Prandtl number (EPN) when compared with without effective Prandtl number in the presence

of yAlsO3 — Ho0O and vAlsO3 — C3HgO2 nanofluids.
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“. Solid lines;  Effective Prandtl number
'-‘ Dashed lines; Without Effectve Prandtl number
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Dashed lines; Without Effectve Prandtl number
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1.5

3.0
Fig. 2.6(b) : Ng versus Br.
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3.0r

Solidlines;  Effective Prandtl number
Dashed lines; WithoutEffectve Prandtl number

AL, 03 - H, 0

Fig. 2.7(a) : Ng versus Ry.

350

3.0

Solid lines;  Effective Prandtl number
Dashed lines; Without Effectve Prandtl number

#Al,03 -C;, Hg O,

— Ry=0.0

— Ryg=0.4
Ry=0.8

0.0

Fig. 2.7(b) : Ng versus Ry.
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14} | Solid lines;  Effective Prandtl number
Dashed lines; Without Effectve Prandtl number

Al 03 = H, O

— 6y=1.1
_ 6y=12
— 6,=13
— 6y=14

1.5 2.0 2.5 3.0
n

Fig. 2.8(a) : Ng versus 0y,.

| Solidlines;  Effective Prandtl number
14—:\ Dashed lines; Without Effectve Prandtl number

12+ E.‘\ 7A|203 -C2Hg 0,

— 6,=1.1
— 6y=1.2
— 6,=1.3
— 0y=14

Fig. 2.8(b) : Ng versus 6,,.
2.8.4 Bejan Number

Attribute of (Br) on (Be) is exhibited in Figs. 2.9(a,b). Clearly (Be) is decreasing function
of (Br) for both vAlsO3 — H2O and yAlyO3 — C2HgO2 nanofluids. It is due to the fact that
viscosity dominants against larger (Br). That is why Bejan number reduces. Radiation variable
(Rq) on (Be) is explored in Figs. 2.10(a,b). Here (Be) enhances through higher (R;) for both

vAl2O3 — H2O and vAl3O3 — CoHgO2 nanofluids. Internal energy of system improves and
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consequently an augmentation is observed in Bejan number.

#Al, 03 - H,0

0.9¢

0.8¢

Be

0.61

0.5¢

% Solid lines;  Effective Prandtl number
Dashed lines; Without Effectve Prandtl number

0.0 0.5 1.0 1.5 2.0 2.5 3.0
n

Fig. 2.9(a) : Be versus Br.

A1, 05 —C5 Hq O W

0.9+ # #

0.8¢

0.7

Be

0.6f

0.5r

A < Solidlines;  Effective Prandtl number
0.4r fi Dashed lines; Without Effectve Prandtl number

0.0 0.5 1.0 1.5 2.0 2.5 3.0
n

Fig. 2.9(b) : Be versus Br.
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04 Dashed lines; Without Effectve Prandtl number
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Fig. 2.10(a) : Be versus Ry.
A1, 03 -C, Hg O,
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0.8

0.7
Q
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0.6

0.5

04 Solid lines;  Effective Prandtl number

. Dashed lines; Without Effectve Prandtl number
00 05 1o 15 20 25 30

n

Fig. 2.10(b) : Be versus Ry.
2.9 Engineering quantities

2.9.1 Drag force (Cy) and heat transfer rate (Nu)

Figs. 2.11(a, b) illuminate the impacts of (C) through (\) and (¢). Skin friction (Cf) increases
via an enhancement in (A = 0.0,0.1,0.2,0.3) and (¢) for both yAl2O3 — H20O and vAl2O3 —
CyHgO9 nanofluids (see Figs. 2.11(a, b)). Nusselt number (Nu) through (Ec = 0.2,0.3,0.4,0.5)
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and (¢) for both yAloO3— H0 and v AlyO3—Cy HgO2 nanofluids are sketched in Figs. 2.12(a, b).
Here (Nu) boosts in presence of (¢) and (Ec) .

Solidlines;  Effective Prandtl number
Dashed lines;
Without Effectve Prandtl number

— 2=0.0
=01
0 =02
— A=0.3

-100 -98 -96 -94 -92 -90 -88 -86
4

Fig. 2.11(a) : Cy versus ¢ and A.

#Al, 05 = Cy Hq O

VRe Ct

Solid lines;

Effective Prandtl

number

Dashed lines; — 1=0.0

0 Without Effectve =0,

Prandtl number 1=0.1
— A=0.2
— =03

-100  -98 -9.6 -9.4 -9.2 -9.0 -8.8 -8.6
¢

Fig. 2.11(b) : Cy versus ¢ and A.

35



Solid lines;
Effective Prandtl
number

Dashed lines;
Without Effectve
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ZAl, 03 - H, 0
-10 -9 -8 -7 -6 -5 —4
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Fig. 2.12(a) : Nu versus ¢ and Ec
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"\ Solid lines;
‘~.. Effective Prandtl
e, num|
16 N o, Dashed lines;
e . Without Effectve
S 0. Prandtl number
14 o ‘Q.. '0‘
= 12
Z
&
3
& 10)

Ec=0.

8
— Ec=0.3
o — Ec=0.4
— Ec=0.5
4 A1, 03 ~Cy Hq O
10 -9 -8 -1 -6 -5 -4

¢

Fig. 2.12(b) : Nu versus ¢ and Ec.

2.10 Conclusions
Main findings are concluded as follows

e f'(n) is increased for larger ¢.
e ¢(n) shows different impact for effective and non-effective Prandtl numbers.

e For higher Br, Ry and 0,, the (Ng(n)) is increased.
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e Influences of (Br) and (R;) on (Be) are absolutely inverse.

e (A) leads to an increment in (Cf) and (Nu).
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Chapter 3

Mixed convective dissipative flow of
effective Prandtl number subject to
entropy optimization and melting

heat

This chapter investigates the outcomes of melting heat in mixed convective flow over a stretchable sheet.
Heat generation and Joule heating effects are also taken in energy equation. Here (7A1203—H 20
and YAl2O3—C2HgO3) nanofluids are considered. With and without effective Prandtl models are
analyzed for boundary layer flows. Entropy analysis is utilized from Second thermodynamics law. Various
parameters are discussed graphically. Additionally the skin friction and heat transport rate have been

discussed through tabulated values.

3.1 Mathematical formulation

Consider flows of (7AloO3 — H2O and yAloO3 — CoHgO2) nanofluids. The assumption in
mathematical equations are as follows.
(1) We made that (u,, = az) is the velocity of stretching sheet.

(2) Neglects the induced magnetic field for very small Reynold number.
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(3) Melting temperature (7,,,) at surface is less than ambient temperature (o).
(4) Entropy generation is accounted.
(5) Thermal equilibrium between (yAloO3 — H20 and yAlsO3 — Cy HgO2) nanoparticles and

base fluid is assumed. The governing equations are

ou ov
% - _a_ya (31)
ou Onf 2 ou (pﬂ>nf Ko f 0?u
=B,y T—Ts)+ 2L 2
uax af ot vay 9 Pnyf ( )+ Pnf 8y2 (3 )
or  aT kg T  opp 9o Qo L f <8u>2
u—+v— | = + Biu” + T—-Ty)+ -, 33
( Ox 8y> (pcp)nf Y% (pcp)ny 0 (pcp)nf< ) (Pcp)nf Ay (3:3)
with
u=uy=ar, v=0, T=1T, aty=20, (3.4)
u=0, T — Ts when y — oco. ‘
or . B
kg <3_y>y:0 — Py [N+ cs (T — To)] v(z,0) = 0. (3.5)
3.2 Thermophysical properties of nanoparticles [82 — 86|
pnf ps
L= (1 - 9) + o=, 3.6
Py (1-9) ¢>pf (3.6)
(/)Cp)nf (pep)s
~ P —(1—-9¢)+ ¢ , 3.7
(pep) ¢ ( ) (pcp) (37)
(PB)ng (pB)s
=(1—-¢)+0o , 3.8
e~ Ot ) 35
Onf _ 3 (g_f B ) 4
— = 1+ , (3.9)
ol (B (5
% — 123¢2 + 7.3 + 1, for AloOs — HO, (3.10)
f
% — 30602 — 0.19¢ + 1 for AlsO3 — CoHgOs, (3.11)
f

39



Pr,s

5 = 82.1¢% + 3.9¢ + 1 for vAl,O3 — H50, (3.12)
f
Pr = 254.3¢° 4+ 3¢ + 1 for AloO3 — Cy3HgO3, (3.13)
f
K,
k—f = 4.97¢2 + 2.72¢ + 1 for Al,O3 — H»0, (3.14)
f
ki,
S — 98.905¢2 + 2.8273¢ + 1 for AloO3 — CyHgOs, (3.15)
f
Table 3.1: Numerical values of nanofluids.
Cp(JE g P K1) || plkgm™3) || Bx107° (K1) || k(Wm K1) | o(Q 'm™t)
(Al03) 765 3970 0.85 40 1012
(H50) 4182 998.3 20.06 0.06 0.05
(CyHgOo) 2382 1116.6 65 0.249 1.07 x 1077

Table 3.2: Comparative findings of current study with Rashidi ant Ishak et al [87, 88|

A || Pr || Ishak et al. [87] || Rashidi et al. [88] || Present
0.72 | 0.8086 0.80883 0.80886
1.0 | 1.000 1.0001 1.0001
3.0 1.9273 1.92368 1.92221
7.0 | 3.0723 3.07225 3.07215
10 3.7207 3.72067 3.72167
100 | 12.2941 12.29408 12.29511
1|1 1.0873 1.08728 1.08721
2 1.1423 1.14234 1.14402
3 1.1853 1.18528 1.18512
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3.3 Non-Dimensional expressions

Consider the transformations

n_ e v v _ T =Tw
y \/;’f’(n) Ry T YR ) =y (3.16)

The momentum and energy equations for both (yAlaO3 — H2O and yAlyO3 — CaHgOs)

nanofluids take the following forms

(12862 + 73+ 1) "+ (1= 6+ 02 ) (fF "+ F'f )+

+(1¢+¢§;%)At<n>+[1+ ( (5-1)e }(M)f’f’O, for 7A105 — H,0

go2)-(5-1)e

(306¢% — 0.19¢ + 1) f " + (1 — o+ ¢§;—) (ffr"+r'fH+

(3.17)

(1 — o+ ¢g—f§—f) At(n) + {1 + <i§)f<l>¢l)¢] (M)f'f'=0, for yAlsO3 — CoHgOo
N N (3.18)

(4.97¢% + 2.726 + 1)t" (n)

- 3(#? ] (M)(EQS 'S
(6*2)‘(3‘1%
+(123¢% + 7.3¢ + 1) (Ec)(f "(n))? + 5t(n)
for vAlsO3 — H2O

(pcp)s \ 41
(1=t el i) +
L ( (v p>f> () —0 5, (3.19)

(28.905¢% 4 2.8273¢ + 1)t"(n)

(1- 0+ ol v +

O G ] (MBS 'S
(z+2) (1)
+ (3069 — 0.19¢ + 1) (Ec)(f "(n))? + 6t(n)
for vAlsO3 — CoHgOo

F0) =0, £(0)=1=0, f'(c0) =0, (3.21)
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(Pr); (1 o qsg;-) (82.1¢% + 3.96 + 1)
(123¢* + 7.3¢ + 1)

(Cp)f

(Pr); (1 b+ ¢>g—;) (254.3¢ — 36 + 1)
(306¢* — 0.19¢ + 1)

(Cp)f

(Pr); <1 — ¢+ ¢£—S> £(0) + (4.97¢% +2.72¢ + 1) (0) = 0,
f

(Pr)s <1 — ¢+ qb%) £(0) + (28.905¢% + 2.8273¢ + 1) '(0) = 0,
!

f(0) + <1 —0+9¢ (Cp)s> (Mn)t'(0) =0,

£(0) + (1 —¢+9¢ (Cp)8> (Mn)t'(0) =0,

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

where ¥° in absence of effective Prandtl number via ~vAlsO3 — HyO and yAloO3 — CoHgOo

nanofluids is given as

(Pr)y(1-o+0)
4.97¢> —2.72¢0+1

_ Ps
() (1-0+02)
28.905¢% + 2.8273¢ + 1’

Py (1 - ¢+¢>§s) (82.1¢% + 3.96 + 1)
U = !
123¢% + 7.36 + 1 ’

(Pr); (1 o+ qﬁ%) (254.3¢% — 3¢ + 1)

U’ = 5
306¢% — 0.19¢ + 1

)

Note that incompressibility condition is satisfied.
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(3.27)

(3.28)

(3.29)

(3.30)



3.4 Engineering curiosity
3.4.1 Drag force (Cy)
Mathematical description of skin friction is define by

Tw
Cr=—=,
Py

ou

)

1VRe,Cp = — (123¢* + 7.3¢ + 1) f "(0) for yAl203 — H>0,
1VRe;Cp = — (306¢* — 0.19¢ + 1) f "(0) for yAloO3 — CoHgOs

From above equations we get

3.4.2 Heat transfer rate

Mathematically we have

Tqw
ky (Tw — Too)’

oT
quw = —kn < > .

Through Egs. (3.34) and Eq. (3.35) we have

Nu =

where ¢y, is expressed as

(Reg) V2 Nu, = [(4.97¢% + 2.72¢ + 1)¢'(0)] for vAl,O3 — H50,
(Rey) Y2 Nu, = [(28.905¢% + 2.8273¢ + 1)¢'(0)] for yAloO3 — CoHgOs,

3.5 Entropy expression

Entropy rate (Ng) is the ratio of volumetric (E4) to normal (Ey)o entropy rate i.e.,

43

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)



kng (OT\?  0nfB2 5  fng (00>
p g (0T Bnp (O 3.38
! T&<6y>+ T, " T \3y) [ (3:38)

kny (AT)

(EQ)O - TOQO 22

(3.39)

Entropy generation in non-dimensional form for both (7AloO3— H20 and yAloO3—CaHgO2)

nanofluids are

2 3
No = [(4.9762 +2.726 + 1)12(0)] + | 224 L | B Re f 2

1 3(%71)(1) M)Br Re f 2 3.40
+ +<&+2)<&1)¢ (M) Re f : (3.40)

for "yAlgOg - HQO

2_ r )
Ng = [(28.905¢% + 2.82736 + 1)t%(0)] + [28.?;%6%%02-};;4;;;“ BrRe f

41+ (jg)f‘(1)¢ T (M) Re f 72 . (3.41)
7f of

for vAloO3 — CoHgOo

In non-dimensional form, Bejan number is

[(4.97¢2+2.72¢+1)t"2(0)]

2
[(4.97¢% + 2.72¢ + 1)t2(0)] + [%] Bt Re f 2

Be =

+ 1+ (ig)f()(ﬁ >¢ (M)BZRe f 2 (3.42)
of of

for vAloO3 — HoO
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[(28.905¢% + 2.8273¢ + 1)¢2(0)]

[(28.90562 + 2.82736 + 1)¥2(0)] + | o 0I00H_ | Br Re f 2

Be = 5 "yAlgOg - CQHGOQ

+ 1+< (5)e (M)BLRe f 2

oy +2> (0; 71>¢5

(3.43)
3.5.1 Dimensionless parameters
)\( Gm) ( ) (1% GT‘Q;( gﬁf(T Tm))7
o ) [Too=Tm]

e %ﬂ)(%)f)’ o= pgwf)’ Br( km) Q(Z %)
3.6 Solution methodology

The governing flow expressions (3.17 — 3.20) with boundary conditions (3.20 — 3.21) are solved
via built-in-Shooting technique. Computational solutions are identified and analyzed utilizing

plots.

3.7 Results and discussion

3.7.1 Velocity components

Figs. [3.1(a),3.1(b)] show the impact of (¢) on (f’ (n)). Here we noted that for (¢ = 0.01,0.03,0.05,0.07,0.09)
the (f’ (n)) enhances for both vAl;O3 — HoO and vAl3O3 — CoHgO4. Infact for deferment of
nano-sized particles in base fluid the cohesive forces between fluid particles become greater.
Figs. [3.2(a),3.2(b)] describe the behavior of (f' (n)) for (M = 0.0,0.3,0.6,0.9,1.2). Physically
magnetic parameter (M) is associated with Lorentz (electromagnetic) force so larger (M) pro-
duce more resistance therefore velocity declines. Performance of (f (n)) with respect to (Mn)

is conscripted through Figs. [3.3(a), 3.3(b)]. Velocity rapidly enhances for higher values of (Mn
p g g ) y Tapidly g
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for both 7AloO3 — H20O and v AlsO3 — Co HgO2 nanofluids.

1.0 T T T T T
Solidlines;  Effective Prandtl number

08k Dashed lines; Without Effectve Prandtl number
0.6
0.4+
0.2

For yAl, O; - Water
0.04 :

0 1 2 3 4 5

n
. . 1l
Fig. 3.1(a) : ¢ on f’.
1.0 T T T T T
Solid lines;  Effective Prandtl number
Dashedlines; Without Effectve Prandtl number
0.8
0.6
0.4
0.2+
~
S \\\

For yAl, O3 — Ethylene glycol =~
00 L L L L — =

0 1 2 3 4 5

Fig. 3.1(b) : ¢ on f.
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Solidlines;  Effective Prandtl number
08h Dashedlines; Without Effectve Prandtl number
0.6
0.4
0.2
0.0
0
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Solidlines;  Effective Prandtl number
Dashed lines; Without Effectve Prandtl number
0.8+
0.6
0.4+
0.2+
For yAl, Oy — Ethylene glycol
0.0 . . . . .
0 1 2 3 4 5 6

Fig. 3.2(b) : M on f'.
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0.4

0.2

Effective Prandtl number
Without Effectve Prandtl number
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Dashed lines;

Mn=0.0
Mn=0.5
Mn=1.0
Mn=1.5
Mn=2.0

For yAl, O; — Water

0.0

1

Fig. 3.3(a) : Mn on f'.

0.8

0.6

0.4

0.2

0.0~

For yAl, O3 — Ethylene glycol

Hfective Prandtl number
Without Effectve Prandtl number

Solid lines;
Dashed lines;

— Mn=0.0
— Mn=0.5
— Mn=1.0
— Mn=15
— Mn=2.0

0

3.7.2 Temperature

Figs. [3.4(a), 3.4(b)] demonstrate the impact of volume fraction (¢) on Temperature. Temper-
ature enhances in case of effective Prandtl number (EPN) whereas opposite scenario is noticed
in the absence of effective Prandtl number (EPN). Ethylene glycol thermal conductivity is
less than water. Impact of (M) on ¢(n) is examined in Figs. [3.5(a),3.5(D)].

tromagnetic force gives more resistance to motion of fluid. Therefore more heat is produced

1 2

Fig. 3.3(b) : Mn on f.
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inside the system and thus temperature increases. Outcomes of (Mn) on t(n) is presented in
Figs. [3.6(a),3.6(b)]. Since melting causes surface and fluid temperature reduce therefore the

temperature ¢(n) declines (see [Figs. [3.6(a),3.6(b)]]).

T == T T T T T

s / 1
/
/J Solidlines;  Effective Prandtl number

6k / \\\ Dashedlines; Without Effectve Prandtl number |

— ¢=0.0
— ¢=0.1 ]
— $=0.2
— ¢=0.3
— ¢=04

1.0F
0.8
0.6
0.4r
7,
02 / I,/ % Solidlines;  Effective Prandtl number 1
: //,//// Dashedlines; Without Effectve Prandtl number
£4
For yAl, O3 — Ethylene glycol

0.0 . . . . . .

0 1 2 3 4 5 6

n

Fig. 3.4(b) : ¢ on t.

49



2.0r

L5F 1
ﬁﬁh\\\\
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Dashedlines; Without Effectve Prandtl number

For yAl, O; - Water

0.0

L4FT
1.2+
1.0F
0.8
0.6
0.4
Solidlines;  Effective Prandtl number
02 Dashedlines; Without Effectve Prandtl number
For yAl, O — Ethylene glycol

0.0 . . . . . .

0 1 2 3 4 5 6

Fig. 3.5(b) : M on t.
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Mn=1.0
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Mn=3.0
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Solid lines; Effective Prandtl number
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0.5F |

Solid lines; Effective Prandtl number
Dashed lines; Without Effectve Prandtl number

For yAl, O; — Ethylene glycol

0.0

0 1 2 3 4 5 6
n

Fig. 3.6(b) : Mn on t.
3.7.3 Entropy and Bejan number

Figs. [3.7(a),3.7(b)] and [3.8(a), 3.8(b)] are displayed for the behavior of (M) on Ng(n) and Be
respectively. For (M = 0.0,0.3,0.6,0.9,1.2) Ng(n) is increased. Clearly electromagnetic force
produces extra disturbance in the system. Therefore Ng(n) enhances for both vAloO3 — HyO
and vAloO3 — CoHgO2 nanofluids. Rate of heat transfer in both cases is less dominant than

total irreversibilities. As a result (Be) is reduced (see Figs [3.8(a), 3.8(b)]).
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Figs. [3.9(a), 3.9(b)] and [3.10(a), 3.10(b)] show behaviors of (Ng(n)) and (Be) for increas-
ing values of (Br) for both vAlsO3 — H30 and vyAlaO3 — CaHgO2 nanofluids. Thermal en-
ergy of the elements as well as disorderliness inside the structure improves for larger (Br)
which subsequently upsurges (Ng(n)). Figs. [3.10(a),3.10(b)] present that Be reduces for
(Br=0.1,0.2,0.3,0.4,0.5). Figs. [3.11(a), 3.11(b)] and [3.12(a), 3.12(b)] show the increment of
Re on Ng(n) and Be. Entropy increases for (Re = 0.1,0.2,0.3,0.4,0.5) however Be decreases
for (Re =10.1,0.2,0.3,0.4,0.5) . Physically for growing standards of (Re =0.1,0.2,0.3,0.4,0.5)
extra disturbance in the liquid elements is noted. Thus more heat transfer upsurges (Ng(n)).

Total heat transfer outcome is conquered by total entropy. That is why (Be) is diminished.

Solidlines;  Effective Prandtl number
Dashedlines; Without Effectve Prandtl number
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0.2

0.0
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Fig. 3.8(b) : M on Be.
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Fig. 3.9(a) : Br on Ng.
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Fig. 3.10(a) : Br on Be.
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Fig. 3.10(b) : Br on Be.
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Fig. 3.11(a) : Re on Ng.
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Fig. 3.12(a) : Re on Be.
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Fig. 3.12(b):Re on Be.
3.8 Engineering curiosity

Tables (3.3) and (3.4) show outcomes of (¢), (M) and (A) on C} for both vAl,O3 — HO
and yAl2O3 — C2HgO2 nanofluids. Drag force enhances for larger (M) and (\) whereas re-
verse performance is noted for (¢ = 0.01,0.02,0.03). Tables (3.5,3.6) reveal that for (M =
0.1,0.2,0.3), (Mn = 0.1,0.2,0.3) and (Ec = 0.1,0.2,0.3) the heat transfer rate increases for
both vAlsO3 — H5O and vAlsO3 — Co HgO2 nanofluids respectively.
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3.8.1 Table 3.3

d) M A Cf for (’YAZQOg — HQO)
With effective Prandtl number || Without effective Prandtl number
1.96568 5.94156
0.01
0.99038 1.13117
0.02
0.62106 0.78824
0.03
1.84676 2.28791
0.1
1.88411 2.33051
0.2
1.89012 2.37241
0.3
0.1 1.84676 2.28791
0.2 1.66873 2.58856
0.3 1.48412 2.78598
3.8.2 Table 3.4
0] M A Skin friction subject to (7AleO3 — CoHgO2)
With effective Prandtl number || Without effective Prandtl number
1.58137 0.74676
0.01
0.63572 1.42721
0.02
0.25109 1.52724
0.03
2.19881 2.32507
0.1
2.25331 2.38128
0.2
2.30667 2.43634
0.3
0.1 2.19881 2.32507
0.2 2.37271 2.48768
0.3 2.57872 2.67905
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3.8.3 Table 3.5

M Mn Ec Transfer rate subject to (yAlaO3 — H20)
With effective Prandtl number || Without effective Prandtl number
01 2.53315 1.86582
- 2.56957 1.88775
0.2
2.60705 1.90925
0.3
2.53315 1.86582
0.1
2.54897 1.88486
0.2
2.56644 1.90522
0.3
0.1 2.21374 1.52907
0.2 2.32026 1.64006
0.3 2.42674 1.75232
3.8.4 Table 3.6
M Mn Ec Heat transfer rate subject to (yAlaO3 — C2HgO3)
With effective Prandtl number || Without effective Prandtl number
01 1.87578 1.40596
- 1.90829 1.43021
0.2
1.93996 1.45384
0.3
1.87578 1.40596
0.1
1.86725 1.41341
0.2
1.85915 1.42124
0.3
0.1 1.60562 1.19401
0.2 1.69539 1.26424
0.3 1.78551 1.33489
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3.9 Final remarks

Velocity enhances for larger (¢) and (Mn) for both vAl3O3 — HoO and vAl3O3 — CaHgO4

nanofluids.

In melting case fluid temperature reduces.

(Be) reduces for (Re = 0.1,0.2,0.3,0.4,0.5) but opposite response is seen for Ng(n).

e (Cy) is increased for higher (M).

Heat transfer rate upsurges for more (M) and (Mn).
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Chapter 4

Entropy generation in MHD flow of
viscous fluid subject to aluminum
(vAl2O3) and ethylene glycol
(C9HgO9) nanoparticles

This chapter analyzed the MHD (2D) flow of viscous fluid with alumina-water (yAloO3 — H20) and
ethylene-glycol (yAloO3 — CoHgOs) over a stretched surface. Thermal radiation and Joule heating are
examined. Electric field is absent. Uniform magnetic field is applied normal to the sheet. Momentum
slip is also taken into account for both (yAl2O3 — H20 and yAleO3 — CoHgO2) nanofluids. The
relevant equation are solved via built-in- Shooting method. The various flow parameters are graphically
discussed. Skin friction and Sherwood and Nusselt numbers are calculated numerically and analyzed

through Tables.

4.1 Modelling

We scrutinize MHD two-dimensional (2D) flow of (vAlaO3 — H20 and vAloO3 — CoHgO2)
nanofluids over a stretched surface. Extra heating factors like thermal radiation, Joule heating

and viscous dissipation is taken in energy equation. Slip effect is considered on boundary of
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sheet. Thermophysical properties of both nanoparticles are given in Table (4.1). Relevant

expressions are as follow.

ou Ov
—+—=0 4.1
or " oy p(fay 2 s
0L kny 9%T nf _1p2,2
gy +v ay‘(pcp)fay2+< B
tng (8 1 ’ (43)
+(Pcp)nf (dy) T (pep)nys ( y)
— — ou — _ —
u-Uw—ax—i—Blay, v=0, T=T, aty=0, (4.4)
u=0, T — Ts, when y — oo.
oT
kng <—> — Puf [N+ s (T — T,)] v(w,0) = 0. (4.5)
oy /=0
Table 4.1:
Co(JE g7 P K1) || p(kgm™3) || Bx107° (K1) || k(Wm™tK~Y) | o(Q 7 tm™1)
(Al303) 765 3970 0.85 40 10~12
(H20) 4182 998.3 20.06 0.06 0.05
(CoHgO2) 2382 1116.6 65 0.249 1.07x1077

4.2 Thermophysical characteristics of (Al,O3 — H,O and Al,O3 —
CyHgO2) nanofluids [82 — 86].

%f—a—@+¢%, (4.6)
it @
ool

Tl — 114 (5 -1)¢ (4.9)
L Ee) - (m )



M _ 123¢2 + 730+ 1, for AloO3 — H0,

Ky
% = 306¢" — 0.19¢ + 1 for Al,03 — C>HgOs,
f
Pry
Pl"r L — 82.1¢% + 3.9¢ + 1 for yAl,05 — H,0,
f

Pr,
S _ 954.3¢2 + 36 + 1 for AlsO3 — CoHgOs,

Pry
K,
k—f = 4.97¢% + 2.72¢ + 1 for Al,O3 — H»0,
f
k
ka = 28.905¢2 + 2.82736¢ + 1 for AlyO3 — CyHgOs.

f

We consider the suitable transformations

L N N _ T=Tm
L=\ T = g VR )= =y

4.3 Dimensionless forms of flow equations

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

Through momentum and energy equations for both (yAloO3 — H20 and yAlsO3 — CoHgO2)

nanofluids, we have

(123¢% +7.36 + 1) f " + (1 — b+ ¢§;—> (ff"+f"+

+ (1 — ¢+ ¢>g—f§—f) At(n) + {1 + (igi(% >¢] Mf 2+
7f of

(123¢? + 7.3¢ + 1)Da~1f ' = 0, for yAloO3 — HoO
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(3066° — 0199+ 1)f "+ (1= 6+ 62 ) (ff "+ f )+
(1—¢+¢&ﬁi) M(n) + |1+ (51
" (2)- (1)

(306¢% — 0.19¢ 4+ 1)Da~1f ' = 0, for yAly03 — CoHgOs

Mf 24 (4.18)

(((4.97¢% + 2.72¢ + 1) + Ry)t" (1))

(1- 0+ o) v +

3 Z—S—l ¢
1+ ( ! ) ]Mch’2
(8+2)-(21)s
+(123¢% + 7.3¢ + 1) Ec(f "(n))?
for vAloO3 — H2O

+0° =0 5, (4.19)

((28.905¢% + 2.8273¢ + 1) + Ra)t" (1))

3(22-1)¢
1— (pcp)s \ 1 (”f ) MEct 2
+7° ( ¢+ ¢(pcp)f> tn) + |: * (%}-+2)—(%}-—1)¢ cf =0, for yAlIsO3 — C3HgOo
+ (306¢% — 0.19¢ + 1) Ec(f "(n))?
(4.20)
f(0) =0, f'(0) = Bof "(0) =1 =0, f'(c0) =0, (4.21)
£(0) =0, t(co)—1=0, (4.22)
(Pr); (1 - ¢+¢g—;) (82.1¢% +3.9¢ + 1) (@) /
(12367 + 736 + 1) f(0)+ (1 -9+ ¢@) (Mn)t'(0)=0  (4.23)

(Pr); (1 6 ¢>§;) (254.3¢% — 36+ 1)

(30667 — 0.19 + 1) F(0) + (1 ~¢+¢ EZL) (Mn)t'(0) =0 (4.24)
(Pr)y (1 — ¢+ ¢Z—S> £(0) + (4.97¢ +2.72¢ + 1) '(0) = 0 (4.25)
f
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(Pr)s <1 — ¢+ ¢%> f(0) + (28.905q§2 +2.8273¢ + 1) ¢'(0) = 0 (4.26)
f

where U’ in absence of effective Prandtl number via yAloO5 — HyO and yAlyO5 — CoHgO:

nanofluids is given below

(Pr)y (1-o+ o)
C4.97¢* — 2726+ 1

(4.27)

_ Ps
() (1-0+02)
28.905¢% + 2.8273¢ + 1’

(4.28)

Py, (1 - ¢+¢§—s) (82.1¢% + 3.9 + 1)
U = - : (4.29)
123¢% + 7.36 + 1

P 1— ¢+ ¢L) (25430 — 3¢+ 1
T q;pf)< #-30+1) a0
30642 — 0.19¢ + 1

4.3.1 Skin friction

Mathematically skin friction is

Tw
where (7,,) is defined by
ou

w = —2 — . 4.32
T Mnf|y:0 dy Vo ( )

Putting Egs. (4.32) in Eq. (4.31), we have
1VRe,Cp = — (123¢* + 7.3¢ + 1) £"(0) for vAlL,O3 — H50, (4.33)

L /Re;Cy = — (306¢% — 0.19¢ + 1) f"(0) for yAlyO3 — Cy HOs. '

4.3.2 Heat transfer rate

Mathematically we have
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Tdw

Ny=——dv 4.34
ki (Tw —Two) ( )
where ¢, is expressed as
160*T3\ (0T
G = —kng <1 + ) <—> . (4.35)
3]€]€f 8y y=0
Solving Eq. (4.35) and Eq. (4.34) we have
(Rey) V2 Nu, = [((4.97¢ + 2.72¢ + 1) + Ry)t'(0)] for vAl,O5 — H,0, (436)
(Rey) /2 Nu, = [((28.905¢2 + 2.8273¢ + 1) + Rg)t'(0)] for 7Al,05 — CyHgO;. '
4.4 Entropy modelling
Mathematically entropy of the system obeys
E
Ng = —%, (4.37)
(Eg)o
where ((Ey), (Ey)o) is volumetric and total entropy rates respectively.
ki |kng (OT\?  160*T% (OT\?|  0upB2 o  tny (Ou)?
E, = | & (2 il InfZo 2 tnf (22 L 4.38
TL | Ky <3y> 3Rk, <3y> T T (8.@) (438)
kng (AT)
(Eg)o = T—Qf = (4.39)

The non-dimensional forms of entropy (N¢g) and Bejan number (Be) for both (yAlaO3 — H2O

and yAloO3 — CyHgO2) nanofluids are expressed as follows:

2
Ng = [(4.97¢% + 2.72¢ + 1) + Ra)t2(0)] + [% BrRe f
3(22-1)¢ (4.40)
- ( L ) (M)BLRe f 2, for yAl2O3 — H»0,
ga2)-(2-1)

+ {1+
(
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2
No = [((28.9050° + 282736 + 1) + Ra)t>(0)] + [ioi 0001 _] Be Re f 2

35)_? (1)¢ )¢ (Mn)EERe f 2, for yAlyO3 — CoHgOs. (441)
a+2) (5

+1+(

[((4.97¢%+2.72¢+1)+ Rq)t"2(0)]

2
(49797 +2.726 + 1) + Rt2(0)] + | {2410 L | BrRe f 12

Be =

+ [1+ (Usj—gj%fi(laj) >¢ (M)% Re f 2 ) (4.42)
or of

for vAlsO3 — H20O

[((28.905¢%+2.8273¢+1)+Ra)t"2(0)] )

2_
(2890507 +2.82736 + 1) + Ra)t(0)] + |2t S0t | B Re f 2
3<5?71>¢

1T e e
for "}/AZQO;J, - CQHGOQ )
4.4.1 Dimensionless parameters
(). v (-380). e (). (- 2E)
Ec (: m) , Mn (: m) , Br (: ,{fﬁ) , (3.44)

160* T3 — ev AT
4.5 Discussion

4.5.1 Velocity field

Figs. 4.1(a,b) is described to perceive the impact of (M) on f'(n). Magnetic parameter decays
the velocity due to resistance produced by Lorentz force. Figs. 4.2(a.b) show the impact of f
'(n) with respect to (Dail). Since this parameter is associated with permeability of the medium

so increase in velocity is observed for both (vAloO3 — H2O and yAlaO3 — Co HgO2) nanofluids.
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Comparable result is seen for developed values of slip parameter parameter as revealed in Figs.
4.3(a,b). Impact of (A\) on f ’(n) is shown in Figs. 4.4(a,b). It is noted that f ’(n) is increased
for (A =0.0,0.1,0.2,0.3,0.4) through both (yAlsO3 — H30O and vAlyO3 — CyHgO2) nanofluids.

T ‘ ‘ ‘ ‘ ‘ ‘
osp p

Solid lines;

Dashed lines;

Hfective Prandtl number
Without Effectve Prandtl number

0.6-

0.0F

-0.21

—0.4}

—-0.6 k1

Fig. 4.1(a) : M on f'.

Solidlines;  Fffective Prandtl number
Dashedlines; Without Effectve Prandtl number

0.0F
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Effective Prandtl number
Without Effectve Prandtl number
Da~'=0.8
Da~'=0.6 1
Da~'=0.4
0.6 — Da™'=0.2 1
Da~'=0.0
0.4+ b
0.2F 1
0.0 B
For yAl, O3 —
=02}, ) B
0 1 2 3 4 5 6

A
N N Solidlines;  Effective Prandtl number
\ \\ Dashed lines; Without Effectve Prandtl number
\

~0.5F For Al O — C, H¢ O,
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0.8

Solid lines; Effective Prandtl number
Dashedlines; Without Effectve Prandtl number

— =00
— =01
\ — p=0.2
06w — =03
W — pr=04
W
\
0.4} W
W
\}
02t
For yAl, O; - H, 0
0.0l ‘ ‘ ‘ :
0 1 2 3 4 5
n
. . ,
Fig. 4.3(a) : By on f’.
1.0 : : : : :

0.0

Solidlines;  Effective Prandtl number
Dashed lines; Without Effectve Prandtl number

For yAl, O3 — C; Hs O,

0 1 2 3 4 5

Fig. 4.3(b) : By on f.
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0.8F

0.5F

0.0F

-0.5-

through collision of fluid elements augmented ¢(n).

) Solid lines; Effective Prandtl number
\ Dashedlines; Without Effectve Prandtl number

Fig. 4.4(a) : XA on f'.

Solidlines;  Effective Prandtl number
Dashedlines; Without Effectve Prandtl number

— 2=0.0
— A=0.1
— A=0.2

4.6 Temperature field
Figs. 4.5(a,b) plots the temperature ¢(n) for magnetic parameter (M = 0.0,0.2,0.6,0.8,1.0)

through both (yAlsO3 — H30 and yAl3O3 — CyHgO3) nanofluids. Lorentz force consequences

(Rq = 0.0,0.1,0.2,0.3,0.4) always enhances t(n) of the system due to provision of more heat.
Influence of ¢(n) through (Pr =0.1,0.2,0.3,0.4,0.5) is plotted via Figs. 4.7(a,b). Increase in
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It is also shown via Fig . 4.6(a,b) that



temperature distribution for vAloO3 — H0 is noted when compared with vAloO3 — Co HgOs.

It due the lower thermal conductivity of ethylene glycol than water.

1.0
0.8 g
— M=0.0
oer — M=02 ]
- — M=0.6
— M=0.8
0.4+ b
— M=1.0
0.2} Solidlines;  Effective Prandtl number 4
Dashed lines; Without Effectve Prandtl number
For yAl, O3 - H, O
0.0k 1 1 L . s
0 1 2 3 4 5 6
n
Fig. 4.5(a) : M on t
2.0 7= N T T T T T T
{
JjroN N
NN
N NN
0y _ A
O

— M=0.2
— M=0.6
— M=0.8 ]

0.5F
— M=10 For yAl, O; — C, Hg O,

Solid lines;  Effective Prandtl number
Dashed lines; Without Effectve Prandtl number

0 1 2 3 4 5 6
n

0.0

Fig. 4.5(b) : M on t.
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0.8

0.6

0.4

0.2

0.0

0.8

0.6

0.4

0.2

0.0

Solidlines;  Effective Prandtl number
Dashedlines; Without Effectve Prandtl number

For yAl, O3 - H, O

0 1 2 3 4 5 6

— Ry=0.0
— Ry=0.1
— Rg=02
— Ry=03
~ Ry=04

Solidlines;  Effective Prandtl number
Dashed lines; Without Effectve Prandtl number

For yAl, O3 — C; Hg O,

Fig. 4.6(b) : R4 on t.
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0.8

0.6 4
had Pr=0.1
— Pr=0.2

0.4r — Pr=0.3 1
— Pr=0.4
— Pr=0.5

0.2 l!//,r" B

Solidlines;  Effective Prandtl number
Dashed lines; Without Effectve Prandtl number

For yAl, O3 — H, O

0.0k

1.0F 1
0.8 B
0.6 B
0.4 4
0.2F Solid lines;  Effective Prandtl number 1
Dashed lines; Without Effectve Prandtl number
For yAl, O — C; Hg O,

0.0

0 1 2 3 4 5 6
n

Fig. 4.7(b) : Pr on t.
4.7 Entropy and Bejan number

Entropy rate (Ng(n)) through (M = 0.1,0.2,0.3,0.4,0.5) is given in Figs. 4.8(a,b). Lorentz
force causes extra disturbance inside the system growing the entropy of the entire structure.
Thermal entropy is less than total entropy which consequences a reduction in Bejan number
as shown in Figs. 4.9(a,b) for both (yAl2O3 — H20 and yAl3O3 — CoHgO2) nanofluids. The
performances of Ng(n) as well as (Be) with respect to (Re = 0.1,0.2,0.3,0.4,0.5) are shown in
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Figs. 4.10(a,b) and 4.11(a,b). Growing estimation of (Re = 0.1,0.2,0.3,0.4,0.5) inclines for

increasing Ng(n) through Fig . 4.10(a,b). However reverse trend is perceived in case of (Be)

for both (vAl2O3 — H2O and yAloO3 — CyHgO2) nanofluids.

Solidlines;  Effective Prandtl number
Dashed lines; Without Effectve Prandtl number

0.5r

0.2r

0.1p

For yAl, O; - H, O
0.0L . .

0 1 2 3 4 5 6
n
Fig. 4.8(a) : M on Ng.
355 1
1
\
ol \\ Solid lines;  Effective Prandtl number 1
’ ‘ Dashedlines; Without Effectve Prandtl number

For yAl, O; — C, H O,

T
I
I
I
I
|
1
I
I
1
I
I

2.5}
— MO
— M=02
2.0} i
o — ME03 J
= !
— M=04 L
15] — M=05 | / 1

0.5

0.0~

Fig. 4.8(b) : M on Ng.
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0.8
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0.4

0.2

0.0

0.8

0.6

0.4

0.2

0.0

Solidlines;  Effective Prandtl number
Dashedlines; Without Effectve Prandtl number

For yAl, O3 - H, O

s

M=0.1 ;2\ 1
- \ )
M=02
A\

M=03 N
M=0.4 N
M=05

0.0

0.5 1.0 1.5 2.0 2.5 3.0
n

Fig. 4.9(a) : M on Be.

Solidlines;  Effective Prandtl number
Dashedlines; Without Effectve Prandtl number

For yAl, Oy — C, Hg O,

N )
M=0.1 ;g§ N
- NN
M=0.2 A
M=0.3 N
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0.5 1.0 1.5 2.0 2.5 3.0
n

Fig. 4.9(b) : M on Be.

7



Ng

Ng

0.5

0.4

0.3

0.2

0.1

0.0

0.5

0.0

Solidlines;  Fffective Prandtl number

\\ Dashed lines; Without Effectve Prandtl number
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Fig. 4.10(a) : Re on Ng.
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o4l — Re= So T \‘_ -~

— Re=0.2 T~
— Re=0.3 o7
— Re=0.4
o2l — Re=0.5
For yAl, O3 - H, O
Solidlines;  Effective Prandtl number
Dashedlines; Without Effectve Prandtl number
0.0 . . . . . .
0.0 0.5 1.0 1.5 2.0 2.5 3.0

n

Fig. 4.11(a) : Re on Be.

For yAl, O3 — C; Hg O,

0.8~ =

0.6

Be

0.4

0.2F

Solid lines;  Effective Prandtlnumber
Dashedlines; Without Effectve Prandtl number

0.0 . . . . .
0.0 0.5 1.0 1.5 2.0 2.5 3.0

n

Fig. 4.11(b):Re on Be.
4.8 Skin friction and Nusselt number

Tables 4.2 and 4.3 show the influences of (M) and (Da™') on (Cy). For (M =0.0,0.1,0.2)
and (Da~! = 0.0,0.1,0.2), skin friction reduces for both vAlsO3 — HyO and yAl303 — CoHgOo
nanofluids. Table 4.4 and 4.5 present the behaviors of (M), (Mn) and (R;) on Nusselt number
for both vAloO3 — H20 and yAloO3 — Co HgO2 nanofluids. Nusselt number increases for higher
values of (M = 0.0,0.1,0.2), (Mn = 0.1,0.2,0.3) and (Rq = 0.1,0.2,0.3).
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Table 4.2

v Dat Skin friction Cy(Re;)™%°
(vAl203 — H20)

With effective Prandtl number || Without effective Prandtl number
1.208 1.458

0.0
1.193 1.434

0.1
1.178 1411

0.2
0.0 1.260 1.521
0.1 1.115 1.337
0.2 0.945 1.127

Table 4.3
Skin friction C¢(Reg)0?
M | Da™! s(Res)
(’yAlgOg — CQHGOQ)

With effective Prandtl number || Without effective Prandtl number
1.878 1.866

0.0
1.874 1.862

0.1
1.874 1.862

0.2
0.0 1.648 1.633
0.1 1.290 1.277
0.2 0.848 0.829
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Table 4.4

Nusselt number Nu,(Re;) %5
M Mn Ry
(vAloO3 — H20)
With effective Prandtl number || Without effective Prandtl number
1.471 1.214
0.0
1.512 1.247
0.1
1.555 1.282
0.2
1.552 1.299
0.1
1.603 1.320
0.3
1.672 1.361
0.5
0.1 1.603 1.320
0.2 1.625 1.343
0.3 1.647 1.365
Table 4.5
Nusselt number Nu,(Re,) %5
M Mn Ry
(’yAlgOg — CgHﬁOg)
With effective Prandtl number | Without effective Prandtl number
1.618 1.315
0.0
1.683 1.366
0.1
1.756 1.422
0.2
1.791 1.449
0.1
1.840 1.487
0.3
1.904 1.539
0.5
0.1 1.777 1.426
0.2 1.798 1.447
0.3 1.819 1.467
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4.9 Final points
Major finding are given below.

e Velocity discriminant is absorbed for larger (M) as well as (,) for both (yAlaO3 — H20)
and (yAleO3 — C2HgO2) nanofluids.

Temperature is growing for larger magnetic and radiation parameters.

Entropy enhances for (Re = 0.1,0.2,0.3,0.4,0.5) but reverse behavior is seen for (Be).

(C) reduces for higher (Da™1).

o (Nu) increases for larger (Mn) and (Ry).
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Chapter 5

Thermal radiation and heat
source/sink impacts in stagnation

point flow of viscous nanomaterial

This chapter addresses the significances of stagnation point flow of nanomaterial towards non-linear
stretching surface. Stretching surface of variable thickness is considered. Thermophoresis and Brownian
movement impacts are accounted. Radiative heat and convective conditions are also analyzed. Inclined
magnetic field is taken. Homotopy analysis method is employed to find the serious solution. Impacts of

numerous physical variables are graphically discussed. Closing remarks are presented.

5.1 Modelling

We study MHD two-dimensional (2D) flow of viscous fluid past a stretching surface with velocity
(uy = a(x 4+ b)"™) where a and b denote positive constants. Stretching sheet is along (z — azxiz)
while (y — aziz) is normal to the sheet. Applied magnetic field is taken inclined. Induced

magnetic field for small magnetic Reynolds number is ommitted. The related problems are

ou Ov
Lo 1
5 T 9 0, (5.1)
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ou ou oU, d%u

0 p2.: 2

L g .- g 2
u8x+v8y U 8x+pBosm o(U. u)+1/8y2 (5.2)

or  oT 9*T <aT ac) Dr (0T>2 1 93¢  Qz)(T —Tx)
u—+v—=a"—+7Dp|—— |+7— | =— | — — +=——————— (5.3
dr Oy dy? B\ oy ay T \ Oy (pep) s Oy (pc)y (53)

oc  oC 0*C Dy (0T

v KO -0 =D (22 ) + 22 (2= ), 5.4
u8x+v8y+ (C - Cx) B<6y2>+Too<8y2> (5.4)
or oC  DpdT 1-n

- — )n — _— = —_ —_— _— = = b*
u=Uy, () =alz+b")", ky 2y hf(Tf T) Dp oy + T 0y Oaty=A(x+0b")2 ,
(5.5
u— Ueg(x) =blx +b")", T — T, C — Cs when y — oc. (5.6)

The following transformation are used to reduce Egs. [5.2 — 5.6] into dimensionless expres-

sion;

¢ = \/n ;‘ 1%(13 + b )Ly, 4p = \/2 (n+ 1)*1 va(x + b*)"+1F((), (5.7)
u = a<37 + b*)nF,(C), V= —\/n;_ 1UCL($ + b*)n—l[F(C) 4 gz—; 1F1(C)]7

T T Coo

7o PV oo %)

0 (<)

The incompressibility condition (5.1) is trivially satisfied whereas Egs. [(5.2 — 5.6)] take follow-

ing forms

2
n+1

2n

F///+FF//_(
n+1

V% 4 ( )M s M *sin?0(F' — S) + ( 2n ) S? =0, (5.9)

n+1

<1 + %Rd> [(1+ (0, —1)0)30) + Pr FO' + Pr Ng0'®' + Pr Ny (0')% + (niﬂ) PréO =0,
(5.10)

N
)Scy,® + (—t> 0" =0, (5.11)

@// F@l _
+ Sc ( b

n+1

84



F(a) =((55), F' (@) =1, 0 (a) =7,(1 - 6 (), NbP' + Nt =0, (5.12)
F(00) = A, O(c0) = 1, (c0) = 0. '

Here o = A ”H 4, represents surface thickness parameter and ( = o = (A4 "“ %) the plate

surface. We define Q) — (C—a) — F(1)  OC) — t(¢—a) — t{n) and B(C)  J(c —a) — T(n)
therefore governing Eqs. (5.9 — 5.12) yield

n " 2n 12 2n 2
P E = ) —)sf =0 (G13)

1 n+1)M*M*§1n O(f —S) +(

<1 + %Rd> [(1+ (0, — 1)t)3') + Pr Nbt'J' + (niﬂ) Prét + Pr ft' + PrNt(t)? =0, (5.14)

" / 2 Np "
(= —_— = 1
J"+ ScfJ (n+1)50’70j+ Ny " =0, (5.15)
£(O) = alk54), J(0) =1, #(0) = =5(1 = £ (0)). NaJ'+ Nrt' =0, 510
f'(00) =8, t(c0) =1, J(c0) = 0.
5.2 Engineering curiosity
Skin friction and heat transfer rate (N,) are
Cf:T_w N, :M. (5.17)
puz,/2’ k(T — Teo)
Finally
1
Cr(Rey)? =24/ "= "(0), (5.18)
Nu n+1 3 .
= - 1 R 14+ (6y t(0))°]t'(0). 5.19
—- 7 (1 3R [0+ @0 = OO (519)
5.2.1 Dimensionless parameter
7D
Pr—% Np=IPols N — /2By Np= e
g 3 | 4
Rd:%—kn%a Loy, =k Se= &, . (5.20)
Op = AL, yy=——T1 _ Re, = oztt)
T 2 R v
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5.3 Methodology

We employed homotopic procedure to solve these Egs. suggested by Liao [92]. The initial

guesses and operators ((fo, to, Jo), (Lf, Lt, L)) for the dimensionless equations are

to(n) = (((11—?2)) * e’") : (5.21)
_ (—(RE)#n)
Jo(n) = ((1+72)) xe B )
with
Ly=(f"—=f"), Le=({t"—1t), Ly=(J"-1), (5.22)

5.3.1 Convergence analysis

The auxiliary parameters hig, iy and Iy have key role in convergence analysis. Ultimate the
values of assisting parameters for convergence are in the ranges —2.2 < hy < 0.8, —=2.0 < iy <
—1.3 and —2.2<hy < —1.5.

Table (5.1): Convergence of series solutions when o = 0.1 = ~,, n = 0.5, Pr = 1.0,
M=+~,=02 Ng=02 Nr =03, R=03,0,=11,6=020=2 5 =01and Sc = 1.
From table it is noted that 28" order of approximations is suitable for the convergence of
function f”(0) while 24" and 20" order of approximations are sufficient for the convergence of

t'(0) and J'(0).
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Order of approximation || —f”(0) || —t'(0) || J'(0)
1 0.8785 | 0.08708 | 0.05805
3 0.8753 | 0.08397 | 0.05598
8 0.8588 | 0.08045 | 0.05364
10 0.8493 | 0.07964 | 0.05309
15 0.8386 | 0.07851 | 0.05235
16 0.8365 | 0.07842 | 0.05230
20 0.8354 | 0.07815 | 0.05224
24 0.8341 | 0.07810 | 0.05224
28 0.8338 | 0.07810 | 0.05224
32 0.8338 | 0.07810 | 0.05224

5.4 QOutcomes

Here we take n = 0.5, « =04, Pr =12, S =0.1= Ry, M = 0.2 = ~,, 6, = 1.1, Ny = 0.5,
Np =0.5,0=0.4and v, =0.2.

Velocity profile: Fig. (5.1) is drawn for larger magnetic (M = 0.0,0.5,1.0,1.5,2.0) pa-
rameter on velocity profile (f’(n)). Here we observed that (f’(n)) decays against (M =
0.0,0.5,1.0,1.5,2.0). Fig. (5.2) demonstrated the features of (o = 0.0, 1.0, 2.0, 3.0,4.0) on f'(n).
Velocity declines against (o = 0.0, 1.0, 2.0, 3.0, 4.0). Physically when we boost the values of («),
more instabilities arised in the material medium which produces resistance to the material
properties. Therefore velocity declines. Fig. (5.3) is proposed to deliberate the impact of
(S =1.0,1.5,2.0,2.5,3.0) on f’(n). Here f’(n) boosts against (S = 1.0,1.5,2.0,2.5,3.0). Fig.
(5.4) describes the variation of (n = 0.0,0.1,0.2,0.3,0.4) on f’(n). Clearly f'(n) boosts against
larger (n = 0.0,0.1,0.2,0.3,0.4).
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Fig. 5.1: M on f’.

Fig. 5.2:a on f’.
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Fig. 5.3: S on f’.

Fig. 5.4 :n on f.

Temperature distribution: Fig. (5.5) is sketched the relevant features of (Pr) on (¢(n)).
For rising approximations of (Pr = 1.3,1.5,1.7,1.9,2.1) thermal diffusion rate declines and as
a result thermal field reduces. Fig. (5.6) is depicted to deliberate the performance of (6,,) on
(t(n)). Here (t(n)) is increased via (6,,). Since larger ratio variable (6,, = 1.1,2.0, 3.0, 4.0, 5.0)
give more heat to the system. As a result the thermal field boosts. Outcomes of (Ry) on

(t(n)) is depicted in Fig. (5.7). Since internal energy of system enhances for larger radiative
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variable. Therefore the temperature of entire system enhances. Fig. (5.8) shows the influence
of (6) on (t(n)). It is perceived that an increment in (§ = 0.0,0.3,0.6,0.9,1.2) corresponds
to improve the fluid temperature. Physically more heat is produced through larger (). Fig.

(5.9) is described to explore the features of (v4) on (¢(n)). Here (t(n)) boosts against larger
(7o = 1.1,1.3,1.5,1.7, 1.9).

Fig. 5.6 : 6, on t.
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Fig. 5.8 : 4 on t.
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Fig. 5.9 : 75 on t.

Concentration profile: Figs. (5.10) and (5.11) represented the behaviors of (N7 = 0.0,0.1,0.2,0.3,0.4)
and (Np = 0.5,0.7,0.9,1.1,1.3) on concentration (J(n)). Here distinct impression is perceived
for (J(n)) against larger (Np) and (N7). Fig. (5.12) is designated for (Sc¢) on (J(n)). For
larger (Sc=0.0,0.2,0.4,0.6,0.8), molecular diffusion rate reduces. That is why concentration
enhances. Characteristic of () on (J(n)) is emphasized in Fig. (5.13). Here both concentration

field and associated layer thickness upsurge versus higher ().

0.00r

-0.02}

—-0.04;

—-0.06;

-

-0.08r

-0.10r

-0.12;

Fig. 5.10 : Ny on J.
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Fig. 5.11: Ng on J.

Fig. 5.12: Sc on J.
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—10¢
— ')/0=0-0
7 — yo=0.4
— v0=0.8

=30t
— vo=1.2
a0l — 70o=1.6

Fig. 513 : v, on J.
5.5 Engineering quantities

Table. (5.2) shows numerical values of skin friction (C) against (M = 0.0,0.1,0.2), (o = 0.0,0.1,0.2)
and (n =0.0,0.5,1.5). Here (Cf) enhances via (M), (o) and (n). Table. (5.3) characterizes
(Nu) for larger (6, =1.2,1.4,1.6), (Rg=0.1,0.2,0.3), (v, =0.1,0.3,0.5), (Pr = 1.0, 1.5,2.0)
and (6 = 0.0,0.1,0.2). Clearly heat transfer rate enhances for larger (6,,), (Rq) and (7,) and
it reduces via (Pr) and (9).

Table 5.2: Influence of («), (S), (M) and (n) on (Cf).
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o S M| n VvV Re,Cy
0.0 0.7521

0.1 0.7608

0.2 0.7695

0.0 0.8285

0.2 0.7851

0.4 0.5666

0.0 0.7469

0.1 0.7504

0.2 0.7695

0.0 | 0.5172

0.5 | 0.7608

1.0 | 0.9520

Table 5.2: Influence of (Pr), (0y), (R4), () and (75) on heat transfer rate
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Pr| 0y || Rqg| 6 Yo || —Nuv/Rey
1.0 0.1535
1.5 0.1528

2.0 0.1520

1.2 0.1638

14 0.1866

1.6 0.2115

0.1 0.1532

0.2 0.1628
0.3 0.1723
0.0 0.1578
0.1 0.1566
0.2 0.1555
0.1 | 0.0842

0.3 ] 0.2101

0.5 ] 0.2971

5.6 Final remarks
Key observations include the following points.

e Velocity enhances against higher (n) and (95).

There is decay in velocity versus (M) and (n).

Thermal field decays via (Pr) and opposite result is seen for higher (Ry), (0) and (0,,) .

Concentration improves versus higher (Sc) and (v,) but it reduces for (Nr).

Skin friction coefficient enhances for higher («) and (S).
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Chapter 6

Computational analysis of 3D
radiative Darcy-Forchheimer flow

subject to suction/injection

This chapter elaborates the three-dimensional (3D) radiative flow over non-linear stretched surface.
Porous medium is taken into account. Porous medium is characterized by Darcy-Forchheimer relation.
Radiation, convective condition and slip effect are addressed. Stagnation point flow is examined. Non-
linear ordinary differential system are solved through shooting method. Graphical results are portrayed
and scrutinized with distinct values of dimensionless variables. Drag force and Nusselt number are

computed and evaluated through Tables.

6.1 Mathematical description

We consider (3D) stagnation point Darcy- Forchheimer flow subject to permeable stretched
surface. The (z,y) axes are chosen parallel to stretched sheet and (z — axis) normal to flow.
Let (vy) is shrinking/stretching velocity, (wy(z,y)) the mass flux velocity and T, (z,y) the
surface temperature. The boundary layer equations and corresponding boundary condition are

[89 — 91]
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ou Ov Ow

%—Fa—yﬁ-gzoy (6.1)
ou ou ou oU, 9%u v Cp .2
ua—$+v8—y—w$— ea—+ 02 2+961(T T ) k*u— k;* }, (62)
ov ov v v v Cp 9
u8_+v8_y_waz_1j@_§u_x k*u}, (6.3)
or — or T 160*T3\ 9*T
<u%+va—y+w§> = (kf—i- 3E] ) @, (64)
u =0, 'U:Uw—i-ﬁl%, W = Wy,
—k%—z :hf(Tf—T) at z =0, . (6.5)
U=1uU, v—0, T —Ty at z— 00,
We set the quantities as follows.
vy = bz +y)", wy = — aus(”“)(x—ky) 51, ue = alx + y)" (6.6)
A1 = /2@ +9) T Ao, Ty = Too + Tola + )2~ | |
Letting
=a(z+y)"f'(n), v=alz+y)"h (), w=-2nf(n),
n—1 n— N
w=—avs(z+y)z (&) (f+h)+ (%1) (F +1)] t=FT n=[E@+yTz
(6.7)

The continuity equation is trivially satisfied while momentum, energy and corresponding

boundary conditions take the following forms

i <n‘2i_1) [f+h]fl/_n[f’+h’]f’+n+)\t+ [Da_l —/Bf,]f, :0}> (6.8)

B 4 <n—2i_ 1) [f + h]h" —n[f +N]h - [Da_l — BI ) = 0} ) (6.9)

<1+2Rd> t" 4+ Pr [ [f+h] (2n—1)(f/+h')t} :0}, (6.10)
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£0)=0, f(1)=0, f(0)=0, f(c0)=1
h(0) = V,, h'(0) =&+ Byh"(0), h'(c0) =0 - (6.11)
t'(0) = =21 —t(0)], t'(00) =0

6.1.1 Drag force

The drag force coefficients (Cy) are defined below i.e

Cp = (%) . (6.12)
pf (Uw) 2=0

C%Z(TW> . (6.13)
pf(““’)z 2=0

The nondimensional form of skin friction coeflicients are

VRe,Cry = f7(0). (6.14)
v/Re,Cr, = 1"(0). (6.15)
6.1.2 Nusselt number
Magnitude of heat transfer rate is
(@ + ¥)qw
N =|—. 6.16
o (kf (Tw — Two) (636)
Nondimensional form gives
Nuyg 4 ,
=—|14+=Rq |t (0 6.17
R~ (1m0 617

where Re, (: W) and Re, (z M) denote the local Reynold number along x .and

vy

y__ directions respectively.
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6.1.3 Dimensionless parameters

Do~} (= ), Ra(=2552), B(= F(z +y))
,.}/2 — k\/_ A= 951To)’ Pr = (“TCP) . (618)

6.2 Results and discussion

6.2.1 Velocity profile

Figs. [6.1 — 6.4] describe the outcomes of suction (V, > 0) and injection parameters (V, < 0)
on both velocities ((f'(n)) and h'(n))). In suction case (V, > 0) both velocities (f'(n)) and
R'(n)) develop whereas inverse behavior is apparent for injection case (V, < 0). In fact for
suction variable the liquid film thickness declines on the extended sheet. Due to this inadequate
quantity of liquid moving faster past the stretching sheet. In case of injection (V, < 0) constant
development of fluid mass decelerates the motion of liquid film. Figs. (6.5) and (6.6) reveal the
features of (3) on (f'(n)) and h'(n)). Clearly the velocities (f'(n)) and h'(n)) reduce for larger
values of (8 =0.0,0.1,0.2,0.3,0.4). Because resistive forces enhance in fluid movement in the
presence of permeable medium. Therefore both velocities (f'(n)) and h'(n)) reduce. Similar
result has been seen for (Da™! == 0.0,0.1,0.2,0.3,0.4) on velocities (f'(n)) and h/(n)) see Figs.
(6.7) and (6.8) . Figs. (6.9) and (6.10) show the behavior of (¢) on (f'(n)) and h'(n)). Fluid
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velocity (f'(n)) and h'(n)) enhances for higher values of (¢ = 0.0,0.1,0.2,0.3,0.4)

1O

0.8

0.6

0.41

02F |

0.0

Fig. 6.1: (V, > 0) on f".

— Vp=0.0
— Vp=0.3
— Vp=0.6
— Vp=0.9
—— Vp=1.2

Fig. 6.2: (V, > 0) on A/,
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— Vp=-0.0
— Vp=-0.3
— Vp=-0.6
— Vp=-0.9
— Vp=-12

Fig. 6.4: (V, <0) on A'.
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0.05

0.04

0.03

0.02

0.01

0.00

-0.01

Fig. 6.6 : S on 1.
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Fig. 6.8 : Da~! on A’
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Fig. 6.9: € on [

0.35F
— e=0.0
— e=0.1

0.30F
— e=0.2
— e=0.3

0.25F e=0.4

0.20F

=

0.15F

0.10F

0.05

0.00-+ L

0 1 2 3 4 5 6

Fig. 6.10: € on .
6.2.2 Temperature

Figs. (6.11) and (6.12) explain temperature (¢(n)) against suction (V,, > 0)/injection (V, < 0)
variable. When (V, > 0) then (¢(n)) rises but converse behavior is seen for (V, < 0). Fig. (6.13)

shows that an increase in (Ry) leads to enhance (¢(n)). Due to improvement in radiation more

105



heat is discharged by the liquid that leads to boost the thermal field. Features of (v,) on ¢(n) is
explained in Fig. (6.14) . For rising estimations of (5 = 0.0,0.2,0.4,0.6,0.8) rate of convective
heat transport enhances. It leads to an enhancement of ¢(n). Fig. (6.15) describes effect of
(Pr) on t(n). Higher values of (Pr =1.0,1.1,1.2,1.3,1.4) results in decays of temperature. Fig.
(6.16) shows the impact of (A = 0.0,1.0,2.0,3.0,4.0) on ¢(n). Temperature decreases via ().
As expected the cooling effects increases when (A = 0.0, 1.0,2.0,3.0,4.0) enhances and hence

temperature reduces.

3.0F

— Vp=0.0

Fig. 6.11: (V, > 0) on t.

— Vp=0.0

— Vp=-0.3
— Vp=-0.6
— Vp=-0.9
20l Vo=-12

Fig. 6.12: (V, < 0) on t.
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0.5

Fig. 6.14 : vy on t.
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Fig. 6.15: Pr on ¢.

Fig. 6.16 : A on t.

6.2.3 Analysis of engineering quantities

Table (6.1) is for impact drag force coefficient ((Re,)"” C 2 and (Re,)™® C ty) against varying
(B), (Da™t), (V,>0), (V, <0) and (X). It is noticed that (Rey)"? Cy, and (Rey)"? Cyy
enhance for larger (8), (Da™'), (V, > 0), and ()) but it decreases for (V, < 0). Table (6.2)
demonstrates numerical values of Nusselt number via (Rg4, Pr v, and V;). It has been observed

that (— (Re;) " Nu,) increases for larger (Rq 75 and V,) but opposite behavior is seen for

(Pr =15, 2.0, 2.5)
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Table 6.1

Bl Dat | Vo0l Vo<O0| X || (Ren)®®Cfs || (Rer) Oy
0.0 0.59711 0.04711
0.1 0.65634 0.55861
0.2 0.76648 0.55870
0.0 0.467954 0.16205
0.1 0.55073 0.16591
0.2 0.66817 0.16807
0.0 0.42298 0.33105
0.3 0.54724 0.34001
0.6 0.67533 0.35428
-0.1 0.36358 0.31633
0.2 0.29043 0.30129
-0.3 0.18129 0.28490
0.0 0.27428 0.16807
0.1 0.37041 0.17036
0.2 0.46795 0.18549
Table 6.2
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Ryl Pril v || Vo | —(Rex) ®® Nu,

0.0 0.12117

0.1 0.15697

0.2 0.23068

1.5 0.09221

2.0 0.06391

2.5 0.05776

0.0 0.04037

0.1 0.11968

0.2 0.44349

0.3 0.18016

0.6 0.30414

0.9 0.39672

6.2.4 Concluding remarks

The key finding of this chapter are listed below.

e Both velocities (f/()) and h/(n)) are decreasing functions of (Da™') and ().

For suction case (f'(n) and h'(n)) enhance and for injection case both (f/(n)) and h'(n))

are reduced.

Larger values of (R;) and (y,) lead to temperature enhancement.

Drag force reduces via injection parameter.

Nusselt number enhances for larger (Ry).

110



Chapter 7

Utilization of entire modern aspect
of Cattaneo-Christov model in
mixed convective entropy optimized

flow by Riga wall

Present chapter investigates the steady mixed convective nanoliquid flow due to a stretchable Riga wall.
Porous medium is considered. stagnation point flow is addressed. Brownian motion and thermophoresis
are adopted. Cattaneo-Christove model for heat and mass fluxes are used to examine the heat and
mass transfer. Entropy generation is modeled. Convective condition of heat transfer is addressed. Zero
mass flux condition is imposed. Suitable transformation are employed to model the relevant ordinary
differential systems. The governing systems are solved by ND solve technique. The impacts of sundry

parameters are graphically examined.

7.1 Modeling

We discuss MHD two-dimensional (2D) flow of viscous liquid over a stretchable Riga wall.
Heat and mass transfer are examined through Cattaneo-Christov (CC) heat and mass fluxes.

Analysis of entropy production is considered according to the second thermodynamic law. The
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plate is stretching along (z — azis) while (y — azis) is normal to the surface. Here (U, = bx)
ambient fluid velocity. Heat generation/absorption and radiation are also taken into account.

The velocity, temperature and concentration fields are defined as

V = [u(z,y),v(z,y),0], (7.1)
T="T(x,y), (7.2)
C=C(x,y). (7.3)

Heat and mass diffusion equations are

)
A+ 3u(5+V V4= q- TV + (V- V)q) = —kvT. (7.4)
ac
C+dp(5+V-VC-C-VV +(v-V)C) = -DpvC. (7.5)

For incompressible steady flow one has

q+0p(V-vq—q-VV)=—kVT. (7.6)

C+6p(V-vC—-C-VV)=-DpVC. (7.7)

The governing expressions for the problems under consideration are

ou Ov
% + 8_y = 0, (7.8)
ou ou oU. Pu  wJ,Q T ve
Loy e Exp|— = T—Ty) — 25 (u - u), :
uax—i—vay U, P +y8y2 + 5 xp| aly]—i—gﬁt( ) k*(u Ue) } (7.9)
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orT or
'LL% + ’Ua—y

dy By

dy

2
Q p_ [ du 160*T3 92T
pCp (T a TOO) + pCp <8_y> T Bpepkt 9y?
oC oC 0?°C  Dr0*T
—_— —=-V(C+Dgp—5+——=
u8x+v(9y V.o Bay2+Tw6y2}

2
=-V.q+T [DB“@T + L (8—T) ] +

Eliminating ¢ and C from equations (7.6,7.10) and (7.7,7.11) we get

oT oT 92T oC oT D aT
“%“a—y”EQE:%—yHT[DBa—ya—ﬁﬁ( )

%y

2
Q Ou 160*T3 92T
+pCp (T o TOO) + pgp (8y) © 3pcpk* 0y?
oC oC 0*’C  Dr 0T
% 0 s = Dl L BT
u8x+vﬁy+ FRoE B oy2 Too8y2}

In the above equations 2 and Qp are

QE — ,,9udrl ou OT

dy 0y?

ov OT ou OT

wQudL 4 QudT | g 0vIT | 0udl | 9, O°T
or Ox oy dy oxr dy Oy Oz

Q (0L 4 0T _ s
~ Cp (u ozx + U@y) pChp (QU

ou 9%u

2 2 2
—7Dg (va_TaoJrU@aTJruacaT

zDr (, 0T 9T
+2 T <v

2
Qp =u?8 G +ufedl

v 9C
’Ua—ya—y — DB <U

T 92T 92T
Oy Oy? + u%_y(98m8y> + Ry <u

Jy 0y?

oxdy

ov 9C
X

O0xdy Ox

The subjected boundary conditions satisfy

u=Uy=az, v=0, kg =hg(Ty=T), Dp3s + Dr;

u = U, = bz,

The suitable transformations are

u=azxf'(n), v=—vavrf(n),

T — T,

Dy 0x0y +2v

0x0y Oy tu

20T

8y8x+u W—i_v

du 9%u
Jy dy?

ac 82T )

Oy 0x0y

92T
+ VT )

oy Ox

0x0y?

C — Cx at y — o0,

,_T-Tw ,_ C-Cx _
T Te-Tw U Co-Cx T
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20%T
Oy?

0°C oT u 9C 20%C
m,ax—i-ua—%—i-%w +v5-F5- 4+ v 8—y2+

e 2*c\ _ Dy (, 9°T 03T
Oz0y? +v 03 | Teo v Oy3 +u

=0aty=0,

(7.10)

(7.11)

(7.12)

(7.13)

(7.14)

(7.15)

(7.16)

(7.17)



The non-dimensional form of governing equations are as follows.

f///+f// o f/2 +52 +MExp[—B77] _’_)\t_i_Daflf/ — 0}7

(14 R)" 4+ Pr ft' + Proy (ff'V + f21" — 5ft' — 2f f'1")+
Proy Ecf'f'f" = fff") = (Pr) (v1) (NB) (f'J" = fJ'T)
—Pr(yy) (N) J"t' — Pry,Rqft" + Ngt'J' + Nyt'? + Pr Ecf" + Prét] = 0,

N, N
J"+LefJ'+—Bt"—Levg[f2J"+ff'J']—73—Bt"=() :
Nt Nt

f0)=0, f(0) =1, f(0) =S
t'(0) = —72(1 — £(0)), t(c0) =0,
Ngt'(0) + N J'(0) = 0, J(c0) =

7.2 Entropy generation rate

Entropy generation rate here is given by

N/// o k orT 2 + 160* orT 2 + 1% ou 2
ger 12\ dy T2 \ Oy T \ Oy
e e’
Heat Transfer irreversibility Fluid friction irreversibility
LBp (9T0C\  Rp (9C° ’

~
Mass transfer irreversibility

\

Characteristic entropy rate is defined as follows

" k(vT)2
No =T

Using transformations the non-dimensional form of entropy generation satisfies

1"

N, Re Br
N = —2% — Re(1 2 ——
G N(')" Re(1 + Rg)t™“ + Q

f//z + Re;;'Mt/J/ + Re X’Y4J/2‘
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Bejan number satisfies

Re(1 4 Rg)t”? + 225044 J" + Re xy,J"

B. = ’
© Re(l+ Ra)t? + ReBrprz 4 ReXay ji 4 Re vy,

7.3 Skin friction coefficient

Drag force coefficient (Cy) is defined below as

T
Cfx = - )
(pf (Uw)2>

and non-dimensional form of skin friction is

VRe,Cpp = f”(O),

7.3.1 Dimensionless parameters

M(: “g;;‘ﬁ“), Da™! (= %), A<: M) B(

I
213
ISENN
N———
wn
I

Y1 (=adg), v, (: %) , Y3 (=adp), v4= (g_f;) . Np <: TDp C;U—Coo)> :

Np (= 2 t=)) | Be (= gy ) Le (= 25) 0 0 (= 7%

re(- ) (o= (88)). (0 (F9) - (). (52

Table :1. Numerical values of (Cy) for (Da™'), (\) and (M).

Da=' || M || A || VReCy,
0.5 |02 |0.40.36808
0.6 0.29513
0.7 0.21928
0.3 | 0.01 | 0.4 |0.79609
0.02 0.78710

0.03 0.77817

03 |02 |0.2]0.58065
0.3 | 0.52983

0.4 | 0.47967
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7.4 Outcomes

In this section, the effect of various physical variables on f'(n), ¢(n), J(n), Ng and Be are
discussed. The values are selected as follows: S = 0.1, M = 0.2, EFc = 0.6, Pr =1.2, Sc = 1.0,
Re = 0.1, & =02, T =02, E=0.1, Br = 0.1, Q2 = 0.4, N; = 0.5, Ng = 1.0, Ry = 0.2 and x
= 0.5.

7.5 Velocity profile

Fig. (7.1) shows the development of (M) on velocity. For larger (M = 0.0,0.1,0.2,0.3,0.4)
the f’(n) enhances. In fact Lorentz force produces due to applied magnetic field. Fig. (7.2)
demonstrates the impact of (ﬁ) on f'(n). Velocity is reduced for larger (ﬁ) Here the
resistive force in the permeable medium enhances during fluid motion. Thus velocity decays
rapidly. Influence of (\) on f’(n) is depicted in Fig. (7.3). For (A = 0.0,0.2,0.4,0.6,0.8) the
f'(n) enhances. In fact higher ()\) correspond to decrease of viscous forces and so velocity
enhances. Fig. 7.4 illustrates that for larger (S) the velocity increases. Physically higher values

of (S) convince a supporting ambient velocity that often tends to increase velocity.

0.40
0.35

A, 0.30
0.25

0

20
L0 12 14 14 18 20
i

— M=0.0
— M=0.1
— M=0.2
— M=0.3
M=0.4

Fig. 7.1: M on f’.
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— A=0.8
0.0
0 1 2 4

Fig. 7.3: A on f’.
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Fig. 7.4: S on f'.
7.6 Temperature distribution

Impact of (M) on t(n) is discloses in Fig. (7.5). Clearly ¢(n) has decreasing trend against
(M) . Impact of (y; = 0.0,0.1,0.2,0.3,0.4) on t(n) is depicted in Fig. (7.6). For larger (v;)
fluid particles take extra time for transfer heat from heated region to cold one. Thus ¢(n) is
reduced. Influence of (0) on ¢(n) is inspected in Fig. (7.7). Higher (6 = 0.0,0.1,0.2,0.3,0.4)
yield more heat in the fluid which enhances ¢(n). Fig. (7.8) reveals the impact of (Ec) on
t(n). Physically for higher (Ec) more heat produces in fluid due to high friction forces between
fluid particle. Hence t(n) enhances. Fig. (7.9) demonstrates that temperature enhances for
larger Biot number. Impact of (R;) on ¢(n) is discussed in Fig. (7.10). Obviously ¢(n) is
increased via Ry. Physically working fluid creates more heat which causes in the temperature
rise. Impact of (Ng) on t(n) is presented in Fig. (7.11). Temperature t(n) enhances for
(Np = 1.0,1.1,1.2,1.3,1.4). This is because an uplift in the base fluid thermal conductivity
exists with greater(Np = 1.0,1.1,1.2,1.3,1.4). Therefore boundary layer becomes thicker and

thus rises in temperature ¢(n). Opposite trend is seen for larger values of N (see Fig. 7.12).
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Fig. 7.5: M on t.
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Fig. 7.8 : Econ t.
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Fig. 7.12: Ny on t.

7.7 Concentration

Fig. (7.13) shows that the increasing behavior of (Np = 1.0,1.1,1.2,1.3,1.4) reduces concen-
tration. For higher (Np) the collision between nanoparticles occur fastly in fluid Thus more
heat is emitted and therefore concentration decreases. Fig. (7.14) scrutinized the impact of
(Ny = 0.1,0.2,0.3,0.4,0.5) on J(n). Here thermophoresis parameter is directly related with

temperature gradient. Hence fluid temperature enhances for (N; = 0.1,0.2,0.3,0.4,0.5) so J(n)
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increases.

Fig. 713 : Np on J.

Fig. 7.14: Np on J.

7.8 Entropy (/Ng) and Bejan number (Be)

Impact of (Ng) and (Be) for variation of (Rg) is seen in Figs. [7.15 — 7.16]. A increment in
(Ng) and (Be) is accompanied by varying (Rg = 0.0,0.1,0.2,0.3,0.4). Higher estimation of
(x =0.1,0.2,0.3,0.4,0.5) on (Ng) and (Be) is seen in Figs. [7.17 — 7.18]. Ng is enhanced for
larger (). Since for (x = 0.1,0.2,0.3,0.4,0.5) the diffusivity of fluid increases which enhance
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the disorderness in the fluid particles and thus entropy (N¢g) increases. Entropy (N¢) and (Be)
via (2 =0.2,0.3,0.4,0.5,0.6) are discussed in Figs [7.19 — 7.20]. More disorderness occurs for
larger (2 =0.2,0.3,0.4,0.5,0.6) therefore (Ng) enhances. However decaying behavior is seen
for (Be) via Q. Fig. [7.21 — 7.22] revealed the impact of (y4) on (Ng) and (Be). Here an
reverse trend is seen for (Ng) and (Be) respectively. Figs. [7.23 — 7.24] show result of (Br)
on entropy and Bejan number. For higher (Br = 0.0,0.1,0.2,0.3,0.4) the (Ng) enhances while
opposite result is observed for (Be). (Br) has direct relationship with heat through molecular
conduction produced by fluid friction and heat transfer. Therefore the system produces more
heat via higher (Br) which increases the systems disorderliness. Hence (Ng) is enhanced. Fig.

(7.24) shows that(Be) is decreased via (Br).

Fig. 7.15: R on Ng.
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0.1 — Ry4=0.3
— Rg=0.4

0.0~

Fig. 7.16 : R4 on Be.

Fig. 7.17: x on Ng.
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0.6

Fig. 7.18 : x on Be.

Fig. 7.19: Q on Ng.
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0.11

0.0

Fig. 7.20 : Q on Be.

Fig. 7.21:~, on Ng.

127



0.10

0.05

0.00-

— ’}'4:0.2
— ’}'4:0.3
— ’}'4:0.4

Fig. 7.22: v, on Be.

Fig. 7.23 : Br on Ng.
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0.1

0.0~

Fig. 7.24 : Br on Be.

7.9 Main points

The main outcomes are summarized as follows;

e f'(n) enhances for larger (M), (A) and (.5).

e {(n) reduces via (M), (Pr) and (Sc).

Concentration is an increasing of Ny.

For higher diffusion and temperature difference parameters there is a rise in entropy

generation.

For larger (M) and (Da™') the (Cy) reduces.
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Chapter 8

A novel perspective of
Cattaneo-Christov double diffusions

in MHD second grade nanofluid flow

MHD flow of second grade nano-fluid flow towards a stretched Riga wall is examined in this chapter.
Heat and mass transfer are based upon Cattaneo-Christov (CC) theory. These considerations are totally
different than classical heat and mass fluxes by Fourier and Fick’s laws. The fundamental concept of
the development of entropy is illustrated. Temperature expression consists of radiation, heat generation

and mixed convection. Governing equations are solved through (OHAM).

8.1 Mathematical description

We study MHD two-dimensional mixed convective steady flow of second grade liquid towards a
stretchable Riga wall. Heat and mass transporation are examined through Cattaneo-Christov
(CC) flux model. Entropy generation is also taken into account. The plate is stretching along
(x — axis) with stretching velocity (U, = ax). (U. = bx) is the free stream velocity. Here

y — axts is perpendicular to x — axis. The problems statement are

ou Ov
% + 8_y =0. (8.1)
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0 ou __ OUe Ou 92 fok du _0* ok
ugt + ot = U9 + 2 (504 + uplly + S + o) 52)
) .
g+ B Bapl =ty + gBy(T — Teo)
Corresponding boundary conditions are
u=U,=ax, v=0aty=0,
Y Y (8.3)
u = U, = bx when y — oo
According to Cattaneo-Christove (CC) theory the heat flux satisfies
dq . « o)
q+0g * E—l—V-Vq—q-VV +(V-VHq ) =—kVT. (8.4)
For steady flow of an incompressible fluid Eq. [8.4] is reduced to
q+0p(V*vq—q-VvV*) = —kVT. (8.5)
Energy expression in present situation satisfies
2
ug—§+vg—§:—v.q+r[DB%—g‘g—§+%(%—§) ]+ (8.6)

Q _ 160*T° 92T
PCp (T Too) 3pcpky 9y?

Eliminating q from Egs. (8.5) and (8.6) yields to the following relation for the temperature
field

2
or ar _ 92T 9C aT | Dp (9T
“%+va—y+5EQE—%—y2+T[DBa—ya—y+K<a—y> ]

o L , (8.7)
160*T3 92T
+pcp (T N TOO) ~ 3pcpky 9y?
where Qp is given by
oudT | , 0udT | , dvdT | , dudT BT | 20T |  20°T )
— o 9udrT Ou 9T 9v 9T Ou 0T 9°T 92T
Qp = Udz Oz + U(’?y dy + Uy Oy + U(’?y Ox + QUUayax tu Ox? tv Oy?
_Q (,0r 4 ,OT\ _ _p_ du _0%u Ju 9%u
oy (“ or TV 8y) e (2“ oy dzoy + 20y oy (8.8)

ar 9*c |, 9C 9*T 92C 9T aC T
—7Dp <” oy oy T V8y a7 T Yazog oy T Yoy 8x8y)

7Dy (, 0T 9T oT 92T 92T o%T
+2 Too <U Oy 0y2 + “ay 8:}66y> + Rq <u8x8y +v oy?

The imposed boundary conditions are
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—kg—igzhf(Tf—T) at y =0,

(8.9)
T — T when y — o0
According to Cattaneo-Christove model the mass flux obeys following expression
. 97 . oe s . s
j+opx 8t+V Vji—j-VV*+(v-V")j| =-DpvC. (8.10)
For steady flow of an incompressible fluid the Eq. (8.10) yields
j+op(V*vj—j-vV*)=—-DpvC. (8.11)
Here concentration field satisfies
,9¢ , oC Dy 0T
—— — =—-Vj 8.12
Yor v oy T Too 8y } ( )
Eliminating j from Egs. (8.11) and (8.12) one arrives at
oC oC 820 Dy 0*T
—_— — 4+ 62 —_— 8.13
a$+vay+FF 8y2+T008y2} (8.13)
in which Qp is given by
_ 8 oJu 0C Ov 9C 8T ou 9C 9%2C
v 0C &*c |, 0%C D 3T 3T '
,UB_Z@_y_DB< 8x8y2+ ys >_T_T< 8_+ 6z8y>
The relevant boundary conditions are
C—Cyaty=0,
(8.15)
C — Cx as y — o0,
By considering transformations
T -T Cc-C a
u=asfn), v=—Varf), t=g—= J= =2y (810)
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the incompressibility condition is satisfied and problems now become

f/// + f// _ f/2 +a* (2f/f/// _ (f//)2 _ f////f) (8 17)
+5% 4+ MEzp[—Bn] + At = 0

(1+ Ra)t" +Proy (ff8 + f2t" = oft' = 2f f1") — (Pr) (1) (Np) (ft'J" = fJ't) (8.18)

—Pryy Ny J"t' — Pry, Rqft" + Npt'J' 4+ Npt'? + Prét] + Pr ft' = 0,

N N,
J" + LefJ + =247 — Leya [ f20" + ffJ] — va=24t" =0, (8.19)
N Nrp
F0)=0, f(0) =1, f(0) =5
t,(O) = _'72(1 - t(O)), t(OO) =0, (820)
J(0) =1, J(oo)=0
8.1.1 Entropy generation
Entropy generation rate here is given by
2
" _ Rp (0T 0C Bp (oC
Ngen_Tolz Oy Oy +T£ (8y> (821)
k (or\% . 160* (oT ' '
7z 7) +trz (a_y)
Characteristic entropy (Ng/) rate is defined as follows
w k(VT)?
non-dimensional form of entropy generation
N///
Ng = =%+ = Re(1 + Ry)t? + _Reé(m t'J + Re xv4J". (8.23)
0
The skin friction coefficient is
-
Crr = | —== |, (8.24)
(pf (Uw)2)



or

VRe:Cy, = £1(0) + a* (3F/(0)(0) — £(0)£”(0)). (8.25)

8.1.2 Dimensionless parameters

(). 00 ) () (- 5)
RUPRS ) N
—C
)

V1o ’

b)) 6 8). ().
V= (52, e (C2). (0 (7).

(Br = <ZgT)> V2 (: Ef?) ;Y3 (= adr),

): a
1= (). N (= GEEL), Ny (= Rt (8.26)
U

8.2 Methodology (OHAM)

The series solutions are determined using the optimal method of homotopy (OHAM) analysis.

N 2
5k* hf Z [Z _31‘[77] , (8.27)

7=0 =0
| Nk k* k" 12
e (hpy hus hy) = N1 S 1D (fidnmitgs Y (=it D (Ji)n=jiny| (8.28)
=0 Li=o =0 =0 1
1 N r k* k* k* - 2
e (b, hes hy) = N1 S 1D (fidnmitgs Y (=it D (Ji)n=jiny| (8.29)
=0 Li=o i=0 =0 1
b = Eg* +et. +ef,, (8.30)

The optimal values of convergence-control parameters are hy = —1.79862, h; = —0.755535 and
hy = —1.3454. Total residual error is 8}:; = 0.0535156.
Table; 8.1 Individual averaged squared residual errors considering optimal values of aux-

iliary parameters. It is observed that the averaged squared residual error reduces with higher
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order approximations.

k* el et £
2 | 0.0357456 0.0100224 0.137

6 | 0.0336475 | 0.00184235 0.0180257
8 1 0.0323631 | 0.000687534 | 0.00631931
10 | 0.0307158 | 0.000145842 | 0.00189651
14 | 0.0295988 | 0.0000438513 | 0.00124949
16 | 0.0291453 | 0.0000269803 | 0.00121365

8.3 Discussion

This subsection consists of impacts of physical variables for the velocity f’(n), temperature ¢(n),
concentration J(n) and entropy Ng. These values selected in computations are S = 0.1, M =
0.2, Ny = 0.1, Pr =1.2, N = 0.5, Re = 0.1, o* = 0.1, 75 = 7o= 0.2, 75 = 0.3, y = 0.1 and
= 0.4.

8.4 Velocity profile

Fig. (8.1) shows the variation of (M = 0.0,0.1,0.2,0.3,0.4,0.5) on f’(n). For larger (M) the
velocity enhances. In fact due to applied magnetic field Lorentz force produce. This force
provides resistance to fluid particles and thus velocity reduces. Influence of (a*) on f/(n) is
considered in Fig. (8.2). There is an increase in velocity via («). Fig. (8.3) illustrates ()
against f’(n). Here f'(n) is increased for larger of (S = 0.7,0.8,0.9,1.0,1.1,1.2,1.3) . Influence
of (A) on f/(n) is depicted in Fig. (8.4). f'(n) enhances via (A = 0.0,0.2,0.4,0.6,0.8,1.0). In

fact higher (A) correspond to decay of viscous forces and so velocity increases.
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Fig. 8.1: M on f’.

Fig. 8.2:a* on f’.
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Fig. 8.4 : A on f.

8.5 Temperature

Influence of (y; = 0.0,0.2,0.4,0.6,0.8,1.0) on ¢(n) is represented in Fig. (8.5). Particles of fluids
take more time to transfer heated region to cold one. Therefore ¢(n) is decays for larger (7).
Fig. (8.6) exhibits that ¢(n) reduces for larger (v = 0.0,0.5,1.0,1.5,2.0,2.5). Fig. 8.7 witnesses
that (Pr = 1.0,2.0,3.0,4.0,5.0,6.0) leads to decline #(n). For higher (Pr) the momentum

diffusivity dominates the thermal diffusivity. Therefore temperature decays. Influence of (§ =
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0.1,0.3,0.6,0.9.1.2,1.5) on t(n) is inspected in Fig. (8.8). Higher (J) produce more heat in the
fluid which enhances temperature. Variation of (Ry) on ¢(n) is discussed in Fig. (8.9). Obviously
t(n) is increased via (Rg = 0.1,0.3,0.6,0.9.1.2,1.5) . Impact of ¢(n) for (Np) is presented in Fig.
(8.10). t(n) upsurges for larger (N = 0.1,0.5,1.0,1.2,2.0,2.5). Opposite result is seen for larger
(N, =0.1,0.5,1.0,1.2,2.0,2.5) (see Fig. 8.11).

6 8
Fig. 85: 7, on t.
0.200
0.15
~0.10}
0.05
0.001 < .

Fig. 8.6 : y5 on t.
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0.05¢

0.00-

Fig. 8.7: Pr on t.

Fig. 8.8: 4 on t.
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Fig. 89: Rgon t.

0.30f

0.25¢

0.20r

0.15r

0.10r

0.05¢

0.00~

Fig. 8.10: Np on t.
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0.20r

0.15¢

= 0.10¢

0.05¢

0.00(‘)

Fig. 8.11: Ny on t.

8.6 Concentration

Fig. (8.12) demonstrates the impact of (v3) on J(n). Clearly J(n) is reduced for larger (v3 =
0.0,0.2,0.4,0.6,0.8,1.0). Physically for higher (v3) the mass transfer diminishes from fluid to
surface. Impact of (Le) on J(n) is discussed in Fig. (8.13). The concentration reduces with
higher (Le). Fig. (8.14) shows that the increasing behavior of (Np = 0.1,0.5,1.0,1.5,2.0,2.5)
reduces concentration. Fig. (8.15) analyzed impact of (Np = 0.1,0.5,1.0,1.5,2.0,2.5) on J(n).
Here J(n) increases. In fact thermophoresis parameter is directly related with temperature
gradient. Therefore temperature of fluid enhances for (N7 = 0.1,0.5,1.0,1.5,2.0,2.5) so J(n)

increases.
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Fig. 8.13: Le on J.
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Fig. 8.14: N on J.

Fig. 8.15: Ny on J.

8.7 Entropy

Fig. (8.16) shows the outcome of (x) on Ng(n). For higher (x =0.1,0.5,1.0,1.5,2.0,2.5)
the Ng(n) boosts. Physically the higher fluid diffusivity increase the disorderness in the
fluid particles and therefore entropy enhances. The effect of (Re =0.1,0.2,0.3,0.4,0.5,0.6)
on Ng(n) is discussed in Fig. (8.17). Our simulation shows that entropy is improved by

the greater estimation of (Re). Here viscous effects here are dominated by inertial forces.
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(Rq = 0.1,0.2,0.3,0.4,0.5,0.6) via entropy (Ng(n)) is plotted in Fig. (8.18). Clearly Ng(n)
increased by varying (Rq = 0.1,0.2,0.3,0.4,0.5,0.6). Entropy generation rate (Ng(n)) via (£2)
is deliberated in Fig. 8 (.19). More disorderness occurs for higher (2 = 0.1,0.2,0.3,0.4,0.5,0.6)
and so Ng(n) increases. Fig. (8.20) disclosed the impact of (4 = 0.1,0.2,0.3,0.4,0.5,0.6) on

N¢(n). Here entropy is increased via (7).

Fig. 8.16 : x on Ng.

0.15¢

0.10r

Ng

0.05¢

Fig. 8.17: Re on Ng.
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Fig. 8.18 : R4 on Ng.
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Fig. 8.19: Q on Ng.
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Fig. 8.20: v, on Ng.

8.8 Concluding remarks

e An increasing trend of velocity holds for (M), (a*) and (.5).

e t(n) is enhanced for larger (R4) and (7q).

For larger (Np) temperature enhances however opposite trend is noticed for concentration.

Concentration is reduced via (y5) and (Le).

Effects of (R4) and (7y4) on (Ng) are opposite to that of ().
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Chapter 9

Melting heat in Jeffrey fluid flow

through permeable space

This chapter examines MHD Jeffrey nano-fluid bounded by a non-linear stretching surface with variable
thickness. Permeable medium is also taken into account. Darcy-Forchheimer flow is investigated. Energy
equation is considered in the existence of melting heat and heat absorption/ generation. The govern-
ing PDEs (partial differential equations) are converted into ODEs (ordinary differential equations) by
using transformation. These non-dimensional equations are solved through Optimal homotopy method.

Outcomes of involved parameters are sketched through graphs and analyzed.

9.1 Mathematical modeling

We consider steady two dimensional (2D) flow of an incompressible Jeffrey nano-fluid past a
5" . Flow along

non-linear stretching sheet. Flow is due to stretching sheet at y = 6*(z + b)
the (x — azis) has stretching velocity (U, = a(z + b)"). MHD and heat generation concepts
are utilized. Melting heat is examined. Brownian diffusion and thermophoresis are explained.

The problems statements are

ou Ov
guw oY _ 1
5 T 9 0, (9.1)

du ou _ _v 2u 33 Bu  udu du _93u
Udz + Ua_y ERDY) [8y2 + M {“amayz +,U8y3 Ox Oy + Ay Bxay}}}

2 2
—ZB*(x)u — fFu — %u

: (9-2)
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or  oT o0*T oCcoT  Dp 0T Q)T —T)

el el D h A Il .

uax+vay OzayQ 7‘( Ba 6y+T (8y)>+ (PC)p ) (9.3)
oc | oC _ 820 DT 82T
u=Uy(x)=0alz+b)", v=0,T=1T,,C=Cyaty=75§(x+ b)an, (9.5)
u—0, T — Ty, C— Cx when y — oo. (9.6)
or . . In

(G = PN+ Cs (T~ TolJu(e.0) at y = 6°(a + )", (9.7)

where Q(z) = Qo(x + b) the nonuniform heat generation/absorption, and B(x) = By(x +b) the

nonuniform magnetic field.

Consider
\/ x + b n=ly q) = \/Qa n + 1) (g; 4 b)n+1F(§) } (9'8)
V= ala Q). 0 /" va(a + by LE(E) + €2 F(),
T — Tm C— Coo
0§ = T =T, G(§) = Cw (9.9)

equation (9.1) is trivially satisfied while Egs. [(9.2 — 9.6)] take the following forms

12

§l + (1 + )\Q)FF” (n+1)(1 + /\2)F12 4 K[(n+1)F/FZU _ (?m;l)F (n _ 1) /F/"]
~(Z7) A+ X)M2F = (23)(1+ M) Da ' F' = (727)(1 + A) BF = 0 ’
9

(9.10)
0" +PrFO' +PrNgO'®d' + Pr NpO” + (%) Pré© =0, (9.11)
n
&+ LePrFd + ~Ler — (9.12)
Np
F'(@)=1, ©(a)=0, (Mn)©'(a)+PrF(a)+Pri(Z4)=0, 913)
B(a) =0, F' (c0) = 0, ©(c0) = 1, B(00) =0 ’ '

Here o = §14/ ”H 4, represents surface thickness parameter and { = o = (& ”H ) represents
the plate surface. we define F(€) = f(¢ —a) = f(n), 0(&) = H(¢ —a) = t(n), B(€) = J( —a) =
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J(n) therefore governing Eqgs. (9.10 — 9.13) yield

P (L4 ) f 17— (2)

1
~() (1 + A2)(M)?

( )\2)f,2+K[(n+1)f fw — (%)f’m _ (TL— 1)f,fm]
= (n+1)(1+/\2)Da_1f/ ( )(1+/\2)5f/2 —0 ’

(9.14)
2
t" + Pr Npt"? + (—— ] o) Prot + Pr ft' +PrNpt'J =0, (9.15)
J”—i—LePrfJ’—i—ﬂt”—O (9.16)
Nb ’
F10)=1, t(@)=0, (Mn)t(0)+Prf(0)+Pra(24)=0, J(0)=0, 0.17)
f(00) =0, t(o0) = 1, J(o0) = 0 -
9.2 Engineering curiosity
The skin friction, Nusselt number and local Sherwood number are define as
Tw (z +0)qw ( +b)gm
Ny=——"—"—"— Sh=~——+—"—. 1
Cr=em N T e =) O T Do) (9.18)
In non-dimensional form we get
1 1
CrvRes = 2/ 5= (f(0) + K1 (0)), (9.19)
2
Nu n+1,
—_— = t'(0 9.20
Rex 2 ( )7 ( )
Sh n+1
= —/——J(0). 9.21
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9.2.1 Dimensionless parameters

Pr(=%), K (=Xa(z+b")" 1), M (: /;LGBO) , Da™! (: W) ,
_Q _ Che(z+bh) _ Cp(Teo—=Tm) _a(z+b)nt?
) <— ap(c)p> , B <— Spelz s T —) , Mn (— —A*ﬁCs(Tm—To)> ,Re = —— (9.22)
N (- 2ty (- 2l o (— )
in which (Mn) is the melting heat.
9.3 Methodology
Optimal homotopy method (OHAM) is used to evaluate the series solutions.
N 2
el (h Z [Z fi)y= ]nn] : (9.23)
7=0 =0
N [k k k 12
(hf7 ht> hJ Z Z(fi)U:anv Z(ti)ﬂ:jrbﬁ Z(Ji)n:jﬂn ) (924)
7=0 L7=0 =0 =0 _
A k k 12
(hyo hey hy) N—HZ* D =ity D (Eg=jtigs > (Ji)y=jiig | (9.25)
j=0 Li=0 i=0 i=0 i
e =el +eb +ef (9.26)

The values of convergence-control parameters are (hy = —0.967169, hy = —0.518451, hy = —1.36582) .

The total residual error is (¢} = 7.15033 x 10%) . Table (9.1) show that the averaged squared
residual error reduces with higher order approximations.

Table; 9.1

f t J
k €% g £},

2 | 8.4516 x 107°

6.81238 x 1074

4.4501 x 1077

6 | 3.2315x 107?

4.1032 x 106

3.39785 x 10~7

10 | 1.9392 x 10~ 1

1.1216 x 1079

2.03086 x 107

16 | 3.71564 x 1015

3.51569 x 1010

3.80485 x 10713

22 | 5.12567 x 10719

7.42344 x 10712

4.58971 x 1016

26 | 6.23623 x 10726

9.94954 x 10716

5.97298 x 10719
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9.4 Discussion

We fixed the values of non-dimensional variables for numerical solutions as n = 0.5,6 = 0.1,5 =
0.1,Da ' =01, a0 =2, A =01,K =04,M = 03,Ng = 02, Ny = 0.4, M = 0.2, Pr = 1.0
and Le = 1.0.

Velocity profile: Fig. (9.1) describe the impact of (n) on f/(n). Velocity enhances against
higher power index (n). It is due to the fact that stretching velocity increases by higher (n) which
produces more deformation in fluid. Fig. (9.2) shows f’(n) for different values of (Mn). f'(n) in-
creases through (Mn). Impact of (Da™!) on velocity is shown in Fig. (9.3). In fact the resistive
force enhances for larger (Da~! =0.0,0.3,0.5,0.8,1.2) and so f’(n) declines rapidly. Fig. (9.4)
designates the impact of inertial coefficient parameter (/3). Velocity f’(n) reduces for an increase
of (8=0.0,0.4,0.8,1.2,1.6). Effect of (K) on f'(n) gradient is sketched in Fig. (9.5). Deborah
number (K) is directly related to the retardation time. Larger (K = 0.0,0.5,1.0,1.5,2.0) has
higher retardation time. Such higher retardation time gives upsurge to the fluid flow due to
which the velocity boosted. Fig. (9.6) illustrates the impact of (A2) on f’(n). Velocity enhances
for larger (\2) .

Fig. 9.1 :n on f’.
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Fig. 9.2: Mn on f'.
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Fig. 9.4: 8 on f'.

Fig. 9.5: K on f'.
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Fig. 9.6 : Ay on f’.

Temperature: Fig. (9.7) shows the significance of (§) on #(n). An increment in
(6 =0.0,0.5,1.0,1.5,2.0) corresponds to an increase of t(n). Fig. (9.8) portrays that vari-
ation of melting parameter (Mn) yields enhancement in temperature. Fig. (9.9) indicates
that ¢(n) reduced for higher Prandtl number. In fact thermal diffusivity reduces by increasing
(Pr=0.2,0.8,1.6,2.5,3.0) and thus the heat diffuses away gradually from the heated body. Fig.
(9.10) depicts t(n) for various values of (Np = 0.5,1.0,1.5,2.0,2.5) which shows that tempera-
ture enhanced when we increase the value of (Ng). Larger (Np) has higher brownian diffusion
coefficient and smaller viscous forces that increase t(n). Behavior of (Nt) on temperature

distribution is similar to that of (Np) (see Fig. 9.11).
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Fig. 9.8: Mn on t.
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Fig. 99 : Pron t.

Fig. 9.10: Np on t.
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Fig. 9.11: Ny on t.

Concentration distribution: Fig. (9.12) shows that concentration (J(n)) is an increasing
function of melting parameter (Mn) . Fig. (9.13) addressed that higher values of (Le = 0.0, 0.5,1.0, 1.5, 2.0)
reduce the concentration. Lewis number (Le) depends upon the Brownian diffusion coefficient.
An increase in the values of (Le) leads to lower Brownian diffusion coefficient which shows a
weaker concentration. Fig. (9.14) illustrates that an upsurge in the thermophoresis parameter

leads to reduction of concentration.

1.0

0.8}

0.6f

0.4+

0.2+

0.0

Fig. 9.12: Mn on J.
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Fig. 9.13: Le on J.

Fig. 9.14 : Ny on J.

Fig. (9.15) illustrate the effect of (n) and (M) on (Cy). It is clear that for increasing (n)
and (M) the skin-friction coefficient reduces. Fig. (9.16) shows the performance of Deborah
number (K') and ratio of relaxation to retardation times (A2) on skin friction coefficient. (C})
has decreasing trend for larger (K) and (A2). Impact of (§) and (Pr) on (Nwu) is illustrated
in Fig. (9.17). Nusselt number enhances via (§) and (Pr). Fig. (9.18) shows the impact of
(Nu) against (N7) and (Npg). Nusselt number increases for higher thermophoresis parameter

(N7) while opposite trend is noticed for higher values of (Np). Fig. (9.19) illustrate the effect
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of thermophoresis (Nr) and Brownian motion variable (Np) on local Sherwood number. It
is cleared that Sherwood number reduced for larger (N7) and (Npg). Fig. (9.20) shows the
magnitude of mass transfer against (Pr) and (Le). Magnitude of mass transfer increases for

higher values of (Pr) while opposite trend is noticed for higher (Le).

Fig. 9.16 : K and A2 on CY.
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Fig. 9.20 : Pr and Le on Sh.

9.5 Concluding remarks
Key points are given below.
e Velocity increases for higher (K).

e Although (¢(n)) is an increasing function of (§) but it reduced for larger (Pr).
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e Concentration gradient reduces for higher values of (Le) and (Nr) but it increases for

e Shape and second grade parameters on skin friction coefficient have decreasing trend..

Similar trend of (¢) and (Pr) is found for Nusselt number.

Sherwood number shows increasing behavior for larger (Le) but result is opposite for

(N7).

162



Chapter 10

Impact of entropy generation on
third grade nanofluid flow over a

stretchable Riga wall with

Cattaneo-Christov double diffusions

Flow of third grade nanofluid over a stretching Riga plate is addressed. Modeling is based through
Cattaneo-Christov (CC) heat and mass fluxes. These considerations are entirely different than classical
heat and mass fluxes by Fourier and Fick’s laws. Formulation also consists of heat generation and mixed
convection. Relevant transformations are used to develop ordinary differential system from partial
differential equations. Optimal homotopy analysis technique is utilized to find the solution of differential

equations. Total square residual error is computed.

10.1 Modelling

We analyze MHD two-dimensional mixed convective steady flow of third grade nanoliquid over
a stretchable Riga wall. Analysis of heat and mass transport is studied through Cattaneo-
Christov (CC) flux models. Here (U, = az) be the stretching velocity along (x — axis) and

(y — axis) is perpendicular to (z — azis). Fig. 10.1(a, b) shows the flow diagram. The governing
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equations are

Fig. 10.1(a) : Structure of Riga wall

Fig. 10.1(b) : Flow geometry.

Continuity equation

ou Ov
= 10.1
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The momentum equation

o) ou _ U, Ou §* o3 ou 62 Jok
“6_; + UB_Z = Ue oz + % (6_Z Byg + u8x81;2 + 38_7; 8xauy + U(’)yg>
2 2 52 2
v (o) oz ((3) 52) + vl . o)
JO o
159 Bapl—Zy] + 98,(T — Tio)

Corresponding boundary conditions are

u=Uy=ax, v=0aty=0,

(10.3)
u = U, = bx when y — 00,
Skin friction coefficient is
-
Cro= | —2 ), (10.4)
(pf (Uw)Q)
where
o (28} | (gl P O pos (Ou)] (10.5)
v ﬂay =0 p \ Oz 0y Oxdy Oy? p \ Oy . ' '
y:

According to Cattaneo-Christove (CC) theory the heat flux for steady (% = 0) and incom-
pressible (V- V* = 0) fluid satisfies

q+o6g(V*vq—q-VvV*) = —kVT, (10.6)

temperature expression in current situation satisfies

T T
ua——i—va—:—v.q—f—T

Q
ox oy +

PCp

9C T Dp [0T\?
DB@@*@(@)

(T — Too)}. (10.7)

annihilating q from Egs. (10.6) and (10.7) yields to the following relation for the temperature
field
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ou oT ou 0T ov oT ou 0T
Uz Oz +U8y dy +u8x dy +U8y oz

20%T 23T Q or
+2“Uayax +u D2 +v 9yz ~ oCp ( Dz +U8y)

udx —Hz +5E

OT 9°C | 0C 9T | . °C 9T ac 8T -
—7Dp ( Dy 0y? tv dy oy? axdy Oy +u dy axay) (108)
D oT 9°T or 9T
i +2% T( o oE rusl &) ]
2
o%T oC oT aT
aa—yQ—H—[D 8y8y+ (d_y>} pCp(T T) )
The imposed boundary conditions are
T — T, aty =0,
vy (10.9)

T — Ts when y — o0,

According to Cattaneo-Christove model the mass flux for steady and incompressible fluid

flow obeys following expression

j+op(V*Vvj—j-vV*)=—-DpVC, (10.10)

Here concentration field satisfies

— tv—=-V (10.11)

80 80 3 + &82_7—‘
“or oy I T o Oy2

Eliminating j from Eqgs. (10.10) and (10.11) our arrives at

w2 2%C ou C v 8C )
022 +udaz oz +u6x dy+

92C aT ou OC 292C ov 0C
u6x+v8y+5F 2uvamayam+vayax+v dyz—i—vayay

23C DT 93T
DB< 8x8y2 tv By ) < 8y3 +u Bzay )

820 Dr 9%T
— DB + Tj; 0y2

(10.12)

The relevant boundary conditions are

C—Cyaty=0,
(10.13)

C — Cyx at y — o0,
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Dimensionless formulation

By considering transformations

u=arf'(n), v=—Varf), t=_—= J= Z O %},

_— =4/— 10.14
w— Lo Cw — Coo’ 7 Vy ( )

the Eq. [10.1] is trivially satisfied while Egs. [10.2,10.3,10.8,10.9,10.12,10.13] becomes

f/// 4 f// _ f/2 + Off (f/f/// _ f/f// _ f////f) 4 (Olf 4 043) f//f// (10 15)
+60¢§ Re f//f//f/// 4+ 524 MEJZp[—Bn] +Xt=0 7 .
"+ Proyy (ffE + [ —0ft —2f f't") — Pry Np(ft'J" — fJ't) (10.16)
—Pry NyJ"t + Ngt'J' + Nyt” + Prot] + Pr ft' =0 ’
Np N
J"+ SefJ + Nt — Seys[f2T" + fFT] — s Fft" _o} (10.17)

F(0)=0, f/(0) =1, f(o0) =
t(0) =1, t(o00) = 0, . (10.18)
J(0)=1, J(c0) =0

Skin friction coefficient satisfies

VRe:Cp = £7(0) + o (3£/(0) £"(0) — £(0)£"(0)) + a3 (£7(0)). (10.19)

10.2 Entropy rate

Mathematical expression for Entropy generation rate is

k [0T\> aT dC oC
Ngen_§<8_y> +_<8y 0y>+ T <0y> } (10:20)

Characteristic entropy (Ng/) is given as
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w k(VT)?

Ny = T (10.21)
Entropy generation after utilizing transformations yields
Ng = % = Ret? + %w’ + Re yv,J72. (10.22)
0
10.2.1 Dimensionless parameters
0 (- ), Do (- ) A (- ). 5 (- £E),
ai (=2) 03 (= 222) a5 (= 22)|, S(=2), % (= adp),
V2 (— M) , V3 (=adp), 4= (%) ; Np (: M) : : (10.23)
o (- Ll (). 5 (). (-8
(o= (88)). = (262). R (-39, (0= ()

10.3 Solutions methodology

The series solutions are obtained by using the Optimal method of homotopy analysis. The

mathematical expressions for average squared residual errors are

N 2
el (hy) = Z [Z (fi) _jnn] : (10.24)

N [k e+ k* 12
1
e (g s hg) = 5 D% | D (Fidnmgtins Y (E)=jis D_(F)o=jmin | (10.25)
j=0 Li=0 =0 =0 |
N [k k* k* 12
e (hps e hy) = E Z(fi)n:jl’[m Z(ti)n:jﬂn, Z(Ji)n:jﬂn : (10.26)
=0 Li=0 i=0 i=0 |
b, = 5£* + el + e, (10.27)

in which (el. =0.0518763) denotes the total square residual error. Here o} = 0.1,05 =
02,05=03,5=01,M =02, Nr=0.1,Pr=12 Ng =05 Re=0.1,7; =73 =02, x =0.1
and €2 = 0.4. The values of convergence-control parameters are hy = —0.8273, hy = —0.1559
and hy = —1.4712. Fig. 9.2 shows the total residual error graph.
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Table; 10.1
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Fig. 10.2 :

Total residual error

k*

f
En

t
Epx

J
Epex

0.0345265

0.00781397

0.0768611

0.0314574

0.00135282

0.00597602

0.0306576

0.000855484

0.00300873

10

0.030006

0.000623588

0.00203128

14

0.0289533

0.000424908

0.0015619

16

0.0285086

0.000377863

0.00147933

20

0.027728

0.000324747

0.00129755

10.4 Discussion

This section describes the consequences of different physical variables for the velocity f'(n),
temperature t(n), concentration J(n) and entropy Ng. The values selected in computations are
S =01 M=02 Nr =01, Pr=12 Ng =0.5,Re =0.1, o] =0.1,05 =0.1,a5 = 0.1, 7 =
Vo= 0.2, A=0.2,5=0.1,73 =0.3, x = 0.1 and 2 = 0.4.
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10.5 Velocity profile

Figs. (10.3), (10.4) and (10.5) examine analysis by taking into account the effects of (af), (a3)
and (aj) respectively. With an increase of (aj) the velocity of fluid is small near the plate
i.s within the range ((0 =7 = 1.0)). Although it illustrates a reverse pattern followed by a
transformation at (np = 1.5). In facts the material parameters have inverse relation to viscos-
ity. Thus for larger values of (a5 = 0.0,1.0,2.0,3.0,4.0,5.0) and (o = 0.0, 1.0, 2.0, 3.0, 4.0, 5.0)
thickness of fluid decreases and thus fluid motion enhances. This seems only meaningful ar-
gument behind this ascending progression of fluid velocity. Fig. (10.6) shows the variation of

(M =0.0,0.1,0.2,0.3,0.4,0.5) on f'(n). For larger (M) the velocity enhances.

Fig. 10.3 : f" against oj.
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Fig. 104 : f" against oj.

Fig. 10.5: f" against oj.
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Fig. 10.6 : f' against M.

10.6 Temperature

Effect of () on ¢(n) is represented in Fig. (10.7). For larger (;) fluid particles take extra
time to move heat from the heated surface to the cold one. Therefore ¢(n) decays for higher
(v1). Fig. (10.8) displays that temperature decays for larger (S = 0.0,0.5,1.0,1.5,2.0,2.5).
Fig. (10.9) exhibits that (Pr = 1.0,2.0,3.0,4.0,5.0,6.0) leads to reduce t(n). Influence of
(6 =0.1,0.3,0.6,0.9.1.2,1.5) on #(n) is shown in Fig. (10.10). Higher (J) yield more heat in
fluid which enhances temperature. Influence of temperature ¢(n) for (Np) is plotted in Fig.
9.11. Here t(n) upsurges for larger (Np = 0.1,0.5,1.0,1.2,2.0,2.5). This is because an uplift
in the base fluid thermal conductivity exists with greater (Npg). Therefore the boundary layer

becomes thicker and temperatures rise.
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Fig. 10.7 : t against ;.

Fig. 10.8 : ¢t against S.
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Fig. 10.9 : ¢t against Pr.
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Fig. 10.10 : t against d.
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Fig. 10.11 : ¢ against Np.
10.7 Concentration

Fig. (10.12) illustrates the effect of (y5) on J(n). Clearly J(n) is reduced for larger (v =
0.0,0.2,0.4,0.6,0.8,1.0). In fact higher (y3) mass transfer decreases from liquid to the sur-
face. Fig. (10.13) shows for larger (Np = 0.1,0.5,1.0,1.5,2.0,2.5) reduces concentration.
There is fast movement and collisions of nanoparticles with higher (Np) and thus more heat
is emitted and thus the concentration decreases. Fig. (10.14) evaluated impact of (Np =

0.1,0.5,1.0,1.5,2.0,2.5) on J(n). Clearly concentration increases.
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Fig. 10.12 : J against ;.

Fig. 10.13 : J against Np.
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Fig. 10.14 : J against Nr.
10.8 Entropy

Fig. (10.15) shows the outcome of (x) on Ng. For higher (y = 0.1,0.5,1.0,1.5,2.0,2.5) the N¢
enhances. More disorderness occure in the fluid when diffusivity increases and thus entropy
enhances. Fig. (10.16) shows that (Ng) increases for larger of (Re = 0.1,0.2,0.3,0.4,0.5,0.6).
Here inertial impacts dominate the fluid viscosity. Impact of (2 = 0.1,0.2,0.3,0.4,0.5,0.6) on
entropy (Ng) is discussed in Fig. (10.17) . Higher temperature difference parameter (£2) entropy

increases.
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Fig. 10.17 : Ng against €.

10.9 Concluding remarks

Major conclusions include the points described below.

e Fluid velocity improves for larger (M) and third grade parameters.

(t(n)) enhances for larger (Np), (N7) and (4) but opposite result is seen for (7).

Concentration is reduced via (y3) and (Np).

For higher (V) concentration enhances.

Effects of (x) and (Re) on (Ng) are opposite to that of (£2).
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