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Abstract 

The viscoelasticity of rate type non-Newtonian fluids exhibits two major phenomena, due to 

viscous and elastic components, which are termed as creep and relaxation phenomena. The 

researchers have developed the Kelvin-Voigt and Maxwell empirical models for the viscoelastic 

fluids. These two models successfully predict the creep and relaxation phenomena. Most of fluids 

in nature are viscoelastic types e.g., polymers, paints, and some biological fluids. The flow of 

viscoelastic non-linear fluids with heat and mass transport is of great important in many areas of 

engineering applications such as plastic coating and polymer sheet production etc. The heat 

transfer rate greatly affects the quality of these products. Thus, the study of rheological features of 

viscoelastic fluids with thermal and solutal energy transport mechanisms is a foremost interest of 

the current era of research.  

Several studies have been devoted in analyzing the flow and energy transport phenomena of 

Maxwell fluid engender by stretching and rotating surfaces. The present thesis is structured from 

this point of view. Both flow and energy transport phenomena over various stretching and rotating 

surfaces, which include stretching and rotating sheet, disk as well as cylinder are modeled in the 

form of highly non-linear partial differential equations (PDEs). The diverse physical effects which 

can considerably affect the flow and heat transport mechanisms are contemplated. Convective 

transport of thermal and solutal energy is studied in both modes, forced and free convective. 

Analytical and numerical computations are carried out to similar equations for the flow and heat 

transfer. The well-known homotopy analysis method (HAM) and bvp4c built-in MATLAB 

function are utilized for construction of solutions. The outcomes for the flow and energy transport 

controlling parameters are explored through the tabular and graphical abstracts. It is interesting to 

observed that an increment in the stress relaxation phenomenon of viscoelastic Maxwell fluid 
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declines the flow velocity however enhances significantly both the thermal and solutal energy 

transport from surface to free stream. The thermal and mass relaxation times in higher trend, which 

are the features of Cattaneo-Christov theory, decrease the energy transport in fluid flow over both 

stretching and rotating geometries. The rate of thermal energy transport in Maxwell fluid boosts 

up in case of constant wall temperature as compared to prescribed surface temperature. On the 

other hand, in swirling flow induced by rotating cylinder the higher value of Reynolds number 

declines the velocity field and fluid motion confined to the surface of cylinder together with 

temperature and concentration distributions are also reduced. The present results are also verified 

by making comparison with the results available in the literature. 



Contents

1 Introduction 4

1.1 Background and Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Motivation and Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Fundamental and Constitutive Relations (Laws) of Continuum Mechanics . . . . 14

1.3.1 Fundamental Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3.2 Constitutive Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4 Methods of Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4.1 Homotopy Analysis Method (HAM) . . . . . . . . . . . . . . . . . . . . . 18

1.4.2 Bvp4c (Numerical Method) . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.5 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Mixed Convective Flow of Maxwell Nano‡uid over a Stretching Sheet 24

2.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1.1 Similarity Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2 Homotopic Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1



2.3.1 Results Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Unsteady Stagnation Point Flow of Maxwell Nano‡uid due to Stretchable

Disk 39

3.1 Mathematical Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Solution Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Discussion of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Surface Thermal Gradient and Analysis Authentication . . . . . . . . . . . . . . 47

4 Analysis of Cattaneo-Christov Model for Unsteady Flow of Maxwell Fluid

due to Stretchable Cylinder 57

4.1 Mathematical Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Computational Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 Analysis of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4 Outcomes Validation and Surface Thermal and Soultal Grandients . . . . . . . . 65

5 Buoyancy Driven Unsteady Stagnation Point Flow of Maxwell Fluid over a

Stretchable Cylinder 72

5.1 Mathematical Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2 Numerical Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3 Physical Interpretation of Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.4 Validation of Present Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6 Boundary Layer Flow of Maxwell Fluid Due to Stretchable Rotating Cylin-

der 87

2



6.1 Mathematical Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.1.1 Analysis for Large Re . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.2 Quantities of Interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.3 Numerical Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.4 Presentation of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7 Thermal Analysis in Swirl Motion of Maxwell Nano‡uid over a Rotating

Cylinder 105

7.1 Problem Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.2 Physical Quantities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.3 Numerical Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.4 Discussion of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

8 Von Kármán Flow of Maxwell Nano‡uid Featuring the Cattaneo-Christov

Theory with Buongiorno Model 121

8.1 Mathematical Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

8.2 Solution Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

8.3 Convergence of Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

8.4 Discussion of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

9 Thesis Summary and Future Recomendations 139

9.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

9.2 Future Recomendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

3



Chapter 1

Introduction

A comprehensive literature survey with motivation and objectives of the present theoretical

study is provided in this chapter. Some material and fundamental mathematical relations are

given which are helpful in this study. Moreover, solution schemes for the governing equations

are also explained here.

1.1 Background and Literature Review

In current era of fast-growing technology, the study of non-Newtonian ‡uid ‡ow has fascinated

the scientists due to its numerous applications in the …elds of engineering, such as the glass

blowing, processing of adhesive tapes, and coating applications often required the ‡ow of non-

Newtonian ‡uids over the rigid surface. Many engineering equipments used the non-Newtonian

‡uids e.g. for the reduction of friction in oil-pipeline, soldiers suits …ll with some non-linear

‡uids that turn into solid when built hit them, use as a surfactant in large-scale heating and

cooling systems, use in the manufacturing of lubricants for vehicles. Despite the Newtonian

4



‡uids whose ‡ow mechanism is described by the simple linear relationship of shear rate and

shear stress, the non-Newtonian ‡uids have complex rheological properties depending on their

viscosity behavior as a function of deformation history, shear rate, stress and time, etc. Each

non-Newtonian ‡uid has its own characteristics and thus there is no single mathematical relation

that can explain the ‡ow behavior of all non-linear ‡uids. Therefore, scientists classi…ed the

non-Newtonian ‡uids into three main types: () di¤erential type, () integral type and ()

rate type by de…ning the mathematical model for each speci…ed non-Newtonian ‡uid. For

the study of non-Newtonian ‡uids, the term "rheology" is also important which is de…ned as

deformation and ‡ow of matter. The ‡ow of non-Newtonian ‡uids in various geometries with

the various physical assumptions were reported in the studies (see  [1 ¡ 4]) The Phan-

Thien–Tanner model was employed by Dhinakaran   [5] to investigate the steady ‡ow of

viscoelastic ‡uid between parallel plates under the in‡uence of electro-osmotic forces. Prasad

  [6] studied the MHD ‡ow of viscoelastic ‡uid with variable viscosity and heat transport

over the stretching sheet. Their analysis revealed that a higher magnitude of Lorentz force

decreases the surface temperature gradient and skin friction. Malaspinas   [7] utilized the

Lattice Boltzmann method to simulate linear and non-linear viscoelastic ‡uids. Siddiqa  

[8] numerically examined the free convection ‡ow of non-Newtonian ‡uid over a vertical surface.

In the recent studies of non-Newtonian ‡uid, the non-axisymmetric Homann ‡ow problem for

the viscoelastic ‡uid over a …xed plate was investigated numerically by Mahapatra   [9]

Dimensionless velocities and displacement thickness were analyzed for di¤erent values of the

viscoelastic parameter in their study.

In non-linear ‡uids, the viscoelastic ‡uids are those which exhibit both the elastic and

viscous e¤ects and in addition these ‡uids the stress-strain relationship depends on time. Two
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major phenomena are observed in the viscoelastic ‡uids, one of which is stress relaxation and

the other is a creep. Thus, researchers have proposed the two mathematical models for this type

of ‡uids which are the Maxwell model and the kelvin Voigt model. The Maxwell ‡uid model

is the simplest model for linear viscoelastic type material which describes the phenomenon of

stress relaxation. On the other hand, the Kelvin Voigt model predicts the creep phenomenon,

but this model is poor for stress relaxation. Most of the materials found in industries are

encountered with the ‡ow viscoelastic ‡uids under stress relaxation behavior, such as the process

of manufacturing plastic, paints, polymers, and rubber sheets. On the other hand, there are

some limitations of the present Maxwell ‡uid model. This model only predicts the stress

relaxation phenomenon in the viscoelastic ‡uid and the model is poor for the prediction of creep

phenomenon. Moreover, the shear thinning and shear thickening features can not be described

by this model. Attention has been paid by researchers to study the rheology of Maxwell ‡uid

‡ow subject to various physical e¤ects. Wenchang   [10] reported the investigation on an

unsteady ‡ow of Maxwell ‡uid between parallel plates. The Laplace and Fourier transforms

were used for solution of the problem. Nadeem   [11] numerically studied the ‡ow of

Maxwell ‡uid induced by stretchable sheet in the presence of the magnetic …eld. They revealed

that the higher values of the relaxation time parameter decline the ‡ow velocity and enhance the

temperature distribution. Falkner–Skan ‡ow of MHDMaxwell ‡uid was studied by Abbasbandy

  [12] In this study, both the analytical and numerical solutions were presented. In a recent

investigation, Ahmed   [13] studied the swirling ‡ow of Maxwell between two coaxially

rotating disks. Their results explored that for higher Reynolds number, the pressure …eld drop

near the surface of the lower disk. Rauf   [14] examined the multi-layer ‡ows of immiscible

fractional Maxwell ‡uids. They obtained the analytical solution of the problem with the help of
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Laplace transform coupled with the Hankel and Weber transforms of order zero. It was shown

that due to increment in the fractional parameter the ‡ow velocity decreases.

In the subject of ‡uid dynamics, the ‡ow induced by stretching and rotating surfaces attract

the researchers to investigate its characteristics due to its diverse applications in engineering

mechanism such as wire drawing, glass …ber, hot rolling, paper production, etc. In a wide range

of applications, from shafts and axles to spinning projectiles, ‡ow over rotating cylinders is also

critically important. Crane [15] was the …rst who inspected the ‡ow induced by a stretching

cylinder. In 1984, Wang [16] performed the analysis of 3D ‡ow of viscous ‡uid caused by

a stretching sheet. In this investigation, he introduced the ‡ow ansatz for the conversion

of governing PDEs into similar ODEs. Moreover, an asymptotic analysis for small values of

stretching strength parameter was also done. Afterward, many researchers investigated the ‡ow

phenomenon over stretching surfaces ( [17¡ 19]) Fang and Yao [20] studied the ‡ow

of a Newtonian ‡uid due to stretchable rotating cylinder with the assumption of axisymmetry.

They considered the rotation of cylinder to be constant because a constant rotation of the

cylinder does not induce secondary axial ‡ow. Sprague and Weidman [21] investigated the ‡ow

of Newtonian ‡uid caused by a purely rotating solid cylinder Subhashini   [22] found dual

solutions for the ‡ow over a stretching sheet with thermal di¤usivity. Numerical investigation of

MHD boundary layer ‡ow of viscous ‡uid over an exponentially stretchable sheet was explored

by Mukhopadhyay [23] An analytical study performed by Dandapat   [24] on the unsteady

thin …lm ‡ow of bi-viscosity ‡uid over a stretching sheet. Their solution revealed that in

comparison of Newtonian and the thin …lm is faster for bi-viscosity. Ahmed   [25] carried

out the numerical investigation on the thin …lm ‡ow of Maxwell nano‡uid over a rotating disk

in an unsteady state. The outcomes of this study show that for higher values of magnetic
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parameter the …lm thickness reduces. In recent studies, the ‡ow of Casson ‡uid over a swirling

cylinder in axisymmetry and energy transport was analyzed by Javed   [26] The viscous

‡uid impinging radially on the swirling cylinder was examined by Weidman [27]

Now a days, researchers paid too much attention to the analysis of heat and mass transfer

due to their plenteous applications in the …eld of engineering and industrial appliances such

as cooling process in nuclear reactor, heat exchanger, manufacturing of plastic and polymer.

Moreover, understanding the mechanism of heat and solutal energy transport in the ‡ow of

‡uid over a stretched surface is also decisive because the quality of the product in the extrusion

process mainly depends on it. Thus, the scientists explore new ideas for the investigation of these

phenomena and discussed them deeply. Fourier’s and Fick’s laws are the basic fundamental

mathematical relations that are used to describe the mechanism of the transport of heat and

mass in a given medium due to temperature and concentration di¤erence, respectively. Fourier’s

law leads to the equation of parabolic type for the temperature distribution which means heat

transport has in…nite speed and propagate throughout the medium with initial disturbance. To

resolve this heat transport paradox the Fourier’s law needs some modi…cations. Many attempts

have taken to clear up this paradox but not at all have been successful. Cattaneo [28] modi…ed

Fourier’s approach by introducing a relaxation time parameter multiply with the time derivative

of heat ‡ux which yields to the hyperbolic type equation for heat transport phenomenon and

as result, transport of heat has …nite speed in the entire medium. This new model is termed as

Maxwell-Cattaneo (MC) model. Due to the frame invariance property Christov [29] amend the

MC model by replacing the time derivative to upper-convective time derivative which includes

the higher spatial gradients. Yousif   [30] numerically studied the momentum and heat

transport by using Fourier’s law in the ‡ow of Carreau nano‡uid under the impact of magnetic

8



…eld and internal sink/source. Sarafraz   [31] examined the characteristics of heat transport

by employing Fourier’s approach of heat conduction in the process of pool boiling in the presence

of the constant magnetic …eld.

Recently, scientists explored the heat and mass transport phenomena by using the Cattaneo-

Christov double di¤usion theory for the ‡ow of both Newtonian and non-Newtonian ‡uids in

di¤erent geometries. Han   [32] studied the ‡ow of viscoelastic ‡uid with thermal energy

transport in view of non-Fourier’s approach. They presented the graphical outcomes for thermal

and concentration …elds. Energy transport in MHD ‡ow of viscous ‡uid ‡ow with Cattaneo-

Christov model over the stretching sheet was explored by Upadhya   [33] Cattaneo-Christov

double di¤usion theory was employed for thermal analysis in the rotating ‡ow of Oldroyd-B

‡uid over the stretching sheet with variable thermal conductivity by Khan   [34] The

numerical investigation was performed by Ibrahim [35] on the 3D rotating ‡ow of Powell-

Eyring ‡uid and heat transfer with the help of non-Fourier’s law. Farooq   [36] analyzed

the Cattaneo-Christov model for the thermal energy transport in the ‡ow of viscous ‡uid with

temperature-dependent thermal conductivity and mass di¤usivity. Their results revealed that

both thermal and concentration distributions decline due to large thermal and mass relaxation

time parameters, respectively. Alamri   [37] investigated the ‡ow of second-grade ‡uid with

heat transport over a stretching cylinder with the perspective of Cattaneo–Christov heat ‡ux

model. Furthermore, numerous investigations have been performed for the analysis of Fourier’s

and Cattaneo-Christov approaches for the heat and solutal energy transport in the ‡ow of

various types of ‡uids ( [38¡ 47])

Heat transfer enhancement is a crucial task for scientists in both conduction and convection

modes of heat transport. The old technique which was used to remove the heat from the high
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‡ux area was the …ns. For example, removing heat from the high heat ‡ux area around the

chips becomes an important factor in the design of a reliable computer system. The higher

transport of heat in the plastic extrusion process also makes the quality of the product better.

Recently, nano‡uid is a remarkable approach in the subject of ‡uid dynamics for the enhance-

ment of convective transport of thermal energy in ‡uid ‡ow. There are many applications for

nano‡uids such as the use of nano‡uids in a heat exchanger for energy saving, solar collector,

etc. Numerous studies on thermophysical properties as well as the heat and ‡uid ‡ow character-

istics of nano‡uids have been carried out in di¤erent systems to discover their advantages over

typical working ‡uids. Huminic   [48] provided a review on applications of nano‡uids in

various types of heat exchangers such as plate heat exchangers, shell and tube heat exchangers,

compact heat exchangers. This study focused on the analysis of published results of theoretical

and experimental investigation.

Nano‡uids, as a new type of liquid/solid suspension, could not only greatly improve the

solutal and thermal conductivity of bulk liquids, but also improve the stability and ‡exibility

of the suspension compared to conventional liquid/solid compounds. While in the exploration

of advanced cooling technology in 1995, Choi [49] …rst introduced the concept of nano‡uids.

The Buongiorno model [50] for nano‡uids measures the distribution of nanoparticles through

the ‡uid ‡ow more realistically by de…ning the Brownian di¤usion and thermophoresis slip

mechanisms. This model has been extensively used by researchers to study the thermal con-

duction enhancement of conventional ‡uids. Nano‡uid research has been signi…cantly increased

worldwide in the development of highly e¢cient cooling devices and enhanced heat transfer

technology, especially in the past two decades. Sulochan   [51] reported the numerical

study of MHD boundary layer ‡ow of nano‡uids with the impact of Joule heating and radiative
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source over moving needle. Turkyilmazoglu [52] applied the Buongiorno model to investigate

the laminar fully developed ‡ow of nano‡uid within the asymmetric channel with the impact

of zero net particle ‡ux at the walls. Rostami   [53] presented the multiple solutions of

mixed convection stagnation point ‡ow of hybrid nano‡uid, in assisting and opposing mode,

over a vertical sheet. In this study, the heat transfer rate of nano‡uids and hybrid nano‡uids

with di¤erent values of the volume fraction of nanoparticles was compared and it was noted

that HNF3 (Si2 = 23 = 01) having the highest heat transfer rate in all cases. Ahmadi

  [54] conducted theoretical and experimental studies on the thermal conduction of the

nano‡uids and investigated results reveal that an increase in thermal and concentration con-

duction of nanoparticles boost up the conductivity of nano‡uids. Recently, Yang   [55]

investigated the combined heat and solutal energy transport application of nano‡uids as well

as …elds of photocatalysis and sterilization in air puri…cation. The di¤erent forced convection

mechanisms for the ‡ow of nano‡uid, hybrid nano‡uid and their uses in the …eld of engineering

for the heat transfer enhancement can be found in the following studies (see  [56¡ 60]).

The haphazard motion and thermo-migration of nanoparticles in the ‡ow of nano‡uids is also

critically important. The large and small value of thermophoretic and Brownian forces signif-

icantly a¤ected the temperature and concentration distribution in the ‡ow. Much theoretical

analysis is reported to the thermophoresis and Brownian motion of nanoparticles. Wakif 

 [61] and Animasaun   [62] presented a detailed analysis on the thermo-migration and

haphazard motion of nanoparticles in di¤erent ‡uid models, respectively. The outcomes of the

whole analysis indicated that the large values of Brownian motion and thermophoretic force

enhance the thermo-migration and haphazard motion of nanoparticles, respectively. Thus, as

a result, the temperature distribution increased in ‡uid ‡ow. Moreover, a higher rate of heat
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transport can be obtained due to Brownian motion in the presence of thermal radiation and

convective heat and mass transfer in the wall 3D ‡ow.

Mixed convective ‡ow, in both classes of ‡uids (Newtonian and non-Newtonian ‡uids), is an

important topic for researchers and scientists currently for the enhancement of thermal energy

transport rate. Both external and internal ‡ow systems in many engineering processes deal

with the MHD mixed convection ‡ow e.g., cooling of nuclear reactors, cooling of electronic

equipment and energy conversion in nuclear reactors. Moreover, the working of the DCLL

(Dual-Coolant Lead-Lithium) blanket uses the concept of mixed convection. The well-known

Boussinesq approximation is used to investigate the e¤ect of buoyancy force on heat transport

in mixed convection, which is in either an aiding or an opposing mode in the direction of forced

convection, regardless of whether the ‡uid ‡ow is laminar or turbulent. Buoyancy-driven ‡ow

over a vertical sheet in opposing/aiding modes was reported by Cheng   [63]. Correlation

for the mixed convective ‡ow of a nano‡uid in the horizontal pipe for a very large Prandtl

number was found by Li   [64] in an experimental study. Hayat   [65] performed an

analytical computation to study the mixed convective ‡ow of Sisko nano‡uid. Their …ndings

revealed that large values of the buoyancy parameter reduce the temperature distribution, while

the solutal …eld showed the opposite trend.

1.2 Motivation and Research Objectives

An extensive literature survey for non-Newtonian viscoelastic ‡uids ‡ow with energy transport

phenomenon in the previous section proved that the ‡ow analysis of various non-Newtonian

‡uids with heat and mass transport by considering di¤erent physical aspects shows an increasing
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interest of researchers up till now. Most of the investigations have been devoted to exploring

this area of research. Based on works that were so far reported in the literature, some gaps

have been identi…ed in the study of the ‡ow …eld of non-Newtonian viscoelastic Maxwell ‡uid

with energy transport induce by stretching and rotating surfaces geometry. Furthermore, this

area of research is perhaps not focused extensively and properly. Thus, there is huge space

to explore the rheological properties of Maxwell ‡uid ‡ow induced by stretching and rotating

surfaces. Therefore, the primary objective of this thesis to …nd the analytical and numerical

solutions of these highly non-linear phenomena such that we can deeply predict the rheological

characteristics of viscoelastic Maxwell ‡uid and transportation of thermal energy. The physical

considerations in this study are relevant to number of applications that involve polymers, plastic

extrusion, rotating machinery, gas turbine rotors, centrifugal pumps, the cooling system in

electronic devices, and many more. Accordingly, in this study, we emphasize these matters

and try to …ll up the gaps in this …eld. Thus, the key objectives of the present theoretical

investigation are the following:

² Flow phenomenon of Maxwell nano‡uid over stretching and rotating surfaces is modeled in

form of governing partial di¤erential equations and these equations are then transformed

into similar ordinary di¤erential equations with the help of suitable ‡ow ansatz.

² Transport mechanisms of heat and solutal energy in ‡ow are examined with various phys-

ical e¤ects such as thermal radiation, Joule heating, chemical reaction and heat source in

the system.

² Flow structure of viscoelastic Maxwell ‡uid with energy transport is assessed with the help

of analytical and numerical solutions of the governing equations and results are presented
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graphically. A comprehensive physical justi…cation of each outcome is provided. Besides,

results validation in good agreement with published literature is shown.

1.3 Fundamental and Constitutive Relations (Laws) of Contin-

uum Mechanics

1.3.1 Fundamental Relations

There are some fundamental laws in the continuum mechanics which are always true. These

include the law of conservation of mass, momentum and energy. For laminar and incompressible

‡uid ‡ow the mathematical expressions are:

Mass balance:




+r ¢ (V) = 0 (1.1)

Momentum balance:


V


=r ¢ ¾̂+b̂ (1.2)

Energy balances:





= ¡r ¢ q̂ (1.3)




= ¡r ¢ Ĵ (1.4)

In the above relations,  is the ‡uid density, V the velocity …eld vector,r the vector di¤erential

operator, 
 the material derivative, ¾̂ the Cauchy stress tensor, b̂ the boday force,  heat

capacity of ‡uid at constant pressure,
³
q̂ Ĵ
´
heat and solutal ‡uxes, respectively, () denote

temperature and concentration, respectively, ¾̂ can be break down as ¾̂ = ¡I+ S with  as
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the ‡uid pressure, I the identity tensor and S the extra stress tensor. Moreover, the deformation

of non-Newtonian ‡uid is related to S and this is de…ned by the speci…c mathematical relation

for a particular non-Newtonian ‡uid model.

In case of magnetohydrodynamic (MHD) and buoyancy driven ‡ow Eq. (12) is modi…ed as


V


= ¡r+r ¢ S+ J1 £B+ [ ( ¡ 1) +( ¡1)] (1.5)

Here J1 = (V£B) the current density,  the electric conductivity of ‡uid, B applied magnetic

…eld and (1 1) temperature and concentration of quiescent ‡uid at in…nity, respectively and

the last term in above equation is the result from Boussinesq approximation for buoyancy force

in the system where (  ) are the thermal and solutal volumetric expansion coe¢cients.

Modi…cation of Energy Equations for Nano‡uids

According to Buongiorno [50], the contribution of thermophoresis and Brownian di¤usion slips

phenomena enhance the convective energy transportation in nano‡uids. Therefore, the energy

Eqs. (13) and (14) are transformed by adding these two forces as:




+

1


r ¢ q̂ = 

·

r ¢r +


1
(r ¢r )

¸

 (1.6)




+r ¢ Ĵ =



1
(r ¢r ) (1.7)

In the above equations,  is the coe¢cient of Brownian di¤usion,  the coe¢cient of ther-

mophoresis and  the heat capacity ratio of nanoparticles to the base ‡uid.
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1.3.2 Constitutive Relations

There are also some other mathematical relations that are true considerably and proposed

empirically from the properties of matter. Such relations are called constitutive laws. Also,

these laws are completely based on observations. Some of the relevant laws to the present study

are described below:

Fourier’s and Fick’s Laws

The thermal and solutal energy conduction in the ‡uid is done by the following mathematical

expressions:

q̂ = ¡r (1.8)

Ĵ = ¡r (1.9)

where  denotes the thermal conductivity of ‡uid.

Cattaneo-Christove Theory

As mentioned before the Fourier’s approach for heat conduction is not realistic and violates

the principle of causality. Therefore, Cattaneo-Christove [28 29] modi…ed the mathematical

relations of Fourier’s and Fick’s for heat and mass ‡uxes, respectively, by introducing the

relaxation time with upper convective derivative as:

q̂+ 
q̂


= ¡r (1.10)

Ĵ+ 
Ĵ


= ¡r (1.11)
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where ( ) are the thermal and solutal relaxation times, respectively.

Maxwell Fluid Model

The phenomena of stress relaxation and creep are observed in the viscoelastic materials, thus, in

such materials the Maxwell ‡uid model, which is key part of this study, is good to predict stress

relaxation phenomenon. This model is also empirical and observational based. The constitutive

relation for this model is de…ned as:

µ

1 + 1




¶

S = A1 (1.12)

where 1 is the relaxation time,  the dynamic viscosity,

 the upper convective time derivative

and A1 =rV+rV
T the …rst Rivlin–Ericksen tensor.

1.4 Methods of Computation

In order to compute the solutions of highly non-linear similar ordinary di¤erential equations

which arised in the present theoretical analysis of Maxwell nano‡uid ‡ow with energy transport

phenomenon, under the in‡uence of di¤erent physical factors such as magnetic …eld, a force of

buoyancy and Joule heating, produced by stretching and rotating surfaces both semi-analytical

and numerical techniques are employed. These methods include the homotopy analysis method

and bvp4c approach. A brief introduction to the working of these methods is presented in this

section.
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1.4.1 Homotopy Analysis Method (HAM)

In 1992 Liao [66] proposed the semi-analytical technique to obtain the series solution of the

highly non-linear di¤erential equations which is called the homotopy analysis method (HAM).

The concept of homotopy is purely topological on which this method is based. It provides the

continuous deformation of the initial approximation to the desired solution of the given prob-

lem. The homotopy function is de…ned as ~ : X̂£ [01] ¡! Ŷ such that ~(x̂0) = ±(x̂) and

~(x̂1) = (x̂) with x̂ 2 X̂ where ±(x̂) and (x̂) two continuous deformable functions de…ned

on topological space X̂ and Ŷ. The method is preferable over the other conventional analyt-

ical methods such as the perturbation technique because it is independent of the small/large

parameters. Moreover, it provides the assurance of convergence for highly non-linear problems.

Consider the non-linear di¤erential equation

̂[()] = 0 (1.13)

where ̂ is the non-linear operator and  the unknown function. Suppose ±() is the initial

approximation of () and ¶ the auxiliary linear operator.

By introducing the non-zero auxiliary linear parameter } the homotopy is constructed as

the zeroth order deformation equation

(1¡ )¶[̂( )¡ ±()] = }̂[()] (1.14)

where 2 [0 1] is the embedding parameter, when  = 0 and  = 1 we get

̂( 0) = ±() and ̂( 1) = () (1.15)
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The variation of ̂( ) from ±() to () as  varies from 0 to 1 is called continuous deformation.

This is the basic concept of HAM and ̂( ) can be represented as Taylor series expansion

̂( ) = ±() +
1P

=1
()

  =
1

!

̂( )


 (1.16)

The above series is convergent at  = 1 The th order deformation equation is de…ned as:

¶[()¡ {¡1()] = } ·(¡1) (1.17)

with

·(¡1) =
1

(¡ 1)!

¡1̂( )

¡1
c=0 , { = 0  · 1 and { = 0   1 (1.18)

The above whole computation is performed with the help of Mathematica software.

1.4.2 Bvp4c (Numerical Method)

The bvp4c is a Runge-Kutta method that employs the Lobatto IIIa formula in three phases.

The Simpson’s quadrature rule is used in well-known Lobatto methods. On the given intervel,

this is a collocation method, and the collocation polynomial provides a C1-continuous solution

with fourth order accuracy. The mesh and error control are highly dependent on the solution’s

residual in this method. To utilize the bvp4c for the solution of given non-linear boundary

value problem the …rst step is to reduce the higher order di¤erential equation into the system

of …rst order equations.
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1.5 Thesis Structure

The presented work is on outcome of the numerical and analytical study in which we have

analyzed the various aspects of incompressible viscoelastic Maxwell ‡uid ‡ow generated due to

di¤erent stretching and rotating geometries, namely the rheology of Maxell ‡uid ‡ow, buoyant

‡uid motion and impact of magnetic …eld. Moreover, the convective transportation of thermal

energy, role of Brownian motion and thermophoresis slip mechanism of nano‡uids in heat

transport with a number of physical e¤ects are also studied. All the published material produced

in this thesis is speci…ed clearly in this section with a brief description of each chapter as follows:

Chapter 1: In this chapter, a relevant literature survey to present work with motivation

is presented. The objectives of the thesis are also mentioned here. The conservation laws

and some particular material relations of continuum mechanics for current study are given. In

addition, solution methodologies used in the mathematical analysis are discussed concisely.

Chapter 2: This chapter presents the thermal and solutal energy transport analysis via

Cattaneo-Christov theory in the ‡ow of Maxwell nanoliquid. The ‡ow is a 3D, laminar, steady

and incompressible and generated by a vertical bilateral stretching sheet. The transport mech-

anism of energy is considered as both forced and free convective. The semi-analytical technique

namely the homotopy analysis method is used to acquire the solutions of similar ordinary di¤er-

ential equations of the considered physical problem. The outcomes of this chapter are published

in "Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Me-

chanical Engineering Science, (2020) DOI: 10.1177/0954406220973242".

Chapter 3: The unsteady stagnation point ‡ow of a Maxwell nano‡uid due to radially

stretchable disk is scrutinized in this chapter. The heat and mass transfer analysis is performed
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under the impact of Joule heating, heat source, magnetic …eld and chemical reaction. The

Brownian motion and thermophoresis phenomena of nano‡uid are investigated with help of

the Buongiorno model. The surface temperature of the disk is taken as constant and radially

varying. The outcomes of the problem are computed numerically and discussed brie‡y with

appropriate physical justi…cation for each pertinent parameter. The results of this chapter are

published in "Arabian Journal for Science and Engineering, 45 (2020) 5529–5540".

Chapter 4: In this chapter, an analysis of Cattaneo-Christov double di¤usion theory for

thermal and solutal energy transfer in unsteady, axisymmetric and laminar ‡ow of Maxwell

‡uid induced by stretching cylinder is carried out. The thermal conductivity of Maxwell ‡uid

is assumed as temperature-dependent. A system of non-linear ordinary di¤erential equations is

found by using the suitable group of ‡ow similarities into the partial di¤erential equations which

governs the physical problem. The results for ‡ow mechanism, thermal and solutal distributions

are acquired numerically. Moreover, a graphical illustration of outcomes with physical reasoning

is provided via each pertinent parameter. The work furnished in this chapter is published in

"Journal of Thermal Analysis and Calorimetry, (2020) DOI: 10.1007/s10973-020-

09343-1".

Chapter 5: This chapter explores the thermal characteristics of buoyancy-driven unsteady

stagnation ‡ow of viscoelastic Maxwell liquid over a vertical cylinder executing stretching under

the impact of a magnetic …eld which is applied normally to the ‡ow …eld. The non-Fourier’s

approach is utilized to study the thermal energy transport mechanism rather than classical

Fourier’s law. Numerical scheme bvp4c is applied to …nd the solution of governing equations

for this problem. The impact of velocity ratio parameter, thermal and solutal relaxation phe-

nomena, unsteadiness parameter and magnetic …eld on temperature distribution is reported
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in the graphical abstract. Furthermore, the variation in heat transport rate subject to con-

stant and axially varying surface temperature of cylinder is also provided through graphs. This

chapter is an extension of chapter 4. The …ndings of this chapter are published in "Arabian

Journal for Science and Engineering, 45 (2020) 9439–9447".

Chapter 6: The theoretical analysis in this chapter is made to determine the rheology

of Maxwell ‡uid over a stretchable rotating cylinder in the presence of magnetic …eld. The

rotation of the cylinder is taken as constant. Additionally, the transport mechanism of thermal

and solutal energy also part of this study. The problem is modeled in form of PDEs with

the assumptions of steady, laminar and axisymmetric and the ‡ow …eld of Maxwell ‡uid with

energy distribution is found as numerical solutions of similar ODEs. The problem is governed

by various physical parameters such as Reynolds number, magnetic parameter, relaxation time

parameter etc. This study is the new contribution in the literature of rheology of non-Newtonian

‡uids. The outcomes of this chapter have been published in "Applied Mathematics and

Mechanics, 41 (2020) 667–680".

Chapter 7: This chapter is proposed as an extension of chapter 6 for the thermal analysis

in a broad context. The heat and mass transportation are investigated in the swirling ‡ow of

Maxwell nano‡uid with the addition of di¤erent heat transport enhancement physical factors

such as Joule heating, thermal radiation, heat constraint and thermophoresis. Moreover, the

heat transport from the surface to ‡uid is assumed as convective. The impact of all these factors

is examined through numerical outcomes of governing equations in graphical presentation. The

work furnished in this chapter is published in "Applied Mathematics and Mechanics, 41

(2020) 1417–1430".

Chapter 8: In this chapter, an investigation of the heat transport mechanism in the well-
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known Von Kármán ‡ow of Maxwell nano‡uid is performed. Here the Cattaneo-Christov theory

and Buongiorno model for nano‡uid are jointly applied for thermal analysis in ‡ow phenomenon.

The impact of the magnetic …eld, heat source and chemical reaction on thermal and solutal

energy transport are also studied. Von Kármán ‡ow ansatz are emploed to transform the

governing PDEs into non-linear ODEs. Series solutions of governing equations are developed

as function of physical parameters with help of the homotopy analysis method (HAM) and

presented graphically. The …ndings of this chapter are published in "Applied Mathematics

and Mechanics, 41 (2020) 1195–1208".

Chapter 9: Finally, the work of thesis is accomplished in chapter-9 with the summary of

the study, conclusions and some recommendations for future work.
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Chapter 2

Mixed Convective Flow of Maxwell

Nano‡uid over a Stretching Sheet

This chapter invokes the thermal and solutal analysis in the buoyancy driven three dimensional ‡ow

of Maxwell nano‡uid subject to Cattaneo-Christov theory. The ‡ow of non-Newtonian ‡uid is induced

above the vertical bi-directional stretching sheet. The slip mechanisms of Brownian di¤usion and ther-

mophoresis of nanoparticles in the ‡ow of Maxwell liquid are analyzed with the help of the Buongiorno

model for nano‡uid. The suitable ansatz for ‡ow phenomenon is employed to reduce the governing

boundary layer partial di¤erential equations (PDEs) into the non-linear ordinary di¤erential equations

(ODEs). Moreover, the homotopic approach is utilized for the solution of the governing ODEs to

investigate the ‡ow of Maxwell ‡uid along with energy transport mechanism. The outcomes are pre-

sented graphically and discussed the physical reasoning behind them. The analysis revealed that both

buoyancy and mixed convection parameters enhanced -component of the velocity …eld but declined

-component. Additionally, these two parameters are also increased the thermal and solutal energy
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transport in nano‡uid for assisting buoyant motion. It is observed that the thermophoretic force boosts

up the thermal energy transportation in the ‡ow in the presence of the thermal relaxation phenomenon.

The present results are con…rmed through tabular data with some previous studies.

2.1 Problem Formulation

Consider an incompressible, laminar ‡ow of viscoelastic Maxwell nano‡uid generated by vertical

elastic bi-directional stretching sheet as shown in Fig. 2.1. The velocity …eld of the problem

is assumed as V = [ ] and Cartesian coordinates (  ) are taken in such way that the

velocities of the ‡uid particles on the surface of sheet are  = ,  =  and  = 0 respectively,

where  and  are positive constants. As sheet is vertical hence the force of gravity g = [ 0 0]

is taken along  ¡ . Thus, the dynamics of the Maxwell nano‡uid ‡ow with the help of

basic laws of conservation gievn in Eqs. (11) and (15) (cf. Chapter 1) with mathematical

relation for Maxwell model (see Eq. (112)) is expressed in the form of following boundary layer
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partial di¤erential equations (PDEs)

Figure 2.1: Flow con…guration.


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= 0 (2.1)


 +  
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Moreover, for the phenomena of thermal and soluatl energy transport in viscoelastic Maxwell

nano‡uid the following PDEs are obtained by using Eqs. (16 17) and Eqs. (110 111) (cf.

Chapter 1)
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The appropriate boundary conditions for the ‡ow and energy transport equations are

 =  =   =  =   = 0  =   =  at  = 0 (2.6)

! 0 ! 0  ! 1  ! 1 as  !1. (2.7)
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In the above equations,  is the kinematic viscosity, ( ) are the surface temperature and

concentration and (1 1) the free stream temperature and concentration, 1 =



the

thermal di¤usivity of ‡uid.

2.1.1 Similarity Transformation

In the view of ‡ow ansatz used by Wang [16], letting

 =  0()  = 0()  = ¡
p
( + )  = 

p



() = ¡1
¡1

 () = ¡1
¡1

 (2.8)

Eq. (21) is satis…ed automatically and Eqs. (22¡ 27) yield

 000 + ( + ) 00 ¡  02 + 1(2( + ) 0 00 ¡ ( + )2 000) + ( +1)

¡1(( + )0 ¡  0)¡ 11(( + )0 ¡  0) = 0 (2.9)

000 + ( + )00 ¡ 02 + 1(2( + )000 ¡ ( + )2000) = 0 (2.10)

00 +Pr( + )0 +Pr(
00 +

02)¡ Pr(( + )( 0 + 0)0 + ( + )200)

¡Pr(( + )000 + ( + )000)¡ 2Pr( + )000 = 0 (2.11)

00 + Pr( + )0 + 

Pr 00 ¡Pr(( + )( 0 + 0)0 + ( + )200)

¡Pr 

( + )000 = 0 (2.12)
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with boundary conditions

(0) = 0 (0) = 0  0(0) = 1 0(0) =   (0) = 1 (0) = 1 (2.13)

 0(1) = 0 0(1) = 0 (1) = 0 (1) = 0 (2.14)

Here 
¡
= 



¢
denotes the stretching parameter, 1 (= 1) the ‡uid relaxation time parameter,

 (= ) the thermal relaxation time parameter,  (= ) the solutal relaxation time para-

meter, 
³
= 

Re2

´
the buoyancy ratio parameter, 1

¡
= 

¤

¢
the mixed convection parameter,


³
=  (¡1)

3

2

´
and ¤

³
= (¡1)

3

2

´
are Grashof numbers for temperature and

concentration, respectively, Re
¡
= 



¢
the local Reynolds number, 

³
= (¡1)



´
the

Brownian di¤usion coe¢cient, 

³
=  (¡1)

1

´
the thermophoresis parameter, Pr

³
= 

1

´

the Prandtl number and 
³
= 1



´
the Lewis number.

2.2 Homotopic Solution

In this section the series solutions of governing similar equations for ‡ow and energy transport,

given in (29¡ 212) subject to the boundary conditions (213) and (214) are constructed by

means of a well-known technique namely the homotopy analysis method (HAM). In order to

construct the homotopic series solution with the help of homotopy approach we choose the

following initial guesses (0 0 0 0) and the auxiliary linear operators ($ $$$) as

0() = 1¡ ¡ 0() = (1¡ ¡) 0() = ¡ 0() = ¡ (2.15)
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$ [()] =  000 ¡  0 $[()] = 000 ¡ 0

$[()] = 00 ¡  $[()] = 00 ¡  (2.16)

2.3 Results and Discussion

Here in this part of the chapter the outcomes of Maxwell nano‡uid ‡ow and energy transport

with the e¤ect of embedded physical parameters are explained with physical justi…cation. The

main results of the present study are the behavior of the ‡ow …eld of Maxwell ‡uid and thermal

energy transport with the impact of buoyancy and mixed convection parameters. Moreover, the

impact of thermophoresis and Brownian motion parameters on temperature and concentration

pro…le in view of thermal and solutal relaxation phenomena are the novel …ndings of the present

research. In computation process of the results the values of pertinent parameters are …xed as

 =  = 1 = 1 = 05  =  =  =  = 04 and Pr =  = 65

Figs. 22( ) explore that the higher values of stretching strength parameter  decrease

 0() and increase 0() components of the velocity …eld. Physically,  is the ratio of stretching

rates in the -direction to -direction thus, an increase in  the -component of velocity

…eld declines and -component increases. The impact of mixed convection parameter 1 and

buoyancy parameter   0 (assisting mode) on the ‡ow …eld is depicted through Figs. 23( )

and Figs. 24( ) respectively. It is noted that both parameters enhance the -component of

the velocity …eld but decline the -component. These results are expected because the buoyancy

force due to the thermal gradient in the ‡uid acts along the -axis and normal to the -axis.

Therefore, this force act as an external driving agent for the ‡uid motion in -direction which

means buoyant ‡uid motion is same as the direction of forced convective motion of the ‡uid.
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However, this is an opposing agent for the -component of the velocity …eld. Moreover, the

impact of these two parameters on the thermal and solutal energy transfer is shown in Figs.

25( ) and Figs. 26( ). These results explored that both temperature and concentration

pro…les are decreasing due to increasing trends in  and 1 Physically, the buoyancy in the

‡uid is due to the density gradient which created by thermal gradient and body force, thus, the

…xed thermal gradient in the Maxwell nano‡uid is used for the buoyant motion of the ‡uid and

as a result, the ‡ow …eld increases and energy transport decreases.

The phenomenon of stress relaxation in viscoelastic Maxwell nano‡uid is described by the

dimensionless relaxation time parameter 1 Figs. 27( ) reveal that the augmentation in

1 signi…cantly enhances both thermal and solutal energy transport in the ‡uid ‡ow because

for the higher trend in 1 the ‡uid becomes more solid like due to the large magnitude of

stress relaxation and conduction of energy increases between ‡uid particles. The plots in Figs.

28( ) illustrate the behavior of thermal and solutal energy transport in nano‡uid ‡ow via

thermal relaxation time parameter  and solutal relaxation time parameter  respectively.

It is observed that in case of higher relaxation time parameters both heat and mass transport

decrease. These parameters are the results from the Cattaneo-Christov theory, physically the

higher values of  and  slow down the thermal and solutal energy waves motion in ‡uid

‡ow. As a result, the transport of heat and mass declines. The haphazard motion and thermo-

migration of nanoparticles in Maxwell liquid produce the thermophoretic and Brownian forces

according to the Buongiorno model. Figs. 2.9( ) show that the increase in  boosts up

the temperature distribution. Physically, thermophoretic force in the nanoliquid increases for

higher values of  consequently, the transfer of heat energy in the ‡ow enhances. The impact

of Brownian motion parameter  to the temperature and concentration …eld is envisioned in
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Figs. 210( ) It is found that the temperature …eld boots up for higher values of  but a

converse trend is noted in the case of concentration …eld. Physically, when  is increased the

Brownian force enhances and creates the resistance for the transportation of solutal energy and

in result concentration pro…le declines. In the case of heat transport  enhances the e¤ective

heat capacity of the ‡uid and kinetic energy of ‡uid particles transformed into thermal energy

and therefore, the thermal …eld in ‡ow increases.

2.3.1 Results Authentication

The outcomes of the present investigation are validated with the help of comparison tables.

Tables 2122 are comparison of initial and …nal values of similarity function for di¤erent 

and Table 23 is the comparison of thermal gradient for various 
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Figure 22: Impact of  on  0() and 0().
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Figure 2.3: Impact of 1 on 
0() and 0().
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Figure 2.4: Impact of  on  0() and 0().
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Figure 25: Impact of  on () and ().
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Figure 26: Impact of 1 on () and ().
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Figure 27: Impact of 1 on () and ().
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Figure 28: Impact of  on () and  on ().
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Figure 29: Impact of  on () and ().
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Figure 2.10: Impact of  on () and ().

Table 2.1: Numerical values of ¡  00(0) and ¡00(0) for various  when 1 =  = 1 = 0

 ¡ 00(0) ¡00(0) ¡ 00(0) ¡00(0)

Ref[16] Ref[16] Present results Present results

0.0 1.000000 1.000000 1.000000 1.000000

0.25 1.026183 1.026190

0.50 1.051948 1.051889 1.051889 1.051892

0.75 1.077125 1.077127

1.0 1.101850 1.101903 1.101903 1.101903
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Table 2.2: Numerical values of (1) and (1) for various  when 1 =  = 1 = 0

 (1) (1) (1) (1)

Ref[16] Ref[16] Present results Present results

0.0 1 0 1 0

0.25 0.907075 0.257986 0.907070 0.257985

0.50 0.842360 0.451671 0.842362 0.451668

0.75 0.792308 0.612049 0.792311 0.612050

1.0 0.751527 0.751527 0.751525 0.751525

Table 2.3: Numerical values of ¡(0) for various  when 1 =  = 1 =  =  =  =

 =  = 0 and  = 1

 ¡(0)

Ref[67] Ref[68] Present results

0.25 0.665932 0.665933 0.665930

0.50 0.735334 0.735334 0.735334

0.75 0.796472 0.796472 0.796473
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Chapter 3

Unsteady Stagnation Point Flow of

Maxwell Nano‡uid due to

Stretchable Disk

The main objective of this chapter is to study the thermal and solutal aspects of the magnetohydrody-

namic (MHD) unsteady ‡ow of Maxwell nano‡uid under the consideration of stagnation point over a

radially stretching disk. The impact of resistive heating and heat generation on the transportation of

thermal energy in ‡uid is analyzed. Moreover, the prescribed surface temperature (PST) and constant

wall temperature (CWT) are considered here. Additionally, the convective energy transport at the

surface of the disk is assumed. The similar equations which govern the ‡ow, heat and mass transport

phenomena are solved numerically via bvp4c scheme. Also, the results for ‡ow …eld and energy transport

are presented graphically with comprehensive discussion. As a key outcomes, it is noted that the higher

values of the unsteadiness parameter enhance the temperature …eld in case of CWT but decline in case
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of PST. The Eckert number boosts up the temperature distribution in the Maxwell ‡uid signi…cantly.

3.1 Mathematical Formulation

Consider the unsteady laminar boundary layer ‡ow of Maxwell nano‡uid over radially stretching

disk of radius 1 with the consideration of stagnation point. Suppose that  and  are velocity

components along  ¡  and  ¡ , respectively. The stretching velocity of the disk and

free stream velocity are assumed as ( ) =

1¡ and () =


1¡  respectively, where , 

and  are positive constants. Moreover, a transverse magnetic …eld B = (0 0 0) is applied to

‡ow of nano‡uid (see Fig. 3.1). The in‡uence of Joule heating, heat generation /absorption

and chemical reaction to the transportation of heat and solutal energy in the nano‡uid is also

considered here.

Figure 3.1: Flow mechanism.

The above assumptions with conservation laws (cf. Chapter 1) and Maxwell ‡uid model
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(cf. Chapter 1) lead to the boundary layer governing PDEs as:

()


+
 ()


= 0 (3.1)


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


+ 




+




= 

·
2

2

¸

+


1

·
2

2

¸

¡ 1( ¡1) (3.4)

with corresponding boundary conditions

(  ) = ( ) =

1¡  (  ) = 0

¡ 
 =  ( ¡  )  where  =  (CWT) and  ¡ 1 = 

1¡ (PST)

¡

 =  ( ¡) at  = 0 (3.5)

 =  =

1¡   ! 1  ! 1 as  !1. (3.6)

Here  is the ‡uid pressure, 0 the magnetic …eld strength, ± the heat source, 1 the chemical

reaction constant and (  ) are heat and mass transfer coe¢cients, respectively.

41



By invoking the following the similarity

 = 
1¡

0()  = ¡2
q


1¡()  = 1 + ( ¡ 1) () ( )

 = 1 +

1¡() ( ) () = ¡1

¡1
  =

q


(1¡) (3.7)

After substituting the above conversions Eq. (31) is satis…ed automatically and Eqs. (32)¡

(37) yield

 000 ¡ 
2 

00 ¡  0 ¡  02 + 2 00 ¡ 7
41

2 00 ¡ 1
4 

22 000 ¡ 21
2 0

¡21
02 ¡ 1

0 00 + 21
000 + 61

00 + 41
0 00 ¡ 41

2 000

¡( 0 + 1

2 

00 + 1
0 ¡ 21

00 ¡¡ 1)

+ +2 + 1(2
2 + 22) = 0 (3.8)

00 +Pr(20 ¡ 
2 

0) + Pr
00 +Pr

02

+Pr
02 +Pr  = 0 (CWT) (3.9)

00 +Pr(20 ¡  ¡  0 ¡ 
2 

0) + Pr
00 +Pr

02

+Pr
02 +Pr  = 0 (PST) (3.10)

00 + Pr(20 ¡


2
0) + Pr




00 ¡ Pr1 = 0 (3.11)
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(0) = 0  0(0) = 1 0 (0) = ¡1(1¡ (0)) 0 (0) = ¡2(1¡ (0)) (3.12)

 0(1) =  (1) = 0 (1) = 0 (3.13)

In the overhead equations, 
¡
= 



¢
is the unsteadiness parameter, 1

³
= 1

1¡
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the Deborah
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¡
= 



¢
the velocity ratio parameter, 

³
=

2
0(1¡)
( )

´
the magnetic parameter, 

³
= (¢)



´
the Brownian motion parameter, 

³
= ¢

1

´
the thermophoresis parameter,


³
= 2

¢ (1¡)

´
the Eckert number, Pr

³
= 

1

´
the Prandtl number, 

³
= 0(1¡)

()

´
the heat

source/sink parameter,1 =
³
1(1¡)



´
the chemical reaction parameter, 

³
= 1



´
the Lewis

number and 1

µ

= 


q
(1¡)



¶

 2

µ

= 


q
(1¡)



¶

the Biot numbers for temperature and

concentration, respectively.

3.2 Solution Procedure

The numerical method bvp4c (MATLAB built-in function) is adopted to acquired the results for

‡ow …eld, temperature and concentration distribution in the ‡ow. For this we transformed the

governing ODEs given in Eqs. (38) (39) (310) and (311) along with corresponding boundary

conditions Eqs. (312) and (313) to the system of …rst order ordinary di¤erential equations.

The transformed variables are supposed as

 = 1 
0 = 2 

00 = 3 
000 = 1 (3.14)

 = 4 
0 = 5 

00 = 2 (3.15)

 = 6 
0 = 7 

00 = 3 (3.16)
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The resulting …rst order ODEs are as follows

1 =

2

6
6
6
6
6
6
6
6
6
6
4

22 ¡ 213 + 2 +

2 3 +

7
4

213 + 2
212

¡41123 + 21
2
2 + 123 ¡ 6123

+(2 +

213 + 12 ¡ 2113 ¡¡ 1)

¡ ¡2 ¡ 1(2
2 + 22)

3

7
7
7
7
7
7
7
7
7
7
5

1
 (3.17)

2 = Pr

µ


2
5 ¡ 215 ¡57 ¡

2
5 ¡

2
2 ¡ 4

¶

 (CWT) (3.18)

2 = Pr

µ

4 +


2
5 + 24 ¡ 215 ¡57 ¡

2
5 ¡

2
2 ¡ 4

¶

 (PST) (3.19)

3 = Pr

µ


2
5 ¡ 217 ¡




2 +16

¶



where

1 = 1 + 211 ¡ 1
2

4
2 ¡ 41

2
1

and boundary conditions for the above non-linear …rst order di¤erential system are

1(0) = 0 2(0) = 1 5(0) = ¡1(1¡ 4(0)) 7(0) = ¡2(1¡ 6(0))

2(1) =  4(1) = 0 4(1) = 0 (3.20)

3.3 Discussion of Results

This section is composed for the physical analysis of graphical outcomes of governing ‡ow and

energy transport phenomena of Maxwell nano‡uid over a stretching disk in the presence of
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the magnetic …eld. The thermal energy transport is deliberated with constant surface tem-

perature(CWT) and perscribed surface temperature (PST). A higher rate of thermal energy

transport is observed for CWT as compared to PST. Physically, in the case of PST, the surface

temperature varies with the spatial variable, so the average heat energy transport for PST is

lower than CWT due to the variation in temperature at the surface. In order to obtain the

physically acceptable outcomes, the values of controlling physical parameters are taken …xed

as 1 =  =  = 1 = 2 =  = 1 =  =  = 01  = 04  =  = 1 Pr = 2

Figs. 32( ¡ ) describe the impact of magnetic parameter  on velocity, temperature and

concentration …elds, respectively. It is noted that for higher values of magnetic parameter 

the ‡uid velocity decreases but the energy transport increases in the ‡uid ‡ow. Physically, the

more value of  enhances the corresponding Lorentz force due to the magnetic …eld. This

force produces the resistance to the ‡uid ‡ow thus, the velocity of ‡uid declines. On the other

hand, conduction of energy among the ‡uid particles boosts up due to higher Lorentz force.

One thing should be noted here that for appropriate results  1 in the case of concentration

…eld but for the velocity and temperature …elds   1 is acceptable. Plots in Figs. 33(¡ )

are present to explore the e¤ects of Maxwell parameter 1 on velocity …eld, thermal and solutal

pro…les. It is evident that for higher values of 1 the stress relaxation phenomenon increases

in the viscoelastic ‡uid thus, the ‡uid shows a more solid-like response than liquid. Due to

this solid-like behavior of ‡uid the ‡ow velocity at any point decreases but temperature and

concentration increase.

Figs. 34( ¡ ) correspondingly show the ‡ow …eld, thermal and concentration …elds for

various values of velocity ratio parameter  As for   1 the stretching velocity of the disk

is greater than free stream velocity thus, the increasing trend in   1 enhances the ‡uid ‡ow
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velocity but it declines the temperature and concentration …elds due decrease in the forced

convection mechanism. The plots in Figs. 35(¡) and Figs. 36(¡ ) depict the impact of

unsteadiness parameter  on thermal and solutal …elds with the comparison of small and large

thermophoretic and Brownian forces. It shows that the increasing values of  enhance and

reduces the temperature pro…le in the case of CWT and PST, respectively, because for PST

the dimensionless temperature  has the inverse relation to the unsteady surface temperature

variation thus, in result the temperature …eld decline. Moreover, the concentration …eld is

increasing function for higher values of  The in‡uence of nanoparticle in Maxwell ‡uid to

the heat and mass transportation is described by the thermophoretic and Brownian motion

parameter  and , respectively. Figs. 35( ¡ ) and Figs. 36( ¡ ) also illustrate

the variation in temperature and concentration …elds for small and large values of  and

 respectively. It is concluded that heat transport increases for higher values of  and

 in both cases CWT and PST But the mass transport enhances for higher values of 

and opposite behavior is found for  Moreover, it is noted that the range of thermophoretic

parameter is found as [01 3] and [001 01] for the solution of temperature and concentration

distributions in the ‡ow of Maxwell nanoliquid, respectively. Physically, an increase in 

rises the thermophoretic force which enhances the convective transport of thermal energy in

nanoliquid. Furthermore, the higher value of  increases the Brownian force which acts as

the opposing and aiding agent for mass and heat transport in the ‡uid, respectively. Thus, in

result the concentration …eld declines and temperature …eld enlarge.

To picture the impact of heat source/sink on temperature …eld Figs. 37( ) are enlisted.

It is clear that the thermal energy source in the system enhances the heat transfer rate in

the ‡uid and the converse is true for the sink. The in‡uence of chemical reaction to the mass
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transport describes by the reaction parameter1. Figs. 38( ) show that the mass transport

decreases in the constructive mode of chemical reaction 1  0 and increases in destructive

mode 1  0. The graphs in Figs. 39( ) elucidate the variation in temperature and

concentration …eld versus Prandtl number Pr and Lewis number , respectively. It is observed

that the transportation of thermal and solutal energy in nanoliquid reduces with increasing

values of Pr and , respectively. Physically, the increasing trend of these parameters reduce

the thermal and mass di¤usivity of nano liquid, respectively. Thus, in consequence, both

thermal and solutal …elds reduce. The strength of convective energy transport for thermal

and solutal phenomena are expressed by Biots number 1 and 2, respectively. It reveals by

the Figs. 310( ) that the higher thermal and solutal Biot numbers 1 and 2 upgrade

temperature and concentration …elds, respectively. Physically, higher estimation in the Biot

number decreases the resistance for energy transport at the surface in consequence the higher

surface temperature and concentration gradients achieved. Fig. 311 envisions the increasing

variation in temperature …eld versus Eckert number  Physically,  corresponds to the

strength of resistive heating thus, more values of  produce the extra heat in the ‡uid which

enhances the temperature …eld and the results are in accordance with the study [69].

3.4 Surface Thermal Gradient and Analysis Authentication

The validation of current numerical scheme is proved with help of comparison Table 31 for

various values of  in good agreement. The numerical values of surface thermal gradient and

solutal gradient for di¤erent   Pr and  are presented in Table 32. It is observed that

there is higher values of thermal gradient in case of PST as compare to CWT.
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Figure 32: The velocity, temperature and concentration pro…les via 
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Figure 33: The velocity, temperature and concentration pro…les via 1
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Figure 34: The temperature and concentration pro…les via 
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Figure 35: The temperature and concentration pro…les via  with comparison of 
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Figure 36: The temperature and concentration pro…les via  with comparison of 
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Figure 37: The temperature pro…le via heat source/sink parameter 

Figure 38: The concentration pro…le via 1
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Figure 39: The temperature and concentration pro…les via Pr and .

Figure 310: The temperature and concentration pro…les via 1and 2 respectively.
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Figure 311: The temperature pro…le via 

Table 3.1: The comparison of ¡  00(0) for various values of  in limiting case when

 =  = 1 = 0

¡  00(0)

 Ref. [70] Ref. [71] Present results

00 117372 117372088 11749647

05 136581 136581449 13661531

10 153571 153571052 15358086

20 183049 183048967 18307000

30 208484 208484656 20848967
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Table 3.2: Numerical values of Nusselt and Sherwood numbers for di¤erent values  

Pr and  when  =  = 1 = 2 = 1 =  = 01,  = 1 and 1 = 001

  Pr   ¡0(0) (CWT) ¡(0) (PST) ¡(0)

01 01 20 05 10 0091225 0094037 0528710

02 0091162 0094012 0486878

03 0091099 0093986 0445440

01 01 20 05 10 0091225 0094037 0528710

02 0090836 0093856 0550459

03 0090425 0093669 0557728

01 01 05 05 10 0082085 0087591

10 0087257 0091413

15 0089782 0093084

01 01 20 01 10 00921436 00944904

02 00889005 00927621

03 00856576 00910338

01 01 20 01 05 0457417

10 0561378

15 0618065
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Chapter 4

Analysis of Cattaneo-Christov

Model for Unsteady Flow of

Maxwell Fluid due to Stretchable

Cylinder

In this chapter, an analysis of thermal and solutal energy transport phenomena in Maxwell ‡uid ‡ow with

the help of Cattaneo-Christov double di¤usion theory is performed. The unsteady 2D ‡ow of Maxwell

‡uid with variable thermal conductivity over the stretching cylinder is considered here. We formulate the

partial di¤erential equations (PDEs) under given assumptions for the governing physical problem of heat

and mass transport in Maxwell ‡uid by using double di¤usion of Cattaneo-Christov model rather than

classical Fourier’s and Fick’s laws. Numerical technique bvp4c is employed for the solution of ordinary

di¤erential equations (ODEs) which are obtained from governing PDEs under the appropriate similarity
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transformations. In view of the acquired results, it is observed that for convenient results the values of

the unsteadiness parameter should be less than one. The higher values of the Maxwell parameter decline

the ‡ow …eld but increase the energy transport in the ‡uid ‡ow. Both thermal and concentration energy

distributions in Maxwell liquid ‡ow decline for higher values of thermal and concentration relaxation

times parameters. Moreover, a small thermal conductivity parameter also enhances the temperature

…eld. The validation of results proved with the help of comparison Table 4.1 with previous articles.

4.1 Mathematical Formulation

Consider the unsteady laminar 2D ‡ow of an incompressible Maxwell ‡uid with variable thermal

conductivity in‡uenced by stretching cylinder of radius 1. Suppose that  and  are velocity

components along  ¡  (axis of cylinder) and  ¡  (normal to z-axis), respectively,

as presented in Fig. 4.1. The time dependent cylinder stretching velocity is assumed to be

( ) =

1¡ where    0 Transport of solutal and thermal energy in the ‡ow is conducted

by using Cattaneo-Christov double di¤usion theory. By keep in the mind the above assumptions

for given ‡ow and energy transport problem and eliminating S in Eqs. (12) and (112), q̂ in

Eqs. (13) and (110) and Ĵ in Eqs. (14) and (111) (cf. Chapter 1), respectively, we arrived
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at following set of governing partial di¤erential equations:

Figure 4.1: Graphical representation of phenomena.

()


+
 ()


= 0 (4.1)


 + 

 +
 = 

h
2
2

+ 1




i

¡1
h
2
2 + 2

2
 + 2

2
 + 2

2
 +2 

2
2 + 2 

2
2

i
 (4.2)


 + 

 + 
 + 

2

6
6
4

2
2

+ 



 + 2

2
 +





 + 2

2
 + 2

2


+2 
2
2

+ 2 
2
2

+ 



 +



 + 



 +





3

7
7
5

= 1
()

1





£
( )(  )

¤
 (4.3)

59




 + 

 + 
 + 

2

6
6
4

2
2

+ 



 + 2

2
 +





 + 2

2
 + 2

2


+2 
2
2

+ 2 
2
2

+ 



 +



 + 



 +





3

7
7
5

= 
1





£¡
 
¢¤
 (4.4)

The corresponding boundary conditions for given problems are

(  ) = ( ) = 
1¡  (  ) = 0  =   =  at  = 1 (4.5)

! 0  ! 1  ! 1 as !1. (4.6)

Here ( ) = 1(1 + ) is the variable thermal conductivity (1 free stream conductivity, 

small conductivity parameter and  the dimensionless temperature).

With the help of following conversion parameters

 = ¡1


q

1¡()  = 

1¡
0() () = ¡1

¡1

() = ¡1
¡1

  =
q


(1¡)

³
2¡21
21

´
 (4.7)

Eqs. (42)¡ (46) are transformed into following system of ODEs

(1 + 2) 000 + 2 00 ¡ 
2 

00 ¡  0 ¡  02 +  00 ¡ 7
41

2 00

¡1
4 

22 000 ¡ 21
2 0 ¡ 21

02 ¡ 1
0 00 + 1

000

+31
00 + 21

0 00 ¡ 1
1+2

2 00 ¡ 1
2 000 = 0 (4.8)
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(1 + 2)00 +Pr(0 ¡ 
2 

0) + (1 + 2)(00 + 02)

+20 + 20 ¡ Pr(
3
4

20 ¡ 3
2 

0 ¡ 
2 

0 0

+1
4

2200 ¡ 00 + 002 ¡ 0 0) = 0 (4.9)

(1 + 2)00 + Pr(0 ¡ 
2 

0) + 20

¡Pr(
3
4

20 ¡ 3
2 

0 ¡ 
2 

0 0

+1
4

2200 ¡ 00 + 002 ¡ 0 0) = 0 (4.10)

(0) = 0  ’(0) = 1  (0) = 1 (0) = 1 (4.11)

 0(1) = 0 (1) = 0 (1) = 0 (4.12)

The dimensionless group of paramters in above equations are

8
>><

>>:
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>>;

and these are termed as the unsteadiness parameter, the curvature parameter the Maxwell parameter,

the thermal relaxation time parameter, the mass relaxation time parameter, the Prandtl number

and the Lewis number, respectively.
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4.2 Computational Procedure

This section is proposed to evaluate the solutions of coupled ODEs for the ‡ow of ‡uid and

energy transport Eqs. (48), (49) and (410) with the speci…ed boundary conditions given in

Eqs. (411) and (412) the numerical method bvp4c built in MATLAB. The system of …rst order

ordinary di¤erential equations is needed to utilize this proposed technique. For this purpose

the governing ODEs are transformed as follows:

 = 1 
0 = 2 

00 = 3 
000 = 1 (4.13)

 = 4 
0 = 5 

00 = 2 (4.14)

 = 6 
0 = 7 

00 = 3 (4.15)

The resulting …rst order ODEs are as follows

1 =

22 ¡ 13 + 2 +

2 3 ¡ 213 +

7
41

23 + 21
22

+21
2
1 + 113 ¡ 3113 ¡ 21123 +

1
1+2

2
13

1
 (4.16)

2 =

Pr(125 ¡
3
251 ¡


2 25 +

3
4

25)

+Pr(2 5 ¡ 15)¡ 25

2
 (4.17)

3 =

Pr(127 ¡
3
217 ¡


2 27 +

3
4

27)

+Pr(2 7 ¡ 17 ¡ 27)

3
 (4.18)
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where

1 = 1+ 2 ¡
1
4
22 + 11 ¡ 1

2
1

2 = 1+ 2 ¡
Pr

4


22 +  Pr 1 + (1 + 2)4 ¡ Pr
2
1

3 = 1 + 2 ¡
Pr

4


22 + Pr1 ¡ Pr
2
1

Boundary conditions for the above …rst order di¤erential system are

1(0) = 0 2(0) = 1 4(0) = 1 6(0) = 1 (4.19)

2(1) = 0 4(1) = 0 6(1) = 0 (4.20)

4.3 Analysis of Results

The ‡ow velocity, temperature distribution and mass transport in Maxwell liquid are the key

points of this physical problem. Impact of pertinent parameters with following …xed values  =

 = 001 1 =  =  = 05 Pr = 65  = 65 on the ‡ow …eld, thermal and concentration

energy distribution is presented graphically with the comparison of cylinder and sheet. It is

observed that there is higher energy transportation in case of cylinder than sheet. Figs. 4.2(¡

) explore the impact of curvature parameter on ‡ow of ‡uid, temperature and concentration,

respectively. For higher values of curvature parameter  we noted an increasing trend in the

velocity …eld, temperature and concentration distributions. Physically, the higher value of 

reduces the radius of the cylinder thus the in‡uence of boundary in ‡uid motion decreases.

Hence as a result velocity of ‡uid increases and corresponding heat and mass transportation

in the ‡uid enhance. The increasing trend is observed for thermal and concentration …elds in
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the case of growing values of Maxwell parameter 1 The adverse behavior is found for ‡ow

…eld as shown in Fig. 4.3(¡ ) Physically, the Maxwell parameter 1 describes the rheology

of viscoelastic type material. The Maxwell parameter 1 is the dimensionless relaxation time.

The relaxation time is used to depict the phenomenon of stress relaxation and stress relaxation

(retain in deformation of a material after sudden relaxation in applied stress) observed due to

the elasticity of the material. Therefore material for the higher value of 1 behaves like a solid.

It means more time is required for the material to retain its deformation, thus, as result the

decline in ‡uid velocity is observed due to the higher value of 1 On the other hand, the energy

transport phenomenon boost up for the same trend of 1 due to an increase in heat conduction

rate

Plots in Figs. 44( ) describe the e¤ect of unsteadiness parameter  on heat and mass

transportation mechanisms. Both the heat and solutal energy transport boost up for increasing

values of  Figs. 45( ) are sketched to depict the impact on thermal and solutal energy

transfer rate of thermal and mass relaxation time parameters  and . Increasing values of

both thermal relaxation time and solutal relaxation time parameter declines the temperature

and concentration …elds, respectively. Physically, relaxation time parameter in the Cattaneo-

Christov heat ‡ux model due to increasing trend control the instant propagation of thermal

energy waves in a given medium. Therefore the ‡uid with enlarging value of relaxation time

parameters required more time for the transportation of heat and solutal energy. As a result,

the decrease in temperature and solutal …elds is noted. The relative importance of momentum,

thermal and mass di¤usivity is described by Prandtl number Pr and Lewis number  Figs.

46( ) are indicated the variation in temperature and concentration pro…les via Prandtl and

Lewis numbers, respectively. We conclude that both temperature and concentration …elds
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decrease for the enhanced values of Pr and  respectively. Physically, the Prandtl number

with higher values reduce the thermal di¤usivity of the ‡uid due to which the speci…c heat

capacity ratio of ‡uid enhance and increasing values of  decrease the mass di¤usion coe¢cient.

Thus, as a consequence, the transfer rate of heat and mass decreases in the ‡uid ‡ow. The

thermal conductivity parameter  boosts up the heat transfer rate of the ‡uid due to this the

temperature …eld enhances as shown in Fig. 47.

4.4 Outcomes Validation and Surface Thermal and Soultal Gran-

dients

A comparison is given in Table 4.1 for reduced ¡ 00(0) with varying values of 1 which assure

the validation of present results. Table 4.2 is provided for the numerical values of thermal

and solutal gradients at cylinder surface with varing values of pertinent parameters. It is found

that the both ¡0(0) and ¡0(0) are decreses with higher values of unsteadiness parameter 

and inceases for Prandtl number (Pr) and Lewis number () respectively.
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Figure 42: The velocity, temperature and concentration pro…les via 
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Figure 43(¡ ): The velocity, temperature and concentration pro…les via 1

67



Figure 44: The temperature and concentration pro…les via 

Figure 45: The temperature and concentration pro…les via  and  respectively.
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Figure 46: The temperature and concentration pro…les via Pr and  respectively.

Figure 47: The temperature pro…le via 
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Table 4.1: Numerical values of ¡ 00(0) for di¤erent values of 1 when  =  = 0

1 ¡ 00(0)

Ref. [72] Ref. [73] Ref. [74] Present (bvp4c) Present (HAM)

00 1000000 1000000 1000000 1000000 1000000

01 1026183 1026190 1026166

02 1051948 1051889 1051889 1051892 1051866

03 1077125 1077127 1075466

04 1101850 1101903 1101903 1101903 1101880

05 1126235 1126234 1125678

06 1150163 1150137 1150137 1150136 1150144

07 1173624 1173623 1173629

08 1196692 1196711 1196711 1196709 1196455

09 1219414 1219413 1219419

10 1241747 1241741 1124567
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Table 4.2: Numerical values of ¡0(0) and ¡0(0) in the limiting case for  =  = 0 and

 = 1

 1   Pr  ¡0(0) ¡0(0)

01 01 01 01 65 65 1919590 5034541

02 1820360 4858232

03 1709981 4671831

01 01 01 01 65 65 1925401 5034541

03 1922490 4995886

05 1919592 4958616

01 01 01 01 65 65 1919501

02 1856914

03 1799712

01 01 01 01 65 65 1919591 5043821

02 1825890 5041512

03 1741672 5039201

01 01 01 01 02 65 1141467

04 1508042

06 1842103

01 01 01 01 65 02 2799817

04 3957422

06 4837691
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Chapter 5

Buoyancy Driven Unsteady

Stagnation Point Flow of Maxwell

Fluid over a Stretchable Cylinder

This chapter is proposed to investigate the characteristics of stagnation point ‡ow of Maxwell ‡uid

generated by vertical stretchable cylinder under the in‡uence of buoyancy force. The non-Fourier’s heat

conduction approach is considered here for the thermal energy transportation in ‡ow. Moreover, analysis

of two types of heating agents at surface namely prescribed surface temperature (PST) and constant

wall temperature (CWT) is performed. The resulting partial di¤erential equations for governing the

‡ow and thermal energy transport problem are converted into the ordinary di¤erential system through

suitable ‡ow ansatz. The acquired outcomes for the temperature …eld are presented graphically with the

comparison of PST and CWT. The results of the present study revealed that a higher rate of thermal

energy transfer is noted in the case of CWT. Moreover, it is observed that higher magnitude of the
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buoyancy force enhances ‡uid ‡ow velocity in assisting mode. The increasing values of the thermal

relaxation time parameter decrease the heat transport in the ‡uid. A comparison is given of surface

velocity gradient for magnetic parameter and Deborah number with existing literature.

5.1 Mathematical Formulation

Consider the unsteady, laminar and incompressible 2D ‡ow of Maxwell ‡uid over vertical

stretching cylinder of radius 1 with  and  are velocity components along  ¡  (axis

of cylinder) and  ¡  (normal to z-axis), respectively. The stretching velocity of the cylin-

der and free stream velocity are assumed as ( ) =

1¡ and ( ) =


1¡  respectively,

where ,  and  are positive constants. Suppose that a magnetic …led  = (0 0 0) applied

normal to the ‡ow …eld and the force of gravity g = [ 0 0] acts along the axis of cylinder. The

whole ‡ow scheme is presented in Fig. 51.

Fig. 51: A physical layout of the problem.
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The constitutive equations for the ‡ow of Maxwell ‡uid in addition to heat transport with all

above assumptions are obtained by eliminating S and q in Eqs. (15 112) and Eqs. (13 110)

(cf. Chapter 1) we acquired the following governing partial di¤erential equations

()
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+
 ()


= 0 (5.1)


 + 

 +
 + 1

2

6
6
4

2
2

+ 2
2

+ 2 2
 + 2

2


+2 2
 + 2

2
 +2 

2
2

+ 2 
2

2

3

7
7
5

= 
h
2
2

+ 1




i
+ 

£
( ¡ 1) + 1

©

 + 

 +
 ¡ ( ¡ 1)




ª¤

+
 + 


 ¡

2
0



£
(¡ ) + 1

©

 ¡


 + 



ª¤
 (5.2)


 + 

 + 
 + 

2

6
6
4

2
2

+ 



 + 2

2
 +





 + 2

2
 + 2

2


+2 
2
2

+ 2 
2
2

+ 



 +



 + 



 +





3

7
7
5

= 
()

1





£
 
¤
 (5.3)

with the corresponding boundary conditions for given problems are

(  ) = ( ) =

1¡  (  ) = 0 at  = 1

 =  ( )  = 1 +

1¡ ( ) at  = 1 (5.4)

!  =

1¡   ! 1 as !1. (5.5)
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Introducing the following conversion parameters

 = 
1¡

0()  = ¡1


q

1¡()

 = 1 + ( ¡ 1) () ( )  = 1 +

1¡() ( )

 =
q


(1¡)

³
2¡21
21

´
 (5.6)

After substituting the overhead conversions Eq. (51) is satis…ed automatically and Eqs. (52)¡

(55) yield

(1 + 2) 000 + 2 00 ¡ 
2 

00 ¡  0 ¡  02 +  00 ¡ 7
41

2 00

¡1
4 

22 000 ¡ 21
2 0 ¡ 21

02 ¡ 1
0 00 + 1

000

+31
00 + 21

0 00 ¡ 1
1+2

2 00 ¡ 1
2 000

+ +2 + ( + 1

2 

0 ¡ 1
0)¡ 0 +

+1(2
2 + 22)¡1(


2 

00 ¡ +  0 ¡  00) = 0 (5.7)

(1 + 2)00 +Pr(0 ¡ 
2 

0) + 20

¡ Pr(
3
4

20 ¡ 3
2 

0 ¡ 
2 

0 0 + 1
4

2200

¡00 + 002 + 0 0) = 0 (CWT) (5.8)
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(1 + 2)00 +Pr(0 ¡ 
2 

0) + 20

¡Pr(
72

4 0 + 2

4 
200 + 22 + 

2 
00 + 3 0 + 

2 
00

¡7
2

0 ¡ 00 +  02 ¡  00 + 002 ¡ 0 0) = 0 (PST) (5.9)

 = 0  0 = 1  = 1 at  = 1 (5.10)

 0 !  ! 0 as !1 (5.11)

In the above equations,  (= 
 ) is the unsteadiness parameter, 

µ

= 1
1

q
(1¡)



¶

the cur-

vature parameter 1

³
= 1

1¡

´
the Maxwell number, Pr

³
= 

1

´
the Prandtl number and

1 =


()
the thermal di¤usivity of ‡uid, 

³
= 

1¡

´
the thermal relaxation time parameter,


³
= 

Re2

´
the buoyancy parameter in which 

³
=  (¡1)

3

2

´
the Grashof number where

  0 and   0 corresponds to the assisting and opposing modes of ‡ow, respectively, 
¡
= 



¢

the velocity ratio and 
³
=

2
0(1¡)
( )

´
the magnetic parameter.

5.2 Numerical Methodology

In this part, the numerical computation is performed of governing Eqs. (57) ¡ (59) with

corresponding boundary conditions in Eqs. (510) and (511) The bvp4c technique is utilized

for the numerical results. By making the use of substitutions  = 1 
0 = 2 

00 = 3
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 000 = 1  = 4 
0 = 5 

00 = 2 the system …rst order ODEs are obtained as follows

1 =

22 ¡ 13 + 2 +

2 3 ¡ 21 +

7
41

23 +
1
4 

221 + 21
222

+113 ¡ 13 ¡ 2113 ¡ 21123 +
1
1+2

2
13

¡ ¡2 ¡ (4 + 1

2 5 ¡ 115 ¡ 124)

+2 ¡+1(

2 3 + 2 ¡ ¡ 13)

1
 (5.12)

2 =

Pr(
3
4

25 ¡
3
251 ¡


2 25 ¡ 125)

+Pr(2 5 ¡ 15)¡ 25

2
 (5.13)

2 =

Pr(
7
4

25 + 2
24 +


2 43 + 325

+
2 25 ¡

7
2 15 + 224 ¡ 143 ¡ 125)

+Pr(2 5 ¡ 15)¡ 25

3
 (5.14)

with

1 = 1+ 2 ¡
1
4
22 + 11 ¡ 1

2
1

2 = 1 + 2 ¡
Pr

4


22 +  Pr 1 ¡ Pr
2
1

3 = 1 + 2 ¡
Pr

4


22 +  Pr 1 ¡ Pr
2
1
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The boundary conditions for the above non-linear …rst order di¤erential system are

1(0) = 0 2(0) = 1 4(0) = 1

2(1) =  4(1) = 0

5.3 Physical Interpretation of Outcomes

In this section, numerical outcomes for the velocity and temperature …elds are presented graph-

ically. The results are compared for both Newtonian and non-Newtonian ‡uids in case of the

‡ow …eld. The temperature pro…le plotted for both types of wall heating agents CWT and

PST. It is noted that in the comparison of CWT and PST there is a higher rate of heat transfer

in the ‡uid ‡ow for CWT. The results are acquired with the following …xed values of physical

parameters  = 001  = 005  =  = 05  = 1 = 1 Pr = 65

The impact of curvature parameter  on the ‡ow and thermal …elds presented in Figures

5.2( ) It is noted that a higher value of  enhances the ‡uid velocity and heat transport in

the ‡uid away from the cylinder surface. Physically, for the increasing value of  the radius

of the cylinder decreases thus, the momentum boundary layer thickness reduces due to less

in‡uence of boundary in the ‡uid ‡ow which leads to a rise in ‡uid ‡ow velocity. Figures

5.3( ) enlisted to shows the in‡uence of relaxation time parameter 1 on the velocity and

temperature …elds. The higher values of 1 ‡uid ‡ow velocity decline and temperature pro…le

enhance. Physically, the ‡uid behaves like a solid with an increase in time relaxation parameter

1 and ‡uidity of material reduces, thus, the ‡uid motion decrease. On the other hand, the

temperature …eld boost up due to an increase in thermal conduction of ‡uid. Figures 54( )
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illustrate that velocity of the ‡uid reduces and the temperature …eld enhance with the increasing

values of magnetic parameter  Physically, the normally applied magnetic …eld to the ‡uid

‡ow velocity produce Lorentz force which creates the resistance to the ‡uid motion in the

boundary layer thus, results in the velocity …eld declines. Furthermore, in the case of thermal

energy transportation, the conduction of heat energy in the ‡uid ‡ow is increased by Lorentz

force which enhances the ‡uid particles interaction.

The dimensionless parameter  corresponds to the velocities ratio of stretching cylinder to

free stream velocity. Figures 55( ) depict that the velocity …eld enhances and the tem-

perature …eld reduces due to the increment in velocity ratio parameter  As   1 means

stretching cylinder velocity greater than free stream velocity and the converse is true for   1

So, for the case of   1 the ‡uid velocity enhances with the rising value of  because a

higher stretching velocity boost up the ‡uid motion. On the other hand, temperature pro…le

decline for increasing values of  Physically, the main mechanism for the transport of thermal

energy in the ‡uid is forced convection. Thus, for higher values of  the forced convection is

diminished. Therefore the temperature …eld falls down in this situation. The buoyancy para-

meter  characterize the convection ‡ow into forced and free convection with the regime of

mixed convection in both aiding and opposing mode. The mixed convection region is de…ned as

min    max outside this region the ‡ow is purely free or forced convection. In the present

study of the heat transport phenomenon the mixed convection region is [0 8] and [¡8 0] for

aiding and opposing mode, respectively. The variation in velocity and temperature …elds versus

buoyancy parameter   0 (assisting mode) and   0 (opposing mode) is reported in plots of

Figures 5.6( ) and Figures 5.7( ), respectively. Figures 56( ) depict that in assisting

mode the ‡uid motion boost up due to the same direction of forced and buoyant motion but
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the thermal energy transport in the ‡uid ‡ow declines. The converse results are observed in

the opposing mode that is clear by Figures 57( ) The velocity and temperature …elds via

unsteadiness parameter  are presented in Figures 58( ) It is observed that the velocity of

the ‡uid reduces for higher values of  and the temperature …eld declines in the case of PST

because dimensionless temperature  has an inverse relation with the unsteady stretching rate

of the cylinder. Moreover, the temperature …eld boost up in the case of CWT. Physically, more

values of  decreases the stretching rate thus, in results velocity of the ‡uid reduces. To picture

the impact of dimensionless time relaxation parameter  on the temperature …eld the Figure

59 is delineated. It is observed that higher  decrease the ‡uid temperature in rising trend.

Physically, the dimensionless time relaxation parameter  in the non-Fourier’s heat ‡ux model

is the controlling parameter for the propagation of heat waves in the ‡uid. Thus, increment in

 declines the heat transport in the ‡uid.
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Figure 5.2: Plots of velocity and temperature …elds via curvature parameter 

Figure 53: Plots of velocity and temperature …elds via Deborah number 1
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Figure 54: Plots of velocity and temperature …elds via magnetic parameter 

Figure 55: Plots of velocity and temperature …elds via stagnation point 
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Figure 5.6: Plots of velocity and temperature …elds via buoyancy parameter   0

Figure 5.7: Plots of velocity and temperature …elds via buoyancy parameter   0
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Figure 5.8: Plots of velocity and temperature …elds via 

Figure 5.9: Plots of temperature …eldvia .
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5.4 Validation of Present Outcomes

Table 51 is constructed for ¡ 00(0) for di¤erent values of 1 in limiting case. Moreover, Table

5.2 shows the comparison of surface velocity gradient in the limiting case for with various

values of  with previously published outcomes. These numerical results also are con…rmed

the validation of our analysis.

Table 5.2: Numerical values of surface velocity gradient ¡ 00(0) for di¤erent values of 1

when  = =  =  = 0 and  = 2

1 ¡ 00(0)

Ref. [77] Ref. [78] Ref. [79] Present results

00 099996 099997 1000000 1000000

02 105194 105194 1051921 1056190

04 110185 110184 1101789 1101792

06 115016 115016 1150168 1156027

08 119669 119669 1196682 1191509

12 128525 128525 1285324 1280354

16 136864 136864 1368715 1360341

20 144761 144761 1447639 1442810
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Table 5.1: Numerical values of surface velocity gradient ¡ 00(0) for di¤erent values of 

when  = 1 =  =  = 0 and  = 2

 ¡ 00(0)

Ref. [75] Ref. [76] Present results

00 20175 201750 2017659

05 21363 213632 2136319

10 22491 224910 2249104

20 24597 235667 2459660

30 26540 245967 2653976

40 2835224

50 30058 300578 3005775

10 37447 374472 3744716

20 49004 490037 4900367

40 66339 663381 6633770

60 80002 800032 8000323

80 91642 916537 9165366

100 101934 1019819 1019817
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Chapter 6

Boundary Layer Flow of Maxwell

Fluid Due to Stretchable Rotating

Cylinder

The three-dimensional boundary layer ‡ow of Maxwell ‡uid induced by stretchable rotating cylinder

under the impact of a transverse magnetic …eld is investigated in this chapter. The constitutive ‡ow

equations for the current physical problem have been modeled and analyzed for the …rst time in literature.

The cylinder swirl motion is kept constant in order to avoid the secondary axial ‡ow. The concept of the

boundary layer is employed to simplify the partial di¤erential equations (PDEs) that govern the swirling

‡ow of Maxwell ‡uid together with energy. The Reynolds number plays the role of ‡ow controlling

parameter here and a certain range of positive Reynolds number is acceptable for the current analysis.

Thus, for the analysis of large Reynolds number the governing similar equations are simpli…ed through

suitable constitutive mathematical relations. The numerically computed outcomes for the ‡ow, heat

87



and mass transport mechanisms are expressed graphically. The results proved that the velocity …eld and

energy transport declines due to rise in Reynolds number and ‡ow penetrates shallower into free stream

‡uid. Furthermore, it decays exponentially faster. An excellent validation of numerical results is assured

through tabular data with existing literature.

6.1 Mathematical Modelling

Consider an elastic stretchable cylinder of radius 1 immersed into in…nite viscoelastic Maxwell

‡uid and ‡ow is produced due to swirling motion of the cylinder. The swirl motion of the

cylinder is assumed as  = 2 (cylinder stretching velocity and   0 having dimension

¡1) and  =  (constant cylinder rotation and  has dimensions same as the velocity).

Suppose that velocity …eld for ‡ow is V = [  ] where   and  are components along

(  )¡  respectively, and B = [0 0 0] the magnetic …eld applied normal to the ‡ow in

the direction of  ¡ . (see Fig. 61).

Figure 61: Schematic diagram for ‡ow con…guration.
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Based on the assumptions of axisymmetric, steady, incompressible and by using Eqs. (11)¡

(14) with (17) (18) and (112) (cf. Chapter 1) we obtain the governing boundary layer PDEs

for the present ‡ow and energy transport problem as:




+



+



= 0 (6.1)





+




+ 1

·

2
2

2
+ 2

2


+2

2

2

¸

= 

·
2

2
+
1







¸

¡
20


µ

+ 1




¶



(6.2)


 + 

 +

 + 1

h
2 

2
2

+ 2 2
 +2 

2
2

+ 2



 +

2



 ¡

22
2

i

= 
h
2
2

¡ 
2
+ 1





i
¡

2
0



¡
 + 1


 ¡ 1




¢
 (6.3)





+




= 1

1







·

(



)

¸

 (6.4)





+




= 

1







·

(



)

¸

 (6.5)

with the corresponding boundary conditions for given ‡ow problem are

( ) = 2 ( ) =  ( ) = 0  =   =  at  = 1

! 0  ! 1  ! 1 as !1. (6.6)

The governing equations can be reduced to ordinary di¤erential equations with the help of
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following transformations group

 = 2 0()  = ()  = ¡1
()

12


() = ¡1
¡1

 () = ¡1
¡1

  = 2

21
 (6.7)

After substituting the overhead ansatz, Eq. (61) is satis…ed automatically and Eqs. (62)¡(66)

reduce to

 000 +  00 +Re  00 ¡Re  0
2

¡1Re
³
2 00

 + 22 000 ¡ 4 0 00
´
¡ Re

³
 0

2 ¡ 1
00
´
= 0 (6.8)

2200 + 20 ¡ 
2 + 2Re 

0 +Re 

¡1Re
³
220 + 4200 + 4 0 ¡ 42



´
¡ Re

³
 ¡ 21

0 ¡ 1



´
= 0 (6.9)

00 + 0 +RePr 0 = 0 (6.10)

00 + 0 +RePr0 = 0 (6.11)

with BCs as

(1) = 0  0(1) = 1 (1) = 1  (1) = 1 (1) = 1 (6.12)

 0(1) = 0 (1) = 0 (1) = 0 (1) = 0 (6.13)
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In the above equations, 1 (= 1) is the Maxwell number, Re (=
21
2 ) the Reynolds number,

 (=
2

0
 ) the magnetic parameter, Pr

³
= 

1

´
the Prandtl number and  (= 1


) the Lewis

number.

The above similar equations for ‡ow and energy transport phenomena holds for Re  0

As reported by Fang   [20] in the investigation of viscous ‡ow due to stretchable rotating

cylinder, the convergence of solution for ‡ow equations is too slow especially for lessing values

of Re. Thus, following the Fang to make convergence fast the variable  transformed as  = 

Hence, Eqs. (68)¡ (613) become

 ¡ 2 +  ¡Re
¡
2 ¡  + 

¢

¡1Re 
¡
¡
22 ¡ 5

2 + 3
2 ¡ 4 + 4

2


¢

¡ Re
³
 

2 ¡ 1 + 1

´
= 0 (6.14)

2 ¡

2 +Re(2 + )

¡1Re 
¡(22 + 4

2 + 4
2 + 4 ¡ 42)

¡ Re ( ¡ 21
¡ ¡ 1

¡) = 0 (6.15)

 +RePr  = 0 (6.16)

 +RePr = 0 (6.17)

91



with transformed BCs as

(0) = 0 (0) = 1 (0) = 1  (0) = 1 (0) = 1 (6.18)

lim!1 ¡ = 0 (1) = 0 (1) = 0 (1) = 0 (6.19)

Where the subscript  represents the derivative with respect to 

6.1.1 Analysis for Large Re

Before …nding the numerical solution of the above ordinary di¤erential system, we de…ne the

certain transformations for the simpli…cation of above equations to …nd the results for large

Reynolds number. Thus, the following transformations  =
p
Re(¡1) () = 1p

Re
 () () =

() () = £() and () = ©() substituted into Eqs. (614)¡ (617) and employe the limit

Re!1 we get

 00 ¡  02 +  00 ¡ 1(2
2 000 ¡ 4 0 00)¡( 0 ¡ 1

00) = 0 (6.20)

00 + 20 ¡ 1
0 ¡(



2
¡ 1

0) = 0 (6.21)

£00 +Pr£0 = 0 (6.22)

©00 +Pr©0 = 0 (6.23)
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with BCs

 (0) = 0  0(0) = 1 (0) = 1 £(0) = 1 ©(0) = 1  (6.24)

 (1) = 0 (1) = 0 £(1) = 0 ©(1) = 0 (6.25)

Here in overhead equations, the prime denotes the derivative with respect to  Thus Eq.

(621) corresponds to the ‡ow problem for Maxwell ‡uid over stretching surface. This result is

not unexpected, physically justi…ed, because for very large value of Reynolds number Re the

curvature of cylinder becomes very small and occupy the whole space and it look like sheet.

Moreover for 1 =  = 0 Eq. (25) reduces to the viscous ‡uid ‡ow problem over stretching

sheet which discussed by Wang [17].

6.2 Quantities of Interest

The Nusselt and Sherwood numbers ( ) are de…ned as

 =
1

( ¡ 1)
  =

1
( ¡1)

 (6.26)

where  and  are the heat and mass ‡uxes, respectively,

 = ¡

µ




¶

=1

  = ¡

µ




¶

=1

 (6.27)

The non-dimensionl form of Eq. (627) is given by

 = ¡20(1)  = ¡20 (1)  (6.28)
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6.3 Numerical Solution

The ‡ow mechanism, solutal and thermal energy distributions are expressed through the similar

di¤erential Eqs. (614)¡ (617) along with corresponding boundary conditions given in Eqs.

(618) and (619). The solutions to these equations are obtained using a built-in MATLAB

technique known as bvp4c. Furthermore, the numerical scheme is also employed for the solution

of resulting Eqs. (620) ¡ (623) in the analysis of large Reynolds number with boundary

conditions given in Eqs. (624) and(625). For this the governing ODEs are transformed to the

system of …rst order ordinary di¤erential equations. Thus, the suitable transformation variables

for Eqs. (614)¡ (617) as

 = 1  = 2  = 3  = 1 (6.29)

 = 4  = 5  = 2 (6.30)

 = 6  = 7  = 3 (6.31)

 = 8  = 9  = 4 (6.32)

and for Eqs. (620)¡ (623) as

 = 1 
0 = 2 

00 = 3 
000 = 1 (6.33)

 = 4
0 = 5 

00 = 2 (6.34)

£ = 6 £
0 = 7 £

00 = 3 (6.35)
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© = 8 ©
0 = 9 ©

00 = 4 (6.36)

The resulting …rst order ODEs are as follows

1 =

23 ¡ 2 +Re(
2
2 ¡ 13 + 12)

+1Re 
¡(321 ¡ 5

2
13 ¡ 4123 + 41

2
2) + Re(2 ¡ 113)

1
 (6.37)

2 =

4
2 ¡ 2Re 15 ¡Re 14 + 1Re 

¡(6215 + 4
2
124 ¡ 4

2
14)

+ Re(4 ¡ 21
¡15 + 14)

2
 (6.38)

3 = ¡
RePr

2
15 (6.39)

4 = ¡
RePr

2
17 (6.40)

where

1 = 1¡ 21Re 
¡21 and 2 = 2¡ 41Re 

¡21

and BCs for above …rst order di¤erential system are

1(0) = 0 2(0) = 1 4(0) = 1 6(0) = 1 8(0) = 1 (6.41)

lim!1 ¡2 = 0 4(1) = 0 6(1) = 0 8(1) = 1 (6.42)

The conversion of Eqs.(620)¡ (624) into …rst order ODEs obtain as

1 =
22 ¡ 13 ¡ 41123 +(2 ¡ 113)

1
 (6.43)
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2 =
(42 ¡ 115)¡ 15

1
 (6.44)

3 = ¡Pr15 (6.45)

4 = ¡Pr17 (6.46)

where 1 = 1 ¡ 1
2
1 and boundary conditions for the above non-linear …rst order di¤erential

system are

1(0) = 0 2(0) = 1 4(0) = 1 6(0) = 1 8(0) = 1 (6.47)

2(1) = 0 4(1) = 0 6(1) = 0 8(1) = 1 (6.48)

6.4 Presentation of Results

The physical analysis of graphical outcomes for ‡ow velocity, thermal and solutal energy trans-

port is presented in this part of the chapter. Impact of physical constraint parameters on the

velocity …eld, temperature and solutal distribution is expressed graphically with the compar-

ison of Re = 1 and Re = 3. The values of non-dimensional physical parameters are taken to

be …xed as 1 = 05  = 1 Pr = 65 and  = 65 It is found that the velocity of the

‡uid decays quickly to free stream for Newtonian ‡uid and large Reynolds number thus, the

‡ow produces only near to the surface of the cylinder. Furthermore, heat and mass transport

is higher in non-Newtonian ‡uid and at a low Reynolds number. One thing should be noted

here for Re = 0 the swirl velocity independent from axial velocity. Thus, from Eq. (63) we

obtained swirl velocity as () = ¡12 Physically, for zero Reynolds number, the stretching of

the cylinder is diminished and the ‡ow around the cylinder is due to pure rotational constant
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motion. Moreover, constant swirling motion of cylinder does not induce a secondary axial ‡ow

of ‡uid. The Reynolds number is the controlling parameter for the ‡ow of Maxwell ‡uid. Basi-

cally is the ratio of inertial force due to the surface stretching to viscous force. Thus, the higher

values of increase the inertial force in the system which opposes the ‡uid accelerating force. In

consequence of this argument the ‡ow …eld decreases. The axial velocity …eld for increasing

values of Maxwell parameter 1and magnetic parameter  illustrated in Figs. 62( ) The

results reveal that axial velocity declines and decays exponentially for all of these three para-

meters. Plots in Figs. 63( ) show that the swirl velocity decreases for higher values of 1

and and the same result is true for radial velocity which is portrayed in Figs. 64( ). The

above results are physically valid, because higher values of magnetic parameter boost up the

Lorentz force that occurs in ‡uid ‡ow due to transverse applied magnetic …eld and this force

provides the resistance to the ‡ow velocity. Hence, in results velocity of ‡uid decreases. In the

case of higher values of Maxwell parameter 1 the stress relaxation phenomenon increases in

viscoelastic ‡uid and the liquid becomes more solid like with less ‡uidity (ability of material to

‡ow) due to which the ‡uid motion declines.

The transportation of thermal and solutal energy in the given swirling ‡ow mechanism is

visualized in the graphs of Figs. 65(¡ ) These graphical results for the temperature …eld

prove that increasing values of Maxwell parameter 1 enhance the heat and mass transport

rate in the ‡ow. As mention above for the more values of 1 the ‡uid behavior is solid like thus

particles of ‡uids are close to each other, so in consequence, the thermal and solutal energy

conduction boost up in the ‡uid ‡ow. The impact of Reynolds number Re on temperature and

concentration pro…le is found in decreasing trend. Physically, the Reynolds number controls

the ‡ow of ‡uid and it is clear for higher values of Re reduce the ‡ow …eld thus, the main
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forced convection mechanism for the transport of energy is reduced. Therefore, the temper-

ature and concentration …elds decline. Moreover, Prandtl number Pr and Lewis number 

describe the relative importance of thermal and solutal energy transport in the ‡uid to the

momentum transport. The higher values of both dimensionless numbers Pr and  lower down

the temperature and concentration …elds due to the reduction in thermal and mass di¤usivity

of the ‡uid, respectively.

In ‡ow analysis for very large Reynolds number Re, Figs. 66( ) express the graphical

results for axial and swirl velocity …eld, respectively, for increasing values magnetic parameter

 These …ndings reveal to us that the axial and swirl ‡ow velocity declines. There is the

same physical justi…cation for this reduction in axial and swirl velocity which is given above

in the case of higher values of  The physical mechanism for the transport of energy in the

swirling ‡ow of Maxwell ‡uid for very large Reynolds can be analyzed through the graphical

outcomes given in Figs. 67( ). It can be seen that both thermal and solutal energy transport

boost up for increasing values of  Physically, in case of higher magnetic parameter  the

conduction of energy increases between the ‡uid particles due to the enhancement in Lorentz

force. Furthermore, in the comparison of Newtonian and non-Newtonian ‡uids for higher values

of magnetic parameter  higher ‡uid ‡ow velocity and less energy transport is observed for

Newtonian ‡uids and the opposite trend noted is noted for non-Newtonian ‡uids.
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The comparison of numerical values of initial axial and swirl velocity gradient with existing

article for various values of Re is presented in Table 6.1. It is noted that the magnitude of these

velocities gradient increases with the higher trend in Re. Moreover, Table 6.1 also validates

the current analysis. The numerical values of the Nusselt and Sherwood number is given in

Table 6.2 for di¤erent pertinent parameters and …xed  = 0

Figure 62: Axial velocity pro…les via 1 and 
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Figure 63: Swirl velocity pro…les via 1 and 

Figure 64: Radial velocity pro…les via 1 and 
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Figure 65: Temperature and concentration pro…les via 1, Pr and 
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Figure 66: Axial and swirl velocity pro…les via  for Re!1

Figure 67: Temperature and concentration pro…les via  for Re!1
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Table 6.1: Comparison values of velocity gradients in axial and swirl directions for various

Re in limiting case when 1 = = Pr =  = 0.

Re  00(1) 0(1)  00(1) 0(1)

Ref. [20] Ref. [20] Present outcomes Present outcomes

01 ¡048180 ¡051019 ¡0489603 ¡0510233

02 ¡061748 ¡052605 ¡0614250 ¡0527509

03 ¡0729469 ¡0545828

04 ¡0812939 ¡0565435

05 ¡088220 ¡058488 ¡0887010 ¡0585714

01 ¡117775 ¡068772 ¡1179549 ¡0687943

02 ¡159389 ¡087263 ¡1597000 ¡0872647

03 ¡1914139 ¡1031356

04 ¡2181917 ¡1171360

05 ¡241743 ¡129788 ¡2417984 ¡1297884

10 ¡334446 ¡181006 ¡3344542 ¡1810074
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Table 6.2: Numerical values of ¡0(1) and ¡0(1) for various values of Re 1 Pr  and

 = 0.

Re 1 Pr  ¡0(1) ¡0(1)

01 01 45 02 1122190 1624961

02 1110453 1613206

03 1098944 1601671

04 1087626 1590307

01 01 45 02 0474278

02 0718912

03 0904159

04 1059115

01 01 01 02 1221940

02 1624961

03 2008637

04 2331290

01 01 45 01 1129003 1624961

02 1533036 2219778

03 1842840 2667455

04 2103945 3037788

104



Chapter 7

Thermal Analysis in Swirl Motion of

Maxwell Nano‡uid over a Rotating

Cylinder

In this chapter, the transport mechanisms of thermal and solutal energy in the swirling ‡ow of Maxwell

nano‡uid generated by a stretchable rotating cylinder are investigated. The novel features of heat

generation/absorption, thermal radiation, and Joule heating have been studied to control the rate of heat

transport. The temperature at the surface of the cylinder is assumed as constant (CWT) and axially

varying (PST). The in‡uence of thermophoretic and Brownian forces in Maxwell nano‡uid for convective

energy transport is studied by utilizing an e¤ective model for nano‡uid proposed by Buongiorno. The

whole physical problem of ‡uid ‡ow and energy transport is modeled in the form of partial di¤erential

equations (PDEs) and transformed into nonlinear ordinary di¤erential equations (ODEs) with help of a

suitable ‡ow ansatz. Numerically acquired results through the scheme bvp4c are reported graphically
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with the physical explanation. Graphical analysis reveals that there is higher transport of heat energy

in Maxwell nanoliquid for constant wall temperature (CWT) as compared to the prescribed surface

temperature (PST). Moreover, the temperature distribution increases with increasing values of radiation

parameter and Eckert number. It is also noted that a rise in Reynolds number reduces the penetration

depth and as a result, the ‡ow and transport of energy occur only near the surface of a cylinder.

7.1 Problem Development

Consider an electrically conducting axisymmetric, steady and incompressible swirling ‡ow of

Maxwell nano‡uid engendered by stretchable rotating cylinder of radius 1 in the presence of

transverse magnetic …eld. The velocity …eld for ‡ow is assumed as V = [ ] where  

and  are velocity components along (  )¡axes respectively, and B = [0 0 0] the uniform

magnetic …eld which is applied in the direction -axis It is assumed that the cylinder rotation

is constant around its axis and stretching is axially varying. Thermal analysis is investigated

by considering the temperatures at surface of the cylinder as  (1) =  (constant wall

temperature) and  (1) = 1 +  (prescribed surface temperature) The ‡ow mechanism

is presented in Fig. 61 (cf. Chapter 6).

In view of above assumptions the governing boundary layer equations of the present ‡ow

and energy transport problem by utilizing Cattneo-Christov theory (see Eqs. 110 111) and

conservation laws (cf. Chapter 1) are obtained as:




+



+



= 0 (7.1)
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
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 + 1
h
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2
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
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 (7.2)
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 (7.3)


 +

 = 1

h
2
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+ 1


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i
+ 
h

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 +
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1

¡



¢2i

¡ 1


1



 () +

2
0



¡
2 + 2

¢
+ 0


( ¡ 1) (7.4)





+




= 

·
2

2
+
1







¸

+


1

·
2

2
+
1







¸

 (7.5)

with the corresponding boundary conditions (BCs) are

( ) = 2 ( ) =  ( ) = 0

¡ 
 =  ( ¡  )   =  at  = 1 (7.6)

! 0  ! 0  ! 1  ! 1 as !1. (7.7)

Here  is the heat transfer coe¢cient and  =
¡16¤

3¤  31

 the radiative heat ‡ux, where

(¤ ¤) the Stefan -Bolttzmann constant and mean absorption coe¢cient, respectively.
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Introducing the following transformation group (Fang   [20])

 = 2 0()  = ()  = ¡1
()

12


() = ¡1
¡1

( ) () = ¡1
 ( )

() = ¡1
¡1

  = 2

21
 (7.8)

These ‡ow ansatz, satis…ed the Eq. (71) automatically and Eqs. (72)¡ (77) yield

 000 +  00 +Re  00 ¡Re  0
2

¡1Re
³
2 00

 + 22 000 ¡ 4 0 00
´
¡ Re

³
 0

2 ¡ 1
00
´
= 0  (7.9)

2200 + 20 ¡ 
2 + 2Re 

0 +Re 

¡1Re
³
220 + 4200 + 4 0 ¡ 42



´
¡ Re

³
 ¡ 21

0 ¡ 1



´
= 0 (7.10)

(1 +)(
00 + 0) + RePr 0 +Pr

00 +Pr
02

+Pr Re  +PrRe(1
02 +2

2) = 0 (CWT) (7.11)

(1 +)(
00 + 0) + RePr 0 ¡ PrRe  0 +Pr

00

+Pr
02 +Pr Re  +PrRe(1

02 +2
2) = 0 (PST) (7.12)

00 + 0 +RePr0 + Pr



0 + Pr




00 = 0 (7.13)

108



with BCs as

(1) = 0  0(1) = 1 (1) = 1 0 (1) = ¡1(1¡ (1)) (1) = 1 (7.14)

 0(1) = 0 (1) = 0 (1) = 0 (1) = 0 (7.15)

Here the physical paramters are de…ned as 1 (= 1) is the Maxwell number, Re
³
=

21
2

´
the

Reynolds number, 
³
=

2
0



´
the magnetic number, 

³
= ¢



´
the Brownian motion

parameter, 

³
= ¢

1

´
the thermophoresis parameter, 

³
= 16¤31

3¤

´
the radiation para-

meter, 
³
= 0



´
the heat generation/absorption parameter, 1

³
= 2

¢

´
and2

³
= 2

¢

´

are the Eckert numbers due to stretching and rotation of cylinder, respectively, 1

³
= 



p



´

the Biot number, Pr
³
= 

1

´
the Prandtl number and 

³
= 1



´
the Lewis number.

In the study of Newtonian ‡uid ‡ow caused by stretching and rotating cylinder as analyzed

by Fang   [20], for lower values of Re the solution convergence of similar ‡ow equations

is too slow. Thus, following Fang to make convergence fast, the variable  is transformed as

 =  Hence, Eqs. (79)¡ (715) become

 ¡ 2 +  ¡Re
¡
2 ¡  + 

¢

¡1Re 
¡
¡
22 ¡ 52 + 32 ¡ 4 + 42

¢

¡ Re
³
 

2 ¡ 1 + 1

´
= 0 (7.16)
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2 ¡

2 +Re(2 + )

¡1Re 
¡(22 + 4

2 + 4
2 + 4 ¡ 4

2)

¡ Re ( ¡ 21
¡ ¡ 1

¡) = 0 (7.17)

(1 +) +RePr  + +
2
 +Pr Re 

+PrRe(1
¡2 +2

2) = 0 (CWT) (7.18)

(1 +) +RePr  ¡ PrRe  + +
2


+Pr Re  +PrRe(1
¡2 +2

2) = 0 (PST) (7.19)

 +RePr + Pr



 = 0 (7.20)

with transformed BCs as

(0) = 0 (0) = 1 (0) = 1  (0) = ¡1(1¡ (0)) (0) = 1 (7.21)

lim!1 ¡ = 0 (1) = 0 (1) = 0 (1) = 0 (7.22)

The derivative with respect to  is represented by the subscript  in the above equations.
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7.2 Physical Quantities

The Nusselt and Sherwood numbers ( ) are de…ned as

 =
1

( ¡ 1)
  =

1
( ¡1)

 (7.23)

where  and  are the heat and mass ‡uxes, respectively, de…ned as

 = ¡

µ




¶

=1

  = ¡

µ




¶

=1

 (7.24)

The dimensionless form of Eq. (723) is given by

 = ¡20(1)  = ¡20 (1)  (7.25)

7.3 Numerical Solution

In this section the numerical solutions of established similar ODEs representing the ‡ow and

energy transport given in Eqs. (716)¡ (720) along with boundary conditions in Eqs. (721)

and (722) acquired with the help of bvp4c function. In order to employ the bvp4c scheme the

governing ODEs are transformed into the system of …rst-order ordinary di¤erential equations

by using the transformed variables as  = 1  = 2  = 3  = 1  = 4  =

5  = 2  = 6  = 7  = 3  = 8  = 9  = 4 for Eqs. (716) ¡ (720)
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The resulting …rst order ODEs are as follows

1 =

23 ¡ 2 +Re(
2
2 ¡ 13 + 12)

+1Re 
¡(3212 ¡ 5

2
13 ¡ 4123 + 41

2
2)

+ Re( 2
2 ¡ 113 + 112)

1
 (7.26)

2 =

4
2 ¡ 2Re 15 ¡Re 14 + 1Re 

¡(6215 + 4
2
124 ¡ 4

2
14)

+ Re(4 ¡ 21
¡15 ¡ 1

¡14)

2
 (7.27)

3 =

¡RePr 17 ¡ Pr79 ¡ Pr
2
7 ¡ Pr Re 

6

¡PrRe(1
¡22 +2

24)

1
(CWT) (7.28)

3 =

¡RePr 17 ¡ Pr79 ¡ Pr
2
7 ¡ Pr Re 

6

+PrRe 26 ¡ PrRe(1
¡22 +2

24)

1
(PST) (7.29)

4 = ¡RePr 19 ¡ Pr



3 (7.30)

where

1 = 1¡ 21Re 
¡21 2 = 2¡ 41Re 

¡21, 1 = 1+

and corresponding BCs are

1(0) = 0 2(0) = 1 4(0) = 1 6(0) = 1 8(0) = 1 (7.31)

lim!1 ¡2 = 0 4(1) = 0 6(1) = 0 8(1) = 1 (7.32)
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7.4 Discussion of Results

The analysis of thermal energy transport in the swirling ‡ow of Maxwell nano‡uid with the im-

pact of heat generation/absorption, thermal radiation and resistive heating is the basic theme

of our study. In this section of the study, we demonstrate the numerical results with physical

description for ‡ow and heat transport under the in‡uence of involved physical parameters, such

as Reynolds number  Maxwell parameter 1 magnetic parameter  thermophoretic para-

meter  Brownian motion parameter  radiation parameter  Eckert numbers (1 2)

heat source/sink  Biot number 1, Prandtl number Pr and Lewis number . Throughout the

numerical computation, we have …xed the values of pertinent parameters for thermal analysis

as  = 3  = 1 1 =  =  = 1 =  = 05 1 = 2 =  = 001 Pr =  = 65 In

the case of ‡ow analysis, we just change the values of Pr =  = 25 for appropriate results.

The impacts of Reynolds number  and Maxwell number 1 on temperature distribution

are envisioned in Figs. 72( ) The results reveal that higher estimation in  decreases the

temperature …eld but a converse trend is found for 1 Physically, due to the solid like response

of viscoelastic material in case of higher stress relaxation phenomenon, the conduction of ther-

mal energy enhances between the particles of the material and as a result, the temperature

distribution increases. As we know that the higher value of  reduces the forced convection

mechanism in the ‡ow, which causes to decline in the temperature …eld. The thermo-migration

and haphazard motions of nano-size particles in the ‡ow of Maxwell ‡uid are described by

the dimensionless parameters  and . The heat transport in the ‡ow is signi…cantly en-

hanced with the higher values of thermophoretic and Brownian motion parameters  and .

Physically, higher values of thermophoretic parameter  enhance the thermal gradient in ‡uid
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particles, which results in the enhancement of heat transport. Furthermore, due to the increas-

ing trend of Brownian di¤usion parameter  the particle collisions and nano-convection are

enhanced. Therefore, as a result, thermal energy transport increases. These results are explored

through Figs. 73( ).

The heat source   0 in the system produces the extra heat which increases the heat

transport in the ‡uid ‡ow and converse is true for the heat sink   0. The results for   0

and   0 are presented inFigs. 74( ) Figs. 75( ) depict the in‡uence of Eckert numbers

1 and 2 on temperature distribution in the Maxwell ‡uid ‡ow. It is observed that there

is higher transport in the thermal energy due to augmentation in 1 and 2. Physically, the

Eckert number describes the Joule heating e¤ect in the system which is the ratio of the kinetic

energy of the ‡ow to the thermal energy transport driving force. The higher values of 1 and

2 increase the temperature …eld because the advection mechanism for heat transport in the

‡ow enhances and heat dissipation reduces. Moreover, it is noted that the in‡uence of 2 is

more prominent on the temperature …eld as compared to 1. Figs. 76( ) show that both

the radiative parameter  and Biot number 1 boost up the temperature …eld. Physically, the

Biot number increases the thermal gradient at the surface of the cylinder due to a decrease in

the resistance for energy transport inside to the outside of the body. In view of this physical

justi…cation, the temperature …eld enhances. The thermal energy transportation in the ‡uid

‡ow is the decreasing function of Prandtl number Pr for higher values as given in Fig. 77.

In the whole thermal analysis, we conclude that there is higher transport of thermal energy

in ‡uid ‡ow for CWT as compared to PST. Physically, in the case of PST, the axial varying

temperature of the surface of the cylinder declines the heat transport in the Maxwell ‡uid ‡ow.

The outcomes acquired through numerical computation are validated through Table 71. The
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numerical values of thermal gradient against various pertinent parameters at the surface of the

cylinder for both surface heating agents CWT and PST are shown in Table 72. It is observed

that there is a higher value of thermal gradient in case PST than CWT. Moreover, 2 has

more in‡uence on the thermal gradient at the surface as compared to 1
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Figure 72: Temperature pro…le via  and 1.

Figure 73: Temperature pro…le via  and .
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Figure 74: Temperature pro…le via .

Figure 75: Temperature pro…le via 1 and 2.
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Figure 76: Temperature pro…le via  and 1.

Figure 76: Temperature pro…le via Pr.

118



Table 71: Comparison values of axial  0(1) and swirl 0(1) velocities gradient for various

Re in limiting case when 1 = = 0.

Re  00(1) 0(1)  00(1) 0(1)

Ref. [20] Ref. [20] Present results Present results

01 ¡048180 ¡051019 ¡0488907 ¡0501542

02 ¡061748 ¡052605 ¡0610423 ¡0528809

03 ¡0711562 ¡0563363

04 ¡0797618 ¡0585919

05 ¡088220 ¡058488 ¡0809541 ¡0608461

01 ¡117775 ¡068772 ¡1177669 ¡0697671

02 ¡159389 ¡087263 ¡1596640 ¡0869605

03 ¡1911086 ¡1038214

04 ¡2178536 ¡1178690

05 ¡241743 ¡129788 ¡2417865 ¡1297590

10 ¡334446 ¡181006 ¡3340094 ¡1800194

119



Table 72: Numerical values of thermal gradient 0(1) at the surface of cylinder for di¤erent

values of Re  1 1 and 2 with …xed 1 = 05  = 1 Pr =  = 65

Re  1 1 2 ¡0(1) (CWT) ¡0(1) (PST)

01 05 05 001 001 03337021 03732276

02 03605406 03982065

03 03740732 04108923

03 05 05 001 001 03744063 04108923

10 03646504 04051505

15 03558449 03997259

03 05 05 001 001 03741061 04108923

10 05807860 06734085

15 07007817 08421188

03 05 05 001 001 03741061 04108923

005 03713700 04090617

009 03686487 04072392

03 05 05 01 001 03741061 04108923

003 03539136 03988376

005 03338697 03868411
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Chapter 8

Von Kármán Flow of Maxwell

Nano‡uid Featuring the

Cattaneo-Christov Theory with

Buongiorno Model

This chapter analyzes the transport of thermal and solutal energy in Maxwell nano‡uid ‡ow induced

above the constant rotating disk. The signi…cant features of ‡uid thermal and solutal relaxation times

are studied by using the Cattaneo-Christov double di¤usion theory rather than classical Fourier’s and

Fick’s approaches. A novel idea of the Buongiorno nano‡uid model together with Cattaneo-Christov

theory is introduced for the Maxwell ‡uid ‡ow over a rotating disk. Additionally, the thermal and

solutal distributions have been controlled with the impacts of the heat source and chemical reaction. The

classical von Karman similarities are used to acquire the non-linear system of ordinary equations (ODEs).
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The analytical series solution of governing ODEs is obtained by employing the well-known homotopy

analysis method. The validation of results is provided with published results by making the comparison

tables. The graphically presented outcomes for the physical problem reveal that the higher values of

stretching strength parameter enhance the radial velocity and decline the circumferential velocity. The

increasing trend is noted for axial velocity pro…le in a downward direction with the higher values of

stretching strength parameter. The higher values of relaxation time parameters in Cattaneo-Christov

theory decrease the thermal and solutal energy transportation in the ‡ow of Maxwell nanoliquid.

8.1 Mathematical Formulation

Consider the laminar incompressible ‡ow of Maxwell nano‡uid above the stretchable rotating

disk. The stretching velocity of the disk is assumed as  =  and rotating velocity is  = ­

where  and ­ are stretching and rotating rates, respectively. A transverse uniform magnetic

…led B = (0 0 0) is applied to the ‡ow velocity in ¡directionThe whole ‡ow analysis is

performed into cylindrical coordinates by assuming that the velocity …eld as V = [  ] in

the directions of (  ) respectively, where (  ) are (radial, azimuthal, axial) directions,

respectively and physical interpretation of the phenomenon given in Fig. 81

By utilizing the conservation laws, Eqs. (11 12 16 17) and material relations given in

Eqs. (110 ¡ 112) (cf. Chapter 1) we arrived at following set of governing boundary layer
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partial di¤erential equations

Figure 81: Geomertic presentation of problem.




+



+



= 0 (8.1)
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The corresponding boundary conditions for given problems are

( ) =  ( ) = ­ ( ) = 0  =   =  at  = 0 (8.6)

! 0  ! 0  ! 1  ! 1 as  !1. (8.7)

In the view of von Karman ‡ow similarties

 = ­  = ­  =
p
­  =

q
­
 

() = ¡1
¡1

 () = ¡1
¡1

. (8.8)
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The overhead Eqs. (81)¡ (87) yield

 0 + 2 = 0 (8.9)

 2 ¡2 +  0 ¡  00 + 1(
002 ++2 0 ¡ 20)

+( + 1
0) = 0 (8.10)

2+0 ¡00 + 1(
002 + 20 + 2 0)

+(+ 1
0) = 0 (8.11)

00 ¡ Pr0 +Pr(000 +000) + Pr(
02 + 2000)

+Pr
00 ¡ Pr(

200 + 00) + Pr  +Pr0 = 0 (8.12)

00 ¡ Pr0 ¡Pr(
200 + 00)

+

(00 + 000)¡ Pr1¡ Pr10 = 0 (8.13)

with corresponding boundary conditions

 (0) =  (0) = 1  (0) = 1 (0) = 1 (0) = 1 (8.14)

 (1) = 0 (1) = 0 (1) = 0 (1) = 0 (8.15)
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with 
¡
= 

­

¢
as the stretching strength parameter, 1 (= 1­) the Maxwell number, 

³
=

2
0

­

´
the magnetic parameter,  (= ­) the thermal relaxation parameter,  (= ­)

the mass relaxation time, 
³
= ±

()­

´
heat generation parameter, 1 (=

1
­ ) the chemical re-

action parameter, 

³
= (¡1)



´
the Brownian di¤usion coe¢cient, 

³
=  (¡1)

1

´

the thermophoresis parameter, Pr
³
=

()


´
the Prandtl number and 

³
= 1



´
the Lewis

number.

8.2 Solution Procedure

The solution of governing ODEs which are given in Eqs. (89) ¡ (813) for ‡ow …eld, temper-

ature and concentration distributions is acquired by adopting the well known semi-analytical

technique namely as homotopy analysis method (HAM) along with corresponding boundary

conditions given in Eqs. (814) and (815). For the construction of homotopic series solution

via homotopy approach we choose the following initial guesses (0 0 0 0) auxiliary linear

operators ($ $$$) as

0() = ¡2(1 + ¡) 0() = ¡ 0() = ¡ 0() = ¡ (8.16)

$ [()] =  000 ¡ 0 $[()] = 00 ¡

$[()] = 00 ¡  $[()] = 00 ¡  (8.17)
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8.3 Convergence of Solution

In order to get the convergent series solution the optimal value of convergence control para-

meters }  } } and } for the velocity …eld, temperature and concentration distributions,

respectively, must be found. By employing the following exact square residual error formula for

any function ̂ the appropriate value of these parameters are obtained:

̂ =
1

 + 1

X

=0

"



X

=0

̂ (¢)

#2

 (8.18)

Series solution convergence for velocity …eld achieved at 20¡order of estimate while 30¡order

of estimate is noted for temperature and concentration …elds.

Table 8.1: Convergence of homotopic solutions of velocity …eld, temperature and concen-

tration distributions for …xed  = 1 =  =  =  =  = 1 = 01  = 1  = 005

 =  = 25

Order of approximation ¡ 0(0) ¡ 0(0) ¡0(0) ¡0(0)

1 0098180 1031300 0805625 0914583

5 0187226 1135630 0463267 1167764

10 0179973 1157462 0327401 1444659

15 0179393 1160232 0300465 1424335

20 0179323 1160626 0281796 1454769

25 0179323 1160626 0276891 1450788

30 0179323 1160626 0283497 1522378

35 0179323 1160626 0283497 1522378
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8.4 Discussion of Results

The ‡ow …eld, temperature and concentration distributions with the impact of pertinent pa-

rameters are presented graphically. An extensive discussion of acquired graphical results for

the current physical problem is presented in this section. Moreover, a physical justi…cation is

given for each result. The …x values of all physical parameters are taken as  = 05 1 = 01

 = 1 for velocity …eld and  = 1 =  =  =  =  = 01  = 1  = 1 = 005

 =  = 65 for temperature and concentration distributions.

It is observed from Figs. 82(¡) that for higher values of stretching strength parameter 

the velocity …eld increases in radial direction and decreases in the azimuthal direction. Because

for higher values of  the stretching rate enhance in the radial direction and swirl rate declines

in angular direction thus, corresponding components of velocity …eld increase and decrease,

respectively. In the case of the axial component of the velocity …eld, we noted that the axial

velocity increases in the negative direction. Physically, the rotating disk acts as a centrifugal

pump which throws the ‡uid in an outward direction thus, the axial velocity enhances in a

downward direction from the free stream. Figs. 83( ¡ ) depict the impact of Maxwell

parameter 1 on the velocity …eld. The results reveal that both radial and azimuthal velocities

decline and axial velocity increases in the upward direction. These outcomes are physically

justi…ed because for the higher values of 1 we observe the large value of relaxation time in

the ‡uid which means the ‡uidity of material signi…cantly decreases the ‡uid becomes more

solid like. Thus, in result the ‡uid motion decreases in all directions. The axial velocity in

downward direction decreases because disk is required larger centrifugal force to throw ‡uid

outward which is more solid like. Figs. 84(¡ ) explore that rise in magnetic parameter 
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decreases the velocity of the ‡uid motion. Physically, the magnetic parameter corresponds to

the Lorentz force which acts as a resistive force to the ‡uid motion thus, the ‡ow …eld declines.

There is a higher transport rate of thermal and solutal energy in the ‡ow of Maxwell ‡uid

induced above the rotating disk with the enlargement of 1 This result is explored through

Figs. 85( ) Physically, the conduction of heat and mass transport increases with a large

value of relaxation time in the viscoelastic ‡uid. The consequence of Cattaneo-Christov theory

to the transport of thermal and solutal is depicted through the relaxation time parameter 

and , respectively. Figs. 86( ) show that there is a decrease in thermal and solutal energy

with higher values of  and , respectively. Physically, increase in relaxation time the instant

propagation of energy waves in the ‡uid is controlled thus, transport of energy decreases. The

impact of stretching strength parameter  and magnetic parameter on the temperature and

concentration …elds is reported in Figs. 87( ) and Figs. 88( ) respectively. It is noted

that the temperature and concentration …elds boost up and decline with the increasing trend

in  and  respectively. Physically, the forced mechanism for the transport of thermal and

solutal energy from the surface of a disk to the free stream ‡uid mainly depends upon the axial

velocity component thus, the rise in  the axial component of the velocity …eld increases in

downward direction. So, in result the temperature and concentration …elds decline. On the

other hand, the rise in magnetic parameter enhances the Lorentz force in the axial direction.

Thus, the conduction of energy between the ‡uid particles rise due to the large Lorentz force,

which causes to boost up the temperature and concentration distribution.

In the nano‡uid ‡ow, the thermophoretic and Brownian forces contribute to the enhance-

ment of heat and mass transport. The e¤ect of these two forces on the temperature and concen-

tration distributions is studying through two dimensionless parameters  and  The plots in
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Figs. 89( ) explored that higher values of  enhance both temperature and concentration

distributions. Physically, rise in  the thermal gradient in the nano‡uid increases due to which

the tiny solid particles move away from higher temperature point to lower temperature point.

So, as a result, the conduction of energy rises in a nano‡uid. The converse trend is observed in

the case of a higher value of  for temperature and concentration distributions which is cleared

by Figs. 810( ) The temperature …eld enhances but concentration declines. Physically, the

Brownian motion increases due to a rise in  that produce the resistance to mass transport.

So, concentration distribution falls down but thermal transport enhances the due increase in

e¤ective heat capacity of nanoparticles. Plots in Figs. 811( ) envision the results for heat

generation source  to the thermal distribution and constructive chemical reaction 1 to the

concentration distribution. It is noted that temperature pro…le rises due to increment in  and

concentration pro…le boost up for higher values of 1 Physically, the heat source  generate

the extra heat in the ‡uid due to which the temperature …eld increases. In the case of higher

values of 1 the constructive reaction in the ‡uid increases the mass transport. The validation

of results is proved with help of comparison Tables 8283 and 84 with excellant agreement.
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Figure 82: Velocity …eld via rotation parameter 
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Figure 83: Velocity …eld via Maxwell parameter 1
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Figure 84: Velocity …eld via magnetic parameter 
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Figure 85: Temperature and concentration pro…les via 1.
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Figure 86: Temperature and concentration pro…les via  and .
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Figure 87: Temperature and concentration pro…les via .




(


0 2 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M = 01, 02, 03, 04

(a)




(


0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

M = 01, 02, 03, 04

(b)

Figure 88: Temperature and concentration pro…les via  .
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Figure 89: Temperature and concentration pro…les via .
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Figure 810: Temperature and concentration pro…les via .
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Figure 811: Temperature and concentration pro…les via  and 1 respectively.

Table 8.2: Comparison of radial, azimuthal velocity gradient and temperature gradient at

the surface in limiting case when 1 = =  =  =  =  =  =  = 1 =  = 0 and

Pr = 62

Ref. [80] Ref. [81] Ref. [82] Present results

 0(0) 05102326 05102 0510116264 05000776

¡0(0) 06159220 06159 0615849279 06185207

¡(0) 09338779 09337 0933694112 09300460
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Table 8.3: Comparison of radial, azimuthal velocity gradient at the surface in limiting case

when 1 = =  =  =  =  =  = 1 =  = Pr = 0 and  = 1

Ref. [83] Ref. [84] Present results

 0(0) ¡09483 ¡09483 ¡0948316

¡0(0) 14870 14870 1486953

Table 8.4: Comparison of temperature gradient at the surface for various values of Prandtl

number Pr in limiting case when 1 = =  =  =  =  =  =  = 1 =  = 0

 Ref. [85] Present results

1 03925 0396855

10 11341 1133851

100 26871 2686744
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Chapter 9

Thesis Summary and Future

Recomendations

The idea behind the present theoretical investigation was to analyze the rheological properties

of the viscoelastic Maxwell ‡uid ‡ow generated by stretchable and rotating surfaces. Moreover,

in a broad context predicting the transport mechanism of thermal and solutal energy in such

‡ows was also part of this study. The various physical e¤ects were incorporated while studying

the ‡ow phenomenon. Both numerical and analytical methodologies have been used to compute

the solution of similar governing ODEs to reveal the ‡ow and energy transport characteristics

of Maxwell ‡uid.

9.1 Conclusions

The key …ndings of this theory based analysis are summarized in this chapter in the form of

follwoing concluding points:
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² An increase in the phenomenon of stress relaxation for a viscoelastic Maxwell ‡uid resulted

in decrease the ‡ow velocity signi…cantly while conduction of heat energy was increased.

² The stretching strength parameter for bi-axially stretching sheet and stretchable rotating

disk enhanced the ‡ow of ‡uid in an axial and radial direction, respectively, whereas an

opposite trend was observed in the case of transverse and azimuthal direction, respectively.

² The Reynolds number Re in three-dimensional ‡ow of ‡uid due to the stretchable rotating

cylinder is the ‡ow controlling parameter and both swirl and axial velocities reduced and

decay exponentially for higher values of Re and ‡uid motion occurred only near to the

surface.

² For Re = 0 the ‡uid motion occurred near to the surface due to only torsional motion of

the cylinder.

² The higher values of Re also reduced the heat and mass transport in ‡uid motion due to

decrease in the main forced convection mechanism.

² Fluid ‡ow velocity from free stream to rotating disk surface was increased due to higher

values of stretching strength parameter.

² The buoyant motion of ‡uid booted the velocity …eld but declined the temperature and

concentration distribution in assisting mode.

² The stretching rate of the cylinder decreased due to higher values of the unsteadiness pa-

rameter, therefore, the ‡uid motion declined. Furthermore, the thermal energy transport

decreased with higher values of unsteadiness parameter in case of PST but enhanced in

the case of CWT.
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² Higher rate of heat transport was observed for constant wall temperature (CWT) as

compared to perscribed surface temperature (PST).

² The heat generation source, thermal radiation increased the heat transport rate in the

‡uid and constructive chemical reaction enhanced mass transport. Moreover, advective

transport of thermal energy was also enhanced for higher values of Eckert number.

² An increase in thermal energy transport in the ‡ow of Maxwell ‡uid was noted due to

haphazard motion and thermo-migration of nanoparticles.

² The temperature and concentration …elds were diminished by thermal and solutal relax-

ation phenomena, respectively.

9.2 Future Recomendations

More of the attention in this thesis has been paid to the analysis of rheological properties of

Maxwell ‡uid ‡ow induced above the rotating and stretching surfaces with thermal and solutal

energy transport. However, there is space for further development in this area of research

and extension to this can be carried out. So, here are following few suggestions that can be

considered in future research, which are listed as follows:

² Unsteady 3D ‡ow Maxwell ‡uid ‡ow over stretchable rotating cylinder under various

physical e¤ects can be part of future investigations. However, a well suitable ‡ow similarity

transformations are also needed for this work.

² Stretchable rotating boundaries have been considered here, afterward, the ‡ow of non-

Newtonian ‡uid over purely rotating surfaces may be part of the future investigation.
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² The ‡ow of Maxwell ‡uid induced by rotating sphere with thermal energy transport has

not explored yet. Thus, this gap can be …lled with detailed theoretical study.

² Several advanced numerical techniques can be utilized e.g. …nite element method (FEM)

and …nite volume method (FVM), for the simulation of such highly non-linear ‡ows phe-

nomena as well.
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