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Preface

Peristalsis is well-known activity for fluid transport in physiology. In this mechanism sinusoidal
waves travel along the walls of tube like organs of human beings propelling the fluid contained
within the tube in the direction of their propagation. In physiology the principle of peristalsis is
seen in the transport of food through oesophagus, movement of chyme in intestines, urine transport
from kidneys to bladder, bile transport in bile duct, vasomotion of blood vessels and many others.
This mechanism has been adopted by the engineers in designing several industrial appliances
including roller and fingers pumps and peristaltic pumps in heart lung and dialysis machines.
Improvement in the heat transfer processes is core issue for the industrial and biological processes.
Circulation of blood in the body causes the heat transfer amongst tissues. Therefore heat transfer
mechanism amongst tissues and the effect of heat on tissues are common topics of interest. The
efficiency of nuclear reactors and automobile engines depend on cooling system. Therefore
thermal radiators are used to prevent engines from overheating due to friction. The ordinary fluids
like water, ethylene glycol and engine oil etc. are used to cool various industrial devices by
transforming heat away from the heat source. However, fluids having low thermophysical
characteristics therefore minimizing the efficiency of the system. In order to overcome the
limitation of the coolant processes, the nanosized particles are mixed in the ordinary fluids.
Nanomaterials have unique thermophysical characteristics when compared to ordinary fluids. The
homogenous mixtures of nanoparticles and base liquids are known as nanofluids. Novel concept
of nanofluid greatly motivated the researchers due to its better thermal features, excellent stability,
physical strength and minimal clogging. It is now established fact that the non-Newtonian
materials are encountered in the physiological and engineering processes. Therefore viscous and

non-Newtonian fluids are accounted in this thesis. Structure of thesis is as follows.

Chapter one has literature review of relevant previous published work and relations for
conservation of mass, momentum, energy and concentration. Tensor forms for Newtonian and
non-Newtonian fluids (Sisko, Carreau-Yasuda and Powell-Eyring) are presented.

Chapter two elaborates the peristaltic flow of nanofluid. Hall and Ohmic heating effects with
temperature dependent viscosity are considered. Mixed convection and heat source/sink parameter

are also taken. Resulting problem is solved via NDSolve technique under the lubrication approach.



Material of this chapter is submitted for publication in Numerical methods for Partial
differential equations.

Chapter three addresses MHD peristaltic flow of nanofluid with variable viscosity. The nanofluid
saturates a porous medium with variable porosity and permeability. Temperature dependent
viscosity and Maxwell’s thermal conductivity models are adopted. Velocity and thermal slip
conditions are also taken into examination. Simplified non-dimensional equations are numerically
solved. Effects of important parameters on pressure gradient, velocity, temperature and heat
transfer rate are studied. Outcomes of this chapter are submitted for publication in Numerical
methods for Partial differential equations.

Chapter four illustrates the entropy generation in peristaltic transport of nanomaterial with iron
oxide. MHD and Joule heating. Energy equation further consists of heat source/sink and viscous
dissipation. Velocity slip and temperature jump conditions are accounted. The data of this chapter
is published in Journal of Thermal Analysis and Calorimetry 140 (2020) 789-797.

Chapter five examines the Hall, Ohmic heating and velocity slip effects on the peristalsis of
nanofluid. Convective boundary conditions and heat generation/absorption are considered to
facilitate the heat transfer characteristics. Governing equations for the peristaltic flow through a
curved channel are derived in curvilinear coordinates. The equations are numerically solved. The
contents of this chapter are published in Journal of Central South University 26 (2019) 2543-
2553.

Chapter six explores the thermophysical characteristics of nanofluid for mixed convective
peristaltic motion in the presence of Joule heating. Analysis has been organized for Sisko fluid.
Brownian motion and thermophoresis are used to examine the nanomaterial effects. Velocity and
thermal slip conditions are utilized. Zero mass flux condition is imposed. Small Reynolds number
and large wavelength arguments are employed. Governing problem is nonlinear in terms of both
differential equation and boundary conditions. Numerical solution to incoming nonlinear problem
is computed. Findings of this chapter is published in Journal of Thermal Analysis and
Calorimetry (2020).

Chapter seven illustrate the peristaltic activity of Sisko nano-liquid subject to Hall and Ohmic
heating effects. Fluids saturating porous space is modelled using modified Darcy's law. Thermal
radiation is also accounted. In addition, the analysis is carried out subject to thermal jump, velocity

slip and zero mass flux condition. Numerical solution to the resulting nonlinear problem through



lubrication approach is developed. The observations of this chapter are accepted in Journal of
Thermal Analysis and Calorimetry (2020).

Chapter eight communicates the numerical study for peristalsis of Carreau—Yasuda nanofluid in a
symmetric channel. Constant magnetic field is applied. Modified Darcy’s law and nonlinear
thermal radiation effects are considered. Viscous dissipation and Ohmic heating effects are
present. Long wavelength and small Reynolds number are considered. Resulting nonlinear
problems are solved numerically. The contents of this chapter are published in Journal of
Thermal Analysis and Calorimetry 137 (2019) 1168-1177.

Chapter nine addresses the flow of Carreau-Yasuda nanofluid in presence of mixed convection
and Hall current. Effects of viscous dissipation, Ohmic heating and convective conditions are
addressed. Zero nanoparticle mass flux condition is imposed. Wave frame analysis is employed.
Coupled differential systems after long wavelength and low Reynolds number are numerically
solved. The results of this chapter are published in Result in Physics 8 (2018) 168-1177.

Chapter ten describes the peristaltic transport of magneto nanofluid in a symmetric channel.
Carreau—Yasuda model is used to explore the shear thickening and shear thinning characteristics.
Joule heating and viscous dissipation effects are included in the energy equation. Effects of slip
velocity, temperature jump and zero mass flux boundary conditions for channel walls are further
considered. Entropy generation and Bejan number are studied. The data of this chapter is published
in Physica Scripta 95 (2020) 055804.

Chapter eleven explores the influence of mixed convection, Hall effect and magnetic field on
peristaltic motion of Powell-Eyring nanofluid in a symmetric channel. Energy equation includes
the viscous dissipation, Ohmic heating and thermal radiation. Brownian motion and
thermophoresis are considered to explore the nanofluid characteristics. Velocity slip, thermal jump
and zero mass flux conditions are considered on the boundary wall. Further temperature dependent
viscosity is taken into account. Lubrication approach is used to simplify the dimensionless form
of governing equations. Final form of equations are solved numerically. Outcomes of this chapter

are submitted for publication in International Communication in Heat and Mass Transfer.
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Chapter 1

Literature survey

1.1 Introduction

The purpose of this chapter is to present some basic concepts and equations for understanding of
subsequent chapters. A review of literature on peristaltic transport of nanofluid in the presence

of different assumptions are presented. Different types of fluid models are discussed in detail.

1.2 Background

Invention of nanomaterial has brought a revolutionary impact in engineering, industrial and bio-
logical fields. Nanoscience explains the thermophysical characteristics of material at nanoscience
level. Numerous types of nanomaterials are commonly used such as metals (Cu, Fe, Al and
Au), oxide ceramics (CuO, TiO2, ZnO and AlaOs3), carbon ceramics and carbon nanotubes.
Nanomaterials depict unique features like lighter weight, strength and better stability due to
higher surface area and volume ratio of material. Thermal conductivity of nanomaterials is
higher when compared with conventional fluids like water, kerosene oil and ethylene glycol.
Lower thermal conductivity often limits their use in heat flux devices. Choi [1] proposed that
thermophysical properties of conventional fluids can be remarkably enhanced by solid nanosized
materials. Inclusion of nanoparticles in ordinary fluid is known as nanofluid. The presence of
nanoparticles in the ordinary fluid changes the physical, chemical, electrical and mechanical

properties of fluid. Due to very small size minimal clogging and stability in flow passage is



observed. Nanofluid are commonly used in nanotechnology, nuclear system, paints, biomedi-
cine and biotechnology. In biological systems nanomaterials are used in nanoscopy, subcellular
fractionation, cancer therapy, biosensors, drug delivery, artificial organ generation, tissue en-
gineering, bioimaging, cell tracking, tissue engineering and omic data generation. Molecular
imaging of tissues and cells using nanotechnology produce new techniques to diagnosis the
critical diseases specially cancer. Revolutionary impact of nanofluid on the engineering and
biological aspects motivate the scientists to work in various dimensions for further refinement.
Maxwell [2] comprehensively studied the electricity and conducted nanofluid. Further he in-
troduced the thermal conductivity model for viscous fluid, which gives very accurate solution.
Hamilton-Crosser [3] generalized the Maxwell thermal conductivity model by introducing the
shape factor. Shape factor depend on the sphericity of nanomaterial. Experimental data de-
picts that thermal conductivity of nanomaterial is higher as compare to ordinary fluids. The
important features affecting the thermal conductivity are nanomaterial type, shape, size and
temperature. Brinkman [4] proposed the empirical relation to explore the viscosity of nanofluid.
Tiwari and Das [5] developed theoretical model to examine the nanofluid characteristics. Im-
portant features of this model is that we use numerical values of density, thermal conductivity,
viscosity and electrical conductivity of nanomaterial and fluids predicted by experiments. Xuan
et al. [6] examined the heat transfer analysis of nanofluid. The suspension of cu-nanomaterial
rapidly enhances the thermal conductance of nanofluid. Hayat et al. [7] theoretically considered
effect of temperature on fluid in the presence of various types of nanomaterial. By increasing the
temperature viscosity of nanofluid rapidly decreases therefore velocity of nanofluid increases.
Feizabadi et al. [8] examined the characteristics of nanofluid via twisted serpentine tube. The
experimental results shows that inclusion of AlsO3 in water enhances the efficiency factor of
system up to 3.73. Saadati et al. [9] practically check the impact of nanofluid on the perfor-
mance of nuclear reactor. Nanofluid magnify the energy production up to 27.3% and maintain
the suitable temperature. Therefore fuel cycle period and safety margin improved. Lebon et al.
[10] generalized the Maxwell viscosity model of nanofluid by introducing the particle size factor
and role of layers around nanoparticles. Buongiorno et al. [11] predict another mathematical
model to study the nanofluid characteristics. He described the seven slip mechanism to explore

the nanofluid characteristics. However thermophoresis and Brownian motion parameters are



prominent slip mechanism.

Scientists purposed numerous mathematical models to explain the diverse nature of different
fluids. Shear stress and strain play vital role to explain material characteristics. Non-Newtonian
fluids are commonly used in numerous industrial and biological processes such as chemical
reactors, mixing of massive particles, filtration devices and membrane based separation modules.
Apostolids et al. [12] examined the motion of blood nature in arterial system. Sisko [13]
experimentally studied the flow of greases and other materials over a shear rate of range from
0.04 to 22000 s~1. Shen et al. [14] analyzed Brownian motion and thermophoresis effects on the
Sisko nanofluid. Carreau et al. [15] proposed rheological models that describe different features
of fluid like stress relaxation function, shear rate, stress growth and complex viscosity of fluid
simultaneously. Kefayati et al. [16] studied outcome of natural convection on Carreau-Yasuda
fluid. By increasing the material parameter heat and mass transfer process is controlled. Dong
et al. [17] have improved drag force model and discuss its application in simulating nanofluid
flow. Nayak et al. [18] demonstrated the thermophoresis and Brownian diffusion effects on the
heat transfer characteristics. Heat transfer process depicts increasing behavior in the presence of
nanoparticles and higher Reynold number. Powell Eyring [19] is the non-Newtonian fluid model
that comprehensively explain the shear thinning characteristics of blood flow in arteries. Powell
Eyring follow the kinetic theory of liquids. Sheikholeslami et al. [20] elaborated the impact
of Brownian motion and thermophoresis on temperature gradient of nanofluid in enclosure.
Temperature gradient shows increasing trend for higher Rayleigh and Lewis number.

Peristalsis is a significant mechanism in which fluid moves due to contraction and expan-
sion of channel walls. The peristaltic phenomena worked in numerous industrial, biological
and physiological processes. Some naturally occurring examples of peristaltic motions are urine
transport via kidney to bladder, bile motion, food digestion, blood circulation and chyme move-
ment via intestine. Further this mechanism play vital role in mechanical instruments like hose
pump, dialysis pump, power generator, cell separator and heart lung machine. Latham [21]
initially explore the features of peristaltic motion of fluid. Jaffrin and Shapiro [22] studied the
fundamental aspects of peristaltic transport of fluid in channel. Hayat et al. [23] explored peri-
staltic mechanism for the Maxwell fluid. Hayat et al. [24] examined outcome of nanomaterial

on the peristaltic motion of fluid in channel. Inclusion of nanomaterial decreases the velocity as



well as temperature. Ali et al. [25] studied the heat phenomena during peristaltic motion in a
curved channel. Heat transport process increases in curved channel for higher curvature para-
meter. Abbasi et al. [26] generalized the Brinkman viscosity model by introducing exponential
temperature dependent viscosity. The temperature and velocity of nanofluid are controlled by
decreasing the variable viscosity parameter. Cueva et al. [27] demonstrated the impact of silver
nanomaterials in the dynamic simulator of gastrointestinal span. Composition of nanoparticle
and common fluid do not disturb the bacterial configuration or metabolic procedures of human
intestinal microbiota therefore nanomaterials are used for treatment. Ibrahim et al. [28] com-
prehensively studied the thermal radiation and variable concentration on peristaltic transport of
synovial nanofluid. Synovial fluid supports the joint by high effective cartilage lubrication and it
acts as a transport medium of metabolic/ nutrients. Reddy et al. [29] considered the peristaltic
motion of Jeffrey nanofluid. Velocity depicts opposite behavior in lower and upper half channel
for higher Jeffrey fluid parameter. Shahzad et al. [30] numerically explored the mass and heat
transfer attributes in the presence of different nanomaterials. They concluded that cylindrical
shaped nanoparticles are more effective as compared to spherical shape nanoparticles.

Several scientist examined effect of MHD on peristaltic motion of nanofluid due to its sig-
nificance in medical science and engineering. Magnetic field plays vital role in the treatment
of human diseases like cancer therapy, removal of blockage in arteries, reduction in bleeding
during surgery and magnetic endoscopy. Further magneto-hydrodynamics used in industrial
process such as petroleum industry, nuclear industry, power generator and polymer technology.
Hayat et al. [31] discussed the magnetic field effect on peristaltic motion of hyperbolic tangent
nanofluid. Velocity profile can be controlled in the presence of magnetic field therefore it is
used to minimize bleeding process. Abbasi et al. [32] discussed advanced drug transportation
process in the presence of copper magneto-nanomaterials. Magnetic flux are successfully used
to guide the nanomaterial toward target. Therefore nanomaterial only damage the cancerous
cell without effecting any other tissues. Mehrez et al. [33] explored the heat transport analysis
for MHD flow of nanofluid in an open cavity. The average Nusselt number depicts increasing
trend by higher nanomaterial property and Hartman number. Shahzadi et al. [34] analyzed
the inclusion of nanomaterials in blood with inclined magnetic field. Due to magnetic field

pressure rise per wavelength depicts the increasing trend. Reddy et al. [35] considered the
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effects of complaint wall and MHD on peristaltic flow of nanofluid. The size of trapped bolus
decreases due to magnetic influence. Raza et al. [36] studied the heat and mass transport
activity of nanofluid in permeable asymmetric medium using magneto carbon nanotubes. The
velocity profile increases near the boundary wall due to higher Darcy’s number. Rashidi et al.
[37] comprehensively examined the role of magnetohydrodynamic in biological phenomenon.
Stream line depicts the flow pattern of fluid that can be controlled by using proper magnetic
field. When the capacity of magnetic induction is higher then the strength of Hall current is not
negligible. Therefore Hall effect produces that is the ratio of electron-cyclotron and electron-
atom collision frequency. Abbasi et al. [38] studied the mathematical model of drug delivery
process with magnetic and Hall effects. Further silver-water nanofluid are considered with ther-
mal and velocity slip effects. Temperature profile rapidly increases due to the Joule heating
effects. However Hall effect plays important role to control the temperature. Therefore Hall
effect is compulsory in the magnetic resonance of angiography. Makinde et al. [39] theoretically
considered Coutte-Poiseuille flow of nanofluid in rotating permeable channel with non-uniform
viscosity. Further magnetic field and Hall effects are also considered. Axial velocity of fluid
and temperature increase when magnetic field enhances. However in the case of Hall parameter
opposite trend is noticed. Rafiq et al. [40] carried out theoretical investigation of peristaltic
flow of nanofluid with Hall and ion slip effects. Heat transport performance can be enhanced
by higher Hall parameter.

Mixed convection is a significant processes which occurs in many heat transfer phenomena.
Density of fluid represents the decaying behavior when temperature of fluid increases. Therefore
fluid velocity increases which become the cause of buoyancy force. Garoosi et al. [41] addressed
impact of mixed convection on nanofluid in a square cavity. Results indicate that heat and
mass transport rate enhances sharply by increasing the Grashof number. Tanveer et al. [42]
examined mixed convection of nanofluid in a curved wavy medium. The results revealed that
fluid velocity increases due to higher heat transfer Grashof number. However opposite trend is
noticed for mass transfer Grashof number. Zeeshan et al. [43] presented the theoretical study of
blood in the presence of nanomaterial with velocity slip effect. Velocity depicts increasing trend
in the central portion but opposite behavior is noticed by increasing the slip parameter. Haq

et al. [44] examined the impact of thermal radiation on magneto-nanofluid with slip behavior.
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They observed that fluid temperature can be controlled by increasing the thermal slip parameter
and decreasing thermal radiation parameter. Mustafa et al. [45] examined the wavy motion of
nanofluid with complaint wall. By increasing the speed of highly viscous nanofluid the viscous
dissipation increases, therefore fluid temperature enhances. Akbar et al. [46] presented the
numerical solution of peristaltic motion of a Carreau nanofluid. Magnetic field enhances the
pressure rise per wavelength.

Darcy [47] experimentally studied the flow resistance due to the porous medium. He in-
troduced the Darcy law and showed how to relate with momentum equation. Porous medium
commonly exists in biological peristaltic phenomenon such as capillaries, human lungs, bile duct
and gall bladder. Abbasi et al. [48] theoretically studied the peristaltic motion of nanofluid
in porous medium. Temperature of nanofluid can be minimized by enhancing permeability of
porous space. Tan et al. [49] investigated the modified Darcy’s law for an Oldroyd-B fluid.
Tanveer et al. [50] highlight the significance of modified Darcy’s law in peristaltic motion of
Sisko fluid. By increasing the Darcy’s number the temperature also increases. Kuznetsov et
al. [51] modeled the zero mass flux condition to explore the characteristics of concentration of
nanomaterial. In the presence of thermophoresis the normal flux of nanomaterials is zero at
the boundary. Shehzad et al. [52] studied thermophoresis on peristaltic motion of nanofluid.
Concentration of nanomaterial remarkably enhances for thermophoresis parameter. Numerous

scientists studied various aspects of peristaltic motion of nanofluid [53 — 60].

1.3 Basic equations

1.3.1 Continuity equation

The conservation law of mass leads to the fact that mass of a closed system remains constant,
regardless of the processes acting inside the system. In absence of source or sink in the control

volume, the continuity equation is given as

8/0f _
— . = 0. 1.1
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Here p; depicts the fluid density, V gradient operator and V shows the velocity. For incom-

pressible fluid (p; =constant), equation (1.1) becomes:
V.V =o. (1.2)

1.3.2 Equation of motion

The vectorial form of equation of motion is given as:
iAY -

where T(= —PI +S) depicts the Cauchy stress tensor, S the extra stress tensor, I identity
tensor, psb the body force and d/dt the material derivative given by:

40, 0 0, 8
at ot ox v@y Yoz

1.3.3 Energy equation

The conservation law of the energy describes that the increase in the internal energy of a
thermodynamic system is equal to the amount of energy gained (lost) by the system. The

general form of energy equation is

dl' = -
pep—y = T.(VV)+ V.(ksVT), (1.4)

where ¢, depicts the specific heat and k; stands for thermal conductivity.

1.3.4 Concentration equation

This mathematical relation follows the Fick’s second law. Concentration relation for nanoma-

terial can be explained as:

dC V2T )
E —DTﬁ"FDBV C. (15)
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Here C depicts the concentration of nanomaterial, D the thermophoretic diffusion parameter,

Dp Brownian motion and 7}, the mean temperature of wall.

1.4 Fluid models

1.4.1 Viscous fluids

If the shear stress is directly and linearly proportional to the rate of strain then such fluids are

called the viscous fluids. The Cauchy stress tensor for an incompressible viscous fluid is
T = —pl+ ;A (1.6)

in which zi; the dynamic viscosity and Rivlin Ericksen tensor Ay is

A; = (grad V) + (grad V', (1.7)
oU QU 92U
0X oY 0z
_ oV oV oV
gradV = S 5% 55 |

oW oW oW
oxX oY 072
oU 9V W
0X 90X 090X
vy = | % 5% o
o0 o7 oW
0z 0Z 0Z

The superscript “t” represents the transpose of the matrix and A; is given by:

ou v L ou 98U 4 W

28)? 8X+8Y aZ+ 0X

A, = | 90 4 9V v W | 9V
A1 ov T ox 25y oy taz | (1.8)

U . W oW | V. w

07 + 0X oY + 07 2 07

Common examples of Newtonian fluids are water and gasoline.
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1.4.2 Non-Newtonian fluid

The Cauchy stress tensor for non-Newtonian liquid is:
T=-pl+8, (1.9)
where the extra stress tensor S are different for different fluid models.

Powell-Eyring fluid model

The extra stress tensor for Powell-Eyring non-Newtonian fluid is defined as follows [18]:

- 1 .., /I
S = {Mﬁﬁ*ﬂ sinh ™1 (7)] A;. (1.10)

Here $* and ¢** depict the material characteristics of fluid. Further A; (the first Rivlin-Ericksen

Il = ,/%tr (A3). (1.11)

tensor) and II is defined by:

Sisko fluid model

An extra stress tensor S of Sisko fluid satisfies the following relation [15]:
5= [a* + B (H)”*l] A4, (1.12)
where A1 depicts the first Rivilin-Ericksen tensor and II obeys

Il = ,/%tr (A3). (1.13)

Here o* and 8** depict material parameters of fluid. Power law index n provides information
about shear thinning (n < 1) and shear thickening (n > 1) nature of fluid. For o* = 0 the Sisko

model is converted into generalized power law model.
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Carreau-Yasuda fluid model

The constitutive relation for the Carreau-Yasuda fluid is [31]:
§ = ju(+)As, (1.14)

where apparent viscosity p(v') is defined by

1Y) = Hoo + (g — pog) [+ (CID 7 (1.15)

with
1
Il = §tr(Ag) (1.16)

Here p., and g stand for infinite and zero shear-rate viscosities. The parameters a and I'
control the transition between the two extremes. Further “n” stands for dimensionless power

law index. The results for Carreau fluid model can be obtained by considering ¢ = 2 and

foo = 0.

1.4.3 Solution methodologies

Here we use Mathematica 9 to compute the numerical solution via NDSolve technique. NDSolve
is built in shooting method. This technique guarantees the accuracy in solution of the boundary
value problem using suitable step size. In this procedure we have chosen step size 0.01 for the
variation in both “y” and “x”. This technique attains exceptional accuracy and is stable

unconditionally.
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Chapter 2

Hall effects on mixed convective
peristalsis of nanofluid in presence of

temperature dependent viscosity

2.1 Introduction

The chapter addresses the mass and heat transfer features on peristaltic flow of nanofluid in
an asymmetric channel. Ohmic heating and viscous dissipation effects are present. Viscosity
of fluids depends upon temperature. A new model for the effective viscosity of nanofluid is
used by combining Brinkman model of viscosity and the exponential model for the temperature
dependent viscosity. The momentum and energy equations are solved for small Reynold number
and long wavelength. Behaviors of temperature, velocity and pressure gradient are analyzed

through graphs by using the numerical method.

2.2 Problem formulation

An incompressible peristaltic flow of nanofluid is considered in vertical asymmetric channel.
Sinusoidal waves of wavelength A propagate along the length of channel with constant speed c.

X — axis is along length of channel and Y — axis normal to it. Further the width of channel

17



(d1 4 dg) is taken. Mathematically peristaltic wall shape is defined as:

oo
H(X, D) = di+ alcos(TF(X — b)),
o
(X, %) = —do— blcos(Tﬂ(X —cf) + 7). (2.1)
Here H; and Hy depict the upper and lower boundaries respectively and a; and by the amplitude
of the waves. Further ~ represents the phase difference between these waves. We consider the

temperatures Tp and 77 at upper and lower walls. The strength of magnetic field B = [0, 0, By]
is taken. The Lorentz force is defined by:

F =J xB, (2.2)

where J depicts current density. Generalized Ohmic law in the presence of Hall effect obeys:

1

ene

J=0,; |[E+V xB - [J x B]|. (2.3)

Note that o, represents the electric conductivity of nanofluid, V = [U(X,Y,1),V(X,Y,1),0]
denotes the velocity field, e represents the electron charge and n. stands for number of density

of free electrons. Electric field E effects are neglected. From Egs. (2.2) and (2.3) we obtain

ong Bg ~ 5 —onBy o -
F= -U nfB V), V ntB )U), 0| .
1+(UnfBO/€ne)2( + (o f o/ene)V) 1+(UnfBo/€ne)2( + (o f o/ene)U)
(2.4)
The electric conductivity of nanofluid obeys:
Inf 14 $op - Do (2.5)
oy T EE R - (ZE -1 |

where o, represents the electrical conductivity of Fe3Oy4, o5 denotes the electric conductivity
of water and ¢ depicts the quantity of nanomaterial. The simplified form of Eq. (2.5) after
substituting Eq. (2.4) yields:

—Ala'fB%

F— AlafBg
1+ (Alm)2

= m(—ﬁ + AlmV),

(V+ AymU),0/|, (2.6)
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where the Hall parameter m and A; are:

O’fBo 3(% - 1>¢
= AL =14 —— o . (2.7)
ene (TF+2) = (TF-1¢
Ohmic heating term can be described as
1 A0fBy 5o | oo
—JJ Uus+Vv 2.8
Onf 1+ (Alm)Q( ) (28)
The Maxwell’s model of thermal conductivity (/) of nanofluid is:
an _ Kyp + 2Kf — 2¢<Kf — Knp) (2.9)
Kf Knp+2Kf+¢(Kf—Knp)
The Brinkman’s viscosity model is presented as:
1
g = W, (2.10)
where pi¢ is the viscosity of fluid and assumed to vary with temperature as
= pi0e=T=D) = 1y (1 = (T — Ty)), (2.11)

where second and higher terms are neglected as these are very small, ;1 the viscosity of fluid at
constant temperature and « an empirical constant for the viscosity. The parameter o positive

for liquid such as crude oil, benzene and water. Therefor p,,; becomes:

The continuity, momentum and energy equations describing the current flow are explained
through the expression: - -
ou . ov
ox oy 7

@+U@+f/@ __3_P+2i @ _|_i @‘F@
Pri\or "TVox Ty ) T Tox T Cax \Mox ) Toay \M\ox T oy (2.14)

AyosBE - _
-0 (- A nf (T = Th),
T (Aym)? (T — AimV) + g(pB)ns( )

(2.13)
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@+Ua_v+‘7@ —_@+2i @ _|_i @-F@
Pi\ar TVox T oy ) "oy oy \Miay ) Tox M \ox T oy (2.15)

AlafBg — —
T+ (A1m)? (V+AmU),
oT oT oT 0T 0T
(PC)ns <a£+Ua +V8Y>K <8X2+W>+@ 010
o Pi% U ov AyosBE o, :
2((=—=)2 i = 427 _MY5P0 72 2)
+”"f[ (G2 + G+ Gy * o) } T+ (A O V)

In above equations g represents the acceleration due to gravity, T' the temperature of fluid,
T (: ﬂ%ﬂ) the mean temperature, ® denotes the dimensional heat generation/absorption
and P(X,Y,1) the pressure. The density of nanofluid p,, ¢ » heat capacity of nanofluid C,y and

thermal expansion parameter of nanofluid 3,,; are describing through the following forms:

Pnf = (1 - ¢)pf + ¢pnpa nf = ( - ¢))Cf + ¢Cnp7
an = ( - ¢)5f + ¢6np

(2.17)

The thermophysical parameter of HoO and Fe3O4 nanomaterials are presented via Table 2.1.

The transformations between the fixed and moving frames are:

t=X-c,y=Y,u=U—c,v=V,p(,7) = P(X,Y,?), (2.18)

’@ I

where [u(Z,7),0(Z,7),0] and p(z,y) are the velocity and pressure component in the moving

frame. According to above transformations, the relevant expressions become:

ou 0v

% + 8_g =0, (2.19)

(* )Q_F*i ( _|_) @4_22 @ _|_£ @+@
Pf \M T 9z T oy i 9= "oz Tz Moz ) T ag \I' \ oz T a5 (2.20)

AlUfBO _ _ ’
R (@+0) = Avmn) + 9 (08), (T = L)

((ﬁ—l—c)ﬁ—i-@g)@——@—i-Q 0 (u @> +£ <M <@+%>>

Pnf oz 9y 10f6y2 oy \'"f 5 oz \!'"'\ oz " oy (2.21)
Sl et T
5 (A2 (v4+ Aym(a +c)),
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_ o 9 O°T  0°T
(pC)nf <(u+c)—+v—>T_Keff W—Fa—yQ) P

oz oy
oty (25N (0N (2n, 00N AvoyBE
=) E B oy oz T+ (Aim)?

Peristaltic transport is studied under the assumption of small Reynolds number (inertial effects

(2.22)
(a* +?).

to be negligible) and large wavelength. In light of these approximations, nondimensional forms

of Egs. (2.20) — (2.22) are given as:

o 1 D 0% AM? 0y

9 _
oy

Koy 00 Br(l—a9><82w>2 DAL (0 >2+5:o.

Ko 02 T (=92 \0y7) T (ame \ay T

0, (2.24)

(2.25)

Continuity equation is uniformly satisfied by definition of stream function and Eq. (2.24) depicts

that p # p(y). In the above equations the following dimensionless parameters are used:

g 8 n v A, Ho H o oa, b
_Auyfc(lilu c’ 7037 - N 1= di 2 — dl, 7d17 7d17
dip prcay c toCr o
= 5 = ,EC_ P ,M: —Bodl,a:ozg Tl—T()
N mo oG (Th — To) Ky 1o ( )
Ty — To) d T-T, d*®
G :pfgﬁf( ! 0) 1,9: m,Br:PrEc,EZ—,u:a—w,v:—a—w.
HoC Tl—TO Kf (Tl—T()) 8y ox

Here 9 represents the stream function, Re denotes Reynolds number, Br stands for Brinkman
number, Ec¢ denotes Eckert number, Pr stands for Prandtl number, M represents Hartman
number, § denotes wave number, 6 stands for dimensionless temperature and e represents

dimensionless heat source/sink parameter. Here S appearing in above equations satisfies:

s=Gr{1-o+o({2)}. (2.27)

Dimensionless flow rate in the fixed n(= Q/cd) and moving frame F (= §/cd) of reference are
associated with this relation:

n=F+1+d. (2.28)
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Here Q and g are dimensional flow rates in the fixed and moving frames. Furthermore ‘F’

obeys:
ho aw
F= —dy. 2.29
. Dy (2.29)

Velocity slip and temperature boundary conditions are given by:

F 0y  B1(1—af)d*yp 1
==, 5 =-1,0=—=, aty=nh
V=2 T o ’ g YT (2:30)
__Fow 50-a0)W 1y |
- 2’ 8y (1 _¢)2_5 8y2 - Vo 92’ Yy = ha.
Here hy = 1+ acos(2mz) and he = —d — beos(2mx + ) denote the dimensionless shape of

peristaltic upper and lower walls respectively, §; represents the dimensionless velocity slip
parameter. Here our purpose is to compute the Numerical solutions via NDSolve technique.

Next section presents the analysis of the obtained results.

2.3 Discussion

Obtained numerical solutions are discussed in this section. This section provides the analysis
of velocity, pressure gradient, temperature and heat transfer rate in detail subject to variations

of the flow parameters.

2.3.1 Pressure gradient

Effects of nanoparticle volume fraction, Grashof number, Hartman number, Hall parameter and
velocity slip parameter on pressure gradient are sketched in Figs. 2.1-2.5. Graph depicts that
pressure gradient follow the oscillatory pattern due to peristaltic motion. Fig. 2.1 presents the
pressure gradient corresponding to different values of the nanoparticle volume fraction. The
pressure gradient decreases for the larger values of nanoparticles in the wider part of channel.
Fig. 2.2 depicts the pressure gradient for various values of Grashof number. It can be seen
from the fig. that pressure gradient is enhances for greater values of Grashoff number. Fig.
2.3 shows the pressure gradient for different values of Hartman number. Decaying behavior is
noted in pressure gradient in the wider portion by enhancing the value of Hartman number.

Fig. 2.4 presents the pressure gradient for various values of Hall parameter. Here the pressure
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gradient slightly increases in the wider part and remains unperturbed in the occluded part of
the channel by the variations in the hall parameter. Fig. 2.5 depicts that the pressure gradient

is higher for larger values of temperature dependent viscosity parameter.

2.3.2 Velocity profile

Figs. 2.6-2.10 are plotted to examine the effects of different parameters on the velocity. These
figs. depicts that for positive values of flow rate, velocity is higher near central portion of
channel. Fig. 2.6 presents the axial velocity corresponding to different values of nanomaterial.
Velocity profile shows decreasing behavior near the central portion by increasing the values
of nanomaterial. This is due to the fact that an increment in the quantity of nanomaterial
increases the effective viscosity of the nanofluid and consequently it reduces the ability of the
fluid to move freely. Fig. 2.7 depicts the axial velocity for various values of Grashof number.
We examined that the axial velocity is higher near the center of channel for larger values of
Grashof number due to change in density. Fig. 2.8 shows the axial velocity for numerous
values of Hartman number. For larger values of Hartman number fluid velocity decreases.
Therefore magnetic field are used in injuries to control the bleeding process. Fig. 2.9 depicts
the axial velocity for various values of Hall parameter. Here the axial velocity enhances for the
higher values of Hall parameter. Physically the Hall effect balances the magnetic influence of
applied magnetic field to some extent. Fig. 2.10 shows the axial velocity for different values
of temperature dependent viscosity parameter. Axial velocity is enhanced near center of the
channel and reverse situation is seen near the channel wall when we increase the value of “a”

parameter.

2.3.3 Temperature profile

Fig. 2.11-2.15 present the effects of nanoparticle volume fraction, Grashof number, Hartman
number, Hall parameter and temperature jump condition on the temperature profile. Fig.
2.11 presents that the temperature profile is lower for the larger values of the nanoparticles
volume fraction. The addition of nanomaterials enhances the effective thermal conductivity of
the nanofluid and as a result heat is transmitted more quickly therefore temperature decreases.

This observation highlights the role of nanofluids as coolants in numerous applications. Effect
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of Grashof number on temperature profile is sketched in Fig. 2.12. We observed that an
enhancement in the Grashoff number increases the temperature throughout the channel. Fig.
2.13 shows the temperature profile corresponding to different values of Hartman number. Here
the temperature profile increases for larger values of Hartman number. Effect of Hall number
on the temperature field is explored via Fig. 2.14. Temperature field can be controlled by
increasing the Hall parameter. Fig. 2.15 presents that the temperature profile is higher for the
larger values of temperature dependent viscosity parameter. An increase in the temperature
dependent viscosity parameter shows a decreasing behavior in temperature profile. Table 2.2
are prepared to analyze the effects of ¢, Gr, M, m and « on the heat transfer rate. Table shows
that heat transfer rate increase at the upper wall by increasing the percentage of nanomaterial
in fluid, Grashof number, Hartman number and temperature dependent viscosity parameter. It
also shows that heat transfer rate decrease by increasing hall parameter. However at the lower

wall heat transfer rate show the opposite behavior.

2.4 Concluding remarks

Below mentioned points are the main findings.

e Viscosity of nanofluid is increased by the addition of nanomaterials in the base fluid.
Therefore flow properties of nanofluid are decreased by addition of nanoparticles. Heat
transfer characteristics of nanofluid are increased by the addition of nanoparticles due to

their higher thermophysical properties.

e Pressure gradient depicts decaying behavior in the wider portion and increasing trend in

the occluded portion of channel for nanofluid as compared to base material.

e In the presence of mixed convection, the pressure gradient, velocity profile, temperature

and heat transfer rate are enhanced.

e By increasing Hartman number, the axial velocity decays but temperature increases. Hall

parameter shows reverse behavior in the flow and heat transfer characteristics.

e Axial velocity is enhanced by increasing o parameter but temperature shows decreasing

behavior.
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Table 2.1: Numerical values of thermophysical properties [7]:

Properties Hs0 | Fe3Oqy
Density (kg/m?) 997.1 | 5200
Thermal conductivity (W/mk) 0.613 | 80.6
Specific heat (j/kgK) 4179 | 670

Thermal expansion coefficient (1/k)1076 | 210 13

Electric conductivity (S/m) 0.05 | 25000

Fig. 2.1: Effects of ¢ on dp/pxr when a = 0.8,b=0.7,d =0.7,n =11,y =7/4,Br = 0.2,8 =
0.1,Gr =3.0,M =1.0,a=0.1,m = 0.5 and ¢ = 2.0.

0.0 0.5 1.0 1.5 2.0
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Fig. 2.2: Effects of Gr on dp/px when a =0.8,6=0.7,d =0.7,n= 1.1,y =n/4,Br = 0.2, =

0.1, = 0.05,M = 1.0, = 0.1,m = 0.5 and & = 2.0.

Fig. 2.3: Effects of M on dp/px when a =0.8,b=0.7,d =0.7,n =11,y =n/4,Br =0.2,5 =
0.1, Gr = 3.0, =0.05,a = 0.1, = 0.5 and ¢ = 2.0.
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Fig. 2.4: Effects of m on dp/px when a =0.8,6 =0.7,d =0.7,n = 1.1,y =7/4,Br =0.2,5 =
0.1,Gr =3.0,¢ =0.05, M = 1.0, = 0.1 and ¢ = 2.0.

Fig. 2.5: Effects of @ on dp/px when a = 0.8,b=0.7,d = 0.7, =11,y =7/4,Br =0.2,8 =
0.1,Gr =3.0,0 =0.05,M = 1.0,m = 0.5 and ¢ = 2.0.
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Fig. 2.6: Effects of ¢ on u when a = 0.8,b = 0.7,d = 0.7,7 = 1.1,z = 1.0,y = w/4, Br =
0.2,86=0.1,Gr =3.0,M =1.0,a =0.1,m = 0.5 and € = 2.0.

Fig. 2.7: Effects of Gr on u when a = 0.8, = 0.7,d = 0.7, = 1.1, = 1.0,y = n/4, Br =
02,6=0.1,=0.05,M = 1.0, =0.1,m = 0.5 and € = 2.0.
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Fig. 2.8: Effects of M on u when a = 0.8,b = 0.7,d = 0.7,n = 1.1,z = 1.0,y = n/4,Br =
0.2,4=0.1,Gr =3.0,¢0 = 0.05,a = 0.1, m = 0.5 and ¢ = 2.0.

O5F--=--- P ;

‘m = 1.0, 0.5, 0.0

1.0+

-10 -05 00 05 10 15

Fig. 2.9: Effects of m on u when a = 0.8,b = 0.7,d = 0.7,7 = 1.1,z = 1.0,y = w/4, Br =
0.2,8=0.1,Gr =3.0,¢0 =0.05,M =1.0,a = 0.1 and € = 2.0.
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Fig. 2.10: Effects of & on u when ¢ = 0.8,b = 0.7,d = 0.7, = 1.1, = 1.0,y = n/4, Br =
0.2,4=0.1,Gr =3.0,¢0 =0.05, M = 1.0,m = 0.5 and ¢ = 2.0.

Fig. 2.11: Effects of ¢ on @ when a = 0.8,b = 0.7,d = 0.7, = 1.1,z = 1.0,y = n/4, Br =
0.2,6=0.1,Gr =3.0,M =1.0,a = 0.1, m = 0.5 and ¢ = 2.0.
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Fig. 2.12: Effects of Gr on @ when a = 0.8,b = 0.7,d = 0.7,n = 1.1,2 = 1.0,y = n/4, Br =
0.2,8=0.1,¢ =0.05,M = 1.0,a = 0.1, = 0.5 and & = 2.0.

4,

Fig. 2.13: Effects of M on € when a = 0.8,b = 0.7,d = 0.7,n = 1.1, = 1.0,y = w/4, Br =
0.2,6=0.1,Gr =3.0,¢0 =0.05,a = 0.1, = 0.5 and ¢ = 2.0.
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Fig. 2.14: Effects of m on 6 when a = 0.8,b = 0.7,d = 0.7,n = 1.1,z = 1.0,y = 7/4, Br =
0.2,4=0.1,Gr =3.0,¢ =0.05,M = 1.0, = 0.1 and € = 2.0.
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Fig. 2.15: Effects of & on @ when a = 0.8,b = 0.7,d = 0.7, = 1.1,z = 1.0,y = w/4, Br =
0.2,6=0.1,Gr =3.0,¢0 =0.05,M =1.0,m = 0.5 and ¢ = 2.0.
Table 2.2: Numerical values of heat transfer rate at the wall for variations in different

embedded parameters when a = 0.8,b = 0.7,d = 0.7,n = 1.1,z = 1.0,y = 7/4,Br = 0.2, =
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0.1 and € = 2.0.

¢ |Gr|M|m |a —%f@'(hl) KKLye'(hQ)
0.00 | 3.0 1.0 |05 | 0.1 | 4.44762 3.89810
0.10 4.35749 3.67321
0.20 4.47668 3.53368
0.05 | 0.0 4.12722 3.39170
2.0 4.20478 3.59434
4.0 4.63435 4.00174
3.0 0.0 4.04987 3.38649
1.0 4.35578 3.76011
2.0 5.27973 4.80683
1.0 | 0.0 4.45886 3.88171
0.5 4.35578 3.76011
1.0 4.22397 3.60181
0.5 | 0.0 | 4.33763 3.74897
0.1 | 4.35578 3.76011
0.2 | 4.46124 3.83744
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Chapter 3

Peristasis of nanofluid subject to

variable viscosity and porosity

This chapter highlights impact of magnetic force on peristaltic transport of nanofluid via sym-
metric channel and porous medium. Furthermore the velocity slip and thermal slip effects are
incorporated. Maxwell’s model of effective thermal conductivity has been used. The result-
ing non-dimensional coupled equations are solved numerically. The physical characteristics of

important variables are discussed through graphs and table.

3.1 Modeling

Consider the peristaltic transport of nanofluid in a symmetric inclined channel of width 2d
and angle ‘w’. An incompressible nanofluid comprises copper nanoparticles suspended in wa-
ter. Channel walls have non-variable temperature Ty. Heat source/sink parameter ® is also
considered. Cartesian coordinates are selected in such a manner that the X — axis lies across
the length of the channel whereas Y — axis perpendicular to it. The flow is generated due
to peristaltic waves moving along the channel boundaries. Sinusoidal waves propagate with

amplitude a;, wavelength \ and speed c. Wall shape is:

VAR, D) = +d+ alcos<27”<)‘< o)), (3.1)
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in which + and — signs depict the upper and lower walls, respectively. The fluid is electrically
conducting in the existence of an inclined magnetic field with non-variable strength By. The
density of nanofluid p,, ¢, heat capacity of nanofluid Cyf, thermal conductivity of nanofluid K,y

and electrical conductivity of nanofluid o5 are defined as:

Cnf = (1 - ¢)Cf =+ ¢Cnp7

Ky _ Kpp + 2Ky — 2¢(Kf — Knp) (3.2)
Onf 3(%;0—1%1)
o T EE
af of of

Mathematically Brinkman’s viscosity model is defined as:

1
HFnf = 1- ;)2.57 (3.3)

where 17 is the viscosity of ordinary liquid and ¢ depicts the quantity of nanomaterial. It is

further assumed that the viscosity of the ordinary liquid changes with temperature as:
by = e T = 1g(1 — ag(T — T)), (3.4)

Therefore viscosity of the nanofluid becomes:

oy = fro(1 (_10:05;2; To))’ (3.5)

here T', iy and ag represent the fluid temperature, constant viscosity of water and variable vis-
cosity coefficient. Appropriate velocity field and pressure for this problem are V = [U(X,Y, %), V(X, Y, ), 0] anc

P(X,Y 1) respectively. Related expressions satisfy:

ou oV

ax tay (3.6)
@_{_U‘@_FV@ —_£+2i @ +i @+@
Pni\at TVox TV ay )T ax  “ox \'fax ) Tav \!'\ox T ay 37)
_ _ U )
—05 B3 cos p(U cos p — Vsing) + g(pB)ns(T — Tp) sinw — /I:n{y) ,
1
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Pri\Cot "V ox "oy av “avy oy ) Tax \/' \ax T av (38)
ki(y)’
or — _oT oT PT T
(pC)nf<at—+Ua—X+VaY>K <8X2+W>+@

ou ov ou oV iz
8—)_()2 + (8_}7)2) + (8Y + aX) } + 0, BE(U cosp — Vsinp)? + L —

—0on B3 sing(U cosp — Vsing) — g(pB)ns(T — Tp) cosw —

g |2

Here g represents the acceleration due to gravity, k; the permeability of the porous medium
and ¢ the inclination of the applied magnetic field. The transformations between fixed and

moving frames are described as follows:

t=X—-c,y=Y,u=U—c,v="V,p,7y) = P(X,Y,?), (3.10)

'UI

where (u,0) and p are the velocity field and pressure in the moving frame (Z, g). By using these
transformation the governing equations are reduced in the wave frame. Further in light of long
wavelength and small Reynolds number estimations, non-dimensional forms of Eqs. (3.7)—(3.9)

are illustrated in terms of stream function ¢ :

2
9 = 19 <(1 9)6 w)—l—AgGrﬁsmw <A1M2 cos® p + M) (8_¢ + 1>

dr (1 —¢)*5 9y dy? k(y)(1 —¢)*> ) \ Oy
(3.11)
op
75 = (3.12)

00 Br(1—af) (0° 2 —ab 9
A33 2 (I(i ¢)(2X.5) <ay1§> + Br <A1M2 cos? o + ﬁ) <8—Z} + 1) +e=0.
(3.13)

Continuity equation is identically fulfilled and Eq. (3.12) depicts that p # p(y). The dimen-

sionless quantities are presented as:

P _QU_EU_Eg_ﬂ_ _H &p
BN A N _d TP T oy
psed c? fo F1(9)
Re = Ec= , Pr = M = Bd = Ty, k(y) =
€ va c CfTO 04, & = (plo, () 2 (314)
p 9B Tod? T — TO d>® 8¢ W
0= ,Br=PrEc,e = =
Gr pre To " rRGe= ToKf ay oz
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Here Pr denotes the Prandtl number, M the Hartman number, Re the Reynolds number,
Br the Brinkman number, Ec the Eckert number, § the wave number,  the non-dimensional
temperature and e represents the non-dimensional heat sink/source parameter. Further Ay, A

and As are the following relations:

322 — 1o
(= +2) - (E -8

=100 (C32) ) (816)

Ar=1+ (3.15)

Kpp + 2Ky — 2¢0(Ky — Kyp)

Az = . 3.17
57 Ko + 2K + (K — Kopp) (3.17)
The permeability of medium is expressed as:
d2 2
¢ (3.18)

k(y) = m,

here d, depicts the pore diameter and variable porosity (¢) is given as:

¢=0Co <1 + (4 eXpF%)) :
P

The values of Cjy, Cq7 and Cy are taken to be 0.37,1.0 and 2. The non-dimensional flow rates in

the fixed n(= Q/cd) and moving frames F (= G/cd) of reference are associated with this relation:
n=F+1. (3.19)

Here Q and ¢ are dimensional flow rates in the fixed and moving frames respectively. Moreover
‘[’ has the expression:

_ [Mow
F_/O 3y (3.20)
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The boundary conditions for the current flow configuration are:

2
@b:(),—a v :0,%:0, at y =0,
ay? Oy (3.21)
oy Bi(1—ah) 0% 0 :

Y =F, =-1,0+y=— =0, at y = h.
dy

oy T 192 oy

Here h = 14acos(2mx) depicts the peristaltic walls, v stand for thermal slip and 3; velocity slip
parameters. The system of equations subject to boundary conditions are numerically solved.

Graphical inspection of the numerical data is described in the upcoming portion.

3.2 Discussion

Graphical analysis of different parameters on temperature profile, axial velocity and pressure
gradient are presented. The impact of different variables on the heat transfer coefficients are

also discussed via Table 3.2.

3.2.1 Flow behavior

Figs. (3.1) — (3.5) represent the behavior of axial velocity for distinct values of ¢, M, Gr,
a and d,. Nanoparticles volume fraction on velocity is shown in Fig. 3.1. It represents a
considerable reduction in the velocity due to increment in ¢. Because presence of nanoparticles
create more resistance in the fluid flow. Fig. 3.2 represents the influence of Hartman number
on axial velocity. Fluid velocity decays by magnetic field strength because Lorentz force act as
the resistive force. The physical effect of Grashof number on the axial velocity is seen in the
Fig. 3.3. Axial velocity enhances by increasing the mixed convection effect. It depicts that
change in density due to the temperature variation lubricate the fluid motion. Fig. 3.4 depicts
impact of variable viscosity parameter on velocity. It indicates that velocity profile is higher
for larger a. When temperature dependent viscosity parameter increases then the resistance of
fluid flow decreases and as a result moving speed of fluid flow increases. Increasing the value of
pore diameter enhances the axial velocity (see Fig. 3.5). Effect of silver nanoparticle, Grashof
number, Hartman number, temperature dependent viscosity and pore diameter on the pressure
gradient are examined via Figs. (3.6) — (3.10). These graphs predict the oscillatory nature of

pressure gradient. Pressure gradient increases in wider portion and decreases in the occluded
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portion of channel by increasing the nanomaterials quantity (see Fig. 3.6). Fig. 3.7 depicts
that by increasing the Grashof number the pressure gradient increases. Pressure gradient shows
increasing behavior in the extensive part of channel. Fig. 3.8 shows that presence of Hartman
number slightly decreases the pressure gradient. An enhancement in “a” and “d,” yields

elevated behavior of pressure gradient in the channel (see Fig. 3.9 & 3.10).

3.2.2 Heat transfer analysis

Fig. 3.11 represents outcome of axial velocity for various values of nanomaterial volume frac-
tion. This Fig. represents the notable reduction in the temperature field by higher amount
of nanoparticles. Further temperature of base liquid is higher than nanofluid. This analysis
highlights the value of nanofluid as a coolant agent in several industrial applications. Fig.
3.12 represents the rise in temperature of nanofluid by increasing the “M” factor. Fig. 3.13
indicates that temperature field of nanofluid enhances for larger Grashof number. Effect of
«a on temperature is studied through Fig. 3.14. When variable viscosity parameter increases
then temperature profile slightly decreases. Effect of pore diameter on temperature is studied
through Fig. 3.15. Temperature profile decreases for increasing value of pore diameter.
Effects of ¢, M, Gr, a, v, ¢, d, and w on the heat transfer rate are studied via Table 3.2.
Inclusion of nanoparticles produces higher heat transfer rate because nanoparticles have higher
thermal conductivity. Therefore nanoparticles facilitate the heat transfer between the solid
boundary and liquid. Grashof number has high impact on heat transport phenomena. However
heat transport rate enhances for larger Grashof number and channel inclination of angle. Slight
increase in the heat transport rate at wall is found when ‘M’ enhances. Minor decrease in
heat transport process is seen for large ¢, v and « variables. The size of pore diameter show
an interesting change of heat transport phenomena. When d, = 3 the heat transport rate is

enlarge but for d,, > 3 the heat transport rate slightly decreased .

3.3 Concluding remarks

Influence of silver nanoparticles on fluid is studied in the presence of inclined MHD, variable

porosity and temperature dependent viscosity. Key finding of this study are described below:
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e Nanofluids play an important role in comparison to base fluid in the cooling performance.
Infact it enhances the heat transport process at the wall and as a result the temperature

reduces.

e An increment in the nanomaterial quantity causes reduction in axial velocity for larger

resistance. Further presence of nanoparticles also reduces the pressure gradient.

e Higher Hartman number slow down the flow rate. Presence of MHD enhances the tem-

perature profile.
e In the presence of mixed convection the fluid velocity and temperature increases.

e [t is observed that pressure gradient enhances when Grashoff number increases. Such

enhancement is prominent in the extensive part of channel.

e Variable viscosity parameter increases the velocity of nanofluid. However it reduces the

temperature of nanofluid.
e Heat transport rate depicts the decreasing trend for larger o, v, ¢ and d,.

e An enhancement in heat transport rate is noted for larger Gr, M and w.

3.4 Graphs and tables

Table 3.1: Numerical values of the thermophysical properties [7]:

Phase plkg/m®) KW/mK) C(J/kgK) B(1/k)x 1076 o(S/m)
Water 997.1 0.613 4179 210 0.05
Silver (Ag) 10500 429 235 18.9 6.3 x 107
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Fig. 3.1: Illustrations of the velocity for different values of nanoparticle volume fraction when
a=005M=10,Gr=30,p=%,w=7%,a=08n=08x=10,Br=02,d, =57 =
0.05, 3 = 0.05 and ¢ = 2.0.

Fig. 3.2: Illustrations of the velocity for different Grashoff number when o = 0.05, M = 1.0,
¢ =005¢=7%w=7%a=081n=08z=10 Br =02 d,=5v=005 8 =0.05 and
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Fig. 3.3: Illustrations of the velocity for different Hartman number when o = 0.05, Gr = 3.0,

¢ =0.05¢=7%w=7%a=08n=082z=10, Br =02, d,=5v=005 8 =0.05and
e =2.0.

Fig. 3.4: Tllustrations of velocity for different variable viscosity parameter when M = 1.0, Gr =

3.0,9=0.05¢=7F,w=17%,a=08n1n=082=10, Br=02,d,=5,7=0.05 3 =0.05 and
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Fig. 3.5: Illustrations of the velocity for different pore diameter parameter when M = 1.0, Gr =

3.0, =0.05,0 = F,w=%,a=08n=082z =10, Br =0.2, a = 0.05,v = 0.05, 3 = 0.05
and € = 2.0.

dp/dx

Fig. 3.6: Illustrations of the dp/dx for different nanoparticle volume fraction when «

0.05,M = 1.0, Gr = 3.0, = J,w = 7,a=08,n=08,z =10, Br =0.2, d, = 5,7 = 0.05,
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£ =0.05 and € = 2.0.
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Fig. 3.7: Illustrations of dp/dx for Grashoff number when o = 0.05, M = 1.0, ¢ = 0.05,¢ =

yw=7%,a=08n1n=08x=1.0, Br=0.2,dy, =5,7=0.05 3=0.05 and € = 2.0.

M= 1.0, 0.5, 0.0
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Fig. 3.8: Illustrations of dp/dz for Hartman number when o = 0.05, Gr = 3.0, ¢ = 0.05,¢ =

1a=08n=082=10, Br=02,d,=5,7=0.058=0.05and € = 2.0
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Fig. 3.9: Tllustrations of dp/dz for variable viscosity parameter when M = 1.0,Gr = 3.0,
¢ =10.05¢=7w

=7,a=08,7n=082=10, Br=0.2,d, =5,7 = 0.05 8 = 0.05 and
e =2.0.
0.‘0 ‘ ‘ 0.% ‘ 1.:0 1.:5 ‘ ‘ ‘ ‘ 2.‘0
X
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Fig. 3.10: Ilustrations of dp/dx for pore diameter when M = 1.0,Gr = 3.0, ¢ = 0.05,¢ =
5a=08n=082=10, Br=02,d,=5,7=0.05 8=0.05and € = 2.0.
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Fig. 3.11: Tllustrations of temperature for nanoparticle volume fraction when M = 1.0,Gr =
3.0, =0.05¢=%,w

,a=08,17=082=1.0,Br=02,d,=5,7=0.05 8=0.05and
e =2.0.

0.0 0.5

15

46



Fig. 3.12: Illustrations of temperature for Grashoff number when M = 1.0,¢ = 0.05, a =
0.05,0 = F,w=7%,a=08,1n=0.8,2=10, Br=02,d,=5,7=0.05 8=0.05 and € = 2.0.
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Fig. 3.13: Ilustrations of temperature for Hartman number when M = 1.0,Gr = 3.0, ¢ =
0.05,0 = F,w=7%,a=08,1n1=0.812=10, Br=02,d,=5,7=0.05 8=0.05and € = 2.0.
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Fig. 3.14: Illustrations of temperature for variable viscosity parameter when M = 1.0, Gr = 3.0,

¢ =1005¢=7%w=7%a=08n=08z=10, Br =02, d, =5v=005 8 =0.05 and
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Fig. 3.15: Illustrations of temperature for pore diameter when M = 1.0, Gr = 3.0, ¢ = 0.05,p =
Tw=7%a=081n1n=082=1.0, Br=0.2, a=0.05~v=0.05 5=0.05and € = 2.0.

Table 3.2. Heat transfer rate at the upper wall for different embedded parameters ¢ =
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Chapter 4

Entropy generation in peristalsis

with iron oxide nanofluid

Main theme of this chapter is to examine the entropy generation in peristaltic transport of
nanofluid with combined effects of MHD, Ohmic heating and viscous dissipation. Further
velocity slip and thermal jump conditions are considered. Numerical simulation is used for
describing the velocity, temperature, pressure gradient and entropy generation. Physical inter-
pretation of obtained results is explored through graphs. The proposed mathematical model

has relevance with modern drug delivery processes and cancer therapy.

4.1 Formulation

Peristaltic motion of nanofluid in a tube of radius a is analyzed. Waves of the speed ¢ and
wavelength )\ travel along the tube walls. We select a cylindrical coordinates system (R, Z).

Here Z-axis lies along the centerline and R-axis in radial direction. Wall surface is defined as:

- 2T

h:a—i—bsinT(Z—ct_), (4.1)

where b indicates wave amplitude and ¢ time. Nanofluid is mixture of nanoparticles and or-
dinary fluid. Water is considered as an ordinary fluid and iron oxide nanosized particles as

nanomaterials. These are considered to be in thermal equilibrium. For the present problem,
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Brinkman viscosity model is considered for p,, as:

Fy

Hnf = T g)25” (4.2)

where ¢ denotes viscosity of conventional liquid and ¢ depicts nanomaterials volume fraction.

In view of Maxwell model the thermal conductivity of nanofluid is:

an _ Knp + 2Kf — Q(Z)(Kf — Knp) (4 3)
Kf Knp+2Kf+¢(Kf—Knp)

The density of nanoliquids p,, ¢, heat capacity of nanoliquid (pC)ny, thermal expansion of nano-

liquid (pB)ns and electric conductivity (o, ¢) of the nanoliquid are:

Pnf = (L=8)ps + pnp, (pPC)ng = (1= 8)(pC) s + d(pC ),
3(222 —1)¢ (4.4)

(o = (1= 0)(pB)s + 6By L =14 T

Magnetic field of constant strength By is applied. Induced magnetic field for small magnetic
Reynold number is omitted. The wave (7, Z) and laboratory (R, Z,t) coordinates are related

by:

F=Rz=7Z—-c,u=U,w=W —c,p(z,7) = P(Z, R, ). (4.5)

Here (U, W) and P denote the velocity field and pressure in the laboratory frame (Z, R, 1)
and (u,w) and p represent the velocities and pressure in the wave frame (z, 7). Governing

mathematical expressions in the wave frame are given by:

10(ru) Ow
F ok Tor (49)
_ _Op Ou 200 _u
L, 0o ow
Hntoz |oF 9z
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_0 _ 0\ _ _ Op a (0w 10 ou  Ow
Pnf <u§ + (’LU-FC)%) (w+c) = a_ +:unf l:a <2 82) + ;% (1” <£ + §>>(:|48)

—anfBO (w + ¢),

_oT ~ oT 9T 1aT 0T

(3 (3)) (- 5)

where ® stands for dimensional heat absorption/generation. We consider following dimension-

> + onsBi(w +c)? (4.9)

+ @,

less variables:

z T w i_a H a’p
== Tr=mnn=—uu=— = — = — =
A a’ c’ cd’ A a’P cApg’
ca 2 C
R :pf , o c P My va: ﬂBga, (4.10)
My CyTo Kr o Vo
P
0= T TO,BT:PrEc,e—a—,
0 Ky

where Re, Br, M, 4,0 and € denote the Reynolds number, Brinkman parameter, Hartman num-
ber, wave number, nondimensional temperature and heat source/sink parameters respectively.

In light of the long wavelength and small Reynold number supposition, we have:

op
=0 (4.11)
Op_ L 10 ( 0w\ Onfype
9z (1—¢)25ror (T 87") o M= (w+1), (4.12)
Ky,;10 ([ 00 Br ow anf 9 -
K, ror (Tar) MRS <8r> BriM?(w+1)+e=0.  (413)

Continuity equation is trivially justified and Eq. (4.11) depicts that p # p(r). The nondimen-

sional form of flow rate in the fixed n(= Q/ca) and moving F(= ¢/ca) frames of reference are

n="F+-= < C2>. (4.14)

related by:
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Here @@ and ¢ are dimensional forms of flow rates in the fixed and moving frames. Furthermore
‘F” is given as:

h
F = 277/ rwdr. (4.15)
0

The associated boundary conditions are:

8—wZO 80:0’ at r =0,

+ﬁa_w_ai1 0,20 —0, atr=nh (436)
YT —emer - Ty T

Here h = 1 + asin(27x) depicts the nondimensional configuration of peristaltic wall, 3, repre-
sents the dimensionless velocity slip variable and + stands for dimensionless thermal slip para-
meter. In this problem we use the Mathematica software to compute the numerical solutions

via NDSolve technique.

4.2 Entropy generation analysis

Entropy generation expression can be defined as follows:

Ky (0T oT\? Onf o )
=S ()1 (5)) e

_\ 2 _\ 2 — _\ 2
Mg fo ((22) 4 (22 ou , o
T 2((8%) +<8z> )+(az+af ' (4.17)
N _ Ky % 2+L 8_w 24_%3 M2( _|_1)2 (4.18)
TRy \or) T (=928 \or oy T |

Ng is the dimensionless form and S¢g is known as entropy generation variable. The total entropy
generation can be written as

Ng =Ny + Nr + Ny, (4.19)

where Ny depicts the entropy generation effects caused by the presence of characteristic heat
transfer, Nr shows the entropy generation effect for the presence of fluid friction irreversibility
and Njs depicts the entropy generation effect for magnetic field. Bejan number (Be) gives the

comparison between the total irreversibility and irreversibility due to heat transfer. Mathemat-

53



ically
_Nu

Be = . 4.20
e= 5 (1.20)

Clearly Bejan number ranging from 0 to 1 holds when the entropy generation due to combined
effects of fluid friction and magnetic field dominantes. Bejan number approaching to 1 is the
opposite case where heat transfer irreversibility dominants and Bejan number 0.5 corresponds

to situation when contribution of both fluid friction and heat to entropy generation are equal.

4.3 Discussion

The analysis of velocity field, entropy, temperature and pressure are illustrated through Figs.
(4.1)-(4.21) . For graphical analysis we have considered fixed numerical values of some para-

meters.

4.3.1 Velocity distribution

Figs. 4.1-4.4 illustrated the analysis of axial velocity across the tube for nanomaterials volume
fraction ¢, Hartman number M, velocity slip parameter 3; and amplitude ratio . Axial velocity
reduces for larger value of nanomaterials volume fraction near center of tube (see Fig. 4.1). It is
because of the fact that inclusion of nanomaterials produce more resistance to the flow and thus
fluid velocity decays. Fig. 4.2 indicates effects of Hartman number on velocity distribution. It
means that axial velocity reduces for larger applied magnetic field due to the retarding nature
of Lorentz force. From Fig. 4.3, it is noted that axial velocity decreases near core part of tube
by increasing velocity slip parameter and reverse behavior is seen near tube wall. It is noted

from Fig. 4.4 that axial velocity decays by increasing the amplitude ratio.

4.3.2 Pressure distribution

Figs. 4.5-4.7 are plotted to examine the pressure gradient across the tube for various fluid
parameters of interest. Fig. 4.5 depicts that pressure gradient across the tube enhances by
enhancing the amount of nanomaterials. It is due to the fact that resistance of fluid motion
provided by the addition of nanomaterials enhances and therefore pressure gradient elevates.

Fig. 4.6 reveals that for large Hartman number, the pressure gradient increases. Physically in
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the presence of strong magnetic field, more resistive force is experienced in system due to which
more disturbance occurred and so pressure gradient enhances. Fig. 4.7 studies influence of
velocity slip on pressure gradient. It illustrates that an increase in 3, decays pressure gradient in
the tube and prominent effects are noticed in narrow portion. Figs. 4.8-4.10 have been displayed
to study effects of pertinent variables on pressure rise per wavelength (Vp)). These graphs
depict that when the flow rate enhances then Vp), decreases continuously. Graphs are generally
classified in three regions known as retrograde, peristaltic and augmented pumping portions.
Figs. 4.8 and 4.9 show that by enhancing the nanoparticles amount and Hartman number
the pressure decays in retrograde pumping portion (n < 0, Vpy > 0) and peristaltic pumping
portion (n < 0, Vpy < 0). Furthermore, opposite trend is found in augmented pumping portion

(n>0,Vpy <0). Fig. 4.10 depicts that Vp, increases by larger amplitude ratio parameter.

4.3.3 Temperature distribution

Figs. 4.11-4.13 displayed influences of ¢, M and v on temperature. Fig. 4.11 indicates temper-
ature for different nanomaterials volume fraction. Here temperature rapidly decays for larger
nanomaterials volume fraction. Nanoparticles play a role as cooling agent in fluid flow. Fig.
4.12 gives effect of Hartman number on temperature. Temperature enhances for increasing
intensity of applied magnetic field due to Ohmic heating effect. Fig. 4.13 illustrates that
temperature uniformly decreases by increasing thermal jump parameter. Larger values of ~

parameter facilitate the heat transfer rate therefore temperature decreases.

4.3.4 Entropy distribution

Figs. 4.14-4.17 are plotted to compute variations of ¢, M, € and 7 on entropy generation.
Effect of nanomaterials volume fraction on entropy generation is studied via Fig. 4.14. It is
examined that entropy generation is decreasing function of nanoparticle volume fraction. Fig.
4.15 reveals that entropy generation enhances for Hartman number. Effect of heat source/sink
on entropy generation is depicted in Fig. 4.16. Here entropy generation enhances specially near
the tube wall for larger e. Fig. 4.17 depicts that there is a rise in entropy generation by flow
rate parameter 7. Fig. 4.18 exhibits that Bejan number increases by increasing the amount of

nanomaterial in system. Figs. 4.19 and 4.20 computed outcome of Hartman number and flow
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rate on Bejan number. It is noticed that Bejan number is enhanced via Hartman number and
flow rate. Fig. 4.21 depicts that there is a reduction in Bejan number with increasing effect of

amplitude ratio (.

4.4 Conclusions
Key findings of this analysis are:

e Axial velocity depicts decreasing behavior by increasing nanoparticle and Hartman num-

ber.
e Presence of nanomaterials increases pressure gradient.

e Behavior of Hartman number on pressure gradient is similar to nanomaterials volume

fraction.
e Temperature decays via nanomaterial volume fraction.

e Temperature for Hartman number has opposite response when compared with nanoma-

terial volume fraction.

e Presence of nanomaterials decreases entropy generation. Increasing the Hartman number,

the total entropy generation remarkably enhances.

e Bejan number has increasing behavior for nanoparticle volume fraction, Hartman number

and flow rate.

4.5 Tables

Table 4.1: Thermophysical characteristics [7]:

p (kg/m®) Cp (§/kgK) K (W/mk) B (1/k)x107° o (S/m)
HyO  997.1 4179 0.613 210 0.05
Fe304 5200 670 80.6 13 25000
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Fig. 4.2. Effect of M on velocity.

Fig. 4.3. Effect of 5 on velocity.
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Fig. 4.4. Effect of ¢ on velocity.
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Fig. 4.6. Plot of dp/dz under M.

Fig. 4.7. Effect of 5 on dp/dz.
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Fig. 4.8. Plot of Ap) for ¢.
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Fig. 4.10. Plot of Ap, for (.
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Fig. 4.12. Plot of 0 for M.
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Fig. 4.14. Plot of Ng for ¢.
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Fig. 4.16. Plot of Ng for e.
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Fig. 4.18. Effect of ¢ on Bejan number.
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Fig. 4.20. Effect of 7 on Bejan number.
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Fig. 4.21. Effect of ( on Bejan number.

67



Chapter 5

Peristaltic motion of nanofluid
through curved channel with Hall
and Ohmic heating effects

Present chapter investigates the Ohmic heating and Hall effects on the peristaltic motion of
nanofluid in a curved channel. Further convective boundary and velocity slip conditions are
considered. Corresponding equations and boundary conditions are simplified by using the Lu-
brication approach. Dimensionless equations and boundary conditions are solved numerically.
Effects of sundry variables on velocity, pressure gradient and temperature field have been de-

picted graphically.

5.1 Mathematical formulation

Geometry of problem includes a two-dimensional curved channel with width 2a; coiled in a
semi circle of radius R’ and center ‘O’. Coordinates of curved channel are represented in such a
mode that X-axis is toward the length of channel and R-axis normal to it. An incompressible
nanofluid is considered in channel. Fluid flow is due to the propagation of waves along the
channel walls with speed ¢, amplitude b and wavelength A. Geometry of problem is described

as follows:

_ _ 2 _
Hio(X,7) = +a; + bcos(%(X — b)), (5.1)
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where t is the time and H; and Hs depict the upper and lower walls. Constant temperature
Ty and Ty (> Tp) are maintained at H; and Ho walls respectively. Axial velocity for present
flow in the form V = [U(R, X, ), V(R, X,t),0] where U and V represent the radial and axial

components of velocity. Further radial magnetic field is applied. It is taken in the form:

R'By
B=10,0, =——=| . 5.2
|: ) 7R/+R:| ( )
Lorentz force is given by:
F=JxB, (5.3)

where current density in presence of Hall current satisfies:

1
J=|VxB——[J x B]} . (5.4)
eNe
Finally Lorentz force becomes:
'Bo \ 2 _ R'By \?
_ | ZARER) o R gy TOMARER) g o R
L+ (merm)’ o B+ R 71+ (g atm)? of RR+R 7
(5.5)
orB )

Here 0, depicts the electrical conductivity of nanofluid, m(= —en&) the Hall parameter, ‘e

e

the electron charge and ‘n./ the number density of free electron. The electrical conductivity o,

of nanofluid is defined as:

(%2 —1
Il Gy ~ 9 (5.6)

+ n n :
o (T2 +2)— (T2 -1)¢

The Maxwell’s thermal conductivity (K,f) model of nanofluid is given as:

Kng _ Knp +2K5 = 20(K; — Kop)
Kp Koy +2K; + ¢(Kp = Knp)
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where subscript ‘np’ represent the nanoparticles and “f” represent the base fluid for water and

¢ stands for the nanoparticle volume fraction. Brinkman’s viscosity model is presented as:

1
Pnf = 1- ;)2.5’ (5.8)

where g4 is the viscosity of fluid. The equations relevant to problem under consideration are:

ov

i / P\ 77 /
o (R +R)U)+R8

=0, (5.9)

U ,0U RV 9U V2 \_ 0P R Orag
Pri\ot TVOR T R+ R0X R +R OR "R +R 0X .10
+ 1 i((R/—{—R) 77)_ TXX ﬂf(%) (U_o'ﬂf R V) .
R+ ROR TRE) T RAR T (g = m)? mR"
@—FU@-F R/V £+ va — _ i 8_15
Pri\ot TY9R TR +ROX R +R) R + RoX
B R or i (W)
- RI R XX — V Onf U
MTES e A RS SR oy ) b erom: vl Ul o DR
(5.11)
of 0T RV oT 02T 1 9T (R): T
O [ 4T B P A I LD R
(p )f<8t+ ok R ROX / aR2fR'+RaR+(R/+J§)2aX2>
N T €\ e ROUN, (R oV U
Fnf |TREGE TTRX\ DR ~ R+ R \R+RoX XX\R+RoX R +R
o (B0
e t— (U2 + V?) + &,

(7 5o m)?

(5.12)
Here ® stand for heat generation/absorption and P(R,X,f) the pressure. The density of

nanofluid p,,; and heat capacity of nanofluid C,s are evaluated by using these relations:

Pnf = (L= 8)ps+ dppp, Crnp = (1 —0)Cf + ¢Chyp. (5.13)

Numerical data of the thermophysical features of water and “Cu” nanomaterial are given via

Table 5.1. The relations between the fixed and moving frames are described below:

t=X—-ct,r=Ru=U, 0=V —¢,p(7,z) = P(R,X,1), (5.14)
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where (7, Z),0(7,Z) and p(7,T) are the axial velocity and pressure in the moving frame. Ac-

cording to above transformations, the relative equations of momentum, mass and energy are:

0 PR ,0U
o7 (R +7m)u) + R oE 0, (5.15)
_Ou R@+c)du (©+c)?\ b 1 9, .,
P (u%—l— Rar oz Rir)  or  wiror KT .10
! 2 .
R/ 8’7'@77 Tzx g"f(%) Ont R
R o Rt e e w0 o)
_0v  R(v+c)ov  u(0+c)\ R 0p 1 0 L o
Pni <U8F+ R+7 9z R+7 ) 2R’+F8:E+(R’+F)28F((R+T) a7 (5.17)
R/ 87’@@ U"f(%) _ o R/ _ ‘
— — o ((U+C)+_n‘£ 7 _mu),
R +7 0T  1+(gt="Lm)? ow RAT
(»C) _8_T+R’(®+c)8_T - 82T+ 1 a_T+ (RH? 02T
Pomi\Yar T TR 1F 0z ) M\ TR 17 or | (R +7)2 072
o fon, (oo @i, (R ow\, (R o a_
g | Tgr T8\ T o R+7) " \®Ryroz) " \Rtroz R +r
Onf g:_.'i ’
T 2 (= 2
jEr ol

(5.18)
Peristaltic transport are studied under small Reynolds number and long wavelength. In light

of these approximations, non-dimensional forms of Eqgs. (5.16) — (5.18) are described by the
expressions:

op 1 1, of Py 1 o
9z k(k+y) (1—¢)25 3‘2]@: v) < oy (k +ay) (1 8y>>]
_ ; —(1- 5 (5.19)
(kz+y) (1 + <—(k+y)A1m> >
Op
By = 0, (5.20)
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R )
Ky [0y (kE+y)0y| (1—-9¢)25\oy?* (k+y) oy

k2 M2 A, Br o\t (5.21)
(k+y)?2 |1+ LA i ( _8_y> e
Y <(k+y) 1m>

The non-dimensional parameters used in this problem are:

_l’_

T i v H H b
x_§>y:Lvu_gav:g76:ﬂ7h12_1>h2__27 =
5 A al C C 9 A al 1 aj
aib prcal c 1oCy 9f p2,2
= , R ,Fe= Pr=—— M =, /—DBja7,
cAtg Ho Cy (T — To) ) Ky Ho o
T-T, a2 kS O B
a=a (T} —T1p),0 = ,Br=PrFEcec= U= —, v = ——.
1( L 0) Tl—T() Kf (Tl—To) (k—i—y) ox 83/

Continuity equation is trivially verified and Eq. (5.20) depicts that p # p(y). Here Pr, Ec,
Br, Re, ¥, M, 0, 0, € and T,,, (= (To + T1)/2) represent the Prandtl number, Eckert number,
Brinkman number, Reynolds number, stream function, Hartman number, non-dimensional tem-
perature, wave number, non-dimensional heat source/sink parameter and mean temperature of

walls respectively. Here

gy —1g o GE L9 (5.23)
L (BEry - (B e |

The non-dimensional flow rate in the fixed n(= Q/ca) and moving F(= §/ca) frames are

associated with the relation:

n=F+2. (5.24)
Furthermore ‘F” is given by:
ho 87)[}
F :/ — —dy. 5.25
W By (5.25)

The convective boundary conditions are described as below:

K or

"My = (T — T). (5.26)
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Here [, represent the coefficient of heat transfer and T, temperature of the wall. Dimensionless

velocity slip and convective boundary conditions are:

__Fw B (P 1 SNy 2 A% iy = _
Y= z’ay+(1_¢)2-5 8y2+(k—|—y) 1 3 fl,Aay—i—le(H—i—Q)fO,atyfhl,

_Fow B 0% 1 CWNY 49 g1y _
V=30 <1—¢)2-5<6y2+<k+y> (1 8y>>_1"46y Bir(f = 3) =0, ab y = h2
(5.27)

h1 =1+ dcos(2mxz 4 75), he = —1 — d cos(2mz + 75),

Biy = (%), Biz = (%),
where Bi; and Big are the Biot-numbers for the upper and lower walls and “3,” represents the
dimensionless velocity slip parameter. Here we use the Mathematica software to compute the

numerical solutions via NDSolve technique. Next section presents the analysis of the obtained

results.

5.2 Discussion and comparison

In this section, we analyzed effects of numerous variables on velocity field, pressure gradient

and temperature are studied through graphs.

5.2.1 Velocity profile

Fig. 5.1 shows the axial velocity for various amount of nanoparticle volume fraction. As
expected, insertion of nanoparticles in base fluid decreases fluid velocity. Physically when
inclusion of nanomaterial enhances in the base fluid then effective viscosity of nanofluid is more
and thus ability of fluid motion reduces. Effect of Hall number on nanofluid is shown in Fig.
5.2. Due to presence of Hall parameter the velocity rapidly increases rather than in absence of
Hall effects. Fig. 5.3 shows magnetic field effect on velocity. As expected the velocity decreases
in presence of magnetic field. Fig. 5.4 depicts effect of ‘3,’ on the velocity field. By increasing
parameter ‘5;’, velocity increases near the channel wall and it shows reverse behavior near the
center of channel. Fig. 5.5 shows the variation of velocity by varying the curvature parameter.
It can be seen that increasing behavior shifted towards upper wall in view of consideration of

curvature.
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5.2.2 Pressure gradient

Effects of numerous parameters on the pressure gradient are depicted through Figs. (5.6)-
(5.10). These graphs show sinusoidal behavior of pressure gradient and attain higher value
near the extensive portion of channel. Impact of ‘¢’ on pressure gradient is depicted in Fig.
5.6. As nanoparticle volume fraction enhances, pressure gradient also increases. Fig. 5.7
shows the influence of Hall parameter on the pressure gradient. Pressure gradient reduces with
the rise of Hall parameter both in wider and occluded part of channels. Impact of magnetic
field on pressure gradient is shown in Fig. 5.8. Pressure gradient enhances by increasing the
strength of magnetic field. Fig. 5.9 demonstrates the influence of ‘3’ parameter on pressure
gradient. Pressure gradient decreases in presence of slip effects. Impact of curvature parameter
on pressure gradient is shown in Fig. 5.10. Pressure gradient slightly decreases by enhancing

the curvature parameter.

5.2.3 Heat transfer analysis

Effect of ‘¢’ on the temperature of nanofluid has been illustrated in Fig. 5.11. According to
this Fig. temperature rapidly decreases by enhancing the nanomaterial amount in system. Fig.
5.12 exhibits the positive effect of Hall parameter on temperature. Fig. 5.13 depicts Hartman
number effect on temperature. Temperature enhances for applied magnetic field. Fig. 5.14
and 5.15 indicate Biot number effect on the temperature at upper and lower channel walls.
For higher Biot number, temperature profile rapidly decreases at both upper and lower walls.
Temperature field for values of curvature parameter is depicted in Fig. 5.16. According to this
Fig. temperature shows symmetric behavior by increasing curvature parameter.

Heat transfer rate for different values of “¢, m, M, Biy, Bio, Br, k, €’ are shown in Table 5.2.
According to this table heat transport rate increases by enhancing the amount of nanomaterial,
Hartman number, Biot number, Brinkman number, curvature parameter and heat source/sink
parameter. However Hall parameter shows reverse behavior. Inclusion of nanoparticles in
conventional fluid increases the heat transfer rate because nanoparticles have higher thermal
conductivity. Larger values of Biot number facilitate the heat transport characteristics and

decrease the temperature of nanofluid.
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5.3

5.4

Key points

The inclusion of nanomaterials in ordinary fluid improves the heat transport rate and

decreases the temperature and axial velocity.

Heat transport rate is improved subject to presence of magnetic field. Hartman num-
ber rapidly decreases temperature of nanofluid. Pressure gradient enhances for larger

Hartman number.

Higher Hall parameter decays pressure gradient. Further temperature and heat transfer

rate also decrease.

Convective boundary condition improves the heat transfer characteristics and it decreases

the fluid temperature rapidly.

Velocity increases near the wall by increasing velocity slip effects. However opposite trend
is noticed near the center of channel. Further velocity slip parameter enhances pressure

gradient.

Graphs and tables

Table 5.1: Numerical values of the thermophysical properties [7]:

Properties | H20O Cu

p (kg/m?) | 997.1 8933
K (W/mk) | 0.613 401
Cy (j/kegK) | 4179 385
B (1/k)1076 | 210 16.7

o (S/m) 0.05 | 5.96 x 107
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Fig.5.1. Plot of velocity for ¢ when n = 1.4,z = 1.0, Br = 0.2,¢ = 4.0,Bi; = 0.9, Biy =
1.2,m=2.0,M =1.0,5 =0.1 and k = 3.0.
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Fig.5.2. Plot of velocity for m when n = 1.4,z = 1.0,Br = 0.2,¢ = 4.0, Bi; = 0.9, Bis =
1.2,6 = 0.05, M = 1.0, = 0.1 and k = 3.0.

Fig.5.3. Plot of velocity for M when n = 1.4, = 1.0,Br = 0.2,¢ = 4.0, Bi; = 0.9, Biy =
1.2,¢ =0.05,m =2.0,5 =0.1 and k£ = 3.0.
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Fig.5.4. Plot of velocity for 8 whenn = 14,2 = 1.0, Br =0.2,e =4.0,Bi; = 0.9, Bis = 1.2,¢ =
0.05, M = 1.0,m = 2.0 and k = 3.0.
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Fig.5.5. Plot of velocity for k when n = 1.4,2 = 1.0, Br = 0.2, = 4.0, Bi; = 0.9, Bis = 1.2,¢ =
0.05, M =1.0,m =2.0 and 8 =0.1.
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Fig.5.6. Effect of ¢ on dp/dx when n = 1.4, Br = 0.2,¢ = 4.0,Bi; = 0.9,Bis = 1.2,m =
2.0,M = 1.0, = 0.1 and k = 3.0.

Fig.5.7. Effect of m on dp/dx when n = 1.4,Br = 0.2,¢ = 4.0,Bi; = 0.9,Bi; = 1.2,¢ =
0.05, M =1.0,8 =0.1 and k£ = 3.0.
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Fig.5.8. Effect of M on dp/dx when n = 1.4, Br = 0.2,e = 4.0,Bi; = 0.9,Bis = 1.2,¢ =
0.05,m =2.0,5 =0.1 and k = 3.0.

Fig.5.9. Effect of 5 on dp/dx when n = 1.4,Br = 0.2,¢ = 4.0,Bi; = 0.9,Bis = 1.2,¢ =
0.05,m =2.0,M = 1.0 and k = 3.0.
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Fig.5.10. Effect of k on dp/dx when n = 1.4, Br = 0.2,e = 4.0,Bi; = 0.9,Bis = 1.2,¢ =
0.05,m =2.0,M =1.0 and 8 =0.1.
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Fig.5.11. Effect of ¢ on § when n = 1.4, = 1.0, Br = 0.2,¢ = 4.0, Bi; = 0.9, Biy = 1.2,m =
2.0,M =1.0,5=0.1 and k£ = 3.0.
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Fig.5.12. Effect of m on § when n = 1.4,z = 1.0, Br = 0.2, = 4.0, Bi; = 0.9, Bis = 1.2,¢ =
0.05,M = 1.0, =0.1 and k = 3.0.
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Fig.5.13. Effect of M on 6§ when n = 1.4,2 = 1.0, Br = 0.2, = 4.0, Bi; = 0.9, Bis = 1.2,¢ =
0.05,m =2.0,8 =0.1 and k£ = 3.0.
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Fig.5.14. Effect of Biy on # when n = 14,2 = 1.0, Br = 0.2,¢e = 4.0, M = 1.0, Bis = 1.2,¢ =
0.05,m =2.0,5 =0.1 and k = 3.0.

Fig.5.15. Effect of Big on 8 when n = 14,2 = 1.0, Br = 0.2,¢ = 4.0,M = 1.0, Bi; = 0.9,¢ =
0.05,m =2.0,8 =0.1 and k£ = 3.0.
e

10 |

Fig.5.16. Effect of k on 6 when n = 1.4,x = 1.0, Br = 0.2,¢ = 4.0,M = 1.0,Bi; = 0.9,¢ =
0.05,m =2.0,5 =0.1 and Biy = 1.2.
Table 5.2. Effects of ¢, m, M, Biy, Bio, Br, k and € on heat transfer rate when n = 1.4,8 =
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Chapter 6

Joule heating in mixed convective

peristalsis of Sisko nanomaterial

Intention in this chapter is to communicate peristaltic activity of non-Newtonian nanofluid in
presence of mixed convection and Joule heating. Sisko fluid constitutive equations are em-
ployed for non-Newtonian fluid. Viscous dissipation and Hall current effects are also retained.
Velocity slip and thermal slip conditions are present. Analysis is arranged in presence of zero
mass flux condition. The proposed mathematical model has relevance with blood circulation,
hyperthermia, cancer therapy and drug delivery procedures. Related problems are modeled and
computed for the results of velocity, temperature, concentration and pressure gradient. Main

outcomes are summarized in conclusions.

6.1 Methodology

Peristaltic activity of Sisko nanofluid in an asymmetric channel of width (d; + d2) is studied.
Consider the Cartesian coordinate system with X —axis along the length of channel and Y —axis
transverse to it. Peristaltic motion is generated by sinusoidal waves travel along channel walls
with wavelength \ and speed “c”. The shapes of peristaltic walls in mathematical form satisfy
(see Fig. 6.1):

Hy(X,t) =d + alcos(QTW(X' —ct)),
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Hy(X,t) = —dg — blcos(%r()_( —ct) +7%). (6.1)

Here H; depicts the upper channel wall, Hy the lower walls of channel, ¢ stands for time,
~* depicts phase difference and a1 and b; the upper and lower walls amplitudes. Nanofluid
is electrically conducting subject to strong applied magnetic field and thus Hall current is

accounted. Lorentz force in absence of electric field satisfies:
F=JxB, (6.2)

where B is the applied magnetic field and J represents the current density. The Ohm’s law is

represented by:
1

J=0u |[VxB——
e

[J x B]|. (6.3)

Note that o, represents the electric conductivity of nanofluid, V = [U(X,Y,#),V(X,Y,?),0]
denotes the velocity field, e represents the electron charge, n. stands for number of density of

free electrons and electric field being negligible. From Egs. (6.2) and (6.3) we obtain:

_ UnfBg — — —O'nfBg — —
where the Hall parameter m is defined as follows:
_ 9nfBo
ene
Joule heating expression can be described as:
1y oneBs (T2 +7V?) (6.5)
e T2 . .

Buongiorno model is adopted to elaborate the role of nanomaterial in system. Effects of Ohmic

heating and viscous dissipation are also accounted. The governing expressions are:

ou oV

ﬁ + a—}—/ =0, (6.6)
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9 _ 0 _ 0\~ 0P 05 05
pf<__+U__+V_‘)U__aX+aX+aY

_ UfB(2) 7 [/ _ * _
1+m2 [U mV] +9Pf[C(T Tm)+C (C Cm)]7 (67)
2 —i —i — __8_15 8§g5; 85@@ . O'nfB(Q) — —
pf(ﬁt‘waff*va?)V 55T ox T oy 1qmel tMOL (69

0 o*r  o9°T

0 _ o4 a7 72, T2
(pC) s <U8X+V8Y>T_Kf |:—8X2 +8Y2:| +S.L+ [U + V7
80 8T 808T
09 00 _p, (9 O D (0T O (6.10)
ox oy  “Plax2 T aye ox2 T av2)” ‘

In above equations, (pC),, depicts the effective heat capacity of nanomaterials, K¢ the thermal
conductivity of fluid, C; the specific heat, S;; the components of extra stress tensor, o the
electrical conductivity of fluid, py the density of fluid, L the gradient of velocity, S.L the viscous

CorC1) stands for mean concentration, T for fluid

dissipation, C' depicts concentration, Cy,(=
temperature, T}, for mean temperature of nanoparticles, P for pressure, Dy for thermophoretic
diffusion coefficient and Dp for Brownian diffusion. An extra stress tensor S in Sisko fluid

satisfies the following relation:
5= [a* + B (H)”_l] A4, (6.11)
where A1 depicts the first Rivilin-Ericksen tensor and II obeys
1 2
=y/5tr (A3), (6.12)

and

A= [gradV + (grad V)T} . (6.13)
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Here o and 3* depict material parameters of fluid. Further n describe the features of power
law index. Note that for (n = 1,0 = 0,8* = p or a = p, 5% = 0) the viscous fluid model is
recovered.

The zero mass flux conditions for concentration of nanofluid is:

oC  DrpoT
DB@Y+T O 0 at y = hy and y = ho. (6.14)

By using the transformations:

t=X—-ct,y=Y,u=U—c,0=V,p(x,9) = P(X,Y,1), (6.15)

the resulting equations are:

vy, (6.16)

0 0\ ,_ 0p  05zz O3gzy
,of<(u+c)a 8y)( ite)=—go+ o= 8;

orB?
— sl €)= ma] + gpglC(T — Tin) + €7 (C = O], (6.17)
_ i _2 _ op 8§gg—; 8§gg B O'nfBg _ _
Py <(U+C)8x+v8y>v 8y+ o + a7 1+m2[v+m(u+c)], (6.18)

_ 8 _8 82T 62T _ = O'fBg _ 2 _9
6Oy (@+ o o) r=xy (G + ) +als i@ o+

Dy [ (0T\? [oT\? oC oT  OC dT
+(pC)np T ((8_3/) + (@) > +Dp (8 a9 + = a7 By) (6.19)
_ oC 7@0 9’C  9*°C Dy (O*T O*T
(U+C)%+ ay DB (W—i_a—@?) T—m (w+a—gj2> 5 (620)

@
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n—1
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Here following dimensionless parameters are employed:

d)\vy d17 _267 - 57 )\7 1 d s 102 — dg’ _d1>( _d17 )_ dl’p_C)(\Oé, )
Py cai c OéCf of TDgp(Ch — Cy TDp (T — T}
Re a y L€ Cf (Tl — TO) y LT Kf ) N 041, LVp o s 4VE Z/Tm )
Ty — Tp)d? *(Ch — Cp)d? T—"T, 9 0
U:g,GT:pfgq ! 0) 1,Gc:pfgC( ! 0) 1,9: ,Br:PrEc,u:—w,v:——w,
Pf ac ac Ty —Tp oy oz
(6.21)

in which M, Pr, Ec,G.,Gr,0,6, Br, Re, N; and N, depict the Hartman number, Prandtl num-
ber, Eckert number, the concentration Grashoff number, the thermal Grashoff number, di-
mensionless temperature, wave number, Brinkman number, Reynolds number, thermophoresis
parameter and Brownian motion parameter respectively. After nondimensionalizing the above
equations and utilizing small Reynold number and long wavelength considerations, we have

final form of equations in terms of stream function :

py =0, (6.22)
O05ay M? oY
» = - (1+ ), 2
P =5 + Gl + Geo HmQ( 3 (6.23)
o  BrM? a\?
Oy + Bro +PrNyg,fy +PrNe (0,)° + (1 1 3_y> =0, (6.24)
Ny, + Nifyy = 0, (6.25)

in which continuity equation is trivially justified, ® depicts the non-dimensional form of viscous

dissipation and s, satisfies:
Soy = Syz = [L+ BWy,)" ] 1y, (6.26)

The quantity f,, = 1+ B(1b,,)" " is called apparent viscosity. From Egs. (6.22)-(6.26) we

obtain:
82 1 M?2
57 (14 B(y)" ] by + Grby + Gody — 17— 7l =0, (6.27)
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_ BrM? .
Oyy + Br [1+ B(v,,)" ] 2, + Pr Nug, 0, + Pr N, (6,)° + r (1 o

2
— = 2
e (1+5,) =0 62

Ny, + Nifyy = 0. (6.29)

The dimensionless form of flow rate in the wave F/(= ¢/cd;) and laboratory n(= Q/cd;) frames

are associated through the relation:

n=F+d+1, (6.30)
where ‘F” satisfies:
ho aw
F = —dy. 6.31
. Dy (6.31)

The dimensionless slip and zero mass flux conditions are:

Y =50, + 81 [1+B(y,)" ]y, = —1,0+706,=0
and Nbgzsy + Ntey =0at y = hy,

(6.33)

Y= _gﬂl’y = By [L+ B(thyy)" 1ty = =10 =7 0, =0
and Nyd, + Nify = 0 at y = ha,

(6.34)
in which £; and 7 depicts the velocity and thermal slip variables. Final form of walls are:

hi1 =1+ acos(2rx),
he = —d — bcos(2mx + v**).

Here numerical approach is employed for solution of equations subject to boundary conditions.
NDSolve technique is used for this purpose in Mathematica. Graphical explanation of the
results is described in the next section.

6.2 Results description

Our interest here is to provide explanation for velocity, temperature, concentration and pressure

gradient. Separate subsections are thus arranged for each physical quantity.
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6.2.1 Axial velocity

Effect of parameters like Hartman number, non-Newtonian parameter and slip on velocity
distribution are analyzed via Figs. (6.2)-(6.4). Axial velocity shows parabolic characteristics in
which maximum fluid velocity is seen near the central portion of channel. Fig. 6.2 depicts the
pattern of fluid velocity for different values of Hartman number. Velocity depicts decreasing
trend when Hartman number enhances. The presence of magnetic force mobilized the Lorentz
force that creates resistance therefore velocity decays. Impact of 8 parameter on the velocity is
examined via Fig. 6.3. Velocity field is suppressed when non-Newtonian parameter enhances.
Influence of o on flow is exhibited in Fig. 6.4. Velocity enhances throughout the channel for

higher o.

6.2.2 Temperature

Impacts of various physical flow parameters like Hartman number, Hall parameter, tempera-
ture jump parameter, thermal Grashoff number, concentration Grashoff number and Brinkman
number on temperature are exhibited in Figs (6.5)-(6.10). Influence of Hartman number on
temperature distribution is presented in Fig. 6.5. It is evident that temperature enhances by
enhancing the Hartman number. Further prominent effects are seen near the channel center.
Temperature for Hall parameter is presented in Fig. 6.6. Temperature depicts decreasing trend
for higher Hall parameter. Outcome of v parameter on 6 is computed in Fig. 6.7. It is observed
that an increasing value of temperature jump variables shows decreasing trend for temperature.
However temperature is more near the central portion of channel. Fig. 6.8 illustrates impact of
thermal Grashoff number on temperature. Clearly the temperature slightly enhances against
higher thermal Grashoff number. Fig. 6.9 depicts impact of G¢ on temperature. An increase in
G gives rise to temperature. Fig. 6.10 depicts temperature distribution for Brinkman number.

Smaller Brinkman number depict higher temperature.

6.2.3 Concentration

Variation of concentration for numerous values of important parameters are illustrated in Figs.
(6.11)-(6.17). Fig. 6.11 displays the influence of thermophoresis parameter on concentration.

It represents that concentration of nanomaterial rapidly enhances for higher N;. Influence
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of N on concentration is displayed in Fig. 6.12. Clearly the concentration for higher N is
decreased. Fig. 6.13 depicts impact of Hartman number on concentration field. It is noticed
that ¢ slightly increases at central portion of channel by enhancing the strength of magnetic
field. Fig. 6.14 displays the concentration for Hall number. As expected the concentration of
nanomaterial decreases when Hall parameter enhances. Figs. 6.15 and 6.16 show the influences
of thermal Grashoff number and concentration Grashoff number on concentration. Effect of
Brinkman number on concentration is captured in Fig. 6.17. Concentration of nanomaterial

against Brinkman number is increased throughout the channel.

6.2.4 Pressure gradient

Here Figs. (6.18)-(6.23) explain outcome of influential variables on the pressure gradient. A sig-
nificant feature of pressure gradient trend is like sinusoidal wave. Pressure gradient remarkably
increasing by increasing the magnetic field strength (see Fig. 6.18). Fig. 6.19 is organized for
the Hall current impact on pressure gradient. It is apparent that pressure gradient decreases by
increasing Hall number. Fig. 6.20 displays the concentration of nanomaterial for velocity slip.
It is viewed that pressure gradient sharply decreases in presence of slip condition. Fig. 6.21
shows the influence of Brownian motion on pressure gradient. Higher NV, leads to a decrease in
both narrow and wider portion of channel. Impact of N; variable on dp/dx is presented in Fig.
6.22. Pressure gradient enhances with higher NV, in the wider and narrow portions of channel.
Influence of non-Newtonian parameter on pressure is sketched via Fig. 6.23. Inspection of

graph reveals that pressure gradient enhances in wider portion of medium by higher j.

6.3 Conclusions
Key findings here include the following points.

e Outcomes of Hartman number and non-Newtonian parameter on axial velocity are reverse

to that of velocity slip variable.
e Temperature for Hartman number and Hall parameters behaves opposite.

e Temperature against Brinkman number is increased.
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e An increment in thermophoresis parameter corresponds to stronger concentration. How-

ever concentration has decreasing trend for higher Brownian motion parameter.
e Concentration is enhanced for both Brinkman number and Hartman number.

e Pressure gradient has increasing behavior for higher Hartman number, thermophoresis

and non-Newtonian parameters.

Fig. 6.1. Geometry of the problem.
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-04
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Fig. 6.2. Effect of M on velocity.
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Fig. 6.3. Effect of 5 on velocity.

-0.3¢
—04F e Peees
S’
. I',
—05F -0 7—'/-
= !
=06t -----
?
=0.7F - -y
’
o/

=02,01,00. . ... ....\." v

A
AS%

0.0

94

0.5



Fig. 6.4. Effect of ¢ on velocity.

Fig. 6.5. Effect of M on 6.
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Fig. 6.6. Effect of m on 6.
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Fig. 6.7. Effect of v on 6.
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Fig. 6.8. Effect of Gr on 6.
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Fig. 6.9. Effect of G¢ on 6.
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Fig. 6.10. Effect of Br on 6.
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Fig. 6.11. Plot of ¢ for N;.
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Fig. 6.12. Plot of ¢ for Nj.
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Fig. 6.13. Plot of ¢ for M.
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Fig. 6.14. Plot of ¢ for m.
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Fig. 6.16. Plot of ¢ for Gg.
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Fig. 6.17. Plot of ¢ for Br.
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Fig. 6.18. Pressure gradient against M.
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Fig. 6.20. Pressure gradient against o.
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Fig. 6.21. Pressure gradient against Ny.
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Fig. 6.22. Pressure gradient against N;.

Fig. 6.23. Pressure gradient against (.
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Chapter 7

Peristaltic radiative flow of Sisko
nanomaterial with entropy

generation and modified Darcy’s law

This chapter explores peristaltic motion of Sisko fluid in presence of Hall current, Ohmic heat-
ing, dissipation and radiation are accounted. Modeling is based upon modified Darcy’s law for
porous medium. The relevant equations for small Reynold number and long wavelength are
obtained. The computations for nonlinear system is organized employing ND Solve Mathemat-
ica. Quantities of interest like temperature, velocity, concentration and entropy generation are

addressed.

7.1 Methodology

Here we consider the flow of nanofluid in a flexible walls channel having width 2a. We have
taken the Cartesian coordinate system in which x-axis is along length of channel and y-axis
transverse to it. The motion is produced due to the sinusoidal waves propagating along the

channel wall with speed c. The mathematical formulation of the walls are:

+H(X,1) :ia:tbcos(%r()_(—cﬂ), (7.1)
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where b and A depict the walls amplitude and wavelength respectively. The flow field is con-
sidered in the presence of applied magnetic field, porous medium and thermal radiation. Due
to strong magnetic field the Hall effects also retained. Ohmic heating and viscous dissipation
are also taken in energy equation. Buongiorno’s nanofluid model with Brownian motion and
thermophoresis elaborates characteristics of nanofluid. In this model concentration equation
is also considered to study nanoparticle behavior. The velocity field for the two-dimensional
flow is V = [U (X,l_/,f) vV (X,Y,f) ,O] . Here U and V depict the X- and Y-components of
velocity. The governing equations for present study are:

2=, (7.2)

ap 8553@ 85}— O'fBg
—— + — — —
0X Y 0X 14 m?

V= + U=

ou  _oUu  _oU _ L
& [87& oy ax} (U—mV)+Rg,  (73)

8‘7 78‘_/ 78‘_/ . 8]5 aggg 85’175 O'fB(Q)
pf[ T Var Y _}_ a5 "oy | ox  1im?

i o7 T Usx (V 4+ mU) + Ry, (7.4)

2
+ 5.0+ 50 (g2 47

1+m

or | ;0T 50T _ O’T = 0*T
ot ay  “oax| lav? T ax2

(pC)f[—_+V—+U—_ I

9C dT 9C T\ | Dr ((9T\?  [0T\? dqr
w | DB | =— + —=—=——= — | (= — - —, .
(0O | D5 (ay oy " ox ax) T, ((ay) * (ax) ) o (1Y)
oc _-oC _oC 0’C  9*C Dy (0*T  9*T
o Vay TUax = s [WT;@} T (m*m) (7.6)
An extra stress tensor for Sisko fluid is:
S— [a* + g (H)”_l] Al (7.7)
where A1 depicts the first Rivilin-Ericksen tensor and II is described by:
1 2
II= §tr (A2). (7.8)
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Further o*, 8** and n depict the shear rate viscosity, consistency index of fluid and power law
index. For a® = 0 the Sisko model is converted into generalized power law model. Modified
Darcy’s law obeys:

£ —

R =~ oV (7.10)

in which £* and ¢ illustrate the permeability and porosity of porous medium and i, represent
the apparent viscosity. Radiative heat flux ¢, in view of Rosseland’s supposition is described

as:
160*T3 OT
3k oy’

qr =

Zero mass flux condition for concentration of nanofluid is described as:

oC  DroT
Dp—=+—-—==0aty=h. 7.11
Boy "T,ov MY (7-11)
By using the transformations:
Q:X—c_,g:}_’,ﬂ:U—C,T):V,ﬁ(f,ﬂ):P(X,}_/,t_), (712)
we have:
ou Ov
== 1
or 0y 0 (7.13)
_ou ou\  0p  0Oszy 08z
Pt (“ay +(“+C)ax> =~ "o "oy oz
UfBg _ _ 9 _
T (@ €)= mB] = g (T + ), (7.14)
,8'(_} _ 3@ _ 3]5 aggg (95@@ O'fBg _ _ & _
Py <v8g + (a4 c) 8:?) =% + 35 + 05 Trm? [0 4+ m(a+ )] o Happ¥: (7.15)

or oT o*r  9*T . osBZ 5 o
(PC)f(’Ua_y‘F(u*‘C)%)—Kf<a—y2+w>+s.L+1+m2[(u+c) + 07

Do (91, (9T\Y) ) cocor  acor
Tm \ \ 0z a0y B\ oy oy " oz oz

160*T¢ O*T
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(7.17)

ocC  oC 82C+82_C Dy (O*T O*T
oy 0z ’

NI S Dp (0°T  0°T
(@ +) 5z tUg; — B T, \oz T o2
n—1

_ . ov\? [0  ou\? ou\?%\ ? | ou
n—1
=38z = "+ 5|2 o 2+ @-i-@ 2+2 ou Al @-F@
B Bl oz 0y 0% oy 0z)’

~ . oo\? [ou Ov\> ou\2\ * | oo

The following dimensionless parameters are utilized:

Re = JE = Pr=—=* Br=PrE,Rj= ——,Da = ———, (7.18)
0 6(0[*)2

f
T, C-CG o %
I/Tm N T() A C() ’ _ay’ N 8.%‘

Here 0, 6, Ny, Ny, Da, Ry, m and ¢ depict the dimensionless temperature, wave number,
thermophoresis parameter, Brownian motion parameter, Darcy number, radiation parameter,
Hall number and dimensionless concentration respectively. After nondimensionalizing the above
equations and taking the small Reynold number and long wavelength assumptions simplified

form of equations are:

py =0, (7.19)
 Osey M 00\ 1 Happ o
px—a_y—1+m2<1+a—y>—D—a? 1+8_y ) (720)

BrM? Y\> 4Ry 0%
0, + Brd + Pr Nyo, 0, + Pr N, (6,) + ﬁ <1 a%) + Tda_gﬂ =0, (7.21)
Nydyy + Niblyy = 0. (7.22)

Continuity equation is justified. Here ® depicts the non-dimensional form of viscous dissipation

and s;, depicts the dimensionless component of extra stress tensor defined by:

Soy = Syz = [L+ B(ty,)" 1] by (7.23)
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When shear rate enhances the apparent viscosity of fluid depicts decreasing behavior. However

opposite nature of fluid is called shear thickening. From Eqs. (7.18)-(7.22) we obtain:

92 . M2 1 0 . o
B (14 B(yy)" ] gy — Tz~ Dady [(1 + By, )" ) (1 + 8—5)} =0, (7.24)

BrM? ov\? 4R
n—11 .2 2 d
Oyy + Br [14 B(hy,)" "] by, + PrNog, 0y + Pr Ny (6,)” + 1+ m2 <1 + 8_y> * Teyy =0
(7.25)
Ny + Niyy = 0. (7.26)

Dimensionless forms of flow rate in the wave F(= ¢/cd;) and laboratory n(= Q/cd;) frames

are associated through the relation:

n=F+1. (7.27)
Further ‘I’ can be defined as:
e %, (7.98)
a3, .

The dimensionless boundary conditions are:
Y = 0,1, =0,0,=0and ¢, =0 at y =0, (7.29)

)= F by + By [y, + B(y,)"] = —1,0 + 70, =0
and Nyo, + Nty =0 at y = h.

(7.30)

The dimensionless form of geometric walls are

hi1 =1+ dcos(2mx).

The numerical approach has been used for the solution of non-linear equations subject to

boundary conditions.
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7.2 Entropy generation

Mathematically the entropy generation is:

Ky |(0T\? [0T\® onfBE o 1160*T3 (0T \?
o = (%) +(5) | * miramas o+ P gt (5)
+i§E+R*D %8—T+@8—T +R*D 9© 2+ 9\’ (7.31)
To To \O0x 0z 0Oy Oy Co oy ox ' ’
Non-dimensional form of entropy generation is given by:
4Ry ) D1 o 2  BrM?2 o\ 2
N, = [1+T} (0,)2 + Br [1+ B(tb,,)" ] 02, + Lé, 0, + L () M 1+a—y :

Here L = (R%Cl) represents the diffusion parameter and N = (%) the nondimensional

form entropy generation. Further Bejan number is defined by:

_ Entropy generation due to mass and heat transfer

Be .
Total entropy generation

or

(1 + %) (60,)% + Lo, 0, + L (¢,)°

Be = 5
(1+452) (0)* + Br [1+ B0, ] w2, + L6, 0y + L (9,)" + 287 (14 52)

Graphical explanation of the results are described in the proceeding section.

7.3 Results and discussion

Effects of physical flow variables like M, m, Da and /3, on the velocity are studied via Figs. (7.1)-
(7.4). Fig. 7.1 represents the effect of Hartman number on axial velocity. Fig. shows that when
Hartman number increases then velocity of nanofluid decreases. This is physically justified due
to the Lorentz force. An increment in the Hall number leads to an enhancement of velocity (see
Fig. 7.2). Fig. 7.3 outlines the impact of "Da" variable on the velocity. Velocity field enhances
for higher values of "Da" at central portion of channel. Effect of varying 3, variable on the

nanofluid is displayed in Fig. 7.4. We noticed that as the velocity slip parameter enhances then
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velocity of nanofluid enhances near the channel wall but it depicts opposite behavior near the
center of channel. Figs. (7.5)-(7.10) illustrated the temperature for numerous values of M, m,
Ry, Br, v and 8 parameters. Fig. 7.5 demonstrates temperature for Hartman number. Increas-
ing "M" enhances the temperature of nanofluid rapidly. Physically this observation is correct
because Joule heating plays prominent role to enhance the temperature. Fig. 7.6 shows the
temperature decay against higher values of Hall parameter. Basically Hall parameter balances
the effect of Hartman number on temperature and thus controls the nanofluid temperature.
Fig. 7.7 depicts that temperature decreases by increasing the thermal radiation parameter.
Temperature for numerous values of Brinkman number is seen in Fig. 7.8. We noticed that
temperature rapidly enhances by higher "Br". Fig. 7.9 shows that temperature enhances in
channel by higher thermal slip parameter. Fig. 7.10 depicts that temperature decreases when
values of non-Newtonian parameter "3" increases. Figs. (7.11)-(7.16) present the impacts of
M, m, N¢, Ny, 8 and Ry on concentration. It is observed that concentration of nanoparticles is
higher near the channel wall as compared to the central portion. Fig. 7.11 depicts the effect of
Hartman number on concentration. It is noticed that concentration rapidly enhances by higher
"M" parameter. Fig. 7.12 illustrates the impact of Hall number on the concentration. It is
demonstrated that concentration decays in the case of higher values of "m". Fig. 7.13 shows
the variation in concentration profile for various values of N; parameter. It is observed that
concentration of nanoparticle enhances by enhancing the thermophoretic parameter. However
N; parameter depicts opposite trend as compared to Ny parameter on the concentration profile.
Fig. 7.15 displays concentration for various values of non-Newtonian parameter. By dominating
the "B" characteristics concentration profile slightly decreases. Fig. 7.16 indicates that con-
centration profile decreases by increasing the thermal radiation parameter. Figs. (7.17)-(7.21)
exhibit the influence of entropy generation for various values of prominent factors. Fig. 7.17
is plotted to examine the effect of Hartman number on entropy generation. It predicts that
entropy generation enhances due to the higher values of M. Fig. 7.18 is displayed to study
behavior of entropy generation for various values of Hall parameter. Entropy generation can be
minimized by increasing the Hall parameter. Fig. 7.19 depicts outcome of entropy generation
for Brinkman number. It is seen that entropy generation can be minimized by decreasing the

Brinkman number. Further entropy generation can also be controlled by enhancing the thermal
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radiation parameter (see Fig. 7.20). Fig. 7.21 depicts the effect of "3" parameter on entropy
generation. Graph shows that entropy decreases in the presence of higher thermal radiation
parameter. Fig. 7.22 represents the variation of Bejan number against the Hartman number.
Graph depicts that Bejan number enhances for higher values of "M". It is clear for Fig. 7.23
that Bejan number significantly tends to reduce for greater values of Hall number. Here Bejan

number decays due to an increment in thermal radiation (see Fig. 7.24).

7.4 Conclusions
The important findings can summarized below:

e For higher Hartman number the velocity decays. However temperature, concentration

and entropy generation of nanofluid are enhanced by higher Hartman number.
e An increment in Hall number enhances velocity and it decreases temperature of nanofluid.

e An enhancement in non-Newtonian variable "3" depicts the decaying trend of concentra-

tion and temperature.
e Decaying behavior is observed for § and ¢ by increasing Ry.

e Concentration and temperature of nanofluid can be minimized by decreasing the value of

Brinkman number.

e N; and N, parameters depict opposite trend for concentration of nanofluid.
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Fig. 7.1. Velocity via M.
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Fig. 7.2. Velocity via m.
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Fig. 7.4. Velocity via ~.
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Fig. 7.5. Plot of 8 for M.
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Fig. 7.6. Plot of 8 for m.

Fig. 7.7. Plot of 8 for Ry
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Fig. 7.8. Plot of 8 for Br.
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Fig. 7.10. Plot of € for .
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Fig. 7.12. Effect of m on ¢.
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Fig. 7.14. Effect of N, on
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Fig. 7.16. Effect of Rg on ¢.
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Fig. 7.18. Effect of m on entropy.
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Fig. 7.20. Effect of R4 on entropy.
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Fig. 7.22. Effect of M on Bejan number.
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Chapter 8

Peristalsis of Carreau-Yasuda
magneto nanofluid with modified

Darcy law and radiation

Here our focus is to discuss flow of Carreau-Yasuda nanofluid subject to thermophoresis and non-
linear thermal radiation. Further modified Darcys law and magnetic field are also considered.
Lubrication approach is used. Graphs are displayed in order to explore the outcomes of pertinent

variables. Tabulated values analyzed the mass and heat transfer rates.

8.1 Mathematical formulation

Here two-dimensional flow of Carreau-Yasuda incompressible nanofluid in a symmetric channel
has been considered. The width of channel is 2a and the waves propagate in the axial direction
with wavelength A and wave speed “c” (see Fig. 8.1). Consider the rectangular coordinates
(X,Y) such that X-axis along the center line and Y-axis perpendicular to it. The peristaltic

waves along upper and lower boundaries are represented as:

+H(X,1t) ::ta:tbcos(?()?—cf)), (8.1)
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in which “b” denotes the waves amplitude and X direction of wave propagation. The nano-
material and base fluid are considered in equilibrium. A magnetic field of constant magnitude
By is applied. Further the temperature Ty and mass concentration Cjy are assumed on both
walls of channel. The velocity field for this flow behavior is V = [U(X,Y,t),V(X,Y,?),0]. The
governing expressions in the presence of non-linear thermal radiation, viscous dissipation and

porous medium given below: - -
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In these equations, P denotes the pressure, o, 7 the electric conductivity of nanofluid, p,,; the
density of nanofluid, Sz-j the components of extra stress tensor, 1" the fluid temperature, C' the
concentration, S.L the viscous dissipation, L the gradient of velocity, K, ¢ the thermal conduc-
tivity of nanofluid, C,,; specific heat of nanofluid, Dp the mass diffusivity, D7 thermophoretic
diffusion coefficient and (pC),,, the effective heat capacity of nanoparticles. Here the modified

Darcy’s resistance law [32] has been used for porous medium and thus R = (Rg, Ry, 0) satisfies:
_ I -
R=—Su()7. (8.7)

in which k£ depicts the permeability and € porosity of porous medium. Further we recover the

Darcy law from generalized model by putting n = 1 or § = 0. Radiative heat flux ¢, in view of
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Rosseland’s approximation is defined as:

4o* OT*
4r = — 3k 8—y (8.8)

The constitutive relation for the Carreau-Yasuda fluid is:
S = u(v)As, (8.9)

where p(v') is the apparent viscosity and A; is the first Rivilin-Ericksen tensor defined by

1Y) = oo + (o — prog) [1 + (T "5, (8.10)

with
=5t (AY).

Here p., and p stand for infinite and zero shear-rate viscosities respectively. The parameters
a and I' control the transition between the two extremes. Further “n” stands for dimensionless
power law index. The C-Y fluid model shows the shear thickening and shear thinning nature
for n > 1 and n < 1 respectively and viscous fluid model when n = 1. The results for Carreau
fluid model can be obtained by considering a = 2. Here p, is considered to be zero. If (U, V)
and (@,v) denote velocity components in the moving and stationary frames then the relations

between these frames are:

=X —-ct,y=Y,u=U—c,0=V,p(,y) = P(X,Y,1). (8.11)

We have following equations:
ou 0v
—+—==0 8.12
oz * oy (8.12)

o 0 Op 05z  Oszg

—ouB(a+e) = Zu(y/)(@+ o) (8.13)

127



0 0 0’T 0T
(PCng ((U+0)— +U—y> T = Kpy [8:52 57 2] + 5. L+ onBi(u+c)?

oCar 9Ccar\ Dr [ [OT T\ ? 4o O*T*
. (%= =) )| - =55, 81
(PC)p | D <8x 9z oy 8y>+Tm ((a@) +<ag> ) 3 oz (O
(a+0)@+@%—l} 82_C+a2_0 & 82_T_|_a2_T (816)
oz oy < P\ozz "oyz) T, \ozz " op2 ) '
The dimensionless parameters are defined as:
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Here Br, Re, Ec,Pr, M, §,0, Ny and Ny denote the Brinkman number, Reynolds number, Eckert
number, Prandtl number, Hartman number, wave number, dimensionless temperature, the
Brownian motion parameter and the thermophoresis parameter. Applying long wavelength and

small Reynolds number assumptions, the non-dimensional governing equations yield:

Py =0, (8.18)
_Ossy 409 o 1 p(v') oY
P =5 M <1+ ay) Da 1 1+ ) (8.19)
2 2 4
Oy + Brd + Pr Nyo, 0, + Pr N, (6,)* + BrM* <1 + %’) - %% =0, (820
Ny, + Nibyy =0, (8.21)

and the continuity equation is justified trivially. Here ® is the dimensionless viscous dissipation
term and s, the dimensionless component of extra stress tensor after lubrication approach
given by:

(n—l) (%y) Yy (8.22)

Spy = Syz = |1+
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Here We = g—f denotes the Weissenberg number. Substitution the values of s;,, from Eq. (8.22)

into Egs. (8.18)-(8.21) gives:

0? (n—1)We® a 9 1 0 (n—1)We® “ o
a1 o 00 = [ B (145) <o
(8.23)
Oy + Br |1+ B (g )a] 42+ Pr Ny, 0, + PrN: (6,)° 520
B2 (14 57) - BGRE <0,
Nydyy + Niblyy = 0. (8.25)

Non-dimensional flow rates in the wave F(= q/ca) and laboratory n(= Q/ca) frames are asso-
ciated through the relation
n=F+1, (8.26)

where ) and § are dimensional flow rates in the laboratory and wave frames. Further ‘F” is
expressed by:
ho
Fe [ % (8.27)
o Oy

Dimensionless boundary conditions are:

Y =0,%,,=0,0,=0,9,=0at y =0,
Y =F,=-1,0=0, Ny, + Ny =0at y=h,

(8.28)

where h = 1 + dcos(2rz). The system of equations subject to boundary conditions is solved

numerically by Mathematica. Analysis of results is given below.

8.2 Analysis

Here axial velocity, temperature and concentration via graphs are analyzed. Numerical results

of heat and mass transport process at the upper wall are studied via tables.

8.2.1 Velocity

Figs. (8.2)-(8.4) are organized to analyze the effects of M, We and Da parameters on the axial
velocity. These Figs. depict that axial velocity is higher near the center of channel. Fig. 8.2
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depicts that for higher values of Hartman number the axial velocity decreases. Physically it is
convenient due to retarding nature of the Lorentz force when the magnetic force is perpendicu-
larly applied to the direction of fluid motion. Increasing value of Weissenberg number enhances
velocity profile (see Fig. 8.3). Viscous forces are decayed by enhancing “We” therefore axial
velocity increases. “Da” number has an enhancing effect of velocity near the center of channel

and reverse behavior near the channel wall (see Fig. 8.4).

8.2.2 Temperature

Figs. (8.5)-(8.11) are prepared to examine the temperature via M, We, a, Da, N; and Nj. Sub-
stantial increase in temperature is seen by enhancing Weissenberg number (see Fig. 8.5). Hart-
man number has an increasing affect on temperature (see Fig. 8.6). It is convenient for Joule
heating. Temperature rapidly increases when Hartman number enhances due to the viscous
dissipation. Significant rise in temperature is seen when non-linear thermal radiation parame-
ter is increased (see Fig. 8.7). Fig. 8.8 shows that temperature enhances by increasing “Da”
number specially near boundaries. Temperature of fluid slightly decreases by enhancing the
non-Newtonian parameter “a” (see Fig. 8.9). Effects of Brownian motion and thermophoresis
on temperature are studied via Figs. (8.10)-(8.11). Increase in N; and Nj enhances the tem-
perature. Ratio between surface and reference temperatures enhances due to an increment in

thermophoresis parameter and so temperature increases.

8.2.3 Concentration

Effects of embedded parameters for concentration are examined via Figs. (8.12)-(8.18). Fig.
8.12 shows a decrease in concentration when Weissenberg number is enhanced. Fig. 8.13
represents that concentration of nanomaterial rapidly enhances with Hartman number. This is
generally due to presence of Joule heating and thermophoresis. Concentration of nanomaterial
decreases for non-Newtonian parameter “a” (see Fig. 8.14). Fig. 8.15 shows an increase in
concentration of nanomaterials when thermophoresis parameter is enhanced. However opposite
behavior is seen in case of Brownian motion (see Fig. 8.16). It is due to the fact that Brownian
forces push the particles in opposite direction of concentration gradient and make the nanofluid

more homogeneous. Fig. 8.17 shows that decrease in concentration appears when “Da” number
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increases. Increasing value of R; parameter decrease the concentration of nanomaterials (see

Fig. 8.18).

8.2.4 Heat and mass transfer rate

Heat and mass transport process corresponding to different values of embedded parameters are
numerically given in table 8.1. It is concluded that increasing Weissenberg number and Hartman
number decrease the heat and mass transport process. Further the non-Newtonian parameter
“q” shows an increase in heat and mass transport process. This table indicates that higher
“Da” number and “R;” decay the heat and mass transport process. Larger thermophoresis

variable rapidly increases mass transfer rate. However “IN,” decreases mass transfer rate.

8.3 Conclusions

Numerical solution for flow of an incompressible Carreau-Yasuda nanofluid model is studied.

Key findings are summarized below.

Large Weissenberg number depicts an increasing behavior for axial velocity and temper-

ature near channel center. Further concentration decreases against Weissenberg number.

e Both temperature and concentration show decaying behavior when non-Newtonian para-

meter increases.

e By enhancing “Da” number both velocity and temperature depict increasing behavior

near the center of channel while opposite effect is guaranteed for concentration.
e Larger Hartman number depicts higher temperature and concentration.
e For larger thermophoresis parameter the heat and mass transport process increase.
e Non-linear thermal radiation enhances temperature while heat transfer rate decays.

e Brownian motion has opposite effects for temperature and concentration.

131



Fig. 8.1. Geometry of the problem.
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Fig. 8.2. Effects of M on velocity.

04
02

00
—02}

=
~04

-0.6

-0.8

133



Fig. 8.4. Effects of Da on

velocity.
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Fig. 8.6. Effects of M on 6.

Fig. 8.7. Effects of Ry on 6.
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Fig. 8.8. Effects of Da on
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Fig. 8.10. Effects of NV on 6.
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Fig. 8.12. Effects of M on concentration.

Fig. 8.13. Effects of a on concentration.
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Fig. 8.14. Effects of Ny on concentration.
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Fig. 8.16. Effects of R4 on concentration.
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Table 8.1: Effect of embedded parameters on heat and mass rate.

We

M

Da

Ny

Ny,

-0'(h)

¢'(h)

0.0

1.0

2.0

0.2

0.5

0.5

0.798858

0.944304

0.3

0.774853

0.918494

0.6

0.736244

0.877082

0.3

0.5

0.978356

1.006850

1.0

0.774853

0.918494

1.5

0.673886

0.871912

1.0

2.0

0.774853

0.918494

4.0

0.791814

0.935982

6.0

0.795791

0.940520

2.0

0.2

0.774853

0.918494

0.3

0.732663

0.878502

0.4

0.711439

0.859291

0.2

0.2

0.774853

0.918494

0.3

0.649985

0.851924

0.4

0.580960

0.816411

0.2

0.5

0.774853

0.918494

1.0

0.776464

1.721720

1.5

0.776913

2.502060

1.0

0.5

0.774853

0.918494

1.0

0.774601

0.452167

1.5

0.775668

0.296788
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Chapter 9

Peristaltic activity of
Carreau-Yasuda nanomaterial with
convective and zero mass flux

conditions

This chapter explores Hall and Ohmic heating effects in peristaltic transport of non-Newtonian
nanomaterial. Non-Newtonian fluids are no doubt used in physiological and industrial phenom-
ena. Fluid subject to nanomaterial are used in tumor analysis, oil recovery, cancer therapy and
many others. Here we consider the peristaltic transport of Carreau-Yasuda nanofluid subject to
mixed convection. The thermal convective and zero nanoparticles mass flux conditions are used
in view of very little information on this topic. Modelling is constructed for long wavelength
and low Reynolds number. Resulting nonlinear equations are numerically solved. Graphical

analysis of velocity, temperature and concentration is analyzed.

9.1 Problem formulation

Flow of Carreau-Yasuda (CY) fluid in an asymmetric channel is assumed. Flow is driven by the

movement of peristaltic waves with wavelength A and speed “c” along the channel boundaries.
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Consider X — axis along length of channel and Y — axis normal to it. Geometry of peristaltic

walls (see Fig. 9.1) is described in the forms:
_ 2r 5
H{(X,t)=dy + alcos(T(X — ct)),

Ho(X,F) = —dy — blcos(%ﬂ()‘( — o) + ). (9.1)

Here H; and Hj are the upper and lower walls of channel, v, stands for phase difference, ¢ for
time, a1 and b; denote the amplitudes of upper and lower waves respectively. Fluid is electrically
conducting in presence of strong applied magnetic field. Hall effect is retained. Velocity field for
this flow is V = [U(X,Y, 1), V(X,Y,%),0]. Viscous dissipation and Ohmic heating are present.
Effects of Brownian motion and thermophoresis are also considered to explore nanomaterial

characteristics. Associated equations for the current problem under consideration are:
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In these equations, P stands for pressure, o for electrical conductivity of fluid, By for applied
magnetic field strength, m(= Zﬂ%) for Hall parameter, Cp,(= £2€1) denotes the mean con-
centration of nanoparticles, T,,, (= %) the mean temperature of nanoparticles, p; the density
of fluid, S;; the components of extra stress tensor, 7' the fluid temperature, C' the concentra-
tion, S.L the viscous dissipation term, L the gradient of velocity, C ¢ the specific heat of fluid,
K the thermal conductivity of fluid, Dp the mass diffusivity, Dy the thermophoretic diffusion

coefficients and (pC'),, the effective heat capacity of the nanoparticles. An extra stress tensor

for the Carreau-Yasuda fluid is:

S = pu(v)A,
where A is the first Rivilin-Ericksen tensor and the apparent viscosity pu(y') is:

n—1

“ (9.7)

1) = preo + (1o — poo) [1 + (TTD)"]

with
1
H = Et’l"(A%) 5

and

A= [gradV + (grad V)T} .

Here j1, denotes the infinite shear rate viscosity and 1, stands for zero shear-rate viscosity. The
non-Newtonian parameters a and I' control the transition between the two extremes. Further
“n” depicts the characteristics of power law index that explore the nature of thickening and
thinning of material. The thermal convective and zero nanoparticles mass flux conditions are

defined as follows:

K (T -Ty), 9.8
"oy ( ) (9.8)
oC DrpoT
D = = — t :h d :h .
Bay + T 97 0 at y = hy and y = hy, (9.9)

in which [,, and T, stand for heat transfer coefficient and temperature at the walls. By using

the transformations:

=X —-ct,y=Y,u=U—c,0=V,p(x,79) = P(X,Y,1), (9.10)



the resulting equations:
ou  Ov

gL 11
6§:+6g 0, (9-11)

Py ((u—l—c)a——i—va—y) (@+c)=— 8x+ oz T ayy
o1 B3
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&, g, n, v d, H, H, b o oa, b dp
x*)\7y*d17u*c7vfc575* )\7h1* dlth* d27d7d17a27d17 7d1’pic)\,uf’
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(9.16)

Here Re, Br, Ec,Pr, M, 6,60, Gr,G., N, and N; denote the Reynolds number, Brinkman number,
Eckert number, Prandt] number, Hartman number, wave number, dimensionless temperature,
the thermal Grashoff number, the concentration Grashoff number, the Brownian motion para-
meter and the thermophoresis variable. Applying the long wavelength and low Reynold number

suppositions the simplified form of equations we obtain:

py =0, (9.17)
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08y M? o
y = —4 9 - (1+ %), 1
D 2y +Grl+Geo 1+m2< +8y> (9.18)
,  BrM? o\ 2
Oyy + Br® + Pr Ny, by + Pr Ny (0,)° + (1t a) = 0, (9.19)
Ny, + Nifyy =0 (9.20)

Incompressibility condition is trivially satisfied. Here ® is the dimensionless viscous dissipation

term and nondimensional form of s;, can be described as:

(1-pB)(n—-1HW

Szy = Syz = |:1 + (wyy) ¢yy7 (921)

in which g = "; stands for viscosity ratio parameter, 1 the stream function and Wezg—f the

Weissenberg number. From Egs. (9.17)-(9.21) we obtain:

0’ (1-pB)n—-1)W M2

8y |:1 + a (wyy) :| wyy + GTey + chsy 1 + m2 wyy 7 (922)
1-— -1 BrM? o\ 2
Oyy+Br [1 1! B)(na W (wyy) ] ¥, +Pr Nyg, 0, +Pr N; (%)%ﬁ (1 + 8%) =0,
(9.23)
Ny, + Nibly, = 0. (9.24)

Dimensionless flow rate in the laboratory n(= Q/cd;) and wave F(= q/cd;) frames are related
via the relation:

in which @ and ¢ are dimensional flow rates in the laboratory and wave frames. Further ‘F’ is

given by:
h1
F= g;f (9.26)
ha
The dimensionless boundary conditions are given by:
0 00
¢:§,8—§: 1’85+BZ1(9+ 3) = 0 and Ny¢, + Ni0, =0 at y = hy, 027)
9.27
0
w——g,—j—— ,8—y—Bz’2(9—%):OandquﬁynLNtHy:Oaty:hz
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hi1 =1+ ascos(2mz), ho = —d — bcos(2mx + 75),
o= (lhdy o = (d
BZl—( r ,B’LQ (Kf)’
in which Bi; and Bis depicts Biot-numbers for upper and lower walls. Numerical approach

are used to solve the system of equations in presence of boundary constraints. Analysis of the

results are explored in next section.

9.2 Discussion

Here graphs are plotted for the velocity, temperature and concentration against embedded
variables. Numerical data of heat and mass transport rates at the upper wall is presented in

Table 9.1.

9.2.1 Axial velocity

Effects of M, m and We on axial velocity are depicted in Figs. (9.2)-(9.4). Velocity profile
follows parabolic path. Maximum velocity is attained near the central portion of medium.
Impact of Hartman number on velocity in Fig. 9.2. Fluid velocity is maximum for smaller
values of “M”. Fig. 9.3 gives the description of velocity for various values of Hall parameter.
Hall parameter enahnces the fluid velocity near central portion of medium. Both Hartman
and Hall parameters depict similar behavior for shear thickening (n > 1) and shear thinning
(n < 1) materials. Fig. 9.4 gives velocity behavior for Weissenberg number. An increment in
Weissenberg number shows increasing behavior for shear thickening case while reverse behavior

is noticed for shear thinning fluids.

9.2.2 Temperature

Impacts of M, m, Gr, We, a, 8 and N; on temperature are plotted (see Figs. (9.5)-(9.10).
Temperature for Hartman number is studied in Fig. 9.5. It is noticed that temperature rapidly
increases in the presence of magnetic field. Hall variable shows opposite affect on temperature
when compared with Hartman number (see Fig. 9.6). Hall parameter decreases temperature
of fluid. Effect of mixed convection variable G7 on temperature is depicted in Fig. 9.7. Tem-

perature enhances near lower wall and it decays near upper wall for larger Gr. Fig. 9.8 shows
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temperature behavior via Weissenberg number. An increase in temperature for shear thickening
fluid is observed. Temperature decreases for shear thinning fluids. Fig. 9.9 indicates contribu-
tion of non-Newtonian parameter “a” on temperature. An enhancement in “a” depicts decaying
behavior for shear thickening case (n > 1) while reverse situation is observed for (n < 1) case.
Effect of viscosity ratio parameter “3” on temperature is depicted in Fig. 9.10. Higher values
of “A” increase the temperature for shear thinning fluid. However situation for shear thickening

behavior is reverse.

9.2.3 Concentration

Figs. (9.11)-(9.16) show concentration against M, m,Gc, We, Ny and Np. For higher Hartman
number, the concentration decreases for both shear thickening and shear thinning fluids (see
Fig. 9.11). Fig. 9.12 indicates that concentration profile enhances for Hall parameter. Note
that concentration decreases for higher G parameter (see Fig. 9.13). Clearly presence of Weis-
senberg number increases concentration for shear thinning fluid (see Fig. 9.14). Concentration
decreases for shear thickening fluids. Effects of Brownian motion and thermophoresis on con-
centration are discussed in Figs. (9.15)-(9.16). Concentration decays by increasing Brownian

motion and it enhances by increasing thermophoresis.

9.2.4 Concentration and temperature rates

Heat and mass transfer rates behavior in an asymmetric channel for M, m, We, a, Ny, Ny, G,
Biy and n are depicted in Table 9.1. Clearly presence of magnetic field increases the heat and
mass transport characteristics. It is evident that Hall parameter has opposite trend for heat
and mass transport rates when compared with Hartman number. Further for larger values of
Weissenberg number, both heat and mass transport rates decay. Heat and mass transport rates
also increase when non-Newtonian parameters “a” and “n” are enhanced. Thermophoresis
parameter enhances the heat and mass transfer rates but Brownian motion decreases these.

Presence of “G7” variable decays heat and mass transport rates. However higher values of Biot

number facilitate the heat transport rate.
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9.3 Conclusions

Key findings of present analysis include the following points.

e Velocity and concentration distributions decay for shear thickening and shear thinning

cases when Hartman number increases.
e Presence of Hall parameter increases the concentration and it decreases temperature.

e Weissenberg number shows opposite behaviour for shear thinning and shear thickening

fluids.

e Increasing value of non-Newtonian parameters “a” and “5” enhance the temperature for

shear thinning fluids. The results are reverse for shear thickening fluids.

e Larger Brownian motion parameter decrease concentration for both shear thickening and

thinning fluids. However increasing values of thermophoresis parameter give concentration

enhancement.
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Fig. 9.2. Effect of M on velocity when d=0.7, n=0.7, z=0.0, y=n/4, a;=0.4, b6=0.3, Br=0.3,
Pr=0.5, We=04, Gr=1.0, G¢=1.0, Bi1=0.9, Biy=1.2, m=2.0, 5=0.1, a=2.0, N;=0.5 and
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Fig. 9.3. Effect of m on velocity when d=0.7, n=0.7, x=0.0, y=n/4, a1=0.4, b=0.3, Br=0.3,
Pr=0.5, We=0.4, Gr=1.0, Gc=1.0, Bi1=0.9, Biy=1.2, M=1.0, =0.1, a=2.0, N;=0.5 and
Np=0.5.
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Fig. 9.4. Effect of We on velocity when d=0.7, n=0.7, 2=0.0, y=n/4, a;=0.4, b=0.3, Br=0.3,
Pr=0.5, Gr=1.0, G¢=1.0, Bi1=0.9, Bix=1.2, M=1.0, m=2.0, 5=0.1, a=2.0, N;=0.5 and
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Np=0.5.
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Fig. 9.5. Effect of M on temperature when d=0.7, n=0.7, ©=0.0, y=n/4, a1=0.4, b=0.3,
Br=0.3, Pr=0.5, We=0.4, Gr=1.0, Go=1.0, Bi1;=0.9, Bis=1.2, m=2.0, 5=0.1, a=2.0, N;=0.5
and N,=0.5.
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Fig. 9.6. Effect of m on temperature when d=0.7, n=0.7, x=0.0, y=n/4, a;=0.4, b=0.3,
Br=0.3, Pr=0.5, We=0.4, Gr=1.0, Go=1.0, Bi1=0.9, Bi,=1.2, M=1.0, 5=0.1, a=2.0, N;=0.5
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and N,=0.5.
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Fig. 9.7. Effect of Gy on temperature when d=0.7, n=0.7, x=0.0, y=n/4, a1=0.4, b=0.3,
Br=0.3, Pr=0.5, We=0.4, Gc=1.0, Bi;=0.9, Bis=1.2, M=1.0, m=2.0, $=0.1, a=2.0, N;=0.5
and N,=0.5.

Fig. 9.8. Effect of We on velocity when d=0.7, n=0.7, z=0.0, y=nr/4, a;=0.4, b=0.3, Br=0.3,
Pr=0.5, Gr=1.0, G¢=1.0, Bi1=0.9, Bix=1.2, M=1.0, m=2.0, 5=0.1, a=2.0, N;=0.5 and
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Fig. 9.9. Effect of a on temperature when d=0.7, n=0.7, x=0.0, y=n/4, a1=0.4, b=0.3, Br=0.3,
Pr=0.5, We=0.4, Gr=1.0, Gc=1.0, Bi1=0.9, Biy=1.2, M=1.0, m=2.0, 3=0.1, N;=0.5 and

N,=0.5.
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Fig. 9.10. Effect of 8 on temperature when d=0.7, n=0.7, z=0.0, y=n/4, a1=0.4, b=0.3,
Br=0.3, Pr=0.5, We=0.4, Gr=1.0, G¢=1.0, Bi;=0.9, Biy=1.2, M=1.0, m=2.0, a=2.0,

152



N;=0.5 and N;,=0.5.

Fig. 9.11. Effect of M on concentration when d=0.7, n=0.7, ©=0.0, v=n/4, a1=0.4, b=0.3,
Br=0.3, Pr=0.5, We=0.4, Gr=1.0, Go=1.0, Bi1;=0.9, Bis=1.2, m=2.0, 5=0.1, a=2.0, N;=0.5
and N,=0.5.
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Fig. 9.12. Effect of m on concentration when d=0.7, n=0.7, x=0.0, v=n/4, a1=0.4, b=0.3,
Br=0.3, Pr=0.5, We=0.4, Gr=1.0, Go=1.0, Bi1=0.9, Bi,=1.2, M=1.0, 5=0.1, a=2.0, N;=0.5
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and N,=0.5.
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Fig. 9.13. Effect of G¢ on concentration when d=0.7, n=0.7, =0.0, y=7/4, a;=0.4, b=0.3,
Br=0.3, Pr=0.5, We=0.4, Gpr=1.0, Go=1.0, Bi1=0.9, Bi»=1.2, M=1.0 ,;m=2.0, §=0.1,
a=2.0, N;=0.5 and N,=0.5.
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Fig. 9.14. Effect of We on concentration when d=0.7, n=0.7 ,2=0.0, y=n/4, a;=0.4, b=0.3,
Br=0.3, Pr=0.5, We=0.4, Gp=1.0, Gc=1.0, Bi1=0.9, Biy=1.2, M=1.0, m=2.0, 3=0.1,
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a=2.0, N;=0.5 and N,=0.5.
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Fig. 9.15. Effect of Nj on concentration when d=0.7, n=0.7, z=0.0, y=n/4, a;=0.4, b=0.3,
Br=0.3, Pr=0.5, We=0.4, Gr=1.0, Go=1.0, Bi1=0.9, Bi»=1.2, M=1.0, m=2.0, 5=0.1, a=2.0
and N;=0.5.
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Fig. 9.16. Effect of Ny on concentration when d=0.7, n=0.7, x=0.0, v=n/4, a1=0.4, b=0.3,
Br=0.3, Pr=0.5, We=0.4, Gr=1.0, Go=1.0, Bi1=0.9, Bis=1.2, M=1.0, m=2.0, 5=0.1, a=2.0
and N;=0.5.
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Table 9.1. Effect of embedded variables on heat and mass transfer rates when d=0.7, n=0.7,

x=0.0, y=n/4 ,a1=0.4 b=0.3, Br=0.3, Pr=0.5, G¢=1.0 and Biy=1.2.

M |m |We|la |N;|N,|Gp|Big|n |-0[h] -¢'[h]
0020041200505 (10|10 0.5]0.471893 | -0.471893
1.0 0.498409 | -0.498409
2.0 0.577498 | -0.577498
1.0 0.0 0.603717 | -0.603717
1.0 0.538037 | -0.538037
2.0 0.498409 | -0.498409
2.010.0 0.509397 | -0.509397
0.3 0.503306 | -0.503306
0.6 0.483118 | -0.483118
04 | 1.0 0.502130 | -0.50213
2.0 0.498409 | -0.498409
3.0 0.540164 | -0.509065
20|01 0.492520 | -0.098503
0.5 0.498409 | -0.498409
0.9 0.504913 | -0.908844
0.5 0.1 0.535037 | -2.675180
0.5 0.498409 | -0.498409
0.9 0.495053 | -0.275029
0.5 105 0.502410 | -0.502410
1.0 0.498409 | -0.498409
1.5 0.494648 | -0.494648
1.0 | 0.5 0.404584 | -0.404584
1.0 0.498409 | -0.498409
1.5 0.540164 | -0.540164
1.0 | 0.5 | 0.498409 | -0.498409
1.0 | 0.509397 | -0.509397
1.5 | 0.519809 | -0.519809

156




Chapter 10

Entropy generation analysis for
peristaltic motion of

Carreau-Yasuda nanomaterial

This chapter concentrates on the peristalsis of nanofluid in presence of Hall current. Therefore
our main aim of this analysis is to elaborate peristaltic motion of magneto-nanofluid. Hall
current, Joule heating, viscous dissipation and mixed convection effects are presented. Velocity
slip, temperature jump and zero mass flux condition are employed. Further entropy generation
analysis is discussed in detail. Long wavelength and small Reynolds number are employed.

Nonlinear coupled equations are numerically solved and analyzed.

10.1 Modeling

Consider peristaltic flow of Carreau-Yasuda (CY) fluid in a symmetric channel. Cartesian
coordinate system (X,Y,f) are used. The propagating waves describing the wall geometry (see

Fig. 10.1) is in the following forms:

q .
H(X,t)=b+ Z b; cos(mTW(X —ct)). (10.1)
i=1
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Here b, ¢;, A and c represent the half width of channel, amplitude of the several (q) waves, wave-
length and speed of waves. Mixed convection and slip conditions for velocity and temperature
are discussed. Zero mass flux condition is imposed. Viscous dissipation in energy equation is
presented. Uniform magnetic field with constant strength By is taken in presence of Hall effects.
Thermophoresis and Brownian motion are also taken for nanofluid. The equations for problem

under examination are:

ou v

% +35 =0, (10.2)
o 9 O\~ 0P 055 08
(8t+U8 +VaY)U_ ox " ox oy
afB2 "
B0 5 gl - T+ (e - i) (103
9 0 _0\. 0P 5. 05, oB
9 50 [y 0y 0P 05 - 10.4
Ps <at+ 8X+V8Y>V o T ax tay  Tamz Tl (104)

(pC) 02 v 2\r_k iﬁ-i +S.L+ [U2+V2]
PO\ ax T oy )t T ox2 T oy 1+m
oC T 9C oT Dy ([ 0T\? oT\ 2
P B(a_Xa_X+a_Ya_Y>+E<<a_X> *(a?)) (105)
72 v _p —820+82—C Dr —82T+82—T (10.6)
ox oy Bl\oxz T oyve oX2 ' 9Y? '
O'fBO

Here P depicts the pressure, p; represents the density of nanofluid, m(= P ) stands for
Hall number, oy denotes electrical conductivity of nanofluid, S;; depicts extra stress tensor
components, S.L the viscous dissipation term, C the concentration of nanomaterial, 7' the
fluid temperature, D7 the thermophoretic diffusion coefficients, D g the mass diffusivity, K the
thermal conductivity and Cy the specific heat of nanofluid. The stress tensor for the Carreau-

Yasuda fluid is:
S = u()Ar. (10.7)



A described the first Rivlin-Ericksen tensor and u(+’) the apparent viscosity is:

1Y) = oo + (o — o) [1 + (T T, (10.8)

A= [gradv + (grad V)T} ,

where uy and p., denote the zero and infinite shear rate viscosities. Here a and I' described
non-Newtonian characteristics of CY fluid. Further “n” represents the power law index. The
Carreau-Yasuda model behaves as a shear thinning fluid for (n < 1), shear thickening material
for (n > 1) and show viscous behavior for n = 1. Involvement of five parameters in this fluid is
preferred over the power law model confining two parameters to describe the fluid rheology. For
a = 2 C-Y fluid model shows the characteristics of Carreau fluid. At intermediate shear rates,
a Carreau fluid behaves like a power-law material. Carreau-Yasuda model has been employed
to simulate various chemicals, molten plastic, slurries, paints, blood at low shear rate etc. By

using the transformations:

t=X—-ct,y=Y,u=U—c,0=V,p(x,9) = P(X,Y,1), (10.9)

the resulting equations are:

ou 0Ov

Fr 4 8_g =0, (10.10)

) O 9N\, 0p 05 05

Pf ((u+c)aj+vay> (u+c)= (%—l— o + a7

o BE N

~ 5@+ €)= ma] + 9ps[O(T ~ To) +¢*(C — Co)l, (10.11)

_ o 0\ _ op 05z 0555 o0fB2 ~
Py <( —i—c)% +va—g> = ~o5 + 8; + G;y —1 iTr(L)Q [0 4+ m(a+ )], (10.12)
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0 0 0’T 0T _  ofB3 2 . 9
(pC)f((quC)%Jrva—y)Tan[WJra—yJ Lt i@+ o)’ +97
ocoT  0CoT T
+(pCp [DB (&E % o ay> + = (( ) (8—) > (10.13)
_ 80 06’ 820 820 D 02T 82T
Following dimensionless parameters are used:
oy U b, H b?p g%
T=y=u=_v=s0="h= ,p—cM 0 = 7
Py cb . c? Mfo TDBC() . TD7Th
Re = 0 ,EfoTO,P M = / Bob Ny = Ny = T
Tob? C b2
U:ﬁ,GTzipfggo ,Ge = ,OfQC 0 T TOB —PrEu—a—wv:—a—w.
pf /,LfC /,LfC T() 8y ox
(10.15)

Here N¢, Ny, G, G7,0,8, M, Pr, Ec, Br and Re denote the thermophoresis parameter, the Brown-
ian motion parameter, the concentration Grashoff number, the thermal Grashoff number, di-
mensionless temperature, wave number, Hartman number, Prandtl number, Eckert number,
Brinkman number and the Reynolds number. Large wavelength and small Reynold number

assumptions are utilized for the simplification of dimensionless equations then we have:

py =0, (10.16)
_9 (1= p)(n - W M? L
Pe =g |1+ ” (%y) Yy + G0+ God — 77— {1+ 3 ) (10.17)
» BrM? o\ 2
0y, + Br® + Pr quSy@y +Pr N, (6,)” + To2 1+ 0_y =0, (10.18)
Nodyy + NiOyy = 0. (10.19)

Continuity equation is trivially justified and ® depicts the dimensionless viscous dissipation
term. Here 8 = ‘L = represents the ratio of viscosity parameter, We— stands for Weissenberg
number and ¢ shows the stream function. From Eqs. (9.16)-(9.19) we obtain:

0? 1-8)(n—-1 M?
" ( )(na W (%y) by, + Groy + Ged, — m@z)yy =0, (10.20)
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(1—=p)(n—1We"

BrM? o\
0yy+Br |1+ () | 92, +Pr Nyb,0,+Pr N; (0,)2+-— (1+_¢> =0

1+ m? oy ’
(10.21)
)

10.21
Nb¢yy + Nteyy =0. (10.22
The nondimensional form of flow rates in the laboratory n(= Q/cd;) and wave F(= §/cdy)

frames are related by:

n=F+1. (10.23)
Furthermore ‘F” is defined as:
F = ha—wdy (10.24)
0 dy ' .

The dimensionless boundary conditions are:

2
wzo,g—f:O,?:Oand%:Oaty:O,
¢:F,8—y+§smy:—1,9+’ya—y20and Ny, + Niby =0 at y = h,

q
h=1+ Z p;cos(2im).

i=1
In this study, we take ¢ = 10 and the values of amplitude is taken as: ¢; = 0.01, ¢, = 0.02, o5 =
0.03, ¢, = 0.04, ¢5 = 0.05, pg = 0.06, p; = 0.07, ¢g = 0.1, g = 0.2 and ¢y = 0.3 that fulfill the

basic criteria 1 = Y7 | ¢, to forbid the interference of upper and lower walls.

10.1.1 Solution methodology

The dimensionless forms of equations with appropriate boundary constraints are solved via

numerical approach. Graphical interpretation of the results is described in proceeding section.

10.2 Entropy generation rate

By using the second law of thermodynamics, the entropy generation at each point of the fluid

can be calculated as follows:

(Sgen) - (Sgen)heat + (Sgen)fric + (Sgen)maga
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where (Sgen)neat depicts the entropy generation due to heat transport, (Sgen) fric Tepresents

entropy generation due to fluid friction and (Sgen)mag shows the entropy generation effects due

(2) - ()

1 JnfBg
T() 14+ m?

to applied magnetic field. We write:

Ky
(Sgen)heat - (TO)2

I

(Sgen)mag = [(TL + 6)2 + ’(_}2].

Dimensionless form of entropy generation can be described as:

(1-pB)(n—1)We"

2 2
E =0, +Br|1+ Brif <1 aw) .

2
(¢yy)a] vy T 1+ m2 + 8_y
Bejan number in nondimensional form is:

Be _ Entropy generation due to heat transfer

Total entropy generation

10.3 Discussion

Graphical analysis of velocity in symmetric channel is presented in Figs. (10.2)-(10.5). Graph
depicts that fluid velocity is maximum near central portion of channel. Fig. 10.2 depicts the
velocity for various values of Hartman variable. An increase in “M” variable yields decay
of axial velocity near channel center. Velocity decays due to the resisting nature of Lorentz
force when magnetic field is applied in the transverse direction. Fig. 10.3 indicates velocity
for Hall parameter. Hall parameter shows reverse behavior on velocity when compared with
Hartman number. Physically this is justified because the Hall number commonly balances the
magnetic force of applied magnetics by some extent. In Fig. 10.4 velocity for Weissenberg
number is shown. Velocity decreases by increasing viscosity ratio parameter. Fig. 10.5 shows
that velocity enhances for velocity slip parameter. Prominent effect is seen near the channel

wall. Figs. (10.6)-(10.11) depict outcomes of embedded variables on temperature. Fig. 10.6
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indicates variation of temperature for different Hartman number. It is seen that an increment
in Hartman number leads to higher temperature. Temperature depicts increasing behavior due
to Ohmic heating. Fig. 10.7 depicts the effect of Hall variable on temperature. It is found that
temperature shows decreasing trend for larger Hall number. Temperature shows decreasing
trend for higher Hall parameter. In fact Hall parameter has reverse effect when compared with
Ohmic heating. Fig. 10.8 illustrates temperature characteristics for thermal Grashof number.
Temperature is an increasing for G;. Temperature for non-Newtonian parameter “a” is shown
in Fig. 10.9. It is concluded that temperature is increased by larger “a”. It is obvious from
Fig. 10.10 that temperature rapidly increases throughout the channel by higher temperature
jump parameter. Variation in temperature for different thermophoresis parameter is shown in
Fig. 10.11. It is observed that larger NV; lead to temperature decay. Figs. (10.12)-(10.15) are
plotted for impacts of M, G¢, Ny and N; on concentration. Fig. 10.12 depicts effect of Hartman
number on concentration of nanomaterial. Concentration rapidly decreases by increasing Hart-
man number. Fig. 10.13 shows behavior of concentration for various values of concentration
Grashof number G¢. Concentration decreases by increasing Go. Fig. 10.14 exhibits concen-
tration of nanomaterial for Brownian motion parameter. Concentration of nanomaterial shows
decreasing trend for larger N;. Basically the Brownian force pushes the particles in the reverse
direction of concentration gradient and make the nanofluid more homogenous. Fig. 10.15 shows
effect of thermophoresis parameter on concentration. Clearly concentration rapidly enhances
near channel wall by increasing N;. Physically an increment in thermophoresis variable means
that nanomaterials are shifted towards cold region from hot region. Therefore the maximum
nanoparticles are dragged away from the warm region due to which nanomaterial concentra-
tion enhances near wall. Figs. (10.16)-(10.20) show the variations of entropy generation for
M, m, Br,a and n. In Fig. 10.16 we present effect of Hartman number on entropy generation.
Here entropy generation increases by larger Hartman number. Physically for strong magnetic
field more resistive force is experienced in system due to which more disturbance occurred and
so entropy rate enhances. In Fig. 10.17, variation of entropy generation for Hall parameter is
exhibited. Entropy generation shows decreasing trend for larger Hall parameter. Fig. 10.18 rep-
resents Brinkman number impact on entropy generation. Entropy generation enhances rapidly

by increasing Brinkman number. It depicts that entropy generation increases due to loss of
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kinetic energy when fluid particles collide with each other. Fig. 10.19 shows that entropy
generation enhances by larger non-Newtonian parameter “a”. Fig. 10.20 depicts that entropy
generation is larger for shear thinning fluid when compared with shear thickening material.
Effects of M, m, Ny and “a” on Bejan number are shown in Figs. (10.21)-(10.24). Hartman
number impact on Bejan number is shown in Fig. 10.21. Bejan number increases for rise of M.
Influence of Hall parameter on Bejan number is displayed in Fig. 10.22. When Hall parameter
increases then Bejan number decreases rapidly. Fig. 10.23 shows that Bejan number is in-
versely proportional to thermophoresis parameter N;. Fig. 10.24 indicates increasing behavior
of Bejan number for non-Newtonian parameter “a”. Table 10.1 shows the numerical values of
heat transport rate for different values of M and We. It also provides the comparison between
the shear thinning and shear thickening fluids. The data indicates that heat transport rate for
shear thickening fluid are higher when compared with shear thinning fluid. Table 10.2 depicts
the concentration characteristics for various values of Ny and Np. Concentration transport rate

at wall for shear thickening fluid is higher when compared with shear thinning material.

10.4 Conclusions
Here following points are worth mentioning.

e Hartman and Hall parameter have reverse effects for fluid velocity. Velocity slip parameter

has an increasing effect on velocity.

e Temperature is controlled by increasing Hall parameter. Situation for Hartman number

on temperature is reverse.

e Temperature enhances with increasing thermal Grashof number and non-Newtonian pa-

rameter “a”.

e For higher thermophoresis parameter, the temperature decreases but concentration en-

hances.
e Concentration decreases via Hartman number and Grashof number.

e Entropy generation is decreasing function of Hall parameter.
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e Bejan number decreases by increasing Hall and thermophoresis parameters.

Fig. 10.1. Geometry of the problem.
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Fig. 10.2. Velocity via M when n = 0.9, Br = 0.3, Pr = 0.4, We =04, Gr = 1.0, G¢o =
1.0, m=2.0, =01, a=2.0, n=0.5,{ =0.1, y=0.1, N; = 0.5 and N, = 0.5.

Fig. 10.3. Velocity via m when n = 0.9, Br = 0.3, Pr = 0.4, We = 0.4, Gr = 1.0, G¢ =
1.0, M =1.0, =01, a =20, n=0.5,{=0.1, yv=0.1, Ny = 0.5 and N, = 0.5.
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Fig. 10.4. Velocity via We when n = 0.9, Br = 0.3, Pr = 04, Gr = 1.0, G¢ = 1.0, M =
1.0, m=2.0, 8=0.1, a =20, n=05,(=0.1, v =0.1,N;, = 0.5 and N}, = 0.5.

Fig. 10.5. Velocity via ¢ when n = 0.9, Br = 0.3, Pr = 0.4, We = 0.4, Gr = 1.0, G¢ =
1.0, M =1.0, m=2.0, =0.1, a=2.0, n=0.5,y=0.1, N; = 0.5 and N, = 0.5.
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Fig. 10.6. Temperature field via M when n = 0.9, Br = 0.3, Pr = 04, We =04, Gr =
1.0, G =1.0, m=2.0, 3=0.1, a=2.0, n=0.5,( =0.1, y=0.1,N; = 0.5 and N, = 0.5.
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Fig. 10.7. Temperature field via m when n = 0.9, Br = 0.3, Pr = 0.4, We = 04, Gr =
1.0, Go =10, M=1.0, 6=0.1, a=2.0, n=0.5,( =0.1, v=0.1, N; = 0.5 and N, = 0.5.
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Fig. 10.8. Temperature field via G when n = 0.9, Br = 0.3, Pr = 04, We = 04, G¢ =
1.0, M =10, m=2.0, 8=0.1, a=2.0, n=0.5, =0.1, v =0.1, N; = 0.5 and N, = 0.5.
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Fig. 10.9. Temperature field via a when n = 0.9, Br = 0.3, Pr = 0.4, We = 04, Gr =
1.0, Go =10, M =10, m=2.0, =0.1, n=0.5,(=0.1, v =0.1, N; = 0.5 and N, = 0.5.
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Fig. 10.10. Temperature field via v when n = 0.9, Br = 0.3, Pr = 04, We = 04, Gr =
1.0, Go=1.0, M =10, m=2.0, 8=0.1, a=2.0, n= 0.5, =0.1, N; = 0.5 and N, = 0.5.
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Fig. 10.11. Temperature field via Ny when n = 0.9, Br = 0.3, Pr =04, We =04, G =
1.0, Go =10, M =10, m=2.0, =0.1, a=2.0, n=0.5,(=0.1, v=0.1 and N, = 0.5.
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Fig. 10.12. Effect of M on mass transfer when n = 0.9, Br =0.3, Pr=0.4, We=0.4, Gr =
1.0, Go =1.0, m=2.0, 8=0.1, a=2.0, n= 0.5, =0.1, v=0.1, N; = 0.5 and N, = 0.5.
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Fig. 10.13. Effect of Go on mass transfer when n = 0.9, Br =0.3, Pr=0.4, We =04, Gr =
1.0, M =10, m=20, =01, a=2.0, n=0.5,( =0.1, v=0.1, Nt = 0.5 and N, = 0.5.
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Fig. 10.14. Effect of N, on mass transfer when n = 0.9, Br =0.3, Pr =04, We =04, Gr =
1.0, Go=1.0, M =10, m=2.0, 8=0.1, a=2.0, n= 0.5, =0.1, v = 0.1 and N, = 0.5.

0.0 0.5 1.0 15

Fig. 10.15. Effect of Ny on mass transfer when n = 0.9, Br =0.3, Pr=0.4, We=0.4, Gr =
1.0, Go =10, M =10, m=2.0, =0.1, a=2.0, n=0.5,(=0.1, v=0.1 and N, = 0.5.

Fig. 10.16. Effect of M on Entropy generation when n = 0.9, Br = 0.3, Pr = 0.4, We =
04, Gr =10, Gc =10, m=2.0, =01, a=2.0, n=0.5,( =0.1, v =0.1, Ny = 0.5 and
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Ny =0.5.

Fig. 10.17. Effect of m on Entropy generation when n = 0.9, Br = 0.3, Pr = 0.4, We =
04, Gr =10, Goc =10, M =1.0, =01, a =2.0, n=0.5,( =0.1, y=0.1, Ny = 0.5 and
Ny =0.5.
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Fig. 10.18. Effect of Br on Entropy generation when n = 0.9, Pr = 0.4, We = 0.4, G =
1.0, Go =10, M =10, m=20, =01, a=2.0, n=0.5,( =0.1, v=0.1, Ny = 0.5 and
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Ny =0.5.

Fig. 10.19. Effect of a on Entropy generation when n = 0.9, Br = 0.3, Pr = 04, We =
04, Gr =10, Gc =10, M =10, m=2.0, =01, n=0.5,(=0.1, y=0.1, N; = 0.5 and
Ny =0.5.

0.0t . . .
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Fig. 10.20. Effect of n on Entropy generation when n = 0.9, Br = 0.3, Pr = 04, We =
04, Gr =10, Gc =10, M =10, m=2.0, 6=0.1, a =2.0,¢( =0.1, y=0.1, Ny = 0.5 and
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Ny = 0.5.
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Fig. 10.21. Effect of M on Bejan number when n = 0.9, Br =0.3, Pr =04, We =04, Gr =
1.0, Gc =10, m=20, 8=0.1, a=2.0, n=0.5,( =0.1, v=0.1, Ny = 0.5 and N, = 0.5.
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Fig. 10.22. Effect of m on velocity when n = 0.9, Br = 0.3, Pr = 04, We = 04, Gr =
1.0, G =10, M =1.0, B=0.1, a =20, n =05, =0.1, v = 0.1, N; = 0.5 and N}, = 0.5.
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Fig. 10.23. Effect of N; on Bejan number when n = 0.9, Br =0.3, Pr=0.4, We =04, Gr =
1.0, Go =10, M =10, m=2.0, =0.1, a=2.0, n=0.5,(=0.1, v=0.1 and N, = 0.5.
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Fig. 10.24. Effect of a on Bejan number when n = 0.9, Br =0.3, Pr=04, We =04, Gr =
1.0, Go=1.0, M =1.0, m=2.0, 8=0.1, n =05, = 0.1, v = 0.1, N; = 0.5 and N}, = 0.5.

M | we n=0.5 n=15
0'(h) 0'(h)
0.0 | 0.4 | 0.482084 | 0.566054
1.0 0.603485 0.694317
2.0 0.959875 | 1.075010
1.0 | 0.2 | 0.638645 | 0.661132
0.3 | 0.624287 0.675006
0.4 | 0.603485 | 0.694317

Table 10.1. Effect of various parameters on heat transfer rate for shear thinning and shear

thickening fluids when Br = 0.3, Pr = 0.4, Gr = 1.0, G¢g = 1.0, a = 2.0, m =

0.1,( =0.1, v=0.1, N, = 0.5 and N, = 0.5.

N | N, n=0.5 n=15
¢'(h) ¢'(h)
0.5 ] 0.5 | 0.624287 | 0.675006
1.0 1.246740 | 1.353350
1.5 1.869820 | 2.037600
0.5 ] 0.5 | 0.624287 | 0.675006
1.0 | 0.312564 | 0.337283
1.5 | 0.208491 | 0.224829

2.0, B8 =

Table 10.2. Effect of various parameters on mass transfer rate for shear thinning and shear

thickening fluids when Br = 0.3, Pr = 0.4, G = 1.0, G¢ = 1.0, a = 2.0, m = 2.0, g =
0.1, =0.1, y=0.1, N; = 0.5 and N, = 0.5.
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Chapter 11

Mixed convection and thermal
radiation effects on MHD peristalsis

of Powell-Eyring nanomaterial

Here mathematical developments are made for peristaltic transport of Powell-Eyring nanofluid
through symmetric channel. Heat and mass transport analyses are presented in the presence
of mixed convection. Joule heating, viscous dissipation and thermal radiation are considered
in energy equation. Further slip effects at boundaries are not ignored. Lubrication approach
is utilized for nonlinear equations. Systems of equations are numerically solved via NDsolve.
The velocity field, temperature, concentration and entropy generation behavior are analyzed

via graphs.

11.1 Methodology

Peristaltic flow of nanofluid is examined in a flexible channel having width 2a. Peristalsis
occurred due to the sinusoidal waves that propagate along the channel walls with constant

speed c. Mathematical representation of wave propagation along channel walls are:

AKX, ) = +a+ bcos(%”()‘( — o), (11.1)
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where b, A and t depict the wall amplitude, wavelength and time. The velocity configuration
for the two-dimensional flow is V = [U (X' ,Y,f) VvV (X Y, LT) ,0] . The extra stress tensor for

Powell-Eyring non-Newtonian fluid is defined as follows:

_ 1 11
S = [u T sinh ™! <C—>} A;. (11.2)

in which 8* and ¢* depict the material characteristics of fluid. Further A; (the first Rivlin-

Ericksen tensor) and II are defined by:
1 2
= /5tr (A3). (11.3)
The temperature dependent viscosity coefficient (1) can be expressed as:
= pio (1 —ao (T —To)),

where p5 denotes the constant viscosity of material, g temperature dependent viscosity para-

meter, T temperature of fluid and Ty depicts temperature of wall. By considering the

3
sinh ™! <E> ~ a1 <E>
c* ct 6 \c*

S finally becomes:

(11.4)

S:[uo(l—ao(T—To))+ ! L } 1

B*C* - 66* (C*)?)
The fluid motion is assumed in the presence of strong magnetic field. Therefore Hall effect is
also retained. Because of magnetic field the Ohmic heating is considered in the energy equation.
Brownian motion and thermophoresis are also introduced due to the Buongiorno’s nanofluid
model. Concentration equation is also considered. Related expressions include:

ou  Ov

gL 11.
6§:+6g 0, (11.5)
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8‘ 0T o] 0z
o¢B? .
11722[(@+C>—m5]—gpf [ (T = To) +<" (C - Co)l, (11.6)
52 gy Op  Ospy  OSgs  ofB§
95 0 = - 11.
Pf <vag+(u+6)a_> 8y+ a7 o 1+m2[v+m(u+c)], (11.7)

oT oT 0’T 9T B2
(pC)f<@—g+(ﬂ+C)—_>:Kf< + >+ L+ U—ing [(ﬂ+6)2—|—@2]

0T 0y = 02
oT oT\? oC T 9C oT oqr
HoChnp | 7 <<8x> + (8_y> )+D <a ER ax> ~ oy (11.8)
. 9Cc  _oC 92C  9°C\ Dr (O*T 0°T
(u—i—c)% +v 8y = Dp (ay + W) ﬁ (a—y2 + W) . (11.9)

Here p; depicts the density, oy electrical conductivity, g gravity, By applied magnetic field
strength, m = Zen%o Hall parameter, ¢ thermal expansion coefficient, ¢* Concentration expansion
coefficient, C' Concentration of nanomaterial, (pC'),, effective heat capacity of nanomaterial, K¢
thermal conductivity of fluid, 5.L viscous dissipation, D7 thermophoretic diffusion coefficient,
Dp Brownian diffusion and 5;; component of extra stress tensor. Radiative heat flux ¢, in view

of Rosseland’s approximation is described as:

160*13 T

.= — —. 11.10
4 3k 0V (11.10)
The following dimensionless parameters are employed:
z g u v d H d’p of
- S u=—v=—0=—h=—p= Bod
x Aay d7u C7U 6(57 )\7 dup C)\H[), o 0
d 2 C Tod *Cod?
Re=" 2 g pr=tJ pr— prp Gp =" G =T
4 */1{% CBTOC K{? T T — T gOCC 0 e 0
Rd: 2 Ova:T b OaNt:T T070: — 0>¢: — Oau w = 1/}
ka v I/Tm T() C() 8y a’L'
(11.11)

Here M, Pr, E, 0, §, Br, Re, Ny, Ny, Ry, G, Go and ¢ depict the Hartman number,
Prandtl number, Eckert number, dimensionless temperature, wave number, Brinkman number,

Reynolds number, thermophoresis parameter, Brownian motion parameter, radiation parame-
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ter, thermal Grashof number, concentration Grashof number and dimensionless concentration

respectively. The dimensionless forms of above Egs. (11.5)-(11.9) are:

cOu coOv

S5 xa = (11.12)

ou ou\ = Op | Osgy 0Sza
Re&(vava(u—i-l)ax) 8a:+ 3y +4 pe

M2
—[(u+ 1) = mdv] + Gr + Geo, (11.13)

+
ov v Op 0s Os M?
3 _ vy 2Y5yx
Red <v8 + (u+1) ) 8y+58y +4 B 51+m2[5v+m(u+1)], (11.14)

o0 a0 0%0  ,0%0 M? 9 @9 9
RePré(va—y—i-(u—i-l)%) = <6—y2+5 @> + Br <I>+1+m2[(u+1) + 6707

o0 00\ 2 d¢ 00 8¢ 06 4 0%
2 ov 4, 00
+Pr i (5 <8x> * (8y) ) +Pr i (8 8 Oz 8x> + 3Rd8y2’ (11.15)

op ¢ 92¢ %6 o0 00\ 2
Re.d ((u—i—l)%#— 8_y> =N, (8 3 +528 2) + Ny (52 <8$> + (a—y> ) . (11.16)

The simplified forms of above equations (11.13)-(11.16) by taking the small Reynold number

and long wavelength assumptions are:

Py =0, (11.17)
082y M? o
L= T 14— 0 , 11.1
D 2y 1+m2< +ay>+GT + Goo ( 8)
BrM? ov\% 4R, 0%
Oy + Bro® + Pr Nyo,0, + Pr N, (0,)° + 1 _: — ( + a—j) 3d 52 =0, (11.19)
Ny, + Nibyy = 0. (11.20)

Continuity equation is satisfied. Here ® depicts the non-dimensional form of viscous dissipation

and s, depicts the dimensionless component of extra stress tensor defined by:
3
Spy = Sy = (1 — b)Y, + Ah,, — B (1,,)". (11.21)
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When shear rate enhances then the apparent viscosity of fluid has decreasing behavior. However

opposite nature of fluid is called shear thickening. From Eqs. (11.17)-(11.21) we obtain:

M2
1+ m?2

82

7 (1= ad) v, + Aty — B (1)’ Wy + Gr0 + Gop =0, (11.22)

1+m?2
+Br (1= a0+ 4) (0,,)2 = B (t,,)"] =0,

Nody, + Nibyy = 0. (11.24)

2
0., + g +B”ﬂ(1+@ﬁ +Pr Ny, 0, +PrN
vy 3 Yy Oy y’y t (11‘23)

Dimensionless forms of flow rate in the wave F(= ¢/cd;) and laboratory n(= Q/cd;) frames

are associated through the relation:

n=F+1. (11.25)

Further ‘I’ can be defined as:

h
o

F = —dy.

o 9y Y

The dimensionless boundary conditions are:
Y = 0,1, =0,0, =0and ¢, =0 at y =0, (11.26)

3
b= F v, +&[(1-ad) vy, + Ay, - B (,,)"] = -1,
0 + 0y = 0 and Ny, + Nib, =0 at y = h.

(11.27)

The dimensionless form of geometric walls are:

h =1+ dcos(2mz).

Numerical approach has been used for the solution of non-linear system.
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11.2 Entropy generation

Ky
Sg = —
G T02

afBg
T() (1 + m2)

Mathematically the entropy generation is:
1 160*T5 (9T
[(@+0)® + 0] + = . <—>

8_T 2+ a_T 2

oy oz 12 3k oy

1 - RD[OCOT 9CIAT\ R*D [[/0C\?> [0C\>?

—35.L — 4+ == — — . 11.2
T (aaf oz " By ay)* G <<8y> +<8:f:>> 129

Non-dimensional form of entropy generation is:

2 2
%Rd (0,)%+Br [1 = a0+ A= B (p,,)°| 62,+L6,0,+L (6,)*+ BrM <1 . 8_¢> .

Ns‘[” Tz \' Ty

Here L = (%) depicts the diffusion parameter and N; = (%) the dimensionless entropy

generation. Graphical explanation of the results are described in the next section.

11.3 Discussion

Here the graphical representation of velocity, temperature, concentration and entropy genera-
tion are analyzed. Figures (11.1)-(11.4) describe the influences of some physical parameters on
the axial velocity. Fig. 11.1 highlights the decreasing trend of velocity due to magnetic field.
The presence of magnetic field enhances Lorentz force that creates the resistance therefore ax-
ial velocity decreases. Fig. 11.2 depicts the axial velocity of fluid against Hall number. Hall
number depicts opposite behavior when compared to Hartman number. Fig. 11.3 explains the
effect of material parameter "A" on the velocity. By increasing "A" parameter the velocity
decays near central part of channel. However opposite trend is noticed near channel wall. Fig.
11.4 describes the velocity profile against different values of velocity slip parameter. Velocity
shows increasing trend near boundary wall of channel for higher "3".

Figs. (11.5)-(11.11) are sketched to observe the temperature for various values of M, m,
Gr, A, Br, v and Ry. Fig. 11.5 is sketched to observe the temperature for increasing values
of Hartman number. This graph depicts increasing trend of temperature for higher values of
M. Decreasing trend of temperature is noticed for higher values of Hall number in Fig. 11.6.

Therefore Hall parameter is used in biological phenomena to balance the effect of increasing
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trend of magnetic field on temperature. Fig. 11.7 ensure that rising values of thermal Grashof
number enhances the temperature. Impact of "A" on temperature is demonstrated in Fig.
11.8. Temperature continuously enhances by increasing the fluid parameter "A". Impact of
Brinkman number on temperature is captured in Fig. 11.9. Brinkman number is inversely
proportional to the thermal conductivity of nanofluid therefore rise in Brinkman number leads to
fluid temperature enhancement. Fig. 11.10 is sketched to explain the temperature behavior for
thermal slip parameter. It is noteworthy that in the presence of "v" temperature decreases. Fig.
11.11 presents the temperature for different Ry. Temperature rapidly decreases by increasing
the thermal radiation parameter. Heat transfer rate increases by higher v and R; parameters
therefore temperature of the system decreases.

Figs. (11.12)-(11.14) indicate the behavior of concentration for various values of M, N; and
Np. Fig. 11.12 displays the increasing trend of concentration for higher values of Hartman
number. It is because of the fact that magnetic field decreases the flow of nanofluid therefore
concentration of nanomaterial increases. Fig. 11.13 presents that higher values of thermophore-
sis parameter enhances the concentration of Powell Eyring nanofluid. Fig. 11.14 demonstrates
the decaying behavior of concentration for higher Brownian parameter. Figs. (11.15)-(11.19)
depict the entropy generation for some significant variables. Fig. 11.15 presents the generation
analysis against different values of Hartman number. Entropy generation significantly increases
through magnetic field. Joule heating effect increases temperature of nanofluid therefore en-
tropy also enhances. Fig. 11.16 indicates the decreasing trend of entropy generation for higher
Hall number. Hall effects are used with magnetic field to balance the energy losses. Analysis
of Fig. 11.17 reveals that entropy generation can be controlled by increasing the radiation
parameter. Fig. 11.18 illustrates the entropy generation behavior against various values of
Brinkman number. By increasing Brinkman number the temperature of nanofluid increases so
an enhancement occurs in entropy generation. Fig. 11.19 depicts that entropy generation can

be controlled by decreasing the material parameter.
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11.4 Conclusions

The influences of Hartman number, Hall parameter, slip parameter, mixed convection and non-

Newtonian material parameter on peristalsis have been studied. Following points are the main

findings.

Axial velocity depicts decreasing trend for higher values of Hartman number and

material parameter "A".

By increasing the Hartman number, the thermal Grashof number and Brinkman

number the temperature enhances.

Decreasing behavior of temperature is noticed by higher Hall number and thermal

radiation parameter.

Concentration of nanoparticles increases by rising values of Hartman number and
thermophoresis parameters. However Brownian motion parameter depicts opposite

trend.

Increasing behavior of entropy generation is noticed due to presence of magnetic field

while entropy generation can be controlled by increasing Hall parameter.

Entropy generation can be minimized by decreasing the Brinkman number and ma-

terial parameter.
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Fig. 11.1. Plot of u for M.

Fig. 11.2. Plot of u for m.
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Fig. 11.3. Plot of u for A.

Fig. 11.4. Plot of u for 5.
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Fig. 11.5. Plot of 4 for M.

Fig. 11.6. Plot of 6 for m.
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Fig. 11.7. Plot of 8 for Gr.

Fig. 11.8. Plot of 6 for A.

189



Fig. 11.9. Plot of 4 for Br.

Fig. 11.10. Plot of 6 for ~.
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Fig. 11.11. Plot of 6 for Ry.

Fig. 11.12. Plot of ¢ for M.
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Fig. 11.13. Plot of ¢ for N;.

Fig. 11.14. Plot of ¢ for Np.
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Fig. 11.15. Plot of Ng for M.

Fig. 11.16. Plot of Ng for m.
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Fig. 11.17. Plot of Ng for Ry.

Fig. 11.18. Plot of Ng for Br.

Fig. 11.19. Plot of Ng for A.
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