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Abstract: This study discusses the methods used to deal with vagueness such as
fuzzy sets (FSs), intuitionistic fuzzy sets (IFSs), Pythagorean fuzzy sets (PyFSs),
picture fuzzy sets (PFSs), spherical fuzzy sets (SFSs), intuitionistic cubic fuzzy sets
(ICFS) and Pythagorean cubic fuzzy sets (PCFSs). Moreover, the main contribution
of this study is the introduction of spherical cubic fuzzy sets (SCFSs). In addition,
score function, accuracy function and some operators and distance measures are
defined for SCFSs that are handy in the processes of decision making. Different
Hamacher operators are used to established multi-criteria decision-making methods
for the assessment of business execution with spherical fuzzy information.
Furthermore, several new operations are characterized through Dombi £-norm and
Dombi t-conorms to get the best results during the decision criteria. Also, various
characteristics of such operators are examined. The operators defined are averaging
operators, geometric operators, Hamacher averaging operators, Hamacher geometric
operators, Dombi averaging operators and Dombi geometric operatos which include
simple fuzzy weighted operators, ordered weighted operators and hybrid weighted
operators. Additionally, a new methodology with incomplete weight information for
spherical cubic fuzzy (SCF) multi-criteria decision making (MCDM) is suggested
using TOPSIS method. The maximum deviation model is also put forward to
determine the criteria of weight values. Finally, each of the proposed operators,
methods and models are compared to the existing methods and techniques. Thus, the
proposed methods are verified to be more effective in different types of decision

making processes.
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Chapter 1

Introduction

1.1 Literature survey

We often face imprecision or uncertainty in real-life situations due to a variety of fac-
tors. The concept of FS [1] firstly presented by Zadeh for uncertain situations, which
provides a degree of membership degree. Membership degree 0 indicates complete dis-
satisfaction, while membership degree 1 indicates complete satisfaction. Other values
in the unit interval are used to denote partial satisfaction depending on their level
of satisfaction. Yager et al. [2], Pedrycz et al.[3], Maji [4], Trabia [5], Beni [6], and
others have applied F'S theory to a variety of contexts, including intelligent structures,
pattern recognition, soft sets, traffic and transportation, and clustering. [7, 8, 9] is
a good place to start significant progress in the concept of FS and other uncertainty
methods, as well as their application domains.

Although the idea of F'S was a success, it could not be handled in some situations,
After that, Atanassov introduced the concept of IF'S [10], which is an extended form
of FS theory which handles more effectively with uncertain conditions because its
structure is not limited to only membership degree. De et al. discuss medical diagnosis
using IFSs in [11], and Xu described some aggregation operators for IFSs in [12], which
were applied by Li to multi-attribute decision making (MADM) in [13]. Szmidt and
Kacprzyk analyzed and applied some IFS similarity measures to medical diagnostics
issues in [14].

The limitation of Atanassov’s IFS structure is that the membership and non-
membership functions can only be expressed as a sum of in unit interval. As con-
sequence, an IFS is unable to properly explain a human’s perspective in some cases.
Yager [15] suggested the PyFS as an enlarged form of IFS to dealing with uncertainty
in these situations. In addition, Fei et al. [16] applied Pythagorean fuzzy sets in a

multi-attribute decision support technique. Several studies are based on the aggrega-
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tion methodology of PyFS as well as its formulation in MADM. In [17, 18, 19, 20, 21],
showing that PyFS analysis seems to be very worth to its broader scope. Garg de-
veloped the idea of linguistic PyFSs and analysed a MADM situation in [22]. In [23],
Garg used the PyFSs system to explore the structural decision making with some
probability, and in [24], the popular TOPSIS technique is utilized in the PyFSs frame-
work.

Whenever a decision maker presents (.87.89), the IFSs and PyFSs are unable to
handle appropriately, i.e. .87+.89 = 1.76 ¢ [0,1] and (.87)%+(.89)% = .7569+.7921 =
1.549 ¢ [0,1]. Yager [25] proposed the concept of a g-rung set to overcome similar
apprehensions.. Afterthat PyFS modified version g-rung works with uncetainities.
The combination of the ¢g'*order of memberships in -ROFS cannot exceeds the unit
interval [0,1]. q -rung, a more widespread and practical alternative, has taken the
place of PyFS, IFS, and FS. Figure 1 depicts the geometrical description of q-ROFSs

and their existing techniques.

Figure 1: (Geometrical description of IFS,
PyFS and q-ROFS)

Zadeh proposed the idea of IVFS [26], which is generalized form of a fuzzy set.
However, Gargov [27] defined the concept of an IVIFS to extend an idea of IVFS.
[28, 29, 30, 31] discuss the principle of IVIFS aggregation and its applications in
MADM. IVIFSs were preferred to IFSs even though memberships degrees are defined
as a finite interval [0, 1] instead of a specific value. Furthermore, in [32], the concepts
of the IVPyFS are introduced. Jun [33] came up with the concept of cubic set (CS),
which is a generalised version of IVFS and IFS. Non-membership is a fuzzily defined
set, whereas membership is expressed as an interval. Additional similar studies can
be found in [34, 35, 36].
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In situations where the human decision is not either yes or no but also has a degree
of abstinence or refusal, the concepts of FS, IFS, PyFS, and Q- ROFS may not be
used. Cuong [37] in Figure 2, defined the PFS (picture fuzzy set) to meet with such
demands and model a concept close to human nature, which is based on four possible
situations: satisfied, absence, dissatisfied, and refusing degrees. [38, 39] contain other

simple analysis on PFSs.

Figure 2 : (Geometrical representation of PFS)

Wei et al. [40] and Garg in [41] presented the aggregated operators in multi-attribute
group decision support system using idea of PF'S and it has been extensively used in [42]
established clustering technique on the basis of computational intelligence. [43, 44, 45]
can be reviewed for additional related research.

It is concluded from observing the structure of PFS that generalization of IFSs and
can therefore handle data and circumstances more accurately than other structures.
Because of some limitation on PFSs, applying principles to membership, abstinence
and non-membership through self-choice is difficult. (T-SFSs) and (SFSs) were defined
by Mahmood et al. [46] to improve the structure of PFSs. T-SFSs with this form of
structure shape both human attitude and opinion, as well as yes/no type matters, and
can handle any type of data without limitations. When we look at the shortcomings

of PFSs and SFSs, it becomes clear that T-SF'S has no restrictions in its structure.
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Figure 3 (Spherical fuzzy space)

By the range of PFS, Mahmood et al. [46] suggested a method for the limited
structure of PFS and established the spherical fuzzy set (SFS). SFS is further gener-
alized by adding a parameter ”t” to the TSFS, decision makers choose membership
degree values anywhere in the interval [0,1]. A TSFS is the most generalized fuzzy
framework for representing human opinion about any imprecise occurrence in a flexible
and unlimited manner. Figure 3 depicts a geometrical comparison of the PFS, SFS,
and TSFS, demonstrating the dominance of TSFS over the other fuzzy frameworks.
The comprehensive structure and originality of SFSs are evident from the relationship
with existing systems and their constraints. [47, 48, 49, 50, 51] contain some additional
SFS-related research.

Multi-criteria group decision making process widely known idea in fuzzy set theo-
retic. It is considered one of the most influential subjects, and is discussed in almost
every framework of fuzzy sets. Aggregation operators, as well as distance, similarity,
and entropy scales are commonly used in the MADM method. Several aggregated
operators, i.e, the average and geometric aggregated operators of IFSs have been
developed so far and are used in MADM problems [52, 53]. MADM has designed
and implemented several forms of aggregation operators for IFSs [54, 55, 56]. [57, 58]
suggested average and geometric aggregated for PyFSs, which we will used in MADM
problems. Garg [59] developed the linguistic PyFS and applied it to MADM prob-
lems. [60, 61, 62] contain some other related work on PyFS aggregation theory and
its applications in MADM. The WA and WG aggregated for g-rung was presented by
Liu and Wang [63], and their MADM’s applications were examined.
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Garg [64] and Wang et al. [65] developed the WA and WG aggregation operators
of PFSs, respectively, which were later used in criteria decison making. The practical-
ity of these aggregated operations is investigated in attribute decision making. Some
collaborative aggregation operators for TSFSs and their applications in criterion deci-
sion support systems are investigated in [66]. In [67] Ullah et al. developed numerous
TSFS similarity measures and investigated their application in pattern recognition
challenges. Similarity tests can be used in MADM problems as well. [68] develops and
applies the definition of T-spherical fuzzy Muirhead mean operators to the MADM
problem. Xia and Xu [69] and Wang and Liu [70] used the averaging and geometric
aggregation operators of hesitant fuzzy sets (HFSs) in MADM, respectively.

Data processing for operators has generally been a fascinating study topic, partic-
ularly for Hamacher operators. The Hamacher operators, as described by Hamacher
presented in [71]. Jana et al. [72] suggested using picture fuzzy Hamacher aggregated
operators to analyse organizational efficiency. Hamacher aggregation and its appli-
cations in decision support system were presented by Huang in [73]. The Hamacher
aggregated operator link with interval-valued set was applied to multi-attribute de-
cision support issues by Li et al.[74]. Xiao et al. offered the idea of an ordering
weighting geometrical operators based on IVF in problem [75]. Garg [76] presented
about the Hamacher aggregated operators using the structure of intuitionistic with
entropy and these are used in multi-attribute decision support system. Wei et al. [77]
suggested picture fuzzy Hamacher aggregated operators. Zhu et al. [78] established
the notion of fuzzified clustering algorithms based on the Hamacher operations. Har-
ish Garg researched generalized geometric operators for complex intuitionistic fuzzy
sets [79]. The notion of the extended Hamacher family was defined by Roychowd-
hury et al. [80]. By applying the entropy measurement under spherical fuzzy data,
[81] Barkub et al. suggested a methodology to the TOPSIS technique. Many studies
have predicted climate and evaluated time series using new fuzzy methods based on
SE'S circumstances. They considered a variety of Hamacher aggregated operations for
PFHA and PFHG operators under a picture fuzzy set, as well as an MCDM problem
with the presented strategy’s utility and flexibility.

In 1982, Dombi operations introduced and play a vital role on the pre-defined oper-
ators. Many researchers given the concept of norm by utilizing the Dombi operators in
[82, 83, 84, 85]. They have a tendency to fluctuate in response to the operation of crite-
ria. Lin used IFSs and combine them with Dombi operators to develop the Bonferroni
operator [86] utilizing IFSs to tackle real-world challenges. Shi used them in decision
support system and adjusted Dombi operations to neutrosophic sets in [87]. In [88] Lu
proposed Dombi aggregation operation and linguistically cubic sets to address complex

difficulties in multi-criteria decision support system. Afterthat, the Dombi prioritized
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aggregated operators proposed by Wei [89]. In multi-attribute decision support sys-
tem, Zhang et al. [90] suggested use of picture Dombi Heronian operators. Jana et
al. introduced numerous Dombi aggregated operators under the bipolar fuzzy set in
[91]. Jana et al. [92] proposed a novel concept of Dombi picture aggregated operators
and its use in the multicriteria technique. Later on, Ashraf et al. [93] expand the
idea of picture fuzzy Dombi aggregated and offer a new concept of spherical Dombi
aggregation operators, as well as applications in decision support system.

TOPSIS method play a vital role in decision support system. Khan et al. [94, 95]
employed an integral choquet TOPSIS technology to address multi-attribute decision
supoort difficulties and the IVPF GRA method. [96] is another important study
that combines TOPSIS generalisations with the MCDM theory. Using hesitant fuzzy
linguistic information, Wu et al. established a VIKOR and TOPSIS-based MCGDM
technique in [97]. Additional significant details are available at [98, 99, 100, 101, 102,
103].

1.2 Chapter wise research study

This thesis consists of six chapters. X denotes the universal set throughout the study,
unless otherwise stated.

In chapter 1, we will discuss some motivational literature review.

In chapter 2, we will discuss some of the very earliest ideas FSs, IVFSs, IFSs,
IVIFSs, PyFSs, IVPyFSs, PFSs, IVPFSs, SFSs, IVSFSs, ICFSs and PCFSs. The
relationship between each concept’s definitions is demonstrated. These ideas are useful
when starting new research studies.

In chapter 3, We will define a spherical cubic fuzzy set. Afterthat, compare two
spherical cubic fuzzy numbers, we define several essential operators and construct
scoring function. The distance between two spherical cubic fuzzy numbers is defined as
well. We introduced various aggregation operators i.e, SCFWA, SCFOWA, SCFHWA,
SCFWG, SCFOWG and the SCFHWG operators are proposed based on the specified
operators. We discuss some of the existing operators and propose a multi-attribute
decision support system by utilizing these operators.

We defined decision support system to evaluating marketing performance with
spherical fuzzy data in chapter 4. We used Hamacher aggregation operators like
SCFHWA operator, SCFHOWA operator, SCFHHA operator, SCFHWG operator,
SCFHOWG operator and SCFHHG operator. Finally, we supported the proposed
strategy by comparing it to existing solutions for feasibility and adequacy.

In Chapter 5, we use Dombi #-norm and conorms which characterize various novel

procedures in order to come at the optimum choice criteria. We proposed the SCFDWA,
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SCFDOWA, SCFDHWA, SCFDHWG, SCFDOWG and SCFDHWG operators. These
previously stated operators are extremely helpful in successfully arranging selection
difficulties. Then, using the spherical cubic fuzzy set, a computation is developed, and
this methodology is used to decision-making problems to illustrate its importance and
usefulness. The comparative study of different approaches also being carried out to
highlight the benefits of our methodology. The findings indicate that the proposed
technique is both rational and effective in the given situation.

In Chapter 6, we utilize the TOPSIS technique to develop a new methodology for
multi-aatribute decision support system with partial weighted data using spherical cu-
bic fuzzy (SCF). To begin, the maximum deviation model for establishing weight value
criterion is proposed. On the basis of the provided technique, an MCDM methodology
based on SCF data is offered. A numeric illustration is also presented. At last, the

new study is compared to earlier research in a systematic and structured manner.

1.3 Research profile

1. Tehreem, Hussain, A. and Khan, M. S. A. “Average operators based on spherical
cubic fuzzy number and their application in multi-attribute decision making”
Annals of optimization theory and practice, 3(4), 83-111, (2020).

2. Tehreem, Al-Shomrani, M. M., Abdullah, S. and Hussain, A. “Evaluation of
enterprise production based on spherical cubic Hamacher aggregation operators”
Mathematics, 8(10), 1761, (2020).

3. Tehreem, Hussain, A. and Alsanad, A. “Novel Dombi aggregation operators in
spherical cubic fuzzy information with applications in multiple attribute decision-

making” Mathematical Problems in Engineering, (2021).

4. Tehreem, Hussain, A., Alsanad, A. and AA Mosleh, M. “Spherical cubic fuzzy
extended TOPSIS method and its application in multicriteria decision-making”

Mathematical Problems in Engineering, (2021).

Research Contributions: Chapter 3, published in the Journal of "Annals of
Optimization Theory and Practice". Chapter 4, published in the Journal of "Math-
ematics, MDPI". Chapter 5, published in the journal of "Mathematical Problems in
Engineering". Chapter 6, published in "Mathematical Problems in Engineering".



Chapter 2
Preliminaries

The goal of this chapter is to express key definitions i.e, FS IVFS, IFS, IVIFS, PyFS,
IVPyFES, PES, IVPFS, SFS, IVSFS, CS, ICFS and PyCFS and their characteristics.
2.1 Operations on FS
The notion of FS, IVFS, and their operations will be discussed.
Definition 2.1.1 [1] Consider X # () then a FS F is expressed below:

F=(gar(y) [z€X),
here &p denote memebership function.

Definition 2.1.2 [104] Consider a set X # () then an IVFS Fy is expressed below:
F={|ar, @67, @] l2¢ ¥},

subject to the condition sup {o'zi (2) ’dﬁ (q:)} <1.

2.2 Operations on IFS

The concepts of IFS and IVIFS, as well as their operation, will be explored.

Definition 2.2.1 [10] Consider a set X # () then IFS [ is expressed below:

I=(a;(2),61(9),

here &y (z) and B[ () are membership fuction and non-membership function with 0 <
ay+ 51 <1
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Definition 2.2.2 [105] Consider a set X # () then an IVIFS I, is expressed below:
L={|a; @6 @], |6 @ .5 @]},

here [d[_t (2) ,d}; (gc)} and [ﬁv[_t (7) ,B;: (@:)} are membership function and non-membership

function, subject to the following condition

0 <sup |ay (9),67, (@) +swp |3 (@), 6 ()] < 1.

2.3 Operations on PyFS

The idea of PyFS, IVPyFS, and their operations will be discussed.
Definition 2.3.1 [15] Consider a set X # () then a PyFS P is expressed below:
P=(ap(2),5p(2)),

here &p (z) and BE (z) are membership function and non-membership function with
3 =\ 2
0< (@p)?+(Bp) < 1.

Definition 2.3.2 [106] Consider a set X # () then an IVPyFS Py is expressed below:
P, ={|ap, @.d%, @], |35, @ .35 @]}

subject to the following condition

0< (sup [ap, (0), 65, @)] )+ (sp B, 0.5, @)]) <1

St

2.4 Operations on SFS

Now we will examine at the concepts of SFS and IVSFS, as well as their properties.
Definition 2.4.1 [108] Consider a set X # () then a SFS § is defined below:
§=(ag@ g (), 85 (@)),
here membership function ¢ (1), neutral g (z) and non-membership is ’BS (z) with
0= (ag) + (1) + (5) <1
SFNs ranking :

Now we will discuss some characteristics that will help us evaluate SFNs.

Definition 2.4.2 [108] Consider a SFN §; = <0751 (7) g, (7) ’B& (q:)> The follow-

ing are the score and accuracy functions:

(asl+1—ﬁ§1+1—551) B <2+d$l—ﬁsl—3§l)
3 = 3

1. 8.(81) =

2. accuracy(91) = g, — '851'
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2.5 Cubic sets

The notion of CS, ICFS and PCFS as well as their main characteristics, will be dis-

cussed.

Definition 2.5.1 [33] Consider X # (), then a CS (' is expressed as below:

o= (a@.5@).

* <
here ¢ (g) represent an IVFS and [ (g) represent the FS in X.
Intuitionistic cubic fuzzy sets:

Definition 2.5.2 [109] Consider X # (0, then an ICFS [. is expressed below:

L= {a (9.6 ®),

here & (1) and By, () are membership function and non-membership function respec-

tively.

Operations on ICFSs:
The following operations for ICFSs holds:

1. Multiplication : The multiplication of I., and I, is an ICFS I., ® I, defined

as

®1., = o V{[af%_,ala?] MA2),
TN ([ by = byby B B = B BS] e — fufi) [

2. Exponent :For v > 0, exponent of I, is an ICFS I, defined as

- (L@ @) (w)).
" _< ([1_ (1=by)" 1 (1—7??)7} 71_(1—121)7) >7

3. Scalar multiplication :For v > 0, scalar multiplication of I, is an ICFS ~.I_
defined as

7'101 =

< (= (=)= -af)).

Pythagorean cubic fuzzy sets:
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Definition 2.5.3 [110] Consider X # (,then a PyCFS P, is expressed below:

P.= <dFC (33) aBPC ($)>a

here ap_ () = ([a,a"] ,5\>, Bp. (1) = <[5‘,[3+] ,it) are memebership function and

non-membership function respectively.

Operations on PyCFSs
The following operations for PyCFSs holds:

{ V) + @) ) o) ] |
rgep, = (| LV @@l )y,




Chapter 3

Spherical cubic aggregated

operators and their application

We define spherical cubic fuzzy sets in this chapter as sets whose membership, neu-
trality, and nonmembership degrees are all cubic fuzzy numbers and the square sum
of their membership, neutrality, nonmembership are not greater than one. We define
numerous important operators and develop score functions to comparing two spher-
ical cubic fuzzy numbers. Also described is the distance between two spherical cubic
fuzzy numbers. we defined various aggregation operators i.e, SCFWA, SCFOWA,
SCFHWA, SCFWG, SCFOWG, SCFHWG. We investigate the operating principles of
a few existing operators and suggest multi-attributedecision support technique. At
last, an illustrated model is offered to demonstrate authenticity, effectiveness, and

productivity by demonstrating the decision-making phases in detail.

3.1 Spherical cubic fuzzy sets

We will examine the spherical cubic fuzzy set in this section, as well as its fundamental

relations and methods.

Definition 3.1.1 Consider a set X# (), a SCES §. expressed below:

§o={w(ag @75, .55 @) | € X},

here ¢ig (3) = (la,at] ,5\> is the membership, 1jg () = ([n=, 7t ,5> is the neutral
and BSC () = <[lvf, 6*] ,;1> is the non-membership degree respectively.

The extended form of F'S are defined such as IFS, PyFS, g-ROFS, PFS. Moreover,
each of these notions are extended to interval valued sets and for cubic sets as shown

in below Figure 4.

12
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Figure 4 (Flow chart of spherical cubic fuzzy set)
Definition 8.1.2 Let §. = (([a~,a*],\), ([, n*],0),([b~,b7],i)) SCFN. The
score function score (SC) 1s determined as below:

a4+ at+ N2+ +nt4+0)2— (b +b + )2
S’L(Sc):[( +at + )7+ ( +9 +0)2— (b™ +b" + f1)?] )

gc (Sc) € [_L 1]
Definition 3.1.3 The accuracy function of SCFNs ac(§.) is expressed as below:

G~ +at + N2 a4+ nT +6)2 h— o h+ o )2
ac () = [(a +a* + 1) +( +9 +0)2 4+ (b~ +b" + 1)?] @)

Proposition 3.1.4 Let §., and $.,be two SCFNs and v > 0 be any constant. The

operations are defined as under:

L S © Seo = G, S g, i By = B

2. Sc1 - ch <:>$cl - Scz and Scz C Scl

(8e)” = { (& ([br, 0] ) ([ af ], 00) s ([ar af] A)) -
1} i (A0, Ja)).

H; 3]} {31,52}).
by, b3 ]} s max {jir, fiz})

co

a
4. 8e,U §ey = (min{[' ny

‘\-“rm

g, (min {[ay )], [a5, a3 ]} max {A1, Aa}) |
5. §e,N ey = (min{[ﬁf VJF] , [n;,ﬁg]} max {51,62})
£1} min (i, iz})
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' )
6. §u® §oy = [Wﬁﬁwﬁﬁf

a 2
7. Sc X Sc = I 6; 7
v VED 6 = 607 6)
\ V) + (7z)? = (fn)? (iz)’”

Ji- (= @)

The following proposition contains a few of the properties of spherical cubic fuzzy

sets that can be easily determined.

Proposition 3.1.5 Let §., and S, be two SCFNs in X and v,v1,72 >0 . Then

—_

- (M ®72)8e = 7186 D 1256
2. (M1 ®72)9a = 715a ® 125
3. (8@ Se)? = S4® S,

4. (86® Se,)” = S4H® 84,
5.4 =she gk

6. (S&)" = (8¢,

3.2 SCFWA operators

Now we will define the SCFWA operator and look at its most important characteristics,

such as idempotency, boundedness, and monotonicity.
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Definition 3.2.1 Let §., = <c5c',é$c_,é$o> be the collection and SCFWA mapping
SCFWA :U" - VU defined as below:

SCFWA(D (Sclv Scz) (X3} ‘Scn) = (:11‘501 D (:JQSCQEB7 L3) @djnSC7L'

For SCFWA Operator
By utilizing the property (6) and (8) of Proposition 3.1.4 of SCFNs, we get aggre-
gated value of SCFWA operator.

Theorem 3.2.2 Let ., = <d$ g ,’BS ‘>be the collection and the aggregated value
of SCFWA is determined as below:

SCFWA(:; (5017 ‘5027 ot Scn) =

\

Theorem 3.2.3 Let §,, = <6z$._ Mg s B$> be the collection then SCFWA aggregation

operator satisfied the following characteristics.

Idempotency:

For S, = <ds Tl .’BS > are equal i.e ., =S, so

SCEFW Ay (SCI, Scpr oo Scn) =9,
Boundary: For all &,
S., < SCFW Az (S, Scpr -+ Se,) < Sars
Monotonicity: Let
Se = [(lar el 1A (ol 0,87 (Do by )|

then
SCFW A (S¢;Seys +8e,) < SCFW Az (80,50, 81, ) -
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3.3 SCFOWA operators

Now, we will introduce the SCFOWA operator and establish its important character-

istics, such as idempotency, boundedness, and monotonicity.

Definition 3.3.1 Let §;, = <d5'_,775‘_,65__> be the collection, then SCFOWA opera-

tor is determined as below:
SCFOW Ay (8ey Segs oo o) = 018e, 4y © D28, 1) By ey B0 Se -
Moreover, the SCEFOWA is also SCFA operator determined as:
SCFOW Ag (Seys Segs s Sery) = %(Scl B G0y ®, s DY, )-

By wutilizing the property (6) and (8) of Proposition 3.1.4, we get the following SC-
FOWA aggregation operator.

Theorem 3.3.2 Let §., = <d$ S Tlg ,’BS > be the collection and the aggregated value
of SCFOWA operator is determined as,

SCFOW Ag (Suys Soys -ons So) =

n o

1 ﬁ (1 - a;(i))wi, 111 (1 - a;(i))wi ,

Theorem 3.3.3 Let S, = <d56_,775€_,,5’50_> be the collection the SCFOWA aggrega-

tion operator satisfied the following characteristics.

Idempotency:
For §., = <ds Tl ',B$ > are equal i.e 3., =3, then
SCFOWALU (Scla Scy ceey Scn) = Sc‘

Boundary:

For all w,
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S, < SCFOW Ag (S¢;5Seys -+ Se,) < Ser

Monotonicity:
Let

Se = [< (856 3509 vg(i)> ) <[I}Z(i)’ i) vg(z’)> : <[b§(}> Bat) B >}
then

SCFOW Ay (Sey»Seyr - Se,) < SCFOW Ay (s;, St s;) .

3.4 SCFHWA operators

We will introduce the SCFHWA operator and discuss its essential characteristics, such

as idempotency, boundedness, and monotonicity.

Definition 3.4.1 Let ., = <o'450_,7750_,,5’sc_> be the collection, then the SCFHWA

operator is determined as below:

SCFHWAUJ,(ZJ(SCI7 ‘502’ R SCn) = @wigcl"(i)'
=1

n A
here the weighting vector is & = (1, W2, ..., wn) T with Y @&; = 1, where Sesy = NWie, -
i=1

Theorem 3.4.2 Consider the collection 3., = <d$._,ﬁ5._,ﬁv$“> then the SCFHWA

aggregation operator is expressed as below:

SCOFHW Ay (Seys Segs s 8o, ) =

J 1 - ﬁ (1- a;(i))w",\ 1- f[ (1- a;(z.))m‘ :

)

[lj (ﬁt?(i))wi 1;[1 (ﬁ:m)wl E[l (5&<i>)°§i> :
( [ﬁl (20)” ﬁl (B&z))@] ﬁl (ﬂa—a))w")



3. Spherical cubic aggregated operators and their application 18

Idempotency:
Here, ., = <CS _,és .’éS > are equal i.e §., =3, then

SCFHWA, s (Scl’SCw ""Scn) = Se.

Boundary:
For all &,
- +
Sci < SCFHWAW,GJ (Sclv Scy ) Scn) < Scw

Monotonicity:
Let

s = aser o) o) - (ser 5] - 50) - (B B3 | i) |
(SexSers o Sen) < (01 St S0, )

3.5 SCFWG operators

Now, we will introduce the idea of the SCFWG operator and main characteristics,

such as idempotency, boundedness, and monotonicity.

Definition 3.5.1 Let S, = <d5 RUE .’BS > be the collection, then the aggregated
value of SCFWG operator is expressed as below:

SCFWG&VJ(SCU Scz’ ooy ‘Scn) = dlecl ® (:)2502(8’ X3) ®d}n5cn'

The laws define (7) and (9) in Proposition 3.1.4, we the following aggregated value
of SCFWG operator.

Theorem 3.5.2 Let §., = <d$ g .’BS > be the collection, then the aggregated
value of SCFWG operator is expressed as below:

SCFWG(I; (5617 Scz? M SCT?) =
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Theorem 3.5.3 Let §., = <d$c_,7756_,550_> be the collection, then the SCFWG ag-

gregation operator satisfied the following characteristics.

Idempotency:
For all §, = <6¢S Tl .’BS > are equal i.e 3., =3 then

SCFWGEJ(SCNSQ?“-,SC”) = SC‘

Boundary:

For all @,

Se; < SCFWG2(Se,>Seys s Se,) < Ses

Monotonicity:

Assume that

then
SCFWGLD (Scpcha ey Scn) < SCFWGLTJ <S:17 S:y ey S:n> :
3.6 SCFOWG operator

Now, we will introduce the idea of the SCFOWG operator and its essential character-

istics, such as idempotency, boundedness, and monotonicity.

Definition 3.6.1 Let §;, = <6¢S g .’BS > be the collection, then the aggregated
value of SCFOWG operator is expressed as below: .

SCFOWG5(Seys Segsr Sen) = | [@iSess)-
=1

Now, by property (7) and (9) of Proposition 3.1.4, we get the following aggregated value
of SCFOWG operator.

Theorem 3.6.2 Let S, = <d$ Tlg ,’BS > be the collection and the aggregated SC-

FOWG operator is expressed as below:

SCFOW Gy (Seys Sus v Sery) =
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(0 Geo)™ T 20) | 1T 00
(LT o)” )" ET ).

Theorem 3.6.3 Let g, = <d$._,ﬁ5“,ﬁvsh> be the collection the aggregated value of
SCFOWG operator satisfied the following characteristics.

Idempotency:

Here, S, = <o”zs__,775._,ﬁvs > are equal i.e §., =9, then
SOFOWGCCJ(SCl’ Scy ey Scn) = SC‘

Boundary:
For all @,

S., < SCFOWGi (Se,»Seys - Se,) < Ses

Monotonicity:
Let

then

SCFOWG (Sey,Seys -+ Se,) < SCFOW G (81,8055, )

3.7 SCFHWG operators

We will introduce the SCFHWG operator and discuss its essential characteristics, such

as idempotency, boundedness, and monotonicity.

Definition 3.7.1 Let §., = <645 RUE .’BS > be the collection, then the aggregated
value of SCFHWG operator is expressed below:

SCFHWGW,LU(‘SCN Scza cey ‘Scn) = dei‘gca—(i)’
=1

where Sc&@ = nw; 9, -
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Theorem 3.7.2 Let §., = <d5“,775“,55 > be the collection, then the aggregated
value of SCFHWG operator is expressed as below:

SCFHWGQJ,G:) (Scl’ SCQ’ e Scn) =

(1) 1) )

<[ﬁl (r70)” ﬁl <ﬁo+<z>)@i] ﬁl (5:0)™ )

1- f[l (1- 5;@)@, - ﬁl (- Bim)ﬁ |
- ﬁl (1 - )™ |

Idempotency:

For S, = <as 7y “,BS\_> are equal i.e 5., =S, then

SCFHGUJ7& (SC17SCQ7 tee Scn) = SC'

Boundary:
For all @,
- +
Sci < SCFHGw,(I} (Sclvscm "'7Scn) < Scia
Monotonicity:
Let

s = { ([0 20 %0) - (750 156] 520) - ([0 56)] 550) |

SCFHGW,JJ (ScpScz’ "'7Scn) < SCFHGW,(D (S:NS;, aS:n) .

3.8 Multi-criteria decision - making process utilizing spher-

ical cubic fuzzy weighting aggregated operators

Now, we will use the MCGDM approach to apply the structure of spherical cubic
weighting aggregated operators. Suppose we obtain ¢ different alternatives A =
{A1, As, ..., Ay} and according to that s different attributes are choosen like C' =

{C1, Oy, ..., Cs} to be determined by utilizing the weighted vector @ = (&1, &2, ..., On) T
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n
with the condition that ) w; = 1. Assume that decision maker using SCFNs to eval-
i=1

uate alternative based on various criteria in X: ., = (éz$ 7l ’BS ) (i =
lm lm Clm

1,2,..,n) (m=1,2,....t). Suppose that ds% represent the alternatives degree which
satisfy the criteria S, 1i.e dsc;m = ([al—m,afm} ,le), ﬁsqm represent the alterna-
tives degree which neutral the criteria §.,, i.e ﬁSClm = ([ﬁl;l,ﬁltn],glm) and BS%
represent the alternatives degree which does not satisfy the criteria $,,, i.e ﬁSClm =

(b;,.,+ b;5 1, fitm) with the condition that [a; &' ] C [0,1], A, .7} ] C [0,1], [b;, b} ] C
0,1] with the mappings Ay, : X — [0,1], 0 @ X — [0,1] and iy, @ X — [0,1].
Through generating a (sup [d;m’ dfm])z + (sup[ﬁfm,ﬁ;l]f + (sup[lv);m, lv)fm])Q <1 and

(5\lm)2 + (Slm)Z + (/llm)2 <1, (=12..,n) (m=12,..,t). As a result, a SCF

decision matrix might be used to represent MCGDM concerns.

M — (Sclm)nxt = (<OVZSClm 5 f]SClm ) 5sclm >)TL><t :

Step 1:

Make a spherical cubic fuzzy structure out of the decision matrix M= (S, Jnxt =
(<dSClm , ﬁSClm , BSCZM >)nXt. The first sort of criterion is cost criteria, whereas the
second is profit criteria. There is no need to normalize the rating values of same-class
criterion. To convert cost rating data to profit rating values, apply the normalization

formula below.

Cim, Criteria for the type of benefit
Olm = ())(lmaylm) =

¢, type of cost criterion

here ¢j = shows the complement of ¢,,. Here, M! = (0m) st = Kt Yim)nxt -
The SCFWA, SCFOWA, SCFWG, SCFOWG, SCFHA, SCFHG operators would be
introduced to MCGDM in the main procedures.

Step 2:

Use the indicated aggregation operators to compute SCFNs S, for distinct selec-
tions A; with weights & = (&1, D2, ..., 0n) 7.

Step 3:

We compute the scores éc(SCi)

Step 4:

After ranking, we will select the best option.
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3.9 Numeric Illustration

In the manufacturing industry, supply chain is an important factor of the planning
process. Though choosing a supplier is difficult, making the optimal choice will pro-
mote economic growth and customer satisfaction. The proposed approach will come
in handy when choosing a supplier. The below are the arguments that support the
proposed supplier evaluation technique:

The buying administrator selects a supplier for the products based on four char-
acteristics: organizational context, action plan, and economics. The supplier model
is a crucial phase in the industry’s organizing. The best decision will enhance your
company’s productivity, but finding an ideal provider is extremely challenging. As a
result, the proposed methodology will be utilized to assess and select the best supplier
for an organization in Pakistan’s eastern province. The following is how the proposed
supplier evaluation accessibility has been made:

The approach for locating an appropriate source for component purchases. The
following four parameters are taken into account by the decision maker. The four
criteria are marked by the characters {C1, Co, C3, Cy}. & = (.35, .4,.25)T is the weight
vector of four criterion. Four providers should be further evaluated, according to a
committee of three decision makers. The four suppliers are denoted by the characters
{A1,A2,A3,A4}. To categorize the suppliers, the rankings criteria are needed. The
decision matrices are SCFNs, as shown below.

Step 1:

Tables 1, 2, and 3 show the selections of decision makers.

Table 1 (Spherical cubic fuzzy information of 1st decision maker)
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Table 2 Spherical cubic fuzzy information of 2nd decision maker

Table 3 Spherical cubic fuzzy information of 3rd decision maker

Using the SCFWA operator, the decision maker’s weights & = (.35, .4,.25)7 . The

combined findings are shown in Table 4 below.
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Table 4 (Aggregation by spherical cubic decision maker)

We used the SCFWA operator with & = (.1,.2,.25,.45)"as the criterion vector to
get the aggregate SCFNs for the A; alternatives.

A= ( ([0.19,0.45]; 0.56) ] ( ([0.19,0.52];0.34) ) ( ((0.23,0.48];0.38) ]
A= ( (10.26,0.53];0.38) ) ( (/0.15,0.39];0.41) ) ( (10.18,0.50/;0.32) )
43= ( ((0.21,0.42];0.40) ] ( (10.25,0.52;0.38) ) ( ((0.20,0.45];0.47) )
A= ( ([0.33,0.48];0.48) ] ( ([0.16,0.31];0.42) ) ( ((0.23,0.46];0.35) )
Step 3:
We may find the SC(AZ) of every A; and used the Definition 3.1.2, as illustrated
below:
Se(A1) = .15, Sc(Ag) = .14, Sc(A3) = .12, S.(Ay) = 11.
Step 4:

To choose the best options, we must first rearrange the SCFNs in order of decreas-
ing: Aj > Ay > A3 > Ay. As a result, Aj is the best option.

For SCFOWA Operator

Step 1:

The obtained data is provided by three significant in Table 4 according to the
various relevance of all the decision-makers.

Step 2:

To use the SCFOWA operator, we get for all options A;, the collection SCFNs as

s weight vector @ = (.1,.2,.25,.45)" shown as below:
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Ay =] (([0.17,0.43:0.42) ) ( ([0.23,0.51];0.30) ) ( ([0.27,0.50];0.41) )

Ay = | ( (0.23,0.49]:0.28) ) ( ([0.17,0.41];0.32) ) ( ([0.29,0.60];0.37) )

As =1 ( ([0.20,0.42];:0.31) ) ( ([0.28,0.53];0.38) ) ( ([0.33,0.39];0.48) )

Ay = (([0.27,0.43:0.27) ) ( ([0.27,0.41];0.47) ) ( ([0.33,0.60];0.38) )
Step 3:

We may find the SC(AZ) of every A; and used the Definition 3.1.2, as illustrated

below:

Se(A1) = .08, Sc(Ag) =.02, Sc(A3) = .05, Sc(A4) = .06.

Step 4:

To choose the best options, we must first rearrange the SCFNs in order of decreas-
ing: A; > Ay > As > As. As a result, Ap is the best option.

For SCFWG Operator

Step 1:

The obtained data is provided by three significant in Table 4 according to the
various relevance of all the decision-makers.

Step 2:

To use the SCFWG operator, we get for all options A;, the collection SCFNs as s
weight vector & = (.1,.2,.25,.45)7 shown as below:

A= ( (0.19,0.14]; 0.56) ) ( (0.23,0.30];0.42) ) ( (/0.26,0.37];0.45) )

Ay = ( (0.28,0.39]; 0.38) ) ( (/0.19,0.22];0.51) ) ( (0.23,0.25];0.38) )

Az = ( (0.19,0.17]; 0.40) ) ( (0.33,0.28];0.47) ) ( (0.26,0.28];0.55) )

Ay = ( ([0.31,0.21];0.48) ) ( (/0.21,0.18];0.53) ) ( (/0.31,0.32];0.45) )
Step 3:

We may find the SC(A@) of every A; and used the Definition 3.1.2, as illustrated

below:

Se(A1) = .13, Sc(As) = .06, Sc(As) = .04, S.(A,) = .08.

Step 4:

To choose the best options, we must first rearrange the SCFNs in order of decreas-
ing: Ay > Ay > Ay, > A, As a result, A; is the best option.

For SCFOWG Operator

Step 1:
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The obtained data is provided by three significant in Table 4 according to the
various relevance of all the decision-makers.

Step 2:

To use the SCFOWG operator, we get for all options A;, the collection SCFNs as
s weight vector & = (.1,.2,.25,.45)" shown as below:

A= ( (10.22,0.27];0.50) ) ( (10.25,0.22];0.35) ) ( (10.25,0.37];0.49) )

Ay = (10.27,0.27];0.33) ([0.18,0.22];0.41) (10.29,0.23]; 0.46)

A; = E (10.23,0.29];0.40) g E (10.24,0.28];0.46) g E (10.33,0.30]; 0.55) g

A= ( (10.33,0.27];0.40) ) ( ([0.18,0.17];0.57) ) ( (10.22,0.24]; 0.45) )
Step 3:

We may find the SC(AZ) of every A; and used the Definition 3.1.2, as illustrated
below:

Sc(A;) = .11, Sc(Ag) = .05, Sc(As) = .04, S.(A,) = .06.

Step 4:

To choose the best options, we must first rearrange the SCFNs in order of decreas-
ing: Ay > Ay > A, > Aj. As a result, A; is the best option.

For SCFHA Operator

Step 1:

The obtained data is provided by three significant in Table 4 according to the
various relevance of all the decision-makers.

Step 2:

By utilizing, S’CZ. = qw;Se,; using the data in Table 4 and a weight of & = (.1, .2, .25, .45)T

of A;, the following results are shown in Table 5:
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Table 5 (Spherical cubic fuzzy hybrid aggregation decision maker)

Step 3:
We may find the SC(AZ) of every A; and used the Definition 3.1.2, as illustrated

below:

7

Se(Aq) = .11, éc(/§2) = .05, éc(A:’,) = .04, éc(éﬁ = .08.

Step 4:

To choose the best options, we must first rearrange the SCFNs in order of decreas-
ing: Ay >A4 >Ay >A3. As a result, Aj is the best option.

For SCFHG Operator

Using the (SCGHG) operator, we produced the following scoring functions.

Se(A1) = .14, Sc(As) = .04, Sc(A3) = 01, S.(Ay) = .09.

Ay > A > Ay > A

As a result, A; is the best option.
Alternatives rank:

Table 6 shows the order in which the various choices are ranked.
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operators Ranking

SCFWA operator Al >Ay > A3 > Ay

SCFOWA operator | A; > Ay > Ay > Aq

SCFWG operator | A; > Ay > Ay > Ag

SCFOWG operator | A; > Ay > Ay > Ag

SCFHA operator Al >As > A > A,

SCFHG operator A> Ay > Ay > A;

Table 6 (Alternatives ranks)

Figure 5 illustrates the supplier selection comparative study.

Figure 5 (Ranking of alternatives)

3.10 Validity and Reliability Test

3.10.1 Verify by VIKOR Technique

We demonstrate the results of SCFWA operators using the VIKOR approach. Table

4 shows the expected data of each decision - makers using the SCFWA operator.

We use the vikor approach to the data in Table 4 by selecting the weight vector
& = (.1,.2,.25,.45)Tas the criteria weight. The steps for using the VIKOR approach
to validate the example are as follows.
Step 1: We normalize the Table 4.
Step 2 : Compute PIS R™ and NIS R~
Step 3 : Calculate P;, Q;, BR; as below:
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" w;d(Cigs
. Z (Gij CEF)
d( 7<] )
&id(Cii,
Q= e 9 6)
l<j=m d( j aCj)
p_ HR-PY) (- 5@ - Q)
P~ -F" Q —-Q°

Suppose T = 0.4 and that the results in Table 7 are valid.
Step 4 : Rank all the alternatives of R;.

Step 5 : Based on the ranking outcomes, we may deduce that R; is the lowest,

meaning that A; is the best supplier of all.

R Qi | By

1|.56 ] .12 | .01

21| .4 ] )

31.92] .42 0.6

41 .82 1.2 91
Table 7

3.11 Comparative Analysis

We evaluated our extended fuzzy aggregation operators against pre-defined fuzzy ag-
gregation operators in this part and came to a conclusion. Despite the fact that SFSs
concept is extremely important in a variety of domains, there are many challenges
that SF'Ss does not address. In which the functions of membership, neutrality, and
non-membership are all cubic fuzzy numbers. The numeric study in Section 3.9, which
was addressed by SCFS, is a novel concept.It is not possible to tackle the problem de-
scribed in this article due to the prior aggregation operators’ restricted methodology.
SCFNs, on the other hand, can readily fix the problem. As a result, SCFA operators
are more reliable in solving ambiguous situations.

We have not used the concept of scoring function in the numerical problem men-
tioned in Section 3.9. By treating membership, neutrality, and non-membership as
cubic fuzzy numbers, we can consider SCFN ¢ as a collection of three cubic num-
bers. Table 8 provides the outcomes of the alternatives, which are compared to Table
5 using the SCF score function. Finally, as shown in Figure 6, we find that A is the

best option among all possibilities.
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In MCGDM issues, applying IF and ICF aggregation operators has various short-
comings, and we can’t solve the problems under certain conditions. SCF aggregation
operators, on the other hand, do not have these constraints, thus we receive more

accurate data.

operators Ranking of alternatives
SCFWA operator A=A =A,> A3
SCFOWA operator | A1 = A3 > A, > A,
SCFWG operator | As > Ay > A; > Ag
SCFOWG operator | A; > Ay =A3 > Ay
SCFHA operator Al >A > A > Aq
SCFHG operator Al >A3> A > Ay

Table 8 (Ranking Scheme)

The detailed comparison is depicted in Figure 6, which follows.

Figure 6 Comparison Analysis

3.12 Conclusion

The definition of the spherical cubic fuzzy set, which is the generalization of the inter-
val valued spherical fuzzy set, was introduced in this chapter. Several spherical cubic

fuzzy operational laws were developed. For the better comparison, of spherical cubic
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sets, we established a score and accuracy degree. The spherical cubic fuzzy distance
between spherical cubic fuzzy numbers was also described. Aggregating the spherical
cubic fuzzy information, we proposed (SCFWA), (SCFOWA), (SCFHWA) (SCFWG),
(SCFOWG) and (SCFHWG) operators. In addition, to clarify the decision-making is-
sues, we have applied the existing aggregation operators. A numeric representation has
been presented that shows how the initially proposed operators can solve the decision-
making procedure in a more efficient way. Finally, we have made several comparisons
with existing operators to discussed the validity, practicality, and effectiveness of the

suggested methods.



Chapter 4

Applications of spherical cubic
fuzzy Hamacher weighting

aggregatedoperators

In this chapter, we have established multi-attribute decision support system for the
assessment of business execution with spherical fuzzy information. We have applied
Hamacher aggregation operators such as the SCFHWA operator, SCFHOWA operator,
SCFHHA operator, SCFHWG operator, SCFHOWG operator and SCFHHG operator
for the appraisal of the best choice of enterprise. We ultimately defend the proposed

approach with the existing strategies for possibility and adequacy.

4.1 Hamacher operators for spherical fuzzy set

Now, we will discussed about Hamacher aggregation operators on spherical fuzzy set.
We will defined the aggregation operators on SFHWA, SFHOWA and SFHHA and so

O1l.

Definition 4.1.1 Let §, = <ds,’f75,755.> be the collection then SFHWA operator is

defined as SEFHW A5 (8,,9,,+9.) = ED@iS, and the weights & = (&1,@2, .., 0n)"
=1

n

with > w; = 1. Now by Definition ?? spherical fuzzy weighted average (SFWA) oper-
i=1

ator by the induction on n converted to the form mentioned below.

SFHW A5(S,,8,, -\ Sp) =

33
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T R (3P

=1 =1

Definition 4.1.2 Let §; =< dS-’ﬁS-’BS- > be a collection then SFHOWA operator is
defined as follows:
SFHOW Ag(8,,8,: - 8) =

ili <1+ (F-1) (655”(”?2)“1 _Z.lj (1 _ <‘5‘5(,<i)>2>°” 3

(10)
Definition 4.1.3 Let §; =< ds_,ﬁs_,ﬂvs_ > be the collection then SFHHA opera-

tor is defined as follows, SFHHAy(9,,9,,..-,5n) = EBJ)Z-SZ. and the weights @ =
i=1
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n
(&1, %2, ., )T with ZJJZ = 1. Where the it" largest weighted SFNs S; is 9oy and

i=1
So(iy = mw;gi().
SFHHA(S,, 8y, Sp) =

ﬁ<1+<f—1>< J)“‘ (1 <%>2)””

H’:]:
()

4.2 Hamacher operations in SCFS

We will define several new Hamacher operations and SCFS characteristics in this

section..

Definition 4.2.1 Let ., and §., be two SCFS in X and v > 0, we determine the

following basic Hamacher operators in SCFS.
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]" Scl @SCQ =

2. Scl ®ch =

Har) ()2

a7 ) (a5 )2 —(1—f)(ay ) (az)*
1-(1-

)

i)+

+(a3)? ( D @hH2-a-Hat)’(ag)’

\/ (a1 )+ (a5)2—(

1-f)(af ) (a5)?

(A1) (22 =(1-H(Ar)* (B2)*
1-(1— f)(>\1) (R2)?
(n1 )(n2) i
Vi+a=H(( nl =y (0] )
i) d)
VI+a=H(( )2 +(1f)? ()2 (75)?) |
(01)(52)
VI =H (612 4(52)2-(61)2(52)2)
GDG7) T
V=P (67265257 )26 )?)
D)6
VIHA=D(ED2+ED)2-E)2E)2) |
_ _ (Ba)(fi2)
VA= F) ()2 (12)2— (1) (2)?)
(a1 )(@5)

VP (@) +a 02— (ar ) @2)2)
(af)@3)
Jrra=n((at)*+@r-(at Y ah)2)
(A1) ()
\/f+(1—f>((A1 %4 (3)2— () (52)?)

2—(nf)* ()2 —(—f) ()2 (7d)
1-(1-f)(#7 ) (75)?

~(51)°(%2)2

~(1=H)(81)*(%)°

\/ 51 +(52)

1(1f)()()2

)

by )2 )( 2)2-0-H () (5;)°
—H(67)7(b;)?

+<b+>2 >2<b> i >(b+) “(5)°
AGIRCG

—(1=f) (1) (j22)?

\/(m) +(i

(5
2 <>2<2>
~(1-7)

(1)° (f12)?

)
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( \/ (1+¢-v@)*) - (1-(@)*)’
(1+(F-1(ar)”) +(F-n (1-(ar)*)

\/ (1+(F-n(af)?) " = (1-(af
|\ (0?0 (- (a)%)
\/ (1+(F-D()*) = (1-(2)?)”
(

(=D (A)%) =+ (- (1-(M)?)

VinD)
(G (0=60)?)) + -0 )
& _ Vi) ’
3. vS¢ \/(l—i-(f 1)<( (ﬁ?_)g )W—l-(f—l)(nf)% )
) Vi@
D ((-60)7)) +G-0(6)”
VieD)
V(G0 (0=60)7)) + -0 (E0)"
Vieh ’
\/(1+(f D((1-6)?)) +F-D ()
Vi)
\ V(HG-D (=) + (-1 (@)>
Vi) )
\/(1+(f—1)((1-(@;)2)>7+(f—1)(a;)2”’

~

+(f-1)(ar)>

—
=
+
—~
‘m
,_\
N2
/N
fon
/'\
Q
4
\_/
\_/v
~— | =

g
1+(f IEE (Al 2))7+(f D(3)*

J )
(1+(F-0()*) - (1-(71)?)”
1+(f 1)( )7 (f- 1)(1 (n )2>

1+(f 1)(nf 2) (1 (+)2)7

4. (S.,)" = (1+(f G
\/ 14(f-1) 1)2)7—<1 (5)")"
1+(f 1(31)%) +(f- (1 (51) 2)
\/ 1+(f— 1) )2)7 (1 (b7 )2>
1+f 1)( 2>7+f (1-(7)%) "
D

1+(f 1) (51) 2) (1 (b
(1+f 1)( )2)V+(f 1)(1 (5F )2)V

1+f G 1?) -(1-(m)*)”
1+f 1)( 2) +(F-1)(1=(1)%)”

\

Proposition 4.2.2 Let §., and ., be two SCFS in X and 1,72 > 0 .We have the
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following properties.

L. Se;®5c; =S PSeys

2. 56,®5¢; =S¢ ®3e,,

3. Y(Se;®Ser) = ¥Ser B ¥Ser

4. Y(Se,®5er) = ¥Ser © Ve

5. (1 ®72)8a = M8e @ 7256,
6. (71 ®@72)Ser = 11Se; @ 7255
7. (Se1®c,)” =98, @94,

8. (96,88c,)7 =94, 89e,,

9. SU? =AU @S2,

10. (84)" = (S%,)7-

Cc1

4.3 SCFHWA aggregation operator

We will now analyse the features of several spherical cubic fuzzy Hamacher aggregation

operators.

Definition 4.3.1 Let §., =< d,7g,Bg > be a SCFN in X and let the SCFHWA
operator is a mapping of ®"* — & such that SCFHW Ag(Se,,9¢5 -9n) = e%cfji,sci,
i=1

n

and the weights & = (@1, @a, ..., 0n) T with Zwl = 1. Now we get the following results
i=1

related to SCFNs and Hamacher operators.

Theorem 4.3.2 Let §., =< dSC.’ﬁSC.’BSC. > be a collection then SCFHWA operator
is defined as follows: ' ' '

SCFHW A (Seys Sens s Se, ) =
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n n

igl(1+(f71)(a;)2)mi+(f71),Hl(lf(a;)z)wi ’

r i J iﬁl(1+(f71)(a;)2>%7i§1<17(d;)2>m N

1=

(v -n(a)?) 7 i (1))
|\ A (@) e i 0@ ]
J B (-0 (0)?) " - i (1-(0)7)

n

(1= (0)) - i (1 (1))
VL ) ]
\/i§1<1+(f71)((17(h;)2>)wi+(f71)¢§1(h;)2m 7

n ﬂgsﬁr{é n | (12)
| (0 (060 ))) " G f ()P

\/iill <1+(f—1) ((1—(51)2))m+(f—1)i£[1(5i)2m
VL 67 ]

\/iill (H_(f_l) <(1_(Bi_)2))Di+(f_1)i§1(l;i_)2wi ,

VI 6 ’
| (G (0-60)) e f 6
VT (o)

VL (D)) (- fi o=

)

Proof. We will use mathematical induction to prove that. When n = 2 is used,
we obtain

wlScl @ wQSCQ =
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J (=D

J (1+(/-1)(a; )2)’“17(17@;)2)“ —

1(1-

) (al_)2>izl 9
(1-@a)*)™

(1+(f71)(a;)2) Y-
(a1)") "' -

(1+(F-1)(a +)2)wl+(f n(1- (a;r)Q)djl

J (1+(f- 1)(A1)2) L ~(1-(%) )“v1

<1+(f 1 /\1)2) 1+(f 1)( )2)w1

Vi)
\/<1+(f71)((1 (] )2)> (-1 1)2“’1’
Viah=
\/ (1+GF-0((-G1)*)) "+ - (3>
ViG)*
\/<1+(f—1)((1—(51)2))&1+(f—1)(51)2w1
VieD)* 7
\/(1+(f 1((1-( )2)> (-1 (b )
ViEH*
\/(1+f 1) ((1 (b} )2)) 1+f 1)(bF)*
Vi)™

V(D) ((=(1)?)) " +(F-1) () >
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(1+(F-1)( 2)@—(1 (a;)2>w2
1+(f 1)( )2) +(f-1) (1 agy 2)”’
4 =)
2

\ :
\l (1+(f- 1)(a %) ’”"7(1 (a5)")’

1+(f 1)(

1+(f 1)<)\ 2 w2—(1—(5\2)2)w2

2

1+f (k) +(f71)<17(5\2)2>m2

(
J(G-D((-E)%)) 2 +(7-1)(52)*
Vi)™

a5)?) "+ (1-(a5)?) ™ |

Vi ()™
VG -1) (1= (2)%)) 2 +(F 1) () >

wlScl @ ‘Z}?SCQ =
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B (1+<f_1><v—)Q)wi_iﬁl(l_(a;f)%
\l 7£2[ (1+(F-1(a ) )1% (1~ (a;)2)%7
(14— 1<r>) -1 (1-(a7)*)”
\lﬁl<1+f 1)(a)) ) (- 1)1%( j)Q)wi
i (1+(f- 1)@)) (1 (%))
B (00 w0 f ()
\/filill(n,—)%
VB (0 (0 ) s B o)
VI ’
D e
V7 1 (5%
VA (=0 (0=0)")) -0, 3
VI L)
Vi (0 (0-0%) w0 A6
VI LG ’
VL (D ((-65))) -0 1 ()|
VI I (o)
\/él(1+(f—1)((1—(m)2))“i+(f—1>i§1(m)2“i
Hence the Equation 12 hold for n = 2.

(ii) Assuming that Equation [?] is valid for n = k, we have

SCFHW A5(Seys Sep--Se,) =




4. Applications of spherical cubic fuzzy Hamacher weighting
aggregatedoperators
k @y ]
fL(1(0)")
k @y
)1, (-@0)°)

_ i§1<1+(‘f‘—1)(ai—)2)wi_i
i§1(1+(f—1)(a;)2)w"+(f—1 (
J (-0 (@) (1-(a))

1 (10 () e 1 (1-()?) ™|

Wy

B (G -0(07) " 1 (-(0))
% <1+(f—1)(S\i)2)wi+(f_1)i£k[1<1_(5\i)2> i

5
N R
VI 6 |

(- f e
VE I (5%
\/if[l (1+(f—1) ((1—(51.)2))wi+(f—1)i§1(5i)2m
[ R ]
¢f{1 (1+(F-1) ((1—(5;)2))D"Jr(f—l)iﬁll(z};)%’?
| (0 (-6)7)) g0 f )
ViF I ()%
\/ (14 (F-1) (1= (a0)?)) 7 (1) T ()=

\

Now for n = k + 1 we have,
SCFHW Az (S 8¢z Ser Sex 1) = SCFHW Az (Se; 8¢z e, )BFes i
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[ J it (1+(f71)(a;)2)wli:1
k k
A

=1
(17— (a7)?) (- 11 (1-(a7)?)

\

I (@)™ - 6

)i (@)
(-0 ()*) = 1 (1))

i (H(f_l)(xl)?)‘”u( f—1)7§1<1—(5\1)2)

it <1+(f—1)(a{r

i=1

Wy

=1

VI

k N @; . k ~ w.v

\/fgl(lﬂf_l)((l‘(ﬁff)) (- 1 (07)*
VI 6o |

\/ﬁl<1+(f1)((1(ﬁf)2>>wi+(fl)iﬂl(ﬁfr )

Vi fi G

\/fll(H(f_l)(<1_(51)2))wi+(f_1)7:£k[1(‘51>2w

' VI LGy
\/zﬁ1 (1+(f71) (07(617)2))mi+(f71)¢§1(617)2m
VL)
e () e
VI )
L (2=

1=1

¢ Tt (1D ()%)) (1)
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¢

J (141 (a5)?) ™ - (1 (a,,)7)

(1+(-D(a5)") -0 (1 (a)7)

J (1+(f D(a,,) )wkﬂ—(l—(v:ﬂf)wkﬂ

I+(f=1)(ag, (1 Tpt1 ;
(1+(-0(a5a)") D (1=(a) )

(1+(f—1)(5\k+1)2>%+1—(1—(5\k+1) )WHI

<1+(f*1)(5\k+1)2)wk+l+(f*1)(1*(5\k+1)2)wk+1
\/f(ﬁgﬂ)%ﬂ

\/ (14D (1)) 1) ()04 ’
\/f(h;rﬂ)@kﬂ

V(D=6 ))) 4 ) 0
Vi)

\/(H‘(f—l)((l (5k+1)2))wk+1+(f—1)(5k+1)2wk+1
\[(bkﬂ Dpy1

V0D ((-,0)%)) 41 ()70
Vi, )R+

D ((G,))) a0 (5 )
V(g 1) R 41

VO -D (A= ar)?)) 5 (1) (1) 271

SCFHW Ag(Se, 862"'Sck+1) -
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k+1 @; k+1

(140 (a)*) " - (1 (a))7)
(140 (a)?) ) T (1 (a7)?)

0 (1+G-0(a)) "= (1-(a))

1=

(140 )?) -0 I (1 (a)7)

(0 (0)Y) " (- (0)7)”
(14D () - T (1-(5)%)
Vi
k+1 . N2 o5 R k41 2wy
\/ I (-0 ((-0)%)) -0 I (7))
VI it
R il
VI 6
ﬁﬁi(w(f—n((1—(51-)2))mi+(f—1)ff111(5i)2wi
VI (673
i (0 (0 ) -
VG ’
| R () o e
VEIL ()

k41 R B @; . k+1 o
\/i§1(1+(f—1)((1—(m)2)) +(F-1) 1L (j:)?

I

i

\

So it is true for n = k + 1. Hence it’s hold for all values of n. m
Proposition 4.3.3 Let §., =< Qg 5Tg "BS > be a colllection and the weights of
n 7 Cq <
Se, be & = (01,02, ..., n) T with ZJJZ =1 and &; > 0, then we established the charac-
i=1

teristics as below.

Boundary: For every w,

S., < SCFHW A5(Se,, Seys s Se,) < So

Idempotency: For every ., =< Qg 57 .’BS > are same then

SCFHWAJ)(SCN Scy ”"Scn) = Sc-
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Monotonicity: Let §} be a collection of SCFN, then
SCFHW As(Se;,Ses s Se,) < SCFHW A5(S¢,, Sy -+, Se)-

The concept of SCFHWA aggregation operators evaluates SFHWA only. In the
MCGDM issue, there are conditions when the ordering situation of the SCFN resolves

issues.

4.4 SCFHOWA aggregation operator

Now we will discuss the SCFHOWA operator and its fundamental features.

Definition 4.4.1 Let §, =< dg ,7]g .’BS > be a collection . Then the SCFHOWA
operator is mapping SCFHOW A : ®" — ® and the weights & = (1, %2, ..., 0n) T with
n
Zdzi =1 and &; € [0,1] defined as follows:
i=1
n
SCFHOWA(Z}(SCN ‘5(327 ceey Scn) = @1(:]15C )
i= o(i
for all 4, 500(1_1) ZSCU(Z,) and the permutation (o1,02,...,0,) so we get the following

result related to SCFNs and Hamacher operator.

Theorem 4.4.2 Let §., =< Qg Tg NBS > be a collection. Then the aggregation of
SCFHOWA is also a SCFN and it is deﬁﬁed as follows:

SCFHOW A3(Se;s Seps s Se,, ) =
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r - A & n &; ] A
igl(”(f_l)(d;u))f) _igl(l_(d;my) U
1§1 (H_(f_l)(d;(i))2)WZ+(f_1)i7:ﬁ1 (1_(d;(i))2)WZ |
¢§1(1+(f71)(di_(i)>f)wi7¢§1(17<aj’—(i))2>wi i} ,
i§1 (H_(f_l)(é:(i)>2)ui+(f_1)i§1 (1_<é:(i)>2)ui
i[l(1+(f—1)<5\g(i))v2>wi—i§1(1—(5\g(i))2)wi ]
(147D (o)?) " +F-D,01 (1= (o0)”) ™
— VL ()
i (0 (007 ) 0 )
VL0 f )% 7 (13)
(e (-3 ) -0 )™
VT (3%
VL (H(0-600)) D B o)
\/?iﬁll(l;;(i))a}i
\/Zﬁl(H(fl)((l(Ba(i)>2>)wi+(f1)iﬁl(i)a(i))2w"
\/;Ez'ﬁ[l(éj(i))wi ,
\/zﬁl<1+(f_1)((1_(Bj(i))2>)Wi—i_(f_l)iﬁl(l;:fr(i))QWi
\/?iill(ﬂa(i))wi

Here the weight vector is @ = (&1,ws,..

\/ill (1+(7-1) ((1—(;10@))2))wi+(f—1)i§1(ﬂo<i>)2wi

n
Zw =1 and @; > 0.

=1

. @n)T under the specified conditions

Proposition 4.4.3 Let §;, =< dg g .’BS > be a collection and the weights of 3,

n
be 0 = (@1, W2, ..., 0n) T with Zd}l =1 and &; > 0, then we established the character-

istics as below.

=1

Idempotency: For every §. =< dg 57 .’BS - > are same i.e, S, =9, then
SCFHOWA@(sCUScza "'7SC7L) =3c-

Boundary: For every w,

Sc < SCFHOWA(D(SCNSCW "'7SCn) < S:r
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Monotonicity: Let

S* = {([d:;(;)? (VLZJ(Z)], 5‘(*}(1))’ ([ﬁza)a ﬁj;(rz)]a V;(Z))a ([B;(;)a bj;(rl)]a ﬂg(z))}
then

SCFHOWA{D(SCNSCW"',Scn) S SCFHOWALTI(SZpSZ??Scn)

4.5 SCFHHA aggregation operator

Now we will examine at the SCFHHA operator and its basic features in more detail.

Definition 4.5.1 Let §;, =< Qg 57g .’BS > be a collection of SCFNs in X. Then
the SCFHHA operator is mapping SCFHHA : ®" — & and the weights & = (1, g, .., )T
n

with W =1 and @; € [0,1] as SCFHHAL(Se;,9¢559¢,) = éd}iS* .\ where
1 2 n i—1 g'(z)
i=1 =

S;(Z.) represented the it" highest weight SFNs S.,. And the weights of ., is & =

n

(91, @2, ey @) T with Y i = 1. Here, §
i=1

balancing coefficient when & = (£, 1, .., %)T then SCFHWA and SCFOHWA opera-

n’n’

iy mw; e, where n represents the

tors are considered as special case of SCFHHA operator. Now we will get the following

result related to SCFN and Hamacher operator.

Theorem 4.5.2 Let §., =< Qg g .’BS > be a collection. Then the aggregation of
SCFHHA is also a SCFN and it is defined as follows:

SCFHHAW,JJ(SCN ‘502’ (A Scn) =
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i (1+(f b ())2>w n( €oi) 2)% _
él(”(f 1)<a<>)2)w +(/-1), ( (& L>)2>
g (eun(en)) ( e6))" |
Zﬁl(”(f n(e m)z) - I)H( (&) : | |
zﬁl(H(f (A om)?)wz ( z))Q)%
1H1<1+(f 1)( 0()>2) v+(f71)ig1( < 0()>2)
\/?¢§1(h;zi))wi
Vz f (170 (-,)%) ) -0 8 (2) "
Vi iﬁl(ﬁi‘,@)zwi ’ (14)
_ ﬁ(w—n(@—m:z)f))“" o () ||

\/H P (iy)” )

\/E <1+(f_l)((1_(’13(i))2))% /), i (“o(z))QWi
\/?511(5*(7'))% ]

\/iﬁl(1+(f1)(<1 (bg( ))2>> o1 EI (b*(,z)>2w“

VT @)% ’

i (e 0((-652)")) 0. 37,)"
\[-H (05 )) %

L\ R (n((m60)) i )

Proposition 4.5.3 Let §., =< Qg g .’BS > be a collection and the weights of g,
n i i €4

be & = (1, D2, ..., n) T with Zd)z =1 and &; > 0, then we established thecharacteris-
i=1
tics as below.

Idempotency: For every ., =< ag g ,’BS > are same i.e §¢; =3, then

SCFHHAL(S:,,Sey: -+ Se,) = Se-
Boundary:

For every @,

S; < SCFHHAw,JJ(ScpScQa . SCn) > SCZ
Monotonicity: Let

= {856y @50} Moy (15 230 A3y (1850 B3] 950))
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then
SCFHHAL«VJ(ScpScy-"7Scn) < SCFHHA(D(Ssz; "'7Scn)'

4.6 SCFHWG aggregation operator

We will now define some geometric aggregation operators based on Hamacher spherical

cubic operations.

Definition 4.6.1 Let ., =< dg ,iig ,B3 > be a SCFN in X and let the SCFHWG

operator is a mapping of " — ® such that

SCFHWGG&(Scy Scza B Scn) = ,(%1(:)2"50.27

n

and the weights represented by & = (1,09, ..., 0n) T with Zd)l = 1. Now we get the
i=1

following results related to SCFNs and Hamacher operators.

Theorem 4.6.2 Let §., =< dSC.’ﬁSC.’BSc. > be a SCFN in X then the aggregation
value of them using the SCEHWG operator is also SCFN and is defined as follows:

SCFHWG5(Se;sSeyr o Se, ) =
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([T Vi T @7y |
Vi (G- ((-@)%)) - i )
Vi @)% ’
B (rn(0-@)?) g e ||
VI ()%

VB, (400 (0-69%) "+
iﬁl <1+(f—1)(ﬁi—)2>471i _

n @, ~ n w; )

(-0 )"+ 1, (0-(3)°)

f*l)Aﬁ (;\i)%m'

=

i=1

B PP - ’
L ﬁ (1+(f—1)(ﬁzr)2 wi+(f—1)'ﬁ1<1—(ﬁ;‘)2>w" | s ( )

i=1

A, (-

( )
\ A (0 6)*) -0 B (1-60)%)
) )

=1
I (=1 (1)) (1) T (1= (2)?)

\

J (1 (1)) - (1 (10%)
Proof. We will neglect the proof here due to similarity. m

4.7 SCFHOWG aggregation operator

The concept of the SCFHOWG operator and its basic features will now be discussed.

Definition 4.7.1 Let §., =< Gg ,7g .’BS > be a collection of SCFNs in X. Then

the SCFHOWG operator is mapping SCFHOWG : ®" — & and the weights & =
n

(&1, %2, .oy )T with ZJJZ =1 defined as follows:
i=1

SCFHOWGG:;(SCly 5627 ceey Scn> = %1&/)150’(2)

for all i, S;;_1) > Sy(;) and the permutation (01,092, ...,00) S0 we get the following
result related to SCFNs and Hamacher operator.
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Theorem 4.7.2 Let 3¢, =< &g ,7)g 4,35 > be a collection. Then the aggregation of
SCFHOWG is also a SCFN and it is defined as follows:

SCFHOW Gy(8eys Seys vy Q) =

( | \/?ii(a;(i))wi
\/ifil(w(f—l)((1—(aa(i))2>)wi+(f—1)ifil(ag(i))2wi
\[H (,( )) i ’
\/iﬁ1(1+(f_1)((1_@@))2)) HED i ()
\/firzll(;\a(i)) i
L O (0000 ) 0 (o)™
iﬁi(l+(f_1)Q@Rw)f>wi‘;§1(1‘(ﬁ?u>)2 |
zﬁl(H—(f 1)< "o (i ))2)WZ+(f_1)i7:ﬁ1(1_(ﬁ;(’i))
zﬁ1(1+(f (a ()>2)%11§1(17(fzjﬁ))2) V
zil (1+(f 1)( U(U) )mi-i_(f_l)iig(1_<h3—(i))2)w2
ﬁl (1+(f—1)<50(i))v2>wi—i§1 (1—(5o(i))2)wi ]
iﬁl(1+(f—1)(Sa(i))z)wi-i-(f—l) .

J iﬁl(”(f ”(a(z>)2>wi‘iﬁ1(1‘@;@))2)%v_ |

iﬁl (H(f_l)(ga(i))2>wi+(f—1)iﬁl )
o) TR ()]

i, (1+(f (b <>)2) - l)ﬁ( (Bj'(”)z)%
TR (1 )

\
Here the weight vector is w = (wl,wg,...,wn)T under the specified conditions

n
Zw =1 and @; > 0.
=1

Proposition 4.7.3 Let ., =< Gg g .’BS‘ > be a collection and the weights of

Se, be & = (01,09, ..., )T with Zd), =1, then we established the characteristics as
i=1
below.
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Idempotency: For every . =< Qg g .’BS > (i =1,2,...,n) are same i.e,
S¢; = S then
SCFHOWG(Se, 8¢5 -+ 9¢,) = S-

Boundary: For every o,

S. < SCFHOW G (S, S0ps o Se) < 51

— C

Monotonicity: Let

S* = {<[a2(_1)7 a:;_(i)]a }‘;(Z))v ([h;(_z)a TVL:;—(’;)]’ 5;(1))7 ([B:;—(_z)v 62—(’;)]7 [L;(,L))}

then
SCFHOWG5(SeysSeys s Se,) < SCFHOWG5(Se,,Sugs oo Ser,)-

4.8 SCFHHG aggregation operator

Now we will discuss SCFHHG operator and further discuss their basic properties.
Definition 4.8.1 Let 3§, =< Qg g .’BS > be a collection of SCFNs in X. Then
the SCFHHG operator is mapping SCFHHG : ®" — & and the weight vector & =

n
(&1, %2, ..., 0n)T under the specified conditions ZJJZ =1 and w; € [0,1] defined as
i=1

SCFHHG(Se,, S0 8e) = D,

where Sgg(i) represented the it" highest weight SCFNs Se; -

_ . _ wk— k- * vk— vk * I¥x—  Jk+ - %
Sty = MWiSie,y = { (@55 asf) Nago)s (15 5] Baa))s (B3 B ) i) }

Theorem 4.8.2 Let §., =< Qg 5T .’BSA > be a collection of SCFNs in X. Then
the aggregation of SCFHHG is also a SCFN and it is defined as follows:

SCFHHG,5(Se,sSeys s S, ) =
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Proposition 4.8.3 Let §., =< Qg g .’BS > be a collection then we established

the characteristics as below.

Idempotency: For every S, =< dSc.’ﬁSc.’BSc. > are same i.e §. =3, so,
SOFHHG(Se, Serr - Sen) =Se- -
Boundary:
For every w,
S, < SCFHHG.5(Se, Sersr8,) < S0

= c

Monotonicity: Let

* Sk— okt ] Y% Sxk—  ~kt ] $x R S T
Sc - {([ag(i)7 ag(i)L Aa(i))? ([ng(i)7 no’(i)]’ 60(1’))7 ([bg(i)7 bg‘(i)] ) Mcr(i))}
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for collection of SCFN if [a_ 5 i) it
> % — 1+ Px— % < Cxk
(500 5y fi < ayi B30 D)) < W5y B3]+ 0 < 93-So,

SCFHHG(Se,>Seps s Se,) < SCEFHHGH(Sny, s oo S )-

4.9 Model of MCGDM based on using spherical cubic

Hamacher aggregation operators

In this section, SCFHWA operator are used to MCGDM method. Assume that there
are m alternatives A= {A, A, ..., A,,} and n criteria C= {C1,Co, ..., C,,} be assessed
n

with the weights & = (&1,w9, ...,0,)" with Zd}z = 1. To assess the achievement
i=1
based on the criteria C), of the alternative A;, the decision maker need to give not

just the statistics about the alternative A;, not fulfilling the criteria C}, .The ratings
X. Scip =

of alternatives A; on criteria ¢, given by choice producer be SCFNs in

5

<0‘s s, s, >

Step 1: Settle on MCDM decision matrix D = (Se,, Jmxn = (<ds 7l ’BS >)
Cip Cip C'Lp mXn

normally, the cost and benefit criteria are assigned. If the decision matrix contains
both cost and benefit criteria, there is no need to normalize the rating values because
all of the criteria are of the same type. However, if the decision matrix contains both
cost and benefit criteria, the rating estimations of the cost type can be changed over
to the rating estimations of the benefit type using the following normalized formula.
Sy =< Giprdyy S— { vip, if the criterion is for benefit }

Vi if the criterion is for cost

Here vj, represents the complement of vjp. Along these lines we get the nor-
malization of SCF decision matrix, which is represented by D™ and is given by
D™ = (Sip)mxn = (<¢ipsdip >)mxn-

Next we will apply the SCFHWA, SCFHOWA and SCFHHA operators to MCDM
, which further requires the following steps.

Step 2: Utilize the recommended aggregation operators to find the SCFNs §., for
the alternatives A;. The developed operators were designed to keep the system from
becoming too reliant on general preferences of the alternatives A; here the weight
vector of criteria is w = (w1, w2, ..., 0m)" .

Step 3: Utilizing the score functions of SCENs we find the score sc(Se;).

Step 4: To choose the best option, rank all of the alternatives.
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4.10 Numerical Analysis

Because of these challenges, the enterprise’s long-term stability has been affected.
As a result of the development of creation, natural pollution, low-quality creation,
asset mismanagement, and the lack of security of the premiums of the representatives,
investors lose interest in contributing wealth and the propensity to make speculative
investments in the organisation. The key administration slowly understood it is little
disapproved of conduct for enterprises on the off chance that they need to accomplish
the objective on investor esteem in the creation of procedure, paying little head to the
enthusiasm of different partners necessities. The entire dynamic procedure is presented
by a stream graph in the following Figure 7. The investment company takes a decision
relying upon the following four characteristics.

C1:Financial Execution

(C5:Customer Execution

(C3:Internal Procedures Execution

Cy:Stafl Execution

Figure 7 (Flow chart of algorithm)

To avoid dominant one another, decision makers must omit the four prospective
enterprises A; from the considered qualities whose weight vector (.2,.3,.5)” and criteria
weighting vector (.1,.2,.3,.4)” the decision maker presented from Tables 9, 10, and
11.
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Table 9 (First decision maker data)

Table 10 (Second decision maker data)
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Table 11 (Third decision maker data)

By Spherical cubic fuzzy Hamacher weighted average operator

Step 1: The data of decision makers provided in the Table 9, 10 and 11. No need
to normalize the data. Assume f = 2, and weight vector & = (0.2,0.3, 0.5)T , using
SCFHWA operator, the aggregated information of the data in Table 9, 10 and 11 of all
the decision makers are represented in Table 12. By using SCFHWA operator defined
in Equation 12, taking f = 2, utilizing the aggregate data in Table 12, the weights
O =(.1,.2,.3,.4)T, we get the alternatives.

Ay = (([18, 4], .34), ([.07,.06],.07), ([.3,.12], .1)
Ay = (([.19,.22], 4), ([.1,.04],.08), (.06, .08], .08)
As = (([.17,.26],.35), (.08, .14], .13), (.07, .09], .05)

Ay = (([11,.29], .31), ([.06,.12],.13), (.07, .05], .1)

Step 2: Using the Equation 1, of score function score(A4;) of A; the calculated

scores are as below:

7 7

éc(él) = .08, SC(AQ) =.1, SC(A?)) =.1, SC(A4) =.07.
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Step 3: Rank all the scores and choose the best alternative.

As=Ay > Ay > Ay

Step 4: Aj is the best choice.

¢ |G |Gy Gy
([0.13,0.39].027), (0.26.0.37].0.38). ([0.22.045].0.32). ([0.1.0.36].0.35) .
(/0.11,0.15].0.08). (0.16.0.27].0.09). ([0.12.0.11].0.21), (0.16.0.09].0.16),
(0.09.022],0.13) (0.06.0.14],0.28) (0.06.023].0.21) (0.06.023),0.14)
(0.13,0.36].0.36) (0.13.0.18].037). ([0.27.0.14].0.45). (/0.14.023],0.38),
(0.14,009].0.14). (0.24.007).0.28). (0.15.0.11].0.09) (0.19.009],0.17),
(0.14,019].0.15) (0.25.014],01) (0.09.0.12).0.17) (0.12.018),0.17)
([0.42,0.16].052). ((0.13.031].0.3). (0.13.022].0.39). ([0.1.029].0.28).
(/0.09,0.11].0.16). (0.14.0.26].0.14). ([0.15.0.3].023). (0.18.022).03).
(0.08,0.17).0.08) ([0.14.0.12].0.23) (0.09.0.11].0.06) ([0.22,028),0.14)
([0.1.0‘28]‘0‘35).\ ([0‘1.0‘35]10‘32).\ (10.1,0.23],0.18), (0.13,0.29],0.36) \
(0.14,0.28].03). (10.09.0.09.0.3). (0.18.025].0.31). (0.12,027),0.14),

\([0‘19.0‘07]‘0.14)} ([0.26.0‘18]‘0.09)} (0.09.0.11),0.13) ([0.14.0.1).0.26) }

Table 12 (Aggregation of all decision makers data)

By spherical cubic fuzzy Hamacher ordered weighted average operator

Step 1: The aggregated data of three decision makers provided in Table 12. Using
SCFHOWA operator defined in Equation 13, taking f = 2, utilizing the aggregated
data in Table 12, and the weight vector is & = (.1,.2,.3,.4)T, we get the collective
SCFEN of the alternatives.

A, = (([.16,.39],.32), ([.06, .06], .06), (.03, .12], .1)

A, = (([.15,.26], .38), (.1,.04],.09), ([.07, .09], .07)

5

Az = (([.22,.23],.34), ([.06,.13],.1), (.07, .09], .05)

Ay = (([11,.3], .29), (.06, .1],.13), ([.1,.04], .13)

E

Step 2: Using the Equation 1, of score function SC(AZ) the calculated scores are

as follows.

S.(A;) = .05, Se(Ag) = .06, Sc(As) = .06, S.(A,) = .03.

Step 3: Rank all the scores and choose the best alternative.
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Asg=Ay > A1 > Ay

Step 4: Aj is the best choice.

¢y (

(/0.26,037,0.38), ‘ (0.2,0.45),0.32). ([0.14,0.39),0.32), ([0.13,0.36].0.31),
((0.16,0.27],0.09), (0.1,0.14],018). ([0.12.0.14],0.12), ([0.14,0.08],0.13),
([0.06.0‘14}‘0.28‘) ([0.06,0.23].0.16) (0.06,0.23],0.09) ([0.09,0.022],0.28)
([0.27,0.14],043), ([0.13.0.31],04), ([0.1,0.2],0.38), ([0.16,0.28],0.36)
([018011} 1), (0.16,0.11],0.16), ([0.21,0.07),0.22), ([0.17,0.08.0.17),
([0.11,0.12],0.14) (0.17,0.14],0.13) ([0.14,0.22],0.13) ([0.14,0.16],,0.18)
(0.1, 43), (0.43,0.14),0.54), ([0.1,0.28,0.24), ([0.13,01 8] Ur)-l.
([[]23.0‘?9]‘0.21). (0.09.0,09],0.23), ([0.12.0.27],0.22), (0.1
([0.09,0.1],0.06) ([0.06,02,0.06) ([0.3,0.18],0.2) (0.1 4[]16] [] )
((0.1,0.28].031). (0.13.0.29],0.39), ([0.1,0.3],0.33), ([0.1,0.32],0.16).
([0.18,0.34],0.36) (0.09,0.22],0.23) ([0.12.0.12],0.26), (0.14,0.19],0.19),
([0.08,0.11],0.09) (0. 140 ] U 4) (0.26.0,08],0.21) ([0.22.0.09],0.35)

Table 13 (Aggregation of all decision makers data by
SCFHOWA operator)

By spherical cubic fuzzy Hamacher Hybird aggregation operator

The decision making data is given in the Table 9, 10 and 11. Applied ., = mwiS’Ci
to the data given in the Table 9 to 11, by using the weight vector & = (.2,.3,.5)7 of
all the alternatives A;. The aggregated data with the weight & = (.2,.4,.4) by using
SCFHHA operator defined in Equation 14, is given in Table 13.

Step 1: Using ., = mwigcito the given data in Table 13, using the weights are w =
(.1,.2,.3,.4)T the calculated values are given in the Table 14. Again using SCFHHA
operator and weights are & = (.15,.25,.31,.29)7 ,we get the collective alterantives.

Ay = (([.18,.31],.36), ([-04, 03], .03), (.03, .05],.03)
Ay = (([.16,.2],.37), ([.05,.03],.04), ([.04,.04], .04)

Az = (([18,.2

5

4],.33), (.04, .05], .05), ([.03,.04], .03)

Ay = (([-1,.28],.27), ([.03,.04], .05), ([.04,.03], .04)
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Step 2 : Using the Definition 1 of score function Sc(Al), the calculated scores are

as below.

Se(A1) = .06, Sc(Ag) = .08, Sc(Az) = .08, Sc(Ay) =

Step 3: Rank all the scores and choose the best alternative.

Step 4: Aj is the best choice.

C; Cy Cs | Cy
(0.33,0.21],0.49) ((0.13,0.42],0.44) (0.19.0.3].,0.33) (/0.08,0.25],0.16)
(0.11,0.04],0.03) ([0.01,0.01],0.01) (0.16,0.09],0.11) (0.32,0.35],0.29)
(0.02,0.05],0.05) ([0.01,0.02],0.01) (0.11,0.16] ,0.07) (0.3.0.38],0.33)
(0.16,0.2] ,0.47) ([0.26,0.14],0.48) (0.11,0.16].,0.33) (0.08.022].0.2)
(0.02,0.01],0.02) ([0.04,0.08],0.03) ([0.15,0.08] .0.16) ([0.34.0.3],0.34)
(0.01,0.02],0.02) ([0.03,0.03],0.04) (0.15,0.12]..0.09) (0.34,0.37],0.34)
(0.13,0.23],0.42) ([0.13,0.33],0.33) (0.26.0.1].,0.33) (/0.11,0.26],0.25)
(]0.04,0.07],0.05) ([0.02,0.02],0.03) (0.31,0.31]..0.35) (0.12,0.16],0.11)
(0.03,0.03],0.02) ([0.02,0.02],0.01) (0.29,0.35] .0.29) (0.11,0.1],0.11)
(0.15,0.35] ,0.42) ([0.06,0.17],0.21) (]0.09,0.32] .0.26) (0.11,0.26],0.2)
(0.01,0.02],0.01) (0.34,0.39].0.4) (]0.09,0.09],0.16) (0.05,0.06],0.07)
(0.01,0.01],0.02) ([0.37,0.28] ,0.34) (0.16,0.09],0.13) (0.03,0.03],0.04)

Table 14 (Aggregation of all decision makers data by
SCFHHWA operator)

By Spherical cubic fuzzy Hamacher weighted geometric operator

Step 1: The decision makers are provided in the Table 9, 10 and 11. No need to
, using SCFHWG
operator defined in Equation 15, the aggregated information of the data in Table 9,
10 and 11 of all the decision makers and represented in Table 12. By using SCFHWG
operator, taking f = 2, utilizing the aggregate data in Table 12, the weighting are as
v =(1,.2,.3, .47

normalize the data. Assume f = 2 , and weights are & = (.2,.3,.5)7

, we get the alternatives.

A, = (([.04,.19],.16), ([.24,.22], .25), (.11, .3], .27)

Ay = (([.04,.06],.23), ([.29, .16], .24), (.23, .28], .26)

5

Az = (([.03,.08],.13), ([.25, .34], .33), (.25, .29], .2)

5
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A, =(([.03,.12],.1), ([.22,.32],.32), (].29, .18],.32)
Step 2: Using the Equation lof score function SC(AZ) the calculated scores are as

below:

Sc(A;) = .06, Sc(Ag) = .08, Sc(As) = .08, S.(A,) = .05.

Step 3: Rank all the scores and choose the best alternative.

As=Ay > Ay > Ay

Step 4: Ajs is the best choice.

By SCFHOWG operator
Step 1: The aggregated data of three decison makers is given in Table 12. Using

SCFHOWG operator defined in Equation 16, taking f = 2, utilizing the aggregated
data in Table 12, and the weight vector is & = (.1,.2,.3,.4)T, we get the collective

SCEFEN for the alternatives.

Ay = (([.03,.2],.13), ([.23, .21], .24), ([.13, .31], .28)

A, = (([.03,.08],.18), (.28, .15], .25), ([.23, .3], .28)

A = (([.04,.07],.34), (.06, .13], .1), (.07, .09], .05)

A, = (([.03,.13],.09), ([.21, .29], .32), (].33, .17], .33)
Step 2: Using the Equation 1 of score function SC(Al) of A; the calculated scores

are as below.

Se(A1) = .02, S.(As) = .03, Sc(As) = .03, Sc(Ay) = 0L

Step 3: Rank all the scores and choose the best alternative.

As=Ay > A > Ay

Step 4: Aj is the best choice.
By spherical cubic fuzzy Hamacher Hybird Aggregation operator
The decision making data is given in the Table 9, 10 and 11. Applied ., = mwiS’Ci

to the data given in the Table 9 to Table 11, by using the weighting & = (.2,.3,.5)7
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of all the alternatives A;. The aggregated data with the weight vector & = (.2, 4, .4)
by using SCFHHG operator defined in Equation 17, is presented in Table 13.

Step 1: By using, S, = mwiS’Ci to the given data in Table 13, using the weight
vector as @ = (.1,.2,.3,.4)7 the calculated values are given in the Table 14. Again us-
ing SCFHHG operator and weight vector & = (.15,.25,.31,.29)” ,we get the collective

alterantives A; as below.

A, = (([.07,.19],.2),([.2,.2],.17), ([.17,.22], .18)
Ay = (([.06,.1],.23), (.2,.17],.2), ([-2,.21], .19)
Az = (([.08,.11],.21), ([.19,.2], .21), ([.17, .2], .17)

Ay = (([.04,.16],.15), ([.18, 2], .22), (.21, .15], .19)

Step 2 : Using the Definition of score function SC(AZ) of A; the calculated score

are as follows.

Se(A1) = .03, Sc(Ag) = .04, Sc(A3) = .04, S.(Ay) = 0L

Step 3: Rank all the scores and choose the best alternative.

As=Ay > Ay > Ay

Step 4: Aj consider as best one.
It is clear from the comparision Analysis and Ranking by using the score function

that A3 has larger score. The graphical results shown in Figure 8.

4.11 Comparison Analysis

We disscused numerical problem, as SCFN is most propelled structure so it is not fea-
sible for the currents fuzzy aggregation operators to resolve the data contained in said
issue, which shows that the curent aggregation operators have constarined methodol-
ogy. In any case, that we think about any issue under the TSFS and ICFS data we
can understand it effectively by adding over the information as neutral membership in
ICFS. So SCFS is more general idea than TSFS and gives more accurate results than
TSFS. In this manner SCFHA operator are all the most impressive to determine the

eccentric issues.
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Operators S.(A1) | Se(A2) | Se(As) | Sc(A4) | Ranking
SCFWA operator .08 1 1 07 As=A,>A > Ay
SCFOWA operator | .05 .06 0.06 .03 As=A> A > Ay
SCFHHA operator | .06 .08 .08 .05 As=A> A > Ay
SCFWG operator .02 .05 .05 .01 As=A> A > Ay
SCFOWG operator | .02 .03 .03 .01 As=A > A > Ay
SCFHHG operator | .03 .04 .04 .01 As=A,> A, > Ay
Table 15 (Comparison of all alternatives)

Operators Se(A) | 8e(Aa) | Sc(As) | Se(An)

SCFWA operator .03 .08 .06 .09

SCFOWA operator | .02 .07 .06 .08

SCFHHA operator | .05 .09 .08 .10

SCFWG operator .01 .08 .05 .14

SCFOWG operator | .01 .03 .02 .09

SCFHHG operator | .03 .05 .04 .07

Table 16 Comparison Anaysis

Figure 8 (Comparison study and ranking of alternatives. (SCFHWA)

(SCFHOWA) , (SCFHHA), (SCFHWG), (SCFHOWG), (SCFHHG))
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In Section 4.10, we look at the numeric problems, instead of using the score of
SCFNs, we have use the score function of cubic fuzzy numbers by taking the member-
ship, neutral and non-membership function of SCEN as individual CFNs, i.e, consider
SCFN as the group three CFNs C; = ([a",at], \), Cy = ([, 72t],0), C3 = ([b~,bT], i)
and then calculate the score function indiviually by the score function of CFNs,and
then calculate the average by the formula =  (sc (C1) + sc(C2) + sc(C3)) . The rank-
ing result of the alternative given in the Table 15 and 16, and graphically results
shown in Figure 9, we get the same outcome get from Table 15, which obtained from
TSFN scoring function i.e, As is the best choice in all the alternatives as shown in
Figure 8 and 9. The calculation by utilizing TSFS for MCGDM issues has a few
implements and can’t deal with the issues under the same uncertain circumstances,
so their proposed calculations may not deliver the precise outcomes in spite the fact
that SCFHWA operators do not have such impediments and in this manner can give
progressively precise outcomes. The results demonstrate that the proposed system is
continuously capable of dealing with the defenselessness of dynamic appraisal given by
the decision-maker. For the given solution of enterprise in the certified enterprises in
the determination problem, I can make an objection ranking result and suit conditions

in which decision-makers show constrained insight.

Figure 9 (Comparison analysis (TSFHWA) (TSFHOWA) , (TSFHHA),
(TSFHWG), (TSFHOWG) and (TSFHHG))
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4.12 Conclusion

Enterprises are the significant factor of customers, stocker holders, government, cred-
itors, and other stakeholders. In the production of enterprises, two attributes should
be under consideration. Monetary and society, subsequently we should think about
the entirely of partner’s advantage in the execution of enterprise assessing time. We
set up a presentation assessing framework based on partner benefits. We utilize the
concept of spherical cubic fuzzy Hamacher weighted average (SCFHWA) operator,
spherical cubic fuzzy Hamacher ordered weight average (SCFHOWA), spherical cu-
bic fuzzy Hamacher hybrid average (SCFHHA) operator to assess the best enterprise

based on performance.



Chapter 5

Application in decision-making
using spherical cubic Dombi

aggregation operators

In this Chapter, we use Dombi t-norm and conorms which characterize various novel
procedures in order to come at the optimum choice criteria. We proposed the SCFDWA
SCFDOWA, SCFDHWA, SCFDHWG, SCFDOWG and SCFDHWG operators. These
previously stated operators are extremely helpful in successfully arranging selection
difficulties. Then, using the spherical cubic fuzzy set, a computation is developed, and
this methodology is used to decision-making problems to illustrate its importance and
usefulness. We have demonstrated that pre-defined method is appropriate and pro-
vides decision makers with expanding numerical data before making decisions on their
options throughout the calculation. A comparison study with different approaches is
also being carried out to highlight the benefits of our methodology. The findings indi-

cate that the proposed technique is both rational and effective in the given situation.

5.1 Spherical cubic fuzzy Dombi aggregated operators

In this chapter, we introduced the aggregate Dombi operations. We provides several
discussions on the applications of the approach suggested. The proposed Dombi aggre-
gate operations are analyzed. We will define the SCFDWA operator, SCFDOWA op-
erator, SCFDWG operator, SCFDOWG operator, and SCFDHWG operator.

Definition 5.1.1 Let §., and §;, be two SCENs in X and v > 0. Following are the

Dombi operations by using the spherical cubic fuzzy sets:

68
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( 1

‘p(p) — 1- -
4' (Scl) < l («i‘r

5.2 SCFDWA operator

We explain the following weighted average aggregated operators in light of defined
Dombi operations of SCFNs.

Definition 5.2.1 Let 3., be a collection of SCFNs in X. The structure of SCFDWA

operator is determined as below:
SCFDWA(S;, Sep s Ge) = D 150
i=1

Theorem 5.2.2 Let §., be a collection of SCFNs in X. The SCFDWA operator de-
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termined as follows,

SCFDWA (8o, Segs o Sey ) = (18)

| )

)
1
R ’

ey U

Proof. We will prove it by mathematical induction, so Theorem 5.2.2 is true for

n=2.
SCFDWA(S., +Sc,) =186, + 725,
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Now assume that Equation 18 is true for n = k.

Now prove for Equation 18 in which n =k + 1 i.e.,
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So by the mathematical induction, it is true for all n.

SCFDW A (Se;,Seps s Se, )
i .

Proved. m
Properties: The characteristics of SCEFDWA are listed below.

1. Idempotancy: Let J., be a collection in X. Then the collection of SCFN’s S,
are equal. i.e,
SCFDWA(Scla cha ceey Scn) = Sc‘

2. Boundary: Let S, be a collection in X.

5 = < ([min d;,mindﬂ ,min 5\1) , ([maxﬁ;,maxﬁﬂ ,max&) , >

( [max B; , max Eﬂ ,max /11-)

4+ ([maxd;,max dﬂ ,max 5\1) , ([minﬁ;,minhﬂ , min 51) ,
B ([min B;,min Bﬂ ,min ,LVLZ')

Thus

S, < SCFDWA(Se,, Seys - Se,) < ey
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3. Monotonicity: Let $., be a collection in X. $, QS’(Z then

k k k
SCEDWA(S,,,Sess S0, ) € SCEDW A (scl, St .S ) .

Cn

5.3 SCFDOWA operator

We explain the following ordered weighted averaging aggregated operators in light of
defined Dombi operations of SCFNs.

Definition 5.3.1 Let 3., be a collection in X. The SCDOWA operator is ddetermined

as below:

SCFDOW A(8.,, Seys s 8e,,) = Zwi&n(i).
1=1

Theorem 5.3.2 Let §, be a collection in X. The SCDOWA operator is deetermined
as below, where v > 0

SCFDOW A (8., 80y s S2,) =
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N2
1+{ ‘ijl(:)i ((an(i)> 3 )
= 1‘(%@))

1- — T
\ ()T

[ L 1
o 1(’%0)2)7}W
1 P& | ———
\l +{i_1 ( (") .
1 ; ’
Wty |
L 177(2) J
o (1Gw) )
N i)}

1
n (. 2\ 7"y ¥
1+{Zwi<1 F“n(l)z >
i=1 (7))

Proof. Similar to Theorem 5.2.2 proof. m
Following are the properties of SCFDOW A.

1. Idempotancy: Let 5., be a collection in X. Then we say collection of SCFN’s
S¢; are equal. i.e,
SCFDOWA(5617 SCQ? A Scn> = SCZ'.

2. Boundary: Let S, be a collection in X.

5 = < ([min a; ,min dﬂ ,min 5\1) , ([maxﬁ;,maxfzﬂ , nax 51) , >

( [max lv)l_, max IV);"] , max /21-)

+ _ ) %

([max a; ,max aﬂ ,max ;\Z) , ([min n; ,min h+] ,in 52) ,
G ([mind; , minb;] , min i;)
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Thus
S, < SCFDOW A(Se,,Seys -+ S6,) < Se-.

3. Monotonicity: Let ., be a collection of SCFNs in X. $, QSZ then

SCFDOWA(S.,, Sy, ++80,) C SCEDOW A (85,85, - Se, )

5.4 SCFDHWA operator

We define the main hybrid weighted averaging aggregated operators in light of defined
Dombi operations of SCFNs.

Definition 5.4.1 Let 3., be a collection in X. The SCFDHWA operator is

n

SCFDHWA(S.y: Sepr oo o) = > _0i5e

‘ n (i)
i=1

n
here ; shows the weight vectors with > @; = 1 and (i = 1,2, ...,n) and i largest value
i=1

is S’C*n(i) <§’Zn(i) = nfyiSCW(i),z € N) and the total order Sgn(l) 2&;(2) >, >9

n(n)

Theorem 5.4.2 Let ., be a collection in X. The SCFDHWA operator is determined
as below:

SCFDHWA (8., 8uys s Se,) =
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1= T
H{iw;( (o) 2) }
=1\ (A) )
1

1
1+{ i w} <1v(ﬂ"(i)22>w} ’
=t (o))

Proof. Same as proof of Theorem 5.2.2. m

The characteristics of SCFDHWA are listed below.

1. Idempotancy: Let S, be a collection in X. Then we say collection of SCFN’s
S¢; are equal. i.e,

SCEFDHW A(Sc,,Seys -5 9¢,) = Se-

2. Boundary: Let ., be a collection in X.

5 — ([min a; ,min dﬂ ,min 5\1) , ([maxﬁ;,maxﬁﬂ , Nax; 51) ,
“ ([max BZ_, max lvyﬂ , max [M)

L { ([maxai_,max (z,ﬂ ,max ;\i) , ([minﬁ;,minﬁﬂ ,min Si), }

i
¢ = ([min b, , min 5:“] , min i; )
Thus

S., < SCFDHW A(Sey,Seys 1 Se,) < S
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3. Monotonicity: Let ., be a collection in X. §, QS’(Z then

SCFDHW A(Se,,Seyr - Se,) € SCEDHW A(SE .Sk, Sh ).

5.5 SCFDWG operator

We define the main weighted geometric aggregated operators in light of characterized
Dombi operations of SCFNs.

Definition 5.5.1 Let ., be a collection in X. The SCFDWG operator is determined
as below:

(Sers oo Se) = [ [ (5™
i=1
Theorem 5.5.2 Let S, be a collection in X. The SCFDWG operator with v > 0 is
determined as below:
SCEDWG(8e,s Geys - Sey) =

R R e T B
17 1
NENEE
1-— 1 1_ T

\/1 - —
o (B4) g
1+{i§1M(1*(ﬂi)2) } )
Proof. Proof is identical with Theorem 5.2.2. m
Following are the properties of SCFDWG.

1. Idempotancy: Let 5., be a collection in X. Then we say collection of SCFN’s
S¢; are equal i.e,
SCFDWG(SeysSeys -5 9e,) = Se
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2. Boundary: Let 5., be a collection in X.

- { ([min d;,mindﬂ ,min 5\,-) , ([maxhi_,maxhﬂ ,max&), }

ci ([max b, , max b} |, max ji;)

gr — ([max a; , max aﬂ , max 5\1) , ([min 7, , min ﬁﬂ ,min 52) ,
G ([mind; , min ;] , min i;)
Thus,
Se; SSCFDWG(SeysSes: -5 9¢,) < S:

2. Monotonicity: Let ., be a collection in X. §, QSZ then

k ok k
SCFDWG(Se;,8eys - Se,) € SCFDWG (85,80, 85, ) -

5.6 SCFDOWG operator

We explain the following ordered weighted geometric aggregated operators in light of
characterized Dombi operations of SCFNs.

Definition 5.6.1 Let ., be a collection in X. The SCFDOWG operator is determined

as below:

n

SCFDOWG(8.;s Sens s S, ) = H (5%(1.)) B
i=1

Theorem 5.6.2 Let ., be a collection in X. The SCFDOWG operator is determined
as below:

SCFDOWG(SCla ch? AR ‘S’Cn) =
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} e

BCT

\ i=1 n(l)

J 1+{_§)JJ ( ”(’

1 _
1+{ S ( "“)
L = n(z
L:) "I( )

1
5

|

} > : (22)
[

|

1+ ;
i
1+{ ( n(z)
n(Z)
1+{ i ( 77( )
B n(?)
1+{ f: < “77( )
=1 “n(l)

n
here the weight vector is w; with > &; = 1.
i=1

1—

1
5

HMs
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Proof. Proof is identical with Theorem 5.2.2. =
The characteristics of SCFDOWG are listed below.

1. Idempotancy: Let 5., be a collection in X. Then we say collection of SCFN’s
S¢; are equal i.e,

SCFDOWG(Se;, 955 -2 9¢,) = Se-

2. Boundary: Let S, be a collection in X.
B { ([min a; ,min dﬂ ,min 5\1) , ([maxﬁ;,maxfzﬂ , max 51) , }

¢ ( [max B;, max lv)ﬂ ; Max :ai)

4 { ([maxd;,max dﬂ ,max 5\1) , ([minh;,minhﬂ ,min 52-), }

&= ([minbd; , minb;"] , min /i)
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Thus
S., < SCFDOWG(S,,,Seys s Se,) < Se.

2. Monotonicity: Let ., be a collection in X. S, QSZ_ then

SCFDOWG(Se,,Se;s - Se,) € SCEDOWG(Sh,,Sh s Sh ).

5.7 SCFDHWG operator

The following hybrid weighted geometric aggregated operators are described in light

of characterised Dombi operations of SCFNs.

Definition 5.7.1 Let ., be a collection in X. The SCFDHWG operator is determined

as below,

(Sorr Gogr 80 = [1(52)
=1

here &; shows the weight vector with Y @; = 1 and the i'" largest weight value is
i=1

S’gn <§’£n = n'yiScw : 1€ N) and the total order is S >, >8 and
@ ) i

nay ) n(n)

n
weights with Y wf =1, w > 0.
i=1

Theorem 5.7.2 Let §;, be a collection in X. The SCFDHWG operator is determined
as below:
SCFDHWG(§eys Seyr o 8e,) =
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T,
n vy
1+{Zw ( )
i=1 1—

| el
IREEEE

J

J

> ; (23)

1— 1

)
1+{ 3 gﬂ< (un)”
= n(l
z)

I

T
I
1+ i n(Z)
A (bn(1)
i

14 Sowr [
{i_ (1 (n(z)

1— 1

n
where &; represents the weight vector with S @; = 1 and the it" largest weight value
i=1

|
ol
)
)]
)}

v

v

(1) ’(2) B

is 9y S; =n%9. 1€ N | and the total order is S~" > >, .. %,
(i) (i) () (n)
n

and Y wi =1, w = (w},ws,...,wy,).
i=1

Proof. Proof is same as Theorem 5.2.2. m

The characteristics of SCFDHWG are listed below.

1. Idempotancy: Let S, be a collection in X. Then we say collection of SCFN’s
S¢; are equal. i.e,
SCFDHWG(Se,,S¢ys -5 9e,) = Se-

2. Boundary: Let S, be a collection in X.
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- ([min di_,mindﬂ ,min 5\1) , ([maxﬁ;,maxﬁﬂ ,rnaxgi) ,

B { ([max B;,max 5;"] ,max,ai) }
B ([max a; ,max dﬂ , max 5\2) , ([min n; ,min ﬁﬂ ,min 51) ,
B { ([min I;i_,min lv)ﬂ ,min,ai) }

S., < SCFDHWG(Se,,Sys - Se,) < Sa.

3. Monotonicity: Let ., be a collection in X. S, QS’C“Z, then

SCFDHWG(Se,,Seys - Se,) C SCFDHWG(Se, Ses o n S ).

5.8 MAGDM computations with spherical cubic Dombi

aggregated operators

We now introduce a new decision-making technique based on the concept of a spherical
cubic fuzzy set. This strategy will use information that is specified by the given
problem and will not handle with any additional data given by the decision makers in
order to minimize the influence of information on decision outcomes.

Step 1: Make D = (Eip)mxn = [(E;D(”,E;;(S)) ,Ni;(s)}
fuzzy decision matrix and then used the idea of SCFWA/ SCl;n\X/T&} operator and the
aggregated spherical cubic fuzzy value %k of the alternative A; defined as: .19? =
SCFWA, [(ﬁfp, ﬁ;’;) ,ﬂ;;o_(s)}m the weight vector is given as ¢ = (91,32, ..., ¥,) we

apply the SCFWA, SCFOWA, SXCTJLFWG, SCFOWG, SCFHWA, SCFHWG operations

described as below.

as spherical cubic

Step 2: As a result, we use the spherical cubic fuzzy data to construct the desirable
value of the alternatives with the weighting using the defined Dombi operators.

Step 3: The scoring and precision function are calculated.

Step 4: Using the scoring function definition, rank the options and choose the

best option with the highest score function value.

5.9 Numeric Interpretation

Suppose Mr. A, a business administration at a wealth management corporation, is
selecting between four investment options: Ay, As, As, and A4. The financial admin-
istrator, according to the firm, must consider the following three aspects. B1, Bo, Bs,
where b indicates "high-risk", by indicates "progress" and bs indicates "surround-

ing impacts". In light of b;, Mr. A has requested three expert groups to determine
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if A; is the best chance of a viable investment, and the evaluator has the weighting
(0.2,0.3,0.5).The spherical cubic fuzzy set will be established, and the decision matri-
ces will be depicted in Tables 17, 18 and 19. Normalization of data given in Table 20,

21 and 22.

b1 b2 D3
([0.3.0.4],0.5) ([0.3.0.4],0.3) ([0-4,0.5], 0.4),
A1 | (0.1,0.3],0.2) ([0.1,0.2] ,0.4), ([0.2,0.1],0.2),
([0.1,0.2],0.2) ([0.2.0.1],0.2) ([0.2,0.1],0.4)
([0.2.0.6],0.1) ([0.3.0.1],0.1) ([0.2,0.3],0.4),
Ay | ((02,0.1],0.2) ([0.3,0.2],0.2) ([0.3,0.4] ,0.2),
([0.1,0.2],0.4) ([0.2,0.4],0.3) ([0.1,0.3],0.2)
([0.4,0.4],0.2) ([0.5.0.1],0.2) ([0.2,0.3],0.4),
Az | ((0.2,0.1],0.5) ([0.1,0.2],0.3) ([0.1,0.2],0.3),
([0.1,0.4],0.1) ([0.1,0.2],0.3) ([0.1,0.4],0.2)
([0.3.0.3],0.4) ([0.5.0.4],0.2) ([0.2,0.4], 0.5),
Ay | (10.3.04],03) ([0.1.0.2],0.4) ([0.2,0.1],0.3),

([0.3,0.1].0.2)

([0.3,0.1],0.3)

([0.3,0.2],0.1)

Table 17 Investing capacity in a wealth administration firm D!

b1 b2 b3
(0-1,0.2].0.2). (10.2,0.3],0.3), (10.3,0.4],0.6)
A | (0.2.0.3].0.5), (0.4,0.1],0.1), (0.1,0.3],0.2),
([0.4,0.1],0.2) ([0.2,0.2],0.2) ([0.2,0.2],0.1)
([0.4,0.2],0.6), (10.4,0.3],0.1), ([0.2,0.5],0.8)
Ao | ([0.3,0.1],0.1), (0.2,0.1],0.2), (0.1,0.3],0.1),
([0.2,0.1],0.2) (0.4,0.1],0.2) (0.1,0.2],0.1)
([0.2,0.4],0.3), (10.2,0.1],0.4), ([0.3,0.5],0.4),
As | (10.3,0.1],0.2), (0.3,0.1],0.3), (0.2,0.1],0.1),
([0.3,0.2],0.1) ([0.1,0.2],0.2) (0.3,0.2],0.3)
([0.3,0.4],0.3), (10.6,0.1],0.6) (0.4,0.1],0.2),
As | (0.1,0.2],0.1), (0.1,0.2],0.1), ([0.1,0.4],0.3),
([0.3,0.1],0.4) ([0.2.0.1],0.3) ([0.1,0.2],0.3)

Table 18 Investing capacity in a wealth administration firm D?
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b1 o bz
([0.4.0.2].0.3), ([0.4.0.4].0.3). (10.1,0.4],0.6)
A | (0.1,02].0.2), ([0.2,0.4],0.4). (10.2,0.3].0.2).
(0.4.0.1],0.1) (0.2.0.1].0.2) ([0.1,0.3],0.1)
([0.2,0.5].0.3). ([0.1,0.5],0.4). (0.4,0.2].0.7),
Ay | ([0.2,0.1].0.1), ([0.3,0.2].0.1). ([0.4,0.3],0.1)
([0.1,0.2],0.4) ([0.2,0.1],0.3) ([0.2.0.1],0.2)
([0.5,0.4],0.6). ([0.2,0.3],0.1), (0.3.0.1],0.2),
As | ([0.2.0.3],0.1). ([0.3,0.4],0.1). ([0.3,0.2]. 0.4)
([0.2,0.1].0.2) ([0.3,0.1],0.3) (10.2,0.1],0.1)
([0.2.0.5].0.3), ([0.4.0.4],0.4), (10.5,0.3],0.3),
Ar | (0.3,0.1],0.3), ([0.3.0.2].0.1), (10.2.0.1].0.2),

([0.1,0.1],0.2)

([0.1,0.2).0.1)

([0.1,0.2].0.2)

Table 19 (Investing capacity in a wealth administration firm D3)

b1

(o3

b3

A1

As

A3

A4

([0.5,0.4],0.3)
([0.2,0.3],0.1)
([0.2.0.2],0.1)
([0.1,0.6].0.2),
([0.2,0.1],0.2),
([0.4.0.2],0.1)
([0.2.0.4],0.4),
([0.5,0.1],0.2),
([0.1,0.4],0.1)
([0.4,0.3].0.3),
([0.3,0.4],0.3),
([0.2.0.1],0.3)

(10.3,0.4],0.3),
(]0.4,0.2].0.1),
([0.2,0.1],0.2)
([0.4,0.1],0.3),
(10.1,0.2].0.3).
([0.3,0.4],0.2)
([0.1,0.1],0.5),
(10.1,0.2].0.1),
([0.3,0.2],0.1)
([0.4,0.4],0.5),
([0.1,0.2].0.1),
([0.1,0.1],0.3)

([0.4,0.5],0.4),
([0.2,0.1],0.2),
([0.4,0.1],0.2)
([0.4,0.3].0.2),
([0.2.0.4].0.3).
([0.2,0.3].0.1)
([0.4,0.3].0.2).
(10.3,0.2],0.1),
([0.2,0.4],0.1)
([0.5.0.4],0.2),
([0.3,0.1],0.2),
([0.1,0.2],0.3)

Table 20 (Normalized investing capacity in a wealth administration Rl)
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[°J1 Do 25
([0-2.0.2],0.1). ([0.4.0.3],0.2), ([0.6,0.4],0.3),
A | (05,03),02), ([0.3.0.1], 0.4), ([0.2,0.3],0.1),
([0.2,0.1],0.4) ([0.1.0.2],0.2) ([0.1,0.2].0.2)
([0.6,0.2],0.4), ([0.1,0.3],0.4), ([0.7,0.2],0.4),
Ar | (10.1,0.1),0.3), ([0.2.0.1],0.2), ([0.1,0.3],0.4).
([0.2,0.1],0.2) ([0.2,0.1],0.4) ([0.2,0.1].0.2)
([0.3.0.4],0.2). ([0.4.0.2],0.2), ([0.4,0.5],0.3),
Az | (02,0.1],03), ([0.3,0.1],0.3), ([0.1,0.1],0.2),
([0.1,0.2],0.3) ([0.2.0.2],0.1) ([0.3.0.2],0.3)
([0.2,0.4],0.3), ([0.6,0.1],0.6), ([0.2,0.1],0.4),
Ay | ([0.1,02.0.0), ) ( ([0.1,0.2],0.1). ) ( ([0.3,0.4], 0.1), )

([0.4,0.1],0.3)

([0.3,0.1),0.2)

(10.3,0.2],0.1)

Table 21 (Normalized investing capacity in a wealth administration R2)

D1 |23 b3
([0.3.0.2],0.4), (10.3,0.4],0.4), ([0.6,0.4],0.1),
A | (02.02,0.1), ([0.4,0.4],0.2), ([0.2,0.3],0.2),
([0.1,0.4],0.4) ([0.2,0.4],0.2) ([0.1,0.3],0.1)
([0.3,0.5],0.2), ([0.4,0.5],0.1), ([0.8,0.5],0.2),
Ay | (0.1.01],0.2), ([0.1,0.5],0.3), ([0.1,0.3],0.1),
([0.4,0.2],0.1) ([0.3,0.1],0.2) ([0.1,0.2],0.1)
([0.6,0.4],0.5), ([0.1,0.3],0.2), ([0.2,0.1],0.3),
As | (0.1,03],02), ([0.1,0.4],0.3), ([0.4,0.2],0.3),
([0.2,0.1],0.2) ([0.3,0.1],0.3) ([0.1,0.1],0.2)
([0.3,0.5],0.2), ([0.4,0.4],0.4), ([0.3,0.3],0.5),
Ar | (03.01],03), ([0.1,0.2],0.3), ([0.2.0.1],0.2),
([0.2,0.1],0.1) ([0.1,0.2],0.1) ([0.2,0.2],0.1)

Table 22 (Normalized investing capacity in a wealth administration RB)
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by by bs
(0.2056,0.1460],0.1852), \ / (/0.2268.0.2646].0.1852), \ [ ([0.4181,0.3318],0.1821),
A ([0.1537,0.158],0.1), (/0.2646.0.1453],0.1406), (0.1,0.1569],0.1),
(0.1,0.1948],0.2505) (0.1,0.1948].0.1) ([0.1969,0.1425],0.1)
(0.2085,0.2814],0.1406), \ [ ([0.2134,0.1986].0.1792), \ [ ([0.4961,0.2042],0.1406),
Ay (0.1,0.1],0.124), (]0.1,0.1602]. 0.1613), (]0.1,0.2305],0.1792),
(0.2567.0.1],0.1) (0.1755.0.1969]. 0.1885) (0.1,0.1435],0.1)
(/0.2143,0.3].0.2353), (0.1406.0.1266]. 0.625). (0.2065,0.1950], 0.1569),
Az | (0.1625,0.1266],0.124), | | ([0.1240,0.1453],0.1569), ([0.1852,0.1], 0.1266),
(0.1,0.1969], 0.1393) (/0.1755.0.1],0.1425) (0.1393,0.1969],0.1393)
(0.1859,0.2871],0.158), (/0.3515.0.2134],0.3887), \ { ([0.2056,0.1859],0.2252),
Ar | (0.1613,0.1469],0.1613), (0.1,0.1],0.1266), (/0.158,0.1406],0.1),
(0.1885,0.1], 0.1729) (0.1392.0.1].0.1435) (/0.1393.0.1],0.435)

Table 23 (Aggregated spherical cubic fuzzy decision information matrix R3)

([0.2587,0.213],0.1856),

A ([ 0.9859,0.988],0.994),
([0.9927,0.983],0.9816),

([0.2782,0.25],0.1494),

Ay ([0.9949, 0.99],0.9896),
([0.9777,0.992],0.9929),
([0.1988, 0.246], 0.2057),
As ([ 0.9871,0.992],0.9912),

([0.9922, 0.984],0.99),

([0.2271,0.253],0.224),
Ay ([0.9888,0.991],0.9898),
([0.9856, 0.995],0.9868),

Table 24 (Aggregated SCFDWA data)
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([0.4161,0.373],0.2874),
([0.9636,0.961], 0.9883)
([0.9812,0.964], 0.9774)
([0.4865,0.321], 0.2467),
Ay ([0.9918,0.965], 0.972),
([0.972,0.976], 0.9849)

Ay

9

([0.3106, 0.344], 0.3407),
As ([0.9798,0.987],0.9792),
([0.9765,0.967],0.9781)
([0.3977,0.274],0.3784),
Ay ([0.9858,0.976],0.9818),
(

0.9743,0.989],0.9749)

Table 25 (Aggregated SCFDOWA data)

([0.4954,0.39], 0.2529),
([0.9624, 0.958], 0.9867),
([0.9817,0.964],0.975)
([0.5013,0.342],0.2631),
Ay ([0.9899, 0.959], 0.9686)
([0.9684,0.971],0.983)

9

([0.3303,0.368],0.3559),
As ([0.9777,0.985],0.9761),
([0.9738,0.964], 0.9735)
([0.3905, 0.272], 0.3587),
Ay ([0.9801,0.981],0.9828),

([0.9699, 0.99],0.9725)
Table 26 (Aggregated SCFDHWA data)
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([0.9767,0.9873],0.989),
Ay ([0.1672,0.156],0.109),
([0.121,0.1852],0.1911)
([0.9714,0.9773],0.9936),
Ay ([0.1006, 0.1407], 0.144),
([0.2101,0.13],0.1192)
([0.9853,0.9751], 0.9848),
As ([0.1602, 0.1257], 0.1321),
([0.1245,0.1783],0.1407)
([0.9881,0.9774],0.99),
Ay ([0.149, 0.1368], 0.1425),
([0.1693, 0.1006], 0.1618)

Table 27 (Aggregated SCFDWG data)

(10.9093,0.9278],0.9578),
Ay ([0.2674, 0.275],0.1525),
([0.1929, 0.2675],0.2112)
([0.8737,0.9471],0.9691),
Ay | | ([0.1275,0.2616],0.2352)
(
(
(

Y

0.2351,0.2176],0.1732)
0.9505, 0.9389], 0.9402),
[0.1999, 0.1618], 0.2029),
([0.2154, 0.2539], 0.208)
([0.9175,0.9619], 0.9257),
Ay ([0.1678,0.2178], 0.19),
([0.2253,0.1495], 0.2225)

Table 28 (Aggregated SCFDOWG data)

As




5. Application in decision-making using spherical cubic Dombi
aggregation operators 95

0.8686,0.9207],0.9675),
(0.2715,0.2851], 0.1623)

(
Ay (
([0.1902, 0.2665], 0.2221)
(
(

Y

0.8653,0.9396], 0.9648),
0.1416,0.2820], 0.2487),
([0.2493,0.2383,0.1836)
([0.9439,0.9299], 0.9345),
([0.2098,0.1745],0.2172),

Az

As

([0.2272,0.2675], 0.2287)
(10.9206, 0.9624], 0.9335),
Ay ([0.1985,0.1937], 0.1846),
([0.2435,0.1386], 0.2329)

Table 29 (Aggregated SCFDHWG data)

Step 1: To combine all spherical cubic fuzzy decision matrices normalised inde-
pendently, we utilized the following the idea of the SCFWG operator. Table 23 shows
the aggregated spherical cubic fuzzy matrix.

Step 2:

1. SCFDWA, as described in Equation [18], will evolve their efficiency separately,

as shown in Table 24.

2. SCFDOWA, as described in Equation [19], will evolve their efficiency separately,

as shown in Table 25.

3. SCFDHWA, as described in Equation [20], will evolve their efficiency separately,

as shown in Table 26.

4. SCFDWG, as described in Equation [21], will evolve their efficiency separately,

as shown in Table 27.

5. SCFDOWG, as described in Equation [22], will evolve their efficiency separately,

as shown in Table 28.

6. SCFDHWG, as described in Equation [23], will evolve their efficiency separately,

as shown in Table 29.

Step 3: Following are the score of each alternative given in Table 30.
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Ay Ag As Aq
SCFDWA operator .0564 | .0493 | .055 | .0593
SCFDOWA operator | .1257 | .1209 | .123 | .1261
SCFDHWA operator | .1357 | .1231 | .133 .1414
SCFDWG operator 29622 | 955 | .9614 | .9702
SCFDOWG operator | .8715 | .8646 | .8714 | .8740
SCFDHWG operator | .8583 | .8506 | .8525 | .8763

Table 30 (Ranking of alternatives using SCFD operators)

Step 4: Rank criteria of alternatives given in Table 31.

Ranking
Ay >A1> A3 > Ay
As> A1 > A3 > Ay

SCFDWA operator
SCFDOWA operator

SCFDHWA operator

Ay >A; > A5 > A

SCFDWG operator

Ay >A; > A5 > A

SCFDOWG operator

Ag>A; > A5 > A

SCFDHWG operator

Ay >A; > A5 > A

Table 31 (Criteria for ranking)

5.10 Comparison Analysis

We present two comparative studies that demonstrate that our suggested operators
are both accurate and appropriate at aggregating spherical cubic data.

1. Jana et al. proposed picture Dombi operators in 2019. In this work, we compare
proposed spherical cubic Dombi operators to existing Dombi operators (Table 32).
Figure 10 shows an illustration of ranking evaluation is based on spherical cubic fuzzy

Dombi operators.

Q1 (.56,.34,.10) (.90,.07,.03) (.40,.33,.19) (.09,.79,.03)
Q. (.70,.10,.09) (.10,.66,.20) (.06,.81,.12) (.72,.14,.09)
Qs (.88,.09,.03) (.08,.10,.06) (.05,.83,.09) (.65,.25,.07)
Qs+ (.80,.07,.04) (.70,.15,.11) (.03,.88,.05) (.07,.82,.05)
Qs (.85,.06,.03) (.64,.07,.22) (.06,.88,.05) (.13,.77,.09)

Table 32 ((Jana et al. 2019) Picture fuzzy matrix)
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Figure 10 (Ranking using spherical cubic fuzzy Dombi operators)

Now, using the concept of the spherical Dombi operator, choose the optimum

option as shown in Table 33.

Table 33 Alternatives are ranked using SFD operators

p sc(@) sc(@2) sc¢(Qs) s¢(Qa) sc¢(Qs) Ranking

9977 9935 9967 9975 9887 Q1> Qs> Q3> Q2> Qs
9978 9931  .9963 9971 9878 Q1> Qs> Q3> Qs> Qs
9976 9931 9962 9975 9877 Q1> Qs> Q3> Q2> Qs
9976 9932 9961  .9975 9877 Q1> Qs> Q3> Qy> Qs
9975 9933 9960  .9975 9879 Q1> Qs> Q3> Qr> Qs
9975 9933 9961 9975 9880 Q1> Qs> Q3> Qo> Qs

S O = W N

Q1 is the optimal alternative. The results are comparable to those described by
Jana et al. [92]. Jana et al. [92] propose a strategy for dealing with picture fuzzy sets,
but it fails to handle with spherical cubic fuzzy sets. As a result, the new strategy
suggested in this chapter can be used to deal with a wider range of uncertainty in deci-
sion support system. As a result, when compared to previous Dombi operators, novel
spherical cubic Dombi operators are more accurate in resolving decision problems.

2.The SFD operators were presented by Ashraf et al. [93], and in this section, we
compare the proposed and novel spherical cubic Dombi aggregating operators. Table
34 and Table 35 show the spherical Dombi results collected from Ashraf et al. [93].
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Ay (.6582,.4279,.2947) (.5742,.3611,.3398) (.6297
Ay (.7339,.4891,.2905) (.4523,.6776,.2498) (.6582,
As  (.5134,.5334,.3804) (.6844,.2763,.2739) (.6236
Ay (.6435,.3934,.2715) (.4954,.2445, .4523)

4954, .4093
3076, .4993
2667, .2731
(.6603, .2223, .4353

Table 34 ((Ashraf et al. 2020) Collective SDF information matrix)

Ar Ao As
SFDWA operator .8242  .8936 .8845
SEDOWA operator .8245 .8905 .8853
SEFDHWA operator .8653 .9757 .8734
SFDWG operator 3930  .4427 .3770
SFDOWG operator .4393 .4532 .4374
SFDHWG operator .7945 .9044 .7335

¥

.8809
.8537
8731
.3518
.3674
7163

Table 35 Ranking of alternatives through
SFD aggregation operators

The best alternative is As.

Table 36, shows the calculation of best alternative using the spherical cubic Dombi

aggregation operators.

A1 As As Aq
SCFDWA operator .0564 | .0493 | .055 | .0593
SCFDOWA operator | .1257 | .1209 | .123 | .1261
SCFDHWA operator | .1357 | .1231 | .133 1414
SCFDWG operator 29622 | 955 | .9614 | .9702
SCFDOWG operator | .8715 | .8646 | .8714 | .8740
SCFDHWG operator | .8583 | .8506 | .8525 | .8763

Table 36 Ranking of alternatives through SCFD operator

A, is the greatest option. The findings are comparable to those of Ashraf et
al. [93]. Ashraf et al. methodology is described in [93]. We start with a spherical

fuzzy set and extend it to a sphere cubic fuzzy set to acquire more precise results.

This chapter methodology is more extensive in addressing the ambiguity in decision-

making situations. As a consequence, Dombi aggregated operators under the structure



5. Application in decision-making using spherical cubic Dombi
aggregation operators 99

of spherical cubic are more consistent and productive in resolving selection problems
than existing Dombi operators.

As presented in Figure 11, the data obtained using the notion of spherical cubic
fuzzy Dombi operators produce the closest outcomes in terms of ranking of spheri-
cal Dombi operators, as well as more appropriate and precise approaches to decision

support system.

Figure 11 (Ranking using spherical Dombi operators)

5.11 Conclusion

The concept of a spherical cubic fuzzy set, which is a modified version of the spher-
ical fuzzy set, was introduced in this chapter. Some spherical cubic fuzzy operating
laws have been developed. We have a set scoring function for comparing spherical
cubic fuzzy numbers. The notion of Dombi aggregated operators with SCF framework
has been presented. The basic properties of spherical cubic fuzzy Dombi aggregated
operators are defined. For aggregation of spherical cubic fuzzy sets, we proposed
(SCFDWA), (SCFDOWA), (SCFDHWA), (SCEFDWG), (SCFDOWG), (SCFDHWG)
under the spherical cubic fuzzy information. We examined idempotency, boundary,
and monotonocity, as well as a relationship between these well-known operators. In
addition, to demonstrate the effectiveness of the proposed operators, we developed a
multi-attribute decision support system. A numeric representation was given to il-
lustrate that the specified operators have a different approach to solving the decision
support system. Finally, we compared the effective methodology to current operators

to verify its reliability and effectiveness.



Chapter 6

Application of spherical cubic
fuzzy extended TOPSIS in

decision support system

This chapter’s goal is to provide a new approach with incomplete weight information
for spherical cubic fuzzy (SCF) multi-attribute decision support system using TOPSIS
method. For this, the maximum deviation model is suggested to determine the criteria
of weight values. A multi-attribute decision support system is introduced using SCF
information, based on suggested scheme. Furthermore, to ensure that the provided
knowledge is appropriate, a numerical example is given. Finally, a systematic and

structured analysis is given for the comparison of present work with the existing work.

6.1 Multi-attribute decision support system using extended
TOPSIS

This section discusses a multi-attribute decision support system strategy based on
the Pythagorean cubic fuzzy TOPSIS algorithm with undetermined weight.

Formulation of the problem

The MCDM problems are described as a decision-making mechanism that pro-
vides the attributes with ranking information in relation to the criteria. We sug-
gest a spherical cubic fuzzy decision-making mechanism that not only describes the
data on the Z; alternatives that fulfill the Aj;, criterion, the data on the Z; al-
ternatives that remain unchanged the Aj;, criterion, and the degree where Z; fails
to meet the requirement of A;. Suppose we have an MCDM function with Z =
{Z1,Z9,...; Zy} of m alternatives. and A = {Aj, As,...,A,} be the set of crite-

100
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ria. In order to measure the efficiency of the it" alternative Z; in the j** criterion
Aj, the decision-maker must use knowledge of the fulfillment of criteria A; by al-
ternative Z;’s but of its non-fulfillment of A; and remain unchanged of A;. The
dsc“,ﬁsczj and BSCZ." which represent the membership function, neutrality and non-

membership function. Now alternative efficiency based on criteria A; is represented
oS, = (o, 1, 8, ) = (i) 30) A ] o) [ ) )
1] 1] 1]
. y 2
with the specified conditions 0 < /\?j + (5% + /Z?j <1land 0 < <sup <[di_j, dﬂ)) +

(sup ([ﬁg,ﬁ:;])ﬁ + (sup ([5— ZV)TF-D)? < 1. The decision matrix D of SCFN is

1J° 71
shown below:

Scll Sclz SCln
8021 chg Sc?n

]
I

_Scml Scmg Smn

Taking the different degrees attributes, the weight vector given in decision matrix

n

satisfied the condition w; € [0,1] and Zwl- = 1. Due to uncertainty in practical
i=1

decision making problems and inherent human thinking nature the knowledge about

the weight attribute is unknown. For simplicity, let A represent the weight information

, where the construction of A for i =# 7 shown below:
1. Weak rank criteria {w; > wj};
2. Strictly ranking criteria {wi —wj > (5% > 0)} ;

3. Ranking criteria with scaling {wi > Xiwj} .\ €0,1];

6.2 Maximum deviation methodology for optimal weight

In multi-criteria decision making process, optimal weight plays a vital role. Motivated
by the above discussion in this section, we present a technique of maximizing deviation
to define the criteria weights to illustrate MCDM problem with numerical details, a
higher weight must be allocated to the criteria with a higher deviation value compared
to the alternatives, while the criteria with a small distance value compared to the
alternatives would be as if in order to determine the optimal weight parameters, as a
result, we design an optimization method using the maximizing deviation approach.

For A; € A criteria , the distance of Z;’s alternatives can be described as:
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Where

(5.5 =8 | 0) - () ()~ ()
60)" - )+ - ()

)
]
=
50
=
]
=
®
A
—y
~
S
&
I
NgE

o
<
€

m m

) +
S5 | ) - )] ) - )]
O (52)

i=12z=1

j=1,2,3,....n.

l~)j (w) then denotes the distance for the parameters A; € A, from the alternatives.
The choice of the weight vector w, which maximizes the deviation, is based on the
proposed model to describe a non-linear model:

First Model:

nom m

ma:v[)j (w) = ZZZ%J (Scij, Sczj) s.that iwj =1.
j=1

j=li=1z=1
We have this model to clarify,

Lw.0) =Y 3" wid (Se, 8, ) +5 | Dw?-1] =0.

j=li=12=1 j=1
which shows the Lagrange function of the problem of restricted optimization of
first model where p is a real number, denoting the variable of Lagrange multiplier.

Now L's partial derivatives are determined as:

OL(w,0)  ~~x— 5 o
B Zijd (Scij, Sczj) + Q;wj —1=0 (24)

i=12z=1
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aL(“%Q)_} - 2 _
—%a "3 ;wj 1] =0 (25)

We get,

| =

wj = (iiwjd (SCW Sczj)> (26)

i=12z=1

Using the above Equations, we get

no o m m

o= |33 (d(50,.5.,)) (21)

j=1li=12z=1

n om m - 2
Where , [> > > <d (Scij,sczj)) means the sum of deviation of all the alterna-
j=li=1z=1

tives with respect to all the criteria.

From Equations 26 and 27, we get

(,Uj = i (28)

There are, however, real cases where the weight vector information is not totally un-
known, but slightly modified. For these examples, based on the following constrained
optimization was constructed on the known weight information set. The weight value
wj is also a set of restricted conditions where A is the criteria should be satisfied.
The second model given in Equation 29 is a linear programming model which can be
implemented using the software LINGO 11.0.

By normalization w;j, we make sum into unity, and we get
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3
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I
]
NE

n
where ) w; = 1.

Jj=1

6.3 Proposed technique

In the spherical cubic fuzzy aggregation operator process [108], too much information

is lost due to the difficulty of the spherical cubic fuzzy aggregating process, which

means a lack of consistency in the final results.

We have therefore expanded the

TOPSIS approach to take into account spherical cubic information in order to address

this limitation and have used the distance measurements of SCFNs to obtain the final

ranking of the alternatives. TOPSIS is a strategy for solving decision support problems

that selects the alternative with the smallest distance from the positive ideal solution

(PIS). The greatest distance from the negative ideal solution (NIS) and is utilized

generally in practical situations to solve ranking problems. Under the notation for

SCF, the spherical cubic fuzzy positive ideal solution (SCFPIS) is expressed by pT,

and it is possible to write the spherical negative ideal solution with (SCFNIS) is

expressed by p~ :
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([nr, 2], 00),([br, 0], ) and S, =
>) then

Let two SCFSs are S, = (([ay,a{ ],
5o

)
((lag,ag], Ao}, ([ng, 73], 02) ([by, 03] . i

], a3y max {5 At g 7]}
i 557}, > )

min {)\1, /\2} min {(51, 52} min {1, fi2}

V, min {[ay,af] . [ay,a3]},min {[a;, 7], [y, 73]},
! _<min{[l31,6ﬂ,[62ﬁ+ A, ) > (31)

b2]} , Imax {)\1,)\2} ,maX{Sl,SQ} ,maX{[Ll,[LQ}

The separated distance measure dt and d~ for each alternative of (SCFPIS)
and (SCFNIS) p~ formulated as:

n

d* = wid (80,055

J=1

Jj=1

Relative coefficient of closeness of Z; to (SCFPIS) pt

i =

. 34
dt +d- (34
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Where C; € [0,1]. Alternative Z; is clearly similar to the (SCFPIS) p* and
further from the (SCFNI S) p~as C; approaches 1. As a result, we determine the
ranking orders of all individuals depending on the closeness correlation C; and select
the best option from a collection of viable options. Based on the preceding methods,
in which the attribute weighting information is inadequate or undetermined, and the
attribute values take the form of SCFNs, we will create an appropriate strategy to
solving multi-criteria decision support problems.

Following are steps of our proposed technique.

Step 1: First of all we will construct the decision matrices D = <Scw> =

mXn
(< [d;j,d;ﬂ ,Xij> ,<[ﬁ;,ﬁﬂ ,5ij> ,<[5;,5ﬂ ,[Lij>)mxnare SCFNs, for the alterna-
tive Z; and the criteria A;.

Step2: To combine all the spherical cubic fuzzy matrices, use the SCFWG oper-
ator.

Step 3: If the knowledge of the criteria weights is absolutely unknown, the first
model can be used to obtain them, if the knowledge of the criteria weights is not
completely known but partially known, then the criteria weights can be determined
using the second model.

Step 4: Using the Equations (17) and (18), we will find (SCFPIS) p* and
(SCFNIS) p~.

Step 5: Using the Equations (20) and (21), we will find d* and d—.

Step 6: Rank all the alternatives Z; and select the best one.

6.4 Illustrative description

To illustrate the approach proposed in this chapter, we will present a mathematical
formulation to represent the possible evaluation of the marketing of emerging technol-
ogy using spherical cubic fuzzy information in this section. There’s a panel with four
possible choices Z; (i = 1,2,3,4) new technology companies to select. To assess the
three potential emerging technology enterprises, the experts select three attributes:(1)
Aj is technical progress; (2) As is growing market and market risk; (3) As is industrial
capacity (4) A4 is the human economic and financial conditions. The weight vector is
(.25,.30,.45)" and the spherical cubic fuzzy decision matrices are provided in Table
37, 38 and 39 should evaluate the four potential emerging technology companies using

the spherical cubic fuzzy information.
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Table 37 (1st spherical cubic fuzzy decision making)

Table 38 (2nd spherical cubic fuzzy decision making)
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Al 42 Ag ‘44
(06.071,06), \ [ (0403],04),\ [ ([05:07,08), \ [ (04.03],05),
4| (02,03,04, || (020801, | | 020008, || (020503,
02,04,04), ) \ (03.04,03), ) \ (040504, ) \ (03.05,02),
(04,071,010, \ { (05,06,02), \ [ (05,08,0), [ (04,05],07),
(04,05,08), ) \ (02,03,06), ) \ (0.4.05],03), ) \ (03,0.4,01),
(03,04,06), ) \ (03,0.4,03), ) \ (03,05],03), ) \ (02,0.4,08),
7o | (02,03,04), || (05,08,04), | | (020401, || (0205,08),
Table 39 (3rd spherical cubic fuzzy decision making)
M I As A
([0.4874.0.5918].0.5313), /" ([0.3249.0.4676).0.4000). \/ (0.5531.0.72861.0.5681). \{ ([0.4277.0.5281].0.5681).
Z (10.2000.0.30007,0.4277), {[0.2633,0.52811,0.1390), ([0.2781.0.1516],0.4315), ([0.2633,0.42901.0.2158),
([0.3872.0.5261],0.4752), ([0.3776,0.4752],0.3000), (10.3545.0.4530],0.4752), ([0.2744,0.45301.0.2000),
(10.3669,0.5918],0.1793), ([0.3085.0.43151,0.2781), ([0.4676.0.6284].0.6684), ([0.3249,0.42901,0.3905),
Z ([0.5000.0.2912],0.2000), {[0.2633,0.4676],0.3249), ([0.5757.0.3497],0.2000), ([0.4676,0.26331.0.1516),
([0.4752,0.5761,0.7320), J\ ([0.3294.0.42751,0.5373), J\ ([0.4337.0.5337).0.4257). /\ (0.3000,0.4000].0.1863),
(10.6000,0.7000],0.3669), ([0.3249,0.4290],0.5681), ([0.5313.0.70007],0.6684), ([0.3249,0.42901,0.2912),
Zy|| (0.2000,0.40007,0.2158), || (0.2781,0.12317,0.3085), || ([0.2000.0.1516],0.4517), || ([0.2624.0.1621],0.4000},
([0.3000,0. 40001, 0..6000), ([0.3759,0.41,0.3000), ([0.3759.0.53371,0.3000), )\ ([0.2351.0.4000],0.5265).
([0.6000.0.7000],0.6000), )/ ([0.4676.0.60001,0.3669), \/ ([0.56810.70007.0.6284). '\ ([0.3789.0.4874],0.6684),
Ze|| (0.2000,0.4026],0.3249), || ¢[0.3085,0.4315,0.4925), || ([0.1625.0.4517),0.1231}, || ([0.2259.0.5281],0.4315),
(10.3000,0.40007,0.5000), /\ ([0.2351,0.33417,0.4734), J\ ([0.3341,0.47521.0.3000), /\ (0.3294,0.4257],0.1000),

Table 40 (Aggregative spherical fuzzy decision making)

Suppose that the data about the attribute weighting is entirely unknown. Using

the procedures below, we may get the best option (s).
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Step 1: In Table 37, 38 and 39 the decision makers have decision.

Step 2: To combine all the spherical cubic fuzzy matrices, use the SCFWG
operator.

Step 3: We obtain the weight vector by using Equation 29 with the matrix in
Table 40.

& = (.2110, .2884, .2670,.2336)

Step 4: Now, PIS p™ and NIS p~ are given by equation (18) and equation (19):

([0.6000, 0.7000] , 0.6000) , ([0.4676,0.6000] , 0.3669) ,
([0.2000,0.4026] ,0.3249) , |, [ ([0.3085,0.4315],0.4925), |,

ot — ([0.3000, 0.4000] , 0.5000) , ([0.2351,0.3341] , 0.4734) ,

([0.5681,0.7000] , 0.6284) , ([0.4277,0.5281] , 0.5681) ,
([0.1625,0.4517] ,0.1231), |, | ([0.2633,0.4290],0.2158) )

([0.3341,0.4752] , 0.3000) , ([0.2744,0.4530] , 0.2000) ,

[/ ([0.3669,0.5918] ,0.1793) , ([0.3085,0.4315] , 0.2781) ,
([0.5000,0.2912] ,0.2000) , |, | ([0.2633,0.4676],0.3249) , ) ,

o ([0.4752,0.5761] , 0.7320) , ([0.3294, 0.4275] , 0.5373) ,

b= ([0.4676,0.6284] , 0.6684) , ([0.3249,0.4290] , 0.2912) ,
([0.5757,0.3497] ,0.2000), |, | ([0.2624,0.1621],0.4000), )

([0.4337,0.5337] ,0.4257) , ([0.2351,0.4000] , 0.5265) ,

Step 5: For calculating gl;r and d; use Equation 32 and Equation 33.
d; = .0818, d3 = .0987, d5 = .0925, d; = .1108

d; =.1273,d;, = .0799, d5 = .1074, d, = .1326

Step 6: Calculate the C; by using Equation 34.

C1 = .609, Gy = .4473, Q3 = .5372, C4 = .5448

Step 7: Ranking all the alternatives Z; (i = 1,2, 3,4) according to C;

21> Zy > Ly > Lo,

6.5 Comparison

The method proposed is compared and shown to be more general while achieving the
same results as existing technique. We convert the more general SCFN to IVSEFN to
do this. In order to achieve this non-membership values, spherical fuzzy numbers are
omitted (SFNs). Examples of this are given in the following subsections.
Comparison with interval valued spherical fuzzy sets
SCFNs can be changed to IVSFNs by deleting the non-membership . The interval

valued of spherical fuzzy data is shown in Table 41.
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By using IVSF TOPSIS methodology, PIS p* and NIS p~ for IVSF are in Table

41 as follows:

Ay

Az

Az

Ay

[0.4874,0.5918] .
Zy || 10.2000,0.3000],
[0.3872,0.5261]
[0.3669. 0.5918] .
Zy | | 10.5000,0.2912],
[0.4752,0.5761]
[0.6000, 0.7000] .
Zz | | [0.2000,0.4000],

[0.3000. 0.4000]
[0.6000, 0.7000] .
Zy | | 10.2000,0.4026],

[0.3000. 0.4000]

[0.3249, 0.4676] .
[0.2633,0.5281] .
[0.3776,0.4752]
[0.3085, 0.4315)] .
[0.2633,0.4676] .
[0.3204, 0.4275]
[0.3249.0.4290] .
[0.2781,0.1231],
[0.3759,0.4752]
[0.4676. 0.6000) .
[0.3085, 0.4315)] .
[0.2351,0.3341]

[0.5531, 0.7286]
[0.2781,0.1516]

[0.3545, 0.4530]

[0.4676. 0.6234]
[0.5757,0.3497]

[0.4337,0.5337]

[0.5313,0.7000] .
[0.2000, 0.1516]

[0.3759, 0.5337]
[0.5681, 0.7000]
[0.1625,0.4517]

[0.3341,0.4752]

[0.4277,0.5281],
[0.2633, 0.4290]
[0.2744, 0.4530]
[0.3249, 0.4290]
[0.4676, 0.2633]
[0.3000, 0.4000]
[0.3249, 0.4290]
[0.2624,0.1621]
[0.2351, 0.4000]
[0.3708, 0.4874]
[0.2259,0.5281],
[0.3294, 0.4257]

Table 41 (IVSFD matrix)

0.6000, 0.7000] ,
[0.2000, 0.4026] ,
0.3000, 0.4000]
0.5681,0.7000] ,
0.1625,0.4517] ,
0.3341,0.4752]
0.3669,0.5918] ,
[0.5000,0.2912] ,
[0.4752, 0.5761]
0.4676,0.6284] ,
0.5757,0.3497] ,
[0.4337,0.5337]

)
)
)

9

\

0.4676,0.6000] ,
03085, 0.4315] ,
0.2351,0.3341]

[0.4277,0.5281] )

9

0.2633,0.4290] ,
0.2744, 0.4530]
0.3085, 0.4315] ,
0.2633, 0.4676] ,
[0.3294, 0.4275]
[0.3249, 0.4290] ,
0.2624,0.1621],

0.2351, 0.4000]

The distance measures d; and (jj IVSF p*™ and the IVSF p~ are as follows:
di =.0411, 43 = .0703, d5 = .0489, dJ = .0633
dy =.0693, d; = .0464, d; = .0666, d, = .0649
Step 6: Calculate the C; by using Equation (22):
C1 = .6277, Co = .3974, C3 = .5768, Q4 = .5065
Step 7: Ranking all the alternatives Z; (i = 1,2,3,4) according to C;

Z1 > Lg > Ly > Lo,



6. Application of spherical cubic fuzzy extended TOPSIS in decision
support system 111

Z1 is best option.

This paper applied the TOPSIS approach to spherical cubic fuzzy sets. This ap-
proach has also been shown to provide more general knowledge than previous tech-
niques. If several contradictory and/or unknown variables characterize the information
needed for decision-making, this approach is able to decide the best decision and han-
dle some uncertainty which other methods cannot, thus enabling decision-makers to

take more informed decisions.

Al A2 AS A4

71 | (5313, .4277,
Zy | (.1793,.2000,
Zs | (.3669,.2158,
Z4 | (.6000,.3249,

A4752) (.4000,.139,.3000) (.5681,.4315,.4752) (.5681,.2158,.2000)

.7320) (.2781,.3249,.5373) (.6684,.2000,.4257) (.3905,.1516,.1863)
.6000) (.5681,.3085,.3000) (.6684,.4517,.3000) (.2912,.4000,.5265)
.5000) (.3669,.4925,.4734) (.6284,.1231,.3000) (.6684,.4315,.1000)

Table 42 (Selection through spherical fuzzy aggregation)

Spherical fuzzy comparative analysis
SEFNs are special types of SCFNs in which decision-makers only determine the
roles of membership function, neutral function and non-membership function. Table 42
demonstrates the membership function, neutral function and non-membership function
of a SCEFN converted to SFN by removing the interval portion of SCFN.
Based on Table 42, Spherical fuzzy TOPSIS is utilizied to calculate SF (PIS p™)
and SF (PIS p7) as:
(0.6000, 0.3249, 0.5000) , (0.3669, 0.4925,0.4734) ,
(0.6284,0.1231,0.3000) , (0.5681, 0.2158, 0.2000) , }
o { (0.1793,0.2000, 0.7320) , (0.2781, 0.3249, 0.5373) , }
b= (0.6684,0.2000, 0.4257) , (0.2912, 0.4000, 0.5265) ,
The distance measures d; and (j;L IVSF p' and the IVSF p~ are as follows:
di = .3657, 45 = .0284, d = .0532, dJ = .0426
d; =.0545, d;, = .0336, d5 = .0425, d; = .0659
Step 6: Calculate the C; by using equation (22):
C1 =.1298, Gy = .5413, C3 = .4437, C4 = .6075
Step 7: Ranking all the alternatives Z; (i = 1,2,3,4) according to C;

pt =

Z4>ZQ>Z3>Zl.

Z4 is best option.
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Figure 12 (SFS comparative study with SCFS TOPSIS technique)

The comparison analysis approach varies from the previous method in this paper
in the order of the list of decisions. In particular, Z; and Z3 alternatives switched
positions. Since SFN does not contain as much details as just membership and non-
membership that can result in loss of membership data, which resulted in a different
result. In this case, despite variations in rank, the best choice in all the studied
cases was the same and ranking in 1 out of 3 approaches is different. The graphically
representation in Figure 12, shows the comparison analysis of extended Topsis SCFS
with IVSFS and SFS.

We have the following benefits from the above analysis:

1: SCFNs can convey uncertainty in the MCDM more accurately than IVSFNs.
In other words, SCFNs are the IVSFN extension. We should, therefore, know that the
SCFNs have a greater prospect of application than the IVSFNs.

2: The approach proposed combines decision-maker expectations and intuition,
decreasing the possibility of MCDM problems.

3: The method presented in this document is a modern extension of an existing

technique that can solve a greater variety of MCDM problems than before TOPSIS.

6.6 Conclusion

As many realistic MCGDM problems arise in a dynamic setting and frequently conform
to incomplete data and ambiguity. The SCFS is a very powerful method to tackle the
fuzziness of the experts’ decisions on alternative parameters. We first introduced a

process in this paper
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The maximization deviation method was named to evaluate the optimal relative
criteria weight based on the spherical cubic fuzzy environment. An important thing
the benefit of the proposed approach is its ability to minimize the effect of the experts’
subjectivity and to remain adequate knowledge on the original decision at the same
time. Then we suggested an expanded TOPSIS-based approach to solving the spherical
cubic fuzzy knowledge MCGDM problems.

The method is based on the relative similarity of each alternative for determining
the ranking order of all alternatives, which avoids the loss of too much information in
the process of aggregating information. Finally, an illustration shows the efficiency and
applicability of the proposed process. Our solution tends to be straightforward and to
have less knowledge loss and can easily be extended to other management decisions in
a hesitant spherical environment.

In future, under spherical cubic fuzzy, we will implement the principle of TODIM
methods. We will also describe the spherical cubic fuzzy Linguistic sets and proposes
the TOPSIS and TODIM MCGDM-based methods in spherical cubic fuzzy linguistic

environment.
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