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Abstract 

Flow behavior of several complex fluids is characterized by viscosity dependency on the rate of 

deformation. The viscosity dependency is the basic criteria of the non-Newtonian fluids rather 

than Newtonian fluids. The non-Newtonian (rate type) fluids with elastic and viscous forces 

exhibits the phenomena, which are known as relaxation and creep. The flow of viscoelastic 

materials in the nature has the application in polymers process, paints manufacturing, chemical 

and biological liquid production. The researchers developed several constitutive models to 

predict the rheological properties of non-Newtonian fluids model. The non-Newtonian fluid 

models under discussion in this study are consisting of Maxwell, Burger’s, Oldroyd-B, and 

Casson fluid models. These models deliberate the relaxation and retardation aspect of fluids 

consequently. The main contribution of this thesis is to present the mathematical formulation of 

steady and unsteady, 2D and 3D, incompressible boundary layer flow of non-Newtonian fluid 

models with microorganisms over a stretchable surface. Further, the heat energy and mass 

transport in non-Newtonian fluid with various effects are examined in this thesis. The modelled 

partial differential equations of the flow problem are transformed into system of coupled 

ordinary differential equations by using similarity transformation. The whole computational 

work is carried out with the help of well-known numerical approaches built-in MATLAB solver 

(Bvp4c) and Richardson extrapolation (Bvp traprich) built-in MAPLE. A meaningful physical 

interpretation in the form of computational analysis is observed to characterize the behavior of 

velocity, temperature, concentration, and microorganism density of non-Newtonian fluid. It is 

interesting to observe that increment in the stress relaxation phenomenon, the fluid velocity 

declines, while fluid velocity is improved in the case of retardation phenomenon. Further, it is 

noted that higher trend of thermal and mass relaxation time (which are the results of Cattaneo-

Christov theory), decreases the energy and mass transport in the fluid over a stretching surface. 

The comparison tables are presented for the validation of results.  
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Chapter 01  

Introduction to fundamentals of the fluid Mechanics  

1.1. Introduction 

Non-Newtonian fluid is one whose behavior deviates from that of Newtonian fluid (Newtonian is 

one, which relationship between shear stress and shear strain is linear with constant of 

proportionality normally called viscosity). The viscosity of non-Newtonian fluids depends upon 

share rate. The non–Newtonian fluids which used in the daily life are included the toothpaste, 

paper pulp, ketchup, yogurt, ice, certain oils, drilling muds, shampoos, paints, blood, starch, 

honey and many more. Moreover, all the chemical products, food stuffs, biological products are 

considered as a non–Newtonian fluids. Three main categories of non-Newtonian fluids are 

differential type, integral type, and rate type model. In the general flow conditions, the rate type 

fluid models exhibit the viscoelastic flow behavior. The viscoelastic fluids are those fluids which 

exhibit the viscous as well as elastic effect. These fluids are very important due to well-known 

applications such as, polymers processing, steel fiber coating, rubber, glasses, chemical 

equipment processing, metals, etc. In literature, the miner consideration has been acknowledged 

to the rate type (viscoelastic) fluid. The non–Newtonian fluid flow mechanism is analyzed by 

highly nonlinear coupled equations, in which closed form solutions are not possible. The non–

Newtonian fluid models cannot be described by the Newtonian constitutive relation. Therefore, 

researchers have established several constitutive models to predict the various rheological 

properties of non-Newtonian fluid model, such as Maxwell, Burger’s, Oldroyd–B, and Casson 

fluid. The Maxwell fluid model is the rate type model which described only the relaxation time, 
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while the Oldroyd–B and Burgers fluid models have measurable both relaxation and retardation 

time. The Casson fluid model is one of the differential type model, which exhibits the yield 

stress. The starting studies about the rate type (Maxwell and Burgers) fluid model was given by 

Maxwell [1] and Burgers [2]. The Casson fluid model was initially reported by Casson [3] to 

predict the flow behavior of oil suspension. Eldabe et al. [4] conducted the theoretical analysis of 

heat transfer of Casson fluid flow between two rotating cylinders. The Oldroyd-B fluid via 

constantly accelerating plate for one dimensional flow was carried out by Vieru et al. [5]. 

Fetecau et al. [6] established the Fourier transforms to study the unsteady flow of Oldroyd-B 

fluid over a constantly accelerating plate. Zheng et al. [7] deliberated analytically the generalized 

Maxwell fluid by mean of constantly and oscillatory accelerating plate. Nadeem et al. [8] 

discussed the features of MHD flow of Casson fluid induced by an exponentially stretching / 

shrinking sheet. Numerical investigation of Oldroyd-B fluid flow with transverse magnetic field 

through an exponentially stretching surface was evaluated by Nadeem et al. [9]. Ramesh and 

Gireesha [10] considered convective boundary conditions to study the boundary layer flow of a 

Maxwell nanofluid across a stretching sheet. Mukopadhyay [11] analyzed the Casson fluid flow 

with diffusion of chemically reactive species through a stretching surface. Ramzan et al. [12] 

computed the 3D flow of Oldroyd-B fluid with the effect of Newtonian heating on a stretching 

sheet. Khan et al. [13] evaluated the MHD stagnation point flow of Burgers fluid through a 

rotating disk along uniform suction / injection. Khan and Khan [14] used a stretching sheet, to 

explore the boundary layer flow of Burgers fluid along the heat generation or absorption. 

Sandeep and Sulochana [15] reported the flow analysis of Maxwell, Jeffrey, and Oldroyd-B 

nanofluids past a stretching sheet with the effects of thermal radiation, magnetic field, and non-

uniform heat source / sink. Ramesh et al. [16] proposed the three-dimensional Maxwell fluid 
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flow across a stretching sheet along thermal radiation and suspended nanoparticles. Khan et al. 

[17] inspected the MHD stagnation point flow of a Casson fluid with homogeneous–

heterogeneous reaction by a stretching surface. Safdar et al. [18] scrutinized the transient 

rotational flow of a generalized Burgers fluid across an infinite circular pipe. Waqas et al. [19] 

deliberated the mixed convective Burgers fluid flow with variable thermal conductivity across a 

moving surface. Farooq et al. [20] inspected the MHD Maxwell fluid flow along nanomaterials 

induced by an exponentially stretching sheet. Ahmed et al. [21] observed the Maxwell fluid flow 

by using Buongiorno’s nanofluid model and stagnation point effect through a porous rotating 

disk. Tiwana et al. [22] scrutinized the MHD convective flow of Oldroyd-B fluid with wall 

temperature and velocity through an infinite vertical plate. Irfan et al. [23] evaluated the 

Oldroyd-B fluid with chemical reactions by stretched cylinder. Theoretical investigation of 

mixed convective MHD flow of chemically reactive Burger’s fluid with heat source through a 

stretching sheet was carried out by Nirmala and Kumari [24]. The influence of convective 

boundary condition in the Casson fluid flow across an exponentially stretching curved surface 

was evaluated by Kumar et al. [25]. Shankar et al. [26] inspected the MHD flow of Casson fluid 

using nonporous medium and Cattaneo-Christov theory through a stretching sheet.  

The mechanism of transportation of heat and mass are very important in many physical 

circumstances. Heat transfer mechanism arises by the temperature difference from one system to 

another, while mass transfer mechanism take place by the net movement of particle / molecules 

from one place to another or due to mass gradient. Such phenomena have extensive applications 

in the engineering and industrials prospective. The heat transfer mechanism is used in the power 

engineering, chemical engineering, nuclear plants, refrigerators, and petroleum production. The 

mass transport is occurred in the evaporation of water, the diffusion of chemical impurity in the 
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oceans and rivers, separation of chemical in refinement procedure, etc. Furthermore, the heat and 

mass transfer are used in food industries and control the pollution in the water. The conventional 

Fourier’s [27] and Fick’s [28] law was endorsed in the beginning to analysis the heat and mass 

transfer, respectively. Later on, the researchers realized that there are some drawbacks of these 

conventional laws, because they presented the parabolic types of equations. Therefore, the 

Cattaneo [29] modified these conventional laws with the addition of time derivative factor, after 

a while the Christov [30] also modified these laws with the replacement of time derivative with 

Oldroyd–B upper convective derivative. Han et al. [31] investigated a comparison between 

Fourier and Cattaneo-Christov heat flux model to the thermal analysis on the Maxwell fluid by 

the stretched boundary layer flow. Sandeep et al. [32] illustrated the convective transfer of heat 

and mass of non-Newtonian nanofluid through a permeable stretching sheet. Khan [33] 

examined the heat and mass transfer of a Careau nanofluid flow across a non-linear stretching 

sheet. The Maxwell nanomaterial fluid flow along Cattaneo-Christov heat flux model was 

inspected by Sui et al. [34]. Nadeem et al. [35] considered an exponentially stretching surface to 

investigate the flow and heat transfer of Maxwell fluid with thermal stratification and Cattaneo-

Christov theory. Hsiao [36] analyzed the forced convection flow and transport of heat on a 

Maxwell fluid along the viscous dissipation. Zhang et al. [37] considered a stretching sheet to 

analyze the Oldyrod-B fluid with double diffusion theory. The heat and mass transfer of 

chemically reactive Maxwell fluid flow with slip conditions past a stretching sheet was inspected 

by Khan et al. [38]. Sajid et al. [39] evaluated the flow and transfer of heat on non–Newtonian 

fluid with non–linear thermal radiation through a stretchable surface. Khan et al. [40] 

investigated the heat transfer of non-linear mixed convective slip flow of Walter-B nanofluid 

with gyrotactic microorganism induced by a non–linear stretching surface.  
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In recent eras, many researchers have keenly to study the importance of nanofluids. The 

nanofluids are formed by the mixture of nanoparticles in the convectional fluids. The heat 

transfer rate has been improved with the addition of nanoparticles in the base fluid. Improvement 

in the heat transfer is very significant in these days, because world is facing lot of energy crises. 

To overcome these crises we need more heat, therefore scientists moved towards the study of 

nanofluids. Choi [41] first time presented the term of nanofluids. The application of convective 

boundary layer flow of a nanofluid was examined by Buongiorno [42]. The detailed 

experimental and theoretical examination of the thermo-physical properties of nanofluids is 

examined by Khanafer and Vafai [43]. Uddin et al. [44] considered the vertical smooth surface to 

discuss the free convective boundary flow of nanofluids influenced by Newtonian heating 

boundary condition and magnetic effect. Rahman et al. [45] studied the second order slip flow of 

a nanofluid by Buongiorno’s model over an exponentially stretching / shrinking surface. Hayat et 

al. [46] discussed the rotating flow of Maxwell nanofluid towards an exponentially stretching 

sheet. Shah et al. [47] considered a nonlinear stretching surface to observe the radiative MHD 

flow of Casson nanofluid with activation energy. Some representative analysis in the direction of 

nanofluids is presented in the Refs. [48-50].  

Magentohydrodymics fluid flow is also very important, because the procedure of purification of 

molten metals from non-metallic inclusion, the magnetic field is used. Moreover, manufacturing 

process and industrial application, such as metallurgical procedures and petroleum production 

also encounter Magentohydrodymics. The electrically conducting fluids are used in cancer 

treatment therapy, MRI, heat exchanger process, manufacture of power generator, copper 

thinning wire, and many others. The most important aspect of the magnetic field has to control 

the rate of cooling to attain the anticipated worth of industrial products. The motion of non–
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Newtonian fluid influence of the magnetic field was first time premeditated by Sarpkaya [51]. 

Later on, the study related to MHD non–Newtonian fluid was presented by Djukic [52]. Dhanai 

et al. [53] addressed the multiple solutions of MHD flow and heat transfer of Sisko nanofluid 

with convective boundary conditions. The MHD flow of Jeffrey fluid with the influence of Hall's 

current on a non-uniform rectangular duct was examined by Ellahi et al. [54]. The effect of MHD 

stagnation point flow of a Casson nanofluid along slip velocity and thermal radiation through a 

non-linear stretching surface was deliberated by Besthapu et al. [55]. Ahmed et al. [56] analyzed 

the transport of heat and mass of transient MHD flow of Maxwell nanofluid through a stretching 

cylinder with nonlinear thermal radiation. 

The boundary layer flow which produced by the stretching surfaces have widespread 

applications in the industrial and engineering field. These applications contained the hot rolling 

and glass blowing, artificial fibers spinning, paper production, production of sheeting materials, 

sewer pipes, continuous casting, drawing of plastic films, and many others. Additionally, to the 

manufacturing of molten polymers, they play a vital role in polymers industries. The stretching 

sheet velocity is linearly proportional to the distance from the origin, but it is not necessarily that 

the plastic sheet should be linear, it is some time nonlinear or exponential. Crane [57] discussed 

the fluid flow that produced by stretching sheet. The heat and mass transfer of viscous fluid flow 

influenced with the suction and blowing over a stretchable surface was carried out by Gupta and 

Gupta [58]. Chakrabarti and Gupta [59] studied the hydromagnetic flow and heat transfer of 

viscous fluid over a stretching sheet. Magyari and Keller [60] explored the heat and mass transfer 

of a boundary layer flow by an exponentially continuous stretching surface. Paullet and 

Weidman [61] evaluated the behavior fluid flow in the neighborhood of a stagnation point 

through a stretching surface. Wang [62] observed the viscous fluid flow by a stretching surface 
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by the consequence of slip and suction. Rosca and Pop [63] revealed the unsteady flow of 

viscous fluid along the mass suction through a stretching/ shrinking curved surface. The heat 

transfer of unsteady boundary layer flow of a Maxwell fluid with convective conditions on the 

surface through a permeable shrinking surface was examined by Mondal et al. [64]. Ali et al. 

[65] analyzed MHD tangent hyperbolic nanofluid flow with activation energy across a faster / 

slower stretching wedge surface. The MHD flow of rotating Maxwell nanofluid with Cattaneo-

Christov theory and activation energy over a stretching surface is presented by Ali et al. [66]. 

The phenomenon of stratification is occurred due to the variation of temperature and 

concentration or due to different densities of the fluid. The stratification effect plays an important 

role to controlling the temperature difference between oxygen and hydrogen in the water to 

prevents the water becomes anoxic by the action of biological processes, which is harmful for the 

various living species. The double stratification phenomenon occurs when the heat and mass 

transfer produce together. The stratification flows take place in the rivers, lakes, oceans, ground 

water reservoirs, etc. The efficiencies of energy can be improved due to the better stratification. 

Chen and Eichhorn [67] first time study the thermally stratified fluid over a vertical surface. 

Yoon and Warhaft [68] analyzed the progression of grid turbulence under the thermal 

stratification conditions. Angirasa and Srinivasan [69] examined numerically, the transport of 

heat and mass of natural convection flow towards a vertical sheet affected by buoyancy forces 

and thermally stratified medium. Moorthy and Senthilvadivu [70] premeditated the influence of 

thermal stratification with variable viscosity on the free convective flow of non-Newtonian 

power-law fluid over a vertical plate. Rosmila et al. [71] explored the MHD natural convective 

flow of viscous nanofluid with thermal stratification towards a linearly porous stretching surface. 

The boundary layer flow of nanofluid influenced by stratification across a vertical plate was 
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carried out by Ibrahim and Makind [72]. The boundary layer flow and heat transfer of a 

ferromagnetic fluid along the thermal stratification condition on a stretching surface is 

investigated by Muhammad et al. [73]. Sandeep and Reddy [74] premeditated the Oldroyd-B 

fluid with double stratification across the melting surface. The Darcy-Forchheimer flow of a 

Maxwell nanofluid with double stratification across a stretching surface was carried out by 

Lakshmi et al. [75]. Tlili et al. [76] inspected the Maxwell nanofluid flow with double 

stratification over a stretching sheet.  

The bio-convection is macroscopic phenomenon of convection, which occurred by the density 

gradient of collective up swimming motile microorganism. The microorganisms which are 

swimming to the upper surface of fluid, where the density of fluid lesser than to the base fluid. 

The microorganisms live in approximately every habitat from the poles of the equator, geysers, 

deep seas, deserts, and the rocks. The bio-convection plays a vital role in the area of geophysical 

and rehabilitation phenomena. The termed gyrotaxis microorganism is introduced first time by 

Kessler [77-78]. The procedure of upswing of motile microorganism was firstly studied by 

Kuznetsov [79-80]. Further, the combination of microorganisms with nanoparticles is deliberated 

by Geng and Kuznetsov [81-82]. Nadeem et al. [83] elaborated the forced bio-convection flow of 

micropolar nanofluid towards an exponentially stretching surface. Rashad and Nabwey [84] 

considered convective boundary conditions to discuss the mixed bio-convection flow of 

nanofluid through a circular cylinder. Khan et al. [85] investigated the nonlinear mixed 

convective slip flow of Walter-B nanofluid induced by a stretching surface with gyrotactic 

microorganism. 
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1.2. Basic Governing Equations  

The basics governing equations of the thesis is presented in this section. The continuity equation 

is represented in the vector form as,  

𝜕𝜌

𝜕𝑡
+ 𝛁 ∙ (𝜌𝐕) = 0. (1.1) 

Where 𝐕 and 𝜌 is the velocity and density of the fluid, respectively. For incompressible fluid, the 

equation (1.1) is stated as, 

𝛁 ∙ 𝐕 = 0. (1.2) 

The law of conservation of momentum is stated as follows,  

𝜌𝑎𝑖 = −𝛁𝑝 + div𝑺 + 𝜌𝑩. (1.3) 

(1 + 𝜆1
𝐷

𝐷𝑡
+ 𝜆2

𝐷2

𝐷𝑡2
) 𝑺 = 𝜇 (1 + 𝜆3

𝐷

𝐷𝑡
)𝐴1. (1.4) 

Here, 𝒂𝒊 is the acceleration, 𝑩 is the body force, 𝑺 is the extra stress tensor, 𝑝 is the pressure, and 

𝐴1 = 𝛁𝐕 + (𝛁𝐕)
𝒕 is the first Rivlin-Ericksen tensor, 𝜆1, 𝜆3 is relaxation and retardation of time, 

and 𝜆2 is material parameter. Moreover, the upper convective derivative 𝐷
𝐷𝑡

 is defined as, 

𝐷𝒂𝒊

𝐷𝑡
=
𝜕𝜌

𝜕𝑡
+ 𝑢𝑟𝒂𝑖,𝑟 − 𝒂𝑖𝑢𝑟,𝑖. (1.5) 

By using operator and solving (1.3) and (1.4), we get the equation of Burgers fluid model, 

whereas for 𝜆2 = 0, we get equation of Oldroyd–B fluid model and for 𝜆2 = 0 = 𝜆3, we get the 

equation of Maxwell fluid model. 

The energy equation can be written in standard form, 
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𝜌𝑐𝑝
𝜕𝑇

𝜕𝑡
+ 𝐕 ∙ 𝛁𝑇 = −div𝒒. (1.6) 

Mathematically 𝒒 is stated as, 

𝒒 + 𝑘𝛁𝑇 = 𝜋1 (𝒒 ∙ 𝛁𝐕 − 𝐕 ∙ 𝛁𝒒 −
𝜕𝒒

𝜕𝑡
− (𝛁 ∙ 𝐕)𝒒). (1.7) 

Here 𝑐𝑝, 𝜋1, and 𝒒 are the specific heat, thermal relaxation time, and energy flux, respectively. 

By using the equation (1.7) into (1.6), we get the energy equation for generalized Fourier law. 

When we take 𝜋1 = 0 the conventional Fourier law is achieved.  

The equation of mass concentration is stated in the general form as, 

𝜕𝐶

𝜕𝑡
+ 𝐕 ∙ 𝛁𝐶 = −div𝑱. (1.8) 

The Mathematical form of 𝑱 is, 

𝑱 + 𝐷𝐵𝛁𝐶 = 𝜋2 (𝑱 ∙ 𝛁𝐕 − 𝐕 ∙ 𝛁𝑱 −
𝜕𝑱

𝜕𝑡
− (𝛁 ∙ 𝐕)𝑱). (1.9) 

Here 𝑱, 𝜋2, 𝐷𝐵, and 𝐶 is the mass flux, concentration relaxation time, diffusion coefficient, and 

mass concentration, respectively. By using the equation (1.9) into (1.8), we get the boundary 

layer equations for generalized Fick law. When we take 𝜋2 = 0 the conventional Fick law is 

obtained. 

The microorganism equation is stated in the general form as,  

𝜕𝑛

𝜕𝑡
+ 𝐕 ∙ 𝛁𝑛 +

𝑏̃

𝛁𝐶
𝑊𝑐(𝛁𝑛 ∙ 𝛁𝐶) = 𝐷𝑚𝛁𝑛. (1.10) 

Here 𝑛 is motile microorganism density, 𝑊𝑐 is cell swimming speed, 𝑏̃ is chemotaxis constant, 

and 𝐷𝑚 is microorganism diffusion coefficient. 
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1.3. Novelty and Methodology  

The current thesis mainly focuses on the behavior of flows, transport of heat and mass of the bio-

convective non–Newtonian fluids through different stretchable surfaces, because lot of its 

industrials and engineering applications. To empower the literature, we added some work in the 

literature related to non–Newtonian fluids model. We mainly focus on the rate type fluid. The 

dual solutions of the Maxwell fluid and comparison between linear and exponential sheet is 

presented in the thesis. Furthermore, the Cattaneo-Christov theory is used to analyze the heat and 

mass transfer of a Maxwell fluid. The non–Newtonian fluids flow model equations are 

transformed into coupled nonlinear ordinary differential equations by using appropriate 

transformation. The obtained equations are highly nonlinear, it is tough task to compute the exact 

solutions of these ODEs. Therefore, the numerical solutions of nonlinear ODEs are obtained with 

the help of shooting / Bvp4c Matlab technique and BVP midrich Maple technique. The graphical 

and tabulated discussion of the physical parameters has been conducted for the better 

understanding and the achievement perspective. 

1.4. Thesis Layout  

Keeping the above discussion in mind, this thesis consists of nine chapters, which mentioning the 

diverse features of the non–Newtonian fluids in detailed, the chapter one is the introductory 

chapter. The other chapters of thesis are arranged as following manner: 

Chapter two is examined the flow and heat transfer analysis of bio-convective Maxwell 

nanofluid with external magnetic field and viscous dissipation. The multiple slip boundary 

conditions are imposed on the boundary of the exponentially stretching sheet. The solution of 

flow model is computed with bvp4c Matlab technique. The numerical outcomes of this chapter 
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are discussed with graphically and tabulated data. The contents of chapter are published in the 

“Canadian Journal of Physics.” 

The chapter three presented the theoretical investigation of radiative Oldroyd–B nanofluid with 

microorganisms over an exponentially stretching surface. The thermal jump and concentration 

slip boundary condition are imposed on the boundary of the sheet. The mathematical model is 

solved numerically by adopting BVP midrich Maple technique. This chapter contents are 

published in the “Journal of Surfaces and Interfaces.”  

Chapter four analyzed the 3D MHD boundary layer flow of Maxwell fluid with variable thermal 

conductivity and thermophoretic effect through a stretching sheet. The transportation of heat and 

mass is presented by the influence of Cattaneo–Christov theory. The stratification boundary 

conditions are implemented on the sheet. Numerical technique bvp4c is used to solved 

mathematical flow model. The chapter contents are published in the “Part c: Journal of 

Mechanical Engineering Science.” 

In chapter five, it is investigated that the double stratified Darcy-Forehheimer steady flow of 

radiative Maxwell fluid over a vertical stretching surface. The transport of heat and mass are 

discussed with the effect of Cattaneo–Christov theory and activation energy. Moreover, the bio-

convection phenomenon is also considered in the current chapter due to buoyancy forces. The 

present chapter contents are published in the “Journal of the Taiwan Institute of Chemical 

Engineers.” 

Chapter six investigated the transportation of heat and mass of MHD bio-convective flow of 

Casson nanofluid with viscous dissipation through a linear stretching surface. The thermal 

radiation and thermophoretic effects are also considered in this chapter. The stratification 



17 
 

boundary conditions are applied on the surface. The flow model is numerically solved by bvp4c 

Matlab technique. 

Chapter seven demonstrated the transportation of heat and mass on a chemically reactive Burgers 

nanofluid with induced magnetic field through an exponentially stretching surface. The thermal 

jump and concentration slip boundary conditions are considered in the current chapter. The 

transferred flow model is numerically solved by BVP midrich Maple technique. The contents of 

the current chapter are published in the “Proceedings of the Institution of Mechanical 

Engineers, Part E.” 

Chapter eight observed the comparative study between linear and exponential stretching sheet of 

a rotating Maxwell nanofluid flow with double stratification. The transport of heat and mass is 

observed with the variable thermal conductivity and thermophoretic effect. In this chapter a 

comparison has been done between linear and exponential stretching sheet to see the better 

outcomes between two. The chapter contents are published in the “Journal of Surfaces and 

Interfaces.” 

Chapter nine is explored the theoretical analysis of heat and mass transport on a transient 

Maxwell nanofluid through a permeable shrinking surface along thermal radiation. Brownian 

motion and thermophoresis phenomenon are also considered in the mass transport analysis. The 

main aim of this chapter is to examine the dual solution and stability analysis of the 

investigation. The chapter contents are published in the “Journal of Surfaces and Interfaces.” 
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1.5. Nomenclature 

𝑢𝑤  Stretching surface velocity (m/s) 𝑎, 𝑏, 𝑐  Stretching constants 

𝑢𝑒  Free stream velocity (m/s) 𝑇0, 𝐶0, 𝑛0  Dimensionless constants 

𝑡  Time coordinate  𝑔  Gravitational acceleration (𝑚2/s) 

𝑢, 𝑣, 𝑤  Velocity component in (x, y, z)-
directions (m/s) 𝐷𝑇 , 𝐷𝐵, 𝐷𝑚  Thermophoresis, Brownian, and 

Microorganism diffusion coefficient  

𝑠  Suction / injection parameter  𝒒, 𝑱  Heat flux, and mass flux 

𝐾  Permeability of porous medium 𝑞𝑟  Radiative heat flux 

𝐶, 𝐶𝑤, 𝐶∞  Volume, wall, and ambient 
concentration 𝐿, 𝐿1, 𝐿2, 𝐿3  Velocity, thermal, concentration, and 

microorganism slip factor  

𝑇, 𝑇𝑤 𝑇∞  Fluid, wall, and ambient 
Temperature (K) 𝑘(𝑇), 𝑘, 𝑘∞  Temperature dependent, fluid, and 

ambient thermal conductivity (W/mK) 

𝑇𝑟  Reference temperature  𝑏̃  Chemotaxis constant (m) 

𝑊𝑐 
 Maximum cell swimming 
speed (m/s) 𝑛, 𝑛𝑤, 𝑛∞  Motile, wall, and ambient 

microorganism density  

𝑆, 𝑆1, 𝑆2, 
 𝑆3  

 Velocity, thermal, concentration, 
microorganism slip parameter 

𝑁𝑢𝑥, 𝑆ℎ𝑥, 
𝑄𝑛𝑥 

 Local Nusselt, Sherwood, and 
Microorganism numbers 

𝐸𝑐1, 𝐸𝑐2  Eckert number in (x, y)-
directions 𝑁𝑡, 𝑁𝑏  Thermophoresis and Brownian motion 

parameter 

𝐴  Unsteadiness parameter 𝑆𝑐  Schmidt number 

𝑚  Exponential index 𝑆𝑏  Bio-convection Schmidt number 

𝑅𝑒𝑥  Local Reynolds number 𝑃𝑒  Peclet number 

Pr  Prandtl number 𝑓(𝜂), 𝑔(𝜂)   Dimensionless variables for velocity 

𝐸𝑐  Eckert number 𝐻𝑎2  Hartmann number 

ℎ(𝜂)  Dimensionless microorganism 
factor 𝐻1(𝑡)  External magnetic field 

ℎ1(𝜂) 
 Dimensionless induced 
magnetic field factor 𝐻1, 𝐻2  Induced magnetic field in (x, y)-

directions 
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𝐻0  Induced magnetic field 𝐵0  Magnetic field 

𝐻e  Induced magnetic field at edge  𝑐𝑝  Specific heat capacity 

𝑉w  Suction / injection velocity  𝑘1  Chemical reaction constant  

𝐶𝑏  Drag coefficient  𝑉𝑇  Thermophoretic velocity  

𝑄0  Heat generation / absorption 
coefficient 𝑁, 𝑀  Temperature and concentration 

exponent 

𝑄  Heat generation / absorption 
parameter  

𝑓0(𝜂), 𝜃0(𝜂),   

𝜙0(𝜂), 
 Steady state solution  

𝑞𝑚, 𝑗𝑚,  
𝑧𝑤 

 Surface heat, mass, and 
microorganism fluxes 

𝑎1, 𝑏1, 

𝑐1, 𝑑1 
 Stratification constants  

𝐸a  Activation energy  𝐸1  Activation energy parameter  

𝑙  Reference length  𝐶𝑓𝑥  Local skin friction coefficient 

𝑀  Magnetic field parameter  𝐹𝑟  Forchheimer number  

𝑁𝑟  Buoyancy ratio parameter 𝐺𝑟  Mixed convection parameter 

𝑅𝑏  Rayleigh number 𝑅𝑑  Radiation parameter  

𝑥, 𝑦, 𝑧  Spatial Coordinates  ℎ𝑤  Heat transport coefficient  

PDEs  Partial differential equations 3D  Three dimensional  

2D  Two dimensional  ODEs Ordinary differential equations 

Eqs.  Equations  MHD  Magnetohydrodynamics 

𝑓′′(0),
𝑔′′(0)  Velocity gradients  −𝜃′(0),

−𝜙′(0) 
 Temperature and concentration 
gradient  

Greek Symbols 

𝜎∗  Boltzmann constant  𝜎1  Electrical conductivity (s/m) 

𝜅∗  Mean absorption coefficient  𝜇0  Magnetic permeability  

𝛼0  Dimensional constant (1/s) 𝜏  Ratio of heat capacity to the base fluid 

𝛽1  Deborah number 𝜇𝑒  Magnetic diffusivity  

Ω  Angular velocity  𝛼  Thermal diffusion coefficient  
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𝜎  Chemical reaction parameter  𝛿  Temperature difference parameter 

Ψ  Concentration difference parameter 𝜆𝑟  Rotation parameter  

𝜃𝑒  Temperature ratio parameter  𝛽  Casson fluid parameter  

Γ  Bio-convection difference parameter 𝜌  Density of fluid  

𝜆2  Retradation of time  𝜆1, 𝜆3  Relaxation time of fluid 

𝜌𝑝  Density of particle  𝜌𝑚  Density of microorganism   

𝜀  Thermal conductivity parameter  𝜂  Similarity variable 

𝜇  Dynamic viscosity 𝜈  Kinematic viscosity  

𝜏1  Thermophoretic parameter  Λ  Magnetic Prandtl number 

𝜆𝑐  Critical value  𝜏𝑤𝑥, 𝜏𝑤𝑦  Surface shear stresses  

𝜆  Stretching / shrinking parameter  𝜃(𝜂)  Dimensionless temperature factor 

𝜓  Stream function  𝜙(𝜂)  Dimensionless concentration factor 

𝛽2  Retradation parameter   𝛽3  Burger’s fluid parameter  

𝜋1, 𝜋2  Thermal and concentration relaxation 
time 𝛾1, 𝛾2  Volumetric thermal and concentration 

expansion 

𝜙1  Porosity of porous medium  𝛾3  Avarge volume of microorganism  

𝛿1, 𝛿2  Thermal and concentration 
stratification parameter 𝛿𝑡, 𝛿𝑐 

 Thermal and concentration relaxation 
time parameter 

𝛾  Eigenvalues Υ  Porosity parameter 

𝛾∗  Biot number  𝛿3  Microorganism stratification parameter 
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Chapter 02 

Theoretical analysis of unsteady bio-convective Maxwell nanofluid 

through an exponentially stretching surface 

In this chapter, the flow analysis of time dependent 2D Maxwell nanofluid with external 

magnetic field and viscous dissipation is examined. The flow induced by an exponentially 

stretching surface with the implementation of multiple slip boundary conditions. The bio-

convection and chemical reaction effect also considered in this chapter. The modelled PDEs are 

transformed into nonlinear coupled ODEs with the utilization of appropriate similarity variables. 

The bvp4c Matlab technique is used to solve the coupled nonlinear ODEs. The graphical 

discussion on the velocity, thermal, concentration, and microorganism distribution against the 

physical parameters is presented. Moreover, the tabulated values for the skin friction, Nusselt 

number, Sherwood number, and microorganism number are manipulated and discussed.  

2.1. Mathematical Modelling  

Here we considered 2D, incompressible, unsteady, boundary layer flow of Maxwell nanofluid 

with bio-convection through an exponentially stretching surface. The multiple slip boundary 

conditions along with viscous dissipation and chemical reaction effect is also considered. The 

external magnetic field applied to the normal of the sheet. The flow along x-axis and y-axis 

normal to the direction of fluid flow. The flow pattern is illustrated in Fig. (2.1). The stretching 

velocity of the surface is 𝑢𝑤 =
𝑐𝐸𝑥𝑝(

𝑥

𝑙
)

1−𝛼0𝑡
. The temperature, nanoparticle concentration, and 

microorganism density are 𝑇, 𝐶, and 𝑛 respectively. Further, the 𝑇𝑤, 𝐶𝑤, and 𝑛𝑤 are the wall 
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temperature, concentration, and microorganism density respectively, while ambient temperature, 

concentration, and microorganism density are stated by 𝐶∞, 𝑇∞, and 𝑛∞ respectively. With the 

velocity field 𝐕 = [𝑢(𝑥, 𝑦, 𝑡), 𝑣(𝑥, 𝑦, 𝑡), 0] and using of above assumption, the governing 

equations are stated as,  

 

Fig. (2.1): Flow pattren of the problem. 

  

∂𝑢

∂𝑥
+
∂𝑣

∂𝑦
= 0, (2.1) 

∂𝑢

∂𝑡
+ 𝑢

∂𝑢

∂𝑥
+ 𝑣

∂𝑢

∂𝑦
+ 𝜆1

(

  
 

∂2𝑢

∂𝑡2
+ 𝑢2

∂2𝑢

∂𝑥2
+ 𝑣2

∂2𝑢

∂𝑦2

+2𝑢 (
∂2𝑢

∂𝑥 ∂𝑡
+ 𝑣

∂2𝑢

∂𝑥 ∂𝑦
)

        +2𝑣
∂2𝑢

∂𝑦∂𝑡 )

  
 
= 𝜈

∂2𝑢

∂𝑦2
−
𝜎1𝜇0

2𝐻1(𝑡)
2

𝜌
(𝑢 + 𝜆1𝑣

∂𝑢

∂𝑦
),  (2.2) 

∂𝑇

∂𝑡
+ 𝑢

∂𝑇

∂𝑥
+ 𝑣

∂𝑇

∂𝑦
= 𝛼

∂2𝑇

∂𝑦2
+ 𝜏 (

𝐷𝑇
𝑇∞
(
∂𝑇

∂𝑦
)
2

+ 𝐷𝐵
∂𝑇

∂𝑦

∂𝐶

∂𝑦
) +

𝜈

𝑐𝑝
(
∂𝑢

∂𝑦
)
2

, (2.3) 
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∂𝐶

∂𝑡
+ 𝑢

∂𝐶

∂𝑥
+ 𝑣

∂𝐶

∂𝑦
= 𝐷𝐵

∂2𝐶

∂𝑦2
+
𝐷𝑇
𝑇∞

∂2𝑇

∂𝑦2
− 𝑘1(𝐶 − 𝐶 ∞), (2.4) 

∂𝑛

∂𝑡
+ 𝑢

∂𝑛

∂𝑥
+ 𝑣

∂𝑛

∂𝑦
+

𝑏̃𝑊𝑐
𝐶𝑤 − 𝐶 ∞

[
∂

∂𝑦
(𝑛
∂𝐶

∂𝑦
)] = 𝐷𝑚

∂2𝑛

∂𝑦2
. (2.5) 

The related boundary conditions given are defined as, 

𝑢 = 𝑢𝑤 + 𝐿1(𝑡) (
∂𝑢

∂𝑦
) , 𝑣 = 0, 𝑇 = 𝑇𝑤 + 𝐿2(𝑡) (

∂𝑇

∂𝑦
), 𝐶 = 𝐶𝑤 + 𝐿3(𝑡) (

∂𝐶

∂𝑦
), 

𝑛 = 𝑛𝑤 + 𝐿4(𝑡) (
∂𝑛

∂𝑦
), when 𝑦 → 0. 

(2.6) 

𝑢 = 0, 𝑇 → 𝑇∞, C→ 𝐶∞, 𝑛 → 𝑛∞, when 𝑦 → ∞. (2.7) 

 

The velocity components are 𝑢 and 𝑣 in the 𝑥 − and 𝑦 −direction respectively. The variable 

external magnetic field is defined by 𝐻1(𝑡) = √
𝐻0
2

2𝑙(1−𝛼0𝑡)
. The wall temperature, wall 

concentration, and wall microorganisms are stated by 𝑇𝑤 = 𝑇∞ +
𝑇0𝐸𝑥𝑝(

𝑥

2𝑙
)

(1−𝛼0𝑡)2
, 𝐶𝑤 = 𝐶∞ +

𝐶0𝐸𝑥𝑝(
𝑥

2𝑙
)

(1−𝛼0𝑡)2
, 

and 𝑛𝑤 = 𝑛∞ +
𝑛0𝐸𝑥𝑝(

𝑥

2𝑙
)

(1−𝛼0𝑡)2
 respectively. Here 𝑇0, 𝐶0, and 𝑛0 all are constants.  

The slip factor for velocity, temperature, concentration, and microorganism are expressed by 

𝐿1(𝑡) = (𝐿1)0√
2𝑙(1−𝛼0𝑡)

𝜈𝑎
, 𝐿2(𝑡) = (𝐿2)0√

2𝑙(1−𝛼0𝑡)

𝜈𝑎
, 𝐿3(𝑡) = (𝐿3)0√

2𝑙(1−𝛼0𝑡)

𝜈𝑎
, and             

𝐿4(𝑡) = (𝐿4)0√
2𝑙(1−𝛼0𝑡)

𝜈𝑎
  respectively. It is noted when 𝐿1 = 𝐿2 = 𝐿3 = 𝐿4 = 0, then no slip 

conditions is recovered. 
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Similarity variables [86] are stated as,  

𝜓 = √
2𝜈𝑙𝑎

(1 − 𝛼0𝑡)
𝑓(𝜂)𝐸𝑥𝑝 (

𝑥

2𝑙
) , 𝜂 = 𝑦√

𝑎

2𝜈𝑙(1 − 𝛼0𝑡)
𝐸𝑥𝑝 (

𝑥

2𝑙
), 

𝑇 = 𝑇∞ +
𝑇0𝐸𝑥𝑝(

𝑥

2𝑙
)

(1−𝛼0𝑡)2
𝜃(𝜂), 𝐶 = 𝐶∞ +

𝐶0𝐸𝑥𝑝(
𝑥

2𝑙
)

(1−𝛼0𝑡)2
𝜙(𝜂), 𝑛 = 𝑛∞ +

𝑛0𝐸𝑥𝑝(
𝑥

2𝑙
)

(1−𝛼0𝑡)2
ℎ(𝜂). 

(2.8) 

The components of velocity are stated as,  

𝑢 =
𝑎𝑓′(𝜂)𝐸𝑥𝑝 (

𝑥
2𝑙
)

(1 − 𝛼0𝑡)
, 𝑣 = −√

𝜈𝑎

2𝑙(1 − 𝛼0𝑡)
𝐸𝑥𝑝 (

𝑥

2𝑙
) [𝑓(𝜂) + 𝜂𝑓′(𝜂)]. (2.9) 

Using Eqs. (2.8) and (2.9), Eq. (2.1) is satisfied automatically, while Eqs. (2.2-2.7) becomes,  

𝑓′′′ − (
𝐴(2𝑓′ + 𝜂𝑓′′)

+2𝑓′2 + 𝑓𝑓′′
) − 𝛽1

(

 
 
 
𝐴2 (2𝑓′ +

7𝜂

2
𝑓′′ +

𝜂2

4
𝑓′′′) − 6𝑓𝑓′𝑓′′

+𝐴(4𝑓′2 + 2𝜂𝑓′𝑓′′) + 𝑓2𝑓′′′ − 𝜂𝑓′2𝑓′′

        −𝐴(3𝑓𝑓′′ + 𝜂𝑓𝑓′′′) + 4𝑓′3

        +𝐻𝑎2(𝑓𝑓′′ − 𝑓′ + 𝜂𝑓′𝑓′′) )

 
 
 
= 0, (2.10) 

𝜃′′ + Pr (𝑓𝜃′ − 𝑓′𝜃) − Pr𝐴(4𝜃 + 𝜂𝜃′) + Pr (𝑁𝑏𝜃′𝜙′ + 𝑁𝑡𝜃′2) + Pr𝐸𝑐𝑓′′2 = 0, (2.11) 

𝜙′′ + 𝑆𝑐(𝑓𝜙′ − 𝑓′𝜙) − 𝑆𝑐𝐴(4𝜙 + 𝜂𝜙′) + 𝑆𝑐𝜎𝜙 +
𝑁𝑡

𝑁𝑏
𝜃′′ = 0, (2.12) 

ℎ′′ + 𝑆𝑏(𝑓ℎ′ − 𝑓′ℎ) − 𝑆𝑏𝐴(4ℎ + 𝜂ℎ′) − 𝑃𝑒((ℎ + Γ)𝜙′′ + ℎ′𝜙′) = 0. (2.13) 

The concerned boundary conditions are,  

𝑓′(𝜂) = 𝜆 + 𝑆𝑓′′(𝜂), 𝑓(𝜂) = 0, 𝜃(𝜂) = 1 + 𝑆1𝜃
′(𝜂), 

𝜙(𝜂) = 1 + 𝑆2𝜙
′(𝜂), ℎ(𝜂) = 1 + 𝑆3ℎ

′(𝜂) as 𝜂 → 0. 

𝑓′(𝜂) = 0, 𝜃(𝜂) = 0, 𝜙(𝜂) = 0, ℎ(𝜂) = 0 as 𝜂 → ∞. 

(2.14) 
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Here the prime represented the derivative with respect to 𝜂. The dimensional form of physical 

parameters are stated as,  

𝐴 =
𝑙𝛼0
𝑎
, 𝜆 =

𝑐

𝑎
, 𝛽1 =

𝜆1𝑎

2𝑙(1 − 𝛼0𝑡)
, 𝐻𝑎2 = 𝐻0𝜇0√

𝜎

𝜌𝑎
, 

𝑁𝑏 =
𝜏𝐷𝐵Δ𝐶

𝜈
, 𝑁𝑡 =

𝜏𝐷𝑇Δ𝑇

𝜈𝑇∞
, 𝑆𝑐 =

𝜈

𝐷𝐵
, 𝑆𝑏 =

𝜈

𝐷𝑚
, Pr =

𝜐

𝛼
, 

𝑃𝑒 =
𝑏̃𝑊𝑐𝐷𝑚

𝜈2
, 𝜎 =

𝑘1Δ𝐶

𝑎
, 𝐸𝑐 =

𝑢𝑤
2

𝑐𝑝Δ𝑇
, 𝑆𝑖 = (𝐿i)0 (i = 1, 2, 3), 

(2.15) 

2.1.1. Physical Quantities  

Quantities of physical interest like as skin friction, Nusselt number, Sherwood number, and 

microorganism number are very significant from engineering point of view. These physical 

quantities are specified as, 

𝐶𝑓𝑥 =
𝜏𝑤𝑥
𝜌𝑢𝑤2

, 𝑁𝑢𝑥 =
𝑥𝑞𝑚

𝑘(𝑇𝑤 − 𝑇∞)
, 𝑆ℎ𝑥 =

𝑥𝑗𝑚
𝐷𝐵(𝐶𝑤 − 𝐶∞)

,  𝑄𝑛𝑥 =
𝑥𝑧𝑤
𝐷𝑚𝑛𝑤

. (2.16) 

In Eqs. (2.16), 𝜏𝑤𝑥 is the shear stress, 𝑞𝑚 is the heat flux, 𝑗𝑚 is the mass flux, and 𝑧𝑤 is the 

microorganism flux, which are defined as, 

𝜏𝑤𝑥 = 𝜇
∂

∂𝑦
(𝑢 + 𝜆1𝑣

∂𝑢

∂𝑦
)|
𝑦=0

, 𝑞𝑚 = −𝑘
∂𝑇

∂𝑦
|
𝑦=0

,  𝑗𝑚 = −𝐷𝐵
∂𝐶

∂𝑦
|
𝑦=0

, 𝑧𝑤 = −𝐷𝑚
∂𝑛

∂𝑦
|
𝑦=0

 . (2.17) 

These quantities are in dimensionless form, 

𝑅𝑒𝑥
1/2
𝐶𝑓𝑥 = 𝑓

′′(0) − 𝛽1 (
𝑓′′′(0)𝑓(0) + 𝜂𝑓′(0)𝑓′′(0)

+2𝑓′(0)𝑓′′(0) + 𝜂𝑓′′2(0)
), (2.18) 
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(

𝑅𝑒𝑥
−1/2

𝑁𝑢𝑥 = −𝜃
′(0),

𝑅𝑒𝑥
−1/2

𝑆ℎ𝑥 = −𝜙
′(0),

𝑅𝑒𝑥
−1/2

𝑄𝑛𝑥 = −ℎ
′0).

). (2.19) 

The local Reynolds number is 𝑅𝑒𝑥 =
𝑙𝑢𝑤

𝜈
. 

2.1.2. Numerical Description 

The numerical solutions of Eqs. (2.10–2.13) with Eq. (2.14) is developed by means of bvp4c 

Matlab technique. To employ bvp4c technique first we transferred the Eqs. (2.10–2.14) into 

system of first order ODEs. The convergence criteria were taken as 10−6 [87]. 

(
𝑓 = 𝑦(1), 𝑓′ = 𝑦(2), 𝑓′′ = 𝑦(3), 𝜃 = 𝑦(4), 𝜃′ = 𝑦(5),

 ϕ = 𝑦(6), 𝜙′ = 𝑦(7), ℎ = 𝑦(8), ℎ′ =  𝑦(9),
), (2.20) 

𝑦𝑦1 = (
1

1−𝛽1𝐴2
𝜂2

4
+𝛽1𝐴𝜂𝑦(1)−𝛽1𝑦(1)2

)

(

 
 
 

2𝑦(2)2 − 𝑦(1)𝑦(3) + 𝐴(2𝑦(2) + 𝜂𝑦(3))

+𝛽1𝐴
2(2𝑦(2) +

7𝜂

4
𝑦(3))

+𝛽1𝐴(2𝑦(2)
2 + 2𝜂𝑦(2)𝑦(3) − 3𝑦(1)𝑦(3))

+𝛽1(4𝑦(2)
3 − 𝜂𝑦(2)2𝑦(3) − 6𝑦(1)𝑦(2)𝑦(3))

+𝐻𝑎2{𝑦(2) − 𝛽1(𝑦(1)𝑦(3) + 𝜂𝑦(2)𝑦(3))} )

 
 
 
,  (2.21) 

𝑦𝑦2 = Pr (
𝑦(2)𝑦(4) − 𝑦(1)𝑦(5) + 𝐴{4𝑦(4) + 𝜂𝑦(5)}

−𝑁𝑏𝑦(5)𝑦(7) − 𝑁𝑡𝑦(5)2 − 𝐸𝑐𝑦(3)2
), (2.22) 

𝑦𝑦3 = 𝑆𝑐(𝑦(2)𝑦(6) − 𝑦(1)𝑦(7) + 𝐴{4𝑦(6) + 𝜂𝑦(7)} + 𝜎𝑦(6)) −
𝑁𝑡

𝑁𝑏
𝑦𝑦2, (2.23) 

𝑦𝑦4 = 𝑆𝑏 (
𝑦(2)𝑦(8) − 𝑦(1)𝑦(9)

+𝐴{4𝑦(8) + 𝜂𝑦(9)}
) + 𝑃𝑒(𝑦(7)𝑦(9) + (𝑦(8) + Γ)𝑦𝑦3). (2.24) 

The associated boundary conditions in the first order are, 

(
𝑦0(1) = 0, 𝑦0(2) = 𝜆 + 𝑆𝑦0(3), 𝑦0(4) = 1 + 𝑆1𝑦0(5),

𝑦0(6) = 1 + 𝑆2𝑦0(7), 𝑦0(8) = 1 + 𝑆3𝑦0(9).
), (2.25) 

𝑦inf(2) = 𝑦inf(4) = 𝑦inf(6) = 𝑦inf(8) = 0. (2.26) 
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2.2. Results and Discussion 

The current chapter mainly focuses on the flow and heat transfer of Maxwell nanofluid with the 

influence of multiple slip boundary conditions and external magnetic field. Numerical solution of 

ODEs are obtained with the usage of bvp4c Matlab technique. The computed results are 

discussed and observed by graphically and tabulated data. The values of physical parameters are 

fixed by 𝐴 = 0.3, 𝜆 = 0.5, Pr = 6.0, 𝐸𝑐 = 0.2, 𝜎 = 𝛽1 = 𝑁𝑏 = 𝑁𝑡 = 𝐻𝑎2 = 0.1, 𝑆𝑐 = 2.0, 

𝑆𝑏 = 1.0, 𝑃𝑒 = 1.0, 𝑆 = 𝑆1 = 𝑆2 = 𝑆3 = 0.5. 

Table (2.1) is the comparison table of 𝑃𝑟 against the Nusselt number, Sherwood number, and 

microorganism number, it shows good similarity with previous published results. It is noted that 

higher values of Pr diminishes the microorganism transfer rate, but heat and mass transfer rate is 

boosted. Table (2.2) represents the variation in the skin friction, heat, mass, and microorganism 

transfer rate for the several values of physical parameters. It is noticed from the tabulated data 

that the stronger estimation of the stretching ratio parameter declines the heat transfer rate, but 

improves the skin friction, mass transfer rate, and microorganism transfer rate. The all physical 

quantities showing diminishes effect for the higher values of 𝛽1, but opposite trend is noted for 

the several values of 𝐴. Further, it is observed that heat dissipation potential falls due to 

enlargement of 𝐸𝑐, therefore Nusselt number decays, while mass and microorganism transfer 

rate improves. The enhancement is noted in the microorganism transfer rate for growing 

estimation of 𝑆𝑏. 

The impact of 𝜆 (stretching ratio parameter) on the velocity profile is depicted in Fig. (2.2). It is 

noticed that stronger values of 𝜆 improves the velocity of fluid as well as momentum boundary 

layer thickness. Fig. (2.3) discloses the variation in the velocity profile for the various estimation 
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of 𝐴 (unsteadiness parameter). It is visualized that fluid velocity and related boundary layer 

thickness decays for the greater values of 𝐴. The variation of velocity graph for higher estimation 

of 𝛽1 (Deborah number) is found in Fig. (2.4). It is examined that, growing values of 𝛽1 

diminishes the fluid velocity and thickness of boundary layer. Physically, it is illustrated that due 

to higher values 𝛽1, the fluid behaves like a solid, therefore the fluid resistance improved as a 

result the velocity of fluid declines. The diversity in 𝐻𝑎2 (Hartmann number) against the 

velocity profile is pictured in Fig. (2.5). It is exhibited from the plot that stronger estimation of 

𝐻𝑎2 declines the velocity of fluid. Physically, 𝐻𝑎2 is the ratio between electromagnetic to 

viscous forces, therefore for the stronger 𝐻𝑎2 the electromagnetic force is improved, which 

declines the velocity field. The influence of 𝑆 (velocity slip parameter) on the velocity sketch is 

found in the Fig. (2.6). It is scrutinized that the fluid velocity reduces for the growing values 𝑆. 

Fig. (2.7) is sketched to examine the temperature variation against the 𝑆1 (thermal slip 

parameter). It is observed that the related boundary layer thickness and temperature become 

stronger for the higher estimation of 𝑆1. Fig. (2.8) reveals the variation in the temperature against 

the several values of 𝐴. It is noted that temperature of fluid reduces for the greater values of 𝐴. 

The tendency of Eckert number to improve the temperature and boundary layer thickness, as 

enlarging the values of  𝐸𝑐 (see in the Fig. (2.9)). Physically, 𝐸𝑐 is the ratio between kinetic 

energy and enthalpy. As increasing the 𝐸𝑐 the kinetic energy of the system enhances, which 

improves the temperature. Moreover, the frictional heating energy stored in the nanofluid 

therefore the enhancement in the temperature is occurred. Fig. (2.10) describes the influence of 

Pr (Prandtl number) against the 𝜃(𝜂). It is seen that the temperature and related boundary layer 

thickness decreases for the stronger Pr. Physically, 𝑃𝑟 control the heat transfer rate during the 

cooling process in the industries. Therefore, stronger values of 𝑃𝑟 declines the temperature of the 
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fluid. Fig. (2.11) is depicted the effects of 𝑆𝑐 (Schmidt number) against the 𝜙(𝜂). The 

devaluation is occurred in the 𝜙(𝜂) distribution for the rising values of 𝑆𝑐. The variation in 𝜃(𝜂) 

and 𝜙(𝜂) sketch for stronger estimation of 𝑁𝑏 (Brownian motion parameter) is shown in Fig. 

(2.12) and Fig. (2.13). It is portrayed that by the enlargement of 𝑁𝑏, the mass diffusivity is 

mounting, which leads to improves the temperature, while reverse trend is seen for the 

concentration sketch. From physical point of view, the disorderness is occurred by the stronger 

values of 𝑁𝑏, as a result the heat transfer rate increases, which produce more temperature in the 

system. The influence of 𝑁𝑡 (thermophoresis parameter) on 𝜃(𝜂) and 𝜙(𝜂) plot is shown in Fig. 

(2.14) and (2.15). It is designated from the sketch that due to temperature gradient the 

thermophoresis force induced on nanoparticles, as a result the fast flow away from the surface. 

Hence, more fluid is heated away from the sheet, which leads to increment in the temperature as 

well as nanoparticle concentration. Physically, one can say that the increment is occurred in 

thermophoretic force due to the increment 𝑁𝑡. The variation in the 𝜙(𝜂) plot against the several 

values of 𝑆2 (concentration slip parameter) and 𝐴 (unsteadiness parameter) is plotted in Fig. 

(2.16) and Fig. (2.17). It is examined that reduction is occurred in the 𝜙(𝜂) plot and associated 

boundary layer becomes thin due to the increment in the values 𝑆2 and 𝐴. Fig. (2.18) and Fig. 

(2.19) depicts the diversion in the microorganism density plot for distinct values of 𝑃𝑒 (Peclet 

number) and 𝑆𝑏 (bio-convection Schmidt number). It is sketched that higher estimation of 𝑃𝑒 

and 𝑆𝑏 declines the ℎ(𝜂) plot for both parameters. Physically, it is noted that 𝑃𝑒 has direct 

relation with 𝑊𝑐 and 𝑏̃ and inverse relation with microorganism diffusivity, by the increment of 

𝑃𝑒, the diffusivity of microorganism reduces, as a result the reduction is occurred in the 

microorganism density profile. Moreover, by the enhancement of 𝑆𝑏, the microorganism 

diffusivity decays, as a result density of microorganism also declines. Fig. (2.20) and Fig. (2.21) 
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represents the lowering behavior against the ℎ(𝜂) plot due to the increment of 𝐴 (unsteadiness 

parameter) and 𝑆3. 

Table (2.1): Numerical results of 𝑅𝑒𝑥
−1/2

𝑁𝑢𝑥, 𝑅𝑒𝑥
−1/2

𝑆ℎ𝑥, and 𝑅𝑒𝑥
−1/2

𝑄𝑛𝑥 for various values of 𝑃𝑟. 

  𝑅𝑒𝑥
−1/2

𝑁𝑢𝑥  𝑅𝑒𝑥
−1/2

𝑆ℎ𝑥 𝑅𝑒𝑥
−1/2

𝑄𝑛𝑥 

𝑃𝑟 Ref. [88] Current Ref. [88] Current Ref. [88] Current 

0.5 0.34689119 0.3468912 1.61983352 1.619336 0.31941987 0.3194199 

1.0 0.57428288 0.5742829 1.80285833 1.802859 0.14721928 0.1472193 

3.0 1.15942580 1.1594260 2.33075212 2.330753 −0.31099156 −0.310092 

5.0 1.56331503 1.5633150 2.71619820 2.716199 −0.64301399 −0.643014 

 

Table (2.2): Table of 𝑅𝑒𝑥
1/2
𝐶𝑓𝑥, 𝑅𝑒𝑥

−1/2
𝑁𝑢𝑥, 𝑅𝑒𝑥

−1/2
𝑆ℎ𝑥, 𝑅𝑒𝑥

−1/2
𝑄𝑛𝑥 for several parameters. 

𝜆 𝛽1 𝐴 𝐸𝑐 𝑆𝑏 𝑅𝑒𝑥
1/2
𝐶𝑓𝑥 𝑅𝑒𝑥

−1/2
𝑁𝑢𝑥 𝑅𝑒𝑥

−1/2
𝑆ℎ𝑥 𝑅𝑒𝑥

−1/2
𝑄𝑛𝑥 

0.5 0.1 0.9 0.4 1.0 0.39933 1.104 1.0474 1.3127 

0.7 - - - 1.0 0.56412 1.103 1.0598 1.3196 

0.9 - - - - 0.73046 1.097 1.0730 1.3264 

0.5 0.0 - 0.4 - 0.40745 1.105 1.0480 1.3132 

- 0.1 - - - 0.39683 1.104 1.0474 1.3127 

- 0.2 - - - 0.38570 1.103 1.0470 1.3124 

- 0.1 0.3 - - 0.31940 0.8708 0.8094 1.1538 

- - 0.6 0.4 1.0 0.36212 1.013 0.9554 1.2537 
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0.5 - 0.9 - - 0.39683 1.104 1.0475 1.3128 

- - 0.9 0.2 - - 1.109 1.0456 1.3121 

- 0.1 - 0.4 - - 1.104 1.0475 1.3128 

- - - 0.6 1.0 - 1.099 1.0494 1.3134 

- - - - 1.0 - - - 1.3128 

- 0.1 - - 2.0 - - - 1.3830 

0.5 - 0.9 - 3.0 - - - 1.4299 

 

  

Fig. (2.2): Effect of 𝜆 on 𝑓′(𝜂). Fig. (2.3): Effect of 𝐴 on 𝑓′(𝜂). 
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Fig. (2.4): Effect of 𝛽1 on 𝑓′(𝜂). Fig. (2.5): Effect of 𝐻𝑎2 on 𝑓′(𝜂). 

  

Fig. (2.6): Effect of 𝑆 on 𝑓′(𝜂). Fig. (2.7): Effect of 𝑆1 on 𝜃(𝜂). 
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Fig. (2.8): Effect of 𝐴 on 𝜃(𝜂). Fig. (2.9): Effect of 𝐸𝑐 on 𝜃(𝜂). 

  

Fig. (2.10): Effect of Pr on 𝜃(𝜂). Fig. (2.11): Effect of 𝑆𝑐 on 𝜙(𝜂). 
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Fig. (2.12): Effect of 𝑁𝑏 on 𝜃(𝜂). Fig. (2.13): Effect of 𝑁𝑏 on 𝜙(𝜂). 

  

Fig. (2.14): Effect of 𝑁𝑡 on 𝜃(𝜂). Fig. (2.15): Effect of 𝑁𝑡 on 𝜙(𝜂). 
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Fig. (2.16): Effect of 𝑆2 on 𝜙(𝜂). Fig. (2.17): Effect of 𝐴 on 𝜙(𝜂). 

  

Fig. (2.18): Effect of 𝑃𝑒 on ℎ(𝜂). Fig. (2.19): Effect of 𝑆𝑏 on ℎ(𝜂). 
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Fig. (2.20): Effect of 𝑆3 on ℎ(𝜂). Fig. (2.21): Effect of 𝐴 on ℎ(𝜂). 

2.3. Conclusion  

The numerical computations of unsteady 2D MHD boundary layer flow of bio-convective 

Maxwell nanofluid with multiple slip boundary conditions through an exponentially stretching 

surface is examined. The key deductions of current chapter are,  

 The boundary layer thickness and fluid velocity improve for larger values of 𝜆. 

 The fluid behaves like a solid for the stronger estimation of 𝛽1. Hence, the velocity declines. 

 The boundary layer thickness and velocity of fluid decays for Hartmann number. 

 The 𝜃(𝜂) sketch enhances by stronger 𝐸𝑐, because K.E of the system increases by 𝐸𝑐. 

 The concentration sketch leads to decaying for larger estimation of 𝑆𝑐 and 𝑁𝑏. 

 The enhancement of 𝑆𝑏 and 𝑃𝑒 diminishes the microorganism density distribution.  

 The heat, mass, and microorganism transfer rate improve for stronger 𝛽1. 

 The non-Newtonian fluid model reduces to Newtonian by taking 𝛽1  = 0. 
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Chapter 03 

Theoretical analysis of Oldroyd-B nanofluid with microorganism 

and thermal radiation across an exponentially stretching surface 

This chapter describes the transient two-dimensional radiative Oldroyd-B nanofluid flow over an 

exponentially stretchable permeable surface which is convectively heated. In the fluid regime 

microorganisms have been added in order to improve the stability of the nanofluid. Additionally, 

the heat and mass transport is examined with the influence of heat generation and chemical 

reaction. The mathematical model is into ODEs by incorporating self-similar transformations, 

which is solved numerically by using BVP midrich Maple technique. The outcome of the 

physical parameters is presented by the help of graphs and tabulated data. It is depicted that 

greater values of Deborah number minimizes the fluid velocity, whereas for retardation 

parameter its behavior increases. Further, higher values of relaxation parameter correspond to 

maximum heat and mass transfer rate, while it gives lower values against retardation parameter. 

3.1. Mathematical Formulations 

In this chapter, we evaluated an unsteady, two-dimensional, radiative Oldroyd-B nanofluid with 

chemical reaction and heat generation. The multiple slip conditions are imposed on the boundary 

of exponentially stretching sheet. The physical depiction of the paper is shown in Fig. (3.1). In 

the figure the stretching velocity is 𝑢𝑤 =
𝑐𝐸𝑥𝑝(

𝑥

𝑙
)

1−α0𝑡
. The temperature, concentration, and 

microorganism density are denoted by 𝑇, 𝐶, and 𝑛 respectively. Further, 𝑇, 𝐶, and 𝑛 are 
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expressed at the wall by 𝑇𝑤, 𝐶𝑤, 𝑛𝑤 and away from the wall by 𝑇∞, 𝐶∞, 𝑛∞ respectively. By 

utilizing above mentioned consideration and approximation the governing equations are,  

 

Fig. (3.1): Physics of the chapter. 

 

∂𝑢

∂𝑥
+
∂𝑣

∂𝑦
= 0,  (3.1) 

∂𝑢

∂𝑡
+ 𝑢

∂𝑢

∂𝑥
+ 𝑣

∂𝑢

∂𝑦
+ λ1(

∂2𝑢

∂𝑡2
+ 2𝑢

∂2𝑢

∂𝑥 ∂𝑡
+ 2𝑢𝑣

∂2𝑢

∂𝑥 ∂𝑦

+𝑢2
∂2𝑢

∂𝑥2
+ 𝑣2

∂2𝑢

∂𝑦2
+ 2𝑣

∂2𝑢

∂𝑦 ∂𝑡

) = 𝜈
∂2𝑢

∂𝑦2
+ 𝜈λ2 (

∂3𝑢

∂𝑦3
+

∂3𝑢

∂𝑡 ∂𝑦2
+ 𝑢

∂3𝑢

∂𝑥 ∂𝑦2

−
∂𝑢

∂𝑦

∂2𝑣

∂𝑦2
−
∂𝑢

∂𝑥

∂2𝑢

∂𝑦2

),  (3.2) 

∂𝑇

∂𝑡
+ 𝑢

∂𝑇

∂𝑥
+ 𝑣

∂𝑇

∂𝑦
= 𝛼

∂2𝑇

∂𝑦2
+ 𝜏 (

𝐷𝑇

𝑇∞
(
∂𝑇

∂𝑦
)
2

+ 𝐷𝐵
∂𝑇

∂𝑦

∂𝐶

∂𝑦
) +

𝑄0

𝜌𝑐𝑝
(𝑇 − 𝑇 ∞) −

1

𝜌𝑐𝑝

∂𝑞𝑟

∂𝑦
,  (3.3) 

∂𝐶

∂𝑡
+ 𝑢

∂𝐶

∂𝑥
+ 𝑣

∂𝐶

∂𝑦
= 𝐷𝐵

∂2𝐶

∂𝑦2
−
𝐷𝑇

𝑇∞

∂2𝑇

∂𝑦2
+ 𝑘1(𝐶 ∞ − 𝐶),  (3.4) 

∂𝑛

∂𝑡
+ 𝑢

∂𝑛

∂𝑥
+ 𝑣

∂𝑛

∂𝑦
+

𝑏̃𝑊𝑐

𝐶𝑤−𝐶 ∞
[
∂

∂𝑦
(𝑛

∂𝐶

∂𝑦
)] = 𝐷𝑚

∂2𝑛

∂𝑦2
.  (3.5) 
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Employing Rosseland approximation [89] the radiative heat flux is defined as, 

𝑞𝑟=−
4𝜎∗

3𝑘∗
∂𝑇4

∂𝑦
 (3.6) 

Now we expand 𝑇4 about 𝑇∞ by Taylor series, we get the expression as,  

Using above equations (3.6) and (3.7) in equation (3.3), we get  

𝑇4 = 4𝑇3𝑇∞ − 3𝑇∞
4   (3.7) 

∂𝑇

∂𝑡
+ 𝑢

∂𝑇

∂𝑥
+ 𝑣

∂𝑇

∂𝑦
= (𝛼 +

16𝜎∗

3𝑘∗𝜌𝑐𝑝
)
∂2𝑇

∂𝑦2
+ 𝜏 (

𝐷𝑇

𝑇∞
(
∂𝑇

∂𝑦
)
2

+ 𝐷𝐵
∂𝑇

∂𝑦

∂𝐶

∂𝑦
) +

𝑄0

𝜌𝑐𝑝
(𝑇 − 𝑇 ∞),  (3.8) 

The related boundary conditions [90] are defined as, 

𝑢 = 𝑢𝑤, 𝑣 = 𝑉𝑤, 𝑇 = 𝑇𝑤 + 𝐿2(𝑡) (
∂𝑇

∂𝑦
) , 𝐶 = 𝐶𝑤 + 𝐿3(𝑡) (

∂𝐶

∂𝑦
), 𝑛 = 𝑛𝑤, when 𝑦 → 0. 

𝑢 = 0, 𝑇 → 𝑇∞, C→ 𝐶∞, 𝑛 → 𝑛∞, when 𝑦 → ∞. 

(3.9) 

 

In above equations the velocity component in 𝑥 − and 𝑦 −directions are 𝑢 and 𝑣 respectively. The 

λ1 and λ2 represents the relaxation and retardation time of the fluid respectively. Moreover, 𝑉𝑤 

denotes the heat source / sink.  

The wall temperature, wall concentration, and wall microorganism density are defined as,           

𝑇𝑤 = 𝑇∞ +
𝑇0𝐸𝑥𝑝(

𝑥

2𝑙
)

(1−𝛼0𝑡)2
, 𝐶𝑤 = 𝐶∞ +

𝐶0𝐸𝑥𝑝(
𝑥

2𝑙
)

(1−𝛼0𝑡)2
, and 𝑛𝑤 = 𝑛∞ +

𝑛0𝐸𝑥𝑝(
𝑥

2𝑙
)

(1−𝛼0𝑡)2
  respectively. Here 𝑏, 𝑇0, 𝐶0, and 

𝑛0 all are constants. The 𝐿2(𝑡) = (𝐿2)0√(1 − 𝛼0𝑡), and 𝐿3(𝑡) = (𝐿3)0√(1 − 𝛼0𝑡), are the variable 

thermal slip and concentration slip factors and (𝐿1)0 and (𝐿2)0 are initial thermal and concentration 

slip respectively.  
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The similarity variables [91] are stated as, 

𝜂 = 𝑦√
𝑎

2𝜈𝑙(1−𝛼0𝑡)
𝐸𝑥𝑝(

𝑥

2𝑙
), 𝑇 = 𝑇∞ +

𝑇0𝐸𝑥𝑝(
𝑥

2𝑙
)

(1−𝛼0𝑡)2
𝜃(𝜂), 𝐶 = 𝐶∞ +

𝐶0𝐸𝑥𝑝(
𝑥

2𝑙
)

(1−𝛼0𝑡)2
𝜙(𝜂), 

𝑛 = 𝑛∞ +
𝑛0𝐸𝑥𝑝(

𝑥

2𝑙
)

(1−𝛼0𝑡)2
ℎ(𝜂), 𝑢 =

𝑎𝑓′(𝜂)𝐸𝑥𝑝(
𝑥

𝑙
)

(1−𝛼0𝑡)
, 𝑣 = −√

𝜈𝑎

2𝑙(1−𝛼0𝑡)
𝐸𝑥𝑝 (

𝑥

2𝑙
) [𝑓(𝜂) + 𝜂𝑓′(𝜂)]. 

(3.10) 

Using Eq. (3.10), Eq. (3.1) satisfied automatically, while other equations. take the form,  

𝑓′′′ − (
𝐴(2𝑓′ + 𝜂𝑓′′)

+2𝑓′2 + 𝑓𝑓′′
) − 𝛽1

(

  
 
𝐴2 (2𝑓′ +

7𝜂

4
𝑓′′ +

𝜂2

4
𝑓′′′)

+𝐴(4𝑓′2 + 2𝜂𝑓′𝑓′′) + 4𝑓′3

−𝐴(3𝑓𝑓′′ + 𝜂𝑓𝑓′′′)

−𝜂𝑓′2𝑓′′ − 6𝑓𝑓′𝑓′′ + 𝑓2𝑓′′′)

  
 
+ 𝛽2(

3𝑓′′2 + 2𝑓′𝑓′′′

−𝑓𝑓′′′′

+𝐴(4𝑓′′′ + 𝜂𝑓′′′′)

) = 0, (3.11) 

(1 +
4

3
𝑅𝑑)𝜃′′ + Pr (𝑓𝜃′ − 𝑓′𝜃 − 𝐴 (2𝜃 +

𝜂

2
𝜃′) + 𝑁𝑏𝜃′𝜙′ + 𝑁𝑡𝜃′2 + 𝑄𝜃) = 0, (3.12) 

𝜙′′ + 𝑆𝑐(𝑓𝜙′ − 𝑓′𝜙) − 𝑆𝑐𝐴(4𝜙 + 𝜂𝜙′) + 𝑆𝑐𝜎𝜙 +
𝑁𝑡

𝑁𝑏
𝜃′′ = 0, (3.13) 

ℎ′′ + 𝑆𝑏(𝑓ℎ′ − 𝑓′ℎ) − 𝑆𝑏𝐴(4ℎ + 𝜂ℎ′) − 𝑃𝑒((ℎ + Γ)𝜙′′ + ℎ′𝜙′) = 0. (3.14) 

The disturbed boundary conditions are,  

𝑓(𝜂) = 𝑠, 𝑓′(𝜂) = λ, 𝜃(𝜂) = 1 + 𝑆1𝜃′(𝜂), 𝜙(𝜂) = 1 + 𝑆2𝜙′(𝜂), ℎ(𝜂) = 1 as 𝜂 → 0. 

𝑓′(𝜂) = 0, 𝜃(𝜂) = 𝜙(𝜂) = ℎ(𝜂) = 0 as 𝜂 → ∞. 
(3.15) 

The parameter 𝑠 is the heat source / sink parameter. Further, 𝑆1 and 𝑆2 are signify the thermal 

slip and concentration slip parameter, respectively. Further, we take  λ1 = λ0(1 − 𝛼0𝑡),         

λ2 = λ0
∗(1 − 𝛼0𝑡), 𝑘1 =

𝑘0

(1−𝛼0𝑡)
, and 𝑄0 =

𝑄1

(1−𝛼0𝑡)
. The parameters are in dimensionless form, 
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𝐴 =
𝑙𝛼0

𝑎
, λ =

𝑐

𝑎
, 𝛽1 =

λ0𝑎

2𝑙
, 𝑅𝑑 =

4𝑇∞
3 𝜎∗

3𝑘∗𝑘
, 𝛽2 =

λ0
∗𝑎

2𝑙
, 

𝑁𝑏 =
𝜏𝐷𝐵Δ𝐶

𝜈
, 𝑁𝑡 =

𝜏𝐷𝑇Δ𝑇

𝜈𝑇∞
, 𝑆𝑐 =

𝜈

𝐷𝐵
, 𝑆𝑏 =

𝜈

𝐷𝑚
, Pr =

𝜐

𝛼
 ,  

𝑃𝑒 =
𝑏̃𝑊𝑐𝐷𝑚

𝜈2
, 𝜎 =

𝑘0Δ𝐶

𝑎
, 𝑆1 = (𝐿2)0√

𝑎

2𝑙𝜈
, 𝑆2 = (𝐿3)0√

𝑎

2𝑙𝜈
, 𝑄 = 𝑄1

𝜌𝑐𝑝𝑎
. 

(3.16) 

3.1.1. Physical Quantities 

The quantities of physical interest like Nusselt number, Sherwood number, and microorganism 

number are very vital to engineering perspective. These quantities are characterized as, 

𝐶𝑓𝑥 =
𝜏𝑥𝑦|𝑦=0
𝜌𝑢𝑤2

, 𝑁𝑢𝑥 =
𝑥𝑞𝑚

𝑘(𝑇𝑤 − 𝑇∞)
, 𝑆ℎ𝑥 =

𝑥𝑗𝑚
𝐷𝐵(𝐶𝑤 − 𝐶∞)

 , 𝑄𝑛𝑥 =
𝑥𝑧𝑤
𝐷𝑚𝑛𝑤

. (3.17) 

In above equation 𝑘 is thermal conductivity. The heat flux (𝑞𝑚), mass flux (𝑗𝑚), and 

microorganism flux (𝑧𝑤), which are defined as, 

𝜏𝑥𝑦 = λ1(

∂2𝑢

∂𝑡2
+ 𝑢2

∂2𝑢

∂𝑥2
+ 𝑣2

∂2𝑢

∂𝑦2

+2𝑢
∂2𝑢

∂𝑥 ∂𝑡
+ 2𝑣

∂𝑢

∂𝑦 ∂𝑡
+ 2𝑢𝑣

∂2𝑢

∂𝑥 ∂𝑦

) − 𝜈λ2 (

∂3𝑢

∂𝑡 ∂𝑦2
+ 𝑢

∂3𝑢

∂𝑥 ∂𝑦2
+
∂3𝑢

∂𝑦3

−
∂𝑢

∂𝑥

∂2𝑢

∂𝑦2
−
∂𝑢

∂𝑦

∂2𝑣

∂𝑦2

)|

𝑦=0

  (3.18) 

𝑞𝑚 = |(𝑘
∂𝑇

∂𝑦
−
4𝜎∗

3𝑘∗
∂𝑇4

∂𝑦
)|
𝑦=0

, 𝑗𝑚 = −𝐷𝐵 |
∂𝐶

∂𝑦
|
𝑦=0

, 𝑧𝑤 = −𝐷𝑚 |
∂𝑛

∂𝑦
|
𝑦=0

. (3.19) 

The dimensionless form of physical quantities are defined as, 

(

 
 
 
 
𝑅𝑒𝑥

1

2𝐶𝑓𝑥 =
𝛽1

λ2
(
(𝑓′(0)+2𝐴)

2
𝑓′(0)

𝐴
− 3𝑓(0)𝑓′′(0)(1 + 𝑓′(0)))

      𝑅𝑒𝑥
−
1

2𝑁𝑢𝑥 = −(1 +
4

3
𝑅𝑑) 𝜃′(0),

𝑅𝑒𝑥
−
1

2𝑆ℎ𝑥 = −𝜙
′(0),

𝑅𝑒𝑥
−1/2

𝑄𝑛𝑥 = −ℎ
′0) )

 
 
 
 

. (3.20) 
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3.2. Results and Discussion 

In this section, we evaluated an unsteady two-dimensional radiative Oldroyd-B nanofluid 

towards an exponentially stretching surface with boundary slip effect. The influence of emerging 

parameters, such as relaxation parameter (𝛽1), retardation parameter (𝛽2), heat generation 

parameter (𝑄), unsteadiness parameter (𝐴), radiation parameter (𝑅𝑑), thermophoresis parameter 

(𝑁𝑡), Brownian motion parameter (𝑁𝑏), chemical reaction parameter (𝜎), bio-convection 

Schmidt number (𝑆𝑏), thermal slip parameter (𝑆1), and concentration slip parameter (𝑆2). on the 

velocity profile, temperature distribution, and concentration distribution is presented. Further, 

tabulated data is determined for the Nusselt, Sherwood, and microorganism number. The values 

of controlling parameters are specified as 𝛽1 = 𝛽2 = 1.0, 𝐴 = 0.1, 𝑄 = 0.2, 𝜆 = 1.0, Pr = 2.0, 

𝑁𝑏 = 0.3, 𝑅𝑑 = 0.2, 𝜎 = 𝑁𝑡 = 0.1, 𝑆𝑐 = 2.0, 𝑃𝑒 = 𝑆𝑏 = 2.0, 𝑆1 = 𝑆2 = 0.5. A comparison of 

limiting case of our results and previously published articles is made in Table 3.1. It shown from 

the tabulated data that −𝑓′′(0) have good agreement with the earlier published results. It is 

exposed that higher estimation of 𝑠 declines the velocity gradient. The influence of the various 

emerging parameters 𝛽1, 𝛽2, 𝐴, 𝑆𝑏, and 𝑃𝑒 on the Nusselt, Sherwood, and microorganism 

number are shown in table (3.2). It is examined that as escalating the values of 𝛽1, 𝛽2, and 𝐴, the 

heat, mass, and microorganism transfer rate declines for 𝛽1, while it exhibits opposite trend for 

𝛽2 and 𝐴. The effect of microorganism transfer rate for numerous values of 𝑆𝑏 and 𝑃𝑒 also 

revealed in the table (3.2). It is noted in table 3.2 that microorganism transfer rate enhances for 

higher values of 𝑆𝑏 and 𝑃𝑒. 
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Table 3.1: Comparison of −𝒇′′(𝟎) against 𝒔, when 𝜷𝟏 = 𝜷𝟐 = 𝑵𝒃 = 𝑵𝒕 = 𝐐 = 𝟎, 𝑺𝟏 → ∞. 

𝒔 Sandeep and Sulochana [92] Afify et al. [93] Present 

0.0 0.6776564 0.677648 0.677656 

0.5 0.8736448 0.873643 0.873644 

0.75 0.9844402 0.984439 0.984440 

 

Table 3.2: The variation in 𝑵𝒖𝒙, 𝑺𝒉𝒙, and  𝑸𝒏𝒙 against various parameter. 

𝜷𝟏 𝛽2 𝐴 𝑆𝑏 𝑃𝑒 𝑁𝑢𝑥 𝑆ℎ𝑥 𝑄𝑛𝑥 

0.0 0.5 0.1 2.0 2.0 0.60912 0.58576 2.56758 

0.5 -    0.60068 0.57499 2.50536 

1.0 -  2.0  0.59408 0.56654 2.45831 

0.5 0.2   2.0 0.57279 0.54028 2.31593 

 0.5 0.1   0.58423 0.55417 2.39082 

0.5 1.0  2.0  0.59408 0.56654 2.45831 

 0.5 0.0  2.0 0.57072 0.54349 2.10486 

  0.1   0.59369 0.56658 2.45655 

0.5  0.2   0.61251 0.58536 2.80931 

 0.5  1.5   2.22982 

0.5   2.0 2.0 2.45655 

  0.1 2.5  2.66067 

 0.5  2.0 1.5 2.24279 

0.5  0.1  2.0 2.45655 

 0.5  2.0 2.5 2.67479 

 

The impact 𝑃𝑟, 𝑁𝑏 and 𝑁𝑡 on the Nusselt number is graphically found in Fig. 3.2 (a-b). From 

Fig. 3.2 (a and b), it is seen that the heat transport rate decays as growing the 𝑁𝑏 and 𝑁𝑡, while 

reverse trend is noticed for higher values of 𝑃𝑟. Fig. 3.3 exhibits the mass transfer rate for 
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various 𝑆𝑐 against 𝜎. It is cleared form the figure that as enhancing the values of 𝑆𝑐 the 𝑆ℎ𝑥 

curve rises. This is because as increase the Schmidt number implies the reduction in mass 

diffusion, which reducing the concentration distribution, therefore the concentration rate at the 

surface is increased. The microorganism transfer rate for various values of 𝑆𝑏 and 𝑃𝑒 is 

demonstrated in Fig. 3.4. From the figure it is seen that microorganism transfer rate enhances for 

both 𝑆𝑏 and 𝑃𝑒. The effect of different values of 𝛽1 and 𝛽2 on the velocity field is illustrated in 

the Fig. 3.5 (a and b). It is demonstrated that plot of 𝑓′(𝜂) declines as uplifting the values of 𝛽1, 

but opposite behavior is noticed for higher values of 𝛽2. Physically, by the increment of 𝛽1 leads 

to the stronger viscous forces which resist the fluid motion and hence velocity of the fluid 

shrinkages. In addition, it is presented that for higher values of 𝛽2, the viscous forces reduce 

therefore velocity of fluid enlarges. Moreover, when 𝛽1 = 𝛽2 = 0 the viscous fluid is obtained. 

Fig. 3.6 (a-d) shows the diversity in the thermal distribution against the various values of 

𝛽1, 𝛽2, 𝑁𝑏 and 𝑁𝑡. It is signified that 𝜃(𝜂) plots maximize for 𝛽1, because the viscous forces are 

dominates as boosting the 𝛽1, which is reported in Figs. 3.6 (a). Hence the production of heat 

cause to enhances the temperature and concentration. The Fig. 3.6 (b) possess the diminishing 

behavior for 𝜃(𝜂) against the various values of 𝛽2. Additionally, we see that for greater values of 

𝛽2 the elasticity increases, thereby the temperature declines. The impact of radiation parameter 

and heat generation / absorption parameter on thermal distribution is considered in Fig. 3.7(a-b). 

It is portrayed in Fig. 3.7(a) that due to higher radiation effect the temperature boundary layer 

thickness increase, consequently the enhancement in temperature of the nanofluid is occurred, 

which is reported in Fig. 3.7(a). Physically, for the larger values of 𝑅𝑑 the surface flux enhances 

which is responsible for the augmentation of temperature. The influence of heat generation effect 

are illustrated in Fig. 3.7(b). It is observed that temperature of higher generation effect is 
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maximum. Further, in the occurrence of heat generation the temperature of fluid and thermal 

boundary layer always raises. The influences 𝛽1, 𝛽2, 𝐴 and 𝑁𝑏 on concentration distribution are 

considered in Fig. 3.8(a-b). An opposite behavior of 𝜙(𝜂) can be observed against relaxation 

and retardation time parameter. Concentration sketch has increasing nature for higher 𝛽1, 

whereas it depicts decreasing trend against maximum values of 𝛽2, which is shown in Fig. 3.8(a 

and b). Fig. 3.9(a-b) shows the behavior of 𝜙(𝜂) against various 𝑆𝑐 and 𝜎. It is observed that for 

larger values of 𝑆𝑐 the concentration plot tends to reduce. This is because of the direct relation of 

𝑆𝑐 to diffusion rate and its addition reduces the mass concentration. This explanation is 

established in Fig. 3.9(a). The chemical reaction influences on mass concentration are depicted 

in Fig. 3.9(b). It is revealed that the 𝜙(𝜂) is an increasing function for 𝜎. In Fig. 3.10 (a and b) 

the graphs of 𝒉(𝜼) against different values of relaxation and retardation time, an opposite 

behavior is obtained. Which can be clarified from figures that by escalating the values of 𝛽1 the 

microorganism density intensifies, whereas its density reduces for various values of 𝛽2. The 

decreasing behavior in 𝒉(𝜼) curve is noticed for various values of and 𝑃𝑒 and 𝑆𝑏 in Fig. 3.10(c 

and d). It is illustrated that enhancement in 𝑃𝑒 leads to decays the microorganism diffusivity, 

hence density of microorganism reduces in the nanofluid. Further, it is noticed that due to higher 

𝑆𝑏 the rapid reduction in the 𝒉(𝜼) occurs, because 𝑆𝑏 opposed the fluid motion. 
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        (a) 

 

           (b) 

Figs. 3.2 (a and b): Heat transfer rate for various values of 𝑁𝑏 and 𝑃𝑟 against 𝑁𝑡. 

  

Fig. 3.3: The plot mass transfer rate various 

value of 𝑆𝑐 against 𝜎. 

Fig. 3.4: The plot of microorganism transfer 

rate various value of 𝑆𝑏 against 𝑃𝑒. 
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           (a) 

 

              (b) 

Fig. 3.5: Plot of 𝑓′(𝜂).against various values of (a) 𝛽1 and (b) 𝛽2. 

 

(a) 

 

(b) 

Fig. 3.6: Impact of (a) 𝛽1and (b) 𝛽2, on 𝜃(𝜂). 

 



48 
 

 

           (a) 

 

               (b) 

Fig. 3.7: Impact of (a) 𝑅𝑑 and (b) 𝑄 on 𝜃(𝜂). 

 

(a) 

 

(b) 

Fig. 3.8: Variations in conceteration plot due to disticnt (a) 𝛽1 and (b) 𝛽2. 
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               (a) 

 

                (b) 

Fig. 3.9: Concentration distribution for several values of (a) 𝑆𝑐 and (b) 𝜎. 

 

          (a) 

 

           (b) 

 



50 
 

 

          (c) 

 

             (d) 

Fig. 3.10: Impact of (a) 𝛽1 (b) 𝛽2, (c) 𝑃𝑒, and (d) 𝑆𝑏 on microorganism density plot. 

3.3. Concluding Remarks 

The numerical investigation of two-dimensional radiative Oldroyd-B nanofluid through an 

exponentially stretching surface influence by the heat generation and chemical reaction is 

presented. Some useful results are mentioned as, 

 The velocity profile showing opposite trend for 𝛽1 and 𝛽2. It is implying that the 𝑓′(𝜂) 

depressed for 𝛽1, but improved for 𝛽2. 

 Surface flux increases due to rising the value of 𝑅𝑑, which causes an increment in the 

temperature. 

 Lager values of 𝑆𝑏.and 𝑃𝑒 decays the ℎ(𝜂) curve due to decaying microorganism diffusivity. 

 The higher values 𝑁𝑡 shows increasing effect for both 𝜃(𝜂) and 𝜙(𝜂) plots. 
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Chapter 04 

Mathematical analysis of thermal and solutal transport in a 

Maxwell fluid 

The objective of this chapter is to perform the analysis on energy transport mechanism in the 

flow of a Maxwell fluid over a stretchable sheet under the influence of magnetic field and double 

stratification. The conductivity of fluid is assumed as variable and transport phenomenon of 

thermal and solutal energy is studied in the view of Cattaneo-Christov theory and thermophoretic 

effect. The under-consideration flow is modelled in the form of PDEs and converted into a set of 

coupled ODEs by using suitable transformation. The coupled ODEs are numerically solved by 

implementing the bvp4c Matlab technique. The results of velocity profile, temperature 

distribution, and concentration distribution are discussed against the emerging parameters. It is 

observed that fluid velocity decreases for larger values of Deborah number, Further, it is noticed 

that both thermal and concentration stratification parameters diminish the heat and mass transfer 

rate. 

4.1. Mathematical Modelling  

Here, we examined the laminar, steady, and 3D incompressible flow of Maxwell fluid flow 

generated by a stretching surface subjected to stratification conditions and normally applied 

magnetic field 0B . The transport of mass and heat is examined by employing thermophoretic 

effect and Cattaneo-Christov theory. Additionally, heat source and chemical reactions are also 

considered here. The flow pattern is revealed in Fig. 4.1. The stretching velocities in the x  and 

y  direction are assumed by  wu ax  and  wv by  respectively. The fluid velocity field of the 
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problem is  ( , , ), ( , , ), ( , , )u x y z v x y z w x y zV  . The governing boundary layer equations of flow, 

energy, and mass transport are follows as [94], 

 

Fig. 4.1: flow diagram of the chapter. 
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 (4.8) 

The concerned surface and free boundary conditions are defined as: 

1 0 1 0, , 0,  , ,w w w wu u ax v v by w T T a x T C C b x C            When 0,z  , (4.9) 

1 0 1 00, 0, , .u v T T c x T C C d x C          When .z   (4.10) 

In the above Eqs. symbols 0 1 2, , , ,B     1, ,TV   and  k T  are symbolized the magnetic field, 

thermal relaxation time, concentration relaxation time, fluid density, thermophoretic velocity, 

electrical conductivity of fluid, and variable thermal conductivity, respectively. Moreover, tk  is 

the thermophoretic coefficient and 1 1 1, , ,a b c  and 1d  represents the constants.  

 

 

 



54 
 

4.1.1. Similarity Transformation 

The appropriate similarity variables are defined as, 
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 (4.11) 

Using above transformations, the Eqs. (4.2-4.5) with Eqs. (4.9-4.10) take the form, 

         
2 2 2 2

1 1 11 ' ' 2 ' 0,f g f f g f M f f f g f f M f g f                 (4.12) 

         
2 2 2 2

1 11 ''' '' ' ' 2 '' ' '' 0,f g g f g g M g g f g g g M f g g              (4.13) 

          

         

2 2

2
1 1

1 Pr '' Pr ' ' ' Pr '

Pr ' '' 2 ' ' Pr ' 0,

t t

t

f g f g f g f g Q

f f g f f g f f

      

     

         

        

 (4.14) 

           

         

2
1

2
2 2

1 '' ' ' ' ' ' ''

' '' 2 ' ' ' 0.

c c

c

Sc f g Sc f g f g f g Sc

Sc f f g f f g f Sc f Sc

        

      

         

         
 

(4.15) 

The concerned boundary conditions are, 

1 2(0) 1, (0) 0, '(0) , (0) 0, (0) 1 , (0) 1 ,
 ( ) 0, '( ) 0, ( ) 0 ( ),  .
f f g g

f g at

    

      

        

     
 (4.16) 

The emerging parameters are symbolized as 1 2, , , ,tM   and 1 , which denotes the relaxation 

time parameter, magnetic field parameter, thermal relaxation parameter, concentration 

stratification parameter, and thermophoretic parameter, respectively. The mathematically form of 

concerned parameters are, 
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 (4.17) 

4.2. Results and Discussion 

The ordinary differential Eqs. (4.12–4.15) with boundary conditions (4.16) are numerically 

tackled by the utilization of bvp4c Matlab technique. The obtained results are examined 

graphically across velocity field, thermal distribution, and concentration distribution for various 

physical parameters. The validation results are proved in table 4.1 by the comparison of 

previously published results of Mukhopadhyay [95] and Khan et al. [96]. Table 4.2 displays the 

numerical outcomes of the velocity gradient for several estimation of the magnetic parameter. It 

is noticed that the higher trend in magnetic parameter enhance the velocity gradient significantly. 

Table 4.1: Comparison of ''(0)f  with previously available data, when 1 2 0 t c         . 

1  Mukhopadhyay [95] Khan et al. [96] Current results 

0.0 0.9999963 1.00000 1.00048 

0.2 1.051949 1.05189 1.052150 

0.4 1.101851 1.10190 1.102042 

0.6 1.150162 1.15014 1.150221 

0.8 1.196693 1.19671 1.196720 
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Table 4.2: The velocity gradient for several values of M , as = 0.5  and 1 0.2  . 

M  ''(0)f  ''(0)g  

0.00 1.224761 0.519116 

0.20 1.242440 0.530168 

0.30 1.294221 0.561457 

0.60 1.382370 0.609008 

0.80 1.491211 0.672113 

1.00 1.627810 0.744985 

 

Figs. 4.2 and 4.3 demonstrates the impact of a Deborah number 1  against the velocity field 

( '( )f   and '( )g  ). It is examined that the sketch of velocity is declining along x-axis and y-

axis for the larger values of 𝛽1. Actually, 𝛽1 determine the difference between fluids and solids. 

For larger values of 𝛽1 material behave like a solid whereas for smaller values of 𝛽1 it behaves 

like a fluid. Furthermore, non-zero value of 𝛽1 exhibits the elastic effect which restricts the flow 

and therefore boundary layer become thinner. The influence of magnetic parameter on velocity 

field is illustrated in Figs. 4.4 and 4.5. The fluid velocity reduces by the larger values of M . 

Physically, the magnetic parameter produced the Lorentz force due to which the retarding force 

is occurred in the fluid motion. Hence, due to greater values of M  the velocity profile declines. 

The effect of   (stretching parameter) against the '( )f   and '( )g   can be noted in Figs. 4.6 

and 4.7. Stronger values of   means the greater stretching rate in y  direction relative to the 

x direction. Thus, the fluid velocity in y  direction is increased, although velocity in x

direction decreases. The variation in ( )   plot for several values of   is described in Fig. 4.8. It 

is noticed that ( )   plot is increased as raising  . Physically, due to stronger values of   the 

more heat is transmitted from sheet to fluid and consequently enhancement occurs in the 
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temperature distribution. The behavior of 1  is discussed in Figs. 4.9. Fig. 4.9 suggests that the 

( )   sketch is an increasing function for thermophoretic parameter by enlarging the values of 

1.  The characteristics of M  on thermal and solutal plots ( )   and ( )   are depicted in Figs. 

4.10 and 4.11. The ( )   and ( )   plots are boosted for larger values of M . Physically, fluid 

friction improves by lager values of M , as a result the thermal and concentration distribution 

boosts. Figs. 4.12 and 4.13 proved that thermal and concentration relaxation time parameters t

and c  significantly decline the ( )   and ( )   plots, respectively. It is noted that, the case of 

classical Fourier’s law and Fick’s law is obtained when ( 0t c   ) and Cattaneo-Christov heat 

conduction model and generalized Fick’s law is obtained when ( , 0t c   ). The 1  shows 

declining effect on the ( )   plot, which is shown in Fig. 4.14. Physically, due to stratification 

effect, the effective temperature of fluid between sheets and away from the sheet is declined, 

which correspond to thinner thermal boundary layer and weaker temperature. The variation in 

the ( )   plot for several values of 2  is designated in the Figs. 4.15. It is observed that the 

concentration plot ( ( )  ) diminishes by the growing values of 2 . This is the fact, that the fluid 

has lower concentration near the plate as compared to ambient medium. Moreover, due to 

enhancement of 𝛿2 the volumetric fraction between surface and reference nanoparticles is 

examined to decaying. 



58 
 

  

Fig. 4.2: Result of 1  against '( )f  . Fig. 4.3: Result of 1  against '( )g  . 

  

Fig. 4.4: Result of M  against '( )f  . Fig. 4.5: Result of M  against '( )g  . 
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Fig. 4.6: Result of   against '( )f  . Fig. 4.7: Result of   against '( )g  . 

  

Fig. 4.8: Result of   against ( )  . Fig. 4.9: Result of 1  against ( )  . 
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Fig. 4.10: Result of M  against ( )  . Fig. 4.11: Result of M  against ( )  . 

  

Fig. 4.12: Result of t  against ( )  . Fig. 4.13: Result of c  against ( )  . 
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Fig. 4.14: Result of 1  against ( )  . Fig. 4.15: Result of 2  against ( )  . 

4.3. Final Observations  

The mathematical model of Maxwell viscoelastic fluid flow and energy transport with Cattaneo-

Christov theory and thermophoretic effect is developed here. The heat source and chemical 

reaction are also incorporeted in heat and solutal transportation. Numerical technique bvp4c 

Matlab is utilized for the solution of non-linear differential equations. The main result of the 

study is illustrated as follows: 

 The flow field components '( )f   and '( )g   is a reducing function for M  and 1 . 

 The plot of ( )   and ( )   improves as rising the values of M  and  . 

 For higher values of both t  and 1  shows the diminishing trend on the temperature plot. 

 The higher values of 2  and c  declines the concentration distribution. 

 The velocity gradient ''(0)f  and ''(0)g  increases for the higher estimation of M . 
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Chapter 05 

Consequences of Darcy-Forchheimer medium and Cattaneo-

Christov model on a three-dimensional Maxwell fluid flow 

In this chapter, the mathematical model is established to discuss the double stratified Darcy–

Forehheimer steady flow of radiative Maxwell fluid across a vertical stretching surface. 

Investigation of solutal and thermal energy are carried out in the occurrence of activation energy 

effect and Cattaneo–Christov theory. Moreover, the gyrotactic microorganism is used to study 

bio-convection influenced by buoyancy forces. The modelled equations are converted into 

nonlinear ODEs with suitable transformation. The solutions of non-linear equations are 

numerically manipulated by bvp4c Matlab technique. The impact of different evolving 

parameters is discussed through graphs. It is viewed that for greater values of Forehheimer 

number (𝐹𝑟) and porosity parameter (Υ) the momentum boundary layer becomes thicker, hence 

the velocity profile decline. It is noted from the tabulated date that for different values of 𝛽1 and 

𝐹𝑟 the microorganism number shows decreasing behavior. 

5.1. Modelling of the Problem 

In the present chapter we evaluated an steady, three-dimensional, radiative Maxwell fluid 

containing heat generation / absorption, activation energy, and gyrotactic microorganisms. The 

analysis of energy and concentration are developed with the effect of Cattaneo-Christov theory 

and double stratification. The physical presentation is illustrated in Fig. (5.1). Let the stretching 

velocities in 𝑥 −direction and 𝑦 −direction are 𝑢𝑤 = 𝑎𝑥 and 𝑣𝑤 = 𝑏𝑦 respectively. The 𝑇𝑤, 𝐶𝑤, 

and 𝑛𝑤 are represented the temperature, concentration, and microorganism density of the sheet. 



63 
 

Additionally, away from the sheet temperature, concentration, and the microorganism are 

represented by 𝑇∞, 𝐶∞, 𝑛∞ respectively. According to above assumption the equations of mass, 

momentum, temperature, concentration, microorganism are follows as [97],  

 

Fig. (5.1): Geometrical presentation. 
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∂2𝑣

∂𝑦 ∂𝑧

+𝑣2
∂2𝑣

∂𝑦2
+ 𝑤2

∂2𝑣

∂𝑧2
+ 2𝑢𝑤

∂2𝑣

∂𝑥 ∂𝑧

) = 𝜈
∂2𝑣

∂𝑧2
− 𝜈 (

𝜙1

𝐾
) 𝑣 − 𝐹𝑣2,  (5.3) 

𝑢
∂𝑇

∂𝑥
+ 𝑣

∂𝑇

∂𝑦
+ 𝑤

∂𝑇

∂𝑧
= −

1

𝜌𝑐𝑝
∇. 𝒒 +

𝑄0

𝜌𝑐𝑝
(𝑇 − 𝑇 ∞),  (5.4) 

𝑢
∂𝐶

∂𝑥
+ 𝑣

∂𝐶

∂𝑦
++𝑤

∂𝐶

∂𝑧
= −∇. 𝑱,  (5.5) 

𝑢
∂𝑛

∂𝑥
+ 𝑣

∂𝑛

∂𝑦
+ 𝑤

∂𝑛

∂𝑧
+

𝑏̃𝑊𝑐

𝐶𝑤−𝐶 ∞
[
∂

∂𝑦
(𝑛

∂𝐶

∂𝑦
)] = 𝐷𝑚

∂2𝑛

∂𝑧2
.  (5.6) 

In above equation (5.4) and (5.5) the 𝒒 and 𝑱 represented the heat and mass flux respectively. In 

this chapter, we use Cattaneo-Christov diffusion model to discuss the relaxation of heat and mass 

fluxes. The thermal and concentration diffusion models are defined as,  

𝒒 + π1 [
∂𝒒

∂𝑡
+ 𝑉. ∇𝒒 − 𝒒. ∇𝑉 + (∇. 𝑉)𝒒] = −𝑘∇𝑇 − 𝑞𝑟, (5.7) 

𝑱 + π2 [
∂𝑱

∂𝑡
+ 𝑉. ∇𝑱 − 𝑱. ∇𝑉 + (∇. 𝑉)𝑱] = −𝐷𝐵∇𝐶 − 𝑘1

2 (
𝑇

𝑇∞
)
𝑚

𝐸𝑥𝑝 (
−𝐸𝑎

𝑘𝑇
) (𝐶 − 𝐶∞). 

(5.8) 

Here π1 and π2 are the relaxation time of heat and mass fluxes respectively. 

Utilizing Rosseland approximation of radiation the radiative heat flux is defined as, 

𝑞𝑟=−
4𝜎∗

3𝜅∗
∂𝑇4

∂𝑧
 (5.9) 

Now we expanded 𝑇4 about 𝑇∞ by Taylor series, we get the expression as,  

𝑇4 = 4𝑇3𝑇∞ − 3𝑇∞
4   (5.10) 

Using above equations (5.7-5.10) in equations (5.4) and (5.5), we get, 

𝑢
∂𝑇

∂𝑥
+ 𝑣

∂𝑇

∂𝑦
+ 𝑤

∂𝑇

∂𝑧
+ π1Φ𝐸 = 𝛼

∂2𝑇

∂𝑧2
+

16𝜎∗

3𝜅∗𝜌𝑐𝑝

∂

∂𝑧
(𝑇∞

3 ∂𝑇

∂𝑧
) +

𝑄0

𝜌𝑐𝑝
(𝑇 − 𝑇 ∞),  (5.11) 

𝑢
∂𝐶

∂𝑥
+ 𝑣

∂𝐶

∂𝑦
++𝑤

∂𝐶

∂𝑧
+ π2Φ𝐶 = 𝐷𝐵

∂2𝐶

∂𝑧2
− 𝑘1

2 (
𝑇

𝑇∞
)
𝑚

𝐸𝑥𝑝 (
−𝐸𝑎

𝑘𝑇
) (𝐶 − 𝐶 ∞),  (5.12) 
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The Φ𝐸 and Φ𝐶 are defined as, 

Φ𝐸 = (
𝑢2

∂2𝑇

∂𝑥2
+ 2𝑢𝑣

∂2𝑇

∂𝑥 ∂𝑦
+(𝑢

∂𝑣

∂𝑥
+ 𝑤

∂𝑣

∂𝑧
+ 𝑣

∂𝑣

∂𝑦
)
∂𝑇

∂𝑦
+ 𝑣2

∂2𝑇

∂𝑦2
+ 𝑤2

∂2𝑇

∂𝑧2
+ 2𝑣𝑤

∂2𝑇

∂𝑦 ∂𝑧

+(𝑢
∂𝑢

∂𝑥
+ 𝑣

∂𝑢

∂𝑦
+ 𝑤

∂𝑢

∂𝑧
)
∂𝑇

∂𝑥
+ (𝑢

∂𝑤

∂𝑥
+ 𝑤

∂𝑤

∂𝑧
+ 𝑣

∂𝑤

∂𝑦
)
∂𝑇

∂𝑧
+ 2𝑢𝑤

∂2𝑇

∂𝑥 ∂𝑧

)  (5.13) 

 

Φ𝐶 = (
𝑢2

∂2𝐶

∂𝑥2
+ 2𝑢𝑣

∂2𝐶

∂𝑥 ∂𝑦
+(𝑢

∂𝑢

∂𝑥
+ 𝑤

∂𝑢

∂𝑧
+ 𝑣

∂𝑢

∂𝑦
)
∂𝐶

∂𝑥
+ 𝑣2

∂2𝐶

∂𝑦2
+ 2𝑣𝑤

∂2𝐶

∂𝑦 ∂𝑧
+ 𝑤2

∂2𝐶

∂𝑧2

+(𝑢
∂𝑣

∂𝑥
+ 𝑣

∂𝑣

∂𝑦
+ 𝑤

∂𝑣

∂𝑧
)
∂𝐶

∂𝑦
+ 2𝑢𝑤

∂2𝐶

∂𝑥 ∂𝑧
+ (𝑢

∂𝑤

∂𝑥
+ 𝑤

∂𝑤

∂𝑧
+ 𝑣

∂𝑤

∂𝑦
)
∂𝐶

∂𝑧

)  (5.14) 

The 𝐹 = 𝐶𝑏

𝑥𝐾
1
2

 is inertial coefficient. Here 𝐶𝑏 is drag coefficient and permeability of porous 

medium is 𝐾. 

The related boundary conditions are assumed as, 

𝑢 = 𝑢𝑤  𝑣 = 𝑣𝑤 , 𝑇 = 𝑇𝑤 = 𝑇0 + 𝑎1𝑥, 𝐶 = 𝐶𝑤 = 𝐶0 + 𝑏1𝑥, 𝑛 = 𝑛𝑤 as 𝑧 = 0, (5.15) 

𝑢 = 0, 𝑣 = 0, 𝑇 → 𝑇∞ = 𝑇0 + 𝑐1𝑥,, 𝐶 → 𝐶∞ = 𝐶0 + 𝑑1𝑥,, 𝑛 → 𝑛∞, as z→ ∞. (5.16) 

The velocity component in 𝑥 −, 𝑦 −, and 𝑧 −directions are 𝑢, 𝑣, and 𝑤 respectively. The λ1 is fluid 

relaxation time. The symbols 𝜌, 𝜌𝑝, 𝜌𝑚, 𝛾1, 𝛾2, 𝛾3, 𝜙1, 𝐸𝑎, and 𝑚 are represented the density of 

fluid, density of particle, density of microorganism, volumetric thermal expansion, volumetric 

concentration expansion, average volume of a microorganism, porosity of porous medium, activation 

energy, and exponential index, respectively. Further, 𝑎1, 𝑏1, 𝑐1, and 𝑑1 are the positive constant. 

Now we introduce the dimensionless quantities as,  

𝜂 = √
𝑎

𝜈
𝑧, 𝑢 = 𝑎𝑥𝑓′(𝜂), 𝑣 = 𝑎𝑦𝑔′(𝜂), 𝑤 = −√𝑎𝜈(𝑓(𝜂) + 𝑔(𝜂)) 

𝑇 − 𝑇∞ = (𝑇𝑤 − 𝑇0)𝜃(𝜂), 𝐶 − 𝐶∞ = (𝐶𝑤 − 𝐶0)𝜙(𝜂), ℎ(𝜂) =
𝑛−𝑛∞

𝑛𝑤
. 

(5.17) 
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Using Eq. (5.17), Eq. (5.1) is fulfilled automatically, whereas other Eqs. become,  

𝑓′′′ + (𝑓 + 𝑔)𝑓′′ − 𝑓′2 + (
𝛽1(2(𝑓 + 𝑔)𝑓

′𝑓′′ − (𝑓 + 𝑔)2𝑓′′′)

−Υ𝑓′ − 𝐹𝑟𝑓′2 + 𝐺𝑟(𝜃 − 𝑁𝑟𝜙 − 𝑅𝑏ℎ)
) = 0,  (5.18) 

𝑔′′′ + (𝑓 + 𝑔)𝑔′′ − 𝑔′2 + 𝛽1(2(𝑓 + 𝑔)𝑔
′𝑔′′ − (𝑓 + 𝑔)2𝑔′′′) − Υ𝑔′ − 𝐹𝑟𝑔′2 = 0,  (5.19) 

1

𝑃𝑟

𝑑

𝑑𝜂
({1 +

4

3
𝑅𝑑(1 − (1 − 𝜃𝑒)𝜃)

3} 𝜃′) − (𝛿1𝑓
′ + 𝜃𝑓′) + (𝑓 + 𝑔)𝜃′ +𝑄𝜃 

−𝛿𝑡 (
(𝑓 + 𝑔)2𝜃′′ + (𝑓 + 𝑔)(𝑓′ + 𝑔′)𝜃′ − 2𝑓′(𝑓 + 𝑔)𝜃′

+(𝑓′2 − (𝑓 + 𝑔)𝑓′′)(𝛿1 + 𝜃)
) = 0,  

(5.20) 

1

𝑆𝑐
𝜙′′ − (𝛿2 + 𝜙)𝑓

′ + (𝑓 + 𝑔)𝜙′ − 𝜎(1 + 𝛿𝜃)𝑚𝑒−(
𝐸1
1+𝛿𝜃

)𝜙  

−𝛿𝑐 (
(𝑓 + 𝑔)2𝜙′′ − 2𝑓′(𝑓 + 𝑔)𝜙′ + (𝑓 + 𝑔)(𝑓′ + 𝑔′)𝜙′

+(𝑓′2 − (𝑓 + 𝑔)𝑓′′)(𝛿2 + 𝜙)
) = 0,  

(5.21) 

1

𝑆𝑏
ℎ′′ + (𝑓 + 𝑔)ℎ′ −

𝑃𝑒

𝑆𝑏
((ℎ + Γ)𝜙′′ + ℎ′𝜙′) = 0.  (5.22) 

The concerned conditions on the boundary are,  

𝑓(0) = 0, 𝑔(0) = 0, 𝑓′(0) = 1, 𝑔′(0) = λ, 𝜃(0) = 1 − δ1, 𝜙(0) = 1 − δ2, ℎ(0) = 1, 

𝑓′(𝜂)|𝜂→∞ = 0, 𝑔
′(𝜂)|𝜂→∞ = 0 = 𝜃(𝜂)|𝜂→∞, 𝜙(𝜂)|𝜂→∞ = 0, ℎ(𝜂)|𝜂→∞ = 0. 

(5.23) 

The parameters Υ, 𝑁𝑟, 𝐹𝑟, 𝐺𝑟, 𝑅𝑏, 𝜃𝑒, 𝑅𝑑,  𝛿1, 𝛿, and Γ are indicated the porosity parameter, 

buoyancy ratio parameter, Forchheimer number (permeability parameter), mixed convection 

parameter, Rayleigh number, temperature ratio parameter, radiation parameter, thermal 

stratification parameter, temperature difference parameter, and microorganism difference 

parameter, respectively. These parameters in dimensionless form are defined as,  
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𝐹𝑟 =
𝐶𝑏

√𝐾
, Υ =

𝜈𝜙1

𝑐𝐾
,   λ =

𝑏

𝑎
, 𝛽1 = 𝜆1𝑎, 𝑅𝑑 =

4𝑇∞
3 𝜎∗

𝜅∗𝑘
, 𝛿𝑡 = 𝑎π1, 𝛿𝑐 = 𝑎π2, 𝑄 = 𝑄0

𝑎𝜌𝑐𝑝
, 

𝛿1 =
𝑐1

𝑎1
, 𝛿2 =

𝑑1

𝑏1
, 𝐸1 =

𝐸𝑎

𝑘𝑇∞
, 𝑆𝑐 =

𝜈

𝐷𝐵
, 𝑆𝑏 =

𝜈

𝐷𝑚
, Pr =

𝜐

𝛼
, 𝛿 = Δ𝑇

𝑇∞
, 𝜎 = 𝑘1

2

𝑎
, 𝜃𝑒 =

𝑇𝑤

𝑇∞
,  

𝑃𝑒 =
𝑏̃𝑊𝑐𝐷𝑚

𝜈2
, Γ = Δ𝑛

𝑛∞
, 𝐺𝑟 = 𝛾1(1−𝐶∞)Δ𝑇𝜌𝑓

𝑎𝑢𝑤
, 𝑁𝑟 = 𝛾2(𝜌𝑝−𝜌𝑓)Δ𝐶

𝛾1(1−𝐶∞)Δ𝑇𝜌𝑓
, 𝑅𝑏 = 𝛾3(𝜌𝑚−𝜌𝑓)Δ𝑛

𝛾1(1−𝐶∞)Δ𝑇𝜌𝑓
, 

(5.24) 

5.1.1. Physical Quantities 

The physical quantities are very substantial from engineering perspective. But in current chapter 

only microorganism transfer rate is encountered. Which is defined as, 

𝑄𝑛𝑥 =
𝑥𝑧𝑤
𝐷𝑚𝑛𝑤

. (5.25) 

In above 𝑧𝑤 is represented microorganism flux. Which is defined as, 

  𝑧𝑤 = −𝐷𝑚
∂𝑛

∂𝑦
|
𝑦=0

. (5.26) 

In the dimensionless form the microorganism number becomes,  

(𝑅𝑒𝑥
−1/2

𝑄𝑛𝑥 = −ℎ
′(0)). (5.27) 

The local Reynolds number is 𝑅𝑒𝑥. 

5.2. Results and Discussion  

In this section, we investigated graphically, the steady Darcy–Forehheimer flow of radiative 

Maxwell fluid influenced by Cattaneo–Christov theory and activation energy over a stretching 

sheet. The stratification conditions are employed on the boundary of the sheet. The graphical 

description is prepared for the several parameters along the velocity, temperature, concentration, 

and microorganism distribution. The emerging parameters are the velocity ratio parameter (𝜆), 
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relaxation parameter (𝛽1), mixed convection parameter (𝐺𝑟), porosity parameter (Υ), 

Forchheimer number (𝐹𝑟), buoyancy ratio parameter (𝑁𝑟), temperature ratio parameter (𝜃𝑒), 

Schmidt number (𝑆𝑐), Rayleigh number (𝑅𝑏), heat generation parameter (𝑄), radiation parameter 

(𝑅𝑑), thermal relaxation parameter (𝛿𝑡), thermal stratification parameter (𝛿1), concentration 

stratification parameter (𝛿2), temperature difference parameter (𝛿), Prandtl number (𝑃𝑟), reaction 

rate parameter (𝜎), concentration relaxation parameter (𝛿𝑐), activation energy parameter (𝐸1), 

bio-convection Schmidt number (𝑆𝑏), microorganism difference parameter (Γ), and Peclet 

number parameter (𝑃𝑒) respectively. Further, tabulated data is calculated for microorganism 

number. The specified values of parameters are defined as 𝛽1 = 0.3, Υ = 0.4, 𝐹𝑟 = 0.1, 

𝐺𝑟 = 0.5, 𝑁𝑟 = 1.0, 𝑅𝑏 = 0.8, 𝜃𝑒 = 0.5, 𝑅𝑑 = 𝛿 = 𝑄 = 0.1 = 𝛿2 = 𝛿1, 𝑃𝑟 = 1.5 =  𝑆𝑐, 

𝛿𝑡 = 0.3, 𝜎 = 0.5, 𝛿𝑐 = 0.2, 𝐸1 = 0.5, Γ = 0.1, 𝑆𝑏 = 1.5 = 𝑃𝑒. The numerical results of 

velocity gradient (−𝑓′′(0) and − 𝑔′′(0) ) and temperature gradient (−𝜃′(0) ) for validation of 

the method is obtained in the table (5.1) and table (5.2) and compared by existing literature. It 

has been found good similarity with earlier published results. The impact of numerous 

parameters 𝛽1,  𝐹𝑟, 𝜆, 𝜎, Γ and 𝑃𝑒 on microorganism number is shown in table 5.3. It is cleared 

from the tabulated date that for the different values of 𝛽1 and 𝐹𝑟 the microorganism number 

shows decreasing behavior, whereas the opposite trend is seen for greater values of 𝜆. Further, it 

is noted that due to enhancement of 𝜎,  Γ, and 𝑃𝑒, the −ℎ′(0) enhances consequently. The 

transportation of heat and mass rate are not observed in the current study. 
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Table (5.1): Assessment table of velocity gradient for various values of 𝜆, when 𝛽1 = 0.0. 

 −𝑓′′(0) −𝑔′′(0) 

𝜆 HPM result 

[99] 

Ref. [100] Current 

results 

HPM result 

[99] 

Ref. [100] Current 

results 

0.0 1.000 1.000 1.0004 0.00 0.00 0.00 

0.1 1.02025 1.020253 1.02062 0.06684 0.066849 0.066951 

0.2 1.03949 1.039498 1.03977 0.14873 0.148730 0.148771 

0.3 1.05795 1.057959 1.05818 0.24335 0.243360 0.243349 

0.4 1.07578 1.075789 1.07597 0.34920 0.349212 0.349333 

0.5 1.09309 1.093093 1.09324 0.46520 0.465206 0.465317 

 

Table (5.2): Comparison table of temperature gradient for 𝑃𝑟, when 𝑅𝑑 = 𝛿𝑡 = 𝛿1 = 0.0. 

𝑃𝑟 Khan and Pop [101] Shooting technique  Bvp4c technique  

0.7 0.4539 0.45391 0.45390 

2.0 0.9113 0.91125 0.91132 

7.0 1.8954 1.89542 1.89544 

20.0 3.3539 3.35397 3.35392 

 

Table (5.3): The variation in −ℎ′(0) for the numerous parameters, when 𝑆𝑏 = 0.5, Υ = 0.8. 

𝛽1 𝐹𝑟 Γ 𝑃𝑒 −ℎ′(0) 

0.0 0.5 0.1 0.5 1.09033 

0.3 - - - 1.07255 

0.5 - - 0.5 1.06142 

- 0.0 - - 1.07054 

- 0.5 0.1 - 1.06142 

0.5 1.0  0.5 1.05300 

- - 0.1 - 1.06142 
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- 0.5 0.3 0.5 1.18919 

0.5 - 0.5 - 1.31696 

- 0.5 - 0.5 1.06142 

0.5 - - 0.7 1.35191 

- - - 1.0 1.79209 

 

5.2.1. Flow Analysis of Physical Parameters 

The variation in the velocity field along 𝑥 −axis and 𝑦 −axis against the various value of 

Forchheimer number 𝐹𝑟 is depicted in Figs. 5.2 and 5.3. It is noted that by an increment of 𝐹𝑟 

the momentum boundary layer become thicker, and fluid cannot move easily. Hence the 𝑓′(𝜂) 

and 𝑔′(𝜂) is diminishing for higher values of 𝐹𝑟. The variation in velocity field for several value 

of porosity parameter Υ is shown in Figs. 5.4 and 5.5. It is observed that both boundary layer 

thickness and velocity of fluid reduces for larger value of Υ. Physically, in the occurrence of 

porous media the resistance of fluid motion enhances, which lessening the velocity of fluid and 

boundary layer thickness. Figs. 5.6 and 5.7 delineated the impact of 𝑁𝑟 and 𝐺𝑟 against the 

velocity profile. The graphical result shows that by growing the values of 𝑁𝑟 and 𝐺𝑟 then the 

rapid decay occurs in velocity of fluid. Physically, 𝐺𝑟 is the ratio between the buoyancy force to 

viscous forces. When enlarges the values of 𝐺𝑟 the buoyancy force increases, which decrease the 

fluid velocity. The influence of 𝑅𝑏 and 𝜆 on the velocity curve is revealed in Figs. 5.8 and 5.9. It 

is examined in Fig. 5.8 that, when 𝑅𝑏 enhances then the velocity curve decline, whereas Fig. 5.9 

displays that for the higher estimation of 𝜆, the velocity curve is boosted in the y-direction. It is 

also noted that due to magnifying the values of 𝑅𝑏, decays the velocity of fluid due to buoyance 

force which causes by bio–convection. 
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5.2.2. Thermal, Concentration, and Microorgansim Analysis of Physical 

Parameters  

Fig. 5.10 observed that the higher values of 𝛽1 corresponds higher temperature and related 

boundary layer thickness become thicker. Furthermore, opposite behavior of temperature is 

noted in Fig. 5.11 for higher value of thermal stratification parameter 𝛿1. In fact, as 𝛿1 rises, then 

the temperature difference between heated surface and away from the surface declines. 

Therefore, temperature of fluid decreases for 𝛿1. Stronger values of 𝛿𝑡 reduce the temperature 

and boundary layer become thinner shown in Fig. 5.12. Physically, it certifies that the 

progressive nature of thermal relaxation time parameter needs more time to shift the heat from 

intensively packed fluid particles to the low energetic fluid particles. Thus, temperature is 

decayed. The importance of activation energy parameter 𝐸1 on 𝜙(𝜂) curve is found in Fig. 5.13. 

It is clearly examined that by magnifying the values of 𝐸1, accelerate the solutal boundary layer 

thinness, which rises the mass concentration. Fig. 5.14 portrayed the influence of 𝛽1 on the 

concentration distribution. It is found that mass concentration becomes stronger for larger 

estimation of 𝛽1. Fig. 5.15 presented that the 𝜙(𝜂) plot and related boundary condition become 

weaker for stronger value of mass relaxation parameter 𝛿𝑐. Further, maximum concentration is 

obtained when 𝛿𝑐 = 0. Figs. 5.16 and 5.17 revealed the impact of 𝛽1 and Γ (bio-convection 

parameter) on microorganism distribution. It is shown that for higher values of 𝛽1 the 

microorganism density enhances, while opposite trend is noted for higher values of Γ. 
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Fig. 5.2: Plot of 𝑓′(𝜂) for 𝐹𝑟. Fig. 5.3: Plot of 𝑔′(𝜂) for 𝐹𝑟. 

  

Fig. 5.4: Plot of 𝑓′(𝜂) for Υ. Fig. 5.5: Plot of 𝑔′(𝜂) for Υ. 
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Fig. 5.6: Plot of 𝑓′(𝜂) for 𝑁𝑟. Fig. 5.7: Plot of 𝑓′(𝜂) for 𝐺𝑟. 

  

Fig. 5.8: Plot of 𝑓′(𝜂) for 𝑅𝑏. Fig. 5.9: Plot of 𝑔′(𝜂) for 𝜆. 
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Fig. 5.10: Plot of 𝛽1 on 𝜃(𝜂). Fig. 5.11: Plot of 𝛿1 on 𝜃(𝜂). 

  

Fig. 5.12: Plot of 𝛿𝑡 on 𝜃(𝜂). Fig. 5.13: Plot of 𝐸1 on 𝜙(𝜂). 
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Fig. 5.14: Plot of 𝛽1 on 𝜙(𝜂). Fig. 5.15: Plot of 𝛿𝑐 on 𝜙(𝜂). 

  

Fig. 5.16: Plot of 𝛽1 on ℎ(𝜂). Fig. 5.17: Plot of Γ on 𝜙(𝜂). 

5.3. Final Remarks 

In this chapter, we studied numerically the Darcy-Forchheimer bio-convection radiative Maxwell 

fluid flow with double stratification through a stretching surface. Moreover, scrutiny of heat and 
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mass is manipulated in the occurrence of Cattaneo-Christov theory and activation energy effect. 

The outcomes of the paper are summarized as; 

 The velocity profile exhibits thinning effect for the higher values of 𝐹𝑟 and Υ. 

 The rapid decay is occurred in 𝐺𝑟 and 𝑅𝑏 plot of velocity by the increment of buoyancy 

forces. 

 The temperature distribution shows the declining behavior for various estimation of 𝛿𝑡. 

 The concentration upsurges when raising the values of 𝐸1.  

 For higher values of 𝛽1 the microorganism density increases, but reverse trend is noted for 

higher values of Γ. 
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Chapter 06 

Implement of stratification conditions on a Casson nanofluid flow 

with thermophoretic and radiation effect induced by an 

exponentially stretching surface 

In this chapter, the influence of stratification conditions on the boundary layer flow of MHD 

Casson nanofluid through an exponentially stretching sheet with viscous dissipation is 

scrutinized. To characterize the heat and solutal transfer properties in flow, we considered the 

thermal radiation, thermophoretic and chemical reaction effect. Additionally, microorganism 

theory is considered to analyze the suspended nanoparticles by the bio-convection. The flow 

model is nondimensionalized by using appropriate transformation and solved numerically by 

using bvp4c Matlab technique. The graphical and tabulated outcomes are obtained against the 

various parameters. It is noticed that the resistance in fluid flow increases by higher values of the 

Casson fluid parameter. Therefore, the axial and transverse velocities are declined. Further, it is 

noted from the tabulated data that growing values of Casson fluid parameter declines the skin 

friction and mass transfer rate but enhances the heat transfer rate. 

6.1. Modelling of Problem 

 The consideration of the current investigation is related to incompressible, three dimensional 

radiative Casson nanofluid with microorganism and double stratification towards an 

exponentially stretching surface. Furthermore, the heat and solutal transport properties are 

examined with the viscous dissipation and thermophoretic effect. The fluid is conducting 
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electrically due to the applied magnetic field. Let 
w

x y
u aExp

l

 
  

 
 and 

w

x y
v bExp

l

 
  

 
 be 

the fluid velocities in the x  and y  direction along the sheet. The flow is confined to 0,z   as 

shown in the Fig. 6.1. The sheet maintained the temperature, concentration, and microorganism 

with , ,w wT C  and wn  respectively, while ambient temperature T , concentration C , and 

microorganism n  respectively. Mathematically, we described the equation of mass, momentum, 

energy, concentration, and microorganism under the boundary layer approximation as [102], 

 

Fig. 6.1: Physical interruption of the flow. 
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Where the symbols 1, , , , , , , , , ,T B m c rD D D W q     and b  denotes the kinematic viscosity, 

electrical conductivity, thermal diffusivity, Casson fluid parameter, thermal diffusivity 

coefficient, Brownian diffusion coefficient, ratio of heat capacity to base fluid, diffusivity of 

microorganism, maximum cell swimming speed, radiative heat flux, and chemotaxis constant, 

respectively. 

The prescribed surface and free stream conditions are [103-104], 
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In above equation (6.7) 1 1 1 1 1, , , ,a b c d e and 2e  are the positive constant. 

The radiative heat flux rq  by using Rosseland approximation is defined as,  
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In the above equation,    is Stefan Boltzmann constant and the mean absorption coefficient. 

Further, we expand 4T  by means of Taylor series about T  and neglecting the higher order 

terms, we get 4 3 44 3T TT T   . Hence, equation (6.4) condenses to, 
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(6.9) 

The thermophoretic velocity TV  of colloidal particles is expressed as,  
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Here tk  is thermophoretic coefficient and rT  is reference temperature. 

6.1.1. Similarity Transformation 

The appropriate transformation is defined as, 
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 (6.10) 

Here ( )f  , and ( )g   are the dimensionless components of velocity in x and y  direction. 

Moreover, the ( ),   ( ),   and ( )h   are the dimensionless factor for temperature, 

concentration, and microorganism, respectively.  
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Via similarity variables, the above PDEs are converted into following coupled ODEs, 
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The appropriate conditions are, 
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Here 1 2 1, , , , , , ,M Rd Ec Ec  and 3  are symbolized the magnetic field parameter, Casson 

fluid parameter, radiation parameter, Eckert number in x direction, Eckert number in y 

direction, thermal stratification parameter, microorganism stratification parameter respectively. 

The emerging parameters are mathematically expressed as, 
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6.1.2. Physical Quantities 

The flow behavior, heat transfer, and mass transfer are characterized by skin friction coefficient, 

Nusselt number, Sherwood number, and microorganism number respectively, which are stated 

as, 
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The shear stresses wx  and wy  in x  and y  direction respectively, and k  is thermal 

conductivity. Further, wq  is heat flux, wj  is mass flux, and wz  is microorganism flux. They are 

defined as, 
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The dimensionless form is, 
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The Reynolds number is signified as Re w
x

lu


 . 
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6.2. Results and Discussion 

The solution of the existing problem is acquired by adopting bvp4c Matlab technique. The 

graphical results are obtained and discussed against the various parameters. Further, physical 

quantities for the various parameters are discussed by tabulating data. The tabulated results of 

skin friction, heat, mass, and microorganism transfer rate are characterized in table (6.1–6.4). 

Table 6.1 clearly deliberates good agreement of the present problem with earlier published data. 

In table 6.1 the comparison is down of the heat transfer rate for various values of Prandtl 

number. It shows that due to increment in Pr  the heat transfer rate increases. Table 6.2 observed 

the variation of skin friction in the axial and transverse direction via different parameters, which 

are velocity ratio parameter (  ), Casson fluid parameter (  ), and magnetic parameter ( M ). It is 

designated from the tabulated data that for larger values of , ,  and M  the wall shear stresses 

is rises consequently in the x  and y  direction. The behavior of heat and mass transfer rate is 

represented in table 6.3. It is worth noticing that the enhancement is occurred in the heat transfer 

rate via several values of  , but opposite trend is noted in the case of mass transfer rate. The 

enlargement in Eckert number ( 1Ec ) shows a diminishing trend for both Nusselt and Sherwood 

number, while the radiation parameter  Rd  displays the opposite tendency which is increasing 

for the various values of Rd . The heat transfer rate, enhancing via higher values of 1 , while due 

to enhancement of 2  the mass transfer rate is declining. In table 6.4, we observed the 

microorganism transfer rate corresponding to the various values of 3, , ,Sb Pe   and  . It is 

scrutinized from the tabulated values that the transfer rate of microorganism enhances for various 

values of Sb  and  , whereas reverse trend is noticed for the several estimation of Pe  and 3.  
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Table 6.1: Comparison table of 1/2Rex xNu  for Pr  with earlier published data, when .   

Pr  Ishak [105] Pramanik. [106] Present results 

1.0 0.9547 0.9548 0.9550 

2.0 1.4715 1.4714 1.47140 

3.0 1.8691 1.8691 1.86910 

5.0 2.5001 2.5001 2.5000 

10 3.6603 3.6603 3.66031 

 

Table 6.2: Table of skin friction along x  and y   axes for several parameters. 

    M  
11 ''(0)f


 
 

 

 11 ''(0)g


 
 

 
 

1.0 0.5 1.0 2.3746 0.23746 

2.0 - - 2.0564 0.20564 

3.0 - - 1.9388 0.19388 

- 0.1 1.0 2.1522 0.21522 

- 0.3 - 2.2999 0.68997 

1.0 0.5 - 2.4387 1.2193 

- - 0.5 2.1522 0.21522 

- - 1.0 2.3746 0.23746 

1.0 0.5 1.5 2.5775 0.25775 

   

Table 6.3: 1/2Rex xNu and 1/2Rex xSh  for various parameters, when 1.0   and 1 0.5.   

  1Ec  1  2  1/2Rex xNu  1/2Rex xSh  

0.5 0.5 0.1 0.1 0.31762 2.8170 

0.7 - - - 0.43105 2.8100 

0.9 - - 0.1 0.49971 2.8033 

- 0.3 0.1 - 1.0001 2.8921 

- 0.4 - - 0.71609 2.8511 
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- 0.5 - - 0.43105 2.8100 

  0.1 0.1 0.43105  

  0.2 - 0.3338  

  0.3 - 0.23563  

  - 0.1  2.8100 

  - 0.2  2.6551 

  0.1 0.3  2.4993 

 

Table 6.4: Table of 1/2Rex xQn  for various parameters, when 0.7Pe  . 

Sb  Pe  3    1/2Rex xQn  

0.5 0.5 0.3 0.1 1.4211 

0.7 - - - 1.5869 

1.0 - - - 1.7332 

- 0.5 0.3 - 1.4211 

- 0.7 - 0.1 1.6322 

0.5 1.0 - - 1.8498 

- - 0.1 - 1.7838 

- - 0.2 0.1 1.6025 

0.5 0.5 0.3 - 1.4211 

- - - 0.1 1.4211 

- - - 0.2 1.4748 

0.5 0.5 0.3 0.3 1.5286 

 

6.2.1. Flow Analysis of Physical Parameters 
The variation of axial and transverse velocity against the Casson fluid parameter (  ), magnetic 

field parameter ( M ), and velocity ratio parameter (  ) is captured in Figs. (6.2–6.4). It is worth 

interesting to note in Fig. 6.2, that the resistance of fluid is increased by enlarging  . Higher 
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resistance of fluid clearly declines the fluid velocity in x and y  direction. Hence, both '( )f   

and '( )g   plots are declined. The impact of M  on the flow velocity '( )f   and '( )g   is 

discussed in Fig. 6.3. It is worth noticing that the velocity profile is diminished for larger values 

of M . The reduction is occurred by the enlargement of Lorentz force which yield more 

resistance to the fluid, due to this the fluid velocity declined. The influence of   on the '( )f   

and '( )g   is denoted in Fig. 6.4. It shows that the thickening in velocity boundary layer is 

occurred in x direction for larger values of  , whereas thinning in the velocity boundary layer 

is occurred in y direction for various values of  .  

6.2.2. Thermal Analysis of Physical Parameters 

Figs. (6.5–6.7) demonstrated the graphical variation of the thermal boundary layer thickness and 

temperature with respect to numerous values of Casson fluid parameter (  ), magnetic field 

parameter ( M ), and Eckert number  1Ec . From Fig. 6.5, it is examined that plot of ( )   is 

increased for various values of the  . Physically,   is subject to yield stress at the surface, 

which increase the shear stresses at the wall, therefore temperature and thermal boundary layer 

thickness enhances. In Fig. 6.6, we obviously discuss the temperature variation for various 

values of M . It is cleared from the figure that related boundary layer thickness and temperature 

increased for the higher values of M . In Fig. 6.7, it is designated that the temperature profile 

boosts in x direction for greater values of 1Ec . Physically, by the increment of 1Ec  the K.E of 

nanofluid augmented, which causes to improvement in the thermal boundary layer thickness and 

temperature distribution. 
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6.2.3. Concentration and Microorgansim Analysis of Physical Parameters  

The influence of Casson fluid parameter (  ), concentration stratification parameter  2 , and 

microorganism stratification parameter  3  on ( )   and ( )h   plot is presented in the Figs. 

(6.8–6.11). The ( )   plot is enhanced by enlarging the values of   see in the Fig 6.8. As a 

result, the concentration field boost up for higher values of  . The variation in ( )   plot against 

the various values of 2  is found in Fig. 6.9. It is clarified from the figure that due to higher 

values of 2  concentration of nanoparticles declines. As the results of the fact, that fluid near the 

plate can have a lower concentration as compared to ambient fluid. The effect of   and 3  on 

the microorganism distribution is observed in the Figs. (6.10 and 6.11). It is revealed in Fig. 6.10 

that by escalating the values of   the microorganism density rises consequently. Hence the ( )h   

curve rises for several values of  . From Fig. 6.11, it is noted that higher values of 3  declines 

the ( )h   curve. 

6.2.4. Impact of Physical Parameters on the 1/2Rex xNu , 1/2Rex xSh , and 1/2Rex xQn

Sketch  

Figs. (6.12–6.14) is examined the variation of Nusselt, Sherwood, and microorganism number 

against the different parameters. Fig. 6.12 is plotted to analyzing the impact of Nt  and 1  on 

1/2Rex xNu  sketch. On the analyzing it is disclosed that 1/2Rex xNu  curve is shrinking for higher 

values of both Nt  and 1 . Fig. 6.13 analyzed the influence of Nb  and   on Sherwood number. 

It is revealed that for stronger values of Nb  and   the 1/2Rex xSh

 curve decline for both 

parameters. The variation in microorganism number against the various values of 3  and   
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shown in Fig. 6.14. From the figure, it is disclosed that 1/2Rex xQn  curve increases for   and 

shows the opposite trend for 3 . 

  

Fig. 6.2: Influence of   on '( )f   and '( )g  . Fig. 6.3: Influence of M  on '( )f   and '( )g  . 

 

Fig. 6.4: Influence of   on '( )f   and '( )g  . 
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Fig. 6.5: Result of   against ( )  . Fig. 6.6: Result of M  against ( )  . 

 

Fig. 6.7: Result of 1Ec  against ( )  . 
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Fig. 6.8: Result of   against ( )  . Fig. 6.9: Result of 2  against ( )  . 

  

Fig. 6.10: Result of   against ( )h  . Fig. 6.11: Result of 3  against ( )h  . 
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Fig. 6.12: Graph between 1  and Nt  for 

1/2Rex xNu . 

Fig. 6.13: Graph between Nb  and   for 

1/2Rex xSh . 

 

Fig. 6.14: Graph between 3  and   for 1/2Rex xQn . 
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6.3. Concluding Remarks  

The current chapter focuses on the flow behavior and heat transportation of MHD Casson 

nanoliquid flow with thermal radiation and thermophoretic effect. The mass and microorganism 

transfer rate are examined with the impact of chemical reaction and microorganism. The key 

points are given as,  

 The fluid resistance enlargers for the higher values  . Hence the fluid velocity decline. 

 The temperature distribution in fluid increases with the increment of Eckert number. 

 The concentration of nanoparticles diminishes for higher values of 2 , so the plot of ( )   is 

reduced in this case. 

 The skin friction is rises for the higher values of   and M . 

 The heat and mass transfer rate display the opposite trend for the stronger  .  
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Chapter 07 

Heat and mass transfer investigation of chemically reactive Burgers 

nanofluid with induced magnetic field by an exponentially 

stretching surface 

In this chapter, a mathematical model is established to examine the flow of a chemically reactive 

Burgers nanofluid by an exponentially stretching surface along induced magnetic field. The flow 

investigation is discussed with the influence of thermal and concentration slip boundary 

conditions. Furthermore, to present the heat transfer investigation the variable thermal 

conductivity and heat generation / absorption effect is considered. The flow model is converted 

into the coupled ODEs with suitable similarity transformation. These coupled ODEs are 

numerically solved by the mean of BVP midrich technique. The effect of evolving parameters is 

observed graphically. It is noted that the velocity of fluid enhances for the numerous estimations 

of the relaxation parameter, while fluid velocity depicts the opposite tendency for the retardation 

parameter. Furthermore, it is noted that the heat and mass transfer rate boosted by the 

enlargement of relaxation and retardation parameter.  

7.1. Mathematical Structure 

Here, we examined steady, laminar, 2D incompressible stagnation point flow of Burgers 

nanofluid with the effect of variable thermal conductivity induced by an exponentially stretching 

surface. Further, the slip condition and chemical reaction are also considered and correspond to 

the plan 0y  . The induced magnetic field 0H  is applied normal to the surface. The flow 
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configuration of the paper is illustrated in Fig. 7.1. The stretching velocity and free stream 

velocity is characterized by xpw

x
u aE

l

 
  

 
 and xpe

x
u cE

l

 
  

 
 respectively. The boundary 

temperature and concentration is wT  and wC  respectively, and away from the boundary they are

T  and C  respectively. The influence of external forces is neglected with the occurrence of 

induced magnetic field. The wV  suction / injection velocity and  ( , ), ( , ),0u x y v x yV   is the 

velocity field. Using above assumption along with boundary layer approximation the equations 

of continuity, conservation magnetic field, momentum, induced magnetic field, temperature, and 

nanoparticle concentration is stated as,  

 

Fig. (7.1): Physical configuration of the chapter. 
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The related conditions are, 

1
2 2 3( ), , = 0, , ,w w w w

H T C
u u x v V H T T L C C L

y y y

  
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 When 0y   (7.7) 

1, 0, , , ,e eu u v H H T T C C       When y   (7.8) 

In the above equation, eH  is the magnetic field at the edge of the boundary, whereas 1H  and 2H  

are the component of magnetic field in x direction and y  direction respectively. Further, the 
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symbols 1 2 3 0 2, , , , , , ,e wL V      and 3L  are represented the relaxation time, retardation time, 

material parameter of Burgers fluid, magnetic permeability, magnetic diffusivity, thermal slip 

factor, suction / blowing velocity, and the concentration slip factor, respectively. The ( )k T  is a 

thermal conductivity in variable form, which is stated as, 

0

( ) 1 .
w

T T
k T k

T T
 



  
      

 (7.9) 

In equation (7.9), and k  is considered as the ambient thermal conductivity of the fluid and   is 

said to be thermal conductivity parameter.  

7.1.1. Similarity Variables  

The appropriate similarity variables are defined as, 
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In the above equation the ( )f  , 1( )h  , ( )  , and ( )   are the dimensionless variables and ,a  

0 0, ,T H  and 0C  are specified as a constant. 

With the help of equation (7.10), the Eqs. (7.3-7.8) becomes, 
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The concerned conditions are, 
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The developing parameters are represented as 1 2, , , ,S S   and   which are stretching ratio 

parameter, magnetic Prandtl number, thermal slip parameter, concentration slip parameter, and 

chemical reaction parameter, respectively. Further, 1 2, ,  and 3  are the non–Newtonian fluid 

parameters (Deborah numbers). The emerging parameters are mathematically defined as, 
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7.1.2. Physical Quantities  

The physical quantities related to the heat and mass transfer rate are very noteworthy from an 

engineering perspective. These quantities are stated as,  
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Here, mq  is the heat flux and mj  is the mass flux. By means of similarity transformation, the 

equation (7.17) gives, 

1/22 Re '(0),x x

l
Nu

x
   

1/22 Re '(0).x x

l
Sh

x
   

 

(7.18) 

The local Reynold’s number is Re w
x

lu


 . 

7.2. Results and Discussion 

In the current chapter, the two-dimensional Burgers nanofluid through an exponential stretching 

sheet with the induced magnetic field is observed. The outcomes of emerging parameters on the 

velocity field, induced magnetic field, temperature distribution, and concentration distribution is 

examined graphically. The values of emerging parameters are stated in the current chapter by 

1 22.0, 1.0 , 0.1, 0.5 , 0.2,Sc Q Nt S S Nb          1.5, Pr 2.5,M   and 0.1  . The 

table 7.1 represented the numerical variation of the Nusselt number for several parameters. It is 

revealed that due to the higher values of 1  and 2 , the enhancement occurs in the heat transfer 

rate, while improve the values of M  causes to diminishes the heat transfer rate. Moreover, due to 

enlargement of 1S  and Pr , the heat transfer rate is declined for 1S , but opposite behavior is 

noted for Pr . The comparison of the present problem is creating with earlier published data and 

concluded similarity between them, which is observed in Table 7.2. This comparison table is 

enough for the justification of the current problem. Table 7.2 is showed the variation in the heat 

transfer rate for the several estimations of Pr . It is seemed that the heat transfer rate boosted for 
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greater values of Pr . The numerical variation of Sherwood number against the several parameters 

is depicted in table 7.3. It is observed from the tabulated data that for the higher values of 1  and 

2  the mass transfer rate increased consequently, while opposite behavior is examined for 

greater values of M . Further, higher values of 2S  and Sc  cause the diversion in the 

concentration rate, by the fact that mass transfer rate increased for Sc , although the reverse trend 

is inspected for 2S  

Table 7.1: Variation of Nusselt number against the several parameters, as 3 0.5   and 0.2Nb  . 

1  2  M  1S  Pr  1/2Re '(0)x   

0.0 1.0 1.5 0.5 2.5 1.2055376 

0.5 - - - - 1.2058175 

1.0 - - - - 1.20603647 

0.3 0.7 1.5 - - 1.2043141 

- 1.0 - 0.5 2.5 1.20571483 

- 1.5 - - - 1.2072341 

- - 1.0 - - 1.2074084 

- - 1.5 - 2.5 1.2057148 

0.3 - 2.0 - - 1.2042970 

- 1.0 - 0.1 - 2.03814427 

- - 1.5 0.3 - 1.53531290 

- - - 0.5 2.5 1.20571483 

0.3 - - - 1.0 0.7951420 

- 1.0 1.5 - 2.0 1.1078357 

- - - 0.5 3.0 1.6692830 
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Table 7.2: Comparison table of '(0) , when 1 2 3 10 S        . 

Pr  Aman et al. [107]  '(0)  Zaib et al. [108]  '(0)  Current result  '(0)  

0.7 0.7641 0.7641 0.76512 

1.0 0.8708 0.8708 0.87181 

7.0 1.7224 1.7224 1.72462 

 

Table 7.3: Variation in mass transfer rate for the various parameters, as 3 0.5   and 0.2Nb  . 

1  2  M  2S  Sc  1/2Re '(0)x   

0.0 1.0 1.5 0.5 2.0 1.255798 

0.5 - - - - 1.255889 

1.0 - - - - 1.2559568 

0.3 0.7 1.5 - - 1.255223 

- 1.0 - 0.5 2.0 1.255856 

- 1.5 - - - 1.256483 

- - 1.0 - - 1.2565741 

- - 1.5 - - 1.255856 

0.3 - 2.0 - - 1.255158 

- 1.0 - 0.1 2.0 2.680847 

- - 1.5 0.3 - 1.710381 

0.3 - - 0.5 - 1.255856 

- 1.0 - - 1.5 1.134736 

- - 1.5 - 2.0 1.255856 

- - - - 2.5 1.345326 

7.2.1. Flow Analysis of Physical Parameters  

The variation of various parameters like relaxation parameter ( 1  and 2 ) and retardation 

parameter ( 3 ) is examined in Fig. 7.2 (a-c). The influence of Deborah numbers ( 1  and 2 ) on 
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the plot of velocity is depicted in Fig. 7.2 (a) and Fig. 7.2 (b). It is exposed that velocity profile 

is declining for the various values of both 1  and 2 . The varying characteristics of the 

retardation parameter ( 3 ) on the velocity plot is exhibited in the Fig. 7.2 (c). It is scrutinized 

that the fluid velocity enhances against the various estimation of 3 . Physically, 3  is the 

retardation time, therefore, to the enhancement of 3 , the retardation time upsurges 

consequently, and the fluid flow accelerated, due to this the velocity of a fluid increases.  

7.2.2. Influence of Physical Parameters on Induced Magnetic Field  

The variation of magnetic Prandtl number ( ), magnetic field parameter ( M ), and relaxation 

parameters ( 1  and 2 ) against  1 'h   plot is found in Fig .7.3 (a-d). It is noted that for various 

values of   the  1 'h   sketch and related thickness of boundary layer shows escalating 

behavior, which is evident in Fig. 7.3 (a). The Fig. 7.3 (b) represented the impact of M  on the 

induced magnetic field. It is indicated from the sketch that  1 'h  plot and related thickness of 

boundary layer boosts for the several values of M . This is fact that induced magnetic field and 

the magnetic field are in the same direction. The effect of Deborah numbers ( 1  and 2 ) on the 

 1 'h   plot is found in Fig. 7.3 (c) and Fig. 7.3 (d). It is elucidated that the  1 'h   sketch shows 

decaying behavior for the higher values of 1  and 2 . 

7.2.3. Thermal and Concentration Analysis of Physical Parameters  

The influence of Deborah number ( 2 ) and thermal slip parameter ( 1S ) on the ( )   distribution. 

is depicted in Fig. 7.4 ((a) and (b)). Fig. 7.4 (a) illustrates the behavior of 2  on the plot of 
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( )  . It is exposed that against the several estimations of 2 , the ( )   plot and related 

boundary layer thickness enhancing. Physically, at the higher values of Deborah number, 

materials behavior like a solid, therefore the fluid velocity slows down, and fluid temperature 

increases consequently. Fig. 7.4 (b) reveals the behavior of 1S  on the ( )   plot. It is examined 

from the plot that by the stronger values of 1S  declines the temperature and related boundary 

layer thickness consequently. Further, no slip condition is obtained when we take 1 0S  . The Fig. 

7.4 ((c) and (d)) observed the influence of Schmidt number ( Sc ) and concentration slip 

parameter ( 2S ) on the mass concentration distribution. Fig. 7.4 (c) reveals the declining behavior 

for the higher values of Sc  on the ( )   plot. Physically, Sc  depends upon the molecular 

diffusivity. Therefore, due to the enhancement of Sc  the diffusion rate slowdown, which a 

result, reduces the mass concentration and associated boundary layer thickness. The ( )   plot 

reveals diminishing impact for higher values of 2S  (see in Fig. 7.4 (d)). Furthermore, no slip 

condition is achieved when we take 2 0S  . 

7.2.4. Effect of Physical Parameters on 1/2Rex xNu  and 1/2Rex xSh  Sketch 

In this section, the influence of heat and mass transfer rate against the several parameters is 

observed graphically, which is found in Fig. 7.5 (a and b) and Fig. 7.6 (c and d). It is noted in 

Fig. 7.5 (a) that the various values of ,Nt  the Nusselt number shows a diminishing effect, while 

the Nusselt number shows an opposite trend for several values of Pr . In Fig. 7.5 (b) the 

enhancement occurs in the Nusselt number due to higher values of   and 1S . Further, the 

augmentation occurs in the Sherwood number due to higher values of   and Sc , which is 

seeming in Fig. 7.6 (c). Fig. 7.6 (d) depicted the variation of Sherwood number due to numerous 
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estimations of Nt  and Nb . It is seemed that the higher values of Nt , the mass transfer rate is 

reduced, while the growing values of Nb , the mass transfer rate is boosted. 

 

                (a) 

 

                 (b) 

 

                     (c) 
 

Fig. 7.2 (a-c): Variation in velocity profile due to various values of 1 , 2 .and 3 . 
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                 (a) 

 

                  (b) 

 

               (c) 

 

                (d) 

Fig. 7.3: (a-d): Variation in  1 'h   for the various values of  , M , 1 , and 2  respectively. 
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                 (a) 

 

                   (b) 

Fig.7. 4 ((a) and (b)): Variation in the ( )  plot for various values of 2  and 1S . 

  

Fig. 7.4 ((c) and (d)): Variation in ( )   plot for various values of Sc  and 2S . 
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           (a) 

 

               (b) 

Fig. 7.5 (a and b): Plots of Nusselt number for several values of Nt , Pr ,   and 1S . 

 

          (c) 

 

                 (d) 

Fig. 7.6 (c and d): Plots of Sherwood number for several values of  , Sc , Nt  and Nb . 
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7.3. Conclusions 

In this chapter, we analyzed the various qualitative aspects relating to the solutions of Burgers 

nanofluid flow towards an exponentially stretching sheet with induced magnetic field. The 

investigation of transportation of mass and heat is presented with the influence of chemical 

reaction and variable thermal conductivity. Further, the thermal slip and concentration slip 

boundary conditions are applied to the boundary of a surface. The main results of the current 

chapter are, 

 The velocity profile reduced for the relaxation parameter, but it reveals the opposite trend for 

the retardation parameter.  

 The occurrence of magnetic field produces the Lorentz force, which reduce the velocity of 

fluid.  

 The induced magnetic field and related boundary layer thickness rises for the greater values 

  and M .  

 The temperature and thickness of thermal boundary layer increases by the enlargement of 2 . 

 Thermal slip and concentration slip conditions vanishes for 1 20S S  .  

 The concentration and related boundary layer thickness reduces for the various values of 2S  

and Nb .  

 The heat and mass transfer rate augments due to the enhancement of 1  and 2 . 
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Chapter 08 

A comparative study between linear and exponential stretching 

sheet with double stratification of a rotating Maxwell nanofluid flow 

The aim of this chapter is to explore the rotating Maxwell nanofluid flow with double 

stratification and activation energy. The study of mass and heat transfer is conducted with the 

thermophoretic and variable thermal conductivity effects. The flow study is examined across the 

linear / exponential stretching sheet. The similarity variable is considered to modify the flow 

model into the coupled ODEs. The coupled equations are computed by bvp4c Matlab technique. 

It is found that both rotation and stretching has a remarkable impact on the velocity profile and 

temperature. The heat flux condenses for higher values of rotation parameter. The reduction 

occurred in the rate of heat and mass transfer by enlarging value of Deborah number. The 

novelty of the present chapter is to analyze the Maxwell nanofluid flow in the rotating frame 

with activation energy and thermophoretic effect. 

8.1. Mathematical Modelling  

Here we analyzed the steady, 3D incompressible rotating Maxwell nanofluid flow with double 

stratification by considering the flow over linear and exponential stretching sheet. Additionally, 

we consider the activation energy and thermophoretic effect to explore the mass transfer. The 

flow diagram is defined in Fig. 8.1 ((a) and (b)). The flow is restricted to 0z  . The stretching 

velocity for linear and exponential sheet are wu ax  and xpw

x
u aE

l

 
  

 
 respectively. The fluid 

is rotating about the z -axis by the angular velocity ( ). The ambient temperature and 
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concentration is T  and C , while surface temperature and concentration is denoted by wT  and 

wC  respectively. By using above assumption and boundary layer approximation the equations of 

mass, momentum, temperature, and concentration are expressed as,  

 

(a)  
 

 

(b) 
 

Fig. 8.1 ((a) and (b)): Physical interpretation of the chapter for linear and exponential sheet. 

 

0,u v w

x y z

   
    

   
 (8.1) 

2 2 2

2

1 2

2 2 2
2 2 2

2 2 2

2

2 2 2 ,

2

u u u
uw uv vw

x z x y y z

u u u v v v u u
u v w u w v v v

x y z x z y x z

u u u u
u v w u

x y z y

 

    
   

       
         
             

         
 

        
     

 (8.2) 
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2 2 2

2

1 2

2 2 2
2 2 2

2 2 2

2

2 2 2 ,

2

v v v
uv uw vw

x y x z y z

v v v u u u v v
u v w u w v v u

x y z x z y x z

v v v v
u w v u

x z y y

 

    
   

       
         
             

         
 

        
     

  (8.3) 

21 ( ) ,T
B

p

DT T T T T C T
u v w k T D

x y z c z z z z T z
 

 

          
       

          
 (8.4) 

 
2 2

2
1 2 2( ) ( ) .

m

a T
T B

E DC C C T C T
u v w V C C k Exp C C D

x y z z T kT z T z
 

 

        
          

       

 (8.5) 

The suitable surface and free stream conditions for linear sheet are, 

0 1 0 1( ), 0 ,  , ,w w wu u x v w T T T a x C C C b x          When 0z   (8.6) 

1 0 0 10, 0, , .zu v T T T c x C C C d x          When z   (8.7) 

The suitable surface and free stream conditions for exponential sheet are, 

1 0 1 0( ), 0 ,  xp , xp ,
2 2w w w

x x
u u x v w T T a E T C C b E C

l l

   
           

   
When 0z  , (8.8) 

1 0 1 00, 0, xp , xp .
2 2z

x x
u v T T c E T C C d E C

l l
 

   
          

   
 When z  . (8.9) 

In the above equations the symbols 1, , , , ak E   , and 1k  are denoted the fluid density, 

kinematic viscosity, thermal conductivity, relaxation time of fluid, activation energy and 

chemical reaction, respectively. Further, ( )k T  is temperature dependent thermal conductivity 

and TV  is thermophoretic velocity, which is defined as, 

0

( ) 1 , t
T

w r

kT T T
k T k V

T T T z
 



   
         

 (8.10) 
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8.1.1. Similarity Transformation 

The similarity transformations are stated as, 

Linear sheet, 

   
0 0

( ), ( ), '( ), ,

, .
w w

a
w a f v axg u axf z

T T C C

T T C C

    


    

    

 
 

 

 (8.11) 

Exponential sheet, 

   

 

0 0xp ,  xp , xp ,
2 2 2 2

xp '( ), xp ( ), xp '( ) ( ) ,
2 2

a x Nx Mx
z E T T T E C C C E

l l l l

x x a x
u aE f v aE g w E f f

l l l l

    



    

 

     
         

     

     
         

     

 (8.12) 

In Eq. (8.12) 0T  and 0C  are stated as a constant. Further, N and M are the temperature and 

concentration exponent. 

Using above transformations, the Eqs. (8.2-8.9) in dimensionless form, 

Linear sheet, 

 2 2
1 1' 2 ' 2 ' 0,f ff fg f f ff f g f

r
             (8.13) 

   2 2 2
1 1'' 2 ' ' 2 ' ' '' 2 ' ' 0,g f g f ff g f g f g ff gf

r r
               (8.14) 

   2 2
11 Pr ' ' ' ' ' ' ' 0,f f f Nb Nt                 (8.15) 

    

1
1

1 2'' ' ' ' '' ' 1 ' '' 0.

E
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Sc f f e f

Nb



            

 
   

 
 

          
 
 

  (8.16) 
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Exponential sheet, 

    2 3 2 21
1 1 13 ' 2 ' 2 ' 2 4 2 ' ' '' 0,

2
f f f ff f f f g fg f g f f f f

r


                  

 

(8.17) 
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2
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f ff f g gg
r


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
 

     

  
       

  

  (8.18) 

   2 2
11 Pr ' ' ' ' ' ' ' 0,f Nf Nb Nt f                 (8.19) 

    
1

1
1 2

1 '' ' ' '' 1 ' ' '' ' 0,
E

Nt m
f Mf e f

Sc NbSc


            

 
               (8.20) 

The associated surface and free stream conditions are, 

1 2(0) 0 (0), (0) 1, (0) 1 , (0) 1 ,
.

 ( ) 0 '( ), ( ) 0 ( ),  at   .
f g f

f g

   

      

       
 

      

 (8.21) 

The evolving parameters are represented by 1 1, , , ,r E    and 1 , which are relaxation 

parameter, rotation parameter, temperature ratio parameter, activation energy parameter, and 

thermophoretic parameter, respectively. Mathematically parameters are defined as, 

   

 

1 1 1 1

1 1 1
1 1 2
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 
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



 

 





   
      


    

 (8.22) 

The parameters which are reformed in exponential sheet are implied as, 

1 1
1 , , .

x

l

r x x

l l

a e k ll

l
e a e a


  


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(8.23) 
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8.1.2 Physical Quantities  

The quantities which deal with the rate of heat and mass transfer are very vital in the 

engineering perspective. These physical quantities are defined as,  

0 0

,  ,
( )( ) ( )

( ) , .

m m
x x

w B w

m m B

z z

q j
Nu Sh

k T T T D C C

T C
q k T j D

z z

 

 

 
 

 
   

 

 (8.24) 

Here the heat and mass flux are mq   and mj  respectively. With the help of transformations, the 

Eqn. (8.24) takes the form, 

 
1
2

11 Re '(0)x xNu 


   , 

 
1
2

21 Re '(0).x xSh 


    

 

(8.25) 

The local Reynold’s numbers are stated for linear and exponential stretching sheet as, 

Re w
x

xu


  and Re w

x

lu


 respectively. 

8.1.3. Solution Methodology 

In this chapter, we solve numerically the Eqs. (8.14–8.22) by the means of bvp4c built-in Matlab 

technique. We converted the Eqs. (8.14–8.22) into the system of 1st order Eqs. as, 

Linear sheet, 

 1 2 3 4 5 6 7 6 7, ' , '' , , ' , , ' , , ' ,f Z f Z f Z g Z g Z Z Z Z Z             (8.26) 

   
12 2

1 1 1 1 1 5 1 3 1 1 2 3 4 11 2 2 ,rZZ Z Z Z Z Z Z Z Z Z Z   


        (8.27) 

    
12 2 2

2 1 1 2 4 1 5 1 1 2 5 1 1 4 1 31 2 2 ,rZZ Z Z Z Z Z Z Z Z Z Z Z Z   


        
 

(8.28) 
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  (8.30) 

Exponential sheet, 
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(8.32) 
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  (8.34) 

The related boundary conditions in the first order form as,  

0 0 0 0 1 0 2

inf inf inf inf

(1) 0 (4), (2) 1, (6) 1 , (8) 1 ,
.

(2) 0 (5), (6) 0, (5) 0.
Z Z Z Z S Z S

Z Z Z Z

       
 

    
 

(8.35) 

8.2. Results and Discussion 

The current chapter observed numerically, the rotating Maxwell nanofluid flow with double 

stratification and activation energy past a linear and exponential stretching surface. The graphical 

consequence is presented for evolving parameters against the velocity, temperature, and 

concentration distribution. The defined values of the parameters are 1 0.2,Pr 3.5,  

1 2 10.1 , 0.5, 0.3, 0.5, 2.5, 0.5,rNt Nb E Sc               and 1 1.0  . The 
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reliability of the present investigation is proved by constructing the comparison table with earlier 

published data and finding similarity between two, which is acknowledged in Table 8.1. This 

comparison table is sufficient for the justification of the present investigation. Table 8.1 is the 

assessment of ''(0)f  for the different values of 1 . It is found that stronger values of 1  improve 

the velocity gradient. The comparison between linear and exponential stretching sheet on '(0)  

and '(0)  for the several parameters is presented in table 8.2. It is portrayed in the table 8.2 

that the heat and mass transfer rate shows diminishing behavior for 1  and r , while growing 

trend is noted against the 2  and 1 . Further, from the tabulated data, it is cleared that the 

emerging parameter against exponential sheet gives more better results as compare to the linear 

stretching sheet. Therefore, it is concluded that exponential stretching sheet gives more valuable 

results as compared to other surfaces. 

Table 8.1: Assessment of ''(0)f  with published results, when 1 1 20 r         . 

 

1  

Sadeghy et al. [109] 
''(0)f  

 Khan et al. [110] 
''(0)f  

Present results 
''(0)f  

0.0 1.00000 1.00000 1.00480 

0.2 1.05490 1.051889 1.05215 

0.4 1.10084 1.101903 1.10204 

0.6 1.15016 1.150137 1.15022 

0.8 1.19872 1.196711 1.19672 
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Table 8.2: Valuation of results between linear and exponential sheet for '(0)  and '(0) . 

Variation of several parameters as 
0.1 , 0.5.Nt Nb     

Linear sheet Exponential sheet 

1  
r  2  1  '(0)  '(0)  '(0)  '(0)  

0.0 0.5 0.1 1.0 1.9744 2.8991 1.286 2.6013 

0.3 - - - 1.9119 2.6994 1.2097 2.4792 

0.6 - - - 1.8374 2.4844 1.1319 2.3645 

0.2 0.3 - - 1.9896 2.9573 1.3421 2.7217 

- 0.5 0.1 - 1.9335 2.7664 1.2351 2.5187 

- 0.7  1.0 1.8719 2.5804 1.1311 2.3574 

- 0.5 0.0 -  2.487  2.3626 

0.2 - 0.1 - 2.7664 2.5187 

- - 0.2 - 3.1157 2.7137 

- 0.5 - 0.5  2.3698  2.0349 

- - - 1.0 2.7664 2.5187 

0.2 - 0.1 1.5 3.4384 3.2121 

 

8.2.1. Flow Analysis of Physical Parameters  

The impact of the relaxation parameter ( 1 ) and rotation parameter ( r ) on the velocity field 

'( )f   and ( )g   for linear and exponential sheet is shown in Figs. (8.2–8.5). The variation in 

'( )f   and ( )g   sketch for various values of 1  is observed in Figs. 8.2 and 8.3. It reveals that 

the velocity profile is reduced as increasing the 1 . Further, we noted that Newtonian fluid is 

regained for 1 0  . Physically, the viscous effects are dominant for smaller 1 , but elastic 

effects are dominate in the case of larger values of 1 . Hence, the fluid velocity reduces. The 

impact of r  on the '( )f   and ( )g   sketch is examined in the Figs. 8.4 and 8.5. It is described 
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that the different values of r , reduce the plot of '( )f   and ( )g   and associated boundary layer 

become thinner. Physically, the rotation parameter diminishes the fluid motion in the xdirection 

because it is the ratio between rotations to the stretching rate. The rotation effect illustrates the 

Coriolis force which leads to accelerate the fluid flow, hence larger 
r  provides the opposition to 

the fluid motion. The negative value of ( )g   plot exposes that the flow in the negative y 

direction only due to rotation and oscillatory behaves produce. Therefore, the velocity of the 

fluid is declined in both directions. 

8.2.2. Thermal Analysis of Physical Parameters 

The impact of the relaxation parameter ( 1 ), rotation parameter ( r ), variable thermal 

conductivity parameter (  ), thermophoresis parameter ( Nt ), Prandtl number ( Pr ), and thermal 

stratification parameter ( 1 ) on the ( )   distribution is shown in Figs. (8.6–8.11). It is illustrated 

in Figs. 8.6 and 8.7 that the plot of ( )   is improved for the higher values of 1  and r . 

Physically, for stronger estimation of r  the thermal boundary layer become thicker and more 

kinetic energy provides to the fluid, hence the fluid temperature and associated boundary layer 

thickness is boosted. The qualitatively similar effect is noted for the different values of Pr  and 1  

in Figs. 8.8 and 8.9. By amplifying the values of Pr  and 1  the temperature and related thickness 

of boundary layer reduces. The occurrence of the thermal stratification effect, the effective 

temperature between the ambient fluid and sheet will be decreased, therefore the temperature 

distribution decays. The Figs. 8.10 and 8.11 designates the variation in the ( )   plot for several 

values of   and Nt . It is depicted that both thermal boundary layer thickness and temperature 

enlarges by the flourishing values of   and Nt . Physically, due to augmentation of 
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thermophoretic parameter yields stronger thermophoretic forces in the direction of the 

temperature gradient, as a result the temperature of fluid enhances. 

8.2.3. Concentration Analysis of Physical Parameters  

The Figs. (8.12–8.19) portrayed the influence of relaxation parameter ( 1 ), chemical reaction 

parameter ( ), rotation parameter ( r ), Brownian motion parameter ( Nb ), thermophoretic 

parameter ( 1 ), Schmidt number ( Sc ), and concentration stratification parameter ( 2 ), activation 

energy parameter ( 1E ), on the ( )   plot. It is plotted in Figs. 8.12 and 8.13 that for various 

values of 1  and r  displays the growing behavior for the concentration plot. Physically, for the 

larger r  the boundary layer thickness as well as ( )   distribution enhances due to increment of 

rotation velocity  . The behavior of Sc  and 2  on the ( )   plot is exhibited in Figs. 8.14 and 

8.15. It is evinced from the Figs. 8.14 and 8.15 that the sketched shows shrinking trend due to 

escalating the values of Sc  and 2 . Physically, 2  is the concentration difference between the 

ambient fluid and the sheet. Therefore, mass concentration declines for 2 . Additionally, for 2 0 

, the recommended surface concentration condition is recovered. The variation in ( )   

distribution for the several values of   and 1  is designated in Figs. 8.16 and 8.17. It 

demonstrates that the mass concentration is diminished due to the higher values of   and 1 . 

Physically, by the augmentation in 1 , the particle concentration all over the domain shrinkages, 

which cause the reduction in ( )   plot and related boundary layer thickness. Moreover, the 

greater values of   producing higher molecular motion, which increases transport phenomenon 

and reduces the fluid concentration. The variation in ( )   curve for the various estimations of 
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the activation energy parameter is sketched in Fig. 8.18. It demonstrates that the thickening of 

the concentration boundary layer enhances due to the higher values of 1E . This occurs, because 

the high activation energy and low temperature lead to slow down the reaction rate, hence mass 

concentration increases due to slow reaction rate. Fig. 8.19 elucidates that the higher estimation 

of Nb  produce lower concentration and declining the thickness of related boundary layer. 

8.2.4. Influence of Physical Parameters on 
1
2Rex xNu

  and 
1
2Rex xSh

  Sketch 

In this section, the consequence of heat and mass transfer rate on the linear and exponential 

stretching sheet is examined graphically. Figs. (8.20–8.23) established the variation in the heat 

and mass transfer rate for the several parameters. It is illustrated in Fig. 8.20 that the heat transfer 

rate diminishes for higher values of 1  and  . Further, the growth in the Sherwood number is 

occurred due to enhancement of 1 , while the reverse trend is found for stronger values of 1  

(see in Fig. 8.21). Fig. 8.22 shows the dominate behavior for the heat transfer rate due to several 

values of 1 , but opposite tendency is observed for the higher estimation of Nt . Fig. 8.23 

scrutinized that 2  and   has similar results for the mass transfer rate. It is shown that as 

enhancing the values of 2  and  , the Sherwood number is increased. 
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Fig. 8.2: Graph of 1  for '( )f  . Fig. 8.3: Graph of 1  for ( )g  . 

  
Fig. 8.4: Graph of r  for '( )f  . Fig. 8.5: Graph of r  for ( )g  . 
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Fig. 8.6: Graph of 1  for ( )  . Fig. 8.7: Graph of r  for ( )  . 

  
Fig. 8.8: Graph of Pr  for ( )  . Fig. 8.9: Graph of 1  for ( )  . 
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Fig. 8.10: Graph of   for ( )  . Fig. 8.11: Graph of Nt  for ( )  . 

  

Fig. 8.12: Graph of 1  for ( )  . Fig. 8.13: Graph of r  for ( )  . 
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Fig. 8.14: Graph of Sc  for ( )  . Fig. 8.15: Graph of 2  for ( )  . 

  
Fig. 8.16: Graph of   for ( )  . Fig. 8.17: Graph of 1  for ( )  . 
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Fig. 8.18: Graph of 1E  for ( )  . Fig. 8.19: Graph of Nb  for ( )  . 

  

Fig. 8.20: Sketch '(0)  between 1  and  . Fig. 8.21: Sketch '(0)  between 1  and 1 . 
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8.3. Concluding Remarks  

Here, we described the rotating Maxwell nanofluid flow induced by an exponential and linear 

stretching sheet. The stratification conditions are implemented on the boundary of sheet. The 

non-dimensionalized mathematical model is solved by bvp4c Matlab technique. The key results 

of the chapter are highlighted as:  

 The fluid velocity is reduced due to the enhancement of rotation and relaxation parameter.  

 The temperature and related boundary layer thickness enhances by the enhancement of 1  

and r . 

 The boundary layer thickness and temperature is enhanced due to higher value of Nt . 

 By higher values of 1 , the concentration and related boundary layer thickness diminishes.  

 Weaker concentration is noted for higher estimation of   and 2 . 

  

Fig. 8.22: Sketch '(0)  between Nt  and 1 . Fig. 8.23: Sketch '(0)  between 2S  and  . 
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Chapter 09 

Transient flow of Maxwell Nanofluid Over a Shrinking Surface: 

Numerical Solutions and Stability Analysis 

This chapter explored the theoretical analysis of heat and mass transfer of Maxwell nanofluid 

across a permeable shrinking surface with thermal radiation. The thermal and concentration 

configuration involves the heat absorption / generation and chemical reaction in the flow regime. 

This physical configuration is transformed into terms of non-dimensional differential system. A 

numerical investigation of the governing equations is carried out with Bvp4c Matlab technique. 

Further, it has been found that shrinking and suction at porous surface leads to multiple solutions 

of the system. The results in terms of line graphs portray that the stronger suction at shrinking 

surface possess higher heat and mass transfer rate at the surface. The heat transfer rate enhances 

by the larger values of Biot number. Further, the velocity, temperature and mass distribution 

indicate maximum values at stronger relaxation parameter. 

9.1. Mathematical Formulation 

The investigation of an unsteady, laminar, 2D, stagnation point flow of radiative Maxwell 

nanofluid through a shrinking sheet with chemical reaction is discussed. The convective 

boundary condition is also taken into the account at the sheet. Further, the analysis of heat 

transfer made with the effect of heat generation / absorption. Fig. (9.1) displays the geometry of 

the fluid. The stretching and free stream velocities are 𝑢𝑤 =
𝑎𝑥

(1−𝛼0𝑡)
 and 𝑢𝑒 =

𝑐𝑥

(1−𝛼0𝑡)
 

respectively. The fluid concentration and temperature are taken 𝐶 and 𝑇 respectively, but the 

wall concentration and temperature are 𝐶𝑤 and 𝑇𝑤 respectively and away from the wall it denotes 
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by 𝐶∞ and 𝑇∞ respectively. By using the velocity field 𝐕 = [𝑢(𝑥, 𝑦, 𝑡), 𝑣(𝑥, 𝑦, 𝑡), 0] and above 

supposition the governing equations of mass, momentum, energy, and concentration follows as, 

 

Fig. 9.1: Flow geometry of the problem. 

 

∂𝑢
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+
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= 0,  (9.1) 
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∂𝑦2
+ 𝑢𝑒

∂𝑢𝑒

∂𝑥
+
∂𝑢𝑒

∂𝑡
, (9.2) 

∂𝑇

∂𝑡
+ 𝑢

∂𝑇

∂𝑥
+ 𝑣

∂𝑇

∂𝑦
= 𝛼

∂2𝑇

∂𝑦2
+ 𝜏 (

𝐷𝑇

𝑇∞
(
∂𝑇

∂𝑦
)
2

+ 𝐷𝐵
∂𝑇

∂𝑦

∂𝐶

∂𝑦
) −

1

𝜌𝑐𝑝

∂𝑞𝑟

∂𝑦
+

𝑄0

𝜌𝑐𝑝
(𝑇 − 𝑇 ∞),  (9.3) 

∂𝐶

∂𝑡
+ 𝑢

∂𝐶

∂𝑥
+ 𝑣

∂𝐶

∂𝑦
+ 𝐷𝐵

∂2𝐶

∂𝑦2
+
𝐷𝑇

𝑇∞

∂2𝑇

∂𝑦2
− 𝑘1(𝐶 − 𝐶 ∞),  (9.4) 
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By Rosseland approximation [111], the radiative heat flux is stated as,  

𝑞𝑟 =
4𝜎∗

3𝜅∗
∂𝑇4

∂𝑦
. (9.5) 

In above equation the Stefan–Boltzmann constant is 𝜎∗. We expand 𝑇4 by using Taylor’s series 

around 𝑇 ∞ and ignoring higher order terms as, 

𝑇4 ≈ 4𝑇 ∞
3 𝑇 − 3𝑇 ∞

4 . (9.6) 

Hence, we get, 

∂𝑞𝑟

∂𝑦
= −

16𝜎∗

3𝜅∗
∂𝑇2

∂𝑦2
.  (9.7) 

So, the above equation (9.3) is written as, 

∂𝑇

∂𝑡
+ 𝑢

∂𝑇

∂𝑥
+ 𝑣

∂𝑇

∂𝑦
= 𝛼 (1 +

16𝜎∗

3𝑘𝑘∗
𝑇 ∞
3 )

∂2𝑇

∂𝑦2
+ 𝜏 (

𝐷𝑇

𝑇∞
(
∂𝑇

∂𝑦
)
2

+ 𝐷𝐵
∂𝑇

∂𝑦

∂𝐶

∂𝑦
) +

𝑄0

𝜌𝑐𝑝
(𝑇 − 𝑇 ∞),  (9.8) 

The related boundary conditions are, 

𝑢 = 𝜆𝑢𝑤, 𝑣 =
−𝑣0

(1−𝛼0𝑡)
, ℎ𝑤(𝑇 − 𝑇𝑤) = 𝑘 (

∂𝑇

∂𝑦
) , 𝐶 = 𝐶𝑤, as 𝑦 → 0, 

𝑢 = 𝑢𝑒 , 𝑇 → 𝑇∞, C→ 𝐶∞, as 𝑦 → ∞. 
(9.9) 

 

In the above equations the velocity components are 𝑢 and 𝑣 in 𝑥 − and 𝑦 −directions, 

respectively. The wall velocity is (𝑢𝑤 =
𝑎𝑥

(1−𝛼0𝑡)
), wall temperature is (𝑇𝑤 = 𝑇∞ +

𝑇0𝑥
2

(1−𝛼0𝑡)2
), and 

wall concentration is (𝐶𝑤 = 𝐶∞ +
𝐶0𝑥

2

(1−𝛼0𝑡)2
  ).  
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The similarity transformation is defined as,  

𝜓 = √
𝜈𝑐

(1−𝛼0𝑡)
𝑥𝑓(𝜂), 𝜂 = 𝑦√

𝑐

𝜈(1−𝛼0𝑡)
,  

𝑇 = 𝑇∞ +
𝑇0𝑥

2

(1−𝛼0𝑡)2
𝜃(𝜂), 𝐶 = 𝐶∞ +

𝐶0𝑥
2

(1−𝛼0𝑡)2
𝜙(𝜂).  

(9.10) 

Equation of continuity is satisfied automatically by using (9.10), while other equations becomes,  

𝑓′′′ − (
𝑓′2 − 𝑓𝑓′′

+𝐴(
𝜂

2
𝑓′′ + 𝑓′)

) − 𝛽1

(

  
 
𝐴2 (2𝑓′ +

7𝜂

2
𝑓′′ +

𝜂2

4
𝑓′′′)

+𝐴(𝑓′2 − 3𝑓𝑓′′) − 2𝑓𝑓′𝑓′′

+𝐴𝜂(𝑓′𝑓′′ − 𝑓𝑓′′′) + 𝑓2𝑓′′′

)

  
 
+ 1 + 𝐴 = 0, (9.11) 

(1 + 𝑅𝑑)𝜃′′ + 𝑃𝑟 [(𝑓𝜃′ − 2𝑓′𝜃) − 𝐴 (2𝜃 +
𝜂

2
𝜃′) + (𝑁𝑏𝜃′𝜙′ + 𝑁𝑡𝜃′2) + 𝑄𝜃] = 0, (9.12) 

𝜙′′ + 𝑆𝑐(𝑓𝜙′ − 2𝑓′𝜙) − 𝑆𝑐𝐴(2𝜙 +
𝜂

2
𝜙′) + 𝑆𝑐𝜎𝜙 +

𝑁𝑡

𝑁𝑏
𝜃′′ = 0, (9.13) 

The concerned boundary conditions take the form,  

𝑓′(𝜂) = λ, 𝑓(𝜂) = s,  𝜃′(𝜂) = γ∗(𝜃(𝜂) − 1), 𝜙(𝜂) = 1, as 𝜂 → 0, 

𝑓′(𝜂) → 1, 𝜃(𝜂) = 0 =   𝜙(𝜂), as 𝜂 → ∞. 
(9.14) 

Here prime indicates the derivative with respect to 𝜂. Whereas the symbols 𝜆,,  𝐴, 𝛽1, 𝑅𝑑, 𝑠, and 

𝜎 represents the shrinking parameter, unsteadiness parameter, relaxation parameter, radiation 

parameter, suction (𝑠 > 0) / injection (𝑠 < 0) parameter, and chemical reaction parameter 

respectively. Further, 𝑆𝑐, 𝑃𝑟 and 𝛾∗, characterizes the Schmidt number, Prandtl number and Biot 

number, respectively.  
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These parameters are defined mathematically as, 

𝐴 =
𝛼0

𝑎
, 𝛽 = 𝜆0𝑐, 𝑁𝑏 =

𝜏𝐷𝐵Δ𝐶

𝜈
, 𝑁𝑡 =

𝜏𝐷𝑇Δ𝑇

𝜈𝑇∞
, 𝑆𝑐 =

𝜈

𝐷𝐵
, Pr =

𝜐

𝛼
, 

𝜎 =
𝑘0

𝑎
, 𝑅𝑑 =

16𝑘𝜅∗

4𝜎∗𝑇 ∞
3 , 𝑠 = 𝑣0

√𝜐𝑐
, 𝛾∗ = ℎ𝑤

∗

𝑘
√
𝜈

𝑎
, 𝑄 =

𝑄1

𝜌𝑐𝑝𝑐
. 

(9.15) 

Additionally, we have taken 𝜆1 = 𝜆0(1 − 𝛼0𝑡), 𝑘1 =
𝑘0

(1−𝛼0𝑡)
, 𝑄0 =

𝑄1

(1−𝛼0𝑡)
, and                    

ℎ𝑤 = ℎ𝑤
∗ √(1 − 𝛼0𝑡) as an initial relaxation time, reaction rate constant, heat generation or 

absorption and heat transfer coefficient. 

9.1.1. Physical Quantities 

The Nusselt and Sherwood numbers are substantial physical quantities from engineering sight. 

They exposed the rate of heat and mass transfer. These are stated as, 

𝑁𝑢𝑥 =
𝑥𝑞𝑚

𝑘(𝑇𝑤 − 𝑇∞)
, 𝑆ℎ𝑥 =

𝑥𝑗𝑚
𝐷𝐵(𝐶𝑤 − 𝐶∞)

 . (9.16) 

In above 𝑘 is thermal conductivity. Also 𝑞𝑚 and 𝑗𝑚 are the heat flux and mass flux respectively. 

They are specified by, 

𝑞𝑚 = |−𝑘
∂𝑇

∂𝑦
−
4𝜎1

∗

3𝜅∗
∂𝑇4

∂𝑦
|
𝑦=0

, 𝑗𝑚 = −𝐷𝐵
∂𝐶

∂𝑦
|
𝑦=0
.  (9.17) 

The dimensionless form is, 

(
𝑅𝑒𝑥

−
1

2𝑁𝑢𝑥 = −(1 + 𝑅𝑑)𝜃
′(0),

𝑅𝑒𝑥
−
1

2𝑆ℎ𝑥 = −𝜙
′(0).

). (9.18) 

Here 𝑅𝑒𝑥 is the local Reynolds number. 
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9.1.2. Stability Analysis 

From the numerical outcomes, we examined that for a various value of penetrating parameters, 

there exists a dual solution. In order to assess that when these two solutions are physically 

reliable, we test the stability analysis of the above equations (9.11-9.13). We introduced new 

dimensionless variable 𝜏∗ = 𝛼0𝑡. The use of 𝜏∗ allied to the initial value problem and dependable 

of the question that which solution will be physically reliable. To do this we introduced following 

similarity variable, 

𝜓 = √
𝜈𝑎

(1−𝜏)
𝑥𝑓(𝜂, 𝜏∗), 𝜂 = 𝑦√

𝑎

𝜈(1−𝜏)
 , 𝜏∗ = 𝛼0𝑡,  

𝑇 = 𝑇∞ +
𝑇0𝑥

2

(1 − 𝜏∗)2
𝜃(𝜂, 𝜏∗), 𝐶 = 𝐶∞ +

𝐶0𝑥
2

(1 − 𝜏∗)2
𝜙(𝜂, 𝜏∗). 

(9.19) 

Using equation (9.19), the Eqs. (9.11-9.13) with boundary condition can be written as,  

∂3𝑓

∂𝜂3
+ (

𝑓
∂2𝑓

∂𝜂2
− (

∂𝑓

∂𝜂
)
2

+ 𝐴 + 1

−𝐴 (
∂𝑓

∂𝜂
+ (1 − 𝜏∗)

∂2𝑓

∂𝜂 ∂𝜏∗
)
) = 𝛽1

(

  
 

𝐴2 (2
∂𝑓

∂𝜂
+ 2(1 − 𝜏∗)

∂2𝑓

∂𝜂 ∂𝜏∗
+ (1 − 𝜏∗)2

∂3𝑓

∂𝜂 ∂𝜏∗2
)

+𝐴 ((
∂𝑓

∂𝜂
)
2

− (1 − 𝜏∗)
∂𝑓

∂𝜂

∂2𝑓

∂𝜂 ∂𝜏∗
− (1 − 𝜏∗)

∂3𝑓

∂𝜂2 ∂𝜏∗
)

−𝐴𝑓
∂2𝑓

∂𝜂2
+ 𝑓2

∂3𝑓

∂𝜂3
− 2𝑓

∂𝑓

∂𝜂

∂2𝑓

∂𝜂2 )

  
 

, (9.20) 

1

𝑃𝑟
(1 + 𝑅𝑑)

∂2𝜃

∂𝜂2
− 2𝜃

∂𝑓

∂𝜂
+ 𝑓

∂𝜃

∂𝜂
+ 𝑄𝜃 = 𝐴 (2𝜃 − (1 − 𝜏∗)

∂𝜃

∂𝜏∗
) + 𝑁𝑏

∂𝜃

∂𝜂

∂𝜙

∂𝜂
+𝑁𝑡 (

∂𝜃

∂𝜂
)
2

, (9.21) 

1

𝑆𝑐

∂2𝜙

∂𝜂2
− 2𝜙

∂𝑓

∂𝜂
+ 𝑓

∂𝜙

∂𝜂
+ 𝜎𝜙 = 𝐴 (2𝜙 − (1 − 𝜏∗)

∂𝜙

∂𝜏∗
) +

𝑁𝑡

𝑁𝑏𝑆𝑐

∂2𝜃

∂𝜂2
.  (9.22) 

With concerned boundary condition  

𝑓(𝜂, 𝜏∗) = 0,
∂𝑓

∂𝜂
(𝜂, 𝜏∗) = 𝜆,

∂𝜃

∂𝜂
(𝜂,   𝜏∗) = −𝛾∗(1 − 𝜃(𝜂, 𝜏∗)), 𝜙(𝜂, 𝜏∗) = 1, as 𝜂 → 0, 

∂𝑓

∂𝜂
(𝜂, 𝜏∗) → 1, 𝜃(𝜂, 𝜏∗) → 0, 𝜙(𝜂, 𝜏∗) → 0. as 𝜂 → ∞. 

(9.23) 

The stability test for the steady flow of the solution in the form 𝑓(𝜂) = 𝑓0(𝜂), 𝜃(𝜂) = 𝜃0(𝜂), and 

𝜙(𝜂) = 𝜙0(𝜂), we have written [112] as, 



132 
 

𝑓(𝜂, 𝜏∗) = 𝑓0(𝜂) + 𝐹(𝜂, 𝜏
∗)𝐸𝑥𝑝(−𝛾𝜏∗),  

𝜃(𝜂, 𝜏∗) = 𝜃0(𝜂) + 𝐺(𝜂, 𝜏
∗)𝐸𝑥𝑝(−𝛾𝜏∗),  

𝜙(𝜂, 𝜏∗) = 𝜙0(𝜂) + 𝐻(𝜂, 𝜏
∗). 𝐸𝑥𝑝(−𝛾𝜏∗)  

(9.24) 

Here 𝛾 is the rate of growth or decay of disturbance. As compared to steady state solution the 

𝑓0(𝜂), 𝜃0(𝜂), and 𝜙0(𝜂) are assumed to be small with respect to 𝐹(𝜂, 𝜏∗), 𝐺(𝜂, 𝜏∗), and 𝐻(𝜂, 𝜏∗) 

respectively. To study the linear stability of the flow problem such assumptions are made. 

Hence, by linearizing, we get,  

∂3𝐹

∂𝜂3
+ (

𝑓0
∂2𝐹

∂𝜂2
− 2𝑓0′

∂𝐹

∂𝜂
− 𝑓0

′′𝐹

−𝐴 (
∂𝐹

∂𝜂
+ (1 − 𝜏∗) {

∂2𝐹

∂𝜂 ∂𝜏∗
− 𝛾

∂𝐹

∂𝜂
})
)  

−𝛽1

(

 
 
 
 
 
 𝐴2 (

2
∂𝐹

∂𝜂
+ (1 − 𝜏∗)2 {

∂3𝐹 

∂𝜂 ∂𝜏∗2
− 2𝛾

∂2𝐹

∂𝜂 ∂𝜏∗
− 𝛾

∂𝐹

∂𝜂
+ 𝛾2

∂2𝐹

∂𝜂 ∂𝜏∗
}

+2(1 − 𝜏∗) {
∂2𝐹

∂𝜂 ∂𝜏∗
− 𝛾

∂𝐹

∂𝜂
}

)

+𝐴(
2𝑓0

′ ∂𝐹

∂𝜂
− (1 − 𝜏∗) {𝑓0

∂2𝐹

∂𝜂 ∂𝜏∗
− 𝛾𝑓0

∂𝐹

∂𝜂
} − (1 − 𝜏∗) {𝑓0

∂3𝐹 

∂𝜂2 ∂𝜏∗
− 𝛾𝑓0

∂2𝐹

∂𝜂2
}

−𝑓0
∂2𝐹

∂𝜂2
− 𝑓0

′′𝐹
)

+𝑓0
2 ∂

3𝐹 

∂𝜂3
− 2𝑓0𝑓0

′ ∂
2𝐹

∂𝜂2
− 2𝑓0𝑓0

′′ ∂𝐹

∂𝜂
+ 2(𝑓0𝑓0

′′′ − 𝑓0𝑓0
′′)𝐹 )

 
 
 
 
 
 

,  

(9.25) 

1

𝑃𝑟
(1 + 𝑅𝑑)

∂2𝐺

∂𝜂2
+ (

2𝑁𝑡𝜃0
′ ∂𝐺 

∂𝜂
− 2𝑓0

′𝐺 − 2𝜃0
∂𝐹 

∂𝜂

+𝑓0
∂𝐺 

∂𝜂
+ 𝐹𝜃0

′ + 𝛿𝐺
) − 𝐴 (2𝐺 − (1 − 𝜏∗) {

∂𝐺

∂𝜏∗
− 𝛾𝐺})  

+𝑁𝑏 {𝜃0
′ ∂𝐻 

∂𝜂
+ 𝜃0

′ ∂𝐺 

∂𝜂
},  

(9.26) 

1

𝑆𝑐

∂2𝐻

∂𝜂2
+ (

𝑁𝑡

𝑁𝑏𝑆𝑐

∂2𝐺

∂𝜂2
− 2𝑓0

′𝐻 − 2𝜙0
∂𝐹 

∂𝜂

+𝑓0
∂𝐻 

∂𝜂
+ 𝐹𝜙0

′ + 𝜎𝐻
)− 𝐴 (2𝐻 − (1 − 𝜏∗) {

∂𝐻

∂𝜏∗
− 𝛾𝐻}). (9.27) 

We want to explore the stability analysis of the steady state solution by putting 𝜏∗ = 0. Hence, 

𝐹(𝜂) = 𝐹0(𝜂), 𝐺(𝜂) = 𝐺0(𝜂), and 𝐻(𝜂) = 𝐻0(𝜂) in the above equations classify the initial 



133 
 

growth or decay of the solution, in this respect we have to solve the linear eigenvalue of the 

problem, 

(

(1 − 𝛽1𝑓0
′2)𝐹0

′′′ + {𝑓0 + 𝛽1𝐴𝑓0(1 − 𝛾) + 2𝛽1𝑓0𝑓0
′}𝐹0

′′

+(2𝛽1𝑓0𝑓0
′′ − 𝛽1𝐴

2𝑓0(1 − 𝛾))𝐹0
′ − (2𝑓0

′ + 𝐴(1 − 𝛾) + 𝛽1𝐴(2𝑓0
′ − 𝛾𝑓0))𝐹0

′

+(𝑓0
′′ + 𝛽1𝐴𝑓0

′′ + 2𝛽𝐴𝑓0
′𝑓0
′′ − 2𝛽𝐴𝑓0𝑓0

′′′)𝐹0

) = 0, (9.28) 

(
1

𝑃𝑟
(1 + 𝑅𝑑)𝐺0

′′ + (𝑓0 + 𝑁𝑏𝜙0
′ + 2𝑁𝑡𝜃0

′)𝐺0
′ + (𝑄 − 𝐴(2 − 𝛾) − 2𝑓0

′)𝐺0

−2𝐹0
′𝜃0 + 𝐹0𝜃0

′ + 𝑁𝑏𝜙0
′𝐻0

′
) = 0,  (9.29) 

1

𝑆𝑐
𝐻0
′′ + 𝑓0𝐻0

′ + (𝜎 − 𝐴(2 − 𝛾) − 𝑓0)𝐻0 − 2𝐹0
′𝜙0 + 𝐹0𝜙0

′ +
𝑁𝑡

𝑁𝑏
𝐺0
′′ = 0. (9.30) 

The concerned boundary conditions are, 

𝐹0(𝜂) = 0, 𝐹0
′(𝜂) = 0, 𝐺0

′(𝜂) = 𝛾∗𝐺0(𝜂),𝐻0(𝜂) = 0 as 𝜂 → 0, 

𝐹0
′(𝜂) = 0 = 𝐺0(𝜂),𝐻0(𝜂) = 0 as 𝜂 → ∞, 

(9.31) 

It should be noted in the above homogenous equations with the homogeneous boundary 

conditions found an eigenvalue 𝛾. The solution of above equations gives infinite eigenvalues such 

that (𝛾1 < 𝛾2 < 𝛾3…… . ). If the lowest eigenvalue is positive, the disturbance is decaying and the 

solution becomes stable, but when the lowest value is negative, then the disturbance is growing, 

and the solution is unstable. 

9.1.3. Numerical Method  

The solution of Eqs. (9.11-9.13) with Eq. (9.14) is constructed via bvp4c Matlab technique. The 

Bvp4c function solves the first order system of differential equations. For this purpose, we must 

transform Eqs. (9.11-9.14) into the system of 1𝑠𝑡 order differential equations. The interval of 

convergence takes between 0 to 6, with 𝜂∞ = 6.  

(
𝑓 = 𝑦(1), 𝑓′ = 𝑦(2), 𝑓′′ = 𝑦(3), 𝜃 = 𝑦(4),

𝜃′ = 𝑦(5), 𝜙 = 𝑦(6), 𝜙′ = 𝑦(7).
), (9.32) 
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𝑦𝑦1 = (
1

1−𝛽1𝐴2
𝜂2

4
+𝛽1𝐴𝜂𝑦(1)−𝛽1𝑦(1)2

)

(

 
 
𝑦(2)2 − 𝑦(1)𝑦(3) + 𝐴 (𝑦(2) +

𝜂

2
𝑦(3)) − 𝐴

+𝛽1𝐴
2 (2𝑦(2) +

7𝜂

4
𝑦(3)) − 2𝛽1𝑦(1)𝑦(2)𝑦(3)

+𝛽1𝐴(2𝑦(2)
2 − 3𝑦(1)𝑦(3) + 𝜂𝑦(2)𝑦(3)) − 1)

 
 
,  (9.33) 

𝑦𝑦2 =
𝑃𝑟

1 + 𝑅𝑑
(
𝐴 {2𝑦(4) +

𝜂

2
𝑦(5)} + 2𝑦(2)𝑦(4) − 𝑦(1)𝑦(5)

−𝑁𝑏𝑦(5)𝑦(7) − 𝑁𝑡𝑦(5)2 − 𝑄𝑦(4)
), (9.34) 

𝑦𝑦3 = 𝑆𝑐 (𝐴 {2𝑦(6) +
𝜂

2
𝑦(7)} + 𝑦(2)𝑦(6) − 𝑦(1)𝑦(7) + 𝜎𝑦(6)) −

𝑁𝑡

𝑁𝑏
𝑦𝑦2, (9.35) 

The suitable boundary conditions in 1𝑠𝑡 order are, 

(
𝑦0(1) = S, 𝑦0(2) = λ, 𝑦0(5) + 𝛾

∗(1 − 𝑦0(5)) = 0,   𝑦0(6) = 1,

𝑦Inf(2) = 1, 𝑦Inf(4) = 0 = 𝑦Inf(6).
).  (9.36) 

9.2. Results and Discussion 

In this section, we analyzed the multiple solutions of an unsteady two-dimensional radiative 

Maxwell nanofluid through a shrinking sheet with the convective boundary condition. The 

physical model in terms of differential system is solved numerically by using bvp4c function in 

Matlab. Physical behavior of the controlling parameters such as unsteadiness (𝐴), relaxation 

(𝛽1), suction / injection (𝑠), thermophoresis (𝑁𝑡), Brownian motion (𝑁𝑏), heat generation / 

absorption (𝑄), radiation (𝑅𝑑), chemical reaction (𝜎), shrinking (𝜆), Schmidt number (𝑆𝑐), 

Biot number (𝛾∗), and Prandtl number (𝑃𝑟) across the velocity, temperature, and concentration 

distribution is presented. Moreover, the heat and mass transfer rate are also presented in the Figs. 

(9.2-9.7). We have to observe the dual nature solution for shrinking case of the system of 

equations (9.11-9.13) with boundary condition (9.14). From the figures, it is cleared that the far 

field boundary conditions are satisfied asymptotically. In view of this, the applied numerical 

technique is valid and ensure that the existence of dual solutions given in Figs (9.2-9.7). Form 
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stability analysis and physical argumentation of the involved parameters we expect that the first 

solutions are reliable. Although, the second solution is physically unstable, but it cannot be 

neglected. It is noted that both the solution come to an end at certain values of shrinking 

parameter (𝜆), which is known as critical value (𝜆𝑐 = 𝜆 < 0).  From Figs (9.2-9.7), it is noticed 

that there are two solutions when (𝜆𝑐 < 𝜆) and no solution for (𝜆 < 𝜆𝑐). 

The diversion in Nusselt number and Sherwood number against different physical parameter are 

analyzed in the Figs. (9.2) and (9.3). The impact of 𝛽1 on 𝑁𝑢𝑥 and 𝑆ℎ𝑥 is illustrated in Figs. 

9.2(a and b). Fig. 9.2(a) depicts that up to critical values (𝜆𝑐 = −1.610,−1.610,−1.62), there 

are two solutions of the heat transfer rate, and both the solutions diminishes for increasing 𝛽1. 

Similarly, for the mass transfer rate two solutions are found when                                             

𝜆 > 𝜆𝑐(= −1.5454,−1.5433,−1.5412) in Fig. 9.2(b). It is observed that rising the values of 

𝛽1, 𝑆ℎ𝑥 revealed opposite behavior for both solutions, i.e., the upper branch solution enhances 

and lower branch solution declines. Figs. 9.2(c and d) deliberates the variation of 𝑁𝑢𝑥 and 𝑆ℎ𝑥 

for several values of 𝐴. It is noticed that as we increase 𝐴, the upper branch solution for both 

Nusselt and Sherwood number possess rising behavior, while the lower branch solutions of 𝑁𝑢𝑥 

and 𝑆ℎ𝑥 depicts lower trend for increasing 𝐴. Further mentioning that beyond the critical values 

𝜆𝑐(= −1.596,−1.623) there is no solution for Nusselt number. Similarly, up to critical values 

𝜆𝑐(= −1.5413,−1.5566,−1.572) two solution exists for Sherwood number. The solutions are 

unique when 𝜆 = 𝜆𝑐. The variation of Nusselt and Sherwood number is considered in Figs. 9.3(a 

and b) for various values of 𝑠 against 𝜆. There are two solutions exist within the range 𝜆 > 𝜆𝑐, 

one solution exists when 𝜆 = 𝜆𝑐, and no solution exists when 𝜆 < 𝜆𝑐 for both 𝑁𝑢𝑥 and 𝑆ℎ𝑥. Fig. 

9.3(a) shows that 𝜆𝑐(= −1.757,−1.614,−1.485) are the critical values up to which the 

solutions of 𝑁𝑢𝑥   exist. Whereas Fig. 9.3(b) depicts the existence of solutions for 𝑆ℎ𝑥 with 
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critical values are found as 𝜆𝑐(= −1.5413,−1.5566,−1.5720). It is important to note that 

suction parameter maintains steady boundary layer near the surface, thus, stronger suction effect 

possesses maximum heat and mass transfer. This effect is true for both 𝑁𝑢𝑥 and 𝑆ℎ𝑥 in the upper 

branch solution, whereas inverse trends is observed in the second solution of both 𝑁𝑢𝑥 and 𝑆ℎ𝑥. 

The variations in the 𝑁𝑢𝑥 and 𝑆ℎ𝑥. against 𝜆 and various of 𝑄 and 𝜎 is illustrated in Figs. 9.3(c 

and d). It is verified in Fig. 9.3(c) that for the several values of 𝑄, the 𝑁𝑢𝑥 plot showing a 

decaying trend for the lower branch solution, whereas the upper branch solution is enhanced. 

Further, the increment occurs in an upper solution branch of 𝑆ℎ𝑥 for various values of 𝜎, whereas 

it declines in lower solution branch as shown in Fig. 9.3(d). Fig. 9.3(e) displays the variation in 

𝑁𝑢𝑥 plot for distinct values of 𝛾∗ with the critical values (𝜆𝑐 = −1.5415, −1.5415,−1.5414). It 

is mentioned that for the greater values of the 𝛾∗, the 𝑁𝑢𝑥 plot boost up for both upper and lower 

branch solutions. The influence of 𝛽1 on the velocity distribution is exposed in Fig. 9.4(a). There 

are two solutions of 𝑓′(𝜂) for the shrinking case for various values of 𝛽1. It is cleared from the 

fig that velocity curve shows increment for the first solution and lowering behavior for the 

second solution. From Physical point of view, momentum boundary layer thickness reduces for 

greater values of 𝛽1. Moreover, 𝛽1 resist the fluid motion, hence the velocity profile decline. 

Here the first solution is considered as a physically reliable. The velocity variation for several 

estimation of 𝐴 are shown in Fig. 9.4(b). It is exhibited that the magnitude of the velocity is 

enhancing for the first solution, but it is declining for the second solution by increasing 𝐴, which 

defend that the first solution is physically reliable as compared to the second solution. Further, 

the second solution having a thicker boundary layer associated to the first solution. Fig. 9.4(c) 

depicts the dual solutions of 𝑓′(𝜂) for various estimations of 𝑠. It is observed that for larger 𝑠 the 

velocity profile gives maximum values for the upper solution branch and lower values for the 
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second solution. Physically, it is examined that, with the higher estimation of 𝑠 the velocity 

dispersion in the fluid become shorter for the first solution, whereas the velocity penetrates 

deeper for the second solution. The influence of 𝑄 and 𝛾∗ on the thermal distribution is 

illustrated in Figs. 9.5(a and b). We have obtained two solutions of temperature distribution for 

the shrinking case. The 𝜃(𝜂) plot gives lower values against various values of 𝑄 for both upper 

and lower solution branches, which is shown in Fig. 9.5(a). The increasing nature of thermal 

distribution for higher values of 𝛾∗ is illustrated in Fig. 9.5(b). It portrays that sketch of 𝜃(𝜂) has 

maximum values for the upper and lower branch solution. Physically, 𝛾∗ is directly proportional 

to the heat transport coefficient and inversely proportional to the thermal resistance. Thus, its 

increment leads to an enhancement in thermal distribution, which is evident in Fig.9.5(b). The 

influence of 𝛽1 on the 𝜃(𝜂) and 𝜙(𝜂) plots is demonstrated in the Figs. 9.6(a-d). It is observed 

that higher relaxation parameter possesses stronger thermal boundary layer thickness. Thus, 

thermal distribution enhances for various values of 𝛽1. Further, both the solutions of 𝜃(𝜂) gives 

higher values for maximum 𝛽1, which is depicted in Fig. 9.6(a). The mass concentration gradient 

also depicts the increasing behavior against 𝛽1 shown in Fig. 9.6(b). It is noted that first solution 

of 𝜙(𝜂) reduces for different values of 𝛽1, whereas second solution depicts opposite behavior. 

Figs. 9.6 (c and d) portrays the line graphs of 𝜃(𝜂) and 𝜙(𝜂) for the several values of the 𝐴. The 

thermal distribution gives two solutions, the first solution is an increasing nature for various 

values of 𝐴, whereas the second solution is a decreasing function of unsteadiness parameter as 

revealed in Fig. 9.6(c). Fig. 9.6(d) portrays the dual nature solution of 𝜙(𝜂) plot for several 

values of 𝐴. It is examined that the upper solution branch of 𝜙(𝜂) declines at maximum 𝐴, while 

the lower solution branch gives slightly growing behavior for the higher values of 𝐴. Figs. 9.7(a-

f) exhibits the variation in the plot of 𝜃(𝜂) and 𝜙(𝜂) against several parameters. It is observed 
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that the thermal distribution possesses decreasing nature in both solution branches for stronger 

suction effect. While for the mass concentration this effect reports lower values for first solution 

and higher values for the second solution, which is illustrated in Figs. 9.7(a and b). The 

influence of chemical reaction effect on 𝜃(𝜂) and 𝜙(𝜂) plot is considered in Figs. 9.7(c and d). 

We have examined two solutions in each case, and it signifies the enhancement in temperature 

distribution occurs, whereas mass distribution tends to decrease as chemical reaction effect gets 

stronger. The Fig. 9.7(e) inspects the variation in 𝜃(𝜂) distribution in-terms of two solutions 

upper and lower branch against different values of 𝑅𝑑. It is noticed that both solutions possess 

maximum 𝜃(𝜂), as stronger radiation implies a thicker thermal boundary layer and higher 

temperature of fluid. The impact of 𝑆𝑐 on the 𝜙(𝜂) plot is considered in Fig. 9.7(f). It is noted 

that both the solutions decrease for higher values of 𝑆𝑐. Physically, 𝑆𝑐 is the ratio between 

thermal to mass diffusivity. Therefore, concentration distribution and related boundary layer 

thickness reduce. 

 

Fig. 9.2 (a): Graph of 𝑁𝑢𝑥 for 𝛽1 versus 𝜆 

 

Fig. 9.2 (b): Graph of 𝑆ℎ𝑥 for 𝛽1. 
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Fig. 9.2 (c): Graph of 𝑁𝑢𝑥 for 𝐴. 

 

Fig. 9.2 (d): Graph of 𝑆ℎ𝑥 for 𝐴. 

 

Fig. 9.3 (a): Graph of 𝑁𝑢𝑥 for 𝑠. 

 

Fig. 9.3 (b): Graph of 𝑆ℎ𝑥 for 𝑠. 
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Fig. 9.3 (c): Graph of 𝑁𝑢𝑥 for 𝑄. 

 

Fig. 9.3 (d): Graph of 𝑆ℎ𝑥 for 𝜎. 

 

       Fig. 9.3 (e): Graph of 𝑁𝑢𝑥 for 𝛾∗. 
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Fig. 9.4 (a): Plot of velocity for 𝛽1. 

 

Fig. 9.4 (b): Plot of velocity for 𝐴. 

 

Fig. 9.4 (c): Plot of velocity for 𝑠. 

 



142 
 

 

Fig. 9.5 (a): Plot of 𝜃(𝜂) for 𝑄. 

 

Fig. 9.5 (b): Plot of 𝜃(𝜂) for 𝛾∗. 

 

Fig. 9.6 (a): Plot of 𝜃(𝜂)  for 𝛽1. 

 

Fig. 9.6 (b): Plot of 𝜙(𝜂) for 𝛽1. 
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Fig. 9.7 (a): Plot of 𝜃(𝜂) for 𝑠.  

 

Fig. 9.7 (b): Plot of 𝜙(𝜂) for 𝑠. 

 

Fig. 9.7 (c): Plot of 𝜃(𝜂) for 𝜎. 

 

Fig. 9.7 (d): Plot of 𝜙(𝜂) for 𝜎. 
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Fig. 9.7 (e): Plot of 𝜃(𝜂) for 𝑅𝑑. 

 

Fig. 9.7 (f): Plot of 𝜙(𝜂) for 𝑆𝑐. 

9.3. Final Remarks 

In this chapter, we presented the unsteady boundary layer flow of Maxwell nanofluid with 

thermal radiation. In addition, a shrinking surface is used as a source of fluid motion and 

consider the convective boundary condition at the sheet. The numerical computation of the 

present problem is done by bvp4c Matlab technique. The important results are highlighted 

below, 

 The special feature of this study is to existence of the dual solution for shrinking parameter. 

 The momentum boundary layer and fluid velocity enhance for the lower branch solution and 

decline for the upper branch solution with the enhancement of 𝛽1. 

 The effect of 𝑠 on the velocity field for both solutions is opposite, i.e., the first solution 

increases but the second one reduces. 

 Larger values of 𝐴 lead to increases the temperature for the first solution and exhibit opposite 
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trend for the second solution. 

 The temperature and concentration scattering shows reverse trend for higher values of 𝜎. 

 The heat transfer rate is declined for both solutions with enlarging 𝛽1. 

 The mass transfer rate shows opposite results for the first and the second solution with the 

increment of 𝛽1. 

 The Nusselt and Sherwood number showing similar effects for various estimation of 𝐴. It is 

seen that the first solution increases and second solution diminishes. 

 The Newtonian fluid is obtained by taking the values of 𝛽1 = 0. 
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