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Preface 

Mass transfer effects in fluid mixture are observed due to concentration variation 

of species in fluid. This variation occurs in a fluid when species moves from a 

higher concentration region to a lower concentration. Further the energy obtained 

by reactants before a chemical reaction can occur is referred to as activation 

energy. This is also called as a minimum required energy to initiate a reaction. 

Mass transfer phenomenon subject to activation energy is encountered in chemical 

and geothermal engineering, cooling of nuclear devices, mechanism comprised of 

(oil, water) suspension and food making.  

Significance of non-Newtonian fluids is observed through its extensive biological 

and industrial applications. These fluids are quite prevalent in engineering 

processes. Examples of such fluids may include plastic molding, polymers and 

paper making, soaps, cosmetics, foams, lubricant, in processed food and mixture of 

oil etc. Mathematically the flows of these materials cannot be studied by Navier-

Stokes equations. One constitutive relationship between shear stress and 

deformation rate for such fluids is not appropriate. Thus to overcome this issue, 

numerous models of non-Newtonian materials like differential, integral and rate 

types have been suggested in order to explain the rheological properties. 

Differential type fluid explores the characteristics of normal stress, shear thinning 

and shear thickening. Second grade/third grade and power law materials belonging 

to the subclasses of differential type models show normal stress/shear thinning and 

thickening properties. Relaxation and retardation times features are captured by 

rate type fluids.  Rate type models include Jeffrey, Maxwell, Oldroyd, Burgers and 

generalized Newtonian models. In general the differential equations for non-

Newtonian fluids are higher than Navier-Stokes equations. The solutions thus 

require more boundary conditions. This thesis consists of seven chapters. 



 

Chapter one comprised some basic concepts which includes activation energy, 

nanofluid, thermal radiation, entropy, Darcy-Forchhemier flow, stratification and 

Cattaneo-Christov theory. Conservation laws and solution procedure are 

highlighted. 

Chapter two reports the double stratification and activation energy in flow of 

tangent hyperbolic fluid. Flow is induced by nonlinear stretching sheet of variable 

thickness. Heat flux by Cattaneo-Christov theory is implemented. Non-linear 

system is computed for the convergent solutions. The data of this chapter is 

published in International Journal of Numerical Methods for Heat & Fluid 

Flow.  

Chapter three focused on mixed convection flow of tangent hyperbolic liquid.  

Joule heating, double stratification, non-linear thermal radiation, Brownian motion 

and thermophoresis are present. Phenomenon of mass transfer is examined by 

activation energy along with binary chemical reaction. Computations of 

convergent solutions are carried out for the nonlinear mathematical system. 

Contents of this chapter are published in Scientia Iranica.  

Chapter four disclosed the effects of Joule heating and entropy generation 

minimization for steady flow of third grade nanomaterial. A significant perspective 

of this attempt is to address the influences of activation energy and chemical 

reaction. Modified Arrhenius function is utilized to investigate the activation 

energy. Convergent homotopic solutions of resulting non-linear system are 

developed. Data of this chapter is submitted for publication in International 

Communication in Heat and Mass transfer for publication.  

Chapter five addressed the entropy generation in flow of Walters-B nanomaterial. 

Energy equation consists of Ohmic heating, radiation and heat generation. Binary 

chemical reaction with modified Arrhenius energy is employed. The consequences 



of thermophoresis, Brownian motion and viscous dissipation are accounted. 

Convergent solutions by homotopy analysis technique are constructed. Data of this 

chapter is published in Scientia Iranica. 

Chapter six focused on consequences of activation energy for magneto-

nanoparticles considering zero mass flux condition. Fluid flow in porous space is 

analyzed by using Darcy-Forchheimer model. Additionally, the significance of 

thermal radiation is discussed. Aspects of thermophoresis and Brownian motion 

are observed. Influences of convective and zero mass flux conditions at boundary 

are examined. Systems of partial differential equations are reduced in to ordinary 

differential equations by employing transformation technique. Modeled system is 

solved numerically and the involved parameters outcomes discussed through 

graphs. 

Chapter seven reported the impact of entropy generation for steady flow of second 

grade nanomaterial with thermal radiation. Main theme of this formulation is to 

analyze the significance of activation energy and chemical reaction under assumed 

convective and zero mass flux conditions at boundary. Appropriate non-

dimensional variable have been employed to get ordinary differential system. 

Convergent series solution is derived by using homotopic technique. The solutions 

are explored with respect to pertinent variables. The contents of chapters six and 

seven are submitted for publication in International Communication in Heat 

and Mass transfer.  
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Chapter 1

Literature review and basic concepts

This chapter comprised the literature review of concepts including activation energy, non-

Newtonian fluid, nanofluid, thermal radiation, entropy, Cattaneo-Christov theory, Darcy-Forchheimer

flow, stratification and some basic definitions of flow.

1.1 Literature review

Phenomena’s related to oil reservoir and geothermal engineering followed the chemically charged

system having species in chemical reaction with Arrhenius activation energy. It is necessary

to formulate theoretical results other than experimental approach, to calculate the influence

of activation energy about fluid flow. Interaction between chemical reaction and mass transfer

is complicated. This type of interaction can be seen in production and implementation of

reactant species at diverse rates, mutually in mass transport and inside the fluid. Minimum

amount of energy required for chemical reaction termed as activation energy, can be calculated

by employing Arrhenius calculations that elaborates how a proportion constant varies through

temperature. Activation energy of mostly elements when reacted with other elements are

resulted as zero. A fixed amount (threshold rate) of activation energy is needed for any element

to react in a chemical system. This energy limit is characterized as a barrier between two

different forms of energy. To initiate any reaction, this range must be reached. To continue the

reaction process, there must have other energy limits of elements which are needed translational

energy that is larger or at least equal to activation energy. That’s why largest energy obstacle is
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the activation energy. By using Maxwell distribution, the elements having energy greater than

that energy obstacle will pass through the threshold value. So one can say that largest energy

of obstacle is the activation energy. The obstacle shape as well as drilling of elements are also

ignored but the number of elements having sufficient energy to carry on the reaction is entirely

rely on energy. Because of this exponential function of temperature is included. Usually such

chemical reaction is categorized by a biochemical variation and as a result multiple products

are formed with distinct properties as compared to reactant species. Since these reactions are

essential for manufacturing process in several industrial applications. Such forms of reactions

are frequently occurred in reactors and restrict up to grade of mass transfer attained. In order

to get maximum output, it is vital to make a reaction more vigorous, reduces the quantity

of reagents and energy inputs. Effectiveness of chemical reaction in binary reaction model

for vertical pipe along activation energy is investigated by Bestman et al. [1]. Maleque [2]

explored the impact of activation energy on MHD flow in occurrence of viscous dissipation and

heat source/sink. Current contributions can be seen through the studies [3-10] and references

therein.

Thermal radiation involves electromagnetic radiations transmitted due to the thermal mo-

tion of the fluid particles almost in entire directions. Process of thermal radiation is observed

in heating of the bodies by diverse means like solar light, fire and radiator. Heat transfer with

radiation has extensive industrial applications including atomic reactor security, boiler design,

heat exchangers, power stations and much propulsion equipment’s for missiles, aircraft, in space

automobiles and satellites. Radiative heat change in energy equation is measured by Rosseland

calculation. Few recent efforts about this aspect can be observed through the refs. [11-20].

Stratification is a process of developing layers through temperature and concentration vari-

ation or influence of different fluids. Through simultaneous effects of heat and mass transfer,

it is important to analyze the effectiveness of thermal and solutal stratification concerned with

stratification of fluid medium in view of heat convection and mass transfer because of convec-

tive motion of nanofluids. Study of mixed convection with double stratification is observed in

diverse industrial and engineering applications. This phenomenon has dominant role on poly-

mer extrusion, in hydraulic flow of thermal fluids, geothermal reservoirs, volcanic flows and

geological systems. Number of studies have been attempted yet through involvement of this
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phenomena [21-30].

Fluid transport through a porous media is gain substantial attention among the researchers

because of their presence in several processes related to geophysics, pharmacy and chemical

industry. Such processes include water flow in reservoirs, energy and grain storage units, Crude

oil extraction and solar thermal collectors. Classical Darcy’s law is usually employed to model

and develop the problem involving porous media. This law states that the sum of pressure

gradient and gravitational force is proportional to the mean velocity of fluid particles. Darcy’s

law is applicable on the problem of lower velocity and minor porosity. It is ineffective in the

situation where inertial and boundary effects can occur at higher rate of fluid flow. Contrarily,

for higher Reynolds number it is not suitable to ignore the inertial effects. To overcome this

issue, Forchheimer [31] added a velocity term in the expression of Darcian velocity to predict the

influences of inertia and boundary. Muskat [32] named this term as "Forchheimer term"which

always holds for high Reynolds number. Mukhopadhyay et al. [33] studied the radiative flow

in a Darcy-Forchheimer porous medium with forced convection. Stretched flow of Maxwell

material in Porous media with heterogeneous and homogeneous reactions is discussed by Sadiq

et al. [34]. Darcy—Forchheimer flow of third grade liquid subject to non-Fourier heat flux theory

analyzed numerically by Hayat et al. [35]. Some recent contributions in this regard can be seen

through refs. [36-40].

In branch of thermodynamics, entropy of any system is defined as the quantity of inac-

cessible energy. It corresponds to the irrevsibilities in studied system which is mainly used

in thermodynamically design setups. Higher entropy loss consumes energy and influence the

efficiency of system. Entropy defines the way according to which physical quantities easily sep-

arated from its constituents. When thermal energy is supplied to the system, internal energy

increased and as a result thermal entropy of system enhanced. Irreversible processes are defined

as the systems in which surroundings of related system are not able to reach at its initial state.

Entropy also defines about the consumption of energy in a system. System changes due to

gradient. Its sometimes refer as temperature gradient that represents energy transfer or may

be a concentration gradient that represents mass transfer. Gradient of system mostly causes

irreversibility within a system. Sine entropy relates to the disorderedness of the system due

to which energy decreased and lead to decrease in potential of work. Pioneering work on this
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phenomenon is done by Bejan [41]. Later on, he discussed entropy generation in process of heat

loss during motion of fluid [42]. Moreover, several researchers done in this regards to inspect

such phenomena under certain assumptions. Recently, Liu et al. [43] elaborated irreversibility’s

within curved channel in EMHD flow. Dissipative flow phenomena in a Williamson fluid over

rotating disk with entropy generation is analyzed by Qayyum et al. [44]. Akbarzadeh et al.

[45] explained irreversibilities in a turbulent nanofluid flow by considering solar stoves through

crenelated absorber plates. Bizhaem et al. [46] deliberated heat exchange and irrversibilities of

laminar flow in helical tube. In this problem, numerical technique is used to solve two phase

fluid mixture problem. Recent research in this respect can be observed through [47-50].

Extensive applications of developing nanotechnology in class of thermal engineering give

rise to a new branch of heat transfer fluids termed as nanofluids. In formation of nanofluid,

fibers, solid particles or tubes having length of order 1-50 nm are dispersed in heat transfer fluid

like oil, water and ethylene glycol. These fluids are considered as base fluids. Because of small

size and mostly larger surface area of particles, nanofluids possess immense properties including

greater thermal conductivity, negligible blockage in flow channels, homogeneity and log-term

constancy. Nanofluids have such a substantial features due to which its helpful in several

applications regarding heat mechanism like microelectronics, automotive, power stations, fuel

chambers, pharmacological methods, hybrid electric engines, cooling engine automobile, caloric

controlling, local refrigerator, in crushing process, mining and boiler gas outlet, temperature

control and in nuclear field. Nanomaterials acquire a special auditory characteristic that’s

convenient in ultrasonic demonstration. Additional influence includes shear transformation of

an instant compression ray and this property becomes more operative as concentration enhances.

Information of the rheological implementation of nanofluids is said to be more influential in view

of their stability for convection applications. Pioneering work on nanofluid was done by Choi

[51]. Recently, Waini et al. [52] studied the hybrid nanomaterial flow and heat mechanism over

a highly nonlinear porous sheet. Sheikholeslami [53] employed numerical approach to analyze

the nanofluid flow pattern inside a porous medium. Al2O3- water nanofluid is utilized in this

study. Ely [54] discussed the exact solution of nanomaterials in a porous media along heat

source/sink. Further, relevant research can be seen through studies [55-60].

In recent era, the research related to flows of non-Newtonian fluid has attained much atten-
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tion due to its substantial uses in industrial and engineering processes. Applications includes

making of petroleum, paper production, polymer extraction and in cosmetics. These fluids

cannot be categorized as viscous fluid because non-Newtonian fluids are not fully analyzed by

single equation. Moreover, the relation between shear rate and strain rate is non-linear. Due

to this, various constitutive equations have been presented so far in literature. Non-Newtonian

fluids are characterized in two classes in which one is viscoelastic fluids and other termed as

shear thinning/thickening fluids. Numerous features of non-Newtonian fluids are examined by

researchers. Few recent efforts under this aspect can be observed through the refs. [61-66].

Heat transfer phenomenon has numerous biological and industrial applications including

space and nuclear reactor cooling, energy production, biomedical processes, magnetic targeting

in drug making and energy transfer in tissues etc. Heat flux model proposed by Fourier [67]

named as heat conduction law was the initiative to analyze the mechanism of heat transfer in

several practical aspects. As a result of this law, parabolic heat equation is formed which reflects

that considered system is instantly affected by initially generated disturbance. This outcome is

contradiction to principle of heat conduction. To resolve this problem, numerous amendments

have been made in Fourier’s law of heat conduction. Amongst these Cattaneo [68] suggested heat

conduction law by introducing thermal relaxation time. Such modification generated hyperbolic

equation that permits the transport of energy by means of wave transmission. Further, Christov

[69] introduced the time and convected derivative in flow of Maxwell fluid considering Cattaneo’s

model to retain invariant structure. This relation is referred as Cattaneo-Christov heat flux.

Recently, this definition of heat flux is adopted in the discussion of flows through studies [70-76].

1.2 Basic laws

1.2.1 Mass conserved law

Continuity equation in absence of any source/sink is,

̃


+∇(̃Ṽ) = 0 (1.1)
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where ̃ represents fluid density, Ṽ the velocity and  denotes time. For (̃) constant, the flow

is termed as incompressible flow and Eq. (1.1) takes the form,

∇Ṽ = 0 (1.2)

1.2.2 Momentum conserved law

Equation for the motion of fluid is

̃

Ã
Ṽ


+ Ṽ∇Ṽ

!
=∇τ+̃b (1.3)

In above equation, the terms on the left side are basically the representation of inertial forces

while terms on right side denotes body and fluids surface force.

Cauchy stress tensor τ for an incompressible fluid is

τ = −̆I+ Á1 (1.4)

in which  denotes dynamic viscosity.

1.2.3 Energy conserved law

Mathematically energy equation can be written as follows

̃
̃


= ̆∇2̃ + (τL) +

1


J̆J̆ (1.5)

where

J̆ =  (V×B) (1.6)

in which  stands for specific heat, ̃ the fluid temperature, ̆ the thermal conductivity, 

represents Cauchy stress tensor,  the material derivative and  the velocity gradient.
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1.3 Solution technique

Formulated system of equations for flow are categorized as non-linear. It is quite difficult to

obtain the solution of such systems. Several techniques are introduced yet to solve highly non-

linear simulation including perturbation, Adomian decomposition and homotopy perturbation

method. Different limitations are associated with aforementioned techniques. In this thesis,

the problems will be solved by employing homotopy analysis technique [77-85]. This method

gives freedom to choose parameters, initial guesses and base functions.
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Chapter 2

Flow of tangent hyperbolic liquid

subject to activation energy and

stratification

2.1 Introduction

This chapter addresses flow of tangent hyperbolic material over a surface of variable thickness.

Nonlinear stretching is discussed. Activation energy and double stratification concepts are

highlighted. Cattaneo-Christov heat flux is utilized. Convergent solutions for nonlinear system

is developed. Velocity, temperature and concentration are examined in detail.

2.2 Mathematical formulation

Unsteady stagnation point flow of tangent hyperbolic material towards stretched surface is

modeled here. Non-linear stretching velocity is accounted. Non-Fourier heat flux theory is

employed for heat transfer. Influence of both thermal and solutal stratification is considered.

Effect of activation energy is examined. Heat production due to chemical reaction are observed.

Stretching sheet with variable thickness is accounted. Stretching and free stream velocities

respectively are  = () = 0(+ )̊ and () = 1(+ )̊ Conservation laws for mass,
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momentum and energy give

̃


+

̃


= 0 (2.1)

̃
̃


+ ̃

̃


= 




+ (1− ̃)

2̃

2
+
√
2Γ̃

̃



2̃

2
 (2.2)

∇̃ = −∇ (2.3)

̃
̃


+ ̃

̃


= 

2̃

2
−2

 (̃ − ̃∞)

"
̃

̃∞

#
exp

∙−

1̃

¸
 (2.4)

in which Cattaneo-Christov heat flux satisfies

 +  (∇ − ∇ + (∇ )) = −̆∇̃  (2.5)

where ̆ denotes thermal conductivity and ̌ represents the relaxation time. It is observed that

for ̌ = 0 Eq. (25) reduces to Fourier’s expression. The view of incompressibility situation

yields Eq. (25)

 +  (∇ − ∇ ) = −̆∇̃  (2.6)

By Eqs. (23) and (26) we arrive at

Ã
̃
̃


+ ̃

̃



!
=

̆



Ã
2̃

2
+

2̃

2

!
− ̌

(
̃
̃



̃


+ ̃

̃



̃


+ ̃

̃



̃



+ ̃
̃



̃


+ 2̃̃

2̃


+ ̃2

2̃

2
+ ̃2

2̃

2

)
 (2.7)

with conditions

̃ = () = 0(+ )̊ ̃ = 0 ̃ = ̃ = ̃0 + ̆(+ ),

̃ = ̃ = ̃0 + ̆(+ ) at  = 1(+ )
1−̊
2 (2.8)

̃ → () = 1(+ )̊ ̃ → ̃∞ = ̃0 + ̆(+ )

̃ → ̃∞ = ̃0 + ̆(+ ) as  →∞ (2.9)

In above expressions ̃ and ̃ depict velocity components in  and  directions, Γ the mate-

rial time constant, ̃ the power law index,  kinematic viscosity,  fluid density,  specific
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heat,  the dynamic viscosity, ̃0 reference temperature, ̆ thermal conductivity, (̆ ̆ ̆,̆) the

dimensional constants Further ̃ and ̃ are the constant temperature and solute concen-

tration near the surface while ̃∞ and ̃∞ represent ambient temperature and concentration.

Term
h

̃

̃∞

i
exp

h
−
1̃

i
in Eq. (24) is referred to as the modified Arrhenius function. Here

1 = 861×10−5 represents the Boltzmann constant,  the dimensionless constant or rate

constant having range −1    1  the chemical reaction parameter and  the activation

energy.

Consider,

 =

r
2

̊+ 1
0(+ )̊−1 () ,  = 

r
̊+ 1

2

0


(+ )̊−1

Θ̃ =
̃ − ̃∞
̃ − ̃0

, Φ̃ =
̃ − ̃∞
̃ − ̃0

 (2.10)

The stream function () satisfying ̃ = −

and ̃ = 


yields

̃ = 0(+ )̊ 0() , ̃ = −
r

̊+ 1

2
0(+ )̊−1( () + 

̊− 1
̊+ 1

 0()) (2.11)

Mass conservation is automatically satisfied and Eqs. (22) to (28) are transformed to

(1− ̃) 000 + ̃

r
̊+ 1

2
 00 000 +

2̊

̊+ 1
2 − 2̊

̊+ 1
( 0)2 +  00 = 0 (2.12)

Θ̃00 +Pr Θ̃0 +  Pr(
̊− 3
2

) 0Θ̃0 − ̊+ 1

2
 2Θ̃00) +

Pr(
̃
+ Θ̃)( 00 − 2̊

̊+ 1
 02 − 2

̊+ 1
 0) = 0  (2.13)

Φ̃00 +  Φ̃0 − 2

̊+ 1

³

̃
 0 +  0Φ̃

´
− 

2

̊+ 1
[1 + Θ̃] exp

"
−̊

1 + Θ̃

#
= 0 (2.14)

 () = 
1− ̊

1 + ̊
  0() = 1,  0(∞) = 

Θ̃() = 1− ̃ Θ̃(∞) = 0

Φ̃() = 1− 
̃
 Φ̃(∞) = 0 (2.15)
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In above expression  = 

q
0(̊+1)
2

is the surface thickness parameter and prime represents

differentiation with respect to . We define  () = ̌( − ) = ̌() and obtain

(1− ̃)̌ 000 + ̃

r
̊+ 1

2
̌ 00̌ 000 +

2̊

̊+ 1
2 − 2̊

̊+ 1
(̌ 0)2 + ̌ ̌ 00 = 0 (2.16)

̌
00
+Pr ̌ ̌

0
+  Pr(

̊− 3
2

)̌ ̌ 0̌0 − ̊+ 1

2
̌2̌

00
)

+ Pr(̌ + ̌)(̌ ̌ 00 − 2̊

̊+ 1
̌ 02 − 2

̊+ 1
̌ 0) = 0  (2.17)

̌
00
+ ̌

0 − 2

̊+ 1

³
̌

0 +  0̌
´
− 

2

̊+ 1
[1 + ̌] exp

"
−̊
1 + ̌

#
= 0 (2.18)

̌() = 
1− ̊

1 + ̊
  0() = 1, ̌() = 1− ̌ ̌() = 1− ̌ at  = 0

 0() =  ̌() = 0 ̌() = 0 at  →∞ (2.19)

where  denotes the Weissenberg number,  the ratio of velocities, ̊ the velocity index, 

the relaxation parameter, Pr the Prandtl number, (̌ ̌) the thermal and solutal stratified

parameters,  the Schmidt number,  the temperature ratio parameter, ̊ dimensionless

activation energy and  the dimensionless chemical reaction parameter. These parameters are

defined as:

 = Γ

r
230 (+ )3̊−1


  =

∞
0

 Pr =


̆0(+ )̊−1


 = 0(+ )̊−1  =



 ̌ =

̆

̆
  =

̃ − ̃0

̃∞


̌ =
̆

̆
 ̊ =



1̃∞
  =

2


0
(+ )1−̊ (2.20)

Heat transfer rate is given as
∼
 =

(+ )̆

̆(̃ − ̃0)
 (2.21)
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where wall heat flux is

̆ = −̆ ̃


+ 

Ã
̃̃

̃


+ ̃2

̃



!
 (2.22)

In dimensionless form,

∼
Re

− 1
2

 = −
µ
̊+ 1

2

¶ 1
2
µ
2(1− ̊)2

2(1 + ̊)
Pr  + 1

¶
̌
0
(0) (2.23)

2.3 Solutions

Homotopy solutions are under consideration. The suitable initial approximations
¡
̌0 ̌0 ̌0

¢
and associated linear operators

³
L̆̌  L̆̌ L̆̌

´
are

̌0() =  + (1−)(1− ) + 
1− ̊

1 + ̊
 (2.24)

̌0() = (1− ̌)
− (2.25)

̌0() = (1− ̌)
− (2.26)

L̆̌ () =
3̌

3
− ̌


 L̆̌ () =

2̌

2
− ̌ L̆̌ () =

2̌

2
− ̌ (2.27)

L̆̌
h
̃1 + ̃2

 + ̃3
−
i
= 0 (2.28)

L̆̌
h
̃4

 + ̃5
−
i
= 0 (2.29)

L̆̌
h
̃6

 + ̃7
−
i
= 0 (2.30)

with ̃ ( = 1− 7) as the arbitrary constants.

2.4 Convergence analysis

Homotopy analysis method is employed to find convergent series solution. Convergence region

is controlled through plots of curves }̌ , }̌ and }̌ Thus ~−curves are plotted in Fig. 2.1.
Here permissible ranges of parameters }̌ , }̌ and }̌ are −075 ≤ }̌ ≤ −02 −10 ≤ }̌ ≤ −01
and −06 ≤ }̌ ≤ −01 Table 2.1 also ensures that 20 order approximations are sufficient
for momentum equations whereas 25 order of approximations are required for energy and
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concentration expressions.

Fig. 2.1: ~−curve for ̌ 00(0) ̌0(0) ̌0(0)

Table 2.1: HAM solutions convergence for  = 01 = 03 =   = 05 ̌ = 02Pr =

12 =  ̌ = 04 = ̊  = 06 =  ̊ = 08 = ̃

Order of approximations −̌ 00(0) −̌0(0) −̌0(0)
1 0.8795 0.2631 0.2748

2 0.7994 0.2719 0.2841

3 0.7456 0.2776 0.2858

4 0.7090 0.2813 0.2840

6 0.6839 0.2835 0.2815

12 0.6353 0.2838 0.2789

15 0.6339 0.2831 0.2781

20 0.6346 0.2829 0.2787

25 0.6346 0.2831 0.2784

30 0.6346 0.2831 0.2784

50 0.6346 0.2831 0.2784
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2.5 Analysis

Our interest here is to predict the influences of sundry variables on physical quantities. Thus we

displayed Figs. 2.2-2.16 here. Fig. 2.2 predict influence of Weissenberg number  on velocity

̌ 0(). Clearly momentum layer and velocity are reduced for higher . Infact through an

increase in relaxation time the fluid thickness increases and so a reduction of fluid velocity

occurs. Fig. 2.3 depicts that how velocity ̌ 0() affected with power law index ̃. Hence

velocity ̌ 0() and related boundary layer are decreased through ̃. Obviously larger values of

power law index enhances fluid viscosity which opposes the motion of fluid particles. Change

in velocity ̌ 0() by increasing the ratio parameter  is shown in Fig. 2.4. Here velocity and

associated layer thickness are enhances for larger ratio parameter . Fig. 2.5 witnesses impact

of velocity index ̊ on ̌ 0(). This parameter is also recognized as motion parameter or shape

parameter. Rise in velocity index ̊ leads to an increase of velocity ̌ 0(). Shape of surface is

strongly influenced by numerical values of ̊ For flat surface ̊ = 1 and there is occurrence of

uniform thickness case. When ̊  1, the thickness of surface shrinks and outer concave shape is

noticed. For ̊  1, the thickness enhances and outer convex image of surface is observed. Since

̊ is also declared as motion parameter thus Fig. 2.6 and 2.7 are shown to predict the behavior

of ̊ along surface thickness . Velocity ̌ 0() is enhanced for larger surface thickness parameter

 when ̊  1, i.e for this case accelerated motion is examined. Beside this decelerated motion

of fluid particles occurs for larger values of  when ̊  1 (see Fig. 2.7).

Fig. 2.2: ̌ 0() for  effect Fig. 2.3: ̌ 0() for ̃ effect
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Fig. 2.4: ̌ 0() for  effect Fig. 2.5: ̌ 0() for ̊ effect

Fig. 2.6: ̌ 0() for (̊  1) effect Fig. 2.7: ̌ 0() for (̊  1) effect

Fig. 2.8 explores the variation of temperature field ̌() for Prandtl number . Thermal

diffusivity is reduced when Prandtl number enhances. As a consequence the temperature and

thermal layer have been decreased. Temperature against thermal relaxation parameter  is

shown in Fig. 2.9. Larger variation in thermal relaxation parameter induces decay in ̌().

Infact large  confirms that fluid particles acquire more time to transfer heat to its adjacent

particles and thus temperature reduces. However there is an increase of heat transfer rate for

higher  Fig. 2.10 discloses that how temperature ̌() affected with the change in velocity

index ̊. Higher ̊ lead to temperature ̌() enhancement. Impact of ̌ on ̌() is in Fig. 2.11.

̌() decays with an increase in ̌ Obviously difference in temperature is decreased gradually
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between the ambient temperature ̃∞ and surface temperature ̃.

Fig. 2.8: ̌() for Pr effect Fig. 2.9: ̌() for  effect

Fig. 2.10: ̌() for ̊ effect Fig. 2.11: ̌() for  effect

Outcome of dimensionless chemical reaction parameter  on concentration field ̌() is pre-

sented in Fig. 2.12. An increment in  causes decrease in concentration ̌() and associated

layer thickness. Higher chemical rate enhance the mass transport in fluid and consequently

concentration decreases. However opposite effects are observed for concentration in case of

activation energy parameter ̊ (Fig. 2.13). Concentration distribution ̌() is an increasing

function of ̊. Fig. 2.14 displayed ̌() for Schmidt number. There is an increase in ()

for higher . Note that Schmidt number is ratio of momentum diffusivity to mass diffusiv-

ity. Hence larger Schmidt number declared small mass diffusivity and thus concentration ̌()

enhances. Analysis of velocity index ̊ on ̌() is plotted in Fig. 2.15. Here concentration distri-
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bution is increased for higher ̊ Impact of solutal stratification ̌ on concentration distribution

̌() is presented in Fig. 2.16. ̌() decays for larger values of ̌ Solutal stratification occurs

due to minor variation in surface and ambient concentration.

Influences of various embedded parameters on Nusselt number is demonstrated in Table

2.2. It displays variation in heat transfer rate against some parameters of interest. Tabulated

values witness that heat transfer rate decreases for thermal relaxation parameter  and for

dimensionless thermally stratified parameter ̌, while it enhances for Prandtl number Pr and

.

Fig. 2.12: Variation of  on ̌() Fig. 2.13: Variation of ̊ on ̌()

Fig. 2.14: Variation of  on ̌() Fig. 2.15: Variation of ̊ on ̌()
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Fig. 2.16: Variation of  on ̌()

Table 2.2: Description of Nusselt number.

Pr   ̌

∼
Re

− 1
2



1 0.5 1.6 0.3 0.2084664

1.1 0.2544226

1.2 0.3026473

1 0.6 1.6 0.3 0.2492009

0.7 0.2893210

0.8 0.3293889

1 0.5 1.7 0.3 0.2781875

1.8 0.2288348

1.9 0.1920219

1 0.5 1.6 0.4 0.1800328

0.5 0.1541903

0.6 0.1291780

2.6 Conclusions

Key findings here are as follows:

• An increment in surface thickness parameter leads to enhancement of velocity when ̊  1.

• Influence of velocity index ̊ on concentration and velocity are qualitatively similar.
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• Conjugate parameter yields enhancement of temperature and thermal boundary layer
thickness.

• Temperature is significantly decreased for stratified parameter ̌.

• Temperature has direct relation with velocity law index ̊

• Heat transfer rate enhances for Prandtl number Pr and thermal relaxation parameter 

• Velocity is decreased for larger Weissenberg number .

• Concentration distribution is reduced for increment in chemical reaction parameter .

• Stronger activation energy parameter ̊ resulted in an increase of concentration distrib-

ution.

• Velocity for power law index ̃ and velocity law index ̊ is opposite.
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Chapter 3

Chemical reaction in flow of

hyperbolic tangent fluid

3.1 Introduction

Mixed convection stretched flow of tangent hyperbolic liquid is explored in this chapter. Joule

heating, double stratification, non-linear thermal radiation, Brownian motion and thermophore-

sis are considered. Phenomenon of mass transfer is examined by activation energy along with

binary chemical reaction. Computations of convergent solutions are carried out for the nonlin-

ear mathematical system. Graphical representation is employed for outcome of sundry variables

on velocity, temperature and concentration of nanoparticles. Moreover, Nusselt number, co-

efficient of drag force and mass transfer rate are examined. Here velocity decays for larger

Weissenberg number. Concentration of fluid enhances for higher activation energy parameter.

3.2 Modeling

Unsteady flow of tangent hyperbolic nanofluid is examined here. Impermeable stretched sheet

(at  = 0) is accountable for fluid motion. Material density is assumed constant. Fluid confined

the space   0. Sheet is stretched with velocity () =  in -direction. The sheet has

constant temperature (̃) and constant concentration (̃) whereas
³
̃∞ ̃∞

´
are fluid’s

ambient concentration and temperature respectively. Brownian diffusion and thermophoresis
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are present. Magnetic fluid is in transverse direction to flow (Fig.3.1). Effects of electric

field are assumed negligible. Moreover influence of activation energy with binary chemical

reaction is accounted. Thermal radiation is taken non-linear. Viscous dissipation and heat

generation/absorption are absent. The relevant expressions satisfy

Fig. 3.1: Physical model

̃


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̃+ [̃ (̃ − ̃∞) + ̃(̃ − ̃∞)] (3.1)
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
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
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
̃
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20
()
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()
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̃
̃


+ ̃

̃


= 

Ã
2̃

2

!
+

̃

̃∞

Ã
2̃

2

!
−2

 (̃ − ̃∞)

"
̃

̃∞

#
exp

∙−

1̃

¸
 (3.3)

The relevant boundary conditions are

̃ = () =  ̃ = 0 ̃ = ̃ = ̃0 + ̆ ̃ = ̃ = ̃0 + ̆   = 0
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̃→ 0 ̃ → ̃∞ = ̃0 + ̆ ̃ → ̃∞ = ̃0 + ̆ as  →∞ (3.4)

Here ̃ and ̃ depict the velocity components parallel to  and -axes, Γ material constant, ̃

power law index,  kinematic viscosity,  fluid density,  specific heat,  the dynamic viscosity,

̃ the thermophoresis coefficient,  the stretching velocity, the Brownian coefficient,  the

heat capacity of nanoparticles, ̆ the electrical conductivity, ̃0 the reference temperature, ̆ the

thermal conductivity, ̃ thermal expansion coefficient, ̃ concentration expansion coefficient

and (̆ ̆ ̆,̆) the dimensional constants Further ̃ and ̃ are the constant temperature

and solute concentration near the surface while ̃∞ and ̃∞ represent ambient temperature

and concentration. Term
h

̃

̃∞

i
exp

h
−
1̃

i
in Eq. (34) is referred to as the modified Arrhenius

function. Here 1 = 861×10−5 represents the Boltzmann constant,  is the dimensionless

constant or rate constant having range −1    1  the chemical reaction parameter and

 the activation energy.

We consider,

 =
√
̌()  =

r





̌() =
̃ − ̃∞
̃ − ̃0

, ̌() =
̃ − ̃∞
̃ − ̃0

 (3.5)

We have velocity components in terms of stream function () by ̃ = −

and ̃ = 


. Now

̃ = ̌ 0() , ̃ = −√̌() (3.6)

Radiative heat flux through Rosseland approximation yields

̆


=
−4∗
3∗





Ã
̃ 4



!
=
−16∗
3∗

⎡⎣̃ 32̃
2

+ 3̃ 2

Ã
̃



!2⎤⎦  (3.7)

where ∗ and ∗ represent Stefan-Boltzmann constant and mean absorption coefficient. By
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Eqs. (33) expression (39) becomes
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+ 3̃ 2

Ã
̃
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!2⎤⎦  (3.8)

Continuity expression is verified and equations (32) to (310) yield

(1− ̃)̌ 000 + ̌ ̌ 00 − (̌ 0)2 + ̃̌ 00̌ 000 −2̌ 0 + 1[̌ +∗̌] = 0 (3.9)

̌
00 − Pr̌̌ 0 +Pr(̌ ̌

0 − ̌ 0̌) + Pr̌
0
̌
0
+Pr(̌

0
)2 +2(̌ 0)2 +

4

3
{̌00[̌(̌ − ̌0) + 1]

3 + 3(̌
0
)2(̌ − ̌0)[̌(̌ − ̌0) + 1]

2} = 0  (3.10)

̌
00
+





̌
00
+ (̌ ̌

0 − ̌ 0̌)− ̌̌
0 − [1 + ̌(̌ − ̌0)]

 exp

"
−̊

1 + ̌(̌ − ̌0)

#
= 0 (3.11)

̌ 0() = 1, ̌() = 0 ̌() = 1− ̌ ̌() = 1− ̌ at  = 0

̌ 0() → 0 ̌()→ 0 ̌()→ 0 when  →∞ (3.12)

where  denotes the Weissenberg number,  magnetic parameter, ∗ the local buoyancy

parameter, 1 the mixed convection parameter, Pr the Prandtl number, ̌ the thermal strat-

ified parameter, ̌ the solutal stratified parameter,  the Schmidt number, ̊ dimensionless

activation energy and  the dimensionless chemical reaction parameter. Furthermore, 

 (̌ ̌0)   (
∗) are the Eckert number, radiation parameter, temperature ratio

parameter, Brownian motion parameter, thermophoresis parameter and the Grashof number
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(temperature and concentration). Definition of these parameters are
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Coefficient of drag force (̃), heat transfer rate (
∼
) and mass transfer rate (

∼
) are

described as:

̃ =
̆

1
2
2


∼
 =

̆

̆(̃ − ̃0)


∼
 =

̆

(̃ − ̃0)
. (3.14)
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In non-dimensional form we obtain

Re
1
2
 ̃ = (1− ̃)̌ 00(0) +

̃

2
(̌ 00(0))2

Re
1
2


∼
 = −̌0(0){1 +[1 + (̌ − ̌0)̌(0)]

3}

Re
1
2


∼
 = −̌0(0) (3.16)

in which Re =


is Reynold number.
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3.3 Solution expressions

Series solution here is constructed via homotopic technique. Initial guesses
¡
̌0 ̌0 ̌0

¢
and

associated linear operators
³
L̆̌  L̆̌ L̆̌

´
are

̌0() = 1− 

̌0() = (1− ̌)
−

̌0() = (1− ̌)
− (3.17)

L̆̌ () =
3̌

3
− ̌


 L̆

̃
() =

2̌

2
− ̌ L̆ () = 2̌

2
− ̌ (3.18)

L̆̌
h
̃1 + ̃2

 + ̃3
−
i
= 0 (3.19)

L̆̌
h
̃4

 + ̃5
−
i
= 0 (3.20)

L̆̌
h
̃6

 + ̃7
−
i
= 0 (3.21)

with ̃ ( = 1− 7) as the arbitrary constants.

3.4 Convergence

Homotopy analysis technique is helpful to find convergent series solutions and provides a chance

to sketch region of convergence. This region can be controlled by setting appropriate values

of }̌ , }̌ and }̌. Fig. 3.2 displays h-configurations. It is analyzed that ranges of parameters

}̌ , }̌ and }̌ are −15 ≤ }̌ ≤ −05 −13 ≤ }̌ ≤ −04 and −14 ≤ }̌ ≤ −07 Numerically
obtained solution convergence is presented in Table 3.1. Here 20 order of approximation are

enough for momentum equation while energy and concentration equations converge at 25

order of approximation.
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Fig.3.2: }−plots in view of  00(0) 0(0), and 0(0)

Table 1: HAM solutions convergence when ̃ = 0 = 01 =  1 = 03 =  =  ̌ =

03 = ̌Pr = 15  = 05  = 13 = ̊  = 08 ∗ = 1  = 01 =  ̌ = 11 and

̌0 = 12

Order of approximations −̌ 00(0) −̌0(0) ̌
0
(0)

1 0.87717 1.0384 0.074223

2 0.88392 1.1535 0.075501

3 0.87568 1.1784 0.069273

4 0.86657 1.1822 0.065361

6 0.86657 1.1830 0.065025

12 0.86901 1.1795 0.064510

15 0.86902 1.1798 0.064469

20 0.86903 1.1793 0.064242

25 0.86903 1.1794 0.064303

30 0.86903 1.1794 0.064303

50 0.86903 1.1794 0.064303

3.5 Discussion

Here velocity, temperature and concentration are discussed through Figs. 3.3-3.16. Fig. 3.3

predicts Weissenberg number  variation on ̌ 0(). Clearly velocity and momentum layer are
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less through  In fact the Weissenberg number is ratio of relaxation time to particular time

of fluid. Hence for more relaxation time the fluid thickness increases and consequently fluid

velocity reduces. Fig. 3.4 indicates variation of velocity ̌ 0() by increasing local buoyancy

parameter ∗. Clearly velocity and related layer thickness are increased through larger ∗.

Fig. 3.5 illustrates impact of magnetic parameter on ̌ 0(). A rise in leads to a decrease of

velocity field ̌ 0(). Obviously larger magnetic parameter increase Lorentz force (also termed

as resistive force) which opposes fluid movement and so velocity reduces. Influence of mixed

convection parameter 1 is pictured in Fig. 3.6. Velocity is enhanced through 1. Higher values

of mixed convection enhances buoyancy forces and thus velocity and corresponding momentum

layer increases.

Fig. 3.3: ̌ 0() via  Fig. 3.4: ̌ 0(̂) via ∗

Fig. 3.5: ̌ 0() via  Fig. 3.6: ̌ 0() via 1
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Fig. 3.7 explores variation of temperature field for magnetic parameter . Here temperature is

increased for larger magnetic parameter. Fig. 3.8 witnesses that temperature and thermal layer

are enhanced for higher Eckert number . Graphical illustration of  for ̌() is presented in

Fig. 3.9. Temperature rises in response to larger variation of . Since motion of fluid particle

is unsystematic in reaction of higher Brownian motion parameter that leads to increase in heat

production. Fig. 3.10 explores variation of temperature for radiation parameter . Larger 

give rise to rate of heat transfer since heat production enhanced the radiation process. Impact

of thermal stratified variable ̌ on temperature ̌() is reflected in Fig. 3.11. Thermal field

decays with an increase in ̌ as the difference in temperature is decreased gradually between

the ambient temperature ̃∞ and surface temperature ̃.

Fig. 3.7: ̌() against  Fig. 3.8:  impact on ̌()

Fig. 3.9:  impact on ̌() Fig. 3.10:  impact on ̌()
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Fig. 3.11: ̌() via 

Fig. 3.12 clarifies outcome of  on concentration of nanoparticles. As predicted, the decline in

nanoparticle concentration is noticed for larger . Variation of activation energy ̊ on nanopar-

ticles concentration is reflected in Fig. 3.13. As expected concentration is enhanced through ̊.

Outcome of Schmidt number  on ̌() is displayed in Fig. 3.14. Here concentration decayed

for higher . Concentration stratification parameter ̌ on ̌() is displayed in Fig. 3.15. It

seems that larger values of ̌ corresponds to lesser nanoparticles concentration ̌(). Fig. 3.16

elucidates marginal increase in nanoparticles concentration when thermophoresis parameter 

varies from  = 02 to  = 035.

Fig. 3.12: ̌() via  Fig. 3.13: ̌() via ̊
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Fig. 3.14: ̌() via  Fig. 3.15: ̌() via ̌

Fig. 3.16: ̌() via 

Influences of various embedded variables on skin-friction coefficient, Nusselt number and Sher-

wood number are demonstrated in Tables 3.2-3.4. Table 3.2 declares that coefficient of drag

force is affected by mixed convection parameter 1 and non-dimensional activation energy

̊Coefficient of drag force is decreased by these parameters. Skin-friction coefficient has in-

creased behavior for higher ̃,, and ∗. Table 3.3 displays variation in heat transfer rate

against some parameters of interest. Tabulated values witness that heat transfer rate decreases

for Eckert number , dimensionless thermally stratified parameter ̌, Brownian diffusion pa-

rameter  and thermophoresis parameter  while it enhances for Prandtl number Pr and .

Further mass transfer rate is decreased via higher Schmidt number  and Brownian diffusion

coefficient  however it increases for other parameters mentioned in Table 3.4.
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Table 3.2: Numerical description of skin friction coefficient.

̃   1 ∗ ̊ −Re
1
2
 ̃

0.1 0.1 0.3 0.3 1 1.3 0.8688595

0.2 0.9131529

0.3 0.9673078

0.1 0.2 0.3 0.3 1 1.3 0.8701973

0.3 0.8759865

0.4 0.8783699

0.1 0.1 0.4 0.3 1 1.3 0.9030014

0.5 0.9458779

0.6 0.9977259

0.1 0.1 0.3 0.4 1 1.3 0.8039160

0.5 0.7507146

0.6 0.7290100

0.1 0.1 0.3 0.3 1.2 1.3 0.4763013

1.3 0.5473585

1.4 0.6347946

0.1 0.1 0.3 0.3 1 1.4 0.6814829

1.5 0.5666427

1.6 0.5298977
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Table 3.3: Numerical description of Nusselt number.

Pr   ̌   Re
1
2


∼


1 0.5 1.6 0.3 0.1 0.1 0.2084664

1.1 0.2544226

1.2 0.3026473

1 0.6 1.6 0.3 0.1 0.1 0.2492009

0.7 0.2893210

0.8 0.3293889

1 0.5 1.7 0.3 0.1 0.1 0.2781875

1.8 0.2288348

1.9 0.1920219

1 0.5 1.6 0.4 0.1 0.1 0.1800328

0.5 0.1541903

0.6 0.1291780

1 0.5 1.6 0.3 0.2 0.1 0.1929118

0.3 0.1779978

0.4 0.1644246

1 0.5 1.6 0.3 0.2 0.2 0.1849759

0.3 0.1755373

0.4 0.1683754
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Table 3.4: Numerical description of Sherwood number.

  ̊ ̃   Re
1
2


∼


0.8 0.1 1.1 0.1 0.2 0.3 0.3911616

0.9 0.4536701

1 0.5391772

0.8 0.2 1.1 0.1 0.2 0.3 0.3758304

0.3 0.3745837

0.4 0.3651333

0.8 0.1 1.2 0.1 0.2 0.3 0.3876376

1.3 0.3654337

1.4 0.3559579

0.8 0.1 1.1 0.15 0.2 0.3 0.3536455

0.2 0.3270567

0.25 0.3119910

0.8 0.1 1.1 0.1 0.25 0.3 0.5049517

0.3 0.5660433

0.35 0.6292429

0.8 0.1 1.1 0.1 0.2 0.4 0.2766914

0.5 0.1498125

0.6 0.04072542

3.6 Conclusions

Thermal and concentration stratifications, non-linear thermal radiation and activation energy

are explored. We have main results as follows

• Velocity field decays via larger Weissenberg number .

• Concentration distribution reduces for an increment in solutal stratification parameter
̌.
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• Temperature distribution significantly reduces for stronger thermal stratified parameter
̌.

• Stronger chemical reaction parameter  results in an increase of concentration distribu-
tion.

• Velocity for mixed convection parameter 1 varies directly

• Concentration against activation energy variable ̊ is increased.

• Heat transfer rate enhances for radiation parameter 

• Higher mass transfer rate is noted for thermophoresis parameter 
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Chapter 4

Entropy generation minimization

and activation energy in flow of

third grade fluid

4.1 Introduction

Present chapter discloses the effects of Joule heating and entropy generation minimization for

steady flow of third grade nanomaterial. Particular attention is given to address the influences of

activation energy and chemical reaction. Modified Arrhenius function is utilized to investigate

the activation energy. Appropriate non-dimensional variables have been utilized in obtaining

ordinary differential systems. Convergent homotopic solutions of resulting non-linear system

are constructed. Graphical results are discussed for velocity, temperature and concentration.

Flow behavior is analyzed through Nusselt number, coefficient of drag force and mass transfer

rate.

4.2 Statement

Mixed convective flow of third grade nanofluid is examined here. Impermeable stretched sheet

at  = 0 is accountable for fluid motion. Material density is assumed constant and fluid con-

fined the region   0. Sheet is stretched with velocity () =  in -direction (see Fig.
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4.1). The sheet preserved at constant temperature (̃) and constant concentration (̃) of

nanoparticles whereas
³
̃∞ ̃∞

´
being fluid’s ambient concentration and temperature. The

Brownian diffusion and thermophoresis properties are retained. Motion of fluid and magnetic

field (0) are perpendicular to each other. Effects of electric field are assumed negligible. More-

over influence of activation energy with binary chemical reaction is considered. A phenomenon

of entropy generation is reviewed for involved parameters. Thermal radiation and heat gener-

ation/absorption are taken absent. Under these considerations, the velocity, temperature and

concentration equations are

Fig. 4.1: Flow geometry.
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̃
̃


+ ̃
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
= 

Ã
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!
+

̃
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Ã
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!
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"
̃

̃∞

#
exp

∙−

1̃

¸
 (4.4)

The relevant boundary conditions are

̃ = () =  ̃ = 0 ̃ = ̃ ̃ = ̃ at  = 0 (4.5)

̃→ 0 ̃ → 0 ̃ → ̃∞ ̃ → ̃∞ when  →∞ (4.6)

Here ̃ and ̃ represents the velocities parallel to the  and -axes,  the kinematic viscosity,

(∗1 
∗
2 

∗) the fluid parameters,  the fluid density,  the specific heat,  the dynamic viscosity,

̃ the thermophoresis coefficient,  the stretching velocity,  the Brownian coefficient, 

the heat capacity of nanoparticles, ̆ the electrical conductivity and ̆ the thermal conductivity.

Further ̃and ̃ are the constant temperature and solute concentration of the surface while

̃∞ and ̃∞ represents the ambient temperature and concentration respectively. The termh
̃

̃∞

i
exp

h
−
1̃

i
in Eq. (4.4) is referred as the modified Arrhenius function. Here 1 =

861 × 10−5 represents the Boltzmann constant,  being dimensionless constant or rate

constant having the range −1    1  the chemical reaction parameter and  called the

activation energy.

We set

 =
√
()  =

r





̌() =
̃ − ̃∞
̃ − ̃∞

, ̌() =
̃ − ̃∞
̃ − ̃∞

 (4.7)

Here  denotes the stream function satisfying ̃ = −

and ̃ = 


 We can write

̃ = ̌ 0() , ̃ = −√̌() (4.8)

Expressions (4.2)-(4.6) are converted as follows:

̌ 000+ ̌ ̌ 00− (̌ 0)2+ ̌1(2̌
0̌ 000− ̌ ̌ )+(3̌1+2̌2)̌ 002+61Re ̌ 000̌ 002−2̌ 0+1[̌+∗̌] = 0

(4.9)
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(4.10)
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#
̌ = 0 (4.11)

 0() = 1, () = 0 ̌() = 1 ̌() = 1 at  = 0

 0() → 0 ̌()→ 0 ̌()→ 0 as  →∞ (4.12)

where expression (1) is trivially justified, (̌1 ̌2) the material fluid parameters, 1 the third

grade fluid parameter,  the magnetic parameter, Re the Reynolds number, ∗ the local

buoyancy parameter, 1 the mixed convection parameter,  the Lewis number, ̊ the dimen-

sionless activation energy and  the dimensionless chemical reaction parameter. Furthermore,

   ̃ (
∗) are the Eckert number, Brownian motion parameter, thermophoresis

parameter, temperature ratio parameter , Grashof number (temperature and concentration)

respectively. These parameters are defined as:
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4.2.1 Physical quantities of interest

Coefficient of drag force (̃), rate of heat flux () and mass transfer rate () are de-

scribed as:

̃ =
̆

2
 ̃ =

̆

̆(̃ − ̃∞)
 ̃ =

̆

(̃ − ̃∞)
. (4.14)
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In non-dimensional form we obtain

Re
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in which Re =


is Reynold number.

4.2.2 Investigation of entropy generation

Dimensionless entropy minimization equation for third grade fluid is [1]:
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 (4.17)

Above-mentioned equation witnesses the involvement of four main sources for entropy gener-

ation irreversibility. First term on right hand side is due to conduction effect which occurs

because of heat transmission in finite temperature variation referred as thermal irreversibility.

Second term is called diffusive irreversibility. It is clear that entropy generation in view of diffu-

sion is basically the sum of overlapped term with combine thermal and concentration gradients
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and a pure term comprised of difference in concentration only. Third term is by reason of fric-

tion in between different fluid layers entitled as fluid friction irreversibility. Fourth term is due

to Joule dissipation irreversibility. Entropy generation number is the ratio of actual entropy

rate (̌) to the characteristic entropy rate (̌0). Entropy generation number can be written as

̌ =
̌

̌0
= Re(̌

0
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µ
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in which ̌0 =
̆(∆̃ )

̃2∞2
is characteristic entropy rate, ̌ = ̃∞
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and Ω̌ = ∆̃
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the concentration and temperature differences respec-

tively.

Bejan number is defined as

 =
Thermal irreversibility+Diffusive irreversibility

Total entropy rate
 (4.19)

In non-dimensionalized form it can be represented as
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(4.20)

4.3 Solutions by homotopy analysis method

Series solutions of above mentioned systems is obtained via homotopic analysis. Suitable initial

assumptions
¡
̌0 ̌0 ̌0

¢
and associated linear operators

³
L̃̌  L̃̌ L̃̌

´
are

̌0() = 1− − (4.21)

̌0() = − (4.22)

̌0() = − (4.23)
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2
− ̌ (4.24)

L̃̌
h
̆1 + ̆2 + ̆3


i
= 0 (4.25)

L̃̌
h
̆4

 + ̆5
−
i
= 0 (4.26)

L̃̌
h
̆6

 + ̆7
−
i
= 0 (4.27)

with ̆ ( = 1− 7) as the arbitrary constants.

4.4 Convergence analysis

Homotopy analysis method is helpful to find the convergent solutions. It provides a chance to

sketch the region of convergence. This region can be controlled by setting appropriate values

of }̌ , }̌ and }̌. For this purpose the ~−curves are plotted in Fig. 4.2. It is analyzed

that the ranges of convergence control parameters }̌ , }̌ and }̌ are −04 ≤ }̌ ≤ −015
−045 ≤ }̌ ≤ −025 and −05 ≤ }̌ ≤ −035 Convergence of obtained solution is numerically
presented in Table 4.1. From table, one can observe that at 25 order of approximation the

momentum equation converges while energy and concentration equations are convergent at 20

order of approximations.

Fig. 4.2: }−plots in view of  00(0) 0(0), and 0(0)
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Table 4.1: HAM solutions convergence when  = 01 =  1 = 03 =  = Pr =

15  = 13 = ̊ 1 = 08 = Re 
∗ = 1  = 01 =  ̌1 = 11 and ̌2 = 12

Order of approximations −̌ 00(0) −̌0(0) −̌0(0)
1 0.54350 0.76750 0.77000

2 0.46232 0.84084 0.69446

3 0.42238 0.88763 0.61467

4 0.40645 0.92394 0.54454

6 0.39258 0.94890 0.48503

12 0.38395 0.99796 0.28075

15 0.38123 0.99593 0.27679

20 0.38136 0.99601 0.27627

25 0.38368 0.99601 0.27774

30 0.38368 0.99601 0.27774

50 0.38368 0.99601 0.27774

4.5 Discussion

Intention here is to highlight the influence of involved variables for velocity, temperature and

concentration (see Figs. 4.3-4.21). Fig. 4.3 predicts impact of magnetic parameter  for

̌ 0(). Here velocity and boundary layer thickness are decreased with larger . It is because of

fact that for larger values of magnetic parameter  the Lorentz force (also termed as resistive

force) opposes the fluid’s motion and as a consequence the velocity of fluid decreases. Fig.

4.4 illustrates effectiveness of mixed convection parameter 1 on velocity. Here velocity is an

increasing function of 1. Influence of buoyancy parameter 
∗ on velocity field is sketched in

Fig. 4.5. Momentum boundary layer and velocity against ∗ are enhanced. Impact of third

grade fluid variable 1 on velocity field ̌ 0() is pictured in Fig. 4.6. It is noticed that velocity

enhances for larger 1. Physically higher values of 1 enhances shear thinning influences in fluid

and as a result the viscosity of fluid flow decreases and so velocity ̌ 0() increases. Changes in

velocity field ̌ 0() in view of material fluid parameters (̌1 ̌2) are revealed in Figs. 4.7 and

4.8. Velocity field ̌ 0() is an increasing function of material fluid parameters.
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Fig. 4.3: Impact for ̌ 0() via  Fig. 4.4: Impact for ̌ 0() via 1

Fig. 4.5: Impact for ̌ 0() via ∗ Fig. 4.6: Impact for ̌ 0() via 1

Fig. 4.7: Impact for ̌ 0() via ̌1 Fig. 4.8: Impact for ̌ 0() via ̌2

Variation in temperature ̌() in view of higher mixed convection parameter ̌ can be seen

through Fig. 4.9. Clearly temperature ̌() decreases by increasing 1. Temperature ̌()
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variation via Brownian motion parameter  is demonstrated in Fig. 4.10. Temperature rises

as a result of higher . Graphical presentation of  for ̌() is reflected in Fig. 4.11. As

in thermophoresis process, the heat transfer from the hotter surface to the cooler one so by

increasing the temperature ̌() increases. Change of temperature due to variation in Prandtl

number Pr is captured in Fig. 4.12. Since higher Pr tends to decrease in thermal diffusivity

so temperature and corresponding boundary layer are decreased. Fig. 4.13 explores variation

of temperature ̌() for magnetic parameter  . It is found that temperature is an increasing

function of magnetic parameter  . Fig. 4.14 discloses the influence of Eckert number  on

temperature ̌() . Higher value of  tends to rise in viscous dissipation and accordingly the

temperature increases.

Fig. 4.9: Impact for ̌() via 1 Fig. 4.10: Impact for ̌() via 

Fig. 4.11: Impact for ̌() via  Fig. 4.12: Impact for ̌() via Pr
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Fig. 4.13: Impact for ̌() via  Fig. 4.14: Impact for () via 

Fig. 4.15 illustrates the variation of nanoparticles concentration in response to Brownian

diffusion coefficientAn increment in causes decay in ̌() and related layer thickness. Fig.

4.16 elucidates the marginal growth in nanoparticles concentration as thermophoresis parameter

 varies from  = 01 to  = 04. Influence of Lewis number  on ̌() is portrayed in

Fig. 4.17. It is depicted that concentration distribution decreases for higher values of  Fig.

4.18 clarifies the influence of non-dimensional chemical reaction parameter  on concentration

of nanoparticles. As expected, the decline in nanoparticle concentration is noticed for higher

. Prediction of dimensionless activation energy ̊ on nanoparticles concentration is reflected

in Fig. 4.19. Increasing behavior of concentration profile is noticed for larger ̊.

Fig. 4.15: Effect of  on ̌() Fig. 4.16: Effect of  on ̌()
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Fig. 4.17: ̌() variation via  Fig. 4.18: ̌() variation via 

Fig. 4.19: ̌() variation via ̊

4.5.1 Entropy rate analysis and Bejan number

Figs. 4.20 and 4.21 elucidate impact of Brinkman number  on () and Bejan number .

It is conducted that () increases for larger . It is due to the reason that irreversibility

in fluid friction occurs by increasing . While Bejan number declines for higher . Conse-

quences of Reynolds number  on () and  are disclosed in Figs. 4.22 and 4.23. It is

concluded from Eq. (4.17) that entropy generation minimization occurs due to all irreversibil-

ity processes and as a result () enhances by increasing Reynolds number. Figs. 4.24 and

4.25 depict () and  for larger values of temperature difference parameter ̌. These Figs.

reflect that () and  are increasing functions of ̌. It is because of the reason that for

higher values of ̌ the heat transfer dominates than fluid friction and magnetic field. Fig. 4.26
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is sketched to show the effectiveness of Eckert number  on (). Here higher  enhanced

the entropy generation number ().

Fig. 4.20:  variation for  Fig. 4.21:  variation for 

Fig. 4.22:  variation for Re Fig. 4.23:  variation for Re
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Fig. 4.24: Effect of ̌ on  Fig. 4.25: Effect of ̌ on 

Fig. 4.26: Effect of  on 

Influence of different embedded parameters on skin-friction coefficient, Nusselt number and

Sherwood number are demonstrated in tables 4.2-4.4. By studying table 4.2, it is found that

coefficient of drag force is affected by local buoyancy parameter ∗ and non-dimensional ac-

tivation energy ̊ Here magnitude of skin-friction coefficient is enhanced for rising values of

1,  and 1. Table 4.3 displays variation in heat transfer rate. Higher  leads to decay in

heat transfer rate. Heat transfer rate decreases for higher Brownian diffusion parameter  and

thermophoresis parameter  while it enhances for Prandtl number Pr and magnetic parameter

 . Further the rate of mass transfer is decreased for non-dimensional chemical reaction para-

meter  and non-dimensional activation energy ̊ however it increases for other parameters as

mentioned in table 4.4.

51



Table 4.2: Numerical description of skin friction coefficient for different parameters.

1  1 ∗ ̊ −Re
1
2
 ̃

0.1 0.3 0.3 1 1.3 0.8688595

0.3 0.9131529

0.4 0.9673078

0.2 0.3 0.3 1 1.3 0.8701973

0.4 0.8759865

0.5 0.8783699

0.1 0.3 0.3 1 1.3 0.9030014

0.5 0.9458779

0.6 0.9977259

0.1 0.3 0.3 1.1 1.3 0.8039160

1.2 0.7507146

1.3 0.7290100

0.1 0.3 0.3 1 1.4 0.6347946

1.5 0.5473585

1.6 0.4763013
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Table 4.3: Numerical description of Nusselt number for different parameters.

Pr     Re
−1
2

 ̃

1 0.5 1.6 0.1 0.1 0.2084664

1.1 0.2544226

1.2 0.3026473

1 0.6 1.6 0.1 0.1 0.2492009

0.7 0.2893210

0.8 0.3293889

1 0.5 1.7 0.1 0.1 0.2781875

1.8 0.2288348

1.9 0.1920219

1 0.5 1.6 0.2 0.1 0.1800328

0.3 0.1541903

0.4 0.1291780

1 0.5 1.6 0.1 0.2 0.1929118

0.3 0.1779978

0.4 0.1644246
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Table 4.4: Numerical description of Sherwood number for different parameters.

  ̊   Re
−1
2

 ̃

0.8 0.1 1.1 0.2 0.3 0.3911616

0.9 0.4536701

1 0.5391772

0.8 0.2 1.1 0.2 0.3 0.3758304

0.3 0.3745837

0.4 0.3651333

0.8 0.1 1.2 0.2 0.3 0.3876376

1.3 0.3654337

1.4 0.3559579

0.8 0.1 1.1 0.25 0.3 0.5049517

0.3 0.5660433

0.35 0.6292429

0.8 0.1 1.1 0.2 0.4 0.04072542

0.5 0.1498125

0.6 0.2766914

4.6 Conclusions

Main points of present study are listed as follows:

• Velocity is in direct relation with mixed convection parameter 1.

• Velocity decays via larger magnetic parameter  .

• Concentration distribution reduces for higher chemical reaction parameter .

• Behaviors of Brownian diffusion coefficient  and thermophoresis parameter  are quite

opposite for nanoparticles concentration.

• Concentration field is enhanced for larger activation energy parameter ̊

• Temperature is significantly enhanced for higher Eckert number .
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• Higher Brinkman number , Reynolds number Re, temperature difference parameter ̌
and Eckert number  cause an increase in .

•  decays approximately with higher .

• Influences of Re and ̌ on  are similar in a qualitative sense.

55



Chapter 5

Entropy generation optimization

and activation energy in flow of

Walters-B nanomaterial

5.1 Introduction

Entropy generation in flow of Walters-B nanomaterial is addressed. Energy equation consist

of Ohmic heating, radiation and heat generation. Binary chemical reaction with modified

Arrhenius energy is employed. The consequences of thermophoresis, Brownian motion and

viscous dissipation are accounted. Convergent solutions by homotopy analysis technique are

constructed. Intervals of convergence are explicitly identified. Results of physical quantities of

interest are analyzed.

5.2 Modeling

Irreversibility process and activation energy with binary chemical reaction in flow of Walters-

B nanomaterial bounded by a stretching surface is addressed. An incompressible liquids is

conducting in presence of magnetic field with constant strength 0 Small magnetic Reynolds

number leads to omission of induced magnetic field. Here  and −axes are parallel and
normal to the surface. Heat source/ sink is considered. Surface temperature and concentration
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are taken as ̃ and ̃ while ambient temperature and concentration are denoted by ̃∞ and

̃∞ Fig. 1 describes the problem geometry. Governing mathematical equations of the system

are as follow:

Fig. 5.1: Flow geometry
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subject to the conditions

̃ =  =  ̃ = 0 ̃ = ̃ ̃ = ̃ at  = 0 (5.6)

̃ → 0 ̃ → ̃∞ ̃ → ̃∞ as  →∞
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Here (̃ ̃) are velocity components in ( ) directions, (0) ()  () () (̆) (
∗), (∗), (0) 

(), ()  ()  (1)  and (̃ ) denote material constant, density, electrical conductivity,

specific heat, thermal conductivity, Stefan-Boltzmann constant, mean absorption coefficient,

heat generation coefficient, Brownian diffusion coefficient, Boltzmann constant, the dimension-

less constant or rate constant having the range −1    1 chemical reaction parameter,

activation energy and thermophoretic diffusion coefficient. Considering
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the problems can be reduced in to the following forms
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̌ 0() = 1, ̌() = 0 ̌() = 1 ̌() = 1 at  = 0

̌ 0() → 0 ̌()→ 0 ̌()→ 0 when  →∞ (5.11)
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In above expressions the definitions () (Pr), (), (), (), (), (̃), (), (0), (̊), (̃)

and () denote magnetic parameter, Prandtl number, thermophoresis parameter, Lewis number,

radiation parameter, Eckert number, heat generation variable, Brownian motion parameter,

non-dimensional fluid parameter, dimensionless activation energy parameter, temperature ratio

parameter and non-dimensional chemical reaction parameter respectively.

Coefficient of skin friction and Nusselt and Sherwood numbers are presented in to definitions

given below
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Equation (5.7) and (5.12)-(5.17) give
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Re−05 ̃ = −̌0(0) (5.20)

in which Re =


depicts local Reynold’s number.
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5.2.1 Entropy generation examination

Irreversibility analysis for nanofluid flow of Walter’s-B fluid with Arrhenius activation energy

is main interest. Thermal radiation, viscous dissipation and MHD effects are implemented for

entropy generation minimization. Relevant expression satisfies
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From Eqs. (5.16) and Eq. (5.17) one obtain
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(5.23)

Entropy minimization in dimensionless form is

̌ = (1 +)Re ̌
02
+

0Re

Ω̌
̌ ̌ 00̌ 000 +Re ̌

µ
̌

Ω̌

¶2
̌
02

+Re ̌

µ
̌

Ω̌

¶
̌
0
̌
0
+
Re

Ω̌
̌ 02 (5.24)

 =
2

∆̃
 Ω̌ =

∆̃

̃∞
 ̌ =

̃∞


 ̌ =
∆̃

̃∞

̌ =
000 ̃∞

2


³
∆̃

´2  (5.25)
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where (̌), (̌), (), (̌) and (Ω̌) denote total entropy rate, diffusion constant, Brinkman

number, concentration and temperature difference parameters respectively.

5.3 Solution methodology

Series solution of above mentioned systems are obtained via homotopic technique. The suitable

initial guesses (̌0 ̌0 ̌0) and corresponding linear operators (£̃̌  £̃̌ £̃̌) are

̌0() = 1−  (5.26)

̌0() = − (5.27)

̌0() = − (5.28)

£̃̌ () =
3̌

3
− ̌


 £̃̌ () =

2̌

2
− ̌ £̃̌ () =

2̌

2
− ̌ (5.29)

£̃̌

h
̂1 + ̂2

 + ̂3
−
i
= 0 (5.30)

£̃̌

h
̂4

 + ̂5
−
i
= 0 (5.31)

£̃̌

h
̂6

 + ̂7
−
i
= 0 (5.32)

with ̂ ( = 1− 7) as the arbitrary constants.

5.4 Convergence analysis

For this purpose the }-curves are displayed in Fig. 5.2. The series solutions converge for ranges

of auxiliary parameters satisfying −15 ≤ }̌ ≤ −05, −14 ≤ }̌ ≤ −06,and −18 ≤ }̌ ≤ −04
Table 5.1 includes numerical computations of convergent solutions . Clearly the momentum

equation converges at 9

order of approximation while 15


and 19


orders of approximations

are sufficient for temperature and concentration.
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Fig. 5.2: ~−curves for }̌  }̌ and }̌

Table 5.1: Velocity, temperature and concentration convergence.

Order of approximation −̌ 00(0) −̌0(0) ̌
0
(0)

1 1.3500 0.73167 0.077040

9 1.4719 0.49925 0.11297

15 1.4719 0.49195 0.12603

19 1.4719 0.49195 0.12967

30 1.4719 0.49195 0.12967

40 1.4719 0.49195 0.12967

5.5 Discussion

Figs. (5.3-5.16) illustrates the velocity, temperature, concentration and entropy generation min-

imization. Fig. 5.3 presents outcome of () on velocity. For ( = 01 03 05 07) the velocity

decays gradually when Lorentz fore (opposing force) enhances. In Fig. 5.4, change in velocity

is shown for higher dimensionless fluid variable (0). An increase in (0 = 05 06 07 08)

yields reduction of velocity. Temperature for () variation is shown in Fig. 5.5. Tempera-

ture enhances for ( = 05 1 14 21). As heat transfer occurs from region of hotter region

to the cooler part. This process boosts the temperature. Result of higher Brownian mo-

tion parameter () on temperature is depicted in Fig. 5.6. Temperature rises via higher

( = 07 09 13 17). Variation of Pr on temperature is shown in Fig. 5.7. Thermal dif-
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fusivity decays for (Pr = 11 16 22 26) and so temperature reduces. Fig. 5.8 displays the

outcome of Eckert number () on temperature. Temperature is an increasing function of

( = 05 09 13 16). Higher Eckert number give rise to kinetic energy of fluid and conse-

quently fluid temperature enhances. Fig. 5.9 provides description of radiation on temperature.

An increase of ( = 02 04 06 08) enhances temperature. Here radiation parameter defines

the transfer rate of thermal radiation relative to conductive heat transfer rate. For higher ra-

diation parameter the radiation term dominates over conduction. Hence more heat releases in

a system due to radiative heat flux and so temperature increases. Fig. 5.10 gives outcome of

(̃) on temperature. Temperature increases as (̃ = 01 1 17 24) generates energy in system.

Outcomes of () and () on concentration are sketched in Figs. 5.11 and 5.12. Opposite

trend are observed in case of higher ( = 05 09 13 17) and ( = 06 09 16 27) for con-

centration. Variation in fluids concentration against dimensionless chemical reaction parameter

() is pictured in Fig. 5.13. Increasing ( = 05 09 125 155) lead to reduction of concentra-

tion. Fig. 5.14 provides impact of activation energy parameter (̊) on concentration. It can be

seen through figure that concentration rises for higher (̊ = 02 15 21 29).

Fig. 5.3: Variation of ̌() via  Fig. 5.4: Impact for ̌() via 0
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Fig. 5.5: Impact for ̌() via  Fig. 5.6: Impact for ̌() via 

Fig. 5.7: Impact for ̌() via Pr Fig. 5.8: Impact for ̌() via 

Fig. 5.9: Influence of  on ̌() Fig. 5.10: Influence of ̃ on ̌()
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Fig. 5.11: Influence of  on ̌() Fig. 5.12: Influence of  on ̌()

Fig. 5.13: Influence of  on ̌() Fig. 5.14: Influence of ̊ on ̌()

Influences of  and 0 on Re
05
 ̃ are disclosed in Fig. 5.15. It is clear that Re

05
 ̃

increases for higher  and 0. Fig. 5.16 depicts  and  on Re−05 ̃. Higher values

of  and  decay Re−05 ̃. Variations of ̊ and  on Re−05 ̃ are shown in Fig. 5.17.

(Re−05 ̃) is decreasing function of ̊ and .
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Fig. 5.15: Variations of  and 0 on Re
05
 ̃ Fig. 5.16: Variations of  and  on Re−05 ̃

Fig. 5.17: Variations of  and ̊ on Re−05 ̃

5.5.1 Entropy rate analysis

Fig. 5.18 elucidates the outcome of  on () . Clearly () increases for larger  .

Consequences of Brinkman number  on () are disclosed in Fig. 5.19. () enhances

by higher  Infact irreversibility occurs in fluid friction by higher . Fig. 5.20 indicates

effectiveness of 0 on (). An increase in () is noticed for 0. Figs. 5.21 and 5.22

portrayed Reynolds number Re and temperature difference parameter  on (). For higher

Re and  the entropy generation minimization increases. Here heat transfer dominates in

comparison to fluid friction and magnetic field for higher .
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Fig. 5.18:  via  Fig. 5.19:  via 

Fig. 5.20:  via 0 Fig. 5.21:  via Re

Fig. 5.22:  via 
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5.6 Conclusions

Major findings are summarized as follows

• Qualitative effect of concentration and temperature are opposite for higher thermophoresis
parameter.

• Temperature has similar behavior for radiation and Eckert number.

• An enhancement of temperature is possible for Brownian motion and heat/generation
parameter.

• Concentration by an activation energy parameter is increased.

• Decrease in mass transfer rate is noticed.

• Behavior of total entropy rate for Reynolds number and temperature difference parameter
is similar.

• Total entropy rate against Brinkman number and magnetic field has increasing trend.
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Chapter 6

Characteristics of activation energy

on Darcy-Forchheimer flow with

zero mass flux condition

6.1 Introduction

This chapter focus on consequences of activation energy on magneto-nanoparticles consider-

ing zero mass flux condition. Fluid flow over permeable sheet is analyzed by using Darcy-

Forchheimer model. Additionally, the significance of thermal radiation is discussed. Aspects

of thermophoresis and Brownian motion are also observed. Influences of convective and zero

mass flux conditions at boundary are introduced. System of partial differential equations are

converted in to ordinary differential equations by employing transformation technique. Formu-

lated system is solved numerically and the involved parameters discussed through graphs. Heat

flux and skin friction coefficient are also computed.

6.2 Formulation

Darcy-Forchheimer flow of magnetic nanofluid with activation energy is discussed here. Fluid

motion occurs due to porous sheet lying at  = 0. Fluid is confined to the region   0. Sheet

is stretched linearly with velocity () =  in which  being the stretching rate. ( ) is

69



the fluids temperature while (∞) represents the temperature far away from surface. Magnetic

field (0) is applied perpendicularly to the fluid motion. Influence of electric field is neglected.

Moreover, impact of activation energy and chemical reaction is also examined. Convective and

zero mass flux condition at boundary are imposed. Thermal radiation and heat generation

mechanism are analyzed in heat flow. We set

̃


+

̃


= 0 (6.1)

̃
̃


+ ̃

̃


= 

2̃

2
− ̆20


̃− 

†
̃− ̆ ̃2 (6.2)

̃
̃


+ ̃

̃


=

̆

()

2̃

2
+

1

()

16∗̃ 3∞
3∗

2̃

2
+

0

()
(̃ − ̃∞) (6.3)
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#
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∙−

1̃

¸
 (6.5)

subject to the conditions

̃ =  =  ̃ = 0 − ̆
̃


= ̌ (̃ − ̃ ) 

̃


+

̃

̃∞

Ã
̃



!
at  = 0 (6.6)

̃ → 0 ̃ → ̃∞ ̃ → ̃∞ as  →∞

Here (̃ ̃) are representation of velocity components in ( ) directions, (0) is the mag-

netic field, (̆) denotes the electrical conductivity, (†) stands for porous medium permeability,

(̆ = ̃


√
†
) denotes the inertia coefficient, (̃) depicts the drag coefficient, () the thermal

conductivity, () the specific heat, (
∗), (∗) denotes the Stefan-Boltzmann constant, mean ab-

sorption coefficient, (0) the heat generation coefficient, (1)  (), (), ()  ()  (̌ ) and

(̃ ) depicts the Boltzmann constant, Brownian diffusion coefficient, the dimensionless con-

stant or rate constant having the range −1    1 chemical reaction parameter, activation

energy, heat transfer coefficient and thermophoretic diffusion coefficient.
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Considering

 =
√
()  =

r





() =
̃ − ̃∞
̃ − ̃∞

, () =
̃ − ̃∞
̃∞

 (6.7)

the problems can be reduced in to the following forms

̌ 000 − ̌ 02 + ̌ ̌ 00 −̌ 0 − ̃̌
0 − ̃̌

02 = 0 (6.8)

(1 +)̌
00
+Pr ̌ ̌

0
+Pr̌

0
̌
0
+Pr(̌

0
)2 +Pr ̃̌ = 0 (6.9)
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00
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00
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"
−̊
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#
̌ = 0 (6.10)

̌ 0() = 1, ̌() = 0 ̌
0
() = −̃(1− ̌()) ̌

0
() +̌

0
() = 1 at  = 0

̌ 0() → 0 ̌()→ 0 ̌()→ 0 when  →∞ (6.11)

where
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̃20
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 ̃ =
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̃√
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

In above definitions the parameters () (Pr), (), (), (), (̃), (̃), (), (̃), (̃), (̊),

(̃) and () denote magnetic parameter, Prandtl number, thermophoresis parameter, Schmidt

number, radiation parameter, Biot number, heat generation parameter, Brownian motion pa-

rameter, porosity parameter, dimensionless inertia parameter, dimensionless activation energy

parameter, temperature ratio parameter and non-dimensional chemical reaction parameter re-

spectively.
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Coefficient of skin friction and Nusselt are represented in to definitions given below

̃ =
2 ̃|=0
2

 (6.12)

̃ =
 ̃|=0

̆(̃ − ̃∞)
 (6.13)

where

̃ = ̆
̃


+
16∗̃ 3∞
3∗

̃


 (6.14)

Using equation (6.6),

Re05 ̃ = ̌ 00(0)

Re−05 ̃ = − (1 +) ̌
0
(0) (6.15)

in which Re =


depicts local Reynold’s number.

6.3 Discussion

This chapter focused on influences of Darcy-Forchheimer flow of magneto-nanoparticles in the

presence of activation energy and zero mass flux at stretching surface. Set of governing equa-

tions (6.7)-(6.9) along conditions (6.10) solved numerically using ND solve. Impact of involved

parameters on velocity, temperature and concentration are discussed through graphs. Fig. 6.1

depicts the effectiveness of () on ̌ 0(). Fluid velocity decays as ( = 06 08 1 12 15) rises

because this enhance the resistive force and consequently motion of particle reduces. Variation

in velocity by increasing (̃) porosity parameter is shown in Fig. 6.2. Velocity decreases as (̃)

reaches from (06) to (15). Fig. 6.3 presents that velocity reduces for larger values of inertia

parameter (̃ = 01 03 07 11 13). Fig. 6.4 exhibits the impact of radiation parameter ()

on temperature. It is seen that temperature enhances for increasing values of () as higher

radiation delivers additional heat to the system. Effect of Prandtl number on temperature

is plotted in Fig. 6.5. Decrease in temperature is noticed via (Pr). Fig. 6.6 illustrates the

influence of heat generation parameter on temperature. Since heat of fluid increases via (̃) so

temperature increases. Consequences of thermophoresis and Brownian motion parameter are
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sketched in Figs. 6.7 and 6.8. Temperature enhances in both cases. Effect of Biot number

(̃) on temperature is sketched in Fig. 6.9. Higher convection resembles to stronger surface

temperature. Fig. 6.10 shows the variation in concentration due to change in (̃). Concen-

tration enhances for larger (̃). Impact of activation energy on concentration are displayed

in Fig. 6.11. Fluid’s concentration increases for increasing (̊). Fig. 6.12 sketched to see the

effectiveness of chemical reaction parameter on (). Concentration is a decaying function for

(). Same behavior is observed for Brownian motion parameter in case of concentration (See

Fig. 6.13). Characteristics of theremophoresis on () is pictured in Fig. 6.14. Concentration

enhances via ().

Fig. 6.1: Influence of  on ̌ 0() Fig. 6.2: Influence of ̃ on ̌ 0()

Fig. 6.3: Influence of ̃ on ̌ 0() Fig. 6.4: Influence of  on ̌()
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Fig. 6.5: Influence of Pr on ̌() Fig. 6.6: Influence of ̃ on ̌()

Fig. 6.7: Influence of  on ̌() Fig. 6.8: Influence of  on ̌()

Fig. 6.9: Influence of ̃ on ̌() Fig. 6.10: Influence of ̃ on ̌()
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Fig. 6.11: Influence of ̊ on ̌() Fig. 6.12: Influence of  on ̌()

Fig. 6.13: Influence of  on ̌() Fig. 6.14: Influence of  on ̌()

Table 6.1 is computed in order to show the impact of various parameters (̃, ̃) on skin

friction coefficient (̌ 00(0)). Clearly observe that Re05 ̃ reduces for (̃, ̃) while enhances

for magnetic parameter (). Influence of (Pr  and ̃) on heat transfer coefficient

are mentioned in Table 6.2. Local Nusselt number (Re
− 1
2

 ̃) reduced for Biot number (̃),

Brownian motion () and thermophoresis () while opposite behavior is noticed in case of

higher (Pr) and ().

75



Table 6.1: Numerical description of skin friction coefficient for various parameters.

̃ ̃  Re05 ̃

0.1 0.3 1 0.33467

0.15 0.25678

0.2 0.15199

0.25 0.11064

0.1 0.4 1 0.65409

0.6 0.55129

0.8 0.34096

1.2 0.28701

0.1 0.3 1.1 0.12679

1.3 0.34609

1.7 0.44672

1.9 0.55632
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Table 6.2: Numerical description of Nusselt number for various parameters.

Pr  ̃   Re
− 1
2

 ̃

1 0.1 1.1 0.2 0.3 0.345011

1.5 0.450987

2 0.620913

1 0.2 1.1 0.2 0.3 0.249200

0.3 0.289679

0.4 0.329459

1 0.1 1.2 0.2 0.3 0.278934

1.3 0.228682

1.4 0.218732

1 0.1 1.1 0.25 0.3 0.171905

0.3 0.141098

0.35 0.115602

1 0.1 1.1 0.2 0.4 0.183450

0.5 0.165191

0.6 0.154120

6.4 Conclusion

Remarkable results of this chapter are mentioned below

• Velocity of fluid reduces for higher magnetic parameter.

• Temperature of fluid grows while concentration reduces under the influence of Brownian
motion parameter.

• As chemical reaction parameter increases, the nanoparticle concentration diminishes.

• Temperature enhances for increasing radiation parameter, heat generation parameter and
Biot number.

• Heat transfer rate increases rapidly as Prandtl number and magnetic parameter rises.
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• Nanoparticle concentration increases for larger Biot number.
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Chapter 7

Irreversibility analysis for second

grade nanomaterial with zero mass

flux at stretching boundary

7.1 Introduction

This chapter addresses the impact of entropy generation for steady flow of second grade nano-

material with thermal radiation. A substantial perspective of this formulation is to analyze

the significance of activation energy and chemical reaction under convective and zero mass flux

conditions at boundary. Appropriate non-dimensional variable have been employed to get or-

dinary differential system. Convergent series solution is derived by using homotopic technique.

Graphical results of involved pertinent parameters are sketched and discussed thoroughly. Fluid

flow is observed through heat transfer rate and coefficient of drag force.

7.2 Flow analysis

Two-dimensional incompressible flow of second grade nanofluid is discussed. Energy equation

is formulated via Joule heating, heat generation, thermal radiation and viscous dissipation.

Influence of activation energy and chemical reaction are accounted. Impacts of Brownian motion

and thermophoresis are considered. Sheet at  = 0 is stretched with velocity () = 
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along -axis. (̃ ̃) are constant temperature and concentration while (̃∞ ̃∞) is the

fluid’s ambient temperature and concentration. Magnetic field (0) is applied in the direction

perpendicular to motion of fluid. Effects of electric field are assumed negligible. Irreversibility

analysis is done for involved parameters. Convective and zero mass flux condition are taken at

boundary. Under such assumptions, the velocity, temperature and concentration equations are

̃


+

̃


= 0 (7.1)

̃
̃


+ ̃

̃


= 

2̃

2
+

̃1



µ




µ
̃
2̃

2

¶
− ̃



2̃


+ 

3̃

3

¶
−̆

2
0


̃+ [̃ (̃ − ̃∞) + ̃(̃ − ̃∞)] (7.2)
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
+ ̃

̃



!
=

̆

()

Ã
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+



()

µ
̃



¶2
+

̃1
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̃
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¶
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Ã
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

!Ã
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
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+ 
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̃


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+

1

()

16∗̃ 3∞
3∗
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+ ̆

20
()

̃2

0

()
(̃ − ̃∞) (7.3)
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̃


+ ̃

̃


= 

Ã
2̃

2

!
+

̃

̃∞

Ã
2̃

2

!
−2

 (̃ − ̃∞)

"
̃

̃∞

#
exp

∙−

1̃

¸
 (7.4)

The boundary conditions are

̃ =  =  ̃ = 0 − ̆
̃


= ̌ (̃ − ̃ ) 

̃


+

̃

̃∞

Ã
̃



!
at  = 0 (7.5)

̃ → 0 ̃ → ̃∞ ̃ → ̃∞ as  →∞

Here ̃ and ̃ represents the velocities parallel to the  and -axes,  the kinematic viscosity,

(̃1) the fluid parameter,  the fluid density,  the specific heat,  the dynamic viscosity,

̃ thermophoresis coefficient,  stretching velocity,  Brownian coefficient,  the heat
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capacity of nanoparticles, ̆ the electrical conductivity and ̆ the thermal conductivity. The

term
h

̃

̃∞

i
exp

h
−
1̃

i
in Eq. (7.4) is called modified Arrhenius function. Further 1 = 861×

10−5 represents the Boltzmann constant,  being dimensionless constant or rate constant

having range −1    1  the chemical reaction parameter and  termed as activation

energy.

We use

 =
√
()  =

r





̌() =
̃ − ̃∞
̃ − ̃∞

, ̌() =
̃ − ̃∞
̃∞

 (7.6)

Here  denotes the stream function satisfying ̃ = −

and ̃ = 


 We can write

̃ = ̌ 0() , ̃ = −√̌() (7.7)

Expressions (7.2)-(7.6) are converted as follows

̌ 000 + ̌ ̌ 00 − (̌ 0)2 + ̃ (2̌
0̌ 000 − ̌ ̌  − ̌ 002)−2̌ 0 + 1[̌ +∗̌] = 0 (7.8)

(1 +)̌
00
+Pr ̌ ̌

0
+Pr[̌ 002 + 2̃ ̌ 0̌ 002 − ̃ ̌ ̌

00̌ 000]

+Pr[ 0
̌
0
̌
0
+(̌

0
)2] +Pr2(̌ 0)2 +Pr ̃̌ = 0  (7.9)

̌
00
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00
+ ̌

0 − (1 + ̃̌) exp

"
−̊
1 + ̃̌

#
̌ = 0 (7.10)

̌ 0() = 1, ̌() = 0 ̌
0
() = −̃(1− ̌()) ̌

0
() +̌

0
() = 1 at  = 0

̌ 0() → 0 ̌()→ 0 ̌()→ 0 when  →∞ (7.11)

where
³
̃ =

̃1


´
depicts the second grade fluid parameter,

³
1 =


Re2

´
the mixed convection

parameter,
³
2 =

̆20
2



´
represents the magnetic parameter,

³
 =


̃
(̃−̃∞)3

2

´
denotes

the Grashof number for temperature and
³
∗ = (−∞)3

2

´
is the Grashof number for con-
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centration, (∗ = ∗

) the local buoyancy parameter,

³
 =

2




´
the dimensionless chemical

reaction parameter,
³
 =

2
(̃−̃∞)

´
the Eckert number,

³
 = 



´
is the Schmidt number,³

̃ =
(̃−̃∞)

̃∞

´
is called temperature ratio parameter,

³
 =

()̃
(̃−̃∞)

̃∞()

´
the thermophore-

sis parameter,
³
 =

()∞
()

´
is the Brownian motion parameter,

³
 =

16∗̃ 3∞
3∗

´
is termed

as radiation parameter,
³
̃ = 0



´
dimensionless heat generation parameter,

³
̃ =

̌

̆

p



´
represents the Biot number and

³
̊ = −

1̃∞

´
is dimensionless activation energy.

7.2.1 Physical Quantities of interest

Coefficient of drag force (̃) and rate of heat flux (̃) can be described as:

̃ =
̆

2
 ̃ =

̆
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. (7.12)
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In non-dimensional form we obtain

05Re
1
2
 ̃ = ̌ 00(0) + ̃3̌

0(0)̌ 00(0)

Re
1
2
 ̃ = −(1 +)̌

0
(0) (7.14)

in which Re =


is Reynold number.
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7.2.2 Entropy generation analysis:

Entropy minimization equation for second grade fluid is
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Basically entropy generation number is the ratio of actual entropy rate (̌) to the characteristic

entropy rate (̌0) so entropy generation number can be written as
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in which
³
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is characteristic entropy rate,
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the diffusion constant,³
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and

³
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´
the concentration and tempera-

ture differences respectively.

Bejan number is defined as

 =
Thermal irreversibility+Diffusive irreversibility

Total entropy rate
 (7.17)

In non-dimensionalized form it can be represented as
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7.3 Solutions by homotopy analysis method

Series solutions of involved systems is obtained via homotopic analysis. Suitable initial assump-

tions
¡
̌0 ̌0 ̌0

¢
and associated linear operators

³
L̃̌  L̃̌ L̃̌

´
are

̌0() = 1− − (7.19)

̌0() =
̃

1 + ̃

− (7.20)
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¶
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1 + ̃

− (7.21)

L̃̌ () =
3̌

3
− ̌


 L̃̌ () =

2̌

2
− ̌ L̃̌ () =

2̌

2
− ̌ (7.22)

L̃̌
h
̆1 + ̆2 + ̆3


i
= 0 (7.23)

L̃̌
h
̆4

 + ̆5
−
i
= 0 (7.24)

L̃̌
h
̆6

 + ̆7
−
i
= 0 (7.25)

with ̆ ( = 1− 7) denote the arbitrary constants.

7.4 Convergence

This section tends to find the convergence region. Fig. 7.1 presented the ~−curves. Clearly
the series solutions converge for ranges of auxiliary parameters satisfying −08 ≤ }̌ ≤ −01,
−095 ≤ }̌ ≤ −02 and −10 ≤ }̌ ≤ −015 Clearly the momentum equation converges

at 19

order of approximation while 18


and 25


orders of approximations are required for

temperature and concentration.
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Fig. 7.1: ~−curve for ̌ 00(0) Fig. 7.2: ~−curve for ̌0(0)

Fig. 7.3: ~−curve for ̌0(0)
Table 7.1: Values for convergence analysis.

Order of approximation −̌ 00(0) −̌0(0) −̌0(0)
1 0.3500 0.73167 0.07704

9 0.4719 0.49925 0.11298

15 0.5892 0.87805 0.12643

18 0.9856 1.19195 0.15667

19 1.0252 1.19195 0.89654

25 1.0252 1.19195 0.95786
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7.5 Analysis

In this section the effectiveness of involved variables on velocity, temperature, concentration,

drag surface coefficient, heat transfer rate and irreversibility mechanism are discussed in detail.

Fig. 7.4 indicates the impact of magnetic parameter on velocity. Velocity decays as ( =

01 03 05 06). Higher  lead to reduction in fluids velocity due to resistive force named as

Lorentz force. Consequences of dimension less second grade fluid parameter is sketched in Fig.

7.5.  0() is an increasing function of (̃ ). Impact of mixed convective parameter (1) and

buoyancy parameter (∗) on  0() are presented in Figs. 7.6 and 7.7. Velocity enhances in

both cases.

Fig. 7.4: ̌ 0() via  Fig. 7.5: ̌ 0() via ̃

Fig. 7.6: ̌ 0() via 1 Fig. 7.7: ̌ 0() via ∗
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Characteristics of magnetic parameter on temperature are displayed in Fig. 7.8. Tempera-

ture increases as  ranges from 1 to 1.6. Fig. 7.9 discloses the effect of radiation parameter

on temperature. Due to increment in (), the thermal field enhanced. Fig. 7.10 exhibits

the relation of Eckert number () with temperature. More  rises fluids temperature. Be-

cause Eckert number is ratio of difference in enthalpy to kinetic energy of fluid. Here higher

 leads to reduction in fluids motion so heat of system enhances. Fig. 7.11 addresses that

temperature decays for larger . Figs. 7.12 and 7.13 display the effects of () and () on

(()). Temperature increases for both parameters as the difference between initial and ambient

temperature rises. Kinetic motion of nanoparticles increases and gradually more heat added in

the setup. Heat generation parameter (̃) enhances nanomaterial thermally as sketched in Fig.

7.14. Variation in chemical reaction parameter () is presented in Fig. 7.15. Concentration of

nanomaterial decreases for (). Impact of dimensionless activation energy (̊) is pictured in

Fig. 7.16. Solutal concentration rises for larger (̊).

Fig. 7.8: ̌() via  Fig. 7.9: ̌() via 

87



Fig. 7.10: ̌() via  Fig. 7.11: ̌() via Pr

Fig. 7.12: ̌() via  Fig. 7.13: ̌() via 

Fig. 7.14: ̌() via ̃ Fig. 7.15: ̌() via 
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Fig. 7.16: ̌() via ̊

Fig. 7.17 shows the outcome of  on entropy rate (̌). Irreversibility rate enhances as

values of applied magnetic field increases ( = 01 04 06 08). Influence of concentration

difference (̌) on (̌) are pictured in Fig. 7.18. It is noticed that entropy highers for larger

(̌). Brinkman number () also boosted the irreversibility rate as shown in Fig. 7.19. As

larger () reduces thermal process so entropy increases. Effect of Prandtl number (Pr) on

(̌) are sketched in Fig. 7.20. (̌) increases as (Pr) varies from 1.2 to 2.3. Consequences

of (̌) and () on (̌) are presented in Figs. 7.21 and 7.22. Opposite effect are noticed for

both parameters. Features of Re on (̌) are reported in Fig 7.23. Irreversibility rises as Re

increases from 1.1 to 1.9.

Table 7.1 is drawn to verify the effects of (̃  1 
∗) on drag friction coefficient (Re05 ̃).

Drag force decreases for (1 
∗) while it enhances for second grade fluid parameter (̃ ). Effects

of different variables on heat transfer rate are reflected in Table 7.2. It is clear that heat transfer
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of fluid enhances for (Pr ̃) while decays for (̃  ̃).

Fig. 7.17: ̌ variations via  Fig. 7.18: ̌ variations via ̌

Fig. 7.19: ̌ variations via  Fig. 7.20: ̌ variations via Pr

Fig. 7.21:  variations via ̌ Fig. 7.22:  variations via 
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Fig. 7.23:  variations via Re
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Table 7.1: Numerical description of skin friction coefficient for various parameters.

̃ 1 ∗ Re05 ̃

0.1 0.3 1 0.45902

0.15 0.34781

0.2 0.16478

0.25 0.11894

0.1 0.4 1 0.55690

0.6 0.45231

0.8 0.33467

1.2 0.22891

0.1 0.3 1.1 0.11348

1.3 0.34729

1.7 0.45981

1.9 0.52390
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Table 7.2: Nusselt number description.

Pr ̃ ̃  ̃ Re
− 1
2

 ̃

1 0.1 1.1 0.2 0.3 0.21348

1.5 0.34908

2 0.67129

1 0.2 1.1 0.2 0.3 0.98763

0.3 0.56230

0.4 0.32764

1 0.1 1.2 0.2 0.3 0.45239

1.3 0.12569

1.4 0.09345

1 0.1 1.1 0.25 0.3 0.98673

0.3 0.63489

0.35 0.34986

1 0.1 1.1 0.2 0.4 0.17893

0.5 0.16583

0.6 0.14908

7.6 Conclusion

Key findings are summarized below:

• Radiation and Eckert number leads to temperature enhancement.

• For higher heat/generation absorption and Brownian motion parameters the temperature
of fluid motion gets enhanced.

• An enhancment for concentration of fluid through activation energy parameter is noticed.

• Decay in mass transfer rate is found for higher chemical reaction parameter.

• Impact of Brinkman number and temperature difference parameter on total entropy rate
is similar.
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• Higher Brinkman and Reynold numbers lead to an increment in Bejan number.
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