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Abstract

Decision making activities are prevalent in the human race. Till date, numerous multi-criteria

group decision making (MCGDM) techniques have been put forward under various fuzzy con-

texts to address scenarios of vague nature. However, there are some imperfections in these

developed studies. The present work mainly aims to remove the existing limitations and to

construct some robust MCGDM techniques in order to tackle the complex problems more ac-

curately. For this, we revise the basic operational laws, comparison method and a series of ag-

gregation operators for the probabilistic uncertain linguistic term set (PULTS) and uncertain

probabilistic linguistic term set (UPLTS). In addition, some innovative fuzzy tools, namely

probabilistic hesitant intuitionistic linguistic term set (PHILTS) and weighted interval-valued

dual hesitant fuzzy set (WIVDHFS), and their related theories, are introduced. Then, based

on the proposed theory, some well-known MCGDM techniques, viz. technique of order pref-

erence similarity to the ideal solution (TOPSIS), gained and lost dominance score (GLDS),

weighted aggregated sum product assessment (WASPAS) and aggregation-based method are

extended to more generalized fuzzy frameworks. Meanwhile, several criteria weight determi-

nation models are built according to different fuzzy environments. To validate the practicality

of the proposed work, we address some real world problems, including investment problem,

supplier selection and teaching quality assessment. Further, to testify the potentiality and

weaknesses of the provided techniques, comparative study and sensitivity analysis are also

delineated.
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Chapter 1

Introduction

This chapter mainly focuses on presenting limitations of existing theory and to point out the

novel contributions.

1.1 Background of research

Due to growing competitions, it is noticed that decision making has become one of the fastest

emerging research areas concerned with real world problems. Multi-criteria group decision

making (MCGDM) is one of the key components of the decision making process has become

most popular, see [1, 2, 3]. Its primary goal is to allow a group of decision makers (DMs) to

rate alternatives according to a specific set of criteria and then choose the best one. Since,

the criteria conflict with each other, it may not have a unique solution that simultaneously

meets each criterion. Years ago, several MCGDM techniques were developed in classical

mathematics as comfortable and stable frameworks to make rational decisions. However, there

is a wide range of vague phenomena in the current global competitive environment, imprecise

concepts and unknown quantities that fall beyond the scope of classical mathematics. To cope

with such vague phenomena, a concept of ‘Fuzzy’ has been coined in mathematics. Fuzzy sets

(FSs) originally initiated by Zadeh [4] in 1965, has emerged as one of the fruitful decision aid
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tool having the capability to tackle vagueness and hesitancy. Numerous MCGDM techniques

have been built in a fuzzy environment over the years with extensive theoretical and practical

backgrounds [5, 6, 7, 8, 9].

Up to date, several extensions have been done of FSs to enable a better depiction of the

real world’s imprecision. Atanassov [10] presented the base of intuitionistic fuzzy sets (IFSs)

marked by the membership and non-membership functions ranges from 0 to 1. Numerous

decision ranking methodologies and related theory have been described in the framework

of IFSs [11, 12, 13]. Atanassov and Gargov [14] commenced the doctrine of interval-valued

intuitionistic fuzzy sets (IVIFSs) based on IFSs. Following their pioneering work, the theory

of IVIFSs was further developed. In [15, 16, 17, 18], many concepts like correlation coefficient,

topological properties, the correlation and decomposition theorem, related algorithms and the

relationship between other FSs were discussed.

Ju et al. [19] enhanced the concept of interval-valued hesitant fuzzy set (IVHFS) [20]

to the interval-valued dual hesitant fuzzy sets (IVDHFSs), in which the membership and

non-membership grades are represented by two sets of several interval values. After the intro-

duction of this extraordinary representation, several scholars engaged in this direction. For

instance, Peng et al. [21] designed several interval-valued dual hesitant fuzzy aggregation

operators based on Archimedean t-norm and t-conorm. Zang et al. [22] investigated a set

of interval-valued dual hesitant fuzzy Heronian mean operators and then according to these

operators, proposed the procedure for addressing the group decision making challenges. IVD-

HFS is an important extension of FS and has drawn the attention of many experts. However,

in the theme of IVDHFS, each membership and non-membership value possesses the same

weightage. To illustrate our point, consider a person who has to purchase a commodity C,

and he is certain that his degree of agreement towards purchasing the commodity is 60%

towards [0.2, 0.3] and 40% towards [0.3, 0.5] and analogously, for the non-membership case,

he is 70% favouring to the [0.3, 0.4] rejection level and 30% favouring the [0.2, 0.3] rejection

6



level. Thus, under IVDHFS context, this information is captured as:

〈{[0.2, 0.3], [0.3, 0.5]} , {[0.3, 0.4], [0.2, 0.3]}〉 .

Here the weightage value is ignored. So, situations like this, in which the hesitation has some

preference over another hesitant value arise new challenges to IVDHFS.

In certain instances, the aforementioned fuzzy sets are incapable of modelling real world

decision problems due to the qualitative nature of many attributes. Indeed DMs may feel

suitable to state their views by linguistic terms rather than quantitative form. Though the

linguistic terms are less precise than numerical values, they are more close to human cognitive

processes. Zadeh [23] mounted the root for linguistic decision-making which further achieved

great concern from the work of Herrera et al. [24, 25]. After that, Rodriguez et al. [26] got

inspiration from the strength of linguistic term sets (LTSs) [27], and HFSs [28], and investi-

gated the idea of hesitant fuzzy linguistic term sets (HFLTSs) which made a breakthrough

in terms of adjusting vagueness and uncertainty. Beg and Rashid [29] further generalized the

notion of HFLTSs to hesitant intuitionistic fuzzy linguistic term sets (HIFLTSs) and stud-

ied the distance measure and technique of order preference similarity to the ideal solution

(TOPSIS) methodology in the proposed setting along with the application. Though HFLTSs

and HIFLTSs are efficient tools, they assign equal weight to each term and cannot reflect the

original assessments of DMs in specific problems.

To overcome the limitations of HFLTSs, Pang et al. [30] put forward the notion of proba-

bilistic linguistic term sets (PLTSs), by adjoining each term with its corresponding probability.

Here, the probability meanings can be the weight, the importance value or the possible degree.

Many researchers have explored various properties of PLTSs in-depth and on its viewpoint

[31, 32, 33]. For instance, the basic and improved operations [34], distance measure [35], ag-

gregation operators [36] and some decision ranking methods have been presented [32, 37, 38].

To provide more adaptability in DMs choices, Lin et al. [32] designed the probabilistic uncer-
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tain linguistic term set (PULTS). They studied basic operational laws, aggregation operators

for PULTSs. They also put forward an extended TOPSIS technique to cope with MCGDM

problems in the PULTS framework. Even though PULTS makes it achievable to present un-

certain linguistic terms in a more realistic manner, but still a challenge emerges since PULTS

is completely founded on a qualitative scale mapped to a sequence of uniformly distributed

integers. Such a representative model is doubtable, and DMs must legitimize the choice of

uniformly distributed integers.

In the theory of PLTSs, owing to factors such as time pressure, inadequate experience, na-

ture of objects, some DMs may not provide their assessment information. In such a situation,

normalization is required before using PLTSs. Thus, the ignorance information is proportion-

ally allotted to each linguistic term in PLTS, which may cause the loss of information and

may result in unreasonable results. To circumvent this issue, Jin et al. [33] stated the con-

cept of uncertain probabilistic linguistic term set (UPLTS) as an exciting expansion of PLTS.

They presented some basic operations, score function and comparison method for UPLTSs.

However, their proposed operational law faces several challenges; in particular, it lacks basic

operational properties such as the distributive property of multiplication over addition, which

is a significant drawback. Also, the results obtained after operations are no longer UPLTSs.

Further, in some instances, the score function provided by [33] may be impractical (see

Example 6.1.5). Another major issue regarding UPLTSs is that of aggregating the opinions

of DMs. Though Jin et al. [33] studied some basic aggregation operators and their weighted

form under uncertain probabilistic linguistic environment, their proposed operators are based

on such operations whose influence on the final solution may be unrealistic. Besides this,

these cannot handle the situation in which DM’s weights are taken into account. For fruitful

decision making, selecting the appropriate operational laws during the aggregation phase is

crucial. Therefore, some novel theories under uncertain probabilistic linguistic environment

are required.

8



1.2 Motivations

Based on the above literature analysis, the motivations of the present work are pointed out.

ä HIFLTS and IVDHFS are powerful tools for handling complex problems with linguistic

or quantitative variables. However, sometimes it becomes cumbersome to model the

scenarios of more vague nature by utilizing these notions. Thus, there is a need to

introduce novel fuzzy tools and their related mathematical studies to cope with this

predicament.

ä The basic operational laws given by [32] and [33] for UPLTSs and PULTSs, respectively,

are irrational:

(a) The probabilistic uncertain linguistic operations [32, 33] are directly based on in-

dices of linguistic terms and are valid only if the linguistic scale function is balanced.

Nevertheless, there does not exist any study about the unbalanced scenarios.

(b) Likewise, probabilistic uncertain linguistic operations, the existing operational laws

of UPLTSs are also based on the doctrine to operate the indices of linguistic terms

with their associated probabilities. This way is unreasonable as these two are

different dimensions. Besides this, the results obtained by these operational laws

lose the probability information and are no longer UPLTSs.

The detail discussion about the limitations (a) and (b) can be seen in Chapters 4

and 6, respectively.

ä The present distance measures between two PULTSs need to insert artificial linguistic

terms to the smaller one in order to equalize their length, which is rude and would lead

to unfruitful decision ranking results.

ä The available comparison method fails to differentiate UPLTSs in some cases (see Ex-

ample 6.1.5).
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ä The aggregated results obtained by the aggregation operators proposed by [32] and [33]

generate some specific terms which are unstated in the given LTS, and thus calls a

challenge to design some novel aggregation operators.

ä As claimed by Gou et al. [39] that selection of an appropriate alternative from the

set of available alternatives under the complex environment is an interesting challenge.

Thereby some popular MCGDM techniques such as TOPSIS, gained and lost dominance

score (GLDS), weighted aggregated sum product assessment (WASPAS) and aggrega-

tion based methods must be effectively expanded to probabilistic hesitant intuitionistic

linguistic term set (PHILTS), PULTS and UPLTS, respectively, under unknown weight

information.

1.3 Contributions

To circumvent the challenges mentioned above, the key contributions of this study are listed

in a nutshell below:

ä To assess the DMs information accurately, the present study originate some novel no-

tions viz., PHILTS, weighted interval-valued dual hesitant fuzzy set (WIVDHFS) and

their extended concepts.

ä By analyzing the weaknesses of the existing operational laws of PULTSs and UPLTSs,

we redefine these laws and examine their relevant properties.

ä As mentioned above, to overcome the shortcomings of existing probabilistic uncertain

linguistic distance measures, some new distance measures are devised.

ä We have also formulated a novel uncertain probabilistic linguistic comparative method

based on the revised score function and deviation degree to cover the imperfections of

the existing ones.
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ä The present work also focuses on aggregation operators. Certain existing aggregation

operators are revised to aggregate the rating of DMs with precise aim. Besides this, sev-

eral innovative aggregation operators, namely uncertain probabilistic linguistic simple

weighted geometry (UPLSWG) and weighted interval-valued dual hesitant fuzzy oper-

ators in terms of t-norm and t-conorm are delineated along with their silent features.

ä We build certain robust decision making techniques including TOPSIS, GLDS, WAS-

PAS and aggregation-based method for some advance fuzzy tools in order to cope with

uncertainty problems more accurately.

To manifest the practicality and advantages of the designed techniques, several real world

problems are addressed, and detail comparison is given with existing literature.

1.4 Arrangement of the thesis

There are seven chapters in the thesis, including this one. The details of the remaining

chapters are given below:

Chapter 2 recalls some basic definitions and concepts of PLTS, PULTS, UPLTS, IVDHFS,

and related concepts, which will be helpful in later chapters.

Chapter 3 introduces a novel notion, namely PHILTs and its related concepts like basic

operations, aggregation operators, normalization process, and distance measure. Also, an in-

depth theoretical investigation is done to extend the maximizing deviation method for criteria

weight determination. Two practical decision-making models: aggregation based method and

the TOPSIS method for the proposed notion are designed along with their application.

Chapter 4 mainly focuses on improving the existing theory of PULTS, including oper-

ational rules, score function deviation degree, distance measure and aggregation operators.

Further, to suit the needs of different semantics, two robust decision making methods named

as consensus-based PUL-gained and lost dominance score method and consensus-based PUL-

aggregation method are proposed. A practical case concerning the decision of the best com-
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modity for investment in Forex is presented to illustrate the application of the provided

methods.

Chapter 5 deals with an innovative fuzzy set, namely WIVDHFS and its related math-

ematical study. In line with Archimedean t-norm and t-conorm, two types of aggregation

operators, namely, the generalized weighted interval-valued dual hesitant fuzzy weighted av-

eraging (GWIVDHFWA) operator and the generalized weighted interval-valued dual hesitant

fuzzy weighted geometric (GWIVDHFWG) operator are designed along with their relevant

properties. Meanwhile, some of their particular cases and relationships are also explored. A

novel MCGDM approach under a weighted interval-valued dual hesitant fuzzy environment

is then constructed based on particular cases. Finally, an application case about teaching

quality assessment is provided, and some analysis and comparisons are presented to testify

the constructed approach.

Chapter 6, we first pointed out some weaknesses of the existing operational laws and

score function of UPLTSs through some critical examples and then redefined them to over-

come existing flaws to acquire more accurate results in practical decision making problems.

Also, we establish various properties of the revised operational laws along with proofs. To

design a novel comparison method, the concept of deviation degree is put forward in order

to accommodate the situation in which two different UPLTSs have the same score values.

Based on the proposed operational laws, several existing aggregation operators are modified,

and a novel aggregation operator, namely uncertain probabilistic linguistic simple weighted

geometry (UPLSWG) operator is designed. Meanwhile, some interesting properties of these

proposed operators are carefully analyzed. Furthermore, an entropy technique under uncer-

tain probabilistic linguistic information is structured for computing the completely unknown

weights of criteria. Following this, a new extension of WASPAS method called uncertain

probabilistic linguistic-WASPAS (UPL-WASPAS) methodology based on the proposed ag-

gregation operators is studied under the UPLTS context for ranking objects in MCGDM

problems. To demonstrate the applicability and potentiality of the originated method, an

12



example of supplier selection is addressed, and a detailed performance comparison analysis is

conducted.

Lastly, concluding remarks and various proposals for possible future developments of this

doctoral work are given.
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Chapter 2

Some fundamental concepts

This chapter presents some essential concepts related to FSs, particularly, HIFLTS, PLTS,

PULTS, IVDHFS and UPLTS that are required to understand the work proposed in succeed-

ing chapters. For a detailed study, we encourage the readers to see [19, 29, 30, 32, 33, 40, 41,

42].

2.1 Linguistic scale function and some extensions of FS

To facilitate the presentation let us first review linguistic scale function, some extensions of

FS and their relevant concepts.

Definition 2.1.1. [40] Let S be an LTS and θβ ∈ [0, 1] then linguistic scale function ` is a

monotonically increasing function which can be mathematically characterised as:

` : £β → θβ ; `−1 : θβ → £β ∀ £β ∈ S.

Actually, the function value θβ reflects the semantics of linguistic term £β.

On the basis of different types of LTSs, balanced and unbalanced, the linguistic scale

function is categorized into the following three types.
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i. If the semantics are uniformly distributed, then
`(£β) =

β

2τ

`−1(£β) = £2τθβ

, if β ∈ [0, 2τ ] (2.1.1)


`(£β) =

β + τ

2τ

`−1(θβ) = £2τθβ−τ

, if β ∈ [−τ, τ ] (2.1.2)

ii. If the semantics are unequally distributed included that the semantic deviations between

the adjacent linguistic terms are increasing with enlargement from medium, then
`(£β) =

µτ1 − µ
τ−β
1

2µτ1 − 2
× 1{β∈[0,τ ]} +

µτ2 − µ
β−τ
2 − 2

2µτ2 − 2
× 1{β∈[τ,2τ ]}

`−1(θβ) = £(τ−logµ1 (µ
τ
1−(2µτ1−2)θβ))×1{β∈[0,τ ]}+(τ+logµ2 ((2µ

τ
2−2)θβ−(µτ2−2)))×1{β∈[τ,2τ ]}

, if β ∈ [0, 2τ ]

(2.1.3)


`(£β) =

µτ1 − µ
−β
1

2µτ1 − 2
× 1{β∈[−τ,0]} +

µτ2 − µ
β
2 − 2

2µτ2 − 2
× 1{β∈[0,τ ]}

`−1(θβ) = £(− logµ1 (µ
τ
1−(2µτ1−2)θβ))×1{β∈[−τ,0]}+(τ+logµ2 ((2µ

τ
2−2)θβ−(µτ2−2)))×1{β∈[0,τ ]}

, if β ∈ [−τ, τ ]

(2.1.4)

where 1{β∈[0,τ ]} =


1, if β ∈ [0, τ ];

0, otherwise.

is a significative function. The other significative

functions have the same meanings. µ1 and µ2 are parameters and must be larger than

1.
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iii. In case that semantics are unequally distributed included that the semantic deviations

between the adjacent linguistic terms are decreasing with the enlargement from medium,

then
`(£β) =

τψ1 − (τ − β)ψ1

2τψ1
× 1{β∈[0,τ ]} +

τψ2 + (β − τ)ψ2

2τψ2
× 1{β∈[τ,2τ ]}

`−1(θβ) = £
(τ−τ ψ1

√
1−2θβ)×1{β∈[0,τ ]}+(τ+τ ψ2

√
2θβ−1)×1{β∈[τ,2τ ]}

, if β ∈ [0, 2τ ]

(2.1.5)


`(£β) =

τψ1 − (−β)ψ1

2τψ1
× 1{β∈[−τ,0]} +

τψ2 + (β)ψ2

2τψ2
× 1{β∈[0,τ ]}

`−1(θβ) = £
(−τ ψ1
√

1−2θβ)×1{β∈[−τ,0]}+(τ ψ2
√

2θβ−1)×1{β∈[0,τ ]}

, if β ∈ [−τ, τ ] (2.1.6)

where ψ1 and ψ2 are parameters belongs to (0, 1].

Definition 2.1.2. [26] Let S = {£α;α = 0, 1, 2, . . . , τ} be a linguistic term set; then, HFLTS,

HS, is a finite and ordered subset of the consecutive linguistic terms of S.

Example 2.1.3. Let S =


£0 = extremely poor,£1 = very poor,£2 = poor,£3 = medium,

£4 = good,£5 = very good ,£6 = extremely good

 ,

be a linguistic term set. Then, two different HFLTSs may be defined as:

HS (x) = {£1 = very poor,£2 = poor,£3 = medium,£4 = good} and HS (y) = {£3 = medium,

£4 = good,£5 = very good}.

Definition 2.1.4. [26] Let S = {£α;α = 0, 1, 2, . . . , τ} be an ordered finite set of linguistic

terms and E be an ordered finite subset of the consecutive linguistic terms of S. Then, the

operators “max” and “min” on E are given as follows:

(i) max (E) = max (£α) = £m ; £α ∈ E and £α ≤ £m ∀α;

16



(ii) min (E) = min (£α) = £n ; £α ∈ E and £α ≥ £n ∀α.

Definition 2.1.5. [29] Let Z be a universal set, and S = {£α;α = 0, 1, 2, . . . , τ} be a linguis-

tic term set, then HIFLTS on Z are two functions h and h
′

that when applied to an element of

Z return finite and ordered subsets of consecutive linguistic terms of S, this can be expressed

mathematically as:

A =
{〈

z, h (z) , h
′
(z)
〉
|z ∈ Z

}
,

where h (z) and h
′
(z) denote the possible membership and non-membership degree in terms

of consecutive linguistic terms of the element z ∈ Z to the set A such that the following

conditions are satisfied:

(i) max (h (z)) + min
(
h
′
(z)
)
≤ £τ ;

(ii) min (h (z)) + max
(
h
′
(z)
)
≤ £τ .

Definition 2.1.6. [30] Let S = {£α;α = 0, 1, 2, . . . , τ} be a linguistic term set, then a PLTS

can be presented as:

£ (p) =

£(i)
(
p(i)
)
| £(i) ∈ S, p(i) ≥ 0 i = 1, 2, . . . ,#£ (p) ,

#£(p)∑
i=1

p(i) ≤ 1

 , (2.1.7)

where £(i)
(
p(i)
)

is the ith linguistic term £(i) associated with the probability p(i), and #£ (p)

denotes the number of linguistic terms in £ (p) .

Definition 2.1.7. [30] Let £ (p) =
{

£(i)
(
p(i)
)

; i = 1, 2, . . . ,#£ (p)
}

, r(i) be the lower index

of linguistic term £(i), £ (p) is called an ordered PLTS, if all the elements £(i)
(
p(i)
)

in £ (p)

are ranked according to the values of r(i) × p(i) in descending order.

However, in a PLTS, it is possible for two or more linguistic terms with equal values of

r(i)×p(i). Taking a PLTS £ (p) = {£1 (0.4) ,£2 (0.2) ,£3 (0.4) }, here r(1)×p(1) = r(2)×p(2) =

0.4.
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According to the above rule, these two values cannot be arranged. To handle such type

of problem, Zhang et al. [43] defined the following ranking rule.

Definition 2.1.8. Let £ (P ) =
{

£(i)
(
p(i)
)

; i = 1, 2, . . . ,#£ (p)
}

, r(i) be the lower index of

linguistic term £(i).

(1) If the values of r(i)
(
p(i)
)

are different for all elements in PLTS, then arrange all the

elements according to the values of r(i)
(
p(i)
)

directly.

(2) If all the values of r(i)
(
p(i)
)

become equal for two or more elements, then

(a) When the lower indices r(i) (i = 1, 2, . . . ,#£ (p)) are unequal, rank r(i)
(
p(i)
)

(i =

1, 2, . . . ,#£ (p)) accordant with the values of r(i) (i = 1, 2, . . . ,#£ (p)) in descend-

ing order.

(b) When the lower indices r(i) (i = 1, 2, . . . ,#£ (p)) are incomparable, rank r(i)
(
p(i)
)

(i = 1, 2, . . . ,#£ (p)) accordant with the values of p(i) (i = 1, 2, . . . ,#£ (p)) in de-

scending order.

Definition 2.1.9. [30] Let £ (p) be a PLTS such that
#£(p)∑
i=1

p(i) < 1, then the associated PLTS

is denoted and defined as

£� (p) =
{

£(i)
(
p�

(i)
)

; i = 1, 2, . . . ,#£ (p)
}
, (2.1.8)

where p�
(i)

= p(i)

#£(p)∑
i=1

p(i)
, ∀i = 1, 2, . . . ,#£ (p) .

Definition 2.1.10. [30] Let £1 (p) =
{

£
(i)
1

(
p
(i)
1

)
; i = 1, 2, . . . ,#£1 (p)

}
and £2 (p) ={

£
(i)
2

(
p
(i)
2

)
; i = 1, 2, . . . ,#£2 (p)

}
be two PLTSs, where #£1 (p) and #£2 (p) denote the

number of linguistic terms in £1 (p) and £2 (p), respectively. If #£1 (p) > #£2 (p), then

#£1 (p)−#£2 (p) linguistic terms will be added to £2 (p) so that the number of elements in

£1 (p) and £2 (p) becomes equal. The inserted linguistic terms are the smallest one’s in £2 (p)

with zero probabilities.
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Let £1 (p) =
{

£
(i)
1

(
p
(i)
1

)
; i = 1, 2, . . . ,#£1 (p)

}
and £2 (p) =

{
£

(i)
2

(
p
(i)
2

)
; i = 1, 2, . . . ,

#£2 (p)}, then the normalized PLTSs denoted by £̃1 (p) =

{
£̃

(i)
1

(
p
(i)
1

)
; i = 1, 2, . . . ,#£1 (p)

}
and £̃2 (p) =

{
£̃

(i)
2

(
p
(i)
2

)
; i = 1, 2, . . . ,#£2 (p)

}
can be obtained according to the following

two steps:

(1) If
#£k(p)∑
i=1

p
(i)
k < 1, then £�

k (p) , k = 1, 2 is calculated according to Definition 2.1.9.

(2) If #£1 (p) 6= #£2 (p), then according to Definition 2.1.10, add some linguistic terms

to the one with less number of elements.

Definition 2.1.11. [32] Let S = {£α|α = −τ, ...−1, 0, 1, ...τ} be an LTS and zi ∈ Z be fixed.

A PULTS on S is Us(P ) = {〈zi, uis(p)〉|zi ∈ Z} with

uis(p) =

{〈
[£i(), U i()], pi()

〉
|£i(), U i() ∈ S, pi() ≥ 0,  = 1, 2, ...,£,

£∑
=1

pi() ≤ 1

}
, (2.1.9)

where
〈
[£i(), U i()], pi()

〉
is the th uncertain linguistic variable [£i(), U i()] associated with

probability pi(), £i() and U i() are the linguistic terms, provided that £i() ≤ U i() and £

denote the cardinality of uis(p).

For the sake of convenience, uis(p) is named as the probabilistic uncertain linguistic element

(PULE).

Example 2.1.12. Suppose ‘Z’ represents the “set of candidates”. Further assume that

three experts are called to evaluate the candidates represented by set Z on the basis of at-

tribute/criteria ‘ability’. The invited experts are provided with the linguistic term set S ={
£−3 = very bad,£−2 = bad,£−1 = a little bad,£0 = medium,£1 = a little good,£2 =

good,£3 = very good

}
. One expert may deem that he is 80% sure that the candidate z ∈ Z

lies between medium and a little good and 20% sure that he lies between a little good and
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good. Expert 2 may judge that he is 100% sure that z lies between medium and good. Ex-

pert 3 may say that he is 40% sure that z lies between medium and a little good and 50

sure that z lies between good and very good. The opinions of these three experts can be ex-

pressed in terms of PULEs as u1s(p) = {〈[£0,£1], 0.8〉 , 〈[£1,£2], 0.2〉}, u2s(p) = {〈[£0,£2], 1〉},

u3s(p) = {〈[£0,£1], 0.4〉 , 〈[£2,£3], 0.5〉}.

Definition 2.1.13. [32] Given a PULE us(p) =
{
〈[£, U ], p〉 |

∑£
=1 p

() ≤ 1
}

, if
∑£

=1 p
() <

1, then the associated PULE is denoted and defined as

ũs(p) =

{〈
[£, U ], p̃()

〉
|

£∑
=1

p() = 1

}
, (2.1.10)

where p̃() = p()∑£
=1 p

(l)
∀ = 1, 2, ...,£.

Definition 2.1.14. [32] Let u1s(p) =
{〈

[£1(), U1()], p1()
〉
| = 1, 2, ...,£1

}
and u2s(p) ={〈

[£1(), U1()], p2()
〉
| = 1, 2, ...,£2

}
be two PULEs, and let £1 6= £2. If £1 > £2, then

£1 − £2 uncertain linguistic terms with probability 0 are added to u2s(p) so that the numbers

of uncertain linguistic terms in u1s(p) and u2s(p) becomes identical. The inserted uncertain

linguistic terms are the smallest one in u2s(p).

Let u1s(p) =
{〈

[£1(), U1()], p1()
〉
| = 1, 2, ...,£1

}
and u2s(p) =

{〈
[£1(), U1()], p2()

〉
| = 1, 2,

...,£2} be any two PULEs, then the normalization process can be carried out by below steps:

i. If
{∑£

=1 p
i() ≤ 1

}
, then according to the designed Formula 2.1.10, compute ũis(p), i =

1, 2.

ii. If £1 6= £2, then according to Definition 2.1.14, adjoin some uncertain linguistic terms

to the one with the less number of uncertain linguistic terms. The resultant PULEs are

known normalized PULEs. For the sake of simplicity, normalized PULEs are symbolized

by u1s(p) and u2s(p) as well.
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If the lower and upper linguistic terms are not consecutive then PULE should be preprocessed

by splitting its inconsecutive uncertain linguistic terms into a fixed number of consecutive

uncertain linguistic terms and they distribute the probabilities uniformly. In Example 2.1.3,{
〈[£0,£2], 1〉

}
the inconsecutive uncertain linguistic term [£0,£2] is split into two consecutive

uncertain linguistic terms [£0,£1] and [£1,£2], and their probabilities are 0.5. Therefore, the

preprocessed PULE is
{
〈[£0,£1], 0.5〉, 〈[£1,£2], 0.5〉

}
.

Definition 2.1.15. [32] Let us(p) =
{〈

[£(), U ()], p
〉
| = 1, 2, ...,£

}
be a preprocessed PULE

then, it is said to be ordered PULE if all the uncertain linguistic terms are arranged on the

basis of ascending order of linguistic terms £() or U (),  = 1, 2, ...,£.

Remark 2.1.16. All the PULEs throughout this thesis are considered to be ordered PULEs.

Definition 2.1.17. [33] Let £ = {£α|α = 0, 1, ...., 2τ} be an LTS, then UPLTS is character-

ized as follows:

U(P ) =

{(
£k, [pk, qk]

)
|qk ≥ pk ≥ 0, k = 1, 2, ...,£,

£∑
k=1

pk ≤ 1,
£∑
k=1

qk ≥ 1

}
, (2.1.11)

where
(
£k, [pk, qk]

)
is the kth linguistic term £k associated with uncertain probability [pk, qk], qk ≥

pk and £ denote the cardinality of U(P ).

In an UPLTS, positions of elements can be swapped arbitrarily. To make sure the opera-

tional results are straightforwardly ascertained, Jin et al. [33] proposed ordered UPLTS.

Definition 2.1.18. Given an UPLTS U(P ) =
{(

£k, [pk, qk]
)
|k = 1, 2, ...,£

}
, if all the lin-

guistic terms
(
£k, [pk, qk]

)
are arranged according to the values of [pk£k, qk£k] in descending

order, then it is called an ordered UPLTS.

Definition 2.1.19. [19] Let Z be a universal set, an IVDHFS on Z is defined in terms of

two functions hF (z) and gF (z) as follows:

F = {〈z, hF (z), gF (z)〉 |z ∈ Z} , (2.1.12)
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where hF (z) =
⋃

[γl,γu]∈hF (z)
{

[γl, γu]
}

and gF (z) =
⋃

[ηl,ηu]∈gF (z)
{

[ηl, ηu]
}

are two sets of some

interval values in [0, 1], representing the possible membership degree and non-membership

degree of the element z ∈ Z to the set F , respectively, with the condition

[γl, γu], [ηl, ηu] ⊂ [0, 1], 0 ≤ (γu)+ + (ηu)+ ≤ 1,

where (γu)+ = max γu, and (ηu)+ = max ηu ∀ z ∈ Z.

For convenience, Ju et al. [19] called the pair f(z) = (hf (z), gf (z)) as an IVDHFE. For

the sake of simplification, it is symbolized by f = (hf , gf ) where F is the set of all IVDHFEs.

Definition 2.1.20. [41] T : [0, 1] × [0, 1] −→ [0, 1] is described as T-norm if it meets the

below axioms.

i. T (z1, 1) = z1, for all z1 ∈ [0, 1].

ii. T (z1, z2) = T (z2, z1), for all z1 and z2.

iii. T (z1, T (z2, z3)) = T (T (z1, z2) , z3), for all z1, z2 and z3.

iv. If z1 ≤ z
′
1 and z2 ≤ z

′
2, then T (z1, z2) ≤ T

(
z
′
1, z

′
2

)
.

Definition 2.1.21. [41] S : [0, 1] × [0, 1] −→ [0, 1] is described as T-conorm if it meets the

following axioms.

i. S(z1, 0) = z1, for all z1 ∈ [0, 1].

ii. S(z1, z2) = S(z2, z1), for all z1 and z2.

iii. S (z1, S (z2, z3)) = S (S (z1, z2) , z3), for all z1, z2 and z3.

iv. If z1 ≤ z
′
1 and z2 ≤ z

′
2, then S (z1, z2) ≤ S

(
z
′
1, z

′
2

)
.

Definition 2.1.22. A t-norm function T (z1, z2) is known as Archimedean t-norm if it is

continuous and T (z1, z1) < z1 ∀ z1 ∈ (0, 1). An Archimedean t-norm is called strictly

Archimedean t-norm if it is strictly increasing in each variable for z1, z2 ∈ (0, 1).
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Definition 2.1.23. A t-conorm function S(z1, z2) is known as Archimedean t-conorm if it

is continuous and S(z1, z1) > z1 ∀ z1 ∈ (0, 1). An Archimedean t-conorm is called strictly

Archimedean t-conorm if it is strictly increasing in each variable for z1, z2 ∈ (0, 1).

Related study [42] shows that the strict Archimedean t-norm can be obtained by a strictly

increasing additive function g : [0, 1] −→ [0,∞] is expressed as T (z1, z2) = g−1 (g(z1) + g(z2)) ,

where g(1) = 0 and g(0) = 1, and similarly, dual Archimedean t-conorm also known as

the strict Archimedean s-norm can be expressed as S(z1, z2) = f−1 (f(z1) + f(z2)) , where

f(t) = g(1− t). Thus, f(t) is strictly increasing function, and f(0) = 0, f(1) = 1.

Lemma 2.1.24. [44] Let αi > 0, ωi > 0, i = 1, 2, ..., n, and
∑n

i=1 ωi = 1; then
∏n

i=1 (αi)
ωi ≤∑n

i=1 αiωi, and equality holds if and only if α1 = α2 = · · · = αn.

Lemma 2.1.25. [41] Let aj, bj, cj, dj (j = 1, 2, ..., n) be four collection of nonnegative num-

bers; if aj − bj − cj − dj ≥ 0, j = 1, 2, ..., n, then

n∏
j=1

aj −
n∏
j=1

bj −
n∏
j=1

cj −
n∏
j=1

dj ≥ 0. (2.1.13)

2.2 Comparative methods

In what follows, we give comparison methods given by Ju et al. [19] and Jin et al. [33] for

comparing IVDHFEs and UPLTSs, respectively.

Definition 2.2.1. Score function of IVDHFE f = (hf , gf ) is defined as follows:

S(f) =
1

2

 1

#hf

∑
[γl,γu]∈hf

(
γl + γu

)
− 1

#gf

∑
[ηl,ηu]∈gf

(
ηl + ηu

) , (2.2.1)

where #hf and #gf are the number of interval values in hf and gf , respectively. The larger

the score S(f), the greater the IVDHFE f .
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Definition 2.2.2. Accuracy function of IVDHFE f = (hf , gf ) is defined as follows:

A(f) =
1

2

 1

#hf

∑
[γl,γu]∈hf

(
γl + γu

)
+

1

#gf

∑
[ηl,ηu]∈gf

(
ηl + ηu

) , (2.2.2)

where #hf and #gf are the number of interval values in hf and gf , respectively. The larger

accuracy A(f), the greater the IVDHFE f .

Definition 2.2.3. Let f1 = (h1f , g1f ) and f2 = (h2f , g2f ) be two IVDHFEs, then

i. If S(f1) > S(f2), then f1 > f2;

ii. If S(f1) = S(f2), then

(a) If A(f1) > A(f2), then f1 > f2;

(b) If A(f1) = A(f2), then f1 = f2.

Definition 2.2.4. Let U(P ) =
{(

£k, [pk, qk]
)
|k = 1, 2, ...,£

}
be an UPLTS, then the score

of U(P ) is given by

S (U(P )) =
[
£α,£β

]
, (2.2.3)

where α =
∑£
k=1 r

kpk∑£
k=1 p

k
, β =

∑£
k=1 r

kqk∑£
k=1 q

k
and rk is the subscript of the linguistic term £k.

Definition 2.2.5. Let U1(p) and U2(P ) be two UPLTSs with score values S (U1(p)) =
[
£α1 ,£β1

]
and S (U2(p)) =

[
£α2 ,£β2

]
, respectively. Then, degree of possibility of U1(p) ≥ U2(p) is given

by the following formula

P (U1(p) ≥ U2(p)) =


1, if α1 ≥ β2

β1−α2

β1−α1+β2−α2
, if β1 > α2 and α1 < β2

0, β1 ≤ α2.
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Using the possibility degree formula, a comparison rule is defined as follows:

i. If P (U1(p) ≥ U2(p)) > 0.5, then U1(p) > U2(p).

ii. If P (U1(p) ≥ U2(p)) = 0.5, then U1(p) = U2(p).

iii. If P (U1(p) ≥ U2(p)) < 0.5, then U1(p) < U2(p).

2.3 Distance measure and aggregation operators

In the following, we present the formula for computing the distance measure between PLTSs.

Beyond this, we state several aggregation operators under uncertain probabilistic linguistic

context.

Definition 2.3.1. [30] Let £1 (p) =
{

£
(i)
1

(
p
(i)
1

)
; i = 1, 2, . . . ,#£1 (p)

}
and £2 (p) ={

£
(i)
2

(
p
(i)
2

)
; i = 1, 2, . . . ,#£2 (p)

}
be two PLTSs, where #£1 (p) and #£2 (p) denote the

number of linguistic terms in £1 (p) and £2 (p), respectively, with #£1 (p) = #£2 (p). Then,

the distance between these two PLTSs can be defined as

d (£1 (p) ,£2 (p)) =

√√√√ 1

#£1 (p)

£1(p)∑
i=1

(
p
(i)
1 r

(i)
1 − p

(i)
2 r

(i)
2

)2
, (2.3.1)

where r
(i)
1 and r

(i)
2 denote the lower indices of linguistic terms £

(i)
1 and £

(i)
2 , respectively.

Definition 2.3.2. [33] Let Ui(p) =
{(

£k
i , [p

k
i , q

k
i ]
)
|k = 1, 2, ...,£i

}
(i = 1, 2, ..., n) be a collec-

tion of UPLTSs. Then, the uncertain probabilistic linguistic averaging (UPLA) operator is

defined as

UPLA (U1(p), U2(p), ..., Un(p)) = ⊕ni=1

1

n
Ui(p). (2.3.2)

Definition 2.3.3. [33] Let Ui(p) =
{(

£k
i , [p

k
i , q

k
i ]
)
|k = 1, 2, ...,£i

}
(i = 1, 2, ..., n) be a collec-

tion of UPLTSs, ω = (ω1, ω2, ..., ωn)T denotes the weighting vector of Ui(p) and ωi ∈ [0, 1].
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Then, the uncertain probabilistic linguistic weighted averaging (UPLWA) operator has the

following form

UPLWA (U1(p), U2(p), ..., Un(p)) = ⊕ni=1ωiUi(p). (2.3.3)

Definition 2.3.4. [33] Let Ui(p) =
{(

£k
i , [p

k
i , q

k
i ]
)
|k = 1, 2, ...,£i

}
(i = 1, 2, ..., n) be a collec-

tion of UPLTSs. Then, the uncertain probabilistic linguistic geometric (UPLG) operator is

defined as

UPLG (U1(p), U2(p), ..., Un(p)) = ⊗ni=1 (Ui(p))
1
n . (2.3.4)

Definition 2.3.5. [33] Let Ui(p) =
{(

£k
i , [p

k
i , q

k
i ]
)
|k = 1, 2, ...,£i

}
(i = 1, 2, ..., n) be a collec-

tion of UPLTSs, ω = (ω1, ω2, ..., ωn)T denotes the weighting vector of Ui(p) and ωi ∈ [0, 1].

Then, the uncertain probabilistic linguistic weighted geometric (UPLWG) operator has the

following form

UPLWG (U1(p), U2(p), ..., Un(p)) = ⊗ni=1 (Ui(p))
ωi . (2.3.5)

2.4 Basic operational laws

The present section concentrates on the existing operational laws of PULEs and UPLTSs,

which assist in the aggregation of assessment information.

Definition 2.4.1. [32] Let u1s(p) =
{〈

[£1(), U1()], p1()
〉
| = 1, 2, ...,£1

}
, u2s(p) =

{〈
[£2(), U2()],

p2()
〉
| = 1, 2, ...,£2

}
be two normalized PULEs and γ ≥ 0. Then

i. u1s(p)⊕u2s(p) =
⋃
〈[£1(),U1()],p1()〉∈u1s(p),〈[£2(),U2()],p2()〉∈u2s(p)

{
p1()[£1(), U1()]⊕p2()[£2(), U2()]

}
;

ii. u1s(p)⊗u2s(p) =
⋃
〈[£1(),U1()],p1()〉∈u1s(p),〈[£2(),U2()],p2()〉∈u2s(p)

{
[£1(), U1()]p

1()⊗[£2(), U2()]p
2()

}
;
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iii. γ

(
u1s(p)

)
=
⋃
〈[£1(),U1(l)],p1()〉∈u1s(p)

{
γp1()[£1(), U1()]

}
;

iv.

(
u1s(p)

)γ
=
⋃
〈[£1(),U1()],p1()〉∈u1s(p)

{
[£1(), U1()]γp

1()

}
.

Definition 2.4.2. [33] Let U(p) =
{(

£k, [pk, qk]
)
|k = 1, 2, ...,£

}
and U1(P ) =

{(
£k

1, [p
k
1, q

k
1 ]
)

|k = 1, 2, ...,£1} be two ordered UPLTSs, and λ be a positive real number, then

i. U(p)⊕ U1(p) =
⋃

(£k,[pk,qk])∈U(p),(£k1 ,[pk1 ,qk1 ])∈U1(P )

{(
pk+qk

2

)
£k ⊕

(
pk1+q

k
1

2

)
£k

1

}
;

ii. U(p)⊗ U1(p) =
⋃

(£k,[pk,qk])∈U(p),(£k1 ,[pk1 ,qk1 ])∈U1(P )

{
(£k)

(
pk+qk

2

)
⊗ (£k

1)

(
pk1+qk1

2

)}
;

iii. λU(p) =
⋃

(£k,[pk,qk])∈U(P )

{
λ
(
pk+qk

2

)
£k
}

;

iv. (U(p))λ =
⋃

(£k,[pk,qk])∈U(P )

{(
£k
)λ( pk+qk

2

)}
.
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Chapter 3

Probabilistic hesitant intuitionistic

linguistic term sets in multi-attribute

group decision making

In the present chapter, we originate a new fuzzy tool known as PHILTS. Meanwhile, some re-

lated concepts, distance measure and primary aggregation operators are also explored. After-

wards, two practical decision making techniques, i.e., aggregation based method and TOPSIS

method with unknown weight information are put forward under the proposed notion. To

validate the practicality and effectiveness of the designed set and methods a practical problem

about selecting the best alternative is solved. The research work of this chapter is published

in [45].
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3.1 Probabilistic hesitant intuitionistic linguistic term

set

Although HIFLTS allow the DM to state his assessments by using several linguistic terms, it

cannot reflect the probabilities of the assessments of DM.

In the present section, the concept of PHILTS, based on the concept of HIFLTS and PLTS

is proposed. Furthermore, some basic operations for PHILTS are also designed.

Definition 3.1.1. Let Z be a universal set, and S = {£α;α = 0, 1, 2, . . . , τ} be a linguistic

term set, then a PHILTS on Z are two functions £ and £
′
that when applied to an element

of Z return finite and ordered subsets of the consecutive linguistic terms of S along with their

occurrence probabilities, which can be mathematically expressed as

A (p) =



〈
z,£ (z) (p (z)) =

{
£(i) (z)

(
p(i) (z)

)}
,£
′
(z)
(
p
′
(z)
)

=
{

£
′(j)

(z)
(
p
′(j)

(z)
)}〉

|p(i) (z) ≥ 0, i = 1, 2, . . . ,#£ (z) (p (z)) ,
#£(z)(p(z))∑

i=1

pi (z) ≤ 1 &

p
′(j)

(z) ≥ 0, j = 1, 2, . . . ,#£
′
(z)
(
p
′
(z)
)
,

#£
′
(z)
(
p
′
(z)
)∑

j=1

p
′(j)

(z) ≤ 1


,

(3.1.1)

where £ (z) (p (z)) and £
′
(z) p

′
(z) are the PLTSs, presenting the membership and non-

membership degree of the element z ∈ Z to the set A (p) such that the following two conditions

are satisfied:

(i) max (£ (z)) + min
(
£
′
(z)
)
≤ £τ ;

(ii) min (£ (z)) + max
(
£
′
(z)
)
≤ £τ .

For the sake of simplicity and convenience, we call the pair A (z) (p (z)) = 〈£ (z) (p (z)) ,

£
′
(z)
(
p
′
(z)
)〉

as the intuitionistic probabilistic linguistic term element (PHILTE), denoted

by A (p) =
〈
£ (p) ,£

′ (
p
′)〉

for short.
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Remark 3.1.2. Particularly, if the probabilities of all linguistic terms in membership part

and non-membership part become equal, then PHILTE reduces to HIFLTE.

Example 3.1.3. Let S =


£0 = extremely poor,£1 = very poor,£2 = poor,£3 = medium,

£4 = good,£5 = very good ,£6 = extremely good

 be

a linguistic term set. A PHILTS is A (p) =


〈z1, {£1 (0.4) ,£2 (0.1) ,£3 (0.35)} , {£3 (0.3) ,£4 (0.4)

}〉 , 〈z2, {£4 (0.33) ,£5 (0.5)} , {£1 (0.2) ,£2 (0.45)}〉

 .

One can easily check the conditions of PHILTS for A (p).

To illustrate the PHILTS more straightforwardly, in the following, a practical life example

is given to depicting the difference between the PHILTS and HIFLTS:

Example 3.1.4. Take the evaluation of a vehicle on the comfortable degree attribute/criteria

as an example. Let S be a linguistic term set used in the above example. An expert pro-

vides an HIFLTE 〈{£1,£2,£3} , {£3,£4}〉 on the comfortable degree due to his/her hes-

itation for this evaluation. However, he/she is more confident in the linguistic term £2

for the membership degree set and the linguistic term £4 for the non-membership degree

set. The HIFLTS fails to express his/her confidence. Therefore, we utilize the PHILTS

to present his/her evaluations. In this case, his/her evaluations can be expressed as A (p) =

〈{£1 (0.2) ,£2 (0.6) ,£3 (0.2)} , {£3 (0.2) ,£4 (0.8)}〉.

In the following, the ordered PHILTE is defined to make sure that the operational results

among PHILTEs can be investigated easily.

Definition 3.1.5. A PHILTE A (p) =
〈
£ (p) ,£

′ (
p
′)〉

is known to be an ordered PHILTE,

if l (p) and £
′ (
p
′)

are ordered PLTSs.

Example 3.1.6. Consider a PHILTE A (p) = 〈{£1 (0.4) ,£2 (0.1) ,£3 (0.35)} , {£3 (0.3) ,£4 (0.4)

}〉 used in the Example 3.1.3. Then, according to Definition 3.1.5 the ordered PHILTE is

A (p) = 〈{£3 (0.35) ,£1 (0.4) ,£2 (0.1)} , {£4 (0.4) ,£3 (0.3)}〉 .
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3.1.1 The normalization of PHILTEs

Ideally, the sum of the probabilities is one, but in PHILTE if either of the membership

probabilities or non-membership probabilities have sum less than one than this issue is resolved

as follows.

Definition 3.1.7. Consider a PHILTE A (p) =
〈
£ (p) ,£

′ (
p
′)〉

, the associated PHILTE

A� (p) =
〈

£ (p�) ,£
′ (
p
′·)〉

is defined, where

£ (p�) =
{

£(i)
(
p�

(i)
)
|i = 1, 2, . . . ,#£ (p)

}
; p�

(i)

=
p(i)

#£(p)∑
i=1

p(i)
,∀i = 1, 2, . . . ,#£ (p) , (3.1.2)

and

£
′ (
p
′�
)

=
{

£
′(j)
((
p
′�(j)
))
|j = 1, 2, . . . ,£

′
(
p
′
)}

; p
′�(j)

=
p
′(j)

£′(p′)∑
j=1

p′(j)

,∀j = 1, 2, . . . ,£
′
(
p
′
)
.

(3.1.3)

Example 3.1.8. Consider a PHILTE A (p) = 〈{£1 (0.4) ,£2 (0.1) ,£3 (0.35)} , {£3 (0.3) ,

£4 (0.4)}〉. Here, we see that
#£(p)∑
i=1

p(i) = 0.85 < 1 also

#£
′(
p
′)∑

j=1

p
′(j)

= 0.7 < 1 so the associated

PHILTE A� (p) =
〈

£ (p�) ,£
′ (
p
′�)〉

=
〈{

£1

(
0.4
0.85

)
,£2

(
0.1
0.85

)
,£3

(
0.35
0.85

)}
,
{

£3

(
0.3
0.7

)
,£4

(
0.4
0.7

)}〉
.

In decision making process, experts usually face such problems in which the length of

PHILTEs is different. Let A (p) =
〈
£ (p) ,£

′ (
p
′)〉

and A1 (p1) =
〈
£1 (p1) ,£

′
1

(
p
′
1

)〉
be two

PHILTEs of different lengths. Then, the following three cases are possible

(I) #£ (p) 6= #£1 (p1) , (II) #£
′ (
p
′) 6= #£

′
1

(
p
′
1

)
, (III) #£ (p) 6= #£1 (p1) and #£

′ (
p
′)

6= #£
′
1

(
p
′
1

)
. In such situation, they need to equalize their lengths by increasing the number

of probabilistic linguistic terms in that PLTS in which the number of probabilistic linguis-
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tic terms are relatively small because PHILTEs of different lengths create great problems in

operations, aggregation operators and finding the deviation degree between two PHILTEs.

Definition 3.1.9. Given any two PHILTEs A (p) =
〈
£ (p) ,£

′ (
p
′)〉

and A1 (p1) = 〈£1 (p1) ,

£
′
1

(
p
′
1

)〉
if #£ (p) > #£1 (p1) then #£ (p) − #£1 (p1) linguistic terms should be added to

£1 (p1) to make their cardinalities identical. The inserted linguistic terms are the smallest

one(s) in £1 (p1), and the probabilities of all the linguistic terms are zero.

The remaining cases are analogous to Case (I).

Let A1 (p1) =
〈
£1 (p1) ,£

′
1

(
p
′
1

)〉
and A2 (p2) =

〈
£2 (p2) ,£

′
2

(
p
′
2

)〉
be two PHILTEs. Then,

the following two simple steps are involved in normalization process.

Step 1: If
#£j(pj)∑
i=1

p
(i)
j < 1 or

#£
′
j

(
p
′
j

)∑
i=1

p
′(i)
j < 1 ; j = 1, 2, then we calculate £j

(
p·j
)
, £

′
j

(
p
′·
j

)
;

j = 1, 2 using Equations (3.1.2) and (3.1.3).

Step 2: If #£1 (p1) 6= #£2 (p2) or #£
′
1

(
p
′
1

)
6= #£

′
2

(
p
′
2

)
, then we add some elements

according to Definition 3.1.9 to the one with small number of elements.

The resultant PHILTEs are called the normalized PHILTEs which are denoted as Ã (p)

and Ã1 (p1).

Note: For the convenience of presentation, we denote the normalized PHILTEs by A (p)

and A1 (p1) as well.

3.1.2 The comparison between PHILTEs

In this section, the comparison between two PHILTEs is presented. For this purpose, the

score function and the deviation degree of the PHILTE are defined.

Definition 3.1.10. Let A (p) =
〈
£ (p) ,£

′ (
p
′)〉

=
〈

£(i)
(
p(i)
)
,£
′(j)
(
p
′(j)
)〉

; i = 1, 2, . . . ,#£ (p) ,

j = 1, 2, . . . ,£
′ (
p
′)

be a PHILTE with a linguistic term set S = {£α;α = 0, 1, 2, . . . , τ} such

that r(i) and r
′(j)

denote, respectively, the lower indices of linguistic terms £(i) and £
′(j)

, then
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the score of A (p) is denoted and defined as follows:

E (A (p)) = £γ, (3.1.4)

where γ = τ+$−β
2

; $ =

#£(p)∑
i=1

r(i)p(i)

#£(p)∑
i=1

p(i)
and β =

#£
′(
p
′)∑

j=1
r
′(j)

p
′(j)

#£
′(p′)∑
j=1

p′
(j)

.

It is easy to see that 0 ≤ τ+$−β
2
≤ τ which means £γ ∈ S = {£α|α ∈ [0, τ ]} .

Apparently, the score function represents the averaging linguistic term of PHILTE.

For two PHILTEs A (p) and A1 (p1), if E (A (p)) > E (A1 (p1)) , then A (p) is superior

to A1 (p1), denoted as A (p) > A1 (p1); if E (A (p)) < E (A1 (p1)), then E (A (p)) is inferior

to A1 (p1), denoted as A (p) < A1 (p1); and, if E (A (p)) = E (A1 (p1)), then we cannot

distinguish between them. Thus, in this case, we define another indicator, named as the

deviation degree as follows:

Definition 3.1.11. Let A (p) =
〈
£ (p) ,£

′ (
p
′)〉

=
〈

£(i)
(
p(i)
)
,£
′(j)
(
p
′(j)
)〉

; i = 1, 2, . . .#£ (p) ,

j = 1, 2, . . . ,£
′ (
p
′)

be a PHILTE such that r(i) and r
′(j)

denote, respectively, the lower indices

of linguistic terms £(i) and £
′(j)

, then the deviation degree of A (p) is denoted and defined as

follows:

σ (A (p)) =


#£(p)∑
i=1

(
p(i)
(
r(i) − γ

))2
#£(p)∑
i=1

p(i)
+

#£
′(
p
′)∑

j=1

(
p
′(j)
(
r
′(j) − γ

))2
#£′(p′)∑
j=1

p′
(j)



1
2

. (3.1.5)

The deviation degree shows the distance from the average value in the PHILTE. The

greater value of σ implies lower consistency, while the lesser value of σ indicates higher

consistency.

Thus, A (p) and A1 (p1) can be ranked by the following procedure:
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(1) if E (A (p)) > E (A1 (p1)), then A (p) > A1 (p1) ;

(2) if E (A (p)) = E (A1 (p1)) and

(a) σ (A (p)) > σ (A1 (p1)), then A (p) < A1 (p1);

(b) σ (A (p)) < σ (A1 (p1)), then A (p) > A1 (p1);

(c) σ (A (p)) = σ (A1 (p1)), then A (p) is indifferent to A1 (p1) and is denoted as A (p) ∼

A1 (p1).

In the following, we present a theorem which shows that the association does not affect

the score and deviation degree of PHILTE.

Theorem 3.1.12. Let A (p) =
〈
£ (p) ,£

′ (
p
′)〉

be a PHILTE and A� (p) =
〈

£ (p�) ,£
′
(
p
′�
)〉

be the associated PHILTE then E (A (p)) = E (A� (p)) and σ (A (p)) = σ (A� (p)).

Proof. E (A� (p)) = £ �
γ

where
�
γ = g+

�
$−

�
β

2
and

�
α =

#£(p�)∑
i=1

r(i)p�
(i)

#£(p�)∑
i=1

p�
(i)

. Since
#£(p�)∑
i=1

p�
(i)

= 1 and

p�
(i)

= p(i)

#£(p)∑
i=1

p(i)
, which implies that

�
α =

#£(p)∑
i=1

r(i)p(i)

#£(p)∑
i=1

p(i)
= α and

�
β =

#£
′(
p
′�
)

∑
j=1

r(j)p
′�(j)

#£
′(p′.)∑
j=1

p′�
(j)

. Since

#£
′(
p
′�)∑

j=1

p
′�(j) = 1 and p

′.(j) = p′(j)

#£
′(p′)∑
j=1

p
′(j)

which further implies that
�
β =

#£
′(
p
′)∑

j=1
r(i)p

′(i)

#£
′(p′)∑
i=1

p
′(i)

= β.

Hence, E (A� (p)) = E (A (p)) .

Next, σ (A� (p)) =


#£(p�)∑
i=1

(
p�(i)

(
r(i)−

�
γ

))2

#£(p.)∑
i=1

p.(i)
+

#£
′(
p
′.
)

∑
j=1

(
p
′�(j)

(
r
′(j)−

�
γ

))2

#£
′(p′�)∑
j=1

p
′�(j)


1
2

Since
#£(p�)∑
i=1

p�(i) = 1, p�(i) = p(i)

#£(p)∑
i=1

p(i)
,

#£
′(
p
′�
)∑

j=1

p
′�(j) = 1, p

′�(j) = p
′(j)

#£
′(p′)∑
j=1

p
′(j)

and
�
γ = γ.
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It yields that σ (A� (p)) =


#£(p)∑
i=1

(p(i)(r(i)−γ))
2

#£(p)∑
i=1

p(i)
+

#£
′(
p
′)∑

j=1

(
p
′(j)
(
r
′(j)−γ

))2

#£
′(p′)∑
j=1

p′
(j)


1
2

= σ (A (p)).

The following theorem shows that order of comparison between two PHILTEs remains

unaltered after normalization.

Theorem 3.1.13. Let A (p) =
〈
£ (p) ,£

′ (
p
′)〉

and A1 (p1) =
〈
£1 (p1) ,£

′
1

(
p
′
1

)〉
be any two

PHILTEs, Ã (p) =
〈

£̃ (p) , £̃′
(
p
′)〉

and Ã1 (p1) =
〈

£̃1 (p1) , £̃
′
1

(
p
′
1

)〉
be the corresponding

normalized PHILTEs, respectively, then A (p) < A1 (p1) ⇐⇒ Ã (p) < Ã1 (p1) .

Proof. The proof is quite clear because, according to Theorem 3.1.12, E (A (p)) = E (A� (p))

and σ (A (p)) = σ (A� (p)), so order of comparison in Step (1) of normalization process is

preserved and so for Step (2) is concerned in that step we add some elements to PHILTEs

though it does not change the order as we attach zero probabilities with the corresponding

added elements so this means E
(
Ã (p)

)
= E

(
Ã1 (p1)

)
and σ

(
Ã (p)

)
= σ

(
Ã1 (p1)

)
. Hence,

the result holds true.

In the following definition, we summarize the fact that comparison of any two PHILTEs

can be done by their corresponding normalized PHILTEs.

Definition 3.1.14. Let A (p) =
〈
£ (p) ,£

′ (
p
′)〉

and A1 (p1) =
〈
£1 (p1) ,£

′
1

(
p
′
1

)〉
be any two

PHILTEs, Ã (p) =
〈

£̃ (p) , £̃′
(
p
′)〉

and Ã1 (p1) =
〈

£̃1 (p1) , £̃
′
1

(
p
′
1

)〉
be the corresponding

normalized PHILTEs, respectively, then

(I ) If E
(
Ã (p)

)
> E

(
Ã1 (p1)

)
then A (p) > A1 (p1).

(II ) If E
(
Ã (p)

)
< E

(
Ã1 (p1)

)
then A (p) < A1 (p1).

(III ) If E
(
Ã (p)

)
= E

(
Ã1 (p1)

)
, then in this case, we are unable to decide which one is

superior. Thus, in this case, we do the comparison of PHILTEs on the bases of the

deviation degree of normalized PHILTEs as follows.
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(1) If δ
(
Ã (p)

)
> δ

(
Ã1 (p1)

)
then A (p) < A1 (p1).

(2) If δ
(
Ã (p)

)
< δ

(
Ã1 (p1)

)
then A (p) > A1 (p1).

(3) If δ
(
Ã (p)

)
= δ

(
Ã1 (p1)

)
in such case we say that A (p) is indifferent to A1 (p1) and is

denoted by A (p) ∼ A1 (p1).

3.1.3 Basic operations of PHILTEs

Inspired by the operational laws of PLTSs [30], in what follows, we present some basic opera-

tional framework of PHILTEs and investigate their properties in preparation for applications

to the practical real life problems. Hereafter, it is assumed that all PHILTEs are normalized.

Definition 3.1.15. Let A (p) =
〈
£ (p) ,£

′ (
p
′)〉

=
〈

£(i)
(
p(i)
)
,£
′(j)
(
p
′(j)
)〉

; i = 1, 2, . . . ,#£ (p) ,

j = 1, 2, . . . ,#£
′ (
p
′)

and A1 (p1) =
〈
£1 (p1) ,£

′
1

(
p
′
1

)〉
=
〈

£
(i)
1

(
p
(i)
1

)
,£
′(j)

1

(
p
′(j)

1

)〉
; i =

1, 2, . . . , #£1 (p1) , j = 1, 2, . . . ,#£
′
1

(
p
′
1

)
be two normalized and ordered PHILTEs, then

i. A (p)⊕ A1 (p1) =
〈
£ (p)⊕£1 (p1) ,£

′ (
p
′)⊕£

′
1

(
p
′
1

)〉

=

〈 ∪
£(i)∈£(p),£

(i)
1 ∈£1(p1)

{
p(i)£(i) ⊕ p(i)1 £

(i)
1

}
,

∪
£′

(j)
∈£′(p′),£′

(j)

1 ∈£′
(j)

1

(
p
′(j)
1

) {p′(j)£′(j) ⊕ p′(j)1 £
′(j)

1

} 〉 ;

ii. A (p)⊗ A1 (p1) =
〈
£ (p)⊗£1 (p1) ,£

′ (
p
′)⊗£

′
1

(
p
′
1

)〉

=

〈 ∪
£(i)∈£(p),£

(i)
1 ∈£1(p1)

{(
£(i)

)p(i) ⊗ (£
(i)
1

)p(i)1

}
,

∪
£′

(j)
∈£′(p′),£′

(j)

1 ∈£′1(p1)

(£
′(j)
)p′(j)

⊗
(

£
′(j)

1

)p′(j)1


〉

;

iii. γ (A (p)) =
〈
γ£ (p) , γ£

′ (
p
′)〉

=

〈
∪£(i)∈£(p)γp

(i)£(i),∪
£′

(j)
∈£′(p′)

γp
′(j)

£
′(j)
〉

;
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iv. (A (p))γ =
〈
(£ (p))γ ,

(
£
′ (
p
′)γ)〉

=

〈
∪£(i)∈£(p)

(
£(i)

)γp(i)
,∪

£′
(j)
∈£′(p′)

(
£
′(j)
)γp′(j)〉

;

where £(i) and £
(i)
1 are the ith linguistic terms in £ (p) and £1 (p1), respectively; £

′(j)

and £
′(j)

1 are the jth linguistic terms in £
′ (
p
′)

and £
′
1

(
p
′
1

)
, respectively; p(i) and p

(i)
1 are the

probabilities of the ith linguistic terms in £ (p) and £1 (p1), respectively; p
′(j)

and p
′(j)

1 are the

probabilities of the jth linguistic terms in £
′ (
p
′)

and £
′
1

(
p
′
1

)
, respectively; and γ denote a

nonnegative scalar.

Theorem 3.1.16. Let A (p) =
〈
£ (p) ,£

′ (
p
′)〉

, A1 (p1) =
〈
£1 (p1) ,£

′
1

(
p
′
1

)〉
, A2 (p2) = 〈£2 (p2) ,

£
′
2

(
p
′
2

)〉
be any three ordered and normalized PHILTEs, γ1,γ2, γ3 ≥ 0, then

(1) A (p)⊕ A1 (p1) = A1 (p1)⊕ A (p) ;

(2) A (p)⊕ (A1 (p1)⊕ A2 (p2)) = (A (p)⊕ A1 (p1))⊕ A2 (p2) ;

(3) γ (A (p)⊕ A1 (p1)) = γA (p)⊕ γA1 (p1) ;

(4) (γ1 + γ2)A (p) = γ1A (p)⊕ γ2A (p) ;

(5) A (p)⊗ A1 (p1) = A1 (p1)⊗ A (p) ;

(6) A (p)⊗ (A1 (p1)⊗ A2 (p2)) = (A (p)⊗ A1 (p1))⊗ A2 (p2) ;

(7) (A (p)⊗ A1 (p1))
γ = (A (p))γ ⊗ (A1 (p1))

γ ;

(8) (A (p))γ1+γ2 = (A (p))γ1 ⊗ (A (p))γ2 .

3.2 Aggregation operators and criteria weights

This section is dedicated to discussion on some basic aggregation operators of PHILTS. De-

viation degree between two PHILTEs is also defined in this section. Finally, we calculate the

criteria weights in the light of PHILTEs.
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3.2.1 The aggregation operators for PHILTEs

The aggregation operators are powerful tools to deal with linguistic information. To make a

better usage of PHILTEs in real world problems, in the following, aggregation operators for

PHILTEs have been developed.

Definition 3.2.1. Let Ak (pk) =
〈
£k (pk) ,£

′

k

(
p
′

k

)〉
(k = 1, 2, . . . , n) be n ordered and nor-

malized PHILTEs. Then

PHILA (A1 (p1) , A2 (p2) , . . . , An (pn))

= 1
n

(〈
£1 (p1) ,£

′
1

(
p
′
1

)〉
⊕
〈
£2 (p2) ,£

′
2

(
p
′
2

)〉
⊕ . . .⊕

〈
£n (pn) ,£

′
n

(
p
′
n

)〉)
= 1

n

〈
£1 (p1)⊕£2 (p2)⊕ . . .⊕£n (pn) ,£

′
1

(
p
′
1

)
⊕£

′
2

(
p
′
2

)
⊕ . . .⊕£

′
n

(
p
′
n

)〉

=
1

n

〈 ∪
£

(i)
1 ∈£1(p1),£

(i)
2 ∈£2(p2),...,£

(i)
n ∈£n(pn)

{
p
(i)
1 £

(i)
1 ⊕ p

(i)
2 £

(i)
2 ⊕ . . .⊕ p

(i)
n £

(i)
n

}
,

∪
£
′(j)
1 ∈£′1(p

′
1),£

′(j)
2 ∈£′2(p

′
2),...,£

′(j)
n ∈£′n(p′n)

{
p
′(j)

1 £
′(j)

1 ⊕ p
′(j)

2 £
′(j)

2 ⊕ . . .⊕ p
′(j)

n £
′(j)

n

}
〉
,

(3.2.1)

is called the probabilistic hesitant intuitionistic linguistic averaging (PHILA) operator.

Definition 3.2.2. Let Ak (pk) =
〈
£k (pk) ,£

′

k

(
p
′

k

)〉
(k = 1, 2, . . . , n) be n ordered and nor-

malized PHILTEs. Then

PHILWA (A1 (p1) , A2 (p2) , . . . , An (pn))

= w1

〈
£1 (p1) ,£

′
1

(
p
′
1

)〉
⊕ w2

〈
£2 (p2) ,£

′
2

(
p
′
2

)〉
⊕ . . .⊕ wn

〈
£n (pn) ,£

′
n

(
p
′
n

)〉
=
〈
w1£1 (p1)⊕ w2£2 (p2)⊕ . . .⊕ wn£n (pn) , w1£

′
1

(
p
′
1

)
⊕ w2£

′
2

(
p
′
2

)
⊕ . . .⊕ wn£

′
n

(
p
′
n

)〉

=

〈 ∪
£

(i)
1 ∈£1(p1)

{
w1p

(i)
1 £

(i)
1

}
⊕ ∪

£
(i)
2 ∈£2(p2)

{
w2p

(i)
2 £

(i)
2

}
⊕ . . .⊕ ∪

£
(i)
n ∈£n(pn)

{
wnp

(i)
n £

(i)
n

}
,

∪
£
′(j)
1 ∈£′1(p

′
1)

{
w1p

′(j)

1 £
′(j)

1

}
⊕ ∪

£
′(j)
2 ∈£′2(p

′
2)

{
w2p

′(j)

2 £
′(j)

2

}
⊕ . . .⊕ ∪

£
′(j)
n ∈£′n(p′n)

{
wnp

′(j)

n £
′(j)

n

}
〉
,

(3.2.2)
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is called the probabilistic hesitant intuitionistic linguistic weighted averaging (PHILWA) op-

erator, where w = (w1, w2, . . . , wn)t is the weight vector of Ak (pk) (k = 1, 2, . . . , n), wk ≥ 0,

k = 1, 2, . . . , n, and
n∑
k=1

wk = 1.

Particularly, if we take w =
(
1
n
, 1
n
, . . . , 1

n

)t
, then the PHILWA operator reduces to the

PHILA operator.

Definition 3.2.3. Let Ak (pk) =
〈
£k (pk) ,£

′

k

(
p
′

k

)〉
(k = 1, 2, . . . , n) be n ordered and nor-

malized PHILTEs. Then,

PHILG (A1 (p1) , A2 (p2) , . . . , An (pn))

=
(〈

£1 (p1) ,£
′
1

(
p
′
1

)〉
⊗
〈
£2 (p2) ,£

′
2

(
p
′
2

)〉
⊗ . . .⊗

〈
£n (pn) ,£

′
n

(
p
′
n

)〉) 1
n

=
(〈

£1 (p1)⊗£2 (p2)⊗ . . .⊗£n (pn) ,£
′
1

(
p
′
1

)
⊗£

′
2

(
p
′
2

)
⊗ . . .⊗£

′
n

(
p
′
n

)〉) 1
n

=


〈 ∪

£
(i)
1 ∈£1(p1),£

(i)
2 ∈£2(p2),...,£

(i)
n ∈£n(pn)

{(
£

(i)
1

)p(i)1 ⊗
(

£
(i)
2

)p(i)2 ⊗ . . .⊗
(

£
(i)
n

)p(i)n }
,

∪
£
′(j)
1 ∈£′1(p

′
1),£

′(j)
2 ∈£′2(p

′
2),...,£

′(j)
n ∈£′n(p′n)

(£
′(j)

1

)p′(j)1

⊗
(

£
′(j)

2

)p′(j)2

⊗ . . .⊗
(

£
′(j)

n

)p′(j)n


〉

1
n

,

(3.2.3)

is called the probabilistic hesitant intuitionistic linguistic geometric (PHILG) operator.

Definition 3.2.4. Let Ak (pk) =
〈
£k (pk) ,£

′

k

(
p
′

k

)〉
(k = 1, 2, . . . , n) be n ordered and nor-

malized PHILTEs. Then

PHILWG (A1 (p1) , A2 (p2) , . . . , An (pn))

=
〈
£1 (p1) ,£

′
1

(
p
′
1

)〉w1 ⊗
〈
£2 (p2) ,£

′
2

(
p
′
2

)〉w2 ⊗ . . .⊗
〈
£n (pn) ,£

′
n

(
p
′
n

)〉wn
=
〈
(£1 (p1))

w1 ⊗ (£2 (p2))
w2 ⊗ . . .⊗ (£n (pn))wn ,

(
£
′
1

(
p
′
1

))w1 ⊗
(
£
′
2

(
p
′
2

))w2 ⊗ . . .⊗(
£
′
n

(
p
′
n

))wn〉
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=

〈 ∪
£

(i)
1 ∈£1(p1)

{(
£

(i)
1

)w1p
(i)
1

}
⊗ ∪

£
(i)
2 ∈£2(p2)

{(
£

(i)
2

)w2p
(i)
2

}
⊗ . . .⊗ ∪

£
(i)
n ∈£n(pn)

{(
£

(i)
n

)wnp(i)n }
,

∪
£
′(j)
1 ∈£′1(p

′
1)

(£
′(j)

1

)w1p
′(j)

1

⊗ ∪£
′(j)
2 ∈£′2(p

′
2)

(£
′(j)

2

)w2p
′(j)

2

⊗ . . .⊗ ∪£
′(j)
n ∈£′n(p′n)

(£
′(j)

n

)wnp′(j)n


〉
,

(3.2.4)

is called the probabilistic hesitant intuitionistic linguistic weighted geometric (PHILWG) op-

erator, where w = (w1, w2, . . . , wn)t is the weight vector of Ak (pk) (k = 1, 2, . . . , n), wk ≥ 0,

k = 1, 2, . . . , n, and
n∑
k=1

wk = 1.

Particularly, if we take w =
(
1
n
, 1
n
, . . . , 1

n

)t
, then the PHILWG operator reduces to the

PHILG operator.

3.2.2 Maximizing deviation method for calculating the criteria weights

The selection of weights directly affects the performance of MCGDM approach. Thereby, in

this part, the maximizing deviation method is adopted to determine weight vector in MCGDM

when weights are not known or partly known. Based on Definition 2.3.1, the deviation degree

measure between two PHILTEs is defined as follows:

Definition 3.2.5. Let A (p) and A1 (p1) be any two PHILTEs of equal length. Then, the

deviation degree D between A (p) and A1 (p1) is given by

D (A (p) , A1 (p1)) = d (£ (p) ,£1 (p1)) + d
(

£
′
(
p
′
)
,£
′

1

(
p
′

1

))
, (3.2.5)

where

d (£ (p) ,£1 (p1)) =

√√√√√#£(p)∑
i=1

(
p(i)r(i) − p(i)1 r

(i)
1

)
#£ (p)

, (3.2.6)
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d
(

£
′
(
p
′
)
,£
′

1

(
p
′

1

))
=

√√√√√√
#£′(p′)∑
j=1

(
p′(j)r′(j) − p′(j)1 r

′(j)
1

)
#£′ (p′)

, (3.2.7)

r(i) denote the lower index of the ith linguistic term of £ (p) and r
′(j)

denote the lower index

of the jth linguistic term of £
′ (
p
′)

.

Based on the above definition, in what follows, we obtain criteria weight vector because

working on the probabilistic linguistic data to deal with the MCGDM problems, in which the

weight information of criteria values is completely unknown or partly known, we must find

the criteria weights in advance.

Given the set of alternatives z = {z1, z2, . . . , zm} and the set of “n” attributes c =

{c1, c2, . . . , cn}, respectively, then, by using Equation (3.2.5), the deviation measure between

the alternative “zi” and all other alternatives with respect to the criteria “cj” can be given

as:

Dij (w) =
∑

q=1,q 6=i

wjD (hij, hqj) , i = 1, 2, . . . ,m, j = 1, 2, . . . , n. (3.2.8)

Accordant with the theme of the maximizing deviation method, if the deviation degree

among alternatives is smaller for an criteria, then the criteria should give a smaller weight.

This one reveals that the alternatives are homologous to the criteria. Contradictorily, it

should give a larger weight. Let

Dj (w) =
m∑
i=1

Dij (w) =
m∑
i=1

m∑
q 6=i

wjD (hij, hqj)

=
m∑
i=1

m∑
q 6=i

wj

(
d (£ij (pij) ,£qj (pqj)) + d

(
£
′

ij

(
p
′

ij

)
,£
′

qj

(
p
′

qj

)))
,

(3.2.9)
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show the deviation degree of one alternative and others with respect to the criteria “cj” and

let

D (w) =
n∑
j=1

Dj (w) =
n∑
j=1

m∑
i=1

Dij (w) =
n∑
j=1

m∑
i=1

m∑
q 6=i

wjD (hij, hqj)

=
n∑
j=1

m∑
i=1

m∑
q 6=i

wj

(
d (£ij (pij) ,£qj (pqj)) + d

(
£
′

ij

(
p
′

ij

)
,£
′

qj

(
p
′

qj

)))

=
n∑
j=1

m∑
i=1

m∑
q 6=i

wj



√
1

#£ij(pij)

#£ij(pij)∑
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(
p
(k1)
ij r

(k1)
ij − p

(k1)
qj r

(k1)
qj

)2
+√√√√ 1

#£
′
ij(p

′
ij)

#£
′
ij(p

′
ij)∑

k2=1

(
p
′(k2)
ij r

′(k2)
ij − p

′(k2)
qj r

′(k2)
qj

)2
 ,

(3.2.10)

express the sum of the deviation degrees among all attributes.

To attain the criteria weights vector w = (w1, w2, . . . , wn)t, we build the following single

objective optimization model (named as M1) to drive the deviation degree d (w) as large as

possible.

M1 =


maxD (w) =

n∑
j=1

m∑
i=1

m∑
q 6=i

wjD (hij, hqj)

wj ≥ 0, j = 1, 2, . . . , n,
n∑
j=1

w2
j = 1.

To solve the above model M1, we use the Lagrange multiplier function:

L (w, η) =
n∑
j=1

m∑
i=1

m∑
q 6=i

wjD (hij, hqj) +
η

2

(
n∑
j=1

w2
j − 1

)
, (3.2.11)

where η is the Lagrange parameter.

Then, we compute the partial derivatives of Lagrange function with respect to wj and η

and let them be zero:
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
∂L(w,η)
∂wj

=
m∑
i=1

m∑
q 6=i

wjD (hij, hqj) + ηwj = 0, j = 1, 2, . . . , n.

δL(w,η)
∂η

=
n∑
j=1

w2
j − 1 = 0.

(3.2.12)

By solving Equation (3.2.12), one can get the optimal weight w = (w1, w2, . . . , wn)t .

wj =

m∑
i=1

m∑
q 6=i

D(hij ,hqj)√√√√ n∑
j=1

(
m∑
i=1

∑
q 6=i

D(hij ,hqj)

)2
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(
£
′
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(
p
′
ij

)
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′
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(
p
′
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)))
√√√√ n∑
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(
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∑
q 6=i
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′
ij),£

′
qj(p

′
qj)))

)2
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
2
, (3.2.13)

where j = 1, 2, . . . , n.

Clearly, wj ≥ 0 ∀ j. By normalizing Equation (3.2.13), we get
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wj =

m∑
i=1

m∑
q 6=i
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,

(3.2.14)

where j = 1, 2, . . . , n.

The above end result can be applied to the situations where the information of criteria

weights is completely unknown. However, in real life decision making problems, the weight

information is most often partly known. In such cases, let H be a set of the known weight

information, which can be given in the following ways.

Rank 1. A weak ranking: {wi ≥ wj} (i 6= j).

Rank 2. A strict ranking: {wi − wj ≥ βi} (i 6= j).

Rank 3. A ranking of differences: {wi − wj ≥ wk − wl} (j 6= k 6= l).

Rank 4. A ranking with multiples: {wi ≥ βiwj} (i 6= j).

Rank 5. An interval form: {βi ≤ wj ≤ βi + εi} (i 6= j).

βi and εi denote the non-negative numbers.

With the set H, we can build the below model:

M2 =


maxD (w) =

n∑
j=1

m∑
i=1

m∑
q 6=i

wjD (hij, hqj)

wj ∈ H,wj ≥ 0, j = 1, 2, . . . , n,
n∑
j=1

w2
j = 1
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from which the optimal weight vector w = (w1, w2, . . . , wn)t attained.

3.3 MCGDM with probabilistic hesitant intuitionistic

linguistic information

In this section, two practical methods, i.e., an extended TOPSIS method and an aggregation

based method, for MCGDM problems are proposed, where the opinions of DMs take the form

of PHILTSs.

3.3.1 Extended TOPSIS method for MCGDM with probabilistic

hesitant intuitionistic linguistic information

Of the numerous MCGDM methods, TOPSIS is one of the effective methods for ranking and

selecting a number of possible alternatives by measuring Euclidean distances. It has been

successfully applied to solve evaluation problems with a finite number of alternatives and

criteria [29, 30, 46] because it is easy to understand and implement, and can measure the

relative performance for each alternative.

In what follows, we discuss the complete construction of extended TOPSIS method in

PHILTS regard. This methodology involves the following steps.

Step 1: Analyze the given MCGDM problem; since the problem is group decision making, so

let there be “t” decision makers or experts D = {d1, d2, . . . , dt} involved in the given

problem. The set of alternatives is z = {z1, z2, . . . , zm} and the set of attributes is

c = {c1, c2, . . . , cn}. The experts provide their linguistic evaluation values for member-

ship and non-membership by using linguistic term set S = {£0,£1, . . . ,£τ} over the

alternative zi (i = 1, 2, . . . ,m) with respect to the criteria cj (j = 1, 2, . . . , n).

The DM dk (k = 1, 2, . . . , t) states his membership and non-membership linguistic evalu-

ation values keeping in mind all the alternatives and attributes in the form of PHILTEs.
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Thus, intuitionistic probabilistic linguistic decision matrixHk =
[〈

£k
ij (pij) ,£

′(k)
ij

(
p
′
ij

)〉]
m×n

is constructed. It should be noted that preference of alternative “zi” with respect to

decision maker “mk” and criteria “cj” is denoted as PHILTE Akij (pij) in a group decision

making problem with “l” experts.

Step 2: Calculate the one probabilistic hesitant intuitionistic linguistic decision matrix H by

aggregating the opinions of DMs
(
H(1), H(2), . . . , H(l)

)
; H = [hij] , where

hij =
〈{
smij (pij) , snij (qij)

}
,
{
s
′
mij

(
p
′
ij

)
, s
′
nij

(
q
′
ij

)}〉
where

smij (pij) = min

{
£

min
k=1

(
max £k

ij (pij)
)
,

£
max
k=1

(
min £k

ij (pij)
)}

,

snij (qij) = max

{
£
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(
max £k

ij (qij)
)
,

£
max
k=1

(
min £k

ij (qij)
)}

,

sm′ij

(
p
′
ij

)
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{
£

min
k=1

(
max £

′k
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(
p
′
ij

))
,

£
max
k=1

(
min £

′k
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(
p
′
ij

))}
,

sn′ij

(
q
′
ij

)
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{
£
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k=1

(
max £

′k

ij

(
q
′
ij

))
,

£
max
k=1

(
min £

′k

ij

(
q
′
ij

))}
.

Here, max £k
ij (pij) and min £k

ij (pij) are taken according to the maximum and minimum

value of pij×rlij, l = 1, 2, . . . ,#£k
ij (pij), respectively, where rlij denotes the lower index

of the lth linguistic term and pij is its corresponding probability.

In this aggregated matrix H, the preference of alternative ai with respect to criteria cj

is denoted as hij.

Each term of the aggregated matrix H, i.e., hij is also an PHILTE; for this, we have to

prove that

smij (pij)+s
′
nij

(
q
′
ij

)
≤ £τ and snij (qij)+s

′
mij

(
p
′
ij

)
≤ £τ . Since we know that

[
£k
ij (pij) ,

£
′
ij

(
p
′
ij

)]
is a PHILTS for every kth expert, ith alternative and jth criteria, a PHILTS

it must satisfy the conditions:

min
(

£
(k)
ij

)
+ max

(
£
′(k)

ij

)
≤ £τ , max

(
£

(k)
ij

)
+ min

(
£
′(k)

ij

)
≤ £τ .
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Thus, the above simple construction of smij (pij), snij (qij), s
′
mij

(
p
′
ij

)
, and sn′ij

(
q
′
ij

)
guar-

antees that the hij is a PHILTE.

Step 3: Normalize the probabilistic hesitant intuitionistic linguistic decision matrix H = [hij]

according to the method in Section 3.1.1.

Step 4: Obtain the weight vector w = (w1, w2, . . . , wn)t of the attributes cj (j = 1, 2, . . . , n) .

wj =

m∑
i=1

∑
q 6=i

D(hij ,hqj)

n∑
j=1

m∑
i=1

∑
q 6=i

D(hij ,hqj)
=

m∑
i=1

∑
q 6=i

d(£ij(pij),£qj(pqj))+d
(
£
′
ij

(
p
′
ij

)
,£
′
qj

(
p
′
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))
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∑
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d(£ij(pij),£qj(pqj))+d(£′ij(p
′
ij),£

′
qj(p

′
qj))

, j = 1, 2, . . . , n.

Step 5: The PHILTS positive ideal solution (PHILTS-PIS) of alternatives, denoted by A+ =〈
£+ (p) ,£

′+
(p)
〉

, is formulated as follows:

A+ =
〈

£+ (p) =
(
£+

1 (p) ,£+
2 (p) , . . . ,£+

n (p)
)
,£
′+

(p) =
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n (p)
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(3.3.1)

where £+
j (p) =
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£
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j

)+
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}
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j
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£
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′(k2)
ij is lower index of the linguistic term £

′(k2)
ij .

Similarly, the PHILTS negative ideal solution (PHILTS-NIS) of alternatives, denoted

by A− =
〈
£− (p) ,£

′− (p)
〉
, is formulated as follows:

A− =
〈
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(3.3.2)
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,
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k2 = 1, 2, . . . , #£
′
ij (p) ; j = 1, 2, . . . , n and r

′(k2)
ij is lower index of the linguistic term

£
′(k2)
ij .

Step 6: Compute the deviation degree between each alternative zi PHILTS-PIS A+ as follows:

D (zi, A
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wjD (hij, A
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 . (3.3.3)

The smaller is the deviation degree D (zi, A
+), the better is alternative zi. Similarly,

compute the deviation degree between each alternative zi PHILTS-NIS A− as follows:

D (zi, A
−) =

n∑
j=1

wjD (hij, A
−) =

n∑
j=1

wj

(
d
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)
+ d
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=
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 . (3.3.4)

The larger is the deviation degree D (zi, A
−), the better is alternative zi.

Step 7: Determine Dmin (zi, A
+) and Dmax (zi, A

−) , where

Dmin

(
zi, A

+
)

= min
1≤i≤m

D
(
zi, A

+
)
, (3.3.5)
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and

Dmax

(
zi, A

−) = max
1≤i≤m

D
(
zi, A

−) . (3.3.6)

Step 8: Determine the closeness coefficient Cl of each alternative zi to rank the alternatives.

Cl (zi) =
D (zi, A

−)

Dmax (zi, A−)
− D (zi, A

+)

Dmin (zi, A+)
. (3.3.7)

Step 9: Pick the best alternative zi on the basis of the closeness coefficient Cl, where the larger

is the closeness coefficient Cl (zi) , the better is alternative zi. Thus, the best alternative

zb =

{
zi| max

1≤i≤m
Cl (zi)

}
. (3.3.8)

3.3.2 The aggregation-based method for MCGDM with probabilis-

tic hesitant intuitionistic linguistic information

In this subsection, the aggregation-based method for MCGDM is presented, where the pref-

erence opinions of DMs are represented by PHILTS. In Section 3.2, we have developed some

aggregation operators, i.e., PHILA, PHILWA, PHILG and PHILWG. In this algorithm, we

use PHILWA operator to aggregate the criteria values of each alternative zi, into the overall

criteria values. The following steps are involved in this algorithm. The first four steps are

similar to the extended TOPSIS method. Therefore, we go to Step 5.

Step 5: Determine the overall criteria values Z̃i (w) (i = 1, 2, . . . ,m) , where w = (w1, w2, . . . , wn)T

is the weight vector of attributes, using PHILWA operator, this can be expressed as fol-

lows:
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Z̃i (w) = w1
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′)〉⊕ w2

〈
£i2 (p) ,£

′
i2

(
p
′)〉⊕ . . .⊕ wn 〈£in (p) ,£

′
in

(
p
′)〉

=
〈
w1£i1 (p)⊕ w2£i2 (p)⊕ . . .⊕ wn£in (p) , w1£

′
i1

(
p
′)⊕ w2£

′
i2

(
p
′)⊕ . . .⊕ wn£

′
in

(
p
′)〉

=

〈
∪

£
(k1)
i1 ∈£i1(p)

{
w1p

(k1)
i1 £

(k1)
i1

}
⊕ ∪

£
(k1)
i2 ∈£i2(p)

{
w2p

(k1)
i2 £

(k1)
i2

}
⊕ . . .⊕ ∪

£
(k1)
in ∈£in(p)

{
wnp

(k1)
in £

(k1)
in

}
,

∪
£
′(k2)
i1 ∈£′i1(p

′)

{
w1p

′(k2)
i1 £

′(k2)
i1

}
⊕ ∪

£
′(k2)
i2 ∈£′i2(p

′)

{
w2p

′(k2)
i2 £

′(k2)
i2

}
⊕ . . .⊕ ∪

£
′(k2)
in ∈£′in(p

′)

{
wnp

′(k2)
in £

′(k2)
in

}
〉
,

(3.3.9)

where i = 1, 2, . . . ,m.

Step 6: Compare the overall criteria values Z̃i (w) (i = 1, 2, . . . ,m) mutually, based on their

score function and deviation degree whose detail is given in Section 3.2.

Step 7: Rank the alternatives zi (i = 1, 2, . . . ,m) according to the order of Z̃i (w) (i = 1, 2, . . . ,m)

and pick the best alternative.

The flow chart of the proposed models is presented in Figure 3.1.

Figure 3.1: Extended TOPSIS and Aggregation-based models.
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3.4 A case study

To validate the proposed theory and decision making models, in this section, a practical

example taken from [29] is solved. A group of seven peoples dt (t = 1, 2, 3, . . . , 7) need to

invest their savings in a most profitable way. They considered five possibilities: z1 is real

estate, z2 is stock market, z3 is T-bills, z4 is national saving scheme, and z5 is insurance

company. To determine best option, the following attributes are taken into account: c1 is the

risk factor, c2 is the growth, c3 is quick refund, and c4 is complicated documents requirement.

Base upon their knowledge and experience, they provide their opinion in terms of following

HIFLTSs.

3.4.1 The extended TOPSIS method for the considered case

We handle the above problem by applying the extended TOPSIS method.

Step 1: The probabilistic hesitant intuitionistic linguistic decision matrices derived from

Tables 3.1–3.3 are shown in Tables 3.4–3.6, respectively.

Table 3.1: Decision matrix provided by the DMs 1, 2, 3 (d1, d2, d3)

c1 c2 c3 c4

z1 〈{£3,£4,£5} , {£1,£2}〉 〈{£4,£5} , {£0,£1}〉 〈{£1,£2} , {£3,£4}〉 〈{£1,£2} , {£3,£4}〉

z2 〈{£1,£2} , {£3,£4}〉 〈{£3,£4,£5} , {£1,£2}〉 〈{£3,£4} , {£0,£1}〉 〈{£4,£5} , {£1,£2}〉

z3 〈{£4,£5)} , {£0,£1,£2}〉 〈{£3,£4} , {£1,£2}〉 〈{£5,£6} , {£0}〉 〈{£1,£2} , {£2,£3,£4}〉

z4 〈{£5,£6} , {£0,£1}〉 〈{£1,£2} , {£3,£4}〉 〈{£1,£2} , {£3,£4}〉 〈{£3,£4,£5} , {£1,£2}〉

z5 〈{£6} , {£0}〉 〈{£1,£2} , {£3,£4,£5}〉 〈{£0,£1} , {£2,£3}〉 〈{£4,£5} , {£1,£2}〉
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Table 3.2: Decision matrix provided by the DMs 4, 5 (d4, d5)

c1 c2 c3 c4

z1 〈{£1,£2} , {£3,£4}〉 〈{£5,£6} , {£0,£1}〉 〈{£0,£1} , {£3,£4}〉 〈{£3,£4} , {£1,£2}〉

z2 〈{£0,£1} , {£2,£3}〉 〈{£1,£2} , {£2,£3,£4}〉 〈{£4,£5} , {£0,£1}〉 〈{£5,£6} , {£0}〉

z3 〈{£3,£4} , {£0,£1}〉 〈{£1,£2} , {£3,£4}〉 〈{£4,£5} , {£1,£2)}〉 〈{£0,£1} , {£2,£3}〉

z4 〈{£5,£6} , {£0}〉 〈{£3,£4} , {£0,£1,£2}〉 〈{£1,£2} , {£2,£3,£4}〉 〈{£4,£5} , {£0}〉

z5 〈{£4,£5} , {£1,£2}〉 〈{£3,£4} , {£1,£2,£3}〉 〈{£1,£2} , {£3,£4}〉 〈{£5,£6} , {£0}〉

Table 3.3: Decision matrix provided by the DMs 6, 7 (d6, d7)

c1 c2 c3 c4

z1 〈{£4,£5} , {£0,£1}〉 〈{£5,£6} , {£0}〉 〈{£3,£4} , {£1,£2}〉 〈{£0,£1} , {£3,£4}〉

z2 〈{£3,£4} , {£1,£2,£3}〉 〈{£1,£2} , {£3,£4}〉 〈{£5,£6} , {£0}〉 〈{£3,£4} , {£1,£2}〉

z3 〈{£1,£2} , {£2,£3,£4}〉 〈{£5,£6} , {£0}〉 〈{£4,£5} , {£0,£1}〉 〈{£0,£1} , {£3,£4}〉

z4 〈{£4,£5} , {£1,£2}〉 〈{£4,£5} , {£0,£1}〉 〈{£0,£1,£2} , {£2,£3}〉 〈{£3,£4,£5} , {£1,£2}〉

z5 〈{£3,£4} , {£0,£1,£2}〉 〈{£1,£2} , {£2,£3,£4}〉 〈{£2,£3} , {£3,£4}〉 〈{£6} , {£0}〉
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Table 3.4: Probabilistic hesitant intuitionistic linguistic decision matrix H1 with respect to
DMs 1, 2, 3 (d1, d2, d3)

c1 c2

z1 〈{(£3 (0.14) ,£4 (0.28) ,£5 (0.28))} , {£1 (0.28) ,£2 (0.14)}〉 〈{£4 (0.14) ,£5 (0.42)} , {£0 (0.42) ,£1 (0.28)}〉

z2 〈{£1 (0.28) ,£2 (0.14)} , {£3 (0.42) ,£4 (0.14)}〉 〈{£3 (0.14) ,£4 (.14) ,£5 (0.14)} , {£1 (0.14) ,£2 (0.28)}〉

z3 〈{£4 (0.28) ,£5 (0.14)} , {£0 (0.28) ,£1 (0.28) ,£2 (0.28)}〉 〈{£3 (0.14) ,£4 (0.28)} , {£1 (0.14) ,£2 (0.14)}〉

z4 〈{£5 (0.42) ,£6 (0.28)} , {£0 (0.28) ,£1 (0.28)}〉 〈{£1 (0.14) ,£2 (0.14)} , {£3 (0.14) ,£4 (0.14)}〉

z5 〈{£6 (0.14)} , {£0 (0.28)}〉 〈{£1 (0.28) ,£2 (0.28)} , {£3 (0.42) ,£4 (0.28) ,£5 (0.14)}〉

c3 c4

z1 〈{£1 (0.28) ,£2 (0.14)} , {£3 (0.28) ,£4 (0.28)}〉 〈{£1 (0.28) ,£2 (0.14)} , {£3 (0.28) ,£4 (0.28)}〉

z2 〈{£3 (0.14) ,£4 (0.28)} , {£0 (0.42) ,£1 (0.28)}〉 〈{£4 (0.14) ,£5 (0.28)} , {£1 (0.28) ,£2 (0.28)}〉

z3 〈{£5 (0.42) ,£6 (0.14)} , {£0 (0.28)}〉 〈{£1 (0.42) ,£2 (0.14)} , {£2 (0.28) ,£3 (0.42) ,£4 (0.28)}〉

z4 〈{£1 (0.42) ,£2 (.42)} , {£3 (0.42) ,£4 (0.28)}〉 〈{£3 (0.28) ,£4 (0.42) ,£5 (0.42)} , {£1 (0.28) ,£2 (0.28)}〉

z5 〈{£0 (0.14) ,£1 (0.28)} , {£2 (0.28) ,£3 (0.42)}〉 〈{£4 (0.14) ,£5 (0.28)} , {£1 (0.14) ,£2 (0.14)}〉
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Table 3.5: Probabilistic hesitant intuitionistic linguistic decision matrix H2 with respect to
DMs 4, 5 (d4, d5)

c1 c2

z1 〈{£1 (0.14) ,£2 (0.14)} , {£3 (0.14) ,£4 (0.14)}〉 〈{£5 (0.42) ,£6 (0.28)} , {£0 (0.42) ,£1 (0.28)}〉

z2 〈{£0 (0.14) ,£1 (0.28)} , {£2 (0.28) ,£3 (0.42)}〉 〈{£1 (0.28) ,£2 (0.28)} , {£2 (0.28) ,£3 (0.28) ,£4 (0.28)}〉

z3 〈{£3 (0.14) ,£4 (.28)} , {£0 (0.28) ,£1 (0.28)}〉 〈{£1 (0.14) ,£2 (0.14)} , {£3 (0.14) ,£4 (0.14)}〉

z4 〈{£5 (0.42) ,£6 (0.28)} , {£0 (0.28)}〉 〈{£3 (0.14) ,£4 (0.28)} , {£0 (0.28) ,£1 (0.28) ,£2 (0.14)}〉

z5 〈{£4 (0.28) ,£5 (0.14)} , {£1 (0.28) ,£2 (0.28)}〉 〈{£3 (0.14) ,£4 (0.14)} , {£1 (0.14) ,£2 (0.28) ,£3 (0.42)}〉

c3 c4

z1 〈{£0. (0.14) ,£1 (0.28)} , {£3 (0.28) ,£4 (0.28)}〉 〈{£3 (0.14) ,£4 (0.14)} , {£1 (0.14) ,£2 (0.14)}〉

z2 〈{£4 (0.28) ,£5 (0.28)} , {£0 (0.42) ,£1 (0.28)}〉 〈{£5 (0.28) ,£6 (0.14)} , {£0 (0.14)}〉

z3 〈{£4 (0.28) ,£5 (0.42)} , {£1 (0.28) ,£2 (0.14)}〉 〈{£0 (0.28) ,£1 (0.42)} , {£2 (0.28) ,£3 (0.42)}〉

z4 〈{£1 (0.42) ,£2 (0.42)} , {£2 (0.28) ,£3 (0.42) ,£4 (0.28)}〉 〈{£4 (0.42) ,£5 (0.42)} , {£0 (0.14)}〉

z5 〈{£1 (0.28) ,£2 (0.14)} , {£3 (0.42) ,£4 (0.28)}〉 〈{£5 (0.28) ,£6 (0.28)} , {£0 (0.28)}〉
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Table 3.6: Probabilistic hesitant intuitionistic linguistic decision matrix H3 with respect to
DMs 6, 7 (d6, d7)

c1 c2

z1 〈{£4 (0.28) ,£5 (0.28)} , {£0 (0.14) ,£1 (0.28)}〉 〈{£5 (0.42) ,£6 (0.28)} , {£0 (0.42)}〉

z2 〈{£3 (0.14) ,£4 (0.14)} , {£1 (0.14) ,£2 (0.28) ,£3 (0.42)}〉 〈{£1 (0.28) ,£2 (0.28)} , {£3 (0.28) ,£4 (0.28)}〉

z3 〈{£1 (0.14) ,£2 (0.14)} , {£2 (0.28) ,£3 (0.14) ,£4 (0.14)}〉 〈{£5 (0.28) ,£6 (0.14)} , {£0 (0.14)}〉

z4 〈{£4 (0.14) ,£5 (0.42)} , {£1 (0.28) ,£2 (0.14)}〉 〈{£4 (0.28) ,£5 (0.14)} , {£0 (0.28) ,£1 (0.28)}〉

z5 〈{£3 (0.14) ,£4 (0.28)} , {£0 (0.28) ,£1 (0.28) ,£2 (0.28)}〉 〈{£1 (0.28) ,£2 (0.28)} , {£2 (0.28) ,£3 (0.42) ,£4 (0.28)}〉

c3 c4

z1 〈{£3 (0.14) ,£4 (0.14)} , {£1 (0.14) ,£2 (0.14)}〉 〈{£0 (0.14) ,£1 (0.28)} , {£3 (0.28) ,£4 (0.28)}〉

z2 〈{£5 (0.28) ,£6 (0.14)} , {£0 (0.42)}〉 〈{£3 (0.14) ,£4 (0.28)} , {£1 (0.28) ,£2 (0.28)}〉

z3 〈{£4 (0.28) ,£5 (0.42)} , {£0 (0.28) ,£1 (0.28)}〉 〈{£0 (0.28) ,£1 (0.42)} , {£3 (0.42) ,£4 (0.28)}〉

z4 〈{£0 (0.14) ,£1 (0.42) ,£2 (0.42)} , {£2 (0.28) ,£3 (0.42)}〉 〈{£3 (0.28) ,£4 (0.42) ,£5 (0.42)} , {£1 (0.28) ,£2 (0.28)}〉

z5 〈{£2 (0.14) ,£3 (0.14)} , {£3 (0.28) ,£4 (0.28)}〉 〈{£6 (0.28)} , {£0 (0.28)}〉

Step 2: The decision matrix H in Table 3.7 is constructed by utilizing Tables 3.4–3.6.
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Table 3.7: Decision matrix H

c1 c2

z1 〈{£2 (0.14) ,£4 (0.28)} , {£1 (0.28) ,£3 (0.14)}〉 〈{£6 (0.28) ,£5 (0.42)} , {£0 (0.42) ,£0 (0.42)}〉

z2 〈{£1 (0.28) ,£3 (0.14)} , {£4 (0.14) ,£3 (0.42)}〉 〈{£2 (0.28) ,£3 (0.14)} , {£2 (0.28) ,£3 (0.28)}〉

z3 〈{£2 (0.14) ,£0 (0.14)} , {£1 (0.28) ,£3 (0.14)}〉 〈{£2 (0.14) ,£6 (0.14)} , {£0 (0.14) ,£3 (0.14)}〉

z4 〈{£6 (0.28) ,£5 (0.42)} , {£0 (0.28) ,£1 (0.28)}〉 〈{£2 (0.14) ,£5 (0.14)} , {£1 (0.28) ,£3 (0.14)}〉

z5 〈{£6 (0.14) ,£6 (0.14)} , {£0 (0.28) ,£1 (0.28)}〉 〈{£3 (0.14) ,£2 (0.28)} , {£5 (0.14) ,£3 (0.42)}〉

c3 c4

z1 〈{£1 (0.28) ,£3 (0.14)} , {£2 (0.14) ,£3 (0.28)}〉 〈{£1 (0.28) ,£3 (0.14)} , {£2 (0.14) ,£3 (0.28)}〉

z2 〈{£4 (0.28) ,£4 (0.14)} , {£0 (0.42) ,£0 (0.42)}〉 〈{£1 (0.28) ,£3 (0.14)} , {£0 (0.14) ,£3 (0.28)}〉

z3 〈{£4 (0.28) ,£5 (0.42)} , {£0 (0.28) ,£1 (0.28)}〉 〈{£1 (0.14) ,£2 (0.42)} , {£4 (0.28) ,£3 (0.42)}〉

z4 〈{£1 (0.42) ,£2 (0.42)} , {£4. (0.28) ,£3 (0.42)}〉 〈{£4 (0.42) ,£5 (0.42)} , {£0 (0.14) ,£2 (0.28)}〉

z5 〈{£1 (0.28) ,£2 (0.14)} , {£4. (0.28) ,£3 (0.42)}〉 〈{£5 (0.28) ,£6 (0.28)} , {£0 (0.28) ,£1 (0.14)}〉

Step 3: The normalized probabilistic hesitant intuitionistic linguistic decision matrix of

the group is shown in Table 3.8.
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Table 3.8: The normalized probabilistic hesitant intuitionistic linguistic decision matrix

c1 c2

z1 〈{£4 (0.6667) ,£2 (0.3333)} , {£3 (0.3333) ,£1 (0.6667)}〉 〈{£5 (0.6) ,£6 (0.4)} , {£0 (0.5) ,£0 (0.5)}〉

z2 〈{£3 (0.3333) ,£1 (0.6667)} , {£3 (0.75) ,£4 (0.25)}〉 〈{£3 (0.3333) ,£2 (0.6667)} , {£3 (0.5) ,£2 (0.5)}〉

z3 〈{£0 (0.5) ,£2 (0.5)} , {£3 (0.3333) ,£1 (0.6667)}〉 〈{£6 (0.5) ,£2 (0.5)} , {£3 (0.5) ,£0 (0.5)}〉

z4 〈{£5 (0.6) ,£6 (0.4)} , {£1 (0.5) ,£0 (0.5)}〉 〈{£5 (0.5) ,£2 (0.5)} , {£3 (0.3333) ,£1 (0.6667)}〉

z5 〈{£6 (0.5) ,£6 (0.5)} , {£0 (0.5) ,£1 (0.5)}〉 〈{£2 (0.6667) ,£3 (0.3333)} , {£3 (0.75) ,£5 (0.25)}〉

c3 c4

z1 〈{£3 (0.3333) ,£1 (0.6667)} , {£3 (0.6667) ,£2 (0.3333)}〉 〈{£3 (0.3333) ,£1 (0.6667)} , {£3 (0.6667) ,£2 (0.3333)}〉

z2 〈{£4 (0.6667) ,£4 (0.3333)} , {£0 (0.5) ,£0 (0.5)}〉 〈{£3 (0.3333) ,£1 (0.6667)} , {£3 (0.6667) ,£0 (0.3333)}〉

z3 〈{£5 (0.6) ,£4 (0.4)} , {£5 (0.6) ,£4 (0.4)}〉 〈{£2 (0.75) ,£1 (0.25)} , {£3 (0.6) ,£4 (0.4)}〉

z4 〈{£1 (0.5) ,£2 (0.5)} , {£3 (0.6) ,£4. (0.4)}〉 〈{£5 (0.5) ,£4 (0.5)} , {£0 (0.3333) ,£2 (0.6667)}〉

z5 〈{£1 (0.6667) ,£2 (0.3333)} , {£3 (0.6) ,£4 (0.4)}〉 〈{£6 (0.5) ,£5 (0.5)} , {£1 (0.3333) ,£0 (0.6667)}〉

Step 4: The weight vector is derived from Equation (3.2.14) as follows:

w = (0.2715, 0.2219, 0.2445, 0.2621)t .

Step 5: The PHILTS-PIS “A+” and the PHILTS-NIS “A−” of each alternative are derived

using Equations (3.3.1) and (3.3.2) as follows:

A+ = (〈{3, 3} , {0, 0}〉 , 〈{3, 2.4} , {0, 0}〉 , 〈{3, 1.6} , {0, 0}〉 , 〈{3, 2.5} , {0, 0}〉) .

A− = (〈{0, 0.661} , {2.25, 1}〉 , 〈{1, 1} , {2.25, 1.25}〉 , 〈{.5, 0.66} , {2, 1.6}〉 , 〈{1, 0.2} , {2, 1.6}〉) .

D (z1, A
+) = 2.1211, D (z2, A

+) = 2.5516, D (z3, A
+) = 2.9129, D (z4, A

+) = 1.7999,

D (z5, A
+) = 1.6494.

D (z1, A
−) = 2.0142, D (z2, A

−) = 1.5861, D (z3, A
−) = 1.6204, D (z4, A

−) = 2.4056,

D (z5, A
−) = 2.2812.

Step 7: Calculate Dmin (zi, A
+) and Dmax (zi, A

−) by Equations (3.3.5) and (3.3.6 as:

Dmin (zi, A
+) = 1.6494, Dmax (zi, A

−) = 2.4050.

57



Step 8: Determine the closeness coefficient of each alternative zi by Equation (3.3.7) as:

Cl (z1) = −0.4486, Cl (z2) = −0.8876, Cl (z3) = −1.0924, Cl (z4) = −0.0912, Cl (z5) =

−0.0519.

Step 9: Sort the alternatives according to the ranking of Cl (zi) (i = 1, 2, . . . , 5): z5 > z4 >

z1 > z2 > z3, and thus, z5(insurance company) is the best alternative.

3.4.2 The aggregation-based method for the considered case

We can also apply the aggregation-based method to attain the ranking of alternatives for the

case study.

Step 1: Construct the probabilistic hesitant intuitionistic fuzzy decision matrices of the

group as listed in Tables 3.4–3.6, and then aggregated and normalized as shown in Tables 3.7

and 3.8.

Step 2: Utilize Equation (3.2.14) to obtain the weight vector

w = (0.2715, 0.2219, 0.2445, 0.2621)t .

Step 3: Derive the overall criteria value of each alternative zi (i = 1, 2, 3, 4, 5) by using

Equation (3.3.9) as:

Z̃1 (w) = 〈{£1.8962,£0.5187} , {£1.2847,£0.5187}〉 ,

Z̃2 (w) = 〈{£1.4074,£0.9776} , {£1.4679,£0.4934}〉 ,

Z̃3 (w) = {£1.7923,£1.1256} , {£1.8096,£0.9915} ,

Z̃4 (w) = 〈{£2.1467,£1.642} , {£0.7977,£0.8886}〉 ,

Z̃5 (w) = 〈{£2.0596,£1.8546} , {£1.0267,£0.8043}〉 .

Step 4: Compute the score of each criteria value Z̃i (w) by Definition 6.2.1 as:

E
(
Z̃1 (w)

)
= £3.1528, E

(
Z̃2 (w)

)
= £3.1059, E

(
Z̃3 (w)

)
= £3.0584, E

(
Z̃4 (w)

)
= £4.0512,

E
(
Z̃5 (w)

)
= £5.8726.

Step 5: Compare the overall criteria values of alternatives according to the values of the

score function. It is obvious, that z5 > z4 > z1 > z2 > z3. Thus, again, we get the best

alternative z5.
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3.5 Discussions and comparison

For the purpose of comparison, in this subsection, the case study is again solved by applying

the TOPSIS method with traditional HIFLTSs.

Step 1: The decision matrix X in Table 3.9 is constructed by utilizing Tables 3.1–3.3 as

follows:

Table 3.9: Decision matrix X

c1 c2 c3 c4

z1 ([£2,£4] , [£1,£3]) ([£5,£5] , [£0,£0]) ([£1,£3] , [£2,£3]) ([£1,£3] , [£2,£3])

z2 ([£1,£3] , [£3,£3]) ([£2,£3] , [£2,£3]) ([£4,£5] , [£0,£0]) ([£4,£5] , [£0,£1])

z3 ([£2,£4] , [£1,£2]) ([£3,£5] , [£0,£3]) ([£5,£5] , [£0,£1]) ([£1,£1] , [£3,£3])

z4 ([£5,£5] , [£0,£1]) ([£2,£4] , [£1,£3]) ([£1,£2] , [£3,£3]) ([£4,£5] , [£1,£2])

z5 ([£4,£6] , [£0,£1]) ([£2,£3] , [£3,£3]) ([£1,£2] , [£3,£3]) ([£5,£6] , [£0,£1])

Step 2: Determine the HIFLTS-PIS “P+” and the HIFLTS-NIS “P−” for cost criteria

c1,c4 and benefit criteria c2, c3 as follows:

P+ = [([£0,£1] , [£3,£4]) , ([£5,£6] , [£0,£0]) , ([£5,£6] , [£0,£0]) , ([£0,£1] , [£3,£4])] ,

P− = [([£6,£6] , [£0,£0]) , ([£1,£2] , [£3,£5]) , ([£0,£1] , [£3,£4]) , ([£6,£6] , [£0,£0])] .

Note: One can see the detail of HIFLTS-PIS “P+” and the HIFLTS-NIS “P−” in [29].

Step 3: Calculate the positive ideal matrix D+ and the negative ideal matrix D− as

follows:

D+ =



8 + 1 + 12 + 5

4 + 11 + 2 + 14

9 + 7 + 2 + 2

15 + 9 + 14 + 12

15 + 12 + 14 + 16


=



26

31

20

50
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
D+

11 = d
(
z11, v

+
1

)
+d
(
z12, v

+
2

)
+d
(
z13, v

+
3

)
+d
(
z14, v

+
4

)
, in which d

(
z11, v

+
1

)
= d (([£2,£4] , [£1,£3])
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, ([£0,£1] , [£3,£4])) = |2− 0|+ |4− 1|+ |1− 3|+ |3− 4| = 8.

Other entries can be found by similar calculation.

D− =



10 + 15 + 5 + 13

14 + 5 + 15 + 4

9 + 9 + 15 + 16

3 + 7 + 3 + 6

3 + 4 + 3 + 2


=



43

38

49

19

12


.

Step 4: The relative closeness (RC) of each alternative to the ideal solution can be obtained

as follows:

RC(z1) = 43/ (26 + 43) = 0.6232, RC(z2) = 38/ (31 + 38) = 0.5507.

The RC of other alternatives can be find by similar calculations.

RC(z3) = 0.7101 , RC(z4) = 0.2754 , RC(z5) = 0.1739.

Step 5: The ranking of alternatives of alternatives zi (i = 1, 2, . . . , 5) according to the

closeness coefficient RC(zi) is z3 > z1 > z2 > z4 > z5.

• In Table 3.9, the disadvantages of HIFLTS are apparent because in HIFLTS the proba-

bilities of the linguistic terms is not considered which means that all possible linguistic

terms in HIFLTS have same occurrence possibility which is unrealistic, whereas the

inspection of Table 3.7 shows that PHILTS not only contains the linguistic terms, but

also considers the probabilities of linguistic terms, and, thus, PHILTS constitutes an

extension of HIFLTS.

• The inspection of Table 3.10 reveals that the extended TOPSIS method and the aggregation-

based method give the same best alternative z5. The TOPSIS method with the tradi-

tional HIFLTSs gives z3 as the best alternative.

• This difference of best alternative in Table 3.10 is due to the effect of probabilities of
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membership and non-membership linguistic terms, which highlight the critical role of

probabilities. Thus, our methods are more rational to get the ranking of alternatives

and further to find the best alternative.

• Extended TOPSIS method and aggregation-based method for MCGDM with PLTS

information explained in [30] are more promising and better than extended TOPSIS

method and aggregation-based method for MCGDM with HFLTS information. How-

ever, a clear superiority of PHILTS is that it assigns to each element the degree of be-

longingness and also the degree of non-belongingness along with probability. PLTS only

assigns to each element a belongingness degree along with probability. Using PLTSs,

various frameworks have been developed by DMs [30, 43] but they are still intolerant,

since there is no mean of attributing reliability or confidence information to the degree

of belongingness.

Table 3.10: Comparison of Results

TOPSIS [29] z3 > z1 > z2 > z4 > z5

Proposed extend TOPSIS z5 > z4 > z1 > z2 > z3

Proposed aggregation model z5 > z4 > z1 > z2 > z3

The comparisons and other aspects are summarized in Table 3.11.
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Table 3.11: The advantages and limitations of the proposed methods

Advantages Limitations

1. PHILTS generalize the existing PLTS models 1. It is essential to take membership as

since PHILTS take more information from the DMs well as non-membership probabilistic

into account. data.

2. PHILTS is not affected by partial vagueness. 2. Its computational index is

3. PHILTS is more in line with people’s language, high.

leading to much more fruitful decisions.

4. The criteria weights are calculated with

objectivity (without favor).
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Chapter 4

Consensus-based robust decision

making methods under a novel study

of probabilistic uncertain linguistic

information and their application in

Forex investment

The current chapter focuses on the generalization of aggregation formula and the derivation

of adjusting rule of probability to adjust the probability distribution of two or more than two

PULEs. Novel operations, comparative method, distance measure and aggregation operators

are studied for PULTSs based on linguistic scale function. To suit the needs of different

semantics, two robust decision making methods, such as consensus-based PUL-gained and

lost dominance score method and consensus-based PUL aggregation method are presented

along with the application. The research work of this chapter is published in [47].
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4.1 Aggregation formula and adjusting rule of proba-

bility

This section presents aggregation formula and adjusting rule of probability for PULTSs.

4.1.1 Aggregation formula

It is demanding to aggregate the PULTS given by DMs to get an overall assessment of a

group. Motivated by [48] in the following an aggregation formula is developed to integrate

DMs opinions which are expressed in terms of PULEs to group assessment, taking into account

both the distribution of uncertain linguistic terms and weights of DMs.

Definition 4.1.1. Let D = {dt|t = 1, 2, ..., T} be a set of DMs whose weight vector is

π = (π(1), π(2), ..., π(T ))t such that
∑T

t=1 π
(t) = 1 and S be an LTS. Assume that uts(p) ={〈

[£t(), U t()], pt()
〉
| = 1, 2, ...,£

}
(t = 1, 2, ..., Q) are PULEs on S stated by ‘Q’ DMs (there

are (T −Q) DMs who do not give any opinion). Then the overall assessment of DMs group

is given by a PULE as follows:

us(p) =

{〈
[£(), U ()], p()

〉
, p() =

Q∑
t=1

wt()πt,  = 1, 2, ...,£1

}
, (4.1.1)

where wt() denotes the probability of [£t(), U t()] in uts(p) and

wt() =

p
t(), if [£t(), U t()] ∈ uts(p)

0, otherwise.

(4.1.2)

Remark 4.1.2. With Eq. (4.1.1) opinions provided by DMs in uncertain linguistic terms

can be aggregated into the PULEs. If the DMs opinions are expressed in PULEs then with

Eq. (4.1.1) one can also obtain the overall PULE, in this case, actual probabilities are utilized

to replace the value of wt(). If weights of DMs are equal, we can assume that πt = 1
T

; t =

64



1, 2, ..., T .

Example 4.1.3. All experts opinions in Example 2.1.12 are integrated with Eq. (4.1.1) as

us(p) = {〈[£0,£1], 0.6〉 , 〈[£1,£2], 0.233〉 , 〈[£2,£3], 0.167〉}.

It represents the original group judgments in full extent.

4.1.2 Adjusting rule of probability for ‘n’ PULEs

Uncertain linguistic terms and associated probabilities of two or more PULEs are always

different, which create problems in operational laws, distance measure and correlation mea-

sure. Multiplying the indices of the uncertain linguistic terms along with their associated

probability like Lin et al. [32] or taking the average of probabilities [49] are irrational and

biased results are obtained. To get satisfactory results, a novel rule is introduced to adjust

the probability distribution and equalize the length of two or more than two PULEs into the

same probability distribution.

Let S = {£α|α = −τ, ... − 1, 0, 1, ..., τ} be an LTS, ũ1s(p) =
{ 〈

[£1(), U1()], p̃1()
〉
| =

1, 2, ...,£1

}
, ũ2s(p) =

{〈
[£2(), U2()], p̃2()

〉
| = 1, 2, ...,£2

}
, ũ3s(p) =

{ 〈
[£3(), U3()], p̃3()

〉
| =

1, 2, ...,£3

}
, ..., ũns (p) =

{ 〈
[£n(), Un()], p̃n()

〉
| = 1, 2, ...,£n

}
be n associated PULEs. As-

sume that re-arranged probability distribution set of ũ1s(p), ũ
2
s(p), ..., ũ

n
s (p) is p =

{
p∗(1), p∗(2), ...,

p∗(E)
}t

. Then the adjusted PULEs are

u∗1s (p) =
{〈

[£1(e), U1(e)], p∗(e)
〉
|e = 1, 2, ..., E

}
,

u∗2s (p) =
{〈

[£2(e), U2(e)], p∗(e)
〉
|e = 1, 2, ..., E

}
,

...

u∗ns (p) =
{〈

[£n(e), Un(e)], p∗(e)
〉
|e = 1, 2, ..., E

}
,

ä p∗(1) = min{p̃11, p̃21, p̃31, ..., p̃n1}

if p∗(1) = p̃11,

p∗(2) = min{p̃12, p̃21 − p∗(1), p̃31 − p∗(1), ..., p̃n1 − p∗(1)}
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if p∗(1) = p̃21,

p∗(2) = min{p̃11 − p∗(1), p̃22, p̃31 − p∗(1), ..., p̃n1 − p∗(1)}
...

if p∗(1) = p̃n1,

p∗(2) = min{p̃11 − p∗(1), p̃21 − p∗(1), p̃31 − p∗(1), ..., p̃(n−1)1 − p∗(1), p̃n2}.

ä If p∗(1) = p̃11 and p∗(2) = p̃12

p∗(3) = min{p̃13, p̃21 − p∗(1) − p∗(2), p̃31 − p∗(1) − p∗(2), ..., p̃n1 − p∗(1) − p∗(2)}

if p∗(1) = p̃11 and p∗(2) = p̃21 − p∗(1),

p∗(3) = min{p̃12 − p∗(2), p̃22, p̃31 − p∗(1) − p∗(2), ..., p̃n1 − p∗(1) − p∗(2)}

if p∗(1) = p̃11 and p∗(2) = p̃31 − p∗(1),

p∗(3) = min{p̃12 − p∗(2), p̃21 − p∗(1) − p∗(2), p̃32, p̃41 − p∗(1) − p∗(2)..., p̃n1 − p∗(1) − p∗(2)}
...

if p∗(1) = p̃11 and p∗(2) = p̃n1 − p∗(1),

p∗(3) = min{p̃12− p∗(2), p̃21− p∗(1)− p∗(2), p̃31− p∗(1)− p∗(2), ..., p̃(n−1)1− p∗(1)− p∗(2), p̃n2}.

ä If p∗(1) = p̃21 and p∗(2) = p̃22

p∗(3) = min{p̃11 − p∗(1) − p∗(2), p̃23, p̃31 − p∗(1) − p∗(2), ..., p̃n1 − p∗(1) − p∗(2)}

if p∗(1) = p̃11 and p∗(2) = p̃21 − p∗(1),

p∗(3) = min{p̃12 − p∗(2), p̃22, p̃31 − p∗(1) − p∗(2), ..., p̃n1 − p∗(1) − p∗(2)}

if p∗(1) = p̃21 and p∗(2) = p̃11 − p∗(1),

p∗(3) = min{p̃12, p̃22 − p∗(2), p̃31 − p∗(1) − p∗(2), ..., p̃n1 − p∗(1) − p∗(2)}

if p∗(1) = p̃21 and p∗(2) = p̃31 − p∗(1),

p∗(3) = min{p̃11 − p∗(1) − p∗(2), p̃22 − p∗(2), p̃32, p̃41 − p∗(1) − p∗(2)..., p̃n1 − p∗(1) − p∗(2)}
...

if p∗(1) = p̃21 and p∗(2) = p̃n1 − p∗(1),

p∗(3) = min{p̃11− p∗(1)− p∗(2), p̃22− p∗(2), p̃31− p∗(1)− p∗(2), ..., p̃(n−1)1− p∗(1)− p∗(2), p̃n2}.

ä If p∗(1) = p̃31 and p∗(2) = p̃32
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p∗(3) = min{p̃11−p∗(1)−p∗(2), p̃21−p∗(1)−p∗(2), p̃33, p̃41−p∗(1)−p∗(2), ..., p̃n1−p∗(1)−p∗(2)}

if p∗(1) = p̃31 and p∗(2) = p̃11 − p∗(1),

p∗(3) = min{p̃12, p̃21 − p∗(1) − p∗(2), p̃32 − p∗(2), p̃41 − p∗(1) − p∗(2)..., p̃n1 − p∗(1) − p∗(2)}

if p∗(1) = p̃31 and p∗(2) = p̃21 − p∗(1),

p∗(3) = min{p̃11 − p∗(1) − p∗(2), p̃22, p̃32 − p∗(2), p̃41 − p∗(1) − p∗(2), ..., p̃n1 − p∗(1) − p∗(2)}

if p∗(1) = p̃31 and p∗(2) = p̃n1 − p∗(1),

p∗(3) = min{p̃11 − p∗(1) − p∗(2), p̃21 − p∗(1) − p∗(2), p̃32 − p∗(2), p̃41 − p∗(1) − p∗(2)..., p̃n−1 −

p∗(1) − p∗(2), p̃n2}
...

p∗(E) = min{p̃1£1 , p̃∗(2£2), ..., p̃∗(n£n)}.

Following this pattern one can get adjusted probability distribution p = {p∗(1), p∗(2), ..., p∗(E)}.

Furthermore, they must satisfy p̃1 = p∗(e) + p∗(e+1) + ...+ p∗(e+r) too, where p̃1() is the prob-

ability of [£1(), U1()] in ũ1s(p) and p∗(e), p∗(e+1), ..., p∗(e+r) are the probabilities of [£1(), U1()]

in u∗1s (p). r denotes the number of linguistic terms in u∗1s (p). Similarly, the elements in

u∗2s (p), u∗3s (p), ..., u∗ns (p) also meet this condition. The uncertain linguistic terms and sum of

probability remain unaltered in the adjusted PULEs.

Note: A PULTS is said to be adjusted PULTS if all of its PULEs are adjusted.

Next example is provided for a better understanding.

Example 4.1.4. Consider the following four associated PULEs.

ũ1s(p) =
{
〈[£0,£1], 0.3〉, 〈[£1,£2], 0.2〉, 〈[£2,£3], 0.5〉

}
, ũ2s(p) =

{
〈[£−2,£−1], 0.4〉, 〈[£1,£2], 0.6〉

}
,

ũ3s(p) =
{
〈[£2,£3], 1〉

}
, ũ4s(p) =

{
〈[£−1,£0], 0.4〉, 〈[£1,£2], 0.5〉, 〈[£3,£4], 0.1〉

}
. Take

p∗1 = min
(
0.3, 0.4, 1, 0.4

)
= 0.3, p∗2 =

(
0.2, 0.1, 0.7, 0.1

)
= 0.1, p∗3 =

(
0.1, 0.6, 0.6, 0.5

)
= 0.1,

p∗4 =
(
0.5, 0.5, 0.5, 0.4

)
= 0.4, p∗5 =

(
0.1, 0.1, 0.1, 0.1

)
= 0.1.

The adjusted PULEs are ũ∗1s (p) =
{
〈[£0,£1], 0.3〉, 〈[£1,£2], 0.1〉, 〈[£1,£2], 0.1〉, 〈[£2,£4], 0.4〉,

〈[£2,£3], 0.1〉
}

, ũ∗2s (p) =
{
〈[£−2,£−1], 0.3〉, 〈[£−2,£−1], 0.1〉, 〈[£1,£2], 0.1〉, 〈[£1,£2], 0.4〉,

〈[£1,£2], 0.1〉
}

, ũ∗3s (p) =
{
〈[£2,£3], 0.3〉, 〈[£2,£3], 0.1〉, 〈[£2,£3], 0.1〉, 〈[£2,£3], 0.4〉, 〈[£2,£3],

0.1〉
}

, ũ∗4s (p) =
{
〈[£−1,£0], 0.3〉, 〈[£−1,£0], 0.1〉, 〈[£1,£2], 0.1〉, 〈[£1,£2], 0.4〉, 〈[£3,£4], 0.1〉

}
.
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4.2 Novel operations and comparison

This section concentrates on designing some novel operations, studying their properties and

comparison of PULEs based upon adjusting rule of probability and linguistic scale function.

4.2.1 Novel operations

Operational laws cannot be defined effectively when integrating the indices of uncertain lin-

guistic terms directly along with corresponding probabilities. It is bothersome to handle

PULEs in comparison with other linguistic expression models as there is one extra dimension,

i.e., probabilities along with uncertain linguistic terms. Most of the scholars [32, 49] aggregate

the indices of the uncertain linguistic terms with associated probabilities directly. However,

these operational laws have some shortcomings. Here we only take the additive operation be-

tween two ordered and normalized PULEs given in Definition 2.4.2 and provide an example

to demonstrate its limitations.

Example 4.2.1. Let S = {£α|α = −3, ...,−1, 0, 1, ..., 3} be an LTS, and let u1s(p) =
{
〈[£1,£2],

0.5〉, 〈[£2,£3], 0.5〉
}

, u2s(p) =
{
〈[£2,£3], 0.8〉, 〈[£−1,£0], 0.2〉

}
according to additive operation

of [32], we get

u1s(p)⊕ u2s(p) =
{

[£2.1,£3.4], [£0.8,£1.5]
}
. (4.2.1)

Clearly, the result of Eq. (4.2.1) not only loses the probability information but also the

linguistic terms £3.4 cross the boundary of the boundary [£−3,£3]. The major flaws of existing

operations are summarized as follows.

i. It is not very meaningful to operate the indices of linguistic terms with their correspond-

ing probabilities because these dimensions have absolutely different meanings.

ii. The results obtained after operations cannot reflect the probabilities of uncertain lin-

guistic terms.
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iii. The resultant linguistic terms may cross the boundary of provided LTS while directly

operating indices of the linguistic terms.

iv. The existing operations can be operated only on normalized PULEs. In the normaliza-

tion process, we need to add an uncertain linguistic term to the smallest one. The added

artificial uncertain linguistic terms would lead to inaccurate calculation and different

techniques may obtain different results for adding uncertain linguistic terms.

v. The existing operations fail to handle the case of unbalanced linguistic terms.

In order to stop losing of probability, recently, [49] designed some interesting operations of

PULEs by taking an average of the corresponding probabilities.

With this innovation flaw 2 is resolved but the other flaws are still unresolved. In order

to avoid all these flaws, novel operations are defined below.

Definition 4.2.2. Let u∗1s (p) =
{〈

[£1(e), U1(e)], p∗(e)
〉
|e = 1, 2, ..., E

}
and u∗2s (p) =

{ 〈
[£2(e), U2(e)],

p∗(e)
〉
|e = 1, 2, ..., E

}
be two adjusted PULEs and `, `−1 be the equivalent linguistic scale func-

tions and λ ≥ 0; Then:

i. u1s(p)⊕ u2s(p) = u∗1s (p)⊕ u∗2s (p) =
{〈

[`−1(`(£1(e)) + `(£2(e))), `−1(`(U1(e))

+ `(U2(e)))], p∗(e)
〉
|e = 1, 2, ..., E

}
;

ii. u1s(p)⊗ u2s(p) = u∗1s (p)⊗ u∗2s (p) =
{〈

[`−1(`(£1(e))`(£2(e)))

`−1(`(U1(e))`(U2(e)))], p∗(e)
〉
|e = 1, 2, ..., E

}
;

iii. λu1s(p) =
{〈

[`−1(λ(`(£1(e)))), `−1(λ(`(U1(e))))], p∗(e)
〉
|e = 1, 2, ..., E

}
;

iv.
(
u1s(p)

)λ
=
{〈

[`−1((`(£1(e)))λ), `−1((`(U1(e)))λ)], p∗(e)
〉
|e = 1, 2, ..., E

}
.

In what follows, some interesting properties of the novel operations are presented.

Theorem 4.2.3. Let S = {£α|α = −τ, ...,−1, 0, 1, ...,−τ} be an LTS, u∗s(p), u
∗1
s (p), u∗2s (p) be

any three adjusted PULEs and λ, λ1, λ2 be three positive real numbers. Then:

69



i. u∗1s (p)⊕ u∗2s (p) = u∗2s (p)⊕ u∗1s (p);

ii.
(
u∗s(p)⊕ u∗1s (p)

)
⊕ u∗2s (p) = u∗s(p)⊕

(
u∗1s (p)⊕ u∗2s (p)

)
;

iii. λ
(
u∗1s (p)⊕ u∗2s (p)

)
= λu∗1s (p)⊕ λu∗2s (p);

iv.
(
λ1 + λ2

)
u∗s(p) = λ1u

∗
s(p)⊕ λ2u∗s(p);

v. u∗1s (p)⊗ u∗2s (p) = u∗2s (p)⊗ u∗1s (p);

vi.
(
u∗s(p)⊗ u∗1s (p)

)
⊗ u∗2s (p) = u∗s(p)⊗

(
u∗1s (p)⊗ u∗2s (p)

)
;

vii.
(
u∗1s (p)⊗ u∗2s (p)

)λ
=
(
u∗1s (p)

)λ ⊗ (u∗2s (p)
)λ

;

viii.
(
u∗s(p)

)λ1+λ2 =
(
u∗s(p)

)λ1 ⊕ (u∗s(p))λ2 .
Proof. Listed items i and v can be proven easily. Therefore, their proofs are skipped. Selecting
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the linguistic scale function described in Eq. (2.1.2), we have

2.
(
u∗s(p)⊕ u∗1s (p)

)
⊕ u∗2s (p) =

{〈
[`−1(`(£1(e)) + `(£2(e))), `−1(`(U1(e)) + `(U2(e)))],

p∗(e)
〉
|e = 1, 2, ..., E

}
⊕ u∗2s (p)

=
{〈

[`−1(
α(e) + τ

2τ
+
α(1e) + τ

2τ
), `−1(

β(e) + τ

2τ
+
β(1e) + τ

2τ
)],

p∗(e)
〉
|e = 1, 2, ..., E

}
⊕ u∗2s (p)

=
{〈

[£α(e)+α(1e)+2τ ,£β(e)+β(1e)+2τ ], p
∗(e)〉 |e = 1, 2, ..., E

}
⊕ u∗2s (p)

=

{〈
[`−1

(
`(lα(e)+α1(e)+2τ ) + `(£2(e))

)
, `−1

(
`(£β(e)+β1(e)+2τ )

+ `(U2(e))
)
], p∗(e)

〉
| e = 1, 2, ..., E

}
⊕ u∗2s (p)

=

{〈
[`−1(

α(e) + α1(e) + α2(e) + 3τ

2τ
), `−1(

β(e)+β1(e)+β2(e)
+ 3τ

2τ
)],

p∗(e)
〉
|e = 1, 2, ..., E

}
⊕ u∗2s (p)

=
{〈

[£α(e)+α1(e)+α2(e)+2τ ,£β(e)+β1(e)+β2(e)+2τ ], p
∗(e)〉 |e = 1, 2, ..., E

}
.

(4.2.2)
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Now

u∗s(p)⊕
(
u∗1s (p)⊕ u∗2s (p)

)
= u∗s(p)⊕

{〈
[`−1(`(£1(e)) + `(£2(e))), `−1(`(U1(e)) + `(U2(e)))],

p∗(e)
〉
|e = 1, 2, ..., E

}
= u∗s(p)⊕

{〈
[`−1(

α1(e) + τ

2τ
+
α(2e) + τ

2τ
), `−1(

β1(e) + τ

2τ
+
β2(e) + τ

2τ
)],

p∗(e)
〉
|e = 1, 2, ..., E

}
= u∗s(p)⊕

{ 〈
[£α1(e)+α2(e)+2τ ,£β(e)+β(1e)+2τ ], p

∗(e)〉
|e = 1, 2, ..., E

}
⊕ u∗2s (p)

=
{〈

[`−1
(
`(£(e)) + `(£α1(e)+α2(e)+2τ )

)
, `−1

(
`(£(e))+

`(£β1(e)+β2(e)+2τ )
)
], p∗(e)

〉
|e = 1, 2, ..., E

}
⊕ u∗2s (p)

=
{〈

[`−1(
α(e) + α1(e) + α2(e) + 3τ

2τ
), `−1(

β(e)+β1(e)+β2(e)
+ 3τ

2τ
)],

p∗(e)
〉
|e = 1, 2, ..., E

}
⊕ u∗2s (p)

=
{〈

[£α(e)+α1(e)+α2(e)+2τ ,£β(e)+β1(e)+β2(e)+2τ ], p
∗(e)〉 |e = 1, 2, ..., E

}
.

(4.2.3)

From (4.2.2) and (4.2.3) the desired proof is obtained.
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3. λu∗1s (p)⊕ λu∗2s (p) =
{〈

[`−1(λ(`(£1(e)))), `−1(λ(`(U1(e))))], p∗(e)
〉
|e = 1, 2, ..., E

}
⊕
{〈

[`−1(λ(`(£2(e)))), `−1(λ(`(U2(e))))], p∗(e)
〉
|e = 1, 2, ..., E

}
=
{〈

[`−1(λ(`(£1(e)) + `(£2(e)))), `−1(λ(`(U1(e)) + `(U2(e))))],

p∗(e)
〉
|e = 1, 2, ..., E

}
=
{〈

[`−1(λ(`(`−1(`(£1(e)) + `(£2(e)))))), `−1(λ(`(`−1(`(U1(e))+

`(U2(e))))))], p∗(e)
〉
|e = 1, 2, ..., E

}
= λ

({ 〈
[`−1(`(£1(e)) + `(£2(e))), `−1(`(U1(e)) + `(U2(e)))], p∗(e)

〉
|e = 1, 2, ..., E

})
= λ

(
u∗1s (p)⊕ u∗2s (p)

)
.

4. λ1u
∗
s(p)⊕ λ2u∗s(p) =

{〈
[`−1(λ1(`(£(e)))), `−1(λ1(`(U

(e))))], p∗(e)
〉
|e = 1, 2, ..., E

}
⊕{〈

[`−1(λ2(`(£(e)))), `−1(λ2(`(U
(e))))], p∗(e)

〉
|e = 1, 2, ..., E

}
=

{〈
[`−1(`(`−1(λ1(`(£(e)))))) + `−1(`(`−1(λ2(`(£(e)))))),

`−1(`(`−1(λ1(`(U
(e)))))) + `−1(`(`−1(λ2(`(U

(e))))))], p∗(e)
〉
|e = 1, 2, ..., E

}
=
{〈

[`−1(λ1(`(£(e)))) + `−1(λ2(`(£(e)))), `−1(λ1(`(U
(e))))+

`−1(λ2(`(U
(e))))], p∗(e)

〉
|e = 1, 2, ..., E

}
=
{〈

[`−1((λ1 + λ2)(`(£(e)))), `−1((λ1 + λ2)(`(U
(e))))], p∗(e)

〉
|e = 1, 2, ..., E

}
= (λ1 + λ2)u

∗
s(p).
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6.
(
u∗s(p)⊗ u∗1s (p)

)
⊗ u∗2s (p) =

{ 〈
[`−1(`(£1(e))`(£2(e))), `−1(`(U1(e))`(U2(e)))], p∗(e)

〉
|e = 1, 2, ..., E

}
⊗ u∗2s (p)

=
{〈

[`−1(
α(e) + τ

2τ
+
α(1e) + τ

2τ
), `−1(

β(e) + τ

2τ
+
β(1e) + τ

2τ
)],

p∗(e)
〉
|e = 1, 2, ..., E

}
⊗ u∗2s (p)

=
{〈

[£α(e)+α(1e)+2τ ,£β(e)+β(1e)+2τ ], p
∗(e)〉|e = 1, 2, ..., E

}
⊗ u∗2s (p)

=
{〈

[`−1
(
`(£α(e)+α1(e)+2τ )`(£2(e))

)
, `−1

(
`(£β(e)+β1(e)+2τ )`(U

2(e))
)
],

p∗(e)
〉
|e = 1, 2, ..., E

}
⊕ u∗2s (p)

=
{〈

[`−1(
α(e) + α1(e) + α2(e) + 3τ

2τ
), `−1(

β(e)+β1(e)+β2(e)
+ 3τ

2τ
)],

p∗(e)
〉
|e = 1, 2, ..., E

}
⊗ u∗2s (p)

=
{〈

[£α(e)+α1(e)+α2(e)+2τ ,£β(e)+β1(e)+β2(e)+2τ ], p
∗(e)〉|e = 1, 2, ..., E

}
.

(4.2.4)
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Now

u∗s(p)⊗
(
u∗1s (p)⊗ u∗2s (p)

)
= u∗s(p)⊗

{ 〈
[`−1(`(£1(e))`(£2(e))), `−1(`(U1(e))`(U2(e)))], p∗(e)

〉
|e = 1, 2, ..., E

}
= u∗s(p)⊗

{〈
[`−1(

α1(e) + τ

2τ
+
α(2e) + τ

2τ
), `−1(

β1(e) + τ

2τ
+
β2(e) + τ

2τ
)]

, p∗(e)
〉
|e = 1, 2, ..., E

}
= u∗s(p)⊗

{〈
[£α1(e)+α2(e)+2τ ,£β(e)+β(1e)+2τ ], p

∗(e)〉 |e = 1, 2, ..., E
}

⊗ u∗2s (p)

=
{〈

[`−1
(
`(£(e)) + `(£α1(e)+α2(e)+2τ )

)
, `−1

(
`(£(e))+

`(£β1(e)+β2(e)+2τ )
)
], p∗(e)

〉
|e = 1, 2, ..., E

}
⊗ u∗2s (p)

=
{〈

[`−1(
α(e) + α1(e) + α2(e) + 3τ

2τ
), `−1(

β(e)+β1(e)+β2(e)
+ 3τ

2τ
)]

, p∗(e)
〉
|e = 1, 2, ..., E

}
⊗ u∗2s (p)

=
{〈

[£α(e)+α1(e)+α2(e)+2τ ,£β(e)+β1(e)+β2(e)+2τ ], p
∗(e)〉 |e = 1, 2, ..., E

}
.

(4.2.5)

From (4.2.4) and (4.2.5) we get the desired proof.
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7.
(
u∗1s (p)

)λ ⊗ (u∗1s (p)
)λ

=
{〈

[`−1(`(£1(e)))λ, `−1(`(U1(e)))λ], p∗(e)
〉
|e = 1, 2, ..., E

}
⊗
{〈

[`−1(`(£2(e)))λ, `−1(`(U2(e)))λ], p∗(e)
〉
|e = 1, 2, ..., E

}
=
{〈

[`−1((`(£1(e)))λ(`(£2(e)))λ), `−1((`(U1(e)))λ(`(U2(e)))λ)],

p∗(e)
〉
|e = 1, 2, ..., E

}
=
{ 〈

[`−1(`(£1(e))`(£2(e)))λ, `−1(`(U1(e))(`(U2(e))))λ], p∗(e)
〉

|e = 1, 2, ..., E
}

=
{〈

[`−1((`(`−1(`(£1(e))`(£2(e))))))λ, `−1(`(`−1(`(U1(e))(`(U2(e))))))λ],

p∗(e)
〉
|e = 1, 2, ..., E

}
=
{ 〈

[`−1((`(£1(e))`(£2(e))))λ, `−1((`(U1(e))(`(U2(e)))))λ], p∗(e)
〉

|e = 1, 2, ..., E
}

=
(
u∗1s (p)⊗ u∗2s (p)

)λ
.

8.
(
u∗s(p)

)λ1 ⊗ (u∗s(p))λ2 =
{〈

[`−1(`(£(e)))λ1 , `−1(`(U (e)))λ1 ], p∗(e)
〉
|e = 1, 2, ..., E

}
⊗
{〈

[`−1(`(£(e)))λ2 , `−1(`(U (e)))λ2 ], p∗(e)
〉
|e = 1, 2, ..., E

}
=
{〈

[`−1(`(`−1(`(£(e))))λ1`(`−1(`(U (e))))λ2)], p∗(e)
〉
|e = 1, 2, ..., E

}
,{〈

[`−1(`(`−1(`(£(e))))λ1`(`−1(`(U (e))))λ2)], p∗(e)
〉
|e = 1, 2, ..., E

}
=
{〈

[`−1(`(`−1(`(£(e))))λ1+λ2)], p∗(e)
〉
|e = 1, 2, ..., E

}
,{〈

[`−1(`(`−1(`(£(e))))λ1+λ2)], p∗(e)
〉
|e = 1, 2, ..., E

}
=
(
u∗s(p)

)λ1+λ2 .
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4.2.2 Comparison

In view of various linguistic scale functions for the semantics of linguistic terms, a new score

function and deviation degree of a PULE are put forwarded to compare PULEs with one

another.

Definition 4.2.4. Let us(p) =
{〈

[£(), U ()], p∗()
〉
| = 1, 2, ...,£

}
be a PULE on Z and ` be

a linguistic scale function, then score function of us(p) is mathematically defined as:

F (us(p)) = £α , (4.2.6)

where α =
∑£

=1

( `(£())+`(U())
2

· p()
)
, and the deviation degree of us(p) is

σ(us(p)) = £β , (4.2.7)

where β =
(∑£

=1

(( `(£())+`(U())
2

− F (us(p))
)2 · p())) 1

2 .

For any two PULEs u1s(p) and u2s(p), comparison method between them is constructed as

follows:



If F (u1s(p)) > F (u2s(p)) then u1s(p) > u2s(p);

If F (u1s(p)) < F (u2s(p)) then u1s(p) < u2s(p);

If F (u1s(p)) = F (u2s(p)) then


If σ(u1s(p)) > σ(u2s(p)), u1s(p) < u2s(p)

If σ(u1s(p)) < σ(u2s(p)), u1s(p) > u2s(p)

If σ(u1s(p)) = σ(u2s(p)), u1s(p) ∼ u2s(p).
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4.3 Aggregation operators, distance and correlation mea-

sure

To aggregate preferences of DMs more rationally, the present section first improves existing

probabilistic uncertain linguistic aggregation operators and then by gaining motivations from

[32, 50], construct the distance measures and introduce the concept of correlation measure in

the PULTS context. We also seek out the relationship between score function and distance

measure of PULTSs.

4.3.1 Aggregation operators

In order to aggregate DMs opinions, Lin et al. [32] proposed some probabilistic uncertain

aggregation operators. Xie et al. [49] improved these operators by introducing new opera-

tions of PULEs but they are still tasteless because the operations they used are irrational

as mentioned earlier. Therefore, these operators should be redefined. Here we present only

probabilistic uncertain linguistic weighted averaging (PULWA) operator and probabilistic un-

certain linguistic weighted geometric (PULWG) operator.

Definition 4.3.1. Given n adjusted PULEs u∗is (p) =
{〈

[£i(e), U i(e)], p∗i(e)
〉
|e = 1, 2, ..., E

}
.

Then

PULWA
(
u∗1s (p), u∗2s (p), ..., u∗ns (p)

)
= π1u

∗1
s (p)⊕ π2u∗2s (p)⊕ ...⊕ πnu∗ns (p)

=

{〈
[`−1

(
π1`(£1(e)) + π2`(£2(e)) + ...+ πn`(£n(e))

)
,

`−1
(
π1`(U

1(e)) + π2`(U
2(e)) + ...+ πn`(U

n(e))

)
], p∗(e)

〉
|e = 1, 2, ..., E

}
, (4.3.1)

is called the PULWA operator, π = [π1, π2, ..., πn]t is the weight vector of these PULEs, πi ∈

[0, 1],
∑n

i=1 πi = 1 and ` is the linguistic scale function.
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Definition 4.3.2. Given n adjusted PULEs u∗is (p) =
{〈

[£i(e), U i(e)], p∗i(e)
〉
|e = 1, 2, ..., E

}
.

Then

PULWG
(
u∗1s (p), u∗2s (p), ..., u∗ns (p)

)
=
(
u∗1s (p)

)π1 ⊗ (u∗2s (p)
)π2 ⊗ ...⊗ (u∗ns (p))πn

=

{〈
[`−1

((
`(£1(e))

)π1 (
`(£2(e))

)π2
...
(
`(£n(e))

)πn)
,

`−1
((
`(U1(e))

)π1 (
`(U2(e))

)π2
...
(
`(Un(e))

)πn)
], p∗(e)

〉
|e = 1, 2, ..., E

}
, (4.3.2)

is called the PULWG operator, π = [π1, π2, ..., πn]t is the weight vector of these PULEs,

πi ∈ [0, 1],
∑n

i=1 πi = 1 and ` is the linguistic scale function.

It can be easily observed that the aggregated values obtained by Eqs. (4.3.1) and (4.3.2)

are also a PULEs.

4.3.2 Distance measure

Some well-known distance measures for PULTSs based on the linguistic scale function includ-

ing Hamming distance, Euclidean distance and generalized distance are proposed as follows:

Definition 4.3.3. For two associated PULEs ũ1s(p) and ũ1s(p) with adjusted forms u∗1s (p) ={〈
[£1(e), U1(e)], p∗(e)

〉
|e = 1, 2, ..., E

}
and u∗2s (p) =

{ 〈
[£2(e), U2(e)], p∗(e)

〉
|e = 1, 2, ..., E

}
. Then

the Hamming distance between ũ1s(p) and ũ2s(p) can be defined as:

dhd
(
ũ1s(p), ũ

2
s(p)

)
=

E∑
e=1

p∗(e)
(∣∣`(£1(e) − `(£2(e))

∣∣+
∣∣`(U1(e) − `(U2(e))

∣∣) . (4.3.3)

Euclidean distance can be defined as:
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ded
(
ũ1s(p), ũ

1
s(p)

)
=

√√√√ E∑
e=1

p∗(e)
(
|`(£1(e) − `(£2(e))|2 + |`(U1(e) − `(U2(e))|2

)
. (4.3.4)

The generalized distance can be defined as:

dgd
(
ũ1s(p), ũ

1
s(p)

)
=

(
E∑
e=1

p∗(e)
(∣∣`(£1(e) − `(£2(e))

∣∣ζ +
∣∣`(U1(e) − `(U2(e))

∣∣λ))1/ζ

. (4.3.5)

The function ` is a linguistic scale function and can be chosen from the aforementioned

three types of linguistic scale functions under different semantics. ζ > 0 is a parameter.

The major advantages of proposed distance measure over existing ones are outlined below.

i. Multiplying the probabilities with indices of lower and upper limits of the corresponding

uncertain linguistic terms of a PULE like Ref. [32] or taking the average of probabilities

of PULEs [49] are irrational. The proposed distances are based on the adjusting rule of

probability which leave off the probability calculations.

ii. Unlike existing distance formulas, there is no requirement to insert artificial linguistic

terms to the smaller one with our adjusting rule of probability given in Section 4.1.

iii. The existing distance measures fail to compute the distance between unbalanced PULEs

while proposed distances are based on the linguistic scale function and DMs can choose

an appropriate linguistic scale function under different circumstances.

Proposition 4.3.4. Let u1s(p), u2s(p), u3s(p) and u4s(p) be four PULEs, if |F (u1s(p))− F (u2s(p))| ≥

|F (u3s(p))− F (u4s(p))|, then d (u1s(p), u
2
s(p)) ≥ d (u3s(p), u

4
s(p)).

Proof. Suppose that u∗1s (p), u∗2s (p), u∗3s (p) and u∗4s (p) are the adjusted forms of the given
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PULEs with rearranged probability set p =
{
p∗(1), p∗(2), ..., p∗(E)

}t
. From Eq. (4.2.6) we got

F (us(p)) =
E∑
e=1

(`(£(e)) + `(U (e))

2
· p(e)

)
=

E∑
e=1

(`(£(e)) + `(U (e))

2
· p∗(e)

)
=⇒ F

(
u1s(p)

)
− F

(
u2s(p)

)
=

E∑
e=1

(`(£1(e)) + `(U1(e))

2
· p∗(e)

)
−

E∑
e=1

(`(£2(e)) + `(U2(e))

2
· p∗(e)

)
=

E∑
e=1

(`(£1(e))− `(£2(e)) + `(U1(e) − `(U2(e))

2
· p∗(e)

)
.

Since |F (u1s(p))− F (u2s(p))| ≥ |F (u1s(p))− F (u2s(p))|

therefore,

E∑
e=1

∣∣∣∣`(£1(e))− `(£2(e)) + `(U1(e) − `(U2(e))

2

∣∣∣∣ · p∗(e) ≥ E∑
e=1

∣∣∣∣`(£3(e))− `(£4(e)) + `(U3(e) − `(U4(e))

2

∣∣∣∣ · p∗(e),

since ζ > 0 so we can write

E∑
e=1

∣∣(`(£1(e))− `(£2(e))
)

+
(
`(U1(e))− `(U2(e))

)∣∣ζ · p∗(e) ≥ E∑
e=1

∣∣(`(£3(e))− `(£4(e))
)

+
(
`(U3(e) − `(U4(e)))

)∣∣ζ · p∗(e).

Thus, d (u1s(p), u
2
s(p)) ≥ d (u3s(p), u

4
s(p)).

4.3.3 Correlation coefficient

Based on the above distance measure, we propose PUL-correlation coefficient for PULTSs,

which is defined as follows:

Definition 4.3.5. Let U∗1s (p) = {u∗11s (p), u∗12s (p), u∗13s (p), ..., u∗1ms (p)} and U∗2s (p) = {u∗21s (p), u∗22s (p),

u∗23s (p), ..., u∗2ms (p)} be two adjusted PULTS then the probabilistic uncertain linguistic correla-

tion coefficient (PUL-correlation coefficient) between U∗1s (p) and U∗2s (p) can be mathematically
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defined as:

R
(
U∗1s (p), U∗2s (p)

)
=

∑m
i=1

((
d(u∗1+s (p),u∗1is (p))
d(u∗1+s (p),u∗1−s (p))

− 1
m

∑m
i=1

d(u∗1+s (p),u∗1is (p))
d(u∗1+s (p),u∗1−s (p))

)
×
(

d(u∗2+s (p),u∗2is (p))
d(u∗2+s (p),u∗2−s (p))

− 1
m

∑m
i=1

d(u∗2+s (p),u∗1is (p))
d(u∗2+s (p),u∗2−s (p))

))
√∑m

i=1

(
d(u∗1+s (p),u∗1is (p))
d(u∗1+s (p),u∗1−s (p))

− 1
m

∑m
i=1

d(u∗1+s (p),u∗1is (p))
d(u∗1+s (p),u∗1−s (p))

)2

×

√∑m
i=1

(
d(u∗2+s (p),u∗2is (p))
d(u∗2+s (p),u∗2−s (p))

− 1
m

∑m
i=1

d(u∗2+s (p),u∗1is (p))
d(u∗2+s (p),u∗2−s (p))

)2
,

(4.3.6)

where m is the number of PULEs in each PULTS, u∗q+s (p) and u∗q−s (p) are the best and worst

PULEs in U∗qs (p), respectively, q = 1, 2. u∗q+s (p) and u∗q−s (p) can be determined by Eqs.

(4.2.6) and (4.2.7), d (u∗1+s (p), u∗1is (p)) denotes the distance between u∗1+s (p) and u∗1is (p).

Proposition 4.3.6. The PUL-correlation coefficient satisfy the characteristic of the Pearson

correlation coefficient i.e., R (U∗1s (p), U∗2s (p)) ∈ [−1, 1].

Proof. From

u∗q+s (p) =


maxi u

∗qi
s (p) for the benefit criteria

mini u
∗qi
s (p) for the cost criteria

and

u∗q−s (p) =


mini u

∗qi
s (p) for the benefit criteria

maxi u
∗qi
s (p) for the cost criteria

we have |F (u∗q+s (p))− F (u∗q−s (p))| ≥ |F (u∗q+s (p))− F (u∗qis (p))|.

Proposition 4.3.4, presents us d (u∗q+s (p), u∗q−s (p)) ≥ d (u∗q+s (p), u∗qis (p)) , i = 1, 2, ...,m. There-

fore,
d(u∗q+s (p),u∗qis (p))
d(u∗q+s (p),u∗q−s (p))

≤ 1. Let
d(u∗q+s (p),u∗qis (p))
d(u∗q+s (p),u∗q−s (p))

− 1
m

∑m
i=1

(
d(u∗q+s (p),u∗qis (p))
d(u∗q+s (p),u∗q−s (p))

)
= zqi, q = 1, 2.

Then zqi ∈ [−1, 1]. The denominator in Eq. (4.3.6) can be written as
√∑m

i=1(z
1i)2 ×√∑m

i=1(z
2i)2 ≥

∑m
i=1 | z1i × z2i |. The numerator can be written as

∑m
i=1 (z1i × z2i). There-

fore, R (U∗1s (p), U∗2s (p)) ∈ [−1, 1].
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Correlation coefficient formula is used to find how strong a relationship is between data.

As proved above, the formulae return a value between −1 and 1, where:

• 1 indicates a strong positive relationship,

• -1 indicates a strong negative relationship,

• A result of zero indicates no relationship at all.

The absolute value of the correlation coefficient gives us the relationship strength. The

larger the number, the stronger the relationship, |−0.75| = 0.75 has a stronger relationship

than 0.65. Generally, the correlation strength of two variables U1
s (p) and U2

s (p) can be ranked

by the following ranking rule [51].

ä R (U∗1s (p), U∗2s (p)) ∈ (0.8, 1] ∈ extremely strong correlation.

ä R (U∗1s (p), U∗2s (p)) ∈ (0.6, 0.8] ∈ strong correlation.

ä R (U∗1s (p), U∗2s (p)) ∈ (0.4, 0.6] ∈ moderate strong correlation.

ä R (U∗1s (p), U∗2s (p)) ∈ (0.2, 0.4] ∈ weak correlation.

ä R (U∗1s (p), U∗2s (p)) ∈ (0, 0.2] ∈ extremely weak correlation.

4.4 Consensus-based robust decision making methods

for MCGDM problems

This section is devoted to present a consensus-based probabilistic uncertain linguistic (PUL)-

GLDS method and consensus-based PUL-aggregation method to handle the MCGDM prob-

lems with the decision information in PULEs form. A general MCGDM problem contains a set

of alternatives Z = {z1, z2, z3, ..., zm} (m ≥ 2), a set of attributes C = {c1, c2, c3, ..., cn} (n ≥ 2)

with the weight vector π = {π1, π2, π3, ..., πn}t, and a group of DMs D = {d1, d2, d3, ..., dT}
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(T ≥ 2). The decision information of DM dT on zi regarding to Aj are transformed to PULEs

u
ij(t)
s (p)(i = 1, 2, ...,m; j = 1, 2, ..., n; t = 1, 2, ..., T ). Thus, a group of individual probabilistic

uncertain linguistic decision matrices are attained as M t =
(
u
ij(t)
s (p)

)
m×n

(t = 1, 2, ..., T ). By

Eqs. (4.1.1) and (4.1.2), we can attain the overall probabilistic uncertain linguistic opinion

matrix M̂ = (ûijs (p))m×n.

4.4.1 The PUL-consensus reaching approach

The PUL-consensus reaching approach can be conducted into two steps: PUL-consensus

checking approach and PUL-consensus improving approach.

i. PUL-consensus checking approach

Definition 4.4.1. Let M t =
(
u
ij(t)
s (p)

)
m×n

be the individual probabilistic uncertain

linguistic opinion matrix of DM dt and M̂ = (ûijs (p))m×n be the overall probabilistic

uncertain linguistic opinion matrix. The PUL-consensus level of DM dt can be defined

as follows:

σ(t) =
1

n

n∑
j=1

θ
(t)
j , (4.4.1)

where

θ
(t)
j =

∑m
i=1

[(
d
(t)
ij

d
(t)
j

− 1
m

∑m
i=1 d

(t)
ij

d
(t)
j

)
×
(
dij
dj
− 1

m

∑m
i=1 dij
dj

)]
√∑m

i=1

(
d
(t)
ij

d
(t)
j

− 1
m

∑m
i=1 d

(t)
ij

d
(t)
j

)2

×
√∑m

i=1

(
dij
dj
− 1

m

∑m
i=1 dij
dj

)2
where d

(t)
ij = d

(
u
j+(t)
s (p), u

ij(t)
s (p)

)
, d

(t)
j = d

(
u
j+(t)
s (p), u

j−(t)
s (p)

)
, dij = d (ûj+s (p), ûijs (p))

and dj = d (ûj+s (p), ûjs(p))

uj+s (p) =

maxi u
ij(t)
s (p), for the benefit criteria

mini u
ij(t)
s (p), for the cost criteria .
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ûj+s (p) =

maxi û
ij
s (p), for the benefit criteria

mini û
ij
s (p), for the cost criteria .

uj−s (p) =

mini u
ij(t)
s (p), for the benefit criteria

maxi u
ij(t)
s (p), for the cost criteria .

ûj−s (p) =

mini û
ij
s (p), for the benefit criteria

maxi û
ij
s (p), for the cost criteria .

According to Proposition 4.3.6, we can attain that σt ∈ [−1, 1]. The larger the value

of σt is, the more powerful the PUL-correlation consensus level of DM dt to the group

would be regarding to each criteria. If σt > 0, there is consensus with various strength;

if σt ≤ 0, the DM dt posses no consensus with other DMs. It is rational to remove the

biased opinions of DMs dt if σt and θ
(t)
j are extremely poor. Based upon the ranking of

correlation strength, the ranking of consensus level is given below:

ä σ(t) ∈ (0.8, 1] ∈ extremely strong correlation;

ä σ(t) ∈ (0.6, 0.8] ∈ strong correlation;

ä σ(t) ∈ (0.4, 0.6] ∈ moderate strong correlation;

ä σ(t) ∈ (0.2, 0.4] ∈ weak correlation;

ä σ(t) ∈ (0, 0.2] ∈ extremely weak correlation.

ii. PUL-consensus improving approach:

As mentioned earlier, perfect consistency is not expected in a hesitant environment.

When the consistency level of a DM is not satisfied, then DM should be asked to

reconsider their decisions and provide new preferences. This subsection provides an

algorithm to guide this consistency improvement approach.
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Let the minimal level of DMs group be σ∗ = σ(µ) = mint σ
(t)(t = 1, 2, ..., T ), θ and

σ be stated correlation and consensus threshold, respectively. If σ∗ = σ(µ) < σ then

the corresponding individual probabilistic uncertain linguistic opinion matrix M (µ) with

minimal consensus level σ(µ) need to be repaired as:

Ḿ (µ) =
(
úij(µ)s (p)

)
m×n , (4.4.2)

where

úij(µ) =


1
2

(
u
ij(µ)
s (p)⊕ uijs (p)

)
, if θµj < θ

u
ij(µ)
s (p), otherwise.

If the consensus level of all opinion matrices are greater than or equal to the consensus

threshold σ, then, integrate the individual opinion matrices into final opinion matrix

M = (uijs (p))m×n. We can choose the consensus threshold as σ, θ ∈ (0.4, 0.8]. If the

demand for consensus level is hard then DMs can choose a high value of threshold. If the

demand for consensus level is not hard, then a low value of threshold can be imposed.

4.4.2 The PUL-GLDS method

The GLDS method was originally designed by Wu and Liao [48] to cope with complex

MCGDM problems with probabilistic linguistic assessments. It is a novel outranking method

based upon both the gained and lost dominance score between alternatives. Based on the al-

gorithm of PL-GLDS method, we generalize this method to probabilistic uncertain linguistic

scenario. To do so, in the following, we are going to define some concepts.

Definition 4.4.2. Let the DMs opinions of alternatives zi and zς under criteria cj be two

PULEs uijs (p) and uςjs (p), respectively. The adjusted PULEs are u∗ijs (p) =
{〈

[£ij(e), U ij(e)], p∗(e)
〉

|e = 1, 2, ..., E} and u∗ςjs (p) =
{〈

[£ςj(e), U ςj(e)],
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p∗(e)
〉
|e = 1, 2, ..., E

}
. Let

h
(e)
iς =


max

{
mid[`(£ij(e)), `(U ij(e))]−mid[`(£ςj(e)), `(U ςj(e))], 0

}
, for benefit criteria

max
{
mid[`(£ςj(e)), `(U ςj(e))]−mid[`(£ij(e)), `(U ij(e))], 0

}
, for cost criteria

; i, ς = 1, 2, ...,m and ‘`’ is a linguistic scale function. The PUL-dominance flow of zi

over zς under criteria cj can be characterised as:

dfj (zi, zς) =
E∑
e=1

(
h
(e)
iς · p∗(e)

)
. (4.4.3)

Since mid[`(£), `(U)] ∈ [0, 1], this implies h
(e)
iς ∈ [0, 1]. Also

∑E
e=1 p

∗(e) = 1 and p∗(e) >

0 ∀ e = 1, 2, ..., E, this results
∑E

e=1

(
h
(e)

iς·p∗(e) ≤
∑E

e=1 p
∗(e) = 1

)
. Therefore, dfj (zi, zς) ∈ [0, 1].

Normalize the PUL-dominance flow by using the following formula:

dfNj (zi, zς) =
dfj (zi, zς)√∑m

ς=1

∑m
i=1 (dfj (zi, zς))

2
. (4.4.4)

Since dfj (zi, zς) ∈ [0, 1], it is clear that dfNj (zi, zς) ∈ [0, 1].

Definition 4.4.3. The probabilistic uncertain linguistic gained dominance score (PUL-gained

dominance score) of alternative zi under criteria cj can be mathematically described as:

gdj(zi) =
m∑
ς=1

dfNj (zi, zς) . (4.4.5)

Definition 4.4.4. The probabilistic uncertain linguistic lost dominance score (PUL-lost dom-

inance score) of alternative zi under criteria cj is defined as:

ldj(zi) = max
ς
df ςj (zς , zi) . (4.4.6)
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Definition 4.4.5. The probabilistic uncertain linguist overall gained dominance score (PUL-

overall gained dominance score) of alternative zi under criteria cj is denoted and described

as:

OGD(zi) =
n∑
j=1

πjgdj(zi), (4.4.7)

where πj is the weight of the criteria cj.

PUL-overall gained dominance score represents the “group utility” value of each alterna-

tive. The alternatives are positioned in decreasing order of OGD(zi)(i = 1, 2, ...,m) and thus,

a rank set S1 = {r1(z1), r1(z2), ..., r1(zm)} is achieved.

Definition 4.4.6. The probabilistic uncertain linguist overall lost dominance score (PUL-

overall lost dominance score) of alternative zi under criteria cj is denoted and defined as

follows:

OLD(zi) = max
i
πjldj(zi), (4.4.8)

where πj is the weight of the criteria cj.

The PUL-overall dominance score presents the maximum “individual regret” value of each

alternative. The alternatives are positioned in increasing order of OLD(zi)(i = 1, 2, ...,m)

and this results a second ranked set S2 = {r2(z1), r2(z2), ..., r2(zm)}.

Normalize OGD(zi) and OLD(zi) by normalization formulas as Eqs. (4.4.9) and (4.4.10).

OGDN(zi) =
OGD(zi)√∑m
i=1 (OGD(zi))

2
. (4.4.9)

OLDN(zi) =
OLD(zi)√∑m
i=1 (OLD(zi))

2
. (4.4.10)
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The overall score is obtained by the following aggregation operator.

OSi = OGDN(zi) ·
m− r1(zi) + 1

m(m+ 1)/2
−OLDN(zi) ·

m− r2(zi) + 1

m(m+ 1)/2
. (4.4.11)

The alternatives are positioned in descending order of OSi(i = 1, 2, ...,m). Thus, a final

rank set S = {r(z1), r(z2), ..., r(zm)} is obtained.

4.4.3 Consensus-based PUL-aggregation method

This subsection aims to present the consensus-based PUL-aggregation method for MCGDM

problems, where assessment information of DMs are presented by PULEs. In this method, we

collect and transform the values of cost criteria in global opinion matrix to be greatest. Let

the assessment information of alternative zi under (cost)criteria Aj be the PULE u∗ijs (p) ={〈
[£ij(e), U ij(e)], p∗i(e)

〉
|e = 1, 2, ..., E

}
with αij(e) and βij(e) being the indices of the linguistic

terms £ij(e) and U ij(e), respectively. Then, transform it to

ū∗ijs (p) =
{〈

[£̄ij(e), Ū ij(e)], p∗i(e)
〉
|e = 1, 2, ..., E

}
, (4.4.12)

with ᾱij(e) = −βij(e) and β̄ij(e) = −αij(e) being the indices of the linguistic terms £̄ij(e) and

Ū ij(e), respectively. Then, the aggregation operators defined in Section 4.3 are applied to

aggregate the criteria values of alternatives into overall criteria value.

Definition 4.4.7. Let D̄ = [U∗ijs (p)]m×n be a probabilistic uncertain linguistic global opinion

matrix after maximization of the values of cost criteria. Then, the overall criteria value of

alternative zi can be computed as:
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case 1: If PULWA operator is used:

uis(p) = π1u
∗i1
s (p)⊕ π2u∗i2s (p)⊕ ...⊕ πnu∗ins (p)

=
{〈

[`−1
(
π1`(£i1) + π2`(£i2) + ...+ πn`(£in)

)
, `−1

(
π1`(U

i1)+

π2`(U
i2) + ...+ πn`(U

in)
)
], p∗(e)

〉
|e = 1, 2, ..., E

}
, (4.4.13)

where i = 1, 2, ...,m.

case 2: If PULWG operator is used:

uis(p) =
(
u∗i1s (p)

)π1 ⊗ (u∗i2s (p)
)π2 ⊗ ...⊗ (u∗ins (p)

)πn
=
{〈

[`−1
((
`(£i1)

)π1 (`(£i2)
)π2 ... (`(£in)

)πn)
, g−1

( (
`(U i1)

)π1 (`(U i2)
)π2

...
(
`(U in)

)πn )
], p∗(e)

〉
|e = 1, 2, ..., E

}
, (4.4.14)

where i = 1, 2, ...,m.

After this, employ the comparison method presented in Section 4.2, to compare uis(p)(i =

1, 2, ...,m) mutually. As a result, the ranking of alternatives is collected.

4.4.4 The Decision making procedure

Based on the above analysis, we come up with two MCGDM methods named as consensus-

based PUL-GLDS method and consensus-based PUL-aggregation method. This subsection

mainly concerns to summarize their stepwise procedure as Algorithm 1 and Algorithm 2.

Algorithm 1

Step 1: Construct the individual opinion matrices:

Obtain the linguistic expressions from DMs and then construct the individual proba-

bilistic uncertain linguistic opinion matrices M (t) = [u
ij(t)
s (p)]m×n(t = 1, 2, ..., T ).

Step 2: Determine the overall opinion matrix:
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Based on Eqs. (4.1.1) and (4.1.2) calculate the overall opinions of DMs and establish the

overall probabilistic uncertain linguistic opinion matrix M̂ (t) = [ûijs (p)]m×n. Let I = 1.

Step 3. Determine the alternatives which need repairing:

Determine the correlation threshold θ and consensus threshold σ, which are generally

within the bounds of 0.4 and 0.8. Then obtain the correlation coefficient and the

consensus level σt in the light of Eq. (4.4.1). If σt ≥ σ(t = 1, 2, ..., T ) then proceed to

Step 5; otherwise proceed to the coming next step.

Step 3: Derive repair opinion matrices:

Find the opinion matrix M (t) with σ(t) = minµ σ
µ. Build its improved opinion matrix

Ḿ (t) according to Eq. (4.4.2). Let I = I + 1, go to Step 2.

Step 4: Compute the global opinion matrix:

Combine the individual opinion matrices into a global opinion matrix M = [uijs (p)]m×n

by using Eqs. (4.1.1) and (4.1.2).

Step 5: Calculate the PUL-dominance flows:

Based on Eq. (4.4.3) calculate the PUL-dominance flows and normalize them according

to Eq. (4.4.4). Derive the PUL-gained dominance score by using Eq. (4.4.5) and the

PUL-lost dominance score by using Eq. (4.4.6).

Step 6: Derive the overall dominance scores:

Derive the overall PUL-gained dominance score by Eq. (4.4.7) and the overall PUL-lost

dominance score by Eq. (4.4.8).

Step 7: Determine the accessory ranks of alternatives:

Normalize the overall PUL-gained dominance score and the overall PUL-lost dominance

score according to Eqs. (4.4.9) and (4.4.10) and thus got the accessory rank sets.
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Step 8: Obtain the final ranking of alternatives:

Integrate the accessory ranking sets by using Eq. (4.4.11) and obtain the final ranking

set. End.

Algorithm 2

Since, the first four steps are same as Steps 1-4 of Algorithm 1. Therefore, we go to Step 5
′
.

Step 5
′
: Maximize the values of cost attributes: Transform the values of cost attributes in

global opinion matrix according to Eq. (4.4.12).

Step 6
′
: Aggregate the attributes of alternatives: Based on Eq. (4.4.13) or (4.4.14) compute

the overall criteria values of each alternative. Then follow next step.

Step 7
′
: Obtain the ranking of alternatives: Get the ranking of alternatives according to

Eqs. (4.2.6) and (4.2.7) and pick the best alternative. End.

For the facilitation of understanding, the flowchart of the developed methods is presented

in Fig. 4.1.

4.5 A case study

This section presents a real world problem (adapted from [52]) concerning the selection of a

commodity for investment in Forex. The consensus-based PUL-GLDS method and consensus-

based PUL-aggregation method are utilized to handle this problem. In addition, some com-

parative analyses are made with the existing method to highlight the feasibility and efficiency

of the proposed methods.

Case description: The Flagship Investment Company (FIC) provides its service for dif-

ferent kinds of investment plans. An investor is interested in Forex trading and wants to

choose the best profitable commodity among gold, wheat, and oil denoted, as z1, z2 and z3
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Figure 4.1: Consensus-based PUL-GLDS and Consensus-based PUL-aggregation methods
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respectively. The profit of a commodity depends upon many factors; among them, four major

factors are:

c1 : Price stability(benefit), c2 : Market demand(benefit), c3 : Supply(benefit), c4 : Trading

cost(cost). Regard these factors cj(j = 1, 2, 3, 4) as four attributes and the weight information

is π1 = 0.3, π2 = 0.25, π3 = 0.2, π4 = 0.25. The investor requested the FIC to suggest

him/her the best commodity to invest in based on these attributes. The FIC formed a

committee of four economic experts (DMs) d1, d2, d3 and d4 with the same importance to

carry out the assessment on the basis of the LTS S =

{
£−3 = very poor,£−2 = poor,£−1 =

somewhat poor,£0 = medium,£1 = somewhat good,£2 = good,£3 = very good

}
. The four

DMs have evaluated various commodities based on four criteria. Their opinions are displayed

in based on the information in Table 4.1.
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4.5.1 Handling the case by PUL-GLDS based method

Below the proposed consensus-based PUL-GLDS method is used to solve the case study.

Step 1: The ordered and associated decision matrix derived from the provided data is depicted

in Table 4.2.
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Step 2: Since it is assumed that the four DMs have equal importance. Following this, we

aggregate the four individual opinion matrices into the overall opinion matrix by using Eq.

(4.1.1). Thus, the overall opinion matrix is built as:

Table 4.3: Overall Opinion matrix

c1 c2 c3 c4

z1
{〈[£−2,£−1], 0.2〉, 〈[£−1,£0], 0.2〉,

〈[£0,£1], 0.2〉, 〈[£1,£2], 0.4〉}

{〈[£0,£1], 0.25〉, 〈[£1,£2], 0.6〉,

〈[£2,£3], 0.15〉}
{〈[£−2,£−1], 0.25〉, 〈[£−1,£0], 0.75〉}

{〈[£−3,£−2], 0.25〉, 〈[£−1,£0], 0.35〉,

〈[£0,£1], 0.3〉, 〈[£1,£2], 0.1〉}

z2
{〈[£−1,£0], 0.25〉, 〈[£0,£1], 0.2〉,

〈[£1,£2], 0.55〉}

{〈[£−2,£−1], 0.25〉, 〈[£−1,£0], 0.25〉,

〈[£1,£2], 0.5〉}

{〈[£−2,£−1], 0.25〉, 〈[£−1,£0], 0.55〉,

〈[£0,£1], 0.2〉}
{〈[£1,£2], 0.5〉, 〈[£2,£3], 0.5〉}

z3
{〈[£−1,£0], 0.3〉, 〈[£0,£1], 0.45〉,

〈[£1,£2], 0.25〉}

{〈[£−1,£0], 0.1〉, 〈[£0,£1], 0.6〉,

〈[£1,£2], 0.3〉}

{〈[£−1,£0], 0.15〉, 〈[£0,£1], 0.6〉,

〈[£1,£2], 0.25〉}

{〈[£−3,£−2], 0.25〉, 〈[£−1,£0], 0.25〉,

〈[£0,£1], 0.4〉, 〈[£1,£2], 0.1〉}

Step 3: Adjust the opinion matrices Tables 4.1, 4.3 according to the adjusting rule of

probability studied in Section 4.1.2, and then choose the linguistic scale function given in Eq.

(2.1.2). Taking the correlation threshold θ = 0.4 and the consensus threshold σ = 0.6.

Based on Eqs. (4.3.6) and (4.4.1) the computed values of correlation coefficients and consensus

degrees of the DMs are depicted in Table 4.4.

Table 4.4: Correlation coefficient and consensus level of DMs

DMs
Correlation coefficient Consensus

level

d1 -0.0931 0.9776 0.9721 0.7402 0.6492

d2 0.2078 0.9844 0.9538 -0.4030 0.4357

d3 0.9479 0.9783 0.9547 -0.4136 0.6168

d4 0.9897 0.9264 0.1651 0.9998 0.7703

Step 4: From the shown results in Table 4.4, it is clear that the PUL-consensus level of

d2 is less than the consensus threshold, in addition, the correlation coefficient with respect
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to attributes c1 and c4 is also less than the correlation threshold. Therefore, based on Eq.

(4.4.2), repair the opinions of d2 with respect to attributes c1 and c4.

Table 4.5: Repair opinion matrix R
′
2 provided by d2

c1 c2 c3 c4

z1
{〈[£−1,£0], 0.2〉, 〈[£−0.5,£0.5], 0.2〉,

〈[£0.5,£1.5], 0.2〉, 〈[£1,£2], 0.4〉}
{〈[£1,£2], 0.9〉, 〈[£2,£3], 0.1〉} {〈[£−1,£0], 1〉}

{〈[£−1.5,£−0.5], 0.25〉, 〈[£−0.5,£0.5], 0.35〉,

〈[£0.5,£1.5], 0.3〉, 〈[£1,£2], 0.1〉}

z2
{〈[£−0.5,£0.5], 0.25〉, 〈[£0,£1], 0.15〉,

〈[£0.5,£1.5], 0.05〉, 〈[£1,£2], 0.55〉}
{〈[£−2,£−1], 1〉} {〈[£−2,£0], 1〉} {〈[£1.5,£2.5], 0.5〉, 〈[£2,£3], 0.5〉}

z3
{〈[£0,£1], 0.3〉, 〈[£0.5,£1.5], 0.45〉,

〈[£1,£2], 0.25〉}
{〈[£−1,£0], 0.4〉, 〈[£0,£1], 0.6〉} {〈[£0,£1], 0.8〉}

{〈[£−1.5,£−0.5], 0.25〉, 〈[£−0.5,£0.5], 0.25〉,

〈[£0,£1], 0.4〉, 〈[£0.5,£1.5], 0.1〉}

Step 5: By Eq. (4.1.1), the repair overall opinion matrix D is established as shown in

Table 4.6:

Table 4.6: Global opinion matrix

c1 c2 c3 c4

z1

{〈[£−2,£−1], 0.2〉, 〈[£−1,£0], 0.25〉,

〈[£−0.5,£0.5], 0.05〉, 〈[£0,£1], 0.1〉,

〈[£0.5,£1.5], 0.05〉, 〈[£1,£2], 0.35〉}

{〈[£0,£1], 0.25〉, 〈[£1,£2], 0.6〉,

〈[£2,£3], 0.15〉}
{〈[£−2,£−1], 0.25〉, 〈[£−1,£0], 0.75〉}

{〈[£−3,£−2], 0.25〉, 〈[£−1.5,£−0.5], 0.0625〉,

〈[£−1,£0], 0.35〉, 〈[£−0.5,£0.5], 0.0875〉,

〈[£0,£1], 0.15〉, 〈[£0.5,£1.5], 0.075〉,

〈[£1,£2], 0.025〉}

z2

{〈[£−1,£0], 0.25〉, 〈[£−0.5,£0.5], 0.0625〉,

〈[£0,£1], 0.1375〉, 〈[£0.5,£1.5], 0.0125〉,

〈[£1,£2], 0.5375〉}

{〈[£−2,£−1], 0.25〉, 〈[£−1,£0], 0.25〉,

〈[£1,£2], 0.5〉}

{〈[£−2,£−1], 0.25〉, 〈[£−1,£0], 0.55〉,

〈[£0,£1], 0.2〉}

{〈[£1,£2], 0.5〉, 〈[£1.5,£2.5], 0.125〉,

〈[£2,£3], 0.375〉}

z3
{〈[£−1,£0], 0.3〉, 〈[£0,£1], 0.525〉,

〈[£0.5,£1.5], 0.1125〉〈[£1,£2], 0.0625〉}

{〈[£−1,£0], 0.1〉, 〈[£0,£1], 0.6〉,

〈[£1,£2], 0.3〉}

{〈[£−1,£0], 0.15〉, 〈[£0,£1], 0.6〉,

〈[£1,£2], 0.25〉}

{〈[£−3,£−2], 0.0625〉, 〈[£−1.5,£−0.5], 0.0625〉,

〈[£−1,£0], 0.3375〉, 〈[£−0.5,£0.5], 0.0625〉,

〈[£0,£1], 0.325〉, 〈[£0.5,£1.5], 0.025〉,

〈[£1,£2], 0.125〉}

Derive the PUL-consensus level by using Eq. (4.4.1), one can determine that the group

assessments rise to the consensus threshold. Therefore, we stop the repairing process.

Step 6: Compute the normalized dominance flow according to Eqs. (4.4.3) and (4.4.4),

which are placed in Table 4.7.
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Table 4.7: Normalized Dominance flow

c1 c2 c3 c4

z1 → z2 0.0000 0.0367 0.0000 0.0000

z1 → z3 0.0018 0.0136 0.0000 0.0000

z2 → z1 0.0153 0.0000 0.0011 0.1850

z2 → z3 0.0056 0.0011 0.0000 0.1056

z3 → z1 0.0045 0.0000 0.0506 0.0109

z3 → z2 0.000001 0.0108 0.0367 0.0000

Now based on Eqs. (4.4.5) and (4.4.6), calculate the PUL-gained dominance score and

the PUL-lost dominance score, which are documented in Table 4.8 and 4.9, respectively.

Table 4.8: The PUL-gained dominance score of each alternative

Alternatives
Gained dominance score Net gained dominance

score
c1 c2 c3 c4

z1 0.2589 1.2365 0.0000 0.0000 0.3868

z2 1.2041 0.1335 0.1120 1.3754 0.7608

z3 0.4107 0.4342 1.4016 0.1908 0.5598
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Table 4.9: The PUL-lost dominance score of each alternative

Alternatives
Lost dominance score Net lost dominance

score
c1 c2 c3 c4

z1 0.2589 0.6804 0.0000 0.7492 0.1921

z2 0.2248 0.0333 0.0224 0.1958 0.0224

z3 0.1213 0.1085 0.1513 0.6556 0.1514

Step 7: Determine the normalized net gained dominance score and the normalized net

lost dominance score of each alternative in the light of Eqs. (4.4.9) and (4.4.10), respectively,

which are written below.

The normalized net gained dominance score: DSN1 (z1) = 0.3789, DSN1 (z2) = 0.7454, DSN1 (z3) =

0.5484.

The normalized net lost dominance score: DSN2 (z1) = 0.5784, DSN2 (z2) = 0.6766, DSN2 (z3) =

0.4557.

Step 8: By Eqs. (4.4.9), and (4.4.10), calculate the accessory rank sets of alternatives as:

r1(z1) = 0.3868, r1(z2) = 0.7608, r1(z3) = 0.5598 and r2(z1) = 0.1921, r2(z2) = 0.2248, r2(z3) =

0.1514.

Step 9: Lastly, on the basis of Eq. (4.4.11) we get the score of all alternatives as: OS1 =

−0.1389, OS2 = −0.0233, OS3 = 0.0221.

Thus z3 is at the top of the range.

4.5.2 Handling the case by PUL-aggregation based method

Now, we deal with the same problem by the consensus-based PUL-aggregation method intro-

duced in Section 4.4.3 to determine the optimal alternative. The decision-making steps are

presented as follows:
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Since the first four steps are similar to that of Algorithm 1. Therefore, we go to Step 5
′
.

Step 5
′
: Since the criteria c4 is cost type, on that account, transform the values along c4

according to Eq. (4.4.12). The obtained matrix is shown in Table 4.10.

Table 4.10: Transformed opinion matrix

c1 c2 c3 c4

z1

{〈[£−2,£−1], 0.2〉, 〈[£−1,£0], 0.25〉,

〈[£−0.5,£0.5], 0.05〉, 〈[£0,£1], 0.1〉,

〈[£0.5,£1.5], 0.05〉, 〈[£1,£2], 0.35〉}

{〈[£0,£1], 0.25〉, 〈[£1,£2], 0.6〉,

〈[£2,£3], 0.15〉}
{〈[£−2,£−1], 0.25〉, 〈[£−1,£0], 0.75〉}

{〈[£−2,£−1], 0.025〉, 〈[£−1.5,£−0.5], 0.075〉,

〈[£−1,£0], 0.15〉, 〈[£−0.5,£0.5], 0.0875〉,

〈[£0.5,£1.5], 0.0625〉, 〈[£0,£1], 0.35〉,

〈[£2,£3], 0.25〉}

z2

{〈[£−1,£0], 0.25〉, 〈[£−0.5,£0.5], 0.0625〉,

〈[£0,£1], 0.1375〉, 〈[£0.5,£1.5], 0.0125〉,

〈[£1,£2], 0.5375〉}

{〈[£−2,£−1], 0.25〉, 〈[£−1,£0], 0.25〉,

〈[£1,£2], 0.5〉}

{〈[£−2,£−1], 0.25〉, 〈[£−1,£0], 0.55〉,

〈[£0,£1], 0.2〉}

{〈[£−3,£−2], 0.375〉, 〈[£−2.5,£−1.5], 0.125〉,

〈[£−2,£−1], 0.5〉}

z3
{〈[£−1,£0], 0.3〉, 〈[£0,£1], 0.525〉,

〈[£0.5,£1.5], 0.1125〉〈[£1,£2], 0.0625〉}

{〈[£−1,£0], 0.1〉, 〈[£0,£1], 0.6〉,

〈[£1,£2], 0.3〉}

{〈[£−1,£0], 0.15〉, 〈[£0,£1], 0.6〉,

〈[£1,£2], 0.25〉}

{〈[£−2,£−1], 0.125〉, 〈[£−1.5,£−0.5], 0.025〉,

〈[£−1,£0], 0.325〉, 〈[£−0.5,£0.5], 0.0625〉,

〈[£0,£1], 0.3375〉, 〈[£0.5,£1.5], 0.0625〉,

〈[£2,£3], 0.0625〉}

Step 6
′
: Utilize the PULWA operator to aggregate individual decision opinions into a col-

lective one, as shown below. The calculation process of the PULWA operator can be found

as Eq. (4.4.13).

u1s(p) =
{
〈[£−1.5,£−0.4998], 0.025〉, 〈[£−1.3752,£−0.375], 0.075〉, 〈[£−1.2528,£−0.2502], 0.1〉,

〈[£−0.9498,£0.0498], 0.05〉, 〈[£−0.6252,£0.375], 0.0875〉, 〈[£−0.2502,£0.75], 0.1125〉,

〈[£−0.1002,£0.9], 0.05〉, 〈[£0.0498,£1.05], 0.1〉〈[£0.1998,£1.2], 0.05〉,

〈[£0.3498,£1.35], 0.0375〉, 〈[£0.4746,£1.4748], 0.0625〉, 〈[£0.8502,£1.8498], 0.1〉,

〈[£1.0998,£2.1], 0.15〉
}
,

u2s(p) =
{
〈[£−1.95,£−0.9504], 0.25〉, 〈[£−1.35,£−0.3498], 0.0625〉, 〈[£−1.6002,£−0.1998], 0.0625〉,

〈[£−1.0752,£−0.075], 0.075〉, 〈[£−0.9252,£0.075], 0.0125〉, 〈[£−0.7752,£0.225], 0.0375〉,

〈[£−0.15,£0.8496], 0.3〉, 〈[£0.0498,£1.05], 0.2〉
}
,
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u3s(p) =
{
〈[£−1.2498,£−0.2502], 0.1〉, 〈[£−1.0002,£0], 0.025〉, 〈[£−0.8748,£0.1248], 0.025〉,

〈[£−0.5502,£0.45], 0.15〉, 〈[£−0.2502,£0.75], 0.175〉, 〈[£−0.1254,£0.8748], 0.0625〉,

〈[£0,£1.002], 0.1625〉, 〈[£0.2502,£1.2498], 0.05〉, 〈[£0.45,£1.4502], 0.075〉,

〈[£0.6,£1.6002], 0.05〉, 〈[£0.7248,£1.725], 0.0625〉, 〈[£1.2498,£2.25], 0.0625〉
}
.

Step 7
′
: Calculate the score values F (zi)(i = 1, 2, 3) of the overall assessment values in

the light of Eq. (4.2.6). Hence, the following results are achieved:

F (z1) = 0.4473, F (z2) = 0.5456, F (z3) = 0.5667.

According to the derived score values F (zi)(i = 1, 2, 3), it is clear that commodity z3 is the

best alternative.

4.5.3 Comparative analysis and discussion

Next, to illustrate the strength of the proposed methods, the existing aggregation-based

method is utilized given by Lin et al. [32] to solve the considered problem. The following

steps of the Lin et al. [32] approach have been executed as follows:

Step 1
′′

: Firstly, normalize overall opinion matrix listed in Table 4.3 according to Definition

2.2.2.

Step 2
′′

: Since, the weight vector of attributes is given in advance, so there is no need to

compute it.

Step 3
′′

: Taking W = (0.3, 0.25, 0.2, 0.25) and use PULWA operator given in Eq. (5) of [32]

to get the fused value of each alternative zi.

u1s(p) = {〈[£−0.4075,£−0.1725]〉, 〈[£−0.1475,£0.3]〉, 〈[£0.06,£0.2475]〉, 〈[£0.145,£0.29]〉} ,

u2s(p) = {〈[£−0.25,£0.1375]〉, 〈[£0.0775,£0.435]〉, 〈[£0.29,£0.62]〉〉} ,

u3s(p) = {〈[£−0.3325,£−0.125]〉, 〈[£−0.0625,£0.405]〉, 〈[£0.2,£0.5]〉, 〈[£0.025,£0.05]〉} .

Step 4
′′
: By Definition 9 of Ref. [32], we get F (z1) = 0.69125, F (z2) = 0.655, F (z3) = 0.33.

Step 5
′′
: Since F (z1) > F (z2) > F (z3) and thus ranking order of their corresponding alterna-
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tives is z1 > z2 > z3.

Contrary to PULWA operator, if we utilize PULWG operator then the following steps are

executed as:

Step 1
′′′

: Similar to above Step 1
′′
.

Step 2
′′′

: Similar to above Step 2
′′
.

Step 3
′′′

: Utilize PULWG operator given in Eq. (7) of [32] to get the fused value of each

alternative zi.

u1s(p) = {〈[£−3.1488,£−2.0443]〉, 〈[£−2,£1.1096]〉, 〈[£2.0263,£4.042]〉, 〈[£3,£4.0104]〉} ,

u2s(p) = {〈[£−2.0795,£−0.9095]〉, 〈[£−0.9095,£2.1472]〉, 〈[£3,£4.2117]〉〉} ,

u3s(p) = {〈[£−4.071,£−1.0443]〉, 〈[£−1,£3]〉, 〈[£3,£4.1419]〉, 〈[£−2,£1.0175]〉} .

Step 4
′′′

: The score values by using Definition 9 of Ref. [32], are F (z1) = 3.5445, F (z2) =

2.1452, F (z3) = 1.0308.

Step 5
′′′

: Since F (z1) > F (z2) > F (z3) and thus ranking order of their corresponding

alternatives is z1 > z2 > z3.

From Table 4.11, it is evident that according to the proposed methods, z3 is the best

alternative and z1 is the worst one. However, the ranking results of [32] approach are quite

different. Here are the reasons for this:

i. Improved operations:

The main reason behind the variation in the sequence of alternatives is the redefined

operational laws and aggregation operators. The utilized aggregation operators in [32]
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Table 4.11: Results obtained by three methods

Methods Alternative
ranking

Consensus-based PUL-
GLDS method

z3 > z2 > z1

Consensus-based PUL-
aggregation method

z3 > z2 > z1

Aggregation-based method
(using PULWA operator)
[32]

z1 > z2 > z3

Aggregation-based method
(utilizing PULWG opera-
tor) [32]

z1 > z2 > z3

approach are based on such operations in which we need to add artificial terms in order

to equalize the length of the data. These added artificial terms render the evaluation

rough and one-sided.

ii. Consensus reaching approach:

The second major reason behind this difference is that the designed methods make

use of consensus reaching approach. Due to the limited ability of human thinking

and experiences, one expert may be familiar with some attributes but unfamiliar with

other attributes. It is rational to remove biased assessments of DM if the correlation

coefficient and consensus level are extremely low. Therefore, we repair the assessments

of DM under those attributes that have less consensus with other DMs. The results

displayed in Table 4.4 shows that the PUL-consensus level of d2 is less than consensus

threshold. Also, the correlation coefficient with respect to attributes c1 and c4 of d2 is

less than the correlation threshold. Therefore, we have improved the assessments of d2

regarding c1 and c4 as displayed in Table 4.5.
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iii. Attributes classification:

Tables 4.8 and 4.9 indicates that regarding different attributes (benefit and cost type),

normalization technique is conducted before integrating the dominance flow and overall

dominance score while the existing method [32] does not categorize the attributes into

benefit and cost type. Though criteria c4 is of cost type, but still it is treated as other

attributes which cause a strong effect on the final decision.

iv. “Group utility rates” and “ individual regret rates”:

In the PUL-GLDS method, we are provided with the overall PUL-gained dominance

score (group utility rate) of all alternative based on the weighted arithmetic operator.

The results derived by the consensus-based PUL-GLDS method listed in the Table

4.8 show that z1 performs badly under attributes c3 and c4. Therefore, its overall

score is less. Anyhow, we are with difficulty to choose an alternative which behaves

poorly with respect to some attributes although its net score is high. In that sense,

we should determine the poorest value of each alternative under all attributes by the

weighted maximum operator. The overall lost dominance score (individual regret rates)

displayed in Table 4.9, indicate that the overall score of z1 is high which indicates that

its performance is bad. Therefore, it’s kept at the bottom of the range. The existing

method claims that the utility value of z1 is higher than z2 and z3 which is contrary to

the results obtained by our methods. The reason may be that the existing method does

not take into account the “Group utility rates” and “individual regret rates”.

Some major advantages of the proposed methods over existing ones are outlined below:

• Unbalanced linguistic environment:

The unbalanced situation is a common case in this complex world and it is necessary

to handle this, but existing approaches with respect to PULTSs [32, 49] do not work

in an unbalanced scenario. On the other hand, the approaches proposed in this article

are capable of working under different semantics which is the major beauty of our
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work. The score function F (us(p)), deviation degree σ(us(p)) and distance measure

dgd (u1s(p), u
1
s(p)) used in the proposed approaches are based on linguistic scale function

g. According to different decision making environments, the DMs can select a different

linguistic scale function g described in Eqs. (2.2.3-2.1.6) on the basis of their preferences.

• Weights of DMs:

The weights of DMs are not considered in the methods proposed by [32, 49]. This

means if we assign different weights to the DMs the existing models will fail to solve the

MCGDM problems. From Tables 4.3 and 4.6 it is clear that the developed schemes give

importance to the weights of DMs, which shows the validity of the constructed work.

• Keep the originality of data:

The PUL-GLDS method and the PUL-aggregation method guarantee the completeness

of the original data while addressing the MCGDM problems. Unlike, the aggregation-

based methodology [32] the results shown in Tables 4.6 and 4.10 after operating the

uncertain linguistic terms reflect the probabilities of the uncertain linguistic terms.

Additionally, the PULWA and PULWG operators proposed by Lin et al. [32] multiply

the probabilities with the indices of the linguistic terms of the corresponding uncertain

linguistic terms which are unrealistic. The aggregated values obtained by these operators

are not PULEs. Whereas the values obtained in Step 6
′
by the improved operators after

aggregation are still PULEs.

Some limitations of the proposed methodologies are listed in a nutshell below:

• Arithmetic complexity:

Since the proposed methods are based on adjusted PULEs. It can be noticed from

Example 4.1.4, that after adjusting the probability distribution, the length of the PULEs

becomes large and then, it becomes cumbersome to handle these PULEs.

• Weight vector:
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The developed methods have a superiority of DMs weight determination, but on the

other hand, these methods cannot work under the circumstances where the weight infor-

mation of attributes is incompletely known, the weight information should be completely

known for the purpose of implementation.

• Complication:

Though the proposal is effective in reflecting hesitation and gains high attraction under

theoretic context, but contents are too lengthy and complicated, which causes puzzling

to understanding and thus practical sense of the proposal is tough for DMs to adopt.
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Chapter 5

Weighted interval-valued dual hesitant

fuzzy sets and its application in

teaching quality assessment

This chapter gives the generalized form of IVDHFS, namely WIVDHFS and its related math-

ematically study. Based on the Archimedean t-norm and t-conorm, some primary aggrega-

tion operators, their relevant properties, special cases relationships are explored in weighted

interval-valued dual hesitant fuzzy environment. In addition, an aggregation based method

with weighted interval-valued dual hesitant fuzzy information is framed. Later on, an example

of the teaching quality assessment is solved by the proposed and related approaches to show

the applicability and efficiency of the provided method. The research work of this chapter is

published in [53].

5.1 Weighted interval-valued dual hesitant fuzzy set

As we know, the membership grips with epistemic certainty while the non-membership grips

with epistemic uncertainty, and thus can reflect the original information given by DMs as much
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as possible, similar to IVHFSs, the uncertainty on the possible values should be considered.

Based on this idea, Ju et al. [19] defined the notion of IVDHFS in terms of two functions that

return two sets of membership and non-membership values, respectively, for each element in

the domain. In real decision-making problems, IVDHFS fails to describe the importance of

membership and non-membership degree of an element to a given set. To resolve this issue,

the concept, operational laws and comparison laws of WIVDHFS are put forward.

5.1.1 The concept of weighted interval-valued dual hesitant fuzzy

set

This section mainly concentrates on the introduction of a novel fuzzy set, namely WIVDHS.

Further, for better understanding of the proposed notion, a practical example regarding PhD

thesis evaluation is also provided in this part.

Definition 5.1.1. Let Z be a fixed set, a WIVDHFS on Z is described as

D = {〈z, hD(z), gD(z)〉 |z ∈ Z} , (5.1.1)

where hD(z) =
⋃

(γ,wγ)∈hD(z) {(γ,wγ)} and gD(z) =
⋃

(η,wη)∈ gD(z) {(η,wη)} in which γ =

[γl, γu] and η = [ηl, ηu] are two sets of some possible interval values in [0, 1], denoting the

possible membership and non-membership degrees of the element z ∈ Z to the set D, respec-

tively, wγ and wη are the corresponding weight for these two types of degrees.

Also there is [γl, γu], [ηl, ηu] ⊂ [0, 1], 0 ≤ γu+ + ηu+ ≤ 1 and wγ ∈ [0, 1], wη ∈

[0, 1],
∑#hD(z)

(γ,wγ)∈hD(z)wγ ≤ 1,
∑#gD(z)

(η,wη)∈ gD(z)wη ≤ 1, where γu+ =
⋃

[γl,γu]∈hD(z) max {γu},

ηu+ =
⋃

[ηl,ηu]∈gD(z) max {ηu}. The symbols #hD(z) and #gD(z) denote the crisp scalar car-

dinality of the components hD(z) and gD(z), respectively.

Remark 5.1.2. Especially, if all the weight values in membership part and non-membership

part become equal, then WIVDHFS reduces to IVDHFS and further, if intervals are single

valued, then D reduces to DHFS.
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For sake of simplicity, we call the pair d(z) = 〈hd(z), gd(z)〉 as the weighted interval-

valued dual hesitant fuzzy element (WIVDHFE), marked by d = 〈hd, gd〉 and D is the set of

all WIVDHFEs. To illustrate the WIVDHFS more straightforwardly, we describe a practical

example to depict the difference between the WIVDHFS and IVDHFS.

Example 5.1.3. Take the evaluation of PhD thesis as an example. Here, in Pakistan, the

review of PhD thesis is always taken by three experts. Due to the complexity of PhD thesis and

little time availability, it is cumbersome for an expert to provide exact evaluating values. The

first expert believes that the chance that the PhD thesis meets the requirement is [0.4, 0.5] and

that of it not being up to the standard is [0.3, 0.4]. The second one thinks that the possibility of

the PhD thesis meeting the requirement is [0.5, 0.6] while the contrary is [0.2, 0.3]. The third

expert regards the compliance to be [0.4, 0.5] and the non-compliance to be [0.2, 0.3]. In these

situations, the degree to which PhD thesis meets the requirements can be expressed as a WIVD-

HFE
〈{

([0.4, 0.5], 2
3
), ([0.5, 0.6], 1

3
)
}
,
{

([0.2, 0.3], 2
3
), ([0.3, 0.4], 1

3
)
}〉

. If we utilize IVHFE to

represent this evaluation, the result is 〈{[0.4, 0.5], [0.5, 0.6]} , {[0.2, 0.3], [0.3, 0.4]}〉. The IVD-

HFE fails to reflect the importance value/weight for the membership and non-membership

degrees to which the PhD thesis meets the requirement. Therefore, it is far better to represent

the situation by utilizing WIVDHFE than an IVDHFE.

Due to the complex nature of the world or limited knowledge about the scenarios, some

DMs cannot provide complete information. In such situation
∑#hd(z)

(γ,wγ)∈hd(z) wγ

< 1,
∑#gd(z)

(η,wη)∈ gd(z)
wη < 1. A feasible way to accomplish it is introduced below:

Definition 5.1.4. If a WIVDHFE d = 〈hd, gd〉 is given by
∑#hd

(γ,wγ)∈hd wγ < 1,
∑#gd

(η,wη)∈ gd
wη <

1. Then, its connected WIVDHFE d̂ is defined as d̂ = 〈hd̂, gd̂〉 =
〈⋃

(γ,ŵγ)∈hd̂
{(γ, ŵγ)} ,⋃

(η,ŵη)∈gd̂
{(η, ŵη)}

〉
; where ŵγ = wγ/

∑#hd
(γ,wγ)∈hd wγ, ŵη = wη/

∑#hd
(η,wη)∈hd wη.

Definition 5.1.4 is an effective mean to estimate the ignorance of weightage information.

However, the method may result in the loss of a certain amount of information. There may
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be more complicated ways to resolve this problem [33]. In the current paper, we do not talk

more about it, and some further researches on it will be done in our future work.

5.1.2 The comparison of WIVDHFEs

The comparison of WIVDHFEs is essential if we tend to apply this theory to decision making

problems. Hence, we define the score function and accuracy function of the WIVDHFE,

making it possible to rank WIVDHFEs.

Definition 5.1.5. Let d = 〈hd, gd〉 be WIVDHFE, then the score function is defined as follows:

S(d) =
1

2

 1

#hd

∑
[γl,γu]∈hd

(
γl + γu

)
· wγ −

1

#gd

∑
[ηl,ηu]∈gd

(
ηl + ηu

)
· wη

 , (5.1.2)

where #hd and #gd is the cardinality of hd and gd, respectively.

Definition 5.1.6. Let d = 〈hd, gd〉 be WIVDHFE, then the accuracy function of d is given

by formula

A(d) =
1

2

 1

#hd

∑
[γl,γu]∈hd

(
γl + γu

)
· wγ +

1

#gd

∑
[ηl,ηu]∈gd

(
ηl + ηu

)
· wη

 , (5.1.3)

where #hd and #gd is the cardinality of hd and gd, respectively.

Based on the score function and the accuracy function of WIVDHFE, we define the fol-

lowing method for comparing two PDHFEs.

Definition 5.1.7. Let dl(l = 1, 2) be two WIVDHFEs, S(dl)(l = 1, 2) and A(dl)(l = 1, 2) are

the score function and accuracy function, respectively. Then

i. If S(d1) > S(d2), then d1 > d2; on the contrary, there is d1 < d2.

ii. If S(d1) = S(d2), then

112



(a) If A(d1) > A(d2), then d1 > d2;

(b) If A(d1) < A(d2), then d1 < d2;

(c) If A(d1) = A(d2), then d1 = d2.

5.1.3 The basic operations of WIVDHFEs

Based on the Archimedean t-norm and Archimedean t-conorm, we propose some basic oper-

ation rules of WIVDHFEs and explore their characteristics in preparation for applications to

the practical problems.

Definition 5.1.8. The complement of a given WIVDHFE d = 〈hd, gd〉 =
⋃
γ∈hd,η∈gd

〈{(γ,wγ)} ,

{(η,wη)}〉 is defined as follows:

dc =



⋃
γ∈hd,η∈gd

〈{(η,wη)} , {(γ,wγ)}〉 , if hd 6= ∅ and gd 6= ∅⋃
γ∈hd

〈{
([1− γl, 1− γu],wγ)

}
,∅
〉
, if hd 6= ∅ and gd = ∅⋃

η∈gd

〈
∅,
{

([1− ηl, 1− ηu],wη)
}〉
, if hd = ∅ and gd 6= ∅.

(5.1.4)

Definition 5.1.9. Let Z be a fixed set, d = 〈hd, gd〉 and d1 = 〈hd1 , gd1〉 be two WIVDHFEs,

then:

i. d⊕ d1 =
⋃
γd∈hd,ηd∈gd,γd1∈hd1 ,ηd1∈gd1

〈 {(
S
(
[γld, γ

u
d ], [γld1, γ

u
d 1]
)
,wγdwγd1

)}
,{(

T
(
[ηld, η

u
d ], [ηld1, η

u
d 1]
)
,wηdwηd1

)}
〉

=

〈 ⋃
γd∈hd,γd1∈hd1

{([
f−1

(
f
(
γld
)

+ f
(
γld1
))
, f−1 (f (γud ) + f (γud 1))

]
,wγdwγd1

)}
,⋃

ηd∈gd,ηd1∈gd1

{([
g−1

(
g
(
ηld
)

+ g
(
ηld1
))
, g−1 (g (ηud ) + g (ηud 1))

]
,wηdwηd1

)}
〉

;

ii. d⊗ d1 =
⋃
γd∈hd,ηd∈gd,γd1∈hd1 ,ηd1∈gd1

〈 {(
T
(
[γld, γ

u
d ], [γld1, γ

u
d 1]
)
,wγdwγd1

)}
,{(

S
(
[ηld, η

u
d ], [ηld1, η

u
d 1]
)
,wηdwηd1

)}
〉
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=

〈 ⋃
γd∈hd,γd1∈hd1

{([
g−1

(
g
(
γld
)

+ g
(
γld1
))
, g−1 (g (γud ) + g (γud 1))

]
,wγdwγd1

)}
,⋃

ηd∈gd,ηd1∈gd1

{([
f−1

(
f
(
ηld
)

+ f
(
ηld1
))
, f−1 (f (ηud ) + f (ηud 1))

]
,wηdwηd1

)}
〉

;

iii. αd =
⋃
γd∈hd,ηd∈gd

〈 {([
f−1

(
αf
(
γld
))
, f−1 (αf (γud ))

]
,wγd

)}
,{([

g−1
(
αg
(
ηld
))
, g−1 (αg (ηud ))

]
,wηd

)}
〉

=

〈 ⋃
γd∈hd

{([
f−1

(
αf
(
γld
))
, f−1 (αf (γud ))

]
,wγd

)}
,⋃

ηd∈gd

{([
g−1

(
αg
(
ηld
))
, g−1 (αg (ηud ))

]
,wγd

)}
〉

;

iv. dα =
⋃
γd∈hd,ηd∈gd

〈 {([
g−1

(
αg
(
γld
))
, g−1 (αg (γud ))

]
,wγd

)}
,{([

f−1
(
αf
(
ηld
))
, f−1 (αf (ηud ))

]
,wηd

)}
〉

=

〈 ⋃
γd∈hd

{([
g−1

(
αg
(
γld
))
, g−1 (αg (γud ))

]
,wγd

)}
,⋃

ηd∈gd

{([
f−1

(
αf
(
ηld
))
, f−1 (αf (ηud ))

]
,wηd

)}
〉
.

Theorem 5.1.10. Let d, d1 and d2 be three WIVDHFEs, and α, α1 ≥ 0; then:

i. d⊕ d1 = d1 ⊕ d;

ii. d⊕ (d1 ⊕ d2) = (d⊕ d1)⊕ d2;

iii. α (d⊕ d1) = αd⊕ αd1;

iv. αd⊕ α1d = (α + α1) d;

v. d⊗ d1 = d1 ⊗ d;

vi. d⊗ (d1 ⊗ d2) = (d⊗ d1)⊗ d2;

vii. (d⊗ d1)α = dα ⊗ dα1 ;

viii. dα ⊗ dα1 = dα+α1.
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5.2 Development of generalized weighted interval-valued

dual hesitant fuzzy information operators

When we apply the WIVDHFSs to decision making, a significant problem is how to fuse or

analyze the information provided by the experts or the DMs. The information aggregation

operators will be the solution to this problem. In what follows, the GWIVDHFWA operator

and the GWIVDHFWG operator are studied, and then the related properties are established.

5.2.1 The GWIVDHFWA operator

In this part, we give the definition of GWIVDHFWA operator and its relevant properties

along with proof.

Definition 5.2.1. Let dj =
〈
hdj, gdj

〉
(j = 1, 2, 3, ..., n) be a collection of WIVDHFEs, and

let ω = (ω1, ω2, ..., ωn) with ωj ∈ [0, 1] and
∑n

j=1 ωj = 1. Then, the GWIVDHFWA operator

is a mapping Dn −→ D, such that

GWIV DHFWA(d1, d2, ..., dn) = ⊕nj=1 (ωjdj) . (5.2.1)

Theorem 5.2.2. Let dj =
〈
hdj, gdj

〉
(j = 1, 2, 3, ..., n) be a collection of WIVDHFEs. Then,

the aggregated value by using GWIVDHFWA operator is also a WIVDHFE, and

GWIV DHFWA(d1, d2, ..., dn) =⊕nj=1 (ωjdj) =

〈 ⋃
(γj ,ωj)∈hdj
(j=1,2,...,n)

{([
f−1

(
n∑
j=1

ωjf(γlj)

)
, f−1

(
n∑
j=1

ωjf(γuj )

)]
,

n∏
j=1

wγdj

}
,

⋃
(ηj ,ωj)∈gdj
(j=1,2,...,n)

{([
g−1

(
n∑
j=1

ωjg(ηlj)

)
, g−1

(
n∑
j=1

ωjg(ηuj )

)]
,

n∏
j=1

wηdj

}〉
.

Proof. Using mathematical induction on n:
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For n = 2, we have

GWIV HFWA(d1, d2) = ω1d1 ⊕ ω2d2

=

〈 ⋃
(γ1,ω1)∈hd1

{([
f−1

(
ω1f

(
γl1
))
, f−1 (ω1f (γu1 ))

]
, p2

)}
,

⋃
(η1,ω1)∈gd1

{([
g−1

(
ω1g

(
ηl1
))
, g−1 (ω1g (ηu1 ))

]
, q2
)}〉

⊕

〈 ⋃
(γ2,ω2)∈hd2

{([
f−1

(
ω2f

(
γl2
))
, f−1 (ω2f (γu2 ))

]
, p2

)}
,

⋃
(η2,ω2)∈gd2

{([
g−1

(
ω2g

(
ηl2
))
, g−1 (ω2g (ηu2 ))

]
, q2
)}〉

=

〈 ⋃
(γ1,ω1)∈hd1,
(γ2,ω2)∈hd2

{([
f−1

(
f
(
f−1

(
ω1f

(
γl1
)))

+ f
(
f−1

(
ω2f

(
γl2
))))

,

f−1
(
f
(
f−1 (ω1f (γu1 ))

)
+ f

(
f−1 (ω2f (γu2 ))

))]
, p2

)}
,⋃

(η1,ω1)∈gd1,
(η2,ω2)∈gd2

{([
g−1

(
g
(
g−1

(
ω1g

(
ηl1
)))

+ g
(
g−1

(
ω2g

(
ηl2
))))

,

g−1
(
g
(
g−1 (ω1g (ηu1 ))

)
+ g

(
g−1 (ω2g (ηu2 ))

))]
, q2
)}〉

=

〈 ⋃
(γ1,ω1)∈hd1,
(γ2,ω2)∈hd2

{([
f−1

(
ω1f

(
γl1
)

+ ω2f
(
γl2
))
, f−1 (ω1f (γu1 ) + ω2f (γu2 ))

]
, p2)} ,

⋃
(η1,ω1)∈gd1,
(η2,ω2)∈gd2

{([
g−1

(
ω1g

(
ηl1
)

+ ω2g
(
ηl2
))
, g−1 (ω1g (ηu1 ) +

ω2g (ηu2 ))] , q2)}

〉

where p2 =
∏2

j=1wγdj
and q2 =

∏2
j=1 wηdj

. Suppose the above equality holds for n = t, that
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is

GWIV DHFWA(d1, d2, ..., dt) =⊕tj=1 (ωjdj)

=

〈 ⋃
(γj ,ωj)∈hdj
(j=1,2,...,n)

{([
f−1

(
t∑

j=1

ωjf(γlj)

)
, f−1

(
t∑

j=1

ωjf(γuj )

)]
, pt

)}
,

⋃
(ηj ,ωj)∈gdj
(j=1,2,...,n)

{([
g−1

(
t∑

j=1

ωjg(ηlj)

)
, g−1

(
t∑

j=1

ωjg(ηuj )

)]
, qt

)}〉

where pt =
∏t

j=1wγdj
and qt =

∏t
j=1wηdj

. Then, when n = t+ 1, we have
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GWIV DHFWA(d1, d2, ..., dt+1) =⊕t+1
j=1 (ωjdj) = ⊕tj=1 (ωjdj)⊕ (ωt+1dt+1)

=

〈 ⋃
(γj ,ωj)∈hdj
(j=1,2,...,t)

{([
f−1

(
t∑

j=1

ωjf(γlj)

)
, f−1

(
t∑

j=1

ωjf(γuj )

)]
, pt+1

)}
,

⋃
(ηj ,ωj)∈hdj
(j=1,2,...,n)

{([
g−1

(
t∑

j=1

ωjg(ηlj)

)
, g−1

(
t∑

j=1

ωjg(ηuj )

)]
, qt+1

)}〉
⊕

〈 ⋃
(γt+1,ωt+1)∈hdt+1

{([
f−1

(
ωt+1f(γlt+1)

)
, f−1

(
ωt+1f(γut+1)

)]
, pt+1

)}
,

⋃
(ηt+1,ωt+1)∈gdt+1

{([
g−1

(
ωt+1g(ηlt+1)

)
, g−1

(
ωt+1g(ηut+1)

)]
, qt+1

)}〉

=

〈 ⋃
(γj ,ωj)∈hdj ,

(γt+1,ωt+1)∈hdt+1

{([
f−1

(
t∑

j=1

f
(
f−1

(
ωjf

(
γlj
)))

+ f
(
f−1

(
ωt+1f

(
γlt+1

))) )
,

f−1

(
t∑

j=1

f
(
f−1

(
ωjf

(
γuj
)))

+ f
(
f−1

(
ωt+1f

(
γut+1

))))]
, pt+1

)}
,

⋃
(ηj ,ωj)∈gdj ,

(ηt+1,ωt+1)∈gdt+1

{([
g−1

(
t∑

j=1

g
(
g−1

(
ωjg

(
ηlj
)))

+ g
(
g−1

(
ωt+1g

(
ηlt+1

))) )
,

g−1

(
t∑

j=1

g
(
g−1

(
ωjg

(
ηuj
)))

+ g
(
g−1

(
ωt+1g

(
ηut+1

))))]
, qt+1

)}〉

=

〈 ⋃
(γj ,ωj)∈hdj

(j=1,2,...,t+1)

{([
f−1

(
t+1∑
j=1

ωjf
(
γlj
))

, f−1

(
t+1∑
j=1

ωjf
(
γuj
))]

, pt+1

)}
,

⋃
(ηj ,ωj)∈hdj

(j=1,2,...,t+1)

{([
g−1

(
t+1∑
j=1

ωjg
(
ηlj
))

, g−1

(
t+1∑
j=1

ωjg
(
ηuj
))]

, qt+1

)}〉

where pt+1 =
∏t+1

j=1wγdj
and qt+1 =

∏t+1
j=1wηdj

.

5.2.2 The GWIVDHFWG operator

Here, we give the definition of GWIVDHFWG operator and its relevant properties along with

detail proof.
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Definition 5.2.3. Let dj =
〈
hdj, gdj

〉
(j = 1, 2, 3, ..., n) be a collection of WIVDHFEs, and

let ω = (ω1, ω2, ..., ωn) with ωj ∈ [0, 1] and
∑n

j=1 ωj = 1. Then, the GWIVDHFWG operator

is a mapping Dn −→ D, such that

GWIV DHFWG(d1, d2, ..., dn) = ⊗nj=1 (ωjdj) . (5.2.2)

Theorem 5.2.4. Let dj =
〈
hdj, gdj

〉
(j = 1, 2, 3, ..., n) be a collection of WIVDHFEs. Then,

the aggregated value by using GWIVDHFWG operator is also a WIVDHFE, and

GWIV DHFWG(d1, d2, ..., dn) =⊗nj=1 (ωjdj) =

〈 ⋃
(γj ,ωj)∈hdj
(j=1,2,...,n)

{([
g−1

(
n∑
j=1

ωjg(γlj)

)
, g−1

(
n∑
j=1

ωjg(γuj )

)]
,

n∏
j=1

wγdj

}
,

⋃
(ηj ,ωj)∈hdj
(j=1,2,...,n)

{([
f−1

(
n∑
j=1

ωjg(ηlj)

)
, f−1

(
n∑
j=1

ωjf(ηuj )

)]
,

n∏
j=1

wηdj

}〉
.

Proof. Based on the lines of Theorem 5.2.2, one can easily prove Theorem 5.2.4.

5.2.3 The properties of the WIVDHFWA operator and the WIVD-

HFWG operator

The proposed aggregation operators enjoy some interesting properties including idempotency,

monotonicity, boundedness and symmetry which are presented below:

Property 1: Idempotency

Let dj =
〈
hdj, gdj

〉
(j = 1, 2, 3, ..., n) be a collection of WIVDHFEs. If all dj are equal, i.e.,

dj = d ∀ j, then:

GWIV DHFWA (d1, d2, ..., dn) = d, (5.2.3)

GWIV DHFWG (d1, d2, ..., dn) = d, (5.2.4)
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where ω = (ω1, ω2, ..., ωn) is the weight vector of dj, with ωj ∈ [0, 1] and
∑n

j=1 ωj = 1.

Proof. It is given that dj = d ∀ j, therefore

GWIV DHFWA (d1, d2, ..., dn) =GWIV DHFWA (d, d, ..., d)

=

〈 ⋃
(γj ,ωj)∈hdj
(j=1,2,...,n)

{([
f−1

(
n∑
j=1

ωjf(γl)

)
, f−1

(
n∑
j=1

ωjf(γu)

)]
, pn

)}
,

⋃
(ηj ,ωj)∈hdj
(j=1,2,...,n)

{([
g−1

(
n∑
j=1

ωjg(ηl)

)
, g−1

(
n∑
j=1

ωjg(ηu)

)]
, qn

)}〉

=

〈 ⋃
(γj ,ωj)∈hdj
(j=1,2,...,n)

{([
f−1

(
f(γl)

n∑
j=1

ωj

)
, f−1

(
f(γu)

n∑
j=1

ωj

)]
, pn

)}
,

⋃
(ηj ,ωj)∈hdj
(j=1,2,...,n)

{([
g−1

(
g(ηl)

n∑
j=1

ωj

)
, g−1

(
g(ηu)

n∑
j=1

ωj

)]
, qn

)}〉

=

〈 ⋃
(γj ,ωj)∈hdj
(j=1,2,...,n)

{([
γl, γu

]
, pn
)}
,

⋃
(ηj ,ωj)∈hdj
(j=1,2,...,n)

{([
ηl, ηu

]
, qn
)}〉

=d

where pn =
∏n

j=1wγdj
and qn =

∏n
j=1wηdj

. Hence the proof.

Property 2: Monotonicity

Let

dj =

〈 ⋃
(γj ,ωj)∈hdj
(j=1,2,...,n)

{([
f−1

(
n∑
j=1

ωjf(γlj)

)
, f−1

(
n∑
j=1

ωjf(γuj )

)]
,wγdj

)}
,

⋃
(ηj ,ωj)∈hdj
(j=1,2,...,n)

{([
g−1

(
n∑
j=1

ωjg(ηlj)

)
, g−1

(
n∑
j=1

ωjg(ηuj )

)]
,wηdj

)}〉
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and

d∗j =

〈 ⋃
(γ∗j ,ω

∗
j )∈h

∗
dj

(j=1,2,...,n)

{([
f−1

(
n∑
j=1

ω∗j f(γ∗lj )

)
, f−1

(
n∑
j=1

ω∗j f(γ∗uj )

)]
,wγ∗dj

)}
,

⋃
(η∗j ,ω

∗
j )∈g∗dj

(j=1,2,...,n)

{([
g−1

(
n∑
j=1

ω∗j g(η∗lj )

)
, g−1

(
n∑
j=1

ω∗j g(η∗uj )

)]
,wη∗dj

)}〉

;j = 1, 2, ..., n be two collections of WIVDHFEs. If γlj ≤ γ∗lj , γuj ≤ γ∗uj , ηlj ≥ η∗lj , ηuj ≥ η∗uj ,

wγdj
≤ wγ∗dj

, wηdj
≥ wη∗dj

∀ j = 1, 2, ..., n. Then:

GWIV DHFWA (d1, d2, ..., dn) ≤ GWIV DHFWA (d∗1, d
∗
2, ..., d

∗
n) , (5.2.5)

GWIV DHFWG (d1, d2, ..., dn) ≤ GWIV DHFWG (d∗1, d
∗
2, ..., d

∗
n) , (5.2.6)

where ω = (ω1, ω2, ..., ωn) is the weight vector of dj, with ωj ∈ [0, 1] and
∑n

j=1 ωj = 1.

Proof. As given that, γlj ≤ γ∗lj and γuj ≤ γ∗uj ∀ j = 1, 2, ..., n. Since, f is monotonic increasing

function. Therefore,

f
(
γlj
)
≤ f

(
γ∗lj
)

and f
(
γuj
)
≤ f

(
γ∗uj
)

⇒ f−1

(
n∑
j=1

ωjf(γlj)

)
≤ f−1

(
n∑
j=1

ωjf(γ∗lj )

)
and f−1

(
n∑
j=1

ωjf(γuj )

)
≤ f−1

(
n∑
j=1

ωjf(γ∗uj )

)

⇒

[
f−1

(
n∑
j=1

ωjf(γlj)

)
, f−1

(
n∑
j=1

ωjf(γuj )

)]
≤

[
f−1

(
n∑
j=1

ω∗j f(γ∗lj )

)
, f−1

(
n∑
j=1

ω∗j f(γ∗uj )

)]
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⇒
⋃

(γj ,ωj)∈hdj
(j=1,2,...,n)

{[
f−1

(
n∑
j=1

ωjf(γlj)

)
, f−1

(
n∑
j=1

ωjf(γuj )

)]}
≤

⋃
(γ∗j ,ω

∗
j )∈h

∗
dj

(j=1,2,...,n)

{[
f−1

(
n∑
j=1

ω∗j f(γ∗lj )

)
, f−1

(
n∑
j=1

ω∗j f(γ∗uj )

)]}
.

(5.2.7)

Hence, we obtain the result for membership part.

Also, we have ηlj ≥ η∗lj and ηuj ≥ η∗uj ∀ j = 1, 2, ..., n.

Since, g is monotonic decreasing function. Therefore,

g
(
ηlj
)
≤ g

(
η∗lj
)

and g
(
ηuj
)
≤ g

(
η∗uj
)

⇒ g−1

(
n∑
j=1

ωjg(ηlj)

)
≤ g−1

(
n∑
j=1

ωjg(η∗lj )

)
and g−1

(
n∑
j=1

ωjg(ηuj )

)
≤ g−1

(
n∑
j=1

ωjg(η∗uj )

)

⇒

[
g−1

(
n∑
j=1

ωjg(ηlj)

)
, g−1

(
n∑
j=1

ωjg(ηuj )

)]
≤

[
g−1

(
n∑
j=1

ω∗j g(η∗lj )

)
, g−1

(
n∑
j=1

ω∗j g(γ∗uj )

)]

⇒
⋃

(ηj ,ωj)∈hdj
(j=1,2,...,n)

{[
g−1

(
n∑
j=1

ωjg(ηlj)

)
, g−1

(
n∑
j=1

ωjg(ηuj )

)]}
≤

⋃
(η∗j ,ω

∗
j )∈g∗dj

(j=1,2,...,n)

{[
g−1

(
n∑
j=1

ω∗j g(η∗lj )

)
, g−1

(
n∑
j=1

ω∗j f(η∗uj )

)]}
.

(5.2.8)

Hence, the required result for non-membership part is worked out.

Now, for importance degrees, since wγdj
≤ wγ∗dj

and wηdj
≥ wη∗dj

∀ j = 1, 2, ..., n, which

implies that
∏n

j=1wγdj
≤
∏n

j=1wγ∗dj
and

∏n
j=1wηdj

≥
∏n

j=1wη∗dj
.

Now, according to the score function as defined in Definition 5.1.5, we ca write from Eq.

(5.2.7) and Eq. (5.2.8),
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〈 ⋃
(γj ,ωj)∈hdj
(j=1,2,...,n)

{([
f−1

(
n∑
j=1

ωjf(γlj)

)
, f−1

(
n∑
j=1

ωjf(γuj )

)]
,
n∏
j=1

wγdj

)}
,

⋃
(ηj ,ωj)∈hdj
(j=1,2,...,n)

{([
g−1

(
n∑
j=1

ωjg(ηlj)

)
, g−1

(
n∑
j=1

ωjg(ηuj )

)]
,
n∏
j=1

wηdj

)}〉

≤

〈 ⋃
(γ∗j ,ω

∗
j )∈h

∗
dj

(j=1,2,...,n)

{([
f−1

(
n∑
j=1

ω∗j f(γ∗lj )

)
, f−1

(
n∑
j=1

ω∗j f(γ∗uj )

)]
,
n∏
j=1

wγ∗dj

)}
,

⋃
(η∗j ,ω

∗
j )∈g∗dj

(j=1,2,...,n)

{([
g−1

(
n∑
j=1

ω∗j g(η∗lj )

)
, g−1

(
n∑
j=1

ω∗j g(η∗uj )

)]
,
n∏
j=1

wη∗dj

)}〉

⇒ GWIV DHFWA (d1, d2, ..., dn) ≤ GWIV DHFWA (d∗1, d
∗
2, ..., d

∗
n) .

Property 3: Boundedness

If dj =
⋃

γj∈hdj ,ηj∈gdj
(j=1,2,...,n)

〈{
(γj,wγj)

}
,
{

(ηj,wηj)
}〉

, j = 1, 2, ..., n, be a set of WIVDHFEs, then

d− ≤ GWIV DHFWA (d1, d2, ..., dn) ≤ d+, (5.2.9)

d− ≤ GWIV DHFWG (d1, d2, ..., dn) ≤ d+, (5.2.10)
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where d− =
〈
h−d , g

+
d

〉
=

〈 ⋃
(γj ,ωj)∈hdj
(j=1,2,...,n)

{([
γl
−
, γu−

]
,wγ

−
j

)}
,

⋃
(ηj ,ωj)∈hdj
(j=1,2,...,n)

{([
ηl

+
, ηu+

]
,wη

+
j

)}〉
=

⋃
(γj l,γju)∈hdj
(j=1,2,...,n)

〈{
(
[
min γj

l,min γj
u
]
,minwγj)

}
,

⋃
(ηj ,ωj)∈gdj
(j=1,2,...,n)

{
(
[
max ηj

l,max ηj
u
]
,maxwηj)

}〉
,

d+ =
〈
h+
d , g

−
d

〉
=

〈 ⋃
(γj ,ωj)∈hdj
(j=1,2,...,n)

{([
γl

+
, γu+

]
,wγ

+
j

)}
,

⋃
(ηj ,ωj)∈hdj
(j=1,2,...,n)

{([
ηl
−
, ηu−

]
,wη

−
j

)}〉
=

⋃
(γj l,γju)∈hdj ,(ηj l,ηju)∈gdj

(j=1,2,3,...,n)

〈{
(
[
max γj

l,max γj
u
]
,maxwγj)

}
,
{

(
[
min ηj

l,min ηj
u
]
,minwηj)

}〉

and ω = (ω1, ω2, ..., ωn) is the weight vector of dj, with ωj ∈ [0, 1] and
∑n

j=1 ωj = 1.

Proof. Since for all j = 1, 2, ..., n, γl
− ≤ γj

l ≤ γl
+

, γu− ≤ γj
u ≤ γu+

therefore,

f
(
γl
−
)
≤ f

(
γj
l
)
≤ f

(
γl

+
)
, f
(
γu−

)
≤ f (γj

u) ≤ f
(
γu+

)
⇒ f−1

(
n∑
j=1

ωjf
(
γl
−
))
≤ f−1

(
n∑
j=1

ωjf
(
γj
l
))
≤ f−1

(
n∑
j=1

ωjf
(
γl

+
))

, f−1

(
n∑
j=1

ωjf
(
γu−

))
≤ f−1

(
n∑
j=1

ωjf (γj
u)

)
≤ f−1

(
n∑
j=1

ωjf
(
γu+

))

⇒
n∑
j=1

ωjf
−1
(
f
(
γl
−
))
≤ f−1

(
n∑
j=1

ωjf
(
γj
l
))
≤

n∑
j=1

ωjf
−1
(
f
(
γl

+
))

,

n∑
j=1

ωjf
−1 (f (γu−)) ≤ f−1

(
n∑
j=1

ωjf (γj
u)

)
≤

n∑
j=1

ωjf
−1 (f (γu+))

⇒ γl
− ≤ f−1

(
n∑
j=1

ωjf
(
γj
l
))
≤ γl

+
, γu− ≤ f−1

(
n∑
j=1

ωjf (γj
u)

)
≤ γu+
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⇒
[
γl
−
, γu−

]
≤

[
f−1

(
n∑
j=1

ωjf
(
γj
l
))

, f−1

(
n∑
j=1

ωjf (γj
u)

)]
≤
[
γl

+
, γu+

]

⇒
⋃

(γj ,ωj)∈hdj
(j=1,2,...,n)

{[
γl
−
, γu−

]}
≤

⋃
(γj ,ωj)∈hdj
(j=1,2,...,n)

{[
f−1

(
n∑
j=1

ωjf
(
γj
l
))

, f−1

(
n∑
j=1

ωjf (γj
u)

)]}
≤

⋃
(γj ,ωj)∈hdj
(j=1,2,...,n)

{[
γl

+
, γu+

]}
.

(5.2.11)

Hence, we get the result for membership part.

Since, for all j = 1, 2, ..., n, ηl
− ≤ ηj

l ≤ ηl
+

, ηu− ≤ ηj
u ≤ ηu+.

Therefore,

g
(
ηl

+
)
≤ g

(
ηj
l
)
≤ g

(
ηl
−
)
, g
(
ηu+
)
≤ g (ηj

u) ≤ g
(
ηu−
)

⇒ g−1

(
n∑
j=1

ωjg
(
ηl

+
))
≤ g−1

(
n∑
j=1

ωjg
(
ηj
l
))
≤ g−1

(
n∑
j=1

ωjg
(
ηl

+
))

, g−1

(
n∑
j=1

ωjg
(
ηu−
))
≤ g−1

(
n∑
j=1

ωjg (ηj
u)

)
≤ g−1

(
n∑
j=1

ωjf
(
ηu−
))

⇒
n∑
j=1

ωjg
−1
(
g
(
ηl

+
))
≤ g−1

(
n∑
j=1

ωjg
(
ηj
l
))
≤

n∑
j=1

ωjg
−1
(
g
(
ηl
−
))

,
n∑
j=1

ωjg
−1 (g (ηu−)) ≤ g−1

(
n∑
j=1

ωjg (ηj
u)

)
≤

n∑
j=1

ωjg
−1 (g (ηu−))

⇒ ηl
+ ≤ g−1

(
n∑
j=1

ωjg
(
ηj
l
))
≤ ηl

−
, ηu+ ≤ g−1

(
n∑
j=1

ωjg (ηj
u)

)
≤ ηu−
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⇒
[
ηl

+
, ηu+

]
≤

[
g−1

(
n∑
j=1

ωjg
(
γj
l
))

, g−1

(
n∑
j=1

ωjg (γj
u)

)]
≤
[
ηl
−
, ηu−

]

⇒
⋃

(ηj ,ωj)∈hdj
(j=1,2,...,n)

{[
ηl

+
, ηu+

]}
≤

⋃
(ηj ,ωj)∈hdj
(j=1,2,...,n)

{[
g−1

(
n∑
j=1

ωjg
(
ηj
l
))

, g−1

(
n∑
j=1

ωjg (ηj
u)

)]}
≤

⋃
(ηj ,ωj)∈hdj
(j=1,2,...,n)

{[
ηl
−
, ηu−

]}
.

(5.2.12)

Hence, the required result for non-membership part is attained.

Next, for importance degrees, since minwγdj
≤ wγdj

≤ maxwγdj
and minwηdj

≤ wηdj
≤

maxwηdj
which implies that

∏n
j=1 minwγdj

≤
∏n

j=1wγdj
≤
∏n

j=1 maxwγdj
.

According to score function as defined in Definition 5.1.5 we can write up from Eqs. (5.2.9)

and (5.2.10),

〈([
γl
−
, γu−

]
,
n∏
j=1

minwγdj

)
,

([
ηl

+
, ηu+

]
,
n∏
j=1

maxwγdj

)〉
≤

〈([
f−1

(
n∑
j=1

ωjf
(
γj
l
))

, f−1

(
n∑
j=1

ωjf (γj
u)

)]
,wγdj

)
,

([
g−1

(
n∑
j=1

ωjg
(
ηj
l
))

, g−1

(
n∑
j=1

ωjg (ηj
u)

)]
,wηdj

)〉

≤

〈([
γl

+
, γu+

]
,
n∏
j=1

maxwγdj

)
,

([
ηl
−
, ηu−

]
,
n∏
j=1

minwγdj

)〉

≤

〈 ⋃
(γj ,ωj)∈hdj ,(ηj ,ωj)∈gdj

(j=1,2,...,n)

{([
f−1

(
t∑

j=1

ωjf(γlj)

)
, f−1

(
t∑

j=1

ωjf(γuj )

)]
,wγj

)}
,

{([
g−1

(
t∑

j=1

ωjg(ηlj)

)
, g−1

(
t∑

j=1

ωjg(ηuj )

)]
,wηj

)}〉
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≤

〈 ⋃
(γj ,ωj)∈hdj ,(ηj ,ωj)∈gdj

(j=1,2,...,n)

{([
γl

+
, γu+

]
,wγ

+
j

)
,
([
ηl
−
, ηu−

]
,wη

−
j

)}〉
.

This implies that

d− ≤ GWIV DHFWA (d1, d2, ..., dn) ≤ d+.

Property 4: Symmetry

Let dj =
〈
hdj, gdj

〉
(j = 1, 2, 3, ..., n) be a collection of WIVDHFEs. Then, if d

′
j =

〈
h
′

dj, g
′

dj

〉
(j =

1, 2, 3, ..., n) be any permutation of dj =
〈
hdj, gdj

〉
, then we have:

GWIV DHFWA (d1, d2, ..., dn) = GWIV DHFWA
(
d
′

1, d
′

2, ..., d
′

n

)
, (5.2.13)

GWIV DHFWG (d1, d2, ..., dn) = GWIV DHFWG
(
d
′

1, d
′

2, ..., d
′

n

)
, (5.2.14)

where ω = (ω1, ω2, ..., ωn) is the weight vector of dj, with ωj ∈ [0, 1] and
∑n

j=1 ωj = 1.

Proof. The proof is obvious, therefore, it is omitted.

5.3 Relationship among the weighted interval-valued

dual hesitant fuzzy information aggregation oper-

ators

In this part, we investigate some special cases of the proposed aggregation operators by

using different values of f and g. After that, the relationships among these operators are

constructed.

127



Case 5.3.1. If g(t) = − ln(t), then the GWIVDHFWA operator and the GWIVDHFG opera-

tor reduce to weighted interval-valued dual hesitant fuzzy weighted averaging (WIVDHFWA)

operator and weighted interval-valued dual hesitant fuzzy weighted geometric (WIVDHFWG)

operator respectively, as follows:

WIV DHFWA(d1, d2, ..., dn) =

〈 ⋃
(γj ,ωj)∈hdj
(j=1,2,...,n)

{([
1−

n∏
j=1

(1− γlj)ωj , 1−
n∏
j=1

(1− γuj )ωj

]
,

n∏
j=1

wγdj

)}
,

⋃
(ηj ,ωj)∈hdj
(j=1,2,...,n)

{([
n∏
j=1

(ηlj)
ωj ,

n∏
j=1

(ηuj )ωj

]
,

n∏
j=1

wηdj

)}〉
,

(5.3.1)

WIV DHFWG(d1, d2, ..., dn) =

〈 ⋃
(γj ,ωj)∈hdj
(j=1,2,...,n)

{([
n∏
j=1

(γlj)
ωj ,

n∏
j=1

(γuj )ωj

]
,
n∏
j=1

wγdj

)}
,

⋃
(ηj ,ωj)∈hdj
(j=1,2,...,n)

{([
1−

n∏
j=1

(1− ηlj)ωj , 1−
n∏
j=1

(1− ηuj )ωj

]
,
n∏
j=1

wηdj

)}〉
.

(5.3.2)

Case 5.3.2. If g(t) = − ln(2− t/t), then the GWIVDHFWA operator and the GWIVDHFG

operator reduce to weighted interval-valued dual hesitant fuzzy Einstein weighted averaging

(WIVDHFEWA) operator and weighted interval-valued dual hesitant fuzzy Einstein weighted

geometric (WIVDHFEWG) operator respectively, as follows:

WIV DHFEWA(d1, d2, ..., dn) =

〈 ⋃
(γj ,ωj)∈hdj
(j=1,2,...,n)

{([∏n
j=1(1 + γlj)

ωj −
∏n

j=1(1− γlj)ωj∏n
j=1(1 + γlj)

ωj +
∏n

j=1(1− γlj)ωj
,

∏n
j=1(1 + γuj )ωj −

∏n
j=1(1− γuj )ωj∏n

j=1(1 + γuj )ωj +
∏n

j=1(1− γuj )ωj

]
,

n∏
j=1

wγdj

)}
,

⋃
(ηj ,ωj)∈hdj
(j=1,2,...,n)

{([
2
∏n

j=1(η
l
j)
ωj∏n

j=1(2− ηlj)ωj +
∏n

j=1(η
l
j)
ωj
,

2
∏n

j=1(η
u
j )ωj∏n

j=1(2− ηuj )ωj +
∏n

j=1(η
u
j )ωj

]
,

n∏
j=1

wηdj

)}〉
,

(5.3.3)
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WIV DHFEWG(d1, d2, ..., dn) =

〈 ⋃
(γj ,ωj)∈hdj
(j=1,2,...,n)

{([
2
∏n

j=1(γ
l
j)
ωj∏n

j=1(2− γlj)ωj +
∏n

j=1(γ
l
j)
ωj
,

2
∏n

j=1(γ
u
j )ωj∏n

j=1(2− γuj )ωj +
∏n

j=1(γ
u
j )ωj

]
,
n∏
j=1

wγdj

)}
,

⋃
(γj ,ωj)∈hdj
(j=1,2,...,n)

{([∏n
j=1(1 + ηlj)

ωj −
∏n

j=1(1− ηlj)ωj∏n
j=1(1 + ηlj)

ωj +
∏n

j=1(1− ηlj)ωj
,

∏n
j=1(1 + ηuj )ωj −

∏n
j=1(1− ηuj )ωj∏n

j=1(1 + ηuj )ωj +
∏n

j=1(1− ηuj )ωj

]
,
n∏
j=1

wηdj

)}〉
.

(5.3.4)

Case 5.3.3. If g(t) = − ln(τ + (1 − τ)t/t), τ > 0 then the GWIVDHFWA operator and the

GWIVDHFG operator reduce to weighted interval-valued dual hesitant fuzzy Hammer weighted

averaging (WIVDHFHWA) operator and weighted interval-valued dual hesitant fuzzy Hammer

weighted geometric (WIVDHFHWG) operator respectively, as follows:

WIV DHFHWA(d1, d2, ..., dn) =

〈 ⋃
(γj ,ωj)∈hdj
(j=1,2,...,n)

{([ ∏n
j=1(1− (1− τ)γlj)

ωj −
∏n

j=1(1− γlj)ωj∏n
j=1(1− (1− τ)γlj)

ωj − (1− τ)
∏n

j=1(1− γlj)ωj
,

∏n
j=1(1− (1− τ)γuj )ωj −

∏n
j=1(1− γuj )ωj∏n

j=1(1− (1− τ)γuj )ωj − (1− τ)
∏n

j=1(1− γuj )ωj

]
,

n∏
j=1

wγdj

)}
,

⋃
(ηj ,ωj)∈hdj
(j=1,2,...,n)

{([
τ
∏n

j=1(η
l
j)
ωj∏n

j=1(1− (1− τ)(1− ηlj))ωj − (1− τ)
∏n

j=1(η
l
j)
ωj
,

τ
∏n

j=1(η
u
j )ωj∏n

j=1(1− (1− τ)(1− ηuj ))ωj − (1− τ)
∏n

j=1(η
u
j )ωj

]
,

n∏
j=1

wηdj

)}〉
,

(5.3.5)

WIV DHFHWG(d1, d2, ..., dn) =

〈 ⋃
(γj ,ωj)∈hdj
(j=1,2,...,n)

{([
τ
∏n

j=1(γ
l
j)
ωj∏n

j=1(1− (1− τ)(1− γlj))ωj − (1− τ)
∏n

j=1(γ
l
j)
ωj
,

τ
∏n

j=1(γ
u
j )ωj∏n

j=1(1− (1− τ)(1− γuj ))ωj − (1− τ)
∏n

j=1(γ
u
j )ωj

]
,
n∏
j=1

wγdj

)}
,

⋃
(ηj ,ωj)∈hdj
(j=1,2,...,n)

{([ ∏n
j=1(1− (1− τ)ηlj)

ωj −
∏n

j=1(1− ηlj)ωj∏n
j=1(1− (1− τ)ηlj)

ωj − (1− τ)
∏n

j=1(1− ηlj)ωj
,

∏n
j=1(1− (1− τ)ηuj )ωj −

∏n
j=1(1− ηuj )ωj∏n

j=1(1− (1− τ)ηuj )ωj − (1− τ)
∏n

j=1(1− ηuj )ωj

]
,
n∏
j=1

wηdj

)}〉
.

(5.3.6)

Especially, if τ = 1, then the WIVDHFHWA and WIVDHFHWG operator reduces to

the WIVDHFWA and WIVDHFWG operator and, if τ = 2, then the WIVDHFHWA and

WIVDHFHWG operator reduce to the WIVDHFEWA and WIVDHFEWG operator.

Case 5.3.4. If g(t) = − ln((τ −1)t/(τ t−1)), τ > 1 then the GWIVDHFWA operator and the

GWIVDHFG operator reduce to weighted interval-valued dual hesitant fuzzy Frank weighted

averaging (WIVDHFFWA) operator and weighted interval-valued dual hesitant fuzzy Frank
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weighted geometric (WIVDHFFWG) operator respectively, as follows:

WIV DHFWA(d1, d2, ..., dn) =

〈 ⋃
(γj ,ωj)∈hdj
(j=1,2,...,n)

{([
1− lnτ

(
1 +

∏n
j=1(τ

1−γlj − 1)ωj

τ − 1

)
, 1− lnτ

(
1 +

∏n
j=1(τ

1−γuj − 1)ωj

τ − 1

)]
,
n∏
j=1

wγdj

)}
,

⋃
(ηj ,ωj)∈hdj
(j=1,2,...,n)

{([
lnτ

(
1 +

∏n
j=1(τ

ηlj − 1)ωj

τ − 1

)
, lnτ

(
1 +

∏n
j=1(τ

ηuj − 1)ωj

τ − 1

)]
,
n∏
j=1

wηdj

)}〉
,

(5.3.7)

WIV DHFWG(d1, d2, ..., dn) =

〈 ⋃
(γj ,ωj)∈hdj
(j=1,2,...,n)

{([
lnτ

(
1 +

∏n
j=1(τ

γlj − 1)ωj

τ − 1

)
, lnτ

(
1 +

∏n
j=1(τ

γuj − 1)ωj

τ − 1

)]
,
n∏
j=1

wγdj

)}
,

⋃
(ηj ,ωj)∈hdj
(j=1,2,...,n)

{([
1− lnτ

(
1 +

∏n
j=1(τ

1−ηlj − 1)ωj

τ − 1

)
, 1− lnτ

(
1 +

∏n
j=1(τ

1−ηuj − 1)ωj

τ − 1

)]
,
n∏
j=1

wηdj

)}〉
.

(5.3.8)

Especially, if τ → 1, then the WIVDHFFWA and WIVDHFFWG operator reduces to the

WIVDHFWA and WIVDHFWG operator, respectively.

Theorem 5.3.5. Let dj =
〈
hdj, gdj

〉
(j = 1, 2, 3, ..., n) be a collection of WIVDHFEs and let

ω = (ω1, ω2, ..., ωn)T be the associated weight vector with ωj ∈ [0, 1] and
∑n

j=1 ωj = 1; then

WIV DHFEWA(d1, d2, ..., dn) ≤ WIV DHFWA(d1, d2, ..., dn). (5.3.9)

If d1 = d2 = · · · = dn, the equality is established.

Proof. Since
∑n

j=1 ωj = 1 and ωj ≥ 0, j = 1, 2, ..., n, and according to Lemma 2.1.24, for any

γ1 ∈ hd1,γ2 ∈ hd2, ..., γn ∈ hdn, we have

n∏
j=1

(
1 + γlj

)ωj
+

n∏
j=1

(
1− γlj

)ωj ≤ n∑
j=1

ωj
(
1 + γlj

)
+

n∑
j=1

ωj
(
1− γlj

)
=

n∑
j=1

ωj
(
1 + γlj + 1− γlj

)
= 2.

(5.3.10)
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Then

∏n
j=1

(
1 + γlj

)ωj −∏n
j=1

(
1− γlj

)ωj∏n
j=1

(
1 + γlj

)ωj +
∏n

j=1

(
1− γlj

)ωj = 1−
2
∏n

j=1

(
1− γlj

)ωj∏n
j=1

(
1 + γlj

)ωj +
∏n

j=1

(
1− γlj

)ωj ≤ 1−
2
∏n

j=1

(
1− γlj

)ωj
2

= 1−
n∏
j=1

(
1− γlj

)ωj
.

(5.3.11)

where the equality holds if and only if γl1 = γl2 = · · · = γln.

Similarly, we also get that

∏n
j=1

(
1 + γuj

)ωj −∏n
j=1

(
1− γuj

)ωj∏n
j=1

(
1 + γuj

)ωj +
∏n

j=1

(
1− γuj

)ωj ≤ 1−
n∏
j=1

(
1− γuj

)ωj . (5.3.12)

where the equality holds if and only if γu1 = γu2 = · · · = γun.

In the same fashion, one can get the result for non-membership part.

Since, the weights corresponding to
[
1−

∏n
j=1(1− γlj)ωj , 1−

∏n
j=1(1− γuj )ωj

]
and[∏n

j=1(1+γ
l
j)
ωj−

∏n
j=1(1−γlj)

ωj∏n
j=1(1+γ

l
j)
ωj+

∏n
j=1(1−γlj)

ωj ,
∏n
j=1(1+γ

u
j )
ωj−

∏n
j=1(1−γuj )

ωj∏n
j=1(1+γ

u
j )
ωj+

∏n
j=1(1−γuj )

ωj

]
are the same as wγd1

,wγd2
, ...,wγdn

, also

the weights corresponding to
[∏n

j=1(η
l
j)
ωj ,
∏n

j=1(η
u
j )ωj

]
and

[
2
∏n
j=1(η

l
j)
ωj∏n

j=1(2−ηlj)
ωj+

∏n
j=1(η

l
j)
ωj ,

2
∏n
j=1(η

u
j )
ωj∏n

j=1(2−ηuj )
ωj+

∏n
j=1(η

u
j )
ωj

]
are the same as wηd1

,wηd2
, ...,wηdn

. It follows that

WIV DHFEWA(d1, d2, ..., dn) ≤ WIV DHFWA(d1, d2, ..., dn).

If d1 = d2 = · · · = dn, the equality is established, which completes the proof.

Theorem 5.3.6. Let dj =
〈
hdj, gdj

〉
(j = 1, 2, 3, ..., n) be a collection of WIVDHFEs and let

ω = (ω1, ω2, ..., ωn)T be the associated weight vector with ωj ∈ [0, 1] and
∑n

j=1 ωj = 1; then

WIV DHFWG(d1, d2, ..., dn) ≤ WIV DHFEWG(d1, d2, ..., dn). (5.3.13)

If d1 = d2 = · · · = dn, the equality is established.

Proof. Since
∑n

j=1 ωj = 1 and ωj ≥ 0, j = 1, 2, ..., n, and according to Lemma 2.1.25, for any
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γ1 ∈ hd1,γ2 ∈ hd2, ..., γn ∈ hdn, we have

n∏
j=1

(
2− γlj

)ωj
+

n∏
j=1

(
γlj
)ωj ≤ n∑

j=1

ωj
(
2− γlj

)
+

n∑
j=1

ωj
(
γlj
)

=
n∑
j=1

ωj
(
2− γlj + γlj

)
= 2.

(5.3.14)

Then

2
∏n

j=1

(
γlj
)ωj∏n

j=1

(
2− γlj

)ωj +
∏n

j=1

(
γlj
)ωj ≥ 2

∏n
j=1

(
γlj
)ωj

2
=

n∏
j=1

(
γlj
)ωj

, (5.3.15)

where the equality holds if and only if γl1 = γl2 = · · · = γln.

Similarly, we also get that

2
∏n

j=1

(
γuj
)ωj∏n

j=1

(
2− γuj

)ωj +
∏n

j=1

(
γuj
)ωj ≥ n∏

j=1

(
γuj
)ωj , (5.3.16)

where the equality holds if and only if γu1 = γu2 = · · · = γun.

In the same fashion, we can get the result for non-membership part.

Since, the weights corresponding to
[∏n

j=1(γ
l
j)
ωj ,
∏n

j=1(γ
u
j )ωj

]
and

[
2
∏n
j=1(γ

l
j)
ωj∏n

j=1(2−γlj)
ωj+

∏n
j=1(γ

l
j)
ωj ,

2
∏n
j=1(γ

u
j )
ωj∏n

j=1(2−γuj )
ωj+

∏n
j=1(γ

u
j )
ωj

]
are the same as wγd1

,wγd2
, · · · ,wγdn

, also the weights corresponding

to
[
1−

∏n
j=1(1− ηlj)ωj , 1−

∏n
j=1(1− ηuj )ωj

]
and

[∏n
j=1(1+η

l
j)
ωj−

∏n
j=1(1−ηlj)

ωj∏n
j=1(1+η

l
j)
ωj+

∏n
j=1(1−ηlj)

ωj ,
∏n
j=1(1+η

u
j )
ωj−

∏n
j=1(1−ηuj )

ωj∏n
j=1(1+η

u
j )
ωj+

∏n
j=1(1−ηuj )

ωj

]
are the same as wηd1

,wηd2
, · · · ,wηdn

. It follows that

WIV DHFWG(d1, d2, ..., dn) ≤ WIV DHFEWG(d1, d2, ..., dn).

If d1 = d2 = · · · = dn, the equality is established, which completes the proof.

Theorem 5.3.7. Let dj =
〈
hdj, gdj

〉
(j = 1, 2, 3, ..., n) be a collection of WIVDHFEs and let
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ω = (ω1, ω2, ..., ωn)T be the associated weight vector with ωj ∈ [0, 1] and
∑n

j=1 ωj = 1; then

WIV DHFEWG(d1, d2, ..., dn) ≤ WIV DHFEWA(d1, d2, ..., dn). (5.3.17)

If d1 = d2 = · · · = dn, the equality is established.

Proof. Since
∑n

j=1 ωj = 1 and ωj ≥ 0, j = 1, 2, ..., n, and according to Lemma 2.1.25, for any

γ1 ∈ hd1,γ2 ∈ hd2, ..., γn ∈ hdn, we have

∏n
j=1

(
1 + γlj

)ωj −∏n
j=1

(
1− γlj

)ωj∏n
j=1

(
1 + γlj

)ωj +
∏n

j=1

(
1− γlj

)ωj − 2
∏n

j=1

(
γlj
)ωj∏n

j=1

(
2− γlj

)ωj +
∏n

j=1

(
γlj
)ωj

=

∏n
j=1

(
2 + γlj −

(
γlj
)2)ωj −∏n

j=1

(
2− 3γlj +

(
γlj
)2)ωj −∏n

j=1

(
γlj +

(
γlj
)2)ωj − 3

∏n
j=1

(
γlj −

(
γlj
)2)ωj(∏n

j=1

(
1 + γlj

)ωj +
∏n

j=1

(
1− γlj

)ωj)× (∏n
j=1

(
2− γlj

)ωj +
∏n

j=1

(
γlj
)ωj)

=

∏n
j=1

(
2 + γlj −

(
γlj
)2)ωj −∏n

j=1

(
2− 3γlj +

(
γlj
)2)ωj −∏n

j=1

(
γlj +

(
γlj
)2)ωj −∏n

j=1

(
n
√

3γlj −
n
√

3
(
γlj
)2)ωj(∏n

j=1

(
1 + γlj

)ωj +
∏n

j=1

(
1− γlj

)ωj)× (∏n
j=1

(
2− γlj

)ωj +
∏n

j=1

(
γlj
)ωj) .

(5.3.18)

As 0 ≤ γlj ≤ γlj ≤ 1, ∀j = 1, 2, ..., n, then

2 + γlj −
(
γlj
)2 ≥ 0

2− 3γlj +
(
γlj
)2 ≥ 0

γlj +
(
γlj
)2 ≥ 0

n
√

3γlj −
n
√

3
(
γlj
)2 ≥ 0 ∀j = 1, 2, ..., n.

Note that

(
2 + γlj −

(
γlj
)2)− (2− 3γlj +

(
γlj
)2)− (γlj +

(
γlj
)2)− ( n

√
3γlj −

n
√

3
(
γlj
)2)

= γlj

(
3− n
√

3
) (

1− γlj
)
≥ 0
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Using Lemma 2.1.25, we have

n∏
j=1

(
2 + γlj −

(
γlj
)2)ωj − n∏

j=1

(
2− 3γlj +

(
γlj
)2)ωj − n∏

j=1

(
γlj +

(
γlj
)2)ωj − n∏

j=1

(
n
√

3γlj −
n
√

3
(
γlj
)2)ωj ≥ 0.

(5.3.19)

It follows that∏n
j=1

(
1 + γlj

)ωj −∏n
j=1

(
1− γlj

)ωj∏n
j=1

(
1 + γlj

)ωj +
∏n

j=1

(
1− γlj

)ωj − 2
∏n

j=1

(
γlj
)ωj∏n

j=1

(
2− γlj

)ωj +
∏n

j=1

(
γlj
)ωj ≥ 0.

Similarly, we also get that

∏n
j=1

(
1 + γuj

)ωj −∏n
j=1

(
1− γuj

)ωj∏n
j=1

(
1 + γuj

)ωj +
∏n

j=1

(
1− γuj

)ωj − 2
∏n

j=1

(
γuj
)ωj∏n

j=1

(
2− γuj

)ωj +
∏n

j=1

(
γuj
)ωj ≥ 0.

In the same fashion, for non-membership part.

Since, the weights corresponding to
[

2
∏n
j=1(γ

l
j)
ωj∏n

j=1(2−γlj)
ωj+

∏n
j=1(γ

l
j)
ωj ,

2
∏n
j=1(γ

u
j )
ωj∏n

j=1(2−γuj )
ωj+

∏n
j=1(γ

u
j )
ωj

]
and[∏n

j=1(1+γ
l
j)
ωj−

∏n
j=1(1−γlj)

ωj∏n
j=1(1+γ

l
j)
ωj+

∏n
j=1(1−γlj)

ωj ,
∏n
j=1(1+γ

u
j )
ωj−

∏n
j=1(1−γuj )

ωj∏n
j=1(1+γ

u
j )
ωj+

∏n
j=1(1−γuj )

ωj

]
are the same as wγd1

,wγd2
, · · · ,wγdn

, also

the weights corresponding to
[∏n

j=1(1+η
l
j)
ωj−

∏n
j=1(1−ηlj)

ωj∏n
j=1(1+η

l
j)
ωj+

∏n
j=1(1−ηlj)

ωj ,
∏n
j=1(1+η

u
j )
ωj−

∏n
j=1(1−ηuj )

ωj∏n
j=1(1+η

u
j )
ωj+

∏n
j=1(1−ηuj )

ωj

]
and[

2
∏n
j=1(η

l
j)
ωj∏n

j=1(2−ηlj)
ωj+

∏n
j=1(η

l
j)
ωj ,

2
∏n
j=1(η

u
j )
ωj∏n

j=1(2−ηuj )
ωj+

∏n
j=1(η

u
j )
ωj

]
are the same as wηd1

,wηd2
, · · · ,wηdn

. It fol-

lows that

WIV DHFEWG(d1, d2, ..., dn) ≤ WIV DHFEWA(d1, d2, ..., dn).

So, we complete the proof of Theorem 5.3.7.

Theorem 5.3.8. Let dj =
〈
hdj, gdj

〉
(j = 1, 2, 3, ..., n) be a collection of WIVDHFEs and let
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ω = (ω1, ω2, ..., ωn)T be the associated weight vector with ωj ∈ [0, 1] and
∑n

j=1 ωj = 1; then

WIV DHFWG(d1, d2, ..., dn) ≤ WIV DHFEWG(d1, d2, ..., dn) ≤ WIV DHFEWA(d1, d2, ..., dn) ≤ WIV DHFWA(d1, d2, ..., dn).

(5.3.20)

If d1 = d2 = · · · = dn, the equality is established.

5.4 Proposed decision framework

In the following, we use the proposed weighted interval-valued dual hesitant fuzzy aggregation

operators to build an approach to multiple criteria group decision-making with interval-valued

dual hesitant fuzzy information. First, an MCGDM with interval-valued dual hesitant fuzzy

information can be outlined as follows:

Let Z = {z1, z2, ..., zm} be a set of m alternatives, C = {c1, c2, ..., cn} a collection of n

criteria, whose weight vector is ω = (ω1, ω2, ..., ωn)T with ωj ∈ [0, 1] and
∑n

j=1 ωj = 1, and let

E = {e1, e2, ..., el} be a set of l DMs, whose weight vector is W = (w1, w2, ..., wl)
T with wk ∈

[0, 1] and
∑l

k=1wk = 1. Let R(k) = (r
(k)
ij )m×n be an interval-valued dual hesitant fuzzy decision

matrix, where r
(k)
ij =

{
ν
(k)
ij | ν

(k)
ij ∈ r

(k)
ij

}
=

{(
[γl
ν
(k)
ij

, γu
ν
(k)
ij

], [ηl
ν
(k)
ij

, ηu
ν
(k)
ij

]

)
| ν(k)ij ∈ r

(k)
ij

}
∈ D is

an IVDHFE stated by the DM ek ∈ E, where [γl
ν
(k)
ij

, γu
ν
(k)
ij

] indicates the possible degree range

that the alternative zi ∈ Z satisfies the criteria cj ∈ C, while [ηl
ν
(k)
ij

, ηu
ν
(k)
ij

] indicates the possible

degree range that the alternative zi ∈ Z does not satisfy the criteria cj ∈ C.

In general, there are benefit attributes (i.e., the bigger the criteria values, the better) and

cost attributes (i.e., the smaller the criteria values, the better) in a MCGDM problem. In

such cases, we transform the criteria values of cost type into the criteria values of benefit type;

that is, normalize the interval-valued dual hesitant fuzzy decision matrix R(k) = (r
(k)
ij )m×n by
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the following method:

r
(k)
ij =

r
(k)
ij , if cj is benefit type criteria ,(
r
(k)
ij

)c
, if cj is cost type criteria ,

(5.4.1)

i = 1, 2, ...,m, j = 1, 2, ..., n, k = 1, 2, ..., l.

where
(
r
(k)
ij

)c
is the complement of r

(k)
ij .

The developed weighted interval-valued dual hesitant fuzzy information aggregation op-

erators are utilized to construct an approach for solving the above MCGDM problems. The

proposed methodology is described through the following steps:

Step 1: Establish the individual decision matrices:

Analyze the decision-making problem and determine the set of alternatives Z = {z1, z2, ...,

zm}, the set of criteria C = {c1, c2, ..., cn} and the weight vector ω = (ω1, ω2, ..., ωn)T .

Then, invite a group of DMs to make evaluations on alternatives with respect to each

criteria in WIVDHFEs form and build the individual decision matrices R(k) = (r
(k)
ij )m×n.

Go to Step 2.

Step 2: Normalize the decision matrix:

Transform the interval-valued dual hesitant fuzzy decision matrix R(k) = (r
(k)
ij )m×n into

the normalized interval-valued dual hesitant fuzzy decision matrix D(k) = (d
(k)
ij )m×n

according to Eq. (5.4.1).

Step 3: Derive the comprehensive decision matrix.

Compute the comprehensive decision matrix M as

M = [dij]m×n = [hdij, gdij]m×n, (5.4.2)

where hdij =
{⋃l

k=1

(
γkij, (wγ)ij

)}
and gdij =

{⋃l
k=1

(
ηkij, (wη)ij

)}
.
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Furthermore, wγij and wηij represents the importance values of the members of hdij and

gdij, respectively.

Step 4: Obtain the fuse values:

Choose the aggregation operator WIVDHFWA/WIVDHFWG/WIVDHFEWA/

WIVDHFEWG/WIVDHFHWA/WIVDHFHWG/WIVDHFFWA or WIVDHFFWG and

take the weight ωj of each criteria cj into consideration to derive the fused values of

each alternative.

Step 5: Compute the score values:

According to Definition 5.1.5, determine the score values S(zi)(i = 1, 2, ...,m) of each

alternative zi.

Step 6: Rank all the alternatives:

Get the ranking of the alternatives zi(i = 1, 2, ...,m) in order to choice the best one(s)

in accordance with the Definition 5.1.7.

The aforementioned stepwise procedure is shown diagrammatically in Fig. 5.1.
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Figure 5.1: Weighted interval-valued dual hesitant fuzzy MCGDM.

5.5 The application of the developed approach in group

decision-making problems

In the following, the above-described decision making approach has been manifested with a

real life example of the teaching quality assessment.

Higher education teaching quality assessment is a crucial job. Its primary assessment tar-

get is the teacher and their teaching activities. It has been one of the main focus of universities

for a long time. Several scholars have done work on how to improve the teaching quality and

how to evaluate it adequately. Gao and his colleagues [54], applied factor analysis evaluation

technique for teaching quality. Yingying et al. [55] developed a teaching quality assessment

model based on the analytic hierarchy and neural networks. Han built a teaching quality

assessment scale [56]. Li [57] used an uncertain linguistic weighted averaging operator to fuse

the data corresponding to each alternative for evaluating the computer web-based multime-

dia college English reaching with uncertain linguistic information. Chen et al. [58] developed
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a new framework to assess teaching performance by combining the analytic hierarchy pro-

cess (AHP) and comprehensive evaluation method. Chang and Wang [59] presented a cloud

model for evaluating teachers in higher education. Recently, Peng and Dai [60] researched on

the assessment of classroom teaching quality with q-rung orthopair fuzzy information based

on multiparametric similarity measure and combinative distance-based assessment. In the

current study, efforts are made to address such MCGDM problem using proposed weighted

interval-valued dual hesitant fuzzy aggregation approach.

Kohat University of Science and Technology (KUST) one of the well-known universities

in Khyber Pakhtunkhwa (KP), Pakistan, has placed great importance on teaching quality

assessment. Currently, there are three teachers, namely Abrar (z1), Nisar (z2) and Israr

(z3) in the Institute of Numerical Sciences (INS) need to be evaluated, and the evaluation is

processed from the following aspects, namely teaching method (c1), number of publications

(c2) and student feedback (c3). The weight vector of the three parameters is supposed as

(0.3, 0.4, 0.3)T . The evaluation information given by DMs for the three teachers are shown in

Tables 5.1, 5.2 and 5.3.

Table 5.1: The decision matrix M1 provided by D1

c1 c2 c3

z1 〈[0.4, 0.6], [0.1, 0.3]〉 〈[0.3, 0.5], [0.3, 0.4]〉 〈[0.6, 0.7], [0.1, 0.3]〉

z2 〈[0.3, 0.4], [0.5, 0.6]〉 〈[0.3, 0.4], [0.3, 0.5]〉 〈[0.2, 0.4], [0.3, 0.4]〉

z3 〈[0.4, 0.5], [0.3, 0.5]〉 〈[0.6, 0.7], [0.1, 0.3]〉 〈[0.4, 0.5], [0.4, 0.5]〉
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Table 5.2: The decision matrix M2 provided by D2

c1 c2 c3

z1 〈[0.5, 0.6], [0.2, 0.3]〉 〈[0.2, 0.4], [0.2, 0.4]〉 〈[0.5, 0.6], [0.2, 0.3]〉

z2 〈[0.3, 0.4], [0.4, 0.5]〉 〈[0.4, 0.5], [0.1, 0.5]〉 〈[0.3, 0.6], [0.2, 0.3]〉

z3 〈[0.1, 0.3], [0.3, 0.5]〉 〈[0.5, 0.6], [0.1, 0.3]〉 〈[0.4, 0.5], [0.1, 0.3]〉

Table 5.3: The decision matrix M3 provided by D3

c1 c2 c3

z1 〈[0.6, 0.7], [0.2, 0.3]〉 〈[0.2, 0.4], [0.3, 0.5]〉 〈[0.5, 0.6], [0.1, 0.3]〉

z2 〈[0.3, 0.4], [0.4, 0.6]〉 〈[0.4, 0.5], [0.3, 0.5]〉 〈[0.2, 0.4], [0.3, 0.4]〉

z3 〈[0.4, 0.5], [0.4, 0.5]〉 〈[0.6, 0.7], [0.2, 0.3]〉 〈[0.3, 0.5], [0.4, 0.5]〉

Step 2: Since all the criteria are benefit type, so there is no need to transform the DMs

assessment information to normalize form.

Step 3: Collect the individual decision matrices M1, M2 and M3 into the collective decision

matrix M , which is presented in Table 5.4.
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Table 5.4: The Collective decision matrix M

c1

z1 〈{([0.4, 0.6], 1/3) , ([0.1, 0.3], 1/3) , ([0.6, 0.7], 1/3)} , {([0.1, 0.3], 1/3) , ([0.2, 0.3], 2/3)}〉

z2 〈{([0.3, 0.4], 1)} , {([0.5, 0.6], 1/3) , ([0.4, 0.5], 1/3) , ([0.4, 0.6], 1/3)}〉

z3 〈{([0.4, 0.5], 2/3) , ([0.1, 0.3], 1/3)} , {([0.3, 0.5], 2/3) , ([0.4, 0.5], 1/3)}〉

c2

z1 〈{([0.3, 0.5], 1/3) , ([0.2, 0.4], 2/3)} , {([0.3, 0.4], 1/3) , ([0.2, 0.4], 1/3) , ([0.3, 0.5], 1/3)}〉

z2 〈{([0.3, 0.4], 1/3) , ([0.4, 0.5], 2/3)} , {([0.3, 0.5], 2/3) , ([0.1, 0.5], 1/3)}〉

z3 〈{([0.6, 0.7], 2/3) , ([0.5, 0.6], 1/3)} , {([0.1, 0.3], 2/3) , ([0.2, 0.3], 1/3)}〉

c3

z1 〈{([0.6, 0.7], 1/3) , ([0.5, 0.6], 2/3)} , {([0.1, 0.3], 2/3) , ([0.2, 0.3], 1/3)}〉

z2 〈{([0.2, 0.4], 2/3) , ([0.3, 0.6], 1/3)} , {([0.3, 0.4], 2/3) , ([0.2, 0.3], 1/3)}〉

z3 〈{([0.4, 0.5], 2/3) , ([0.3, 0.5], 1/3)} , {([0.4, 0.5], 2/3) , ([0.1, 0.3], 1/3)}〉

5.5.1 Applying the WIVDHFWA operator

In the following paragraph, we will employ WIVDHFWA operator to handle the above con-

sidered MCGDM problem.

Step 4: The fused values are

z1 = 〈{([0.4349, 0.5988], 1/27) , ([0.3958, 0.5627], 2/27) , ([0.4039, 0.5685], 2/27) , ([0.3627, 0.5296], 4/27) , ([0.3618, 0.5255], 1/27) ,

([0.3177, 0.4827], 2/27) , ([0.3268, 0.4896], 2/27) , ([0.2802, 0.4436], 4/27) , ([0.4996, 0.6319], 1/27) , ([0.4650, 0.5988], 2/27) ,

([0.4722, 0.6041], 2/27) , ([0.4357, 0.5685], 4/27)} , {([0.1552, 0.3366], 2/27) , ([0.1910, 0.3366], 1/27) , ([0.1319, 0.3366], 2/27) ,

([0.1625, 0.3366], 1/27) , ([0.1552, 0.3680], 2/27) , ([0.1910, 0.3680], 1/27) , ([0.1910, 0.3366], 4/27) , ([0.2352, 0.3366], 2/27) ,

([0.1625, 0.3366], 4/27) , ([0.2, 0.3366], 2/27) , ([0.1910, 0.3680], 4/27) , ([0.2352, 0.3680], 2/27)}〉 ,
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z2 = 〈{([0.2714, 0.4], 2/9) , ([0.3, 0.4687], 1/9) , ([0.3149, 0.4422], 4/9) , ([0.3419, 0.5060], 2/9)} , {([0.3497, 0.4939], 4/27) ,

([0.3096, 0.4530], 2/27) , ([0.2253, 0.4939], 2/27) , ([0.1995, 0.4530], 1/27) , ([0.3270, 0.4676], 4/27) , ([0.2896, 0.4289], 2/27) ,

([0.2107, 0.4676], 2/27) , ([0.1866, 0.4289], 1/27) , ([0.3270, 0.4939], 4/27) , ([0.2896, 0.4530], 2/27) , ([0.2107, 0.4939], 2/27) ,

([0.1866, 0.4530], 1/27)}〉 ,

z3 = 〈{([0.4898, 0.5924], 8/27) , ([0.4657, 0.5924], 4/27) , ([0.4422, 0.5427], 4/27) , ([0.4158, 0.5427], 2/27) , ([0.4238, 0.5491], 4/27) ,

([0.3966, 0.5491], 2/27) , ([0.3700, 0.4941], 2/27) , ([0.3402, 0.4941], 1/27)} , {([0.2107, 0.4076], 8/27) , ([0.1390, 0.3497], 4/27) ,

([0.2780, 0.4076], 4/27) , ([0.1835, 0.3497], 2/27) , ([0.2297, 0.4076], 4/27) , ([0.1516, 0.3497], 2/27) , ([0.3031, 0.4076], 2/27) ,

([0.2, 0.3497], 1/27)}〉 .

Step 5: According to the Definition 5.1.5, the score value of each alternative zi(i = 1, 2, 3) is

tabulated in Table 5.5.

Table 5.5: Score values while using WIVDHFWA operator

z1 z2 z3

S(zi) 0.0163 0.0663 0.0251

5.5.2 Applying the WIVDHFWG operator

In what follows, the WIVDHFWG operator is applied to the considered problem to get the

ranking of each alternative.
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Step 4: The fused values are

z1 = 〈{([0.4026, 0.5842], 1/27) , ([0.3812, 0.5578], 2/27) , ([0.3424, 0.5343], 2/27) , ([0.3241, 0.5102], 4/27) , ([0.2656, 0.4745], 1/27) ,

([0.2515, 0.4530], 2/27) , ([0.2259, 0.4340], 2/27) , ([0.2138, 0.4144], 4/27) , ([0.4547, 0.6119], 1/27) , ([0.4305, 0.5842], 2/27) ,

([0.3866, 0.5596], 2/27) , ([0.3660, 0.5343], 4/27)} , {([0.1860, 0.3419], 2/27) , ([0.2143, 0.3419], 1/27) , ([0.1414, 0.3419], 2/27) ,

([0.1712, 0.3419], 1/27) , ([0.1860, 0.3881], 2/27) , ([0.2143, 0.3881], 1/27) , ([0.2143, 0.3419], 4/27) , ([0.2416, 0.3419], 2/27) ,

([0.1712, 0.3419], 4/27) , ([0.2, 0.3419], 2/27) , ([0.2143, 0.3881], 4/27) , ([0.2416, 0.3881], 2/27)}〉 ,

z2 = 〈{([0.2656, 0.4], 2/9) , ([0.3, 0.4517], 1/9) , ([0.2980, 0.4373], 4/9) , ([0.3366, 0.4939], 2/9)} , {([0.3894, 0.5060], 4/27) ,

([0.3413, 0.4827], 2/27) , ([0.3003, 0.5060], 2/27) , ([0.2717, 0.4827], 1/27) , ([0.3316, 0.4719], 4/27) , ([0.3043, 0.4469], 2/27) ,

([0.2609, 0.4719], 2/27) , ([0.2307, 0.4469], 1/27) , ([0.3316, 0.5060], 4/27) , ([0.3043, 0.4827], 2/27) , ([0.2609, 0.5060], 2/27) ,

([0.2307, 0.4827], 1/27)}〉 ,

z3 = 〈{([0.4704, 0.5720], 8/27) , ([0.4315, 0.5720], 4/27) , ([0.4373, 0.5378], 4/27) , ([0.4012, 0.5378], 2/27) , ([0.3104, 0.4908], 4/27) ,

([0.2847, 0.4908], 2/27) , ([0.2885, 0.4614], 2/27) , ([0.2647, 0.4614], 1/27)} , {([0.2609, 0.4279], 8/27) , ([0.1654, 0.3672], 4/27) ,

([0.2949, 0.4279], 4/27) , ([0.2038, 0.3672], 2/27) , ([0.2944, 0.4279], 4/27) , ([0.2030, 0.3672], 2/27) , ([0.3268, 0.4279], 2/27) ,

([0.2398, 0.3672], 1/27)}〉 .

Step 5: According to the Definition 5.1.5, the score value of each alternative zi(i = 1, 2, 3) is

displayed in Table 5.6.

Table 5.6: Score values while adopting WIVDHFWG operator

z1 z2 z3

S(zi) 0.0115 0.0553 0.0169

143



5.5.3 Applying the WIVDHFEWA operator

To rank the alternatives, the WIVDHFEWA operator is chosen for information aggregation.

Step 4: The fused values are

z1 = 〈{([0.4291, 0.5966], 1/27) , ([0.3933, 0.5619], 2/27) , ([0.3936, 0.5633], 2/27) , ([0.3566, 0.5266], 4/27) , ([0.3468, 0.5174], 1/27) ,

([0.3080, 0.47808], 2/27) , ([0.3087, 0.4796], 2/27) , ([0.2692, 0.4384], 4/27) , ([0.4927, 0.6291], 1/27) , ([0.4594, 0.5966], 2/27) ,

([0.4597, 0.5978], 2/27) , ([0.4250, 0.5633], 4/27)} , {([0.1574, 0.3373], 2/27) , ([0.1930, 0.3373], 1/27) , ([0.1325, 0.3507], 2/27) ,

([0.1636, 0.3373], 1/27) , ([0.1574, 0.3708], 2/27) , ([0.1929, 0.3708], 1/27) , ([0.1930, 0.3373], 4/27) , ([0.2358, 0.3373], 2/27) ,

([0.1632, 0.3507], 4/27) , ([0.2, 0.3373], 2/27) , ([0.1930, 0.3708], 4/27) , ([0.2358, 0.3708], 2/27)}〉 ,

z2 = 〈{([0.2706, 0.4], 2/9) , ([0.3, 0.4656], 1/9) , ([0.3123, 0.4414], 4/9) , ([0.3409, 0.5039], 2/9)} , {([0.3676, 0.4959], 4/27) ,

([0.3135, 0.4579], 2/27) , ([0.2326, 0.4959], 2/27) , ([0.2056, 0.4579], 1/27) , ([0.3326, 0.4683], 4/27) , ([0.2914, 0.4319], 2/27) ,

([0.2154, 0.4683], 2/27) , ([0.1902, 0.4319], 1/27) , ([0.3276, 0.4959], 4/27) , ([0.2918, 0.4579], 2/27) , ([0.2154, 0.4959], 2/27) ,

([0.1902, 0.4579], 1/27)}〉 ,

z3 = 〈{([0.4865, 0.5892], 8/27) , ([0.4599, 0.5892], 4/27) , ([0.4414, 0.5449], 4/27) , ([0.4134, 0.5489], 2/27) , ([0.4089, 0.5403], 4/27) ,

([0.3801, 0.5403], 2/27) , ([0.3599, 0.4890], 2/27) , ([0.3298, 0.4890], 1/27)} , {([0.2269, 0.4246], 8/27) , ([0.1406, 0.3519], 4/27) ,

([0.2799, 0.4108], 4/27) , ([0.1852, 0.3676], 2/27) , ([0.2364, 0.4108], 4/27) , ([0.1550, 0.3519], 2/27) , ([0.3061, 0.4078], 2/27) ,

([0.2035, 0.3519], 1/27)}〉 .

Step 5: The score value of each alternative zi(i = 1, 2, 3) is shown in Table 5.7.

Table 5.7: Score values while employing WIVDHFEWA operator

z1 z2 z3

S(zi) 0.0155 0.0628 0.0236
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5.5.4 Applying the WIVDHFEWG operator

In the following, we utilize the WIVDHFEWG operator in the developed approach for solving

the MCGDM problem.

Step 4: The fused values are

z1 = 〈{([0.4072, 0.5866], 1/27) , ([0.3833, 0.5586], 2/27) , ([0.3505, 0.5400], 2/27) , ([0.3292, 0.5135], 4/27) , ([0.2761, 0.4826], 1/27) ,

([0.2587, 0.4579], 2/27) , ([0.2250, 0.4418], 2/27) , ([0.2198, 0.4186], 4/27) , ([0.4503, 0.6154], 1/27) , ([0.4359, 0.5866], 2/27) ,

([0.3997, 0.5675], 2/27) , ([0.3760, 0.5400], 4/27)} , {([0.1819, 0.3409], 2/27) , ([0.2115, 0.3409], 1/27) , ([0.1403, 0.3409], 2/27) ,

([0.1703, 0.3409], 1/27) , ([0.1819, 0.3846], 2/27) , ([0.2115, 0.3846], 1/27) , ([0.2115, 0.3409], 4/27) , ([0.2406, 0.3409], 2/27) ,

([0.1703, 0.3409], 4/27) , ([0.2, 0.3409], 2/27) , ([0.2115, 0.3846], 4/27) , ([0.2406, 0.3846], 2/27)}〉 ,

z2 = 〈{([0.2663, 0.4], 2/9) , ([0.3, 0.4542], 1/9) , ([0.2678, 0.4380], 4/9) , ([0.3373, 0.4959], 2/9)} , {([0.3793, 0.5039], 4/27) ,

([0.3358, 0.4780], 2/27) , ([0.2893, 0.5039], 2/27) , ([0.2597, 0.4780], 1/27) , ([0.3308, 0.4712], 4/27) , ([0.3019, 0.4441], 2/27) ,

([0.2543, 0.4712], 2/27) , ([0.2242, 0.4441], 1/27) , ([0.3308, 0.5039], 4/27) , ([0.3019, 0.4780], 2/27) , ([0.2543, 0.5039], 2/27) ,

([0.2241, 0.4777], 1/27)}〉 ,

z3 = 〈{([0.4734, 0.5753], 8/27) , ([0.4367, 0.5753], 4/27) , ([0.4380, 0.5547], 4/27) , ([0.4034, 0.5386], 2/27) , ([0.3255, 0.5004], 4/27) ,

([0.2979, 0.5004], 2/27) , ([0.2989, 0.4669], 2/27) , ([0.2734, 0.4669], 1/27)} , {([0.2307, 0.4246], 8/27) , ([0.1617, 0.3639], 4/27) ,

([0.2922, 0.4246], 4/27) , ([0.2013, 0.3639], 2/27) , ([0.2862, 0.4246], 4/27) , ([0.1947, 0.3639], 2/27) , ([0.3232, 0.4246], 2/27) ,

([0.2339, 0.3639], 1/27)}〉 .

Step 5: According to the Definition 5.1.5, the score value of each alternative zi(i = 1, 2, 3) is

listed in Table 5.8.

Table 5.8: Score values while applying WIVDHFEWG operator

z1 z2 z3

S(zi) 0.0122 0.0583 0.0187
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5.6 Comparison analysis

To examine the rationality and effectiveness of the proposed aggregation operators, a com-

parative analysis is carried out with some existing aggregation operators of Ref. [19] on the

considered problem.

Step 3: We firstly convert the WIVDHFEs presented in Table 5.4 into IVDHFEs by

excluding the importance values. The results obtained in this step are shown in Table 5.9.

Table 5.9: Interval-valued dual hesitant fuzzy collective decision matrix

c1

z1 〈{[0.4, 0.6], [0.1, 0.3], [0.6, 0.7]} , {[0.1, 0.3], [0.2, 0.3]}〉

z2 〈{[0.3, 0.4]} , {[0.5, 0.6], [0.4, 0.5], [0.4, 0.6], }〉

z3 〈{[0.4, 0.5], [0.1, 0.3]} , {[0.3, 0.5], [0.4, 0.5]}〉

c2

z1 〈{[0.3, 0.5], [0.2, 0.4]} , {[0.3, 0.4], [0.2, 0.4], [0.3, 0.5]}〉

z2 〈{[0.3, 0.4], [0.4, 0.5]} , {[0.3, 0.5], [0.1, 0.5]}〉

z3 〈{[0.6, 0.7], [0.5, 0.6]} , {[0.1, 0.3], [0.2, 0.3]}〉

c3

z1 〈{[0.6, 0.7], [0.5, 0.6]} , {[0.1, 0.3], [0.2, 0.3]}〉

z2 〈{[0.2, 0.4], [0.3, 0.6]} , {[0.3, 0.4], [0.2, 0.3]}〉

z3 〈{[0.4, 0.5], [0.3, 0.5]} , {[0.4, 0.5], [0.1, 0.3]}〉

Now we are able to apply the approach given by [19], on the considered example. Under

it, we aggregate the preference values by utilizing the operators and hence obtain the score

value of each alternative.
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5.6.1 Applying the IVDHFWA operator

To derive the ranking of the alternatives, here we employ the IVDHFWA operator [19] to

aggregate the interval-valued dual hesitant fuzzy information of the alternatives zi(i = 1, 2, 3)

on all criteria cj(j = 1, 2, 3).

Step 4: The fused values are

z1 = 〈{[0.4349, 0.5988], [0.3958, 0.5627], [0.4039, 0.5685], [0.3627, 0.5296], [0.3618, 0.5255], [0.3177, 0.4827],

[0.3268, 0.4896], [0.2802, 0.4436], [0.4996, 0.6319], [0.4650, 0.5988], [0.4722, 0.6041], [0.4357, 0.5685]} ,

{[0.1552, 0.3366], [0.1910, 0.3366], [0.1319, 0.3366], [0.1625, 0.3366], [0.1552, 0.3680], [0.1910, 0.3680],

[0.1910, 0.3366], [0.2352, 0.3366], [0.1625, 0.3366], [0.2, 0.3366], [0.1910, 0.3680], [0.2352, 0.3680]}〉 ,

z2 = 〈{[0.2714, 0.4], [0.3, 0.4687], [0.3149, 0.4422], [0.3419, 0.5060]} , {[0.3497, 0.4939], [0.3096, 0.4530],

[0.2253, 0.4939], [0.1995, 0.4530], [0.3270, 0.4676], [0.2896, 0.4289], [0.2107, 0.4676], [0.1866, 0.4289],

[0.3270, 0.4939], [0.2896, 0.4530], [0.2107, 0.4939], [0.1866, 0.4530]}〉 ,

z3 = 〈{[0.4898, 0.5924], [0.4657, 0.5924], [0.4422, 0.5427], [0.4158, 0.5427], [0.4238, 0.5491], [0.3966, 0.5491],

[0.3700, 0.4941], [0.3402, 0.4941]} , {[0.2107, 0.4076], [0.1390, 0.3497], [0.2780, 0.4076], [0.1835, 0.3497],

[0.2297, 0.4076], [0.1516, 0.3497], [0.3031, 0.4076], [0.2, 0.3497]}〉 .

Step 5: According to the Definition 2.2.1, the score value of each alternative zi(i = 1, 2, 3) is

noted in Table 5.10.
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Table 5.10: Score values while using IVDHFWA operator

z1 z2 z3

S(zi) 0.2080 0.0185 0.1859

5.6.2 Applying the IVDHFWG operator

For comparative study, in this part, the teaching quality assessment problem is again solved

by the IVDHFWG operator of Ref. [19].

Step 4: The fused values are

z1 = 〈{[0.4026, 0.5842], [0.3812, 0.5578], [0.3424, 0.5343], [0.3241, 0.5102], [0.2656, 0.4745], [0.2515, 0.4530],

[0.2259, 0.4340], [0.2138, 0.4144], [0.4547, 0.6119], [0.4305, 0.5842], [0.3866, 0.5596], [0.3660, 0.5343]} ,

{[0.1860, 0.3419], [0.2143, 0.3419], [0.1414, 0.3419], [0.1712, 0.3419], [0.1860, 0.3881], [0.2143, 0.3881],

[0.2143, 0.3419], [0.2416, 0.3419], [0.1712, 0.3419], [0.2, 0.3419], [0.2143, 0.3881], [0.2416, 0.3881]}〉 ,

z2 = 〈{[0.2656, 0.4], [0.3, 0.4517], [0.2980, 0.4373], [0.3366, 0.4939]} , {[0.3894, 0.5060], [0.3413, 0.4827],

[0.3003, 0.5060], [0.2717, 0.4827], [0.3316, 0.4719], [0.3043, 0.4469], [0.2609, 0.4719], [0.2307, 0.4469],

[0.3316, 0.5060], [0.3043, 0.4827], [0.2609, 0.5060], [0.2307, 0.4827]}〉 ,

z3 = 〈{[0.4704, 0.5720], [0.4315, 0.5720], [0.4373, 0.5378], [0.4012, 0.5378], [0.3104, 0.4908], [0.2847, 0.4908],

[0.2885, 0.4614], [0.2647, 0.4614]} , {[0.2609, 0.4279], [0.1654, 0.3672], [0.2949, 0.4279], [0.2038, 0.3672],

[0.2944, 0.4279], [0.2030, 0.3672], [0.3268, 0.4279], [0.2398, 0.3672]}〉 .
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Step 5: According to the Definition 2.2.1, the score value of each alternative zi(i = 1, 2, 3) is

listed in Table 5.11.

Table 5.11: Score values while applying IVDHFWG operator

z1 z2 z3

S(zi) 0.1505 −0.0167 0.1152

The score values of alternatives are graphically represented in Fig. 5.2.
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Figure 5.2: The score values of alternatives

The raking results of alternatives are documented in Table 5.12.
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Table 5.12: The ranking order of alternatives

Operator z1 z2 z3 Order

WIVDHFWA 3 1 2 z2 > z3 > z1

WIVDHFWG 3 1 2 z2 > z3 > z1

WIVDHFEWA 3 1 2 z2 > z3 > z1

WIVDHFEWG 3 1 2 z2 > z3 > z1

IVDHFWA [19] 1 3 2 z1 > z3 > z2

IVDHFWG [19] 1 3 2 z1 > z3 > z2

Table 5.12 depicts the ranking order from different aggregation operators, and we can

see from this table that the ranking order obtained by the proposed operators is the same.

Further, from Tables 5.5, 5.6, 5.7 and 5.8, it is observed that the score values of the pro-

posed operators are also approximately same, which shows that the generalized weighted

interval-valued dual hesitant fuzzy information operators proposed in this study have inher-

ent consistency.

The presented Tables 5.10 and 5.11, clearly demonstrate that the score values of the IVD-

HFWA operator and IVDHFWG operator which uses IVDHFEs as preference information

vary from each other. So the Score values obtained by these aggregation operators are biased.

Secondly, It can be noticed from Table 5.12 that the ranking obtained by these operators are

different from the ones through WIVDHFWA, WIVDHFWG, WIVDHFEWA and WIVD-

HFEWG with the first and third alternatives swapped. This fluctuation in results is due

to the ability of the stated aggregation operators to capture the evaluation data along with

their importance degrees whereas the approach outlined by Ju et al. [19] by utilizing IVD-
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HFWA and IVDHFWG operators eliminate the values of importance. This negligence of the

importance values causes a severe loss of information, leading to erroneous decision results.
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Chapter 6

WASPAS-based decision making

methodology with unknown weight

information under uncertain

evaluations

In this chapter, to enrich the existing theory of UPLTSs, we redefine the operational laws,

comparison method, and some fundamental aggregation operators. Furthermore, a novel ag-

gregation operator UPLSWG is also designed. Following this, a novel extension of WASPAS

method called uncertain probabilistic linguistic (UPL)-WASPAS is extended to UPLTS con-

text with altogether unknown weight information for ranking objects. In the end, an example

of supplier selection is addressed, and detail analysis of results is performed. The research

work of this chapter is published in [61].
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6.1 Novel operations and comparison method of UPLTSs

Based on the limitations of the existing study, in this section, we first improve the basic oper-

ational laws and then put forward a novel comparison method to accommodate the situations

where the input arguments are UPLTSs.

6.1.1 Novel operational law of UPLTSs

The proposed operational law for UPLTSs, which assists in the aggregation of criteria values, is

not reasonable. To observe the flaws of existing operational law better, consider the following

example.

Example 6.1.1. Suppose that S = {£α|α = 0, 1, ...., 6} be an LTS, and let U1(p) = {(£3, [0.5, 0.7]) ,

(£2, [0.3, 0.5])} and U2(P ) = {(£2, [0.3, 0.5]) , (£1, [0.4, 0.8])} be two UPLTSs, then by the add

operation in Definition 2.2.3, it can be obtained that U1(p)⊕U2(p) =
{(

0.5+0.7
2

)
£3 ⊕

(
0.3+0.5

2

)
£2,(

0.3+0.5
2

)
£2 ⊕

(
0.4+0.8

2

)
£1

}
= {£2.6,£1.4}.

Clearly, the generated result after operation lost the probability information and can no

longer be considered a UPLTS. Another weak point to be elucidated is that the existing oper-

ations operate the subscripts of linguistics terms with their corresponding interval probability

which is irrational because these two are totally different dimensions. To avoid these defects,

in the following, we will define some new operations for UPLTSs.

Definition 6.1.2. Let U(p) =
{(

£k, [pk, qk]
)
|k = 1, 2, ...,£

}
and U1(p) =

{(
£k

1, [p
k
1, q

k
1 ]
)
|k =

1, 2, ...,£1} be two ordered and scaled UPLTSs, and λ be a positive real number; then

i. U(p)⊕ U1(p) =
⋃

(£k,[pk,qk])∈U(P ),(£k1 ,[pk1 ,qk1 ])∈U1(P )

{(
£k ⊕£k

1,

[
pkpk1∑£

k=1 p
k
∑£1
k=1 p

k
1

,

qk+qk1∑£
k=1 q

k
∑£1
k=1 q

k
1

])}
;

ii. U(p)⊗ U1(p) =
⋃

(£k,[pk,qk])∈U(P ),(£k1 ,[pk1 ,qk1 ])∈U1(P )

{(
£k ⊗£k

1,

[
pkpk1∑£

k=1 p
k
∑£1
k=1 p

k
1

,

qk+qk1∑£
k=1 q

k
∑£1
k=1 q

k
1

])}
;
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iii. λU(p) =
⋃

(£k,[pk,qk])∈U(P )

{(
λ£k, [pk, qk]

)}
;

iv. (U(p))λ =
⋃

(£k,[pk,qk])∈U(P )

{(
(£k)λ, [pk, qk]

)}
.

Remark 6.1.3. In the above defined operational law, one should take notice of an important

fact: If there are n number of UPLTSs (say) U1(P ),U2(P ),...,Un(P ), and n is very large

number, then the pk1p
k
2...p

k
n is nearly equal to zero that is the lower bound of the interval

probability is completely ignored. On the other hand, the upper bound outcome, i.e., qk1 + qk2 +

...+ qkn is the negation of the lower bound. It does not confirm the actual situation. A feasible

way to accomplish this issue is the normalization technique. Therefore, in the operation we

divide them by
∑£1

k=1 p
k
1

∑£2

k=1 p
k
2...
∑£n

k=1 p
k
n and

∑£1

k=1 q
k
1

∑£2

k=1 q
k
2 ...
∑£n

k=1 q
k
n, respectively.

Theorem 6.1.4. Given any three ordered and scaled UPLTSs U(p) =
{(

£k, [pk, qk]
)
|k = 1, 2,

..,£}, U1(P ) =
{(

£k
1, [p

k
1, q

k
1 ]
)
|k = 1, 2, ...,£1

}
and U2(P ) =

{(
£k

2, [p
k
2, q

k
2 ]
)
|k = 1, 2, ....,£2

}
,

λ, λ1 ≥ 0, then

i. U(p)⊕ U1(p) = U1(p)⊕ U(P );

ii. (U(p)⊕ U1(p))⊕ U2(p) = U(p)⊕ (U1(p)⊕ U2(p)) ;

iii. λ (U(p)⊕ U1(p)) = λU(p)⊕ λU1(p);

iv. U(p)⊗ U1(p) = U1(p)⊗ U(p);

v. (U(p)⊗ U1(p))⊗ U2(p) = U(p)⊗ (U1(p)⊗ U2(p)) ;

vi. (U(p)⊗ U1(p))
λ = (U(p))λ ⊗ (U1(p))

λ .

Proof. i.

U(p)⊕ U1(p) =
⋃

(£k,[pk,qk])∈E(p),(£k1 ,[pk1 ,qk1 ])∈E1(p)

{(
£k ⊕£k

1,

[
pkpk1∑£

k=1 p
k
∑£1

k=1 p
k
1

,
qk + qk1∑£

k=1 q
k
∑£1

k=1 q
k
1

])}

=
⋃

(£k,[pk,qk])∈E(p),(£k1 ,[pk1 ,qk1 ])∈E1(p)

{(
£k

1 ⊕£k,

[
pk1p

k∑£1

k=1 p
k
1

∑£
k=1 p

k
,

qk + qk1∑£1

k=1 q
k
1

∑£
k=1 q

k

])}

=U1(p)⊕ U(p).
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ii.

(U(p)⊕ U1(p))⊕ U2(p) =
⋃

(£k,[pk,qk])∈E(P ),(£k1 ,[pk1 ,qk1 ])∈E1(p)

{(
£k ⊕£k

1,

[
pkpk1∑£

k=1 p
k
∑£1

k=1 p
k
1

,
qkqk1∑£

k=1 q
k
∑£1

k=1 q
k
1

])}
⊕ U2(p)

=
⋃

(£k,[pk,qk])∈E(p),(£k1 ,[pk1 ,qk1 ])∈E1(p),(£k2 ,[pk2 ,qk2 ])∈E2(p)


(£k ⊕£k

1

)
⊕£k

2,

 (
pkpk1

)
pk2(∑£

k=1 p
k
∑£1

k=1 p
k
1

)∑£2

k=1 p
k
2

,

(
qk + qk1

)
+ qk2(∑£

k=1 q
k
∑£1

k=1 q
k
1

)∑£2

k=1 q
k
2


=

⋃
(£k,[pk,qk])∈E(p),(£k1 ,[pk1 ,qk1 ])∈E1(p),(£k2 ,[pk2 ,qk2 ])∈E2(p)


£k ⊕

(
£k

1 ⊕£k
2

)
,

 pk
(
pk1p

k
2

)∑£
k=1 p

k
(∑£1

k=1 p
k
1

∑£2

k=1 p
k
2

) , qk +
(
qk1 + qk2

)∑£
k=1 q

k
(∑£1

k=1 q
k
1

∑£2

k=1 q
k
2

)


=U(p)⊕ (U1(p)⊕ U2(p)) .

iii.

λ (U(p)⊕ U1(p)) =λ

 ⋃
(£k,[pk,qk])∈E(p),(£k1 ,[pk1 ,qk1 ])∈E1(p)

{(
£k ⊕£k

1,

[
pkpk1∑£

k=1 p
k
∑£1

k=1 p
k
1

,
qkqk1∑£

k=1 q
k
∑£1

k=1 q
k
1

])}
=

⋃
(£k,[pk,qk])∈E(p),(£k1 ,[pk1 ,qk1 ])∈E1(p)

{(
λ
(
£k ⊕£k

1

)
,

[
pkpk1∑£

k=1 p
k
∑£1

k=1 p
k
1

,
qkqk1∑£

k=1 q
k
∑£1

k=1 q
k
1

])}

=
⋃

(£k,[pk,qk])∈E(P ),(£k1 ,[pk1 ,qk1 ])∈E1(p)

{(
λ£k ⊕ λ£k

1,

[
pkpk1∑£

k=1 p
k
∑£1

k=1 p
k
1

,
qkqk1∑£

k=1 q
k
∑£1

k=1 q
k
1

])}

=λE(p)⊕ λE1(p).

iv.

U(p)⊗ U1(p) =
⋃

(£k,[pk,qk])∈E(P ),(£k1 ,[pk1 ,qk1 ])∈E1(p)

{(
£k ⊗£k

1,

[
pkpk1∑£

k=1 p
k
∑£1

k=1 p
k
1

,
qk + qk1∑£

k=1 q
k
∑£1

k=1 q
k
1

])}

=
⋃

(£k,[pk,qk])∈E(p),(£k1 ,[pk1 ,qk1 ])∈E1(p)

{(
£k

1 ⊗£k,

[
pk1p

k∑£1

k=1 p
k
1

∑£
k=1 p

k
,

qk + qk1∑£1

k=1 q
k
1

∑£
k=1 q

k

])}

=U1(p)⊗ U(p).
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v.

(U(p)⊗ U1(p))⊗ U2(p) =
⋃

(£k,[pk,qk])∈E(p),(£k1 ,[pk1 ,qk1 ])∈E1(p)

{(
£k ⊗£k

1,

[
pkpk1∑£

k=1 p
k
∑£1

k=1 p
k
1

,
qkqk1∑£

k=1 q
k
∑£1

k=1 q
k
1

])}
⊗ U2(p)

=
⋃

(£k,[pk,qk])∈E(P ),(£k1 ,[pk1 ,qk1 ])∈E1(p),(£k2 ,[pk2 ,qk2 ])∈E2(p)


(£k ⊗£k

1

)
⊗£k

2,

 (
pkpk1

)
pk2(∑£

k=1 p
k
∑£1

k=1 p
k
1

)∑£2

k=1 p
k
2

,

(
qk + qk1

)
+ qk2(∑£

k=1 q
k
∑£1

k=1 q
k
1

)∑£2

k=1 q
k
2


=

⋃
(£k,[pk,qk])∈E(p),(£k1 ,[pk1 ,qk1 ])∈E1(p),(£k2 ,[pk2 ,qk2 ])∈E2(p)


£k ⊗

(
£k

1 ⊗£k
2

)
,

 pk
(
pk1p

k
2

)∑£
k=1 p

k
(∑£1

k=1 p
k
1

∑£2

k=1 p
k
2

) , qk +
(
qk1 + qk2

)∑£
k=1 q

k
(∑£1

k=1 q
k
1

∑£2

k=1 q
k
2

)


=U(p)⊗ (U1(p)⊗ U2(p)) .

vi.

(U(p)⊗ U1(p))
λ =

 ⋃
(£k,[pk,qk])∈E(p),(£k1 ,[pk1 ,qk1 ])∈E1(p)

{(
£k ⊗£k

1,

[
pkpk1∑£

k=1 p
k
∑£1

k=1 p
k
1

,
qkqk1∑£

k=1 q
k
∑£1

k=1 q
k
1

])}
λ

=
⋃

(£k,[pk,qk])∈E(p),(£k1 ,[pk1 ,qk1 ])∈E1(p)

{((
£k ⊗£k

1

)λ
,

[
pkpk1∑£

k=1 p
k
∑£1

k=1 p
k
1

,
qkqk1∑£

k=1 q
k
∑£1

k=1 q
k
1

])}

=
⋃

(£k,[pk,qk])∈E(p),(£k1 ,[pk1 ,qk1 ])∈E1(p)

{(
(£k)λ ⊗ (£k

1)λ,

[
pkpk1∑£

k=1 p
k
∑£1

k=1 p
k
1

,
qkqk1∑£

k=1 q
k
∑£1

k=1 q
k
1

])}

=(E(p))λ ⊗ (E1(p))
λ.

6.1.2 The ranking of the UPLTSs

The ranking result derived in Definition 2.2.4, may fail in certain situations. To clarify this

drawback, consider the following example.

Example 6.1.5. Let S = {£α|α = 0, 1, ...., 6} be an LTS, U1(p) and U2(p) be two different

UPLTSs based on S. Suppose that U1(p) = {(£3, [0.5, 0.6]) , (£2, [0.4, 0.5])} and U2(p) =

{(£0, [0.4, 0.5]) , (£1, [0.3, 0.4]) , (£2, [0.2, 0.3])}.

Then, by Eq. (2.2.3), we get for U1(P )

[
α, β

]
= [2.55, 2.54],
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which does not make sense because the upper bound of the interval is smaller than the lower

bound. It is a shortcoming that will result in an inaccurate decision conclusion. What is more,

sometimes we face the situation that two different UPLTSs have the same score values. At

that time, we need another ranking parameter, deviation degree, which has not been defined

for UPLTSs context yet.

To overcome the current flaws of the existing score function, it becomes very necessary to

seek a new comparison method which can be capable of comparing UPLTSs more effectively.

Inspired by the score function of PLTSs [37], in the following, we first revise the definition of

score function and then define the deviation degree of UPLTSs.

Definition 6.1.6. Let S = {£α;α = 0, 1, ..., 2τ} be an LTS, ` be a linguistic scale function

and U(p) =
{(

£k,
[
pk, qk

])
|k = 1, 2, ...,£

}
be a UPLTS on S2. Then, the score function of

U(p) is defined as

S (U(p)) =
£∑
k=1

(
pk + qk

2

)
`(£k)/

£∑
k=1

qk, (6.1.1)

the deviation degree of U(p) is

z (U(p)) =

(
£∑
k=1

((
pk + qk

2

)(
`(£k)− S (U(P ))

)2)
/

£∑
k=1

qk

)1/2

. (6.1.2)

In summary, the comparison rules for two arbitrary UPLTSs Ul(p)(l = 1, 2) are shown in

the following.

1. If S (U1(p)) > S (U2(p)), then U1(p) > U2(p);

2. If S (U1(p)) < S (U2(p)), then U1(p) < U2(p);

3. If S (U1(p)) = S (U2(p)), then:
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3.1. If z (U1(p)) > z (U2(p)), then U1(p) < U2(p);

3.2. If z (U1(p)) < z (U2(p)), then U1(p) > U2(p);

3.3. If z (U1(p)) = z (U2(p)), then U1(p) = U2(p).

Example 6.1.7. (Continued to Example 6.1.5) The score function of U1(p) and U1(p) are

computed with Eq. (6.1.1) as S (U1(p)) = 0.7583 and S (U2(p)) = 0.4236. Thus, S (U1(p)) >

S (U2(p)), and hence, U1(p) > U2(p).

6.2 The aggregation operators

Inspired by the aggregation operator developed by Krishankumar et al. [62], this section is

dedicated to focusing on the improvement of some existing aggregation operators. Besides

this, the development of a robust aggregation operator, UPLSWG is also a part of this section.

6.2.1 Improved aggregation operators

Here, we first improve some existing aggregation operators according to the novel operational

law and then based on these operators, some impressive results are derived.

Definition 6.2.1. Let Ui(p) =
{(

£k
i ,
[
pki , q

k
i

])
|k = 1, 2, ...,£i

}
(i = 1, 2, ..., n) be n UPLTSs,

where £k
i and pki are the kth linguistic term and its probability interval, respectively in Ui(p).

Then

UPLA (U1(p), U2(p), ..., Un(p)) =
1

n
(U1(p)⊕ U2(p)⊕ ...⊕ Un(p))

=
⋃

(£ki ,[pki ,qki ])∈Ui(p)
(i=1,2,...,n)


 1

n
⊕ni=1 £k

i ,

 ∏n
i=1 p

k
i∏n

i=1

(∑£i
k=1 p

k
i

) , ⊕n
i=1 q

k
i∏n

i=1

(∑£i
k=1 q

k
i

)
 ,

(6.2.1)

is called the uncertain probabilistic linguistic averaging (UPLA) operator.
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Definition 6.2.2. Let Ui(p) =
{(

£k
i ,
[
pki , q

k
i

])
|k = 1, 2, ...,£i

}
(i = 1, 2, ..., n) be n UPLTSs,

where £k
i and pki are the kth linguistic term and its probability interval, respectively in Ui(p).

Then

UPLWA (U1(p), U2(p), ..., Un(p)) =
1

n
(ω1U1(p)⊕ ω2U2(p)⊕ ...⊕ ωnUn(p))

=
⋃

(£ki ,[pki ,qki ])∈Ui(p)
(i=1,2,...,n)


⊕ni=1ωi£

k
i ,

 ∏n
i=1 p

k
i∏n

i=1

(∑£i
k=1 p

k
i

) , ⊕ni=1q
k
i∏n

i=1

(∑£i
k=1 q

k
i

)
 ,

(6.2.2)

is called the uncertain probabilistic linguistic weighted averaging (UPLWA) operator, where

w = (ω1, ω2, ..., ωn)T is the weight vector of £i(p)(i = 1, 2, ..., n), and
∑n

i=1 ωi = 1. Par-

ticularly, if w =
(
1
n
, 1
n
, ..., 1

n

)T
, then the UPLWA operator will be the same as the UPLA

operator.

Definition 6.2.3. Let Ui(p) =
{(

£k
i ,
[
pki , q

k
i

])
|k = 1, 2, ...,£i

}
(i = 1, 2, ..., n) be n UPLTSs,

where £k
i and pki are the kth linguistic term and its probability interval, respectively in Ui(p).

Then

UPLG (U1(p), U2(p), ..., Un(p)) = (U1(p)⊗ U2(p)⊗ ...⊗ Un(p))
1
n

=
⋃

(£ki ,[pki ,qki ])∈Ui(p)
(i=1,2,...,n)


(⊗ni=1£k

i

) 1
n ,

 ∏n
i=1 p

k
i∏n

i=1

(∑£i
k=1 p

k
i

) , ⊕ni=1q
k
i∏n

i=1

(∑£i
k=1 q

k
i

)
 ,

(6.2.3)

is called the uncertain probabilistic linguistic geometric (UPLG) operator.

Definition 6.2.4. Let Ui(p) =
{(

£k
i ,
[
pki , q

k
i

])
|k = 1, 2, ...,£i

}
(i = 1, 2, ..., n) be n UPLTSs,

where £k
i and pki are the kth linguistic term and its probability interval, respectively in Ui(p).
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Then

UPLWG (U1(p), U2(p), ..., Un(p)) = (U1(p)
ω1 ⊗ U2(p)

ω2 ⊗ ...⊗ Un(p)ωn)
1
n

=
⋃

(£ki ,[pki ,qki ])∈Ui(p)
(i=1,2,...,n)


⊗ni=1£k

i

ωi
,

 ∏n
i=1 p

k
i∏n

i=1

(∑£i
k=1 p

k
i

) , ⊕ni=1q
k
i∏n

i=1

(∑£i
k=1 q

k
i

)
 ,

(6.2.4)

is called the uncertain probabilistic linguistic weighted geometric (UPLWG) operator, where

w = (ω1, ω2, ..., ωn)T is the weight vector of Ui(p)(i = 1, 2, ..., n), and
∑n

i=1 ωi = 1. Especially,

if w =
(
1
n
, 1
n
, ..., 1

n

)T
, then the UPLWG degenerate into the UPLG operator.

Remark 6.2.5. In the aforementioned definitions, we demand that
∑n

i=1 ωi = 1. It con-

forms our habits and makes the aggregation operators fit for implementation. But in practical

decision-making process, sometimes, we may face the situation that
∑n

i=1 ωi < 1 which is also

reasonable. This issue must be resolved, but, luckily, it is not a big issue. One should do

a normalization to the weight vector, and then newly weight vector meets the property that∑n
i=1 ωi = 1.

Now, let us look at all sorts of excellent properties of the UPLWA operator.

Theorem 6.2.6. If all UPLTSs Ui(p)(i = 1, 2, ..., n) satisfy

Ui(p) = U(p) =
⋃

(£k,[pk,qk])∈U(P )

{(
£k,

[
pk, qk

])
|k = 1, 2, ...,£

}
, ∀ i,

then

UPLWA (U1(p), U2(p), ..., Un(p)) = UPLWA (U(p), U(p), ..., U(p)) = U(p).
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Proof. By definition of UPLWA operator, we have

UPLWA (U1(p), U2(p), ..., Un(p)) =
⋃

(£ki ,[pki ,qki ])∈Ui(p)
(i=1,2,...,n)


⊕ni=1ωi£

k
i ,

 ∏n
i=1 p

k
i∏n

i=1

(∑£i
k=1 p

k
i

) , ⊕ni=1q
k
i∏n

i=1

(∑£i
k=1 q

k
i

)


=
⋃

(£k,[pk,qk])∈U(p)


⊕ni=1ωi£

k,

 ∏n
i=1 p

k∏n
i=1

(∑£
k=1 p

k
) , ⊕ni=1q

k∏n
i=1

(∑£
k=1 q

k
)


⋃
(£k,[pk,qk])∈U(p)


 n∑

i=1

ωi£
k,

 ∏n
i=1 p

k∏n
i=1

(∑£
k=1 p

k
) , ⊕ni=1q

k∏n
i=1

(∑£
k=1 q

k
)


= U(p).

Theorem 6.2.7. Suppose Ui(p) =
⋃

(£ki ,[pki ,qki ])∈Ui(p)
{(

£k
i ,
[
pki , q

k
i

])
|k = 1, 2, ...,£i

}
be a col-

lection of UPLTSs. If U(p) =
⋃

(£k,[pk,qk])∈U(P )

{(
£k,

[
pk, qk

])
|k = 1, 2, ...,£

}
is a UPLTS,

then

UPLWA (U1(p)⊕ U(p), U2(p)⊕ U(p), ..., Un(p)⊕ U(p)) = UPLWA (U1(p), U2(p), ..., Un(p))⊕U(p).

Proof. Since for any i

Ui(p)⊕ U(p) =
⋃

(£ki ,[pki ,qki ])∈Ui(p),
(£k,[pk,qk])∈U(p)

({(
ωi(£k

i ⊕£k),

[
pki p

k∑£i
k=1 p

k
i

∑£
k=1 p

k
,

qki q
k∑£i

k=1 q
k
i

∑£
k=1 q

k

])})

UPLWA (U1(p)⊕ U(p), U2(p)⊕ U(p), ..., Un(p)⊕ U(p))

=
⋃

(£ki ,[pki ,qki ])∈Ui(p),
(£k,[pk,qk])∈U(P )

({(
⊕ni=1ωi(£k

i ⊕£k),

[ ∏n
i=1 p

k
i p
k∏n

i=1

∑£i
k=1 p

k
i

∑£
k=1 p

k
,

⊕ni=1q
k
i q

k∏n
i=1

∑£i
k=1 q

k
i

∑£
k=1 q

k

])})

=
⋃

(£ki ,[pki ,qki ])∈Ui(p)

({(
⊕ni=1ωi£

k
i ,

[ ∏n
i=1 p

k
i∏n

i=1

∑£i
k=1 p

k
i

,
⊕ni=1q

k
i∏n

i=1

∑£i
k=1 q

k
i

])})
⊕

⋃
(£k,[pk,qk])∈U(P )

{(
£k,

[
pk, qk

])
|k = 1, 2, ...,£

}
= UPLWA (U1(p), U2(p), ..., Un(p))⊕ U(p).

162



Theorem 6.2.8. Let Ui(p) =
⋃

(£ki ,[pki ,qki ])∈Ui(p)
{(

£k
i ,
[
pki , q

k
i

])
|k = 1, 2, ...,£i

}
(i = 1, 2, ..., n)

be a collection of n UPLTSs. If d > 0, then

UPLWA (dU1(p), dU2(p), ..., dUn(p)) = dUPLWA (U1(p), U2(p), ..., Un(p)) .

Proof. According to Definition 6.1.2, we have

dUi(p) =
⋃

(£ki ,[pki ,qki ])∈Ui(p)

{(
d£k

i ,
[
pki , q

k
i

])
|k = 1, 2, ...,£i

}
.

By definition of UPLWA operator, we have

UPLWA (dU1(p), dU2(p), ..., dUn(p))

=
⋃

(£ki ,[pki ,qki ])∈Ui(p)

({(
⊕ni=1ωid£k

i ,

[ ∏n
i=1 p

k
i∏n

i=1

∑£i
k=1 p

k
i

,
⊕ni=1q

k
i∏n

i=1

∑£i
k=1 q

k
i

])})

= d
⋃

(£ki ,[pki ,qki ])∈Ui(p)

({(
⊕ni=1ωi£

k
i ,

[ ∏n
i=1 p

k
i∏n

i=1

∑£i
k=1 p

k
i

,
⊕ni=1q

k
i∏n

i=1

∑£i
k=1 q

k
i

])})

= dUPLWA (U1(p), U2(p), ..., Un(p)) .

Thus completing the proof of Theorem.

According to Theorem 6.2.7 and 6.2.8, we can get Theorem 6.2.9 easily.

Theorem 6.2.9. Suppose Ui(p) =
⋃

(£ki ,[pki ,qki ])∈Ui(p)
{(

£k
i ,
[
pki , q

k
i

])
|k = 1, 2, ...,£i

}
be a col-

lection of UPLTSs. If U(p) =
⋃

(£k,[pk,qk])∈U(P )

{(
£k,

[
pk, qk

])
|k = 1, 2, ...,£

}
is a UPLTS,

then

UPLWA (dU1(p)⊕ U(p), dU2(p)⊕ U(p), ..., dUn(p)⊕ U(p)) = dUPLWA (U1(p), U2(p), ...,

Un(p))⊕ U(p).
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Theorem 6.2.10. Let Ui(p) =
{(

£k
i ,
[
pki , q

k
i

])
|k = 1, 2, ...,£i

}
(i = 1, 2, ..., n) and U

′
i (p) ={(

£
′
i

k
,
[
p
′
i

k
, q
′
i

k
])
|k = 1, 2, ...,£i

}
(i = 1, 2, ..., n) be two collections of UPLTSs, then

UPLWA
(
U1(p)⊕ U

′

1(p), U2(p)⊕ U
′

2(p), ..., Un(p)⊕ U ′n(p)
)

= UPLWA (U1(p), U2(p), ..., Un(p))

⊕ UPLWA
(
U
′

1(p), U
′

2(p), ..., U
′

n(p)
)
.

Proof. According to Definition 6.1.2, we have

Ui(p)⊕ U
′

i (p) =
⋃

(£ki ,[pki ,qki ])∈Ui(p),(
£
′
i

k
,

[
p
′
i

k
,q
′
i

k
])
∈U ′i (P )

{(
£k
i ⊕£

′

i

k
,

[
pki p

′
i

k∑£i
k=1 p

k
i

∑£i
k=1 p

′
i

,
qki q

′
i

k∑£i
k=1 q

k
i

∑£i
k=1 q

′
i
k

])}
.

By definition of UPLWA operator, we have

UPLWA
(
U1(p)⊕ U

′

1(p), U2(p)⊕ U
′

2(p), ..., Un(p)⊕ U ′n(p)
)

=
⋃

(£ki ,[pki ,qki ])∈Ui(p),(
£
′
i

k
,

[
p
′
i

k
,q
′
i

k
])
∈U ′i (p)



⊕ni=1ωi

(
£k
i ⊕£

′

i

k
)
,


∏n

i=1

(
pki p

′
i

k
)

∏n
i=1

(∑£i
k=1 p

k
i

∑£
′
i

k=1 p
′
i
k
) , ⊕ni=1

(
qki q

′
i

k
)

∏n
i=1

(∑£i
k=1 q

k
i

∑£
′
i

k=1 q
′
i
k
)





=
⋃

(£ki ,[pki ,qki ])∈Ui(p)


⊕ni=1ωi£

k
i ,

 ∏n
i=1

(
pki
)∏n

i=1

(∑£i
k=1 p

k
i

) , ⊕ni=1

(
qki
)∏n

i=1

(∑£i
k=1 q

k
i

)




⊕
⋃

(
£
′
i

k
,
[
p
′
i

k
,q
′
i

k
])
∈U ′i (p)



⊕ni=1ωi£

′

i

k
,


∏n

i=1

(
p
′
i

k
)

∏n
i=1

(∑£
′
i

k=1 p
′
i
k
) , ⊕ni=1

(
qki q

′
i

k
)

∏n
i=1

(∑£
′
i

k=1 q
′
i
k
)





= UPLWA (U1(p), U2(p), ..., Un(p))⊕ UPLWA
(
U
′

1(p), U
′

2(p), ..., U
′

n(p)
)
.

Theorem 6.2.11. Let U?
i (p) be any permutation of Ui(p)(i = 1, 2, ..., n), then

UPLWA (U1(p), U2(p), ..., Un(p)) = UPLWA (U?
1 (p), U?

2 (p), ..., U?
n(p)) .

Proof. Because (U?
1 (p), U?

2 (p), ..., U?
n(p)) is any permutation of (U1(p), U2(p), ..., Un(p)), by def-

inition of UPLWA and the operational law (1) of Definition 6.1.2, we can conclude that

UPLWA (U1(p), U2(p), ..., Un(p)) = UPLWA (U?
1 (p), U?

2 (p), ..., U?
n(p)) .
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Therefore, we complete the proof of Theorem 6.2.11.

Theorem 6.2.12. Let Ui(p) =
{(

£k
i ,
[
pki , q

k
i

])
|k = 1, 2, ...,£i

}
be UPLTSs, then the fused

value of UPLTSs, computed by applying UPLWA operator, is still UPLTS.

Proof. According to the definition of UPLWA operator, we have

UPLWA (U1(p), U2(p), ..., Un(p)) =
⋃

(£ki ,[pki ,qki ])∈Ui(p)

({(
⊕ni=1ωi£

k
i ,

[ ∏n
i=1 p

k
i∏n

i=1

∑£i
k=1 p

k
i

,

⊕ni=1q
k
i∏n

i=1

∑£i
k=1 q

k
i

])})
.

According to the operational laws of (Xu, 2004), ⊕ni=1ωi£
k
i is an LTS, further from definition

of UPLTS, we have
∑£i

k=1 p
k
i ≤ 1,

∑£i
k=1 q

k
i ≥ 1 ∀ i, from this we can set forth

∏n
i=1 p

k
i∏n

i=1

∑£i
k=1 p

k
i

≤ 1

⊕ni=1q
k
i∏n

i=1

∑£i
k=1 q

k
i

≥ 1.

Based on Definition 6.1.2, some relevant theorems can be obtained and described as follows:

Theorem 6.2.13. Suppose Ui(p) =
⋃

(£ki ,[pki ,qki ])∈Ui(p)
{(

£k
i ,
[
pki , q

k
i

])
|k = 1, 2, ...,£i

}
be a col-

lection of UPLTSs. If U(p) =
⋃

(£k,[pk,qk])∈U(p)

{(
£k,

[
pk, qk

])
|k = 1, 2, ...,£

}
is a UPLTS,

then

UPLWG (U1(p)⊗ U(p), U2(p)⊗ U(p), ..., Un(p)⊗ U(p)) = UPLWG (U1(p), U2(p), ..., Un(p))⊗

U(p).

Proof. The proof of Theorem 6.2.13, is similar to that of Theorem 6.2.7.

Theorem 6.2.14. If all UPLTSs Ui(p)(i = 1, 2, ..., n) satisfy

Ui(p) = U(p) =
⋃

(£k,[pk,qk])∈U(P )

{(
£k,

[
pk, qk

])
|k = 1, 2, ...,£

}
, ∀ i,
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then

UPLWG (U1(p), U2(p), ..., Un(p)) = UPLWG (U(p), U(p), ..., U(p)) = U(p).

Theorem 6.2.15. Let Ui(p) =
⋃

(£ki ,[pki ,qki ])∈Ui(p)
{(

£k
i ,
[
pki , q

k
i

])
|k = 1, 2, ...,£i

}
(i = 1, 2, ..., n)

be a collection of n UPLTSs. If d > 0, then

UPLWG (dU1(p), dU2(p), ..., dUn(p)) = (UPLWG (U1(p), U2(p), ..., Un(p)))d .

Proof. The proof of Theorem 6.2.15 is similar to that of Theorem 6.2.8.

Using Theorems 6.2.13 and 6.2.15, we can get Theorem 6.2.16 easily.

Theorem 6.2.16. Suppose Ui(p) =
⋃

(£ki ,[pki ,qki ])∈Ui(p)
{(

£k
i ,
[
pki , q

k
i

])
|k = 1, 2, ...,£i

}
be a col-

lection of UPLTSs. If U(p) =
⋃

(£k,[pk,qk])∈U(p)

{(
£k,

[
pk, qk

])
|k = 1, 2, ...,£

}
is a UPLTS,

then

UPLWA
(

(U1(p))
d ⊗ U(p), (U2(p))

d ⊗ U(p), ..., (Un(p))d ⊗ U(p)
)

= (UPLWA (U1(p), U2(p), ...

, Un(p)))d ⊗ U(p).

The proof of Theorem 6.2.17 is similar to that of Theorem 6.2.13, and thus it is not

provided here.

Theorem 6.2.17. Let Ui(p) =
{(

£k
i ,
[
pki , q

k
i

])
|k = 1, 2, ...,£i

}
(i = 1, 2, ..., n) and U

′
i (p) ={(

£
′
i

k
,
[
p
′
i

k
, q
′
i

k
])
|k = 1, 2, ...,£i

}
(i = 1, 2, ..., n) be two collections of UPLTSs, then

UPLWG
(
U1(p)⊗ U

′

1(p), U2(p)⊗ U
′

2(p), ..., Un(p)⊗ U ′n(p)
)

= UPLWG (U1(p), U2(p), ..., Un(p))

⊗ UPLWG
(
U
′

1(p), U
′

2(p), ..., U
′

n(p)
)
.
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Theorem 6.2.18. Let U?
i (p) be any permutation of Ui(p)(i = 1, 2, ..., n), then

UPLWA (U1(p), U2(p), ..., Un(p)) = UPLWA (U?
1 (p), U?

2 (p), ..., U?
n(p)) .

Proof. The proof is similar to Theorem 6.2.11, which is discussed already.

Theorem 6.2.19. Let Ui(p) =
{(

£k
i ,
[
pki , q

k
i

])
|k = 1, 2, ...,£i

}
be UPLTSs, then the fused

value of UPLTSs, computed by applying UPLWG operator, is still UPLTS.

Proof. Similarly, as proof of Theorem 6.2.12, it is omitted here.

6.2.2 The UPLSWG operator

This part concentrates on the construction of UPLSWG operator, which makes full use of all

the input arguments and considers DMs weight among multi-input arguments.

Definition 6.2.20. Let Ui(p) =
⋃

(£ki ,[pki ,qki ])∈Ui(p)
{(

£k
i ,
[
pki , q

k
i

])
|k = 1, 2, ...,£i

}
be a collec-

tion of UPLTSs, then the aggregation of UPLTS information is a mapping Un −→ U such

that,

UPLSWGπ (U1(p), U2(p), ..., Un(p)) = U∗ (p) =
⋃

(£∗k,[p∗k,q∗k])∈U∗(P )

{(
£∗k,

[
p∗k, q∗k

])
|k = 1, 2, ...,£∗

}
,

(6.2.5)

here

£∗k =

Scheme1, if all the linguistic terms are unique

Scheme2, otherwise.

(6.2.6)

[
p∗k, q∗k

]
=

[
m∏
l=1

pki
πl ,

m∏
l=1

qki
πl

]
, (6.2.7)
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where πl is the relative importance of lth DM with 0 ≤ πl ≤ 1 and
∑m

l=1 πl = 1, m is the total

number of DMs.

Scheme1= The average of the subscripts is computed and rounding off principal is applied

to get a non-artificial linguistic term.

Scheme2= According to Eq. (6.2.7), the interval probability of each linguistic term is

computed, and the term with maximum interval probability is selected as the aggregated value.

Following are a few properties of UPLSWG operator that immediately follow from its

definition.

Property 1. (Idempotency) If all UPLTSs Ui(p)(i = 1, 2, ..., n) satisfy

Ui(p) = U(p) =
⋃

(£k,[pk,qk])∈U(P )

{(
£k,

[
pk, qk

])
|k = 1, 2, ...,£

}
,∀ i,

then

UPLSWGπ (U1(p), U2(p), ..., Un(p)) = UPLSWGπ (U(p), U(p), ..., U(p)) = U(p).

Property 2. (Boundedness) Let Ui(p) =
⋃

(£ki ,[pki ,qki ])∈Ui(p)
{(

£k
i ,
[
pki , q

k
i

])
|k = 1, 2, ...,£i

}
be

a set of UPLTSs, then

U(p)− ≤ UPLSWGπ (U1(p), U2(p), ..., Un(p)) ≤ U(p)+

where U(p)− = min (Ui(p)) and U(p)+ = max (Ui(p)) ∀ i = 1, 2, ..., n.

Property 3. (Monotonicity) Let Ui(p) =
⋃

(£ki ,[pki ,qki ])∈Ui(p)
{(

£k
i ,
[
pki , q

k
i

])
|k = 1, 2, ...,£i

}
and

U
′
i (p) =

⋃(
£′
k
i ,
[
p′
k
i ,q
′k
i

])
∈U ′ i(p)

{(
£
′k

i ,
[
p
′k

i , q
′k

i

])
|k = 1, 2, ...,£

′
i

}
be two sets of UPLTSs,

if £k
i ≤ £

′k

i and
[
pki , q

k
i

]
≤
[
p
′k

i , q
′k

i

]
∀ i = 1, 2, ..., n, then

UPLSWGπ (U1(p), U2(p), ..., Un(p)) ≤ UPLSWGπ

(
U
′

1(p), U
′

2(p), ..., U
′

n(p)
)
.
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Property 4. (Commutativity) Let U?
i (p) be any permutation of Ui(p)(i = 1, 2, ..., n), then

UPLSWGπ (U1(p), U2(p), ..., Un(p)) = UPLSWGπ (U?
1 (p), U?

2 (p), ..., U?
n(p)) .

Theorem 6.2.21. The aggregated value of UPLTSs by using UPLSWG operator is also an

UPLTS.

Proof. From the formulation presented in Eq. (6.2.6), it is evident that the aggregation of

linguistic terms also form a linguistic term which is within the defined LTS. Next using Lemma

2.1.24, we have the following inequalities ∀ i = 1, 2, ..., n

0 ≤
m∏
l=1

(
qki
)πl ≤ m∑

l=1

πl
(
qki
)
≤

m∑
l=1

πl = 1. (6.2.8)

Also,

0 ≤
m∏
l=1

(
1− pki

)πl ≤ m∑
l=1

πl
(
1− pki

)
≤

m∑
l=1

πl = 1

1 ≥ 1−
m∏
l=1

(
1− pki

)πl ≥ 1−
m∑
l=1

πl
(
1− pki

)
≥ 0. (6.2.9)

From these two inequalities, it is clear that both the bounds of interval probability are within

the range of [0, 1]. Further,
∑£i

k=1 p
k
i ≤ 1,

∑£i
k=1 q

k
i ≥ 1 from this we can write

∑£∗i
k=1 1 −∏m

l=1

(
(1− pi)k

)
≤ 1,

∑£∗i
k=1

∏m
l=1

(
(qi)

k
)
≥ 1 (being weighted geometric means).

Thus, we can say that the aggregated linguistic term and its associated interval probability

follow the constraints given in Definition 2.2.1.

An example can be set up for clarification.

Example 6.2.22. Let S = {£α|α = 0, 1, ...., 6} be an LTS. Suppose that the comments of two

DMs with their weight values (0.6, 0.4), for a particular scenario are U1(p) = {(£5, [0.5, 0.6]) ,
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(£4, [0.4, 0.5])} and U2(p) = {(£1, [0.4, 0.5]) , (£0, [0.5, 0.6])}, respectively. Now, if we em-

ployed the UPLSWG operator on the provided information, then the aggregated result is

given by {(£3, [0.4573, 0.5578]) , (£2, [0.4373, 0.5378])}. But if we take the rating U1(p) as:

U1(p) = {(£5, [0.5, 0.6]) , (£6, [0.4, 0.5])}, then the aggregated result generated by UPLSWG

operator is {(£3, [0.4573, 0.5578]) , (£3, [0.4373, 0.5378])} = {(£3, [0.4573, 0.5578])}.

Some major advantages of the proposed UPLSWG operator are outlined below.

i. It can be noticed from the formulation given in Eq. (6.2.6) that the aggregation of

UPLTSs utilizing UPLSWG operator produces no artificial term. Which confirms that

the aggregation process of UPLTSs is stable and acceptable.

ii. Unlike UPLWA and UPLWG operators, the aggregated linguistic terms do not exceed

the bounds of LTS, which can be realized from Example 6.2.22.

iii. The relative importance of each DM is considered in the aggregation process of as-

sociated interval probabilities of linguistic terms. Therefore, we obtain better results,

especially in a situation where DMs are of different rank.

6.3 MCGDM with uncertain probabilistic linguistic in-

formation

In the following, we study a decision-making methodology in which the information related

to the weight vector of criteria is entirely unknown, and the assessment information takes the

form of UPLTSs.

6.3.1 Entropy method to determine the criteria weights

Deriving criteria weight is an important step that arises in most MCGDM models. In this

section, efforts are made to generalize the entropy method to UPLTS context. To achieve this
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task, the scheme of the proposal is presented below.

Firstly, it is assumed that there is a set of m feasible alternatives zi(i = 1, 2, ...,m) and n

criteria cj(j = 1, 2, ..., n).

Step 1: The uncertain probabilistic linguistic decision matrix U which shows the performance

of different alternatives with respect to various criteria is constructed.

U = [uij] =



u11 u12 · · · u1n

u21 u22 · · · u2n

...
...

. . .
...

um1 um2 · · · umn


(i = 1, 2, ...,m, j = 1, 2, ..., n), (6.3.1)

here, each uij is an UPLTS representing the performance value of ith alternative with

respect to jth criteria.

Step 2: Firstly, utilize one of the proposed aggregation operators to obtain the aggregated de-

cision matrix U and then normalize all the entries of U by the following formula

fij =

∑uij
k=1

((
pkij+q

k
ij

2

)
`(£k

ij)
)

∑m
i=1

∑uij
k=1

((
pkij+q

k
ij

2

)
`(£k

ij)
) , j = 1, 2, ..., n. (6.3.2)

Step 3: The entropy values (ej) are derived for each criteria by

ej =
−
∑m

i=1 fij ln fij
lnm

; i = 1, 2, ...,m, j = 1, 2, ..., n, (6.3.3)

here 0 < ej < 1. If fij are all the same, then the entropy values of each criteria is the

maximum (ej = 1). If fij = 0, then fij ln fij = 0 [63].
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Step 4: Entropy weights are calculated as

ωj =
1− ej

n−
∑n

j=1 ej
;

n∑
j=1

ωj = 1. (6.3.4)

In the above equation, 1 − ej represents the degree of divergence of each criterion’s

inherent information. The larger the value of the entropy, the smaller the entropy-

based weight and vice-versa.

6.3.2 WASPAS method for MCGDM under UPLTS context

This section presents an extension of the classical WASPAS method to UPLTS setting for

choosing an appropriate alternative from the range of available alternatives.

WASPAS methodology is based on a combination of two models WSM (weighted sum

model) and WPM (weighted product model) [64]. The stated collection improves its capability

of accuracy compared to other MCGDM techniques. It is one of the advance multi-index

decision-making model which has been copped and employed in several domains [62, 65, 66].

Let Z = {z1, z2, ..., zm} be a set of m alternatives and C = {c1, c2, ..., cn} be a set of

n criteria whose weight vector is unknown. Further, assume that there is a set of l DMs

D = {d1, d2, ..., dl} whose weight vector is π = {π1, π2, ..., πl} where πk > 0 and
∑l

k=1 πk = 1

such that each DM has provided his assessment values in the form of UPLTSs Uk
ij(P ). Then,

the proposed methodology has been summarized into the following steps to tackle MCGDM

problems under UPLTS environment.

Step 1: Build the aggregated uncertain probabilistic linguistic decision matrix:

To aggregate all the individual decision matrices and create a single group decision ma-

trix, utilize one of the proposed aggregation operator to obtain the aggregated decision

matrix.

Step 2: Determine the criteria weights:
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Compute the criteria weights according to the entropy approach shown in Section 6.3.1.

Step 3: Weighted sum measure of alternatives:

Calculate the weighted sum measure (WSM) of each alternative zi(i = 1, 2, ...,m) by

using the following formula

WSM = Q1
i =

n∑
j=1

ωj

(
uij∑
k=1

(
pkij + qkij

2

)
+ `
(
£k
ij

))
. (6.3.5)

Step 4: Weighted product measure of alternatives:

Derive the weighted product measure (WPM) of each alternative zi(i = 1, 2, ..., n) by

using the following formula

WPM = Q2
i =

n∏
j=1

(
uij∑
k=1

(
pkij + qkij

2

)
`
(
£k
ij

))ωj

. (6.3.6)

Step 5: Aggregated measure of alternatives:

Compute the aggregated measure of each alternative zi(i = 1, 2, ..., n), as follows:

Qi = λ

(
Q1
i −Q1

i
−

Q1
i
+ −Q1

i
−

)
+ (1− λ)

(
Q2
i −Q2

i
−

Q2
i
+ −Q2

i
−

)
, (6.3.7)

where Q1
i
−

= minQ1
i , Q

1
i
+

= maxQ1
i , Q

2
i
−

= minQ2
i , Q

2
i
+

= maxQ2
i and λ is the

aggregating coefficient of decision precision. It is developed to estimate the accuracy

of WASPAS based on initial criteria exactness and λ ∈ [0, 1](when λ = 0, and λ = 1,

WASPAS is transformed to the WPM and the WSM, respectively). It has been proven

that the accuracy of the aggregating methods is higher than the accuracy of single ones.

Step 6: Sort the alternatives:
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For comparison, arrange the alternatives zi(i = 1, 2, ..., n) according to decreasing values

of Qi.

Step 7: End.

6.4 Implementation of WASPAS method

This section addresses a case study of selecting the best supplier from the bunch of suppliers

to validate the feasibility and effectiveness of the developed model. In order to deal in the

present competitive environment, a company must supply top quality products and services

at a reasonable rate and shorter lead time. It is not practicable to score such goals except for

the right input products from the right suppliers. On account of this, choosing appropriate

suppliers becomes one of the primary decision-making problem faced by a company.

The supplier selection is complex and uncertain since it involves different selection criteria

and several DMs with different prospectives. Therefore, many authors utilised MCGDM

techniques [67, 68, 69] in supplier selection problem, but these studies are unable to model

the situations in which DMs assessments take the form of UPLTSs. In this segment, we apply

the constructed algorithm to a supplier selection problem in a food company by considering

three supplier alternatives z1, z2 and z3, which we want to select the best one among them

using four criteria c1=delivery, c2=salary package, c3=service and c4=quality. Three DMs d1,

d2 and d3 whose weight vector is π = {0.3, 0.4, 0.3} assess the alternatives with respect to the

four independent criteria by using the linguistic term set S = {£0,£1,£2,£3,£4,£5,£6} =

{very low, low,medium, high, very high, perfect}. The DMs assessments information (after

the transformation from PLTSs to UPLTSs framework, utilizing the technique mentioned in

Ref. [33] are listed in Table 6.1.
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Table 6.1: The uncertain probabilistic linguistic decision matrix

DMs Suppliers
Evaluation criteria

c1 c2 c3 c4

d1 z1 {(£2, [0.3, 0.5]) , (£3, [0.5, 0.7])} {(£3, [0.4, 0.6]) , (£4, [0.4, 0.6])} {(£3, 0.6) , (£2, 0.4)} {(£0, 0.4) , (£1, 0.6)}

z2 {(£2, 0.4) , (£3, 0.2) , (£1, 0.4)} {(£2, [0.5, 0.6]) , (£3, [0.4, 0.5])} {(£2, 0.4) , (£0, 0.3) , (£1, 0.3)} {(£1, [0.2, 0.4]) , (£2, [0.6, 0.8])}

z3 {(£0, 0.2) , (£1, 0.2) , (£2, 0.6)} {(£3, 0.6) , (£2, 0.2) , (£1, 0.2)} {(£2, [0.3, 0.5]) , (£1, [0.5, 0.7])} {(£3, 0.4) , (£2, 0.3) , (£1, 0.3)}

d2 z1 {(£3, 0.6) , (£2, 0.4)} {(£0, 0.5) , (£1, 0.3) , (£2, 0.2)} {(£2, 0.6) , (£1, 0.4)} {(£4, [0.4, 0.5]) , (£5, [0.5, 0.6])}

z2 {(£4, [0.3, 0.5]) , (£3, [0.5, 0.7])} {(£0, 0.7) , (£1, 0.3)} {(£2, 0.5) , (£3, 0.5) , } {(£2, [0.6, 0.8]) , (£1, [0.2, 0.4])}

z3 {(£4, 0.4) , (£5, 0.3) , (£3, 0.3)} {(£1, [0.5, 0.6]) , (£0, [0.4, 0.5])} {(£2, 0.7) , (£3, 0.3)} {(£2, 0.6) , (£1, 0.4)}

d3 z1 {(£0, [0.5, 0.7]) , (£1, [0.3, 0.5])} {(£3, 0.3) , (£1, 0.5) , (£2, 0.2)} {(£1, 0.5) , (£2, 0.5)} {(£1, [0.4, 0.5]) , (£0, [0.5, 0.6])}

z2 {(£3, [0.3, 0.4]) , (£2, [0.6, 0.7]) , (£2, 0)} {(£5, 0.2) , (£4, 0.2) , (£3, 0.6)} {(£2, 0.25) , (£1, 0.75)} {(£2, [0.2, 0.4]) , (£1, [0.6, 0.8])}

z3 {(£3, 0.4) , (£2, 0.3) , (£1, 0.3)} {(£1, 0.7) , (£2, 0.3)} {(£3, [0.5, 0.6]) , (£2, [0.4, 0.5])} {(£1, 0.5) , (£0, 0.5)}

We first scaled and ordered the UPLTSs in the presented in Table 6.1, and then proceed

to aggregation step.

The scaled and ordered UPLTSs are depicted in Table 6.2.

Table 6.2: The scaled and ordered uncertain probabilistic linguistic decision matrix

DMs Suppliers
Evaluation criteria

c1 c2 c3 c4

d1 z1 {(£3, [0.5, 0.7]) , (£2, [0.3, 0.5]) , (£2, 0)} {(£4, [0.4, 0.6]) , (£3, [0.4, 0.6]) , (£3, 0)} {(£3, 0.6) , (£2, 0.4) , (£2, 0)} {(£1, 0.6) , (£0, 0.4) , (£0, 0)}

z2 {(£2, 0.4) , (£3, 0.2) , (£1, 0.4)} {(£3, [0.4, 0.5]) , (£2, [0.5, 0.6]) , (£2, 0)} {(£2, 0.4) , (£1, 0.3) , (£0, 0.3)} {(£2, [0.6, 0.8]) , (£1, [0.2, 0.4]) , (£1, 0)}

z3 {(£2, 0.6) , (£1, 0.2) , (£0, 0.2)} {(£3, 0.6) , (£2, 0.2) , (£1, 0.2)} {(£2, [0.3, 0.5]) , (£1, [0.5, 0.7]) , (£1, 0)} {(£3, 0.4) , (£2, 0.3) , (£1, 0.3)}

d2 z1 {(£3, 0.6) , (£2, 0.4) , (£2, 0)} {(£2, 0.2) , (£1, 0.3) , (£0, 0.5)} {(£2, 0.6) , (£1, 0.4) , (£1, 0)} {(£5, [0.5, 0.6]) , (£4, [0.4, 0.5]) , (£4, 0)}

z2 {(£3, [0.5, 0.7]) , (£4, [0.3, 0.5]) , (£3, 0)} {(£1, 0.3) , (£0, 0.7) , (£0, 0)} {(£3, 0.5) , (£2, 0.5) , (£2, 0)} {(£2, [0.6, 0.8]) , (£1, [0.2, 0.4], (£1, 0))}

z3 {(£4, 0.4) , (£5, 0.3) , (£3, 0.3)} {(£1, [0.5, 0.6]) , (£0, [0.4, 0.5]) , (£0, 0)} {(£2, 0.7) , (£3, 0.3) , (£2, 0)} {(£2, 0.6) , (£1, 0.4) , (£1, 0)}

d3 z1 {(£1, [0.3, 0.5]) , (£0, [0.5, 0.7]) , (£0, 0)} {(£3, 0.3) , (£1, 0.5) , (£2, 0.2)} {(£2, 0.5) , (£1, 0.5) , (£1, 0)} {(£1, [0.4, 0.5]) , (£0, [0.5, 0.6], (£0, 0))}

z2 {(£2, [0.6, 0.7]) , (£3, [0.3, 0.4]) , (£2, 0)} {(£3, 0.6) , (£5, 0.2) , (£4, 0.2)} {(£1, 0.75) , (£2, 0.25) , (£1, 0)} {(£1, [0.6, 0.8]) , (£2, [0.2, 0.4]) , (£1, 0)}

z3 {(£3, 0.4) , (£2, 0.3) , (£1, 0.3)} {(£1, 0.7) , (£2, 0.3) , (£1, 0)} {(£3, [0.5, 0.6]) , (£2, [0.4, 0.5]) , (£2, 0)} {(£1, 0.5) , (£0, 0.5) , (£0, 0)}

The results obtained after aggregation are presented in Table 6.3.
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Table 6.3: The uncertain probabilistic linguistic decision matrix after aggregation

c1 c2 c3 c4

z1 {(£2, [0.4614, 0.5949]) , (£1, [0.3923, 0.5059])} {(£3, [0.2780, .3140]) , (£2, [0.3812, 0.4305])} {(£2, 0.5680) , (£1, 0.4277)} {(£2, [0.4939, 0.5680]) , (£1, [0.4277, 0.4939])}

z2 {(£2, [0.4939, 0.5918]) , (£3, [0.2656, 0.3552])} {(£2, [0.4345, 0.4589])} {(£2, 0.5281)} {(£2, [0.6, 0.8]) , (£1, [0.2, 0.4])}

z3 {(£3, 0.4517) , (£2, 0.2656) , (£1, 0.2656)} {(£2, [0.5842, 0.6284]) , (£1, [0.2980, 0.3259])} {(£2, [0.4908, 0.6042])} {(£2, 0.5030) , (£1, 0.3923)}

The entropy values are computed for each criteria and entropy weights are determined by

means of Eq. (6.3.3) and Eq. (6.3.4).

Table 6.4: Entropy values and entropy weights (UPL-WASPAS)

c1 c2 c3 c4

Entropy values (ej) 0.9898 0.9690 0.9848 0.9967

Entropy weights (ωj) 0.1709 0.5192 0.2546 0.0553

According to the Table 6.4, the c2 (salary package) is the most important criteria with

the highest entropy weight. c1 (delivery), c4 (quality) and c3 (service) follow this criteria,

respectively.
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Table 6.5: Sensitivity analysis (UPL-WASPAS)

λ values Suppliers UPL-WASPAS score Ranking order

0.1 z1 1 z1 > z3 > z2

z2 0

z3 0.7253

0.2 z1 1 z1 > z3 > z2

z2 0

z3 0.7266

0.3 z1 1 z1 > z3 > z2

z2 0

z3 0.7279

0.4 z1 1 z1 > z3 > z2

z2 0

z3 0.7292

0.5 z1 1 z1 > z3 > z2

z2 0

z3 0.7305

0.6 z1 1 z1 > z3 > z2

z2 0

z3 0.7317

0.7 z1 1 z1 > z3 > z2

z2 0

z3 0.7330

0.8 z1 1 z1 > z3 > z2

z2 0

z3 0.7343

0.9 z1 1 z1 > z3 > z2

z2 0

z3 0.7356
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6.5 Comparative study and discussion

In this section, the developed method’s outcomes are investigated based on a comparison and

a sensitivity analysis. Besides, managerial implications are also documented in this section.

6.5.1 Ranking of alternatives applying classical approach

For comparison, in this section, we utilise the existing aggregation operator to carry out

the aggregation process in the proposed method. By doing so, the aggregated assessment

information takes the form of HFLTSs as a substitute for UPLTSs.

Here, we aggregate the provided decision matrix by utilizing the UPLA operator of Ref.

[33].

Table 6.6: The uncertain probabilistic linguistic decision matrix after aggregation

c1 c2 c3 c4

z1 {£1.3333,£0.5334,£0} {£1.1,£0.7767,£0.1333} {£1.3333,£0.5667,£0} {£1.2667,£0.6,£0}

z2 {£1.3,£1.0833,£0.1333} {£1.15,£0.7,£0.2667} {£1.0167,£1.4,£0} {£2.1103,£1.2,£0}

z3 {£1.3433,£0.7667,£0.6} {£1.0166,£0.3333,£0.0667} {£1.2834,£0.8,£0} {£0.9667,£0.3333,£0.1}

Table 6.6 depicts that the aggregated data is no more in the form of UPLTSs. It has

lost the probability information and reduce to hesitant fuzzy linguistic context. Therefore,

we employ the hesitant fuzzy linguistic (HFL)-WASPAS approach. The steps involved in the

mechanism of this approach are almost similar to that of UPL-WASPAS method. Anyway,

the Formulas (6.3.2), (6.3.5), and (6.3.6) reduce to

fij =

∑uij
k=1

(
`(£k

ij)
)∑m

i=1

∑uij
k=1

(
`(£k

ij)
) , j = 1, 2, ..., n, (6.5.1)
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WSM = Q1
i =

n∑
j=1

ωj

(
uij∑
k=1

`
(
£k
ij

))
, (6.5.2)

and

WPM = Q2
i =

n∏
j=1

(
uij∑
k=1

`
(
£k
ij

))ωj

, (6.5.3)

respectively.

Table 6.7: Entropy values and entropy weights (HFL-WASPAS)

c1 c2 c3 c4

Entropy values (ej) 0.9890 0.9868 0.9955 0.9396

Entropy weights (ωj) 0.1235 0.1481 0.0505 0.6779

The evaluation parameters for UPL-WASPAS and HFL-WASPAS are depicted in Table

6.8.

Table 6.8: Evaluation parameters for WASPAS method

Suppliers
UPL-WASPAS HFL-WASPAS

WSM WPM WSM WPM

z1 1.5128 0.2699 0.3148 0.3149

z2 0.9955 0.1851 0.4983 0.4809

z3 1.3767 0.2465 0.2664 0.2587
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Table 6.9: Sensitivity analysis (HFL-WASPAS)

λ values Suppliers HFL-WASPAS score Ranking order

0.1 z1 0.2485 z2 > z1 > z3

z2 1

z3 0

0.2 z1 0.2440 z2 > z1 > z3

z2 1

z3 0

0.3 z1 0.2396 z2 > z1 > z3

z2 1

z3 0

0.4 z1 0.2352 z2 > z1 > z3

z2 1

z3 0

0.5 z1 0.2308 z2 > z1 > z3

z2 1

z3 0

0.6 z1 0.2264 z2 > z1 > z3

z2 1

z3 0

0.7 z1 0.2219 z2 > z1 > z3

z2 1

z3 0

0.8 z1 0.2175 z2 > z1 > z3

z2 1

z3 0

0.9 z1 0.2131 z2 > z1 > z3

z2 1

z3 0
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To present a more realistic view of the comparison results, we sketch the ranking results

yielded by UPL-WASPAS and HFL-WASPAS methods into Fig. 6.1. From Fig. 6.1, it is

clear that the ranking order of suppliers obtained by these two approaches is quite different.

In the following, we make explanations and analysis for this difference.

Figure 6.1: The representation of the UPL-WASPAS and HFL-WASPAS methods ranking

Firstly, the aggregation operator utilised in HFL-WASPAS method is based on existing

operational law. By dint of the defects of that operational law, as discussed in Example 6.1.1,

the ranking result obtained by this model is not acceptable. Secondly, the linguistic terms

generated after aggregation based on UPLA operator are not the possible linguistic terms of

the provided linguistic term set and may cross the boundary of a linguistic term set in some

cases. It is not reliable. Our proposed operator makes sure that the aggregated linguistic

terms are the possible linguistic terms in UPLTS within the boundary of the linguistic term

set. Thirdly, from Tables 6.4 and 6.7 it is evident that the weight vector obtained by the

proposed aggregation based method and the existing aggregation operator based method is
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not the same. According to the weight vector of Table 6.4, the criteria c2 is the most important

criteria while the weight vector obtained in Table 6.7 insist upon criteria c4. The difference

in evaluation is due to the information loss that occurs in the existing aggregation operator

based method. Actually, the Eq. (6.5.1), and used in the mechanism of this approach is based

on HFLTSs which have lost their probability information, which is an obvious limitation.

Therefore, the weight vector derived by this method is not acceptable. It also causes a

difference in the ranking results obtained by the two methods. Last but not least, the reason

behind the difference of ranking result is that the proposed operator utilised in UPL-WASPAS

method considers the DMs weight information during the aggregation process. In contrast,

the existing aggregation operators pay no attention to the DMs weight, which may result in

an irrational ranking of alternatives.

One of the measures that can be used to evaluate various approaches in the field of

MCGDM is the ability to differentiate between alternatives. One way to determine this mea-

sure is by using the coefficient of variation. The coefficient of variation is formulated by

dividing the standard deviation by average. After computing this index for the developed

method, it is proved that this method has the useful ability to distinguish between alter-

natives. In the UPL-WASPAS method, the coefficient of variation is 0.8970, while for the

HFL-WASPAS method, it is equal to 1.2761.

MCGDM methods have been widely used in supplier selection problems. In this research,

we have considered the process of multi criteria group evaluation of suppliers in the context of

UPLTSs for the first time. UPLTSs can reduce incomplete information under uncertainty. The

WASPAS approach is one of the advanced MCGDM methods and has been applied to many

practical problems [70, 71, 72]. In the present study, we have developed a novel WASPAS

method based on the proposed UPLSWG operator to handle the MCGDM problems under

the background of UPLTSs. In the construction of this approach, some novel concepts, scaled

UPLTSs, UPLSWG operator have been used, and some alterations have been executed in

the existing theory. The alterations are related to basic operations, aggregation operators,
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WSM and WPM measures. The classical WASPAS method utilises the existing aggregation

operators [33], which fail to handle the situation where DMs are of different rank because

these operators pay no attention to DMs’ weight. Further, in the aggregation process, the

product of two different dimensions, i.e., subscripts of linguistic terms and their associated

probabilities are taken. Their strategy is simple, but it weakens the effect of the probabilities

in UPLTSs. However, in the constructed algorithm, the probability information is separately

considered, and the linguistic information is handled more effectively than the existing ones.

In the proposed method, a novel framework based on the proposed entropy measure has been

designed to obtain the unknown criteria weights objectively with information characterised

by UPLTSs.

From the aforestated analysis, it can be concluded that the main merits of our constructed

approach are not only due to its ability to overcome the flaws of the existing studies efficiently

but also due to its capability to manage the assessment information that is expressed by

UPLTSs. Thus, we avoid losing and distorting of the original information, which makes the

ranking results of MCGDM problems more reliable.

In addition to the above discussion, we give some characteristic comparison of our con-

structed method and classical method in Table 6.10.

Table 6.10: Characteristic comparison of HFL-WASPAS and UPL-WASPAS

Characteristic HFL-WASPAS UPL-WASPAS

Aggregation operator Existing UPLA operator [33] Proposed UPLSWG operator

DMS’ weight Ignore DMS’ weight Consider DMS’ weight

Data context

after aggregation

HFLTSs (discard the

probability information)

UPLTSs (having the

ability to reflect probability)

Flexibility according

to DMs preferences
Yes Yes

Computational complexity Less Comparatively high
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6.5.2 Sensitivity analysis

In this subsection, results of the designed model are analyzed based on sensitivity. The

objective of the sensitivity analysis is to investigate the impact of various setting of the

WASPAS parameter λ.

Varying the value of λ from 0.1 to 0.9 can helps us to assess the sensitivity of the proposed

method. The impact of the change in the value of λ can be examined from Tables 6.5 and

6.9. Also, the results are plotted graphically in Figs. 6.2 and 6.3. The analysis reveals that

the score of each alternative obtained by the UPL-WASPAS and the HFL-WASPAS methods

differ according to each case of the parameter λ. From Table 6.5, it can be seen that the score

value of the alternative z3 increases with the increase in the value of λ. While from Table 6.9,

it can be observed that the score value of the alternative z1 decreases with increases in the

value of λ. However, the overall ranking of alternatives retains the same for each value of λ.

Therefore, it can be stated that the designed method has good stability with various values

of λ. Moreover, the parameter λ found in the proposed method can carefully reflect the DMs

risk preferences. Thus, the presented method gives the DMs more choices as they can choose

the value of λ according to their preferences.
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Figure 6.2: Rank acceptability indices of alternatives with respect to UPL-WASPAS decision
mechanism coefficient
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Figure 6.3: Rank acceptability indices of alternatives with respect to HFL-WASPAS decision
mechanism coefficient

To compare the results of the proposed approach with the HFL-WASPAS, we use Spear-

man’s ranking correlation test [73]. According to this test, the value of correlation coefficient

is −0.5. As we can see the results of the UPL-WASPAS method are entirely different from the

ones obtained from HFL-WASPAS method. Which is due to the loss of information during
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the aggregation process in HFL-WASPAS.
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Chapter 7

Concluding remarks and outlooks

The present chapter is devoted to summarising this doctoral thesis and pointing out some

suggestions about future work.

7.1 Conclusions

In what follows, we disclose the conclusions of the provided study.

MCGDM is one of the widely known subjects of making decisions. Fuzzy logic stipulates an

effective way to tackle MCGDM problems. Very often in these problems, DMs face hurdles to

make decisions, owing to uncertain and fuzzy data. To handle such cases, numerous MCGDM

techniques have been framed until now. However, there are still needs of some advance

fuzzy techniques because the existing ones are not perfect. In this thesis, some MCGDM

techniques are developed based on the proposed theory to more accurately model the complex

scenarios. At the beginning of this thesis, we introduced a novel fuzzy set, namely PHILTS,

to extend the existing HIFLTS and PLTS. To facilitate the calculation of the PHILTSs, a

normalization process, essential operations and aggregation operators for PHILTSs are also

designed. An extended TOPSIS method and aggregation-based method are constructed to

solve the group’s decision ranking problems with the multiple conflict criteria in PHILTS. The
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proposed models are compared with the existing model of TOPSIS. The PLTS and HIFLTS

are special cases of PHILTS; it grants the freedom to DMs to express their opinions in a more

dynamic way. Furthermore, the occurrence probabilities of membership and non-membership

linguistic term sets greatly affects the decision making, validating the importance of designed

theory and models in this manuscript. The probability is one of the best tools to handle

future uncertainties; thus, our proposed models are more suitable for decision making related

to the possible future scenarios. However, its arithmetic complexity is high.

In the upcoming chapter, efforts were made to construct robust techniques for correctly

solving MCGDM problems under the probabilistic uncertain linguistic context. Firstly, an ag-

gregation formula is studied in PULTS context to compute probabilities of uncertain linguistic

terms in group assessment, which can upgrade the adaptability of PULTSs on a practical level.

Further, to facilitate calculations of PULEs the adjusting rule of probability is put forward to

adjust probabilities of any finite number of PULEs. Meanwhile, based on this adjusting rule

of probability and linguistic scale function, novel operations of PULEs are proposed. These

novel operations can avoid the operation values crossing the boundary of LTSs and works un-

der different semantics of linguistic terms. Aggregation operators and distance measure were

also redefined in terms of linguistic scale function which overcome the drawbacks of existing

ones. Correlation measure was also discussed in detail. Furthermore, to remove the biased

assessments in MCGDM problems, the PUL-consensus reaching approach was proposed in

which first the consensus level of each expert is calculated and then adjusted opinion matrices

are constructed before aggregating. Finally, two types of multiple-criteria decision making

methodologies were proposed to handle MCGDM problems in balanced as well as in unbal-

anced scenarios. Subsequently, an application of commodity selection in Forex investment is

provided to demonstrate the practicality and feasibility of the proposed methods, which are

further compared to the existing one.

The fifth chapter focused on the notion of WIVDHFS, which is the extension of one of the

broadly applicable fuzzy set IVDHFS. The proposed set’s prominent characteristic is that the
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membership degree and non-membership degree of an element to a given set is signified by

two sets of possible different interval values along with their importance values, respectively.

Based on the Archimedean norms, we have defined some basic operational laws for WIVD-

HFEs and studied their properties and comparison method. Based on these operational laws,

some generalized aggregation operators have been developed to aggregate weighted interval-

valued dual hesitant fuzzy information, including the GWIVDHFWA and the GWIVDHFWG

operator. Some related properties and special cases of the developed operators have been in-

vestigated. The proposed operators can cover a wide variety of existing aggregation operators

and have the capability to capture the uncertainty efficiently in MCGDM problems. Based

on presented operators, an approach for solving MCGDM problems with weighted interval-

valued dual hesitant fuzzy information has been constructed. The paper has also provided

an illustrative example of teaching quality assessment to verify the proposed framework and

demonstrate its applicability. Further, the superiority of the stated method has been illus-

trated by comparing the past study.

To improve relevant theoretical research regarding UPLTS, the basic operational laws and

score function are redefined in the second last chapter to avoid the drawbacks of existing ones,

as discussed in the previous section. The revised formulas’ effectiveness is justified by employ-

ing examples, which revealed that the obtained results are credible. Meanwhile, the concept

of deviation degree is introduced in order to accommodate the situation in which two dif-

ferent UPLTSs have the same score values. Afterwards, some existing aggregation operators

are redefined in terms of the revised operational laws. In addition, a newly operator, namely,

UPLSWG is designed, and some of its properties such as idempotency, boundedness, mono-

tonicity and commutativity, are studied to open a novel perspective. A vital issue of decision

making with incomplete weight information is to find the proper way to determine the criteria

weights. Thus, the entropy-based method is proposed, which determines the weighThusite-

ria objectively without considering the DMs’ preferences. Next, the UPL-WASPAS model is

put forward with the help of proposed theoretical notions. The proposed model can handle
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the qualitative data even when judgments are made based on partly unknown data. To this

extent, it is easy for DMs to provide their preferences while respecting subjectivity and the

lack of information on specific criteria.

Further, in the presented method, the coefficient of variation of score values, which is

the basis for the sorting of alternatives, is high. The developed methodology is used for

the supplier selection problem to establish its effectiveness and application. Finally, some

comparative analysis and detailed sensitivity analysis are made to show the provided method’s

appropriateness and stability, respectively. Dealing with calculation, we took different values

for λ and found the ranking results’ robustness. Also, it is noticed that the score values of

alternatives have the monotonic behaviour concerning the parameter λ and can influence the

risk preference of the DMs.

7.2 Future research directions

This part focuses on future developments with regard to the themes analysed in this study.

The following future research lines are marked up as a guide for scholars working in this

research area.

i. The developed fuzzy notions, namely PHILTS and WIVDHFS can be considered as

the cornerstones for providing other MCGDM techniques, which have not been opened

yet for these contexts such as TODIM, WASPAS, GLDS, best and worst method and

multi-objective optimization based on ratio analysis plus full multiplicative form (MUL-

TIMOORA).

ii. Though, we have improved the operational laws of UPLTSs, but some limitations still

exist, they can be further enriched by using Archimedean t-norm and t-conorm.

iii. In the presented models, DMs are considered as perfectly rational people. However, in

practice, DMs do not behave in an entirely rational manner. So the research about the
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irrational characteristic of DMs [74] will be studied further.

iv. It is predictable that forthcoming studies may also extend other aggregation opera-

tors such as power aggregation operators, prioritized operators and induced generalized

aggregation operators to PHILTS, PULTS and WIDHFS setting.

v. As future work, the presented methods can be employed in other fields, such as risk

evaluation, hotel location, project selection and other domains under ambiguous envi-

ronments.
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