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Abstract 

The purpose of this thesis is to expose some theoretical findings regarding non-

Newtonian fluid flows. The main concern of the work presented in this thesis is 

to develop the mathematical model and their analytic as well as numerical 

solutions for the flow of non-Newtonian Burgers fluid. In addition, the heat 

transport in the flow of Burgers fluid is also addressed in this thesis. 

Consequently, the theme of thesis comprises the development of the boundary 

layer equations for steady two and three-dimensional flows of Burgers fluids. To 

provide a better understanding of pertinent physical behaviors, the development 

of results have been carried out for them in various circumstances. The problems 

encountered here contain, the forced convective heat transfer over stretching 

surfaces by considering different physical impacts like non-linear thermal 

radiation, Joule heating, uniform and non-uniform heat source/sink, magnetic 

field, nanofluid, Cattaneo-Christov heat and mass flux models, homogeneous 

heterogeneous reactions and convective thermal and solutal boundary conditions. 

The modelled PDEs are converted into ODEs by employing appropriate 

dimensionless transformations which are then tackled by employing the HAM as 

well as BVP midrich numerical scheme. The effects of emerging parameters on 

velocity, thermal and solutal profiles are plotted in the form of graphs and 

discussed in detail with reasonable physical arguments. Additionally, the 

coefficients of heat transport as well as mass transport at the surface are also 

computed for some dimensionless parameters and depicted in tabular form. In the 

limiting cases, our findings are found to be in excellent agreement with formerly 

published results in the literature. A noticeable finding is that the flow distribution 

of Burgers fluid is deteriorated for escalating magnitudes of material parameter 

of Burgers fluid (𝛽2). In addition, the thermal and concentration profiles showed 

rising trend for higher estimation of Burgers fluid material parameter (𝛽2). It is 

further noticed that the larger curvature parameter (𝛼) boost up the velocity and 



temperature distributions of Burgers fluid. Moreover, the higher extent of thermal 

relaxation time parameter (𝛽𝑡) declined the temperature distribution of Burgers 

fluid. The results of this thesis leads to suggest a much improved understanding 

of the rheological characteristics of the Burgers fluid flow. 
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Chapter 1

Research Background

Non-Newtonian ‡uids are of great importance due to their wonderful heat transform fea-

tures and applications in engineering systems like, heat exchangers, solution suspensions, food

processing systems, biochemical progressing and geophysical developments. There are di¤er-

ent non-Newtonian ‡uid models which exhibit the behavior of diverse non-Newtonian ‡uids.

Because of their di¤erent characteristics several kinds of non-Newtonian models have been es-

tablished. These materials are being classi…ed as di¤erential, integral and rate type materials.

Rate type models include, for instance, Maxwell, Oldroyd-B and Burgers ‡uids. Burgers model

is considered as the comprehensive viscoelastic rate type ‡uid model which is broadly developed

and delineates the complete features of several non-Newtonian ‡uids. Burgers ‡uid model ex-

plains the relaxation and retardation times properties of ‡uid. Burgers ‡uid model has tendency

to explain the viscous and elastic responses of ‡uid and to setup the stress relaxation of several

polymeric liquids. Initially, Maxwell introduced the viscoelastic ‡uid model for explaining the

behavior of ‡uids like air, in place of polymeric liquids. Additionally, at this time Maxwell

did not understand in sense of mechanical point of view of adopting spring and dashpot in his

5



demonstration of the model, but he worked in a direction of method for storage of energy and its

dissipation. In contrast of this, Burgers investigated the model in mechanical perspective and

familiarized spring and dashpot as sources of mechanism for energy storage and its dissipation.

Burgers [1] presented a one-dimensional rate type ‡uid model that contains one dimensional

Maxwell model [2] as a special case to explain the viscoelastic behavior of ‡uid materials. This

model also includes the Oldroyd-B ‡uid model presented in the memorial paper of Oldroyd [3].

In this paper, Oldroyd presented a precise method to interact with three dimensional rate-type

‡uid models which are appropriately invariant of frame. Due to this model, Burgers has been

used to explain a diversity of non-Newtonian materials which provided a debate about the use

of Burgers ‡uid model to describe the characteristics of viscoelastic type ‡uids. Regardless of

its diverse applications, Burgers ‡uid model has not gained considerable consideration in the

past. But, some works on Burgers ‡uid model have done in past which we mention here like,

Ravindran et al. [4] investigated the ‡ow of Burgers ‡uid between two parallel surfaces which

are rotating along non-coincident axes. Hayat et al. [5] examined the simple ‡ow of a Burgers

‡uid. Additionally, Hayat [6] inspected the rotational Burgers ‡uid ‡ow due to a ‡at surface.

He found that the velocity of ‡uid initially grows up and then depreciates afterwards. Khan et

al. [7] examined the ‡ow of Burgers ‡uid in a pipe by considering the e¤ects of Hall current.

They disclosed that the ‡ow curves of Burgers magnetic ‡uid build up for higher scales of Hall

parameter. Hayat et al. [8] presented a mathematical model to study the ‡ow of Burgers ‡uid

due to a stretching sheet. Further, Hayat et al. [9] explored the ‡ow of magneto Burgers ‡uid

in view of heat source. They observed that the ‡ow distribution of nano‡uid escalates due to

growing magnitude of retardation time parameter. Khan et al. [10] analyzed the boundary

layer ‡ow of Burgers nano‡uid with the e¤ects of nonlinear radiation. They reported that the

6



thermal distribution of nano‡uid rises for improving scales of radiation constant. Recently,

Waqas et al. [11] employed the non-Fourier’s and Fick’s laws to study the heat transform fea-

tures in ‡ow of Burgers ‡uid due to stretching surface. Khan et al. [12] examined the ‡ow of

Burgers ‡uid near a stagnation point by incorporating the e¤ects of thermal radiation. They

exposed that the ‡uid velocity builds up by intensifying the scales of velocity ratio parameter.

Iqbal et al. [13] investigated the magneto Burgers nano‡uid by employing modi…ed heat and

mass ‡uxes over a stretchable sheet. They noted that the thermal energy ‡ow deteriorates for

higher scales of thermal relaxation parameter.

Heat transfer mechanism of ‡uid ‡ow due to unidirectional stretching and bidirectional

stretching sheets is a topic of great interest since last few decades. Heat transfer due to stretch-

ing surfaces has signi…cant applications in thermal advancement of devices, extrusion process

and in polymer industry. Wang [14] was the …rst who studied a 3 ‡ow due to bidirectional

stretching surface. This idea of Wang is utilized by several researchers and analysts to examine

the 3 ‡ow of di¤erent types of ‡uids. Like, Ariel [15] presented a numerical simulation to a

3 ‡ow of ‡uid caused by bidirectional stretching sheet. He obtained the perturbation solution

of the ‡ow problem. Liu and Andersson [16] analyzed the thermal transport in the ‡ow of

viscous ‡uid caused by bidirectional stretching geometry. They noticed that the larger sheet

temperature corresponds to thinner thermal boundary layer thickness. Thermal properties of

three-dimensional Je¤rey ‡uid are investigated by Hayat et al. [17] under the in‡uence of heat

source sink. They noticed that the thermal distribution of Je¤rey ‡uid signi…cantly enhances

due to developing magnitude of heat source. Mahanthesh et al. [18] numerical explored the

thermal and momentum transport in the ‡ow of nano‡uid caused by bidirectional stretching

surface by considering the e¤ects of Lorentz forces. Momentum transport is declined for higher
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strength of Lorentz force in their investigation. Khan and Khan [19] explored the momentum

and thermal transport in the ‡ow of Burgers ‡uid due to bidirectional stretching of surface

by employing the non-Fourier heat ‡ux theory. Moreover, Khan et al. [20 21] investigated

the thermal transport in ‡ow of Burgers ‡uid by employing the impact of chemical reaction

and non-Fourier heat law for bidirectional stretching case. Hina et al. [22] employed the bidi-

rectional stretching of surface to scrutinize the thermal behavior of Oldroyd-B nano‡uid ‡ow.

Diminution in thermal penetration depth is perceived by them for growing values of thermal re-

laxation time constraint. Khan et al. [23] studied the heat transfer characteristics in the steady

‡ow of Sisko ‡uid caused by bidirectional stretching of the surface. They manifested that the

increasing strength of thermal relaxation time constraint leads to depreciate the thermal trans-

port in the ‡ow. Gupta and Gupta [24] developed a model to study the momentum transport

in the viscoelastic Oldroyd-B nano‡uid ‡ow accelerated by bidirectional stretching plate. They

employed DTM-Pade technique to solve the developed model of ‡ow. Thermal features in the

‡ow of Carreau nano‡uid by employing thermal conductivity are investigated by Lu et al. [25].

They noticed that the thermal conductivity constraint helps to accelerate the heat transport

in the ‡uid ‡ow. Alsabery et al. [26] concentrated to explore the heat transfer properties in

the free and forced convection ‡ow of ‡uid inside the cavity by utilizing entropy generation.

They employed FEM numerical technique to analyze the ‡ow and thermal properties for various

involved parameters. Iqbal et al. [27] employed improved heat ‡ux theory to examine the heat

transfer rate in the Burgers ‡uid ‡ow driven by a stretching surface. Khan et al. [28] proposed

a heat transport model for the ‡ow of Burgers ‡uid caused by stretching surface by considering

hat rise/fall e¤ects. They informed the higher thermal transport for improving scales of heat

rise parameter. Recently, Upreti et al. [29] implemented a Joule heating e¤ects to study the
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thermal energy transport in the Darcy ‡ow of viscous nano‡uid consists of CNTs. They found

that the thermal pro…le becomes stronger for higher extent of Eckert number. Furthermore,

Iqbal et al. [30] investigated the momentum and thermal transport in the Burgers ‡uid ‡ow

caused by stretching surface. Javed et al. [31] numerically explored the ‡ow of Eyring-Powell

nano‡uid in‡uenced by bidirectional stretching surface. They employed numerical technique

to explore the e¤ects of physical constraints occurring in the momentum and energy equations

and exposed that the growing strength of thermophoretic force constraint serve to reduce the

rate of solutal transport in the ‡ow.

The thermal transport and ‡ow induced by stretching cylinder has propitious applications

in industrial manufacturing and engineering advances. The ‡ow of ‡uid induced by a stretch-

ing cylinder was primarily investigated by Crane [32]. The motion of time independent viscous

‡uid at rest outside the hollow stretching cylinder was studied by Wang [33]. The slip ‡ow

due to stretched cylinder was examined by Wang et al. [34]. They investigated that the slip

strictly diminishes the velocity pro…le and shear stress measures. The characteristics of MHD

nano‡uid induced by a stretching cylinder were assessed by Ashorynejad et al. [35]. Moreover,

Sheikholeslami et al. [36] analyzed heat and mass transfer characteristics on permeable stretch-

ing cylinder by considering the e¤ects of nanoparticles and thermal radiation. They fond that

concentration of nanoparticles and solutal thickness of boundary layer boosted by increasing

values of curvature parameter. The magneto Casson ‡uid ‡ow by a stretching cylinder was

inspected by Tamoor et al. [37]. Hashim et al. [38] investigated the heat and mass trans-

fer mechanism of Williamson ‡uid induced by a stretching cylinder incorporated with thermal

conductivity e¤ects. Khan et al. [12] conducted the heat transport analysis in the ‡ow of vis-

coelastic Burgers ‡uid generated by stretching cylinder by incorporating the impact of thermal
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radiation. They found that the temperature curves signi…cantly rise by intensifying the scale

of radiation parameter. Moreover Iqbal et al. [39] deliberated an analysis on thermal energy

transport in the ‡ow of rate type ‡uid caused by stretching surface. A diminution in thermal

curves is being detected in this study by escalating the extent of Prandtl number. A complete

analysis on transfer of heat due to stretching cylinder in the ‡ow of Maxwell ‡uid is carried out

by Khan et al. [40].

Thermal analysis by the addition of heat rise/fall and Joule heating e¤ects in the moving

‡uids is of great signi…cance and has many physical applications in industries and engineering

like, it takes place during chemical reaction and the situations regarding dissociating of ‡uids.

The thermal distribution of the ‡uid may be changed due to the occurrence of heat rise or fall

phenomenon in the system which results in the deposition of particle rate in procedure like,

semiconductor wafers, nuclear reactors as well as in electronic chips. Many researchers utilized

this e¤ect on di¤erent types of ‡uid ‡ows to investigate the thermal features of the ‡ow and some

of them are discussed here. Pal and Mondal [41] investigated the hydromagnetic boundary layer

‡ow by considering the combined e¤ects of variable viscosity and the non-uniform heat source

sink. They found that the ‡ow distribution of ‡uid depressed for larger magnitude of magnetic

number. Sivaraj and Kumar [42] employed the non-uniform heat source/sink e¤ects to study

the reactive non-Newtonian Walter-B ‡uid ‡ow past a moving cone and a ‡at porous surface.

They reported an elevation in the thermal curves of the viscoelastic ‡uid for intensifying ranges

of heat source parameter. Mythili and Sivaraj [43] utilized the non-uniform heat rise/fall e¤ects

to examine the thermal transport in the ‡ow of Casson ‡uid past a cone. Crank-Nicolson type

…nite element numerical scheme is being adopted by them to tackle the governing equations of

the problem. Durairaj et al. [44] inspected the non-Darcy ‡ow of Casson ‡uid by employing the
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e¤ect of heat generation/absorption. They concluded that the heat is elevated in the system

by higher e¤ects of heat rise parameter. Hayat et al. [45] incorporated the non-uniform heat

generation/absorption e¤ects in the mixed convective ‡ow of viscoelastic ‡uid due to stretching

cylinder. They detected that the higher thermal Biot number promotes the heat transfer rate.

Hayat et al. [46] considered the e¤ects of Joule heating and non-uniform heat source sink

to examine the thermal characteristics in the ‡ow of magnetized non-Newtonian ‡uid caused

by slandering geometry. Irfan et al. [47] analysed the Oldroyd-B nano‡uid ‡ow caused by

stretching cylinder by enforcing the e¤ect of non-uniform heat source sink. Additionally, Ijaz et

al. [48] employed Joule heating e¤ect to study the Casson nano‡uid by using improved heat and

mass ‡uxes theory. They employed shooting numerical technique to deal the nonlinear models.

Ghadikolaei et al. [49] explored the e¤ect of Joule heating in radiative ‡ow of magneto Eyring-

Powell ‡uid. They found that the temperature curves of nano‡uid elevate by an increment in

the Eckert number magnitude. Recently, Khashi’e et al. [50] explored the thermal features in

the ‡ow of hybrid nano‡uid by considering the impact of Joule heating.

The mechanism of the transfer of heat is an amazing process which occurs in the universe.

This process occurs due to di¤erence of temperature in two surfaces of the body. Which

means that the thermal state of two surfaces or objects is not same. This is important to

note that, this process stops when both the surfaces adopt the equilibrium in temperature.

To understand this mechanism …rst of all, Fourier [51] done a great job and he established a

basic law of heat conduction. Many studies have been performed based on Fourier’s law of

thermal conduction since past few decades. The mathematical form of Fourier’s law confesses

the parabolic type di¤erential equation which reveals that the entire system is instantaneously

a¤ected due to initially disturbance in the system. With the passage of time, Cattaneo [52]
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came to know that the entire system requires time to change its thermal state after producing an

initially disturbance in temperature of the system. Hence, he introduced the thermal relaxation

time to amend the Fourier’s law. The thermal relaxation time is the time which a body

requires to transform the heat from one surface to another. The Cattaneo’s expression was

regardless of material invariant model and depicts the hyperbolic partial di¤erential equation.

Later on, to overcome this issue Christov [53] done a great job and improved the Cattaneo’s

expression by introducing the Oldroyd upper-convected derivative. Hence, a modi…ed theory

named as Cattaneo-Christov theory matured in 2009 which was utilized by several scientists

and researchers to perform their analysis. At …rst, Cattaneo-Christov heat ‡ux model was

employed by Straughan [54] to investigate the characteristics of temperature in the ‡ow of

an incompressible ‡uid. Additionally, the uniqueness and stability of Cattaneo-Christov heat

‡ux model was obtained by Ciarletta and Straughan [55]. Haddad [56] examined the thermal

instability in porous media by utilizing Cattaneo-Christov heat ‡ux model. The uniqueness

of this model was further studied by Tribullo and Zampoli [57]. Moreover, the features of

temperature distribution in combination with Cattaneo-Christov heat ‡ux model were examined

by Han et al. [58]. The thermal aspects of an incompressible ‡uid were studied by Hayat et al.

[59] by incorporating Cattaneo-Christov heat ‡ux model. They exposed that the temperature

pro…le of Je¤rey liquid depreciates for varying magnitude of thermal relaxation time. The

phenomenon of heat transport was further inspected by Waqas et al. [60] by using Cattaneo-

Christov heat ‡ux model in the ‡ow of generalized Burgers liquid. They also scrutinized that

the temperature of Burgers liquid diminishes for greater values of thermal relaxation time

parameter. Furthermore, the numerical investigation of Sisko ‡uid ‡ow was carried out by Malik

et al. [61] by employing the Cattaneo-Christov heat ‡ux model. Khan et al. [62] employed the
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Cattaneo-Christov heat ‡ux model to examine the ‡ow features of Sisko ‡uid. In near past,

the mechanism of heat transfer in di¤erential type ‡ow of ‡uids by utilizing modi…ed Fourier’s

law is numerically studied by Irfan et al. [63]. Recently, Alamri et al. [64] employed Cattaneo-

Christov heat ‡ux model to examine the solutal transport in the ‡ow of magnetized second

grade ‡uid. They explored that the thermal pro…le of magnetized liquid becomes thinner for

varying e¤ects of Prandtl number. Additionally, Iqbal et al. [65] utilized the Cattaneo-Christov

heat and mass ‡ux theory to investigate the ‡ow of magnetized Burgers nano‡uid caused due

to a stretching surface near a stagnation point. They perceived that the ‡ow distribution

diminishes for greater magnetic force parameter. Sha…q et al. [66] examined the micropolar

‡ow of nano‡uid by employing Cattaneo-Christov heat ‡ux model and considering slip e¤ects.

They reported that the entropy generation pro…le falls o¤ for varying magnitude of Bejan

number.

Magnetohydrodynamic (MHD) is a topic of great interest in which we deal ‡uids conduc-

tion with the e¤ects of magnetic …eld. There are several practical applications of MHD ‡ows

in physics, medical …eld, industries and in engineering. Attention in this …eld has been initi-

ated since 1918, when …rst time an electromagnetic pump was designed by a scientist named

Hartmann. After that, many researchers extended their investigations on MHD ‡ows. Initially,

Rossow [67] examined the magnetized ‡uid ‡ow on a ‡at surface. Andersson [68] presented

the exact solutions of viscoelastic ‡uid incorporating with magnetic …eld properties. Bhargava

et al. [69] presented the numerical solutions of magnetized micropolar ‡uid ‡ow between two

parallel surfaces. They concluded that the ‡ow pro…le for Hartmann number is the decreas-

ing function. Hence, ‡ow pro…le diminishes for higher Hartmann number. Datti et al. [70]

investigated the features of viscoelastic type ‡uid ‡ow over stretching surfaces by considering
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the e¤ects of magnetic …elds. They presented numerical and analytical solutions and made a

comparison between them. They also found that the thermal pro…le of the ‡uid deteriorates

for higher Prandtl number. Hayat et al. [71] investigated the viscoelastic ‡uid by imposing the

magnetic …eld in normal direction of the ‡ow. They employed the fractional calculus method

to solve the governing equations and found that the temperature pro…le of generalized Burgers

‡uid boosts up by increasing the magnetic parameter. Sajid and Hayat [72] presented the ana-

lytic solutions of magnetized viscous ‡uid ‡ow by shrinking surface by incorporating the e¤ects

of suction. They reported that the velocity of the ‡uid enhances by increasing the suction

parameter. Nadeem and Akram [73] studied the magnetized ‡ow of hyperbolic tangent ‡uid in

a channel. Munawar et al. [74] examined the heat transport in the oscillatory ‡ow of magne-

tized viscous ‡uid. They employed …nite di¤erence methodology to tackle the governing partial

di¤erential equations. Mukhopadhyay [75] investigated the slip ‡ow of magnetized viscous ‡uid

induced due to stretching cylinder. He determined that the ‡ow velocity of ‡uid diminishes

for larger rate of velocity slip parameter. Afterwards, Rajesh et al. [76] explored the e¤ects

of viscous dissipation in the ‡ow of magnetized nano‡uid induced due to a suddenly moving

porous plate. They employed “Tiwari-Das model” to study the features of nano‡uid. Moreover,

they deployed Galerkin …nite element scheme to explore the e¤ects of pertinent physical para-

meters. Akbar et al. [77] investigated the thermal transport phenomenon in ‡ow of nano‡uid

due to an elastic surface. They performed numerical integration to solve the governing model.

Moreover, Shukla et al. [78] utilized entropy generation to investigate the thermal features

of magnetized nano‡uid ‡ow caused by stretching cylinder. Elevation in the thermal curves

of nano‡uid is being detected by them for escalating scales of magnetic constraint. Suleman

et al. [79] developed the model to study the energy transfer in the ‡ow of viscous nano‡uid
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in‡uenced by nonlinear stretching surface and considered the magnetic …eld e¤ects. Khan et al.

[80] explored the magnetized convective ‡ow of nano‡uid in a rotating surface by considering

entropy generation. They concluded that the escalating e¤ects of magnetic …eld lead to ascend

the entropy generation. Vo et al. [81] implemented the MHD e¤ects to analyze the thermal

energy conversion within the porous cavity. Nguyen et al. [82] studied the entropy generation

solidi…cation by implementing the magnetic e¤ects on it. They reported that the solidi…cation

expedites for larger e¤ects of Hartmann number. Recently, Nadeem et al. [83] explored the

magnetic …eld e¤ects on the stagnation point oscillatory ‡ow of nano‡uid caused due to stretch-

ing/shrinking surface. Recently Khan et al. [84] explored the magneto Burgers nano‡uid ‡ow

over a stretching cylinder by considering the e¤ects of stagnation point and thermal radiations.

They concluded that the Burgers ‡uid ‡ow pro…le diminishes by increasing the magnetic …eld

magnitude. Moreover, Awais et al. [85] investigated the magnetized Maxwell nano‡uid ‡ow

over a disk by incorporating the impacts of Joule heating and they reported that the thermal

pro…le of nano‡uid builds up by intensifying the impacts of Eckert number. Nano‡uids are also

of great importance in since a decade. Many researchers explored the nano‡uid properties in

their studies.

The combination of very small sized particles with base ‡uid form new class of ‡uids termed

as nano‡uid. Usually nanoparticles are composed by oxides, carbides, carbon nanotubes and

metals. The thermophysical features of nano‡uid are slightly distinct than their respective base

‡uids. Nano‡uids have several domestic and industrial utilizations like heating of solar water,

cooling of engines, electronics cooling, cooling of transformer oil, cooling of refrigerators and

freezers etc. Due to such applications, di¤erent researchers paid their attention towards this

…eld and explored the characteristics of nano‡uids. Initially, Choi [86 87] explored the thermo-
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physical features of nano‡uids experimentally. Actually, he included nano sized components in

base ‡uid to examine the characteristics of nano‡uids. He exposed that the nano‡uids are much

e¢cient as compared to base ‡uids. He also reported that particularly the thermal conductiv-

ity of nano‡uid is much better than the base ‡uid. Subsequently, many researchers have made

their contributions in this …eld after this fruitful experiment. Kang et al. [88] and Yoo et al.

[89] studied the thermal conductivity of nano‡uid experimentally. They considered base ‡uids

(glycol, water etc.) incorporated with nanoparticles (copper, iron etc.) in their investigations.

They determined that the nano‡uids have much higher thermal conductivity than their relative

base ‡uids. Analysis of squeezing ‡ow of nano‡uid between two parallel surfaces was done by

Ganji et al. [90] Investigation of natural convection of di¤erent non-Newtonian nano‡uid ‡ow

along two vertical plates was done by Hatami and Ganji [91] Malik et al. [92] scrutinized the

‡ow of magneto Eyring-Powell nano‡uid over a stretching cylinder. Seiyed et al. [93] analyzed

nanoparticles e¤ect on peristaltic ‡uid ‡ow in systems of drug delivery. Additionally, Ellahi et

al. [94] discussed the mixed convection ‡ow of nano‡uids on a wedge incorporated with entropy

generation. They disclosed that the ‡ow distribution of the nano‡uid deteriorates for larger

values of particle concentration. Akbar et al. [95] explored the magnetic e¤ects in peristalsis

motion of nano‡uid. Irfan et al. [96] inspected the ‡ow of 3D Carreau nano‡uid incorporated

with the in‡uences of thermal conductivity over a stretched surface. They informed that the

thermal and solutal pro…les of the Carreau nanoliquid boost up by increasing thermophoresis

parameter. Characteristics of Lorentz forces on ‡ow of nano‡uid generated by movable parallel

plates are examined by Hosseinzadeh et al. [97]. They adopted CM and FEM to investigate

the ‡ow phenomenon of nano‡uid. Moreover, theoretical investigation of thermal boundary

layer ‡ow of nano‡uid over a porous cylinder was done by Nourazar et al. [98] They utilized
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(OCM) and numerical method to examine the ‡ow characteristics. Hsiao [99 100] investigated

the ‡ows of micropolar and Carreau nano‡uids over di¤erent geometries. A numerical analy-

sis on natural convection heat transfer of 34-water nano‡uid in a half-annulus cavity by

considering the variable magnetic …eld e¤ect have been carried out by Hatami et al. [101].

Hashim et al. [102] investigated the impacts of Williamson nano‡uid ‡ow on a wedge geometry

with convective boundary conditions. They reported that the heat transfer rate is boosted up

by intensifying the Brownian motion and thermophoresis e¤ects. Nasir et al. [103] discussed

the ‡ow of carbon nanotubes on a stretching surface by considering the e¤ect of non linear

radiation. Aamir et al. [104] exposed the impacts of non-linear radiation against Williamson

nano‡uid ‡ow generated by a moving wedge. Their …nding reveals that the intensifying e¤ects

of temperature ratio parameter boosts up the thermal pro…le and the associated boundary

layer thickness. Recently, Ahmad et al. [105] scrutinized the ‡ow of nano‡uid incorporated

with the impacts of Cattaneo-Christov double di¤usion theory on a stretching surface. They

reported that the augmentation in thermophoresis parameter and Brownian motion constraint

corresponds to rise in temperature distribution of the nano liquid. They also explored that the

solutal pro…le of nano ‡uid boosts up by rising thermophoresis parameter. Moreover, Ellahi

et al. [106] investigated the two phase nano‡uid ‡ow of hybrid ‡uid by considering the slip

e¤ects. They explored that the higher slip parameter corresponds to diminishes the ‡ow pro…le

of nano‡uid. Some other studies on nano‡uids can be found in Refs. [107¡ 109]

In the era of ‡uid mechanics, the investigation of the stagnation-point ‡ow has great im-

portance and real-world applications in industry like ‡ows detected over the tip of jets and

submarines and the spinning and blowing of …ber glass etc. Due to such practical applica-

tions researchers gained much attention in stagnation point ‡ows and investigated such types
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of ‡ows theoretically. Initially, 2D stagnation point ‡ow and its exact solutions were stud-

ied by Hiemenz [110]. Later on, Homann [111] introduced axisymmetric stagnation-point ‡ow

while non axisymmetric stagnation point ‡ow was investigated by Howath [112]. Subsequently

numerous researchers made their contributions in investigation of ‡ows concerning stagnation

point phenomenon, like Chiam [113], Mahapatra and Gupta [114 115], Nazar et al. [116], Reza

and Gupta [117], Lok et al. [118 119], etc. Problems of boundary layer ‡ows past a stretch-

ing sheet are encountered in these studies. In 1994, Chiam revealed that ‡ow pro…le closer

to stretching surface and far away to the surface show similar behavior while Mahapatra and

Gupta reported in contrast to this. Additionally, Farooq et al. [120] studied the stagnation

point ‡ow of viscoelastic ‡uid incorporated with radiation e¤ects over a stretching surface. They

assessed that the velocity and the amount of heat transport of the viscoelastic nano liqiud en-

hance for increasing values of velocity ratio parameter. Hsiao [121] examined the free and force

convective stagnation point ‡ow of nano‡uid over a stretching surface with slip conditions. He

reported that the temperature pro…le of nano‡uid enhances for escalating values of stagnation

parameter. After that Ghadikolaei et al. [122] discussed the ‡ow near a stagnation point of

hybrid nanoliquid over a stretching surface. They reported that the thermal pro…le of hybrid

nanoliquid diminishes for improving values of velocity ratio parameter. Additionally, Hsiao 123]

examined the ‡ow of Maxwell ‡uid near a stagnation point by incorporating radiation e¤ects.

He informed that the transfer of heat increases for larger values of Prandtl number. Likewise,

Abbas et al. [124] explored the micropolar ‡uid ‡ow near a stagnation point past a circular

cylinder. They came to know that maximum amount of heat transfer and the shear stresses

at the wall are also maximum for copper–water nano‡uid related to the alumina–water and

titania–water nano‡uids. Recently, Khan et al. [125] addressed the stagnation point ‡ow of
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bioconvection nanoliquid with quartic chemical reaction towards a nonlinear stretching surface.

They noted that ‡ow velocity increases by rising velocity ratio parameter while thermal pro…le

shows opposite trend.

Recently, scientists and engineers are concerned to encounter the problems regarding ‡ows of

‡uids incorporated with chemical reactions. Chemical reactions could be homogeneous or het-

erogeneous. If a reaction arises within the entire domain that reaction termed as homogeneous

reaction while, the reaction which reacts inside of some speci…c region or within the boundary

of the region that could be heterogeneous reaction. Homogeneous heterogeneous reactions are

also taking part in di¤erent chemically reactive systems. Here it is important to note that,

some reactions grow on very low speed and some of them does not progress at all, without

the existence of a catalyst. A variety of chemical reactions exists, most of them have signif-

icant uses in industries and in chemical engineering systems. Particularly, chemical reactions

have substantial e¤ects in production of polymers, food dispensation, ceramics manufacturing,

hydrometallurgical industry, chemically equipment designs and crops damage through freezing

and groves of di¤erent trees. Many investigators utilized homogeneous heterogeneous reac-

tions in their studies to investigate di¤erent type of ‡ow phenomena. Initially, Chaudhary and

Markin [126] presented a simple model by employing homogeneous heterogeneous reactions in

‡ow of a viscous ‡uid near a stagnation point. Additionally, Markin [127] numerically explored

the boundary layer ‡ow by utilizing homogeneous heterogeneous reactions. Hayat et al. [128]

employed homogeneous heterogeneous reactions along with Cattaneo-Christov heat ‡ux model

on ‡ow of Maxwell ‡uid to examine the thermal features of the viscoelastic ‡uid. They scruti-

nized that the thermal pro…le of non-Newtonian ‡uid deteriorates for larger thermal relaxation

time parameter. Later on, Xu [129] presented a model to examine the thermal aspects of ‡uid
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‡ow near a stagnation point by incorporating the e¤ects of homogeneous heterogeneous reac-

tions. Hayat et al. [130] incorporated homogeneous heterogeneous reactions and demonstrated

a model to study the convective heat transport in the ‡ow of nano‡uid due to rotating 3 sur-

face. They indicated that the rate of heat transport at the boundary improved by intensifying

the e¤ects of nano particles volume fraction. Hayat et al. [131] established a three-dimensional

‡ow model of nano‡uid by utilizing the impacts of homogeneous heterogeneous reactions. They

reported that the solutal rate rises for growing values of Schmidt number. Numerical simulation

of Maxwell ‡uid ‡ow due to spiraling surface is recently carried out by Ahmed et al. [132]. They

analyzed that the concentration rate diminishes for larger homogeneous heterogenous reactions

parameter. Khan et al. [133] presented a modi…ed thermal conduction model by employing

homogeneous heterogenous reactions in swirling ‡ow of Maxwell ‡uid. They also discussed

that the nano particles volume fraction distribution weakens for homogeneous heterogenous

reactions parameter.

1.1 Fundamental Laws of Continuum Mechanics

The conservation laws of classical mechanics provide base to the ‡uid dynamics. The basic

conservation laws comprise mass conservation law, momentum conservation law and energy

conservation law. They are speci…ed by employing Reynolds transport theorem. It is worth

mentioning that the conservation laws are applicable to a speci…c region of the ‡ow and this

region is particularly termed as control volume (CV). The integral or di¤erential forms of

conservation laws are stated below.
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1.1.1 The Conservation of Mass (Continuity Equation)

According to this law, mass in the control volume (CV) remains conserved for the ‡uids with

constant density. It means that, the entire mass which inters the CV must be remains equivalent

to the entire mass which leaves the CV and the mass accumulating the CV. Mathematically,

the conservation of any thing is generally expressed by the equation given below

ª


+r ¢ ( +ªV)¡1 = 0 (1.1)

In continuum mechanics, all the physical conservation laws are represented by this equation.

In case,  = 0 ª =  and with no source/sink i.e. 1 = 0. The above equation (11) admits

the subsequent form represents the equation of continuity which demarcates the conservation

of mass, mathematically as:




+r ¢ (V) = 0 (1.2)

where  is the ‡uid density, V the liquid velocity and  the time.

The steady and incompressible ‡ow version admits the following form

r ¢V = 0 (1.3)

1.1.2 The Conservation of Momentum

Newton’s second law demarcates the conservation of momentum which narrates that in a control

volume the time rate of change of momentum is equal to the resultant of the external forces

acting on volume. According to Newton’s second law, which narrates that time rate of increase
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of momentum of a control volume equals the resultant force acting on it. It can be expressed

in mathematical form as

Z

()

·
 (V)


+ (VV) 

¸

 =

Z

()
[B+ ¿ ]  (1.4)

On simpli…cation, we get

 (V)


+ (VV)  = B+ ¿  (1.5)

where B is the body forces per unit volume and ¿ the stress tensor.

In a more appropriate form the conservation of momentum admits the following form



·
V


+ (V ¢r)V

¸

= div ¿ + B (1.6)

1.1.3 The Conservation of Energy

The …rst law of thermodynamics demarcates the conservation of energy which mathematically

states that





= ¿ L¡ divq (1.7)

where  represents the speci…c heat of the liquid,  the liquid temperature and L be the velocity

gradient. Moreover, in Eq. (17) ¿ L is the viscous dissipation term, (divq and divq) signi…es

the thermal and radiative ‡uxes, respectively, while the term on the left hand side of Eq. (17)

represents the internal energy.
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The thermal ‡ux q is given by the relation

q = ¡r (1.8)

with  denotes the thermal conductivity of the liquid.

By making use of Eq. (18) in Eq. (17) and in the absence of viscous dissipation we obtain

the energy equation as:





= r2 (1.9)

1.1.4 The Conservation of Concentration

This law narrates that, in a control volume (CV) the growth in the total mass of species must

be remains balanced to the total amount of mass ‡ow in CV plus the rate of increase of species

in CV. In other words, it means that the net concentration of the system under perception must

be constant. By employing Fick’s second law in the presence of chemical reaction, it takes the

form as




+V ¢r = ¡r ¢ j+1 (1.10)

where  represents the ‡uid concentration, j the normal mass ‡ux and 1 source/sink for .

The normal mass ‡ux is given by Fick’s …rst law as

j = ¡r (1.11)

where  is the mass di¤usivity.
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By utilizing Eq. (111) in Eq. (110) and by substituting 1 = 0 we arrived at




+V ¢r = r2 (1.12)

1.1.5 The Energy Conservation for Nano‡uid

The energy conservation law in view of an incompressible nano‡uid is stated as





= ¡r ¢ j¡divq (1.13)

where q j and  symbolize the nano‡uid thermal ‡ux, nano‡uid mass ‡ux and speci…c

enthalpy of nano‡uids, respectively.

Also, q and j admit the following relations, respectively.

q= ¡r + j (1.14)

j = ¡r¡ 
r

1
 (1.15)

Here,  signi…es the nano‡uid density,  the Brownian motion and  the thermophoresis

di¤usion coe¢cients.

In view of Eqs. (114) and (115), Eq. (113) yields the subsequent form





= r2 + 

·


r ¢r

1
+r ¢r

¸

 (1.16)
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1.1.6 The Concentration Conservation for Nano‡uid

The concentration conservation law for nano‡uid admits the following form




+V ¢r = ¡

1


r ¢ j (1.17)

By substituting Eq. (115) into Eq. (117) yields the subsequent form




+V ¢r = r

2+
r2

1
 (1.18)

1.2 The Rate Type Burgers Fluid Model

Because of the diverse characteristics several kinds of non-Newtonian models have been estab-

lished. Amongs all, the rate type models gained special consideration. Specially, Burgers ‡uid

model is considered as the comprehensive viscoelastic rate type ‡uid model which is broadly

developed and delineates the complete features of several non-Newtonian ‡uids. Burgers ‡uid

model explains the relaxation and retardation times properties of ‡uid. Burgers ‡uid model

has tendency to explain the viscous and elastic responses of ‡uid and to setup the stress relax-

ation of several polymeric liquids. Other rate type models such as, Maxwell ‡uid model and

Oldroyd-B ‡uid model are the sub casses of Burgers ‡uid model. The constitutive equation for

rate type models is given in the following relation

¿ + I¡ S = 0 (1.19)

where ¿ elucidates the Cauchy stress tensor,  the ‡uid pressure, I the identity tensor and

25



S the Burgers ‡uid extra stress tensor de…ned by

µ

1 + 1



+ 2

2

2

¶

S = 

µ

1 + 3




¶

A1 (1.20)

where 1 is the ‡uid relaxation time, 2 the material parameter of Burgers ‡uid,  the dynamic

viscosity, 3 the ‡uid retardation time, A1 = rV + (rV)
 is the Rivlin-Ericksen tensor and


 the upper convected derivative de…ned as follows

S


=

S


+ (V ¢r)S¡(rV) ¢ S¡ S¢(rV) (1.21)

1.3 Solution Methodologies

1.3.1 BVP Midrich Scheme (Midpoint Collocation Method)

In order to …nd the numerical solution of two-point boundary value problem the e¢cient nu-

merical techniques like midrich, middefer, traprich and trapdefer can be employed by utilizing

Maple software. The midrich and middefer techniques are based on midpoint collocation method

while the trapdefer and traprich techniques are depends upon on trapzoid methods in which

the Richardson extrapolation or deferred correction enhancement is utilized. We utilized the

Maple software for the numerical simulation of the boundary value problems. The complete

solution methodology of Midrich technique base on modi…ed Euler method or explicit midpoint

method is described by the following general algorithm

¤0(¤) =  (¤ ¤(¤)) ¤(¤0) = ¤0  (1.22)
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The modi…ed Euler’s method relation is given by

¤+1 = ¤ + ¤

µ

¤ +
¤

2
 ¤ +

¤

2
 (¤ 

¤
)

¶

 (1.23)

where ¤ is considered as the step size and ¤ = ¤0+¤ The implicit strategy of the mid-point

method is stated as

¤+1 = ¤ + ¤

µ

¤ +
¤

2
 ¤ +

1

2
(¤ 

¤
+1)

¶

  = 0 1 2 3 (1.24)

Here it is worth mentioning that the order of the local error of mid-point method is (3) while,

that of global error is (2) Also, it is important to note that, the reduction of the error in

mid-point formula implies the more stable solution. Moreover, the reduction in the step size

(¤ ! 0) leads to rapid decay in the error of mid-point formula.

1.3.2 Homotopy Analysis Method (HAM)

Here we are presenting the solution methodology of HAM to gain the analytic series solution

of our problem. We need linear operators and initial guesses to start the process. so that we

choose ($ $$) as linear operators and (0 0 0) as the initial guesses which are de…ned

as follows

0() = 1¡ ¡ 0() = ¡ 0() = ¡ (1.25)

$ [() =  000 ¡  0 $[()] = 00 ¡  $[()] = 00 ¡  (1.26)

with the properties mentioned below
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$ [
¤
1 +¤

2
 +¤

3
¡] = 0 $[

¤
4

 +¤
5
¡] = 0 $[

¤
6

 +¤
7
¡] = 0 (1.27)

where ¤
 ( = 1¡ 7) represent constants.

The zeroth order deformation problem is de…ned below

(1¡ )$ [ e(; )¡ 0()] = } ¶ [ e(; )] (1.28)

(1¡ )$[e(; )¡ 0()] = } ¶[ e(; )e(; ) e(; )] (1.29)

(1¡ )$[e(; )¡ 0()] = } ¶[ e(; )e(; ) e(; )] (1.30)

1.4 Contribution in Thesis

This thesis is designed to explore the heat transfer properties in the ‡ow of Burgers ‡uid

generated by di¤erent stretching surfaces. The mathematical models are developed for the ‡ow

of Burgers ‡uid caused by unidirectional stretching sheet, bidirectional stretching sheet and

stretching cylinder. Moreover, the improved 2 and 3 models of heat transport in nano‡uids

are also formulated by employing the modi…ed Fourier’s heat ‡ux and certain other physical

e¤ects. The analytical as well as numerical solutions of the ‡ow and energy transport equations

are established. The work done in this thesis is published in reputed international journals

which is clearly mentioned in this section. The contribution made in each chapter is mentioned

below as:

Chapter 1: This chapter contains the literature survey related to contents of present work.
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The physical importance of the di¤erent ‡ows of non-Newtonian ‡uids, heat transfer and other

physical e¤ects are also depicted in this chapter. The solution methodologies we utilized in this

thesis are deliberated.

Chapter 2: This chapter is devoted to investigate the thermal transform features in the

stagnation point ‡ow of magnetized Burgers nano‡uid accelerated by stretching sheet. More-

over, uniform heat source/sink and Cattaneo-Christov double di¤usion theory are employed

to examine the thermal energy transport. The transport of solutal energy is also examined

under the in‡uence of chemical reaction and solutal relaxation time e¤ects. The impacts of

physical parameters arising in ‡ow and energy transport equations are explored by adopting

the homotopy analysis method. The contents of this chapter have been published in "Appl.

Nanosci., 10 (2020) 5331-5342".

Chapter 3: In this chapter, the Burgers nano‡uid ‡ow due to bidirectional stretching sur-

face is addressed. Mathematical modelling for the phenomenon of heat, mass and ‡uid ‡ow is

formulated in view of bidirectional stretching inspired by the combined e¤ects of thermal and

solutal relaxation time, chemical reaction and heat rise/fall. The governing equations are ana-

lytically examined by employing the homotopy analysis method. The results of this chapter are

published in "J. Proc. Mech. Eng., Part E, (2021), doi: 10.1177/0954408921999613".

Chapter 4: This chapter focuses on the mathematical modelling of the magnetized Burg-

ers ‡uid ‡ow accelerated by stretching cylinder. Moreover, the heat and mass transport fea-

tures in the ‡ow due to stretching cylinder are also addressed under the in‡uence of magnetic

…eld and heat generation/absorption e¤ect. The dimensionless similarity transformations are

incorporated to transmute the partial di¤erential equations into ordinary di¤erential equa-

tions. Homotopy analysis method (HAM) is being considered for the solution of governing
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ordinary di¤erential equations. The impacts of physical parameters on ‡ow and energy trans-

port distributions are drafted in the form of graphs and discussed by reasonable arguments.

The e¤ort made in this chapter is published in "J. Therm. Anal. Calorim., (2020),

https://doi.org/10.1007/s10973-020-10224-w".

Chapter 5: This chapter is the extension of the work made in chapter 4. In this chapter,

the ‡ow of Burgers nano‡uid is discussed near a stagnation point. The Buorgiano’s model is

utilized for the study of Brownian motion and thermophoresis di¤usion of nanoparticles. Fur-

thermore, the non-linear thermal radiation in the form of Rosseland approximation is employed

to investigate the behavior of thermal distribution of the Burgers nano‡uid. The mass transport

in the ‡ow is also examined by utilizing chemical reaction e¤ects. The solution methodology of

homotopy analysis is employed for the scrutiny of physical parameters e¤ects on ‡ow and en-

ergy transport distributions. The contents of this chapter are published in "Appl. Nanosci.,

10 (2020) 5233-5246".

Chapter 6: Here, an improved thermal conduction model is presented for stretching cylin-

der case to study the heat transport in Burgers nano‡uid ‡ow by employing modi…ed Fourier’s

heat ‡ux in accordance with Bourgiano’s model for nano‡uid. Moreover, the impacts of Joule

hating and heat source/sink are also incorporated in thermal conduction model to investigate

the heat transform features in the ‡ow. The optimal homotopy analysis method (OHAM)

is employed to investigate the behavior of ‡ow and thermal distributions for several physical

parameters. The impacts of di¤erent parameters are depicted through graphs and discussed

physically. The contents of this chapter are published in "Eur. Phys. J. Appl. Phys., 92

(2020) 31101.

Chapter 7: The main concern of this chapter is to present the numerical solutions of the
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‡ow and energy transport equations. We analyzed the convective heat and mass transport at

the surface of the cylinder by utilizing Joule heating and non-uniform heat source sink e¤ects

with convective boundary conditions. Furthermore, the prescribed surface temperature (PST)

is also considered rather than constant wall temperature (CWT) in this chapter. The BVP

midrich numerical technique in Maple software is being utilized to numerically investigate the

contained parameters e¤ects on ‡ow, thermal and solutal distributions. The work furnished in

this chapter is published in "Phys. Scr., 96 (2021) 015211".

Chapter 8: This chapter numerically explores the thermal energy transport in the ‡ow of

magnetized Burgers ‡uid caused by stretching cylinder under the in‡uence of thermal relaxation

time and heat generation/absorption. The cardinal concern of this chapter is to explore the

solutal energy transport by employing the e¤ects of hmogeneous-heterogenous reactions. BVP

midrich numerical scheme based on mid point collocation method in Maple is adopted to explore

the outcomes of physical parameters. The results are depicted in graphical form and discussed

with physical explanations. The contents of this chapter are published in J. Therm. Analy.

Calorim., (2020), doi.org/10.1007/s10973-020-10308"

Chapter 9: Finally the conclusions of this work are presented in this chapter and some

extensions of this work are also mentioned as future work.
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Chapter 2

Cattaneo-Christov double di¤usion theory featuring

the thermal transport in the ‡ow of Burgers

nano‡uid due to stretching ‡at plate

In this chapter, the heat transport mechanism in the Burgers nanoliquid ‡ow above stretchable sheet is

investigated under the in‡uence of uniform transverse magnetic …eld. For the analysis of thermal and

solutal energy distributions, we have employed the Cattaneo-Christov double di¤usion theory instead of

Classical Fourier’s and Fick’s laws. The Buongiorno model for movement of nanoparticles in Burgers

liquid is …rst time utilized in the perspective of Cattaneo-Christov model. Suitable similarity transfor-

mations are employed to transform the governing partial di¤erential equations into ordinary di¤erential

equations. Homotopic approach is being utilized to expose the e¤ects of di¤erent physical parameters

on the ‡ow of Burgers nano‡uid. The results pertained by homotopic analysis method are depicted in

the form of graphs and discussed with reasonable judgments. The validity of the homotopic approach

is shown by depicting comparison tables. Furthermore, it is analyzed that the thermal and solutal dis-

tributions of Burgers nano‡uid are diminished by escalating the magnitude of thermal relaxation time
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and solutal relaxation time parameters, respectively. Additionally, the enhancing trend of thermal and

solutal distributions is being perceived for higher strength of thermophoretic force.

2.1 Mathematical Formulation

In this section a mathematical model is developed for a 2 stagnation point ‡ow of Burgers

nano‡uid induced by stretching sheet. The ‡ow phenomenon is modelled by imposing a uniform

magnetic …eld of strength  = [0 0 0] in the direction normal to the ‡ow (see Fig. 21).

Moreover, the mechanisms of heat and mass transport in the ‡ow are also modelled by employing

modi…ed heat and mass ‡uxes in combination with the Buongiorno model for the nanoparticles.

Additionally, the e¤ects of uniform heat source/sink and chemical reaction are also incorporated

in the modelling of heat and mass transport respectively. The velocity components in  and 

directions are taken as  and  respectively. Also it is assumed that the sheet is stretched along

¡direction with velocity  = 0
  where  is the speci…c length and 0 the reference velocity.

Fig. 21: Flow con…guration and coordinates system.
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The rheology of viscoelastic rate type ‡uid described by the Burgers model is given by

following expression

µ

1 + 1



+ 2

2

2

¶

S = 

µ

1 + 3




¶

A1 (2.1)

In the above mentioned equations, S is the extra stress tensor, A1 = (rV) + (rV)
 the …rst

Rivlin-Ericksen tensor,  the dynamic viscosity of ‡uid and 
 represents the upper convective

derivative.

The basic continuity and momentum equations for ‡ow analysis are as follows

r ¢V = 0 (2.2)


V


= ¡r+ divS+ J1 £B (2.3)

The conservation of energy law for current problem is

()



¡ ()

·

r ¢r +


1
(r )2

¸

= ¡r ¢ q+0( ¡ 1) (2.4)

where q is the heat ‡ux satisfying the relation

q+

·
q


+V ¢rq¡ q ¢rV+ (r ¢V)q

¸

= ¡r (2.5)

The concentration equation for current situation is




¡



1
r2 = ¡r ¢ J¡( ¡1) (2.6)
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where J is the mass ‡ux satisfying the relation

J+

·
J


+V¢rJ¡ J¢rV+ (r ¢V)J

¸

= ¡r (2.7)

Here 1 is the ‡uid relaxation time, 2 the material parameter of Burgers ‡uid 3 (· 1)

the ‡uid retardation time,  the thermal relaxation time,  the mass relaxation time,  the

kinematics viscosity, () the liquid temperature and concentration respectively, (1 1)

the ambient temperature and concentration respectively,  the di¤usion coe¢cient, J1 the

current density, q and J are the heat and mass ‡uxes which are de…ned from Fourier’s and

Fick’s laws, respectively.

By eliminating S between Eqs. (21) and (23)  q between Eqs. (24) and (25) and J

between Eqs. (26) and (27) we obtained the following PDEs governing the ‡ow




+




= 0 (2.8)


 +  

 + 1

h
2 

2
2

+ 2 
2

2
+ 2 2



i

+2

2

6
6
6
6
6
6
4

3 
3

3
+ 3 

3
3

+ 2
³




2
 ¡




2
2

+ 


2
2

´

+32
³




2
2

+ 


2


´
+ 3

³
 3

2
+  3

2

´

+2
³




2
 +




2
2

+ 


2
2

¡ 


2


´

3

7
7
7
7
7
7
5

= 3
h
 3
3 +  3

2 ¡



2
2 ¡




2
2

i
+ 

h
2
2

i

+
 ¡

2
0



2

6
6
4

¡  + 1

+

2
³




 ¡  



 +  2

 + 2 
2

2

´

3

7
7
5  (2.9)
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³


 +  


´
= 1

³
2
2

´
+ 0


( ¡ 1) + 

0


( 

 + 
 )

¡

h
2 

2
2

+ 2 
2

2
+ 2 2

 +



³


 +  


´
+ 



³


 +  


´i

+

h
 2



 + 


2
 +  2

2

 +  


2
2

i

+2

1

h



2
 +  2

2



i
 (2.10)


 +  

 = 

³
2
2

´
¡ 

1

h
 3

2
+  3

3
+ 2

2

i

¡

h
2 

2
2 + 2 

2
2 + 2

2
 +




³


 +  


´
+ 



³


 +  


´i

¡( ¡1)¡ (

 + 

 ) (2.11)

with boundary conditions

 =
0


  = 0  =   =  at  = 0 (2.12)

 ! 0



! 0  ! 1  ! 1 as  !1 (2.13)

Here 1 =
³




´
is the thermal di¤usivity, in which  is the density and  the pressure of liquid,

 the speci…c heat capacity at constant pressure,  the thermal conductivity of the liquid and

( ) are the temperature and concentration at the surface of the sheet, respectively.

Presenting the following conversions

 = 
0
()  = ¡

p
() () = ¡1

¡1


() = ¡1
¡1

  = 
p


  (2.14)
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By making use of the above mentioned conversions, Eq. (28) is satis…ed automatically and

Eqs. (29)¡ (211) yield


000
+ 

00
¡ (

0
)2 + 1

h
2

0

00
¡ 2

000
i
¡ 2

h
32(

00
)2 + 2(

0
)2

00
¡ 3 

i

+3

h
(

00
)2 ¡  

i
¡ 2

h
2

000
¡ 1

00
+ 

0
i
+2 +2 = 0 (2.15)

00 +Pr(0 +
0

0
+(

0
)2) +  + 

0

+Pr[¡
0

0
¡ 200 ¡ 2

0

00
¡

0

00
¡

00

0
] = 0 (2.16)

00 + Pr  0 ¡ 1¡ 1
0

+Pr[¡
0

0
¡ 200 ¡ 



000
 + 



00
] = 0 (2.17)

and transformed boundary conditions are follows

 = 0  0 = 1  = 1  = 1 at  = 0 (2.18)

 0 !   00 ! 0 ! 0 ! 0 as !1 (2.19)

where the Deborah numbers
¡
1, 3

¢
Burgers ‡uid parameter (2)  Prandtl number (Pr) 

Lewis number ()  magnetic parameter () thermal relaxation parameter (), the mass

relaxation parameter ()  thermophorosis parameter () and Brownian motion parameter
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() are de…ned as follows:

1 = 1
0
  2 = 2

¡
0


¢2
 3 = 3

0
   = 

0
 

 = 
0
  1 =


0

  = 0

0()
 Pr = 

1
  = 1




 =
³

2
0

0

´12
  =

 (¡1)
1

  =
(¡1)

 

(2.20)

2.2 Analysis of Results

This segment of research is devoted to expose the noticeable features of several physical pa-

rameters. To disclose the characteristics of essential parameters, homotopy analysis method

(HAM) is taken into account. Numerical solution of non linear ordinary di¤erential equations

(215¡217) are developed by imposing boundary conditions written in Eqs. (218) and (219).

We explored the features of all involved parameters, for instance, Burgers ‡uid parameter (2) 

retardation time parameter (3)  magnetic parameter () on velocity  0 (), thermal  ()

and solutal  () pro…les. Moreover the characteristics of Brownian motion parameter ()

thermophoresis parameter ()  Prandtl number ()  and thermal relaxation parameter ()

on thermal distribution while the impacts of thermophoresis parameter ()  Brownian motion

parameter () Lewis number (), chemical reaction parameter (1) and mass relaxation pa-

rameter () on solutal distribution are also exposed and depicted through Figs. 22¡210 We

have assigned …xed values for leading parameters such as  = 02  = 05 1 = 07 2 = 025

3 = 05  = 07 Pr = 50  = 02  = 015  = 40  = 04  = 06 and 1 = 06

during the entire computations except they are mentioned.

We discuss the impact of each parameter with complete logic as follows. To express the in-

‡uence of Burgers ‡uid parameter (2) on ‡ow, thermal and solutal distributions Figs. 22(¡)

38



are portrayed. From these Figs., it is clear that the ‡ow pro…le of Burgers liquid deteriorates

while the thermal and solutal pro…les enhance for higher magnitude of 2. Moreover, Figs.

23( ¡ ) are drafted to explore the impact of retardation time parameter (3) on velocity,

thermal and concentration distributions. It is examined that the ‡ow distribution and momen-

tum boundary layer thickness of the Burgers liquid boost up for higher values of 3 whereas,

the thermal and concentration distributions depict converse trend to that of ‡ow distribution

This behavior is according to the physical judgment. As 3 is directly proportional to the

retardation time (3). Since retardation time increases by increasing 3. As it is physically

examined that the retardation time is a speci…c time which is required to create the shear stress

in the liquid. Hence, obviously higher retardation time corresponds to create more shear stress

in the liquid and more shear stress in liquid boosts up the ‡ow velocity. Additionally, it is also

physically examined that when retardation time increases the ‡uid become more thinner due

to which the resistance in the ‡uid decreases and consequently the temperature of the ‡uid

declines in the system. Figs. 24( ) disclose the impacts of velocity ratio parameter ()

and magnetic force parameter () on ‡ow pro…le of Burgers nano‡uid. It is assessed that the

velocity of the ‡uid diminishes for escalating values of  while it increases for varying values

of A in both the cases (  1 and   1). The case (  1) corresponds to the situation

when velocity of free stream is higher than the stretching velocity of the cylinder while the

case (  1) is the situation when free stream velocity is inferior to the stretching velocity of

the cylinder. Furthermore, the case ( = 1) is the case when both the velocities are equal in

magnitude. Physically the results exposed in Fig. 24() are according to the reality as phys-

ically A is directly proportional to the free stream velocity and when we increase the values

of A then free stream velocity enhances and consequently the ‡ow velocity and momentum
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boundary layer thickness of nano Burgers ‡uid boosts up. While, it is noted that boundary

layer is not achieved at  = 0 because in this situation velocity of the ‡uid and the stretching

velocity of the cylinder are equal. The results depicted in Fig. 24() reveal that ‡uid velocity

deteriorates for intensifying magnetic force, it is due to the fact that intensi…cation in magnetic

…eld produces more drag force in ‡uid motion due to which the motion of the ‡uid slow down

and consequently the velocity pro…le and velocity boundary layer thickness decay within the

region of convergence. Figs. 25( ) are drafted to envision the features of Brownian motion

parameter () on thermal and solutal distributions of nano Burgers ‡uid. It is clear from

these graphs that temperature is an increasing while concentration is decreasing function of .

Physically, the mechanism behind this is that the kinetic energy of the ‡uid particles rises due

to increase in the magnitude of Brownian motion constraint (). Ultimately, the temperature

of the ‡uid enhances due to increase in kinetic energy of the ‡uid molecules. Furthermore,

di¤usion of nano‡uid particles is controlled by the Brownian motion. Hence, intensifying mag-

nitude of Brownian motion constraint leads to decline the solutal pro…le of Burgers nano‡uid.

To enlighten the in‡uence of thermophoresis parameter () on thermal and solutal pro…le of

Burgers liquid Figs. 26( ) are portrayed. It is observed that the thermal and solutal pro…les

of Burgers liquid show enhancing trend for improving numbers of thermophoresis constraint.

Also the thermal and solutal boundary conditions satis…ed asymptotically within the region of

convergence. Thermal and solutal boundary layer thickness of Burgers liquid improve for higher

values of . Actually, in process of thermophoresis the molecules from hotter region move to-

wards colder region and this mechanism leads to increase the temperature of the system. Figs.

27( ) are inserted to disclose the impact of Prandtl number (Pr) and Lewis number () on

temperature and concentration distributions of nano‡uid. From these graphs it is examined
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that the thermal and solutal distributions decline for larger values of  and  respectively. In

fact, Prandtl number is inversely proportional to the thermal di¤usivity of liquid which declines

with an intensi…cation in the values of Prandtl number. Finally, the decreasing thermal di¤u-

sivity of the liquid results in reduction of temperature pro…le of the nano‡uid. Furthermore,

Lewis number is inversely proportional to mass di¤usivity and stronger Lewis number corre-

sponds to weaker mass di¤usivity which results in reduction of concentration distribution of

Burgers nano‡uid. To enlighten the in‡uence of thermal relaxation time parameter() and

concentration relaxation parameter () on temperature and solutal pro…les Figs. 28( ) are

inserted. It is assessed that both the thermal and solutal distributions of nano‡uid diminish

for augmented values of  and  respectively. Actually, the reason is that the heat conduc-

tion requires additional time by increasing the values of thermal relaxation time parameter

and consequently the temperature of the ‡uid decreases. Similarly, further time is required to

transfer the mass in ‡uid by increasing the magnitude of solutal relaxation time parameter.

Hence, the concentration of Burgers nano‡uid is decreasing function of the solutal relaxation

time parameter. Figs. 29( ) are sketched to examine the features to the thermal distribution

of Burgers nano‡uid by employing the e¤ect of heat generation/absorption. It is observed that

the stimulus of temperature pro…le is enhanced for intensi…ed magnitude of heat generation

constraint (  0) while at the other hand it is diminished by increasing the heat absorption

parameter (  0). It is obvious that because the source of heat adds more heat in the sys-

tem and consequently temperature distribution enhances. In a similar manner, when heat is

absorbed from the system then temperature of the ‡uid fallo¤. At the end of the analysis, the

impact of chemical reaction parameter (1) at solutal distribution of the nano Burgers ‡uid is

observed and variations are depicted in Figs. 210( ). It is analyzed that for positively in-
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creasing values of chemical reaction parameter (1  0) the solutal pro…le of Burgers nano‡uid

shows decreasing trend while for negatively increasing values of chemical reaction parameter

(1  0) the solutal distribution of nano‡uid enhances. Physically, it is analyzed that when

we increase the reaction rate in the liquid then more amount of mass utilizes in occurrence

of chemical reaction and hence the solutal distribution of nano‡uid diminishes. In a similar

manner, when we decrease the chemical reaction rate in a ‡uid then we get extra amount of

mass in the system and consequently the concentration distribution of the system enhances.

2.3 Validation of Homotopic Solutions

In this segment of the research the adopted homotopic approach is proved valid by computing

the values of ¡ 00(0) and ¡0(0) for di¤erent values of 1 and  respectively by …xing all other

constraints. The obtained iterations are depicted in the form of table (21) and table (22). It

is analyzed that the adopted approach is valid as the obtained values are found identical when

compared with some previously investigated studies.
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Table 2.1: A comparison table for ¡ 00(0) against di¤erent values of 1 in limiting case

when  =  = 2 = 3 = = 0.

1 Mukhopadhyay   [134] Hayat   [135] Present study

00 09999963 1000000 10000011

02 1051949 1051995 10519889

04 1101851 110193 11019299

06 1150162 1150175 11501711

08 1196693 1197689 11966712

Table 2.2: A comparison table for ¡0(0) against di¤erent values of Pr in limiting case

when  =  = 1 = 2 = 3 = =  =  =  =  =  =  = 1 = 0.

Pr Wang [136] Gorla and sidwai [137] Present study

07 04539 04539 045312

20 09114 09114 090894

70 18954 18954 188986
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Chapter 3

Burgers nano‡uid ‡ow accelerated by bidirectional

stretching surface subject to Ohmic heating and

chemical reaction

Thermal transport in a 3D ‡ow of Burgers nano‡uid due to bidirectional stretching is an interesting

topic with large number of applications. Motivated by this fact, in this chapter, we formulated the math-

ematical modelling for 3D ‡ow of viscoelastic Burgers nano‡uid accelerated by bidirectional stretching

surface. We studied the ‡uid relaxation and retardation times e¤ects on the momentum and thermal

transport of Burgers ‡uid. Moreover, we considered the e¤ects of heat rise/fall and Ohmic heating to

analyze the heat transport features in the ‡ow of viscoelastic nano‡uid. A momentous feature of this

study is to incorporate the thermal relaxation time phenomenon to observe the properties of heat ‡ow

in nano‡uid. Additionally, the mass transport phenomenon is explored by employing modi…ed mass ‡ux

model and chemical reaction e¤ects. Results are attained by employing the homotopy analysis method

(HAM) and illustrated through graphical representation. The main …nding of the study exposes that

the thermal transport in the ‡ow is accelerated due to building strength of Eckert number. Moreover,
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the depreciating trend of concentration pro…le is being detected for building strength of constructive

chemical reaction parameter. Also, it is seen that the escalating magnitude of thermal relaxation time

parameter serves to decline the heat ‡ow rate.

3.1 Rheological Development

In this section, 3 incompressible and unsteady ‡ow of Burgers nano‡uid accelerated by bidi-

rectional stretching sheet is modelled. Additionally, the thermal transport in the ‡ow is also

studied in view of non-Fourier heat ‡ux model by employing the e¤ects of Ohmic heating and

heat rise/fall. The mass transfer phenomenon is inspected under the in‡uence of chemical re-

action by employing modi…ed mass ‡ux theory. Flow is considered along  ¡  as well as

along ¡ with linear velocities  =  and  =  respectively, where  and  are taken as

constants. The region of ‡uid ‡ow is considered as   0 The pattern of the ‡ow is displayed

in Fig. 31

Fig. 31: The con…guration of the ‡ow.
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3.1.1 Flow Equations of Burgers Fluid

The basic continuity and momentum equations (22) and (23) (cf. Chapter 2) for current ‡ow

analysis are as follows
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+  3

2
+ 3

3
¡ 
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2
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¡ 

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+ 

h
2
2

i
(3.2)
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 
 +  

 +
 + 1

h
2 2

2 + 2 
2

2 +2 
2

2 + 2
2
 + 2 2

 + 2
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i

+2
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
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2

+ 2 3
2
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2
2 ¡2 

2
2 + 2




2
 + 2

2 


2


22 3
2

+ 22 
2
 + 2




2
 + 2

2 3
2

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

+2

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

+2 
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 ¡ 2


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2
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
2
 + 2
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

2
 ¡ 2 


2
 + 2

2 3
2

+22 
2
 + 2




2
 + 2

2 3
2

¡ 2 


2
 + 2




2


+22 
2
 + 2

2 3
2

+ 2


2
 + 2




2
 + 2

3


+22 
2
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

2
 + 2

2 2
 ¡ 2




2
 ¡ 2




2
 ¡ 


2


1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

= 3

h
 3

2
+  3

2
+ 3

3
¡ 


2
2

¡ 


2
2

¡ 


2
2

i
+ 

h
2
2

i
 (3.3)

with boundary conditions

 =  =   =  =   = 0 at  = 0 (3.4)

! 0 ! 0 as  !1, (3.5)

where 1 is the ‡uid relaxation time, 2 the Burgers ‡uid parameter 3 (· 1) the ‡uid

retardation time and  the kinematic viscosity of the ‡uid.
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Presenting the following similarity transformations

 =  0()  =  0()  = ¡
p
( + )  = 

p

 

() = ¡1
¡1

 () = ¡1
¡1

 (3.6)

By employing the above conversions, equation (31) satis…ed automatically and equations (32)

and (33) yield

 000 + ( + ) 00 ¡ ( 0)2 + 1
£
2( + ) 0 00 ¡ ( + )2 000

¤

¡2

2

6
6
4

2( + )2( 00)2 + 2( + )( 0 + 0) 0 00 ¡ ( + )3 

+( + )2 00( 00 + 00) + 20( + )3 000

3

7
7
5

+3
£
( 00 + 00) 00 ¡ ( + ) 

¤
= 0 (3.7)

000 + ( + )00 ¡ (0)2 + 1
£
2( + )000 ¡ ( + )2000

¤

¡2

2

6
6
4

2( + )2(00)2 + 2( + )( 0 + 0)000 ¡ ( + )3

+( + )200( 00 + 00) + 2 0( + )3000

3

7
7
5

+3
£
( 00 + 00)00 ¡ ( + )

¤
= 0 (3.8)

with transformed boundary conditions

(0) = 0 (0) = 0  0(0) = 1 0(0) =  (3.9)

 0(1) = 0 0(1) = 0 (3.10)
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In the above equations, the Deborah number 1 = 1 is the ‡uid relaxation time parameter,

2 = 2
2 the Burgers ‡uid parameter and the Deborah number 3 = 3 the ‡uid retardation

time parameter and  the stretching strength parameter.

3.1.2 Energy Transport Equations

The conservation laws of heat and mass transport (24) and (26) (cf. Chapter 2) in view

of modi…ed heat and mass ‡uxes (25) and (27) (cf. Chapter 2), respectively, under above

assumptions take the following forms


 +  

 +
 ¡ 

h
(





 ) +


1
( )

2
i

+

2

6
6
4

2 
2

2 + 2 
2

2 +2 
2

2 + 2
2
 + 2

2
 + 2

2
 + 



 + 





+



 +  



 +  



 + 



 +



 + 
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7
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2
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2
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 +


2
2

i

¡2

1

h



2
 +  


2
 +


2
2

i
= 1

h
2
2

i

+
2

0


h
2 + 2 + 2

³
2  + 2  +  

 +  
 +  

 +  


´i

+
0



³


 +  
 + 



´
+0( ¡ ) (3.11)
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+
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
 +  



 +  





+ 

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 +



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
 +
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7
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7
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 3

2
+  3

2
+ 3

3

i
= 

h
2
2

i
+ 

1

³
2
2

´


¡¤ ( ¡1)¡ 
¤
³


 +  
 +



´
 (3.12)
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with boundary conditions

 =   =  at  = 0 (3.13)

 ! 1  ! 1 as  !1. (3.14)

Here 1 =
³




´
is the thermal di¤usivity, in which  is the density of the liquid,  the speci…c

heat capacity at constant pressure and  the thermal conductivity of the liquid and (1 1)

the ambient temperature and concentration respectively.

By utilizing the transformation in equation (36) into equations (311) and (312) we get the

following equations

00 +Pr ( + ) 0 +Pr(
00 +

02)¡ Pr

h
( + ) ( 0 + 0) 0 + ( + )2 00

i

¡Pr

£
( + ) 000 + ( + ) 000

¤
¡ 2Pr ( + ) 000

+2Pr

£
1

03 +2
03 ¡1

0 00( + )¡2
000( + )

¤

+Pr 
£
 +  ( + ) 0

¤
+Pr

¡
1

02 +2
02
¢
= 0 (3.15)

00 + Pr ( + )0 + 


Pr 00 ¡ Pr

h
( + ) ( 0 + 0)0 + ( + )2 00

i

¡Pr 

( + ) 000 ¡ Pr

£
+ 1 ( + )0

¤
= 0 (3.16)
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with transformed boundary conditions

 (0) = 1 (0) = 1 (3.17)

(1) = 0 (1) = 0 (3.18)

In the above equations, Prandtl number is de…ned as Pr = 
1

 thermal relaxation time para-

meter  =  Lewis number  = 1


 the mass relaxation time parameter  =  the

stretching strength parameter  = 
  thermophoretic force parameter  =

¢
1

, Brownian

motion force parameter  =
¢

  Eckert numbers due to stretching along  and  direc-

tions, respectively, are 1 =
2

¢ and 2 =
2

¢  heat rise/fall parameter  = 0


and the

chemical reaction parameter 1 =
¤

 

3.2 Physical Analysis of Results

This section of the chapter is proposed to analyze the e¤ects of di¤erent physical parameters on

momentum and energy transport pro…les of Burgers nano‡uid. In this study, we investigated

the 3 ‡ow of Burgers nano‡uid accelerated due to bidirectional stretching sheet. The thermal

transport in the ‡ow is analyzed by utilizing non-Fourier heat ‡ux in addition with the impact

of heat rise/fall and Joule heating. The mass di¤usion phenomenon is explored under the

in‡uence of chemical reaction and modi…ed mass ‡ux theory. Governing equations of ‡ow and

energy transport are mentioned in equations (37 38) and (315 316) with associated boundary

conditions (39 310) and (317 318) are solved by employing the HAM. The properties of

momentum transport along  and  directions  0 ()  0 (), heat transport  () and mass

transport  () are scrutinized for di¤erent involved physical constraints like, relaxation time
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parameter (1) Burgers ‡uid parameter (2)  retardation time parameter (3)  Eckert number

(), thermal relaxation time parameter ()  thermophoresis parameter ()  heat source/sink

parameter () Brownian motion parameter () mass relaxation time parameter () and

chemical reaction parameter (1) represented through Figs. 33 ¡ 39 Fixed magnitude is

accorded for leading parameters such as 1 = 075  = 03 2 = 018 3 = 045 Pr = 70

 = 09  = 08  = 10  = 07  = 60  = 06  = 03 and  = 04 during the

entire computations except they are mentioned.

We are going to present the physical judgment of the parameters involved in this study.

Here, it is necessary to mention that the ‡ow is generated due to bidirectional stretching along

 and  directions of the surface while,  0 () and 0 () respectively are corresponding velocity

components. Furthermore, the thermal and solutal transport in the ‡ow is represented by  ()

and  (), respectively. The stimulus of stretching strength parameter () over ‡ow pro…les

 0 ()  0 (), thermal transport pro…le  () and mass transport pro…le  () is demonstrated

through Figs. 33( ¡ ). These …gures illustrate that the curves representing  0 () depict

the reducing trend while the curves of 0 () grow up for larger scales of . Additionally, it is

observed that the higher extent of  does not promote the rate of heat transfer  () and mass

transfer  () in the ‡ow of nano‡uid. Mathematically,  is de…ned as the ratio of stretching

rates “” and “” in  and  directions, respectively. In which,  is directly proportional and

a is inversely proportional to . It clearly refers that the larger extent of  corresponds to

increase the stretching rate along  direction and reduce along  direction of the surface. Hence,

the ‡uid motion along ¡direction becomes quicker and along  direction it becomes slower.

Additionally, the reduction in the thermal transport is due to the entrainment of chiller ‡uid

from the ambient. It is of worth mentioning that the case  = 0 corresponds to 2 ‡ow
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while, the case  = 1 corresponds to axisymmetric ‡ow. The velocity pro…les  0 ()  0 () 

temperature pro…les  () and solutal pro…les  () for various magnitudes of ‡uid relaxation

time parameter (1) are delineated in Figs. 34(¡ ). It is anticipated that the incrementing

values of 1 reduce the ‡ow velocity of nano‡uid along both  and  directions. Moreover, it is

observed that both  () and  () improved for incremented 1. The thermal and solutal curves

adhere to the surface when 1 magni…es representing that the thermal boundary layer is the

increasing function of 1. Basically, growing strength of 1 serves to stimulate the resistance

between ‡uid elements which causes reduced ‡ow velocity along  and  directions. The rising

trend of thermal transport is also the consequence of this resistance in the motion. As resistance

generates more heat in the system which obviously accelerates the thermal transport in the ‡ow.

The behavior of material parameter of Burgers ‡uid (2) on  0 ()  0 ()   () and  () is

demonstrated in Figs. 35(¡). It is perceived that enlargement in the magnitude of 2 implies

that the ‡ow is retarded along  and  directions. Additionally, the rate of heat conduction  ()

and the rate of mass transfer  () is seems to be accelerated for incrementing values of 2. Figs.

36(¡) are interleaved to highlight the response of ‡uid retardation time parameter (3) over

‡ow distributions  0 ()  0 () and energy transport pro…les  (),  () of Burgers nano‡uid.

Figs. 36( ) reveal that the ‡ow velocities along  and  directions  0 (), 0 () respectively,

are accelerated by enlarging the magnitude of 3. It depicts that the momentum transport

is boosted by the developing strength of 3. Additionally, it is con…rmed that augmented 3

de-escalates the thermal and solutal transport curves of Burgers ‡uid. Actually, the developing

strength of 3 builds up the shear stress in the ‡uid which serves to accelerate the ‡ow velocity of

nano‡uid. Additionally, larger 3 corresponds to lower creep phenomenon of the Burgers ‡uid.

Some energy is required to lower down the creep phenomenon of the ‡uid hence, this loss of

59



energy refers to decline the thermal as well as the solutal transport in the ‡uid. Figs. 37(¡)

elucidate the thermophoretic force () and Brownian motion force () response on thermal

and nanoparticles volume fraction pro…le of nano‡uid. In Figs. 37( ) it is investigated that

the incremented  serves to accelerate the thermal transport  () and solutal transport  ().

These results are according to our expectations because during the process of thermophoresis

particles move from hotter to chiller regions and this movement of ‡uid particles generate

friction which drives up the thermal transport  () and solutal transport  () in the ‡ow.

The response of Brownian motion force parameter () over  () and  () is manifested in

Figs. 37( ). A clear magni…cation is detected in the thermal curves of nano‡uid for growing

strength of . Additionally, it is assessed that the curves indicating the solutal transport

are depicting the diminishing trend for incrementing values of . Basically, enhanced kinetic

energy of the system due to random movement of molecules in Brownian motion phenomenon

refers to accelerate the heat ‡ow rate in the ‡ow which intensi…es the thermal distribution.

Infact, incremented  implies lower mass di¤usivity because building strength of  resists

the mass di¤usion which deteriorate the solutal curves of ‡uid. Figs. 38( ¡ ) are drafted

to visualize the response of thermal relaxation time parameter () Eckert numbers 1 and

2 due to stretching along  and  directions, respectively, on thermal transport pro…le and

mass transfer relaxation time parameter () on solutal transport pro…les. The plots in Figs.

38( ) infer that the thermal transport de-accelerates for incremented  and solutal transport

also declines for augmented . Physically, accretion in  implies that more time is utilized

for convection of heat in the material. Hence, an intensi…cation in the  refers to decline the

thermal transport curves of ‡uid. Same reason is in the case of diminution of solutal pro…le

for incremented , i.e, larger time is needed for mass transfer. Figs. 38( ) are depicted to
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disclose the thermal transport characteristics of Burgers nano‡uid in‡uenced by Eckert numbers

(1) and (2) in  and  directions, respectively. These Figs. demonstrate that the higher

extent of both 1 and 2 promote the transport of thermal energy in the ‡ow of nano‡uid.

As 1 is the Eckert number produced due to stretching along ¡axis while, 2 is the Eckert

number appears due to stretching of the surface along  direction. It is worth mentioning

that due to accumulation in the magnitude of 1 and 2 implies that the stretching rate in

 and  directions respectively, increases which is responsible for the enhancement of kinetic

energy of the ‡uid particles and consequently the thermal pro…les of nano‡uid build up. Figs.

39(¡) elucidate the nature of thermal curves for in‡uence of heat source/sink constraint ()

and the nature of solutal curves for the in‡uence of chemical reaction constraint (1). Clearly,

an improvement in the thermal enhancement is detected from Figs. 39( ) for magnifying

scales of heat source parameter (  0) while, it is assessed that the higher values of heat sink

constraint (  0) de-escalates the thermal contours in the ‡ow. Obviously, intensifying e¤ects

of heat source parameter correspond to sum up more heat in the system due to which heat

transport boosts up and the larger heat sink parameter indicates that the more amount of heat

absorbs from the system which surely refers to reduce the heat ‡ow in the ‡uid. Moreover, to

detect the impact of chemical reaction constraint (1) on solutal distribution of nano‡uid Figs.

39( ) are portrayed. From these plots, it is exposed that the for larger extent of constructive

chemical reaction parameter (1  0) the solutal distribution of Burgers ‡uid become weaker

while, it strengthens for developing destructive chemical reaction parameter (1  0). Actually,

some amount of energy consumes in construction of chemical reaction which refers that the

rate of mass transfer declines in the ‡ow whereas, the energy adds back in the system when

destruction in rate of chemical reaction is started which in result promotes the mass transfer
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rate in the ‡ow.

3.3 Validation of Homotopic Solutions

In this section we computed the values of ¡ 00(0) ¡00(0) and ¡0(0) for some values of stretch-

ing strength parameter  in reduced case and depicted in tables 31() and 31() and compared

these values with already published studies. We found that our computed values are accurate

when compared to previously published studies, which proves that our adopted homotopic

approach is a valid technique. Also the ~ curve is depicted in Fig. 32 for 15 order of approx-

imation, which illustrates the acceptable values of ~ are lie in the interval ¡13 · ~ · ¡08

Table 3.1(a): A comparison table for ¡ 00(0) and ¡00(0) for several magnitudes of stretch-

ing strength parameter () in reduced case when 1 = 2 = 3 = 0.

 Khan et al. [21] Present study

¡ 00(0) ¡00(0) ¡ 00(0) ¡00(0)

00 10 00 10 00

02 103949 014874 103937 014863

04 107578 034921 107567 034901

06 110994 059053 110913 059048

08 114249 086668 114229 086654

10 117372 117372 117121 117361
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Table 3.1(b): An assessment table for ¡0(0) for pertinent ranges of  in reducing case

when 1 = 2 = 3 =  =  =  =  =  = 0 and  = 1.

 [16] [138] Present study

025 ¡0665933 ¡066593 ¡0665929

050 ¡0735334 ¡073533 ¡0735326

075 ¡0796472 ¡079472 ¡0796469

Fig. 32: The ~ curves for 15 order of approximation.
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Figs. 33(¡ ): Impact of  on  0 0  and .
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Figs. 36(¡ ): Impact of 3 on 
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Figs. 37(¡ ): E¤ect of  and  on  and 
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Figs. 38(¡ ): Impact of , 1 and 2 on  and  and on .
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Figs. 39(¡ ): Impact of  on  and 1 on .
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Chapter 4

Analysis of heat and mass transport in Burgers ‡uid

‡ow due to stretching cylinder

In this chapter, a new mathematical modelling is presented for the ‡ow of Burgers ‡uid induced by

a stretching cylinder in the presence of magnetic …eld. Moreover, the mechanisms of heat and mass

transport are also examined by using the laws of conservation of energy with Fourier’s and Fick’s laws

for thermal and solutal energy, respectively. The ordinary di¤erential equations (ODEs) are attained

from partial di¤erential equations (PDEs) by making the use of dimensionless similarity transformations.

The homotopic approach is being adopted to solve the developed ODEs. The in‡uences of di¤erent

physical parameters on velocity, thermal and concentration pro…les are pondered through graphs and

physical behaviors of these parameters are enlightened with the realistic verdicts. The basic physical

intimation of pertained results is that the temperature and solutal curves of Burgers liquid show the

enhancing trend for larger scales of relaxation time parameter and for material parameter of Burgers

‡uid while, opposing behavior is being observed for retardation time parameter. Moreover, it is assessed

that the concentration rate and solutal boundary layer thickness decline with an intensi…cation in Lewis

number. Further, it is noted that the temperature distribution enhances/declines with higher values of
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heat source/sink parameter, respectively.

4.1 Mathematical Formulation

We are considering the steady 2 incompressible ‡ow of Burgers ‡uid induced by a stretched

cylinder of radius . Let cylindrical polar coordinates (  ) are taken to be in such a way

that  ¡  is settled along the axis of the cylinder while,  ¡  is considered along the

radial direction as illustrated in Fig. 41. The velocity …eld for present ‡ow is considered

as V = [ 0 ]. Here  and  are taken as the velocity components along  and  axes,

respectively with a uniform magnetic …eld  = [0 0 0] applied normal to the ‡ow direction.

Moreover,  =
0
 is taken as the stretching velocity of the cylinder in ¡direction, where 0

is the reference velocity and  the speci…c length.

Fig. 41: Flow con…guration and coordinates system.

In view of above assumptions, the continuity equation (22) (cf. Chapter 2) and the mo-

mentum equation by the elemination of S from equations (21) and (23) (cf. Chapter 2) take
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the subsequent forms for current ‡ow analysis
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By adopting current assumptions, the heat transport and mass transport equations (17) and

(110) (cf. Chapter 1) in view of Fourier’s and Fick’s heat and mass ‡uxes given in equations

(18) and (111) (cf. Chapter 1) we arrived at the following PDEs


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1



·
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¶¸
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¶
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with boundary conditions

 =  =
0 


  = 0  =   =  at  =  (4.5)

 ! 0



! 0  ! 1  ! 1 as !1 (4.6)

Here 1 is the relaxation time, 2 the material parameter of Burgers ‡uid 3 (· 1) the retar-

dation time,  the kinematics viscosity, 0 the heat generation /absorption coe¢cient, ()

the liquid temperature and concentration respectively, (1 1) the ambient temperature and

concentration respectively,  the di¤usion coe¢cient and 1 =
³


()

´
the thermal di¤usivity,

in which  is the density of liquid,  the speci…c heat and  the thermal conductivity of the

liquid.

Introducing the following conversions

 = ¡


q
0
 ()  = 0

  0() () = ¡1
¡1



() = ¡1
¡1

  =
q

0


³
2¡2

2

´
 (4.7)

By utilizing the overhead transformations equation (41) is explicitly satis…ed while equations

(42)¡ (46) yield
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(1 + 2) 00 + 20 +Pr 0 +Pr  = 0 (4.9)

(1 + 2)00 + 20 + Pr 0 = 0 (4.10)

 = 0  0 = 1  = 1  = 1 at  = 0 (4.11)

 0 ! 0 
00
! 0 ! 0 ! 0 as !1 (4.12)

where the curvature parameter ()  Deborah numbers (1 and 3)  Burgers ‡uid parameter

(2)  heat source (  0) and sink (  0) parametermagnetic parameter (), Prandtl number

(Pr)  and Lewis number () are de…ned as follows:

 = 1


q

0

 1 = 1
0
  3 = 3
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   = 0

0()


2 = 2
¡
0


¢2
  =

³
2

0
0

´12
 Pr = 

1
  = 1




(4.13)
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4.2 Validation of Homotopic Approach

We have depicted table 41 which is a comparison table of ¡ 00(0) for pertinent magnitudes of

1 with some formerly published studies. Therefore, we can say that our work is valid as it is

identical with formerly published results.

Table 4.1: A comparison table for ¡ 00(0) against di¤erent values of 1 when  = 2 =

3 = = 0.

1 Abel   [139] Waqas   [140] Irfan   [141] Present study

00 1000000 1000000 10000000 10000000

02 1051948 1051889 10518890 10518891

04 1101850 1101903 11019035 11019036

06 1150163 1150137 11501374 11501375

08 1196692 1196711 11967114 11967015

10 ¡ ¡ 12417477 12417699

12 1285257 1285363 12853630 12853701

14 ¡ ¡ 13276675 13276669

16 10368641 1368758 13687582 13687579

18 ¡ ¡ 14087264 14087310

20 1447617 1447651 14476526 14476519
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4.3 Analysis of Results

In this section of the chapter we are discussing the physical interpretation of various parameters

which are involved in our non linear di¤erential equations (48 ¡ 410) along with associated

boundary conditions mentioned in Eqs. (411) and (412) We have employed the homotopy

analysis method (HAM) to explore the impact of physical parameters on ‡ow, thermal and

concentration distributions of Burgers ‡uid. The impact of all essential physical parameters

is explored and discussed with complete physical understandings and the pertained outcomes

are depicted in Figs. 42 ¡ 49 We examined the e¤ects for the constraints of curvature () 

‡uid relaxation time (1), material parameter of Burgers ‡uid (2)  ‡uid retardation time (3)

and magnetic force () on ‡ow  0 (), thermal  () and concentration  () distributions of

Burgers ‡uid while, the impact of Prandtl number () and heat source/sink () are seen on

thermal curves and impact of Lewis number () is noted on solutal curves of the Burgers

magneto ‡uid. Scales of involved parameters are …xed to …nd the convergence of the solutions

i.e.,  = 07 1 = 065 2 = 025 3 = 041  = 05 Pr = 40  = 20  = 20 during the

overall simulations and some are mentioned in Figs. (42¡ 49) 

We deliberate the complete physical interpretation to behaviors of involved parameters.

Firstly, we have depicted Figs. 42( ¡ ) to observe the impact of curvature parameter ()

against ‡ow, temperature and solutal distributions of Burgers ‡uid. Through these Figs., it

is assessed that the ‡ow curves of the ‡uid become higher for larger curvature parameter.

The reason is that the radius of the cylinder shrinks by enhancing the curvature and as a result

interaction region of ‡uid with the geometry also become limited. Hence, diminution is produced

in the resistance due to exterior and ultimately the ‡uid velocity and the associated thickness
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of boundary layer build up. Also, an upsurge is noted in thermal and solutal curves of Burgers

‡uid due to intensifying the values of curvature parameter. The impact of ‡uid relaxation time

(1) against ‡ow, temperature and concentration curves is depicted through Figs. 43(¡ )

We scrutinized that the larger values of 1 leads to diminish the ‡ow pro…le as well as the

thickness of the momentum boundary layer of Burgers ‡uid. Whereas, at the other hand,

thermal and solutal curves of Burgers ‡uid build up for escalating magnitude of ‡uid relaxation

time parameter. Physically, 1 is dependent upon the relaxation time (1) and an escalation in

the Deborah number (1) corresponds to augmentation in the ‡uid relaxation time which means

that ‡uid motion opposes with greater e¤ects and consequently, the ‡ow curves of the Burgers

liquid become the victim of diminution in their strength. Furthermore, due to intensi…cation in

Deborah number (1) an escalation in ‡uid relaxation time is produced which leas to increase

the interface among ‡uid elements and …nally, the thermal as well as solutal energy transport

rises in the ‡ow of Burgers ‡uid. We analyzed that the range of values for 1 can be selected

between 01 to 07. Figs. 44(¡) disclose the in‡uence of material parameter of Burgers ‡uid

(2) against ‡ow, thermal and concentration distributions of Burgers ‡uid. Attenuation in the

‡ow curves and velocity boundary layer thickness is perceived by enlarging the magnitude of

2 however, an augmentation is noted in the variation of thermal and concentration pro…le

of Burgers liquid for varying scales of Burgers ‡uid parameter. To highlight the in‡uence of

‡uid retardation time parameter 3 on ‡ow, temperature and solutal pro…les of Burgers ‡uid

we have inserted Figs. 45( ¡ ). Increasing trend (contrary to 1) of the ‡ow distribution

is assessed for varying scales of ‡uid retardation time constraint (3) while, diminution in the

thermal and solutal transport of energy is detected for higher magnitude of 3. We know

that 3 is dependent to retardation time (3). So that 3 also rises due to rise in 3 and
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consequently, the burgers ‡uid ‡ow is accelerated, and ‡uid velocity enhances. Additionally,

augmentation in Deborah number 3 is accountable for diminishing behavior of temperature

curves and thermal boundary layer thickness. Furthermore, practically it is detected that our

non-Newtonian viscoelastic ‡uid model reduced in viscous ‡uid model in two situations. i.e,

() 1 = 2 = 3 () 2 = 0 and 1 = 3. That means that in …rst situation the ‡uid

relaxation time, Burgers ‡uid parameter and ‡uid retardation time all become equal and in

second case it elaborates that Burgers ‡uid parameter vanishes and relaxation time become

equal to retardation time then in these two cases current model will reduce into Newtonian

‡uid model and the case that 2 = 0 corresponds that Burgers model will reduce into Oldroyd-

B ‡uid model and the situation that 2 = 3 = 0 describes that Burgers ‡uid model will be

reduced into Maxwell viscoelastic ‡uid model. Additionally, we came to know that the ‡ow

distribution has completely converse in‡uences for relaxation time 1 when compared by ‡uid

retardation time 3. To enlighten the stimulus of magnetic force parameter () on velocity,

thermal and concentration contours we have portrayed Figs. 46( ¡ ). It is analyzed from

these graphs that thermal boundary conditions are asymptotically satis…ed and ‡ow pattern of

the Burgers ‡uid is signi…cantly a¤ected and depicts the reducing behavior by escalating the

extent of magnetic force parameter (). Actually, when we intensify the e¤ect of magnetic

force parameter then a drag force is generated in larger extent which oppose the ‡ow motion

of the liquid and hence the velocity of the liquid deteriorates. Additionally, it is perceived that

the thermal and solutal energy transport in the ‡ow of Burgers ‡uid is decline for higher extent

of magnetic parameter. Basically, larger magnetic parameter is responsible for the stronger

Lorentz force and this force ultimately leads to develop the thermal as well as the solutal pro…le

of the Burgers liquid. Note that, here  6= 0 is corresponds to hydromagnetic ‡ow situation
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and  = 0 classi…es as the hydrodynamic ‡ow pattern. We analyzed that the range of  can

be taken in between 10 to 100. To disclose the temperature features of Burgers ‡uid against

the Prandtl number () we have drafted Fig. 47(). Through this Fig., it is inspected that the

thermal contours of the magneto Burgers liquid descend for varying extent of Prandtl number.

Physically, Prandtl number is the function of thermal di¤usivity and is inversely proportional

to the . So that we can easily assess that higher extent of Prandtl number leads to diminish

the temperature di¤usion coe¢cient and due to this reason thermal pro…le of Burgers liquid

deteriorates and temperature thickness of the boundary layer also declines. It is realized that

the range of Prandtl number can be chosen between 10 to 120. The stimulus of Lewis number

() against solutal curves of Burgers liquid is delineated in Fig. 47(). It is inferred that

the concentration rate and solutal boundary layer thickness lessen for enlarged scales of Lewis

number (). As Lewis number is the fraction of mass and momentum di¤usion coe¢cients

and has inverse relation to the mass di¤usivity. Thus, an intensi…cation in Lewis number

corresponds to a decrease in di¤usion which ultimately leads to diminish the concentration rate

and the solutal thickness of the boundary layer of the Burgers ‡uid. Figs. 48( ) disclose the

temperature characteristics for the e¤ects of heat source/sink constraint. It is investigated that

the thermal curves of Burgers liquid depict ascending trend for heat source parameter (  0)

while depict descending behavior for heat sink constraint (  0). Its reason is simple, i.e, when

e¤ect of any source of heat is augmented in the system the surely more quantity of heat sums

up in the system due to which thermal distribution of the ‡uid ascends and in contrast to this

when we escalate the values of heat sink constraint then more amount of heat waves leave the

system then obviously temperature of the system depreciates. We observed that the range of

heat source can be taken between 10 to 80 for the present investigation.
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Figs. 42(¡ ): Impact of  on  0  and .
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Figs. 43(¡ ): E¤ect of 1 on  0  and .
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Figs. 44(¡ ): E¤ect of 2 on  0  and .
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Figs. 45(¡ ): E¤ect of 3 on  0  and .
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Figs. 46(¡ ): Impact of  on  0  and .
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Figs. 48( ): In‡uence of heat rise (  0) and heat sink (  0) against thermal pro…les.
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Chapter 5

Stagnation point ‡ow of magnetized Burgers

nano‡uid subject to thermal radiation

This chapter explores the impact of non linear thermal radiation on magnetohydrodynamics MHD

‡ow of Burgers nano‡uid induced by stretching cylinder. The e¤ects of thermal radiation and chemical

reaction are also taken into account to investigate the heat and mass transportation in ‡ow of Burgers

‡uid. Mathematical formulation is obtained by utilizing boundary layer theory and then similarity

transformations are introduced to alter the governing partial di¤erential equations into set of ordinary

di¤erential equations. The solutions of velocity, thermal and solutal equations are attained by adopting

homotopy analysis method (HAM). Thermophysical properties of numerous physical parameters on ‡ow,

thermal and solutal pro…les are depicted in graphs and outcomes are explained with realistic judgements.

The essential physical declaration of obtained outcomes explore that the ‡ow pro…le of Burgers nanoliquid

boosts up for growing values of velocity ratio parameter. Additionally, it is noticed that the thermal

and solutal boundary layers of magneto Burgers nano‡uid become more thicker for augmented values

of Burgers material parameter while contrasting behavior is observed for retardation time parameter.

Moreover, it is assessed that thermal pro…le and thermal thickness of boundary layer of nanoliquid
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enhance for growing values of temperature ratio parameter and radiation parameter Also, it is explored

that the solutal thickness of Burgers ‡uid weakens for positively increasing values of chemical reaction

parameter.

5.1 Mathematical Formulation

In present problem we are dealing with steady 2 incompressible ‡ow of magneto Burgers

nano‡uid. Moreover, we consider that the ‡ow is induced by a stretching cylinder having

radius  near a stagnation point. Let cylindrical polar coordinates ( ) are taken to be in

such an approach that ¡  taken along the axis of the cylinder and ¡  is taken along

the radial direction as demonstrated through Fig. 41 (cf. Chapter 4). The velocity …eld for

present ‡ow is considered as V = [ 0 ] Here  and  are taken as the velocity components

along  and  axis respectively. Flow equation of Burgers nano liquid over a stretching cylinder

is modelled incorporated with uniform magnetic …eld  = [0 0 0 ] applied perpendicular

to the ‡ow direction. Additionally, the energy equation is modelled incorporating with the

characteristics of non linear thermal radiation. While nano particles and chemical reactions

are also considered to model the concentration equation. Furthermore, it is presumed that

the cylinder is stretched along ¡direction with velocity  = 0
 , here 0 is considered as

reference velocity and  the speci…c length. Moreover, it is presumed that the temperature and

concentration at the wall of the cylinder is ( ) respectively.

By adopting above assumptions in equations (21 ¡ 23) (cf. Chapter 2), the continuity

equation and momentum equation, respectively, for the current ‡ow analysis are given by




+




+




= 0 (5.1)
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By adopting current assumptions, the heat transport and mass transport equations for nano‡u-

ids (17) and (110) (cf. Chapter 1), we arrived at the following PDEs
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with boundary conditions

 =  =
0


  = 0  =   =  at  =  (5.5)

 !  =
1 






! 0  ! 1  ! 1 as !1 (5.6)

Here () are the components of velocity in  and  directions, respectively,  the kinemat-

ics viscosity, 1 the relaxation time, 2 the material parameter of Burgers ‡uid 3(· 1)

the retardation time, () the liquid temperature and concentration respectively, (1 1)
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the ambient temperature and the ambient concentration,  the di¤usion coe¢cient,  the

stretching velocity,  the free stream velocity, and 1 =
³


()

´
the thermal di¤usivity, in

which (   ) is the density of liquid and speci…c heat respectively, and  the thermal conduc-

tivity of the liquid.

By utilizing the transformations mentioned in equation (47) (cf. Chapter 4), equation.

(51) satis…ed automatically and equations (52)¡ (55) yield
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¶


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¡ Pr 1 = 0 (5.9)

The transformed boundary conditions are as follows

 = 0  0 = 1  = 1  = 1 at  = 0 (5.10)

 0 !  
00
! 0 ! 0 ! 0 as  !1 (5.11)

where  = 1
0

is the velocity ratio parameter, 1 the velocity of free stream, 0 the stretching

velocity of the cylinder. Moreover, the curvature parameter  Deborah numbers 1 and 3

Burgers ‡uid parameter 2 magnetic parameter  , Prandtl number Pr Lewis number 
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Chemical reaction parameter 1 Radiation parameter  Temperature ratio parameter 

Thermophoresis parameter  and Brownian motion parameter  are de…ned as follows:
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(5.12)

5.2 Physical Concern Parameters

Relations for the rate of heat transfer () and rate of mass transport () are

 =


( ¡ 1)
  =

 
( ¡1)

 (5.13)

where  and  are the heat and mass ‡ux respectively
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The dimensionless form of Eq. (513) is given by

 Re
¡ 1
2 = ¡(1 +

4

3
((1 + ( ¡ 1) (0)))

3
0
(0)  Re

¡ 1
2 = ¡0 (0)  (5.15)

where Re =

 is the local Reynolds number.
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5.3 Solution Convergence

We used homotopy analysis method written in section (132) (cf. Chapter 1) which always gives

convergent solutions. This segment is proposed to discuss the convergence of such analytical

solutions which contain auxiliary parameters (~ ~ and ~) It is compulsory to mention that

convergence of the homotopic results can be adjusted by these in‡uential parameters (~  ~

and ~) The accompanying value of these assisting parameters is assessed by employing least

square error which is given by

 =
1

 + 1

X

=0

"



X

=0

(¢)

#2

 (5.16)

To verify authentication of the convergence of these analytic results, Table 51 is inserted. From

which it is clear that convergence of velocity accomplished at 20th order of approximation,

whereas convergence for thermal and solutal pro…les attained at 22ndorder of approximations.

Also we have plotted the ~ curves in Fig. 52 upto 14th order of approximation for the present

investigation. It can be seen from Fig. 52 that the acceptable interval for ~ is ¡12 · ~ · ¡07.
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Table 5.1: Convergence of homotopic results for  = 02 1 = 065 2 = 025 3 = 045

 = 05  = 06  = 05  = 04  = 05  = 05 Pr = 50 1 = 07  = 05

No of approximations ¡
00
(0) ¡

0
(0) ¡

0
(0)

1 -0.5000708 -0.9621234 -0.9976667

5 -0.4999938 -0.8492961 -1.007009

10 -0.4990878 -0.7652028 -1.037145

12 -0.4984736 -0.7424222 -1.049929

15 -0.4972827 -0.7159114 -1.067577

19 -0.4963091 -0.7087028 -1.072900

20 -0.4963091 -0.7021749 -1.077916

22 -0.4963091 -0.7021749 -1.077916

Fig. 51: The ~ curves for 14 order of approximation.
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5.4 Physical Analysis of Results

The analytical solutions of coupled non linear ordinary di¤erential equations (57¡ 59) with

boundary conditions given in Eqs. (510) and (511) have been obtained by homotopy analysis

method (HAM). In order to analyze the e¤ects of varying values of pertinent physical para-

meters on velocity, thermal and solutal pro…les this section is proposed. We investigated the

physical behavior of all involved dimensionless parameters, for instance, relaxation time para-

meter 1 Burgers ‡uid parameter 2 retardation time parameter 3 magnetic parameter  ,

velocity ratio parameter , curvature parameter  radiation parameter  temperature ratio

parameter  Brownian motion parameter  thermophorosis parameter  Prandtl number

 Lewis number  and chemical reaction parameter 1 on velocity  0 (), thermal  () and

solutal  () pro…les, which are depicted through Figs. (52¡ 512) We have put the following

…xed values for leading parameters such as  = 02 1 = 065 2 = 025 3 = 045  = 05

 = 06  = 05  = 04  = 05  = 05Pr = 50 1 = 07  = 05, during the entire

computations.

We discuss the impact of each parameter with complete logic as follows. Initially, Figs.

52(¡ ) are drafted to envision the stimulus of velocity ratio parameter () towards velocity

and thermal pro…les of Burgers ‡uid. Fig. 52() interprets the increasing trend of velocity

distribution for both casses   1 and   1 while the momentum boundary layer thickness

shows reverse trend for   1 (when the free stream velocity is larger than the stretching

velocity of the cylinder) as compared with   1 (when the free stream velocity is lower than

the the stretching velocity of the cylinder). From this Fig., it is also exposed that boundary layer

is not achieved for  = 1 because the ‡uid particles and boundary of the cylinder moves with
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same velocity. Physically, augmentation in  corresponds to the higher free stream velocity

which is responsible for an intensi…cation in the velocity of ‡uid. Fig. 52() shows that

temperature pro…le of Burgers liquid diminishes for   1 The characteristics of temperature

ratio parameter against thermal pro…le of nano Burgers liquid are delineated in Fig. 53.

This Fig. demonstrates that the temperature pro…le and associated thickness of the boundary

layer of Burgers liquid boosts for intensifying values of temperature ratio parameter () 

Actually, it is due to the fact that an increase in  enhances the thermal state of the ‡uid

consequently the temperature of the ‡uid increases. To visualize the e¤ects of thermophorosis

parameter () against thermal and solutal distributions of nano Burgers ‡uid Figs. 54( ) are

drafted. It is scrutinized that temperature and nano particles volume fraction of Burgers liquid

enhance due to growth in . Additionally, it is seen that momentum and solutal boundary

layers become more thicker for increasing values of . These …ndings relate with physical

phenomenon of thermophoresis, i.e, the particles which are heated moves from hotter regions

towards colder regions and consequently the ‡uid temperature grows up. Figs. 55( ) disclose

the characteristics of Brownian motion parameter () against temperature and solutal pro…les.

It is seen that thermal pro…le and thickness of thermal boundary layer enhances by increasing

values of  At the other hand, solutal pro…le and solutal boundary layer thickness of nano

Burgers liquid diminish by enhancing . Physically, intensi…cation in  corresponds to

enhance the kinetic energy of nanoparticles within the liquid which lead to rise the rate of heat

transfer and boundary layer thickness and consequently temperature …eld of Burgers liquid

increases. Moreover, Brownian motion controls the di¤usion of the nanoparticles in the regime

away from the boundary. Hence enlargement of Brownian motion parameter results in decrease

of nano particles volume fraction pro…le. Figs. 56(¡) demonstrate the stimulus of curvature
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parameter () against ‡ow, thermal and concentration pro…les. It is exposed that the ‡ow

velocity as well as nano particles volume fraction pro…les of Burgers nano liquid enhances for

progressive values of  Also it is noted that momentum, thermal and solutal thicknesses of

boundary layer improve with augmented values of  The reason behind this is the radius of

curvature deteriorates due to which the interaction space of the cylinder with the ‡uid declines.

As a result, resistance occurred by the exterior decreases, hence the ‡ow pro…le and momentum

boundary layer thickness of Burgers ‡uid enhance. Moreover, it is analyzed that the higher

values of  boost both the thermal pro…le and associated thickness of boundary layer. It is

due to the reason that amount of heat transport rises which result in rise of thermal and nano

particles volume fraction pro…les of Burgers nano ‡uid. Figs. 57(¡) are drafted to enlighten

the e¤ects of 2 (Burgers ‡uid parameter) against velocity, thermal and nano particles volume

fraction distributions. It is explored that the velocity and associated boundary layer thickness

of Burgers nano ‡uid reduce with intensi…cation in 1whereas reverse trend is being noticed

for thermal and solutal pro…les. Actually, relaxation time enhances with an intensi…cation

in Deborah number, as a result resistance in ‡uid motion rises which causes to diminish the

velocity pro…le. Moreover, when 2 enhances the relaxation time also enhances due to which

collision between ‡uid elements increases consequently thermal and concentration distributions

of the nano liquid boost. Furthermore, it is observed that if 1 = 2 = 3 or 2 = 0 and

1 = 3 in both cases our work reduce to Newtonian ‡uid model and when 2 = 0 our model

reduces to Oldroyd B ‡uid model and when 2 = 3 = 0 our model reduces to Maxwell ‡uid

model. Further, it is noticed that due to presence of relaxation and retardation times we

examined that velocity has totally reverse e¤ects for 1 and 2 as compared with 3. Figs.

58( ) demonstrate the in‡uences of chemical reaction parameters (1) against concentration
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distribution of Burgers nano liquid for both positive and negative values. From these graphs it

is inferred that nano particles volume fraction decreases and associated boundary layer becomes

more thinner for increasing values of 1  0. In contrast of this, it is observed that solutal pro…le

of Burgers nano liquid builds up and thickness of boundary layer improves with intensi…cation

in values of 1  0. It is because of the reason that strong chemical reaction parameter

(1  0) corresponds to decline the mass transfer and enhances for higher values of 1  0

Figs. 59( ) are depicted to envision the characteristics of Prandtl number () and Lewis

number () towards temperature and solutal pro…les respectively. Diminution in thermal

distribution of nano Burgers liquid is persumed for increasing values of Prandtl number. At the

other hand the thermal boundary layer thickness also becomes thinner for higher . It is due

to the fact that  depends upon thermal di¤usivity which becomes weaker for higher Prandtl

number. Obviously, weaker thermal di¤usivity results in fallo¤ of the temperature pro…le and

also the thermal boundary layer thickness reduces. Additionally, as Lewis number is the ratio

of mass di¤usivity and momentum di¤usivity and is inversely proportional to the mass di¤usion

coe¢cient. Thus an intensi…cation in Lewis number leads to decrease the di¤usion which results

in a decline of mass of nano particles volume fraction and solutal boundary layer thickness. To

highlight the e¤ects of radiation parameter () against temperature distribution of Burgers

nano‡uid, Fig. 510 is inserted. It is scrutinized that the thermal pro…le of nano liquid builds up

and thermal thickness of boundary layer improves for larger number of  It is because of the

reason that more heat is generated within the liquid due to increase in  which corresponds

to boosts up the temperature pro…le of nanoliquid.

The variation in dimensionless Nusselt number Re
¡1
2  against distinct values of Brownian

motion parameter () and thermophorosis parameter () is plotted in Fig. 511() It is
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seen that magnitude of heat transport rate is boosts up with rise in  and in . It means

that the rate of heat transfer at that boundary enhances for augmenting values of  and 

Additionally, Fig. 511() is inserted to envision the impacts of Brownian motion parameter

() and Prandtl number () against the rate of heat transport at the boundary. It is noticed

that the amount of heat transfer at the surface rises for higher values of  and  Fig. 512

is portrayed to highlight the variations of  and  for dimensionless sherwood number. It is

found that rate of mass transport decreases for varying e¤ects of  and  Table 52 is an

assessment table of ¡ 00(0) for distinct values of  with some studies. As a consequence, from

this table, we are guaranteed that the recent outcomes are very accurate.
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Figs. 52( ): Impact of velocity ratio parameter () on velocity and temperature …elds.
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Fig. 53: Impact of temperature ratio parameter () on temperature …eld.

99






( 
)

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Nt = 0.1, 0.3, 0.5, 0.7

(a)




( 
)

0 2 4 6
0

0.2

0.4

0.6

0.8

1

N
t
= 0.1, 0.3, 0.5, 0.7

(b)

Figs. 54( ): Variation of  on thermal and solutal pro…les.
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Figs. 55( ): Impact of  on thermal and solutal pro…les.
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Figs. 56(¡ ): Impact of  on ‡ow, thermal and solutal pro…les
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Figs. 57(¡ ): Impact of 2 on ‡ow, thermal and solutal pro…les
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Fig. 58( ): Impact of 1 on concentration pro…le.
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Figs. 59( ): Impact of  on thermal pro…le and  on concentration pro…le.
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Table 5.2: A comparison table for values of ¡ 00(0) for di¤erent values of  when  =

2 = 3 = 1 =  = 0

 Shehzad   [142] Hayat   [143] Present study

00 100000 100000 1000000

02 101980 101980 1019801

05 111803 111803 1118029

08 128063 128063 1280633

10 141421 141421 1414221

12 156205 156205 1562048

15 180303 180303 1803044
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Chapter 6

Burgers ‡uid ‡ow in perspective of Buongiorno’s

model with improved heat and mass ‡ux theory over

stretching cylinder

In this chapter, an e¤ort is made to model the thermal conduction and mass di¤usion phenomena in

perspective of Buongiorno’s model and Cattaneo-Christov theory for 2D ‡ow of magnetized Burgers

nano‡uid due to stretching cylinder. Moreover, the impacts of Joule heating and heat source are also

included to investigate the heat ‡ow mechanism. Additionally, mass di¤usion process in ‡ow of nano‡uid

is examined by employing the in‡uence of chemical reaction. Mathematical modelling of momentum,

heat and mass di¤usion equations is carried out in mathematical formulation section of the manuscript.

Optimal homotopy analysis method (OHAM) in Wolfram Mathematica is utilized to analyze the e¤ects

of physical dimensionless constants on ‡ow, temperature and solutal distributions of Burgers nano‡uid.

Graphical results are depicted and physically justi…ed in results and discussion section. At the end of the

manuscript the section of closing remarks is also included to highlight the main …ndings of this study.

It is revealed that an escalation in thermal relaxation time constant leads to ascend the temperature
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curves of nano‡uid. Additionally, depreciation is assessed in mass di¤usion process due to escalating

amount of thermophoretic force constant.

6.1 Mathematical Formulation

We are considering a 2 axisymmetric ‡ow of Burgers nano‡uid with the e¤ect of uniform mag-

netic …eld which is applied in direction normal to the ‡ow. The ‡ow under discussion is further

considered as steady and incompressible. Moreover, it is assumed that the ‡ow is conducted by

stretching the boundary of the cylinder along  ¡  with stretching velocity  = 0
  Here

0 represents the reference velocity and  denotes the speci…c length. We are considering cylin-

drical polar coordinates (  ) to model the ‡ow, temperature and concentration equations.

Here,  ¡  is taken along the axis of the cylinder while  ¡  is considered along the

normal to the ‡ow direction, i.e, radial direction as depicted in Fig. 41 (cf. Chapter 4). Here,

V = [ 0 ] is taken as the velocity …eld for the ‡ow where,  and  are represent the velocities

along  and  directions, respectively respectively. Furthermore, the ‡ow of Burgers nano‡uid

is modelled in terms of uniform magnetic …eld of strength B = [0 0 0 ] Additionally, the

equation representing the heat transport in the ‡ow of nano‡uid is modelled by employing the

Cattaneo-Christov heat ‡ux in addition with the e¤ects of Joule heating and heat source/sink.

The concentration of nanoparticles is modelled by utilizing modi…ed mass ‡ux and the e¤ect of

chemical reaction. Furthermore, ( ) are considered as the temperature and concentration

at the wall of the cylinder respectively.

By utilizing above assumptions in equations (21 ¡ 27) (cf. Chapter 2), the equation of

continuity, ‡ow, temperature and concentration equations for the present problem take the
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with boundary conditions

 =  =
0
   = 0  =   =  at  =  (6.5)

! 0 
 ! 0  ! 1  ! 1 as !1 (6.6)

Here  is the kinematics viscosity, 1 the relaxation time, 2 the material parameter of Burgers

‡uid 3 (· 1) the retardation time, () the liquid temperature and concentration respec-

tively, (1 1) the ambient temperature and the ambient concentration,  the di¤usion

coe¢cient and 1 =
³


()

´
the thermal di¤usivity, in which (  ) are the density of liquid

and speci…c heat respectively, and  the thermal conductivity of the liquid.

By adopting the dimensionless transformations depicted in Eq. (47) (cf. Chapter 4), Eq.

(61) satis…ed automatically and equations (62)¡ (64) yield
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and transformed boundary conditions are as follows

 = 0  0 = 1  = 1  = 1 at  = 0 (6.10)

 0 ! 0  00 ! 0 ! 0 ! 0 as  !1 (6.11)
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6.2 Validation of Optimal Homotopic Results

We computed several values of ¡ 00(0) for di¤erent magnitudes of 1 and  in tables 61 and

62 respectively. These values are compared with already published studies and we …nd that our

values are in good agreement with these studies which clarify that the used optimal homotopic

approach is valid. The optimal convergence control parameters are choosen as } = ¡0601

} = ¡1132 and } = ¡0901

Table 6.1: A comparison table for ¡ 00(0) for distinct scales of 1 when  = 2 = 3 =

 = 0

1 Abel   [139] Irfan   [141] Present study

00 100000 10000000 10000000

02 1051948 10518890 10518799

04 1101850 11019035 11019100

06 1150163 11501374 11501368

08 1196692 11967114 11967121

12 1285257 12853630 12853578

Table 6.2: A comparison table for ¡ 00(0) for distinct scales of  when  = 1 = 2 =
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3 = 0

 Fathizadeh   [144] Ahmed   [145] Present study

05 1.224745 1224739

10 1.41421 1.414213 1414211

15 1581028

20 1731939

50 2.44948 2.449474 2449396

The total residual error is (TRE) depicted in the following plot.

6.3 Physical Analysis of Results

We employed optimal homotopy analysis method (OHAM) to investigate the behaviors of physi-

cal parameters occur in ODEs (67¡ 69) with associated boundary conditions (610) and (611)

We checked the impact of involved parameters on velocity  0 (), thermal  () and solutal  ()

distributions of Burgers nano‡uid. The impact of physical parameters is depicted in the form

of graphs and discussed with suitable arguments. Moreover …xed values are assigned to leading

dimensionless parameters such as  = 025 1 = 075 2 = 03 3 = 05  = 06  = 04

 = 05  = 04  = 15  = 20  = 15 Pr = 50 1 = 07  = 40, during the entire
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computations.

Figs. 61(¡ ) expose the features of thermal curves for distinct scales of magnetic para-

meter. It is analyzed that the ‡ow curves of Burgers nano liquid decline for higher intensity

of magnetic force constant while in contrast of this the thermal and solutal curves of nano‡uid

depict mounting trend for intensifying magnitude of magnetic force variable. These behaviors

are as expected because, larger scales of magnetic force constant lead to produce the escalat-

ing amount of Lorentz force which opposes the ‡uid motion and enhance the temperature and

solutal distributions of ‡uid. Growing amount of Lorentz force generates friction due to which

it happens. The in‡uence of relaxation time constant (1) towards ‡ow, thermal and solutal

distributions is illustrated through Figs. 62(¡ ). It is depicted that the motion of the ‡uid

retards while heat transport and mass di¤usion augments for higher values of 1. Physical

justi…cation of these behaviors is that, the larger relaxation time corresponds to rise the resis-

tance between ‡uid particles and therefore ‡ow pro…le of ‡uid depreciates while thermal and

solutal energy transport enhance. The importance of Burgers ‡uid parameter (2) for motion,

temperature and concentration distributions of Burgers ‡uid is represented in Figs. 63(¡ ).

These Figs. indicate that the motion of the nano‡uid depreciates while the thermal and solutal

energy transport curves show ascending trend for higher amount of (2). The role of thermal

and solutal relaxation time constants ( ) on temperature and concentration distributions,

respectively, is demonstrated through Figs. 64( ). It is observed that both the thermal and

concentration curves of Burgers nano‡uid deteriorate for magnifying e¤ects of thermal and so-

lutal relaxation time constants. These results are according to reality that, further time requires

for transportation of heat waves to nearby particles of liquid when thermal relaxation time rises

therefore the temperature curves of nano‡uid weaken. Moreover, mass di¤usion needs addi-
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tional time by intensifying the values of solutal relaxation time constant and consequently, the

diminution in the nano particles volume fraction pro…le is assured. Fig. 65 irradiates the im-

pact of Eckert number () on thermal distribution of reactive Burgers nano‡uid. It is analysed

that due to accretion in the Eckert number the magnitude of kinetic energy magni…es through-

out in the system and this situation leads to improve the transport of temperature in the ‡ow

and hence thermal curves of Burgers ‡uid seem to be strengthen in the graph. Furthermore,

Figs. 66( ) are depicted to highlight the signi…cance of thermophoretic force constant ()

on temperature and solutal distribution of nano‡uid. These plots demonstrate that the thermal

as well as nano particles concentration distributions of nano‡uid both build up for amplifying

magnitudes of thermophoresis constant. The values taken for  are mentioned in graphs. In

thermophoresis process, because of change in temperature the ‡uid particles start moving from

warmer to chiller zone and hence the thermal energy and concentration of the system boost

up as represented in plots. Moreover, the e¤ect of Brownian motion constant () on thermal

and concentration pro…les of Burgers ‡uid is illustrated through Figs. 67( ). It is evident

from these Figs. that transport of thermal energy in the ‡ow shows the boosting trend while

the nanoparticles concentration depreciates for amplifying values of (). Due to Brownian

motion, particles go under rapid motion due to which kinetic energy of the particles enhance

which lead to magnify the thermal distribution of magnetized nano‡uid. Since, the di¤usion of

nano-species is controlled by the Brownian motion hence, escalating amount of Brownian mo-

tion constraint depreciate the di¤usion rate of nano particles and therefore the solutal curves of

nano‡uid diminish. Fig. 68() exposes the consequence of Prandtl number () on transport

of heat while, Fig. 68() illustrates the stimulus of Schmidt number () for di¤usion of mass

in the system. The decay in the heat transfer rate is envisioned for magnifying values of 
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and the same trend is being detected for escalating amount of  on solutal energy transport

curves. As, intensi…cation in the strength of  enlarges the viscosity as well as the speci…c

heat while the thermal conductivity of the liquid deteriorates in this regard as it can be observe

from the relation, i.e,  = 
1
. Where, 1 is the thermal conduction while,  represents the

momentum di¤usivity. Also, note that here the heat transfers due to convection. Moreover, a

magni…cation in the intensity of  corresponds to decline the mass di¤usion coe¢cient that’s

why nanoparticles concentration depreciates. We depicted Figs. 69( ) to ensure the e¤ect of

hat source/sink variable for thermal curves of nano‡uid. From these plots, it is clear that the

thermal energy transport builds up in the ‡ow for magnifying values of heat source constant

(  0). On the other hand, it is seen that the thermal curves of nano‡uid weakens for escalat-

ing amount of heat sink parameter (  0). Obviously, due to existence of heat source in the

system the radiations produce extra amount of heat which magnify the temperature distribution

and when heat sinks then temperature falls from the system. Hence, our theoretical outcomes

are according to expectations. The in‡uences of constructive and destructive chemical reaction

parameters on solutal energy transport curves of nano‡uid are demonstrated through Figs.

610( ). Depreciating trend of the mass di¤usion curves is noticed for amplifying scales of

constructive chemical reaction constant (1  0) while diminishing trend is achieved for larger

amount of destructive chemical reaction parameter (1  0). Energy absorbs to some extent for

execution of chemical reaction which leads to decline the solutal contours. Moreover, when the

reaction rate deteriorates, the less magnitude of energy employs and system gain more energy

to transfer therefore, transfer of solutal energy curves build up for larger values of destructive

reaction parameter.
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Figs. 61(¡ ): Impact of  on ‡ow, temperature and concentration …elds.
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Figs. 62(¡ ): Impact of 1 on ‡ow, temperature and concentration …elds.
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Figs. 63(¡ ): Impact of 2 on ‡ow, thermal and solutal pro…les.
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Figs. 66( ): Impact of  on thermal and solutal pro…les.
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Figs. 67( ): Impact of  on thermal and solutal pro…les.
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Figs. 68( ): Impact of  and  on thermal and solutal pro…les.
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Fig. 69( ): Impact of  on temperature pro…le.
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Fig. 610( ): Impact of 1 on concentration pro…le.
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Chapter 7

Features of thermophoretic and Brownian forces in

Burgers ‡uid ‡ow subject to Joule heating and

convective conditions

Here we investigate the aspects of thermal and solutal energy transport in MHD ‡ow of Burgers nano‡uid

caused by a unidirectional stretching cylinder. The well known Fourier’s and Fick’s laws are utilized to

inspect the heat and mass transport phenomena. The convective energy transport at the surface of the

cylinder is assumed and Fourier’s law of thermal conduction is modelled in terms of non uniform heat

source/sink and Joule heating. Additionally, the prescribed surface temperature (PST) with convective

boundary conditions is considered here. Governing partial di¤erential equations (PDEs) are transformed

into ordinary di¤erential equations (ODEs) by utilizing suitable similarity transformations. To deal with

these ODEs, a numerical technique namely BVP midrich scheme in Maple is utilized. The behavior of

di¤erent physical parameters is explored and depicted in form of graphs and discussed with reasonable

arguments. Basic physical intimation of gained results is that the higher Eckert number intensi…es the

thermal pro…le of nano‡uid. Moreover, the nano particles concentration pro…le builds up for higher
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amount of thermophoretic force constraint. Solutal distribution of Burgers nano‡uid depicts growing

trend for larger solutal Biot number.

7.1 Mathematical Formulation

In this portion of study, a mathematical model to the ‡ow of Burgers nano‡uid due to a

stretching cylinder is presented. The ‡ow is caused by the stretching cylinder. Further it is

assumed that the velocity …eld for 2 incompressible ‡ow is V = [ 0 ], where  and  are

considered as the velocity components along  and  axes, respectively. Furthermore, a uniform

magnetic …eld of strength = [0 0 0] is applied along normal to the ‡ow direction. Cylindrical

polar coordinates (  ) are considered to model the ‡ow, energy and concentration equations.

Fourier’s law of heat conduction is modelled in terms of non uniform heat source/sink and Joule

heating. Here the stretching velocity of the cylinder is taken as  = 0
 along ¡direction,

where 0 is considered as the reference velocity and  the speci…c length. Moreover, it is assumed

that the temperature and concentration at wall of the cylinder are ( ) respectively. The

geometry of the problem is depicted in Fig. 41 (cf. Chapter 4).

The governing PDEs for continuity equation, momentum equation, heat transport equation

and the concentration equation (21¡ 27) (cf. Chapter 2) under above assumptions are given

below




+




+




= 0 (7.1)

124




 +

 + 1
h
2 

2
2 +2 

2
2 + 2

2


i

+2

2

6
6
6
6
6
6
4

3 
3

3
+3 

3
3

+ 22
³




2
2

+ 


2


´
¡ 2

³



2
2

+ 


2
2

´

+22 
2
 +2

³



2
2 ¡




2
2

´
+ 3

³
 3

2 + 3
2

´

+2
³




2
 +




2
2 +




2
2 ¡




2


´

3

7
7
7
7
7
7
5

= 
h
2
2

+ 1




i
+ 3

2

6
6
4

3
3 + 3

2 +


2
2 ¡




2
2 +




2


¡1




 ¡

1





 ¡




2
2

3

7
7
5

¡
2

0


2

6
6
4

 + 1

 +

2

³




 ¡ 



 +  2

 +2 
2

2

´

3

7
7
5  (7.2)





+




= 1

1



·




µ






¶¸

+ 

"









+



1

µ




¶2
#

+
1

()

000
+

20


2 (7.3)





+




=









µ






¶

+


1

1







µ






¶

¡ ( ¡1) (7.4)

with boundary conditions

 =  =
0
   = 0 ¡  

 =  [ ¡  ] ¡

 = [ ¡] at  =  (7.5)

! 0 
 ! 0  ! 1  ! 1 as !1 (7.6)

The non-uniform heat generation/absorption 000 is considered as

000 =



[¤( ¡ 1)

0() +¤( ¡ 1)] (7.7)

In above equations, ¤ and ¤ represent the coe¢cients of space and temperature dependent

heat source/sink, respectively. The case ¤  0 and ¤  0 demonstrates the internal heat
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generation whereas, ¤  0 and ¤  0 signi…es internal heat absorption.

By adopting the similarity transformations given in Eq. (47) (cf. Chapter 4), equation

(71) satis…ed explicitly and equations (72)¡ (74) take the form as
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02 (1 + 2) = 0 (PST) (7.9)

(1 + 2)00 + 20 + Pr 0 + (1 + 2)

µ




¶

00 + 2

µ




¶

0 ¡ 1Pr = 0 (7.10)

and transformed boundary conditions from equations (75) and (76) are as follows

 = 0  0 = 1 0(0) = ¡1(1¡ (0)) 0(0) = ¡2(1¡ (0)) at  = 0 (7.11)

 0 ! 0  00 ! 0 ! 0 ! 0 as !1 (7.12)

Here 0 is the reference velocity. Moreover, the curvature parameter  Deborah numbers 1

and 3 Burgers ‡uid parameter 2 magnetic parameter  , Prandtl number Pr Lewis number

 thermophoresis parameter  and Brownian motion parameter  Eckert number 
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thermal Biot number 1 solutal Biot number 2 chemical reaction parameter 1, space and

temperature dependent heat source/sink parameters  1respectively, are de…ned as follows:

 = 1


q

0

 1 = 1
0
  2 = 2

¡
0


¢2
3 = 3

0
   =

³
2

0
0

´12


1 =
¤

()
 Pr = 

1
  =

 (¡1)
1

  =
(¡1)

   = 2
(¡1)



 = 1


  = ¤
()

 1 =



q

0

 2 =



q

0

 1 =

0



(7.13)

7.2 Engineering Concerned Quantities

Relations for heat transfer () rate and mass transfer () rate are

 =


( ¡ 1)
  =

 
( ¡1)

 (7.14)

where  and  are the heat and mass ‡ux respectively

 = ¡

µ




¶

=

  = ¡

µ




¶

=

 (7.15)

The dimensionless form of Eq. (714) is given by

 Re
¡1
2 = ¡

0
(0)  Re

¡ 1
2 = ¡0 (0)  (7.16)

where Re =

 is the local Reynolds number.
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7.3 Validation of Numerical Scheme

We employed BVP midrich numerical technique described in section (131) (cf. Chapter 1) to

solve the established ordinary di¤erential equations (78¡ 710) with corresponding boundary

conditions (711) and (712). Table (71) is an computation table for values of ¡ 00(0) for

di¤erent values of  with comparison of some existing studies. As a consequence, from this

table we are assured that the recent results are identical with the investigations made by Hayat

et al. [142] and Shehzad et al. [143]. Hence, the numerical scheme which we have used namely

BVP Midrich is a valid technique. This technique is based on modi…ed Euler’s method (explicit

midpoint method) which has absolute error convergence up to 1£ 10¡6.

Table 7.1: A comparison table for values of ¡ 00(0) for di¤erent values of  when  =

1 = 2 = 3 = 0

 Shehzad   [142] Hayat   [143] Present study

00 100000 100000 1000000

02 101980 101980 1019803

05 111803 111803 1118027

08 128063 128063 1280635

10 141421 141421 1414213

12 156205 156205 1562063

15 180303 180303 1803028
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7.4 Discussion of Outcomes

The numerical investigation of non linear coupled ordinary di¤erential equations (78¡ 710)

in addition with convective boundary conditions written in Eqs. (711) and (712) is performed

by employing BVP midrich scheme in Maple explained in section (131) (cf. Chapter 1). This

section is designed to observe the in‡uence of varying magnitudes of physical parameters on

velocity  0 (), thermal  () and solutal  () pro…les of magnetized Burgers nano‡uid. The

physical behavior of several dimensionless parameters is examined, for instance, the impact of

Burgers ‡uid parameter 2 and magnetic parameter  on ‡ow, thermal and concentration dis-

tributions. In similar pattern, the impact of Brownian motion parameter  thermophorosis

parameter  Prandtl number  space and temperature dependent heat source/sink parame-

ters  and 1 respectively chemical reaction constraint 1 thermal Biot number 1 and Eckert

number  on thermal distributions is explored. Moreover, the in‡uence of Lewis number 

Brownian motion constraint  thermophoretic force parameter  and solutal Biot number

2 on solutal pro…le is observed. The impacts of all these parameters are depicted through

Figs. (71 ¡ 79) We have assigned the following …xed values for main constraints such as 

= 02 1 = 07 2 = 02 3 = 05  = 05  = 06  = 04  = 05 1 = 04  = 09

Pr = 50  = 40, 1 = 06 1 = 02 2 = 03 during the whole computations.

We will discuss behavior of each parameter with complete physical judgment. Figs. 71(¡)

are displayed to enlighten the in‡uence of magnetic parameter () on ‡ow, thermal and so-

lutal distributions of Burgers nano‡uid. It is assessed that the ‡ow pro…les and momentum

thickness to the boundary layer of Burgers nano‡uid diminish for higher magnitude of magnetic

parameter while, the thermal and solutal pro…les depict converse trend to that of ‡ow pro…le
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for higher values of  . This situation arises because of the reason that when we intensify

the magnitude of magnetic …eld then a resistive force called Lorentz force in the ‡uid ‡ow

become more stronger which oppose the ‡ow phenomenon and therefore, the ‡ow pro…le of the

‡uid deteriorates. Additionally, this intensi…ed Lorentz force creates more interface between

the ‡uid particles due to which friction increases among the ‡uid particles which results in

the rise of the temperature and solutal distribution of the liquid. To visualize the in‡uence

of Burgers ‡uid parameter (2) on ‡ow, thermal and solutal distributions of nano‡uid Figs.

72( ¡ ) are depicted. From these Figs. diminution in ‡ow pro…le of nano Burgers ‡uid is

perceived with an escalation in the magnitude of 2. Also, it is seen that the temperature and

solutal pro…les of Burgers ‡uid show enhancing trend for higher values of 2. To envision the

stimulus of thermophoretic force constraint () on thermal and concentration distributions of

Burgers nano‡uid Figs. 73( ) are portrayed. It is clear from these Figs. that both tempera-

ture distribution and nanoparticles volume fraction of Burgers nano‡uid improve for escalating

values of () and far …eld conditions at the boundary satisfy asymptotically throughout the

solution region. These investigations are identical to the process of thermophoresis, i.e, mole-

cules from warmer regions move towards cooler regions and therefore, collision between ‡uid

particles enhances due to which thermal and concentration distributions of Burgers nano‡uid

boost. Figs. 74( ) are drawn to highlight the impact of Brownian motion constraint () on

thermal and solutal pro…les of Burgers nano ‡uid. It is clear from these Figs. that for larger

values of  the temperature pro…le and thermal boundary layer thickness of nano‡uid boost

up while the nano particles volume fraction pro…le depicts opposite trend to that of thermal

pro…le. The reason behind this is that the kinetic energy of the system enlarges with escala-

tion in the magnitude of  and consequently, the heat transfer rate boosts up which lead to
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enhance the temperature of the ‡uid. Furthermore, due to intensi…cation in  the motion of

the particles increases due to which viscosity of the ‡uid lowers down which leads to diminish

the concentration pro…le of the nano‡uid. To disclose the e¤ect of Prandtl number () and

Lewis number () on thermal and nano particles volume fraction pro…les, respectively, Figs.

75( ) are inserted. These Figs. disclose that both the thermal and solutal pro…les and depict

diminishing trend and associated boundary layer thicknesses become thinner for higher magni-

tude of  and  respectively. Mathematically, as Prandtl number is inversely proportional

to thermal di¤usivity. Hence larger magnitude of  is responsible to lowers down the thermal

di¤usivity of the nano‡uid and obviously diminution in thermal di¤usivity corresponds to dete-

riorate the thermal pro…le of nano‡uid. In addition, larger Lewis number results in reduction of

mass di¤usivity as it is inversely proportional to Lewis number. Hence, ultimately lower mass

di¤usivity is considered as responsible for diminution of nano particles volume fraction distri-

bution. The e¤ects of space and temperature dependent heat source parameters ( 1  0)

are demonstrated in Figs. 76( ). Enhancing trend of temperature pro…les is being perceived

for increasing values of space and temperature dependent heat source parameters. Also, far

…eld boundary conditions throughout the solution region are satis…ed asymptotically. These

outcomes are according to our expectations, as more amount of heat is provided to the system

by increasing the magnitude of heat source parameters which …nally results in enhancement of

thermal distribution of the nano‡uid. Impact of thermal and solutal Biot numbers (1 2) on

thermal and solutal distributions are demonstrated in Figs. 77( ) respectively. It is detected

that the thermal as well as solutal distributions of Burgers nano‡uid boost up for growing mag-

nitude of thermal and solutal Biot numbers. Actually, larger thermal Biot number promotes the

surroundings convection which results in rise of temperature in nano‡uid. Furthermore, Figs.
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78( ) elucidate the in‡uence of Eckert number () on thermal and solutal distributions of

nano‡uid. It is scrutinized that the thermal pro…les of nano‡uid build up for augmented values

of  Higher Eckert number is responsible for rise of kinetic energy of the ‡ow which then

results in growing of the temperature distribution of the ‡uid. Basically, larger Eckert number

leads to convert the mechanical energy of the ‡ow into thermal energy and consequently ther-

mal distribution enhances. Figs. 79( ) elucidate the impact of constructive and destructive

chemical reaction impact on the transport of solutal energy. It is realized that the growing

range of constructive chemical reaction constraint demotivates the solutal transport in the ‡ow

whereas the destructive chemical reaction promotes the transport of solutal energy in the ‡ow.

Because, some amount of energy utilizes in the occurrence of chemical reaction due to which

solutal curves deteriorate and when chemical reaction goes to be slow down then less amount

of energy requires and ultimately solutal curves build up. Moreover, table 72 is depicted for

numerical calculations to the rate of heat and mass transport coe¢cients at the boundary of

the surface for pertinent values of  , 2,   1 and 2 by …xing all other parameters.

From these results we observed that the thermal and solutal gradient enhance at the surface in

case of higher thermophoretic and Brownian forces.
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Figs. 71(¡ ): In‡uence of  on velocity, thermal and concentration …elds.
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Fig. 72(¡ ): In‡uence of 2 on velocity, thermal and solutal …elds.
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Figs. 73( ): In‡uence of  on thermal and concentration pro…les.

Figs. 74( ): In‡uence of  on thermal and concentration pro…les.

135



Figs. 75( ): In‡uence of Pr and  on thermal and concentration pro…les.

Figs. 76( ): Impact of  and 1 on thermal pro…le
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Figs. 77( ): (a) In‡uence of 1 on thermal pro…le (b) In‡uence of 2 on solutal pro…le

Figs. 78: In‡uence of  on thermal pro…le.
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Figs. 79( ): In‡uence of 1 on solutal pro…les.
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Table 7.2: The illustration of numerical computations of rate of heat transfer coe¢cient

and Sherwood numbers for pertinent values of  , 2,   1 and 2 when  = 02 1 = 07

3 = 05  = 05 1 = 04  = 09 Pr = 50  = 40 1 = 03

 2   ¡0(0) ¡0(0)

1 0.3 0.1 0.5 0.06448 0.09381

2 0.06603 0.09389

3 0.07011 0.09401

3 0.1 0.1 0.5 0.04480 0.08010

0.3 0.04911 0.08541

0.5 0.05320 0.08992

3 0.3 0.1 0.5 0.06837 0.09396

0.2 0.06969 0.08718

0.3 0.07084 0.08094

3 0.3 0.1 0.1 0.02401 0.05081

0.2 0.02015 0.04920

0.3 0.01622 0.04801
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Chapter 8

On modi…ed Fourier heat ‡ux in stagnation point

‡ow of magnetized Burgers ‡uid subject to

homogeneous-heterogeneous reactions

In the current chapter, an e¤ort has been made to model the forced convection ‡ow phenomenon of

magnetized viscoelastic ‡uid near a stagnation point. Moreover, Cattaneo-Christov heat ‡ux model and

the impact of uniform heat rise/fall are employed to examine the aspects of thermal energy transport.

Additionally, the scrutiny of the ‡uid concentration feature by utilizing homogeneous-heterogenous re-

actions is also an important e¤ort of the present investigation. Ordinary di¤erential equations (ODE’s)

are achieved by adopting the method of similarity transformations. The characteristics of physical pa-

rameters are assessed by employing numerical technique BVP midrich scheme. Pertained outcomes are

depicted in the form of graphs. The thermal distribution of Burgers ‡uid exhibits a diminishing trend

for escalation in the extent of thermal relaxation heat ‡ux parameter. Moreover, the concentration rate

of the ‡uid deteriorates for higher strength of homogenous response whereas, it augments for greater

magnitude of heterogenous response. The validation of the present investigation is ensured by comparing
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with already published studies. The numerical values for the coe¢cient of heat transfer rate of Burgers

‡uid are also computed and depicted in graph.

8.1 Mathematical Formulations

The mathematical formulation of the present ‡ow phenomenon is divided into following three

sub sections.

8.1.1 Flow Pro…le

In this portion, mathematical modelling for the axisymmetric 2D ‡ow of Burgers ‡uid is estab-

lished. Moreover, it is assumed that the ‡ow is incompressible and generated due to stretching

the boundary of cylinder and having velocity and stress …elds as V = [ 0 ] and S = S( )

respectively. Here,  is taken as the component of velocity along radial direction ( ¡ ) of

the surface while,  is the component of the velocity pro…le along horizontal direction (¡).

The boundary of the cylinder is stretched along ¡  with velocity  = 0
  where, 0 and

 are speci…ed as the reference velocity and the speci…c length respectively. Additionally, the

‡ow is in‡uenced by the uniform magnetic force of strength  = [0 0 0] in the perpendicu-

lar direction of ‡ow. We are utilizing cylindrical polar coordinates (  ) to model the ‡ow

phenomenon. The geometry of the problem is depicted in Fig. 41 (cf. Chapter 4).

The basic continuity and momentum equations (22) and (23) (cf. Chapter 2) under above

assumptions given by




+




+




= 0 (8.1)
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subject to the boundary conditions

( ) =  =
0


 ( ) = 0 at  =  (8.3)

( ) !  =
1






! 0 as !1 (8.4)

Here 1 is the ‡uid relaxation time, 2 the material parameter of Burgers ‡uid 3 (· 1) the

‡uid retardation time and  the kinematics viscosity of the ‡uid.

By utilizing equation (47) (cf. Chapter 4) into equations (81¡84), equation (81) satis…ed
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automatically and equations (82¡ 84) take the following form
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 = 0  0 = 1 at  = 0 and  0 !   00 ! 0 as !1 (8.6)

Here  = 1
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0
 the relaxation time parameter, 2 =

2
¡
0


¢2
the Burgers ‡uid parameter, 3 = 3

0
 the ‡uid retardation time parameter,  =

³
2

0
0

´12
the magnetic force parameter and  = 


the velocity ratio parameter.

8.1.2 Thermal Features of Burgers Fluid

The heat equation (17) (cf. Chapter 1) in view of Cattaneo-Christov heat ‡ux given in equation

(2.5) (cf. Chapter 2) and non-uniform heat source/sink takes the following form

¡


 + 


¢
= 1

³
2
2

+ 1




´
+ 0


( ¡ 1) + 

0


(

 + 
 )

¡

h
2 

2
2 +2 

2
2 + 2

2
 +




¡


 +


¢
+ 



¡


 + 


¢i
 (8.7)

with the relative boundary conditions

 =  at  =  and  ! 1 as !1 (8.8)
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By using the dimensionless temperature from equation (47) (cf. Chapter 4) into Eqs. (811 812)

we get

(1 + 2) 00 + 20 +Pr 0 +Pr[¡
0

0
¡ 200] +  + 

0
= 0 (8.9)

 = 1 at  = 0 and  ! 0 as  !1 (8.10)

Here
³
Pr = 

1

´
is the Prandtl number, 

¡
= 

0


¢
the thermal relaxation time constant and


³
= 0

0()

´
the heat rise/fall parameter.

8.1.3 Relation for Chemical Species

Here we are considering () as chemical reactants having ( ) as concentrations with ( )

as rate constants respectively. The homogeneous response for cubic autocatalysis is considered

as below

+ 2 ! 3  = 
2 (8.11)

whereas the isothermal response of …rst order at the surface of catalyst (heterogeneous) is

presented as

!   =  (8.12)

Furthermore, it is supposed that the reactants are isothermal and are farther from the surface

at the ambient liquid, 0 is considered as the uniform concentration of reactant  while the

autocatalyst doesn’t exist. Such limitations lead to the following governing equations for species





+




= (

1






+

2

2
)¡ 

2 (8.13)
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



+




= (

1






+

2

2
) + 

2 (8.14)

with associated boundary conditions as


1






=  

1






= ¡ at  =  (8.15)

 ! 0 ! 0 as !1 (8.16)

Here  is the coe¢cient of di¤usion for the specie  whereas  is the di¤usion coe¢cient

for specie 

Making use of following transformations

 = 0©()  = 0ª() (8.17)

By utilizing above transformations in Eqs. (813¡ 816) we get

³
(1 + 2)©

00
+ 2©

0
´ 1


+ ©

0
¡ 1©ª

2 = 0 (8.18)

³
(1 + 2)ª

00
+ 2ª

0
´ ¤


+ ª

0
+ 1©ª

2 = 0 (8.19)

©
0
(0) = 2©(0) ¤ª

0
(0) = ¡2©(0) (8.20)

© ! 1 ª! 0 as  !1 (8.21)

Here ¤ = 


is the di¤usion coe¢cient, 1 the homogeneous reaction constant, 2 the het-

erogenous reaction constant and  = 


the Schmidt number.
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Now, by assuming the equality of the coe¢cients of di¤usion i.e.,  =  implies that

¤ = 1 This implies that

©() + ª() = 1 (8.22)

Therefore, we …nally arrived at the following

³
(1 + 2)©

00
+ 2©

0
´ 1


+ ©

0
¡ 1(1¡©)

2© = 0 (8.23)

©
0
(0) = 2©(0) and ©! 1 as !1 (8.24)

8.2 Validation of Numerical Scheme

Tables 81 and 82 are evaluation tables of ¡ 00(0) for several values of 1 and  respectively

with comparison of some already published articles. Finally, from these tables we are assured

that the our recent investigations are authentic and the numerical scheme BVP Midrich written

in section (131) (cf. Chapter 1) is a valid technique.
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Table 8.1: A comparison table for ¡ 00(0) against di¤erent values of 1 in limiting case

when  = 2 = 3 = =  = 0.

1 Hayat   [135] Khan  [12] Present case

00 1000000 10000000 100000000

02 1051995 10519893 105198926

04 1101930 11019281 110192772

06 1150175 11501695 115016960

08 1197689 11977124 119771371

Table 8.2: A comparison table for ¡ 00(0) against di¤erent values of  in limiting case

when  = 1 = 2 = 3 =  = 0.

 Fathizadeh   [144] Ahmed  [145] Present case

05 1224745 12247447

10 141421 1414213 14142134

15 15811367

20 17320451

50 244948 2449474 204494738

8.3 Discussion of Results

We have planned this part of the study to disclose the characteristics of all physical constraints

involved in the ODE’s of mathematical formulation section. We have utilized the BVP midrich

numerical scheme of MAPLE explained in section (131) (cf. Chapter 1) to encounter the
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investigation of physical behavior of numerous parameters. We have encountered the ODE’s

depicted in equations (85), (89) and (823) with associated boundary conditions mentioned in

Eqs. (86), (810) and (824). The physical impacts of several parameters on ‡ow, temperature

and solutal distributions are explored and depicted through Figs. 81 ¡ 89 Fixed values are

allocated to all leading parameters during numerical simulations like,  = 01 1 = 07 2 =

025 3 = 05  = 20  = 02 Pr = 50  = 04 1 = 04 2 = 05  = 60 and some

are mentioned in graphs.

We are deliberating the physical intimation of all involved parameters with a reasonable

justi…cation. We have plotted Figs. 81(¡ ) to ensure the physical interpretation of Burgers

‡uid parameter towards velocity, thermal and concentration pro…les of Burgers ‡uid. It can

be judged from these plots that the ‡ow pro…le of Burgers ‡uid becomes more weaker as we

intensify the magnitude of Burgers ‡uid parameter whereas, an upsurge is shown in tempera-

ture distribution for escalating values of Burgers ‡uid parameter. Actually, when we increase

the Burgers ‡uid parameter then it means stress relaxation time (2) enhances due to which

‡uid tends to behave like solid type and consequently the ‡ow pro…le deteriorates, and ther-

mal pro…le rises. Additionally, the concentration rate founds to be declined when we assign

larger values to Burgers ‡uid parameter. The characteristics of retardation time parameter (3)

against ‡ow, temperature and solutal distributions are depicted in Figs. 82(¡ ). The ‡ow

and concentration pro…les of Burgers ‡uid rise while the thermal energy transport diminishes

for escalating values of Deborah number 3. Physically, it happens because of enlargement

in retardation time 3. Moreover, the in‡uence of magnetic force parameter () on velocity,

thermal and solutal distributions of Burgers ‡uid can be seen in Figs. 83( ¡ ). It is found

that the velocity of the ‡uid declines for intensifying e¤ects of magnetic parameter whereas,
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opposite trend is depicted for thermal and solutal distributions when compared to velocity pro-

…le of Burgers liquid. Lorentz force is responsible for this behavior. Resistance between ‡uid

elements rises and consequently velocity reduces while, temperature pro…le and concentration

rate of species boost up. To highlight the features of temperature distribution for Prandtl num-

ber and concentration rate for Schmidt number Figs. 84( ) are portrayed. From these plots,

diminution in thermal distribution is assessed for higher amount of Prandtl number whereas,

for larger Schmidt number concentration rate of chemical species shows an enhancing trend.

Physically, Prandtl number has inverse relation with thermal di¤usivity and obviously larger

amount of Prandtl number results in lower thermal di¤usivity which ultimately decreases the

‡uid temperature. Moreover, Schmidt number has an inverse relation with molecular di¤usion

rate and has a direct relation with momentum di¤usion rate (viscosity). Hence by increas-

ing Schmidt number the viscosity of the ‡uid increases which results in the augmentation of

concentration rate. Fig. 85 elucidates the graphical illustration of velocity ratio parameter

() for ‡ow distribution of Burgers liquid. Form this plot it is detected that the ‡ow phe-

nomenon and the associated thickness of boundary layer of Burgers liquid increase with an

escalation in the magnitude of velocity ratio constraint (  1). Basically,  = 


is the ratio

of free stream velocity () to the stretching velocity of the cylinder (). Here the condition

(  1) corresponds to the situation that depicts that the velocity of the free stream is lesser

as compared to the velocity of the stretching cylinder. Physically, it makes sense that when

we intensify the magnitude of  then ultimately velocity of the free stream rises and therefore

the ‡uid ‡ows with more speed. Here it is important to mention that at  = 1 boundary

layer will not be achieved it is due to the situation that the velocity of free stream equals to

the velocity of the stretching cylinder which elaborates that the ‡uid motion and boundary
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motion are at equal rates. Figs. 86( ) are depicted to highlight the physical in‡uence of

heat rise/fall parameter against thermal distribution of Burgers liquid. From these graphs, it

is assessed that the thermal distribution of ‡uid signi…cantly a¤ected by the heat source/sink

parameter. A clear upsurge is detected in temperature pro…le of Burgers ‡uid due to escalation

in the extent of heat rise parameter (  0) whereas, it declines by increasing the scale of heat

fall parameter (  0) as expected. These results were expected because escalation in the heat

rise scale ultimately assures the addition of more heat in the system which results in upsurge

of thermal state of the liquid. Moreover, increasing the scale of heat fall parameter means that

extra amount of heat leaves the system which ultimately declines the thermal state of liquid.

To ensure to physical behavior of thermal relaxation time parameter () on thermal state of

liquid in the form of graphical representation we have designed Fig. 87 From this sketch, it

can be veri…ed that the thermal distribution of Burgers liquid depreciates with stronger impacts

of . Physically, the escalation in scale of  implies that the larger heat ‡ux relaxation time

and this means that more time is needed to the ‡uid elements to pass waves to their adjacent

elements and consequently this phenomenon corresponds to decline the thermal state of the

entire system. Moreover, it is observed that in case ( = 0) this Cattaneo-Christov heat ‡ux

model converted into the classical Fourier’s law of thermal conduction. To envision the ho-

mogeneous and heterogenous reaction parameters (1 and 2) impacts on solutal distribution

Figs. 88( ) are portrayed. We found that the solutal distribution of Burgers ‡uid become

weaker for stronger strength of homogenous response (1) while it enlarges for higher strength

of heterogenous reaction constraint (2). It is the fact that some of the reactants utilize during

homogeneous process due to which viscosity of the concentration deteriorates and hence solutal

pro…le declines for increasing the strength of homogeneous reactions.
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Figs. 81(¡ ): Impact of 2 on ‡ow, thermal and concentration pro…les.
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Figs. 82(¡ ): Impact of 3 on ‡ow, thermal and concentration pro…les.
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Figs. 83(¡ ): E¤ect of  on ‡ow, thermal and concentration pro…le.
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Figs. 84( ): E¤ect of Pr and  on  and .

Figs. 85(¡ ): E¤ect of  on ‡ow pro…le.
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Fig. 86( ): (a) Impact of   0 on , (b) Impact of   0 on 

Fig. 87: Impact of  on .
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Fig. 88( ): Impact of 1 and 2 on concentration pro…le.
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Chapter 9

Conclusions and Forthcoming Work

The main …ndings from the present research are given in Section 9.1 and some useful recom-

mendations for forthcoming work are mentioned in Section 9.2.

9.1 Conclusions

The aim of this thesis was to explore the thermal transport features in the steady ‡ow of non-

Newtonian viscoelastic Burgers ‡uid accelerated by stretching surfaces. Mathematical mod-

elling has been carried out for the ‡ow of Burgers ‡uid due to unidirectional stretching sheet,

bidirectional stretching sheet and stretching cylinder. Di¤erent physical e¤ects are considered

to investigate their impacts on the ‡uid ‡ow and heat transport. The analytic and numeri-

cal solutions of governed di¤erential equations are developed by employing homotopy analysis

method and BVP midrich numerical scheme. The main results of this work are summarized as

below.

² The developing strength of ‡uid relaxation time parameter and material parameter of
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Burgers ‡uid de-accelerated the momentum transport whereas, incrementing magnitude

of ‡uid retardation time parameter accelerated the momentum transport in the ‡ow.

² Diminution in ‡ow velocity along ¡direction of the ‡ow was noted for developing magni-

tude of stretching strength parameter while along ¡direction of the ‡ow velocity pro…le

showed opposite trend.

² The ‡ow pro…le of Burgers nano‡uid boosted up for augmenting values of velocity ratio

parameter and declined for larger magnetic parameter.

² Thermal and solutal transport in the ‡ow improved for augmenting values of ‡uid relax-

ation time parameter and material parameter of Burgers ‡uid.

² Reduction in thermal and solutal distributions of Burgers nano‡uid was noted for esca-

lating values of retardation time ‡uid parameter.

² It is observed that the rate of heat transfer in the ‡ow was promoted due to escalating

magnitude of Eckert number, heat rise parameter, thermophoretic force parameter and

‡uid relaxation time parameter.

² Thermal distribution of nano‡uid showed enhancing trend for escalating magnitude of

Brownian motion constraint whereas, converse trend was being noticed for solutal distri-

bution.

² Thermal and concentration pro…les of Burgers liquid declined for thermal relaxation time

parameter and solutal relaxation time parameter respectively.

² Thermal and solutal distributions of nano‡uid deteriorated for larger Prandtl and Lewis

numbers, respectively.

158



² Enhancing trend of the temperature distribution of Burgers nano liquid was being noticed

for improving values of radiation parameter and temperature ratio parameter.

² The thermal pro…les of Burgers nanoliquid depicted signi…cant variation and shows a

rising trend for intensifying e¤ects thermal Biot number as well as temperature and space

dependent heat source parameters.

² The impacts of ‡uid relaxation time parameter and ‡uid retardation time parameter were

quite opposite on momentum and energy transport pro…les.

9.2 Forthcoming work

The foremost concern of this thesis is to develop the analytical and numerical solutions to

the steady ‡ow of Burgers ‡uid over stretching surfaces like, unidirectional and bidirectional

stretching sheets as well as stretching cylinder. The results developed in this thesis give birth

to a new area of research. Some of the suggestions for the forthcoming work are mentioned as

below:

² The unsteady ‡ow features of Burgers ‡uid accelerated by stretching geometries may be

further study.

² It could be more interesting to explore the ‡ow features of Burgers ‡uid over rotating as

well as swirling geometries.

² To investigate the ‡ow phenomenon and heat transfer in generalized Burgers ‡uid over

stretching cylinder may of great importance.
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² Burgers ‡uid ‡ow can be investigated over complex surfaces like, ‡ow in a nozzle, ‡ow in

a channel, ‡ow in air ducts, ‡ow in a cavity, ‡ow generated over the curved surface, ‡ow

inside the annular pipe and ‡ow caused by the bundles of circular surfaces.

² We are planning to explore the ‡ow and thermal characteristics of Burgers ‡uid by adopt-

ing advanced numerical methods like, …nite element method (FEM), …nite di¤erence

method (FDM), …nite volume method (FVM), and lattice Boltzmann method (LBM).
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