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Preface 

In recent decades, due to the speedy development in science and digital technologies, the role 

of digital data in individual life has been increased. Digital data are nowadays used in every 

arena of life, such as education, business, banking, engineering and mathematics, art, 

advertisement, military, medicine, and scientific research. Because of the growing role of 

digital data in the era of information technologies, the importance of digital data processing 

tools and digital documentation boosts. Consequently, it has enhanced the distribution of 

digital data over the internet. Since the internet network is an easily accessible network 

throughout the world, it has created reasonable prospects that are hazardous for the integrity 

and secrecy of digital data during distribution over the internet. The study of cryptography is 

the information security tactics that are used to encounter these threats.  

Cryptography has been considered a recognized branch of science for the last 60 years. 

However, comparatively, it is an entirely new and faster-growing area of the study compared 

to other science areas, and each moment carries continual developments. Cryptography is 

broadly divided into two sub-branches; asymmetric-key cryptography and symmetric-key 

cryptography. This categorization is based on the input key that is secret information used 

during encryption and decryption. In symmetric-key cryptography, the communicating 

parties share a private key confidentially. Algorithms such as Lucifer, Data encryption 

standard (DES), Advanced encryption standard (AES), and the International data encryption 

algorithm (IDEA) are prominent examples of symmetric key cryptography. The goal of 

confidential communication can be achieved by using symmetric key cryptography. Since, in 

symmetric-key cryptography, the communicating entities use the same private key to encrypt 

and decrypt a message. Thus the distribution of secret keys has enough security issues that 

enhance the importance of public-key cryptography. In public-key cryptography, a pair of 

different keys are used for encryption and decryption. The main feature of the asymmetric 

key cipher is securing the data from the attackers even if they know the key used for 

encryption. This property resolves two significant problems that are the key distribution 

problem and authentication with the non-repudiation problem. The RSA algorithm, Elgamal 

algorithm, Elliptic curve cryptography (ECC), and Pailier cryptosystem are the most 

commonly practicing examples of public-key cryptography. 

Cryptography has been widely used in computer software and hardware in the form of 

discrete mathematical structures. Accordingly, the binary field 𝐺𝐹(2) and its binary Galois 
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field extensions 𝐺𝐹(2𝑚) are the most useful algebraic structures that have extensive 

applications in cryptography and computer science. One of the characteristics of 𝐺𝐹(2𝑚) is 

its soothing implementation in hardware that appeals to researchers to exploit it in 

cryptography. Reducing the cost and enhancing performance are the primary features of the 

finite field’s applications in cryptology. In this thesis, we have tested the impact of the Galois 

field on the security feature of symmetric and asymmetric key cryptographic schemes. One of 

the aims of this study is to improve the arithmetic on the Galois field extension by 

computations and observe the resultant positive effect on the security of different 

cryptosystems.    

The thesis comprises seven chapters. The first chapter of this thesis briefly discusses the 

fundamentals of algebraic structures, basic definitions of cryptography, and symmetric and 

asymmetric cryptography properties.  These definitions and properties are then utilized in the 

other chapters, where various finite field-based cryptographic schemes are discussed. The 

chapter commences with the basic reports and results of finite extension fields. It has been 

concluded with complexity theory.    

The second chapter of this thesis introduces a fully homomorphic encryption scheme. 

Homomorphic encryption schemes are the particular kind of encryption schemes that allow 

computation on the ciphered data. Hence, the data remain confidential during the encryption 

procedure, enabling practical tasks to be achieved with data residing in the open or untrusted 

network. The scheme introduced in this chapter is based on finite field isomorphism problems 

over the matrix field. The finite field isomorphism problems are obtained as; if 𝑚 is a 

positive integer and 𝑝 is a prime number, then there exists a finite field of the order 𝑝𝑚. 

Finite fields of order 𝑝𝑚 are isomorphic. The elements of these fields can be denoted by 

polynomials or represented by matrices with entries chosen modulo 𝑝. The length of an 

element of the field can be associated with the norm of that element. In general, a non-trivial 

isomorphic map between any two fields does not preserve the length of the elements. The 

image of the short element in the other field with entries can uniformly and randomly be 

distributed over modulo 𝑝.  

The third chapter of this thesis introduces the modified version of the NTRU scheme. NTRU 

scheme is the fastest asymmetric key encryption scheme. Its operations take place in the 

factor ring ℤ𝑝[𝑥]

<𝑥𝑛−1>
Suitable for both authentication and confidential communication. The 

security of the NTRU scheme is based on the short vector problem and closest vector 
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problem in lattices. Its correctness is based on the clustering characteristics of the sums of 

random values. These hard-mathematical problems are the core of the NTRU techniques 

against various quantum and classical attacks. However, researchers demonstrate that the 

scheme is insecure against the lattice-based attack. We have modified the general principle of 

the NRTU cryptosystem and substitutes the ring ℤ[𝑥] with a matrix ring over the Galois field 

𝐺𝐹(𝑝𝑚). Since the suggested cryptosystem operates in a high dimensional non-commutative 

matrix ring. Therefore, the scheme performs more efficiently and can resist lattice-based 

attacks.  

The fourth chapter of this thesis presents a complete review of the Data Encryption Standard 

(DES) through an improved version. DES is a symmetric key cryptosystem that is widely 

used in recent times due to its easy implementation in hardware.  In the past, the researchers 

found defects in the assembly of the DES and declared the algorithm insecure against linear 

and differential cryptanalysis. In this thesis, we have studied the faults in the DES and have 

made improvements in their internal configuration named the new algorithm Improved DES. 

The improvement has been made in the substitution step, which is the only nonlinear part of 

the algorithm. Accordingly, in the substation phase of the DES, we have introduced a new 

design of 6 × 6 S-boxes over the Galois field 𝐺𝐹(26). On the one hand, the construction 

method generates robust S-boxes that are secure against linear and differential attacks. Then 

again, it enhances the keyspace of the Improved DES against brute force attacks. 

In chapter five, some efficient algorithms based on binary extension fields 𝐺𝐹(2𝑚) are 

designed to secure multimedia data. Since multimedia data contain a high amount of data that 

are significantly correlated, thus, the only dependency on the algorithms like AES, RSA, and 

DES are not good enough for multimedia data security. Accordingly, in this part of the thesis, 

some efficient algorithms for multimedia data security are deliberated.  The suggested 

schemes are thoroughly examined against linear and differential attacks. The experimental 

results demonstrate the efficiency of the systems against various attacks. Furthermore, as a 

result of a fast and straightforward implementation of the finite binary field in hardware and 

software, the proposed schemes are more appropriate to implement and applicable for 

multimedia data security. 

Finally, in chapter six, a unique lossless audio data encryption scheme is given. This newly 

designed scheme is based on arithmetic operations of a Galois filed 𝐺𝐹(2𝑚) and an elliptic 

curve over a finite field ℤ𝑝. As the arithmetic operations of the elliptic curve are performed 
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efficiently, a decent quality sequence of random numbers is obtained in the initial phase of 

the encryption procedure. This generated sequence is then used to defuse the matrix of the 

audio data. The confusion part of the scheme is performed by multiple S-boxes, which have 

nonlinearity of the optimal level. The experimental results validate the competence of the 

proposed system against various attacks.    

 
The last chapter is dedicated to the conclusion and a few suggestions for possible future 

work. 
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Chapter 1  

Algebraic structures and cryptography: A brief review  
 

 Introduction  

This chapter aims to provide the fundamentals of algebraic structures, cryptography, and 

complexity theory that are used in the upcoming chapters. Accordingly, this brief review is 

divided into four sections. The second section consists of basic definitions and properties of 

the ring and field.  The notion of cryptography and the concept of symmetric and asymmetric 

key cryptography, along with their security analyses, are presented in section three. The 

fourth section is devoted to the study of algorithms, whereas the notion of asymptotic 

complexity is given in the last section of this chapter.   

  Algebraic structures 

Two binary operations, addition and multiplication, are mostly studying in the algebraic 

system. This section introduces an algebraic structure called ring, which satisfies some basic 

properties with respect to both of these operations; addition and multiplication. The detail of 

this section is given in Chapter 2 of Mullen and Panario [1], Chapter 3-6 of Wan [2], Chapter 

1 of Mullen and Mummert [3], and Chapter 1-2 of Rudolf and Niederreiter [4]. 

1.2.1 Ring 

A Ring (ℛ,+, ∙ ) is a nonempty set ℛ together with binary operations, addition (+) and 
multiplication (∙), such that  

1. ℛ is a commutative group with respect to addition. 

2. ℛ  is a semigroup with respect to multiplication. 

3. The elements of ℛ hold left-right distributive law; i.e., for all 𝑥, 𝑦, 𝑧 ∈ ℛ we have  

𝑥 ∙ (𝑦 + 𝑍) = 𝑥 ∙ 𝑦 + 𝑥 ∙ 𝑧 and (𝑦 + 𝑧) ∙ 𝑥 = 𝑦 ∙ 𝑥 + 𝑧 ∙ 𝑥.  

Throughout this chapter, we refer symbolically to the ring (ℛ,+, ∙ ) as ℛ, and emphasize that 

the binary operations ‘ + ’ and multiplication ‘ ∙ ’ are not necessarily to be ordinary addition 

and multiplications of real numbers. Furthermore, element 0 denotes the additive identity of 

the ring ℛ. Likewise, the element −𝑎 represents the additive inverse of the element 𝑎 ∈ ℛ, 

and 𝑎𝑏 denotes the multiplication of the elements 𝑎 and 𝑏.   

Example 1.1 The most simple and natural example of the ring is a set of integers, which is 

denoted by ℤ. In this way, the set of all integers satisfies all the ring properties with respect to 

integer addition and multiplication. Besides, if we thoroughly inspect the properties of the 
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integer ring ℤ, we will realize that some of the properties of this ring do not satisfy the ring in 

general. 

Definitions 1.2. The following definitions describe some additional properties of a ring. 

i. ℛ is said to be a ring with identity if there exists an element ℯ in ℛ such that 

𝑎ℯ = 𝑎= ℯ𝑎    for all 𝑎 ∈ ℛ. 

ii. ℛ is said to be a commutative ring if for all 𝑎 and 𝑏 in ℛ  

𝑎𝑏 = 𝑏𝑎. 

iii. ℛ is said to be a division ring if ℛ\{0} from a group under binary operation 

multiplication. 

iv. ℛ is said to be an integral domain if ℛ is a commutative ring with identity and if 

for all 𝑎 and 𝑏 in ℛ, whenever 

𝑎𝑏 = 0    implies either 𝑎 = 0 or 𝑏 = 0. 

Example. 1.3.  The set of integers ℤ is a commutative ring with identity. However, ring 2ℤ is 

a commutative ring without identity.   

Example 1.4. The set 𝑀𝑛(ℝ) of all 𝑛 × 𝑛 matrices with entries from the set of real numbers 

forms a non-abelian group over binary operations matrix addition and matrix multiplication.  

Definition 1.5.  A ring  ℛ is said to be a finite ring if ℛ consists of a limited number of 

elements and satisfies all the ring's properties.  

Example 1.6. The set of residue classes of the integer modulo 𝑛 forms a finite ring of order 𝑛 

with respect to integer addition and multiplication modulo 𝑛. For instance, 𝑛 = 4, then ℤ4 

consists of the elements [0], [1], [2] and [3]. The addition and multiplication operations of 

the ℤ4 are defined in the following operation tables that are the same as the Cayley table. 

 
+ [0] [1] [2] [3]  ∙ [0] [1] [2] [3] 

 [0] [0] [1] [2] [3]  [0] [0] [0] [0] [0] 

[1] [1] [2] [3] [4]  [1] [0] [1] [2] [3] 

 [2] [2] [3] [4] [0]  [2] [0] [2] [0] [2] 

[3] [3] [4] [0] [1]  [3] [0] [3] [2] [1] 
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From the operation tables of multiplication, it is clear that ℤ4 is a finite commutative ring 

with identity, where the identity element is the class [1]. However, it is not an integral 

domain because [2][2] = [0] and [2] is not equal [0] class.   

1.2.2 Polynomial Ring  

A polynomial in elementary algebra is an expression of the form 𝑎0 + 𝑎1𝓍 + 𝑎2𝓍2 +⋯+

𝑎𝑛𝓍
𝑛, where 𝑎0 ≠ 0 and 𝑎𝑖 (for 0 ≤ 𝑖 ≤ 𝑛) are called coefficients. These are mostly from the 

set of complex or real numbers. The symbol 𝓍 is the variable that can be substituted by an 

arbitrary number. The arithmetic operations of polynomials are invented over specific 

familiar rules. This section discusses the notion of polynomials and their associated 

arithmetic operations in a generalized algebraic setting.  

A polynomial over arbitrary ring ℛ is an expression that can be written in the form  

𝑓(𝑥) = 𝑎0 + 𝑎1𝓍 + 𝑎2𝓍
2 +⋯+ 𝑎𝑛𝓍

𝑚                                    (1.1) 

where 𝑚 is a whole number, the polynomial coefficients 𝑎𝑖 (for 0 ≤ 𝑖 ≤ 𝑚) are the elements 

of the ring ℛ. The symbol 𝓍 is called indeterminate over the ring ℛ. In general, it does not 

belong to ℛ. Next, we use 𝑓 for the representation of the polynomial 𝑓(𝑥). Let 𝑓 and 𝑔 be 

two polynomials over the ring ℛ; 

                                           𝑓 =∑𝑎𝑖𝓍
𝑖

𝑛

𝑖=0

     and       𝑔 =∑𝑏𝑖𝓍
𝑖

𝑚

𝑖=0

                                         (1.2) 

Then the polynomials 𝑓 and 𝑔 are considered to be equal if and only if 𝑚 = 𝑛 and 𝑎𝑖 = 𝑏𝑖 

for all 0 ≤ 𝑖 ≤ 𝑛. The addition of the polynomials 𝑓 and 𝑔 is defined as; 

                                                      𝑓 + 𝑔 = ∑ (𝑎𝑖 + 𝑏𝑖)𝓍
𝑖

max (𝑚,𝑛)

𝑖=1

                                            (1.3) 

The polynomial multiplication of the polynomials 𝑓 and 𝑔 is defined as 

                                          𝑓𝑔 = ∑ 𝑑𝑘𝓍
𝑘,

𝑚+𝑛

𝑘=0

       where  𝑑𝑘 = ∑ 𝑎𝑖𝑏𝑗
𝑖+𝑗=𝑘

                             (1.4) 

From these operations, it can be seen that the set of polynomials over polynomial addition 

and multiplication operations satisfies all the properties of a ring.  
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Definition 1.7. The ring formed by the set of polynomials over the ring ℛ with respect to 

polynomial addition and polynomial multiplication is called polynomial ring, denoted by 

ℛ[𝓍].   

The additive identity of the polynomial ring ℛ[𝓍] is the zero polynomial, whose all 

coefficients are zero that is denoted by 0. The additive inverse of a nonzero polynomial 𝑓 ∈

ℛ[𝓍] is the polynomial −𝑓 that belongs to the polynomial ring ℛ[𝓍]. For 𝑎𝑛 ≠ 0, is called the 

leading coefficient and 𝑎0 is the constant term of the polynomial 𝑓. The nonnegative integer 𝑛 

is called the degree of the polynomial 𝑓, which is denoted as 𝑑𝑒𝑔 (𝑓). Let ℛ be a ring with 

unity, then the polynomial in ℛ[𝓍] with leading coefficient identity element 1 is called a 

monic polynomial. 

Theorem 1.8. [4, Theorem 1.50] Let ℛ be an integral domain and let 𝑓 and 𝑔 be the elements 

of the polynomial ring ℛ[𝓍]. Then  

𝑑𝑒𝑔(𝑓 + 𝑔) = 𝑚𝑎𝑥{𝑑𝑒𝑔(𝑓), 𝑑𝑒𝑔(𝑔)} 

𝑑𝑒𝑔(𝑓𝑔) = 𝑑𝑒𝑔(𝑓) + 𝑑𝑒𝑔(𝑔) 

The elements of the ring ℛ can be view as the constant polynomials. Therefore, the elements 

of ℛ contained in the ring ℛ[𝓍]. Thus ℛ is the subring of ℛ[𝓍]. The properties of ℛ are 

inherited by the polynomial ring ℛ[𝑥]. The next theorem shows some of the properties of 

ℛ[𝑥], which depend on the subring ℛ. 

 Theorem 1.9. [4, Theorem 1.51] Let ℛ be a ring. Then  

i. ℛ[𝓍] is a commutative ring if and only if ℛ is a commutative ring. 

ii. ℛ[𝓍] is a ring with identity if and only if ℛ is a ring with identity. 

iii. ℛ[𝓍] is an integral domain if and only if ℛ is an integral domain. 

From equation (1.4), the polynomial multiplication and addition rely on the coefficients of 

the polynomials. Accordingly, two polynomials will be commute if their coefficients are 

commute. The reaming results are apparent. The remaining part of this section is almost deal 

with the polynomial ring over the field.  

1.2.3 Field 

The field is an algebraic structure with enormous valuable properties that are substantially 

studied. These structures are essentials in the applications and theory of cryptology and 

coding theory. It consists of the elements for which the two binary operations, multiplication 

and addition satisfy specific properties. The set of Complex numbers, real numbers, and 
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rational numbers are probably the best examples of the field. Since each of these sets contains 

an infinite number of distinct elements, therefore these are all infinite fields. Certain finite 

sets also satisfy the field's properties with appropriate binary operations; such fields are called 

finite fields. The following subsections focus on the study of finite fields. 

Definition 1.10. A field (𝔽,+, ∙ ) is a nonempty set 𝔽 together with binary operations, 

addition denoted by ‘+’ and multiplication denoted by ‘∙’ such that  

i. 𝔽 is an abelian group with respect to addition. 

ii. 𝔽 \{0} is a commutative group with respect to multiplication. 

iii. The elements of 𝔽 hold left-right distributive law; i.e. for all 𝑥, 𝑦, 𝑧 ∈ 𝔽, we have  

𝑥 ∙ (𝑦 + 𝑧) = 𝑥 ∙ 𝑦 + 𝑥 ∙ 𝑧 and (𝑦 + 𝑧) ∙ 𝑥 = 𝑦 ∙ 𝑥 + 𝑧 ∙ 𝑥.  

We will use 𝔽 as an identification for the field (𝔽,+, ∙ ), and we again emphasize that the 

binary operations addition ‘+’ and multiplication ‘∙’ are not necessarily ordinary real numbers 

addition and multiplications. In addition, we denote the multiplicative identity of the group 

𝔽∗ by 1 and the multiplicative inverse of an element 𝑎 ∈ 𝔽∗ by 𝑎−1. 

Example 1.11. The set of all complex numbers ℂ, real number ℝ, rational number ℚ are the 

examples of the field with respect to number addition and multiplication. 

1.2.4 Finite Field  

 A field 𝔽 is said to be a finite field if the set 𝔽 contains finite numbers of elements and 

satisfy all the properties of the field with respect to addition and multiplication.  

Example 1.12. The set of residue classes of the integer modulo prime integer 𝑝 satisfies all 

the properties of the field with respect to integer addition and multiplication mode 𝑝. For 

instance, let 𝑝 = 5 then the set ℤ5 consists of the elements [0], [1], [2], [3] and [4] . The 

addition and multiplication operations in the field ℤ5 are defined in the operations table given 

as follows; 

 

 

 

 

The set of residue classes ℤ𝑝 is the example of a finite field, which containing 𝑝 elements.  

+ [0] [1] [2] [3] [4] 

[0] [0] [1] [2] [3] [4] 

[1] [1] [2] [3] [4] [0] 

[2] [2] [3] [4] [0] [1] 

[3] [3] [4] [0] [1] [2] 

[4] [4] [0] [1] [2] [3] 

∙ [0] [1] [2] [3] [4] 

[0] [0] [0] [0] [0] [0] 

[1] [0] [1] [2] [3] [5] 

[2] [0] [2] [4] [1] [3] 

[3] [0] [3] [1] [4] [2] 

[4] [0] [4] [3] [2] [1] 
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1.2.5 Polynomial ring over a field 

This subsection discusses the properties of the polynomial ring over the field. Let 𝔽 be a 

field, then the set 𝔽[𝓍] of all polynomials whose coefficients from the field 𝔽 form a 

polynomial ring over polynomial addition and multiplication. This is a special kind of ring 

that contributes to the concept of divisibility. Let 𝑓 ∈ 𝔽[𝓍]; then the polynomial 𝑓 is said to 

divide the polynomial 𝑔, if there exists a polynomial ℎ ∈ 𝔽[𝓍] such that 𝑓 = 𝑔ℎ. The unit 

elements of 𝔽[𝓍] are those elements that are divisible by the constant identity polynomial 1. 

For instance, all nonzero constant polynomials are the unit elements of 𝔽[𝓍]. The following 

result is based on the notion of divisibility. 

Theorem 1.13. [5, Part IV Theorem 23.1] Let 𝑓 not equal to zero polynomial be an element 

of 𝔽[𝓍]. Then for 𝑔 such that 𝑑𝑒𝑔(𝑔) < deg (𝑓) in 𝔽[𝓍] there exist polynomials 𝑞 and 𝑟 in 

𝔽[𝓍] such that  

𝑓 = 𝑔𝑞 + 𝑟     where 𝑑𝑒𝑔(𝑟) < 𝑑𝑒𝑔 (𝑔). 

The above results revealed the fact that the polynomial ring over field 𝔽 permits the division 

algorithm, which leads the discussion to a significant result given as follows. 

Theorem 1.14. [6. Theorem 16.4] If  𝔽 be a field, then the polynomial ring over field 𝔽 is a 

principal ideal domain. For instance, for every ideal 𝐽 ≠< 0 > in 𝔽[𝓍], there exist unique 

monic polynomial 𝑔 in 𝔽[𝓍] such that 𝐽 =< 𝑔 >. 

Proof.  The polynomial ring  𝔽[𝓍] is an integral domain by Theorem 1.9, Let 𝐽 ≠< 0 > be an 

ideal of the ring 𝔽[𝓍]. Suppose that ℎ be a nonzero polynomial of least degree in the ideal 𝐽. 

Let 𝑎 be the leading coefficient of ℎ, then the polynomial 𝑔 = 𝑎−1ℎ is the monic polynomial 

contain in  𝐽. By division algorithm, every element of 𝑓 can be written as the multiple of 𝑔. 

Thus, 𝐽 is a principal ideal generated by 𝑔. Since 𝐽 is an arbitrary ideal of 𝔽[𝓍] that is 

principle ideal; therefore 𝔽[𝓍] is a principal ideal domain.  

The prime elements of the polynomial ring 𝔽[𝓍] are called irreducible polynomials. The 

concept of irreducible polynomial plays an impotent role in the invention of finite fields. The 

following part of this section presents the definition and properties of irreducible 

polynomials.  

Definition 1.15. A polynomial 𝑝 of the ring 𝔽[𝓍] is said to be irreducible over the field 𝔽. If 

it has a positive degree and if 𝑝 = 𝑓𝑔 with 𝑓, 𝑔 ∈ 𝔽[𝓍], implies that the degree of  𝑓 or the 

degree of 𝑔 is zero.  



 

7 
 

In other words, a polynomial of positive degree is said to be irreducible over the field 𝔽, if it 

allows only trivial factorizations. The polynomials in 𝔽[𝓍] that are not irreducible are called 

reducible over the field 𝔽. The irreducibility and reducibility of any polynomial depend on 

the nature of the field 𝔽. For instance, the polynomial 𝓍2 − 2 ∈ ℝ[𝓍] is reducible over the 

field ℝ of real numbers. However, 𝓍2 − 2 is irreducible over the field ℚ of rational numbers. 

The reducible elements of the polynomial ring can be written as the product of irreducible 

polynomials in a unique manner. The appearance of this fact is justifying the proof of the 

result given as follows. 

Theorem 1.16. [5, Part IV Theorem 23.20] Any element 𝑓of positive degree in the 

polynomial ring 𝔽[𝓍] can be written in the form  

𝑓 = 𝑐𝑝1
𝑛1𝑝2

𝑛2 …𝑝𝑘
𝑛𝑘 

Where 𝑝1, 𝑝2, … . , 𝑝𝑘 are the different monic irreducible polynomials in a polynomial ring, 

where 𝑛1, 𝑛2, … , 𝑛𝑘 are natural numbers, and 𝑐 is the element of the field 𝔽. Besides, the 

above representation of factorization is unique. 

Since we know that irreducible polynomials over 𝔽 in the polynomial ring are prime 

elements, and the ring 𝔽[𝓍] is the principal ideal domain. Therefore, the following result is 

ascertained as the consequences of the fact that if ℛ is a principal ideal domain, then ℛ
(𝑝)

 is a 

field if and only if 𝑝 is a prime element of ℛ.  

Theorem 1.17. [2. Theorem 5.4] Let 𝑓 be a polynomial over 𝔽, then the residue classes of the 

polynomial ring 𝔽[𝓍] over < 𝑓 > forms a field if and only if 𝑓 be an irreducible polynomial 

over the field 𝔽. 

The residue classes of the polynomial ring over < 𝑓 > form a polynomial ring, for an 

arbitrary nonzero polynomial 𝑓in 𝔽[𝓍], which consist of residue classes 𝑔+< 𝑓 > for 𝑔 ∈

𝔽[𝓍]. Each residue class 𝑔+< 𝑓 >  can be represented by unique element 𝑟 in 𝔽[𝓍] with 

deg(𝑓) > deg (𝑟) that is equal to the reminder, whenever 𝑓 divides 𝑔.  The process of 

transforming 𝑔 into 𝑟 is called reduction modulo 𝑓. Two elements 𝑔1+< 𝑓 > and 𝑔2+< 𝑓 >  

of the ring of residue classes are considered to be identical if 𝑔1 divide 𝑓 leaves the same 

reminder as 𝑔2 divides 𝑓. Since the ring of residue classes consists of all polynomials of 

degree less than the degree of 𝑓. Accordingly, for a finite field 𝔽 of order 𝑞,  and degree 𝑛 
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irreducible polynomial 𝑓, the order of the ring 𝔽𝑞[𝓍]
<𝑓>

 is 𝑞𝑛, which consists of residue classes 

modulo 𝑓.   

1.2.6 Field Extensions 

Let  𝐾 be a subset of the field 𝔽. Then 𝐾 is said to be a subfield of 𝔽 if 𝐾 itself a field with 

respect to binary operations of the field 𝔽 and the field 𝔽 is called the extension of  𝐾. If 𝐾 ⊂

𝔽, then 𝐾 is said to be a proper subfield of 𝔽. If 𝐾 be a subfield of the finite field 𝔽𝑝 of order 

𝑝. Then 𝐾 must consist of only one element, which is the additive identity 0. It follows that 

the finite field 𝔽𝑝 contains no proper field. 

Definition 1.18. A field is said to be a prime field if it contains no proper subfield.  

From the above definition, the finite field of order 𝑝 is the prime field. For instance, let 𝑝  be 

a prime number, then the set of residue classes ℤ𝑝 over module prime number 𝑝 is the 

example finite prime field. The set of rational numbers ℚ is the example of the infinite prime 

field.  

Definition 1.19. Let 𝔽 be the extension field of the field 𝐾 and superset of a nonempty set 𝑀. 

Then the intersection of all subfields of the field 𝔽, which contain both 𝑀 and 𝐾 is called the 

extension field of 𝐾, which is denoted by 𝐾(𝑀).  

For a finite set, 𝑀 = {𝜃1, 𝜃2, … , 𝜃𝑛} one can write 𝐾(𝑀) = 𝐾(𝜃1, 𝜃2, … , 𝜃𝑛). If 𝑀 is a 

singleton set for instance 𝑀 = {𝜃} and 𝜃 ∈ 𝔽, then the extension field 𝐾(𝜃) is called the 

simple extension of 𝐾, and the element 𝜃 is called defining element of 𝐾(𝜃). The extension 

field 𝐾(𝑀) is the smallest subfield containing the field 𝐾 and the subset 𝑀. The subsection 

discusses some important types of the extension field.   

Definition 1.20. Let 𝔽 be the extension field of the subfield 𝐾, and 𝜃 be the element of 𝔽. 

Then the element 𝜃 is said to be algebraic over 𝐾 if there exist coefficients 𝑏𝑖 ∈ 𝐾, such that 

for all 0 ≤ 𝑖 ≤ 𝑛, not all 𝑏𝑖 equal to zero, 𝜃 satisfy the non-trivial degree 𝑛 polynomial 

equation, i.e., 𝑏𝑛𝜃𝑛 + 𝑏𝑛−1𝜃𝑛−1 +⋯+ 𝑏1𝜃1 + 𝑏0 = 0. The extension 𝐾(𝑀) is said to be an 

algebraic extension of 𝐾, if every element of 𝐾(𝑀) is algebraic over 𝐾.   The least degree 

polynomial 𝑓 = 𝑏𝑛𝓍𝑛 + 𝑏𝑛−1𝓍𝑛−1 +⋯+ 𝑏1𝓍 + 𝑏0 such that 𝑓(𝓍) ∈ 𝐾[𝓍]  and 𝑓(𝜃) = 0 is 

called the minimal polynomial, which is the irreducible polynomial in 𝐾[𝓍].  

Let 𝐾 be the subfield of the field 𝔽. Then the extension field 𝔽 satisfies all the properties of 

the vector space over the field 𝐾, since the elements of 𝔽 form an abelian group with respect 
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to addition. Besides, for each element 𝑓 ∈ 𝔽 and 𝑘 ∈ 𝐾, the element 𝑘𝑓 again belongs to 𝔽. 

Similarly, the laws for multiplication by scalers satisfies; 𝑘(𝑓 + 𝑔) = 𝑘𝑓 + 𝑘𝑔. (𝑓 + 𝑔)𝑘 =

𝑓𝑘 + 𝑔𝑘, (𝑘1𝑘2)𝑓 = 𝑘1(𝑘2𝑓) and 1𝑓 = 𝑓, where 1 is the multiplicative identity of 𝐾, for 

𝑘1, 𝑘2 ∈ 𝐾 and 𝑓, 𝑔 ∈ 𝔽.  

Definition 1.21. Let 𝐾 be the subfield of the finite-dimensional vector space 𝔽 over 𝐾, then 𝔽 

is called a finite extension of the field 𝐾. The dimension of the vector space 𝔽 over the field 

𝐾 is called the degree of the field 𝔽, which is denoted by [𝔽;  𝐾]. 

The study of a simple algebraic extension 𝐾(𝜃) is invented by adjoining the algebraic 

elements. Let 𝐾 be the subfield of the field 𝔽 and  𝜃 ∈ 𝔽, then 𝐾(𝜃) is a finite extension of 𝐾. 

This property connects the notion of the extension field to the field of residue classes.  

Theorem 1.22. [4, Theorem 1.86] Let 𝜃 bean algebraic over the field 𝐾, and let 𝑔 be the 

irreducible polynomial in 𝐾[𝓍] of degree 𝑛. Then: 

i. The extension field 𝐾(𝜃) is isomorphic 𝐾[𝓍]
<𝑔>

. 

ii. The dimension of 𝐾(𝜃) is equal to 𝑛 and {1, 𝜃, 𝜃2, … , 𝜃𝑛−1} is a basis of 𝐾(𝜃) over 𝐾.  

iii. For every 𝜗 algebraic over 𝐾 in 𝐾(𝜃), the degree of 𝜃 divides the degree of 𝜗.  

So far, we have discussed the procedure of constructing finite field extension and their 

properties. The following lemma shows that for every integer 𝑞 with specific properties, there 

exists a finite field of order 𝑞, where 𝑞 = 𝑝𝑛.   

Example 1.23. Let 𝑝(𝓍) = 𝓍2 + 𝓍 + 1 ∈ ℤ2[𝓍]. Then the order of the ring ℤ2[𝓍] 

<𝑝(𝓍)>
 is 22, 

containing the elements [0], [1], [𝓍 ], and [𝓍 + 1]. The binary operations polynomial addition 

and multiplication modulo 𝑝(𝓍) for the residue class ring is defined in the following 

operation tables.  

 

+ [0] [1] [𝓍] [𝓍 + 1] 

[0] [0] [1] [𝓍] [𝓍+1] 

[1] [1] [0] [𝓍+1] [𝓍] 

[𝓍] [𝓍] [𝓍+1] [0] [1] 

[𝓍+1] [𝓍+1] [𝓍] [1] [0] 

∙ [0] [1] [𝓍] [𝓍 + 1] 

[0] [0] [0] [0] [0] 

[1] [0] [1] [𝓍] [𝓍 + 1] 

[𝓍] [0] [𝓍] [𝓍+1] [1] 

[𝓍+1] [0] [𝓍+1] [1] [𝓍] 
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Since 𝑝(𝑥) is an irreducible polynomial, thus by Theorem 1.17. it follows that the residue 

classes in  ℤ2[𝓍] 
<𝑝(𝓍)>

 from a field. The operation table of multiplication also demonstrate that the 

elements of ℤ2[𝓍] 

<𝑝(𝓍)>
\{[0]} with respect to multiplication modulo 𝑓 from an abelian group. 

Thus, ℤ2[𝓍]
<𝑝(𝓍)>

 is a field with respect to modulo polynomial addition and multiplication.  It is an 

example of a finite field that is the extension of the prime field ℤ2.   

Corollary 1.24. [7, Corollary 5.7] For every prime number and positive integer 𝑛 there exist 

a finite field of the order 𝑝𝑛. Any two fields having the same order are isomorphic, which 

means that between any two finite fields having the same order exists one to one 

homomorphic map.  

Corollary 1.24 demonstrates that for every positive integer 𝑚 and prime number  𝑝 there exist 

finite fields of order 𝑝𝑚. Any number of finite fields of order 𝑝𝑚 are isomorphic. The 

elements of these can be thought polynomials or matrices. The following subsection 

discusses all the possible ways to represent the elements of such fields.  

1.2.7 Representation of finite field elements 

The elements of a finite field 𝔽𝑞 of order 𝑞 = 𝑝𝑚 can be represented in three different 

arrangements. The first method is relying on the principal exponent. Since it is a well-known 

fact that the field 𝔽𝑞 is just simply the algebraic extension 𝔽𝑝. Therefore if 𝑔 is an irreducible 

polynomial in the polynomial ring 𝔽𝑝[𝓍] of degree 𝑚, then the root 𝛽 of 𝑔 contain in 𝔽𝑞. So, 

by Theorem 1.23 (i), the field 𝔽𝑞 is isomorphic to 𝔽𝑝(𝛽) that is also isomorphic to 𝔽𝑝[𝓍]
<𝑔>

.  

Then by Theorem 1.17, the elements of the field 𝔽𝑞 are uniquely expressed as polynomials of 

degree less than 𝑚, as shown in Example 1. 23. 

The second possibility of expressing the elements of a finite field 𝔽𝑞 is using 𝑞 − 1 

cyclotomic polynomials over 𝔽𝑝. Since we know that the field 𝔽𝑞 is 𝑞 − 1 cyclotomic field 

over the subfield 𝔽𝑝. Therefore, one can construct it by finding the decomposition of 

cyclotomic polynomials 𝒬𝑞−1 ∈ 𝔽𝑝[𝓍] into the same degree irreducible polynomial, that are 

the factors of the polynomial ring 𝔽𝑝[𝓍].  The root of any one of these irreducible 

polynomials is then the primitive 𝑞 − 1 root of unity over 𝔽𝑝 and thus the primitive element 

of 𝔽𝑞. Hence, 𝔽𝑞 obtained with the consequences of the appropriate power of a primitive 

element and 0.  
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The third possibility of representing the elements of a finite field 𝔽𝑞 in the form of matrices 

generated by the companion matrix of the irreducible polynomial. Let 𝑓(𝑥) = 𝑏0 + 𝑏1𝓍 +

⋯+ 𝑏𝑛−1𝓍
𝑚−1 + 𝑏𝑛𝓍

𝑚 be an irreducible polynomial of degree 𝑚 over the field 𝔽𝑝. Then 

the companion matrix of irreducible polynomial 𝑓(𝑥) defines by the 𝑚×𝑚 matrix that is 

given as follows; 

𝑀 =

(

 
 

0 0 0
1 0 0
0 1 0

⋯
⋯
⋯

0
0
0

−𝑏0
−𝑏1
−𝑏2

⋮ ⋮ ⋮  ⋮ ⋮
0 0 0 ⋯ 1 −𝑏𝑚−1)

 
 

 

It is a well-known fact in linear algebra that the matrix 𝑀 satisfies the polynomial equation 

𝑓(𝑀) = 0 that is 𝑏0𝐼 + 𝑏1𝑀+⋯+ 𝑏𝑛−1𝑀𝑚−1 + 𝑏𝑛𝑀
𝑚 = 0, where 𝐼 denotes 𝑚 ×𝑚 

identity matrix. Since the companion matrix of a monic irreducible polynomial over the field 

𝔽𝑝 play the role of the root of 𝑓. Therefore, the matrix 𝑀 generates a field of the order 𝑞𝑚 

with respect to matrix addition and matrix multiplication. 

Example 1.25. Let 𝑝(𝑥) = 𝑥2 + 1 ∈ 𝔽3[𝑥]. Then the companion 2 × 2 matrix of irreducible 

polynomial 𝑝 over 𝔽3 is defined as 

𝑀 = (
0 2
1 0

) 

 The elements of the field 𝔽32 can be represented in the form 𝔽32 = {0, 𝐼, 2𝐼,𝑀, 𝐼 + 𝑀, 2𝐼 +

𝑀, 2𝑀, 𝐼 + 2𝑀, 2𝐼 + 2𝑀}.  

The second chapter uses the matrix representation of the finite field for the constructions of 

symmetric and asymmetric cryptographic schemes that are homomorphic. 

 Cryptography 

Cryptography is the study of protecting information and information systems from 

unauthorized access and manipulation. Three components of cryptography are 

Confidentiality, Integrity, and Availability.  The term integrity refers to “the property that 

data has not been altered in an unauthorized manner”. There are two broad categories of 

integrity protection that are preventive mechanisms and detective mechanisms. The 

preventive mechanism controls the unauthorized modification of information while the 

detective mechanism detects the amendment when the preventive mechanism has failed.  

Availability: the third component is Availability which concerns “The information is 
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available to authorized users on time”. A disruption of access to or utilization of information 

or an information system leads to a loss of availability. Attacks against availability are known 

as denial of service (DoS) attacks. Confidentiality: The term confidentiality refers to the 

ability to hide information from unauthorized parties. Confidentiality is the highest priority 

component of information security. And if one fails to achieve that, then there is a chance to 

access confidential data by any unauthorized person, which can draw unacceptable 

consequences. The goal of confidential communication can be achieved by using symmetric 

key cryptography and asymmetric cryptography. The following subsections discuss the 

subfield of cryptography and analyses of the cryptographic scheme.    

1.3.1 Symmetric Key Cryptography 

The symmetric key cryptographic algorithms are also called single key or secret key 

algorithms. A single key is required for both encrypting and decrypting a ciphertext in these 

approaches. It is a well-known problem that is simple to follow. For instance, two firms are 

attempting to exchange data over an unprotected and insecure communications channel. The 

word channel may sound abstract; however, it is a broad word that encompasses the 

communication data connection. The communication network can be a mobile phone, WIFI 

network, wireless Lan, or any other communication network nowadays available. The 

problem creates an eavesdropper, whose intercepting communication. In most cases, the 

communication party would prefer to communicate confidentially. Symmetric key 

cryptography offers a solution to the problem of confidential communication. The sender 

encrypts his/her original message 𝑥 using a symmetric key scheme and yields an encrypted 

message 𝑦. The receiver decrypts the message 𝑦 and transforms it into the original message 𝑥 

using the decryption procedure of a symmetric key cryptosystem. If the eavesdropper 

accesses the communication channel, they will get an unreadable message having no 

information. The primary method of enciphering the message using the key 𝑘 is called a 

cipher. The following definition introduces the simplified concept of the cipher called 

Shannon cipher. Further detail of this subsection can be found in Chapter 2 of Delfs and 

Knebl [8], Chapter 2 of Elbirt and Adam [9], Chapter 3 of Kahate [10], and Chapter 1 of 

Boneh and Shoup [11]. 

Definition 1.26. (Shannon Cipher) The Shannon cipher is the pair of encryption and 

decryption functions defined as follows  

ℰ = (𝐸, 𝐷) 
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where 𝐸 denotes the encryption function that takes a plain message 𝑚 and the key 𝑘 and 

output the ciphertext 𝑐 that is 𝑐 = 𝐸(𝑚, 𝑘). The ciphertext 𝑐 is the encrypted version of the 

plain message 𝑚 under the key 𝑘. The function 𝐷 is the decryption function that takes the 

ciphertext 𝑐 and the key 𝑘 and outputs the plain message 𝑚.  

Definition 1.27. (Correctness property). The Shannon cipher ℰ = (𝐸, 𝐷) is said to satisfy 

the correctness property if for all keys 𝑘 and all ciphertexts 𝑐, the ℰ hold the following 

property 

𝑚 = 𝐷(𝐸(𝑚, 𝑘), 𝑘). 

The above illustrates the basic definition and correctness properties of the Shannon cipher. 

The following definition discusses the mathematical notion of the security properties of the 

Shannon cipher 

Definition 1.28. The Shannon cipher ℰ = (𝐸, 𝐷) is said to be perfectly secure over 𝒦, ℳ 

and 𝒞  (𝒦 is the set of keys, ℳ is the set of all messages and 𝒞 is the set of all ciphertext). If 

for a random key 𝑘 ∈ 𝒦, for all 𝑐 ∈ 𝒞 and, for all 𝑚1,𝑚2 ∈ ℳ, the following equation hold 

Ρr[𝐸(𝑚1, 𝑘) = 𝑐] = Ρr[𝐸(𝑚2, 𝑘) = 𝑐] 

Then the Shannon cipher ℰ is said to satisfy the property of perfect security.  

Theorem 1.29. [10, Theorem 2.1] Let ℰ = (𝐸, 𝐷) be the Shannon cipher over the sets ℳ,𝒞, 

and 𝒦.    Then the following properties are equivalent 

i. The Shannon cipher ℰ is perfectly secure. 

ii. For all plain images, 𝑚 ∈  ℳ and every ciphertext 𝑐 ∈ 𝒞 there exist 𝑀𝑐, such that 

the following equation hold  

|{𝑘 ∈ 𝒦 ∶ 𝐸(𝑘,𝑚) = 𝑐 }| = 𝑀𝑐 

iii. If the key 𝑘 is randomly distributed over 𝒦, then for each ciphertext 𝑐 = 𝐸(𝑚, 𝑘) 

has the same distribution for the message 𝑚 ∈ ℳ.  

The main disadvantage of the symmetric key schemes is that such systems need a secure 

channel to distribute secret keys between the sender and receiver. To address the problem of 

secret key distribution, the researcher introduced the notion of asymmetric key cryptography.    

1.3.2 Asymmetric Key Cryptography  

The Cryptography's most basic purposes are to maintain the secrecy of the information 

exchange among the communicating entities during communication and to provide 
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authentication of the sender to the receiver. These goals can be achieved via symmetric key 

cryptography. However, the symmetric key cryptographic schemes are not convenient in 

some applications due to specific reasons. For instance, while using symmetric key 

cryptographic schemes the communication parties should have to share a secret key. So, there 

must be a secure channel between the communication parties for sharing the secret key. 

Therefore, the researcher invented the notion of asymmetric key cryptography. In asymmetric 

key cryptographic schemes, the receiver and sender use different keys for encryption and 

decryption. Initially, the receiver generates two keys called the public key and private key, 

whereas these keys are mathematically related. Then keep the private key secret and share 

his/her public key. The sender uses the public key and encrypts the message and sent the 

encrypted message to the receiver. Upon receiving the encrypted message, the receiver uses 

the secret key, decrypts the encrypted message, and gets the original message. This concept 

was also introduced by Ellis at GCHQ and named it non-secret key cryptography. The 

earliest and essential example of an asymmetric key cryptographic scheme is RSA, designed 

by Adlmen, Revist, and Shamir in 1977. The RSA scheme is used for both authentication and 

digital signature applications. The notion of the asymmetric key cryptographic scheme using 

a mathematical mechanism required the formal definition of the encryption scheme, which 

we have discussed in the following subsection. The general references for this subsection are 

Chapter 1 of Moller [12], Salomaa [13], Chapter 10 of Boneh [11], and Chapter 1 of Galbraith 

[14].  

Definition 1.30. Let a natural number  𝜅 be a security parameter. The security parameter 𝜅 is 

not necessarily to be equal to the length of the key. An asymmetric key encryption scheme 

can be defined as follows; 

   M𝜅               denote the set of all possible plaintext. 

   PK𝜅             denote the set of all possible public keys. 

   SK𝜅             denote the set of all possible secret keys. 

   C𝜅                denote the set of all possible ciphertexts. 

KeyGen.       denote the key generation randomize algorithm, which takes a security 

parameter 𝜅 as an input and perform expected 𝒪(𝜅𝐶) bit operations for some constant 𝑐 and 

output a secret key sk ∈ SK𝜅 and a public key pk ∈ PK𝜅.  
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Encrypt.  Then encryption algorithm is denoted by Encrypt, which is a randomized 

algorithm that takes plain message m ∈ M𝜅 and public key pk and perform 𝒪(𝜅𝐶) bit 

operation for some constant 𝐶 and output an encrypted message 𝑐 ∈ C𝜅.  

Decrypt.  The decryption algorithm is denoted by Decrypt, which is a randomized 

algorithm that takes the encrypted text 𝑐 and perform polynomial times (O(𝜅𝐶)) bit operation 

and output the plaintext 𝑚 or the symbol ⊥ of invalid encrypted message. 

Decrypt(Encrypt(m, pk), sk ) = m. 

Example 1.31. The RSA cryptosystem is an example of the asymmetric key cryptosystem. 

In this example, we briefly discuss the textbook RSA algorithm. Let 𝐴 and 𝐵 be two entities 

that are willing to communicate using the RSA cryptosystem. 

In the first step, A chooses two prime integers 𝑝, 𝑞 ≥ 2𝜅 and computes 𝑁 = 𝑝𝑞, where 𝜅 ∈

ℕ is the security parameter. Then, 𝐴 also choose 𝑒 ∈ 𝑈(𝑁) and compute 𝑑 ∈ 𝑈(𝑁) such that  

𝑒𝑑 ≡ 1𝑚𝑜𝑑𝜑(𝑁). 

Where 𝑈(𝑁) is the set of unit elements of the ring  ℤ𝑁, and the function 𝜑(𝑁) is the Euler 
phi function. A public the pair (𝑒, 𝑁) and keep the element 𝑑 secret.  

B convert his/her message to an integer 𝑚 such 1 < 𝑚 < N and computes the ciphertext text 
𝑐 = 𝑚𝑒𝑚𝑜𝑑 𝑁.  Then sent the ciphertext 𝑐 to 𝐴.  

To obtain the original message 𝑚, the user 𝐴 computes 𝑚 = 𝑐𝑑𝑚𝑜𝑑 𝑁 and get the original 
message 𝑚.  

1.3.3 Security Analyses of Asymmetric Cryptosystem 

This section briefly discusses the security analyses of asymmetric key encryption schemes. 

An adversary we consider a polynomial-time algorithm that can intercepts in the 

cryptosystem in many possible ways. It is requisite to define attack goal and attack model to 

demonstrate the ways through which the adversary can break the asymmetric key 

cryptosystem. The following subsection first lists the attack goal for the public key 

cryptographic scheme. There are four well-studied attacks: the security properties that resist 

the adversary to attain the attack goal. In the below definition the word oracle has been used 

that is just the name of an algorithm that outputs the correct answer of any input in constant 

time.  

Definition 1.32.  A cryptosystem is said to be a total break if an adversary success to 

compute the private key of that cryptosystem.  
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Definition 1.33.  A cryptosystem is said to be one-way encryption if the ciphertext 𝑐 is 

given to the adversary and they are unable to compute the corresponding plaintext 𝑚. 

Definition 1.34. An encryption scheme is said to be semantically secure whenever the 

ciphertext is given to the adversary, and they discover no information at all about the 

plaintext from the ciphertext apart from its length. A brief discussion of semantic security is 

given as follows: 

Assume that all the plaintext in the set  M𝜅 have the same size. An adversary of semantic 

security is a randomized polynomial-time algorithm 𝐴 that initially chooses a map 𝑓:M𝜅 ⟶

{0,1}, such that for any 𝑚 ∈ M𝜅, the probability of 𝑓(𝑚) = 0 is 1
2
. Then the adversary takes 

a ciphertext (𝑐, 𝑝𝑘) as input and outputs a bit 𝑏, where  𝑐 is the corresponding encrypted 

version of the message 𝑚 under the public key pk. The adversary will be successful if the bit 

𝑏 is equal to 𝑓(𝑚).  

Definition 1.35. An encryption scheme is said to be indistinguishably secure if the adversary 

is unable to separate the ciphertexts of the two plaintexts 𝑚0 and 𝑚1 of the same length, 

chosen by the adversary itself. The concept of indistinguishability can be defined as follows; 

Let 𝐴 be a randomized polynomial-time algorithm that is considered to be an 

indistinguishable adversary, which plays a game with the challenger 𝐶. Initially, the 

challenger computes the public key and sent it to the adversary 𝐴. Then the adversary 𝐴 

perform computation and output two messages 𝑚0 and 𝑚1 of the same length and sent the 

messages to the challenger 𝐶.  The 𝐶 computes the ciphertexts using the public key and give 

one of them 𝑐𝑏 to 𝐴. In the second phase of the game, 𝐴 perform some computation and 

output 𝑏′. The adversary 𝐴 win the game if 𝑏 = 𝑏′, otherwise, the challenger wins the game.  

One can consider that for a fixed integer 𝜅 the adversary successfully outputs all the public 

keys through KeyGen and outputs all the challenge ciphertext through the algorithm 

Encrypt. The scheme is considered to not satisfy the security property if the adversary wins 

the game by the noticeable probability. The scheme is considered to satisfy the security 

property if the success probability of the adversary for a function 𝜅 is negligible. An 

adversary is said to be perfect if they work on probability 1. In the following definitions, we 

list the attack model for asymmetric key cryptography. 

Definition 1.36. The Adversary has access to the public key of the cryptosystem.  
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Definition 1.37. The public key of the cryptosystem is given to the Adversary and they can 

also ask the decryption Oracle for the decryption of its chosen ciphertext, before receiving 

the challenge ciphertexts of the game.  

Definition 1.38. The Adversary has access to the public key of the cryptosystem and they 

can ask the decryption Oracle for the decryption of the ciphertext of its choosing, before and 

after receiving the ciphertexts of the game.  

The adversary aims to break the above security properties of the scheme over the attack 

model. In these properties, indistinguishability under adaptive chosen ciphertext attack is the 

strongest notion. A scheme that resists indistinguishability under an adoptive ciphertext 

attack is called to have IND-CCA security. In theoretical cryptography, a scheme is 

considered to be secure if it achieves IND-CCA security; such schemes resist all real-world 

attacks. 

Proposition 1.39. [14, Section 1.3.1] A scheme is considered to attain semantic security 

under some attack models if it achieves IND-CCA under some of the same attack models. 

Examples 1.40. The textbook RSA cryptosystem does not have IND-CCA security. 

 Algorithm 

In general, an algorithm is a well-defined computational process that takes a set of values or 

some sort of values as input and raises a set of values or some sort of values as output. 

Therefore, an algorithm is a sequence of computational functions that map the input to the 

output. The algorithm can be view as a tool for solving problems. The problem sounds like 

the relationship between input and output. The algorithm depicts a computational 

mechanism for determining the relationship between the inputs and the outputs. 

Examples 1.41. One might need a sorted sequence in non-decreasing order. In practice, this 

problem often arises and gives a fertile background for introducing many analysis tools and 

designed techniques. The sorting problem is defined as follows 

Input: Sequence of m integer (𝑥1, 𝑥2, … , 𝑥𝑚) 

Output: A permutation (𝑥′1, 𝑥′2, … , 𝑥′𝑚) corresponding to the input sequence such that 

𝑥′1, ≤ 𝑥
′
2 ≤ … ≤ 𝑥

′
𝑚. 

The insertion sort is an efficient algorithm for sorting small sequences. This example 

presents the pseudocode of the insertion sort to illustrate the notion of the algorithm in more 
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detail.  In the algorithm, the index 𝑖 denotes the element of the given sequence being 

inserted in the sorted sequence. At the initial stage of the for loop, that is, the index 𝑖, the 

subarray consisting of the elements S[1… 𝑖 − 1] denotes the sorted array. However, the 

subarray consisting of elements S[𝑖 + 1… . 𝑛] indicates the unsorted array. The algorithm 

picks the elements from the unsorted array and puts them on the sorted array, consequently 

output the sorted array. 

 

 

 

 

 

 

 

Definition 1.42. (Randomized Algorithm). An algorithm 𝐴 is said to be randomized if 𝐴 

have access to a random number generator. The randomized algorithm does not terminate 

whenever the arbitrary choice of the infinite sequence is made.  

Definition 1.43. (Deterministic). An algorithm is said to be deterministic if it solves a 

problem without making any randomness. For instance, the textbook RSA is the 

deterministic algorithm. 

1.4.1  Success Probability of an Algorithm  

Throughout this chapter gives brief definitions of algebraic structures, asymptotic 

complexity, and algorithms. Therefore, it is more suitable to discuss the success of an 

algorithm to solve a problem. An algorithm 𝐴 is considered to be perfect if 𝐴 always outputs 

the correct answer.  The algorithm 𝐴 might output the correct answer just for some subset of 

the instance or for all instances with a certain probability. This section presents the success 

probability of an algorithm. The success probability of an algorithm is to solve a problem 

with noticeable probability. It takes 𝜅 ∈ ℕ as an input and runs in polynomial time and 

output the instance of that problem. The following definition defines the noticeable and 

negligible functions.  

Table 1. Algorithm 1. Insertion sort 
 INSERTION SORT (S)   
1  for 𝑖 =  2 to S. length 
2              K = S [𝑖] 
3 Insert S [𝑖] into the sequence S [1…. 𝑖 − 1]  
4        𝑗 = 𝑖 − 1 
5 while  𝑗 > 0 and S[𝑗] > key  
6             A [𝑗 + 1]=A [𝑗] 
7                𝑗 = 𝑗 − 1 
8  A [𝑖 + 1]=key 
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Definition 1.44. A function 𝜖 from the set of natural number ℕ to the set positive real 

number ℝ >0 is said to be noticeable, if there exists an integer 𝑁 and a polynomial 𝑟(𝑥) ∈

ℝ[𝑥] such that 𝑟(𝑘) ≠ 0 for all 𝑘 > 𝑁 and 𝜖(𝑘) > 1

𝑟(𝑘)
.  

Definition 1.45. A function 𝜖  from the set of natural number ℕ to the set positive real 

number ℝ >0 is said to be noticeable, if there exists an integer 𝑁 and for all polynomial 

𝑟(𝑥) ∈ ℝ[𝑥] such that 𝑟(𝑘) ≠ 0 and 𝜖(𝑘) < 1

𝑟(𝑘)
 for all 𝑘 > 𝑁. 

Example 1.46. An example of a negligible function is 𝜖(𝑘) = 1

𝑟(𝑘)
. 

Definition 1.47. Let 𝐴 be an algorithm that solves the instance of a problem. Let the 

function 𝑓:ℕ ⟶ [0, 1] such that 𝑓(𝑘) for 𝑘 ∈ ℕ be the probability of the algorithm 𝐴 that it 

outputs the correct answer. Then the function 𝑓 is said to be the success probability of the 

algorithm 𝐴 if 𝑓 is the noticeable function.  

Example 1.48. Let 𝐴 be an algorithm for the discrete logarithmic problem (DLP). Suppose 

that the pair (𝐺, 𝑔, ℎ) is the input of the algorithm 𝐴, where 𝐺 is the group and 𝑔, ℎ ∈ 𝐺, 

such ℎ = 𝑔𝑥  for some positive integer 𝑥. Let the output of the algorithm 𝐴 is the integer 𝑥 

chosen uniformly in the range 0 < 𝑥 ≤ 𝑟. Since for the security perimeter 𝜅, the order of the 

group 𝑟 is greater than 22𝜅. Therefore, the correctness probability of the algorithm 𝐴 is 
1

(𝑟−1)
≤

1

22𝜅
. Thus, for any polynomial 𝑞(𝑥) there are 𝑚1, 𝑚2 ∈ ℝ >0 and natural number 𝑛 

such that |𝑞(𝑥)| ≤ 𝑚2𝑥
𝑛for 𝑚2 ≥ 𝑚1 . Accordingly, there exist some 𝐾 ≥ 𝑚1 such that 

𝑚2𝐾
𝑛 ≤ 22𝜅.  Consequently, the success probability of Algorithm A is negligible. 

Definition 1.49. A problem that is specified by a certain form of input and output is called a 

computational problem. The computational problem input and output instance are particular 

instances. The size of the computational problem input is the number of bits necessitated to 

symbolize that input.  

Definition 1.50. A problem that is specified by a particular form of input and the output is 

either ‘Yes’ or ‘No’ is called a decisional problem. 

Example 1.51. Let 𝐺 be a cyclic group with respect to multiplication that is generated by an 

element 𝑔. The decision discrete logarithmic problem (DLP) is: Given (𝑔𝑎, 𝑔𝑏𝑔𝑎𝑏 , 𝑔𝑐) for 

positive integers 𝑎, 𝑏 and 𝑐. The problem is that either 𝑔𝑎𝑏 = 𝑔𝑐 or not. 

Example 1.52. Let 𝐺 be a cyclic group with respect to multiplication that is generated by 𝑔. 

The computational discrete logarithmic problem (DLP) is: Given ℎ, 𝑔 ∈ 𝐺, find an element 



 

20 
 

𝑎 ∈ ℤ+ if there exist such that 𝑔𝑎 = ℎ.  The input instance of the computational problem 

DLP is the group structure 𝐺 and the elements 𝑔, ℎ of the group 𝐺. The output instance of 

computational DLP is the positive integer 𝑎, such that 𝑔𝑎 = ℎ or the symbol of failure ⊥, 

which indicates that the element ℎ does not belong to the group 𝐺. The input size of the DLP 

depends on the order of the group 𝐺 and the method used to represent the group. If the order 

of the group 𝐺 is 𝑛, and assume that 𝑔𝑎 = ℎ for 1 ≤ 𝑎 < 𝑛, then at least log2(𝑛) bit require 

to specify ℎ among 𝑛 possibilities. Thus, the size of the input instance of the DLP is log2(𝑛) 

bits. Since the output instance, 𝑎 of the DLP is uniformly distributed in the ring ℤ𝑛, thus the 

size of the output instance is at least log2(𝑛) bits.  

The upcoming subsection discusses the asymptotic complexity of the algorithm. The 

complexity of the algorithm is the maximum number of bit operations necessities for the 

algorithm to solve the computational problem. The upper bound on the complexity is 

denoted by big oh ‘𝒪’ notation. Whenever the complexity estimate of the algorithm is given 

in terms of 𝒪 then we assume that there are infinite numbers of countable inputs to that 

algorithm.   

 On Complexity Theory 

This section aims to discuss the basic definition of complexity theory briefly. The intention 

of this section is not to describe the implementation guide of the algorithms. However, it 

sketches some crucial notions and results of complexity that are uses later in this thesis. 

More detail of this subsection is presented in the handbooks [15], Buhler and Stevenhagen 

[16], Crandall and Pomerance [17], Bach and Shallit [18], Cormen [19], and Section 2.1 of 

Galbarith [14].  

Definition 1.53. Let 𝑓 and 𝑔 be two functions 𝑓, 𝑔 ∶  ℕ ⟶ ℤ+, then 𝑓 = 𝒪(𝑔) if there exist 

𝑐 ∈ ℝ>0 and a natural number 𝑁, such that  

𝑓(𝑚) ≤ 𝑐𝑔(𝑚).          for all 𝑚 ≥ 𝑁 

Similarly, if 𝑓(𝑚1, … ,𝑚𝑘) and 𝑔(𝑚1, … ,𝑚𝑘) be two functions from ℕ𝑘 to ℝ >0, then 𝑓 =

𝒪(𝑔) if there exist 𝑐 ∈ ℝ>0 and 𝑁1, 𝑁2, … , 𝑁𝑘 ∈ ℕ such that 𝑓(𝑚1, … ,𝑚𝑘)  ≤

𝑐𝑔(𝑚1, … ,𝑚𝑘) with 𝑚𝑖 > 𝑁𝑖. for all 1 ≤ 𝑖 ≤ 𝑘.   

Example 1.54.  4𝑚3 + 10𝑛𝑛 + 5𝑛 + 10 = 𝒪(𝑚3), cos(𝑚) + 𝑚 = 𝒪(𝑚), 2𝑚 +𝑚1000 =

𝒪(2𝑚) and log𝑛(𝑚) = 𝒪(log(𝑚)).  

Definition 1.55. Let 𝑓 and 𝑔 be two functions 𝑓, 𝑔 ∶  ℕ ⟶ ℤ+, then 𝑓 =o(𝑔) if 
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lim
𝑚→∞

𝑓(𝑚)

𝑔(𝑚)
= 0. 

The function can be written as; 𝑓 = �̃�(𝑔) if there exist 𝑛 ∈ ℕ such that 𝑓(𝑚) =

𝒪(𝑔(𝑚) log(𝑔(𝑚))𝑛). The function 𝑓 = Ω(𝑔) if 𝑔 = 𝒪(𝑓) and 𝑓 = Θ(𝑔) if 𝑓 = 𝒪(𝑔) and 

𝑔 = 𝒪(𝑓). 

Definition 1.56.  Let 𝐴 be an algorithm and 𝑡(𝑚) be the upper bound of the running time of 

the algorithm 𝐴 to solve any problem of size 𝑚 bits.  

1. An Algorithm 𝐴 is said to be polynomial-time if there exist a positive a non-negative 

integer 𝑘 such that 𝑡(𝑚) = 𝒪(𝑚𝑘). 

2. An Algorithm 𝐴 is said to be super polynomial-time if for all 𝑐 ∈ ℝ >1 if the upper 

bound  𝑡(𝑚) = Ω(𝑚𝑐). 

3. An Algorithm 𝐴 is said to be exponential-time, if there exists a constant 𝑐 greater 

than 1, such that 𝑡(𝑚) =O(𝑐𝑚). 

4. An Algorithm 𝐴 is said to be super polynomial-time if for all 𝑐 ∈ ℝ>1 the upper 

bound  𝑡(𝑚) = Ω(𝑚𝑐). 

The above definition is for uniform complexity, as all the problems instances are solving 

through a single algorithm 𝐴.  In non-uniform complexity, for each positive integer 𝑚 and 

input ℎ(𝑚) of polynomial-size, if 𝑥 is a string of m-bits instance of the computational 

problem, then the algorithm 𝐴 solves 𝐴(𝑥, ℎ(𝑚)) instance.  
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Chapter 2  

2 Leveled Homomorphic Encryption Scheme Based on 

Finite Field Isomorphism Problem 
 

 Introduction 

The notion of a fully homomorphic encryption scheme was introduced by Rivest, Adlamen, 

and Dertuozous, after the invention of RSA [20]. The RSA encryption scheme satisfying 

homomorphic property with respect to multiplication. This property of the RAS scheme was 

innate. However, it led Rivest et al. to suggest an open problem. In 2009, Gentry proposed a 

solution to the Rivest et al. problem after thirty years and constructed a fully homomorphic 

encryption scheme [21]. The structure of the Gentry scheme is based on the ideal lattice, and 

their security strength hinges on the hard problems in the lattice.  The key feature of the 

Gentry method is bootstrapping, which provides access to boost the noise level in ciphertext 

without the knowledge of the secret key. Afterward, various construction schemes are 

followed in order to improve the strength of the fully homomorphic encryption scheme. 

Vaikuntanathan and Barkerski proposed a fully homomorphic encryption scheme based on 

learning with error problems [22]. The security capability of the suggested scheme is based 

on a short vector problem. Subsequently, this scheme was further improved by 

Vaikuntanathan et al. utilizing the technique of modulo switching, which consequently 

reduced the noise accumulation [23]. In the improved LWE scheme, modulus switching is 

applied to the multiplicative level, for the prevention of exponential noise growth. Afterward, 

Barkerski introduced a novel technique for noise management, which was then applied to the 

LWE scheme [24].  Then Dijkt et al. present another fully homomorphic encryption scheme 

based on the hardness of Integer Approximate-GCD problems [25]. The proposed work was 

then followed by Coron et al. and reduced the size of their public key [26]. In [27] another 

fully homographic encryption scheme was introduced by Tomer, Lopez-Alt, and 

Vaikuntanathan, which is based on the NTRU encryption scheme. The NTRU encryption 

scheme was presented earlier by Steinfeld and Stehle [28]. The presented scheme is for multi-

user and is capable of proceeding homomorphically for the different users using different 

keys. The noise growth is mitigated in the scheme through the re-linearization technique 

presented in [22]. In 2018, Dorö𝑧 et al. introduced the finite field isomorphism problems and 

proposed a symmetric and asymmetric fully homomorphic encryption scheme based on the 
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finite field isomorphism problem [29].  Their security strength is based on the computational 

problem over the polynomial field. 

This chapter introduces a somewhat homomorphic encryption scheme based on a finite field 

isomorphism problem over matrix algebra. It is the extension of the homomorphic encryption 

scheme given in [29].  Initially, the scheme converts a message into a short element of the 

field 𝔽𝑝[𝑀], and then add 𝑞 time an element of the field 𝔽𝑝[𝑀] as a noise for semantic 

security. Then transforms it to the field 𝔽𝑝[𝑁] through isomorphism and get a ciphered text. 

This procedure builds a symmetric, fully homomorphic encryption scheme. The receiver with 

knowledge of 𝑞 and 𝑓(𝑥) can easily retrieve the plaintext by using inverse isomorphic map 

modulo 𝑝. The output will be correct if the absolute value of the entries of the plain matrix 

does not exceed up to 𝑝.  

  Finite Field Isomorphism  

Let 𝑝 be a prime number and 𝔽𝑝 be a finite field of order 𝑝.  Let 𝑓(𝑥) be a degree 𝑛 monic 

irreducible polynomial in a polynomial ring 𝔽𝑝[𝑥], then the companion matrix 𝑀 of monic 

irreducible polynomials 𝑓(𝑥) generates a finite field of the order 𝑝𝑛, which is denoted by 

𝔽𝑝[𝑀]. Any two finite fields 𝔽𝑝[𝑀] and 𝔽𝑝[𝑁] of order 𝑝𝑛 generated by the companion 

matrices 𝑀 and 𝑁 of degree 𝑛 monic irreducible polynomials are isomorphic. It is easy to 

construct the isomorphism and its inverse isomorphism map between 𝔽𝑝[𝑀] and 𝔽𝑝[𝑁], if 

one knows the monic irreducible polynomials 𝑓(𝑥) and 𝑔(𝑥).  

 Finite Field Isomorphism Problem  

The observation given in [29] states that the isomorphism between any two polynomial fields 

does not preserve Archimedes' property of length. It means, whenever 𝑓(𝑥) and 𝑔(𝑥) are 

distinct irreducible polynomials, then the images of the elements having small lengths are 

uniformly distributed in the other field. This key feature yields finite field isomorphism 

problems. 

Let 𝑢 be a positive integer. Let 𝔽𝑝[𝑀] and 𝔽𝑝[𝑁] be finite fields. Let 𝛷: 𝔽𝑝[𝑀] → 𝔽𝑝[𝑁] be 

the isomorphic map between them. Let Δγ be the subset of 𝔽𝑝[𝑀], such that 𝛥𝛾 =

{𝐿 ∈  𝔽𝑝[𝑀]  |  ‖𝐿‖ ≤ 𝛾 }. Let 𝐿𝑥1 , 𝐿𝑥2 , … , 𝐿𝑥𝑢 be the elements of the set 𝛥𝛾, and 𝐿𝑦1 =

𝛷(𝐿𝑥1), 𝐿𝑦2 = 𝛷(𝐿𝑥1), … , 𝐿𝑦𝑢 = 𝛷(𝐿𝑥𝑢) be the corresponding images in  𝔽p[N]. 

1) Computational problem. The computational problem state that given: 

𝔽𝑝[𝑁], 𝐿𝑦1 , 𝐿𝑦2 , … , 𝐿𝑦𝑢 recover 𝑓(𝑥) or the preimages 𝐿𝑥1 , 𝐿𝑥2 , … , 𝐿𝑥𝑢. 
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2) Decisional problem. The decisional problem state that given: 𝔽𝑝[𝑁], 𝐿𝑦1 ,  𝐿𝑦2 , … , 𝐿𝑦𝑢 ,

𝐵𝑦1 , 𝐵𝑦2 , such that the pre-image of one of the 𝐵𝑦1or 𝐵𝑦2 belong to the subset Δ𝛾. 

Identify the image with preimage sampled from Δ𝛾 with probability greater than 1
2
.   

It can be seen that the decision problem depends on the computational problem; one can 

easily solve the decision problem if one solves the computational problem. The decision 

problem is arbitrarily hard for the field having elements in the form of polynomials. In the 

polynomial isomorphic fields, the representations of the elements are always the same. 

However, these are generating through different elements. In this case, we observed that the 

matrix elements in both fields are almost distinct and have different representations. Besides, 

its length does not depend on the coefficients. Accordingly, finite field isomorphism 

problems in the case of the finite field generated by the companion matrix are much harder 

than the case of finite fields having elements in the form of polynomials.  

 Basic Definitions and Notations 

This section introduces some basic definitions and notations that will be used in the 

upcoming sections, and some are already used in the previous section.  

Definition 2.1.  Let 𝑓(𝑥) be a monic irreducible polynomial of degree 𝑛 over the field 𝔽𝑝. 

Let 𝑀  be the companion matrix of the irreducible polynomials 𝑓(𝑥). Then the field 𝔽𝑝[𝑀] 

generated by 𝑀 is always isomorphic to 𝔽𝑝𝑛. 

                                       𝔽𝑝[𝑀] = {0𝐼, 𝐼,𝑀,𝑀2, … ,𝑀𝑝𝑛−2} ≅ 𝔽𝑝𝑛                          (2.1) 

Where 𝑀 is the 𝑛 × 𝑛 matrix, which satisfies the equation 𝑓(𝑀) = 0. The following example 

demonstrates the idea in more detail.   

Example 2.2. Let 𝑓(𝑥) = 𝑥2 + 2𝑥 + 2 and 𝑔(𝑥) = 𝑥2 + 𝑥 + 2. Since the polynomial  𝑓 and 

𝑔 are the primitive irreducible polynomials in the principal ideal domain ℤ3[𝑥]. Therefore, 

the companion matrices of 𝑓 and 𝑔 generate two isomorphic fields of order 32. The field 

generated by the companion matrix of the primitive irreducible 𝑓(𝑥) = 𝑥2 + 2𝑥 + 2 is given 

as follows; 

𝑀0 = (
0 0
0 0

)         𝑀 = (
0 1
1 1

)              𝑀2 = (
1 1
1 2

)          

𝑀3 = (
1 2
2 0

)         𝑀4 = (
2 0
0 2

)            𝑀5 = (
0 2
2 2

)     

𝑀6 = (
2 2
2 1

)         𝑀7 = (
2 1
1 0

)            𝑀8 = (
1 0
0 1

) 
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Similarly, the companion matrix of the primitive irreducible polynomial 𝑔(𝑥) = 𝑥2 + 𝑥 + 2 

generate a field of the order 32, that is given as follows; 

𝑁0 = (
0 0
0 0

)         𝑁 = (0 1
1 2

)              𝑁2 = (1 2
2 2

)          

𝑁3 = (
2 2
2 0

)        𝑁4 = (2 0
0 2

)            𝑁5 = (0 2
2 1

)     

𝑁6 = (
2 1
1 1

)        𝑁7 = (1 1
1 0

)            𝑁8 = (1 0
0 1

) 

To construct the isomorphism between the fields 𝔽3[𝑀] and 𝔽3[𝑁], find the root of 𝑓(𝑥) in 

the field 𝔽3[𝑁]. Since 𝑁5 satisfies the equation 𝑓(𝑥) = 0; that is (𝑁5)2 + 2𝑁5 + 2𝐼 ≡

0 𝑚𝑜𝑑 𝑝, where 𝐼 is the 2 × 2 identity matrix. Thus, the map 𝜙: 𝔽3[𝑀] ⟶ 𝔽3[𝑁] defined as 

𝜙(𝑀) = 𝑁5 is an isomorphism.       

Proposition 2.3. Let 𝔽𝑝[𝑀]  be the field generated by the companion matrix 𝑀 of primitive 

irreducible polynomial 𝑓(𝑥) in 𝔽𝑝[𝑥]. Then for all 𝑎 ∈ 𝔽𝑝 the element 𝑎𝐼 ∈ 𝔽𝑝[𝑀], where 𝐼 

is the identity matrix.   

Proof. Since 𝔽𝑝[𝑀]  is a field. Therefore, the multiplicative identity 𝐼 ∈ 𝔽𝑝[𝑀], which 

implies 𝑎𝐼 = 𝐼 + 𝐼 + ⋯+ 𝐼⏟        
𝑎 𝑡𝑖𝑚𝑒

∈ 𝔽𝑝[𝑀]. 

Proposition 2.4. Let 𝔽𝑝[𝑀] and 𝔽𝑝[𝑁] be the isomorphic matrix fields generated by the 

companion matrices 𝑀 and 𝑁 of the degree 𝑛 irreducible 𝑓(𝑥) and 𝑔(𝑥), respectively. Let 

𝜙: 𝔽𝑝[𝑀] ⟶ 𝔽𝑝[𝑁] be the isomorphic map. Then 𝜙(𝑎𝐼) = 𝑎𝐼 for all 𝑎𝐼 ∈ 𝔽𝑝[𝑀]. 

Proof. Given that the map ϕ is an isomorphic map. Thus, 𝜙(𝐼) = 𝐼 for  𝐼 ∈ 𝔽𝑝[𝑀], because 

the map 𝜙 is one-one. Let 𝑎𝐼 ∈ 𝔽𝑝[𝑀] then 

𝜙(𝑎𝐼) = 𝜙 (𝐼 + 𝐼 + ⋯+ 𝐼⏟        
𝑎 𝑡𝑖𝑚𝑒

) = 𝜙(𝐼) + 𝜙(𝐼) + ⋯+ 𝜙(𝐼)⏟              
𝑎 𝑡𝑖𝑚𝑒

 

=     𝐼 + 𝐼 + ⋯+ 𝐼⏟        = 𝑎𝐼
𝑎 𝑡𝑖𝑚𝑒

 

Since 𝑎 is an arbitrary element of the field 𝔽p, therefore 𝜙(𝑎𝐼) = 𝑎𝐼 for all 𝑎𝐼 ∈ 𝔽𝑝[𝑀]. 

Let 𝑀 and 𝑁 be the companion matrices over 𝔽𝑝 of the irreducible polynomials 𝑓(𝑥) and 

𝑔(𝑥), respectively. Let 𝔽𝑝[𝑀] and  𝔽𝑝[𝑁] be the two copies of the fields of order 𝑝𝑛, we will 

denote by 𝕏 the field 𝔽𝑝[𝑀] and by 𝕐 the field 𝔽𝑝[𝑁] throughout this chapter. Similarly, we 

will denote the element of 𝕏 by capital 𝐿 letters with index 𝑥 for instance 𝐿𝑥, and their 

corresponding image in 𝕐 by the same capital letters with index 𝑦, i.e., 𝐿𝑦.  
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Definition 2.5. Let 𝐿𝑥 ∈ 𝕏 be a matrix, then the element 𝐿𝑥 is said to be a 𝛾 −bouned matrix, 

if the coordinates of that matrix modulo 𝑝 reduced to the interval [-𝛾
2
,  𝛾
2
).  

 Definition 2.6. The length of the matrix is defined as follows; 

                                                                 ‖𝐿‖ = max
1≤𝑖≤𝑛
1≤𝑗≤𝑛

 |𝑙𝑖𝑗|.                                  (2.3) 

Definition 2.7. For a positive integer 𝛾. Define a subset 𝒳𝛾 of 𝕏, such that  

𝒳𝛾 = {𝐿 ∈   𝕏 | ‖𝐿‖ ≤ 𝛾}                            (2.2) 

Definition 2.8. The class of those matrices whose coordinates belong to the set {−1, 0, 1}, are 

called trinary matrices.   

Proposition 2.9. If 𝑀 be a 𝑞 ×  𝑞 matrix over a field 𝔽𝑝, then the set 𝔽𝑝[𝑀] consist of all 

elements generated by M from a field over 𝔽𝑝 if and only if the characteristic polynomial 

𝑓𝑀(𝑥) of 𝑀 is primitive irreducible, i.e., 𝑀 is a 𝑝𝑞 − 1 root of unity.  

Proof. Let 𝒬𝑞(𝑥) be the 𝑞𝑡ℎ cyclothymic polynomial defined as follows 

                                                          𝒬𝑞(𝑥) = ∏ (𝑥 − 𝜁𝑠)𝑞
𝑠=1                                      (2.4) 

Where 𝑞 and 𝑠 are relatively prime positive integers. Since for a positive divisor 𝑚 of 𝑞, 

every 𝑞𝑡ℎ root of unity 𝑥𝑞 − 1 = 0 is also 𝑚𝑡ℎ the root of unity. Therefore, it follows from 

the equation (2.4) that 

                                                          𝑥𝑞 − 1 = ∏ 𝒬𝑑(𝑥)𝑑|𝑞                                          (2.5) 

and  

                                                          𝒬𝑞(𝑥) =
𝑥𝑞−1

∏ 𝒬𝑑(𝑥)𝑑|𝑞
𝑑<𝑞

                                             (2.6) 

From equation (2.6), it follows that 𝒬𝑛(𝑥) is a monic polynomial of degree 𝜙(𝑛) with an 

integer coefficient. (It is important to note that the cyclothymic polynomials are a factor over 

a finite field, however irreducible over the rational field). If 𝑛 is prime power, then from the 

equation (2.6), it follows that 

                                                                  𝒬𝑞(𝑥) =
𝑥𝑞−1

𝑥
𝑞
𝑝−1

                                           (2.7) 
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Every element of the field 𝔽𝑞 is the root of 𝑥(𝑥𝑞−1 − 1), and the polynomial 𝑥𝑞 − 𝑥 split in 

the field 𝔽𝑞 and their elements are 𝑞 − 1𝑡ℎ the root of unity. The root of monic irreducible 

polynomial 𝑓(𝑥) is 𝑞 − 1𝑡ℎ the root of unity if and only it factors the cyclothymic 

polynomial 𝒬𝑞(𝑥), such polynomials are also called a primitive-irreducible polynomial. It 

follows that if 𝑓(𝑥) be a monic irreducible polynomial that factor the cyclothymic 

polynomial, then the companion matrix of 𝑓(𝑥) generates a finite field of the order 𝑝𝑛 

isomorphic to 𝔽𝑝𝑛. 

Remark. If a monic irreducible polynomial ℎ(𝑥) of degree 𝑛 does not factor the cyclothymic 

polynomial 𝒬𝑞(𝑥), then the cyclic group generated by  𝐵 + 𝐼 from a field isomorphic to the 

𝔽𝑝𝑛, where 𝐵 is the companion matrix. 

Lemma 2.10. For a large natural number 𝑛. Given any fixed irreducible polynomial 𝑔(𝑥) in 

the polynomial ring 𝔽𝑝[𝑥]. Let 𝑀 be companion matrix of 𝑔(𝑥), then for any 𝑛 × 𝑛 matrix 

𝐶 ∈ 𝔽𝑝[𝑀], there exists a unique companion matrix 𝑁 of degree 𝑛 monic irreducible 

polynomial 𝑓(𝑥) with probability approaching 1, such that the map 𝑁 → 𝐶 induced 

isomorphism between the fields 𝔽𝑝[𝑀]  and  𝔽𝑝[𝑁]. 

Proof. Let 𝐿 ∈ 𝔽𝑝[𝑁]   be a root of the monic irreducible polynomial 𝑔(𝑥) over the field 𝔽𝑝. 

We have to show that 𝐿𝑝𝑖 for 1 ≤ 𝑖 ≤ 𝑛 − 1 is also a root of the polynomial 𝑔(𝑥). Write 

𝑔(𝑥) = 𝑔𝑛𝑥
𝑛 + 𝑔𝑛−1𝑥

𝑛−1 +⋯+ 𝑔1𝑥 + 𝑔0 with 𝑔𝑖 ∈ 𝔽𝑝, for all 𝑖 (0 ≤ 𝑖 ≤ 𝑛). Since 𝑝 is 

the prime characteristic of the field 𝔽𝑝[𝑀],   therefore it follows that 

          𝑔 (𝐿𝑝𝑖) = 𝑔𝑛(𝐿𝑝
𝑖
)𝑛 + 𝑔𝑛−1(𝐿

𝑝𝑖)𝑛−1 +⋯+ 𝑔1𝐿
𝑝𝑖 + 𝑔0                       (2.8) 

                           = (𝑔𝑛𝐿
𝑛 + 𝑔𝑛−1𝐿

𝑛−1 +⋯+ 𝑔1𝐿 + 𝑔0)
𝑝𝑖 = 0                               (2.9) 

Therefore, the elements 𝐿, 𝐿𝑝 , … , 𝐿𝑝𝑛−1 are also the root of 𝑔(𝑥) in 𝔽𝑝[𝑁].  Implies that the 

irreducible 𝑔(𝑥) polynomial has 𝑛 distinct roots. Thus it split entirely in the field  𝔽𝑝[𝑀]. 

Moreover, the sets of the roots of any number of the same degree irreducible polynomials are 

disjoint. Since the total number of monic irreducible polynomials are approximately equal to 
𝑞𝑛

𝑛
 see [page 82-84 Corollary 3.21 and Theorem 3.25]. Therefore, 𝑛 × 𝑞𝑛

𝑛
  denote the total 

amount of isomorphism from 𝔽𝑝[𝑀] to 𝔽𝑝[𝑁], where 𝑁 varies over the companion matrices 

of all distinct monic irreducible polynomials.  Consequently, for any 𝐶 ∈ 𝔽𝑝[𝑀] there exists 

a unique companion matrix 𝑁 of degree 𝑛 monic irreducible polynomial 𝑓(𝑥) with 
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probability approaching 1, such that the map 𝑁 → 𝐶 induced isomorphism between the fields 

𝔽𝑝[𝑀]  and  𝔽𝑝[𝑁]. 

Lemma 2.10. Let 𝑀 be 𝑛 × 𝑛 companion matrix of degree 𝑛 monic irreducible polynomial 

𝑓(𝑥) and 𝔽𝑝[𝑀] be a field generated by 𝑀. Let 𝒳𝛾 be 𝛾-bounded distribution over the field 

𝔽𝑝[𝑀] and let 𝐿1, 𝐿2, . . . , 𝐿𝑚 be the sampled from 𝒳𝛾 Then the product ∏ 𝐿𝑖
𝑚
𝑖=1  is (𝑛𝛾)𝑚-

bounded. 

 Finding Finite field Isomorphism  

 This section illustrates how to find an explicit isomorphism between two isomorphic fields 𝕏 

and 𝕐.  To find isomorphism, one required a set consist of four tuples ( 𝑀, 𝑁 𝑖, 𝑗). Where 𝑀 

and 𝑁 are the companion matrices corresponding to monic irreducible polynomial 𝑓(𝑥) and 

𝑔(𝑥). The element 𝑖 denotes a positive integer which satisfies the equation  𝑓(𝑁𝑖) = 0. The 

algorithm for finding an isomorphic map between two isomorphic fields is shown in Tab.2.  

 

 Homomorphic Encryption. 

Definition 2.11.  (𝒞 Homomorphic Encryption Scheme [21]).  Let 𝜅 be a security parameter, 

and {𝒞𝜅}𝑘∈ℕ be a sequence of functions. An encryption scheme ℰ is said to be 𝒞-

homomorphic encryption scheme if for any function 𝜁 ∈ 𝒞 and the corresponding inputs 

𝜇1, 𝜇2, … , 𝜇𝑗 ∈ {0,1} ( 𝑓𝑜𝑟 𝑗 = 𝑗(𝜅)), it follows that 

                𝑃𝑅 [ℰ. 𝐷𝑒𝑐sk (ℰ. 𝐸𝑣𝑙𝑒𝑣𝑘(𝜁, 𝑐1, 𝑐2, … , 𝑐𝑗 , )) ≠ 𝜁(𝜇1, 𝜇2, … , 𝜇𝑗)] = neql(𝜅)      (2.10) 

 where    

 𝑐𝑖 ← ℰ. Encpk(𝜇𝑖) and (pk, sk, evk) ← ℰ. KeyGen(1𝜅)               (2.11)  

Definition 2.12. (Fully Homomorphic Encryption Scheme) A scheme ℰ is said to be a 

somewhat homomorphic encryption scheme if it holds the following axioms: 

Table 2. Algorithm 2.  

Find Finite field Isomorphism 
Input: Two degrees 𝒏 primitive irreducible polynomials 𝒇(𝒙) and 𝒈(𝒙) over modulo 𝒑. 
1. Find the companion matrices 𝑴 and 𝑵 of 𝒇(𝒙) and 𝒈(𝒙). 
2. Find a positive integer 𝒊 and 𝒋 such that 𝒇(𝑵𝒊) = 𝟎 and (𝑴𝒊)𝒋 = 𝑴. 
3. Defined a map 𝚽:𝕏 → 𝕐 by  𝚽(𝑴) = 𝐍𝒊.  
4. Defined a map 𝚽−𝟏: 𝕐 → 𝕏 by  𝚽−𝟏(𝑵) = 𝑴𝒋. 
Output (𝑴,𝑵,𝚽,𝚽−𝟏)  
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i. Correctness: The scheme ℰ is 𝒞 homomorphic for all the functions in class 𝒞. 

ii. Compactness: The computational complexity of the encryption scheme ℰ is a 

polynomial-time over the parameter 𝜅. 

Definition. 2.13 (Leveled Homomorphic Encryption Scheme) Let 𝒞𝒟 be a class of the 

circuits with dept 𝒟. Then the family of the schemes { 𝒞𝒟: 𝒟 ∈ ℕ}  is said to be a fully 

homomorphic scheme if it holds the following axioms: 

i. Correctness: The scheme ℰ𝒟 is 𝒞𝒟 homomorphic for all the functions in the class 𝒞. 

ii. Compactness: The computational complexity of the encryption scheme ℰ𝒟 is a 

polynomial-time over the parameter 𝜅. 

 Construction of Fully Homomorphic Encryption Scheme 

This section presents the proposed somewhat homomorphic encryption scheme based on a 

finite field isomorphism problem over matrix algebra. Initially, it presents the detailed 

procedure of the construction scheme and then demonstrates that the proposed scheme is 

capable of evaluating the dept bounds of the circuit homomorphically. 

2.7.1  Symmetric Key Homomorphic Encryption Scheme 

The symmetric key version of the homomorphic encryption scheme uses the following four 

schemes: 

I. SK-FHES.KeyGen {1𝜅} 

     Input: 𝜅 as a security parameter. 

i. Generate a set 𝐸 = {𝑓(𝑥), 𝑔(𝑥), 𝑝, 𝛾, 𝑞𝐼}  

ii. Construct finite field isomorphism using Algorithm 1.  

       Output: K= { 𝑀,𝑁,Φ,Φ−1, 𝛾, 𝑞𝐼} 

II. SK-FHES.Enc { 𝑀,Φ, 𝛾 } 

  Input: {𝐾,𝑚} 

i. Encode a plaintext 𝑚 in a binary matrix 𝑀𝑥 of a field 𝕏  by some method. 

ii. Select any matrix 𝑅𝑥 sampled from 𝒳𝛾. 

iii. Compute 𝐶𝑥=𝑞𝐼𝑅𝑥+𝑀𝑥  𝑚𝑜𝑑 𝑝. 

iv. Then transform the matrix 𝐶𝑥 from the field 𝕏  into the field 𝕐 through the 

isomorphic map Φ and get the output 𝐶𝑦. 

            Output: 𝐶𝑦 as a ciphertext.   

III. SK-FHES.Dec { 𝑁,Φ−1, 𝑞 } 

Input: {𝐾, 𝐶𝑦} 
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i. Compute 𝐶𝑥 using the inverse isomorphic map Φ−1. 

ii. Then compute the plaintext follows modulo 𝑞 operation i.e., 𝑀 = 𝐶𝑥𝑚𝑜𝑑 𝑞. 

      Output: {𝑀𝑥}  

IV. SK-FHES.Evel { 𝒞, 𝐶𝑦1 , 𝐶𝑦1 , … , 𝐶𝑦𝑙  } 

The circuit 𝒞 is consists of two arithmetic operations matrix addition and matrix 

multiplication modulo 𝑝. Since the scheme performs homomorphic multiplication and 

homomorphic addition. Therefore, the following steps homomorphically evaluate the circuit 

𝒞. 

i. Homomorphic Addition Evaluation: The homomorphic property of the addition gate + 

is evaluated for the inputs 𝐶𝑦1 , 𝐶𝑦2 , … , 𝐶𝑦𝑙, where 𝐶𝑦𝑖 = 𝑞𝑅𝑥𝑖+𝑀𝑥𝑖  𝑚𝑜𝑑 𝑝.  

                                                              𝐶𝑦
𝑎𝑑𝑑 =∑𝐶𝑦𝑖𝑚𝑜𝑑 𝑝

𝑙

𝑖=1

                                           (2.11) 

We have to show that the decryption of 𝐶𝑦𝑎𝑑𝑑 demonstrate the summation of the 

plaintext 𝑀𝑥𝑎𝑑𝑑.   

                                                       𝐶𝑥
𝑎𝑑𝑑 = 𝑞∑𝑅𝑥𝑖 +∑𝑀𝑥𝑖

𝑙

𝑖=1

𝑙

𝑖=1

                                        (2.12) 

where 𝑀𝑥𝑖 is the plaintext corresponding to the ciphertext 𝐶𝑦𝑖.  If 𝑙 < 𝑞 and 𝑙𝑞𝛾 < 𝑝, 

then the summation of the ciphertext 𝐶𝑦𝑎𝑑𝑑 will retrieve the 𝑀𝑥𝑎𝑑𝑑 = ∑ 𝑀𝑥𝑖
𝑙
𝑖=1 , which 

is the desired.  

ii. Homomorphic Multiplication Evaluation: The homomorphic property of 

multiplication can be evaluated by multiplying the output ciphertext 

                                                               𝐶𝑦 = 𝐶𝑦1 × 𝐶𝑦2                                            (2.13) 

       The decryption of the product of the message can be written as follows; 

                                    𝐶𝑥 = 𝑞2𝑅𝑥1𝑅𝑥1 + 𝑞𝑅𝑥1𝑀𝑥2+ 𝑞𝑅𝑥2𝑀𝑥1 +𝑀𝑥1𝑀𝑥2  𝑚𝑜𝑑 𝑝            (2.14) 

                                                   𝑀𝑥 = 𝑀𝑥1𝑀𝑥2 = 𝐶𝑥 𝑚𝑜𝑑 𝑞                                            (2.15) 

Where 𝑀𝑥1 and 𝑀𝑥2 are the plaintext corresponding to the ciphertext 𝐶𝑦1 and 𝐶𝑦2.  If 𝑙 < 𝑞 

and 3(𝑞𝑛𝛾)2 < 𝑝, then the multiplication of the ciphertext 𝐶𝑦𝑚𝑢𝑙𝑡 will be decrypted to the 

plaintext 𝑀𝑥𝑚𝑢𝑙𝑡 = 𝑀𝑥1𝑀𝑥2, which is the desired output.  

Example 2.14. This example presents the idea of the above suggested symmetric 

homomorphic encryption scheme in more detail. Let 𝑝 = 251, 𝛾 = 16, 𝑓(𝑥) = 𝑥2 + 𝑥 + 19 



 

31 
 

and 𝑔(𝑥) = 𝑥2 + 3𝑥 + 19 be the secret keys. The companion matrices 𝑀 and 𝑁 of the 

polynomials 𝑓(𝑥) and 𝑔(𝑥) is given as follows; 

𝑀 = (
0 232
1 250

) and 𝑁 = (0 232
1 248

) 

Encryption.  Let 𝑀𝑥 = (
14 4
13 1

) be the original message. To make sure the encryption 

procedure will work. The sender chooses     

𝑅𝑥 = (
13 4
13 0

) ∈ 𝒳16  and  𝑃𝑥 = (
15 0
0 15

) ∈ 𝒳16  

𝑀𝑦 = 𝜙((
14 4
13 1

)) = (
44 207
108 222

) 

𝑅𝑦 = 𝜙((
13 4
13 0

)) = (
43 207
108 221

) 

𝑃𝑦 = 𝜙 ((
15 0
0 15

)) = (
15 0
0 15

) 

𝐶𝑦 = (
43 207
108 221

) (
15 0
0 15

) + (
44 207
108 222

)𝑚𝑜𝑑 251 

𝐶𝑦 = (
187 49
222 23

) 

The required ciphertext is 𝐶𝑦. The sender sent the ciphertext 𝐶𝑦 to the receiver. 

Decryption. Upon receiving the sender ciphertext, the receiver decrypts the message using 

the decryption procedure. Initially, they apply the inverse isomorphism map 𝜙−1 on the 

ciphertext and then compute mode 15 operations. 

𝐶𝑥 = 𝜙
−1 ((

187 49
222 23

)) = (
209 64
208 1

)  

 𝑀𝑥 = (
209 64
208 1

)  𝑚𝑜𝑑 15 = (
14 4
13 1

) 

2.7.2  Asymmetric Key Homomorphic Encryption Scheme 

The asymmetric version of the proposed homomorphic encryption scheme is mostly similar 

to the symmetric homomorphic encryption scheme. However, in this scheme, the subset 

problem is used to convert the scheme into an asymmetric version. The scheme consists of 

the following techniques. 

I. PK-FHES.KeyGen {1𝜅} 

     Input: 𝜅 as a security parameter. 

i. Select two integers 𝐽 and 𝑗 such that (𝐽
𝑗
) > 2𝜅. 
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ii. Choose random elements {𝐿𝑥1 , 𝐿𝑥2 , … , 𝐿𝑥𝑗} from 𝛽 −bounded distribution and 

compute 𝐻𝑥 = {𝐻𝑥1 , 𝐻𝑥2 , … , 𝐻𝑥𝑗} where 𝐻𝑥𝑖 = 𝑞𝐼𝐿𝑥𝑖 for some positive integer 𝑞 

greater than 𝛾 and 1 ≤ 𝑖 ≤ 𝑗.  Select a set 𝒮𝑥 consist of random elements of  𝛾-

bounded distribution. Then transform both the set 𝐻𝑥 and 𝑆𝑥 into the field 𝕐 using 

the isomorphic map Φ. 

         Output: Pk={𝐻𝑦 , 𝑆𝑦}. Sk= { Φ−1, 𝑞𝐼} 

II. PK-FHES.Enc 

      Input: {Pk, 𝑚} 

i. Encode a plaintext 𝑚 in a binary matrix 𝑀𝑦 and convert it into an element of a field 

𝕐  by some method. 

ii. Select random elements from the set 𝐻𝑦 and embed the message in a random 

element of 𝑆𝑦. Then sum the selected elements and add them with the message 

matrix 𝑀𝑦, and compute the ciphertext.  

                                                    𝐶𝑦 = ∑ 𝐻𝑦𝑖 +𝑀𝑦
𝑟𝑎𝑛𝑑𝑜𝑚(𝑖)

                                    (2.16)  

          Output: 𝐶𝑦 as a ciphertext. 

III. PK-FHES.Dec  

Input: {Sk, 𝐶𝑦} 

i. Compute 𝐶𝑥 using the inverse isomorphic map. Φ−1(𝐶𝑦). 

ii. Then compute 𝑀𝑥 using modulo 𝑞 operation i.e., 𝑀𝑥 = 𝑞∑ 𝐿𝑥𝑖 +𝑟𝑎𝑛𝑑𝑜𝑚(𝑖)

𝑀𝑥𝑚𝑜𝑑 𝑞. 

iii. Compute the plaintext 𝑀𝑦 = Φ(𝑀𝑥) 

            Output: Plaintext 𝑀𝑦.  

Example 2.15. This example elaborates the concept of the above suggested asymmetric 

homomorphic encryption scheme in detail. Let 𝑝 = 251, 𝛾 = 20, 𝑓(𝑥) = 𝑥2 + 𝑥 + 19 and 

𝑔(𝑥) = 𝑥2 + 3𝑥 + 19 be the secret keys. The companion matrices 𝑀 and 𝑁 of the 

polynomials 𝑓(𝑥) and 𝑔(𝑥) is given as follows; 

𝑀 = (
0 232
1 250

) and 𝑁 = (0 232
1 248

) 

Key generation. Initially, the user A uses the companion matrix 𝑀 and 𝑁 and generate the 

public and the private key. They choose random elements {𝐻𝑥1 , 𝐻𝑥2 , 𝐻𝑥3 , 𝐻𝑥4} from the set 

𝒳20. Let  
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𝐿𝑥1 = (
7 0
0 7

)      𝐿𝑥2 = (
14 4
13 1

)  𝐿𝑥3 = (
16 4
13 3

)   𝐿𝑥4 = (
15 4
13 2

) 

Compute 𝐻𝑥𝑖 

𝐻𝑥𝑖 = 2𝐼 × 𝐿𝑥𝑖  for 1 ≤ 𝑖 ≤ 4 

𝐻𝑥1 = (
14 0
0 14

) 𝐻𝑥2 = (
24 8
26 2

)𝐻𝑥3 = (
32 8
26 6

) 𝐻𝑥4 = (
30 8
26 4

) 

𝐻𝑦1 = 𝜙 ((
14 0
0 14

)) = (
14 0
0 14

) 

𝐻𝑦2 = 𝜙 ((
24 8
26 2

)) = (
88 163
216 193

) 

𝐻𝑦3 = 𝜙 ((
32 8
26 6

)) = (
92 163
216 197

) 

𝐻𝑦4 = 𝜙 ((
30 8
26 4

)) = (
90 163
216 195

) 

Then the user A publish the elements {𝐻𝑦1 , 𝐻𝑦2 , 𝐻𝑦3 , 𝐻𝑦4} and the primitive irreducible 

polynomial 𝑔(𝑥), and keep the integer matrix 2𝐼 and the primitive irreducible polynomial 

secret as a private key.  User B encrypts his/her message using the publish key.  

Encryption.  Let 𝑀 = (
1 0
0 1

) be the plain message, and user B wants to send it to user A 

securely. So, they encrypt the message while using the proposed public key. The encryption 

procedure is given as follows; 

                                                                      𝐶𝑦 = ∑ 𝐻𝑦𝑖 +𝑀𝑦
𝑟𝑎𝑛𝑑𝑜𝑚(𝑖)
1≤𝑖≤4

                                        (2.17) 

Implies  

𝐶𝑦 = (
179 75
181 138

) 

After the encryption procedure, the user B sent the ciphertext 𝐶𝑦 to A. Then the user A 

follows the proposed decryption procedure and gets the original message.  

Decryption. Initially, user A uses his/her private key and applies the inverse isomorphic map 

on the ciphertext. Such as; 

𝐶𝑥 = 𝜙
−1 ((

179 75
181 138

)) = (
59 16
52 17

) 

Then they apply the mod operation over the secret integer. In this case, we choose it 2 to 

obtain the plaintext. 

𝑀𝑥 = (
59 16
52 17

)  𝑚𝑜𝑑 2 = (
1 0
0 1

) 
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Lemma 2.16. Let 𝒳𝛾 be a 𝛾 -bounded distribution with 𝑝 < 2𝑛𝜖 for 𝜖 ∈ (0,1). Then the 

scheme ℰ is homomorphic with circuit depth less than 𝒟 < log(log(𝑝 − 2) − log(log(𝑗𝑞𝛽 +

1)). 

Proof. Let 𝐶𝑦1 and 𝐶𝑦2be the encrypted messages of the original messages 𝑀𝑦1 and 

𝑀𝑦2respectively. Assume that 𝐶𝑥1 and 𝐶𝑥2 are decrypted successfully, if their noise growth 

after multiplication and addition less than 𝑝
2
.  

a) Addition.  Let  

𝐶𝑦 = 𝐶𝑦1 + 𝐶𝑦2 𝑚𝑜𝑑 𝑝 

𝐶𝑥 = 𝑞∑𝐿𝑥𝑖 +𝑀𝑥1𝑚𝑜𝑑 𝑝 +

𝑖

𝑞∑𝐿𝑥𝑖 +𝑀𝑦1 𝑚𝑜𝑑 𝑝

𝑖

 

Implies that the norm of the matrix  

‖𝐶𝑥‖ ≤ 2(𝑞𝑗𝛽 + 1) 

b) Multiplication.  As we evaluate the addition, similarly one can evaluate the 

multiplication. 

𝐶𝑦 = 𝐶𝑦1 × 𝐶𝑦2 

𝐶𝑦 = (∑𝐻𝑦𝑖 +𝑀𝑦1
𝑖

)(∑𝐻𝑦𝑖 +𝑀𝑦1
𝑖

)𝑚𝑜𝑑 𝑝 

𝐶𝑥 = (∑𝑞𝐿𝑥1 +𝑀𝑥1
𝑖

)(∑𝑞𝐿𝑥2 +𝑀𝑥2
𝑖

) 

=∑𝑞𝐿𝑖∑𝑞𝐿𝑥𝑖 +∑𝑞𝐿𝑥𝑖𝑀𝑥2
𝑖

+∑𝑞𝐿𝑥𝑖𝑀𝑥1
𝑖

+𝑀𝑥2
𝑖

𝑀𝑥1
𝑖

 

= 𝑞2∑𝐿𝑥𝑖∑𝐿𝑥𝑖 + 𝑞∑𝐿𝑥𝑖𝑀𝑥2
𝑖

+ 𝑞∑𝐿𝑥𝑖𝑀𝑥1
𝑖

+𝑀𝑥2
𝑖

𝑀𝑥1
𝑖

 

We compute the norm of the matrix 𝐶𝑥, using Lemma 2.10. 

‖𝐶𝑥‖ ≤ 4𝑛(𝑞𝑗𝛽)
2 

c) In order to compute 𝒟 -level homomorphic, one has to calculate the bound of 

‖(𝑞𝐼𝐿𝑥 +𝑀𝑥1)
2𝒟

‖. Since the length of 𝑞𝐼𝐿𝑥 are 𝑞𝛽 and the length of the binary matrix 𝑀𝑥 
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is 1, therefore it must be less or equal to (𝑞𝛽 + 1)𝒟. In this case, we want to reduce this 

noise to less than 𝑝
2
 accordingly, it follows that 

(𝑗𝑞𝛽 + 1)2
𝒟
<
𝑝

2
 

2𝒟log ((𝑗𝑞𝛽 + 1)) < log(𝑝 − 2) 

𝒟 + log(log(𝑗𝑞𝛽 + 1)) < log (log(𝑝 − 2) 

𝒟 < log(log(𝑝 − 2) − log(log(𝑗𝑞𝛽 + 1)) 

One can simplify the above inequality by omitting the small-term and consequently obtained  

𝒟 < log(log(𝑝 − 2)) < log (log(𝑝)) 

By Taking 𝑝 < 2𝑛𝜖 , the upper bound for the multiplicative depth 𝒟 is 𝒪(𝜖log (𝑛)) 

 Performance Analysis   

The semantic security of the proposed construction scheme hinges on two assumptions. The 

first assumption is the difficulty of solving the computational finite field isomorphism 

problem, which assures that the images of small elements in 𝕏 are randomly distributed in 𝕐. 

Since the isomorphism function Φ between 𝕏 and 𝕐 is unknown thus the attackers have to 

link the key consist of random elements of 𝕐 with the short preimages in 𝕏 to break the 

encryption scheme. The finite field isomorphism problems are even more difficult to solve in 

the case of matrix fields because the elements in the isomorphic matrix fields are always 

distinct, and in the case of polynomial fields the polynomial representation of the elements in 

isomorphic fields are always the same. The second assumption is the hardness of solving 

subset sum problems. As the scheme is based on the subset sum problem.  The sender 

chooses 𝑗 elements from the set 𝐻𝑦 of order 𝐽 and an element from the set 𝑆𝑦. Therefore, the 

pair of the parameter (𝐽
𝑗
) must be proved to have reasonable combination security. 

Theorem 2.17. Let {𝐻𝑦, 𝑆𝑦} be any public key that encrypts a message 𝑀𝑦 of either 0 or 

identity matrix 𝐼. If there exists a scheme 𝒜 that is capable to break the encryption scheme 

with parameter {𝑛, 𝑞, 𝛾} and deciphered the message 𝑀𝑦 with probability 1
2
+ 𝜂 for a non-

negligible function 𝜂 > 0, then there will exist an algorithm ℬ able to solve finite field 

isomorphism problem with probability 1
2
+ 𝜂.  
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Proof.  Given that the algorithm 𝒜 can compute the output of the input {𝐶𝑦, 𝐻𝑦, 𝑆𝑦}  with 

probability greater than 0.5, so if the input is invalid to the algorithm 𝒜 it means that either 

the ciphered matrix 𝐶𝑦 is not the encrypted form of the 0 matrices or identity matrix, or Cy is 

not equal to the subset-sum of the set 𝐻𝑦. The algorithm 𝒜 will be must decipher the 

ciphered text 𝑀𝑦 with probability greater than 0. 5, if the inputs are valid to the scheme. Now 

we can build an algorithm ℬ utilizing 𝒜. Let  𝐿𝑦1 , 𝐿𝑦1 , … , 𝐿𝑦𝐽,𝑀𝑦1 and 𝑀𝑦2 be the input to the 

decisional finite field isomorphism problem. As obtain the inputs the algorithm 𝒜 call on 

algorithm ℬ with public ciphertext 0 and public key 𝑝𝑘 = 𝐿𝑦1 , 𝐿𝑦1 , … , 𝐿𝑦𝐽,𝑀𝑦1. Suppose that 

the pre-image of 𝑀𝑦1 is a sampled from the distribution 𝒳, implies that the public key 

𝐿𝑦1 , 𝐿𝑦1 , … , 𝐿𝑦𝐽,𝑀𝑦1  is the legit key, and the algorithm can recover the plaintext with 

probability greater then 1
2
. Suppose that 𝑀𝑦1is chosen uniformly from the field 𝕏, then the 

algorithm must output an error to the input pk=𝐿𝑦1 , 𝐿𝑦1 , … , 𝐿𝑦𝐽,𝑀𝑦1. Accordingly, the 

algorithm ℬ solved the decisional problem with probability greater than 1
2
. 

2.8.1  Lattice Attack  

Let 𝐿𝑥1 , 𝐿𝑥2 , … , 𝐿𝑥𝑢 be distinct matrices of 𝕏 sampled from the distribution 𝒳𝛾, and 

𝐿𝑦1 , 𝐿𝑦2 , … , 𝐿𝑦𝑢 be the corresponding images in 𝕐 under the isomorphism Φ. Since we know 

that the field 𝕏 and 𝕐 can be viewed as finite-dimensional vector spaces over the field 𝔽𝑝. Let 

1,𝑀,𝑀2, … ,𝑀𝑛−1 and 1, 𝑁,𝑁2, … , 𝑁𝑛−1 be the bases for the field 𝕏 and 𝕐 respectively. 

Then for each 0 ≤ 𝑘 ≤ 𝑛 − 1 it follows that  

                                                    𝑀𝑘 → (𝑁𝑘)𝑠 𝑚𝑜𝑑 𝑝 = ∑𝑐𝑘𝑗𝑁
𝑗

𝑛−1

𝑗=0

 𝑚𝑜𝑑 𝑝                             (2.18) 

Let 𝐶 = (𝑐𝑘𝑗) be the associated 𝑛 × 𝑛 matrix. Let 

                                                                        𝐿𝑥 = ∑𝑥𝑖𝑀
𝑖

𝑛−1

𝑖=0

 𝑚𝑜𝑑 𝑝                                           (2.19) 

Implies that  

                                                         𝐿𝑦 =∑𝑥𝑘(𝑁
𝑘)𝑠 =

𝑛−1

𝑘=0

∑𝑥𝑘 (∑𝑐𝑘𝑗𝑁
𝑗

𝑛−1

𝑗=0

)

𝑛−1

𝑘=0

                     (2.20) 

by comparing the coefficients 
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                                                                 𝑦 = 𝑥𝐶 𝑚𝑜𝑑 𝑝                                (2.21) 

In the above equation, the attacker knows the vector 𝑦 and she does not have the knowledge 

of 𝑥 and 𝐶. In the case of the matrix field, she does not have an idea about the length of 𝑥, 

because in this case the length of the matrix 𝐿𝑥 does not depend on the coefficients of 𝑥𝑖 for 

0 ≤ 𝑖 ≤ 𝑛 − 1. However, in the case of a polynomial field, the length of the polynomial 

depends upon the coefficients of the polynomial. Therefore, in that case, she knows that the 

length of 𝑥 is short. From equation 2.18, one can be observed that there are 𝑛2 + 𝑛 unknown, 

which are the entries of the matrix 𝑀 and the entries of the vector 𝑥. So, this is the matrix 

decomposition problem, which does not reveal the exact information about 𝑀 or 𝑥. Since the 

attacker knows more than one images 𝐿𝑦1 , 𝐿𝑦2 , … , 𝐿𝑦𝑢. Therefor for  

                                                             𝑥1, 𝑥2, … , 𝑥𝑢                                                   (2.22) 

Writing 𝑥𝑖 = (𝑥𝑖1 , 𝑥𝑖2 , … . 𝑥𝑖𝑛−1) and similarly, write 𝑦𝑖 = (𝑦𝑖1 , 𝑦𝑖2 , … . 𝑦𝑖𝑛−1) and from a 

matrix  

                                             𝑌 = (𝑦𝑖𝑗) 1≤𝑖≤𝑢
0≤𝑗≤𝑛−1

and 𝑋 = (𝑥𝑖𝑗) 1≤𝑖≤𝑢
0≤𝑗≤𝑛−1

                        (2.23) 

that gives the matrix equation 

                                                          𝑌 = 𝑋𝑀 𝑚𝑜𝑑 𝑝                                        (2.23) 

In the case of the polynomial field given in [29], the unknown matrix 𝑋 has small coordinates 

and thus it becomes a short vector in the space ℤ𝑛×𝑢, which yields to setup a lattice problem 

to find 𝑋. Because in the case of computational finite field isomorphism problem over the 

polynomial field the length of the polynomials depends on the coefficients of the polynomial. 

However, in the case of the finite field over matrix field the length of the matrix does not 

depend on the coefficients, therefore it is quite difficult for the attacker to set up a short 

vector lattice problem to find 𝑋. 
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Chapter 3 

3 The Study of NTRU Cryptosystem Based on Matrix Ring 

Over Finite Field Extension 
 

  Introduction 

In 1996 Hoffstein, Pipher, and Silverman introduced the idea of the NTRU cryptosystem; 

afterward, it was published in the proceeding conference [30]. The NTRU scheme is one of 

the quickest public-key cryptosystems and its operations take place in a ring ℤ𝑝[𝑦]

<𝑦𝑛−1>
  and 

suitable for both confidential communication and authentication. A simple linear 

transformation over ring elements performs the process of encryption and decryption of the 

scheme.  Since this transformation is used to execute simple polynomial addition and 

multiplication, thus their implantation cost is 𝒪(𝑛2). Accordingly, the NTRU cryptosystem is 

fast and more efficient than other asymmetric key cryptosystems, which are hinges on a 

discrete logarithm and factorization problem. The efficiency of this scheme is relying on the 

hardness of the shortest vector problem; therefore, it is conceived to be secured against 

classical and post-quantum attacks. Besides, researchers have improved the speed of the 

NTRU cryptosystem by operating the scheme in different rings. In 2002, Gaborit et al. [31] 

presented a CTRU scheme corresponding to NTRU, while substitute the ring ℤ𝑝[𝑦]

<𝑦𝑛−1>
  by the 

ring ℤ2[𝑦], and they claimed that the CTRU scheme has no decryption failure. Afterward, 

Kouzmenko established new kinds of attacks in 2005, which were called polynomial-time 

attacks, and elaborated that the CTRU scheme can be easily disrupted by polynomial-time 

attacks [32]. In addition to this, Kouzmenko presents the GNTRU scheme by an example 

alternate to NTRU by replacing the ring with Gaussian integers ℤ[𝑖]. In 2005 Coglianese and 

Goi introduced MNTRU based on the matrix module 𝑛 [33].  

This chapter further extends the idea of the MNTRU scheme and presents a new scheme 

based on the non-commutative matrix ring over a Galois field. For the successful 

implementation of the proposed scheme, the suitability criteria are presented to avoid 

decryption failure. Since the scheme operates in a non-commutative ring, thus the linear 

transformations are performing from two side multiplication, which enhances the keyspace of 

the scheme. Moreover, the lattice attack is hard to affect the scheme due to the high 

dimension of the lattice matrix and the non-commutativity property of a matrix ring. 
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 NTRU Cryptosystem 

This section discusses the NTRU cryptosystem in brief.  The NTRU algorithm is operating in 

a polynomial ring ℤ𝑝[𝑦]
<𝑦𝑛−1>

, we denote this polynomial ring by 𝑅𝑝𝑛 .  The cryptosystem 

depends on the set positive integers given as (𝑛, 𝑞, 𝑝, 𝑑𝑔, 𝑑𝑓 , 𝑛1). Where the integer 𝑞 should 

be considerably greater than the integer 𝑝. Besides, these integers are coprime such 

that 𝑔𝑐𝑑(𝑝, 𝑞) = 1. The integers 𝑑𝑓, 𝑑𝑔 and 𝑛1 are less than 𝑛
2
. Select the bounded 

subsets 𝒮𝑓, 𝒮𝑔, 𝒮𝑟 and 𝒮𝑚 of the ring 𝑅  associated with the integers 𝑑𝑓, 𝑑𝑔 and 𝑛1. We denote 

the elements of the ring 𝑅𝑞𝑛 by �̅�, and the elements of a ring 𝑅 by 𝑎 having coefficient in the 

interval [𝑞
2
,
𝑞

2
). Moreover, the notation 𝑎𝑏 is used to represent the multiplication of the 

polynomial 𝑎 and 𝑏 and similarly 𝑎 + 𝑏 for the polynomial addition. One needs to describe 

one more definition before introducing the NTRU encryption scheme.  

Definition 3.1. Let 𝑛1 and 𝑛2 be two positive integers. Then the set of polynomials  

𝒯(𝑛1, 𝑛2) = {𝓀(𝑦) ∈ 𝑅:    

 The 𝑛1 number of coefficients of 𝓀(𝑦) is equal to 1 

The 𝑛2 number coefficients of 𝓀(𝑦) is equal to − 1

All the other coefficients of 𝓀(𝑦)equal to 0               

 

The elements of the set 𝒯(𝑛1, 𝑛2) is said to be ternary polynomials. If these are analogs to the 

binary polynomials i.e., all the coefficients of the polynomials are either 0 or 1.    

3.2.1 Key Generation  

Let Bob and Alice be the two communicating entities, both the parties want to communicate 

through the NTRU encryption scheme. Bob initially chooses two random polynomials 𝒇(𝒚) 

and 𝒈(𝒚) such that both the polynomials satisfy the condition given as follows. 

𝒇(𝒚) ∈ 𝓣(𝓷𝟏 + 𝟏,𝓷𝟏) and 𝒈(𝒚) ∈ 𝓣(𝓷𝟏, 𝓷𝟐)                (3.1) 

Subsequently, she calculates the multiplicative inverse of the polynomials 𝒇(𝒚) in both rings 

𝑹𝒒𝒏 and 𝑹𝒑𝒏 respectively. 

     𝑭𝒒(𝒚) = 𝒇(𝒚)−𝟏 ∈ 𝑹𝒒 and  𝑭𝒑(𝒚) = 𝒇(𝒚)−𝟏 ∈ 𝑹𝒑𝒏                   (3.2) 

Afterward, Bob computes the polynomial 𝒉(𝒚) by using the polynomial 𝑭𝒒(𝒚), the 

mathematical representation is given as follows.  
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𝒉(𝒚) = 𝑭𝒒(𝒚)𝒈(𝒚) in 𝑹𝒒𝒏                                (3.3) 

The pair of polynomials (𝒇(𝒚), 𝑭𝒑(𝒚)) is the Bob private key that will be required to 

decipher the ciphertext, and 𝒉(𝒚) is her public key, which she will public to Alice. Alice will 

encrypt her message using this public key. The detail of the encryption and decryption 

procedure is given as follows. 

3.2.2 Encryption and decryption 

To encrypt a plaintext 𝓂(𝑦), Alice initially chose a random element 𝑟(𝑦) from the set 𝒮𝑟 and 

calculate the ciphertext. Mathematically, it can be written as;  

𝒸(𝑦)̅̅ ̅̅ ̅̅ = 𝑝ℎ(𝑦)̅̅ ̅̅ ̅̅  𝑟(𝑦) +𝓂(𝑦) ∈ 𝑅𝑞𝑛.   (3.4) 

To decrypt the ciphertext 𝒸,̅ initially compute the following 𝑚𝑜𝑑 𝑞 operation; 

�̅� = 𝑓(𝑦)𝒸(𝑦)̅̅ ̅̅ ̅̅ = 𝑓(𝑐)(𝑝ℎ(𝑦)̅̅ ̅̅ ̅̅ 𝑟(𝑦) +𝓂(𝑦)) ∈ 𝑅𝑞𝑛.          (3.5) 

Then compare the unique polynomial 𝑎 ∈ 𝑅 having coefficient from the interval [𝑞
2
,
𝑞

2
) with 

the polynomial mod 𝑞 in a ring 𝑅𝑞. If the polynomial 𝑎 = 𝑓(ℎ𝑝𝑟 +𝓂) ∈ 𝑅 free from 𝑚𝑜𝑑 𝑞 

reduction coincides with the polynomial  �̅� modulo 𝑞, then one can get the plaintext 𝓂, by 

making the following 𝑚𝑜𝑑 𝑝 calculation. 

𝑏(𝑦) = 𝑝𝑟(𝑦)𝑔(𝑦) + 𝑓(𝑦)𝓂(𝑦) = 𝑓(𝑦)𝓂(𝑦) ∈ 𝑅𝑝𝑛           (3.6) 

𝐹3(𝑦)𝑏(𝑦) = 𝐹3(𝑦) 𝑓(𝑦)𝓂(𝑦)=𝓂(𝑦) ∈ 𝑅𝑝𝑛.   (3.7)   

Otherwise, the decryption will be considered a failure. The following necessary condition on 

the element 𝑎 is essential for the successful decryption. 

          ‖𝑎‖∞ = 𝑚𝑎𝑥 𝑎𝑖 −𝑚𝑖𝑛 𝑎𝑖 < 𝑞.                         (3.8)  

Thus, the elements 𝑝 and 𝑞 should be selected in a manner that the probability of successful 

decryption is maximum. The following proposition discusses the conditions on the 

parameters of the NTRU scheme, which make ensure successful decryption.  

Proposition 3.2. [34] If the parameters (𝑛, 𝑞, 𝑝, 𝑛1) of the NTRU encryption scheme are 

chosen, so that it satisfies the following property.   

𝑞 > (6𝑛1 + 1)𝑝        

Then the decipher text obtain after the decryption procedure will equal the original plaintext.  
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Example 3.3. We present an example of the NTRU encryption scheme to elaborate the idea 

in more detail. Let the public parameters are 

(𝑛, 𝑞, 𝑝, 𝑛1) = (7,41,3,2) 

implies 

39 = (6𝑛1 + 1)𝑝 < 41 

Since the parameters satisfy the equation. Therefore, by Proposition 3.2. the decryption will 

work successfully. Let Bob choose the following polynomial.  

𝑓(𝑦) = 𝑦6 − 𝑦4 + 𝑦3 + 𝑦2 + 1 ∈ 𝒯(3,2) and 𝑔(𝑦) = 𝑦6 + 𝑦4 − 𝑦2 − 𝑦 ∈ 𝒯(2,2).  

Afterward, she computes the inverse of the polynomials 𝑓(𝑦) and 𝑔(𝑦) 

𝐹41(𝑦) = 𝑓(𝑦)
−1𝑚𝑜𝑑 𝑞 = 8𝑦6 + 26𝑦5 + 31𝑦4 + 21𝑥3 + 40𝑥2 + 2𝑦 + 37 in 𝑅41 

𝐹3(𝑦) = 𝑓(𝑦)
−1𝑚𝑜𝑑 𝑝 = 𝑦6 + 2𝑦5 + 𝑦3 + 𝑦2 + 𝑦 + 1 in 𝑅3. 

She computes and then publishes the key ℎ(𝑦) and keep the pair (𝑓(𝑦), 𝐹3(𝑦)) of the 

polynomials secret as her private key to use for decryption.   

ℎ(𝑦) = 𝐹41(𝑦)𝑔(𝑦) = 20𝑦
6 + 40𝑦5 + 2𝑦4 + 38𝑦3 + 8𝑦2 + 26𝑦 + 38 in 𝑅41. 

Suppose Bod willing to send the message polynomial 𝑚(𝑦) to Alice, and choose the random 

polynomial 𝑟(𝑦) for semantic security.  

𝑚(𝑦) = −𝑦5 + 𝑦3 + 𝑦2 − 𝑦 + 1 and 𝑟(𝑦) = 𝑦6 − 𝑦5 + 𝑦 − 1 

Then Bob computes the ciphertext 𝑐(𝑦) using the public polynomials ℎ(𝑦) and random 

polynomial 𝑟(𝑦). Then she sent it to Alice through insecure channal.  

𝑐(𝑦) = 𝑝𝑟(𝑦)ℎ(𝑦) + 𝑚(𝑦) = 31𝑦6 + 19𝑦5 + 4𝑦4 + 2𝑦3 + 40𝑦2 + 3𝑦 + 25 𝑚𝑜𝑑 41 

After receiving the Bob ciphertext, Alice proceeds with the decryption method and deciphers 

the ciphertext 𝑐(𝑦). Initially, she computes 

𝑓(𝑦)𝑒(𝑦) = 𝑦6 + 10𝑦5 + 33𝑦4 + 40𝑦3 + 40𝑦2 + 𝑦 + 40 𝑚𝑜𝑑 𝑞     

Subsequently, she center-left the obtained  𝑓(𝑦)𝑒(𝑦)𝑚𝑜𝑑 𝑞 into the ring 𝑅, and then she 

again reduces it modulo 𝑝.  

𝑎(𝑦) = 𝑦6 + 10𝑦5 − 8𝑦4 − 𝑦3 − 𝑦2 + 𝑦 − 1 

𝐹3(𝑦)𝑎(𝑦) = 25𝑦
5 + 𝑦3 + 𝑦2 + 2𝑦 + 1 𝑚𝑜𝑑 𝑝 
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Finally, she center-left the polynomial 𝐹3(𝑦)𝑎(𝑦) 𝑚𝑜𝑑 𝑝, which consequently retrieves the 

Bob plaintext. 

𝑚(𝑦) = −𝑦5 + 𝑦3 + 𝑦2 − 𝑥 + 1. 

 Asymptotic Complexity of NTRU Scheme 

The main advantage of lattice-based cryptography is its performing speed as compared to the 

cryptographic scheme based on the prime factorization problem and discrete logarithmic 

problem. The question arises as that how fast is the NTRU cryptosystem? In the encryption 

and decryption procedure, the most consuming part is the product of polynomials. Since in 

polynomial multiplication each coefficient performs the dot product of a vector, therefore, the 

product of two degree 𝑛 polynomials usually require 𝑛2 multiplication. The polynomial 

products required by the encryption-decryption procedure of the NTRU scheme have the 

form 𝑟(𝑦)ℎ(𝑦), 𝑓(𝑦)𝑒(𝑦) and 𝐹𝑝(𝑦)𝑎(𝑦). Since the polynomials 𝑟(𝑦), 𝑓(𝑦) and 𝐹𝑝(𝑦) are 

the ternary polynomials. Therefore, these convolution polynomials can compute without 

multiplications and requires 3
2
𝑛2 subtractions and additions. If 𝑛1 less than 𝑛

3
, then the first 

two of these require just 3
2
𝑛𝑛1 subtractions and additions. Therefore, the encryption and 

decryption procedure of the NTRU scheme requires O(𝑛2) step, which is polynomial time 

and extremely fast. 

3.3.1 Mathematical Problem for NTRU Scheme  

Since we know that the coefficients of the public key polynomial are distributed as random 

integers modulo 𝑞. However, there is a hidden relation between the polynomial 𝑓(𝑦) and 

ℎ(𝑦) that is  

𝑔(𝑦) ≡ 𝑓(𝑦)ℎ(𝑦) 𝑚𝑜𝑑 𝑞                    (3.9) 

As we know that the coefficients of the polynomial 𝑓(𝑦) and 𝑔(𝑦) are small. Thus, breaking 

the NTRU scheme over the problem finding the secrete key is reduce to solving the problem 

given as follows; 

Key Recovery problem. Given the public key polynomial ℎ(𝑦), find the ternary polynomials 

𝑔(𝑦) and 𝑓(𝑦) that satisfying  

𝑔(𝑦) ≡ 𝑓(𝑦)ℎ(𝑦) 𝑚𝑜𝑑 𝑞                  (3.10) 

The solution to the key recovery problem of the NTRU scheme is not unique. Suppose the 

pair (𝑓(𝑦), 𝑔(𝑦)) is the one solution of the key recovery problem, then the pairs 
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(𝑦𝑚𝑓(𝑦), 𝑦𝑚𝑔(𝑦)) is also the solution, for all positive integers 𝑚 less than 𝑛. Since the 

polynomial 𝑦𝑚𝑓(𝑦) cyclically rotate the coefficients therefore such polynomials are called 

the rotation of the polynomial 𝑓(𝑦). The decryption with such rotated polynomial output 

rotated plaintext 𝑦𝑚𝑚(𝑦).  

3.3.2 Brute force Attack.  

This section discusses the hardness of the Eavesdropper task if she tries to search and apply 

all the possible public keys. The Eavesdropper can ascertain that either she has found or not 

the private key polynomial through verification; that all the coefficients in the center-left 

polynomial 𝑓(𝑦)ℎ(𝑦) 𝑚𝑜𝑑 𝑞 is not greater than 1 and less than −1.  So, we have to figure 

out the order of the set of trinary polynomials. Generally, one has to specify the elements of 

the set 𝒯(𝓃1, 𝓃2), initially by choosing 𝓃2 coefficient equal to −1 and then choosing the 𝑛1 

coefficient of the remaining 𝓃 −𝓃2 equal to 1. Thus  

#𝒯(𝓃1, 𝓃2) = (
𝓃
𝓃1
) (
𝓃 − 𝓃1
𝓃2

) =
𝓃!

𝓃1!𝓃2!(𝓃−𝓃1−𝓃2)!
    (3.11) 

Besides, this number can be increased if the number 𝑛1 and 𝑛2 are both approximately equal 

to 𝓃
3
. In the brute force attack, the Eavesdropper must try all the polynomial in the set 𝒯(𝓃1 +

1,𝓃2) until she finds the private key polynomial ℎ(𝑦). Since all the rotation polynomials of 

the polynomial ℎ(𝑦) are counts as the private key and the order of the rotation polynomials is 

𝑛. Therefore, in brute force, the Eavesdropper will approximately 𝒯(𝓃1+1,𝓃2)
𝑛

 try to find out 

some rotation polynomial of the decryption key 𝑓(𝑦).    

Proposition 3.4. [34] Let 𝐴 be an algorithm for solving the key recovery problem of the 

NTRU encryption scheme. Let 𝒯(𝓃1 + 1,𝓃2), 𝑔(𝑦)  and ℎ(𝑦)) be the input of the algorithm 

𝐴, where ℎ(𝑦) is the public key polynomial and 𝒯(𝓃1 + 1,𝓃2) is the set of trinary 

polynomials, for 𝓃1 ≈
𝓃

3
. Let 𝑓(𝑦) be the output of 𝐴 chosen uniformly and randomly from 

the set of trinary polynomials, such that 𝑔(𝑦) ≡ 𝑓(𝑦)ℎ(𝑦) 𝑚𝑜𝑑 𝑞. Then the algorithm 𝐴 to 

output the correct decryption key with negligible probability. 

Proof.  Given that, the size is maximized by sitting  𝓃1 ≈
𝓃

3
. Then by using the Stirling 

formula the estimated order of the trinary polynomial 𝒯(𝓃1 + 1,𝓃1) is equal to  

#𝒯(𝓃1 + 1,𝓃1) =
𝓃!

((𝓃/3)!)3
≈ (

𝓃

𝑒
)
𝓃

∙ ((
𝓃

3𝑒
)

𝓃
3
)

−3

≈ 3𝓃 
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Therefore, the probability that the algorithm 𝐴 to output the exact decryption key is 1
3𝓃

. Since 

for any polynomial 𝑞(𝑦) there are 𝑚1, 𝑚2 ∈ ℝ >0 and natural number 𝑛 such that |𝑞(𝑦)| ≤

𝑚2𝑦
𝑚for 𝑚2 ≥ 𝑚1 . Accordingly, there exist some 𝐾 ≥ 𝑚1 such that 𝑚2𝐾

𝓃 < 3𝓃.  Thus, 

the success probability of the Algorithm 𝐴 to output the correct decryption key is negligible. 

3.3.3 NTRU key recovery problem as a Lattice Problem  

In this section, we describe a complete review of the NTRU key recovery problem that are 

reduced to the short vector problem in some sort of certain lattice. Let ℎ(𝑦) be the public key 

polynomial for the NTRU encryption. Supposes  

ℎ(𝑦) = ℎ0 + ℎ1𝑦 + ℎ2𝑦
2 +⋯+ ℎ𝑛−1𝑦

𝑛−1    (3.12) 

then the NTRU lattice 𝐿ℎ𝑁𝑇𝑅𝑈is 2𝑛 dimensional lattice associated with the public key 

polynomial ℎ(𝑦) generated by the row spanned of the matrix 𝑀ℎ𝑁𝑇𝑅𝑈.  

𝑀ℎ
𝑁𝑇𝑅𝑈 =

(

 
 
 
 
 

1
0

0 0
1 0

⋯
0 0
0 0

⋮ ⋱ ⋮
0 0 0 ⋯ 0 1

0
0
⋮
0

0 0
0 0
⋮

0 0

…
⋱
…

0 0
0 0
⋮

0 0

|

|

ℎ0
ℎ𝑛−1

ℎ1 ℎ2
ℎ0 ℎ1

⋯
ℎ𝑛−2 ℎ𝑛−1
ℎ𝑛−3 ℎ𝑛−2

⋮ ⋱ ⋮
ℎ1 ℎ2 ℎ3 ⋯ ℎ𝑛−1 ℎ0

𝑞
0
   

0  0          
𝑞  0         ⋯

0     0
0     0

⋮ ⋱ ⋮
0   0    0           ⋯ 0     𝑞 )

 
 
 
 
 

 

It can be seen that four 𝑛 × 𝑛 matrices are merged in the matrix 𝑀ℎ𝑁𝑇𝑅𝑈 . The upper left 

matrix is the 𝑛 × 𝑛 identity matrix, the upper right matrix is the 𝑛 × 𝑛 matrix composed of 

cyclic permutation of the public key polynomial ℎ(𝑦). The lower left block is the 0 matrix, 

and the lower right block is the 𝑞 time 𝑛 × 𝑛 identity matrix. In the following results the 

NTRU matrix 𝑀ℎ𝑁𝑇𝑅𝑈 is abbreviate as; 

𝑀ℎ
𝑁𝑇𝑅𝑈 = (

𝐼 ℎ
0 𝑞𝐼

)                (3.13) 

where the 𝑀ℎ𝑁𝑇𝑅𝑈 visualize as a 2 × 2 matrix with coefficients in the ring 𝑅.  The pair of the 

polynomials 𝑓 and 𝑔 can be defined in 𝑅 as 2𝑛 dimensional vector. Let 𝑓(𝑦) = 𝑓0 + 𝑓1𝑦 +

⋯+ 𝑓𝑛𝑦
𝑛 and 𝑔(𝑦) = 𝑔0 + 𝑔1𝑦 +⋯+ 𝑔𝑛𝑦𝑛, then the 2𝑛 dimensional vector (𝑓, 𝑔) is 

defined as follows; 

(𝑓, 𝑔) = (𝑓0, 𝑓1, … , 𝑓𝑛, 𝑔0, 𝑔1, … , 𝑔𝑛).                (3.14) 
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Suppose the public key ℎ(𝑦) of the NTRU encryption scheme is created through the private 

polynomial 𝑓(𝑦) and 𝑔(𝑦). Now the following result illustrates what happening whenever 

the NTRU matrix is multiplying with the chosen vectors.  

Proposition 3.5.  [34, Proposition 7.59] Let 𝑓(𝑦) and 𝑔(𝑦) be two trinary polynomials and 

ℎ(𝑦) be the polynomial such that 𝑓(𝑦)ℎ(𝑦) ≡ 𝑔(𝑦) 𝑚𝑜𝑑 𝑞. Let the polynomial 𝑢(𝑦) ∈ 𝑅 

satisfying the following equation  

𝑓(𝑦)ℎ(𝑦) = 𝑔(𝑦) + 𝑞𝑢(𝑦). 

Then  

(𝑔, 𝑓) = (𝑓,−𝑢)𝑀ℎ
𝑁𝑇𝑅𝑈 

Thus, the vector (𝑓, 𝑔) is an element of the lattice 𝐿ℎ𝑁𝑇𝑅𝑈. 

The proof of Proposition 3.5 becomes straight forward while using the abbreviation of the 

matrix 𝑀ℎ𝑁𝑇𝑅𝑈, that is  

(𝑓, 𝑔) = (𝑓, 𝑓ℎ − 𝑞𝑢) = (𝑓,−𝑢) (
𝐼 ℎ
0 𝑞𝐼

).                 (3.15) 

Proposition 3.6. [34, Proposition 7.61] Let (𝑛, 𝑞, 𝑝, 𝑛1) be the parameters of the NTRU 

scheme, for computational simplicity, assume that  

𝑝 = 3 and 𝑛1 =
𝑛

3
 and    𝑞 ≈ 6𝑝𝑛1 ≈ 2𝑝𝑛 

Suppose that the lattice associated with the private key (𝑓, 𝑔) is 𝐿ℎ𝑁𝑇𝑅𝑈.  Then the following 

conditions hold. 

i. 𝑑𝑒𝑡(𝐿ℎ𝑁𝑇𝑅𝑈) = 𝑞𝑛. 

ii. ‖(𝑓, 𝑔)‖ ≈ √4𝑛 ≈ √4𝑛
3
≈ 1.155√𝑛. 

Proposition 3.5 and Proposition 3.6 demonstrate that the pair private key polynomials (𝑓, 𝑔) 

is short in the lattice 𝐿ℎ𝑁𝑇𝑅𝑈. Thus, solving the NTRU encryption scheme recovery problem 

reduces to the short vector problem in the lattice 𝐿ℎ𝑁𝑇𝑅𝑈.  

 Proposed Cryptosystem 

This section begins by introducing some basic definitions and results that are used in the 

upcoming sections. Recall that, a polynomial 𝑓 of degree 𝑛 of the ring 𝑅[𝑥] can be written as; 

𝑓(𝑦) = 𝑎0 + 𝑎1𝑦 +⋯𝑎𝑛−1𝑦
𝑛−1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎𝑖 𝑅    (3.16)     

The length of the polynomial 𝑓 or the norm is defined as; 
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‖𝑓‖∞ = max
1≤𝑖≤𝑛

|𝑎𝑖|.     (3.17) 

The suggested NRTU cryptosystem operates in a non-commutative ring of 𝑘 × 𝑘 matrices 

over the Galois field 𝔽𝑝𝑛, we denote it by ℳ𝑘(𝔽𝑝𝑛). The elements of the field 𝔽𝑝𝑛 consist of 

the polynomial of degree at most (𝑛 − 1) having coefficient from the field ℤ𝑝. The scheme 

began by fixing two irreducible polynomials 𝑓(𝑥) and 𝑔(𝑥) of degree 𝑛 with coefficient 

moduli 𝑞 and 𝑝 respectively. Let ℛ, 𝔽𝑝𝑛 and 𝔽𝑞𝑛 be the corresponding integral domain and 

convolution quotient fields. 

ℛ =
ℤ[𝓍]

<𝑥𝑛−1 >
  𝔽𝑞𝑛 = ℤ𝑞

[𝓍]

<𝑓(𝑥)>
 ,  𝔽𝑝𝑛 =

ℤ𝑝[𝓍]

<𝑔(𝑥)>
      

Where 𝑝 and 𝑞 are prime integers, the elements in the ℛ are also the elements in 𝔽𝑝𝑛 and 𝔽𝑞𝑛 

reduced their coefficient moduli 𝑝 and 𝑞 in cosets form. Similarly, 𝑞 ≥ 𝑝, thus the elements 

of 𝔽𝑝𝑛 are contained in 𝔽𝑞𝑛 moduli 𝑞. Moreover, we use the map 𝛼 defined as follows to 

move the elements from ℛ to 𝔽𝑝𝑛. 

𝛼𝑝: ℛ ⟶ 𝔽𝑞𝑛 

𝛼𝑝(ℎ(𝑥)) = ℎ𝑝(𝑥)̅̅ ̅̅ ̅̅ ̅̅ .    (3.18) 

Let ℬ(ℛ) be the subset of the integral domain ℛ consist of all binary polynomials, which is 

defined as follows;  

ℬ(ℛ) = {  𝑓(𝑥) = ∑ 𝑎𝑖𝑥
𝑖   𝑛

𝑖=0 ∈  ℛ   |0 ≤ 𝑖 <
𝑛

4
,   ‖𝑓(𝑥)‖∞ = 1 }.   (3.19) 

The degree of polynomials in ℬ(ℛ) is less than 𝑛
4
 with coefficients equal to 1 or 0. Let 𝒟(ℛ) 

be the subset of the matrix ring  ℳ𝑘(ℛ) defined as; 

𝒟(ℛ) = {𝑀 ∈  ℳ𝑘(ℛ) |  𝑚𝑖,𝑗 ∈ ℬ(ℛ) }.   (3.20) 

Assume that Bob chooses the public parameters (𝑁, 𝑝, 𝑞, 𝑓(𝑥), 𝑔(𝑥)) satisfying some 

necessary conditions. The next subsections describe the key generation step, encryption, and 

decryption process. 

3.4.1 Key Generation  

To generate the public and private key, Bob chose an element from the general linear group 

𝐺𝐿(𝑘,  ℳ𝑘(𝔽𝑞𝑛) and an element 𝑁 from the subset 𝒟(𝔽𝑞𝑛). Then Bob computes the public 

key  
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𝐻 = 𝑀𝑁 ∈  ℳ𝑘(𝔽𝑞𝑛).    (3.21) 

The Bob public key is 𝐻 and her private key is a pair (𝑀−1,𝑀) that is essential to decrypt the 

message. 

3.4.2 Encryption 

The Alice plaintext 𝑃′ is an element of ℳ𝑘(𝔽𝑞𝑛), each entry of 𝑃′ is a polynomial with the 

coefficients between 0 and 𝑝
2
. Alice chose random matrix 𝑅 ∈ 𝒟(ℛ) and 𝑝 ∙ 𝐼 = 𝐼𝑝 where  𝑝 

the characteristic of the field is 𝔽𝑝𝑛 and 𝐼 represents the identity matrix. Compute the 

ciphertext defined as; 

𝐶 = 𝐻𝐼𝑝𝑅 + 𝑃
′ ∈  ℳ𝑘(𝔽𝑞𝑛).   (3.22)   

Then Alice sent the ciphertext 𝐶 to Bob. 

3.4.3 Decryption 

After receiving the Alice ciphertext, Bob computes the plaintext 𝑃′ using the private 𝑀−1 ∈

𝐺𝐿(𝑘,  ℳ𝑘(𝔽𝑞𝑛), The procedure is defined as follows; 

𝐴 = 𝑀−1 

�̅� = 𝑁𝐼𝑝𝑅 +𝑀
−1𝑃′ ∈  ℳ𝑘(𝔽𝑞𝑛).   (3.23) 

Afterward, verify the answer  �̅� with a unique matrix 𝐴 ∈  ℳ𝑘(ℛ), that each entry 𝑎𝑖,𝑗 of the 

matrix 𝐴 has degree less than 𝑛  with coefficients in the interval [0,    𝑞 − 1] by using the 

following map; 

𝛼𝑞(𝑚𝑖,𝑗) = 𝑚𝑖,𝑗̅̅ ̅̅ ̅     (3.24) 

if  

𝑚𝑖,𝑗 = 𝑚𝑖,𝑗̅̅ ̅̅ ̅.   ∀   𝑚𝑖,𝑗 ∈ 𝐴                                (3.25) 

If the resultant 𝑚𝑖,𝑗̅̅ ̅̅ ̅ in the field 𝔽𝑞𝑛 is coinciding with the elements 𝑚𝑖,𝑗 in the ring ℛ. Then 

the Bob will be able to obtain the plaintext 𝑃′ follows the calculation in the field 𝔽𝑝𝑛. 

𝛼𝑝(𝐴) = 𝑀
−1𝑃′ ∈  ℳ𝑘(𝔽𝑝𝑛).                      (3.26) 

Since 𝑝 is the characteristic element in  𝔽𝑝𝑛 , accordingly, 𝑁𝐼𝑝𝑅 in 𝔽𝑝𝑛 is a zero matrix in the 

ring ℳ𝑘(𝔽𝑝𝑛). 

𝑃′ = 𝑀𝑀−1𝑃′ ∈  ℳ𝑘(𝔽𝑞𝑛).                         (3.27)   
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Otherwise, Bob will be unable to decrypt the message successfully.  In the next subsection, 

we discussed the necessary condition for successful decryption.  

Example 3.7. We illustrate the proposed cryptosystem by choosing the primes 𝑝 = 3 and 

𝑞 = 11. Let Alice chooses the primitive irreducible polynomial 𝑓(𝑦) = 𝑦6 + 𝑦 + 2 ∈ ℤ3[𝑦] 

and 𝑔(𝑦) = 𝑦6 + 𝑦2 + 2𝑦 + 8 ∈ ℤ11[𝑦] and then she computes the public and private keys. 

𝑀 = (
𝑦 1

1 + 𝑦 𝑦
)  and 𝑁 = (1 + 𝑦 𝑦 + 𝑦2

1 + 𝑦 𝑦2
) 

𝑀−1 = (
9𝑦 + 10𝑦2 + 3𝑦3 + 7𝑦4 + 7𝑦5 2 + 𝑦 + 8𝑦2 + 4𝑦3 + 4𝑦4

2 + 3𝑦 + 9𝑦2 + 𝑦3 + 8𝑦4 + 4𝑦5         9𝑦 + 10𝑦2 + 3𝑦3 + 7𝑦4 + 7𝑦5
)  

𝑃𝐾 = 𝑀−1 ×𝑁  

𝑃𝐾 = (
1 + 9𝑦 + 10𝑦2 + 3𝑦3 + 7𝑦4 + 7𝑦5 10 + 7𝑦 + 𝑦2 + 2𝑦3 + 10𝑦4 + 3𝑦5

2 + 3𝑦 + 9𝑦2 + 𝑦3 + 8𝑦4 + 4𝑦5  2 + 8𝑦 + 8𝑦2 + 10𝑦3 + 9𝑦4 + 1𝑦5
) 

She computes 𝑀−1 and 𝑃𝐾 = 𝑀−1𝑁 in the ring ℳ2(
ℤ11[𝑦]

<𝑔(𝑦)>
). Then share the key 𝑃𝐾 with 

Bob through an open network as a public key and store the key 𝑆𝐾 = (𝑀, 𝑀−1) as a private 

key.   

Let 𝑀𝑆 = (
𝑦 𝑦

0 1 + 𝑦2
) ∈ ℳ2(

ℤ11[𝑦]

<𝑔(𝑦)>
) be the Bob plain message and she wants to send it 

insecurely. So, she computes the ciphertext to follow the proposed encryption procedure. 

Initially, she multiplies 𝑝𝐼 with the public key and chooses an element 𝑅 ∈ ℳ2(
ℤ11[𝑦]

<𝑔(𝑦)>
) for 

semantic security.  

𝑝𝐼 = (
3 0
0 3

) and 𝑅 = (
𝑦 𝑦

1 𝑦2
) 

𝑆 = (
1 + 9𝑦 + 10𝑦2 + 3𝑦3 + 7𝑦4 + 7𝑦5 10 + 7𝑦 + 𝑦2 + 2𝑦3 + 10𝑦4 + 3𝑦5

2 + 3𝑦 + 9𝑦2 + 𝑦3 + 8𝑦4 + 4𝑦5  2 + 8𝑦 + 8𝑦2 + 10𝑦3 + 9𝑦4 + 1𝑦5
) (
3 0
0 3

)  

𝑆 = 𝑃𝐾 × 3 

𝑆 = (
3 + 5𝑦 + 8𝑦2 + 9𝑦3 + 10𝑦4 + 10𝑦5 8 + 10𝑦 + 3𝑦2 + 6𝑦3 + 8𝑦4 + 9𝑦5

6 + 9𝑦 + 5𝑦2 + 3𝑦3 + 2𝑦4 + 1𝑦5  6 + 2𝑦 + 2𝑦2 + 8𝑦3 + 5𝑦4 + 3𝑦5
) 

𝐶 = 𝑆 × 𝑅 +𝑀𝑆 

𝐶 = (
5 + 5𝑦 + 9𝑦2 + 3𝑦3 + 6𝑦4 + 8𝑦5 10 + 6𝑦 + 10𝑦2 + 9𝑦3 + 𝑦4 + 𝑦5

9 + 6𝑦 + 10𝑦2 + 2𝑦3 + 8𝑦4 + 5𝑦5  8 + 3𝑦 + 4𝑦2 + 4𝑦3 + 5𝑦4 + 10𝑦5
) 

Bob then sends the ciphertext 𝐶 to Alice. Alice receives the ciphertext and then decrypts it by 

following the decryption procedure of the proposed scheme and get the original message. 

Initial she computes  

𝐴 = 𝑀 × 𝐶 
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𝐴 = (
𝑦 1

1 + 𝑦 𝑦
) (

5 + 5𝑦 + 9𝑦2 + 3𝑦3 + 6𝑦4 + 8𝑦5 10 + 6𝑦 + 10𝑦2 + 9𝑦3 + 𝑦4 + 𝑦5

9 + 6𝑦 + 10𝑦2 + 2𝑦3 + 8𝑦4 + 5𝑦5  8 + 3𝑦 + 4𝑦2 + 4𝑦3 + 5𝑦4 + 10𝑦5
)   

𝐴 = (
6𝑦 + 7𝑦2 1 + 3𝑦 + 5𝑦2 + 3𝑦3 + 3𝑦4

4𝑦 + 7𝑦2 5𝑦 + 4𝑦2 + 𝑦3 + 3𝑦4
). 

Afterward, she reduces the obtained matrix 𝐴 modulo 𝑝, which reduces the coefficients of the 

polynomial.  

𝐵 = 𝐴 𝑚𝑜𝑑 3 

𝐵 = (
𝑦2 1 + 2𝑦2

𝑦 + 𝑦2 2𝑦 + 𝑦2 + 𝑦3
) 

She computes the inverse of the matrix 𝑀 in the polynomial ring ℳ2(
ℤ3[𝑦]

<𝑓(𝑦)>
). Then multiply 

the inverse of the matrix 𝑀 with the reduced matrix 𝐵. Consequently, get the original 

plaintext matrix.  

𝑀−1 = (
𝑦 + 𝑦3 + 2𝑦4 + 2𝑦5 2 + 2𝑦2 + 𝑦3 + 𝑦4

2 + 2𝑦 + 2𝑦2 + 2𝑦4 + 𝑦5 𝑦 + 𝑦3 + 2𝑦4 + 2𝑦5
) in ℳ2(

ℤ3[𝑦]

<𝑓(𝑦)>
).     

𝑀𝑆 = (
𝑦 + 𝑦3 + 2𝑦4 + 2𝑦5 2 + 2𝑦2 + 𝑦3 + 𝑦4

2 + 2𝑦 + 2𝑦2 + 2𝑦4 + 𝑦5 𝑦 + 𝑦3 + 2𝑦4 + 2𝑦5
) (

𝑦2 1 + 2𝑦2

𝑦 + 𝑦2 2𝑦 + 𝑦2 + 𝑦3
)  

𝑀𝑆 = (
𝑦 𝑦

0 1 + 𝑦2
) 

In the above example, the elements are chosen carefully for the key generation and in the 

encryption process to avoid decryption failure. The following section discusses the bounds 

for successful decryption.  

Proposition 3.8. Let 𝑔 be a degree 𝑛 primitive irreducible polynomial.  Then the product of 

two polynomials ℎ1  ̅̅ ̅̅ , ℎ2̅̅ ̅  ∈
ℤ𝑝[𝑦]

<𝑔(𝑦)>
 will equal to the product of ℎ1ℎ2 in the ring ℤ𝑝[𝑥], if the 

𝑑𝑒𝑔(ℎ1) ≤ 𝑑𝑒𝑔(ℎ2) <
𝑛

2
. 

Proposition 3.9. Let 𝑓 and 𝑔 be two polynomials of degree 𝑛 in a polynomial ring ℤ[𝓍] such 

that ‖𝑓‖∞ = 1 and ‖𝑔‖∞ = 1, then ‖𝑓𝑔‖∞ ≤ 𝑛 + 1. 

Proof   Let 𝐵 be the subset of ℝ[𝓍], which consist of all binary polynomial of degree 𝑛, 

defined as follows 

𝐵 = {𝑓 ∈ 𝑅[𝑦]  | deg(𝑓) ≤ 𝑛 and ‖𝑓‖∞ = 1} 

Let 𝑓 = 1 + 𝑦 +⋯+ 𝑦𝑛 ∈ 𝐵, then ‖𝑓‖1 ≥ ‖𝑔‖1  ∀ 𝑔 ∈ 𝐵. Since 𝑓𝑓 = 1(1 +⋯+ 𝑦𝑛) +

⋯+ 𝑦𝑛(1 +⋯+ 𝑦𝑛). Therefore, it implies that ‖𝑓𝑓‖∞ = 𝑛. Hence ‖𝑔ℎ‖∞ ≤ ‖𝑓𝑓‖∞ = 𝑛,  

for all 𝑔, ℎ ∈ 𝐵. 
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Proposition 3.10. Let 𝐹, 𝐻 ∈ 𝒟(ℛ), and defined a norm ‖𝐹‖∞ = 𝑚𝑎𝑥 ‖𝑓𝑖𝑗‖∞then ‖𝐹𝐻‖∞ ≤

𝑘(𝑛 + 1). 

Proof. We know that 

𝐹𝐻 = (
𝑓11ℎ11 +⋯+ 𝑓1𝑘ℎ1𝑘 ⋯ 𝑓11ℎ𝑘1 +⋯+ 𝑓1𝑘ℎ𝑘𝑘

⋮ ⋱ ⋮
𝑓𝑘1ℎ11 +⋯+ 𝑓𝑘𝑘ℎ𝑘1 ⋯ 𝑓𝑘1ℎ𝑘1 +⋯+ 𝑓𝑘𝑘ℎ𝑘𝑘

) 

Where 𝑓𝑖𝑗 and ℎ𝑖𝑗 (1 ≤ 𝑖 ≤ 𝑘 𝑎𝑛𝑑 1 ≤ 𝑗 ≤ 𝑘) represents the polynomials of the matrix 𝐹 and 

𝐻 respectively. Given that 𝐹, 𝐻 ∈ 𝒟(ℛ),  accordingly ‖𝑓𝑖𝑗‖∞ = 1 = ‖ℎ𝑖𝑗‖∞. Implies that 

‖𝑓𝑖𝑗ℎ𝑖𝑗‖∞ ≤ 𝑛 + 1. From Proposition 3.9, we get 

 ‖∑𝑓𝑖𝑗ℎ𝑖𝑗‖∞ ≤
∑‖𝑓𝑖𝑗ℎ𝑖𝑗‖∞ ≤ 𝑘(𝑛 + 1). 

Proposition 3.11. If the NRTU (𝑁, 𝑝, 𝑞, 𝑓(𝑥), 𝑔(𝑥)) is chosen to satisfy the following 

condition 

𝑝 > 6𝑘(𝑛 + 1)2 𝑎𝑛𝑑 𝑞 > 𝑝(𝑛 + 1)   

Then the decrypted matrix 𝑀𝛼𝑝(𝐴) computed by Bob equal to the original plain text 𝑃′. 

Proof. The preliminary calculation of the decryption process is; 

𝑀−1𝐶 = 𝑀−1(𝑀𝑁𝐼𝑝𝑅 + 𝑃
′)   

𝐴 = 𝑁𝐼𝑝𝑅 +𝑀
−1𝑃′.  

Since the matrix, 𝐼𝑝 is the center element and 𝑁, 𝑅 ∈ 𝒟(ℛ). Implies that ‖𝑁‖∞ = ‖𝑅‖∞ = 1 

So, by Proposition 3.9. ‖𝑁𝑅‖∞ ≤ 𝑘(𝑛 + 1). And we know that ‖𝑃‖∞ <
𝑝

2
. Thus, 

 ‖𝑀−1𝑃‖∞ < 𝑘
𝑝

2
(𝑛 + 1), which implies that  

‖𝑁𝑅 +𝑀−1𝑃‖∞ < 𝑘(𝑛 + 1) + 𝑘
𝑝

2
(𝑛 + 1) ≤ 𝑝. 

Thus, our assumption assures that the degree of each polynomial (𝑎𝑖𝑗) in 𝐴 is less 𝑛 with the 

magnitude of the largest coefficient less than 𝑝. Thus, by Proposition 3.11 whenever Bob 

computes 𝐴 in a field 𝔽𝑞𝑛, then lift it into  𝔽𝑝𝑛 , she will recover the exact matrix 𝑃′. 
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 Mathematical Background 

It can be seen, that the coefficients of the polynomial entries of the public key matrix are 

randomly distributed over modulo 𝑞. However, there is also a hidden relation between the 

polynomials of the matrix 𝑀 and the public key matrix 𝑃𝐾 that is  

                      𝑁 ≡ 𝑀 × 𝑃𝐾 𝑚𝑜𝑑 𝑞               (3.28) 

As we know that the coefficient of the polynomials of the matrix 𝑀 and the matrix 𝑁 are 

small. Thus, breaking the proposed scheme by the problem of finding the secrete key is 

reduced to solve the following problem.   

Key Recovery problem. Given that the public key polynomial 𝑃𝐾, find matrices 𝑀 and 𝑁 of 

polynomials having all binary coefficients, which satisfying.  

𝑁 ≡ 𝑀 × 𝑃𝐾 in ℳ2(
ℤ11[𝑦]

<𝑔(𝑦)>
)     

𝑛𝑖𝑗 ≡ ∑ 𝑚𝑥𝑗𝑝𝑘𝑖𝑥
𝑘
𝑥=1  in ℤ11[𝑦]

<𝑔(𝑦)>
 for all 𝑛𝑖𝑗    

The solution to the key recovery problem of the suggested scheme is not unique, same as not 

unique for NTRU over a polynomial ring. If the pair (𝑀,𝑁) is the one solution of the key 

recovery problem, then the pairs (𝑦𝑢𝑀, 𝑦𝑢𝑁) are also the solution, for all positive integer 𝑢 

less than 𝑛
4
. The polynomials 𝑦𝑢𝑚𝑖𝑗 of the matrix 𝑦𝑢𝑀 cyclically rotate the coefficient of the 

polynomial 𝑚𝑖𝑗. Therefore, the decryption with such matrices rotates the polynomial of the 

ciphertext.  

3.5.1 Brute Force Attack  

A first essential requirement for the well-organized cryptosystem is that the decryption 

process of the scheme is not practically solvable by collision search or Brute force attack. The 

private key used for the suggested NTRU is the set of all matrices whose polynomials 

coefficients are either 0 or 1. So the attacker will take the roundabout  ⋕ ℬ(ℛ) =

2 × (2𝑛)𝑘×𝑘 tries to find the pair of the private key (𝑀,𝑁).  For instance, we consider 𝑛 =

10 and 𝑘 = 4 then the attackers expect to check 2 × 2160. 

3.5.2 Asymptotic Complexity  

The question arises as that: How fast the suggested NTRU cryptosystem is? In the encryption 

and decryption procedure, the most consuming part is the product of matrices and the product 

of polynomials.  Since the asymptotic complexity of the 𝑘 × 𝑘 square matrix multiplication is 

𝒪(𝑘3), the entries of the matrix are polynomials and the product of two-degree 𝑛 
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polynomials usually require 𝑛2 multiplication. Therefore, the encryption and decryption 

procedure of the proposed scheme requires 𝒪(𝑘3𝑛2) step. For 𝑘 = 𝑛 the complexity is equal 

to 𝒪(𝑛5)  which is the polynomial-time not better than the complexity of the NTRU scheme 

over a polynomial ring. 
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Chapter 4 

4 Security Enhancement of Data Encryption Standard 
 

 Introduction 

Data encryption standard (DES) is a symmetric key cryptosystem that is designed by 

international business Machines (IBM). It was adopted and published by the US National 

Institute of Standard Technology (NIST) in 1971, as a federal information processing 

scheme. The aim was to provide a secure cryptosystem for the security of sensitive data and 

information during transmission.  This algorithm became a distinguished and broadly used 

algorithm [35]. In the same way, a considerable number of cryptanalytic papers on DES were 

published since its acceptance in 1971. In 1977, Diffe and Hallmen suggested a parallel 

machine for the comprehensive search of the complete keyspace [36]. The author claimed 

was, that very-large-scale integration (VLSI) chips are constructed, each chip is used to 

search one key per microsecond. The construction of the search machine contains millions of 

such chips, all working in parallel and each chip is capable to search 1012 keys per second. 

There are 7 × 1016 number of keys in the set of keyspace of the DES, that can be 

approximately searched in 105 seconds, which is almost 24 hours.  The estimated price of 

this machine was $20 million. Therefore, the monetary value per solution was $5k. In 1980 

Hallman demonstrated a time-memory tradeoff technique for the chosen plaintext attack [37]. 

The time memory tradeoff method takes 𝑣𝑢 words of memory and 𝑢2 operations. The 𝑣𝑢2 

operations are equivalent to the total number of all possible keys of DES. This technique is 

the same as the Differential Cryptanalysis attack on the cryptosystems that are the same as 

DES, which carries about 238 operations, required 238 memory and 256 pre-processing times 

for a special case 𝑚 =   𝑡. The author suggested a special machine that produced about a 

hundred solutions with an average time of 24 hours. The approximate cost of that machine 

was $4 million so the monetary value per solution was in the range between $1 − $100.  The 

processing time for the same machine was estimated and it was claimed that it required two 

years or three years. In 1985 Evertse and Chaum depicted that the meet-in-the-middle attack 

is capable to decrease the computation of key search of DES [38]. The reduction factors are 

219, 29, 22 for the reduced number of rounds 4, 5, and 6 respectively. They also claimed that 

a somewhat altered form of DES, for instance, the algorithm which consists of recursive 

seven rounds can be cracked through the reduction factor of 2. Besides, they showed that a 
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meet-in-the-middle attack of the same kind is not appropriate for eight or more round reduced 

DES. In 1987 Devias presented a new kind of attack on DES called the known-plaintext 

attack [39]. They assumed that sufficient data might produce sixteen linear relationships amid 

the key bits. Accordingly, it decreases the computation of the key search up to 240. The 

correlation among the outputs of the adjacent S-boxes was the main target of the plaintext 

attack. Since the correlation can disclose the linear relationship between the four bits of the 

key that are utilized for these S-boxes as input bits. Moreover, the consequence of the splits 

32-bit of DES receives these outputs independently. Thus, each pair of the adjacent S-boxes 

can be exploited twofold, yielding 16 bits of key information. In 1991 Eli Biham and Adil 

Shamir designed the differential attacks which can apply to various DES-like substitution 

permutation cryptosystems [40].  This was a powerful attack, which used just the pairs of 

ciphertexts and was capable to break the DES in a few minutes. According to [40], any 

modification in the algorithm, for instance, key scheduling of the algorithm, altering the 

permutation step by any other permutation, or the change the order of the eight S-boxes 

cannot make the algorithm less successful against the differential attack. A complete review 

of these attacks shows that the main targets of these cryptanalyses are the substitution phase, 

which is the only nonlinear part of the algorithm. Since the S-boxes used in the algorithm 

were not cryptographically strong and thus the DES proved to be insecure against differential 

attacks.   

Keeping the above facts in view, this chapter proposed a novel 6 × 6 cryptographically 

strong S-boxes.  The proposed S-boxes are then deployed in the Feistel function 𝐹 of the 

DES to achieve the aim of substitution transformation, which is the necessary step for the 

confusion criterion.  The cryptographic characteristics of the new S-box are analyzed over 

different analyses such as Differential approximation probability (DP), linear approximation 

probability (LP), Nonlinearity, strict avalanche criterion (SAC), and bit independent criterion 

(BIC). The results of the new S-boxes show that the proposed S-boxes are bijective, highly 

nonlinear, and low costly than AES 8-bit S-box to implement and are identical in the term of 

linear, differential and other algebraic properties. Hence, the essential criterion for a 

substitution step of the DES algorithm is successfully achieved. The major contribution of 

this chapter is to fortify the DES algorithm against brute force, linear and differential attacks.    

 Preliminarieamid s 

We denote by ℤ𝑝𝑛 a direct product of 𝑛 copies of the field ℤ𝑝, where 𝑝 is a positive prime 

integer. The 𝑝-ary function of rang in ℤ2 is denoted by 𝑓 throughout in this chapter namely 
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Boolean functions, which is defined as 𝑓: ℤ2𝑛 ⟶ ℤ2. However, the function 𝐹: ℤ2𝑛 ⟶ ℤ2
𝑚 is 

called the vectorial Boolean function. 

Definition 4.1.  Let 𝑓: ℤ𝑝𝑛 ⟶ ℤ2 be a Boolean function. The nonlinearity of a function 𝑓 can 

be defined as the smallest Hamming distance amid the set of all affine Boolean functions and 

the function 𝑓. The nonlinearity of the function 𝑓 is denoted by 𝑁𝑓 and its mathematical form 

can be written as; 

         𝑁𝑓 = 𝑚𝑖𝑛 {𝑑(ℎ, 𝑎): 𝑎 ∈ 𝐴 }                (4.1) 

In the above equation 𝑑(ℎ, 𝑎) refer to the Hamming distance within ℎ and 𝑎 and 𝐴 signifies 

the set of affine Boolean functions. Consequently, the maximum probable 𝑁𝑓 value of a 

function 𝑓is equal to 2𝑛−1 − 2
𝑛

2
−1.   

Definition 4.2. Followed by [41], a function 𝐹: ℤ𝑝𝑚 ⟶ ℤ𝑝
𝑛 is said to exhibit the avalanche 

effect if and only if the function 𝐹 satisfies the following.  

      ∑ 𝑤𝑡(𝐹(𝑦)⨁𝐹(𝑋⊕ 𝐶𝑖
𝑚))

𝑦∈ℤ𝑝
𝑚

= 𝑛 ∙ 2𝑚−1.                       (4.2) 

For all 𝑖 (1 ≤ 𝑖 ≤ 𝑚) the equation 4.2, implies that the average of one-half of the output bits 

must be changed whenever one bit is complemented by the input data.  

Definition 4.3. Followed by [41], let 𝐹: ℤ𝑝𝑚 ⟶ ℤ𝑝
𝑛 be a function then the set 𝜕(𝑥, 𝑦) that is 

defined as follows; 

𝜕(𝑥, 𝑦) = |{𝑥 |𝐹(𝑧 + 𝑥) − 𝐹(𝑧) = 𝑦}|.              (4.3) 

The positive integer △𝐹 is called differential △𝐹−uniform. The mathematical representation 

of  △𝐹 is defined as: 

△𝐹= max
𝑥∈ℤ𝑝

𝑚,   𝑥≠0

𝑦∈ℤ𝑝
𝑛

𝜕(𝑥, 𝑦).               (4.4) 

 General Outline of DES 

DES is a symmetric key encryption scheme, which is designed to encrypt a 64-bits block of 

data. Thus, the input size of the algorithm is 64-bits and the output size is also 64-bits. The 

length of the key is 56-bits and the key is mostly expressed as the block of 64-bits. The 56-

bits are used as a key and the remaining eight least significant bits are utilizes for the parity 

check purpose. DES is consisting of two modules that are the product cipher and the Feistel 
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cipher. The product cipher is used to combines two or more transformations because the 

combinations of the ciphers are more secure than the separated ciphers. A Feistel cipher is the 

iterated cipher that consists of the sequential repetition of the round function. The formal 

definition of the Feistel function is given as follows.  

Definition 4.4. (Feistel function). A Feistel function is an iterated cipher that maps plaintext 

of size 𝑛 = 2𝑚. We denote the left t-bits block and right t-bits block for the plaintext by 

ℒ0 and ℜ0 respectively. Assume that the Feistel function is consist of 𝑟 rounds and the output 

of the 𝑟𝑡ℎ round is the ciphertext, thus we denote the ciphertext by (ℒ𝑟 , ℜ𝑟). The Feistel 

function for the 𝑖𝑡ℎ round (for 1 ≤ 𝑖 ≤ 𝑟) is defined as follows; 

(ℒ𝑖−1, ℜ𝑖−1) ⟼ (ℒ𝑖, ℜ𝑖)                           (4.5) 

                                             (ℒ𝑖, ℜ𝑖) = {
ℒ𝑖 = ℜ𝑖−1                             
ℜ𝑖 = ℒ𝑖−1⊕𝑓(ℜ𝑖−1, 𝒦𝑖)

                 (4.6) 

Where 𝒦𝑖 is the subkey derived through the key schedule algorithm. In DES the number of 

rounds 𝑟 = 16 and the subkeys 𝒦𝑖 size is 48-bits.  

The Feistel function is bijective and thus reversible. So, the same key uses for the encryption 

and decryption procedure. The Xor is used in the function to combine the output of the round 

function with the left half using the following equation.  

ℒ𝑖−1⊕𝑓(ℜ𝑖−1, 𝒦𝑖) ⊕ 𝑓(ℜ𝑖−1, 𝒦𝑖) = ℒ𝑖−1                (4.7) 

The equation 4.7 and Fig. 1.  demonstrate that the DES algorithm is independent of the 

design of the function 𝑓. The invertibility of 𝑓 function does not produce an impact on the 

invertibility of the DES algorithm. Accordingly, if the function 𝑓 is invertible or not, though 

the Feistel function is always invertible.  
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Figure 1. The Feistel function structure of DES 

 Construction of Galois fields 𝑮𝑭(𝟐𝟔) and S-boxes 

It is already discussed in chapter 1, that ℤ𝑝 is a prime field of order 𝑝. A polynomial 𝑝(𝑦) ∈

ℤ𝑝[𝑦] that cannot factor in the product of polynomials of the ring ℤ𝑝[𝑦] is called an 

irreducible polynomial. Let 𝑝(𝑦) be an irreducible polynomial in ℤ𝑝[𝑦], and the ring ℤ𝑝[𝑦] is 

the principal ideal domain by Theorem 1.14. Therefore, the ideal generated by 𝑝(𝑦) is a 

maximal ideal in ℤ𝑝[𝑦], which is denoted by < 𝑝(𝑦) > and defined as; 

             < 𝑝(𝑦) > =  {𝑎(𝑦): 𝑎(𝑦) =  𝑝(𝑦). ℎ(𝑦), 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 ℎ(𝑦) ∈  ℤ𝑝[𝑦] }.            (4.8) 

Thus, the quotient ring ℤ𝑝[𝑦]

<𝑝(𝑦)>
 is a finite field of the order 𝑝𝑛, which is known as Galois 

field 𝐺𝐹(𝑝𝑛), where 𝑛 is the degree of the polynomial 𝑝(𝑦). The field ℤ𝑝[𝑦]
<𝑝(𝑦)>

  consists of all 

polynomials having a degree strictly less than 𝑛. The subtraction and addition operation 

performs over the field  ℤ𝑝, that are the same operations as performed in ℤ𝑝[𝑦]. However, the 

product of the polynomials performs over modulo 𝑝(𝑦). A polynomial 𝑓(𝑦) ∈ ℤ𝑝[𝑦]

<𝑝(𝑦)>
   is said 

to be the multiplicative inverse of the non-zero polynomial 𝑔 ∈ ℤ𝑝[𝑦]

<𝑝(𝑦)>
 , if and only if 

𝑓(𝑦)𝑔(𝑦) ≡ 1 𝑚𝑜𝑑 𝑝(𝑦).  

4.4.1 Construction of Galois fields  

The main interest of this study is the Galois field𝑠 𝐺𝐹(26)  of order 26. To construct Galois 

field 𝐺𝐹(26), initially choose a degree 6 primitive irreducible polynomial 𝑝(𝑦) in  ℤ2[𝑦], and 

then find the root 𝛽 of the polynomial 𝑝(𝑦) i.e., 𝑝(𝛽) = 0. Subsequently, generate the 

multiplicative cyclic group 𝐺𝐹(26) − {0}  from the root 𝛽 by computing all 𝛽𝑖 for 1 ≤ 𝑖 ≤

26 − 1. Hence each nonzero element of the field 𝐺𝐹(26)  can be expressed as a power of the 

primitive element 𝛽. We consider the set {𝑝𝑖(𝑦) ∈ ℤ2[𝑦]: 𝑝𝑖(𝑦) is irreducible and 1 ≤ 𝑖 ≤ 6} 



 

58 
 

of six primitive irreducible polynomials of degree 6, to construct corresponding the Galois 

Fields ℤ𝑝[𝑦]

<𝑝𝑖(𝑦)>
, 1 ≤ 𝑖 ≤ 6. Next, these Galois fields are utilized to construct 6 × 6 S-boxes. 

The primitive irreducible polynomials of degree 6 and their corresponding Galois fields are 

listed in Tab. 3.  

 

4.4.2 Construction of 𝟔 × 𝟔 S-boxes  

The construction of the S-box required a nonlinear bijective map. In the proposed work, we 

use the multiplicative inverse function module degree 6 primitive irreducible polynomial 

𝑝𝑖(𝑦) as a power permutation for the construction of S-boxes. The mapping is defined as 

follows:    

𝑔𝑖:
ℤ2[𝑦]

< 𝑝𝑖(𝑦) >
⟶

ℤ2[𝑦]

< 𝑝𝑖(𝑦) >
 

                                                𝑔𝑖(𝑤) = {
𝑤−1        𝑖𝑓 𝑤 ≠ 0
0             𝑖𝑓 𝑤 = 0

                                        (4.9) 

The images 𝑔𝑖(𝑤) for all 0 ≤ 𝑤 ≤ 63  are then converted into an 8 × 8 lookup table, which 

is the required S-box. Thus, for each degree 6 primitive irreducible 𝑝𝑖(𝑤) for 1 ≤ 𝑖 ≤ 6 one 

can obtain a different S-box that is denoted by 𝑆𝑖. Tab. 4 (a-f) depicted the generated S-boxes 

corresponding to different primitive irreducible polynomials and Galois field ℤ2[𝑦]

<𝑝𝑖(𝑦)>
.  Section 

4.5 analyzed the Proposed S-boxes with well-known analyses such as nonlinearity, BIC, 

SAC, LP, and DP to examine the quality of the S-boxes. 

Table 3. List of degree 6 primitive irreducible polynomials over ℤ𝟐 
Primitive Polynomials  𝐺𝐹(26) Primitive Polynomials 𝐺𝐹(26) 
𝒑𝟏(𝒚) = 𝒚

𝟔 + 𝒚 + 𝟏; 𝜷𝟏 ℤ2[𝑦]

< 𝑝1(𝑦) >
 𝑝4(𝑦) = 𝑦

6 + 𝑦5 + 1; 𝛽4 ℤ2[𝑦]

< 𝑝4(𝑦) >
 

𝒑𝟐(𝒙)= 𝒚𝟔 + 𝒚𝟒 + 𝒚𝟑 + 𝒚 + 𝟏;  𝜷𝟐 ℤ2[𝑦]

< 𝑝2(𝑦) >
 𝑝5(𝑥)= 𝑦6 + 𝑦5 + 𝑦3 + 𝑦2 + 1;  𝛽5 ℤ2[𝑦]

< 𝑝5(𝑦) >
 

𝒑𝟑(𝒙)= 𝒚𝟔 + 𝒚𝟓 + 𝒚𝟐 + 𝒚 + 𝟏;  𝜷𝟑 ℤ2[𝑦]

< 𝑝3(𝑦) >
 𝑝3(𝑥)= 𝑦6 + 𝑦5 + 𝑦4 + 𝑦 + 1;  𝛽3 ℤ2[𝑦]

< 𝑝6(𝑦) >
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Theorem. 4.5. ([42]) Let 𝑙 be an affine transformation and 𝑔 be the power permutation with 
good cryptographic properties in the Galois field 𝐺𝐹(2𝑚), then the APA composition is 
defined as follows:   

𝑆(𝑥) = 𝑙 ∘ 𝑔 ∘ 𝑙       (4.10) 

The equation (4.10) preserves the cryptographic properties of 𝑔 and takes on stronger 

algebraic complexity. 

Remark. 4.6. A composition function of an affine function with a function 𝑔 from the right-

hand side or the left-hand side preserved the properties of linearity and differential uniformity 

of the function 𝑔.   

Table 4. Proposed S-boxes   

4 (a) Proposed S-box 1 𝐒𝟏  4 (b) Proposed S-box 2 S2 
0 1 33 62 49 43 31 44  0 1 45 54 59 18 27 30 
61 54 51 39 26 35 14 24 48 10 9 49 32 62 15 14 
63 2 27 21 56 9 50 19 24 51 5 58 41 56 53 35 
42 4 38 18 10 29 17 60 16 50 31 6 42 38 7 26 
57 37 52 28 46 40 22 25 12 63 52 23 47 61 29 43 
23 15 20 34 11 53 45 6 57 20 28 39 55 2 60 36 
13 47 48 5 7 30 12 41 8 11 25 17 34 22 3 44 
36 8 59 58 55 16 3 32 21 40 19 4 46 37 13 33 
 
4 (c) Proposed S-box 3 𝐒𝟑  4(d) Proposed S-box 4 S4 
0 1 51 34 42 30 17 56  0 1 48 32 24 63 16 45 
21 53 15 29 59 55 28 10 12 27 47 37 8 26 38 21 
57 6 41 27 52 8 61 48 6 44 61 28 39 15 34 41 
46 33 40 19 14 11 5 43 4 62 13 9 19 60 58 50 
47 25 3 50 39 63 62 36 3 49 22 40 46 11 14 20 
26 18 4 31 45 44 24 32 35 23 55 53 17 7 36 10 
23 60 35 2 20 9 58 13 2 33 31 59 54 43 52 42 
7 16 54 12 49 22 38 37 57 56 30 51 29 18 25 5 
 
4 (e) Proposed S-box 5 𝐒𝟓  4 (f) Proposed S-box 6 S6 
0 1 54 36 27 28 18 20  0 1 57 46 37 26 23 33 
59 12 14 46 9 58 10 47 43 31 13 51 50 10 41 39 
43 62 6 21 7 19 23 22 44 29 54 35 63 60 32 6 
50 48 29 4 5 26 33 34 25 24 5 36 45 17 42 9 
35 30 31 32 3 55 60 45 22 7 55 19 27 4 40 15 
53 57 63 16 61 39 11 15 38 14 30 8 16 28 3 56 
25 51 24 49 56 40 2 37 53 58 12 11 59 48 18 34 



 

60 
 

 Performance Analyses 

An efficient cryptosystem should be secure against all kinds of attacks. Since the security of 

the block ciphers depends on the choice of the S-box, therefore this section thoroughly 

analyzes the performance of the proposed 6 × 6 S-boxes to figure out the best S-box. The 

good quality S-box in these S-boxes is then deployed in the proposed modified DES. Besides, 

we will also compare the obtained results with the super AES 8-bits S-box.  

4.5.1 Nonlinearity  

In section 4.2, the definition of the nonlinearity for the Boolean function has been already 

discussed. The general formula to calculate the upper bound of the nonlinearity of the 

function 𝑓: ℤ2𝑚 ⟶ ℤ2 is 2𝑚−1 − 2
𝑚

2
−1 [43]. Therefore, the maximum possible nonlinearity 

for 𝑚 = 6 is 𝑁𝑚𝑎𝑥 = 28. The nonlinearity of all S-boxes is calculated, the obtained results 

are listed in Tab. 5 (a-f). It can be seen that overall, the average nonlinearity analyses of all S-

boxes are quite good and capable to resist linear attacks. Moreover, from the tables, one can 

observe that the average nonlinearity of the S-box 𝑆1 is equal to 𝑆2. Similarly, the average 

nonlinearity value of 𝑆3 is equal to 𝑆4 and the 𝑆5 average nonlinearity value is the same as 𝑆6. 

Therefore, the pair of S-boxes that are consist of 𝑆5 and 𝑆6 are the best S-boxes with respect 

to nonlinearity analysis.  

 

4.5.2 Differential Cryptanalysis 

Differential approximation probability (DP) analysis is applied to evaluates the differential 

uniformness of the S-box. The minimum possible value of differential uniformity for the 

𝑚 × 𝑛 S-box is 𝛿(𝑆) =  2𝑚−𝑛+1 [44]. Thus, for the 6-bit S-box in which 𝑚 =  𝑛 = 6 the 

𝛿𝑚𝑖𝑛 = 2. The S-box having minimum differential uniformity is known as almost perfect 

Nonlinear [43]. We have calculated the differential distribution matrix Λ(S) of all the 

Table 5. The nonlinearity of the proposed S-boxes 
5 (a). The nonlinearity of the S-box 𝑺𝟏  5 (b). The nonlinearity of the S-box 𝑆2  
Function  𝑓0 𝑓1 𝑓2 𝑓3 𝑓4 𝑓5  Function  𝑓0 𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 

Nonlinearity 24 22 16 24 20 20 Nonlinearity 22 22 22 22 22 20 

 
5 (c). The Nonlinearity of the S-box 𝑺𝟑                         5 (d). The Nonlinearity of the S-box 𝑺𝟒 
Function  𝑓0 𝑓1 𝑓2 𝑓3 𝑓4 𝑓5  Function  𝑓0 𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 

Nonlinearity 20 24 22 20 22 22 Nonlinearity 22 24 22 22 22 20 

 
5 (e). The Nonlinearity of the S-box 𝑺𝟓                      5 (f). The Nonlinearity of the S-box 𝑺𝟔 
Function  𝑓0 𝑓1 𝑓2 𝑓3 𝑓4 𝑓5  Function  𝑓0 𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 

Nonlinearity 24 22 22 22 24 20 Nonlinearity 24 20 22 22 24 22 
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generated S-boxes, which are shown in Tab. 6 (a-f). As can be seen in the tables that the 

differential distribution table of all 6-bit S-boxes are consist of 4, 6, and 8 except the 

element 𝜆63 and the distribution table for the S-box 𝑆5 also contain 10. Therefore, the 

differential approximation probability is 0.1250 for the S-boxes 𝑆1, … , 𝑆4 and 𝑆6, however 

the differential probability of the S-box 𝑆5 is 0.1563. Overall, the differential approximation 

values of all S-boxes are approximately equal to the DP value of the AES S-box, nowadays 

considered as a super S-box.  Accordingly, the modified DES S-boxes have enough strength 

against the differential cryptanalysis attack. 

 

4.5.3 Strict Avalanche Criterion 

In general, an S-box is considered a lookup table of Boolean functions from ℤ2𝑚 to ℤ2𝑛 for 

𝑚 ≥ 𝑛 (see [45]). Feistel has suggested an important criterion for the designation of 

cryptographic function. A Boolean function 𝑓: ℤ2𝑚 → ℤ2
𝑛 is said to be exhibit the avalanche 

effect if the following equation hold. 

      ∑ 𝑤𝑡(𝑓(𝑢)⨁𝑓(𝑢 ⊕ 𝑐𝑖
𝑛)) = 𝑛2𝑚−1

𝑢∈ℤ2
𝑚

.                               (4.11) 

For all 𝑖 (1 ≤ 𝑖 ≤ 𝑚), where 𝑐𝑖𝑛 is a vector consist of all zeroes except at the 𝑖𝑡ℎ position. 

Accordingly, this definition means, that a Boolean function is said to fulfill the avalanche 

criterion if and only if the average half of the output bits change, whenever one changes a 

single bit in the input bits. This implies that if a single input bit changes, then the output bits 

Table 6 DP Analysis of the Proposed S-boxes 
6 (a) DP table of 𝑺𝟏                     6 (b) DP table of S2  6 (c) DP table of S3 
6 6 8 4 4 6 6 4  6 4 6 6 6 4 4 4 6 4 6 6 6 4 4 4 
4 6 4 6 6 4 6 4 6 6 4 8 8 6 4 6 6 6 8 6 6 4 4 4 
4 6 4 6 6 4 6 6 6 6 8 6 6 4 6 6 4 4 6 4 4 4 6 6 
6 6 4 6 4 6 6 6 6 6 4 4 6 4 6 8 8 6 4 4 6 4 8 6 
6 6 6 8 4 4 6 4 6 4 6 6 4 4 4 6 4 6 4 4 8 6 4 8 
4 4 4 4 4 8 4 4 8 4 6 4 6 6 6 4 6 8 4 4 6 6 6 6 
8 8 6 6 6 6 8 6 4 6 4 6 6 4 4 8 6 6 4 4 4 4 6 4 
6 4 4 8 4 4 6 0 4 6 4 6 8 6 6 0 4 6 6 6 6 6 6 0 
 
6 (d) DP table of 𝑺𝟒                     6 (e) DP table of 𝑆5                     6 (f) DP table of 𝑆6                    
4 6 6 8 6 4 6 6 6 6 6 4 4 6 4 6 6 6 6 6 6 6 6 6 
4 8 6 6 4 6 6 4 6 4 4 4 8 4 6 6 4 6 8 6 6 6 4 6 
6 8 6 4 6 4 6 4 4 6 4 4 4 4 6 6 8 4 4 6 4 4 4 8 
8 4 6 4 4 6 6 8 4 4 4 4 6 6 6 6 4 4 6 6 6 4 6 4 
6 6 8 6 4 8 4 4 4 4 8 4 6 4 8 6 6 4 6 4 6 6 6 4 
8 4 8 4 6 6 8 6 4 6 6 6 6 4 6 4 6 6 6 6 6 4 6 6 
6 8 6 6 6 4 6 8 4 4 6 4 4 4 8 4 4 6 4 4 4 4 6 4 
6 8 4 8 6 6 6 0 4 1 4 4 4 6 6 0 8 6 6 8 6 6 4 0 
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will change with 0.5 probability. According to Adams and Tavares, the function of Hamming 

weight 2𝑚−1 for all output, 𝑚-bits leads the S-box with the good avalanche.  Because every 

vector 𝑓𝑗 complement the input bit 𝑥𝑏 according to alteration in the location from the position 

𝑓𝑗𝑖  and 𝑓𝑗𝑘, for some positive integer 𝑗 and 𝑘. If the vector 𝑓𝑗 contains an equal number of 

ones and zeroes, then for all possible inputs with complementing the bit 𝑥𝑏 yields the 

function 𝑦𝑖 to be inverted 50%. Therefore, for all 𝑓1, 𝑓2, … , 𝑓𝑛 with the property of hamming 

weight 2𝑚−1 inverts average half bits in 𝑦1, 𝑦2, … . 𝑦𝑛 by inverting a bit 𝑥𝑏 of the input bits.  

Since all the Boolean functions of the proposed S-boxes are complete, therefore the proposed 

S-boxes successfully satisfy SAC with an average probability approximately equal to 0.5 as 

can be seen in Tab. 7(a-g).  

 

4.5.4 Linear approximation probability 

 In a linear approximation probability, the study of the greatest imbalance of the system is 

carried out. The input and output 𝐿𝑖 and 𝐿𝑜 o, respectively. 𝐿𝑜 equal output bits ordered in the 

same way as the equal input bits with mask 𝐿𝑖 define LP. From a mathematical perspective, it 

may be stated as follows: 

                                        𝐿𝑃 =
𝑚𝑎𝑥

𝐿𝑖, 𝐿𝑜 ≠ 0
|
{⋕ 𝑖 ∈ 𝑍|𝑖. 𝐿𝑖 = 𝑆(𝑖). 𝐿𝑜}

2𝑛
−
1

2
|                          (4.12) 

Where the order of the set of the input value is 2𝑛.  In Table 8 (a-f), the values of maximum 

linear approximation probability of the S-boxes 𝑆2, 𝑆3 and 𝑆4 are the same, their value is 

equal to 0.187500. Similarly, the result of the linear approximation of the S-box 𝑆5 and 𝑆6 are same 

that is equal to 0.2187500. The result of 𝑆1 is equal to 0.25000 as shown in the tables. Since the 

Table 7. SAC Analysis of proposed S-boxes 
7 (a) SAC Analysis of S-box 𝑺𝟏  7 (b) SAC Analysis of S-box 𝑆2 
Result Minimum Maximum Average  Result Minimum Maximum Average  

SAC 0.3750 0.6250 0.5069 SAC 0.4063 0.5938 0.5130 

 
7 (c) SAC Analysis of S-box 𝑺𝟑  7 (d) SAC Analysis of S-box 𝑆4 
Result Minimum Maximum Average  Result Minimum Maximum Average  

SAC 0.437500 0.4965277 0.49652 SAC 0.37500 0.4904 0.49045 

 
7 (e) SAC Analysis of S-box 𝑺𝟒  7 (f) SAC Analysis of S-box 𝑆5 
Result Minimum Maximum Average  Result Minimum Maximum Average  

SAC 0.43750 0.49998 0.49913 SAC 0.40625 0.49499 0.49479 
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probability results of all S-box are near zero therefore all S-boxes are secure against linear 

cryptanalysis. 

 

The performance analyses demonstrate that the results of all analyses of the proposed S-

boxes are quite better. According to Theorem 4.5, the APA transformations preserve the 

cryptographic properties of the S-box, so we used the APA transformation to increase the 

number of good quality S-boxes and robust their algebraic complexity. In the next section, we 

deployed the APA transformation in the Feistel network to enhance the security of the DES 

algorithm.   

  Modified DES Algorithm  

DES is a sixteen-round cryptosystem, each of its rounds is the combination of bits 

permutation, expansion of bits, substitution step, and XOR operation.  The practice of the bit 

permutation step is to rearrange the order of the data aims to produce diffusion in the 

ciphered data. The usage of exclusive XOR operation is used to mix the round key with the 

plain data. The S-box is used to produce confusion in the ciphered data. In these operations 

the S-box is the only nonlinear component, thus modification in any other operation of the 

algorithm would not make them less successful. In this study, we modified the DES 

algorithm by fitting a good quality 6-bits S-box in the 𝐹-function and keep the other 

operation unchanged. The modified DES attains the following obligatory principles. 

i. Large Key Space, against the brute force attack. 

ii. Highly nonlinear output functions; the maximum distance from the linear functions. 

iii. Successfully resist the linear and differential cryptanalysis.  

Table 8. LP Analysis of proposed S-boxes   
8 (a). LP Analysis of S-box 𝑺𝟏  8 (b). LP Analysis of S-box 𝑆2 
Result Minimum Maximum Average  Result Minimum Maximum Average  

SAC 0 0.25000 0.04765 SAC 0 0.187500 0.04908 

 
8 (c). LP Analysis of S-box 𝑺𝟑  8 (d).  LP Analysis of S-box 𝑆4 
Result Minimum Maximum Average  Result Minimum Maximum Average  

SAC 0 0.187500 0.04960 SAC 0 0.187500 0.04895 

 
8 (e). LP Analysis of S-box 𝑺𝟓  8 (f).  LP Analysis of S-box 𝑆6 
Result Minimum Maximum Average  Result Minimum Maximum Average  

SAC 0 0.218750 0.04882 SAC 0 0.218750 0.04895 
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iv. High nonlinearity is attained; degrees of the output bit functions are increased. 

v. Efficient construction that can be easily implemented in hardware and software. 

4.6.1  Generation of Key dependent 6-bits S- boxes 

The key size of the modified DES is increased up to 12𝑛+56-bits. The first 56-bits of the key 

are used to derive the sixteen round keys 𝑘𝑖. There is no change in the design procedure of 

the round keys schedule.  The last 12𝑛-bits are divides into 2𝑛 sub-blocks of 6-bits. 

Afterward, the subblocks are transformed into the decimal forms, which are of course the 

elements of the Galois field 𝐺𝐹(26). The obtained elements are then used as parameters of 

APA transformation. For instance, let 𝑎1, 𝑎2, … , 𝑎2𝑖 be the obtained elements. Then the APA 

transformation can be written as follows: 

                  𝑆(𝑤) = (𝑎2𝑖−1(…𝑎7(𝑎5(𝑎3(𝑎1(𝑤−1)⨁ 𝑎2)⨁𝑎4)⨁ 𝑎6)⨁ 𝑎8…)⨁𝑎2𝑖         (4.13) 

Where 𝑤 is the element of the Galois field 𝐺𝐹(26). Accordingly, for each different 

combination of 𝑎𝑖 ≠ 0, one can obtain different S-box of the same cryptographic properties 

and algebraic complexity. The purpose of the APA transformation is: first, it increases the 

keyspace of the algorithm, increases the algebraic complexity of the S-box, and generates a 

considerable number of key-dependent S-boxes having the same cryptographic properties. 

For the decryption, the same key generates the inverse of the S-box using the inverse of the 

APA transformation 𝑆, which is given in the equation (4.13).  

4.6.2  Modified DES Feistel Network 

The Feistel network was introduced by Horst Feistel. In general, it is a transformation that is 

consists of permutation and substitution, called 𝐹 function. The F-function is the nonlinear, 

reversible, and key-dependent mapping, that maps the input string of the data into the output 

string of the data. The Feistel network has been widely used in many block ciphers such as in 

DES, GOST [46], FEAL [48], RC5[47], Khufu and Khafre [48], Blowfish [49], and LOKI 

[50]. In this study, the Feistel network used in the DES is of our specific interest. The Feistel 

network plays a vital role in the security of DES. The input string of F-function of the round 𝑖 

is the right half output of the round 𝑖 − 1, which is denoted by 𝑅𝑖−1. The detailed procedure 

of the modified F-function as the modified F-function initially uses the E expansion and 

expands the 32-bit input data into 48-bit blocks. Afterward, the F-function carries out the 

XORed operation and mixed the 48-bits with the round key 𝐾𝑖. After the xor operation, the 

scheme divides the 48-bits block into eight 6-bits sub-blocks and substitutes each sub-block 

by the generated 6 × 6 S-box. The substitution method is: the first three least significant bits 
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(LSB) selects the column of the S-box and the most significant bits (LSB) selects the row of 

the S-box. The output data are then again fed into eight different DES S-boxes. The detailed 

procedure of the modified Feistel network is demonstrated in Fig. 2.  

 

Example 4.6. Let 𝐼 = 45 be the input for the proposed 6 × 6 S-box. The decimal 

representation of 45 is 101101𝑥. From the decimal representation, the MSB of the input 𝐼 is 

101𝑥 = 5, which indicates the fifth row of the 6 × 6 S-box, the counts of the rows start from 

zero 0. Similarly, the decimal representation of the LSB of the input 𝐼 is again 101𝑥 = 5 that 

indicates the fifth column of the S-box 𝑆1.  The counts of the columns also start from zero 0.  

Thus, if the input 𝐼 is substitute with the S-box 𝑆1, which is given in Tab. 1, then the output of 

the S-box is 𝑆1(45) = 53.  

4.6.3 Key Compliment  

The order of the keyspace of the DES algorithm is equal to 252. In that key space, half of the 

keys can be obtained by complimenting bitwise the other half keys. Since the DES cipher 

holds the following properties. 

𝐸(𝑃, 𝐾) = 𝐶    ⇒   𝐶̅ = 𝐸(�̅�, �̅�)                           (4.14) 

Figure 2. Flow Chart of the Modified F-function 
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Therefore, it makes the brute force attack simpler. The attacker has to check half possible 

keys to break the DES through brute force attack. However, the S-boxes deployed in the 

modified DES are key-dependent, which does not satisfy the following property. 

𝑆(𝑃, 𝑘) = 𝐶   ⇒   𝐶̅ = 𝑆(�̅�, �̅�)                            (4.14) 

Implies that  

𝑀𝐸(𝑃, 𝐾) = 𝐶    ⇏   𝐶̅ = 𝑀𝐸(�̅�, �̅�)                  (4.15) 

Where 𝑀𝐸 denote the modified DES cipher, 𝐾 denote the Modified DES key, 𝑆 denote the 

substitution cipher of the scheme and 𝑘 signify the subblock of the keys 𝐾 that is used to 

generate the S-box 𝑆. Since the modified DES scheme does not hold the property given in 

equation 4.13. Hence, the attackers have to check all the keys in case of a brute force attack. 

We have examined the claim about the compliment property while using the arbitrary key 

and the plaintext using both algorithms DES and modified DES ciphers, the outcome is 

depicted in Tab. 9. From the table, it can be seen that the compliments of the DES cipher are 

equal to the ciphertext obtained as a result of using the key compliment and the plaintext 

compliment.  However, the compliment of the Modified DES ciphertext is not equal to the 

ciphertext given in the compliment row. Accordingly, the modified DES algorithm does not 

satisfy the complement property. 
Table 9. Testing Result 
Data Original Compliment 
Key  8, 9, 10, 11, 12, 13, 14, 15 247, 246, 245, 244, 243, 242, 241, 240 
Plaintext  50, 54, 12, 43, 23, 54, 53, 55 205, 201, 243, 212, 232, 201, 202, 200 
Ciphertext (DES) 126,248,50,203,126,186,50,103 129, 7, 205, 52, 129, 69, 205, 152 
Ciphertext (M DES) 133, 34, 22, 27, 234, 98, 194, 62 29, 16, 66, 205, 192, 5, 56, 74 
 

4.6.4 The Brute force attacks 

A brute force attack is a classical attack that is used to check all the possible keys until the 

correct key is found. In this era, symmetric key ciphers with 100-bits key or less are 

susceptible to brute force attacks. The DES algorithm uses 56-bit keys and therefore, it was 

proved to be insecure against the brute force attack. The modified DES algorithm uses 

12𝑛+56-bits. Accordingly, for 𝑛 ≥ 5, the algorithm will able to resist the brute force attack. 

Since the modified DES algorithm is almost secure against linear and differential attacks, so 

the algorithm will be secure for 𝑛 = 1, if all the round keys 𝐾𝑖 are derived independently or 

by another complex method.  
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Chapter 5 

5 A Novel Image Encryption Scheme Based on Finite 

Algebraic Structures 
 

 Introduction  

Nowadays digital image plays an important role in different societal segments. The image 

data have various applications across the world such as in defense, medical imaging, 

advertisement, and business, etc. Due to the extensive use of digital images in different fields, 

the security of digital image data gains considerable attention in the field of cryptography. 

Therefore, researchers have presented numerous new crypto-algorithms for image encryption 

in the last few years. Researchers have presented various algorithms based on chaos theory 

that are specific for the encryption digital images [51 -58]. Subsequently, some of them are 

proved to be unsecured against different attacks, due to defect in their internal structure 

[59,60]. Li et al. examined the algorithm presented in [61] and claimed that the encryption 

schemes based on only pixel position permutations and substitution can be easily broken over 

the chosen-plaintext attack. Zang et al. explored the security weakness of the image 

encryption scheme based on the perceptron model given in [59] and concluded that the secret 

key can be rebuilt easily if just one pair of plaintexts or ciphertext is known. Norouzi et al. 

[62] devised an image encryption technique utilizing a hyperchaotic system that is used to 

create diffusion in a single round. Whereas Zong et al. [63] observed error in the Norouzi 

technique and claimed that this technique is not secure against different attacks such as 

chosen plaintext. Moreover, the combination of DNA and chaos is used in numerous image 

encryption algorithms. The scheme that utilized DNA and 3D chaotic system for image 

encryption schemes are given in [64]. In continuation, they investigated defects in the 

proposed scheme and found the weakness in the scheme, which manifested the scheme 

unsecured against the chosen-plaintext attack. Furthermore, Liu et al. examined the internal 

structure of image cipher based on one round modified permutation-diffusion pattern and 

confirmed the weakness of the scheme, they reported that the scheme is not capable to resist 

chosen-plaintext attack. Keeping all these problems in view, this chapter proposed a novel 

color image encryption technique utilizing permutation network and substitution network 

based on integer ring module 𝑛 and 16 Galois fields of 256 elements constituted by 16 

distinct degrees 8 primitive irreducible polynomials over the field  ℤ2. For the design of the 
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cryptosystem first, we picked   ℤ𝑛, the ring of integers modulo n, whereas the non-negative 

integer 𝑛 depends on the size of an image and carried out row-wise permutation. Along with 

this, we considered 16 newly constructed Galois fields of 256 elements. After row-wise 

permutation on the image, we divide it into sixteen blocks and substitute each sub-block with 

a different S-box.  In continuation, we further used the structure of the ring ℤ256 and 

multiplicative operation over a 256 elements Galois field 𝔽28. Consequently, random 

sequences are obtained, the substituted image is shuffled using acquired sequences. The 

strength of the proposed scheme is determined by different renowned cryptographic analyses. 

The results revealed that the anticipated technique is more secure as equated to the chaotic 

image encryption presented in literature. 

 Preliminaries  

Definition 5.2.1. The set of all 𝑛 × 𝑛 invertible matrices having entries from a field 𝔽 and 

satisfy all the group properties under matrix multiplication and is called general linear group, 

denoted by 𝐺𝐿(𝑛, 𝔽 ).  

Definition 5.2.2. Let 𝒢 be a group and 𝒳 be a non-empty set. Then the map 𝓌: 𝒢 × 𝒳 → 𝒳 

is said to be a group action if for all ℊ,𝒽 in 𝒢 and  𝓍 in 𝒳, the following axioms hold; 

i. 𝓌(ℊ,𝓌(𝒽, 𝓍)) = 𝓌(ℊ𝒽, 𝓍) 

ii. 𝓌(ℯ, 𝓍) = 𝑥, where ℯ is the identity element of 𝒢 

 The algebraic structures-based Encryption algorithm  

This section introduces the proposed algorithm. The proposed scheme is suitable for colure 

image encryption and is comprised of four rounds.  In the first round, the scheme splits the 

color channels of the RGB plain image. Then permutes row-wise R, G and B channels utilize 

2 × 2 matrix with entries from the unite group 𝒰(ℤℳ) intersect 𝒰(ℤ𝒩), where ℳ and 𝒩 

represent the number of rows and columns respectively, in the plain image. This 

transformation provides three altered channels.  For the purpose to attain high nonlinearity in 

the algorithm, the scheme uses the S-box construction method, which is being discussed in 

section 3.1, and the set of all degree 8 primitive irreducible polynomials with the coefficient 

from the field ℤ2 to generate sixteen S-boxes. Furthermore, the scheme splits each shuffled 

colure component into sixteen subblocks, and substitute each subblock with different S-box 

and then combine the substituted subblocks. After getting three substituted matrices, the 

algorithm builds a random matrix of the size ℳ×𝒩 utilize the structure of integer ring ℤ256 

and polynomial multiplication module degree 8 irreducible polynomial over a field ℤ2. Then 

perform XOR operation bitwise between the randomly generated matrix and each substituted 
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matrix and one get three twisted matrices. In the final round, we combine the color-modified 

channels and obtained the ciphered image.  The step-by-step procedure of the new encryption 

scheme is displayed in Fig. 3. 

 

Figure 3. Flow chart of the proposed scheme 
 

5.3.1 S-boxes Construction 

The construction of S-box utilized in the proposed approach is based on the action of general 

linear group 𝐺𝐿(2, 𝔽28) on the finite field 𝔽28 of order 256.   

                                             𝓌: 𝐺𝐿(2, 𝔽28) × 𝔽28 → 𝔽28 

𝓌(ℳ,𝓎) = ℱℳ(𝓎)                   (5.1) 

Where ℱℳ(𝓎) =
𝛼(𝑦)+𝛽

𝛾(𝓎)+𝛿
 and 𝛼, 𝛽, 𝛾 and 𝛿 are the elements of 𝔽28. ℱℳ  is a bijective mapping 

from 𝔽28 to 𝔽28 , and the resultant values of ℱℳ are then converted into a 16 × 16 lookup 

table, which is the required S-box.  

 

5.3.2 Encryption process 

Step 1. Input color image ℐ(ℳ,𝒩, 3) of size ℳ ×𝒩. Split the image into three Channels 

Red, Green, and blue. Convert the color channels of the image into three matrices 𝑅𝒬, 𝐺𝒬 
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and 𝐵𝒬. Subsequently, use the following transformation and change each pixel's position of 

the image. After alteration, one can get three matrices in the new arrangement 𝑅𝒫, 𝐺𝒫 and 𝐵𝒫. 

(𝒾
′

𝒿′
) = (

𝓅1 𝓅2
𝓅3 𝓅4

) × (𝒾
𝒿
)                                                      (5.2) 

(
𝒾′

𝒿′
) = (

  𝓅1 × 𝒾 + 𝓅2 × 𝒾 𝑚𝑜𝑑   ℳ
 𝓅3 × 𝒾 + 𝓅4 × 𝒿 𝑚𝑜𝑑   𝒩 

)     if   
  𝓅1 × 𝒾 + 𝓅2 × 𝒾 𝑚𝑜𝑑   ℳ ≠ 0
 𝓅3 × 𝒾 + 𝓅4 × 𝒿 𝑚𝑜𝑑   𝒩 ≠ 0

         (5.3) 

(
𝒾′

𝒿′
) = (

𝓅1 × 𝒾 + 𝓅2 × 𝒿 𝑚𝑜𝑑𝑒  ℳ  

𝒩
)       if    

 𝓅1 × 𝒾 + 𝓅2 × 𝒾 𝑚𝑜𝑑 ℳ   ≠ 0
𝓅3 × 𝒾 + 𝓅4 × 𝒿 𝑚𝑜𝑑   𝒩 = 0

      (5.4) 

(
𝒾′

𝒿′
) = (

 ℳ 

𝓅1 × 𝒾 + 𝓅2 × 𝒿 𝑚𝑜𝑑𝑒 𝒩  
)       if     

𝓅1 × 𝒾 + 𝓅2 × 𝒾 𝑚𝑜𝑑 ℳ  = 0
𝓅3 × 𝒾 + 𝓅4 × 𝒿 𝑚𝑜𝑑   𝒩 ≠ 0

       (5.5) 

(
𝒾′

𝒿′
) = (

 ℳ 

𝒩
)                                                 if    

𝓅1 × 𝒾 + 𝓅2 × 𝒾 𝑚𝑜𝑑 ℳ   = 0
𝓅3 × 𝒾 + 𝓅4 × 𝒿 𝑚𝑜𝑑   𝒩 = 0

          (5.6) 

 

Where 𝓅1, 𝓅2, 𝓅3 and 𝓅4 ∈ ℤℳ ∪ ℤ𝒩, satisfies the condition 𝓅1𝓅4 − 𝓅2𝓅3 ∈  𝒰(ℤℳ) ∩

 𝒰(ℤ𝒩). In the above equations, the pairs (𝒾, 𝒿) represent the position of the pixels in the 

corresponding matrices  𝑅𝒬, 𝐺𝒬 and 𝐵𝒬, and (𝒾′′, 𝒿′′) pair represent the pixel position of each 

newly permuted matrices 𝑅𝒫, 𝐺𝒫 and 𝐵𝒫. 

Step 2. This step substitutes the obtained permuted matrices using sixteen S-boxes to enhance 

the randomness in the proposed scheme. For S-boxes generation, the scheme chose the set of 

all degree 8 primitive irreducible polynomials over the field ℤ2; 

{𝒽𝑗(𝑦) ∈ ℤ2[𝑦]: 𝒽𝑗(𝑦)  is irreducible, 1 ≤ j ≤ 16 }             (5.7) 

Thus, for each 𝑗 the quotient ring   ℤ2[𝑦]
<𝒽𝑗(𝑦)>

 form a field isomorphic to the Galois field 𝐺𝐹(28). 

Accordingly, the nonzero elements of each of these fields form a group known as the Galois 

cyclic group generated by the primitive element 𝒶𝑖, corresponding to the irreducible 

polynomial 𝒽𝑗(𝑦). The list of Galois fields against their primitive irreducible polynomials is 

given in Tab. 10.  For S-boxes construction, it is used the above degree 8 primitive 

irreducible polynomials and the action of the general linear group over a newly designed 

finite field that is defined as; 

𝓌𝑗: 𝐺𝐿 (2,
ℤ2[𝑦]

<𝒽𝑗(𝑦)>
 ) ×

ℤ2[𝑦]

<𝒽𝑗(𝑦)>
→

ℤ2[𝑦]

<𝒽𝑗(𝑦)>
; 

             𝓌𝑗(𝒜,𝓎) = ℱ𝑗𝒜
(𝓎)                                (5.8) 

                                                      ℱ𝑗𝒜(𝓎) =  
𝛼(𝓎)+𝛽

𝛾(𝓎)+𝛿
                                  (5.9) 
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Where 𝒜 = [
𝛼 𝛽
𝛾 𝛿

] ∈ 𝐺𝐹 (2,
ℤ2[𝑦]

<𝒽𝑗(𝑦)>
). For a particular ℳ and for each 𝑗, 1 ≤ 𝑗 ≤ 16. The 

mapping ℱ𝑗𝒜 generates sixteen S-boxes having diverse algebraic and statistical properties. 

Moreover, over the cryptographic properties of these S-boxes are closed to the standard S-

box of AES and APA S-box, the justification is given [65]. Furthermore, the scheme divides 

the permuted color components 𝑅𝒫, 𝐺𝒫 and 𝐵𝒫 into sixteen sub-blocks, and substitute each 

sunblock with a different S-box. At last, after the use of these newly generated sixteen S-

boxes, the algorithm combines the substituted sub-blocks and obtained three substituted 

blocks 𝑅𝒮, 𝐺𝒮 and 𝐵𝒮. 

 

Step 3. For the pixels, transposition generate a sequence (𝓍𝑛) from 1 up to ℳ ×𝒩. Then 

convert each element of the sequence into the range of  0 − 255 using the following 

equation: 

𝓍𝑛
′ = 𝑚𝑜𝑑(𝓍𝑛, 256)                 (5.10) 

In the next step, the scheme uses the multiplicative operation of a group  ℤ2[𝑦]

<𝒽1(𝑦)>
\{0} and 

generate a three random sequence from 𝓍′ with the help of the following equations; 

𝓍𝑅 = 𝑎 × 𝓍𝑛
′𝑚𝑜𝑑𝒽1(𝑦)                (5.11)         

𝓍𝐺 = 𝑏 × 𝓍𝑛
′𝑚𝑜𝑑𝒽3(𝑦)                (5.12) 

𝓍𝐵 = 𝑐 × 𝓍𝑛
′𝑚𝑜𝑑𝒽4(𝑦)                (5.13) 

Where 𝑎, 𝑏 and 𝑐 are the elements of the set ℤ2[𝑦]

<𝒽1(𝑦)>
\{0,1}. After getting matrices 𝓍𝑅, 𝓍𝐺  

and 𝓍𝐵, permute each matrix by using the following transformation; 

Table 10. Primitive irreducible polynomials and their corresponding Galois fields 
Irreducible Polynomial 
𝒽𝑖(𝑦);  Primitive element  

Galois 
Field 

Irreducible Polynomial 
𝒽𝑖(𝑦)  Primitive element 

ℤ2[𝑦]

< 𝒽𝑖(𝑦) >
 

𝒽1(𝑦) = 𝑦
8 + 𝑦4 + 𝑦3 + 𝑦2 + 1 ℤ2[𝑦]

< 𝒽1(𝑦) >
 𝒽9(𝑦) = 𝑦

8 + 𝑦7 + 𝑦3 + 𝑦2 +1; 𝒶9 ℤ2[𝑦]

< 𝒽9(𝑦) >
 

𝒽2(𝑦)= 𝑦8 + 𝑦5 + 𝑦3 + 1; 𝒶2 ℤ2[𝑦]

< 𝒽2(𝑦) >
 𝒽10(𝑦) = 𝑦

8 + 𝑦7 + 𝑦5 + 𝑦3 +1; 𝒶10 ℤ2[𝑦]

< 𝒽10(𝑦) >
 

𝒽3(𝑦)= 𝑦8 + 𝑦5 + 𝑦3 + 𝑦2 + 1; 𝒶3 ℤ2[𝑦]

< 𝒽3(𝑦) >
 𝒽11(𝑦) = 𝑦

8 + 𝑦7 + 𝑦2 + 𝑦 +1; 𝒶11 ℤ2[𝑦]

< 𝒽11(𝑦) >
 

𝒽4(𝑦) = 𝑦
8 + 𝑦6 + 𝑦3 + 𝑦2 +1; 𝒶4 ℤ2[𝑦]

< 𝒽4(𝑦) >
 𝒽12(𝑦) = 𝑦

8 + 𝑦7 + 𝑦6 + 𝑦 +1; 𝒶12 ℤ2[𝑦]

< 𝒽12(𝑦) >
 

𝒽5(𝑦) = 𝑦
8 + 𝑦6 + 𝑦4 + 𝑦3 + 𝑦2 +

𝑦 +1; 𝒶5 
ℤ2[𝑦]

< 𝒽5(𝑦) >
 𝒽13(𝑦) = 𝑦

8 + 𝑦7 + 𝑦6 + 𝑦5 + 𝑦2 + 𝑥 +1; 
𝒶13 

ℤ2[𝑦]

< 𝒽13(𝑦) >
 

𝒽6(𝑦) = 𝑦
8 + 𝑦6 + 𝑦5 + 𝑦 +1; 𝒶6 ℤ2[𝑦]

< 𝒽6(𝑦) >
 𝒽(𝑦) = 𝑦8 + 𝑦7 + 𝑦6 + 𝑦3 + 𝑦2 + 𝑦 +1; 𝒶14 ℤ2[𝑦]

< 𝒽14(𝑦) >
 

𝒽7(𝑦) = 𝑦
8 + 𝑦6 + 𝑦5 + 𝑦2 +1; 𝒶7 ℤ2[𝑦]

< 𝒽7(𝑦) >
 𝒽(𝑦) = 𝑦8 + 𝑦7 + 𝑦6 + 𝑦5 + 𝑦4 + 𝑦2 +1; 
𝒶15 

ℤ2[𝑦]

< 𝒽15(𝑦) >
 

𝒽8(𝑦) = 𝑦
8 + 𝑦6 + 𝑦5 + 𝑦3 +1; 𝒶8 ℤ2[𝑦]

< 𝒽8(𝑦) >
 𝒽16(𝑦) =   𝑦

8  +  𝑦6  +  𝑦5  +  𝑦4  +  1; 𝒶16 ℤ2[𝑦]

< 𝒽16(𝑦) >
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(
𝓂′

𝓃′
) = (

𝑧1 𝑧2
𝑧3 𝑧4

) × (
𝓂

𝑛
) 

(
𝓂′

𝓃′
) = (

  𝑧1 ×𝓂+ 𝑧2 ×𝓃 𝑚𝑜𝑑ℳ
 𝑧3 ×𝓂+ 𝑧4 ×𝓃 𝑚𝑜𝑑𝒩

)  if 
  𝑧1 ×𝓂+ 𝑧2 ×𝓃 𝑚𝑜𝑑ℳ ≠ 0
   𝑧3 ×𝓂+ 𝑧4 × 𝓃 𝑚𝑜𝑑𝒩 ≠ 0

                (5.14) 

(
𝓂′

𝓃′
) = (

𝑧1 ×𝓂 + 𝑧2 × 𝓃 𝑚𝑜𝑑ℳ     

𝒩
)  if  

 𝑧1 ×𝓂+ 𝑧2 ×𝓃 𝑚𝑜𝑑ℳ ≠ 0
 𝑧3 ×𝓂+ 𝑧4 ×𝓃 𝑚𝑜𝑑𝒩 = 0

              (5.15) 

(
𝓂′

𝓃′
) = (

 ℳ 

𝑧1 ×𝓂 + 𝑧2 ×𝓃  𝑚𝑜𝑑𝒩 
) if  

𝑧1 ×𝓂+ 𝑧2 ×𝓃 𝑚𝑜𝑑ℳ = 0
𝑧3 ×𝓂+ 𝑧4 ×𝓃 𝑚𝑜𝑑𝒩 ≠ 0

                   (5.16) 

                        (
𝓂′

𝓃′
) = (

 ℳ 

𝒩
)  if  

𝑧1 ×𝓂+ 𝑧2 ×𝓃 𝑚𝑜𝑑ℳ = 0
𝑧3 ×𝓂+ 𝑧4 × 𝓃 𝑚𝑜𝑑𝒩 = 0

                                    (5.17) 

For any 𝑧1, 𝑧2, 𝑧3 and 𝑧4 ∈ ℤℳ ∪ ℤ𝒩. Where (𝓂,𝓃) represent the coordinates of the 𝓍𝑅,  𝓍𝐺  

and 𝓍𝑇, and (𝓂′, 𝓃′) pair represents the coordinates of the new matrices 𝓍𝑅′,  𝓍𝐺′ and 𝓍𝑇 .′ 

Then transpose the substituted blocks using the following formulas: 

𝑅ℰ = 𝑏𝑖𝑡𝑥𝑜𝑟( 𝓍𝑅
′, 𝑅𝒮)                                 (5.18) 

𝐺ℰ = 𝑏𝑖𝑡𝑥𝑜𝑟( 𝓍𝐺
′, 𝐺𝒮)                                 (5.19) 

𝐵ℰ = 𝑏𝑖𝑡𝑥𝑜𝑟( 𝓍𝑅
′, 𝐵𝒮)                                 (5.20) 

Then combine 𝑅ℰ, 𝐺ℰ and 𝐵ℰ matrices and recover the encrypted RGB image. The encrypted 

images with the proposed scheme along with the original images are depicted in Fig. 4. 

 
Figure 4. (a-e) shows the original four images; (f-j) represents corresponding encrypted four images 

5.3.3 Decryption process 

Step 1. The decryption process of the proposed scheme is the same as the encryption process. 

However, it starts from the last step. For the decryption, first, convert the encrypted image 

into three matrices 𝑅ℰ, 𝐺ℰ and 𝐵ℰ. The first round of the encryption processes is same as the 
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step 2 of the encryption process which we have already discussed, and get back the 

matrices 𝑅𝒮, 𝐺𝒮 and 𝐵𝒮. 

Step 2. In this step, the scheme generates the inverse S-box utilize degree 8 primitive 

irreducible polynomials given in Tab.10. The inverse sixteen S-boxes are generated using the 

following inverse map:  

ℱ𝑗ℳ(𝓎)=𝛿(𝓎) + 𝛽/𝛾(𝓎) + 𝛼    (5.21) 

Then divide the matrices 𝑅𝒮, 𝐺𝒮 and 𝐵𝒮 into sixteen sub-blocks, substitute each sub-block 

with inverse S-box and then combine the sub-blocks and get the matrices 𝑅𝒫, 𝐺𝒫 and 𝐵𝒫. 

Step 3. The decryption process initially permutes the color components of the encrypted 

image using the following equations:  

(
𝓂′

𝓃′
) =  (

  𝑑 × 𝓅
4
×𝓂 + 𝑑 × (−𝓅

2
) × 𝓃 𝑚𝑜𝑑ℳ

  𝑑 × (−𝓅
3
) × 𝓂 +  𝑑 × 𝓅

1
× 𝓃 𝑚𝑜𝑑𝒩

) if
  𝑑 × 𝓅

4
×𝓂 + 𝑑 × (−𝓅

2
) × 𝓃 𝑚𝑜𝑑ℳ ≠ 0

 𝑑 × (−𝓅
3
) × 𝓂 +  𝑑 × 𝓅

1
× 𝓃𝑚𝑜𝑑𝒩 ≠ 0

   

       = (
  𝑑 × 𝓅4 ×𝓂 + 𝑑 × (−𝓅2) × 𝓃 𝑚𝑜𝑑ℳ

   𝒩
)  if 

  𝑑 × 𝓅4 ×𝓂 + 𝑑 × (−𝓅2) × 𝓃 𝑚𝑜𝑑ℳ ≠ 0
 𝑑 × (−𝓅3) ×𝓂 +  𝑑 × 𝓅1 × 𝓃𝑚𝑜𝑑𝒩 = 0

           (5.22)     

      = (
 ℳ 

𝑑 × (−𝓅3) ×𝓂 +  𝑑 × 𝓅1 × 𝓃 𝑚𝑜𝑑𝒩 
) if
  𝑑 × 𝓅4 ×𝓂 + 𝑑 × (−𝓅2) × 𝓃 𝑚𝑜𝑑ℳ = 0
 𝑑 × (−𝓅3) ×𝓂 +  𝑑 × 𝓅1 × 𝓃𝑚𝑜𝑑𝒩 ≠ 0

              (5.23) 

                                          (
𝓂′

𝓃′
) =    (

ℳ 

𝒩
)  if 

  𝑑 × 𝓅4 ×𝓂 + 𝑑 × (−𝓅2) × 𝓃 𝑚𝑜𝑑ℳ = 0
 𝑑 × (−𝓅3) ×𝓂 +  𝑑 × 𝓅1 × 𝓃𝑚𝑜𝑑𝒩 = 0

                             (5.24) 

Where 𝑑 denote the determinant of a matrix of equation 1, and (𝓂′′, 𝓃′′) pair represent the 

position of the pixels of matrices 𝑅𝒫, 𝐺𝒫and 𝐵𝒫. After applying the above transformation, the 

scheme acquires the color components in the original form. In the last step for the recovery of 

the original image combine the matrices 𝑅𝒬, 𝐺𝒬 and 𝐵𝒬 and get the original image.   

 Security and performance analyses 

An efficient cryptosystem should have the capability of resistance against all standard attacks 

(statistical and differential). In this study, we perform image encryption experiments using 

JPEG images ‘Lena’, ‘Pepper’ ‘Baboon’, and ‘Deblur’ shown in Fig. 4(a-d). The matrix 

elements (𝓅1, 𝓅2, 𝓅3, 𝓅4) were selected (13,3,50,167), the matrix elements for S-boxes 

generation (𝛼, 𝛽, 𝛾, 𝛿) were chosen as (121,45,67,145) and the matrix elements for column-

wise permutation (𝓆1, 𝓆2, 𝓆3, 𝓆4) were fixed as (10,7,5,7). The elements 𝑎, 𝑏, 𝑐 were chosen 

to be 128,255 and 100.  

5.4.1 Keyspace analysis  

The keyspace is the set of all possible keys which are used during the process of encryption 

and decryption. An efficient cryptosystem should have a large key space to deal with threats 

like a brute force attack. The keys utilized in the proposed cryptosystem are given below: 
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a) The matrix elements are 𝓅1, 𝓅2, 𝓅3 and 𝓅4. 

b) The elements of the chosen Galois field are 𝛼, 𝛽, 𝛾 and 𝛿. 

c)  The elements of a second matrix are considered to be 𝓆1, 𝓆2, 𝓆3 and 𝓆4. 

d) The integers 𝑎, 𝑏, and 𝑐. 

Indeed; (i) each 𝓅𝑖 ∈ ℤ𝒩 , 𝓆𝑖 ∈ ℤℳ for 1 ≤ 𝑖 ≤ 4, satisfying the extra 

condition 𝑚𝑜𝑑(𝓅1𝓅4 − 𝓅2𝓅3,𝒩) ∈ 𝒰(ℤ𝑁), ( 𝑚𝑜𝑑(𝓆1𝓆4 − 𝓆2𝓆3,ℳ) ∈ 𝒰(ℤℳ), by 

keeping 𝓅𝑖 and 𝓆𝑖  fixed. (iii) 𝛼, 𝛽, 𝛾, and 𝛿 ∈ 𝐺𝐹(28)  and the parameters 𝑎, 𝑏, and 𝑐 denotes 

the elements of the ring ℤ256\{0,1}.  Since, the total number of different 𝛼, 𝛽, 𝛾 and 𝛿 which 

can be used as a part of the secret key is 4.2781 × 1009, and the total possible numbers of 

𝑎, 𝑏, and 𝑐 is 16194277,  such number of parameters can also be used for the purpose of the 

secret key. Thus, for a fixed 𝓅𝑖 and 𝓆𝑖 the keyspace is 6.9281 × 1016. Therefore, the 

proposed scheme can resist brute force attacks. 

5.4.2 Histogram analysis  

Histogram analysis is often used to investigate the cryptosystem's resistance to various forms 

of attack, including statistical attacks. Since the cryptosystem is expected to manipulate the 

original data and create unpredictability in the data, it is recommended that it be avoided For 

this reason, the well-designed cryptosystem should output data that has values that are highly 

likely and disparate, since this prevents the encrypted data from providing information that 

enables the attacker to decipher the data without the secret key. We use histogram analysis to 

examine the suggested encryption method, and this is shown in Fig. 5. The original Lena 

image's histogram is initially displayed in the first three figures, while the encrypted image's 

histogram is shown in the final figures. From the histogram of the original picture, it can be 

observed that the histogram is entirely random. But although the histogram of the encrypted 

picture is uniform, it's not correct to say that it is histogram-matched. Under this approach, 

statistical attack are hard to accomplish, and the evedroppers will be unable to collect 

information from the encrypted data. 
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Figure 5 Histogram Analysis of Lena Original and Encrypted Image 

5.4.3 Information entropy  

 In order to determine the uncertainty in the encrypted data, the information entropy analysis 

is used. When uncertainty increases, so does entropy; when uncertainty reaches its greatest 

conceivable value, entropy is at its highest point. In layman's terms, the information entropy 

analysis is shown mathematically as follows. 

𝐻 = −∑𝒫(𝑘)𝑙𝑜𝑔2𝒫(𝑘)           

ℒ

𝑘=0

                        (5.25) 

Where ℒ indicates the grayscale single component of the image and 𝒫(𝑘) signifies the 

probability of the appearance of the grey-value 𝑘. In this case, the theoretical value 𝐻 

corresponding to the digital image is 8. So, the cryptosystem is considered to be well-secured 

if the information entropy value of the ciphered image is 8. We inspect the proposed scheme 

through information entropy analysis; the results are tabulated in Tab.11. From the table, one 

can noticed, that the information entropy values of the encrypted images that are encrypted 

via suggested scheme are much closed to 8. The resultant values revealed that the scheme 

produced optimum uncertainty in the ciphered images, therefore the proposed scheme is 

capable to defy the entropy attack.  

 

 

Table 11. Information Entropy Analysis 
Images Original Image  Ciphered Image 

Red Green Blue Red Green Blue 
Lena 7.3277 7.6048 7.1326 7.997 7.9972 7.9973 
Baboon 7.0359 7.1724 6.4955 7.997 7.9969 7.9972 
Peppers 7.3920 7.6150 7.1738 7.997 7.9972 7.9973 
Deblur  6.4955 7.1724 6.4955 7.997 7.9969 7.9972 
Panda 7.1574 7.6091 7.2604 7.997 7.9973 7.9967 
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5.4.4 Correlation Analysis   

The correlation coefficient is a statistical test used to examine the strength of the 

cryptosystem in comparison to various statistical assaults. Data in multimedia is tightly 

linked. One way to summarise this advice is that well-secured cryptosystems should stop data 

segment correlation. These studies focus on data segments. The correlation coefficient's 

mathematical form is:                                 

                                     𝛾𝑢𝑣 =
𝑐𝑜𝑣(𝑝, 𝑞)

√𝒟(𝑝)𝒟(𝑞)
                                                (5.26) 

Where  

                                                    𝑐𝑜𝑣(𝑝, 𝑞) =
1

𝒫
∑𝑝𝑖 − ℰ(𝑝)(𝑞𝑖 − ℰ(𝑞))                          (5.27)

𝒫

𝑖=1

 

                                                             𝒟(𝑝) =
1

𝒫
∑(𝑝𝑖 − ℰ(𝑝))

2

𝒫

𝑖=

                                          (5.28) 

And 

                                                                            ℰ(𝑝) =
1

𝒫
∑𝑝𝑖

𝒫

𝑖=1

                                             (5.29) 

 In the equation 5.29, 𝑝𝑖 denote the selected sample at 𝑖𝑡ℎ position and 𝑞𝑖 denote the 

corresponding adjacent sample. We use correlation coefficient analysis to evaluate the 

suggested system. In the majority of cases, several dimensions of data correlation are 

assessed such as vertical, horizontal, and diagonal. Due to the fact that digital images spread 

Table 12. Comparing entropy for Lena (256 × 256) image  

Images  Red Green   Blue Average   Gray 
Proposed  7.9971 7.9972 7.9973 7.9972 7.99722 
Ref. [66] 7.9973   7.9969 7.9971 7.9971 - 
Ref. [67] 7.9893  7.9896 7.9903 7.9897 - 
Ref. [68] 7.9973  7.9972 7.9969 7.99713 - 
Ref. [69] 7.9896   7.9893 7.9896 7.98964 - 
Ref. [70] 7.9901   7.9912 7.9921 7.91133 - 
Ref. [71] 7.9892  7.98987 .9899 7.98963 - 
Ref. [72]  - - - - 7.9996 
Ref. [73]  - - - - 7.9981 
Ref. [74] - - - - 7.9902 
Ref. [75] - - - - 7.9902 
Ref. [76]     7.9904 
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their data in the form of a matrix, we ran a correlation study in all three dimensions 

(vertically, horizontally, and diagonally) to identify how our proposal matched with other 

algorithms. Tab. 13 displays the results. Using the correlation analysis of the original picture, 

it is determined that the image data pixels are highly linked. Nevertheless, the correlation 

analysis of the ciphered pictures has a correlation coefficient of nearly zero. Thus, the 

suggested method interleaves the picture data in a systematic manner. By implementing the 

suggested system, it is ensured that it is very difficult to launch a statistical assault. 

   Table 13. Correlation analysis of two adjacent pixels in different directions 

 
              Table 14. Comparing the results of correlation coefficients for Lena (256 × 256) 

Schemes Horizontal Vertical  Diagonal Average 
Plain image 0.9603  0.9325 0.9084 0.9337 
Proposed  0.0019 -0.0024 0.0012 0.0018 
Ref. [66] −0.0027    0.0033 −0.0035 0.0031 
Ref. [77] 0.0072    0.0058 0.0031 0.0054 
Ref. [67] 0.0084   0.0 0 04 −0.0015 0.0034 
Ref. [78] 0.0373    0.0228 −0.0221 0.0274 
Ref. [79] −0.0 0 01   0.0089 0.0091 0.0060 
Ref. [68] 0.0028   0.0018 0.0036 0.0027 
Ref. [80] 0.1257    0.0581 0.0504 0.0781 

 

5.4.5 Avalanche effect 

There are two criteria’s that are commonly used to evaluate the sensitivity of the 

cryptographic scheme, namely number of pixel change rate (NPCR) and (UACI) unified 

average changing intensity. Let ℐ(𝓂,𝓃) and 𝒥(𝑚, 𝑛) be the pixels of the image ℐ and 𝒥 

respectively, where (𝓂,𝓃) represent the position of the pixel. Mathematically NPCR and 

UACI can be calculated using the following formulas. 

                                                   𝑁𝑃𝐶𝑅𝑅 𝐺 𝐵 =
∑ 𝒟(𝓂,𝓃)𝓂,𝓃

ℒ
× 100                                       (5.30) 

Where ℒ denote the total number of pixels and 𝒟 is defined as: 

Images Horizontal Vertical Diagonal 
Red Green Blue Red Green Blue Red Green Blue 

Plain Lena 0.9399 0.938 0.904 0.971 0.974 0.932 0.913 0.914 0.850 
Plain Baboon 0.9503 0.919 0.954 0.944 0.901 0.950 0.907 0.850 0.914 
Plain Peppers 0.9293 0.966 0.927 0.925 0.963 0.933 0.860 0.942 0.876 
Plain Deblur 0.9944 0.991 0.984 0.991 0.987 0.972 0.985 0.980 0.957 
Plain Panda 0.9593 0.976 0.912 0.934 0.953 0.976 0.945 0.956 0.845 
Cipher Lena 0.0141 0.004 0.002 0.006 0.023 0.006 0.001 0.007 0.009 
Cipher Baboon 0.0121 0.007 0.007 0.005 0.001 0.006 0.005 0.002 0.004 
Cipher Pepper 0.0054 0.003 0.003 0.005 0.004 0.005 0.003 0.013 0.004 
Cipher Deblur -0.0024 0.007 0.012 0.003 0.009 0.008 0.003 0.001 0.007 

     Ciphered Panda -0.015 0.032 0.056 0.037 0.037 0.006 0.006 0.007 0.003 
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                                                    𝒟(𝓂,𝓃) = {
1 if ℐ(𝓂,𝓃) = 𝒥(𝑚, 𝑛) 

0 if ℐ(𝓂,𝓃) ≠ 𝒥(𝑚, 𝑛)
                       (5.31) 

The UACI analysis can be determined as: 

                                               𝑈𝐴𝐶𝐼𝑅 𝐵 𝐺 =
1

ℒ
∑

|ℐ(𝓂,𝓃)−𝒥(𝑚,𝑛)|

2𝒩−1𝓂,𝓃 × 100                     (5.32) 

Where 𝒩 represents the total number of bits and 𝒥(𝑚, 𝑛) denote the pixel values of the 

image. The values of NPCR and UACI for a well-organized encryption algorithm can be 

described by the formula given as follows. 

𝑁𝑃𝐶𝑅 = 1 −
1

2𝑚 𝑅 ,𝐺,𝐵
× 100                                 (5.33) 

  and  

𝑈𝐴𝐶𝐼 =
1

2𝑚 𝑅 ,𝐺 ,𝐵
[
∑ 𝑘(𝑘+1)2𝑚 𝑅 ,𝐺,,𝐵−1
𝑘=1

2𝑚 𝑅 𝐺 𝐵−1
] × 100                      (5.34) 

Where 2𝑚 𝑅 ,𝐺 ,𝐵 represent the number of bits in one pixel of the colure component in an RGB 

image. Since the colure image consists of 24-bit values, therefore the upper predictable 

values for the NPCR and UACI are 99.72 and 33.4635 respectively. In this study, we have 

evaluated several images using NPCR and UAC analysis in order to examine the impact of 

one bit of pixel change in the original image. The average value of NPCR and UACI analyses 

of the proposed scheme and some of the other schemes presented in the literature is given in 

Table 15. Results of the Gray image are selected from the literature survey that is based on 

the chaotic map given in [42].  Table 16 signifies that NPCR and UACI values of the 

proposed scheme are better as compared to other mentioned schemes. Thus, the suggested 

technique is sound against differential attack.  

 

 
 
 
 
 
 
 
 
 
 
 
 

Table 15. Differential analyses for the proposed encryption scheme 
Images NPCR  UACI 

Red Green Blue Red Green Blue 
Lena 99.6158 99.6531 99.632 33.873 34.165 34.480 
Baboon 99.9848 99.6972 99.975 33.944 33.983 34.752 
Peppers 99.68931 99.6902 99.545 33.250 34.069 31.356 
Deblur 99.68261 99.53613 99.682 35.365 34775 35.365 
Panda 99.675  99.7912 99.663  33.309 32.749 32.149 
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5.4.6  Mean Square Error (MSE) 

The mean square error analysis evaluates the square error between the ciphered image and the 

original image in [67]. To estimate the cumulative squared dissimilarity between the plain 

and encrypted images, the following mathematical formula is used: 

                                    𝑀𝑆𝐸 =
1

𝑀 × 𝑁
∑ ∑[𝐼(𝜁1, 𝜁2) − 𝐶(𝜁1, 𝜁2)]

2

𝑁

𝜁1=1

𝑀

𝜁2=1

.                              (5.35) 

Where 𝐼(𝜁1, 𝜁2) denote the pixel values of original the image and 𝐶(𝜁1, 𝜁2) denote the pixel 

values of the encrypted version. The dimension of the is denoted by M and N. A higher value 

for MSE can be realized that the scheme produced more error in ciphered and thus suitable 

for encryption. 

5.4.7 Peak Signal-to-Noise Ratio (PSNR) 

Corrupting noise can affect the fidelity of a signal representation. Peak signal-to-noise ratio, 

shortly PSNR is the ratio between the power of a signal and the power of corrupting noise 

[67]. Symbolically, it is stated in terms of the logarithmic decibel scale due to the wide 

dynamic range of signals. In this study, the PSNR analysis is used to evaluate the features for 

the renewal of the encrypted image. In our study, the signal is the plain image and its 

alteration to the encrypted version is induced through the encryption process. The 

mathematical representation of the PSNR is given as follows;  

                                                           𝑃𝑁𝑆𝑅 = 10𝑙𝑜𝑔10
𝑀𝐴𝑋1

2

√𝑀𝑆𝐸
                                         (5.36) 

In general, the greater value of PSNR designates the high quality of the image. However, in 

this case, the low value of the PSNR indicates the quality of the encryption scheme.   

Table 16. Comparing Differential analyses for 256 × 256 Lena image 
Schemes                               NPCR                          UACI  

Red Green  Blue Gray Red Blue Green Gray 
Proposed  0.996 0.9965 0.9963 0.9969 33.8734 0.3387 34.165 0.3410 
Ref. [66] 0.996  0.9961 0.9961 - 0.3356  0.3345  0.3349 - 
Ref. [67] 0.996  0.9960  0.9960 - 0.3346  0.3350  0.3347 - 
Ref. [81] 0.996  0.9960 0.9960  - 0.3336  0.3343  0.3337 - 
Ref. [82] 0.996  0.9960 0.9960  - 0.3360  0.3330  0.3340 - 
Ref. [83] 0.996  0.9959 0.9959  - 0.3344  0.3346  0.3347 - 
Ref. [84] 0.996  0.9954 0.9967  - 0.3312  0.3400  0.3390 - 
Ref. [72]  - - - 0.9962 - - - 0.3340 
Ref. [73]   - - - 0.9962 - - - 0.3319 
Ref. [74]  - - - 0.9961 - - - o.3346 
Ref. [75] - - - 0.9963 - - - 0.33 
Ref. [76] - - - 0.0015 - - - 0.0005 
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5.4.8 Normalized Cross Correlation (NK) 

The similarity between any two images is determined in terms of correlation function [66]. 

Normalized Cross-Correlation determines the resemblance between two images. 

Mathematically, it can be express as:  

                                 𝑁𝐾 = ∑ ∑(𝐼(𝜁1, 𝜁2) × 𝐶(𝜁1, 𝜁2))/

𝑁

𝜁1=1

𝑀

𝜁2=1

∑ ∑[𝐼(𝜁1, 𝜁2)]
2

𝑁

𝜁1=1

𝑀

𝜁2=1

                (5.37) 

Where 𝐼(𝜁1, 𝜁2) denote the pixel value of the original image and 𝐶(𝜁1, 𝜁2) denote the pixel 

value of the encrypted version and M,N is the dimensions of the image. 

5.4.9  Average Difference (AD) 

The average difference analysis quantifies the average of the dissimilarity between the 

mentioned signal and the experiment image. The mathematical form is given as follows: 

                                 𝐴 =
1

𝑀 × 𝑁
∑ ∑[𝐼(𝜁1, 𝜁2) − 𝐶(𝜁1, 𝜁2)]

𝑁

𝜁1=1

𝑀

𝜁2=1

                                        (5.38) 

Where 𝐼(𝜁1, 𝜁2) denote the pixel value of the original image and 𝐶(𝜁1, 𝜁2) denote the pixel 

value of the encrypted version and M,N is the dimensions of the images. 

5.4.10  Structural Content (SC) 

The structural content analysis is used to ascertain the resemblance between two images 

following [67]. The mathematical form of SC is given in the following equation. 

                                                   𝑆𝐶 =
∑ ∑ [𝐼(𝜉1, 𝜉2)]

2𝑁
𝜁1=1

𝑀
𝜁2=1

∑ ∑ [𝐶(𝜉1, 𝜉2)]2
𝑁
𝜁1=1

𝑀
𝜁2=1

                                            (5.39)   

Where 𝐼(𝜉1, 𝜉2) and 𝐶(𝜉1, 𝜉2) denotes the pixel value of the original and encrypted image 

respectively and M,N is the dimensions of the images. 

5.4.11  Maximum Difference (MD) 

The Maximum Difference demonstrates the maximum value of the error signal and the 

dissimilarity between the processed and the reference image.  Mathematically representation 

of MD is given as follows:  

 𝑀𝐷 =  𝑀𝑎𝑥 |𝐼(𝑖, 𝑗) − 𝐶(𝑖, 𝑗)|                                   (5.40) 

The higher the value of the maximum difference indicates the poorer the quality of the image. 

5.4.12  Normalized Absolute Error (NAE) 

The Normalized absolute error valuates the error between the plain and ciphered image is 

signal and test image. Mathematically it can be written as; 
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                                               𝑁𝐴𝐸 =
∑ ∑ |𝐼(𝜁1,𝜁2)−𝐶(𝜁1,𝜁2)|

𝑁
𝜁1=1

𝑀
𝜁2=1

∑ ∑ |𝐼(𝜁1,𝜁2)|
𝑁
𝜁1=1

𝑀
𝜁2=1

                                (5.39) 

Where 𝐼(𝜁1, 𝜁2) indicate the pixel of the original image 𝐶(𝜁1, 𝜁2) denote the values of the 

pixel of encrypted version and M,N is the dimensions of the images. 

5.4.13 Root Mean Square Error (RMSE) 

It is the square root of the average of the square of all the errors [24]. The mathematical 

formula for RMSE is: 

                                 𝑅𝑀𝑆𝐸 = √
1

𝑀 ×𝑁
∑ ∑[𝐼(𝜁1, 𝜁2) − 𝐶(𝜁1, 𝜁2)]2

𝑁

𝜁1=1

𝑀

𝜁2=1

                           (5.40) 

Where 𝐼(𝜁1, 𝜁2) represent the pixel value of the original image, 𝐶(𝜁1, 𝜁2) represent the pixel 

encrypted version and M,N is the dimensions of the images. 

5.4.14  Universal Quality Index (UQI) 

The Universal quality index disrupts the association between plain and inaccurate images into 

three contrasts: luminance, contrast, and structural comparisons. UQI for the two images such 

as X and Y can be defined as: 

                                              𝑈𝑄𝐼(𝐼, 𝐶) =
4µ𝐼µ𝐶µ𝐼𝐶

(µ𝐼2 − µ𝐶2)(σ𝐼2 − σ𝐶2)
                                        (5.41) 

Here 𝜇𝐼and 𝜇𝐶 represents the mean values of the original and the distorted image, and σI, σC 

denote the standard deviation of original and distorted images. 

5.4.15  Mutual Information (MI) 

The possible information that can attain from the encrypted image and the plain image is 

known as mutual information. The mutual information of two images I and C can be defined 

as: 

                                            𝑀𝐼(𝐼, 𝐶) = ∑∑𝑝(𝜁1, 𝜁2)

𝑦∈𝐼𝑦∈𝐶

𝑙𝑜𝑔2
𝑝(𝜁1, 𝜁2)

𝑝(𝜁1, )𝑝(𝜁2, )
                     (5.42) 

Where 𝑝(𝜁1, 𝜁2) is the joint probability function of I and C, and 𝑝(𝜁1)  and 𝑝(𝜁2) are 

the marginal probability distribution functions of the plain image I and ciphered image 

C respectively. 

5.4.16 Structural Similarity (SSIM) 

This SSIM method is used for evaluating the resemblance between the plain and the ciphered 

image. The SSIM index estimates on several windows of the image. The measure between 

two windows X and Y of communal size M×N is given as follows; 
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                       𝑆𝑆𝐼𝑀(𝑋, 𝑌) =
(2µ𝑋µ𝑌 + 𝑐1)(2σ𝑋σ𝑌 + 𝑐2)

(µ𝑋2 + µ𝑌2 + 𝑐1)(σ𝑋2 + σ𝑌2 + 𝑐2)
,                                    (4.43) 

Where μXthe average of 𝑋 is, μY is the average of Y, σX2  is the variance of X, σY2  is the 

variance of Y, σXY is the covariance of X and Y, 𝑐1 = (𝑘1𝐿)2 and 𝑐2 = (𝑘2𝐿)2 are the 

variables to stabilize the division with the weak denominator, L is the dynamic range of the 

pixel values, k1 = 0.01 and k2 = 0.03 by default.  

 

5.4.17  Randomness test for cipher 

The security of a cryptosystem has a few properties such as a uniform distribution, high 

intricacy, and productivity [85,86]. To test that either the proposed scheme achieves these 

properties, we used NIST SP 800-22 randomness test. A portion of these tests comprises 

various analyses. The twisted Lena 24-bit digital image is used to complete all NIST tests. 

The ciphered data is a color image of Lena of size 256×256. The upshots of the tests can 

seem in Tab. 18. By breaking down these outcomes, it can be derived from our anticipated 

digital image encryption tool efficiently passes the NIST tests. Thus, in light of the 

accomplished outcomes, the produced random ciphers in our encryption algorithm can be 

declared that are very asymmetrical in their output. 

 

 

 

 

 

 

 
Table 17. Image Quality Measures for proposed Encryption scheme for 256 × 256 Lena image 
No. Quality 

Measures 
Encrypted image                        Optimal  
Red Green Blue Red Green Blue 

1 MSE 10703.9 8986.7 7088.35 10057.2 9898.89 6948.19 
2 PSNR 7.8354 8.5948 9.62535 8.1060 8.1749 9.7120 
3 NCC 0.656818 1.00524 1.09181 0.6725 1.0031 1.0923 
4 AD 53.2098 -28.2829 -21.7086 50.0448 -31.4276 -19.7989 
5 SC 1.61449 0.578004 0.569411 1.5787 0.5582 0.5711 
6 MD 255 222 223 236 210 210 
7 NAE 0.467477 0.785734 0.664011 0.4537 0.8310 0.6628 
8 RMSE 103.459 94.7982 84.1923 100.286 99.4932 83.3558 
9 UQI 0.0004362 0.001013 0.002474 -0.0050 -0.0077 0.0107 
10 MI 0.475304 0.613626 0.411744 5.6534 7.2283 6.0723 
11 SSIM 0.0106053 0.01004 0.024049 0.0078 0.0053 0.0187 



 

83 
 

 
 

 

 

Table 18. NIST test results for 256 × 256 Lena encrypted image 
    Test                                                                  P – values for color encryptions of encrypted images 
                                                                      Red                            Green                 Blue   
 Frequency  1                                0.062077             0.24198                    
Rank  0.29191                     0.29191               0.29191 
Block.frequency  0.98143                     0.30734               0.37514 
Runs.(M=10,000)  0.65797                     0.23228               0.048694 
Long.runs.of.ones  0.7127                       0.7127                 0.7127 
Overlapping.templates  0.81567                     0.85988               0.85988 
No overlapping templates  0.14679                     1                          0.11048 
Spectral DFT  0.14679                     0.56166               0.88464 
Approximate entropy  0.27672                     0.33157               0.49669 
Universal  0.98969                     0.99097               0.99944 
Serial p values 1 0.10865                     0.064743             0.0043523 
Serial p values 2 0.016347                   0.99345               0.40361 
Cumulative sums forward  0.2424                       0.049371             0.19173 
Cumulative sums reverse  1.0152                       0.096214             1.8054 
Random excursions X = -4 0.027889                   0.34124               0.30154 
 X = -3 0.0059538                 0.22504               0.72093 
 X = -2 0.068559                   0.78272               0.50225  
 X = -1 0.33621                     0.97465               0.58878 
 X = 1 0.54926                     0.88097               0.45178 
 X = 2 0.036168                   0.83031               0.69603 
 X = 3 0.084829                   0.96993               0.25125 
 X = 4 0.083847                   0.41986               0.64007 
Random excursions 
variants 

X = -9 0.58165                     0.56949                0.39647 

 X = -8 0.38837                       0.54483                0.36668 
 X = -7 0.57825                     0.55431              0.31931 
 X = -6 0.90379                     0.65273               0.19001 
 X = -5 0.91133                     0.66982               0.19657 
 X = -4 1                                0.51915               0.28438 
 X = -3 0.654                         0.70292               0.42371 
 X = -2 0.72845                     0.80554               0.43203 
 X = -1 0.94673                     0.52243               0.13057 
 X = 1 0.31623                     0.39377               0.39509 
 X = 2 0.17697                     0.084838             0.82726 
 X = 3 0.10662                     0.18193               0.83266 
 X = 4 0.13623                     0.51915               0.74789 
 X = 5 0.16733                     0.28642               0.85011 
 X = 6 0.10272                     0.36814               0.88672 
 X = 7 0.08152                     0.72275               0.93733 
 X = 8 0.09769                     0.50888               0.92226 
 X = 9 0.10865                     0.50145               0.92696 
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Chapter 6 

6 Finite Fields Applications to Digital Audio Security  
   

  Introduction 

In literature, numerous encryption methods for the security of multimedia data have been 

introduced. For instance, the encryption algorithm for a digital image hinges on chaotic 

systems, and the finite algebra of Galois fields is given in [87-92]. Since the audio files 

contain massive data capacity and somehow different from the other multimedia data. So, for 

the protection of digital audio data, one should design a cryptosystem that can be easily 

adapted to deal with all types of audio formats. In this connection, various encryption 

algorithms are found in the literature for audio data. De Martin and Servetti [93] proposed an 

encryption algorithm for the encryption of telephonic speech relying on the perceptron 

method. The author recommended two different techniques that are used to encrypt partial 

speech. The first scheme was envisioned to have a high bit rate and low-security capability.  

But the cryptanalysis could easily recover the original data from the ciphered speech. 

However, the second scheme can encrypt more bitstream with enough security to ciphered 

audio. Thorwirth et al. presented an algorithm in [94] that consists of a selective encryption 

technique of perceptual audio coding with standard compression. In the suggested scheme the 

main focus of the author is on the examination of the encryption process of the encoded MP3 

files. Subsequently, Servetti et al. [95] proposed MP3 audio, which is the selective partial 

encryption algorithm. The presented algorithm has low time complexity. Besides, the scheme 

misinforms the quality of the original audio sequences, however, it preserves the contents of 

the audio information and perceptual information. Next, in 2004, Bhargava et al. [96] 

proposed four fast encryption algorithms for MPEG video, where a single key is used, which 

randomly changes the sign bits of the Discrete Cosine Transform (DCT) coefficients or the 

sign bits of motion vectors. Grange et al. [97] introduced a new framework that relies on 

randomized arithmetic coding for the security of multimedia data. In the recommended 

framework the security purpose of multimedia data is achieved by producing some 

randomness in the arithmetic coding process. In 2008, Yan et al. [98] introduced a 

progressive multimedia data security scheme by scrambling the audio data in a compressed 

domain. In the proposed scheme the secrete MP3 audio was twisted via a shared secrete key 

before transmission. However, Au and Zhou in [99], showed that the Yan scheme is 

conquerable against key search attacks. In [100], Neto and Lima presented an encryption 
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scheme for digital audio rely on cosine number transform. The suggested encryption 

procedure recursively applies to a block of uncompressed audio data and uses simple 

overlapping to select the block and produce diffusion in the encrypted data.  

This chapter presents a novel lossless audio data encryption scheme based on arithmetic 

operations of an elliptic curve over a finite field ℤ𝑝 and binary Galois filed 𝐺𝐹(2𝑛). Since the 

arithmetic operations of the elliptic curve are performed efficiently, therefor in the first stage 

of the encryption process the proposed scheme uses a special type of curve based on the 

elliptic curve operations and generates a good quality sequence of random numbers. The 

generated sequences are subsequently used to defuse the matrix of the audio data. The 

confusion module of the scheme executes through multiple substitution boxes, which have 

higher nonlinearity. The experimental results demonstrate the efficiency of the proposed 

scheme against various attacks.    

 Preliminaries 

6.2.1  Elliptic Curve 

 An elliptic curve over a finite field 𝔽𝑝 is a plot, which is obtained from the solution of the 

equation  𝐸: 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 (𝑚𝑜𝑑 𝑝), where a, b ∈ 𝔽𝑝 that satisfy the equation (4𝑎3 +

27𝑏2) ≠ 0 (𝑚𝑜𝑑 𝑝). All these points (solutions) with point of infinity (neutral element) 𝑂 

form an abelian group, which is denoted by 𝐸(𝔽𝑝) over elliptic curve arithmetic operation 

that is defined in the following subsection.   

6.2.2 Elliptic curve arithmetic 

Let 𝑃1 = (𝑢1, 𝑣1) and 𝑃2 = (𝑢2, 𝑣2) be any two points lie on the graph of the elliptic curve. 

The operation defines as  𝑃1 + 𝑃2 = (𝑢3, 𝑣3). 

i. If  𝑃1 ≠ 𝑃2 with 𝑢1 ≠ 𝑢2, then  

(𝑢3, 𝑣3) = (𝜆
2 − 𝑢1 − 𝑢2 𝑚𝑜𝑑𝑝, 𝜆(𝑢1 − 𝑢2) − 𝑣1𝑚𝑜𝑑𝑝)             (6.1) 

and 

𝜆 =
𝑣2−𝑣1

𝑢2−𝑢1
 𝑚𝑜𝑑𝑝.                                         (6.2) 

ii.   If  𝑃1 ≠ 𝑃2 with 𝑢1 = 𝑢2 but 𝑣1 ≠ 𝑣2, then 𝑃1 + 𝑃2 = 𝑂. 

iii. If  𝑃1 = 𝑃2 with 𝑣1 ≠ 0, then  

                          (𝑢3, 𝑣3) = (𝜆2 − 𝑢1 − 𝑢2 𝑚𝑜𝑑𝑝, 𝜆(𝑢1 − 𝑢3) − 𝑣1𝑚𝑜𝑑𝑝)             

(6.3) 

and 

                                                           𝜆 = 3𝑢1
2+𝑎

2𝑣1
 𝑚𝑜𝑑 𝑝.                                         

(6.4) 
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iv. If  𝑃1 = 𝑃2 with 𝑣1 = 0, then 𝑃1 + 𝑃2 = 𝑂. 

v. Furthermore, define 

                                                     𝑃 + 𝑂 = 𝑃. for all 𝑃 on 𝐸                                  (6.5) 

On the above footprints, one can easily show that  𝐸(𝔽𝑝) is an abelian group with an identity 

element 𝑂. 

6.2.3 Singular Point 

Let  (𝑢, 𝑣) be a point on affine curve 𝑓(𝑥, 𝑦) = 0 over the field 𝐾. Then the point (𝑢, 𝑣) is 

said to be a singular point of the curve 𝑓(𝑥, 𝑦) = 0 if both partial derivatives  𝜕𝑓
𝜕𝑢

 and 𝜕𝑓
𝜕𝑣

 

vanish at (𝑢, 𝑣).  

The following theorem is from [101]. 

Theorem 6.1. Let 𝐸𝑛𝑠(𝔽𝑝) be the set of non-singular points on 𝐸𝛾,𝑎
𝑝  with 𝛾2 = 𝑎 for some 𝛾 ∈

𝔽𝑝 against a curve 𝐸𝑎
𝑝: 𝑦2  = 𝑥3 +  𝑎𝑥  over a finite field 𝐹𝑝, with 0 ≠ 𝑎 ∈ 𝔽𝑝.  Then the 

homomorphism 

𝜑𝛾: 𝐸
𝑛𝑠(𝐹𝑝) → 𝔽𝑝

∗  

 Defined as 

 𝜑𝛾(𝑢, 𝑣) =
𝑣+𝛾𝑢

𝑣−𝛾𝑢
;  and 𝜑𝛾(𝑂) = 1                                 (6.6) 

is an isomorphism. 

Proposition. 6.2. Let 𝑝 be a prime and 𝐺𝐹(𝑝𝑛), 𝐺𝐹(𝑝𝑚) and 𝐺𝐹(𝑝𝑦) be the Galois fields for 

positive integers 𝑚, 𝑛, and 𝑦. If 𝑦 = 𝑛 +𝑚 then there exist a bijective from 𝐺𝐹(𝑝𝑦) to 

𝐺𝐹(𝑝𝑚) × 𝐺𝐹(𝑝𝑛). 

Proof. Given that 𝐺𝐹(𝑝𝑛), 𝐺𝐹(𝑝𝑚) and 𝐺𝐹(𝑝𝑦) are Galois field and 𝑝 is a prime number. 

Given that 𝑚, 𝑛 and 𝑦 positive integers such that 𝑦 = 𝑚 + 𝑛. Let 𝛼 be the map from the field 

𝐺𝐹(𝑝𝑦) to 𝐺𝐹(𝑝𝑛) × 𝐺𝐹(𝑝𝑚) given as follows;  

𝛼: 𝐺𝐹(𝑝𝑦) → 𝐺𝐹(𝑝𝑛) × 𝐺𝐹(𝑝𝑚) 

Defined by 

𝛼(∑ 𝑎𝑖𝑦
𝑖𝑦−1

𝑖=0 ) = (∑ 𝑎𝑖𝑦
𝑖𝑛−1

𝑖=0 , ∑ 𝑎𝑖𝑦
𝑖−𝑛𝑦−1

𝑖=𝑛  ).                      (6.7) 

To show that 𝛼 is well defined, let 𝑓(𝑦) = 𝑔(𝑦) implies that 𝑔𝑖 = 𝑓𝑖 for all 1 ≤ 𝑖 ≤ 𝑚 − 1. 

Thus  

               (∑ 𝑓𝑖𝑦
𝑖𝑛−1

𝑖=0 , ∑ 𝑓𝑖𝑦
𝑖−𝑛𝑦−1

𝑖=𝑛  ) = (∑ 𝑔𝑖𝑦
𝑖𝑛−1

𝑖=0 , ∑ 𝑔𝑖𝑦
𝑖−𝑛𝑦−1

𝑖=𝑛  )              (6.8) 
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Since 𝑓(𝑦) and 𝑔(𝑦) are the elements of the Galois field 𝐺𝐹(𝑝𝑦).  Therefore, for all 

𝑓(𝑦), 𝑔(𝑦) ∈ 𝐺𝐹(𝑝𝑦) if 𝑓(𝑦) = 𝑔(𝑦) implies  𝛼(𝑓(𝑦)) = 𝛼(𝑔(𝑦)), so the function 𝛼 is well 

defined. To show that the function 𝛼 is one-one, let 

𝛼(𝑓(𝑦)) = 𝛼(𝑔(𝑦))                                               (6.9)                       

(∑ 𝑓𝑖𝑦
𝑖𝑛−1

𝑖=0 , ∑ 𝑓𝑖𝑦
𝑖−𝑛𝑦−1

𝑖=𝑛  ) = (∑ 𝑔𝑖𝑦
𝑖𝑛−1

𝑖=0 , ∑ 𝑔𝑖𝑦
𝑖−𝑛𝑦−1

𝑖=𝑛  )              (6.10) 

Implies that that 𝑔𝑖 = 𝑓𝑖 for all 1 ≤ 𝑖 ≤ 𝑚 − 1. Thus ∑ 𝑓𝑖𝑦
𝑖𝑦−1

𝑖=0 = ∑ 𝑔𝑖𝑦
𝑖𝑦−1

𝑖=0 , so the function 

𝛼 is a one-one function. To show that the function 𝛼 is onto, let (∑ 𝑓𝑖𝑦
𝑖𝑛−1

𝑖=0 , ∑ 𝑓𝑖𝑦
𝑖−𝑛𝑦−1

𝑖=𝑛  ) ∈

𝐺𝐹(𝑝𝑛) × 𝐺𝐹(𝑝𝑚) their exist ∑ 𝑓𝑖𝑦
𝑖𝑦−1

𝑖=0 ∈ 𝐺𝐹(𝑝𝑛) such that 𝛼(∑ 𝑓𝑖𝑦
𝑖𝑦−1

𝑖=0 ) =

(∑ 𝑓𝑖𝑦
𝑖𝑛−1

𝑖=0 , ∑ 𝑓𝑖𝑦
𝑖−𝑛𝑦−1

𝑖=𝑛  ). Hence the 𝛼 function is onto. Since the function 𝛼 is well-defined 

one and onto function thus 𝛼 is a bijective map from 𝐺𝐹(𝑝𝑦) to 𝐺𝐹(𝑝𝑚) × 𝐺𝐹(𝑝𝑛). 

 Audio Encryption Scheme  

The audio technology is used to store, manipulate, reproduce and generate the sound using 

the arrays of the audio signals encoded in digital format. Digital audio can be referred to as 

the sample of discreet sequences, which are completely dependent on audio wave format. The 

digital audio data virtually consists of discreet sockets, which indicate the amplitude of the 

wave of the digital data. This study manipulates the discrete sockets of the digital audio, aims 

to encrypt the original content of the audio. The proposed encryption scheme is designed to 

protect the uncompressed digital audio integer 16 (int16) format. We denote the matrix set of 

the original audio by 𝐴 of dimension 𝑀 × 𝑁 for 𝑁 ∈ {1, 2}. The next subsection discusses the 

step-by-step procedure of the encryption scheme in detail.  

6.3.1  Proposed Random number generator  

The generation of random numbers plays a significant role in various multimedia data 

security applications. The elliptic curve is also widely used for the generation of random 

numbers. In general, the elliptic curve-based random number generation procedure utilizes 

group law and the arithmetic operation of the elliptic curve. This section presents an efficient 

scheme for the generation of random numbers based on the elliptic curve operation. The 

proposed scheme generates distinct random numbers with enough long periods.  Initially, the 

encryption procedure generates a sequence of distinct pseudo-random numbers with a long 

period greater than the length of the audio data. To generate a random sequence, select a large 

prime 𝑝.  Then generate the curve 𝐸𝑎
𝑝: 𝑦2  = 𝑥3 +  𝑎𝑥 𝑚𝑜𝑑 𝑝  through brute force technique. 

Then use the following map to transmute points of the curve 𝐸𝑎
𝑝(𝑢, 𝑣) into the field 𝐹𝑝. 

https://www.sciencedirect.com/topics/computer-science/cryptographic-application
https://www.sciencedirect.com/topics/computer-science/cryptographic-application
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𝜑𝛾: 𝐸𝑎
𝑝 ⟶ 𝔽𝑝 

Defined by 

                       𝜑𝛾(𝑢, 𝑣) =
𝑣+𝛾𝑢

𝑣−𝛾𝑢
                                (6.11) 

Where 𝛾 ∈  𝔽𝑝∗ is the squared element such that 𝛾2 = 𝑎 and (𝑢, 𝑣) is the element of the 

curve 𝐸𝑎
𝑝. The map 𝜑𝛾 is the isomorphism between 𝐸𝑎

𝑝 and 𝔽𝑝 by Theorem 2.2.1. The range 

of the map 𝜑𝛾 generate a sequence of random numbers in the field 𝔽𝑝. Afterward, use the 

obtained sequence of random numbers to shuffle the matrix 𝐴 and get a new data set 𝐴𝑠.  In 

this study, we fixed the elements 𝑎 = 2 and 𝑝 = 99991 to generate a sequence of random 

numbers by using the above procedure. Then we analyzed the generated sequence by the 

NIST test, the results are tabulated in Tab. 22. 

6.3.2 Multiple S-boxes Construction Scheme 

The S-box plays a significant role in symmetric key cryptography. In general, S-box is used 

in the substitution module of the cryptosystem and produces confusion in the cipher data. 

Therefore, the confusion-creating capability of the cryptosystem depends on the quality of the 

S-box. Since audio contains a large amount of data. So, the proposed cryptosystem is 

managed to use multiple S-boxes for better random enhancement in the encrypted data. To 

construct multiple S-boxes, this subsection introduces a novel S-box construction scheme 

based on Galois field 𝐺𝐹(2𝑛). The traditional S-box construction schemes are based on the 

finite field of order 256. However, the proposed construction scheme for multiple S-boxes 

generations is based on the Galois field of order greater than 256. Here, the general idea of 

the construction scheme is discussed. Initially, define a bijective map from the Galois field 

𝐺𝐹(2𝑛)  onto 𝐺𝐹(2𝑛). The mapping is defined as follows. 

𝑆: 𝐺𝐹(2𝑛) ⟶ 𝐺𝐹(2𝑛) 

ℎ̇ ⟼ �̇� ((𝑥(̇ℎ̇) + �̇�)
−1
) + �̇�                  (6.12) 

In equation (6.12), the parameters �̇�, �̇�, �̇� and �̇� denote the elements of the Galois 

field 𝐺𝐹(2𝑛). After the above define an inclusion map from the Galois field 𝐺𝐹(2𝑛) 

onto 𝐺𝐹(2𝑚), follow the following mathematical procedure. 

𝐼𝑘: 𝐺𝐹(2𝑛) ⟶ 𝐺𝐹(2𝑚) 

Define as 

𝐼1(∑ 𝑎𝑖𝑥
𝑖𝑛

𝑖=1 ) = {
∑ 𝑎𝑖𝑥

𝑖𝑚
𝑖=1     𝑖𝑓 𝑖 ≤ 𝑚 − 1

  0              𝑖𝑓 𝑖 > 𝑚 − 1
                        (6.13) 
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𝐼2 (∑𝑎𝑖𝑥
𝑖

𝑛

𝑖=1

) = {  (∑𝑎𝑖𝑥
𝑖 −

𝑛

𝑖=1

∑ 𝑎𝑖𝑥
𝑖

𝑚−1

𝑖=1

)𝑥−𝑚−1      

  0                   

 

𝑖𝑓  𝑚 − 1 < 𝑖 ≤ 2𝑚 − 1

         
𝑖𝑓  𝑖 < 𝑚 − 1 𝑜𝑟  𝑖 > 2𝑚 − 1

       (6.14) 

𝐼𝑘 (∑𝑎𝑖𝑥
𝑖

𝑛

𝑖=1

) =

{
 

 
  (∑𝑎𝑖𝑥

𝑖 −

𝑛

𝑖=1

∑ 𝑎𝑖𝑥
𝑖

(𝑘−1)𝑚−1

𝑖=1

)𝑥−𝑚−1

  0                   

𝑖𝑓  𝑚 − 1 < 𝑖 ≤ 𝑘𝑚 − 1

         
𝑖𝑓  𝑖 < 𝑚 − 1 𝑜𝑟  𝑖 > 𝑘𝑚 − 1

  (6.15) 

Where 𝑘 ≥ 2 and the integer 𝑛 is strictly greater than 𝑚. The composition map 𝐼𝑖𝜊𝑆 

generates 𝑚×𝑚 S-box. Using the above process, one can generate 𝑛 −𝑚 number of S-

boxes.  

6.3.3 Proposed Algorithm  

Step 1. Generate a binary matrix 𝑀 of dimension  𝑀 × 𝑁 to identify the position of the 

negative integers in the matrix of the original audio.    

𝑀𝑖,𝑗 = {
−1        𝑖𝑓 𝐴𝑖,𝑗 < 0

1           𝑖𝑓𝐴𝑖,𝑗 ≥ 0
          (6.16) 

Where 𝐴𝑖,𝑗 indicates the sample of the audio data at (𝑖, 𝑗) position. The aim of generating 

binary matrix 𝑀 is to specify the position of the negative samples. 

Step 2. Select a prime number 𝑝 > 𝑀 × 𝑁 and generate a sequence 𝜎 of random number via 

the proposed random number generator discussed in section 6.16. Then reduce the length of 

the sequence and shuffle the matrix of the original audio using the obtained new sequence.  

𝛿𝑖 = {
𝜎𝑖       𝑖𝑓     𝜎𝑖 ≤ 𝑀𝑁
1       𝑖𝑓      𝜎𝑖 > 𝑀𝑁

          (6.17)  

𝐴𝑖,𝑗 = 𝐴𝛿𝑖,𝛿𝑗                                          (6.18) 

Where 𝛿𝑖 , 𝛿𝑗 denote the position of the integer value of 𝐴𝛿𝑖,𝛿𝑗  in the newly shuffled matrix 𝐴𝑠. 

The waveform and the spectrogram graph of the shuffled audio are shown in Fig 6(b) and Fig 

7(b) respectively. From the figures, one can observe that the permutation step caused 

optimum disruption in the plain audio data.  

Step 3. Next, use the absolute function to transform the entries of the matrix 𝐴𝑠 from the set 

in the rang {−215, 215−1}  to the elements of the Galois field 𝐺𝐹(215). Consequently, get a 

new matrix 𝐴𝐺 .  
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Step 4. Subsequently, convert the elements of the Galois field 𝐺𝐹(215) into the elements of 

the Galois field 𝐺𝐹(28) and Galois field 𝐺𝐹(27) by using the following map. 

𝜓:𝐺𝐹(215) ⟶ 𝐺𝐹(28) × 𝐺𝐹(27) 

Defined by 

𝜓(∑𝑎𝑖𝑥
𝑖

14

𝑖=0

) = (∑𝑎𝑖𝑥
𝑖

7

𝑖=0

,    ∑𝑎𝑖−8𝑥
𝑖−8

14

𝑖=8

)                 (6.19) 

Where 𝑥𝑖 ∈ {0, 1}. By proposition 6.2 the map 𝜓 is bijective. Therefore, by using 𝜓 the data 

in the matrix 𝐴𝐺  splits into two matrices 𝐴𝑝1  and 𝐴𝑝2  containing elements of the Galois fields 

𝐺𝐹(28) and 𝐺𝐹(27) respectively.  

Step 5. Divide the blocks 𝐴𝑝1  into four subblocks. Then generate four 8 × 8 S-boxes using the 

proposed S-box construction method, which we have discussed in subsection 6.3.2. Afterwar 

substitute each subblock with a different S-box and then combine all the subblocks. 

Similarly, divide the block 𝐴𝑝2  into four subblocks and generate four 7 × 7 S-boxes using the 

proposed S-box construction method. Then substitute each subblock with a different S-box 

and combine all the substituted subblocks. Consequently, get new blocks 𝐴𝑠2 and 𝐴𝑠2.     

Step 6. Combine the resultant matrices 𝐴𝑠2 and 𝐴𝑠2 using the inverse map of the map 𝜓, which 

we have discussed in step 4. The inverse map is given as follows.  

𝜓−1: 𝐺𝐹(28) × 𝐺𝐹(27) ⟶ 𝐺𝐹(215) 

Defined by 

𝜓−1 (∑𝑎𝑖𝑥
𝑖

7

𝑖=0

,    ∑𝑎𝑖𝑥
𝑖

6

𝑖=0

) =∑𝑎𝑖𝑥
𝑖

7

𝑖=0

+   ∑𝑎𝑖+8𝑥
𝑖+8

6

𝑖=1

             (6.20) 

In the result of the above map, we get a new matrix 𝐴𝑠1 containing elements of the Galois 

filed 𝐺𝐹(215).  

Step 7. Then mask each element of the matrix 𝐴𝑠1 to produce more diffusion in encrypted 

audio. Firstly, generate a sequence 𝜌 of the nonrandom number of lengths 𝑀 ×𝑁. 

Subsequently, use mode operation and convert the elements of the sequence into the elements 

of the Galois field 𝐺𝐹(215).  

𝐴𝑠2(𝑖, 𝑗) = (𝐴𝑠1(𝑖, 𝑗) + (𝜌(𝑖, 𝑗)
−1)                       (6.21) 
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Where 𝐴𝑠1(𝑖, 𝑗) and 𝜌(𝑖, 𝑗) are the elements of the Galois field 𝐺𝐹(215)  and (𝑖, 𝑗) signify 

integer position in the corresponding matrix. As a consequence of the equation (6.21) get a 

new matrix 𝐴𝑠2.  

 

Step 8. Eventually, use the binary matrix 𝑀 and convert the entries of the matrix 𝐴𝑠2 from the 

Galois field 𝐺𝐹(215) into the set of integers sixteen {−215, 215 − 1}. The mathematical 

representation is given as follows. 

𝐴𝐸(𝑖, 𝑗) = {
𝐴𝑠2(𝑖, 𝑗)     𝑖𝑓  𝑀(𝑖, 𝑗) = 1

−𝐴𝑠2(𝑖, 𝑗)    𝑖𝑓   𝑀(𝑖, 𝑗) = −1
                          (6.20) 

The resultant matrix then converts into the Audio file which is required for the ciphered 

audio. The proposed encryption scheme is applied to various audio files of different sizes and 

different characters. The waveform of the encrypted audio is shown in Fig. 6. From the 

figure, it is evident that the waveform of the encrypted audio is uniform. Accordingly, the 

proposed scheme is capable to secure the actual content of the original audio. The decryption 

process of the scheme is the same as encryption.   

 Security analysis 

A well-organized multimedia data encryption scheme can resist all kinds of attacks such as 

statistical, brute force, and other cryptanalytics attacks. This section analyzes the robustness 

of the proposed encryption scheme against multiple attacks. The test simulations are carried 

out by Matlab 2019(b) on a portable personal computer. To investigate the proposed 

encryption scheme, we have chosen multiple audio samples with different characters such as 

speech, music and we encrypt these samples via the proposed scheme using different keys. 

Fig. 6. shows the waveforms of the original, encrypted, and decrypted audio files. It can be 

seen in the Figure, that the amplitude plotted in the waveform of the encrypted audios is 

uniform and have no similarity with the amplitude of the original audio, thus the audio is 

successfully encrypted. Moreover, the waveforms of the decrypted audio file shown in Fig. 

6(d) are similar to the waveform of the original audio file.  Accordingly, the original audio 

data are successfully recovered from the ciphered data. In the next subsection, we examine 

the scheme over different analyses such as histogram analysis, keyspace analysis, key 

sensitive analysis, and Correlation Analysis. 
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Figure 6. The waveform of the (a) original Audio (b) Permuted Audio.  (3) Encrypted Audio (d) 

Decrypted Audio 

 

6.4.1 Spectrogram analysis 

To perform the spectral analysis of sound, it is recommended to use spectrogram analysis. 

This analysis is demarcated as two- dimensional graph and different colors represent its third 

dimension. It is considered as the pictorial illustration of the frequency of the spectrum that 

fluctuates with respect to time. The third-dimension color identifies the amplitude or loudness 

of the sound at a precise time. The low amplitude is specified by using red and blue colors 

whereas the bright color indicates the stronger amplitude. The results of the spectrogram 

analysis of our encryption scheme are given in Fig. 7. The spectrogram graphs of original and 

encrypted audio files are represented in Fig. 7(a) and Fig. 7(c) respectively. The audio file is 

effectively encrypted which is evident from the uniformity of the spectrogram graph of the 

encrypted audio file. This encrypted audio file has a strong amplitude and altogether different 

spectrogram from the original audio.  
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Figure 7. Spectrogram Graph of (a) Original Audio (b) Permuted Audio (c) Encrypted Audio 

(d) Decrypted Audio 

 

6.4.2 Histogram Analysis 

To assess the quality of any encryption scheme against statistical attacks, it is recommended 

to perform histogram analysis. It is most likely that cryptosystems change the original 

information into noise and generate randomness in the data. It is observed that in an efficient 

cryptosystem most likely the encrypted data does not offer any information which helps to 

decipher the encrypted data free from the requirement of the confidential key. In such 

cryptosystems, the original data is encrypted with similar possible values. Figure 8 represents 

the outcomes of histogram analysis of our encryption scheme. The histogram of the original 

audio is graphically represented in Fig. 8(a) and Fig .8(c) and the histogram of the 

cryptographed audio is made known in Fig 8(b) and Fig 8(d).  One can see that the original 

audio signal histogram is haphazard and heading towards a single point, but the histogram of 

the encrypted audio file is absolutely uniform. It concludes that our technique is shown the 
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strength to counter any statistical outbreak and it's extremely hard to extract info from the 

encrypted information.  

 

 
Figure 8. Histogram Analysis (a) Histogram of the Original audio. (b) Histogram of the corresponding 

encrypted audio (c) Histogram of the original music sound (d) Histogram of the encrypted audio 

sound 

6.4.3  Correlation 

The correlation coefficient is one of the analyses which are performed to evaluate the ability 

of any cryptosystem to fight against various statistical attacks. As data is strongly correlated 

in multimedia applications so, a robust cryptosystem must intrude on the correlation among 

the segment of the data. In this analysis, the focus is to observe the correlation between 

identical sections of the data. The correlation coefficient is given by: 

𝛾𝑢𝑣 =
𝑐𝑜𝑣(𝑝, 𝑞)

√𝒟(𝑝)𝒟(𝑞)
         (6.21) 

Where  

𝑐𝑜𝑣(𝑝, 𝑞) =
1

𝒫
∑𝑝𝑖 − ℰ(𝑝)(𝑞𝑖 − ℰ(𝑞))      (6.22)

𝒫

𝑖=1
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𝒟(𝑝) =
1

𝒫
∑(𝑝𝑖 − ℰ(𝑝))

2

𝒫

𝑖=

          (6.23) 

ℰ(𝑝) =
1

𝒫
∑𝑝𝑖

𝒫

𝑖=1

          (6.24) 

Where sample at 𝑖𝑡ℎ position is signified by 𝑝𝑖 and 𝑞𝑖 indicates the equivalent adjacent 

sample. Commonly, correlation analyses of the data are performed for horizontal, vertical, 

and diagonal directions but as our scheme is dealing in audio data so for the single string data 

only the horizontal direction is taken for correlation analysis. The outcomes of the correlation 

analysis are shown in Table 19. Table 19 indicates that the original audio correlation is 

equivalent to 1, which depicts the sections in the audio data have a strong correlation. On the 

other hand, the correlation analysis for the ciphered audio is nearly a value of 0, i.e., the 

proposed technique analytically intrudes the correlation of the audio segment. Correlation 

analysis of the original and the encrypted audio is represented in Figure 9. It establishes that 

our scheme gradually minimizes the intercorrelation of the audio file. For this reason, our 

proposed technique is robust against malicious statistical attacks.  

 

 
Figure 9. Correlation Analysis (a) Correlation analysis of original image (b) Correlation analysis of 

encrypted image 
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6.4.4 Information entropy  

For coded information, the amount of uncertainty is measured by using information entropy 

analysis. The entropy is directly proportional to the rate of uncertainty i.e.;   higher 

uncertainty in encrypted audio files depicts that it has the higher entropy. We can represent 

entropy as 

𝐻 = −∑𝒫(𝑘)𝑙𝑜𝑔2𝒫(𝑘)       (6.25)

ℒ

𝑘=0

 

Where ℒ directs the grayscale value of the audio file and 𝒫(𝑘) implies the probability of the 

presence of the grey-value 𝑘. For our case, the audio file has a value of 16 in correspondence 

to the theoretical value of 𝐻. So, the cryptosystem is considered to be well-secured, if the 

information entropy of the ciphered file is exactly 16. We examine our new proposed scheme 

by using information entropy analysis and the outcomes are organized in Table 20. It is 

obvious from the Table that the information value of our proposed technique is almost equal 

to 16 for all ciphered audio and hence formed ideal vagueness in the audio file. So, our 

scheme has the ability to resist entropy attacks.  

 

 

 

 

 

Table 19. Correlation Analysis of different Audio 
No Audio Plain Audio Ciphered Audio Size 
1 Animal sound.wav 0.9945 -0.0081 530/Kilobyte 
2 Alarm sound.wav 0.7317 -0.0033 24000 / Kilobyte 
3 Applause sound. Wav 0.8368 -0.0039 783/ Kilobyte 
4 Bells sound. Wav 0.9962 0.0011 32000/ Kilobyte 
5 Birds sound.wav  0.9924 -0.0031 307/ Kilobyte 
6 Female sound.wav  0.9933 -0.0029 32/ Kilobyte 
7 44100 Hz tone.wav 0.9886 -0.0010 434/Kilobytes 
8 Male sound.wav 0.9464 0.0017 345/Kilobytes 
9 Machine sound.wav 0.9523 0.0030 26000 /Kilobyte 
10 Music sound.wav 0.9935 -0.0040 11000/Kilobyte 
11 New intro sound.wav  0.9847 0.0046  900/Kilobyte 
12 Refe.[102]  0.001699 98.6/Kilobyte 
13 Refe.[103]  0.0119 138 /Kilobyte 

14 Refe.[104]  0.0263 138/Kilobyte 
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6.4.5 Differential attacks 

For differential attacks mostly, we consider two analyses i.e.; the number of pixel change 

rates (NPCR) and Unified Average Changing Intensity (UACI).  They calculate the 

sensitivity regarding the cryptosystem. A quality cryptographic algorithm must have 

sensitivity so a minor alteration in the original data produces a massive variation in the cipher 

data. Both NPCR and UACI analysis have the tendency to assess the sensitivity of the 

cryptosystem. NPCR and UACI can be given as. 

𝑁𝑃𝐶𝑅 =
∑ ℬ(𝓊,𝓋)𝓊,𝓋

𝐾
× 100        (6.26)          

In the above equation  𝐾 represent the cardinality of the audio data set and ℬ(𝓊,𝓋) is given 

by 

ℬ(𝓊,𝓋) = {
1     if 𝒜1(𝓊,𝓋) = 𝒜2(𝓊,𝓋) 

0    if 𝒜1(𝓊,𝓋) ≠ 𝒜2(𝓊,𝓋)
           (6.27) 

UACI can be represented as 

𝑈𝐴𝐶𝐼 =
1

𝐾
∑

|𝒜1(𝓊,𝓋) −𝒜2(𝓊,𝓋)|

2𝐾 − 1
𝓊,𝓋

× 100        (6.28)  

where 2𝐾 designates the order of bit in the audio data set. The satisfactory values of NPCR 

and UACI rate of the algorithm is nearly equal to 100 and 33.3333 respectively. We gauge 

the proposed audio encryption technique by using NPCR and UACI analysis and the 

outcomes are shown in Table 21. Table 21 predicts that the proposed technique has tendency 

to negate differential attacks. 

 

Table 20. Entropy Analysis 
No Audio Plain Audio Ciphered Audio Size 
1 Animal sound.wav 8.0065 15.4316 530/Kilobyte 
2 Alarm sound.wav 9.8183 15.5592 24000 / Kilobyte 
3 Applause sound. Wav 13.4401 15.8693 783/ Kilobyte 
4 Bells sound. Wav 13.4216 15.9388 32000/ Kilobyte 
5 Birds sound.wav  4.5625 12.2128 307/ Kilobyte 
6 Female sound.wav  8.5125 14.9905 32/ Kilobyte 
7 44100 Hz tone.wav 9.8134 15.6663 434/Kilobytes 
8 Male sound.wav 10.6914 15.6024 345/Kilobytes 
9 Machine sound.wav 14.1688 15.9271 26000 /Kilobyte 
10 Music sound.wav 14.8475 15.9888 11000/Kilobyte 
11 New intro sound.wav  14.8549 15.8779 900/Kilobyte 
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6.4.6 NIST Statistical Test  

For cryptographic applications, we studied the sequence created by the proposed random 

number generator to assess the random number generator.  To examine the randomness of 

this generated sequence, we first change the random sequence into binary as the NIST test is 

valid for binary data. The NIST statistical test involves sixteen different tests as presented in 

Table 22. The generated sequence conceded all the randomness tests, which shows that our 

proposed technique engenders quality random sequences that have compatibility with 

different audio encryption applications. 

 

 

 

 

 

 

 

 

 

 

Table 21. Differential Analysis 
No Audio Plain Audio Ciphered Audio Size 
1 Animal sound.wav 99.99724 33.1233 530/Kilobyte 
2 Alarm sound.wav 99.99974   33.456 24000 / Kilobyte 
3 Applause sound. Wav 99.99951 33.2203 783/ Kilobyte 
4 Bell’s sound. Wav 99.94041 33.1202 32000/ Kilobyte 
5 Birds sound.wav  99.9884 33.1344 307/ Kilobyte 
6 Female sound.wav  99.99794 33.9205 32/ Kilobyte 
7 44100 Hz tone.wav 99.9940 31.6479 434/Kilobytes 
8 Male sound.wav 99.99728 33.74039 345/Kilobytes 
9 Machine sound.wav 99.9972 33.0987 26000 /Kilobyte 
10 Music sound.wav 99.9996 33.67.8 11000/Kilobyte 
11 New intro sound.wav  99.9992 33.1233 900/Kilobyte 
12 Ref. [102] 99.9972       - 98.6/Kilobyte 
13 Ref. [103] 99.9996       - 138 /Kilobyte 

14 Ref. [104] 99.9992       - 138/Kilobyte 
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Table 22. NIST Randomness Test for cryptographic applications 
No Type of Test P-Value      Conclusion 
1 Frequncy.Test  0.9253077508893466  R 
2 Frequency.Test. Within Block 0.347578425321557  R 
3 RunTest 0.45321310856174435 R 
4 Longeste.Runs.of.One.in a Block 0.43428142438827533 R 
5 Binary. Matrices.Rank.Test 0.7454887332471692 R 
6 Discret Fourier Transform (Spectral) Test 0.12497609962873209 R 
7 Non-Overlapping Template-Matching Test 0.622298646456104 R 
8 Overlapping.Template,Matching,Test 0.1716767122905817 R 
9 Maurer,Universal,Statisticale,test -1.0 NR 
10 Linear,Complxity,Test 0.4812517437344084 R 
 
11 

 
Serial,test: 

0.10591374411110245 R 
0.013298006380999879 R 

12 Approximate,Entropy,Test 0.05546464072097093 R 
13 Cummulative,Sums,(Forward) Test 0.9649804508015285 R 
14 Cummulative,Sums,(Reverse) Test 0.9921805530466228 R 
15 Random Excursions Test: 
 State Chi Squared P-Value Conclusion  

-4 4.231459930911139 0.5165952795839326 R 
-3 1.7332705882352937 0.8846818589822677 R 
-2 4.758896151053014 0.4460076827348852 R 
-1 5.110294117647058 0.4025686933278576 R 
1 3.360294117647059 0.6446240816842567 R 
2 4.065904139433551 0.5399669541380107 R 
3 5.608141176470588 0.34623345685245316 R 
4 3.5139157703897883 0.6212830486499479 R 

     
16 Random Excursions Variant Test: 
 State Count P- Value      Conclusion  

-9.0 197                   0.4354513954635062 R 
-8.0 187                   0.3467223774673953 R 
-7.0 193                  0.34751940774812573 R 
-6.0 195                  0.3195447712837526 R 
-5.0 227                  0.5201464362953949 R 
-4.0 251                  0.7336253801663413 R 
-3.0 248  0.645387747869369 R 
-2.0 259                  0.5772743837452569 R 
-1.0 291                  0.41529084384812753 R 
+1.0 334                  0.12485048506719687 R 
+2.0 353                  0.12039826619568533 R 
+3.0 337                 0.29218929257880555 R 
+4.0 326                  0.4402662823371424 R 
+5.0 303                  0.6886093783541819 R 
+6.0 285                  0.8771471277417655 R 
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Chapter. 7 

7 Conclusion 

This thesis depicts the critical role of the Galois field in both symmetric and asymmetric key 

cryptography. This chapter summarizes the significant outcome presented in this thesis. 

Further, future directions are also discussed.   

 Summary of Thesis 

This thesis presents the significance of the applications and theory of finite field mathematics 

and computation in cryptography. A homomorphic encryption scheme has been built that is 

based on a finite isomorphism problem over matrix Algebra. Furthermore, Galois fields 

𝐺𝐹(𝑝𝑛) for general prime 𝑝 have been used for asymmetric key cryptography and binary 

Galois field for symmetric key cryptography and multimedia data security.    

The second chapter has reviewed the finite field isomorphism problem over the finite field 

generated by the companion matrix of a primitive irreducible polynomial. Based on the 

hardness of the finite field isomorphism problem, we have introduced somewhat 

homomorphic encryption schemes. Initially, an asymmetric key encryption scheme has been 

introduced, which is homomorphic over matrix addition and matrix multiplication. 

Subsequently, it is extended to the asymmetric key encryption scheme using the subset sum 

problem. Afterwards, the scheme has been analyzed against the noise performance and 

security analysis.  

The third chapter has presented the M-NTRU scheme based on a matrix ring over a finite 

extension field. In addition, some theoretical results are constructed, with the help, one can 

discuss the essential conditions necessary to avoid the decryption failure. The impact of the 

Galois field deployment and the commutative property of the matrix ring on the security 

feature has been discussed.  

The improved version of the DES algorithm has been introduced in Chapter 4. The DES is a 

block cipher that was proved to be unsecured against brute force attack, differential, and 

linear cryptanalysis. To improve the security of the DES algorithm, we have proposed an 

algorithm for the construction of 6 × 6 S-boxes based on Galois field 𝐺𝐹(26). The S-boxes 

are then analyzed with different analyses and we have found it secure against linear and 

differential attacks.  Thus, we have improved the DES algorithm by adding the construction 
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method in the substitution part of the algorithm and strengthened the algorithm against brute 

force, linear and differential attacks. 

In chapter 5, we have presented a novel image encryption algorithm based on  ℤ𝑛, the ring of 

integers modulo 𝑛 and elements 16 distinctly constructed Galois fields 𝐺𝐹(28).  

Substitution–permutation configuration is used in designing a new cryptosystem. 

Accordingly, confusion among the key streams and the cipher image is increased. In addition, 

the inclusion of the diffusion layer has improved the security level of the proposed scheme. 

The strength of the encryption algorithm is examined by different statistical analyses. Image 

Quality Measures for the proposed encryption scheme for Lena image are also applied and 

have obtained the results that are found up to the standard. Consequently, after comparison, it 

is established that the proposed algebraic structures-based image encryption algorithm is 

much better than other existing chaos-based image encryption methods.  

In chapter 6, we have presented a lossless audio encryption scheme based on the arithmetic 

operations of the elliptic curve and the Galois field. Initially, we have introduced a novel 

random number generator scheme that is used to generate a quality random number and 

passed all the NIST tests successfully. The generated random sequence is then used to shuffle 

the original audio data set. In the diffusion phase of the scheme, a new S-box construction 

scheme is deployed, which generates multiple S-boxes without much computational effort. 

The S-boxes are then used to substitute the shuffled audio. The substitution with multiple S-

boxes has produced optimum confusion in the encrypted and capable scheme robust against 

differential attacks. The scheme has been thoroughly securitized over various simulation 

analyses. The results of the simulation experiment have evidenced that the proposed scheme 

is secure against various cryptanalysis methods. Accordingly, the proposed scheme is 

securely suitable for audio encryption applications.    

 Future Work 

The homomorphic encryption scheme introduced in this thesis is levelled. The level 

homomorphic encryption scheme evaluates the circuit of fixed dept. As we have evaluated 

and discussed the dept of the proposed scheme in section 2.7. Therefore, levelled 

homomorphic encryption schemes are not suitable for some applications. In the future, we 

can convert the proposed scheme into a fully homomorphic encryption scheme using 

bootstrapping technique.   

Furthermore, the performance analyses of the modified NTRU scheme are heuristic. Because 

there is the possibility of stronger attacks than the attacks on the existing NTRU scheme. 
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Further research is required on the lattice attack on the modified NTRU, which may yield 

novel effective techniques. 

The DES algorithm is not secure against brute force, linear and differential attacks. In the 

improved DES algorithm, cryptographically strong S-boxes are deployed, which makes the 

scheme secured against linear and differential attacks. Since the input block size of the 

modified DES is greater than the size of the block of its key. Therefore, it has made the brute 

force attack much complicated, as the brute force attack produces false keys. But the brute 

force attack is still possible using several pairs of keys. So, in the future, we are intended to 

improve the security level of the modified DES against the brute force attack up to the 

standard level.  

Multimedia data security schemes presented in this thesis are based on the binary Galois field 

extensions. The arithmetic operations of the Galois field are the most time-consuming and 

resourceful operation that can easily be implemented in hardware software. Therefore, these 

schemes are further extendable for the protection of communication architectures of the 

future, such as for the internet of things (IoT). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

103 
 

References  

1. Mullen, Gary L., and Daniel Panario. Handbook of finite fields. CRC Press, 2013. 

2. Wan, Zhe-Xian. Lectures on finite fields and Galois rings. World Scientific Publishing 

Company, 2003. 

3. Shallit, Jeffrey. "Review of finite fields and applications by Gary L. Mullen and Carl 

Mummert." ACM SIGACT News 43.1 (2012): 30-31. 

4. Lidl, Rudolf, and Harald Niederreiter. Introduction to finite fields and their applications. 

Cambridge university press, 1994. 

5. Fraleigh, John B. A first course in abstract algebra. Pearson Education India, 2003. 

6. Isaacs, I. Martin. Algebra: a graduate course. Vol. 100. American Mathematical Soc., 

2009. 

7. Hungerford, Thomas W. Abstract algebra: an introduction. Nelson Education, 2012. 

8. Delf, Hans, and Helmut Knebl. "Introduction to cryptography: principles and applications 

[online]." (2007). 

9. Elbirt, Adam J. Understanding and applying cryptography and data security. CRC press, 

2009. 

10. Forouzan, Behrouz A. Cryptography & network security. McGraw-Hill, Inc., 2007. 

11. Boneh, Dan, and Victor Shoup. "A graduate course in applied cryptography." Draft 

0.2 (2015). 

12. Möller, Bodo. Public Key Cryptography: Theory and Practice. Diss. Darmstadt 

University of Technology, Germany, 2003. 

13. Salomaa, Arto. Public-key cryptography. Springer Science & Business Media, 2013. 

14. Galbraith, Steven D. Mathematics of public key cryptography. Cambridge University 

Press, 2012. 

15. Niederreiter, Harald. "A new efficient factorization algorithm for polynomials over small 

finite fields." Applicable Algebra in Engineering, Communication and Computing 4.2 

(1993): 81-87. 

16. Mordell, L. J. "JWS Cassels, An introduction to the geometry of numbers." Bulletin of the 

American Mathematical Society 67.1 (1961): 89-94. 

17. Diem, Claus. "An index calculus algorithm for non-singular plane curves of high 

genus." Talk given at the ECC conference. 2006. 

18. Bach, Eric, and Jonathan Sorenson. "Sieve algorithms for perfect power 

testing." Algorithmica 9.4 (1993): 313-328. 



 

104 
 

19. Cormen, Thomas H., et al. Introduction to algorithms. MIT press, 2009. 

20. Rivest, Ronald L., Adi Shamir, and Leonard Adleman. "A method for obtaining digital 

signatures and public-key cryptosystems." Communications of the ACM 21.2 (1978): 120-

126. 

21. Gentry, Craig, and Dan Boneh. A fully homomorphic encryption scheme. Vol. 20. No. 9. 

Stanford: Stanford university, 2009. 

22. Brakerski, Zvika, and Vinod Vaikuntanathan. "Fully homomorphic encryption from ring-

LWE and security for key dependent messages." Annual cryptology conference. Springer, 

Berlin, Heidelberg, 2011. 

23. Brakerski, Zvika, Craig Gentry, and Vinod Vaikuntanathan. "(Leveled) fully 

homomorphic encryption without bootstrapping." ACM Transactions on Computation 

Theory (TOCT) 6.3 (2014): 1-36. 

24. Brakerski, Zvika. "Fully homomorphic encryption without modulus switching from 

classical GapSVP." Annual Cryptology Conference. Springer, Berlin, Heidelberg, 2012. 

25. Van Dijk, Marten, et al. "Fully homomorphic encryption over the integers." Annual 

International Conference on the Theory and Applications of Cryptographic Techniques. 

Springer, Berlin, Heidelberg, 2010. 

26. Coron, Jean-Sébastien, et al. "Fully homomorphic encryption over the integers with 

shorter public keys." Annual Cryptology Conference. Springer, Berlin, Heidelberg, 2011. 

27. López-Alt, Adriana, Eran Tromer, and Vinod Vaikuntanathan. "On-the-fly multiparty 

computation on the cloud via multikey fully homomorphic encryption." Proceedings of 

the forty-fourth annual ACM symposium on Theory of computing. 2012. 

28. Hoffstein, Jeffrey, Jill Pipher, and Joseph H. Silverman. "NTRU: A ring-based public key 

cryptosystem." International Algorithmic Number Theory Symposium. Springer, Berlin, 

Heidelberg, 1998. 

29. Doröz, Yarkın, et al. "Fully homomorphic encryption from the finite field isomorphism 

problem." IACR International Workshop on Public Key Cryptography. Springer, Cham, 

2018. 

30. Hoffstein, J., Lieman, D., Pipher, J. and Silverman, J.H., 1999. NTRU: A public key 

cryptosystem. Submissions and Contributions to IEEE P, 1363. 

31. Gaborit, P., Ohler, J. and Solé, P., 2002. CTRU, a polynomial analogue of NTRU. 

32. Kouzmenko, R., 2006. Generalizations of the NTRU Cryptosystem. Diploma Project, 

École Polytechnique Fédérale de Lausanne,(2005–2006). 



 

105 
 

33. Coglianese, M. and Goi, B.M., 2005, December. MaTRU: A new NTRU-based 

cryptosystem. In International Conference on Cryptology in India (pp. 232-243). 

Springer, Berlin, Heidelberg. 

34. Hoffstein, Jeffrey, et al. An introduction to mathematical cryptography. Vol. 1. New 

York: Springer, 2008. 

35. National Bureau of Standars, Data Encryption Standard, FIPS publication, No. 46, U.S. 

Department of Commerce, January 1977. 

36. Diffie, Whitfield, and Martin E. Hellman. "Special feature exhaustive cryptanalysis of the 

NBS data encryption standard." Computer 10.6 (1977): 74-84. 

37. Hellman, Martin. "A cryptanalytic time-memory trade-off." IEEE transactions on 

Information Theory 26.4 (1980): 401-406. 

38. Chaum, David, and Jan-Hendrik Evertse. "Cryptanalysis of DES with a reduced number 

of rounds." Conference on the Theory and Application of Cryptographic Techniques. 

Springer, Berlin, Heidelberg, 1985. 

39. D. W. Davies, Private communications. 

40. Biham, Eli, and Adi Shamir. "Differential cryptanalysis of DES-like cryptosystems." 

Journal of CRYPTOLOGY 4.1 (1991): 3-72. 

41. Nyberg, Kaisa. "Differentially uniform mappings for cryptography." Workshop on the 

Theory and Application of Cryptographic Techniques. Springer, Berlin, Heidelberg, 1993. 

42. Cui, Lingguo, and Yuanda Cao. "A new S-box structure named Affine-Power-Affine." 

International Journal of Innovative Computing, Information and Control 3.3 (2007): 751-

759. 

43. Feng, D. and W. Wu, Design and Analysis of Block Ciphers, Beijing, Tsinghua 

University Press, 2000. 

44. Merkle, Ralph C. "A fast software one-way hash function." Journal of Cryptology 3.1 

(1990): 43-58. 

45. Mar, Phyu Phyu, and Khin Maung Latt. "New analysis methods on strict avalanche 

criterion of S-boxes." World Academy of Science, Engineering and Technology 48.150-

154 (2008): 25. 

46. COST, Gosudarstvermyi Standard 28147-89, "Cryptographic Protection for Data 

Processing Systems," Government Committee of the USSR for Standards, 1989. 

47. Shimizu, Akihiro, and Shoji Miyaguchi. "Fast data encipherment algorithm FEAL." 

Workshop on the Theory and Application of of Cryptographic Techniques. Springer, 

Berlin, Heidelberg, 1987. 



 

106 
 

48. Rivest, Ronald L. "The RC5 encryption algorithm." International Workshop on Fast 

Software Encryption. Springer, Berlin, Heidelberg, 1994. 

49. B. Schneier, Applied Cryptography, Second Edition, John Wiley & Sons, 1996. 

50. Brown, Lawrence, et al. "Improving resistance to differential cryptanalysis and the 

redesign of LOKI." International Conference on the Theory and Application of 

Cryptology. Springer, Berlin, Heidelberg, 1991. 

51. Yu, Sha-Sha, et al. "Optical image encryption algorithm based on phase-truncated short-

time fractional Fourier transform and hyper-chaotic system." Optics and Lasers in 

Engineering 124 (2020): 105816. 

52. Liao, Xin, Kaide Li, and Jiaojiao Yin. "Separable data hiding in encrypted image based 

on compressive sensing and discrete fourier transform." Multimedia Tools and 

Applications 76.20 (2017): 20739-20753. 

53. Shah, Dawood, Tanveer ul Haq, and Tariq Shah. "Image Encryption Based on Action of 

Projective General Linear Group on a Galois Field GF (2 8)." 2018 International 

Conference on Applied and Engineering Mathematics (ICAEM). IEEE, 2018. 

54. Huang, Zhi-Jing, et al. "Nonlinear optical multi-image encryption scheme with two-

dimensional linear canonical transform." Optics and Lasers in Engineering 124 (2020): 

105821. 

55. Liao, Xin, Zheng Qin, and Liping Ding. "Data embedding in digital images using critical 

functions." Signal Processing: Image Communication 58 (2017): 146-156. 

56. Naseer, Yasir, Dawood Shah, and Tariq Shah. "A Novel Approach to improve 

multimedia security utilizing 3D Mixed Chaotic map." Microprocessors and 

Microsystems 65 (2019): 1-6. 

57. Liao, Xin, et al. "A new payload partition strategy in color image steganography." IEEE 

Transactions on Circuits and Systems for Video Technology (2019). 

58. Wang, Xingyuan, Lintao Liu, and Yingqian Zhang. "A novel chaotic block image 

encryption algorithm based on dynamic random growth technique." Optics and Lasers in 

Engineering 66 (2015): 10-18. 

59. Zhang, Yu, et al. "Breaking a chaotic image encryption algorithm based on perceptron 

model." Nonlinear Dynamics 69.3 (2012): 1091-1096. 

60. Zhang, Yushu, et al. "Breaking an image encryption algorithm based on hyper-chaotic 

system with only one round diffusion process." Nonlinear Dynamics 76.3 (2014): 1645-

1650. 



 

107 
 

61. Liao, Xin, Zheng Qin, and Liping Ding. "Data embedding in digital images using critical 

functions." Signal Processing: Image Communication 58 (2017): 146-156. 

62. Norouzi, Benyamin, et al. "A simple, sensitive and secure image encryption algorithm 

based on hyper-chaotic system with only one round diffusion process." Multimedia tools 

and applications 71.3 (2014): 1469-1497. 

63. Zhang, Yushu, et al. "Breaking an image encryption algorithm based on hyper-chaotic 

system with only one round diffusion process." Nonlinear Dynamics 76.3 (2014): 1645-

1650. 

64. SaberiKamarposhti, Morteza, et al. "Using 3-cell chaotic map for image encryption based 

on biological operations." Nonlinear Dynamics 75.3 (2014): 407-416. 

65. Shah, Tariq, and Dawood Shah. "Construction of highly nonlinear S-boxes for degree 8 

primitive irreducible polynomials over ℤ 2." Multimedia Tools and Applications 78.2 

(2019): 1219-1234. 

66. Chai, Xiuli, et al. "A color image cryptosystem based on dynamic DNA encryption and 

chaos." Signal Processing 155 (2019): 44-62. 

67. Wu, Xiangjun, Haibin Kan, and Jürgen Kurths. "A new color image encryption scheme 

based on DNA sequences and multiple improved 1D chaotic maps." Applied Soft 

Computing 37 (2015): 24-39. 

68. Wu, Jiahui, Xiaofeng Liao, and Bo Yang. "Color image encryption based on chaotic 

systems and elliptic curve ElGamal scheme." Signal Processing 141 (2017): 109-124. 

69. Liu, Hongjun, and Abdurahman Kadir. "Asymmetric color image encryption scheme 

using 2D discrete-time map." signal processing 113 (2015): 104-112. 

70. Dong, Chang'E. "Color image encryption using one-time keys and coupled chaotic 

systems." Signal Processing: Image Communication 29.5 (2014): 628-640. 

71. Wu, Xiangjun, et al. "Color image DNA encryption using NCA map-based CML and 

one-time keys." Signal Processing 148 (2018): 272-287. 

72. Al-Najjar, Hazem Mohammad, Asem Mohammad AL-Najjar, and K. S. A. Arar. "Image 

encryption algorithm based on logistic map and pixel mapping table." Proceedings of 

International Arab Conference on Information Technology,(ACIT 2011). 2011. 

73. Gupta, Kamlesh, and Sanjay Silakari. "New approach for fast color image encryption 

using chaotic map." Journal of Information Security 2.04 (2011): 139. 

74. Fu, Chong, et al. "A chaos-based digital image encryption scheme with an improved 

diffusion strategy." Optics express 20.3 (2012): 2363-2378. 



 

108 
 

75. Chattopadhyay, D., M. K. Mandal, and D. Nandi. "Symmetric key chaotic image 

encryption using circle map." Indian Journal of Science and Technology 4.5 (2011): 593-

599. 

76. Al-Maadeed, Somaya, Afnan Al-Ali, and Turki Abdalla. "A new chaos-based image-

encryption and compression algorithm." Journal of Electrical and computer Engineering 

2012 (2012): 15. 

77. Enayatifar, Rasul, Abdul Hanan Abdullah, and Ismail Fauzi Isnin. "Chaos-based image 

encryption using a hybrid genetic algorithm and a DNA sequence." Optics and Lasers in 

Engineering 56 (2014): 83-93. 

78. Chai, Xiu-Li, et al. "A novel color image encryption algorithm based on genetic 

recombination and the four-dimensional memristive hyperchaotic system." Chinese 

Physics B 25.10 (2016): 100503. 

79. Yao, Lili, et al. "An asymmetric color image encryption method by using deduced gyrator 

transform." Optics and Lasers in Engineering 89 (2017): 72-79. 

80. Huang, Chuan-Kuei, and Hsiau-Hsian Nien. "Multi chaotic systems based pixel shuffle 

for image encryption." Optics communications 282.11 (2009): 2123-2127. 

81. ur Rehman, Aqeel, et al. "A color image encryption technique using exclusive-OR with 

DNA complementary rules based on chaos theory and SHA-2." Optik 159 (2018): 348-

367.  

82. Wang, Xing-yuan, Hui-li Zhang, and Xue-mei Bao. "Color image encryption scheme 

using CML and DNA sequence operations." Biosystems 144 (2016): 18-26. 

83. Kadir, Abdurahman, Mireguli Aili, and Mutallip Sattar. "Color image encryption scheme 

using coupled hyper chaotic system with multiple impulse injections." Optik-

International Journal for Light and Electron Optics 129 (2017): 231-238. 

84. Kalpana, J., and P. Murali. "An improved color image encryption based on multiple DNA 

sequence operations with DNA synthetic image and chaos." Optik 126.24 (2015): 5703-

5709. 

85. Pareschi, Fabio, Riccardo Rovatti, and Gianluca Setti. "On statistical tests for randomness 

included in the NIST SP800-22 test suite and based on the binomial distribution." IEEE 

Transactions on Information Forensics and Security 7.2 (2012): 491-505. 

86. Doğanaksoy, Ali, et al. "New statistical randomness tests based on length of 

runs." Mathematical Problems in Engineering 2015 (2015). 



 

109 
 

87. Alghafis, Abdullah, Hafiz Muhammad Waseem, and Majid Khan. "A hybrid 

cryptosystem for digital contents confidentiality based on rotation of quantum spin 

states." Physica A: Statistical Mechanics and its Applications (2019): 123908. 

88. Arshad, Usman, et al. "An efficient image privacy scheme based on nonlinear chaotic 

system and linear canonical transformation." Physica A: Statistical Mechanics and its 

Applications (2019). 

89. Shah, Dawood, Tariq Shah, and Sajjad Shaukat Jamal. "A novel efficient image 

encryption algorithm based on affine transformation combine with linear fractional 

transformation." Multidimensional Systems and Signal Processing (2019): 1-21. 

90. Khan, Majid, and Hafiz Muhammad Waseem. "A novel image encryption scheme based 

on quantum dynamical spinning and rotations." PloS one 13.11 (2018). 

91. Waseem, Hafiz Muhammad, and Majid Khan. "Information confidentiality using 

quantum spinning, rotation and finite state machine." International Journal of Theoretical 

Physics 57.11 (2018): 3584-3594. 

92. Waseem, Hafiz Muhammad, Majid Khan, and Tariq Shah. "Image privacy scheme using 

quantum spinning and rotation." Journal of Electronic Imaging 27.6 (2018): 063022. 

93. Servetti, Antonio, and Juan Carlos De Martin. "Perception-based partial encryption of 

compressed speech." IEEE Transactions on Speech and Audio Processing 10.8 (2002): 

637-643. 

94. Thorwirth, N. J., et al. "Security methods for MP3 music delivery." Conference Record of 

the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers (Cat. No. 

00CH37154). Vol. 2. IEEE, 2000. 

95. Servetti, Antonio, Cristiano Testa, and Juan Carlos De Martin. "Frequency-selective 

partial encryption of compressed audio." 2003 IEEE International Conference on 

Acoustics, Speech, and Signal Processing, 2003. Proceedings.(ICASSP'03).. Vol. 5. 

IEEE, 2003. 

96. Bhargava, Bharat, Changgui Shi, and Sheng-Yih Wang. "MPEG video encryption 

algorithms." Multimedia Tools and Applications 24.1 (2004): 57-79. 

97. Grangetto, Marco, Enrico Magli, and Gabriella Olmo. "Multimedia selective encryption 

by means of randomized arithmetic coding." IEEE Transactions on Multimedia 8.5 

(2006): 905-917. 

98. Yan, Wei-Qi, Wei-Gang Fu, and Mohan S. Kankanhalli. "Progressive audio scrambling 

in compressed domain." IEEE Transactions on Multimedia 10.6 (2008): 960-968. 



 

110 
 

99. Zhou, Jiantao, and Oscar C. Au. "Security and efficiency analysis of progressive audio 

scrambling in compressed domain." 2010 IEEE International Conference on Acoustics, 

Speech and Signal Processing. IEEE, 2010. 

100.  Lima, Juliano B., and Eronides F. da Silva Neto. "Audio encryption based on the cosine 

number transform." Multimedia Tools and Applications 75.14 (2016): 8403-8418. 

101.  Basu, Sandipan. "International data encryption algorithm (IDEA)–a typical illustration." 

Journal of global research in Computer Science 2.7 (2011): 116-118 

102.  Kordov, Krasimir. "A Novel Audio Encryption Algorithm with Permutation-Substitution 

Architecture." Electronics 8.5 (2019): 530. 

103.  Sathiyamurthi, P., and S. Ramakrishnan. "Speech encryption using chaotic shift keying 

for secured speech communication." EURASIP Journal on Audio, Speech, and Music 

Processing 2017.1 (2017): 20. 

104.  Lima, Juliano B., and Eronides F. da Silva Neto. "Audio encryption based on the cosine 

number transform." Multimedia Tools and Applications 75.14 (2016): 8403-8418. 

 



.. t:1itin Originality Report 

.)f75 

file: IIIC:/Users/Babar Ali KhaniDesktop/Ttrrnitin Originality Report.h1.1 

Tumitin Originality Report 

Finite Field Corrputation and Their Applications in Data Security 

From DRSM (DRSM L) 

• Processed on 08-Sep-2021 10:00 PKT 
• ID: 1643556715 
• Word Count: 36842 

Sinilarity Index 
16% 

by Dawood Shah. 
@ 

turnltm 

Sinilarity by Source 

Internet Sources: 
8% 

Publications: 
13% 

Student Papers: 
3% 

Foca~urnitin) 
Quaid-i-Azam University 

Islamabad 

\ ,i-"-
. «6\ 

p OfESSO,Ro,""" ' " 
t ot Mat 1 .. .. . ,,-,, 

Departm n . " 'Itt . d . Azam Unwer" 
Qual -\ Islamabad 

sources: 

1% match (Internet from 30-JuI-2021) 

htlps:/ltechscience .comicm::Jv67nl/41192/pdf 

1% match (publications) 

Basic Modem Algebra with Applications, 2014. 

o 1 % match (publications) 

Tanveer ul Hag Tarig Shah. "12 x12 S-box Design and its Application to RGB Image 
Encrvption" Optik 2020 

o ' 1% match (publications) 

Tariq Shah. Asif Ali, Majid Khan. Ghazanfar Farooq Antonio Aparecido de Andrade. "Galois 
Ring $$GRUeft! 12'{31 81 Irightl$$GR23.8 Dependent $$24 'times 24$$24x24 S-Box Design: An RGB 
Image Encrvption Application". Wireless Personal Communications 2020 

< 1 % match (Internet from 05-Feb-2020) 

https:lllink.springer.comiarticle/l0.1 007%2F s00530-019-00640-w 

< 1% match (Internet from 21-Nov-2019) 

htlps:lllink.sorinaer com'article/l 0 1 007%2Fsll 045-019-00689-w 

< 1 % match (Internet from 19-Mar-2019) 

https:lllink.soringer.comicontentlpdfll0 1007%2F978-3-642-35261-4.pdf 

< 1 % match (Internet from 30-Jan-2020) 

https"/ilink springercomiartjcle/l0 1 023/B'MTAP 0000033983 62130 00 

< 1 % match (student papers from 14-Feb-2018) 

Subnitted to Higher Education Comnission Pakistan on 2018-02-14 

< 1 % match (student papers from 27-Aug-2018) 

Subnitled to Higher Education Comnissjon Pakistan on 2018·08-27 

< 1 % match (student papers from 05-Apr-2017) 

Subnitted to Higher Education Comnission Pakistan on 2017-04-05 

< 1 % match (student papers from 20-Jan-2018) 

Subnitted to Higher Education Comnission Pakistan on 2018-01-20 

.----------------.-----
< 1 % match (student papers from 17-Apr-2012) ' 

Subnitted to Higher Education Comnission Pakistan on 2012-04-17 

< 1 % match (student papers from 21-Feb-2017) 

Subnitted to Higher Education Comnission Pakistan on 2017-02-21 

< 1 % match (student papers from 08-0ct-2011) 

9/8/2021 1:55 P 


