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Nomenclature 
Nomenclature 

u 
velocity component along x-

axis 
,x y  Cartesian coordinates 

v 
velocity component along y-

axis 
1 2,N N  

Micro-rotation component 

in ,x y  direction. 

( )Q x  
volumetric rate of heat 

source 
'( ), '( )f G   

Dimensionless velocity 

profiles 

,nf hnfk k  thermal conductivity 1 2( ), ( )h h   
Dimensionless micro-

rotation components 

*k  Mean absorption coefficient ( )g   
Dimensionless 

concentration profile 

M  Magnetic parameter '( )q   
Dimensionless induced 

magnetic field profile 

*n  Micro-gyration parameter SWCNTs 
Single wall carbon 

nanotubes 

rk  Reaction rate constant MWCNTs Multi wall carbon nanotubes 

k
 

Boltzmann constant 2H O  water 

**K  
permeability of porous 

medium 
ODE  

Ordinary Differential 

Equations 

**F  
non-uniform inertia 

coefficient 
,w eU u  Velocity at boundary 

K  Micropolar parameter cW  cell swimming speed 

E
 

Activation energy mD  microorganism diffusivity 

Hn  conjugate parameter *b  chemotaxis constant 

eu  
free stream velocity of the 

fluid 
bS  

bioconvection Schmidt 

number 

( )B x  strength of magnetic field eP  
bioconvection Peclet 

number 

2 1, , , , ,m c b d b e  Constant rN  buoyancy ratio parameter 

cN  
bioconvection Rayleigh 

number 
Greek symbols 

cD
 Heat generation coefficient T  

volumetric thermal 

expansion 

Pr  Prandtl number C  volumetric concentration 

expansion 

1 2,S S  
Thermal and solutal 

stratification parameter 
,nf hnf   density of the nanofluid 
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,A B
 

Velocity and thermal slip 

parameter respectively 
( ) , ( )p nf p hnfC C   Nanofluid heat capacity 

Be
 

Bejan number ,nf hnf   dynamic viscosity 

*g  Gravitational acceleration ,hnf nf   Electric conductivity 

cS  Schmidt number ,nf hnf   modified thermal diffusivity 

BD  mass diffusivity nf  Spin gradient viscosity 

j  Micro-rotation density *  Stefan Boltzmann constant 

1( )N x  Variable slip factor   
Temperature difference 

parameter 

1( )D x  Variable thermal factor *  Wedge angle 

Br
 

Brinkman number   
Coefficient of vortex 

viscosity 

1M  
reciprocal magnetic 

Prandtl number 
,e i   

Hall and ion slip 

parameter 

L  diffusive constant parameter   Hartree parameter 

sN  Entropy generation rate 2  
Concentration difference 

parameter 

mP  Porosity parameter 1 2,   Solid volume fraction 

rF  Inertia coefficient r  Variable viscosity 

cE  Eckert number T  Relaxation time factor 

dR  Thermal radiation m  Mixed convection parameter 

fC  surface drag force   Wedge parameter 

xNu  Local Nusselt number c  
Thermal relaxation time 

parameter 

xSh
 

Local Sherwood number 
*  Navier’s slip length 

Rex
 local Rayleigh number 0  magnetic permeability 

rT  Temperature ratio parameter w  shear stress 

T
 

Temperature field ( ) 
 

Dimensionless temperature 

profile 

wT , wC  
temperature and 

concentration at surface  
  critical shear rate 

T , C  
ambient temperature and 

concentration 
1  

mass diffusivity 

parameter 

cR  Reaction parameter e  Magnetic diffusivity 

  



8 
 

1 Chapter1  

Introduction 

Nanofluid has wide range of application in several crucial areas such as transportation, 

microelectronics, microfluidics, medical, manufacturing, power saving; all of these 

elements minimize process time and increase heat ratings as well as extend the life span 

of machinery and so on. Nanofluids are being used as coolants in the thermal exchange 

systems of automobiles and nuclear reactors. Nanofluids are essentially a combination 

of suspended ultra-fine nanoparticles flooded into different regular fluids like oil, 

water, engine oil, ethylene glycol etc. The nano-sized particles are compose of single 

and multiple wall carbon nanotubes (SWCNTs, MWCNTs), metal ( ,  ,  Cu Al Fe ), carbide 

( ,  and SiC TiC ), metal oxide ( 2 3,  Al O CuO ), and some other nano-scale fluid droplets. The 

size of nanoparticles is commonly 1-100 nm, but it can contrast slightly as demonstrated 

by their size and shape. Choi and Eastman [1] was the first one to introduce the concept 

of nanofluids. In all these wide applications, nanofluids have found to be able to 

manage the significant critical issues by improving the efficient heat transfer capability 

of fluid material at lower cost. Nanotechnology is expected to serve as an efficient and 

effective heat transfer medium due to its flexible physical and thermo-physical features 

including, thermal conductivity or heat capacitance and effective density. Several 

studies in the field of nanofluid have participated after Choi, mention is made to some 

very relevant and significant studies. The numerical descriptions of various-shaped 

copper nanoparticles across a flat surface to increase rate of heat transfer were 

discussed by Saleem et al. [2]. Lu [3] scrutinized the carbon nanotubes (CNTs) with 

energy activation and heat generation and numerically solved by utilizing the shooting 

technique. Hussain et al. [4] using the rotating sheet to examine the water driven flow of 

carbon nanotubes (CNTs). He found that the impact of rotation causes the drag increase 

and declines the Nusselt number irrespective of the other related parameters. Shahzadi 
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et al. [5] discussed the influence of single wall carbon nanotube (SWCNT) in peristaltic 

flow past a permeable annulus. Sheikholeslami et al. [6] reported a detailed method for 

modeling melting acceleration by utilizing stretching sheet in the presence of copper 

oxide nanoparticles. In Borehole heat exchangers, Diglio et al. [7] propose a geophysical 

use of nanofluid as a heat transporter. In place of traditionally using liquids such as 

water and glycol mixtures, they performed a numerical analysis to test the procedure of 

various nanofluids. The goal of this thesis was to establish a medium that could 

effectively lessen the borehole thermal resistance. They researched the problem using a 

variety of solid materials, including alumina, copper, silver, and others, and observed 

that a copper-based nanofluid decreases the thermal resistance of boreholes 

significantly. One of the forms of solid nanoparticles which are widely used in the 

nanofluid as a solid component is carbon nanotubes. These nanoparticles are cylindrical 

nanostructures and have considerable implementations such as solar collection, drugs 

delivery system, catalyst supports, non-porous filters, vascular stunts, electrostatic 

dissipation, filtration devices for water and air, etc. In comparison to several other solid 

constituents of nonliquids, such materials have very specific thermo-physical 

properties. In contrast to metallic nanoparticles, carbon nanotubes (CNTs) are less 

dense, though they have greater thermal conductivity. Above all, all these items are 

environmentally friendly. Ahmed et al. [8] examine the CNT-based magneto-

hydrodynamics (MHD) nanoliquid flow above a permeable shrinking surface with 

temperature dependent viscosity. Further expending the Keller box method, the 

numerical solution is acquired. Akbar et al. [9] discuss the stagnation point flow of 

CNTs with convective boundary condition and slip impact through a stretching sheet. 

Haq et al. [10] explore the feature of carbon nanotube nanofluid flow past a stretching 

sheet in the incidence of partial slip and magneto-hydrodynamics. Nasir et al. [11] 

addressed the novel phenomenon of Magneto hydrodynamic three-dimensional 

rotating nanofluid flow in the involvement of single wall carbon nanotubes 
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(SWCNT) via a stretch sheet. Saba et al. [12] utilized the shooting technique to solve the 

numerical solution of two-dimensional radiation nanofluid flow in the presence of 

carbon nanotubes through a curved sheet. Lately, a new group of nanofluids, known as 

hybrid nanofluids, have been developed and studied, which are formed by mixing 

different kinds of nanoparticles into the regular liquid. The purpose of implementing 

hybrid nanofluids is to get the constituent material properties. The thermal conductivity 

of hybrid nanofluid is improved analogous to individual nanofluids, chemical stability, 

physical strength, and mechanical resistance. An individual material does not acquire 

all the affirmative aspects needed for an appropriate objective; it may have specific 

rheological or thermal characteristics. In real applications, it is a mandatory trade-off 

between many characteristics and that is where hybrid nanofluids are used. Another 

important point about recent models (analog) is their validity and reliability. Chen et al. 

[13] discussed the hybrid nanoliquid by scattering nanoparticles i.e., MWCNT and 

Fe2O3 in water. Madhesh et al. [14] discussed the Cu–TiO2 hybrid nanofluid rheological 

characteristic and convective heat transfer experimentally. Sundar et al. [15] have 

experimentally measured the friction drag and convective heat transfer for the 

produced turbulent flow of multi wall carbon nanotubes and Fe3O4 based hybrid 

nanofluids moving through a circular tube. Through an experimental analysis, 

Zadkhast et al. [16] created a new comparison to estimate MWCNT–CuO/water hybrid 

nanofluid’s thermal conductivity. Nadeem et al. [17] used numerical simulations to 

scrutinize the characteristic of heat transfer in the existence of CNT based hybrid 

nanofluid. It should be realized that the solid volume fraction improves the temperature 

and velocity distribution. The attributes of heat transfer play a notable role in industrial 

processes, engineering and physics problems including space cooling, energy 

production, nuclear reactor cooling, biomedical applications, for example, heat 

conduction in tissues, magnetic drug targeting and so on and numerous others. 

Therefore, controlling the heat transfer rate can certainly build up the efficiency of 
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numerous processes deal in electronic cooling and heat exchangers. In such a manner, 

thermal relaxation time is a commonly used parameter which is implemented to control 

and evaluate the required time for transfer of heat from heated region. In previously 

mentioned works [18–19], the thermal relaxation time is generally taken as unchanged 

factor. However, realistic situations insist variable feature from this time factor. This 

time factor is inversely proportional to temperature. Cattaneo [20] studied 

comprehensively on conduction of heat transport in order to remove the shortage in 

Fourier’s law of heat conduction. One of the crucial shortages in Fourier’s law of heat 

conduction is that it creates a parabolic energy equation that means that the system 

under contemplation would suddenly be affected by an initial disturbance. So Cattaneo 

[20] presented the thermal relaxation time to modify the heat conduction law of Fourier, 

which tolerates the transference of heat with the assistance of thermal wave 

propagation followed by a limited velocity. Later, by evaluating the upper-convected 

derivative of Oldroyd's, Christov [21] provided a material invariant structure of the 

Cattaneo model. Shah et al. [22] used the Cattaneo–Christov heat flux approach to 

explore CNT-based nanofluid flow across a stretchable sheet. The analytic technique 

homotopy analysis method (HAM) was manipulated to resolve the highly nonlinear 

ordinary differentials equation. Han et al. [23] found the analytic solution for coupled 

flow in the presence of Cattaneo–Christov theory with velocity slip condition. 

The generalized Fourier law model application is shown in Refs. [24 – 31]. 

Non-Newtonian fluids have a great interest of scientists because of its several 

engineering and industrial applications. The flow dynamics of non-Newtonian liquids 

is the nonlinear affiliation among the shear stress to shear rate. The micropolar fluids 

are those fluids which have their microstructures and they have non-Newtonian liquid 

models. Micropolar liquid is to be part of non-symmetric stress tensor. Micropolar 

fluids are hanging in viscous medium having their own spin and rotation. The rotation 
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and shrinking are the micro size effects of micropolar fluid. In micropolar fluids, the 

small volume element of a rigid particle will spin around the centroid of the volume 

element. They are acceptable for animal blood, exocitic lubricants, bubby liquids, 

colloidal, certain biological fluids and liquid crystals. Kumari and Nath [32] have 

researched the time-dependent boundary layer flow of micropolar fluids at stagnation 

points. The impressive aspects of micropolar fluid application and theory can be 

identified with in works of Eringen [33] and Lukazewicz [34]. Nadeem et al. [35] 

analyzed the 3D micropolar nanoliquid flow with magnetic field through an 

exponential stretching sheet. Further, Nadeem et al. [36] discussed over a moving 

cylinder the micropolar nanofluid with axisymmetric stagnation flow. Balram and 

Sastry [37] analyzed over a parallel plate vertical channel the free convection flow of a 

micropolar fluids. Das [38] highlighted the impact of an MHD and partial slip 

on micropolar nanoliquid flow above a shrinking surface. The feature of heat transfer in 

non- Newtonian nanofluids is explained in Refs. [39–41]. 

The analysis of the magnetic properties and performance of electrically conducting 

liquids is magnetohydrodynamics (magneto-fluid dynamics or hydro-magnetics as 

well; MHD). Plasmas, salt water, liquid metals, or electrolytes consist of examples of 

such magneto-liquids. The term ‘‘magneto-hydrodynamics’’ is derived beyond 

magneto—meaning magnetic field, hydro—that means water, then dynamics that 

means movement. Alfvén [42] was first time in 1942 started the concept of 

magnetohydrodynamics (MHD) for which in 1970 he got the Nobel Prize in Physics. A 

few applications about the phenomena of hydro magnetic (MHD) might be viewed in 

[43–46]. Ishak et al. [47] investigate the heat transfer flow past stretching cylinder in the 

occurrence of MHD. Sheikholeslami et al. [48] explore the influence of 

magnetohydrodynamics nanofluid flow and thermal radiation through between two 

horizontal plates. Haq et al. [49] consider the heat impact of slip effects and thermal 
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radiation through a stretching surface on magnetohydrodynamics (MHD) stagnation 

point flow. Nadeem et al. [50] calculated the Casson nanofluid flow of 

magnetohydrodynamics with a convective boundary condition across a stretch surface. 

Su et al. [51] using the permeable wall to find the approximate solution of 

magnetohydrodynamics (MHD) Falkner–Skan flow. Yousif et al. [52] investigate the 

MHD Carreau nanofluid flow past an exponentially stretched plate in the existence of 

thermal radiation and heat source/sink. 

It is known that during every thermal process, the entropy age estimates the amount of 

irreversibility. Cooling and heating are an important event in many industrial sectors 

and in the engineering process, especially in energy and electronic devices. Therefore, to 

avoid any irreversibility losses that may influence system efficiency, it is essential to 

minimize entropy production. To control entropy optimization, Bejan [53, 54] first 

concluded an excellent number as the proportion between thermal irreversibility and 

total heat loss because of liquid frictional factors, that is called Bejan number (Be). Bhatti 

et al. [55] analyzed the entropy age (or generation) on the interaction of nanoparticle 

over a stretching sheet saturated in porous medium. Successive linearization technique 

and Chebyshev spectral collocation scheme are employed to describe the numerical 

solution for Bejan number and entropy profile. Feroz et al. [56] demonstrate the 

magnetohydrodynamics (MHD) nanofluid flow of CNTs along with two parallel 

rotating plates under the impact of ion-slip effect and Hall current. Shahsavar et al. [57] 

numerically investigate the entropy generation characteristic of 3 4 /Fe O CNT water  

hybrid nanofluid flow inside a concentric horizontal annulus. The rapid development of 

using /MWCNT GNPs  hybrid nanofluids in the area of heat transfer addressed by 

Hussien et al. [58] has been driven by huge changes in nanofluid thermo - physical 

properties over traditional fluids. Ellahi et al. [59] analyzed the performance of hydro-

magnetic (MHD) heat transfer flow together under impact of entropy production as a 
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result of slip past a moving flat plate. Lu et al. [60] examine the entropy optimization 

and thermal radiation in the flow of hybrid nanoliquid over a curved sheet. The 

MATLAB function bvp4c is utilized to resolve the numerical solution. 

Introduced by Markin [61] that the distribution of temperature is indicated by four heat 

transfer methods, i.e., (1) prescribed or constant heat, (2) prescribed or constant surface 

temperature, (3) combination of boundary conditions, and (4) Newtonian heat, where 

the rate of heat transfer from the finite heat capacity surface is proportionate to the 

temperature of the local surface and is commonly referred to as the conjugate 

convective flow. Due to their vast practical implementation including in convection 

flows, where heat is consumed by surfaces via radiation, conjugate heat transfer around 

fins, and to design heat exchanger, several scholars have recently used the influence of 

Newtonian heating. Lesnic et al. [62, 63] and Pop et al. [64] observed Newtonian heating 

on a horizontal and vertical sheet inserted in a porous medium with free-convection 

boundary layer. Nadeem et al. [65] analyzed the characteristic of heat transfer in 

viscoelastic fluid through an exponential stretching sheet with Newtonian heating. 

Suleman et al. [66] explored the role of Newtonian heating, with homogeneous 

heterogeneous reaction, of thermal radiation in the water-silver nanoliquid flow. 

Keeping the above importance factors in mind, the current thesis contains of seven 

chapters in which chapter 1 is dedicated to the introductory part, while others are listed 

below: 

Chapter 2 is analyzed to ‚Mathematical analysis of Falkner – Skan problem with 

double stratification‛. In this chapter deliberates the importance of single wall carbon 

nanotube (SWCNTs) and multiple walls carbon nanotube (MWCNTs) over a static 

wedge with magnetohydrodynamics (MHD). The impact of thermal radiation, 

activation energy, heat generation and double stratification are also added. The set of 

differential equations is numerically evaluated using the bp4c tool in MATLAB. The 
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upshot of sundry variable on velocity, temperature, and concentration field are 

deliberated and calculated graphically. The chapter's content is published in " Physica 

A: Statistical Mechanics and its Applications 547 (2020): 124054". 

Chapter 3 is studied to “Heat transfer analysis and entropy generation in the 

SWCNT-MWCNT hybrid nanofluid flow”. In this chapter the analysis of the transfer 

of heat of SWCNT – MWCNT/Water hybrid nanofluid with temperature dependent 

viscosity above a moving wedge are discussed. The Darcy-Forchheimer relationship 

specifies the nature of the flow in the porous medium. The second law of 

thermodynamics is utilized to measure the irreversibility factor. The numerical 

technique bvp4c are integrated to solve the highly nonlinear differential equation. For 

axial velocity, temperature profile, and entropy generation, a comparison was made 

between simple nanofluid and hybrid nanofluid. The chapter's content is available in " 

Applied Nanoscience 10 (12): 5107-5119". 

Chapter 4 is considered to “Impact of slip effects on the stagnation point nanofluid 

flow via Cattaneo – Christov heat flux”. The main focus of this chapter is Cattaneo-

Christov theory with temperature dependent thermal relaxation time and entropy 

production. The micropolar fluid with absorption of heat in the existence of mixed 

convection and partial slip are scrutinized. Two distinct nanoparticles (SWCNT, 

MWCNT) is immerged in micropolar fluid to interrogate the feature of mass and heat 

transfer. The non-dimensional similarity transformation is employed to transform the 

differential equations to nonlinear ordinary differential equations (ODEs) and 

associated coupled equations resolved numerically consuming bvp4c from Matlab. The 

chapter's content is published in " Journal of Thermal Analysis and Calorimetry 

(2020): 1-13.". 

Chapter 5 is scrutinized to ‚Analysis of two phase fluid flow in presence of Thomson 

and Troian slip condition‛. In this chapter entropy generation in stagnation point flow 
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of a hybrid nanofluid past a nonlinear permeable stretching sheet with Thompson and 

Troian boundary condition are considered. We considered SWCNT and MWCNT with 

water as a regular liquid to discuss the hybrid nanofluid. The numerical method, i.e., 

bvp4c from Matlab, is operating to answer the converted ordinary differential equations 

(ODEs). The difference between a simple nanofluid and a hybrid nanoliquid is 

graphically illustrated. The properties of the involved parameter on different profiles 

are examined graphically and in tables. The chapter's content is published in "Applied 

Nanoscience (2020) 10:4673-4687". 

Chapter 6 is considered to “Impact of Newtonian heating on the micropolar CNT 

based hybrid nanofluid flow”. This study addresses the impact of ion and Hall slip in 

micropolar nanoliquid flow in the occurrence of Newtonian heating. Further the 

influence of thermal radiation, Darcy – Forchheimer, viscous dissipation, and variable 

viscosity are discussed. Total entropy generation rate is calculated. Two distinct 

nanoparticles such as (SWCNT, MWCNT) used as a hybrid nanofluid. Built-in function 

bvp4c integrates the solution of simulated hydrodynamic boundary value problems. 

The effects on axial velocity, angular velocity, temperature field, concentration field, 

Bejan number, and entropy optimization of different flow field variables are displayed 

graphically. The chapter's content is published in ‚Applied Nanoscience (2020): 1-13". 

Chapter 7 is considered to “Heat transfer enhancement in a micropolar hybridized 

nanofluid flow in the presence of stratification”. In this chapter the steady bio-

convective micropolar hybrid nanofluid flow with the stratification conditions above a 

vertical exponentially stretching surface is examined. In the present chapter, SWCNT 

and MWCNT are combined in a water-based fluid to generate hybrid nanoparticles. To 

inspect the mass and heat transfer rate, the Cattaneo-Christov heat flux and rate of 

chemical reaction are factored into the equation. To answer the coupled equations, the 

Bvp4c Matlab approach is being used. The interpretation of numerous parameters is 
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scrutinized graphically. The microorganism field decays for rises the Peclet number, 

and bio - convection Schmidt number. The chapter's content accepts in ‚proceedings of 

the institution of mechanical engineers part c journal of mechanical engineering 

sciences".   
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2 Chapter 2 

Mathematical analysis of Falkner – Skan 

problem with double stratification 

2.1 Introduction 

This chapter discusses the importance of single wall carbon nanotube (SWCNTs) and 

multiple walls carbon nanotube (MWCNTs) over a static wedge with 

magnetohydrodynamics (MHD). The impact of activation energy, thermal radiation, 

heat generation and double stratification are also taken into consideration. Employing 

the bvp4c package in Matlab, the system of differential equations is explained 

numerically. The results of a variety of parameters on the axial velocity, temperature, 

and concentration field are studied graphically. The temperature and concentration 

distribution diminish respectively with thermal and concentration stratified parameter. 

Furthermore, for both carbon nanotubes, solid volume fraction improves velocity and 

temperature profile. 

2.2 Mathematical Formulation 

Consider the two-dimensional steady flow with two different nanoparticles containing 

SWCNTs and MWCNTs with engine oil as a base fluid over a Falkner-Skan problem is 

demonstrated. The flow chart of the problem is given in Fig. 2.1. Moreover, it is 

presumed that the ambient velocity and moving wedge velocity is correspondingly 

taken as ( ) n

eu x U x  and ( ) n

w wu x U x , where U , wU  and n  are constant. In Cartesian 

coordinate x-axis taking along the flow surface and y-axis along normal to x-axis or 
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perpendicular to fluid flow surface. With non-uniform strength ( 1)/2
0( ) nB x B x  , the 

magnetic field is applied across the y-axis. 

 

 

 

Fig. 2.1: Flow chart of the problem. 

After applying the boundary layer approximation ( (1) , ( )u O x v O y    ), the 

continuity, momentum, energy and concentration equations become: 

 

0,v u

y x

 
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     
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2
2

2exp ( ) ( ) ,
m

a
r B nf

EC C T C
v u k C C D

y x T kT y




     
      

    
 (2.4) 

The suitable boundary conditions are given by: 

 
0 1 0

0 2 0

0,  ( ) ,  0,   at   0,
,    ,    as   .

w w

n

e

u T T x T b x v C C C dx y

u u x U x T T T b x C C C ex y  

        

         
 (2.5) 
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In above equation ( , )u v  respectively determine the velocity along ( , )x y -axis, ( )B nfD  

indicate the diffusion coefficient of nanofluid, 2
rk  symbolized the reaction rate, m  

demonstrate the fitted rate constant which normally lies in the range 1 1m    and 

, , ,b c d e  all are constant. The thermophysical properties of the regular fluids i.e. engine 

oil, water and for nanoparticles such as SWCNTs and MWCNTs are specified below in 

Table 2.1.  

Table 2.1. Thermophysical properties of the regular fluids and CNTs. 

Thermophysical 

properties 

Base fluids Nanoparticles 

  Engine oil Water MWCNTs SWCNTs 

 ( )J
kgKpC  1910.0 4179.0 796.0 425.0 

3 ( )kg

m
  884.0           997.1         1600.0 2600.0 

 ( )W
mKk  0.144 0.613 3000.0 6600.0 

 ( )S
m  1.07×10-6 5.5×10-6 1.9×10-4 1.26×106 

5 110  ( )K   57 21 0.21 0.19 

The proposed relation predicted by Xue [67] is characterized as follow 

Table 2.2. Effective thermophysical quantities of nanofluids. 

Nanofluid dynamic viscosity 2.5(1 ) ,nf f     

Nanofluid density (1 ) ,nf f CNT       

Nanofluid electric conductivity 3 [1 ]
1

[2 ] [1 ]

CNT

f

CNT CNT

f f

nf

f





 

 



 


 

  
, 

Nanofluid thermal expansion coefficient ( ) ( )1
( ) ( )

nf CNT

f f

 
 

 
  

 
heat capacity of nanofluid ( ) ( ) ( ) (1 )p nf p SWCNT p fC C C       , 

thermal conductivity of nanofluid 
2

2

2 ln( ) 1

2 ln( ) 1

f CNTCNT

CNT f f

f f CNT

CNT f f

k kk

k k knf

k k k

f k k k

k

k

 

 









 


 
, 
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Nanofluid thermal diffusivity  
.

( )
nf

nf

p nf

k

C



  

 

Table 2.3. Effective thermophysical quantities of hybrid nanofluids. 

Hybrid nanofluid 

dynamic viscosity 

2.5
1

2.5
2

(1 )
,

(1 )
f

hnf

 








 

Hybrid nanofluid density 

2 1 1 2(1 ) 1hnf MWCNT SWCNT

f f f

  
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  

  
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Hybrid nanofluid electric 

conductivity 
2

2

1

1

2 2 [ ]
,

2 [ ]
2 2 [ ]

,
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f MWCNT f MWCNT f

     
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Hybrid nanofluid heat 

capacity 
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, 

Hybrid nanofluid thermal 

conductivity 
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Hybrid nanofluid thermal 

diffusivity  
.

( )
hnf

hnf

p hnf

k

C



  

the non-dimensional variables mentioned below 
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   
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  (2.7) 

Eq. (2.1) is fulfilled and Eqs. (2.2) to (2.4) yield the form 
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While the boundary conditions (2.5) take the resulting form 

1 2( ) 0,  ( ) 1 , ( ) 0,  ( ) 1 ,  0,f S f g S at              

( ) 1,  ( ) 0,  ( ) 0,  .f g          
(2.11) 
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relates to    for a wedge complete angle Ω. The positive   value denotes the 

negative or favorable pressure gradient while a negative   estimation symbolizes an 

unfavorable pressure gradient. Additional the boundary layer horizontal flat plate flow 

represents by 0 ( 0 )     and 1 ( 180 )     show the boundary later flow past a 

vertical flat plate near the stagnation point.   

The physical measured variables are the friction drag, heat transfer rate, and the local 

Sherwood number 
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(2.12) 

Using the similarity variable in above equation it become 
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2.3 Solution Procedure  

The Bvp4c method in MATLAB is being utilized to integrate the coupled equations (2.8 – 

2.10) with boundary condition (2.11) numerically. The BVP-4c function of MATLAB only 

resolves the first order ordinary differential equation. For this reason, the first order 

differential equations are used instead of the third and second order differential 

equations and selected the sensible value of  , and 10-6 were reserved the absolute 

convergence criteria, we set the resulting first order classifications,  
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with the conditions, 

0 0 0 1 0 2(1) 0,  y (2) 0,  y (4) 1 ,  y (6) 1 ,y S S       

inf inf inf(2) 1,  y (4) 0,  y (6) 0.y      
(2.21) 

For the present work, the conclusion of 4  , to approach the asymptotic values 

specified in boundary condition (2.21). Since the relationship specifies a good 

knowledge and understanding for each assessed value, we are confident that the 

current outcome is correct and precise. 

2.4 Results and Discussion 

In order to explore the physical explanation of the present issue, the numerical 

estimation of axial velocity, temperature profile, and concentration profile have been 

calculated for resultant emergent parameter as the solid volume fraction ( ), magnetic 

parameter ( M ), thermal stratification parameter ( 1S ), radiation parameter (
dR ), 

concentration stratification parameter ( 2S ), heat generation/absorption parameter ( cD ), 

Schmidt number ( cS ), activation energy ( E ) for both SWCNTs and MWCNTs 

respectively. Table 2.4 shows the calculation of drag friction (0)f   for several 
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estimations of m when in the nonappearance of magnetic field and nanoparticle have 

been compared with previous work of Yacob [68] and Nadeem et al. [69]. The numerical 

value of friction drag, heat transfer rate, and local Sherwood number are displayed in 

Table (2.5-2.7) respectively. Table 2.5 demonstrates the numerical value of the friction 

drag. It is concluded that the numerical value of drag friction rises for solid volume 

fraction, magnetic parameter, and power index law, while for wedge parameter the skin 

factor diminishes for both cases SWCNTs and MWCNTs. In Table 2.6, we have 

displayed the numerical value of the rate of heat transfer for both CNTs. The numerical 

value of local Nusselt number declines for greater estimation of M , while it enhances 

for growing the values of  , wedge parameter, index number, and radiation parameter 

for both cases SWCNTs and MWCNTs. Table 2.7 displays the effect of numerous 

parameters on Sherwood number for both cases SWCNTs and MWCNTs. It is 

concluded that the Sherwood number enhances for enhancing the estimation of 

Schmidt number, dimensionless reaction rate, and power index law, while it is decrease 

for larger value of activation energy parameter. Fig. 2.2 ((a) and (b)) illuminates the 

influence of   on axial velocity and temperature distribution for SWCNTs and 

MWCNTs. With increasing the estimation of  , the temperature and velocity curves for 

both cases decrease. Moreover, it is presumed that as the value of   expands, the 

momentum boundary layer thickness declines while the thermal boundary layer 

thickness escalations. The fluid velocity is an enhancing function of magnetic 

parameter for both CNTs, as revealed in Fig. 2.3 (a). Fig. 2.3 (b) displays the effect of 

magnetic parameter on fluid temperature for both cases. The temperature distribution 

diminishes for enhancing the estimation of M  for both SWCNTs and MWCNTs. It is 

often demonstrated as M increases, the thermal boundary layer of MWCNTs decreases 

faster than that of SWCNTs. Fig. 2.4 (a) determines the result of power index parameter 

n  on velocity distribution. Through expanding n  the velocity profile boosts for both 
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CNTs. The temperature distribution enhances for boosting value of heat generation 

coefficient cD  for both cases SWCNTs and MWCNTs. This is verifying in Fig. 2.4 (b). 

This is because, by raising the estimation of the heat generation coefficient, the internal 

energy of fluid particles increases. Thus, the temperature field enhances regularly. Fig. 

2.5 ((a) and (b)) determines the influence of 1S  and 2S  on temperature and 

concentration distribution respectively. For both the SWCNTs and MWCNTs the 

temperature and concentration field decreases. The impression of radiation parameter 

dR  on temperature profile for both CNTs is revealed in Fig. 2.6 (a). Growing the 

temperature distribution for larger the value of radiation parameter 
dR  for both 

SWCNTs and MWCNTs. Physically radiation parameter 
dR  characterizes the 

proportional involvement of the transfer of heat from thermal radiation to thermal 

conduction heat transfer. Afterward thermal radiation enhances the nanofluid thermal 

diffusivity, for growing values of radiation parameter 
dR  heat should be transferred to 

the regime and temperatures will be improved. Fig. 2.6 (b) illustrates that the 

concentration is a reducing function of Schmidt number cS . Fig. 2.7 (a) scrutinized the 

upshot of non-dimensional activation energy E  for both CNTs. Through activation 

energy E , concentration in the nanofluid (i.e. SWCNTs and MWCNTs) expressively 

enhances. Fig. 2.7 (b) examines the effect of reaction rate cR  for SWCNTs and MWCNTs 

on concentration field. The concentration distribution diminishes for both cases with 

growing the estimation of cR .   

 

 

 

Table 2.4. Evaluation of f  (0) for several values of n  when 0M   . 

n   Yacob [68] Nadeem et al. [69] Present Results 
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0 0.4696 0.469600 0.46960 

1/11 0.6550 0.654994 0.65499 

0.2 0.8021 0.802125 0.80212 

1/3 0.9277 0.927680 0.92768 

0.4 - 0.976824 0.976824 

0.5 1.0389 1.038900 1.03890 

1 1.2326 1.232587 1.23258 

 

Table 2.5. Numerical value of coefficient of skin friction with fixed value of 1.0cS  , 

1 20.5S S  , and 0.1.    

  M    n  1/2[2 Re / ( 1)]x fm C   

    SWCNTs  MWCNTs  

0.01 0.1 0.2 1.0 1.11306  1.11306  

0.03    1.41201  1.40241  

0.05    1.62113   1.61013   

0.01 0.1 1.0 0.5 1.50130  1.49131  

 0.5   1.64970  1.63472  

 1.0   1.81860  1.80761  

0.01 0.2 0.1 0.5 1.67811 1.66513 

  0.3  1.65794 1.64714 

  0.5  1.65699 1.64359 

0.01 0.1 1.0 0.1 1.25201 1.24231 

   0.5 1.45201 1.46251 

   1.0 1.58920 1.57321 
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Table 2.6. Numerical value of local Nusselt number with fixed value of 1.0cS  , 0.5rT  , and 

Pr 4.0.  

  M    n  
dR   1/2[( 1) Re / 2]x xm Nu   

     SWCNTs  MWCNTs  

0.01 0.1 0.2 1.0 0.5 0.78692 0.77692 

0.03     1.02009 1.01009 

0.05     1.24426 1.23426 

0.01 0.1 1.0 0.5 0.5 1.35735 1.34735 

 0.5    1.35176 1.34176 

 1.0    1.34590 1.33590 

0.01 0.2 0.1 0.5 0.5 1.34426 1.33426 

  0.3   1.60844 1.59844 

  0.5   1.66734 1.65734 

0.01 0.1 1.0 0.1 0.5 1.41235 1.40235 

   0.5  1.41408 1.40408 

   1.0  1.41435 1.40435 

0.01 0.1 0.1 0.5 0.1 1.41420 1.40420 

    0.3 1.74050 1.73050 

    0.5 2.12240 2.0224 

 

Table 2.7. Numerical value of local Sherwood number with fixed value of 

1, 0.1c rM D T    . 

Sc   E  cR   n   1/2[( 1) Re / 2]x xm Sh   

    SWCNTs  MWCNTs  

0.1 1.0 1.0 0.5 0.26810   0.26610   

0.5    0.67370   0.67000   

1.0    1.00700   1.00300   

1.0 1.0 1.0 0.5 1.00700   1.00300   
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 2.0   0.80690   0.80310   

 5.0   0.54520   0.54810   

1.0 1.0 2.0 0.5 1.35000   1.34400   

  3.0  1.62600   1.61900   

  5.0  2.07400   2.06600   

0.1 1.0 1.0 -0.5 0.83780   0.83950   

   0.0 0.91250   0.91170   

   1.0 1.12600   1.11800   

 

 

                                           (a) 

 

                                            (b) 

Fig. 2.2: Velocity and temperature variation with volume fraction of SWCNT and MWCNT. 
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(a) 

 

       (b) 

Fig. 2.3: Velocity and temperature variation with magnetic parameter. 

 

      (a) 

 

       (b) 

Fig. 2.4: Velocity and temperature variation (a) with n  and (b) with cD . 
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      (a) 

 

       (b) 

Fig. 2.5: Temperature and concentration variation (a) with 1S  and (b) with 2S . 

 

 

                                       (a) 

 

                                               (b) 

Fig. 2.6: Temperature and concentration variation (a) with 
dR  and (b) with cS . 
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       (a) 

 

        (b) 

Fig. 2.7: Concentration variation (a) with E  and (b) with cR . 

 

2.5 Concluding Remarks 

In the existence of SWCNTs and MWCNTs the boundary layer flow is discussed past a 

Falkner-Skan problem with magnetic field. The mass and heat transfer feature is 

performed when thermal radiation, activation energy, and double stratification, are 

present. The finite-difference-based numerical technique, specifically, bvp4c from 

MATLAB are used to resolve the coupled ordinary differential equation.  

The important findings of present study are detailed below: 

 The axial velocity and temperature profile designate increment in nature for 

enhancing value of nanoparticle solid volume fraction. 

 Magnetic parameter enhances the skin friction while diminishes Nusselt number.  

 Temperature is an enhancing function of radiation, heat generation, and 

temperature ratio parameter. 

 For maximum value of Schmidt number, solutal stratification parameter, and 

reaction rate variable, the concentration field exhibits diminishing behavior. 
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 The thickness of the concentration boundary layer improves in order to 

maximize the value of activation energy.  
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3 Chapter 3 

Heat transfer analysis and entropy generation in 

the SWCNT-MWCNT hybrid nanofluid flow 

3.1 Introduction 

 The current chapter particularly concerns the analysis of the flow and transfer of heat 

of CNTs based hybrid nanofluid with temperature dependent viscosity over a moving 

wedge. The Darcy-Forchheimer relationship specifies the nature of the flow in the 

porous medium. Further, the impacts of heat generation, activation energy, velocity and 

thermal slip, thermal radiation are added. The second law of thermodynamics is 

utilized to measure the irreversibility factor. The numerical technique bvp4c are 

integrated to solve the highly nonlinear differential equation. For axial velocity, 

temperature profile, and entropy generation, a comparison was made between 

nanofluid and hybrid nanofluid. The variable viscosity parameter improves the axial 

velocity and diminishes the temperature distribution for both simple nanofluid and 

hybrid nanofluid. 

3.2 Mathematical Description 

Fig. 2.1 demonstrates the geometric configuration and the considered problem's 

schematic physical model. In the present chapter we accept the steady, incompressible 

two-dimensional SWCNT-MWCNT/Water hybrid nanoliquid flow in the occurrence of 

thermal slip and activation energy past a permeable wedge. We find a Cartesian 

coordinate scheme (x, y), where y and x are the co-ordinates measured normal and 

along to the permeable wedge. The free stream velocity (inviscid flow) is also thought 

to be ( )u x
 and the velocity of the moving wedge is ( )wu x . Liquid and ambient fluid 
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temperature is wT  and T , where 
wT T  is applied for wedge heating (assisting flow) 

and 
wT T  is used for wedge cooling (opposite flow).  

The hybrid nanofluid is developed by combining SWCNT into MWCNT / Water. First, 

MWCNT ( 1 ) nanoparticles are inserted in water to create a MWCNT-Water nanofluid 

and then SWCNT nanomaterial of different fractions ( 2 ) are inserted to the nanofluid 

blend to obtain the homogenous solution of hybrid nanofluid SWCNT-MWCNT/ 

Water. 

Imposing the approximation of the boundary layer and assuming that we have a system 

of equations, 
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The interrelated conditions are, 

1 10, ( ) ( ) ,  ,  ( ) ,  at 0,

               , ( ), , as .

w f w w

u T
v u u x N x C C T T D x y

y y

T T u u x C C y



  

 
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 
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 (3.5) 



36 
 

The variable viscosity which is vary inversely to temperature is defined as [8] 

1( ) ,
( )f

r

T
a T T

 


 (3.6) 

Where 
*

*
1 and ,

f ra T T
       , and a are constant. To achieve true similarity solution, 

we defined variable velocity and thermal slip as, 
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Where b  and c  are the constants and / (2 )n     with   is Hartree parameter of 

pressure gradient. 

The similarity variables are accepted by, 

 
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Using similarity transformation, the above equations (3.1 – 3.4) give, 
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The appropriate conditions are, 
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( ) ( ),  ( ) 0,  ( ) 1 ( ), ( ) 1,  when 0,f Af f B g                   
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(3.12) 

Here differentiation with respect to   is denoted by prime and   is the parameter of 

the continuous moving wedge with 0   and 0  , the moving wedge refers to the free 

stream in the same and opposite directions, whereas 0   communicates to the static 

wedge and the other involved parameters are defines as below: 
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3.3 Entropy Generation Analysis  

In the domain of a few engineering and industrial procedures, entropy generation (or 

production) reduces the available energy. It is thus essential to determine the rate of 

entropy generation in a system. 

The volumetric rate of local entropy production of viscous fluid is given as: 
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The associated information will assist model the dimensionless entropy production 
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After exploiting the similarity transformation (3.8) the dimensionless form of entropy 

generation develops: 
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Variable used in above equation are identified as, 

2

2
( ), , , .f w

f f

u RD C CT C
Br L

T C k T k


 

 

 

 
   


 (3.16) 

Bejan number is describe as 

entropy production due to thermal irreversibility ,
total entropy generation

Be   (3.17) 

In mathematical form it expresses as, 
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 Bejan number requirement lie among 0 1Be  . 0Be   means that there is no entropy 

generation because of heat transfer. Similarly, the entropy minimization is less due to 

heat transfer than fluid friction when 0.5Be  . 

3.4 Results and Discussion 

The numerical solution is accomplished by means of finite difference method bvp4c 

from MATLAB. For manipulating this technique first, we transform the given nonlinear 

third order differential equation to first order ODEs by presented substitution. The 

convergence criteria were allotted as 510 . The accuracy of our problem, the present 

result in the absence of slip condition, hybrid nanofluid, and porosity parameter has 

been related with the earlier available result of Zaib and Haq. [70] and Yih [71] (see in 

Table 3.1). This result show good agreement with the above published articles. 
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 The influences of inertia coefficient 0.1 1.0rF  , porous parameter 0.1 0.5mP  , 

variable viscosity parameter 0.4 1.0r  , wedge parameter 0.1 0.3  , and velocity 

slip 0.1 0.7A   and thermal slip 0.1 0.7B   on velocity field, temperature field, 

concentration profile, entropy minimization, and Bejan number are graphically studied. 

The upshot of inertia coefficient rF  and porous parameter 
mP  on axial velocity are 

discussed in Fig. 3.1 ((a) and (b)). The velocity distribution enhances with boosting the 

rF  and 
mP . Further the momentum boundary layer thickness declines with larger the 

rF  and 
mP . Fig. 3.2 ((a) and (b)) highlights the upshot of r  on velocity and temperature 

distribution. Velocity filed upgrade while temperature diminishes with larger variable 

viscosity. Physically by increasing the parameter of variable viscosity, momentum 

transfer dominates due to low fluid viscosity, which improves the distribution of 

velocity (see in Fig. 3.2 (a)). The conclusion of velocity and thermal slip is carried out for 

velocity and temperature field separately in Fig. 3.3 ((a) and (b)). The velocity profile 

improves for improving the velocity slip parameter, while their consistent momentum 

boundary layer thickness reduces which is proven in Fig. 3.3 (a). In the incidence of 

thermal slip, a smaller amount of heat transfer from the surface to liquid, as a result 

distribution of temperature diminishes which is illuminate in Fig. 3.3 (b). Fig. 3.4 ((a) 

and (b)) disclosed the influence of velocity through moving wedge parameter   and 

Eckert number cE . Here velocity is an enhancing function of   for both simple nanofluid 

and hybrid nanofluid (see in Fig. 3.4 (a)). In Fig. 3.4 (b) temperature profile is display to 

measure the effect of Eckert number. Mechanical energy converted to thermal energy 

due to higher Eckert number which produced friction inside the fluid as a result 

temperature field enhances. Figs. (3.5 ((a) and (b)) – 3.6 ((a) and (b))) manifest the 

conclusion of Brinkman number, radiation parameter, temperature difference and 

concentration difference on entropy production and Bejan number. Entropy 

minimization enhances with upgrade the Brinkman number while it reduces with 
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radiation parameter for both cases. This is validating in Figs. 3.5 ((a) and (b)). Further 

the Bejan number increases for increasing the temperature difference and concentration 

difference (see in Fig. 3.6 ((a) and (b)). The numerical values of drag friction, heat 

transfer rate, and local Sherwood number are reviewed in Table 3.2 - 3.4. 

 
                                       (a) 

 
                                       (b) 

Fig. 3.1: Velocity variation (a) with 
rF  and (b) with 

mP . 

 

 
                                      (a) 

 
                                       (b) 

Fig. 3.2: Velocity and temperature variation with 
r . 
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                                       (a) 

 
                                          (b) 

Fig. 3.3: Velocity and temperature variation (a) with A  and (b) with B . 

 

 
     (a) 

 
      (b) 

Fig. 3.4: Velocity and temperature variation (a) with   (b) with 
cE . 

 



42 
 

 
                                         (a) 

 
                                          (b) 

Fig. 3.5: Entropy generation variation (a) with 
dR  and (b) with rB . 

 

 
                                        (a) 

 
                                        (b) 

Fig. 3.6: Bejan number variation (a) with   and (b) with 2 . 
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Table 3.1. Evaluation of ''(0)f  with earlier published results when 0m rP F A      . 

     n  

      

Yih [71] Zaib and Haq [70] Present results  

''(0)f  

-0.05      0.213484 0.2138 0.21380 

0.0 0.332057 0.3326 0.33260 

1/3 0.757448 0.7574 0.75745 

1.0 1.232588 1.2326 1.23259 

 

Table 3.2. Numerical value of skin friction when 1Pr 6.2, 0.5, 0.03n     and 0.1A . 

2  r  mP  rF    
1/2Rex fxC  

     Simple nanofluid Hybrid nanofluid 

0.01 0.5 0.1 0.1 0.1   0.34308   0.35512 

0.03             0.35750   0.36454 

0.05       0.37228    0.37397 

0.01 0.5      0.34308   0.35512 

 0.6      0.25194   0.26628 

 0.7      0.17329   0.18572 

 0.5 0.2     0.40618   0.43043 

  0.4     0.50762           0.54990 

  0.6     0.58846           0.64420 

  0.1 0.3    0.31722           0.32050 

   0.5    0.28825   0.28215 

   1.0    0.20312   0.17002 

   0.1 0.2   0.31982   0.33083 

    0.4   0.26008   0.26909 

    0.6   0.18478   0.19149 
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Table 3.3. Numerical values of Nusselt number when Pr 6.2, 0.5,n   and 1 0.03  .  

2  dR  cE    B  
1/2Rex xNu

 

     Simple nanofluid Hybrid nanofluid 

0.01 1.0 1.0 0.1 0.1 0.69751 0.91291 

0.03             0.83837 1.09210 

0.05     0.97165 1.25890 

0.01 0.5    0.77509 0.99614 

 1.0    0.69751 0.91291 

 1.5    0.63918 0.84711 

 1.0 0.1   0.61119 0.79307 

  0.3   0.63050            0.82031 

  0.5   0.64981            0.84723 

  1.0 0.1  0.69751            0.91291 

   0.2  0.47528 0.61992 

   0 .3  0.10081 0.11261 

   0.1 0.2 0.64550 0.85288 

    0.3 0.60030 0.79958 

    0.4 0.56025 0.75151 

 

Table 3.4. Numerical value of Sherwood number when Pr 6.2, 0.5, 1.0,n E    and 1 0.03  . 

2  cS  cR    
1/2Rex xSh

 

    SWCNT\Water 
SWCNT-

MWCNT\Water 

0.01 1.0 1.0 1.0 1.0145 1.0632 

0.03             1.0469 1.0978 

0.05    1.0803 1.1334 
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0.01 0.5   0.7080 0.7425 

 1.0   1.0145 1.0632 

 1.5   1.2508 1.3102 

 1.0 1.0  1.0145 1.0632 

  2.0  1.3994            1.4697 

  3.0  1.7123            1.7982 

  1.0 0.0 0.7478            0.7709 

   0.5 0.8805 0.9170 

   1.0 1.0145 1.0632 

  

3.5 Concluding Remarks 

In current chapter two dimensional, steady, incompressible hybrid nanofluid 

embedded in porous medium are scrutinized. Entropy generation is found using 

second law of thermodynamics. By means of transformation, the governing non-linear 

partial differential equations (PDEs) are changed into ordinary differential equations 

(ODEs) and tackled these equations numerically by applying the finite difference 

technique bvp4c. The main perceiving points of existing analysis are itemized below:  

 Higher inertia coefficient rF , porous 
mP  and variable viscosity parameter r  

reduces the momentum boundary layer thickness. 

 Thermal field show boosting impact via larger 
cE  and B  for both simple 

nanofluid and hybrid nanofluid. 

 The friction drag, heat transfer rate, and local Sherwood number boosts with 

higher the estimation of solid volume fraction. 

 Nusselt number reduces for enlarge the value of thermal slip and radiation 

parameter. 

 Entropy generation is an enhancing function of Brinkman number.  
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4 Chapter 4 

Impact of slip effects on the stagnation point 

nanofluid flow via Cattaneo – Christov heat flux 

4.1 Introduction 

Cattaneo-Christov with temperature dependent thermal relaxation time and entropy 

minimization is the main concern of this chapter. The micropolar fluid with absorption 

of heat in the existence of mixed convection and partial slip are scrutinized. Two 

distinct nanoparticles (SWCNT, MWCNT) are immerged in micropolar fluid to 

interrogate the feature mass and heat transfer. The non-dimensional similarity 

transformation is consumed to translate the partial differential equations to nonlinear 

ordinary differential equations (ODEs) and resulting equations explained numerically 

consuming bvp4c from Matlab. The present results show the fabulous agreement with 

previous published results. The temperature distribution diminishes with larger the 

thermal relaxation time parameter. Furthermore, increasing the solid volume fraction 

reduces the velocity field while increasing thermal performance and entropy 

production. 

4.2 Mathematical Formulation 

The steady two-dimensional viscous incompressible flow is demonstrated. The flow is 

micropolar with thermal stratification. Fig. 4.1 shows the problem model, as well as the 

flow construction and coordinate system. The time independent micropolar fluid of a 

stagnation point flow through a moving wedge with heat absorption is analyzed. 

Moreover, in the direction of flow a magnetic field is used which is normal to the 
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surface of wedge. The governing equations of mass, linear and angular momentum, and 

energy using above supposition are follow as, 

 

 

Fig. 4.1: Physical representation of flow chart. 

The governing equations of mass, linear and angular momentum, and energy using 

above supposition are follow as, 
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The related conditions are, 
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Here u  and v  are the component of velocity in the direction of x  and y respectively. 

The similarity variables are assumed by, 
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Using similarity variables, the above equations (4.1 – 4.5) give, 
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The suitable conditions are, 



49 
 

*
2.5

1( ) ( ), ( ) ( ) ( ),  ( ) 0,
(1 )  at 0,

                       ( ) 1 ( ),
                ( ) 1,  ( ) 0,  ( ) 0,  as .

h n f f A K f f

B

f g

     
 

   

    


        

 
  

    

 (4.10) 

The involved parameters are defined as: 
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Using equation (4.6) in equation (4.11) we get, 
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4.3 Entropy Generation Analysis   

The volumetric rate of local entropy production of viscous fluid is given as: 
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The dimensionless entropy age can be molded by the accompanying relation 
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Exploiting the similarity transformation (4.6) the entropy generation (or production) 

converted:  
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The involved parameters are delineate as, 
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In mathematical form the Bejan number is expresses as, 
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Bejan number requirement lie among 0 1Be  . Consequently, 0Be   explain that the 

irreversibility due to viscous dissipation dominates, while 1Be   means that heat 

transfer irreversibility dominates. Clearly the 0.5Be   is the situation wherein the 

irreversibility because of heat transfer is equal to viscous dissipation in the entropy 

generation. 

4.4 Results and Discussion 

The systems of equations (4.7) - (4.9) with boundary condition (4.10) are explained 

numerically by means of bvp4c function form MATLAB. While using this method, the 

third and second order ODEs are transformed into the system of first order ODEs. The 

convergence requirements are allotted as 510 . To warranty of every numerical solution 

approach asymptotic value accurately we take  5.   The evaluation amongst existing 

outcomes of the skin friction with previously available information is recorded in Table 

3.1. Table 4.1 tabulated the numerical values of friction drag for dissimilar variables. It 

is found that the drag force improves with larger the values of solid volume fraction 

and diminishes with magnetic parameters, material parameter, and moving wedge 

parameter. The influences of different parameter on velocity profile, micro-rotation 

field, temperature distribution, entropy minimization, and Bejan number are studied 
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graphically. Fig. 4.2 ((a) and (b)) examined the upshot of solid volume fraction on 

microrotation profile and entropy generation profile. With enhancement in solid 

volume fraction the entropy profile shows increasing behavior while the microrotation 

profile shows dual behavior. It is seen that near the surface the microrotation profile 

enhances and far the boundary it diminishes (see in Fig. 4.2 (b)). Fig. 4.3 (a – d) dissected 

the influence of material parameter on linear and angular velocity field, temperature 

distribution, and entropy production. The material parameter diminishes the axial 

velocity. This is demonstrated in Fig. 4.3 (a). The microrotation, temperature, and 

entropy generation distribution improve with developing the assessment of material 

parameter for both cases which is illustrate in Fig. 4.3 (c – d). The improved K  increases 

the fluid's associated viscosity and, due to higher viscous forces, induces more heat. 

Therefore, as shown in Fig. 4.3 (c), the temperature and also thermal boundary layer 

thickness improved with an escalation value K . In Fig. 4.4 (a) the temperature profile 

diminishes with larger the value of thermal relaxation time. It is due because that for 

huge c  the particles of material need greater opportunity to move heat to 

its neighboring particles. It is concluded that for 0c   the heat moves speedily all over 

the objects. As such temperature distribution is larger for 0c  . The temperature 

difference parameter reduces the temperature distribution, which is delineating in Fig. 

4.4 (b). Fig. 4.5 ((a) and (b)) manifests the upshot of Brinkman number on Bejan number 

and Reynolds number Rex  on entropy generation respectively. The Bejan number 

decline with enlarger the value of Brinkman number and entropy generation enhance 

for Reynolds number. 
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                                       (a) 

 
                                       (b) 

Fig. 4.2: Angular velocity and entropy generation variation with solid volume fraction. 

 

 

                                       (a) 

 

                                       (b) 
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                                       (c) 

 
                                        (d) 

Fig. 4.3: Linear and angular velocity, temperature, and entropy generation variation with 

micropolar parameter. 

 

 

 
                                       (a) 

 
                                       (b) 

Fig. 4.4: Temperature variation (a) with 
c  and (b) with T . 
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                                        (a) 

 
                                        (b) 

Fig. 4.5: Bejan number and entropy generation variation (a) with 
rB  and (b) with Rex . 

 

Table 4.1. Numerical value of local skin friction for dissimilar parameters when 
* 0.5, 0.1n A  , 0.5m  , and 0.1.n   

  M    K  1/2Rex fxC   

    SWCNTs  MWCNTs  

0.01 0.1 1.0 0.1 0.69843 0.68727 

0.03    0.72241 0.74196 

0.05    0.79800 0.82660 

0.01 0.3 1.0 0.1 0.55296 0.60168 

 0.5   0.54671 0.54937 

 1.0   0.46210 0.46505 

0.01 0.1 0.5 0.1 0.79351 0.80000 

  1.0  0.69843 0.68727 

  1.5  0.54293 0.55451 

0.01 0.1 1.0 0.1 0.69843 0.68727 

   0.2 0.58965 0.68648 

   0.3 0.50755 0.59570 
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4.5 Concluding Remarks 

In present chapter, the two dimensional, steady, and incompressible micropolar fluids 

past a moving wedge are examined. The energy equation is supported in the existence 

of thermal slip and temperature dependent thermal relaxation time. The numerical 

clarification is gained by applying the technique bvp4c. The main observing points of 

present analysis are specified beneath:  

 Entropy generation enhances for enhancing estimation of Reynolds number and 

material parameter ( K ), and Bejan number is reduced with Brinkman number. 

 Thermal relaxation parameter reduces the temperature and their related thermal 

boundary layer thickness. 

  Angular velocity and entropy generation, rises while axial velocity reduces with 

rising the solid volume fraction  .   

 Local skin friction declines with magnetic parameter, stretching parameter, and 

material parameter however for solid volume fraction it's upgraded. 
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5 Chapter 5  

Analysis of two phase fluid flow in presence of 

Thomson and Troian slip condition 

5.1 Introduction 

This chapter considers entropy minimization in stagnation point flow of a hybrid 

nanofluid over a nonlinear permeable stretching surface with Thomson and Troian 

boundary condition. Due to porous medium the Darcy-Forchheimer relation is added. 

The energy equation is deliberated under the effect of heat generation, viscous 

dissipation, and Cattaneo-Christov theory. Further the influence of variable viscosity, 

activation energy and variable mass diffusivity are taken into account. For first time, 

hybrid nanofluid involving of carbon nanotubes with Thomson and Troian boundary 

conditions and induced MHD has been implemented and has not yet been studied. The 

bvp4c function from Matlab is utilized to solve the transformed ordinary differential 

equation (ODEs). This method has good certainty to solve this problem, compared to 

previous works. It is noticed that the solid volume fraction declines the velocity profile 

and enhance the temperature distribution. Further, compared to simple nanofluid, 

hybrid nanofluid has greater thermal conductivity and better heat transfer performance. 

5.2 Mathematical Description 

In current chapter, we examined the two-dimensional incompressible hybrid 

nanoliquid stagnation point flow over a nonlinear stretching surface along Thomson 

and Troian boundary condition. The flow analysis is studied through the application of 

Darcy-Forchheimer law. The total entropy minimization rate is found by implement the 

second law of thermodynamics. Physical description of the present flow is given in Fig. 
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5.1. It is accept that the flat surface moving in the x-direction along velocity ( ) n

wu x ax , 

and free stream (inviscid flow) velocity is thought to be ( )eu x . Induced magnetic field 

H  is assumed. Moreover 1H  and 2H  are parallel and normal components of H . 

 

 

 

Fig. 5.1: Physical description of problem for (a) stretching sheet 0    and (b) shrinking sheet 

0  . 

Variable viscosity, and mass diffusivity is mathematically described by [18] 
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1( ) (1 ).fD C D g   (5.2) 

Imposing the approximation of the boundary layer and assuming that we have a system 

of equations: 
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y x y x
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The connected boundary conditions are [72], 
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Using similarity transformation, the above equations (5.3 – 5.9) give, 
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The appropriate conditions are, 
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In Eq. (5.15), A  is slip velocity parameter and   is critical shear rate which are defined 

as 
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For similarity solution of Eqs. (5.11) to (5.16) A  and   suggested to be constant instead 

of function of variable x . This can be accomplished, if we accept *( )x  relative to 
1 3
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The dimensionless parameter involved in Eqs. (5.11) to (5.16) are mathematically 

concluded as: 
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5.3 Entropy Generation Analysis  

The volumetric rate of local entropy production of viscous fluid is given as: 
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The dimensionless form of entropy minimization is required using below relation  
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After exploiting the similarity transformation (5.10), Eq. (5.21) becomes: 
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Variable used during above equation are describes as, 
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5.4 Results and Discussion 

The finite difference technique bvp4-c function from MATLAB is integrate to solve the 

influence of solid volume fraction ( 2 ), velocity slip parameter ( 1 ), magnetic parameter 

( M ), reciprocal magnetic Prandtl number ( 1M ) , Eckert number (
cE ), concentration 

difference on velocity distribution, induced magnetic profile, temperature field, 

concentration profile, and entropy generation. Fig. 5.2 ((a) – (b)) scrutinized the effect of 

2  on velocity profile, induced magnetic field, temperature profile, and concentration 

profile. Velocity and induced magnetic field reduced with larger the value of 2 . 

Physically, enhanced 2  the thermal conductivity of nanofluid increases which slow the 

fluid motion and boost the heat transfer rate as a consequence temperature improves 

(see in Fig. 5.2 (c)). Concentration profile diminishes for both cases with enhances solid 

volume fraction 2 . It is given in Fig. 5.2 (d). Fig. 5.3 (a) shows decreasing behavior of 

the velocity field through a magnetic parameter. This is based on the fact that Lorentz 

force determines the existence of the transverse magnetic field, which occurs in 

retarding force on the velocity field. Thus, the retarding force and therefore the velocity 

reduces as the estimation of M  improve. Fig. 5.3 (b) depicts the impact of reciprocal 

Prandtl number on '( )q  . Physically Lorentz forces boosts with higher the assessment 
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of 1M  which decrease the '( )q  . Fig. 5.4 (a) determines the result of velocity slip 

parameter on velocity field. It is perceived that an enlargement in 1  produce a stronger 

'( )f  . Fig. 5.4 (b) characterizes the temperature distribution against Eckert number 
cE  

for both cases. Here temperature sketch ( )   increases through larger values of 
cE  for 

both nanofluid and hybrid nanofluid. Further it is seen that the thermal boundary layer 

thickness is higher for hybrid nanofluid than nanofluid. Fig. 5.5 ((a) and (b)) describes 

entropy generation number ( )sN   to the 2  and L . It is found that enhancing 2  and 

L  leads to a substantial increment in entropy generation ( )sN  , in the near of the sheet. 

Fig. 5.6 (a) illustrated the influence of critical shear rate   verses SWCNT solid volume 

fraction 2  on skin friction coefficient. It is seen that ''(0)f  sketch diminishes by 

enhancing the estimation of   while it is enhances with 2 . The Sherwood number is 

graphically demonstrated in Fig. 5.6 (b) against temperature difference   verses 2 . It is 

found that the Sherwood number boosts with boosting the estimation of   and 2 . 

Table 5.1 demonstrates the comparison table with previous published result. Table 5.2 

and 5.3 show the numerical values of friction drag and local Sherwood number for 

distinct parameters. It is realized that the friction drag enhances for larger values of 2  

variable viscosity r , porosity parameter 
mP  and rF , while it is reduce for M  and  . 

Similarly, for increasing the estimation of 2 2,  ,  ,  c cS R   Sherwood number enhances. 
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                                          (a) 

 

                                          (b) 

 

                                           (c) 

 

                                          (d) 

Fig. 5.2: Velocity, induced magnetic field, temperature, and concentration variation with solid 

volume fraction. 
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                                          (a) 

 

                                           (b) 

Fig. 5.3: Induced magnetic field variation (a) with M  (b) with 1M . 

 

 

                                          (a) 

 

                                           (b) 

Fig. 5.4: Velocity and temperature variation (a) with 1  (b) with 
cE . 
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Fig. 5.5: Entropy generation variation (a) with 2  (b) with L . 

 

  

Fig. 5.6: Skin friction and Sherwood number variation (a) with   (b) with   versus 2 . 

 

 

 

 



66 
 

Table 5.1. Comparison of ''(0)f  with previous published results when 

1 0m r r iP F M         .  

 

  
Wang [36] Khan et al. [35] 

Present result 

''(0)f  

5.0 −10.26475 −10.2647 −10.265 

3.0  −4.27654 −4.2765 

2.0 −1.88731 −1.8873 −1.8873 

1.0 0.0000 0.0000 0.0000 

0.5 0.7133 0.71329 0.7132 

0.0 1.232588 1.23259 1.2325 

 

Table 5.2. Numerical value of skin friction when 1Pr 6.2, 0.5, =0.05, and 0.1.n      

2  r  mP  rF  M    1/2Rex fxC  

      Simple nanofluid    Hybrid nanofluid 

0.01 0.5 0.1 0.1 0.2 0.2 1.1227 1.2612 

0.03               1.2034 1.3495 

0.05      1.2913 1.4464 

0.01 0.3     0.9175 1.0358 

 0.4     1.0188 1.1472 

 0.5     1.1227 1.2612 

  0.2    1.1512 1.2976 

  0.4    1.2017            1.3615 

  0.6    1.2452            1.4162 

   0.3   1.1829            1.3311 

   0.5   1.2752 1.4392 

   1.0   1.3443 1.5210 

    0.1  1.1246 1.2633 
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    0.3  1.1208 1.2590 

    0.5  1.1169 1.2545 

     0.2 1.1227 1.2612 

     0.4 1.0846 1.2222 

     0.6 1.0420 1.1785 

 

Table 5.3. Numerical value of local Sherwood number when 1Pr 6.2, 0.5, =0.05.n     

. 2  cS  cR    
1/2Rex xSh

 

    Simple nanofluid  Hybrid nanofluid 

0.01 1.0 0.3 0.1 0.63298 0.64893 

0.03            0.6399 0.65523 

0.05    0.64675 0.66142 

 0.5   0.52656 0.54365 

 1.0   0.63298 0.64893 

 1.5   0.68709 0.69775 

  1.0  0.52199 0.52994 

  2.0  0.63298           0.64893 

  3.0  0.73110           0.75334 

  1.0 0.0 0.73878           0.76252 

   0.5 0.75331 0.77979 

   1.0 0.76688 0.79582 

 

5.5 Concluding Remarks 

In present chapter two dimensional, incompressible, steady SWCNT-MWCNT/water 

hybrid nanofluid past a nonlinear stretching sheet are considered. Cattaneo-Christov 
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model of heat flux is used instead of Fourier Law to evaluate the energy equation. By 

means of transformation, the governing PDEs are changed into ODEs and tackled these 

equations numerically by applying the finite difference technique bvp4c. The main 

finding of this problem is given below:  

 Axial velocity '( )f   enhances with enhancing the parameter 1 .  

  Induced magnetic field '( )g   diminishes for greater value of 2,  M   and 1M . 

 Skin friction 
1/2Rex fxC  reduces for enlarge   and boosts for 2 . 

 The Sherwood number enhances with the SWCNT volume fraction. 

 Improvement in entropy production rate is observed for higher 2  and L .  
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6 Chapter 6 

Impact of Newtonian heating on the micropolar 

CNT based hybrid nanofluid flow 

6.1 Introduction 

This chapter discusses the impact of ion and Hall slip in micropolar hybrid nanoliquid 

with Newtonian heating. Further the impact of thermal radiation, Darcy – Forchheimer, 

viscous dissipation, and variable viscosity are discussed. Total entropy generation rate 

is calculated. Two distinct nanoparticles such as (SWCNT, MWCNT) used as a hybrid 

nanofluid. Built-in function bvp4c integrates the solution of simulated hydrodynamic 

boundary value problems. The effects on axial velocity, angular velocity, temperature 

field, concentration field, Bejan number, and entropy optimization of different flow 

field variables are displayed graphically. The nanoparticle fraction increases the 

temperature, Bejan number, and entropy generation, while the linear and angular 

velocity diminishes. Further the entropy generation enhances with higher the Brinkman 

number and variable viscosity parameter. 

6.2 Mathematical Description 

We considered SWCNT and (SWCNT, MWCNT) to be hybrid nano solid structures in 

water (base liquid) above the horizontal surface moving with velocity 

( ) , ( )n n

w x y a x y d    V  and combined with non-uniform magnetic field ( 1)/2
0 ( ) nB x y  . 

Further the variable viscosity with ion and Hall slip effects are considered. Fig. 6.1 is the 

graphical representation of flow field.  
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Fig. 6.1: Physical representation of flow field. 

The boundary layer equations for micropolar nanofluid with non-uniform MHD and 

Darcy Forchheimer terms are directly defined as 
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The following boundary conditions were introduced in order to answer the above set of 

governing equations: 
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To change the non-linear differential equations (6.1 – 6.6), i.e., using the suitable non-

dimensional variables, 
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Continuity equation is automatically satisfied, and Eqs. (6.2) to (6.6) transform into, 
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and the boundary conditions (6.7 and 6.8) become 
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The expressions of the parameters involved is defined as 
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6.3 Entropy Generation Analysis 

The local entropy generation defined in term of heat transfer irreversibility, thermal 

radiation, viscous dissipation, and magnetohydrodynamics with Hall and ion effects 

are 
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The dimensionless form of entropy production is attained by using the following 

relation  
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After manipulating the similarity transformation (6.9 and 6.10), the non-dimension form 

of entropy minimization develops: 

 
 

2 2
3 2

2 2

2 2

1

' '1( ) (1 ( 1) ) ' +
2 (1 )

1 1                                               '' '' .
1 2

hnf hnf

s d r

f f e i e

r

MBr G fk n
N R T

k

n
Br K G f

D


  

   

 

                             

   
        

 (6.21) 

The Bejan number expression is define as, 
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6.4 Solution Procedure: 

The numerical solution of equations (6.11 – 6.15) equivalent to boundary condition 

(6.16 and 6.17) is clarified by means of bvp4c from MATLAB. For this reason, the 

transformed third order differential equations are changed to first order differential 

equation using new variables. In this method chose the appropriate initial guess to 

acquire the boundary layer asymptotically. A convergence criterion of 610  is set for the 
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acquired solution. We employed suitable finite values of   , that is  5   , 

depending on the values of the parameters involved. The relation is made between the 

published paper Khan et al. [32] and our current finding, which is depicted in Table 6.1, 

in the non-appearance of temperature dependent viscosity, hybrid nanofluid, and 

mixed convection. 

6.5 Results and Discussion  

The influence of SWCNT solid volume fraction ( 2 ) on entropy generation ( ( )sN  ) and 

Bejan number ( Be ) are presented in Fig. 6.2 ((a) and (b)). Moreover an interesting result 

is observed for higher 2  from Fig. 6.2 (a), that the entropy generation increases near the 

surface of wall while reduces far away for both simple nanofluid and hybrid nanofluid. 

The Bejan number show dual behavior for enhancing value of 2 , near the surface it 

diminishes while far away the boundary it increases (see in Fig. 6.2 (b)). Fig. 6.3 (a) 

designate the impacts of inertia parameter on velocity distribution along x and y 

direction via simple nanofluid and hybrid nanofluid. It is examined that the velocity (

'( ),  '( )f G  ) reduces with increasing values of inertia parameter 
rF . It is also detected 

that the velocity field more decay in hybrid nanofluid case than simple nanofluid. The 

same observation is seen for axial veocity when porosity parameter enhances (see in 

Fig. 6.3 (b)). Fig. 6.4 (a) looks at the declining trend of ( '( )f   and '( )G  ) for larger M  

values. Because magnetic parameter is dependent on Lorentz force, the resistance 

between the liquid particles increases for larger magnetic parameter, which helps to 

diminish ( '( )f   and '( )G  ) and increase the distribution of temperature (see in Fig. 6.4 

(b)). Fig. 6.5 ((a)– (d)) tells the performance of ( '( )f  , '( )G  , 1 2( ),  ( )h h   and ( )  ) for 

variation of micro-polar parameter K . It is perceived from Fig. 6.5 (a) that the fluid 

motion is more for enlarge estimation of K . Fig. 6.5 ((a) and (b)) illustrate the similar 

outcomes as identified in Fig. 6.5 (a). Fig. 6.5 (d) is calculated to examine the 
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temperature for larger micro-polar parameter ( K ). One can recognized that enhancing 

behavior occurs for K  on temperature profile. Fig. 6.6 (a) demonstrated the result of 

Hall parameter on velocity distribution along x and y direction. It is seen that the x 

component of velocity ( '( )f  ) enhances with 
e  boosts, while the y component of 

velocity ( '( )G  ) show opposite behavior. Fig. 6.6 (b) shows attempt to see the effect of 

e  on ( )  . It is seen that the temperature and their related thermal boundary layer 

enhances with larger estimation of Hall parameter e . Fig. 6.7 ((a) and (b)) depict the 

impacts of conjugate parameter (
Hn ) and temperature difference (

rT ) on temperature 

distribution. It is found that the temperture distribution boosts for both larger values of 

conjugate parameter (
Hn ) and temperature difference (

rT ). It is also seen that the hybrid 

nanofluid profile is larger than simple nanofluid. The result of Brinkman number on 

entropy generation is discussed in Fig. 6.8. Entropy generation show increasing 

performance for boosting estimation of Br . In Table 6.1 the numerical values of drag 

friction are given for distinct parameters. It is seen that for parameters 2 ,M  and 
r  skin 

friction value enhances while for parameters K  and 
i  values of skin friction 

diminishes. Table 6.2 calculate the numerical values of local Nusselt number for distinct 

parameters.    
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                                          (a) 

 

                                           (b) 

Fig.6.2: Entropy generation and Bejan number variation with solid volume fraction. 

 

 

                                          (a) 

 

                                           (b) 

Fig. 6.3: Horizontal and vertical velocity variation (a) with rF  (b) with 
mP . 
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                                          (a) 

 

                                           (b) 

Fig. 6.4: Velocity and temperature variation with magnetic parameter. 

 

 

 
                                          (a) 

 
                                            (b) 
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                                           (c) 

 

                                          (d) 

Fig. 6.5: Velocity and micropolar field along x and y-axis, and temperature variation with K . 

 

 

                                          (a) 

 

                                           (b) 

Fig. 6.6: Velocity and temperature variation with Hall parameter. 
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                                          (a) 

 

                                           (b) 

Fig. 6.7: Temperature variation with (a) with conjugate parameter (b) with temperature 

difference. 

 

 

Fig. 6.8: Entropy generation variation with Brinkman number. 
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Table 6.1. Evaluation of ''(0)f  and ''(0)G  for different values of   when * 1, 0r rn M F      

 

 

 

Table 6.2. Numerical value of local skin friction for numerous variables when 

1 0.03, 0.1 .m rP F     

K  i  2  M  r  
1/2Re fC  

1/2Re gC  

     
Simple 

nanofluid 

Hybrid 

nanofluid 

Simple 

nanofluid 

Hybrid 

nanofluid 

0.1 0.1 0.01 1.0 0.5 1.7843 1.8424 0.62266 0.65354 

0.3     1.7337 1.7939 0.46895 0.48295 

  
Nawaz et al. [17] 

''(0)f  

Nawaz et al. [17] 

''(0)G  

Present results 

''(0)f  

Present results 

''(0)G  

0.0 1.0001434 0 1.00042 0 

0.5 1.224440 0.613220 1.22445 0.61332 

1.0 1.4142725 1.4148725 1.41427 1.41497 
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0.5     1.6771 1.7398 0.23200 0.26050 

 0.2    1.7975 1.8564 0.62690 0.64378 

 0.3    1.7803 1.8489 0.61401 0.63053 

 0.5    1.7761 1.8344 0.59123 0.60715 

  0.02   1.8279 1.8872 0.64698 0.66453 

  0.03   1.8520 1.9118 0.65339 0.67127 

  0.05   1.9038 1.9648 0.66729 0.68593 

   0.1  1.5289 1.5800 0.41551 0.42731 

   0.5  1.6622 1.7157 0.53377 0.54737 

   0.9  1.7784 1.8362 0.62183 0.63830 

    0.2 1.6568 1.7179 0.61087 0.62957 

    0.4 1.7589 1.8186 0.63183 0.64951 

    0.6 1.8482 1.9067 0.64935 0.66626 

Table 6.3. Numerical value of local Nusselt number for numerous parameters when

1 0.03,Pr 6.2, 0.5.e     

2  M   r  cE  dR  
1/2[Re] xNu

 

     Simple nanofluid Hybrid nanofluid 

0.02 1.0 0.5 0.1 1.1 1.0000 0.80061 

0.03     0.8310 0.64240 

0.05     0.7189 0.54930 

 0.1    1.6080 1.25300 
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 0.5    1.3310 1.03750 

 0.9    1.0520 0.82316 

  0.2   1.2160 0.99775 

  0.4   1.1930 0.97858 

  0.6   1.1730 0.96156 

   0.2  1.1304 0.93005 

   0.4  0.8261 0.85044 

   0.6  0.7220 0.77079 

    0.3 1.1315 0.93468 

    0.5 1.1446 0.94357 

    0.7 1.1574 0.95239 

 

6.6 Concluding Remarks   

The principle contributions of the present flow problem are reported below: 

 For both simple nanofluid and hybrid nanofluid, fluid velocities ( '( ), '( )f G  ) 

are reduced by larger ( ,  , and r mM F P ). 

 An escalate of material parameter K  improves ( '( ), '( )f G  ). 

 The micro-rotation field enhances for larger estimation of micropolar parameter 

K . 

 Thermal boundary layer boosts for higher Hall parameter (
e ) and conjugate 

parameter ( Hn ).  

 Escalation the SWCNT volume fraction ( 2 ) entropy and Bejan number increases. 

 Temperature field is an increasing function of rT , M , and K .  
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7 Chapter 7 

Heat transfer enhancement in a micropolar 

hybridized nanofluid flow in the presence of 

stratification 

7.1 Introduction 

In the present chapter, it is scrutinized the steady bio-convective micropolar hybrid 

nanofluid flow with the stratification conditions above a vertical exponentially 

stretching surface. Both SWCNT and MWCNT are jointly used in a base fluid of water 

to formulate the Hybrid nanoparticles in the current chapter. The impact of activation 

energy and Cattaneo Christov theory is also examined. The bvp4c Matlab function is 

applied to solve the numerical solution of the nonlinear coupled equation. The influence 

of the involved parameter is discussed graphically. The physical numbers were 

observed via graphs, such as friction factor, local Sherwood number, and local 

microorganism number. It is worth observing that the drag friction, local Sherwood, 

and microorganism number enhanced with the increase of solid volume fraction of 

SWCNT and MWCNT. Further, the motile microorganism distribution is declining with 

improving values of microorganism stratification parameter, Peclet number, and bio - 

convection Schmidt number. 

7.2 Mathematical Description 

In the existing study, we perceived steady, two dimensional boundary layer flow past a 

verticle stretching sheet in the presence of mixed convection and velocity slip effect. The 

influence of triple stratification, rate of chemical reaction, and microorganism is carried 

out. The physical diagram of flow field is specified in Fig. 7.1. The fluid stretching 
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velocity is        (
 

 
). The surface temperature is   , concentration is   , and 

microorganism density is    , while the ambient temperature, concentration, and 

microorganism density is denoted by   ,   , and     respectively. 

 

Fig. 7.1: Physical representation of flow field. 

The flow model is described as follows, consuming the above said suppositions and 

boundary layer approximation: 
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The appropriate boundary conditions are specified by: 
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The suitable variables are specified as,  
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Using Eq. (7.9), in equation Eqs. (7.1 – 7.8) become, 
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The appropriate boundary conditions are, 
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The containing parameters are mathematically expressed as:  

  
 

  
,    

    (    )(    )

    
,    

   

    
,    

(      )(    )

    (    )(    )
,    

  

(  ) 
, 

   
    (  ) 

  
 ,     

  

(  ) 
,      

 

 
      

  

  
,     

   √
 

   
,    

  

  
,    

   

   

, 

   
  

  
     

 

 
,    

  

  
      

  
 (      )(      )

  (    )(    )
,   

 

 
     

  
 

 
     

  

   
. 

 

 

(7.16) 

The physical variables such as drag force, local microorganism number, and local 

Sherwood number is define as, 
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The dimensionless form of the above equation become, 
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Here Re   
   

 
 stands the local Reynolds number. 

7.3 Results and Discussion 

The nonlinear ODEs (7.10 – 7.14) including boundary condition (7.15) are numerically 

attempted by exploiting the bvp4c function in MATLAB. The influence of different 
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involved variables on the velocity field '( )f  , temperature ( )  , concentration ( )g  , 

microorganism distribution  ( ), skin factor ( fC ), mass transfer rate (
xSh ), and local 

microorganism number 
xNn  are emphasized in Figs. (7.2 – 7.7). The velocity ratio 

parameter A  diminishes the velocity distribution, which is explained in Fig. 7.2 (a). 

Physically, the slip boundary condition at the surface is applied when the viscosity 

influence of the liquid at the surface is low. More resistance is detected in the transfer of 

the stretching velocity to the fluid motion due to the weak bond among the fluid and 

the surface as a result of the partial slip. In a conclusion, as the slip parameter is 

increased, the fluid velocity decreases. In Fig. 7.2 (b), the effect of the 

shrinking/stretching parameter   on the   ( ) can be seen. For the  , it is noticed that 

  ( ) grows. Because when the value of   improves, the velocity near the surface 

enhances. The upshot of micropolar parameter is observed in Fig. 7.3 (a). The velocity 

distribution is an enhancing function of the material parameter  . Because the dynamic 

viscosity is low for a higher value of material parameter  . Lower viscosity means that 

low resistance occurs in the fluid flow, which enhances the linear and angular velocity 

distribution (see in Figs. 7.3 (b)). On the other hand, the temperature field diminishes. 

This is clarified in Fig 7.3 (c). From Fig. 7.4 (a) and (b), we notice that as 
mP  and c  

enhances, the velocity   ( ) and temperature  ( ) decrease respectively. The behavior 

of thermal stratification  1S , concentration stratification 2( )S , and microorganism 

stratification 3( )S  on temperature ( )  , concentration  ( ), and microorganism field 

( )   is observed in Fig. 7.5((a) - (c)). It is seen that the ( ( )  ,  ( ), ( )  ) decreases with 

( 1 2 3,  ,  S S S ) respectively. Fig. 7.6 (a) depicts the influence of    on motile 

microorganisms  ( ). With greater   , the  ( ) is thought to be reduced. The result of 

   (bioconvection Schmidt number) on  ( ) is shown in Fig. 7.6 (b). It is revealed that as 

   is estimated more, the  ( ) sketch decreases. Because the    has an inverse 

relationship with the diffusion coefficient of motile microorganisms, the  ( ) sketch 
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declines. Figs. 7.7 ((a) – (c)) look at the effects of volume fraction ( 1 , 2 ) against 

stretching parameter on skin factor, local Sherwood number, and local microorganisms 

number. The skin friction, local Sherwood number, and local microorganisms number 

enhances with higher values of solid volume fraction and stretching parameter. 

 

                                          (a) 

 

                                           (b) 

Fig. 7.2: Vertical velocity variation (a) with A  (b) with  . 
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                                          (a) 

 

                                           (b) 

 

    (c) 

Fig. 7.3: Velocity, micro-rotation and temperature variation with K . 
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                                          (a) 

 

                                           (b) 

Fig. 7.4: Velocity and temperature variation (a) with 
mP  (b) with c . 

 

 

 
                                            (a) 

 
                                           (b) 
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(c) 

Fig. 7.5: Temperature, concentration, and microorganism variation (a) with 1S  (b) with 2S
 
(c) 

with 3S . 

 

 

                                          (a) 

 

                                           (b) 

Fig. 7.6: Microorganism variation (a) with eP  (b) with bS . 
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                                          (a) 

 

                                           (b) 

 

    (c) 

Fig. 7.7: Skin friction, local Sherwood number, and local microorganism number variation with 

1 2,   and with  . 

 

7.4 Concluding Remarks 

The main finding of the present result as given below:  

 The solid volume fraction parameter show dual behavior on linear and angular 

velocity while microorganism and concentration field diminishes. 

 The temperature profile is a boosting function of solid volume fraction. 
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 The ( )   shows the decreasing behavior for 1S , and K . 

 Improving the values of solutal stratification parameter and Schmidt number, the 

concentration field decay while improves for activation energy parameter.  

 As rises the Peclet number, bio - convection Schmidt number, and 

microorganism stratification parameters, the microorganism field decreases.  

 The drag force, local Sherwood and microorganism number show growing 

performance as growing solid volume fraction and stretching parameter. 
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