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Preface 

The purpose of cryptography is to maintain and transmit data in such a manner that it can be read and 

understood only by authorized recipients. Although it may be known that data is being transmitted, 

the content of that data should remain secret to unauthorized persons. Any secure encryption scheme 

contains the basic concepts of cryptography.  It may provide integrity and confidentiality: it is 

essential to note that it will not provide availability explicitly. Authentication and non-repudiation 

might be given by cryptography. The cryptographic algorithm's anonymity does not have power. It is 

also proven that hidden algorithms are very weak. Public algorithms such as the Advanced 

Encryption Standard (AES) and the Triple Data Encryption Standard (TDES) are ciphers that have 

stood the test of time. In the last few decades, numerous simple cryptographic methods have been 

exploited in various fields. It is customarily used traditionally by authorities or controlled 

organizations to conceal confidential messages from adversaries. But once again, every single day, 

millions of classified and encoded conversations take place electronically. Accordingly, online 

security issues are growing so exponentially that there has been a need for information security, 

science and analysis to protect data from potential threats in contact schemes and computers. Cyber-

security issues are now growing so exponentially a need for information security, network security 

and data protection mechanisms from unauthorized parties in computer systems has indeed been 

noticed. Cryptosystems are used to encrypt documents, photos, videos, banking records, proof of 

health, and much more. Mathematical thinking and the implementation of computer science are also 

focused on day-time cryptology and network security activities. 

Nowadays most communications are frequently made on computers. As a result of advancements in 

technology, the transfer rate of digital data through cryptographic embedded devices such as smart 

cards is increasing rapidly and these devices are vulnerable to attacks. Cryptography provides various 

algorithms to secure the data. In the beginning (i.e. in the 1960s) of cryptography, secret 

communication was limited to the government. In the 1970s Horst Feistel (German Cryptographer) 

created a cipher at IBM called the Feistel cipher. This was the first commercially seen cipher of the 

cryptographic history seen in 1973. The U.S National Bureau of Standards (NBS), now call the 

National Institute of Standards and Technology (NIST), published a symmetric cipher in 1977 based 

on the Feistel cipher called the Data Encryption Standard (DES). It was considered to be highly 

secure and as a standard up to the end of the 20th century. In 1997 NIST call for ciphers, because of 
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the theoretical and exhaustive key search attacks on DES. In June 1998 fifteen candidates were 

accepted and after shortlisting in aug-1999, five were chosen. The shortlist includes; Rijndael 

Algorithm [1], RC6 algorithm [2], Serpent Algorithm [3], MARS algorithm [4] and Twofish 

algorithm [5]. 

To improve the complexity in S-boxes, the structure of Galois field is replaced by a more generalized 

structure of Galois ring. Firstly, Galois ring gets importance in coding theory in 1979 when Shankar 

[3] constructs the BCH codes over local ring ℤ𝑝𝑘 . Likewise; the BCH codes over finite unitary 

commutative rings are assembled by Andrade and Palazzo [7] in 1998. These constructions are 

equally focused on the maximal cyclic subgroup of the group of units of a Galois ring extension of a 

local ring. In this upshot, Shah et al. [8, 9] spread the work contained in [7] to a sequence of BCH 

codes over an ascending chain of finite Galois rings. For this purpose chain of the maximal cyclic 

subgroups of the chain of groups of units is considered. These assemblies are often generated on 

Galois fields with characteristic 2, hence there is a need of improvements and reforms in algebraic 

structures. To increase the complexity of S-boxes, the structure of Galois field is replaced with a 

more generic structure called the Galois ring. In 1997, when Shankar [3] constructs the BCH codes 

over local ring ℤ𝑝𝑘, the Galois ring get its importance in coding theory. Similarly, Andrade and 

Palazzo [7] assembled the BCH codes over finite commutative rings with unit elements in 1998. The 

maximum cyclic subgroup of the group of units of a Galois ring extension of a local ring is similarly 

based on these constructions. In this context, Shah et al. [8, 9] extended the work found in [7] over an 

ascending chain of finite Galois rings to a sequence of BCH codes. The chain of the maximal cyclic 

subgroups of the chain of groups of units is considered for this reason. 

A generalize structure of the sequence alphabet to a residue class polynomial ring over Galois field 

(GF) is given in [10]. According to [10], if 𝑤(𝑥)𝑘, for 𝑘 > 1, be the 𝑘𝑡ℎ power of an irreducible 

polynomial 𝑤(𝑥) over GF of degree 𝑚 . Then, the residue class ring 𝑅 is defined as 𝑅 =
𝔽2[𝑥]

<𝑤(𝑥)𝑘>
. 

This generalization provides a large choice of rings to construct frequency hopping sequences. These 

rings are called commutative chain rings. The ring 𝑅𝑛 =
𝔽2[𝑥]

〈𝑥𝑛〉
 is a special case of 𝑅 where 𝑤(𝑥) = 𝑥 

and 𝑘 = 𝑛. An application of such rings is given in the construction of cyclic codes and Self-Dual 

codes in [11]. A cyclic code 𝐶 of length 𝑚 over 𝑅 is a linear code with the property that if 𝑐 ∈ 𝐶, the 

each rotation of bits of 𝑐 will also yields to an element of 𝐶. Thus, if we consider the codewords to be 
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polynomials then the cyclic codes are ideal in the ring 𝑅 =
𝔽2[𝑥]

<𝑤(𝑥)𝑘>
. Furthermore, the design of byte 

based 4 × 4 S-box from finite commutative chain ring 𝑅8 =
𝔽2[𝑥]

<𝑥8>
 is initiated by Shah et al. [12]. 

Here, in [12], the bit size of each entry in the S-boxes is greater than the size of the S-box (further 

explained in section 1.3) and is recently used in [13] (explained in chapter 5) for image encryption 

application. 

The Rijndael algorithm (Advanced Encryption Standard-AES), is considered to be the most secure 

and fast text encryption tool. However, it fails to be a digital image encryption instrument, due to its 

worst time complexity, as compared to chaos (non-linear dynamical system) and S-box based image 

encryption schemes. On the other hands, the second competitor for the Advanced Encryption 

Standard, i.e., Serpent Algorithm is more secure than the Rijndael algorithm. But the time inferiority 

of the Serpent algorithm makes the Rijndael algorithm superior. For Serpent algorithm, initially, S-

boxes were taken from the data encryption standard (DES) that resulted in Serpent-0 algorithm [3], a 

more secure Algorithm than triple-DES [14] having a key size of length 192 or 256 bits, presented at 

the 5th international workshop on Fast Software Encryption. After this, Serpent-1 [3] was designed 

which used new and stronger S-boxes with a different key schedule to resist different attacks like 

differential [15] and linear [16] techniques. Copious image encryption schemes based on the Rijndael 

algorithm and Serpent algorithm have been introduced by cryptographers [17-18]. However, in this 

thesis, a novel idea to improve Serpent algorithm by using elements of finite commutative chain ring 

𝑅8 =
𝔽2[𝑥]

〈𝑥8〉
 has been established. And then its application is investigated in RGB image encryption. 

The results of the encryption scheme ensure the security of the improved Serpent algorithm against 

different attacks like differential attack, brute force attack, etc. Moreover, the time analysis of 

displays the improvements in this newly introduced improved Serpent algorithm. 

Furthermore, in this thesis, S-boxes of different sizes from multiple elements of the group of units of 

the finite commutative chain rings  
𝔽2[𝑥]

〈𝑥12〉
 and 𝔽2[𝑥]

〈𝑥24〉
 are constructed. Therefore, it shows powerful 

algebraic complexity and has excellent properties of resisting all the well-known attacks. The size of 

these S-boxes are 12 × 12 and 24 × 24. Whereas, a typical 8 × 8 S-box over Galois field 𝐺𝐹(28) 

has 28 8-bit strings and thus requires a storing memory of 8 × 28 bits. In continuation, a 12 × 12 S-

box over Galois field 𝐺𝐹(212) requires 12 × 212 bits which is computer memory consuming. Thus, 

for the construction of 12 × 12 and 24 × 24 S-boxes, a method is realized through the multiplicative 
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group of units of chain ring𝑠 
𝔽2[𝑥]

〈𝑥12〉
 and  

𝔽2[𝑥]

〈𝑥24〉
, respectively. Using these schemes the computer memory 

occupies just 12 × 28 and 24 × 28 bits memory respectively, i.e., one and half times the memory 

occupied by a Galois field dependent S-boxes having input and out output bits of lengths 12 and 24. 

The existing literature on block ciphers of symmetric key cryptography are mainly depends on Galois 

fields of characteristic 2. However, some novel contributions on the area focusing on some other 

finite algebraic structures of Galois ring and finite group theory. The similarity of these structures 

with the Galois group is their single generating elements While, in many of the cases the most portion 

of the algorithms the XOR operations are also in compromising mod. Extraordinarily, in this work the 

structure of finite chain ring is considered, which is canonically an algebra over the binary field 𝔽2. 

Thus here it is not only settled the XOR operation but also it created superfluous complexity due to 

non-cyclic subgroups of the chain ring.  

The utility of the proposed S-boxes is given in digital image enciphering schemes. In case of 12 × 12 

S-box, each 12-bit entry is extended to 24-bit by Exclusive-or 𝑖𝑡ℎ entry with (𝑖𝑡ℎ + 1) mod257 entry; 

for 𝑖 = 1 𝑡𝑜 256. Then the 24-bit extended table is split up into 3 8-bit vectors tables so that it fits 

Red (R), Green (G), and Blue (B) layer of color image pixels. Moreover, in case of 24 × 24 S-box, 

the different channels of color image are concatenated to for 24-bit matrix and then apply the 24 × 24 

S-box to color digital medium. Here, addition coincides with the addition operation of Galois field 

𝔽2𝑘  and multiplication with local ring ℤ2𝑘 to acquire the encrypted image. 

Chaos means disorder. Nowadays, the notion of chaos and DNA plays a prominent role in application 

point of view in different fields like Physics, Biology, Engineering and technology etc. the 1D 

Chaotic maps get fame because of its simplicity, high randomness and high sensitivity to initial 

conditions. They are used to create diffusion in data. The only drawback of this concept is its low 

non-linear behavior. However, in parallel, there are many positive aspects like ergodicity, mixing, 

highly sensitive dependence on initial conditions and management parameter, unpredictability, 

random-like behavior of output etc., that are analogous to the confusion and diffusion properties of 

Claude Shannon [6] which strengthen the concept of Chaos and DNA based encryption 

methodologies. As there are many advantages of chaotic maps, hence they are used here in parallel 

with chain ring S-boxes to increase the security of a data encryption process. 
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The continuation of the study is formulated as follows: the overview on cryptography and algebra 

structure is given in Chapter 1. In chapter 2, the algebraic cipher for the creating chain ring  
𝔽2[𝑥]

〈𝑥12〉
 

dependent 12 × 12 S-box and its application to color image is given. Chapter 3 consists of a new 

12 × 12 S-box design over chain ring with a novel image encryption scheme. Chapter 4 extends the 

idea to 24 × 24 S-box construction and its application to the color digital images. The application of 

4 × 4 S-box obtained from elements of commutative chain ring 𝔽2[𝑥]

〈𝑥8〉
 to SERPENT algorithm is given 

in chapter 5. Accordingly a successful image encryption scheme on SERPENT algorithm is also 

included in chapter 5. The analyses of the proposed encryption algorithms (Chapters 2-5) are given in 

chapter 6. Chapter 7 includes the concluding remarks and indicates some future directions for further 

extensions of the ideas developed in this work. 
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Chapter 1 

1 Overview on cryptography and algebraic notion of classes 

of finite rings  
 

The theory of rings is mainly divided into the classes of non-associative rings and associative rings. 

Though, the associative class is further divided into commutative and non-commutative rings. Our 

main focused in this work is on the structure of associative commutative rings having an identity, 

particularly the finite commutative rings with identity. This chapter includes some elementary topics 

in commutative ring theory, and it is dedicated on finite local rings. The chain rings being a class of 

local rings are the main subject of this work. The fundamental concepts on local rings in the form of 

definitions, remarks, notes, lemmas, propositions, and theorems in this chapter are taken from [19, 

20, 21, 22, 23]. All these are discussed in the second phase of this chapter. The main goal of this 

research is on developing the cryptographic algorithms for block cyphers of symmetric key 

cryptography. Conventionally the confusion part, the main area, of the block cipher encryption 

algorithm depends on the algebraic structure of finite cyclic Galois group. However, in most recent 

literature other than finite cyclic Galois group some other finite group structures are also been used in 

construction of block cyphers but these structures are also of cyclic nature. Despite the cyclic 

behavior the finite chain rings are the main source of generating non-cyclic subgroups. This chapter 

starts with basic ideas and different practicing block cyphers used in symmetric key cryptography.   

1.1 Cryptography: An overview 

1.1.1 Historic background 

Cryptography is often referred to as the art of secret writing. The word, cryptography, is taken from 

the Greek words: kryptos meaning “secret” and graphein meaning “writing”. Historically, it was 

widely used in the military to share secret signals in ways that the enemies could not understand even 

if they capture the signals. Before 1970, cryptography was preserved to the military and government. 

In WWII Japan used the best non-scientific cryptographic tools; the Enigma and the naval code 

respectively; to understand opponent’s conversations. But with the passage of time and the creation of 

public ciphers cryptography also got its fame in public. In this digital era, individual’s interactions of 

personal and confidential information over the internet are at high risk. Therefore, modern 

cryptography comes to make a confidential data transfer between authorized persons. It not only 
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secures the websites but also ensures safe electronic transmission and transactions. Cryptology is the 

field of creating and solving codes. Cryptography and cryptanalysis are the two branches of 

cryptology. Cryptanalysis is the art of finding access to secret information without knowing the key. 

With the help of efficient cryptanalysis, security breaches in algorithms can be identified and hacks. 

Modern ciphers are extensively cryptanalyzed before bringing it for public use to ensure their 

maximum security. Cyber vulnerabilities are created when insufficient attention is paid to the security 

of software applications. 

Mathematics is playing a   major role to develop strong cryptographic algorithms. These algorithms 

are designed around computational hardness assumptions which become infeasible to break by any 

known practical means. Prime factorization, modular arithmetic, maximum distance separable (MDS) 

and other special codes of coding theory, algebraic structures like finite fields, Galois rings and chain 

rings are used pervasively in designing strong cryptosystems against various attacks. Following are 

the key terminologies associated with cryptography. 

The understandable information that is to be conveyed to the receiving end is called the plaintext. The 

random, distorted and non-meaningful text which is delivered to the receiver is termed ciphertext. 

The set of characters that is used to alter the information to the ciphered text and back to plain text is 

called a key. The process of converting meaningful information into understandable data by using a 

certain procedure and a key is known as encryption. Whereas, decryption is the process of getting 

back the original information by following a certain procedure and a key. Cipher is an algorithm 

based on a set of mathematical procedures and is used to perform encryption or decryption. Claude 

Shannon in his report “The mathematical theory of cryptography” introduced two major 

characteristics of a secure cipher [24]. The first one is the Confusion, which points out the 

interrelationship between the plain text and the key vise; i.e. a single character of a plaintext should 

depend on many components of a given key. The second is diffusion, which creates a drastic change 

in cipher text even on the slightest change of plaintext. This behavior is often known as “Avalanche 

effect”. Theoretically, it implies that on changing the i-th bit of plain text, the probability of the j-th 

bit to get affected is one half. 

Cryptography is sub-divided into two categories. The secret key cryptography uses only one key 

throughout the entire process of enciphering and deciphering. It is also referred to as private or secret 

key cryptography. The rijndael algorithm is considered to be one of the finest secret key ciphers. 

Other famous symmetric ciphers are: DES; Triple DES; RC6; Blowfish; Twofish; and Serpent. The 
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second category is asymmetric key cryptography. In this technique, a key pair is used by each user to 

encrypt and decrypt data. One key is made public and is distributed over the network so that anyone 

who intends to encrypt the message can use this key. The RSA is one of the most popular examples 

of asymmetric algorithms; others in the list are DSA, PKCs and elliptic curve techniques, etc. 

1.1.2 Modern symmetric key ciphers 

Symmetric or conventional algorithms are those algorithms where the encryption key can be 

computed from the decryption key and vice versa. In most symmetric algorithms, the encryption key 

and the decryption key are the same. These algorithms, also called secret-key algorithms, single-key 

algorithms, or one-key algorithms, require that before communication both the sender and receiver 

agree on a key. Symmetric algorithm's protection depends on the key; revealing the key means that 

messages can be encrypted and decrypted by anyone. The key must remain secret for as long as 

contact needs to remain secret. The symmetric key encryption uses is further divided into two 

categories namely; the stream ciphers and block cipher. 

I. Stream ciphers 

A standard stream cipher encrypts plaintext one byte at a time, although it is possible to construct a 

stream cipher to work on one bit at a time or on units larger than one byte at a time. A key in this 

structure is input to a pseudorandom bit generator that generates a stream of seemingly random 8-bit 

numbers. The generator's output, called a keystream, is combined with the plaintext stream one byte 

at a time using the bitwise exclusive-OR (XOR) operation. For example, if the next byte generated by 

the generator is 01101100 and the next plaintext byte is 11001100, then the resulting cipher text byte 

is: 

11001100 plaintext 

⊕  01101100 key stream 

10100000 ciphertext 

Decryption requires the use of the same pseudorandom sequence: 

10100000 ciphertext 

⊕ 01101100 key stream 

11001100 plaintext 
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II. Block ciphers 

Block ciphers are the type of algorithms that take a block of plaintext and encrypt it into a block of 

cipher text usually of the same size. The strength of the algorithm, however, does not depend on the 

size of the block that we take but it relies on the size of the key. An endorsed length of a block is 

usually a multiple of 8. And the blocks are often padded to reach that certain length. A block cipher 

uses a pair of algorithm; one for encrypting plain text and the other for decrypting the ciphered text. 

To annotate the whole mechanism through a single expression; suppose ℰ̆ and 𝒟̌ represents two 

algorithms, plaintext block and cipher key be represented by 𝒫̌ and 𝒦̌, respectively, where 𝒫̌ is of 

size 𝔫-bit and 𝒦̌ is a 𝓀-bit word. The entire encryption process can be condensed as 

ℰ̌𝓀(𝒫̌) ≔  ℰ̌(𝒦̌, 𝒫̌): {0,1}𝓀 × {0,1}𝔫 →  {0,1}𝔫 

The decryption method takes the ciphered text 𝒞̌ as an input with 𝓀-bit key and produces a decrypted 

text. The decryption process can be condensed by the following expression: 

ℰ̌𝓀
−1(𝒞̌) = 𝒟̌𝓀(𝒞̌) ≔  𝒟̌(𝒦̌, 𝒞̌) ≔ {0,1}𝓀 × {0,1}𝔫 →  {0,1}𝔫 

So for all keys 𝒦̌ the following property must satisfy 

𝒟̌𝒦̌(ℰ̌𝒦̌) = 𝒫̌ 

Block ciphers are beneficial due to their fast and secure implementation. These are simple and easy to 

implement. 

One of the particular block ciphers is the substitution-permutation network (SPN). It consists of 

alternating rounds of substitution followed by the permutation. Substitution creates confusion 

[Shannon] while mixing the key bits with plaintext. Whereas, permutation operation takes the output 

bits of S-boxes and permutes them before forwarding them to the next stage. S-boxes are made one to 

one to guarantee the inverse. A good S-box must satisfy the avalanche effect. 

The core values of cryptography include some essential information security services. These include 

confidentiality, integrity, authentication and non-repudiation. Confidentiality is referred to as secretes 

of the information. While sending the data over a network, the foremost necessity is to protect it from 

the eavesdropper. Confidentiality can be obtained through physical methods but in cryptography, its 

true source is mathematical algorithm and encryption. During the data transmission, there is a chance 

of it being modified due to the invasion of third parties called adversaries. So data integrity ensures 

that the acquired data is not altered during transmission. In cryptography, data integrity is obtained by 

using a hash algorithm. The most commonly used hash algorithms are SHA-2, SHA-3, and 
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MD5. Authentication provides the identity of the sender and other related parameters such as 

username, passwords, etc. The methods used to acquire the authentication include password 

authentication protocol (PAP), Authentication token and protocol based on secret key cryptography, 

Diffie Hellman authentication, etc. Non-repudiation service ensures the validity of transmitted 

information. Non-repudiation makes it very hard to successfully deny the source of the message as 

well as its integrity. Digital signatures are used to achieve non-repudiation. Digital signatures can 

only be created by a single person hence the denial becomes impossible. 

1.1.3 Chaos and DNA based crypto-algorithms 

There are four types of nucleic acid bases of a DNA sequence namely Adenine (A), Thymine (T), 

Cytosine (C) and Guanine (G). In these nucleic acid bases, A is complementary to T and G is 

complementary to C. In binary numbers, 0 is complementary to 1, so 00 to 11. Similarly, 01 is 

complementary to 10. A 24 combination set forms by mapping the four bases A, T, C and G to 00, 

01, 10 and 11. Out of these 24 combinations, eight groups satisfy the Watson-Crick complement rule 

[25]. The pixel of an image represents a byte. After converting these bytes originating from an image, 

they can easily be encoded by the DNA rules. For example, if we have a pixel value 214 then its 

binary representation is [11010110]. According to encoding rule 3, its corresponding DNA sequence 

is [TGGC]. Now looking in table 2, according to rule 1, [TGGC] is equal to [10111100] in binary 

having decimal value 188. This is the encrypted text. Moving to the decoding process, the pixel 

values are again achieved by using the DNA sequence rules in reverse. 
Table 1. DNA encoding rule 

Rules 1 2 3 4 5 6 7 8 
A 01 00 00 01 10 11 10 11 
T 10 11 11 10 01 00 01 00 
C 00 01 10 11 11 10 00 10 
G 11 10 01 00 00 01 11 01 

The addition, subtraction and multiplication operation of the DNA encoding rules coincides with 

modulo 4 operations. 

The pretended fundamental aspects of digital medium such as high redundancy, bulk data capacity 

and strong correlation among nearby pixels weaken the text encryption algorithms for image 

encryption purposes. With the prompt communication of digital images via open networks, the 

images security during transmission became an important issue and appeals much attention of 

cryptographers. To overcome this deficit, many encryption schemes have been developed. Among the 

current state-of-the-art for image encryption approaches extensively used for SP-Network are; algebra 
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based S-box design, chaotic systems and DNA transform. Consequently, some schemes comprise of 

these three notions could be seen in [25-27]. Encryption based on these two aspects are valued 

because an S-box and DNA sequences bear the responsibility of creating confusion in different layer 

of an RGB image, whereas the chaotic systems are highly sensitive to initial conditions and produces 

pseudo randomness and aperiodicity.  

Chaos means disorder. Nowadays, the notion of chaos and DNA plays a prominent role in application 

point of view in different fields like Physics, Biology, Engineering and technology etc. the 1D 

Chaotic maps get fame because of its simplicity, high randomness and high sensitivity to initial 

conditions. They are used to create diffusion in data. The only drawback of this concept is its low 

non-linear behavior. However, in parallel, there are many positive aspects like ergodicity, mixing, 

highly sensitive dependence on initial conditions and management parameter, unpredictability, 

random-like behavior of output etc., that are analogous to the confusion and diffusion properties of 

Claude Shannon [6] which strengthen the concept of Chaos and DNA based encryption 

methodologies.  

As DNA molecules have the characteristics of extraordinary information density and vast parallelism 

therefore, it is used in parallel with chaos to make a secure transmission of digital images [29]. In 

general, the chaotic systems are divided into two main categories i.e. the low dimensional chaotic 

systems [30] and high dimensional chaotic systems (more than one dimensional chaotic system) [31]. 

The 1st category consists of one-dimension chaotic maps. These structures are simple and can be 

implemented easily. The only drawback of these maps is their small key-space size that weakens the 

security level [32]. For example, Wang et al. cryptanalyzed an image encryption scheme in [32]. 

Besides, in digital computers, periodic behavior of the chaotic systems may degrade with the finite 

precision [33]. The image encryption ciphers comprise of DNA and high dimensional chaos may also 

comprise of some deficiencies. For example, Som et al. [34] encryption scheme is based on DNA and 

the Arnold cat map. But in [35] it is proven that the Arnold cat map has some drawbacks as its 

iteration times are limited, which makes the encryption technique not applicable for all plain images. 

Moreover, the schemes based on DNA transformations are stationary for all pixels in several digital 

image cryptosystems, i.e. they are fixed [36], or they form a secret key with 3-bit and therefore it is 

insecure in front of brute force or plaintext attack [37]. 
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1.2 Finite commutative rings with identity 

The study of commutative rings with identity is concerned with objects possessing two binary 

operations (called addition and multiplication) related by the distributive laws. It is the first study 

analogues to the basic points of development in the structure of rings and fields. In particular the 

rings, subrings, quotient rings, ideals, local rings, fields, Galois fields, Galois rings and chain rings 

are discussed in this section. 

1.2.1 Rings [18, definition 1.28] 

A non-empty set 𝑅 equipped with two binary operations say addition (+) and multiplication (∙), 

denoted by (𝑅, +, ∙), is said to be a ring if.  

a. (𝑅, +) is an abelian group. 

b. (𝑅, ∙) is a semi group. 

c. The binary operation (∙) is distributive over binary operation (+), that is, for 𝑎, 𝑏,𝑐 ∈ 𝑅 

𝑎 ∙ (𝑏 + 𝑐) = 𝑎 ∙ 𝑏 + 𝑎 ∙ 𝑐 

(𝑏 + 𝑐) ∙ 𝑎 = 𝑏 ∙ 𝑎 + 𝑐 ∙ 𝑎 

Remark 1 

i. A ring (𝑅, +, ·) is a commutative ring if its multiplication binary operation · is 

commutative, that is, 𝑎 ∙  𝑏 =  𝑏 ∙  𝑎 for all 𝑎, 𝑏 ∈ 𝑅. 

ii. We say 𝑅 is a ring with 1 (or ring with identity) if there exists an identity with respect to 

the binary operation multiplication, that is, there exists 1 ∈ 𝑅 such that for all 𝑎 ∈ 𝑅 we 

have 𝑎 · 1 = 1 · 𝑎 = 𝑎. 

iii. A subset 𝒮 of a ring 𝑅 is said to be a subring of 𝑅 if 𝒮 itself form a ring under the same 

binary operations hold in 𝑅 

iv. Let (𝑅, +,·) be a ring and let 𝒮 ⊆  𝑅. Then (𝒮; +,·) is a subring of 𝑅 if (and 

only if) 𝒮 is non-empty and the following hold: 

a. 𝑎 + 𝑏 ∈  𝒮 for any 𝑎, 𝑏 ∈  𝒮 

b. 𝑎 − 𝑏 ∈  𝒮 for any 𝑎, 𝑏 ∈  𝒮  

c. 𝑎𝑏 ∈  𝒮 for any 𝑎, 𝑏 ∈  𝒮 

v. Let (𝑅, +,·) be a commutative ring and 𝑎, 𝑏 ∈ 𝑅. If 𝑎 · 𝑏 = 0 such that 𝑎 ≠ 0 and 𝑏 ≠ 0 

then we say that 𝑎 and 𝑏 are zero divisor of each other. 
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vi. Let 𝑅 be a commutative ring with identity. An element 𝑢 ∈ 𝑅 is unit element in 𝑅 if there 

exist 𝑣 ∈ 𝑅 such that 𝑢𝑣 = 𝑣𝑢 = 1. 

vii. A commutative ring with identity is said to be an integral domain if it has no zero divisors. 

A very useful example of integral domain is the ring of integers ℤ. 

viii. A commutative ring 𝔽 with identity is said to be a field if (𝔽\{0},∙) is a group. 

Furthermore, a field is divided into two sub categories based on the number of elements it 

contained.  

Some examples of rings and subrings are given below. 

i. Matrix rings: For a commutative ring 𝑅 with identity, 𝑀𝑛(𝑅) is matrix ring under the 

usual matrix addition and multiplication of square matrices of order 𝑛 is a non-

commutative ring (unless 𝑛 =  1). It is no longer a ring if we limit it to invertible 

matrices, since then there is no zero for inclusion. 

ii. Ring of polynomials: Polynomials, with coefficients form a commutative ring 𝑅 with 

identity under the usual addition and multiplication form a commutative ring in one 

indeterminate 𝑥 denoted as 𝑅[𝑥]. The polynomial ring 𝑅[𝑥] has identity as the 

coefficient ring 𝑅 has the multiplicative identity. 

iii. Modular arithmetic: Binary arithmetic on {0,1} provides us with a 2-element unit 

commutative ring. More general, if we consider the addition and multiplication of mod n 

on {0,1, . . . , 𝑛 −  1}, we get a commutative ring. 

iv. Let R be any abelian group with group operation +. Define 𝑎𝑏 =  0 for all 𝑎, 𝑏 ∈  𝑅; 

then R is a ring. 

v. 𝑛ℤ ∶=  {𝑛𝑘 | 𝑘 ∈  ℤ} is a subring of ℤ for any 𝑛 ∈  ℕ. 

vi. Let 𝑅1 and 𝑅2 be rings. Define binary operations on 𝑅1 × 𝑅2 coordinate wise: for 𝑟1, 𝑟1
′ 

∈  𝑅1 and 𝑟2, 𝑟2
′ ∈  𝑅2, let (𝑟1, 𝑟2) + (𝑟1

′,𝑟2
′) ∶=  (𝑟1 + 𝑟1, 𝑟2 + 𝑟2

′), (𝑟1, 𝑟2) · (𝑟1
′, 𝑟2

′) ∶=(𝑟1 ·

𝑟1
′, 𝑟2 · 𝑟2

′). Accordingly, 𝑅1 × 𝑅2 is a ring. 

vii. In the polynomial ring 𝑅[𝑥], the polynomials of even degree form a subring, but the 

polynomials of odd degree do not form a subring because 𝑥 · 𝑥 = 𝑥2 is not of odd 

degree. 

A non-zero polynomial 𝑓(𝑥) = ∑ 𝑎𝑖𝑥
𝑖𝑛

𝑖=0  has degree 𝑛 if 𝑛 ≥  0 and the leading coefficient 𝑎𝑛 ≠ 0. 

The zero polynomial is defined by convention to have degree −∞. Alternatively, one may say that the 
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degree of the zero polynomial is undefined; in that case, one will need to make minor changes to 

some of the results below. 

Polynomials are added component-wise, and multiplied using the “convolution” formula 

∑ 𝑎𝑖𝑥
𝑖

𝑚

𝑖=0

+ ∑ 𝑏𝑖𝑥𝑖

𝑛

𝑖=0

= ∑ (𝑎𝑖 + 𝑏𝑖)𝑥𝑖

max (𝑚,𝑛)

𝑖=0

 

(∑ 𝑎𝑖𝑥
𝑖

𝑚

𝑖=0

) . (∑ 𝑏𝑗𝑥𝑖

𝑛

𝑗=0

) = ∑ 𝑐𝑘𝑥𝑘,

𝑚𝑛

𝑘=0

 𝑤ℎ𝑒𝑟𝑒 𝑐𝑘 = ∑ 𝑎𝑖𝑏𝑗

𝑖+𝑗=𝑘

 

The ring of polynomials in indeterminate 𝑥 with coefficients in the ring 𝑅 is denoted by 𝑅[𝑥]. 

Theorem 1 [18, theorem 1.51] 

Let 𝑅 be a ring. Then: 

1. 𝑅[𝑥] is commutative if and only if 𝑅 is commutative. 

2. 𝑅[𝑥] is a ring with identity if and only if 𝑅 has an identity element. 

3. 𝑅[𝑥] is an integral domain if and only if 𝑅 is an integral domain. 

Let 𝑅 be a commutative ring with identity and let 𝑓(𝑥) ∈ 𝑅[𝑥]. An element 𝑐 ∈ 𝑅 is a root of the 

polynomial 𝑓(𝑥) if 𝑓(𝑐) = 0. In other words 𝑓(𝑥) is divisible by the linear polynomial 𝑥 − 𝑐. 

Proposition 1 [20, proposition 1.3.1] 

Let 𝔽[𝑥] be the polynomial ring in one indeterminate x over the field 𝔽. The units in 𝔽[𝑥] are exactly 

the non-zero elements of  𝔽. 

Theorem 2 [18, definition 1.52] 

Let 𝔽 be a field, and 𝑓(𝑥), 𝑔(𝑥) ∈ 𝔽[𝑥]. Suppose that 𝑔(𝑥) ≠ 0. There are unique polynomials 

𝑞(𝑥), 𝑟(𝑥) ∈ 𝔽[𝑥] such that 

𝑓(𝑥)  =  𝑔(𝑥)𝑞(𝑥) + 𝑟(𝑥), 𝑎𝑛𝑑 𝑑𝑒𝑔 𝑟(𝑥) < 𝑑𝑒𝑔 𝑔(𝑥). 

Theorem 3 [20, theorem 1.4.4] 

Let 𝔽 be a field, and 𝑓(𝑥) ∈ 𝔽[𝑥], where 𝑑𝑒𝑔 𝑓(𝑥)  =  𝑛 ≥  0. 

i. (The Root Theorem) 𝑐 is a root of 𝑓(𝑥) in 𝔽 if and only if 𝑥 −  𝑐 | 𝑓(𝑥). 

ii. 𝑓(𝑥) has at most n roots in 𝔽. 
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1.2.2 Ideal [18, definition 1.33] 

Let 𝑅 be a commutative ring with identity. A non-empty subset 𝐼 ⊆ 𝑅 is said to be an ideal of 𝑅 if  

a. 𝑎 − 𝑏 ∈ 𝐼 for all 𝑎, 𝑏 ∈ 𝐼.  

b. 𝑟𝑎 ∈ 𝐼 for all 𝑟 ∈ 𝑅 and 𝑎 ∈ 𝐼. 

Remark 2 

i. Every ideal is a subring but its converse is not true in general. 

ii. In a field 𝔽 there is no proper ideal. 

Types of ideals [18] 

1. An ideal generated by a single element is called principal ideal mathematically, if 𝑎 ∈ 𝑅 

then  𝐼 =  { 𝑟𝑎 | 𝑟 ∈ 𝑅} is principal ideal. Mostly represented by 〈𝑎〉. 

2. An integral domain is a principal ideal domain (PID) if its each ideal is a principal ideal. 

3. A (proper) ideal, 𝑃, of a unitary commutative ring 𝑅 is said to be a prime ideal if, for any 

𝑎, 𝑏 ∈ 𝑅 such that 𝑎𝑏 ∈ 𝑃 imply either 𝑎 ∈ 𝑃 or 𝑏 ∈ 𝑃. 

4. A proper ideal ℳ in a unitary commutative ring R is called a maximal ideal if there is no 

proper ideal of 𝑅, say J, such that ℳ ⊂ 𝐽 ⊂ 𝑅. 

Proposition 2 [18, proposition 1.47] 

If 𝐼 ⊂  ℤ is an ideal, then 𝐼 = < 𝑎 > for some 𝑎 ∈  ℤ (and we may assume 𝑎 ≥  0). 

Examples 

a) The set 2ℤ of even integers is an ideal of the ring ℤ. 

b) Let 𝑅 be a commutative ring with identity and 𝐽 be the set of all polynomials in the 

polynomial ring 𝑅[𝑥] with zero constant term, that is, if 𝑓(𝑥)  ∈  𝐽, then 𝑓(𝑥)  =  ∑ 𝑎𝑖𝑥
𝑖𝑛

𝑖=1 . 

Thus, the set 𝐽 is an ideal of 𝑅[𝑥] and it is represented as 𝑥𝑅[𝑥], the ideal generated by the 

indeterminate 𝑥. In case of ℤ[𝑥], the ideal 𝑥ℤ[𝑥] is the principal prime ideal in ℤ[𝑥], however, 

for any field 𝔽, the ideal 𝑥𝔽[𝑥] is the principal maximal ideal in 𝔽[𝑥]. 

Proposition 3 [20, proposition 1.2.3] 

An ideal 〈𝑝〉  =  𝑝ℤ ⊂  ℤ is a prime ideal if and only if 𝑝 is a prime. 

Definition 1 [20, Proposition 8.1.3] 

Let 𝐼 be an ideal of ℤ. One possibility is that 𝐼 = 〈0〉, the ideal consisting of just the single element 0 

and appropriately called the zero ideal. 

Definition 2 [20, definition 1.2.12] 

Let 𝐼 be an ideal in a commutative ring 𝑅 with identity. Then the set 
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√𝐼 ∶=  {𝑟 ∈ 𝑅|𝑟𝑛  ∈  𝐼 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑛 > 0} 

is an ideal of 𝑅 (as it is easy to check) called the radical of 𝐼; it contains 𝐼. An ideal 𝐽 is called a 

radical ideal if √𝐽  =  𝐽. 

Proposition 4 [20, proposition 1.2.13] 

A maximal ideal 𝑀 in a unitary commutative ring 𝑅 is a radical ideal. 

1.2.3 Quotient rings [20, definition 1.2.4] 

Let 𝑅 be a commutative ring with identity and 𝐼 be its ideal. Then a quotient ring (also called a 

residue-class ring) is a ring denoted as 
𝑅

𝐼
= {𝑟 + 𝐼: 𝑟 ∈ 𝑅} having respectively the binary operations 

addition and multiplication as (𝑟 + 𝐼) + (𝑠 + 𝐼) = 𝑟 + 𝑠 + 𝐼 and (𝑟 + 𝐼)(𝑠 + 𝐼) = 𝑟𝑠 + 𝐼. There is a 

natural projection 𝜋: 𝑅 →  
𝑅

𝐼
 defined as 𝜋(𝑟) = 𝑟 + 𝐼. If the ring 𝑅 is ℤ and the ideal is 𝑛ℤ, the 

quotient ring is 
ℤ

𝑛ℤ𝑛
(≅ ℤ𝑛). Let 𝔽 be a field, and 𝑓(𝑥) ∈ 𝔽[𝑥]. 〈𝑓(𝑥)〉 is the set of all multiples (by 

polynomials) of 𝑓(𝑥), the (principal) ideal generated by 𝑓(𝑥). The quotient 𝔽[𝑥]

〈𝑓(𝑥)〉
 form a ring called 

quotient ring. It is as if you've set multiples of 𝑓(𝑥) equal to 0. If 𝑓(𝑥) ∈ 𝔽[𝑥] , then 𝑎(𝑥) = 𝑓(𝑥) +

〈𝑓(𝑥)〉 is the coset of 𝑓(𝑥) with respect to the ideal 〈𝑓(𝑥)〉. 

Define 𝑎(𝑥) = 𝑏(𝑥)(mod𝑓(𝑥)) (𝑎(𝑥) is congruent to 𝑏(𝑥) mod𝑓(𝑥) ) to mean that 𝑓(𝑥)|(𝑎(𝑥) −

𝑏(𝑥)). In other words it means 𝑎(𝑥) and 𝑏(𝑥) is congruent mod 𝑓(𝑥) if they differ by a multiple 

of 𝑓(𝑥). In equation form, this says 𝑎(𝑥) − 𝑏(𝑥) = 𝑘(𝑥). 𝑓(𝑥) for some 𝑘(𝑥) ∈ 𝔽[𝑥], or 𝑎(𝑥) =

𝑏(𝑥) + 𝑘(𝑥). 𝑓(𝑥) for some 𝑘(𝑥) ∈ 𝔽[𝑥].  

Theorem 4 [18, theorem 1.47] 

Let 𝑅 be a commutative ring with identity. Then:  

1. An ideal 𝑀 of 𝑅 is a maximal ideal if and only if 𝑅

𝑀
 is a field.  

2. An ideal 𝑃 of 𝑅 is a prime ideal if and only if  𝑅
𝑃
 is an integral domain. 

3. Every maximal ideal of 𝑅 is a prime ideal. 

4. If 𝑅 is a principal ideal domain, then 𝑅

〈𝑝〉
 is a field if and only if 𝑝 is a prime element of 𝑅. 

 

 

https://mathworld.wolfram.com/Ring.html
https://mathworld.wolfram.com/Ring.html
https://mathworld.wolfram.com/Ideal.html
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1.2.4 Galois field extension [18, definition 1.41] 

If a field has infinite number of elements, we call it an infinite field and the most fundamental and 

famous examples are ℚ, ℝ, and  ℂ. It is easily checked that ℚ(𝑖)  =  {𝑎 +  𝑖𝑏 | 𝑎, 𝑏 ∈  ℚ} is an 

infinite field with respect to the addition and multiplication of complex numbers. The polynomial 

1 + 𝑥2 is irreducible over ℚ. Therefore, ℚ[𝑥]

〈1 + 𝑥2〉
 is a field. This field is isomorphic to ℚ(𝑖). The 

polynomial 1 +  𝑥2 is irreducible in ℝ. So, ℝ[𝑥]

〈1 + 𝑥2〉
 is a field whose elements are 𝑥0  +  𝑥1𝛼, where 𝑥0 

and 𝑥1 are in ℝ, and 𝛼 is a root of the polynomial 1 +  𝑥2  ∈  ℝ[𝑥]. It is clear that this infinite field is 

isomorphic to the field ℂ of complex numbers. The other examples of infinite fields extensions 

includes; ℚ[𝜋], ℚ[𝑒], ℚ[𝑖] ℚ[√𝑑], ℚ[𝑖√𝑑]. Though, the field ℚ[√𝑑] is simple quadratic algebraic 

field extension of the rational field ℚ in the real field ℝ. Similarly, the fields ℚ[𝑖], ℚ[𝑖√𝑑] are 

quadratic algebraic field extension of the rational field ℚ in the complex field ℂ, whereas the fields 

ℚ[𝜋], ℚ[𝑒] are transcendental field extensions of ℚ in ℝ.  

A field that has finite number of elements is known as a finite field and most famous examples are the 

fields of integers modulo a prime 𝑝. A finite field is also called a Galois field. The naming “Galois 

field” is largely used (in honor of the French mathematician Évariste Galois). Several notations exist 

for a Galois field. A Galois field of cardinal 𝑞(𝑞 = 𝑝𝑚, 𝑝 is prime integer and 𝑚 is a positive integer) 

is generally represented as 𝔽𝑞 or 𝐺𝐹(𝑞), where 𝐺𝐹 stands for Galois field. 

Theorem 3 [18, theorem 2.8] 

The group of non-zero elements of the Galois field 𝐺𝐹(𝑝𝑚) is cyclic. 

Theorem 6 [19, theorem 2.2] 

The cardinal q of a Galois field is necessarily of the form 𝑞 = 𝑝𝑚, where 𝑝 a prime integer and 𝑚 is 

a positive integer. Furthermore, for every prime integer 𝑝 and a positive integer m, there exists a 

Galois field containing 𝑝𝑚 elements. 

Theorem 7 [19, theorem 2.8] 

𝐺𝐹(𝑝𝑚) is a subfield of 𝐸 =  𝐺𝐹(𝑝𝑛) if and only if 𝑚 is a divisor of  𝑛. 

Proposition 5 [19, proposition 2.2] 

All Galois fields of the same cardinal are isomorphic. Thus, for any prime number 𝑝 (𝑝 even or odd) 

and any integer 𝑚 greater than or equal to 1, there exists one Galois field (and only one, up to an 

isomorphism) of cardinal 𝑝𝑚. 
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A Galois field is thus entirely determined by its cardinal. Therefore, all Galois fields with the same 

cardinal 𝑝𝑚 (𝑝 is prime and 𝑚 ≥  1) are denoted by the same symbol, namely, either 𝐺𝐹(𝑝𝑚) or 

𝔽𝑝𝑚 for 𝑚 ≥  2 and 𝔽𝑝 for 𝑚 =  1.  

Corollary 1 [20, corollary 2.1.1] 

Any Galois field 𝔽𝑝 of cardinal 𝑝 with 𝑝 a prime number is isomorphic to ℤ𝑝. 

A Galois field 𝔽𝑝 of cardinal 𝑝 is referred to as a prime field (it has no proper sub-fields).  

Example 

The two fields of lowest cardinal are 𝔽2 and 𝔽3. The next field of prime cardinal is 𝔽5 (or ℤ5). 

Definition 4 [18, definition 1.49] 

A single-variable or univariate polynomial with leading coefficient 1 is called a monic polynomial. 

Therefore, a monic polynomial has the form 

𝑥𝑛 + 𝑐𝑛−1𝑥𝑛−1 + 𝑐𝑛−2𝑥𝑛−2 + ⋯ + 𝑐2𝑥2 + 𝑐1𝑥1 + 𝑐0  
Theorem 8 [18, theorem 3.20] 

Let 𝑝 be a prime and 𝑛 a positive integer. Then 𝑥𝑝𝑛
 −  𝑥 is the product of all monic irreducible 

polynomials over 𝔽𝑝 whose degree divides 𝑛. 

If (𝑥) = 𝑥2 − 2 ∈ ℚ[𝑥], then 
ℚ[𝑥]

〈𝑥2−2 〉
(≅ ℚ[√2]) form a quotient ring which is in fact the extension 

field of ℚ in real field. If 𝑓(𝑥) = 𝑥2 + 1 in ℚ[𝑥], then ℚ[𝑥]

〈𝑥2+1〉
(≅ ℚ[√−1]) form a quotient ring which 

is in fact the extension field of ℚ  in complex field. 

Definition 5 [18, definition 1.81] 

Let 𝛼 be an element in a field 𝐸 containing the field 𝐺𝐹(𝑝). We call the monic polynomial of 

smallest degree which has coefficients in 𝐺𝐹(𝑝) and α as a root, the minimal polynomial of 𝛼. 

Definition 6 [18, definition 1.57] 

A polynomial 𝑓(𝑥) that cannot be written as a product of two other polynomials of smaller degree 

than degree of 𝑓(𝑥) is called an irreducible polynomial.   

Definition 7 [18, definition 2.9] 

The element 𝑥 of the Galois field 𝐺𝐹(𝑝𝑚) is called a primitive element if it is a generator of the 

Galois cyclic group (𝐺𝐹(𝑝𝑚)∗, . ). In other words, there does not exist an integer 𝑗 such that 𝑗 <

 𝑝𝑚  −  1 | 𝑥𝑗  =  1 and all the powers 𝑥𝑖 for 𝑖 =  1, 2, ··· , 𝑝𝑚  −  1 are distinct. 
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The polynomials 𝑃2(𝑥) = 1 + 𝑥2 in 𝔽2[𝑥], 𝑃3(𝑥) = 2 + 2𝑥 + 𝑥3 in 𝔽3[𝑥] and 𝑃4(𝑥)  =  1 + 𝑥 +

𝑥2 + 𝑥3 + 𝑥4 in 𝔽2[𝑥] are non- primitive irreducible polynomials. Consequently the corresponding 

Galois cyclic groups of the extension fields 
𝔽3[𝑥]

〈𝑃2(𝑥)〉
, 𝔽3[𝑥]

〈𝑃3(𝑥)〉
 and 

𝔽2[𝑥]

〈𝑃4(𝑥)〉
 are not generated by the roots of 

𝑃2(𝑥), 𝑃3(𝑥), and 𝑃4(𝑥), respectively. 

Remark 3 

i. If 𝛼 is a primitive element of 𝐺𝐹(𝑝𝑚), then its inverse 𝛼−1 is a primitive element too. 

ii. A primitive element of 𝐺𝐹(𝑝𝑚) cannot belong to a sub-field of 𝐺𝐹(𝑝𝑚). 

Examples of non-primitive elements 

a) Let 𝑥 = 2 be an element of the field 𝐺𝐹(71) = 𝔽7. This element is not a primitive element of 

𝔽7 since𝑥3 ≡ 1 𝑚𝑜𝑑 7. 

b) Let 𝑥 =  𝛼 be a root of the prime polynomial 1 + 𝑥2 over 𝔽3[𝑥]. The element 𝑥 is not a 

primitive element of 𝐺𝐹(32) =
𝔽3[𝑥]

〈1+𝑥2〉
 since 𝑥4  ≡  1 𝑚𝑜𝑑 3. 

c) Let 𝑥 = 𝛼 be a root of the prime polynomial  1 + 𝑥 + 𝑥2 + 𝑥3 + 𝑥4 over 𝔽2. The element 𝑥 is 

not a primitive element of 𝐺𝐹(24) = 𝔽2[𝑥]

〈1+𝑥+𝑥2+𝑥3+𝑥4〉
 as 𝑥5  =  1. 

d) Let 𝑥 =  𝛼 be a root of the prime polynomial 2 + 2𝑥 + 𝑥3 over 𝔽3. The element 𝑥 is not a 

primitive element of 𝐺𝐹(33)  =  
𝔽3[𝑥]

〈2 + 2𝑥 + 𝑥3〉
 as 𝑥13  ≡  1 𝑚𝑜𝑑 3. 

In the five preceding examples, the element 𝑥 does not generate the corresponding cyclic group 

(𝐺𝐹(𝑝𝑚)∗, . ).  

Examples of primitive elements  

a) Let 𝑥 = 3 be an element of the field 𝐺𝐹(71)  =  𝔽7. This element is a primitive element since 

it generates all the non-zero elements of 𝔽7. The element 𝑥 = 5 is another primitive element 

of 𝔽7. 

b) Let 𝛼 be a root of the polynomial 1 + 𝑥 + 𝑥3 ∈ 𝔽2[𝑥]. The elements of the field 𝐺𝐹(23)  =

 
𝔽2[𝑥]

〈1 + 𝑥 + 𝑥3〉
 are 

i. 0, 𝛼, 𝛼2, 1 +  𝛼 =  𝛼3, 𝛼 +  𝛼2  =  𝛼4, 1 +  𝛼 +  𝛼2  =  𝛼5, 1 +  𝛼2 =  𝛼6, 1 =  𝛼7 

ii. So that α is a primitive element of 
𝔽2[𝑥]

〈1 + 𝑥 + 𝑥3〉
. The elements 𝛼2, 𝛼3,· · · , 𝛼6 are another 

primitive elements of 𝔽2[𝑥]

〈1 + 𝑥 + 𝑥3〉
. 

 



 

24 
 

Theorem 9 [20] 

The number of primitive elements of the Galois field 𝐺𝐹(𝑝𝑚) is 𝜙(𝑝𝑚  −  1), where 𝜙 is the Euler 

function. 

Proof 

The proof follows from the isomorphism  (𝐺𝐹(𝑝𝑚)∗ ≅ 𝐶𝑝𝑚−1 and the fact that the cyclic group 𝐶𝑛 

has 𝜙(𝑛) generators. 

Corollary 2 [20, proposition 1.3.9] 

A primitive polynomial over prime field 𝔽𝑝 is irreducible over 𝔽𝑝, but an irreducible polynomial is 

not necessarily primitive (there are irreducible polynomials that are not primitive). 

Proposition 6 [20, proposition 2.1.4] 

For any Galois field 𝐺𝐹(𝑝𝑚), there exists at least one primitive polynomial 𝑃𝑚(𝑥) of degree 𝑚 over 

𝔽𝑝. The 𝑚 roots of a primitive polynomial 𝑃𝑚(𝑥) over 𝔽𝑝 are primitive elements of 𝐺𝐹(𝑝𝑚). 

Proposition 7 [20] 

The number of primitive polynomials of the Galois field 𝐺𝐹(𝑝𝑚), i.e. the number of primitive 

polynomials of degree 𝑚 over 𝔽𝑝, is 
1

𝑚
𝜙(𝑝𝑚  −  1), where ϕ is the Euler function. 

1.2.5 Algebra of Galois field extension and its matrix algebra representation 

[21, definition 11.1] Let 𝔽 be a field and 𝑉 be an additive abelian group. For all 𝑎, 𝑏 ∈ 𝔽 and 𝑣1, 𝑣2 ∈

𝑉, 𝑉 is said to be vector space over 𝔽, if the scalar multiplication map 𝔽 × 𝑉 ⟶ 𝑉 defined 

by (𝑎; 𝑣) ⟼ 𝑎𝑣 satisfy the following conditions. 

1. 𝑎(𝑣1 + 𝑣2) = 𝑎𝑣1 + 𝑎𝑣2 

2. 𝑎𝑏(𝑣) = 𝑎(𝑏𝑣) 

3. (𝑎 + 𝑏)𝑣 = 𝑎𝑣 + 𝑏𝑣 

4. 1𝑣 = 𝑣  

A non-empty subset 𝐵 of the vector space 𝑉 is said to be base of 𝑉 if the vectors in 𝐵 are linearly 

independent and 𝐵 is the spanning set of 𝑉. The cardinality of 𝐵 is defining the dimension of the 

space 𝑉. The dimension of the vector space 𝑉 is finite if the set 𝐵 is finite otherwise V is an infinite 

dimensional vector space.  

A vector space 𝐴 over a field 𝔽 is said to be an algebra if 𝐴 is a ring and 𝑎(𝑣1𝑣2) = 𝑣1(𝑎𝑣2). If the 

algebra 𝐴 over 𝔽 is such that (A\{0},∙) is a group, we call it a division algebra. Every field is algebra 

over itself and every field is an algebra over its subfield. 
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Let 𝑅 be a commutative ring with identity and 𝑀 be an additive abelian group. For all 𝑟, 𝑠 ∈ 𝑅 

and 𝑚1, 𝑚2 ∈ 𝑀, 𝑀 is said to be module over 𝑅, if the scalar multiplication map 𝑅 × 𝑀 ⟶ 𝑀 

defined by (𝑟; 𝑚) ⟼ 𝑟𝑚 satisfy the following conditions. 

1. 𝑟(𝑚1 + 𝑚2) = 𝑟𝑚1 + 𝑟𝑚2 

2. 𝑟𝑠(𝑚) = 𝑟(𝑠𝑚) 

3. (𝑟 + 𝑠)𝑚 = 𝑟𝑚 + 𝑠𝑚 

4. 1𝑚 = 𝑚  

A module 𝑀 is said to be an algebra over the ring 𝑅 if 𝑀 is a ring and 𝑎(𝑣1𝑣2) = 𝑣1(𝑎𝑣2).  Every 

ring is algebra over itself and every ring is an algebra over its subring. A module is free if it possess a 

base. Every vector space is an example of a free R-module. 

The so-obtained Galois field 𝔽𝑝[𝑥]

〈𝑃𝑚(𝑥)〉
 is the unique (up to isomorphism) extension of degree 𝑚 of the 

base field 𝔽𝑝 by the element 𝛼, a root of the prime polynomial 𝑃𝑚(𝑥) (𝛼 is the residue class of 𝑥 

modulo 𝑃𝑚(𝑥)). It is convenient to use the notation 𝔽𝑝[𝑥]

〈𝑃𝑚(𝑥)〉
 for describing the field 𝐺𝐹(𝑝𝑚). The 𝑝𝑚 

elements of 𝐺𝐹(𝑝𝑚) are represented by residue classes of polynomials in 𝔽𝑝[𝑥]. The residue classes 

are obtained by effecting the relevant additions and multiplications modulo 𝑝 and modulo 𝑃𝑚(𝛼)  =

 0. The addition of elements of 𝐺𝐹(𝑝𝑚) is that of vectors in a vector space over 𝔽𝑝. The product of 

elements is the remainder of the division by 𝑃𝑚(𝑥) of the product in 𝔽𝑝[𝑥]. Indeed, all the 

calculations in 𝐺𝐹(𝑝𝑚) are made by using 𝑃𝑚(𝛼)  =  0 and 𝑝𝑎(𝛼)  =  0 for any 𝑎(𝛼) in 𝐺𝐹(𝑝𝑚). In 

this regard, let us suppose that, in a calculation, an element 𝛼𝑘 appears with 𝑘 ≥  𝑚. Then, the k 

power of α can be decreased by repeated use of 

𝛼𝑚  =  −(𝑐0  + 𝑐1𝛼 + · · ·  + 𝑐𝑚−1𝛼𝑚−1) 

(That corresponds to 𝑃𝑚(𝛼)  =  0) in 𝛼𝑘  =  𝛼𝑘−𝑚𝛼𝑚 and of 𝑝𝑦 =  0, where 𝑦 is any positive power 

of 𝛼. Finally, intermediate calculations and the realization of the elements of 𝐺𝐹(𝑝𝑚) =  
𝔽𝑝[𝑥]

〈𝑃𝑚(𝑥)〉
  

depend on primitive irreducible polynomial 𝑃𝑚(𝑥). However, for fixed 𝑝, all the possible choices of 

𝑃𝑚(𝑥)  of the same degree 𝑚 give isomorphic realizations of 𝐺𝐹(𝑝𝑚). 

Proposition 8 [18] 

For any given Galois field 𝐺𝐹(𝑝𝑚), 𝑚 ≥  2, it is possible to construct a matrix realization (or linear 

representation) of the field by matrices of dimension 𝑚 ×  𝑚 with matrix elements in 𝔽𝑝.  
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The matrix representation indicated in Proposition 8 can be understood as follow.is built as follows. 

To the element α, the root of 𝑃𝑚(𝑥), the following 𝑚 ×  𝑚 matrix is originated. 

































1-m

2

1

0

100

010
001
000

c

c
c
c

A











 

where 𝑐0, 𝑐1,· · · , 𝑐𝑚−1 are the coefficients in the prime polynomial 

𝑃𝑚(𝑥)  =  𝑐0 + 𝑐1𝑥 + · · ·  + 𝑐𝑚−1𝑥𝑚−1 + 𝑥𝑚 

with  𝑐0, 𝑐1,· · · , 𝑐𝑚−1  ∈  𝔽𝑝. 

The matrix representation 𝑋 of the element 

𝑦 =  𝑦0  +  𝑦1𝛼 + · · ·  + 𝑦𝑚−1𝛼𝑚−1 

of  𝔽𝑝[𝑥]

〈𝑃𝑚(𝑥)〉
 is then given by 

𝑌 =  𝑦0𝐼 +  𝑦1𝐴 + · · ·  + 𝑦𝑚−1𝐴𝑚−1 

Whereas  𝑦0, 𝑦1,· · · , 𝑦𝑚−1  ∈  𝔽𝑝 and 𝐼 is the 𝑚 × 𝑚 identity matrix. Through the correspondence 

𝑥 ↔  𝑋, the laws + and . of 𝐺𝐹(𝑝𝑚)  =  
𝔽𝑝[𝑥]

〈𝑃𝑚(𝑥)〉
 are replaced by the addition and multiplication 

modulo 𝑝 of matrices, respectively. 

Example 

Let us consider the field 𝐺𝐹(23)  =  
𝔽2[𝑥]

〈1+𝑥+𝑥3〉
. In this case, the prime polynomial 𝑃3(𝑥) of 𝔽2[𝑥] is 

𝑃3(𝑥) =  1 +  𝑥 + 𝑥3, 𝑤ℎ𝑒𝑟𝑒 𝑐0  =  1, 𝑐1  =  1, 𝑐2  =  0 

Therefore, the element 𝛼, a root of the polynomial 1 + 𝑥 + 𝑥3 ∈ 𝔽2[𝑥], is represented by the 3 ×  3 

matrix 

𝐴 = [
0 0 −1
1 0 −1
0 1    0

] = [
0 0 1
1 0 1
0 1 0

]  𝑚𝑜𝑑2 

More generally, the element 

𝑥 =  𝑥0  +  𝑥1𝛼 +  𝑥2𝛼2 

of 𝔽2[𝑥]

〈1+𝑥+𝑥3〉
 is represented by the 3 × 3 matrix 

𝑋 =  𝑥0𝐼 +  𝑥1𝐴 +  𝑥2𝐴2  



 

27 
 

This yields the following representation 

0 ↔ 𝑂 = [
0 0 0
0 0 0
0 0 0

],  1 ↔ 𝐼 = [
1 0 0
0 1 0
0 0 1

],   

𝑎 ↔ 𝐴 = [
0 0 1
1 0 1
0 1 0

] , 𝑏 ↔ 𝑏 = 𝐴2 = [
0 1 0
0 1 1
1 0 1

],     

𝑐 ↔ 𝐶 = 𝐼 + 𝐴 = [
0 0 1
1 1 1
0 1 0

], 𝑒 ↔ 𝐸 = 𝐼 + 𝐴 + 𝐴2 = [
1 1 1
1 0 0
1 1 0

],    

𝑓 ↔ 𝐹 = 𝐼 + 𝐴2 = [
1 1 0
0 0 1
1 0 0

], 𝑑 ↔ 𝐷 = 𝐴 + 𝐴2 = [
0 1 1
1 1 0
1 1 1

] 

of the field 𝔽2[𝑥]

〈1+𝑥+𝑥3〉
. 

Note that 

𝑎 ↔  𝐴, 𝑏 ↔  𝐵 =  𝐴2, 𝑐 ↔  𝐶 =  𝐴3 𝑑 ↔  𝐷 =  𝐴4, 

  𝑒 ↔  𝐸 =  𝐴5, 𝑓 ↔  𝐹 =  𝐴6, 1 ↔  𝐼 =  𝐴7 

Therefore, the matrix A generates a group (with respect to matrix multiplication) isomorphic to the 

cyclic group 𝐶7, in agreement with the fact that α is a primitive element. 

1.2.6 Galois ring 

Definition 8 [20, definition 1.2.9] 

A unitary commutative ring R with a unique maximal ideal ℳ is called a local ring, with residue field 

𝐾 =
𝑅

ℳ
. It is straight forward to verify that ℳ = {𝑟 ∈ 𝑅|𝑟 𝑖𝑠 𝑛𝑜𝑡 𝑎 𝑢𝑛𝑖𝑡}. 

Proposition 9 [20, proposition 1.2.11] 

1. Let ℛ be a unitary commutative ring and ℳ ≠ (0) an ideal such that each 𝑟 + ℳ ∈
ℛ

ℳ
 is a 

unit. Then ℛ is a local ring and ℳ is its maximal ideal. 

2. Let ℛ be a unitary commutative ring and ℳ a maximal ideal such that each element of the set 

1 + ℳ ≔ {1 + 𝑥|𝑥 ∈ ℳ} is a unit in ℛ. Then ℛ is a local ring. 

Definition 9 [21, section 2.1] 

A commutative ring 𝑅 with unit element is known to be a Galois ring if set of all its zero divisors, 

including 0, constitutes a principal prime ideal < 𝑝 > with 𝑝 prime.  
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Examples of Galois ring  

i. 𝐺𝑅(22, 1) = ℤ4 

If 𝑚 = 1, the ring 𝐺𝑅(𝑝𝑠, 1) ans local ring ℤ𝑝𝑠 are isomorphic. Consider 𝑝 = 𝑠 = 2 that 

corresponds to the ring ℤ4. It is easy to verify that any ℤ4 part can be written as 𝑎 = 𝑡0 + 2 ×

𝑡1;    𝑡0, 𝑡1 ∈ ℤ2 where the operations + and × are performed in ℤ4 (𝑡1 ∈ ℤ2). A principal ideal is 

the zero divisors (0 and 2) of the unitary ring ℤ4. ℤ4 is, thus, a Galois ring. 

ii. 𝐺𝑅(21, 4) =  
ℤ

21[𝑥]

〈1+𝑥+𝑥4〉
 

The Galois field 𝐺𝐹(24)  =  
𝔽2[𝑥]

〈1+𝑥+𝑥4〉
 of characteristic 2 and cardinal 16, is also a Galois ring in 

the sense that 1 + 𝑥 + 𝑥4 is obviously a monic basic primitive polynomial over ℤ2 and the unique 

zero divisor 0 constitutes a principal ideal (here 0 plays the role of 𝑝 = 2). Therefore 𝐺𝐹(24)  =

𝐺𝑅(21, 4). 

iii. 𝐺𝑅(22, 2) =  
ℤ

22[𝑥]

〈1+𝑥+𝑥2〉
 

The polynomial 1 + 𝑥 + 𝑥2 is clearly a monic basic primitive polynomial over 𝑍4. The ring 

𝐺𝑅(22, 2)  =  
ℤ4[𝑥]

〈1+𝑥+𝑥2〉
 (not to be confused with the field 𝐺𝑅(22)  =  

𝔽4[𝑥]

〈1+𝑥+𝑥2〉
 is of characteristic 

22 = 4 and has (22)2 = 16 elements. 

iv. 𝐺𝑅(22, 3) =  
ℤ

22[𝑥]

〈3+𝑥+2𝑥2+𝑥3〉
 

The monic polynomial 𝑃3(𝑥) =  3 + 𝑥 + 2𝑥2 + 𝑥3 in ℤ22[𝑥] admits the image 

𝑃3(𝑥)̅̅ ̅̅ ̅̅ ̅ =  1 + 𝑥 + 𝑥3 in ℤ2[𝑥], an irreducible polynomial over ℤ2. Therefore, 𝑃3(𝑥). is a monic 

basic irreducible polynomial. Thus, the ring 𝐺𝑅(22, 3) is a Galois ring of characteristic 22  =  4 

with (22)3  =  64 elements. Let 𝛼 be a root of 𝑃3(𝑥). This root is an element of order 23  −  1 =

 7 of 𝐺𝑅(22, 3). 

v. 𝐺𝑅(22, 𝑚) 

To define a structure of 𝑚 qubits 𝐺𝑅(22, 𝑚), the Galois ring 𝐺𝑅(22, 𝑚) is of interest in quantum 

information (also referred to as 𝑅4𝑚  in quantum information). It has a characteristic of 22  =  4, 

has (22)𝑚  =  4𝑚 elements and corresponds to 𝐺𝑅(22, 𝑚)= 
ℤ

22[𝑥]

𝑝𝑚(𝑥)
 there 𝑝𝑚(𝑥) is a monic simple 

irreducible degree 𝑚 polynomial in ℤ22[𝑥]  (his image is an irreducible polynomial over ℤ2 under 

the homomorphism ℤ22[𝑥] )The Galois ring 𝐺𝑅(22, 𝑚) is an expansion of the ℤ2 ring's degree m. 
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vi.The rings ℤ4, ℤ8 and ℤ9 are commutative with a unit element for which the set of zero divisors 

form a principal ideal 〈𝑝 = 2〉, 〈𝑝 = 2〉 and 〈𝑝 = 3〉, respectively. Therefore, ℤ4(= ℤ22), ℤ8(=

ℤ23) and ℤ9(= ℤ32) are Galois rings. Moreover, 〈𝑝 = 2〉, 〈𝑝 = 2〉 and 〈𝑝 = 3〉 are maximal ideals 

of ℤ22, 𝑍23and 𝑍32, respectively. 

More precisely, the integers modulo ring ℤ𝑝𝑠 with 𝑝 prime and 𝑠 positive integer is a Galois ring (1 is 

the identity of ℤ𝑝𝑠; the zero divisors including 0 of ℤ𝑝𝑠 form the principal ideal 𝑝 of the finite ring 

ℤ𝑝𝑠; indeed, 𝑝 is the unique maximal ideal of ℤ𝑝𝑠). The ℤ𝑝𝑠  Galois ring has number of elements 𝑝𝑠 

and is characteristic 𝑝𝑠. 

We have ℤ𝑝1 =  𝔽𝑝 in the special case 𝑠 = 1, for which the only zero divisor is the trivial zero 

divisor. The principal ideal (here, 𝑝 = 0) is the zero ideal ℤ𝑝. Consequently, ℤ𝑝 constitute a Galois 

ring. More precisely, the Galois field 𝔽𝑝 is the Galois ring ℤ𝑝. 

Proposition 10 [23, proposition 3.1] 

It is possible to make an element of the ring ℤ𝑝𝑠 with p prime number and s positive integer as a =

𝑑0 + 𝑑1𝑝 + ···  +𝑑𝑠−1𝑝. 

Where each coefficient 𝑑𝑖 belongs to the field 𝔽𝑝 (𝑖 =  0, 1, …  , 𝑠 −  1) and the operation of 

addition and multiplication coincides to the ring ℤ𝑝𝑠 . 

Example 

For 𝑠 = 2 and 𝑝 = 2, we readily verify that 

∀𝑎 ∈ 𝑍22 ∶  𝑎 = 𝑑0 + 2𝑑1, 𝑑𝑖 ∈ 𝔽2(𝑖 = 0, 1) 

so that the elements a, denoted as (𝑑0, 𝑑1), of ℤ22 are 

0 = (0, 0), 1 = (1, 0), 2 =  (0, 1), 3 = (1, 1) 

Similarly for 𝑠 = 3, 𝑝 = 2, 

∀𝑎 ∈ 𝑍23 ∶  𝑎 = 𝑑0 + 2𝑑1 + 22𝑑2, 𝑑𝑖 ∈ 𝔽2 (𝑖 = 0, 1, 2) 

and the elements a, denoted as (𝑑0, 𝑑1, 𝑑2), of 𝑍23 are 

0 = (0, 0, 0), 1 = (1, 0, 0), 2 = (0, 1, 0), 3 = (1, 1, 0) 

4 = (0, 0, 1), 5 = (1, 0, 1), 6 = (0, 1, 1), 7 = (1, 1, 1) 

Let 𝑃𝑚(𝑥) be a primitive degree 𝑚, monic polynomial over the Galois ring ℤ𝑝𝑠  (with 𝑚 and 𝑠 positive 

integers, 𝑝 prime number). Then, a Galois ring denoted as 𝐺𝑅(𝑝𝑠, 𝑚) is the residue class 

ring (𝑝𝑠)𝑚 =  𝑝𝑠𝑚. Characteristic of this ring is 𝑝𝑠 and cardinal (𝑝𝑠)𝑚 =  𝑝𝑠𝑚. Any element 𝑎 of 

𝐺𝑅(𝑝𝑠, 𝑚) can be written as  
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𝑎 = 𝑎0 + 𝑎1𝛼 + · · · +𝑎𝑚−1𝛼𝑚−1, 𝑎𝑖 ∈ 𝑍𝑝𝑠  (𝑖 = 0,1,· · · , 𝑚 − 1) 

Whereas, order of 𝛼 is 𝑝𝑚 − 1 (i.e. 𝛼𝑝𝑚 −1 = 1) which is a root of 𝑃𝑚(𝑥), with  𝑃𝑚(𝑥) dividing 

𝑥𝑝𝑚 −1  −  1 in ℤ𝑝𝑠[𝑥].  

Element of proof 

The 𝐺𝑅(𝑝𝑠, 𝑚) zero divisors, including the trivial zero divisor 0, constitute the 𝐺𝑅(𝑝𝑠, 𝑚) principal 

ideal p (in general, the only 𝐺𝑅(𝑝𝑠, 𝑚) maximum ideal). The Galois ring 𝐺𝑅(𝑝𝑠, 𝑚) is known as 

Galois extension of degree m of the ring ℤ𝑝𝑠of characteristic ps. The ring ℤ𝑝𝑠is called a prime ring. 

The Galois ring 𝐺𝑅(𝑝𝑠, 𝑚) is the unique (up to isomorphism) extension of degree m of the ring ℤ𝑝𝑠of 

integers modulo 𝑝𝑠.  

The configuration of a Galois ring is defined by its properties 

𝐶ℎ𝑎𝑟(𝐺𝑅(𝑝𝑠, 𝑚))  =  𝐶ℎ𝑎𝑟(ℤ𝑝𝑠)  =  𝑝𝑠 

that is for 𝑝𝑠, positive power of a prime number 𝑝 and its cardinal  

𝐶𝑎𝑟𝑑(𝐺𝑅(𝑝𝑠, 𝑚))  =  𝑝𝑠𝑚 

that is a positive power (𝑝𝑠)𝑚  =  𝑝𝑠𝑚of the characteristic 𝑝𝑠(𝑠 ≥ 1 𝑎𝑛𝑑 𝑚 ≥ 1)  

In the case 𝑠 = 1, the Galois ring  

𝐺𝑅(𝑝, 𝑚) =
ℤ𝑝[𝑥]

〈𝑃𝑚(𝑥)〉
=

𝔽𝑝[𝑥]

〈𝑃𝑚(𝑥)〉 
=  𝐺𝐹(𝑝𝑚) 

is a Galois field, viz. the Galois field 𝐺𝐹(𝑝𝑚), a field of characteristic 𝑝 with 𝑝𝑚 elements. A Galois 

field is a general a Galois ring in this respect. 

Lastly, for 𝑠 = 𝑚 = 1, the Galois ring 

𝐺𝑅(𝑝, 1) =
ℤ𝑝[𝑥]

〈𝑃1(𝑥)〉
 

is a field, viz. the prime field 𝔽𝑝. 

 

Proposition 11 [20, proposition 3.1.3] 

A Galois ring sub-ring is a Galois ring. The Galois ring 𝐺𝑅(𝑝𝑠, 𝑙) is a sub-ring of the Galois ring 

𝐺𝑅(𝑝𝑠, 𝑚) if and only if 𝑙 divides 𝑚. 

The notation we are using to indicate that 𝐺𝑅(𝑝𝑠, 𝑙) as a sub-ring of 𝐺𝑅(𝑝𝑠, 𝑚) is 𝐺𝑅(𝑝𝑠, 𝑙) ⊂

𝐺𝑅(𝑝𝑠, 𝑚). The Galois rings 𝐺𝑅(𝑝𝑠, 𝑙) and 𝐺𝑅(𝑝𝑠, 𝑚) has the same characteristic 𝑝𝑠. It is necessary 

to remember that the sub-ring numbers of 𝐺𝑅(𝑝𝑠, 𝑚) is the same to the positive divisors of 𝑚. 
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Example 

The Galois ring 𝐺𝑅(𝑝𝑠, 𝑚) contains the Galois ring ℤ𝑝𝑠 as a sub-ring. Also note that 

ℤ𝑝𝑠  =  𝐺𝑅(𝑝𝑠, 1!) ⊂ 𝐺𝑅(𝑝𝑠, 2!) ⊂ 𝐺𝑅(𝑝𝑠, 3!) ⊂ · · ·  

since 𝑛! divides (𝑛 +  1)! for 𝑛 ∈  𝑁1. For 𝑠 =  1, we have that  

𝔽𝑝  =  𝐺𝐹(𝑝1!) ⊂ 𝐺𝐹(𝑝2!) ⊂ 𝐺𝐹(𝑝3!) ⊂ · · · 

in terms of Galois fields. 

Examples of chain rings which are not the Galois rings 

Characteristic of the ring ℤ2[𝑥]

〈𝑥2〉
 is 2. The entries of this ring are of the type 𝑎0  +  𝑎1𝛼 where 𝑎0 and 𝑎1 

belong to ℤ2. Therefore, they are 0, 1, 𝛼, 1 +  𝛼. The table of + and   × for ℤ2[𝑥]

〈𝑥2〉
 are provide by Tables 

2 and table 3, respectively. As recently disclosed, the ring ℤ2[𝑥]

〈𝑥2〉
  is not isomorphic to the ring ℤ4 (The 

two rings have same table of ×, but distinct + table.). 

Table 2. Addition in ℤ2[𝑥]

〈𝑥2〉
 

+ 0 1 𝛼 1 + 𝛼 
0 0 1 𝛼 1 + 𝛼 
1 1 0 1 + 𝛼 𝛼 
𝛼 𝛼 1 + 𝛼 0 1 

1 + 𝛼 1 + 𝛼 𝛼 1 0 

Table 3. Multiplication in ℤ2[𝑥]

〈𝑥2〉
 

× 0 1 𝛼 1 + 𝛼 
0 0 0 0 0 
1 0 1 𝛼 1 + 𝛼 
𝛼 0 𝛼 0 𝛼 

1 + 𝛼 0 1 + 𝛼 𝛼 1 
 

The set {0, 𝛼} of the two zero divisors of ℤ2[𝑥]

〈𝑥2〉
 constitutes principal ideal, but this ideal with 𝑝 prime is 

not of type 𝑝. Therefore, the ring 
ℤ2[𝑥]

〈𝑥2〉
 is not a Galois ring. 

i. The characteristic of the ring  ℤ2[𝑥]

〈𝑥+𝑥2〉
 is 2. The entries of this ring are of the form 0, 1, 𝛼, 1 +  𝛼, 

and the table of + and × are provided in the form of tables 4 and table 5,  respectively. The 

ring  ℤ2[𝑥]

〈𝑥+𝑥2〉
  has a single unit element, two non-trivial ideals ({0, 𝛼} and {0, 1 +  𝛼}) and three 

zero divisors (0, 𝛼 𝑎𝑛𝑑 1 +  𝛼). The 3 zero divisors should not make up an ideal as  ℤ2[𝑥]

〈𝑥+𝑥2〉
  is 

not a Galois ring. 
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Table 4. Addition in ℤ2[𝑥]

〈𝑥+𝑥2〉
 

+ 0 1 𝛼 1 + 𝛼 
0 0 1 𝛼 1 + 𝛼 
1 1 0 1 + 𝛼 𝛼 
𝛼 𝛼 1 + 𝛼 0 1 

1 + 𝛼 1 + 𝛼 𝛼 1 0 

Table 5. Multiplication in ℤ2[𝑥]

〈𝑥+𝑥2〉
 

× 0 1 𝛼 1 + 𝛼 

0 0 0 0 0 

1 0 1 𝛼 1 + 𝛼 

𝛼 0 𝛼 𝛼 0 

1 + 𝛼 0 1 + 𝛼 0 1 + 𝛼 

Observe that ℤ2[𝑥]

〈𝑥+𝑥2〉
 is neither isomorphic to ℤ2[𝑥]

〈𝑥2〉
 nor to ℤ4: both the + and  

× tables of ℤ2[𝑥]

〈𝑥+𝑥2〉
 differ from those of the ring ℤ4. 

ii. The ring  ℤ2[𝑥]

〈x+𝑥3〉
 is of characteristic 21  =  2. Its contains elements in the form 𝑎0  +  𝑎1𝛼 +

 𝑎2𝛼2 with 𝑎0, 𝑎1, 𝑎2 ∈  ℤ2, are 

0, 1, 𝑎 = 𝛼, 𝑏 =  𝛼2, 𝑐 = 1 + 𝛼, 𝑑 = 1 + 𝛼2, 𝑒 = 𝛼 + 𝛼2, 𝑓 = 1 + 𝛼 + 𝛼2 

Table 6. Addition in ℤ2[𝑥]

〈𝑥+𝑥3〉
 

+ 0 1 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 

0 0 1 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 

1 1 0 𝑐 𝑑 𝑎 𝑏 𝑓 𝑒 

𝑎 𝑎 𝑐 0 𝑒 1 𝑓 𝑏 𝑑 
𝑏 𝑏 𝑑 𝑒 0 𝑓 1 𝑎 𝑐 
𝑐 𝑐 𝑎 1 𝑓 0 𝑒 𝑑 𝑏 
𝑑 𝑑 𝑏 𝑓 1 𝑒 0 𝑐 𝑎 
𝑒 𝑒 𝑓 𝑏 𝑎 𝑑 𝑐 0 1 
𝑓 𝑓 𝑒 𝑑 𝑐 𝑏 𝑎 1 0 

 

Table 7. Multiplication in ℤ2[𝑥]

〈𝑥+𝑥3〉
 

× 0 1 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 

0 0 0 0 0 0 0 0 0 

1 0 1 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 

𝑎 0 𝑎 𝑏 𝑎 𝑒 0 𝑒 𝑏 
𝑏 0 𝑏 𝑎 𝑏 𝑒 0 𝑒 𝑎 
𝑐 0 𝑐 𝑒 𝑒 𝑑 𝑑 0 𝑑 
𝑑 0 𝑑 0 0 𝑑 𝑑 0 𝑑 
𝑒 0 𝑒 𝑒 𝑒 0 0 0 𝑒 
𝑓 0 𝑓 𝑏 𝑎 𝑐 𝑑 𝑒 1 



 

33 
 

iii. A finite (commutative) ring with unity for which the set of zero divisors is {0,2,3,4} is the 

ring ℤ6. This set doesn't quite represent a ℤ6 ideal. Consequently, ℤ6 is not a Galois ring 

1.2.7 Finite commutative chain ring 

In [22], if all the ideals form a chain under inclusion for a commutative unital ring then it is called a 

chain ring. Finite chain rings are exactly local finite rings whose maximal ideal is principal. Particular 

examples of a broader class of finite commutative rings with identity are the Galois rings and Quasi-

Galois rings. Since they are finite and their ideals form a chain under inclusion, such rings are called 

finite chain rings. In algebraic number theory, these rings appear as quotient rings of rings of integers 

in computational fields as well as in Pappian-Hjelmslev plane geometry. 

Consider just commutative, associative rings with identity. It is easy to see that the radical 𝑁 is 

principal and ℛ is local, i.e., ℛ

𝑁
 is a field if and only if ℛ is a chain ring. ring of integers modulo 𝑝𝑛is 

an example of such rings, here 𝑝 is a prime. Another example of chain rings are the rings ℛ(𝑝𝑛, 𝑟) =

ℤ𝑝𝑛[𝑥]

〈𝑓(𝑥)〉
 , where the polynomial 𝑓(𝑥) is monic of degree 𝑟 and irreducible modulo the prime 𝑝. After 

Janusz [38] (and independently Raghavendran [39]) we call this ring a Galois ring of characteristic 

𝑝𝑛 and rank 𝑟. These rings were perhaps first noticed by Krull in 1924 [40]. Note that 𝐺𝑅(𝑝, 𝑟) =

𝐺𝐹(𝑝𝑟) and 𝐺𝑅(𝑝𝑛, 𝑟) is uniquely determined by 𝑝, 𝑛, and 𝑟 (see Krull [40, pp. 83ff]).  

The following construction can be used to obtain all finite chain rings. Let 𝑝 be a prime, and the 

integers 𝑛, 𝑟 > 0, and 𝑓(𝑥) ∈ ℤ𝑝𝑛[𝑥] a monic polynomial of degree 𝑟 whose image in ℤ𝑝[𝑥] is 

irreducible. Then 𝐺𝑅(𝑝𝑛, 𝑟) =
ℤ𝑝𝑛[𝑥]

〈𝑓(𝑥)〉
 is a ring whose structure depends only on 𝑝, 𝑛, and 𝑟. 𝐺𝑅(𝑝𝑛, 𝑟) 

is called a Galois ring of characteristic 𝑝𝑛 and rank 𝑟 [39, 41]. 𝐺𝑅(𝑝𝑛, 𝑟) is a local ring whose 

maximal ideal is 𝑝𝐺𝑅(𝑝𝑛, 𝑟). The finite chain rings are of the form 
𝐺𝑅(𝑝𝑛,𝑟)[𝑥]

〈𝑔(𝑥),𝑝𝑛−1 𝑥𝑡〉
       (1) 

Whereas 𝑔(𝑥) ∈ 𝐺𝑅(𝑝𝑛, 𝑟)[𝑥] is an Eisenstein polynomial of degree 𝑘, i.e., 𝑔 ∈ 𝑥𝑘 − 𝑝(𝑎𝑘−1𝑥𝑘−1 +

⋯ + 𝑎0) (𝑎𝑖 ∈  𝐺𝑅(𝑝𝑛, 𝑟) and 𝑎0 is a unit of 𝐺𝑅(𝑝𝑛, 𝑟)), 𝑡 = 𝑘 when 𝑛 = 1, and 1 ≤ 𝑡 ≤ 𝑘 when 

𝑛 ≥ 2. The integers 𝑝, 𝑛, 𝑟, 𝑘, 𝑡 are called the invariants of the chain ring in (1). 

The Galois ring 𝐺𝑅(𝑝𝑛, 𝑟) is a local ring with maximal ideal 𝑝𝐺𝑅(𝑝𝑛, 𝑟) and 𝐺𝑅(𝑝𝑛,𝑟)

𝑝𝐺𝑅(𝑝𝑛,𝑟)
= 𝐺𝐹(𝑝𝑟). Its 

group of units 𝐺𝑅(𝑝𝑛, 𝑟)∗ comprises of single cyclic subgroup 𝑇∗ of order 𝑝𝑟 − 1. 
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ℛ can denote a finite chain ring with a nonzero radical 𝑁 in what follows. (If 𝑁 =  0, then ℛ is a 

field, of course.) We now state some chain ring ℛ facts and will use the notation throughout. 

i. ℛ has prime power characteristic 𝑝𝑛, i.e., the identity of ℛ has additive order 𝑝𝑛. 

ii. If the characteristic of ℛ is 𝑝𝑛, then ℛ ≅ 𝐺𝑅(𝑝𝑛, 𝑟), a  Galois ring. 

iii. The radical 𝑁 is the collection of ℛ′𝑠 nilpotent entities and 
ℛ

𝒩
=  𝐺𝐹( 𝑝𝑟). 

iv. Let 𝜃 = 𝒩 − 𝒩2. Then, 𝒩 = (𝜃) and every ideal of ℛ is of the form 𝒩𝑖  =  (𝜃). Hence 

if 𝑚 is the index of nilpotency of 𝒩, then for each 𝑎 in 𝒩, there is a unique nonnegative 

integer 𝑖 <  𝑚 such that 𝑎 =  𝑢𝜃𝑖  where 𝑢 is a unit of ℛ. 

v. ℛ contains a unique subring 𝑆 such that 𝑆

𝑝𝑆
≅

ℛ

𝒩
. 𝑆 has radical (𝑝) and (hence) is 

isomorphic to 𝐺𝑅(𝑝𝑛, 𝑟). 

vi. If 𝜃 = 𝒩 − 𝒩2, ℛ = 𝑆 ⊕ 𝑆𝜃 ⊕. . .⊕ 𝑆𝜃𝑘−1 is an 𝑆 −module direct sum where 𝐾 is the 

greatest integer 𝑖 <  𝑚 (= index of nilpotency of 𝒩) such that 𝑝 ∈  ℕ𝑖. It follows that 

𝜃𝑘 =  𝑝(𝑎𝑘−1𝜃𝑘−1+ . . . + 𝑎1𝜃 +  𝑎0), where 𝑎𝑖 ∈ 𝑆 and 𝑎0 is a unit in 𝑆, i.e., 𝜃 satisfies 

the Eisenstein polynomial 

𝑓(𝑥)  =  𝑥𝑘  −  𝑝(𝑎𝑘−1𝜃𝑘−1+ . . . + 𝑎1𝜃 +  𝑎0) 

If 1, 𝜃1, 𝜃2, … , 𝜃𝑘−1 is a basis for ℛ over 𝑆, we call ℛ an Eisenstein extension of 𝑆 of 

degree 𝑘. In general, however, there is an integer 𝑡 = 𝑚 − (𝑛 − 1)𝑘 > 0 such that 

𝑆𝜃𝑖 ≅ 𝑆   if 0 ≤ 𝑖 < 𝑡 

and 

𝑆𝜃𝑖 ≅
𝑆

𝑝𝑛−1𝑆
  if 𝑘 ≥ 𝑖 ≥ 𝑡 

In other words 

 ℛ ≅
𝑆[𝑥]

〈𝑓(𝑥),𝑝𝑛−1𝑥𝑖〉
. Conversely, any such quotient ring 

is indeed a chain ring (Krull [40, pp. 84-85]. 

vii. Consider the units group of ℛ is represented by ℛ∗. Obviously, the ℛ∗ includes non-

nilpotent entries of ℛ, i.e., ℛ∗  =  ℛ −  𝒩. The subgroup 1 + 𝒩 of ℛ∗ is a 𝑝 −group and 
ℛ∗

(𝑙 + 𝒩
) ≅ (

ℛ

𝒩
)∗ is of cardinality 𝑝𝑟 − 1 and also is cyclic. Hence, ℛ∗ ≅ (

ℛ

𝒩
)∗ × (1 + 𝒩). 

viii. ℛ has order𝑝𝑚𝑟, 𝒩 has order 𝑝(𝑚−1)𝑟, and 𝑅∗ has order 𝑝𝑚𝑟 − 𝑝(𝑚−1)𝑟. 

ix. We call the integers 𝑝, 𝑛, 𝑟, 𝑘, 𝑡 defined above the invariants of ℛ.  
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x. ℛ =
𝐺𝑅(𝑝𝑛,𝑟)[𝑥]

〈𝑔(𝑥),𝑝𝑛−1𝑥𝑡〉
 be a finite chain ring. 

We list them below for ease. 

𝑝𝑛 is the characteristic of ℛ. 

𝑝𝑟 is cardinality of ℛ

𝒩
. 

𝑚 is the index of nilpotency of 𝒩. 

𝑘 is the greatest integer 𝑖 ≤ 𝑚 such that 𝑝 ∈ 𝒩𝑖. 

𝑚 = (𝑛 − 𝐼)𝑘 + 𝑡, 𝐼 ≤ 𝑡 ≤ 𝑘. 

Theorem 10 

If the total number of finite chain rings is denoted by N having the invairent 𝑝, 𝑛, 𝑟, 𝑘, 𝑡. And assume 

that 𝑝/𝑘 and that either 𝑛 >  2 or 𝑛 = 2 and 𝑡 = 𝑘. Then 

𝑃𝑟

𝑟
≤ 𝑁 ≤ (𝐼 − 𝑝−𝑟)𝑝𝑟(𝑚−𝑘), 

where 𝑚 = (𝑛 − 𝑙)𝑘 + 𝑡. 

Theorem 11 [42, Theorem 2.1] 

Consider the ring 

ℛ =
𝐺𝑅(𝑝𝑛, 𝑟)[𝑥] = ℤ𝑝𝑛[𝑤][𝑥]

〈𝑓(𝑥) = 𝑥𝑘  −  𝑝(𝑎𝑘−1𝜃𝑘−1+ . . . + 𝑎1𝜃 +  𝑎0), 𝑝𝑛−1𝑥𝑡〉
                   (2) 

where 𝑓(𝑥) is an Eisenstein polynomial (i.e., 𝑎0 is a unit element), 1 ≤  𝑡 ≤  𝑘  when 𝑛 ≥  2, and 

𝑡 = 𝑘 when 𝑛 = 1. 𝑣 is a finite commutative chain ring, and conversely, any finite commutative chain 

ring is of the form (2). 

Lemma 1 [43, lemma 1] 

If 𝑛 =  1, then 𝑆 =  𝐺𝐹(𝑝𝑟) and ℛ ≅
𝑆[𝑥]

〈𝑥𝑘〉
. 

Proposition 12 [42, proposition 2.3] 

Let ℛ denote the finite commutative chain ring with the parameters in Notation 2.2. 

i. The chain of ideals of ℛ is of the form 

0 = 〈𝑥𝑘(𝑛−1)+𝑡〉 ⊆ 〈𝑥𝑘(𝑛−1)+𝑡−1〉 ⊆ ⋯ ⊆ 〈𝑥〉 ⊆ ℛ 

Whereas 〈𝑥𝑘〉 = 〈𝑝〉 

ii.  |ℛ| = 𝑝𝑟(𝑘(𝑛−1)+𝑡) and |〈𝑥〉| = 𝑝𝑟(𝑘(𝑛−1)+𝑡−1). Also, ℛ

〈𝑥〉
≅ 𝔽𝑝𝑟. 

iii. The largest Galois ring in ℛ is 𝐺𝑅(𝑝𝑛, 𝑟)[𝑥] and it is called the coefficient ring of ℛ. 
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A generalize structure of the sequence alphabet to a residue class polynomial ring over Galois field 

(GF) is given in [10]. Let 𝑤(𝑥)𝑘, for 𝑘 > 1, be the 𝑘𝑡ℎ power of an irreducible polynomial 𝑤(𝑥) over 

GF of degree 𝑚 . Then, the residue class ring ℛ of [10] is defined as ℛ =
𝔽2[𝑥]

<(𝑤(𝑥)𝑘>
. This 

generalization provides a large choice of rings to construct frequency hopping sequences. These rings 

are called commutative chain ring. The ring ℛ𝑛 =
𝔽2[𝑥]

〈𝑥𝑛〉
 is a special case of ℛ where 𝑤(𝑥) = 𝑥 and 

𝑘 = 𝑛. An application of such rings is given in the construction of cyclic codes and Self-Dual codes 

in [11]. Furthermore, the design of byte based 4 × 4 S-box from finite commutative chain ring ℛ8 =

𝔽2[𝑥]

<𝑥8>
 is initiated by Shah et al. [12] and recently used in [13] for image encryption application. 

Some examples of finite chain rings 

1. Equation (1) is an example of chain ring. 

2. ℛ =
ℤ

32[𝑥]

〈𝑥2−3〉
,  𝒮 =

ℤ
32[𝑥]

〈𝑥2−6〉
 

Both ℛ and 𝒮 are finite chain rings with invariants (𝑝, 𝑛, 𝑟, 𝑘, 𝑡) = (3, 2, 1, 2, 2) 

3. Galois rings and Quasi-Galois rings. 

4. 2ℤ8 

5. 𝔽2 + 𝑢𝔽2 

6. 𝔽2[𝑢]

〈𝑥𝑘〉
  7. 𝔽2[𝑢]

〈𝑥𝑘−1〉
 

1.3 S-box based over chain ring  

For the construction of cyclic codes, the finite chain rings of form  𝔽2[𝑥]

〈𝑥𝑘〉
 have recently been used in 

coding theory. In coding theory, Bonnecaze and Udaya[11] provide the basis for the creation of cyclic 

and self-dual codes on the chain ring 𝔽2 + 𝑥𝔽2. Meanwhile numerous code theorist have used these 

type of rings to design codes, e.g. in [44] constacyclic and cyclic codes are constructed over finite 

chain ring 𝔽2 + 𝑥𝔽2 + 𝑥2𝔽2, while the construction of cyclic codes over finite chain rings 𝔽2 + 𝑥𝔽2 

and 𝔽2 + 𝑥𝔽2 + 𝑥2𝔽2 is discussed in [45]. The simplex codes over the finite chain ring 

∑ 𝑥𝑛𝔽2
𝑠
𝑛=0  are investigated in [46], however simplex codes having symbols from four elements chain 

ring 𝔽2 + 𝑥𝔽2 are given in [47]. The cyclic codes over chain ring 𝔽2 + 𝑥𝔽2 + 𝑥2𝔽2 + ⋯ + 𝑥𝑘−1𝔽2 

are addressed in [48], whereas (1 +  𝑥) constacyclic and cyclic codes over chain ring 𝔽2 + 𝑥𝔽2 are 

presented in [49]. While the linear codes over finite chain ring 𝔽2 + 𝑥𝔽2 + 𝑥2𝔽2 of constant Lee 

weight are considered in [50].  Though in more general setting, the cyclic codes over finite chain ring 
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 𝔽𝑝 + 𝑥𝔽𝑝 + 𝑥2𝔽𝑝 + ⋯ + 𝑥𝑘−1𝔽𝑝 are introduced in [51], however, ultimately in almost with 

complete sense, in [52] cyclic codes of arbitrary length are designed over finite chain ring  𝔽𝑞 +

𝑥𝔽𝑞 + 𝑥2𝔽𝑞 + ⋯ + 𝑥𝑘−1𝔽𝑞. Also, on negacyclic and constacyclic codes over finite chain rings is 

given in [53].  

In algebra, a function that assume values from a two-element set (usually {0,1}) as well as the 

function itself, we call the function a Boolean algebra. The normal succession from the single output 

Boolean function definition is the expansion of that theory to several Boolean output functions, 

referred to as an S-box. The relation between the input and the output bits gives rise to different kinds 

of S-boxes in terms of dimension and exclusivity. An n × m S-box is a function 𝜍 ∶ 𝔽2
𝑛  → 𝔽2

𝑚 that 

convert n-bit input to m-bit output, whereas a total of inputs is 2𝑛 bit and the outputs is 2𝑚 bit. An S-

box is then essentially a set of m-bit Boolean single output functions combined in a structured 

manner. The dimension of an S-box would have an effect on the distinction between the output and 

the input that will affect the properties of the S-box. S-box with 𝑛 × 𝑚 dimension will have some 

repeated values if cryptosystems 𝑛 < 𝑚. Whereas, in case if 𝑛 = 𝑚, then the S-box may either have 

unique values or may have a repetition in values. The only possibility that an S-box is reversible is 

that it has bijection [54]. Since it is the only nonlinear component of an algorithm, therefore it is 

focused mainly in while designing by researchers. Thus extreme vulnerabilities in the replacement 

matrices will then take to a weak cryptosystem. To check the power of cryptographic algorithms, the 

S-boxes are used as a gauging tool. Therefore, in order to secure cryptosystems, the construction of S-

boxes must be cryptographically efficient. In literature, multiple constructions and parameters are 

proposed to synthesize S-boxes. The Rijndael [1] S-box is based on the 𝑥 ⟼ 𝑥−1mapping, where 𝑥−1 

lies in  𝔽2
𝑚 field and denotes the multiplicative inverse of 𝑥. There are many methods in the 𝔽2

8 field 

to find the multiplicative inverse. An algorithm is given in [55] by which the measurements of 

multiplicative inverses in field 𝔽2
8 are reduced to the finding in field 𝔽2

4 = 𝐺𝐹(24) of multiplicative 

inverses. Adams and Tavares [56] define a construction methodology for strongly nonlinear bijective 

S-boxes, but an improved construction approach is given in [57] for nonlinear resilient S-boxes. 

Let ℛ𝑘 represents the chain ring 
𝔽2[𝑥]

<𝑥𝑘>
= 𝔽2 + 𝑥𝔽2 + 𝑥2𝔽2+. . . +𝑥𝑘−1𝔽2. It contains 2𝑘 elements. 

Here the polynomial 𝑥 has nilpotency 𝑘 i.e. 𝑥𝑘 = 0. The ascending chain of ideals in 𝑅𝑘 becomes <

0 >= 𝑥𝑘ℛ𝑘 ⊂ 𝑥𝑘−1ℛ𝑘 ⊂. . . ⊂ 𝑥ℛ𝑘 ⊂ ℛ𝑘, and hence ℛ𝑘 with only maximal ideal 𝑥ℛ𝑘 form a chain 

ring. One can check easily that the cardinality of 𝑥𝑘−1ℛ𝑘 is double the cardinality of 𝑥𝑘−2ℛ𝑘. In 
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particular, the chain ring ℛ2 =
𝔽2[𝑥]

<𝑥2>
= 𝔽2 + 𝑥𝔽2 has the elements {0, 1, 𝛼, 𝛼̄ = 1 +  𝛼}, where 𝛼2 =

0,  having unit elements {1, 𝛼̄ = 1 +  𝛼}. The chain ring ℛ2 share properties with ℤ4 and 𝔽4. The 

multiplication operation of ℛ2 coincides with ℤ4 whereas, the addition operation coincides with 𝔽4.  

The operations of addition and multiplication in ℛ2 are given bellow in Tables 8 and Table 9 

respectively. 
Table 8. Addition in 𝔽2 + 𝑢𝔽2 

× 0 1 𝑢 𝑢̅ 

0 0 0 0 0 

1 0 1 𝑢 𝑢̅ 

𝑢 0 𝑢 1 𝑢 

𝑢̅ 0 𝑢̅ 𝑢 0 

Table 9. Multiplication in 𝔽2 + 𝑢𝔽2 
+ 0 1 𝑢̅ 𝑢 
0 0 1 𝑢̅ 𝑢 
1 1 0 𝑢 𝑢̅ 
𝑢̅ 𝑢̅ 𝑢 0 1 
𝑢 𝑢 𝑢̅ 1 0 

 
Using the Chain rings, different S-boxes have been constructed by Shah et al. [12]. These S-boxes are 

also used for image encryption and watermarking [58]. 

The ring ℛ8 =
𝔽2[𝑥]

<𝑥8>
= 𝔽2 + 𝑥𝔽2 + 𝑥2𝔽2+. . . +𝑥7𝔽2 is a commutative chain ring having 28 

elements. Since the nilpotency of 𝑥 is 8 therefore, it follows that < 0 >⊂ 𝑥7ℛ8 ⊂ 𝑥6ℛ8 ⊂. . . ⊂

𝑥ℛ8 ⊂ ℛ8. Moreover, ℛ8

𝑥ℛ8
≅ 𝔽2 is the residue field of ℛ8. It shares some properties with local ring 

ℤ23 and the Galois field 𝔽23. Subsequently, the operation of addition in ℛ8 coincides with 𝔽23 and 

multiplication with ℤ23. For instance the copious 8 × 8 S-boxes in [58] are generated by the elements 

1 + 𝑥3 + 𝑥6 and 1 + 𝑥2 + 𝑥4 + 𝑥5 + 𝑥7 from the multiplicative group of the chain ring ℛ8. Since 

these S-boxes are generated by more than one element, therefore, shows more algebraic complexity 

as compared to other existing S-boxes. Thus these type of S-boxes may replace many existing S-box 

depending crypto-algorithms to increase their algebraic complexity and hence the algorithms security. 

1.4 Motivation and objectives of this thesis 

Nowadays, for secure communication, various ciphers are available in the literature. Several of these 

ciphers are based on the principle of diffusion and confusion given by Shannon [1, 2]. Confusion 

involves makes the connection between a given cipher key and the corresponding encrypted text 

complex. However, linking the conversion that spreads the statistical status of a text is termed as 
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diffusion. S-box is a key non-linear module of an encryption scheme that results confusion in data. 

Many algorithms are programmed to build this non-linear aspect in modern ciphers to maximize the 

uncertainty. These assemblies are regularly held in the Galois 2-marked fields, that is why there is a 

need for change in the algebraic structures. To improve the complex behavior of the S-boxes, the 

Galois field structure is swapped by a modified structure known as Galois ring. First, the Galois ring 

get rank in writing when Shankar [59], in 1979, built BCH (Bose–Chaudhuri–Hocquenghem) codes 

over the local-ring ℤ𝑝𝑘. Similarly; BCH codes over the commutative rings was compiled by Palazzo 

and Andrade [7]. This construction is paid equal attention in the subgroups of Galois ring extension 

of the local ring ℤ𝑝𝑘. Meanwhile, Sha et al. [9] broadcast the contribution in [7] to a sequence of BCH 

codes over chain of sequence of Galois rings. Hence, for the determination, a cyclic subgroup taken 

from unit elements of the Galois ring is considered. 

The standard 8-bit look-up table is a matrix of cardinality 16 established over Galois field 𝐺𝐹(28) 

and hence therefore, it requires a memory of  8 × 28 bits. The 12 × 12 S-box constructed over the 

Galois field 𝐺𝐹(212) requires 12 × 212 bit space and thus requires a large computer memory. 

Similarly, for a 24 − bit S-box over the Galois field 𝐺𝐹(224) requires  24 × 224 bits space. On the 

other hand, a lowest cyclic group of Galois ring units was first castoff in [6] for the creation of S-

boxes. Design of 4 by 4 S-box over Galois rings 𝐺𝑅(22, 2) and 𝐺𝑅(22, 4) are considered and their 

uses are seen in visual applications. S-boxes of size 4 ×  4 has been designed from chain ring 𝔽2[𝑢]

<𝑢8>
  

by Shah et al. in [12] and most lately utilized in [58] to encipher an image. In [60], shah et al. created 

a 24 × 24 S-box over Galois ring 𝐺𝑅(23, 8) but this algorithm fails in the decryption process, as the 

inverse elements for the S-box do not exist.  

The focus of this thesis is on presenting approaches for designing various bit S-boxes of small size by 

working with algebraic substructures (the chain ring). The construction of bijective Boolean functions 

on these substructures makes the problem more complex. The new functions are explored to meet the 

requirement of design criteria related to assessing their strength against linear and differential 

cryptanalysis. We will give the applications of designed s-boxes in the field information security. 

Moreover, a comparative analysis of the designed s-boxes with existing optimal 8-bit and 4-bit s-

boxes will be presented to validate the presented concept and its positive features. For a better 

understanding of the motivation and objective of the current research work, a link diagram is plotted 

in figure 1 which describes the association among the different ciphers.  
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Figure 1. Link diagram of the whole thesis 
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Chapter 2 

2 Design of 12-bit S-box over chain ring and its application 

to digital images 
 

An S-box is the main non-linear component of symmetric block cipher that is liable for producing 

confusion in data. Numerous algorithms are established for the creation of this non-linear component 

to upsurge confusion in contemporary symmetric ciphers. These assemblies are frequently created on 

Galois fields with characteristic 2, hence there is a requirement of enhancements and reforms in 

algebraic structures. Customarily, 8 × 8 S-box is a 16 × 16 look up table over Galois field 𝐺𝐹(28), 

algebra over the binary field 𝐹2.  A 12 × 12 S-box over Galois field 𝐺𝐹(212) is not effective as it 

requires large computer memory to be functional for data replacing instead of an 8 × 8 S-box. To 

improve the complexity in S-boxes, there is a need of introducing new generalized structures of 

Galois ring. One of the particular class of Galois ring is the commutative chain ring. The finite 

commutative chain ring  𝔽2[𝑥]

<𝑥12>
 is fundamentally an algebra over the binary field 𝔽2. In this chapter we 

considered the advantage and devise a novel method of 12 × 12 S-box design over the unit elements 

of finite commutative chain ring  𝔽2[𝑥]

<𝑥12>
. The newly obtained S-box has greater confusion ability than 

existing 8 × 8 S-boxes.  To observe this effect, an RGB image encryption application is given. In the 

proposed encryption scheme, we doubled the bits of 12 × 12 S-box from 12 to 24 for creating 

confusion in the data. Consequently, a new method of color image encryption is designed by which 

24 binary bits are utilized at the place of byte. Whereas for diffusion we apply the linear permutation 

𝑃 = (𝑖 × 32) 𝑚𝑜𝑑 257 and finally bitwise Exclusive-or operation is operationalized. Analysis 

reveals that the proposed image encryption approach might switch many  8 × 8 S-box based digital 

medium enciphering schemes. 

2.1 Construction of S-box over chain ring 

The key element used in most block ciphers is the S-box. The task is to replace a bunch of input data 

bits with a totally new output of the same size. So the replacement reveals a misleading relation 

between a given bits data and an outcome bits data. As used in the iterative round feature, the central 

aim of an S-box is to increase the intensity necessary to discover a statistical order in the replaced 

results. S-boxes are capable of securing an encryption algorithm by keeping outstanding encryption 
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stuffs. 

In this chapter, by using the 𝑅12 =
𝐹2[𝑥]

<𝑥8>
 , a 12 × 12 S-box is constructed. Also, the newly developed 

S-box is used in an image encryption scheme. 

2.2 Multiplicative group of chain ring 

Till now, the S-boxes constructed with the help of the commutative chain ring 𝑅8 =
𝐹2[𝑥]

<𝑥8>
=

∑ 𝑥𝑖𝐹2
7
𝑖=0  have cardinality 16 and each element is represented by a byte. However, in this study, the 

look-up table comprises 256 elements and each entry is of 12-bits. The generator of the S-box is the 

subgroup 𝐻𝐺12
= 〈1 + 𝑢4+𝑢5 + 𝑢11, 1 + 𝑢3, 1 + 𝑢 + 𝑢2 + 𝑢4 + 𝑢5 + 𝑢11〉 of multiplicative group 

𝑀𝐺12
 of units of  𝑅12 and is given in Table 10. 

Table 10. Multiplicative Group 𝑀𝐺12
of units of Chain ring 𝑅12 

2097 1281 3377 1 9 65 585 2103 1301 155 273 3143 325 555 257 3895 

21 2971 17 2887 1093 2347 2489 1137 2041 3337 1345 3913 1209 369 2809 1447 

3813 587 2593 2263 1461 3579 2353 679 3045 2379 2849 4055 181 1787 823 1045 

1947 1041 1863 69 1323 1025 1079 277 3227 1297 71 1349 3627 3751 4069 1355 

3873 983 1205 2811 3121 2471 2789 3659 3617 1239 437 507 2447 3517 1091 2457 

3711 2925 883 2313 1679 189 1859 153 383 1645 115 1527 85 1627 1361 3463 

5 2283 321 759 1365 3419 1105 2695 1285 1003 2639 765 1155 4057 447 45 

4019 2889 1359 4093 1923 1753 3775 3373 3251 2207 2509 19 2857 3695 2077 547 

185 1951 1229 787 553 367 1309 291 3175 1957 139 609 3351 2293 827 1393 

2919 677 2955 865 2583 3573 2107 3935 2701 1235 361 1455 3933 2787 3833 95 

1933 2003 2153 2735 605 2531 2703 1213 2883 1177 3455 621 3187 1033 1423 2493 

2115 3481 639 3949 3955 3831 341 347 81 1671 261 4075 1089 2551 1109 2651 

337 391 1029 1259 2383 3069 2947 729 703 2349 179 1609 1615 1789 2179 3033 

3519 1069 947 2975 205 3859 1577 3439 285 3363 3513 1183 3533 3091 3881 623 

3101 3619 1895 1701 1931 1889 1559 2549 1083 113 103 933 3211 1633 279 3317 

3899 3167 909 3027 3177 1711 1629 1507 1017 863 3725 2259 1385 2479 2909 1763 

 

2.3 Algorithm for S-box construction 

To construct the 𝑅12 S-box we define two mappings; 𝑓: 𝑀𝐺12
→ 𝑀𝐺12

by 𝑓(𝑎) = 𝑎−1 and 𝑔: 𝑀𝐺12
→

𝑀𝐺12
 𝑏𝑦 𝑔(𝑎) = 𝛽𝑎. Thus (𝑔𝑜𝑓)(𝑎) = (𝛽𝑎)−1, where 𝑀𝐺12

is the multiplicative group of unit 

elements of the ring 𝑅12, 𝑎𝑛𝑑 𝛽 = 1 + 𝑢3. Table 11, obtained from (𝑔𝑜𝑓)(𝐻𝐺12
), is the proposed S-

box constructed from 𝑅12. 
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Table 11. S-box obtained from Multiplicative Group 𝑀𝐺12
of units of Chain ring 𝑅12 

3377 2561 2097 1 585 65 9 2347 1093 2887 17 2971 21 3895 257 555 

325 3143 273 155 1301 2103 2809 369 1209 3913 1345 3337 2041 1137 2489 507 

 437 1239 3617 3659 2789 2471 3121 2811 1205 983 3873 1355 4069 3751 3627 1349 

 71 1297 3227 277 1079 1025 1323 69 1863 1041 1947 1045 823 1787 181 4055 

2849 2379 3045 679 2353 3579 1461 2263 2593 587 3813 1447 3251 3373 3775 1753 

 923 4093 1359 2889 4019 45 447 4057 1155 765 2639 1003 1285 2695 1105 3419 

 365 759 321 2283 5 3463 1361 1627 85 1527 115 1645 383 153 1859 189 

 679 2313 883 2925 3711 2457 1091 3517 2447 1763 2909 2479 1385 2259 3725 863 

 017 1507 1629 1711 3177 3027 909 3167 3899 3317 279 1633 3211 933 103 113 

 083 2549 1559 1889 1931 1701 1895 3619 3101 623 3881 3091 3533 1183 3513 3363 

 285 3439 1577 3859 205 2975 947 1069 3519 3033 2179 1789 1615 1609 179 2349 

703 729 2947 3069 2383 1259 1029 391 337 2651 1109 2551 1089 4075 261 1671 

 81 347 341 3831 3955 3949 639 3481 2115 2493 1423 1033 3187 621 3455 1177 

 883 1213 2703 2531 605 2735 2153 2003 1933 95 3833 2787 3933 1455 361 1235 

 701 3935 2107 3573 2583 865 2955 677 2919 1393 827 2293 3351 609 139 1957 

 175 291 1309 367 553 787 1229 1951 185 547 2077 3695 2857 19 2509 2207 

2.4 12-bit chain ring dependent RGB image encryption 

An SP-network is a series of mathematical operations linked in a block cipher. Such a network 

comprises of two operations the substitution and the permutation. This system was devised by 

Shannon [6] who termed this arrangement a mixing transformation. The work of S-box is to provide 

confusion in the plain-image/plain-text while the permutation is responsible for diffusion in the 

output after getting the substitution operation.  Due to the weakness of permutation-only 

cryptosystems against well-known attacks and for the enhancement of security level a significant 

substitution process is often introduced. Various block ciphers are constructed that uses the process of 

substitution. These ciphers includes Rijndael algorithm (AES), Serpent Algorithm, TwoFish 

algorithm, Data encryption standart (DES), Triple DES etc.  

The correspondence and storing of RGB digital medium needs cryptography to carry out their 

confidentiality because of unreliable networks. The implementation of an infrequent form of 

enciphering for color images based on 12 × 12 S-box obtained from chain ring 𝑅12 is one of the 

fundamental approaches of this section. With the same  8 × 8  S-box, each layer of an RGB image is 

treated for the prerequisite of the customary procedures, whereas, three different random sequences 

from 12 × 12 S-box are used for each channel of the RGB image in this novel scheme. A linear 

permutation P = (i × 32) mod257 is added to the replacement result in the next section of diffusion 
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and then from an exclusive-or operation encrypted image is achieved. 

2.4.1 Encryption algorithm 

The encryption technique is a little bit different. Firstly, we mapped each entry of R12 S-box on a 24-

bit vector and then used it for image encryption. Steps of the proposed image encryption scheme is 

given as under. 

a) Take the proposed 12 × 12 S-box. 

b) Exclusive-or 𝑖𝑡ℎ entry with (𝑖𝑡ℎ + 1) mod257 entry; for 𝑖 = 1 𝑡𝑜 256. This process will 

produce a 2𝑛𝑑 table of order 16 having each entry of 12 bit. 

c) Concatenate the two tables to get a 24-bit extended look-up table. 

d) Split the 24-bit extended table to 3 8-bit tables namely the left, middle and right 8-bits. 

e) Take a 256 order RGB image. 

f) Separate its red, green and blue Layers. 

g) Make substitution of red, green and blue channel with Left, Middle and Right Sequence 

respectively. 

h) Apply the linear permutation 𝑃 = (𝑖 × 32) 𝑚𝑜𝑑257 

i) Exclusive-or the results with Left, Right, and middle sequence 

j) Replace with pixels of image. 

k) Combine the three encrypted layers to get the encrypted image. 

The presented scheme for encryption of an image is given in figure 2. The enciphered images 

using this scheme is given in figure 3 
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Figure 2. Flow chart of 12 × 12 S-box dependent color image encryption 
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2.4.2 Decryption algorithm 

The decryption algorithm of the proposed work follows the following steps: 

a) Take the proposed 12 × 12 S-box. 

b) Exclusive-or 𝑖𝑡ℎ entry with (𝑖𝑡ℎ + 1) mod257 entry; for 𝑖 = 1 𝑡𝑜 256. This process will 

produce a 2𝑛𝑑 table of order 16 having each entry of 12 bit. 

c) Concatenate the two tables to get a 24-bit extended look-up table. 

d) Split the 24-bit extended table to 3 8-bit tables namely the left, middle and right 8-bits. 

e) Take the encrypted image. 

f) Separate its red, green and blue Layers. 

g) Exclusive-or the results with Left, Right, and middle sequence 

h) apply the inverse linear permutation 𝑃−1 = (𝑖 × 8) 𝑚𝑜𝑑257 

i) since the S-box contain elements of multiplicative group of chain ring therefore inverse exist. 

Take inverse tables of Left, Middle and Right Sequence and make its substitution in red, green 

and blue channel respectively. 

j) Replace with pixels of image.  

Combine the three decrypted layers to get the original image. 

 

 
Figure 3. Lena and fruits original images and there corresponding ciphered images 
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Chapter 3 

3 Chain ring-chaos amalgam and DNA transform: A 

functionality in multiple image encryption 
 

The pretended fundamental aspects of digital medium such as high redundancy, bulk data capacity 

and strong correlation among nearby pixels weaken the text encryption algorithms for image 

encryption purposes. To overcome this deficit, many encryption schemes have been developed by 

cryptographers. Among the current state-of-the-art for image encryption approaches extensively used 

SP-Network includes; algebra-based S-box design, chaotic systems and DNA transform. However, 

the algebra-based structure (S-boxes) are valued because of their high non-linear behavior. But since 

these S-boxes uses a single generator for its construction thus they gave birth to a less complex 

algebraic structure and thus, seldom, unsecure encryption algorithm. 

On the other hand, chaos and DNA based image encryption algorithms are widely used for secure 

digital image communication. These two notions play a prominent role in application point of view in 

different fields like Physics, Biology, Engineering and technology, etc. They are used to create 

diffusion in data. Not only diffusion but also an arithmetic way of creating confusion is available by 

using these two concepts [26]. The only drawback of this concept is its low non-linear behavior. 

However, in parallel, there are many positive aspects like ergodicity, mixing, highly sensitive 

dependence on initial conditions and management parameter, unpredictability, random-like behavior 

of output etc., that are analogous to the confusion and diffusion properties of Claude Shannon [6] 

which strengthen the concept of Chaos and DNA based encryption methodologies. 

This section suggests a novel color multiple image encryption scheme using “Algebra-Chaos 

Amalgamated 256-length-12-bit random sequence” and DNA Transform. The proposed random 

sequence (S-box) has the property of occupying small computer memory space as regards to the 

existing S-boxes. Moreover, for simplicity and novelty, 1D sin chaotic map and 1D logistic map are 

mixed to create a new 1D mixed chaotic map. Initially, a 12 × 12 (256-length-12-bit) S-box is 

designed by the unit elements of a chain ring, and then it is mixed with the 1-D mixed chaotic map 

that results triplets 𝑇1, 𝑇2 and 𝑇3 of high random behavior. A multiple digital image encryption is 

performed by using the triplet for substitution-permutation along with DNA transform. The proposed 
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image encryption technique enhances key-space size. Moreover, the arisen investigational data show 

that the proposed technique of encryption for digital medium has extra ordinary resistance against the 

well-known attacks. 

3.1 Generation of random sequences using chaos and chain ring-based S-box  

One of the main roles of S-box is the creation of data confusion. It plays a role of non-linear 

component in many symmetric block ciphers like in [1]. The S-box is a lookup table that takes one 

value as an input and returns a new value, different from the input value, as an output. Thus, the 

replacement spectacles a disorder link between a given data and a received data. It enhances the 

strength of a cipher against many statistical attacks like differential attacks. An S-box has the 

admirable property of offering shielding to an algorithm with strong encryption stuffs.  

In this study a 12 × 12 S-box is generated from the element of multiplicative group of commutative 

chain ring 𝑅12 =  
𝔽2[𝑥]

<𝑥12>
. Also, a 1D mixed chaotic map is defined. Furthermore, 3 byte based random 

sequences are generated from the proposed S-box by mixing it with 1D mixed chaotic map. 

Moreover, to fix rank of the newly designed sequences, a block of standard color images is encrypted 

in parallel with DNA transform. The analysis result shows that the proposed scheme has 

extraordinary resistance against all the well-known attacks. 

3.2 S-box construction algorithm using 12-bit chain ring   

Many standard S-boxes are developed using the algebraic structure of Galois field (see [61]). Some 

S-boxes are also constructed with the help of chaotic maps (see [62]). Recently, byte based 4 × 4 S-

boxes has also been constructed over commutative chain ring 𝐺𝐹(𝑞)[𝑥]

<𝑥𝑘>
= ∑ 𝑥𝑖𝐺𝐹(𝑞)𝑘−1

𝑖=0  [18] which 

develop a new era of S-boxes. Their application can be seen in image encryption and watermarking 

techniques [12]. However, in this study, a 12-bit entries S-box is constructed with cardinality 256. We 

found 3 generators that form a subgroup 𝐻𝐺12
, having order 256, of the multiplicative group 𝑀𝐺12

 of 

chain ring  𝑅12. Where, 

 𝑅12 =  
𝔽2[𝑥]

<𝑥12>
        (3) 

These 3 generators are: 

< 1 + u + 𝑢2 + 𝑢3 + 𝑢4+𝑢5+𝑢6+𝑢7+𝑢8+𝑢9+𝑢10 + 𝑢11, 1 + 𝑢4 + 𝑢5 + 𝑢8,1 + 𝑢5 + 𝑢7 + 𝑢9 +

𝑢10 + 𝑢11 > 

For the S-box construction purpose, we define two mappings 𝑓: 𝐻𝐺12
→ 𝐻𝐺12

by: 
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𝑓(𝑎) = 𝑎−1       (4) 

and 𝑔: 𝐻𝐺12
→ 𝐻𝐺12

 𝑏𝑦 the equation: 

𝑔(𝑎) = 𝛽𝑎       (5) 

Where 𝑎 𝜖 𝐻𝐺12 
and 𝛽=1010100011 𝜖 𝐻𝐺12 

. In polynomial form  𝛽 = 1 + 𝑢2+𝑢4+𝑢8+𝑢9 = 49. 

Thus, 

(𝑔𝑜𝑓)(𝑎) = (𝛽𝑎)−1       (6) 

generates the proposed S-box. Table 12 is the proposed S-box obtained from the composition 𝑔𝑜𝑓. 

 
Table 12. The proposed S-box obtained from the elements of multiplicative group of commutative chain ring 

1045 3135 1089 3267 1349 4047 81 243 277 831 1345 4035 69 207 337 1011 

3747 3315 419 2579 4083 1023 997 1301 741 3637 21 2613 1071 3903 1839 607 

63 3679 3185 321 2417 1761 65 737 1171 963 2963 2851 195 1827 3509 1093 

3253 3429 325 2405 1759 3279 1503 1967 975 2991 2913 1361 3681 2289 1105 3313 

3491 675 2323 1299 1765 2021 2869 3893 2863 2095 3423 351 3441 2161 2017 993 

1939 2195 2083 1059 2229 2485 2149 3173 2527 2783 2223 1199 2657 3937 2545 3569 

1 2371 1073 1169 1281 1603 3155 3843 2757 851 4067 3 3013 435 227 3075 

4037 83 771 995 3507 3299 3781 1269 261 3919 1525 5 3151 37 725 293 

1029 79 245 1285 847 1061 1749 1317 3359 2555 783 465 3615 15 1233 111 

1919 879 3087 209 287 3855 1489 3183 2943 3951 1825 1297 627 545 17 3443 

177 2433 1457 1041 371 801 273 3699 1201 3457 2403 3891 1685 1635 51 1941 

467 2691 3795 3123 917 1379 819 661 3539 1667 723 2981 341 3007 2725 85 

2239 629 3973 885 1109 1215 4005 1365 1983 1653 2949 1909 3311 3265 4079 255 

2497 1695 143 1439 3327 3521 239 4095 2241 2719 3215 2463 1329 1025 1347 49 

257 2627 2977 401 3745 4001 1425 1555 2721 3923 691 3763 501 2005 981 543 

2175 1151 1569 2177 433 2659 2435 1411 3749 2693 3717 1007 3983 911 305 145 

 

3.3 1D mixed chaotic map 

1D logistic map and sin chaotic map are famous simple chaotic equation with a high complex chaotic 

behavior. These two equations are mixed to get a low dimension chaotic map. The general equation 

of 1D mixed chaotic map is:  

𝑥𝑛+1 = ∝ sin (𝑥𝑛(1 − 𝑥𝑛))         (7) 

Where ∝ is a control parameter and its value lie in (0, 4]. The 𝑥0 is the initial value taken from the 

unit interval [0,1], whereas 𝑥𝑛+1 are the scattered output values. 
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Figure 4. (a) and (b) are the bifurcation and Lyapunov exponent diagram (resp.) of 1D mixed logistic map. 
 

The confirmation of a chaotic behavior can be estimated from the bifurcation diagram and Lyapunov 

exponent. The diagrams of these two notions are given in fig. 4(a) and 4(b). There are two main 

drawbacks of the 1D chaotic maps i.e. short limit of the chaotic range [3.57,4] and non-chaotic 

behavior of the parameter ∝. This can be verified by the diagram of Lyapunov exponent in fig.4 (b). 

The quantitative evaluation of a chaotic performance is measure by its Lyapunov exponent. A 

positive value of Lyapunov exponent shows that the system is chaotic and a larger positive value 

represents better chaotic performance. As shown in fig. 4. (b), for ∝< 3.57 the Lyapunov exponents 

of the logistic map is less than zero which shows a non-chaotic behavior. However, the results are in 

non-uniform structure obtained from the chaotic sequences. As shown in fig. 4. (a), the output range 

of the logistic sequence is within [0,1] and shows a non-uniform distribution. In the encryption 

technique, the generated chaotic sequences are mixed with the proposed S-box random sequences that 

enlarge the key-space. As a result, the 1D logistic map achieve the goal of a large key-space size. i.e. 

greater than 2100. 

Mixing (mixing strategy is given in points of section 4) the proposed S-box obtained from 

commutative chain ring with 1D mixed chaotic map gives birth to triplet 𝑇1, 𝑇2 𝑎𝑛𝑑 𝑇3. These triplets 

are random sequences (entries ranging 0-255 in decimal) given in Table 13-15. 
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Table 13. Triplet T1 

103 201 39 234 120 119 209 215 72 245 135 48 31 208 110 211 

178 71 252 45 95 159 148 69 207 21 22 26 61 144 92 181 

216 192 55 164 195 184 147 5 199 187 202 143 86 107 221 166 

74 191 16 105 96 139 169 217 141 37 19 52 53 118 113 59 

170 220 17 129 114 43 175 91 242 122 188 78 193 32 140 35 

146 82 163 41 153 200 64 214 249 235 99 50 197 88 239 225 

138 2 81 8 213 83 206 149 3 145 12 226 87 152 109 223 

51 126 162 176 232 196 20 186 174 121 80 150 29 127 101 76 

0 238 34 14 18 124 231 255 130 194 46 15 40 240 70 13 

203 25 98 123 85 155 90 157 111 228 204 248 165 30 236 132 

212 172 224 161 27 136 168 4 151 66 173 227 115 47 67 102 

68 218 243 42 185 190 134 125 251 23 137 247 250 44 24 56 

160 10 7 222 237 65 156 60 108 116 128 177 104 89 28 229 

189 182 198 11 38 57 106 241 183 133 171 219 84 97 33 253 

158 100 63 117 180 73 254 179 210 230 112 131 77 93 205 244 

79 142 54 167 36 9 62 49 154 6 246 58 233 75 1 94 

 
Table 14. Triplet T2 

72 236 40 157 190 51 232 29 77 130 23 162 46 248 54 69 

30 94 128 217 112 167 83 186 11 73 78 133 149 70 153 231 

204 89 75 18 145 222 95 32 100 134 74 168 164 212 28 141 

205 200 244 235 156 213 216 8 2 90 171 227 66 44 45 58 

172 39 98 5 148 13 62 123 19 210 108 79 63 47 92 117 

226 67 207 81 175 102 99 253 202 194 55 60 42 140 25 85 

196 127 37 1 177 65 82 188 209 197 53 131 115 180 116 142 

4 243 254 184 107 223 159 239 33 87 201 163 219 221 179 150 

9 24 183 135 182 113 103 176 255 166 160 129 86 192 242 146 

161 31 27 144 147 203 138 35 52 187 91 125 152 105 245 22 

199 122 3 136 106 195 14 21 238 124 56 6 165 132 0 139 

249 208 41 38 206 252 218 225 154 110 88 119 17 71 137 158 

97 246 155 229 120 250 151 80 7 215 237 191 93 111 181 220 

178 247 241 214 84 114 76 240 15 34 198 10 173 68 143 43 

170 101 211 26 251 61 193 64 50 169 230 224 233 16 189 121 

12 96 49 174 109 48 185 36 118 228 57 104 234 20 59 126 

 
Table 15. Triplet T3 

17 188 83 81 54 234 237 28 91 137 74 104 121 217 186 10 

236 247 248 43 246 212 78 44 51 181 5 9 80 65 92 169 

72 218 109 125 187 172 180 58 71 66 185 193 249 146 241 123 

118 200 131 213 11 111 182 224 105 117 179 40 150 4 189 8 

167 37 191 168 25 143 192 129 113 139 120 198 220 152 119 225 

63 60 175 210 195 27 14 161 93 79 201 7 85 166 154 106 

151 238 41 76 127 31 132 149 255 22 12 86 204 211 49 68 

107 116 99 240 134 239 0 202 126 245 100 57 47 75 108 18 

82 133 95 130 174 62 59 29 208 48 223 26 233 228 64 190 

231 155 219 162 46 97 153 36 164 6 42 196 136 157 183 16 

148 140 56 209 115 24 251 178 222 35 254 124 232 39 30 173 

89 98 235 23 101 160 102 114 84 67 165 145 229 1 138 19 

69 227 205 144 216 77 158 206 215 184 94 122 38 221 226 177 

230 197 2 112 194 170 250 244 90 252 32 199 20 214 15 73 

96 142 203 128 147 53 156 253 242 87 13 141 171 3 55 110 

243 70 34 50 176 88 207 33 21 52 135 163 45 61 159 103 
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3.4 Proposed multiple image encryption  

Nowadays, Asymmetric cryptography is one of the key approaches of protecting data. Nevertheless, 

A symmetric algorithm called Advanced encryption algorithm is used as a standard. These algorithms 

are valued because they are fast comparatively. One of the key components of these ciphers is S-box. 

The S-boxes are focused because they produce non linearity in a symmetric cipher. This distinct 

feature makes an algorithm secure against various cryptanalysis attacks and fast-growing computer 

technologies. An S-box can be constructed in different ways i.e. by using Galois field or chaotic maps 

etc. Till now, the strongest constructed S-box has non-linearity 112. The upper bond of the non-

linearity is 120. Shah et al. constructed many such S-boxes having non-linearity 112 and gives their 

practical applications see [63]. Nowadays, Small S-boxes have been constructed using elements of 

chain ring. In this paper, a novel method for constructing 12 × 12 S-box from Chain ring is given. 

Furthermore, a triplet (3 random sequences) of 8 × 8 S-boxes is generated using the proposed S-box 

and Chaotic sequences. In addition, theses 3 random sequences are used in parallel with DNA 

transforms in an RGB image encryption scheme and overcome with outshine results.  

Image encryption is considered to be a shield against the online communications fears of images. One 

aim of the paper is to explore the idea of image encryption using chain ring and chaotic-map based 

triplet and DNA sequences. The procedure of the proposed scheme given as under: 

1. Convert the 12 × 12 S-box to binary. 

2. Split each 12-bit vector of the proposed S-box to three 8-bit vectors i.e. 1 to 8 bit, 3 to 10-bit 

and 5 to 12-bit portion to construct 3 matrices 𝑀1, 𝑀2 𝑎𝑛𝑑 𝑀3 each of order 16 × 16.  

3. Originate Chaotic sequence (Seq) of order 256 × 256. Extend and Squeeze values of Seq in 

the range 0-255 by using the equations: 

𝑅1 = ⌊𝑆𝑒𝑞 × 65536⌋(𝑚𝑜𝑑256) 

Make sub-blocks of 𝑅1 of size 16 × 16. 

4. Take unique integers after Multiplying 𝑀1 with each block of 𝑅1under modulo 256. This will 

be the first Triplet, 𝑇1. Similarly, we can get Triplet, 𝑇2 and Triplet, 𝑇3 by using 𝑀2 𝑎𝑛𝑑 𝑀3 

respectively. 

5. In image encryption, First use the DNA sequences randomly and then make substitution-

permutation on red, green and blue channels respectively of RGB image using the Triplet 𝑇1, 

𝑇2 and 𝑇3. 
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Fig. 5 represents the flow chart of the proposed color image encryption scheme. Whereas, Fig. 6. is 

the original and encrypted multiple images using the proposed scheme. 

 

 
Figure 5. RGB multiple image encryption scheme using Algebraic-Chaotic Triplet and DNA sequences 
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Figure 6. Lena, Baboon, Fruits and Aeroplane original images and there corresponding encrypted images 
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Chapter 4 

4 Design of 𝟐𝟒-bit replacement-matrix over chain ring: An 

encryption application to astronomical visual  
 

In this new era, millions online secret and confidential communications happens every single day. 

The information may include images, text and videos. Therefore, cyber-security fears are rising so 

fast that a need of information safety, network security and data protection systems in computer 

systems from illegal persons has been observed. Daytime cryptology and IT security procedures are 

often established on mathematical thinking and on the application of computer science. Thus, to 

defeat such mathematical thinking, there is a need of secure cryptographically mathematical 

structures. For this purpose, various algorithms based over Galois field S-boxes have been developed 

by the cryptographers. Typically, they introduced 8 × 8 S-box over Galois field. These S-boxes are 

square matrix of order 16 designed having algebra over the binary field 𝐹2. But since these algorithms 

uses a single generator to construct the whole S-box, thus is therefore not much secure.  Moreover, in 

case of these S-boxes, an n-bit vector length requires 𝑛 × 2𝑛 bit computer memory. In particular, a 

24 × 24 S-box over 𝐺𝐹(224) requires 24 × 224 bit computer memory. Thus, designing S-box of 

vector length greater than 8-bit produces an infeasibility of the computer memory. 

Thus to overcome these difficulties, the unit elements of finite commutative chain ring is considered. 

As the finite commutative chain ring is primarily algebra over 𝐹2 so we take the benefit and establish 

a new scheme of 24-by-24-replacement-matrix (Customarily known as an 24 × 24 S-box) design 

over commutative chain ring of the form  
𝔽2[𝑢]

<𝑢24>
 that holds 24 × 28 computer memory calls. Also, the 

proposed S-box is generated by 2 elements of chain ring and hence gives additional algebraic 

complexity to the replacement structure. The designed S-box shows high confusion ability than any 

customarily S-boxes. To gauge this effect, various digital astronomical RGB images are encrypted 

and the results are analyzed. In the planed ciphering scheme, firstly, we extract different layers of a 

color astronomical image and then concatenate the layers to form a 256 × 256 matrix having each 

entry of 24-bits. Thus, a novel method of RGB image ciphering scheme is functionalized that use 24 

binary bits instead of 8 bits. Diffusion is attained by applying the linear permutation 𝑃 =

(𝑖 × 32) 𝑚𝑜𝑑 257 and finally, an operation of bitwise Exclusive-or is performed. Thus, the results of 
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analysis guarantees that the suggested encryption scheme approach to the peak values and may 

replace many S-box based image encryption techniques. 

4.1 24-by-24-replacement-matrix generation over chain ring  

An S-box is the most important tool used in block ciphers. Its function is to insert bits into the input 

data of the same size but different collection. So that installation shows an integrated connection 

between the input data and the output data. The main purpose of an S-box is to strengthen the power 

essential for the detection of any mathematical pattern in protected information. S-boxes are capable 

of providing protected encryption algorithm by capturing the best encryption tools. 

Here, we build a 24 × 24 S-box over ℛ24. The built-in S-box is used to encrypt the image. 

4.1.1 Multiplicative group of chain ring 

To date, S-boxes have been constructed with the help of the chain ring 𝑅24 =
𝐹2[𝑢]

<𝑢24>
= ∑ 𝑢𝑖𝐹2

23
𝑖=0  has 

cardinality 256 and vector length 24-bit. However, here, the S-box is made up of 256 entries having 

24-bit size of each vector. The look-up table is generated by the subgroup 𝐻𝐺24
=< 259, 1677721 >

 = 〈1 + 𝑢7+𝑢8, 1 + 𝑢 + 𝑢4 + 𝑢5 + 𝑢8 + 𝑢9 + 𝑢12 + 𝑢13 + 𝑢16 + 𝑢17 + 𝑢20〉 of multiplicative 

group 𝑀𝐺24
 of units of  𝑅24 and its entries are shown in Table 16. 

4.1.2 Construction of S-box 

S-box is a key non-linear module of an encryption scheme that results confusion in data. Many 

ciphers are designed for the assembly of this non-linear component to enhance confusion block 

ciphers especially the symmetric block ciphers. 4 × 4 S-box, with entries in bytes, over the unit 

elements of commutative chain ring were first constructed in [12]. In this section, a 24 × 24 S-box is 

constructed over units of commutative chain ring. For the construction purpose of ℛ24 S-box we take 

the mappings; 𝑓: 𝑀𝐺24
→ 𝑀𝐺24

 and 𝑔: 𝑀𝐺24
→ 𝑀𝐺24

 defined by 𝑓(𝑎) = 𝑎−1 and  𝑔(𝑎) = 𝛽𝑎 

respectivley. Thus, (𝑔𝑜𝑓)(𝑎) = (𝛽𝑎)−1, where 𝑀𝐺24
is the multiplicative group of unit elements of 

the ring 𝑅24, 𝑎𝑛𝑑 𝛽 = 1682175 = 1 + 𝑢 + 𝑢4 + 𝑢5 + 𝑢7 + 𝑢9 + 𝑢11 + 𝑢13 + 𝑢14 + 𝑢15 + 𝑢16 +

𝑢17 + 𝑢18 + 𝑢19 + 𝑢20. Table 17 obtained from (𝑔𝑜𝑓)(𝐻𝐺24
), is the suggested look-up table 

generated over the chain ring 𝑅24. 
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Table 16. Chain ring R24 multiplicative Group MG24
 

3355563 6750205 5569799 9 2331 589869 1781111 153 39083 1639165 2750983 2313 594459 601389 3562103 39321 

1586091 1835005 5504263 589833 1771803 2359341 7089527 1638553 2857131 6554365 3078663 592137 1184283 2370861 4282999 1677721 

164547 345157 4950479 5592401 2797299 5308437 7542079 65 16835 4260165 4343503 1105 286195 5313813 6695487 16705 

4293315 4211781 297423 283985 5877491 4456469 4986175 4259905 4407747 262469 870095 5309521 7822835 4461845 5843519 4276545 

5091947 6602173 1080263 4934473 1479899 3106413 1558455 8388569 8378731 5832893 7060679 585 151515 4787053 5271735 9945 

2536043 5881277 5733319 150345 5084379 4351597 2148279 2555865 1366379 6553789 2931911 4784713 5853147 2362221 6779063 5842649 

1257731 282629 6092047 1052689 2105651 4280405 1287679 1118465 2241027 5526789 2750991 273 70195 1115477 3562239 4097 

1061123 86021 5502223 69649 1253683 1331285 7120383 1052929 2175491 5330181 2554383 1114385 3281459 4457813 4807423 69633 

2261931 6565885 232711 626697 702747 2543661 3890551 1085593 2173099 4969213 952839 1677577 3383835 7798061 6695543 2457 

623531 1650685 298247 36873 1161499 774189 5004663 626841 665771 3592957 625159 1087753 2662939 6028589 1124983 1640857 

7189187 267333 1604047 5326161 3579635 4542485 2090303 4526145 6255043 1069381 6403791 1315921 2649587 1393941 8051263 5591361 

3060419 4265029 5732815 17745 4562675 5263381 2155839 266305 1864131 5591365 3061455 4527185 5991923 17685 4577855 1331521 

619 159165 7015367 3595081 9435 2405997 6010807 5992409 158059 7327933 6343879 7180873 2424795 1235821 7078071 3454681 

7012971 4156861 2886599 8379209 5973211 4830829 7124919 159705 6908267 5427389 2608327 2396745 8388571 8379245 5963959 7190233 

259 65541 197903 17 4403 1114197 3364351 257 66051 66821 395791 4369 1122867 1135957 6728447 65537 

196867 262149 787727 1114129 3346739 4456533 5002751 65793 131587 263429 592399 1118481 2236979 4478293 1682175 1 

 
Table 17. S-box generated from Multiplicative Group MG24

of units of Chain ring R24 
1677721 39321 4276545 16705 5842649 9945 69633 4097 1640857 2457 1331521 5591361 7190233 3454681 1 65537 

3355563 1586091 164547 4293315 5091947 2536043 1257731 1061123 2261931 623531 7189187 3060419 619 7012971 259 196867 

6750205 1835005 345157 4211781 6602173 5881277 282629 86021 6565885 1650685 267333 4265029 159165 4156861 65541 262149 

5569799 5504263 4950479 297423 1080263 5733319 6092047 5502223 232711 298247 1604047 5732815 7015367 2886599 197903 787727 

9 589833 5592401 283985 4934473 150345 1052689 69649 626697 36873 5326161 17745 3595081 8379209 17 1114129 

2331 1771803 2797299 5877491 1479899 5084379 2105651 1253683 702747 1161499 3579635 4562675 9435 5973211 4403 3346739 

589869 2359341 5308437 4456469 3106413 4351597 4280405 1331285 2543661 774189 4542485 5263381 2405997 4830829 1114197 4456533 

1781111 7089527 7542079 4986175 1558455 2148279 1287679 7120383 3890551 5004663 2090303 2155839 6010807 7124919 3364351 5002751 

153 1638553 65 4259905 8388569 2555865 1118465 1052929 1085593 626841 4526145 266305 5992409 159705 257 65793 

39083 2857131 16835 4407747 8378731 1366379 2241027 2175491 2173099 665771 6255043 1864131 158059 6908267 66051 131587 

1639165 6554365 4260165 262469 5832893 6553789 5526789 5330181 4969213 3592957 1069381 5591365 7327933 5427389 66821 263429 

2750983 3078663 4343503 870095 7060679 2931911 2750991 2554383 952839 625159 6403791 3061455 6343879 2608327 395791 592399 

2313 592137 1105 5309521 585 4784713 273 1114385 1677577 1087753 1315921 4527185 7180873 2396745 4369 1118481 

594459 1184283 286195 7822835 151515 5853147 70195 3281459 3383835 2662939 2649587 5991923 2424795 8388571 1122867 2236979 

601389 2370861 5313813 4461845 4787053 2362221 1115477 4457813 7798061 6028589 1393941 17685 1235821 8379245 1135957 4478293 

3562103 4282999 6695487 5843519 5271735 6779063 3562239 4807423 6695543 1124983 8051263 4577855 7078071 5963959 6728447 1682175 



 

58 
 

4.2 24-bit chain ring dependent astronomical RGB image encryption 

The Substitution Permutation network (SPN) is a connection of mathematical functions 

connected in a cipher. This system consists of two functions namely permutation & substitution. 

This arrangement was developed by Shannon [6], called mixed transformation. The function of 

an S-box is to offers strong confusion in a digital medium while permutation overlooks the 

diffusion effect. As the permutation-only ciphering schemes are weak against known attacks, and 

also due to the development in the security threats, a major super strengthen algorithm for 

encryption is often introduced. 

Because of the insecurity in transmission channels, the sharing of astronomical digital color 

images requires enciphering by adopting a secure system. One of the key conclusions of this 

work is the creation of a ciphering scheme for digital images based on a 24 × 24 S-box set over 

chain ring 𝑅24. In literature, an enciphering scheme for each layer of a color image is provided 

by using an 8 × 8 S-box, however in this work all the 3 layers are combined and is followed by a 

random sequence of size 24 × 24. Next in diffusion section, a linear permutation 𝑃 = (𝑖 ×

32) 𝑚𝑜𝑑257 on the replacement outcome is functionalized to achieve the encrypted image.  

4.2.1 Encryption algorithm 

The following steps are used to perform encryption using the proposed scheme. 

l) Generate the 24 × 24 look-up table. 

m) Take an RGB image of order 256. 

n) Split the image into its red, green and blue layers. This results 3 different collection of 

bytes. 

o) Concatenate the bytes of the 3 layers in their corresponding cells to form 24-bit matrix of 

dimension 256 × 256. 

p) Split the new matrix to submatrices of order 16. 

q) Apply the chain ring-based S-box on each submatrix. 

r) Operate the linear permutation 𝑃 = (𝑖 × 32) 𝑚𝑜𝑑257. 

s) Exclusive-or the results with the proposed S-box. 

t) Split the 24-bits to 8-bit three vectors that represent the different layer respectively. 

u) Exchange pixels with its corresponding bytes. 

v) Reconstruct the encrypted channel to achieve the desired encrypted image. 
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Illustration: 

1) Let the S-box:  𝑆 = [
1677721 39321

3355563 1586091
] 

= [
000110011001100110011001 000000001001100110011001
001100110011001110101011 000110000011001110101011

] 

2) And consider the image: 

Let “I” be is a color image with R, G and B layers such that: 

Red channel, R =[
131 43
55 122

] = [
10000011 00100011
00110111 01111010

] 

Green channel, G = [ 31 4
135 12

] = [
00011111 00000100
10000111 00001100

] 

Blue channel, B = [11 83
85 222

] = [
00001011 01010011
01010101 11011110

] 

3) Concatenate bytes of R, G and B in their corresponding cells to form 24-bit image i.e. 

Concatenate imasge, C = [100000110001111100001011 001000110000010001010011
001101111000011101010101 011110100000110011011110

] 

4) Apply S-box on C by using the operations of chain ring we get:  

𝐶′ = [
100000110001111100001011 001000110000010001010011

001101111000011101010101 011110100000110011011110
] 

5) Apply permutation on 𝐶′. 

6) Now exclusive-or the S-box with the result of step 5. 

7) Split each 24-bit vector to 8- bit vectors that results the R, G and B encrypted 

channels of the plain digital image. 

8) Combine these layers to get the enciphered digital RGB image. 

Figure 7 reveals the flow chart of the presented scheme. Figure 8 represents various original 

images and there corresponding enciphered images using the proposed technique. 

4.2.2 Decryption algorithm 

In the decryption process, we moves in the reverse direction. First, split the encrypted image into 

its different layers and combined them to a matrix of order 256. Split the matrix into submatrices 

of order 16 and exclusive-or the proposed S-box. After that, apply the inverse permutation 

followed by substitution from chain ring based S-box. Finally, combine the submatrices and split 

each entry into 8-bit three vectors that will gives the deciphered channels of the image. 
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Figure 7: RGB image encryption scheme using the proposed 𝟐𝟒 × 𝟐𝟒 S-box 

 

 
Figure 8. Earth, Stars, Moon and Sun original image and there corresponding ciphered images 
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Chapter 5 

5 Chain ring based improved SEREPENT algorithm: A 

digital image encryption implementation 
 

The annexation of chaos is considered as the prodigious development in the field of secure data 

transmission. The chaotic dynamical systems have the property of state periodicity, randomness, 

and non-convergence. Accordingly, these special features of chaos are fairly suitable in data 

encryption. Nonetheless, meanwhile, cryptanalysts also challenge these algorithms and try to 

retrieve the original data. As a result, the real-time data transmission over networks and internet 

by different segments of life like aerospace, military, governmental and private organizations 

having personal data increase the demand of strong and fast ciphers. As a consequence, the 

symmetric block ciphers paid extra attention. 

The algorithms Rijndael (Advanced Encryption Standard-AES), SERPENT and TWOFISH are 

similarly known to be the best in terms of data protection. In certain cryptographic fields, 

however, they pay less interest due to their time consumption inferiority, such as digital image 

enciphering techniques. In this part of the study, relying on chain ring-based S-boxes dealing 

with 8-bit vectors instead of 4-bit, we present a time-decreasing improved SERPENT algorithm 

variant. In a chain ring, the multiplicative substructures have several generators and hence the S-

boxes dependent on the chain ring increase the algebraic complexity of the cipher. In addition to 

that, the algorithm is used in a wireless RGB image encryption program where operations are 

done throughout the chain ring. Compared to the latest popular RGB image encryption methods, 

the digital image tests suggest that the planned system takes less time (i.e. 8.2 microseconds 

for enciphering and 5.8 microseconds for deciphering of a 128-bit block). Also, it is noted in the 

inquiry into the proposed RGB image encryption method (chapter 6) that the given scheme is 

very resistant to statistical and differential attacks. 

5.1 Improved SERPENT algorithm 

The Serpent Algorithm is a block cipher. It is considered to be the most secure, even more than 

the Rijndael algorithm. As Serpent algorithm was a competitor for AES however its slow speed 

makes a reason of its failure and thus Rijndael was chosen as an AES. Despite there are many 

uses of Serpent algorithm; for instance, it is used in image encryption [13]. 
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 The chain ring-based algorithm was developed by Shah et al. [12] it is also a block cipher that 

encrypt a block of size 128-bit by using a key of size 256 bits. The algorithm consists of three 

basic functions namely, the initial permutation, the round function and the final permutation. The 

cryptosystem comprises of S-boxes obtained from multiplicative group of commutative Chain 

ring of the form 𝑅8 =
𝐹2[𝑥]

<𝑥8>
= 𝐹2 + 𝑥𝐹2 + 𝑥2𝐹2+. . . +𝑥7𝐹2. Throughout the algorithm, the 

operations of addition and multiplication coincides with the operations of chain ring i.e. the 

multiplication operation of 𝑅8 coincides with ℤ28 , the local ring of integers modulo, whereas, the 

addition operation coincides with Galois field 𝐹28. In addition, the substitution from the S-boxes 

also differs from the literally substitution. For substitution, the S-box is operated with a block of 

128-bits and the result appears in the chain ring 𝑅8. The internal structure of the chain ring-based 

SERPENT algorithm is discussed below. 

𝐵0
′ = 𝐼𝑃(𝑃) 

𝐵(𝑖+1)
′ = 𝐿𝑇(𝑆(𝑖𝑚𝑜𝑑4)(𝐵𝑖

′ ⊕ 𝐾𝑖
′)); 0 ≤ 𝑖 ≤ 20 

𝐵32
′ = 𝑆3(𝐵21

′ ⊕ 𝐾21
′ ) ⊕ 𝐾22

′  

𝐶 = 𝐹𝑃(𝐵22
′ ) 

In the above equations; P stands for Plain Text, 𝐵𝑖
′ for Data block, ⊕ stands for Exclusive-or 

operation, 𝐾𝑖
′ for sub keys, 𝑆 for S-box, LT for Linear Transformation, 𝐹𝑃 for Final Permutation, 

and 𝐶 for Cipher Text.  

5.1.1 Key structure 

The subkeys 𝐾𝑖
′ are generated from the supplied key. If the key is of 256-bit, split it into 64-bit 

vectors 𝑤(−4)
′ , 𝑤(−3 )

′ , 𝑤(−2)
′ and 𝑤(−1)

′ . Now find the pre-keys 𝑤𝑖
′; 𝑖 = 0,1,2, … ,46 using the affine 

recurrence: 

𝑤𝑖
′ = (𝑤(𝑖−4) ⊕ 𝑤(𝑖−1)𝜙, 𝜙 ⊕ 𝑖, 𝑖) <<< 5 

Where 𝜙 = (√5 + 1)/2, and <<< represent left rotation of bits. Using the pre-keys, the 

subkeys are generated by using the equation: 

𝐾𝑖
′ = 𝐼𝑃(𝑆(1−𝑖) 𝑚𝑜𝑑4(𝑤2𝑖,𝑤2𝑖+1));  0 ≤  𝑖 ≤ 22 

In case or shortage of bits in the supplied key, a “1” is appended in the left followed by as many 

zeros as required to become a 256-bit key.  
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5.1.2 Linear transformation 

The linear transformation (LT) is adopted from the original Serpent algorithm designed by Eli 

Biham (Technion Israeli Institute of Technology), Ross Anderson (University of Cambridge 

Computer Laboratory) and Lars Knudsen (University of Bergen, Norway) see [3]. Split the given 

input of 128-bit to 32-bit blocks named 𝑥0, 𝑥1, 𝑥2 𝑎𝑛𝑑 𝑥3 respectively. Now perform the 

following transformations: 

𝑥0 = 𝑥0 << 13 

𝑥2 = 𝑥2 << 3 

𝑥1 = 𝑥1 ⊕ 𝑥0 ⊕ 𝑥2 

𝑥1 = 𝑥1 << 1 

𝑥3 = 𝑥3 << 7 

𝑥0 = 𝑥0 ⊕ 𝑥1 ⊕ 𝑥3 

𝑥2 = 𝑥2 ⊕ 𝑥3 ⊕ (𝑥1 << 7) 

𝑥0 = 𝑥0 << 5 

𝑥2 = 𝑥2 << 22 

Now rejoin the 𝑥0, 𝑥1, 𝑥2, and 𝑥3 resulting from the above equations to get the result obtained 

from LT. 

5.2 Digital image encryption scheme using improved SERPENT algorithm 

Nowadays, one of the best approaches for hiding data is the use Asymmetric cryptography. 

Nevertheless, A symmetric algorithm called Advanced encryption algorithm is used as a 

standard. Numerous image encryption schemes based on Rijndael algorithm and SERPENT 

algorithm are available in literature. Nevertheless, contrary to chaos and S-box-based encryption 

algorithms, they require time. In this section, a novel image encryption scheme based on chain 

ring SERPENT algorithm is introduced. The image encryption scheme is as follows: 

1. Read a color image and extract its Red (R), Green (G) and Blue (B) layer. 

2. Convert each layer into binary and split it into blocks of 128 bits. 

3. Apply the initial permutation [𝑖 × 64(𝑚𝑜𝑑127)]. 

4. Excusive-or the key𝑘0
′ , execute the chain ring S-box and apply the linear transformation. 
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5. Execute step 4 till 22nd round. In the 22nd round, after applying S-box, exclusive-or the 

sub key 𝐾22
′  and apply the final permutation [𝑖 × 64(𝑚𝑜𝑑127)]to get the cipher text of 

block 128-bit. 

6. Collect the encrypted data and reconvert it into bytes that will represent the cipher R, G 

and B layers. 

7. Concatenate the enciphered R, G, B channels to get the encrypted color image.  

Flow chart and enciphered images of the encryption scheme is given Figure 9 and figure 10 

respectively. 

 
 

Figure 9. RGB image encryption scheme using chain ring-based SERPENT algorithm 
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Figure 10. Lena, Baboon, Fruits and Aeroplane original images and there corresponding encrypted images 
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Chapter 6 

6 Strength determination of newly introduced data 

security algorithms 
 

With the rapid advancement of electronic data sharing, information security in data storage and 

transmission is becoming more critical. It is necessary to secure sensitive image data from 

unauthorized access due to the large sharing of images in communication. We examined the 

image encryption algorithms given in chapters 2-5 in this section of the thesis. 

When an encryption algorithm is applied to an image, its pixel values alter as compared to the 

original image. These adjustments must be rendered irregularly by a good encryption algorithm 

to optimize the change in pixel values between the plain and the enciphered digital medium. It 

must also be composed of entirely random patterns that do not show any of the characteristics of 

the original image to obtain the encrypted image. One of the important metrics (of this chapter) 

in examining an encrypted image is the visual inspection: The more hidden the features of the 

image are, the better the encryption algorithm is. 

Besides, diffusion is also an important parameter that must be calculated to judge the 

randomization of the encryption algorithm. The relationship between the enciphered plain digital 

image is too complicated if an algorithm has a strong diffusion characteristic, and it cannot easily 

be predicted. A bit is altered in the plain image to calculate the diffusion of any algorithm. It 

catches the change obtained among the ciphered digital image and the original digital image. 

This chapter also contains some basic characteristics of the encryption algorithms, such as noise 

immunity and processing time, which can be calculated by some other tests. 

6.1 Statistical analysis 

Guaranteeing the resistance of an encryption technique against statistical analysis is of major 

importance for checking the security of an algorithm. In case, if a scheme withstands against all 

the statistical attacks then it is considered to be secure. Among the statistical investigation of 

image processing algorithms, histogram analysis and adjacent pixels correlation are of key 

importance.  
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6.1.1 Key-space analysis 

One of the basic attacks for destroying the security of a cryptosystem is the brute force attack. 

The brute force attack is feasible only when a cryptosystem has a small key-space size i.e. less 

than 2100. In addition, an encryption algorithm must be sensitive to any small change in order to 

withstand the brute force attack. Our proposed encryption scheme comprises of 4 security keys 

namely: ∝, 𝑥0, Chain ring S-box and DNA sequences.  The elements ∝ ∈  (0, 4] and 𝑥0  ∈  [0,1] 

have key-space size of 1016 × 1016. Since for each triplet, one can choose different initial 

conditions therefore the total key-space size originating from logistic map becomes 1016 ×

1016 × 1016 × 1016 × 1016 × 1016 = 1069.   

The chain ring has a total of 212 elements whereas the DNA transform has 8 kinds of encoding 

rules. Thus, the total key-space size of “Algebra-Chaos Amalgam and DNA Transform based 

Multiple Digital Image Encryption” scheme is: 

Key-Space size = (1069) × 212 × 8 ≈ 2245 

For modified serpent algorithm the key space size is: 

Key-Space size = 2256 

This clarify that the presented scheme shows great resistance against brute force attack. 

6.1.2 Histogram analysis 

Pixels of a digital image can be represented by bytes. When values of bytes are represented by 

bars in a panel, we call it a histogram of bytes of the image or histogram of the corresponding 

image. It was firstly introduced in [64]. For determining the protection of image encryption 

schemes, the uniformity of the image histogram of an encrypted data is the finest feature. If the 

histogram bars are uniform, the encryption is considered to be good and hence resists statistical 

attacks. Whereas, an unsecure encryption is the one having non-uniform bars. In the Algebra-

Chaos Amalgam and DNA Transform based Multiple Digital Image Encryption, we analyze 

512 × 512 dimensional multiple RGB image. We split the combined image in to its sub-images 

and checked their histograms one by one. The histogram of original parts and encrypted parts of 

a multiple image is shown in Fig. 11. 
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Figure 11. (a) and (e) are original and encrypted multiple image respectively. Histogram pins in (b) and (f) represents Red Channel of (a) and (e) 

respectively. Similarly, (c), (d) and (g), (h) shows the histogram pins of green and blue layers of original and encrypted multiple image 
respectively. 

 
In Fig. 11, the sharp edges histograms represent R, G, B layers of the plain digital multiple image 

whereas, the flat one corresponds to the encrypted multiple image layers. The flat histogram of 

encrypted images is an evident of the fact that the ciphering technique is satisfactory and can 

resists all the well-known attacks. 

 
 

 
Figure 12. (a) and (e) are original and encrypted color Lena image respectively. Histogram pins in (b) and (f) represents Red Channel of (a) and 

(e) respectively. Similarly, (c), (d) and (g), (h) shows the histogram pins of green channel and blue channel of original and encrypted Lena image 
respectively. 
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Figure 13. (a) and (e) are original and encrypted color Baboon image respectively. Histogram pins in (b) and (f) represents Red Channel of (a) 
and (e) respectively. Similarly, (c), (d) and (g), (h) shows the histogram pins of green and blue layers of original and encrypted Baboon image 

respectively. 

 
Figure 14. (a) and (e) are original and encrypted color Fruits image respectively. Histogram pins in (b) and (f) represents Red Channel of (a) and 

(e) respectively. Similarly, (c), (d) and (g), (h) shows the histogram pins of green and blue layers of original and encrypted Fruits image 
respectively. 

 
Figure 15. (a) and (e) are original and encrypted color Aeroplane image respectively. Histogram pins in (b) and (f) represents Red Channel of (a) 
and (e) respectively. Similarly, (c), (d) and (g), (h) shows the histogram pins of green and blue layers of original and encrypted Aeroplane image 

respectively. 
 

In Fig. 12-15. (a) and (e) are original and encrypted color images respectively. (b), (c), (d) and 

(f), (g), (h) shows the histogram pins of Red, green and blue layers of original and encrypted 
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image respectively. Fig. 12-15 shows that the histogram pins of encrypted images are almost 

parallel and hence can show strong resistance to cryptanalysts. 

In case of 12 × 12 S-box Design and its Application to RGB Image Encryption, we examined the 

images of Lena and Fruits. In Figure 16 (Lena Image) and Figure 17 (Fruits Image), i.e. the plain 

and encrypted images and their different layers, the three-dimensional (3-D) histograms are 

provided to study the uniformity of encrypted images. The trickles of histograms in an image 

keep the aspects of data distribution of pixel. To stop distinguishing any supporting data from the 

vulnerable histogram from the rival, a perfect encrypted image should have a standardized 

histogram spreading. Therefore, applying a mathematical assault on a proposed encryption 

scheme would not bounce any comprehension. 

 
Figure 16. (a) is Lena Original Image. (b),(c),(d) are its corresponding Red, Green and Blue layers. (e), (f), (g), and (h) are the 3D histograms of 
(a), (b), (c) and (d) respectively. (i) is Lena Encrypted Image where (j), (k) and (l) are its Red, Green and Blue layers respectively. (m), (n), (o) 

and (p) are the 3D histograms of (i), (j), (k) and (l) respectively. 
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Figure 17. (a) is Fruits Original Image. (b),(c),(d) are its corresponding Red, Green and Blue layers. (e), (f), (g), and (h) are the 3D histograms of 
(a), (b), (c) and (d) respectively. (i) is Fruits Encrypted Image where (j), (k) and (l) are its Red, Green and Blue layers respectively. (m), (n), (o) 

and (p) are the 3D histograms of (i), (j), (k) and (l) respectively. 
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In case of Improved SERPENT Algorithm: Design to RGB Image Encryption Implementation, we 

examined color Lena and Baboon image for histogram analysis. These images are given in figure 

18 and figure 19 respectively. In this case, we also provide the decrypted image of the 

corresponding images. 

 

 
Figure 18. (b), (c) and (d) shows the histogram pins of Red Green and Blue layers of the original Lena color image. (f), (g) and (h) represent the 
histogram pins of Red Green and Blue layers of the encrypted Lena RGB image. (j), (k) and (l) represent the histogram pins of Red Green and 

Blue layers of the decrypted Lena RGB image. 

 
Figure 19. (b), (c) and (d) shows the histogram pins of Red Green and Blue layers of the original Baboon color image. (f), (g) and (h) represent 

the histogram pins of Red Green and Blue layers of the encrypted Baboon RGB image. (j), (k) and (l) represent the histogram pins of Red Green 
and Blue layers of the decrypted Baboon RGB image. 

In figures (18-19), (b), (c) and (d) shows the histograms pins of red, green and blue layers of the 

original images.  (f), (g), (h) are encrypted image histogram pins whereas, (j), (k) and (l) are the 

decrypted image histogram pins. The histogram of the encrypted image ensures that the 

encryption scheme is resist the brute force attack. 
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In case of 24-by-24 S-box design, we examined color Earth and Stars image for histogram 

analysis. These images are given in figure 20 to figure 21. In this case, we also provide the 

decrypted image of the corresponding images. 

 
Figure 20. Earth image and its Red, Green, Blue channels are shown in (a), (b), (c), (d) respectively. Their corresponding 3D histograms are 

shown in (e), (f), (g), (h). Similarly, Earth ciphered image and its red, green, blue channels are given in (i), (j), (k) and (l). Their corresponding 3D 
histograms are given in (m), (n), (o) and (p) respectively. 
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Figure 21. Stars image and its Red, Green, Blue channels are shown in (a), (b), (c), (d) respectively. Their corresponding 3D histograms are 

shown in (e), (f), (g), (h). Similarly, Stars ciphered image and its red, green, blue channels are given in (i), (j), (k) and (l). Their corresponding 3D 
histograms are given in (m), (n), (o) and (p) respectively. 

6.1.3 Intensity histogram analysis 

The pixels show of a digital image is controlled by the intensity of more layers of the image. It 

gives the information about pixels. The pixels appearance is controlled by the color depth of the 

image. A uniform intensity histogram guarantees strength of an encryption technique. The 

intensity histogram of original and ciphered multiple color images are shown in Fig. 22. 
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Figure 22. Subfigure (a) and (e) are Intensity histogram pins original and ciphered Multiple image respectively. Intensity histogram pins of 

original multiple RGB image layers are given in (b), (c) & (d) respectively. Similarly, that of encrypted image is in (f), (g) & (h) respectively. 
 
Clearly, the encrypted image layers have a uniform intensity bars which ensures the strength of 

the presented image encryption scheme against eavesdroppers.  

Fig. 23-26 represents the intensity histograms of sub-parts of the multiple RGB primary and 

ciphered image with their corresponding Red, Green & Blue layers intensity histograms. 
 

 
Figure 23. Subfigure (a) and (e) are Intensity histogram pins original and ciphered Lena image respectively. Intensity histogram pins of Lena 

RGB image layers are given in (b), (c) & (d) respectively. Similarly, that of encrypted image is in (f), (g) & (h) respectively. 
 

 
Figure 24. Subfigure (a) and (e) are Intensity histogram pins original and ciphered Baboon image respectively. Intensity histogram pins of 

Baboon RGB image layers are given in (b), (c) & (d) respectively. Similarly, that of encrypted image is in (f), (g) & (h) respectively. 
 

 
Figure 25. Subfigure (a) and (e) are Intensity histogram pins original and ciphered Fruits image respectively. Intensity histogram pins of Fruits 

RGB image layers are given in (b), (c) & (d) respectively. Similarly, that of encrypted image is in (f), (g) & (h) respectively. 
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Figure 26. Subfigure (a) and (e) are Intensity histogram pins original and ciphered Aeroplane image respectively. Intensity histogram pins of 

Aeroplane RGB image layers are given in (b), (c) & (d) respectively. Similarly, that of encrypted image is in (f), (g) & (h) respectively. 

In each fig. 23-26, the first row shows the intensity histogram of original image and its red, green 

and blue channels respectively. Whereas, the 2nd row of each figure shows the corresponding 

encrypted image and its RGB channels respectively. Figures clearly shows that the original 

image intensity histogram has sharp edges whereas, there corresponding encrypted image 

intensity histogram has flat edges. Thus, it shows that the encrypted images are resisting various 

cryptanalytic attacks. 

In case of 12 × 12 S-box Design and its Application to RGB Image Encryption, we examined the 

intensity histogram of Lena and Fruits images. The 3D intensity histograms of these images and 

their corresponding layers are shown in figure 27-28. 

 

 
Figure 27. 3D intensity histogram of Lena image having size 𝟐𝟓𝟔 × 𝟐𝟓𝟔. (a) and (e) presents 3D intensity histogram of Lena original and 

encrypted image respectively. (b), (c) and (d) are 3D intensity histogram of RGB layers (respectively) of Lena original image. (f), (g) and (h) are 
3D intensity histograms of RGB layers (respectively) of Lena encrypted image. 

 
Figure 28. 3D intensity histogram of Fruits image having size 𝟐𝟓𝟔 × 𝟐𝟓𝟔. (a) and (e) presents 3D intensity histogram of Fruits original and 

encrypted image respectively. (b), (c) and (d) are 3D intensity histogram of RGB layers (respectively) of Fruits original image. (f), (g) and (h) are 
3D intensity histograms of RGB layers (respectively) of Fruits encrypted image. 

In case of Improved SERPENT Algorithm: Design to RGB Image Encryption Implementation, we 

examined color Lena, and Baboon image for intensity histogram analysis. The intensity 
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histogram of Lena original and encrypted image is given in figure 29 and figure 30. Figure 29-30 

shows the intensity histogram of baboon, plain and ciphered digital images respectively. 
 

 
Figure 29. Subfigure (a) and (e) are Intensity histogram pins original and ciphered Lena image respectively. Intensity histogram pins of Lena 

RGB image layers are given in (b), (c) & (d) respectively. Similarly, that of encrypted image is in (f), (g) & (h) respectively. 

 
Figure 30. Subfigure (a) and (e) are Intensity histogram pins original and ciphered Baboon image respectively. Intensity histogram pins of 

Baboon RGB image layers are given in (b), (c) & (d) respectively. Similarly, that of encrypted image is in (f), (g) & (h) respectively. 

In case of 24-by-24 S-box encryption to Astronomical images, we examined color Earth and Sun 

image for intensity histogram analysis and are shown in fig 31-32. 

 

 
Figure 31. Earth Original image and its red, green and blue layers 3D intensity histogram are given in (a), (b), (c) and (d) respectively. Whereas, 

Earth enciphered image and its red, green and blue layers intensity histogram are given in (e), (f), (g) and (h) respectively. 
 

 
Figure 32. Sun Original image and its red, green and blue layers 3D intensity histogram are given in (a), (b), (c) and (d) respectively. Whereas, 

Sun enciphered image and its red, green and blue layers intensity histogram are given in (e), (f), (g) and (h) respectively. 
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6.1.4 Correlation analysis 

The correlation provides the relation between an image's adjacent pixels. Correlation effects 

occur in the close-up interval [-1,1] [see 65]. Tables 18 and Tables 19 have the findings of the 

correlation coefficients for 256 × 256 images of Lena and Fruits, respectively, showing the 

strength of the proposed encryption scheme. The study reveals that the correlation findings of 

our current encryption method are up to the mark and can be contrasted with existing Chaos and 

DNA encryption systems. 

There are excellent ties between their touching pixels in the digital communication media details. 

An encryption algorithm should be able to interact with the vertical, horizontal, and diagonal 

linking pixels in images. For well-correlated pixels, a coefficient value of ±1 is used, whereas the 

correlation coefficient of the non-correlated pixels is near to 0. In the provided scheme, the 

similarity scores reveal that the neighboring pixels of the enciphered digital images are more 

identical to 0, thus the suggested algorithm stunningly de-associates the adjacent pixels in the 

enciphered images and fulfills the operational encryption structure necessity. 

In case of 12 × 12 S-box Design and its Application to RGB Image Encryption the correlation 

table for adjacent pixels are given in table 18-19 for different images.  
Table 18. Correlation of Lena Original and Encrypted Image using 12-bit S-box 

(a): Horizontal Correlation of Lena Original and 
Encrypted Image 

(b): Vertical Correlation of Lena 
Original and Encrypted Image 

(c): Diagonal Correlation of Lena 
Original and Encrypted Image 

 Red Green Blue  Red Green Blue  Red Green Blue 

Original 
Image 

R 0.9360                      0.8021 0.6349 R    
0.9422                                

0.8422 0.6546 R    
0.9922                         

0.8049 0.5974 

G 0.5991 0.9288 0.8656 G 0.6557 0.9456 0.9166 G 0.5564 0.9711 0.7861 

B 0.6188 0.8227 0.8877 B 0.6843 0.8690 0.9147 B 0.6068 0.8116 0.9814 

Encrypted 
Image 

R 0.000087        0.0014 -0.0014 R 0.00022                0.0059 0.0018 R 0.00083                  -0.0083 0.0016 

G 0.0088 -
0.00028 

-0.0024 G 0.0076 0.00065  0.0052 G 0.0077 -0.0002 -0.0028 

B 0.0040 0.0082 0.000076 B 0.0036 0.0004 0.00064 B -0.0035 -0.0010 0.00063 

 
 
 

 
Figure 33. (H) (a-f): (Horizontal) Correlation of pixels for original and encrypted 256 × 256 Lena image 
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Figure 34. (V) (a-f): (Vertical) Correlation of pixels for original and encrypted 256 × 256 Lena image 

 
 

 
Figure 35. (D) (a-f): (Diagonal) Correlation of pixels for original and encrypted 256 × 256 Lena image 

 
 
The distribution of the correlation between two horizontally adjacent pixels in the original image 

and the encrypted image is shown in Figure 33. From the analysis of these correlation images, it 

is clear that the planned technique is able of disconnecting the bond between the adjacent pixels, 

which is a remarkable accomplishment of the proposed enciphering method. The vertical 

correlation shows that the correlation distributions of Lena in each direction are shown in Figures 

34, while the diagonal correlation distributions of the encrypted picture of Lena are shown in 

each direction in Figures 35. As all the dots are assembled along the diagonal in first row of 

figures 33-34, which means the pixels are well correlated. However, in the 2nd row of Figures 

33-34 the dots are scattered through the entire plane, suggesting that in the encrypted images the 

correlation is greatly diminished.  
 

Table 19. Correlation of Fruits Original and Encrypted Image 
(a): Fruits Original and Encrypted Image Horizontal 

Correlation 
(b): Fruits Original and Encrypted 

Image Vertical Correlation 
(c): Fruits Original and Encrypted 

Image Diagonal Correlation 

 Red Green Blue  Red Green Blue  Red Green Blue 

Original 
Image 

R 0.9796 0.7179 0.5526 R 0.9616 0.7215 0.5467 R 0.9477 0.7020 0.5327 

G 0.5759 0.9738 0.9779 G 0.5221 0.9711 0.9670 G 0.5445 0.9546 0.9700 

B 0.5254 0.7218 0.9777 B 0.5294 0.7020 0.9815 B 0.5566 0.6795 0.9463 

Encrypted 
Image 

R 0.0005 0.0067 -0.0029 R -0.0010 0.0001 -0.0056 R -0.0005 0.0035 0.0043 

G -0.0097 -0.0089 0.0042 G 0.0035 0.0016 -0.0025 G 0.0001 0.0002 0.0017 

B -0.0003 0.0003 0.0066 B 0.0015 -0.0020 0.0043 B -0.0017 -0.0011 -0.0016 

 
In case of Algebra-Chaos Amalgam and DNA Transform based Multiple Digital Image 

Encryption the correlation table for adjacent pixels are given in table 20-24 for various images.  
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Table 20 Multiple's image Correlation using Algebra-Chaos Amalgam and DNA Transform 

(a): Multiple Original and Encrypted Image Horizontal 
Correlation 

(b): Multiple Original and Encrypted 
Image Vertical Correlation 

(c): Multiple Original and Encrypted 
Image Diagonal Correlation 

 Red Green Blue  Red Green Blue  Red Green Blue 

Original 
Image 

R 0.9542 0.5879 0.3852 R 0.9468 0.6062 0.3759 R 0.928 0.5838 0.3231 

G 0.3868 0.9663 0.9688 G 0.3701 0.9507 0.9633 G 0.3332 0.9358 0.9376 

B 0.3407 0.7677 0.9769 B 0.3275 0.7727 0.9661 B 0.358 0.7744 0.9505 

Encrypted 
Image 

R -0.0076 0.0031 0.0155 R -0.0098 -0.0063 0.0174 R -0.0005 0.0028 0.0009 

G -0.0122 0.0165 0.0325 G 0.0058 -0.0007 -0.0023 G 0.0014 -0.0042 -0.0051 

B 0.0009 0.006 0.01 B 0.0015 -0.007 -0.0004 B 0.0019 0.0148 -0.0069 

 
Table 21. Lena image Correlation using Algebra-Chaos Amalgam and DNA Transform 

(a): Horizontal Correlation of Multiple Original and 
Encrypted Image 

(b): Vertical Correlation of Multiple 
Original and Encrypted Image 

(c): Diagonal Correlation of Multiple 
Original and Encrypted Image 

 Red Green Blue  Red Green Blue  Red Green Blue 

Original 
Image 

R 0.936 0.8021 0.6349 R 0.9422 0.8422 0.6546 R 0.9922 0.8049 0.5974 

G 0.5991 0.9288 0.8656 G 0.6557 0.9456 0.9166 G 0.5564 0.9711 0.7861 

B 0.6188 0.8227 0.8877 B 0.6843 0.869 0.9147 B 0.6068 0.8116 0.9814 

Encrypted 
Image 

R 0.0002 0.0038 -0.0001 R 0.0013 -0.0059 0.001 R 0.0017 -0.0027 -0.0023 

G 0.0049 -0.007 0.0088 G 0.0006 0.001 -0.0019 G -0.0035 -0.0001 -0.0011 

B 0.0029 0.0023 -0.0022 B 0.0031 -0.0011 0.005 B 0.0022 0.0013 0.0034 

 
Table 22. Baboon’s image Correlation using Algebra-Chaos Amalgam and DNA Transform 

(a): Horizontal Correlation of Multiple Original and 
Encrypted Image 

(b): Vertical Correlation of Multiple 
Original and Encrypted Image 

(c): Diagonal Correlation of Multiple 
Original and Encrypted Image 

 Red Green Blue  Red Green Blue  Red Green Blue 

Original 
Image 

R 0.9551 0.3023 0.1362 R 0.94 0.3273 0.1312 R 0.9116 0.2775 0.1214 

G 0.1325 0.9232 0.939 G 0.1436 0.8933 0.9341 G 0.1029 0.8574 0.9069 

B 0.1299 0.7627 0.9511 B 0.1232 0.7478 0.9387 B 0.1182 0.7475 0.924 

Encrypted 
Image 

R -0.0025 0.0066 -0.0005 R 0.0029 0.0064 0.0009 R -0.0025 0.0016 0.0054 

G 0.0005 -0.003 -0.003 G -0.0011 -0.0046 -0.0061 G -0.0019 -0.0017 0.0028 

B 0.0007 0.001 0.0054 B -0.0001 0.001 0.0072 B 0.0008 -0.0059 0.0012 

 
Table 23. Fruits image Correlation using Algebra-Chaos Amalgam and DNA Transform 

(a): Horizontal Correlation of Multiple Original and 
Encrypted Image 

(b): Vertical Correlation of Multiple 
Original and Encrypted Image 

(c): Diagonal Correlation of Multiple 
Original and Encrypted Image 

 Red Green Blue  Red Green Blue  Red Green Blue 

Original 
Image 

R 0.9796 0.7179 0.5526 R 0.9616 0.7215 0.5467 R 0.9477 0.702 0.5327 

G 0.5759 0.9738 0.9779 G 0.5221 0.9711 0.967 G 0.5445 0.9546 0.97 

B 0.5254 0.7218 0.9777 B 0.5294 0.702 0.9815 B 0.5566 0.6795 0.9463 

Encrypted 
Image 

R -0.003 -0.003 0.0019 R -0.0066 -0.002 -0.0002 R -0.0021 -0.0018 0.0011 

G -0.0011 0.0002 0.0031 G 0.0007 0.0022 0.0045 G 0.0014 -0.0031 0.0028 

B 0.0002 0.0039 -0.0003 B 0.0011 0.0039 0.0002 B -0.0024 -0.0029 -0.0006 

 
 

Table 24. Aeroplane’s image Correlation using Algebra-Chaos Amalgam and DNA Transform 
(a): Horizontal Correlation of Multiple Original and 

Encrypted Image 
(b): Vertical Correlation of Multiple 

Original and Encrypted Image 
(c): Diagonal Correlation of Multiple 

Original and Encrypted Image 

 Red Green Blue  Red Green Blue  Red Green Blue 

Original 
Image 

R 0.9666 0.9253 0.7951 R 0.929 0.8871 0.7755 R 0.9277 0.8443 0.752 

G 0.8025 0.9758 0.9826 G 0.7918 0.9584 0.9717 G 0.7678 0.9421 0.9331 

B 0.8159 0.9373 0.9799 B 0.7743 0.9044 0.9541 B 0.7483 0.8859 0.9409 

Encrypted 
Image 

R -0.0084 0.0012 0.0043 R 0.0017 -0.0003 -0.0011 R -0.0055 0.001 -0.0054 

G -0.0007 0.0163 0.0031 G -0.0008 0.0038 -0.0013 G -0.0028 -0.0015 0.0042 

B 0.0025 -0.002 0.0028 B -0.0028 0.0001 0.0027 B -0.01 0.0137 0.0012 
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As an affective digital image cyphering plan has a value of correlation of near to zero. Hereby, 

from Tables 20-24 it is clear that different attacks like differential attack is resisted by the 

proposed scheme. 

Fig. 36, 37 & 38 gives horizontal, vertical and diagonal correlation plots, respectively. 

 

 
Figure 36. Original multiple image Red, Green and Blue layers Horizontal correlation are shown by (a), (b), (c) respectively. Whereas, that of 

encrypted are shown in (d), (e), (f) respectively. 

 
Figure 37. Original multiple image Red, Green and Blue layers vertical correlation are shown by (a), (b), (c) respectively. Whereas, that of 

encrypted are shown in d), (e), (f) respectively. 

 
Figure 38. Original multiple image Red, Green and Blue layers diagonal correlation are shown by (a), (b), (c) respectively. Whereas, that of 

encrypted are shown in d), (e), (f) respectively 

Fig. 36-38 represents the correlation of Original multiple image Red, Green and Blue layers (1st 

row) with encrypted red green and blue layers (corresponding 2nd row) respectively. It is clear 

from these figures that the original correlation scatter plot is not uniform whereas, the encrypted 
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correlation plots are uniform. Therefore, this fact guarantees that the presented scheme gives full 

resistance to any of the existing plaintext search attack. 

In case of Improved SERPENT Algorithm: Design to RGB Image Encryption Implementation the 

correlation table for adjacent pixels of various standard images are given in table 25-26 for 

various images.  

 
Table 25. Lena Original and Encrypted Image correlation using Improved SERPENT Algorithm 

(a): Lena Original and Encrypted Image Horizontal 
Correlation 

(b): Lena Original and Encrypted Image 
Vertical Correlation 

(c): Lena Original and Encrypted Image 
Diagonal Correlation 

 Red Green Blue  Red Green Blue  Red Green Blue 

Original 
Image 

R 0.9371 0.8177 0.6292 R 0.9575 0.8333 0.6234 R 0.893 0.7699 0.5489 

G 0.6098 0.9288 0.8402 G 0.6163 0.9464 0.9106 G 0.611   0.89 0.7861 

B 0.5917 0.7805 0.8257 B 0.6706 0.8717 0.9288 B   0.6132 0.8299 0.8391 

Encrypted 
Image 

R   0.007 -0.0221 -0.0187 R   0.007 0.0055 -0.0008 R -0.0034 -0.0019 -0.0023 

G 0.0064 -0.0054 -0.0268 G -0.0306 -0.0009   0.063 G 0.0004 0.0121 -0.0046 

B   0.003  0.0034 -0.0022 B 0.0096 -0.0033 0.0002 B -0.0037 -0.0055 0.0088 

 
Table 26. Baboon Original and Encrypted Image correlation using Improved SERPENT Algorithm 

(a): Baboon Original and Encrypted Image Horizontal 
Correlation 

(b): Baboon Original and Encrypted 
Image Vertical Correlation 

(c): Baboon Original and Encrypted 
Image Diagonal Correlation 

 Red Green Blue  Red Green Blue  Red Green Blue 

Original 
Image 

R 0.9229 0.1094 0.1362 R 0.8778 0.0187 -0.0939 R 0.8649 0.2775 0.1214 

G 0.1325 0.8039 0.879 G 0.1436 0.7461 0.8572 G 0.1029 0.7074 0.9069 

B -0.0292 0.6394 0.8741 B 0.1232 0.6661 0.8606 B 0.1182   0.66 0.8431 

Encrypted 
Image 

R 0.0062 0.0072 -0.0073 R 0.0078   -0.002 -0.0023 R  -0.009 -0.0007 0.0044 

G 0.0005 -0.0002 0.0085 G 0.0018 0.0008   -0.001 G 0.0061 0.0081 0.0009 

B 0.0039 0.0022 0.0074 B 0.009 -0.0035 -0.0005 B 0.0008 0.0096 0.0046 

 

Since a good digital image encryption scheme has correlation values near 0. Therefore, tables 25-

26 are evident of the fact that the presented scheme resists different attacks like differential 

attack. 

Figures 39, 40 and 41 are scatter plot of horizontal, vertical and diagonal component of the 

original and encrypted Lena image respectively.  

 

 
Figure 39. (a), (b), (c) represents Horizontal correlation of RGB layers of Lena Original image and (d), (e), (f) are the horizontal correlation of 

RGB layers of encrypted Lena image. 
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Figure 40. (a), (b), (c) represents Vertical correlation of RGB layers of Original Lena image and (d), (e), (f) are the Vertical correlation of RGB 

layers of encrypted Lena image. 

 
Figure 41. (a), (b), (c) represents Diagonal correlation of RGB layers of Original Lena image and (d), (e), (f) are the Diagonal correlation of RGB 

layers of encrypted Lena image. 

In case of “Astronomical images digital Image Encryption Implementation” the correlation table 

for adjacent pixels of various standard images are given in table 27-28 for various images.  

Table 27. Earth’s image correlation using 24-bit S-box 
(a): Horizontal Correlation of Earth’s Original and 

Encrypted Image 
(b): Vertical Correlation of Earth’s 

Original and Encrypted Image 
(c): Diagonal Correlation of Earth’s Original 

and Encrypted Image 

 Red Green Blue  Red Green Blue  Red Green Blue 

Original 
Image 

R 0.953178 0.949018 0.813458 R 0.939407 0.933721 0.821358 R 0.921649 0.92582 0.794213 

G 0.82139 0.951948 0.950711 G 0.799829 0.957385 0.940488 G 0.79302 0.92609 0.920302 

B 0.811764 0.857943 0.957416 B 0.825163 0.852307 0.947158 B 0.793473 0.831137 0.935001 

Encrypted 
Image 

R -0.01177 -0.02107 0.0522 R 0.006762 0.003168 -0.01657 R 0.0011859 -0.002453 0.0024458 

G -0.01947 0.029483 -0.01211 G -0.0538 0.037244 0.005917 G -0.003781 -0.000652 0.0057911 

B 0.011615 -0.01867 0.063903 B -0.00916 -0.0199 -0.06829 B 0.0027882 0.0020721 0.004244 
 

Table 28. Sun Original and encrypted image Correlation using 24-bit S-box 
(a): Horizontal Correlation of Sun Original and 

Encrypted Image 
(b): Vertical Correlation of Sun Original 

and Encrypted Image 
(c): Diagonal Correlation of Sun Original 

and Encrypted Image 

 Red Green Blue  Red Green Blue  Red Green Blue 

Original 
Image 

R 0.9962 0.8175 0.4682 R 0.9964 0.8074 0.4388 R 0.9930 0.8103 0.4653 

G 0.4450 0.9833 0.9264 G 0.4728 0.9831 0.9356 G 0.4589 0.9691 0.8745 

B 0.4772 0.7210 0.9290 B 0.4761 0.7264 0.9272 B 0.4716 0.7217 0.8513 

Encrypted 
Image 

R -0.0055 0.0042 -0.0009 R 0.0001 -0.0037 -0.0009 R -0.0036 0.0036 -0.0025 

G 0.0060 0.0037 -0.0008 G -0.0008 0.00026 -0.0039 G -0.0002 -0.0018 -0.0055 

B -0.0002 -0.0026 -0.0035 B -0.0005 -0.0023 -0.0011 B -0.0023 0.0002 -0.0009 
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Figure 42. (a), (b), (c) show horizontal Correlation of pixels of Earth image and (d), (e), (f) show Vertical Correlation of pixels of Earth ciphered 

image 

 
Figure 43. (a), (b), (c) show Vertical Correlation of pixels of Earth image and (d), (e), (f) show Vertical Correlation of pixels of Earth ciphered 

image 

 
Figure 44. (a), (b), (c) show diagonal Correlation of pixels of Earth image and (d), (e), (f) show diagonal Correlation of pixels of Earth ciphered 

image 

 
Figure 45. (a), (b), (c) show horizontal Correlation of pixels of Sun image and (d), (e), (f) show horizontal Correlation of pixels of Sun ciphered 

image 
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Figure 46. (a), (b), (c) show vertical Correlation of pixels of Sun image and (d), (e), (f) show vertical Correlation of pixels of Sun ciphered image 

 
Figure 47. (a), (b), (c) show diagonal Correlation of pixels of Sun image and (d), (e), (f) show diagonal Correlation of pixels of Sun ciphered 

image 

Figure 47 shows correlation of neighbor pixels of astronomical plain digital images and there 

corresponding enciphered images. 

6.2 Noise analysis 

This section analyzes the behavior of our encryption-decryption system with noises. Some form 

of noise is always there in a channel of transmission [66]. An encrypted image must be adversely 

affected by some noises throughout the transmission. Therefore, the decryption algorithm of the 

proposed scheme must be noise-resistant in such a manner that the images after decryption is in 

human understandable form even if the noise contaminates it while transmitting.  Hence, in this 

section, it is to be proven that in order to generate an image which is recognizable from the 

encrypted image containing noise, the decryption system is capable enough. The following types 

of noises are considered for analysis: 

6.2.1 Salt and Pepper analysis 

Impulsive noise or the one with fat-tail distribution is occasionally known as Salt-and-Pepper 

noise/Spike noise [67].  An image having such noise is characterized by bright regions having 

dark pixels and dark regions having bright pixels. Such noise can be the result of analog to 
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digital converter errors, transmission’s bit errors etc. Techniques like dark frame subtraction, 

median filtering, combined filtering of median & mean and interpolation around the bright or 

dark pixels can be used to eliminate such noise. Different encrypted images (and there 

corresponding deciphered images) affected with low, default and high salt noises are respectively 

shown in Figure 48 and Figure 51.  Figures indicates that the deciphered images can still be 

recognized, even after the ciphered images are affected by the noise. 

In case of 12 × 12 S-box Design and its Application to RGB Image Encryption the Salt and 

Pepper noise added to Lena and Fruits encrypted image and its corresponding ciphered images is 

shown in figure 48-49. 

 
Figure 48. (a), (b) and (c) shows the encrypted images of color Lena image with minimum, default and maximum salt & pepper noise. (d), (e) and 

(f) shows the decrypted images of color Lena image with minimum, default and maximum salt & pepper noise. 
 

 
Figure 49. (a), (b) and (c) shows the encrypted images of color Fruits image with minimum, default and maximum salt & pepper noise. (d), (e) 

and (f) shows the decrypted images of color Fruits image with minimum, default and maximum salt & pepper noise. 
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In case of Algebra-Chaos Amalgam and DNA Transform based Multiple 

Digital Image Encryption the Salt and Pepper noise added to Lena encrypted image and its 

corresponding ciphered images is shown in figure 50. 

Different cipher images that are affected by such type of noise is shown in the 1st, 2nd and 3rd 

columns of Fig. 50 with minimum, default and high salt and Pepper noise receptively. This Fig. 

50 also shows that the encrypted images after being affected by the noise is recognizable in the 

decrypted form. Last three columns indicate the decrypted form of the corresponding cipher 

images. 

 
Figure 50. (a), (b) and (c) represent encrypted images containing Salt and Pepper noise whereas (d), (e) and (f) are there decrypted images 

respectively. 

In each row of Fig. 50. (a), (b) and (c) represent encrypted images containing Salt and Pepper 

noise whereas (d), (e) and (f) are there decrypted images respectively. The decrypted images 

show that after adding Salt and Pepper noise to encrypted images, the decrypted images are 

recognizable. 



 

88 
 

In case of Improved SERPENT Algorithm: Design to RGB Image Encryption Implementation the 

Salt and Pepper noise added to Lena, Baboon, Fruits and Aeroplane encrypted image and its 

corresponding ciphered images is shown in figure 51. 

We apply this noise attack to some standard images and get figure 51. In figure 51, the 1st, 2nd 

and 3rd column shows the encrypted image with low, average and maximum noise respectively. 

Whereas the 4th, 5th and 6th column are their corresponding decrypted images. 

 
Figure 51. Column 1-3 represent small, default and maximum noisy encrypted image of Lena, Baboon, Fruits and Aeroplane respectively. The 

corresponding decrypted images are shown in column 4-6. 

From figure 51, one can easily judge that in each case of noise addition we can retrieve the 

original image and the decrypted image is in human-readable form. 

In case of 24-by-24 S-box encryption scheme the salt and pepper noise is added to Earth 

encrypted image. The Earth’s ciphered images are constantly affected by low; high, and default 

salt noise shown in 1st row of Figure 52. However, 2nd row of the Figure 52 shows decrypted 
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images of the corresponding plain images. It is clearly shown from statistics that decrypted 

visuals are still in recognizable form even the encrypted images are provoked by noise. 
 

 
Figure 52. Earth enciphered images are given in (a), (b) and (c) with small, default and large salt & pepper noise. Earth deciphered images are 

given in (d), (e) and (f) with small, default and large salt & pepper noise. 

6.2.2 Speckle noise 

It is a rough or granulated noise exists in the images intrinsically and spoils the images’ quality 

[68]. Constructive and destructive interference that are indicated as bight and dark dots in the 

images causes this noise. Different encrypted images affected with low, default and high speckle 

noises respectively are given in the Figures 53-56. Deciphered forms of the respective encrypted 

images are shown in second row of the Figures 52-56. It is indicated in the figures that even if 

the ciphered images are affected by the said noise, the de-ciphered images can still be 

recognized.  

In case of 12×12 S-box Design and its Application to RGB Image Encryption the Speckle noise 

added to Lena, and Fruits encrypted image and its corresponding ciphered images is shown in 

figures 53-54. 
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Figure 53. (a), (b) and (c) shows the encrypted images of color Lena image with minimum, default and maximum Speckle noise. (d), (e) and (f) 

shows the decrypted images of color Lena image with minimum, default and maximum Speckle noise. 

 

 
Figure 54. (a), (b) and (c) shows the encrypted images of color Fruits image with minimum, default and maximum Speckle noise. (d), (e) and (f) 

shows the decrypted images of color Fruits image with minimum, default and maximum Speckle noise. 

In case of Algebra-Chaos Amalgam and DNA Transform based Multiple Digital Image 

Encryption the speckle noise added to Lena, Fruits, Baboon and Aeroplane encrypted image and 

its corresponding ciphered images is shown in figure 55. 
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Fig. 55 shows that the decrypted images are in human-readable form even if the encrypted 

images are affected with Speckle noise. 

 
Figure 55. (a), (b) and (c) represent encrypted images containing Speckle noise whereas (d), (e) and (f) are there decrypted images respectively. 

Each row in Fig. 56. (a), (b) and (c) represent encrypted images containing Speckle noise 

whereas (d), (e) and (f) are their decrypted images respectively. The decrypted images show that 

after adding Speckle noise to encrypted images, the decrypted images are recognizable. 

In case of 24-by-24 S-box RGB Image Encryption the Speckle noise added to earth encrypted 

image and its corresponding ciphered images are obtained by using the encrypted algorithm. The 

results for minimum, default and maximum speckle noise added to earth image is shown in 

figure 56. 
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Figure 56. Earth enciphered images are given in (a), (b) and (c) with small, default and large Speckle noise. Earth deciphered images are given in 

(d), (e) and (f) with small, default and large Speckle noise. 

6.2.3 Shot noise/Poisson noise 

Image taken from an image sensor have dominant noise in the form of darker parts, caused by 

statistical quantum fluctuations i.e. photons’ number’s variation that is sensed at a particular 

level of exposure [69]. Such a noise is called photon shot noise. The root mean square value of 

shot noise is directly proportional to the image intensity’s square root. Furthermore, these noises 

are independent of each other at different pixels. Poisson distribution is followed by a shot noise 

and hence also called Poisson noise. In Figure 57;(a) and (b) shows the encrypted images of 

color Lena and color Fruits image with Poisson noise respectively in the first row. Their 

respective decrypted forms are shown in the 2nd row. It is clearly proved in Figure 57 that even if 

ciphered images are affected by Poisson/Shot noise, the deciphered imaged are still recognizable. 

In case of 12 × 12 S-box Design and its Application to RGB Image Encryption the Poisson noise 

added to Lena, and Fruits encrypted image and its corresponding ciphered images is shown in 

figure 57. 
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Figure 57. (a) and (b) shows the encrypted images of color Lena and color Fruits image with Poisson noise respectively. (c) and (d) represents the 

decrypted images (a) and (b) respectively. 

 
In case of Algebra-Chaos amalgam and DNA transform based multiple 

digital image encryption the poisson noise added to Lena, and Fruits encrypted images and their 

corresponding ciphered images are shown in figure 58. 

In Fig. 58, a maximum Poisson noise is added to encrypted images (i.e. the first column) 

whereas, the second column shoes the corresponding decrypted noisy images. 

 

 
Figure 58. (a), (b), (c) and (d) represent encrypted images containing Poisson noise whereas, (e), (f), (g) and (h) are there decrypted images 

respectively. 
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Fig. 58 clearly proves that the decrypted images are recognizable even if the encrypted images 

are affected with Poisson noise. 

From figure 59, it is easy to analyze that the deciphered images are in human readable form even 

if the Poisson noise is added to the ciphered (using 24-by-24 replacement matrix) image. 

 
Figure 59. Earth enciphered digital image with Photon noise is given in (a) and its corresponding deciphered Earth image is given in (b). 

6.3 Occluded attack 

This section comprises of the robustness attack when data is occluded [70]. The encrypted RGB 

is first occluded with 25% and then with 50%. The occlusion is performed from top, left, bottom 

and right for 25% and from top, bottom, right and left for 50%. The occluded figures are shown 

figure 60-62. These occluded encrypted images are then decrypted with the inverse of proposed 

program. Clearly, figure 60-62 shows that the decrypted images after occlusion are 

understandable. This analysis insures the strength of the planned scheme against the occluded 

attack on color digital image data. Moreover, the proposed scheme is robust against from center. 

Also, for 50% upper diagonal, lower diagonal the attack is examined. The enciphered and 

deciphered Lena images cutted from centers and diagonals are shown in figure 62. Thus, the 

below figures analysis indicates that the proposed scheme is robust against the occlusion attack. 

In case of 12 × 12 S-box Design and its Application to RGB Image Encryption the occluded 

attack is given in the figures 60-62. 
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Figure 60. (a), (b), (c) and (d) shows the encrypted images of color Lena image with 25% occluded from above, left, bottom and right 

respectively. (e), (f), (g) and (h) shows the decrypted images of (a), (b), (c) and (d) respectively. 

 
Figure 61. (a), (b), (c) and (d) shows the encrypted images of color Lena image with 50% occluded from top, bottom right and left respectively. 

(e), (f), (g) and (h) shows the decrypted images of (a), (b), (c) and (d) respectively. 

 
Figure 62. (a) and (b) shows the encrypted images of color Lena image occluded from center. (c) and (d) are upper triangular and lower triangular 

occluded respectively. (e), (f), (g) and (h) shows the decrypted images of (a), (b), (c) and (d) respectively. 
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6.4 Differential analyses 

A plain image can be retrieved by various attacks. One of the most robust attack, regarding to 

retrieving an image, is the differential analysis. Differential analysis is further divided into two 

subcategories, namely; the number of pixels change rate (NPCR) and the unified average 

changing intensity (UACI). 

6.4.1 Number of pixels change rate (NPCR) 

The ‘Number of Pixels Change Rate’ [71] gives value of change in the no. of pixels of cyphered 

digital images when a little disturbance in the primary original image occurs. The Number of 

Pixels Change Rate value close to 99.609 percent is illustrate the best sensitivity of a 

cryptosystem and therefore offers great resistance to hackers. The NPCR of these two images is 

defined as 

NPCR =
∑ D(i,j)i,j

M×N
, where D(i, j) = {

0,   if C1(i, j) = C2(i, j)

1,   if C1(i, j) ≠ C2(i, j)
  

Where C1 and C2 are two ciphered images resulting from plain image and one-pixel difference in 

plain image respectively. 

6.4.2 UACI 

The UACI [71] directs the average intensity of difference between plain image and ciphered 

image. As the UACI value moves towards 33.4635% the algorithm exposes its power against 

differential attacks. The NPCR and UACI values can be measure by the relation: 

UACI =
1

M × N
∑ [

|C1(i, j) − C2(i, j)|

255
]

i,j

 

Where C1 and C2 are two ciphered images resulting from plain image and one-pixel difference in 

plain image respectively. 
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Table 29. Differential analyses for 𝐅𝟐[𝐱]

<𝐱𝟏𝟐>
 Dependent color images in comparison with existing encryption techniques 

Schemes                                NPCR UACI 

 Red Green Blue Red Blue Green 

Proposed  (Chapter 2) 0.9966 0.9963 0.9962 0.334 0.3338 0.334 

Proposed  (Chapter 3) 0.996429 0.995956 0.995285 0.327633 0.300491 0.275669 

Proposed  (Chapter 4) 99.5880 99.6109 99.6277 0.4003 0.3874 0.3705 

Proposed  (Chapter 5) 99.6206 0.3053 

Ref. [72] 
Ref. [73] 
Ref. [74] 
Ref. [75] 
Ref. [76] 
Ref. [77] 
Ref. [78] 
Ref. [79] 
Ref. [80] 
Ref. [81] 
Ref. [82] 
Ref. [83] 
Ref. [84] 

0.9961 0.9955 0.9969 0.3346 0.3339 0.3354 

0.985 0.985 0.985 0.321 0.321 0.321 

0.9468 0.9568 0.9868 0.3346 0.345 0.3549 

0.9958 (average) 0.3051 (average) 

0.9960 0.9961 0.9961 0.3356 0.3345 0.3349 

0.9961 0.9960 0.9960 0.3346 0.3350 0.3347 

0.9960 0.9960 0.9960 0.3336 0.3343 0.3337 

0.9963 0.9960 0.9960 0.3360 0.3330 0.3340 

0.9960 0.9959 0.9959 0.3344 0.3346 0.3347 

0.9966 0.9954 0.9967 0.3312 0.3400 0.3390 

99.8022 0.333 

99.419 0.333 

99.6198 0.3158 

 
From table 29, it is clear that the NPCR and the UACI values of the suggested F2[𝑥]

<𝑥12>
 encryption 

technique are in the limiting period. In order to fix the rank of the proposed scheme, a 

comparison with symmetric key cryptosystems is also given in table 29. 

6.5 Texture analysis of the proposed scheme for encryption 

Texture is the utmost valued characteristics of a digital image. Besides with color, it defines the 

appearance of surface of a digital picture. Analysis of Texture can be made by adopting different 

ways like Fourier or wavelet approach. Nevertheless, the finest examination is interesting as it is 

verified to be related to the way of human system (HS) of vision observing texture, a very 

starting line to texture, and it has a very important use in segmentation of image.   

There are 5 different features of an image that are filed to define texture: Contrast, Energy, 

Homogeneity and Entropy 

6.5.1 Contrast 

This term is used by the observers to differentiate the bits and parts of a digital image. The 

unpredictability of an encrypted image is directly proportional to the value of contrast level. 

Contrast of maximum value implies robust encryption. Its value increases as the confusion in 

data increases. Therefore, this factor of an image processing can be improved by using S-boxes 

of good quality. The mathematical form of contrast is given by the equation: 

𝐶 = ∑ ∑(𝑚 − 𝑛)2𝑓(𝑚, 𝑛)

𝑛𝑚
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For constant image; Contrast=0. 

6.5.2 Energy 

The localized change of an RGB image gives the energy of a digital medium. Mathematically, it 

can be defined as the component in GLCM (gray-level co-occurrence matrix) squared 

summation & is given by the equation following equation. 

𝐸 = ∑ ∑ 𝑓2(𝑚, 𝑛),

𝑛𝑚

 

where m and n image pixels. The function 𝑓(𝑚, 𝑛) gives the number of GLCM. 

Remark 4 

For a constant image the energy is 1. 

6.5.3 Homogeneity  

The pixels of a digital medium are scattered positively. The homogeneity analysis rates the 

affinity of dispersed pixels of GLCM to GLCM diagonal. It is also known as “Gray Tone Spatial 

Dependency Matrix”. It is used to measure the number of assembling of pixel gray levels in 

tabular form. The homogeneity of an image can be calculated by the equation given bellow. 

𝐻∗ = ∑ ∑
𝑓(𝑚, 𝑛)

1 − |𝑚 − 𝑛|
𝑛𝑚

 

The homogeneity & contrast & energy of plain multiple digital medium & encrypted multiple 

digital mediums under consideration is shown in table 30. 

 
Table 30. Second order texture analyses for given and enciphered images 

Evaluated 
Images 

Texture 
analyses 

 Plain color components of image Cipher color components of image 

 R G B R G B 

Lena Image  
Contrast 

Chapter 2 0.52284 0.564982 0.501088 10.1692 9.98445 10.3386 

Chapter 3 0.394088 0.386226 0.391248 10.4563 10.4677 10.4014 

Chapter 4 0.490918 0.409123 0.4671212 10.2123 10.8727 10.0121 

Earth Image Chapter 5 0.404013 0.406342 0.39951 10.8742 10.4637 10.4865 

Lena Image 
Energy 

Chapter 2 0.12659 0.089339 0.153123 0.01569 0.01575 0.01565 

Chapter 3 0.100595 0.0905074 0.0930154 0.0156312 0.0156311 0.0156354 

Chapter 4 0.11093 0.097849 0.1068233 0.0129348 0.019708 0.0198752 

Earth Image Chapter 5 0.329216 0.25941 0.25941 0.0159002 0.0156558 0.0157072 

Lena Image 
Homogeneity 

Chapter 2 0.84602 0.844884 0.849049 0.39096 0.39218 0.38921 

Chapter 3 0.87704 0.879246 0.87606 0.389739 0.389804 0.391806 

Chapter 4 0.874234 0.889073 0.85324 0.398073 0.379801 0.376980 

Earth Image Chapter 5 0.875259 0.871894 0.871802 0.391037 0.390769 0.391608 
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6.5.4 Entropy 

Entropy is a phenomenon that evaluates disorder and randomness in a mechanism of a quantity. 

An optimal level of disorder in different layers of a digital medium is achieved by using different 

tools like chaotic maps or S-boxes. The entropy for function is defined by the equation 

𝐻 = ∑ 𝑓(𝑥𝑖)

𝑛

𝑖=0

log𝑏𝑓 𝑥𝑖 , 

Where 𝑥𝑖 = Calculation of Histogram  

For a better encryption scheme the entropy value approaches 8. The results in table 31 shows 

entropy of a sub-RGB-image of size 256 × 256 i.e. Lena image. From the output data, it is 

obvious that the scheme proposed is a best to oppose all the well know attacks. To fix the rank of 

the offered technique, a comparative similarity with Chaos-DNA encryption scheme is also 

given in the table 31. 
Table 31. Comparing entropy for proposed schemes with existing schemes 

  Images  Red Green   Blue Average 

Proposed 

Chapter 2 Lena 7.99614 7.99408 7.99686 7.99569 

Chapter 3 Lena 7.9984 7.9986 7.9984 7.9994 

Chapter 4 Earth 7.9900 7.9972 7.9964 7.9982 

Chapter 5 Lena 7.9992 

Lena existing schemes 

Ref. [85] 7.9973   7.9969 7.9971 7.9971 

Ref. [86] 7.9893  7.9896 7.9903 7.9897 

Ref. [87] 7.9973  7.9972 7.9969 7.9971 

Ref. [88] 7.9896   7.9893 7.9896 7.9896 

Ref. [89] 7.9901   7.9912 7.9921 7.9113 

Ref. [90] 7.3894 7.5280 7.5131 7.4768 

The entropy findings for 256 × 256 color images are given in Table 31, showing the strength of 

the proposed enciphering method. The analysis shows that the entropy values of our current 

encryption scheme are almost similar to optimal amounts. Whereas, the comparison guarantee 

that the entropy effects of our suggested approach are stronger than the schemes cited. 

The entropy results of the 256 × 256 Astronomical color image (Earth) is provided in Table 31 

showing the strength of the suggested ciphering technique. It is evident from the astronomical 

images analysis that the entropy of our proposed ciphering system is close to the appropriate 

level. 

6.6 Analysis on experimental work 

This section comprises of the experimental analysis of the offered encryption system. To check 

the strength of the proposed scheme, we take a 256 × 256 Lena color image and its 

corresponding encrypted image using the proposed scheme to examine the security measures. 
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Several image analyses are performed in this section to guarantee the strength of the offered 

technique. These analyses are listed below. 

6.6.1 MSE 

The Mean square error (MSE) gives the cumulative squared difference between two images i.e. 

plain image 𝑃(𝑥, 𝑦) and ciphered image 𝐶(𝑥, 𝑦). Mathematically, for an 𝑀 × 𝑁 image, the MSE 

can be calculated by the formula: 

𝑀𝑆𝐸 =
1

𝑀 × 𝑁
∑ ∑[𝑃(𝑥, 𝑦) − 𝐶(𝑥, 𝑦)]2

𝑁

𝑥=1

𝑀

𝑦=1

 

A large MSE value means better enciphering algorithm. 

6.6.2 PSNR 

Noise in any medium affects the signal representation [91]. Peak signal-to-noise ratio (PSNR) 

gives the ratio between the power of signal and noise. It can be calculated by the formula:  

𝑃𝑆𝑁𝑅 = 10 𝑙𝑜𝑔10

𝑀𝐴𝑋1
2

√𝑀𝑆𝐸
 

6.6.3 Cross correlation (Normalized), NK 

Using correlation function, we can also find that how much an image is similar to another image 

[92]. In equation below, input connection to the output and vice versa can be calculated through 

NK, i.e. 

𝑁𝐾 = ∑ ∑
𝑂(𝑥, 𝑦) × 𝐸(𝑥, 𝑦)

∑ ∑ [𝐼(𝑥, 𝑦)]2𝑁
𝑋=1

𝑀
𝑦=1

𝑁

𝑋=1

𝑀

𝑦=1

 

Where 𝑂(𝑥, 𝑦) and 𝐸(𝑥, 𝑦)) is the original and encrypted image respectively having dimensions 

𝑀, 𝑁. 

6.6.4 Average difference (AD) 

By [91], average of plain digital image (PDI) & ref. signal is called average difference. It can be 

calculated by the equation: 

𝐴𝐷 =
∑ ∑ [𝑂(𝑥, 𝑦) − 𝐸(𝑥, 𝑦)]𝑁

𝑋=1
𝑀
𝑦=1

𝑀 × 𝑁
 

Whereas 𝑂(𝑥, 𝑦) is the original image, 𝐸(𝑥, 𝑦) is its corresponding encrypted image and 𝑀 × 𝑁 

is their dimension respectively. 
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6.6.5 Structural content (SC) 

In light of [91], the similarity between two images can be calculated with the help of structural 

content (SC). Its measure also based on correlation of adjacent pixels of an image. It is calculated 

by the formula: 

𝑆𝐶 =
∑ ∑ [𝑂(𝑥, 𝑦)]2𝑁

𝑋=1
𝑀
𝑦=1

∑ ∑ [𝐸(𝑥, 𝑦)]2𝑁
𝑋=1

𝑀
𝑦=1

, 

𝑂(𝑥, 𝑦) and 𝐸(𝑥, 𝑦) represents original and encrypted image respectively. Whereas 𝑀 × 𝑁 gives 

image dimensions. 

6.6.6 Maximum difference (MD) 

By [93], maximum difference (𝑀𝐷) gives the extreme value of error in signals. It is obtained by 

the equation: 

𝑀𝐷 = max|𝑂(𝑥, 𝑦) − 𝐸(𝑥, 𝑦)|, 

where 𝑂(𝑥, 𝑦) & 𝐸(𝑥, 𝑦)) is the primary & ciphered image respectively having dimensions 

𝑀, 𝑁. 

6.6.7 Absolute error (Normalized), NAE 

According to [93], The NAE among original and encrypted digital image can by calculated by: 

𝑁𝐴𝐸 =
∑ ∑ |𝐼(𝑥, 𝑦) − 𝐶(𝑥, 𝑦)|𝑁

𝑋=1
𝑀
𝑦=1

∑ ∑ |𝐼(𝑥, 𝑦)|𝑁
𝑋=1

𝑀
𝑦=1

 

Whereas, 𝑂(𝑥, 𝑦) = original digital image, 𝐸(𝑥, 𝑦) = encrypted image. M, N gives the 

peripherals of the image. 

6.6.8 Root mean square error 

RMSE stands for “Root Mean Square Error”. It calculates the “square root of mean of the square 

of all the errors”. it is used frequently for an excellent wide range in numerical forecasts. It is 

calculated by using the relation: 

𝑅𝑀𝑆𝐸 = √
∑ ∑ [𝐼(𝑥, 𝑦) − 𝐶(𝑥, 𝑦)]2𝑁

𝑋=1
𝑀
𝑦=1

𝑀 × 𝑁
, 

where 𝑂(𝑥, 𝑦) and 𝐸(𝑥, 𝑦)) is the original and encrypted image respectively having dimension 

𝑀 × 𝑁. 
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6.6.9 Universal quality index (UQI) 

In view of the article [94], the UQI produce discontinuities among original and encrypted image 

in 3 categories: structural comparisons, luminance & contrast. Universal Quality Index for two 

images 𝑂 & 𝐸 might be defined as 

𝑈𝑄𝐼(𝑂, 𝐸) =
4µ𝐼µ𝐶µ𝐼𝐶

(µ𝐼
2 − µ𝐶

2)(σ𝐼
2 − σ𝐶

2)
, 

where µI, µC represents the avg. values of noisy & plain images respectively. & σI, σC show the 

SD (standard deviation) of noisy & plain images respectively. 

6.6.10 Mutual information (MI) 

By [94], the quantity of information about the primary image using ciphered image can be 

quantified by the mutual information.  The MI between original & ciphered images is defined as:  

𝑀𝐼(𝐼, 𝐶) = ∑ ∑ 𝑝(𝑥, 𝑦)

𝑦∈𝐼𝑦∈𝐶

𝑙𝑜𝑔2

𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
, 

Here 𝑝(𝑥, 𝑦) = joint probability function of 𝑂 and 𝐸, further 𝑝(𝑥) and 𝑝(𝑦) are the MPD 

functions of 𝑂 & 𝐸 respectively. 

6.6.11 Structural similarity (SSIM) 

In the view of the article [71], SSIM is an improve edition of UQI. It gives the resemblance 

between two images. The SSIM index is measured in various parts of an image. The calculation 

among two parts 𝑋 and 𝑌 of equal size N × N is 

𝑆𝑆𝐼𝑀(𝑋, 𝑌) =
(2µ𝑋µ𝑌 + 𝑐1)(2σ𝑋σ𝑌 + 𝑐2)

(µ𝑋
2 + µ𝑌

2 + 𝑐1)(σ𝑋
2 + σ𝑌

2 + 𝑐2)
, 

where µX is the average of X, µY is the average of Y, σX
2  is the variance of X, σY

2  is the variance 

of Y, σXY is the covariance of X and Y, c1 = (k1L)2 and c2 = (k2L)2 are the variables to 

stabilize the division with small value of denominator, L is the vibrant range of the pixel values, 

(k1, k2) = (0.01,0.03)  by default. The range of SSIM index falls in the interval [-1,1]. In case 

of identical images, the SSIM value is 1. 
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Table 32. Image quality measures for encrypted image (Lena.jpg) resulting from chapter 2 
C

h
ap

te
r 

2
 

Quality 
measure 

Encryption by 3 S-boxes based Optimal values 

R G B R G B 

MSE  10464.9 8800.42 7119.13 10057.2 9898.89 6948.19 

PSNR 7.93344 8.68577 9.60653 8.1060 8.1749 9.7120 

NCC 0.659928 1.00477 1.08877 0.6725 1.0031 1.0923 

AD 52.099 -28.9701 -22.2615 50.0448 -31.4276 -19.7989 

SC 1.61341 0.585158 0.569553 1.5787 0.5582 0.5711 

MD 255 230 221 236 210 210 

NAE 0.464243 0.776223 0.667141 0.4537 0.8310 0.6628 

RMSE 102.298 93.8105 84.375 100.286 99.4932 83.3558 

UQI 0.00129749 0.00252274 -0.0012504 -0.0050 -0.0077 0.0107 

MI 0.485519 0.641922 0.46649 5.6534 7.2283 6.0723 

SSIM 0.0110091 0.0111818 0.00925915 0.0078 0.0053 0.0187 

 
The results of Image Quality Measures (Table 32) for proposed  

𝔽2[𝑥]

<𝑥12>
 Dependent RGB Image 

Encryption of Lena image (256 × 256 jpg) are nearly approaching the optimal values. 

Table 33. Quality measures analysis for encrypted image (Lena.jpg) resulting from chapter 2 

C
h

ap
te

r 
3

 

Quality 
measure 

Encryption by random sequence based Optimal values 

R G B R G B 

MSE  9863.64 9213.34 9549.73 10057.2 9898.89 6948.19 

PSNR 8.19043 8.48663 8.33089 8.106 8.1749 9.712 

NCC 0.700693 0.773679 0.7937 0.6725 1.0031 1.0923 

AD 34.3988 10.7819 1.38493 50.0448 -31.4276 -19.7989 

SC 1.35704 1.05022 0.950311 1.5787 0.5582 0.5711 

MD 255 255 255 236 210 210 

NAE 0.501848 0.569466 0.622491 0.4537 0.831 0.6628 

RMSE 99.3159 95.9861 97.7227 100.286 99.4932 83.3558 

UQI -0.0005487 0.000813647 -0.00035072 -0.005 -0.0077 0.0107 

MI 0.189529 0.198777 0.193972 5.6534 7.2283 6.0723 

SSIM 0.00951297 0.0105679 0.00932973 0.0078 0.0053 0.0187 

 
The results of Image Quality Measures (Table 33) for proposed 𝔽2[x]

<x12>
 based chaotic triplet and 

DNA Dependent RGB multiple Image Encryption are nearly approaching the optimal values. 
 

Table 34. Image Quality Measures for  𝔽2[𝑥]

<𝑥24>
 Dependent encrypted Astronomical Images 

C
h

ap
te

r 
4

 

Quality 
measure 

Enciphered images Optimum values 

R G B R G B 

MSE 15769 14179.5 13227.9 10057 9898 6948 

PSNR 6.15278 6.61419 6.9159 8.106 8.17 9.71 

NCC 1.05216 1.02282 1.02297 0.659053 1.00999 1.08712 

AD -79.6818 -70.4299 -62.8331 52.081 -28.9503 -22.4915 

SC 0.274184 0.318857 0.359002 1.59765 0.572897 0.56569 

MD 247 246 212 255 219 224 

NAE 2.07158 1.77113 1.51164 0.470065 0.79014 0.678703 

RMSE 125.574 119.078 115.013 103.347 95.1163 85.5092 

UQI -0.001831 -0.00089475 -0.00521278 -0.003312 -0.002023 -0.002502 

MI 0.652859 0.670646 0.678174 0.493561 0.615849 0.497248 

SSIM 0.0030514 0.00514979 0.00221279 0.0076417 0.0076128 0.0084967 
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Table 35. Image quality measures for RGB image (Lena.jpg) resulting from chapter 5 
 
 

 

 

 

 

 

 

 

 

 

The results of IQM (Table 36) for proposed chain ring-based SERPENT algorithm dependent 

RGB Lena image encryption are nearly to optimal values. 

6.7 Randomness test for cipher 

The safety level of a cryptosystem can be judged by discovering its period, complexity, 

distribution and output data. An arranged algorithm is secure if it uniformly distributes data, it 

shows high complexity and long period. In this paper, these objectives are measured by using the 

NIST SP 800-22 [95] test. This test also includes some subclasses. As a specimen, the Lena color 

image is taken into account. Results of the test shows that the encrypted Lena image using chain 

ring-based serpent algorithm passes all the security threats. And hence can replace many 

cryptosystems based on Rijndael and Serpent algorithm. Results of NIST test on RGB images 

considered for experiment in chapter 2-5 is shown in table 37-40 respectively. 

 
 

 

 

 

 

 

 

C
h

ap
te

r 
5

 
Quality 
measure 

Encryption by improved 
SERPENT algorithm based 

Optimal values 

R G B R G B 

MSE  10630 9155.2 7196.8 10057 9898 6948 

PSNR 7.8653 8.5141 9.5593 8.106 8.17 9.71 

NAE 0.4678 0.7932 0.6739 0.4537 0.83 0.66 

MI 0.4855 0.6883 0.3935 5.6534 7.22 6.07 

UQI 0.0006 0.0008 0.0002 -0.005 -.007 0.01 

SSIM 0.0103 0.0092 0.0096 0.0078 0.005 0.01 

NCC 0.6598 0.9960 1.1022 0.6725 1.003 1.09 

AD 52.248 -28.60 -23.21 50.044 -31.4 -19.7 

SC 1.6011 0.5826 0.5581 1.5787 0.55 0.57 

MD 255 247 211 236 210 210 

RMSE 103.10 95.682 84.834 100.28 99.49 83.3 
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Table 36. NIST test results for 12 × 12 S-box Dependent RGB Image Encryption 
Test                                                             P – values for color encryptions of ciphered image Results 

                                                                                            Red                               Green                   Blue   

Frequency  0.80028                        0.56921               0.26838 Pass 

Block frequency  0.89407                        0.89723               0.67542 Pass 

Rank  0.29191                        0.29191               0.29191 Pass 

Runs (M=10,000)  0.15443                        0.95365               0.25995 Pass 

Long runs of ones  0.7127                          0.7127                 0.7127 Pass 

Overlapping templates  0.85988                        0.85988               0.85988 Pass 

No overlapping templates  0.9983                          0.99995              0.99995 Pass 

Spectral DFT  0.30979                        0.081659             0.77167 Pass 

Approximate entropy  0.89423                        0.082762             0.83699 Pass 

Universal  0.99822                        0.99607               0.99179 Pass 

Serial p values 1 0.42777                        0.014493             0.071555 Pass 

Serial p values 2 0.80926                        0.00089833         0.18426 Pass 

Cumulative sums forward  0.24343                        0.33                     0.22433 Pass 

Cumulative sums reverse  0.99741                       1.0748                 1.4341 Pass 

Random excursions X = -4 0.24004                       0.51206                0.3577 Pass 

 X = -3 0.20417                        0.43367               0.41976 Pass 

 X = -2 0.070092                     0.71                      0.43535 Pass 

 X = -1 0.31641                       0.50138                0.58854 Pass 

 X = 1 0.76596                       0.48113                0.58412 Pass 

 X = 2 0.3668                          0.0070887            0.23173 Pass 

 X = 3 0.27631                        0.17547                0.32912 Pass 

 X = 4 0.31369                       0.51086                0.01716 Pass 

Random excursions variants X = -5 0.78404                       0.27133                 0.90231 Pass 

 X = -4 0.45867                       0.30749                 0.55418 Pass 

 X = -3 0.33622                       0.30367                 0.51008 Pass 

 X = -2 0.63501                       0.14891                0.33872 Pass 

 X = -1 0.84952                       0.071861              0.46145 Pass 

 X = 1 0.80028                       0.48393                0.78242 Pass 

 X = 2 0.88387                       0.95396                0.70986 Pass 

 X = 3 0.97744                       0.53125                0.59251 Pass 

 X = 4 0.82966                       0.096304              0.91687 Pass 

 X = 5 0.5836                          0.071861              0.82992 Pass 
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Table 37. NIST test results for Algebra-Chaos Amalgam and DNA Transform based multiple encrypted Image 

Test                                                             P – values for RGB ciphering of encrypted image Results 

                                                                                       Red                               Green                  Blue   

Frequency   0.54795                       0.0071895          0.681 Pass 

Block frequency   0.84514                       0.033826            0.95477 Pass 

Rank   0.29191                       0.29191              0.29191 Pass 

Runs (M=10,000)   0.66207                       0.42124              0.26952 Pass 

Long runs of ones   0.7127                         0.7127                 0.7127 Pass 

Overlapping templates   0.85988                       0.85988              0.81567 Pass 

No overlapping templates   0.93985                       0.99561              0.93985 Pass 

Spectral DFT   0.24574                       0.24574              0.14679 Pass 

Approximate entropy   0.40755                       0.48998              0.8963 Pass 

Universal   0.99854                       0.99706              0.99639 Pass 

Serial p values 1 0.81918                       8.3174e-05       0.16061 Pass 

Serial p values 2 0.78752                       0.41828              0.16876 Pass 

Cumulative sums forward   0.27743                       0.2772                0.21991 Pass 

Cumulative sums reverse   0.89099                       1.9933                1.002 Pass 

Random excursions X = -4 0.46586                       0.016563           0.10946 Pass 

  X = -3 0.59692                       0.0032622         0.42539 Pass 

  X = -2 0.044496                     0.12159              0.025198 Pass 

  X = -1 0.48043                       0.62756              0.60827 Pass 

  X = 1 0.81345                       0.75335              0.93347 Pass 

  X = 2 0.085479                     0.7301                0.56178 Pass 

  X = 3 0.37951                       0.24725              0.48626 Pass 

  X = 4 0.76149                       0.56196              0.53804 Pass 

Random excursions variants X = -5 0.54113                       0.35833              0.32006 Pass 

  X = -4 0.54954                       0.35454              0.27523 Pass 

  X = -3 0.60184                       0.61561              0.21205 Pass 

  X = -2 0.77283                       0.90619              0.31731 Pass 

  X = -1 0.55967                       0.75946              0.84739 Pass 

  X = 1 0.93359                       0.91871              0.92334 Pass 

  X = 2 0.88523                       0.90619              0.73888 Pass 

  X = 3 0.91098                       0.89109              0.79625 Pass 

  X = 4 0.94977                       0.46359              0.51269 Pass 

  X = 5 0.75994                       0.30743              0.50058 Pass 
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Table 38. NIST test results for 24-by-24-replacement-matrix dependent Image Encryption 
Test                                                             P – values for RGB ciphering of encrypted image Results 

 Red Green Blue  

Frequency   0.32694 0.039833 0.029112 Clear 

Block frequency   0.21345 0.39661 0.41337 Clear 

Rank   0.29191 0.29191 0.29191 Clear 

Runs (M=10,000)   0.22308 0.26942 0.80937 Clear 

Long runs of ones   0.7127 0.7127 0.7127 Clear 

Overlapping templates   0.85988 0.81567 0.85988 Clear 

No overlapping templates   0.96777 0.97809 0.98974 Clear 

Spectral DFT   0.66336 0.042221 0.46816 Clear 

Approximate entropy   0.063995 0.45473 0.84787 Clear 

Universal   0.99825 0.99202 0.99083 Clear 

Serial p values 1 0.20104 0.013754 0.028519 Clear 

Serial p values 2 0.61101 0.85007 0.7675 Clear 

Cumulative sums forward   0.35256 0.44907 0.019358 Clear 

Cumulative sums reverse   0.61835 1.9513 0.21269 Clear 

Random excursions X = -4 0.20067 0.37725 0.82703 Clear 

  X = -3 0.94862 0.66736 0.010449 Clear 

  X = -2 0.84338 0.2535 0.25166 Clear 

  X = -1 0.58412 0.35903 0.85773 Clear 

  X = 1 0.95363 0.65197 0.80938 Clear 

  X = 2 0.89767 0.77492 0.84257 Clear 

  X = 3 0.93199 0.17585 0.33449 Clear 

  X = 4 0.96189 0.75433 0.78491 Clear 

Random excursions variants X = -5 0.00040695 0.9608 0.62763 Clear 

  X = -4 0.00025963 0.91126 0.67996 Clear 

  X = -3 0.0015654 0.59784 0.87076 Clear 

  X = -2 0.0064956 0.73348 0.88864 Clear 

  X = -1 0.033895 0.76808 0.54429 Clear 

  X = 1 0.34578 0.55535 0.46685 Clear 

  X = 2 0.2763 0.79843 0.5754 Clear 

  X = 3 0.34278 0.64439 0.5508 Clear 

  X = 4 0.42268 0.65573 0.27132 Clear 

  X = 5 0.4795 0.65825 0.21017 Clear 
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Table 39. NIST test results for improved SERPENT algorithm dependent RGB Lena encrypted 

Test P – values for color encryptions of ciphered image Result 

  
Red Green Blue Pass 

Frequency 
 

0.48662 0.80028 0.22949 Pass 

Block frequency 
 

0.2131 0.03382 0.85842 Pass 

Rank 
 

0.29191 0.29191 0.29191 Pass 

Runs (M=10,000) 
 

0.80618 0.97558 0.73447 Pass 

Long runs of ones 
 

0.7127 0.7127 0.7127 Pass 

Overlapping templates 
 

0.85988 0.81656 0.85988 Pass 

No overlapping templates 
 

0.99286 0.99981 0.99286 Pass 

Spectral DFT 
 

0.24574 1 0.46816 Pass 

Approximate entropy 
 

0.051717 0.70021 0.627 Pass 

Universal 
 

0.98081 0.99786 0.99015 Pass 

Serial p values 1 0.028585 0.19802 0.13723 Pass 

Serial p values 2 0.003685 0.036812 0.15085 Pass 

Cumulative sums forward 
 

0.093972 0.23925 0.10903 Pass 

Cumulative sums reverse 
 

1.1616 0.61835 0.91758 Pass 

Random excursions X=-4 3.44E-15 0.23068 0.62685 Pass 

 
X=-3 0.59692 0.00326 0.61437 Pass 

 
X=-2 0.00277 0.5435 0.93691 Pass 

 
X=-1 0.7127 0.81889 0.92276 Pass 

 
X=1 0.91792 0.94 0.01848 Pass 

 
X=2 0.98624 0.88524 0.8646 Pass 

 
X=3 0.99314 0.034476 0.50562 Pass 

 
X=4 0.9955 0.030622 0.62013 Pass 

Random excursions 
variants 

X=-5 0.13361 0.31711 0.3017 
Pass 

 
X=-4 0.70546 0.28483 0.62559 Pass 

 
X=-3 1 0.19229 1 Pass 

 
X=-2 0.77283 0.16568 0.82306 Pass 

 
X=-1 0.61708 0.19836 0.89728 Pass 

 
X=1 0.31731 0.34556 0.3017 Pass 

 
X=2 0.5637 0.48824 0.37109 Pass 

 
X=3 0.65472 0.75901 0.18421 Pass 

 
X=4 0.70546 0.82052 0.04543 Pass 

 
Table 37 to table 40 shows that the proposed encryption techniques are given in the chapters 2,3, 
and 5 clears the entire NIST tests and hence guarantee the security of the presented scheme. 
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Chapter 7 

7 Conclusion 

In this part of the thesis a summary of the proposed research work is given. As the existing 

literature on symmetric key cryptography which is mainly depends on Galois fields of 

characteristic 2. However, there is also some new developments on the area focusing on other 

algebraic structures; like Galois ring and finite group theory. In almost all these algebraic 

structures are delivering through their cyclic group substructures. Whereas, in some cases the 

most portion of the algorithms the XOR operations are also in compromising mod. Remarkably, 

in this thesis the structure of finite chain ring is used which has the base binary field 𝐺𝐹(2), 

which is not only settled the XOR operation but also created extra complexity due to non-cyclic 

subgroups of the chain ring. With all these innovations instead 8-bit dependency in creation of S-

box we increased it to 12-bits and then to the 24-bits.  

A classic 8 × 8 S-box is a 16 × 16 look-up table over Galois field 𝐺𝐹(28) and therefore the 

memory constraint for storage of 28 8-bit string is 8 × 28 bits. Similarly, for 𝐺𝐹(212) this figure 

reaches a large number i.e. 12 × 212 bits. In chapter 2, a 12 × 12 S-box is generated by using 3 

generators of the chain ring  
𝔽2[𝑥]

<𝑥12>
 that occupy 12 × 28 bits of computer memory. The multiple 

generators enhance the algebraic complexity of the work. The utility of this 12 × 12 S-box is 

agreed in color image encryption scheme. The objective of chapter 3 is to construct a chain ring-

chaos amalgamated series of S-boxes and its functionality in multiple image encryption schemes 

in parallel to the DNA transform. In chapter 4, the study of 12-bit S-boxes is taken to a larger 

structure i.e. 24-bit. Here, a 24-by-24-replacement-matrix (S-box) over unit elements of 

commutative chain ring of the form 𝔽2[𝑥]

<𝑥24>
 is constructed that holds 24 × 28 computer memory 

calls. Also, the proposed S-box is generated by 2 elements of chain ring and hence gives 

additional algebraic complexity to the replacement structure. The use of this 24 × 24 S-box has 

been agreed to the privacy of digital RGB images (for experiment astronomical images have 

been considered). The objective of chapter 2, chapter 3 and chapter 4 is to create S-boxes of high 

algebraic complexity and low consumption area.  

Chapter 5 comprises of application of chain ring based S-box in symmetric algorithm called the 

serpent algorithm. As there is a time execution deficiency in symmetric key block ciphers 
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therefore they are not favorable in digital image encryption. However, in the 5th chapter of this 

thesis, the chain ring based constructed S-boxes is used in the serpent algorithm that improved 

the time execution efficiency cipher. The S-boxes are evaluated on 8-bit data block instead of 4-

bit block that speedup various portions of the algorithm (e.g. key structure and the loops) and 

thereby the whole algorithm time execution improves. Besides, multiple generators used for the 

construction of S-boxes result increase in the algebraic complexity of the S-boxes and hence the 

algorithm. Also, dealing with a 64-bit block instead of 32-bit block in the improved SERPENT 

algorithm makes it speedy. Furthermore, a new image encryption scheme using improved 

SERPENT algorithm is presented. By coinciding addition operation with the addition of F2𝑘 and 

multiplication with of ℤ2𝑘 , while applying the S-boxes, the algebraic complexity of the improved 

SERPENT algorithm is enhanced and hence the confusion in a digital image is uplifted. 

In chapter 6, to fix the rank of the novel encryption schemes, a comparison of the strength 

determination of newly introduced data security algorithms (chapter 2-5) with existing schemes 

is made. The results show that the presented encryption schemes have an upper hand on the 

existing Image encryption schemes. 

The above study sets the grounds for the 24-by-24 S-boxes in information security applications. 

This can be extended by modifying and designing the existing cryptography, watermarking and 

steganography application that use  8 × 8 S-boxes by replacing them with 24-bit S-boxes. 

Furthermore, these S-boxes may cause modifications in different symmetric key crypto-

algorithms. Consequently, these newly designed algorithms will be used to secure sensitive data 

like images, audios, and videos. Some other algebraic structures, such as Galois ring, can also be 

found for the construction of such S-boxes to enhance their strength. Moreover, there is a space 

for discovering different cryptanalysis techniques for such S-boxes. 
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8 Index 
 

 

A 

algebra, 24 
Algebra of Galois field extension 

and its matrix algebra 
representation, 24 

asymmetric key cryptography, 12 
Avalanche effect, 11 
average difference, 100 

B 

Block ciphers, 13 

C 

cardinality, 24 
Chaos, 15 
Cipher, 11 
ciphertext, 11 
commutative ring, 16 
Confusion, 11 
Cryptanalysis, 11 
Cryptography, 10 

D 

decryption, 11 
diffusion, 11 
division algebra, 24 

E 

Entropy, 99 

F 

field, 17 
Finite commutative chain ring, 33 
finite field, 21 

G 

Galois field, 21 

Galois field extension, 21 

H 

high dimensional chaotic systems, 
15 

histogram, 67 

I 

Ideal, 19 
integral domain, 17 
irreducible polynomial, 22 

L 

local ring, 27 
low dimensional chaotic, 15 

M 

Matrix rings, 17 
maximal ideal, 19 
maximum difference, 101 
minimal polynomial, 22 
module, 25 

N 

NPCR, 96 

O 

Occluded attack, 94 

P 

plaintext, 11 
Poisson noise, 92 
prime ideal, 19 
primitive element, 22 
principal ideal, 19 
principal ideal domain, 19 
PSNR, 100 

Q 

Quotient rings, 20 

R 

radical, 20 
residue-class ring, 20 
Ring of polynomials, 17 
ring with identity, 16 
Rings, 16 
Root Mean Square Error, 101 
Root Theorem, 18 

S 

Salt-and-Pepper noise, 85 
secret key cryptography, 11 
Shot noise, 92 
spanning set, 24 
Speckle noise, 89 
Spike noise, 85 
SP-network, 43 
Stream ciphers, 12 
subring, 16 
Substitution Permutation network, 

58 
symmetric key ciphers, 12 

U 

UACI, 96 
unit element, 17 

V 

vector space, 24 

Z 

zero divisor, 16 
zero ideal, 19 
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