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Abstract

Many substances in nature which are capable of ‡owing but their ‡ow characteristics cannot

be e¤ectively described by the classical linearly viscous ‡uid model. These materials are called

non-Newtonian ‡uids. Such as liquid foams, polymeric ‡uids, slurries, and food products etc.

In order to describe the perplexing rheology of these natural liquids researchers put their e¤orts

adequately, owing to their recently acquired tremendous importance in mechanical, industrial

and commercial applications. Further, swirling ‡ows of non-linear ‡uids due to a rotating geom-

etry has been an advanced area of research due to its wide-ranging applications in technologies,

engineering and numerous …elds of science.

The main contribution in this thesis is focused on the mathematical modeling and analysis

of rotating ‡ows with heat and mass transport mechanisms involving Oldroyd-B ‡uid, which is a

subclass of non-Newtonian viscoelastic ‡uid. The von Karman transformations are implemented

to convert the modeled governing partial di¤erential equations (PDEs) into dimensionless ordi-

nary di¤erential equations (ODEs). The couple system of modeled equations is extremely hard

to compute exact solutions. Hence, to handle such ‡ow problems of the rotating disk system,

numerical and semi analytical approaches are utilized. The bvp midrich and homotopy analysis

methods have been exercised to gain insight into the physics of the considered problems in

terms of the ‡ow behavior of Oldroyd-B ‡uid with thermal and solutal characteristics.

In this research work, the diverse physical phenomena are analyzed and presented graphi-

cally. The heat and mass transfer rates are calculated in terms of the Nusselt and Sherwood

numbers, respectively. It is found that the higher estimation of magnetic force, in general,

reduces the motion of the ‡uid in the radial and azimuthal directions. Additionally, an in-
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crement in the stretching parameter develops the radial velocity component and diminishes

the azimuthal velocity component. Further, the Deborah number of retardation time plays an

important role in enhancing the thickness of thermal and concentration boundary layers.
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Chapter 1

Introduction

This chapter consists of preliminary, literature survey and motivation that encourage us to

pursue the current research. Additionally, the outline of the thesis are brie‡y described at the

end.

1.1 Motivation and Literature Survey

The complex rheology of biological and various other ‡uids utilized in engineering and industries,

have inspired the researchers to investigate them with the help of several non-Newtonian ‡uids

models. When the viscosity is variable based, it is classi…ed as non-Newtonian ‡uid. Recently,

for mechanical and industrial applications, non-Newtonian ‡uids have gained much importance.

Materials such as ketchup, mud, blood, shampoos, oils and many other thin and thick substances

behave like ‡uids and are treated as non-Newtonian ‡uids. Generally, there are three types of

non-Newtonian ‡uids namely, the rate type, the di¤erential type and the integral type. The

rate type ‡uids demonstrate the relaxation and retardation times behavior. The Oldroyd-B
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‡uid is a rate type material which exhibits both relaxation and retardation times e¤ects of

viscoelastic material. This model was proposed by Oldroyd [1]. After that, several researchers

have done their work on the properties of Oldroyd-B ‡uid model. The ‡ow of viscoelastic ‡uid

by a stretching sheet by using an Oldroyd-B ‡uid model was initially described by Sajid et al.

[2]. They developed the mathematical modelling for two dimensional ‡ow of an Oldroyd-B ‡uid

and acquired numerical solutions with the help of …nite di¤erence method. Further, the series

solutions of three dimensional boundary layer ‡ow of an Oldroyd-B ‡uid with the impact of heat

absorption/generation were discovered by Shehzad et al. [3]. In this study, the ‡ow is generated

by a stretching of the surface. Additionally, the study of MHD ‡ow of Oldroyd-B nano‡uid

induced by a stretching sheet was analyzed by Hayat et al. [4] and calculated the analytical

solution of the problem. Mahanthesh et al. [5] discussed the three-dimensional convective

‡ow of an Oldroyd-B ‡uid. For the numerical solution, the shooting method was used. The

steady ‡ow of Oldroyd-B nano‡uid with the impact of Joule heating and thermal radiation was

studied by Kumar et al. [6]. Moreover, rotating electroosmotic ‡ow of an Oldroyd-B ‡uid in a

microchannel with slip e¤ect was investigated by Liang et al. [7]. This study shows that the

slip boundary e¤ect can reduce the boundary stress and promotes the development of ‡ow of

the ‡uid.

Nowadays, the ‡ow over rotating disk has been an advanced area of research for the inves-

tigators and engineers due to its wide-range applications in advanced technologies, engineering

and numerous …elds of science. In real life applications, for instance, centrifugal pumps, aero-

nautical science, engineering branches as rotating machinery, gas turbine rotors, thermal power

generating system, air vacuuming apparatuses and medical equipment and so many others.

For this reason, the rotating disk ‡uid motion has been concentrated with enormous attention
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and examined by several scientists. The ‡uid ‡ow by a rotating disk was …rst studied by von

Karman [8]. In this study, he obtained the approximate solution by using the integral method.

Afterward, many analysts reported Karman’s renowned work with various features for many

physical problems. Cochran [9] investigated the ‡uid ‡ow due to a rotating disk. Three dimen-

sional MHD von Karman ‡ow problem over a rotating disk was discussed by Turkyilmazoglu

[10 11]. Furthermore, Turkyilmazoglu [12] analyzed the nano‡uid ‡ow and heat transport by

a rotating disk. The ‡ow over a rotating disk with entropy generation was investigated by

Rashidi et al. [13]. Additionally, nano-ferroliquid ‡ow, under the in‡uence of a low oscillating

stretchable rotating disk discussed by Ellahi et al. [14] and obtained analytical series solution.

The recent development in the study of ‡ows over a rotating disk can be viewed via articles

[15¡ 18].

Due to the presence of suspended nanoparticles with high thermal conductivity, nano‡uids

are expected to provide better thermal e¢ciency compared with conventional ‡uids. Nano‡uids

have improved properties which potentially make them useful in many heat transfer applica-

tions, such as fuel cells, hybrid powered engines, domestic refrigerators, and thermal manage-

ment in vehicle/engine cooling. Nano‡uid, which is a mixture of a base ‡uid and solid nanopar-

ticles, has recently been studied by many scientists. These composites include nanoparticles

with their size ranging from 1 nm to 100 nm embedded in the base ‡uid and were initially pro-

posed by Choi and Eastman [19]. In their study, they argued that these nano‡uids have higher

conductive and convective heat transfer relative to the base ‡uids. Afterwards, several scientists

focused on the characteristics of the nano‡uid ‡ow. Buongiorno [20] suggested a mathematical

model using the thermophoresis and Brownian motion e¤ects to analyze the thermal features

of the nano‡uids. He found that the conventional ‡uid with thermophoresis and Brownian
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motion e¤ects played a signi…cant role in improving the thermal conductivity of the liquid. The

nano‡uid over a shrinking surface was investigated by Khan and Pop [21]. Further, the ‡ow and

heat transfer of the Carreau ‡uid in the presence of nanoparticles was studied by Hashim et al.

[22]. They used a built-in technique (bvp4c) in MATLAB to acquire the numerical solutions.

Additionally, the turbulent nano‡uid ‡ow in a pipe was described by Jafaryar et al. [23]. The

‡ow of thermally radiative and magnetized nano‡uid ‡ow was described by Hamid et al. [24].

They found dual solutions of the problem. The study of magnetized three-dimensional ‡ow of

viscoelastic nano‡uid with nonlinear thermal radiation was investigated by Hayat et al. [25].

Recently, swirling ‡ow of Maxwell nano‡uid ‡ow over a rotating disk featuring the Cattaneo-

Christov double di¤usion theory was discussed by Ahmed et al. [26]. They used Buongiorno

model to study the thermophoresis di¤usion and Brownian motion of the nanoparticles.

The MHD named as magneto-hydro-dynamic is the study of magnetic properties of electri-

cally conducting ‡uid ‡ow such as, liquid metals, plasmas and salted water. There are some

speci…c uses based on MHD ‡ows include MHD ‡ow control in atomic reactors, MHD pipe

‡ows, drug delivery, biomedicine, cancer therapy, magneto-optical wavelength …lters etc. Phys-

ically, magnetic …eld is a resistive force applied on the liquid to control the ‡uid motion which

was initially studied by Hannes Alfvén [27]. Later on, many researchers discussed the ‡uid ‡ow

behavior and heat transfer phenomenon under the in‡uence of magnetic …eld. Soret and Dufour

e¤ects on unsteady MHD ‡ow of Maxwell ‡uid in a porous medium were explored by Zhao et

al. [28]. They concluded that the temperature of the liquid rises by enlargement of magnetic

…eld parameter. Sheikholeslami and Rokni [29] studied the magnetic …eld e¤ect on the ‡ow

of nano‡uid and proved that the temperature gradient reduces by the increment of magnetic

…eld. The investigation of external magnetic source on nano‡uid ‡ow in cavity was analyzed by
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Sheikholeslami and Shehzad [30]. The enhancement of heat transfer in MHD nano‡uid past a

vertical plate was investigated by Sheri and Thummai [31]. Their outcomes demonstrate that

the Lorentz force appears to slow down the heat transfer rate. Further, the MHD ‡ow around

an electrically conducting heating cylinder with the impact of non-uniform magnetic …eld was

disclosed by Tassone et al. [32]. Most recently, MHD ‡ow of Maxwell nano‡uid ‡ow induced

by a stretching cylinder was numerically studied by Ahmed et al. [33]. They proved that the

velocity of the ‡uid reduces due to higher magnitude of magnetic force.

Based on the applications in engineering …elds and industries like hot rolling, paper making,

wire drawing and much more, the stagnation point ‡ow has been extensively investigated by the

researchers. The quality of such products may be checked with the ‡ow …eld and heat transfer

rate. Initially in 1911, the stagnation point ‡ow was proposed by Hiemenz [34]. He used the

similarity variables to solve the two dimensional stagnation point ‡ow and obtained the exact

solution of the problem. After that the study of stagnation point ‡ow towards a stretching plate

was disclosed by Chiam [35]. Later on, many researchers have done their work on stagnation

point ‡ow of di¤erent ‡uid models. The study of heat transport in a stagnation point ‡ow over a

stretching sheet was explored by Chiam [36]. In this investigation, he used regular perturbation

technique to obtain the analytical solutions upto second order. Mahapatra and Gupta [37]

also investigated the incompressible stagnation point ‡uid ‡ow over a stretching sheet. The

magnetized stagnation point ‡ow towards a stretching sheet was disclosed numerically by Ishak

et al. [38]. They found that the temperature of the liquid reduces by enhancing the velocity

ratio parameter. Further, the solution of stagnation point ‡ow of nano‡uid was claimed by

Mustafa et al. [39] and the analytical solution via homotopy analysis method is obtained. The

study of two dimensional stagnation point ‡ow of Maxwell ‡uid over a shrinking sheet was
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reported by Motsa et al. [40]. The solution of the governing equations constructed by using

successive linearisation method. Moreover, the partial slip e¤ect on stagnation point ‡ow of

incompressible ‡uid by a shrinking sheet was studied by Bhattacharyya et al. [41]. Recently,

Khan et al. [42] investigated the stagnation point ‡ow of nano‡uid towards a permeable surface

with the impact of thermal radiation. They utilized a numerical bvp4c technique and obtained

dual nature solutions. Additionally, the stagnation point ‡ow of Williamson ‡uid with the e¤ect

of Ohmic heating was studied by Hamid et al. [43]. They dealt with the problem numerically

and discussed the dual nature study.

Heat transfer is a natural process in nature, as it occurs as a result of di¤erence in tem-

perature between the same objects or di¤erent two objects. The most important was this can

be found in geothermal, petroleum and so forth. Therefore, much attention has been paid to

predicting the heat transport mechanism. In order to predict the thermal energy transport

mechanism in the ‡uid ‡ow, Fourier’s law of heat conduction is employed. This renowned law

was …rstly discussed by Fourier [44]. One of the defects pointed out in this law is that it leads

to a parabolic equation in the sense that any initial interruption is quickly felt all through the

whole substance, that negates the causality principle in continuum which is not a realistic ap-

proach. Thus, the instant heat conduction in the medium is a paradox. To resolve this paradox,

Cattaneo [45] and Christov [46] proposed a revised model for heat conduction by introducing

the thermal relaxation time parameter with an upper convective derivative in Fourier’s model.

This newly suggested model predicted the heat transport mechanism accurately. Additionally,

the structure and uniqueness of the Cattaneo-Christov equation were described by Ciarletta

and Straughan [47]. The study of thermal convection with the Cattaneo-Christov model was

described by Straughan [48]. Moreover, Han et al. [49] discussed the ‡ow and heat transfer in
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the viscoelastic ‡uid with the Cattaneo-Christov heat ‡ux model. The analysis of the Cattaneo-

Christov double di¤usion theory on the magnetohydrodynamic (MHD) ‡ow of the micropolar

‡uid over an oscillatory disk was studied by Rauf et al. [50], and the numerical solutions to the

problem were obtained. Some articles based on the investigation of Cattaneo-Christov theory

are given in Refs. ([51] and [52]).

1.2 Basic Laws

In ‡uid dynamics, the conservation laws are the fundamental axioms which are mass conserva-

tion, momentum conservation and energy conservation. These laws are used to formulate the

‡uid ‡ow problems and may be written in integral or di¤erential form.

1.2.1 The Mass Conservation

This law describes that mass is conserved within the control volume for constant density ‡uids.

In this way, the total mass entering in the control volume is equal to the total mass leaving to

the control volume in the addition of mass inside the control volume. This law can be stated

in mathematical form as:
Z

()

µ



+r ¢ (V)

¶

 = 0 (1.1)

As this is true for all () so the integrand vanishes at every point. So, the law of mass

conservation is given by




+r ¢ (V) = 0 (1.2)

The above-mentioned law is also known as the continuity equation. Here,  denotes the ‡uid

density, V the velocity …eld and  for the time.
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For steady and incompressible ‡ow, the continuity equation becomes

r ¢V = 0 (1.3)

1.2.2 The Momentum Conservation

According to Newton’s second law of motion, which states that the time rate of momentum in

a control volume equals the resultant force acting on it. Mathematically as:

Z

()

·
V


+ (VV) 

¸

 =

Z

()
[B+ ¿ ]  (1.4)

It implies that

V


+ (VV)  = B+ ¿  (1.5)

which is the momentum conservation law.

Here, B is the body force per unit volume and ¿ the stress tensor.

Also, expressing the above in more convenient form as:



·
V


+V ¢rV

¸

= div ¿ + B (1.6)

1.2.3 The Energy Conservation

From the …rst law of thermodynamics, the conservation of energy takes the mathematical form

as:





= ¿ L¡divqr ¡ divq (1.7)
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In the above equation,  is the ‡uid density, (  ) denote the speci…c heat and temperature of

‡uid, respectively. Further, ¿ is the Cauchy stress tensor, L the velocity gradient, (q, q) depict

the radiative and thermal heat ‡ux, respectively, and ¿ L represents the viscous dissipation.

On the other hand, the energy ‡ux q for Fourier’s law is de…ned as

q = ¡r (1.8)

with  as the ‡uid thermal conductivity.

1.2.4 The Concentration Conservation

By this law, the rise in the total mass of species C in control volume is equal to the total net

mass ‡ow in control volume with the addition of the development rate of species in control

volume. Mathematically, it can be written as




+V ¢r = ¡r ¢ j+ (1.9)

Here,  is the concentration of the liquid, j the normal mass ‡ux and  the "source" or "sink"

for concentration.

The normal mass ‡ux j is usually de…ned by Fick’s law as

j = ¡r (1.10)

where  stands for the mass di¤usivity.
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1.2.5 The Energy Conservation for Nano‡uids

For an incompressible nano‡uid ‡ow, the energy conservation is de…ned by





= ¡r ¢ j¡divq (1.11)

Here, (q  j) are the thermal ‡ux of nano‡uids, the enthalpy and the total nanoparticle

mass ‡ux, respectively.

The mathematical forms of q and j are as follows:

q= ¡r + j (1.12)

j = ¡

·

r +
r

1

¸

 (1.13)

where,
¡
 

¢
are the density of nano‡uid, the Brownian motion and thermophoretic

di¤usion coe¢cients, respectively.

After applying the expressions q and j into Eq. (111) …nally takes the form





= r2 + 

·

r ¢r +
r ¢r

1

¸

 (1.14)

1.2.6 The Mass Conservation for Nano‡uids

The concentration equation for nano‡uid is written in mathematically as




+V ¢r = ¡

1


r ¢ j (1.15)
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After applying the expression j into Eq. (115) result in




+V ¢r = r

2 +
r2

1
 (1.16)

1.2.7 The Cattaneo-Christov Heat and Mass Fluxes

The generalization of Fourier’s and Fick’s laws in the form of Cattaneo-Christov model are

given by the following mathematical relations:

q+0

µ
q


¡ q ¢rV+V ¢rq+ (r ¢V)q

¶

= ¡r (1.17)

j+1

µ
J


¡ J ¢rV+V ¢rJ+ (r ¢V)J

¶

= ¡r (1.18)

where (0 1) are the thermal and mass relaxation times, respectively. These reduce to classical

Fourier’s and Fick’s laws when 0 = 1 = 0.

For steady and incompressible ‡uid ‡ow, the above equations reduce to

q+0 (V ¢rq¡ q ¢rV) = ¡r (1.19)

j+1 (V ¢rJ¡ J ¢rV) = ¡r (1.20)

16



1.3 Homogeneous and Heterogeneous Reactions

The homogeneous and heterogeneous reactions of two chemical species  and  are taken as

inspired by Merkin [57]. The homogeneous reaction for cubic autocatalysis is written as

+ 2 ! 3;  = 
2 (1.21)

and the heterogeneous reaction is

! ;  =  (1.22)

Here  and  denote the chemical species,  and  be their concentrations and ( and ) the

rate constants. The reactions mentioned above are assumed to be isothermal.

1.4 The Rate Type Oldroyd-B Fluid Model

Generally, there are three types of non-Newtonian ‡uids that are the rate type, di¤erential type

and integral type. The viscoelastic rate type ‡uids demonstrate the relaxation and retardation

times e¤ects. The Oldroyd-B ‡uid [1] is a subclass of viscoelastic rate type materials.

The extra stress tensor S for an Oldroyd-B ‡uid model is written as

µ

1 + 1




¶

S =

µ

1 + 2




¶

A1 (1.23)

where  1 and 2 are the dynamic viscosity, the relaxation and retardation times, respectively.

Further A1 = rV+(rV)
 with  being transpose, is the …rst Rivlin-Ericksen tensor and 


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the upper convected derivative. Moreover, the relation between extra stress tensor and Cauchy

stress tensor is de…ned in the following form

¿+I¡ S = 0 (1.24)

where I refers the identity tensor and  the ‡uid pressure.

1.5 Solution Methodologies

1.5.1 Bvp Midrich Scheme (Midpoint Method)

The non-linear system of ordinary di¤erential equations (ODEs) with appropriate boundary

conditions (BCs) are extremely hard to compute exact solutions of the problem. So, to han-

dle these non-linear di¤erential equations, there are very helpful and e¢cient methods such

as trapdefer, traprich, middefer and midrich to compute numerical solutions. The methods,

trapdefer and traprich are based on trapezoid methods that use Richardson extrapolation en-

hancement or deferred correction enhancement, respectively. However, the methods, middefer

and midrich are the midpoint methods with the same enhancement schemes. Maple software

is used to perform the numerical computation. The bvp midrich scheme is speci…ed by the

following general algorithm

~

0µ

~


¶

=
~


µ
~

~


µ
~


¶¶


~


µ
~
0

¶

=
~
0 (1.25)

The term used for the modi…ed Euler method (Explicit mid-point method) is given by
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~
+1 =

~
 + 

~


µ
~
 +



2

~
 +



2

~


µ
~


~


¶¶

 (1.26)

where  refers the step size and
~
 =

~
0+. The implicit approach of the mid-point method

strategy is articulated as

~
+1 =

~
 + 

~


µ
~
 +



2

~
 +

1

2

µ
~


~
+1

¶¶

  = 0 1 2  (1.27)

The local error of the mid-point procedure is of order 
¡
3
¢

and 
¡
2
¢

is the order of global

error at each step. With more computational intensive, the algorithm error declines faster as

! 0 and shall be a more stable solution.

1.5.2 Homotopy Analysis Method (HAM)

For solving the non-linear system of ordinary di¤erential equations (ODEs) with suitable bound-

ary conditions are acquired by adopting the well-known semi-analytical technique (HAM). We

use the initial guesses (0 0 0 0) and auxiliary linear operators ($ $$$) to con-

struct a homotopic series solution using the homotopy approach. Mathematically,

$ [()] =  000 ¡ 0 $[()] = 00 ¡

$[()] = 00 ¡  $[()] = 00 ¡  (1.28)
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1.6 Scope of Research

The research in this dissertation contributes to recent scienti…c and technological developments

while considering the non-Newtonian Oldroyd-B ‡uid ‡ow caused by a rotating disk geometry.

For this, the mathematical modelling is developed and discussed the mechanism of swirling

‡ow of non-Newtonian Oldroyd- B ‡uid. The heat and mass transport in Oldroyd-B ‡uid

‡ow are of particular interest. In order to describe the physical results, numerical and semi

analytical schemes are used for obtaining solutions of the considered problems. Thus, the

following objectives are pursued in this study:

² Mathematical modeling of Oldroyd-B ‡uid ‡ow over a rotating disk is carried out.

² The analysis of heat and mass transport are performed with various physical e¤ects.

² The graphical and tabular results are obtained for the physical interpretation of ‡ow, heat

and mass transport phenomena.

1.7 Contribution in Thesis

The aim of this study is to learn more about the heat and mass transport mechanisms for non-

Newtonian Oldroyd-B ‡uid ‡ow over a rotating disk. In this thesis, numerical and analytical

approaches are utilized to investigate the ‡ow behavior, heat and mass transfer features for

three dimensional axisymmetric ‡ow through a rotating disk geometry. Indeed, no existing

studies of Oldroyd-B ‡uid ‡ow model were carried out in the rotating disk regime earlier to

this work.

Therefore, the most signi…cant contributions of this thesis include the development of math-

20



ematical modelling and their solutions under various physical aspects. The substantial contents

of this thesis has already published. This section brie‡y lists all the research materials produced

during this project. The work in this thesis is arranged as follow:

Chapter 2: This chapter presents a mathematical formulation of three dimensional steady,

incompressible ‡ow of Oldroyd-B ‡uid by a rotating disk. An innovative Buongiorno’s model is

introduced to characterize the heat and mass transport of Oldroyd-B nano‡uid considering the

impacts of thermophoresis and Brownian di¤usion. Consideration is focused on mathematical

formulation of momentum equation based on boundary layer approximation theory. For non-

dimensionalized of the problem, the von Karman similarity approach is used and then utilizing

a numerical technique (bvp midrich) to acquire the solutions. The analysis done in this chapter

is published in ”Applied Nanoscience, 10 (2020) 5135-5147”.

Chapter 3: The leading objective of this chapter is to investigate the impact of activation

energy in Oldroyd-B ‡uid ‡ow over a rotating disk. The thermal energy transport analysis is

performed with the non-linear thermal radiation. The problem is tackled numerically by bvp

midrich scheme. The graphical and tabular results are obtained for the velocity …eld, thermal

and solutal distributions as well as Nusselt and Sherwood numbers, respectively. The …ndings of

this chapter are available in ”." Physica A: Statistical Mechanics and its Applications,

(2021) 124085”.

Chapter 4: The prime objective in this chapter is to elaborate the stagnation point ‡ow of

Oldroyd-B ‡uid due to a permeable rotating disk. The impact of non-linear radiation and heat

absorption/generation are introduced to visualize the heat transfer behavior. The convective

boundary condition is also assumed in order to investigate the ‡uid thermal characteristics. To

acquire results of the problem, a numerical procedure is utilized to handle the problem work.
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Additionally, the current results are compared to the previous literature. This research work is

published in ”Computer Methods and Programs in Biomedicine, 191 (2020) 105342”.

Chapter 5: The main focus in this chapter is to examine the Darcy ‡ow of an Oldroyd-B

‡uid. The mechanisms of heat and mass transport are investigated with the signi…cant features

of thermal di¤usion (Soret) and di¤usion thermo (Dufour). Further, the impact of chemical

reaction is also assumed on solutal …eld. To handle the governing problem, the von Karman

variables are utilized to get the similarity equations and then integrated numerically via bvp

midrich method in Maple. The remarkable results of this chapter are presented in ”Arabian

Journal for Science and Engineering, 45 (2020) 5949–5957”.

Chapter 6: This chapter explores the chemically reactive ‡ow of Oldroyd-B ‡uid by

a rotating disk geometry. In this analysis, the Cattaneo-Christov heat ‡ux theory (modi…ed

Fourier’s law) is used to discuss the ‡uid thermal features. Moreover, the e¤ect of homogeneous

and heterogeneous reactions are considered for the mass transport phenomenon. For obtaining

numerical results, a bvp midrich scheme is implemented. The results are available in ”Journal

of Thermal Analysis and Calorimetry, 144 (2021) 793-803”.

Chapter 7: An investigation regarding the features of Cattaneo-Christov theory for heat

and mass ‡ux in the ‡ow of Oldroyd-B ‡uid is endorsed in this chapter. The transformed ordi-

nary di¤erential equations are considered for the solutions via an analytical technique (HAM)

in Mathematica software. The impacts of physical parameters are illustrated graphically. The

work provided in this chapter is published in ”International Communications in Heat and

Mass Transfer, 123 (2021) 105179”.

Chapter 8: In this chapter, the presented modeling describes the rotational ‡ow of the

viscoelastic Oldroyd-B nano‡uid by a rotating disk. A progressive alteration is made in the
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heat and concentration equations by exploiting the Cattaneo-Christov heat and mass ‡ux ex-

pressions. The Buongiorno model along with the Cattaneo-Christov theory is implemented in

the Oldroyd-B nano‡uid ‡ow to investigate the mechanisms of heat and mass transport. A link

between analytical and numerical results are made via table. The analysis done in this chapter

is presented in ”Applied Mathematics and Mechanics (English Edition), 41 (2020)

1083-1094”.

Chapter 9: Finally, this chapter presents the key outcomes of this thesis as well as sug-

gestions for future work.
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Chapter 2

Flow of Magnetized Oldroyd-B

Nano‡uid over a Rotating Disk

In this chapter, the characteristics of an Oldroyd-B nano‡uid ‡ow caused by axially symmetric

rotating disk are analyzed with the features of vertically applied magnetic …eld. An innova-

tive Buongiorno model is introduced to characterize the heat and mass transport of Oldroyd-B

nano‡uid. Consideration is focused on mathematical formulation of momentum equations based

on boundary layer approximation theory. The conversion of governing equations into dimen-

sionless forms are based on von Karman similarity variables. The numerical integration of the

resultant problem is performed through bvp midrich scheme in Maple. The attained outcomes

are exhibited through graphs for ‡ow …eld, temperature and concentration of nanoparticles

distributions as well as numerical values for Nusselt and Sherwood numbers. Results reveal

that the presence of magnetic …eld in the ‡ow region slows down the ‡uid movement. Also, the

thermal and solutal distributions enhance substantially with rising values of retardation time
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parameter. Moreover, the temperature of liquid boosts up for growing values of thermophoresis

and Brownian motion parameters.

2.1 Development of Mathematical Model

The mathematical relations for conservation of mass and momentum in an incompressible MHD

‡uid ‡ow are

rV = 0 (2.1)

a = ¡r+rS+ J£B (2.2)

where a is the material time derivative of velocity vector V and is given by

a =
V


=
V


+ (Vr)V (2.3)

in which  is the density of the ‡uid and  stands for the pressure. The extra stress tensor S

in Eq. (22) is de…ned in Eq. (123) for Oldroyd-B ‡uid model.

Taking divergence of Eq. (123) (cf. Chapter 1)on both sides gives

µ

1 + 1




¶

rS =

µ

1 + 1




¶

rA1 (2.4)

After applying the operator
¡
1 + 1




¢
on Eq. (22) and using the result of Eq. (24), we

…nally have



µ

1 + 1




¶

a = ¡

µ

1 + 1




¶

r+ 

µ

1 + 2




¶

rA1 +

µ

1 + 1




¶

(J£B)  (2.5)
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where 
 is the upper convective derivative and de…ned for a vector A as:

A


=
A


+ (Vr)A¡ (rV)A (2.6)

For present study, we are taking the cylindrical polar coordinate system (  ) and assume

an axisymmetric three dimensional steady ‡ow, the velocity vector is taken as:

V =[ ( )   ( )   ( )]  (2.7)

where ( ) are the radial, azimuthal, and axial velocity components, respectively.

Under the mentioned above assumptions, the system of equations of the problem are given

by




+



+



= 0 (2.8)





¡
2


+




= ¡

1






¡



20

·

+ 1




¸

+

µ

2
2

2
+
2

2
+

2


¡ 2



2
+
2







¶

¡1

·

2
2

2
+2

2

2
+ 2

2


¡ 2








¡ 2








+
2

2
+
2







¸

+2

2

6
6
6
6
6
6
4

4
2

3
¡ 2 

2

 ¡

1


¡



¢2
¡ 2

2
2

+3
3

¡ 2 
2


 ¡




2
2

¡2


¡



¢2
¡ 1






 + 2




2
 ¡




2
 ¡




2
 +  3

2

+ 3
2 + 2



2
2 ¡ 2




2
2 ¡




2
2 + 2

3
2 +  3

2 + 2
3
3 

3

7
7
7
7
7
7
5

 (2.9)
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



+



+




= 

µ
2

2
+
1






¡



2
+
2

2

¶

¡



20

·

 + 1




¸

¡1

·

2
2

2
+2

2

2
+ 2

2


+ 2








+ 2








¡ 2

2

2
¡
3

2
+
2







¸

+2

2

6
6
6
6
6
6
4

3
3 +  3

2 + 2


2
2 +



2
2 +



2
 + 2


2


 + 3

2

¡ 
2


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


2
 +3

3
¡ 2

2
2

¡ 


2
2

¡ 


2
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2





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
3

¡ 
2
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

2
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¡ 


2
 ¡




2
2

¡ 1

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


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1





 ¡ 2



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2
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7
7
7
7
7
7
5

 (2.10)


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
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(2.11)

In view of the boundary layer approximation, we assumed the order of    1 and 2 to be

one and ,  are of the order . Moreover, the other parameter like  is of the order 2 whereas,

 is the boundary layer thickness. After applying the above mentioned approximations, Eqs.

(29) to (211) are simpli…ed as
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Under the boundary layer approach and using the boundary conditions at in…nity, the pressure

gradient term can be found as

1






= 0 (2.15)

Therefore, the …nal momentum equations reduce to
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2.2 Model Sketch

Fig 2.1: A physical model of the problem.

2.3 Problem Formulation

In this section, a steady, incompressible and three-dimensional ‡ow of Oldroyd-B ‡uid is ana-

lyzed in the presence of nanoparticles. The ‡ow is assumed to be generated by a stretchable

rotating disk. The disk at  = 0 rotates with uniform angular velocity ­. Here, the magnetic

…eld acts along the ¡direction. For small magnetic Reynolds number, the induced magnetic

…eld is assumed as zero. The analysis of heat and mass transport are performed by the classical

Fourier’s and Fick’s laws, respectively. A physical model of the problem is presented in Fig.

21. The disk is maintained at uniform temperature  and concentration . Here 1, 1

are the ambient temperature and concentration, respectively.

From the above stated assumptions, the governing non-linear equations for the given prob-
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lem are
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The relevant boundary conditions are

 =   = ­  = 0  =   =  at  = 0

! 0  ! 0  ! 1  ! 1 as  !1 (2.23)

Here, ­ indicates the swirl rate and  the stretch rate of the disk. Further,  is the kinematic
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viscosity, 1 the heat capacities ratio,  the electrical conductivity, 0 the strength of magnetic

…eld, 1 the relaxation time, 2 the retardation time,  the temperature of the ‡uid,  the

thermal di¤usivity and  the concentration of the ‡uid.

Introducing the following von Karman transformations

 =

r
­


  = ­  = ­  =

p
­  =

 ¡ 1
 ¡ 1

  =
 ¡1
 ¡1

 (2.24)

After putting the mentioned transformations (224) into governing Eqs. (218) to (222), we

have

 0 + 2 = 0 (2.25)
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1

Pr
00 ¡0 +00 +02 = 0 (2.28)

00 ¡ 0 +



00 = 0 (2.29)
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The boundary conditions are transformed as below

 () =   () = 1  () = 0  () = 1  () = 1 at  = 0

 ()! 0  ()! 0  ()! 0  ()! 0 as  !1 (2.30)

where, prime refers di¤erentiation w.r.t .

Further, (  ) are the dimensionless velocity in radial, azimuthal and axial directions,

respectively. Also, ( ) are the dimensionless temperature and concentration of the liquid,

respectively.

The di¤erent ‡ow parameters appearing in Eqs. (226)¡ (230) are characterized by:

 =
2

0
­ is the magnetic …eld parameter,  = 

­ the stretching parameter, 1 = 1­ the

relaxation time parameter, 2 = 2­ the retardation time parameter, Pr = 
 the Prandtl num-

ber,  = 


the Schmidt number,
³
 =  (¡1)

1
,  = (¡1)



´
for the Brownian

motion and thermophoresis parameters, respectively.

2.4 Physical Parameters

2.4.1 Heat Transfer Performance

The e¢ciency of transfer of heat from surface to ‡uid can be characterized by Nusselt number

. In Physical point of view, Fourier’s law and Newton’s law of cooling are used to de…ned

the Nusselt number . Mathematically, it is given as

 =


 ( ¡ 1)
 (2.31)
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in which

 = ¡

µ
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¯
¯
¯
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 (2.32)

In non-dimensional form, we have

Re¡
1
2  = ¡0 (0)  (2.33)

2.4.2 Mass Transfer Performance

The rate of mass transport at the disk surface can be stated by Sherwood number , which

can be de…ned by Fick’s law. Mathematically,

 =


 ( ¡1)
 (2.34)

with

 = ¡

µ




¶¯
¯
¯
¯
=0

 (2.35)

In non-dimensional form, we get

Re¡
1
2  = ¡0 (0)  (2.36)

where  is the characteristic radius and the Reynolds number is Re
³
= 2­



´
.

2.5 Validation of Numerical Outcomes

To ensure that the numerical results obtained using the bvp midrich scheme in Maple are

accurate, a comparison of  0(0) ¡0(0) and ¡0(0) is made for the limiting case, i.e. in the
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absence of 1 2   and also without taking the nanoparticles. These comparisons to

those of Bachok   [53], Turkyilmazoglu [54] and (Kelson and Desseaux) [55] with the

present numerical results can be noticed in Table 21. This table demonstrates a decent

assertion among the existing results and the previous outcomes. This gives the reliability of

our numerical scheme.

2.6 Results and Discussion

Our basic goal in this section is to understand the physics about the various physical parameters

via tables and graphical structures. To illustrate the impact of these parameters on the ‡uid

‡ow behavior, heat and mass transfer, results are drawn in …gures 22 to 28. The di¤erential

system in Eqs. (225) to (229) with conditions (230) are extremely non-linear in nature. To

handle these non-linear di¤erential equations, we use a numerical method called bvp midrich

scheme on Maple. Impacts of involved parameters like, magnetic …eld parameter  , relaxation

time parameter 1, stretching parameter , retardation time parameter 2, Schmidt number

„ thermophoresis parameter , Prandtl number Pr and Brownian motion parameter  are

discussed. The whole analysis is performed with …xed values of  = 10  = 13 1 = 005

2 = 005  =  = 01 Pr = 50 and  = 50. It is worth mentioning that each one plot is

approaching the far-…eld boundary conditions asymptotically.

Figs. 22 (a¡ e) describe the e¤ect of magnetic …eld parameter  on the velocities ( () 

 () and  ()) temperature  () and concentration  () of the ‡uid. The in‡uence of

magnetic …eld parameter  on radial velocity  () is reported in Fig. 22 (a). Here,  is

a dimensionless parameter used to control the motion of the ‡uid. It can be noticed that the
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higher values of  (= 10 30 50 70) reduce the radial velocity  () of the ‡uid. To see the

impact of  on azimuthal velocity  (), result is shown through Fig. 22 (b). In this …gure,

we see that the velocity of the ‡uid also declines with enlargement of  . Additionally, the

higher estimations of  cause the reduction of the boundary layer thickness in this situation.

Physically, magnetic …eld is a Lorentz force and this force is a resistive force which decelerates

the motion of ‡uid. Moreover, the curves of axial velocity  () are plotted with various values

of  in Fig. 22 (c). It can be scrutinized that the velocity  () is negative, showing the

‡uid ‡ows in downward direction and ‡ow in vertical way is reduced due to higher magnitude

of magnetic parameter. For the particular set of physical parameters, it is sighted that the

temperature of ‡uid  () is enhanced with enlarging of  as seen in Fig. 22 (d). The physical

phenomenon of Lorentz force corresponds to the enhancement of the heat transport phenomenon

and hence the thickness of the thermal boundary layer is also boosted. From Fig. 22 (e)  the

concentration of nanoparticles  () improves for larger values of  (= 10 30 50 70) and

default parameters are …xed. In addition, during this invasion, the thickness of the concentration

boundary layer increases.

Figs. 23 (a) to (c) are plotted to observed the variation in azimuthal velocity  (),

temperature  () and concentration  () distributions, respectively under the action of relax-

ation time parameter 1. From Fig. 23 (a)  the azimuthal velocity declines for large values

of 1 (= 01 03 05 07). Additionally, at this intrusion, the reduction in the thickness of

boundary layer is seen. This feature is described as, the Deborah number 1 is the ratio of

material relaxation time to the material observation time. So the estimation in relaxation time

parameter 1 infers the stress relaxation is higher or the observation time is shorter showing

that the ‡uid behave like solid response. Thus, the ‡uid ‡ow is confronted with a higher re-
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sistance that reduces the ‡uid motion. Fig. 23 (b) displays the temperature  () variation

against  for numerous values of relaxation time parameter 1. As is obvious in this …gure, the

temperature decline for higher values of 1. The in‡uence of 1 on the concentration distribu-

tion  () is pictured through Fig. 23 (c) with non-zero values of other supervising parameters.

It can be shown that the nanoparticle volume friction  () is decreased with the up growing

values of relaxation time parameter 1 (= 01 03 05 07).

To discuss the velocities (radial, azimuthal and axial), temperature and concentration of the

Oldroyd-B liquid ‡ow against the e¤ect of Deborah number of retardation time parameter 2,

the graphs are sketched in Figs. 24 (a)-(e). Retardation parameter describes the retardation

time when strain at constant stress reduces, as a result, the velocity decreases on increasing

trend of retardation time parameter. The e¤ect of 2 on radial velocity  () is presented

in Fig. 24 (a). With the enlargement of 2 (= 01 03 06 09), the radial ‡uid’s velocity is

decreased. Moreover, Fig. 24 (b) is captured to clarify the features of 2 on the azimuthal

velocity. It is noted that the azimuthal velocity of the ‡uid enhances with the increment in

2 (= 01 03 06 09). Fig. 24 (c) represents the in‡uence of retardation time parameter 2

on axial velocity  (). Figs. 24 (d) and (e) are displayed to watch the impact of 2 on

temperature  () and nanoparticle volume friction  (), respectively. These …gures depict

that the ‡uid’s temperature as well as the concentration of nanoparticles are boosted up by the

growing value of 2 (= 01 03 06 09).

The in‡uence of  on velocity …eld, temperature and concentration distributions is illus-

trated through Figs. 25 (a¡ e). It is concluded from Fig. 25 (a) that the radial velocity

 () rises with the increment in stretching parameter  (= 10 13 15 17). This is primarily

because of the fact that the stretching parameter  is the ratio of stretch  to the swirl ­
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rate. By enlarging  (= 10 13 15 17), the radial velocity of the ‡uid rises due to increases

in the disk stretching rate. On the other hand, the contrary e¤ect on azimuthal velocity  ()

is seen in Fig. 25 (b). This is because of the reduction in the velocity of rotation of the disk

as compared to the stretching rate. Further, to watch the e¤ect of  on axial velocity  (),

results are obtained through Fig. 25 (c). The curves of temperature distribution  () aligned

with various values of  are achieved in Fig. 25 (d). It is remarked that the thermal bound-

ary layer thickness declines as stretching parameter  changes from 10 to 17. Moreover, the

temperature of ‡uid decreases with a higher trend of . A similar observation can be observed

for  () as shown in Fig. 25 (e).

To see the impact of  (thermophoresis parameter) on heat and mass transport phenom-

ena, Figs. 26 (ab) are sketched. Here, higher rate of  (= 01 016 024 03) increases

the temperature distribution  (). In terms of physics, higher values of  increase the ther-

mophoretic force, which improves heat transport in the liquid. Additionally, to see the variation

in concentration distribution via , curves are drawn in Fig. 26 (b). From this …gure, it

reveals that the concentration distribution as well as related boundary layer thickness enhances

by enlarging the values of thermophoresis parameter.

The in‡uence on temperature and concentration distributions of Brownian motion parame-

ter  is shown in Figs. 27 (ab). In these sketches, the temperature distribution  () rises

for increasing values of . It’s because by taking larger estimation of Brownian motion para-

meter  creates a higher di¤usion rate, which boosts up collisions between the solid particles.

As a result, the ‡uid’s temperature rises which is shown in Fig. 27 (a). Further, the impact

of  on the concentration distribution in decreasing manner is observed. In simple terms,

taking the larger values of  causes more collisions between the ‡uid particles. As a result,
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mass moves at a very slow rate, which results in a decrease in the concentration distribution.

The e¤ect of Pr on thermal distribution  () is displayed in Fig. 28 (a). It is remarked that

the temperature drops down with the increasing values of Pr(= 50 80 120 150). Further,

a reduction in the mass transport is reported through Fig. 28 (b), due to enhancement of

Schmidt number . Physically, higher values of Schmidt number  declines the di¤usion

coe¢cient because of the existence of an inverse relation between Schmidt number  and

di¤usion coe¢cient . Thus in consequence, concentration distribution  () is reduced in

this situation.

In Table 2.2, the values of Nusselt f¡0 (0)g and Sherwood f¡0 (0)g numbers are cal-

culated numerically against di¤erent values of ,  , 1, and 2. Observations reveal that

¡0 (0) decreases for increasing ,  , 1, and 2, respectively. The mass transfer rate ¡0 (0)

declines against , 1, and 2, respectively while an opposite trends are noticed against .
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Figs. 2.2: Impact of  on  (),  (),  (),  () and  ().
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Figs. 2.3: Impact of 1 on  (),  () and  ().
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Figs. 2.4: Impact of 2 on  (),  (),  (),  () and  ().
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Figs. 2.5: Impact of  on  (),  (),  (),  () and  ().

42



Figs. 2.6: Impact of  on  () and  ().

Figs. 2.7: Impact of  on  () and  ().
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Figs. 2.8: Impact of Pr on  () and impact of  on  ().

Table 2.1: An overview of the  0(0) ¡0(0) and ¡0(0) with those of previously published

articles.

Bachok   [53] Turkyilmazoglu [54] Kelson & Desseaux [55] Present results

 0 (0) 05102 051023262 0510233 051023

¡0 (0) 06159 061592201 0615922 061592

¡0 (0) 09337 093387794 ¡ 093386
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Table 2.2: The numerical results of ¡0 (0) and ¡0 (0) for …xed  = 50 = ,  = 10,

 = 13.

  1 2 ¡0 (0) ¡0 (0)

01 01 003 003 1642439 1767962

02 1400994 1378959

03 1202406 1228859

03 02 0897917 2218264

03 0659153 2489121

04 0476081 2588055

03 04 005 0475536 2578542

01 0474154 2554745

015 0472739 2530992

03 04 015 01 0472088 2517484

02 0470591 2473393

03 0468955 2421493
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Chapter 3

Activation Energy Impacts on

Rotating and Radiative Flow of

Oldroyd-B Fluid

This chapter focuses on the examination of heat and mass transportation in Oldroyd-B ‡uid

‡ow in‡uenced by non-linear radiation, heat absorption/generation and Arrhenius chemical

reaction with activation energy. The ‡uid ‡ow is controlled by vertically applied magnetic

‡ux over a rotating disk con…guration. The numerical integration is performed through bvp

midrich scheme on Maple for the governing non-linear ordinary di¤erential equations. Signi…-

cant consequences with some dynamic physical constraints are prepared for the velocity pro…le,

temperature and concentration distributions. Results reveal that the occurrence of radiative

heat ‡ux enhances the thermal pro…le e¢ciently. Moreover, concentration distribution is de-

tected to be an increasing function of activation energy parameter.
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3.1 Mathematical Formulation

A steady and incompressible boundary layer ‡ow of Oldroyd-B ‡uid over a rotating disk is

assumed. The disk at  = 0 rotates with uniform angular velocity ­ and stretches with constant

rate . Here, the magnetic …eld acts in ¡direction. The heat transfer analysis is performed

with the impact of heat absorption/generation and nonlinear thermal radiation. Moreover, the

impact of activation energy on mass transport is also considered here. Equations for heat and

mass transport are constructed with the help of classical Fourier’s and Fick’s laws, respectively.

Form the above stated assumptions, the governing equations for an Oldroyd-B ‡uid ‡ow

are (Eqs. ((218), (219), (220) cf. Chapter 2)
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The boundary conditions are

 =   = ­  = 0  =   =  at  = 0

! 0  ! 0  ! 1  ! 1 as  !1 (3.6)

Here,  is the reaction rate,  the …tted rate constant (¡1    1),  the activation energy,

1 the Boltzmann constant and  the thermal conductivity.

Adopting the Rosseland’s di¤usion approximation [56] for the radiative heat ‡ux  and the

expression is given by

 = ¡
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where ¤ is the Rosseland mean spectral absorption coe¢cient and ¤ the Stefan-Boltzmann

constant. We designate  = 1 (1 + ( ¡ 1))  where 

³
= 

1

´
 1 is the temperature

ratio parameter.

After applying the transformations (Eq. (224) cf. Chapter 2) into Eqs. (31) ¡ (35), we

acquire

 0 + 2 = 0 (3.8)
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48



2+0 ¡00 + 1
¡
002 + 2

¡
0 +  0

¢

¢

¡2
¡
000 ¡ 2 00 ¡ 20 00

¢
+2

¡
+ 1

0
¢
= 0 (3.10)

00
µ

1 +
4

3


¶

+
4

3


2

6
6
4

³
300 + 320

2
´
( ¡ 1)

3

+3
¡
200 + 202

¢
( ¡ 1)

2 + 3
³
00 + 0

2
´
( ¡ 1)

3

7
7
5¡Pr0+ Pr  = 0

(3.11)
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The transformed boundary conditions are

 () =   () = 1  () = 0  () = 1  () = 1 at  = 0

 ()! 0  ()! 0  ()! 0  ()! 0 as  !1 (3.13)

In the above expressions, the involved dimensionless parameters, which are presented in govern-

ing equations are 
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The Nusselt number  and Sherwood number  are de…ned by
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and
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Making use of the transformations (Eq. (224) cf. Chapter 2) in Eq. (314) and (315), we
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obtain
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3
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Re¡
1
2  = ¡0 (0)  (3.17)

where Re is the Reynolds number de…ned in Chapter 2.

3.2 Results and Discussion

In this part, the main focus is to illustrate the physical behavior of the present problem via

graphical structures and tables. The system of ordinary di¤erential equations (38) to (312)

along with BCs (313) are solved numerically by numerical technique called bvp midrich scheme

in Maple. To discuss the di¤erent parameters that are involved in the set of equations for the

‡uid ‡ow behavior, heat and mass transport, results are drawn in …gures 31 to 35. The e¤ect

of involved parameters like, relaxation time parameter 1, stretching parameter , magnetic

…eld parameter  , retardation time parameter 2 activation energy , reaction parameter ,

Prandtl number Pr, temperature di¤erence parameter  and Schmidt number  are discussed

via …gures and tables. For the graphical results, we …xed the ‡ow parameters that are  = 05

 = 13 1 = 02 2 = 02  = 15  = 01  = 11 Pr = 50  = 01  = 05  = 01

 = 01 and  = 50. Additionally, the obtained solutions through graphical structures

are speci…ed for the involved parameters in the ranges, 01 · 2 · 09 13 ·  · 18

00 ·  · 03 00 ·  · 09 01 ·  · 15 00 ·  · 15 01 ·  · 15 40 · Pr · 90

40 ·  · 90.

To verify the validity of numerical results which are achieved by Maple software, a com-
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parison of  0(0) ¡0(0) and ¡0(0) is made for limiting case. These comparisons to those of

Bachok   [53] and Turkyilmazoglu [54] can be noticed in Table 31. This table shows

that there is a reasonable correlation between current and previous results. This allows us the

reliability of our numerical results and problem.

Figs. 31 (a) ¡ (c) depict the variation of radial  (), azimuthal  () and axial  ()

velocities, temperature  () and concentration  () distributions under the action of Deborah

number of retardation time parameter 2. Fig. 31 (a) demonstrates the e¤ect of 2 on radial

velocity  () against . It can be found that the higher rate of 2 (= 01 03 06 09) declines

the radial velocity  () of the ‡uid. Meanwhile, a converse relation can be seen for azimuthal

velocity  () when retardation time parameter 2 increases. To see the impact of 2 on axial

velocity  (), results are shown via Fig. 31 (c). We see that the values of axial velocity  ()

are negative, which shows the ‡ow of the ‡uid in downward directions. It means that, due to

taking the e¤ect of 2, the ‡ow intensity in vertical downward direction is decreased. Moreover,

the magnitude of axial velocity drops o¤ on di¤erent values of 2. Figs. 31 (d) and (e) display

the in‡uence of 2 on temperature  () and concentration  () distributions, respectively,

when the other parameters are …xed. It is shown that the temperature  () as well as the

concentration  () distributions are boosted up by higher values of 2 (= 01 03 06 09).

Moreover, the thickness of both thermal and concentration boundary layers is increased as the

retardation parameter 2 changes from 01 to 09.

To see the change in the velocity …eld, temperature and concentration distributions by

taking e¤ect of stretching parameter , the results are graphically illustrated in Figs. 32 (a)

to (e). As the stretching parameter  is the ratio of stretch to the swirl rates. So, by enlarging

 (= 13 14 16 18), the radial ‡uid velocity increases due to an increase in the disk’s stretching
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rate. Meanwhile, for the azimuthal velocity  (), a converse e¤ect is found as seen in Fig.

32 (b). This is due to a decrease in the disk’s rotation rate. Additionally, to see the graphical

structure of axial velocity  () against di¤erent stretching rates, curves can be observed in Fig.

32 (c). The distribution of temperature  () against di¤erent values of stretching parameter 

is obtained in Fig. 32 (d). It can be found that the ‡uid temperature is reduced by taking the

higher stretching rate  (= 13 to 18). The same result can be observed for the concentration

distribution  () as pictured in Fig. 32 (e).

The variation of temperature distribution  () via radiation parameter  and heat gen-

eration/absorption parameter , respectively, is shown through Figs. 33 (a) and (b) with

default values of other …xed parameters. One can observe from the distributions given in these

…gures that all the solutions satisfy the far …eld boundary conditions asymptotically. As we

can see from Fig. 33 (a) that the dimensionless liquid temperature  () is boosted up by the

radiation parameter  with respect to . Physically, strength of the radiative source described

by radiation dimensionless parameter  which enhances the temperature due to extra heat

that is provided to the ‡uid. Moreover, the in‡uence of heat generation/absorption parameter

 on  () is examined via Fig. 33 (b). These curves show that the ‡uid temperature improves

as the heat generation parameter  changes from 00 to 09. Additionally, the enlargement of

 causes the thermal boundary layer thickness to be raised in this situation.

In order to show the impact of di¤erent parameters such as, activation energy , reaction

parameter  and temperature di¤erence parameter  on concentration distribution  (), some

results are shown. In this regard, Figs. 34 (a) to (c) are pictured to see the variation in

concentration distribution  () with respect to mentioned parameters against . From Fig.

34 (a), the concentration distribution  () as well as the thickness of concentration layer in-
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creases with the augmentation in activation energy  (= 01 05 10 15). Furthermore, for the

particular set of physical parameters, the concentration volume fraction drops o¤ as an incre-

ment in reaction parameter . The same outcomes can be seen for the temperature di¤erence

parameter  in Fig. 34 (c).

The impact of Pr on temperature of the ‡uid is discussed with default values of other …xed

physical parameters in Fig. 35 (a). This …gure shows that the temperature drops down by

varying the Prandtl number in four steps (40 50 70 90). Physically, the enlargement of

Pr ( 1) reduces the thermal di¤usivity, hence the reduction of the temperature  () is noticed

in this manner. Moreover, Fig. 35 (b) illustrates mass transport with the impact of Schmidt

number  in the ‡ow of Oldroyd-B ‡uid over a rotating disk. The analysis is done for various

values of Schmidt number  (= 40 50 70 90). It is remarked that the Schmidt number 

causes the concentration distribution  () to decline as seen in Fig. 35 (b). Physically, higher

rate of Schmidt number decreases the di¤usion coe¢cients, hence as a result, the concentration

reduces in this situation.

To see the change in Nusselt number Re¡
1
2  and Sherwood number Re¡

1
2  for di¤erent

physical parameters are discussed through Tables 3.2 and 3.3. The values of Re¡
1
2  and

Re¡
1
2  are calculated numerically with respect to di¤erent physical parameters like, 1 2

and  shown in Table 3.2. These results show that the Nusselt number and Sherwood number

are enhanced with the enhancement in 1. An opposite outcomes can be seen for 2 and  .

Moreover, in Table 3.3, the impact of ,  and Pr, respectively on Re¡
1
2  are analyzed. It

is be observed that the heat transfer rate reduces with an increment in. A similar observation

is seen for the . While the Nusselt number are boosted up as Pr changes from 60 to 70.
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Figs. 3.1: Impact of 2 on  (),  (),  (),  () and  ().
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Figs. 3.2: Impact of  on  (),  (),  (),  () and  ().
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Figs. 3.3: Variation in  () on  and .

Figs. 3.4: Variation in  () on ,  and .
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Figs. 3.5: Variation in  () on Pr and variation in  () on .

Table 3.1: A comparison of the  0(0) ¡0(0) and ¡0(0) on …xed Pr = 62 and 1 = 0 =

2 = =  =  =  with past outcomes.

Turkyilmazoglu [54] Bachok   [53] bvp midrich results

 0 (0) 051023262 05102 05101162643

¡0 (0) 061592201 06159 06158492796

¡0 (0) 093387794 09337 09336941128
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Table 3.2: The numerical values of Re¡
1
2  and Re¡

1
2  on various values of 1 2 and

 and the other parameters are …xed.

1 2  Re¡
1
2  Re¡

1
2 

02 02 05 17683091993 22276477609

03 19780494438 23355715514

04 20335341066 23680021632

02 02 17954361264 22424495253

03 17831406023 22371290254

04 17698931330 22315134573

02 02 05 17683091993 22276477609

06 17597401551 22240388941

07 17497844668 22198909343

08 17385208744 22152553852
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Table 3.3: The numerical values of Re¡
1
2  for various values of   and Pr and the

default parameters are …xed.

  Pr Re¡
1
2 

01 01 50 17683091993

02 15467477587

03 14377191461

03 02 13565981679

03 12709140344

04 11799367091

03 01 60 16185916354

65 17041687711

70 17866720833
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Chapter 4

Stagnation Point Flow of Radiative

Oldroyd-B Nano‡uid

This chapter reports the MHD boundary layer stagnation point ‡ow of an Oldroyd-B nano‡uid

over a porous rotating disk. The impact of non-linear radiation and heat generation/absorption

are studied on heat transfer behavior. The features of Brownian motion and thermophoresis

during the nanoparticles movement in ‡uid motion are studied with Buongiorno model.

The governing partial di¤erential equations (PDEs) are transformed into dimensionless or-

dinary di¤erential equations (ODEs) using the von Karman transformations. The bvp midrich

technique utilized to obtain the numerical solution of the governing problem. The results re-

veal that the concentration gradient at the wall reduces with an increment in mass transfer

parameter.
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4.1 Mathematical Formulation

In this portion, an incompressible steady three-dimensional boundary layer ‡ow of Oldroyd-B

‡uid over a permeable disk subject to magnetic …eld applied in the axial direction is considered.

The ‡ow is generated due to stretching velocity  =  and rotating velocity  = ­ of the

disk as shown in Fig. 21 (cf. Chapter 2). The stagnation point is at the surface ( = 0)

and the liquid ‡ows at ( > 0) the upper half plane. The disk is assumed porous with mass

‡ux velocity 0 with 0  0 for injection and 0  0 for suction. By the Fourier’s law of heat

conduction, the heat transfer analysis is performed with the in‡uence of nonlinear radiation and

heat generation/absorption. Here,  is the convective ‡uid temperature and  the convective

heat transfer coe¢cient because the surface temperature is of the convective heating process.

From the above discussion, the governing equations for the considered non-linear problem are

(Eqs.(218) to (220) cf. Chapter 2, Eqs. (17)  (111)¡ (114), (115)¡ (116) cf. Chapter 1)
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The BCs are

 =   = ­  = 0 ¡ 



=  ( ¡  )   =  at  = 0

!  =   ! 0  =  = ¡2  ! 1  ! 1 as  !1 (4.6)

The expression for the radiative heat ‡ux  is (Eq. (37) cf. Chapter 3)

 = ¡
4

3
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 4
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= ¡

16

3

¤ 3
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
 (4.7)

After applying the transformations (Eq. (224) cf. Chapter 2) into Eqs. (41)¡ (45), we get

 0 + 2 = 0 (4.8)
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00 ¡ 0 +



00 = 0 (4.12)

The transformed BCs are

 () =   () = 1  () =  0 () = ¡ (1¡  ())   () = 1 at  = 0

 ()!   ()! 0  ()! 0  ()! 0 as !1 (4.13)

The dimensionless physical parameters are as follow:


¡
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­

¢
the velocity ratio parameter, 

³
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­

´
the mass transfer parameter and

³
=




p

­

´

the Biot number and rest of the parameters are similar as de…ned in the previous chapter.
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4.2 Physical Parameters

The physical parameters de…ned as follows:

() The Nusselt number  is de…ned by

 = ¡

µ

1 +
16
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¶
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¡
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Making use of the transformations (Eq. (224) cf. Chapter 2) in Eq. (414) gives
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1
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3
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3

¾
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() The Sherwood number  is

 = ¡
 

¡



¢¯
¯
=0

 ( ¡1)
 (4.16)

After using the similarity variables (Eq. (224) cf. Chapter 2) in Eq. (416), we obtain

Re¡
1
2  = ¡0 (0)  (4.17)

where Re is the Reynolds number de…ned in Chapter 2.
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4.3 Results and Discussion

In the present investigation, our aim is to interpret the characteristics of swirling stagnation

point ‡ow of Oldroyd-B nano‡uid over a permeable rotating disk. In order to describe the ‡ow

behavior, heat and mass transfers in terms of various involved parameters, results are drawn in

…gures 41 to 46. For this, we …xed various physical parameters which are  = 10  = 13

 = 01 1 = 005 2 = 02  = 15  = 11  = 003  = 08  = 05  = 01

 = 01 Pr = 50 and  = 50 to illustrate physical reasoning of the problem.

The in‡uence of stretching parameter  on velocity in radial  () and azimuthal  ()

directions, temperature  () and concentration  () distributions, respectively is sketched in

Figs. 41 (a)¡(d) with the speci…ed values of other parameters. Fig. 41 (a) shows the impact

of  on ‡uid velocity in radial direction. In this …gure, the radial velocity  () shows a rising

behavior with an increase in  in the range 01 to 20. Basically, the stretching parameter 

is the ratio of stretch  to swirl ­ rates of the disk. So, by higher estimation of stretching

parameter  (= 01 10 15 20), the ‡uid velocity in radial direction  () increases due to an

increase in the disk stretching rate. On the other hand, the contrary variation on velocity in

azimuthal direction is noticed in Fig. 41 (b). This is because of the decrease in the swirl rate

of the disk as compared to stretching rate. Moreover, the change in temperature for higher

values of  is discussed through Fig. 41 (c) with the default values of other parameters. It is

remarked that the temperature  () declines with the enlargement of . For solutal distribution

 (), similar results can be seen (see Fig. 41 (d)).

Figs. 42 (a¡ b) are sketched to see the e¤ect of velocity ratio parameter  on ra-

dial velocity  () and azimuthal velocity  () against . It is noted that as the value of
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 (= 00 01 03 05) increases, so does the radial velocity  (). As  is the ratio of free

stream velocity rate to rotation rate of the disk. Physically, it can be perceived that when the

values of   1, the rotating disk velocity will be dominant than the free stream velocity. As

rotation of disk is also contributes in the radial velocity of the ‡uid and the disk rotation accel-

erates with more speed, the development of centrifugal force will become more stronger which

as a result, push the ‡uids particles in the radial direction, so, enhancement of the radial ‡ow

velocity is noticed. Furthermore, the reduction of the velocity in azimuthal direction is seen in

Fig. 42 (b). This is due to a decrease in the rotation rate of the disk. Figs. 43 (a) ¡ (c)

depict the e¤ect of suction parameter  on  (),  () and  (), respectively. In Fig. 43 (a),

we seen that the velocity of the ‡uid enhances by the enlargement of mass transfer parameter

 (= 00 01 03 05) with  = 01. Enlargement in temperature …eld  () is noticed for the

case of injection which changes from 00 to 05 that is displayed in Fig. 43 (b). Furthermore,

the concentration distribution for mass transfer parameter  is pictured in Fig. 43 (c). It is

scrutinized that the concentration of the ‡uid enhances as  changes from 00 to 05.

In order to see the change in ‡uid temperature on thermal radiation parameter , Biot

number  and heat absorption/generation parameter , respectively, results are sketched via

Figs. 44 (a)¡(c). Here, distributions given in these sketches show that all results are satis…ed

boundary conditions asymptotically. It is sighted that the temperature of the ‡uid  () is

boosted up under the action of radiation parameter  against . Basically, the process of

radiation described by dimensionless radiation parameter  which raises the ‡uid temperature

due to providing of extra heat to the ‡uid. Furthermore, the impact of Biot number  on

temperature distribution is discussed via Fig. 44 (b). As we seen that the temperature within

the ‡uid ‡ow is boosted up with an increment in Biot number  (= 01 03 05 08). From the
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de…nition of Biot number, the increasing values of implies that the convective heat transfer

coe¢cient increases which allows more heat to be transferred from the surface. Furthermore,

the temperature distribution  () is also in‡uenced by heat generation/absorption parameter

 (see Fig. 44 (c)). This …gure highlighted that the temperature of the ‡uid is enhanced by

enlarging values of  (= 00 03 06 09). Additionally, the thermal boundary layer thickness

becomes thicker with the enlargement of  in this manner.

The e¤ect of thermophoresis parameter  on  () and  () Oldroyd-B liquid is illustrated

in Figs. 45 (a) and (b). According to the results, the temperature of the ‡uid rises as 

goes from 01 to 07. The same behavior is seen for concentration of nanoparticle as shown in

Fig. 45 (b). Basically, the thermophoretic force produces in the ‡uid by taking the higher

values of  and consequently, heat and mass transport enhance in the ‡uid. To see the e¤ect

of Brownian motion parameter () on  () and  (), respectively, results are drawn in Figs.

46 (a) to (b). From Fig. 46 (a), it is rendered that the temperature rises when the values of

 increases. Moreover, the concentration distribution  () declines as  changes form 01

to 07 with  = 02. As, the resistance to the mass transport phenomenon is produced by

higher Brownian motion which leads to a reduction in the concentration distribution.

To see the variations in Nusselt number and Sherwood number on di¤erent physical pa-

rameters, results are drawn in Tables 41 and 42, respectively. In Table 41, we seen that

the enlargement of , 1 and 2, respectively, the Nusselt number reduces, while a converse

results can be noticed for Biot number . Additionally, the heat transfer at the wall shows

decreasing results for ,  and , respectively. Furthermore, the variation of Sherwood

number Re¡12  with respect to , 1, 2, ,  and , respectively, numerical results of

Oldroyd-B ‡uid over a porous disk are presented in Table 42. It can be observed that, the
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mass transfer at the well declines with respect to , 1and 2, respectively. On the other hand,

results show the higher trend of Sherwood number against ,  and , respectively.

Figs. 4.1: Impact of  on  (),  (),  () and  ().
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Figs. 4.2: Impact of  on  () and  ().

Figs. 4.3: Impact of  on  (),  () and  ().
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Figs. 4.4: Variation of  () on ,  and .
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Figs. 4.5: Impact of  on  () and  ().

Figs. 4.6: Impact of  on  () and  ().
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Table 41: In‡uence of physical parameters , 1, 2, , ,  and  on Re¡12

with  = 13  = 1  = 05  = 11  = 50 = Pr and  = 05.

 1 2     Re¡12

01 003 02 05 01 01 01 032869670

02 030445296

03 027164688

03 005 027142563

008 027003383

03 01 01 027147688

03 026767199

03 01 05 05 026242469

055 027614758

06 028880341

03 01 05 07 03 025893435

05 021710155

07 018330227

03 01 05 07 06 01 019931250

02 017118192

03 013864581

03 01 05 07 06 02 01 017132248

02 011515603

03 005633411
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Table 42: In‡uence of physical parameters , 1, 2, ,  and  on Re¡12  with

 = 13  = 1  = 05  = 5  = 01,  = 05 and  = 05.

 1 2    Re¡12 

01 003 02 01 01 30 230389026

02 207722109

03 186641287

03 005 186447322

008 186148902

01 185943551

03 01 03 185286187

04 184598114

05 181700298

03 01 01 03 224122884

04 261593126

05 321403998

03 01 01 03 03 229779179

04 232245478

05 231603409

03 01 01 03 03 50 229779179

70 248750201

90 265290729
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Chapter 5

Swirling Flow of Oldroyd-B Fluid

with Soret-Dufour E¤ects

In this chapter, a mathematical investigation of the Darcy ‡ow of an Oldroyd-B ‡uid due

to a permeable rotating disk is discussed. The mechanisms of heat and mass transport are

investigated with the signi…cant features of thermal di¤usion (Soret) and di¤usion thermo

(Dufour). Further, the impact of chemical reaction is also assumed on solutal …eld. To handle

the governing problem, the von Karman variables are utilized to produce the similarity equations

which are then numerically integrated via bvp midrich method in Maple. A parametric survey

is undertaken and the results are displayed in both graphical and tabular formats. It is proved

that the velocity of the ‡uid reduces with the impact of the porosity parameter. The rate of

heat transfer accelerates substantially with the decreasing values of Soret number.
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5.1 Mathematical Formulation

We assume the axisymmetric ‡ow of an Oldroyd-B ‡uid in‡uenced by stretchable rotating

porous disk. The ‡ow about ¡axis is axisymmetric so that all physical quantities are inde-

pendent to . The magnetic …eld is applied normally to the disk in this problem. The disk is

assumed to be porous with mass ‡ow rate 0 (0  0 for injection and 0  0 for suction).

The assessments of heat and mass transport are performed with the addition of Soret and Du-

four e¤ects. The e¤ect of chemical reaction is also taken to measure the performance of mass

transport. The schematic view of the rotating disk is displayed in Fig. 2.1 (cf. Chapter 2).

Within the assumptions speci…ed above, the governing equations of the problem are given

by
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The boundary conditions are

 =   = ­  = 0  =   =  at  = 0

! 0  ! 0  ! 1  ! 1 as  !1 (5.6)

Considering the variables (cf. Chapter 2)
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Substituting the above variables into Eqs. (51)¡ (55) reduce to the following non-dimensional

form
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00 ¡ Pr0 +Pr00 = 0 (5.11)

00 ¡ 0 + 
00 ¡  = 0 (5.12)

The transformed BCs are

 () =   () = 1  () =   () = 1  () = 1 at  = 0

 ()! 0  ()! 0  ()! 0  ()! 0 as  !1 (5.13)
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¡
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¢
the Schmidt number and the remaining parameters are similar as de…ned in

the previous chapters.

5.2 Physical Parameters of Interest

The Nusselt number () is de…ned by
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 (5.14)
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The dimensionless form
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1
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The Sherwood number () is

 = ¡
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 (5.17)

where
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In non-dimensional form is

Re¡
1
2  = ¡0 (0)  (5.19)

where, Re is the Reynolds number de…ned in previous chapter.

5.3 Problem Discussion

The numerical outcomes are plotted and tabulated in order to see the impact of various parame-

ters on the velocity …eld, liquid temperature, concentration distribution. The numerical scheme

(bvp midirch) is followed to characterize the ‡ow, temperature and concentration of the liquid

in the form of graphs. The current analysis which involves the non-dimensional parameters are

 , , , 1, 2 , , , , Pr and . The whole analysis is performed by …xing the values

of parameters as  = 10  = 13  = 01 1 = 005 2 = 005  = 01  = 01  = 01

 = 01 Pr = 50 and  = 50.

In order to show the variations of velocity pro…les in di¤erent directions, temperature as well

as concentration of the ‡uid under the action of porosity parameter , results are traced by Figs.

51 (a¡ e). The enlargement of porosity parameter  (01¡ 05) leads to reduced magnitude of

the velocity …eld (see Figs. 51 (a¡ c)). As, the existence of porous media essentially increases

the ‡ow resistance therefore reduces the movement of the ‡uid. Moreover, in Figs. 51 (d¡ e),
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the liquid temperature as well as concentration distribution are enhanced by the increment of

. As the presence of porous media arises the resistance in the liquid, resulting in an increase

in ‡uid temperature and concentration. The in‡uence of 2 (retardation time parameter) on

the ‡ow …eld is presented in Figs. 52 (a¡ c). It is concluded from these graphs that raising

of 2 (= 005 01 015 02) increases the azimuthal velocity and decreases the magnitude of

velocity in the radial and axial directions.

The variation of temperature and concentration distributions via Soret  and Dufour

 numbers, are shown through Figs. 53 (a) and (b) with default values of other …xed

parameters. One can observe from the distributions given in these …gures that all the solutions

satis…ed the far …eld boundary conditions asymptotically. As we can see from these …gures that

the dimensionless liquid temperature  () declines and concentration  () distribution boosted

by the Soret  and Dufour  numbers. Moreover, the e¤ect of chemical reaction parameter

on concentration distribution  () is examined through Fig. 54. These curves show that

the concentration distribution falls down as the chemical reaction parameter changes from 00

to 09. From a physical perspective, the chemical reaction creates additional resistance to the

molecular motion of the liquid, resulting in a decrease in concentration distribution. Further,

the variation of Nusselt number and Sherwood numbers on the impact of porosity parameter

 is plotted in Figs. 55 (a¡ b) against di¤erent values of stretching parameter. As obvious

in this plot, the Nusselt number diminishes by increasing  (= 00 10 30 50) and enhances

against (= 08 to 20). The same behavior is noted for Sherwood number (see Fig. 55 (b)).

To watch the change in Nusselt and Sherwood numbers for di¤erent physical parameters,

results are done in Tables 51 and 52. The variation of Nusselt number on , 1, 2, ,

and Pr, numerical results are calculated in Table 51. In this table, it is noted that for higher
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estimation of , 2 and , respectively, the Nusselt number
©
¡0 (0)

ª
reduces gradually

and rises for 1 and Pr, respectively. Further, from Table 52 represents that variation of

Sherwood number
©
¡0 (0)

ª
against distinct values of , 1, 2, ,  and . From this table,

an increment in mass transfer rate is observed under the action of  and , respectively. On

the other hand, the converse result is noticed against , 1, 2 and , respectively.
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Table 51: In‡uence of physical parameters (, 1, 2,  and Pr) on Re¡12 with

other …xed parameters.

 1 2  Pr Re¡12

01 003 003 01 50 170252272

02 150425573

03 131795786

03 005 131421459

008 130861779

01 130489738

03 01 005 130255102

008 129905964

01 129656603

03 01 01 013 119915648

015 113217867

02 095909851

03 01 01 02 60 100746229

70 104122868

80 106025442
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Table 52: In‡uence of physical parameters , 1, 2, ,  and  on Re¡12  with

…xed values of other parameters.

 1 2    Re¡12 

01 003 003 01 01 50 190263505

02 170268819

03 151283970

03 005 150970351

008 150502678

01 150192512

03 01 005 149996670

008 149698803

01 149492053

03 01 01 013 143139736

015 138928656

02 128847545

03 01 01 02 02 147564879

03 165305420

04 182180421

03 01 01 02 04 60 204495337

70 227626930

80 251397531
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Figs. 5.1: Impact of  on  (),  (), ¡ (),  () and  ().
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Figs. 5.2: Impact of 2 on  (),  () and ¡ ().

Figs. 5.3: Impact of ( and ) on  () and  ().
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Fig. 5.4: Impact of  on  ().

Figs. 5.5: Impact of  on ¡0 () and ¡0 () against .
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Chapter 6

Chemically Reactive Flow of

Oldroyd-B Fluid with non-Fourier’s

Heat Flux Theory

The current chapter investigates the magnetized ‡ow of an Oldroyd-B ‡uid over a rotating

disk under various physical perspectives. To investigate the ‡uid thermal transport features

in this analysis, we employ the modi…ed Fourier’s law rather than the classical Fourier’s law.

The in‡uence of homogeneous-heterogeneous reactions on mass transport is also studied. The

governing continuity, momentum, heat and concentration partial di¤erential equations (PDEs)

are reduced into a set of non-dimensional ordinary di¤erential equations (ODEs) by utilizing

the von Karman variables. In order to obtain numerical solutions, the bvp midrich approach is

used. Diverse e¤ects of di¤erent involved parameters on the velocity pro…les, temperature and

concentration of the ‡uid are discussed. The comparison table is also designed to determine
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whether our numerical results are valid with previous results.

6.1 Problem Formulation

The current work focuses on the magnetized swirling ‡ow of Oldroyd-B ‡uid with homogeneous

and heterogeneous reactions. The Catteneo-Christov heat ‡ux theory (modi…ed Fourier’s law)

is utilized here for carrying out the heat transport analysis. In addition, the impact of homo-

geneous and heterogeneous reactions is considered to control mass transportation. The ‡ow is

generated by the spinning with uniform angular velocity ­ and radially stretching disk as shown

in ‡ow setup Fig. 2.1 (cf. Chapter 2). The governing equations for steady incompressible and

magnetized three dimensional ‡ow of an Oldroyd-B ‡uid are (Eqs. (13), (16), (119), (121),

(122) cf. Chapter 1)
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2
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The relevant BCs are

 =   = ­  = 0  =  



=  




= ¡ at  = 0

! 0 ! 0  ! 1 ! 0 ! 0   !1 (6.7)

In the above equations, 0 is the thermal relaxation time, ( ) the rate constants and

() the di¤usion coe¢cients of species.

Familiarizing the von Karman transformations (Eq. (224) cf. Chapter 2) into Eqs. (61)¡

(66), we …nally get

 0 + 2 = 0 (6.8)

 2 ¡2 +  0 ¡  00 + 1
¡
 002 + 2 0 ¡ 20

¢

+2
¡
2 02 + 2 0 00 ¡  000

¢
+

¡
 + 1

0
¢
= 0 (6.9)
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1

Pr
00 ¡0 ¡ 

£
200 + 00

¤
= 0 (6.11)

1


00 ¡0 ¡1

2 = 0 (6.12)

¤


00 ¡0 +1

2 = 0 (6.13)

The transformed BCs are

 () =   () = 1  () = 0  () = 1 0 () = 2 ()  ¤0 () = ¡2 () at  = 0

 ()! 0  ()! 0  ()! 0  ()! 1  ()! 0 as  !1 (6.14)

where,  (= 0­) is the thermal relaxation time, 1

³
= 

20
­

´
the homogeneous reaction rate,


³
= 



´
the Schmidt number, 2

³
= 



p

­

´
the heterogeneous reaction rate, Pr

¡
= 



¢

the Prandtl number, ¤
³
= 



´
the ratio of di¤usion coe¢cients and the rest parameters are

similar as de…ned in previous chapters.

The species  and  are not equal generally, although it may be expected that their size

will be similar. In the occasion, we presume that the di¤usion species coe¢cients  and 

are identical, i.e., ¤ = 1, hence

 () +  () = 1 (6.15)

Now using the above condition (615), Eqs. (612)-(613) and their respective boundary condi-
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tions take the form

1


00 ¡0 ¡1 [1¡ ]2  = 0 (6.16)

0 (0) = 2 (0) and  (1)! 1. (6.17)

6.2 Results and Discussion

The primary goal of this study is to investigate the physics of Oldroyd-B ‡uid ‡ow with energy

transport under the modi…ed Fourier’s law. The e¤ect of the controlling parameters are graph-

ically presented to provide an understanding into the physics of the problem. The …ndings are

presented in Figs. 6.1-6.5 in order to explain the ‡uid ‡ow behavior, heat and mass trans-

portation by di¤erent parameters. The solutions are investigated numerically using bvp midrich

scheme on Maple programming. We set di¤erent parameters for describing physical structure

which are  = 08,  = 10, 1 = 005, 2 = 005,  = 01, 1 = 03, 2 = 03,  = 100

and Pr = 100. Here, numerical computations has been made with emerging parameters in the

ranges, 005 · 1 · 07, 005 · 2 · 07, 00 ·  · 03, 03 · 1 · 70, 03 · 2 · 09,

30 · Pr · 90, 30 ·  · 90.

The curves of velocities ( (),  () and  ()), respectively are drawn in Figs. 6.1(a-e)

for varying values of 1. Fig. 6.1(a) discloses the change in radial velocity  () with respect

to relaxation time parameter 1. It shows that the radial velocity declines by taking values

of 1 from 005 ¡ 07. Because the relaxation time is the ratio of material relaxation time to

material observation time. Hence, for larger estimation of relaxation time parameter imply the

stress relaxation is greater or the observation time is shorter and indicates that the ‡uid reacts

solidly. The velocity of the ‡uid is thus decreased in such a way. In the azimuthal direction,
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the same behavior can be observed through Fig. 6.1(b). In addition, the thickness of the

boundary layer is also signi…cantly reduced. Moreover, Fig. 6.1(c) identi…es the velocity in

axial direction with respect to . It is noted that the enlargement of 1(= 005, 03, 05, 07)

reduces the velocity in the axial direction  (). The behavior of temperature  () of the liquid

is presented through Fig. 6.1(d). After examining, it is seen that the ‡uid temperature  ()

enhances with the enlargement in 1(= 005, 03, 05, 07). This can be explained physically

as the e¤ect of Deborah number of relaxation time on the ‡uids having a solid-like response.

Therefore, the conductive heat transfer rises in solid-like ‡uid as compared to liquid thereby,

the temperature enhances in this manner. On the other hand, Fig. 6.1(e) depicts the opposite

trend regarding concentration distribution  (). In order to view the velocity …eld variations,

thermal and solutal distributions for retardation time parameter 2, curves are sketched through

Figs. 6.2(a-c). The e¤ect of 2 on azimuthal velocity pro…le  () is indicated in Fig. 6.2(a).

The curves in this …gure noted that the azimuthal velocity improves with the increment in 2.

The function  () is directly proportional to 2. This means that ‡uid ‡ows parallel to the

disk, which accelerates with a higher rate of ‡uid retardation time. Fig. 6.2(b) perceives the

behavior of liquid temperature on changing values of 2(= 005, 03, 05, 07) by setting default

parameters …xed. It is seen that the ‡uid temperature is raised up by the action of 2. On the

other hand, the solutal distribution  () demonstrates the inverse trend which is depicted in

Fig. 6.2(c). Furthermore, in this situation, the concentration boundary layer appears to be

thinner.

The e¤ect of thermal relaxation time parameter on  () is discussed along with the other

…xed parameters in Fig. 6.3(a). With the enlargement of thermal relaxation time parameter

, there is a reduction in temperature of Oldroyd-B ‡uid. Physically, for  = 0, the Cattaneo-
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Christov model (non-Fourier heat ‡ux model) converts to the classical Fourier’s law implying

that the heat energy transports in the ‡uid instantly. As in Fig. 6.3(a), for large estimation

of non-zero values of  diminishes the thermal distribution  (). Because the heat energy rate

in the given ‡uid is controlled by a non-Fourier heat ‡ux model. The in‡uence of homogeneous

reaction parameter 1 on  () is illustrated in Fig. 6.3(b). Increasing the values of 1 from

03 to 70 with Pr = 50 = , which results to enhance the concentration distribution. Addi-

tionally, the thickness of concentration boundary layer becomes thinner when the homogeneous

reaction increases. Moreover, the same behavior for the heterogeneous reaction parameter 2

can be found as stated in Fig. 6.3(c).

The in‡uence of Pr on  () is discussed in Fig. 6.4(a). In this …gure, the plot shows

a decreasing trend of liquid temperature when di¤erent values of Pr(= 30, 50, 70, 90) are

taken. Physically, for higher Prandtl number Pr( 1) , the thermal di¤usivity reduces, hence

the reduction in the temperature distribution is noted in this situation. Moreover, the change

of mass transport against Schmidt number  is pictured in Fig. 6.4(b). The result is carried

out for  in the range (30 to 90) with respect to . It is remarked that the mass transport

in the ‡uid is increased by the higher values of  [see Fig. 6.4(b)].

To watch the change in concentration gradient at the wall 0 (0) for di¤erent physical pa-

rameters, results are done in Figs. 6.5(a-b). The e¤ect of 1 on wall concentration gradient

0 (0) is analyzed with respect to  as obtained in Fig. 6.5(a). This pro…le shows a declining

behavior for distinct values of 1 against . Furthermore, when the stretching parameter 

increases, the wall concentration gradient increases. Additionally, Fig. 6.5(b) shows the nu-

merical investigation of 0 (0) on the heterogeneous reaction parameter 2. From these curves,

an increment in 0 (0) is observed under the action of 2 and , respectively.
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Figs. 6.1: Impact of 1 on  (),  (),  (),  () and  ().
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Figs. 6.2: Impact of 2 on  (),  () and  ().
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Figs. 6.3: Impact of  on  (), impact of 1 on  () and impact of 2 on  ().
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Figs. 6.4: Impact of Pr on  () and impact of  on  ().

Figs. 6.5: Impact of 1 on 0 (0) and impact of 2 on 0 (0).
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Chapter 7

Swirling Flow of Oldroyd-B Fluid

with Cattaneo-Christov Theory and

Heat Generation/Absorption

In this chapter, the analysis of Cattaneo-Christov heat and mass ‡ux theories in the ‡ow of

Oldroyd-B ‡uid over a rotating disk is presented. Additionally, the heat generation/absorption

and chemical reaction are also added into heat and mass equations, respectively. Here, the

‡ow phenomenon is due to the rotating as well as stretching of the disk. The system of partial

di¤erential equations (PDEs) is converted into non-dimensional ordinary di¤erential equations

(ODEs) by utilizing some suitable variables. The analytical solutions are obtained by using the

homotopy analysis method (HAM) in Mathematica software. The graphical results are achieved

in the form of velocity …elds, temperature and concentration distributions. Results show that

the temperature of the Oldroyd-B ‡uid rises when the magnetic …eld parameter increases in
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some speci…c range. It is noted that the temperature reduces as the thermal relaxation time

parameters increases. Additionally, the concentration distribution is seen in decreasing trend

by the enlargement of solutal relaxation time parameter.

7.1 Problem Formulation

Let us assume three dimensional magnetized ‡ow of Oldroyd-B ‡uid due to a rotating and

stretching disk. For the formation of heat and mass transport equations, the Cattaneo-Christov

heat and mass ‡ux theories are used instead of classical Fourier’s and Fix’s laws. Moreover,

the heat generation/absorption is also added into the heat equation and chemical reaction is

included into the concentration equation. The magnetic …eld is applied perpendicularly to the

disk (see Fig. 2.1, cf. Chapter 2). The equations for the given problem are (Eqs. (218¡ 220)

cf. Chapter 2)
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The boundary conditions are

 =   = ­  = 0  =   =  at  = 0

! 0  ! 0  ! 1  ! 1 as  !1 (7.6)

Here, 1 is the solutal relaxation time.

Substituting the transformations (Eq. (224) cf. Chapter 2) into Eqs. (71) to (75) gives

 0 + 2 = 0 (7.7)
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1

Pr
00 ¡0 ¡ 

£
200 + 00

¤
+  + 0 = 0 (7.10)

00 ¡ 0 ¡ 
£
200 + 00

¤
¡ ¡ 0 = 0 (7.11)

The boundary conditions are

 () =   () = 1  () = 0  () = 1  () = 1 at  = 0

 ()! 0  ()! 0  ()! 0  ()! 0 as  !1 (7.12)

The dimensionless parameters which are as follow:

Here,  the solutal relaxation time parameter and  the chemical reaction parameter.

These quantities are de…ned as

 = 1­  =
1

­
 (7.13)

7.2 Results and Discussion

This study presents the swirling ‡ow of magnetized Oldroyd-B ‡uid due to a stretching as

well as rotating of the disk. The Cattaneo-Christov theory is used to formulate the heat and

100



mass transport mechanisms. Moreover, the heat generation/absorption and chemical reaction

are also taken into heat and mass equations, respectively. The analytical results are expressed

graphically to see the physical behavior of the ‡uid. The …ndings are given in Figs. 7.2 to

7.6 against various involved physical parameters. Tables 7.1 and 7.2 show the comparison

between present results with the past outcomes for a limiting case,.i.e., in the absence of 1, 2,

 , , , ,  and . These tabulated results are the analytical values of  0 (0), ¡0 (0) and

¡0 (0) compared with those of the previous literature. In Table 7.1, a comparison of ¡0 (0)

amongst the results by Gregg and Sparrow [58], the numerical results and the results obtained

from the present study is given. Furthermore, Table 7.2 shows a link between the results of

the present study, the results obtained by Turkyilmazoglu [54] and the numerical results. These

tables show the validity of the present scheme and problem.

In‡uence of retardation time parameter 2 on velocity pro…le, temperature and concentra-

tion distributions is presented in Figs. 7.1(a-e). It reveals that the radial velocity  () shows

the reducing behavior by increasing the retardation time parameter 2 as shown in Fig. 7.1(a).

A similar observation can be seen for azimuthal ‡uid velocity  () by enlarging 2(= 01, 03,

05, 07). Further, to see the in‡uence of 2 on axial ‡uid velocity  (), Fig. 7.1(c) is

sketched. On the other hand, Fig. 7.1(d) is drawn to see the e¤ect of 2 on temperature

distribution  () provided that the temperature enhances in the Oldroyd-B ‡uid ‡ow as 2

increases in the range 01 to 07. Additionally, the change in concentration distribution  () is

pictured in Fig. 7.1(e) with respect to higher retardation time parameter 2. It is illustrated

that the concentration in the Oldroyd-B liquid is enhanced by taking di¤erent values of 2 in

positive increasing order.

The impact of  (magnetic …eld parameter) on velocity …elds, temperature and concen-
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tration distributions is discussed through Figs. 7.2(a-e). It is stated that the radial velocity

diminishes as magnetic …eld parameter increases in the range (= 05, 10, 15, 20). A sim-

ilar pattern can be seen for the velocity of azimuthal direction. Additionally, Fig. 7.2(c) is

sketched to observe the variation of liquid velocity in axial direction. On the other hand, the

temperature distribution is discussed via Fig. 7.2(d) against di¤erent values of magnetic …eld

number  . This pro…le reveals that  () enhances as  varies from 05 to 20. A similar

behavior is noted for the concentration distribution  () in the ‡ow [see Fig. 7.2(e)].

The change in temperature in the liquid with respect to thermal relaxation time parame-

ter  is presented through Fig. 7.3(a). It is depicted that temperature reduces for larger

estimations of . In physical terms, the liquid particles take additional time to pass heat into

the neighboring particles by increasing the thermal relaxation time parameter, which allows

the temperature to decrease, thereby reducing the temperature in the liquid. On the other

hand, by setting (= 0), the concept of Cattaneo-Christov converts to the classical Fourier’s

law, thereby heat is immediately transmitted through the substance so that increases the ‡uid

temperature. Moreover, the curves for concentration distribution are drawn with the in‡uence

of . It is evaluated that with a larger approximation of , the concentration distribution

decreases which is shown in Fig. 7.3(b).

Figs. 7.4(a, b) are presented to exhibit the dependence of the ‡uid temperature on the

heat generation/absorption parameter . It is deduced from the plots that the temperature is

an increasing function of heat generation parameter ( 0). Additionally, it is found that the

heat absorption parameter ( 0) falls down the temperature and the thermal boundary layer.

Fig. 7.5 displays the involvement of the  on the concentration distribution. It delineates

that the chemical reaction parameter  has a decaying e¤ect on the concentration distribution
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and concentration boundary layer structures.

Table 7.1: A link between present study and with previous article for the ¡0(0) on various

values of Pr.

Pr Gregg and Sparrow [58] Analytical results Numerical results

1 039625 03968553 039682844

10 11341 11338514 113385776

100 26871 26867440 268677447

Table 7.2: A comparison of the  0(0) ¡0(0) and ¡0(0) on …xed Pr = 62 with previous

published articles.

Turkyilmazoglu [54] Analytical results Numerical results

 0 (0) 051023262 050007761 051011626

¡0 (0) 061592201 061852072 061584927

¡0 (0) 093387794 093004605 093369411
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Chapter 8

Swirling Flow of Oldroyd-B

Nano‡uid with Cattaneo-Christov

Double Di¤usion Theory

This chapter presents a swirling ‡ow of the viscoelastic Oldroyd-B ‡uid in the presence of

nanoparticles. A progressive modi…cation is made to the heat and concentration equations of

nano‡uid by exploiting the Cattaneo-Christov theory. The feature of the Lorentz force due to

the magnetic …eld applied normally to the disk is discussed. A homotopic approach (HAM)

is applied for the analysis of the governing nonlinear problem. Results show that temperature

as well as concentration distributions are reduced by higher magnitude of thermal and solutal

relaxation time parameters, respectively.
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8.1 Formulation of Governing Problem

Here, we examine the steady and incompressible von Karman swirling axisymmetric ‡ow of an

Oldroyd-B nano‡uid. The ‡uid ‡ow is generated by the rotating and stretching of the disk as

displayed in the setup Fig. 2.1 (cf. Chapter 2).

For formulation of heat and mass transport in the ‡uid, the Cattaneo-Christov theory is

employed. The Buongiorno model is adopted to study the thermal features of the nanoparticles

described by thermophoresis and Brownian motion quantities.

The above assumptions lead the following system of nonlinear governing equations (Eqs.

(17), (119), (120) cf. Chapter 1 and (218), (219), (220) cf. Chapter 2)
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8.2 Boundary Conditions

The BCs of the governing problem are:

(i) On the surface of the disk ( = 0)

( ) = (­ 0)  () = ( )  (8.6)

(ii) On the free stream ( !1)

( )! (0 0)  ()! (1 1)  (8.7)

where ­ indicates the swirling rate and  the stretching rate.

By substituting the von Kármán similarity transformations (Eq. (224)) cf. Chapter 2) into

Eqs. (81) to (85), we acquire

 0 + 2 = 0 (8.8)
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with non-dimensional BCs

(  ) = ( 1 0 1 1) at  = 0

(  )! (0 0 0 0) as !1 (8.13)

The involved parameters are similar as de…ned in previous chapters.
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8.3 Results and Discussion

To acquire the analytical series solution of the proposed problem (88) to (812) and (813), a

homotopy analysis method is implemented. This part is centered around the physical expla-

nation of involved parameters impact on velocity …eld, temperature and solutal distributions.

The von Karman swirling ‡ow of the Oldroyd-B ‡uid is analyzed in the form of similar solu-

tions. The e¤ect of parameters like magnetic …eld 05 ·  · 20, relaxation time parameter

01 · 2 · 07 are analyzed on velocity pro…le, thermal and solutal distributions. The impact of

thermal relaxation time parameter 01 ·  · 07, thermophoresis parameter 01 ·  · 07,

the Brownian motion parameter 01 ·  · 07, the Prandtl number 50 · Pr · 90 on

temperature distribution is inspected. Solutal relaxation time parameter 01 ·  · 07, the

thermophoresis parameter 01 ·  · 07, the Brownian motion parameter 01 ·  · 07

and the Schmidt number 50 ·  · 90 are examined on concentration distribution.

Figs. 8.1(a-e) depict the e¤ect of the magnetic …eld parameter  on velocity pro…le,

temperature, and concentration distributions of the liquid. From Figs.8.1(a) and 8.1(b), the

variations in velocity pro…les with respect to the magnetic …eld parameter  are disclosed

against . It is seen that the velocities in the radial and azimuthal directions decline with

the in‡uence of  (05¡ 20). Additionally, the magnitude of the velocity pro…le in the axial

direction reduces with the higher impact of  , as shown in Fig. 8.1(c). Physically, the

magnetic …eld is a resistive force which produces resistance to the motion of the liquid and thus

a reduction in the motion of the ‡uid is noticed. The impact of magnetic …eld parameter  on

the temperature distribution  () is plotted in Fig. 8.1(d). It is stated that the temperature

is enhanced by higher values of  . Due to the presence of the magnetic …eld, the Lorentz
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force (the resistive force) appears in the motion of ‡uid. A higher magnetic …eld corresponds

to a stronger Lorentz force that enhances the temperature of the liquid. Furthermore, the

concentration distribution  () is enhanced by taking a large estimation of the magnetic …eld

(see Fig. 8.1(e)).

To see the e¤ect of the retardation time parameter 2 on the velocity of the ‡uid, tempera-

ture and concentration distributions, the curves are plotted via Figs. 8.2(a-e). It is observed

that the velocity in the radial  () and azimuthal  () directions decrease as 2 changes from

01 to 07. Moreover, the velocity in the axial direction is a¤ected by the retardation time

parameter, as shown in Fig. 8.2(c). To analyze the in‡uence of 2 on the temperature and

concentration distributions, the results are sketched in Figs. 8.2(d) and 8.2(e), respectively.

From these …gures, it is observed that a stronger rate of the retardation time parameter 2

leads to increase the temperature and concentration distribution of the Oldroyd-B liquid (see

Figs. 8.2(d) and 8.2(e)).

The variations of the temperature distribution  () with respect to thermal relaxation time

parameter  are plotted in Fig. 8.3(a). In this …gure, the temperature declines with the

enlargement of . In fact, for higher values of , the ‡uid particles take more extra time

to transport heat into the adjoining particles, which causes a decrease in the temperature.

Moreover, Fig. 8.3(b) shows the e¤ect of the solutal relaxation time parameter  on the

 (). It reveals that the concentration distribution  () and the boundary layer thickness fall

down as the  increases from 01 to 07.

Figs. 8.4(a) and 8.4(b) elucidate the in‡uence of  on the temperature and concentration

distributions, respectively. The temperature as well as concentration of the liquid enhance with

. Physically, higher values of  increase the thermophoretic force which leads to increase
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the transportation of heat and mass in the ‡uid ‡ow.

Figs. 8.5(a) and 8.5(b) show the in‡uence of  on the temperature  () and concentra-

tion  () distributions, respectively, in the Oldroyd-B ‡uid ‡ow. It shows that the temperature

rises with respect to  (01¡ 07). It is because of the fact that a higher rate of  causes an

increase in the di¤usion rate which leads to the maximum in collision between the ‡uid particles.

Therefore, the temperature of the ‡uid increases. The change in the solutal distribution on 

is discussed in Fig. 8.5(b). It is stated that higher values of  reduce the concentration

distribution. Basically, a higher rate of  causes more collision between the ‡uid particles.

So, for that reason, the mass transfers at a very low rate and consequently, a reduction in the

concentration distribution is noticed.

Fig. 8.6(a) delineates the e¤ect of Pr on the temperature distribution. The temperature

reduces as Pr changes from 50 to 90. Additionally, the impact of  on the concentration dis-

tribution is sketched in Fig. 8.6(b). It is obvious that increasing values of  tend to diminish

the concentration distribution . Since the Schmidt number is inversely proportional to the

di¤usion coe¢cient. So, enlarging the Schmidt number leads to a decrease in the concentration

of nanoparticles.
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Chapter 9

Conclusion and Future Work

The aim of research work presented in this thesis is to study the swirling motion of a non-

Newtonian Oldroyd-B ‡uid caused by rotating disk geometry. For the required purpose, the

mathematical formulation of the swirling ‡ow of Oldroyd-B ‡uid over a rotating disk is de-

veloped. Additionally, the transportation of heat and mass is studied with di¤erent physical

aspects. The von Karman transformations are utilized to convert the governing partial di¤er-

ential equations (PDEs) into non-linear ordinary di¤erential equations (ODEs). The system

of ODEs is then solved by using the numerical and semi analytical approaches which are bvp

midrich scheme and homotopy analysis method. The validity of obtained results proved through

the comparison with results of the published literature.

9.1 Concluding Remarks

In this thesis, we compile some signi…cant …ndings achieved in the preceding chapters as:

² Both the radial and azimuthal ‡uid velocity components were declined by stronger rate
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of magnetic force.

² It was seen that by the higher values of stretching parameter, the radial velocity was

enhanced while a contrary e¤ect was seen in the case of azimuthal velocity.

² Signi…cant variation was observed in the velocity and temperature of ‡uid against mass

transfer parameter.

² It was deduced from the results that the temperature was an increasing function of the

heat generation parameter while, for the heat absorption parameter, the temperature and

thermal boundary layers were noticed in decreasing trend.

² The temperature and solutal distributions were diminished against increasing trend of

relaxation time parameter and boosted for retardation time parameter.

² The occurrence of radiative heat ‡ux enhanced the thermal pro…le e¢ciently.

² It was revealed that the thermal distribution was boosted by the increasing values of

Brownian motion parameter and reduced the solutal distribution.

² The temperature and concentration distributions were found to be reduced by the thermal

and solutal relaxation time parameters, respectively.

² The temperature as well as concentration distributions were increased due to increment

in thermophoresis parameter.

² It was concluded that the solutal distribution was enhanced with the increasing impact

of activation energy.
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² For the solutal distribution, a declining trend was noticed as homogeneous reaction para-

meter change the values in increasing manner.

9.2 Future Work

Here in this study, the numerical and analytical investigations of non-Newtonian Oldroyd-B

‡uid ‡ow are focused. The mathematical formulations were developed with heat and mass

transfer over a rotating disk geometry. However, there are further directions that can be made

to the Oldroyd-B ‡uid ‡ow to extend the current work. Some suggestions in this regards will

be pursued in the future research as follows:

² The current mathematical model can be extended to an Oldroyd-B ‡uid ‡ow over a

rotating sphere.

² This work may also be extended on ‡ows over a rotating cylinder in future.

² The transient thin …lm ‡ows of Oldroyd-B ‡uid over a rotating geometries can also be

studied.

² Regarding the numerical solutions, it may be interesting to discuss the proposed problems

with the help of di¤erent advanced numerical schemes such as …nite di¤erence method,

…nite volume method and lattice Boltzmann method etc.
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A B S T R A C T   

This article presented the Cattaneo-Christove heat and mass flux theories in the flow of Oldroyd-B fluid over a 
rotating disk. The flow configuration is due to the rotating as well as stretching of the disk. The heat generation/ 
absorption and chemical reaction are also considered. For the formulation of heat and mass equations, the 
Cattaneo-Christov theories are used rather than Fourier’s and Fick’s laws. The von Karman’s transformations are 
used to convert the partial differential equations into non-dimensional ordinary differential equations. The 
analytical series solutions are obtained by utilizing the homotopy analysis method (HAM) in Mathematica 
software. The graphical results are achieved in the form of velocity fields, temperature and concentration dis
tributions. Results show that the temperature of the Odroyd-B fluid rises when the magnetic field parameter 
increases in some specific range. Further, the velocities show a reducing behavior against magnetic field 
parameter. It is observed that the temperature reduces as thermal relaxation time parameter increases. It is also 
be mentioned that the solutal relaxation time parameter is influenced on concentration distribution in decreasing 
trend.   

1. Introduction 

It is well understood that in many engineering applications, fluid 
flows through a rotating disk geometry has a crucial significance. This 
form of geometry is commonly used in the energy production, aero
dynamics and rotating machinery industries. Due to these applications, 
the similarity variables were initially developed by von Karman [1] for 
the axisymmetric hydrodynamic flow of viscous fluid over a rotating 
disk and using the integral approach to obtain the approximate solution 
of the problem. Further, Cochran [2] was utilized the von Karman var
iables and obtained asymptotic solutions for the steady hydrodynamic 
problem. Further, Zandbergen et al. [3,4] were described the von 
Kármán flow problem to obtain the numerical and the analytical solu
tions. Moreover, the works on the flow by a rotating disk was done by 
various researches. For instance, nanofluid flow and heat transfer due to 
a rotating disk was investigated by Bachok et al. [5]. Three dimensional 
stagnation flow by a stretchable rotating disk was disclosed by Tur
kyilmazoglu [6] and obtained numerical solution of the problem. The 
MHD flow over a rotating permeable disk with entropy generation was 
studied by Rashidi et al. [7] and used the Karman’s transformations to 
convert the partial differential equations into non-dimensional ordinary 

differential equations. Yin et al. [8] discussed the fluid flow of nano
fluids through a rotating disk with uniform stretching rate in the radial 
direction and homotopy analysis method (HAM) is utilized to acquire 
the analytical solutions for the problem. Additionally, fluid flow be
tween two stretchable rotating disk with the influence of the thermal 
radiation is discovered by Zangooee et al. [9]. Additionally, flow and 
heat transfer of Oldroyd-B nanofluid over a rotating disk is examined by 
Hafeez et al. [10] and obtained the numerical solutions with the help of 
bvp midrich scheme in Maple programming. Additionally, flow of 
viscoelastic fluid caused by a rotating disk was disclosed by Hafeez et al. 
[11]. In their study they used the Cattaneo-Christov heat flux theory for 
the formulation of heat equation. Khan et al. [12] scrutinized the 
swirling flow of non-Newtonian fluid and considered the rotating disk 
geometry for the motion of the fluid. In their investigation, the thermal 
analysis is performed in the presence of non-linear thermal radiation and 
heat absorption/generation. Additionally, some recent articles about 
fluid flows due to a rotating disk are presented via Refs. [13–18]. 

This research shows an analytical survey of the flow of viscoelastic 
Oldroyd-B fluid over a rotating disk. The magnetic field effect is applied 
normal to the disk. In order to observe the heat and mass transfer pro
cesses in the liquid, the Cattaneo-Christov heat and mass flux theories 
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