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Preface 

In this thesis,a multidimensional fluid flows with heat transfer by using the Lie 
group approach is investigated. In the first chapter, a brief introduction and 
background of symmetries,Navier-Stokes equations for the fluid flow, energy 
equations, boundary layer equations, and some basic definitions of flow and heat 
characteristics are given. Chapter one also has three pages of historical notes. 
In chapter two,two different cases are studied.  In case (i), the invariants for MHD 
non-Newtonian fluid flow with heat transfer in the presence of source/sink effects 
is investigated. In case (ii), the system of ordinary differential equations by using 
the group theoretic method to analyze the MHD non-Newtonian fluid flow with 
thermal radiation effects is studied. In particular, for both cases an invariant and 
find the analytic solutions after considering the stretching sheet phenomenon has 
been opted. 
 
In chapter three, thenon-Newtonian unsteady flow with viscous dissipation effects 
are studied. After finding the invariants, an analytic solution for the governing 
system of differential equations is calculated. An unsteady stretching sheet case is 
considered to observe the flow characteristics. 
 
In chapter four, two cases namely; (i) the stagnation point flow phenomenon in the 
presence of thermal radiation effects are taken into account. The governing 
equations are simplified through group a theoretic method. For a particular 
invariant we consider the flat plate case to observe the flow characteristics.In case 
(ii) the similarity analysis of MHD Hall current effects on free convective non-
Newtonian flow with heat transfer phenomenon is presented.By considering flat 
plate case the governing system of ordinary differential equations are solved by 
numerical technique to observe the flow behavior. 
 
In chapter five, the non-Newtonian flow with heat and mass transfer over the 
stretching walls in the presence of source/sink effects are analyzed by using Lie 
group method. The influence of different physical parameters on velocity, 
temperature and concentration profiles are presented through graphs and tables. 
 
In chapter six, the Lie group analysis of MHD non-Newtonian flow with heat 
transfer over a stretching rotating surface is reported. Flow characteristics are also 
investigated through graphs and tables. 
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Chapters seven summarize the presented study and suggest some future work. 
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Chapter 1

Introduction

The history of di¤erential equations started when Newton discovered Calculus as integrals

in 1665 - 1666. After that, many mathematicians of that century, for example, Leibniz and

Bernoulli contributed to the �eld of di¤erential equations. They worked on the solution of

various types of equations. In 1712, Ricatti introduced a method for the solution of a di¤erential

equation, now known as the Ricatti equation, while Clairaut studied and solved a special

type of di¤erential equation now known as the Clairaut di¤erential equation. He also gave

some remarkable results on the existence of an integrating factor for �rst order di¤erential

equations. Solution by series method and variation of parameters method are inventions of

Euler. The Laplacian of a function and the Fourier transformation play a vital role in calculating

the solution of di¤erential equations. These were developed by P. S. Laplace and J. Fourier

respectively. In this �eld, the contributions of Taylor, d�Alembert, Lagrange, Legendre and

Bessel cannot be ignored.

Cauchy investigated the existence and uniqueness of the solution of di¤erential equations

in the 19th century, while Lipschitz developed the existence theorem for �rst order di¤erential

equations. Other notable contributions were made by Hermite, Liouville, Riemann, Kovalevski,

Laguerre, Noether, Gauss and Lie. The history of partial di¤erential equations started in the

18th century after Euler�s work in this era. After that, d�Alembert, Lagrange, Laplace and

Riemann made e¤orts for the development of this �eld. The vast use of partial di¤erential

equations in every branch of science makes this theory valuable for research.

The (1 + 1)-dimensional wave equation was studied by d�Alembert in 1752, and in 1759 it
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was extended to the (1+2)-dimensions by Euler. Further work was done by Daniel Bernoulli

in 1762 to extend it to the (1 + 3)-dimensions. The Euler equation for incompressible �ows

was modelled by Euler in 1755. The Monge-Ampere equation was studied by Monge in 1775.

The Laplace equation was discussed in 1780 by Laplace. The heat equation was introduced by

Fourier between 1810 and 1822. Similarly, the Laplace and Poisson equations, Navier-Stokes

equations, Maxwell�s equations, the Helmholtz equation, Kdv equation and many more are the

discoveries of the 19th century. In 1747 d�Alembert and in 1748 Euler introduced the method

of separation of variables and superposition solution of linear equations. In the 19th century,

many powerful tools were introduced and mathematicians worked on the solution of partial

di¤erential equations. The method of Green�s functions was introduced in 1835 for Laplace�s

equation. The power series methods have been used by Euler, d�Alembert, Laplace and others.

Existence and uniqueness of the solutions for Laplace�s equation for any continuous Dirichlet

boundary data was proved in 1880 by Poincare. The successive approximation method to obtain

solution of nonlinear partial di¤erential equation was applied by Picard in early 1880 while in

1898, Poincare proved a remarkable result about the existence of the solution of a nonlinear

equation.

At the end of 19th century, Lie discovered a systematic method for the solution of di¤eren-

tial equations and applied the theory of groups for this purpose. He considered a di¤erential

equation as a surface in the space of independent and dependent variables together with its

derivatives. In 1870, he presented a mechanism for �nding a transformation which maps so-

lutions of a di¤erential equation to other solutions of the same di¤erential equation. These

transformations satisfy all the axioms of a group and hence are called symmetry or Lie group.

One of the amazing properties of these symmetry groups is that when a symmetry is applied

to the partial di¤erential equation, it provides an extra constraint on that partial di¤erential

equation which reduces the dimension (number of independent variables) of the partial di¤er-

ential equation by one. Reduction, analysis and classi�cation of a di¤erential equation are the

revolutionary aspects of Lie theory. Lie�s contribution is considered as one of the important

chapters of the modern theory of di¤erential equations.

The �rst few chapters of Cohen�s book [1] give a very lucid description of the concept of a

Lie group and the idea of invariance under a group. In his 1906 treatise on The Theory of Dif-
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ferential Equations, Andrew Forsyth [2] devoted several chapters to Lie groups and Backlund

transformations. It is a fact, however, that shortly thereafter, Lie�s ideas fell into obscurity

and remained so until soon after World War II. As researchers began to turn more and more

often to nonlinear problems and as the inherent importance of symmetries began to be recog-

nized, Lie�s ideas gained renewed interest. The Lie algorithm used to analyze the symmetry

of mathematical expressions was developed to an advanced state through the pioneering ef-

forts of Ovsiannikov [3] and his students in the Soviet Union. In the United States, Garrett

Birkho¤ [4] at Harvard, the son of George Birkho¤, played a key role in bringing attention to

Lie�s ideas by clarifying the relationship between group invariance and dimensional analysis as

applied to problems in �uid mechanics. Fluid mechanics, governed by nonlinear equations from

which a rich variety of simpli�ed nonlinear and linear approximations can be derived, is an

especially fertile source of examples and applications of group theory. During the same period,

new ideas about the role of similarity solutions as approximations to realistic complex physical

problems were being developed by Barenblatt and Zel�dovich [5] in the Soviet Union. By the

late 1960s and early 1970s the whole �eld was active again, and new applications of group the-

ory were being developed by a number of researchers, including Ibragimov in the Soviet Union

[6], Bluman and Cole at Caltech [7], Anderson, Kumei, and Wulfman at the University of the

Paci�c [8], Chester at Bristol [9], Harrison and Estabrook at the Jet Propulsion Laboratory

[10], and many others. Today, group analysis in one form or the other, is the central topic

of a number of excellent textbooks, including Hansen [11], Ames [12], Olver [13], Bluman and

Kumei [14], Rogers and Ames [15], Stephani [16], and later Ibragimov [17], Andreev et al. [18],

Hydon [19] , Baumann [20] and Bluman and Anco [21]. The valuable collection of results by

researchers around the world are contained in the CRC series edited by Ibragimov [22] which

gives testimony to the achievements of the last half century or so. Today, symmetry analysis

constitutes the most important (indeed one might say the only) widely applicable method for

�nding analytical solutions of nonlinear problems. The Lie algorithm can be applied virtually

to any system of ODEs and PDEs. Moreover the procedure is highly systematic and amenable

to programming with symbolic manipulation software. As a result sophisticated software tools

are now available for analyzing the symmetries of di¤erential equations [23-25]. Also the review

of symbolic software for group analysis is given by Hydon [19] and Hereman [26].
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Similarity analysis reduces the number of variables that govern partial di¤erential equations

(pde) and consequently changes it to an ordinary di¤erential equations (ode). Methods avail-

able in the literature for similarity analysis can be classi�ed as (i) Dimensionless Analysis, (ii)

Free Parameter, (iii) Separation of variables, and (iv) Group Theory [11,12]. Among these, the

group methods can be considered to be the most powerful, sophisticated, and systematic meth-

ods to generate similarity transform and is widely used. In case of group theory, the similarity

solution is the invariant solution of initial and boundary value problems. Group invariant trans-

formations do not change the structure form of the equations under investigation. When the

similarity variables are substituted into the original system of PDEs the result is a new system

in one fewer variables thus achieving a simpli�cation of the problem. The substitution process

can be quite di¢ cult if the integrals happen to be complicated functions of the old variables.

However, in practice, the groups that �nd the widest application tend to be elementary dilation

and translation groups for which the characteristic equations can be separated. This makes it

relatively easy to choose which integrals to use as new independent variables and which ones

to use as dependent variables. Normally the new independent variables would be arranged to

involve only the original independent variables although, in principle, that need not be the

case and there are situations where one might want to exchange independent and dependent

variables.

By using this method one can �nd symmetries of almost any di¤erential equation (if they

exist) and these symmetries can simplify the analysis of physical problems.

Sakiadis [27] initiated the study of boundary layer �ow over a continuous solid surface

moving with constant speed. Crane [28] analyzed the steady �uid �ow past a stretching sheet

and presented a closed form solution to it. The heat and mass transfer e¤ects over a permeable

sheet stretching in its own plane was examined by Gupta and Gupta [29]:Grubka and Bobba [30]

assumed power law distribution of temperature and used Kummer�s function to study the heat

transfer phenomenon along a linearly stretching surface. Liu [31] investigated the �ow and heat

transfer of an electrically conducting �uid of second grade in a porous medium over a stretching

sheet. Anjali et al. [32] studied the e¤ects of viscous and Joules dissipation on hydromagnetic

�ow, heat and mass transfer past a stretching porous surface. Bhargava et al. [33] used �nite

element techniques to study the pulsating �ow of non-Newtonian �uid known as Casson �uid in
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a non-Darcian porous medium. Beg et al. [34] analyzed the free convection MHD �ow, heat and

mass transfer over a stretching surface through a saturated porous medium and also examined

the Soret and Dufour e¤ects during the �ow phenomenon. Yurusoy and Pakdemirli [35] used

group theoretical analysis to obtain the exact solution of second grade �uid over a stretching

surface. Mehmood et al. [36] used symmetry reduction to examine unsteady MHD aligned

second grade �ow and found the general solution. A�fy [37] made use of Lie symmetries to

study MHD aligned creeping �ow and heat transfer in second grade �uids. Later, Arasu et al.

[38] investigated Lie theoretical analysis to study the thermal di¤usion e¤ects on free convection

�ow over a porous stretching sheet with variable stream conditions. However, it is required to

analyze the non-Newtonian �uid with source/sink e¤ects over permeable stretching sheet. This

work has been investigated through group theoretic method in the chapter 2 section 1 of this

thesis. In this chapter we calculate the exact solutions of the governing system. The work has

also been published in Indian Journal of Physics [39].

The boundary layer �ow of an electrically conducting �uid and radiative heat transfer

situation arises in many practical applications such as in electrical power generation, solar

power technology, space vehicle re-entry, nuclear reactors etc. Also, radiative heat transfer

occurs in many geophysical and engineering applications such as nuclear reactors, migration

of moisture through air contained in �brous insulations, nuclear waste disposal, dispersion of

chemical pollutants through water-saturated soil. Because of its important applications many

researchers analyzed this �ow and heat transfer phenomena in di¤erent geometries. Chamkha

[40] considered coupled heat and mass transfer by natural convection in the presence of magnetic

�eld and radiation e¤ects. Mahmoud [41] also examined the thermal radiation e¤ect on unsteady

MHD free convection �ow past a vertical plate. The e¤ects of viscous dissipation and radiation

on thermal boundary layer over a nonlinearly stretching sheet was discussed by Cortell [42]. The

radiation e¤ects on Blasius �ow was investigated by Bataller [43]. Hsiao [44] determined the

radiation e¤ects with mixed convection over a nonlinearly stretching sheet. Thermal radiation

e¤ects are also important in non-Newtonian �uid �ows due to their applications in industrial

processes. We consider the Casson �uid �ow with MHD, over permeable stretching sheet in the

presence of thermal radiation e¤ects. This problem has been discussed in Chapter 2 section

2 by using the Lie group method. This work also been published in Journal of Applied Fluid
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Mechanics [45].

Unsteady non-Newtionian �uid �ows are also important in engineering and science. For

example, Eldabe et al. [46] examined the e¤ects of couple stresses on MHD of a non-Newtonian

unsteady �ow between parallel porous plates. Ali et al. [47] analyzed unsteady boundary

layer �ow adjacent to permeable stretching surface in a porous medium. Unsteady �ow near a

stretching surface with viscous dissipation in presence of external magnetic �eld was discussed

by Abel et al. [48]. The e¤ects of couple stress and wall mass �ux of pulsatile non-Newtonian

�ow through a channel were studied by Zueco et al. [49]. Mahmoud et al. [50] solved the case

for MHD �ow with heat transfer in a non-Newtonian liquid �lm over an unsteady stretching

sheet. Mukhopadhyay et al. [51] examined the Maxwell �uid �ow past an unsteady stretching

permeable surface embedded in a porous medium with thermal radiation e¤ects. Khader et al.

[52] investigated the thin �lm �ow and heat transfer of Powell-Eyring �uid over an unsteady

stretching sheet with internal heat generation by using the numerical approach. We have

extended the idea of MHD �ow of non-Newtonian �uid over an unsteady stretching sheet with

viscous dissipation e¤ects by using the group invariant method. In detail we have presented

this in chapter 3. The work is already accepted for publication in Journal of Applied Fluid

Mechanics and Technical Physics.

Stagnation point �ow phenomenon and heat transfer is important in the process of polymer

extrusion, paper production, insulating materials, glass drawing, continuos casting, �ne �ber-

mate and many others. First time the two-dimensional stagnation-point �ow of a viscous �uid

toward a linear stretching surface was analyzed by Chiam [53]. The e¤ects of heat transfer in

the stagnation point �ow toward a stretching surface is studied by Mahapatra and Gupta [54].

The steady stagnation point �ow of an incompressible micropolar �uid over a stretching surface

was investigated by Nazar et al. [55]. Mahapatra et al. [56] found the oblique stagnation point

�ow of an incompressible viscoelastic �uid towards a stretching surface. Numerous studies such

as [57-62] have been devoted to this topic under varied assumptions. Hamad et al. [63] ap-

plied the Lie group method to investigate radiation e¤ects on heat and mass transfer in MHD

stagnation-point �ow with temperature dependent viscosity. We extend the work of Hamad by

considering non-Newtonion �uid by considering the Casson Fluid Model with thermal radiation

e¤ects through Lie group technique. This problem is presented in Section 1 of Chapter 4 of this
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thesis.

In an ionized gas where the density is low and/or the magnetic �eld is very strong, the

conductivity normal to the magnetic �eld is reduced due to the free spiralling of electrons and

ions about the magnetic lines of force before su¤ering collisions, also a current is induced in a

direction normal to both the electric and the magnetic �elds. This phenomenon, well known

in the literature, is called the Hall e¤ect. The study of magnetohydrodynamic viscous �ows

with Hall currents has important engineering applications in problems of magnetohydrodynamic

generators and of Hall accelerators as well as in �ight magnetohydrodynamics. The magneto-

hydrodynamic free convection �ow of an electrically conducting �uid along a hot semi-in�nite

vertical �at plate is of considerable interest in the technical �eld due to its frequent occurrence

in industrial and technological applications. The e¤ect of Hall currents on the magnetohydro-

dynamic boundary layer �ow past a semi-in�nite �at plate was �rst considered by Katagiri [64].

Pop [65] analyzed the Hall e¤ects on hydromagnetic �ow near an accelerated plate. Hossain

[66-68] studied the e¤ect of Hall current on unsteady hydromagnetic free convection �ow near

an in�nite vertical porous plate and along a porous �at plate as well. Later on, many scientists

[69-72] worked on Hall e¤ects by considering di¤erent geometries. Dresner [73] found the simi-

larity solution of nonlinear partial di¤erential equations. Some study of group invariance with

boundary value problems can be found in [74]. Pakdemirli [75] used the similarity method to

analyze the boundary layer equations of a class of non-Newtonian �uids. Furthermore, Mega-

hed et al. [76] calculated the similarity variables of Hall e¤ects on free convection �ow and

mass transfer past a semi-in�nite vertical �at plate by applying the Lie group technique. The

extension of above mentioned work has been taken into account for non-Newtonian Casson

�uid with thermal heat generation. Governing partial di¤erential equations are transformed

to ordinary di¤erential equations by using scaling symmetries. This study constitutes the 4th

Chapter, Section 2 of this dissertation.

Flows through channels have applications in the �elds of binary gas di¤usion, micro�uidic

devices, surface sublimation, ablation cooling, �ltration, grain regression and modeling of air

circulation in the respiratory system. Laminar air-�ow systems have been used by the aerospace

industry to control particulate contamination. The use of laminar �ow equipment has eliminated

the occurrence of false-positive tests due to extraneous laboratory contamination. The problem
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of the laminar steady incompressible �ow through a porous channel with suction/injection

through the walls was studied by Berman [77]. Terrill [78] considered the laminar �ow with

large injection in a uniformly porous channel. Two dimensional �ow of a viscous �uid in a

channel with porous walls was analyzed by Cox [79]. The problem of �ow through channel was

further studied by Shrestha and Terril [80,81], Brady [82], Waston et al. [83], Robinson [84],

and Taylor et al. [85] under various �ow assumptions and boundary conditions. Sutton et al.

[86] presented the exact solution to Navier Stokes equations for the motion of an incompressible

viscous �uid in a channel with di¤erent pressure gradients. An exact solution was found by

Fang [87] of slip MHD viscous �ow over a stretching sheet. It is quite necessary to �nd the

non-Newtonion �uid �ow with heat transfer analysis by considering the source/sink e¤ects

through group theoretic approach. Moreover, we also consider parallel walls with mass transfer

phenomena. This particular study has been done in Chapter 5.

The study of �ow �eld due to a rotating disk has found many applications in di¤erent

�elds of engineering and industry. A number of real processes can be undertaken using disk

rotation such as: fans, turbines, centrifugal pumps, rotors, viscometers, spinning disk reactors

and other rotating bodies. The history of rotating disk �ows goes back to the celebrated paper

by Von Karman [88] who initiated the study of incompressible viscous �uid over an in�nite

plane disk rotating with a uniform angular velocity. This model is further investigated by

many researchers to provide analytical and numerical results for better understanding of the

�ow behavior due to rotating disk. The use of similarity transformations to convert governing

Navier Stokes equations for axi-symmetric �ow into a system of coupled nonlinear ordinary

di¤erential equations was originated by Von Karman [88] and the numerical results for these

equations were presented by Cochran [89]. Millsaps and Pohlhausen [90] considered the e¤ects

of heat transfer over a rotating disk at a constant temperature. Finding exact solutions for

the Navier�Stokes equations is of fundamental importance in understanding and development

of �uid mechanics. Von Karman and Lin [91] gave the mathematical proof for the existence

of exact solutions. Initially Fang [92] proposed the steady �ow over a rotating and stretching

disk. Further, Fang and Zhang [93] studied the �ow between two stretching disks. Awad [94]

presented an asymptotic model to analyze the heat transfer phenomena over a rotating disk for

large Prandtl numbers. The exact solutions for heat and mass transfer over a permeable rotating

11



disk of viscous �uid were presented by Turkyilmazoglu [95]. Shevchuk [96] published a book on

convective heat and mass transfer in rotating disk systems, which also shines light on rotating

disk systems. Recently, the combined e¤ects of magnetohydrodynamic on radially stretching

disk were analyzed by Turkyilmazoglu [97]. Flow due to a rotating rough and porous disk with

heat and mass transfer phenomenon also studied by Turkyilmazoglu [98]. More recently, Asghar

et al. [99] examined the viscous �uid with heat transfer over a stretching rotating disk by using

the Lie group approach. We observe that all of above mentioned studies were undertaken for

viscous �uid. It is also important to consider the rotating stretching disk for non-Newtonion

case. In Chapter 6 we have worked on this particular �ow phenomenon by employing the Lie

group approach.

1.1 Preliminaries

In this section we present a number of de�nitions that will provide the necessary background

for this thesis. We discuss various aspects of symmetries, Navier-Stokes equations for the �ow

and energy equations, boundary layer equations and some basic de�nitions of �ow and heat

characteristics most of which are well known.

1.1.1 Symmetries

The symmetry group of a system of di¤erential equations is the largest local group of trans-

formations acting on the independent and dependent variables of the system with the property

that it transforms solutions of the system to other solutions. Let S be a system of di¤erential

equations. A symmetry-group of the system S is a local group of transformations G acting on

an open subsetM of the space of independent and dependent variables for the system with the

property that whenever u = f(x) is a solution of S, and whenever g � f is de�ned for g 2 G,

then ~u = g � f(x) is also a solution of the system.

De�nition 1 A vector �eld v on M assigns a tangent vector v jx 2 TM jxto each point x 2M;

with v jx varying smoothly from point to point. In local coordinates (x1; :::; xp) a vector �eld

has the form

v jx = �1(x)
@

@x1
+ �2(x)

@

@x2
+ :::+ �p(x)

@

@xp
; (1.1)
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where each �i(x) is a smooth function of x: (Technically, we should put the symbol jx on each

@=@xi to indicate in which tangent space TM jxit lies.)

For (x; u) 2 M � X � U consisting of independent variables (x1; :::; xp) and all dependent

variables (u1; u2; :::; uq) a vector �eld on M takes the form

�!
V =

pX
i=1

�i
@

@xi
+

qX
�=1

X
J

�J�
@

@u�J
: (1.2)

The general formula for prolongation

(n)

Pr
�!
V =

�!
V +

qX
�=1

X
J

�J�(x; u
(n))

@

@u�J
; (1.3)

de�ned on the corresponding jet space M (n) � X�U (n); in which the second summation being

over all unordered, multi-indices J = (j1; j2; :::; jk), with 1 � jk � p; 1 � k � n. The coe¢ cient

functions �J� of Pr
(n)�!V are given by the following formula:

�J�(x; u
(n)) = DJ(�� �

pX
i=1

�iu�i ) +

pX
i=1

�iu�J;i; (1.4)

where u�i = @u�=@xi , and u�J;i = @u�J=@x
i , in which p is the number of the independent

variables, �i are the coe¢ cients of the partial derivative of the independent variables, q is the

number of dependent variables; and Di is the total derivative given by

Dif =
@f

@xi
+

qX
�=1

X
J

u�J;i
@f

@u�J
; (1.5)

where

u�J;i =
@u�J
@xi

=
@k+1u�

@xi@xj1 :::@xjk
; (1.6)

and J = (j1; j2; :::; jk); 0 � J � n; n is the highest order derivative appearing in f .

1.1.2 Lie brackets

The most important operation on vector �elds is their Lie bracket or commutator. This is most

easily de�ned in terms of their actions as derivations on functions. Speci�cally, if v and w are
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vector �elds on M , then their Lie bracket [v; w] is the unique vector �eld satisfying

[v; w](f) = v(w(f))� w(v(f)); (1.7)

for all smooth functions f : M ! R: It is easy to verify that [v; w] is indeed a vector �eld. In

local coordinates, if

v =

mX
i=1

�i(x)
@

@xi
; w =

mX
i=1

�i(x)
@

@xi
; (1.8)

[v; w] =

mX
i=1

fv(�i)� w(�i)g @

@xi
=

mX
i=1

mX
j=1

�
�j
@�i

@xj
� �j @�

i

@xj

�
@

@xi
: (1.9)

Proposition 2 The Lie bracket has the following properties:

(a) Bilinearity

[cv + c0v0; w] = c[v; w] + c0[v0; w]; (1.10)

where c; c0 are constants.

(b) Skew-Symmetry

[v; w] = �[w; v]: (1.11)

(c) Jacobi Identity

[u; [v; w]] + [w; [u; v]] + [v; [w; u]] = 0: (1.12)

1.1.3 Structure constants

Suppose g is any �nite-dimensional Lie algebra, so g is the Lie algebra of some Lie group G. If

we introduce a basis fv1; :::; vrg of g, then the Lie bracket of any two basis vectors must again

lie in g. Thus there are certain constants ckij ; i; j; k = 1; 2; :::; r called the structure constants of

g such that

[vi; vj ] =

rX
k=1

ckijvk; i; j = 1; 2; :::; r: (1.13)

Note that since vi�s form a basis, if we know the structure constants, then we can recover the

Lie algebra g just by using (1.13) and the bilinearity of the Lie bracket.
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1.1.4 Commutator tables

The most convenient way to display the structure of a Lie algebra is to write it in tabular form.

If g is an r-dimensional Lie algebra and v1; :::; vr form a basis for g, then the commutator table

for g will be the r � r table whose (i; j)� th entry expresses the Lie bracket [vi; vj ]. Note that

the table is always skew-symmetric since [vi; vj ] = �[vj ; vi]; in particular, the diagonal entries

are all zero. The structure constants can be easily read o¤ the commutator table; namely ckij is

the coe¢ cient of vk in the (i; j)� th entry of the table.

1.1.5 Solvable Lie algebras

If we consider nth order ordinary di¤erential equations admitting r-parameter Lie group of

transformations. We can show that if r = 1 then the order can be reduced constructively by

one; if n � 2 and r = 2 the order can be reduced constructively by two; if n � 3 and r � 3

it will not necessarily follow that the order can be reduced by more than two. However if the

r-dimensional Lie algebra of in�nitesimal generators of the admitted r-parameter group has a

q-dimensional solvable subalgebra then the order of the di¤erential equation can be reduced

constructively by q.

De�nition 3 A subalgebra ' � $ is called an ideal or normal subalgebra of £ if for any

X 2 '; Y 2 $, [X,Y]2 $:

De�nition 4 £ q is q-dimensional solvable Lie algebra if there exists a chain of sub algebras

$(1) � $(2) � :::$(q�1) � $(q) = $q;

such that $(k) is a k-dimensional Lie algebra and $(k�1) is an ideal of $(k); k = 1; 2; :::; q: [$(0)

is the null ideal which has no nonzero vectors].

De�nition 5 £ is called an Abelian Lie algebra if for any X�; X� 2 $; [X�; X� ] = 0:

Proposition 6 Every two-dimensional Lie algebra is solvable.
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1.1.6 The adjoint representation

The adjoint representation of a Lie group on its Lie algebra is often most easily reconstructed

from its in�nitesimal generators. If v generates the one- parameter subgroup fexp("v)g, then

we let ad v be the vector �eld on g generating the corresponding one-parameter group of adjoint

transformations

ad v jw =
d

d"
j

"=0
Ad(exp("v))w;w 2 g:

A fundamental fact is that the in�nitesimal adjoint action agrees (up to sign) with the Lie

bracket on g:

De�nition 7 Let G be a Lie group with Lie algebra g. For each v 2 g, the adjoint vector ad

v at w 2 g is

ad v jw = [w; v] = �[v; w];

where we are using the identi�cation of Tgjwwith g itself since g is a vector space.

In term of Lie series we represent as

Ad(exp("v))w =

1X
n=0

"n

n!
(adv)nw

= w � "[v;w] + "2

2!
[v; [v;w]]� :::. (1.14)

De�nition 8 Two Lie subalgebras L1 and L2 of a Lie algebra L are similar if there exists

an inner automorphism � 2Int(L) such that �(L1) = L2. Since the similarity between Lie

subalgebras is a relation of equivalence, all subalgebras of the given Lie algebra L are decomposed

into classes of similar algebras. A set of the representatives of each class is called an optimal

system of subalgebras.

Therefore, the knowledge of an optimal system of subalgebras of the principal Lie algebra

of a system of di¤erential equations provides a method of classifying H�invariant solutions

[13,100].
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1.1.7 Governing laws

Mostly, three fundamental laws of conservation are used to discuss the characteristics of viscous

incompressible �uids. These laws are given by

divV = 0; (Law of conservation of mass), (1.15)

�
DV

Dt
= divT+�b; (Law of conservation of momentum); (1.16)

�cp
DT

Dt
= T:L+ kr2T; (Law of conservation of energy); (1.17)

where � is the density, V is velocity vector, D=Dt denotes the substantive derivative which is

a combination of the local derivative with respect to time (in unsteady �ows) @=@t and the

convective derivative (due to translation), b is the body force, k is the thermal conductivity of

the �uid, cp is the speci�c heat, T is the temperature, T is the Cauchy stress tensor and for

viscous �uid it is de�ned as

T = �pI+ �A1; (1.18)

where p is the pressure, I the identity tensor, � the viscosity, A1 is the extra stress tenser and

is given by

A1 = L+ L
tr; (1.19)

here L is the velocity gradient, T�L is the trace of the product of both matrices and is de�ned

as

T�L =Tr(TL); (1.20)

where �Tr�denotes the trace of matrix. The divergence div of any vector function V (x; y; z; t)

in Cartesian coordinates is de�ned as

divV =
@u

@x
+
@v

@y
+
@w

@z
: (1.21)

Hence the law of conservation of momentum is modi�ed by considering the e¤ects of magneto-

hydrodynamic as

�
DV

Dt
= divT+�b+ J�B; (1.22)
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where J is the current density, B = B0 + b0 is the magnetic �ux, B0 is applied magnetic �eld

and b0 the induced magnetic �eld. This includes the following four laws of conservation in

addition to (1.15)-(1.17)

divE =
1

�0
�; (Gauss�s law); (1.23)

curlE = �@B
@t
; (Faraday�s law); (1.24)

curlB =�0J; (Ampere�s law with Maxwell�s correction), (1.25)

curlB = 0; (Gauss�s law for magnetism), (1.26)

where �0 is the magnetic permeability, �0 is the permittivity of free space, and E is the electric

�eld. The boundary layer free convection �ow, generalized Ohm�s law and Maxwell�s equations

are given by [75,82,83]

divV = 0; (1.27)

(V: grad)V = �
�
1

�

�
grad p+ �

�
1 +

1

�

�
r2V + g�1(T � T1) +

�
1

�

�
j�B; (1.28)

(V: grad)T =
k

�cp
r2T � div qr; (1.29)

j = �

�
E+V �B� 1

ene
j�B� 1

ene
grad pe

�
; (1.30)

divB = 0; (1.31)

~r�B = 0; (1.32)

~r�E = 0: (1.33)

1.1.8 Basic de�nitions for �ow characteristics

Here we write some basic de�nitions for �ow characteristics.

Boundary-layer thickness

In the boundary-layer region where the velocity gradient is large, the velocity of the �uid u

rises rapidly from 0 at the wall to the free stream velocity U1 asymptotically. Practically, we
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de�ne the boundary-layer thickness � as the distance from the wall where u=0.99U1 or in other

words, the boundary-layer thickness is the distance from the wall where the �uid velocity is

equal to 99% of the unperturbed free stream velocity.

Skin friction

The boundary layer produces a drag on the plate due to the viscous stresses which are developed

at the wall. The skin friction at the wall �w is de�ned as the viscous force per unit area acting

at the surface and, in Cartesian coordinate system, is given by

�w = lim
y!0

�

�
@u

@y

�
: (1.34)

The local skin friction coe¢ cient Cf on the wall is de�ned by

Cf =
�w
�U21

: (1.35)

Nusselt number

When a �uid at one temperature is in contact with a solid surface at di¤erent temperature, and

its rate to unit area is given by

qw = �k
@T

@y
jy=0; (1.36)

where k is the conductivity of the �uid. The Nusselt number Nu is the dimensionless quantity

which represents the ratio of convective to conductive heat transfer across (normal to) the

boundary and is de�ned by

Nu =
qwx

k(Tw � T1)
; (1.37)

where qw is the heat transfer rate at the surface, x the distance of the �ow from the surface

edge, Tw is the surface temperature and T1 is the ambient temperature.

Reynolds number

The Reynolds number R is a dimensionless number which frequently arises in the �uid �ow

problems when the dimensional analysis is performed. It gives a measure of the ratio of inertial
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forces to viscous forces and consequently quanti�es the relative importance of these two types

of forces for given �ow conditions. The Reynolds number provides the basis for the distinction

of the �ow system as either laminar or turbulent. This number is de�ned as

R =
UL

�
; (1.38)

where � is the kinematic viscosity, U is the mean velocity of the �uid and L is the characteristic

length of the geometry.

Prandtl number

In heat transfer analysis of �uid �ow, the most commonly occurred dimensionless quantity is

the Prandtl number Pr de�ned as

Pr =
�Cp
k
: (1.39)

The Prandtl number is the ratio of viscous di¤usion rate to the thermal di¤usion rate. Clearly,

this parameter involves �uid properties only, rather than length and velocity scales of the �ow

hence there are dramatic di¤erences among the �uids in their relative Prandtl numbers.

Eckert number

Another quantity of fundamental importance usually arises in the dimensionless energy equa-

tion, if the viscous dissipation is taken into account, is the Eckert number Ec. The Eckert

number is given by

Ec =
U2

Cp�T
: (1.40)

The Eckert number is the ratio of kinetic energy to the Enthalpy driving force in heat transfer.

Casson �uid model

The rheological equation of state for an isotropic and incompressible �ow of a Casson �uid [101]

is

� ij =

(
2(�B +

pyp
2�
)eij ; � > �c;

2(�B +
pyp
2�c
)eij ; � < �c:

: (1.41)
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Here � = eijeij is the product of the component of deformation rate with itself, eij is the

(i; j)th component of the deformation rate, �c is a critical value of this product based on the

non-Newtonian model, �B is plastic dynamic viscosity of the non-Newtonian �uid and py is the

yield stress of �uid.

Casson �uid is a shear thinning �uid which exhibits yield stress and behaves like a solid if a

shear stress is less than the applied yield stress. On the other hand it starts to move if a shear

stress is greater than the applied yield stress. Such �uids have many applications in engineering

processes. Examples of Casson �uid include jelly, tomato sauce, honey, soup, concentrated fruit

juices, and human blood etc.

1.1.9 Boundary-layer equations in Cartesian coordinates

In developing a mathematical theory of boundary layers, the �rst step is to show the existence,

as the Reynolds number R tends to in�nity or the kinematic viscosity � tends to zero, of a

limiting form of the equations of motion, di¤erent from that obtained by putting � = 0 in the

�rst place. A solution of these limiting equations may then reasonably be expected to describe

approximately the �ow in a laminar boundary layer for which R is large but not in�nite. This

is the basis of the classical theory of laminar boundary layers. The full equation of motion for

Casson �uid, two-dimensional �ow are

@u

@x
+
@v

@y
= 0; (1.42)

@u

@t
+ u

@u

@x
+ v

@u

@y
= �@p

@x
+ �(1 +

1

�
)

�
@2u

@x2
+
@2u

@y2

�
; (1.43)

@v

@t
+ u

@v

@x
+ v

@v

@y
= �@p

@y
+ �(1 +

1

�
)

�
@2v

@x2
+
@2v

@y2

�
; (1.44)

where u; v are the velocity components in x-, y-directions, respectively. A wall is located in the

plane y = 0. We consider non-dimensional variables

x0 =
x

L
; y0 =

y

�
; u0 =

u

U
; v0 =

v

U

L

�
; p0 =

p

�U2
; t0 = t

U

L
; (1.45)
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where � is the boundary layer thickness at x = L; which is unknown. We will obtain an

estimate for it in terms of the Reynolds number R; U is the �ow velocity, which is aligned

in the x�direction parallel to the solid boundary. The non-dimensional form of the governing

equations is
@u0

@x0
+
@v0

@y0
= 0; (1.46)

@u0

@t0
+ u0

@u0

@x0
+ v0

@u0

@y0
= �@p

0

@x0
+

�

UL
(1 +

1

�
)
@2u0

@(x0)2
+

�

UL

L2

�2
(1 +

1

�
)
@2u0

@(y0)2
; (1.47)

@v0

@t0
+ u0

@v0

@x0
+ v0

@v0

@y0
= �L

2

�2
@p0

@y0
+

�

UL
(1 +

1

�
)
@2v0

@(x0)2
+

�

UL

L2

�2
(1 +

1

�
)
@2v0

@(y0)2
: (1.48)

Inside the boundary layer, viscous forces balance inertia and pressure gradient forces. In other

words, inertia and viscous forces are the same order, so

�

UL

L2

�2
= O(1)) � = O(R�1=2L): (1.49)

Now we drop the primes from the non-dimensional governing equations and with equation (1.49)

we have
@u

@x
+
@v

@y
= 0; (1.50)

@u

@t
+ u

@u

@x
+ v

@u

@y
= �@p

@x
+
1

R
(1 +

1

�
)
@2u

@x2
+ (1 +

1

�
)
@2u

@y2
; (1.51)

1

R

�
@v

@t
+ u

@v

@x
+ v

@v

@y

�
= �@p

@y
+
1

R2
(1 +

1

�
)

�
@2v

@x2
+
@2v

@y2

�
: (1.52)

In the limit R!1; the equations above reduce to

@u

@x
+
@v

@y
= 0; (1.53)

@u

@t
+ u

@u

@x
+ v

@u

@y
= �@p

@x
+ (1 +

1

�
)
@2u

@y2
; (1.54)

�@p
@y

= 0: (1.55)
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Notice that according to equation (1.55), the pressure is constant across the boundary layer.

In terms of dimensional variables, the system of equations above assume the form:

@u

@x
+
@v

@y
= 0; (1.56)

@u

@t
+ u

@u

@x
+ v

@u

@y
= �1

�

@p

@x
+ �(1 +

1

�
)
@2u

@y2
; (1.57)

�1
�

@p

@y
= 0: (1.58)

1.1.10 Homotopy analysis method (HAM)

Zero-order deformation equation

The idea of the homotopy analysis [103] is very simple and straightforward. In most cases a

nonlinear problem can be described by a set of governing equations and initial and/or boundary

conditions. For brevity, let us consider here only one nonlinear equation in a general form

N [u(r; t)] = 0; (1.59)

where N is a nonlinear operator, u(r; t) is an unknown function, r and t denote spatial and

temporal independent variables respectively. Let u0(r;t) denote an initial guess of the exact

solution u(r;t); ~ 6= 0 an auxiliary parameter, H(r;t) 6= 0 an auxiliary function, and L denote

an auxiliary linear operator with the property

L[f(r; t)] = 0 when f(r; t) = 0: (1.60)

Thus using q 2 [0; 1] as an embedding parameter, we construct such a homotopy as

H[�(r;t; q);u0(r;t);H(r;t); ~;q] = (1� q)Lf[�(r;t; q)� u0(r;t)]g� ~qH(r;t)N [�(r;t); q)]: (1.61)

It should be emphasized that the above homotopy contains the so-called auxiliary parameter ~

and the auxiliary function H(r;t). The nonzero auxiliary parameter ~ and auxiliary function

H(r;t) are introduced for the �rst time in this way to construct a homotopy. So, such a kind of
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homotopy is more general than traditional ones. The auxiliary parameter ~ and the auxiliary

function H(r;t) play important roles within the frame of the homotopy analysis method.

Let q 2 [0; 1] denotes an embedding parameter. Enforcing the homotopy (1.61) to be zero,

i.e.,

H[�(r;t; q);u0(r;t);H(r;t); ~;q] = 0; (1.62)

we have the so-called zero-order deformation equation

(1� q)Lf[�(r;t; q)� u0(r;t)]g = ~qH(r;t)N [�(r;t); q)]; (1.63)

where �(r;t; q) is the solution which depends upon not only the initial guess u0(r;t), the auxiliary

linear operator L, the auxiliary function H(r;t) and the auxiliary parameter ~ but also the

embedding parameter q 2 [0; 1]. When q = 0, the zero-order deformation equation (1.63)

becomes

L[�(r;t; 0)� u0(r;t)] = 0; (1.64)

which gives, using the property (1.61),

�(r;t; 0) = u0(r;t): (1.65)

When q = 1; since ~ = 0 and H(r;t) 6= 0, the zero-order deformation equation (1.63) is

equivalent to

N [�(r;t); 1)] = 0; (1.66)

which is exactly the same as the original equation (1.59), provided

�(r;t; 1) = u(r;t): (1.67)

Thus, according to (1.65) and (1.67), as the embedding parameter q increases from 0 to 1,

�(r;t; 1) varies (or deforms) continuously from the initial approximation u0(r;t) to the exact

solution u(r;t) of the original equation (1.59). Such a kind of continuous variation is called

deformation in homotopy. This is the reason why we call (1.63) the zero-order deformation

equation.
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De�ne the so-called mth-order deformation derivatives

u
[m]
0 (r;t) =

@m�(r;t; q)

@qm
jq=0 : (1.68)

By Taylor�s theorem, �(r;t; q) can be expanded in a power series of q as follows:

�(r;t; q) = �(r;t; 0) +

1X
m=1

u
[m]
0 (r;t)

m!
qm; (1.69)

writing

um(r;t) =
u
[m]
0 (r;t)

m!
=
1

m!

@m�(r;t; q)

@qm
jq=0; (1.70)

and using (1.65), the power series (1.69) of �(r;t; q) becomes

�(r;t; q) = u0(r;t) +
1X
m=1

um(r;t)q
m: (1.71)

Note that we have great freedom to choose the initial guess u0(r;t), the auxiliary linear operator

L, the nonzero auxiliary parameter ~, and the auxiliary function H(r;t). Assume that all of

them are properly chosen so that:

1. The solution �(r;t; q) of the zero-order deformation equation (1.63) exists for all q 2 [0; 1].

2. The deformation derivative u[m]0 (r;t) exists for m = 1; 2; 3;���;1.

3. The power series (1.71) of �(r;t; q) converges at q = 1.

Then, from (1.67) and (1.71), we have under these assumptions the solution series

u(r;t) = u0(r;t) +

1X
m=1

um(r;t): (1.72)

This expression provides us with a relationship between the exact solution u(r;t) and the initial

approximation u0(r;t) by means of the terms um(r;t) which are determined by the so-called

high-order deformation equations described below.
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High-order deformation equation

For brevity, de�ne the vector

~un = fu0(r;t); u1(r;t); u2(r;t); :::; um(r;t)g:

According to the de�nition (1.70), the governing equation of um(r;t) can be derived from the

zero-order deformation equation (1.63). Di¤erentiating the zero-order deformation equation

(1.63) m times with respect to the embedding parameter q and then dividing it by m! and

�nally setting q = 0, we have the so-called mth-order deformation equation

L[um(r;t)� �mum�1(r;t)] = ~H(r;t)Rm(~um�1; r;t); (1.73)

where

�m =

�
0; m � 1;
1; m > 1:

; (1.74)

and

Rm(~um�1; r;t) =
1

(m� 1)!
@m�1N [�(r;t; q)]

@qm�1
jq=0 : (1.75)

Substituting (1.71) into the above expression, we have

Rm(~um�1; r;t) =
1

(m� 1)!

(
@m�1

@qm�1
N
" 1X
n=0

un(r;t)q
n

#)
jq=0 : (1.76)

Note that the high-order deformation equation (1.73) is governed by the same linear operator L,

and the term Rm(~um�1; r;t) can be expressed simply by (1.75) for any given nonlinear operator

N . According to the de�nition (1.75), the right-hand side of Equation (1.73) is only depen-

dent upon ~um�1. Thus, we gain u1(r;t); u2(r;t); ::: by means of solving the linear high-order

deformation equation (1.73) one after the other in succession. The mth-order approximation of

u(r;t) is given by

u(r;t) �
mX
k=0

uk(r;t): (1.77)
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Chapter 2

Lie group study of non-Newtonion

MHD �ow with source/sink and

thermal radiation e¤ects

This chapter comprises of Lie group analysis of steady, incompressible, two-dimensional MHD

Casson �uid �ow with source/sink and thermal radiation e¤ects through a homogenous porous

medium. We divide this chapter into two sections. Section 1 consists of source/sink e¤ects and

section 2 consists of the thermal radiation e¤ects. We formulate the system of boundary layer

equations and normalize them through appropriate dimensionless variables. The detailed Lie

group analysis of governing di¤erential equations is presented. For physical interest of the �uid

phenomenon we discuss one class of invariants for permeable stretching surface. Further we

evaluate the analytical solutions and discuss the in�uence of di¤erent physical parameters on

�ow and heat transfer graphically. In the end, we express the �ndings for this study. Similarly,

we have gone through section 2. In addition we also investigate the mass transfer phenomenon

in section 2.
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2.1 Lie group investigation of MHD Casson �uid �ow with

source/sink e¤ects

2.1.1 Mathematical modeling

Consider the steady state laminar incompressible �ow of a non-Newtonian Casson �uid with

heat source and sink e¤ects. The �ow is assumed to be passing through a uniform porous

medium with constant permeability k0. A uniform magnetic �eld of strength B0 is applied

parallel to the y-axis. It is assumed that the �uid is electrically conducting and the magnetic

Reynolds number is small so that the induced magnetic �eld is neglected. With Eq. (1.41) the

governing equations of the �ow and heat transfer are given by

@u

@x
+
@v

@y
= 0; (2.1)

u
@u

@x
+ v

@u

@y
=
�

�
(1 +

1

�
)
@2u

@y2
� �

k0
u� �B20

�
u; (2.2)

u
@T

@x
+ v

@T

@y
=

k

�cp

@2T

@y2
+
Q0
�cp
(T � T1); (2.3)

where, � = �B
p
2�c

py
is the Casson �uid parameter, � is the electrical conductivity, k0 is the

permeability of medium, Q0 > 0 is the heat source and Q0 < 0 is the heat sink, T is the

temperature of the �uid, T1 is the ambient temperature, and u; v are the velocity components

in x- and y- directions respectively.

Introducing the following dimensionless variables

u(x; y) =
u(x; y)p

b�
; v(x; y) =

v(x; y)p
b�

; x =

r
b

�
x; y =

r
b

�
y;

�(x; y) =
T (x; y)� T1
(Tw � T1)

: (2.4)

Equations (2:1)� (2:3) transform as

@u

@x
+
@v

@y
= 0; (2.5)
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u
@u

@x
+ v

@u

@y
= (1 +

1

�
)
@2u

@y2
� 1

K
u�Mu; (2.6)

u
@�

@x
+ v

@�

@y
=
1

Pr

@2�

@y2
+Q�; (2.7)

where K = k0b
� is the permeability parameter; M =

�B20
�b is the Hartman number; Pr = �cp

� is

the Prandtl number and Q = Q0
b�cp

is the dimensionless heat source or sink parameter.

Introducing the stream function  de�ned by u = @ =@y and v = �@ =@x; Eqs. (2.5)-(2.7)

take the following forms

(1 +
1

�
)
@3 

@y3
� @ 

@y

@2 

@x@y
+
@ 

@x

@2 

@y2
� (M +

1

K
)
@ 

@y
= 0; (2.8)

1

Pr

@2�

@y2
� @ 

@y

@�

@x
+
@ 

@x

@�

@y
+Q� = 0: (2.9)

2.1.2 Lie group analysis

A sophisticated and powerful method to obtain the particular solutions of partial di¤erential

equations is based on the study of their invariance with respect to one-parameter Lie group of

point transformation. A symmetry of a di¤erential equation is an invertible transformation of

the dependent and independent variables that maps the equation to itself. Amongst symmetries

of di¤erential equations, those depending continuously on a small parameter and forming a local

one-parameter group of transformation can be calculated algorithmically through a procedure

due to Sophus Lie [13]. One of the most useful and striking properties of symmetries is that

they map solutions to solutions. For partial di¤erentials, symmetries allow the reduction of

the number of independent variables. Consider the one-parameter Lie group of in�nitesimal

transformations in (x; y;  ; �) given by

x� = x+ ��(x; y;  ; �) +O(�2);

y� = y + ��(x; y;  ; �) +O(�2);

 � =  + ��(x; y;  ; �) +O(�2);

�� = � + �
(x; y;  ; �) +O(�2); (2.10)
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where � is the Lie group parameter. By following Eq. (1.2) the in�nitesimal generator for the

problem is

~V = �(x; y;  ; �)@x + �(x; y;  ; �)@y + �(x; y;  ; �)@ +
(x; y;  ; �)@�: (2.11)

We wish to �nd all possible coe¢ cients �; � ;� and 
 so that the corresponding one-parameter

group exp(�~V ) is a symmetry group of the system (2.8)-(2.9). According to the Eq. (1.3) we

need to know the third prolongation of ~V as

3
Pr ~V = ~V +�x@	x+�

y@	y +

x@�x+


y@�y +�
xy@	xy +�

yy@	yy +

yy@�yy +�

yyy@	yyy ; (2.12)

where coe¢ cients with derivatives are written as

�x = Dx(�� �	x � �	y) + �	xx + �	xy;

�y = Dy(�� �	x � �	y) + �	xy + �	yy;


x = Dx(
� ��x � ��y) + ��xx + ��xy;


y = Dy(
� ��x � ��y) + ��xy + ��yy;

�xy = DxDy(�� �	x � �	y) + �	xxy + �	xyy;

�yy = D2
y(�� �	x � �	y) + �	xyy + �	yyy;


yy = D2
y(
� ��x � ��y) + ��xyy + ��yyy;

�yyy = D3
y(�� �	x � �	y) + �	xyyy + �	yyyy; (2.13)

and

Dx� = �x + �		x + ���x. (2.14)

Substituting the third order prolongation (2.12) with expressions (2.13) to the system (2.8)-(2.9)

and separating by powers of the derivatives of 	 and � as �; � ;� and 
 are independent of the

derivatives of 	, lead to the over determined system of linear homogeneous partial di¤erential
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equations

�y = 0; � = 0; �� = 0; �y = 0; � = 0; � � = 0;

�x = 0;�y = 0;�  = 0;�� = 0;


x = 0;
y = 0;
 = 0;
�� = 0;

�x = � ;
� �
� = 0: (2.15)

By solving the above all equations we �nd the following solutions for �; � ;� and 


� = c3 + c4x; � = g(x); � = c1 + c4 ; 
 = c2�: (2.16)

There are four �nite parameter Lie group symmetries represented by parameters c1, c2; c3 and

c4 and one in�nite symmetry g(x). Parameter c1 corresponds to the translation in the variable

 ; c2 corresponds to the scaling in �; c3 corresponds to the translation in x and c4 corresponds

to the scaling in x and  :

The in�nitesimal generators of an r�parameter Lie group, being solutions of a linear system

of partial di¤erential equations, span an r�dimensional vector space; by introducing an opera-

tion of commutation between two in�nitesimal generators. Here we have a 5�dimensional vector

space of in�nitesimal generators closed under the operation of commutation, i.e., 5�dimensional

Lie algebra, the basis of the corresponding Lie algebra as follows

V1 = @ ; V2 = �@�; V3 = @x; V4 = x@x +  @ ; V5 = @y: (2.17)

In dealing with Lie algebras of transformations admitted by di¤erential equations, two classes

play a special role, the solvable and the Abelian Lie algebras. Because we have the Lie algebra

of the system (2.8)-(2.9) we want to know if the general solution of the system of di¤erential

equations can be found by quadratures. This thing is possible if the Lie group is solvable. A

Lie algebra is solvable if there exists a series as we de�ned in chapter 1. The requirement for

solvability is equivalent to the existence of a basis fV1; V2; :::; V5g of Lie algebra such that by
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Eq. (1.13) we can develop the commutator table

[,] V1 V2 V3 V4 V5
V1 0 0 0 0 V1
V2 0 0 0 0 -V2
V3 0 0 0 0 0
V4 0 0 0 0 -V4
V5 -V1 V2 0 V4 0

Table 2.1: Commutator table

By straightforward observation of commutator table we found the following Abelian Lie algebra

[V�; V�] = 0; as � = �; [V1; V2] = 0; [V1; V3] = 0; [V1; V4] = 0;

[V2; V3] = 0; [V2; V4] = 0; [V3; V4] = 0; [V3; V5] = 0:

Group invariant solutions

A solution of the system of partial di¤erential equations is said to be G-invariant if it is un-

changed by all the group transformations in G. In general, to each r-parameter subgroup H of

the full symmetry group G of a system of di¤erential equations, there will correspond a family of

group-invariant solutions. Since there are almost always an in�nite number of such subgroups,

it is not usually feasible to list all possible group-invariant solutions to the system. We need

an e¤ective systematic means of classifying these solutions, leading to an optimal system of

group-invariant solutions from which every other solution can be derived. Since elements g 2 G

not in the subgroup H will transform an H-invariant solution to some other group-invariant

solution, only those solutions not so related need to be listed in our optimal system.

An optimal system of r-parameter subgroups is a list of conjugancy inequivalent r-parameter

subgroups with the property that any other subgroup is conjugate to precisely one subgroup

in the list (conjugacy map: h! ghg�1) [13]. By using the de�nition of adjoint representation

from chapter 1, we can reconstruct the adjoint representation adG of the Lie group by summing

the Lie series (1.14) obtaining the adjoint table
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Ad V1 V2 V3 V4 V5
V1 V1 V2 V3 V4 V5 � "V1
V2 V1 V2 V3 V4 V5 + "V2
V3 V1 V2 V3 V4 V5
V4 V1 V2 V3 V4 V5 + "V4
V5 e"V1 [cosh "� sinh "]V2 V3 [cosh "� sinh "]V4 V5

Table 2.2: Adjoint table

The optimal system of our equations (2.8)-(2.9) is provided by those generated by

I1) V1 + V3 I2) V1 + V5 I3) V2 + V3
I4) V2 + V4 I5) V2 + V5 I6) V4 + V5
I7) V1 + V2 + V3 I8) V1 + V2 + V5 I9) Vi; (i = 1; 2; :::5)

Further we will concentrate our attention on the classi�cation of the group-invariant solutions.

The system of invariants can be used to reduce the order of the original equations - constructing

the reduced order system of equations. Doing this one can hope to �nd simple equations that

can be integrated. Since di¤erential equations can admit more than one symmetry, there are

di¤erent ways to choose a set of similarity variables by starting from di¤erent symmetries. It is

also possible to achieve a multiple reduction of variables by using multiple�parameter groups of

transformations. When this is possible, there are essentially two ways to obtain such a multiple

reduction of independent variables: repeating step by step the procedure used in the case of

one�parameter Lie groups for each subgroup considered, or performing the reduction together.

Reducing step by step the number of variables means performing the following:

1. take a generator of a subgroup (say, ~V , written in terms of the variables involved in the

system) and build the associated similarity reduction.

2. write the original system of di¤erential equations in terms of the similarity variables and

similarity functions, thus obtaining the reduced system.

3. if a further reduction is wanted, go to step 1 and so on.

This method works only if each considered subgroup is possessed by the system where the

similarity reduction is performed. Of course, this is true for the �rst subgroup considered, but for

the subsequent steps this is true only if the subgroup (written in terms of the similarity variables)

is inherited by the reduced system [13,100]. Here we follow the aforementioned procedure to
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reduce the governing partial di¤erential equations into ordinary di¤erential equations. For our

system (2.8)-(2.9) we �nd nine group invariants which lead to group invariant solutions.

I1) The invariants are y = �;  = x+ f(�); � = �(�); now our system becomes

(1 +
1

�
)f 000(�) + f 00(�)�

�
M +

1

K

�
f 0(�) = 0; (2.18)

�00(�) + Pr �0(�) + PrQ�(�) = 0: (2.19)

The solution of the above equations is

f(�) = �a1
d
+ a2e

(�1+
p
1+4ad
2a

)� + a3e
(�1�

p
1+4ad
2a

)�; (2.20)

�(�) = b1e
(�Pr+

p
Pr2 �4QPr
2

)� + b2e
(�Pr�

p
Pr2 �4QPr
2

)�; (2.21)

where a1; a2; a3; b1 and b2 are integration constants, and a = 1 + 1
� ; d =M + 1

K :

I2) For this case invariants are x = �;  = y + f(�); � = �(�): After using these invariants

�rst equation identically satis�es but second equation becomes

�0(�)�Q�(�) = 0; implies �(�) = a1e
�Q�: (2.22)

I3) Invariants are y = �;  = f(�); � = ex�(�); now our system will be reduced as

(1 +
1

�
)f 000(�)�

�
M +

1

K

�
f 0(�) = 0; implies

f(�) = �a1
d
+ a2e

q
d
a
�
+ a3e

�
q

d
a
�
: (2.23)

�00(�)� Pr[a2
r
d

a
e

q
d
a
� �

r
d

a
a3e

�
q

d
a
�
]�(�) + PrQ�(�) = 0:

Above equation can be solved numerically.

I4) Here the set of invariants are y = �;  = xf(�); � = x�(�): Further our equations are

(1 +
1

�
)f 000(�)� (f 0(�))2 + f(�)f 00(�)�

�
M +

1

K

�
f 0(�) = 0; (2.24)
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�00(�) + Pr f(�)�0(�)� Pr f 0(�)�(�) + PrQ�(�) = 0: (2.25)

The solution of �rst equation will be solved later for V4, and second equation can be solved

numerically.

I5) Invariants are x = �;  = f(�); � = ey�(�): By using these invariants we observe no

signi�cant information about f(�) and �(�):

I6) Following invariants are calculated � = ey

x ;  = xf(�); � = �(�), now our system will be

reduced as

(1+
1

�
)[�2f 000(�)+3�f 00(�)+f 0(�)]+f(�)f 0(�)��(f 0(�))2+�f(�)f 00(�)�

�
M +

1

K

�
f 0(�) = 0;

(2.26)

�2�00(�) + Pr f(�)�0(�) + ��0(�) + PrQ�(�) = 0: (2.27)

The above system can be solved numerically.

I7) This case is observed similar as I3.

I8) Following invariants are calculated x = �;  = y + f(�); � = ey�(�): In this case �rst

equation identically satis�ed and second becomes

�0(�)� ( 1
Pr
+Q)�(�) = 0; implies �(�) = a1e

�( 1
Pr
+Q)�: (2.28)

I9) From these invariants we are interested to represent the solutions in the form of physical

parameters of �uid. For that we will focus on V4:

Stretching sheet case

To observe the in�uence of physical parameters on �ow and heat transfer we consider the

permeable stretching sheet case. In which the plate with constant permeability is immersed

in the �uid at y = 0: The �ow is assumed to be passing through a uniform porous medium

with constant permeability k0. The x-coordinate is taken along the stretching surface and the

y-coordinate normal to the surface. The boundary conditions for this case will be as follows

u(x; y) = bx; v(x; y) = �vw, T (x; y) = Tw at y = 0; (2.29)

u(x; y) = 0; T (x; y) = T1 at y !1; (2.30)
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where Tw the wall temperature, vw the suction velocity and b is the stretching parameter. After

using the (2.4) the corresponding boundary conditions take the form

u(x; y) = x; v(x; y) =
�vwp
b�
; �(x; y) = 1 at y = 0; (2.31)

u(x; y) = 0; �(x; y) = 0 as y !1: (2.32)

Similarly we can employ stream function on our boundary conditions that becomes

@ 

@y
= x;

@ 

@x
= S; �(x; y) = 1; at y = 0; (2.33)

@ 

@y
= 0; �(x; y) = 0; as y !1; (2.34)

where S =
vwp
b�
, A positive value of S represents suction and negative value of S represents

injection.

For this particular invariant y = �;  = xf(�); � = �(�); our system becomes

(1 +
1

�
)f 000(�) + f(�)f 00(�)� f 0(�)2 �

�
M +

1

K

�
f 0(�) = 0; (2.35)

�00(�) + Pr f(�)�0(�) = 0; (2.36)

f(0) = S; f 0(0) = 1; f 0(1) = 0; (2.37)

�(0) = 1; �(1) = 0: (2.38)

In order to obtain the solution of Eq. (2.35), we consider

f(�) = A+Be���: (2.39)

Since the nature of the problem is exponential decaying, we consider the solution like Eq. (2.39),

where the constants A and B can be found by using conditions (2.37), then f(�) can be written

as

f(�) = S +
1

�
(1� e���); (2.40)
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where

� =
S +

q
S2 + 4(1 + 1

� )
�
M + 1

K

�
2(1 + 1

� )
: (2.41)

Substituting Eq. (2.40) in Eq. (2.36), we get

�00(�) + [PrS +
Pr

�
� Pr

�
e���]�0(�) + PrQ�(�) = 0: (2.42)

After setting � = �Pr
�2
e���; Eq. (2.42) becomes

��00(�) + (1� Pr
�2
(1 + �S)� �)�0(�) + PrQ

�2�
�(�) = 0; (2.43)

and boundary conditions will be

�(
�Pr
�2

) = 1; �(0) = 0;

where primes denote di¤erentiation with respect to �.

Using the transformation �(�) = �F (�), Eq. (2.43) becomes

�F 00(�) + (1�A� �)F 0(�)� F (�) = 0; (2.44)

where

 =
�PrS + Pr�

p
(�PrS + Pr)2 � 4�2 PrQ
2�2

; (2.45)

A =

p
(�PrS + Pr)2 � 4�2 PrQ

�2
: (2.46)

The corresponding boundary conditions become

F (0) = 0; F

�
�Pr
�2

�
=

�
�Pr
�2

��
: (2.47)

Equation (2.44) is the standard con�uent Hypergeometric Equation, whose solution is

F (�) =
(�Pr
�2
)��A �A 1F1( +A; 1 +A; �)

1F1( +A; 1 +A;
�Pr
�2
)

; (2.48)
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where 1F1(a; b; z) is Kummer�s function de�ned as [30]

1F1(a; b; z) =

1X
n=0

(a)n
(b)n

zn

n!
; b 6= 0;�1;�2:::,

where (a)n denoting the Pochhammer symbol de�ned in terms of the gamma function by

(a)n = a(a+ 1)(a+ 2):::(a+ n� 1) = �(a+ n)

�(a)
:

The solution of (2.36) can be rewritten, in terms of � as

�(�) =
e��(+A)� 1F1( +A; 1 +A;

�Pr
�2

e���)

1F1( +A; 1 +A;
�Pr
�2
)

;

�0(�) = �
e��(+A)� Pr

� e
���

1F1( +A; 1 +A;
�Pr
�2
)
�(A+ )1F1( +A; 1 +A;

�Pr
�2

e���)

+
Pr

�
e��� 1F1(1 +  +A; 2 +A;

�Pr
�2

e���); (2.49)

�0(0) = ��(A+ ) + (A+ ) Pr
�(A+ 1)

1F1(1 +  +A; 2 +A;
�Pr
�2
)

1F1( +A; 1 +A;
�Pr
�2
)

: (2.50)

The skin friction coe¢ cient and the local Nusselt number are de�ned as:

Cf =

�
�B +

pyp
2�c

�
�(bx)2

�
@�u

@�y

�
�y=0

;

Nux =
�x

(Tw � T1)

�
@T

@�y

�
�y=0

: (2.51)

Using Eqs. (2:4) and (2:51), the dimensionless forms of skin friction, and the local Nusselt

number, respectively, become

Re1=2x Cf = �
�
1 +

1

�

�
f 00(0);

Re�1=2x Nux = ��0(0): (2.52)
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2.1.3 Flow characteristics

In this section the e¤ects of various parameters on velocity and temperature pro�les are dis-

cussed. Figure 2:1 depicts the e¤ects of Casson �uid parameter � on velocity pro�le. It is

quite clear that there is a decrease in velocity with an increase in Casson �uid parameter �. In

Figure 2:2; the in�uence of magnetic �eld parameter M on velocity pro�le f 0(�) are shown. It

is observed that with an increase in magnetic �eld parameter M , the thickness of momentum

boundary layer decreases. This is mainly due to the fact that application of magnetic �eld to

an electrically conducting �uid gives rise to Lorentz force, which causes the �uid to decelerate.

Figure 2:3 interprets that velocity increases on increasing K: This is due to the fact that as

the permeability parameter increases, a decrease in the resistance of the porous medium occurs

which speeds up the �ow. In Figure 2:4 the e¤ect of suction parameter S on velocity �eld f 0(�)

is shown. An increase in suction parameter S causes the velocity pro�le to decrease.

The e¤ect of various parameters on temperature pro�le �(�) are presented in Figures 2:5�

2:11: The e¤ects of source (Q > 0) and sink (Q < 0) on temperature pro�le are shown in

Figures 2:5 and 2:6. It is noticed that in case of source the temperature increases with increase

in the value of heat generation parameter. However a decrease in temperature pro�le is noticed

in case of sink. Figure 2:7 illustrates that the thickness of thermal boundary layer increases

with increasing the Casson �uid parameter �:With an increase in magnetic �eld parameter M;

the resistive force becomes stronger which increases the temperature pro�le as shown in Figure

2:8: The in�uence of permeability parameter K on �(�) is depicted in Figure 2:9. A decrease in

temperature pro�le is noticed with an increase in permeability parameter. Figure 2:10 shows

that the temperature decreases as the suction parameter S increases. From Figure 2.11 it is

observed that thickness of the thermal boundary layer decreases with increasing Prandtl number

Pr :
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Figure 2.1: E¤ect of � on f 0(�) Figure 2.2: E¤ect of M on f 0(�)

Figure 2.3: E¤ect of K on f 0(�) Figure 2.4: E¤ect of S on f 0(�)
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Figure 2.5: E¤ect of (Q > 0) on �(�) Figure 2.6: E¤ect of (Q < 0) on �(�)

Figure 2.7: E¤ect of � on �(�)
Figure 2.8: E¤ect of M on �(�)
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Figure 2.9: E¤ect of K on �(�) Figure 2.10: E¤ect of S on �(�)

Figure 2.11: E¤ect of Pr on �(�)

In order to validate our study, we have made a comparison of values of �f 00(0) with those

reported earlier [102] and presented in Table 2:3. By keeping S = 0; � = 1 and K = 1; we

have found that the values obtained in this study are in good agreement with those reported

earlier [102]: Table 2:4 presents the values of �(1 + 1
� )f

00(0) for various values of Casson �uid

parameter �; Magnetic �eld parameterM; permeability parameter K and suction parameter S:

It is noticed that the skin friction coe¢ cient decreases with � and K and increases with M and

S: Further for the comparison of the value of��0(0) we have takenM = 0; S = 0; � =1;K =1

and Pr = 1 and obtained the value as 1
1+e which exactly matches with that reported in [30]:

Table 2:5 shows that the local Nusselt number ��0(0) increases with permeability parameter
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K, Prandtl number Pr and suction parameter S; and decreases with Casson �uid parameter

� and magnetic �eld parameter M: Table 2:6 indicates that the local Nusselt number ��0(0)

increases with heat sink (Q < 0) and decreases with heat source (Q > 0):

M
�f 00(0)
Present

�f 00(0)
[102]

0.0 1.0000000 1.00000
0.2 1.09545 1.09545
0.5 1.22474 1.22475
1.0 1.4142136 1.41421
1.2 1.48324 1.48324
1.5 1.58114 1.58114
2.0 1.7320508 1.73205
2.2 1.78885
2.5 1.87083
3.0 2.0000000

Table 2.3: A comparison of �f 00(0) obtained by the analytical method with the Cortell studies

[102] when we �xed S = 0;K =1 & � =1

� M K S �(1 + 1
� )f

00(0)

0.5 1.0 0.5 1.0 4.0
1.0 3.37228
1.5 3.12996
2.0 3.0
0.5 0.5 0.5 1.0 3.77872

1.0 4.0
1.5 4.2081
2.0 4.40512

0.5 1.0 0.5 1.0 4.0
1.0 3.54138
1.5 3.37228
2.0 3.28388

0.5 1.0 0.5 0.5 3.72311
1.0 4.0
1.5 4.29436
2.0 4.60555

Table 2.4: E¤ects of various parameters on �
�
1 +

1

�

�
f 00(0)
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� M K Pr S Q ��0(0)
0.5 1.0 0.5 0.71 1.0 0.1 1:80982

1.0 1:74601

1.5 1:71045

2.0 1:68876

0.5 0.5 0.5 0.71 1.0 0.1 1:82049

1.0 1:80982

1.5 1:79835

2.0 1:78671

0.5 1.0 0.5 0.71 1.0 0.1 1:80982

1.0 1:82913

1.5 1:83254

2.0 1:83306

0.5 1.0 0.5 0.71 1.0 0.1 1:80982

1.0 2:46103

2.0 4:26035

3.0 5:29138

0.5 1.0 0.5 0.71 0.5 0.1 1:16068

1.0 1:80982

1.5 2:46935

2.0 3:13938

Table 2.5: E¤ects of various parameters on� �0(0)

� M K Pr S Q ��0(0)
0.5 1.0 0.5 0.71 0.5 0.1 1:16068

0.2 1:62776

0.3 1:4196

0.4 1:16736

-0.1 -1:16068
-0.2 -1:62776
-0.3 -1:4196
-0.4 -1:16736

Table 2.6: E¤ects of heat source and sink on� �0(0)

2.1.4 Findings

The optimal system lead us to �nd the nine group invariant solutions. For one particular invari-

ant we solved the governing system of ordinary di¤erential equations by considering permeable

stretching sheet case to observe the in�uence of physical parameters on �uid and heat trans-

fer phenomenon. Further, the solution of that particular invariant are also presented through
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graphs and tables. The following observations have been found from permeable stretching sheet

case:

A decrease in thickness of momentum boundary layer is observed with increase in Casson

�uid parameter, magnetic �eld parameter and suction parameter. An increase in �uid veloc-

ity is noticed with increase in permeability parameter. The thermal boundary layer thickness

increases with Casson �uid parameter, magnetic �eld parameter and heat source (Q > 0): A

decreasing e¤ect is noticed on temperature with increase in permeability parameter, suction

parameter; heat sink (Q < 0) and Prandtl number. Skin friction increases with magnetic �eld

parameter and suction parameter, and decreases with Casson �uid parameter and permeability

parameter. The permeability parameter, suction parameter, and Prandtl number have increas-

ing e¤ects on local Nusselt number where Nux decreases with Casson �uid parameter; heat

source (Q > 0) and magnetic �eld parameter.

2.2 Lie group investigation of MHD �ow with the thermal ra-

diation e¤ects

2.2.1 Mathematical modeling

In this section we consider a two-dimensional laminar �ow of an incompressible Casson �uid

�ow and heat transfer through a porous medium in the presence of thermal radiation e¤ects

instead of source/sink e¤ects. In addition we are also interested in observing the mass transfer

phenomenon.

The governing system along with equations of the Casson �uid �ow Eq. (1.41), heat and

mass transfer are given by
@u

@x
+
@v

@y
= 0; (2.53)

u
@u

@x
+ v

@u

@y
=
�

�
(1 +

1

�
)
@2u

@y2
� �

k0
u� �B20

�
u; (2.54)

u
@T

@x
+ v

@T

@y
=

k

�cp

@2T

@y2
+
16�1T

3
1

3�cpk1

@2T

@y2
; (2.55)

u
@C

@x
+ v

@C

@y
= D

@2C

@y2
; (2.56)
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where �1 and k1 are the Stefen-Boltzmann constant and the mean absorption coe¢ cient respec-

tively. T and T1 are �uid and ambient temperatures respectively, C is concentration of �uid,

D mass di¤usivity, u; v are the velocity components in x- and y- directions respectively.

Introducing the following similarity transformations:

u(x; y) =
u(x; y)p

b�
; v(x; y) =

v(x; y)p
b�

; x =

r
b

�
x; y =

r
b

�
y; (2.57)

�(x; y) =
T (x; y)� T1
(Tw � T1)

; �(x; y) =
C(x; y)� C1
(Cw � C1)

: (2.58)

Using the transformations (2:57)� (2:58) in Eqs. (2:53)� (2:56), we have

@u

@x
+
@v

@y
= 0; (2.59)

u
@u

@x
+ v

@u

@y
= (1 +

1

�
)
@2u

@y2
� 1

K
u�Mu; (2.60)

u
@�

@x
+ v

@�

@y
=
1

Pr

�
1 +

4

3Nr

�
@2�

@y2
; (2.61)

u
@�

@x
+ v

@�

@y
=
1

Sc

@2�

@y2
; (2.62)

where Nr = ��1
4�1T 31

is radiation parameter and Sc = �
b is Schmidt number. Now by introducing

stream function

u =
@ 

@y
; and v = �@ 

@x
: (2.63)

By using stream function the Eq. (2:59) will become identically zero and the system (2.60)-

(2.62) take the forms

(1 +
1

�
)
@3 

@y3
� @ 

@y

@2 

@x@y
+
@ 

@x

@2 

@y2
� (M +

1

K
)
@ 

@y
= 0; (2.64)

1

Pr

�
1 +

4

3Nr

�
@2�

@y2
� @ 

@y

@�

@x
+
@ 

@x

@�

@y
= 0; (2.65)

1

Sc

@2�

@y2
� @ 

@y

@�

@x
+
@ 

@x

@�

@y
= 0: (2.66)
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2.2.2 Lie group analysis

The in�nitesimals of the Lie group of transformations leaving a given system of di¤erential equa-

tions invariant can be found by means of the straightforward algorithm discussed in previous

section. Consider the one-parameter Lie group of in�nitesimal transformations in (x; y;  ; �; �)

given by

x� = x+ ��(x; y;  ; �; �) +O(�2);

y� = y + ��(x; y;  ; �; �) +O(�2);

 � =  + ��(x; y;  ; �; �) +O(�2);

�� = � + �
(x; y;  ; �; �) +O(�2);

�� = �+ ��(x; y;  ; �; �) +O(�2): (2.67)

Equations (2:64)� (2:66) are nonlinear partial di¤erential equation with three dependent vari-

ables ( ; �; �) and two independent variables (x; y): Lie group analysis is required so that Eqs.

(2:64)� (2:66) remain invariant under these transformations which yields an over-determined,

linear system of equations for in�nitesimals �; � ; �; 
; �:

The in�nitesimal group generator is de�ned by

�!
V = �(x; y;  ; �; �)

@

@x
+ �(x; y;  ; �; �)

@

@y
+ �(x; y;  ; �; �)

@

@	

+
(x; y;  ; �; �)
@

@�
+�(x; y;  ; �; �)

@

@�
: (2.68)

After following the procedure de�ned in previous section to calculate the in�nitesimals we have

� = c1 + c2x; � = f1(x); � = c3 + c2 ; 
 = c4 + c5�; � = c6 + c7�; (2.69)

where ci(i = 1; 2; :::; 7); are arbitrary constants and f1(x) is arbitrary function of x.

There are seven �nite parameter Lie group symmetries represented by parameters ci, and

one in�nite symmetry f1(x). Parameter c1 corresponds to the translation in the variable x; c2

corresponds to the scaling in  and x; c3 corresponds to the translation in  , c4 corresponds

to the translation in �; c5 corresponds to scaling in �; and c6 and c7 correspond to translation
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and scaling in � respectively.

Here we have a 8�dimensional vector space of in�nitesimal generators closed under the

operation of commutation, i.e., 8�dimensional Lie algebra, the basis of the corresponding Lie

algebra is as follows

V1 = @x; V2 = x@x +  @ ; V3 = @ ; V4 = @�; V5 = �@�; V6 = @�; V7 = �@�; V8 = @y: (2.70)

The requirement for solvability is equivalent to the existence of a basis fV1; V2; :::; V8g of Lie

algebra such that by Eq. (1.13) we can develop the commutator table

[,] V1 V2 V3 V4 V5 V6 V7 V8
V1 0 0 V1 0 0 0 0 0
V2 0 0 -V2 0 0 0 0 0
V3 -V1 V2 0 V4 0 0 0 0
V4 0 0 -V4 0 0 0 0 0
V5 0 0 0 0 0 -V5 0 0
V6 0 0 0 0 V5 0 0 0
V7 0 0 0 0 0 0 0 V7
V8 0 0 0 0 0 0 V7 0

Table 2.7: Commutator table

By a straightforward observation of the commutator table we found the following Abelian Lie

algebra

[Vs; Vt] = 0; as s = t; [V1; V2] = 0; [V1; V4] = 0; [V1; V5] = 0;

[V1; V6] = 0; [V1; V7] = 0; [V1; V8] = 0; [V2; V4] = 0; [V2; V5] = 0;

[V2; V6] = 0; [V2; V7] = 0; [V2; V8] = 0; [V3; V5] = 0; [V3; V6] = 0;

[V3; V7] = 0; [V3; V8] = 0; [V4; V5] = 0; [V4; V6] = 0; [V4; V7] = 0;

[V4; V8] = 0; [V5; V7] = 0; [V5; V8] = 0; [V6; V7] = 0; [V6; V8] = 0:

We can reconstruct the following adjoint representation adG of the Lie group by summing the
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Lie series (1.14).

Ad V1 V2 V3 V4
V1 V1 V2 V3 � "V1 V4
V2 V1e

" V2 V3 + "V2 V4
V3 V1 V2[cosh "� sinh "] V3 V4[cosh "� sinh "]
V4 V1 V2 V4e

" V4
V5 V1 V2 V3 V4
V6 V1 V2 V3 V4
V7 V1 V2 V3 V4
V8 V1 V2 V3 V4

Ad V5 V6 V7 V8
V1 V5 V6 V7 V8
V2 V5 V6 V7 V8
V3 V5 V6 V7 V8
V4 V5 V6 V7 V8
V5 V5 V6+"V5 V7 V8
V6 V5[cosh "� sinh "] V6 V7 V8 + "V7
V7 V5 V6 V7 V8
V8 V5 V6 V7[cosh "� sinh "] V8

Table 2.8: Adjoint table

Following the procedure of the previous section, the optimal system of our equations (2.64)-

(2.66) is given by

I1) V1 + V3 I2) V1 + V4 I3) V1 + V5
I4) V1 + V6 I5) V1 + V7 I6) V2 + V4
I7) V2 + V5 I8) V2 + V6 I9) V2 + V7
I10) V2 + V8 I11) V3 + V8 I12) V4 + V8
I13) V5 + V8 I14) V6 + V8 I15) V7 + V8
I16) V1 + V3 + V4 I17) V1 + V3 + V5 I18) V1 + V3 + V6
I19) V1 + V3 + V7 I20) V1 + V3 + V8 I21) V1 + V4 + V8
I22) V1 + V5 + V8 I23) V1 + V6 + V8 I24) V1 + V7 + V8
I25) V3 + V4 + V8 I26) V3 + V5 + V8 I27) V3 + V6 + V8
I28) V3 + V7 + V8 I29) Vi(i = 1; 2; 3:::8)

Here we follow the procedure of the previous section to reduce the governing partial di¤erential

equations into ordinary di¤erential equations. For our system (2.64)-(2.66) we �nd the following

twenty nine group invariants which lead to group invariant solutions.
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I1) Invariants are y = �;  = x+ f(�); � = �(�); � = �(�): The system reduced into the

following form

(1 +
1

�
)f 000(�) + f 00(�)�

�
M +

1

K

�
f 0(�) = 0; (2.71)

�
1 +

4

3Nr

�
�00(�) + Pr �0(�) = 0; (2.72)

�00(�) + Sc�0(�) = 0: (2.73)

The solution of �ow Eq. (2.71) is same as in I1 of section 1.2.2 and the solution of above other

equations are

�(�) = a1 + a2e
�Pr

n
�; where n = 1 +

4

3Nr
;

�(�) = b1 + b2e
�Sc�;

where a1; a2; b1 and b2 are constants.

I2) The set of invariants are y = �;  = f(�); � = x+ �(�); � = �(�): Then the system

becomes

(1 +
1

�
)f 000(�)�

�
M +

1

K

�
f 0(�) = 0; (2.74)

�
1 +

4

3Nr

�
�00(�)� Pr f 0(�) = 0; (2.75)

�00(�)� Scf 0(�) = 0: (2.76)

The solution of �ow Eq. (2.74) observed similar as in I3 (previous section), other equations

reveals the solution as

�(�) =
a5
n
+
a4
n
� +

Pr a2
nm

em� � Pr a3
nm

e�m�;

�(�) = a7 + a6� +
Sca2
m

em� � Sca3
m

e�m�;

where m =
M+ 1

K

1+ 1
�

:

I3) The invariants are y = �;  = f(�); � = ex�(�); � = �(�): The �ow and mass transfer

equations appeared same as in I2 but the heat equation can be solved numerically which
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becomes �
1 +

4

3Nr

�
�00(�)� Pr f 0(�)�(�) = 0: (2.77)

I4) The invariants are y = �;  = f(�); � = �(�); � = x+ �(�): The �ow and mass transfer

equations appeared same as in I2 but the heat equation becomes

�00(�) = 0; implies �(�) = a1 + a2�: (2.78)

I5) Here the invariants are y = �;  = f(�); � = �(�); � = ex�(�): The �ow equation

reduced to same as in I2 and heat transfer equations appeared same as in I4 but the mass

transfer equation can be solved numerically which becomes

�00(�)� Scf 0(�)�(�) = 0: (2.79)

I6) The invariants are y = �;  = xf(�); � = lnx+ �(�); � = �(�): The system becomes

(1 +
1

�
)f 000(�) + f(�)f 00(�)� f 0(�)2 �

�
M +

1

K

�
f 0(�) = 0; (2.80)

�
1 +

4

3Nr

�
�00(�) + Pr f(�)�0(�)� Pr f 0(�) = 0; (2.81)

�00(�) + Scf(�)�0(�) = 0: (2.82)

The Eq. (2.80) and Eq. (2.82) will be solved later in detail for V2 and Eq. (2.81) can be solved

numerically.

I7) The invariants are y = �;  = xf(�); � = x�(�); � = �(�): The �ow and mass transfer

equations observed the same as in I6 but heat transfer can be solved numerically which

becomes �
1 +

4

3Nr

�
�00(�) + Pr f(�)�0(�)� Pr f 0(�)�(�) = 0: (2.83)

I8) Here the invariants are: y = �;  = xf(�); � = �(�); � = lnx+ �(�): The �ow equation

is the same as in I6 and heat equation will be solved later for V2, but mass transfer equation

51



can be solved numerically i.e.,

�00(�) + Scf(�)�0(�)� Scf 0(�) = 0: (2.84)

I9) The invariants are y = �;  = xf(�); � = �(�); � = x�(�): The �ow and heat transfer

equations will be solved for V2 but mass transfer can be solved numerically, which become

�00(�) + Scf(�)�0(�)� Scf 0(�)�(�) = 0: (2.85)

I10) The invariants are � = ey

x ;  = xf(�); � = �(�); � = �(�): After using them we have the

following system which can be solved numerically

(1 +
1

�
)
�
�2f 000 + 3�f 00 + f 0

�
+ ff 0 + �ff 00 � �f 02 �

�
M +

1

K

�
f 0 = 0; (2.86)

�
1 +

4

3Nr

�
[��00 + �0] + Pr f�0 = 0; (2.87)

��00 + (1 + Scf)�0 = 0: (2.88)

I11) Here the invariants are x = �;  = y + f(�); � = �(�); � = �(�): Using these invariants,

�ow equation identically satis�ed, and the other two equations are

�0(�)� n

Pr
�(�) = 0; implies �(�) = a1e

n
Pr
�; (2.89)

�0(�)� 1

Sc
�(�) = 0; implies �(�) = b1e

1
Sc
�: (2.90)

I12) Here the invariants are x = �;  = f(�); � = y + �(�); � = �(�): These invariants give

us no result.

I13) The invariants are x = �;  = f(�); � = ey�(�); � = �(�): These invariants give us no

result.

I14) The invariants are x = �;  = f(�); � = �(�); � = y + �(�): These invariants give us no

result.

I15) The invariants are x = �;  = f(�); � = �(�); � = ey�(�): These invariants give us no

result.
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I16) Here the set of invariants are y = �;  = x+ f(�); � = x+ �(�); � = �(�): The �ow and

mass transfer equations are observed to be the same as I1. But the heat equation becomes�
1 +

4

3Nr

�
�00 + Pr �0 � Pr f 0 = 0: (2.91)

The solution of this equation will be

�(�) =
Pr a2

nn1 + Pr
en1� � Pr a3

nn1 � Pr
e�n2� + a4 + a5e

�Pr
n
�;

where n1 =
�1+

p
1+4am
2a ; n2 =

�1�
p
1+4am
2a ; a = 1 + 1

� ;m =M + 1
K :

I17) Here the set of invariants are y = �;  = x+ f(�); � = ex�(�); � = �(�): The �ow and

mass transfer equations are the same as in I1. But the heat equation can be solved

numerically which becomes

�
1 +

4

3Nr

�
�00 + Pr �0 � Pr f 0� = 0: (2.92)

I18) Here the set of invariants are y = �;  = x+ f(�); � = �(�); � = x+�(�): The �ow and

heat transfer equations are observed the same as in I1. But the mass transfer equation

becomes

�00 + Sc�0 � Scf 0 = 0; (2.93)

which implies

�(�) =
Sca2
n1 + Sc

en1� � Sca3
n1 � Sc

e�n2� + a4 + a5e
�Sc�:

I19) Here the set of invariants are y = �;  = x+ f(�); � = �(�); � = ex�(�): The �ow and

heat transfer equations are the same as in I1. But the mass transfer equation can be solved

numerically which becomes

�00 + Sc�0 � Scf 0� = 0: (2.94)

I20) Here the set of invariants are y � x = �;  = x+ f(�); � = �(�); � = �(�): Here the

system reduced similar as I1.

After a keen observation we conclude that the invariants I21, I22, I23 and I24 are similar as

I2, I3, I4, I5 respectively. And invariants I25, I26, I27 and I28 give us no results.
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I29) From these invariants we are interested in representing the solutions in form of physical

parameters of �uid. For that we will focus on V2:

Stretching sheet case

We will consider the stretching sheet case here. The plate with constant permeability is im-

mersed in the �uid at y = 0. The �ow is passing through a uniform porous medium with

constant permeability k0. The y�coordinate is normal to the surface and x-coordinate is being

taken along the stretching surface. Now our boundary conditions will be as follows

u(x; y) = bx; v(x; y) = 0 at y = 0;

u(x; y) = 0; as y !1; (2.95)

T (x; y) = Tw ; C(x; y) = Cw at y = 0;

T (x; y) = T1 ; C(x; y) = C1 as y !1; (2.96)

where Tw wall temperature, Cw species concentration at the surface, C1 is free stream concen-

tration of the species, and b is stretching parameter.

After using the similarity transformations (2.57)-(2.58) our boundary conditions become

u(x; y) = x; v(x; y) = 0; at y = 0;

u(x; y) = 0; as y !1; (2.97)

�(x; y) = 1; �(x; y) = 1 at y = 0;

�(x; y) = 0; �(x; y) = 0 as y !1: (2.98)

And in form of stream functions Eqs. (2.97)-(2.98) will have the following form

@ (x; 0)

@y
= x;

@ (x; 0)

@x
= 0;

@ (x;1)
@y

= 0; (2.99)

�(x; 0) = 1; �(x; 0) = 1, �(x;1) = 0; �(x;1) = 0. (2.100)

For these particular invariants y = �;  = xf(�); � = �(�); � = �(�) our governing system will
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take the following form

(1 +
1

�
)f 000(�) + f(�)f 00(�)� f 0(�)2 �

�
M +

1

K

�
f 0(�) = 0; (2.101)

�
1 +

4

3Nr

�
�00(�) + Pr f(�)�0(�) = 0; (2.102)

�00(�) + Scf(�)�0(�) = 0; (2.103)

f(0) = 0; f 0(0) = 1; f 0(1) = 0; (2.104)

�(0) = 1; �(1) = 0; �(0) = 1; �(1) = 0: (2.105)

The skin friction coe¢ cient, the local Nusselt number and the local Sherwood number are

de�ned as:

Cf =

�
�B +

pyp
2�c

�
�(bx)2

�
@�u

@�y

�
�y=0

;

Nux =
�x

(Tw � T1)

�
@T

@�y

�
�y=0

;

Shx =
�x

(Cw � C1)

�
@C

@�y

�
�y=0

: (2.106)

Using (2:57)� (2:58) and (2:106), the dimensionless form of skin friction, local Nusselt number

and local Sherwood number become

Re1=2x Cf = �
�
1 +

1

�

�
f 00(0);

Re�1=2x Nux = ��0(0);

Re�1=2x Shx = ��0(0): (2.107)

In order to solve the non-linear Eqs. (2:101)�(2:103) with boundary conditions (2:104)�(2:105),

an analytical technique known as Homotopy Analysis Method (HAM) is used [103]. According

to the nature of problem, following set of initial guesses and auxiliary linear operators for f(�);
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�(�) and �(�) are used

f0(�) = 1� exp(��); �0(�) = exp(��); �0(�) = exp(��); (2.108)

Lf =
d3f

d�3
� df

d�
; L� =

d2�

d�2
+
d�

d�
; L� =

d2�

d�2
+
d�

d�
: (2.109)

The series solutions obtained by HAM for Eqs. (2:101)�(2:103) subject to boundary conditions

(2:104)� (2:105) can be written as

f(�) =
1X
m=0

fm(�); �(�) =
1X
m=0

�m(�); �(�) =
1X
m=0

�m(�); (2.110)

where

fm(�) =
1

m!

@mF (�; q)

@qm

����
q=0

; �m(�) =
1

m!

@m�(�; q)

@qm

����
q=0

;

�m(�) =
1

m!

@m�(�; q)

@qm

����
q=0

: (2.111)

The further detail of this method was discussed in chapter 1.

2.2.3 Convergence of the solutions

It is observed that the series solution (2:110) contains the auxiliary parameters ~f ; ~� and ~�

with the help of which the convergence region and rate of approximation of series solutions can

be controlled and adjusted. To get an idea of the admissible ranges of ~f ; ~� and ~� in which the

series solution converge, the so-called ~-curves are plotted at the 20th order of approximation.

The range for the admissible values of ~f ; ~� and ~� are �0:5 < ~f < �0:1, �0:5 < ~� < �0:2

and �0:5 < ~� < �0:1 as shown in Figure 2.12:

To accelerate the convergence of the series solutions (2:110), the homotopy-Pad´e approxi-

mation is utilized, and the tabulated results for f 00(0), �0(0) and �0(0) at ~f = �0:35, ~� = �0:35,

~� = �0:45 are presented in Table 2.9. It is quite evident that the value of f 00(0) converge up

to 6 decimal places after 6th order of approximation and the values of �0(0) and �0(0) are

convergent after 8th order of approximation.
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Figure 2.12: The ~-curves of at 20th-order of

approximations

Pad0e Approximation �f 00(0) ��0(0) ��0(0)
[2; 2] 1.413790 0.252893 0.493297
[4; 4] 1.414210 0.25365 0.501131
[6; 6] 1.414210 0.253648 0.501254
[8; 8] 1.414210 0.253648 0.501250
[10; 10] 1.414210 0.253648 0.501250

Table 2.9: Convergence table for the [m=m] homotopy Pad´e approximation of f 00(0), �0(0)

and �0(0) when � = 1:0, M = 1:0, K = 0:5, Pr = 1:0; Nr = 1:0 and Sc = 1:0 are kept �xed

2.2.4 Flow characteristics

In this section, the e¤ects of various parameters on velocity, temperature, and concentration

pro�les are presented through graphs and tables. The in�uence of magnetic �eld parameter M

and Casson �uid parameter revealed the same e¤ects as observed in previous section. Figure

2.13 depicts the e¤ects of permeability parameter on velocity pro�le. The velocity increases

with increasing K because as the permeability parameter increases, a decrease in the resistance

of porous medium is observed which speeds up the �ow.

The e¤ects of various physical parameters on temperature pro�le �(�) are presented in Fig-

ures 2.14�2:17: Figure 2.14 illustrates that the thermal boundary layer thickness increases with
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increase in Casson �uid parameter �: The e¤ects of magnetic �eld parameterM on temperature

pro�le are increasing as shown in Figure 2.15: The in�uence of permeability parameter K on

�(�) is depicted in Figure 2.16. A decrease in temperature pro�le is noticed with increase in

permeability parameter. Figure 2.17 illustrates that thermal boundary layer thickness decreases

with increase in Prandtl number Pr. On the other hand, Figure 2.18 demonstrates that thermal

radiation parameter Nr enhances �uid temperature.

In Figure 2.19, the in�uence of Casson �uid parameter � on concentration pro�le �(�) are

shown. An increase in concentration pro�le is observed with increase in �. The concentration

boundary layer increases with magnetic �eld parameter M and decreases with permeability

parameter K and Schmidt number Sc as shown in Figures 2.20, 2.21 and 2.22 respectively.

Figure 2.13: E¤ect of K on f 0(�) Figure 2.14: E¤ect of � on �(�)
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Figure 2.15: E¤ect of M on �(�) Figure 2.16: E¤ect of K on �(�)

Figure 2.17: E¤ect of Pr on �(�) Figure 2.18: E¤ect of Nr on �(�)
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Figure 2.19: E¤ect of � on �(�) Figure 2.20: E¤ect of M on �(�)

Figure 2.21: E¤ect of K on �(�) Figure 2.22: E¤ect of Sc on �(�)

Table 2.10 presents the values of �(1 + 1
� )f

00(0) for various values of Casson �uid parameter

�; Magnetic �eld parameter M and permeability parameter K: The skin friction coe¢ cient

decreases with � and K and increases with M: Table 2.11 shows that the local Nusselt number

��0(0) increases with permeability parameter K and Prandtl number Pr and decreases with

Casson �uid parameter �; magnetic �eld parameter M and radiation parameter Nr. In Table

2.12 the e¤ects of pertinent parameters on local Sherwood number are demonstrated. It is seen

that ��0(0) augments with permeability parameter and Schmidt number Sc and decreases with

Casson �uid parameter �; magnetic �eld parameter M:
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� M K �(1 + 1
� ) f

00(0)

0.5 1.0 0.5 3.46410
1.0 2.82843
1.5 2.58199
2.0 2.44949
0.5 0.5 0.5 3.24037

1.0 3.46410
1.5 3.67423
2.0 3.87298

0.5 1.0 0.5 3.46410
1.0 3.00000
1.5 2.82843
2.0 2.73861

Table 2.10: E¤ects of various parameters on� (1 + 1

�
)f 00(0) when hf = 0:35

� M K Pr Nr ��0(0)
0.5 1.0 0.5 0.71 1.0 0.218459
1.0 0.188432
1.5 0.175448
2.0 0.168150
0.5 0.5 0.5 0.71 1.0 0.228523

1.0 0.218459
1.5 0.209624
2.0 0.201784

0.5 1.0 0.5 0.71 1.0 0.218459
1.0 0.240133
1.5 0.248948
2.0 0.253742

0.5 1.0 0.5 0.71 1.0 0.218459
1.0 0.289864
2.0 0.492932
3.0 0.655593

0.5 1.0 0.5 0.71 0.5 0.288460
1.0 0.218459
1.5 0.176120
2.0 0.147643

Table 2.11: E¤ects of various parameters on� �0(0) when hf = 0:35; h� = 0:45
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� M K Sc ��0(0)
0.5 1.0 0.5 0.71 0.429091
1.0 0.384405
1.5 0.363575
2.0 0.351450
0.5 0.5 0.5 0.71 0.443042

1.0 0.429092
1.5 0.416431
2.0 0.404862

0.5 0.5 0.5 0.71 0.429092
1.0 0.458545
1.5 0.469915
2.0 0.475961

0.5 0.5 0.5 0.71 0.429092
1.0 0.550535
2.0 0.877907
3.0 1.13143

Table 2.12: E¤ects of various parameters on� �0(0) when hf = 0:35; h� = 0:45

2.2.5 Findings

We �nd the twenty nine group invariant solutions by using the optimal system. For one partic-

ular invariant we solved the governing system of ordinary di¤erential equations by considering

permeable stretching sheet case to observe the in�uence of physical parameters on �uid and

heat transfer phenomenon. The solution of that particular invariant are also presented through

graphs and tables. The following observations have been made from stretching sheet case:

A decrease in momentum boundary layer thickness is observed with increase in Casson

�uid parameter � and magnetic �eld parameter M . An increase in �uid velocity is noticed

with increase in permeability parameter K. The thermal boundary layer thickness increases

with Casson �uid parameter �, magnetic �eld parameter M and radiation parameter Nr: A

decreasing e¤ect is noticed on temperature with increase in permeability parameter K and

Prandtl number Pr. The concentration increases with Casson �uid parameter � and magnetic

�eld parameterM and decreases with permeability parameter K and Schmidt number Sc. Skin

friction increases with magnetic �eld parameter M and decreases with Casson �uid parameter

� and permeability parameter K. The permeability parameter K and Prandtl number Pr

has increasing e¤ects on local Nusselt number and it decreases with Casson �uid parameter �;
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magnetic �eld parameter M and radiation parameter Nr. Local Sherwood number increases

with K and Sc and decreases with � and M .
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Chapter 3

Lie group study of unsteady MHD

non-Newtonian �uid �ow with

viscous dissipation e¤ects

This chapter comprises of some extension work of previous chapter. In this chapter we consider

the MHD, unsteady �ow of Casson �uid with viscous dissipation e¤ects. The governing partial

di¤erential equations are made dimensionless after using appropriate similarity transformations.

Further, group theoretical method is applied to analyze the governing system of partial di¤eren-

tial equations. For the physical interest of �uid parameters we discuss one particular invariant

for unsteady stretching sheet case in detail with graphs and tables.

3.1 Mathematical modeling

Consider an unsteady two-dimensional laminar �ow of an incompressible Casson �uid. A uni-

form transverse magnetic �eld of strength B0 is applied parallel to y-axis. It is also assumed

that the �uid is electrically conducting and the magnetic Reynolds number is small so that

the induced magnetic �eld is neglected. No electric �eld is assumed to exist. The rheological

equation (1.41) and conservation of mass, momentum and heat transfer, the following boundary
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layer equations are obtained
@u

@x
+
@v

@y
= 0; (3.1)

@u

@t
+ u

@u

@x
+ v

@u

@y
= �(1 +

1

�
)
@2u

@y2
� �B2(t)

�
u; (3.2)

@T

@t
+ u

@T

@x
+ v

@T

@y
=

k

�Cp

@2T

@y2
+

�

Cp
(1 +

1

�
)

�
@u

@y

�2
; (3.3)

where B(t) = B0p
1�ct is unsteady magnetic �eld.

Introducing the non-dimensional transformations

u(t; x; y) =
ax

1� ct
@g(x; �)

@�
; v(t; x; y) = �

r
a�

1� ctg(x; �); (3.4)

T (t; x; y) = T1 + (Tf � T1)�(x; �); and � =
r

a

�(1� ct)y; (3.5)

where c is constant. After using transformations (3:4)� (3:5) our system (3:1)� (3:3) have the

following form

(1 +
1

�
)
@3g

@�3
+ g

@3g

@�3
� (@g

@�
)2 �A(@g

@�
+
1

2
�
@2g

@�2
)�M @g

@�
= 0; (3.6)

@2�

@�2
� PrA(� + 1

2
�
@g

@�
)� Pr(� @g

@�
� g @�

@�
) + (1 +

1

�
) PrEc(

@2g

@�2
)2 = 0: (3.7)

Here A = c
a is unsteady parameter and Ec =

U2m
Cp(Tf�T1) is Eckert number.

3.2 Lie group analysis

To �nd the symmetries for the system (3.6)-(3.7), we apply the Lie group technique. The

in�nitesimal generator can be written as

~V = �1(x; �; g; �)@x + �2(x; �; g; �)@� + �1(x; �; g; �)@g + �2(x; �; g; �)@�: (3.8)

65



By using the same method as discussed in chapter 2 for seeking the in�nitesimals, we will have

the following symmetries

�1 = g1(x); �2 = c1�; �1 = c2g; �2 = c3�; (3.9)

where ci (i = 1; 2; 3) are arbitrary constants and g1(x) is arbitrary function of x:

There are three �nite parameter Lie group symmetries represented by parameters ci, and

one in�nite symmetry g1(x). Parameter c1, c2 and c3 corresponds to the scaling in the variables

�; g and � respectively.

As we discussed in chapter 2 the requirement for solvability is equivalent to the existence of

a basis fV1; V2; :::; V4g of Lie algebra. The basis of the corresponding Lie algebra is as follows

V1 = @x; V2 = �@�; V3 = g@g; V4 = �@�: (3.10)

Here we observe that, all entries of commutator table are zero. All the basis produce an Abelian

Algebra. So we also can not say any thing about adjoint table.

Group invariant solutions

By following the same procedure as explained in chapter 2, the optimal system of our equations

(3.6)-(3.7) is provided by

I1) V1 + V2 I2) V1 + V3 I3) V1 + V4
I4) V2 + V4 I5) V3 + V4 I6) V1 + V2 + V3
I7) V1 + V2 + V4 I8) V1 + V2 + V4 I9) V1 + V2 + V4
I10) Vi; i = 1; 2; 3; 4:

Further we will concentrate our attention on the classi�cation of the group-invariant solutions.

The system of invariants can be used to reduce the order of the original equations - constructing

the reduced order system of equations. Doing this one can hope to �nd simple equations that

can be integrated. Since di¤erential equations can admit more than one symmetry, there are

di¤erent ways to choose a set of similarity variables by starting from di¤erent symmetries.

Here we follow the procedure as explained in chapter 2 to reduce the governing partial

di¤erential equations into ordinary di¤erential equations. For our system (3.6)-(3.7) we �nd
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ten group invariants which lead to group invariant solutions which are as follows.

I1) Invariants are x = �; g = �f(�); � = �(�): This set of invariant gives us trivial solutions.

I2) Here invariants are x = �; g = f(�); � = ��(�): After using this set of invariants our

system identically satis�ed.

I3) Invariants are � = �
ex ; g = f(�); � = �(�): After using this set of invariants our system

appeared into following form which can be solved numerically

(1 +
1

�
)f 000 + exff 00 � ex(f 0)2 �A(e2xf 0 + 1

2
�f 00)�Me2xf 0 = 0; (3.11)

�00 � PrA(e2x� + 1
2
��0)� Pr ex(f 0� � f�0) + (1 + 1

�
) PrEce�2x(f 00)2 = 0: (3.12)

I4) Invariants are � = �; g = exf(�); � = �(�): After using this set of invariants our system

takes the following form which can be solved numerically

(1 +
1

�
)f 000 + exff 00 � ex(f 0)2 �A(f 0 + 1

2
�f 00)�Mf 0 = 0; (3.13)

�00 � PrA(� + 1
2
��0)� Pr ex(f 0� � f�0) + (1 + 1

�
) PrEce2x(f 00)2 = 0: (3.14)

I5) Invariants are � = �; g = f(�); � = ex�(�): By using this set of invariants �ow equation

appeared same as in V1 and heat transfer equation can be solved numerically i.e.

(1 +
1

�
)f 000 + ff 00 � (f 0)2 �A(f 0 + 1

2
�f 00)�Mf 0 = 0; (3.15)

�00 � PrA(� + 1
2
��0)� Pr(f 0� � f�0) + (1 + 1

�
) PrEce�x(f 00)2 = 0: (3.16)

I6) Invariants are � = �
ex ; g = �f(�); � = �(�): After using this set of invariants our system

takes the following form which can be solved numerically

(1 +
1

�
)[3f 00 + �f 000] + �2ff 00 � �2(f 0)2 � f2 �A(f + �f 0 + �2f 00)�M(f + �f 0) = 0; (3.17)

�00 � PrAe2x(� + 1
2
��0)� Pr ex(2f 0� + �f 00� � �f�0) + (1 + 1

�
) PrEc(2f 0 + �f 00)2 = 0: (3.18)

I7) Invariants are � = �
ex ; g = f(�); � = ��(�): By using this set of invariants �ow equation

67



appeared same as in I3 and the heat equation takes the following form which can be solved

numerically

��00+2�0�PrAex(��+1
2
��+

1

2
�2�0)�Pr ex(�f 0��f���f�0)+(1+ 1

�
) PrEce�3x(f 00)2 = 0: (3.19)

I8) Invariants are x = �; g = �f(�); � = ��(�): This set of invariants gives us trivial solutions.

I9) Invariants are � = �; g = exf(�); � = ex�(�): This set of invariants reveals us same �ow

equation as in I4 and similar heat equation as in I5.

I10) For this particular invariant V1 we are interested to observe the behavior of physical

parameters on �ow and heat transfer phenomenon.

Unsteady stretching sheet

We consider the unsteady stretching sheet with convective boundary case. The sheet lies in

the plane y = 0 with the �ow being con�ned to y > 0. The coordinate x is being taken along

the stretching surface and y is normal to the surface. Along the x-axis, two equal and opposite

forces are applied, so that the surface is stretched, keeping the origin �xed. So our boundary

conditions becomes

u(t; x; y) = Um(t; x); v(t; x; y) = 0; & � k@T (t; x; y)
@y

= h[Tf � T ]; at y = 0;

u(t; x; y) ! 0; T (t; x; y)! 0; at y !1; (3.20)

where

Um(t; x) =
ax

1� ct and Tf (t; x) = T1 +
a1x

1� ct : (3.21)

After using (3.4)-(3.5) the boundary conditions become

g(x; 0) = 0;
@g(x; 0)

@�
= 1;

@g(x;1)
@�

= 0;

@�(x; 0)

@�
= �[1� �(x; 0)]; �(x;1) = 0: (3.22)

where  = h
k

q
�(1�ct)

a is Biot number.
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For this particular invariant, � = �; g = f(�); � = �(�) our system takes the following form

(1 +
1

�
)f 000 + ff 00 � (f 0)2 �A(f 0 + 1

2
�f 00)�Mf 0 = 0; (3.23)

�00 � PrA(� + 1
2
��0)� Pr(f 0� � f�0) + (1 + 1

�
) PrEc(f 00)2 = 0; (3.24)

with subject to the following boundary conditions

f(0) = 0; f 0(0) = 1; f 0(1) = 0;

�0(0) = �[1� �(0)]; �(1) = 0: (3.25)

The skin friction coe¢ cient and the local Nusselt number are de�ned as:

Cf =

�
�B +

pyp
2�c

�
�(bx)2

�
@u

@y

�
y=0

;

Nux =
�x

(Tw � T1)

�
@T

@y

�
y=0

: (3.26)

Using (3:4)� (3:5) and (3:26), the dimensionless form of skin friction and local Nusselt number

become

R1=2x Cf = �
�
1 +

1

�

�
f 00(0);

R�1=2x Nux = ��0(0): (3.27)

In order to solve the non-linear Eqs. (3:23) � (3:24) with boundary conditions (3:25), an

analytical technique known as (HAM) is used. The detail of this method can be found in [103]

and in chapter 1. According to the nature of this problem, following set of initial guesses and

auxiliary linear operators for f(�) and �(�) are used

f0(�) = 1� exp(��); �0(�) = exp(��); (3.28)

Lf =
d3f

d�3
� df

d�
; L� =

d2�

d�2
+
d�

d�
: (3.29)

The series solutions obtained by HAM for Eqs. (3:23)� (3:24) subject to boundary conditions
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(3:25) can be written as

f(�) =

1X
m=0

fm(�); �(�) =

1X
m=0

�m(�); (3.30)

where

fm(�) =
1

m!

@mF (�; q)

@qm

����
q=0

; �m(�) =
1

m!

@m�(�; q)

@qm

����
q=0

: (3.31)

Note that the two series (3.30) contain the auxiliary parameters ~f and ~� which in�uences

the convergent rate and region of the two series. To get an idea of the admissible ranges of

~f and ~� in which the series solution converge, the so-called ~�curves are plotted at the 15th

order of approximation. The range for the admissible values of ~f and ~� are �0:7 < ~f < 0

and �0:7 < ~� < 0 as shown in Figure 3.1. To proceed with the convergence of the series

solutions (3.30), the homotopy- approximation is utilized, and the tabulated results for �f 00(0)

and ��0(0) at ~f = �0:3 and ~� = �0:3 are presented in Table 3.1. It is quite evident that

the value of �f 00(0) converge up to 6 decimal places after 12th order of approximation and the

values of ��0(0) are convergent after 30th order of approximation.

Figure 3.1: The ~-curves of at 15th-order of

approximations when Ec=0.2, Pr=1, M=1,

� = 0:3; A=0.5 and  = 0:5
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Order of Convergence �f 00(0) ��0(0)
1 0.70625 0.310694
5 0.739195 0.304136
10 0.739337 0.302814
15 0.739336 0.302683
20 0.739336 0.302669
25 0.739336 0.302666
30 0.739336 0.302665

Table 3.1: Convergence table of �f 00(0) and ��0(0) for various order of approximations when

Ec = 0:2;Pr = 1; � = 0:3;M = 1; A = 0:5 and  = 0:5

3.3 Flow characteristics

The transformations for linear group are used to reduce the two independent variables into one

and hence to reduce the governing equations into a system of non-linear ordinary di¤erential

equations (3.23)-(3.24) with boundary conditions (3.25) are solved numerically using the Runge-

Kutta fourth-�fth order method with shooting technique. Then we hash out the in�uence of

various parameters on velocity and temperature through graphs and tables. Figures 3.2-3.4

presents the e¤ects of di¤erent parameters on velocity pro�le. In Figure 3.2, the e¤ects of

unsteady parameter on velocity pro�le are illustrated. It is observed that an increase in velocity

occurs with increase in unsteady parameter A. Figure 3.3 shows the in�uence of magnetic �eld

parameter on velocity pro�le f 0(�). It is quite clear that with an increase in the value of M the

velocity decreases. The behavior is because of the application of magnetic �eld to an electrically

conducting �uid give rise to a resistive force known as Lorentz force which causes the �uid to

decelerate. Figure 3.4 depicts that the e¤ects of Casson �uid parameter � on velocity pro�le.

It is observed that a decrease in velocity occurs with increase in Casson �uid parameter �.

The e¤ects of various physical parameters on temperature pro�le �(�) are presented in Figures

3.5-3.9. Figure 3.5 presents that with increase in thermal boundary layer thickness unsteady

parameter A decreases. The in�uence of magnetic �eld parameter M on temperature pro�le

�(�) increasing as illustrated in Figure 3.6. In Figure 3.7 the e¤ects of Casson �uid parameter

� on thermal boundary layer thickness are presented. It is observed that when � increases �(�)

also increases. The in�uence of Eckert number Ec on temperature pro�le �(�) are presented in
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Figure 3.8. It is quite clear that with the increase of Ec the thermal boundary layer thickness

�(�) increases. Figure 3.9 shows that when we increase Biot Number  the temperature pro�le

�(�) increases.

Figure 3.2: E¤ect of A on f 0(�) Figure 3.3: E¤ect of M on f 0(�)

Figure 3.4: E¤ect of � on f 0(�) Figure 3.5: E¤ect of A on �(�)
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Figure 3.6: E¤ect of M on �(�) Figure 3.7: E¤ect of � on �(�)

Figure 3.8: E¤ect of Ec on �(�) Figure 3.9: E¤ect of  on �(�)

Table 3.2 presents the values of �(1 + 1
� )f

00(0) for various values of unsteady parameter

A, magnetic �eld parameter M and Casson �uid parameter �. The skin friction coe¢ cient

increases with M and A and decreases with �. Table 3.3 shows that the local Nusselt Number

��0(0) increases with unsteady parameter A, Casson �uid parameter � and Biot Number  and
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decreases with magnetic �eld parameter M and Eckert Number Ec.

M A �
�(1 + 1

� )f
00(0)

HAM
�(1 + 1

� )f
00(0)

Numerical

0.0 0.5 0.3 2.42975 2.42975
0.5 2.84405 2.84405
1.0 3.20379 3.20379
2.0 3.82186 3.82186
3.0 4.35253 4.35253
1.0 0.0 0.3 2.94392 2.94392

0.2 3.04953 3.04953
0.5 3.20379 3.20379
1.0 3.44959 3.44959
1.5 3.68189 3.68189

1.0 0.5 1.0 2.17654 2.17654
3.0 1.77714 1.77714
5.0 1.68595 1.68595
10.0 1.61417 1.61417
1 1.53905 1.53905

Table 3.2: E¤ects of various parameters on �(1 + 1
� )f

00(0) when }f = �0:3
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Ec  M A �
��0(0)
HAM

��0(0)
Numerical

0.2 0.5 1.0 0.5 0.3 0.30267 0.30267
0.3 0.27597 0.27597
0.5 0.22257 0.22257
0.7 0.16917 0.16917
0.9 0.11577 0.11577
0.2 0.1 1.0 0.5 0.3 0.07865 0.07865

0.3 0.20523 0.20523
0.5 0.30267 0.30267
1.0 0.47002 0.47002
3.0 0.74446 0.74446

0.2 0.5 0.0 0.5 0.3 0.32483 0.32483
0.5 0.31324 0.31324
1.0 0.30267 0.30267
2.0 0.28354 0.28354
3.0 0.26631 0.26631

0.2 0.5 1.0 0.0 0.3 0.28328 0.28328
0.2 0.29164 0.29164
0.5 0.30267 0.30267
1.0 0.31734 0.31734
1.5 0.32847 0.32847

0.2 0.5 1.0 0.5 1.0 0.30708 0.30708
3.0 0.30835 0.30835
5.0 0.30856 0.30856
10.0 0.30868 0.30868
1 0.30879 0.30879

Table 3.3: E¤ects of various parameters on ��0(0) when Pr = 1; }� = �0:30

3.4 Findings

For a particular invariant we have solved the governing system of ordinary di¤erential equation

by considering unsteady stretching sheet case. Homotopy Analysis Method and Numerical

Method are used to solve these equations. Following observations are found from the unsteady

stretching sheet case:

The velocity and temperature pro�les decrease when the non-Newtonian Casson �uid pa-

rameter � increases. Magnetic �eld parameter M has opposite e¤ects on velocity �eld f 0(�)

and temperature pro�le �(�). Unsteady parameter A for velocity and temperature pro�les is
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observed similar. The temperature pro�le increases with Eckert Number Ec and Biot Number

. Skin friction increases with unsteady parameter A and magnetic �eld parameter M and

decreases with Casson �uid parameter �: An unsteady parameter A, Casson �uid parameter �

and Biot Number  has increasing e¤ects on Local Nusselt Number Nux and it decreases with

magnetic �eld parameter M and Eckert Number Ec.
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Chapter 4

Lie group study of Hall e¤ects with

thermal radiation and free

convection phenomenon

This chapter devoted into two sections. In section 1 we consider the MHD stagnation point �ow,

heat and mass transfer with thermal radiation e¤ects. After making the governing equations

dimensionless we have applied the Lie group technique to �nd the symmetries of the governing

equations. Further, we �nd the sub algebra and the group invariants solutions of the governing

system. To observe the e¤ects of di¤erent physical parameters on velocity, temperature and

concentration pro�les we consider the case of permeable plate with conduction on the walls. In

the end, �ow characteristics are discussed in detail with graphs.

In section 2, we apply the similarity technique on Hall e¤ects with free convection, Casson

�uid �ow and heat transfer phenomenon. We use the dimensionless quantities on our govern-

ing system of partial di¤erential equations. Further we investigate the system of di¤erential

equations in the light of scaling symmetry. After �nding the similarity variables we convert

the system into the ordinary di¤erential equations. In the end, we solve the particular problem

with boundary conditions and represent the results through graphs.
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4.1 Lie group study of stagnation point �ow with thermal ra-

diation e¤ects

4.1.1 Mathematical modeling

Consider a steady two-dimensional laminar �ow of an incompressible Casson �uid, heat and

mass transfer in the presence of thermal radiation e¤ects. A uniform transverse magnetic �eld

of strength B0 is applied parallel to y-axis. It is also assumed that the �uid is electrically

conducting and the magnetic Reynolds number is small so that the induced magnetic �eld

is neglected. No electric �eld is assumed to exist. Using Eq. (1.41) and conservation of

mass, conservation of momentum, heat and mass transfer we have the following boundary layer

equations

@�u

@�x
+
@�v

@�y
= 0; (4.1)

�u
@�u

@�x
+ �v

@�u

@�y
= �1

�

@p

@�x
+ �(1 +

1

�
)
@2�u

@�y2
� �B20

�
�u; (4.2)

�u
@T

@�x
+ �v

@T

@�y
=

k

�Cp

@2T

@�y2
� 16�1T

3
1

3�Cpk1

@2T

@y2
; (4.3)

�u
@C

@�x
+ �v

@C

@�y
= D

@2C

@�y2
: (4.4)

For pressure gradient use �u = �ue(�x) in the free stream, then by Eq. (4.2) become

�1
�

@p

@�x
= �ue

d�ue
d�x

+
�B20
�
�ue: (4.5)

We de�ne the non-dimensionalized parameters as:

x =
�x

L
; y =

�y
p
R

L
; u =

�u

u1
; v =

�v
p
R

u1
;

ue =
�ue
u1

; � =
T � T1
Tf � T1

; � =
C � C1
Cw � C1

; R =
Lu1
�

: (4.6)
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By using above transformations (4.6) and by considering the external velocity ue = x; our

system (4.1)-(4.4) becomes
@u

@x
+
@v

@y
= 0; (4.7)

u
@u

@x
+ v

@u

@y
= (1 +

1

�
)
@2u

@y2
�M(u� x) + x; (4.8)

u
@�

@x
+ v

@�

@y
=
1

Pr

�
1 +

4

3Nr

�
@2�

@y2
; (4.9)

u
@�

@x
+ v

@�

@y
=
1

Sc

@2�

@y2
: (4.10)

Now introducing stream function as

u =
@ 

@y
; v = �@ 

@x
: (4.11)

Now our system (4.7)-(4.10) will be

@ 

@y

@2 

@x@y
� @ 

@x

@2 

@y2
= (1 +

1

�
)
@3 

@y3
�M

�
@ 

@y
� x

�
+ x; (4.12)

@ 

@y

@�

@x
� @ 

@x

@�

@y
=
1

Pr

�
1 +

4

3Nr

�
@2�

@y2
; (4.13)

@ 

@y

@�

@x
� @ 

@x

@�

@y
=
1

Sc

@2�

@y2
: (4.14)

4.1.2 Lie group analysis

Lie group theory is employed in search of symmetries of the equations. The in�nitesimal

generator for the problem is

~V = �1(x; y;  ; �; �)@x + �2(x; y;  ; �; �)@y + �1(x; y;  ; �; �)@ 

�2(x; y;  ; �; �)@� + �3(x; y;  ; �; �)@�: (4.15)

A straightforward calculations as explained in chapter 2, yields

�1 = c2x; �2 = g(x);�1 = c1 + c2 ;�2 = c4 + c5�;�3 = c6 + c3�; (4.16)
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where ci (i = 1; 2; :::; 6) are arbitrary constants and g(x) is arbitrary function of x:

There are six �nite parameter Lie group symmetries represented by parameters ci, and

one in�nite symmetry g(x). Parameter c1 corresponds to the translation in the variable  ; c2

corresponds to the scaling in  and x; c3 corresponds to the scaling in �, c4 corresponds to the

translation in �; c5 corresponds to scaling in � and c6 corresponds to translation in �.

Here we have a 7�dimensional vector space of in�nitesimal generators closed under the

operation of commutation, i.e., 7�dimensional Lie algebra, the basis of the corresponding Lie

algebra is as follows

V1 = @ ; V2 = x@x +  @ ; V3 = �@�; V4 = @�; V5 = �@�; V6 = @�; V7 = @y: (4.17)

As we discuss in chapter 2 the requirement for solvability is equivalent to the existence of a basis

fV1; V2; :::; V7g of Lie algebra such that by Eq. (1.13) we can develop the following commutator

table

[,] V1 V2 V3 V4 V5 V6 V7
V1 0 0 V1 0 0 0 0
V2 0 0 -V2 0 0 0 0
V3 -V1 V2 0 0 0 0 0
V4 0 0 0 0 0 0 V7
V5 0 0 0 0 0 -V5 0
V6 0 0 0 0 V5 0 0
V7 0 0 0 -V7 0 0 0

Table 4.1: Commutator table

The commutator table 4.1 provides us the following Abelian Lie algebra

[Vs; Vt] = 0; as s = t; [V1; V2] = 0; [V1; V4] = 0; [V1; V5] = 0;

[V1; V6] = 0; [V1; V7] = 0; [V2; V4] = 0; [V2; V5] = 0;

[V2; V6] = 0; [V2; V7] = 0; [V3; V4] = 0; [V3; V5] = 0;

[V3; V6] = 0; [V3; V7] = 0; [V4; V5] = 0; [V4; V6] = 0;

[V5; V7] = 0; [V6; V7] = 0:
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By using the de�nition of adjoint representation from chapter 1, we can reconstruct the adjoint

representation adG of the Lie group by summing the Lie series (1.14) obtaining the adjoint

table.

Ad V1 V2 V3 V4
V1 V1 V2 V3 � "V1 V4
V2 V1e

" V2 V3 + "V2 V4
V3 V1 V2[cosh "� sinh "] V3 V4
V4 V1 V2 V3 V4
V5 V1 V2 V3 V4
V6 V1 V2 V3 V4
V7 V1 V2 V3 V4 + "V7

Ad V5 V6 V7
V1 V5 V6 V7
V2 V5 V6 V7
V3 V5 V6 V7
V4 V5 V6 V7[cosh "� sinh "]
V5 V5 V6+"V5 V7
V6 V5[cosh "� sinh "] V6 V7
V7 V5 V6 V7

Table 4.2: Adjoint table

The optimal system of our equations (4.12)-(4.14) is provided by those generated by

I1) V2 + V3 I2) V2 + V4 I3) V2 + V5
I4) V2 + V6 I5) V2 + V7 I6) V1 + V7
I7) V3 + V7 I8) V4 + V7 I9) V5 + V7
I10) V6 + V7 I11) V1 + V3 + V7 I12) V1 + V4 + V7
I13) V1 + V5 + V7 I14) V1 + V6 + V7 I15) V2 + V3 + V4
I16) V2 + V3 + V5 I17) V2 + V3 + V7 I18) V2 + V4 + V6
I19) V2 + V4 + V7 I20) V2 + V5 + V6 I21) V2 + V5 + V7
I22) V2 + V6 + V7 I23) V3 + V4 + V7 I24) V3 + V5 + V7
I25) V4 + V6 + V7 I26) Vi(i = 1; 2; 3:::7)

Here we follow the procedure as mentioned in chapter 2 to reduce the governing partial di¤er-

ential equations into ordinary di¤erential equations. For our system (4.12)-(4.14) we �nd the

following twenty six group invariants which lead us to group invariant solutions which are as

follows.

I1) Invariants are y = �;  = xf(�); � = �(�); � = x�(�): The system reduced into the
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following form

(1 +
1

�
)f 000 � f 02 + ff 00 �M(f 0 � 1) + 1 = 0; (4.18)

�
1 +

4

3Nr

�
�00 + Pr f�0 = 0; (4.19)

�00 + Scf�0 � Scf 0� = 0: (4.20)

The solution of the �ow equation (4.18) and heat equation (4.19) will be solved later for V2 and

mass transfer equation (4.20) can be solved numerically.

I2) The set of invariants are y = �;  = xf(�); � = lnx+ �(�); � = �(�): Then the �ow

equation appeared same as I1 and the other equations becomes�
1 +

4

3Nr

�
�00 + Pr f�0 � Pr f 0 = 0; (4.21)

�00 + Scf�0 = 0: (4.22)

The solution of (4.21) can be obtained numerically and mass transfer equation will be solved

later for V2.

I3) The invariants are y = �;  = xf(�); � = x�(�); � = �(�): The �ow and mass transfer

equations appeared same as in I2 but the heat equation can be solved numerically which

becomes �
1 +

4

3Nr

�
�00 + Pr f�0 � Pr f 0� = 0: (4.23)

I4) The invariants are y = �;  = xf(�); � = �(�); � = lnx+�(�): The �ow and heat transfer

equations appeared same as in I1 but the mass transfer equation can be solved numerically

which is

�00 + Scf�0 � Scf 0 = 0: (4.24)

I5) Here the invariants are � = ey

x ;  = xf(�); � = �(�); � = �(�): The system reduces to
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following form that can be solved numerically

(1 +
1

�
)[�3f 000 + 3�2f 00 + �f 0] + �2ff 0 + �ff 0 � �2f 02 �M(�f 0 � 1) + 1 = 0; (4.25)

�
1 +

4

3Nr

�
[��00 + �0] + Pr f�0 = 0; (4.26)

��00 + �0 + Scf�0 = 0: (4.27)

I6) The invariants are x = �;  = y + f(�); � = �(�); � = �(�): These invariants give us no

result.

I7) The invariants are x = �;  = f(�); � = �(�); � = ey�(�): These invariants reveal us no

result.

I8) The invariants are x = �;  = f(�); � = y + �(�); � = �(�): These invariants give us no

result.

I9) The invariants are x = �;  = f(�); � = ey�(�); � = �(�): These invariants give us no

result.

I10) The invariants are x = �;  = y+ f(�); � = �(�); � = y+�(�): These invariants give us

no result.

I11) Here the invariants are x = �;  = y+ f(�); � = �(�); � = ey�(�): These invariants give

us no result.

I12) Here the invariants are x = �;  = y + f(�); � = y + �(�); � = �(�): These invariants

give us no result.

I13) The invariants are x = �;  = y + f(�); � = ey�(�); � = �(�): These invariants give us

no result.

I14) The invariants are x = �;  = y+ f(�); � = �(�); � = y+�(�): These invariants give us

no result.

I15) The invariants are y = �;  = xf(�); � = lnx+ �(�); � = x�(�): These invariants

reduces the �ow and mass transfer equations as I1 but heat transfer equation as I2.

I16) Here the set of invariants are y = �;  = xf(�); � = x�(�); � = x�(�): By using

these invariants the �ow and mass transfer equations reduces as I1 but heat transfer equation

appeared as I3.
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I17) Here the set of invariants are � = ey

x ;  = xf(�); � = �(�); � = x�(�): The �ow and

heat transfer equations are appeared the same as in I5. But the mass transfer equation can

be solved numerically which becomes

�2�00 + (3� + Sc�f)�0 + (1 + Scf � Sc�f 0)� = 0: (4.28)

I18) Here the set of invariants are y = �;  = xf(�); � = lnx+ �(�); � = lnx+ �(�): The

�ow, heat transfer and mass transfer equations are appeared the same as in I1, I2 and I4

respectively.

I19) Here the invariants are � = ey

x ;  = xf(�); � = lnx+ �(�); � = �(�): The �ow and

mass transfer equations are appeared same as in I5. The heat transfer equation can be

solved numerically which becomes

�
1 +

4

3Nr

�
[��00 + �0] + Pr f�0 � Pr f 0 = 0: (4.29)

I20) The set of invariants are y = �;  = xf(�); � = x�(�); � = lnx+ �(�): Here the �ow,

heat transfer and mass transfer equations reduced similar as I5, I3 and I5 respectively.

I21) Here the invariants are � = ey

x ;  = xf(�); � = x�(�); � = �(�): The �ow and mass

transfer equations are appeared same as in I5. But the heat transfer equation can be solved

numerically which becomes

�
1 +

4

3Nr

�
[�2�00 + 3��0 + �] + Pr �f�0 + Pr(f � �f 0)� = 0: (4.30)

I22) Here the invariants are � = ey

x ;  = xf(�); � = �(�); � = lnx+ �(�): The �ow and heat

transfer equations are appeared same as in I5. But the mass transfer equation can be solved

numerically which becomes

��00 + (1 + Scf)�0 � Scf 0 = 0: (4.31)

I23) The invariants are x = �;  = f(�); � = y + �(�); � = ey�(�): These invariants give us

no result.

I24) The invariants are x = �;  = f(�); � = ey�(�); � = ey�(�): These invariants give us no
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result.

I25) The invariants are x = �;  = f(�); � = y+ �(�); � = y+�(�): These invariants give us

no result.

I26) The invariant are y = �;  = xf(�); � = �(�); � = �(�): For this particular invariant we

are considering the following permeable plate case.

Permeable plate case

We are interested in solving the system of di¤erential equations in the light of physical �uid

parameters. We consider the porous plate case with heat conduction on the boundary. The

plate lies in the plane y = 0 with the �ow being con�ned to y > 0. The coordinate x is being

taken along the surface of the plate, y is normal to the surface and keeping the origin �xed.

Then our boundary conditions as follows

�u = 0; �v = �vw;�k
@T

@�y
= hf [Tf � T ]; C = Cw at �y = 0;

�u ! �ue(�x); T ! T1; C ! C1 as �y !1: (4.32)

Here vw is mass transfer velocity, �ue is free stream velocity, hf is heat transfer coe¢ cient, Tf is

wall temperature.

Further using the non-dimensional parameters (4.6) our boundary conditions become

u(x; y) = 0; v(x; y) = �S; @�(x; y)
@y

= �Bi[1� �(x; y)];

�(x; y) = 1 at y = 0; (4.33)

u(x; y) = ue; �(x; y) = 0 and �(x; y) = 0 as y !1; (4.34)

where S = vw
p
R

u1
, a positive value of S represents suction and negative value of S represents

injection and Bi = hfL

k
p
R
is Biot number.

Finally, after employing stream function boundary conditions take the following form

@ (x; 0)

@y
= 0;

@ (x; 0)

@x
= S;

@�(x; 0)

@y
= �Bi[1� �(x; 0)]; �(x; 0) = 1; (4.35)
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@ (x;1)
@y

= ue; �(x;1) = 0 and �(x;1) = 0. (4.36)

For particular invariant V2 now our system takes the following form

(1 +
1

�
)f 000(�) + f(�)f 00(�)� f 0(�)2 �M(f 0(�)� 1) + 1 = 0; (4.37)

�
1 +

4

3Nr

�
�00(�) + Pr f(�)�0(�) = 0; (4.38)

�00(�) + Scf(�)�0(�) = 0; (4.39)

f(0) = S; f 0(0) = 0; f 0(1) = 1; (4.40)

�0(0) = �Bi[1� �(0)]; �(1) = 0; �(0) = 1; �(1) = 0: (4.41)

The skin friction coe¢ cient, the Nusselt number and the Sherwood number are de�ned as

Cf =
(�B +

pyp
2�c
)

�u2e

�
@�u

@�y

�
�y=0

;

Nu =
�x

(Tf � T1)

�
@T

@�y

�
�y=0

;

Sh =
�x

(Cw � C1)

�
@C

@�y

�
�y=0

: (4.42)

By substituting Eq. (4.6) and (4.11) into Eq. (4.42) the form of skin friction coe¢ cient, the

Nusselt number and the Sherwood number as follows

p
RCf = (1 +

1

�
)f 00(0);

R
�1
2 Nu = ��0(0);

R
�1
2 Sh = ��0(0): (4.43)

4.1.3 Flow characteristics

The system of non-linear ordinary di¤erential equations (4.37)-(4.39) with boundary conditions

(4.40)-(4.41) has been solved numerically using MATLAB boundary value problem solver for

ode�s. In order to validate our study, we have made a comparison of values of �f 00(0) with
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those reported earlier [63; 104; 105] and presented in Table 4:3. By keeping S =M = 0; � =1

we have found that the values obtained in this study are in good agreement with those reported

earlier [63; 104; 105]:

[63] [104] [105] Present

1.232588 1.2326 1.232588 1.232592

Table 4.3: Comparison of skin friction coe¢ cient f 00(0) when M = S = 0; and � =1

The e¤ects of various parameters for example, the magnetic �eld parameter M , Casson �uid

parameter �, suction parameter S, Prandtl number Pr; thermal radiation parameter Nr; Biot

number Bi and Schmidt number Sc on velocity f 0(�); temperature �(�) and concentration

�(�) pro�les are shown in Figures 4.1-4.13. In Figure 4.1 velocity pro�le f 0(�) is plotted for

di¤erent values of M . It is observed that with an increase in the value of M the velocity

pro�le decreases. This is because the magnetic force acts as a resistance to the �ow. Figure 4.2

presents the in�uence of Casson �uid parameter � on velocity pro�le. It reveals that a decrease

in velocity occurs with increase in Casson �uid parameter. Figure 4.3 illustrates the e¤ects of

suction parameter on velocity pro�le. An increase in suction parameter S causes the velocity

pro�le to decrease.

Figure 4.1: E¤ects of M on f 0(�) Figure 4.2: E¤ects of � on f 0(�)
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Figure 4.3: E¤ects of S on f 0(�)

The in�uence of di¤erent physical parameters on temperature are presented in Figures 4.4-4.9.

In Figure 4.4 the e¤ects of magnetic �eld parameter M on temperature pro�le �(�) are shown.

It is observed that the in�uence of magnetic �eld parameter on �(�) are increasing. Figure 4.5

depicts that the boundary layer thickness increases with the increase of Casson �uid parameter

�: With an increase in suction parameter S; the boundary layer thickness increases as revealed

in Figure 4.6. From Figure 4.7, it is observed that the thickness of thermal boundary layer

decreases with increase the Prandtl number Pr : Figure 4.8 demonstrates that the thermal

radiation parameter Nr enhances �uid temperature. On the other hand, Figure 4.9 depicts

that when increase in the Biot number Bi the temperature pro�le increases.

Figure 4.4: E¤ects of M on �(�) Figure 4.5: E¤ects of � on �(�)
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Figure 4.6: E¤ects of S on �(�) Figure 4.7: E¤ects of Pr on �(�)

Figure 4.8: E¤ects of Nr on �(�) Figure 4.9: E¤ects of Bi on �(�)

In Figure 4.10 the e¤ects of magnetic �eld parameter M on concentration �eld �(�) are pre-

sented. It is revealed that the concentration boundary layer increases with magnetic �eld

parameter M: From Figure 4.11, it is observed that concentration pro�le increases with in-

crease in Casson �uid parameter �: In Figure 4.12, the e¤ects of suction parameter S on �(�)

are shown. It is quite clear that with an increase in S the concentration �eld decreases. On the

other hand when the concentration �eld increases as the value of Schmidt number Sc decreases

which is presented in Figure 4.13.
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Figure 4.10: E¤ects of M on �(�) Figure 4.11: E¤ects of � on �(�)

Figure 4.12: E¤ects of S on �(�) Figure 4.13: E¤ects of Sc on �(�)

4.1.4 Findings

Group theoretical method is used to �nd the group invariant solutions of stagnation point

Casson �uid, heat and mass transfer phenomenon. By using the group theoretic method we

evaluate the six �nite and one in�nite symmetries of the non-dimensional partial di¤erential

equations. Further, these symmetries are used to list the Lie algebra, commutator table, adjoint

table, abelian Lie algebra and the optimal system for the governing system. Furthermore, the

optimal system helps us to �nd the twenty six group invariant solutions. For a particular

invariant we solve the ordinary di¤erential equations by setting the permeable �at plate case.
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The governing equations are further solved by numerical technique and the results are also

expressed in the form of graphs. The following results are observed:

The magnetic �eld M , Casson �uid � and suction parameters S has increasing behavior for

velocity pro�le and decreasing for temperature and concentration pro�les. Prandtl number Pr

and Radiation parameter Nr for temperature pro�le are observed similar. The temperature

pro�le increases when Biot number Bi increases. The concentration pro�le increases when

Schmidt number decreases.

4.2 Similarity analysis of Hall e¤ects on free convection Casson

�uid �ow

4.2.1 Mathematical modeling

Here we consider the steady, incompressible, three dimensional free convection, electrically con-

ducting Casson �uid �ow. In the presence of a strong, non-uniform magnetic �eld normal to

the boundary, the temperature at the boundary is Tw and the temperature of the free stream

is T1. For weakly ionized gases, ion slip, viscous and electrical dissipation and the thermoelec-

tric pressure are considered negligible. By considering the rectangular Cartesian coordinates

(x; y; z), taking x and y coordinates parallel and normal to the boundary respectively. The

leading edge of the boundary is taken along z�axis. The e¤ects of Hall current give rise to a

force in the z-direction which induces a cross �ow in that direction, hence the �ow becomes

three-dimensional. For the simplicity of the problem, we assume that there is no variation of

�ow and heat transfer quantities in the z-direction. The equation of conservation of electric

charge div~j = 0 gives jy =constant, which is zero since jy = 0 at the boundary which is electri-

cally non-conducting. Thus jy = 0 everywhere in the �ow. By following the above assumptions,

we obtain from Eqs. (1.27)�(1.30) the following boundary layer equations

@u

@x
+
@v

@y
= 0; (4.44)

u
@u

@x
+ v

@u

@y
= �(1 +

1

�
)
@2u

@y2
+ g�1(T � T1)�

By
�
jz; (4.45)
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u
@w

@x
+ v

@w

@y
= �(1 +

1

�
)
@2w

@y2
+
By
�
jx; (4.46)

u
@T

@x
+ v

@T

@y
=

k

�Cp

@2T

@y2
� 1

�cp

@qr
@y

; (4.47)

where

By =
B0
x
; jx =

�

1 +m2
[Ex � wBy +m(Ez + uBy);

jz =
�

1 +m2
[Ez + uBy �m(Ex � wBy)]; qr = �

4�1
3k1

@T 4

@y
: (4.48)

For further derivation of Eqs. (4.45)-(4.46) we assumed that the induced magnetic �eld can be

neglected in comparison with an applied magnetic �eld, so that ~B = (0; By; 0) where By = B0
x .

The magnetic �eld is uniform in the free stream and Eq. (1.32) shows that there is no electric

current there. Thus

jx = 0 and jz = 0 when y !1: (4.49)

From Eq. (1.33) gives

Ex = Constant, and Ez = Constant. (4.50)

For the semi-in�nite plate, and for Eq. (4.49) we obtain

Ex = Ey = 0; (4.51)

everywhere in the �uid.

The dimensionless quantities are introduced here

�x =
xu1
�

; �y =
yu1
�

; �u =
u

u1
; �v =

v

u1
; �w =

w

u1
; � =

T � T1
Tw � T1

: (4.52)

After using above dimensionless variables Eqs. (4.44)-(4.47) becomes

@�u

@�x
+
@�v

@�y
= 0; (4.53)

�u
@�u

@�x
+ �v

@�u

@�y
= (1 +

1

�
)
@2�u

@�y2
+Gr� � M

x2(1 +m2)
(�u+m �w); (4.54)
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�u
@ �w

@�x
+ �v

@ �w

@�y
= (1 +

1

�
)
@2 �w

@�y2
+

M

x2(1 +m2)
(m�u� �w); (4.55)

�u
@�

@�x
+ �v

@�

@�y
=
1

Pr
(1 +

4

3Nr
)
@2�

@�y2
; (4.56)

where Gr = g�1�(Tw�T1)
u31

is Grashof number, m is Hall parameter:

Scaling group of transformations

We scale all independent and dependent variables(up dash is old variable and down are new

variables) as

x
¯
= �c1 �x; y

¯
= �c2 �y; u

¯
= �c3 �u;

v
¯
= �c4�v;w

¯
= �c5 �w; � = �c6�: (4.57)

By employing (4.57) onto Eqs. (4.53)-(4.56) our system becomes

�c1�c3
@u
¯
@�x
+ �c2�c4

@v
¯
@y
¯

= 0; (4.58)

�c1�2c3u
¯
@u
¯
@�x
+ �c2�c3�c4v

¯
@u
¯
@y
¯

� (1 + 1

�
)�2c2�c3

@2u
¯

@y
¯
2
� ��c6Gr�

+
M

x
¯
2(1 +m2)

(�2c1�c3u
¯
+�2c1�c5mw

¯
)=0, (4.59)

�c1�c3�c5u
¯
@w
¯
@�x

+ �c2�c5�c4v
¯
@w
¯
@y
¯

� (1 + 1

�
)�2c2�c5

@2w
¯

@y
¯
2
� M

x
¯
2(1 +m2)

(�2c1�c3mu
¯
� �2c1�c5w

¯
)=0,

(4.60)

�c1�c3�c6u
¯
@�

@�x
+ �c2�c6�c4v

¯
@�

@y
¯

� 1

Pr
(1 +

4

3Nr
)�2c2�c6

@2�

@y
¯
2
=0. (4.61)
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Now comparing the Eqs.(4.58)-(4.61) with Eqs. (4.53)-(4.56) we found the following set of

equations

c2 � c1 + c3 � c4 = 0; (4.62)

2c2 � c1 + c3 = 0; (4.63)

2c3 � c1 � c6 = 0; (4.64)

c1 + c3 = 0; (4.65)

3c1 + 2c3 � c5 = 0; (4.66)

c1 + c5 = 0: (4.67)

After some simple calculations, we have the following invariance conditions in terms of c1

c2 = c1; c3 = �c1; c4 = �c1; c5 = �c1; c6 = �3c1: (4.68)

Here we write the characteristic equation after using above Eq. (4.68) then corresponding

similarity variables are
dx

x
=
dy

y
=
du

�u =
dv

�v =
dw

�w =
d�

�3� ; (4.69)

� =
y

x
; u =

f(�)

x
; v =

g(�)

x
;w =

h(�)

x
; u =

�(�)

x3
: (4.70)

Here we are using scaling symmetries so our all �nite parameters are in form of single parameter.

In this situation we can not produce commutator table, Abelian Lie algebra and adjoint table.

After using above new invariants our system becomes into the following form

g0 � �f 0 � f = 0; (4.71)

�f(�f)0 + gf 0 = (1 + 1

�
)f 00 +Gr� � M

1 +m2
(f +mh); (4.72)

�f(�h)0 + gh0 = (1 + 1

�
)h00 +

M

1 +m2
(mf � h); (4.73)

�f(��0 + 3�) + g�0 = 1

Pr
(1 +

4

3Nr
)�00: (4.74)
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Equation (4.71) becomes as g = �f after integration. Now our system will be converted into

the following ordinary di¤erential equations

(1 +
1

�
)f 00 + f2 +Gr� � M

1 +m2
(f +mh) = 0; (4.75)

(1 +
1

�
)h00 + fh+

M

1 +m2
(mf � h) = 0; (4.76)

(1 +
4

3Nr
)�00 + 3Pr f� = 0: (4.77)

Flat plate case

To solve the system (4.75)-(4.77) in the light of �uid parameters, we consider that the �uid

passing over a �at plate, so we set up the boundary conditions as

u(x; 0) = 0; v(x; 0); w(x; 0) = 0;

u(x;1) = 0; w(x;1) = 0;

T (x; 0) = Tw; T (x;1) = 0: (4.78)

After using the dimensionless quantities to Eq. (4.78) the boundary condition becomes

�u(�x; 0) = 0; �v(�x; 0) = 0; �w(�x; 0) = 0;

�u(�x;1) = 0; �w(�x;1) = 0;

�(�x; 0) = 1; �(�x;1) = 0: (4.79)

These conditions become as follows when we use the similarity variables

f(0) = 0; h(0) = 0; �(0) = 1;

f(1) = 0; h(1) = 0; �(1) = 0: (4.80)
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4.2.2 Flow characteristics

By using the numerical approach i.e, fourth order Runge�Kutta-Fehlberg scheme with the

shooting method the ordinary di¤erential Eqs. (4.75)-(4.77) with boundary conditions (4.80)

are solved. A step size of � = 0:01 was selected with �1 = 15 to be satisfactory for a convergence

criterion of 10�6 in all cases. The numerical computations have been carried out by �xing

various values of the parameters involved � = 0:5;M = 1:0;m = 0:5; Gr = 0:5;Pr = 0:71; Nr =

0:5 and the results are represented through graphs. The e¤ects of Casson �uid parameter �

on axial velocity pro�le f(�) and transverse velocity pro�le h(�) are presented in Figure 4.14.

It is noticed that with the enhancement of � the axial velocity pro�le f(�) and the transverse

velocity pro�le h(�) decreases. Figure 4.15 depicts the in�uence of magnetic �eld parameter M

on velocities pro�le. It is observed that with the increase in the magnetic �eld parameter both

velocities are decreasing. This is mainly due to the fact that the application of the magnetic

�eld to an electrically conducting �uid gives rise to Lorentz force which causes the �uid to

decelerate. The behavior of Hall parameter m with velocity pro�les is presented in Figure 4.16.

With the increase of Hall parameter m; both the axial velocity pro�le f(�) and the transverse

velocity pro�le h(�) decrease. Figure 4.17 represents the e¤ect of Grashof Number Gr on

velocity pro�les. The axial velocity f(�) decrease where as transverse velocity h(�) increase as

the value of Gr is enhanced. It is observed that the in�uence of radiation parameter Nr on

temperature pro�le �(�) is increasing which is shown in Figure 4.18.
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Figure 4.14: E¤ect of � on f(�) and h(�) Figure 4.15: E¤ect of M on f(�) and h(�)

Figure 4.16: E¤ect of m on f(�) and h(�) Figure 4.17: E¤ect of Gr on f(�) and h(�)
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Figure 4.18: E¤ect of Nr on �(�)

4.2.3 Findings

After solving the system of ordinary di¤erential equations by using the numerical approach we

have observed the following �ow characteristics results:

With enhancement of Casson �uid parameter the axial and transverse velocities decrease. It

is observed that the in�uence of magnetic �eld parameter on axial velocity pro�le and transverse

velocity pro�le is decreasing. Further the axial velocity pro�le and transverse velocity pro�le

are decreasing as the Hall e¤ect parameter increases. The e¤ects of Grashof number on both

velocity pro�les are observed opposite. The radiation parameter increases with the temperature

pro�le.
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Chapter 5

Lie group study of MHD Casson

�uid �ow in channel with stretching

walls in the presence of source/sink

e¤ects

The focus of this chapter is on the symmetry analysis of MHD Casson �uid �ow with heat and

mass transfer analysis in channel with stretching walls. After �nding the similarity variables of

the governing system of di¤erential equations, we have listed the group invariants. Furthermore,

we presented the group invariant solutions for the system of governing di¤erential equations.

For a particular invariant we describe the �ow characteristics in detail with graphs and tabular

forms.

5.1 Mathematical modeling

We investigate the steady two-dimensional incompressible laminar Casson �uid �ow in a parallel

plate channel bounded by the planes �y = �a where 2a is the channel width. We also consider

the �ow to be symmetric about the center line �y = 0 of the channel. The �ow is driven by

stretching of the channel walls in the presence of uniform magnetic �eld of strength B0 imposed
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along the normal to the channel walls parallel to �y-axis. Here, we take the �uid to be electrically

conducting. Further we also consider the heat and mass transfer processes in the presence of

source/sink e¤ects. Using Eq. (1.41) conservation of mass, momentum, heat and mass transfer,

the following boundary layer equations are obtained

@�u

@�x
+
@�v

@�y
= 0; (5.1)

�u
@�u

@�x
+ �v

@�u

@�y
= �1

�

@�p

@�x
+ (1 +

1

�
)�
@2�u

@�y2
� �B20

�
�u; (5.2)

�u
@�v

@�x
+ �v

@�v

@�y
= �1

�

@�p

@�y
+ (1 +

1

�
)�
@2�v

@�y2
; (5.3)

�u
@T

@�x
+ �v

@T

@�y
=

k

�Cp

@2T

@�y2
+
Q0
�cp
(T � T0); (5.4)

�u
@C

@�x
+ �v

@C

@�y
= D

@2C

@�y2
; (5.5)

subject to the boundary conditions

�u(�x;�a) = uw = b�x; �v(�x; a) = 0; �v(�x;�a) = 0;

T (�x; a) = Tw; T (�x;�a) = 0 and C(�x; a) = Cw; C(�x;�a) = 0: (5.6)

Using the following transformations to make the system dimensionless

x =
�x

a
; y =

�y

a
; u =

�u

ab
; v =

�v

ab
; �p = �bp, � =

T � T0
Tw � T0

and � =
C � C0
Cw � C0

: (5.7)

In view of the similarity variables de�ned in Eq. (5.7), the equations (5.1)-(5.5) with boundary

conditions (5.6) have the following forms

@u

@x
+
@v

@y
= 0; (5.8)

u
@u

@x
+ v

@u

@y
= � 1

R

@p

@x
+
1

R
(1 +

1

�
)
@2u

@y2
� M

R
u; (5.9)

u
@v

@x
+ v

@v

@y
= � 1

R

@p

@y
+
1

R
(1 +

1

�
)
@2v

@y2
; (5.10)
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u
@�

@x
+ v

@�

@y
=

1

RPr

@2�

@y2
+
Q

R
�; (5.11)

u
@�

@x
+ v

@�

@y
=

1

RSc

@2�

@y2
; (5.12)

u(x;�1) = x; v(x; 1) = 0; v(x;�1) = 0;

�(x; 1) = 1; �(x;�1) = 0 and �(x; 1) = 1; �(x;�1) = 0; (5.13)

where R = a2b
� is stretching Reynolds number, Q = a2Q0

�Cp
is source/sink parameter and Sc = a2b

D

is Schmidt number.

After di¤erentiating Eq. (5.9) w.r.t. y and Eq. (5.10) w.r.t. x and elimination of pressure

from the resulting equations using pxy = pyx yield

@u

@y

@u

@x
+
@v

@y

@u

@y
+ u

@2u

@y@x
+ v

@2u

@y2
� 1

R

�
1 +

1

�

�
@3u

@y3
+
M

R

@u

@y

=
@u

@x

@v

@x
+ u

@2v

@x2
+
@v

@x

@v

@y
+ v

@2v

@x@y
� 1

R

�
1 +

1

�

�
@3v

@y3
: (5.14)

Introducing the stream function relations as

u =
@ 

@y
; v = �@ 

@x
: (5.15)

By using Eq. (5.15) our system becomes
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@ 

@y

@

@x

�
@2 

@x2
+
@2 

@y2

�
� @ 

@x

@

@y

�
@2 

@x2
+
@2 

@y2

�

� 1
R
(1 +

1

�
)
@2

@y2

�
@2 

@x2
+
@2 

@y2

�
+
M

R

@2 

@y2
= 0; (5.16)

@ 

@y

@�

@x
� @ 

@x

@�

@y
=

1

RPr

@2�

@y2
+
Q

R
�; (5.17)

@ 

@y

@�

@x
� @ 

@x

@�

@y
=

1

RSc

@2�

@y2
; (5.18)

@ (x;�1)
@y

= x;
@ (x; 1)

@x
= 0;

@ (x;�1)
@x

= 0;

�(x; 1) = 1; �(x;�1) = 0 and �(x; 1) = 1; �(x;�1) = 0: (5.19)

5.2 Lie group analysis

In this section, we determine the symmetries of the problem. The in�nitesimal generator for

the current problem can be expressed as

~V = �1(x; y;  ; �; �)@x + �2(x; y;  ; �; �)@y +�1(x; y;  ; �; �)@ 

+�2(x; y;  ; �; �)@� +�3(x; y;  ; �; �)@�: (5.20)

To calculate the symmetries of the governing system (5.16)-(5.18), the in�nitesimal Lie group

point transformations are de�ned as:

x� = x+ ��1(x; y;  ; �; �) +O(�
2);

y� = y + ��2(x; y;  ; �; �) +O(�
2);

	� = 	+ ��1(x; y;  ; �; �) +O(�
2);

�� = � + ��2(x; y;  ; �; �) +O(�
2);

�� = �+ ��3(x; y;  ; �; �) +O(�
2): (5.21)
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For the equations (5.16)-(5.18) the in�nitesimals are calculated with the help of software package

[25] as:

�1(x; y;  ; �; �) = c5 + c6x; �2(x; y;  ; �; �) = g(x);�1(x; y;  ; �; �) = c4 + c6 ;

�2(x; y;  ; �; �) = c1�;�3(x; y;  ; �; �) = c3 + c2�; (5.22)

where ci(i = 1; 2; :::; 6); are arbitrary constants and g(x) is arbitrary function of x.

There are six �nite parameter Lie group symmetries represented by parameters ci, and one

in�nite symmetry g(x). Parameter c1 corresponds to the scaling in the variable �; c2 corresponds

to the scaling in �; c3 corresponds to the translation in �, c4 corresponds to the translation in

 ; c5 corresponds to translation in x and c6 corresponds to the scaling in x and  .

Now we have a 7�dimensional vector space of in�nitesimal generators closed under the

operation of commutation, i.e., 7�dimensional Lie algebra, the basis of the corresponding Lie

algebra is as follows

V1 = �@�; V2 = �@�; V3 = @�; V4 = @ ; V5 = @x; V6 = x@x +  @ ; V7 = @y: (5.23)

The commutator table follows

[,] V1 V2 V3 V4 V5 V6 V7
V1 0 0 0 0 0 0 V1
V2 0 0 0 0 0 0 0
V3 0 0 0 V4 0 0 0
V4 0 0 -V4 0 0 0 0
V5 0 0 0 0 0 0 -V5
V6 0 0 0 0 0 0 -V6
V7 -V1 0 0 0 V5 V6 0

Table 5.1: Commutator table

The commutator Table 5.1 provides us the following Abelian Lie algebra
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[Vs; Vt] = 0; as s = t; [V1; V2] = 0; [V1; V3] = 0; [V1; V4] = 0;

[V1; V5] = 0; [V1; V6] = 0; [V2; V3] = 0; [V2; V4] = 0;

[V2; V5] = 0; [V2; V6] = 0; [V2; V7] = 0; [V3; V5] = 0;

[V3; V6] = 0; [V3; V7] = 0; [V4; V5] = 0; [V4; V6] = 0;

[V4; V7] = 0; [V5; V6] = 0; [V5; V6] = 0:

The adjoint representation adG of the Lie group by summing the Lie series (1.14) is given as

follows.

Ad V1 V2 V3 V4
V1 V1 V2 V3 V4
V2 V1 V2 V3 V4
V3 V1 V2 V3 V4[cosh "� sinh "]
V4 V1 V2 V3 + "V4 V4
V5 V1 V2 V3 V4
V6 V1 V2 V3 V4
V7 V1e

" V2 V3 V4

Ad V5 V6 V7
V1 V5 V6 V7 � "V1
V2 V5 V6 V7
V3 V5 V6 V7
V4 V5 V6 V7
V5 V5 V6 V7 + "V5
V6 V5 V6 V7 + "V6
V7 V5[cosh "� sinh "] V6[cosh "� sinh "] V7

Table 5.2: Adjoint table
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Similar to chapter 2, we have the following optimal system for our equations (5.16)-(5.18)

I1) V5 + V1 I2) V5 + V2 I3) V5 + V3
I4) V5 + V4 I5) V7 + V1 I6) V7 + V2
I7) V7 + V3 I8) V7 + V4 I9) V7 + V6
I10) V1 + V6 I11) V2 + V6 I12) V3 + V6
I13) V5 + V7 + V1 I14) V5 + V7 + V2 I15) V5 + V7 + V3
I16) V5 + V7 + V4 I17) V5 + V1 + V2 I18) V5 + V1 + V3
I19) V5 + V1 + V4 I20) V5 + V2 + V4 I21) V5 + V3 + V4
I22) V7 + V1 + V2 I23) V7 + V1 + V3 I24) V7 + V1 + V4
I25) V7 + V1 + V6 I26) V7 + V2 + V4 I27) V7 + V2 + V6
I28) V7 + V3 + V4 I29) V7 + V3 + V6 I30) Vi(i = 1; 2; 3:::7):

Here we follow the procedure mentioned in chapter 2 to reduce the governing partial di¤erential

equations into ordinary di¤erential equations. For the system (5.16)-(5.18) we �nd the following

thirty group invariants which lead us to group invariant solutions.

I1) Invariants are y = �;  = f(�); � = ex�(�); � = �(�): The system reduced into the

following form

(1 +
1

�
)f 0000 �Mf 00 = 0; (5.24)

�00 + Pr[Q�Rf 0]� = 0; (5.25)

�00 = 0; implies � = a5 + a6�: (5.26)

The solution of the �ow equation (5.24) is

f(�) = a1 + a2� + a3e

q
M
a
�
+ a4e

�
q

M
a
�
;

where ai are integration constants and a = 1+ 1
� : Then the heat transfer equation will take the

following form which can be solved numerically

�00 + Pr[Q�R
r
M

a
(a2 + a3e

q
M
a
� � a4e�

q
M
a
�
)]� = 0:

I2) Invariants are y = �;  = f(�); � = �(�); � = ex�(�): The �ow equation is reduced similar
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as I1 and the other two equations reduced into the following form

�00 + PrQ� = 0; implies �(�) = a1 cos
p
PrQ� + a2 sin

p
PrQ�; (5.27)

�00 � ScRf 0� = 0: (5.28)

The mass equation will take the following form which can be solved numerically

�00 � ScR
r
M

a
(a2 + a3e

q
M
a
� � a4e�

q
M
a
�
)� = 0:

I3) Invariants are y = �;  = f(�); � = �(�); � = x+ �(�): The �ow and heat transfer

equations are reduced similar to as I2 and the other equation is reduced into the

following form

�00 � ScR
r
M

a
(a2 + a3e

q
M
a
� � a4e�

q
M
a
�
) = 0; (5.29)

�(�) = ScR

r
a

M
(a2 + a3e

q
M
a
� � a4e�

q
M
a
�
) + a5� + a6:

I4) Here the invariants are y = �;  = x+ f(�); � = �(�); � = �(�): The �ow and heat transfer

equations are reduced similar I2 and the other equation is reduced into the following form

(1 +
1

�
)f 0000 +Rf 000 �Mf 0 = 0; (5.30)

�00 +RPr �0 + PrQ� = 0; (5.31)

�00 + ScR�0 = 0: (5.32)

The solutions of the above equations will be

f(�) = a1 + a2� + a3e
n1� + a4e

n2�;

�(�) = b1e
m1� + b2e

m2�;

�(�) = d1e
�RSc� + d2;

where n1 = �R+
p
R2+4aM
2a ; n2 =

�R�
p
R2+4aM
2a ;m1 =

RPr+
p
R2 Pr2�4PrQ
2 ; m2 =

RPr�
p
R2 Pr2�4PrQ
2 :
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I5) Invariants are x = �;  = f(�); � = ey�(�); � = �(�): These invariants give us no results

about the system.

I6) Invariants are x = �;  = f(�); � = �(�); � = ey�(�): These invariants give us no results

about the system.

I7) Invariants are x = �;  = f(�); � = �(�); � = y+�(�): These invariants give us no results

about the system.

I8) Invariants are x = �;  = y + f(�); � = �(�); � = �(�): These invariants give us results

about the system as

f 000 = 0, implies f(�) =
a1
2
�2 + a2� + a3;

�0 � Q

R
� = 0; implies �(�) = b1e

Q
R
�;

�0 = 0; implies �(�) = d1:

I9) Here the invariants are � = ey

x ;  = xf(�); � = �(�); � = �(�): These invariants give us

very complicated equations that can not be solved analytically.

I10) Here the invariants are y = �;  = xf(�); � = �(�); � = lnx+ �(�): These invariants

reveal the following equations

(1 +
1

�
)f 0000 +Rff 000 �Rf 0f 00 �Mf 00 = 0; (5.33)

�00 + PrRf�0 + PrQ� = 0; (5.34)

�00 +RSc(f�0 � f 0) = 0: (5.35)

The �ow and heat transfer equations will be solved later for V6; and mass transfer equation can

be solved numerically.

I11) Here the invariants are y = �;  = xf(�); � = x�(�); � = �(�): These invariants reveal

the same �ow equation as in I10 while the other are as following

�00 + PrR(f�0 � f 0� + Q

R
�) = 0; (5.36)
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�00 +RScf�0 = 0: (5.37)

The solution of heat transfer equation can be obtained numerically and the solution of mass

transfer equation will be solved later for V6:

I12) Here the invariants are y = �;  = xf(�); � = �(�); � = x�(�): These invariants give us

the same equations for �ow and heat transfer as in I10, and the mass transfer equation is as

following which can be solved numerically.

�00 +RSc(f�0 � f 0�) = 0: (5.38)

The solution of �ow and heat transfer equations will be presented later for V6; and mass transfer

equation can be solved numerically.

I13) Here the invariants are y�x = �;  = f(�); � = ex�(�); � = �(�): These invariants give

us the following system of equations

2(1 +
1

�
)f 0000 �Mf 00 = 0; (5.39)

�00 + Pr[Q�Rf 0]� = 0; (5.40)

�00 = 0; implies � = a5 + a6�: (5.41)

The solution of the �ow equation (5.39) is

f(�) = a1 + a2� + a3e

q
M
2a
�
+ a4e

�
q

M
2a
�
;

where ai are integration constants and a = 1+ 1
� : Then the heat transfer equation will take the

following form which can be solved numerically

�00 + Pr[Q�R(a2 + a3
r
M

2a
e

q
M
2a
� � a4

r
M

2a
e
�
q

M
2a
�
)]� = 0:

I14) Invariants are y � x = �;  = f(�); � = �(�); � = ex�(�): The �ow and heat equations

are reduced similar to as I13 and I2 respectively and the mass transfer equation is reduced
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into the following form

�00 � ScRf 0� = 0: (5.42)

The mass equation will take the following form which can be solved numerically

�00 � ScR(a2 + a3
r
M

2a
e

q
M
2a
� � a4

r
M

2a
e
�
q

M
2a
�
)� = 0:

I15) Invariants are y� x = �;  = f(�); � = �(�); � = x+�(�): The �ow and heat equations

are reduced similar as I13 and I2 respectively and the mass transfer equation is reduced to

following form

�00 � ScRf 0 = 0: (5.43)

Then the solution of above equation is represented as

�(�) = ScR[
a2
2
�2 +

r
2a

M
(a3e

q
M
2a
� � a4e�

q
M
2a
�
)] + a5� + a6:

I16) Invariants are y � x = �;  = x+ f(�); � = �(�); � = �(�): The heat and mass transfer

equations are reduced similar to as I4 and the �ow equation reduced to the following form

2(1 +
1

�
)f 0000 � (M + 2R)f 00 = 0; (5.44)

which has the solution as

f(�) = a1 + a2� + a3e

q
2R+M
2a

�
+ a4e

�
q

2R+M
2a

�
:

I17) Invariants are y = �;  = f(�); � = ex�(�); � = ey�(�): The �ow, heat and mass transfer

equations are reduced to the similar ones as I1 and I2 respectively.

I18) Invariants are y = �;  = f(�); � = ex�(�); � = x+ �(�): The �ow, heat and mass

transfer equations are reduced to the similar ones as I1 and I3 respectively.

I19) Invariants are y = �;  = x+ f(�); � = ex�(�); � = �(�): The �ow and mass transfer

equations are reduced to the similar ones as I4, and heat transfer equation reduced to the
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following form which can be solved numerically

�00 �RPr �0 + Pr(Q�Rf 0)� = 0:

I20) Invariants are y = �;  = x+ f(�); � = �(�); � = ex�(�): The �ow and heat transfer

equations are reduced to the similar one as I4, and mass transfer equation reduced to the

following form which can be solved numerically

�00 �RSc�0 � ScRf 0� = 0:

I21) Invariants are y = �;  = x+ f(�); � = �(�); � = x+ �(�): The �ow and heat transfer

equations are reduced to the similar ones as I4, and mass equation is reduced to the

following form

�00 +RSc�0 � ScRf 0 = 0: (5.45)

Above equation implies the solution

�(�) = d1e
�RSc� + d2 + a2(RSc� � 1) +

a3
n1 +RSc

en1� +
a4

n2 +RSc
en2�;

where n1 = �R+
p
R2+4aM
2a ; n2 =

�R�
p
R2+4aM
2a :

I22) Invariants are x = �;  = f(�); � = ey�(�); � = ey�(�): The �ow equation identically

satis�es, heat and mass transfer equations are reduced to similar one as I5 and I6

respectively.

I23) Invariants are x = �;  = f(�); � = ey�(�); � = y + �(�): The �ow equation identically

satis�es, heat and mass transfer equations are reduced to similar one as I5 and I7

respectively.

I24) Invariants are x = �;  = y + f(�); � = ey�(�); � = �(�): The �ow equation appeared

the same as I8, but the heat and mass transfer equations are reduced to the following forms

�0 � (f 0 + 1

RPr
+
Q

R
)� = 0; implies (5.46)

�(�) = b1Exp[a2� +
a1
2
�2 +

1

RPr
+
Q

R
];
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�0 = 0; implies �(�) = d1: (5.47)

I25) Invariants are � = ey

x ;  = xf(�); � = x�(�); � = �(�): The �ow and mass transfer

equations are reduced to similar one as I9, and heat equation is reduced to the following

form which can be solved numerically

�2�00 + ��0 + PrR(�f�0 � �f 0� + Q

R
�) = 0: (5.48)

I26) Invariants are x = �;  = y + f(�); � = �(�); � = ey�(�): The �ow, heat and mass

transfer equations are reduced to similar one as I8, I8 and I6 respectively.

I27) Invariants are � = ey

x ;  = xf(�); � = �(�); � = ey�(�): The �ow and heat transfer

equations are reduced to similar one as I9, and mass transfer equation is reduced into the

following form which can be solved numerically

��00 + (1 + PrRf)�0 = 0: (5.49)

I28) Invariants are x = �;  = y + f(�); � = �(�); � = y + �(�): The �ow and heat transfer

equations are reduced to similar one as I8, and mass transfer equation is reduced to the

following form

�0 � f 0 = 0; implies (5.50)

�(�) = a2� +
a1
2
�2 + d3:

I29) Invariants are � = ey

x ;  = xf(�); � = �(�); � = y + �(�): The �ow and heat transfer

equations are reduced to similar ones as I9, and mass transfer equation is reduced into the

following form which can be solved numerically

�2�00 + ��0 +RSc(f + �f�0 � �f 0) = 0: (5.51)

I30) Here the invariants are y = �;  = xf(�); � = �(�); � = �(�): We will solve these

reduced equations by considering stretching walls case to observe the impact of physical

parameters on �ow, heat and mass transfer phenomenon.
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Stretching walls case

For the interest of physical parameters in �uid we consider the stretching walls case. After

using the invariants our system becomes

(1 +
1

�
)f 0000 +Rff 000 �Rf 0f 00 �Mf 00 = 0; (5.52)

�00 + PrRf�0 + PrQ� = 0; (5.53)

�00 +RScf�0 = 0; (5.54)

F 0(�1) = 1; F (1) = 0; F 0(�1) = 0; F (�1) = 0;

�(1) = 1; �(�1) = 0; �(1) = 1; �(�1) = 0: (5.55)

5.3 Flow characteristics

In order to solve the governing system of ordinary di¤erential equations (5.52)-(5.54) subject to

boundary conditions (5.55), a numerical technique is used. We present our �ndings in graphical

and tabular forms collectively with the discussion and their interpretations. The e¤ects of

Casson �uid parameter �; magnetic �eld parameter M and Reynolds number R on velocity

pro�le are presented in Figures 5.1-5.3 respectively. From Figure 5.1 it is observed that with

the increase of Casson �uid parameter � the velocity f 0(�) decreases. Figure 5.2 depicts the

in�uence of magnetic �eld parameter M on velocity pro�le f 0(�): It is entirely clear that a

decrease in velocity with an increase in the magnetic �eld parameter M . The velocity pro�les

are stretched towards the boundaries and the velocity decreases in the central region of the

channel due to the damping e¤ects of the magnetic �eld parameter M: The e¤ects of Reynolds

number R on velocity pro�le are shown in Figure 5.3. The velocity pro�le decreases in the

central region of the channel and the pro�le is stretched towards the boundaries as increase in

the value of Reynolds number R:
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Figure 5.1: E¤ects of � on f 0(�) Figure 5.2: E¤ects of M on f 0(�)

Figure 5.3: E¤ects of R on f 0(�)

The in�uence of various physical parameters on temperature pro�le �(�) are given in Figures

5.4-5.8. Figure 5.4 shows the e¤ect of Casson �uid parameter � on temperature pro�le �(�): It

is revealed that as the Casson �uid parameter � increases, the temperature pro�le �(�) is also

increasing. In�uence of magnetic parameter M are plotted in Figure 5.5. With an increase in

magnetic �eld parameter M the resistive forces become strong which increase the temperature.

The variation of Reynolds number R on temperature pro�le �(�) is sketched in Figure 5.6. With

a rise in the value of Reynolds number R; the temperature pro�le falls. Figures 5.7 and 5.8 are
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illustrating the in�uence of source(Q > 0) and sink(Q < 0) e¤ects on the temperature pro�le

�(�). It is noticed that in case of source the temperature increases with increase in the value of

heat generation parameter Q. However it is noticed that temperature decreases in case of sink.

Figure 5.4: E¤ects of � on �(�) Figure 5.5: E¤ects of M on �(�)

Figure 5.6: E¤ects of R on �(�) Figure 5.7: E¤ects of Q > 0 on �(�)
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Figure 5.8: E¤ects of Q < 0 on �(�)

Figures 5.9-5.12 are sketched to examine the e¤ect of di¤erent physical parameters on concen-

tration pro�le �(�): Figure 5.9 shows that with the increase of Casson �uid parameter �; the

concentration pro�le �(�) decreases. An increase in the concentration pro�le �(�) is observed

in Figure 5.10 with increase in magnetic �eld parameter M . Figure 5.11 illustrated that when

the Reynolds number R rises the concentration pro�le falls. It is noticed that with the increase

in Schmidt number Sc the concentration pro�le �(�) decreases which is plotted in Figure 5.12.

Figure 5.9: E¤ects of � on �(�) Figure 5.10: E¤ects of M on �(�)
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Figure 5.11: E¤ects of R on �(�) Figure 5.12: E¤ects of Sc on �(�)

Here the tabular study of the physical quantities like shear stress (1 + 1
� )f

00(�1), heat transfer

rate �0(�1) and mass transfer rate �0(�1) is presented for di¤erent values of physical parameters.

Table 5.3 presents the in�uence of magnetic �eld parameter M on shear stress, heat transfer

rate and mass transfer rate. It is noticed that with the rise of magnetic �eld M; the shear

stress and the mass transfer rate increase while heat transfer rate decreases at the channel

walls. Due to the magnetic �eld that exerts the friction force which tends to drag the �uid and

mass transfer towards the channel walls. Further, the frictional force tends to increase the �uid

temperature while the di¤erence of the walls and �uid temperature cause a decrease in heat

transfer rate. Table 5.4 predicts the e¤ects of Reynolds number R(stretching rate) on the shear

stress, heat transfer rate and the mass transfer rate. With rise of stretching rate, the channel

walls force the �uid to move rapidly towards the channel walls and as a result the shear stress

increases. From the �ow region the �uid is carrying away the heat, hence with the increase in

the temperature di¤erence the heat transfer rate also increases. By applying the stretching rate

the mass transfer also increases. In Table 5.5, the in�uence of Casson �uid parameter � on the

shear stress, heat transfer rate and mass transfer rate is shown. It is observed that with increase

of Casson �uid parameter �, the shear stress rate and mass transfer rate are decreasing but

reversal for heat transfer rate. Table 5.6 presents the source/sink e¤ects on the heat transfer

rate. The quantity ��0(�1) is decreasing for source(Q > 0) but opposite for sink(Q < 0): The

e¤ects of Prandtle number Pr on the heat transfer rate ��0(�1) are observed decreasing as we

increase the value of Pr which is tabulated in Table 5.7. In Table 5.8, the in�uence of Schmidt

116



number Sc is shown for the mass transfer rate. It is observed that when we increase the value

of Schmidt number Sc the mass transfer rate decreases.

M �(1 + 1
� ) f

00(�1) ��0(�1) ��0(�1)
0 9.17172 -1.49699 -0.54828
1 9.36976 -1.51054 -0.54782
3 9.75488 -1.53298 -0.54694
5 10.12640 -1.55078 -0.54610
10 11.00250 -1.58235 -0.54421

Table 5.3: E¤ects of Magnetic �eld parameterM on shear stress �(1+ 1
� ) f

00(�1); heat transfer

rate ��0(�1) and mass transfer rate ��0(�1) when � = 0:5; R = 2;Pr = Sc = 0:71; Q = 1

R �(1 + 1
� ) f

00(�1) ��0(�1) ��0(�1)
0 9.19812 0.84816 0.5
2 9.36976 0.96495 0.54782
5 9.62803 1.17209 0.62266
8 9.88705 1.43111 0.70056
12 10.23320 1.90441 0.80779

Table 5.4: E¤ects of Reynolds number R on shear stress �(1 + 1
� ) f

00(�1); heat transfer rate

��0(�1) and mass transfer rate ��0(�1) when � = 0:5;M = 1;Pr = Sc = 0:71; Q = 1

� �(1 + 1
� ) f

00(�1) ��0(�1) ��0(�1)
0.2 18.3706 -0.96598 0.54820
0.5 9.36976 -0.96495 0.54782
1.0 6.36889 -0.96393 0.54744
1.5 4.50941 -0.96332 0.54721
1 3.36612 -0.96096 0.54634

Table 5.5: E¤ects of Casson �uid parameter � on shear stress �(1 + 1
� ) f

00(�1); heat transfer

rate ��0(�1) and mass transfer rate ��0(�1) when R = 2;M = 1;Pr = Sc = 0:71; Q = 1
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Q ��0(�1)
0.1 -0.57620
0.3 -0.63964
0.5 -0.71370
0.7 -0.80101
1.0 -0.96495
-0.1 -0.52138
-0.3 -0.47366
-0.5 -0.43184
-0.7 -0.39498
-1.0 -0.34736

Table 5.6: E¤ects of source(Q > 0)/sink(Q < 0) on heat transfer rate ��0(�1) when R =

2;M = 1;Pr = 0:71; � = 0:5

Pr ��0(�1)
0.10 -0.54229
0.50 -0.77625
0.71 -0.96495
1.0 -1.37233
1.5 -3.39266

Table 5.7: E¤ects of Prandtl number Pr on heat transfer rate ��0(�1) when R = 2;M = 1; Q =

1; � = 0:5

Sc ��0(�1)
0.1 -0.50659
0.71 -0.54782
1.0 -0.56803
1.5 -0.60377
2.0 -0.64057

Table 5.8: E¤ects of Schmidt number Sc on mass transfer rate ��0(�1) when R = 2;M =

1; � = 0:5

5.4 Findings

In this chapter Lie group approach is used for MHD Casson �uid �ow with heat and mass

transfer phenomenon in the presence of source/sink e¤ects. We found the six �nite and one

in�nite symmetries for the non-dimenssional system of partial di¤erential equations. The de-
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termined symmetries are further used to �nd the Lie algebra, commutator table, adjoint table,

Abelian Lie algebra and optimal system for the governing system. Furthermore, the optimal

system guide us to �nd the thirty group invariant solutions for the system. We consider the

stretching walls phenomenon for one particular invariant to observe the in�uence of physical

parameters on �ow, heat and mass transfer. A numerical technique is being used to solve the

ordinary di¤erential equations. The solutions are presented in the form of graphs and tables.

The following observations have been collected for the �ow characteristics:

It is noticed that with the rise in Casson �uid parameter � decreases the velocity pro�le

f 0(�); the concentration pro�le �(�); shear stress rate �(1+ 1
� )f

00(�1) and the mass transfer rate

��0(�1) but increases the temperature pro�le �(�) and heat transfer rate��0(�1) at the channel

walls. With the increase of magnetic �eld parameter M , the velocity pro�le; the concentration

pro�le and the heat transfer rate decreases while increase the temperature pro�le, shear stress

and mass transfer rate. The velocity, temperature, and the concentration pro�les decrease when

we enhanced the Reynolds number R; but the shear stress, heat and mass transfer rates are

observed increasing. The impact of heat generation parameter Q on temperature pro�le and

heat transfer rate is observed opposite. The Prandtl number Pr shows the reverse behavior on

temperature pro�le and heat transfer rate. The e¤ects of Schmidt number Sc on concentration

pro�le and mass transfer rate are observed similar.
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Chapter 6

Lie group study of non-Newtonian

�ow with heat transfer over a

stretching rotating disk

In this chapter, the cylindrical coordinates will be considered. We analyze the MHD three

dimensional Casson �uid �ow with heat transfer by using the Lie group approach. The governing

partial di¤erential equations are converted into ordinary di¤erential equations by symmetry

analysis. Lie algebra of the governing system is further expressed in the form of Abelian Lie

algebra, commutator and adjoint tables and optimal system of group invariants. Furthermore,

the group invariants are listed, and for a particular invariant we solve the ordinary di¤erential

equations over a stretching rotating disk. To observe the physical parameter�s behavior of the

�uid we present the graphs and tables in the end of this chapter.

6.1 Mathematical modeling

Consider a steady three dimensional incompressible laminar Casson �uid �ow with heat transfer

phenomenon. The cylindrical coordinates (�r; �; �z) are used for the axisymmetric �ow and

variation with respect to � is ignored. A uniform magnetic �eld of strength B0 is applied in

the radial direction. The e¤ects of induced magnetic �eld are negligible as magnetic Reynolds

number is assumed to be small. Using (1.41), conservation of mass, momentum and heat
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transfer, the following equations are obtained

1
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@(�r�u)

@�r
+
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= 0; (6.1)
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+
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�u
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@�r
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@�z
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�
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@�r2
+
1
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Q0
�Cp

( �T � T1): (6.5)

In above system of equations u; v and �w are the velocity components in r, � and z directions

respectively and �p is the pressure.

To make the boundary layer equations we set up the dimensionless transformations which

are de�ned as

r =
�r

R1
; z =

�z

R1

p
R; u =

�u


R1
; v =

�v


R1
; w =

�w
p
R


R1
;

p =
�p

�(
R1)2
; T =

�T � T1
T0

;Re =

R21
�

; (6.6)

where R is Reynolds number, R1 is the reference length and T0 is reference temperature. It

must be mentioned that the corresponding scales of the axial direction are smaller by a factor

R
�1
2 . After using the above dimensionless transformations (6.6) we will have the system of

equations (6.1)-(6.5) as
1
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For high Reynolds number R!1 our boundary layer equations (6.7)-(6.11) are

1

r

@(ru)

@r
+
@w

@z
= 0; (6.12)
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�@p
@z
= 0; (6.15)

u
@T

@r
+ w

@T

@z
=
1

Pr

@2T

@z2
+QT: (6.16)

The pressure is dependent only on z which is studied by [88] that comes from property of

similarity transformation. Therefore in Eq. (6.13) it directly implies that @p
@r = 0. And by Eq.

(6.15) it is obvious that pressure will remain constant in the axial direction and in the boundary

layer region. For pressure term it is concluded that in the boundary layer region it will remain

constant.

6.2 Lie group analysis

In this section we have applied the group theoretical technique to calculate the symmetries for

the system of partial di¤erential Eqs. (6.12)-(6.16). The in�nitesimal generator for the system

of partial di¤erential equations is represented as

~V = �1(r; z; u; v; w; T )@r + �2(r; z; u; v; w; T )@z +�1(r; z; u; v; w; T )@u

+�2(r; z; u; v; w; T )@v +�3(r; z; u; v; w; T )@w +�4(r; z; u; v; w; T )@T : (6.17)
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The in�nitesimal Lie group point transformations for the invariance of the Eqs. (6.12)-(6.16)

are expressed as

r� = r + ��1(r; z; u; w; v; T ) +O(�
2);

z� = z + ��2(r; z; u; w; v; T ) +O(�
2);

u� = u+ ��1(r; z; u; w; v; T ) +O(�
2);

v� = v + ��2(r; z; u; w; v; T ) +O(�
2);

w� = w + ��3(r; z; u; w; v; T ) +O(�
2);

T � = T + ��4(r; z; u; w; v; T ) +O(�
2): (6.18)

For Eqs.(6.12)-(6.16) we have used the software package [25] to �nd the in�nitesimals as

�1(r; z; u; w; v; T ) = c2r; �2(r; z; u; w; v; T ) = f1(r);�1(r; z; u; w; v; T ) = c2u;

�2(r; z; u; w; v; T ) = c2v;�3(r; z; u; w; v; T ) = uf10(r);�4(r; z; u; w; v; T ) = c1T: (6.19)

Here (6.19) ensures us two �nite parameter Lie group transformations and two in�nite parameter

Lie group transformations i.e, f1(r) and f 01(r). Where parameter c1 represents the scaling in

T , and c2 represents the scaling in r; u and v:

Now we have a 4�dimensional vector space of in�nitesimal generators closed under the

operation of commutation, i.e., 4�dimensional Lie algebra, the basis of the corresponding Lie

algebra are as follows

V1 = @T ; V2 = r@r + u@u + v@v; V3 = @z; V4 = u@w: (6.20)

As we mentioned in chapter 2 that the requirement for solvability is equivalent to the existence

of a basis fV1; V2; :::; V4g of Lie algebra such that by Eq. (1.13) we can develop the following

commutator table
[,] V1 V2 V3 V4
V1 0 0 V1 0
V2 0 0 0 0
V3 -V1 0 0 -2V4
V4 0 0 2V4 0
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Table 6.1: Commutator table

The following Abelian Lie algebra obtained from commutator Table 6.1

[Vs; Vt] = 0; as s = t; [V1; V2] = 0; [V1; V4] = 0;

[V2; V3] = 0; [V2; V4] = 0:

By using the de�nition of adjoint representation from chapter 1, we can reconstruct the adjoint

representation adG of the Lie group by summing the Lie series (1.14) obtaining the adjoint

table.
Ad V1 V2 V3 V4
V1 V1 V2 V3 � "V1 V4
V2 V1 V2 V3 V4
V3 V1e

" V2 V3 V4e
2"

V4 V1 V2 V3 � 2"V4 V4

Table 6.2: Adjoint table

The optimal system of our equations (6.12)-(6.16) is as follows

I1) V1 + V2 I2) V2 + V3 I3) V2 + V4
I4) V1 + V3 I5) V3 + V4 I6) V1 + V2 + V3
I7) V2 + V3 + V4 I8) V1 + V3 + V4 I9) Vi(i = 1; 2; 3; 4):

By using optimal system we can reduce the governing partial di¤erential equations into ordinary

di¤erential equations. We �nd the following nine group invariants which lead us to group

invariant solutions as follow

I1) Invariants are z = �; u = rf(�); v = rg(�); w = h(�); T = ln r+�(�): The system reduced

into the following form, which can be solved numerically

2f + h0 = 0; (6.21)

(1 +
1

�
)f 00 � f2 � hf 0 + g2 �Mf = 0; (6.22)

(1 +
1

�
)g00 � fg � hg0 � gf �Mg = 0; (6.23)

�00 � Pr(h�0 + f) + PrQ(ln r + �) = 0: (6.24)
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I2) Invariants are � = ez

r ; u = rf(�); v = rg(�); w = h(�); T = �(�): The system is reduced into

the following form, which can be solved numerically

�h0 � �f 0 + 2f = 0; (6.25)

(1 +
1

�
)[�2f 00 + �f 0]� f2 � h(f � h)f 0 + g2 �Mf = 0; (6.26)

(1 +
1

�
)[�2g00 + �g0]� h(f � h)f 0 � 2gf �Mg = 0; (6.27)

�2�00 + ��0 + Pr �(f � h)�0 + PrQ� = 0: (6.28)

I3) Here the invariants are � = z; u = rf(�); v = rg(�); w = h(�); T = �(�): The continuity

and �ow equations are reduced into the same as in I1, but the heat transfer equation takes the

following form, which will be solved later in detail for V2

�00 + Pr(Q� � h�0) = 0: (6.29)

I4) Invariants are � = r; u = f(�); v = g(�); w = h(�); T = z + �(�): The system becomes

�f 0 + f = 0; (6.30)

ff 0 � g2

�
+Mf = 0; (6.31)

fg0 +
gf

�
+Mg = 0; (6.32)

f�0 + h�Q(z + �) = 0: (6.33)

The above system of di¤erential equations provides us the following informations about f and

g but no information about h and �:

f(�) =
a1
�
;

g(�) =
a2
�
Exp[�M

a1
�]:

I5) Invariants are � = r; u = f(�); v = g(�); w = h(�); T = �(�): The system becomes similar as
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I4 except heat equation which is

f�0 �Q� = 0:implies (6.34)

�(�) = b1Exp[�
Q

2a1
�2]:

I6) Here Invariants are � = ez

r ; u = rf(�); v = rg(�); w = h(�); T = ln r + �(�): The system

reduced similar as I2 except the heat equation which can be solved numerically

�2�00 + ��0 + Pr �(f � h)�0 + PrQ� � f = 0: (6.35)

Invariants I7 and I8 are appeared the same as I2 and I4 respectively.

I9) Here the invariants for V2 are � = z; u = rf 0(�); v = rg(�); w = h(�); T = �(�):

Here we are interested to solve the governing system of di¤erential equations, for that the

stream function  (r; z) as follows

u =
1

r

@ 

@z
;w = �1

r

@ 

@r
: (6.36)

After using the combined form of Eq. (6.36) and I9 which gives

 = r2f(�): (6.37)

By Eq.(6.36) and Eq. (6.37) the form of w is

w = �2f(�): (6.38)

Continuity Equation (6.12) is identically satis�ed by similarity transformations Eq. (6.36) and

Eq. (6.38). Now our boundary layer Eqs. (6.13)-(6.16) are conveniently transformed into self

similar form

(1 +
1

�
)f 000 + ff 00 � (f 0)2 + g2 �Mf 0 = 0; (6.39)

(1 +
1

�
)g00 + 2fg0 � 2f 0g �Mg = 0; (6.40)
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�00 + 2Pr f�0 + PrQ� = 0: (6.41)

Stretching rotating disk

To solve the system (6.39)-(6.41) for the physical interest of �uid �ow with heat transfer analysis,

we consider the stretching rotating disk phenomenon. The disk is rotating about its axis �r = 0

with constant angular velocity 
; but stretching in radial direction with velocity uw(�r). Then

the boundary conditions are

�u(�r; 0) = �
�ruw(
�r

R1
); �v(�r; 0) = 
�rvw(

�r

R1
); �w(�r; 0) = 0;

�u(�r;1) = 0; �v(�r;1) = 0; �T (�r; 0) = Tw; �T (�r;1) = T1: (6.42)

Where R1 is the reference length and � is disk stretching parameter.

By using (6.6) we have the dimensionless boundary conditions as

u(r; 0) = �ruw(r); v(r; 0) = rvw(r); w(r; 0) = 0;

u(r;1) = 0; v(r;1) = 0; T (r; 0) = Tw; T (r;1) = 0: (6.43)

By using I9 our system of ordinary di¤erential equations with corresponding boundary condi-

tions will be as follows

(1 +
1

�
)f 000 + ff 00 � (f 0)2 + g2 �Mf 0 = 0; (6.44)

(1 +
1

�
)g00 + 2fg0 � 2f 0g �Mg = 0; (6.45)

�00 + 2Pr f�0 + PrQ� = 0; (6.46)

f 0(0) = �; f 0(1) = 0; f(0) = 0; g(0) = 1;

g(1) = 0; �(0) = 1; �(1) = 0: (6.47)

The dimensionless forms of radial Skin friction coe¢ cient and the Local Nusselt number will
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take the following forms

R1=2r Cf = �(1 +
1

�
)f 00(0); (6.48)

R�1=2r Nur = ��0(0): (6.49)

6.3 Flow characteristics

The system of non-linear ordinary di¤erential equations (6.44)-(6.46) with boundary conditions

(6.47) has been solved numerically using MATLAB boundary value problem solver for ode�s.

The e¤ects of various physical parameters for example M;�; �;Pr and Q on vertical velocity

f(�); azimuthal velocity g(�); radial velocity f 0(�) and temperature pro�le �(�) are presented

here through graphs keeping the parameters �xed as � = 5;M = 1; � = 0:5;Pr = 1 and

Q = 0:2. Figures 6.1-6.4 show the e¤ect of Casson �uid parameter � on vertical velocity,

azimuthal velocity, radial velocity and temperature pro�les. Figure 6.1 depicts the in�uence of

Casson �uid parameter � on vertical velocity f(�): It is evident that with increase of �; the

vertical velocity decreases. The variation of Casson �uid � with radial velocity f 0(�) is presented

in Figure 6.2. It is observed that as the value of � increases, the radial velocity decreases. The

azimuthal velocity g(�) decreases and the temperature pro�le increases with increase of Casson

�uid parameter respectively as �gure out in Figure 6.3 and Figure 6.4 respectively. Figures

6.5-6.8 are plotted to observe the behavior of magnetic �eld parameterM with vertical velocity

f(�); azimuthal velocity g(�); radial velocity f 0(�) and temperature pro�le �(�): It is observed

that when we raised the value of magnetic �eld parameter M; the vertical velocity f(�), radial

velocity f 0(�) and azimuthal velocity g(�) decrease which is presented in Figure 6.5, Figure 6.6

and Figure 6.7 respectively. This is mainly due to the fact that application of magnetic �eld to

an electrically conducting �uid gives rise to Lorentz force, which causes the �uid to decelerate.

It is noticed that in Figure 6.8 when we increase the value of magnetic �eld parameter M;

the temperature pro�le �(�) increases. The in�uence of stretching parameter � on the vertical

velocity f(�); azimuthal velocity g(�); radial velocity f 0(�) and temperature pro�le �(�) are

illustrated in Figure 6.9-6.12. It is observed that the vertical velocity f(�) and the radial

velocity f 0(�) are enhanced with the increase of stretching parameter � which is presented in

Figure 6.9 and Figure 6.10 respectively. The e¤ect of stretching parameter � on azimuthal
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velocity g(�) and temperature pro�le �(�) are observed decreasing as shown in Figure 6.11 and

Figure 6.12 respectively. Figure 6.13 depicts the in�uence of heat generation parameter Q on

temperature pro�le �(�): The temperature pro�le �(�) is enhanced with the rise in the value of

heat generation parameter Q: The temperature pro�le �(�) is observed decreasing with increase

the value of Prandtl number Pr as illustrated in Figure 6.14.

Figure 6.1: E¤ect of � on f(�) Figure 6.2: E¤ect of � on f 0(�)

Figure 6.3: E¤ect of � on g(�) Figure 6.4: E¤ect of � on �(�)
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Figure 6.5: E¤ect of M on f(�) Figure 6.6: E¤ect of M on f 0(�)

Figure 6.7: E¤ect of M on g(�) Figure 6.8: E¤ect of M on �(�)
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Figure 6.9: E¤ect of � on f(�) Figure 6.10: E¤ect of � on f 0(�)

Figure 6.11: E¤ect of � on g(�) Figure 6.12: E¤ect of � on �(�)
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Figure 6.13: E¤ect of Q on �(�) Figure 6.14: E¤ect of Pr on �(�)

Table 6.3 presents the values of �(1 + 1
� )f

00(0) and �(1 + 1
� )g

0(0) for various values of Casson

�uid parameter �, magnetic �eld parameter M; stretching parameter �: It is observed that the

radial coe¢ cient of Skin friction decreases with � and increases with M and �: The Nusselt

number ��0(0) is observed decreasing with increase of �;M and Q; but increases with increase

of � and Pr which is shown in Table 6.4.

� M � �(1 + 1
� )f

00(0) �(1 + 1
� )g

0(0)

1.0 1.0 1.0 2.277542 2.489494
5.0 1.764178 1.928352
10.0 1.689071 1.846256
1 1.610458 1.760328
5.0 1.0 1.0 1.764178 1.928352

2.0 2.083880 2.207942
3.0 2.357394 2.460628
5.0 2.823436 2.904377

5.0 1.0 0.5 0.941246 1.529623
1.0 1.764178 1.928352
1.5 2.781624 2.258467
2.0 3.957420 2.546689

Table 6.3: E¤ects of various parameters on �(1 + 1
� )f

00(0) and �(1 + 1
� )g

0(0)
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� M � Q Pr ��0(0)
1.0 1.0 1.0 0.2 1.0 0.769584
5.0 0.681830
10.0 0.663905
1 0.643032
5.0 1.0 1.0 0.2 1.0 0.681830

2.0 0.595398
3.0 0.513667
5.0 0.264789

5.0 1.0 0.5 0.2 1.0 0.131568
1.0 0.681830
1.5 0.951916
2.0 1.158453

5.0 1.0 1.0 0.2 1.0 0.681830
0.3 0.592362
0.5 0.317842
0.6 0.117566

5.0 1.0 1.0 0.2 1.0 0.681830
5.0 1.990968
10.0 2.963776
20.0 4.337936

Table 6.4: E¤ects of various parameters on ��0(0)

6.4 Findings

In this chapter we analyze the MHD three dimensional Casson �uid �ow with heat transfer

in cylindrical coordinates by employing Lie group method. By making the governing system

dimensionless we �nd the symmetries of the system. Two �nite and two in�nite symmetries are

found. Further, these symmetries are used to �nd the Lie algebra, commutator table, adjoint

table, Abelian Lie algebra and optimal system for the system of partial di¤erential equations.

Optimal system helps us to �gure out the nine group invariant solutions. Furthermore, we

consider the case of stretching rotating disk for a particular invariant to observe the in�uence

of physical parameters on �ow and heat transfer phenomenon. The solution of the ordinary

di¤erential equation is presented through graphs and tables. After the �ow and heat transfer

analysis in the light of physical parameters of �uid, the following results have been obtained:

The increase in Casson �uid parameter � decreases the vertical velocity f(�); the azimuthal
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velocity g(�); radial velocity f 0(�); radial coe¢ cient of Skin friction �(1 + 1
� )f

00(0) and the

Nusselt number ��0(0) while increases the temperature pro�le �(�). With the increase of

magnetic �eld parameter M , the vertical velocity f(�); the azimuthal velocity g(�); radial

velocity f 0(�) and the Nusselt number ��0(0) decrease while increases the temperature pro�le

�(�) and radial coe¢ cient of Skin friction �(1 + 1
� )f

00(0): The vertical and radial velocities

decrease when we enhanced the stretching parameter �; but the azimuthal velocity, temperature

pro�le, radial coe¢ cient of Skin friction and the Nusselt number are observed increasing. The

impact of heat generation parameter Q on temperature pro�le and Nusselt number is observed

opposite. The Prandtl number Pr shows the reverse behavior on temperature pro�le and the

Nusselt number.
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Chapter 7

Summary and future directions

In this chapter we summarize our study and suggest some future directions.

7.1 Summary

The focus of this study was to �nd the Lie group invariant (similarity) solutions to some

multidimensional (two and three dimensional) non-Newtonian �uid �ow problems describing

Casson �uid with heat transfer phenomenon. For Lie group analysis three well known laws

i.e. conservation laws of mass, momentum and energy were considered. Initially all the three

laws were investigated through boundary layer approximation. To make these boundary layer

equations dimensionless, we used appropriate variables. The governing dimensionless system

was further studied through Lie group approach. By employing this technique, the translation

and scaling symmetries were found. These symmetries played a vital role to investigate further

properties of the governing partial di¤erential equations. We also calculated the commutator

table, Abelian Lie algebra, adjoint representation table and optimal system of the Lie algebra of

group operators. Following the optimal system, we calculated the group invariant solutions of

the governing partial di¤erential equations. Further for a particular invariant, we considered the

boundary value conditions by taking di¤erent geometries to examine the �ow characteristics.

The main purpose was to observe the in�uence of di¤erent physical parameters on velocity and

temperature pro�les, skin friction and local Nusselt number. For this purpose we have plotted

the graphs and the numerical values were displayed in tables of pertinent parameters involving
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in the physical problems .While investigating the �ow and heat characteristics we observed that

there is a decrease in velocity pro�le and local Nusselt number as the values of the Casson �uid

parameter and magnetic �eld parameter increase. We also noticed that with the increase of

Casson �uid parameter, magnetic �eld parameter and Prandtl number, the temperature pro�le

also rises. Furthermore, the e¤ects of Casson �uid parameter and magnetic �eld parameter on

skin friction were observed.

The results of the symmetry group analysis of some multidimensional �uid �ow with heat

transfer phenomenon can be summarized by the following remarks:

The local Lie symmetries of the equations were presented. We also presented the commuta-

tor table, adjoint representation and abelian Lie algebra. The optimal system of transformations

was calculated. By following the optimal system, we listed the group invariants. We presented

all the analytical solutions of the reduced system of equations. The equation that had to be

solved numerically was written in the reduced form using the invariants of the transformations.

For one particular invariant we considered the boundary conditions to solve the system of or-

dinary di¤erential equations. We demonstrated the application of Lie symmetry method on

some particular equations proving that the invariants can help us to simplify very much the

task of �nding the solutions of some given di¤erential equations. The Lie group approach in

its general form is particularly e¤ective since it furnishes both general Lie symmetries and all

their invariants in a constructive way. We found that the application of this method gave us a

straightforward way to construct solutions of nonlinear equations.
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7.2 Some future directions

We have applied the Lie group approach on �uid problems and found their analytical and

numerical solutions. These analytical solutions can be very useful for the investigation of

di¤erent physical systems where the �ow and heat processes are important. It appears that

the exact analytical solutions of di¤erential equations are based on exploiting some symmetry

of these equations with respect to certain transformations. In this study we suggest following

future work to the readers:

� This work can be studied by applying Non-Classical and Potential symmetries.

� We still have freedom to apply the Lie group technique for other Non-Newtonian �uid

models i.e. Eyring Powell �uid, Nano�uid, Micropolar �uid, Oldroyd B, Maxwell �uid,

Je¤rey �uid, Burger�s �uid, and many others.

� Lie group method has been applied on Newtonian �uid but still there are many problems

which can be solved by applying Lie group method.

� This work can be extended by considering di¤erent geometries.
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7.3 Research progress during Ph.D. studies

Publications

1. Irreversibility analysis of MHD �ow over an exponentially stretching sheet, Heat Transfer

Asian-Research Journal, 44 (3), 211-226, (2013)

2. Heat Source/Sink E¤ects on Non-Newtonian MHD �uid �ow and heat transfer over a

Permeable Stretching Surface; Lie Group Analysis, Indian Journal of Physics, 88 (1), 75-82,

(2014)

3. Conserved integrals for inviscid compressible �uid �ow in Riemannian manifolds,

Proceeding of Royal Society A, 471, (2015)

4. Group Theoretical Analysis of Non-Newtonian Fluid Flow, Heat & Mass Transfer over a

Stretching Surface in the Presence of Thermal Radiations, Journal of Applied Fluid

Mechanics, 9 (3), 1515-1524, (2016)

5. Three dimensional �ow of magnetohydrodynamics Casson �uid over an unsteady

stretching sheet embedded in a porous medium, Journal of Applied Mechanics and Technical

Physics, 57 (2), (2016)

6. Computational modeling of MHD �ow of Non-Newtonian �uid over an unsteady
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