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Abstract

To expand the use of codes and provide a form of error-correction, it is useful to extend
the use of binary streams into another representation. In this work, we have used different
monoid rings for the construction of a new family of error correcting codes having better error
correction capability. Initially we have constructed binary cyclic codes using monoid rings
instead of polynomial ring. For an n length binary cyclic code, three different binary cyclic
codes of length an, bn and abn are obtain. These codes are interleaved codes capable of
correcting burst of errors alongwith random error correction.

The BCH codes form a class of parameterized error-correcting codes which have been the
subject of interest. Instead of primitive BCH codes we have showed the existence of non-
primitive BCH codes of length bn over the fields Fy, F4 and finite rings Zom along with their
applications. The value of b is investigated for which the existence of the non-primitive BCH
code Cpy, is assured. It is noticed that the code C,, is embedded in the code Cj,. Therefore,
the data transmitted by the code C), can also be transmitted by the code Cy,. The BCH codes

.Cpn, have better error correction capability whereas the BCH code C), has better code rate.
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Chapter 1

Introduction

Error-correcting codes are one of the most effective and widely applied branch of abstract
algebra over the last sixty years. It forms the basis of modern communication systems and is
used in essentially all hardware level implementations of smart and intelligent machines, such
as scanners, optical devices, and telecom equipment. It is due to the error-correcting codes that
we are able to communicate over long distances and are able to achieve megabit bandwidth
over a wireless communication channel.

One of the important class of error-correcting codes is cyclic codes. These codes were
initially studied by Prange ( [30], [31]). Since then, advancement in the theory of cyclic codes
for correcting random as well as burst errors has been encouraged by many coding theorists.
The cyclic codes were first studied over the binary field Fo. Then were extended to the prime
field ), and its Galois field extension F,, where p is a prime integer and ¢ is p™ with m a
positive integer. The correspondence of cyclic codes with ideals was observed independently by
Peterson [28] and Kasami [19].

An important class of cyclic codes are binary Hamming codes. They were discovered by R.
W. Hamming and M. J. E. Golay. Hamming represent a family of binary linear error-correcting
codes that can detect up to two errors and correct one error. They have interesting properties
and are easy to encode and decode.

In [16], Hocquenghem and in [7], Bose and Ray-Chaudhuri independently developed the
large class of error correcting codes named as BCH codes. These codes are a remarkable

generalization of the Hamming codes for correcting multiple-errors. One of the key features of



BCH codes is that during code design, there is a precise control over the number of symbol
errors correctable by the code. Another advantage of BCH codes is the ease with which they
can be decoded via an algebraic method known as syndrome decoding.

The extension of a BCH code embedded in a semigroup ring was first discussed by Cazaran
[9]. A great amount of information regarding rings construction and its corresponding polyno-
mial codes are discussed in [24]. In [21], [20] and [22], the authors explained the extensions of
BCH codes in many ring constructions where the outcomes are the special case of semigroup
rings. In a series of papers [4], [34], [35], [36], [37], [38], [39] several classes of cyclic codes over
a finite unitary commutative ring are constructed, through monoid rings. The purpose of these
constructions is to address the error correction and the code rate trade off in a smart way.

In [40], Shah et al. showed the existence of a binary cyclic code of length (n + 1)n corre-
sponding to the n length binary BCH code using a monoid. It is established that the n length
binary BCH code is embedded in it. In [38], by the use of monoid ring existence of a binary
cyclic code of length (n + 1)31C — 1, where k is a positive integer, corresponding to a binary
cyclic code of length n is explained. Both studies cannot show the existence of BCH codes
corresponding to the length n binary BCH code.

Other than finite fields, linear codes over finite rings have been discussed in a series of
papers initiated by Blake in [5] and [6]. He introduced the notions of the Hamming codes,
Reed-Solomon codes and the BCH codes over arbitrary integer residue rings. Spiegal in [42]
and [43], showed that the codes over the finite local ring Z,» can be described in terms of codes
over Z;, and thus, are able to define codes over Z,,, for any positive integer m. Shankar in [41],
linked the notion of BCH codes over Zj, to the class of BCH codes over the finite local ring Z,x
through a p reduction map. A remarkable development regarding Berlekamp-Massey decoding
algorithm was given by Forney et al. in [13]. Recently Interlando, et al. in [18], have proposed
a decoding procedure based on the modified Berlekamp-Massey algorithm for linear codes over
the finite rings.

This thesis is organized as follows:

Chapter one describes a brief introduction to algebraic notions and algebraic coding theory.
In Chapter two, the construction of n length binary cyclic codes as an ideal in the factor ring

Fo[z; aNp]/((z*)™ —1) is explained. On the basis of binary cyclic code C,, construction of binary



cyclic codes Cap, Cppn and Copn, as ideals in the factor rings Fa[z]/((z™ —1)), Fa[z; ¢No]/((z? )" —
1) and Falz; $No]/ ((:c%)“b” — 1), are explained. The relationship among all of these binary
cyclic codes is obtained through interleaving technique and by their generator and parity check
matrices. Their error correction capability and decoding is also discussed in this Chapter.

In Chapter three, the construction of binary BCH codes using monoid ring Fa[z; #No],
where a, and b are integers such that a,b > 1, is given. We show the existence of non-primitive
binary BCH code of length bn using an irreducible polynomial p(x%) €Fz[z; 7No] of degree
br, corresponding to a given length n binary BCH code C,, generated by r degree primitive
polynomial p(z®) in Fa[z; aNp]. It is noticed that the binary BCH code C,, is embedded in non-
primitive BCH code Cp,,. In this way a link between primitive and non-primitive BCH codes
is attained. The length of the binary BCH code Cp, is well controlled and has better error
correction capability.

Chapter four generalizes the case of Chapter three by taking the monoid ring Fa[z; %No]
where 1 < j < m and m is any fix positive integer. This gives a new family of BCH codes
such that the smaller length code is embedded in the larger length code. For wider range of
examples and quick results we have proposed an algorithm which calculates all the BCH codes
of particular length, their error correction capability, code rate and cyclotomic cosets. The
simulation is carried out using computer programme MATLAB. It provides built in routines
solely for primitive BCH codes with degree of primitive polynomial less than 16. Whereas in
constructing non-primitive BCH codes, the degree of non-primitive polynomial is greater than
16. In order to lever these conditions Generic Algorithm is developed in MATLAB.

In Chapter five, we have constructed BCH codes over the field Fy = {0,1,a,a0? = 1+a}. In
[10], Faria et al., showed the existence of DNA sequences which can be identified as codewords
of BCH codes over the field F4. They have proposed an algorithm capable of producing DNA
sequences, associated with coding regions of genes, as codewords of error-correcting codes. Their
results allow the use of efficient computer simulations in the analysis of biological processes such
as polymorphism and mutation, consequently reducing time spent in laboratorial experiments.
This is the main motivation to enhance the case of binary field, to the Galois field F4. We
compare the results of both the fields in this Chapter.

In Chapter six, instead of finite fields we construct BCH codes over finite rings (Galois



rings) using monoid rings. Following [41], we have constructed sequence of non-primitive BCH
codes {C}; }j>1, in the factor ring Zom [z; %Ng]/((xﬁ)bj” —1) = Zam[x; 15No]pi,, corresponding
to n length BCH code CJ, having symbols from the local ring Zgm. Thus, for a fixed m, against

n length primitive BCH codes C|, over Zom, there exist a sequence {C’II) }j>1 of non-primitive

in
BCH codes over Zom. Consequently, a link between primitive BCH codes C,,, C’,Il, (over Fg and
Zom), and the sequences of non-primitive BCH codes {Cj;,, }j>1 and {Cll)jn}jzl is developed.
For the decoding of binary BCH codes of length b'n over Zaom[x; +No|, we modify Berlekamp-
Massey decoding algorithm through which one can obtain the decoding of ¥/n and n length
binary BCH codes over the field Fa. Throughout this Chapter we have given comparison and
connection between the codes constructed over Galois rings and Galois fields.

The Chapter 7, discusses the applications of the newly constructed BCH codes in cognitive

radio, in the formation of DNA sequences and in data transmission. Lastly Chapter 8 concludes

the thesis.

1.1 Algebraic notions and algebraic codes

In this chapter we provide basic concepts related to algebra and coding theory which are essential
for the understanding of this thesis. It is divided into two main sections. In section 1, basic
structures of algebra whereas in section 2, the fundamentals of algebraic coding theory are

discussed.

1.2 Algebraic notions

The section we provide basic notions and terminologies related to semigroups, rings, fields,

modules and semigroup rings.

1.2.1 Semigroup

A non-empty set S is said to be a semigroup, if it satisfies the closure property and associative
law with respect to the binary operation *. An element e of a semigroup S is called the identity
element of S, if sxe =exs forall s € S. A semigroup S is said to be a monoid under the

binary operation x, if identity element e exists in S. A semigroup is called a commutative



semigroup, if it satisfies s xt = t x s for all s,¢ € S. A non-empty subset T' of a semigroup
(monoid) S is a subsemigroup (submonoid) of S, if T itself is a semigroup (monoid) under
the binary operation on S.

An element s of a monoid S is said to be invertible, if s +¢ = ¢, for some ¢t € S. A
semigroup S is said to be torsion free, if each element of S has infinite order except the
identity element. An element s of semigroup S is said to be cancellative, if s +¢t = s+ u
implies t = w for all t,4 € S. A semigroup S is called cancellative semigroup if all the
elements of S are cancellative. A semigroup S is called a cyclic semigroup, if it is generated

HNU on S

by a single element. A semigroup is called totally ordered, if there is a relation
which is reflexive, asymmetric, transitive and satisfies s ~ ¢ or t ~ s for all s,t € S. An order
~ on S is said to be compatible if, s1 ~ so implies s;1 + s ~ s9 + s for all s1,59,5 € S. A
cancellative and torsion free semigroup is totally ordered. A semigroup having a compatible
total order is cancellative and torsion free.

A monoid G is said to be a group under the binary operation *, if inverse of each element
of G exists in G i.e. for all a € G, there exists ¢ € G such that aa’ = e and d’a = e. A group

G under the binary operation x is written as (G,*). A group (G, ) is called commutative or

Abelian if all elements of G commute.

1.2.2 Ring

A set R together with two binary operations, addition and multiplication is called a ring if
R is an Abelian group with respect to addition, semigroup with respect to multiplication and
multiplication is distributive over addition. If R is a monoid with respect to multiplication
then R is called a unitary ring. A non-empty subset U of R is called a subring of R, if U is
itself a ring under the induced operations. A ring R is a commutative ring if multiplication
is commutative in K.

An element r of a unitary ring R is invertible or unit if, r.ry = r;.r = 1, for some r; € R
which is an inverse of r in R. A non-zero element z of R is a zero divisor of R, if za =0
for some non-zero element a in R. If R has no zero divisor, then R is called an integral
domain. R is cancellative if and only if it is an integral domain. A non-zero element p in a

commutative ring R is said to be prime if and only if p divides ab implies either p divides a



or p divides b. A non-zero element ¢ in a ring R is said to be irreducible (or non-factorable)
if in every factorization ¢ = bc, either b is invertible or ¢ is invertible where b,c € R. A
ring homomorphism is a map ¢ : R — U, which preserves both the operations, i.e., ()
oz +y) = o) + o(y), (it) ¢(zy) = d(x)d(y), for all z,y € R, where R and U are any rings.

If R and U contains identity element, then the homomorphism of R into U is called a homo-
morphism of rings with identity, which also preserve the identity element, i.e. ¢(1g) = 1.
A ring homomorphism ¢ is said to be a monomorphism (epimorphism) if ¢ is one-one
(onto). If ¢ is one-one and onto than ¢ is called a ring isomorphism . In this case the rings
R and U are said to be isomorphic and we write it as R = U.

A subring I of a ring R is called an ideal in R if for each i € I, ri € I for all r € R. Every
ideal is a subring, but converse is not true. An ideal I of R is called proper ideal if INR # R
and is said to be improper ideal, if I "R = R. A proper ideal I of R is called prime ideal
of R if, ri € I implies r € [ or i € I. A proper ideal of R is said to be maximal ideal, if
it is not contained in any other proper ideal of R. Every ideal of a ring is contained in some
maximal ideal of that ring. An ideal I is said to be finitely generated if it is generated by

finite number of elements i.e., I = (ry,72...7,), € R. A finitely generated ideal is called

Tipinite
principal ideal if it is generated by a single element i.e., I =< a > for some ¢ € R. A ring R
is called principal ideal ring (PIR), if all the ideals of R are principal. A ring R is integral
domain if and only if (0) is prime ideal in R. A commutative ring with identity is called a local
ring if it has only one maximal ideal.

Let I be an ideal of the commutative ring R with identity, then the quotient ring (or

factor ring) of R, denoted by R /I, is the collection of all distinct equivalence classes of element

of R modulo I ; that is,

R/I={a+1:a€R}

It is easy to verify that R/I is again a ring. Also, R/I is commutative if R is commutative.
A commutative ring R with identity e is called a field F if every non-zero element in F is
invertible. Let (M, +) be an Abelian group and R be a unitary commutative ring. Then, M is
called an R-module, if a product is defined between elements of the ring and elements of the

module that is distributive over addition and is compatible with the ring multiplication.



If the ring R is replaced by a field F, then M is called a vector space V over the field F.
A module is a generalization of vector space. A module with basis is called a free module.
Every vector space is a free module. A non-empty subset W of V is called a subspace of V if

W itself is a vector space over the field F.

1.2.3 Rings of formal power series

Let R be a commutative ring and Ny be the additive monoid of non-negative integers. The set
RN = {g: Ng — R} of all infinite sequences from Ny to R is called formal power series, define
as: 9(0) = go, 9(1) = g1, ..., g(n) = gn. Also: g = (90,91, 92, - Gk, ---), where g; € R. The set
RNo is a ring containing R as a subring. Let g, h € RN0 be any arbitrary elements such that
g9 = (90,91,...) and h = (hg, h1,...). The addition and multiplication of formal power series is

defined as follows:
g+ h=1(g0+ ho,g1 + h1,...) and gh = (ko, k1, ...),

where for eachn > 0, &k, = Z ‘gihj. The zero element of RNo is (0,0,0,...) and the additive
inverse of (go,g1,...) is (—go, —ngill,ﬂ) Hence (RYNo,+) becomes an Abelian group. Moreover,
(RMo. ) is semigroup and multiplication is distributive over addition, therefore (RN°, +,.) forms
a ring structure known as the ring of formal power series in one indeterminate over K.

There exists an embedding 6 : R — RY0 defined by 6(r) = (r,0,0,0,...). So, an element

r € R has a representation (r,0,0,0,...) in RNo. Now we define a power series in a formal way,

we have

x=(0,1,0,...) and

gor = (0, 90,0,...), where go € R.

In general g,z", n > 1 denotes the sequence (0,0, ...,0,9,0,...),where g, is the element at
(n+ 1)th term in this sequence. Thus g(z) = (90,91, ---, gn, -.-) can be uniquely expressed in the

form



g = got+ar+ gt +ga”+ ..

= ngxk.

To indicate the indeterminate x, usually we denote RN by R][[z]]. If g(x) = > grz* is a non-
zero power series (that is, if not all the g = 0) in R[[z]], then the smallest integer n such
that g, # 0 is called the order of g(x) and denoted by ord(g(z)). Let g(x), h(z) € R[[z]], with
ord(g(z)) = n and ord(h(x)) = m, then

9(2)h(x) = gnhan@" ™ + (gnr1hm + Gnbimrr)z™ T 4L

By the definition of multiplication in R[[X]], it can easily be seen that all the coefficients of
g(x)h(z) up to (n+ m)th are zero. If we assume that one of g, and hy, is not a divisor of zero

in R, then g,h,, # 0 and

ord(g(z)h(x) =n+m = ord(g(x)) + ord(h(x)).

Polynomial Rings

The set of all power series in R[[z]], whose finite number of coefficients are nonzero is denoted
by R[z]. Therefore,
Rl[z] = {go + 1@ + ... + gnz" : gn € R, n > 0}.

An element of R[z] is called polynomial in an indeterminate = over the ring R. The poly-

nomial ring R [z] is a subring of R [[z]]. Given the non-zero polynomial

n
9(x) = go+ g1z + .. + gna" = Y _gra" € R,
k=o

the coefficient g, is called the leading coefficient of g(x) and the integer n is called the degree
of the polynomial. The degree of a non-zero polynomial is therefore a non-negative integer.

The zero polynomial has no degree. The non-zero constant polynomials are of zero degree. A



polynomial whose leading coefficient is 1 is called a monic polynomial.

1.2.4 Semigroup ring

Let (S,%) be a commutative semigroup and R be an arbitrary ring. The set of all finitely
non-zero functions g from S into R which are non-zero at finite points is denoted by R[S]. This

set R[S] is a ring with respect to binary operations addition and multiplication defined as:

(9 +h)(s) = g(s) + h(s) and (gh)(s) = D g(t)h(u), (1.1)

txu=s

where the symbol >  indicates that the sum is taken over all pairs (¢,u) of elements of S
such that ¢t xu = ?,UZ;d when s is not expressible in the form ¢ x u for any t,u € S, then
(gh)(s) = 0. The set R[S] is known as the semigroup ring of S over R. The representation
of R[S] will be R[x;S] whenever S is an additive monoid. There is an isomorphism between
additive semigroup S and multiplicative semigroup {z* : s € S}, so a non-zero element g of
R[z; S] is uniquely represented in the canonical form i g(si)z® = i giz®, where g; # 0 and
s; # s; for i # j. - -

Degree and order of an element are not generally defined in monoid rings. However if S is
a totally ordered monoid, degree and order of an element of monoid ring R[z; S] is defined in
the following manner: If g = f%gixsi € R[x; S], where s1 < s3 < ... < Sy, then s, is called the

i=

degree of g written as deg(g) = s, and s is the order of g written as ord(g) = s;.

The monoid ring R[z; S] is a polynomial ring in one indeterminate if S = Nj.

1.2.5 Galois fields and Galois rings

Galois field

Polynomials over a field F modulo an irreducible polynomial ¢(z) of degree s forms a field
which is called an extension field of degree s over F. The extension field is obtained by
adjoining a root say «, of ¢(x) to the field F. It is denoted by Fla].

The residue classes of integers modulo any prime number p form a field of p elements called
Galois field GF(p). The field of polynomials over GF'(p) modulo an irreducible polynomial of
degree m is called the Galois field of p"" elements denoted by GF(p™). For any number ¢ = p™,

10



that is a power of a prime number, there is a field GF'(q), which has ¢ elements. Every finite
field is isomorphic to some Galois field. They differ only in the way the elements are named.

For example 23 +2+1 the irreducible polynomial of degree 3 gives quotient ring GF (2 [x] / (:B3 +x+ 1)
which is isomorphic to Galois field GF(23) of order 8. The elements of this Galois field are poly-
nomials of degree less than 3 with coefficients belongs to GF(2).

Galois ring

For positive integers m, s and p, where p is a prime, we have Galois ring of order p"* denoted
by GR(p™, s). It is the Galois extension of degree s of the ring Z/Z,n of integers mod p™. For
s =1, the ring GR(p™, 1) is Z/Zym, whereas for m = 1, the ring GR(p, s) is Fps.

Let ¢(z) € Z[x] be a monic irreducible polynomial of degree s, over Z, which remains irre-
ducible modulo p, then the Galois ring GR(p™, s) is isomorphic to the quotient ring (Z/Zym )[x]/(¢(x)),

where ¢(z) is a polynomial in (Z/Zym)[z].

1.3 Algebraic codes

In modern communication systems transmission of messages through a channel or storage of
massive amount of data consistently, possibility of errors is always there. Different coding and
decoding schemes are used to correct errors from the received message to recover the original
message. The basic concept of working behind these schemes is to add parity bits to the
message bits. The codes in which the number of message bits and parity bits are kept fixed
are algebraic codes, which are basically block codes. The construction of these codes is highly
based on the algebra, therefore they are called algebraic codes. This section is divided into
three subsections in which we discuss fundamentals of coding theory, linear codes, cyclic codes

and the construction of BCH codes over the finite fields.

1.3.1 Fundamentals of coding theory

This subsection discusses some basic notions and terminologies related to coding theory which
are used in all sections of this dissertation.
Consider a finite set S of p elements, a p — ary code C of length n is a subset of the set

S™ (the Cartesian product), where n is a positive integer. The elements of the set S are called

11



symbols or bits and the set itself is referred to as symbol set. The elements of the code C
are called codewords. A code is said to be binary code, if the number of symbols in the
symbol set are two and is called ternary code, if size of symbol set is three. The size of the
set 8™ is p". A subset C of §” is said to be trivial code, if the size of C is one or p™. If all
the codewords of a code C have same coordinates, i.e., C = {aaa...a|a € S}, then such a code is
called a repetition code. Size of a repetition code is equal to the size of the symbol set.

Let c¢1 and co be two elements of 8™, ¢1 = c1,1¢12 - C1,n, C2 = C2,1C22 - C2,. The Ham-
ming distance between c¢; and co is the total number of subscripts in which the coordinates
of ¢; and ¢y differ, i.e.,

i :e1j # ey}

The Hamming distance between two elements ¢; and ¢y of 8™ is denoted by d(cq,c2). For

example, d(11011,10010) = 2. Hamming distance satisfies the following three conditions:

(1) d(c1,c2) = 0if and only if ¢; = ca.
(2) d(c1,¢2) = d(cg, ), for all ¢1,c0 € S™.

(3) d(ci,e3) < d(c1,c2) +d(ca,c3), for all ¢1,co and c3 € S™.

Hence, d is a metric on the set S™.
The minimum distance of the code C is the smallest Hamming distance between any two

codewords in the code C, i.e.,

d(C) = min{d(c;, ¢j) : ¢, ¢j € Coe; # ¢}

The minimum distance or minimum Hamming distance of a code C is denoted by
d. For example, the minimum Hamming distance of an n length repetition code is n. The
Hamming weight of a vector ¢ €F" is the number w(c) of its nonzero coordinates i.e.,
w(c) = d(c,0). If C is a linear code, the distance d(C) is the same as the minimum weight of

nonzero words i.e.,

d(C) = min{w(c) |c € C,c #0}.

12



A code C is known as t-error correcting code, if it is capable of correcting ¢ or less errors
whenever t or fewer errors have been occurred during the transmission of a codeword. The error
detection and correction capabilities of a code are directly related with the minimum distance
of the code. Following theorem provides a relation between the minimum distance and its error

detection and correction capabilities.

Theorem 1 [27, 4.1.3] From any transmitted codeword, a code C with minimum distance d

can detect and correct upto d — 1 and L%J errors respectively.

A code of length n, having minimum distance d, and size M is represented by (n, M, d)-code.
A code is said to be a very good, if it satisfies the following three conditions:

(1) Length n should be small so that fast and low cost transmission could be possible.

(2) Minimum distance d should be large so that more errors can be detected and corrected.

(3) Size M should be large so that a variety of messages can be sent.

1.3.2 Linear codes

Linear codes are much accordant to algebraic treatment due to possessing many algebraic
properties. In these codes, the symbol set is a finite field F. The set F™ is an n-dimensionalvector
space over the field F. A subset C of F" is said to be linear code, if it is a subspace of the vector
space F™. A subspace of a finite dimensional vector space is also finite dimensional. Hence,
every linear code has a dimension. A linear code C of length n and dimension k is represented
by (n,k). The size of an (n,k)—code is equal to p”, where p is the size of the corresponding
field F. Henceforth, F), denotes a finite field of p elements and a vector ¢ in F} is represented
as ¢ = (c1,c2,...cpn).

Let C be an (n, k)—code over the field F. A k x n matrix with rows forming the basis for
the codes C is called generator matrix for the code C. Let G be a generator matrix for an
(n, k) — code C, every element of C can be uniquely expressed as the linear combination of the
rows of G. In other words, C is the row space of the matrix G, i.e., C = {¢.G | ¢ €F*}. A vector
c of the space F¥ is of length k, however a vector of an (n,k)—code C is of length n. As, the
size of both spaces is p*. Therefore, we have a bijection d from F¥ to C defined as: 6(c) = c¢.G

for all ¢ €F¥. In these settings, the vectors of F* are called messages and their images are

13



said to be codewords, i.e., c.GG is the codeword corresponding to the message c. As, we have
already mentioned that this bijection maps a vector of length k on to a vector of length n. The
n — k elements attached to c are called parity bits. The map J is called encoding map. The
ratio of message length to the codeword length is called code rate of an (n, k)-code C i.e., k/n.

The dual code of C can be defined as:
Ct={de€F":c.d =0forall ceC}. (1.2)

Where the multiplication is defined as: c¢-¢ = ec/T. It is well known that if C is a k-
dimensional subspace of an n-dimensional space, then its dual C* is also an (n — k)-dimensional
subspace of the space and hence a code. For example, the dual of a binary repetitive code

C ={0000,1111} is a (4,3) — code over Fy and is equal to:

¢ = {0000, 1100, 1010, 1001, 0110, 0101, 0011, 1111}. (1.3)

1
Moreover, we have (Cl> = C. Since, dual of a code C is also a subspace therefore, it also has

generator matrix. The generator matrix of cis very important for the decoding purposes.
Let C be any linear (n, k)-code and C” is its dual. Then the generator matrix H of the code

C” is called the parity check matrix of the code C. It is easy to prove that a vector ¢ of the

space F” is a code-word of the code C, iff c. HT = 0 = H.c'. Following theorem provides the

relation between the generator matrix and parity check matrix of a linear code.

Theorem 2 [27, /.2.9] Let C be a linear (n, k)—code over the field F. Let G and H be generator
and parity-check matrices of the code C respectively. Then G.HT =0 = H.GT. Conversely, if
G is any k x n matriz, and H is an (n — k) X n matriz, of rank k and n — k respectively, with

G.HT = 0. Then H is a parity-check matriz iff G is a generator matriz for the code C.

For example, a linear code C = {000,111} has a generator matrix [111]. The dual of this
code is: C* = {000,110,011,101}. The parity check matrix of C is:

0 11
1 10

14



Suppose G is a generator matrix of an (n, k) — code C with k linearly independent columns.
Then by applying suitable row operations on G, the matrix G becomes equivalent to G* = [Ij, :
B], where [} is the identity matrix of order k, and B is a matrix of order k x (n — k). Of
course, rows of G* are linearly independent and hence G* is a generator matrix of the code C.
This generator matrix is called canonical generator matrix of the code C. The canonical
parity check matrix is given by: H* = [-B? : I,,_4]. Two (n,k) — codes C and C’ over the
same field F are said to be equivalent codes, if there exist a bijection from ¥ from C to C’

such that

\Il(cla €2y - 7Cn) = (01160-(1), Q2C5(2), """ aanca(n))7 (15)
where oy, ..., a, €F\{0} and o is a permutation on the set {1,2,--- ,n}.

Theorem 3 [27, 4.2.18] Let C be an (n,k) — code with minimum distance d, then d is equal
to the minimum number of linearly independent columns in a parity check matrix of the code C

and hence, d(C) <n —k+ 1.

1.3.3 Cyclic codes

In this subsection, we discuss cyclic codes which are in fact linear codes. These codes are of
great interest due to their strong algebraic structure.

A cyclic shift on F" is a @ map from F" to F" defined as: 0 (a1aza3 - - - ay) = (apaiag -+ - an_1).
It is easy to prove that cyclic shift is a linear operator. An (n, k) — code C is said to be cyclic
code, if 9(C) C C.

The code C = {000,110,011,101} is a cyclic code. If G is a generator matrix of an (n, k) —
code C, then C is cyclic iff 9 ({Ri}le) C C. If we denote the set of all polynomials of degree
less than n over F by P,, then P, is an n —dimensional vector space over the field F. By linear

algebra, F™ is isomorphic to the space P,. Now, consider the factor ring:

F [z]

@ —1) ={fo+ fia+ fao® + -+ fu_1a" 1 fus €F}, (1.6)

where « is the root of the polynomial ™ — 1. Replacing a by x, the above factor ring becomes

equal to the set of all polynomials of degree less than n and hence isomorphic to P,,. Of course,

Flzx]
@1

is a ring. The operation of multiplication in P, is defined as: f(x)*g(z) = f(z)g(z)(mod
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(™ —1)). The cyclic shift of an element ¢ of C is equal to x *¢(x) in the ring P,,. Thus, a linear

code over the field F is cyclic iff z * ¢(z) € C for all ¢(z) € C.
Theorem 4 [27, 4.3.5]A linear code C of length n is cyclic iff C is an ideal of the ring Py,

Theorem 5 [27, 4.3.6/Let C be any non-zero ideal in a ring Flz|,, then
(a) there exists a unique monic polynomial g(x) of least degree in C,
(b) g(x) divides z™ — 1 in Flz],
(c) for all p(x) € C, g(x) divides p(z) in Flx],
(d) C = (g(x))-
Conversely, assume that C is an ideal generated by a(x) € Flz],. Then a(x) is a least degree

polynomial in C iff a(x) divides ™ — 1 in Flx].

Hence, by computing all the irreducible factors of the polynomial z"™ — 1, we can find out
all possible cyclic codes of length n. For example, if we take n = 3, then the only non trivial
cyclic codes over Fy are the ideals generated by = — 1 and 22 4+ x + 1.

Generator polynomial

Let C be a non-zero ideal in F[z],. Let g(z) be the unique monic polynomial of smallest

n*

degree in C. Then g(x) is said to be a generator polynomial of the cyclic code C.

Theorem 6 [27, 4.3.11] Let C CFlx],, be any cyclic code with generator polynomial
g(x) = go + g1z + gox® + ... + g,x", where g, = 1. (1.7)

Then the dimension of the code C is n — r. Moreover, the (n — r) X n matriz

g 91 92 - 9-1 g 0 - 0
0 9 o1 92 - g-1 g -+ O

G — " ' . 9 (]‘8)
100 0 90 5 92 Ir

is a generator matriz of C.
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A code C in F[x], generated by the polynomial g(x) such that a polynomial h(x) in F[z]
satisfies the relation z" — 1 = g(x)h(z). Then h(z) is called a check polynomial of the code C.
Since, ™ — 1 is monic, therefore check polynomial is also monic and unique. It is easy to prove
that:

C = {c(z) € Flz],|c(z) * h(z) = 0}. (1.9)

The check polynomial h(z) is also an irreducible divisor of the polynomial ™ — 1, and hence
h(z) also generated a cyclic code. Suppose h(z) = hg + hiz + hox? + ... + hyz", the reciprocal
of h(x) is given as:

h(x) = hy, + hp_13 + hg_oz* 7 + . + hoa" (1.10)

This polynomial h(z) is an irreducible divisor of the polynomial ™ — 1 and hence generator

of a cyclic code F[X],, of dimension (n — k) X n.

Theorem 7 [27, 4.3.14] Let h(x) be the check polynomial of a cyclic code C. The cyclic code

generated by h(z) is equal to the dual of the code C. Consequently, the matrix

(he ey ... . hg 0 0 0 O]
0 hy .. o hi hy O .. 0

(1.11)
(0 . 0 g Bk o e o]

is a parity check matriz for the code C.

1.3.4 Bose-Chaudhuri-Hocquenghem codes (BCH codes)

In this subsection we discuss a very important kind of cyclic code named as BCH codes. First
we discuss some properties of finite fields. Every finite field has order power of some prime p.
Finite fields of order ¢ = p™ are denoted by F, or GF(q), where p is a prime number and m is
any positive integer. The set Fy denotes the set of all non zere elements of F, and is a cyclic
group of order p” — 1 under multiplication.

If p™ — 1 is divisible by any number n, then there is an element b in Fj whose order is n

that is o(b) = n, then b is called primitive nth root of unity in F,. If o(b) = p™ — 1, then b
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is called primitive element in F. For the finite field I there exists an irreducible polynomial
h(z) in Fy[z] of degree r, the quotient ring F,[z]/(h(z)) is a field of size ¢", denoted by F 4~ or
GF(q,r). The field Fyr is called an extension field of F, of degree r.

Let a € Fyr, then there exist unique monic polynomial of least degree g(z) € Fgy[z] such
that g(a) = 0. The g(x) is an irreducible and minimal polynomial of o over F,. If there exists
another polynomial h(z) in Fy[z] such that h(a) = 0 then g(z) | h(x), also degree of g(z) divides

r. If o is primitive element in Fyr then degree of g(z) is equal to r.

Theorem 8 [27/Let o be any element in Fyr. Then o, ad, oﬂ2, ... have the same minimal poly-

nomial over the field F,.
Now, we explain in detail the construction of BCH codes over the field IF,.

Definition 9 The set of the powers of « is called cyclotomic coset. The smallest entries of the

cyclotomic cosets are called coset representatives.

Consider the positive integers ¢, d, n, q, where 2 < d < n, n is relatively prime to ¢ and divides
q® — 1, where s is the least positive integer, such that ¢° = 1 (modn). Let § be a primitive nth
root of unity in Fgs and m; (x) is the minimal polynomial of B fori=c,e+1,...,c+d—2.
Then the generator polynomial of n length BCH code of designed distance d is obtained by

taking lecm of all minimal polynomials.

Definition 10 A BCH code over a finite field F, of block length n and designed distance d is

a cyclic code generated by a generating polynomial

g(z) =lem{m;(z) : 1 <i<c+d—2} € Flz], (1.12)

th

whose root set contains d — 1 distinct elements 3, 82, ..., 37972, where B is a primitive n'" root

of unity and c is some integer. For n = q°* — 1, the BCH code is called primitive BCH code

and for ¢ =1, it is known as narrow sense BCH code.

1.3.5 Decoding algorithms

The process of estimating correct transmitted vector from the received vector is called decoding.

In this section, we discuss decoding procedures of linear, cyclic and BCH codes. Decoding is
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done by the principle of Mazimal likelihood decoding, in which we have to find the codeword
which is nearest to the received vector. To explain decoding algorithms, we have to introduce
the concept of error vector. Let C be an (n,k,d)-code over the field F, and we transmit a
codeword @ but received word is b. Then the error vector is given by e =b—a. So, b=a+e
implies that d (5, a) =w (5 — 6) = w (e) . To decode the vector b, we search a codeword ¢ such

that d (5, E) =w (5 - 6) is minimal.

Standard Array Decoding

Standard array decoding is explained with the help of cosets and coset leaders.
Definition 11 (Cosets and Coset Leaders) Let C be an (n, k)-code over IFy,.

1. A coset of C is a coset of subgroup of the group (Fg,—i-). It is a set of the form
a+C={a+c:ceC} forall a€ly.

2. A wvector of smallest weight in the coset is known as a coset leader.

The cosets of C form a partition of F}y and all cosets are of the same size. So, for (n, k)-code

k cosets.

C over F, every coset of C has q" vectors and C contains ¢~
Standard Array Decoding states the vector b is decoded as the codeword @ if and only if the
coset containing b has a coset leader b — ¢. Thus, the error vector is equal to the coset leader.
Hence, we follow the following two steps for decoding b:
1. Determine a coset leader e of the coset containing b.
2. Decode b as b — e.

k¥ rows and p* columns.

It can be done by using a standard array, which is a table having ¢"~
The first row has all codewords and the first column has coset leaders of each coset. The element
in the ith row and jth column is the sum of coset leader of position (ith row, 1st column) and
the codeword of position (1st row, jth column). So, by using a standard array, vector b is

decoded as the codeword that is in the first row and in the same column in which b occurs.

Syndrome decoding

Standard array decoding is used only when the length of code is small. For large length codes,

size of the array becomes very large so the Syndrome decoding method is used. Given the
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coset leaders, the vector b is decoded just by finding the row (coset) in which b occurs. There
is no need to determine exact position of b in the array. So if we find the coset leader of
coset containing b, then there is no need of standard array. This is the basic idea of syndrome

decoding.

Definition 12 Let C be an (n, k,d)-code over Fy and H be a parity check matriz of C. Then for
b €Fy, the syndrome of b (with respect to H ) is defined as syn (5) = S(b) =bHT. IfC is a cyclic

code with generator polynomial g (z), then the syndrome is given by S(b) = remg(ﬁ)(a:”_kg(a:)).

In this method, we use a syndrome table instead of standard array. For each coset, we find
a coset leader and also its syndrome. Vector b is decoded through following steps:

1. Compute the syndrome S(b) of received vector b.

2. Find a coset leader e in the table such that S(b) = S(e).

3. Decode b as b — e.

BCH codes over finite rings

Here we are given a very brief note on the construction of BCH codes over finite rings. The
construction of BCH codes over finite rings was given by Priti Shankar in [41]. He constructed
the codes over Z,m by the method which is same as the construction of codes over F,. For
this purpose, extension of Galois rings is used, where few conditions of extension of Galois
field are lost. To explain important properties of Galois ring extension, let Z,» be the ring of
polynomial and h(z) be the irreducible polynomial of degree r over Z,» and also over GF(p)
: Then R = GR(p™,r) = Zpym[x]/ < h(z) > is called Galois extension of Z,= of dimension r.
For certain value of n, 2™ — 1 can be written as into linear factors over GR(p™,r) ; where n is
such that ged(n,p™) = ged(n,p) = 1. With the help of these factors we determine the cyclic
and BCH codes over Z,m. Zero divisors of GR(p™,r) form an Abelian group under addition
having elements of degree r — 1 or less. The coefficients of these polynomials are zero divisors in
Zpm. It means GR(p™,r) is a local ring. The Units of GR(p™, r) are those polynomials having
atleast one coefficient unit in Z,m. The units of GR(p™,r) form a multiplicative group and it
is represented by R*. It is an Abelian group and can be written as a direct product of cyclic
groups. We are looking for the maximal cyclic subgroup G,,, whose elements are the zeros of

" — 1.

20



The following results are important for construction of G,, and BCH codes.

Theorem 13 [41, Theorem 2] There is unique G,, of R* of order relatively prime to p. This

cyclic subgroup has order p" — 1.

Theorem 14 [/1, Theorem 3] Let o generates the cyclic subgroup having order n in R*, such

that ged(n,p) = 1. Then the polynomial x™ — 1 can be factorized as
" — 1= (2" —a)(z" — a?)...(2" — a"),

iff Rp(h(z)) has order n in K* , which is the multiplicative subgroup of K = GF(p") .

Theorem 15 [41, Theorem 4] Let @ = Ry,(a) generate a subgroup which is cyclic of order n

in K*. Then o generate a cyclic subgroup of order n.d in R*, where d > 1, and G, =< d > .

Lemma 16 [3, Lemma 3.1] Let be o primitive element of Gy,. Then the differences ol — a!?

are units in R if 0 <ly #£ls <n—1.

On the basis of above results, the generator polynomial g(z) of cyclic BCH code of length

n in GR(p™,r) can be calculated as

g(x) = lem(Mi(z), Ma(x), ..., Ma(x)),

where M;(z);1 < i < 2t are the minimal polynomials of a’*% over Z,m; for some b > 0
and ¢t > 1. The polynomials M;(x) over GR(p™,r) are calculated by the method similar to the
calculation of minimal polynomial over the Galois fields.

BCH codes over finite rings are decoded by Berlekamp-Massey algorithm. It is a well known

algorithm and very lengthy, hence we are not discussing here.
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Chapter 2

Cyclic codes as ideals in Fy|z; aNy)p,

Folz]an, Falz; $Nolp, and Faolz; 3Nola,

Communication channels are affected by disturbances that cause transmission errors to cluster
into bursts. Random error correcting codes are not efficient for correcting burst errors and
therefore, it is required to design specialized codes which can correct burst errors.

In this chapter, construction technique of cyclic codes is improved by using monoid rings
Fa[z;aNg] and Fa[z; $No| instead of polynomial ring Fa[z]. The new scheme is formulated in
such a way, that, for an n length binary cyclic code C,, generated by r degree polynomial g(x®)
in Fa[z;aNy] three different binary cyclic codes Cup, Cpy and Cupy, of length an, bn and abn
are found. It is proved that these new binary cyclic codes Cyun, Cpn and Cup, have generating
polynomials g(z) in Fa[z] of degree ar, g(x?) in Fa[z; 7No] of degree br and g(:c%) in Faz; 3N
of degree abr respectively. It is shown that binary cyclic codes Cqp,, Cpy, and Cypy, are interleaved
codes of depths a,b, and ab respectively. We have also established that if an initial code C,
is capable of correcting ¢ errors, then the interleaved codes Cg,, Cpn and Cgup, are capable of
correcting ¢ bursts of length a, b and ab or less. If C,, is capable of correcting all bursts of length
[ or less, then the interleaved codes Cgp, Cp, and Cgup, are capable of correcting all bursts of
length al, bl and abl or less.

Throughout this work we use the following totally ordered monoids which are

—_

a a 2a 1 2
CLNO = {O;CZ, 2(1, },ZNO = {O) 67 ?7 } and ENO = {07 g’ g’ }’
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Fa[z;aNp] F2[m§%NO]
((@)"=1)7 (25 )bn_1)

where a and b are integers satisfying a,b > 1 with b = a+1. The factor rings

and ((]FQ%[)vZNo}l) are denoted by Fa[z;aNoln,Fo[z; 4Noly, and Fa[z; $Nolan, where ((z)" —
xT abn
1), ((z)™ — 1) and ((z? )ab" — 1) are respectively the principal ideals in the monoid rings

Fa[z; aNo|,Fa[z; 4No] and Fa[z; $No]. The arbitrary elements

f@Y) = fo+ fal@®) + faa(@®)? 4+ -+ fan(z*)" in Fo[z; aNo),
F@h) = Jo+ fy(@h) + fag (@¥)? + -+ Fen(eh)" in Fafa; TNo),
and f(z0) = fo+ f1(@h)+ fou(@h)? 4+ fr,(20)" in Fg[:p;%No]

are known as (generalized) polynomials.

2.1 Cyclic codes as ideals in Fy[z;aNy),

A linear code C of length n is a subspace of the vector space of all n—tuples over the binary
field Fa. A linear code C over Fy is a cyclic code, if v = (v, v1,- -+ ,vp—1) € C, then every cyclic
shift v = (v,_1,v0, - ,Un_2) € C, where v; €Fy and 0 < i < n — 1.

Andrade and Shah has constructed cyclic codes over a local finite commutative ring R,
through the monoid rings R[z; 3Z>0], R[z; $Z>0] and R[z; 55Z>0] in [4], [34] and [35] respec-
tively. However in [33] the cyclic codes of certain types are discussed corresponding to the
ascending chain of monoid rings. Due to the fact that Fa[z] CFa[z; $Ng] mentioned in [4], [39],
[38], [37], [36], [34] and [35], certain cyclic codes are discussed in such a way that the gener-

Fafe] g FaleidNo]

¢ ] ials of cyclic codes i d
ator polynomials ol cyclic codes In =y an ((x%)bn—l)

Fa[z] €Fa[x; $Ng], this posed a hurdle to construct cyclic codes in factor ring

have a relationship. Whereas since

Fs [2;2 No]
((wb)n—1)"
ever Fa[z; aNg| CFa[z; 7 No|, motivates us to construct cyclic codes in Fa[z; aNoJ,. A generalized

How-

polynomial

f(xa) = fO + fa(xa) + f2a(xa)2 Tt fan(l'a)na (2'1)

in Fo[z; aNg] of degree n has degree an in Fa[z] and is known as the polynomial in indeter-

minate z. If f(z%) €F3[z;aNp| is a monic generalized polynomial of degree n then the factor

ring Ff}fﬁ?f] is the ring of residue classes of generalized polynomials in Fy[z; aNg] modulo the
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principal ideal (f(z%)). Thus, f(z%) = (®)™ — 1 gives the factor ring

Fa[z; aNo]
((z*)" —1)

= {co+ co + cq0® + ... + ca(n_l)a”_l 1 €05 Cay -+ Can—1) € F2}, (2.2)

where a denotes the coset x® + ((z*)™ — 1). Furthermore, f(a) = 0, when « satisfies the
relation o™ — 1 = 0.

By writing % in place of «, the ring % becomes Fa[z;aNy], in which the relation
(z*)™ = 1 holds. In fact, Fa[x; aNp], is an algebra over the field Fo. The multiplication * in
the ring Fa[z; aNp],, is modulo ideal ((z®)™ — 1). That is, for ¢(z®) in Fa[z; aNp|,, the product

(z%) % c(z) is given by

(%) *c(z?) = (2%) *(co + ca(z?) + cza(xa)2 4.+ ca(n,l)(a:“)”*l) (2.3)

Ca(n—1) + Co(ﬁa) + Ca(l,a)Z +ot Ca(n—2) (ma)nfl'

In the following results a method of obtaining the generalized generator polynomial, which
generates a principal ideal of the factor ring Fa[z; aNg], is discussed.

The following Theorem shift [27, Theorem 4.3.5] to the monoid ring Fa[z; aNy].

Theorem 17 A subset C,, of Fa|x;aNol, is an n length binary cyclic code if and only if Cy, is

an ideal in the ring Fa[z; aNol,.

Proof. Assume that C, is an ideal in Fa[z;aNp],. Then C, can also be considered as a
subspace of Fo—space F5. Thus, it is also closed under multiplication by any ring element, in
particular under multiplication by z®. Hence C, is a cyclic code. Conversely, if C, is a cyclic
code, then C, is a linear code over F5. Hence, for all f(z%), g(z%) € C,, and 8 €F, it follows that
f(x®) —g(z*) € Cp, and Sf(x®) € Cy. Further, since C, is cyclic, it follows that z® x f(z%) € Cp,
for all f(z*) € Cy,. Thus, for every r(z%) €Fa[x;aNo],, it follows that r(z?) x f(x®) € Cp, and
therefore, C,, is an ideal in the ring Fo[z; aNg],. =

The following Theorem converts [27, Theorem 4.3.6] for a monoid ring Fa[z; aNp].
Theorem 18 Let C,, be a nonzero ideal in the ring Fa[x;aNgl,. Then following hold.

1. There exists a unique monic generalized polynomial g(x®) of least degree in Cp,
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2. g(z%) divides (x*)™ — 1 in Fa[z;aNy],

3. For all ¢(z®) € Cp, it follows that g(z*) divides c(z®) in Faz;aNp], and

Conversely, if Cy, is the ideal generated by p(z®) €Falx;aNol,, then p(x®) is a generalized
polynomial of least degree in Cy, if and only if p(z®) divides (x®)™ — 1 in Fa[x; aNp].

Proof. Proof is analogous to [27, Theorem 4.3.6]. m

Next result for generator matrix is analogous to Theorem [27, Theorem 4.3.11].

Theorem 19 Let C,, CFs[x;aNgl,, be a binary cyclic code with generator polynomial

g(xa) =go+ ga(l'a) + gZa(xa)2 + "-gar(ﬂja)ra Gar = 1. (24)

Then C,, is of dimension k(= mn —r), which has a generator matriz of order k x n given by

9o Ga 924 - Gar 0 o --- 0
G’r‘ = O g() g.(l e .. g(l(’!‘—l) Gar 0 - O (25)
i 0 0 . 0 g0 Ja e e Gar ]

The following Corollary is a particular case of [27, Theorem 4.3.11].

Corollary 20 Let Coyy CFa[2]an be a binary cyclic code with generator polynomial
9(x) = go + g1 + g2z + ... + gy, gp = 1. (2.6)

Then Cap is of dimension ak = a(n — r), which has a generator matrixz of order ak x an given
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g0 0 0 ¢ O 0 9 g 0 0 0
0 g O 0 a1 0 ¢ g 0 0
Ga’r = .
0 - 0 g 0O - 0 g 0O - 0 g g
(2.7)

The sequence 0---0 between g;’s in Gg has length a — 1.

Definition 21 Let g(x®) be a generator generalized polynomial of a binary cyclic code C,, C Fa[x; aNp],,.
Then the k degree generalized polynomial h(z®) of Falx;aNy], such that (x*)" —1 = g(x*)h(x?),

is called the check generalized polynomial of C,,.

Theorem 22 Let C,, C Fa[x;aNyl, be a binary cyclic code with check generalized polynomial

h(z®). Then c(z®) € Cp, if and only if c(z®) * h(x®) = 0, where c(z*) € F3]x; aNply,.

n

Proof. Let g(z®) be the generator generalized polynomial of C,,. Then g(x®*)h(z%) = (z*)"—
1 and g(z%) * h(z®) = 0. If ¢(x®) € C,, then by Theorem 18, ¢(z®) = g(xz*)g(z®) for some g(z*)
in Fa[z;aNy),, and so

c(x?) x h(z®) = q(z“)g(2") * h(z?) = 0.

Conversely, let ¢(z%) €Fa[z; aNp], such that c(x®) % h(z®) = 0. This implies

and

and hence c¢(z) € C,,. m

For binary cyclic (n, k) code C,, the following Theorem gives its parity check matrix.
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Theorem 23 Let C,, be a binary cyclic (n,k) code with check generalized polynomial
h(z®) = ho + ha(z) + haa(x®)? + ... + hage—1) (@)1 + har(z)*, Ry, = 1.

Then the (n — k) X n matrixz given by:

hat hage—1) hae—z) - v hg 0 0 - 0
0 hy a1y - cei hy hg O <o 0
H, - k (k 1) 0
|0 0 hak  hak—1) o ho |

is a parity check matriz of Cy,.

Proof. Similar to [27, Theorem 4.3.14]. m

The following Corollary is the particular case of [27, Theorem 4.3.14].

Corollary 24 Let Cuy be a binary cyclic (an,ak) code with check polynomial
h(ZC) =hg+hiz*+ ...+ hkxak S Fg[x], hy =1

Then the (an — ak) x an matrix

(e 0 - 0 hpyq O 0 hys ho 0

0 hy 0 -+ 0  hgq O 0 hps ho 0
Hak—

0 0 hp O 0 gy O-- 0 hpo

(2.8)

(2.9)

(2.10)

ho |
(2.11)

is a parity check matrix for Cqn and the sequence 0---0 between h;’s in Hyx has length a — 1.

Example 25 Let g(2?) = 1+ (22) + (2?)? €Fs[x;2Ng] be the generalized polynomial with

degree r = 2 and g(x?) divides (2)3 — 1. Clearly g(x?) generates a binary cyclic (3,1) code in

Fa[z; 2Ng|3 which has a generator matrix

Go=[11 1]
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In Fy[z], the polynomial g(x?) = g(x) = 1+ 22 + z* has degree 4(= 2r) and divides x5 — 1. So,
g(x) generates a binary cyclic (6,2) code in Fa[z]g which has a generator matriz
101010
Gy= (2.13)
01 0101
Since (22)3 — 1 = (1 + 22 + (22)?)(1 + (2?)), it follows that h(x?) = 1+ (x2) is the parity check
generalized polynomial of (3,1) code in Fa[x;2Ny|3. The parity check matriz is
1 10
H, = (2.14)
0 1 1
In Fylz], (22)% — 1 becomes 2% — 1 = (1 + 2? + 2*)(1 + 2?). Hence h(z) = 1 + 22 is the parity

check polynomial of (6,2) code in F3lx]e¢ and the corresponding parity check matriz is

(10100 0]
010100
Hy — (2.15)
0010710
(00010 1|

2.2 Cyclic codes as ideals in Fy[z; Ny,

Binary cyclic codes of length n are ideals in the factor ring Fa[z],,. However, the fact Fa[z] CFa[z; $No]
supports the construction of binary cyclic codes in the factor ring Fa[z; %NO]bn' Similarly,
Fa[z; aNg] CF2[z; 7No] provides a justification for constructing binary cyclic codes in Fa[z; 7 No]pn
by using an n length cyclic code C,, obtained from Fslz;aNgl,. Let f(z%) = fo + fa(z%) +
foa(2¥)? 4+ -+ + fan(x®)™ €Fsfz;aNg] be a generalized polynomial of degree n, then f(z%)
has degree bn in the monoid ring Fa[z; $No] and is represented by f(gv%) = fo+ f%(m%)b +

F [2; 3 No]

fQ%(m%)Qb + -+ fn%(x%)b”. If f(x%) is monic, then the factor ring o) is the ring of

residue classes of generalized polynomials in Fa[z; $No] modulo ideal (f (z%)). Thus, if we take
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={co + C%ﬁ + 02%52 + ...+ C%(n_l),@lm_l 100, Cay ey Can ) e Fy}, (2.16)

where 8 denotes the coset x5 4+ ((x5) —1). Also, f(8) = 0, when J satisfies the relation

g —1=0.

Fa[z; 3 No]
((@)om—1)
(z#)"™ =1 holds. The factor ring Fa[z; #No]s, is algebra over the field Fo. The multiplication

By writing ¢ in place of 3, the ring becomes Fa[z; $Nojp, in which the relation

* in the ring Fa[z; $Nolp, is defined as, for c(z?) in Falz; 7NoJpn the product (2%) % c(z?) is

given by:
(@h) we(@h) = (@) (co+ca(@h) + o (@h) ot caguny(@h)" D)
= canor) Fco(@h) +ca(@V)? + o+ ca(pg)(@b)"

Following results give a method of obtaining the generator generalized polynomial, which

generates a principal ideal of the factor ring Fa[z; £ NoJpy.

Theorem 26 A subset Cp,, in Faolx; $Nolp, s a binary cyclic code if and only if Cy, is an ideal
b

in the ring Falx; $Noly,.

Proof. Let Cp, be an ideal in Fa[z; %Ng]bn. Then Cp, can be considered as a vector subspace
of Fa—space F§*. Since Cp, is closed under multiplication defined in Fa[x; #NoJpn, that is T *
c(a:%) € Cpy, for all c(x%) € Cpy, and zv €Fa[x; $Nojpn, therefore Cy, is a cyclic code. Conversely,
suppose that Cp, is a cyclic code, then Cp, is a linear code over Fy. For all c(x%), d(x%) € Cyy,
and v €Fs, ¢(zt) — d(zt) € Cpp and ye(z5) € Cyy. Further, Gy, is cyclic, so zb x ¢(z3) € Cy
for all ¢(x%) € Cpp. This implies that r(z5) xc(z?) € Cyy, for every r(zt) eFylz; #Nopn. Hence,
Cpy, is an ideal in the ring Fo[z; $Nolp,. m

The following Theorem extends Theorem 18 for the monoid ring Fa[z; §No.

Theorem 27 Let Cyy, be a nonzero ideal in the ring Fo[x; $Nolpn. Then the following holds.
1. There exists a unique monic generalized polynomial g(x%) of least degree in Cyy,,
2. g(z%) dwides (x5)™ — 1 in Fylx; #No],
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3. For all c(z?) € Cyy,, it follows that g(x?) divides c(x?) in Folz; 7No], and

4. Con = (g(h)).
Conversely, if Cyy, is the ideal generated by p(m%) € Fy[z; $Nolon, then p($%) is a generalized

polynomial of least degree in Cy, if and only if p(x?) divides (x5)"™ — 1 in Fyla; #No.

Similar to [27, Theorem 4.3.11], the following Theorem gives the generator matrix of the
binary cyclic code Cpy,.
Theorem 28 Let Cy, CFa[x; Noly, be a binary cyclic code with generator polynomial

br (2.17)

) = g0+ ge (@)’ + gaa (28)% + - + ga(28), gpa =1

Slls]

g(z

Then Cpy, is of dimension bk = b(n — r), which has a generator matriz of order bk x bn given

by:
go O 0 g2 0 0 goa gre 0 0 0
Gy — 0 go O 0 ge 0 0 goa gra 0 0
| O 0 g 0 0 g2 O 0 goe gra |
(2.18)

The sequence 0-- -0 between g;’s in Gy, has length b — 1.

Corollary 29 [Theorem 19] Let Cy, CFa[x; $Nolp, be a binary cyclic code with generator poly-

nomial
B)or =1 (2.19)

g(xv) = go +9%(x%)b +92%(x%)2b + o+ gra(z

; gr%

<o

If b =1, then g(zt) €Fylx;aNg| and generates a binary cyclic (n, k) code C, which has a k x n

generator matrix

9go Ya Y92a - ce Yar 0 0 0
0 _ 0 0
G, = 90 g'a Ya(r—1) Yar (220)
L0 0 - 0 g a e Gar |
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Definition 30 The generalized polynomial h(x%), such that (x%)" —1 = g(x%)h(z¥), is called
the check generalized polynomial of binary cyclic code Cop CFalx; $No]on, where g(z?) is the

generator generalized polynomial of Cy,,.

Analogous to Theorem 22, the following Theorem is obtained for the binary cyclic code Cp,

in FQ[.CI?; %NO]bn-

Theorem 31 Let Cy, be a bn length binary cyclic code in Fs|x; %NO]Zm with check generalized
polynomial h(xs). Then a(xt) € Cpp, where a(xs) € Fylx; 2Nopn, if and only ifa(z®)xh(z?) =
0.

Analogous to Theorem 23, the following Theorem is obtained for binary cyclic code Cp, in

Fa[z; $Nolpn-

Theorem 32 Let Cy,, be a binary cyclic (bn, bk) code with check generalized polynomial
(@) = ho+ha(@h)’ + - + hay(ah)™, hay =1. (2.21)

Then the b(n — k) x bn matriz given by:

hay 0 0 hagy ho 0 0
0 ha 0 0 ha_ h 0 0
Hy, — | bk @ (k—1) 0
0 -0 h%k 0 0 h%(k—l) o ho

(2.22)

is a parity check matrix for Cy, and the sequence 0---0 in Hy, has length b — 1.

Corollary 33 [Theorem 23] Let Cy, be a binary cyclic (bn,bk) code with check generalized
polynomzial

W(xh) = ho+ha(x8)" + - 4 hap(x)", hay = 1. (2.23)
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If b= 1, then (n — k) x n matriz

hak  hak-1) hak—2) - o+ hg 0 0 .- 0
0 hy, Ryh1) - i hy hg O - 0
Hy, = ok Teley ’ (2.24)
|0 0 0 hak a1 - ho |

1 a parity check matriz of the binary cyclic code C,.

Now shift the generalized polynomial f(x%) of arbitrary degree n in Falz; #No] to a gener-

alized polynomial f(x%) in Fo[z; $No] as

S

F@0) = fo+ fr(@h)®+ fa(@0)2 4 -+ fa(2h)™, (2.25)
Thus the degree of an arbitrary generalized polynomial in Fa[z; $No] has exceeds from n to
an in Fao[z; %NO]. Consequently, the degree of generator generalized polynomial g((:c%)) also
abn

exceeds from ' = br to " = abr, where g(x%) divides (.’E%)

(abn, abk) code Cqpy in Falz; $No]abn-

— 1 and generates a binary cyclic

Thus from the generator and parity check matrices of the code Cp,, we obtain the generator

and parity check matrices of the code Cypy,.

Theorem 34 Let Cypy, CFo[x; %Ng]abn be a binary cyclic code with generator polynomial

o=

g((@?)) = go+ g1 (z0)™ + g2 (a)? + -+ g7 (27)"", g7 =1 (2.26)

Then Capy, s of dimension abk = ab(n — ), which has a generator matriz of order abk x abn

given by
[ go O 0 91 0 0 g2 gr 0 0 0 |
Gy — 0 go O 0 g1 O 0 g2 gr 0 0
i 0 0 go O 0 g% 0 0 g% g: |
(2.27)
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where the sequence 0---0 between g;’s in G has length ab — 1.

Theorem 35 Let Cyp, be a binary cyclic (abn, abk) code with check generalized polynomial

h(zb) = ho + ha(z8)™ + - + h%(x%)“bk, he = 1. (2.28)

[ hi 0 0 huy ho 0 0 |
b
0 he O 0 hu ho 0 0
Hy = b = (2.29)
0O --- 0 h% 0 0 huy - o h
L b i

is a parity check matrix for Cupy, and the sequence 0-- -0 between h;’s in Hypy has length ab— 1.

wlr

Example 36 Let g(z3) =1+ (:1%)3 + (x§)6 be a generator generalized polynomial of degree
br = 6 and divides (q:%)g — 1, then g(a;%) generates a binary cyclic (9,3) code with generator

matrix

100100100
Ge=|0 10010010 (2.30)
001001001

Whereas, in Fa[z; $No], g(:v%) becomes g((x%)) =1+ (.CC%)G + (:zc%)12 and has degree 12 and
divides (m%)ls — 1. Thus, in generator generalized polynomial g(x%) every exponent of the

indeterminate 3is a multiple of 2, and it generates a cyclic (18,6) code having generator

matrix ) _
1 0000OO0OT1TO0OO0OO0OO0ODO0OT1TO0OO0WO0O00O0
01 00 0 O0OO0OT1TO0ODO0ODO0DDO0OO0DT1TUO0UOQW0TOQO0OTO0
O01 O0O0OO0OO0OO0OT1TO0OO0OO0OD0ODO0ODI1TO0W90d0
G2 = (2.31)
O 001 0O0O0OO0OO0OD1TO0OO0DDO0DDO0ODO0ODT1TUOO0
00 001 O0OO0OO0ODO0DO0DT1TO0OO0OO0ODO0OWQ0ODTI1TO0
i OO0 0 O0OO0OT1TO0OO0OO0OO0ODO0DT1TO0O™D90DDO0OOQ0OTQ960O:1 ]
Since, (23)9—1 = (14(23)3+(23)5) (1+(25)3) and (23)8-1 = (1+(23)5+(25)'2) (1+(23)°), it
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follows that the parity check generalized polynomials h(a:%)zl—i-(x%)?’ andh((m%))zle(:z:%)G
give the following parity check matrices

(10010000 0]
01 0010O0O0TO0

Hy — 0010O01O0O0O0 and
0001 0O0O1O0TO0
000 010O0T1O0
(000001001,
(1 0000010000000000 0]
01 000O0OO0OC1TOOOOOOOOOO
0010000010000000O00O00 (2.32)
0 00100O0OO0OO0OT1O0O0OO0OSO0OO0OO0OO0OO®O
000010O0OO0OO0OO0O1TO0OGO0OO0OOOO0OO

o - 0000O01O0O0OO0OO0OO0OTI1IO0OO0OO0OOO0OO
0 000O0O0O010O0O0OO0OO0OT1TO0O0OO0OO0OO®O
0 000O0O0OO0O1O0OO0OO0OOO0OT1O0O0OQO0OO
0000O0O0OO0OO0O1O0O0OO0OO0OO0OT1IO0TQO0CO
0 000O0OO0O0O0OO0OO0O1O0O0OO0OO0OO0OT1TTQO0OF®
000O0O0O0OO0OO0ODO0OO0O1IOGOOOOT1TO
_000000000001000001_

2.3 Relationship among cyclic codes C,,, C,,, Cy, and Cy,

In this section, we demonstrate the association between the binary cyclic codes C,,, Cap, Cpy, and
Capn by two ways:

(1) Using technique of interleaving.

(2) Through generator and parity check matrices of binary cyclic codes Cp, Capn, Cpn, and

Calm .
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2.3.1 Relationship of C,,,C,,, Cy, and C,;, by interleaving

For a given (n, k) cyclic code, a (8n, Bk) cyclic code can be constructed by interleaving. This
is done by simply arranging 8 code vectors in the original code into S rows of a rectangular
array and then transmitting them column by column. In this way a codeword of Sn digits is
obtained whose two consecutive bits are now separated by 8 — 1 positions. The parameter [ is

called interleaving degree.

Proposition 37 The codes Cgy, Cpn and Cupy, are interleaved codes of degree a, b and ab re-

spectively, where the code C, is the base code.

Proof. Take a code vectors from the base code C,, and arrange them into a rows of an a x n
array. Then by transmitting this code array column by column in serial manner we get the
binary cyclic code Cqy,. Similarly, the binary cyclic code Cy,, is obtained by taking b code vectors
from the base code C,, arranging them into b rows of an b X n array and then transmitting it
column by column in serial manner. In this way codewords of an and bn digits are obtained
whose two consecutive bits are now separated by a — 1 and b — 1 positions respectively. Now,
by arranging ab code vectors from the code C, and arranging them into ab rows of an ab x n
array and then transmitting it column by column, the binary cyclic code Cqupy, is obtained. This
gives codewords of abn digits whose two consecutive bits are separated by ab — 1 positions. =

Hence, the codes Cqup, Cpn and Cgupp are interleaved codes of degree a, b and ab respectively.

Example 38 In Examples 25 and 36, the (3,1) code C3 acts as a base code. The code Cg is

obtained by arranging 2 codewords 111 and 000 in C3 into 2 rows of an 2 X 3 array, that is:

111
(2.33)

000

and then by transmitting this code array column by column we get 101010, which is a codeword

in Cg. Similarly, by arranging 3 and 6 codewords in Cs into 3 and 6 rows of an 3 x 3 and 6 x 3
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arrays, that is:

0 00
111
1 11
0 00
0 0 0 and . (2.34)
0 0O
1 11
0 00
1 11

Then transmitting them column by column we get codewords 101101101 and 010001010001010001

m Cg and 618.

2.3.2 Relationship of C,,,C,,, Cy, and C},, by generator and parity check ma-

trices

Now, we explain the relationship between the codes C,,, Can, Cpn, and Cgp,, through their generator
and parity check matrices, using the notion of direct sum of codes.

The following definition of direct sum of the codes is taken from [17].

Definition 39 (a) Let C; be an (n;, k;) code, where i € {1,2}, both having symbols from the

same Galois field Fy. Then their direct sum

C,®C, ={(c1,c2) [ 1 € Cr 0 € Ca} (2.35)

is a (n1 + na2, k1 + ko) code.
(b) Fori € {1,2}, if C; has generator matriz G; and parity check matriz H;, then

Gl 0 H1 0
G119 Gy = and H1 ® Hy = , (2.36)

0 G2 0 H2
respectively are the generator and parity check matrices for the code C, ® C,.

The following result explains the relationship between the binary cyclic codes Cy, Can, Con

and Cgup, through their generator matrices.
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Theorem 40 Let G, Gy, Gy, and Gy, be the generator matrices corresponding to the gen-

erator generalized polynomials

g(z®) = 1+ @)+ + @), gla)y=1+2"+--- + 2,

ga?) = 1+ @)+ (@) and g((@h)?) = 14 (£5) 4o (),

of binary cyclic codes Cy,Can;,Chn and Capp in Fa[z;aNoln, Folz]an, Fa[r; $Nolpn, Falz; %NO]abn'
Then the following conditions hold.

1) Gar ~ @Gy,

2) Gy ~ G ® Gor ~ &G, and

3) Gapr ~ DGy ~ BIGy ® Ggp ~ BPG,.

Proof. As g(z%) = 14 (%) + -+ + ()" divides (z*)™ — 1 in Falx;aNo|, therefore the
generator matrix G, has order k X n, where k = n —r. In Fylz]| the generalized polynomial
g(x*) =g(x) =142+ -+ 2% and divides ™ — 1. Consequently, a generator matriz Gqy,

of order ak x an is obtained which after some suitable column operations becomes

(G, 0 0
0 G, 0--- 0
G ~ (1)
0
0 0 - G,

= = a(kxn)

This implies that Gor contains a blocks of G, at its main diagonal and hence G ~ @®{G,.
Similarly, g(zv) =1+ (x5) 4+ -+ (0¥ divides "™ — 1, which have generator matriz Gy, of
order bk x bn. On applying suitable column operations, blocks of Gqr and G, are obtained at

main diagonal of Gy,
Gy O
Gbr ~ (2)

0 G,
(a+1)(kxn)
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Putting the value of Gqr from (1) in (2) we get,

G, 0 0
0 G 0--- 0
Gbr ~ . ) . (3)
: 0 t. :
0 0 - G,
- = (a+1)(kxn)

This shows that Gy, contains b blocks of G, that is, Gy, ~ @Z{Gr, Finally, g((x%)“) =1+
(m%)“b +-F (x%)ab” divides %" — 1, which gives generator matriz Gqy,. of order abk x abn

which after suitable column operations gives

[ Gy 0 0 |
0 Gp 0--- O
Gabr ~ S . : (4)
0 0 - Gy
- - a(bkxbn)
Putting the value of Gy, from (2) and (3), we get
Gaor O o --- 0
o G 0 --- 0
Gabr  ~ 0 0 0
0 Gar
0O 0 0 - G» (5)
L ; d a(bkxbn)
G, O 0
0 G, 0
0 9
0 0 - G,
- < ab(kxn)

which shows Gup contains ab blocks of G, that is, Gapr ~ @‘beT. [

The following example illustrates Theorem 40.
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Example 41 Leta =2, b= 3 and r = 2. From Example 25 and Example 36 we get

10000O0O1O0OO0OO0OO0OO0OT1TO0OGO0OO0O®O0OO
010000O0O1O0O0OO0ODO0OO0O1TO0O0O0O0
Gu:OOlOOOOOlOOOOOlOOO (2.37)
000100O0OO0OO0O1O0O0OO0OO0OO0OT1ITO0TP®
00001O0O0OO0OO0OO0OT11TO0OO0OO0OO0OOT1Oo
| 00000100O0O0O0100000O0 1]
After some suitable column operations on G1o we have
(1001 0010000000000 0]
01001001O0O0O0OO0OO0OO0OO0OO0TO 0O
Gy ~ 0010010O01O0O0O0OO0OO0OO0OO0OTO 0O
0000000O0DO0O100100T100 (2.38)
0000O0OO0O0O0OO0OO0OO0O01TO0OO0O1O0O0T1TOQO0
| 000000O0O0OO0COOCTLTO0OO0OTO0O0 1]
~ G @ Gs
On applying suitable column operations on Gg, it gives
101010000
Geg ~ 01 0101O00O0O0
(2.39)
000O0O0OO0OT1T171
~ Gy @G
and similarly G4 becomes
Gy ~ 111000
000111 (2.40)

~ Go @ Ga.
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So,

G6 ~ G2@G2@G2 and

Gig ~ Go® Gy DGy Gy Go®Go.

(2.41)

Encoding: In the matrix G, the matrices Gy, G and G, exist as block matrices and

the generator generalized polynomial of the cyclic (abn, abk) code Cupp, can be used for encoding.

So, a message word u ngbk is encoded as uG ... Hence the code
Cabr = {uGabr U € ngk}.

On partitioning u as

u = (leb Ulxa - U1><lc)7

where u1xp Eng, Ulxa EF%": and ujxp € F’g , we get
Cabr ~ {u1xbGhr : U1xaGar * U1xkGr}-
Example 42 Leta =2, b=3 and r = 2, then u € FS is given by
u=[1100 1 1]
The row matriz uw has order 1 X 6. By partitioning the matrix u we get

u = [1 1 0lix3:[0 1Jix2:[1 Jix1]

= [ug:wug2:us] and

uGry =[Gy, : u2Gag, UG )]

= 110110110010101111

Thus, the message word u is encoded as the codeword uG1s.

(2.42)

(2.43)

(2.44)

(2.45)

(2.46)

(2.47)

For parity check matrix, Theorem 40 doesn’t hold, whereas it holds for the canonical parity

check matrix.

40



The generator and parity check matrices of a binary cyclic code Cp,, described above, are
not in canonical forms. In general, for a linear code, a generator matrix G is transformed into
canonical form by applying elementary row operations. But, in the case of a cyclic code, the
canonical form can be obtained by using the generator generalized polynomial and the division
algorithm in the Euclidean domain Fa[z; §No].

For any generalized polynomial f(z?) €Fy[z; #No], let rem, (x%)( f(z?)) denotes the remain-

der on dividing f(z%) by g(x?). For the sake of simplicity we denote it as r(f(z?)).

Theorem 43 Let g(x%) be the generator generalized polynomial of a binary cyclic (bn, bk) code
Con in Fa[z; $Nolpn and Ay, be a bk x b(n — k) matriz whose i-th row is r((x?)P=R+=1) - for

i=1,---,k. Then the canonical generator and parity check matrices of Cy, respectively are

G = 1+ Ay | and Hyo= [ (a)7 ¢ 1y | (2.48)

Proof. Since deg(g(zt)) = b(n — k), it follows that r(z3)? = (zb) for j < b(n — k).
b

Moreover, g(z?) divides (25)" — 1 and r(z5)"*/ = r(z%)7 for all j > 0. Thus, we have to

compute r(z# )7 only for j = b(n —k),--- ,bn — 1. Let
gi(l‘%) _ (x%)ifl N ( %)bk (( %)b(n k)+i— 1)
for i =1,2,---,bk. Then deg(gi(z¥)) < bn, so, gi(z?) €Fy[z; 7No]pn. Furthermore,

e () LU AT

therefore

gi(ﬂf%) _ (ﬂf%)bk « (x%)b(nfk)Jrifl _ T((x%)b(nfk)+i71) € Gy
Let Gy, be the (bk x bn) matrix whose i-th row is g;(z% ), written as a row vector, i = 1,--- , bk.
Then

Gbr:[]bk : Ab,.]’

where Ay, is a bk x b(n — k) matrix whose i-th row is r((z5)?"~R+i=1) Taking transpose of

Ay we get a b(n — k) x bk matrix, whose i-th column is r((2)?("=*)+i—1) written as a column
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vector, i = 1,--- ,bk. Then

Hy = | AL @ Iynpy |
which is a b(n — k) x bn matrix. m

Theorem 44 Let A,, Aqr, Ay and Agpr be the matrices as taken in Theorem 48 with respect
to the corresponding generator (generalized) polynomials g(z®), g(z), g(x®) and g((a:%)) in
Fslx;aNoln, Faolx]an, Folz; $Nolpn and Falz; %NO]abn respectively. Then

1) Ay ~ BT A,

2) Ay ~ Ar @ Ay ~ @4A,, and

3) Agpr ~ B Apr ~ DA, ® Ay ~ DPA, .

Proof. For the generator generalized polynomial
g(z®) =14 (%) + -+ ()", (2.49)

the remainders 7(2%)’, where n—k < j < n—1 give the matrix A, of order kx (n—k). Similarly,
for

glx)=1+z%+ -+ v (2.50)

, the matrix A, of order ak x a(n — k) is obtained through the remainders r(z7), where

a(n — k) < j < an — 1. After applying suitable column operations on A,,, it gives

Aar ~
(2.51)
0o 0 - A,
- < a(kxn—k)
~ @®fA,.
Corresponding to the generator generalized polynomial
g(ah) = 14 (x8)" + oo+ (h)", (2:52)

the remainders r((z% )7) gives the matrix Ay, of order bk x b(n—k), where b(n—k) < j < b(n—1).
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On applying suitable column operations on it, it gives submatrices of size ak x a(n — k) and

k x n — k, that is,

Ay O
Abr ~

O A,

(a+1)(kxn—k) (2.53)
~ Ar@Aar
@il+1:bAr‘
Finally, for

g((@h)?) = 1+ (@h)® 4 4 ()b, (2.54)

the remainders r((x%)j), where ab(n — k) < j < ab(n — 1) gives Ay, of order abk x ab(n — k).

Which on applying suitable column operations gives submatrices of size bk x b(n — k), that is,

0 - Ap a(bkxb(n—k)) (2.55)
~ @%Abr ~ @%Ar 57 Aar

~ @?bAra

which proves the theorem. m
Similar results for canonical generator and parity check matrices are obtain by Theorem 44.

The following example illustrates Theorem 44.

Example 45 To find the parity check matriz for (18,6) code obtained by the monoid ring
Flz; $No), we first divide (33%)9 by g((axé)) =1+ (ac%)6 + (ac%)u, where j = 12,13,--- ,17, to

get the remainders
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Therefore,

(10000010000 0]
01 00O0O0OO0OT1TO0O0OOQO0OTFVQ0
001 0O0O0OO0O0DT1IUO0TV0°FOQO0
Ay = (2.56)
00 01O0O0OO0O0DO0OT1°Q0°O0
000O0OT1UO0U0O0OO0ODO0ODT1T0Q0
(00000100000 1|
Accordingly,
H12 = (Alg)T 112 . (2'57)
Similarly,
1 0 01 0 O
1 01 0

As=|01001 0], A= aM@:{ll]W% (2.58)
0101
001001

Hy=[ (AT ¢ Iy | Ho=[ (A)T ¢ 1 Jend o= (a7 ¢ 1, | (259)

Thus by Theorem 44,

H12=[@%(A6)T : 112}7H6={(A2)T@(A4)T : 16},H4=[@%A2 : [4}.
(2.60)

2.4 Decoding procedure

The codes Cy,, Can, Cpn and Cupy, have same minimum distance and hence same error correction
capability along with the same code rate, but the codes Cgy,, Cp, and Cqpy, are interleaved codes
of degree a,b and ab, where the base code C, is cyclic. Thus, if the initial code C,, is capable
of correcting t errors, then the interleaved codes Cyy, Cpn and Cgup, are capable of correcting ¢
bursts of length a,b and ab or less, no matter where it starts, will affect no more than ¢ bits in
each row. This ¢ bits error in each row will be corrected by the base code C,. If C,, is capable of

correcting all bursts of length [ or less, then the interleaved codes Cqy, Cppn and Cypy, are capable
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of correcting all bursts of length al, bl and abl or less.

We give decoding scheme only for the code Cp,, through which decoding of C,, and C,;, can
easily be obtained. Decoding of the code Capy, can be obtained by shifting (x?) to (33%)“

The following theorem gives syndrome for binary cyclic codes Cy, through its canonical

parity check matrices Hyy.

Theorem 46 Let Cy, be a binary cyclic (bn,bk) code in F3[x; $Noly, with generator polynomial

g(x%) and the canonical parity check matriz Hy. Then, for any vector ¢ Eﬁg”, the syndrome

S(e) = r((x8)P " Fe(at)). (2.61)
Ab’r
Proof. By Theorem 43, H}, = , where Ay, is a bk x b(n — k) matrix whose
Ty(n—t)
i-th row is r((2%)?("=k)+i—1) for j = 1,--- k. The i-th row of the identity matrix Tyn—r) 1s
(x5)"+i for i =1,--- ,b(n — k). Hence, the relation

r((z8)" ) = r((@)’)
for all j > 0, gives the i-th row of (Hy)” given by r((z? )= +i-1) where i =1,--- ,bn. If

bn
c= (0070%7”' 70%(bn71)) €F )

then
ay a 25 (bn—1) La
clav) =coteg(@r) -+ egn-n(@?) € Fafa; 3 Nolon.
Thus,
S(C) = [ Co C% C%(bn—l) ]Hg];
bn . '
= ZC%(ifl)r((xz)(b(nfk)ﬂq))
i=1

which proves the theorem. m

45



In a similar way, we get the syndromes for binary cyclic codes Cup, and Cqy through their

canonical parity check matrices Hgp, and Hgp.

Theorem 47 Let Cyp, be a binary cyclic (abn, abk) code in Falz; %NO]abn with generator poly-
nomial g(a:%) and the canonical parity check matriz Hypy. Then, for any vector c GFg", the

syndrome

S(e) = r((z3)® R e(zs)). (2.62)

Theorem 48 Let Cyy, be a binary cyclic (an,ak) code in Fa[z;Nola, with generator polynomial

g(x) and the canonical parity check matriv Hyy,. Then, for any vector ¢ €FY", the syndrome
S(c) = r((z)"" (). (2.63)

In a binary cyclic code Cp,, with generator generalized polynomial g(:c%), two vectors

¢,d €FY" lie in the same coset if and only if g(z+) divides ¢(zb) — d(z?), that is,
rc(a?)) = r(d(x?)). (2.64)

Let v(2") € Cp, be a generalized code polynomial, and u(ac%) be a generalized received poly-
nomial. Then,

v(zh) = u(zh) —e(z?), (2.65)

where e(:z%) is an error generalized polynomial. Therefore,
S(v) = S(u) — S(e) implies S(u) = S(e)asS(v) = 0. (2.66)

Therefore, based on the previous discussion, we deduce the following decoding steps.

Decoding Steps

1. For received vector u = (uq, ug, - ,u%(bn,l)) € Fg" with generalized received polynomial

w(zt) = up +ua(zt) + -+ u%(bn,l)(x%)(bnfl), (2.67)
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find the syndrome
S(u) = r((z?)Pm Ry (z1)). (2.68)

2. Construct a syndrome table for generalized error polynomials.

3. Verify by the table that for which i, where 1 <i <n —1, S(u) = S(e;). Then the gener-

alized error polynomial ei(:ﬁ%) for the generalized received polynomial u(az%) is obtained.

4. Consequently, v(z?) = u(zt) — e(z?t) is the generalized decoded code polynomial of the

binary cyclic code Cpy,.

5. The received interleaved sequence in Cp, is de-interleaved and rearranged back to a rec-
tangular array of b rows of the binary cyclic code C,,. Then each row is decoded based on

binary cyclic code C,.

Illustration
In Examples 25 and 36, the (3,1) code act as a base code capable of correcting single error.
Let n=9, k=3 and

g(@3) = 1+ (@3)° + (3)° € Fala %No]gn (2.69)

be the generator generalized polynomial. Let v = 110000100 be the received vector. Then
2 2 2.6 2
u(z3) =14 (x3) 4 (z3)° € Fa[x; gNo]g (2.70)
is its corresponding generalized polynomial. The syndrome of u(a:g) is

S(u) = (z3)* + (x3) + 1. (2.71)

47



The syndrome table of error generalized polynomials ei(x%), where 0 < ¢ < 8 is given by:

Syndrome Table 1
ei(z3) | e(z3) | S(e)

eo(z3) | 1 14 (23)3
e1(z3) | 23 (23) + (23)*
ea(x3) | (a8)? | (25)% + (25)
es(x3) | (z3)% | 1

ea(z3) | (z3)* | (23)

es(x3) | (25) | (25)?
eo(x3) | (25)° | (23)3
er(x3) | (23)7 | (25)*

(3) | (@)% | (aF)

From the Syndrome Table 1 we find that S(u) = S(e1) + S(e3). So the generalized error
polynomial is e(a:%) = (:cg) + (x%)3 which has error pattern e = 010100000, which is a burst of
length 3. Therefore,

which is the generator generalized polynomial of the code Cg, its vector form is 100100100.

Now, on shifting the generalized received polynomial
1
w@3) =1+ (23) + (23)5 to u(@?) = 1 + (23)2 + (23)'2 € Fyla; Nolis

we get received word

u = 101000000000100000 in C;s.

The syndrome of U(:E%) is
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The syndrome table of generalized error polynomials ei(x%), where 0 < ¢ < 17 is given by:

Syndrome Table 2

ei(z3) e(z3) | S(e)
eo1(z3) |1 1+ (23)8
eas(wd) | (25)? | (25)? + (23)8
eas(@s) | (z5)* | (z3)* + (23)10
6677(.%%) (a:%)G 1
eso(x3) | (25)8 | (25)?
610,11(55%) (33%)10 (33%)4
er2,13(3) | (@3)12 | (25)8
eran5(x3) | (25)1 | (25)8
e1617(x3) | (25)16 | (25)10

From the Syndrome Table 2 we get
S(u) = S(e23(x%)) + S(egr(x3)). (2.72)

This gives the generalized error polynomial e(:pé) = (SE%) + (3:%)6 which has error pattern
e = 001000100000000000, (2.73)
which is a burst of length 5. Therefore,
1 1 1 1.6 112
v(ad) = ulah) — e@d) = 1+ (@5)° + (23)2, (2.74)
the generator generalized polynomial of binary cyclic code Cig, and its vector form is
100000100000100000. (2.75)

The vector u in Cg is formed by interleaving 3 rows u; = 101, us = 100 and ug = 000 in Cs

which have respectively the error vectors e; = 010, ez = 100 and ez = 000. On interleaving the
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vectors u; = 101 and ug = 100 in C3, we get a received vector v = 110010 in Cg. Its decoding
gives the error vector e = 011000 which is a burst of length 2.

Hence, the interleaved codes (18,6), (9,3) and (6,2) are capable of correcting single burst
of length 6, 3 and 2 or less.

In this study, a new technique of constructing binary cyclic codes is introduced using monoid
rings Folz;aNo], Fa[z; $No] and Fo[z; $No] instead of polynomial ring Fa[z]. So, a scheme is
articulated in such a manner that; for an n length binary cyclic code C,, an ideal in the factor
ring Fa[x; aNp],; there exists binary cyclic codes Cqp, Cp, and Cgpyp, of lengths an, bn and abn
which are respectively ideals in the factor rings Fa[z]an, Fao[z; $Nolpn and Fa[z; %No}abn-

The pronouncements of this chapter are as follows:

1. The generator and parity check matrix of binary cyclic code Cqup, contains blocks of gen-
erator and parity check matrices of binary cyclic codes C,, Cqy, and Cp,. Hence, encoding
and decoding of all the binary cyclic codes Cy,, Copn and Cp,, can be done simultaneously by

the encoding and decoding of binary cyclic code Cgpp.

2. The constructed binary cyclic codes Cup, Cpy, and Capy, are found to be interleaved codes
of degree a, b and ab, respectively, where the binary cyclic code C, is the base code.
Therefore, if the base code C,, corrects t errors, then the interleaved codes Cqy, Cpy, and
Cabn are capable of correcting t bursts of length a,b and ab or less. If C, is capable of
correcting all bursts of length [ or less, then the interleaved codes Cqup, Cpyp and Cqpy are

capable of correcting all bursts of length al, bl and abl or less.
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Chapter 3

Construction of non-primitive BCH

codes using monoid rings

BCH codes are one of the most important classes of cyclic codes for error correction. In this
chapter, we have generalized BCH codes using monoid rings instead of a polynomial ring over
the binary field F5. We show the existence of non-primitive binary BCH code Cp, of length
bn, corresponding to a given n length binary BCH code C,,. The value of b is investigated for
which the existence of non-primitive BCH code Cp,, is assured. It is noticed that the code C,, is
embedded in the code Cp,. Therefore, encoding and decoding of the codes C,, and Cp, can be
done simultaneously. The data transmitted by C,, can also be transmitted by Cp,. The BCH
code Cp, has better error correction capability whereas the BCH code C,, has better code rate,
hence both gains are achieved at the same time.

Through monoid rings, in a sequence of papers [4], [36], [37], [39], [38], [34], [35] several
classes of cyclic codes over a finite unitary commutative ring are constructed. The purpose of
these constructions is to address the error correction and the code rate trade off in a better way.
However, for a particular interest in [40] it is established that, there does not exist a binary BCH
code of length (n + 1)n in the factor ring Fa|x; %NO]/((JU%)(”H)" — 1) generated by generalized
polynomial g(:pé) € Folz; %NO] of degree 2r corresponding to the length n binary BCH code in
Fa[x]/(2"™—1) having generator polynomial g(z) € Fa[x] of degree r. But, there do exist a binary
cyclic code of length (n+1)n such that the length n binary BCH code is embedded in it. Besides
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this, the existence of a binary cyclic ((n+1)3" —1, (n+1)3" —1—3%7) code, where k is a positive
integer, corresponding to a binary cyclic (n, n—r) code is established in [38] by the use of monoid
ring Fo[z; S%No]. In both papers [40] and [38], the authors cannot show the existence of binary
BCH codes corresponding to the length n binary BCH code in Fylz]|/(z™ — 1). In this study,
we address this issue and construct a binary BCH code using monoid ring Fa[z; $No], where
a, b are integers such that a,b > 1. We show the existence of non-primitive binary BCH code
Cpp, of length bn using an irreducible polynomial p(x%) € Fa[z; $No| of degree br, corresponding
to a given length n binary BCH code C,, generated by r degree primitive polynomial p(z?) in
Fa[z; aNp].

3.1 BCH code C, as ideal in Fy[z;aNy),

A polynomial ring F[z] is initially a monoid ring Fa[z; S], where S is the additive monoid Ny, the
non-negative integers. It can be observed that Fo[z] C Fa[z; $No| only when a = 1. This force
us to first define cyclic codes using monoid ring Fa[z; aNg| and then define cyclic codes using
monoid ring Fa[z; §No]. As Fa[z; aNg] C Fa[z; $No], also Fa[x; aNg] C Falz] for all @ > 1. Where
both the monoids aNg and #Np are totally ordered, so degree and order of elements in F3[z; aNo|
and Fa[z; $No] are defined. The indeterminate of polynomials in monoid rings Fa[x;aNg] and
Fo[z; $No] are respectively given by z* and z%, and they behave like an indeterminate = in

Fa[z]. The arbitrary elements in Fo[z; aNo] and Fa[z; $No| are

fz®) = 1+ 2+ (292 +..(z%)" and
f@b) = 14 (@v)+ (28)* +..(zb)"
and we call them generalized polynomials.

The construction of a BCH code in the factor ring Fa[z; aNp],, is similar to that of a BCH
code in Fo[zx],, as Fao[x;aNg] C Fo[z]. For this, let C, be a binary BCH code based on the
positive integers ¢, d, ¢ = 2 and n such that 2 < d < n with ged(n,2) = 1 and n = 2° — 1, where

s is the degree of a primitive irreducible polynomial in Fa[x; aNy]. Consequently, the n length
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binary BCH code C,, has generator polynomial of degree r given by
g(z®) =lem{m;(z®) :i=c,c+1,..,c+d—2}, (3.1)

where m;(2®) are minimal polynomials of &' for i = ¢,c+1, ..., c+d—2. Where £ is the primitive
nth root of unity in [Fas, an s degree Galois field extension of Fy. Since m;(z%) divides (z%)" —1
for each 14, it follows that g(x®) divides (%)™ — 1. This implies C,, = (g(z®)) is a principal ideal
in the factor ring Fa[x; aNg],.

In the following example primitive BCH code of length 15 is discussed using monoid ring

FQ[{E; QN()]

Example 49 Let p(2?) = (2)* + (22) +1 be a primitive polynomial in Fa[x; 2Zq), then we have
a primitive BOH code of length n = 2% —1 = 15. Let £ be a primitive root in GF(2%), satisfying
the relation £* + € +1 = 0. Using this relation we have €° = 1, that is £ is the primitive 15th

root of unity. Since
g(z?) = lem{m;(z?),i =c,c+1,...,c+d — 2}, (3.2)

therefore first we calculate m;(x?). By [27, Theorem 4.4.2], &,€2,€%,€% have same minimal

polynomial my(x?) = p(x?). Similarly we get

ma(a?) = (&%) + (%) + (%) + (%) + 1,
ms(x?) = (22)% 4 (2?)+ 1 and
mr(z?) = () + (2®)> + 1.

The BCH code with designed distance d = 3 has generator polynomial

It has minimum distance at least 3 and corrects up to 1 error. Since the generator polynomial

is of degree 4, therefore it is a (15,11) code having code rate R = 0.733. BCH codes of length
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15 with different design distances are discussed in Table 3:

Table 3: BCH codes of lengthl5

d | (nk) |t|R

3 | (15,11) | 1| 0.733
5 | (15,7) | 2| 0.466
7 | (15,5) |3 |0.333
15 | (15,1) | 7| 0.066

3.2 BCH codes as ideals in Fy[z; Ny,

In this section, we investigate the values of b for which there exists a bn length BCH code in
Fa[x; $NoJpn, corresponding to an n length BCH code C,, in Fa[z; aNgl,. For this, let C,, be a

binary BCH code in Fa[z; aNy], constructed in previous section. Now using the following map

p(z®) = po +pra® + ...+ ps (2%)° = po + pr(x®)’ + .+ p(zh)? = p(zh),  (3.3)
we convert the s degree primitive polynomial p(z?) in Fa[z;aNp] to a bs degree polynomial
p(:c%) in Fa[x; $No]. This converted polynomial is never primitive; therefore, the corresponding
BCH code will also be non-primitive. However, the non-primitive BCH code can be constructed
only when p(a:%) is irreducible. Hence, for the construction of a non-primitive BCH code in
Fa[z; $No]on, we choose only such a primitive irreducible polynomial p(z*) in Fa[z;aNo] for
which there is an irreducible polynomial p(z¥) in Foz; #No].

Particularly, for b = 2 or 2[ there neither exist a primitive BCH code nor a non-primitive
BCH code, since we know that p(z?) = (p(x))? in Fa[z], the same result holds in Fa[z; $No].
Similarly, for s = 5,7,11,13,17, ... and there multiples we don’t find any b for which we have
an irreducible polynomial in Fa[z; §No.

For instance see Table 4 for the list of irreducible polynomials of degree bs in Fa[z; §No

corresponding to primitive irreducible polynomial of degree s in Fa[z; aNp].
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Table 4: Irreducible polynomials p(:c%) against primitive polynomials p(z)

deg p(z?) p(zv)
3 ()3 + (z%) + 1 (7)) + (7)) +1
4 (z9)* + (%) + 1 (25)12 4 (258)3 + 1, (25)2 + (25)° + 1
6 ()0 + (z9) + 1 (28)8 4+ (23)3 + 1, (27)2 + (27)" + 1
8 | ()8 + (@) + (293 + ()2 +1 | (25)* + (23)12 + (25)? + (25)0 + 1,
(298 + () + (29)3 + (@*)2 +1 | (25)0 4+ (£5)20 + (235)15 + (25)10 + 1
9 (ma)Q 4 (:I:a)4 +1 (x%)63 + ($%)28 +1
10 (x4 (22)3 + 1 (23)30 + (23)? +1

Table 4 explains that for s = 2 and 3 we have b = 3 and 7 and for s = 4 and 6 we have
b= (3,5) and (3,7) respectively and similarly we have for their multiples. From this we have

the list of BCH codes of length n and bn, where bn divides 2% — 1, mentioned in Table 5.

Table 5: BCH codes of length n and bn

s | n bn

2 13 9

3 |7 49

4 |15 45,75

6 |63 189, 441
8 | 255 | 765,1275
9 | 511 | 3577

10 | 1023 | 1023

The above discussion can be sum up with the following result.

Proposition 50 Let p(z®) € Falx;aNyg| be a primitive irreducible polynomial of degree s €



{21,31,41,61}, where | € Z*. Then the corresponding bs degree generalized polynomial p(x%) n
Folz; $No] is non-primitive irreducible polynomial for b € {3,7,{3,5},{3,7}} respectively.

Proof. Let p(z®) =1+ 2%+ ... + (z%)° be a primitive irreducible polynomial in Fa[x; aNy],
where s € {21,31,4l,61}, where | € Z% such that « is its root and o2’ ~! = 1. Then the
corresponding generalized polynomial p(z5) = 14 (z8)° + ... 4+ (29)% in Fy[z; ¢No] has root

B = (psi)™M € FY, where pg; is a primitive element in F4* and M is a positive integer such that
M(b(2° —1)) =2 — 1.

This implies 8°2° =Y = 1. Hence p(x%) is not primitive. But p(z?) is irreducible over Fy for b
{3,7,{3,5},{3,7}} respectively by [14, Theorem 5.1 and Example 5.4, where the indeterminate

a . .
% behaves as indeterminate x. m

Definition 51 A code C generated by a non-primitive element 5 of a Galois field GF(q™),
such that the length of the code is the order of 5, is called a non-primitive BCH code.

Theorem 52 Let n = 2° —1 be the length of primitive BCH code Cy,, where p(z®) € Fa[z; aNy]
is a primitive irreducible polynomial of degree s such that p(z?) € Fal; #No] is drreducible
polynomial of degree bs.

1) Then for positive integers c1,dy, bn such that 2 < d; < bn and bn is relatively prime to 2,
there exists a non-primitive binary BCH code Cy, of length bn, where bn is order of an element
a € Fops.

2) The non-primitive BCH code Cy,, of length bn is defined as

Con = {v(2?) € Folz; %NO]bn cv(ad) =0 foralli=ci,c1 4+ 1,...c; +dy — 2.

FEquivalently, Cyy, is the null space of the matriz

[ 1 a“t a?a albn—ba |
1 af1tl a2(61+1) a(bn—l)(cl—l—l)
H= (3.4)
1 O[Cl+d1_2 a2(cl+d1—2) a(bn_l)(61+dl_2)
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Proof. 1) Since it is given that the bs degree polynomial p(x%) € Fa[z; 7No] is not primitive,
so the BCH code constructed through it is also not primitive. Hence the length of the code
n # 2% — 1. However, there is an element a € Fops of order bn vanishing p(z%). Let m;(z?) €
Fa[z; $Zo] denotes the minimal polynomial of o' and g(x%) be the lem of distinct polynomials

among mi(a:%), t=c1,c1+1,...,c1 +di — 2; that is,
g(z®) =lem{m;(z?) :i=c1,c1 +1,...,c1 + dy — 2}.

As m;i(z¥) divides (z#)" — 1 for each 4, therefore g(z%) also divides (2%)" — 1. This implies
that Cp, is a principal ideal generated by g(x%) in the factor ring Fa[z; #Nop,. Hence Cyy, is a
non-primitive BCH code of length bn over Fo with designed distance d;.

2) Let v(z%) € Cpy, then

for some q(z%) € Folz; #No], where g(x%) is the generator polynomial of Cy,. Hence v(at) = 0
for all i = ¢1,¢1 41, ..., ¢1 + di — 2. Conversely, let v(x?) € Falz; %No)er, such that v(a’) = 0 for
alli =c1,c1+1,...,c1 +di — 2. Then mz(z%) divides U(:E%) foralli =ci,c1+1,...,c1 +dy — 2.
Hence g(x#) divides v(z75), so v(z?) € Cpy.

For second part, let

’l)(:lj%) =g + ’ul(:v%) + ...’Ubnfl(.r%)bnil S ]FQ[:IZ; %No](m.

Then v(a’) = 0 for all i = ¢1,¢1 + 1,...,¢1 + di — 2 if and only if Hv! = 0, where v =

(v0, V1, - Upn_1) € F4™. This proves that Cp, is the null space of H. m

Remark 53 Corresponding to the (n,k) BCH code C,, with generator polynomial g(z*) = p(x®)
in Fo[z; aNg], we have a (bn,bk) BCH code Cy, with generating polynomial g(zv) = p(x+) in
Fo[z; $No]. This (bn,bk) BCH code Cyy, is an interleaved code of degree b, capable of correcting
a single error burst of length b or less (see [29, Theorem 11.1]).

The following example illustrates the construction of a non-primitive BCH code of length

bn through Fa[z; No].
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Example 54 For a primitive polynomial p(z?) = 1+ (22) + (z)* in Falx;2Ny), there is a

non-primitive irreducible polynomial p(mg) =1+ (x%)?’ + (33%)12 in Fo[z; 2Ng]. Let o € Fonz,

satisfies the relation o' +a3+1 = 0. Using this relation we can compute all the distinct powers

of a in GF(2'2), see Table 6 (it is clear that o has order 45).

Table 6: Distinct powers of a in GF(2'?)

a2 =a3+1

a?l=14+a34a°

a0 =14+a34ab

a® =14+a84a°

aB=a+at

a?? =a+at+al®

a3 =a+at+al

ol =a+a” +alf

alt=a? +a®

a® =a+a®+all

a?? =a?+a’®+ab

ot =a? + o+ all

ald = a3 + af

a?=1+af

a3 = a3 +ab+ad

a*2=14a’

alf =at 4 a7

a® =a+a’

A =at+a” +all

a® =a+al®

al” =ad + a8

a? = af + o?

¥ =a® +ad +all

ot — o2 4 ot

al® = ab + o

" = a3 4 o

o =14+a34+a8+a’

a®® =1

a9 = o7 4 10

a8 = af 4+ 10

a2 — o8 1 a1l

a2 = of 4 ol

a® =a?+a®+ad+alt

Here we have bn = n’ = 3 x 15 = 45. To calculate the generating polynomial g(x%) we first

calculate the minimal polynomials which are :

mi(zd) = (29)2+(23)°+1,
my(z) = (23)+ (%) + 1,
my(z) = (29)°+ (25)* + 1,
mh(xs) = (25)2+ (25)° +1,
my(x3) = (23) 4 (25) + (25)? + (28) + 1,
mis(zs) = (a8)? + (28) +1,
my(25) = (29)" + (25) +1

Which gives the following generating polynomials of BCH codes of length 45 with design distance
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di =3,5,7,9,15,21 and 45.

g(ah) = 1+ (@) +(29)"2, g(ed) = (@9)! + (@)1 + (23)2 + (23)" + (23)° + (@7) + 1
g(@s) = (@) + @)+ (@9) + @) + (@9)'0 + (@5)° + (@3)" + (2%) + 1
glat) = @M+ @)™+ (@) + (@5)0 4 (@5) 10+ (25)"° + (23)" + (27) + 1
g(x3) = (@5)% 4+ @5) + (@5)% + (@5) + (23)% + (25)B + (25)2 + (25)2
H(@5) 4 (25) 4 (25)% + (25)T + (25)0 + (23)* + 1
g(z3) = (23)%0 4 (23)3 4 (@) + (23)3 4 (27)32 4 (23)3 4 (23)30 4 (23)2
+@3)? 4 (29)% + (@3)" + (29)'7 + (23)'0 + (@5)" + (29)10 + (23)°
(@)’ 4 (23) + (23)? + (25) + 1
g(ad) = (@)M+ @)+ (@) 24+ (23)2 4+ (23) + 1

Which generates (45,33), (45,29), (45,23), (45,11), (45, 7), (45,5) and (45,1) codes and corrects
up to 1, 2, 3, 4, 7, 10 and 22 errors having code rate 0.733, 0.644, 0.511, 0.244, 0.155, 0.11,
0.022 respectively. Where the code (45,33) is also capable of correcting any single error burst
of length 3 or less by Remark 53.

Table 7, gives a comparison between minimum distance, code rate and error correction

capability of codes Ci5, Cy5 in Falx; 2Ny], Falz; %NO] respectively.

Table 7: Comparison between Ci5 and Cy5

(nk) |d |t|R (nk) |d |t | R

(15,11) |3 |1]0.733 | (45,33) |3 |1 |0.733
(15,7) |5 |2]0.466 | (45,29) | 5 |2 | 0.644
(15,5) |7 |3]0333|(45,23) |7 |3 | 0511
(15,1) | 15| 7]0.066 | (45,11) |9 |4 | 0.244
(45,7) |15 |7 |0.155
(45,5) | 21|10 0.11
(45,1) | 45 | 22 | 0.022
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As bn divides n/ = 2% — 1, so (23)" — 1 divides (23)" — 1 in Fy[z; ¢No]. It follows that

((x%)”/ -1 C ((x%)b” — 1). Consequently, third isomorphism theorem for rings gives

((x8)" —1) Fylz; §No] - Fy[x; aNg]
/(@0 =1)  ((@b)n—1) (@) =1)

Thus, there is embedding C,, — C},, — C, of codes, whereas C,,, Cy,, and C, are respectively
primitive BCH, non-primitive BCH and primitive BCH codes. Whereas the embedding C,, —
Chy, is defined as:

1

a(z") = ag+ ar(2%) + . + an 1 (2%)" = ag + a1 (@)’ + A an o (@8) 7Y = a(zh).

Where a(z?%) € C,, and a(z?) € Cyy.

The above discussion shapes the following.

Theorem 55 Let C), be a primitive binary BCH code of length n = 2% —1 generated by r degree
polynomial g(x®) in Fylx;aNo|, then:

1) There exists a bn length binary non-primitive BCH code Cl,, generated by br degree
polynomial g(x) in Fy [z; $No]; and

2) The binary primitive BCH code C,, is embedded in the binary non-primitive BCH code
Con-

Also we can deduce g(z%) from g(m%) by substituting z¢ for y°.

Example 56 Following Fxamples 49 and 54:

The BCH codes with designed distance d = 3 have generator polynomials g(x?) = mq(2?) =
1+ (22) + (z%)* and g(:L“%) =1+ (m%)g’ + ($§)12 with same error correction capability and code
rate. The only difference is; the degree, data bits, code length and check sum of the code Cys is
three times that of code Cts.

Whereas, on letting (93%) =y in the generating polynomial of (45,29) code, that is x* = y3,

60



we get

g(ad) = @)+ @)+ (@) + (@5) + (23)% + (23) + 1
9w) = W+ + W+ + @+ +1
9@’ = @)+ )2+ )T+ @)+ () + 1
9(®) = (@) + @) + @)+ @)+ (@) + (@7 + 1
= @)B+ @)+ (2*)" + (%) + 1 € Fyfz;2Nolss.

Where the generating polynomial (x?)* + (2?) + 1 divides (2)'3 4 (2%)12 + (2?)7 + (22)3 + 1.
Hence the corresponding vector is in (15,11). So (15,11) code is embedded in (45,29) code.

Similarly, in Table 6, we have shown that which code in Fa[x;2No|15 with designed distance
d is embedded in a code in Fy[x; No|4s with designed distance d'.

The corresponding code vectors of the generating polynomials

v = (100010111000000)
v = (100010111000000
100010111000000

100010111000000).

Clearly v is properly contain in v', in fact it is repeating three time after a particular pattern.
Hence the generating matriz G' of g(a:%) will contain the generating matriz G of g(x?) such

that G' = B3G.

The next chapter is the generalization of this chapter. Therefore a generalized decoding
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procedure is given there and hence omitted in this chapter.
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Chapter 4

Family of non-primitive BCH codes

In this chapter, we have developed a relation between a primitive and a family of non-primitive
BCH codes. We show the existence of a family of non-primitive binary BCH codes {Cgfn}lﬁ j<ms
where b/n is the length of the code ngn, using an n length binary primitive BCH code C,.
Furthermore a decoding procedure is introduced, such that a codeword in the binary BCH code
C, can be transmitted with high code rate and decoded through codeword of any of the binary
BCH code of the family {Cgin}lﬁjﬁm‘ Moreover it is observed that, for each 1 < j < m, the
binary BCH code Cg;lln is embedded in the binary BCH ngn.

Encoding and decoding algorithms are also introduced for a binary non-primitive BCH
code of length v/n against an n length binary primitive BCH code. The algorithms have been
simulated in Matlab. Matlab provides a built in routines for primitive BCH code, but impose
several constraints, like degree of primitive polynomial that is s should be lesser than 16. This

work focuses on non-primitive polynomials, where s changes to bs and go far more than 16. In

order to lever these conditions we have developed generic algorithm.

4.1 BCH codes as ideal in F5[z; £Nolyin1<j<m)

In the previous chapter we have shown the construction of binary BCH code of length bn
in the monoid ring Fa[x; %NO]bna in this section we will show the existence of family of BCH
codes {Clzin}lﬁjﬁm in the monoid ring F2[z; 75 NoJpin(1<j<m)- For this we use the same technique

discussed in the last chapter. Hence we first investigate the values of b for which there exists a
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b/n length BCH code in Fy|[x; 37 NoJpiy,, corresponding to an n length BCH code C,, in Fa[z; aNo];,.

Using the following map

a a 1
v —=\bls

po + p1x® + ... + ps (%) — po + pr(zv7 )b] + o+ ppo1(zv)7F

we convert the s degree primitive polynomial p(z®) in Fa[z;aNg] to a b/s degree polynomial

a

77 No]. We will consider only such a primitive irreducible polynomial p(z®) in

p(xb%) in Fo[x;
Fa[z; aNp] for which there is an irreducible polynomial p(xbiﬂ) in Falx; 3+ No|. Following table

a

77 No] corresponding to primitive

gives a list of few irreducible polynomials of degree b's in Fa[z;
polynomial of degree s in Fa[z;aNg]. For p(z®) € Falz;aNgl, p(zt) € Folz; £No], p(wb%) €

Fo[z; $No], replace z¢, T, sl by x, y, z respectively.

Table 8 : Irreducible polynomials corresponding to primitive polynomials
deg | p(z) p(y) p(z)...
3 | 1+z+a® |14y +y* 1+ 2% + 2147
T+g3+92, | 1429+ 2%,
4 | 1+az+at
1+y° +y* 1+ 225 + 2100
L4y +y™ | 1+2% 422
6 | 1+2+2b
14 y" +y*? 1+ 249 + 2294
1+y° +4° 1+ 2%+ 227
. 142423 y15 g2 4245 4 T2
4y g %0 42125 4,200

9 |1+t +2% | 1+yB4+¢% | 1421944

10 | 1423 +210 | 1492443

By Table 9 we deduce the following Theorem.

Theorem 57 Let p(z®) € Falx; aNg] be a primitive irreducible polynomial of degree s € {21, 31, 41,61},

where | € Z. Then the corresponding b's degree generalized polynomial p(mb%) € Falz; > No] is
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non-primitive irreducible for b € {3,7,{3,5},{3,7}} respectively.

Proof is same as that of Theorem 50.

The existence of non-primitive BCH code of length b/ is shown in the following Theorem.

Theorem 58 Let n = 2% — 1 be the length of primitive BCH code C,,, where p(x®) € Fa[z; aNy]
is a primitive irreducible polynomial of degree s such that p(mb%) € Folx; 3+ No| is non-primitive
irreducible polynomial of degree b's.

1) Then for positive integers cj,dj,bjn such that 2 < dj < bn and bn is relatively prime
to 2, there exist a non-primitive binary BCH code Cy;,, of length bin, where b'n is order of an

element o € By,

2) The non-primitive BCH code Cy;,, of length b/n is defined as

Coip = {v(:cb%) € Falx; %No]bjn cv(ad) =0 for all i = ci,¢j+1,.,¢i+dj —2

Equivalently, Cyj,, is the null space of the matrix

1 i % a¥/n=1);

1 atitl a2(ci+1) an=1)(c;+1)
H =

1 a% +dj—2 062(0]' +d; -2) a(bjnfl)(Cjerj -2)

Proof. 1) Since b’s degree polynomial p(wb%) € Fa[z; - No] is irreducible but not primitive,

so there does not exist n; = Vs 1 length primitive BCH code. However, there is an element «
of order b/n vanishes p(a:b%) Now, since 2° —1 | 22’5 —1 then b/(2° —1) also divide 20’5 — 1. Hence
a’n = qni = 1, implies a € F.,- Let m;(a:b%) € Fa[z; {5 Zo] denotes the minimal polynomial

a_

of o* and g(x+7) be the lem of distinct polynomials among m;(mb%), i=cjci+1, ., c5+d;j—2;
that is,

g(xv7) =lem{m;(zv ) : i =cj,c; + 1,...,¢; + dj — 2}

a_ a

As m;(a:b%) divides (xﬁ)bj“—l for each 4, therefore g(z/ ) also divides (z#/ )?’™ — 1. This implies
that Cp;,, is a principal ideal generated by g(xb%) in the factor ring Fa[x; ;5No]y,. Hence Cy,,

is a non-primitive BCH code of length b'n over Fy with designed distance d;.
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a

2) Let v(zv7) € Cpyy, then

a

for some g(xv7 ) € Fa[z; ;7No], where g(:nb%) is the generator polynomial of Cy;,,. Hence v(a') = 0
for all i = ¢j,c; +1,...c; +dj — 2. Conversely, let v(mb%) € Fa[z; #No)yi,, such that v(a’) = 0 for
all i =c¢j,¢;+1,...,¢;+d;j —2. Then mz(xb%) divides v(xb%) for all i = ¢j,c;j+1,...,¢;+dj — 2.
Hence g(:vb%) divides v(xﬁ), S0 ’U(l‘b%) € Chin-

For second part, let

o

a a1 a
) =t () + (38 € Fafs - Nolyi.

<

v(xb
Then v(a') = 0 for all i = ¢j,¢j + 1,...,¢; + d; — 2 if and only if HvT = 0, where
v = ('UO, Vlyeeny Ubjn—l) S Fg]n

This proves that Cy;,, is the null space of H. m

Following are the examples of the construction of family of non-primitive BCH code.

Example 59 For a primitive polynomial p(z?) = 1 + (22) + (22)% in Fo[z;2Ng] there is a

+
non-primitive irreducible polynomial p(x%) = (:L'%)21 + (x%)7 + 1 in Falz; 2No] by Table 8. Let
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a € Foo1, satisfies the relation o' + o +1 = 0. Using this relation we have the following table.

Table 9: Distinct powers of o in GF(2%)

a2l = a7 41 a3l = Q17 4 10 oAl = 20 4 13 4 6
0?22 = a8 + o 032 = 18 4 QU1 a2 = o144
a2 = af + o2 a33 = 19 4 12 a3 — 15 4 o
a?t — 10 4 o3 adt = 20 4 13 add = Q16 4 o2
P =allyat| aPB=a%ta’+1 o = 17 4 o3
0 =24 05| a3 =—al®Lafta ad6 — 18 4 o4
a2 = a3+ a8 | a3 = alb 4+ o 4 o2 QAT = 19 4 b
a8 =l L a7 | a3 =alT+al0 4 o3 ad8 = 020 4 o6
a2 — 15 £ a8 | 039 = 18 4+ 1l 4 ot o2 — 1

030 = 16 4 9 | 040 = 419 4 412 4 oF

Hence length of the code is bn = n' = T x7 = 49. Now, to calculate generating polynomial g(:c%)

we first calculate the minimal polynomials. By [27, Theorem 4.4.2], o, o2, a*, o8, o'6, o2,

15 30 11 22 44 39 29 9 18 36 23 43

37
a’?, o, at, ot o™t ot ot o, o, ) at?, o, o, «

, a5 all have same minimal

polynomial m) (x%) = p(x%) The set of powers of these « collectively form a set which is called

a set of cyclotomic cosets. Let mg(as%) be the minimal polynomial for o2, then a2, of, a'?, a4,

a®® T o5 a1l o33 1T o34 o19 038 02T 0B 10 020 010 031 13 026 ol are rools for

mg(x%) Therefore by using Table 9 we have mg(x%) = (ac%)21 + (:ﬁ)14 + 1. Similarly we get,

Which gives the following generating polynomials of BCH code with design distance d' = 3,7,21
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and 49.

glz?) = @HM+ (@) +1

g@?) = @)+ @)+ @)%+ @) + (@) + (@7) +1

g(@7) = @)+ @)+ @)+ (27) + (@7) + (27)F +
@+ @)+ @]+ @)+ @2 @)
T+ @)+ @)+ @)+ @)+ (@) +
(27)° + (%) +1

g(z?) = @)+ @)Y+ @)+ .+ (@) + (27)+1

Which generates (49,28),(49,7),(49,4) and (49,1) codes which corrects up to 1,3,10 and 24
errors having code rate 0.571,0.143,0.081 and 0.020 respectively. Following tables give compar-
ison between minimum distances, code rate and error correction capability of codes constructed

through Fo[x; 2Ng], Falz; %No], Folx; %NO] of length 7, 49 and 343 respectively.

Table 10: Comparison between C7,Cyg and Csys

(TL, k) d t R (3TL, ]431) d1 tl R1 32TL, kg) d2 tQ R2
(7,4) 3 1 0571 (49,28) 3 1 0.571 | (343,196) 3 1 0.571
(7,1) 5 343,49) 7 3 0.143

(
( (
2 0143 | (49,7) 7 3  0.143 | (
(49,4) 21 10 0.081 | (343,28) 21 10 0.081
(49,1) 49 24 0.021|(343,7) 49 24 0.021
(343,4) 147 73 0.012
(343,1) 343 171 0.002

Example 60 For a primitive polynomial p(z?) = 1+ (22) + (22)* in Fa[x;2Z0], we have non-
primitive irreducible polynomials p(:cg) =1+ (a:%)‘3 + (:13%)12 in Falx; 2Z0] and p(mfi%) =1+
(1‘%)9 + (JZ%)% in Falw; %7Z] (see Table 8), through which we get non-primitive BCH codes of
length 45 and 135. Let o € GF(23), satisfies the relation o% 4+ o +1 = 0. Using this relation
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we obtain the distinct powers of a in GF(23)

Table 11:Distinct powers of a in GF(23°)

a38

a3

0638

a9

O540

0441

0542

O543

0444

0545

a46

0447

a48

a49

0450

a51

1+
a+al?
a? + all
o® + 12
at 4+ al3
a® + ol
ab + a1b
a’ 4+ alb
a8 + a7
o + a8
al0 4 19
all 4 20
al? 4 o2l
ald 4 o2
alt 4 23

a15 + 0424

a52

ad3

a54

a®

a8

Oé57

a8

ad?

0460

0461

Oé62

Oé63

a64

ab?

a66

Oé67

— O516 4 0425

a7 4 26
ol8 4 27

a9 1 28

a0 4 29

0421 +a30

0522 +0431

a3 4+ o3

0424 + 0433

a2 4 o4

Q26 4+ o35

1+ 4 o
o+ al0 4 28
a? +all +a®
o3 + al2 4 30

at + a3 4+ od!
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69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

o’ + o4 4 o2
ab 4+ al® 4 o33
a’ 4+ alb 4+ o3
a® + a7 4+ o
14 a'®
a+al?

a? + 20

ad + ot

at + a??

_a5+a23

ab 4+ o2t
a” +a?
ab + 26
a? 4+ o7
al0 4 28

all + Oé29

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

al2 4 30

ald 4+ o3t

a4 4+ 032

al® 4+ o33

alb 4 o34

al7 4+ o35
14+a°+al8
a+al% 4 al?
a? +all + o2
o3+ al? 4+ o2t
at + al3 + o?2
a® 4+ alt +ao?
ab + alb 4+ o2
o’ +a'f 4+ a®
b+ al” + o

a? + al8 + a2
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Ql00 — 10 4 (19 4 28 Q12 = o4 £ 13 4 022 4 081 Q124 _ T4 (25 4 34
Ql0l — 11 4 (20 4 (29 Q13 = 08 4l 4 02 132 Q125 — o8 4 26 4 35
Ql02 — o124 (21 4 (30 Qlld — 06 4+ 15 4 024 4 33 o126 — 1 4 427

Ql03 = o183 4 22 4 31 Q15 = 0T 4 a6 4 025 1 3% Q127 = o 4 o2

Ql04 — Q14 4 (23 4 (32 Q16 — 08 £ Q17 4 026 1 35 o128 — (2 4 (29

Ql05 — 15 4 (24 | (33 Q17 = 1 4+ 18 4 o27 Ql29 = 3 4 30

Ql06 — 16 | (25 | 34 Q18 — o+ 19 4 28 Q30 — o4 4 o3l

Q107 — Q17 4 (26 4 (35 Q19 — 02 4 20 4 029 a3l = o5 4 32

Ql%® — 1 409 4 18 4 27 Ql20 — 03 4 o2l 4 430 al32 — o6 4 o33

Ql09 — 4 10 4 19 4 428 Q120 _ 4y 022 4 (031 ald3 — o7 4+ o34

Q10 — 02 4 1l 4 020 1 29 122 _ 05 4 (23 . (32 Q34 — o8 4 o35

A1l = 03 112 1 021 1 80 o123 _ 06 4 24 | 33 Ql3 — 1

Now, we calculate minimal polynomials to find the generating polynomial g(a:%) By [27,

Theorem 4.4.2],

2 4 8 16 32 64 128 121 107 79 23 46 a92 49 98 61 122

o
“s:
“sz
S
JQ
S
JQ
“Q
°
vsz
vsz
“@
o
“sz
u@
S

all have same minimal polynomial m’l(x%) =p(xd) =1+ (a:%)g + (mg)%. Let mg(a:%) be the

minimal polynomial for o2, then o3, b, a'?, a?*, a8, %, o7, a4, a3, a1, o102,
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are roots for mg(a:%) Therefore we get mg(:c%) = (a:%)u + (3:%)3 + 1. Similarly we obtain

e
~—~
8
N
S~—
I
—_
+
—~
8
o
~
©
+
—~
8
o
~
w
(=]

It has minimum distance 3 and corrects up to 1 error. Since the generator polynomial is of

degree 36, its code rate is % = 0.733. The BCH code with do =5 has generator polynomial
9(@9) = (@9)™ + (@9)% + (@9)% + (@9)* + (29)° + (29)° + 1.

It corrects up to 2 errors with % = 0.644 code rate.

The BCH code with do =7 has generator polynomial

It corrects up to 3 errors and has code rate Ry = % = 0.5111. The BCH code with do =9 has
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generator polynomial

g(ad) = (25)1% 4 (25)% + (25)% + (20)57 + (29)% + (25)® +

It corrects up to 4 errors and has code rate Ry = % = 0.244.

Similarly, BCH codes with dy = 11, 17, 23, 29, 47 and 65 has generator polynomials

gled) = (@)% +(@9)'® +
H(@9)% + @9)° + (@) + (@9)7 + (29) + (9)¥
+(@5)%0 4 (@9) + (29)10 4 (25)13 + (25)12 4 (29)"

g(@d) = (@) + @)+ (29)'% + (@9)' 4 (@9)" + ()"
+(29)% + (@)% + (25)% + (29)%7 + (25)%% + (25)%
+(@9)7T + (@8)%° + (29)" + (9)" + ()"0 4 (25)"°
+(@5)2 4 (25)18 4 (25)1 4 (29)12 + (29)10 + (25)°
+H(@d) + (29) + 1

g(xg) _ (m§)124+(xg)121+(xg)lzo+(xg)109+(xg)106+(x§)105
+(m§)94+(x§)91+(xg)90+(x§)79+(x§)76+(x§)75
+(x§)64+($§)61+(x%)60+($%)49+(x%)46+($§)45
H(@9)* + (@9)™ + (@9)% + (9)' + (29)"° + (29)"°
+(@d) o+ (29) + 1
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o

They corrects upto 7, 10,13, 22, 31 and 67 errors with code rates 0.215, 0.170, 0.0814, 0.0518,

0.0370 and 0.007 respectively.
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Following are the tables of primitive and non-primitive BCH codes of length 15, 45 and 135.

Table 12: BCH codes of length 15, 45and 135

(k) d t R (k) d t1 Ry | (mk) dy ty Ry
(15,11) 3 1 0.733|(45,33) 3 1 0.733|(135,99) 3 1 0.733
(15,7) 5 2 0466 | (45,29) 5 2 0.644 | (135,87) 5 2 0.644
(15,5) 7 3 0.333|(45,23) 7 3 0511 (13569) 7 3 0511
(15,1) 15 7 0.066 | (45,11) 9 4 0244 | (135,33) 9 4 0.244
(45,7) 15 7 0.155 | (135,29) 15 7 0.215

(45,5) 21 10 0.1 |(135,23) 21 10 0.170
(45,1) 45 22 0.022 | (135,11) 27 13 0.0814
(135,7) 45 22 0.0518
(135,5) 63 31 0.0370

(135,1) 135 67 0.007

From example 59, it is clear that the code generated through Fs[x; %Ny corrects more errors

) b]
and has better code rate than the code generated through Fa[z; aNy].

4.2 Link between primitive and a family of non-primitive BCH

codes

Now we are in position to develop a link between a primitive (n,n — r) binary BCH code C,
and a non-primitive (b'n,b'n — rj) binary BCH code Cy;,,, where  and r; are respectively the
degrees of their generating polynomials g(z%) and g(mb%) From Theorem 52(1), it follows that

the generalized polynomial g(xb%) € Fa[w; 1> No] divides (zo™ 5 )Y 1 in Fy[z; - No]. So, there is

a non-primitive BCH code Cp;,, generated by g(xg) in Falz; 2Nolpi,- By the same argument,

7b]

as b/n divides n; = 2Ys 1, s0 (:cﬁ)bj” — 1 divides (xb%)”f — 1 in Fa[z; ;5No]. It follows that

((mb%)”ﬁ -1)C ((aj%)b]" — 1). Consequently, third isomorphism theorem for rings gives

Folz; §Nol/((@) = 1) Folw; §No] _ Fplws allg
(a0 )P'm = 1) /(@) = 1) ((@w)Pn—1) (29" = 1)
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Thus there are embeddings C,, < Cyi,, <= Cy; of codes, whereas Cy, Cyip,, Cp; are respectively
primitive BCH, non-primitive BCH and primitive BCH codes. Whereas the embeddings C,, —

Cpip, are defined as:
a(z®) = ag + a1(2%) + ... + ap 1 (2*)" = ag + ar (@) + .+ ap (a

where a(z%) € C,, and a(mﬁ) € Cin,-

Also, if g(z%-1) is the generator polynomial of the binary non-primitive BCH code Cg] 11
in Folw; 51 Z>0]pi-1p, then g(zbf) is the generator polynomial of the binary non—prlmltlve
BCH code ng in the monoid ring Fa[x; % Z>0]pin- Thus the non-primitive BCH code CbJ 1,
is embedded in non-primitive BCH code ijn under the monomorphism defined as; a(x bffl) —
a(a:%).

The above discussion shape the following.

Theorem 61 Let C,, be a primitive binary BCH code of length n = 2°—1 generated by r degree
polynomial g(x®) in Fa[z;aNg]. Then

1) there exist a b'n length binary non-primitive BCH code Cy;, generated by b'r degree
polynomial g(:cb%) in Fa[z; 17 Nol;

2) the binary primitive BCH code C,, is embedded in the binary non-primitive BCH code
Cpip, for each j > 1,

3) the binary BCH codes of the sequence {C }i>1 have the following embedding CL, —

b]n
. ('] o e

Hence we have the following relationships

FQ [33; aNo] C FQ [{L‘; %No] C FQ[ T, b%NO] C [ X, bJ No]
Fo [ac;aNo] Fo [I§%NO] N Falz;3 2 No] N Fa[z; B2 % No]
(z#)"-1) b2n

((:c%)bn—l) B ((mzﬂ) _1) - ((mj)wnfn'

IS

U U

U
Ch, — C} — (3 — ..

n b’n bin

Remark 62 g(z%) can be deduced from g(x iJ) by substituting zl = y and then replacing y by

ylﬂ_l:x .

a
b
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9(933) _ x§)106+($§)103+(x§)102+(x§)97+(x§)93+(xg)gl+($§)90+
2 2 2
9 9 9

Similarly, for

g(x%) _ (m%)llz—|—(ac§)108—|—(m§)105—i—(x%)m?—i—(x%)wo—i—(x%)gg—l—(w%)g‘l—i—
(x%)Ql+($%)90+(x%)67+($%)63+(w%)60+($%)57+(w§)55+
(29)° + (@9)% + (29)%° + (29)* + (@9)% + (29)'® + (@9)"° +
(29)12 4 (29)10 + (29)° + (20)" + (@5) + 1
we have

which is the generating polynomial of BCH code (45,23) having design distance dy = 6,7.
In this way we can obtain the non-primitive binary BCH code C45 from non-primitive binary

BCH code Cqy35.

From Examples 59 and 60 we deduce the following lemma that explains the relationship
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between designed distances and the minimal polynomials of the narrow sense BCH codes
Crs Cony, Co2pys ---Chinyy o-e-

a

Lemma 64 The exponents of the minimal polynomials mi(z®), (m});(z?), (myp)i(z¥?), ...y
(mgﬂ)z(:z:b%) of the codes Cp, Cpny Ci2py - Chin, --- are same, where i = 1, 3, ..., dop — 1. The
exponents of rest of the minimal polynomials of the code Cym, are b times exponents of the
remaining minimal polynomials of the code Cyi—1,,, whose exponents are b)~1 times exponents

of mi(xz*), with the same number of non-zero terms.
From example 59 and Lemma 64 we record the following observations.

Remark 65 Let v0, v, v2, ..., vJ be the code vectors corresponding to the generator polynomials
g(z®), g(x?b), g(acb%), e g(xﬁ), Then for design distance d; = 8, the code vector vJ contains the
code vector v which repeats b times after a particular interval having design distance dj—1=2.
Hence the corresponding generator matrices G;—1 and G have relation G =~ EBI{Gj,l. For
design distance d; > 8, we get the same relation of the generating matrices. If d;j_1 > 8,
then its code vector vi—1 will contain the code vector vI~2 which also repeats b times after a
fix interval. Hence v/ =2 repeats b times after a fix interval in the code vector vi. Therefore,
we get the following relationship of the generating matrices Gj_1 ~ @Z{Gj_z which gives G ~

@I{QGj_l ~ @I{j Go.

Example 66 On writing the corresponding code vectors of the generating polynomials

g(z3) = (28)0 4 (@5)B 4 (25)2 4 (25)7 + (25)3 + (23) + 1 and
g(wg) _ (x§)106+(x§)103+(m§)102+(xg)97+(w§)93+(xg)gl+(x§)90+
(.’L'%)Gl—l-(:U%)58+(.’L'%)57+(SU%)52+(.’L'%)48+(SU%)46+(.’L'%)45+(SU%)16+
(25)"3 + (29)"2 + (29)7 + (25)% + (25) + 1
we get

o' = (11010001000011001)
v? = (11010001000011001000000000000000000000000000011010001

000011001000000000000000000000000000011010001000011001).
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Clearly the binary bits of v' are properly overlapped on the bits of v2, in fact it is repeating
three time after a particular pattern. Hence the generating matriz Go ofg(:c%) will contain the

generating matriz G1 of g(xg) such that Go = ®3G.

4.2.1 General Decoding Principle

The binary BCH code C), is embedded in the binary non-primitive BCH code Cj;,, for any
positive integer 1 < j < m. So description of the decoding procedure of the code Cj;,, for any
fixed positive integer 1 < j < m is given. We use the decoding procedure which follows the
same principle as of the primitive binary BCH code.

Take o’ € Fij" as a received vector. We obtain the syndrome matrix of o/, S(a/) = e’ HT.
In this way, we calculate a table of syndromes which is useful in determining the error vector
e such that S(a’) = S(e). So the decoding of received vector a’ has done as the transmitted
vector v/ = a/ — e. We adopt the algebraic method for finding e from the syndrome vector
S(a’).

Let Cy,, be the binary non-primitive BCH code with length b/n and designed distance d/.
Let H be the (¢/ — 1) x b’n matrix over F,,j,. The syndrome of al € F2bj” as S(a’) = o/HT.

The polynomial form of a/ = (ag,a{,...,aijnil) is aj(xﬁ) = a% + a{(ax%) + ag(x%)Z + ..+

ainfl(mﬁ)bj"_l. So

[ 1 1 ]
o Q@+l o+ =2
S@) =1 a o] .oa, | ¥ Q¥R AR )
a(bjn—l)cj a(bjn—l)(cj+1) a(bjn—l)(cj—i-dj—Q)

S(@) =0 Sy Sop1 - Sevas

where Si, = ag) + a{ak + ...aijn_la(bj"_l)k =al(aF) fork=c,cd +1,...,d +d —2.
Now, let a codeword v € Cy,,, is transmitted and the vector received is a/ = v/ +e, where e is

the error vector. Then S(e) = S(a’). Let e(:cﬁ) = eo—|—el(x5)—i—eg(:):ﬁ)2+...+ebjn_1(xﬁ)bj”*1
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be the error polynomial. Suppose 41, ...,7; be the positions where an error has occurred. Then

e; # 0 if and only if ¢ € I = {iy,...,4;}. Hence e(:cﬁ) = el ez(xb%)l Since the code corrects

upto t errors, where t = VjQ_IJ . So we assume | < t, that is 2] < d’. Since S(e) = S(a’), we

have e(a®) = S, for k = ¢/, ¢/ +1,...,¢7 +d — 2. Thus the 2/ unknowns i1, ...,4; and e;,, e €

satisfy the following system of d/ — 1 linear equations in e;,, ..., €;, :
Zjeiaﬂ:Sj,j:cj,cj—i-l,...,cj—kdj—z ((7))
1=

We first obtain a solution for the error positions i1, ...,4;. We define the error locator poly-
nomial f(a:b%) = fo+ fl(:cb%) + f2($£)2 +..+ fl,l(azﬁ)l*I + (xb%)l Since f(a') = 0 for each
i = I, we have

fo+ @) + ..fia (@)™ + (@) = 0. (4.2)

On multiplying this equation by e;a*, we get
foeid® + fre;a TV 4 f qejaFHITVE 4 gD — 0 (4.3)

for each ¢ € I. Summing these [ equations for i = i1, ...,7; and using the relations (i), we

have

JoSk + f1Sk+1 + - fim1Sk4i—1 + Skt =0, (4.4)

for each j = ¢/, ¢/ +1,...,¢/ +1—1. Thus the [ unknowns fy, fi, ..., fi_1 satisfy the following

I x [ system of linear equations:

S Seiv1 o Seyia fo Seivi
Scj+1 Scj+2 Scj+l fi Sci+l+1 ..
= ((i2))
| Seivicr Seivr - Seiga—2 | | fier ] | Seiva-1 |

Let S denotes the coefficient matrix in the above linear system. It can be verified by direct

computation that S = VDVT, where
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1 1 .1 [ eaie 0 .. 0 ]
alt a2 al 0 i a2¢ L. 0
V = 3 D -
I ait (=1 qi(=1) a1 | 0 0 . eac ]

The matrix V is a Vandermonde matrix. Since « is a non-primitive b'nth root of unity
in F,,;, and iy, ...3; are distinct integers in {0, ..., bn — 1}, we have o', ...,a% are all distinct.
Hence det V' # 0. Further, ¢;,, ..., e;; are all nonzero and hence det D # 0. Therefore det S # 0,
and linear system (i7) has a unique solution.

We have assumed that the number of positions where an error has occurred is z < t. If the
actual number of error positions is less than z, then for any choice of distinct positions i1, ...7,,

the coeflicients e;, , ..., e;, cannot be all zero. So det D = 0. Hence z is the greatest positive

integer < t such that system (i7) has a unique solution. Therefore we find the value of z by
taking successively z = t,t—1, ... in system (i¢) until we have a value for which system (i7) has a
unique solution, which gives us the error locator polynomial f(xb%) = fo+ f1 (l‘b%) + fg(l‘b%)z +
ot fz_l(xﬁ)z_l + (xb%)z Now to find the roots of f(xb%), we put v = of, i =0,1,.... By
the definition of f (xb%), these roots are o1, ...,a%. Thus we find the unique solution for the
unknowns 41, ...7,. Having thus found the error vector e, we decode the received vector a as the
codeword v/ = a/ — e.

To compute the syndrome of a binary BCH code we have Sy = (57)2, Sg = (S3)? and so
on. We can compute the syndrome more easily by using the division algorithm. If m(:cb%) is
the minimal polynomial of «, then S; = a’/(a) can be obtained by finding the remainder on
dividing aj(xﬁ) by m(a:b%) and then putting 2w = init. In general, to find Sy, we divide
aj(:nﬁ) by m(xb%) and find the remainder.

The decoding of the code C, from the decoding of the code Cj;, can be obtain as; take

Y~' In this way the code polynomial vj(xﬁ) in Fo[z; 5 Nolpiy,

zi = y, which gives 25 =y
becomes v/ (y). Again on replacing y by ¥’ ', we get v/(y? ') = v(2). The remainder after
dividing v7(z?%) by (2%)" — 1, will be the decoded vector of Fy[z; 7NoJpn and the generator

polynomial g(z#) divides v7(z?).

80



The above discussion can be sum up in the following steps.

Step I: For binary non-primitive BCH code Cy;,, with designed distance d’, let a’ (a:b%) be
the received polynomial with [ errors, where [ < ¢;.

Step II: Compute the syndromes and find the value of [, such that the system (2) has a
unique solution.

Step ITI: Step II gives us the error locator polynomial f(:zcb%) Now find the roots of f(:vb%)
through which we obtain the error polynomial e(xﬁ).

Step IV: We decode the received polynomial a’ (xb%) as v/ (xb%) =a’ (:cb%) - e(xﬁ).

Step V: The code vector v/~! in Cj,-1,, can be drag out from the decoded code vector v/ in
Cyi,, by putting Tl = y in corresponding code polynomial v/ (asb%) This gives v/ (:cb%) = vl (y).
Again by replacing y by y® we get v/ (y) = v/ (y*) = v’ (xbﬂ%l)

Step VI: Divide v’ (:cbﬂ%l) by (mbﬂ%l)bjil”—l, the remainder v/ (mﬁ) will be in Fo[z; 55 NoJpi-1p,
and the generator polynomial g(mbﬂ%l) divides v7 (mbﬂ%l) Then its corresponding vector v/ €

Chi-1p,-

Step VII: If we replace y by y” we get v/ (y) = vi(y”) = v(2%). So on dividing v/ (z)
by (z%)™ — 1, the remainder v/ (z%) will be in Fy[z;aNg],, and the generator polynomial g(x?)
divides v/ (x). Then its corresponding vector v/ € C,.

Illustration

Let Ci35 be a (135,29) binary non-primitive BCH code with designed distance d = 4.

Assume that

is the received polynomial. The error position [ = 2 and the syndromes are S; = a?(a) = o',

Sy = (81)? = a®2, S3 = a%(a®) = a'% and Sy = (592)? = a**. The error locator polynomial is
given by f(x%) = fo+ f1 (a:%) + (x%)2 Then we have the following system of equations for fy,
fi.
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all a22 fO OllO5
0422 OélO5 fl Oé44
105 22
a a 105 40
Jo | afT e | | ¢ |«
- 22 11 -
a o 44 11
f1 ol o4 « &

Hence the error locator polynomial is f (1:%) = ot + all(a:%) + (:c%)Q. Trying successively
z=1,0,02, ..., we find that o and o3® are the roots. Hence the error polynomial is e(x%) =

(1‘%)2 + (33%)38. Thus we decode aQ(x%) as

1)2(253) _ a//(m%)+e($%):($%)106+($%)103+(

8

%)102 + ($%)97+ (1,%)93_'_
2 2
9 9

()% + (25)% + (25)%0 + (28)%8 + (28) + (2

Now letting zh = y, this gives y3 = x%, we get

PP = (15310 1 (43108 1 (53)102 1 (1397 1 (43)98 4 (43)01 4 (43)%° 4 (y3)B
H2)P + )T+ (02 + )+ D)+ DT+ )+ )P
+@)P+ )+ 00+ () + 1

v2(y3) _ Uz(xg) (x§)106+(x§)103+(:u§)102+(1:§)97+(x%)93+(x§)91+
(x%)90+($§)61+($%)58+($§)57+(x%)52+($§)48+($%)46+

Where v2($§) € Folz; 2Nolas.

Now, after dividing v2(x%) by (x%)45 — 1, we obtain the remainder vQ(xg) as

V2(x8) = (23)10 + (@3)B 4+ (23)2 + (25)7 + (25)® + (23) + 1 € Cs,
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where 1)2(:1:%) is the generator polynomial of non-primitive binary BCH code (45,29). Again
on letting z% = y, this gives y3 = 22, we get v2(2%) = (@) B + ()12 + (22" + (22)3 + 1 € C15,
where (45 is primitive binary BCH code (15,11), it is due to the reason that the generator
polynomial g(z?) = (z?)* + (2%) + 1 divides v(z?).

4.3 The Algorithm

In this section we propose algorithm in order to calculate non primitive BCH codes of length
b/n using primitive BCH code of length n. Both of the algorithm that is: encoding and decoding
of codes is carried out in Matlab. The process of developing algorithm is divided into two major

steps, i.e., Encoding of non-primitive BCH code of length b/n and its decoding.

4.3.1 Encoding of non-primitive BCH code of length i/n

In encoding we first calculate primitive polynomial of degree s by invoking Matlab’s bulit in
command "bchgenpoly". After this operation, non-primitive polynomial of degree bs is calcu-
lated. With the help of its roots say o/, elements of Galois field GF(2") are calculated such
that the unity is reached that is (o )bj" = 1. Through these elements cyclotomic cosets are
determined which gives all the minimal polynomials. Finally we get non-primitive polynomial
with the help of these minimal polynomials. Then design distances are calculated through
which number of errors that can be corrected in each BCH codes is determined.

Various modules are developed in order to achieve specified result. Table 13 shows list of

these methods and its description.
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Table 13: Encoding modulation description

Module Input Output
a | Elements of Galois Field | b n o [1]
b | Bchgenpoly n, k gli]
¢ | Cyclotomic_cosets o'[i], b, k| c[]
d | Design_distance cli] d
e | error d t

Algorithm routines are explained as follows:

a. Elements of Galois field (alpha array o/[i])

This module calculates all the elements of Galois field GF(2") using a root say o’ of non-
primitive polynomial of degree bs, such that it gives identity at power bn. We call them alpha
array o/[i] and index array Alfindez]|. Given input is b * n, the non-primitive polynomial of
degree bs gives the first element of the array «o'[i]. By increasing its power each element of the
array o/[i] is calculated in outer loop. Then in nested while loop their corresponding values are
determined in such a way that if the value of any element in the array exceed bs we take the
remainder rem(index,bs) as mentioned in line 9 of the algorithm. The loop breaks when the
condition for identity is met.

BEGIN

1 INPUT b and n

2 bn—bxn

3 Initialize Afindex] from 1 to bn — 1

4 Initialize o/[i] — 0

5 Initialize index < 1

6 WHILE index # 0

7 mark Alindex] — 0

8 Initialize v +— index

9 Calculate next candidate, p;, by rem(index, bs)
10 o[i] —w
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11 WHILE current position of Afindex] =0

12 IF current position < Alindex] size
13 increment %

14 ELSEIF

15 10

16 BREAK

17 ENDIF

18 ENDWHILE

19 ENDWHILE

END

b. bchgenpoly (g]i]):

Its a Matlab buit in fuction and its complete documentation is found under http://www.mathworks.com /hel
In this module we get the generator polynomial of primitive BCH code of length n.

1 INPUT n, k

2 OUTPUT g]i]

c. Cyclotomic_cosets(c[i]):

Given o/[i], dimension of code k and positive integer b, cyclotomic cosets c[i] are calculated.
Length of c[i] is initialized to at max b=k, in short all elements should not exceed the maximum
length. The loop start from 2 to max length and calculate unique values in given o/[i]. The
process stops when we get sum of two elements = 2. Once cyclotomic cosets are calculated we
can calculate minimal polynomials for BCH code.

BEGIN

1 INPUT &[], b, k

Initialize cal coset < 0
Initialize len cal coset < 0

Initialize code length — bx k

Initialize code «— b* k

2
3
4
5 Initialize len coset «— length of c[i]
6
7 FOR ¢+ 2tolen_ coset

8

cal coset < c[i] at position i
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9 IF i # 2 THEN

10 code length +— bk cal coset

11 ENDIF

12 PRINT c[i]

13 END FOR

END

d. non prim_gen poly(¢'[i])

Given primitive polynomial p[i| and b. First find the highest degree of p[i] i.e., s. Initial
degree of non-primitive polynomial i.e., bs. Initialize each element of p[i] of length bs to 0.
Iterate loop from 2 to bs in order to initialize coefficent array to 1. Finally iterate each element
if coeft _array and modify the value if p'[i] at position i to the value of coeft array at i. Finally
insert 1 at position 0 of p'[i] when its first element is 0. The output of this module play an
integral role for calculating non primitive BCH generating polynomial. It is denoted by g/ in
our algorithm. We are interested in rows of obtained matrix. Using the matrix we obtained,
the code for non-primitive generating polynomial of length b. Finally these values are printed
out and saved in file for further usage.

BEGIN

1 INPUT p[i], b

2 Initialize len < length of pl[i]

3 Initialize size array +— len x b

4 Initialize p'[i] of length size array i.e. p/[i] — 0

5 Initialize index < 1

6 Initialize len coef array < 0

7  FOR i taking values from 2 to len

8 IF p'[i] at ¢ # 0 THEN

9 Initialize coef array < bx* (i — 1)
10 increment index

11 ENDIF

12 ENDFOR

13 len_ coef array < length of coef array
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14  FOR j taking values from 1 to len coef array

15 g/(i) at position j of coef array < 1

16 ENDFOR

17 g1i] — 1 to p/i]

18  PRINT g/[i]

END

e. designed distance (d):

Here design distance is calculated from ¢'[i]. The length of coset array ¢l is determined and
then iterate index from 2 to cl, calculate next index ni by increment current index. If ni < ¢l
then next element of coset is calculated to the value of coset array at position of next index.
Otherwise the bn is assigned to next coset. The whole process iterates to lencoset coset and
finally stops at the last coset. Design distance d is calculated from the last value of coset array

at position 1.

BEGIN

1 INPUT ¢[i] i.e. coset array

2 Initialize lencoset < length of coset array
3 Initialize next index < 0

4 Initialize next coset — 0

5 FOR index taking values from 2 to lencoset
6 next index 4 increment index

7 IF next index < lencoset THEN

8 next coset < coset array at position next index
9 ELSEIF

10 next coset — bn

11 ENDIF

12 ENDFOR

13 d ~— next coset at position 1.

END

f. error :

For given designed distance d, the error correction capability of a code ¢ is calculated.
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BEGIN

1 INPUT d.
2 error t «— (d—1)/2
END

4.3.2 Error correction in received polynomial (Decoding)

In decoding step for a received polynomial, we first calculate the syndrome matrix S[i]. Then
the D_matrix is calculated that should be invertible. After this error locator polynomial is
determined whose roots give the exact position of errors in the received polynomial. Finally
the received polynomial is corrected.

To find the error vector and obtain the corrected codeword following scheme is used. Table

14 shows list of the following steps for error correction.

Table 14: Decoding modulation description

Module Input Output

a | Syndrome Matrix | d, bn, bk, &/, r]i] S'[4]

b | Calculate D matrix | ¢, S'[i] D _matrix

¢ | Is D invetible t, D _matrix | D |#0

d | error_locator poly | ¢, D _matrix,S’[i] f17]

e | error_position 119 elt]

f | error values t, S[i], D_matrix, e[i], bn, pm[i] | evl[i]

h | Correct recieved t, bn, eli], evli], r[i], o/ vli]
polynomial

a. Syndrome matix (S/[i]):

Given design distance d, bn, message length bk and recieved polynomail r[i], syndrome
matrix S’[7] can be calculated. The length of S’[i] is initialize to bn — bk. Furthermore S’[i] is
initializes by GF[i]. Nested loop are used to calculate S’[i]. Upper loop is limited to the length

of bn + d — 2, where S’[i] equalizes to power of o/ and in nested loop S’[i] equalize to power
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of S'[7] and the iterator. Once the values of S’[i] are filled with the above values of S’[i], then

these S'[i] can be calculated as product of r[i] and (S’[4])".

BEGIN

1 INPUT d, bn, bk, «, 7[i]

2 Initialize lenSyndrome < bn — bk

3 Initialize S/[i] < GF of len Syndrome

4 Initialize valueSynd < 0

5 Initialize valueSynd < GF' length bn

6 Initialize loopLimit < bn +d — 2

7 FOR ¢ «— bn to loop limit

8 valueSynd + o'

9 FOR j — 1 to bn

10 evalSynd < valueSynd powers j
11 ENDFOR

12 S1[i] < received poly * transpose of evalSynd
13 ENDFOR

14 PRINT S7[i]

END

b. D matrix (D]i]):

Given error t and S'[i], D _matrix is calculated and then double loops operation on syndrome

matrix is carried out and suitable values from syndrome matrix is scanned out. The process is

as follows. First calculate GF[i] of length ¢ and D-matrix is initialized to that value. D[] in

nested loop for loops. Both loops iterates from 1 to ¢. D[i] values are S’[i] values at position 4

of sum of loops iterators to 1.

BEGIN

1 INPUT ¢, S1[i]

2 Calculate Galois field length of ¢

3 Initialize D _matrix +— Galois filed calculated in previous step
4 FOR index i1 taking from 1 to ¢

5 For index 2 taking from 1 to ¢
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6 D matrix — S/[i] at position il 442 — 1

7 ENDFOR
8 ENDFOR
END

c. Is D invertible:

This module check if D[é] is invertible. If D[i] is invertible, then it is fine otherwise error, ¢,
is decremented and D matrix is again calculated. These operations are carried out till error ¢
becomes 0. If ¢t becomes 0, then algorithm will exit.

BEGIN

1 INPUT ¢, D_matrix

2 IF D _matrix is invertible THEN
3 continue algo // goto step 5.
4 ELSEIF

) decrement t;

6 IF t equals 0

7 goto STEP 3

8 ENDIF

9 ENDIF

10 // Panic Condition

11 IF t equals 0

12 Print ERROR cannot be corrected.
13 EXIT algo

14 ENDIF

END

d. error locator polynomial (f[i]):

Given input ¢, D _matrix and S’[i], f[i] is calculated. First initialize product matrix pm/i]
and f[i] to GFi]. Then iterate the loop from 1 to ¢, pm[i] is filled with the value of S’[i] at
t +1i. After the loops ends, the value of (S'[i] * pm[i])~! get equals to temporary matrix. Once
the temporary matrix is acheived f[i] is taken as the transpose of that temporary matrix.

BEGIN

90



—_

INPUT ¢, D[i], S|
create o/t

Initialize product matrix pmli] — o

Initialize f[i] — o
Initialize temporary matrix T"[i] of size t — 0
FOR index i taking values from 1 to ¢
pmli] < S[i] at position t + i

ENDFOR
T"li) — (Sl = * pmli]

F1i) — (T}
11 flt+ 1] — 1 // coeflicient of f[t +1] =1
END

© o0 N O Ot e W N

—_
[an}

e. Error position matrix (e[i]):
Based on f[i] we can determine error position. First the roots of f[i] is calculated and then
we take its inverse. The values we obtain are in matrix form and these manifest error position.

BEGIN

1 INPUT f[i]

2 Initialize error pos matrix e[i] < 0

3 Initialize root matrix +— 0

4 root_matrix < roots of f[i]

5 e[i] — inverse of elements of root matrix
6  PRINT e[i]

END

f. Error values (ev[i]):

In the previous step we have calculated error position, so once error position is determined
we can easily calculate their respective values. The nested for loops are used to determine error
values. Both of the loops iterate from 1 to ¢, in the first loop values from D matrix can be
taken while in the next loop value of pm[i] can be taken along with S’[i]. Finally ev[i] get
equated to (D_matrixspm[i]) .

BEGIN
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1 INPUT ¢, S[i], D_matrix, e[i], bn, pm][i]

2 Initialize error value matrix ev[i] < 0

3 FOR1<il1 <t

4 FOR 1 <2<t

5 D matrix elements at i1 and i2 < e[i] at 2 % (11 +bn — 1)
6 ENDFOR

7 pmli] elements at position i1 < S[i1]

8 ENDFOR

9 ev[i] — (D _matrix * pml[i])~!

10 PRINT ev]i]

END

g. Correct received polynomial:

Once we have calculated error positions and error values the received polynomial can be
corrected. Here input parameters are e[i], ev[i], r[i] and bn. First estimated codeword denoted
by est_code is calculated by various operations i.e., taking loops to ¢, bn, and power of Galois
field. The received polynomial is corrected by subtraction of error polynomial and we get the
corrected codeword v]i].

BEGIN

1 INPUT ¢, bn, eli], ev[i], r[i], o/
calculate GF[i] of length bn.

Initialize est _error «— GF[i]
Initialize est _code — GF[i]
Initialize alpha_val < 0
FOR1<i<t¢t
FOR1<j<bn

alpha_val — (/) 771

© 00 N O Ot ks W

IF alpha val =element e[i] at « THEN

—_
)

est_error position j - est_error at position j + ev[i] at 4
ENDIF
12 ENDFOR

—_
—
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13 est_code < r[i] + est_error
14 PRINT est code
15 elements of pm|i] at i1 «— S’[i] elements at i1

16 ENDFOR

17 ev[i] — D_matrix * pm][i]
18 PRINT euv]i]
END

Example 67 For the code of length 45 simulation is carried out as follows: in this case b =3
and n = 15. Using n =15 and k = 11, Matlab’s build in function genpoly is invoked in order
to find primitive polynomial, i.e., p(i) = z* + x + 1, as explain in Table 1. With b = 3 and
p(i) = 41, non_ primitive_ poly function is invoked, as described in Table 1 step 4,
here non primitive polynomial named as p/(i) is obtained. Output for p/(i) is x'2 + 2% + 1.

Cyclotomic cosets i.e., coset array values are also calculated. First non_ primitive_
sequence in step 1 of Table 1, is invoked to find the power of alpha till o*® = 1. With coset _array
in hand, the designed distance d can be calculated, which is the first element of next coset_array.
Last but not the least error t is calculated against the given designed distance d. Code rate R is
also calculated against each k1 and bn but is not mentioned in previous section.

The output are as follows:

Cyclotomic cosets for (45,33) =[1 2 4 8 16 32 19 38 31 17 34 23],

t1 =1 and Ry = (0.73333).

Cyclotomic cosets for (45,29) = [3 6 12 24],

t1 =2 and Ry = (0.64444).

Cyclotomic cosets for (45,23) =[5 10 20 40 35 25],

t1 =3 and Ry = (0.51111).

Cyclotomic cosets for (45,11) = [7 14 28 11 22 44 43 41 37 29 13 26,

t1 =4 and Ry = (0.24444).

Cyclotomic cosets for (45,5) = [15 30],

t1 =10 and Ry = (0.11111).

Now comes error correction in received polynomial. In this the code (45,29) is taken under

93



consideration, with designed distance dy =5 and t1 = 2. Let the received polynomial be
M P16 4 213 12 Il T 3

With the given values dy, k1, and received polynomial, syndrome matriz is calculated. The out-
put for syndromes are: S; = o2, Sy = o, S3 = o, S = o®. Next we arrange syndrome values
in linear equation form that is Ax = B. Where A = [S1, Sa; Sa, S3] and B = [Ss, S4]. Matriz
A is named ast_matriz of t X t dimension. Then we find the whether the t _matriz is singular
or not. If the determinant of t matrix is non zero then error locator polynomial is calculated.
Next error position is calculated from sigma_ matrix which is obtained from the coefficients of
error locator polynomial. For the given values, error positions are 44 and 11. Hence the error
polynomial is x** + 2. On subtracting error polynomial from received polynomial the following
code polynomial 16 + 213 + 212 + 27 + 23 + o + 1 is obtained. All of the above equations are

obtained by using Matlab symbolic toolboz.

With the help of the above discussed algorithm many examples on non-primitive BCH codes
of length bn, b?n, b3n are constructed corresponding to primitive BCH code of length n. The
parameters for all binary non-primitive BCH codes of length bn, b*n, b>n where n < 26 — 1 and

b is either 3 or 7 are given in Table 15.

Table 15: BCH codes of length n < 2° — 1

n bn kl tl Rl b2n kQ tg R2 b3n k3 t3 R3

7 49 28 1 0571 343 196 1 0.571 2401 1372 1 0.571

7 3 0142 49 3 0.142 343 3 0.142
4 10 0.081 28 10 0.081 196 10 0.081
1 24 0.020 7 24 0.020 49 24 0.020
4 73 0.011 28 73 0.011
1 171 0.002 7 171 0.002

4 541  0.001

1 1200 0.000
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n bn

15 45

63 189

33
29
23
11

171
165
147
129
123
105
87

81

ty

~N A~ W N

22

EN B NG S SO U

Ry

b%n

ko

0.733 135 99

0.644
0.511
0.244
0.155
0.111
0.022

0.904
0.873
0.777
0.682
0.650
0.555
0.460
0.428

567

87
69
33
29
23
11
7
)
1

513
495
441
387
381
327
273
255

to

~N A~ W N

13
22
31
67

N O Ot B~ W N

Ry

0.733
0.644
0.511
0.244
0.214
0.170
0.081
0.051
0.037
0.007

0.904
0.873
0.777
0.682
0.672
0.576
0.481
0.449

b%n

405

1701

297
261
207
99
87
69
33
29
23
11

1539
1485
1323
1161
1143
981
819
765

t3

N e W N

13
22
31
40
67
94
202

N O Ot s W N

0.733
0.644
0.511
0.244
0.214
0.170
0.081
0.071
0.056
0.027
0.017
0.012
0.002
0.904
0.873
0.777
0.682
0.671
0.576
0.481
0.449
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n bn k t R; b%?n ky to Rsy b®n ks t3 Rs

63 189 75 11 0.3968 567 237 11  0.4179 1701 711 11  0.417
57 13 0.3015 183 13 0.3227 549 13 0.322
54 15 0.2857 177 15 0.3121 543 15  0.319
36 16 0.1904 123 16  0.2169 381 16 0.224
30 19 0.1587 105 19  0.1851 327 19  0.192
24 22 0.1269 87 22 0.1534 273 22 0.160
18 31 0.0952 81 31 0.1428 255 31  0.149

16 34 0.0846 7™ 34 0.1322 237 34 0.1393

10 40 0.0529 57 40  0.1005 183 40  0.1075

7 46 0.0370 54 46 0.0952 177 46  0.1040

1 94 0.0053 36 49  0.0634 123 49  0.0723

30 58  0.0529 105 58  0.0617

24 67  0.0423 87 67 0.0511

18 94 0.0317 81 94 0.0476

16 103 0.0282 75 103 0.0440

10 121 0.0176 57 121 0.0335

7 139 0.0123 54 139 0.0317

1 283 0.0017 36 148 0.0211

30 175 0.0176

10 364 0.0058

1 850 0.0005

Table 16 manifests the error and code rate values against some selected codes which we
have obtained after simulating our algorithm. These codes are of length bn, b?>n and b3n, where
n <26—1,and b =3, 7. ki, k2 and ks are dimensions of the codes C} , CZ?Qn and Cg‘gn respectively.

Interleaved Codes

From Table 16, it is observed that corresponding to a primitive (n, k) code there are (bn,

bk), (b?n, b%ks), (b®n, b®k) codes with same error correction capability and code rate. These
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codes are found to be interleaved codes (Interleaving is a periodic and reversible reordering of
codes of L transmitted bits) of depth b, b* and b3. Hence along with random error correction
capability these codes can correct burst of error of length b, b> and b respectively. The term
burst of error means that two or more bits in the received word has changed from 1 to 0 or from
0 to 1. The length of the burst is measured from the first corrupted bit to the last corrupted
bit. Similarly for the code (bn,bk) the codes (b*n,b%k) and (b>n, b>k) are interleaved codes of
depth b? and b3 respectively.

The code (49, 28) is interleaved code of depth 7, which is formed by interleaving the following
7 codewords from (7,4) code that is,

O 000O0O0U O0,(1101000.,.000000 0,

(O 0000O0TUO0,((MOO0O0O0GO0TO0,0OO0OO0O0O0 0 0,

(OO0 0 0 0 0 0),onwriting them column by column it gives

v! = (01000000100000000000001000000000000000000000000000) € C2,.

In a similar way, codeword of (343, 196) and (2401, 1372) are obtained by writing column
by column 7 codeword of C3, and C3,3. Therefore for decoding a received polynomial in C3,4
one can easily reverse the process and correct errors in the codeword of either Cig or C%.

We conclude this chapter as follows:

1) Existence of a sequence of binary non-primitive BCH codes of lengths b™n, where m is
a positive integer, is ensured against a given n length primitive binary BCH code.

2) The sequence of embeddings of the binary BCH codes is obtained and the binary BCH
code of length »/n has higher code rate and error correction capability than binary BCH code
of length b~ !n.

3) The data configurated through length &/ ~!n can be transmitted and decoded under binary
BCH code of length b/n.

4) A method is devised by which we can improve the data/information transfer and recieving
with better trade off.study.

5) An algorithm for the construction of non-primitive BCH codes ngnof length b/n, where
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J is a positive integer and n is length of primitive binary BCH code C),, is given.

6) Corresponding to a primitive (n, k) binary BCH code C,, there are (b'n, b'k) codes with
same error correction capability and code rate. These codes are found to be interleaved codes of
depth &/. Therefore along with random error correction capability these codes can also correct
error burst of length b/,

This work is further extended over the Galois field Fy.
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Chapter 5

Construction of non-primitive BCH

codes over the field Fj)

In this chapter, construction of BCH codes over the field Fy is introduced. For this initially a
primitive BCH code C, of length n an ideal in the monoid ring F4[z; aNg],, is constructed and
based on it existence of a non-primitive BCH code Cy,, of length bn is investigated, such that
the code C, is embedded in Cp,. Furthermore we have compared the efficiency of BCH codes

constructed over fields Fy and Fy.

5.1 BCH-codes as Ideal in the ring F)[z;aN],

Let Fy = {0,1,a,0® = 1 + a} be the finite field. The construction of BCH codes in monoid
ring Fy[x; aNg),, is similar to the construction of BCH codes in Fy[z],,. For this, let ¢,d,q = 4
and n be the positive integers such that 4 < d < n with ged(n,4) = 1 and n = (4)® — 1, where
s is the degree of a primitive irreducible polynomial in F4[x; aNy]. Consequently, the n length
binary BCH code C,, has generator polynomial of degree r given by g(z%) = lem{m;(z®) : i =
c,c+1,...,c+d— 2}, where m;(2%) are minimal polynomials of v for i = ¢,c+1,...,c+d — 2.
Where 7 is the primitive nth root of unity in Fys, an s degree Galois field extension of F4. Since
m;(x®) divides (z®)" — 1, it follows that g(z®) divides (z*)" — 1. This implies C,, = (g(z%)) is a
principal ideal in the factor ring F4[z; aNg),,.

In the following example, primitive BCH codes in Fy[x; aNp]15 are considered and a variation
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in error correction capability and code rates have been noticed.

Example 68 Let p(z?) = (22)? + (22) + a € F4[x;27Z¢] be the primitive polynomial. Then
n=42—-1=15. Let £ € Fy, satisfy the relation €2 = & + a. Using this relation we get
€% = 1. Hence, £ is the primitive 15th root of unity and p(x?) is the minimal polynomial of
€. Since g(x?) =lem{m;(2?), i = ¢,c+ 1,...,c +d — 2}, therefore we first calculate m;(z?). By
[27, Theorem 4.4.2], €,€*, have same minimal polynomial my(z2) = p(z?). Let mo(x?) be the
minimal polynomial for & and €. Using above relations we get ma(z?) = (22)% + (22) + o2.

Similarly we get

ms3(z?) = (2?)? + ?(2?) + 1, ms(2?) = (z%) + amg(z?) = (22)* + a(z?) + 1,

mr(z?) = (2?) + a(z?®) + a, mio(z?) = (222 + a2, mi1(2?) = (22)? + o?(2?) + 2.

The BCH code with designed distance d = 2 has generator polynomial g(x?) = mq(z?) =
(22)2 + (22) + . On writing its coefficients in ascending order with respect to power of (x%) we
get all. The following table discuss BCH codes for different designed distances, coefficients of

generator polynomials, error correction capability and code rate.

Table 16: BCH codes of length 15

(n,k) | d | coeff(g(z?)) t| R
(15,11) | 3 | 11001 1]0.73
(15,9) |5 | laalla?®l 2 0.6
(15,6) |7 | al0alac?a®l 3104
(15,3) | 11 | a0la?a?0a?lacc’al | 5| 0.2
(15,1) | 15 | 111111111111111 7 | 0.06.

Where d,t and R denote the designed distance, error correction capability and code rate of the
code of length 15 over the field Fy respectively, and coef f(g(x?)) denotes the coefficient of the

generating polynomial g(x?).
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5.2 BCH-codes as Ideal in the ring F[z; N[y,

For the construction of a non-primitive BCH code in F4[z; #No]sy, we choose only such a s degree
primitive irreducible polynomial p(z®) € F4[z;aNy] for which there is a bs degree irreducible
polynomial p(z%) in Fylz; 7No], whereas it is not true in general. For illustration see the
following list of few irreducible polynomials of degree bs in F4[x; $No] corresponding to primitive
irreducible polynomial of degree s in Fy[z;aNp]|. For p(z®) € Fy[z;aNy], p(z3) e Fa[z; §No],
p(x3) € Fylx; £No], p(x7) € Fylx; 2Np]. For the sake of convenience replace 2%, z3, 25,27 by

x,y, 2, w respectively.

Table 17: Non primitive irreducible polynomials against primitive irreducible polynomials

deg p(z) b p(y), p(z), p(w)
2 22 4+ + o 3,5 W+P+a, 20425 +a
3 B4+ 4+ o 3,7 v+ 8+ o, w 't Fw +a
4 43+ +a 3,5 2+ Pt a, 220+ 25 4P
) P+ r+a 3 yB+3+a
6 54224+ 3,5, Y18+ 8+ +a, 230 4 210 4 25 4
7 w2 + w4+ 0T+ o

7 o7 + %25 + o?x + o? 3 v+ a2y’ + a?yd + o?
8 |28 +ab+at+al+a+a?] 3,5 Y2+ oy + 12+ 8 93 +

240 4 530 4020 4 10 4 5 L 2
9 29 + ax® + 2t + o? 3,7 | 2" +ay®® +y2 4+ a?, w?" + aw!® + w'? + o?
10 219+ a2’ + oz +a 3,5 | 39+ a?yt® + a?yd +a, 290 + 022 + %20 +a

One can easily verify Table 18 with the help of GAP4. Table 18 shape the following propo-

sition.

Proposition 69 Let p(z®) € Fy[z;aNo] be a primitive irreducible polynomial of degree s €
{21,31,51,61}, where | € Z*. Then the corresponding bs degree generalized polynomial p(x%) €
Fy4[z; $No] is non-primitive irreducible polynomial for b € {(3,5), (3,7), {3}, (3,5,7)} respectively.
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As a consequence of Table 17, the primitive and non-primitive BCH codes of lengths n and

bn respectively are obtained.

Table 18: BCH codes of lengths n and bn

s n bn

2 9,15

3 7 21,49

4 15 45,75

6 63 189, 315, 441

7 128 384

8 255  765,1275

9 511  1533,3577

10 1023 3069,5115

124094 12282,20470,
28658

Theorem 70 Let n = 4° — 1 be the length of primitive BCH code Cy,, where p(z®) € Fy[z; aNy]
is a primitive irreducible polynomial of degree s such that p(x%) € Fy[z; $No| is a non-primitive
irreducible polynomial of degree bs. Then
1) for positive integers c',dy,bn such that 2 < di < bn and bn is relatively prime to 4, there
exists a non-primitive BCH code Cy,, of length bn, where bn is order of an element o € Fyps.
2) the non-primitive BCH code Cy,, is defined as

Con = {v(a:%) € Fy[z; %NO]bn cv() =0 foralli=c,ct +1,...,ct +dy — 2.
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Equivalently, Cy, is the null space of the matrix

1 ac' a2 abn=1)c!
i 1 OtclJrl a2(cl+1) a(bnfl)(clJrl)
1 ' tdi—2  2(ct+di-2) abn=1)(c" +d1-2)

Proof. 1) Since the polynomial p(z%) € Fylz; #Np] is irreducible but not primitive, it
follows that the code constructed through it is also non primitive. However, there is an element
o € F s of order bn vanishes p(z5). Therefore, bn divides 4% — 1. Now, let m;(x) € Fyfa; 7No]
denote the minimal polynomial of o’ and g(aj%) be the lem of distinct polynomials among

mi(xd), i =cl, e +1,..., ¢! + dy — 2; that is,
g(z?) =lem{m;(z?) i =c' e +1,...,¢t +dy — 2.

As my(x) divides (25)" — 1 for each i, therefore g(z%) also divides (x# )" — 1. This implies
that Cp, is a principal ideal generated by g(x?t) in the factor ring Fy [#; $NoJp,. Hence Cy,, is a
non-primitive BCH code of length bn over F4 with designed distance d;.

2) Let v(z%) € Cpp. Then v(zt) = g(xt)g(z?) for some q(zt) € Fylz; #No], where g(zb) is
the generator polynomial of Cy,. Hence v(a) = 0 for all i = ¢!, ¢! +1, ..., ¢! +d; — 2. Conversely,
take v(z?) € Fylz; #Nolpn such that v(a’) =0 for all i = ¢!, ¢! + 1,...c! + di — 2. This implies
m;(x+) divides v(z5) for all i = ¢!, ¢! +1,...c! +-dy — 2 and therefore g(z5) divides v(x?). Thus

v(w%) € Cp,,. For the second part, we let

a a a a/
v(zb) = vg +v1(25) + oo+ Vp_1 (25)77L € Fyla; gNg]bn.

Then v(a?) = 0 for all i = ¢!, ¢t + 1,..ct + dy — 2 if and only if Hv? = 0, where v =
(v0, V1, ., Von—1) € FY". This proves that Cp, is the null space of the matrix H. m
The following example illustrates the construction of a non primitive BCH code of length

3n in F4[l‘; %No]gn.

Example 71 Corresponding to a primitive polynomial p(z?) = (22)? + (22) + « in Fy[z; 2N
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there is a non-primitive irreducible polynomial p(x%) = (x%)ﬁ + (:L’%)3 + a in Fylz; 2Ng] (see
Table 18). Let f € GF(4%), satisfy the relation 3% + 33 + 1 = 0. Using this relation we obtain

the following list of elements.

Table 19: Distinct powers of B in GF(4°)

56263+O‘ 52020465 534264“‘@64

87 = g4+ aB 81 =14 a+apd 8% = 85 4 o’

B =p° + ap? 5% =B+ af +ap B =1+ +ap’
69204‘1'53“‘0463 523:B2+a62+a55 537:ﬁ+64+a64
810 — g4 1 o + o BU —1 1t B 838 = 82 4 35 4 af®
511255+aﬁ2+a55 ,625:,6+O£,3+ﬁ4 ,839:14-0453

612:1"1’5?) 626:B2+a52+65 640:B+aﬁ4

513:5+/64 ,3272044-0453 ,3412524-0455

ﬂ14252+,85 /8282055_}‘&54 ,842:1+05+B3+04/33

615204 629:0562“‘0465 643:6+a6+ﬁ4+a64
816 — of B0 —14a BY¥ = 821 B+ 8% + affP
G —— 83 = B+ af 8% -1
61820[53 ﬁ32:ﬁ2+a62

819 — o8t 533 — 83 4 o33

Thus bn = 3 x 15 = 45. Now, to calculate generating polynomial g(:zc%), we first calculate
the minimal polynomials. By [27, Theorem 4.4.2], B, 84,816, 819, 83, 33 have same minimal
polynomial ml(xg) = p(x%) = (1%)6 + (1‘%)3 + a. Let mg(l‘%) be the minimal polynomial for
B2, then 2%, 88,832,328, 817, 8% all are roots for mg(x%). Therefore by using Table II we get

mg(m%) = (x%)6 + (x%)?’ + a?. Similarly, we obtain

ms(z3) = (23)2+ (23)+a, ms(23) = (23 + a, me(a?) = (23)% + (23) + o,

m7(33%) = (x§)6 + a(m§)3 + a, mg(:cg) = (:z:%)2 +a2(:c§) +1, mlo(azg) = ($§)3 + a2,
mu(z3) = (23)% +a?(@3)3 + a2, mis(z3) = (23) + o, mis(ad) = (25)2 + a(z3) + 1,
mzl(x%) = (1%)2 + oz(m%) + a, mgo(l'%) = (SL‘%) + a2, 17”1,33(:17%) = (SL‘%)Q +a2(:1:%) + a?.



The BCH code with designed distance di = 2 has generator polynomialg(ac%) = (J:%)(S—i-(:r%)?’—i-a.
On writing its coefficients in ascending order with respect to power of (xg) we get «001001.

Following is the table of BCH codes for different designed distances, coefficients of generator

polynomaials, error correction capability and code rate.

Table 20: BCH codes of length 45 over the field Fy

(bn, k1) | dy coefg(xg) t1 | Ra

(45,33) | 3 | 1001000000001 1 073
(45,31) | 5 | allal1000000a11 2 |0.68
(45,28) | 6 | a?ala?a?al10000?aaall 3 10.62
(45,26) | 7 | aa0a?101a0010aa01a2001 3 | 0.57
(45,20) | 9 2020a101a20100aa?010:2001011001 4 | 0.44
(45,18) | 10 | @?1110100c?ca?1laafala?a?1a?0aalla?l 5 |04

(45,15) | 11 | aa?a?01al0a?1a0a?ala?aala?1a?0aa?10ala?l 5 |0.33
(45,9) | 15 | 1aal1a?21000000001aal1a21000000001cal1a?1 7 102

(45,8) | 18 | ax10a20110000000ccr10*0110000000ckx 102011 9 |0.17
(45,6) | 21 | al0alac?a?100000a10alaa?a?100000a10alaa’a?l 10 | 0.13
(45,4) | 22 | a?101a21a2a2a011000a2101a21a2a?2a011000a2101a?1a2a?a011 | 11 | 0.08

Where dy1,t1, and Ry denote the designed distance, error correction capability and the code rate
of the code of length 45 over the field Fy respectively, ki denotes the dimension of the BCH

code, and coeff(g(a:%)) denote the coefficients of the generating polynomial g(a:%)

Remark 72 These are the following two observations obtained from different examples:

1) the non-primitive BCH codes (bn,bk) are interleaved codes (Interleaving is a periodic
and reversible reordering of codes of 1 transmitted bits) of degree b with same code rate and
error correction capability as that of primitive BCH code (n, k). They are capable of correcting
burst of length b or less. By burst of error we means that two or more bits in the received
word has changed from 1 to 0,c,a? or from o to 0,1,a? and so on. For example the non-
primitive BCH code (45,33) is an interleaved code of degree 3 and is capable of correcting

burst of length 3. For instance let r = 10010000000010000000000001c:e’200000000000000000 be
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the received polynomial of (45,33) code formed by interleaving the following 3 received poly-
nomials in (15,11) code which are: 71 = 110001000020000, 72 = 000000000100000 and

rs = 000000000c00000 each having single error. That is e; = 000000000020000, ey =

ro and ez =

r3. On interleaving these error vectors we get error vector of r which is e =

00000000000000000000000001kx>00000000000000000. This error pattern has a error burst of

length 3. Adding r and e gives the code vector v.

2) the primitive BCH code repeats b times in non-primitive BCH codes whenever both have

same code dimension that is k = k1. For example on writing the corresponding code vectors of

the generating polynomials of (15,9) and (45,9) codes that is:

= 1+a(@®) +a(@?)? + (2

= 1+a(@d) + (@) + (@9)* + (23) + a*(@2)" + (23)0 + (29)"°
+a(@8)0 + (@) + (28)18 + (25)1 + a?(25)20 + (23)%
ta(@s) + (@) + (25)® + (28)% + (25)%a? + (25)%

we have v = (1aal1a2100000000) and v! = (1aal1a21000000001aal1a21000000001aal1a?100000000).

Therefore the corresponding generating matrix Gy ofg(a:%) contains the generating matriz G of

g(z?) such that G = ®3G.

The following Tables 21 and 22, give a comparison among minimum distances, errors correc-

tion capability and code rates for different designed distances of the primitive and non primitive

BCH codes of lengths 15 and 45, respectively in Fao[z; 2Ng]15, Folx; §N0]45 and Fy[x; 2Ng);5,

Fala; 2Nolss.
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Table 21: Comparison of BCH codes of length 15

BCH code through Fa[z; aNg]

BCH code through Fy[z; aN]

d d(min)

2

4
6
8

3
5
7
15

t
1

2
3
7

R

0.733
0.466
0.333
0.066

d d(min)1 ti R

2 3 1 0.866
3 3 1 0.733
4 7 3 0.6
6 6 2 0533
7 8 3 04
8 10 4 0.266
11 11 5 0.2
12 15 7 0.066
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Table 22: Comparison of BCH codes of length 45

BCH code through Fa[z; $Ng| | BCH code through Fy[z; §No]
& iy, t R d' diny, t2 R
2 3 1 0733 2 3 1 0.866
4 7 3 0.644 3 3 1 0733
6 9 4 0511 4 9 4  0.688
8 9 4 0.244 6 15 7 0.622
10 15 7 0.155 7T 12 5 0.577
16 21 10 0.11 8 15 7 044
22 45 22 0.022 10 22 10 0.4
11 25 12 0.33
12 21 10 0.2
16 18 8 0.177
19 24 11 0.133
22 30 14 0.088
31 33 16 0.066
34 45 22 0.022

From above tables we notice that: The possible choices of codes with different design dis-
tances are more over the field F4 as compared with the codes over the binary field. Secondly, it
is clear that the code rate is better over the field 4 as for example in Ci5 primitive BCH code
with design distance 5 and 7 has code rate 0.466 and 0.333 over the binary field whereas over
F4 we are getting 0.6 and 0.4. In non-primitive BCH codes C45 with design distances 5,7,9,15
and 21 we get code rates 0.644,0.511,0.244,0.155, 0.11 over F9 and 0.688,0.577,0.44,0.2,0.133

over [F4 respectively.
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5.3 Primitive BCH code (), and non-primitive BCH code (},:
A link

Now we formulate a link between a primitive BCH code C,,, and a non-primitive BCH code Cp,,
over the field Fy, where r and 7 are the degrees of their generating polynomials g(z%) and g(27)
respectively. From Theorem 70(1), it follows that the generator polynomial g(zt) € Fy[z; 7No]
divides (%) — 1 in Fy[z; ¢Ng]. So, there is a non-primitive BCH code Cy, generated by g(z?)
in Falz; $Nolp,. Since, bn divides n = 4% — 1, so (z3)" — 1 divides (z?)" — 1 in Fylz; 7No]. Tt
follows that ((z%)" — 1) C ((z%)" — 1). Consequently, by the third isomorphism theorem for

rings we have

ENol/(@) = 1) Fales§No) _ Fafosalol
(@ = 1/(@hr =1~ (@ -1 (@)= 1)

This gives the embedding C,, — Cp, — C,¢ of codes, where C,,Cp, and C,s are respectively

sl i

primitive BCH, non-primitive BCH and primitive BCH codes. The embedding C,, — C, is
defined as: a(z%) = ag+a1 (@) +...4+an_1(x*)" = ag+ay (@7 )+ ... Fap_1 (25D = q(zt),
where a(z%) € C,, and a(z?) € Cyy,.

The above discussion formulates the following theorem.

Theorem 73 Let C,, be a primitive BCH code of length n = 4° — 1 generated by g(z®) in
Fy[z; aNo] of degree r. Then

1) there ezists a non-primitive BCH code Cy, of length bn generated by g(:):%) in Fy[z; §No
of degree br,

2) the BCH code C,, is embedded in the BCH code Cy,.

Remark 74 g(z®) can be deduced from g(x%) by substituting zv =y and then replacing y by

y’ =z

Example 75 The following example is deduced by Example 68 and 71.
The BCH codes having bits from the Galois field Fy with designed distances d, dy > 4 have
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generator polynomials g(x?) and g(:c%), on letting (m%) =y, that is > = y>, we get

22)%a? + (z%)3 + (:U2)2a2 + (z 2)a2 +1.

Where g(x?) € Fylx;2Z0] and is divisible by (z%)? + (22) + «, the generator polynomial of the
BCH code (15,13) with designed distance d = 2. Table 23 shows that for a code in Faz; 2Nolss

with designed distance dq we have a code in Fq|x;2Ngli5 with designed distance d embedded in

1t.

Table 23: Embedding of C15 in Cys

d | (bnks) | t1 |d | R | (bnky) |t | R
3 1(4533) |1 |3 |073 (15,11) 11]0.733
11| (45,15) |5 |3 |0.333 | (15,11) | 1| 0.733
15| (45,9) |7 |4 |02 |(159) |2]06
18 | (45,8) |9 |6 |0.177 | (15,8) |3 0.53
21 | (45,6) |10 |7 | 0.133 | (15,6) |4 |04
22 | (45,4) | 11|10 | 0.088 | (15,4) |5 | 0.266
31| (45,3) | 15|11 | 0.066 | (15,3) |5 | 0.2
45 | (45,1) |22 | 115 | 0.022 | (15,1) | 7 | 0.066

5.4 General decoding principle

As the BCH code C,, is embedded in the non-primitive BCH code Cy,,, so only decoding principal

for the code Cy, is explained. We use the decoding procedure which follows the same principle

as of the primitive binary BCH code.

Take a! € F4®

as a received vector. Now obtain the syndrome matrix of a', and S(a') =
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a'HT. In this way, table of syndromes which is useful in determining the error vector e such that
S(a') = S(e) is calculated. So the decoding of received vector a! has done as the transmitted
vector v! = a! —e. We acquire algebraic method for finding e from the syndrome vector S(al).

Let Cp,, be the non-primitive BCH code with length bn and designed distance dy. Let H

be the (di — 1) x bn matrix over Fy. Writing a* = (a}, a}, ...,a}, ;) in the polynomial form

a'(zh) = ab +at(xb) +ad(x?)? + ... +a},_,(x+)" 1. So the syndrome of the vector a' is

1 1 1

Oécl acl+1 acl+d1*2

1 1 1 1 _
Sa)=[a} al .. a}, ;1| a* Q2 2t di—2)

a(bn—l)cl a(bn—l)(cl—i—l) a(bn—l)(cl+d1—2)

and hence

S(al) - [ Scl Scl+1 ces Scl+d172 ])

where S; = a} + aja’ + ...aén_la(b”_l)j =al(ad) for j=cl,ct +1,...,¢t +dy — 2.

L=l + e, where e

Now, let a codeword v € Cp,, is transmitted and the vector received is a
is the error vector. Then S(e) = S(al). Let e(x?) = eg+e1(x) +ea(xt)2 + ... + epp_1 (2t )"
be the error polynomial. Suppose i1, ..., i, be the positions where an error has occurred. Then
e; # 0 if and only if i € I = {i1,...,i,}. Hence e(zb) = Yier ei(x)". As the code corrects up
to t1 errors, where t; = [%J . So we assume m < t1, that is 2m < d;. Since S(e) = S(al), we

have e(a) = Sj for j = ¢!, et +1,..., ¢! +dy — 2. Thus the 2m unknowns iy, ..., ip, and €;,, ..., €;,,

satisfy the following system of d; — 1 linear equations in e;, ..., €;

m
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Since f(a') = 0 for each i € I, we have
fo+ fil@®) + o o1 (@)™ + (@)™ = 0.
On multiplying this equation by e;a??, we get
foeiozji + fleioz(jﬂ)i + ...fm_leioz(”m_l)i + ;oM —
for each i € I. Summing these m equations for ¢ = 41, ..., 7, and using the relations (1), we have
foS;+ fiSit1+ . fm=1Sj+m—1 + Sjtm = 0.

for each j = ¢!, ¢! +1, ..., ¢! +m — 1. Thus the m unknowns fo, f1, ..., fm_1 satisfy the following

m X m system of linear equations:

Scl Scl_;’_l Scl+m_1 fO Scl+m
Scl+1 Scl+2 Scl+m fl . Scl+m+1 (2)
L Scl+m—1 Scl—l-m Scl+2m—2 1L Jm-1 i L Scl+2m—1 i

Let S denote the coefficient matrix in the above linear system. It can be verified by direct

computation that S = VDVT, where

1 1 1
1 a’l a2 alm
Ve = ,
ail(m—l) ai2(m_1) aim(m—l)
ey el 0 0
ol
Dl o_ 0 € 0*2¢ L. 0
; 1
0 0 e €, QMMC
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V1 is a Vandermonde matrix. Since « is a non-primitive bnth root of unity in Fyus and i1, ...ip,
are distinct integers in {0, ...,bn — 1}, we have a'l,...,a'm are all distinct. Hence detV # 0.
Further, e;,, ..., €;,, are all nonzero and hence det D # 0. Therefore det S # 0, and linear system
(2) has a unique solution.

Let the number of positions where an error has occurred is m < ¢1. If the actual number of
error positions is less than m, then for any choice of distinct positions 41, ...7,,, the coeflicients
€iys .-+, €, cannot be all zero. So det D = 0. Hence m is the greatest positive integer < ¢; such
that system (2) has a unique solution. Therefore we find the value of m by taking successively
m = t1,t1 — 1, ... in system (2) until we have a value for which system (2) has a unique solution,

which gives us the error locator polynomial
flav) = fo+ fi(zp) + fa(@®)? + oot froa(zd)™ 14 (zb)™,

Now to find the roots of f(z?t), we put #t = af, i = 0,1, .... By the definition of f(x?), these
roots are a'!,...,a". Thus we find the unique solution for the unknowns i1, ...i,,. Having thus
found the error vector e, we decode the received vector a as the codeword v = al — e.

To compute the syndrome of a BCH code we have Sy = (51)%, Sg = (S4)? and so on.
If m(x%) is the minimal polynomial of «, then S; = a'(a) can be obtained by finding the
remainder on dividing a'(z?%) by m(z?%) and then putting % = « in it. In general, to find Sj,
we divide a!(2%) by m(z?) and find the remainder.

Decoding of the code C,, from the decoding of the code Cp, can be obtain as; take Th = Y,
which gives #* = y. In this way the code polynomial v(z?¥) in Fylz; ¢Nolpn becomes v'(y).
Again on replacing y by 3°, we get v!(y®) = v!(2?). The remainder after dividing v(z®) by
()™ — 1, will be the decoded vector of F4[x; aNg],, and the generator polynomial g(x®) divides
v(z?).

The above discussion can be sum up in the following steps.

Step I: For a non-primitive BCH code Cp, with designed distance d;, let a(z?) be the
received polynomial with m errors, where m < ¢;.

Step II: Find the value of m by computing the syndromes, such that the system (2) has a

unique solution.
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Step III: Step II gives us the error locator polynomial f(x%). Now find the roots of f(ac%)
through which we obtain the error polynomial e(z?).

Step IV: The received polynomial a!(x?) is decoded as v'(z?) = al(x?) — e(z?).

Step V: The code vector v in C, can be drag out from the decoded code vector v' in Cpy,
by putting ## = y in corresponding code polynomial v*(z#). This gives v'(z5) = v'(y), which
on replacing y by y® becomes v!(y) = v! () = v (z%).

Step VI: Divide v!(z%) obtain in Step V by (z%)" — 1, the remainder is the generator
polynomial g(z®) or its multiple of the code C,. Hence its corresponding vector v € Cy,.

Illustration

Let C45 be a (45,31) non-primitive BCH code with designed distance d; = 5. Assume that

is the received polynomial. The error position I = 2 and the syndromes are S; = a'(3) = 3,
Sy = a'(B?) = B, S5 = a' (%) = B3 and Sy = (S1)* = B'2. The error locator polynomial is
given by f(xg) = fo+ f1 (mg) + (x%)2 Then we have the following system of equations for fy,
fi

g 5] (] [s®

36 5% _f1_ - _ﬁu
_fo_ _%Z’i 51%‘7 339 52
R

Hence the error locator polynomial is f(a:%) = g%+ 53(:1:%) + (:z:%)2 Trying successively
z =1,8,52 .., we find that 8% and 8 are the roots. Hence the error polynomial is e(a:%) =
(x§)6+(x§)15. Thus we decode al(xg) as Ul(ZL%) = al(m%)+e($%) = (x§)14+(1‘%)13+a($§)12+
(€3)5 + (23)* + al(@3)? + (23)% + (25) + .
2

Now letting 23 = y, this gives y3 = 22, we get
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vy’ = @) )P+ a@®)? + )+ D)+ aly?)
+1%)?2 + (1) +
Ul(y3) — ’Ul(.%'2) — ($2)14+ (LL'2)13+O£(.%‘2)12 i (.1)2)5 + (332)4

Ha(z?)3 + (%) + (22) + o

Where v!(2?) € Fylx;2Ngl15 and is completely divisible by (22)? + (22) + « the generator
polynomial of non-primitive BCH code (15,13).

Following is the flow chart of the complete scheme in which encoding and decoding of the
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non primitive BCH code Cp,, and the primitive BCH code C,, is occurring simultaneously.

g Flow Chart ™
Polynomial in | Polynomial in
Fafx: aZs] "| Fafx: {a/b)Z4]
L
BCH code in BCH code in
Fa[x: aZg]. Embedded l Fulx; (alb)Zslun

Encoder

channel

F
Decoder Decoder
of C,, of Cbn
Received word Received word
InC, In Cy,
N—

Flow chart: Simultaneous encoding and decoding of the BCH
codes (Y, and C,,

v

The following are the most significant outcomes of this chapter.

1) Over the four elements Galois field Fy, the existence of a non-primitive BCH code Cp,, of
length bn based on a primitive n length BCH code C,, is ensured.

2) Embedding of the BCH code C,, in the BCH code Cp,, is obtained, through which encoding
and decoding of the BCH code C,, is obtain via the BCH code Cy,.

3) The BCH code Cy,, has greater error correction capability than of the BCH code C,, with

a small deprivation in the code rate.
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4) In a BCH code of length n or bn, the code rate is better over the field F4 as compared to
the codes obtained over the field Fs.

5) The possible choices of the BCH codes of a given length over [F4 are more as compare to
the BCH codes over 5.

6) Among the non-primitive BCH codes of length bn there exists an interleaved code having
same code rate and error correction capability, but is capable of correcting burst of length b.

This work is further generalized using Galois rings.
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Chapter 6

Non-primitive BCH codes over

Galois rings

In error-correcting codes, the code rate and error correction trade-off is one of the fundamental
questions. In this chapter, a smart and novel approach is introduced to lever this matter.
With the usage of a monoid ring a construction method of primitive and non-primitive BCH
codes over Galois ring Zg, where ¢ = 2™ with m > 1, is given. Consequently, for a fixed
myo, against n length primitive BCH codes C,, and C’;L (over Zgy and Zgmo respectively), there
exist two sequences {Cy;, }j>1 and {C(;jn}jzl of non-primitive BCH codes (over Zy and Zgmo
respectively). Through embedding and the 2 reduction map, relations intra and across, these
two sequences are established. Thus, a data can be transmitted via any of coding scheme of
Ch,y Chyy {Chin}i>1 and {Ollﬂn}jzl' This selection of scheme is based on the choice of better code
rate or better error correction capability of the chosen code. A modified Berlekamp-Massey
decoding algorithm is given for codes over Galois rings, which is also used for decoding BCH

codes over Galois field.

6.1 BCH-codes as ideals in Zon [z;aNy], and Zyn[2; £ Noly,

Throughout Zom, is the ring of integers modulo 2™. the construction of BCH codes in Zom [z; aNo],,

and Zgm[z; 17 No]ys,, as: The residue field of local ring Zgm is Zy. So, there is a natural projec-

tion i : Zym — Zy and it is extended as p' : Zom[2;aNo] — Za[z;aNo] and p' : Zom [x; - No] —
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Zolw; 17No| defined as: p/(f(z?) = fo + fiz® + ... + fa2") = p(fo) + p(f1)z® + ... + p(fo)z™
and 1/ (f(2¥7) = fo+ frow + ..+ faz® ) = p(fo) + p(f)2W + oo+ p(f)z s

Accordingly, an irreducible polynomial f(x®) € Zom[x;aNy] is said to be basic irreducible
polynomial if /' (f(z%) € Zslx; aNg| is irreducible. In a similar fashion an irreducible polynomial
f(xb%) € Zam|z; 5z No] is said to be basic irreducible polynomial if //f(mﬁ) € Zolw; 1+ No] is
irreducible.

The construction of a BCH code in the factor ring Zom [x; aNp],, is similar to that of a BCH
code in Zgm|x] explained in [41], as Zgm|[x;aNg|] C Zgm[z]. For this, let C, be a binary BCH
code based on the positive integers ¢,d,q = 2 and n such that 2 < d < n with ged(n,2) =1
and n = 2% — 1, where s is the degree of primitive irreducible polynomial p (z®) in Zsg[x; aNp].
Let @ = u(a) be primitive element in GF(2,s). Then the corresponding element « has order
d(2° — 1) in R*, the group of unit elements of the Galois ring GR(2™, s) for some integer d> 1.
Then element o generates the maximal cyclic subgroup Gas_jof R*. Let £ = o be a primitive

element of Gas_1. Then if £,£%2, ..., £% are roots of the polynomial g(z%), we can generate a

BCH code over GR(2™, s) through this polynomial which is:
g(z®) = lem(Me, (%), Me, (%), ..., M., (),

where M, (%) is minimal polynomial of £%. We call it a primitive BCH code over GR(2™, s).

Furthermore,

g(z*) = /j(g(xa)) = lem(me, (%), me, (27) 5 ..., Me; (),

where me, (%) is minimal polynomial of p'(£%), generates a BCH code over GF(2).

BCH codes in which a code has length b/n, j > 1, via the monoid ring Zgm[z; +-No] for a
fixed m > 1. These codes are obtained with the help of irreducible polynomial p/ (acb%) of degree
bl s over Zym. The irreducible polynomial p' (57 ) is taken such that p/(p/(z#)) = p(z+ ). So,

& S\bis—1

3 NoJ . .
71) = {pO —|—p1(;(}b3 ) + +pbj5,1($b]) 2P0 P15 - Phis—1 € ng},
p

represents the set of residue classes of polynomials in indeterminate T over Zom, modulo the

polynomial p’ (:cb%) This is a unitary commutative ring, denoted by R = GR (2m, b s) and it is
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called the Galois extension ring of integers modulo ring Zom, having 2’5 number of elements
for 7 > 0 and it is projected to a Galois field extension K = GF(QNS),
£ No) a a

% = {po +p1(x¥) + ... + ppig_q(z¥7)

bis—1
# PosP1y -3 Pris—1 € 22}7

of prime field Zy having 2¢ number of elements. We denote GR (2™, s) and GF (2°) by R and
K, and their corresponding multiplicative groups of units by R* and K™ respectively.
From [26, Theorem XIIIL.7], it follows that a polynomial irreducible over Zs is also irreducible

over Zgm. Therefore, the irreducible polynomials in Zs[x; % Ny] listed in Chapter 3, Proposition

%]
50, are also irreducible in Zam[z; ;7No|. The values of b are chosen in such a way that, for an s
degree primitive irreducible polynomial in Zs[z; aNg] we have a b’ s degree irreducible polynomial
in Zom [z; #No] for m > 1. Now, after this selection the elements of the Galois ring GR(2™,b/s)
are calculated with the help of irreducible polynomial p’ (xb%), such that 4/ (p’ (:nb%)) = p(xb%)

The following theorem extends [26, Lemma (XV.1)], from the case of polynomial ring to the

monoid ring, where the coefficients are from Zom.

Theorem 76 For j > 0 and a > 1, the Galois ming GR(2™,bs), let p/(:z:ﬁ) be a reqular
polynomial in Zgm[z; zNo], such that p(xb%) € Za[z; 1zNo] has a simple (i.e., non multiple)

zero @ in Zy. Then p (a;b%) has one and only one zero « in Zom with p(a) = @.

Let R and K be the multiplicative groups of units in R = GR (2m, bjs) and K = GR(ijS),
respectively. Then R" is an Abelian group and can be written in the direct product of its cyclic

sub-groups. The following Theorem extend [41, Theorem 2], for monoid rings.

Theorem 77 R" and R* has one and only one maximal cyclic subgroup. These cyclic subgroups

have order ¥'n and n respectively.

The cyclic subgroups of R and R* are, respectively, generated by some powers of generators
of the cyclic groups K" and K*. These cyclic subgroups are, respectively, denoted by Gy;,, and
Gy, Since, order of K* is same as of G, and both are cyclic, hence isomorphic to each other.
Similarly, K is isomorphic to Gpin- The following lemma is an extension of [3, Lemma 3.1],

for the case of monoid rings.
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b — ol2 gre units

Lemma 78 Let o be an element of Gy;,, of order bin. Then the difference o
mn GR(Qm,bjs) if0<1li £l <bin—1 forj>0anda>1.

Proof. As ol — a2 can be written as —al? (1 — all_b), where 1 denotes the unity of
GR (2m,b75). The first term —a'2 of product is a unit. The second term can be written as

k is not a unit

1 — aF for some integer k in the interval [1, bn — 1] . Now if the element 1 — «
for some 1 <k <bn-—1, in GR (2’”, bjs) , then 1 — o will be in the mazimal ideal M of the

ring GR (2”, bjs) . Hence p (ozk) = (1) and therefore & has order k, a contradiction. m
The following theorem is the extension of [3, Theorem 3.1].

Theorem 79 The minimum Hamming distance of BCH codes Cyj,, and Cl;jn is d and satisfy
d>2t+1 forj >0 anda>1.

Proof. Let ¢ be a nonzero codeword in Cy;,, or C;]-n such that wy (c) < 2t. Then cHT = 0.
Deleting bn — 2t columns of matrix H corresponding to zeros of the codeword, the new matrix
H' is Vandermonde. By lemma 78 , it follows that the determinant is unit in R or R. Hence,
the only possibility for c is the zero codeword. m

The following extend [41, Theorem 3].

Theorem 80 [/1, Theorem] Let o generate a cyclic group of order b/n in E*, wheren = p°—1.

Then the polynomial (mﬁ)bjn — 1 can be factored as

a bin

(z67)" " —1= (20 —a)(z —a?)...(xw —aP'™),

if and only if 1 () has order ¥n in K for j >0 and a > 1.

Proof. Let yu(a) = @ has order b'n in K. Then (:E&)bjn —-1= (xb% - oz)(a:ﬁ - a2)...(x% -
oabj”). Let F = {a,a?, ..., @bj"}. Since (a:b% )bjn —1 has no multiple zeros in K ', from Theorem 76,
it is concluded that; corresponding to each @ there is a unique element say «; in R" such that
(o) =@ and oy is a root of (xﬁ)bj" —1in R". In general, factorization over ring with zero
divisor is not unique. To show that (acb%)bjn — 1 can be factored as (xb% — a)(mﬁ - 042)...($§ —
abj”), where oy = ! for [ = 1,2,3,...,n, we have to show that the set F = {a,a2,...,abj”}

exhausts all roots of (xﬁ)bjn —1in R". Let o* be a root of (mﬁ)b]" — 1 not in F. Then p (o)
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is a root of (mﬁ)bjn — 1 over K and it cannot coincide with any element of F. Also w(a®)
cannot be a new distinct element of F, because (a:%)bj" — 1 has exactly b/n roots in K" Thus,
(a:b% - a)(a:ﬁ - a2)...(xﬁ —a?’™) is the only possible factorization of (xﬁ)bjn —1over R". Now,
suppose that (wﬁ)bjn —1 can be factored over R~ as above, as (p, b n) = 1, then from Theorem

77, b/n must be divisor of pbjs — 1. This yields

a bin a

(z67)" " —1= (v —@)(xw —a2)...(xw —a ™) over K.
Thus, @ has order b'n because (xﬁ)b]n — 1 has no multiple zeros in K . m

Extending [41, Lemma 1], for monoid ring we get the following results.

Lemma 81 Let @ generates a cyclic subgroup of order b/n in K". Then o generates a cyclic
subgroup of order (b7n) d in R, where d is an integer greater than or equal to 1, and o

generates a cyclic subgroup G;,, in R" for j=>0.
bin

The following remark is of great importance, as it gives the exact value of the power of

element through which the maximal cyclic subgroup Gy;,, in R = GR (2’", b s) is generated.

2m—1

Remark 82 In R = GR (2m,bj3) , the maximal cyclic subgroup Gy;,, is generated by «

and satisfies the relation 2" Hn — 1 for all m > 1.The element « is selected in such a way

that, @ generates a cyclic subgroup of order bin in K"

Definition 83 Let o be a non-primitive element of Gy;,,, then cyclic BCH code of length bin
over R is called non-primitive BCH code generated by generating polynomial g' ({L‘b%) having

/ / /
roots a® t1 ab T2 ol T2 where j>0andt>1, ie.,

a a_

) = lem{ My (a7 ), Ma(zv7), ..., Moy (x

o

r, a
J

g (wo

<

v)},

a_

where M;(zv7) is the minimal polynomial of o® +* for 1 <14 < 2t.

0 b +1

Locator vector in this case is given by n = (a”, « L2+ ab/n=1)(b +1)) and parity

check matrix takes the form
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1 ol 20 +1) QB +1) ]
1 ab+2 2042 . -1 +2)

H= (6.1)
1 o 2t Q2020 o Wn-1)(0 +2t)

The following theorem is an extension of [41, Theorem 4].

Theorem 84 Let g/ (a:b%) be a generator polynomial of cyclic BCH code over GR(2™,b/s) with
length ¥n and o, a, ..., an-m be roots of gl(azﬁ) in Gyi,,- Then the minimum Hamming
distance of the code is greater than the largest number of consecutive integers modulo bn in the

set B ={e1,€2, ..., €hin_m} -

Proof. Let C be the BCH code generated by ¢ (CL"J%) € Zam[z; ;7No| and C1 be the code

generated by g(a:b%) = u(gl(xﬁ)) € Za[z; {7 No]. Then for any v/(a:ﬁ) e C, v(a:b%) € C;. Let
d be the number of consecutive integers modulo b n in the set E. Suppose that the minimum
distance of C is less than d 4 1. Let r/(xﬁ) € C be such that b/n-tuple r has Hamming weight
less than d + 1. Then if T(Ib%) = (xb%)), the Hamming weight of the vector r is less than
d+ 1. But g(a:b%) has roots d consecutive powers of u (a). Therefore by BCH bound the code
C; has minimum distance at least d 4+ 1. Hence the minimum Hamming distance of C must be
at least d+ 1. m

The algorithm for constructing a non-primitive BCH code over GR(2™,b's) is as follows:

1. Choose an irreducible polynomial p(xb%) over GF(2Y'%) such that p (:Eb%) is irreducible
over Zom and forms the extension ring R = GR (2m, bjs).

2. Suppose @ = p(a) is in K. If a has order d.bn in R* for some integer d, then o
generates Gyj,,.

3. Ifa®, a2, ..., a%in-m are selected to be roots of ¢’ (:cb%), find M., (xb%) fori=1,2,...,bn—
m. Thus, ¢’ (:cb%) is the lem of these M., (.rb%) The length of code is lem of orders of a“

and minimum distance is greater than largest number of consecutive integers in the set e =

{e1,€2, .., €pip_m} -
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6.2 Relation between the sequences {Cj,};>0 and {C}; };>0 of

BCH codes

In this section, we discuss the relation between the BCH codes constructed through monoid
rings Za[x; aNo|, Zom [z; aNo], Za[x; 35No] and Zam [z; 17 No]. Accordingly, these are the codes Cp,
Cr, {Chin}j>1 and {C;)]-n}jzl over GF (2°), GR (2™, s), GF(2"%) and GR (2™, b s) respectively.

Their relation are explained in the following steps:

1. Primitive polynomials in Zz[z;aNo] gives irreducible polynomials in Zz[z; 57No| and
ZLom |[; %Ng]. Therefore, corresponding to n length primitive BCH codes C,, and C;I (over Zo
and Zgm respectively), there exist two sequences {Cy;,, }j>1 and {Cl;jn}jzl of non-primitive BCH
codes (over Zg and Zgm).

2. The generator polynomial g/(ﬂvﬁ) of any b’n length code in the sequence {C;jn}jzl
is transformed to generator polynomial g(xb%) of same bn length code in {Cy,};>1 by the
reduction map p for j > 1, a > 1.

3. The generator polynomials of BCH codes {Cy;,, }j>1 and {C;jn} j>1, after reduction modulo
(asb%)” — 1, gives b’ times repeated pattern of the generator polynomials of BCH codes C,, and
C;L respectively, when both n and b'n lengths BCH codes have same dimension k.

4. The generator polynomials g(xb%) of b/n length BCH codes in Zy[x; £Ng] are obtained

a

from the generator polynomials gl(x%) of same length BCH codes in Zom [z; o

Np] by reducing
the coefficient modulo 2.

5. In last, we observe that for a fixed value of m the generator polynomial of a non primitive
BCH code (bjn, k:) code obtained through the monoid ring Zom [x; %Zzo} can be obtained from
a generator polynomial of primitive BCH (n, k) code constructed through the monoid ring
Zom|x;aZ>0], a subring of polynomial ring Zom[z].

The conversion of these BCH codes is as follows.

C, — C — Cll)2n = .. o= G,
! ! ! l
Cn — Cbn — Cbzn — .. = Cbln

From C;l or from any /n length code C;jn we obtain all other codes by some simple steps.
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Corresponding to Cy, or Cy;,, codes we have a great variety of codes in Zam [x; aNo| or Zam [; 1> No]
for different values of m. By increasing value of m, the number of codewords in these codes also
increases.

The following example illustrates the construction of non-primitive BCH codes when b >

a > 1 and for m = 2, 3.

Example 85 For a primitive polynomial p(x?) = 1+ (22) + (z%)* in Zo|x;2Ng], there is an
irreducible polynomial p(x%) = (3:%)12 + (a:%)?’ + 1 in Za[x; 2Ng], by Table 4, which is also
irreducible in Zgy2[x; %NO]. Here n. = 15 and b = 3, it follows that bn = n' = 45. Let u be an
element in GF(2,12), satisfies the relation u'2 +u3+1 = 0. Then v =1 in GR(22,12) shows
that the elements of the cyclic subgroup Gus are generated by a = u? by 82. Now, to calculate
generator polynomials g/(x%) we first calculate the minimal polynomials. By [27, Theorem
4.4.2], a, o2, o, a8, a'%, 32, al?) a8, a3l al7, o, o® all have same minimal polynomial

My (x%) which is the generating polynomial of BCH code with designed distances d' = 3.
My (23) = g(23) = (25)'2 + 2(25)% + 3(25)? + 1.

Similarly, other minimal polynomials can be calculated through which we get the following gen-

erating polynomials with designed distance d' = 5,7,9,11, and 45 respectively.

g(23) = (@5)+2(25)" +3(x5) 3 + (25)2 + 2(25)10 + (25)7 +
5)5 4

2(23)5 4+ 2(23)* + 3(23)3 + 2(23)2 + 3(x3) + 1
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g (@3) = (5" + (@5)8 + (25)2 + @5 + .+ (23)2 + (23) + 1.

Now, g(wg) = u(gl(azg)) gives the generator polynomials of BCH code Cyq5 with symbols from
GF(2,12). We have generator polynomials in Zgy2[x; %No} by reducing the coefficients modulo 22
of generator polynomials in Zy2|x; %No]. To drive primitive BCH code C15 from non-primitive
BCH code C:l5, among the generator polynomials of C:l5 over Zyz2|x; %No], the generator poly-
nomials of (45,11), (45,7), (45,5), (45,1) codes are transformed to generator polynomials of
(15,11), (15,7), (15,5), (15,1) codes over Zqyz2[x;2Ng|. For example (45,11) code has generator

polynomaial

g(@s) = (@)% 423 +3(@9)™ + (@5)% + (@5)" + 2(2%)"
+3(23)10 4 (25)1% + (23)1 + 2(23)? + 3(23) + 1,
by reduction modulo (33%)15 — 1, we have
g @) = (@) +2(w3)’ +3(ws) + 1+ (@3)" +2(3)” +
3(x3) + 14 (z3)* + 2(z §) +3(23) + 1,

it is seen that the pattern (x %) + 2(x3) + 3(1}%) + 1 is repeated three times, which is the
generator polynomial of (15,11) code over Zy2[x;2Ng] by considering discriminant x2 instead of
3. By the similar method we obtain other generator polynomials.

Similarly, by taking j7 = 2, non-primitive BCH codes of length 135 are obtained. Non-
primitive BCH codes in Zys|x; %No] are obtained from same irreducible polynomial pl(mg) =
(a:%)12 + (1:%)3 + 1. In this case, u satisfying the relation u'? 4+ u® 4+ 1 = 0 which gives u'® =1
in GR(23,12), thus, the elements of Gus are generated by o = u*. Following is the generating
polynomials of BCH code with design distance d' = 3.
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!

g(@3) = (@3)"2 +4(23)° + 6(23)° + 3(23) + 1.

Following table gives the comparison between minimum distances, code rate and error cor-

rection capability of codes in Zsa[z; 2Ng|15, Zo2|[x; %Ng}% and Zoyz|[x; %N0]135.

Table 24: Comparison between Ci5, Cys, Ciss

(n, k) d |t | R (n, k) di | t1 | Rq (n, k) dy |ty | Ro
(15,11) | 3 | 1] 0.733 | (45,33) |3 |1 | 0.733 | (135,99) | 3 1 10733
(15,7) |5 | 20466 | (45,29) |5 |2 |0.644 | (135,87) |5 |2 |0.644
(15,5) |7 |3/0.333|(45,23) |7 |3 | 0511 | (135,69) | 7 3 | 0.511
(15,1) | 15| 7| 0.066 | (45,11) |9 |4 |0.244 | (135,33) | 9 |4 |0.244
(45,7) |15 |7 |0.155 | (135,20) | 15 |7 |0.215

(45,5) | 21|10 0.11 (135,23) | 21 | 10 | 0.170
(45,1) 45 1 22 1 0.022 | (135,11) | 27 | 13 | 0.0814
(135,7) |45 |22 0.0518
(135,5) | 63 | 31 | 0.0370

(135,1) | 135 | 67 | 0.007

From Table 25, it is clear that the BCH codes in Zy2|[z; %No]gn has better error correction
capability but has less code rate than the BCH code in Zg2[x;2Ny]. Therefore, during data
transmission if more error correction capability is required, then choose 45 or 135 length BCH
codes and if better code rate is required, then use 15 length BCH codes. The minimum distance
of BCH codes having dimension less than 15 via Zoz|[x; %NO] is 3 times the minimum distance of
BCH codes in Zyz2[x; 2Ng|15. The BCH codes (15,11), (15,7), (15,5) and (15, 1) have minimum
distance 3, 5, 7 and 15 respectively. And BCH codes (45,11), (45,7), (45,5) and (45,1) have

minimum distance 9, 15, 21 and 45 respectively.

Remark 86 BCH codes over Galois field GF(2bjs) and Galois ring GR (2m,bjs) , for 5 >0,

have same code rates and error correction capability.

Remark 87 Number of codewords in BCH codes over Galois ring GR (2m, bjs) 1s greater than
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number of codewords in BCH codes over its corresponding Galois field GF(ijS) for 3 > 0.

The generalized polynomial g (z %) over Gy;,, divides (zb7 b )" 1 in Zgm[z; 2No]. So, there

’bj
a

is a BCH code C;jn in the family {Cba'n}J'Zl generated by ¢ (z¥) in Zym|[z; 7 NoJpin- By the
ANo.

. j a g . LA :
same argument, as b/n divides n; = 2% — 1, so (27 )¥'" — 1 divides (v )" — 1 in Zgm [z; o

It follows that ((a:b%)”f —1) C ((zv b )¥" —1). Consequently, third isomorphism theorem for
rings gives

Lgm [m; g5 Nol/((w#7)" —1) Zgm[w; 5 No]  Zgm [z; aNg]

(207 = 1)/ (@) = 1) ((@w)pn—1)  (@)"=1)

Thus, there is embedding C,, < C;)jn — C of BCH codes, whereas C,, , C,

I .
bin Cn], are respectively

primitive BCH, non-primitive BCH and prlmltlve BCH codes. Whereas, the embedding C;L —
Cl

Wi 15 defined as:
n

kv‘g

a(z%) = ag+ a1 (z*) + ...+ an_1 ()" = ag+ar (29 )Y 4.4+ an_1(x )Y D = q(z57), (6.2)

where a(z®) € C,, and a(mﬁ) € Céjn. Also, if gl(xﬁ) is the generator polynomial of the binary
non-primitive »~!n length BCH code in Zgm[z T; 51 Z>0]pi-15,, then g (xbﬂ) is the generator
polynomial of the binary non-primitive #'n length BCH code in the ring Zom[x; 57 Z>0]pin-
Thus Cb] 1,, is embedded in Céjn under the monomorphism defined as; a(xﬁ) — a(xﬁ). This
sort of relationship also holds among Cp, Cy;,, and Cy; .

The above discussion shapes the following.

Theorem 88 Let C, and C;L be primitive BCH codes of length n = 2° — 1 respectively obtained
by monoid rings Ze[x;aNy| and Zam[x;aNg]. Then following hold.
1) There exist the sequences {Cyi,, };j>1 and {C/]- }i>1 of non-primitive BCH codes such that

Cpip, and CI;J'n are respectively obtained by Zo|x; 2 No| and Zon [z; & No| with b/n length for j > 1.

7b] ’bJ

2) The primitive BCH codes Cy, CI are respectively embedded in the non-primitive BCH

codes of the sequences {Cyip}j>1 and {Cy; }j>1 for each value of j.

bin
3) The non-primitive BCH codes of the sequences {Cyi, }j>1 and {Cl;jn}jzl have following
embeddings Cpy, <~ Cp2,y < -+ < Cpjpy < -+ - and

/! ! ! .
Cop = Cpa,y -+ - = Cpy < -+ respectively.

Conversion of generating polynomial g(z%) of C/ to g(z %) of C}; .
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A generator polynomial of primitive (n,k) BCH code over Zgm, can be converted to the
generator polynomial of non-primitive (bj n, k) BCH code over Zom by some simple steps.

First change the indeterminate z¢ to 2w . Then write the generator polynomial of (n, k)
BCH code &’ times. In last multiply thel*’ pattern of generator polynomial of (n, k) BCH code
with (a:ﬁ)"(bj_l), 274 pattern with (xﬁ)n(bj_Q), 3" pattern with (xﬁ)”(bj_?’)and S0 on.

The generator polynomial of (15,11) BCH code is given by
gl (xz) = (w2)4 +2 (w2)2 +3 (x2) + 1.
To find generator polynomial of (45,11) BCH code change the indeterminate z? to 23 as

g (x5) = (25)* +2(¢5)? + 3(x5) + 1.

Now, by writing this pattern 3 times and by multiplying 15! pattern with (x§)30, 274 pattern

with (m%)w, 374 pattern with 1, we have

which is the generator polynomial of (45,11) BCH code. By this method, we can transform

primitive BCH codes of length 15 to following non-primitive BCH codes of length 45 and 135.

Table 25: Codes in which smaller codes repeats 3 times

(nk) d t R (bn,k) di t1 R | (®Pnk) dy ta Ry
(15,11) 3 1 0.733](45,11) 9 4 0.244 | (135,11) 27 13 0.0814
(15,7) 5 2 0466 | (45,7) 15 7 0.155| (135,7) 45 22 0.0518 |
(15,5) 7 3 0.333](455) 21 10 0.11 |(135,5) 63 31 0.0370
(15,1) 15 7 0.066 | (45,1) 45 22 0.022 | (135,1) 135 67 0.007

The overview of above discussion is shown in the following.
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Code rate T Error corrtn. capacity
Code length = n < bn < b*n < < bn
# of codwrds. T C;l — C,/m — Cll)zn — C;ln
! 1 ! !
# of codwrds. | Cn —  Cpy — Cip2p, — .. = Cy,

6.3 Decoding procedure

Interlando, Palazzo and Elia [18] proposed a decoding procedure based on Berlekamp-Massey
algorithm for Reed-Solomon and BCH codes over finite ring Z,, where ¢ is the power of some
prime p. Further, in [3] Andrade and Palazzo explained the decoding procedure of BCH code
C(n,n) with same algorithm given in [18] that can correct all errors up to designed distance t,
i.e., whose designed distance is greater than or equal to 2t + 1.

In this study, we address decoding procedure of non-primitive BCH codes of length bin

!

. a
bin

from the sequence {C b7

}j>1 obtained through the monoid ring Zym[x; %Np]. Here the given
decoding procedure is similar to that of Berlekamp-Massey algorithm but with some modifica-
tions. Interestingly it is established that this algorithm is also applied to primitive BCH codes
of length n by taking a > 1 and j = 0. To describe the steps of algorithm, we first consider the

monoid ring Zgm [z; %NO] and then « as a non-primitive element of maximal cyclic subgroup

a

Gyip- The parity check matrix for non-primitive BCH codes over Zam [z; i

Np] is given in (6.1),
where ¢ represents the number of errors that can be corrected. Let ¢ = (c1,¢2,...,¢,) be
the codeword and r = (71,72, ...,7,) be the received vector. Then error vector is given by
e=(ey,€9,...,€y,) =T —C.

The proposed decoding procedure consists of four major steps.

Step 1: Calculation of the syndromes S; = rH”, where i = 1,2, ..., 2t.

Step 2: Calculation of the symmetric functions o1, 09, ..., 0, from S;.

Step 3: Calculation of the error location numbers z1, zo, ..., x, from o1,09,...,0,.

Step 4: Calculation of the error magnitudes y1,yo, ..., y» from z1, o, ..., x, and S;.

Since the calculation of syndromes is straightforward, so there is no need to analyze the
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first step. The possible error location numbers consists of the elements o, a’, ..., a?’n=1 The

elementary symmetric function o1, 09, ..., 0, are defined as coefficients of polynomial

a a a a a a

(zv7 —21)(20 — 22). (W — 3y) = (207)" + o1 (2 )"+ o+ o1 (V) + 0y, (6.3)

where v represents number of errors. These functions are obtained by finding a solution

01,02, ..., 0, With minimum possible v to the following set of linear equations over Zam [z; 17 No].

S)\+fu + S)\Jrv,lal 4+ .+ S\_10p_1 +F SN0, =0, A=1,2,...,2t — v, (64)

where 51,59, 53, ..., 5% is the sequence of syndromes. The solution to (6.4) is obtained by
modified Berlekamp-Massey algorithm which holds for commutative rings with identity. It is
an iterative algorithm because at nth step, we have to determine [, values O‘l(-n) such that the

following n — [, equations hold with [, as small as possible and 0(()“) =1.

O N N S R R 65)
Sn105 + Sa20t™ 4 o4 Spppio = 0 (6.6)
(6.7)

Sln+1crén) + Slncrgn) +..+ Slal(:) = 0. (6.8)

At nth stage the solution is represented by the generalized polynomial o™ (:):b%) = a(()n) +

Ugn) (xb%) tt o™ (xb%)" and nth discrepancy (dy) is defined by dyn = n+10(()n) + Sno'gn) +

In
e Sﬂ+1—lnal(:)'
The input of algorithm is the values of syndromes Si, So, ..., So¢ which belong to GR (2m, b s)
and its output is the set of values o1, 09, ..., 04, such that the equations in (6.4) hold for minimum

value of v. Some initial conditions to start an algorithm are

bj)Zl l_1=0 d_1=1

Then the further steps are performed as follow.
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1. 0 = n.

2. If dy = 0, then o™ (247 ) — o™+ (237) and Iy — lns1 and go to 5.

3. If dy # 0, then find an m' < n—1 such that dp — yd, . = 0 has a solution in y and
m’ — Iy has the largest value. Then o(®) (:cb%) —y- (:pﬁ)“_m/ . U(ml) (a:b%) — J(“H)(xﬁ) and

n, “m

max{l Il /+n— m/} — It

4. Tt lpy1 = max{lp,n+1—1I,} then go to step 5, else find the solution D(““)(xﬁ)
with minimum degree [ in the range max {ln,n+1—Iln} < [ < ln41 such that o(ml)(:z:%)
defined by (acﬁ)n*m, . a<m//> (xb%) = D(““)(xﬁ) — o™ (acb%) is a solution to first m power
sums, d,+ = —dp, with Uom a zero divisor in GR (2m, b s) . If such a solution is found, then
DO (257) — o+ (267 ) and | — Lyiq.

5.1fn < 2 — 1, then Spta + Sar108" " + oo+ Snia-tny 0py) = dusi.

6. For n+ 1 — n, if n < 2¢, then go to step 2, else stop.

The coefficients 3", 03", ..., 07t of o) (;vb%) satisfy equation (6.4).

In the next step, the calculation of error location numbers requires one step on GF' (2, b s)
because in GR (2m, Y s) the solution to (6.4) is not unique and the reciprocal to the polynomial

aQt(zﬁ) denoted by p(zb%) may not be right error locator polynomial

a a a

(207 — x1)(2¥7 — m2)...(207 — @), (6.9)

where x; = aj/ are correct error location numbers, j/ is an integer such that 1 < j/ <bn-1
and it indicates the position of ¢th errors in codeword. Error location numbers are calculated
by first computing the roots z1, 2o, ..., 2, of p(zﬁ) and then selecting x4, ..., T, among x; = ozj/
such that z; — z; are zero divisors in the Galois ring GR (2m, b s), these z1,...,x, are correct

error location numbers.

In last step, error magnitudes y1,y2, ..., ¥, are calculated as
=0 .
Yyi=o7 - Ji=12..v, (6.10)

and the coefficients o;; are given by 0;; = 0; +x;-0;;-1, where i = 0,1,...,v — 1, starting with
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0o = 00 = 1. Here the important point is to show that the denominator in the expression of y;

must be invertible, i.e., unit in GR (2’", Y s). From [13], the denominator is given by product

i=1,i#j

where each factor is of the form o' — o/ for 0 < i # j < b/n — 1, and they all are units in
GR (2m, b s).
In the following example, we first apply this decoding algorithm on non- primitive BCH

code Cy45 over Z4 and then over Zs.

Example 89 Consider (15,7) BCH code in Z4 [x;2Ngly5 with generator polynomial
g (z%) = (@) + (@) + 3(2%)° + 2(2)° + 3(2*)* + 2(2®)” + 2(2*)* + 1.

Now, convert it to generating polynomial of (45,7) BCH code in Z4[x; %N0]45 which is:

g(28) = (@5)%+(@5)" +3(x)% 4+ 2(25)% +3(2)M 4 2(25) +
2(:(}%)32—1—(51;%

3(23)° +2(23)° + 3(3)" + 2(23)° + 2(ad)? + 1.

Its design distance d = 15, so the error correction capability t' equals to 7. For the sake of

convenience we correct only 2 errors here. Suppose that the received word is
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The syndromes from the received word are given by

S1=2u0 43,8 =20 +1,53 =uS +3ud+ 1,5 =2u° + 1.

By applying modified Berlekamp-Massey algorithm, we have

Table 26: Values of decoding steps

n a(n)(z%) dn In | n—14
—1]1 1 0 | -1

0 |1 S 00

1| 1+ (206 +1) 23 203 110

2 | 14 (205 +2uP +1) 25 3uS +3ud+2 |1 |1

3| 1+ (208 + 203 + 1) 25 + (200 + 3uS + u?) (z%)Q 0 2 |1

4| 1+ (208 + 20 + 1) 25 + (2u® + 3ub + u?) (z§>2 - 2 |2

The roots ofp(z%) = (z%)Z—i— (2u8 + 2u3 + 1) (z%)—l- (2u® + 3uS + u3) (reciprocal of o™ (z%)) are

21 = 3uP+3 and zp = 2ub +3ud. Among the elements o, o', a2, a®...,a*°, we have z1 = b and

xo = a?* is such that x1—z1 = 0 and xo— 29 = 0. It indicates that two errors have occurred, one
at position 6 and other at position 24 in the codeword. Correct elementary symmetric functions

are obtained as
(x% — g;l)(l% —19) = (x%)2 + (2u® + 2u® + 1) (:L‘%) + (2u” 4 3u® +u?)

Thus, o1 = 2ub + 2u + 1 and oy = 2u® + 3ub + u®. Now, by using equation (6.10), error
magnitudes are y; = 1 and ya = 3, hence the error vector is e(x%) = (ac%)ﬁ—i—?)(x%)%. Therefore

the codeword is
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Now, by reducing the coefficients of above generator polynomial modulo 2, we obtain generator

polynomial of (45,7) primitive BCH code in Zs|x; %Ng], which s

The syndromes are given by S; = u*®, Sy = u®, S3 = u'®, Sy = u®®. Using modified Berlekamyp-

Massey algorithm, we have

Table 27: Values of decoding steps

n | o®™(z3) do |l | n—1ly
~11 1|0 | -1

0 |1 Si |0 |0

1| 1+ (u%) 25 0 [1]0

2 | 14 (ub) 23 w11 |1
301+ (u") 23 + (u®) (z5)2]0 |2 |1
41 @) S @) 2] - |2 |2

The roots ofp(z%) = (z§)2—|— (u*®) 23 4430 (reciprocal 0f0(4)(z§)) are z1 = ub and 2o = 1+u®.

1.2 .3 45

Among the elements v, ul', u?,u>...,u*, we have 1 = ub and zo = u**

is such that x1—2z1 =0
and xo—z9 = 0. It indicates that two errors have occurred, one at position 6 and other at position

24 in the codeword. Correct elementary symmetric functions are obtained from equation

(25 —@1)(@d — ) = (@5 + (@0) + (L4 u* +uf).



Thus, 01 =1 and 09 = 1 + u® + ub. Now, the error magnitudes are y; = 1 and yo = 1, hence

2

the error vector is e = (a:%)6 + (wg) 1 and the codeword is

c@d) = (25)2+ (@3)5 + (@3)° + (25)° + (25)10 + (25)7 +
(x§)21+(I%)23+(x§)24+($%)25+(x§)32+
(x§)36_'_ (‘,1:%)38_’_ (x§)39_'_ ($§)40
This gives message polynomial m(a,“%) = (1'%)2 + (3,"%)6.

Corresponding to 2-error correcting (15,7) primitive BCH code in Zs[x; %NO], we have 7-
error correcting (45, 7) non-primitive BCH code in Z4[z; 2No] and Zs[z; 2No).

During communication, the codewords of any of the sequences {Cy;,, } ;>0 and {Cl;jn}J'ZO of
BCH codes can be decoded by using modified Berlekamp-Massey algorithm. In decoder we use

this single algorithm to deal all four types of codewords.

Remark 90 For bin length BCH codes with same code dimension it requires more time and
lengthy calculations with increasing values of j. A method through which the decoding of b'n
length codes is done with the help of n length BCH codes. If in each pattern of bn length BCH
code the errors are not more than the error correction capability of n length BCH codes, then
with the help of generator polynomial of n length BCH code we decode each pattern separately

and in last combine them to get b'n length codeword as shown in following example. Consider

transmitted vector
c = 001022323110000001022323110000001022323110000,
of BCH code (45,7) in Z4|x; %No]% as taken in example 89 and received vector is

r = 001022023010000001002323110030001022023100000.
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By splitting the received vector into patterns of length 15, we have

rp 001022023010000, re = 001002323110030

r3 = 001022023100000.

As number of errors in each pattern are two, so, we decode them with the help of generator poly-
nomial of 15 length BCH code over GR (22,4) and in last combine them to get the transmitted

vector.

However, if the number of errors in some pattern of #/n length BCH code exceeds the error
correction capability of n length BCH codes, then we have no way to deal it with the help of n
length BCH code.
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Chapter 7

Applications

Cyclic codes and particularly BCH codes have a wide range of applications in information
theory, wireless communication and cryptography. Recently application in the formation of
DNA sequences is considered as codewords of BCH codes over the field Fy. This chapter is
divided in three sections. Section 1 discuss the application of BCH codes over the field Fs
in cognitive radio, Section 2 discusses the application of BCH codes over the field F4 in the
formation of DNA sequences and Section 4 discusses the application of BCH codes over finite

rings and finite fields instantaneously in data transmission.

7.1 Application in cognitive radio

The cognitive radios constantly try to regulate modulation scheme, bandwidth, code rate,
power, and carrier frequency in an exertion to consume unused spectrum and elude interference
to the primary user. A clever design of error correcting codes might offer generous gains in
interweave multiple transmission cognitive radio arrangement. We have introduced a novel
coding scheme to manage data for primary as well as secondary user by including similar (or
dissimilar) binary BCH codes and a corresponding ascending sequence of embedded distinct
binary BCH codes with increasing error correction capability and varying code rates. In a
similar approach to an interweave model, initially the information capacity is utilized by the
primary users, while, in the existence of spectrum holes, the secondary user uses binary BCH

codes to competently utilize the vacant spectrum.
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7.1.1 Bandwidth limitations

Let S; be the signal set M; be the number of signals in the signal set. Suppose v(T) =

(v(()T) (T) T _ (u(()T) (T) ) €

sy Uy~ 1) € Fy is the codeword of an (n;, ki) —code against a message ul e Up L

FI;‘ at time 7' and we divide each v(T) into n;/m; blocks, where m; = logyM, M = 2™, Then
modulation is a map M : Fy* — S; defined as SZ(T) = si(v(T)), where SET) € S; and S; is a subset
of N—dimensional real Euclidean space, that is, S; C RV [23, Chapter 7].

Following [32], the bandwidth required for an (n, k) code is W = —(%) where m = log, M,
R, is the source data (transmission) rate and R = ﬁ, the code rate.

The bandwidth may be maximize and minimize, depends upon the minimum and the maxi-
mum value of the ratio n/k = 1/R and the value of m bits for the selection of modulation scheme

for different modulation types. These bits may be minimum and maximum for maximum and

minimum bandwidth. It can be seen as; Wyax = m]f:in (%)max and Wyin = mizx ( R)mm Thus
there are possibilities; (i) m is fixed but % is varying, (ii) m and }% both are varying.
For Cognitive radio multiple forward transformation under the interweave model we may

get spectrum corresponding to the given set of sequences {Cg 1 <4 < ig of binary cyclic

J L
codes for data transfer of the primary users. Now, the setup allow the secondary users having
the binary BCH code Cgi, 1 < i < ig mod for their data transfer. Accordingly the secondary
users obtain high speed data transfer as compare to its own scheme of the BCH code CO..
Furthermore since for each 1 < ¢ < 4y there are sets of embeddings CO_ <—>Cl1 — ... <—>CZ?OnL
of binary BCH codes of the sequences {CZjn 7o > ; and the binary BCH code CO_ is embedded
in each of binary cyclic codes Cijm for 1 < j < jo. It is also observed that corresponding to

the code rate RU = % of binary BCH code C , the code rate of binary BCH code Cb]n is

Rijn_ = % for each 1 < j < jo. Consequently RO < R < R . < Rijn < .. and

thus ... < le < ... < R}i < R}i %. This implies ... < ijjn = Ru(le ) < ... <
bIn; Mg ng B bIn;

Wh,, = Ry (Rll ) < WR = Z(R%{. ). Thus, if we transmit data through any of the code in

nz

the sequence {ijn. ;-0:1, the bandwidth ngn, for each j > 1 will be lesser the bandwidth W,%

required for data transmitted through the binary BCH code C%i-
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7.1.2 Multiple forward transmission through embedded BCH codes

The secondary user has an opportunistic access to the spectrum, when the primary user is
absent and withdraw when the primary user wishes to transmit once another time, this is due
to the interweave model. Accordingly the codes constructed in Chapter 3, could deliver an
excellent pattern for wireless communication in which interference issue is controlled amicably.
We offer a multiple forward transmission model for Cognitive radio based on error correcting
codes which guarantees the noninterference among the users.

A plan of the multiple forward transformation model is offered bellow.

It is supposed that a primary users family {ngm ;:0:0 from the set {{ngm ;:0:0 11 <i<ig},
use the family {ngm}gozo of binary BCH codes from {{Ci]-ni ;020 01 <4 < iy} for its data

SThiss] ; - : 0 1 jo
transmission. For each ¢ € {1,2,..,40} there are embeddings Cy,, —Cj,,, ... —Ciion,

BCH codes.

of binary

The binary BCH codes in the sequence {Cifn' j:()zo are used for data transmission of the

Jo

sequence {ngn,_ =1 of primary users with corresponding bandwidths {ngn gozo such that

WZ]OOM <. < Wbllni < WSZ, and the total bandwidth Z?O:o Wg]m is required for simultaneous
transmission.

Whenever all users {ngn_ ;:O:o transmitting their data at a glance considered to be the
primary users. However, any of the user PZ;,W, where j' € {1,2,...,7,}, enter as a secondary

user and opportunistically can use any of path of the sequence {Pj o of primary users

bin;Jj=j'
whenever any of them is not using its allotted bandwidth. Here it is noticed that the data
of the secondary user Pg;.,n‘ is configurated with the binary BCH code CZ;’W and it requires
bandwidth higher than any of the bandwidth required for the data of any primary user of the

sequence {Pj 70 Consequently with high code rate, improved error correction capability

bingJj=j""
and with less bandwidth secondary user PZ;,HV can transmit its data. Thus any primary user

l J Jo
Py, of the sequence {ijm 0

can change its status as a secondary user Sélnywhenever any
of the user Py, with [ < m, is not using its path.

Functioning of the model

Notions
0<j<bon;. And 1 <i <.

7321_: Primary user corresponding to the binary primitive BCH code C%r
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ngni: jth Primary user corresponding to the binary non primitive BCH code Cijm.
7 information symbols for jth user.
Ef jth encoder for mf

MPZ?: Modulation for EJ

ngm : Bandwidth required for user ngm for each j.
DM,Pij: jth Demodulation

D{: jth decoder

The data of Pij , for each j, for each 7, is modulated through M,;, where M,; is a modulation

Pl
map, ie., My, : Fi" — S5, where S; is the signal set, j,; is the number of signals in the

signal sets Sp;. However for ¢ = 2, j,; = 2™, m; Is a positive integer.

Multiple Cognitive Radio Forward Transmission Model (MCRFTM) or Sheet assortments

0
The functionality of MCRFTM is as follows. We call S;, 1 <7 < 49, a sheet and H S,

i=1
the sheet assortments.

Table 28: Values of 5;,1 < i < g
S1: C — Chp > oo C’i%m

.0 1 Jo
Sa: Oy = Chpy = oo = O,

.0 1 Jo
Sig: Oy = C'bnio‘—> - ijOmO
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Table 29: CRFTM

PO BL  Pi.. P . P e
- - - - Sp= P l
| ! ! !
m m} m? mé md— mm mgo
! ! ! ! ! !
B} B} B E E}— E" E}

! ! ! ! ! !
Mpo  Mp  Mp: My Mgi= My Mpp Mo
! ! ! ! ! !
Wa, Wi, Wi, W, Wi, Wi,
! ! ! ! ! !
DMpy DMp; DMp: DMp DMg=DMpi— DMpy DM
! ! ! ! ! !
Dy D D} D; Di— Dy Dy
| ! ! ! ! !
‘Pi(,)ni Pil,bni Zb?m z'l,b3ni"' Sf,blni: P i’,blni(_) Pymp, - 1] Zjom

Transmission steps for an arbitrary page of the book

0<3j<jo,1<i<ig

I. All users are Primary users

1. Data of the Pz»j , for each j, users transform into the set mf of message bits.

2. For each j, the set m/ of message bits encoded through encoder Ef .

3. For each j, the set EZJ of encoded messages modulated through M,Pij

4. For each j, the set Mp; of modulated codewords passing throughlthe channel having
bandwidth W7

5. For each j, the corresponding transmitted signals of MP{ are demodulated.

6. For each j, the received signals corresponding to M,,; are decoded through decoder Dz .
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7. The end of whole process is the destination of data of all users.

II. All users are not Primary users

Almost all steps of data transmission are same as I. However, the user Plilni enter as a
secondary user and opportunistically can use any of the path of the sequence {ngm ;0:1 of
primary users whenever any of them is not using its allotted bandwidth. For instance, if the
primary user Py, . where [ < m, is not in, then the user Pélni transmitted its data configurated
by the binary BCH code Célni through the binary BCH code Cy,,, = used for data of primary
user Py, and it is now considered as the secondary user Sll»lm'

A Similar Multiple Cognitive Radio Forward Transmission Model (SMCRFTM)
or repeated pages of the book

This is a particular case of MCRFTM and it works as: For any fixed 4; € {1,2,...,49p} one
can choose the transmission scheme of multiple data transmission in such a way that there is a
binary BCH code of length n;, with corresponding sequence {Cijnil };0:0 of binary BCH codes.
Furthermore all of the iy transmissions are consisting on this same sequence of binary BCH

codes.

Table 30
.0 1 Jjo
Si: Cnil‘—> Cbnil<—> e ijOnil
.0 1 Jo
Si: Cnil% Cbml‘—> e ijoml

.0 1 Jjo
Si: Cnil<—> Cbmlc_) . ijonil

A Constant Multiple Cognitive Radio Forward and Backward Transmission
Model (CMCRFBTM)
This is a case of MCRFTM and it works as: For any fixed i € {1,2,...,7p} one can choose
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the transmission scheme of multiple data transmission in such a way that there is a fixed binary
BCH code C¥ of length n with corresponding sequence {C%Z ;0:1 of binary BCH codes, where
C%i :Cgi for each j. Furthermore all of the transmissions are consisting on this same sequence

of binary BCH codes.

Table 31
.0 1 _ )
S1:Ch,=Ch = ... = C{{’l
.0 1 _ j
So: Ch,=Ch= ... = CP
S;: C%.Z C’}L,: = C%O,

Almost all steps of data transmission are same as I. However, any user 7371” can enter as
a secondary user and opportunistically can use any of the path of the sequence {737]” ;(’:l of
primary users whenever any of them is not using its allotted bandwidth.

Illustration of MCRFTM

The irreducible non-primitive polynomials p(mg) =1+ (av%)‘(3 + (93%)12 € Folz; 7o) and
p(m?r%) =1+ (w%)g + (:1:%)36 € Faz; 2Z0) are obtained through the primitive irreducible polyno-
mial p(22) = 1+ (22) + (22)* € Fa[z; 2Z0]. Consequently we get GF(2%) ¢ GF(2'?) c GF(2%9),

the ascending chain of Galois field extensions.

144



Table 32

n; 15 45 135
Si 4 12 36
[Cgiv d]’ R15 [Cil’m ’d]v R45 [03% 7d]v R135
[(135,99),2,3],0.733
[(135,87),4,5],0.644
[(45,33),2,3],0.733
[(135,69),6,7],0.5111
[(45,29),4,51,0.644]
[(15,11),2,3],0.733 [(135,33),8,9],0.244
[(45,23),6,7],0.5111
[(15,7),4,5],0.466 [(135,29),10],0.215]
[(45,11),8,9],0.244
[(15,5),6,7],0.333 [(135,23),16],0.170
[(45,7),10],0.1555
[(15,1),8],.0667 [(135,11),22],0.0814
[(45,5),16],0.111
[(13 7),28],0.0518
[(45,1),22],0.0222
[(135,5),46],0.0370
[(135,1),64],0.007
For fixed m; = 2, the relation between bandwidth and code rate is given as;

wi(Ry/2)(1/R) = w;R

; Wi

w/2R, where w; is the bandwidth expansion, R, is the transmission

rate and R = k/n is the code rate. The bandwidth with different code rates is given in the

following tables.

For w; = 1.2 and R, = 64 kbps. Thus w; R, = 76.8 and W] = 76.8/2R}, = 38.4/RJ,

kHz, where integer 7 > 0.

Table 33 (a)

L%

S

[Cgl ’

7
3
d, RS, W9 kH >z

49
21
Cs

g’

343
147

dl, R41197Wi9 kHz [072n7 dl, R§437W§43 kHz

|

[(7A),2,0.571,67.250)

[(49,4),8],0.081,474.074)

[(343,4,50],0.020,102
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Table 33 (b)

n; 15
S; 4
[C . d], R);, W5 kHz

[(15,11),2,3[,0.733,52.387

[(15,7),4,5],0.466, 82.403

45
12
[Cén ,dJ, R4115= Wzll5 kHz

[(45,33),2,3],0.733,52.387
[(45,29),4,5],0.644,50.627

[(45,23),6,7],0.511, 75.122
[(45,11),8,9],0.244,157.377

135
36
32, dJ, 3%357W%35 kHz

3
[(135,99), 2, 3],0.733,52.387
[(135,87),4,5],0.644, 59.627
(135, 69),6,7],0.511, 75.122
(

[(135,33),8,9],0.244, 157.377
[(135,29),10[,0.215,178.604

[(15,5),6,7],0.333,115.315 [(135,23), 16], 0.170, 225.882
[(45,7), 10], 0.155, 246.945
[(15,1),8],0.066, 575.712 [(135 11),22],0.081, 471.744
[(45,5), 16],0.111, 345.945
(135, 7), 28], 0.0518, 741.312
(45, 1), 22],0.022, 1729.729
(135, 5), 46, 0.037, 1037.837
[(135, 1), 64],0.007, 5485.714
Table 34 (c)
g 63 189 567
S; 6 18 54

[Ch . d], Ry, Wiy kHz

[Cilan ,d], Risga Wigg kHz

[03271 5 d}, R§677 W§67 kHZ

[(63,51),4],0.809,47.436)

[(189,123),10[,0.650,59.013

[(567,123),32[,0.216,177.040]
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7.1.3 CRFTM for BCH codes

From example 63, the (135,29) binary non-primitive BCH code Ci35 with designed distance
d = 4 has bandwidth Wi35 = 178.6046. The received polynomial

On replacing x5 = ¥, this gives % = x%, which gives

v2(23) = (23)0 4+ (25)8 + (23) 2 + (23)" + (23)3 + (23) + 1 € Cys,

where UQ(ZL'%) is the generator polynomial of non-primitive binary BCH code (45,29) with
designed distance 4, and bandwidth W5 = 59.6273. Again on letting 25 = y, this gives y3 = 22,
we get v2(22) = (22) 13+ (22)12 4+ (22)"+ (22)3 +1 €Cy5, where Cy5 is primitive binary BCH code

(15,11) having bandwidth Wi5 = 52.3874, it is due to the reason that the generator polynomial
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(22)* + (z?) + 1 divides v?(x?).

ppr Pyr Pl
! 1 n
F27<_> F249 F2343
!
! 1 !
CPC F} CP— CloC F®  C343C F3P
! 1 !
Mpo Mpo+s Mp Mp2
! 1 !
W= 67.2504 W= 474.0740 W2,=1920
! 1 !
DM po DMpoes DMp1 ~ DMp>
! ! !
c? CP— Clo Cius
! 1 !
P ? P, ? =P 4119 P, 3243

CRETM for BCH codes (7,4), (49,4), (343, 4)
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P105|—) P415|—) P1235

! ! H
FyP— Ff5 F135
!

! ! !
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! ! !
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CRETM for BCH codes (15,11), (45, 29), (135, 29)
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P603|—) P1189|—) P5267
! l U
F263c_> F2189 F2567

!

! l !
CC FS Cl3— ClgyC F3¥ C257C F3°7
! l 1
Mpo Mpos Mps Mp2
! ! !
W= 47.4366 kHz Wige=59.0133 kHz W2,,=177.0401 kHz
! l !

DM po DM po+s DM p DM p>
! l 1
Ces Cg3— Cisg CZer
! ! !

Pgy Py Plsg Pz

CRFETM for BCH codes (63,51), (189,123), (567, 123)

By Table 5a, 5b and 5c it is observed that corresponding to the set of BCH codes (15,11),(45, 29)
and (135,29) (respectively (7,4),(49,4) and (343, 4); (63,51), (189,123), (567, 123)) the required
bandwidths respectively are 52.3874 kH z, 59.6273 kH z and 178.6046 kH z (respectively 67.2504
kHz,474.0740 kHz and 1920 kHz; 47.4366 kHz,59.0133 kHz and 177.0401 kHz).

For the sequences of binary BCH codes (7,4),(49,4),(343,4); (15,11),(45,29),(135,29)and
(63,51) (189,123),(567,123)) from Tables 33a, 33b and 33c¢ with their corresponding code rates
and using the 4psk modulation schemes, we realize the symbol error rate (SER) verses signal
to noise ratio (SNR) (see Fig -1, Fig -2, Fig -3). It is apparent from the Fig 3 that SER verses
SNR of the sequence of binary BCH codes (63, 51) (189, 123),(567, 123) is convergent as compare
to the other two sequences (7,4),(49,4),(343,4) and (15,11),(45,29), (135,29) of binary BCH
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Remark 91 In CRFTM, the BCH codes are with larger lengths and higher error correction
capability whenever sequence is going ahead.
(i) User of any lesser spectrum hole can be shifted to larger spectrum hole in case it is vacant;
(ii) Error correction capability will be enhanced in case of shifting the holes;

(iii) Accumulative bandwidth is supporting in getting higher efficiency.

CMCRFBTM

Table 34 (a)

n 7 7 7

s 3 3 3
(Cy Ry, WO kHz [C) d],R}, W9 kHz [C) d],R}, WY kHz
[(7,4),2],0.571,67.2504  [(7,4),2[,0.571,67.2504  [(7,4),2],0.571,67.2504
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Table 34 (b)

n 15
s 4

[cgi, d), R, W95 kH >

15
4

[Cgi,d}, R, WYy kHz

15
4
[CSLZ,, d), RV, W9 kH =~

[(15,11),2,3[,0.733,52.3874)

[(15,11),2,3],0.733,52.3874

[(15,11),2,3],0.733,52.3874)

Table 34 (c)

n 63
s 6
[ng., d}, RgSv W83 kHz

63
6
[C?”, d, R237 ng kHz

[(63,51),4],0.8095,47.43606)

[(63,51),4],0.8095,47.4366

63
6
[ng d}, Rg37 ng kHz

|

[(63,51),4],0.8095,47.4360)
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Por Plr P2
l l I
e F K
|
| l l
CoC Fj CYC FJ C9C FJ
| | !
Mpo Mpo— Mp: Mpo
l !
W0=67.2504 W}=67.2504 W2= 67.2504
| | l
DM po DM po— DM p: DM p2
l l |
c? c? 7
l l !
P? PV P P2

CRFTM for BCH codes (7,4), (7,4),(7,4)
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! ! !
Mpo Mpo— Mp: Mp2
! ! !
Wl=52.3874 Wi}=52.3874 W= 52.3874
! ! !
DM po DM po— DM p: DM p2
! ! !
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! ! !

Pi; Py Py P

CRFTM for BCH codes (15, 11), (15,11), (15, 11)
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Peyr P? Py
! ! ]
63
FQlc_) F$3 F$3
! ! !
CgsC FS? CgsC FS? CgsC F§?
! ! !
Mpo Mpoes Mp Mp>
! ! !
W= 47.4366 kHz Wgy=47.4366 kHz W= 47.4366 kHz
! ! !
DM po DM po+s DM DM po
! ! !
Cés Cés Cés
! ! !
Pgs Py Py Py

CRFTM for BCH codes (63,51), (63,51), (63,51)

Remark 92 In CMCRFBTM, same BCH code is repeated for any spectrum hole and thus we
obtain the following outcomes.

(i) Any user can move to any of the hole in case it is vacant.

(i) Error correction capability is fized for all BCH codes configured with spectrum holes.

(iii) Accumulative bandwidth is not supporting in higher efficiency.

7.2 Application in DNA formation

DNA (or deoxyribonucleic acid) is an inherited material in humans and almost all other or-
ganisms. Nearly every cell in a human’s body has the same DNA. Mostly DNA is located in

the cell nucleus. The information in DNA is stored as a code made up of four chemical bases:
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adenine (A), guanine (G), cytosine (C), and thymine (T). Human DNA consists of about 3
billion bases, and more than 99 percent of those bases are the same in all people. The order, or
sequence, of these bases determines the information available for building and maintaining an
organism, similar to the way in which letters of the alphabet appear in a certain order to form
words and sentences.

DNA bases pair up with each other, A with T and C with G, to form units called base
pairs. Each base is also attached to a sugar molecule and a phosphate molecule. Together, a
base, sugar, and phosphate are called a nucleotide. The order, or sequence, of these bases
determines what biological instructions are contained in a strand of DNA. For example, the
sequence ATCGTT might instruct for blue eyes, while ATCGCT might instruct for brown.
DNA contains the instructions needed for an organism to develop, survive and reproduce. To
carry out these functions, DNA sequences must be converted into messages that can be used
to produce proteins, which are the complex molecules that do most of the work in our bodies.
Each DNA sequence that contains instructions to make a protein is known as a gene. An
important property of DNA is that it can replicate, or make copies of itself. Each strand of
DNA can serve as a pattern for duplicating the sequence of bases. Researchers refer to DNA
found in the cell’s nucleus as nuclear DNA. An organism’s complete set of nuclear DNA is called
its genome.

In [25], the authors showed that the DNA also contain an error correcting code. They
proposed that if a linear block error correcting code is present in DNA then some bases would
be a linear function of the other bases in each set of bases. An efficient procedure is given
to determine if such an error correcting code is present in the base sequence. Furthermore in
[11], Faria et al. confirmed that there are DNA sequences that can be identified as codewords
for error correcting codes. In [1], Abualrub et al. proposed a theory for constructing linear
and additive cyclic codes of odd length over Fy = {0,1,a,0% = 1 + o} that are suitable for
DNA computing. In [10], Faria et al. have showed the existence of DNA sequences which can
be identified as codewords of BCH codes over the field Fy. They have proposed an algorithm
capable of producing DNA sequences, associated with coding regions of genes, as codewords
of error-correcting codes. Their results allow the use of efficient computer simulations in the

analysis of biological processes such as polymorphism and mutation, consequently reducing time
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spent in laboratorial experiment. Much work has done in this area see ([12] and [8]).

In this section, we discuss the application of newly constructed non-primitve BCH codes
over the field Fy, explain in chapter 5, in the formation of DNA sequences followed by the
process discussed in [10, Table 1]. In [10, Table 1], the authors proposed an algorithm in which
they first consider a DNA sequence as; if it were a codeword and make the conversion of the
24 permutations between the set of nucleotides N = {A,C, G, T} and the code alphabet from
the field Fy = {0,1,,a? = 1 + a}. To check whether each one of the 24 possibilities is in fact
a codeword, they use the relation v.HT = 0, where v is a possible codeword. To analyze the
difference between the DNA sequence and the codeword, three other possibilities for nucleotides
in each position in the DNA sequence is analyzed, for each permutation, and again the relation
v.HT = 0 is used to verify whether v is a codeword.

Following the same strategy our construction gives repeated DNA sequences whenever both
the primitive and non-primitve BCH codes have same dimension. Repeated sequences (repet-
itive elements, or repeats) are patterns of nucleic acids (DNA or RNA) that occur in multiple
copies throughout the genome. There are 3 major categories of repeated sequence: 1) Ter-
minal repeats, 2) Tandem repeats, 3) Interspersed repeats. We are getting tandem repeating
sequence. Repetition of a pattern of one or more nucleotides in DNA such that repetition is
directly adjacent to each other is called Tandem repeats. Several protein domains also form
tandem repeats within their amino acid primary structure. For example in ATTCG ATTCG
ATTCG the sequence ATTCG is repeated three times. Tandem repeat describes a pattern
that helps determine an individual’s inherited traits. Tandem repeats can be very useful in
determining parentage.

In the following example we show how a DNA sequence associated with a generator poly-

nomial of a BCH code tandem repeats.

Example 93 The following example deals with a non primitive BCH code of length 189 based
on the primitive BCH code of length 63 using same primitive polynomial discussed in [10,
Table 1], for Triticum aestivum with GI number 78096542. For a primitive polynomial p(x?) =
(22)3 + b(z?)? + (22) + « in Fy[z;2No] there is a non-primitive irreducible polynomial p(:c%) =
(m%)9+b(x%)6+(x%)3+a inFylz; 2No). Let B € GF(4°), satisfying the relation 3+b3%+ 3> +a =

0. Using this relation we get 813 = 1. Following the above construction we get the following
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tables of BCH codes Cg3 and Cigg over Fqlz; 2Ng| and Fy[x; No]

Table 35:BCHcodes Cg3 and Cigg over Fy[z; 2Ng| and Fy|x; NO]

(k) |d |t|R (bn,k) | di |t | Ry
(63,60) | 3 | 1]0.952 || (189,180) |3 |1 | 0.952
(63,57) | 4 | 1]0.904 || (189,168) |5 |2 | 0.888
(63,54) | 5 | 2| 0.857 || (189,156) | 7 |3 | 0.825
(63,51) | 7 | 3]0.809 || (189,147) |9 |4 | 0.777
(63,48) | 8 | 3] 0.761 || (189,135) | 11 | 5 | 0.714
(63,45) | 9 | 4| 0.714 || (189,117) | 15 | 7 | 0.619
(63,42) | 11 | 5 | 0.666 || (189,102) | 21 | 10 | 0.539
(63,39) | 12 | 5 | 0.619 || (189,81) |27 | 13 | 0.428
(63,36) | 13 | 6 | 0.571 || (189,57) |33 | 16 | 0.301
(63,33) | 15 | 7 | 0.523 || (189,54) |39 | 19 | 0.285

The generating polynomial of the code (63,57) repeats three times in the generating polynomial
of the code (189,57) that is:

9(z*) = (@°)°+ (@) + @)+ (%) +1
g(xg) _ ($§)132+(m§)131+(x§)130+( D27 4 (g §)126 + (2 §)69 +(z %)68
H(@3)T 4 (@3)* 4 (@9)% 4 (29)° + (29)° + (23)" + (%) + 1.

Therefore by Remark 72 the codewords in (63,57) also repeats 3 times in the codewords of
(189,57). This means that the whole DNA sequence generated by (63,57) BCH code over Fy in

[10, Fig 1] tandem repeats three times to form a DNA sequence associated with a codeword in
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(189,57). Hence we get:

ATGGCCGCACGCCTCGCGCTGETGGCGGCGLTCCTGTGCTCCGGTGCCACGGCCGCCGCGGLG
ATGGCCGCACGCCTCGCGCTGGETGGCGGLGLTCCTGTGCTCCGGTGLCACGGCCGLCGCGGELG
ATGGCCGCACGCCTCECECTEETEGECEGECGLTCCTEGTGCTCCEGTGLCACGGCCGLCGECEELG

Oofaallalflalle’lalala’aaclanlanlala’lle’ac’ale?llane’all0lacllallalanla
Oofaallalflalle’lalal efaac’aalaalale?llc’ac’ale?l laaa’alitlaal lallalaala

Oafzallalflalleflalol efeacfaaloalalefllciacfale?l loaaafallllaallallalacla

Fig J: DNA sequence corresponding to a codeword of
length 189 such that a DNA sequence associated with a

codeword of length 63 is tandem repeating in it.

In this sequence we are getting triple nucleotide polymorphism occurring after a fix interval.
Similarly for other sequences discussed in [10, Fig 1 and Fig 2], we get triple nucleotide poly-

morphism.

7.3 Application in data transformation

In coding theory the noisier the channel, the longer the codeword has to be to ensure perfect
communication. But the longer the codeword, the longer it takes to transmit the message.
Therefore, a good communication requires precisely matching codeword length to the level of
noise in the channel. Wireless devices, such as cell phones or Wi-Fi transmitters, regularly send
out test messages to estimate noise levels, so they can adjust their codes accordingly. However,
as in cell phone reception quality can vary at locations just a few feet apart or even at a single
location. Noise measurements quickly become outdated, and wireless devices routinely end up
with codewords that are too long, wasting bandwidth, or too short, making accurate decoding
impossible.

In this work, our newly constructed codes are linked in such a way that we may easily shift
the data from smaller code of length n to any of larger code of length b’n in the sequences

{C;,jn}jzla and {Cyj, }j>1, according to requirement of noise levels and obtain the benefit of
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better error correction. Similarly, for fast transmission of code we can shift data from &/n length
code to n length code. Furthermore, the bandwidth is maximally utilized by the code C), and
C,, because they are embedded in codes of the sequences {Cj;,, };>1 and {C;jn}jzl respectively.
Therefore for a fixed m, against n length primitive BCH codes C, and C;L over Zo and Zgm,

there exist two sequences {C;,, }j>1 and {C’l/7 }j>1 of non-primitive BCH codes over Zy and Zam

in
respectively. Through embedding and the p reduction map these two sequences are established.
Hence a data can be transmitted via any of the coding schemes Cy,, C,,, {Cyp, }j>1 and {Cl;jn}jZl‘
This selection of scheme is based on the choice of better code rate or better error correction
capability of the chosen code.

A non-primitive BCH code in the family {Cll)jn}jZl or {Cyj, }j>1 has larger code length if
j is larger. However, if C’;ln is a code from the sequence {Cl/ﬂ'n}jzl and Cy,, is a code from
the sequence {Cj, };>1. They have same code length, code rate and error correction capability
but Cl;ln have more codewords than Cy,,. By increasing codewords maximum information per
unit time is transferred, thus, the code Cl/;ln has more benefit than the code Cy;,,. Besides this,
the long length non- primitive BCH codes C’;ln and Cy,, contain the information of smaller
primitive BCH codes C,, and C,,.

For any jp, , where 1 <2 < ... < jy, , the synchronized encoding and decoding of the BCH
codes Cpjm,,, and Cl;ijn are considered. Accordingly, any chosen BCH codes C;,, and Cll)jn
with 0 < j < ji,, for data transmission, can be replace by BCH codes Cj.,, and C;ijn,
respectively, to decode simultaneously the codewords of BCH codes C,, and C,;. The whole
), D(Cy;,,), E(Chin) and D(Ciy)

bin

! !

scheme is described in the following figure 1, where E(C,;
stands the encoder and decoder of C’g)jn and Cy;,, respectively, for all 0 < j < jp,. EC and CR
are use for error correction and code rate of the code and the arrow ” — ” shows the embedding

of codes.
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7.4 Summary

In short these are the following applications of non-primitive BCH codes constructed on the
base of primitive BCH codes over the Galois field Fo, the Galois field F4 and the finite Galois
rings Fom.

The BCH codes over the Galois field o, gives a novel interweave multiple transmission model
for cognitive radios. The data of set {ngni’ 1<i< io}gozo of primary users is configured and
transmitted through the set {Cijni 1<i< io}gozo of binary BCH codes. However, corresponding

to each primary user ngn_, the data of the family {Pj ;0:1 of primary users is configured

bjni
by the family {Ci]-m ;021 of binary BCH codes having sequentially increasing code lengths and
error correcting capabilities. Due to the choice of the modulation scheme, every member of
the family {Cijni ;:0:0 requires sequentially increasing but different bandwidths. A multiple

transmission pattern is planned in the spirit of interweave model in such a way that the user
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Pll:ln,- opportunistically avail the channel path (spectrum hole) of any of the primary users in
the family {ngm ;021 , which is not utilizing its allotted spectrum hole.

Whereas in BCH codes over Galois field Fy4, the codewords of non-primitive BCH codes of
length bn, having same code dimension as that of BCH code of length n, contains codewords of
C,, which repeats b times in it. Consequently, the DNA sequence associated with the codeword
of the code C,, tandem repeats b times in the DNA sequence associated with the codeword in
Chp-

Finally, the BCH codes over finite Galois ring are linked with the BCH codes over Galois
field Fs in such a way that: one can easily shift the data from code of length n to any of the code
of length /n, where j > 1, in order to obtain the benefit of better error correction. Whereas,
for fast transmission of code data can be shifted from the b'n length code to the n length code.
The bandwidth is maximally utilized by the code of length n as they are embedded in codes

of length ®/n. The selection of a code is based on its length, code rate and error correction

capability.
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Chapter 8

Conclusion

In current times, there has been an increasing demand for digital transmission and storage
systems. For this a digital system must be fully reliable, as a single error may collapse the
whole system, or cause undesirable corruption of data. In such situations error correcting codes
must be employed so that an error may be detected and subsequently corrected. In this work we
have constructed cyclic and particularly BCH codes using monoid rings instead of polynomial
ring. Through monoid rings the length of the polynomials is increased which increases the code
length. Hence it is required to construct such codes which can correct more errors.

Initially we have constructed binary cyclic codes, using monoid rings. A technique is given
in such a manner that for an n length binary cyclic code C,, there exists binary cyclic codes
Can, Cpn and Cgpy, of lengths an, bn and abn. These codes are found to be interleaved codes and
are linked together in a special way. Therefore, they are capable of correcting random as well
as burst of errors. Afterwards we have constructed non-primitive BCH codes over Galois filed
Fy using monoid ring instead of polynomial rings. This construction is based on a primitive
BCH code, which gives an association between primitive and non-primitive BCH codes. The
non-primitive BCH codes gives better error correction capability with a little deprivation in
code rate.

Moreover, we have constucted non-primitive BCH codes over the four elements Galois field
F4. These codes have better code rate as compare to the codes obtained over the field Fao. Also
the possible choices of BCH codes over F4 are more as compare to the BCH codes over Fa.

In this work BCH codes over monoid rings are consrtucted, other codes like Reed Solomon,
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Golay and Fire codes can also be constructed using the same monoid rings. Another new family
of cyclic as well as BCH codes can be constructed by taking some other similar monoids. We
have given an algorithm to calculate non-primitive BCH codes over the field Fy, which can
further be enhanced for other Galois fields and Galois rings as well. Further by considering a
varying positive integer m for local ring Zgm, we will obtain family of sequences {Cyj,, }j>1, m>2
and C;ln € {Czl,jn}jzl, m>2 of non-primitive BCH codes. This will serve the purpose at large
scale and for multiple uses.

Other than the given applications this work can be implemented in cryptography. In [15],
the authors have given a notion of cryptcoding, it is a procedure through which they have joined
together, encryption and error-correction in one step. Following [15], this work can easily be

implemented in cryptography for error free secure network.
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