
























Abstract

To expand the use of codes and provide a form of error-correction, it is useful to extend

the use of binary streams into another representation. In this work, we have used di¤erent

monoid rings for the construction of a new family of error correcting codes having better error

correction capability. Initially we have constructed binary cyclic codes using monoid rings

instead of polynomial ring. For an n length binary cyclic code, three di¤erent binary cyclic

codes of length an; bn and abn are obtain. These codes are interleaved codes capable of

correcting burst of errors alongwith random error correction.

The BCH codes form a class of parameterized error-correcting codes which have been the

subject of interest. Instead of primitive BCH codes we have showed the existence of non-

primitive BCH codes of length bn over the �elds F2, F4 and �nite rings Z2m along with their

applications. The value of b is investigated for which the existence of the non-primitive BCH

code Cbn is assured. It is noticed that the code Cn is embedded in the code Cbn. Therefore,

the data transmitted by the code Cn can also be transmitted by the code Cbn. The BCH codes

Cbn have better error correction capability whereas the BCH code Cn has better code rate.
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Chapter 1

Introduction

Error-correcting codes are one of the most e¤ective and widely applied branch of abstract

algebra over the last sixty years. It forms the basis of modern communication systems and is

used in essentially all hardware level implementations of smart and intelligent machines, such

as scanners, optical devices, and telecom equipment. It is due to the error-correcting codes that

we are able to communicate over long distances and are able to achieve megabit bandwidth

over a wireless communication channel.

One of the important class of error-correcting codes is cyclic codes. These codes were

initially studied by Prange ( [30], [31]). Since then, advancement in the theory of cyclic codes

for correcting random as well as burst errors has been encouraged by many coding theorists.

The cyclic codes were �rst studied over the binary �eld F2. Then were extended to the prime

�eld Fp and its Galois �eld extension Fq, where p is a prime integer and q is pm with m a

positive integer. The correspondence of cyclic codes with ideals was observed independently by

Peterson [28] and Kasami [19].

An important class of cyclic codes are binary Hamming codes. They were discovered by R.

W. Hamming and M. J. E. Golay. Hamming represent a family of binary linear error-correcting

codes that can detect up to two errors and correct one error. They have interesting properties

and are easy to encode and decode.

In [16], Hocquenghem and in [7], Bose and Ray-Chaudhuri independently developed the

large class of error correcting codes named as BCH codes. These codes are a remarkable

generalization of the Hamming codes for correcting multiple-errors. One of the key features of
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BCH codes is that during code design, there is a precise control over the number of symbol

errors correctable by the code. Another advantage of BCH codes is the ease with which they

can be decoded via an algebraic method known as syndrome decoding.

The extension of a BCH code embedded in a semigroup ring was �rst discussed by Cazaran

[9]. A great amount of information regarding rings construction and its corresponding polyno-

mial codes are discussed in [24]. In [21], [20] and [22], the authors explained the extensions of

BCH codes in many ring constructions where the outcomes are the special case of semigroup

rings. In a series of papers [4], [34], [35], [36], [37], [38], [39] several classes of cyclic codes over

a �nite unitary commutative ring are constructed, through monoid rings. The purpose of these

constructions is to address the error correction and the code rate trade o¤ in a smart way.

In [40], Shah et al. showed the existence of a binary cyclic code of length (n + 1)n corre-

sponding to the n length binary BCH code using a monoid. It is established that the n length

binary BCH code is embedded in it. In [38], by the use of monoid ring existence of a binary

cyclic code of length (n + 1)3
k � 1, where k is a positive integer, corresponding to a binary

cyclic code of length n is explained. Both studies cannot show the existence of BCH codes

corresponding to the length n binary BCH code.

Other than �nite �elds, linear codes over �nite rings have been discussed in a series of

papers initiated by Blake in [5] and [6]. He introduced the notions of the Hamming codes,

Reed-Solomon codes and the BCH codes over arbitrary integer residue rings. Spiegal in [42]

and [43], showed that the codes over the �nite local ring Zpk can be described in terms of codes

over Zp and thus, are able to de�ne codes over Zm, for any positive integer m. Shankar in [41],

linked the notion of BCH codes over Zp to the class of BCH codes over the �nite local ring Zpk

through a p reduction map. A remarkable development regarding Berlekamp-Massey decoding

algorithm was given by Forney et al. in [13]. Recently Interlando, et al. in [18], have proposed

a decoding procedure based on the modi�ed Berlekamp-Massey algorithm for linear codes over

the �nite rings.

This thesis is organized as follows:

Chapter one describes a brief introduction to algebraic notions and algebraic coding theory.

In Chapter two, the construction of n length binary cyclic codes as an ideal in the factor ring

F2[x; aN0]=((xa)n�1) is explained. On the basis of binary cyclic code Cn construction of binary
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cyclic codes Can; Cbn and Cabn; as ideals in the factor rings F2[x]=((xn�1)); F2[x; abN0]=((x
a
b )bn�

1) and F2[x; 1bN0]=((x
1
b )abn � 1); are explained. The relationship among all of these binary

cyclic codes is obtained through interleaving technique and by their generator and parity check

matrices. Their error correction capability and decoding is also discussed in this Chapter.

In Chapter three, the construction of binary BCH codes using monoid ring F2[x; abN0];

where a; and b are integers such that a; b > 1; is given. We show the existence of non-primitive

binary BCH code of length bn using an irreducible polynomial p(x
a
b ) 2F2[x; abN0] of degree

br, corresponding to a given length n binary BCH code Cn generated by r degree primitive

polynomial p(xa) in F2[x; aN0]: It is noticed that the binary BCH code Cn is embedded in non-

primitive BCH code Cbn: In this way a link between primitive and non-primitive BCH codes

is attained. The length of the binary BCH code Cbn is well controlled and has better error

correction capability.

Chapter four generalizes the case of Chapter three by taking the monoid ring F2[x; abjN0]

where 1 � j � m and m is any �x positive integer. This gives a new family of BCH codes

such that the smaller length code is embedded in the larger length code. For wider range of

examples and quick results we have proposed an algorithm which calculates all the BCH codes

of particular length, their error correction capability, code rate and cyclotomic cosets. The

simulation is carried out using computer programme MATLAB. It provides built in routines

solely for primitive BCH codes with degree of primitive polynomial less than 16. Whereas in

constructing non-primitive BCH codes, the degree of non-primitive polynomial is greater than

16. In order to lever these conditions Generic Algorithm is developed in MATLAB.

In Chapter �ve, we have constructed BCH codes over the �eld F4 = f0; 1; �; �2 = 1+�g. In

[10], Faria et al., showed the existence of DNA sequences which can be identi�ed as codewords

of BCH codes over the �eld F4. They have proposed an algorithm capable of producing DNA

sequences, associated with coding regions of genes, as codewords of error-correcting codes. Their

results allow the use of e¢ cient computer simulations in the analysis of biological processes such

as polymorphism and mutation, consequently reducing time spent in laboratorial experiments.

This is the main motivation to enhance the case of binary �eld, to the Galois �eld F4: We

compare the results of both the �elds in this Chapter.

In Chapter six, instead of �nite �elds we construct BCH codes over �nite rings (Galois
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rings) using monoid rings. Following [41], we have constructed sequence of non-primitive BCH

codes fC 0
bjn
gj�1; in the factor ring Z2m [x; abjN0]=((x

a

bj )b
jn� 1) = Z2m [x; abjN0]bjn corresponding

to n length BCH code C 0n having symbols from the local ring Z2m : Thus, for a �xed m; against

n length primitive BCH codes C
0
n over Z2m , there exist a sequence fC

0

bjn
gj�1 of non-primitive

BCH codes over Z2m . Consequently, a link between primitive BCH codes Cn; C
0
n; (over F2 and

Z2m); and the sequences of non-primitive BCH codes fCbjngj�1 and fC
0

bjn
gj�1 is developed.

For the decoding of binary BCH codes of length bjn over Z2m [x; abjN0], we modify Berlekamp-

Massey decoding algorithm through which one can obtain the decoding of bjn and n length

binary BCH codes over the �eld F2. Throughout this Chapter we have given comparison and

connection between the codes constructed over Galois rings and Galois �elds.

The Chapter 7, discusses the applications of the newly constructed BCH codes in cognitive

radio, in the formation of DNA sequences and in data transmission. Lastly Chapter 8 concludes

the thesis.

1.1 Algebraic notions and algebraic codes

In this chapter we provide basic concepts related to algebra and coding theory which are essential

for the understanding of this thesis. It is divided into two main sections. In section 1, basic

structures of algebra whereas in section 2; the fundamentals of algebraic coding theory are

discussed.

1.2 Algebraic notions

The section we provide basic notions and terminologies related to semigroups, rings, �elds,

modules and semigroup rings.

1.2.1 Semigroup

A non-empty set S is said to be a semigroup, if it satis�es the closure property and associative

law with respect to the binary operation �. An element e of a semigroup S is called the identity

element of S, if s � e = e � s for all s 2 S. A semigroup S is said to be a monoid under the

binary operation �, if identity element e exists in S. A semigroup is called a commutative
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semigroup, if it satis�es s � t = t � s for all s; t 2 S. A non-empty subset T of a semigroup

(monoid) S is a subsemigroup (submonoid) of S, if T itself is a semigroup (monoid) under

the binary operation on S.

An element s of a monoid S is said to be invertible, if s + t = e; for some t 2 S. A

semigroup S is said to be torsion free, if each element of S has in�nite order except the

identity element. An element s of semigroup S is said to be cancellative, if s + t = s + u

implies t = u for all t; u 2 S. A semigroup S is called cancellative semigroup if all the

elements of S are cancellative. A semigroup S is called a cyclic semigroup, if it is generated

by a single element. A semigroup is called totally ordered, if there is a relation ���on S

which is re�exive, asymmetric, transitive and satis�es s � t or t � s for all s; t 2 S. An order

� on S is said to be compatible if, s1 � s2 implies s1 + s � s2 + s for all s1; s2; s 2 S. A

cancellative and torsion free semigroup is totally ordered. A semigroup having a compatible

total order is cancellative and torsion free.

A monoid G is said to be a group under the binary operation �, if inverse of each element

of G exists in G i.e. for all a 2 G, there exists a0 2 G such that aa
0
= e and a0a = e. A group

G under the binary operation � is written as (G; �). A group (G; �) is called commutative or

Abelian if all elements of G commute.

1.2.2 Ring

A set R together with two binary operations, addition and multiplication is called a ring if

R is an Abelian group with respect to addition, semigroup with respect to multiplication and

multiplication is distributive over addition. If R is a monoid with respect to multiplication

then R is called a unitary ring. A non-empty subset U of R is called a subring of R, if U is

itself a ring under the induced operations. A ring R is a commutative ring if multiplication

is commutative in R.

An element r of a unitary ring R is invertible or unit if, r:r1 = r1:r = 1; for some r1 2 R

which is an inverse of r in R. A non-zero element z of R is a zero divisor of R, if za = 0

for some non-zero element a in R. If R has no zero divisor, then R is called an integral

domain. R is cancellative if and only if it is an integral domain. A non-zero element p in a

commutative ring R is said to be prime if and only if p divides ab implies either p divides a
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or p divides b. A non-zero element q in a ring R is said to be irreducible (or non-factorable)

if in every factorization q = bc, either b is invertible or c is invertible where b; c 2 R. A

ring homomorphism is a map � : R ! U; which preserves both the operations, i.e., (i)

�(x+ y) = �(x) + �(y); (ii) �(xy) = �(x)�(y), for all x; y 2 R; where R and U are any rings.

IfR and U contains identity element, then the homomorphism ofR into U is called a homo-

morphism of rings with identity, which also preserve the identity element, i.e. �(1R) = 1U .

A ring homomorphism � is said to be a monomorphism (epimorphism) if � is one-one

(onto). If � is one-one and onto than � is called a ring isomorphism . In this case the rings

R and U are said to be isomorphic and we write it as R �= U:

A subring I of a ring R is called an ideal in R if for each i 2 I, ri 2 I for all r 2 R. Every

ideal is a subring, but converse is not true. An ideal I of R is called proper ideal if I \R 6= R

and is said to be improper ideal, if I \R = R. A proper ideal I of R is called prime ideal

of R if, ri 2 I implies r 2 I or i 2 I. A proper ideal of R is said to be maximal ideal, if

it is not contained in any other proper ideal of R. Every ideal of a ring is contained in some

maximal ideal of that ring. An ideal I is said to be �nitely generated if it is generated by

�nite number of elements i.e., I = (r1; r2:::rn); rifinite 2 R. A �nitely generated ideal is called

principal ideal if it is generated by a single element i.e., I =< a > for some a 2 R. A ring R

is called principal ideal ring (PIR), if all the ideals of R are principal. A ring R is integral

domain if and only if (0) is prime ideal in R. A commutative ring with identity is called a local

ring if it has only one maximal ideal.

Let I be an ideal of the commutative ring R with identity, then the quotient ring (or

factor ring) ofR, denoted byR=I, is the collection of all distinct equivalence classes of element

of R modulo I ; that is,

R=I = fa+ I : a 2 Rg

It is easy to verify that R=I is again a ring. Also, R=I is commutative if R is commutative.

A commutative ring R with identity e is called a �eld F if every non-zero element in F is

invertible. Let (M;+) be an Abelian group and R be a unitary commutative ring. Then, M is

called an R-module, if a product is de�ned between elements of the ring and elements of the

module that is distributive over addition and is compatible with the ring multiplication.
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If the ring R is replaced by a �eld F, then M is called a vector space V over the �eld F.

A module is a generalization of vector space. A module with basis is called a free module.

Every vector space is a free module. A non-empty subset W of V is called a subspace of V if

W itself is a vector space over the �eld F.

1.2.3 Rings of formal power series

Let R be a commutative ring and N0 be the additive monoid of non-negative integers. The set

RN0 = fg : N0 ! Rg of all in�nite sequences from N0 to R is called formal power series, de�ne

as: g(0) = g0; g(1) = g1; :::; g(n) = gn: Also: g = (g0; g1; g2; :::; gk; :::); where gi 2 R. The set

RN0 is a ring containing R as a subring. Let g; h 2 RN0 be any arbitrary elements such that

g = (g0; g1; :::) and h = (h0; h1; :::). The addition and multiplication of formal power series is

de�ned as follows:

g + h = (g0 + h0; g1 + h1; :::) and gh = (k0; k1; :::);

where for each n > 0, kn =
P

n=i+j
gihj . The zero element ofRN0 is (0; 0; 0; :::) and the additive

inverse of (g0; g1; :::) is (�g0;�g1; :::): Hence (RN0 ;+) becomes an Abelian group. Moreover,

(RN0 ; :) is semigroup and multiplication is distributive over addition, therefore (RN0 ;+; :) forms

a ring structure known as the ring of formal power series in one indeterminate over R:

There exists an embedding � : R ! RN0 de�ned by �(r) = (r; 0; 0; 0; :::). So, an element

r 2 R has a representation (r; 0; 0; 0; :::) in RN0 : Now we de�ne a power series in a formal way,

we have

x = (0; 1; 0; :::) and

g0x = (0; g0; 0; :::); where g0 2 R:

In general gnxn, n > 1 denotes the sequence (0; 0; :::; 0; gn;0; :::);where gn is the element at

(n+1)th term in this sequence. Thus g(x) = (g0; g1; :::; gn; :::) can be uniquely expressed in the

form
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g = g0 + g1x+ g2x
2 + :::+ gnx

n + :::

=
X

gkx
k:

To indicate the indeterminate x; usually we denote RN0 by R[[x]]: If g(x) =
P
gkx

k is a non-

zero power series (that is, if not all the gk = 0) in R[[x]]; then the smallest integer n such

that gn 6= 0 is called the order of g(x) and denoted by ord(g(x)): Let g(x); h(x) 2 R[[x]]; with

ord(g(x)) = n and ord(h(x)) = m; then

g(x)h(x) = gnhmx
n+m + (gn+1hm + gnhm+1)x

n+m+1 + ::: .

By the de�nition of multiplication in R[[X]], it can easily be seen that all the coe¢ cients of

g(x)h(x) up to (n+m)th are zero. If we assume that one of gn and hm is not a divisor of zero

in R; then gnhm 6= 0 and

ord(g(x)h(x) = n+m = ord(g(x)) + ord(h(x)):

Polynomial Rings

The set of all power series in R[[x]]; whose �nite number of coe¢ cients are nonzero is denoted

by R[x]. Therefore,

R[x] = fg0 + g1x+ :::+ gnxn : gn 2 R; n > 0g:

An element of R[x] is called polynomial in an indeterminate x over the ring R. The poly-

nomial ring R [x] is a subring of R [[x]]. Given the non-zero polynomial

g(x) = g0 + g1x+ :::+ gnx
n =

nX
k=o

gkx
k 2 R[x];

the coe¢ cient gn is called the leading coe¢ cient of g(x) and the integer n is called the degree

of the polynomial. The degree of a non-zero polynomial is therefore a non-negative integer.

The zero polynomial has no degree. The non-zero constant polynomials are of zero degree. A
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polynomial whose leading coe¢ cient is 1 is called a monic polynomial.

1.2.4 Semigroup ring

Let (S; �) be a commutative semigroup and R be an arbitrary ring. The set of all �nitely

non-zero functions g from S into R which are non-zero at �nite points is denoted by R[S]. This

set R[S] is a ring with respect to binary operations addition and multiplication de�ned as:

(g + h)(s) = g(s) + h(s) and (gh)(s) =
X
t�u=s

g(t)h(u); (1.1)

where the symbol
P
t�u=s

indicates that the sum is taken over all pairs (t; u) of elements of S

such that t � u = s; and when s is not expressible in the form t � u for any t; u 2 S; then

(gh)(s) = 0: The set R[S] is known as the semigroup ring of S over R. The representation

of R[S] will be R[x;S] whenever S is an additive monoid. There is an isomorphism between

additive semigroup S and multiplicative semigroup fxs : s 2 Sg; so a non-zero element g of

R[x;S] is uniquely represented in the canonical form
nP
i=1
g(si)x

si =
nP
i=1
gix

si , where gi 6= 0 and

si 6= sj for i 6= j.

Degree and order of an element are not generally de�ned in monoid rings. However if S is

a totally ordered monoid, degree and order of an element of monoid ring R[x;S] is de�ned in

the following manner: If g =
nP
i=1
gix

si 2 R[x;S]; where s1 < s2 < ::: < sn; then sn is called the

degree of g written as deg(g) = sn and s1 is the order of g written as ord(g) = s1.

The monoid ring R[x;S] is a polynomial ring in one indeterminate if S = N0.

1.2.5 Galois �elds and Galois rings

Galois �eld

Polynomials over a �eld F modulo an irreducible polynomial q(x) of degree s forms a �eld

which is called an extension �eld of degree s over F. The extension �eld is obtained by

adjoining a root say �; of q(x) to the �eld F. It is denoted by F[�].

The residue classes of integers modulo any prime number p form a �eld of p elements called

Galois �eld GF (p): The �eld of polynomials over GF (p) modulo an irreducible polynomial of

degree m is called the Galois �eld of pm elements denoted by GF (pm): For any number q = pm;
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that is a power of a prime number, there is a �eld GF (q); which has q elements. Every �nite

�eld is isomorphic to some Galois �eld. They di¤er only in the way the elements are named.

For example x3+x+1 the irreducible polynomial of degree 3 gives quotient ringGF (2 [x] =
�
x3 + x+ 1

�
which is isomorphic to Galois �eld GF (23) of order 8: The elements of this Galois �eld are poly-

nomials of degree less than 3 with coe¢ cients belongs to GF (2):

Galois ring

For positive integersm; s and p, where p is a prime, we have Galois ring of order pms denoted

by GR(pm; s): It is the Galois extension of degree s of the ring Z=Zpm of integers mod pm. For

s = 1; the ring GR(pm; 1) is Z=Zpm ; whereas for m = 1; the ring GR(p; s) is Fps :

Let �(x) 2 Z[x] be a monic irreducible polynomial of degree s; over Z; which remains irre-

ducible modulo p, then the Galois ringGR(pm; s) is isomorphic to the quotient ring (Z=Zpm)[x]=(�(x));

where �(x) is a polynomial in (Z=Zpm)[x]:

1.3 Algebraic codes

In modern communication systems transmission of messages through a channel or storage of

massive amount of data consistently, possibility of errors is always there. Di¤erent coding and

decoding schemes are used to correct errors from the received message to recover the original

message. The basic concept of working behind these schemes is to add parity bits to the

message bits. The codes in which the number of message bits and parity bits are kept �xed

are algebraic codes, which are basically block codes. The construction of these codes is highly

based on the algebra, therefore they are called algebraic codes. This section is divided into

three subsections in which we discuss fundamentals of coding theory, linear codes, cyclic codes

and the construction of BCH codes over the �nite �elds.

1.3.1 Fundamentals of coding theory

This subsection discusses some basic notions and terminologies related to coding theory which

are used in all sections of this dissertation.

Consider a �nite set S of p elements, a p � ary code C of length n is a subset of the set

Sn (the Cartesian product), where n is a positive integer. The elements of the set S are called

11



symbols or bits and the set itself is referred to as symbol set. The elements of the code C

are called codewords. A code is said to be binary code, if the number of symbols in the

symbol set are two and is called ternary code, if size of symbol set is three. The size of the

set Sn is pn. A subset C of Sn is said to be trivial code, if the size of C is one or pn. If all

the codewords of a code C have same coordinates, i.e., C = faaa:::aja 2 Sg, then such a code is

called a repetition code. Size of a repetition code is equal to the size of the symbol set.

Let c1 and c2 be two elements of Sn, c1 = c1;1c1;2 � � � c1;n, c2 = c2;1c2;2 � � � c2;n. The Ham-

ming distance between c1 and c2 is the total number of subscripts in which the coordinates

of c1 and c2 di¤er, i.e.,

jfj : c1;j 6= c2;jgj .

The Hamming distance between two elements c1 and c2 of Sn is denoted by d(c1; c2). For

example, d(11011; 10010) = 2. Hamming distance satis�es the following three conditions:

(1) d(c1; c2) = 0 if and only if c1 = c2.

(2) d(c1; c2) = d(c2; c1); for all c1; c2 2 Sn.

(3) d(c1; c3) � d(c1; c2) + d(c2; c3); for all c1; c2 and c3 2 Sn.

Hence, d is a metric on the set Sn.

The minimum distance of the code C is the smallest Hamming distance between any two

codewords in the code C, i.e.,

d(C) = minfd(ci; cj) : ci; cj 2 C;ci 6= cjg.

The minimum distance or minimum Hamming distance of a code C is denoted by

d. For example, the minimum Hamming distance of an n length repetition code is n. The

Hamming weight of a vector c 2Fn is the number w(c) of its nonzero coordinates i.e.,

w(c) = d(c; 0): If C is a linear code, the distance d(C) is the same as the minimum weight of

nonzero words i.e.,

d(C) = min fw(c) j c 2 C; c 6= 0g :
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A code C is known as t-error correcting code, if it is capable of correcting t or less errors

whenever t or fewer errors have been occurred during the transmission of a codeword. The error

detection and correction capabilities of a code are directly related with the minimum distance

of the code. Following theorem provides a relation between the minimum distance and its error

detection and correction capabilities.

Theorem 1 [27, 4.1.3] From any transmitted codeword, a code C with minimum distance d

can detect and correct upto d� 1 and bd�12 c errors respectively.

A code of length n, having minimum distance d, and sizeM is represented by (n;M; d)-code.

A code is said to be a very good, if it satis�es the following three conditions:

(1) Length n should be small so that fast and low cost transmission could be possible.

(2) Minimum distance d should be large so that more errors can be detected and corrected.

(3) Size M should be large so that a variety of messages can be sent.

1.3.2 Linear codes

Linear codes are much accordant to algebraic treatment due to possessing many algebraic

properties. In these codes, the symbol set is a �nite �eld F. The set Fn is an n-dimensionalvector

space over the �eld F. A subset C of Fn is said to be linear code, if it is a subspace of the vector

space Fn. A subspace of a �nite dimensional vector space is also �nite dimensional. Hence,

every linear code has a dimension. A linear code C of length n and dimension k is represented

by (n; k). The size of an (n; k)�code is equal to pn, where p is the size of the corresponding

�eld F. Henceforth, Fp denotes a �nite �eld of p elements and a vector c in Fnp is represented

as c = (c1; c2; :::cn).

Let C be an (n; k)�code over the �eld F. A k � n matrix with rows forming the basis for

the codes C is called generator matrix for the code C. Let G be a generator matrix for an

(n; k)� code C, every element of C can be uniquely expressed as the linear combination of the

rows of G. In other words, C is the row space of the matrix G; i.e., C = fc:G j c 2Fkg. A vector

c of the space Fk is of length k, however a vector of an (n; k)�code C is of length n. As, the

size of both spaces is pk. Therefore, we have a bijection � from Fk to C de�ned as: �(c) = c:G

for all c 2Fk. In these settings, the vectors of Fk are called messages and their images are
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said to be codewords, i.e., c:G is the codeword corresponding to the message c. As, we have

already mentioned that this bijection maps a vector of length k on to a vector of length n. The

n� k elements attached to c are called parity bits. The map � is called encoding map. The

ratio of message length to the codeword length is called code rate of an (n; k)-code C i.e., k=n.

The dual code of C can be de�ned as:

C? = fc0 2 Fn : c � c0 = 0 for all c 2 Cg. (1.2)

Where the multiplication is de�ned as: c � c0 = cc0T . It is well known that if C is a k-

dimensional subspace of an n-dimensional space, then its dual C? is also an (n�k)-dimensional

subspace of the space and hence a code. For example, the dual of a binary repetitive code

C = f0000; 1111g is a (4; 3)� code over F2 and is equal to:

C? = f0000; 1100; 1010; 1001; 0110; 0101; 0011; 1111g. (1.3)

Moreover, we have
�
C?
�?
= C. Since, dual of a code C is also a subspace therefore, it also has

generator matrix. The generator matrix of C? is very important for the decoding purposes.

Let C be any linear (n; k)-code and C? is its dual. Then the generator matrix H of the code

C? is called the parity check matrix of the code C. It is easy to prove that a vector c of the

space Fn is a code-word of the code C, i¤ c:HT = 0 = H:cT . Following theorem provides the

relation between the generator matrix and parity check matrix of a linear code.

Theorem 2 [27, 4.2.9] Let C be a linear (n; k)�code over the �eld F. Let G and H be generator

and parity-check matrices of the code C respectively. Then G:HT = 0 = H:GT . Conversely, if

G is any k � n matrix, and H is an (n� k)� n matrix, of rank k and n� k respectively, with

G:HT = 0. Then H is a parity-check matrix i¤ G is a generator matrix for the code C.

For example, a linear code C = f000; 111g has a generator matrix [111]. The dual of this

code is: C? = f000; 110; 011; 101g. The parity check matrix of C is:

H =

24 0 1 1

1 1 0

35 . (1.4)
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Suppose G is a generator matrix of an (n; k)� code C with k linearly independent columns.

Then by applying suitable row operations on G, the matrix G becomes equivalent to G� = [Ik :

B], where Ik is the identity matrix of order k, and B is a matrix of order k � (n � k). Of

course, rows of G� are linearly independent and hence G� is a generator matrix of the code C.

This generator matrix is called canonical generator matrix of the code C. The canonical

parity check matrix is given by: H� = [�BT : In�k]. Two (n; k) � codes C and C0 over the

same �eld F are said to be equivalent codes, if there exist a bijection from 	 from C to C0

such that

	(c1; c2; � � � ; cn) = (�1c�(1); �2c�(2); � � � ; �nc�(n)); (1.5)

where �1; :::; �n 2Fnf0g and � is a permutation on the set f1; 2; � � � ; ng.

Theorem 3 [27, 4.2.18] Let C be an (n; k) � code with minimum distance d, then d is equal

to the minimum number of linearly independent columns in a parity check matrix of the code C

and hence, d(C) � n� k + 1.

1.3.3 Cyclic codes

In this subsection, we discuss cyclic codes which are in fact linear codes. These codes are of

great interest due to their strong algebraic structure.

A cyclic shift on Fn is a @ map from Fn to Fn de�ned as: @ (a1a2a3 � � � an) = (ana1a2 � � � an�1).

It is easy to prove that cyclic shift is a linear operator. An (n; k)� code C is said to be cyclic

code, if @(C) � C.

The code C = f000; 110; 011; 101g is a cyclic code. If G is a generator matrix of an (n; k)�

code C, then C is cyclic i¤ @
�
fRigki=1

�
� C. If we denote the set of all polynomials of degree

less than n over F by Pn, then Pn is an n�dimensional vector space over the �eld F. By linear

algebra, Fn is isomorphic to the space Pn. Now, consider the factor ring:

F [x]
(xn � 1) =

�
f0 + f1�+ f2�

2 + � � �+ fn�1�n�1 : fi0s 2 F
	
; (1.6)

where � is the root of the polynomial xn � 1. Replacing � by x, the above factor ring becomes

equal to the set of all polynomials of degree less than n and hence isomorphic to Pn. Of course,
F[x]

(xn�1) is a ring. The operation of multiplication in Pn is de�ned as: f(x)�g(x) = f(x)g(x)(mod
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(xn�1)). The cyclic shift of an element c of C is equal to x� c(x) in the ring Pn. Thus, a linear

code over the �eld F is cyclic i¤ x � c(x) 2 C for all c(x) 2 C.

Theorem 4 [27, 4.3.5]A linear code C of length n is cyclic i¤ C is an ideal of the ring Pn.

Theorem 5 [27, 4.3.6]Let C be any non-zero ideal in a ring F[x]n, then

(a) there exists a unique monic polynomial g(x) of least degree in C,

(b) g(x) divides xn � 1 in F[x],

(c) for all p(x) 2 C, g(x) divides p(x) in F[x],

(d) C = (g(x)).

Conversely, assume that C is an ideal generated by a(x) 2F[x]n. Then a(x) is a least degree

polynomial in C i¤ a(x) divides xn � 1 in F[x].

Hence, by computing all the irreducible factors of the polynomial xn � 1, we can �nd out

all possible cyclic codes of length n. For example, if we take n = 3, then the only non trivial

cyclic codes over F2 are the ideals generated by x� 1 and x2 + x+ 1.

Generator polynomial

Let C be a non-zero ideal in F[x]n. Let g(x) be the unique monic polynomial of smallest

degree in C. Then g(x) is said to be a generator polynomial of the cyclic code C.

Theorem 6 [27, 4.3.11] Let C �F[x]n be any cyclic code with generator polynomial

g(x) = g0 + g1x+ g2x
2 + :::+ grx

r, where gr = 1. (1.7)

Then the dimension of the code C is n� r. Moreover, the (n� r)� n matrix

G =

26666664
g0 g1 g2 � � � gr�1 gr 0 � � � 0

0 g0 g1 g2 � � � gr�1 gr � � � 0
...

...
...

...

0 0 � � � 0 g0 g1 g2 � � � gr

37777775 ; (1.8)

is a generator matrix of C.
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A code C in F[x]n generated by the polynomial g(x) such that a polynomial h(x) in F[x]

satis�es the relation xn � 1 = g(x)h(x). Then h(x) is called a check polynomial of the code C.

Since, xn� 1 is monic, therefore check polynomial is also monic and unique. It is easy to prove

that:

C = fc(x) 2 F[x]njc(x) � h(x) = 0g. (1.9)

The check polynomial h(x) is also an irreducible divisor of the polynomial xn�1, and hence

h(x) also generated a cyclic code. Suppose h(x) = h0 + h1x+ h2x2 + :::+ hkxk, the reciprocal

of h(x) is given as:

h(x) = hk + hk�1x+ hk�2x
k�2 + :::+ h0x

k (1.10)

This polynomial h(x) is an irreducible divisor of the polynomial xn�1 and hence generator

of a cyclic code F[X]n of dimension (n� k)� n.

Theorem 7 [27, 4.3.14] Let h(x) be the check polynomial of a cyclic code C. The cyclic code

generated by h(x) is equal to the dual of the code C. Consequently, the matrix

26666664
hk hk�1 ::: ::: h0 0 0 0 0

0 hk ::: ::: h1 h0 0 ::: 0
...

...
...

...
...

0 ::: 0 hk hk�1 ::: ::: h0

37777775 (1.11)

is a parity check matrix for the code C.

1.3.4 Bose-Chaudhuri-Hocquenghem codes (BCH codes)

In this subsection we discuss a very important kind of cyclic code named as BCH codes. First

we discuss some properties of �nite �elds. Every �nite �eld has order power of some prime p.

Finite �elds of order q = pm are denoted by Fq or GF (q); where p is a prime number and m is

any positive integer. The set F�q denotes the set of all non zere elements of Fq and is a cyclic

group of order pm � 1 under multiplication.

If pm � 1 is divisible by any number n, then there is an element b in F�q whose order is n

that is o(b) = n, then b is called primitive nth root of unity in Fq. If o(b) = pm � 1; then b
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is called primitive element in Fq: For the �nite �eld Fq there exists an irreducible polynomial

h(x) in Fq[x] of degree r, the quotient ring Fq[x]=(h(x)) is a �eld of size qr, denoted by Fqr or

GF (q; r). The �eld Fqr is called an extension �eld of Fq of degree r.

Let � 2 Fqr , then there exist unique monic polynomial of least degree g(x) 2 Fq[x] such

that g(�) = 0. The g(x) is an irreducible and minimal polynomial of � over Fq. If there exists

another polynomial h(x) in Fq[x] such that h(�) = 0 then g(x) j h(x), also degree of g(x) divides

r. If � is primitive element in Fqr then degree of g(x) is equal to r.

Theorem 8 [27]Let � be any element in Fqr . Then �; �q; �q
2
; ::: have the same minimal poly-

nomial over the �eld Fq.

Now, we explain in detail the construction of BCH codes over the �eld Fq:

De�nition 9 The set of the powers of � is called cyclotomic coset. The smallest entries of the

cyclotomic cosets are called coset representatives.

Consider the positive integers c; d; n; q; where 2 � d � n; n is relatively prime to q and divides

qs � 1; where s is the least positive integer, such that qs � 1 (modn) : Let � be a primitive nth

root of unity in Fqs and mi (x) is the minimal polynomial of �i; for i = c; c + 1; :::; c + d � 2:

Then the generator polynomial of n length BCH code of designed distance d is obtained by

taking lcm of all minimal polynomials.

De�nition 10 A BCH code over a �nite �eld Fq of block length n and designed distance d is

a cyclic code generated by a generating polynomial

g(x) = lcmfmi(x) : l � i � c+ d� 2g 2 Fq[x]; (1.12)

whose root set contains d� 1 distinct elements �; �2; :::; �c+d�2; where � is a primitive nth root

of unity and c is some integer. For n = qs � 1, the BCH code is called primitive BCH code

and for c = 1; it is known as narrow sense BCH code.

1.3.5 Decoding algorithms

The process of estimating correct transmitted vector from the received vector is called decoding.

In this section, we discuss decoding procedures of linear, cyclic and BCH codes. Decoding is
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done by the principle of Maximal likelihood decoding, in which we have to �nd the codeword

which is nearest to the received vector. To explain decoding algorithms, we have to introduce

the concept of error vector. Let C be an (n; k; d)-code over the �eld Fq and we transmit a

codeword a but received word is b. Then the error vector is given by e = b� a. So, b = a+ e

implies that d
�
b; a
�
= w

�
b� a

�
= w (e) : To decode the vector b, we search a codeword c such

that d
�
b; c
�
= w

�
b� c

�
is minimal.

Standard Array Decoding

Standard array decoding is explained with the help of cosets and coset leaders.

De�nition 11 (Cosets and Coset Leaders) Let C be an (n; k)-code over Fq.

1. A coset of C is a coset of subgroup of the group
�
Fnq ;+

�
. It is a set of the form

a+ C = fa+ c : c 2 Cg for all a 2Fnq :

2. A vector of smallest weight in the coset is known as a coset leader.

The cosets of C form a partition of Fnq and all cosets are of the same size. So, for (n; k)-code

C over Fq, every coset of C has qk vectors and C contains qn�k cosets.

Standard Array Decoding states the vector b is decoded as the codeword c if and only if the

coset containing b has a coset leader b� c. Thus, the error vector is equal to the coset leader.

Hence, we follow the following two steps for decoding b:

1. Determine a coset leader e of the coset containing b.

2. Decode b as b� e.

It can be done by using a standard array, which is a table having qn�k rows and pk columns.

The �rst row has all codewords and the �rst column has coset leaders of each coset. The element

in the ith row and jth column is the sum of coset leader of position (ith row, 1st column) and

the codeword of position (1st row, jth column). So, by using a standard array, vector b is

decoded as the codeword that is in the �rst row and in the same column in which b occurs.

Syndrome decoding

Standard array decoding is used only when the length of code is small. For large length codes,

size of the array becomes very large so the Syndrome decoding method is used. Given the
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coset leaders, the vector b is decoded just by �nding the row (coset) in which b occurs. There

is no need to determine exact position of b in the array. So if we �nd the coset leader of

coset containing b, then there is no need of standard array. This is the basic idea of syndrome

decoding.

De�nition 12 Let C be an (n; k; d)-code over Fq and H be a parity check matrix of C. Then for

b 2Fnq , the syndrome of b (with respect to H) is de�ned as syn
�
b
�
= S(b) = bHT : If C is a cyclic

code with generator polynomial g (x), then the syndrome is given by S(b) = remg(x)(x
n�kb(x)):

In this method, we use a syndrome table instead of standard array. For each coset, we �nd

a coset leader and also its syndrome. Vector b is decoded through following steps:

1. Compute the syndrome S(b) of received vector b:

2. Find a coset leader e in the table such that S(b) = S(e):

3. Decode b as b� e:

BCH codes over �nite rings

Here we are given a very brief note on the construction of BCH codes over �nite rings. The

construction of BCH codes over �nite rings was given by Priti Shankar in [41]. He constructed

the codes over Zpm by the method which is same as the construction of codes over Fq. For

this purpose, extension of Galois rings is used, where few conditions of extension of Galois

�eld are lost. To explain important properties of Galois ring extension, let Zpm be the ring of

polynomial and h(x) be the irreducible polynomial of degree r over Zpm and also over GF (p)

: Then R = GR(pm; r) = Zpm [x]= < h(x) > is called Galois extension of Zpm of dimension r.

For certain value of n, xn � 1 can be written as into linear factors over GR(pm; r) ; where n is

such that gcd(n; pm) = gcd(n; p) = 1. With the help of these factors we determine the cyclic

and BCH codes over Zpm . Zero divisors of GR(pm; r) form an Abelian group under addition

having elements of degree r�1 or less. The coe¢ cients of these polynomials are zero divisors in

Zpm . It means GR(pm; r) is a local ring. The Units of GR(pm; r) are those polynomials having

atleast one coe¢ cient unit in Zpm . The units of GR(pm; r) form a multiplicative group and it

is represented by R�. It is an Abelian group and can be written as a direct product of cyclic

groups. We are looking for the maximal cyclic subgroup Gn, whose elements are the zeros of

xn � 1.
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The following results are important for construction of Gn and BCH codes.

Theorem 13 [41, Theorem 2] There is unique Gn of R� of order relatively prime to p. This

cyclic subgroup has order pr � 1.

Theorem 14 [41, Theorem 3] Let � generates the cyclic subgroup having order n in R�, such

that gcd(n; p) = 1.Then the polynomial xn � 1 can be factorized as

xn � 1 = (xn � �)(xn � �2):::(xn � �n);

i¤ Rp(h(x)) has order n in K� , which is the multiplicative subgroup of K = GF (pr) .

Theorem 15 [41, Theorem 4] Let � = Rp(�) generate a subgroup which is cyclic of order n

in K�. Then � generate a cyclic subgroup of order n:d in R�, where d � 1, and Gn =< d > .

Lemma 16 [3, Lemma 3.1] Let be � primitive element of Gn. Then the di¤erences �l1 � �l2

are units in R if 0 � l1 6= l2 � n� 1:

On the basis of above results, the generator polynomial g(x) of cyclic BCH code of length

n in GR(pm; r) can be calculated as

g(x) = lcm(M1(x);M2(x); :::;M2(x));

where Mi(x); 1 � i � 2t are the minimal polynomials of �b+i over Zpm ; for some b � 0

and t � 1. The polynomials Mi(x) over GR(pm; r) are calculated by the method similar to the

calculation of minimal polynomial over the Galois �elds.

BCH codes over �nite rings are decoded by Berlekamp-Massey algorithm. It is a well known

algorithm and very lengthy, hence we are not discussing here.
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Chapter 2

Cyclic codes as ideals in F2[x; aN0]n;

F2[x]an; F2[x; abN0]bn and F2[x;
1
bN0]abn

Communication channels are a¤ected by disturbances that cause transmission errors to cluster

into bursts. Random error correcting codes are not e¢ cient for correcting burst errors and

therefore, it is required to design specialized codes which can correct burst errors.

In this chapter, construction technique of cyclic codes is improved by using monoid rings

F2[x; aN0] and F2[x; abN0] instead of polynomial ring F2[x]. The new scheme is formulated in

such a way, that, for an n length binary cyclic code Cn generated by r degree polynomial g(xa)

in F2[x; aN0] three di¤erent binary cyclic codes Can; Cbn and Cabn of length an; bn and abn

are found. It is proved that these new binary cyclic codes Can; Cbn and Cabn have generating

polynomials g(x) in F2[x] of degree ar; g(x
a
b ) in F2[x; abN0] of degree br and g(x

1
b ) in F2[x; 1bN0]

of degree abr respectively. It is shown that binary cyclic codes Can; Cbn and Cabn are interleaved

codes of depths a; b; and ab respectively. We have also established that if an initial code Cn
is capable of correcting t errors, then the interleaved codes Can; Cbn and Cabn are capable of

correcting t bursts of length a; b and ab or less. If Cn is capable of correcting all bursts of length

l or less, then the interleaved codes Can; Cbn and Cabn are capable of correcting all bursts of

length al; bl and abl or less.

Throughout this work we use the following totally ordered monoids which are

aN0 = f0; a; 2a; :::g,
a

b
N0 = f0;

a

b
;
2a

b
; :::g and 1

b
N0 = f0;

1

b
;
2

b
; :::g;
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where a and b are integers satisfying a; b � 1 with b = a+1: The factor rings F2[x;aN0]
((xa)n�1) ;

F2[x;abN0]

((x
a
b )bn�1)

and
F2[x; 1bN0]

((x
1
b )abn�1)

are denoted by F2[x; aN0]n;F2[x; abN0]bn and F2[x;
1
bN0]abn, where ((x

a)n �

1); ((x
a
b )bn � 1) and ((x 1b )abn � 1) are respectively the principal ideals in the monoid rings

F2[x; aN0];F2[x; abN0] and F2[x;
1
bN0]. The arbitrary elements

f(xa) = f0 + fa(x
a) + f2a(x

a)2 + � � �+ fan(xa)n in F2[x; aN0];

f(x
a
b ) = f0 + fa

b
(x

a
b ) + f2a

b
(x

a
b )2 + � � �+ fa

b
n(x

a
b )n in F2[x;

a

b
N0];

and f(x
1
b ) = f0 + f 1

b
(x

1
b ) + f2 1

b
(x

1
b )2 + � � �+ f 1

b
n(x

1
b )n in F2[x;

1

b
N0]

are known as (generalized) polynomials.

2.1 Cyclic codes as ideals in F2[x; aN0]n

A linear code C of length n is a subspace of the vector space of all n�tuples over the binary

�eld F2: A linear code C over F2 is a cyclic code, if v = (v0; v1; � � � ; vn�1) 2 C, then every cyclic

shift v(1) = (vn�1; v0; � � � ; vn�2) 2 C, where vi 2F2 and 0 � i � n� 1.

Andrade and Shah has constructed cyclic codes over a local �nite commutative ring R,

through the monoid rings R[x; 13Z�0];R[x;
1
2Z�0] and R[x;

1
22
Z�0] in [4], [34] and [35] respec-

tively. However in [33] the cyclic codes of certain types are discussed corresponding to the

ascending chain of monoid rings. Due to the fact that F2[x] �F2[x; 1bN0] mentioned in [4], [39],

[38], [37], [36], [34] and [35], certain cyclic codes are discussed in such a way that the gener-

ator polynomials of cyclic codes in F2[x]
(xn�1) and

F2[x; 1bN0]

((x
1
b )bn�1)

have a relationship. Whereas since

F2[x] *F2[x; abN0]; this posed a hurdle to construct cyclic codes in factor ring
F2[x;abN0]

((x
a
b )bn�1)

. How-

ever F2[x; aN0] �F2[x; abN0], motivates us to construct cyclic codes in F2[x; aN0]n. A generalized

polynomial

f(xa) = f0 + fa(x
a) + f2a(x

a)2 + � � �+ fan(xa)n; (2.1)

in F2[x; aN0] of degree n has degree an in F2[x] and is known as the polynomial in indeter-

minate x. If f(xa) 2F2[x; aN0] is a monic generalized polynomial of degree n then the factor

ring F2[x;aN0]
(f(xa)) is the ring of residue classes of generalized polynomials in F2[x; aN0] modulo the
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principal ideal (f(xa)). Thus, f(xa) = (xa)n � 1 gives the factor ring

F2[x; aN0]
((xa)n � 1) = fc0 + ca�+ c2a�

2 + :::+ ca(n�1)�
n�1 : c0; ca; :::; ca(n�1) 2 F2g; (2.2)

where � denotes the coset xa + ((xa)n � 1). Furthermore, f(�) = 0, when � satis�es the

relation �n � 1 = 0.

By writing xa in place of �, the ring F2[x;aN0]
((xa)n�1) becomes F2[x; aN0]n in which the relation

(xa)n = 1 holds. In fact, F2[x; aN0]n is an algebra over the �eld F2. The multiplication � in

the ring F2[x; aN0]n is modulo ideal ((xa)n � 1). That is, for c(xa) in F2[x; aN0]n the product

(xa) � c(xa) is given by

(xa) � c(xa) = (xa) � (c0 + ca(xa) + c2a(xa)2 + :::+ ca(n�1)(xa)n�1) (2.3)

= ca(n�1) + c0(x
a) + ca(x

a)2 + :::+ ca(n�2)(x
a)n�1:

In the following results a method of obtaining the generalized generator polynomial, which

generates a principal ideal of the factor ring F2[x; aN0]n is discussed.

The following Theorem shift [27, Theorem 4.3.5] to the monoid ring F2[x; aN0].

Theorem 17 A subset Cn of F2[x; aN0]n is an n length binary cyclic code if and only if Cn is

an ideal in the ring F2[x; aN0]n.

Proof. Assume that Cn is an ideal in F2[x; aN0]n. Then Cn can also be considered as a

subspace of F2�space Fn2 . Thus, it is also closed under multiplication by any ring element, in

particular under multiplication by xa. Hence Cn is a cyclic code. Conversely, if Cn is a cyclic

code, then Cn is a linear code over F2. Hence, for all f(xa); g(xa) 2 Cn and � 2F2, it follows that

f(xa)� g(xa) 2 Cn and �f(xa) 2 Cn. Further, since Cn is cyclic, it follows that xa � f(xa) 2 Cn,

for all f(xa) 2 Cn. Thus, for every r(xa) 2F2[x; aN0]n, it follows that r(xa) � f(xa) 2 Cn, and

therefore, Cn is an ideal in the ring F2[x; aN0]n.

The following Theorem converts [27, Theorem 4.3.6] for a monoid ring F2[x; aN0].

Theorem 18 Let Cn be a nonzero ideal in the ring F2[x; aN0]n. Then following hold.

1. There exists a unique monic generalized polynomial g(xa) of least degree in Cn,
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2. g(xa) divides (xa)n � 1 in F2[x; aN0],

3. For all c(xa) 2 Cn, it follows that g(xa) divides c(xa) in F2[x; aN0], and

4. Cn = (g(xa)).

Conversely, if Cn is the ideal generated by p(xa) 2F2[x; aN0]n; then p(xa) is a generalized

polynomial of least degree in Cn if and only if p(xa) divides (xa)n � 1 in F2[x; aN0].

Proof. Proof is analogous to [27, Theorem 4.3.6].

Next result for generator matrix is analogous to Theorem [27, Theorem 4.3.11].

Theorem 19 Let Cn �F2[x; aN0]n be a binary cyclic code with generator polynomial

g(xa) = g0 + ga(x
a) + g2a(x

a)2 + :::gar(x
a)r; gar = 1: (2.4)

Then Cn is of dimension k(= n� r); which has a generator matrix of order k � n given by

Gr =

26666664
g0 ga g2a � � � � � � gar 0 0 � � � 0

0 g0 ga � � � � � � ga(r�1) gar 0 � � � 0
...

...
...

...

0 0 � � � 0 g0 ga � � � � � � gar

37777775 : (2.5)

The following Corollary is a particular case of [27, Theorem 4.3.11].

Corollary 20 Let Can �F2[x]an be a binary cyclic code with generator polynomial

g(x) = g0 + g1x
a + g2x

2a + :::+ grx
ar; gr = 1: (2.6)

Then Can is of dimension ak = a(n� r); which has a generator matrix of order ak � an given
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by:

Gar =

26666664
g0 0 � � � 0 g1 0 � � � 0 g2 � � � � � � gr 0 0 � � � 0

0 g0 0 � � � 0 g1 0 � � � 0 g2 � � � � � � gr 0 � � � 0
...

...
...

...

0 � � � 0 g0 0 � � � 0 g1 0 � � � 0 g2 � � � � � � gr

37777775 :
(2.7)

The sequence 0 � � � 0 between gi�s in Gar has length a� 1:

De�nition 21 Let g(xa) be a generator generalized polynomial of a binary cyclic code Cn �F2[x; aN0]n.

Then the k degree generalized polynomial h(xa) of F2[x; aN0]; such that (xa)n�1 = g(xa)h(xa);

is called the check generalized polynomial of Cn.

Theorem 22 Let Cn � F2[x; aN0]n be a binary cyclic code with check generalized polynomial

h(xa). Then c(xa) 2 Cn if and only if c(xa) � h(xa) = 0, where c(xa) 2F2[x; aN0]n:

Proof. Let g(xa) be the generator generalized polynomial of Cn: Then g(xa)h(xa) = (xa)n�

1 and g(xa) � h(xa) = 0. If c(xa) 2 Cn then by Theorem 18, c(xa) = q(xa)g(xa) for some q(xa)

in F2[x; aN0]n and so

c(xa) � h(xa) = q(xa)g(xa) � h(xa) = 0:

Conversely, let c(xa) 2F2[x; aN0]n such that c(xa) � h(xa) = 0. This implies

c(xa)h(xa) = f(xa)((xa)n � 1);

and

c(xa)h(xa) = f(xa)g(xa)h(xa)

for some f(xa) 2 F2[x; aN0]n. Thus,

c(xa) = f(xa)g(xa)

and hence c(xa) 2 Cn.

For binary cyclic (n; k) code Cn the following Theorem gives its parity check matrix.
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Theorem 23 Let Cn be a binary cyclic (n; k) code with check generalized polynomial

h(xa) = h0 + ha(x
a) + h2a(x

a)2 + :::+ ha(k�1)(x
a)k�1 + hak(x

a)k; hk = 1: (2.8)

Then the (n� k)� n matrix given by:

Hk =

26666664
hak ha(k�1) ha(k�2) � � � � � � h0 0 0 � � � 0

0 hak ha(k�1) � � � � � � ha h0 0 � � � 0
...

...
. . .

...

0 0 � � � hak ha(k�1) � � � � � � h0

37777775 (2.9)

is a parity check matrix of Cn.

Proof. Similar to [27, Theorem 4.3.14].

The following Corollary is the particular case of [27, Theorem 4.3.14].

Corollary 24 Let Can be a binary cyclic (an; ak) code with check polynomial

h(x) = h0 + h1x
a + :::+ hkx

ak 2 F2[x]; hk = 1 (2.10)

Then the (an� ak)� an matrix

Hak =

26666664
hk 0 � � � 0 hk�1 0 � � � 0 hk�2 � � � � � � h0 0 � � � 0

0 hk 0 � � � 0 hk�1 0 � � � 0 hk�2 � � � � � � h0 0 � � � 0
...

...
. . . . . . . . .

...
. . . . . .

...

0 � � � 0 hk 0 � � � 0 hk�1 0 � � � 0 hk�2 � � � � � � h0

37777775
(2.11)

is a parity check matrix for Can and the sequence 0 � � � 0 between hi�s in Hak has length a� 1:

Example 25 Let g(x2) = 1 + (x2) + (x2)2 2F2[x; 2N0] be the generalized polynomial with

degree r = 2 and g(x2) divides (x2)3 � 1. Clearly g(x2) generates a binary cyclic (3; 1) code in

F2[x; 2N0]3 which has a generator matrix

G2 =
h
1 1 1

i
(2.12)
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In F2[x], the polynomial g(x2) = g(x) = 1+ x2 + x4 has degree 4(= 2r) and divides x6 � 1. So,

g(x) generates a binary cyclic (6; 2) code in F2[x]6 which has a generator matrix

G4 =

24 1 0 1 0 1 0

0 1 0 1 0 1

35 (2.13)

Since (x2)3 � 1 = (1 + x2 + (x2)2)(1 + (x2)), it follows that h(x2) = 1+ (x2) is the parity check

generalized polynomial of (3; 1) code in F2[x; 2N0]3: The parity check matrix is

H1 =

24 1 1 0

0 1 1

35 (2.14)

In F2[x]; (x2)3 � 1 becomes x6 � 1 = (1 + x2 + x4)(1 + x2). Hence h(x) = 1 + x2 is the parity

check polynomial of (6; 2) code in F2[x]6 and the corresponding parity check matrix is

H2 =

26666664
1 0 1 0 0 0

0 1 0 1 0 0

0 0 1 0 1 0

0 0 0 1 0 1

37777775 (2.15)

2.2 Cyclic codes as ideals in F2[x; abN0]bn

Binary cyclic codes of length n are ideals in the factor ring F2[x]n:However, the fact F2[x] �F2[x; 1bN0]

supports the construction of binary cyclic codes in the factor ring F2[x; 1bN0]bn: Similarly,

F2[x; aN0] �F2[x; abN0] provides a justi�cation for constructing binary cyclic codes in F2[x;
a
bN0]bn

by using an n length cyclic code Cn obtained from F2[x; aN0]n. Let f(xa) = f0 + fa(x
a) +

f2a(x
a)2 + � � � + fan(xa)n 2F2[x; aN0] be a generalized polynomial of degree n; then f(xa)

has degree bn in the monoid ring F2[x; abN0] and is represented by f(x
a
b ) = f0 + fa

b
(x

a
b )b +

f2a
b
(x

a
b )2b + � � � + fna

b
(x

a
b )bn. If f(x

a
b ) is monic, then the factor ring

F2[x;abN0]

(f(x
a
b ))

is the ring of

residue classes of generalized polynomials in F2[x; abN0] modulo ideal (f(x
a
b )). Thus, if we take
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f(x
a
b ) to be (x

a
b )bn � 1, then the factor ring is

F2[x; abN0]
((x

a
b )bn � 1)

= fc0 + ca
b
� + c2a

b
�2 + :::+ ca

b
(n�1)�

bn�1 : c0; ca
b
; :::; ca

b
(n�1) 2 F2g; (2.16)

where � denotes the coset x
a
b + ((x

a
b )bn � 1). Also, f(�) = 0, when � satis�es the relation

�bn � 1 = 0.

By writing x
a
b in place of �, the ring

F2[x;abN0]

((x
a
b )bn�1)

becomes F2[x; abN0]bn in which the relation

(x
a
b )bn = 1 holds. The factor ring F2[x; abN0]bn is algebra over the �eld F2. The multiplication

� in the ring F2[x; abN0]bn is de�ned as, for c(x
a
b ) in F2[x; abN0]bn the product (x

a
b ) � c(xab ) is

given by:

(x
a
b ) � c(x

a
b ) = (x

a
b ) � (c0 + ca

b
(x

a
b ) + c2a

b
(x

a
b )2 + :::+ ca

b
(n�1)(x

a
b )n�1)

= ca
b
(n�1) + c0(x

a
b ) + ca

b
(x

a
b )2 + :::+ ca

b
(n�2)(x

a
b )n�1

Following results give a method of obtaining the generator generalized polynomial, which

generates a principal ideal of the factor ring F2[x; abN0]bn.

Theorem 26 A subset Cbn in F2[x; abN0]bn is a binary cyclic code if and only if Cbn is an ideal

in the ring F2[x; abN0]bn.

Proof. Let Cbn be an ideal in F2[x; abN0]bn. Then Cbn can be considered as a vector subspace

of F2�space Fbn2 . Since Cbn is closed under multiplication de�ned in F2[x; abN0]bn, that is x
a
b �

c(x
a
b ) 2 Cbn, for all c(x

a
b ) 2 Cbn and x

a
b 2F2[x; abN0]bn; therefore Cbn is a cyclic code. Conversely,

suppose that Cbn is a cyclic code, then Cbn is a linear code over F2. For all c(x
a
b ); d(x

a
b ) 2 Cbn

and 
 2F2, c(x
a
b ) � d(xab ) 2 Cbn and 
c(x

a
b ) 2 Cbn. Further, Cbn is cyclic, so x

a
b � c(xab ) 2 Cbn

for all c(x
a
b ) 2 Cbn. This implies that r(x

a
b )� c(xab ) 2 Cbn for every r(x

a
b ) 2F2[x; abN0]bn. Hence,

Cbn is an ideal in the ring F2[x; abN0]bn.

The following Theorem extends Theorem 18 for the monoid ring F2[x; abN0].

Theorem 27 Let Cbn be a nonzero ideal in the ring F2[x; abN0]bn. Then the following holds.

1. There exists a unique monic generalized polynomial g(x
a
b ) of least degree in Cbn,

2. g(x
a
b ) divides (x

a
b )bn � 1 in F2[x; abN0],
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3. For all c(x
a
b ) 2 Cbn, it follows that g(x

a
b ) divides c(x

a
b ) in F2[x; abN0], and

4. Cbn = (g(x
a
b )).

Conversely, if Cbn is the ideal generated by p(x
a
b ) 2F2[x; abN0]bn; then p(x

a
b ) is a generalized

polynomial of least degree in Cbn if and only if p(x
a
b ) divides (x

a
b )bn � 1 in F2[x; abN0].

Similar to [27, Theorem 4.3.11], the following Theorem gives the generator matrix of the

binary cyclic code Cbn.

Theorem 28 Let Cbn �F2[x; abN0]bn be a binary cyclic code with generator polynomial

g(x
a
b ) = g0 + ga

b
(x

a
b )b + g2a

b
(x

a
b )2b + � � �+ gr a

b
(x

a
b )br; gr a

b
= 1 (2.17)

Then Cbn is of dimension bk = b(n � r); which has a generator matrix of order bk � bn given

by:

Gbr =

26666664
g0 0 � � � 0 ga

b
0 � � � 0 g2a

b
� � � � � � gr a

b
0 0 � � � 0

0 g0 0 � � � 0 ga
b

0 � � � 0 g2a
b
� � � � � � gr a

b
0 � � � 0

...
...

...
...

0 � � � 0 g0 0 � � � 0 ga
b

0 � � � 0 g2a
b

� � � � � � gr a
b

37777775
(2.18)

The sequence 0 � � � 0 between gi�s in Gbr has length b� 1.

Corollary 29 [Theorem 19] Let Cbn �F2[x; abN0]bn be a binary cyclic code with generator poly-

nomial

g(x
a
b ) = g0 + ga

b
(x

a
b )b + g2a

b
(x

a
b )2b + � � �+ gr a

b
(x

a
b )br; gr a

b
= 1 (2.19)

If b = 1; then g(x
a
b ) 2F2[x; aN0] and generates a binary cyclic (n; k) code Cn which has a k� n

generator matrix

Gr =

26666664
g0 ga g2a � � � � � � gar 0 0 � � � 0

0 g0 ga � � � � � � ga(r�1) gar 0 � � � 0
...

...
...

...

0 0 � � � 0 g0 ga � � � � � � gar

37777775 (2.20)
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De�nition 30 The generalized polynomial h(x
a
b ); such that (x

a
b )n � 1 = g(xab )h(xab ); is called

the check generalized polynomial of binary cyclic code Cbn �F2[x; abN0]bn; where g(x
a
b ) is the

generator generalized polynomial of Cbn.

Analogous to Theorem 22, the following Theorem is obtained for the binary cyclic code Cbn
in F2[x; abN0]bn.

Theorem 31 Let Cbn be a bn length binary cyclic code in F2[x; abN0]bn with check generalized

polynomial h(x
a
b ). Then a(x

a
b ) 2 Cbn, where a(x

a
b ) 2F2[x; abN0]bn; if and only if a(x

a
b )�h(xab ) =

0.

Analogous to Theorem 23, the following Theorem is obtained for binary cyclic code Cbn in

F2[x; abN0]bn.

Theorem 32 Let Cbn be a binary cyclic (bn; bk) code with check generalized polynomial

h(x
a
b ) = h0 + ha

b
(x

a
b )b + � � �+ ha

b
k(x

a
b )bk; ha

b
k = 1: (2.21)

Then the b(n� k)� bn matrix given by:

Hbk =

26666664
ha
b
k 0 � � � 0 ha

b
(k�1) � � � � � � h0 0 � � � 0

0 ha
b
k 0 � � � 0 ha

b
(k�1) � � � � � � h0 0 � � � 0

...
...

...

0 � � � 0 ha
b
k 0 � � � 0 ha

b
(k�1) � � � � � � h0

37777775
(2.22)

is a parity check matrix for Cbn and the sequence 0 � � � 0 in Hbk has length b� 1:

Corollary 33 [Theorem 23] Let Cbn be a binary cyclic (bn; bk) code with check generalized

polynomial

h(x
a
b ) = h0 + ha

b
(x

a
b )b + � � �+ ha

b
k(x

a
b )bk; ha

b
k = 1: (2.23)
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If b = 1; then (n� k)� n matrix

Hk =

26666664
hak ha(k�1) ha(k�2) � � � � � � h0 0 0 � � � 0

0 hak ha(k�1) � � � � � � ha h0 0 � � � 0
...

...
...

...

0 0 � � � 0 hak ha(k�1) � � � � � � h0

37777775 (2.24)

is a parity check matrix of the binary cyclic code Cn.

Now shift the generalized polynomial f(x
a
b ) of arbitrary degree n in F2[x; abN0] to a gener-

alized polynomial f(x
1
b ) in F2[x; 1bN0] as

f(x
1
b ) = f0 + f 1

b
(x

1
b )a + f 2

b
(x

1
b )2a + � � �+ fn

b
(x

1
b )an: (2.25)

Thus the degree of an arbitrary generalized polynomial in F2[x; abN0] has exceeds from n to

an in F2[x; 1bN0]. Consequently, the degree of generator generalized polynomial g((x
1
b )) also

exceeds from r0 = br to r00 = abr, where g(x
1
b ) divides (x

1
b )abn�1 and generates a binary cyclic

(abn; abk) code Cabn in F2[x; 1bN0]abn.

Thus from the generator and parity check matrices of the code Cbn we obtain the generator

and parity check matrices of the code Cabn:

Theorem 34 Let Cabn �F2[x; 1bN0]abn be a binary cyclic code with generator polynomial

g((x
1
b )) = g0 + g 1

b
(x

1
b )ab + g 2

b
(x

1
b )2b + � � �+ g r

b
(x

a
b )br; g r

b
= 1 (2.26)

Then Cabn is of dimension abk = ab(n � r); which has a generator matrix of order abk � abn

given by

Gabr =

26666664
g0 0 � � � 0 g 1

b
0 � � � 0 g 2

b
� � � � � � g r

b
0 0 � � � 0

0 g0 0 � � � 0 g 1
b

0 � � � 0 g 2
b
� � � � � � g r

b
0 � � � 0

...
...

...
...

0 � � � 0 g0 0 � � � 0 g 1
b

0 � � � 0 g 2
b

� � � � � � g r
b

37777775
(2.27)
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where the sequence 0 � � � 0 between gi�s in Gabr has length ab� 1:

Theorem 35 Let Cabn be a binary cyclic (abn; abk) code with check generalized polynomial

h(x
1
b ) = h0 + h 1

b
(x

1
b )ab + � � �+ h k

b
(x

1
b )abk; h k

b
= 1: (2.28)

Then the ab(n� k)� abn matrix given by

Habk =

266666664

h k
b

0 � � � 0 h (k�1)
b

� � � � � � h0 0 � � � 0

0 h k
b

0 � � � 0 h (k�1)
b

� � � � � � h0 0 � � � 0
...

...
...

0 � � � 0 h k
b

0 � � � 0 h (k�1)
b

� � � � � � h0

377777775
(2.29)

is a parity check matrix for Cabn and the sequence 0 � � � 0 between hi�s in Habk has length ab� 1:

Example 36 Let g(x
2
3 ) = 1 + (x

2
3 )3 + (x

2
3 )6 be a generator generalized polynomial of degree

br = 6 and divides (x
2
3 )9 � 1, then g(x 23 ) generates a binary cyclic (9; 3) code with generator

matrix

G6 =

26664
1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 1

37775 (2.30)

Whereas, in F2[x; 13N0], g(x
2
3 ) becomes g((x

1
3 )) = 1 + (x

1
3 )6 + (x

1
3 )12 and has degree 12 and

divides (x
1
3 )18 � 1. Thus, in generator generalized polynomial g(x

1
3 ) every exponent of the

indeterminate x
1
3 is a multiple of 2, and it generates a cyclic (18; 6) code having generator

matrix

G12 =

26666666666664

1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

37777777777775
: (2.31)

Since, (x
2
3 )9�1 = (1+(x 23 )3+(x 23 )6)(1+(x 23 )3) and (x 13 )18�1 = (1+(x 13 )6+(x 13 )12)(1+(x 13 )6), it
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follows that the parity check generalized polynomials h(x
2
3 ) = 1+(x

2
3 )3 and h((x

1
3 )) = 1+(x

1
3 )6

give the following parity check matrices

H3 =

26666666666664

1 0 0 1 0 0 0 0 0

0 1 0 0 1 0 0 0 0

0 0 1 0 0 1 0 0 0

0 0 0 1 0 0 1 0 0

0 0 0 0 1 0 0 1 0

0 0 0 0 0 1 0 0 1

37777777777775
and

H4 =

266666666666666666666666666666664

1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1

377777777777777777777777777777775

(2.32)

2.3 Relationship among cyclic codes Cn; Can; Cbn and Cabn

In this section, we demonstrate the association between the binary cyclic codes Cn; Can; Cbn and

Cabn by two ways:

(1) Using technique of interleaving.

(2) Through generator and parity check matrices of binary cyclic codes Cn; Can; Cbn and

Cabn.
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2.3.1 Relationship of Cn; Can; Cbn and Cabn by interleaving

For a given (n; k) cyclic code, a (�n; �k) cyclic code can be constructed by interleaving. This

is done by simply arranging � code vectors in the original code into � rows of a rectangular

array and then transmitting them column by column. In this way a codeword of �n digits is

obtained whose two consecutive bits are now separated by � � 1 positions. The parameter � is

called interleaving degree.

Proposition 37 The codes Can; Cbn and Cabn are interleaved codes of degree a; b and ab re-

spectively, where the code Cn is the base code.

Proof. Take a code vectors from the base code Cn and arrange them into a rows of an a�n

array. Then by transmitting this code array column by column in serial manner we get the

binary cyclic code Can. Similarly, the binary cyclic code Cbn is obtained by taking b code vectors

from the base code Cn; arranging them into b rows of an b � n array and then transmitting it

column by column in serial manner. In this way codewords of an and bn digits are obtained

whose two consecutive bits are now separated by a � 1 and b � 1 positions respectively. Now,

by arranging ab code vectors from the code Cn and arranging them into ab rows of an ab � n

array and then transmitting it column by column, the binary cyclic code Cabn is obtained. This

gives codewords of abn digits whose two consecutive bits are separated by ab� 1 positions.

Hence, the codes Can; Cbn and Cabn are interleaved codes of degree a; b and ab respectively.

Example 38 In Examples 25 and 36, the (3; 1) code C3 acts as a base code. The code C6 is

obtained by arranging 2 codewords 111 and 000 in C3 into 2 rows of an 2� 3 array, that is:

1 1 1

0 0 0
; (2.33)

and then by transmitting this code array column by column we get 101010; which is a codeword

in C6: Similarly, by arranging 3 and 6 codewords in C3 into 3 and 6 rows of an 3� 3 and 6� 3
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arrays, that is:

1 1 1

0 0 0

1 1 1

and

0 0 0

1 1 1

0 0 0

0 0 0

0 0 0

1 1 1

: (2.34)

Then transmitting them column by column we get codewords 101101101 and 010001010001010001

in C9 and C18:

2.3.2 Relationship of Cn; Can; Cbn and Cabn by generator and parity check ma-

trices

Now, we explain the relationship between the codes Cn; Can; Cbn and Cabn through their generator

and parity check matrices, using the notion of direct sum of codes.

The following de�nition of direct sum of the codes is taken from [17].

De�nition 39 (a) Let Ci be an (ni; ki) code, where i 2 f1; 2g, both having symbols from the

same Galois �eld Fq. Then their direct sum

C1 � C2 = f(c1; c2) j c1 2 C1; c2 2 C2g (2.35)

is a (n1 + n2; k1 + k2) code.

(b) For i 2 f1; 2g; if Ci has generator matrix Gi and parity check matrix Hi, then

G1 �G2 =

24 G1 0

0 G2

35 and H1 �H2 =

24 H1 0

0 H2

35 ; (2.36)

respectively are the generator and parity check matrices for the code C1 � C2.

The following result explains the relationship between the binary cyclic codes Cn; Can; Cbn
and Cabn through their generator matrices.
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Theorem 40 Let Gr; Gar; Gbr; and Gabr; be the generator matrices corresponding to the gen-

erator generalized polynomials

g(xa) = 1 + (xa) + � � �+ (xa)r; g(x) = 1 + xa + � � �+ xar;

g(x
a
b ) = 1 + (x

a
b )b + � � �+ (x

a
b )br and g((x

1
b )a) = 1 + (x

1
b )ab + � � � (x

1
b )abr;

of binary cyclic codes Cn; Can; Cbn and Cabn in F2[x; aN0]n; F2[x]an; F2[x; abN0]bn; F2[x;
1
bN0]abn.

Then the following conditions hold.

1) Gar � �a1Gr,

2) Gbr � Gr �Gar � �b1Gr, and

3) Gabr � �a1Gbr � �a1Gr �Gar � �ab1 Gr.

Proof. As g(xa) = 1 + (xa) + � � � + (xa)r divides (xa)n � 1 in F2[x; aN0], therefore the

generator matrix Gr has order k � n, where k = n � r. In F2[x] the generalized polynomial

g(xa) = g(x) = 1 + xa + � � � + xar and divides xan � 1. Consequently, a generator matrix Gar
of order ak � an is obtained which after some suitable column operations becomes

Gar �

26666664
Gr 0 � � � 0

0 Gr 0 � � � 0
... 0

. . .
...

0 0 � � � Gr

37777775
a(k�n)

(1)

This implies that Gar contains a blocks of Gr at its main diagonal and hence Gar � �a1Gr.

Similarly, g(x
a
b ) = 1 + (x

a
b ) + � � �+ (xab )br divides xbn � 1; which have generator matrix Gbr of

order bk � bn. On applying suitable column operations, blocks of Gar and Gr are obtained at

main diagonal of Gbr

Gbr �

24 Gar 0

0 Gr

35
(a+1)(k�n)

(2)
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Putting the value of Gar from (1) in (2) we get,

Gbr �

26666664
Gr 0 � � � 0

0 Gr 0 � � � 0
... 0

. . .
...

0 0 � � � Gr

37777775
(a+1)(k�n)

(3)

This shows that Gbr contains b blocks of Gr, that is, Gbr � �b1Gr. Finally, g((x
1
b )a) = 1 +

(x
1
b )ab + � � � + (x 1b )abr divides xabn � 1, which gives generator matrix Gabr of order abk � abn

which after suitable column operations gives

Gabr �

26666664
Gbr 0 � � � 0

0 Gbr 0 � � � 0
...

...
. . .

...

0 0 � � � Gbr

37777775
a(bk�bn)

: (4)

Putting the value of Gbr from (2) and (3); we get

Gabr �

266666666664

Gar 0 0 � � � 0

0 Gr 0 � � � 0

0 0
. . . � � � 0

... 0 � � � Gar
...

0 0 0 � � � Gr

377777777775
a(bk�bn)

�

26666664
Gr 0 � � � 0

0 Gr � � � 0
... 0

. . .
...

0 0 � � � Gr

37777775
ab(k�n)

;

(5)

which shows Gabr contains ab blocks of Gr, that is, Gabr � �ab1 Gr.

The following example illustrates Theorem 40.
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Example 41 Let a = 2, b = 3 and r = 2. From Example 25 and Example 36 we get

G12 =

26666666666664

1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

37777777777775
(2.37)

After some suitable column operations on G12 we have

G12 �

26666666666664

1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1

37777777777775
� G6 �G6

(2.38)

On applying suitable column operations on G6, it gives

G6 �

26664
1 0 1 0 1 0 0 0 0

0 1 0 1 0 1 0 0 0

0 0 0 0 0 0 1 1 1

37775
� G4 �G2

(2.39)

and similarly G4 becomes

G4 �

24 1 1 1 0 0 0

0 0 0 1 1 1

35
� G2 �G2:

(2.40)
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So,

G6 � G2 �G2 �G2 and (2.41)

G12 � G2 �G2 �G2 �G2 �G2 �G2:

Encoding: In the matrix Gabr, the matrices Gbr, Gar and Gr exist as block matrices and

the generator generalized polynomial of the cyclic (abn; abk) code Cabn can be used for encoding.

So, a message word u 2Fabk2 is encoded as uGabr. Hence the code

Cabr = fuGabr : u 2 Fabk2 g: (2.42)

On partitioning u as

u = (u1�b : u1�a : u1�k); (2.43)

where u1�b 2Fbk2 ; u1�a 2Fak2 and u1�k 2 Fk2 , we get

Cabr � fu1�bGbr : u1�aGar : u1�kGrg: (2.44)

Example 42 Let a = 2, b = 3 and r = 2; then u 2 F62 is given by

u = [ 1 1 0 0 1 1 ]: (2.45)

The row matrix u has order 1� 6. By partitioning the matrix u we get

u = [ 1 1 0 ]1�3 : [ 0 1 ]1�2 : [ 1 ]1�1] (2.46)

= [u1 : u2 : u3] and

uG12 = [u1G6(3�9) : u2G4(2�6) : u3G2(1�3) ]

= 110110110010101111
(2.47)

Thus, the message word u is encoded as the codeword uG12.

For parity check matrix, Theorem 40 doesn�t hold, whereas it holds for the canonical parity

check matrix.
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The generator and parity check matrices of a binary cyclic code Cbn; described above, are

not in canonical forms. In general, for a linear code, a generator matrix G is transformed into

canonical form by applying elementary row operations. But, in the case of a cyclic code, the

canonical form can be obtained by using the generator generalized polynomial and the division

algorithm in the Euclidean domain F2[x; abN0].

For any generalized polynomial f(x
a
b ) 2F2[x; abN0], let remg(x

a
b )
(f(x

a
b )) denotes the remain-

der on dividing f(x
a
b ) by g(x

a
b ): For the sake of simplicity we denote it as r(f(x

a
b )).

Theorem 43 Let g(x
a
b ) be the generator generalized polynomial of a binary cyclic (bn; bk) code

Cbn in F2[x; abN0]bn and Abr be a bk � b(n� k) matrix whose i-th row is r((x
a
b )b(n�k)+i�1), for

i = 1; � � � ; k. Then the canonical generator and parity check matrices of Cbn respectively are

Gbr =
h
Ibk

... Abr

i
and Hbk =

h
(Abr)T

... Ib(n�k)

i
(2.48)

Proof. Since deg(g(x
a
b )) = b(n � k), it follows that r(xab )j = (x

a
b )j for j < b(n � k).

Moreover, g(x
a
b ) divides (x

a
b )bn � 1 and r(xab )bn+j = r(x

a
b )j for all j � 0. Thus, we have to

compute r(x
a
b )j only for j = b(n� k); � � � ; bn� 1. Let

gi(x
a
b ) = (x

a
b )i�1 � (x

a
b )bkr((x

a
b )b(n�k)+i�1)

for i = 1; 2; � � � ; bk. Then deg(gi(x
a
b )) < bn, so, gi(x

a
b ) 2F2[x; abN0]bn. Furthermore,

(x
a
b )b(n�k)+i�1 � r(x

a
b )b(n�k)+i�1 2 Cbn;

therefore

gi(x
a
b ) = (x

a
b )bk � (x

a
b )b(n�k)+i�1 � r((x

a
b )b(n�k)+i�1) 2 Cbn:

Let Gbr be the (bk� bn) matrix whose i-th row is gi(x
a
b ), written as a row vector, i = 1; � � � ; bk.

Then

Gbr =
h
Ibk

... Abr

i
;

where Abr is a bk � b(n � k) matrix whose i-th row is r((x
a
b )b(n�k)+i�1). Taking transpose of

Abr we get a b(n� k)� bk matrix, whose i-th column is r((x
a
b )b(n�k)+i�1), written as a column
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vector, i = 1; � � � ; bk. Then

Hbk =
h
ATbr

... Ib(n�k)

i
;

which is a b(n� k)� bn matrix.

Theorem 44 Let Ar; Aar; Abr and Aabr be the matrices as taken in Theorem 43 with respect

to the corresponding generator (generalized) polynomials g(xa), g(x), g(x
a
b ) and g((x

1
b )) in

F2[x; aN0]n, F2[x]an, F2[x; abN0]bn and F2[x;
1
bN0]abn respectively. Then

1) Aar � �a1Ar,

2) Abr � Ar �Aar � �b1Ar, and

3) Aabr � �a1Abr � �a1Ar �Aar � �ab1 Ar.

Proof. For the generator generalized polynomial

g(xa) = 1 + (xa) + � � �+ (xa)r; (2.49)

the remainders r(xa)j , where n�k � j � n�1 give the matrix Ar of order k�(n�k). Similarly,

for

g(x) = 1 + xa + � � �+ xar (2.50)

, the matrix Aar of order ak � a(n � k) is obtained through the remainders r(xj), where

a(n� k) � j � an� 1. After applying suitable column operations on Aar; it gives

Aar �

26666664
Ar 0 0 � � � 0

0 Ar 0 � � � 0
...

. . . . . .
...

0 0 � � � Ar

37777775
a(k�n�k)

� �a1Ar:

(2.51)

Corresponding to the generator generalized polynomial

g(x
a
b ) = 1 + (x

a
b )b + � � �+ (x

a
b )br; (2.52)

the remainders r((x
a
b )j) gives the matrix Abr of order bk�b(n�k); where b(n�k) � j � b(n�1).
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On applying suitable column operations on it, it gives submatrices of size ak � a(n � k) and

k � n� k, that is,

Abr �

24 Aar O

O Ar

35
(a+1)(k�n�k)

� Ar �Aar
� �a+1=b1 Ar:

(2.53)

Finally, for

g((x
1
b )a) = 1 + (x

1
b )ab + � � �+ (x

1
b )abr; (2.54)

the remainders r((x
1
b )j), where ab(n� k) � j � ab(n� 1) gives Aabr of order abk � ab(n� k).

Which on applying suitable column operations gives submatrices of size bk � b(n� k); that is,

Aabr �

26664
Abr 0 � � � 0
...

. . .
...

0 � � � Abr

37775
a(bk�b(n�k))

� �a1Abr � �a1Ar �Aar
� �ab1 Ar;

(2.55)

which proves the theorem.

Similar results for canonical generator and parity check matrices are obtain by Theorem 44.

The following example illustrates Theorem 44.

Example 45 To �nd the parity check matrix for (18; 6) code obtained by the monoid ring

F2[x; 13N0], we �rst divide (x
1
3 )j by g((x

1
3 )) = 1 + (x

1
3 )6 + (x

1
3 )12, where j = 12; 13; � � � ; 17, to

get the remainders

r(x
1
3 )12 = 1 + (x

1
3 )6; r(x

1
3 )13 = (x

1
3 ) + (x

1
3 )7;

r(x
1
3 )14 = (x

1
3 )2 + (x

1
3 )8; r(x

1
3 )15 = (x

1
3 )3 + (x

1
3 )9;

r(x
1
3 )16 = (x

1
3 )4 + (x

1
3 )10; r(x

1
3 )17 = (x

1
3 )5 + (x

1
3 )11:
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Therefore,

A12 =

26666666666664

1 0 0 0 0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0 0 0 0 1

37777777777775
: (2.56)

Accordingly,

H12 =
h
(A12)

T
... I12

i
: (2.57)

Similarly,

A6 =

26664
1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

37775 ; A4 =
24 1 0 1 0

0 1 0 1

35 and A2 =
h
1 1

i
gives (2.58)

H6 =
h
(A6)

T
... I6

i
; H4 =

h
(A4)

T
... I4

i
and H2 =

h
(A2)

T
... I2

i
(2.59)

Thus by Theorem 44,

H12 =
h
�21(A6)T

... I12

i
; H6 =

h
(A2)

T � (A4)T
... I6

i
; H4 =

h
�21A2

... I4

i
:

(2.60)

2.4 Decoding procedure

The codes Cn; Can, Cbn and Cabn have same minimum distance and hence same error correction

capability along with the same code rate, but the codes Can; Cbn and Cabn are interleaved codes

of degree a; b and ab; where the base code Cn is cyclic. Thus, if the initial code Cn is capable

of correcting t errors, then the interleaved codes Can; Cbn and Cabn are capable of correcting t

bursts of length a; b and ab or less, no matter where it starts, will a¤ect no more than t bits in

each row. This t bits error in each row will be corrected by the base code Cn. If Cn is capable of

correcting all bursts of length l or less, then the interleaved codes Can; Cbn and Cabn are capable
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of correcting all bursts of length al; bl and abl or less.

We give decoding scheme only for the code Cbn, through which decoding of Cn and Can can

easily be obtained. Decoding of the code Cabn can be obtained by shifting (x
a
b ) to (x

1
b )a:

The following theorem gives syndrome for binary cyclic codes Cbn through its canonical

parity check matrices Hbk:

Theorem 46 Let Cbn be a binary cyclic (bn; bk) code in F2[x; abN0]bn with generator polynomial

g(x
a
b ) and the canonical parity check matrix Hbk. Then, for any vector c 2Fbn2 , the syndrome

S(c) = r((x
a
b )b(n�k)c(x

a
b )): (2.61)

Proof. By Theorem 43, HT
bk =

26664
Abr

� � �

Ib(n�k)

37775, where Abr is a bk � b(n � k) matrix whose
i-th row is r((x

a
b )b(n�k)+i�1), for i = 1; � � � ; k. The i-th row of the identity matrix Ib(n�k) is

(x
a
b )bn+i, for i = 1; � � � ; b(n� k). Hence, the relation

r((x
a
b )bn+j) = r((x

a
b )j)

for all j � 0, gives the i-th row of (Hbk)T given by r((x
a
b )b(n�k)+i�1)), where i = 1; � � � ; bn. If

c = (c0; cab ; � � � ; cab (bn�1)) 2 F
bn
2 ;

then

c(x
a
b ) = c0 + ca

b
(x

a
b ) + � � �+ ca

b
(n�1)(x

a
b )(bn�1) 2 F2[x;

a

b
N0]bn:

Thus,

S(c) =
h
c0 ca

b
� � � ca

b
(bn�1)

i
HT
bk

=
bnP
i=1
ca
b
(i�1)r((x

a
b )(b(n�k)+i�1))

= r

�
bnP
i=1
ca
b
(i�1)(x

a
b )(b(n�k)+i�1)

�
= r

�
(x

a
b )b(n�k)c(x

a
b )
�
;

which proves the theorem.
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In a similar way, we get the syndromes for binary cyclic codes Cabn and Can through their

canonical parity check matrices Habk and Hak:

Theorem 47 Let Cabn be a binary cyclic (abn; abk) code in F2[x; 1bN0]abn with generator poly-

nomial g(x
1
b ) and the canonical parity check matrix Habk. Then, for any vector c 2Fbn2 , the

syndrome

S(c) = r((x
1
b )ab(n�k)c(x

1
b )): (2.62)

Theorem 48 Let Can be a binary cyclic (an; ak) code in F2[x;N0]an with generator polynomial

g(x) and the canonical parity check matrix Hak. Then, for any vector c 2Fan2 , the syndrome

S(c) = r((x)a(n�k)c(x)): (2.63)

In a binary cyclic code Cbn, with generator generalized polynomial g(x
a
b ), two vectors

c;d 2Fbn2 lie in the same coset if and only if g(x
a
b ) divides c(x

a
b )� d(xab ), that is,

r(c(x
a
b )) = r(d(x

a
b )): (2.64)

Let v(x
a
b ) 2 Cbn be a generalized code polynomial, and u(x

a
b ) be a generalized received poly-

nomial. Then,

v(x
a
b ) = u(x

a
b )� e(x

a
b ); (2.65)

where e(x
a
b ) is an error generalized polynomial. Therefore,

S(v) = S(u)� S(e) implies S(u) = S(e)asS(v) = 0: (2.66)

Therefore, based on the previous discussion, we deduce the following decoding steps.

Decoding Steps

1. For received vector u = (u0; ua
b
; � � � ; ua

b
(bn�1)) 2 Fbn2 with generalized received polynomial

u(x
a
b ) = u0 + ua

b
(x

a
b ) + � � �+ ua

b
(bn�1)(x

a
b )(bn�1); (2.67)
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�nd the syndrome

S(u) = r((x
a
b )b(n�k)u(x

a
b )): (2.68)

2. Construct a syndrome table for generalized error polynomials.

3. Verify by the table that for which i; where 1 � i � n� 1, S(u) = S(ei). Then the gener-

alized error polynomial ei(x
a
b ) for the generalized received polynomial u(x

a
b ) is obtained.

4. Consequently, v(x
a
b ) = u(x

a
b )� e(xab ) is the generalized decoded code polynomial of the

binary cyclic code Cbn.

5. The received interleaved sequence in Cbn is de-interleaved and rearranged back to a rec-

tangular array of b rows of the binary cyclic code Cn. Then each row is decoded based on

binary cyclic code Cn.

Illustration

In Examples 25 and 36, the (3; 1) code act as a base code capable of correcting single error.

Let n = 9, k = 3 and

g(x
2
3 ) = 1 + (x

2
3 )3 + (x

2
3 )6 2 F2[x;

2

3
N0]3n (2.69)

be the generator generalized polynomial. Let u = 110000100 be the received vector. Then

u(x
2
3 ) = 1 + (x

2
3 ) + (x

2
3 )6 2 F2[x;

2

3
N0]9 (2.70)

is its corresponding generalized polynomial. The syndrome of u(x
2
3 ) is

S(u) = (x
2
3 )4 + (x

2
3 ) + 1: (2.71)
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The syndrome table of error generalized polynomials ei(x
2
3 ), where 0 � i � 8 is given by:

Syndrome Table 1

ei(x
2
3 ) e(x

2
3 ) S(e)

e0(x
2
3 ) 1 1 + (x

2
3 )3

e1(x
2
3 ) x

2
3 (x

2
3 ) + (x

2
3 )4

e2(x
2
3 ) (x

2
3 )2 (x

2
3 )2 + (x

2
3 )5

e3(x
2
3 ) (x

2
3 )3 1

e4(x
2
3 ) (x

2
3 )4 (x

2
3 )

e5(x
2
3 ) (x

2
3 )5 (x

2
3 )2

e6(x
2
3 ) (x

2
3 )6 (x

2
3 )3

e7(x
2
3 ) (x

2
3 )7 (x

2
3 )4

e8(x
2
3 ) (x

2
3 )8 (x

2
3 )5

From the Syndrome Table 1 we �nd that S(u) = S(e1) + S(e3). So the generalized error

polynomial is e(x
2
3 ) = (x

2
3 ) + (x

2
3 )3 which has error pattern e = 010100000; which is a burst of

length 3. Therefore,

v(x
2
3 ) = u(x

2
3 )� e(x

2
3 ) = 1 + (x

2
3 )3 + (x

2
3 )6;

which is the generator generalized polynomial of the code C9, its vector form is 100100100.

Now, on shifting the generalized received polynomial

u(x
2
3 ) = 1 + (x

2
3 ) + (x

2
3 )6 to u(x

1
3 ) = 1 + (x

1
3 )2 + (x

1
3 )12 2 F2[x;

1

3
N0]18

we get received word

u = 101000000000100000 in C18:

The syndrome of u(x
1
3 ) is

S(u) = (x
1
3 )8 + (x

1
3 )2 + 1:
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The syndrome table of generalized error polynomials ei(x
1
3 ), where 0 � i � 17 is given by:

Syndrome Table 2

ei(x
1
3 ) e(x

1
3 ) S(e)

e0;1(x
1
3 ) 1 1 + (x

1
3 )6

e2;3(x
1
3 ) (x

1
3 )2 (x

1
3 )2 + (x

1
3 )8

e4;5(x
1
3 ) (x

1
3 )4 (x

1
3 )4 + (x

1
3 )10

e6;7(x
1
3 ) (x

1
3 )6 1

e8;9(x
1
3 ) (x

1
3 )8 (x

1
3 )2

e10;11(x
1
3 ) (x

1
3 )10 (x

1
3 )4

e12;13(x
1
3 ) (x

1
3 )12 (x

1
3 )6

e14;15(x
1
3 ) (x

1
3 )14 (x

1
3 )8

e16;17(x
1
3 ) (x

1
3 )16 (x

1
3 )10

From the Syndrome Table 2 we get

S(u) = S(e2;3(x
1
3 )) + S(e6;7(x

1
3 )): (2.72)

This gives the generalized error polynomial e(x
1
3 ) = (x

1
3 ) + (x

1
3 )6 which has error pattern

e = 001000100000000000; (2.73)

which is a burst of length 5. Therefore,

v(x
1
3 ) = u(x

1
3 )� e(x

1
3 ) = 1 + (x

1
3 )6 + (x

1
3 )12; (2.74)

the generator generalized polynomial of binary cyclic code C18; and its vector form is

100000100000100000: (2.75)

The vector u in C9 is formed by interleaving 3 rows u1 = 101; u2 = 100 and u3 = 000 in C3
which have respectively the error vectors e1 = 010; e2 = 100 and e3 = 000. On interleaving the
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vectors u1 = 101 and u2 = 100 in C3; we get a received vector u = 110010 in C6. Its decoding

gives the error vector e = 011000 which is a burst of length 2.

Hence, the interleaved codes (18; 6); (9; 3) and (6; 2) are capable of correcting single burst

of length 6; 3 and 2 or less.

In this study, a new technique of constructing binary cyclic codes is introduced using monoid

rings F2[x; aN0]; F2[x; abN0] and F2[x;
1
bN0] instead of polynomial ring F2[x]. So, a scheme is

articulated in such a manner that; for an n length binary cyclic code Cn; an ideal in the factor

ring F2[x; aN0]n; there exists binary cyclic codes Can; Cbn and Cabn of lengths an; bn and abn

which are respectively ideals in the factor rings F2[x]an; F2[x; abN0]bn and F2[x;
1
bN0]abn.

The pronouncements of this chapter are as follows:

1. The generator and parity check matrix of binary cyclic code Cabn contains blocks of gen-

erator and parity check matrices of binary cyclic codes Cn; Can and Cbn. Hence, encoding

and decoding of all the binary cyclic codes Cn; Can and Cbn can be done simultaneously by

the encoding and decoding of binary cyclic code Cabn.

2. The constructed binary cyclic codes Can; Cbn and Cabn are found to be interleaved codes

of degree a, b and ab, respectively, where the binary cyclic code Cn is the base code.

Therefore, if the base code Cn corrects t errors, then the interleaved codes Can; Cbn and

Cabn are capable of correcting t bursts of length a; b and ab or less. If Cn is capable of

correcting all bursts of length l or less, then the interleaved codes Can; Cbn and Cabn are

capable of correcting all bursts of length al; bl and abl or less.
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Chapter 3

Construction of non-primitive BCH

codes using monoid rings

BCH codes are one of the most important classes of cyclic codes for error correction. In this

chapter, we have generalized BCH codes using monoid rings instead of a polynomial ring over

the binary �eld F2. We show the existence of non-primitive binary BCH code Cbn of length

bn, corresponding to a given n length binary BCH code Cn: The value of b is investigated for

which the existence of non-primitive BCH code Cbn is assured. It is noticed that the code Cn is

embedded in the code Cbn. Therefore, encoding and decoding of the codes Cn and Cbn can be

done simultaneously. The data transmitted by Cn can also be transmitted by Cbn. The BCH

code Cbn has better error correction capability whereas the BCH code Cn has better code rate,

hence both gains are achieved at the same time.

Through monoid rings, in a sequence of papers [4], [36], [37], [39], [38], [34], [35] several

classes of cyclic codes over a �nite unitary commutative ring are constructed. The purpose of

these constructions is to address the error correction and the code rate trade o¤ in a better way.

However, for a particular interest in [40] it is established that, there does not exist a binary BCH

code of length (n+ 1)n in the factor ring F2[x; 12N0]=((x
1
2 )(n+1)n � 1) generated by generalized

polynomial g(x
1
2 ) 2 F2[x; 12N0] of degree 2r corresponding to the length n binary BCH code in

F2[x]=(xn�1) having generator polynomial g(x) 2 F2[x] of degree r. But, there do exist a binary

cyclic code of length (n+1)n such that the length n binary BCH code is embedded in it. Besides
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this, the existence of a binary cyclic ((n+1)3
k�1; (n+1)3k�1�3kr) code, where k is a positive

integer, corresponding to a binary cyclic (n; n�r) code is established in [38] by the use of monoid

ring F2[x; 13kN0]. In both papers [40] and [38], the authors cannot show the existence of binary

BCH codes corresponding to the length n binary BCH code in F2[x]=(xn � 1): In this study,

we address this issue and construct a binary BCH code using monoid ring F2[x; abN0]; where

a; b are integers such that a; b > 1. We show the existence of non-primitive binary BCH code

Cbn of length bn using an irreducible polynomial p(x
a
b ) 2 F2[x; abN0] of degree br, corresponding

to a given length n binary BCH code Cn generated by r degree primitive polynomial p(xa) in

F2[x; aN0]:

3.1 BCH code Cn as ideal in F2[x; aN0]n

A polynomial ring F[x] is initially a monoid ring F2[x;S], where S is the additive monoid N0, the

non-negative integers. It can be observed that F2[x] � F2[x; abN0] only when a = 1. This force

us to �rst de�ne cyclic codes using monoid ring F2[x; aN0] and then de�ne cyclic codes using

monoid ring F2[x; abN0]: As F2[x; aN0] � F2[x;
a
bN0]; also F2[x; aN0] � F2[x] for all a � 1:Where

both the monoids aN0 and a
bN0 are totally ordered, so degree and order of elements in F2[x; aN0]

and F2[x; abN0] are de�ned. The indeterminate of polynomials in monoid rings F2[x; aN0] and

F2[x; abN0] are respectively given by x
a and x

a
b ; and they behave like an indeterminate x in

F2[x]. The arbitrary elements in F2[x; aN0] and F2[x; abN0] are

f(xa) = 1 + (xa) + (xa)2 + :::(xa)n and

f(x
a
b ) = 1 + (x

a
b ) + (x

a
b )2 + :::(x

a
b )n

and we call them generalized polynomials.

The construction of a BCH code in the factor ring F2[x; aN0]n is similar to that of a BCH

code in F2[x]n; as F2[x; aN0] � F2[x]: For this, let Cn be a binary BCH code based on the

positive integers c; d; q = 2 and n such that 2 � d � n with gcd(n; 2) = 1 and n = 2s� 1, where

s is the degree of a primitive irreducible polynomial in F2[x; aN0]: Consequently, the n length
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binary BCH code Cn has generator polynomial of degree r given by

g(xa) = lcmfmi(x
a) : i = c; c+ 1; :::; c+ d� 2g; (3.1)

where mi(x
a) are minimal polynomials of �i for i = c; c+1; :::; c+d�2. Where � is the primitive

nth root of unity in F2s ; an s degree Galois �eld extension of F2. Since mi(x
a) divides (xa)n�1

for each i, it follows that g(xa) divides (xa)n � 1. This implies Cn = (g(xa)) is a principal ideal

in the factor ring F2[x; aN0]n:

In the following example primitive BCH code of length 15 is discussed using monoid ring

F2[x; 2N0]:

Example 49 Let p(x2) = (x2)4+(x2)+1 be a primitive polynomial in F2[x; 2Z0]; then we have

a primitive BCH code of length n = 24� 1 = 15: Let � be a primitive root in GF (24); satisfying

the relation �4 + � + 1 = 0: Using this relation we have �15 = 1; that is � is the primitive 15th

root of unity. Since

g(x2) = lcmfmi(x
2); i = c; c+ 1; :::; c+ d� 2g; (3.2)

therefore �rst we calculate mi(x
2): By [27, Theorem 4.4.2], �; �2; �4; �8 have same minimal

polynomial m1(x
2) = p(x2): Similarly we get

m3(x
2) = (x2)4 + (x2)3 + (x2)2 + (x2) + 1;

m5(x
2) = (x2)2 + (x2) + 1 and

m7(x
2) = (x2)4 + (x2)3 + 1:

The BCH code with designed distance d = 3 has generator polynomial

g(x2) = m1(x
2) = (x2)4 + (x2) + 1:

It has minimum distance at least 3 and corrects up to 1 error. Since the generator polynomial

is of degree 4, therefore it is a (15; 11) code having code rate R = 0:733: BCH codes of length
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15 with di¤erent design distances are discussed in Table 3:

Table 3: BCH codes of length15

d (n; k) t R

3 (15; 11) 1 0:733

5 (15; 7) 2 0:466

7 (15; 5) 3 0:333

15 (15; 1) 7 0:066

3.2 BCH codes as ideals in F2[x; abN0]bn

In this section, we investigate the values of b for which there exists a bn length BCH code in

F2[x; abN0]bn; corresponding to an n length BCH code Cn in F2[x; aN0]n: For this, let Cn be a

binary BCH code in F2[x; aN0]n constructed in previous section. Now using the following map

p(xa) = p0 + p1x
a + :::+ ps (x

a)s 7! p0 + p1(x
a
b )b + :::+ ps(x

a
b )bs = p(x

a
b ); (3.3)

we convert the s degree primitive polynomial p(xa) in F2[x; aN0] to a bs degree polynomial

p(x
a
b ) in F2[x; abN0]: This converted polynomial is never primitive; therefore, the corresponding

BCH code will also be non-primitive. However, the non-primitive BCH code can be constructed

only when p(x
a
b ) is irreducible. Hence, for the construction of a non-primitive BCH code in

F2[x; abN0]bn, we choose only such a primitive irreducible polynomial p(x
a) in F2[x; aN0] for

which there is an irreducible polynomial p(x
a
b ) in F2[x; abN0]:

Particularly, for b = 2 or 2l there neither exist a primitive BCH code nor a non-primitive

BCH code, since we know that p(x2) = (p(x))2 in F2[x]; the same result holds in F2[x; a2N0]:

Similarly, for s = 5; 7; 11; 13; 17; ::: and there multiples we don�t �nd any b for which we have

an irreducible polynomial in F2[x; abN0]:

For instance see Table 4 for the list of irreducible polynomials of degree bs in F2[x; abN0]

corresponding to primitive irreducible polynomial of degree s in F2[x; aN0].
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Table 4: Irreducible polynomials p(x
a
b ) against primitive polynomials p(xa)

deg p(xa) p(x
a
b )

3 (xa)3 + (xa) + 1 (x
a
7 )21 + (x

a
7 )7 + 1

4 (xa)4 + (xa) + 1 (x
a
3 )12 + (x

a
3 )3 + 1; (x

a
5 )20 + (x

a
5 )5 + 1

6 (xa)6 + (xa) + 1 (x
a
3 )18 + (x

a
3 )3 + 1; (x

a
7 )42 + (x

a
7 )7 + 1

8 (xa)8 + (xa)4 + (xa)3 + (xa)2 + 1 (x
a
3 )24 + (x

a
3 )12 + (x

a
3 )9 + (x

a
3 )6 + 1;

(xa)8 + (xa)4 + (xa)3 + (xa)2 + 1 (x
a
5 )40 + (x

a
5 )20 + (x

a
5 )15 + (x

a
5 )10 + 1

9 (xa)9 + (xa)4 + 1 (x
a
7 )63 + (x

a
7 )28 + 1

10 (xa)10 + (xa)3 + 1 (x
a
3 )30 + (x

a
3 )9 + 1

...
...

...

Table 4 explains that for s = 2 and 3 we have b = 3 and 7 and for s = 4 and 6 we have

b = (3; 5) and (3; 7) respectively and similarly we have for their multiples. From this we have

the list of BCH codes of length n and bn, where bn divides 2bs � 1; mentioned in Table 5.

Table 5: BCH codes of length n and bn

s n bn

2 3 9

3 7 49

4 15 45; 75

6 63 189; 441

8 255 765; 1275

9 511 3577

10 1023 1023
...

...
...

The above discussion can be sum up with the following result.

Proposition 50 Let p(xa) 2 F2[x; aN0] be a primitive irreducible polynomial of degree s 2
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f2l; 3l; 4l; 6lg; where l 2 Z+: Then the corresponding bs degree generalized polynomial p(xab ) in

F2[x; abN0] is non-primitive irreducible polynomial for b 2 f3; 7; f3; 5g; f3; 7gg respectively:

Proof. Let p(xa) = 1 + xa + :::+ (xa)s be a primitive irreducible polynomial in F2[x; aN0];

where s 2 f2l; 3l; 4l; 6lg; where l 2 Z+ such that � is its root and �2
s�1 = 1: Then the

corresponding generalized polynomial p(x
a
b ) = 1 + (x

a
b )b + ::: + (x

a
b )bs in F2[x; abN0] has root

� = (psi)
M 2 Fbs2 ; where psi is a primitive element in Fbs2 and M is a positive integer such that

M(b(2s � 1)) = 2bs � 1:

This implies �b(2
s�1) = 1. Hence p(x

a
b ) is not primitive. But p(x

a
b ) is irreducible over F2 for b 2

f3; 7; f3; 5g; f3; 7gg respectively by [14, Theorem 5.1 and Example 5.4], where the indeterminate

x
a
b behaves as indeterminate x:

De�nition 51 A code C generated by a non-primitive element � of a Galois �eld GF (qm);

such that the length of the code is the order of �; is called a non-primitive BCH code.

Theorem 52 Let n = 2s� 1 be the length of primitive BCH code Cn; where p(xa) 2 F2[x; aN0]

is a primitive irreducible polynomial of degree s such that p(x
a
b ) 2 F2[x; abN0] is irreducible

polynomial of degree bs:

1) Then for positive integers c1; d1; bn such that 2 � d1 � bn and bn is relatively prime to 2;

there exists a non-primitive binary BCH code Cbn of length bn; where bn is order of an element

� 2 F2bs :

2) The non-primitive BCH code Cbn of length bn is de�ned as

Cbn = fv(x
a
b ) 2 F2[x;

a

b
N0]bn : v(�i) = 0 for all i = c1; c1 + 1; :::c1 + d1 � 2:

Equivalently, Cbn is the null space of the matrix

H =

26666664
1 �c1 �2c1 ::: �(bn�1)c1

1 �c1+1 �2(c1+1) ::: �(bn�1)(c1+1)

...
...

...
. . .

...

1 �c1+d1�2 �2(c1+d1�2) ::: �(bn�1)(c1+d1�2)

37777775 : (3.4)
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Proof. 1) Since it is given that the bs degree polynomial p(x
a
b ) 2 F2[x; abN0] is not primitive,

so the BCH code constructed through it is also not primitive. Hence the length of the code

n 6= 2bs � 1: However, there is an element � 2 F2bs of order bn vanishing p(x
a
b ): Let mi(x

a
b ) 2

F2[x; abZ0] denotes the minimal polynomial of �
i and g(x

a
b ) be the lcm of distinct polynomials

among mi(x
a
b ); i = c1; c1 + 1; :::; c1 + d1 � 2; that is,

g(x
a
b ) = lcmfmi(x

a
b ) : i = c1; c1 + 1; :::; c1 + d1 � 2g:

As mi(x
a
b ) divides (x

a
b )bn � 1 for each i; therefore g(xab ) also divides (xab )bn � 1: This implies

that Cbn is a principal ideal generated by g(x
a
b ) in the factor ring F2[x; abN0]bn: Hence Cbn is a

non-primitive BCH code of length bn over F2 with designed distance d1:

2) Let v(x
a
b ) 2 Cbn; then

v(x
a
b ) = g(x

a
b )q(x

a
b )

for some q(x
a
b ) 2 F2[x; abN0]; where g(x

a
b ) is the generator polynomial of Cbn: Hence v(�i) = 0

for all i = c1; c1+1; :::; c1+ d1� 2: Conversely, let v(x
a
b ) 2 F2[x; abN0]bn such that v(�

i) = 0 for

all i = c1; c1 + 1; :::; c1 + d1 � 2: Then mi(x
a
b ) divides v(x

a
b ) for all i = c1; c1 + 1; :::; c1 + d1 � 2:

Hence g(x
a
b ) divides v(x

a
b ), so v(x

a
b ) 2 Cbn:

For second part, let

v(x
a
b ) = v0 + v1(x

a
b ) + :::vbn�1(x

a
b )bn�1 2 F2[x;

a

b
N0]bn:

Then v(�i) = 0 for all i = c1; c1 + 1; :::; c1 + d1 � 2 if and only if HvT = 0, where v =

(v0; v1; :::vbn�1) 2 Fbn2 : This proves that Cbn is the null space of H:

Remark 53 Corresponding to the (n; k) BCH code Cn with generator polynomial g(xa) = p(xa)

in F2[x; aN0]; we have a (bn; bk) BCH code Cbn with generating polynomial g(x
a
b ) = p(x

a
b ) in

F2[x; abN0]: This (bn; bk) BCH code Cbn is an interleaved code of degree b, capable of correcting

a single error burst of length b or less (see [29, Theorem 11.1]):

The following example illustrates the construction of a non-primitive BCH code of length

bn through F2[x; abN0]:
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Example 54 For a primitive polynomial p(x2) = 1 + (x2) + (x2)4 in F2[x; 2N0]; there is a

non-primitive irreducible polynomial p(x
2
3 ) = 1 + (x

2
3 )3 + (x

2
3 )12 in F2[x; 23N0]: Let � 2 F212 ;

satis�es the relation �12+�3+1 = 0: Using this relation we can compute all the distinct powers

of � in GF (212); see Table 6 (it is clear that � has order 45).

Table 6: Distinct powers of � in GF (212)

�12 = �3 + 1 �21 = 1 + �3 + �9 �30 = 1 + �3 + �6 �39 = 1 + �6 + �9

�13 = �+ �4 �22 = �+ �4 + �10 �31 = �+ �4 + �7 �40 = �+ �7 + �10

�14 = �2 + �5 �23 = �2 + �5 + �11 �32 = �2 + �5 + �8 �41 = �2 + �8 + �11

�15 = �3 + �6 �24 = 1 + �6 �33 = �3 + �6 + �9 �42 = 1 + �9

�16 = �4 + �7 �25 = �+ �7 �34 = �4 + �7 + �10 �43 = �+ �10

�17 = �5 + �8 �26 = �8 + �2 �35 = �5 + �8 + �11 �44 = �2 + �11

�18 = �6 + �9 �27 = �3 + �9 �36 = 1 + �3 + �6 + �9 �45 = 1

�19 = �7 + �10 �28 = �4 + �10 �37 = �+ �4 + �7 + �10

�20 = �8 + �11 �29 = �5 + �11 �38 = �2 + �5 + �8 + �11

Here we have bn = n0 = 3 � 15 = 45: To calculate the generating polynomial g(x
2
3 ) we �rst

calculate the minimal polynomials which are :

m0
1(x

2
3 ) = (x

2
3 )12 + (x

2
3 )3 + 1;

m0
3(x

2
3 ) = (x

2
3 )4 + (x

2
3 ) + 1;

m0
5(x

2
3 ) = (x

2
3 )6 + (x

2
3 )3 + 1;

m0
7(x

2
3 ) = (x

2
3 )12 + (x

2
3 )9 + 1;

m0
9(x

2
3 ) = (x

2
3 )4 + (x

2
3 )3 + (x

2
3 )2 + (x

2
3 ) + 1;

m0
15(x

2
3 ) = (x

2
3 )2 + (x

2
3 ) + 1;

m0
21(x

2
3 ) = (x

2
3 )4 + (x

2
3 )3 + 1:

Which gives the following generating polynomials of BCH codes of length 45 with design distance
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d1 = 3; 5; 7; 9; 15; 21 and 45:

g(x
2
3 ) = 1 + (x

2
3 )3 + (x

2
3 )12; g(x

2
3 ) = (x

2
3 )16 + (x

2
3 )13 + (x

2
3 )12 + (x

2
3 )7 + (x

2
3 )3 + (x

2
3 ) + 1

g(x
2
3 ) = (x

2
3 )22 + (x

2
3 )18 + (x

2
3 )15 + (x

2
3 )12 + (x

2
3 )10 + (x

2
3 )9 + (x

2
3 )4 + (x

2
3 ) + 1

g(x
2
3 ) = (x

2
3 )34 + (x

2
3 )31 + (x

2
3 )30 + (x

2
3 )19 + (x

2
3 )16 + (x

2
3 )15 + (x

2
3 )4 + (x

2
3 ) + 1

g(x
2
3 ) = (x

2
3 )38 + (x

2
3 )37 + (x

2
3 )36 + (x

2
3 )34 + (x

2
3 )30 + (x

2
3 )23 + (x

2
3 )22 + (x

2
3 )21

+(x
2
3 )19 + (x

2
3 )15 + (x

2
3 )8 + (x

2
3 )7 + (x

2
3 )6 + (x

2
3 )4 + 1

g(x
2
3 ) = (x

2
3 )40 + (x

2
3 )38 + (x

2
3 )35 + (x

2
3 )34 + (x

2
3 )32 + (x

2
3 )31 + (x

2
3 )30 + (x

2
3 )25

+(x
2
3 )23 + (x

2
3 )20 + (x

2
3 )19 + (x

2
3 )17 + (x

2
3 )16 + (x

2
3 )15 + (x

2
3 )10 + (x

2
3 )8

+(x
2
3 )5 + (x

2
3 )4 + (x

2
3 )2 + (x

2
3 ) + 1

g(x
2
3 ) = (x

2
3 )44 + (x

2
3 )43 + (x

2
3 )42 + :::+ (x

2
3 )2 + (x

2
3 ) + 1

Which generates (45; 33); (45; 29); (45; 23); (45; 11); (45; 7); (45; 5) and (45; 1) codes and corrects

up to 1; 2; 3; 4; 7; 10 and 22 errors having code rate 0:733; 0:644; 0:511; 0:244; 0:155; 0:11;

0:022 respectively. Where the code (45; 33) is also capable of correcting any single error burst

of length 3 or less by Remark 53.

Table 7, gives a comparison between minimum distance, code rate and error correction

capability of codes C15; C45 in F2[x; 2N0], F2[x; 23N0] respectively.

Table 7: Comparison between C15 and C45
(n; k) d t R

(15; 11) 3 1 0:733

(15; 7) 5 2 0:466

(15; 5) 7 3 0:333

(15; 1) 15 7 0:066

(n; k) d0 t1 R1

(45; 33) 3 1 0:733

(45; 29) 5 2 0:644

(45; 23) 7 3 0:511

(45; 11) 9 4 0:244

(45; 7) 15 7 0:155

(45; 5) 21 10 0:11

(45; 1) 45 22 0:022
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As bn divides n0 = 2bs � 1; so (xab )bn � 1 divides (xab )n0 � 1 in F2[x; abN0]: It follows that

((x
a
b )n

0 � 1) � ((xab )bn � 1): Consequently, third isomorphism theorem for rings gives

F2[x;
a
bN0]=((x

a
b )n

0 � 1)
((x

a
b )bn � 1)=((xab )n0 � 1)

'
F2[x;

a
bN0]

((x
a
b )bn � 1)

' F2[x; aN0]
((xa)n � 1) :

Thus, there is embedding Cn ,! Cbn ,! Cn0 of codes, whereas Cn; Cbn and Cn0 are respectively

primitive BCH, non-primitive BCH and primitive BCH codes. Whereas the embedding Cn ,!

Cbn is de�ned as:

a(xa) = a0 + a1(x
a) + :::+ an�1(x

a)n�1 7! a0 + a1(x
a
b )b + :::+ an�1(x

a
b )b(n�1) = a(x

a
b ):

Where a(xa) 2 Cn and a(x
a
b ) 2 Cbn:

The above discussion shapes the following.

Theorem 55 Let Cn be a primitive binary BCH code of length n = 2s�1 generated by r degree

polynomial g(xa) in F2[x; aN0]; then:

1) There exists a bn length binary non-primitive BCH code Cbn generated by br degree

polynomial g(x
a
b ) in F2[x; abN0]; and

2) The binary primitive BCH code Cn is embedded in the binary non-primitive BCH code

Cbn:

Also we can deduce g(xa) from g(x
a
b ) by substituting xa for yb:

Example 56 Following Examples 49 and 54:

The BCH codes with designed distance d = 3 have generator polynomials g(x2) = m1(x
2) =

1+ (x2) + (x2)4 and g(x
2
3 ) = 1+ (x

2
3 )3 + (x

2
3 )12 with same error correction capability and code

rate. The only di¤erence is; the degree, data bits, code length and check sum of the code C45 is

three times that of code C15:

Whereas, on letting (x
2
3 ) = y in the generating polynomial of (45; 29) code; that is x2 = y3;
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we get

g(x
2
3 ) = (x

2
3 )16 + (x

2
3 )13 + (x

2
3 )12 + (x

2
3 )7 + (x

2
3 )3 + (x

2
3 ) + 1

g(y) = (y)16 + (y)13 + (y)12 + (y)7 + (y)3 + (y) + 1

g(y3) = (y3)16 + (y3)13 + (y3)12 + (y3)7 + (y3)3 + (y3) + 1

g(x2) = (x2)16 + (x2)13 + (x2)12 + (x2)7 + (x2)3 + (x2) + 1

= (x2)13 + (x2)12 + (x2)7 + (x2)3 + 1 2 F2[x; 2N0]15:

Where the generating polynomial (x2)4+(x2)+1 divides (x2)13+(x2)12+(x2)7+(x2)3+1:

Hence the corresponding vector is in (15; 11): So (15; 11) code is embedded in (45; 29) code.

Similarly, in Table 6, we have shown that which code in F2[x; 2N0]15 with designed distance

d is embedded in a code in F2[x; 23N0]45 with designed distance d
0.

The corresponding code vectors of the generating polynomials

g(x2) = (x2)8 + (x2)7 + (x2)6 + (x2)4 + 1 and

g(x
2
3 ) = (x

2
3 )38 + (x

2
3 )37 + (x

2
3 )36 + (x

2
3 )34 + (x

2
3 )30

+(x
2
3 )23 + (x

2
3 )22 + (x

2
3 )21 + (x

2
3 )19 + (x

2
3 )15

+(x
2
3 )8 + (x

2
3 )7 + (x

2
3 )6 + (x

2
3 )4 + 1 are

v = (100010111000000)

v0 = (100010111000000

100010111000000

100010111000000):

Clearly v is properly contain in v0; in fact it is repeating three time after a particular pattern.

Hence the generating matrix G0 of g(x
2
3 ) will contain the generating matrix G of g(x2) such

that G0 = �31G:

The next chapter is the generalization of this chapter. Therefore a generalized decoding
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procedure is given there and hence omitted in this chapter.
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Chapter 4

Family of non-primitive BCH codes

In this chapter, we have developed a relation between a primitive and a family of non-primitive

BCH codes. We show the existence of a family of non-primitive binary BCH codes fCj
bjn
g1�j�m,

where bjn is the length of the code Cj
bjn
; using an n length binary primitive BCH code Cn:

Furthermore a decoding procedure is introduced, such that a codeword in the binary BCH code

Cn can be transmitted with high code rate and decoded through codeword of any of the binary

BCH code of the family fCj
bjn
g1�j�m: Moreover it is observed that, for each 1 � j 6 m; the

binary BCH code Cj�1
bj�1n is embedded in the binary BCH C

j
bjn
.

Encoding and decoding algorithms are also introduced for a binary non-primitive BCH

code of length bjn against an n length binary primitive BCH code. The algorithms have been

simulated in Matlab. Matlab provides a built in routines for primitive BCH code, but impose

several constraints, like degree of primitive polynomial that is s should be lesser than 16. This

work focuses on non-primitive polynomials, where s changes to bs and go far more than 16. In

order to lever these conditions we have developed generic algorithm.

4.1 BCH codes as ideal in F2[x; abjN0]bjn(1�j�m)

In the previous chapter we have shown the construction of binary BCH code of length bn

in the monoid ring F2[x; abN0]bn; in this section we will show the existence of family of BCH

codes fCj
bjn
g1�j�m in the monoid ring F2[x; abjN0]bjn(1�j�m): For this we use the same technique

discussed in the last chapter. Hence we �rst investigate the values of b for which there exists a
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bjn length BCH code in F2[x; abjN0]bjn; corresponding to an n length BCH code Cn in F2[x; aN0]n:

Using the following map

p0 + p1x
a + :::+ ps (x

a)s 7! p0 + p1(x
a

bj )b
j
+ :::+ pn�1(x

a

bj )b
js;

we convert the s degree primitive polynomial p(xa) in F2[x; aN0] to a bjs degree polynomial

p(x
a

bj ) in F2[x; abjN0]: We will consider only such a primitive irreducible polynomial p(x
a) in

F2[x; aN0] for which there is an irreducible polynomial p(x
a

bj ) in F2[x; abjN0]: Following table

gives a list of few irreducible polynomials of degree bjs in F2[x; abjN0] corresponding to primitive

polynomial of degree s in F2[x; aN0]. For p(xa) 2 F2[x; aN0]; p(x
a
b ) 2 F2[x; abN0]; p(x

a
b2 ) 2

F2[x; abN0]; replace x
a; x

a
b ; x

a
b2 by x; y; z respectively.

Table 8 : Irreducible polynomials corresponding to primitive polynomials

deg p(x) p(y) p(z):::

3 1 + x+ x3 1 + y7 + y21 1 + z49 + z147

4 1 + x+ x4
1 + y3 + y12;

1 + y5 + y20

1 + z9 + z36;

1 + z25 + z100

6 1 + x+ x6
1 + y3 + y18

1 + y7 + y42

1 + z9 + z54

1 + z49 + z294

8
1 + x+ x3

+x5 + x8

1 + y3 + y9

+y15 + y24;

1 + y5 + y15

+y25 + y40

1 + z9 + z27

+z45 + z72;

1 + z25 + z75

+z125 + z200

9 1 + x4 + x9 1 + y28 + y63 1 + z196 + z441

10 1 + x3 + x10 1 + y9 + y30

...
...

...
...

By Table 9 we deduce the following Theorem.

Theorem 57 Let p(xa) 2 F2[x; aN0] be a primitive irreducible polynomial of degree s 2 f2l; 3l; 4l; 6lg;

where l 2 Z+: Then the corresponding bjs degree generalized polynomial p(x
a

bj ) 2 F2[x; abjN0] is
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non-primitive irreducible for b 2 f3; 7; f3; 5g; f3; 7gg respectively.

Proof is same as that of Theorem 50.

The existence of non-primitive BCH code of length bjn is shown in the following Theorem.

Theorem 58 Let n = 2s� 1 be the length of primitive BCH code Cn; where p(xa) 2 F2[x; aN0]

is a primitive irreducible polynomial of degree s such that p(x
a

bj ) 2 F2[x; abjN0] is non-primitive

irreducible polynomial of degree bjs:

1) Then for positive integers cj ; dj ; bjn such that 2 � dj � bjn and bjn is relatively prime

to 2; there exist a non-primitive binary BCH code Cbjn of length bjn; where bjn is order of an

element � 2 F
2b
js.

2) The non-primitive BCH code Cbjn of length bjn is de�ned as

Cbjn = fv(x
a

bj ) 2 F2[x;
a

bj
N0]bjn : v(�i) = 0 for all i = cj ; cj + 1; :::; cj + dj � 2

Equivalently, Cbjn is the null space of the matrix

H =

26666664
1 �cj �2cj ::: �(b

jn�1)cj

1 �cj+1 �2(cj+1) ::: �(b
jn�1)(cj+1)

...
...

...
. . .

...

1 �cj+dj�2 �2(cj+dj�2) ::: �(b
jn�1)(cj+dj�2)

37777775
Proof. 1) Since bjs degree polynomial p(x

a

bj ) 2 F2[x; abjN0] is irreducible but not primitive,

so there does not exist nj = 2b
js�1 length primitive BCH code. However, there is an element �

of order bjn vanishes p(x
a

bj ): Now, since 2s�1 j 2bjs�1 then bj(2s�1) also divide 2bjs�1: Hence

�b
jn = �nj = 1; implies � 2 F

2b
js : Let m0

i(x
a

bj ) 2 F2[x; abjZ0] denotes the minimal polynomial

of �i and g(x
a

bj ) be the lcm of distinct polynomials among m0
i(x

a

bj ); i = cj ; cj+1; :::; cj+dj�2;

that is,

g(x
a

bj ) = lcmfm0
i(x

a

bj ) : i = cj ; cj + 1; :::; cj + dj � 2g

Asm0
i(x

a

bj ) divides (x
a

bj )b
jn�1 for each i; therefore g(x

a

bj ) also divides (x
a

bj )b
jn�1: This implies

that Cbjn is a principal ideal generated by g(x
a

bj ) in the factor ring F2[x; abjN0]bjn: Hence Cbjn
is a non-primitive BCH code of length bjn over F2 with designed distance dj :
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2) Let v(x
a

bj ) 2 Cbjn; then

v(x
a

bj ) = g(x
a

bj )q(x
a

bj )

for some q(x
a

bj ) 2 F2[x; abjN0]; where g(x
a

bj ) is the generator polynomial of Cbjn: Hence v(�i) = 0

for all i = cj ; cj +1; :::cj +dj � 2: Conversely, let v(x
a

bj ) 2 F2[x; abjN0]bjn such that v(�
i) = 0 for

all i = cj ; cj +1; :::; cj + dj � 2: Then mi(x
a

bj ) divides v(x
a

bj ) for all i = cj ; cj +1; :::; cj + dj � 2:

Hence g(x
a

bj ) divides v(x
a

bj ), so v(x
a

bj ) 2 Cbjn:

For second part, let

v(x
a

bj ) = v0 + v1(x
a

bj ) + :::+ vbjn�1(x
a

bj )b
jn�1 2 F2[x;

a

bj
N0]bjn:

Then v(�i) = 0 for all i = cj ; cj + 1; :::; cj + dj � 2 if and only if HvT = 0, where

v = (v0; v1; :::; vbjn�1) 2 Fb
jn
2 :

This proves that Cbjn is the null space of H:

Following are the examples of the construction of family of non-primitive BCH code.

Example 59 For a primitive polynomial p(x2) = 1 + (x2) + (x2)3 in F2[x; 2N0] there is a

non-primitive irreducible polynomial p(x
2
7 ) = (x

2
7 )21 + (x

2
7 )7 + 1 in F2[x; 27N0] by Table 8. Let
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� 2 F221 ; satis�es the relation �21+�7+1 = 0: Using this relation we have the following table.

Table 9: Distinct powers of � in GF (221)

�21 = �7 + 1 �31 = �17 + �10 �41 = �20 + �13 + �6

�22 = �8 + � �32 = �18 + �11 �42 = �14 + 1

�23 = �9 + �2 �33 = �19 + �12 �43 = �15 + �

�24 = �10 + �3 �34 = �20 + �13 �44 = �16 + �2

�25 = �11 + �4 �35 = �14 + �7 + 1 �45 = �17 + �3

�26 = �12 + �5 �36 = �15 + �8 + � �46 = �18 + �4

�27 = �13 + �6 �37 = �16 + �9 + �2 �47 = �19 + �5

�28 = �14 + �7 �38 = �17 + �10 + �3 �48 = �20 + �6

�29 = �15 + �8 �39 = �18 + �11 + �4 �49 = 1

�30 = �16 + �9 �40 = �19 + �12 + �5

Hence length of the code is bn = n0 = 7�7 = 49: Now, to calculate generating polynomial g(x 27 )

we �rst calculate the minimal polynomials. By [27, Theorem 4.4.2], �; �2; �4; �8; �16; �32;

�15; �30; �11; �22; �44; �39; �29; �9; �18; �36; �23; �46; �43; �37; �25 all have same minimal

polynomial m0
1(x

2
7 ) = p(x

2
7 ): The set of powers of these � collectively form a set which is called

a set of cyclotomic cosets. Let m0
3(x

2
7 ) be the minimal polynomial for �3; then �3; �6; �12; �24;

�48; �47; �45; �41; �33; �17; �34; �19; �38; �27; �5; �10; �20; �40; �31; �13; �26 all are roots for

m0
3(x

2
7 ): Therefore by using Table 9 we have m0

3(x
2
7 ) = (x

2
7 )21 + (x

2
7 )14 + 1: Similarly we get,

m0
7(x

2
7 ) = (x

2
7 )3 + (x

2
7 ) + 1 and m0

21(x
2
7 ) = (x

2
7 )3 + (x

2
7 )2 + 1:

Which gives the following generating polynomials of BCH code with design distance d0 = 3; 7; 21
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and 49:

g(x
2
7 ) = (x

2
7 )21 + (x

2
7 )7 + 1

g(x
2
7 ) = (x

2
7 )42 + (x

2
7 )35 + (x

2
7 )28 + (x

2
7 )21 + (x

2
7 )14 + (x

2
7 )7 + 1

g(x
2
7 ) = (x

2
7 )45 + (x

2
7 )43 + (x

2
7 )42 + (x

2
7 )38 + (x

2
7 )36 + (x

2
7 )35 +

(x
2
7 )31 + (x

2
7 )29 + (x

2
7 )28 + (x

2
7 )24 + (x

2
7 )22 + (x

2
7 )21 +

(x
2
7 )17 + (x

2
7 )15 + (x

2
7 )14 + (x

2
7 )10 + (x

2
7 )8 + (x

2
7 )7 +

(x
2
7 )3 + (x

2
7 ) + 1

g(x
2
7 ) = (x

2
7 )48 + (x

2
7 )47 + (x

2
7 )46 + :::+ (x

2
7 )2 + (x

2
7 ) + 1

Which generates (49; 28); (49; 7); (49; 4) and (49; 1) codes which corrects up to 1; 3; 10 and 24

errors having code rate 0:571; 0:143; 0:081 and 0:020 respectively. Following tables give compar-

ison between minimum distances, code rate and error correction capability of codes constructed

through F2[x; 2N0]; F2[x; 27N0]; F2[x;
2
72
N0] of length 7; 49 and 343 respectively.

Table 10: Comparison between C7; C49 and C343

(n; k) d t R

(7; 4) 3 1 0:571

(7; 1) 5 2 0:143

(3n; k1) d1 t1 R1

(49; 28) 3 1 0:571

(49; 7) 7 3 0:143

(49; 4) 21 10 0:081

(49; 1) 49 24 0:021

(32n; k2) d2 t2 R2

(343; 196) 3 1 0:571

(343; 49) 7 3 0:143

(343; 28) 21 10 0:081

(343; 7) 49 24 0:021

(343; 4) 147 73 0:012

(343; 1) 343 171 0:002

Example 60 For a primitive polynomial p(x2) = 1 + (x2) + (x2)4 in F2[x; 2Z0]; we have non-

primitive irreducible polynomials p(x
2
3 ) = 1 + (x

2
3 )3 + (x

2
3 )12 in F2[x; 23Z0] and p(x

2
32 ) = 1 +

(x
2
9 )9 + (x

2
9 )36 in F2[x; 232Z0] (see Table 8), through which we get non-primitive BCH codes of

length 45 and 135: Let � 2 GF (236); satis�es the relation �36 + �9 + 1 = 0: Using this relation
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we obtain the distinct powers of � in GF (236)

Table 11:Distinct powers of � in GF (236)

�36 = 1 + �9 �52 = �16 + �25 �68 = �5 + �14 + �32 �84 = �12 + �30

�37 = �+ �10 �53 = �17 + �26 �69 = �6 + �15 + �33 �85 = �13 + �31

�38 = �2 + �11 �54 = �18 + �27 �70 = �7 + �16 + �34 �86 = �14 + �32

�39 = �3 + �12 �55 = �19 + �28 �71 = �8 + �17 + �35 �87 = �15 + �33

�40 = �4 + �13 �56 = �20 + �29 �72 = 1 + �18 �88 = �16 + �34

�41 = �5 + �14 �57 = �21 + �30 �73 = �+ �19 �89 = �17 + �35

�42 = �6 + �15 �58 = �22 + �31 �74 = �2 + �20 �90 = 1 + �9 + �18

�43 = �7 + �16 �59 = �23 + �32 �75 = �3 + �21 �91 = �+ �10 + �19

�44 = �8 + �17 �60 = �24 + �33 �76 = �4 + �22 �92 = �2 + �11 + �20

�45 = �9 + �18 �61 = �25 + �34 �77 = �5 + �23 �93 = �3 + �12 + �21

�46 = �10 + �19 �62 = �26 + �35 �78 = �6 + �24 �94 = �4 + �13 + �22

�47 = �11 + �20 �63 = 1 + �9 + �27 �79 = �7 + �25 �95 = �5 + �14 + �23

�48 = �12 + �21 �64 = �+ �10 + �28 �80 = �8 + �26 �96 = �6 + �15 + �24

�49 = �13 + �22 �65 = �2 + �11 + �29 �81 = �9 + �27 �97 = �7 + �16 + �25

�50 = �14 + �23 �66 = �3 + �12 + �30 �82 = �10 + �28 �98 = �8 + �17 + �26

�51 = �15 + �24 �67 = �4 + �13 + �31 �83 = �11 + �29 �99 = �9 + �18 + �27
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�100 = �10 + �19 + �28 �112 = �4 + �13 + �22 + �31 �124 = �7 + �25 + �34

�101 = �11 + �20 + �29 �113 = �5 + �14 + �23 + �32 �125 = �8 + �26 + �35

�102 = �12 + �21 + �30 �114 = �6 + �15 + �24 + �33 �126 = 1 + �27

�103 = �13 + �22 + �31 �115 = �7 + �16 + �25 + �34 �127 = �+ �28

�104 = �14 + �23 + �32 �116 = �8 + �17 + �26 + �35 �128 = �2 + �29

�105 = �15 + �24 + �33 �117 = 1 + �18 + �27 �129 = �3 + �30

�106 = �16 + �25 + �34 �118 = �+ �19 + �28 �130 = �4 + �31

�107 = �17 + �26 + �35 �119 = �2 + �20 + �29 �131 = �5 + �32

�108 = 1 + �9 + �18 + �27 �120 = �3 + �21 + �30 �132 = �6 + �33

�109 = �+ �10 + �19 + �28 �121 = �4 + �22 + �31 �133 = �7 + �34

�110 = �2 + �11 + �20 + �29 �122 = �5 + �23 + �32 �134 = �8 + �35

�111 = �3 + �12 + �21 + �30 �123 = �6 + �24 + �33 �135 = 1

Now, we calculate minimal polynomials to �nd the generating polynomial g(x
2
9 ). By [27,

Theorem 4.4.2],

�; �2; �4; �8; �16; �32; �64; �128; �121; �107; �79; �23; �46; �92; �49; �98; �61; �122;

�109; �83; �31; �62; �124; �113; �91; �47; �94; �53; �106; �77; �19; �38; �76; �17; �34; �68

all have same minimal polynomial m0
1(x

2
9 ) = p(x

2
9 ) = 1+(x

2
9 )9+(x

2
9 )36: Let m0

3(x
2
9 ) be the

minimal polynomial for �3; then �3; �6; �12; �24; �48; �96; �57; �114; �93; �51; �102; �69 all
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are roots for m0
3(x

2
9 ): Therefore we get m0

3(x
2
9 ) = (x

2
9 )12 + (x

2
9 )3 + 1: Similarly we obtain

m0
5(x

2
9 ) = (x

2
9 )18 + (x

2
9 )9 + 1

m0
7(x

2
9 ) = (x

2
9 )36 + (x

2
9 )27 + 1

m0
9(x

2
9 ) = (x

2
9 )4 + (x

2
9 ) + 1

m0
15(x

2
9 ) = (x

2
9 )6 + (x

2
9 )3 + 1

m0
21(x

2
9 ) = (x

2
9 )12 + (x

2
9 )9 + 1

m0
27(x

2
9 ) = (x

2
9 )4 + (x

2
9 )3 + (x

2
9 )2 + (x

2
9 ) + 1

m0
45(x

2
9 ) = (x

2
9 )2 + (x

2
9 ) + 1

m0
63(x

2
9 ) = (x

2
9 )4 + (x

2
9 )3 + 1:

The BCH code with d2 = 3 has generator polynomial

g(x
2
9 ) = 1 + (x

2
9 )9 + (x

2
9 )36:

It has minimum distance 3 and corrects up to 1 error. Since the generator polynomial is of

degree 36, its code rate is 99
135 = 0:733: The BCH code with d2 = 5 has generator polynomial

g(x
2
9 ) = (x

2
9 )48 + (x

2
9 )39 + (x

2
9 )36 + (x

2
9 )21 + (x

2
9 )9 + (x

2
9 )3 + 1:

It corrects up to 2 errors with 87
135 = 0:644 code rate.

The BCH code with d2 = 7 has generator polynomial

g(x
2
9 ) = (x

2
9 )66 + (x

2
9 )54 + (x

2
9 )45 + (x

2
9 )36 + (x

2
9 )30 + (x

2
9 )27

+(x
2
9 )12 + (x

2
9 )3 + 1:

It corrects up to 3 errors and has code rate R2 = 69
135 = 0:5111. The BCH code with d2 = 9 has

71



generator polynomial

g(x
2
9 ) = (x

2
9 )102 + (x

2
9 )93 + (x

2
9 )90 + (x

2
9 )57 + (x

2
9 )48 + (x

2
9 )45 +

(x
2
9 )12 + (x

2
9 )3 + 1:

It corrects up to 4 errors and has code rate R2 = 33
135 = 0:244:

Similarly, BCH codes with d2 = 11; 17; 23; 29; 47 and 65 has generator polynomials

g(x
2
9 ) = (x

2
9 )106 + (x

2
9 )103 + (x

2
9 )102 + (x

2
9 )97 + (x

2
9 )93 + (x

2
9 )91

+(x
2
9 )90 + (x

2
9 )61 + (x

2
9 )58 + (x

2
9 )57 + (x

2
9 )52 + (x

2
9 )48

+(x
2
9 )46 + (x

2
9 )45 + (x

2
9 )16 + (x

2
9 )13 + (x

2
9 )12 + (x

2
9 )7

+(x
2
9 )3 + (x

2
9 ) + 1

g(x
2
9 ) = (x

2
9 )112 + (x

2
9 )108 + (x

2
9 )105 + (x

2
9 )102 + (x

2
9 )100 + (x

2
9 )99

+(x
2
9 )94 + (x

2
9 )91 + (x

2
9 )90 + (x

2
9 )67 + (x

2
9 )63 + (x

2
9 )60

+(x
2
9 )57 + (x

2
9 )55 + (x

2
9 )54 + (x

2
9 )49 + (x

2
9 )46 + (x

2
9 )45

+(x
2
9 )22 + (x

2
9 )18 + (x

2
9 )15 + (x

2
9 )12 + (x

2
9 )10 + (x

2
9 )9

+(x
2
9 )4 + (x

2
9 ) + 1

g(x
2
9 ) = (x

2
9 )124 + (x

2
9 )121 + (x

2
9 )120 + (x

2
9 )109 + (x

2
9 )106 + (x

2
9 )105

+(x
2
9 )94 + (x

2
9 )91 + (x

2
9 )90 + (x

2
9 )79 + (x

2
9 )76 + (x

2
9 )75

+(x
2
9 )64 + (x

2
9 )61 + (x

2
9 )60 + (x

2
9 )49 + (x

2
9 )46 + (x

2
9 )45

+(x
2
9 )34 + (x

2
9 )31 + (x

2
9 )30 + (x

2
9 )19 + (x

2
9 )16 + (x

2
9 )15

+(x
2
9 )4 + (x

2
9 ) + 1
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g(x
2
9 ) = (x

2
9 )128 + (x

2
9 )127 + (x

2
9 )126 + (x

2
9 )124 + (x

2
9 )120 + (x

2
9 )113

+(x
2
9 )112 + (x

2
9 )111 + (x

2
9 )109 + (x

2
9 )105 + (x

2
9 )98 + (x

2
9 )97

+(x
2
9 )96 + (x

2
9 )94 + (x

2
9 )90 + (x

2
9 )83 + (x

2
9 )82 + (x

2
9 )81

+(x
2
9 )79 + (x

2
9 )75 + (x

2
9 )68 + (x

2
9 )67 + (x

2
9 )66 + (x

2
9 )64

+(x
2
9 )60 + (x

2
9 )53 + (x

2
9 )52 + (x

2
9 )51 + (x

2
9 )49 + (x

2
9 )45

+(x
2
9 )38 + (x

2
9 )37 + (x

2
9 )36 + (x

2
9 )34 + (x

2
9 )30 + (x

2
9 )23

+(x
2
9 )22 + (x

2
9 )21 + (x

2
9 )19 + (x

2
9 )15 + (x

2
9 )8 + (x

2
9 )7

+(x
2
9 )6 + (x

2
9 )4 + 1

g(x
2
9 ) = (x

2
9 )130 + (x

2
9 )128 + (x

2
9 )125 + (x

2
9 )124 + (x

2
9 )122 + (x

2
9 )121

+(x
2
9 )120 + (x

2
9 )115 + (x

2
9 )113 + (x

2
9 )110 + (x

2
9 )109 + (x

2
9 )107

+(x
2
9 )106 + (x

2
9 )105 + (x

2
9 )100 + (x

2
9 )98 + (x

2
9 )95 + (x

2
9 )94

+(x
2
9 )92 + (x

2
9 )91 + (x

2
9 )90 + (x

2
9 )85 + (x

2
9 )83 + (x

2
9 )80 + (x

2
9 )79

+(x
2
9 )77 + (x

2
9 )76 + (x

2
9 )75 + (x

2
9 )70 + (x

2
9 )68 + (x

2
9 )65 + (x

2
9 )64

+(x
2
9 )62 + (x

2
9 )61 + (x

2
9 )60 + (x

2
9 )55 + (x

2
9 )53 + (x

2
9 )50

+(x
2
9 )49 + (x

2
9 )47 + (x

2
9 )46 + (x

2
9 )45 + (x

2
9 )40 + (x

2
9 )38

+(x
2
9 )35 + (x

2
9 )34 + (x

2
9 )32 + (x

2
9 )31 + (x

2
9 )30 + (x

2
9 )25

+(x
2
9 )23 + (x

2
9 )20 + (x

2
9 )19 + (x

2
9 )17 + (x

2
9 )16 + (x

2
9 )15

+(x
2
9 )10 + (x

2
9 )8 + (x

2
9 )5 + (x

2
9 )4 + (x

2
9 )2 + (x

2
9 ) + 1 and

g(x
2
9 ) = (x

2
9 )134 + (x

2
9 )133 + :::+ (x

2
9 )2 + (x

2
9 ) + 1:

They corrects upto 7; 10; 13; 22; 31 and 67 errors with code rates 0:215; 0:170; 0:0814; 0:0518;

0:0370 and 0:007 respectively.
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Following are the tables of primitive and non-primitive BCH codes of length 15; 45 and 135:

Table 12: BCH codes of length 15; 45and 135

(n; k) d t R

(15; 11) 3 1 0:733

(15; 7) 5 2 0:466

(15; 5) 7 3 0:333

(15; 1) 15 7 0:066

(n; k) d1 t1 R1

(45; 33) 3 1 0:733

(45; 29) 5 2 0:644

(45; 23) 7 3 0:511

(45; 11) 9 4 0:244

(45; 7) 15 7 0:155

(45; 5) 21 10 0:11

(45; 1) 45 22 0:022

(n; k) d2 t2 R2

(135; 99) 3 1 0:733

(135; 87) 5 2 0:644

(135; 69) 7 3 0:511

(135; 33) 9 4 0:244

(135; 29) 15 7 0:215

(135; 23) 21 10 0:170

(135; 11) 27 13 0:0814

(135; 7) 45 22 0:0518

(135; 5) 63 31 0:0370

(135; 1) 135 67 0:007

From example 59, it is clear that the code generated through F2[x; abjN0] corrects more errors

and has better code rate than the code generated through F2[x; aN0].

4.2 Link between primitive and a family of non-primitive BCH

codes

Now we are in position to develop a link between a primitive (n; n � r) binary BCH code Cn
and a non-primitive (bjn; bjn� rj) binary BCH code Cbjn; where r and rj are respectively the

degrees of their generating polynomials g(xa) and g(x
a

bj ). From Theorem 52(1), it follows that

the generalized polynomial g(x
a

bj ) 2 F2[x; abjN0] divides (x
a
bm )b

jn�1 in F2[x; abjN0]. So, there is

a non-primitive BCH code Cbjn generated by g(x
a

bj ) in F2[x; abjN0]bjn. By the same argument,

as bjn divides nj = 2b
js � 1; so (x

a

bj )b
jn � 1 divides (x

a

bj )nj � 1 in F2[x; abjN0]: It follows that

((x
a

bj )nj � 1) � ((x
a

bj )b
jn � 1): Consequently, third isomorphism theorem for rings gives

F2[x; abjN0]=((x
a

bj )nj � 1)
((x

a

bj )bjn � 1)=((x
a

bj )nj � 1)
'

F2[x; abjN0]

((x
a

bj )bjn � 1)
' F2[x; aN0]
((xa)n � 1)
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Thus there are embeddings Cn ,! Cbjn ,! Cnj of codes, whereas Cn; Cbjn; Cnj are respectively

primitive BCH, non-primitive BCH and primitive BCH codes. Whereas the embeddings Cn ,!

Cbjn are de�ned as:

a(xa) = a0 + a1(x
a) + :::+ an�1(x

a)n�1 7! a0 + a1(x
a

bj )b
j
+ :::+ an�1(x

a

bj )b
j(n�1) = a(x

a

bj );

where a(xa) 2 Cn and a(x
a

bj ) 2 Cbjn:

Also, if g(x
a

bj�1 ) is the generator polynomial of the binary non-primitive BCH code Cj�1
bj�1n

in F2[x; a
bj�1Z�0]bj�1n, then g(x

a

bj ) is the generator polynomial of the binary non-primitive

BCH code Cj
bjn

in the monoid ring F2[x; abjZ�0]bjn. Thus the non-primitive BCH code Cj�1
bj�1n

is embedded in non-primitive BCH code Cj
bjn

under the monomorphism de�ned as; a(x
a

bj�1 ) 7!

a(x
a

bj ).

The above discussion shape the following.

Theorem 61 Let Cn be a primitive binary BCH code of length n = 2s�1 generated by r degree

polynomial g(xa) in F2[x; aN0]: Then

1) there exist a bjn length binary non-primitive BCH code Cbjn generated by bjr degree

polynomial g(x
a

bj ) in F2[x; abjN0];

2) the binary primitive BCH code Cn is embedded in the binary non-primitive BCH code

Cbjn; for each j � 1,

3) the binary BCH codes of the sequence fCj
bjn
gj�1 have the following embedding C1bn ,!

� � � ,! Cj
bjn
,! � � � .

Hence we have the following relationships

F2[x; aN0] � F2[x; abN0] � F2[x; ab2N0] � ::: F2[x; abjN0]
F2[x;aN0]
((xa)n�1) w F2[x;abN0]

(
�
x
a
b

�bn
�1)

w F2[x; a
b2
N0]

(

�
x
a
b2

�b2n
�1)

w :::
F2[x; a

b2
N0]

(

�
x
a
bj

�bjn
�1)

[ [ [ ::: [

Cn ,! C1bn ,! C2b2n ,! ::: Cj
bjn

:

Remark 62 g(x
a
b ) can be deduced from g(x

a

bj ) by substituting x
a

bj = y and then replacing y by

yb
j�1 = x

a
b :
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Example 63 In Example 59, on letting (x
2
9 ) = y; that is x

2
3 = y3; we get

g(x
2
9 ) = (x

2
9 )106 + (x

2
9 )103 + (x

2
9 )102 + (x

2
9 )97 + (x

2
9 )93 + (x

2
9 )91 + (x

2
9 )90 +

(x
2
9 )61 + (x

2
9 )58 + (x

2
9 )57 + (x

2
9 )52 + (x

2
9 )48 + (x

2
9 )46 + (x

2
9 )45 +

(x
2
9 )16 + (x

2
9 )13 + (x

2
9 )12 + (x

2
9 )7 + (x

2
9 )3 + (x

2
9 ) + 1

g(y3) = (y3)106 + (y3)103 + (y3)102 + (y3)97 + (y3)93 + (y3)91 + (y3)90 +

(y3)61 + (y3)58 + (y3)57 + (y3)52 + (y3)48 + (y3)46 + (y3)45

+(y3)16 + (y3)13 + (y3)12 + (y3)7 + (y3)3 + (y3) + 1

g(x
2
3 ) = (x

2
3 )106 + (x

2
3 )103 + (x

2
3 )102 + (x

2
3 )97 + (x

2
3 )93 + (x

2
3 )91 + (x

2
3 )90

+(x
2
3 )61 + (x

2
3 )58 + (x

2
3 )57 + (x

2
3 )52 + (x

2
3 )48 + (x

2
3 )46 + (x

2
3 )45

+(x
2
3 )16 + (x

2
3 )13 + (x

2
3 )12

+(x
2
3 )7 + (x

2
3 )3 + (x

2
3 ) + 1

= (x
2
3 )16 + (x

2
3 )13 + (x

2
3 )12 + (x

2
3 )7 + (x

2
3 )3 + (x

2
3 ) + 1 2 F2[x;

2

3
N0]45

Similarly, for

g(x
2
9 ) = (x

2
9 )112 + (x

2
9 )108 + (x

2
9 )105 + (x

2
9 )102 + (x

2
9 )100 + (x

2
9 )99 + (x

2
9 )94 +

(x
2
9 )91 + (x

2
9 )90 + (x

2
9 )67 + (x

2
9 )63 + (x

2
9 )60 + (x

2
9 )57 + (x

2
9 )55 +

(x
2
9 )54 + (x

2
9 )49 + (x

2
9 )46 + (x

2
9 )45 + (x

2
9 )22 + (x

2
9 )18 + (x

2
9 )15 +

(x
2
9 )12 + (x

2
9 )10 + (x

2
9 )9 + (x

2
9 )4 + (x

2
9 ) + 1

we have

g(x
2
3 ) = (x

2
3 )22 + (x

2
3 )18 + (x

2
3 )15 + (x

2
3 )12 + (x

2
3 )10 + (x

2
3 )9 + (x

2
3 )4 + (x

2
3 ) + 1;

which is the generating polynomial of BCH code (45; 23) having design distance d2 = 6; 7:

In this way we can obtain the non-primitive binary BCH code C45 from non-primitive binary

BCH code C135:

From Examples 59 and 60 we deduce the following lemma that explains the relationship
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between designed distances and the minimal polynomials of the narrow sense BCH codes

Cn; Cbn; Cb2n; :::Cbjn; :::.

Lemma 64 The exponents of the minimal polynomials m0
i(x

a); (m0
b)i(x

a
b ), (m0

b2)i(x
a
b2 ); :::;

(m0
bj
)i(x

a

bj ) of the codes Cn; Cbn; Cb2n; ::: Cbjn; ::: are same, where i = 1; 3; :::; d0 � 1. The

exponents of rest of the minimal polynomials of the code Cbmn are b times exponents of the

remaining minimal polynomials of the code Cbj�1n; whose exponents are bj�1 times exponents

of m0
i(x

a); with the same number of non-zero terms.

From example 59 and Lemma 64 we record the following observations.

Remark 65 Let v0;v1;v2; :::;vj be the code vectors corresponding to the generator polynomials

g(xa); g(x
a
b ); g(x

a
b2 ); :::; g(x

a

bj ); Then for design distance dj = 8; the code vector vj contains the

code vector v2 which repeats b times after a particular interval having design distance dj�1 = 2:

Hence the corresponding generator matrices Gj�1 and Gj have relation Gj ' �b1Gj�1: For

design distance dj > 8; we get the same relation of the generating matrices. If dj�1 > 8;

then its code vector vj�1 will contain the code vector vj�2 which also repeats b times after a

�x interval. Hence vj�2 repeats b2 times after a �x interval in the code vector vj. Therefore,

we get the following relationship of the generating matrices Gj�1 ' �b1Gj�2 which gives Gj '

�b21 Gj�1 ' �b
j

1 G0:

Example 66 On writing the corresponding code vectors of the generating polynomials

g(x
2
3 ) = (x

2
3 )16 + (x

2
3 )13 + (x

2
3 )12 + (x

2
3 )7 + (x

2
3 )3 + (x

2
3 ) + 1 and

g(x
2
9 ) = (x

2
9 )106 + (x

2
9 )103 + (x

2
9 )102 + (x

2
9 )97 + (x

2
9 )93 + (x

2
9 )91 + (x

2
9 )90 +

(x
2
9 )61 + (x

2
9 )58 + (x

2
9 )57 + (x

2
9 )52 + (x

2
9 )48 + (x

2
9 )46 + (x

2
9 )45 + (x

2
9 )16 +

(x
2
9 )13 + (x

2
9 )12 + (x

2
9 )7 + (x

2
9 )3 + (x

2
9 ) + 1

we get

v1 = (11010001000011001)

v2 = (11010001000011001000000000000000000000000000011010001

000011001000000000000000000000000000011010001000011001):
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Clearly the binary bits of v1 are properly overlapped on the bits of v2; in fact it is repeating

three time after a particular pattern. Hence the generating matrix G2 of g(x
2
9 ) will contain the

generating matrix G1 of g(x
2
3 ) such that G2 = �31G1.

4.2.1 General Decoding Principle

The binary BCH code Cn is embedded in the binary non-primitive BCH code Cbjn for any

positive integer 1 � j � m: So description of the decoding procedure of the code Cbjn for any

�xed positive integer 1 � j � m is given. We use the decoding procedure which follows the

same principle as of the primitive binary BCH code.

Take aj 2 F bjn2 as a received vector. We obtain the syndrome matrix of aj ; S(aj) = ajHT .

In this way, we calculate a table of syndromes which is useful in determining the error vector

e such that S(aj) = S(e). So the decoding of received vector aj has done as the transmitted

vector vj = aj � e. We adopt the algebraic method for �nding e from the syndrome vector

S(aj):

Let Cbjn be the binary non-primitive BCH code with length b
jn and designed distance dj .

Let H be the (dj � 1) � bjn matrix over F
2b
js : The syndrome of aj 2 F b

jn
2 as S(aj) = ajHT :

The polynomial form of aj = (aj0; a
j
1; :::; a

j
bjn�1) is a

j(x
a

bj ) = aj0 + a
j
1(x

a
b ) + aj2(x

a
b )2 + ::: +

ajbn�1(x
a

bj )b
jn�1: So

S(aj) = [ aj0 aj1 ::: aj
bjn�1 ]

26666666664

1 1 ::: 1

�c
j

�c
j+1 ::: �c

j+dj�2

�2c
j

�2(c
j+1) ::: �2(c

j+dj�2)

...
...

. . .
...

�(b
jn�1)cj �(b

jn�1)(cj+1) ::: �(b
jn�1)(cj+dj�2)

37777777775
(4.1)

S(aj) = [ Scj Scj+1 ::: Scj+dj�2 ];

where Sk = a
j
0 + a

j
1�
k + :::aj

bjn�1�
(bjn�1)k = aj(�k) for k = cj ; cj + 1; :::; cj + dj � 2:

Now, let a codeword v 2 Cbjn is transmitted and the vector received is aj = vj+e; where e is

the error vector. Then S(e) = S(aj): Let e(x
a

bj ) = e0+e1(x
a

bj )+e2(x
a

bj )2+:::+ebjn�1(x
a

bj )b
jn�1
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be the error polynomial. Suppose i1; :::; il be the positions where an error has occurred. Then

ei 6= 0 if and only if i 2 I = fi1; :::; ilg: Hence e(x
a

bj ) =
P
i2I ei(x

a

bj )i: Since the code corrects

upto t errors, where t =
j
dj�1
2

k
: So we assume l � t; that is 2l < dj : Since S(e) = S(aj); we

have e(�k) = Sk for k = cj ; cj + 1; :::; cj + dj � 2: Thus the 2l unknowns i1; :::; il and ei1 ; :::; eil
satisfy the following system of dj � 1 linear equations in ei1 ; :::; eil :

P
i=I

ei�
ji = Sj ; j = c

j ; cj + 1; :::; cj + dj � 2: ((i))

We �rst obtain a solution for the error positions i1; :::; il: We de�ne the error locator poly-

nomial f(x
a

bj ) = f0 + f1(x
a

bj ) + f2(x
a

bj )2 + :::+ fl�1(x
a

bj )l�1 + (x
a

bj )l: Since f(�i) = 0 for each

i = I; we have

f0 + f1(�
i) + :::fl�1(�

i)l�1 + (�i)l = 0: (4.2)

On multiplying this equation by ei�ki; we get

f0ei�
ki + f1ei�

(k+1)i + :::fk�1ei�
(k+j�1)i + ei�

(k+j)i = 0; (4.3)

for each i 2 I: Summing these l equations for i = i1; :::; il and using the relations (i); we

have

f0Sk + f1Sk+1 + :::fl�1Sk+l�1 + Sk+l = 0; (4.4)

for each j = cj ; cj +1; :::; cj + l� 1: Thus the l unknowns f0; f1; :::; fl�1 satisfy the following

l � l system of linear equations:

26666664
Scj Scj+1 ::: Scj+l�1

Scj+1 Scj+2 ::: Scj+l
...

...
. . .

...

Scj+l�1 Scj+l ::: Scj+2l�2

37777775

26666664
f0

f1
...

fl�1

37777775 =
26666664

Scj+l

Scj+l+1
...

Scj+2l�1

37777775 : ((ii))

Let S denotes the coe¢ cient matrix in the above linear system. It can be veri�ed by direct

computation that S = V DV T ; where
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V =

26666664
1 1 ::: 1

�i1 �i2 ::: �il

...
...

. . .
...

�i1(l�1) �i2(l�1) ::: �il(l�1)

37777775 ; D =

26666664
ei1�

i1c 0 ::: 0

0 ei2�
i2c ::: 0

...
...

. . .
...

0 0 ::: eil�
ilc

37777775 :

The matrix V is a Vandermonde matrix. Since � is a non-primitive bjnth root of unity

in F
2b
js and i1; :::il are distinct integers in f0; :::; bjn � 1g; we have �i1 ; :::; �ij are all distinct.

Hence detV 6= 0: Further, ei1 ; :::; eij are all nonzero and hence detD 6= 0: Therefore detS 6= 0;

and linear system (ii) has a unique solution.

We have assumed that the number of positions where an error has occurred is z � t: If the

actual number of error positions is less than z; then for any choice of distinct positions i1; :::iz;

the coe¢ cients ei1 ; :::; eiz cannot be all zero. So detD = 0: Hence z is the greatest positive

integer � t such that system (ii) has a unique solution. Therefore we �nd the value of z by

taking successively z = t; t�1; ::: in system (ii) until we have a value for which system (ii) has a

unique solution, which gives us the error locator polynomial f(x
a

bj ) = f0+f1(x
a

bj )+f2(x
a

bj )2+

::: + fz�1(x
a

bj )z�1 + (x
a

bj )z: Now to �nd the roots of f(x
a

bj ); we put x
a

bj = �i; i = 0; 1; :::: By

the de�nition of f(x
a

bj ); these roots are �i1 ; :::; �iz : Thus we �nd the unique solution for the

unknowns i1; :::iz: Having thus found the error vector e; we decode the received vector a as the

codeword vj = aj � e:

To compute the syndrome of a binary BCH code we have S2 = (S1)
2; S6 = (S3)

2 and so

on. We can compute the syndrome more easily by using the division algorithm. If m(x
a

bj ) is

the minimal polynomial of �; then S1 = aj(�) can be obtained by �nding the remainder on

dividing aj(x
a

bj ) by m(x
a

bj ) and then putting x
a

bj = � in it. In general, to �nd Sk, we divide

aj(x
a

bj ) by m(x
a

bj ) and �nd the remainder.

The decoding of the code Cbn from the decoding of the code Cbjn can be obtain as; take

x
a

bj = y; which gives x
a
b = yb

j�1
. In this way the code polynomial vj(x

a

bj ) in F2[x; abjN0]bjn
becomes vj(y). Again on replacing y by yb

j�1
; we get vj(yb

j�1
) = vj(x

a
b ): The remainder after

dividing vj(x
a
b ) by (x

a
b )bn � 1; will be the decoded vector of F2[x; abN0]bn and the generator

polynomial g(x
a
b ) divides vj(x

a
b ):
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The above discussion can be sum up in the following steps.

Step I: For binary non-primitive BCH code Cbjn with designed distance dj ; let aj(x
a

bj ) be

the received polynomial with l errors, where l � tj :

Step II: Compute the syndromes and �nd the value of l; such that the system (2) has a

unique solution.

Step III: Step II gives us the error locator polynomial f(x
a

bj ): Now �nd the roots of f(x
a

bj )

through which we obtain the error polynomial e(x
a

bj ):

Step IV: We decode the received polynomial aj(x
a

bj ) as vj(x
a

bj ) = aj(x
a

bj )� e(x
a

bj ):

Step V: The code vector vj�1 in Cbj�1n can be drag out from the decoded code vector vj in

Cbjn by putting x
a

bj = y in corresponding code polynomial vj(x
a

bj ). This gives vj(x
a

bj ) = vj(y):

Again by replacing y by yb we get vj(y) = vj(yb) = vj(x
a

bj�1 ):

Step VI:Divide vj(x
a

bj�1 ) by (x
a

bj�1 )b
j�1n�1, the remainder vj(x

a

bj�1 ) will be in F2[x; a
bj�1N0]bj�1n;

and the generator polynomial g(x
a

bj�1 ) divides vj(x
a

bj�1 ): Then its corresponding vector vj 2

Cbj�1n:

Step VII: If we replace y by yb
j
we get vj(y) = vj(yb

j
) = vj(xa): So on dividing vj(xa)

by (xa)n � 1, the remainder vj(xa) will be in F2[x; aN0]n; and the generator polynomial g(xa)

divides vj(xa): Then its corresponding vector vj 2 Cn:

Illustration

Let C135 be a (135; 29) binary non-primitive BCH code with designed distance d = 4:

Assume that

a2(x
2
9 ) = (x

2
9 )106 + (x

2
9 )103 + (x

2
9 )102 + (x

2
9 )97 + (x

2
9 )93 + (x

2
9 )91 + (x

2
9 )90 + (x

2
9 )61

+(x
2
9 )58 + (x

2
9 )57 + (x

2
9 )52 + (x

2
9 )48 + (x

2
9 )46 + (x

2
9 )45 + (x

2
9 )38 + (x

2
9 )16

+(x
2
9 )13 + (x

2
9 )12 + (x

2
9 )7 + (x

2
9 )3 + (x

2
9 )2 + (x

2
9 ) + 1

is the received polynomial. The error position l = 2 and the syndromes are S1 = a2(�) = �11;

S2 = (S1)
2 = �22; S3 = a

2(�3) = �105 and S4 = (S2)2 = �44: The error locator polynomial is

given by f(x
2
9 ) = f0 + f1(x

2
9 ) + (x

2
9 )2: Then we have the following system of equations for f0;

f1:
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24�11 �22

�22 �105

3524f0
f1

35 =
24�105
�44

35
24f0
f1

35 =
24�105�62

�22

�62

�22

�14
�11

�14

3524�105
�44

35 =
24�40
�11

35 :
Hence the error locator polynomial is f(x

2
9 ) = �40 + �11(x

2
9 ) + (x

2
9 )2: Trying successively

x = 1; �; �2; :::; we �nd that �2 and �38 are the roots. Hence the error polynomial is e(x
2
9 ) =

(x
2
9 )2 + (x

2
9 )38: Thus we decode a2(x

2
9 ) as

v2(x
2
9 ) = a00(x

2
9 ) + e(x

2
9 ) = (x

2
9 )106 + (x

2
9 )103 + (x

2
9 )102 + (x

2
9 )97 + (x

2
9 )93 +

(x
2
9 )91 + (x

2
9 )90 + (x

2
9 )61 + (x

2
9 )58 + (x

2
9 )57 + (x

2
9 )52 + (x

2
9 )48 + (x

2
9 )46

+(x
2
9 )45 + (x

2
9 )16 + (x

2
9 )13 + (x

2
9 )12 + (x

2
9 )7 + (x

2
9 )3 + (x

2
9 ) + 1:

Now letting x
2
9 = y; this gives y3 = x

2
3 ; we get

v2(y3) = (y3)106 + (y3)103 + (y3)102 + (y3)97 + (y3)93 + (y3)91 + (y3)90 + (y3)61

+(y3)58 + (y3)57 + (y3)52 + (y3)48 + (y3)46 + (y3)45 + (y3)16 + (y3)13

+(y3)12 + (y3)7 + (y3)3 + (y3) + 1

v2(y3) = v2(x
2
3 ) = (x

2
3 )106 + (x

2
3 )103 + (x

2
3 )102 + (x

2
3 )97 + (x

2
3 )93 + (x

2
3 )91 +

(x
2
3 )90 + (x

2
3 )61 + (x

2
3 )58 + (x

2
3 )57 + (x

2
3 )52 + (x

2
3 )48 + (x

2
3 )46 +

(x
2
3 )45 + (x

2
3 )16 + (x

2
3 )13 + (x

2
3 )12 + (x

2
3 )7 + (x

2
3 )3 + (x

2
3 ) + 1:

Where v2(x
2
3 ) 2 F2[x; 23N0]45:

Now, after dividing v2(x
2
3 ) by (x

2
3 )45 � 1, we obtain the remainder v2(x 23 ) as

v2(x
2
3 ) = (x

2
3 )16 + (x

2
3 )13 + (x

2
3 )12 + (x

2
3 )7 + (x

2
3 )3 + (x

2
3 ) + 1 2 C45;
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where v2(x
2
3 ) is the generator polynomial of non-primitive binary BCH code (45; 29): Again

on letting x
2
3 = y; this gives y3 = x2; we get v2(x2) = (x2)13+ (x2)12+ (x2)7+ (x2)3+1 2 C15;

where C15 is primitive binary BCH code (15; 11); it is due to the reason that the generator

polynomial g(x2) = (x2)4 + (x2) + 1 divides v(x2):

4.3 The Algorithm

In this section we propose algorithm in order to calculate non primitive BCH codes of length

bjn using primitive BCH code of length n: Both of the algorithm that is: encoding and decoding

of codes is carried out in Matlab. The process of developing algorithm is divided into two major

steps, i.e., Encoding of non-primitive BCH code of length bjn and its decoding.

4.3.1 Encoding of non-primitive BCH code of length bjn

In encoding we �rst calculate primitive polynomial of degree s by invoking Matlab�s bulit in

command "bchgenpoly". After this operation, non-primitive polynomial of degree bs is calcu-

lated. With the help of its roots say �0; elements of Galois �eld GF (2bn) are calculated such

that the unity is reached that is (�0)b
jn = 1: Through these elements cyclotomic cosets are

determined which gives all the minimal polynomials. Finally we get non-primitive polynomial

with the help of these minimal polynomials. Then design distances are calculated through

which number of errors that can be corrected in each BCH codes is determined.

Various modules are developed in order to achieve speci�ed result. Table 13 shows list of

these methods and its description.
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Table 13: Encoding modulation description

Module Input Output

a Elements of Galois Field b � n �0[i]

b Bchgenpoly n; k g[i]

c Cyclotomic_cosets �0[i]; b; k c[i]

d Design_distance c[i] d

e error d t

Algorithm routines are explained as follows:

a. Elements of Galois �eld (alpha array �0[i])

This module calculates all the elements of Galois �eld GF (2bn) using a root say �0 of non-

primitive polynomial of degree bs; such that it gives identity at power bn. We call them alpha

array �0[i] and index array A[index]. Given input is b � n, the non-primitive polynomial of

degree bs gives the �rst element of the array �0[i]. By increasing its power each element of the

array �0[i] is calculated in outer loop. Then in nested while loop their corresponding values are

determined in such a way that if the value of any element in the array exceed bs we take the

remainder rem(index; bs) as mentioned in line 9 of the algorithm. The loop breaks when the

condition for identity is met.

BEGIN

1 INPUT b and n

2 bn  b� n

3 Initialize A[index] from 1 to bn� 1

4 Initialize �0[i] ( 0

5 Initialize index ( 1

6 WHILE index 6= 0

7 mark A[index]( 0

8 Initialize v ( index

9 Calculate next candidate, pi, by rem(index; bs)

10 �0[i] ( v
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11 WHILE current position of A[index] = 0

12 IF current position < A[index] size

13 increment i

14 ELSEIF

15 i 0

16 BREAK

17 ENDIF

18 ENDWHILE

19 ENDWHILE

END

b. bchgenpoly (g[i]):

Its a Matlab buit in fuction and its complete documentation is found under http://www.mathworks.com/help/comm/ref/bchgenpoly.html.

In this module we get the generator polynomial of primitive BCH code of length n:

1 INPUT n; k

2 OUTPUT g[i]

c. Cyclotomic_cosets(c[i]):

Given �0[i], dimension of code k and positive integer b, cyclotomic cosets c[i] are calculated.

Length of c[i] is initialized to at max b�k; in short all elements should not exceed the maximum

length. The loop start from 2 to max length and calculate unique values in given �0[i]. The

process stops when we get sum of two elements = 2. Once cyclotomic cosets are calculated we

can calculate minimal polynomials for BCH code.

BEGIN

1 INPUT �0[i]; b; k

2 Initialize cal_coset ( 0

3 Initialize len_cal_coset ( 0

4 Initialize code_length ( b � k

5 Initialize len_coset ( length of c[i]

6 Initialize code ( b � k

7 FOR i ( 2 to len_coset

8 cal_coset ( c[i] at position i
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9 IF i 6= 2 THEN

10 code_length ( bk cal_coset

11 ENDIF

12 PRINT c[i]

13 END FOR

END

d. non_prim_gen_poly(g0[i])

Given primitive polynomial p[i] and b. First �nd the highest degree of p[i] i.e., s: Initial

degree of non-primitive polynomial i.e., bs. Initialize each element of p0[i] of length bs to 0.

Iterate loop from 2 to bs in order to initialize coe¢ cent array to 1. Finally iterate each element

if coeft_array and modify the value if p0[i] at position i to the value of coeft_array at i. Finally

insert 1 at position 0 of p0[i] when its �rst element is 0. The output of this module play an

integral role for calculating non primitive BCH generating polynomial. It is denoted by g0 in

our algorithm. We are interested in rows of obtained matrix. Using the matrix we obtained,

the code for non-primitive generating polynomial of length b. Finally these values are printed

out and saved in �le for further usage.

BEGIN

1 INPUT p[i]; b

2 Initialize len ( length of p[i]

3 Initialize size_array ( len � b

4 Initialize p0[i] of length size_array i.e. p0[i]( 0

5 Initialize index ( 1

6 Initialize len_coef_array ( 0

7 FOR i taking values from 2 to len

8 IF p0[i] at i 6= 0 THEN

9 Initialize coef_array ( b � (i� 1)

10 increment index

11 ENDIF

12 ENDFOR

13 len_coef_array ( length of coef_array
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14 FOR j taking values from 1 to len_coef_array

15 g0(i) at position j of coef_array ( 1

16 ENDFOR

17 g0[i]( 1 to p0[i]

18 PRINT g0[i]

END

e. designed_distance (d):

Here design distance is calculated from g0[i]. The length of coset array cl is determined and

then iterate index from 2 to cl, calculate next index ni by increment current index. If ni � cl

then next element of coset is calculated to the value of coset array at position of next index.

Otherwise the bn is assigned to next coset. The whole process iterates to lencoset coset and

�nally stops at the last coset. Design distance d is calculated from the last value of coset array

at position 1:

BEGIN

1 INPUT c[i] i.e. coset_array

2 Initialize lencoset ( length of coset_array

3 Initialize next_index ( 0

4 Initialize next_coset ( 0

5 FOR index taking values from 2 to lencoset

6 next_index ( increment index

7 IF next_index � lencoset THEN

8 next_coset ( coset_array at position next_index

9 ELSEIF

10 next_coset ( bn

11 ENDIF

12 ENDFOR

13 d ( next_coset at position 1.

END

f. error :

For given designed distance d, the error correction capability of a code t is calculated.
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BEGIN

1 INPUT d.

2 error t ( (d� 1)=2

END

4.3.2 Error correction in received polynomial (Decoding)

In decoding step for a received polynomial, we �rst calculate the syndrome matrix S[i]: Then

the D�matrix is calculated that should be invertible. After this error locator polynomial is

determined whose roots give the exact position of errors in the received polynomial. Finally

the received polynomial is corrected.

To �nd the error vector and obtain the corrected codeword following scheme is used. Table

14 shows list of the following steps for error correction.

Table 14: Decoding modulation description

Module Input Output

a Syndrome_Matrix d; bn; bk; �0, r[i] S0[i]

b Calculate D_matrix t, S0[i] D_matrix

c Is D invetible t, D_matrix j D j6= 0

d error_locator_poly t, D_matrix,S0[i] f [i]

e error_position f [i] e[i]

f error_values t, S[i], D_matrix, e[i], bn, pm[i] ev[i]

h Correct_recieved t, bn, e[i], ev[i], r[i], �0 v[i]

polynomial

a. Syndrome_matix (S0[i]):

Given design distance d, bn, message length bk and recieved polynomail r[i], syndrome

matrix S0[i] can be calculated. The length of S0[i] is initialize to bn� bk. Furthermore S0[i] is

initializes by GF [i]: Nested loop are used to calculate S0[i]: Upper loop is limited to the length

of bn + d � 2, where S0[i] equalizes to power of �0 and in nested loop S0[i] equalize to power
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of S0[i] and the iterator. Once the values of S0[i] are �lled with the above values of S0[i]; then

these S0[i] can be calculated as product of r[i] and (S0[i])t:

BEGIN

1 INPUT d; bn; bk; �, r[i]

2 Initialize lenSyndrome ( bn� bk

3 Initialize S0[i] ( GF of len Syndrome

4 Initialize valueSynd ( 0

5 Initialize valueSynd ( GF length bn

6 Initialize loopLimit ( bn+ d� 2

7 FOR i ( bn to loop limit

8 valueSynd ( �i

9 FOR j ( 1 to bn

10 evalSynd ( valueSynd powers j

11 ENDFOR

12 S0[i] ( received_poly � transpose of evalSynd

13 ENDFOR

14 PRINT S0[i]

END

b. D_matrix (D[i]):

Given error t and S0[i], D_matrix is calculated and then double loops operation on syndrome

matrix is carried out and suitable values from syndrome matrix is scanned out. The process is

as follows. First calculate GF [i] of length t and D-matrix is initialized to that value. D[i] in

nested loop for loops. Both loops iterates from 1 to t. D[i] values are S0[i] values at position i

of sum of loops iterators to 1.

BEGIN

1 INPUT t, S0[i]

2 Calculate Galois �eld length of t

3 Initialize D_matrix ( Galois �led calculated in previous step

4 FOR index i1 taking from 1 to t

5 For index i2 taking from 1 to t
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6 D_matrix ( S0[i] at position i1 + i2� 1

7 ENDFOR

8 ENDFOR

END

c. Is D invertible:

This module check if D[i] is invertible. If D[i] is invertible, then it is �ne otherwise error, t,

is decremented and D_matrix is again calculated. These operations are carried out till error t

becomes 0. If t becomes 0, then algorithm will exit.

BEGIN

1 INPUT t; D_matrix

2 IF D_matrix is invertible THEN

3 continue algo // goto step 5.

4 ELSEIF

5 decrement t;

6 IF t equals 0

7 goto STEP 3

8 ENDIF

9 ENDIF

10 // Panic Condition

11 IF t equals 0

12 Print ERROR cannot be corrected.

13 EXIT algo

14 ENDIF

END

d. error_locator_polynomial (f [i]):

Given input t, D_matrix and S0[i]; f [i] is calculated. First initialize product matrix pm[i]

and f [i] to GF [i]: Then iterate the loop from 1 to t; pm[i] is �lled with the value of S0[i] at

t+ i. After the loops ends, the value of (S0[i] � pm[i])�1 get equals to temporary matrix. Once

the temporary matrix is acheived f [i] is taken as the transpose of that temporary matrix.

BEGIN
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1 INPUT t, D[i]; S[i]

2 create �0t

3 Initialize product_matrix pm[i] ( �0t

4 Initialize f [i] ( �0t

5 Initialize temporary_matrix T 00[i] of size t ( 0

6 FOR index i taking values from 1 to t

7 pm[i] ( S[i] at position t+ i

8 ENDFOR

9 T 00[i] ( (S[i])�1 � pm[i]

10 f [i] ( (T 00[i])t

11 f [t+ 1] ( 1 // coe¢ cient of f [t+ 1] = 1

END

e. Error position matrix (e[i]):

Based on f [i] we can determine error position. First the roots of f [i] is calculated and then

we take its inverse. The values we obtain are in matrix form and these manifest error position.

BEGIN

1 INPUT f [i]

2 Initialize error_pos_matrix e[i]( 0

3 Initialize root_matrix ( 0

4 root_matrix ( roots of f [i]

5 e[i]( inverse of elements of root_matrix

6 PRINT e[i]

END

f. Error_values (ev[i]):

In the previous step we have calculated error position, so once error position is determined

we can easily calculate their respective values. The nested for loops are used to determine error

values. Both of the loops iterate from 1 to t; in the �rst loop values from D_matrix can be

taken while in the next loop value of pm[i] can be taken along with S0[i]. Finally ev[i] get

equated to (D_matrix�pm[i])�1.

BEGIN
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1 INPUT t, S[i], D_matrix, e[i], bn, pm[i]

2 Initialize error_value_matrix ev[i] ( 0

3 FOR 1 � i1 � t

4 FOR 1 � i2 � t

5 D_matrix elements at i1 and i2 ( e[i] at i2 � (i1 + bn� 1)

6 ENDFOR

7 pm[i] elements at position i1 ( S[i1]

8 ENDFOR

9 ev[i] ( (D_matrix � pm[i])�1

10 PRINT ev[i]

END

g. Correct_received_polynomial:

Once we have calculated error positions and error values the received polynomial can be

corrected. Here input parameters are e[i]; ev[i]; r[i] and bn. First estimated codeword denoted

by est_code is calculated by various operations i.e., taking loops to t; bn, and power of Galois

�eld. The received polynomial is corrected by subtraction of error polynomial and we get the

corrected codeword v[i]:

BEGIN

1 INPUT t, bn, e[i], ev[i], r[i], �0

2 calculate GF [i] of length bn.

3 Initialize est_error ( GF [i]

4 Initialize est_code ( GF [i]

5 Initialize alpha_val ( 0

6 FOR 1 � i � t

7 FOR 1 � j � bn

8 alpha_val ( (�0) j�1

9 IF alpha_val =element e[i] at i THEN

10 est_error position j ( est_error at position j + ev[i] at i

11 ENDIF

12 ENDFOR
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13 est_code ( r[i] + est_error

14 PRINT est_code

15 elements of pm[i] at i1( S0[i] elements at i1

16 ENDFOR

17 ev[i] ( D_matrix � pm[i]

18 PRINT ev[i]

END

Example 67 For the code of length 45 simulation is carried out as follows: in this case b = 3

and n = 15. Using n = 15 and k = 11, Matlab�s build in function genpoly is invoked in order

to �nd primitive polynomial, i.e., p(i) = x4 + x + 1, as explain in Table 1. With b = 3 and

p(i) = x4 + x + 1, non_primitive_poly function is invoked, as described in Table 1 step 4,

here non primitive polynomial named as p0(i) is obtained. Output for p0(i) is x12 + x9 + 1:

Cyclotomic cosets i.e., coset_array values are also calculated. First non_ primitive_

sequence in step 1 of Table 1, is invoked to �nd the power of alpha till �45 = 1. With coset_array

in hand, the designed distance d can be calculated, which is the �rst element of next coset_array.

Last but not the least error t is calculated against the given designed distance d. Code rate R is

also calculated against each k1 and bn but is not mentioned in previous section.

The output are as follows:

Cyclotomic cosets for (45; 33) = [1 2 4 8 16 32 19 38 31 17 34 23],

t1 = 1 and R1 = (0:73333):

Cyclotomic cosets for (45; 29) = [3 6 12 24],

t1 = 2 and R1 = (0:64444):

Cyclotomic cosets for (45; 23) = [5 10 20 40 35 25],

t1 = 3 and R1 = (0:51111):

Cyclotomic cosets for (45; 11) = [7 14 28 11 22 44 43 41 37 29 13 26],

t1 = 4 and R1 = (0:24444):

Cyclotomic cosets for (45; 5) = [15 30],

t1 = 10 and R1 = (0:11111):

Now comes error correction in received polynomial. In this the code (45; 29) is taken under
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consideration, with designed distance d1 = 5 and t1 = 2: Let the received polynomial be

x44 + x16 + x13 + x12 + x11 + x7 + x3 + x+ 1:

With the given values d1; k1; and received polynomial, syndrome_matrix is calculated. The out-

put for syndromes are: S1 = �2; S2 = �4; S3 = �30; S4 = �8:Next we arrange syndrome values

in linear equation form that is Ax = B. Where A = [S1; S2; S2; S3] and B = [S3; S4]. Matrix

A is named as t_matrix of t� t dimension. Then we �nd the whether the t_matrix is singular

or not. If the determinant of t_matrix is non zero then error locator polynomial is calculated.

Next error position is calculated from sigma_matrix which is obtained from the coe¢ cients of

error locator polynomial. For the given values, error_positions are 44 and 11. Hence the error

polynomial is x44+x11: On subtracting error polynomial from received polynomial the following

code polynomial x16 + x13 + x12 + x7 + x3 + x + 1 is obtained. All of the above equations are

obtained by using Matlab symbolic toolbox.

With the help of the above discussed algorithm many examples on non-primitive BCH codes

of length bn; b2n; b3n are constructed corresponding to primitive BCH code of length n: The

parameters for all binary non-primitive BCH codes of length bn; b2n; b3n where n � 26� 1 and

b is either 3 or 7 are given in Table 15.

Table 15: BCH codes of length n � 26 � 1

n bn k1 t1 R1 b2n k2 t2 R2 b3n k3 t3 R3

7 49 28 1 0:571 343 196 1 0:571 2401 1372 1 0:571

7 3 0:142 49 3 0:142 343 3 0:142

4 10 0:081 28 10 0:081 196 10 0:081

1 24 0:020 7 24 0:020 49 24 0:020

4 73 0:011 28 73 0:011

1 171 0:002 7 171 0:002

4 541 0:001

1 1200 0:000
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n bn k1 t1 R1 b2n k2 t2 R2 b3n k3 t3 R3

15 45 33 1 0:733 135 99 1 0:733 405 297 1 0:733

29 2 0:644 87 2 0:644 261 2 0:644

23 3 0:511 69 3 0:511 207 3 0:511

11 4 0:244 33 4 0:244 99 4 0:244

7 7 0:155 29 7 0:214 87 7 0:214

5 10 0:111 23 10 0:170 69 10 0:170

1 22 0:022 11 13 0:081 33 13 0:081

7 22 0:051 29 22 0:071

5 31 0:037 23 31 0:056

1 67 0:007 11 40 0:027

7 67 0:017

5 94 0:012

1 202 0:002

63 189 171 1 0:904 567 513 1 0:904 1701 1539 1 0:904

165 2 0:873 495 2 0:873 1485 2 0:873

147 3 0:777 441 3 0:777 1323 3 0:777

129 4 0:682 387 4 0:682 1161 4 0:682

123 5 0:650 381 5 0:672 1143 5 0:671

105 6 0:555 327 6 0:576 981 6 0:576

87 7 0:460 273 7 0:481 819 7 0:481

81 10 0:428 255 10 0:449 765 10 0:449
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n bn k1 t1 R1 b2n k2 t2 R2 b3n k3 t3 R3

63 189 75 11 0:3968 567 237 11 0:4179 1701 711 11 0:417

57 13 0:3015 183 13 0:3227 549 13 0:322

54 15 0:2857 177 15 0:3121 543 15 0:319

36 16 0:1904 123 16 0:2169 381 16 0:224

30 19 0:1587 105 19 0:1851 327 19 0:192

24 22 0:1269 87 22 0:1534 273 22 0:160

18 31 0:0952 81 31 0:1428 255 31 0:149

16 34 0:0846 75 34 0:1322 237 34 0:1393

10 40 0:0529 57 40 0:1005 183 40 0:1075

7 46 0:0370 54 46 0:0952 177 46 0:1040

1 94 0:0053 36 49 0:0634 123 49 0:0723

30 58 0:0529 105 58 0:0617

24 67 0:0423 87 67 0:0511

18 94 0:0317 81 94 0:0476

16 103 0:0282 75 103 0:0440

10 121 0:0176 57 121 0:0335

7 139 0:0123 54 139 0:0317

1 283 0:0017 36 148 0:0211

30 175 0:0176

10 364 0:0058

1 850 0:0005

Table 16 manifests the error and code rate values against some selected codes which we

have obtained after simulating our algorithm. These codes are of length bn, b2n and b3n, where

n � 26�1, and b = 3; 7. k1; k2 and k3 are dimensions of the codes C1bn; C2b2n and C
3
b3n respectively.

Interleaved Codes

From Table 16, it is observed that corresponding to a primitive (n; k) code there are (bn;

bk); (b2n; b2k2); (b
3n; b3k) codes with same error correction capability and code rate. These
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codes are found to be interleaved codes (Interleaving is a periodic and reversible reordering of

codes of L transmitted bits) of depth b; b2 and b3. Hence along with random error correction

capability these codes can correct burst of error of length b; b2 and b3 respectively. The term

burst of error means that two or more bits in the received word has changed from 1 to 0 or from

0 to 1. The length of the burst is measured from the �rst corrupted bit to the last corrupted

bit. Similarly for the code (bn; bk) the codes (b2n; b2k) and (b3n; b3k) are interleaved codes of

depth b2 and b3 respectively.

The code (49; 28) is interleaved code of depth 7, which is formed by interleaving the following

7 codewords from (7; 4) code that is,

(0 0 0 0 0 0 0) ; (1 1 0 1 0 0 0) ; (0 0 0 0 0 0 0) ;

(0 0 0 0 0 0 0) ; (0 0 0 0 0 0 0) ; (0 0 0 0 0 0 0) ;

(0 0 0 0 0 0 0) ; on writing them column by column it gives

v1 = (01000000100000000000001000000000000000000000000000) 2 C249:

In a similar way, codeword of (343; 196) and (2401; 1372) are obtained by writing column

by column 7 codeword of C249 and C3343: Therefore for decoding a received polynomial in C3343
one can easily reverse the process and correct errors in the codeword of either C249 or C17 :

We conclude this chapter as follows:

1) Existence of a sequence of binary non-primitive BCH codes of lengths bmn, where m is

a positive integer, is ensured against a given n length primitive binary BCH code.

2) The sequence of embeddings of the binary BCH codes is obtained and the binary BCH

code of length bjn has higher code rate and error correction capability than binary BCH code

of length bj�1n:

3) The data con�gurated through length bj�1n can be transmitted and decoded under binary

BCH code of length bjn:

4) A method is devised by which we can improve the data/information transfer and recieving

with better trade o¤.study.

5) An algorithm for the construction of non-primitive BCH codes Cj
bjn
of length bjn, where
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j is a positive integer and n is length of primitive binary BCH code Cn; is given.

6) Corresponding to a primitive (n; k) binary BCH code Cn there are (bjn; bjk) codes with

same error correction capability and code rate. These codes are found to be interleaved codes of

depth bj . Therefore along with random error correction capability these codes can also correct

error burst of length bj .

This work is further extended over the Galois �eld F4:
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Chapter 5

Construction of non-primitive BCH

codes over the �eld F4

In this chapter, construction of BCH codes over the �eld F4 is introduced. For this initially a

primitive BCH code Cn of length n an ideal in the monoid ring F4[x; aN0]n is constructed and

based on it existence of a non-primitive BCH code Cbn of length bn is investigated, such that

the code Cn is embedded in Cbn. Furthermore we have compared the e¢ ciency of BCH codes

constructed over �elds F2 and F4:

5.1 BCH-codes as Ideal in the ring F4[x; aN0]n

Let F4 = f0; 1; �; �2 = 1 + �g be the �nite �eld. The construction of BCH codes in monoid

ring F4[x; aN0]n is similar to the construction of BCH codes in F4[x]n. For this, let c; d; q = 4

and n be the positive integers such that 4 � d � n with gcd(n; 4) = 1 and n = (4)s � 1, where

s is the degree of a primitive irreducible polynomial in F4[x; aN0]: Consequently, the n length

binary BCH code Cn has generator polynomial of degree r given by g(xa) = lcmfmi(x
a) : i =

c; c+ 1; :::; c+ d� 2g, where mi(x
a) are minimal polynomials of 
i for i = c; c+ 1; :::; c+ d� 2.

Where 
 is the primitive nth root of unity in F4s ; an s degree Galois �eld extension of F4. Since

mi(x
a) divides (xa)n � 1; it follows that g(xa) divides (xa)n � 1. This implies Cn = (g(xa)) is a

principal ideal in the factor ring F4[x; aN0]n:

In the following example, primitive BCH codes in F4[x; aN0]15 are considered and a variation
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in error correction capability and code rates have been noticed.

Example 68 Let p(x2) = (x2)2 + (x2) + � 2 F4[x; 2Z0] be the primitive polynomial. Then

n = 42 � 1 = 15 . Let � 2 F42 ; satisfy the relation �2 = � + �: Using this relation we get

�15 = 1: Hence, � is the primitive 15th root of unity and p(x2) is the minimal polynomial of

�. Since g(x2) = lcmfmi(x
2); i = c; c+ 1; :::; c+ d� 2g; therefore we �rst calculate mi(x

2): By

[27, Theorem 4.4.2], �; �4; have same minimal polynomial m1(x
2) = p(x2): Let m2(x

2) be the

minimal polynomial for �2 and �8: Using above relations we get m2(x
2) = (x2)2 + (x2) + �2.

Similarly we get

m3(x
2) = (x2)2 + �2(x2) + 1; m5(x

2) = (x2) + �m6(x
2) = (x2)2 + �(x2) + 1;

m7(x
2) = (x2)2 + �(x2) + �; m10(x

2) = (x2)2 + �2; m11(x
2) = (x2)2 + �2(x2) + �2:

The BCH code with designed distance d = 2 has generator polynomial g(x2) = m1(x
2) =

(x2)2+ (x2) +�: On writing its coe¢ cients in ascending order with respect to power of (x2) we

get �11: The following table discuss BCH codes for di¤erent designed distances, coe¢ cients of

generator polynomials, error correction capability and code rate.

Table 16: BCH codes of length 15

(n; k) d coeff(g(x2)) t R

(15; 11) 3 11001 1 0:73

(15; 9) 5 1��11�21 2 0:6

(15; 6) 7 �10�1��2�21 3 0:4

(15; 3) 11 �01�2�20�21���2�1 5 0:2

(15; 1) 15 111111111111111 7 0:06:

Where d; t and R denote the designed distance, error correction capability and code rate of the

code of length 15 over the �eld F4 respectively, and coeff(g(x2)) denotes the coe¢ cient of the

generating polynomial g(x2):
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5.2 BCH-codes as Ideal in the ring F4[x; abN0]bn

For the construction of a non-primitive BCH code in F4[x; abN0]bn, we choose only such a s degree

primitive irreducible polynomial p(xa) 2 F4[x; aN0] for which there is a bs degree irreducible

polynomial p(x
a
b ) in F4[x; abN0]; whereas it is not true in general. For illustration see the

following list of few irreducible polynomials of degree bs in F4[x; abN0] corresponding to primitive

irreducible polynomial of degree s in F4[x; aN0]. For p(xa) 2 F4[x; aN0]; p(x
a
3 ) 2 F2[x; a3N0];

p(x
a
5 ) 2 F4[x; a5N0]; p(x

a
7 ) 2 F4[x; a7N0]: For the sake of convenience replace x

a; x
a
3 ; x

a
5 ; x

a
7 by

x; y; z; w respectively.

Table 17: Non primitive irreducible polynomials against primitive irreducible polynomials

deg p(x) b p(y); p(z); p(w)

2 x2 + x+ � 3; 5 y6 + y3 + �; z10 + z5 + �

3 x3 + x2 + x+ � 3; 7 y9 + y6 + y3 + �; w21 + w14 + w7 + �

4 x4 + x3 + x+ � 3; 5 y12 + y9 + y3 + �; z20 + z15 + z5 + �

5 x5 + x+ � 3 y15 + y3 + �

6 x6 + x2 + x+ � 3; 5; y18 + y6 + y3 + �; z30 + z10 + z5 + �;

7 w42 + w14 + w7 + �

7 x7 + �2x5 + �2x+ �2 3 y21 + �2y15 + �2y3 + �2

8 x8 + x6 + x4 + x2 + x+ �2 3; 5 y24 + y18 + y12 + y6 + y3 + �2;

z40 + z30 + z20 + z10 + z5 + �2

9 x9 + �x5 + x4 + �2 3; 7 y27 + �y15 + y12 + �2; w27 + �w15 + w12 + �2

10 x10 + �2x5 + �2x+ a 3; 5 y30 + �2y15 + �2y3 + a; z50 + �2z25 + �2z5 + a
...

...
...

...

One can easily verify Table 18 with the help of GAP4. Table 18 shape the following propo-

sition.

Proposition 69 Let p(xa) 2 F4[x; aN0] be a primitive irreducible polynomial of degree s 2

f2l; 3l; 5l; 6lg; where l 2 Z+: Then the corresponding bs degree generalized polynomial p(xab ) 2

F4[x; abN0] is non-primitive irreducible polynomial for b 2 f(3; 5); (3; 7); f3g; (3; 5; 7)g respectively:
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As a consequence of Table 17, the primitive and non-primitive BCH codes of lengths n and

bn respectively are obtained.

Table 18: BCH codes of lengths n and bn

s n bn

2 3 9; 15

3 7 21; 49

4 15 45; 75

6 63 189; 315; 441

7 128 384

8 255 765; 1275

9 511 1533; 3577

10 1023 3069; 5115

12 4094 12282; 20470;

28658

Theorem 70 Let n = 4s� 1 be the length of primitive BCH code Cn; where p(xa) 2 F4[x; aN0]

is a primitive irreducible polynomial of degree s such that p(x
a
b ) 2 F4[x; abN0] is a non-primitive

irreducible polynomial of degree bs: Then

1) for positive integers c1; d1; bn such that 2 � d1 � bn and bn is relatively prime to 4; there

exists a non-primitive BCH code Cbn of length bn; where bn is order of an element � 2 F4bs.

2) the non-primitive BCH code Cbn is de�ned as

Cbn = fv(x
a
b ) 2 F4[x;

a

b
N0]bn : v(�i) = 0 for all i = c1; c1 + 1; :::; c1 + d1 � 2:
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Equivalently, Cbn is the null space of the matrix

H =

26666664
1 �c

1
�2c

1
::: �(bn�1)c

1

1 �c
1+1 �2(c

1+1) ::: �(bn�1)(c
1+1)

...
...

...
. . .

...

1 �c
1+d1�2 �2(c

1+d1�2) ::: �(bn�1)(c
1+d1�2)

37777775 :

Proof. 1) Since the polynomial p(x
a
b ) 2 F4[x; abN0] is irreducible but not primitive, it

follows that the code constructed through it is also non primitive. However, there is an element

� 2 F4bs of order bn vanishes p(x
a
b ): Therefore, bn divides 4bs�1: Now, let mi(x

a
b ) 2 F4[x; abN0]

denote the minimal polynomial of �i and g(x
a
b ) be the lcm of distinct polynomials among

mi(x
a
b ); i = c1; c1 + 1; :::; c1 + d1 � 2; that is,

g(x
a
b ) = lcmfmi(x

a
b ) : i = c1; c1 + 1; :::; c1 + d1 � 2g:

As mi(x
a
b ) divides (x

a
b )bn � 1 for each i; therefore g(xab ) also divides (xab )bn � 1: This implies

that Cbn is a principal ideal generated by g(x
a
b ) in the factor ring F4[x; abN0]bn: Hence Cbn is a

non-primitive BCH code of length bn over F4 with designed distance d1:

2) Let v(x
a
b ) 2 Cbn: Then v(x

a
b ) = g(x

a
b )q(x

a
b ) for some q(x

a
b ) 2 F4[x; abN0]; where g(x

a
b ) is

the generator polynomial of Cbn: Hence v(�i) = 0 for all i = c1; c1+1; :::; c1+d1�2: Conversely,

take v(x
a
b ) 2 F4[x; abN0]bn such that v(�

i) = 0 for all i = c1; c1 + 1; :::c1 + d1 � 2: This implies

mi(x
a
b ) divides v(x

a
b ) for all i = c1; c1+1; :::c1+d1�2 and therefore g(x

a
b ) divides v(x

a
b ). Thus

v(x
a
b ) 2 Cbn. For the second part, we let

v(x
a
b ) = v0 + v1(x

a
b ) + :::+ vbn�1(x

a
b )bn�1 2 F4[x;

a

b
N0]bn:

Then v(�i) = 0 for all i = c1; c1 + 1; :::c1 + d1 � 2 if and only if HvT = 0, where v =

(v0; v1; :::; vbn�1) 2 Fbn4 : This proves that Cbn is the null space of the matrix H:

The following example illustrates the construction of a non primitive BCH code of length

3n in F4[x; 23N0]3n:

Example 71 Corresponding to a primitive polynomial p(x2) = (x2)2 + (x2) + � in F4[x; 2N0]
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there is a non-primitive irreducible polynomial p(x
2
3 ) = (x

2
3 )6 + (x

2
3 )3 + � in F4[x; 23N0] (see

Table 18): Let � 2 GF (46); satisfy the relation �6 + �3 + 1 = 0: Using this relation we obtain

the following list of elements.

Table 19: Distinct powers of � in GF (46)

�6 = �3 + � �20 = ��5 �34 = �4 + ��4

�7 = �4 + �� �21 = 1 + �+ ��3 �35 = �5 + ��5

�8 = �5 + ��2 �22 = � + �� + ��4 �36 = 1 + �3 + ��3

�9 = �+ �3 + ��3 �23 = �2 + ��2 + ��5 �37 = � + �4 + ��4

�10 = �4 + �� + ��4 �24 = 1 + �+ �3 �38 = �2 + �5 + ��5

�11 = �5 + ��2 + ��5 �25 = � + �� + �4 �39 = 1 + ��3

�12 = 1 + �3 �26 = �2 + ��2 + �5 �40 = � + ��4

�13 = � + �4 �27 = �+ ��3 �41 = �2 + ��5

�14 = �2 + �5 �28 = �� + ��4 �42 = 1 + �+ �3 + ��3

�15 = � �29 = ��2 + ��5 �43 = � + �� + �4 + ��4

�16 = �� �30 = 1 + � �44 = �2 + ��2 + �5 + ��5

�17 = ��2 �31 = � + �� �45 = 1

�18 = ��3 �32 = �2 + ��2

�19 = ��4 �33 = �3 + ��3

Thus bn = 3 � 15 = 45: Now, to calculate generating polynomial g(x
2
3 ); we �rst calculate

the minimal polynomials. By [27, Theorem 4.4.2], �; �4; �16; �19; �31; �34 have same minimal

polynomial m1(x
2
3 ) = p(x

2
3 ) = (x

2
3 )6 + (x

2
3 )3 + �. Let m2(x

2
3 ) be the minimal polynomial for

�2; then �2; �8; �32; �38; �17; �23 all are roots for m2(x
2
3 ): Therefore by using Table II we get

m2(x
2
3 ) = (x

2
3 )6 + (x

2
3 )3 + �2: Similarly, we obtain

m3(x
2
3 ) = (x

2
3 )2 + (x

2
3 ) + �; m5(x

2
3 ) = (x

2
3 )3 + �; m6(x

2
3 ) = (x

2
3 )2 + (x

2
3 ) + �2;

m7(x
2
3 ) = (x

2
3 )6 + �(x

2
3 )3 + �; m9(x

2
3 ) = (x

2
3 )2 + �2(x

2
3 ) + 1; m10(x

2
3 ) = (x

2
3 )3 + �2;

m11(x
2
3 ) = (x

2
3 )6 + �2(x

2
3 )3 + �2; m15(x

2
3 ) = (x

2
3 ) + �; m18(x

2
3 ) = (x

2
3 )2 + �(x

2
3 ) + 1;

m21(x
2
3 ) = (x

2
3 )2 + �(x

2
3 ) + �; m30(x

2
3 ) = (x

2
3 ) + �2; m33(x

2
3 ) = (x

2
3 )2 + �2(x

2
3 ) + �2:
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The BCH code with designed distance d1 = 2 has generator polynomial g(x
2
3 ) = (x

2
3 )6+(x

2
3 )3+�:

On writing its coe¢ cients in ascending order with respect to power of (x
2
3 ) we get �001001:

Following is the table of BCH codes for di¤erent designed distances, coe¢ cients of generator

polynomials, error correction capability and code rate.

Table 20: BCH codes of length 45 over the �eld F4

(bn; k1) d1 coefg(x
2
3 ) t1 R1

(45; 33) 3 1001000000001 1 0:73

(45; 31) 5 �11�11000000�11 2 0:68

(45; 28) 6 �2�1�2�2�11000�2���11 3 0:62

(45; 26) 7 ��0�2101�0010��01�2001 3 0:57

(45; 20) 9 �2�20�101�20100��201�2001011001 4 0:44

(45; 18) 10 �21110100�2��21��0�0�2�21�20��11�21 5 0:4

(45; 15) 11 ��2�201�10�21�0�2�1�2��0�21�20��210�1�21 5 0:33

(45; 9) 15 1��11�21000000001��11�21000000001��11�21 7 0:2

(45; 8) 18 ��10�20110000000��10�20110000000��10�2011 9 0:17

(45; 6) 21 �10�1��2�2100000�10�1��2�2100000�10�1��2�21 10 0:13

(45; 4) 22 �2101�21�2�2�011000�2101�21�2�2�011000�2101�21�2�2�011 11 0:08

Where d1; t1; and R1 denote the designed distance, error correction capability and the code rate

of the code of length 45 over the �eld F4 respectively, k1 denotes the dimension of the BCH

code, and coeff(g(x
2
3 )) denote the coe¢ cients of the generating polynomial g(x

2
3 ):

Remark 72 These are the following two observations obtained from di¤erent examples:

1) the non-primitive BCH codes (bn; bk) are interleaved codes (Interleaving is a periodic

and reversible reordering of codes of l transmitted bits) of degree b with same code rate and

error correction capability as that of primitive BCH code (n; k): They are capable of correcting

burst of length b or less. By burst of error we means that two or more bits in the received

word has changed from 1 to 0; �; �2 or from � to 0; 1; �2 and so on. For example the non-

primitive BCH code (45; 33) is an interleaved code of degree 3 and is capable of correcting

burst of length 3: For instance let r = 10010000000010000000000001��200000000000000000 be
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the received polynomial of (45; 33) code formed by interleaving the following 3 received poly-

nomials in (15; 11) code which are: r1 = 1100010000�20000; r2 = 000000000100000 and

r3 = 000000000�00000 each having single error. That is e1 = 0000000000�20000; e2 =

r2 and e3 = r3: On interleaving these error vectors we get error vector of r which is e =

00000000000000000000000001��200000000000000000: This error pattern has a error burst of

length 3: Adding r and e gives the code vector v.

2) the primitive BCH code repeats b times in non-primitive BCH codes whenever both have

same code dimension that is k = k1: For example on writing the corresponding code vectors of

the generating polynomials of (15; 9) and (45; 9) codes that is:

g(x2) = 1 + �(x2) + �(x2)2 + (x2)3 + (x2)4 + �2(x2)5 + (x2)6 and

g(x
2
3 ) = 1 + �(x

2
3 ) + �(x

2
3 )2 + (x

2
3 )3 + (x

2
3 )4 + �2(x

2
2 )5 + (x

2
3 )6 + (x

2
3 )15

+�(x
2
3 )16 + �(x

2
3 )17 + (x

2
3 )18 + (x

2
3 )19 + �2(x

2
3 )20 + (x

2
3 )30

+�(x
2
3 )31 + �(x

2
3 )32 + (x

2
3 )33 + (x

2
3 )34 + (x

2
3 )35�2 + (x

2
3 )36

we have v = (1��11�2100000000) and v1 = (1��11�21000000001��11�21000000001��11�2100000000).

Therefore the corresponding generating matrix G1 of g(x
2
3 ) contains the generating matrix G of

g(x2) such that G1 = �31G.

The following Tables 21 and 22, give a comparison among minimum distances, errors correc-

tion capability and code rates for di¤erent designed distances of the primitive and non primitive

BCH codes of lengths 15 and 45; respectively in F2[x; 2N0]15, F2[x; 23N0]45 and F4[x; 2N0]15,

F4[x; 23N0]45.
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Table 21: Comparison of BCH codes of length 15

BCH code through F2[x; aN0] BCH code through F4[x; aN0]

d d(min) t R

2 3 1 0:733

4 5 2 0:466

6 7 3 0:333

8 15 7 0:066

d d(min)1 t1 R1

2 3 1 0:866

3 3 1 0:733

4 7 3 0:6

6 6 2 0:533

7 8 3 0:4

8 10 4 0:266

11 11 5 0:2

12 15 7 0:066
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Table 22: Comparison of BCH codes of length 45

BCH code through F2[x; abN0] BCH code through F4[x; abN0]

d0 d(min)1 t1 R1

2 3 1 0:733

4 7 3 0:644

6 9 4 0:511

8 9 4 0:244

10 15 7 0:155

16 21 10 0:11

22 45 22 0:022

d0 d(min)2 t2 R2

2 3 1 0:866

3 3 1 0:733

4 9 4 0:688

6 15 7 0:622

7 12 5 0:577

8 15 7 0:44

10 22 10 0:4

11 25 12 0:33

12 21 10 0:2

16 18 8 0:177

19 24 11 0:133

22 30 14 0:088

31 33 16 0:066

34 45 22 0:022

From above tables we notice that: The possible choices of codes with di¤erent design dis-

tances are more over the �eld F4 as compared with the codes over the binary �eld. Secondly, it

is clear that the code rate is better over the �eld F4 as for example in C15 primitive BCH code

with design distance 5 and 7 has code rate 0:466 and 0:333 over the binary �eld whereas over

F4 we are getting 0:6 and 0:4. In non-primitive BCH codes C45 with design distances 5; 7; 9; 15

and 21 we get code rates 0:644; 0:511; 0:244; 0:155; 0:11 over F2 and 0:688; 0:577; 0:44; 0:2; 0:133

over F4 respectively.
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5.3 Primitive BCH code Cn and non-primitive BCH code Cbn:

A link

Now we formulate a link between a primitive BCH code Cn; and a non-primitive BCH code Cbn
over the �eld F4; where r and r0 are the degrees of their generating polynomials g(xa) and g(x

a
b )

respectively. From Theorem 70(1), it follows that the generator polynomial g(x
a
b ) 2 F4[x; abN0]

divides (x
a
b )bn� 1 in F4[x; abN0]. So, there is a non-primitive BCH code Cbn generated by g(x

a
b )

in F4[x; abN0]bn. Since, bn divides n = 4
bs � 1; so (xab )bn � 1 divides (xab )n � 1 in F4[x; abN0]: It

follows that ((x
a
b )n � 1) � ((xab )bn � 1): Consequently, by the third isomorphism theorem for

rings we have
F4[x; abN0]=((x

a
b )n � 1)

((x
a
b )bn � 1)=((xab )n � 1)

'
F4[x; abN0]
((x

a
b )bn � 1)

' F4[x; aN0]
((xa)n � 1) :

This gives the embedding Cn ,! Cbn ,! Cn0 of codes, where Cn; Cbn and Cn0 are respectively

primitive BCH, non-primitive BCH and primitive BCH codes. The embedding Cn ,! Cbn is

de�ned as: a(xa) = a0+a1(xa)+:::+an�1(xa)n�1 7! a0+a1(x
a
b )b+:::+an�1(x

a
b )b(n�1) = a(x

a
b );

where a(xa) 2 Cn and a(x
a
b ) 2 Cbn:

The above discussion formulates the following theorem:

Theorem 73 Let Cn be a primitive BCH code of length n = 4s � 1 generated by g(xa) in

F4[x; aN0] of degree r: Then

1) there exists a non-primitive BCH code Cbn of length bn generated by g(x
a
b ) in F4[x; abN0]

of degree br,

2) the BCH code Cn is embedded in the BCH code Cbn:

Remark 74 g(xa) can be deduced from g(x
a
b ) by substituting x

a
b = y and then replacing y by

yb = xa:

Example 75 The following example is deduced by Example 68 and 71.

The BCH codes having bits from the Galois �eld F4 with designed distances d; d1 � 4 have
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generator polynomials g(x2) and g(x
2
3 ), on letting (x

2
3 ) = y; that is x2 = y3; we get

g(x
2
3 ) = (x

2
3 )17 + (x

2
3 )16 + (x

2
3 )15�+ (x

2
3 )14�+ (x

2
3 )13�+ �2(x

2
3 )12 + (x

2
3 )8 +

(x
2
3 )7 + (x

2
3 )6�+ �2(x

2
3 )5 + �2(x

2
3 )4 + (x

2
3 )3 + (x

2
3 )2�+ (x

2
3 )�+ �2

g(y3) = (y3)17 + (y3)16 + (y3)15�+ (y3)14�+ (y3)13�+ �2(y3)12 + (y3)8 +

(y3)7 + (y3)6�+ �2(y3)5 + �2(y3)4 + (y3)3 + (y3)2�+ (y3)�+ �2

g(x2) = (x2)14�+ (x2)13�+ (x2)12�2 + (x2)8 + (x2)7 + (x2)6�+ (x2)5�2 +

(x2)4�2 + (x2)3 + (x2)2�2 + (x2)�2 + 1:

Where g(x2) 2 F4[x; 2Z0] and is divisible by (x2)2 + (x2) + �; the generator polynomial of the

BCH code (15; 13) with designed distance d = 2. Table 23 shows that for a code in F4[x; 23N0]45

with designed distance d1 we have a code in F4[x; 2N0]15 with designed distance d embedded in

it.

Table 23: Embedding of C15 in C45

d0 (bn; k2) t1 d R1 (bn; k1) t R

3 (45; 33) 1 3 0:73 (15; 11) 1 0:733

11 (45; 15) 5 3 0:333 (15; 11) 1 0:733

15 (45; 9) 7 4 0:2 (15; 9) 2 0:6

18 (45; 8) 9 6 0:177 (15; 8) 3 0:53

21 (45; 6) 10 7 0:133 (15; 6) 4 0:4

22 (45; 4) 11 10 0:088 (15; 4) 5 0:266

31 (45; 3) 15 11 0:066 (15; 3) 5 0:2

45 (45; 1) 22 115 0:022 (15; 1) 7 0:066

5.4 General decoding principle

As the BCH code Cn is embedded in the non-primitive BCH code Cbn; so only decoding principal

for the code Cbn is explained. We use the decoding procedure which follows the same principle

as of the primitive binary BCH code.

Take a1 2 Fbn4 as a received vector. Now obtain the syndrome matrix of a1; and S(a1) =

110



a1HT . In this way, table of syndromes which is useful in determining the error vector e such that

S(a1) = S(e) is calculated. So the decoding of received vector a1 has done as the transmitted

vector v1 = a1� e. We acquire algebraic method for �nding e from the syndrome vector S(a1):

Let Cbn be the non-primitive BCH code with length bn and designed distance d1. Let H

be the (d1 � 1) � bn matrix over F4bs : Writing a1 = (a10; a
1
1; :::; a

1
bn�1) in the polynomial form

a1(x
a
b ) = a10 + a

1
1(x

a
b ) + a12(x

a
b )2 + :::+ a1bn�1(x

a
b )bn�1: So the syndrome of the vector a1 is

S(a1) = [ a10 a11 ::: a1bn�1 ]

26666666664

1 1 ::: 1

�c
1

�c
1+1 ::: �c

1+d1�2

�2c
1

�2(c
1+1) ::: �2(c

1+d1�2)

...
...

. . .
...

�(bn�1)c
1
�(bn�1)(c

1+1) ::: �(bn�1)(c
1+d1�2)

37777777775
and hence

S(a1) = [ Sc1 Sc1+1 ::: Sc1+d1�2 ];

where Sj = a10 + a
1
1�
j + :::a1bn�1�

(bn�1)j = a1(�j) for j = c1; c1 + 1; :::; c1 + d1 � 2:

Now, let a codeword v 2 Cbn is transmitted and the vector received is a1 = v1 + e; where e

is the error vector. Then S(e) = S(a1): Let e(x
a
b ) = e0+ e1(x

a
b )+ e2(x

a
b )2+ :::+ ebn�1(x

a
b )bn�1

be the error polynomial. Suppose i1; :::; im be the positions where an error has occurred. Then

ei 6= 0 if and only if i 2 I = fi1; :::; img: Hence e(x
a
b ) =

P
i2I ei(x

a
b )i: As the code corrects up

to t1 errors, where t1 =
j
d1�1
2

k
: So we assume m � t1; that is 2m < d1: Since S(e) = S(a1); we

have e(�j) = Sj for j = c1; c1+1; :::; c1+d1�2: Thus the 2m unknowns i1; :::; im and ei1 ; :::; eim

satisfy the following system of d1 � 1 linear equations in ei1 ; :::; eim :

P
i=I

ei�
ji = Sj ; j = c

1; c1 + 1; :::; c1 + d1 � 2:::::(1):

We �rst obtain a solution for the error positions i1; :::; im:We de�ne the error locator polynomial

f(x
a
b ) = f0 + f1(x

a
b ) + f2(x

a
b )2 + :::+ fm�1(x

a
b )m�1 + (x

a
b )m:
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Since f(�i) = 0 for each i 2 I; we have

f0 + f1(�
i) + :::fm�1(�

i)m�1 + (�i)m = 0:

On multiplying this equation by ei�ji; we get

f0ei�
ji + f1ei�

(j+1)i + :::fm�1ei�
(j+m�1)i + ei�

(j+m)i = 0:

for each i 2 I: Summing these m equations for i = i1; :::; ir and using the relations (1); we have

f0Sj + f1Sj+1 + :::fm�1Sj+m�1 + Sj+m = 0:

for each j = c1; c1+1; :::; c1+m� 1: Thus the m unknowns f0; f1; :::; fm�1 satisfy the following

m�m system of linear equations:

26666664
Sc1 Sc1+1 ::: Sc1+m�1

Sc1+1 Sc1+2 ::: Sc1+m
...

...
. . .

...

Sc1+m�1 Sc1+m ::: Sc1+2m�2

37777775

26666664
f0

f1
...

fm�1

37777775 =
26666664

Sc1+m

Sc1+m+1
...

Sc1+2m�1

37777775 :::::::(2):

Let S denote the coe¢ cient matrix in the above linear system. It can be veri�ed by direct

computation that S = V DV T ; where

V 1 =

26666664
1 1 ::: 1

�i1 �i2 ::: �im

...
...

. . .
...

�i1(m�1) �i2(m�1) ::: �im(m�1)

37777775 ;

D1 =

26666664
ei1�

i1c1 0 ::: 0

0 ei2�
i2c1 ::: 0

...
...

. . .
...

0 0 ::: eim�
imc1

37777775 :
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V 1 is a Vandermonde matrix. Since � is a non-primitive bnth root of unity in F4bs and i1; :::im

are distinct integers in f0; :::; bn � 1g; we have �i1 ; :::; �im are all distinct. Hence detV 6= 0:

Further, ei1 ; :::; eim are all nonzero and hence detD 6= 0: Therefore detS 6= 0; and linear system

(2) has a unique solution.

Let the number of positions where an error has occurred is m � t1: If the actual number of

error positions is less than m; then for any choice of distinct positions i1; :::im; the coe¢ cients

ei1 ; :::; eim cannot be all zero. So detD = 0: Hence m is the greatest positive integer � t1 such

that system (2) has a unique solution. Therefore we �nd the value of m by taking successively

m = t1; t1�1; ::: in system (2) until we have a value for which system (2) has a unique solution,

which gives us the error locator polynomial

f(x
a
b ) = f0 + f1(x

a
b ) + f2(x

a
b )2 + :::+ fm�1(x

a
b )m�1 + (x

a
b )m:

Now to �nd the roots of f(x
a
b ); we put x

a
b = �i; i = 0; 1; :::: By the de�nition of f(x

a
b ); these

roots are �i1 ; :::; �im : Thus we �nd the unique solution for the unknowns i1; :::im: Having thus

found the error vector e; we decode the received vector a as the codeword v1 = a1 � e:

To compute the syndrome of a BCH code we have S4 = (S1)
4; S8 = (S4)

2 and so on.

If m(x
a
b ) is the minimal polynomial of �; then S1 = a1(�) can be obtained by �nding the

remainder on dividing a1(x
a
b ) by m(x

a
b ) and then putting x

a
b = � in it. In general, to �nd Sj ,

we divide a1(x
a
b ) by m(x

a
b ) and �nd the remainder.

Decoding of the code Cn from the decoding of the code Cbn can be obtain as; take x
a
b = y;

which gives xa = yb. In this way the code polynomial v(x
a
b ) in F4[x; abN0]bn becomes v

1(y).

Again on replacing y by yb; we get v1(yb) = v1(xa): The remainder after dividing v(xa) by

(xa)n� 1; will be the decoded vector of F4[x; aN0]n and the generator polynomial g(xa) divides

v(xa):

The above discussion can be sum up in the following steps.

Step I: For a non-primitive BCH code Cbn with designed distance d1; let a(x
a
b ) be the

received polynomial with m errors, where m � t1:

Step II: Find the value of m by computing the syndromes; such that the system (2) has a

unique solution.
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Step III: Step II gives us the error locator polynomial f(x
a
b ): Now �nd the roots of f(x

a
b )

through which we obtain the error polynomial e(x
a
b ):

Step IV: The received polynomial a1(x
a
b ) is decoded as v1(x

a
b ) = a1(x

a
b )� e(xab ):

Step V: The code vector v in Cn can be drag out from the decoded code vector v1 in Cbn
by putting x

a
b = y in corresponding code polynomial v1(x

a
b ). This gives v1(x

a
b ) = v1(y); which

on replacing y by yb becomes v1(y) = v1(yb) = v1(xa):

Step VI: Divide v1(xa) obtain in Step V by (xa)n � 1, the remainder is the generator

polynomial g(xa) or its multiple of the code Cn: Hence its corresponding vector v 2 Cn:

Illustration

Let C45 be a (45; 31) non-primitive BCH code with designed distance d1 = 5: Assume that

a1(x
2
3 ) = (x

2
3 )15 + (x

2
3 )14 + (x

2
3 )13 + �(x

2
3 )12 + (x

2
3 )6 + (x

2
3 )5 + (x

2
3 )4

+�(x
2
3 )3 + (x

2
3 )2 + (x

2
3 ) + �;

is the received polynomial. The error position l = 2 and the syndromes are S1 = a1(�) = �3;

S2 = a
1(�2) = �6; S3 = a

1(�3) = �39 and S4 = (S1)4 = �12: The error locator polynomial is

given by f(x
2
3 ) = f0 + f1(x

2
3 ) + (x

2
3 )2: Then we have the following system of equations for f0;

f1:

24�3 �6

�6 �39

3524f0
f1

35 =

24�39
�12

35
24f0
f1

35 =

24�39�27
�6

�27

�6

�27
�3

�27

3524�39
�12

35 =
24�21
�3

35 :
Hence the error locator polynomial is f(x

2
3 ) = �21 + �3(x

2
3 ) + (x

2
3 )2: Trying successively

x = 1; �; �2; :::; we �nd that �6 and �15 are the roots. Hence the error polynomial is e(x
2
3 ) =

(x
2
3 )6+(x

2
3 )15: Thus we decode a1(x

2
3 ) as v1(x

2
3 ) = a1(x

2
3 )+e(x

2
3 ) = (x

2
3 )14+(x

2
3 )13+�(x

2
3 )12+

(x
2
3 )5 + (x

2
3 )4 + �(x

2
3 )3 + (x

2
3 )2 + (x

2
3 ) + �:

Now letting x
2
3 = y; this gives y3 = x2; we get
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v1(y3) = (y3)14 + (y3)13 + �(y3)12 + (y3)5 + (y3)4 + �(y3)3

+(y3)2 + (y3) + �

v1(y3) = v1(x2) = (x2)14 + (x2)13 + �(x2)12 + (x2)5 + (x2)4

+�(x2)3 + (x2)2 + (x2) + �:

Where v1(x2) 2 F4[x; 2N0]15 and is completely divisible by (x2)2 + (x2) + � the generator

polynomial of non-primitive BCH code (15; 13):

Following is the �ow chart of the complete scheme in which encoding and decoding of the
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non primitive BCH code Cbn and the primitive BCH code Cn is occurring simultaneously.

Flow chart: Simultaneous encoding and decoding of the BCH

codes Cbn and Cn

The following are the most signi�cant outcomes of this chapter.

1) Over the four elements Galois �eld F4, the existence of a non-primitive BCH code Cbn of

length bn based on a primitive n length BCH code Cn; is ensured.

2) Embedding of the BCH code Cn in the BCH code Cbn is obtained, through which encoding

and decoding of the BCH code Cn is obtain via the BCH code Cbn.

3) The BCH code Cbn has greater error correction capability than of the BCH code Cn with

a small deprivation in the code rate:
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4) In a BCH code of length n or bn, the code rate is better over the �eld F4 as compared to

the codes obtained over the �eld F2:

5) The possible choices of the BCH codes of a given length over F4 are more as compare to

the BCH codes over F2.

6) Among the non-primitive BCH codes of length bn there exists an interleaved code having

same code rate and error correction capability, but is capable of correcting burst of length b:

This work is further generalized using Galois rings.
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Chapter 6

Non-primitive BCH codes over

Galois rings

In error-correcting codes, the code rate and error correction trade-o¤ is one of the fundamental

questions. In this chapter, a smart and novel approach is introduced to lever this matter.

With the usage of a monoid ring a construction method of primitive and non-primitive BCH

codes over Galois ring Zq, where q = 2m with m > 1; is given. Consequently, for a �xed

m0; against n length primitive BCH codes Cn and C
0
n (over Z2 and Z2m0 respectively), there

exist two sequences fCbjngj�1 and fC
0

bjn
gj�1 of non-primitive BCH codes (over Z2 and Z2m0

respectively). Through embedding and the 2 reduction map, relations intra and across, these

two sequences are established. Thus, a data can be transmitted via any of coding scheme of

Cn; C
0
n; fCbjngj�1 and fC

0

bjn
gj�1: This selection of scheme is based on the choice of better code

rate or better error correction capability of the chosen code. A modi�ed Berlekamp-Massey

decoding algorithm is given for codes over Galois rings, which is also used for decoding BCH

codes over Galois �eld.

6.1 BCH-codes as ideals in Z2m [x; aN0]n and Z2m[x;
a
bjN0]bjn

Throughout Z2m ; is the ring of integers modulo 2m: the construction of BCH codes in Z2m [x; aN0]n
and Z2m [x; abjN0]bjn as: The residue �eld of local ring Z2m is Z2: So, there is a natural projec-

tion � : Z2m ! Z2 and it is extended as �0 : Z2m [x; aN0]! Z2[x; aN0] and �0 : Z2m [x; abjN0]!
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Z2[x; abjN0] de�ned as: �
0(f(xa) = f0 + f1xa + ::: + fnxna) = �(f0) + �(f1)xa + ::: + �(fn)xna

and �0(f(x
a

bj ) = f0 + f1x
a

bj + :::+ fnx
na

bj ) = �(f0) + �(f1)x
a

bj + :::+ �(fn)x
na

bj :

Accordingly, an irreducible polynomial f(xa) 2 Z2m [x; aN0] is said to be basic irreducible

polynomial if �0(f(xa) 2 Z2[x; aN0] is irreducible. In a similar fashion an irreducible polynomial

f(x
a

bj ) 2 Z2m [x; abjN0] is said to be basic irreducible polynomial if �
0f(x

a

bj ) 2 Z2[x; abjN0] is

irreducible.

The construction of a BCH code in the factor ring Z2m [x; aN0]n is similar to that of a BCH

code in Z2m [x] explained in [41]; as Z2m [x; aN0] � Z2m [x]: For this, let Cn be a binary BCH

code based on the positive integers c; d; q = 2 and n such that 2 � d � n with gcd(n; 2) = 1

and n = 2s � 1, where s is the degree of primitive irreducible polynomial p (xa) in Z2[x; aN0]:

Let � = �(�) be primitive element in GF (2; s): Then the corresponding element � has order

d(2s� 1) in R�; the group of unit elements of the Galois ring GR(2m; s) for some integer d� 1:

Then element �d generates the maximal cyclic subgroup G2s�1of R�: Let � = �d be a primitive

element of G2s�1. Then if �e1 ; �e2 ; :::; �ej are roots of the polynomial g(xa), we can generate a

BCH code over GR(2m; s) through this polynomial which is:

g(xa) = lcm(Me1(x
a);Me2(x

a); :::;Mej (x
a));

where Mei(x
a) is minimal polynomial of �ei . We call it a primitive BCH code over GR(2m; s):

Furthermore,

g(xa) = �0(g(xa)) = lcm(me1(x
a);me2 (x

a) ; :::;mej (x
a));

where mei(x
a) is minimal polynomial of �0(�ei); generates a BCH code over GF (2).

BCH codes in which a code has length bjn; j > 1; via the monoid ring Z2m [x; abjN0] for a

�xed m > 1: These codes are obtained with the help of irreducible polynomial p
0
(x

a

bj ) of degree

bjs over Z2m : The irreducible polynomial p
0
(x

a

bj ) is taken such that �0(p0(x
a

bj )) = p(x
a

bj ). So,

Z2m [x; abjN0]

(p0(x
a

bj ))
= fp0 + p1(x

a

bj ) + :::+ pbjs�1(x
a

bj )b
js�1 : p0; p1; :::; pbjs�1 2 Z2mg;

represents the set of residue classes of polynomials in indeterminate x
a

bj over Z2m ; modulo the

polynomial p0(x
a

bj ): This is a unitary commutative ring, denoted by R = GR
�
2m; bjs

�
and it is
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called the Galois extension ring of integers modulo ring Z2m ; having 2mb
js number of elements

for j � 0 and it is projected to a Galois �eld extension K = GF (2b
js);

Z2[x; abjN0]

(p(x
a

bj ))
= fp0 + p1(x

a

bj ) + :::+ pbjs�1(x
a

bj )b
js�1 : p0; p1; :::; pbjs�1 2 Z2g;

of prime �eld Z2 having 2b
js number of elements. We denote GR (2m; s) and GF (2s) by R and

K; and their corresponding multiplicative groups of units by R� and K� respectively.

From [26, Theorem XIII.7], it follows that a polynomial irreducible over Z2 is also irreducible

over Z2m : Therefore, the irreducible polynomials in Z2[x; abjN0] listed in Chapter 3, Proposition

50, are also irreducible in Z2m [x; abjN0].The values of b are chosen in such a way that, for an s

degree primitive irreducible polynomial in Z2[x; aN0] we have a bjs degree irreducible polynomial

in Z2m [x; abjN0] for m � 1: Now, after this selection the elements of the Galois ring GR(2
m; bjs)

are calculated with the help of irreducible polynomial p
0
(x

a

bj ); such that �0(p
0
(x

a

bj )) = p(x
a

bj ):

The following theorem extends [26, Lemma (XV.l)], from the case of polynomial ring to the

monoid ring, where the coe¢ cients are from Z2m .

Theorem 76 For j � 0 and a � 1; the Galois ring GR(2m; bjs); let p
0
(x

a

bj ) be a regular

polynomial in Z2m [x; abjN0]; such that p(x
a

bj ) 2 Z2[x; abjN0] has a simple (i.e., non multiple)

zero � in Z2. Then p
0
(x

a

bj ) has one and only one zero � in Z2m with �(�) = �:

Let R
�
andK

�
be the multiplicative groups of units in R = GR

�
2m; bjs

�
andK = GR(2b

js);

respectively. Then R
�
is an Abelian group and can be written in the direct product of its cyclic

sub-groups. The following Theorem extend [41, Theorem 2], for monoid rings.

Theorem 77 R� and R� has one and only one maximal cyclic subgroup. These cyclic subgroups

have order bjn and n respectively.

The cyclic subgroups of R
�
and R� are, respectively, generated by some powers of generators

of the cyclic groups K
�
and K�. These cyclic subgroups are, respectively, denoted by Gbjn and

Gn: Since, order of K� is same as of Gn and both are cyclic, hence isomorphic to each other.

Similarly, K
�
is isomorphic to Gbjn. The following lemma is an extension of [3, Lemma 3.1],

for the case of monoid rings.
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Lemma 78 Let � be an element of Gbjn of order bjn: Then the di¤erence �l1 � �l2 are units

in GR
�
2m; bjs

�
if 0 � l1 6= l2 � bjn� 1 for j � 0 and a � 1:

Proof. As �l1 � �l2 can be written as ��l2
�
1� �l1�l2

�
; where 1 denotes the unity of

GR
�
2m; bjs

�
: The �rst term ��l2 of product is a unit. The second term can be written as

1� �k for some integer k in the interval
�
1; bjn� 1

�
: Now if the element 1� �k is not a unit

for some 1 � k � bjn� 1; in GR
�
2m; bjs

�
; then 1� �k will be in the maximal ideal M of the

ring GR
�
2m; bjs

�
: Hence �

�
�k
�
= � (1) and therefore � has order k; a contradiction.

The following theorem is the extension of [3, Theorem 3.1].

Theorem 79 The minimum Hamming distance of BCH codes Cbjn and C
0

bjn
is d and satisfy

d � 2t+ 1 for j � 0 and a � 1:

Proof. Let c be a nonzero codeword in Cbjn or C
0

bjn
such that wH (c) � 2t: Then cHT = 0:

Deleting bjn� 2t columns of matrix H corresponding to zeros of the codeword, the new matrix

H
0
is Vandermonde. By lemma 78 , it follows that the determinant is unit in R or R. Hence,

the only possibility for c is the zero codeword.

The following extend [41, Theorem 3].

Theorem 80 [41, Theorem] Let � generate a cyclic group of order bjn in R�; where n = ps�1.

Then the polynomial (x
a

bj )
bjn � 1 can be factored as

(x
a

bj )
bjn � 1 = (x

a

bj � �)(x
a

bj � �2):::(x
a

bj � �bjn);

if and only if � (�) has order bjn in K
�
for j � 0 and a � 1:

Proof. Let � (�) = � has order bjn in K�
: Then (x

a

bj )
bjn�1 = (x

a

bj ��)(x
a

bj ��2):::(x
a

bj �

�b
jn): Let F = f�; �2; :::; �bjng: Since (x

a

bj )
bjn�1 has no multiple zeros inK�

; from Theorem 76,

it is concluded that; corresponding to each �l there is a unique element say �l in R
�
such that

� (�l) = �
l and �l is a root of (x

a

bj )
bjn � 1 in R�: In general, factorization over ring with zero

divisor is not unique. To show that (x
a

bj )
bjn � 1 can be factored as (x

a

bj ��)(x
a

bj ��2):::(x
a

bj �

�b
jn); where �l = �l for l = 1; 2; 3; :::; n; we have to show that the set F = f�; �2; :::; �bjng

exhausts all roots of (x
a

bj )
bjn � 1 in R�: Let �� be a root of (x

a

bj )
bjn � 1 not in F: Then � (��)
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is a root of (x
a

bj )
bjn � 1 over K�

and it cannot coincide with any element of F: Also � (��)

cannot be a new distinct element of F; because (x
a

bj )
bjn � 1 has exactly bjn roots in K�

: Thus,

(x
a

bj ��)(x
a

bj ��2):::(x
a

bj ��bjn) is the only possible factorization of (x
a

bj )
bjn�1 over R�: Now,

suppose that (x
a

bj )
bjn�1 can be factored over R� as above, as

�
p; bjn

�
= 1; then from Theorem

77, bjn must be divisor of pb
js � 1: This yields

(x
a

bj )
bjn � 1 = (x

a

bj � �)(x
a

bj � �2):::(x
a

bj � �bjn) over K�
:

Thus, � has order bjn because (x
a

bj )
bjn � 1 has no multiple zeros in K�

:

Extending [41, Lemma 1], for monoid ring we get the following results.

Lemma 81 Let � generates a cyclic subgroup of order bjn in K�
: Then � generates a cyclic

subgroup of order
�
bjn
�
d in R

�
, where d is an integer greater than or equal to 1, and �d

generates a cyclic subgroup Gbjn in R
�
for j � 0:

The following remark is of great importance, as it gives the exact value of the power of

element through which the maximal cyclic subgroup Gbjn in R = GR
�
2m; bjs

�
is generated.

Remark 82 In R = GR
�
2m; bjs

�
; the maximal cyclic subgroup Gbjn is generated by �

2m�1

and satis�es the relation �(2
m�1)bjn = 1 for all m � 1:The element � is selected in such a way

that, � generates a cyclic subgroup of order bjn in K
�
:

De�nition 83 Let � be a non-primitive element of Gbjn; then cyclic BCH code of length bjn

over R is called non-primitive BCH code generated by generating polynomial g
0
(x

a

bj ) having

roots �b
0
+1; �b

0
+2; :::; �b

0
+2t; where b

0
; j � 0 and t � 1; i.e.,

g
0
(x

a

bj ) = lcmfM1(x
a

bj );M2(x
a

bj ); :::;M2t(x
a

bj )g;

where Mi(x
a

bj ) is the minimal polynomial of �b
0
+i for 1 � i � 2t:

Locator vector in this case is given by � = (�0; �b
0
+1; �2(b

0
+1); :::; �(b

jn�1)(b0+1)) and parity

check matrix takes the form
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H =

26666664
1 �b

0
+1 �2(b

0
+1) � � � �(b

jn�1)(b0+1)

1 �b
0
+2 �2(b

0
+2) � � � �(b

jn�1)(b0+2)

...
...

...
. . .

...

1 �b
0
+2t �2(b

0
+2t) � � � �(b

jn�1)(b0+2t)

37777775 : (6.1)

The following theorem is an extension of [41, Theorem 4].

Theorem 84 Let g
0
(x

a

bj ) be a generator polynomial of cyclic BCH code over GR(2m; bjs) with

length bjn and �e1 ; �e2 ; :::; �ebjn�m be roots of g
0
(x

a

bj ) in Gbjn. Then the minimum Hamming

distance of the code is greater than the largest number of consecutive integers modulo bjn in the

set E = fe1; e2; :::; ebjn�mg :

Proof. Let C be the BCH code generated by g
0
(x

a

bj ) 2 Z2m [x; abjN0] and C1 be the code

generated by g(x
a

bj ) = �(g
0
(x

a

bj )) 2 Z2[x; abjN0]: Then for any v
0
(x

a

bj ) 2 C; v(x
a

bj ) 2 C1: Let

d be the number of consecutive integers modulo bjn in the set E: Suppose that the minimum

distance of C is less than d+ 1: Let r0(x
a

bj ) 2 C be such that bjn-tuple r has Hamming weight

less than d + 1: Then if r(x
a

bj ) = �0(r
0
(x

a

bj )); the Hamming weight of the vector r is less than

d+ 1: But g(x
a

bj ) has roots d consecutive powers of � (�) : Therefore by BCH bound the code

C1 has minimum distance at least d+ 1: Hence the minimum Hamming distance of C must be

at least d+ 1:

The algorithm for constructing a non-primitive BCH code over GR(2m; bjs) is as follows:

1. Choose an irreducible polynomial p(x
a

bj ) over GF (2b
js) such that p

0
(x

a

bj ) is irreducible

over Z2m and forms the extension ring R = GR
�
2m; bjs

�
.

2. Suppose � = �(�) is in K
�
. If � has order d:bjn in R

�
for some integer d; then �d

generates Gbjn:

3. If �e1 ; �e2 ; :::; �ebjn�m are selected to be roots of g
0
(x

a

bj ); �ndMei(x
a

bj ) for i = 1; 2; :::; bjn�

m: Thus, g
0
(x

a

bj ) is the lcm of these Mei(x
a

bj ): The length of code is lcm of orders of �ei

and minimum distance is greater than largest number of consecutive integers in the set e =

fe1; e2; :::; ebjn�mg :
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6.2 Relation between the sequences fCbjngj�0 and fC
0

bjngj�0 of

BCH codes

In this section, we discuss the relation between the BCH codes constructed through monoid

rings Z2[x; aN0]; Z2m [x; aN0]; Z2[x; abjN0] and Z2m [x;
a
bj
N0]. Accordingly, these are the codes Cn;

C0n; fCbjngj�1 and fC
0

bjn
gj�1 over GF (2s) ; GR (2m; s) ; GF (2b

js) and GR
�
2m; bjs

�
respectively.

Their relation are explained in the following steps:

1. Primitive polynomials in Z2[x; aN0] gives irreducible polynomials in Z2[x; abjN0] and

Z2m [x; abjN0]. Therefore, corresponding to n length primitive BCH codes Cn and C
0
n (over Z2

and Z2m respectively), there exist two sequences fCbjngj�1 and fC
0

bjn
gj�1 of non-primitive BCH

codes (over Z2 and Z2m).

2. The generator polynomial g
0
(x

a

bj ) of any bjn length code in the sequence fC0
bjn
gj�1

is transformed to generator polynomial g(x
a

bj ) of same bjn length code in fCbjngj�1 by the

reduction map � for j � 1; a > 1:

3. The generator polynomials of BCH codes fCbjngj�1 and fC
0

bjn
gj�1; after reduction modulo

(x
a

bj )n � 1; gives bj times repeated pattern of the generator polynomials of BCH codes Cn and

C0n respectively, when both n and bjn lengths BCH codes have same dimension k.

4. The generator polynomials g(x
a

bj ) of bjn length BCH codes in Z2[x; abjN0] are obtained

from the generator polynomials g
0
(x

a

bj ) of same length BCH codes in Z2m [x; abjN0] by reducing

the coe¢ cient modulo 2:

5. In last, we observe that for a �xed value of m the generator polynomial of a non primitive

BCH code
�
bjn; k

�
code obtained through the monoid ring Z2m [x; abjZ�0] can be obtained from

a generator polynomial of primitive BCH (n; k) code constructed through the monoid ring

Z2m [x; aZ�0]; a subring of polynomial ring Z2m [x].

The conversion of these BCH codes is as follows.

C0n ,! C0bn ,! C0b2n ,! ::: ,! C0
bln

# # # #

Cn ,! Cbn ,! Cb2n ,! ::: ,! Cbln

:

From C0n or from any bjn length code C0
bjn

we obtain all other codes by some simple steps.
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Corresponding to Cn or Cbjn codes we have a great variety of codes in Z2m [x; aN0] or Z2m [x; abjN0]

for di¤erent values of m: By increasing value of m, the number of codewords in these codes also

increases.

The following example illustrates the construction of non-primitive BCH codes when b >

a > 1 and for m = 2; 3:

Example 85 For a primitive polynomial p(x2) = 1 + (x2) + (x2)4 in Z2[x; 2N0]; there is an

irreducible polynomial p(x
2
3 ) = (x

2
3 )12 + (x

2
3 )3 + 1 in Z2[x; 23N0]; by Table 4, which is also

irreducible in Z22 [x; 23N0]. Here n = 15 and b = 3; it follows that bn = n
0
= 45: Let u be an

element in GF (2; 12); satis�es the relation u12+u3+1 = 0: Then u90 = 1 in GR(22; 12) shows

that the elements of the cyclic subgroup G45 are generated by � = u2 by 82: Now, to calculate

generator polynomials g
0
(x

2
3 ) we �rst calculate the minimal polynomials. By [27, Theorem

4.4.2], �; �2; �4; �8; �16; �32; �19; �38; �31; �17; �34; �23 all have same minimal polynomial

M1(x
2
3 ) which is the generating polynomial of BCH code with designed distances d0 = 3:

M1(x
2
3 ) = g(x

2
3 ) = (x

2
3 )12 + 2(x

2
3 )6 + 3(x

2
3 )3 + 1:

Similarly, other minimal polynomials can be calculated through which we get the following gen-

erating polynomials with designed distance d0 = 5; 7; 9; 11; and 45 respectively.

g
0
(x

2
3 ) = (x

2
3 )16 + 2(x

2
3 )14 + 3(x

2
3 )13 + (x

2
3 )12 + 2(x

2
3 )10 + (x

2
3 )7 +

2(x
2
3 )6 + 2(x

2
3 )5 + 2(x

2
3 )4 + 3(x

2
3 )3 + 2(x

2
3 )2 + 3(x

2
3 ) + 1

g
0
(x

2
3 ) = (x

2
3 )22 + 2(x

2
3 )20 + (x

2
3 )18 + 2(x

2
3 )17 + 2(x

2
3 )16 + (x

2
3 )15 +

2(x
2
3 )14 + 2(x

2
3 )13 + 3(x

2
3 )12 + 2(x

2
3 )11 + (x

2
3 )10 + (x

2
3 )9 +

2(x
2
3 )7 + 2(x

2
3 )6 + (x

2
3 )4 + 2(x

2
3 )2 + 3(x

2
3 ) + 1

g
0
(x

2
3 ) = (x

2
3 )34 + 2(x

2
3 )32 + 3(x

2
3 )31 + (x

2
3 )30 + (x

2
3 )19 + 2(x

2
3 )17 +

3(x
2
3 )16 + (x

2
3 )15 + (x

2
3 )4 + 2(x

2
3 )2 + 3(x

2
3 ) + 1
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g
0
(x

2
3 ) = (x

2
3 )38 + (x

2
3 )37 + 3(x

2
3 )36 + 2(x

2
3 )35 + 3(x

2
3 )34 + 2(x

2
3 )33 +

2(x
2
3 )32 + (x

2
3 )30 + (x

2
3 )23 + (x

2
3 )22 + 3(x

2
3 )21 + 2(x

2
3 )20 +

3(x
2
3 )19 + 2(x

2
3 )18 + 2(x

2
3 )17 + (x

2
3 )15 + (x

2
3 )8 + (x

2
3 )7 +

3(x
2
3 )6 + 2(x

2
3 )5 + 3(x

2
3 )4 + 2(x

2
3 )3 + 2(x

2
3 )2 + 1

g
0
(x

2
3 ) = (x

2
3 )44 + (x

2
3 )43 + (x

2
3 )42 + (x

2
3 )41 + :::+ (x

2
3 )2 + (x

2
3 ) + 1:

Now, g(x
2
3 ) = �(g

0
(x

2
3 )) gives the generator polynomials of BCH code C45 with symbols from

GF (2; 12): We have generator polynomials in Z22 [x; 23N0] by reducing the coe¢ cients modulo 2
2

of generator polynomials in Z22 [x; 23N0]: To drive primitive BCH code C015 from non-primitive

BCH code C045; among the generator polynomials of C
0
45 over Z22 [x; 23N0]; the generator poly-

nomials of (45; 11) ; (45; 7) ; (45; 5) ; (45; 1) codes are transformed to generator polynomials of

(15; 11) ; (15; 7) ; (15; 5) ; (15; 1) codes over Z22 [x; 2N0]: For example (45; 11) code has generator

polynomial

g
0
(x

2
3 ) = (x

2
3 )34 + 2(x

2
3 )32 + 3(x

2
3 )31 + (x

2
3 )30 + (x

2
3 )19 + 2(x

2
3 )17

+3(x
2
3 )16 + (x

2
3 )15 + (x

2
3 )4 + 2(x

2
3 )2 + 3(x

2
3 ) + 1;

by reduction modulo (x
2
3 )15 � 1; we have

g
0
(x

2
3 ) = (x

2
3 )4 + 2(x

2
3 )2 + 3(x

2
3 ) + 1 + (x

2
3 )4 + 2(x

2
3 )2 +

3(x
2
3 ) + 1 + (x

2
3 )4 + 2(x

2
3 )2 + 3(x

2
3 ) + 1;

it is seen that the pattern (x
2
3 )4 + 2(x

2
3 )2 + 3(x

2
3 ) + 1 is repeated three times, which is the

generator polynomial of (15; 11) code over Z22 [x; 2N0] by considering discriminant x2 instead of

x
2
3 : By the similar method we obtain other generator polynomials.

Similarly, by taking j = 2; non-primitive BCH codes of length 135 are obtained: Non-

primitive BCH codes in Z23 [x; 23N0] are obtained from same irreducible polynomial p
0
(x

2
3 ) =

(x
2
3 )12 + (x

2
3 )3 +1. In this case, u satisfying the relation u12 + u3 +1 = 0 which gives u180 = 1

in GR(23; 12), thus, the elements of G45 are generated by � = u4: Following is the generating

polynomials of BCH code with design distance d0 = 3:
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g
0
(x

2
3 ) = (x

2
3 )12 + 4(x

2
3 )9 + 6(x

2
3 )6 + 3(x

2
3 )3 + 1:

Following table gives the comparison between minimum distances, code rate and error cor-

rection capability of codes in Z2[x; 2N0]15;Z22 [x; 23N0]45 and Z22 [x;
2
32
N0]135:

Table 24: Comparison between C15; C45; C135

(n; k) d t R

(15; 11) 3 1 0:733

(15; 7) 5 2 0:466

(15; 5) 7 3 0:333

(15; 1) 15 7 0:066

(n; k) d1 t1 R1

(45; 33) 3 1 0:733

(45; 29) 5 2 0:644

(45; 23) 7 3 0:511

(45; 11) 9 4 0:244

(45; 7) 15 7 0:155

(45; 5) 21 10 0:11

(45; 1) 45 22 0:022

(n; k) d2 t2 R2

(135; 99) 3 1 0:733

(135; 87) 5 2 0:644

(135; 69) 7 3 0:511

(135; 33) 9 4 0:244

(135; 29) 15 7 0:215

(135; 23) 21 10 0:170

(135; 11) 27 13 0:0814

(135; 7) 45 22 0:0518

(135; 5) 63 31 0:0370

(135; 1) 135 67 0:007

:

From Table 25, it is clear that the BCH codes in Z22 [x; 23N0]3n has better error correction

capability but has less code rate than the BCH code in Z22 [x; 2N0]. Therefore, during data

transmission if more error correction capability is required, then choose 45 or 135 length BCH

codes and if better code rate is required, then use 15 length BCH codes. The minimum distance

of BCH codes having dimension less than 15 via Z22 [x; 23N0] is 3 times the minimum distance of

BCH codes in Z22 [x; 2N0]15. The BCH codes (15; 11) ; (15; 7) ; (15; 5) and (15; 1) have minimum

distance 3; 5; 7 and 15 respectively: And BCH codes (45; 11) ; (45; 7) ; (45; 5) and (45; 1) have

minimum distance 9; 15; 21 and 45 respectively.

Remark 86 BCH codes over Galois �eld GF (2b
js) and Galois ring GR

�
2m; bjs

�
; for j � 0;

have same code rates and error correction capability.

Remark 87 Number of codewords in BCH codes over Galois ring GR
�
2m; bjs

�
is greater than

127



number of codewords in BCH codes over its corresponding Galois �eld GF (2b
js) for j � 0:

The generalized polynomial g
0
(x

a

bj ) over Gbjn divides (x
a

bj )b
jn�1 in Z2m [x; abjN0]. So, there

is a BCH code C0
bjn

in the family fC0
bjn
gj�1 generated by g

0
(x

a

bj ) in Z2m [x; abjN0]bjn. By the

same argument, as bjn divides nj = 2b
js� 1; so (x

a

bj )b
jn� 1 divides (x

a

bj )nj � 1 in Z2m [x; abjN0]:

It follows that ((x
a

bj )nj � 1) � ((x
a

bj )b
jn � 1): Consequently, third isomorphism theorem for

rings gives
Z2m [x; abjN0]=((x

a

bj )nj � 1)
((x

a

bj )bjn � 1)=((x
a

bj )nj � 1)
'
Z2m [x; abjN0]

((x
a

bj )bjn � 1)
' Z2

m [x; aN0]
((xa)n � 1) :

Thus, there is embedding C0n ,! C
0

bjn
,! C0nj of BCH codes, whereas C

0
n ; C

0

bjn
; C0nj are respectively

primitive BCH, non-primitive BCH and primitive BCH codes. Whereas, the embedding C0n ,!

C0
bjn

is de�ned as:

a(xa) = a0+a1(x
a)+ :::+an�1(x

a)n�1 7! a0+a1(x
a

bj )b
j
+ :::+an�1(x

a

bj )b
j(n�1) = a(x

a

bj ); (6.2)

where a(xa) 2 C0n and a(x
a

bj ) 2 C0
bjn
. Also, if g

0
(x

a

bj�1 ) is the generator polynomial of the binary

non-primitive bj�1n length BCH code in Z2m [x; a
bj�1Z�0]bj�1n, then g

0
(x

a

bj ) is the generator

polynomial of the binary non-primitive bjn length BCH code in the ring Z2m [x; abjZ�0]bjn.

Thus C0
bj�1n is embedded in C

0

bjn
under the monomorphism de�ned as; a(x

a

bj�1 ) 7! a(x
a

bj ). This

sort of relationship also holds among Cn; Cbjn and Cnj :

The above discussion shapes the following.

Theorem 88 Let Cn and C
0
n be primitive BCH codes of length n = 2

s � 1 respectively obtained

by monoid rings Z2[x; aN0] and Z2m [x; aN0]: Then following hold.

1) There exist the sequences fCbjngj�1 and fC
0

bjn
gj�1 of non-primitive BCH codes such that

Cbjn and C
0

bjn
are respectively obtained by Z2[x; abjN0] and Z2m [x;

a
bj
N0] with bjn length for j � 1:

2) The primitive BCH codes Cn; C
0
n are respectively embedded in the non-primitive BCH

codes of the sequences fCbjngj�1 and fC
0

bjn
gj�1 for each value of j.

3) The non-primitive BCH codes of the sequences fCbjngj�1 and fC
0

bjn
gj�1 have following

embeddings Cbn ,! Cb2n ,! � � � ,! Cbjn ,! � � � and

C0bn ,! C
0

b2n ,! � � � ,! C
0

bjn
,! � � � respectively.

Conversion of generating polynomial g(xa) of C 0n to g(x
a

bj ) of C 0
bjn
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A generator polynomial of primitive (n; k) BCH code over Z2m , can be converted to the

generator polynomial of non-primitive
�
bjn; k

�
BCH code over Z2m by some simple steps.

First change the indeterminate xa to x
a

bj . Then write the generator polynomial of (n; k)

BCH code bj times. In last multiply the1st pattern of generator polynomial of (n; k) BCH code

with (x
a

bj )n(b
j�1); 2nd pattern with (x

a

bj )n(b
j�2), 3rd pattern with (x

a

bj )n(b
j�3)and so on.

The generator polynomial of (15; 11) BCH code is given by

g
0 �
x2
�
=
�
x2
�4
+ 2

�
x2
�2
+ 3

�
x2
�
+ 1:

To �nd generator polynomial of (45; 11) BCH code change the indeterminate x2 to x
2
3 as

g
0
(x

2
3 ) = (x

2
3 )4 + 2(x

2
3 )2 + 3(x

2
3 ) + 1:

Now, by writing this pattern 3 times and by multiplying 1st pattern with (x
2
3 )30; 2nd pattern

with (x
2
3 )15, 3rd pattern with 1; we have

g
0
(x

2
3 ) = (x

2
3 )34 + 2(x

2
3 )32 + 3(x

2
3 )31 + (x

2
3 )30 + (x

2
3 )19 + 2(x

2
3 )17 +

3(x
2
3 )16 + (x

2
3 )15 + (x

2
3 )4 + 2(x

2
3 )2 + 3(x

2
3 ) + 1;

which is the generator polynomial of (45; 11) BCH code. By this method, we can transform

primitive BCH codes of length 15 to following non-primitive BCH codes of length 45 and 135:

Table 25: Codes in which smaller codes repeats 3 times

(n; k) d t R

(15; 11) 3 1 0:733

(15; 7) 5 2 0:466

(15; 5) 7 3 0:333

(15; 1) 15 7 0:066

(bn; k) d1 t1 R1

(45; 11) 9 4 0:244

(45; 7) 15 7 0:155

(45; 5) 21 10 0:11

(45; 1) 45 22 0:022

(b2n; k) d2 t2 R2

(135; 11) 27 13 0:0814

(135; 7) 45 22 0:0518

(135; 5) 63 31 0:0370

(135; 1) 135 67 0:007

:

The overview of above discussion is shown in the following.

129



Code rate " Error corrtn. capacity "

Code length) n < bn < b2n < < bln

# of codwrds. " C0n ,! C0bn ,! C0b2n ,! ::: ,! C0
bln

# # # #

# of codwrds. # Cn ,! Cbn ,! Cb2n ,! ::: ,! Cbln

:

6.3 Decoding procedure

Interlando, Palazzo and Elia [18] proposed a decoding procedure based on Berlekamp-Massey

algorithm for Reed-Solomon and BCH codes over �nite ring Zq; where q is the power of some

prime p: Further, in [3] Andrade and Palazzo explained the decoding procedure of BCH code

C(n; �) with same algorithm given in [18] that can correct all errors up to designed distance t;

i.e., whose designed distance is greater than or equal to 2t+ 1:

In this study, we address decoding procedure of non-primitive BCH codes of length bjn

from the sequence fC0
bjn
gj�1 obtained through the monoid ring Z2m [x; abjN0]: Here the given

decoding procedure is similar to that of Berlekamp-Massey algorithm but with some modi�ca-

tions. Interestingly it is established that this algorithm is also applied to primitive BCH codes

of length n by taking a > 1 and j = 0: To describe the steps of algorithm, we �rst consider the

monoid ring Z2m [x; abjN0] and then � as a non-primitive element of maximal cyclic subgroup

Gbjn: The parity check matrix for non-primitive BCH codes over Z2m [x; abjN0] is given in (6.1),

where t represents the number of errors that can be corrected. Let c = (c1; c2; :::; cbjn) be

the codeword and r = (r1; r2; :::; rbjn) be the received vector. Then error vector is given by

e = (e1; e2; :::; ebjn) = r� c:

The proposed decoding procedure consists of four major steps.

Step 1: Calculation of the syndromes Si = rHT ; where i = 1; 2; :::; 2t:

Step 2: Calculation of the symmetric functions �1; �2; :::; �v from Si:

Step 3: Calculation of the error location numbers x1; x2; :::; xv from �1; �2; :::; �v:

Step 4: Calculation of the error magnitudes y1; y2; :::; yv from x1; x2; :::; xv and Si:

Since the calculation of syndromes is straightforward, so there is no need to analyze the
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�rst step. The possible error location numbers consists of the elements �0; �1; :::; �b
jn�1: The

elementary symmetric function �1; �2; :::; �v are de�ned as coe¢ cients of polynomial

(x
a

bj � x1)(x
a

bj � x2):::(x
a

bj � xv) = (x
a

bj )v + �1(x
a

bj )v�1 + :::+ �v�1(x
a

bj ) + �v; (6.3)

where v represents number of errors. These functions are obtained by �nding a solution

�1; �2; :::; �v with minimum possible v to the following set of linear equations over Z2m [x; abjN0]:

S�+v + S�+v�1�1 + :::+ S��1�v�1 + S��v = 0; � = 1; 2; :::; 2t� v; (6.4)

where S1; S2; S3; :::; S2t is the sequence of syndromes. The solution to (6.4) is obtained by

modi�ed Berlekamp-Massey algorithm which holds for commutative rings with identity. It is

an iterative algorithm because at nth step, we have to determine ln values �
(n)
i such that the

following n� ln equations hold with ln as small as possible and �(n)0 = 1:

Sn�
(n)
0 + S

(n)
n�1�

(n)
1 + :::+ S

(n)
n�ln�

(n)
ln

= 0 (6.5)

Sn�1�
(n)
0 + Sn�2�

(n)
1 + :::+ Sn�ln�1�

(n)
ln

= 0 (6.6)
...

...
...

...
... (6.7)

Sln+1�
(n)
0 + Sln�

(n)
1 + :::+ S1�

(n)
ln

= 0: (6.8)

At nth stage the solution is represented by the generalized polynomial �(n)(x
a

bj ) = �
(n)
0 +

�
(n)
1 (x

a

bj ) + ::: + �
(n)
ln
(x

a

bj )n and nth discrepancy (dn) is de�ned by dn = Sn+1�
(n)
0 + Sn�

(n)
1 +

:::+ Sn+1�ln�
(n)
ln
:

The input of algorithm is the values of syndromes S1; S2; :::; S2t which belong toGR
�
2m; bjs

�
and its output is the set of values �1; �2; :::; �v, such that the equations in (6.4) hold for minimum

value of v: Some initial conditions to start an algorithm are

�(�1)(x
a

bj ) = 1 l�1 = 0 d�1 = 1

�(0)(x
a

bj ) = 1 l0 = 0 d0 = S1
:

Then the further steps are performed as follow.
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1. 0! n:

2. If dn = 0; then �(n)(x
a

bj )! �(n+1)(x
a

bj ) and ln ! ln+1 and go to 5.

3. If dn 6= 0; then �nd an m
0 � n � 1 such that dn � ydm0 = 0 has a solution in y and

m
0 � ln has the largest value. Then �(n)(x

a

bj ) � y � (x
a

bj )n�m
0
� �

�
m
0�
(x

a

bj ) ! �(n+1)(x
a

bj ) and

max
n
ln; lm0 + n�m0

o
! ln+1:

4. It ln+1 = max fln;n+ 1� lng then go to step 5, else �nd the solution D(n+1)(x
a

bj )

with minimum degree l in the range max fln;n+ 1� lng � l � ln+1 such that �
�
m
0�
(x

a

bj )

de�ned by (x
a

bj )n�m
0
� �

�
m
0�
(x

a

bj ) = D(n+1)(x
a

bj ) � �(n)(x
a

bj ) is a solution to �rst m
0
power

sums, dm0 = �dn; with �
�
m
0�

0 a zero divisor in GR
�
2m; bjs

�
: If such a solution is found, then

D(n+1)(x
a

bj )! �(n+1)(x
a

bj ) and l! ln+1:

5. If n < 2t� 1; then Sn+2 + Sn+1�(n+1)1 + :::+ Sn+2�ln+1�
(n+1)
ln+1

! dn+1:

6. For n+ 1! n; if n < 2t; then go to step 2, else stop.

The coe¢ cients �2t1 ; �
2t
2 ; :::; �

2t
ln
of �(2t)(x

a

bj ) satisfy equation (6.4).

In the next step, the calculation of error location numbers requires one step on GF
�
2; bjs

�
because in GR

�
2m; bjs

�
the solution to (6.4) is not unique and the reciprocal to the polynomial

�2t(z
a

bj ) denoted by �(z
a

bj ) may not be right error locator polynomial

(z
a

bj � x1)(z
a

bj � x2):::(z
a

bj � xv); (6.9)

where xi = �j
0
are correct error location numbers, j

0
is an integer such that 1 � j0 � bjn � 1

and it indicates the position of ith errors in codeword. Error location numbers are calculated

by �rst computing the roots z1; z2; :::; zv of �(z
a

bj ) and then selecting x1; :::; xv among xi = �j
0

such that xi � zi are zero divisors in the Galois ring GR
�
2m; bjs

�
, these x1; :::; xv are correct

error location numbers.

In last step, error magnitudes y1; y2; :::; yv are calculated as

yj =

v�1P
l=0

�j;lSv�l

v�1P
l=0

�j;lx
v�l
j

, j = 1; 2; :::; v; (6.10)

and the coe¢ cients �j;l are given by �j;i = �i+xj ��j;i�1; where i = 0; 1; :::; v� 1; starting with
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�0 = �j;0 = 1: Here the important point is to show that the denominator in the expression of yj

must be invertible, i.e., unit in GR
�
2m; bjs

�
. From [13], the denominator is given by product

xj
v�1Q

i=1;i6=j
(xj � xi) ;

where each factor is of the form �i � �j for 0 � i 6= j � bjn � 1; and they all are units in

GR
�
2m; bjs

�
.

In the following example, we �rst apply this decoding algorithm on non- primitive BCH

code C45 over Z4 and then over Z2.

Example 89 Consider (15; 7) BCH code in Z4 [x; 2N0]15 with generator polynomial

g
0
(x2) = (x2)8 + (x2)7 + 3(x2)6 + 2(x2)5 + 3(x2)4 + 2(x2)3 + 2(x2)2 + 1:

Now, convert it to generating polynomial of (45; 7) BCH code in Z4[x; 23N0]45 which is:

g
0
(x

2
3 ) = (x

2
3 )38 + (x

2
3 )37 + 3(x

2
3 )36 + 2(x

2
3 )35 + 3(x

2
3 )34 + 2(x

2
3 )33 +

2(x
2
3 )32 + (x

2
3 )30 + (x

2
3 )23 + (x

2
3 )22 + 3(x

2
3 )21 + 2(x

2
3 )20 +

3(x
2
3 )19 + 2(x

2
3 )18 + 2(x

2
3 )17 + (x

2
3 )15 + (x

2
3 )8 + (x

2
3 )7 +

3(x
2
3 )6 + 2(x

2
3 )5 + 3(x

2
3 )4 + 2(x

2
3 )3 + 2(x

2
3 )2 + 1:

Its design distance d
0
= 15, so the error correction capability t0 equals to 7: For the sake of

convenience we correct only 2 errors here. Suppose that the received word is

r(x
2
3 ) = (x

2
3 )2 + 2(x

2
3 )4 + 2(x

2
3 )5 + 2(x

2
3 )7 + 3(x

2
3 )8 + (x

2
3 )9 +

(x
2
3 )10 + (x

2
3 )17 + 2(x

2
3 )19 + 2(x

2
3 )20 + 3(x

2
3 )21 + 2(x

2
3 )22 +

3(x
2
3 )23 + (x

2
3 )25 + (x

2
3 )32 + 2(x

2
3 )34 + 2(x

2
3 )35 + 3(x

2
3 )36 +

2(x
2
3 )37 + 3(x

2
3 )38 + (x

2
3 )39 + (x

2
3 )40:
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The syndromes from the received word are given by

S1 = 2u
6 + 3; S2 = 2u

3 + 1; S3 = u
6 + 3u3 + 1; S4 = 2u

6 + 1:

By applying modi�ed Berlekamp-Massey algorithm, we have

Table 26: Values of decoding steps

n �(n)(z
2
3 ) dn ln n� ln

�1 1 1 0 �1

0 1 S1 0 0

1 1 +
�
2u6 + 1

�
z
2
3 2u3 1 0

2 1 +
�
2u6 + 2u3 + 1

�
z
2
3 3u6 + 3u3 + 2 1 1

3 1 +
�
2u6 + 2u3 + 1

�
z
2
3 +

�
2u9 + 3u6 + u3

� �
z
2
3

�2
0 2 1

4 1 +
�
2u6 + 2u3 + 1

�
z
2
3 +

�
2u9 + 3u6 + u3

� �
z
2
3

�2
� 2 2

:

The roots of �(z
2
3 ) = (z

2
3 )2+

�
2u6 + 2u3 + 1

�
(z

2
3 )+

�
2u9 + 3u6 + u3

�
(reciprocal of �(4)(z

2
3 )) are

z1 = 3u
3+3 and z2 = 2u6+3u3: Among the elements �0; �1; �2; �3:::; �45; we have x1 = �6 and

x2 = �
24 is such that x1�z1 = 0 and x2�z2 = 0. It indicates that two errors have occurred, one

at position 6 and other at position 24 in the codeword. Correct elementary symmetric functions

are obtained as

(x
2
3 � x1)(x

2
3 � x2) = (x

2
3 )2 +

�
2u6 + 2u3 + 1

�
(x

2
3 ) +

�
2u9 + 3u6 + u3

�
Thus, �1 = 2u6 + 2u3 + 1 and �2 = 2u9 + 3u6 + u3: Now, by using equation (6.10), error

magnitudes are y1 = 1 and y2 = 3; hence the error vector is e(x
2
3 ) = (x

2
3 )6+3(x

2
3 )24: Therefore

the codeword is

c(x
2
3 ) = (x

2
3 )2 + 2(x

2
3 )4 + 2(x

2
3 )5 + 3(x

2
3 )6 + 2(x

2
3 )7 + 3(x

2
3 )8 +

(x
2
3 )9 + (x

2
3 )10 + (x

2
3 )17 + 2(x

2
3 )19 + 2(x

2
3 )20 + 3(x

2
3 )21 +

2(x
2
3 )22 + 3(x

2
3 )23 + (x

2
3 )24 + (x

2
3 )25 + (x

2
3 )32 + 2(x

2
3 )34 +

2(x
2
3 )35 + 3(x

2
3 )36 + 2(x

2
3 )37 + 3(x

2
3 )38 + (x

2
3 )39 + (x

2
3 )40:
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Now, by reducing the coe¢ cients of above generator polynomial modulo 2, we obtain generator

polynomial of (45; 7) primitive BCH code in Z2[x; 23N0]; which is

g(x
2
3 ) = (x

2
3 )38 + (x

2
3 )37 + (x

2
3 )36 + (x

2
3 )34 + (x

2
3 )30 + (x

2
3 )23 +

(x
2
3 )22 + (x

2
3 )21 + (x

2
3 )19 + (x

2
3 )15 + (x

2
3 )8 + (x

2
3 )7 +

(x
2
3 )6 + (x

2
3 )4 + 1:

Suppose that the received word is

r(x
2
3 ) = (x

2
3 )2 + (x

2
3 )8 + (x

2
3 )9 + (x

2
3 )10 + (x

2
3 )17 + (x

2
3 )21 +

(x
2
3 )23 + (x

2
3 )25 + (x

2
3 )32 + (x

2
3 )36 + (x

2
3 )38 +

(x
2
3 )39 + (x

2
3 )40:

The syndromes are given by S1 = u45; S2 = u45; S3 = u15; S4 = u45: Using modi�ed Berlekamp-

Massey algorithm, we have

Table 27: Values of decoding steps

n �(n)(z
2
3 ) dn ln n� ln

�1 1 1 0 �1

0 1 S1 0 0

1 1 +
�
u45
�
z
2
3 0 1 0

2 1 +
�
u45
�
z
2
3 u30 1 1

3 1 +
�
u45
�
z
2
3 +

�
u30
�
(z

2
3 )2 0 2 1

4 1 +
�
u45
�
z
2
3 +

�
u30
�
(z

2
3 )2 � 2 2

:

The roots of �(z
2
3 ) = (z

2
3 )2+

�
u45
�
z
2
3 +u30 (reciprocal of �(4)(z

2
3 )) are z1 = u6 and z2 = 1+u6:

Among the elements u0; u1; u2; u3:::; u45; we have x1 = u6 and x2 = u24 is such that x1�z1 = 0

and x2�z2 = 0. It indicates that two errors have occurred, one at position 6 and other at position

24 in the codeword. Correct elementary symmetric functions are obtained from equation

(x
2
3 � x1)(x

2
3 � x2) = (x

2
3 )2 + (x

2
3 ) +

�
1 + u3 + u6

�
:
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Thus, �1 = 1 and �2 = 1 + u3 + u6: Now, the error magnitudes are y1 = 1 and y2 = 1; hence

the error vector is e = (x
2
3 )6 + (x

2
3 )24 and the codeword is

c(x
2
3 ) = (x

2
3 )2 + (x

2
3 )6 + (x

2
3 )8 + (x

2
3 )9 + (x

2
3 )10 + (x

2
3 )17 +

(x
2
3 )21 + (x

2
3 )23 + (x

2
3 )24 + (x

2
3 )25 + (x

2
3 )32 +

(x
2
3 )36 + (x

2
3 )38 + (x

2
3 )39 + (x

2
3 )40:

This gives message polynomial m(x
2
3 ) = (x

2
3 )2 + (x

2
3 )6.

Corresponding to 2-error correcting (15; 7) primitive BCH code in Z2[x; 23N0]; we have 7-

error correcting (45; 7) non-primitive BCH code in Z4[x; 23N0] and Z2[x;
2
3N0]:

During communication, the codewords of any of the sequences fCbjngj�0 and fC
0

bjn
gj�0 of

BCH codes can be decoded by using modi�ed Berlekamp-Massey algorithm. In decoder we use

this single algorithm to deal all four types of codewords.

Remark 90 For bjn length BCH codes with same code dimension it requires more time and

lengthy calculations with increasing values of j: A method through which the decoding of bjn

length codes is done with the help of n length BCH codes. If in each pattern of bjn length BCH

code the errors are not more than the error correction capability of n length BCH codes, then

with the help of generator polynomial of n length BCH code we decode each pattern separately

and in last combine them to get bjn length codeword as shown in following example. Consider

transmitted vector

c = 001022323110000001022323110000001022323110000;

of BCH code (45; 7) in Z4[x; 23N0]45 as taken in example 89 and received vector is

r = 001022023010000001002323110030001022023100000:
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By splitting the received vector into patterns of length 15, we have

r1 = 001022023010000; r2 = 001002323110030

r3 = 001022023100000:

As number of errors in each pattern are two, so, we decode them with the help of generator poly-

nomial of 15 length BCH code over GR
�
22; 4

�
and in last combine them to get the transmitted

vector.

However, if the number of errors in some pattern of bjn length BCH code exceeds the error

correction capability of n length BCH codes, then we have no way to deal it with the help of n

length BCH code.
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Chapter 7

Applications

Cyclic codes and particularly BCH codes have a wide range of applications in information

theory, wireless communication and cryptography. Recently application in the formation of

DNA sequences is considered as codewords of BCH codes over the �eld F4. This chapter is

divided in three sections. Section 1 discuss the application of BCH codes over the �eld F2

in cognitive radio, Section 2 discusses the application of BCH codes over the �eld F4 in the

formation of DNA sequences and Section 4 discusses the application of BCH codes over �nite

rings and �nite �elds instantaneously in data transmission.

7.1 Application in cognitive radio

The cognitive radios constantly try to regulate modulation scheme, bandwidth, code rate,

power, and carrier frequency in an exertion to consume unused spectrum and elude interference

to the primary user. A clever design of error correcting codes might o¤er generous gains in

interweave multiple transmission cognitive radio arrangement. We have introduced a novel

coding scheme to manage data for primary as well as secondary user by including similar (or

dissimilar) binary BCH codes and a corresponding ascending sequence of embedded distinct

binary BCH codes with increasing error correction capability and varying code rates. In a

similar approach to an interweave model, initially the information capacity is utilized by the

primary users, while, in the existence of spectrum holes, the secondary user uses binary BCH

codes to competently utilize the vacant spectrum.
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7.1.1 Bandwidth limitations

Let Si be the signal set Mi be the number of signals in the signal set. Suppose v(T ) =

(v
(T )
0 ; :::; v

(T )
ni�1) 2 F

n
2 is the codeword of an (ni; ki)�code against a message u(T ) = (u

(T )
0 ; :::; u

(T )
ki�1) 2

Fki2 at time T and we divide each v(T ) into ni=mi blocks, where mi = log2M , M = 2mi : Then

modulation is a mapM : Fm2 ! Si de�ned as s
(T )
i = si(v

(T )), where s(T )i 2 Si and Si is a subset

of N�dimensional real Euclidean space, that is, Si � RN [23, Chapter 7].

Following [32], the bandwidth required for an (n; k) code isW = Ru
m (

1
R); where m = log2M;

Ru is the source data (transmission) rate and R = k
n ; the code rate.

The bandwidth may be maximize and minimize, depends upon the minimum and the maxi-

mum value of the ratio n=k = 1=R and the value ofm bits for the selection of modulation scheme

for di¤erent modulation types. These bits may be minimum and maximum for maximum and

minimum bandwidth. It can be seen as; Wmax =
Ru
mmin

( 1R)max and Wmin =
Ru
mmax

( 1R)min. Thus

there are possibilities; (i) m is �xed but 1
R is varying, (ii) m and 1

R both are varying.

For Cognitive radio multiple forward transformation under the interweave model we may

get spectrum corresponding to the given set of sequences fCj
bjni
gj0j=1; 1 � i � i0 of binary cyclic

codes for data transfer of the primary users. Now, the setup allow the secondary users having

the binary BCH code C0ni ; 1 � i � i0 mod for their data transfer. Accordingly the secondary

users obtain high speed data transfer as compare to its own scheme of the BCH code C0ni .

Furthermore since for each 1 � i � i0 there are sets of embeddings C0ni ,!C
1
b1ni

,! ::: ,!Cj0
bj0ni

of binary BCH codes of the sequences fCj
bjni
gj0j=1 and the binary BCH code C0ni is embedded

in each of binary cyclic codes Cj
bjni

for 1 � j � j0: It is also observed that corresponding to

the code rate R0ni =
ki
ni
of binary BCH code C0ni ; the code rate of binary BCH code Cj

bjni
is

Rj
bjni

= bjni�bjri
bjni

; for each 1 � j � j0. Consequently R0ni � R
1
b1ni
� R2b2ni ::: � R

j
bjni
� ... and

thus ::: � 1

Rj
bjni

� ::: � 1
R2
b2ni

� 1
R1
b1ni

� 1
R0ni
: This implies ::: � W j

bjni
= Ru

mi
( 1

Rj
bjni

) � ::: �

W 1
b1ni

= Ru
mi
( 1
R1
b1ni

) � W 0
ni =

Ru
mi
( 1
R0ni
): Thus, if we transmit data through any of the code in

the sequence fCj
bjni
gj0j=1; the bandwidth W

j
bjni

for each j � 1 will be lesser the bandwidth W 0
ni

required for data transmitted through the binary BCH code C0ni :
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7.1.2 Multiple forward transmission through embedded BCH codes

The secondary user has an opportunistic access to the spectrum, when the primary user is

absent and withdraw when the primary user wishes to transmit once another time, this is due

to the interweave model. Accordingly the codes constructed in Chapter 3, could deliver an

excellent pattern for wireless communication in which interference issue is controlled amicably.

We o¤er a multiple forward transmission model for Cognitive radio based on error correcting

codes which guarantees the noninterference among the users.

A plan of the multiple forward transformation model is o¤ered bellow.

It is supposed that a primary users family fPj
bjni
gj0j=0 from the set ffP

j
bjni
gj0j=0 : 1 � i � i0g;

use the family fCj
bjni
gj0j=0 of binary BCH codes from ffCj

bjni
gj0j=0 : 1 � i � i0g for its data

transmission. For each i 2 f1; 2; ::; i0g there are embeddings C0ni ,!C
1
b1ni

::: ,!Cj0
bj0ni

of binary

BCH codes:

The binary BCH codes in the sequence fCj
bjni
gj0j=0 are used for data transmission of the

sequence fPj
bjni
gj0j=1 of primary users with corresponding bandwidths fW

j
bjni
gj0j=0 such that

W
j0
bj0ni

� ::: � W 1
b1ni
� W 0

ni and the total bandwidth
Pj0
j=0W

j
bjni

is required for simultaneous

transmission.

Whenever all users fPj
bjni
gj0j=0 transmitting their data at a glance considered to be the

primary users. However, any of the user Pj
0

bj
0ni
; where j0 2 f1; 2; :::; j0g; enter as a secondary

user and opportunistically can use any of path of the sequence fPj
bjni
gj0j=j0 of primary users

whenever any of them is not using its allotted bandwidth. Here it is noticed that the data

of the secondary user Pj
0

bj
0ni
is con�gurated with the binary BCH code Cj

0

bj
0ni
and it requires

bandwidth higher than any of the bandwidth required for the data of any primary user of the

sequence fPj
bjni
gj0j=j0 . Consequently with high code rate, improved error correction capability

and with less bandwidth secondary user Pj
0

bj0ni
can transmit its data. Thus any primary user

P l
blni

of the sequence fPj
bjni
gj0j=0 can change its status as a secondary user S lblniwhenever any

of the user Pmbmni with l < m; is not using its path.

Functioning of the model

Notions

0 � j � bj0ni: And 1 � i � i0:

P0ni : Primary user corresponding to the binary primitive BCH code C
0
ni .
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Pj
bjni
: jth Primary user corresponding to the binary non primitive BCH code Cj

bjni
.

mj
i : information symbols for jth user.

Eji : jth encoder for m
j
i :

MPji
: Modulation for Ej

W j
bjni

: Bandwidth required for user Pj
bjni

for each j:

DMPji
: jth Demodulation

Dji : jth decoder

The data of Pji ; for each j; for each i; is modulated throughMPji
, whereMPji

is a modulation

map, i.e., MPji
: Fmq ! SPji

; where SPji
is the signal set; jPji

is the number of signals in the

signal sets SPji
. However for q = 2; jPji

= 2mi ;mi is a positive integer.

Multiple Cognitive Radio Forward Transmission Model (MCRFTM) or Sheet assortments

The functionality of MCRFTM is as follows. We call Si; 1 � i � i0; a sheet and
i0Y
i=1

Si;

the sheet assortments.

Table 28: Values of Si; 1 � i � i0
S1: C

0
n1 ,! C1bn1 ,! ::: ,! Cj0

bj0n1

S2: C
0
n2 ,! C1bn2 ,! ::: ,! Cj0

bj0n2

:

:

Si0 : C
0
ni0
,! C1bni0

,! ::: ,! Cj0
bj0ni0

:

:

:
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Table 29: CRFTM

P 0ni P 1bni P 2b2ni ::: P l
blni
::: Pmbmni ::: P

j0
bj0ni

,!

#

,!

#

,!

#

,!

#
Slni= P

l
ni ,!# #

m0
i m1

i m2
i ml

i m0
i ,! mm

i mj0
i

# # # # # #

E0i E1i E2i Eli E0i ,! Emi Ej0i

# # # # # #

MP0i MP1i MP2i MPli
MSli

=MPli
$MPmi MPj0i

# # # # # #

W 0
ni W 1

b1ni
W 2
b2ni

W l
b3ni

Wm
bmni

W j0
bj0ni

# # # # # #

DMP0i DMP1i DMP2i DMPli
DMSli

= DMPli
$ DMPmi DMPj0i

# # # # # #

D0i D1i D2i Dli Dli,! Dmi Dj0i

# # # # # #

P 0i;ni P 1i;bni P 2i;b2ni P li;b3ni ::: Sl
i;blni

= P li;blni$ Pmi;bmni ::: P
j0
i;bj0ni

Transmission steps for an arbitrary page of the book

0 � j � j0; 1 � i � i0
I. All users are Primary users

1. Data of the Pji ; for each j, users transform into the set mj
i of message bits.

2. For each j, the set mj of message bits encoded through encoder Eji .

3. For each j, the set Eji of encoded messages modulated throughMPji
4. For each j; the set MPj of modulated codewords passing through the channel having

bandwidth W j
i .

5. For each j, the corresponding transmitted signals ofMPji
are demodulated.

6. For each j, the received signals corresponding toMPji
are decoded through decoder Dji :
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7. The end of whole process is the destination of data of all users.

II. All users are not Primary users

Almost all steps of data transmission are same as I. However, the user P l
blni

enter as a

secondary user and opportunistically can use any of the path of the sequence fPj
bjni
gj0j=l of

primary users whenever any of them is not using its allotted bandwidth. For instance, if the

primary user Pmbmni ; where l � m; is not in, then the user P
l
blni

transmitted its data con�gurated

by the binary BCH code Cl
blni

through the binary BCH code Cmbmni used for data of primary

user Pmbmni and it is now considered as the secondary user S
l
blni
:

A Similar Multiple Cognitive Radio Forward Transmission Model (SMCRFTM)

or repeated pages of the book

This is a particular case of MCRFTM and it works as: For any �xed il 2 f1; 2; :::; i0g one

can choose the transmission scheme of multiple data transmission in such a way that there is a

binary BCH code of length nil with corresponding sequence fC
j
bjnil
gj0j=0 of binary BCH codes.

Furthermore all of the i0 transmissions are consisting on this same sequence of binary BCH

codes.

Table 30

Sil : C
0
nil
,! C1bnil

,! ::: ,! Cj0
bj0nil

Sil : C
0
nil
,! C1bnil

,! ::: ,! Cj0
bj0nil

:

:

:

Sil : C
0
nil
,! C1bnil

,! ::: ,! Cj0
bj0nil

:

:

:

A Constant Multiple Cognitive Radio Forward and Backward Transmission

Model (CMCRFBTM)

This is a case of MCRFTM and it works as: For any �xed i 2 f1; 2; :::; i0g one can choose

143



the transmission scheme of multiple data transmission in such a way that there is a �xed binary

BCH code C0n of length n with corresponding sequence fC
j
nig

j0
j=1 of binary BCH codes, where

Cjni =C
0
ni for each j. Furthermore all of the transmissions are consisting on this same sequence

of binary BCH codes.

Table 31

S1: C
0
n1= C

1
n1= ::: = C

j0
n1

S2: C
0
n2= C

1
n2= ::: = C

j0
n2

:

:

Si: C
0
ni= C

1
ni= ::: = C

j0
ni

:

:

:

Almost all steps of data transmission are same as I. However, any user P lni can enter as

a secondary user and opportunistically can use any of the path of the sequence fPjnig
j0
j=l of

primary users whenever any of them is not using its allotted bandwidth.

Illustration of MCRFTM

The irreducible non-primitive polynomials p(x
2
3 ) = 1 + (x

2
3 )3 + (x

2
3 )12 2 F2[x; 23Z0] and

p(x
2
32 ) = 1+(x

2
9 )9+(x

2
9 )36 2 F2[x; 29Z0] are obtained through the primitive irreducible polyno-

mial p(x2) = 1+(x2)+(x2)4 2 F2[x; 2Z0]. Consequently we get GF (24) � GF (212) � GF (236);

the ascending chain of Galois �eld extensions.
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Table 32

ni 15 45 135

si 4 12 36

[C0ni ; d]; R15 [C13ni ; d]; R45 [C232ni ; d]; R135

[(15,11),2,3],0.733

[(15; 7); 4; 5]; 0:466

[(15; 5); 6; 7]; 0:333

[(15; 1); 8]; :0667

[(45; 33); 2; 3]; 0:733

[(45,29),4,5],0.644

[(45; 23); 6; 7]; 0:5111

[(45; 11); 8; 9]; 0:244

[(45; 7); 10]; 0:1555

[(45; 5); 16]; 0:111

[(45; 1); 22]; 0:0222

[(135; 99); 2; 3]; 0:733

[(135; 87); 4; 5]; 0:644

[(135; 69); 6; 7]; 0:5111

[(135; 33); 8; 9]; 0:244

[(135,29),10],0.215

[(135; 23); 16]; 0:170

[(135; 11); 22]; 0:0814

[(135; 7); 28]; 0:0518

[(135; 5); 46]; 0:0370

[(135; 1); 64]; 0:007

For �xed mi = 2; the relation between bandwidth and code rate is given as; Wi =

wi(Ru=2)(1=R) = wiRu=2R; where wi is the bandwidth expansion, Ru is the transmission

rate and R = k=n is the code rate. The bandwidth with di¤erent code rates is given in the

following tables.

For wi = 1:2 and Ru = 64 kbps: Thus wi Ru = 76:8 and W j
i = 76:8=2Rj

bjn
= 38:4=Rj

bjn

kHz; where integer j � 0:

Table 33 (a)

ni 7 49 343

si 3 21 147

[C0ni ; d]; R
0
7;W

0
7 kHz [C17ni ; d]; R

1
49;W

1
49 kHz [C272ni ; d]; R

2
343;W

2
343 kHz

[(7,4),2],0.571,67.250 [(49,4),8],0.081,474.074 [(343,4),50],0.020,192
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Table 33 (b)

ni 15 45 135

si 4 12 36

[C0ni ; d]; R
0
15;W

0
15 kHz [C13ni ; d]; R

1
45;W

1
45 kHz [C232ni ; d]; R

2
135;W

2
135 kHz

[(15,11),2,3],0.733,52.387

[(15; 7); 4; 5]; 0:466; 82:403

[(15; 5); 6; 7]; 0:333; 115:315

[(15; 1); 8]; 0:066; 575:712

[(45; 33); 2; 3]; 0:733; 52:387

[(45,29),4,5],0.644,59.627

[(45; 23); 6; 7]; 0:511; 75:122

[(45; 11); 8; 9]; 0:244; 157:377

[(45; 7); 10]; 0:155; 246:945

[(45; 5); 16]; 0:111; 345:945

[(45; 1); 22]; 0:022; 1729:729

[(135; 99); 2; 3]; 0:733; 52:387

[(135; 87); 4; 5]; 0:644; 59:627

[(135; 69); 6; 7]; 0:511; 75:122

[(135; 33); 8; 9]; 0:244; 157:377

[(135,29),10],0.215,178.604

[(135; 23); 16]; 0:170; 225:882

[(135; 11); 22]; 0:081; 471:744

[(135; 7); 28]; 0:0518; 741:312

[(135; 5); 46]; 0:037; 1037:837

[(135; 1); 64]; 0:007; 5485:714

Table 34 (c)

ni 63 189 567

si 6 18 54

[C0ni ; d]; R
0
63;W

0
63 kHz [C13ni ; d]; R

1
189;W

1
189 kHz [C232ni ; d]; R

2
567;W

2
567 kHz

[(63,51),4],0.809,47.436 [(189,123),10],0.650,59.013 [(567,123),32],0.216,177.040

146



7.1.3 CRFTM for BCH codes

From example 63, the (135; 29) binary non-primitive BCH code C135 with designed distance

d = 4 has bandwidth W135 = 178:6046: The received polynomial

a2(x
2
9 ) = (x

2
9 )106 + (x

2
9 )103 + (x

2
9 )102 + (x

2
9 )97 + (x

2
9 )93 + (x

2
9 )91 +

(x
2
9 )90 + (x

2
9 )61 + (x

2
9 )58 + (x

2
9 )57 + (x

2
9 )52 + (x

2
9 )48 + (x

2
9 )46 +

(x
2
9 )45 + (x

2
9 )38 + (x

2
9 )16 + (x

2
9 )13 + (x

2
9 )12 + (x

2
9 )7 + (x

2
9 )3 + (x

2
9 )2 + (x

2
9 ) + 1

is decoded as

v2(x
2
9 ) = a2(x

2
9 ) + e(x

2
9 ) = (x

2
9 )106 + (x

2
9 )103 + (x

2
9 )102 + (x

2
9 )97 + (x

2
9 )93 + (x

2
9 )91 +

(x
2
9 )90 + (x

2
9 )61 + (x

2
9 )58 + (x

2
9 )57 + (x

2
9 )52 + (x

2
9 )48 + (x

2
9 )46 + (x

2
9 )45 +

(x
2
9 )16 + (x

2
9 )13 + (x

2
9 )12 + (x

2
9 )7 + (x

2
9 )3 + (x

2
9 ) + 1

On replacing x
2
9 = y; this gives y3 = x

2
3 ; which gives

v2(x
2
3 ) = (x

2
3 )16 + (x

2
3 )13 + (x

2
3 )12 + (x

2
3 )7 + (x

2
3 )3 + (x

2
3 ) + 1 2 C45;

where v2(x
2
3 ) is the generator polynomial of non-primitive binary BCH code (45; 29) with

designed distance 4; and bandwidthW45 = 59:6273: Again on letting x
2
3 = y; this gives y3 = x2;

we get v2(x2) = (x2)13+(x2)12+(x2)7+(x2)3+1 2C15; where C15 is primitive binary BCH code

(15; 11) having bandwidth W15 = 52:3874; it is due to the reason that the generator polynomial
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g(x2) = (x2)4 + (x2) + 1 divides v2(x2):

P 07 � P 149� P 2343

# # �

F 72 ,!

#
F 492 F 3432

# # #

C07� F 72 C07 ,! C149� F 492 C2343� F 3432
# # #

MP0 MP0$MP1 MP2

# # #

W 0
7= 67:2504 W 1

49= 474:0740 W 2
343= 1920

# # #

DMP0 DMP0$ DMP1 DMP2

# # #

C07 C07 ,! C149 C2343

# # #

P 07 P 07$ P 149 P 2343

CRFTM for BCH codes (7; 4), (49; 4); (343; 4)
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P 015� P 145� P 2135

# # �

F 152 ,!

#
F 452 F 1352

# # #

C015� F 152 C015,! C145� F 452 C2135� F 1352
# # #

MP0 MP0$MP1 MP2

# # #

W15= 52:3874 W189= 59:6273 W135= 178:6046

# # #

DMP0 DMP0$ DMP1 DMP2

# # #

C015 C015,! C145 C2135

# # #

P 015 P 015$ P 145 P 2135

CRFTM for BCH codes (15; 11), (45; 29); (135; 29)
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P 063� P 1189� P 2567

# # �

F 632 ,!

#
F 1892 F 5672

# # #

C063� F 632 C063,! C1189� F 1892 C2567� F 5672
# # #

MP0 MP0$MP1 MP2

# # #

W 0
63= 47:4366 kHz W 1

189= 59:0133 kHz W 2
567= 177:0401 kHz

# # #

DMP0 DMP0$ DMP1 DMP2

# # #

C063 C063,! C1189 C2567

# # #

P 063 P 063$ P 1189 P 2567

CRFTM for BCH codes (63; 51), (189; 123); (567; 123)

By Table 5a, 5b and 5c it is observed that corresponding to the set of BCH codes (15; 11),(45; 29)

and (135; 29) (respectively (7; 4),(49; 4) and (343; 4); (63; 51), (189; 123); (567; 123)) the required

bandwidths respectively are 52:3874 kHz, 59:6273 kHz and 178:6046 kHz (respectively 67:2504

kHz; 474:0740 kHz and 1920 kHz; 47:4366 kHz; 59:0133 kHz and 177:0401 kHz):

For the sequences of binary BCH codes (7; 4),(49; 4),(343; 4); (15; 11),(45; 29),(135; 29)and

(63; 51) (189; 123),(567; 123)) from Tables 33a, 33b and 33c with their corresponding code rates

and using the 4psk modulation schemes, we realize the symbol error rate (SER) verses signal

to noise ratio (SNR) (see Fig -1, Fig -2, Fig -3). It is apparent from the Fig 3 that SER verses

SNR of the sequence of binary BCH codes (63; 51) (189; 123),(567; 123) is convergent as compare

to the other two sequences (7; 4),(49; 4),(343; 4) and (15; 11),(45; 29); (135; 29) of binary BCH
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codes.

Fig-1 Es/No versus SER with di¤erent code rate

Fig-2 Es/No versus SER with di¤erent code rate
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Fig-3 Es/No versus SER with di¤erent code rate

Remark 91 In CRFTM, the BCH codes are with larger lengths and higher error correction

capability whenever sequence is going ahead.

(i) User of any lesser spectrum hole can be shifted to larger spectrum hole in case it is vacant;

(ii) Error correction capability will be enhanced in case of shifting the holes;

(iii) Accumulative bandwidth is supporting in getting higher e¢ ciency.

CMCRFBTM

Table 34 (a)

n 7 7 7

s 3 3 3

[C0ni ; d]; R
0
7;W

0
7 kHz [C0ni ; d]; R

0
7;W

0
7 kHz [C0ni ; d]; R

0
7;W

0
7 kHz

[(7,4),2],0.571,67.2504 [(7,4),2],0.571,67.2504 [(7,4),2],0.571,67.2504
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Table 34 (b)

n 15 15 15

s 4 4 4

[C0ni ; d]; R
0
15;W

0
15 kHz [C0ni ; d]; R

0
15;W

0
15 kHz [C0ni ; d]; R

0
15;W

0
15 kHz

[(15,11),2,3],0.733,52.3874 [(15,11),2,3],0.733,52.3874 [(15,11),2,3],0.733,52.3874

Table 34 (c)

n 63 63 63

s 6 6 6

[C0ni ; d]; R
0
63;W

0
63 kHz [C0ni ; d]; R

0
63;W

0
63 kHz [C0ni ; d]; R

0
63;W

0
63 kHz

[(63,51),4],0.8095,47.4366 [(63,51),4],0.8095,47.4366 [(63,51),4],0.8095,47.4366
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P 07 � P 17 � P 27

# # �

F 72 ,!

#
F 72 F 72

# # #

C07� F 72 C07� F 72 C07� F 72
# # #

MP0 MP0$MP1 MP2

# # #

W 0
7= 67:2504 W 1

7= 67:2504 W 2
7= 67:2504

# # #

DMP0 DMP0$ DMP1 DMP2

# # #

C07 C07 C07

# # #

P 07 P 07$ P 17 P 27

CRFTM for BCH codes (7; 4), (7; 4); (7; 4)
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P 015� P 115� P 215

# # �

F 152 ,!

#
F 152 F 152

# # #

C015� F 152 C015,! C115� F 152 C215� F 152
# # #

MP0 MP0$MP1 MP2

# # #

W 0
15= 52:3874 W 1

15= 52:3874 W 2
15= 52:3874

# # #

DMP0 DMP0$ DMP1 DMP2

# # #

C015 C015 C015

# # #

P 015 P 015$ P 115 P 215

CRFTM for BCH codes (15; 11), (15; 11); (15; 11)
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P 063� P 163� P 263

# # �

F 632 ,!

#
F 632 F 632

# # #

C063� F 632 C063� F 632 C063� F 632
# # #

MP0 MP0$MP1 MP2

# # #

W 0
63= 47:4366 kHz W 1

63= 47:4366 kHz W 2
63= 47:4366 kHz

# # #

DMP0 DMP0$ DMP1 DMP2

# # #

C063 C063 C063

# # #

P 063 P 063$ P 163 P 263

CRFTM for BCH codes (63; 51), (63; 51); (63; 51)

Remark 92 In CMCRFBTM, same BCH code is repeated for any spectrum hole and thus we

obtain the following outcomes.

(i) Any user can move to any of the hole in case it is vacant.

(ii) Error correction capability is �xed for all BCH codes con�gured with spectrum holes.

(iii) Accumulative bandwidth is not supporting in higher e¢ ciency.

7.2 Application in DNA formation

DNA (or deoxyribonucleic acid) is an inherited material in humans and almost all other or-

ganisms. Nearly every cell in a human�s body has the same DNA. Mostly DNA is located in

the cell nucleus. The information in DNA is stored as a code made up of four chemical bases:

156



adenine (A), guanine (G), cytosine (C), and thymine (T). Human DNA consists of about 3

billion bases, and more than 99 percent of those bases are the same in all people. The order, or

sequence, of these bases determines the information available for building and maintaining an

organism, similar to the way in which letters of the alphabet appear in a certain order to form

words and sentences.

DNA bases pair up with each other, A with T and C with G, to form units called base

pairs. Each base is also attached to a sugar molecule and a phosphate molecule. Together, a

base, sugar, and phosphate are called a nucleotide. The order, or sequence, of these bases

determines what biological instructions are contained in a strand of DNA. For example, the

sequence ATCGTT might instruct for blue eyes, while ATCGCT might instruct for brown.

DNA contains the instructions needed for an organism to develop, survive and reproduce. To

carry out these functions, DNA sequences must be converted into messages that can be used

to produce proteins, which are the complex molecules that do most of the work in our bodies.

Each DNA sequence that contains instructions to make a protein is known as a gene. An

important property of DNA is that it can replicate, or make copies of itself. Each strand of

DNA can serve as a pattern for duplicating the sequence of bases. Researchers refer to DNA

found in the cell�s nucleus as nuclear DNA. An organism�s complete set of nuclear DNA is called

its genome.

In [25], the authors showed that the DNA also contain an error correcting code. They

proposed that if a linear block error correcting code is present in DNA then some bases would

be a linear function of the other bases in each set of bases. An e¢ cient procedure is given

to determine if such an error correcting code is present in the base sequence. Furthermore in

[11], Faria et al. con�rmed that there are DNA sequences that can be identi�ed as codewords

for error correcting codes. In [1], Abualrub et al. proposed a theory for constructing linear

and additive cyclic codes of odd length over F4 = f0; 1; �; �2 = 1 + �g that are suitable for

DNA computing. In [10], Faria et al. have showed the existence of DNA sequences which can

be identi�ed as codewords of BCH codes over the �eld F4. They have proposed an algorithm

capable of producing DNA sequences, associated with coding regions of genes, as codewords

of error-correcting codes. Their results allow the use of e¢ cient computer simulations in the

analysis of biological processes such as polymorphism and mutation, consequently reducing time
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spent in laboratorial experiment. Much work has done in this area see ([12] and [8]).

In this section, we discuss the application of newly constructed non-primitve BCH codes

over the �eld F4, explain in chapter 5, in the formation of DNA sequences followed by the

process discussed in [10, Table 1]. In [10, Table 1], the authors proposed an algorithm in which

they �rst consider a DNA sequence as; if it were a codeword and make the conversion of the

24 permutations between the set of nucleotides N = fA;C;G; Tg and the code alphabet from

the �eld F4 = f0; 1; �; �2 = 1 + �g. To check whether each one of the 24 possibilities is in fact

a codeword, they use the relation v:HT = 0, where v is a possible codeword. To analyze the

di¤erence between the DNA sequence and the codeword, three other possibilities for nucleotides

in each position in the DNA sequence is analyzed, for each permutation, and again the relation

v:HT = 0 is used to verify whether v is a codeword.

Following the same strategy our construction gives repeated DNA sequences whenever both

the primitive and non-primitve BCH codes have same dimension. Repeated sequences (repet-

itive elements, or repeats) are patterns of nucleic acids (DNA or RNA) that occur in multiple

copies throughout the genome. There are 3 major categories of repeated sequence: 1) Ter-

minal repeats, 2) Tandem repeats, 3) Interspersed repeats. We are getting tandem repeating

sequence. Repetition of a pattern of one or more nucleotides in DNA such that repetition is

directly adjacent to each other is called Tandem repeats. Several protein domains also form

tandem repeats within their amino acid primary structure. For example in ATTCG ATTCG

ATTCG the sequence ATTCG is repeated three times. Tandem repeat describes a pattern

that helps determine an individual�s inherited traits. Tandem repeats can be very useful in

determining parentage.

In the following example we show how a DNA sequence associated with a generator poly-

nomial of a BCH code tandem repeats.

Example 93 The following example deals with a non primitive BCH code of length 189 based

on the primitive BCH code of length 63 using same primitive polynomial discussed in [10,

Table 1], for Triticum aestivum with GI number 78096542:For a primitive polynomial p(x2) =

(x2)3 + b(x2)2 + (x2) + � in F4[x; 2N0] there is a non-primitive irreducible polynomial p(x
2
3 ) =

(x
2
3 )9+b(x

2
3 )6+(x

2
3 )3+� in F4[x; 23N0]: Let � 2 GF (4

6); satisfying the relation �9+b�6+�3+� =

0: Using this relation we get �189 = 1: Following the above construction we get the following
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tables of BCH codes C63 and C189 over F4[x; 2N0] and F4[x; 23N0]:

Table 35:BCHcodes C63 and C189 over F4[x; 2N0] and F4[x;
2

3
N0]:

(n; k) d t R

(63; 60) 3 1 0:952

(63; 57) 4 1 0:904

(63; 54) 5 2 0:857

(63; 51) 7 3 0:809

(63; 48) 8 3 0:761

(63; 45) 9 4 0:714

(63; 42) 11 5 0:666

(63; 39) 12 5 0:619

(63; 36) 13 6 0:571

(63; 33) 15 7 0:523

(bn; k1) d1 t1 R1

(189; 180) 3 1 0:952

(189; 168) 5 2 0:888

(189; 156) 7 3 0:825

(189; 147) 9 4 0:777

(189; 135) 11 5 0:714

(189; 117) 15 7 0:619

(189; 102) 21 10 0:539

(189; 81) 27 13 0:428

(189; 57) 33 16 0:301

(189; 54) 39 19 0:285

The generating polynomial of the code (63; 57) repeats three times in the generating polynomial

of the code (189; 57) that is:

g(x2) = (x2)6 + (x2)5 + (x2)4 + (x2) + 1

g(x
2
3 ) = (x

2
3 )132 + (x

2
3 )131 + (x

2
3 )130 + (x

2
3 )127 + (x

2
3 )126 + (x

2
3 )69 + (x

2
3 )68

+(x
2
3 )67 + (x

2
3 )64 + (x

2
3 )63 + (x

2
3 )6 + (x

2
3 )5 + (x

2
3 )4 + (x

2
3 ) + 1:

Therefore by Remark 72 the codewords in (63; 57) also repeats 3 times in the codewords of

(189; 57): This means that the whole DNA sequence generated by (63; 57) BCH code over F4 in

[10, Fig 1] tandem repeats three times to form a DNA sequence associated with a codeword in
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(189; 57): Hence we get:

Fig 4: DNA sequence corresponding to a codeword of

length 189 such that a DNA sequence associated with a

codeword of length 63 is tandem repeating in it.

In this sequence we are getting triple nucleotide polymorphism occurring after a �x interval.

Similarly for other sequences discussed in [10, Fig 1 and Fig 2], we get triple nucleotide poly-

morphism.

7.3 Application in data transformation

In coding theory the noisier the channel, the longer the codeword has to be to ensure perfect

communication. But the longer the codeword, the longer it takes to transmit the message.

Therefore, a good communication requires precisely matching codeword length to the level of

noise in the channel. Wireless devices, such as cell phones or Wi-Fi transmitters, regularly send

out test messages to estimate noise levels, so they can adjust their codes accordingly. However,

as in cell phone reception quality can vary at locations just a few feet apart or even at a single

location. Noise measurements quickly become outdated, and wireless devices routinely end up

with codewords that are too long, wasting bandwidth, or too short, making accurate decoding

impossible.

In this work, our newly constructed codes are linked in such a way that we may easily shift

the data from smaller code of length n to any of larger code of length bjn in the sequences

fC 0

bjn
gj�1; and fCbjngj�1, according to requirement of noise levels and obtain the bene�t of
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better error correction. Similarly, for fast transmission of code we can shift data from bjn length

code to n length code. Furthermore, the bandwidth is maximally utilized by the code Cn and

C
0
n because they are embedded in codes of the sequences fCbjngj�1 and fC

0

bjn
gj�1 respectively.

Therefore for a �xed m; against n length primitive BCH codes Cn and C
0
n over Z2 and Z2m ,

there exist two sequences fCbjngj�1 and fC
0

bjn
gj�1 of non-primitive BCH codes over Z2 and Z2m

respectively. Through embedding and the p reduction map these two sequences are established.

Hence a data can be transmitted via any of the coding schemes Cn; C
0
n; fCbjngj�1 and fC

0

bjn
gj�1:

This selection of scheme is based on the choice of better code rate or better error correction

capability of the chosen code.

A non-primitive BCH code in the family fC 0

bjn
gj�1 or fCbjngj�1 has larger code length if

j is larger. However, if C
0

bln
is a code from the sequence fC 0

bjn
gj�1 and Cbln is a code from

the sequence fCbjngj�1: They have same code length, code rate and error correction capability

but C
0

bln
have more codewords than Cbln: By increasing codewords maximum information per

unit time is transferred, thus, the code C
0

bln
has more bene�t than the code Cbln. Besides this,

the long length non- primitive BCH codes C
0

bln
and Cbln contain the information of smaller

primitive BCH codes C
0
n and Cn.

For any jm0
; where 1 � 2 � ::: � jm0

; the synchronized encoding and decoding of the BCH

codes Cbjm0n and C
0

bjm0n
are considered. Accordingly, any chosen BCH codes Cbjn and C

0

bjn

with 0 � j < jm0 ; for data transmission, can be replace by BCH codes Cbjm0n and C
0

bjm0n
;

respectively, to decode simultaneously the codewords of BCH codes Cn and C
0
n. The whole

scheme is described in the following �gure 1, where E(C
0

bjn
); D(C

0

bjn
); E(Cbjn) and D(Cbjn)

stands the encoder and decoder of C
0

bjn
and Cbjn respectively, for all 0 � j < jm0 . EC and CR

are use for error correction and code rate of the code and the arrow " ,! " shows the embedding

of codes.
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7.4 Summary

In short these are the following applications of non-primitive BCH codes constructed on the

base of primitive BCH codes over the Galois �eld F2, the Galois �eld F4 and the �nite Galois

rings F2m :

The BCH codes over the Galois �eld F2, gives a novel interweave multiple transmission model

for cognitive radios. The data of set fPj
bjni
; 1 � i � i0gj0j=0 of primary users is con�gured and

transmitted through the set fCj
bjni

1 � i � i0gj0j=0 of binary BCH codes. However, corresponding

to each primary user Pj
bjni
; the data of the family fPj

bjni
gj0j=1 of primary users is con�gured

by the family fCj
bjni
gj0j=1 of binary BCH codes having sequentially increasing code lengths and

error correcting capabilities. Due to the choice of the modulation scheme, every member of

the family fCj
bjni
gj0j=0 requires sequentially increasing but di¤erent bandwidths. A multiple

transmission pattern is planned in the spirit of interweave model in such a way that the user
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P l
blni

opportunistically avail the channel path (spectrum hole) of any of the primary users in

the family fPj
bjni
gj0j=l , which is not utilizing its allotted spectrum hole.

Whereas in BCH codes over Galois �eld F4, the codewords of non-primitive BCH codes of

length bn; having same code dimension as that of BCH code of length n; contains codewords of

Cn which repeats b times in it. Consequently, the DNA sequence associated with the codeword

of the code Cn tandem repeats b times in the DNA sequence associated with the codeword in

Cbn:

Finally, the BCH codes over �nite Galois ring are linked with the BCH codes over Galois

�eld F2 in such a way that: one can easily shift the data from code of length n to any of the code

of length bjn, where j � 1; in order to obtain the bene�t of better error correction. Whereas,

for fast transmission of code data can be shifted from the bjn length code to the n length code.

The bandwidth is maximally utilized by the code of length n as they are embedded in codes

of length bjn. The selection of a code is based on its length, code rate and error correction

capability.
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Chapter 8

Conclusion

In current times, there has been an increasing demand for digital transmission and storage

systems. For this a digital system must be fully reliable, as a single error may collapse the

whole system, or cause undesirable corruption of data. In such situations error correcting codes

must be employed so that an error may be detected and subsequently corrected. In this work we

have constructed cyclic and particularly BCH codes using monoid rings instead of polynomial

ring. Through monoid rings the length of the polynomials is increased which increases the code

length. Hence it is required to construct such codes which can correct more errors.

Initially we have constructed binary cyclic codes, using monoid rings. A technique is given

in such a manner that for an n length binary cyclic code Cn; there exists binary cyclic codes

Can; Cbn and Cabn of lengths an; bn and abn: These codes are found to be interleaved codes and

are linked together in a special way. Therefore, they are capable of correcting random as well

as burst of errors. Afterwards we have constructed non-primitive BCH codes over Galois �led

F2 using monoid ring instead of polynomial rings. This construction is based on a primitive

BCH code, which gives an association between primitive and non-primitive BCH codes. The

non-primitive BCH codes gives better error correction capability with a little deprivation in

code rate.

Moreover, we have constucted non-primitive BCH codes over the four elements Galois �eld

F4. These codes have better code rate as compare to the codes obtained over the �eld F2. Also

the possible choices of BCH codes over F4 are more as compare to the BCH codes over F2.

In this work BCH codes over monoid rings are consrtucted, other codes like Reed Solomon,
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Golay and Fire codes can also be constructed using the same monoid rings. Another new family

of cyclic as well as BCH codes can be constructed by taking some other similar monoids. We

have given an algorithm to calculate non-primitive BCH codes over the �eld F2; which can

further be enhanced for other Galois �elds and Galois rings as well. Further by considering a

varying positive integer m for local ring Z2m , we will obtain family of sequences fCbjngj�1; m�2
and C0

bln
2 fC0

bjn
gj�1; m�2 of non-primitive BCH codes. This will serve the purpose at large

scale and for multiple uses.

Other than the given applications this work can be implemented in cryptography. In [15],

the authors have given a notion of cryptcoding, it is a procedure through which they have joined

together, encryption and error-correction in one step. Following [15], this work can easily be

implemented in cryptography for error free secure network.
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