


Preface 

Heat transfer existing due to the temperature difference between two bodies or within the bodies 

at different temperatures has important role in our daily life. Thus the researchers and scientists 

have focused on heat transfer phenomenon via Fourier's law [1] of heat conduction. This law 

provides a basis for the study of heat transfer phenomenon. Fourier's law of heat conduction via 

parabolic equation provides sufficient information in the sense that any initial interruption is felt 

immediately throughout the whole substance. To overcome this issue Cattaneo [2] added a 

thermal relaxation time which allows the transfer of heat through propagation of heat waves with 

finite speed. This expression was later modified by Christov [3], by taking thermal relaxation 

time along with Oldroyd's upper-convected derivatives. Cattaneo-Christov model in thermal 

convection flow was analyzed by Straughan [4]. The uniqueness of this model for the flow of 

incompressible fluids was observed by Tibulle and Zampoli [5]. The same model in the 

boundary layer stretched flow of Maxwell fluid was presented by Han et al.[6]. Characteristics of 

Cattaneo-Christov heat flux model in rotating flow of Maxwell fluid over a linear stretching 

sheet were studied by Mustafa [7]. Hayat et al. [8] studied the Cattaneo-Christov heat flux model 

in the flow of Maxwell fluid induced by a stretching sheet with variable thickness. 

The use of boundary layer stretched flow with heat transfer has drawn the attention of 

researchers and scientists due to their vast applications in many areas of industrial 

manufacturing, metallurgical and engineering processes. Motion of a surface in cooling medium 

is a tool for the process of heat treatment. In order to avoid the metals from molten state, metals 

are heated and cooled in a regular pattern during this process. The purpose of heat treating 

process is to enhance properties of metals e.g strength, hardness and resistivity etc. Metals are 

also made softer and pliable by heating processes. Few applications here consist of glass 

blowing, polymer extrusion, crystal growth, drawing plastic films, paper production, annealing 

of metals, manufacturing artificial fibers, extrusion of sheets, aerodynamics etc. The raw material 

in many industrial processes is passed through the die for the extrusion in liquefied form under 

high temperature. Zheng et al. [9] studied the unsteady boundary layer flow over a permeable 

stretching sheet with non-uniform heat generation/absorption. MHD flow of a nanofluid over 

stretching sheet was studied by Rashidi et al. [10]. The behavior of MHD mixed convection in 



flow over a permeable inclined stretching surface with Ohmic heating and thermal radiation was 

studied by Su et al. [11]. Three-dimensional MHD flow of viscoelastic fluid over a stretching 

sheet was studied by Turkyilmazoglu [12]. Zheng et al. [13] discussed velocity slip and 

temperature jump of MHD flow over a shrinking surface. Boundary layer stagnation point flow 

of Jeffrey fluid towards a stretching sheet was discussed by Hayat et al. [14] taking convective 

boundary conditions. Unsteady radiative mixed convection flow of Maxwell fluid past a 

permeable sheet with slip velocity and non-uniform heat generation/absorption effects was 

analyzed by Zheng et al. [15]. Mukhopadhyay et al. [16] studied thermo-solutal stratification 

effect in the boundary layer flow of viscous fluid over a permeable stretching sheet. Stagnation 

point flow of an Oldroyd-B fluid in a thermally stratified medium was discussed by Hayat et al. 

[17]. Properties of nanofluid in a rotating system with stretching sheet were analyzed by 

Sheikholeslami and Ganji [18]. It is noted that boundary layer flow over stretching surface 

through different aspects has been studied extensively. In such studies the surface is not 

considered of variable thickness. No doubt such consideration is important in civil, mechanical, 

marine and aeronautical designs. Variable sheet thickness is used for the reduction of structural 

element weight. It also improves the utility of the material more frequently in various industrial 

processes. Very few attempts for flow over variable thicked surface have been made. For 

example flow of viscous fluid over a sheet with variable thickness was analyzed by Fang et al. 

[19]. Khader and Megahed [20] studied slip velocity effects in the boundary layer flow over a 

nonlinear stretching sheet with variable thickness. Heat transfer properties in the flow of 

nanofluid over a nonlinear stretching sheet with variable thickness are studied by Wahed et al. 

[21]. 

This dissertation consists of three chapters. First chapter contains some basic concepts, 

definitions and equations related to the next two chapters. Second chapter presents slip effect on 

the flow due to non-linear stretching surface of variable thickness. Appropriate transformations 

reduce the partial differential system into ordinary differential system. Homotopy analysis 

technique is used to solve the governing nonlinear differential equations. The effects of various 

physical parameters on velocity profile are shown graphically. Third chapter is the extension 

work which presents Cattaneo-Christov heat flux effect over a stretching sheet having variable 

thickness along with heat generation and variable thermal conductivity. Cattaneo-Christov heat 

flux model is used rather than classical Fourier’s of heat conduction in present flow analysis. 



Resulting partial differential system of equations is transformed to ordinary differential system 

by using suitable transformations. Convergent series solutions are computed through homotopy 

analysis technique [22-29]. Behaviors of various parameters on velocity and temperature profiles 

are sketched and discussed. 
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Chapter 1

Basic definitions and equations

1.1 Introduction

This chapter has been arranged through some definitions and equations which are useful for

the next two chapters.

1.2 Some concepts about fluid

1.2.1 Fluid

A substance deforming continuously under the action of applied shear stress is called fluid.

1.2.2 Fluid mechanics

The branch of engineering dealing with the fluids either at rest or in motion. Some common

engineering fluids are air (a gas), steam (a vapor) and water (a liquid).

Fluid mechanics can be divided into two categories:

1. The study of fluids at rest is called statics.

2. The study of fluids in motion is called dynamics.
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1.2.3 Types of flow system

Internal flow system

Fluid flows surrounded by closed boundaries or surfaces are termed as internal flow systems.

Examples are flow through pipes, valves, ducts, or open channels.

External flow system

Flows having no specific boundaries are termed as external flows. Flow around aeroplane

wings, automobiles, buildings or ocean water through which ships, submarines and torpedoes

move/sail.

Internal and external flow systems may be laminar, turbulent, compressible or incompress-

ible.

1.2.4 Body force

A force acting throughout the volume of a body without any physical contact. Examples are

gravity and electromagnetic forces.

1.2.5 Inertial forces

A force which resists a change in state of an object.

1.2.6 Surface force

A force that acts across an internal or external element in a body through direct physical

contact. Pressure and shear forces are examples of surface force.

1.2.7 Shear stress

It is the component of the stress coplanar with the cross section area of a material. The internal

forces that neighboring particles of a continuous material exert on each other is called shear

stress. It is denoted by a Greek letter  .
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1.2.8 Normal stress

The component of the stress normal to cross section of a material is called normal stress. It is

denoted by .

1.2.9 Viscosity

Viscosity of fluid is the measure of its internal resistance to deformation caused by tensile or

shear stress. A fluid having no resistance to shear stress is called ideal or inviscid liquid. Super

fluids have zero viscosity. Viscosity depends on composition and temperature of a fluid. It is

also called dynamic/absolute viscosity. It is denoted by  and is given by

 =
 

 


Viscosity is measured in  and is having dimensions of

[



]

1.2.10 Kinematic viscosity

The ratio of absolute viscosity to density of fluid is called kinematic viscosity. It is given by

 =





It is measured in 2 sec. It is having dimensions of

[
2


]

1.2.11 Flow types

1) Laminar flow

The flow pattern in which fluid flows in parallel smooth layers with no crossing over between

the layers. Smoke rising from a cigarette to the first few centimeters in a still surrounding shows

a clear picture of laminar flow.
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2) Turbulent flow

Turbulent flow is a less orderly flow regime, characterizes the pattern of the flow in which the

fluid particles have no specific paths or trajectories. Break up of rising smoke into random and

haphazard motion represents turbulent flow.

1.2.12 Newton’s law of viscosity

It states that

 ∝ 




 = 





in which  is the absolute viscosity.

1.2.13 Newtonian fluids

Those fluids which obey Newton’s law of viscosity are termed as Newtonian fluids. Water, air

and gases are Newtonian fluids.

1.2.14 Non-Newtonian fluids

Those fluids which do not obey Newton’s law of viscosity are termed as non-Newtonian or we

can say that those fluid for which shear stress is non-linearly proportional to shear strain. Since

viscosity depends upon nature of the fluids so for such fluids viscosity remains no more constant

and it becomes a function of applied shear stress. Examples of such fluids consist of honey,

toothpaste, ketchup, paint etc. Mathematically

 ∝
µ




¶

  6= 1

 = 

µ




¶


 = 

µ




¶−1

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Here  represents the apparent viscosity  flow behavior index and  consistency index. It

reduces to Newton’s law of viscosity when  = 1. Depending upon  (flow behavior index) and

apparent viscosity, non-Newtonian fluids are further divided into many subclasses.

Non-Newtonian fluids are mainly classified into three types:

1. Rate type fluids.

2. Integral type fluids.

3. Differential type fluids.

We will discuss only rate type fluids here.

1.2.15 Rate type materials

Such materials predict the relaxation and retardation times effects. Maxwell, Oldroyd and

Burger fluids belong to this class.

Relaxation time

The time required for coming back of a perturbed system into its equilibrium state.

Retardation time

The time required for the process of balancing the applied shear stress by the opposing forces

produced during deformation.

1.3 Mechanisms of heat transfer

Heat transfer occurs from region of higher kinetic energy towards the region of lower kinetic

energy or simply from hotter to colder regions. Temperature difference in between the two

regions is the main reason for heat to flow. Heat transfers from one place to another by

different processes, depending upon the nature of material under consideration.
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1.3.1 Conduction

Particles are in constant motion. During motion of the particles, collisions occur, which result

in the exchange of kinetic energies. So the process of heat transfer from one place to another due

to collision of molecules/particles is called conduction. Such type of heat transfer is observed

in solids e.g heated rod at one end, here no material flow occurs physically.

1.3.2 Convection

It is the process of heat transfer during which particles having more kinetic energies replace the

particles with less kinetic energies. The transfer of heat occurs due to random Brownian motion

of individual particles from hotter to colder region, and this process is known as convection.

1.3.3 Types of convection

Natural convection

The transfer of heat that occurs only due to temperature difference is called natural convection.

Dense particles of fluid fall, while lighter particles rise, resulting the bulk motion of fluids.

Natural convection can only occurs in the presence of gravitational force.

Forced convection

To increase the rate of heat exchange, fluid motion is generated by external surface forces such

as fan, pump etc. Force convection is more efficient than natural convection.

Mixed convection

The process in which heat transfer occurs due to both natural and forced convection is termed

as mixed convection.

1.3.4 Radiation

The transmission of heat energy in the form of electromagnetic waves with or without any

medium is termed as radiation. Examples are fire, sunlight and very hot objects etc.
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1.4 Some concepts about heat

1.4.1 Heat source/sink

Any object which produces and emits heat is termed as a heat source and any object that

dissipates heat is termed as a heat sink. Nuclear reactors, sun, fire and electric heaters are heat

sources while semiconductors, light emitting diodes, fans and solar cells are examples of heat

sink.

1.4.2 Thermal conductivity

Therm means heat and conduction is transfer by collision of molecules. So it is measure of the

ability of material to transmit heat from one place to another. Or it can also be defined as the

amount of heat transfer through a unit thickness of a substance, in a direction perpendicular

to surface area due to unit temperature gradient. It is denoted by  and is given by

 =


∆


where  denotes heat flow in a unit time,  is area of cross section and ∆ denotes change in

temperature. In SI system thermal conductivity is measured in , having dimensions of

[


 3
]

1.4.3 Thermal diffusivity

It is measure of ability of a substance to transfer heat energy relative to its ability to store heat

energy. Thermal diffusivity is measured in 2 sec denoted by  and is given by

 =





where  is thermal conductivity,  is specific heat and  is density.

Thermal diffusivity measures the property of a material for unsteady heat conduction. This

describes how quickly a material responds to change in temperature.
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1.4.4 Specific heat

It is an extensive property of a material defined as the amount of heat energy required to

increase temperature of the material by 10 It is measured in 

 having the dimensions of

[
2

 2
]

1.4.5 Newton’s law of heating

The rate of heat loss of a body is directly proportional to temperature difference between the

body and its surrounding.

1.4.6 Fourier’s law of heat conduction

It is defined as the rate of heat conduction through a homogeneous material is directly propor-

tional to negative gradient of temperature. Mathematically

 ∝ −∆

 = −∆

 is heat flux density, which is the amount of energy flow through a unit area per unit time. 

is measured in 
2 ,  is material’s thermal conductivity and ∆ is temperature gradient.

1.4.7 Cattaneo-Christov heat flux

In the present dissertation Cattaneo-Christov heat flux is used rather than classical Fourier’s

law of heat conduction. In order to overcome the deficiency that arose in classical Fourier’s

law, Cattaneo added a thermal relaxation time to the system. After that, Christov modified

the same model by taking a thermal retardation time.

1.4.8 Oldroyd-B fluid

Many complex fluids are having viscous and elastic effects under shear stress. Polymer solutions,

toothpaste, oil and clay are some examples.
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One of the simplest constitute model that describes viscoelastic behavior of polymer solu-

tions is the Oldroyd-B fluid model. This model is actually the extension of upper convected

Maxwell model. The stress tensor for an Oldroyd-B fluid model is represented by

S+ 1
S


= 

µ
1 + 2





¶
A1

where 1 and 2 are relaxation and retardation times respectively. This model gives good

approximation of viscoelastic fluids flow. However, it is not able to predict shear thinning and

shear thickening effects.

1.5 Dimensionless parameters

1.5.1 Prandtl number

Conduction and convection occur in fluids. For the process of heat transfer, temperature

difference is the main cause. Rate of conduction and convection vary in different fluids.

Prandtl number is used to determine the domination of either conduction or convection. It

is defined as the ratio of momentum to thermal diffusion rate. It is denoted by Pr and given by

Pr =





where  is kinematic viscosity and  is thermal diffusion rate. For many gases over a vast range

of temperature and pressure, Pr is approximately treated as constant.

1.5.2 Reynolds number

A dimensionless parameter used to predict flow pattern for different fluid flow situations. It

measures the ratio of inertial to viscous forces and relative importance of the two forces for

given flow conditions. It is denoted by Re named after Osborne Reynolds, and is given as

Re =
 

 


Re =
 


=

 



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 is max velocity,  is length of geometry.

For low Reynolds number, viscous forces are more dominant than inertial forces, laminar

flow occurs which characterizes a constant and smooth fluid motion. Similarly, for higher

Reynolds number, inertial forces are more dominant than viscous forces, hence turbulent flow

occurs.

1.5.3 Nusselt number

It is defined as a quantity that measures ratio of convective to conductive heat transfer coef-

ficients. It has the involvement of Newton’s law of cooling/heating and Fourier’s law of heat

conduction. It is denoted by  named after Wihlem Nusselt.

1.5.4 Deborah number

A dimensionless parameter used to specify fluidity of materials. It is defined as ratio of relax-

ation time to observation time. This specifies both elastic and viscous properties of materials.

The higher the Deborah number, the closer it is to a perfect solid.

Mathematically

 =





here  is stress relaxation time and  is observation time scale.

1.5.5 Eckert number

A dimensionless parameter used to determine the relative importance of kinetic energy in a

heat transfer phenomenon. It shows the relationship between kinetic energy and boundary

layer enthalpy difference. It is denoted by Ec and given by

 =
2

∆


where  is fluid velocity,  is specific heat and ∆ is temperature difference.  is used to

characterize heat dissipation.
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1.5.6 Hartman number

A dimensionless parameter used to determine relative importance of drag force resulting from

magnetic and viscous forces.

It is defined as the ratio of magnetic to viscous forces given by

 =
 

 
= 0

r





where 0 shows characteristic value of magnetic induction,  is characteristic length and  is

dynamic viscosity coefficient.

1.6 Flow equations

1.6.1 Continuity equation

Consider flow of mass  through a control volume  , we have

Rate of accumulation of mass in  + net mass flux = 0

or





Z


 +

Z


 = 0

or Z





 +

Z


 = 0

by divergence theorem we have

Z


µ



+∇

¶
 = 0

or




+∇ = 0

This expression of mass conservation is known as equation of continuity. If material is incom-

pressible we have

∇ = 0
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The velocity field of an incompressible fluid is solenoidal. In rectangular coordinates system,

having velocity components   and , equation of continuity is given as




+




+




= 0

Similarly, in electromagnetism, equation of continuity expresses charge conservation.

Mathematically

∇ = −




where  is current density and  is charge density.

Equation of continuity is also used in heat and energy, probability distribution, special and

general relativity, quantum mechanics and particle physics etc.

1.6.2 Equation of motion

Equation of motion for fluids has been derived from law of conservation of linear momentum

which shows that in the absence of external forces the total linear momentum for a system

remains conserved. This law has been deduced from Newton’s second law of motion.

Mathematically equation of motion is given by


V


= divT+b

T is Cauchy stress tensor.

Left hand side shows inertial forces, first term on right hand side shows surface forces

(external forces) and last term is internal (body) force.

Cauchy stress tensor is defined as

T = − + S

where  is extra stress tensor, depending upon nature of the fluid e.g

For Newtonian fluid

S = A1

15



and for second grade fluid

S = A1 + 1A2 + 2A
2
1

here A1 and A2 are first and second Rivelin Erickson tensors respectively.

1.6.3 Energy equation

According to energy conservation law





= −div 

and

div  = −∇

Here  is fluid density,  is specific heat,  is temperature,  is thermal conductivity. In above

equation first term on left hand side shows total rate of change of energy, which is further divided

into local and convective rate of change of energies. Right hand side comes from Fourier’s law

of heat conduction.

1.7 Solution method

1.7.1 Homotopic technique

HAM technique is one of the best and simplest technique for obtaining convergent series solution

for weakly as well as strongly non-linear equations. This method uses the concept of homotopy

from topology. Two functions are homotopic if one function continuously deforms into other

function, e.g. 1() and 2() are two functions and  ∗ is a continuous mapping, then

 ∗ :  × [0 1]→ 

such that

 ∗( 0) = 1()
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and

 ∗( 1) = 2()

Lio in 1992 used the homotopic technique for obtaining convergent series solution.

HAM distinguishes itself from other techniques in the following ways:

1. It is independent of small/large parameter.

2. Convergent solution is guaranteed.

3. Freedom for the choice of base functions and linear operators.

Consider a non-linear differential equation

N [()] = 0

where N represents non-linear operator, and () is the unknown function.

Using parameter  ∈ [0 1] a system of equations is constructed.

(1− )L [b (; )− 0 (; )] = ~N b (; ) 
where L is linear operator,  is embedding parameter and ~ is convergence parameter. By

putting value of  from 0 to 1, unknown function gets the value from 0() to ().
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Chapter 2

Slip effect on flow due to non-linear

stretching surface of variable

thickness

2.1 Introduction

This chapter reports the development of homotopy solution for flow of viscous fluid. Fluid is

bounded by a non-linear stretching surface with variable thickness. In addition velocity slip

condition is imposed. Appropriate transformations reduce the partial differential systems into

the ordinary differential systems. The resulting systems are solved by homotopy technique.

The results for velocity and temperature are established and discussed
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Geometry of the given problem is

Fig.1 Schematic diagram of the problem

2.2 Mathematical formulation

Consider flow of an incompressible two dimensional viscous fluid over an impermeable stretching

sheet. Slit is considered to be the origin of geometry. Sheet is stretched with a velocity

 = 0 (+ ). Thickness of the sheet is taken variable, i.e.  =  (+ )
1−
2  where  is

velocity power index and  is constant. The problem is considered for  6= 1.
Governing equations for flow are

∇V = 0 (2.1)

and


V

̄
= divT+ ρB (2.2)

In absence of body forces we have


V

̄
= divT (2.3)

where T is Cauchy stress tensor given by

T = − I+A1 (2.4)

where  is dynamic viscosity and 1 is first Rivelin Erickson tensor.
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For velocity

V =(( ) ( ) 0)  (2.5)

A1 = gradV + (gradV)
  (2.6)

Now Eq. (21) and (22) yield




+




= 0 (2.7)



µ



+ 




+ 





¶
 =

T


+

T


 (2.8)



µ



+ 




+ 





¶
 =

T


+

T


 (2.9)

In absence of pressure gradient and taking steady flow, we get the following form



µ




+ 





¶
 =

T


+

T


 (2.10)



µ




+ 





¶
 =

T


+

T


 (2.11)

By taking boundary layer approximations one has




+




= 0 (2.12)

µ




+ 





¶
 = 

2

2
 (2.13)

Here  is kinematic viscosity and  and  are velocity components along  and  directions

respectively. The associated boundary conditions are as follows


³
(+ )

1−
2

´
=  + 1




 

³
(+ )

1−
2

´
= 0 (2.14)

 (∞) = 0 (2.15)

where 1 represents the slip coefficient and is given by

1 = (+ )
1−
2  (2.16)
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Using the following transformations

 =

s
(+ 1)0 (+ )−1

2
 ( ) =

s
20 (+ )+1

+ 1
 ()  (2.17)

and expressing  and  in terms of stream function ( ) we have:

 =



  = −


 (2.18)

We adopt

 = 0(+ ) 0 ()   = −
s
(+ 1)0 (+ )−1

2

µ
 () + 

− 1
+ 1

 0()
¶
 (2.19)

Using the above equations, conservation law of mass is satisfied and the resulting equations are

as follows

 000 +  00 − 2

+ 1
 02 = 0 (2.20)

with associated boundary conditions by

 () =
(1− )

1 + 
 0() (2.21)

 0() = 1 +  00()  0 (∞)→ 0 (2.22)

Here  is slip velocity coefficient and  is the wall thickness parameter given by

 =

r
0(+ 1)

2
 (2.23)

and  shows the plate surface.

For converting the domain from [∞) to [0∞), we use another transformation

 () =  ( − ) = () (2.24)

Resulting equation is

 000 +  00 − 2

+ 1
 02 = 0 (2.25)
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and boundary conditions are

 (0) =
(1− )

1 + 
 0(0) (2.26)

 0(0) = 1 +  00(0)  0 (∞)→ 0 (2.27)

Skin friction coefficient is a physical quantity of primary importance which is given by

 = −2
r

+ 1

2

− 1
2

  00(0) (2.28)

2.3 Solution methodology

Using homotopy analysis method, initial guess and linear operator must be taken so that initial

guess must satisfy the boundary conditions. Initial guess and linear operator taken here are

0 () =
1

1 + 

µ

1− 

1 + 
+ 1− exp (−)

¶
 (2.29)

L () = 3

3
− 


 (2.30)

satisfying the equation

L [1 + 2 exp() + 3 exp(−)] = 0 (2.31)

where for  = 1 2 3 are arbitrary constants.

2.3.1 Zeroth order system

The corresponding zeroth order equations are

(1− )L
h b (; )− 0 ()

i
= ~N

h b (; ) b (; )i  (2.32)

b (0; ) = 
1− 

1 + 
(1 +  b 00 (0; )) b 0 (∞; )→ 0 (2.33)b 0 (0; ) = 1 +  b 00 (0; )  (2.34)
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where ~ represents non-zero auxiliary parameter,  is embedding parameter and N shows

non-linear differential operator.

N

h b ( )i = 3 b (; )
3

+

+ b (; ) 2 b (; )
2

− 2

+ 1

Ã
 b (; )



!2
 (2.35)

By putting the values of  from 0 to 1, the function  () takes the values from 0 () to  ().

By Taylor series expansion of  () we have

b (; ) = 0 () +

∞X
=1

 () 
  () =

1

!

 b (; )


¯̄̄̄
¯
=0

 (2.36)

2.3.2 mth order approximation

The equations for mth order problem are

L [ ()− −1 ()] = ~R
 ()  (2.37)

 (0) =
(1− )

1 + 
 0(0) (2.38)

 0(0) = 1 +  00(0)  0 (∞)→ 0 (2.39)

R
 () =  000−1 +

−1X
=0

µ
−1− 00 −

2

1 + 
 0−1−

0


¶

 =

⎧⎨⎩ 0  ≤ 1
1   1

 (2.40)

The general solution  having special function ∗ is given by

 () =  () + 1 + 2
 +3

− (2.41)

in which   for  = 1 2 3 are the arbitrary constants.
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2.4 HAM solution

Non-zero auxiliary parameter affects convergent series solution. Convergence region can be

checked by drawing graphs of ~ -curves for velocity distribution. Fig. 1 shows convergence

region for velocity distribution keeping all other physical parameters constant. Admissible

range for ~ is found −17 ≤ ~ −02.

a = 0.1, n = 1.5, l = 0.2

-2.0 -1.5 -1.0 -0.5
h

-1.1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4
f '' 0

~-curve for velocity

Tables 1 and 2 show comparison of different values of − 00(0) in present work with those
obtained by Fang et al. [19]

Table 1. Comparison of − 00(0) in present work for  = 05  = 0, with analysis of Fang
et al. [19] :

 100 90 70 50 30 20 10 050 000 −05
− 00(0) 10603 10589 10550 10486 10359 10234 10000 09799 09576 11667

  10603 10588 10551 10486 10358 10234 10000 09798 09577 11666

Table 2. Comparison of values of − 00(0) in present work for  = 025  = 0 with analysis
of Fang et al. [19] :

 100 90 70 50 30 10 10 00 −13 −05
− 00(0) 11433 11404 11323 11186 10905 10000 09338 078439 05000 00833

  11433 11404 11322 11186 10904 10000 09337 07843 05000 00832
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2.5 Results and discussion

This section provides study of behaviors of pertinent parameters on velocity distribution. Both

the above tables show a good agreement with previous existing literature. The results are

illustrated graphically.

Behavior of slip velocity parameter on velocity distribution is shown in Fig. 2. Slip velocity

parameter decreases the velocity distribution near surface of the sheet but it shows an increasing

behavior at larger distances.

a= 0.1, n = 1.5
l = 0, 0.2, 0.5, 1

1 2 3 4 5 6
h

0.2

0.4

0.6

0.8

1.0

f 'h

Fig. 2 Effect of  on  0()

Behavior of wall thickness parameter on velocity distribution is shown in Fig. 3. Two cases

are shown for wall thickness parameter i.e.   1 and   1. Velocity profile shows a

decreasing behavior for increasing values of wall thickness parameter when   1 Associated
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boundary layer thickness in this case also decreases.

n = 0.5, l = 0.2 
a  = 0, 0.25, 0.5, 1 

1 2 3 4 5 6
h

0.2

0.4

0.6

0.8

f'h

Fig. 3 Effect of  on  0() for   1

n = 5, l = 0.2 
a  = 0, 0.25, 0.5, 1 

2 4 6 8
h

0.2

0.4

0.6

0.8

f 'h

Fig. 3 Effect of  on  0() for   1

Fig.3 shows behavior of wall thickness on velocity for   1. It shows an increasing behavior

from wall to the ambient fluid with increasing values of wall thickness when   1.

a = 0.1, l = 0.2

n = 0, 0.25, 0.5, 1

1 2 3 4 5 6
h

0.2

0.4

0.6

0.8

f 'h

Fig. 4 Effect of  on  0()

Effect of velocity power index  on velocity profile is shown in Fig. 4 By increasing values

of velocity power index, a decrease in velocity distribution occurs. Associated momentum layer

thickness decays along the sheet for increasing  and a reverse process occurs away from the

sheet. Table. 3 shows values of − 00(0) for pertinent parameters.
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Table. 3. Values for , , and 

   − 00(0)
00 02 05 0924828

02 02 05 0728201

05 02 05 0561082

02 00 05 0707579

02 025 05 0733395

02 05 05 0759570

02 10 05 0812747

02 00 50 0890165

02 025 50 0850600

02 05 50 0812508

02 10 50 0741247

02 02 00 0611306

02 02 05 0728201

02 02 20 0819489

02 02 50 0858401

Effects of pertinent parameters on skin friction are displayed in Table. 3. Table shows

that velocity power index  and wall thickness parameter  enhance skin friction coefficient

while slip velocity parameter decreases it. The slip condition leads to reduction of momentum

transfer towards fluid. During slip condition the velocity of the sheet and fluid near the sheet is

not same, i.e. less force is transferred to the fluid which results in reduction of velocity profile.

2.6 Main points

Flow characteristics of Newtonian fluid with variable thickness sheet and velocity slip are ana-

lyzed in this article. The present analysis was compared with previously existing literature and

an excellent agreement is shown. Main points are as follows:

• Increase in velocity slip decreases skin friction coefficient.
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• Skin friction is an increasing function of wall thickness parameter for   1 and it decreases

for   1.

• Power index decreases velocity profile.
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Chapter 3

Heat generation and

Cattaneo-Christov heat flux effect in

flow over a variable thicked

stretching surface

3.1 Introduction

In this chapter the flow and heat transfer characteristics of an Oldroyd-B fluid over a non lin-

early stretching sheet with variable thickness are analyzed. Characteristics of heat transfer are

investigated with temperature dependent thermal conductivity and heat source/sink. Cattaneo-

Christov heat flux model is used rather than Fourier’s law of heat conduction in present flow

analysis. Thermal conductivity variation with temperature is considered. Resulting partial

differential equations through conservation laws of mass, linear momentum and energy are

converted into ordinary differential equations by suitable transformations. Convergent series

solutions for velocity and temperature distribution are developed and discussed.
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3.2 Development of problems

The steady and incompressible boundary layer flow of an Oldroyd-B fluid past a stretching sheet

with variable thickness is analyzed here. We consider Cattaneo-Christov heat flux model instead

of classical Fourier’s law of heat conduction. Heat transfer is explored subject to temperature

dependent thermal conductivity and heat generation/absorption. Cartesian coordinates are

imposed such that -axis is taken parallel to the sheet. Here -axis is normal to -axis. It is

also assumed that wall temperature  is greater than ambient temperature ∞ (i.e.   ∞).

Governing equations for given problem are

∇V = 0 (3.1)

and


V

̄
= divT+ ρB (3.2)

We have no body forces so


V

̄
= divT (3.3)

where T is Cauchy stress tensor given by

T = − I+ S (3.4)

where  is dynamic viscosity and S is extra stress tensor, given by

S+ 1
S


= 

µ
1 + 2





¶
A1 (3.5)

here A1 is the first Rivelin Erickson tensor, 1 and 2 are relaxation and retardation times

respectively.

For velocity

V =(( ) ( ) 0)  (3.6)

A1 = gradV + (gradV)
  (3.7)
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Eq. (31− 37) for two dimensional flow yield




+




= 0 (3.8)





+ 




+ 1(

2
2

2
+ 2

2


+ 2

2

2
)

= −1


+ 

µ
2

2
+

2

2

¶
+ 2

⎛⎝ 
³
3
3

+ 3
2

´
+ 

³
3
2

+ 3
3

´
−
³
2
2

+ 2
2

´


−
³
2
2

+ 2
2

´



⎞⎠  (3.9)

and





+ 




+ 1(

2 
2

2
+ 2

2


+ 2

2

2
) (3.10)

= −1


+ 

µ
2

2
+

2

2

¶
+ 2

⎛⎝ 
³
3
3

+ 3
2

´
+ 

³
3

2
+ 3

3

´
−
³
2
2

+ 2
2

´


−
³
2
2

+ 2
2

´



⎞⎠  (3.11)

After applying the boundary layer approximations (() = () = 1 () = () = ) we

have:




+




= 0 (3.12)





+ 




+ 1(

2
2

2
+ 2

2


+ 2

2

2
)

= 
2

2
+ 2(

3

2
+ 

3

3
− 2

2
− 

2
) (3.13)

v ·∇ = −∇ · q+( − ∞) (3.14)

Cattaneo-Christov heat flux model gives

q+ 0

µ
q


− q ·∇v + v ·∇q+ (∇ · v)q

¶
= −( )∇ (3.15)

where 0 is relaxation time and ( ) is temperature dependent thermal conductivity. It is

noted that Eq. (314) reduces to classical Fourier’s law when thermal relaxation parameter
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0 = 0.

Fluid incompressibility declares that

q+ 0(
q


+  ·∇q− q ·∇ ) = −( )∇ (3.16)

Equations (313) and (315) through elimination of q yields





+ 




+ 0

µ




+ 




+ 




+ 




+ 2

2


+ 2

2

2
+ 2

2

2

¶
=




( − ∞) + 0




( − ∞)

µ




+ 





¶
+

1







µ
( )





¶
 (3.17)

The boundary conditions are

 =  () = 0(+ )  = 

 = 0 at  = (+ )
1−
2 

→ 0  → ∞, as  →∞ (3.18)

Here  and  denote the velocity components,  is stretching velocity, 1 is relaxation time,

 is kinematic viscosity of fluid,  is a dimensional constant,  is velocity power index,  is

the specific heat,  is density,  is temperature, 0 is the reference velocity, ∞ is the ambient

temperature of fluid, and variable thermal conductivity ( ) is defined as:

 ( ) = ∞(1 + ) (3.19)

where ∞ is thermal conductivity of ambient fluid,  is dimensionless temperature and  is a

small parameter showing the influence of temperature on thermal conductivity.
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Utilizing the following transformations

 =

s
(+ 1)0 (+ )−1

2
  =

s
20 (+ )+1

+ 1
 () 

 = 0(+ ) 0 ()   = −
s
(+ 1)0 (+ )−1

2

µ
 () + 

− 1
+ 1

 0()
¶


 () =
 − ∞
 − ∞

 (3.20)

the incompressibility condition is satisfied and Eqs. (312) and (316) become

 000 − 2

+ 1
 02 +  00 + 1

⎛⎝ (3− 1) 0 00 − 2(−1)
+1

 03

−+1
2
 2

000
+  −1

2
 00 02

⎞⎠ (3.21)

+2

µ
− 1
2

 0 3 + (
3− 1
2

) 002 − + 1

2
 

¶
= 0 (3.22)

(1 + ) 00+02+Pr0+Pr (
− 3
2

 00−+ 1

2
 200)−Pr 10+ 2

+ 1
Pr  = 0 (3.23)

The corresponding boundary conditions are

 0() = 1  () =
(1− )

1 + 
  0 (∞)→ 0 (3.24)

() = 1  (∞)→ 0 (3.25)

where 1 is the heat generation/absorption in terms of thermal relaxation given by

1 =
0


(3.26)

and  is the heat generation/absorption given as:

 =


0 (+ )−1
. (3.27)

The Prandtl number Pr is

Pr =


∞
(3.28)
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and

 =

r
+ 10

2
 (3.29)

Further by considering the transformation  () = ( − ) = () the non-dimensionalised

governing equations are reduced along with the boundary conditions as follows:

 000 +  00 − 2

+ 1
 02 + 1

⎛⎝ (3− 1) 0 00 − 2(−1)
+1

 03

−+1
2
2

000
+ −1

2
 00 02

⎞⎠

+1

µ
− 1
2

 03 + (
3− 1
2

) 002 − + 1

2
 

¶
= 0 (3.30)

(1 + ) 00+02+Pr 0+Pr 
µ
− 3
2

 00 − + 1

2
200

¶
−Pr 10+ 2

+ 1
Pr  = 0 (3.31)

 0(0) = 1  (0) =
(1− )

1 + 
  0 (∞)→ 0 (3.32)

(0) = 1  (∞)→ 0 (3.33)

3.3 Homotopic solutions

To develop the series solutions by HAM we select initial approximations and auxiliary linear

operators. Initial guesses and linear operators here are

0 () = 1− exp (−) + 
1− 

1 + 
 (3.34)

0 () = exp (−)  (3.35)

L () = 3

3
− 


 L () = 2

2
−  (3.36)

with

L [1 + 2 exp() + 3 exp(−)] = 0 (3.37)

L [4 exp() +5 exp(−)] = 0 (3.38)

where  ( = 1 2  5) denote the arbitrary constants.
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3.3.1 Problems corresponding to zeroth-order

(1− )L
h b (; )− 0 ()

i
= ~N

h b (; ) b (; )i  (3.39)

(1− )L
hb (; )− 0 ()

i
= ~N

hb (; )  b (; )i  (3.40)

b (0; ) = 
1− 

1 + 
 b 0 (∞; )→ 0 b 0 (0; ) = 1 (3.41)

b (0; ) = 0 b (∞; )→ 0 (3.42)

N

h b ( ) b (; )i = 3 b (; )
3

+ 1

⎛⎜⎜⎜⎝
(3− 1) b (; )  (;)


2 (;)
2

−2
³
−1
+1

´³
 (;)


´3
+ (−1

2
)
2 (;)
2

(
 (;)


)2

−(+1
2
) b (; ) 3 (;)

3

⎞⎟⎟⎟⎠

+2

⎛⎜⎜⎜⎝
3−1
2

³
2 (;)
2

´2
+
¡
−1
2

¢  (;)


2 (;)
2

−+1
2
b (; ) 4 (;)

4

⎞⎟⎟⎟⎠+ b (; ) 2 b (; )
2

− 2

+ 1

Ã
 b (; )



!2
(3.43)

N

hb (; )  b (; )i = ³1 + b (; )´ 2b( )
2

+Pr b (; ) b( )


+ 

Ã
b( )



!2

+Pr 

⎛⎝ −3
2
b (; )  (;)


()


−+1
2

³ b (; )´2 2()
2

+

⎞⎠
−Pr 1

Ãb (; ) b (; )


!
+

2

+ 1
Pr b (; )  (3.44)

in which  ∈ [0 1] is the embedding parameter and ~ , ~ the non-zero auxiliary parameters.

3.3.2 Problems corresponding to th-order

L [ ()− −1 ()] = ~R
 ()  (3.45)

L [ ()− −1 ()] = ~R
 ()  (3.46)

 (0) = 0  0 (0) = 0 
0
 (∞) = 0 (3.47)
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 (0) = 0  (∞) = 0 (3.48)

R
 () =  000−1 +

−1X
=0

µ
−1− 00 −

2

1 + 

0
−1−

0


¶

+1

⎛⎝ P−1
=0 −1−

P
=0

¡
(3− 1) 0− 00 − +1

2
− 000 )

¢
+
P−1

=0  0−1−
P

=0((
−1
2
) 0−

00
 − 2(−1)

+1
 0−

0
 )

⎞⎠
+2

Ã
−1X
=0

(
3− 1
2

 00−1−
00
 + (− 1) 0−1− 000 −

+ 1

2
−1−  )

!
(3.49)

R
 () = 00−1 + 

−1X
=0

¡
−1−00

¢
+ 

−1X
=0

00−1−
00


+Pr 

−1X
=0

−1−
X
=0

µ
 0− −

+ 1

2
−00

¶

−Pr 1
−1X
=0

−1−0 +
2

+ 1
Pr −1 (3.50)

 =

⎧⎨⎩ 0  ≤ 1
1   1

 (3.51)

For  = 0 and  = 1, we can write

b (; 0) = 0 ()  b (; 1) =  ()  (3.52)

b (; 0) = 0 ()  b (; 1) =  ()  (3.53)

and when  varies from 0 to 1, b (; ) and b (; ) vary from initial solutions 0 () and 0()

to final solutions  () and () respectively. Through Taylor series expansion we have

b (; ) = 0 () +

∞X
=1

 () 
  () =

1

!

 b (; )


¯̄̄̄
¯
=0

 (3.54)

b (; ) = 0 () +

∞X
=1

 () 
  () =

1

!

b (; )


¯̄̄̄
¯
=0

 (3.55)
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The value of auxiliary parameter is chosen such that the series (354) and (355) converge at

 = 1 i.e.

 () = 0 () +

∞X
=1

 ()  (3.56)

 () = 0 () +

∞X
=1

 ()  (3.57)

Denoting general solutions ( ) of Eqs. (345) and (346) and special solutions (
∗
 

∗
) we

have

 () =  () + 1 + 2
 +3

− (3.58)

 () =  () + 4
 +5

− (3.59)

where the constants  ( = 1− 5) through the boundary conditions (337) and (338) are

2 = 4 = 0 3 =
 ()



¯̄̄̄
=0

,

1 = −3 −  (0)  5 = −∗ (0)  (3.60)

3.4 Convergence analysis

To show convergence of obtained series solutions, it is necessary to display the }-curves. The

region of the graph parallel to the }-axis represents the interval of convergence. Hence }-curves

are plotted in Figs. 1 and 2. The admissible ranges of } and } are noted −11 ≤ } ≤ −03
and −2 ≤ } ≤ −03 and for  and  respectively.
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g =0.1, b1 = 0.2, d1 = d2 = 0.1

a = 0.1, e = 0.1, Pr =1.2, b2 = 0.1

-1.5 -1.0 -0.5
h

-2.64

-2.62

-2.61

-2.60
f'' 0

Fig. 1. }-curve for  0()

g=0.1, b1 = 0.2, d1 = d2 = 0.1

a = 0.1, e = 0.1, Pr =1.2, b2 = 0.1

-2.5 -2.0 -1.5 -1.0 -0.5 0.5
h

-1.6

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

q '0

Fig. 2. }-curve for ()

3.5 Discussion

This subsection has been prepared for the discussion of velocity and temperature. Fig. 3

depicts the velocity for the influence of Deborah number 1 (in terms of relaxation time).

It is observed that higher Deborah number results in the reduction of velocity profile. Since

Deborah number shows the ratio of relaxation to observation time. Thus more resistance is

noticed to the fluid motion when Deborah number enhances and so velocity decays. Effect of

wall thickness parameter on velocity distribution is shown in Fig. 4. Velocity distribution has

a decreasing influence for increasing values of wall thickness parameter. Behavior of Deborah

number (in terms of retardation time) 2 on velocity is shown in Fig. 5. Velocity profile shows

an increasing effect of 2 and associated velocity boundary layer thickness. Impact of  on

temperature distribution is shown in Fig. 6. Higher values of  results in enhancement of

temperature profile. In fact higher values of  corresponds to large thermal conductivity which

gives an increase in temperature profile. Fig. 7 represents the effect of thermal relaxation

parameter  on temperature profile. Thermal relaxation time is a commonly used parameter

for estimating the time required of heat to conduct or transfer to any other material or any

part of the same material. It is analyzed that temperature distribution shows a decreasing

behavior for higher thermal relaxation parameter. By increasing , the particles of material

need extra time to conduct heat to its neighboring particles. Or we can say that by increasing
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the values of , the material shows a non-conducting behavior which results in decrease of

temperature distribution. Influence of heat generation parameter  is sketched in Fig. 8. Higher

values of heat generation parameter yield to an enhancement of temperature distribution and

associated thermal boundary layer thickness. It is due to the fact that more heat is produced

during the heat generation process and ultimate temperature distribution enhances. Behavior

of Prandtl number on temperature distribution is shown in Fig. 9. Temperature is noted as

decreasing function of Pr. Physically Pr is the ratio of momentum to thermal diffusivities. For

larger values of Prandtl number, the thermal diffusivity decreases which is the reason for the

decrease in temperature distribution. Behavior of temperature distribution due to the heat

generation/absorption parameter in terms of thermal relaxation 1 is shown in Fig. 10. It is

concluded that temperature distribution increases for larger values of heat generation parameter

in terms of thermal relaxation. Also thermal boundary layer thickness enhances.

a = 0.1, n = 0.5, b2 = 0.1, Pr=1.2,
d1 = 0.1, d2 = 0.3, g = 0.1, e = 0.1,
 b1 = 0.1, 0.3, 0.6, 0.9,
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h
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Fig. 3 Plot of on  0 for 1

n= 0.5, b1 = 0.2, b2 = 0.1, Pr = 1.2,
d1 = 0.1, d2=0.1, g = 0.1, e = 0.1,
a=0.1, 0.5, 1, 1.5,
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h

0.2

0.4

0.6

0.8

1.0

f 'h

Fig. 3 Plot of on  0 for 1
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a = 0.1, n = 0.5, b1 = 0.1, Pr=1.2

d1 = 0.1, d2= 0.1, g = 0.1, e = 0.1,

b2 = 0.1, 0.4, 0.7, 1
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Fig. 5 Plot of on  0 for 2

a = 0.1,  n = 0.5,  b1 = 0.2, Pr = 1,
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Fig. 6 Plot of on  for 
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Fig. 7. Plot of  for .

a = 0.1, n = 0.5,  b2 = 0.1, Pr = 1.2
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Fig. 8. Plot of  for .

n = 0.5, b1 = 0.2,  b2 = 0.1, a = 1
d1 = 0.1, d2 = 0.1, g = 0.1, e = 0.1
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Fig. 9. Plot of  for Pr 

a = 0.1, n = 0.5, b2 = 0.1, Pr = 1.2
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Fig. 10. Plot of  for 1
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3.6 Conclusions

Flow of an Oldroyd-B fluid in presence of Cattaneo-Christov theory and variable surface thick-

ness is studied. We at present have outcomes as follows:

• Both velocity and layer thickness decrease for larger Deborah number corresponding to
relaxation time.

• Higher values of wall thickness parameter decrease the velocity distribution.

• Thermal relaxation parameter results in the reduction of temperature distribution.

• Higher temperature is observed for larger values of .

• Heat generation in terms of thermal relaxation enhances temperature distribution and
associated thermal boundary layer thickness.
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