
Postscript Finishing Feature Controller

Pr!'pared By
MuhamD;Uld Azeem

Supervised By
Abdul Qudus Abbasi

Institute of Information Technology

Quaid-i-Azam University Islamabad

Session 2010-2011

STATEMENT OF SUBMISSION

This is to certify that Mr. Muhammad Azeem Registration. No. 01161011003 has

successfully completed the final project as "Postscript Finishing Feature Controller"

Quaid-i-Azam University, Islamabad to fulfill the partial requirement of the degree

"Master of Science in Information Technology" . .

External Examiner

Dr. Naveed Akram
Associate Professor

Faculty of Computing,
Riphah International University,
1-14, Islamabad.

Internal Supervisor

Mr. Abdul Qadus Abbasi
Assistant Professor

Institute of Information Technology
Quaid-i-Azani University, Islamabad.

jl CJ?§port Su6mittea to tlie
Institute of Infonnation <Teclinofogy,
QuaUf-I-)tzam Vni'Versity Isw.ma6aa,

jls a partia{ Pufji[{ment of tlie CJ?§quirements
for tlie jlwara of tlie (j)egree of

:Master in I nfonnation <Teclinofogy

----------~()r-----------

Project in Brief

• Project Title
Postscript Finishing Feature Controller

• Under Taken By
Muhammad Azeem

• Supervisl!d By
Mr. Abdul Qudus A,bbasi

• Organization
Elixir Technologies pvt. Ltd.

• Started
Septemb.er 2011

• Completed
January 2012

• Software Tool
Visual Studio 6.0
Notepade++

• Operating System
Tfindow} Xp ,

• System :Used
Intel Centrino 1.8MHz
Ram 1GB
Hard Disk40 GB

.-----{ 'jj)1-----

Ded icated to

H, '~(~),~,~~.,~

-- --(iii)1----

Abstract

This is a Postscript Printer finishing feature controlling application. In software engineering.

this ;s an example of software cuslomizalion.

. This application lakes two files as input i.e. Postscript printer description (PPD) (md

Postscript (PS). ' Application parses PPD file extract file header and printing option information

from file; store in dala repository and di~plays options 10 the IIser in free view/arm. Application

gels input PPD file and checks dala reposi/my. If file has already parsed then its information

will 1101 slore in database and system will simply load\' inJormation 10 CUI and lei Ihe IIser

. f urther processing. User selecls printing finishing options according 10 his choice. Selected

option mayor may not have command against it. Then postscript file is parsed and PS parser

gives the location where command is 10 be updfJted. Update,. gets these locations reference and

commands. Finally, postscript.fi/e will be updated (Iccordingly. Only those printing options can

be updated in PS file that are supported by PS file.

----------~(iv)~-----------

Acknowledgement

ALLAH has been the greatest source of strength for me and I 3m humbly thankful for the

blessings He has conferred upon mc. My parents and sister's love, trust and support have

always played a major role in the achievements I have blessed throughout my life.

, am obliged to pay my sincere and heartiest gratefulness to my supervisor or more

accurately my counselor, Mr. Abdul Qudus Abbasi, for he was the biggest mot ivat ion behind

inifiation of my project. His timely guidance and useful suggesti ons not onl y he lped in th is

software building but also in my character building.

I wou ld li ke to present my sincere thanks to Mr. Abu-Dakar (my external supervi sor) for

his true guidance and motivation to fu lfill requi rements of thi s project.

I would like to pay my sincere thanks to all my teachers (Ms. Madiha Haider Syed, Ms. Sidra

Batool Kazmi, Ms. Abida Sadaf, Ms. Robina Rashid, Mr. Khurram Guizar Rana and Dr. Azhar

Saeed), for they taught me very informative and interesting courses that proved worthy to

improve my skill s. I am also thankful to the staff of Inst itute of Informat ion Technology, Quaid

i-Azam Univers ity for their friendly attitude.

I am very grateful to Mr. Abdul Khaliq (cousin) and other relati ve for their s incere

prays, greed less support and encouragement.

To all m~ friends, and my class fe llows, thank YOll fo r yo ur understand ing and

encouragement in my many moments of crisis. Your support motivated me for all the lime.

This thes is is a First step of my journey.

Muhammad Azecm

----------~[v)~-----------

Table of Contents

Table of Contents
A bstract : iv

Acknowledgement : v

List of Figures , vi

Chapter No. 1 1.

Introduction 1

1.1. Introduction : : : 1

1.2. Purpose . .' :· : '1' 2

1.3. Scope : 2

Summary 3

Chapter No. 2 ,. : 4

Requirement Analys is and Specifications · 4

2.1 . Introduction ; 4

2.2. Requirements Types 4

2.2.1. Function~l requirements' 4

2.2.2. Non-functional requirements 4

2.3. Requirements Illustration Techniques : 4

2.4. Functional 'Requirements 5

2.4.1. System Input ; 5

2.4.2. Reading and Parsing Postscript printer description (PPD) file 5

2.4.3. Database Repository ; : 6

2.4.4. Creating Tree View ofFunctionaljty 6

2'.4.5. Reading and ~ars ing Postscript(PS) File ~ : : 6

2.4.6. Updating Postscript File : ' 7 ,
2.5 . System Use Cases 7

2.6. Non-Functional Requirements · ... : 11

2.6. 1. Efficiency 11

2.7. System Hardware Requirements · 11

2.8. Software Interface Requirements : 11

2.9. Software Development Requirements : 11

Summary : 12

- -{ vi)1-------

Table of Contents

Chapter No. 3 : 14
, ,

Technical Background and Literature Review .. : 14

3.1. Introduction , 14

3.2. What is P,ostscript? : , 14

3.2.1. Before Postscript : ; : 14

3.2.2. Origin of Post script 15

3.2.3. Overview of Postscript Language : .. , .. 16

3.2.4. .Model of Postscript Language 16

3.2.5. Data Structure and Dictionaries , 17

3.2.6. Stack , 17

3.2.7. Postscript, Flexibility ,' , : 17

3.2.8. Graphics Conc~pt ' , 18

3.2.9. Postscript' Programming 19

3.2.10. Elixir Postscript File , , 20

3.3. PostScript Printer Description (PPD) 21

3.3.1. Format 22

3.3.2. Terms Used in PPD ".". ".,,", 22

3.3.2.1. Main keyword :."" " .. "".""."" " "." " " " 23

3.3.2.2. Opt ion Keywords " " "." "." " .. "." .. "." .. ".23

3.3.2.3. Query Keyword " " " " " " " 24

3.3.3. Parsing Main Keywords " " "" ... : " " " " " " .. '?5

3.3.4. Parsing Option Keywords ... " " , "." " .. ".25

3.3.5. Comment Statements , " " " 26

3.3.6. PPD 'File Structure ... " " ."" 26

Sunlmary 26

Chapter No. 4 ". " ... " " " " .. " " .. , " .. "." 26

User Interface " " " " "." 26

4.1 . Introduction " " ; .. " 26

4.2. User Interface and Parts " ." " " " " ... : " .26

4.2. 1. Menu Bar " " : " ." " " ". 27

4.2.2. PPD File Path Area : " " .. . " 27

4.2.3. PS File Path Area ." " " "" ."." " " " 27

----------------------------(vii)~------------------------------

Table of Contents

4.2.4. PPD Header Area 28 .
4.2.5. PS Header Area : .. , .. . ;. 28

4.2.6. Apply on Area 29

4.2.7. Tree View 29

4.2.8. Data Repository 30

4. 2.9. Update PS Button : 30

Summary : : ... ~ 30

Chapter No. 5 : · ; 31 . .
System Design : 31

5.1. Design Strategies and Coding Techniques , : :.: 31

5.2.1 . Language Selection ~ : : : 31

5.2.2. MFC : :.: · 31

5.2.3. Abstraction 31 .

5.2.4. Documentation ; 31

5.2. Coding Te,chniques 32

5.2. 1. Object Oriented Approach ~2

5.2.2. Pattern Oriented approach 32

5.3. System Design 32

5.3.1. Software Architecture Design 33

5.3 .2. Software Class Design 33

5.4. System Architecture Diagram , : 33

5.4.1. User : 33

5.4.2. MFC ·Framework : 34

4.4.2. 1. Document. : , 34

4.4.2.2. View/Contrller 34

5.4.3. PS Finisher Controller 34

4.4.3.1. CIFinisherController. 34

5.4.3.1. PPD Customized Parser 34

5.4.3.2. PS Customized Parser 34

5.4.3.3. PS Updater/Mapper' 35

5.4.3.4. Data Base 35

5.5. Structural Design/Class Diagrams : \ 35

----------------t(viii)1----------------

Table of Contents

5.5. r . MFC Framwork 35

5.5.1.4. CWnd : 36

5.5.2 . System Structure 39

5.5.2. 1. Filing 39

5.5.2.2. Tokenizer 41

5.5.2.3. Database 43

5.5.2,4. Parser : ~4

5.5.2.5. Tree View Manger , 45

5.5.2.6. Updater 45

5.5.2.7. Finisher Controller Factory 46

5.5.2.8. CFCFinisher COhtroller (work as Fac;ade) : 47

5.6. Sequence Diagram/Dynamic Structure : 48

5.7. Data Repository 50

5.7.1. Database 50

5.7.2. E-R Diagram ;: 50

5.7.3.1. File 50

5.7.3.2. MainKey 50

5.7.3.3. OptionKey , , 50

5.7.3. Database Tables , 51

Summary , ' ' , .. ,., ,.,' , .. , " ... , ... , ,., ,. , , , ... , , , , .. ,. , ... 52

Chapter No. 6 : , , , ... 53

System Testing : , ... , 53

6.1. lntroducti9n , , 53

6.2. Testing Techniques , , , 53

6.2.1. White Box Testing : " , 53

6. 2.2. Black Box Testing , : , , , 53

6.3. Test Cases ,: , , 54

Summary , , , , .. . , , : ;, , ... , ... ' , ,., ... "., .. , , .. ,., .. 5 7

Reference:- , : , .. , .. , .. . : : , 58

------I(.ix)1-------

Table of Figur~s .

List of F~gures .
Figure 3.1: Elixir PS File Header : ·: 220

Figure 3.1: EliXIr PS File Begin Page Setup Area 220

Figure 3.1: PPD File Header ... ; ' 22

Figure 4.1:User Interface layout : 26

Figure 4.2: PPD file input interface 27

Figure 4.3: PS file input interface 27

Figure 4.4: PPD header area on user interface CUI) 28

Figure 4.5 :·PS header area on UJ 29

Figure 4.6: Apply on selection area 29

Figure 4.7: Tree view on UI ... 29

Figure 4.8: PS file Updating button on UI.. 30

Figure 5.1: System architecture 33

Figure 5.2: MFC class diagram 38

Figure 5.3: Component interaction 3 9

Figure 5.4: Filing structure : .. 4 1

Figure 5.5: Tokenizer structure .. 1 ; : .•• 42

Figure 5.6: Database classes structure43

Figure 5.7: Parser structure .. 44

Figure 5.8: PS Updating mechanism · . .45

Figure 5.9: Factory Design ,' 482

Figure 5.9: CFCFinisher Controller (Facade) :48

Figure 5.9: Complete Finisher Controller class diagram ; .. .48~

Figure 5.10: Sequence diagram 492

Figure 5.11: E-R diagram : 511

---t(,vi)1----------

Chapter 1. Introduction

Chapter No.'1

Introduction

1.1. Introduction

Computer has spr~ad in all walks of life; it might be field of education, "industry, government or

privat~ sectors, or ente(1:ainment. Information technology is implemented in all fie lds in some

shape. We cannot deny the worthiness of Information Technology, Our lives has surrounded by

illusion ofInforniation Technology.

, Printing documents has 'become very essential part of our daily life necessities we use computers

to write our documents, assignments, research papers, books, journals, agreement papers and

reports etc. After that we use printer and print our documents on paper. So, it is an easy way to

write above mentioned items in computer instead of manual writing with 'pen. It saves the time

and we can make changes in document easily and can remove errors with less cost. When we

' select the printing option available in menu bar we get option pane window for selecting

printing. These options are page type, number of pages, range, printer model, color or black etc.

Thes¥ options are available by default.

Human beings have been keen in getting more and more control on things either Allah's rnacie or

human self-made. This project is also an attempt to get more control and access on printing

finishing features. I want to add printing features in PS file in my own way according to my

desire. A large number of printers follow postscript and also c.alled postscript printers. Postscript

is page description language that tells the information about the page to printer hardware. All

information of printing options is kept in a file that is called postscr'ipt printer description

(PPD) file.

Windows based computer systems communicate with the printer by means of a printer driver and

PPD files. Computer that has windows operating system can also communicate with the printers

by means of a Printer Control Language (PCL), printer driver and POD files (the PCL equivalent

ofPPD files). Both enable to use special features of the printer from the print dialog box.

All communication between application and printer is managed by printer driver. Printer driver

interprets the instruction generated by the application, Printer specific options (set by user) and

------I(1)1-------

Chapter 1. Introduction
--

instruction generated by ,application are merged, and then translates all information into Adobe

Postscript or PCL (print control language). It is a language that all postscript printers understand.

In simple word, printer driver write a postscript file based on original fi le (PPD) and the options

we set f rom the user interface (i.e. Print dialog box).

1.2. Purpose

The basic purpos~ of this project is to provide more control on existing postscript fil e (Elixir

Specific) with respect to printer controller. It will convert an Elixir postscript file to a more

efficient printer controller specified file based on postscript printer description (PPD) file. We

have postscript printer description (PPD) files and postscript (PS) files. Software will read

postscript printer description (PPO) file and update postscript file according to PPO file. This

application will be used in print related industry.

1.3. Scope

Postscript printer description files are important sources of printing features. But it is very

comple~ and difficult to read due to its specific format. PPO files have their own commands and

to understand it is very tin:e consuming. There are multiple companies that are' manufacturing

postscript printers and have their own PPD. It is very difficu lt for user to read complete file and

extract printer options from them but user wants to print file and want to insert command

manually or to choose options according to its requirements instead of selecting aU options. For

this purpose, to overcome this complexity there should be a mechanism that provides a solution

to the users in terms of features extraction. We need automated support to extract printer feature

information from PPD file and visualize it in such an efficient way that it is more understandable

to users.

C++ is considered a core language that has both functions oriented and object oriented features.

It is very powerful language that gives great.fiexibility. That is why development of my pwj t ct

.' postscript finishing feature controller is 'based upon C++ language. I .shall parse the postscript

.
printer description (PPD) file and extract mandatory information and discard all unnecessary

data, generate tree view of finishing features for ease of users. The Tree View will have key i.e.

namt? of the option and values against that option and also command for to execute that option.

By this, users will get necessary information of features and can s~lect' or deselect according to

their choice.

~-----I(2)t------

Chapter 1. Introduction

SUQlmary
In this chapter, Introduction of the system is given. Application will be used in print related

industry. Further, purpose and SCOpy of system is also elaborated in this chapter and also in next .

chapter.

---'-------t(3)1--------'---

Chapter 2. Requirement Analysis and Specifications

Chapter No.2

Requirement Analysis and Specifications

2.1. Introduction

Requirement analysis is first step of software development life cycle. Requirements are th'e

things or functions or more accurately services that should be delivered by the software (system).

2.2. Requirements Type~

There are two main types of software requirements: -

2.2.1. Functional requirements

, These requirements are relateq to functionality of the system. What functions are to be

performed by system are considered as functional requirements. These requirements explain the

system behavior.

2.2.2. Non-functional requirements

A Non-Functional Requirement is usually some form of constraint or restriction that must be

considered whe,n qesigning the solu~ion [1].

The requirements are not about functionality but these are related to those elements that enhance

the system performance and under these elements, system can' perform functionality in better

way. Further detail is next in this document.

2.3. R~quirements Illustration Techniques

We have several . requirements illustration techniques that are used to get requirements and

explain them. Some techniques are as under.

• InterView

• Surveys

• Questioners

• Meetings

• Joint application development(JAD)

----If 4)1-------

Chapter 2. Requirement Analysis and Specifications

All the techniques are of great worth according to their use and these techniques have proved

very beneficial in gathering software requirements. Every technique is used according to need

and available sources. Mostly, I have used two techniques (i.e. meetings and interviews)

commonly to gather required information from the organization. I constantly have meeting with
i

organization concerned person and also meet other person who also deal and have knowledge

about Postscript printer description and Postscript language.

2.4. Functional Requirements

Different functional requirements are as follows:

• System Inptit

• Reading and Parsing Postscript printer description file (PPO).

• Database Repository

• Creating tree view of functionality

• Reading and Parsing Postscript (PS) files.

• Update PS File

2.4.1. System Input

Postscript finishing feature controller System will take PPD and PS fil es as input. System's PPO

section will get only PPD file and PS section wi ll read only PS file as input and discard any other

, format.

2.4.2. Reading and Parsing Postscript printer description (PPD) file

As name ,PPO indicates it is postscript printer description file so it has detail of printing options,

data, commands and other necessary information. Postscript printer description file has its own

structure. My software application will get PPO file as input and there will be PPD file handling

mechanism implemented at backend. PPD file handling mechanism will read the PPD fi le and

pass it to tokenizer through an interface.

Tokenizer will split file into tokens there will be a token's collection now. This token's

collectiori will be given to the Paring mechani~m. This will be a customized PPD parser. There

is a lot of data that is unnecessary or meaningless for us. So, we have to separate useful and

useless data according to our need. For this purpose parsing is required. Parser wi ll apply

--I(5)t---

Chapter 2. Requirement Analysis and Specifications . \

different filters on token collection and required data/information i.e PPO header and data

. information between OpenUI CloseUT, will be filtered . Collection will be used to save parsed

data. Parsing will be done at backend.

2.4.3. Database Repository

There will be a .database at backend where all parsed PPD file information will be stored. It is
• I ..

selectable. User'can store parsed data into text file or in data base tables.

2.4.4. Creating Tree View of Functionality

When file parsing is done then user interface for this parsed data comes under discussion. How it

will be seen to user? There are multiple option that is drop down list or tree view etc. Tree view

is used to show this parsed information to the user. That means it will be ·visually represented by
,

tree view structure. For example staple infOimation is parsed and it will look like this.

Single
P.ortrait Sin gle
Landscape

[StaPling

. NONE

This tree view will be selectable. When tree view is generated then ·option selection topic is

under considerations. How user will select option according his choice? For this requirement I

will provide ch<?ckbox to select and deselect option by checking and unchecking the option. It is

very easy mechanism that every type of user can understand easily. User will have choice to

select functionality according to its will. Application will provide default options as well as

choice to update.

[StaPling oSingle
[9 Portrait Sin gle
OLandscape
oNONE

2.4.5. Reading and Parsing Postscript(PS) File

Postscript printer understand postscript file to print document. .Postscript file is given to the

system. Actually, this will be output file to be updated. Application will get postscript CPS) file

as input and there will be PS file handling mechanism implemented at backend. This will read

the PS file and pass it to tokenizer for further processing.

--{ 6)1-------

Chapter 2. Requireme~t Analysis an.d Specifications

Tokenizer will split PS file into tokens and there will be a token collection now. This token

collection will be given to the paring mechanjsm. This will be a customized PS parser. There is a

lot of data that is unnecessary or meaningless for us. So, we have to . separate useful and ,usdess

data according to our need. For this purpose parsing is required. Parser will apply different filters

on token collection and required data/information i.e. header, page number, page level ; document

level etc. will be filtered . Collection will be used to save parsed data. Software will find the

location where command is to update. Parsing will be done at backend.

2.4.6.Updating Postscript File

There is a Postscript command with options in PPO file . System will allow the user to select

, options and map the selected command into postscript file. There will a complete mechanism.to

update PS file according to selected options. That comm'and combines with print contro l

language (PCL) and then printer understand this command and perform task accordingly.

2.5. System Use Cases

. A use case in software engineering is a description of steps or actions between a user and a

software system which leads the user towa ds something useful [2]. The user might be a person

or it may be a more abstract entity, such as external software.

UseCaseID 1 .
.

Use Case Name Open PS Finisher Controller

Actor User

Precondition Application .is ready to use

Post Condition PS Finisher Controller is opened

Point of Extension Finisher Controller

Normal Flow I. User gives the command to system for opening PS Finisher
, Controller. ,

2. System displays the PS Finisher Controller.

Alternative Flow I. system will show error message properly and closed

-------t(7)t------

Chapter 2. Requirement Analysis' and Specifications

Use Case ID 2
,

Use Case Name Input PP~ File

Stakeholder and Interest User wants to Input PPO file to application

Actor User

Precondition Application is ready to use

Post Condition PPD File is opened/Loaded. System parses PPO fil e extract printing options

and displays to user in tree view.

Point of Extension PS Finisher Controller

Normal Flow I. User selects browse button.

2. System displays a file dialog box to user: "

3. User selects file and press open button or double clicks on file.

4. PPO file is input successfully.

Alternative Flow 1. The us~r selects file other than PPO file.

i. System'displays message "Invalid file".

2. User press cancel button.

11. System displays message "Invalid fil e".

Use CaseID 3

Use Case Name Select Print Options

Stakeholder and Interest User wants to select options from generated tree view by the PPO

parser.

Actor User

Preeondition System is in active condition. PPD file is parsed and printing options

exist on screen in tree view.

Post Condition Print option(s) is/are selected.

Normal Flow 1. User selects option from tree by clicking checkbox.

2. Options are selected.

Alternative Flow I. Options cannot select.

f) System generate relevant error message.

-----------------~(8)~-------,-, --------

Chapter 2. Requirement Analysis and Specifications

Use CaseID 4 .
Use Case Name Input PS Fi le

Stakeholder and Interest User wants to Input PS file to application

Actor User

Precondition Application is in active state. User is able to press browse button.

Post Condition PS file input successfully

Point of Extension PS Finisher Controller

Normal Flow

1. User select browse button.

2. System displays a file dialog box to user.

3. User selects the input file name and press open button or

double clicks on file

4. PS file is input successfully.

Alternative Flow 1. The user selects fil e other thaI) PS fi le.

i. System displays message " Invalid fil e".

2. User press cancel button.

II. System displays message "Invalid file" .

Use Case ID 5

Use Case Name Select Apply On Options

Stakeholder and Interest User wants to select apply on option

Actor User

Precondition Application is in active state

Post Condition Apply on option is selected

PoiDt of Extension PS Finisher Controller
,

Normal Flow 1. Default option is already selected.

2. User selects radio button for apply on option from apply on

group.

3. Option is selected successfully.

- -{ 9)1-----

Chapter 2. Requirement Analysis and Specifications

Alternative Flow 1. The option. does not selected successfull y.

I . System displays message "system en'or" .

Use CaseID
.

6

Use Case Name Update Postscript File

Stakebolder and Interest User wants to Update Postscript file according to selected options

Actor User

Precondition Application is in active state. PPD file is parsed and print options are

extracted and viewed in a tree view. Print options are se lected by user.

PS file is selected as input and is parsed by the system.

Post Coadition Input postscript file is updated

Point of Extension PS Finisher Controller

Normal Flow . 1. User press UpdatePS button.

2. System mapped val ues.

3 . Message displays that " PS fil e updated" .

..

Alternative Flow I. User doesn ' t select the PS File and' press the UPdatePS

button/command. ,
i. System displays the message that "file is not inselted

or options are not selected".

2. No print option is selected. ..

I. System displays the message that "file is not insened .

or options are not selected" . .

Use Case ID 7
.

,

Use Case Name Close application .,

Stakebolder and User wants to close application

Interest

Actor User

Precondition Applicll;tion is in active state

Post Condition The application is closed.

(10)~-------------

Chapter 2. Requirement Analysis and Specifications
-

Normal Flow
, '

l. User press "EXIT" button.

2. System is closed.

Alternative Flow 1. No alternate option. System must close.

2.6. Non-Functional Requirements
As for as non-functional r~quirements is concerned it is also mandatqry p'art of any software

system. We cannot ignore the wo~h of non-functional requirements ..

2.6.1. Efficiency

System should be efficient and ·self-explanatory. User interface must be v~ry easy to unperstand
. .

application ' s functionality and operating method. It means easy to understand and easy to use for

user.

2.7. System Hardware Requirements

The system on which this application will be developed must have at least

• 1.8 GtIz processor

• 1 GB Ram

• 40 GB Hard Disk

2.8. Software Interface Requirements

Windows XP operating system will be used to fulfill software interface requirement.

2.9. Software Development Requirements

• Visual C++ 6.0 will be used as development tool.

• C++ is used as developing language with support of STL.

• Notepad++

• Adobe postscript viewer

• Object oriented approach will follow in the application developm'ent.

• Development Model is Scrum.

----------i(11)1---------

Chapter 2. Requirement Analysis and Specifications

Summary

In this section, mam functional requirements of the system are discussed and some non~

functional requirements are also elaborated. Use cases for the system are explained. Software

requirements and software development requirements are also described.

---------I(12)1-------

Chapter 3. Technical Background and Literature Review

Chapter No.3

Technical Background and Literature Review
, .

3.1. Introduction

This project belongs to postscript file' customization. Two main file are used i.e. postscript fi le

and postscript printer description file. In this chapter, postscript file and its structure will be

discussed. Similarly postscript printer description file and its structure will be elaborated.

3.2. What is Postscr ipt?

Printer has its own hardware structure and drivers. When we print a file there may be a lot of text

and graphics (pictures and images) on that file to be printed. Postscript is a prog;nllm ni:lg

language that is adjusted 'for printing graphics and text whether on paper, film , CRT or LCD. 1n

short it describes page so it is also called page description language. The purpose of Postscript is

to provide suitable and useful language that depicts images as well as text in a device.

Postscript is w~lI known for its use as a page description language in print industry. The

postscript langl,Jage is designed to convey a description of virtually an~ desired page to a pdnter.

It possesses a wide range of graphic operators that may be combined in any manner. It contains

variables, and allows the combjning of operators into more complex procedures and functions.

Postscript page descriptions are programs to be run by an interpreter. Post,script programs are

usually generated by application programs running on other computers. However, many

postscript printers, including the Apple LaserWriter, have an interactive state in which the user

may program dIrectly in postscript.

3.2.1. Befor e Postscript ,

Before postscript introduction in market, design of printer was made based on 'character printing.

Multiple technologies were used for this job' but most of them were using same attribute that is

glyph. Physically, it seems that is was stamped like typewrite keys or optical plates and was

difficult to change. Input text was given in ASCII. Later on dot-matrix printer were introduced in

market, trend changed with increasing popularity of dot matrix printers. In dot matrix printers

----t(14)1---------

Chapter 3. Technical Background and Literature Review

,
characters were printed by means of series of dots. There exists a table ins'ide printer that has font

description.

Raster graphics printing was also introduced in dot matrix printers. Graphics were sent to the

printer in series of escape sequences,

After that plotters were came into introduction. Vector graphi6s printing was left to special

purPose devices, called plotters. AI~ost all plotters did share a common command language;

these ,were good for graphic printing but limited for anything other than graphics. Besides this,

these were rare due to high cost and slow speed.

With the passage of time, degree of development in printing industry grows high and laser

printer came into existence. It combines the best features of both printers and p lotters. Like

plotters, laser printers offer high quality line art, and like dot-matrix printers; they are able to

generate pages of text and raster graphics. A much pretty feature of laser printers is, it makes

possible to position high-,quality graphics and text on the same page. We can print graphics,

images and text on the same page. Postscript made it possible ,to fully exploit these

characteristics, by offering a single control language that could be used on any brand of printer.

3.2.2. Origin of Postscript

Postscript is a product of Adobe Systems, Inc. Adobe Systems was formed in 1982 by Dr. John

E. Wamock and Dr. Charles M. Geschke. The concepts of the Postscript language were seeded

in 1976 when Dr. John Wamock was at Evans and Sutherland Compute~ Corporation. At that

time John Gaffney, of Evans and Sutherland, was developing an 'interpreter for a large three

dimensional graphics database of New York harbour. Gaffney conceived the ':Oesign System"

language.

John Wamock then joined the Xerox Coporation's Palo Alto Research Centre (Xerox P.A.R.C)

to work with Martin Newell. They reshaped the Design System into JaM (John and Martin)

which wa~ , used for VLSI design and the investigation of type and ~aphics printing -

culminating in Inter Press, Xerox's printing protocol.

In 1982, John Wamock left Xerox, together with Chuck Geschke, and founded Adobe Systems

Inc. The name Adobe was taken from an Indian creek near to where John Wamo,ck lived . Their

aim was to build a dedicated publishing workstation and , the final , two-dimensional graphics

handling product was named Postscript.

'~-------------~(15 ,)~------~--------

Chapter 3. Technical Background and Li te rature Review
__ i __ ____

About the same time Steve Jobs, who had earlier founded Apple Computers, was looking for a

solution for a high quality office printing system problem. Steve Jobs urged Adobe to . develop a

system to drive a laser printer. With the drop in price of memory, the first low cost laser printer

engine from Canon, and a bit-mapped computer from Apple, the fi rst postsc'ript prin ter hi t the

market in 1985.

As hardware conti nued to improve, memory price conti nued to fa ll and with the appearance of

powerful processors, such as the Motoro la 68000, graphics applications continued to expand and ,
became more widespread. Postscript was a mat ure product and was fu ll y embraced by the

industry, in,cluding the world's ent ire lead ing mainframe manufacturer's (such as Digital, IB M

and HP/Apollo) and, possibly more importantly, the PC manufacturer's (such as Apple, IBM,

Atan , Amiga and Acorn Archi medes).

3.2.3. Overview of Postscript Language

PostScript is also a computer language like other languages C++, JA VA etc. Originall y it was

developed by Adobe Systems Incorporated to process graphic informati on to digita l laser

. printers. It is very powerful language that can be used for general programming as we ll as to

express graphics images. It is famous fo r its flexibility and compaction. It can be learnt easily

and we can produce high quali ty images, graphics and text by hand written program.

In this s~ction overview of some important fea tures will be discussed. This language is speciall y

developed for complex graphics. It also handles letters as graphics sophisti cated ly.

3.2.4. Model of Postscript Language

Postscript language model have some concepts that are sketched out as under:-

• Interpreted

• Stack based

• Dictionary

• Name

• Number

• String

• Array

• procedure

-------~[16)1---------

Chapter 3. Technical Bac~ground and Literature Review

This language is interpreted and based on stack. Dictionary data structure is used that make it

flexible and extensible. Postscript language is also a high level language that is interpreted, not

compiled. One should have good knowledge to use it because interpreted lcmguages require more

attention and care than compiled languages. The beauty of postscript language is that it can

increase efficiency and reliability of the software dramatically.

3.2.? Data structure and Dictionaries

A prett'y feature provided by PS language is Dictionary. A is a structure in which data is stored in

key-value mechanism. It also provides several standard data structures for example arrays,

strings,. files etc.

All of these data types are maintained as postscript objects. And dictionary is a single way to

store PS object for reuse. "def' operator is used ,to make entries in a dictionary. This can be used

for defining variable and functi<:ms and can also be used for complex data structures'.

3.2.6. Stack

A stack is a data structure that has same input aod output path. Objects are piaced one Ion the top

of another. Stacks are called last in first out data structures. There a e many stacks that are used

by PS interpreter e.g. open;md stack, execution stack, dIctionary stack and graphic stack.

Operands are pushed on operand stack. And pop by interpreter. Postscript language is stack

based and so we can say it is an exercise of st~ck manipulation. Many errors 'come due to

inco'rrect use and, less knowledge of stack manipulation. So it 'is must:to have pretty knowledge

in order to write program in postscript language.

3.2.7. Postscript Flexibility

, Postscript is an extremely flexible language. Functions that do not exist, bitt which would be

useful for an application, can be defined and then used like other postscript operators. Thus,

postscript is not a fixed language within whose limits an application must be written, but is an

environment that 'can be changed to match the t~sk at hand. Pieces of one page description can be

used to compose, other, more complicated pages. Such pieces ,can be used in their original form

or tran~lated , rotated, and scaled to form a myriad of new composite pages.

----------------~(17)~----------------

Chapter 3. Technical Background and Literature Review

3.2.8. Graphics Concept

To manipulate image, Postscript has few concept to that must be known before' image processing

in PS. That is as' under:-

3.2.9.1. Device Space

This is the space that describes coordinates which are understood by the printer hardware. This

measure of this space is done by means of pixels. That means it indicates resolution of page .

. 3.2.9.2. User Space

This is the space that describes the location of the points in coordinate. This system is same as

co-ordinate system studied in school mathematics . These user space co-ordinates are converted

into device space automatically by device space.

3.2.9.3. Current Transformation Matrix

Above mentioned transf<;>rmation (i.e. user space coordinates to device space coordinates) is

done through the current transformation matrix. This matrix is a 3* 3 matrix by which user can

rotate, scale and translate user space within device space. This is power of postscript.

3.2.9.4. Path

It is a collection of disjoint line segments and curves that exist on the page. It does not indicate

actual ink. It is imaginary tracing over the page. User draws ink along the path by operators.

(e.g. stroke, fill etc.).

3.2.9.5. Current Path

The actual path that postscript program create at the current time is called current path. It is

created piece by piece.

3.2.9.6. Graphics State

Collection of various settings describes the graphic state. For instance the current path, the

current font, and the current transformation matrix make up the graphics state. This state can be

saved temporarily for later use. For this purpose gsave and grestore operators are used.

--(18)1--------

Chapter 3. Technical Background and Literature Review

3.2.9. Postscript Programming

It is pretty easy to write program in PostScript. Operands are pushed on operand stack and

invoked to use. What operand is to select and when is to use is the real of art. Look at the

following line code.

Is 3 def.

In above line, def. is used to define top of the dictionary on dictionary ~tack. S is the name and 3

is the value. Slash ensure that the name s will be ptlshed onto the stack. Top operand on the stack

is value and below the value is key that is name. Operators can also be defined by, def. for

example,

Ipam Aadd mulB def.

The above line of code is definition of an operator that will take two top most operands adds

'. them and multiplies the result with the next operand on stack. The above definition is also call ed

procedure. A very mandatory thing to know about defining procedure is that first operiltor is

invoked and then elements will be evaluated.

Postscript, basically have main purpose to draw graphics on page. One beautiful and pretty thing

about Postscript is that it even draw text as graphic. It has "draw and fill mechanism". To do this

it has the following sequence.

• New Path: Start the path with the newpath operator.

• Construct: Construct the path out of line segments and curves.

• Draw and Fill: Draw the path with the stroke operator or fill it in with the fill operator.

This is the basic s.equence and we can modify it to' do more complicated things. Following is an

example to illustrate. this:-

newpath ,

1 inch 1 inch moveto

2 inch 1 inch lineto

2 inch 2 inch Iineto

. 1 inch 2 inch lineto

c10sepath

stroke

---------------~(19)~---------------

Chapter 3. Technical Background and Literature Review

3.2.10.Elixir Postscript File

In elixir specifkfile there are multiple sections. Every section has its own meaning and function.
But the area I have to work on is header area and page setup area.

Header area contains the header information like creator, language and version etc. whereas
beg~n page setup area contain the printing option information. Only the options that are
mentioned here can be IJpdated inthls postscript. Pictorial representation of these two sections is
as under:-

~ D:WisuaIStudio6.0\FinisherController\elixir.ps - Notepad++

File Edit Search View Encoding Language Settings Maqo · Run Plugins Wine

·1 %IP5-Adobe-3.0

.2 H Title : 000000:31

3 %% Creator: Elixir
4 %% CreationDate: 240 12 0 12 150611
5 % % Docu.ment.Data: C l ean7B i t.

6 ~ % LanguageLevel: 2
7 %% PageOrder: Special

8 ' %% Ver s ion: 3 .0 1

Figure 3.1: Elixir PS File Header

J.~ ((~ ~C'ageKesources :

1578 %%+ font Arial,Bold

1579

1580

1581
1582 %% EndP a geSetup

1583 Bp
1584 F~ATR1A4 0 - 3 xl

fa1se /llediaType (AB1) » SPD

Figure 3.2: Elixir PS File Begin Setup Area

In figure 3.2, within begin page setup area a word SPO exists. It means se{ page device (SPO).
Printing options is selected from PPO and matched here with options shown here before SPO.lf
selected option is matched then it postscript value is inserted after SPD and options is removed
from here otherwise selected option is droped.

-------.-{ 20)1-------,.--------

Chapter 3. Technical Background and Literature Review

3.3. PostScript Printer Description (PPD)

All devices (any output device which PS enabled contains a postscript interpreter) have different

features set and there is possibility that devices have same feature set invoke feature ill c[;'ffEl'tnt

ways. 'Each devjce has postscript printer description file associated with it

A PPD file is a static representation of the features available on a device. It contains information

on the features available On a device as it is shipped from the factory. PPO files are text files that

describe an approach to use miscellaneous feature of device. Every device have different features

such as memory size, default setting , fonts , page size, finishing features such as duplex printing

and stapling etc. All this necessary information about device 's features, how to change setting

: etc. is provided by PPO files. PPD files are stored on the HQst computer that is going to use these

files. These files are accessible to host computer. Applications parse PPO files and discover the

available feature list. Before discovering features blind parsing is done. There exist such

structures in PPD file that allow blind parsing. This parsing purpose is to select the device with

the help of user interface.

Then application build user interface' from list of features extracted from PPO file. To invoke

each feature PPD fi le also has Postscript language code. Now user select feature such as duplex

printing or A4 page size, Postscript language code for each option is extracted and placed at

appropriate place in the output file before output file is sent to device. Postscript Printer

Description (PPO) ,files are created by vendors to describe the entire set of features and

capabilities av~ilable for their PostScript printers.

A PPD also contains the Postscript code (commands) used to invoke features for the print job. As

such, PPDs function as drivers for all PostScript printers, by providing a unified interface for the

'printer's capabilities and features. For example, a generic PPD file for all models of xeror Color

LaserJet contains:

(,'

----------------~(21)~----------------

Chapter 3. Technical Background and Literature Review

*PPD-Adobe: -4.3"

*% Adobe Systems PostScript(R) Printer Description File

*% Copyright 1993-97 Elactronic$ for Im;ging, Inc.

*% All Rights Reserved.

*% Permi.ssion is granted for redi$tribution of this fi le as

*% loni: as thh copyrii:ht notic'f is intact and the contents

*% of the fil e is not altered in any way from its orilinal form.

*% End of Copyright statement

*%EFFil eVersion: 2.0

*FormatVersion: "4.3"

*rileVer"ion: "1.0"

*PCfileName: "EFXJX404. PPD"

+Languagevenlon: English

*La nguageEncoding: ISOLatin l

*Product: "(Fiery XJ DocuColor 40)"

*PSVersion: "(2017.103) 1"

*ModeIName: "FieryXJ Docu~olor 40 Color Server v2017.103"

*%ShortNickName: "Fiery)(J QocllColor40 v2017.103-

· ShortNickName: "Xerox DocuColor40 with XJ+4.2"

*NickName: "Fiery XJ DocuColor 40 Color Server v2017.103"

. tManufacturer: "Xerox"

Figure 3.3: PPD File Header

This is known as header of PPD file.

3.3.1. Format

The syntax of PPD files is a simple line-oriented format where the options, defaults, and

invocation strings (PostScript language code sequences that change a feature setting) are made

available through a regular set of keywords. [3]

3.3.2. Terms Used in PPD

Basically three keywords are used in PPD files .

. -----.-----t(22)1---------

Chapter 3. Technical Background and Literature Review

• Main keyword

• Option keyword

• Query keyword

3.3.2.1. Main keyword

This describes the device features such as font size, page size and duplex etc. It has subsets that

are default keyword, Option keyword ,and query l(.eyword . As name shows default keyword

describes default state of device. It is denoted lOtS *Default. Default is always prefixed of default

state description. Every main keyword and option key word ha~ a name and value. Syntax of

main key word is as below.

*MainKeyword: value

e.g. *OpenUI *EFFinisherOptlFinisher : PickOne

here "*OpenUI" tells that it is an interface option. "*EFFinisherOpt/Finisher" is name of main

key word and "PickOne" is value.

Main keyword has two general classes.

• InfQrmational

• User Interface

Informational: This provides information about a feature, for instance; each font will contain

how much memory space? Etc. This information is only beneficial for application and need not

to add in user interface.

User Interface keyword: This provides information about those features that are going to

appear in user interface. They also provide code to invoke selectable features. User interface

entries are represented by structure keyword *OpenUII*CloseUI.

3.3.2.2. Option Keywords

When there are several choices against a, feature then option keywords are provided. That means

this f~ature has, mUltiple attributes. For example, there might be many mUltiple page sizes listed

in the *PageSize section.

*OpenUI *PageSize/Page Size :PickOne

*OrderDependency: 25 AnySetup *PageSize

*DefaultPageSize: A4

*PageSize Tabloidl11xl7: " "

-{ 23)1-----

Chapter 3. Technical Background aryd Literature Review

*PageSize Legal/Legal: " "

*PageSize Letter/Letter: " "

*PageSize Statement/Statement: " "

*PageSize A3/ A3: " II

*PageSize B4/B4: " "

*PageSize A4/A4: " "

*PageSize.B5/B5: " "

*PageSize A5/ A5: " "

*PageSize Executive/Executive: " "

*?PageSize: " "

*CloseUI: *PageSize

3.3.2.3. Query Keyword

This describes the sequence of code. It return the device 's state at the time of code' downloading

to the device. This is used by the application to determine the state of device. It is not necessary

that every main keyword also has query keyword. Query keyword is optional and only defined if

they are useful and is coinpletely optional otherwise.

There exist statements to describe these keywords. A statement is a single object of main

keyword, option and value. There are different formats for statements and .every statement in

printer PostScript description file is specified by one of these formats .

• *MainKey

• *MainKey: StringValue

• * MainKey: "QuotedValue"

• *MainKey: "'SymbolValue

• *MainKey OptionKey: StringValue

• *MainKey OptionKey: "InvocationValue"

• *MainKey OptionKey: "'SymbolValue

Logically belonging statements are grouped together and is called an entry. An entry has several

instances of main keyword, *default keyword, and query keyword.

---t(24).---------

Chapter 3. Technical Background and Literature Review

3.3.3. Parsing Main Keywords

Parsing main keyword's detail is following.

• If Main key word does not exists it means feature does not exist on that particular device.
,

• If a main keyword is not recognized, the entire statement (including multiline code segments)

should be skipped. However, the point of the *~penUJI*CloseUI structures is to allow new main

keywords to appear without a print manager explicitly recognizing them. The most functionality

will be provided to the user if a print manager handles all main keywords that occur within the

*OpenUIJ*CloseUI structure, display'ing them and invoking their associated code to the best of .

its ability. Unrec0gnized main keywords that occur outside of the *OpenUJI*CloseUI structure

should be skipped. [4]

• A * in the first column denotes the beginning of a main keyword. Any text or white space
before the * should be considered an error.

• The case of main keywords is significant. For example, *PageSize is distinct from *Pagesize.
The proliferation of keywords that are the same textually except for case is strongly discouraged.

• Every main k~yword can be of maximum length 40 cha acters.

• Main keywords can contain any printable ASCII characters within the range of decimal 33 to
decimal 126 inqlusive, excluding colon and slash.

• Delimiters for main keywords are space, tab,. colon, or newline. After the initial * symbol is
recognized, all characters through · (but not including) the next space, tab, colon, or newline
charactei' are considered part of the main keyword.

• If a main keyword is not terminated with a colon or newline, an option keyword can be
expected. [4]

3.3.4. Parsing Option Keywords

The option keywords of a given main keyword are surrounded by the *OpenUI/*CloseUI

keywords. Other things to remember about parsing option keywords:

An opt~on keyword begins with the first character after white space after a main keyword. The

case of option keywords is significant. For example, A4 is distinct from a4. Maximum lellgth of

an option keyword is 40 characters; it includes any extensions or qualifiers separated by dots.

Option keywords can contain any printable ASCII characters within the range of decimal 33 to

decimal 126 inclusive, except for the characters colon and slash, . which serve as keyword

----(25)t-------~

Chapter 3. Technical Background and Literature Review

delimiters. Once the option keyword is encountered, and before it is properly terminated, a space,

tab, or newline character should be regarded as an error. [4]

3.3.5. Comment Statements

PPD fil e structure al so supports comments in the file. Like C or C++, PPO fil e also have

comment structure. "*%" is used to write comments.

3.3.6. PPD File Structure

While we talk about PPD file structure, the first line must be like this:

*PPD-Adobe: "nnn"

"*PPp-Adobe" indicates that it is a PPO file and "nnn" indicates the version number. It may be

like this " *PPD-Adobe: "4.3" ".

This line generally followed by comment line that starts from .*% characters. After comments

, there is header ofPPD file. And below header PPD detail exists.

Summary

In this chapter, postscript fi le and postscript printer description files are exp lained . General

parsing technique for PPD fi le is described. Fi le structure ofPS and PPO files is discussed.

--.----.----t(26)1----------

Chapter 4. User Interface

Chapter No.4

User Interface

4.1. Introduction

User interface is the junction between a user and a computer program. An interface is a set of

commands or menus through which a user communicates with a program [5]. There must be an

interface to communicate with software to get functionalities/services. Intelface can be menu

based orcommand based. In this application, menu based interface is provided.

When we print a document, user c~m select multiple features, such as number of copies, page

size, staple etc. ,through a user interface such as a print panel or a command line. Providence of

, these features is based on PPO parsing. It means interface is constructed by parsing PPO file for

the selected device. For example, the PPO file contains a list of paper sizes supported by the

device. A user interface can display that list to the user and allow the user to select a paper size

from the list.

4.2~ User Interface and Parts

Main part of user inter face are shown in the following diagram.

-"- Untitled t mi5hcrControlier ...

1. Manu ear File Edt VIev'!" Help

I -ts -~-gTi--;t';;iPiTsr,, 'c- --'--' ------

EPD F.., I .El,owse I
f· PPQ. Header '

I Fj~VefSion FOfmaIVef ~ion ' : <4 , PPD H.~.f Info A roa

t PSVcrsion ManufeclulOf - I
L,AngVe'$ton Proguet

' PJ;F<. " -----'------__ - 3 p~J~·~.Ih~' • •

PSHeade, l-I .c;,eator Velcjo n

! PJlgeOrde, LaogLevel

I Cteat~ot~ : Docu~Data: S .PS H •• delf' Info Areo

Apply On Date AepositOlY

r Jog L evel r: Database 7 . Oet.. Repository

< I

(.- Page l..ewel · (; T CloCt File

Upd"T I 8~ ""!oction A~~ D IS
CIao.

9 . Upddat. PS Button

Ready I '

Fie:ul'e 4.1: User Interface layout

-- --'--------{ 26)1----------

Chapter 4. User Interface

4.2.1. Menu Bar

Menu bar has multiple options. Interface of the system is menu based. User can start or exit

application from Start or Exit menu command.

4.2.2. PPD. File Path Area

In this area, user can enter input file path. Or user can click browse button to get file path with

. the help of file dialog.

I,," td dI>-

r j)-iiiiiiii _ ,.
PSVenion IJ)'1Q.ID4n

~·""' · Er(tsh

Flet'IMWI J .. ~

'Io ... ",.. r------·----·-3
r Olt.iJase

(;- Tnt ne

, <

~~:L __ ~~

Fie:ure 4.2: PPD file input interface

4.2.3. PS File ,Path Area
,

In this area, user can enter input file path. Or user can click browse button to get file path with

the help of file dialog.

QpOom .. fI'<!", 1
11 PflQ"wdef

l""""! O '''''''''''''' ~ .. (I)dO· ,
!b~ . ij~-;ef.;;;ory . cpp
1..:lppcft. ~ ConcJltefklory,h
!bres '
~1DXll146.PS
! ICDllXH1.P5

r] I1'5'1K

< .~.

"'tt~e.p'
~fOCtory . cpp
t!l F6ctOfy.h

e-f(Ro,,,,,,
.!'l fO' ... h

~F<~.e'r.
~fCGeneratel!er
c:Jl'O"taf«.eyOO.q
.cl ~eyOe.h

..
flit-: ~ ~ AepotlCl)l

, Ir--'---------O!]::J· ~
~ ____________ ~------------~D.~

11 ~ p~~

~ '~~='~--------~----

Figure 4.3: PS file input interface

--
v..... 201

(D

-(27)1--------

Chapter 4. User Interface
...... ~~ .. ~ ~=ani .. i .. ~

4.2.4. PPD Header Area

This area represent PPD header info. It gives the PPO file information like File Version, Format

Version, language version etc .

•.• Untltfed f iflisherControlier GJ (8J
Ate Edit View Help

.. : D ~" liiI r .j(,- "'l~ Ii"'. I CB I 'I' I
i jlptions -- EPD Filo I,,·ppd

PPQ H eader

FjleVersion 1 .0

PSVe ls ion (3010.104)1

L1I!nQVoision E~li$h

P,S.File I
PS Header
C;reator

PJ:lgeO,der

CreationDote

Apply OD '

r Job Level

r. Poge '.Le-rel

?' f
Upda teES !

I L :a"~ii" ~: :J1

Fo!m~tVer sion: 4 .3 I
Heade

M anufecture r . Canon

Prosjuct . . (iA 600·60J

Veu:jon

LanoLevel I

D ocumentDoto:

. .. Ooto A opositcwy

r D&tab<!llse

r.- T' ext File

, 1

.i

__ 0...;:]5;,---,'~", j

r

Figure 4.4: PPD header area on user interface (Un

4.2.5. PS Header Area

This area represent PS header info. It gives the PS file information like creator, page order,

language level and version etc.

_0. Unhlled t 100"iherl.ontroller (;J: 7' ~
File Edit VIew H~ .

T~~-~~-Qi;e:ra-I"-:--' --.----- - .------.
r" .Qption.--.... · · _ · -

.L J
......... ...

RBady

fPD File I.· ppd

! Pf'Q. He.der

: I;~V ... ion

PSVelston

\ L,AngYersion

1 .0

(3010;104)1

English

P,S. Fi!e I ehKir. ps

i PS Header

: 1::reator

P.QgeOrder

CreationOate

Apply 00

Eli><ir

Spec;..!

24012012

r JoI! Level

Co" Pagel.evel

~,owse

FOlmaNersion : 4.3

MMlUfecturer Canon

Proguel . (iRSOO·GO)

Versjon

OocumentO"ta: C,,"en78l

- Data Repository

Database

r. Text File

OJ:> .c;1o.e I ,

r

--------------~(28)~----------------

Chapter 4. User Interface -
Figure 4.5: PS header area on UI

4.2.6. Apply on Area

This area will allow the user to select apply on area. User can select radio button to select options

according to his desire.

_0- Unlitl~d rinishcrControlicr (~r·-· ®

[

~:;~I~~_O;TIO~S
[+1 E FFinish erQ pi
It- E FzF olderO pi
!:f! EFlnser lerOpt
t:f;' EFPepe.D eckOpt
rt.1 Medi~Type
~. EFSoi ler
It l EFStopler
tf; EFPunch
cf" EFDuple)(ing
r+1 EFBookle l
I£- EFZFold
It.! EFlnae,1
L+j. EFRe'ine
{1-1 EfDestinetion
I:n E FLendscepe
rt EFUsBIRotate180
r" ~ EFSpool
[+;- T onerR e duction

ttl EFDmkneu

l
1+, EFF;,.,Pe ge
I:!" Reso lution
tf tnpIJtSlo t
r.t' P agoSI1-B
... P.--R -wnr.

--- -- ---
Re~dy

4.2.7. Tree View

EPO Fie !.,ppd
Pf'Q. Header

FjleVet'cion 1 .0 I

PSVersion (3010.104)1

L.ongVersion Engli.$h

?SAle leIi>O"ps
PS Header
Creolor Eti)(if

P.ogeOrdcr Sp~iol

CleationOate 24012012

Applycio ---

Job Lev!!!!

r. Page Le ve l \

" .
FO!mllltVersion 4.3

Manufech .. er Canon

Pm<luc, [oR 600-60)

Veftjon 2.01

LeogLevel : 2

DocumentD ale Cle.¥l7Bit

.- Data R epc»itory

'~ lD~

r TelClF_

OJ> Upd,e;teES 'I
APPlyo\e8

\

Figure 4.6: Apply on selection area

1

Required Parsed information is saved in tree data structure and displayed in tree view are as

shown in snapshot.

.' 11"I.tlcd I In1<;hc.-ControUcr r::J,:-~
F"e Edtt View Help

" t5--~ 'IiiiI T:X:iit:;--~-r ;.s-"i-,r :

r-~ .. PRINT_OPT ION S
t~ E FFinisherO pt
tt l EFZFolde,Opt
~J" EFlns erterOpt
' j EFPtllpe rD eckOpt
~l MediaType
~J ' EFSotter
f;fJ EFS t tliple r
~~) EFPunch
,-t l EFDuplelo!ing
::fl E FB oakle l

~+'~. ~~r!:~lr~
lf l EFRefine
Ft.) EFDes tina tion
r j _ EFLelnds ctllpe
·~1 ·· EFU a erRot.et e l B O
H,) EFS pool
1+ 1 TonerR e duc ti o n
l:fT' E FD oerkness
~+'l E FFirstPtIIge

-f+ l A esolution
;:4:1-- Inp utS lot

{± :~;j:~

Ready '

EPD File ItII.ppd

PP.Q HetlidcH

FjleVels ion

P S V e raion

LJingVer:iio n

1 , 0

(301 D. ' 04)1

Englis h

P S,. File Jelix lf.ps:

PS Heo!lde r .

EliKir

Cl •• tionD .t. 2 401 2 01 2

Apply On

r- J o .b L evel

r. Pe.ge .Level

Figure 4.7: Tree view on UI

(29)

FOlmat'Vefaion ;

MonufectUfer

Prq~uct

Versjon

L~gLoyel

4 . 3

c___.

lOASOO-SO)

2.01

2

D o curnentDote; ca...,7Bit

o ala A epository

DIS

I I I

Chapter 4. User Interface

4.2.8. Data Repository

In this section, user can select data repository for data storage. In this system MS Access

database is supported ..

4.2.9. Update PS Button

This area contains a button: System will allow the user to click Update PS button and Postscript fil e wi ll

be updated. After Pressing Update button system will display a message that PS file has updated.

-"'. -'~-"'T- '~~~' ~ '

.-:' LJnt~t!e(L' .f!~i~~.!~f.~!J~-:~.'~! .• 1. ~.,.llh;clMJ'~ ... lhi,,;.tci-ii,i.~~i.iJl~.t~.w' . , . ,. . '

El- PRINT _OPTI

Ready

$ EFFinisherOpt
!±l' EFZFo\derOpt
r:j:J . EFlnserterOpt
~ EFPaperDeckOpt
til MediaType

. EFSorter

l:f" EFStapler

tt EFPunch
E~l EFDuple~ing
ffi· EFBooklet
14:1· EFZFpld

EFlnsert
l±l EFRefine

r!> E FD estin"tion
If] EFLandscape
ril- EFUserR otate180
Lt.:· EFS pool
El:l . T onerR eduction
I±;' EFDarkness * EFFirstPage
l±i. Aesolution
r:\:l InputSlot
ff": PageSize

P,lllon"",~,.. ntnto'\

Summary

.ePD ne l a.ppd
.;..

PP,Q, He"der--.......

FjleVersion 1.0

PSVersion ' (3010.104)1

F~e written

OK

r Jo!l Level

r. Page !.evel

i, . -- +
'I UPdr.eS I v

Update PS Button

Figure 4.8: PS file Updating button on UI

.Il.rowse

F ormatV ersion : 4.3

Manufecturer Canon

Pr~t (iR600·GO) I

Blow,e

Versjon 2.01

LangLevel 2

D ocumentData: Clean7B it

Data Repository

r. Database

L
r TeKtn ..

OJ!; 1:;lose

r - r·

" In this ~hapter, User interface is discussed and different areas and sections are described,

----~(30)~------------

/,

,..,;;

Chapter 5. System Design

Chapter No.5

System Design

5.1. Design Strateg,ies an<l Coding Techniques

In this chapter, system design strategies and coding techniques are discussed. In the era of rapid

application development, object oriented approach is of great worth. In this section we decide

how to design our system and what approaches should follow to design system. We wi II

elaborate coding techniques to implement our system. In next phase, system' s architecture and

detail design is explained.

5.2.1. Language Selection

I have selected Vi,sual C++ as programming Language with power of STL and MFC library will

be used to develop system. The reasons behind choosing this Language and tool are following:

5.2.2. MFC

Object oriented methodology promotes the idea of separation of concern. I want to separate
I

business logic from presentation logic. MFC's Document/View architecture provides MVC

architecture to facilitate separation of business logic from presentation logic. In MFC, Document

acts as Model and view acts as View/Controller. Standard Template Library (STL) provides

.' great assistance in coding and streamlines the code. We can use document and view or only view

according to our ,design.

5.2.3. Abstraction

VC++ provides abstraction through classes. That streamlines the code implementation.

Inheritance and polymorphism plays a significant role in MFC library so we don 't have to mess

up with heaps of code.

5.2.4. Documentation

Microsoft provides MSDN, ~ very well structured documentation to assist developers. A lot of

stuff regarding VC++ help al so exists on internet and available in books.

----t(31)J----------

I.

Chapter 5. System Design
-

5.2. Coding Techniques

For the implementation of this project I will keep following coding guidelines in use:-

• Pascal casing is used for class names.

• Camel casing is used for the function and attribute names . .

• First few digits ofthe attribute names describe attributes type.

5.2.1. Object Oriented Approach

MFC is c9mpletely object oriented library. Also our components wi ll be implemented by using
. .

Object Oriented approach.

5.2.2. ~attern Oriented approach

Pattern is a general solution of a problem in a specific domain. Design patterns will be used to

enjoy the features promised by Object Oriented in realitY: Among design patterns, Fa~de pattern

will be used ·to provide a common interface so to keep code clean, Adapter method will be used

to wrap the functionality of MFC classes. Wrapper/adaptor pattern will be used to wrap

functionality ofMFC classes. [6]

5.3. System Design

A system design is an activity that defines the architecture, interfaces, components and data for

the system. A system is a collection of components that work together to realize some objective

. forms a system. Basically there are three major components in every system, namely input,

processing and output [7].

___ In...,JPL....U_t __ +l. 1 . Processing Output
•

[t is the ,age of Object Oriented methodologies. So Object Oriented Approach is used [OJ sYf.trtn

design and implementation. System Design is based on user requirement and analysis of the

system. In this chapter two stages are illustrated to represent system design.

• Software Architecture Design

• Software Class Design

.---{ 32)1----------

Chapter 5. System Design

5.3.1. SoftWare Architecture Design

In general design, I shaH present architecture diagram to show, abstract level design. This wi ll

give the overview of the system.

5.3.2. Software Class Design

In structural or detail design, T wi ll present static and dynamic structure of the system. Class

diagram will show the static structure and sequence diagram wiH .show dynamic structure of the

system.

5.4. System Architecture 'Diagram

Data Base MFC

~ I View/Controller I

1 I <<interface» I
IDataBase

I I
I I Document

PS Finisher Co troller 1-'1
I «interface» «subsystem»

CIFlnsherControlier I . PS Parser

I

----.

"l r-l ~

«subsystem» «subsystem» - «subsystem»
PS Updater Tokenlzer PPD Parser

Figure 5.1: System architecture

This diagram illustrate that our system wiH be implement using MFC framework. System

architecture has four main parts that are user, MFC framework, PS Finisher Contro ller and

database.

5.4.1. User

. User will interact with the application and also have knowledge about relation between PPO and

PS files and the system (Postscript finishing feature controller).The user have the skills and

expertise to use application.

- - - ------t(33)1---------.

Chapter 5. System Design

5.4.2. MFC Framework

MFC is object or\e~ted wrapper of windows API for C++ provided by Microsoft [8]. It is a

collection of classes. CObject is base class for MFC library. Most of the classes are derived from

CObject class either directly or indirectly. The MFC Application Wizard makes easy to create an

application skeleton with a document class and a view class. Microsoft foundation class (MFC)

library supports Multiple views to r~present data. I wi ll use MFC interface in my system. It has

two parts that are document and view/controller.

4.4.2~1. Document

Docume~t act as a central repository of the applic'ltion. Document is t\1odel on which all views

are dependent. A change propogate through out all application from the document.[9]

4.4.2.2. View/Contrller

View is the visual representation of data. It displays the output of the appli cation. User will

interact with application through the view. Application take input from the user through view.

Contoller creats an event handller for the application. [10]

5.4.3. PS Finisher Controller

This module contains all processing related to system. Different parts of PS Finisher Controller

are CIFinisherController, PPD Customised Parser, PS Customised Pareser, Modifier.

4.4.3.1. CIFinisherController

This class will act like a manager. It manages all classes except MFC library classes. It is like

facade class. It provide interface between MFC and rest of the classes of the system.

5.4.3~1. PPD Customized Parser

It is a sub system of the whole system. It will read PPD info and extract required information

form the PPD file . It will give the tree view of parsed information. It will let the user to, select

options according to user' s own choice.

5.4.3.2. PS Customized Parser

In this subsystem, system will read PS file and parse the required information form it. It can be

document level, job level or page l~vel,

----------------~(34)r----------------

Chapter 5. System Design

5.4.3.3. PS Updater/Mapper

In this section, PS file will be updated. PS updater will get selected information and search the

location in parsed PS file. After matching the place user selected value will be replaced in PS

file. Thus PS file will be updated.

5.4.3.4. Data Base

This section will contain database processing. It wi ll give interface for database connection. [t

handles all database processing. PPD parsing information wi ll be stored in database.

" 5.5. Structural Design/Class Diagrams

, A class diagram describes static structure of the system. [t is part of unified modeling language.

Class diagram shows classes, data, functions and relationship of system and interaction between

the system's classes.

5.5.1. MFC Framwork '

MFC class structure shows MFC classes hierarchy. MFC classes detail is as under.

5.5.1.1. CObject

CObject provides b,asic services, including serialization support, run-time class information,

object diagnostic output and compatibility with collection classes. The derived classes can have

only one CObject base class, and that CObject must be leftmost in the hierarchy.[ll]

5.5.1.2. CCmdTarget

The base class for the Microsoft Foundation Class Library message map architecture. Key

framework classes derived from CCmdTargetinclude CView, CWinApp, CDocument, CWnd,

and CF)j~meWnd. CCmdTarget includes member functions that handle the display of an

hourglass cursor. Display the hourglass cursor when you expect a command to take a noticeable

time interval to execute.[12]

5.5.1.3. CDocument

CDocument supports standard operations such as creating a document, loading it, and saving it.

The framework manipulates documents using the interface defined by CDocument. Users

interact with a document through the CView object(s) associated with it. To implement

--.. --{ 35)1------------.-:

Chapter 5. System Design

documents in a typical application, you must do the following: Derive a class from C?ocument

for each type of document. Add member variables to store each document's data. Implement

member functions for reading and modifying the document's data. The document's views are the

most important users of these member functions.[13]

5.5.1.4. CWnd

The CWnd class provides the base functionality of all · window classes in the Microsoft

Foundation Class Library. A CWnd object is created or destroyed by the CWnd constructor and

, destructor. The Windows window, on the other hand, is a data structure internal to Windows that

is' created by a Create member function and destroyed by the CWnd virtual destructor. Within the '

Microsoft Foundation Class Library, further classes are derived from CWnd to provide specific

window types. Many of these classes, including CFrameWnd, CMDIFrameWnd, CYiew,

CDialogand CMDIChildWnd are designed for further derivation [14].

5.5.1.5. CFrameWnd

To create a useful· frame window for your application, derive a class from CFrameWnd. There

are three ways to construct a frame window.

• Directly construct it using Create.

. • Directly construct it using Load Frame.

• Indirectly construct it using a document template. [15].

5.5.1.6. CMainFrame

A class derived from CFrameWnd. CMainFrame class is related to thePS Finisher Controller

application. The CMainFrame utility class presented here helps to implement a modal dialog's

behavior for any CFrame Wnd derived window class in an easy way [16].

5.5.1. 7. 'CTreeCtrl

A "tree view control" is a window that displays ·a hierarchical list of items, such as the headings

in a document, the entries in an index, or the files and directories on a disk. Here Each item

consists of a Main key and list of sub items i ~e. main key and option keys [17].

--------If 36)t---------:-

Chapter 5. System Design

5.5.1.8. CView

A view is attached to a document and acts as an intermediary between the document and t'le

user. A view is a child of a frame window. More than one view can share a frame window) as in

the case of a splitter window. The relationship between a view class, a frame window class, and a

document class is established by a CDocTemplate object [18] .

\ \

----------f(37)t---:-------~

Chapter 5. System Design

CObject

MFC Class Diagram

. I
CCmdTarget . CRecordSet

~ ,

I I
1

CDocument : CWnd CWinThread

I ~ ~

CFinisherControlier

CFramewnd CTreeCtri CView CScroliBar CWinApp

~ ~. ~. ~
1 1

I
CMainFrame CTreeVlew CScroliView

. CFinisherApp
'---- f-.

CFormView

I

;

~

CFinisherControllerView

, .

Figure 5.2 : MFC class diagram

----------t(38)~-------

. Chapter 5. System Design

5.5.1.11. CFinisherController

CFinisherController behaves like a fayade for all classes of the system to interact them with

MFC form. CFinisherController class communicates all ' complex subsystem classes with MFC

form.

5.5.2. System Structure

Finisher controller has different parts/components that will communicate eacn other to ,perform a

task. Components and their interaction is described in next paragraphs. Main parts of system

structure are Filing, Parser, Tokenizer, Database Manager, Tree View Manager, Updater.

,----- - - - ------ --- ------------- -- , , , , " , ,

, ~' I ~ _ Q I PS Updater

Fili . ~ Filing : _ Updater

Pars ingl

I
I
I

, , ,

:--------------~ To •• n,m l
,------- .:rekeAs ,

, , , , , ,
I , , , , ,
I
I

• I _______________ J

I
I

o~ p.rno, 1 Database ~ 1 Database
,-- --
I
I
I
I
I

I
I
I

~-------------~
l _______ _______ _ _ ______________ ~

Figure 5.3: Component interaction

A class diagram in the Unified Modeling Language is a type of static structure diagram that

describes the structure of a system by showing the system's classes, their attributes, methods and

. the relationships between the classes [19]. Classes of each part and their responsibi lities are

. elaborated in the following sectiol1s.

5.5.2.1. F iling

In this section tIle is handled, PPD and PS file handling is done through this mechanism. There

are an interface class for filing and an implementation class. F\lrthermore there are two

specialized implementation classes on for handling PS file and other is for PPO file.

-----t(39)1-----

Chapter 5. System Design

a). CFCFinish~rControlier

CFCFinshingController is the class that manages all classes except MFC classes. This class has

an attitude like a facade class in facade pattern. CFCFinsherController class creates the objects of

each subclass. This class provides a mechanism by which all sub-classes collaborate with each

other. CFCFinsherController cl~ss makes sub-classes compatible to coll,abonite with server class

by giving a generic 'interface. This class shows the concept of object oriented by encapsulation

and information hiding. Due to this class the MFC structure have no idea about the application

subclasses.

b).IFCFile

IFCFile class is an interface class for file system. It has all member function declarations. It has

pure virtual functions. It gives interface for file processing either it may be a Postscript printer

description (PPO) file or Postscript (PS) file.

c). CFCFile
. ,

CFCFile class is a general class that is derived from interface class. It has implementation of file

handling mechanism. It gives read and writes mechanism for Postscript file.

-----I(40)1-------''-----..,...---

Chapter 5. System Design

I CFlfllsherControlier
«uses»--------l ,--

I 1--------1
: 1'--____ -'
I
I
I

<<inlerface!)
IFCCFlle

+Virtual WrifePS(in ' buffer : char, in &tokens.: CFCCollection, in strWrite .
+Virtual - IFCCFile_q ,
+virtual '~eadFile(in fileNameO : char, in id : int)

~

CFCFlle

-char ' cBuffer
-Iqng !FlleSize

+vlrtual CFCFile_O '
+ virtual -CFCFile_O
-inl IsFileValid(in fileName : siring, in id : inl) : inl
+virtual'ReadFile(in fileName[) : char, in id : inl) : char

string)

+virtual Write(in ' buffer : char, in &Iokens : CFCTokenColieclion , in slrWrile : siring)

4> '

CFCPPDFlle CFCPSFlle

,
Figure 5.4: Filing structure

5.5.2.2. To kenizer

a). CFCToken

void

CFCTokens class store the tokens of each individual PPO file or PS file after the 'tokenizing from

the CFCTokenizer class. CFCTokens class consists token string, token 10 and line number.

b). CFCTokenCollections

CFCTokenCollections class is a collection class and store the' complete information of tokens

related to complete PPO File or PS file. CFCTokenCollections class is inherited from the

CCol'lections class.

c). CFCCollecti~ns

CFC,Collections class IS the base class of all classes which have collection PPO or PS fil e.

CFCCollections class has the common functionality which is common in all collection classes.

-------t{ 41)1-----------

Chapter 5. System Design

+.virtuaf - fFCTokenizer()

«uses»

r- -------- - -- J

'-

I
I
I
I
I
I
I

«interface»
IFCTokenlzer

+virtuaf Tokenize(in string buffer, in fong fFifeSize, out verctor<CFCToken>& tokens) .' void

t;:>

CTokenlzer

+CTokenizerO
+-CTokenizerO
+ Tokenize(in buffer : string, in IFileSize : long, qut vector<CFCToken>& tokens) : void

Vector

CFCColiectlon I ,

)

~
1 .

CFCToken

·nld : int
·nLineNo : int
·strToken : string
+CTokenO
+-CTokenO

Figure 5.5: Tokenizer structure

d). CFCTokenb:er

CFCTokenizer class is an implementation class that takes input and tokenizes the file into

tokens. This class takes the PPD fi le or ~S file and split them into tokens. CFCTokenizer. class

give the information of each token in the form of token string, line number and token ID.

e). IFCTokenizer

IFCTokenizer class is an interface class. That provides interface for tokenizer to Finisher

Controller.

--------------~(42)r------~-------

Chapter 5. System Design

5.5.2.3. Database

CRecordSet

y
,

I
CFCMainKeyDB CFCOptKeyDB

-m_FileName CFCHeaderDB -m_FileName
-m:...FileName

-m_FileVerions -m_FileVerions
-m_MKName

-m_FileVersion -m MKValue
-m_MKName

-m_LanguageVersion -m_MKValue
-m_Manufecturer +AddMainKey() : void -m_OptkeyNarne
-m_Product -m_OP\KeyValue
-m_PSVersion +AddOptKey() : void
+MapHeaderO
+AddNewRecO

Figure 5.6: Database classes structure

b). CRecordSet

this is an MFC class that is provides support for database.

c). CFCHeaderBD, CFCMainKey~B and CFCOptionKeyDB
These ate classes that will handle data by fetching or storing from database. CFCHeaderBD has

file iriforri1ation like file name and header information.and CFCMainKeyDB and

CFCOptionKeyDB classes have mainkey and option key information.

---{ 43)1---------

Chapter 5. System Design

5.5.2.4. Parser

«interface»
IFCP. mer

+virtual - IParser()
+parseHeader(in fileName: string, in tokens : CFCToken, oul ppd . CFCPPO_Header) : vQid
+ParseUI(in tokens : CFCToken, out ui : CFCUUnfo) : void
+ParsePSlnfo(out pslnfo : string, in tokens :·CFCToken) : void
+ParseHeaderPS(in tokens.: CFCToken) : CFCPS Header

f CFCPS~H •• der

I I
CFCDH~ader

-strTilte : string
-strCreator : string +FormateVersion : string . 1
-strCreationDate : string CFCPSP.rser CFCP,PDParser +FileVersion : string

-strDocumentDatal : string ..- ., +LanguageVersion : string

-strLanguagaLevel : string 1 . +Product : string

-strPageOrder : string +PSVersion : string

-strVer"ion : string I I +Manufecturer : string
r--- .J

L ___

I
I
I

I I

'V

CFCPSlnfoColiect Ion CFCUUnfoColiection CFCUUnfo CFCKey

.-- +mainKey : CFCKey '- -strName : string
+optionKey : CFCKey -strValue : string . ~ 1

------I
,

I Vector type :
Collection

Figure 5.71: Farser structure

a).IFCParser

IFCParser class IS an interface class of parser. It will let the subclasses to create the obj ect. It

gives common interface for both PPD parser and PS parser.

b). CFCPPDParser

CFCPPDParser class get token collection from CFCTokenizer class. It parses header

information and feature information form the PPD token collection. CFCPPDParser class will

check database and if file has already parsed then· it will not parse it again . If it is not already

parsed CFCPPDParser will parse required information and store it into database.

c). CFCPSPars~l:

CFCPSParser class get token collection from CFCTokenizer class. It parses finishing option

information and feature information form the PPD token collection. It derives from parser class.

d). CFCKey

CFCKey class will contain information that is strName and strVlaue. Every key has to parts one

is Name and other is value.

---I(44)1----------

e). CFCPPD Info

CFCPPO Info class has header information for individual file. CFCPPOParser class will parse

header information and store it into PPO Info.

1). CFCUI InfoCollection

CFCUI_InfoCollection class will contain information for individual PPO file. It is collection of

those options that will be displayed on user interface. CFCPPOParser class wi ll parse finishing

options from PPD file store it into CFUJ_TnfoCollection.

1). CIfCPSInfoCollection

This class a collection that conta ins parsed PS file information. Its reference is given to the CFCPSParser.

5.5.2.5. Tree View Manger

a). CFCGeneralTree

CFCGeneralTree class will store main keys and option keys extracted from PPD parser. Main . .

key will be parent-and option keys will be child. Option keys are collection. This information is

stored in CGeneralTree and it will map into MFC tree view for visual representation.

b). CFCTreeNode

CFCTreeNode class is a node of the tree. It is nested in CFCGeneralTree. It holds information of

node like node item, node parent and node children.

5.5.2.6. Updater
«uses»

I

CFC Updater
I

+CFCUpdaterO
+-CFCUpda\erO
+GetMappedValu(in vBctor<CheckedltemData>&vecPPDCheckltem, in vector< PsSubStr>&vecCommandCol, ou t vector<Chec~kdltemsData>&vecMapedOatai
+RemoveMuppedValue(lnout &strPsinfo : string, in vector<CheckedltemsOata>&vecMaped Data) : void
+GatEqualentPageSize(ln strPSlze : string) : string
+GetPSFinishingTok(in strPagelnfo : string, out vector<PsSubStr>&vecPscommandcol) : void
+UpdatePS(in ·opFName : char, in vector<CFCToken>&psTokens, in vector<string>&vecAddedval) : void

Chockedlt, mOata

·strltem : string
·strParent : string
-strChild : string

PsSubStr

-strName : string
-Slrval : s tring

Figure 5.8: PS Updating mechanism

v(itl

-----------t(45)1---------

Chapter 5. System Design

a). CFCUpdater

This is implementation class for updater. All function's implementation help here. This class is
inherited from interface class. It is an example Qf interface inheritance.

5.5.2.7.Finisher Controller Factory

Factory design pattern will also implemented in development of application. There are multiple
objects created in the application. Factory will make object creation at same place.it will simplify
the design.

«interface»
IFCParser

+IParser()
+-IParser()
+void TokenParsing()

/ 1'
I
1
I
I
I
I
I
I

(<interface»
IFFCFactory

+virtuallnterfaceTokenizer* CreateTQkenizer(in id .' int)
+virtuallnterfaceParser* CreateParser(in id .' int)
+virtuallnterfaceFile* CreateFile(in id .' int)

«interface))
CTokenizer
IIFCTokenizer()

IF
+virtua
+virtua
+virtua

1- IFCTokenizer()
I Tokenize()

/ 1,

, ~

I
«interface)! CFCConcretCreator

IFCCFile
+virtuaIIFCCFile_() +CFCConcretCreatorO
+ Virtual Char *Read() +Interface Tokenizer' Create Tokenizer(in id : int)
+Virtual void Write() +lnterfaceParser* CreateParser(in id : int)
+Virlual -IFCCFile_() «uses)) +lnterfaceFile* CreateFile(in id : int)

/ " I
1 1 1
- - - - -«uses))-- - - - - - - - - - -" 1

1

.----------------------------- - - - ------------~
«uses»

Figure 5.9: Factory Design

--------i(46)1----------

Chapter ,5. System Design

5.S.2.S. CFCFinisher Controller (work as Fa~ade)

CFCFinisherController

-Inlerlace Token~er' tokenizer
-lnterlaceFile' file
-lnteriacePaffier' parser
-CFCUpdator updator
-CFCFactory' iFFCFactory
-CFCPPDHeader pp<iHeader
-CFCPSHeader psHeader
-CFCGenerateTree tree
-TreeTraverse(in CTreeCt~& mJree, out vector<CheckedValues>& ~ems) : void
-formula(in CTreeCtr1& m. Tree, i~ HTREEITEM ~em, out vector<Checkedvalues>& sir) : void
-GetChecked,ttemString(in CTreeCtn& mJree, in vector<CheckedValues>& cCheckedllems, outvector<CString>& vecCheckedttemString): void

1 -GetCheckedHemvaluesStr(in CTreeCtrI& m. Tree, in vector<CheckedValues>& cChecked~ems, oul string&CheckedttemCVaIString) : void

----. -GetCheckltemData(in CTreeCtrl& mJree, in vector<CheckedValues>& cChecked~ems, out vector<CheckedHemsData>& vecCheckeHemP.lusParenl) : void
+UpdatePSJin stringstrPsFName, in CTreeCtrl& mJree, in vector<CFCToken>&vecPSTokensColiection): void . •
+ParsePS(in string,fName, in vector<CFCToken>& vecPSTokensColiection) : void 1
+ParsePPD(in string !Name, in CTreeCtrI& mJree, in int Check) : void
+CFCPPDHe.ader GetPPDHeaderO
+CFCPSHeader GetPSHeaderO

, «uses.
lL

,
I I _______ : ___ «uses. - - - - - - - - - -«uses. «u*s.

«uses.
I I I
I I I I CFCPPDHeader CFC~S.Hoader I I I r - - - - - - - - -- - - - - -- --,
I I I I I

-strTiHe : string I I I I I +FormateVeffiion : string
I -1 I I I +FileVeffiion : string -strC reator : string I I I I

I I +LanguageVersion : string -strCreationDate ': string CFCGeneralTree «inlerlace» I

strDocumentoatal : string IFCParser «interlace. I +Product : siring
I

strLanguageLevel : string +virlual-IParserO
IFFCFactory I +PSVerSKln : siring

+void GenerateTreeO I +Manufecturer: string -strPageOrder : string I +parseHeader() : void +virlual Creafe Tokenizer() I

-strVersion : string I I +virtual CreafeParserO I
I I +ParseUIO: void I

~
I

+ParsePSlnfoO : void +virlual CrealeFileO ~ I

«intHface. I +PaiseHeaderPSO : void , «interlace.
I

IFCCFile I IFCTokenizer
+Virlual Char 'Read()

I
+virlual-IFCTokenizerO -!t

+Virlual void WileD 5t CheckedValue5 CFCUpdater +virlual TokenizeO : void
+VirluaI-lFCCRle.O

HTREEITEM parent
HTREEITEM nem +CFCUpdate~)

HTREEITEM ch ild +-CFCUpdaterO
+GetMappedValuO : void
+RemoveMappedValueO : void
+GetEqualentPageSizeO : string
+AddCheckedVa ~) : void
+UpdatePsO: void

Figure 5.1 0: CFCFinisher Controller (Facade)

---t{ 47)1----------

Chapter 5. System Design

Finisher Controller Class Diagram

clnterface»
' IFCCFlle

+Virtual Chaf ·ReadO

CFinisherControlier

-lntetfaceFile* file
InterfaceTokenizer· tokenlzer

· lnterfaceParser· parser
f,'. I",FF...:'",fa","::;orv"",· Ic.F;:;a,,,,lo,,,'Y'-_-l --:

+CreateFileO
+GEneraleTreeO
+CrealeParserO

,
,

«interface I

+Virtual void Wrile() ,------- ----_.
, , , I IFCTokenl:er I

+Virlua/-IFCCFiIe_() CF COeneralTree

r +void GenerateTree()

CFCFIIe

-char ·cBu"er
-char cReadChar

,

, ,
--,

-----, , , , , ,

I;virtuaf ... IFCTokSniZSr(), I
+virtuaf Tokenize() . void

L;>

I

1 Vector

1

-long IFileSize

,
«uses.

,
I , ,

CTokenizer
. ICFCColiection

+virtual CFCFHe_O
+ virtual - CFCFile_O
-Int IsFileValidO

CFCUUnfo

nKey : CFCKey
onKe.,. : GFCKey

, I « inlerf.l~cel I
IFCUpd3iter

+CTokenizerO
+-CTokenizerO

~:"I
- -- ---)1,1-__ -1

1
+vlrtual char -ReadO +mal
+vlrtual vold WriteO +opti

~

I I
L CFCPSFlle l 1 CFCPPDFlle 1

1---------, , , ,

• interface »
IFCP. rse r

+virlua/-IParaerO
.pafseHead8r(j .- void
+ParseUf(J .- void '
+PBrsePSfnfo(} . VOId
+ParseHeads(PSO .- void

~ ..

usesl
1 1

L:;

CFCUpdater

+CFCUpdaterO
+-CFCUpdaterO
+GetMappedValuO : void
+RemoveMappedValueO : void

«il)terface l
IFFCFactory

... TokenizeO : void

+GelEqualentPageSizeO : string +virtua/ CreateTokenizsr()
+virtual CreateParser()
+virtual CreateFileO

+AddCheckedValO : void
+UpdatePsO : void

clnterfacci
IFCParser

+IParser(j
+-IPars8rO
+void TokenPsrsing(j

,

«Interface I
IFCTokenizer

+virtuaI IFCTokenizer(}
+virtual - IFCTokeniz8rO
+virtual Tokenizo(j

«interfacel
IFCCFlle

+virtua/IFCCFile_O
+ Virtual Char "Read()
+ Virtual void Wrile()
+ Virtual ... fFCCFile,....;~~es.1

·Class8

+CFCConcrelCreatorO
+GrealeTokenizerO
+Crea teParserO
+CrealeFileO . , ,

«usesl·--- ----- --~ :
, . -- - -- - --- -- - - -,-- - - --- ---- - --- -- ----

~ - - _ _ ... - - - - -_ _ _ ... - - - _ ... _'

-strTute : string I I
::g;::~~n:~~~~ string • 1 jCFCPSParser l 1r:~C""F..I.C""Pp"'D"p:-a-,.-e"rl

+FormateVersion : string
ICFCPPD_Headerl +FileVerslon : string
r::=~::==~~ _____ --j+LangUageVerSion : string strOocumentDalal : string '~ I II------l

::~:~~~~:~~:~ri~~tring I I I I 1

-strVersion : string r ___ 1 , ,

~ +Product : string
1'-____ -'1 1 +PSVersion : string

+Manu fecturer : string

Figure 5.11: Complete Finisher Controller class diagr~m

CFCToken

-nld : int
-nlineNo : int
-strToken : string

+CTokenO
+ ... CTokcnO

Note: In above detail class diagram methods parameters are not shown and component interaction is

taken place in CFCFinisherController.

5.6. Sequence DiagramlDynamic Structure

-

A sequence diagram in Unified Modeling Language (UML) is a kind of interaction diagram that

shows interaction of objects and order in which they collaborate with one another. It is a

construct of a message sequence chart [20].

--.-----{ 48)

Chapter 5, System Design

·CFinisherControlier

IICFile I

I

GetFileO

HResults

I

MakeTOkenl)

Sequence Diagram

HResults:
---------------~-----------

I
I
I
I
I
I

I IParserJ

ParsePPDO
I

HResults I

I
I
I
I
I

______ _ _ __ _ I I --- - - ,- -----------1-------- - --
I
I
I
I
I

SavEParseinfo

I HResults I
I , I

_.- - - - - - - - - - - - - - ""1 - - - - - - - - - - - -1- - - .- - - - - - - - -1- - - - - - - - - - - - - -
I • I ' 1

l ~enerateTreeo l =lJ
: HResults : :

- - --G~tFile()- - - - - - - -- - - - - -- - -i- ----------L - -- -- - -- - - - - - :-- - - - - - -- - --

~ __ .________________ I I

HResults

MakeToken,O

HResultsl
I

- --------- -- -- -~--- -- --- - --
I
I
I

ParsePS

HResults I
I

- -- - - -- - --- - - - - - ~- - - - - --- - - - -:-- - - -- - - - --

I

i i UpDatePSO ~'
I I I
I -----
I I HResults I I
I I t I - - - --- - - -- - - - - - ,- - - - - - - - -- - -,- - - - - - - -- - - -,- - -- - - - - - - - - - -.,- - - - - - --- - - - , - -- - - -- - - - - -

ttl I I
I I I

Figure 5,·12: Sequence diagram

.--{ 49)

Chapter 5. System Design

5.7. Data Repository

Data Repository is a logical (and sometimes physical) partitioning of data where multiple

databases which apply to specific applications or sets of applications reside [2 1]. Tile tel lTI

Repository is commonly useq to refer a place for storing and t;naintain data safely.

In this system, data can be store in Text file or Database. MS Access will be used as database

tool.

5.7.1. Database

A database is a collection of information that is organized so that it can easi ly be accessed ,

managed , and updated. An object-oriented programming database is one that is congruent with

the data defined in object classes and subclasses [22] .

5.7.2. E-R Diagram

An entity-relationship (ER) diagram is a specialized graphic that illustrates the relationships

between entities in a database. ER diagrams often use symbols to represent three different types

of information. Boxes are commonly used to represent entities. Diamonds are norm&lly used to

represent relationshi s and ovals a e used to represent attributes [23].

System has following entities .

• File

• MainKey

• OptionKey '

5.7.3.1. File

File is an entity that will be stored in database. It has following characteristic. Fileverion,

FileName, PSVersion, Product, LanguageVersion, Manufecturer .

. 5.7.3.2,'MainKey

Main Key in anQther entity with ID, name and value characteristic.

5.1.3.3. OptionKey

It is sub key of a main key.one main key have many sub keys. Every sub key has an id , name and

value.

----------------~(50)~----------------

Chapter 5. System Design

_~ _ _ Home Cr • • t e Lt't .ef".a 0 h I O.,t.., b .. u~ Too l'1 D Cjlg n

~ ,.:~ L~ D<'l t l.'l b ,H ~ Oo c u m c nl Jt< f

~ f;>'r':1 ~.t..nnIyzIl' Pf, 11 otm3n(~
c.Qmpa ct. and V ifulil Run ?t;!:l t,;~·;!

Re plIir O etll b .a IH! a . u (. ,. , ,,(to p~;afi.-j",n •. ,1' A n alyzt' l IlDI~,
S Ql ~(es s ~.r,,;,:tP I A dd-ins Pepll c llti o n S.-.Jtc.hbo.rd •

Option , - ... nager
1 I Macro

AI! Ac.ccs~ Objcds

~.~~~~====~~--~p
T",*> 1<

=n filE

I!lD M AIr-U.E't

!lE OPTtONKEV

5.7.3. Database Tables

I FU
"""'lOV:::'::'=R'='O="'-
FILENAME
P5VERSION
l,tl.p.jGU~G EVERSlo rl

MANUfECTURER
PRODUCT

S.-rver Oat.ab au·

Figure 5.13: E-R diagram

MS Access database tables are show below for the system.

Table 1: File table diagram

J1.0 a.ppd English

1 1.~ agac5sf2.ppd (20'!3 ;108}9307 English

1.0 b.ppd (3010.104)1 English

1.0 ' c.ppd {3010.104}1 English

1.0 · cn1760e1.ppd (3010. 104} 116 English

1.0 e.ppd (3010.10 }9S07 English

1.0 .• timlp65?ppd (20~4.104}1~ English
-~,.< "_'t

Table 2: MaillKey table diagram

A m.n Ste.f· .
--.. ~.=-:..":'"'!:: ... "!.'."!::."::::."!::~::!::::~~:'"

PRODUCT ..
Canon , (iRoOG-60)

' .. ,

' (AfiFAAccuSet:

Canon (GP605-605P)

Ca'non , (iR330-4PO}

Canon (CanonLBP-176

Epson (EPL-N2700)

{rnicrolaserPrc

. ... 1 FILEVERSLb~ ... I ' f;UENAME ' t

T oner-Reductio Boolean 1..0 'f 1:l:. ppd

EFSpool Boolean i.o a .ppd

EF~5 e rRot at e 1. Pi ckOne 1.0 a.ppd

EFDesti n ati on PickOne 1.0 a.ppd

EFlns;ert Boolean 1.0 a.ppd ,

CllcktoAda

--------I(51)I-----~---

T

Chapter 5. System Design

LLeft

PUpper

1 pupp.~rRlght
LRight

LUpperl eft

Table 3: OptionKey table diagram

OPTKEVVAlUE

I2J IXJ~setsta·ple,. where { pop 8 XJXset.staplel' }- if

I2J / XJXsetstap,ler where { pop 7 X.)Xsetstapler } if

IZJ /XJxsetstapler where { pop 2 XJXsetstaplerr } i f

! ~ /XJXse1:s'tapler whe.re { pop 7 X.JKse.tstapler } j f

lZl jXJXsetstapler whe"e r pop 3 XJXsetslaplef" }. if

lZl /XJxse·tstapl.et where { pop 6 XJXsetstapler } i f

MKNAME ·t FILE

EFStaple r ~.ppd

EFStapler s .ppd

EFSta pler s.ppd

EFStapler a .ppd
EFStapier s .ppd

~FStapler' a.ppd I PR~ght.
Fal se

Trut;(

I EFUserRotate:1
1

lZl /EFUserRot.at .e180 whel"e { pop 0 EFUse rR otatel.80 } if

• fa . 1~J'UserRot~telS0whe;-e {pop 1 £J'UserRotatelS0} if
EFUse rRotatel. a.ppd

~r:Us'erRotatel' ~.ppd

EFUserRotat:e:1 a .ppd

'I T rUe
j F~lse
IT~ue
I Fa lse.

I Tray?
! T r:ay3

! T ray4 .

1 ManualFeed

lT~aY':l
T rayS

/XJxsetzf9ld where { pop l XJXsetzfdl d J 'if
jXJXsetzfold where {pop 'O XJX.setztold } i t

~ /XJXsettray sel where { pop 2 XJXsettr a\i'sel } i f
B jXJXsettraysel where [pop 3 XJX.settrayset } i f

[3 !)(JX;~ttrays'el where { pop 4 XJXsetl:raysel } i f

lZl /XJXseHraysel where { pop :1 neg XJXseUraysel } it

[3 ' !XJXs.ettra.ysel where { pop:1 xJx.settraysel } I f

[l'J /XJXsett.raysel whe,.e f pop 5 X.lXsettmysel } i f

1 AutoSelect

I
p _tnte. r l eaved lZl

... Transpal'ent 00

l(ABI)) 121

o /XJx,!':ettraysel where { pop 0 XJXseUraysel } if

/XJXsetmediatype where { pop 3 XJXsetmediatype } it

!XJXsetmedlatype where {pop 1 XJ.l;C.setm~diatype r if
{XJXsetmediatype whe ,.e : r pop 0 XJXs~tmediatype} I f

!XJXsetmediatype w here {pop 2 XJXsetmediatype } If

/XJXsetmediatype wher e {pop 0 XJXsetm~diatype } If

. I nte~leaved IZJ

j plain
I .

t~;~:~r

Summary

/XJXsetpagesi ze where f pop (letter) XJXse1:pagesi ze } i f

/XJXsetpagesi:z.e where -[p op (Legal} XJXsetpagesiz.e } i f

EFZFold
EFZFold

, EFZFolderOpt
EFZFol derOpt

InputSlot

'InputSlot

InputSlot

InpulSlot

InputSlot

Input,Slot

InpulS~ot

MediaT ype

lVIed i a T yp ,~

Medl aType

MediaType

MediqType

PageRegion

P sgeReg ion

This chapter briefly discusses the design of the system. The System Architecture diagram

illustrates that our system will be implemented using MVC architecture. Then · describe the

structure of a system by showing the system's classes and relationships between them using class

diagram. Furth.er, in this section, database for the system is discussed . E-R diagram shows

entities and their relationships. Relational database tables for the system are also shown.

Tn this chapter we have discussed reasons of selection VC++ as development language, design

and coding guidelines and techniques. Pattern oriented and object oriented approaches are

elaborated for this system.

-{ 52)1---------

a ~ ppd
a .ppd

a .ppd
a .ppd

a .ppd
a .ppd

a.ppd

a.ppd

a ·PlOd
H.ppd

H.ppel

H.pprl

8.ppd

H.ppel

a.ppd

a.ppel

a .ppd

a .ppd

Chapter 6. System Testing

Chapter No.6

System Testing

6.1. Introduction

The systematic test is an inevitable part of the verification and validation process for software.

Testing is aimed at finding errors in the test object and giving confidence in its correct behavior

by executing the test object with selected input values [24]. Software testing is a process that

continues throughout the development process. Test cases are based on use cases. Testing is a

V &V (verification and val idation) practice. We verify system functionality according to our
, '

requirements and check feasibility ofthe system. There are three basic goals of software testing.

• Error detection. Is output of test matches to the expected resu lt?

• Verification. Are we developing the software/product right?

• Validation. Are we developing the right software/product?

6.2. Testing Techniques

Currently, there are many testing strategies that are in use. System can be tested manually or

autom,atically. I have used two testing techniques for my application testing.

• W}:lite Box Testing.

• Black Box Testing.

6.2.1. White Box Testing

White box testing is also known as structural and glass testing. Is · this strategy, internal

mechanism or code of the system/component is tested. I have used unit testing in account of

white box testing.

6.2.2. Slack Box Testing

Black box testing is · also famous as functional testing. It is not related to internal mechanism of

system or component. It solely about outputs that are produced in result of given/select inputs

------1 53)r----------------

~

Chapter 6. System Testing ____________ ~~ ________________________ ~-------------------------·i--

and execution conditions. I have used functional and system testing in account of black box

testing.

6.3. Test Cases

A set of test inputs, execution conditions, and expected results developed for a particular

objective, such as to exercise a particular program path or to verify compliance with a specific

requirement (IEEE Standard 610 (1990) [25]. So, a test case is a document that describes the

procedure to test the system. My system test cases details are following.

TestCaseID 1

Test Case Name PPD Input Test

Test Category Black Box

Test Case Object Input File

Test Role(Actor) My self

Precondition System must ready t6 test/use

Execute 1. Press browse button to get file.

2. File dialog open.

3. First Choose PPO file OR any other than PPO file

4. Click open or press enter

Suc:cess Criteria Only PPD file should be input successfully. System should discard all

other non PPO files.

Post Condition 1. System should indicate error message "Invalid file" in case of

J;
wrong file selection or no selection.

2. System should show no error in case ofPPO file selection.

Result Value Successful

TestCaseID 2 '.
Test Case Name Tree View Test

. Test Category Black Box

Test Case Object Tree

----If 54)1------

Chapter 6. System Testing ..

Test Role(Actor) My Self ,
Precondition 1. PPO file is input successfully

2. Input PPD file must have parsed.

Execute 1. Tree is generated successfully after input the PPD fi le

2. Expand tree by clicking nodes(parent and chi ld)

3. Drag child node and drop on parent node.

Success Criteria Tree should expand propedy. Drag drop must !lo't allowed
--

Post Condition Tree generation and expansion should be done properly.

Result Value successful

TestCaseID 3

Test Case Name Select Options Test

Test Category Black Box

Test Case Object Tree

Test Role(Acto) My Self

Precondition 1. Appl ication must be in active state.

2. Application must have input PPO file.

3. Input PPD file must have parsed.

4. Tree must be generated.

Execute I. Expand the Tree.

2. Tree has default values selected.

3. Select/deselect values by checking/unchecking check box.

Success Criteria I Options should be selected according to main key values

Post Condition' Options selected successfully.

Result Value Successful

Test Case ID 4

Test Case Name PS input test

Test Category Black Box
, .

--------------~(55)~------~"------

Chapter 6. System Testing

Test Case Object I Input PS File
I

Test Role(Actor) My self

Precondition System must be in active state

Execute l. Press browse button to get file . .

Ii 2. File dialog open.

3. First Choose PS file OR other than PS file

4. Click open button or double click on file

5. PS file is parsed and heaqer info must displayed on screen

Success Criteria Only PS file should be input successfully. System should discard all

other non PPD files.

Post Condition l. System should indicate error message "Invalid file" in case of

wrong file selection or no selection.

2. System should show no error in case o{ PS file selection.
. . ' --

Result Value Successful ..

TestCaseID 5 . .
Test Case Name PS Updating test

Test Category Black Box

Test Case Object UpdatePS button

Test Role(Actor) My self

Precondition l. System must ready to test/use

2. User has given an input PPO fil e

3. PPO file has parsed

4. Tree View has generated

5. Option has selected

6. User has given Input PS file to update

7. Apply on setting has done

Execute l. Press button to update fi le .
2. Selected options and PS parse info is mapped

Success Criteria Mapped selected options must be updated in PS file

---t(56).---------

Chapter 6. System Testing
-

Post Condition 1. System must show "PS file updated" message after

successful update

2. System must show error message in case of failure

Result Value successful

TestCaseID 6

Test Case Name Exit application test

Test Category Black Box

Test Case Objeet EXIT button

Test Role(Actor) . ~ 'My self

Precondition 1. System must be in active srate

Execote 1. Press EXIT button

Success Criteria System must be exit

Post Condition System close successfully

Result Value successful

Summary

In this chapter, testing techniques used for system testing are described and test cases for this

system are enlisted.
, ,

-{ 57)1-------

Reference:-

[I]

[2]

[3]

[4]

[5J

[6]

[7]

[8]

[9]

[10]

[I I]

[12]

[1 3]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[2 1]

http://www.requiremcntsauthority.comlf u net i ona I-and - 11011-r u net io nal. hi m I

Bittner, Kurt & Spence, Ian (2003). Use case modeling

PostScript Printer Description File Fomlat Spec ificalionVers ion 4.3

PostScript Printer Description Fil e Format Specification Vers ion 4 .3

http://www.webopedia.comffE RM/U/userjnterface.htm I

Larm8n, C., "Applying UML And Patterns", 2nd Edi tion

http://www.nos.orglhtm/sadl .hun

http://en.wik iped ia.o rg/wiki/M icrosoft ~ Foundation_Class_Library

http://msdn.microsoft .com/en-us/library/4x 1 xy43a%28v=vs.80%29.aspx

hltp;lIdeveloper.qt .nokia.com/doclqt-4.8/model -v iew-programming.hunl

http://W\vw. infonnit.comlJ i brary /contenLaspx?b= V i sua 1_ C _ PI us P I us&seq N um= 36

http://msdn .microsoft .comlen-usllibrary/x9w7txst%28v=vs.80%29.aspx

hUp://msdn.microsoft .comlen-usilibrary/eS9dtf8h%28v=vs.80%29.aspx

http://msdn .microsoft.com/en-usll ibrary/ 1xbOSfDh%28v=vs. 7 1 %29.aspx

http://msdn.microsoft.com/en-usllibrary/za93adby%28v=vs.80%29.aspx

http://www.extrabit.co m/fracta 1 viewerlsrcdocsiciassCMai n Frame. Ilt m I

http://www.cppdoc.com/example/mfc/classdoc/MFC/CTreeCtrl. htmI

http://msdl1 .microso Ft .com/en-lIs/l i bra ry I ezc3 6 3 5 ~/O28 v=vs. 80%2 9 .aspx

http://el1.wikipedia.orglwiki/C lass_diagram

http://en.wik iped ia.org/wiki/Sequence diagram

http://www. leam .geekinterview.com/data-wareho use/dw- bas icslwhat -i s-da ta-

repository. html

[22] http ://searchsq lserver.tec htargcl.com/de fi nit ion/data base

[23] http ://databases.about.comlcslspecilicprod uctsl gle r. htm

[24] http ://www.update-it .comldocuments/eurostarI993.pdf

[25] http://www.kaner.com/pdfslGoodTest.pdf

---------l(58)1--------

