Postscript Finishing Feature Controller

L%

Prepared By
Muhammad Azeem

Supervised By
Abdul Qudus Abbasi

Institute of Information Technology

Quaid-i-Azam University Islamabad

Session 2010-2011

STATEMENT OF SUBMISSION

This is to certify that Mr. Muhammad Azeem Registration. No. 01161011003 has

successfully completed the final project as “Postscript Finishing Feature Controller”

Quaid-i-Azam University, Islamabad to fulfill the partial requirement of the degree

“Master of Science in Information Technology”.

/V\//R

External Examiner

Dr. Naveed Akram
Associate Professor

Faculty of Computing,
Riphah International University,
1-14, Islamabad.

: v
W/ﬂ"v
/D
\0

Internal Supervisor

Mr. Abdul Qadus Abbasi
Assistant Professor

Institute of Information Techno'logy
Quaid-i-Azam University, Islamabad.

A Repori Submitted to the
Institute of Information Technology,
Quaid-I-Azam University Islamabad,

As a partial Fulfillment of the Requirements
for the Award of the Degree of
Master in Information Technology

Project in Brief

Project Title
Postscript Finishing Feature Controller

Under Taken By

Muhammad Azeem

Supervised By
Mr. Abdul Qudus Abbasi

Organization
Elixir Technologies pvt. Ltd.

Started
September 2011

Completed
January 2012

Software Tool
Visual Studio 6.0
Notepade++

Operating System
Windows Xp

System Used

Intel Centrino 1.8MHz
Ram 1GB

Hard Disk40 GB

Dedicated to

My fther (Late), moten, 5istr and sy Teachirs

for hein ndless support, alfction, st and encomragumend

— W

Abstract

This is a Postscript Printer finishing feature controlling application. In software engineering,
this is an example of software customization.

© This application takes two files as input i.e. Postscript printer description (PPD) and
Postscript (PS). Application parses PPD file extract file header and printing option information
Jfrom file, store in data repository and displays options to the user in tree view form. Application
gets input PPD file and checks data repository. If file has already parsed then its information
will not store in database and system will simply loads information to GUI and let the user
. further processing. User selects printing finishing options according to his choice. Selected
option may or may not have command against it. Then postscript file is parsed and PS parser
gives the location where command is to be updated. Updater gets these locations reference and
commands. Finally, postscript file will be updated accordingly. Only those printing options can
be updated in PS file that are supported by PS file.

Acknowledgement

ALLAH has been the greatest source of strength for me and I am humbly thankful for the
blessings He has conferred upon me. My parents and sister’s love, trust and support have
always played a major role in the achievements I have blessed throughout my life.

I am obliged to pay my sincere and heartiest gratefulness to my supervisor or more
accurately my counselor, Mr. Abdul Qudus Abbasi, for he was the biggest motivation behind
initiation of my project. His timely guidance and useful suggestions not only helped in this
software building but also in my character building.

I would like to present my sincere thanks to Mr. Abu-Bakar (my external supervisor) for

his true guidance and motivation to fulfill requirements of this project.
I would like to pay my sincere thanks to all my teachers (Ms. Madiha Haider Syed, Ms. Sidra
Batool Kazmi, Ms. Abida Sadaf, Ms. Robina Rashid, Mr. Khurram Gulzar Rana and Dr. Azhar
Saeed), for they taught me very informative and interesting courses that proved worthy to
improve my skills. I am also thankful to the staff of Institute of Information Technology. Quaid-
i-Azam University for their friendly attitude.

I am very grateful to Mr. Abdul Khaliq (cousin) and other relative for their sincere
prays, greedless support and encouragement.

To all my friends, and my class fellows, thank you for your understanding and

encouragement in my many moments of crisis. Your support motivated me for all the time.
This thesis is a First step of my journey.

Muhammad Azeem

Table of Contents

Table of Contents

AADBEPEICT +aovuiwevariassinnimnienissosasiasvssnsan v oosss s uus s s A9 RS SN AR SRS F DA B
AR OF BUDRRECE o insisn oy o e A B S A N Sy N4
CHApterNO; L i o e i s e e e R S T
TEMFOBUICLION. . coeersiisssussnsonsonomnssnsssssamnssssssassonisuassnsembens suennsnesss s s wsonpennsnaens AR soRTHESS RSSO TR RS SRS SRS NS SRR RRRT SRS LS

R IO 5T 4T 11 (ot § oo S

K2. POIPOSE. Cvnudiinsarsisiviiaiiin

13 SCOPeuinvamumvnssmamivig e T A TR S T R SR

SUMMAYinimmmsnimmnnamminnasa

Chapter No. 2.......... L oranssammin R nennansvenerss sl N S N GSSSS HeJSU SISSSOS S S—

Requirement Analysis and Specificationsuvvenvenn

*

2.1 IBUOAUCHION . comvism s emmissssssiiisesissssuastatiss syesnsaisssssinss

2.2. Requirements Types
2.2.1. Funetional Tequitements:, ... isterinmsmini s
2.22. Non-functional TEQUITEMENLSceevververrrerreriursresssnssessasssessessassnssnssssssessnens

2.3, Requirements Iustration TECANIQUESccueiviirireiiiieiiitisr i

24, FUnNCHONA TREGUITCIIIEIIIE cvyunsuvsss comenvssonsswssanvumssnsonsesawss awsadsisnsoingiss o5 vsssisssssssntssas svaess eaisassasvoenesanes
2T . CSYBUOIE TIMIGE covaisasuninsuoosvsnbumnunmiinmes sassssusseuosiis avvuas v Los o AR e ST A AR AR BRI
2.42. Reading and Parsing Postscript printer description (PPD) filecocciiiniiiiniininiiiiiiiinn
2.4.3. Database Repository......... R R R
2.44. Creating Tree View of FUNCHONAILYcoiiviiiiiieiisiiiieseeseeeieeessseesssseessanessseessessessnsassssseesses
2.4.5. Reading and Parsing POStSCIIPL(PS) Filecrvovurvirieriresisrisssionsesiossssesessssssesssssssesessenns

N R

24,6, Updating PostSeript Fil€ ioivissssusssssissmsinsssisississsasaozivivs soieTuRb R e TR 7

2.5. SystemUseCases
2:6: Non-Functional RequITeMEtS. v et s i i i s resi o

el

2.6.1: - BHCIENOY cicisisisiemmumeena

2.7. System Hardware ReQUITEIMENLS.c.coviiiriirrirmiierieiaisise s siesssennessee e snsesseessessssssessaesssessasssssns

2.8. Software Interface Requirementscccccevveunenn

2.9. Software Deveiopment EIIECIIEHS s sivs ioiosassninsamnnssi oo sai oo RS S AR AR T RN GRSV

RTINS oy vt s s o S T R A VU U e 03 Y oA A D T TR P e

——[vi }

11

11

I 5 |

11
12

Table of Contents
B e e e R

CEADIBEIND. 3 - - borormsitinensnsansadomressontasrnsonsnasemsusnibansessmesmasensesmsonsetoatmmmssnshnomnansPrstaosmntssnevnsnsssansassvnpsesmauss i
Technical Background and Literature REVIEW ...vvvvvuves oiviiiiiiieriiieissceeesieesseesneesenne e R B 14
B INrOdUCHION c.ccccuiiiimiiiiisiisisic s sssssssssssenss 14
3.2 WHALIS POSISCIDLY wreiisotdinminmin st mnaran s s M e s S v 4
3.2.1. Before PostSCrpt i niummimnnrmmanomnmsibiansiinuatanamrniombinssresmssnvann L
3.202; OrigIN OF POSESCIIPE. ..vvvveiieiiiiriees i iiiirecsiciire e cebbee s eebbaeseebbbbeeeebbbasesesbbasesessbaeesesssbesssensrasees 1D
3.2.3. Overview of POSESCHPt LANBUAEEvvvviiiiiiiieecciiiieccciiiie s coiiiie s cebrese s eetbsssissbasessesbbesseesssanees 10
3.2.4. Model of Postscript La‘nguage L T ey TR 1
3.2:5 Data Structure'and Dietionarles. ..csniimnsisminnmisinsiinieimmsin i 17
Ba2.Bi ¢ SEACK e i e R e R S S R S 17
3.2.7. PostscripEFlexibility smnsunsnanniuimaanannmsmnimianmimai araieanisemsin L7
3.2.8. Graphics CONCEPT ..coicurieiiiieciiiitee st e s e s s e e s s et e e snr e s sssirsaeesesrreeees 1O
3.2.9. POSESCHPt PrOBrammMiNgooeiiecriieiiiiiiereiiiinieiiesinnssssiessesssesnssesessssnsssessesessssssseesssssnssssssers 19
3,230 ElirPostSEHPERIE cussmmmmwanassnasmis iiamssiamiismesssna i e 20
3.3. ‘PostSéript Pitnter Desenption (PPD)...cuouisvisimsmnmntmssivawirmssisimseawivonsin 21
3.3.1: FOTMAL i rs i s v e T s e s e e 22
3320 TermsUSed iR PPID . maroimssrmrsressessmrorsnnsesmrsssorasassnnsssnsisssnssssasessanssserassssasas onersneesansassssansssss 22
3.321. IVARITT KRYWONEL 1 arvonshsunsrnssnnnsms s oms s e on s (s A SR s NS e R SN RS LR TS AR AT
3.3.2.2. OPtiaN KeYWOTHS . cinvsaeminsmmamviimmmi i s s s s s s es i vabiasessisvssios 20
3.3.2.3. QEETY KEYWOId..cvviniininanmmisimsaidisinaaiaiaiihn s aninisaeinio 208
3.33. Parsing Main KeY WO« s ia
334 Parsig Optioll KeYWoldS:anvmmimmainnimammiiinmn i st et s w2
3.3.5. Comment StALEIMENTS.eviiiieiirieeeiteeriesseeesreseeraeesrereessbessssseassssesesssssssssssssesssssssssnsesssses 20
336, PPD FHE SRUCTUIE voincssmssmssssssimsmmresissasssansiisss s sivsasisssssmsanssasaisssnasseiivassvsasassnsevisiesss 20
UMY s T R T A e T R S T e e e i 20
Chapter No. 426
Lser INtertace . cmamniitimminiin i e AR e s 20
Bely IRRPOUMBIIRN G s ivssisrmsronss disans sommmssnmusbonsmasanessersresmssssnsasmeasennssannsms ey snnsen s b s oy s SR AT RS TARS 26
4.2, User INterface and Partscccceeveenimrrerriinineniseninisssisesesissssesssessesssessesssessessessasssasssesssessessaes 20

4.2.1.
4.2.2.
4.2.3.

MENU BaT . .vvuuriiiiiiieiiiiiiiniensieiininssseesesseessnnan
PPD File Path AreHianmamavivaviiig R e A S S S e B L i R A
PS:File Path: ATSq oo missbmaimsamiime

EEE e sy _[vii

p—

wiked

27

e 27

4.2.4. PPD Headet ATCH-.ciciiiimsis ivsinimiiasisisisiisisiaissiiisisssiisisiai wsaifavessssisessis snsvanvmsiivsvosvh
4.2.5. PS Header Area

4.2.6. APV O ATC R o mmassminssie e T 5T 155 R AT S S S ST PR T T P e A TR e TR SRR T o7
3 I s T [S S DR OO
428, Dath REDOSTIORY: iosussosnassnsssusssnorissssaossvisssssssnsassssnisdssssssvessiessasssassissnss assessaees ...30

429! TpAate PS BOEON ic: cinsvisovvnenimsisivanss svasrms s mmss 0 batissms s sssss i s s s s asesss i s s s
SRR 2 o i i o A S T B e S e e e S o g B P s e T i

- J o

Chapter NO. 5. iiciervivseisasssniinss
System Designccoeeeee

5.1. Design Strategies and Coding Techniques...............
821, . Language SElection ..ouvmmcasmmssunvsiinasmsmoisgasssmmssnmsvaasesass

522 = MFE .

823, ADBIACTION: civisasvamnmiavisinsiim i hosavE o e R S s PR s
524 DocumeBEHON s s s e R RS
B GG L CE BRI, oner e iR S TR e U AP s T e S A AT e S S AT TS AR SR
32iL. . . ObjesECiriented AORONER i aritrmrrmommmmomsipsslesuonsm s sy e Ao AR
522. Pattern OniCiiSd approBthis. v sevmssusmmruovimim ieaomsss5s0mui st ienisemm i v s i G o
D3y SV DIEBIRI iouussimside i o o h oo s A A B S TV TR T e
33l ° Software Architecture IIESiB . iiianvminssmnnsvisisimimss s ionsamas s mem s
o
<

5.3.2. Software Class Design......cccovcvrvviveiinneninminnnsinsiniiniin

54, System Architecfite DIEFAM .. omvanssmmmsisinamsseosasvossssasmsaasss
B, SO ciascavsnivasumsumnsss siosss Seeassassess oo vas s vas S oS s S BRSNS A A A RS S
542 NIBCPramEWOIK s oo e v v s b 0 s e e e vwas s viaasegsaoat

4.4.2.1. B oement: cunnnnsnmnriismnar e R e e

4422, View/Contrller..........c.....

4.4.3.1. ClFinisherController.........

5.43.4. Data Base........ccooooeeene.

5.5. Structural Design/Class Diagramsc..ccccconvinnnnen

— e

28
28
29
29

30
30

viv ol
i |
G |
|

31
31
32
32
32
32
33

33
34

el !
.. 34
5.4.3. PSS FiNISHEr COMIOIIRT ... v eevveeeseeeeteeeeeteeseseeeeeaeteseesesseneesssseasseesesestesseesesssssesseessssnsessasasasses

34

.. 34
5.4.3.1. PP CustOTZOH PADSOT cx coves awussmsnmvimionsis s si0wsssus o3 40avs faisa s ava susess e s s T e 45
54.3.2. P8 Customized PaISEr s i i i s rad v G T R T o
54.3.3. PSUpdater/MAaPDer causiimmmnnmmsnsmnsr s nansRes
o33

34
34
35

)

Table of Contents
e e e e e et B RS

5.5.1 2 VIS TR TATTWIOTIC v s oo oo s oot sa b wi s oo s e S5 VO TSRS e S 35
s B T T T e T 36
5.5.2 s YSIOT SIPUCHUTS wicuv msiiisiebiimi e s ey s s s i R s s bR 39
5.9.2.2, TORETEE .. crreeres s o S st m iy s s L
5.5:2.3. ARG cuvanuwnissonswopenuin s shomiouerses v e vasin v e R s e e D
55.2.4. PATSEI cisiesavsosvensvaness i i oo vaveiss anavisdsvs Bosmmiasvstossvss bom s IS VR R TR s s s snnstis TRLR
55.2.5. Tiée View MANReriaisiminuminmaisiisasisasmuiomnimiansmijansasii i 49
5.5.2.6. HDPABteT s R T T TR R 45
5.5.2.7. Finisher Controller FACLOrYccvviiiiinerciie i ssissssssrssessnssnessnes 46
5.5.2.8. CFCFinisher Controller (Work as FAGAAE)ccoivvieeiiiiiiieiiiineressiinnsesiimsresssssnesssnees 47

5.6. Sequence Diagram/Dynamic Structure...........ccocovvervvervvernninnnns AR R R R R a5 48
57 Dala RepoSIIONY icisnissmuimivumis iy s i v i e e s i1 50
57.1. DAtabhase.cuviiaivini s e s e 50
57.2. E-R DI@Bram ..ciceiicieiiieieieiieienietieeeriereesieseneesssesasasssesesessssensesssssssssssnssrsssnnsssrssnnnssresiossrronansnse 30
5.7.3.1 FH e enersmsmensmsomemimrmmeomsmmemra e rasmsamrs gt D0
5:4:3.2 IV BT I oo rmisisnoscs oroaonss o i TN R 0 B D S AN S U VTV T S N S S s O
5.7.3.3. COPHONKEVY oo s i S I L S R S Vs s e B)
523 Database Tables uvvnminuimimuiinmnmiiimses i msiamonane 5
S v n i e T a s e e S A e T R s e e R S T D2
CRAPLET NNO. 6...vvivviiresiririeereesressessesssseeessse e sbeestesbesasesseaesesesssabessbssessessesssssensaesnesssersaennansesssnssnessessesres D3
System Testing A B e e e
001 TIIORUOHION uinsivasssssumions waiommsas s bssisa s esss soas S RO T s SRR R SRR s s st DD
6.2 ‘Testing TechDIQUEE . ot mita s imesieriiass i s e e DS
62— Wi B o TeslNE s e earsins s es i e sy derstens st ens 53
6.2.2. Black BoX TeSNZ....ccoirieveiminniieiiiniemiiniiieisssiiniiisiensiersssosessessssenssessnesssessasssassrasons 53
0130 TBRECIABEE: cocrvemommmmmsnsncesrvsns ymemnssnms s ATy s SHe s A P AT R O S Y YA PO A U H TR EN RO TASARESAD 54
SVIIITIVATN o sanvanmnsaesssan v semimersayaunsshnne bos sl e ey oo oA S B o s e R WA e e AN B e oA D

RETEFENCE = cusivivnviinissinsmsiravionsiinarsassss ivs AR oo E VT R T TR s e T AN s s

pr——
=
I

Table of Figures

e
List of Figures :

Figure 3.1: EliXir PS File HEAAETccorrrcncersecsersassncsssessassasssiosssssssesssssassonsrsssnssssnssssssssssassasess Al
Figore 3.1 Elixgr PS File Begin Page Senip Arel....unundnnmmanimgepimssaaiyunsis 820
Figure 3.1: PPD File HEAUETccvervevrinrenrririiniinnresereesessessesiessessssssssessessessessessesassssensessessensonns 22
Figuies BT U0k TtCHRCE TRYOUE ocisiisisrsissmionssins i i e s i s 26
Rigre 2 PR Gl ail HCIECE . onmnssssiesmamniinnosssmansesanssirs s e 27
Pion 43 PS Ble inpol BHBHRCe .msisrmmmnnmnuninaaimssss tassmmsassasimiind
Figure 4.4: PPD header area on user interface (UL) ...cuaawmissasmassmmmsissssssssiivsassiosis S8
Figute 4.5 P8 hefder aien o Tl asiismiresmssimemmeins i s srsiet s s svnisissim 29
Figure 4.6: Apply or; SRISCHON AYBH..os v TR AT
Figure 4.7: Tree VIEW 0N Ulcoceveviniineneiirinsenseseeesssssesssssessessessassssssessssssssessessassassessssssesses 20
Figure 4.8+ PS file Updating Button oh Ul....cinumnnwmmnnnsianassswansmaimsmisaimeiypsssg0
Figure 5.1: System archit@CIUIEoviiiirieiiiisiiiieee ettt es s es et s asss s e essaesaesneas 33
Piguré 5.2 WIFC. class digBrann ;.conusiicniiissimmssmnmsiemiss i s
5t R e S BT o e ool b DS SO 39
Figure 5.4; FIIE SUOICHITE «uruivimsiiinmissammssstrassisutissmssssson dionssndioasastinshbesrmamanmsassbbvs piaps ssFss 41
Figure 5. 5: Tok@ATZar SIRIOEONS. s otioimssuissyasnsusintismassmssssmsibin o siiesitnsss b v 42
Figure 5.6: Database Classes SIUCIUIEcoevvievieriiiiieiieiireaeceseeiessessessseseessesessessessssssssesssessssses 43
B B LT v i 1y T T T p——_
Figure 5.8: PS Updating MeChaniSImMcccceiivreireiinierinieniiiisisisssesesesessesssesessssessssssassssssssseseses 45
Bigiire:5:9: Factory DeSIgh v unmomimmasimismmmimmniimmimmmmisommnasposnd 86
Figure 5.9: CFCFinisher Controllel: (Facade). ..oasaieisemsssmasssionse N 48
Figure 5.9: Complete Finisher Controller class diagram............cccovievvniiirnineninereninnesnennnns 488
Figure 3. 10: SOqueTioe AIABTBNN :ssomusmsasesasssinsniiesesisnassniesosedsossissts s asssmis s s omai sessssiiasesos 499

Figure 5.11: E-R QIBBIAM .. .cccvcnisiriivncnesinrsassnsnssnenssnsessasassasassasssssscassasansnsansenssasnasassesanssssrssasasonssd L

Chapter 1. Introduction

Chapter No. 1

Introduction

1.1. Imtroduction

Computer has spread in all walks of life; it might be field of education, industry, government or
private sectors, or entertainment. Information technology is implemented in all fields in some
shape. We cannot deny the worthiness of Information Technology. Our lives has surrounded by
illusion of Information Technology.

Printing documents has become very essential part of our daily life necessities we use computers
to write our documents, assignments, research papers, books, journals, agreement papers and
reports etc. After that we use printer and print our documents on paper. So, it is an easy way to
write above mentioned items in computer instead of manual writing with pen. It saves the time
and we can make changes in document easily and can remove errors with less cost. When we
select the printing option available in menu bar we get option pane window for selecting
printing. These options are page type, number of pages, range, printer model, color or black etc.
These options are available by default.

Human beings have been keen in getting more and more control on things either Allah’s made or
human self-made. This project is also an attempt to get more control and access on printing
finishing features. I want to add printing features in PS file in my own way according to my
desire. A large number of printers follow postscript and also called postscript printers. Postseript
is page description language that tells the information about the page to printer hardware. All
information of printing options is kept in a file that is called postseript printer description
(PPD) file.

Windows based computer systems communicate with the printer by means of a printer driver and
PPD files. Computer that has windows operating system can also communicate with the printers
by means of a Printer Control Language (PCL), printer driver and PDD files (the PCL equivalent
of PPD files). Both enable to use special features of the printer from the print dialog box.

All communication between application and printer is managed by printer driver. Printer driver

interprets the instruction generated by the application, Printer specific options (set by user) and

(T

Chapter 1. Introduction
e e e e e e e e e g

instruction generated by application are merged, and then translates all information into Adobe
Postscript or PCL (print control language). It is a language that all postscript printers understand.
In simple word, printer driver write a postscript file based on original file (PPD) and the options

we set from the user interface (i.e. Print dialog box).

1.2. Purpose

The basic purpose of this project is to provide more control on existing postscript file (Elixir
Specific) with respect to printer controller. It will convert an Elixir postscript file to a more
efficient printer controller specified file based on postscript printer description (PPD) file. We
have postscript printer description (PPD) files and postscript (PS) files. Software will read
postscript printer description (PPD) file and update postscript file according to PPD file. This

application will be used in print related industry.

1.3. Scope

Postscript printer description files are important sources of printing features. But it is very
complex and difficult to read due to its specific format. PPD files have their own commands and
to understand it is very time consuming. There are multiple companies that are manufacturing
postscript printers and have their own PPD. It is very difficult for user to read complete file and
extract printer options from them but user wants to print file and want to insert command
manually or to choose options according to its requirements instead of selecting all options. For
this purpose, to overcome this complexity there should be a mechanism that provides a solution
to the users in terms of features extraction. We need automated support to extract printer feature
information from PPD file and visualize it in such an efficient way that it is more understandable
to users.

C++ is considered a core language that has both functions oriented and object oriented features.
It is very powerful language that gives great flexibility. That is why development of my project
postscript finishing feature controller is based upon C++ language. I shall parse the postscript
printer description (PPD) file and extract mandatory information and discard all unnecessary
data, generate tree view of finishing features for ease of users. The Tree View will have key i.e.
name of the option and values against that option and also command for to execute that option.
By this, users will get necessary information of features and can select or deselect according to

their choice.

(:) —

Chapter 1. Introduction
e e

Summary
In this chapter, introduction of the system is given. Application will be used in print related

industry. Further, purpose and scope of system is also elaborated in this chapter and also in next

chapter.

——
w
—

Chapter 2. Requirement Analysis and Specifications
e —————— = e e e e e

Chapter No. 2

Requirement Analysis and Specifications

2.1. Introduction

Requirement analysis is first step of software development life cycle. Requirements are the

things or functions or more accurately services that should be delivered by the software (system).

2.2. Requirements Types

There are two main types of software requirements:-

2.2.1. Functional requirements
These requirements are related to functionality of the system. What functions are to be
performed by system are considered as functional requirements. These requirements explain the

system behavior.

2.2.2. Non-functional requirements

A Non-Functional Requirement is usually some form of constraint or restriction that must be
considered when designing the solution [1].

The requirements are not about functionality but these are related to those elements that enhance
the system performance and under these elements, system can perform functionality in better

way. Further detail is next in this document.

2.3. Requirements Hlustration Techniques

We have several requirements illustration techniques that are used to get requirements and
explain them. Some techniques are as under.

e Interview

e Surveys

e Questioners

e Meetings

e Joint application development(JAD)

e L e ——

Chapter 2. Requirement Analysis and Specifications
e e e e e e T

All the techniques are of great worth according to their use and these techniques have proved
very beneficial in gathering software requirements. Every technique is used according to need
and available sources. Mostly, | have used two techniques (i.e. meetings and interviews)
commonly to gather required information from the organization. I constantly have meeting with
organization concerned person and also meet other person who also deal and have knowledge

about Postscript printer description and Postscript language.

2.4. Functional Requirements

Different functional requirements are as follows:

¢ System Input

e Reading and Parsing Postscript printer description file (PPD).
* Database Repository

e Creating tree view of functionality

e Reading and Parsing Postscript (PS) files.

e Update PS File

2.4.1. System Input
Postscript finishing feature controller System will take PPD and PS files as input. System’s PPD
section will get only PPD file and PS section will read only PS file as input and discard any other

format.

2.4.2. Reading and Parsing Postscript printer description (PPD) file

As name PPD indicates it is postscript printer description file so it has detail of printing options,
data, commands and other necessary information. Postscript printer description file has its own
structure. My software application will get PPD file as input and there will be PPD file handling
mechanism implemented at backend. PPD file handling mechanism will read the PPD file and
pass it to tokenizer through an interface.

Tokenizer will split file into tokens there will be a token’s collection now. This token’s
collection will be given to the Paring mechanism. This will be a customized PPD parser. There
is a lot of data that is unnecessary or meaningless for us. So, we have to separate useful and

useless data according to our need. For this purpose parsing is required. Parser will apply

Chapter 2. Requirement Analysis and Specifications :
e e e e e et R e
different filters on token collection and required data/information i.e PPD header and data

information between OpenUI CloseUI, will be filtered. Collection will be used to save parsed

data. Parsing will be done at backend.

2.4.3. Database Repository
There will be a database at backend where all parsed PPD file information will be stored. It is

selectable. User can store parsed data into text file or in data base tables.

2.4.4. Creating Tree View of Functionality

When file parsing is done then user interface for this parsed data comes under discussion. How it

will be seen to user? There are multiple option that is drop down list or tree view etc. Tree view

is used to show this parsed information to the user. That means it will be visually represented by

tree view structure. For example staple information is parsed and it will look like this.

- E_|Stapling:
————Single

Portrait Single

Landscape
NONE

This tree view will be selectable. When tree view is generated then option selection topic is
under considerations. How user will select option according his choice? For this requirement |
will provide checkbox to select and deselect option by checking and unchecking the option. It is
very easy mechanism that every type of user can understand easily. User will have choice to
select functionality according to its will. Application will provide default options as well as

choice to update.

[=]Stapling:
————[Single
—& Portrait Single
+——0OLandscape
——[NONE

2.4.5. Reading and Parsing Postscript(PS) File

Postscript printer understand postscript file to print document. Postscript file is given to the
system. Actually, this will be output file to be updated. Application will get postscript (PS) file
as input and there will be PS file handling mechanism implemented at backend. This will read

the PS file and pass it to tokenizer for further processing.

Chapter 2. Requirement Analysis and Specifications

Tokenizer will split PS file into tokens and there will be a token collection now. This token
collection will be given to the paring mechanism. This will be a lcustomized PS parser. There is a
lot of data that is unnecessary or meaningless for us. So, we have to separate useful and useless
data according to our need. For this purpose parsing is required. Parser will apply different filters
on token collection and required data/information i.e. header, page number, page level, document
level etc. will be filtered. Collection will be used to save parsed data. Software will find the

location where command is to update. Parsing will be done at backend.

2.4.6.Updating Postscript File

There is a Postscript command with options in PPD file. System will allow the user to select
options and map the selected command into postscript file. There will a complete mechanism to
update PS file according to selected options. That command combines with print control

language (PCL) and then printer understand this command and perform task accordingly.

2.5. System Use Cases

A use case in software engineering is a description of steps or actions between a user and a
software system which leads the user towards something useful [2]. The user might be a person

or it may be a more abstract entity, such as external software.

1

Open PS Finisher Controller

User

Application is ready to use

PS Finisher Controller is opened

‘ Finisher Controller

1. User gives the command to system for opening PS Finisher
Controller.

2. System displays the PS Finisher Controller.

1. system will show error message properly and closed

Chapter 2. Requirement Analysis and Specifications

T
Input PPD File

User wants to Input PPD file to application

User

Application is ready to use

PPD File is opened/Loaded. System parses PPD file extract printing options

and displays to user in tree view.

PS Finisher Controller
T n 1. User selects browse button.
, ' E 0 2. System displays a file dialog box to user.
*_-;Té; 3. User selects file and press open button or double clicks on file.
' jﬁ 4. PPD file is input successfully.
=4 1. The user selects file other than PPD file.
l: i. System displays message “Invalid file”.
:' | AR l!"' 2. User press cancel button.
- Bt ! e 134 Iq‘ -l ii. System displays message “Invalid file”.
S]

elect Print Option-s

.. User wants to select options from generated tr_ee view by the PPD

- | parser.

| System is in active condition. PPD file is parsed and printing options

‘| exist on screen in tree view.

Print c:thior;(s) is/are selected.

1. User selects option from tree by clicking checkbox.
2. Options are selected. '

1. Options cannot select.

o System generate relevant error message.

Chapter 2. Requirement Analysis and Specifications
e e e e e e e e s =2 D

e U T
Sl A L
d i

Iput PS File
User wants to Input PS file to application

User

Application is in active state. User is able to press browse button.

| PS file input successfully
| PS Finisher Controller

b 1. User select browse button.

- 2. System displays a file dialog box to user.

A 3. User selects the input file name and press open button or
double clicks on file

| 4. PSfileis input successfully.

1. The user selects file other than PS file.
i System displays message “Invalid file”.

’ Liﬂ 2. User press cancel button.

¥ 34 ii. System displays message “Invalid file”.

Default option is already selected.

2. User selects radio button for apply on option from apply on
group.

3. Option is selected successfully.

g

Chapter 2. Requirement Analysis and Specifications

g 1. The option does not selected successfully.

i. System displays message “system error”.

. S - =
B gl 4 [.. L ! 'l

. - Udate Posts;:pt File

User press UpdatePS button.
System mapped values.

Message displays that “PS file updated”.

User doesn’t select the PS File and press the UPdatePS
button/command. .
i System displays the message that ‘I‘ﬁle is not inserted
or options are not selected”.

No print option is selected.

i. System displays the message that “file is not inserted

or options are not selected”.

apication

User

| Application is in active state

" | The application is closed.

10

——
R

Chapter 2. Requirement Analysis and Specifications

1. User press “EXIT” button.

2. System is closed.

1. No alternate option. System must close.

2.6. Non-Functional Requirements
As for as non-functional requirements is concerned it is also mandatory part of any software

system. We cannot ignore the worth of non-functional requirements..
2.6.1. Efficiency
System should be efficient and self-explanatory. User interface must be very easy to understand

application’s functionality and operating method. It means easy to understand and easy to use for

USEer.

2.7. System Hardware Requirements

The system on which this application will be developed must have at least
e 1.8 GHz processor

¢ | GB Ram

¢ 40 GB Hard Disk

2.8. Software Interface Requirements

Windows XP operating system will be used to fulfill software interface requirement.

2.9. Software Development Requirements

e Visual C++ 6.0 will be used as development tool.

e (C++is used as developing language with support of STL.

e Notepad++

¢ Adobe postscript viewer

e Object oriented approach will follow in the application development.

* Development Model is Scrum.

11

pr—
L —

Chapter 2. Requirement Analysis and Specifications

Summary

In this section, main functional requirements of the system are discussed and some non-
functional requirements are also elaborated. Use cases for the system are explained. Software

requirements and software development requirements are also described.

(2) |

Chapter 3. Technical Background and Literature Review

Chapter No. 3

Technical Background and Literature Review

3.1. Introduction

This project belongs to postscript file customization. Two main file are used i.e. postscript file
and postscript printer description file. In this chapter, postscript file and its structure will be

discussed. Similarly postscript printer description file and its structure will be elaborated.

3.2. What is Postscript?
Printer has its own hardware structure and drivers. When we print a file there may be a lot of text
and graphics (pictures and images) on that file to be printed. Postscript is a prograimming
language that is adjusted for printing graphics and text whether on paper, film, CRT or LCD. in
short it describes page so it is also called page description language. The purpose of Postscript is
to provide suitable and useful language that depicts images as well as text in a device.
Postscript is well known for its use as a page description language in print industry. The
postscript language is designed to convey a description of virtually any. desired page to a printer.
It possesses a wide range of graphic operators that may be combined in any manner. It contains
variables and allows the combining of operators into more complex procedures and functions.
Postscript page descriptions are programs to be run by an interpreter. Postscript programs are
- usually generated by application programs running on other computers. However, many
postscript printers, including the Apple LaserWriter, have an interactive state in which the user

may program directly in postscript.

3.2.1. Before Postscript

Before postscript introduction in market, design of printer was made based on character printing.
Multiple technologies were used for this job but most of them were using same attribute that is
glyph. Physically, it seems that is was stamped like typewrite keys or opfical plates and was
difficult to change. Input text was gi\;en in ASCII. Later on dot-matrix printer were introduced in

market, trend changed with increasing popularity of dot matrix printers. In dot matrix printers

— % }——————

Chapter 3. Technical Background and Literature Review

characters were printed by means of series of dots. There exists a table inside printer that has font
description. .

Raster graphics printing was also introduced in dot matrix printers. Graphics were sent to the
printer iﬁ series of escape sequences,

After that plotters were came into introduction. Vector graphics printing was left to special-
purpose devices, called plotters. Almost all plotters did share a common command language;
these were good for graphic printing but limited for anything other than graphics. Besides this,
these were rare due to high cost and slow speed.

With the passage of time, degree of development in printing industry grows high and laser
printer came into existence. It combines the best features of both printers and plotters. Like
plottérs, laser printers offer high quality line art, and like dot-matrix printers; they are able to
generate pages of text and raster graphics. A much pretty feature of laser printers is, it makes
possible to position high-quality graphics and text on the same page. We can print graphics,
images and text on the same page. Postscript made it possible to fully exploit these

characteristics, by offering a single control language that could be used on any brand of printer.

3.2.2. Origin of Postscript

Postscript is a product of Adobe Systems, Inc. Adobe Systems was formed in 1982 by Dr. John
E. Warnock and Dr. Charles M. Geschke. The concepts of the Postscript language were seeded
in 1976 when Dr. John Warnock was at Evans and Sutherland Computer Corporation. At that
time John Gaffney, of Evans and Sutherland, was developing an interpreter for a large three-
dimensional graphics database of New York harbour. Gaffney conceived the "Design System"
language.

John Warnock then joined the Xerox Coporation's Palo Alto Research Centre (Xerox P.A.R.C)
to work with Martin Newell. They reshaped the Design System into JaM (John and Martin)
which was used for VLSI design and the investigation of type and graphics printing -
culminating in Inter Press, Xerox's printing protocol. |

In 1982, John Wamock left Xerox, together with Chuck Geschke, and founded Adobe Systems
Inc. The name Adobe was taken from an Indian creek near to where John Warnock lived. Their
aim was to build a dedicated publishing workstation and the final two-dimensional graphics

handling product was named Postscript.

[5. — ;

Chapter 3. Technical Background and Literature Review

e i
About the same time Steve Jobs, who had earlier founded Apple Computers, was looking for a
solution for a high quality office printing system problem. Steve Jobs urged Adobe to develop a
system to drive a laser printer. With the drop in price of memory, the first low cost laser printer
engine from Canon, and a bit-mapped computer from Apple, the first postscript printer hit the
market in 1985. '

As hardware continued to improve, memory price continued to fall and with the appearance of
powerful processors, such as the Motorola 68000, graphics applications continued to expand and
became more widespread. Postscript was a mature product and was fully embraced by the
industry, including the world’s entire leading mainframe manufacturer's (such as Digital, IBM
and HP/Apollo) and, possibly more importantly, the PC manufacturer's (such as Apple, IBM,

Atari, Amiga and Acorn Archimedes).

3.2.3. Overview of Postscript Language

PostScript is also a computer language like other languages C++, JAVA etc. Originally it was
developed by Adobe Systems Incorporated to process graphic information to digital laser
_printers. It is very powerful language that can be used for general programming as well as to
express graphics images. It is famous for its flexibility and compaction. It can be learnt easily
and we can produce high quality images, graphics and text by hand written program.

In this section overview of some important features will be discussed. This language is specially

developed for complex graphics. It also handles letters as graphics sophisticatedly.

3.2.4. Model of Postscript Language

Postscript language model have some concepts that are sketched out as under:-
e Interpreted

s Stack based

* Dictionary

e Name
e Number
e String
e Array

* procedure

Chapter 3. Technical Background and Literature Review
—,—_————————, - . - — — == ===

This language is interpreted and based on stack. Dictionary data structure is used that make it
flexible and extensible. Postscript language is also a high level language that is interpreted, not
compiled. One should have good knowledge to use it because interpreted languages require more
attention and care than compiled languages. The beauty of postscript language is that it can

increase efficiency and reliability of the software dramatically.

3.2.5. Data Structure and Dictionaries]

A pretty feature provided by PS language is Dictionary. A is a structure in which data is stored in
key-value mechanism. It also provides several standard data structures for example arrays,
strings, files etc.

All of these data types are maintained as postscript objects. And dictionary is a single way to
store PS object for reuse. “def” operator is used to make entries in a dictionary. This can be used

for defining variable and functions and can also be used for complex data structures.

3.2.6. Stack

A stack is a data structure that has same input and output path. Objects are placed one on the top
of another. Stacks are called last in first out data structures. There are many stacks that are used
by PS interpreter e.g. operand stack, execution stack, dictionary stack and graphic stack.
Operands are pushed on operand stack. And pop by interpreter. Postscript language is stack
based and so we can say it is an exercise of stack manipulation. Many errors come due to
incorrect use and less knowledge of stack manipulation. So it is must to have pretty knowledge

in order to write program in postscript language.

3.2.7. Postscript Flexibility

- Postseript is an extremely flexible language. Functions that do not exist, but which would be

- useful for an application, can be defined and then used like other postscript operators. Thus,
postscript is not a fixed language within whose limits an application must be written, but is an
environment that can be changed to match the task at hand. Pieces of one page description can be
used to compose other, more complicated pages. Such pieces can be used in their original form

or translated, rotated, and scaled to form a myriad of new composite pages.

17

g—
| —

Chapter 3. Technical Background and Literature Review

B e e e R
3.2.8. Graphics Concept

To manipulate image, Postscript has few concept to that must be known before image processing

in PS. That is as under:-

3.2.9.1. Device Space
This is the space that describes coordinates which are understood by the printer hardware. This

measure of this space is done by means of pixels. That means it indicates resolution of page.

3.2.9.2. User Space
This is the space that describes the location of the points in coordinate. This system is same as
co-ordinate system studied in school mathematics. These user space co-ordinates are converted

into device space automatically by device space.

3.2.9.3. Current Transformation Matrix
Above mentioned transformation (i.e. user space coordinates to device space coordinates) is
done through the current transformation matrix. This matrix is a 3 * 3 matrix by which user can

rotate, scale and translate user space within device space. This is power of postscript.

3.2.9.4. Path

It is a collection of disjoint line segments and curves that exist on the page. It does not indicate
actual ink. It is imaginary tracing over the page. User draws ink along the path by operators.

(e.g. stroke, fill etc.).

3.2.9.5. Current Path

The actual path that postscript program create at the current time is called current path. It is

created piece by piece.

3.2.9.6. Graphics State
Collection of various settings describes the graphic state. For instance the current path, the
current font, and the current transformation matrix make up the graphics state. This state can be

saved temporarily for later use. For this purpose gsave and grestore operators are used.

Chapter 3. Technical Background and Literature Review

3.2.9. Postscript Programming
It is pretty easy to write program in PostScript. Operands are pushed on operand stack and
invoked to use. What operand is to select and when is to use is the real of art. Look at the
following line code.
/s 3 def.
In above line, def. is used to define top of the dictionary on dictionary stack. S is the name and 3
is the value. Slash ensure that the name s will be pushed onto the stack. Top operand on the stack
is value and below the value is key that is name. Operators can also be defined by def. for
example,
/pam Aadd mulB def.
The above line of code is definition of an operator that will take two top most operands adds
therﬁ and multiplies the result with the next operand on stack. The above definition is also called
procedure. A very mandatory thing to know about defining procedure is that first operator is
invoked and then elements will be evaluated.
Postscript, basically have main purpose to draw graphics on page. One beautiful and pretty thing
about Postscript is that it even draw text as graphic. It has “draw and fill mechanism™. To do this
I it has the following sequence.

¢ New Path: Start the path with the newpath operator.
¢ Construct : Construct the path out of line segments and curves.
* Draw and Fill: Draw the path with the stroke operator or fill it in with the fill operator.
This is the basic sequence and we can modify it to do more complicated things. Following is an
example to illustrate. this:-
newpath

1 inch 1 inch moveto

2 inch 1 inch lineto

2 inch 2 inch lineto

I inch 2 inch lineto
closepath

stroke

Chapter 3. Technical Background and Literature Review
e e i i o 2 ~——— v owe rzmic— = - =

3.2.10.Elixir Postscript File

In elixir specific file there are multiple sections. Every section has its own meaning and function.
But the area | have to work on is header area and page setup area.

Header area contains the header information like creator, language and version etc. whereas
begin page setup area contain the printing option information. Only the options that are
mentioned here can be updated in this postscript. Pictorial representation of these two sections is
as under:-

® D:\isualStudio6.0\FinisherController\elixir.ps - Notepad++

Fle Edit Search View Encoding Language Settings Macro Run Plugins Winc
oS 3@ sHD 2 Ay 22 [

7 | o | B 000475 9 . | e

1 % 'PS—-Ahdobe-3.0
i %5%Title: 000OOOD31
e %Creator: Elixir
4 t:CreationbDate: 24012012 150611
- %35 DocumentData: Clean?Bit
6 , S%Languagelevel: 2
? t3PageOrder: Special
8 %5Version: 3.0 1
Figure 3.1: Elixir PS File Header
Lo i s PageResSources:
1578 %%+ font Arial,Bold :
1579 %%4 font Arial
1550+ EEGEBNBESEE f
1581 << fDuplex true /Tumble false /MediaType (LE1) >> SPD
1582 4%EndPageSetup
1583 Bp
1534 F*ATR1A44 0O - xI

Figure 3.2: Elixir PS File Begin Setup Area

In figure 3.2, within begin page setup area a word SPD exists. It means set page device (SPD).
Printing options is selected from PPD and matched here with options shown here before SPD. If
selected option is matched then it postscript value is inserted after SPD and options is removed
from here otherwise selected option is droped.

20

——
L —

" Chapter 3. Technical Background and Literature Review

3.3. PostScript Printer Description (PPD)

All devices (any output device which PS enabled contains a postscript interpreter) have different
features set and there is possibility that devices have same feature set invoke feature in d fferent
ways. Each device has postscript printer description file associated with it.

A PPD file is a static representation of the features available on a device. It contains information
on the features available on a device as it is shipped from the factory. PPD files are text files that
describe an approach to use miscellaneous feature of device. Every device have different features
such as memory size, default setting , fonts, page size, finishing features such as duplex printing
and stapling etc. All this necessary information about device’s features, how tc change setting
ete. is provided by PPD files. PPD files are stored on the Host computer that is going to use these
files. These files are accessible to host computer. Applications parse PPD files and discover the
available feature list. Before discovering features blind parsing is done. There exist such
structures in PPD file that allow blind parsing. This parsing purpose is to select the device with
the help of user interface.

Then application build user interface from list of features extracted from PPD file. To invoke
each feature PPD file also has Postscript language code. Now user select feature such as duplex
printing or A4 page size, Postscript language code for each option is extracted and placed at
appropriate place in the output file before output file is sent to device. Postscript Printer
Description (PPD) files are created by vendors to describe the entire set of features and
capabilities available for their PostScript printers.

A PPD also contains the Postscript code (commands) used to invoke features for the print job. As
such, PPDs function as drivers for all PostScript printers, by providing a unified interface for the
printer's capabilities and features. For example, a generic PPD file for all models of xeror Color

LaserJet contains:

— 3 }——

Chapter 3. Technical Background and Literature Review

*PPD-Adobe: "4.3"

*% Adobe Systems PostScript(R) Printer Description File

*% Copyright 1993-97 Electronics for Imaging, Inc.

*% All Rights Reserved.

*% Permission is granted for redistribution of this file as

*% long as this copyright notice isintact and the contents
*% of the file is not altered in any way from its original form.
*% End of Copyright statement

*WEFFileVersion: 2.0
*FormatVersion: "4.3"

*lileVersion: "1.0"

*PCFileName: "EFXJX404.PPD"

*LanguageVersion: English

*LanguageEncoding: 1SOLatinl

*Product: "(Fiery XJ DocuColor 401"

*PSVersion: "(2017.103) 1"

*ModelName: "Fiery XJ DocuColor 40 Color Server v2017,.103"
*%ShortNickName: "Fiery XJ DocuColor 40 v2017.103"
*ShortNickName: "Xerox DocuColord40 with XJ+4.2"

*NickName: "Fiery X) DocuColor 40 Color Server v2017.103"
*Manufacturer: "Xerox”

Figure 3.3: PPD File Header

This is known as header of PPD file.

3.3.1. Format

The syntax of PPD files is a simple line-oriented format where the options, defaults, and
invocation strings (PostScript language code sequences that change a feature setting) are made
available through a regular set of keywords.[3]

3.3.2; Terms Used in PPD

Basically three keywords are used in PPD files.

-— s

Chapter 3. Technical Background and Literature Review

e Main keyword
¢ Option keyword
* Query keyword

3.3.2.1. Main keyword

This describes the device features such as font size, page size and duplex etc. It has subsets that
are default keyword, Option keyword and query keyword . As name shows default keyword
describes default state of device. It is denoted as *Default. Default is always prefixed of default
state description. Every main keyword and option key word has a name and value. Syntax of
main key word is as below.

*MainKeyword: value

e.g. ¥*OpenUI *EFFinisherOpt/Finisher : PickOne

here “*OpenUI” tells that it is an interface option. “*EFFinisherOpt/Finisher” is name of main
key word and “PickOne” is value.

Main keyword has two general classes.

e Informational

© User Interface :

Informational: This provides information about a feature, for instance; each font will contain
how much memory space? Etc. This information is only beneficial for application and need not
to add in user interface.

User Interface keyword: This provides information about those features that are going to
appear in user interface. They also provide coae to invoke selectable features. User interface

entries are represented by structure keyword *OpenUI/*CloseUL.

| 3.3.2.2. Option Keywords
~ When there are several choices against a feature then option keywords are provided. That means
this feature has multiple attributes. For example, there might be many multiple page sizes listed
in the *PageSize section.
*OpenUI *PageSize/Page Size :PickOne
*OrderDependency: 25 AnySetup *PageSize
*DefaultPageSize: A4
*PageSize Tabloid/11x17: "....."

) P

Chapter 3. Technical Background and Literature Review

*PageSize Legal/Legal: ".....
*PageSize Letter/Letter: "....."
*PageSize Statement/Statement: "....."
*PageSize A3/A3:"....."

*PageSize B4/B4: "....."

*PageSize A4/A4:"...."

*PageSize B5/B5: "....."

*PageSize AS5/AS: "....."

*PageSize Executive/Executive: "....."
*7PageSize: LI

*CloseUI: *PageSize

3.3.2.3. Query Keyword

This describes the sequence of code. It return the device’s state at the time of code downloading
to the device. This is used by the application to determine the state of device. It is not necessary
that every main keyword also has query keyword. Query keyword is optional and only defined if
they are useful and is completely optional otherwise.

There exist statements to describe these keywords. A statement is a single object of main
keyword, option and value. There are different formats for statements and every statement in
printer PostScript description file is specified by one of these formats.

e *MainKey

e *MainKey: StringValue

e *MainKey: "QuotedValue"

e *MainKey: “SymbolValue

e *MainKey OptionKey: StringValue

¢ *MainKey OptionKey: "InvocationValue"

» *MainKey OptionKey: “SymbolValue

Logically belonging statements are grouped together and is called an entry. An entry has several

instances of main keyword, *default keyword, and query keyword.

[2 }—

Chapter 3. Technical Background and Literature Review

3.3.3. Parsing Main Keywords

Parsing main keyword’s detail is following.
» If Main key word does not exists it means feature does not exist on that particular device.

* If a main keyword is not recognized, the entire statement (including multiline code segments)
should be skipped. However, the point of the *OpenUI/*CloseUI structures is to allow new main
keywords to appear without a print manager explicitly recognizing them. The most functionality
will be provided to the user if a print manager handles all main keywords that occur within the
*OpenUI/*CloseUI structure, displaying them and invoking their associated code to the best of
its ability. Unrecognized main keywords that occur outside of the *OpenUI/*CloseUI structure
should be skipped.[4] |

* A * in the first column denotes the beginning of a main keyword. Any text or white space
before the * should be considered an error.

* The case of main keywords is significant. For example, *PageSize is distinct from *Pagesize.
The proliferation of keywords that are the same textually except for case is strongly discouraged.

* Every main keyword can be of maximum length 40 characters.

* Main keywords can contain any printable ASCII characters within the range of decimal 33 to
decimal 126 inclusive, excluding colon and slash.

* Delimiters for main keywords are space, tab, colon, or newline. After the initial * symbol is
recognized, all characters through (but not including) the next space, tab, colon, or newline
character are considered part of the main keyword.

* If a main keyword is not terminated with a colon or newline, an option keyword can be
expected.[4]

3.3.4. Parsing Option Keywords
The option keywords of a given main keyword are surrounded by the *OpenUIl/*CloseUl

keywords. Other things to remember about parsing option keywords:

An option keyword begins with the first character after white space after a main keyword. The
case of option keywords is significant. For example, A4 is distinct from a4. Maximum leagth of
an option keyword is 40 characters; it includes any extensions or qualifiers separated by dots.
Option keywords can contain any printable ASCII characters within the range of decimal 33 to

decimal 126 inclusive, except for the characters colon and slash, which serve as keyword

— (s}

Chapter 3. Technical Background and Literature Review

delimiters. Once the option keyword is encountered, and before it is properly terminated, a space,

tab, or newline character should be regarded as an error.[4]

3.3.5. Comment Statements

PPD file structure also supports comments in the file. Like C or C-++, PPD file also have

comment structure. “*%7” is used to write comments.

3.3.6. PPD File Structure
While we talk about PPD file structure, the first line must be like this:-
*PPD-Adobe: "nnn"

“*PPD-Adobe” indicates that it is a PPD file and “nnn” indicates the version number. It may be

like this “ *PPD-Adobe: "4.3" ™,

This line generally followed by comment line that starts from *% characters. After comments

there is header of PPD file. And below header PPD detail exists.

Summary

In this chapter, postscript file and postscript printer description files are explained. General

parsing technique for PPD file is described. File structure of PS and PPD files is discussed.

Chapter 4. User Interface
e e — ———— e | P T T L T T T e e e e s e e e e e e kR L

Chapter No. 4

User Interface

4.1. Introduction

User interface is the junction between a user and a computer program. An interface is a set of
commands or menus through which a user communicates with a program [5]. There must be an
interface to communicate with software to get functionalities/services. Interface can be menu
based or command based. In this application, menu based interface is provided.

- When we print a document, user can select multiple features, such as number of copies, page
size, staple etc. through a user interface such as a print panel or a command line. Providence of
these features is based on PPD parsing. It means interface is constructed by parsing PPD file for
the selected device. For example, the PPD file contains a list of paper sizes supported by the
device. A user interface can display that list to the user and allow the user to select a paper size

from the list.

4.2. User Interface and Parts

Main part of user inter face are shown in the following diagram.

[o ey ————— === eroFie | EOL = = Browes |
| [PPQ Header -
FleVersion : FoymatVersion: - 4. PPD Hesder Infa Aran
| PSVemsion - HMamutecturer
LangVersion : Proguct
Browse |
2}‘“ I e s PB g.m-____-_-“::.
Creato 3 Varsjon s [
PageDide: ¥ Lapgl svel = PH Header Info Aren
g e AUl L
| CieationDate : DocumentD ata:
Apply On Data Repotitory
= Sois Laved | Datat 7 Data Reposilory
* Page Leval = Text File
& 1| —MBaeH c oK | Coes |
. 8. Apply On Salection Ares 3
7. Trae View Area
2. Upddate PE Button

Figure 4.1:User Interface layout

Chapter 4. User Interface

4.2.1. Menu Bar

Menu bar has multiple options. Interface of the system is menu based. User can start or exit

application from Start or Exit menu command.

4.2.2. PPD File Path Area

In this area, user can enter input file path. Or user can click browse button to get file path with

_the help of file dialog.

I R T [] i grorin 1994 '
1 E.m“ PR ey |
[e | B W 5 A

PiVasrn (ORIM] Maieches Coon
Lodk i [codie v « @t BB
_.. i g 4 5 nMener g Pragut RS0 50)
m 5Yena 76001 pod | breAdi71 pod A=
“Fwwr.n e] bom 2201 gt = + — |
| i’]ermn) berrizz ped e | PiFm P | |
I | Jleget ped S foader = |
i 7] Parsedeiesirés bt D Ve |
c-um c.r:rmz 10:54 M *tmas2 pod
Pagelien Langhavel
-
e L - - PUR R b -
Fie ramn rawd I Dpen]
—— ==y ooy ok Oy Gl Repotkory
Flen of e . el |
. JobLowal " Dasbase
= PageLevd = Tt Fin ¥ Pageioml & TeaFis
g y Ve | o | D " y | Unsaets | 08 | igm
Fuasmle LR

Figure 4.2: PPD file input interface

4.2.3. PS File Path Area

In this area, user can enter input file path. Or user can click browse button to get file path with

. the help of file dialog.

bl i
DEd > =2 & ¢

fptons - L PO T it [ed E . — =S Y - : L
PEQ Heade 9 Heae
o | Py " omatiumn
1 POV e

 e——— |
Loskike [2 _ Qo m. Ly Praght
lisibetan conartersctery.cp grmuw
I podfte Concratalactony.h Prieh == = === T ==
=5 B o Ao (=] e [
;‘muaps ' el S Hnader
| OO0 7S AFactory.cop CAFCMank 08 o Coemss [Ve m
s < Factoreh] FCMarkev08.h h
Pigelede Spucd Laglowd 2
* ; 3 = i . ClosirDan MOINI] Dommeedlax OasnTil
s ¥
ey g I—E:—J s Rleposbory Ageky Opy D aa Forpostary
v ol =l S| Dutasaze oy Lot (" Deabase
| = Paga vl [. B et v Page st * TedFie
« y | Voseas | 0 | oo | gy Seest]- o | e |

Fi 4.3: PS file input interf

Chapter 4. User Interface

4.2.4, PPD Header Area

This area represent PPD header info. It gives the PPD file information like File Version, Format

Version, language version etc.

= Untitled - FinisherController

File Edit View Help
D@ & @ P
e ~ EPD File [2PPd o
PPD Header
FilaVersion : 1.0 FogmatVersion : 4.3 Header
PSVersion (30107040 HManufecturer : Canon T 1
LangVersion : English Proguct ¢ [IRGD0-E0)
PS File T A Hrowse . |
| PS5 Header
I| Creator Version
i FageUrder LapoLevel |
CreationDate : DocumentD ata:
Apply O Data Aepositony
" Job Level " Database
* Page Level = Test File
. Updateps | oK Dore
.

Figure 4.4: PPD header area on user interface (Ul)

4.2.5. PS Header Area

This area represent PS header info. It gives the PS file information like creator, page

language level and version etc.

- Untitled
e I o It S
D@ > e & T

FimisherLontroller

|- Options

[&
v

proFie [2PPd
 PPD Headar
| FjeVersion - 1.0
PSVersion @ (3010.104)1
LangVersion : English
PS Fils ekl ix _
PS Heade:
Crealor : Eliit
PageOrder : Special °
CieationDale : 24012012
Apply Op

© Joh Leavel

+ Page Level

UpdatePS

FoimatVersion : 4.3
Manulecturer :

Product. : [R600-60)

Versjon 20
Lapglevel : 2
DocumentData: Clean7Bit

Data Repostory

" Database

& Text File

-

Cose | -

order,

Chapter 4. User Interface

R T R e e e] PR AR S L i e T i . S i e i] e S e . S i S Y3 14, et A = R v
Figure 4.5: PS header area on Ul

4.2.6. Apply on Area

This area will allow the user to select apply on area. User can select radio button to select options

according to his desire.

~ Untitled

FinisherCeniroller

I & mim View ’E AP e
D@ i n & v iy
Dpblorw— v ppoFe [oPPI - Erouna
I =] PHI:;ED_FTID;I: - PPD Header
i# misher J
| i+ EFZFoldeiDpt FileVarsion : 1.0 FoymalVersion = 4.3
EFlnseriteiOpt :
EFPapeiDeckOpt PSVersion : [3010.104)1 Maredectse: Canon
4 MediaType < i 4
% EFSarter LongVetsion : Engiish Proguct (AB00-60)
1+1 EFStapler ==l
EFPunch leker ps Browre
141 EFDuplexing PSFile | =2 __._._.I
i+ EFBooklel PS Header
1+ EFZFold Craator : Elisit Versjon : 2
i+l EFI t
: Emn:.m PageOider : Special Lapglevel 2
+1 EFDestination £ ;
W EFLandscepe CreationDale : 24012012 DocumentDats Clean7Bit
+ EFUseiRoctate1B0 A o Data B
i1 EFSpool prly O T 8 npoerch
4+ TonedReduction ¢ JohLevel & Fﬁ!e‘”ﬂ
4! EFDarkness
+ EFFisiPage * Pags Level " Test Fie
| i+ Resolution
InputSiat \
| & P : u o o
B _RDoee . = Lt S0y el LY. R

4.2.7. Tree View

\

Figure 4.6: Apply on selection area

Required Parsed information is saved in tree data structure and displayed in tree view are as

shown in snapshot.

- - A BPD File [appd Browss |
= PRINT_DOPTIONS . PPQ Headar =
i+ EFFinisherOpt -
EFZFalderDpt | FileV arsion : 1.0 FogmatVersicn 4.3
+i- EFlnsertarDpt -
+ EFPapeiDeckOpt | PSVersion (3ooo0an Manufecture: Canon
¥+ MediaT ype
ki EFBoiter I LangVersion English Praguct (RE00-60)
EFStapler |
+ EFPunch elixir, ps Blowse
+ EFDuplexing F3 Fila [Browss |
+ EFBooklet o5 Fmnci
#* EFZFold | Creator ¢ Efisdr Varsjon 2m
i#- EFl t 4
+: EFI;:E:—-; FPapeOider : Speacial Lapgl evel 2
) EFDastination CreationDats : 24012012 DocumeantData Clean7Bi
+ EFLandscapeo | K
+ EFUssFotate] B0 Apply On Dats Maposton
+ EFSpool
 ToneReduction £ Job Level) ataby
¥t arknass
4 EFFirstPage [= Page Level " Tewt Fie
+ Resolution | |
i InputSiat
% PapeSize = _ Updateps | O | Clowe |
- P v F3 v Tres View by -
Aoady

N

Fi

re 4.7: Tree view on Ul

Chapter 4. User Interface

4.2.8. Data Repository

In this section, user can select data repository for data storage. In this system MS Access
database is supported. .
4.2.9. Update PS Button

This area contains a button. System wi!l allow the user to click Update PS button and Postscript file will

be updated. After Pressing Update button system will display a message that PS file has updated.

-+ Untitled - FinisherController

File " Edii. View Halp

(D@ ™| Y R

&

Biowse

i+ EFFinisherDpt

1+ EFZFolderDpt

EFlnserte:Opt

+ EFPapeiDeckOpt
E\IE MediaType

-+ EFSorter

[+ EFStapler

EFPunch

I+ EFDuplexing

‘+- EFBooklet

1+ EFZFold

i+ EFInsert

i+ EFRefine

+ EFDestination

[+ EFLandscape

EFUserRotate180 Apply
i+ EFSpool | 8

[+ TonerReduction ‘ " Job Level & Dal

’k%?k;;NT_DP’TIGNS
FormatVersion : 4.3

Manufecturer : Canon

Product : (AB00-60)

Bjowse |

Versjon 20

' LanglL evel 2

DocumentDasta: Clean?Bit

D ata Repositony

EFDarkness
i# EFFistPage
i Resolution

InputSlot f:

+ PageSize - ' .) OK I Close]

+ PanaRenion

= Page Level " Tent File

Update PS Bution

\

: non Ul

Ready

Summary

_ In this chapter, User interface is discussed and different areas and sections are described.

30

g,
——

Chapter 5. System Design

Chapter No. 5

System Design

5.1. Design Strategies and Coding Techniques

In this chapter, system design strategies and coding techniques are discussed. In the era of rapid
application development, object oriented approach is of great worth. In this section we decide
how to design our system and what approaches should follow to design system. We will
elaborate coding techniques to implement our system. In next phase, system’s architecture and

detail design is explained.

5.2.1. Language Selection

I have selected Visual C++ as programming Language with power of STL and MFC library will

be used to develop system. The reasons behind choosing this Language and tool are following:

5.2.2. MFC

Object oriented methodology promotes the idea of separation of concern. I want fo separate
business logic from presentation logic. MFC’s Document/View architecture provides MVC
architecture to facilitate separation of business logic from presentation logic. In MFC, Document
acts as Model and view acts as View/Controller. Standard Template Library (STL) provides
. great assistance in coding and streamlines the code. We can use document and view or only view

according to our design.

5.2.3. Abstraction

VC++ provides abstraction through classes. That streamlines the code implementation.
Inheritance and polymorphism plays a significant role in MFC library so we don’t have to mess

up with heaps of code.

5.2.4. Documentation

Microsoft provides MSDN, a very well structured documentation to assist developers. A lot of

stuff regarding VC++ help also exists on internet and available in books.

Chapter 5. System Design

5.2. Coding Techniques

For the implementation of this project 1 will keep following coding guidelines in use:-
e Pascal casing is used for class names.

¢ Camel casing is used for the function and attribute names.

¢ First few digits of the attribute names describe attributes type.

5.2.1. Object Oriented Approach

MFC is completely object oriented library. Also our components will be implemented by using

Object Oriented approach.

5.2.2. Pattern Oriented approach

Pattern is a general solution of a problem in a specific domain. Design patterns will be used to
enjoy the features promised by Object Oriented in reality. Among design patterns, Fagade pattern
will be used to provide a common interface so to keep code clean, Adapter method will be used
to wrap- the functionality of MFC classes. Wrapper/adaptor pattern will be used to wrap
functionality of MFC classes. [6]

5.3. System Design

A system design is an activity that defines the architecture, interfaces, components and data for
the system. A system is a collection of components that work together to realize some objective
forms a system. Basically there are three major components in every system, namely input,

processing and output [7].

Input Processing Output
Ll e e == ’

It is the age of Object Oriented methodologies. So Object Oriented Approach is used for system
design and implementation. System Design is based on user requirement and analysis of the
system. In this chapter two stages are illustrated to represent system design.

e Software Architecture Design

¢ Software Class Design

— e B o

Chapter 5. System Design

5.3.1. Software Architecture Design

In general design, I shall present architecture diagram to show_ abstract level design. This will

give the overview of the system.

5.3.2. Software Class Design
In structural or detail design, 1 will present static and dynamic structure of the system. Class

diagram will show the static structure and sequence diagram will show dynamic structure of the

system.

5.4. System Architecture Diagram

Data Base MFC o -
-

ainterface»

|DataBase)

\ Document |
PS Finisher Co‘trollcr 1
winterfacen
CIFinsherController “?,”;?3":;?:”

Y

[] | =

«subsystem» «subsystem» «subsystem»
PS Updater Tokenlzer PPD Parser

Figure 5.1: System architecture

This diagram illustrate that our system will be implement using MFC framework. System
architecture has four main parts that are user, MFC framework, PS Finisher Controller and

database.

S.4.1. User
User will interact with the application and also have knowledge about relation between PPD and

PS files and the system (Postscript finishing feature controller).The user have the skills and

expertise to use application.

Chapter 5. System Design

5.4.2. MFC Framework

MEFC is object oriented wrapper of windows API for C++ provided by Microsoft [8]. It is a
collection of classes. CObject is base class for MFC library. Most of the classes are derived from
CObject class either directly or indirectly. The MFC Application Wizard makes easy to create an
application skeleton: with a document class and a view class. Microsoft foundation class (MFC)
library supports Multiple views to represent data. 1 will use MFC interface in my system. It has

two parts that are document and view/controller.

4.4.2.1. Document
Document act as a central repository of the application. Document is Model on which all views

are dependent. A change propogate through out all application from the document.[9]

4.4.2.2. View/Contrller
View is the visual representation of data, It displays the output of the application.User will
interact with application through the view. Application take input from the user through view.

Contoller creats an event handller for the application.[10]

5.4.3. PS Finisher Controller
This module contains all processing related to system. Different parts of PS Finisher Controller

are CIFinisherController, PPD Customised Parser, PS Customised Pareser, Modifier.

4.4.3.1. CIFinisherController
- This class will act like a manager. It manages all classes except MFC library classes. It is like

facade class. It provide interface between MFC and rest of the classes of the system.

5.4.3.1. PPD Customized Parser
It is a sub system of the whole system. It will read PPD info and extract required information
form the PPD file. It will give the tree view of parsed information. It will let the user to select

options according to user’s own choice.

5.4.3.2. PS Customized Parser
In this subsystem, system will read PS file and parse the required information form it. It can be

document level, job level or page level.

e 3] .

Chapter 5. System Design

5.4.3.3. PS Updater/Mapper
In this section, PS file will be updated. PS updater will get selected information and search the

location in parsed PS file. After matching the place user selected value will be replaced in PS
file. Thus PS file will be updated.

5.4.3.4. Data Base

This section will contain database processing. It will give interface for database connection. It

handles all database processing. PPD parsing information will be stored in database.

- 5.5. Structural Design/Class Diagrams

A class diagram describes static structure of the system. It is part of unified modeling language.
Class diagram shows classes, data, functions and relationship of system and interaction between

the system’s classes.

5.5.1. MFC Framwork

MFC class structure shows MFC classes hierarchy. MFC classes detail is as under.

5.5.1.1. CObject

CObject provides basic services, including serialization support, run-time class information,
object diagnostic output and compatibility with collection classes. The derived classes can have

only one CObje'ct base class, and that CObject must be leftmost in the hierarchy.[11]

5.5.1.2. CCmdTarget

The base class for the Microsoft Foundation Class Library message map architecture. Key
framework classes derived from CCmdTargetinclude CView, CWinApp, CDocument, CWnd,
and CFrameWnd. CCmdTarget includes member functions that handle the display of an
hourglass cursor. Display the hourglass cursor when you expect a command to take a noticeable

time interval to execute.[12]

5.5.1.3. CDocument

CDocument supports standard operations such as creating a document, loading it, and saving it.
The framework manipulates documents using the interface defined by CDocument. Users

interact with a document through the CView object(s) associated with it. To implement

{5) | S

Chapter 5. System Design

documents in a typical application, you must do the following: Derive a class from CDocument
for each type of document. Add member variables to store each document's data. Implement
member functions for reading and modifying the document's data. The document's views are the

most important users of these member functions.[13]

5.5.1.4. CWnd

The CWnd class provides the base functionality of all window classes in the Microsoft
Foundation Class Library. A CWnd object is created or destroyed by the CWnd constructor and

“destructor. The Windows window, on the other hand. is a data structure internal to Windows that
is created by a Create member function and destroyed by the CWnd virtual destructor. Within the
Microsoft Foundation Class Library, further classes are derived from CWnd to provide specific
window types. Many of these classes, including CFrameWnd, CMDIFrameWnd, CView,
CDialogand CMDIChildWnd are designed for further derivation [14].

5.5.1.5. CFrameWnd

To create a useful frame window for your application, derive a class from CFrameWnd. There
are three ways to construct a frame window.
. Directly construct it using Create.
» Directly construct it using Load Frame.
« Indirectly construct it using a document template. [15].

5.5.1.6. CMainFrame

~ A class derived from CFrameWnd. CMainFrame class is related to the PS Finisher Controller
application. The CMainFrame utility class presented here helps to implement a modal dialoy's

behavior for any CFrameWnd derived window class in an easy way [16].

5.5.1.7. CTreeCitrl

A "tree view control" is a window that displays a hierarchical list of items, such as the headings
in a document, the entries in an index, or the files and directories on a disk. Here Each item

consists of a Main key and list of sub items i.e. main key and option keys [17].

e ' 55) .

Chapter 5. System Design

D e L e e T P S R R P S e P S ——
5.5.1.8. CView

A view is attached to a document and acts as an intermediary between the document and the
user. A view is a child of a frame window. More than one view can share a frame window, as in
the case of a splitter window. The relationship between a view class, a frame window class, and a

document class is established by a CDocTemplate object [18].

Chapter 5. System Design

CObject
MFC Class Diagram
CCmdTarget CRecordSet
CDocument CWnd CWinThread
jl AN
CFinisherController
' CEiamewnd CTreeCtrl CView CScrollBar CWinApp
CMainFrame CTreeView CScrollView i CFinisherApp

A,

|

CFormView

CFinisherControllerView

Figure 5.2: MFC class diagram

- Chapter 5. System Design

5.5.1.11. CFinisherController

CFinisherController behaves like a fagade for all classes of the system to interact them with
MFC form. CFinisherController class communicates all complex subsystem classes with MFC

form.

5.5.2. System Structure
Finisher controller has different parts/components that will communicate each other to perform a
task. Components and their interaction is described in next paragraphs. Main parts of system

structure are Filing, Parser, Tokenizer, Database Manager, Tree View Manager, Updater.

PS Updater

“] Filing L Updater
Filig —{] [

—_ . .]

1
1
1
1
]
1
1
1

D
Database ©O—
Database
]

o I
Parser
Parsinginfo ,Q—rl_\

Figure 5.3: Component interaction
A class diagram in the Unified Modeling Language is a type of static structure diagram that
describes the structure of a system by showing the system's classes, their attributes, methods and
_ the relationships between the classes [19]. Classes of each part and their responsibilities are

- elaborated in the following sections.

5.5.2.1. Filing

_ In this section file is handled, PPD and PS file handling is done through this mechanism. There
are an interface class for filing and an implementation class. Furthermore there are two

specialized implementation classes on for handling PS file and other is for PPD file.

—{ 0 } . S—

Chapter 5. System Design

a). CFCFinisherController

CFCFinshingController is the class that manages all classes except MFC classes. This class has
an attitude like a facade class in facade pattern. CFCFinsherController class creates the objects of
each subclass. This class provides a mechanism by which all sub-classes collaborate with each
other. CFCFinsherController class makes sub-classes compatible to collaborate with server class
by giving a generic interface. This class shows the concept of object oriented by encapsulation
and information hiding. Due to this class the MFC structure have no idea about the application
subclasses.

b). IFCFile

IFCFile class is an interface class for file system. It has all member function declarations. It has
pure virtual functions. It gives interface for file processing either it may be a Postscript printer

description (PPD) file or Postscript (PS) file.

c¢). CFCFile

CFCFile class is a general class that is derived from interface class. It has implementation of file

handling mechanism. It gives read and writes mechanism for Postscript file.

Chapter 5. System Design

! CFinisherController

wUSEsw

L
winterface»
IFCCFlle
+Virtual WrilePS(in *buffer : char, in &tokens : CFCCollection, in strWrite * string)
+Virtual ~IFCCFile_() ;
+virtual *ReadFile(in fiteName(] : char, in id : int)

CFCFile

-char *cBuffer

-long IFileSize

+virtual CFCFlle_() '

+ virtual ~CFCFile_()

-int IsFileValid(in fileName : string, in id : int) : int

+virtual*ReadFile(in fileName(] : char, in id : int) : char

+virtual Write(in *buffer : char, in &lokens : CFCTokenCollection, in strWrite : string) : void

7Y

CFCPPDFile CFCPSFile

Figure 5.4: Filing structure

5.5.2.2.Tokenizer

a). CFCToken
CFCTokens class store the tokens of each individual PPD file or PS file after the tokenizing from

the CFCTokenizer class. CFCTokens class consists token string, token ID and line number.

b). CFCTokenCollections
CFCTokenCollections class is a collection class and store the complete information of tokens
related to complete PPD File or PS file. CFCTokenCollections class is inherited from the

CCollections class.

¢). CFCCollections
CFCCollections class is the base class of all classes which have collection PPD or PS file.

CFCCollections class has the common functionality which is common in all collection classes.

S, (Y NE——

Chapter 5. System Design

e e e e e e

«USESH

]
]
]
]
]
]
U
winterface»
IFCTokenizer

+virtual ~IFCTokenizer()
+virlual Tokenize(in slring buffer, in long IFileSize, out verctor<CFCToken=& tokens) . void

CTokenlzer

+CTokenizer()
+~CTokenizer()
+Tokenize(in buffer : string, in IFileSize : long, out vector<CFCToken>& tokens) : void

Vector

CFCCollection !

CFCToken
-nid : int
-nLineNo : int
-strToken : string
+CToken()
+~CToken()

Figure 5.5: Tokenizer structure

d). CFCTokenizer
CFCTokenizer class is an implementation class that takes input and tokenizes the file into
tokens. This class takes the PPD file or PS file and split them into tokens. CFCTokenizer class

give the information of each token in the form of token string, line number and token ID.

e). IFCTokenizer
IFCTokenizer class is an interface class. That provides interface for tokenizer to Finisher

Controller.

Chapter 5. System Design

5.5.2.3. Database

CRecordSet

JAN

CFCMainKeyDB

CFCHeaderDB

-m_FileName
-m_FileVersion
-m_LanguageVersion
-m_Manufecturer
-m_Product
-m_PSVersion

-m_FileName
-m_FileVerions
-m_MKName
-m_MKValue

CFCOptKeyDB

+AddMainKey() : void

+MapHeader()

+AddNewRec()

b). CRecordSet

-m_FileName
-m_FileVerions
-m_MKName
-m_MKValue
-m_OptkeyName
-m_OptKeyValue

+AddOptKey() : void

Figure 5.6: Database classes structure

this is an MFC class that is provides support for database.

¢). CFCHeaderBD , CFCMainKeyDB and CFCOptionKeyDB
These are classes that will handle data by fetching or storing from database. CFCHeaderBD has
file like file information.and CFCMainKeyDB

CFCOptionKeyDB classes have mainkey and option key information.

information name and header and

Chapter 5. System Design

e e

5.5.2.4. Parser

sinterfaces
IFCParser

+virtual ~IParser()

+parseHeaderin fileName : string, in tokens : CFCToken, oul ppd . CEFCPPD_Header) : void
+ParseUl(in tokens : CFCToken, out ui : CFCUI_Info) . void

+ParsePSinfofout psinfo : string, in fokens : CFCToken) : void

+ParseHeaderPS(in tok : CFCToken) : CFCPS_Header
CFCPS_Header Py
eader

-strTilte : strin !
-strCreator : stgring g rFormateVersion : string
_sirCreationDate : string 1 |CFCPSParser CFCPPDParser *File\fersio:'l.: string
-sirDocumentDatal : string |———4 = +Languag Version : string
-strLanguageLevel : string 1 . :::so‘?:rc; m :!fl:tgnl g

-strPageOrder : string
-sirVersion : string

T - .
! +Manufecturer : string

CFCPSInfoCollection CFCUI_InfoCollection CFCUl_Info CFCKay

e +mainKey : CFCKey S -sirName : string
+optionKey : CFCHey -strValue : string

Vector type Vector lype
Collection Collection
Figure 5.71: Parser structure
a). IFCParser

IFCParser class is an interface class of parser. it will let the subclasses to create the object. It

gives common interface for both PPD parser and PS parser.

b). CFCPPDParser

CFCPPDParser class get token collection from CFCTokenizer class. It parses header
information and feature information form the PPD token collection. CFCPPDParser class will
check database and if file has already parsed then it will not parse it again. If it is not already
parsed CFCPPDParser will parse required information and store it into database.

¢). CFCPSParser

CFCPSParser class get token collection from CFCTokenizer class. It parses finishing option

information and feature information form the PPD token collection. It derives from parser class.

d). CFCKey
CFCKey class will contain information that is strName and strVlaue. Every key has to parts one

is Name and other is value.

E SNIPRRUSIR (Y S —

Chapter 5. System Design

e e el e = e = o S o o iy o B e # e S ST L LT SR

e). CFCPPD_Info
CFCPPD_Info class has header information for individual file. CFCPPDParser class will parse

header information and store it into PPD_Info.

f). CFCUI_InfoCollection
CFCUI InfoCollection class will contain information for individual PPD file. It is collection of
those options that will be displayed on user interface. CFCPPDParser class will parse finishing

options from PPD file store it into CFUI InfoCollection.

f). CFCPSInfoCollection

This class a collection that contains parsed PS file information. Its reference is given to the CFCPSParser.

5.5.2.5. Tree View Manger

a). CFCGeneralTree

CFCGeneralTree class will store main keys and option keys extracted from PPD parser. Main
key will be parent and option keys will be child. Option keys Iare collection. This information is

stored in CGeneralTree and it will map into MFC tree view for visual representation.

b). CFCTreeNode
. CFCTreeNode class is a node of the tree. It is nested in CFCGeneralTree. It holds information of

node like node item, node parent and node children.

5.5.2.6. Updater

WUSBSH

|
I
|
I
|
'
'
|

5!
CFCUpdater

+CFCUpdater()

+~CFCUpdater()

+GMMapp0dV&1u[Inwdcﬂ(.‘.hedtedlistaw’&wcPPDChenklium in vector<PsSubStr=&vecCommandCol, nutvacion(:hel:ekd!IemsDalv!-ve:MapedDala e bl
Valua(inoul &strPsinfo : string, in vector<CheckeditemsData>&vecMapedDala) . void

+Ga1EqunIantPnga$izn{ln strPSize : string) : string

+GelPSFinishingTok(in strPagelnfo : string, out \fBr.‘IorfPsSuhSI.f‘*&vacPuommande void

+UpdatePS(in *opFNama : char, in vanhnrcCFCTokenb&paTnknns in vector 0 Addadval) : void

R
T

CheckeditemData e
-stritem : string sSubStr
-strParent ; siring -striMame ;_slring
-strChild - string -strval : sting

Figure 5.8: PS Updating mechanism

Chapter 5. System Design

a). CFCUpdater

This is implementation class for updater. All function’s implementation held here. This class is
inherited from interface class. It is an example of interface inheritance.

5.5.2.7.Finisher Controller Factory

Factory design pattern will also implemented in development of application. There are multiple
objects created in the application. Factory will make object creation at same place.it will simplify
the design.

«interfacen
IFFCFactory
+virtual InterfaceTokenizer* CreateTokenizer(in id : inf)
+virtual InterfaceParser* CreateParser(in id : int)
+virtual InterfaceFile* CrealeFile(in id : inf)

£

<eraces CFCConcretCreator
«interfacen «interfacen IFCCFile
IFCParser : 'chk"“mf' +virtual IFCCFile_() +CFCConcrelCrealor()
+Parser() +virtual IFCTokenizer() +Virtual Char *Read() +InterfaceTokenizer* CreateTokenizer(in id : int)
~IParser() +virtual ~IFCTokenizer() | |+Virtual void Write() +InterfaceParser* CreateParser(in id : int)
+void TokezPa.rs.ing(j +virtual TOTIZB{) Virtual ~IFCCFile_() | sesy*InterfaceFile* CreateFile(in id : int)
£ /|\ T I]
: | Y. S : : :
1 | I]
| | | |
i e e e e |
: wusesn :
I I

Figure 5.9: Factory Design

Chapter 5. System Design

5.5.2.8. CFCFinisher Controller (work as Facade)

CFCFinisherController

nterface Tokenizer* tokenizer

HnterfaceFile* file

HnterfaceParser* parser

LCFCUpdator updator

-CFCFactory' iFFCFactory

-CFCPPDHeader ppaHeader

LCFCPSHeader psHeader

-CFCGenerateTree ree

-TreeTraverse(in CTreeClrld m_Tree, ou veclor<CheckedValues>& ilems) : void

-Formula(in CTreeCtri& m_Tree, in HTREEITEM dlem, out vector<Checkedvalues>4 str) : void

-GetCheckedltemString{in CTreeCtrl& m_Tree, in vector<CheckedValues>& cCheckeditems, out vector<CString>8 vecCheckedtemString) - void
1 [GeiCheckedhemvaluesSir{in CTreeClrd m_Tree, in vector<CheckedValues>& cCheckedtems, out string&CheckeditemCValString) . void
HGelCheckitemData(in CTreeCin& m_Tree, in vector<CheckedValues>& cCheckeditems, out vector<CheckeditemsData>8 vecCheckeliemPlusParent) vaid

+UpdatePS(in stringstPsFName, in CTreeCIn& m_Tree, in vector<CFCToken>&vecPSTokensCollection) - vaid \g
+ParsePS(in slring Mame, in veclor<CFCToken>& vecPSTokensCollection) : void |
+ParsePPD{in string MName, in CTreeCtri& m_Tree, in int Check) - void
4CFCPPDHeader GetPPDHeader()
+CFCPSHzader GelPSHeader()
B Csess T : , : '
ieSea st tuslesn f wslesl ! —_— .u#m €ysess
| I | .
CFCPS_Hoader ; ; E : : | crcwn_nmuh
LstTite ; string ! ! . 1 I ! +FormateVersion - skring
- stCreator:sting - v ! W ; | |ieversen: g
| siCreationDate : sting i CFCGeneralTree | | cinterfaces _ : LanguageVrsin : ting
|stDocumen(Datal: sking ! ! [FCParser F‘;‘é;m ! +Product: sting
Mstrlanguagelevel - sti ! - ! : i +PSVersion - slring
-sirPazJOrder * sting " | void GeneraleTree() :I :m-‘;:;:;amd +virtual CreataTokenizer() | Manufecturer : string
LstrVersion : string : | sParsell) void uirtual CreafsParser() :
S i +ParsePSino]) - void virtval CreateFile() &
«interfaces : +ParseHeaderPS() void |+ «interfaces
IFCCFile I [FCTokenizer
|
+Virtual Char Read() & +yirtual ~IFC Tokenizer()
+Virtual void Whte() CFCUpdater virlual Tokeniza() - void
Witual IFCCFil_ st CheckedValues
HTREEITEM parent
FHTREEITEM item +CFCUpdater)
FHTREEITEM chid +~CFCUpdater)
+GetMappedValu() ; void

+RemoveMappedvalue() : void
+GetEqualentPageSize() : string
+AddCheckedVal) : void
+UpdatePs() - void

Figure 5.10: CFCFinisher Controller (Facade

47

o
R

Chapter 5. System Design

CFinisherControlier
-InterfaceFile* file
“Intorface Tokenizer* lokenizer
__tinterfacePamser” parser
-IFFclactory” IFactory

Finisher Controller Class Diagram

ausesy auseEss

“rusess

Sl

s - D e H
l;ﬂ;g;:‘!.! +GenerateTrao() . !
+CreataParser() '
+Virtwal Char *Ready) T T : einterface s
+Virtwal void Wiite() S — ' wsess | To o Vectar
+Virtual ~IFCCFile_() CFC Tree < [svirtual ~IFC
: — ' ' +virfual Tokemize() veid
] ' 1
+void GeneraleTree() e H '
{ i | | -~
) : | |
CFCFila } ! H :
-char *cBuffer ' | | i |
-char cReadChar ' il) i : CTokenk
-Hong IFileSize i H ! usess ' CFCColk
Firtual CFGFile_() 3 : e ! '
+ virtual ~CFCFile_() ' winterfaces | . +CTokenizer()
int IsFieVlid() | __SFCULinfo |} IFCUpdater { % +~Clokenizer()
+virtual char *Read() +mainkey : CFCKey | susess] +Tokenize() : vold
+virtual vold Write() Key : GFCKey ! ! Database 1
! H
1} i
13]
/SR L v,
! ! CFCToken
CFCPSFile CFCPPDFile ' I i - int
i DR Gllirsaus H -nLineNo - int
1 H -strToken : sirbng
s +CFCUpdater() J{ +CToken()
! |+-CFCUpdaler() PP ey +=CToken()
i ouolMlppudVM);:T: i IFFCFactory
| |vGelEqualentPagesSize() : string| |*virfual CreatoTokenizer)
| |*AddCheckedVal() : void +virtual CreateParser()
R ! |UpdatePs(: void +viriual ouz'r;mu
|
1 - Classd
H winterfaces winterfaces IFCCFile
i o
i IFCParsar _IFCT . virtual IFCCFile) "CFCCanmreiCreator)
e +IParser() +virtual IFCTokenizer() +Virtual Char *Read() +CreateTokenizer()
IFCParser +~IParser(} svirtual ~IFCTokenizer() +Virtual void Write() +CrenteParser()
Svitaal ~IParser(] +void TokenParsing() | [+virtual T +Virtual ~FCCFile_|1spg, |*CrentoFila()
+parseHeadar() . void 3 = e H i \
+Parselllf) woid ‘ 1 ARy - oo o o
| *FarssPSinfof) . void ' e RN I PSP ' '
|+ ParsaHeadarPS() ' void { ausany)
CF‘GN_HMM | CFCPPD_Info
::g:i:f_‘“.:m +FormateVersion : string
| strCreationDate : slring 1 _|crePsPame ettt aldend EECHPD.Hodr :rlln\nnlm o, sting
+atrDocumentDatal : string [+ Product : string
-striLanguagelevel : string 1 1 * LiPSVersion : siring
geOrder : string T T + string
-strVersion ; string . S E
1
H
! '
! H
e v
CFCPBInfoCollection| CFGUL_InfoCollecti CFCULInfo CFCHey
. y : CFCHey - shring
v P y : CFCKey] [-strValue : string
/ //'

Vactor type
Collection

Veclor type
Collection

Figure 5.11: Complete Finisher Controller class diagram

Note: In above detail class diagram methods parameters are not shown and component interaction is
taken place in CFCFinisherController.

5.6. Sequence Diagram/Dynamic Structure

A sequence diagram in Unified Modeling Language (UML) is a kind of interaction diagram that
shows interaction of objects and order in which they collaborate with one another. It is a

construct of a message sequence chart [20].

48

—t

Chapter 5. System Design

Sequence Diagram

PSModifier
i
I
]
I
)
[}
|:i

]
|
i
i
1
= i
: “
|
i
-—-={ e ﬁi‘.“
i 1
| |
— |
> i i
i]
|
| |
| 1
1]
| |
1]
1]
m AR _ u i e e S e S e | e moeh
1] I
) i]
)]]
1 i |
1 | I
| I |
1 1 I
1 1]
I | |
1) i
| I I
| I = 1
i i @ | @
m v—— - IR i
i 1]] o |
, | . TS |E!
" O E g | |
1 1 = El ! "
i . B g i i
e - i i
s W 8 7R . i R ey S S8 BUREER L
5
i PR I - A “) i i
. | i o | [| I} i
| ! [B= < ' | i i
| = | & 1 I | “ "
£ I |
' m @ | u i i i % D i
] 1] 1
| g (2! “ | LB (B "
1 2! 1 1 5 |&
vl b i e R RS e Pesoss ol e =l G e f
gz S j SN 7 r
' 213 I i i I = |31 | 1
| 218 ' | ' | = |8 i i
i @ e !] 1]] .w [1 1
\ % | i | P " = | x ! “ !
= |m | = | i “ =3 I W = |] |
2 |5 | i i 1213 ' i '
@d |2] I i 1L |8 I i i
3|z | | | 13 [E) | i i
x " “ ._ | .G <] | 1)
. _ _ | R __ | |
| | i 0 bl J & &
W S
IIIII I_Illlillli.l.lllllllllIIIIllI.lI|1!|I|||.iillllllIIIIllll.l.llllli.nrlllllIIlIllIl.lIll.lII.kn;lllllll

Sequence diagram

Figure 5.12

1
49 |

(
L

Chapter 5. System Design -
e e e e e ama e T i] B 3l B i e ey o T TR R R et 2 100 o e e et

5.7. Data Repository

Data Repository is a logical (and sometimes physical) partitioning of data where multiple
databases which apply to specific applications or sets of applications reside [21]. Tae te1m
Repository is commonly used to refer a place for storing and maintain data safely.

In this system, data can be store in Text file or Database. MS Access will be used as database

tool.

5.7.1. Database
A database is a collection of information that is organized so that it can easily be accessed,
managed, and updated. An object-oriented programming database is one that is congruent with

the data defined in object classes and subclasses [22] .

5.7.2. E-R Diagram

An entity-relationship (ER) diagram is a specialized graphic that illustrates the relationships
between entities in a database. ER diagrams often use symbols to represent three different types
of information. Boxes are commonly used to represent entities. Diamonds are normally used to
represent relationships and ovals are used to represent attributes [23].

System has following entities.

e File

* MainKey
¢ OptionKey
5.7.3.1.File

File is an entity that will be stored in database. It has following characteristic. Fileverion,
FileName, PSVersion, Product, LanguageVersion, Manufecturer.

5.7.3.2. MainKey

Main Key in another entity with ID, name and value characteristic.

5.7.3.3. OptionKey

It is sub key of a main key.one main key have many sub keys. Every sub key has an id, name and
value.

Chapter 5. System Design

e

- Hame Craate “Exbeital Data | Ooloboic Tosls Duwsign
] vy p - . T | o =)
l% - .* - :\ {8y Databate Dosumenter -'3 o ! e s 3
LI ; = oy & Enakyze Performance “a "‘-" b 5 ‘J
Compact ana wiual Run R SQU Aftess Shecriied Adddan: Replication Seifihbessd
Repnir Databasa Batic Macro prendenos TS anakere Table, Server Databaie - Optiant — tisnager
__Teah Mintrn Matatiar L Mesw Osts ____ Aduins Admieiter
Allmncbjcns)« WMJ,‘_TLM‘] (S — board tanager [
[Semren ~ =
'l'h_lh o |
I8 rue =4 il
ED mamies ‘lxt_ N2 e [.
- FILEVERSION
& opnonker FILEHARE |
| PSVERSION |
(| LANGUAGEVERSTICN
FANUFECTURER -
\ FRODULCT PAAINKEY
| LT |
—_— — MKHAME
rKvaLuE |
FILEVERSIOH

Figure 5.13: E-R diagram

5.7.3. Database Tables
MS Access database tables are show below for the system.

Table 1: File table diagram

: AR _ ANGUAGEV - MANUFECTL - PRODUCT - cmrondd
_____ ! 1.0 a.ppd (3010.104)1 English ‘canon (iR600-60)
RS agacssf2.ppd (2013.108)9307 English o (AGFAAccuSet:
|10 b.ppd (3010.104)1 English Canon (GP605-605P)
_____ 1.0 c.ppd (3010.104)1 English , Canon (IR330-400)
1.0 . cn1760el.ppd (3010.104)116 English Canon (CanonLBP-176

[110 e.ppd (3010.103)9507 English Epson (EPL-N2700)

JLo timlp652.ppd (2014.104)16 English (microLaserPrc

Table 2: MainKey table diagram

/ - | FILEVERSIOD ~ |- FILENAME - -1
TonerReductlo Boolean 1.0 ja_‘.-ppd
EFSpool ‘Boolean 1.0 . a.ppd
EFUserRotatel PickOne 1.0 a.ppd
EFDestination PickOne 1.0 a.ppd
EFinsert Boolean 1.0 a.ppd,

Chapter 5. System Design

_ sl i il s <
! OPTKEYVALUE - MKNAME - FILENANE

n| LiLeft = /XiXsetstapler where { pop 8 XIXsetstapler } if EFStapler a.ppd

| PUpper @ /Xixsetstapler where { pop 7 XJXsetstapler } if . EFStapler a.ppd

|PUpperRight @ /XJXsetstapler where { pop 2 XJXsetstapler } if EFStapler a.ppd

 LRight /xixsetstapler where { pop 7 XIXsetstapler } if EFStapler a.ppd

| LWupperLeft /XIiXsetstapler where { pop 3 XiXsetstapler } if EFStapler a.ppd

| PRight ® /XJXsetstapl_er where { pop 6 XIJXsetstapler } if EFStapler a.ppd

| False = /EFUserRotatel80 where { pop 0 EFUserRotatels0 } if EFUserRotatel a.ppd

True ‘@ /EFUserRotatel80 where { pop 1 EFUserRotatel80 } if EFUserRotatel a.ppd

EFUserRotatel : . EFUserRotatel a.ppd

| True B /Xixsetzfold where { pop 1XIXsetzfold } if EFZFold a.ppd

| False E /[XiXsetzfold where { pop 0 XJXsetzfold } if EFZFold a.ppd

| True EFZFolderOpt a.ppd

| False EFZFolderOpt a.ppd

| Tray2 & /[XIXsettraysel where { pop 2 XJXsettraysel } if InputSlot a.ppd

Tray3 = /Xixsettraysel where { pop 3 XiXsettraysel } if inputsiot a.ppd

| Tray4 B /XIXsettraysel where { pop 4 XJXsettraysel } if InputSiot a.ppd

ManualFeed @ /X)Xsettrayselwhere { pop 1 neg XIXsettraysel] if InputSlot a.ppdl

Trayl = /XiXsettraysel where { pop 1 XJXsettraysel } if InputsSiot a.ppd

Trays ® [/XiXsettraysel where { pop 5 XiXsettraysel } if InputSiot a.ppol

AutoSelect /XIXsettraysel where { pop 0 XJXsettraysel } if Inputsiot H.ppel

| P_Interleaved @ - /XIXsetmediatype where { pop 3 XiXsetmediatype } if MediaType a.pprl

| Transparent @ /MiXsetmediatype where { pop 1 XiXsetmediatype }if Mecdialyp:=2 a.ppud

~ [{AB1) ‘@ /xiXsetmediatype where { pop 0 XIxXsetmediatype } if MediaType a.ppd

| Interleaved E /XixXsetmediatype where { pop 2 XJXsetmediatype } if MediaType a.ppd

| Plain = [xXiXsetmediatype where { pop 0 XJXsetmediatype } if MedigType a.ppd

Letter Im /Xixsetpagesize where { pop (Letter) XJXsetpagesize | if PageRegion a.ppct

Legal E /XiXsetpagesize where { pop (Legal} ¥XiXsetpagesize | if PageRegion a.ppd
Summary

This chapter briefly discusses the design of the system. The System Architecture diagram
illustrates that our system will be implemented using MVC architecture. Then describe the
structure of a system by showing the system's classes and relationships between them using class
diagram. Further, in this section, database for the system is discussed. E-R diagram shows
entities and their relationships. Relational database tables for the system are also shown.

In this chapter we have discussed reasons of selection VC++ as development language, design
and coding guidelines and techniques. Pattern oriented and object oriented approaches are

elaborated for this system.

——

52

e

Chapter 6. System Testing

Chapter No. 6

System Testing

6.1. Introduction

The systematic test is an inevitable part of the verification and validation process for software.
Testing is aimed at finding errors in the test object and giving confidence in its correct behavior
by executing the test object with selected input values [24]. Software testing is a process that
continues throughout the development process. Test cases are based on use cases. Testing is a
V&V (verification and validation) practice. We verify system functionality according to our
requirements and check feasibility of the system. There are three basic goals of software testing.
¢ Error detection. Is output of test matches to the expected result?

e Verification. Are we developing the software/product right?

* Validation. Are we developing the right software/product?

6.2. Testing Techniques .

Currently, there are many testing strategies that are in use. System can be tested manually or
automatically. I have used two testing techniques for my application testing.

e White Box Testing.

e Black Box Testing.

6.2.1. White Box Testing
White box testing is also known as structural and glass testing. Is this strategy, internal

mechanism or code of the system/component is tested. I have used unit testing in account of

white box testing.

6.2.2. Black Box Testing
Black box testing is also famous as functional testing. It is not related to internal mechanism of

system or component. It solely about outputs that are produced in result of given/select inputs

— s

Chapter 6. System Testing

m

and execution conditions. 1 have used functional and system testing in account of black box

testing.

6.3. Test Cases

A set of test inputs, execution conditions, and expected results developed for a particular
objective, such as to exercise a particular program path or to verify compliance with a specific
requirement (IEEE Standard 610 (1990) [25]. So, a test case is a document that describes the

procedure to test the system. My system test cases details are following.

e - B

' e PPb Input Test

"'E.:.‘Z" Black Box
| Input File

| My self

- | System must ready to test/use

itk by 4 1. Press browse button to get file.
2. File dialog open.
3. First Choose PPD file OR any other than PPD file

4. Click open or press enter

v
-

| Only PPD file should be input successfully. System should discard all
g | other non PPD files.

L G4
i ’L 1. System should indicate error message “Invalid file” in case of
r—)" | ﬂt,”ﬁ' 1 wrong file selection or no selection.
4 3 :Wﬂi 2. System should show no error in case of PPD file selection.
ke n ILr " [Successful

= . :P"‘-;I - e 12
| Tree View Test

. Black Box
| Tree

54

——
| —

Chapter 6. System Testing

————
-

i

| My Self

1. PPD file is input successfully
2. Input PPD file must have parsed.

1. Tree is generated successfully after input the PPD file
2. Expand tree by clicking nodes(parent and child)

3. Drag child node and drop on parent node.

Tree should expand properly. Drag drop must not allowed

| Tree generation and expansion should be done properly.

| successful

—

: Scledfﬁdpt_io;;'s Test
| Black Box

| Tree

[My Sell

T —
- J-\-: e
¥

1. Application must be in active state.
2. Application must have input PPD file.
3. Input PPD file must have parsed.

4. Tree must be generated.

1. Expand the Tree.
2. Tree has default values selected.

3. Select/deselect values by checking/unchecking check box.

| Options should be selected according to main key values

Options selected successfully.

| Successful

i
)Y

| PS input test

Black Box

55

———
 —

Chapter 6. System Testing

| Input PS File

: My self

| System must be in active state

1. Press browse button to get file.

2. File dialog open.

3. First Choose PS file OR other than PS file

4. Click open button or double click on file

5. PSfile is parsed and header info must displayed on screen

: Only PS file should be input successfully. System should discard all
!Q other non PPD files.

5 1. System should indicate error message “Invalid file” in case of
!

wrong file selection or no selection.

2. System should show no error in case o_f PS file selection.

Successful

rl

' 1‘-‘IS Updating]est .

Black Box

UpdatePS button

| My self

1. System must ready to test/use

User has given an input PPD file
PPD file has parsed

Tree View has generated

Option has selected .
User has given Input PS file to update

e A

Apply on setting has done

1. Press button to update file
2. Selected options and PS parse info is mapped

. Mapped selected options must be updated in PS file

56

——
e

Chapter 6. System Testing

1. System must show “PS file updated” message after
successful update

2. System must show error message in case of failure

successful

#.

Exit application test

| Black Box

| EXIT button

My self

1. System must be in active state

= nag 1. Press EXIT button

- | System must be exit

- | System close successfully

- | successful

Summary

In this chapter, testing techniques used for system testing are described and test cases for this

system are enlisted.

57

e
e

References
e ——————— e e e e e e A T = e e et Lind Do L

Reference:-

[1] http://www.requirementsauthority.com/functional-and-non-functional.html
[2] Bittner, Kurt & Spence, lan (2003). Use case modeling

[3] PostScript Printer Description File Format SpecificationVersion 4.3

[4] PostScript Printer Description File Format SpecificationVersion 4.3

[5] http://www.webopedia.com/TERM/U/user_interface.html

[6] Larman, C., “Applying UML And Patterns”, 2nd Edition

[7] http://www.nos.org/htm/sad 1 .htm

[8] http://en.wikipedia.org/wiki/Microsoft Foundation Class Library

[9] http://msdn.microsoft.com/en-us/library/4x 1 xy43a%28v=vs.80%29.aspx
[10] http://developer.qt.nokia.com/doc/qt-4.8/model-view-programming.html
[11] http://www.informit.com/library/content.aspx?b=Visual _C_PlusPlus&seqNum=36
[12] http://msdn.microsoft.com/en-us/library/x9w7txst%28v=vs.80%29.aspx
[13] http://msdn.microsoft.com/en-us/library/e59dtf8h%28v=vs.80%29.aspx
[14] http://msdn.microsoft.com/en-us/library/ | xb05f0h%28v=vs.71%29.aspx
[15] http://msdn.microsofi.com/en-us/library/za93adby%28v=vs.80%29.aspx
[16] http:h’www.éxtrabit.com:"fractalviewer/srcdocs/classCMainFrame.htmI

[17] http://www.cppdoc.com/example/mfc/classdoc/MFC/CTreeCtrl.html

[18] http://msdn.microsoft.com/en-us/library/ezc3635w%28v=vs.80%29.aspx
[19] http://en.wikipedia.org/wiki/Class_diagram

[20] http://en.wikipedia.org/wiki/Sequence diagram.

[21] http://www.learn.geekinterview.com/data-warehouse/dw-basics/what-is-data-
repository.html

[22] http://searchsqlserver.techtarget.com/definition/database

[23] http://databases.about.com/cs/specificproducts/g/er.htm

[24] http://www.update-it.com/documents/eurostar1993.pdf

[25] http://www.kaner.com/pdfs/GoodTest.pdf

