
I N THE NAME OF ALLAE£ THE MOST

GRACIOUS AND MERCIFCTL

CTCNET FILE EXCH ... 4J:-..1GE [lTILITY

FOR -seo XENIX AND AIX

BY

M[lHAMMAD ILYAS

A d isser t at'o s ubm 'tted to

Quaid-i-Azam University Islamabad

As a partial fulfilment of the requirement

For M,Sc. Degree in

COMPUTER SCIENCES

FEBRUARY, 1991.

QUAID-I-AZAM UNIVERSITY

(DEPARTMENT OF COMPUTER SCIENCES)

DATED: / /1991

FINAL APPROVAL

This is to certify that we have read the thesis

submitted by Mr. Muhammad Ilyas and it is our judgment

that this thesis is of sufficient standard to warrant

its acceptance by the Quaid-i- Azam university Islamabad,

for the degree of master of science in COMPUTER

SCIENCES.

COMMITTEE.

1 . EXTERNAL EXAMINER

2. SUPERVISOR

DR. MUHAMMAD AFZAL BHATTI

DEPARTMENT OF COMPUTER SCIENCES,

QUAID-I-AZAM UNIVERSITY,

ISLAMABAD.

3. CHAIRMAN

DR. MASUD AHMAD MALIK

DEPARTMENT OF COMPUTER SCIENCES,

QUAID-I-AZAM UNIVERSITY,

ISLAMABAD.

T() T.-1Y T.-1C)THER

PRC)~TECT

PROJECT TITLE

OBJECTIVE

OFFERED BY

UNDERTAKEN BY

INTERNAL SUPERVISOR

EXTERNAL SUPERVISOR

DATE OF STARTING

DATE OF COMPLETION

LANGUAGE USED

OPERATING SYSTEMS USED

SYSTEMS USED

BRIEF

CTCNET FILE EXCHANGE UTILITY

FOR SCO XENIX AND AI X .

To Imple me nt Enchanced CTCNET

Fil e Exc hange Protoco l o n

SCO XENIX an d AIX.

Computer Training Centre

Muhammad Ilyas.

Dr. Muhamm a d Afzal Bhatti.

Dept. Of Computer Sc i e nces

Quaid-i - Azam University

Isl a ma bad.

Dr. Fai z I s h a q

Head

Computer Training Ce ntre

H- 9, I s lamabad.

Sempt e mber, 19 9 0.

Fe bruary, 1991.

Microsoft C v e r 5 . 1,

XENIX C, AIX C.

SCO XENIX, AIX, PC / DOS

fY1S / DOS .

PC AT,3 86 Based

IBM RISC / 6 000 Model 320.

A B S T RAe T

This dissertation is concerned with the Implemention of

Enhanced CTCNET File Exchange Protocol on SCQ XENIX and AIX . The

implemention of the CTCNET software on t hese systems provide a

very comprehensive solution for Source/text file exchange across

systems as well as transfer of all kinds of files from one system

to another for backup, media interchange or transportation.

A C K HOW LED G M E H T S

First, of all I am indebted to thank the Supreme Ruler the

Almighty God whose divine help made me to complete this

project successfully, no one, undoubtedly, can reach one's

destination without HIS guidance .

As our intellect, our acumen and our abilities are all

through the agencies of our teachers, I would like to thank my

honourable teachers for the knowledge and proficiency I

acquired from them. Special thanks must go to Dr. Muhammad

Afzal Bhatti for his kind supervision and frequent help. His

wise counsels and unfailing kindness meant so much to me .

I am deeply grateful to Dr . Faiz Ishaq, Head CTC, for helping

me a lot in carrying out this project . lowe lots of thanks to

Mr . Ikram- ul - Haq (PSO at CTC) , as he guided me throughout t he

project. I am also thankful to the people working at CTC for

their generous cooperation. I am, especially, much obliged to

Mr . M. Javed Iqbal, Ms . Ghulam Fiza, Mr . Muhammad Jaudet and

Mr . M. Farooq Azam for their kind consideration and

assistance . They were always available with time and work

whenever I claimed their help .

All my classfellows deserve

very cooperative and helping

attitude .

acknowledgments, who had been

towards my timely insensical

I am under obligation to pay sincerest thanks to my parents,

my family members and my friends for their valuable moral

support and constant encouragement.

Finally thanks and love to all those people also, who are

irreplaceable f or me and care to be worried about me .

PRE F ACE

This d i ssert a tion c ompr i ses six c h apters. These chapters have

been formed and arranged in such a way that t he details of the

project can be given in a simple but well-grounded form.

First chapter of this thesis gives a brief introdu ction to

p r esent system . I t introduces t he project and or gani zation where

this project has been conducted, to the reader . It also describes

the need of carrying out this project. Chapter two describes the

communication modes. Facilities provided by serial communication

devices . It also holds discussion on the existing system . Chapter

three presents the proposed extension to the existing system. The

features which are to be added, have been described in detail .

Chapter four contains a discussion on the data structures . It

also describes the parameter setting of the terminal and

programes that are designed in this course. Chapter five is the

user system interface to guide a new user of this system. Chapter

six is t h e fi nal c hapter it describes t he maj o r f eat u r e s, t h e

f ea t u r es lack i ng and the possible fu t u r e ex t ension s in t h e

system .

Appendix A describes the complete Sender and Receiver logic o f

the Enhanced CTCNET File Exchange Protocol . Appendix B desc r ibes

the format of the data structure header used for non t e x t files .

Appendix C represents the control characters used by the CTCNET

software . Appendix D represent the messages reported by the

CTCNET for the user facility, Appendix E describes the error

messages displayed when the error occurs .

CONTENTS

1 INTRODUCTION

2. . 1 INTRODUCTION TO eTCNET

INTRODUCTION TO PROJECT

INTF~ODUCTION Te) Ct)MPUTER TRAININ(~ CENTEr;

:!. . 4 OBJECTIVES OF THE PROJECT

2 EXISTING SYSTl!"l1

2 . 1 MODEo OF TRANSMISSION

2 .1.1 PARALLEL MODE

~ .1.2 SERIAL MODE

2.1.2. J A;':.YNCHHONOUS TRANSMISSION

~. 1. :2. ~~ :'::YNC]·HWNOUS TH.AN~3t1I SSION

2 . 1 . 2 . 3 I f:O CHHONOUS THAN 5t1I SS ION

SERIA!. COMMUNICATION HARDWARE

- '~I ,- ,

A SERIAL TNTFRFACE B25JA

~:: . :..: . ~ .. :~ III ITT P. LIZ I N G 8:2 51 A

=.:.1.1 RS-232C SIGNAL PINS

: ~ . 5 . ~

,- 17 , ,-,
\,~"F. /) lm f1(lS P1PLEHENTATION:3

Page No_

l.

r.:

'7

7

8

8

n .:.'

JO

,. 1.

~ . . ,:.

.:.7

17

.~.e

.... . :"'

3 PROPOSED ~iYf:iTF.M

FILE EXCHANGE PROTOCOL

r, '-.

-I . _

SERIAL PORT SELECTI ON

•• ~ • .I.':' PADP RATE SELECTION

I=~E!-\DP1G FECit,,! T1-m TERt1INAL CONNECTEf l

TO THE SERIAL PORT

. ~ . ,..:-

TRANSMISSION OF ASCII FILES FROM sea XENIX

TO AIX

4.6 . 3 TRAN2MISSION OF ASCII FILES FROM M2I~S,(PCD02

TO SOJ .XENIX AND AIX

4 . 6 . 4 TRANSMISSION OF NON TEXT FILES

. ,-, ,-.
-.! - : - .:'

,, ,
'':' - .' - ~.:

Q •
~.! • U _ _

:NTFG~ItY IN ~ATA TRANSMISSION

l 'fORK E1G OF SEN!:..I

WORKING OF RECEIVE

WORKING OF FI LE PACKAGING

- ' ,
/'

30

:~ -1

'~'i'

1 !.:t .-,
.. - ~ .. - . - ~'J (l F(l\ING (IF UN PACKAGING , .~:

!-! (,\.! T:~j I NVOKE THE CTCNET ':= -1. . __

c: 1 .. - . • ~_ . _1

5 -.1. ::-: RECIEVE FILE

USING FILE PACKAGING/UNPACKAGING

EX.LilHNE FILE

PACEAGE FILE !J '7

UNPAC'KAGE F I LE -1 '?

·6 ~'>yf)'l'EM CONCLUSION

SC1l1E t-1A .] (1R FEATUHES

6 .. 3 FUTURE EXPANSIONS

APPENDIX

A Enh anced CTCNEl' File Exchange Pl'otoC' ,:,l

B _Heaer Format

C Cpecial Charact e rs

BIBLIOGRAPHY

CHAPTER 1

I NTROn£1CT ION

1.1 INTRODUCTION TO CTCNET

In 1982, t he CTC acquired sixteen Systime S-500 computer

systems to be used for training purposes. These were 8086

microprocessor based machines running the CP/M- 86 operating

system. Each machine had a single 8-inch floppy disk drive. An

Intellec Series II Microprocessor Development System was also

purchased by the CTC . It used the Intel ISIS - II operating system.

This system had three 8- inch floppy disk drives but these were

not media compatible with the S- 500 drives. It was necessary to

evolve a scheme to transfer files across these systems through

the use of the serial ports . This was the main motivation for

defining a simple protocol for the exchange of data packets

between computers of different origins using the standard RS 232

lines . The protocol was implemented in a package of programs

developed to allow file exchange as well as the use of shared

pr'nters for the Sy time S-500 and the Inte lec Series II MDS. It

was given the name CTCNET . The initial CTCNET protocol fixes the

parameters to 9600 baud, no parity, 8 data bits and one stop bit .

CTCNET was originally developed for transferring files (ASCII

or binary) from different types of computers having di fferent

operating systems .

In 1985,· the CTC had acquired a VAX- 11/730 computer running

the VAX/VMS operating system as well as a few IBM PC and

compatible computers with the MSDOS/PCDOS (~OS) operating system.

A Post Graduate Training Program (PGTP) project was, therefore,

initiated to carry out the implementation of the CTCNET on the

VMS and DOS operating systems . The work on the improvement of DOS

and VMS implementations of CTCNET continued. The CTCNET File

1

Exchange Protocol was revised and improved in the beginning of

1990. An effort was made to get rid of all indefinite wait

conditions as well as to report errors on the remote computer.

In the earlier version of the CTCNET File Exchange Protocol

indefinite wait loops were executed at the time of initial

handshake and also while waiting for the start of a packet or for

its acknowledgment. The revised version specifies the time limits

placed for waiting for the various conditions.

1.2 INTRODUCTION TO PROJECT

The usefulness of the CTCNET software continued to induce

its development and evolution at the CTC. The acquisition of the

SCO XENIX operating system by the CTC necessitated the

implementation of CTCNET for this system. The University Grants

Commission also acquired the IBM RS/6000 computer having AIX

operating system and it was also considered to implement the

software on this machine as well. Also provide a solid solution

for transfer of non - text files mainly for backup, media

interchange or transportation purposes. A proj ect is initiated

for implementing the latest version of the CTCNET software on SCO

XENIX and AIX, also developing the file packaging and unpackaging

software. For this the following facilities have to be provided .

a) Avoid Indefinite wait

In the earlier version 2.00 of CTCNET File Exchange

protocol(that transfer data files from VAX/VMS to MS - DOS and vice

versa indefinite wait loops were executed at the time of

initial hand shake, waiting for the control characters and start

of packet or for its acknowledgment. This resulted in frequent

2

hangup conditions if a character was missed or if the computer at

one end went down . Due to this the new version of the CTCNET on

SCO XENIX and AIX should provide the t ime out limit in receiving

the c haracters from t h e serial line.

b) Portabil i t y

CTCNET was developed to t r ansfer files acr oss dif f erent

systems having different operating systems through the use of the

standard serial port RS 232C . So it was realized that the new

system would continue to come in . with the acquisition of these

new systems such as SCQ XENIX and AIX it is better to write the

CTCNET code in such a language which provide much more

portability.

c) Maintaining original Characteristics And Functionality

Of The File

The non - text files are transferred from one operating

env'ronment to an other mainly for backup, media interchange or

transportation purposes , not to be usable on the other operating

environment . So transferring non-text files from one environment

to an other the file is packaged. The packaging software would

package the contents of a file along with a header containing all

its essential attributes and characteristics into an other file .

This file could be transferred from one operating environment . to

an other, let us suppose you transferred packaged file from one

environment SCO XENIX, AIX, DOS in the environment AIX and DOS

this file is not packaged or unpackaged, but if you brought back

to environment SCO XENIX upon return to environment seo XENIX

the file is unpackaged . The unpackaged software would read the

header restore it and guarantee that the file has its original

3

characteristics and functionality .

1.3 INTRODUCTION TO COMPUTER TRAINING CENTER

Before discussing the project objectives of the study, it

seems appropriate to say a few words about Computer Training

Center (CTC) , whe re this p r oject was undertaken . Effective

utilization of computers and the integration of microprocessors

in intelligent automated equipment and industrial systems

r equires an understanding of computers beyond the mere knowledge

of programming . An in depth understanding of the computer

hardware, software and system design is required for the proper

utilization and adaptation of computer technology to solve the

p r oblems facing us in our country . An integrated hardware and

software knowledge base is therefore necessary . CTC is playing an

important role in t hi s connection.

In order to develop an infrastructure of computer science

and engineering , University Grants commission and Pakistan Atomic

Energy Commission jointly set up

The Computer Training Center was

the Computer Training Center.

established at the University

Grants commission Campus in August, 1982. the basic motive behind

the establishment of CTC was to provide an institution for

acquiring root- level knowledge about computer architecture and

its functioning.

CTC has following systems for the purpose of research and

training .

- VAX-l l/730

- PDP-ll/23

- Cromemco System 300

4

- Microprocessor Development System (Intel 287FD)

- IBM PC/AT

- ACORN Cambridge Workstations

- Systime S- 500

- Intel SBC 86/l2 -A single board computer

- Ai - M16 Microcomputer

- Universal Programmer

- CTC PC/XT Lab It consists of Seventeen IBM PC/XT compatible

computers, which are linked with each other in a group of

four through a local area network . sixteen workstations are

for students and one for the instructor.

CTC is also working as a research center . The highly

qualified and able faculty of CTC has worked on many useful

projects . CTC developed in depth knowledge at the machine level

for VAX 11/730 computer as well as the IBM PC fami l y and

compatible computers.

1.4 OBJECTIVES OF THE PROJECT

Keeping in view the requirements discussed in section 1 . 1,

it is felt necessary to consider the implementation of the CTCNET

software on SCO XENIX, AIX and DOS operating systems which will

provide a very comprehensive solution for file exchange across

the systems . The new version specifics the time limits as well as

to report errors on the .remote computer.

The portability of the new version of the CTCNET was

highly required . The packag ing/unpackag ing software will

guaranteed that the packaged file in one environment is not

packaged or unpackaged in the other environment, but upon return

5

to the original environment the unpackaged software read the file

header and restore the file with its original characteristics and

functionality.

6

CHAPTER :2

EXISTING SYSTEM

The purpose of this chapter to describe the communication

modes, serial commun icat ion is described as it is the only mode

relevant to t h e work, facilities provide d by serial communication

devices, signal standards used by the CTCNET, the existing CTCNET

s o ftwar e system .

2 . 1 MODES OF TRANSMISSION

Systems that transmit data must have consistent methods of

transmission over communication channels. Data can be set over

communication channels in two modes .

1 Parallel mode

2 Serial mode

2 . 1 . 1 PARALLEL MODE

The internal transfer of data within modern compute rs is

done in parallel mode , because it is the fastest way o f

transmission . But this type of transmission is not possible to

transmit data at long distances . In parallel transmission n bits

are sent in one time cycle, all the bits of character are sent

simul taneously either over separate lines or on di fferent

frequencies of the same line . That is why parallel transmission

is not possible on low speed lines because its primary purpose is

to speed up transmission bet ween two points .

It requires higher cost transmission lines than serial

transmission . Nether it is used on long distances, because the

bit drift back and forth in time relation one an - other and may

interfere with the bits of the preceding and following character .

7

2 . 1 . 2 SERIAL MODE

In serial t ransmiss ion t he trans mitt ing device sends a bi t

followed by t h e time interval then a second bit a nd so on, until

all the bits are transmitted . It takes n time cycles to transmit

n bits. Th e mod e t ha t i s u s ed t o t ran s mit da t a over long

distances is called Serial mode . In s e r ial mode we use t he low

speed lines, which are not much costly and data can be sent over

single line or pair of lines .

Mostly data over long distances is t ransferred serially .

Three common usable transmission modes in Serial communication

are .

1 Asynchronous transmission

2 Synchronous transmission

3 Isochronous transmission

2.1.2.1 ASYNCHRONOUS T SM S ION

Asynchronous transmission mode is often referred to as

s t op- start transmission . Because each dat a charact er has a bit

which identifies its start and one or two bits which identify its

end . Since each character is identifies individually, so

character can be sent at any time in the same way that a person

typed at key board at different rates . This is because the

transmitting device can transmit a character at any time that is

convenient and the receiving device will accept that character.

Character can be sent at irregular intervals, for example one

character per second or one character and then a ten second wait,

to enable the receiver to r ecognize a character when it arrives .

The Figure ' 2 . 1 shows the bit format often used for transmitting

8

asynchronous serial data .

ALWAYS
LOW

I
I

START ; 00 01 02 03 : 04 : 05
I I

ALWAYS HIGH

I
I I

06 : PARITY: STOP :
I I I

I
I
I
I

STOP:
I

~----------------------~y~----------------------~
ONE CHARACTER

Figure 2 . 1

When no data is being sent the signal line is in a constant

high or marking state. The beginning of data character is

indicated by the line going low for one bit time this bit is

called start bit. the data bits are then sent out on the line one

a f ter t he ot her , depending on t he system t he dat a wo r d may

consist of 5,6,7 or 8 bits. The parity bit follows the data bits

wh i ch is used to c heck errors i n r eceived da t a . Some s ystems do

not insert or look for a parity bit . After the data bits and the

parity bit the signal line is returned high for at least one bit

time to identify the end of character . This always high bit is

referred to as a s t op bit. Some systems use two stop bits. So for

transmitting a 7 bit data word such as an ASCII character 10 or

11 bits time are required .

2.1 . 2.2 SYNCHRONOUS TRANSMISSION

Synchronous transmission mode is used for the high speed

transmission of a block of characters . In this method of

transmission, both the sending device and the receiving device

9

are operated simultaneously and are resynchronized after each few

thousand data signal bits are transmitted. start/stop are not

required for each character. Synchronization is established and

maintained either when the line is ideal or just prior to the

transmis sion of a data signal . This s ynchronization is

established by passing a predetermined group of "sync" characters

between the sending and the receiving devices .

The sending device sends a long stream of data bits that

may have thousands of bits. The receiving device, knowing what

code is being used, counts for the appropriate number of bits and

assumes this is the first character and passes it to the

computer. It then counts for the second character and so on.

2 . 1 . 2 . 3 ISOCHRONOUS TRANSMISSION

Isochronous transmission combines the elements of both

synchronous and asynchronous data transmission . In isochronous

transmission, as in asynchronous , each character s requ' red to

have both a start bit and a stop bit . However, as in synchronous

data transmission. the transmitter and receiver are synchronized .

2.2 SERIAL COMMUNICATION HARDWARE

Interfacing a computer with serial data lines the data must

be converted to and from serial form. A parallel - in- serial - out

shift register and a serial-in-parallel-out shift register must

be used to do this . For some cases of serial data transfer, hand

shaking circuitry is also required to make sure that the

transmitter does not send data faster than it can be read in by

the receiving system. There are several programmable LSI devices

available which contain most of the circuitry needed for serial

10

communication . A device such as Intel 8251A which can be

programmed to do either asynchronous or synchronous communication

i s o ften called a universal synchronous-asynch ronou s rece i ver

transmitter or USART.

2. 2 . 1 MODEM

Before discussing how serial communication can be performed

between two computers, it is better to give brief introduction

about the modem . The word modem stands for two words modulator

and demodulator . The modem that is transmitting the signal is the

modulator, because it modulates or put some form of intelligence

on the carrier wave. Receiving equipment is the demodulator

because it demodulates or interprets the signal upon its receipt.

The modem takes the binary signal (digital signal) from a

computer and modulate it so it will become a cont inuous s ignal

(a nalog s ignal) that can be t rans mitted over te l ephone l ines. On

the receiving side the modem demodul a tes the modul a ted c a rr i e r

signal (analog signal) and converts i t t o a binary signal that

will be meaningful to the computer.

2 . 2 . 2 COMMUNICATION BETWEEN TWO COMPUTERS

Modems and other equipment used to send serial data over

long distances are known as, data communication equipment (DeE).

The terminals and computers that are sending the serial data are

known as, data terminal equipment (OTE). The signal names shown

in . Figure 2.2 are part of a serial data communications standard

called RS-232C, which will .be discussed in detail in this

chapter. Here we just give an overview about the signals being

11

MICROCOMPUTE R MODEM MODEM LARGE
T MESHARE CONTROLLED I

TERMINAL COMPUTER

TxD
TE LEPI10NE

1><0 - -LINE
RxD - - > RxD

FiTS - - nis
crs 1- --- t is
CD - - to
o'fn -- - lit R

D5R 1- - ijS F'-l

DCE DeE

DTE o TE

DTE = DATA TERMINAL EOUIPMENT
DCE = DATA COMMUNICATION EOUIPMENT

Figure 2.2

used . Note the direction arrowheads on each c f these signals.

Here is a sequence of signals that might occur when a user at a

terminal wants to send some to the computer.

After the terminal power turned on and terminal runs any

self_ checks, it asserts the 'data terminal ready' (DTE) signal to

tell the modern it is ready. When it is powered up and ready to

transmit or receive data, the modern will assert the 'data-set -

ready' (DSR) signal to the terminal. Under terminal control the

modern then dials up the computer . I f the computer is available,

12

it sends back a specified tone. Now, when the terminal has a

character actually ready to send, it will assert a 'request-to

send' (RTS) signal to t he modern . The modern will then assert its

'carrier-detect' (CD) signal to the terminal to indicate that it

has establ ished contact with the computer. When the modern is

fully ready to transmit data it assert the 'clear- to- send' (CTS)

signal back to the terminal . The terminal then sends serial data

characters to the modern . When the terminal has sent all the

characters it wants to, it makes its RTS signal high . This causes

the modern unassert its CTS signal and stop transmitting . A

similar handshake occurs between the modern and the computer at

the other end of the data link.

2.2.3 A SERIAL INTERFACE 8251A

The 8251A is used as the serial port on the IBM PC

synchronous communication board , and on many other boards . F'gure

2 . 3 shows a block diagram and pin descriptions for the 8251A . The

eight parallel lines,D7 - DO connect to the system data bus so that

data words and control/status words can be transferred to and

from the device . The chip-select CS input is connected to an

address decoder so the device is enabled when addressed. The

8251A has two internal addresses, a control address which is

selected when the C/D input is high, and a data address which

is ' selected which is selected when the C/D input is low. The

RESET, RD and WR lines are connected to the system signals with

the same names . The clock input of the 8251A is usually connected

to the system clock to synchronize internal operations with

system operations .

13

07 - 00

RESET -
CLK---
C/O----
AD--
WA-

CS

D5[1 -(
DTR

ffi-c-
RTS ----

DATA
BUS

BUFFER

READ !
WRITE

CONTROL
LOGIC

J

MODEM
CONTROL

----INTr n NAL
DA -r A BUS

Figure 2 . 3

TRANSM IT
BUFFER -- Tx D

IP • 51

--.. Tx RD Y

TRANSM I T -- TxE Mf'T Y
CONTROL ,- , ;c

flECE IVf
BUrF E fl .. -- Rx£)

"-1 --
IS • PI

- fl x fllJ Y
flrCE IVE '. - ri ~ (:

CONTROL
5YN[)[T
Bfl KDfT

The signal labeled TxD on the upper right corner of the

8251A block diagram is the actual serial - data output . The pin

labeled RxD is the serial - data input . The shift registers in the

UART require clocks to shift the serial data in and out. TxC is

the transmit shift-register clock input, RxC is the receive

shift-register clock input. Usually these two inputs are tied

together so they are driven by the same clock frequency. The

14

frequency of t he applied clock signal must be 1 or 16 or 64 times

the transmit and receive baud rate. Using a clock frequency

higher than the baud rate allows the receive shift register to be

clocked at the center of a bit time rather than at a transition .

This reduces the chance of noise at a transition causing a read

error.

The 8251A uses a double- buffered . Which means that one

character can be loaded into a holding buffer while another
\

character is being shift--ed out of the actual transmit shift

register . The TxRDY output from the 8251A will go high when the

holding buffer is empty and another character can be sent from

the cPU . The TcEMPTY pin on the 8251A will go high when both the

holding buffer and the transmit shift register are empty. The

RxRDY of the 8251A will go high when a character has been shifted

into the receiver buffer and is ready to be read out by the CPU.

Incidentally, if a character is not ready out before another

character is shifted in, the first character will be overwritten

and lost .

The sync-detect/break-detect (SYNDET/BD) pin has two uses.

When the device is operating in asynchronous mode, which we are

interested in here, this pin will go high if the serial data

input line ,RxD stays low for more then two character times, This

signal then indicates an intentional break in data transmission

or a break in the signal line .

The four signal connected to the box labeled MODEM CONTROL

in the 8251A block diagram are handshake signals.

2.2.3.1 INITIALIZING 8251A

15

82 51A is i n itilized with the mode word and a command word.

Figures 2.4 (a) a nd 2.4 (b) show t h e f or mats f or these words. Baud

rate factor, specified by t he t wo least-s ignificant bits of the

mode word. The character length specified by bits D2 "and D3 in

the mode word includes only the actual data bits, not the start

bit , parity bit or s t op bit eS) .

Af ter t he mode wor d c ommand wor d i s s end t o an 8251A . A '1'

in the least significant bi t of t he command word enable s the

transmitter section of the 8251A and the TxRDY output. When

enabled, t he 8251A TxRDY output will be asserted high if the CTS

input has been asserted low, and the transmitter holding buffer

is ready for an other character from the CPU . The TxRDY signal

can be connected to an interrupt input on the CPU or an 8259A, so

the character to be transmitted can be sent to the 825lA on the

interrupt basis . When a character is written to the 8251A da t a

address, the TxRDY will go low and remain low until t he holding

buffer is again ready for another character. putting a 'I' in bit

Dl of t he c ommand word will cause t h e DTR output o f t h e 8 25 2A t o

be asserted low . This signal i s used t o t ell a modem t hat a

t erminal/ comput e r is operat ional . A 'I' in bit D2 of the command

wo~d e nab l e s the RxRDY output pin of the 8251A . If enabled, the

RxRDY pin will go high when the 825lA has a char acter in i t s

r eceiver buffer ready to be read . This signal can be connected to

an interr upt input so that character can be read in on an

interrupt basis . The RxRDY output is reset when a character is

r ead from the 825lA .

1 6

07 06 05 04 03 02 01 DO

I s2 1 S1 1 EP IpEN l L21 L1 I B2 I B1 I

lJ:

•

(a)

BAUD RATE FACTOR

0 1 0 1

0 0 1 1

SYNC (1 X) (16X) (64 X)
MODE

CHARACTER LENGTH

0 1 0 1

0 0 1 1

5 6 7 B
BITS BITS BITS BITS

PARITY ENABLE
1 = ENABLE 0 = DISABLE

EVEN PARITY
GENERATION/CHECK
1 = EVEN 0 = ODD

NUMBER OF STOP BITS

0 1 0 1

0 0 1 ,-
1 l}s 2

INVALID
BITS BITS BITS

(ONLY EFFECTS T.; Rx
NEVER REOUIRE S MORE
THAN ONE STOP BIT)

Figure 2.4

2 . 2.4 RS-232C SERIAL DATA STANDARD

07 06 05 04 03 0 2 01 DO

f EH IIR IRTSI ER ISBR K IRXEIDTRITxENI

L

(b)

TRANSM IT ENABLE
1 = ENAB LE
o ~ DISABLE

DATA TERMINAL READY
HI GH WILL FORCE
OTR OUTPUT TO ZERO

RECEIVE ENABLE
1 = ENABLE RX RDY
'" = DISABLE RX RO Y

SEN D BREAK CHARACTER
1 = FORCES T X O LOW
a ~ NORMAL OPE RA TlO ~

ERROR RESET
1 ~ RESET ALL ERROR

FLAGS (PE . DE . FE)

REOUEST TO SEND
HIGH WILL FORCE
R T S OUTPUT TO ZE RO

INTERNAL RESET
HIGH RETURNS B251
TO MODE INSTRUCTION
FORMAT

ENTER HUNT MODE
1 c' ENABLE SEARCH FOF

SYN CHARACTE RS

In response to t he need for signal and handshake standards

between DTE (data termina l equipment) and DCE (data communication

equipment), the Electronic Industries Association (E IA) developed

EIA standard RS - 232C . This standard describes the functions of 25

signal and hand- shake pins for serial data transfer . It also

describes the voltage levels, rise and fall times, maximum bit

rate, maximum capacitance for these signal lines .

RS - 232C specifies 25 signal pins and it specifics that DTE

connector should be a female . When wiri ng up these connectors, it

is important to note t he order in which the pins are numbered .

2 . 2 . 4 . 1 RS- 232C SIGNAL PINS

RS - 232C is a 25 pins connector but for most applications

17

only a few of these pins are used. The signal names, signal

direction , and brief descr iption for each of these mostly used

pins are given below .

PIN COMMON

NUMBER

2

3

4

5

6

7

8

20

NAME

TXD

RXD

RTS

CTS

DSR

GND

CD

DTR

RS-232C

NAME

BA

BB

CA

CB

CC

AB

CF

CD

DESCRIPTION SIGNAL

DIRECTION

ON DCE

Transmit data IN

Receive data OUT

Request to send IN

Clear to send OUT

Data set ready OUT

Signal ground

Received line OUT

signal detector

Data terminal

ready

IN

Note that the signal direction is specified with respect to

the DCE . This convention is a part of the standard . The signal

direction is very helpful when drawing circuits for connecting

RS-232C equipment .

2 . 5 CTCNET PROTOCOL (Serial Communication Software)

The CTCNET protocol was defined for the exchange of data

between computers of different origins using the standard RS232

serial line at CTC in 1982 . The existing system has many

versions, as described below.

2.5 . 1 INITIAL PROTOCOL AND EARLY IMPLEMENTATIONS

The RS 232 standard defines a number of hardware handshake

lines in addition to the three bare minimum send data (p in no 2),

18

receive data (p in no 3) and the signal ground (pin no 7)

connections. It was decided to use just the t hree lines in the

CTCNET specification in order to keep the cable costs low. It was

also decided to fix the serial communication line parameters to

9600 baud, no parity, 8 data bits and one stop bit. The selection

of 8 bit data word was made to allow easy transmission of

extended ASCII or binary data in addition to the normal ASCII

data . Since the hardware handshake was given up, it was necessary

to incorporate some kind of a handshake using software. It was

also considered necessary to incorporate error checking in the

data packets to guarantee the integrity of the transferred data .

The initial data exchange protocol defined for the CTCNET is

summarized as follows :

- Sender (originator) sends control-A at regular intervals

until a control-B is received

-Receiver sends control-B

-Sender sends control-C as start of data identifier

-Sender sends a data record of 128 bytes followed by . a t wo

byte checksum

- Receiver checks the received record for its integrity

- Receiver sends control - D if data received without error

- Receiver sends control - E if checksum error detected to request

retransmission of the same record - Any number of data packets may

be transmitted (or retransmitted upon detection of an error)

- Sender sends control - Y to signal end of data

- Receiver sends control - Z to signal end of dialogue

The CP/M- 86 (for the S- 500) and the ISIS-I I (for the Intel

19

MDS) implementations of the CTCNET were carried out at CTC The

usefulness of this scheme prompted to implement CTCNET on the

various other computer systems which became available at the CTC.

During 1983-84, further work in this direction was carried out as

a CTC Post Graduate Training Program (PGTP) proj ect . This

expanded the scope of CTCNET to cover six different hardware and

four different software platforms. These are listed in Table 1.

Table 1

The Early Implementations of CTCNET

S.No. Computer System Processor operating System

1. Systime S-500 8086 CP/M-86

2 . Intellec MDS 8085 ISIS-II

3 . Hitachi MBE-16002 8088 CP/M-86

4. ai-Ml6 8086 CP/M-86

5. PDP- ll/23 LSI - II RSX-IIM

6 . CROMEMCO Z-2D Z- 80 CDOS

Since the data exchange protocol is independent of the file

structure of the operating system , it was thought that all types

of files (i . e. source, obj ect, executable etc.) could be

exchanged and brought back to the original environment for use.

2.5.2 VMS AND DOS IMPLEMENTATIONS

By 1985, the CTC had acquired a VAX-ll/730 computer running

the VAX/VMS operating system along with a few IBM PC and

compatible computers with the MSDOS/PCDOS operating system.

Another PGTP project was, therefore, initiated to carry out the

implementation of the CTCNET on the VMS and DOS operating

systems. during 1985-86.

20

In this work, a more general solution to the problem of

r estoration of differ ent t ypes o f f iles was wor ked out. A 256

byte h ead er was tran s mitted with a file sen t from a VMS

environment. This header contained a signature identifying the

file as having a VMS orig i n plus infor mat ion which was extract ed

from the various acce s s bloc ks us ing t he VAX Record Management

Services. This information was sufficient to recreate the file

with exactly the same organization and characteristics at a later

time . When such a file was received back in the VMS environment,

this information could be used to recreate the file according to

original specifications, thus ensuring full functionality .

The information extracted and transmitted as the 256 byte

header is tabulated below in the form of the various fields and

their lengths in bytes :

VMS Signature 8

File Organ'zat ion 1

Record Attributes 1

Recor d For mat 1

Maximum Record Size 2

Filename 115

Longest Record Length 2

Maximum Record Size 2

Allocation Quantity 4

Creation Date and Time 8

Expiration Date and Time 8

Backup Date and Time 8

File Protection 2

From the VMS environment, this CTCNET implementation

21

allowed a file to be sent out in one of three modes described

hereafter. In the Formatted ASCII mode, the variable length

r ecords a r e r ead from a VMS file and carriage return and line

fee d characters are appended to it before it is transmitted . This

ensures compatibility of the ASCII file at the other end. The

Binary mode transfers files in blocks dumping bytes wi t hou t

regard for any file structure or organization. This mode may be

used for transmitting nonstructured files containing raw binary

data . It may also be used to restore a DOS file back to a PC

which had earlier been received on the VAX using Binary mode . In

the VMS File mode, the header information mentioned above is

transmitted prior to dumping the contents of the file. This is

the most powerful mode and allows all non ASCII VMS specific

. files to be transmitted guaranteeing full functionality on return

to VMS environment.

similarly, files can be received in the VMS environment in

one of the three modes. In the Formatted ASCII mode , the received

data is converted into records by locating and stripping t he

carriage return and line feed characters and stored in VMS record

format. This mode may be used for exchanging all source and text

files. In the Binary mode, the received data is stored in fixed

512 byte records in a sequential file organization . The VMS file

mode uses the header information to create a file having exactly

the same organization and structure as the original VMS file .

This mode may be used for the exchange of all non ASCII VMS

specific files . The work on the improvement of DOS and VMS

implementations of CTCNET continued . In 1989, a major revision of

22

both the DOS and VMS implementations was carried out. An option

for selecting the baud rate was added . This was necessary t o

p rev e nt t he f requent loss of dat a during sust ained t r ansmis sions

at 96 00 baud to multi-user systems and allowed us to drop the

less elegant ' slow' t ransmission option. Another option was

incorporated to allow the selection of either COM1 or COM2 as the

communication port for the transfer of data . This work was

identified as CTCNET DOS Implementation Version 2 . 00 . During the

same period,the version 2 . 0 of the CTCNET i mplemented on the VMS

2.5.3 Revised CTCNET File Exchange Protocol

The CTCNET File Exchange Protocol was revised and improved

in the beginning of 1990. It was reported in CTC Internal Note

CTC-IN-05-90 . An effort was made to get rid of all indefinite

wa it conditions as well as to report errors on the remote

computer .

In the earlier vers'on of the CTCNET File Exchange Protocol

i ndefinite wait loops were executed at the time of initial

handshake and also while waiting for the start of a packet or for

its acknowledgment . This resulted in frequent hangup conditions

if a character was missed or if the computer at one end went down

or terminated the program due to an abnormal condition . The

revised version specifies the time limits placed for waiting for

the various conditions. These are summarized as under:

Initial handshake: 120 attempts at 1 sec

Start of new packet: 60 seconds

Completion of started packet: 30 seconds

intervals

Acknowledgment of receipt of packet: 60 seconds

Version 2 . 10 of the CTCNET DOS and VMS implementations was

23

developed by using the revised protocol .

2.6 EVALUATION OF CTCNET

Many problems are f a c ed when f iles are exchanged by using

the version 2.0 of the CTCNET.

i) Indefinite loops are executed at the time of initial

handshake and also while waiting for the start of packet .

ii) Messages are not displayed on the local computer and remote

computer .

iii) The CTCNET not exchange files from SCQ XENIX and AIX .

iv) No proper way of exchanging Non- text files .

v) If the Non-text files are transferred from one environment to

the other

guarantee

and brought

is provided

back to the

that the

characteristics and functionality .

24

original

file has

environment no

its original

CRAPT_ER :3

PROPOSED SYSTE_M

This chapter describes some proposed extensions to the

existing system CTCNET . The proposed system was designed after

making a comprehensive study of the existing system. Major

objectives of the proposed system are

* To remove all disadvantages of the revised version of CTCNTE

File Exchange Protocol implemented on DOS .

* Implemention of the new revised version of CTCNET on SCO

XENIX and AIX .

* The revised version of the CTCNET File EXchange Protocol

i mplemented in such a way that it is highly portable .

* Transfer of non text files in such a manner that the original

characteristics and functionality of the file is maintained, when

the file is transferred back to the original system.

3.1 IMPLEMENTION OF THE REVISED CTCNET

FILE EXCHANGE PROTOCOL

The earl ier i mplement' on of the CTCNET software has

drawbacks, the indefinite wait loops were executed at the time

of initial handshake and also while waiting for the start of a

packet or for its acknowledgment. This resulted in frequent

hangup conditions, if a character was missed or if the computer

at on end went down on the program is terminated due to abnormal

condi tion . Errors are not reported on the local and

computer for the user facility .

remote

In the implemention of the revised CTCNET File Exchange

Protocol an effort is made to get rid of all indef ini te wait

conditions . For the user facility the errors are reported on the

local and remote computers.

25

3.2 IMPLEMENT ION OF CTCNET ON SCO XENIX AND AIX

The CTCNET was designed for transferri ng da ta between

computers of different origin . The usefulness of the CTCNET

software c ontinued to induce its development and evaluation. The

acquisition of the SCO XENIX operating system by the CTC

necessitated the implemention of CTCNET for this system. As the

diskette formatted on SCO XENIX 286 is not operatable on SCQ

XENIX 386 and vice versa . It is necessary to implement CTCNET on

SCO XENIX . The University Grants Commission also acquired an IBM

RISC/6000 computer with the AIX operating system. It was

desirable to implement the CTCNET software on this system as

well . Implemention of the CTCNET on SCQ XENIX and AIX provide

that all the text files exchanged from AIX, SCQ XENIX and

MSDQS/PCDQS are editable in any environment.

3 . 3 PORTABILITY STANDARD

The version 2. a of the CTCNET was written in assembly

language which is system dependent. CTCNET was developed to

exchange files between computers of different origins using

serial ports . For this it is proposed to write the CTCNET code in

such a way that provide much more portability, to implement it on

the other system very miner changes are required.

3 . 4 FILE TRANSFER

Text files are transferred from one operating environment

to the other for saving the time of editing. Non text files are

transferred from one operating environment to the other mainly

for backup, media interchange and transportation purposes. These

files or not usable on the other environments . For this non text

26

files are transferred as packaged files i.e. the necessary

information about the file and the system are stored in a data

structure given the name header, that header is written on the

new file then the contents of the file are written, to make the

new file as packaged file. To make the file usable it is

necessary that the file has its original characteristics and

functionality. It is also necessary the file is not unpackaged

if the packaging and unpackaging environments does not cope.

27

CFIAPTl!:R 4

SYSTEM DESIGN AN.D

DEVELOPMENT

The review of the previous system led to the conclusion

that t he disadvantages of the existing system are becoming an

unavoidable, hurdle in the way of making it more reliable,

portable, accurate and efficient.

4.1 SOFTWARE SELECTION

Software selection is a very important step in system

development . The changes that were suggested in the previous

system required the following facilities to be provided by the

software used .

i) Capability of accessing absolute data locations in the

memory .

ii) Providing an access to the routines and code included.

iii) Facility to access the time from the timer clock .

iv) Facility to access the serial ports and manipulate them.

v) The code provide high portability .

A number of languages are available and the most suitable

one is selected after considering all the aspects of the problem.

Since during the design of the new system, we are mainly

concerned of using low level I/O routines to provide portability

and efficiency.

Two options were left on the list after considering the

above mentioned facilities that were to be provided by the

compilers of the language to be used

i) C language

ii) Assembly language

Since SCO XENIX and AIX are UNIX like operating systems.

The C language provide very strong features on UNIX like

operating system . CTCNET was developed for exchanging fi les

28

..

between different origins . I mplementation of CTCNET in C language

provides high portability and with out any noticeable alterations

the CTCNET software can be implemented on other systems.

Eventually, the decision was to be taken about using the C

language.

4 . 2 DATA STRUCTURES

The CTCNET software uses different kinds of data structures

depending upon the needs of various parts of the software. The

header data structures for the MSDQS/PCDQS, SCQ XENIX286 SCQ

XENIX 386 and AIX are shown in appendices B- 1, B-2, B-3, B-4

respectively.

4 . 3 SERIAL PORT SELECTION

All utilities, application and data in the XENIX system are

stored as files in the file structure . The files that represent

physical devices are called physical files.

To a XENIX user, a device usually appears to act like a

, file'. A file consists of an ordered sequence of bytes. File

that contain data are called 'regular files' and the files that

represent physical devices are called 'special files' . Each

special file has at least one name that represents the physical

device . Before the user can request for I/O, the user must

select the correspomUng file name of the serial port and must

have opened that special file.

Under SCQ XENIX the ttyl[a--h], tty1[A--H], tty2[a--h] and

tty2 [A--H] files provide access to the standard and optional

serial ports (with or with out modern control), ttyla and tty1A

both refer to Coml where as tty2a and tty2A both refer to Com2 .

29

lower case letters indicate no modem control.

upper case letters indicate the line has modem control.

Under AIX the ttyl and tty2 files provide access to the standard

serial ports, where ttyl refer as coml and tty2 as com2. Open

the file corresponding to serial port by the open() system call

and input and output is performed by the read () and write ()

system call. When a process write to a special file by the write

system call the data written is sent to the associated physical

device. Likewise when a process reads from a special file by the

read() system call, the data is read from the associated device

and returned to the process. 'Spepial files' are not real files,

but instead they are pointer to the device drivers .

4 . 4 BAUD RATE SELECTION

All asynchronous communications ports use the same general

interface, no matter what type of hardware is involved . When a

terminal file is opened, it normally causes the process to wait

until a connection is established . The ioctl () system calIon

SCO XENIX and AIX is used to control the terminal.

Syntax of the ioctl() system call is

ioctl(fields, command, arg)

Where fields is a file handle returned by the open () system

call corresponding to the special file name entered by the user .

Arg is a pointer to the termio (data structure used to control

the terminals) data structure defined below. The command argument

is

TCGETA Gets the parameters associated with the terminal and

stores them in the structure referenced by argo

30

TCSETA Sets the parameter associated with the terminal from the

structure referenced by argo The change is immediate.

Data structure used to control the terminals is

NCC 8

unsigned short c_ iflag

unsigned short c_oflag

unsigned short c_cflag

unsigned short c_Iflag

char c line

unsigned char c_ cc[NCC]

The special control characters are defined by the array

c cc . The relative positions and initial values for each function

are as follows .

0

1

2

3

4

5

6

7

VINTR

VQUIT

VERASE

VKILL

VFOF/VMIN

VEOL/VTIME

Reserved

SWTCH

DEL

FS

Ctrl - H

Ctrl - U

EOT

NUL

NUL

The c_iflag field describes the basic terminal input

control, c_ oflag field specifies the system · treatment of the

output, c_cflag field describes the hardware control of the

terminal, c_Iflag field of the data structure is used by the line

discipline to control terminal functions. The necessary field for

setting the baud rate is c_cflag . As described the field c_cflag

is used for the hardware control of the terminal. The bit

31

structure for setting the baud rate is

CBAUD BITS BAUD RATE

BO 0000000 Hang up

B5 0 0000001 50 baud

B75 0000002 75 baud

B110 0000003 110 baud

B134 0000004 134.5 baud

B150 0000005 150 baud

B200 0000006 200 baud

B300 0000007 300 baud ,

B600 0000010 600 baud

B1200 0000011 1200 baud

B1800 0000012 1800 baud

B2400 00000 13 2400 baud

B4800 0000014 4800 baud

B9600 0000015 9600 baud

According to the baud rate selected these corresponding

bits are set to position by using the ioctl() system call, e.g.

first get the parameters of the terminal by using the command

TCGETA in the ioctl() system call. Then set the baud rate with

the help of OR operation, after making the bits on corresponding

to the selected baud rate, use the command argument TCSETA in the

ioctl() system call .

4.5 READING FROM THE TERMINAL CONNECTED TO THE SERIAL PORT

Normally, terminal input is processed in units of lines .

This means that a program attempting to read will be suspended

until an entire line has been entered. The c_Iflag field of the

32

data structure def ined in section 4 . 4 is used by the line

discipline to control the terminal functions . From these line

d i sci p line f unct ions if t he function I CANON is set , canoni cal

processing is enabled This enables the erase and kill edit

f unc t ions, and the assembly of i npu t characters into lines

delimited by EOF (end of file) and EOL (end of line) . If ICANON

is not set, read requests are satisfied directly from the input

queue . When the communication port through which the terminal is

attached is disabled then ICANON is not set but -ICANON (disable

cnonical input) is set, read requests are satisfied directly from

the input queue and not satisfied until at least VMIN (the

minimum character for the read request satisfication) has

expired . Default VMIN and VTIME values are 4 and 5 respectively.

The VMIN and VTIME values stored in the position for the EOF and

EOL characters . Since the transferring files with CTCNET it is

designed the ser' al ports to which terminals are attached are

disabled . To change the default values of VMIN , assign the new

value at position 4 of the array c_cc, the c cc is field of the

data structure described in section 4.4 In the implemention of

CTCNET on SCO XENIX and AIX the value of the VMIN is 1 and the

value of VTIME is set according to the need of the protocol .

4 . 6 TRANSMISSION OF ASCII FILES

ASCII files are transferred from one environment to an

other to save the time of editing, which is very tedious, time

consuming and erroneous job. In one operating system file

organization is different from the other operating system. For

this the ASCII files transferred from one operating environment

to the other remain editable to the other i . e . organized in the

33

same format as the receiving operating required.

4 . 6 . 1 TRANSMISSION OF ASCII FILES FROM SCO-XENIX

TO MS-DOS

Under SCO-XENIX all files are accessed as stre am of byt es,

no other mode is provided for the ASCII files. Files consist of

records of variable length and each record ends with t he line

feed (ASCII LF) character. The CTCNET software simply transfer

128 bytes of data to the receiving computer. It is possible that

these 128 bytes may contain (LF) character . On the receiving side

i.e . MS - DOS CTCNET receive file in TEXT mode . Under MS-DOS each

record ends with the ASCII CR & LF . If the file is opened in the

TEXT mode and write operation is performed on that file then

ever LF character is written as a pair of CR & LF in the same way

as the DOS organize the file . For this transmission of ASCII

files from SCO XENIX to MSDOS/PCDOS , simply 128 bytes of the

f iles a r e trans f erred and MSDOS/PCDOS receives on the other side .

4.6.2 TRANSMISSION OF ASCII FILES FROM SCO XENIX TO AIX

AIX is UNIX like operating system. All files are accessed

under AIX as stream of bytes and each record ends with the ASCII

LF . character. AIX and SCO XENIX organizes files in the same way .

In two cases data is simply data read and transferred.

4.6.3 TRANSMISSION OF ASCII FILES FROM MSDOS/PCDOS

TO SCO XENIX AND AIX

MSDOS/PCDOS files can be accessed in binary as well as text

mode . In binary mode all the files are accessed but in text mode

only ASCII files are accessed . If files are accessed in text mode

each request reads the specified bytes and convert the ASCII LF

34

and CR into LF character e . g . if 128 bytes on the file has four

LF and CR when these 128 bytes a re r ead f r om t he f ile t he r ead

request retu rn 124 bytes and each LF and CR character is

converted into LF only. seo XENIX and AIX file organization

requi res on l y LF cha r acter a t t he e nd o f each r ecord . I n

MSDOS/PCDOS oper a t ing syst em data is read from the f ile in text

mode, then each CR is extracted, so the data read from file is

transferred . SCO XENIX and AIX write the data on the file as

received .

4 . 6 . 4 TRANSMISSION OF NON TEXT FILES

Non text files are transferred from operating environment

to the other mainly for backup, media interchange, and

transportation purposes but not to be used there. CTCNET provide

a special mode i . e . 'Transparent mode ' for the transfer of non

text files . For the transmission of non text files i t does not

matter how operating system store the files, the files are

simply accessed in binary mode and transmitted and received. The

non text files t r ans f err ed from one environment to the other and

vice versa, it is necessary that the file has original

characteristics and functionality otherwise the file will not be

usable in the original environment . For this the packaging and

unpackaging software is developed which is described in section

4 . 8 .

4 . 7 DATA TRANSMISSION IN CASE OF SEND/RECEIVE

Hardware handshake has been described in chapter 2. It is

necessa r y to incorporate some kind of handshake using software .

It is necessary to incorporate error checking in the data packets

transferred to guarantee the integrity of the data transferred .

35

4.7.1 SOFTWARE HANDSHAKE

Before the data transmission between t wo computers take

place the two computers exchange single-byte message . The sending

computer send (CNTL- A) ' Ready to send' every 1 second upto 120

times and check for the (CNTL-B) 'Ready to receive' every second .

Where as the receiving computer wait for (CNTL- A) upto 120

seconds, if it received the (CNTL- A) then the receiving computer

send (CNTL- B) 'Ready to receive' message. If the receiving

computer receive CNTL-A within 120 seconds and sending computer

receive CNTL-B within 120 . This ensures that the two computers

are connected properly and data can be exchanged . Otherwise ' No

response from remote message is displayed on the local

computer . The handshake is performed only once i . e . before the

transmiss ion of the file starts .

4.7.2 INTEGRITY IN DATA TRANSMISSION

To guarantee the integrity of the data transfer, data

bytes are sandwich between single byte message (CNTL-C)

'Beginning of data buffer' and two byte checksum, this form 131

bytes long packet . This packet is then transmi tted to the

receiving computer and wait for reply for 60 seconds . The two

byte checksum is calculated by summing all 128 data bytes. The

packet is received by the receiving computer the sum of all 128

bytes received is again calculated by the receiving computer. The

two sums, received and calculated are compared. When the two sums

are the same then the transmitting computer is acknowledged by

send (CNTL- D) 'Data buffer received ok' and negatively

acknowledged by sending .(CNTL- E) 'Retransmit data buffer' if the

36

two sums are not the same . The p r eviously sent packet was again

sent if t he packet is ne gatively acknowl e dge d by t he receiving

computer . New packet is sent to t he receiving computer if the

transmitting computer is positively acknowledged by the receiving

comp uter. The c hecksum provides i nt egr i t y f o r s afe t r ansfer of

t h e 128 data bytes. The packet layout is given below .

I
CNTL- C/CNTL- D I 128 Data bytes

I
\ Two bytes
I checksum

The complete send and receive logic is shown in the

APPENDIX A

4.7 . 3 WORKING OF SEND

CTCNET transfers all kinds of files text/non- text . sca

XENI X a nd AIX has only binary mode to access the files i.e. al l

files are transferred as binary files . MSDOS/PSDOS has text and

binary modes for accessing files . Under MSDOS/PCDOS CTCNET

transfer text files in text mode a nd non text files i n binary

mode .

i) . The file to be sent is opened for access by the open ()

system call . If file open operation is not successful then the

message 'Error opening file' is displayed on the local computer

and the user is asked to 'Enter the option' .

ii) The message Ready to send (CNTL- A) is sent to the

receiving computer and it waits for the reply of receiving

computer for 1 second, if the reply of the receiving computer is

not received within 1 second ,the message 'Ready to send' (CNTL-

A) is again sent and it waits for the reply for 1 second . This

37

process of sending the message 'Ready to send' (CNTL- A) and

waiting for the reply is repeated upto 120 seconds . If the

s endi ng c omputer not r e c e ive d the message ' Ready t o r eceive '

(CNTL-B) within 12 0 seconds, the message 'No response from the

remote' is displayed on the local computer and user is asked to

'Press return to continue .

iii) If handshake is performed successfully then data is read

from the file by using system call read(). If read operation is

not successful the message 'Error reading file 'is displayed and

CNTL-L is sent to the remote computer. File sending processes is

terminated. User is asked to 'Press enter to continue. After each

read operation the check to detect the end of file is also made.

iv) If the read operation is successful and end of file is not

encountered, the message ' beginning of data buffer' (CNTL- C) is

sent then 128 bytes of data and then 2 bytes checksum, first high

byte and then low byte to form a packet of 131 bytes long are

sent. After sending the packet the local compute r wa its up t o 6 0

seconds for the reply of the receiving computer.

v) If no reply within sixty seconds then 'Remote time out'

message is displayed on the local computer. If the reply of the

receiving computer is CNTL-D 'Data buffer received ok' then

packet received correctly and next packet is sent . If the reply

is CNTL-E 'Retransmit data buffer' message is displayed,

previously sent packet is again sent. If the reply is CNTL- L

'File system error on remote' is displayed and the user is asked

to press any key to continue, after pressing the any key the

option selection menu is displayed . If reply is any other

character then 'Protocol error' is displayed and user is asked to

38

press any key to continue.

vi) If end of file was detected then the message 'End of file'

CNTL-Y is transmitted to the receiving computer and is waited for

the reply of receiving computer upto 60 seconds. If no reply till

message 'Remote time out' is displayed on the local computer and

the user go to the option selection menu . If CNTL- Z 'File

received ok' message is received ,the file opened is closed and

'File transmitted' message is displayed on the local computer . If

CNTL-L is received then 'File system error on remote' is

displayed. If any other character is received then 'Protocol

error

menu .

is displayed and the user go to the option selection

4 . 7 . 4 WORKING OF RECEIVE

i) A new file having the name which the user has entered , is

created. If the file already exists then the contents of the file

are truncated. If this file make operation is not successful then

the message 'Erro r creating file is displayed and user go to the

option selection menu

ii) After file creation the computer waits upto 120 seconds for

the message 'Ready to send' (CNTL-A) of the transmi tting

computer. If the message CNTL- A is received within 120 seconds

the receiving computer sends (CNTL-B) 'Ready to receive' message

to the transmitting computer otherwise the message 'No response

from remote' is displayed and the user is asked to 'Press enter

to continue .

iii) The computer then waits for the character up to 60 seconds.

If . the receiving computer does not find any character within 60

39

second, t hen the message 'Remote time- out' i s d i splayed and user

is aske d t o ' Press e nter t o c ont inue' ,afte r pressing the enter

key the user go to t h e option solution me nu .

iv) If the computer r receive 'Beginning of data buffer'

(CNTL-C) i t wai t s upt o 30 seconds f or 130 char acters , 128 data

byt es and two bytes checksum with the h i gher byte first and lower

byte follows it . I f 130 characters are not · received within 30

seconds ,the 'Packet time - out' message is displayed on the

receiving computer and 'Retransmit data buffer' (CNTL-E) message

is sent to the transmitting computer . At the same time when the

computer is receiving the data bytes it also calculates the

checksum by adding the ASCII value of each byte, the calculated

checksum is compared with the received checksum fo r the integrity

of the data buffer received . If the two checksum are not equal

t hen the r eceiving computer sends 'Retrans mit dat a buffer' (CNTL

E) and the message 'checksu error' is displayed otherwise the

message 'Data buffer received ok' (CNTL-D) is acknowledged.

v) Afte r i ntegrity the received data is written to the file if

the write operation is not successful the message 'error writing

file' is displayed and CNTL-L is sent to the transmitting

computer, and the user is asked to 'Enter the option' .

vi) This data receiving process is repeated until (CNTL- Y) 'End

of file ' message received. After receiving (CNTL- Y) the created

file is closed . If close file operation is not successful then

' Error in closing file' is displayed and (CNTL- L) is sent to the

transmitting computer user is asked 'Enter the option' otherwise

(CNTL- Z) 'File received ok' message is sent to the transmitting

computer and user is asked to 'Enter the option' .

40

vii) If the character receiv ed is CNTL-L then 'File system error

on remote ' is displayed . If any other character i.e. not CNTL-C,

not CNTL-Y and not CNTL-L then 'Protocol error' is displayed and

user is asked to 'Enter the option'.

4.8 FILE PACKAGING/UNPACKAGING

The file packaging/unpackaging part is separate from the

file transfer part . The file transfer part would be almost

identical for all systems The file packaging/unpackaging part is

operating system dependent . The non- text files (such as object,

executable, and other files) are transferred from one operating

environment to another mainly for backup, media interchange or

transportation purposes and not to be used there. However upon

return to the original environment the (packaging/unpackaging)

software must guarantee that the files are restored with its

original characteristics and functionality . The packaging of a

file is to package the contents of a file along with a header

containing all its essential attributes and characteristics into

another file. If the packaged file is transferred from

environment SCO XENIX to AIX to MSDOS/PCDOS and then brought back

toSCO XENIX . In the environment AIX and MSDOS/PCDOS the file is

not usable and cannot be unpackaged but on environment SCo

XENIX the unpackaging program would read the header and restore

the file with its original characteristics and functionality . The

header formats for DOS, SCO XENIX Z86, SCO XENIX 386 and AIX are

shown in appendices B- 1,B- 2,B- 3,B- 4 respectively. The

packaging/unpackaging software first of all open the file "Sysi"

(system identification) . If the file is not opened successfully

41

then the message 'file open error or file not found' is

displayed . The file 'Sysi' contains system identification and the

name o f the operating systems. At present t he 'Sysi' file

contains the information about the four systems . These all listed

in the table 4 . 1 given below .

TABEL 4.1

operating system Identifications

Identification

MSPCDOS

UNIXSV01

UNIXSV02

UNIXSV20

operating systems

DOS (MSDOSjPCDOS)

SCO XENIX 286

SCO XENIX 386

AIX

In the 'Sysi' file you can easily append information about

the other systems .

4.8.1 WORKING OF FILE PACKAGING

i) The file to be packaged is opened by the open () system

call , if the file is not opened successfully the message 'Error

opening file' is displayed and the user is asked to 'Enter the

option'

ii) The first 128 bytes of the file are read and compared with

the first 8 bytes with the system identification of the 'Sysi'

file . If any identification from 'Sysi' file matches with the

first 8 bytes of the file read the message 'File is already

packaged' is displayed and the user is asked to enter the option,

otherwise the new file name is made by original name of the file

with out extension by appending '.pk' to every packaged file.

iii) The contents of the header are obtained by using the system

calls as described in the appendix B and the header is written on

42

the new file ,then the contents of the file are read and written

to the new file until the end of file is reached.

iv) Both files are closed by using the close() system call. If

the close operation is successful then the message 'File +is

successfully packaged' is displayed and the package file name

along with the new file name is also displayed, other wise the

'File is not packaged successfully' is displayed and the user is

asked to 'Enter the option' .

4.8.1 WORKING OF UNPACKAGING

i) .. . The file to be unpackaged is opened by the OPEN () system

call . if the file OPEN() operation is not successful 'FILE OPEN

ERROR' and the user is asked to enter the option.

ii) The first 128 bytes of the file are read. From these firs t

8 bytes are compared with the system identification. If

comparison performed is successful then 6 bytes after 8 bytes are

compared with the system version. If the packaged version and the

system version are same then the original characteristics and

functionality of the file are maintained . From the fields stored

in the header, header is restored from the file and data is

written on the new file. The new file name is made by removing

the extension '.pk' and the message ' File successfully

unpackaged' is displayed on the screen .

iii) If the system version and packaged version are not same

then the system warns the user that the packaged and unpackaged

version are different and allows the user to unpackage the file

with the message 'Do you want to unpackage the file YI N' .

iv) The file is unpackaged if user presses Y. Upon pressing the

43

N the first 8 bytes of the file are compared with the system

identification of the 'Sysi' file. If any comparison is

performed, all necessary informations about the file and the

operating system are displayed on the screen. o t herwise the 'File

is not a packaged' is displayed on the screen and the user is

asked to 'Enter the option' .

•

44

CHAPTE"R 5

SYSTEM [TSER

INTERFACE

The purpose of this chapter is to explain to the user the

working of CTCNET software and packaging/Unpackaging software and

to make use of it in the best possible way .

5.1 HOW TO INVOKE THE CTCNET

To invoke t he CTCNET t ype the word CTCNET at operating

s ystem prompt then press the <return> key . The operating system

will load and execute the CTCNET and on the screen the message

shown in figure 5.1a, 5 . 1b and 5.1c appear. This message asked

the user to enter the name of the serial communication port. If

the name of the serial communication port is not correct. Then

the message shown in figure 5 . 2 will be displayed and the user is

again asked to enter the name of the serial port .

After entering the correct communication port the user is

asked to select the baud rate by the selection menu shown in

Figure 5.3. If the correct baud rate is not specified the menu

shown in the figure 5.4 is displayed a d the user is again asked

to enter the baud rate. When correct baud rate is selected the

menu shown in the Figure 5~5 is displayed . If the user selects

the option '1' (send file) or '2' (receive file) then the menu

shown in figure 5 . 6 is displayed .

5.1 . 1 SEND A FILE

Press '1' (file send) when the menu shown in the Figure

5 . 5 is displayed . After selection the file send option Figure

5.6 is displayed and user is asked to select the mode. I f the

user wants to send the TEXT file press mode 0, otherwise press 1

to transfer Non- text files . If the user does not enter '0' or '1'

then the figure 5.7 is displayed . When the user enters the

correct mode, the message 'File to be sent' is displayed . The

45

user enters the name of the file, if the two computers connected

properly and the receiving computer is ready to receive then the

transmission of the file will start. The message File

transmitted is displayed, if the file has been transmitted

correctly and the user is asked to 'Press enter to continue.

After pressing the enter key the menu shown in figure 5.5 is

displayed . If the user wants to transmit another file, then the

process mentioned above is repeated.

It may also happen that during the transmission of the file

the message 'Error reading file' is displayed try again to send

the file repeating the above procedure .

5 . 1 .2 RECEIVE FILE

Press '2' when the menu shown in Figure 5 . 5 is displayed .

The procedure described in the section 5.1.1 is repeated but the

message 'File to be sent' is displayed . sometimes it may also

happen that when you enter the file name the message 'Error

opening file or file not created' is displayed . Sometimes the

message 'Error writing file' is displayed . In these cases the

user repeat the process mentioned above . If the file has been

received the message 'File received' will be displayed . If the

user desired to receive another file, repeat the steps described

above .

5.2 USING FILE PACKAGING/UNPACKAGING

Enter the command 'PDACK' at the operating system prompt

and press the <RETURN> key . If the executable file 'PDACK' is

present the operating system will load and execute it. The menus

shown in Figure 5 . 8a, 5.8b and 5.8c are displayed .

46

5.2.1 EXAMINE FILE

Press '1' to see the file is packaged or not After

pressing '1' the message 'Enter the file' is displayed . When the

user enters the file name and press the <RETURN> key, the file is

packaged and the Figure 5 . 9 is displayed on the screen, other

wise t he message 'The file is not a packaged file' and the user

is asked to ' Press enter to continue . After pressing the <ENTER>

key the menu shown in figure 5 . Sa or 5.Sb or 5 . Sc is displayed.

5 . 2.2 PACKAGE FILE

Press '2' to package the unpackaged file . After pressing 2

the message 'Enter the file' is displayed. When the user enterS

the file · name and press the <RETURN> key . The message 'File

successfully packaged' and 'The packaged file name ' is displayed

on the screen .

5 . 2.3 UNPACKAGE FILE

Press '3' to unpackage the package file. After pressing 3

the message 'Enter the file' is displayed. When t he user enters

the file name and press the <RETURN> key . The

packaging/unpackaging software sees whether the file is packaged

on the operating system upon which the user trying to unpackage .

If the file is packaged on the operating system upon which

unpackagingis made then the message 'File successfully

unpackaged displayed, otherwise the Figure 5.10 is displayed on

the screen. The user is asked to 'Press enter to continue' after

pressing return key, the menu shown in figure 5.8 is displayed.

The process is repeated if the user wants to package or

unpackaging any other file. Enter 0 to go to the operating system

prompt .

47

CTeNET File Exchange Utility

seD XENIX Implementation Version 3.00

Select serial device to be used

The valid choices are ttyla and tty2a

Enter na~~ of serial device:

Figure 5.1 a

eTC NET File Exchange Utility

AIX Implementation Versi on 3.00

Select se rial device t o be used

The v.::Ilid choice::; are ttyl and tty2

Enter name o f serial device:

Figure 5.1 b

CTCNET File E xchange Utility

PCDOS/MSDOS Implementation Version 3.00

Select serial device to be used

The valid choices are COMI and COM2

Enter name of serial device:

Fjgure 5".lc

Invalid seria l device n a me

The va lid choices are COM1 and COM2

Enter- n a me o ·f serial device:

Figure 5.2

Se l ec t b a ud rate

Th e va l i d c hoices are

9600, 4 800 , 2 4 00, 1200,

600, 300 a nd 1 50

Enter b rl ud rate :

Figure 5 . 3

I nva l id b a u d rate specified

The va lid c ho ic e s a r e

9600 , 4800 , 2400 , 1200 ,

600, 3 00 and 1 5 0

Enter baud rate :

Figure 5 . 4

Select one of the following options:

o Exit CTCNET

1 Send a file

2 Receive a file

Enter the option [0/1/2]:

Figure 5.,

Select one of the following modes of transmission

o Fo rm a tte d ASCII

1 Tran sparent

Enter the mo de [0 / 1 J

Figure 5.6

Invalid mode

Select one of the following modes of transmission

o Formatted ASCII

1 Transparen t

Ente r t h e mo de [0 / 1]

Figure 5. 7

Select one of the following options

o Exit to XENIX

'1 Examine file

2 Package file

3 Unpackage file

Enter the option [0/1/ 2/3] :

Figure 5.8 a

Select one of the following options

o Exit to AIX

1 Examine file

2 Package file

3 Unpackage file

Enter the option [0/1/2/3] :

Figure 5.8 b

Select one of the following options

o Exit to DOS

1 Examine file

2 Package file

3 Unp cickage file

Ente~ the option [0/1 /2 /3] :

F i gure 5 . e c

The file is packaged

The info~mation about the file follows

System

Version

File n ame

File size

Package date & time

Creation date & time

Press enter to continue

DOS

4.0

ti me t- . as m

1530

27-2- 1991

21-1-1991

Figure 5.9

0:55

1 : 1 4

This file ca n not be unpackaged on DOS

The infnr-rflat:iun about the file follows

System

Version

File name

File si?!::'

Pack a ge date & time

Creation d a te & time

Press enter to continue

DOS

4.0

timer.asm

1530

27-2-1991

21-1-1991

Figure 5.10

0 :55

1:14

CHA_PTER £;

SYST.EM CONCL[TS .7.-0N

6.1 SOME MAJOR FEATURES

In this chapter, the implemention of the revised version of

the CTCNET and PACKAGING/UNPACKAGING described in this

dissertation is evaluated. As was stated earlier in chapter one,

the objective of this work was to implement latest version of

CTCNET on SCO XENIX and AIX for efficient and reliable file

exchange and provide solid solution for exchanging non text

files . Some features of the system are given below .

i) Reliability

For a multitude of reasons, a program that works under

normal circumstances may fail mysteriously at an unexpected time.

An unreliable program is obviously frustrating the user,

especially when the cause of the program failure is unknown . The

implementation of revised version of CTCNET specifies the time

1 imi ts i . e . after certain interval of time the user is

responded, if the computer at one end went on down or the program

is terminated due to abnormal conditions. This system has high

degree of reliability .

ii) PORTABILITY

Portability means the program which is developed on one

system can easily run, without any noticeable alteration, on

other systems . -The new system was implemented on SCQ XENIX and

AIX, thus it can be easily implemented on other UNIX like

operating systems with minor changes in the CTCNET code.

iii) ACCURACY

Accuracy is the ratio of correct information to the total

amount of information produced over a period . In this system the

accuracy is hundred percent, i.e . unless the data transferred is

48

not received correctly. Unpackaged file has its original

characteristic and functional i ty. The new system is very

accurate. Validation checks are made, to ensure the accuracy of

the system.

iv) SUITABILITY

This system is suitable for exchanging data between AIX,

SCO XENIX and MSDOSjPCDOS, also it provides a suitable solution

for transferring non text files.

v) CONSISTENCY

The new system has a high capability of consistent working.

If the exchange operation is not proper the error is displayed.

vi) FLEXIBILITY

T~ere is always a room for improvement . The new system was

designed by using interactive modular approach and is highly

flexible to cater further improvements in future .

vii) EFFICIENCY

The code is optimized t o t he maximum level. It is as

efficient as it could be made . Actually the indefinite wait loops

are replaced with the time limits . The program does not result in

frequent hang- up conditions if any abnormal condition occurs.

viii) EASY TO USE

The new system is user friendly and users find no

difficulty in getting required results .

6.2 REMEDIES

Although the system provides many useful features it lacks

in several aspects. Some of these are as follows.

* The packaging/unpackaging software does not work if the 'sysi'

49

file is not present on the system.

* The CTCNET software takes more time generating errors in t he

case of error conditions if the clock timer does not work

properl y.

* The CTCNET transfer files within the limited area .

* CTCNET software requires operator interaction at both ends,

i . e. at sending apd receiving ends.

6.3 FUTURE EXTENSIONS

The work on this proj ect can be continued in future and

some other feat u- r~may be added . The probable extensions in the

system are.

* It is also possible to extend the system for transporting

mail .

* Operator interaction at both ends can be removed by fixing tt.

role of the sender and receiver,also transfer of files over long

distance using the odems and telephone l ines.

* CTCNET should be implemented on the every corni ng operat ing

system.

* Implemention of packaging/unpackaging software on VMS and

other operating systems .

* Develop software which will run in background and service file

transfer requests using predefined connections . Some work in this

direction has been initiated at CTC as a PGTP project .

50

APPENDIX A

Appendix A

Enhanced CTCNET File Exchange Protocol

The 'send' refers to sending to the remote computer on the serial line. The messages enclosed
in single quotes are to be displayed on the local computer.

Sender Logic

Open file
if open error then

Handshake

'Error 'opening file'
quit

send control-A every 1 second upto 120 times
check for control-B every second

if received then

else
continue

'No response from remole'
quit

Read and send records
if read error then

'Error reading file'
send control-L
quit

send control-C, then record and then checksum
wait for reply for 60 seconds

if no reply then

else

'Remote timeout'
quit

on conlrol-D
continue

on control-E
'Retransmitting packet'
send packet again

on control-L
'File system error on remote'
quit

any other character
'Protocol error'
quit

On end of file
send control-Y
wait for reply for 60 seconds

if no reply then
'Remote timeout'
quit

else

Receiver Logic

Create file

on control-Z
'File transmitted'
quit

on control-L
'File system error on remote'
quit

any other character
'Protocol error'
quit

if error then

Handshake

'Error creating file'
quit

wait for control-A for 120 seconds
if received then

else

send control-B
continue

'No response from remote'
quit

Wait for character for 60 seconds
if no character then

'Remote timeout'
quit

else
on control-C

look for 130 characters in 30 seconds
if not received then

'Packet timeout'
send control-E
continue

if checksum error then
'Checksum error'
send control-E
continue

write record

if write error then
'Error writing file'
send control-L
quit

else

on control-Y
close file

send control-D
continue

if close error then
'Error closing file'
send control-L
quit

else

on control-L

'File received'
send control-Z
quit

'File system error on remote'
quit

any other character
'Protocol error'
quit

APPENDIX B-1

CTCNET FILE PACKAGING SCHEME

DOS HEADER FORMAT

Offset Description Si z e c ontents System
(Bytes) call

0 Identification 8 MSPCDOS#

8 Version 6 4 . 01## int 21 30h

14 No . of 128 bytes 1 1
block in header

15 Packaging date 5 _dos_getdate
_dos_gettime

20 File date stamp 5 dos findfirst

25 Reserved 23

48 Attribute 1 dos findfirst

49 Reserved 3

52 File size 4 dos findfirst

56 Re s e rved 8

64 Fi l e name 64 dos f ind f i rst

The entry in the version field is an example, at the time of
packaging act ual version number will be stored here.

APPENDIX B-2

CTCNET FILE PACKAGING SCHEME

XENIX 286 HEADER FORMAT

Offset Descriptio n Si z e c ontents System
(Bytes) call

0 Identification 8 UNIXSVOI

8 Version 6 2.2 . 1# uname

14 No . of 128 bytes 1 2
block in header

15 Packaging date 5 time

20 File date stamp 5 stat

25 Reser ved 2 3

48 Mode 2 stat

50 Reserv e d 2

52 File size 4 stat

56 Reserved 8

64 File name 64 sta t

128 c r eat ion dat e 5 stat
and time

133 User ID 2 stat

135 Group ID 2 stat

137 Links 2 stat

139 Reserved 117

The entry in the version field is an example, at the time of
packaging actual version number will be stored here.

APPENDIX B-3

CTCNET FILE PACKAGING SCHEME

XENIX 386 HEADER FORMAT

Offset Description Size contents System
(Bytes) call

0 Identification 8 UNIXSV02

8 Version 6 2.3.1# uname

14 No . of 128 bytes 1 2
block in header

15 Packaging date 5 time

20 File date stamp 5 stat

25 Reserved 23

48 Mode 2 stat

50 Reserved 2

52 File size 4 stat

56 Reserved 8

64 File name 64 stat

128 creation date 5 stat
and time

133 User 1D 2 stat

135 Group 1D 2 stat

137 Links 2 stat

139 Reserved 117

The entry in the version field is an example, at the time of
packaging actual version number will be stored here.

APPENDIX B-4

CTCNET FILE PACKAGING SCHEME

AIX HEADER FORMAT

Offset Description size contents System
(Bytes) call

0 Identification 8 UNIXSV20

8 Version 6 3 . 1### uname

14 No . of 128 bytes 1 2
block in header

15 Packaging date 5 time

20 File date stamp 5 stat

25 Reserved 23

48 Mode 4 stat

52 File size 4 stat

56 Reserved 8

64 File name 64 stat

128 creation date 5 stat
and time

133 User ID 2 stat

135 Group ID 2 stat

137 Links 2 stat

139 Reserved 117

The entry in the version field is an example, at the time of
paCkaging actual version number will be stored here.

APPENDIX c:

APPENDIX C

special characters used in CTCNET software, ASCII codes

and interpretation .

S.NO CHARACTER ASCII-CODE INTERPRETATION

1. CNTL-A 1 READY TO SEND.

2. CNTL-B 2 READY TO RECEIVE .

3. CNTL-C 3 BEGINNING OF DATA BUFFER .

4. CNTL- D 4 DATA RECEIVED OK.

5. CNTL-E 5 RETRANSMIT DATA BUFFER .

6 . CNTL-L 12 ERROR CONDITION.

7. CNTL-Y 25 END-OF-FILE.

8. CNTL-Z 26 FILE RECEIVED OK.

APPENDI X D

The messages displayed during the execution of the CTCNET

software.

S.NO

1

2

3

4

5

6

7

8

MESSAGES

File t o be sent

File to be received

File received

File transmitted

No response from remote

Remote timeout

Retransmitting packet

Packet timeout

APPENDI..X E

APPENDIX E

The error messages displayed during the execution of the

CTCNET .

S.NO ERROR MESSAGES

1 Error opening file

2 Error creating file

3 Error reading file

4 Error writing file

5 Error closing file

6 Checksum error

7 Protocol error

8 File system error on

remote

Tu r L"y (" U;::i e r - :~J Guide Borland I n t.e: r·n3t iona] I n c . ,

.-,

n . :::~ .!\ , H)87.

:3 . .:::c h i. l cl t , He rbert. , C Made Ea::::y (l s brilJe t1 c Gl' :'tw- Hi.ll

Inc ., U. S .A, 19 B5.

Mi c r OAoft C Reference Manual Microsoft Inc., USA, 1387

~' . t··H e r e' 50ft C User - s Cluj de t1icrosoft Inc., USA, 1987.

S . Ro ye r . J e ffery P .. Han d Book of Sof tware and Ha r dware

i. r.t€'i'fac:ing f el l' IBt1 PC ., Prenti c e Ha .l l I nc., 1978 .

'7 V. HalL , Mi c roprocessc)r s an d i n t er fac i r, g

pro g l 'amm i n g an d h a r dware MCGRAW-H I LL IN'l'ERNATI UN AL ED ITI ONS .

8 . Nort. o n p1' 1:; e1' ., pro grammer' s Guide to IBl1 PC. Mi c r o s oft: .

~] . Rebec c a '~'homa :=; Lawrence R. Roger :::: Jean L. Yates Advanced

P r o gra mmers Guide to UNIX System V International Ed i tion

18 86 .

10 . Al an De i k man UNI X Programm ing on the 802 8 6/80 38 6 Second

FeU t. i o n Eje ~) .

: 1 :·,;Et··'I X :; ~l ;::; t e!11 V I' ,.?ve l o p ment System P l' u gr alTuner' .5 Re f e rence

'E'he.:" ::'a !1l E Cl'll Z e Opera t ion, Inc .• U.:3. A. 198 7 .

, ,. "-Ii. " 'T ,-
_ \ ! " i.. .. ~ _

Inc .. u . . ; . A. 19 t3 '7 .

RIse System 16000.

E Gener",l Pre'gramming concepts AIX Version 3 For ElSe

Syst.em / 6000.

16 Call s a nd Subro u t ines Reference Use r Interfac e AIX

Ve r ;=:ion 3 Fo r HI SC System /6000.

