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ABSTRACT 

Aromatic poly(azomethine)s are high performace materials being used in large area 

displays, resistive switching, and memory chips etc. Structural modification of 

reacting monomers leads to drastic changes in the physicochemical properties of 

macromolecules. Therefore, in the present study a series of nine ether-based wholly 

aromatic dialdehydes with different substituents (-OCH3, -OC2Hs, -CH3, -CF3) have 

been synthesized via etherification reaction between 4-fluorobenzenecarboxaldehyde 

and different phenols (i.e. di-hydroxyphenols or 4-hydroxybenzenecarboxaldehydes) 

in inert atmosphere. These bisaldehydes have been polymerized with two diamines (p­

phenylenediamine, and 4,4'-diaminodiphenyl ether) using p-toluene sulfonic acid 

catalyst in N,N-dimethylfofmamide. Both the monomers and the polymers were 

synthesized in the presence of dry nitrogen atmosphere. The structural 

characterization was done with different spectroscopic techniques. Moreover, 

different physicochemical properties of synthesized polyazomethines have been 

studied using various techniques of spectroscopy, viscometry, thermal analysis, and 

solubility. The polyazon thi es applicability i optoel ctronics/semiconduct rs was 

checked by photoluminescence and conductivity techniques. 
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Introduction 

1.1 Introduction: 

The condensation product of carbonyl compound with an amine generates carbon­

nitrogen double bond (C=N) with concomitant removal of water molecule. If an 

aldehyde is a reacting moiety with an amine then the condensation product is called 

an azomethine or aldimine. Alternatively, if a ketonic moiety is reacting with the 

amine then the condensing product is called ketanil or ketimine. The azomethine 

linkage may be generated from hydroxylamine, and alkyl nitrile using GrignaI'd 

reagent or hydrogen as depicted in figure 1.1. 

o 
II 

R'-C-R" + H2N-R'" --~~ CR"R'=N- R'" 

where: R' = alkyl, aryl 

R" = alkyl, aryl, or H 

R'" = alkyl, aryl 

H+ Ph"" 
PhCN + PhMgBr----i~~ C=NH 

Ph/ 

R2C=NOH -----;~~ R2C=NH 

---~~ R-C=N-H 

I 
H 

Figure 1.1: General imine formation reactions 

1.2 Historical Perspective: 

Adams and his co-workers in 1923 generated a new class of conjugated polymers 

having -CH=N- linkages originating from dicarbonylic compounds (either 

dialdehydes or diketones) and di-amines. Since the carbon nitrogen double bond (­

C=N-) is called Schiff base or azomethine or imine bond, these polymers are called 

poly(Schiff base)s, polyazomethines or polyimines. The polymeric C=N linked 

macrochains synthesized from dialdehydes are referred to as polymeric aldimines 

while those being originating from diketones are called polyketanils. 



Introduction 

Adams et ai. [1] synthesized insoluble and infusible polymeric imines by reacting 

4,4'-diaminobiphenyl and ortho-dianisidine with I,4-diformylbenzene. In 1938, 

Steinkopf et ai. [2] synthesized such polymers by reacting hydrazine (H2N-NH2) with 

isophthalaldehyde and benzene-I ,4-dicarboxaldehyde. In 1950s Marvel et ai. [3] 

attempted solution phase polymeric imine formation of aromatic dicarboxaldehydes 

with hydrazine or 1,2-diaminobenzene, owing to insolubility of precipitated product 

this polymerization wasn't winning. The intriguing properties of polyazomethines led 

to the synthesis of wholly aromatic polyimines by Marvel et ai. in 1950. During 

1950s Marvel and co-workers [4] examined the properties of a number of polyimines 

and polyazines synthesized from 1,2-diaminobenzene and hydrazine for chelate 

formation study. 

The interest in late I960s as well as in early 1970s for thermally stable 

macromolecules led to a comprehensive study on aromatic polyaldimine by D'Alelio 

et ai [5, 6]. In a review they discussed [7] the research work done on an ample 

selection of polyaldimines and generalized the effect of monomer's structure on the 

thermal stability in both air as well as nitrogen. To make melt proccessible and 

solubl diI in M rga et ai S et al d tl . w 'k t g 

processible and soluble aldimines using different modifications in monomers. They 

showed that the poly(Schiff base)s can form liquid crystalline melts-whose spinning 

give fibers [8] of high tenacity and excellent modulus. They showed that the methyl 

substituent on aromatic ring as well as ethylene spacers in p-phenylene units give less 

softening temperatures to polyaldimines [9]. 

1.3 Azomethine or Schiff Base: 

The imine (C=N) formed via condensation of aldehyde with amine accompanied by 

removal of H20 is of considerable interest to a synthetic chemist. Imine have very 

interesting properties ranging from anticancer [10] , antimicrobial [11] , insecticidal 

[12] , antitumor [13], anti-bacterial agent [14], anti-inflammatory agents [15] , 

antituberculosis [16] , and anti-convulsant [17] activity [18]. Imines behave as 

versatile agents in organometallic [19], and cycloaddition reactions [20]. 

2 



Introduction 

1.4 Mechanism of Azomethine Formation: 

The acid catalyzed polymerization technique is generally used for the syntheses of 

polyimines that involves the reaction of aldehydic or ketonic carbonyl groups with 

bisamines. The figure 1.2 shows that the mechanism of conversion of amine and 

aldehyde to aldimine involves the attack of nucleophilic amine on electrophilic 

carbonylic carbon to give tetrahedral - OH intennediate whose dehydration affords 

aldimine. Since the reaction is reversible, the rate of reaction depends upon the 

removal of water entity which can be achieved through either azeotropic distillation 

[2] using Dean-Stark apparatus [21 ], dehydrating solvents like trimethyl orthoformate 

[22], tetramethyl orthosilicate [23 ], or using Lewis acids. The later act as not only 

catalysts which assist nucleophilic attack on carbonyl group but also serve as 

dehydrating agents from tetrahedral intermediate. 

Figure 1.2: Mechanism of Azomethine Formation (24) 

1.5 Catalysts for Azomethine: 

Typically imine linkage is fonned effortlessly without using catalyst but vanous 

modifications are available in literature such as Lewis acid catalysts ZnCh, FeCb 

[25]; amphoteric oxide, Ah03; TiCl4 [26] ; acidic and dehydrating oxide, P20 S; and 

hydrotalcite materials [27]. Using principles of green chemistry aldimines have been 

synthesized by Maeimi et al [28] with P20 s-Si02 to afford quantitative yields. 

Montmorillonite K-10 have been utilized by Verma [27] for microwave assisted 

solventless aldimine synthesis. Solvent free aldimine have been synthesized by 

Gopalakrishnan et al [29] with CaO catalyst using microwaves. Ravishankara, L., 

3 
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et aI, silimarly, reported Ce+3 catalyzed [30] preparation of aldimines. Bendale et al 

[31] have synthesized aldimines under UV chamber, sonicating conditions and 

employing grinding method [32]. Even one group, Suresh Patil et al [33] used green 

natural citrus fruit catalyst obtained from lemon juice. 

1.6 Synthetic Strategies: 

There are mainly two approaches to introduce C=N imine linkage in the macrochain 

of azomethine polymers. 

i. The first approach is based on the reaction of monomeric dicarbonyl groups 

(i.e. dialdehydes and diketones) with diamines. 

ii. The second approach involves the reaction of monomers having functional 

groups capable of polymerization with built in imine structure. 

The C=N of polyaldimines is isoelectronic with C=C double bond, therefore this class 

of polymer is closely related to other classes of conjugated polymers, for example, 

poly(p-phenylene), poly(acetylene) [34, 35], poly(thiophene) [36] or poly(p­

phenylene-vinylene) [37]. 

1.7 Solubility: 

The key problem in wholly aromatic P AMs is their high softening (glass transition) 

temperatures (Tg) which makes them unsuitable for melt spinning [38] and injection 

molding teclmiques. Aromatic P AMs start to decompose before reaching their melting 

temperature [39]. Moreover, their insolubility and intractability [40] in common 

organic solvent being used for polymerization led to the development and design of 

architecture to modify the properties of macro chains by using different approaches. 

The most impOliant approaches involve the use of symmetrically and 

unsymmetrically multisubstituted aromatics, incorporation of aliphatic spacers, 

flexible ether linkages, and substitution with alkyl as well as alkoxy side chains . 

. Another approach to perk up the process ability of P AMs is the reversible interaction 

or complexation with Lewis acids [41]. The figure 1.2 shows proposed H-bonding 

interactions responsible for P AMs solubility in acidic or weakly acidic solvents. 

4 
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Figure 1.3: Pt·oposed H-bonding Interaction with Acids 

In most of the cases fully aromatic polyimines are insoluble. Modifying the 1t­

conjugated chain by adding solubilizing entities disturb the delocalization of electron 

and results in disruption of intriguing properties of this class of conducting polymer. 

In recent years, the concept of utilizing cyclodextrin cavity for polymerization has 

been introduced [42] and this strategy has also been applied to P AMs for obtaining 

easily soluble rotaxanes [43]. Dlu·iti Nepal et al attempted to solublize PAMs obtained 

from l,4-phenylenediamine and 1,4-diformylbenzene in ~-cyclodextrin cavities but 

failed. They noticed that incorporation of C60 end capping and 3M excess of ~­

cyclodextrin afforded high molecular weight soluble rotaxane [44-47]. The effect of 

heteroaromatic rings, for example, triazine [48], thiazole, oxadialzole [49], fluorene, 

carbazole [50, 51 ] on solubility, electrochromic and electroluminescent propeliies of 

polymeric aldimines have been studied by different groups. 

1.8 Synthetic Routes to Polyazomethines 

1.8.1 Oxidative Polymerization: 

Facile oxidative polymerization is usually carried out with sodium oxychloride 

(NaOCI) 30% solution as an oxidant in KOH or NaOH alkaline media. This 

polymerization teclmique is used for those monomers that have hydroxyl functional 

groups and built-in imine linkages within monomers as shown in figure 1.4. In this 

polymerization process 15% aqueous KOH of hydroxylated Schiff base monomers is 

heated at 90°C for 6 hours followed by dropwise addition of catalytic amount of 

NaOCI oxidant in 30 min and heating the mixture for further 6 hours [52]. 

5 
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HO-o-HC-NY') ~N=CH-D-OH 
~O~O~ 

)lA 

NaOCI, KOH 

HO h HC~NY') ~N-CH-60H :rr ~O~O~ ~~ 
.~ 

Figure 1.4: NaOCI oxidative coupling 

Different oxidants (FeC!), ammonium persulfate, H202, and 02) may be used for 

oxidative coupling reaction to yield polyazomethines. Figure 1.5 shows the coupling 

reaction carried out by FeC!) [53, 54]. 

~
'\ 

FeCI3 f '\ - _ 
Anhydrous _ \,;} S"N-R-N~~ 

\, ;} 

Figure 1.5: FeCb oxidative coupling 

1.8.2 Electropolymerization: 

In a typical electrosynthetic polymerization method the two monomers are dissolved 

in freshly distilled DMAc. The electropolyinerization is carried out using mercury 

pool as a cathode (working electrode), a reference saturated calomel electrode (SCE) 

with magnesium cylinder as an auxiliary electrode. The measurement is made in 

potentiostatic mode using LiCI04 as an electrolyte and NiBr2(bipy) as a catalyst. The 

precipitated polymer is worked out in dilute aqueous sulfuric acid solution and 

subsequently dried in vacuum oven at about 80°C. The bromide liberated in 

electro synthesis is estimated with AgN03 to probe the electropolymerization [55]. 

This polynlerization technique usually gives low molecular weight soluble 

polyaldimines. 

6 



In trod uction 

1.8.3 Solvothermal Polymerization: 

In a relatively new solvothermal polymerization process equimolar ratios ofdiamine 

and dialdehyde in a mixture of dioxane and mesitylene solvents are sonicated for ~30 

min, then the sonicated mixture is transferred into autoclave along with catalytic 

glacial CH3COOH. The heat treatment at desired temperature for specific time gives 

the polymeric aldimine. The resulting anisotropic, yolk-shell like, hollow sphere, or 

microtube polyaldimines are filtered [56]. 

1.8.4 Chemical Vapor Deposition: 

Difficulty in finding appropriate organic solvent for uniform polymer film preparation 

accompanied with dust pruticles interference during electrical properties and non­

uniform emission chru·acteristics makes the chemical vapor deposition (CVD) a 

method of choice for the preparation of thin films of polymeric Schiff bases having 

uniformity [57] at centimeter level as well as linear and non-linear optical properties 

[58]. CVD is used to copolymelize the two monomers placed in separate cells in an 

effective and efficient way by evaporating the two monomers under reduced pressure. 

Therefore, CVD is also called vacuum deposition polymerization (VDP). The t 71/0 

monomers are heated to an appropriate temperature. The solvent free condensation of 

-CHO and -NH2 groups results in the formation of high conjugation length -CH=N­

linkages on top of various substrates such as fused Si02, Indium- Tin-Oxide (ITO) 

coated glass, and F- doped ITO etc [59]. 

Electric-Field-Assisted-CVD method can also be used for controlling the 

macroscopic characteristics of polymers. The limitation of Electric-Field-Assisted­

CVD is that it has application restricted to only those monomers which have net 

dipole moment so that monomers can be aligned with external magnetic field [59]. 

1.8.5 Melt Polycondensation: 

This method is seldom used because in most cases the polyaldimine fonned do not 

melt before decomposition struts. Therefore, this method is not suitable for aromatic 

polyazomethines. In melt polycondensation reaction the two monomers (diamine and 

dialdehyde) are grounded in mOltar-pestle and heated in micro-distillation tube under 

inert atmosphere until they melt. At the melting point the temperature of the melt is 

maintained for one hour [38]. 

7 
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1.8.6 Aza-Wittig Polymerization: 

The aza-Wittig reaction is a reaction of phosphazenes with carbonylic compounds. 

Phosphazenes are prepared in- situ in the reaction mixture by reacting azide group 

with phosphorus (III) reagents [60] such as PPh3 and PMePh2 etc. The chemo­

selectivity, high reactivity, and ineversibility [61] of this reaction make it a good 

choice for high molecular weight polymeric imine formation while other 

polycondensation reactions usually proceed reversibly. Therefore, Aza-Wittig 

Polymerization [62] is used for the synthesis of highly ordered regioregular polymeric 

A2B2-type or AB-type aldimine from monomer having either diazide and dicarbonyl 

groups or self-condensing azide and aldehyde group [63]. Figures 1.6 (a) and 1.6 (b) 

show the reagents, reaction conditions for AB-type, and A2B2-type aza-Wittig 

polymerization. 

jX
NH2 

o I /' ' c ,-7 OH 

II 
o 

JX
N' 

o I /' ' c ,-7 OH 

II 
o 

JX
N' 

H I ' c ,-7 OR 

II 
o 

b, c 

JX
N' 

o I /' ' c ,-7 OH 

II 
o 

.-f-n-N~ \ . 
\ \R J. 

Figure 1.6 (a): Synthesis of AB-type Polyaldiminesj (a) HN02, NaN3j (b) R-X, K2C03j (c) DIBAL-H, 

CH2Ch, -78°C, DMP, rtj (d) PPh3, toluene, 80°e. 

OR 

"N'--P-N" 
o 0 11-0-11 

nHC \ j CH 

RO 

Figure 1.6 (b): Synthesis of A2B2-type Polyaldiminesj PPIIJ, toluene, 80°e. 
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Introduction 

1.8.7 Solution Polycondensation: 

Polyazomethines begin to precipitate during polymerization process which obstructs 

their processability. The two most common approaches to tackle this problem are; (i) 

either introduce substituent groups on the monomers (ii) or use solvents that increase 

the solubility of the polymer by replacing the chain-chain intractions with solvent­

chain intractions. The highly polar solvents are most suitable for that purpose and the 

weakly acidic solvents such as m-cresol are the best choice because they increase the 

solubility of macromolecule by forming hydrogen bonds with the lone pair of nitrogen 

atom of C=N imine linkage. 

Different water free solvents, for example, benzene, N,N-dimethylfonnamide (DMF), 

N,N-dimethylacetamide (DMAc), dichloromethane (DCM), m-cresol, 

hexamethylphosphoramide (HMP A), dimethylsulfoxide (DMSO), and 

polyphosphoric acid are used for polycondensation reaction of diamines and 

dialdehydes. The reaction between the dialdehydes and the diamines stmi with 

appreciable condensation occUlTing at room temperature that continues slowly as the 

polymer begins to precipitate or reaction mixture becomes thick paste like. The 

polyimine formation in high polarity solvent give high molecular weight macrochains 

of polyazomethines. However, high molecular weight impmis insolubility to 

polyazomethines in mostly used organic solvents which precludes their potential 

applications. It is worth mentioning that the polymer formation in polyphosphoric 

acid as a solvent increases the molecular weight of polyazomethines that is reflected 

by the 2-5 fold increase in their reduced viscosities. The azeotropic removal of water 

with toluene from condensation flask expedites the condensation process. 

1.9 Types of Poly(azomethine)s: 

1.9.1 Polyazines: 

Polyazines (PAZs) is also a class of polymeric Schiff-bases family. Just like 

polyaldimines this family of imine polymers have -CH=N- and a direct N-N bond. 

P AZs are synthesized from different aliphatic or aromatic dicarbonylic molecules 

(dialdehydes or diketones) and hydrazine (H2N-NH2) using acid catalyzed 

condensation conditions. Research group led by Destri has synthesized a number of 

PAMs and PAZs containing thiophene units for optical waveguide materials [64]. 
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n OHC--R--CHO + n H2N--NH2 ------~.~ *+C===N--N===C---RJ--* 
H H I n 

Figure 1.7: Schematic reaction of PAZs 

1.9.2 Poly(azomethine-siloxane)s: 

Mirela-Fernanda Zaltariov et al (2014) used William-sons type reaction between 4-

hydroxybezaldehyde and bis( chloromethyl)-dimethylsilane in DMF and potassium 

carbonate to form respective silicon containing bis-aldehyde. The condensation 

reaction of bisaldehyde with 2,5-bis( 4-aminophenyl)-1 ,3,4-oxadiazole produced the 

cOlTesponding PAM [65, 66]. 

P. Budrugeac et al (2008) studied the thermal stability and thenno-oxidative reactivity 

of polyimines synthesized from bis(formyl-4-phenoxymethyl)-tetramethyldisiloxane 

and different bisamines. They showed that the thermal stability of poly(siloxane­

imine)s depend upon the number of aromatic rings, and aliphatic chain lengths [67, 

68]. 

1.9.3 Poly(azomethine-ether)s: 

Poly(azomethine-ether)s are prepared from either ether containing monomen c 

bisaldehydes or bisdiamines as shown by different research groups [69-72] or they 

may be synthesized by the nucleophlic aromatic substitution (SArN) of halide (-X = F, 

CI etc.) from monomer having built-in aldimine linkage [73]. 

1.9.4 Poly(azomethine-ester)s: 

Poly(azomethine-ester)s are usually prepared from the reaction of imine mesogen 

containing diols with dicarboxylic acids or dicarboxylic acid chlorides [74-77]. They 

have also been shown to have LC properties. E-J oon Choi in 2010 reported that the 

bent core mesogens in poly(imine-ester)s derived from different 1,2-substitued 

phenols show V-shaped mesogens that give chiral smectic phase LC [78]. 

1.9.5 Poly(azomethine-ether sulfone)s: 

Synthesis of poly(azomethine-ether sulfone) involves the treatment of bis- (4-

chlorophenyl) - sulfone with bis-hydroxy monomer having azomethine link using 

DMSO solvent and potassium carbonate anhydrous [79, 80] . 
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1.9.6 Poly(azomethine--urethane)s: 

The synthetic strategy for this class of carbamate poly(azomethine)s is based on the 

reaction of diols monomer (having azomethine linkage) with di-isocyanate to yield 

poly(azomethine-urethane)s [81 , 82]. 

1.9.7 Polyazomethine - Dopant Interaction: 

The interaction of lone pair of electron on nitrogen atom of iminc (C=N) renders 

polyimines doped with different metal salts and acids i.e. complexation with metals or 

Bronsted acids and Lewis acids . Nitrogen's electron pair interaction with dopant gives 

flexibility to polymer films, shift in glass transition temperatures, and emission band 

shifting in photoluminescence spectrum. The doping with Bronsted acids give 

bathochromic shift to polyimine spectra. The interaction with Bronsted acids is 

reversible. The exposure of polyimine films with HCl vapors give a bathochromic 

shift while the exposure of same film with ammonia vapors shows a reversible effect 

[83]. 

Usually insoluble in most common organic solvents polyazomethines can be made 

soluble in nitrobenzene or nitromethane by complexing with Lewis acid i.e. AlCh, 

GaCh. The solublization of polyazomethines helps in detailed investigation and 

characterization i.e. UV-visible, NMR, photoluminescence etc. 

Different dopants (iodine, FeCh, UV, AgN03, HC1, Lewis acids, Ch, Br2, 

polyaniline, GaCh, AICb, SnCh, methanesulfonic acid, 10-camphorsulfonic acid, 

benzenesulfonic acid, p-toluenesulfonic acid and other organic acids) [84] have been 

utilized for doping of polyaldimines. To see the structural changes in polyazomethines 

after doping [85] with different oxidants FT-IR, and UV-visible spectral analyses are 

the best option. For example, the FT-IR spectra of polyazomethines doped with 

hydrochloric acid and h can be compared. The spectral changes in doped P AMs 

showed that the mechanism of doping with HCI and 12 is different. The peaks at 

-1565 and - 1157 cm-I are assigned to PAM' s complex with 12 whereas the spectra of 

Hel doped PAMs give same peaks as undoped polymer [86]. This infers that 

oxidation process play pivotal role in 12 doping while -CH=NH+ iminium entity do 

not appreciably change major IR peaks of pristine polyaldimine. Moreover, iodine 

binds firmly with PAM and hence is difficult to escape while HCl vaporizes [87]. 
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Similarly, doping mechanism is also studied by UV -visible spectroscopy. Protonation 

of polymeric aldimines by diverse dopants like sulfonic acid derivatives, alchohols, 

phenol, and halogenated hydrocarbons can be studied by FT-IR which demonstrates 

the electron-withdrawing or electron-donating characteristics. The conjugational 

changes upon protonation are based on the fact that delocalization of lone pair of 

nitrogen causes reduction in C=N bond order, hence lowering the force constant of -

CH=N- group. Consequently, the stretching vibrations of these groups in polymer are 

observed at lower frequencies. The non-conjugated polyimines show stretching C=N 

vibrations at ~ 1675 to 1665 cm- I whereas conjugation with aryl moiety causes a shift 

ofC=N stretchings to ~1630 cm- I [88]. 

Since many polyaldimines are insoluble in representative organic solvents leading to 

their refusal as potential candidates for quite a few applications. Co-ordination 

complexes of aromatic polyaldimines with AICb or GaCb can be solublized in 

CH3N02 and Ph-N02. Yang et al. [89] used di-3-cresyl-phosphate and 

diphenylphosphate for protonation of aldimines in m-cresol or HCOOH. A few of 

sulphonic acid based dopants and metal chlorides are listed in table 1.1. 

Table 1.1: List of Acidic Dopants for Polyazomethine 
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1.10 Applications of Polyazomethines: 

Polyazomethines are conjugated class of organic polymers that are well known for 

their admirable properties such as good mechanical strength, high thermal stability, 

electrochromism [71], optoelectronics, electroluminescence, photoluminescence [90], 

electrical conductivity [91] , and fiber fOlming applications. Their properties have 

been investigated for the development of large-area display organic polymer light 

emitting diodes (PLEDs) [92J. They are being tuned for use in organic photovoltaic 

devices [93], polymer solar cells (PSCs) [94] and other future energy applications. An 

interesting application in this regard is the production of hydrogen (H2) from water 

using 4,4'-diaminotriphenylamine [95] based monomer. PAMs have applications in 

liquid crystals [96], non- linear optics [97], resistive switching [98], information 

storage [99] , thin film fonnation, and laminates that are chemically resistant [100]. 

Conjugated poly(Schiff base)s have been synthesized by chemical vapor deposition 

[58] method using low pressure evaporation. PAMs have been extensively studied for 

their application as an active layer and/or hole-transport materials [101] in 

electroluminescent devices. Novel polyimines based on 4,4'-diaminotriphenylamine 

pre a ed y Niu ha eben tested as electron-hole transport materials [1 02] in 

electroluminescent devices. Cunently, polyazomethines employing triphenylamine 

moiety are being tested for thin fi lm formation [57] , organic photovoltaics [93], solar 

cells [103], carbon nanosphere formation, and a variety of other applications ranging 

from electronics to photo- and optoelectronics [104]. 

1.10.1 Polymer Solar Cells (PSCs): 

For the performance of PSCs the molecular energy levels and band gap are of critical 

importance. Tuning the band gap and molecular energy levels of conjugated 

polyimines are effective for organic photovoltaic COPY) device efficiency. The major 

reason for low efficiency of PSCs is the disparity between solar inadiance spectmm 

and absorption spectmm. The PSC based on polymer that provides a better overlap of 

absorption spectmm with solar irradiance spectmm is superior for device fabrication. 

Another impOliant reason for low efficiency of PSCs is that the molecular energy 

levels are not ideal yet, and a great deal of energy is lost during photon-electron 

conversion [105, 106]. 
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Atsushi Kimoto and his coworker [107] synthesized low band gap polymer based on 

bulk hyperconjugation (BHC) strategy with phenylazomethine moiety as appending 

group for OPV device fabrication. One of the most effective methods for increased 

photoconversion efficiency is to broaden the absorption wavelength range of active 

layer and perk up short-circuit current. Intramolecular charge transfer between 

electron-donor and electron-acceptor species broaden the light absorption range. They 

reported that the open circuit voltage of OPV device clearly increased upon 

complexation of imine nitrogen with SnCh. This showed that the electronic state of 

active polymer layer changed upon complexation with phenylazomethine behaving as 

metal ion collector and preventer of SnCh aggregates formation under large polarity. 

Longbin Qiu [2014] synthesized carbon cactus-like nano-structures having high 

surface area from chemical decomposition of polyazomethines and used them as 

counter electrode prepared by solution casting on F-doped ITO glass for photovoltaic 

cells. The cell prepared from these carbon nano-spheres showed a considerably high 

conversion efficiency upto 7.5% [108] . 

1.10.2Liquid Crystalline (LC) Polymers: 

The long rod like rigid structures in a macromolecule having aromatic moieties 

bonded directly or indirectly with a variety of linkages, is well known to induce a 

property called liquid crystalline (LC) behavior on them1al scanning or altematively 

in highly concentrated solution. 

Amid different linkages present in . LC the C=N aldimine bond is a prototype. These 

aldimine linkages built into macromolecular chain will either induce or promote the 

formation of phases called mesophase fOlmation upon changes in temperature. This is 

called thermotropic LC. And if mesophase formation occur at different suitable 

concentrations in an appropriate solvent then this is called lyotropic LC [109]. 

Dimer based [110] and low weight molecular LC as well as polymeric LC have 

variety of technological uses owing to their ability of self-assembling into mesophase. 

However, the investigations for newer materials that exhibit LC characteristics is still 

an active research area of polymeric aldimines. The synthesis of thermotropic 

polyimines with reasonable softeneing temperatures (called glass transition 

temperature, T g) has been the main objective of various research groups. Pioneering 
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work done at DuPont chemical industry revealed that T g can be favorably lowered 

either by introducing flexible spacers or lateral substituents in the macromolecular 

chain, and hence effectively form mesophases. 

LC polymers combine the physico-chemical texture of polymers with those of liquids. 

Depending upon the mesogenic units present in polymeric macrochains, polymers 

have been classified as main-chain LC (MC-LC) and side-chain LC (SC-LC). MC-LC 

are characterized by rigid, rod like stiff regions whereas SC-LC have three different 

structural elements; the mesogen,:the backbone, and the spacer. The poly(azomethine­

ether)s form a class of thermotropic LC that fonn ordered alignment on heating. 

The liquid crystals based on polymeric aldimines was first repOlied by Skoulios and 

Guillon from 4,4/-difonnyl-a,co-diphenoxydecane and benzidine [111]. They also 

used-4,4/ -diamino-a,co-diphenoxyalkanes with benzene-l,4-dicarboxaldehyde for the 

synthesis of liquid crystals polyimine. Similarly 4,4/-diamino-a ,co-diphenoxyalkanes 

were used with 1,4-phenylenediamine by Li Chang [70] for the synthesis of 

azomethine-ethers. The liquid crystalline propeliies of macromolecular imines were 

observed with diphenoxyalkane spacers as a function of chain length. Nematic 

mesophases were found to exist in ether based polyazoimines (as shown in figure 1.8) 

over an ample range of temperature as observed in DSC and optical microscopy 

(OPM). 

Figure 1.8: (a) Broken conic texture, (b) thread like texture [11 2J 
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Aly et al synthesized dibenzylidine based LC [113], while liayanthi and Kishore 

[114] prepared hydroxyl functionalized LC. Similarly, metal containing LC showing 

nematic mesophase have been attempted from hydroxyl group containing 

polyazoimines. Hamman and Aly synthesized a new series of LC with 

cyclopentanone and cyclohexanone [115, 116] using different bisaldehydes in EtOH 

and potassium hydroxide. Choi et al [117] in 2004 synthesized banana shaped 

mesogenic polyaldimines £i·om different bisamines plus dialdehydes that showed 

nematic LC texture on heating £i·om Tm = 120-224°C. 

1.10.2.1 LC-PAMs -Main Chain Imine Bond: 

Adell and coworkers [118] reported a series of semi-flexible homo- as well as co­

polymeric aldimines based on hydroxyl group containing meso genic cores and or 

aliphatic spacers. They explored mesomorphic behavior and thermal characteristics by 

OPM and DSC. During heating of polyaldimines, exclusive homopolmers prepared 

£i·om 4-methyl-m-phenylenediamine showed nematic mesophase while poly(Schiff 

base)s having aliphatic two methylene carbons and p -phenylene units instead of 

showing mesophase destruction of chains close to their melting temperature (at 

333°C) occurred. The exhibition of mesophases is more favorable, on the other hand, 

with increasing spacer length that results in decrease ofTg. 

1.10.2.2 LC-PAMs -Side Chain Imine Bond: 

Mesogenic LC polazomethines may be prepared from mesogen entities bonded to 

main chains. Sometimes, these type of macromolecules are called comb like LC. 

Cano and his co-workers have repOlied photo initiation and thermal polymerization of 

imine monomers having terminal vinyl ether or methacrylate groups. Conesponding 

metal complexes of these monomers and polymers showed smectic mesophases. 

1.11 Polyazomethines Chelates: 

The complexation capability of azomethine groups with diverse metal ions gives an 

ample diversity of possible applications [119]. The embeded transition metals in 

polyaldimine not only influences its chemical activity but also its physical features. 

For instance, Kaliyappan et al. [120] used polyimine matrix for complexation of 

diverse metal ions (Mn+2, Co+2, Cu+2, N/2, and 1n+2) [121]. He proposed the use of 
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polyacrylic acid's matrix functionalized with azomethine linkages for removal of 

waste water metal content. 

Likewise, a probable application of chelating azomethines is in selective removal of 

costly metal ions from sea water and or waste water. Hashemi et ai. [122] used S­

containg azomethine for pre-concentration and selective separation of Pb +2 traces 

from other ions (Na+l , K+ 1, Co+2, Cd+2, Cu+2, Ca+2, Zn+2, Hg+2) [1 23, 124]. 

Noticeably, the likelihood of removing of Pb +2 metal traces is extremely significant in 

environmental safety owing to its toxicity effect. Similarly, polyvinylchloride (PVC) 

matrix having dispersed azomethine compounds can be employed as ion-selective 

electrodes (ISEs) [125]. Potentiometric sensors functionalized with azomethine 

groups as an ion calTier has been repOlied to show exceptional selectivity [121] for 

metal ions. The host-guest cavity and geometric control by azomethine unit provides 

modeling of membrane lipophilicity and complexation, thus leading to (for a specific 

ion) exceptional stability, sensitivity plus selectivity [126]. For instance, Jeong et ai. 

[127] designed membrane electrodes for Pb+2 ions from a PVC and azomethine 

mixture using tetra-( 4-chlorophenyl)borate ionophore in the presence of additives and 

fii t th 

lipophilicity for metal complex and ionophore mobility. The ionophore having built in 

pyridine and bis(salicylidene) show incomparable selectivity for Pb+2 ions against 

other interfering ions (Ba+2 Cu+2 Sr+2 Zn+2 Cd+2 Ce+2 Mn+2 Co+2 Mg+2 K+ 1 Na+ 1 , , , , , , , , , , , 
Ag+I, Rb+I,Cs+l

) [128-131]. All the miscellaneous ions tested showed selectivity 

coefficient 10-3 or smaller (with exception of Cu+2). This indicates that other ions 

wouldn't perturb to any appreciable extent the working ofPb+2 ion electrodes [132]. 

1.12 Opto(electronic) Properties of PAMs: 

Polymeric azomethine macromolecules are thermostable polymers with appealing 

propeliies for opto(electronic) applications. The modulation of polyimines' optical 

absorption by chemical environment or exertion of potential contributes a pivotal role 

in their application in optoelectronics. Opto( electronic) properties of polyaldimines 

inelude thennochromism, electrochromism [133], acidichromism, solvatochromism, 

electrochromism [134], thermoluminescence [135] non-linear optics [136], and 

photoluminescence. Amid the massive family of polyaldimines, the macrochains with 

triphenylamine units (either derived from difom1yl or diamine) are incredibly striking 
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materials for hole-transport candidates used in opto( electrical) applications. The 

isoelectronic C=N with C=C is also planar, that shows optical behavior. Ability to 

capture H+, and coordinate with metals makes them apposite to conjugated polymers 

(polyacetylene, polyflurenes, PPV and polythiophene etc.) for number of 

opto(electronic) applications including pH and ion sensors [137, 138], organic light 

emitting diodes, polymer based photovoltaics, molecular wires [139] , and non-linear 

optical devices. It is expedient to synthesize polyaldimines by polycondensation of 

amine and carboxaldehyde. Moreover, their purification is relatively easier. They can 

be purified with Soxhlet extraction and reduced pressure drying. Other n-extended 

conjugation polymers syntheses necessitate expensive monomer, stern conditions, and 

noble catalysts. High thermal stability, and purposeful end capping is advantageous to 

other conductive macromolecules. Niu et al. [140], for example, studied 

polyaldimines created fl:om 4,4'-bisaminotriphenylamine and 1,4-

benzenedicarboxaldehyde or ethanedial. The easy oxidation of triphenylamine (TP A) 

moiety at central nitrogen makes them exceptional charge transport carriers through 

the cation radical species (N+.). Therefore TP A based azomethines have been studied 

and applied in numerous materials, for example, OLEDs [92], organic field-effect 

transistors [1 41 ], sensors [26], dye sensitized solar cells, and large area displays. The 

investigations of Lio et al since 2005 are focused on TP A based polymeric amides, 

imines and imides series for striking electro chromic properties. 

It is established that the macromolecules with TP A units show steady electrochromic 

features, and the inclusion of electron-donating lateral substituents at the para­

positions of TPA give stable cationic radicals. The imine's nitrogen lone pair in the 

backbone of polyaldimine can form intra- or inter-molecular bondings, undergo 

protonation as well as complexation with metal cations, h and acids. Therefore, 

polyazomethines show distinguished optical propelties. 
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Polycondensation of mono- and di-ether based aromatic bisaldehydes with aromatic 

bisamines require inert atmospheric conditions since the azomethine linkage IS 

moisture sensitive. The purity of chemicals used, solvents, and monomers is 

especially important for obtaining polyazomethines of desired purity. This chapter 

illustrates the chemicals used, purification of solvents, methods employed for 

synthesis of mono-ether linked and di-ether linked aromatic bisaldehyde, synthesis of 

aromatic polyazomethines as well as the techniques and instrumentations used for 

characterization of monomeric/polymeric materials. 

2.1 Reagents and Chemicals: 

The reagents and chemicals used in the synthesis of monomers and poly(azomethine)s 

were of high purity. Hydroquinone (1,4-dihydroxybenzene), resorcinol (1,3 -

dihydroxybenzene), pyro-catechol (1,2-dihydroxybenzene) were obtained from Merk 

(Germany) whereas 4-fluorobenzaldehyde, 4,4'-dihydroxybiphenyl, Bisphenol A, 

(1,1,1 ,3,3,3-hexafluoro )- bisphenol propane, 4-hydroxy-3-methoxybenzaldehyde, 4-

hydroxy-3-ethoxybenzaldehyde, and 4-hydroxybenzaldehyde were obtained from 

Fluka (Switzerland). The chemicals K2C03 anhydrous, 1,4-phenylenediamine, 4,4'­

diaminodiphenyl ether, tetrabutylammonium perchlorate (TBAP), benzophenone, 

P20S, calcium chloride, magnesium turnings, calcium hydride, p-touene sulfonic acid 

and iodine crystals were purchased from Aldrich company (Gelmany). The solvents 

n-hexane, dimethylsulfoxide, and diethyl ether were Merk's company (Gennany) 

while chlorofonn, ethylacetate, toluene and dichloromethane were obtained from 

Panreac (Spain). The ethanol, methanol, and N,N-dimethylfonnamide were purchased 

from Deijing (Korea) whereas hydrochloric acid, chloroform, sulfuric acid and ethyl 

acetate were obtained from Riedel-de-Haen (Germany). 

2.2 Drying of Solvents: 

Solvents were dlied by distillation of solvents either under reduced pressure or at 

atmospheric pressure using distillation assemblies. Water content of solvents was 

minimized by employing standard procedures [1]. 

2.2.1 Chloroform (CHCh), (b.p. 61.2°C1760 mmHg) was pre-dried on CaCh and 

then refluxed over P20S. 
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2.2.2 Dichloromethane (CH2Ch), (b.p. 40°C/760 mmHg) was dried by 

refluxing with MgS04 anhydrous for 3-4 hours before collecting the distillate. 

2.2.3 Ethyl acetate (EtOAc), (b.p. 77.1 °C/760 mmHg) was pre-dried over MgS04 

before reflux with P20S. 

2.2.4 Absolute Ethanol, (b.p. 78°C/760mmHg) was dried by refluxing in the 

presence of Mg turning using h crystals as indicator. The dried ethanol was collected 

on h color discharge. 

2.2.5 Methanol, (b.p. 64-65°C/760 mmHg) was pre-dried over CaH2 for overnight by 

stirring followed by refluxing with Mg turnings using h crystal as an indicator. 

2.2.6 Diethyl ether, (b.p.64.5°C/760 mmHg) was distilled with sodium metal wires 

employing benzophenone as an indicator [1]. Stored the dried diethylether over 

molecular sieves. 

2.2.7 II-Hexane, (b.p. 68.7°C/760 mmHg) was predried overnight over CaH2 

followed by distillation with sodium metal Wires 111 the presence of 

benzophenone indicator. 

2.2.8 N,N-Dimethylformamide (DMF), (b.p. 153-1S4°C/760 mmHg), CaH2 was 

used for drying of DMF. It was stirred for 12 hours in the presence of CaH2. Then 

vacuum distillation was performed. 

2.3 Instrumentation and Analytical Techniques: 

2.3.1 Melting Point Determination: 

Melting points of monomers were examined with Mel-temp, (Mitamura Riken kogyo, 

Inc Tokyo, Japan) apparatus with capillary tube method. The m.p. of reactants were 

also determined to confirm/check the purity/decomposition. 

2.3.2 FT-IR Spectroscopic Measurements: 

Direct sampling by ATR teclmique on Perkin Elmer Spectrum One (Ver. B) was used 

to obtain solid state Fourier Transforn1 Infrared (FT-IR) spectra. 
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2.3.3 NMR Spectroscopic Measurements: 

IH_ and 13C-NMR spectra of bisaldehydes and polyazomethines were measured on 

Bruker 300 MHz & 75 MHz Ultrashield Spectrophotometer using deuterated solvents 

(CDCb, DMSO-d6, and D2S04). 

2.3.4 UV-visible Spectroscopic Measurements: 

The UV -visible spectra of monomers and polyimines were measured on Schimadzu-

1700 UV using CHCb, DMF and sulfuric acid. 

2.3.5 Fluorescence Spectroscopic Measurements: 

Fluorescence spectra of the polyazomethines were measured on Perkin Elmer Ls 55 

bu instrument using single glass cell. 

2.3.6 Viscometric Measurements: 

The viscosities of polyazomethines were determined at room temperature employing 

U-tube Ubbelhode viscometer with 20 mL solutions. 

2.3.7 Thermogravimetric Analysis: 

Thenno gravimetric analysis was run on Perkin Elmer TGA-7 instrument at heating 

rate of 1 ODC/min up to a maximum 650-700DC. 

2.3.8 Differential Scanning Calorimetry (DSC): 

DSC studies were performed employing Mettler Toledo DSC 823e instrument at 

heating rate of 10DC per min in N2 atmosphere. 

2.3.9 W AXRD Analysis: 

Wide-angle X-ray diffraction measurements of powdered polymers were done on 

Philips 3040/60 X'Pert Pro diffractometer having Cu anode with-Ka radiation source. 

2.3.10 Electrical Conductivity Measurements: 

The electrical conductivity (0-) of polyazomethines was measured with Keithley 

source meter 2400. 
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2.4 Synthesis of Monomers: 

2.4.1 General Synthesis of Mono-ether Based Aromatic Dialdehydes: 

In a typical mono-ether based monomer synthesis; phenol (1 equivalent) and 

anhydrous potassium carbonate (K2C0 3) (1.1 equivalent) in an appropriate amount of 

N,N-dimethylfonnamide (DMF) solvent were added to 250 mL prebaked round 

bottom flask (RBF). Heated the reaction contents for about 1-2 hours at 80-90°C 

under inert atmosphere followed by cooling to about 40°C. Then 1 equivalent of 4-

fluorobenzaldehyde was added. Continued the stirring for 45 min, followed by 

refluxing the mixture for 25 hours at 154°C. Different ratios of ethyl acetate (EtOAc) 

and n-hexane were used to monitor the reaction via thin layer chromatography. Upon 

completion of reaction, poured the contents of reaction flask into 300 mL ice cold 

water and neutralized the base with 10% hydrochloric acid (HCl) solution. The 

precipitated monomers were filtered through filter paper. Then, recrystallized the 

collected precipitates with ethanol/ethyl ethanoate/CHCb mixtures in appropriate 

ratios. After re-crystalization monomers were dried in vacuum oven and saved for 

polymerization. 

2.4.1.1 Synthesis of 4,4'-diformyldipbenyl ether (ODF): 

The 250 mL prebaked round bottom flask was equipped with magnetic stirrer and 

charged with 3.05 g (0.025 moles) of 4-hydroxybenzaldehyde and 4.0 g (0.029 moles) 

anhydrous potassium carbonate (K2C03) in 45 mL dried N,N-dimethylformamide 

(DMF). Gently heated the mixture for 1.5 hour at 80-90°C under dry nitrogen (N2) 

atmosphere. Then cooled the mixture flask to about 40°C followed by the addition of 

4-fluorobenzaldehyde (2.68 mL, 0.025 moles). After addition of 4-fluoro­

benzaldehyde continued the stirring under nitrogen atmosphere. Heated the mixture to 

reflux in paraffin oil bath for 25 hours with regular monitoring of product formation 

via TLC using ethyl ethanoate & n-hexane mixtures. When the reaction completed, 

cooled down the flask to room temperature followed by pouring in 300 mL ice cold 

water. Excess base was neutralized by adding 10% HCl dilute solution. Filtering 

through filter paper, washing with H20, drying in oven and then recrystalization 

followed by drying afforded the mono-ether based aromatic dialdehyde named as 4,4'­

difonnyldiphenyl ether. FT-IR (u= cm- I
): 3065 cm-I (aromatic C-H str.); 2819, 2731 

cm-I (aldehydic C-H str.) ; 1675 cm-I (carbonyl str.); 1581 , 1494 cm- I (aromatic C=C); 
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1236 cm- I (C-O-C ether): IH- NMR, (CDCb, 300 MHz, 25°C, ppm); b = 9.99 ppm (s, 

1H, -CHO), 7.95 ppm (d, 2H, J = 8.4 Hz), 7.20 ppm (d, 2H, J = 8.4 Hz). 

4,4 '-diformyldiphenyl ether 

(ODF) 

2.4.1.2 Synthesis of 2-methoxy-4,4'-diformyldiphenyl ether (MDF): 

The two necked round bottom flask 250 mL equipped with magnetic stirrer was 

charged with 2.5 g (0.016 moles) of3-methoxy-4-hydroxybenzenecarboxaldehyde (or 

vanillin) and 2.5 g (0.018 moles) anhydrous potassium carbonate (KZC03) in 45 mL 

dried N,N-dimethylformamide (DMF). Heated the mixture for 1.5 hour at 80-90°C on 

hot plate under dry nitrogen atmosphere. Then low downed the mixture temperature 

to about 40°C followed by the addition of 4-flourobenzenecarboxaldehyde (1.77 mL, 

0.016 moles). The remaining procedure was same as mentioned in ODF synthesis. 

FT-IR (lJ= cm-I): 3066 cm-1 (aromatic C-H str.); 2978, 2928 cm- I (aliphatic C-H str.); 

2860, 2759 cm-I (aldehydic C-H str.); 1680 cm- I (carbonyl str.) ; 1581, 1497 cm- I 

(aromatic C=C); 1235, 1208 cm-I (C-O-C ether): lH- NMR, (CDCb, 300 MHz, 25°C, 

ppm); b = 9.97 (s, IH, -CHO), 9.95 (s, IH, -CHO), 7.89 (d, 2H J = 8.4 Hz), 7.58 (s, 

IH), 7.53 (d, IH, J = 8.1 Hz), 7.08 (d, 2H, J= 8.4 Hz), 7.21 (d, IH, J = 8.1 Hz). 

OCH3 

OHC~O-( )-CHO 

2-methoxy-4,4 '-diformyldiphenyl ether 

(MDF) 

2.4.1.3 Synthesis of 2-ethoxy-4,4'-diformyldiphellyl ether (EDF): 

A prebaked 250 mL round bottom flask equipped with magnetic stirrer was charged 

with 2.75g (0.016 moles) of 3-ethoxy-4-hydroxybenzenecarboxaldehyde and 2.5g 

(0.018 moles) anhydrous potassium carbonate (KZC03) in 45 mL dried N,N­

dimethylformamide (DMF). Heating was maintained for 1.5 hour at 80-90°C under 
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dry nitrogen (N2) atmosphere. Then cooled the mixture fl ask to about 40°C followed 

by the addition of 4-flourobenzaldehyde (1.77 mL, 0.016 moles). The rest of the 

procedure was same as mentioned for ODF monomer. FT-IR (D= cm-I): 3063 cm- I 

(aromatic C-H str.) ; 2973, 2930 cm-I (aliphatic C-H str.); 2828, 2736 cm-I (aldehydic 

C-H str.); 1687 cm-I (carbonyl str.) ; 1577, 1497 cm-I (aromatic C=C); 1268, 1227 cm­

I (C-O-C ether): IH-NMR, (CDCb, 300 MHz, 25°C, ppm); ~ = 9.96 (s, lH, -CHO), 

9.94 (s, 1H, -CHO), 7.88 (d, 2H, J = 8.7 Hz), 7.52 (d, J = 8.1 Hz), 7.54 (s), 7.23 (d, 

1H, J= 8.1 Hz), 7.07 (d, 2H, J= 8.7 Hz). 

OCH2CH3 

OHC-Q-OH + F~CHO 

2-ethoxy-4,4 '-diformyldipbenyl ether 

(EDF) 

2.4.2 General Syntbesis of Di-ether Based Aromatic Dialdebydes: 

In a typical monomer synthesis; dihydroxyphenol (1 equivalent) and anhydrous 

potassium carbonate (K2C0 3) (2 equivalents) in appropriate N,N-dimethylfonnamide 

(DMF) were added in 250 mL prebaked round bottom flask. Heated the reaction 

contents for about 1-2 hours at 80-90°C under inert atmosphere followed by cooling 

to about 40°C. Then 2 equivalents of 4-fluorobenzenecarboxaldehyde were added. 

Continued the stirring for 45 min, followed by heating the mixture for 50 hours at 

154°C. TLC was mn in ethyl acetate (EtOAc) and n-hexane in different ratios to 

observe the reaction progress. Upon completion of reaction poured the contents of 

reaction flask into 350 mL ice cold water. After neutralizing the base with 10% 

hydrochloric acid solution collected the precipitates. Filtering through filter paper, 

washing with H20 , drying 111 oven and then recrystalization with 

ethanollethylacetate/chloroform mixture followed by drying afforded the di-ether 

based aromatic bisaldehydes. 
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2.4.2.1 Synthesis of 4,4 '-di[(4-formylphenyl)oxy]bipbenyl (BPDF): 

To a 250 mL prebaked round bottom fl ask transfelTed magnetic stirrer, 2.3 g (0.013 

moles) biphenyl-4,4'-diol and 4.0 g (0.029 moles) and anhydrous potassium carbonate 

(K2C03) in 50 mL dried N,N-dimethylformamide. Heated the mixture for 50 min at 

80-90°C under dry nitrogen, N2, atmosphere to form potassium salt of diol. Then 

cooled the mixture flask to about 40°C followed by the addition of p ­

flourobenzaldehyde (3 .0 mL, 0.026 moles). Continued the stirring for 45 min, 

followed by heating the mixture for 50 hours at 154°C under refluxing conditions. 

TLC in ethyl acetate and n-hexane in 1: 1 ratio was utilized for monitoring the reaction. 

Upon completion of reaction poured the contents of reaction flask into 350 mL ice 

cold water and neutralized the base with 10% HCI solution. Filtered the precipitates of 

BPDF monomer. Recrystallized the precipitates with ethanol/ethyl ethanoate mixture. 

Yield, 84%, m.p. 160°C. FT-IR (u= cm-i): 3062 cm-i (aromatic C-H str.); 2812, 2712 

cm-i (aldehydic C-H str.); 1688 cm-i (carbonyl str.); 1592, 1487 cm-i (aromatic C=C); 

1250, 1207 cm- i (C-O-C ether): iH-NMR, (CDCb, 300 MHz, 25°C, ppm); 0 = 9.94 

(s, 1H, -CHO), 7.98 (d, 2H, J = 8.7 Hz), 7.80 (d, 2H, J = 8.7 Hz), 7.27-7.21 (dd, 4H, J 

= 8.7 z . 

HO-( ) ( )-OH+F-<=)-CHO 

K2C03, 

DMF 

OHC-Q-O-( ) ( )-O-Q-CHO 
4,4' -di [( 4-formylphenyl)oxy ]biphenyl (BPDF) 

2.4.2.2 Synthesis of 4,4' -[1,4-phenylene-bis-oxy] bis-benzenecarboxaldehyde 

(HDF): 

The same procedure was followed for HDF. In a 250 mL two necked round bottom 

flask equipped with magnetic stirrer added 2.75 g (0.025 moles) hydroquinone and 

8.0 g (0.06 moles) anhydrous potassium carbonate with 60 mL dried DMF. The 

mixture was heated for 1 hour at 80-90 °c under ineli atmosphere. Then cooled the 

mixture flask to about 40°C followed by the addition of 4-flourobenzaldehyde (6.0 
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mL, 0.06 moles). The rest of the procedure is same as mentioned in general procedure 

for di-ether based dialdehydes. Yield, 91 %, m.p. 153-155°C. FT-IR (0= cm-'): 3029 

cm-' (aromatic C-H st1'.); 2727 cm- ' (aldehydic C-H st1'.); 1692 cm- ' (carbonyl st1'.); 

1599, 1489 cm- i (aromatic C=C); 1225, 1187 cm-' (C-O-C ether): 'H-NMR, (CDCb, 

300 MHz, 25°C, ppm); b = 9.95 (s, 1H, -CHO), 7.90 (d, 2H, J = 8.7 Hz), 7.15 (dd, 

4H, J = 8.4 Hz). 

HO-( ~OH +F-<=)-CHO 

K2C031 

DMF 

OHC-Q-O-( ~O-Q-CHO 

HDF 

2.4.2.3 Synthesis of 4,4'-[1,2-phenylelle-bis-oxy]bis-bellzellecarboxaldehyde 

(CDF): 

The same procedure was followed for CDF. In a 250 mL prebaked round bottom flask 

(RBF) equipped with magnetic stilTer added 2.75g (0.025 moles) pyrocatechol and 

8.0g (0.06 moles) anhydrous potassium carbonate (K2C03) in 60 mL dried N,N­

dimethylfol'1namide (DMF). The mixture was heated for 1 hour at 80-90 °C under dry 

nitrogen atmosphere. Then cool the mixture flask to about 40°C followed by the 

addition of 4-flourobenzenecarboxaldehyde (6.0mL, 0.06 moles). The rest of the 

procedure was same as mentioned in general procedure for . di-ether based 

dialdehydes. Yield, 77%. 'H-NMR, (CDCb, 300 MHz, 25°C, ppm); b = 9.86 (s, 1H, -

CHO), 6.89 (d, 2H, J = 8.7 Hz), 7.32-7.21 (m, 2H), 7.77 (d, 2H, J = 8.4 Hz). 

HO OH 

( 5 +F-Q-CHO 

K 2C03, 

DMF 

OHC-Q-< >-( ~CHO 
\ ;j CDF 
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2.4.2.4 Synthesis of 4,4 '-[l,3-phenylene-bis-oxy]bis-benzenecarboxyaldehyde 

(RDF): 

The same procedure was followed for RDF. In a 250 mL prebaked round bottom flask 

(RBF) equipped with magnetic stiner added 5.5 g (0.05 moles) resorcinol and 16.0 g 

(0.11 moles) anhydrous potassium carbonate (K2C03) in 60 mL dried N,N­

dimethylformamide (DMF). Gently the mixture was heated for 1 hour at 80-90 °C 

under dry nitrogen (N2) atmosphere. Then cooled the mixture flask to about 40°C 

followed by the addition of 4-flourobenzaldehyde (12.0 mL, 0.11 moles). The rest of 

the procedure was same as mentioned in general procedure for di-ether based 

dialdehydes. Yield, 82%, m.p. 108-1 10°C. IH-NMR, (CDC!], 300 MHz, 25°C, ppm); 

0= 9.93 (s, 1H, -CHO), 6.9-7.95 (m, 8H). 

HO 

< t-0H + F-Q-CHO 
K2C031 

DMF 

OHC-o-°O°-o-CHO 

RDF 

2.4.2.5 Synthesis of 2,2-di' [4-(4 '-formylphenyloxy)phenyl] propane (BP ADF): 

The same procedure was followed for BPADF. In a 250 mL prebaked round bottom 

flask (RBF) equipped with magnetic stirrer added 2.62 g (0.01 2 moles) 4,4'-(propane-

2,2-diyl)diphenol (bisphenol-A) and 3.85 g (0.028 moles) anhydrous potassium 

carbonate (K2C03) in 50 mL dried N,N-dimethylformamide (DMF). The mixture was 

heated for 2 hours at 80-90 °C employing nitrogen atmosphere. Then cooled the 

mixture flask to about 40°C followed by the addition of 4-flourobenzaldehyde (2.5 

mL, 0.023 moles). The rest of the procedure is same as mentioned in general 

procedure for di-ether based dialdehydes. IH-NMR, (CDC!], 300 MHz, 25°C, ppm); 

0= 9.92 (s, 1H, -CHO), 7.09 (dd, 4H, J = 8.7 Hz), 7.32 (d, 2H, J = 8.7 Hz), 7.87 (d, 

2H, J = 8.7 Hz), 1.74 (s, 3H). 
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BPADF 

2.4.2.6 Synthesis of 2,2-di [4-(4'-formylpbenyloxy)pbenyl]-1,1,1,3,3,3-

bexafluoropropane (HFBPDF): 

The same procedure was followed for HFBPDF. In a 250 mL prebaked round bottom 

flask (RBF) equipped with magnetic stirrer added 3.86 g (0.012 moles) 4,4'­

(Hexafluoroisopropyliden)-diphenol and 4.0 g (0.029 moles) anhydrous potassium 

carbonate (K2C03) in 50 mL dried N,N-dimethylformamide (DMF). The mixture was 

heated for 2 hours at 80-90 °c under nitrogen conditions. Then cooled the mixture 

flask to about 40°C followed by the addition of 4-flourobenzenecarboxaldehyde (2.5 

mL, 0.023 moles). The rest of the procedure was same as mentioned in general 

procedure for di-ether based dialdehydes. FT-IR (u= em- I) : 3090 cm- I (aromatic C-H 

str.) ; 2850, 2750 cm- I (aldehydic C-H str.); 1686 cm- I (carbonyl str.) ; 1588, 1494 cm-I 

(aromatic C=C); 1232, 1205 cm-I (C-O-C ether): IH- NMR, (CDCh, 300 MHz, 25°C, 

ppm); 6 = 9.96 (s, 1H, -CHO), 7.17 (dd, 4H, J = 8.7 Hz), 7.92 (d, 2H, J = 8.7 Hz), 

7.47 (d, 2H, J = 8.7 Hz). 

0-0-' -o-C~ -0-0 
H-C __ 0 \ j ¢~O ~ j C-H 

CF3 

HFBPDF 

28 



Experimental 

2.5 General Synthesis of Poly(azomethine)s: 

All polyazomethines derived fi:om mono-ether and di-ether based aromatic 

dialdehydes were synthesized under N2 atmosphere by solution polycondensation. A 

typical procedure is as follows: all the dialdehydic monomers (1 equivalent) were 

dissolved in 20 mL DMF and 10 mL toluene. And p-toluenesulfonic acid (TsOH) 

monohydrate was added in catalytic amount. Then the equimolar diamine 

(1 equivalent) solution in 10 mL was added drop wise with continuous stirring. The 

reaction was distilled for azeotropic water removal with toluene using Dean-Stark 

trapper. After 6 hours reflux, check the TLC for any residual monomers if present, 

using CHCb eluent. If the product was directly precipitated in reaction mixture, it was 

poured onto 300mL ice cold water. Filtered, washed with methanol and dried at 40°C 

for 6 hours. On the other hand, if polymers were soluble in DMF then upon reaction 

completion excess DMF was reduced to half through rotary evaporation fo llowed by 

precipitation in ice cold H20. Then the product was filtered, water washed, 

recrystallized from ethanol/chloroform, and subsequently dried at 40°C for 6 hours. 

Sr. No. Polymer code Aromatic Diamine Aromatic Dialdehyde 

1 P,ODF 4,4'-diaminodiphenyl ether ODF 

2 P20DF l,4-phenylenediamine ODF 

3 P,MDF 4,4'-diaminodiphenyl ether MDF 

4 P2MDF 1,4-phenylenediamine MDF 

5 P,EDF 4,4 '-diaminodiphenyl ether EDF 

6 P2EDF 1,4-phenylenediamine EDF 

7 P ,BPDF 4,4'-diaminodiphenyl ether BPDF 

8 P2BPDF 1,4-phenylenediamine BPDF 

9 P,HDF 4,4'-diaminodiphenyl ether HDF 

10 P2HDF 1,4-phenylenediamine HDF 

11 P ,BPADF 4,4'-diaminodiphenyl ether BPADF 

12 P2BPADF 1,4-phenylenediamine BPADF 

13 P,HFBPDF 4,4'-diaminodiphenyl ether HFBPDF 

14 P2HFBPDF 1,4-phenylenediamine HFBPDF 

15 P,CDF 4,4'-diaminodiphenyl ether CDF 

16 P2RDF 1,4-phenylenediamine RDF 
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Nine ether based aromatic dialdehydes have been prepared. Using these aromatic 

diformyl-ether monomers sixteen new polymers have been synthesized. The 

polyazomethines derived from mono-ether linked and di-ether linked aromatic bis­

aldehydes were formed by solution polycondensation using DMF solvent in the 

presence of p-toluenesulfonic acid catalyst and toluene as azeotropic water removal 

agent. There are other methods that can be used to remove water from reaction such 

as using MgS04, or LiCI etc [1] as dehydrating agents. 

The stlUctures of synthesized aromatic bis-aldehydes were established by 

spectroscopic techniques (FT-IR, 'H- and I3C-NMR, UV-visible spectroscopy) as 

well as m.p. aided the purity of monomers. Polyazomethines were characterized by 

spectroscopic measurements (FT-IR, 'H- and I3C- NMR, UV-visible spectroscopy), 

viscometric measurements, thennogavimetric analysis (TGA), fluorescence 

spectroscopic technique, differential scanning calorimetry (DSC), Wide-angle XRD 

analysis, and conductivity measurements. 

3.1 Characterization of Monomers: 

Nine different monomers were synthesized by reacting y-

benzenecarboxaldehydes or dihydroxyphenols with 4-fluorobenzenecarboxaldehyde 

in DMF solvent using anhydrous K2C03. Monohydroxy phenolic aldehydes gave 

mono-ether based aromatic dialdehydes whereas dihydroxyphenol's etherification [2] 

with p-fluorobenzaldehyde resulted in di-ether based aromatic bis-aldehydes as 

depicted in Scheme No.1 and Scheme No.2. 

This etherification reaction of p-fluorobenzaldehyde with -OH functional groups was 

carried out using DMF solvent. If any other aromatic halide is used for etherification, 

then the solvent must be changed from DMF to DMSO [3] otherwise product is not 

formed. This can be associated with easy nucleophilic substitution of -F from 

aromatic ring owing to smaller sized and being highly electronegative element it 

increases the electrophilic character of carbon to which it is attached on aromatic ring. 

As a result nucleophilic phenoxide's (-PhO-) attack on electropositive carbon 

becomes easy_ For successful etherification reaction of other aryl halides DMSO 

solvent can be used because it is high boiling solvent and is necessary to overcome 

reaction' s activation energy barrier. In fact, reactions using other aryl halides in DMF 
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solvent were tried but resulted in product failure. The table 3.1 shows the physical 

characteristics of monomers. All ether linked dialdehyde monomers were obtained in 

appreciable yield. The monomers BPADF, HFBPDF and CDF were gelatinous at the 

time of synthesis and were separated carefully followed by washing and drying in 

oven at 40°C until completely dried. Then the product was recystallized from 

CHCb/ethyl acetate mixtures. The rest of monomers were directly precipitated out 

upon the addition of reaction mixture to ice cold water and processed as discussed in 

experimental section. 

Table 3.1 : Pbysical Cbaracteristics of Aromatic Dialdebydes 

Code Color Physical Sate m.p. % Yield 

ODF Orange Crystalline 55-60°C 90 

MDF Orange Crystalline 67-68°C 88 

EDF Orange Amorphous 68-70°C 85 

BPDF Off-white Amorphous 160°C 84 

HDF Maroon Crystalline 153-155°C 91 

RDF Brick red Amorphous 108-110°C 82 

CDF Grayish red Amorphous 77 

BPADF Light orangc Crystalline 2°C 79 

HFBPDF Light yellow Amorphous 90-94°C 73 

The structures ofbisaldehydes synthesized via etherification reaction were established 

by FT-IR, IH_ and 13C-NMR Spectroscopic measurements. The FT-IR spectral data 

(table 3.2) and NMR signals data (table 3.3 and table 3.4) are discussed below. 

3.1.1 FT-IR Spectroscopic Analysis: 

The FT-IR spectra of all the bis-aryl-carboxaldehydes (as mentioned in table 3.2) 

evidenced the successful synthesis of monomers. The representative IR spectrum of 

EDF is given in figure 3.1 and respective peaks of functional groups are labeled. The 

absence of -OH peaks of reactant phenol above 3200 cm- I confirmed the successful 

etherification. The aryl group moieties gave weak bands fi'om 3029-3090 cm-I in the 

spectrum. The aldehydic carbonyl stretching (H-C=O) was observed fi'om 1675-1692 

cm-I. The aliphatic C-H stretching bands and ether' s C- O-C absorption bands also 

appeared in the respective regions as shown in table 3.2. 
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ODF 

MDF 

EDF 

HDF 

BPDF 

EOF 

i s .. 
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Table 3.2: FT-IR data of Aromatic Dialdehydes 

Aromatic Aliphatic Aldehydic C=O 
C-H str. C-H str. . C-H str. str. 

3065 2819, 2731 1675 

3066 2978, 2860, 2759 1680 
2928 

3063 2973, 2828,2736 1687 
2930 

3029 2727 1692 

3062 2812,2712 1688 

ClllCllJSlntcll 

"I, ,J. " ! ! 

Aromatic 
C=C 

1581 , 
1494 
1581 , 
1497 
1577, 
1497 
1599, 
1489 
1592, 
1487 

(,1I: ,Ctb 
df.!ful..,.,lon 

C-O-C 

1236 

1235, 
1208 
1268, 
1227 
1225, 
1187 
1250, 
1207 

'- .J 
('-II be.dill lind Ring 

L-L ___ .J l""''''.g 
C-OStl'r lrli 

fl ll t l' lIokagr 

3900 ~ 3700 3600 3500 3-400 3300 3100 3100 3000 1900 2000 2100 2600 2M.lO 2400 2300 1200 2100 2000 1900 IBOO 1700 1000 1500 1400 1300 1200 11 00 

Wsvenuml)et 

HFBPDF 3090 2850, 2750 1686 

Figure 3.1: FT -lR graph of Monomer EDF 

3.1.2 lH_ and I3C- NMR Spectroscopic Analysis: 

1588, 
1494 

1232, 
1205 
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The 'H-NMR and I3C- NMR spectra of all ether based bis-aldehydes were consistent 

with the proposed.structures. The carboxaldehydic proton (O=C- H) gave singlets 

appearing at J = 9.90 - 9.97 ppm. All the symmetrically substituted bisaldehydes gave 

one singlet peak due to O=C-H whereas the two monomers (named as MDF and 

EDF) having unsymmetrical aromatic rings gave two singlets (at J = 9.97, 9.95 ppm 

and 9.96, 9.94 ppm, respectively). Moreover, the singlets in the spectrum of MDF, 

and EDF due to IH (at J = 7.58 ppm and 7.54 ppm) in aromatic region confirm the 

structure. The singlet at J = 3.90 ppm, triplet at J = 1.27 ppm, and quartet at J = 4.12 

ppm are also confirmatory of MDF, and EDF structures, respectively. All the 

aromatic hydrogens gave doublets (at J = 7.03 - 7.95 ppm) with coupling constants (J 

) ranging from 8.4 - 8.7 Hz which clearly indicates the p-phenylene units are present 

in monomers. The monomer RDF gave multiplet signals in aromatic region (at J = 6.9 

- 7.75 ppm) while the singlet of -CHO at J = 9.93 ppm confirms the proposed 

structure. The figure 3.2 shows the 'H-NMR spectra of ODF monomer. The singlet at 

J = 9.90 ppm due to -CHO group and two doublets at J 7.95 (2H, d, J = 8.4 Hz), and 

J 7.20 (2H, d, J = 8.4 Hz) are in consistent with the proposed.structure. 

Tab 3.3: 1 -NMR Data of Aromatic Dialdehydes 

Code -eHO (J ppm) Ar-H (J ppm) 
-CH3,-CH2-

(J ~~m} 

ODF 9.90 (s) 
7.95 (d, J= 8.4 Hz), 7.20 (d, J= 8.4 

Hz) 

9.97 (s) 
7.08 (d, J = 8.4 Hz), 7.21 (d, J = 8.1 

MDF 
9.95 (s) 

Hz), 7.58 (s), 7.53 (d, J= 8.1 Hz), 3.90 (s) 
7.89 (d, J = 8.4 Hz) 

9.96 (s) 
7.07 (d, J = 8.7 Hz), 7.23 (d, J = 8.1 

EDF 
9.94 (s) 

Hz), 7.52 (d, J= 8.1 Hz), 7.54 (s), 1.27(t), 4.12 (q) 
7.88 (d, J= 8.7 Hz) 

HDF 9.95 (s) 
7.90 (d, J = 8.7 Hz), 7.15 (dd, J= 

8.4 Hz) 

BPDF 9.94 (8) 
7.98 (d, J = 8.7 Hz), 7.80 (d, J= 8.7 
Hz), 7.27-7.21 (dd, 4H, J = 8.7 Hz) 
7.09 (dd, 4H, J = 8.7 Hz), 7.32 (d, 

BPADF 9.92 (s) 2H, J = 8.7 Hz), 7.87 (d, 2H, J = 1.74 (s, 3H) 
8.7 Hz), 1.74 (s, 3H) 

CDF 9.86 (s) 
6.89 (d, 2H,J= 8.7 Hz), 7.32-7.21 
(m, 2H), 7.77 (d, 2H, J= 8.4 Hz) 

RDF 9.93 (s) 6.9-7.95 (m) 
7.17 (dd, 4H, J = 8.7 Hz), 7.92 (d, 

HFBPDF 9.96 (s) 2H, J= 8.7 Hz), 7.47 (d, 2H, J= 
8.7 Hz). 
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Figure 3.2: IH- NMR spectra of Monomer ODF 

The table 3.4 shows the I3C-NMR spectral data of ether linked bisaldehydes. The 

signals at b = 190.6 - 192 ppm have been assigned to -CHO carbons. The ether linked 

carbons gave signals at b = 148 - 163 ppm. The signals in the range of 111 - 136 ppm 

are assigned to aryl carbons, whereas the aliphatic carbons gave signals at b = 14 - 64 

ppm. The figure 3.3 shows the I3C-NMR spectrum of monomer ODF. 

Code 

ODF 
MDF 
EDF 
HDF 
BPDF 

BPADF 
CDF 
RDF 

HFBPDF 

Table 3.4: 13C-NMR Data of Aromatic Dialdebydes 

-CHO C-O-C Ar 
(b ppm) (b ppm) (b ppm) 

190.6 161 119-133 
190.8, 190.7 162,152, 148 134-111 
190.9, 190.8 162, 151, 149 134-112 

190.8 163, 151 132-117 
192 162.7, 154.8 136-118 

190.8 163, 152, 157 131-117 
190.7 162, 146 132-116 

190.85 162, 156 132-112 
190.7 161 , 156 132-115 

Aliphatic C 
(b ppm) 

56 
64, 14 

42,31 

64 
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3.1.3 UV-visible Measurements of Monomers: 

The electronic spectra of bis-carboxaldehydes were recorded from 245-850 !Un using 

conc. 1 x 1O-6M in chloroform. The optical properties (Am ax and absorbance) are shown 

in table 3.5 and spectra are presented in figure 3.4. All the monomers exhibited a good 

agreement between Amax observed and calculated through Woodward-Fieser Rules [4]. 

The concun'ence between the two reinforced the proposed structures. The maxima at 

277-294 !Un can be assigned to 1t~1t*-transition of aryl moiety. All the bis­

carboxaldehydes exhibited a single maxima while the two monomers MDF, and EDF 

having - OCH3 and - OC2H5 lateral substituents showed shoulder peaks at 314 !Un and 

315 !Un, respectively. The shoulder maxima (314 nm, and 315 mn) could be attributed 

to auxochromic effect of these - OR groups. 
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Table 3.5: UV-Visible Data of Aromatic Dialdehydes 

Wavelength Wavelength 
Code 

(Obs. "'max nm) (Calc. "'max nm) 

HDF 285 289 

MDF 292,3 14 295 

EDF 283,315 295 

HFBPDF 277 289 

CDF 280 289 

RDF 291 289 

ODF 292 289 

BPDF 294 289 

BPADF 288 289 

2.0 

--HDF 

1.5 
--EDF 
--HFBPDF 
--CDF 
--RDF 

Q) 1.0 --MDF 
() --ODF c 
ro 

--BPDF .0 .... 
0 --BPADF til 0.5 .0 « 

0.0 

260 280 300 320 340 360 

Wavelength (nm) 

Figure 3.4: UV-Visible spectra of Monomers in CHCb 
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3.2 Characterization of Polymers: 

3.2.1 FT -IR Spectroscopic Analysis: 

The table 3.6 shows the major FT-IR characterization band for the polyaldimines i.e. 

-CHO, -C=N-, C=C and C-O-C while detailed peaks labeling have been shown for 

polymer P2MDF in representative figure 3.5 of three polymers. The graph shows 

respective stretching bands of aryl =C-H, aliphatic C-H, aldehydic O=C-H, aromatic 

C=C, ether C-O, and p-substituted benzene rings are well defined. The 

nonappearance of primary -NH2 peaks in -3300-3500cm-' region indicates the 

successful polymerization whereas the decrease in intensity of -CHO absorption 

infers the -CHO end group functionalized polyaldimines [5, 6]. The absorption band 

at 1663-1695 cm-' have been associated with H-C=O group while those at 1611 -1628 

cm-' attributed to azomethine (-HC=N) linkage. Moreover, the aromatic C-C 

vibrational bands and ether C-O-C peaks (1210-1247cm-') are in their respective 

regIOns. 

Table 3.6: FT -IR Data of Polymers 

Code C=O -C=N- C=C C-O 

(em-I) (em-I) (em-I) (em-I) 

P ,MDF 1690 1625 1484 1225 

P2MDF 1695 1623 1493 1220 

P2EDF 1670 1616 1493 1213 

P,HDF 1692 1626 1493 1237 

P20DF 1685 1618 1484 1247 

P ,BPDF 1670 1628 1495 1240 

P2BPDF 1671 1622 1493 1240 

P2BPADF 1690 1622 1493 1228 

P2HFBPDF 1664 1623 1497 1233 

P RDF 1663 1628 1498 1210 , 
P2CDF 1671 1611 1477 1210 
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Figure 3.5 shows the representative graph of three polymers (P2MDF, P2BPADF and 

P20DF). 
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Figure 3.5: FT~IR spectra of three polymers 

3.2.2 IH-NMR Spectroscopic Analysis: 

C .N. C'_O 
tl"", l1 l1l 
i\ r <fnl"'''' 

1000 500 

IH- NMR spectra of polyaldimines were taken in D2S04 because of limited solubility 

of these polymers in any other solvent including high polarity DMSO-d6. Even the 

unsubstituted polyazomethine-ethers showed only partial solubility upon addition of 

TsOH. It is the acidic proton of TsOH that interact with basic nitrogen of aldimine to 

enhance solubility via lowering chain-chain interaction [7] . 

The -CH3 aliphatic protons gave singlets (at b = 3.54, 1.75, and 2.29 ppm). The aryl 

protons of macro chain gave multiplets (at b = 6.62 - 7.95 ppm) owing to different 

aromatic moieties. The azomethinic proton (- CH=N-) signals appeared in 

characteristic range (at b = 8.23 - 8.43 ppm). The figure 3.6 shows the IH-NMR 

spectrum of polymer, P[MDF. The signals at b = 3.54 (s), 6.68 - 7.60 (m), and 8.33 

(s) confirm successful macro chain formation of polyaldimines. The figure 3.6 shows 

the representative IH-NMR spectrum ofP[MDF polymer. 
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Table 3.7: 'H-NMR Data of Polymers 

Code -CH 
3 

Ar-H -CH=N-

(~ ppm) (~ ppm) (~ ppm) 

P,MDF 3.54 (s) 6.68-7.60 (m) 8.33 (s) 

P,ODF 6.62-7.82 (m) 8.39 (s) 

P,BPADF 1.75 (s) 6.65-7.82 (m) 8.23 (s) 

P,BPDF 6.73 -7.92 (m) 8.35 (s) 

P,HDF 6.71 -7.95 (m) 8.25 (s) 

P2BPADF 2.28 (s) 6.76-7.72 (m) 8.23 (s) 

P20DF 6.79-7.63 (m) 8.42 (s) 

P2BPDF 6.73-7.61 (m) 8.37 (s) 

P2HDF 6.77-7.66 (m) 8.43 (s) 

P2MDF 2.29 (s) 7.14-7.95 (m) 8.29 (s) 
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Figure 3.6: 1 H- NMR spectrum of polymer P1MDF 
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3.2.3 Solubility: 

The solubility of polyaldimines was checked in different solvents (DMF, DMSO, N­

methyl-2-pyrolidone (NMP), CHCb and sulfuric acid). The polyaldimines derived 

from non-substituted aromatic bisaldehydes (named ODF, HDF, BPDF) were found 

to be almost insoluble in DMF, DMSO, NMP and chloroform, whereas, others 

(having -OC2Hs, -CF3 groups) were found to be showing nearly complete solubility 

in these solvents. The polymers (with -OCH3, and -CH3) were partially soluble. All 

polymeric azomethine' s solubility in conc. H2S04 was good even at room 

temperature. The table 3.8 shows the respective solubility of all polyazomethines in 

aforementioned solvents. 

Table 3.8: Solubility Data of Polymers 

Polymer DMF DMSO NMP 

P[ODF --h -- h -- h --h +++ 

P20DF --h --h --h -~h +++ 

P[HDF -- h -- h -- h --h +++ 

P2HDF +- + - h + - 1 +++ 

P[BPDF --h --h --h --h + ++ 

P2BPDF +-h + -h +-h --h +++ 

P[RDF +-h +-h +-h + -h +++ 

P2CDF + - h + - h + - h +++ +++ 

P[MDF + -h +-h +-h +-h +++ 

P2MDF +++ ++h ++h +++ +++ 

P[EDF ++h ++h + - h +++ +++ 

P2EDF + ++ +++ +++ +++ +++ 

P[BPADF +++ ++h ++h +-h +++ 

P2BPADF + - h + - h + - h + - h +++ 

P[HFBPDF ++h ++h ++h +++ +++ 

P2HFBPDF +++ +++ +++ +++ +++ 

+ + + = so luble at room temperature, + - h = partially so luble on heating 

- - h = insoluble on heati ng, + + h = soluble on heating 
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3.2.4 Viscometric Measurements: 

The viscosity of polyaldimines is a measure of resistance to cooperative segmental 

movement of macrochains. It depends on flexibility of macrochain, chain 

entanglement, inter- and intramolecuar interactions, oxygen atoms (-0-), and side 

groups. At room temperature (25°C) the relative viscosities ( = tlto = 111/10 = '1rel) of 

polyimines were measured (using U-tube Ubbelhode viscometer) by preparing fresh 

solutions (0.2 g per 100 mL - called 0.2 wt% solution) in conc. sulfuric acid. 

Table 3.9: Viscometric Data of Polymers 

Code II rei IIsp 111'cd (dll g) 11inh (dl/g) 

P1MDF 1.45 0.45 2.25 1.98 

P2MDF 1.25 0.25 1.28 1.84 

P 1EDF 1.18 0.18 0.94 1.78 

P2EDF 1.12 0.12 0.60 1.72 

P1BPADF 1.09 0.09 0.48 1.70 

P2BPADF 1.38 0.38 1.92 1.93 

P1HFBPDF 1.12 0.12 0.60 1.72 

P2HFBPDF 1.17 0.17 0.86 1.77 

P2CDF 1.37 0.37 1.87 1.93 

P IODF 1.136 0.14 0.68 1.74 

P20DF 1.178 0.18 0.89 1.77 

PIHDF 1.118 0.11 0.59 1.72 

P2HDF 1.159 0.16 0.80 1.76 

PIBPDF 1.121 0.12 0.60 1.72 

P2BPDF 1.044 0.04 0.22 1.65 

Relative viscosity = tlto = 111110 = llrcl 

Specific viscosity = 11sp = llrel-I 

Reduced viscosity = 11sp/c 

Inherent viscosity = In (llr/C) 

(where t = time of flow of H2S04, to = time of flow of polya ldimines, 11 = viscosity of so lution, and 110 = viscosity 

of H2S04) 
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3.2.5 UV-visible Spectroscopic Analysis: 

The drift in electronic absorption spectra (A.nax) of polyaldimines to bathochromic 

region infers the extension of delocalized 1t-conjugated length as compared to 

monomeric units. The UV-vis spectra of polyaldimines (recorded by - 10-6M 

solutions) gave maximum absorption at 335-363.5 nm in CHCb while 332.5-371.5 

nm in DMF. The solutions of partially soluble polyaldimines were filtered before 

electronic spectrum. Complelety insoluble polyimines showed no absorption peaks. 

The electronic absorption maxima (A.nax) of polyazomethines depend upon solvent 

polarity: dipole moment; f..L = 1.01D for CHCb, and f..L = 3.86D for DMF. The "'max blue 

shift (negative solvatochromism) has been observed in DMF for P,MDF, P,EDF, and 

P,BPADF as reported by Sek [8] whereas polymers of series P2: P2MDF, P2EDF, 

P2BPADF, and P2HFBPDF showed a red shift in DMF (positive solvatochromism) as 

described by lenekhe [9] while other polymers showed no significant effect on change 

in solvent polarity. The blue shift in polymers derived from oxydianiline may be 

attributed to the more stable ground state [10] as compared to excited state and partial 

hindrance to electronic configuration of ether linkage The polymers derived from 

ODF, HDF, BPDF, and RDF being insoluble gave either no absorption or less 

characterized peaks. The UV-vis spectra are shown in figure 3.7 and 3.8 in CHCb and 

DMF, respectively. The respective maximum wavelengths are given in tables 3.10 (a), 

and 3.10 (b) . 

Table 3.10 (a): UV-Visible Data of Polymers 

Code CHCl3 (Amax 11m) DMF (Amax 11m) 
P,MDF 344.5 344, 286 
P2MDF 363.5,285 371.5,28 1 

P,EDF 344,282 338,285.5 
P2EDF 363.5,280 371.5,283 

P,BPADF 335, 284 332.5, 285.5 
P2BPADF 357,288.5 358, 287 
P,HFBPDF 335,278 335, 280 
P2HFBPDF 360,280 363, 283 
P2CDF 357,278 357,283 

P,ODF 

P20DF 

P,HDF 284 
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Figure 3.7: UV-visilJJe Spectra of PoJyazomethines in DMF 
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Figure 3.8: UV-visilJJe Spectra of PoJyazomethines in CHCb 

43 



Results and Discussions 

Table 3.10 (b): UV-Visible Data of Polymers 

Code 
H2SO4 

Eg 
(Amax Dm) 

P1MDF 414 2.99 
P2MDF 402 3.08 
P 1EDF 405 3.06 
P2EDF 390 3.18 
P1BPADF 385 3.22 
P

2
BPADF 402 3.08 

P1HFBPDF 391 3.17 
P2HFBPDF 405 3.06 
P2CDF 395 3.14 
P ,ODF 410 3.03 

P20DF 429 2.89 

P ,HDF 399 3.12 

P2HDF 425 2.92 

P ,BPDF 389 3.19 

P2BPDF 414 2.99 

P,RDF 423 2.93 

b ·ly i or d in UV -visibl p tra of 

macromolecular imines (table 3.10 (b) and figure 3.9). The acidic solutions turned 

dark yellow or red while the conesponding neutral solutions were light colored. 

Electronic spectrum taken in sulfuric . acid shows that the charge transfer from 

Bronsted acid to lone pair of electron on nitrogen in aldimine has taken place. It is 

believed that protonation of aldimine linkage result in coplanar backbone, thus, 

leading to increased rr-electronic cloud delocalization. The protonated form (­

CH=NH+) enhances greater rr-electronic charge separation (that is N+·) by forming 

stronger electron-acceptor centers. 

The band gap (Eg) values were calculated [11] using this equation; 

Eg = 12401"'max 
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Figure 3.9: UV-visible Spectra of Polyazomethines in I-I2S04 

3.2.6 Photoluminescence Measurements: 

The electroluminescent properties of polyaldimines are of meticulous interest because 

of' sta Ttyofbl e l'gl t ( 4 90 e 'gh 

of polyaldimines have been explored on grounds of photoluminescence (PL) spectra 

measured in sulfuric acid (~1O-6- 1O-8M solutions) using 420 nm as excitation A that is 

close to A.nax values, whereas, emission spectra were examined at 440 nm wavelength 

(with slit width 10 nm at scanning rate of 1500 per second), Almost all the poly(Schiff 

base)s showed emission APL nm ( in the range 479-493 nm) that lies in blue light 

region. The difference in absorption A and emission A maxima (called stokes shift) 

indicates energy decline during electronic transitions, This energy loss (~59-97 nm) 

can be attributed to excimer fonnation as evidenced by bathochromic effect and 

emission bands enlargement [1 2]. 

Table 3.11: Photoluminescence Data of Polymers 

Code Amax nln ApLnm Stokes Shift 
(nm) 

P,MDF 414 490 76 
P2MDF 402 490 88 
P,EDF 405 492 85 
P2EDF 390 483 93 
P,BPADF 385 482 97 
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P2BPADF 402 482 80 
P,HFBPDF 391 482 91 
P2HFBPDF 405 483 78 
P2CDF 395 482 87 
P10DF 410 481 71 

P20DF 429 485 56 

P1HDF 399 493 94 

P2HDF 425 484 59 

P1BPDF 388 483 95 

P2BPDF 414 479 65 

P1RDF 423 482 59 
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Figure 3.10: Photoluminescence Spectra of Polyazomethines 

3.2.7 Thermal Measurements: 

Thermal stability measurements of aromatic polyaldimines were carried out by 

thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). 

Thermal stabilities of aromatic polyaldimines were evaluated at 5% and 10% weight 

loss temperatures, T 5% and T 10% respectively, measurements in air atmosphere for 

comparison (using thenllograms). The results of thermograms given in table 3.12 
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show that aromatic polyazomethines is a family of organic macromolecules that 

posse~ exceptional stability [13] . They did not show appreciable weight loss before 

400°C (except PIHFBPDF which shows TS% = 175°C), accompanied by one-step 

decomposition behavior with more than 50% char yield residue at 600°C. The 

maximum decomposition temperatures (Tmax) of macromolecules situated in the 

temperature range 425-5 75 °C. 

Table 3.12: TGA Data of Polymers 

Code TS% (OC) T 10% (OC) T e C) max 
Residue (%) at 
600°C 

P1MDF 390 410 475 58 

P1HDF 470 485 550 58 

P1HFBPDF 175 250 425 60 

P2BPADF 475 492 525 52 

P20DF 500 520 575 59 

3.2.8 Wid A I XRD Masur nts: 

The wide angle X-ray diffractograms of powdered polyazomethine samples was 

measured using Cu as anodic material (with Ka = 1.154 A). The polyaldimines 

constituted of only aromatic rings linked by azomethine or ether linkages showed 

semicrystalline state that is supposed to formed during high temperature 

polycondensation. The semicrystalline state of unsubstituted polyadimines can be 

assigned to high chain regularity, symmetry, and rigidity of 1,4-phenylene rings. 

Those polymers that have one tetrahedral carbon atom (having two -CH3 or -CF3 

groups) in the main polymer chain showed one halos that can be attributed to 

polydispersity of macrochain caused by tetrahedral geometry of four coordinated 

carbon atom [14] . The polymers with - OCH3 and -OC2Hs substituents on aryl moiety 

also showed amorphous behavior that can be assigned to less efficient macro chains 

packing. The table 3.14 shows the polymers morphology while the graph 3. 11 shows 

the representative W AXRD graph of polymers. 

47 



Results and Discussions 

Table 3.13: WAXRD Data of Polymers 

Pol~mer Angle (20) Cr~stallinity 

P10DF 19.8,20.9,23,29 Semicrystalline 

P20DF 19.8,20.8,23.3,29.1 Semi crystalline 

P1HDF 19.4, 2l.1, 23.1, 29. 1 Semicrystalline 

P2HDF 16.7, 19.1 ,20.8,23.1,29.1 Semicrystalline 

PjBPDF 19.7,22.9,29.1 Semicrystalline 

P2BPDF 19.8,21.4,23,28.77 Semicrystalline 

P1MDF 19.3 Amorphous 

P2MDF Amorphous 

P1EDF Amorphous 

P2EDF Amorphous 

P1BPADF 18.6 Amorphous 

P2BPADF 14.84, 20.37 Semicrystalline 

P1HFBPDF Amorphous 

P2HFBPDF Amorphous 
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Figure 3.11: WAXRD graph offour polymers 
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3.2.9 Electrical Conductivity Measurements: 

The electrical characteristics of synthesized polyaldimines were detem1ined with 

Keithly source meter-2100 using pelletized polymer (0.5 g sample pressed at 4.9 

metric ton pressure for 5 minutes) with four probe conductivity technique. The four 

electrical connections were made with Cu wires placed at equal distance apart on 

pellet. The connections were fixed with silver conducting paste. The CUlTent (from 1-

3/-LA) was used as input while measuring the voltage (V) as output signal. Then 

calculated the conductivity of each polyimine (with pellet dimensions as: diameter = 

1.25 cm; radius = 0.625; area = 1.22718 cm2
; and distance between two probes = 0.3 

cm). 

Table 3.14: Conductivity Measurement of Polymers 

Polymer Conductivity 
(mS cm-I ) 

P(MDF 25 

P2MDF 32 

P(EDF 27 

P (BPAD 29 

P2BPADF 29 

P (HFBPDF 29 

P2HFBPDF 23 

P2CDF 27 

P20DF 23 

P(HDF 27 

P(BPDF 33 

P2BPDF 17 

The electrical conductivities (ranging from 17-33 mScm-() of all the polymeric 

imines lie in the semiconductors region [1 5]. 
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Conclusions: 

The polyazomethines derived from non-substituted aromatic bisaldehydes (named 

ODF, HDF, BPDF) were found to be almost insoluble in DMF, DMSO, NMP and 

chloroform, whereas, others (having -OC2Hs, -CF3 groups) were found nearly 

complete soluble in these solvents. The polymers (with - OCH3, and -CH3 

substituents) were partially soluble. All polymeric azomethine's solubility in cone. 

H2S04 was good even at room temperature. The results of thermograms show that 

aromatic polyazomethines posses exceptional stability. They did not show appreciable 

weight loss before 400°C (except P1HFBPDF which shows TS% = 175), accompanied 

by one-step decomposition behavior with more than 50% char yield residue at 600°C. 

The maximum decomposition temperatures (Tmax) of macromolecules situated in the 

temperature range 425-575 °C. The light emitting ability of polyaldimines have been 

explored on grounds of photoluminescence (PL) spectra measured in sulfuric acid 

(~1O-6_ 10-8 M solutions) using 420 nm as excitation A that is close to Amax values, 

whereas, emission spectra were examined at 440 nm wavelength (with slit width 10 

nm at scanning rate of 1500 per second). Almost all the poly(Schiff base)s showed 

emission APL nm ( in the range 479 - 493 run) that lies in blue light region. 

The reasonable solubility accompanied by photoluminescence and electrical 

conductivity measurements show that all the polyazomethines are blue light emitters 

having conductivity in the semiconductors range, therefore, they may be explored for 

their ability of being used in optoelectronic application for solar cell devices. 
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Future Plans 

The synthesized ether based 

polydimethylsiloxane (PDMS) 

Results and Discussions 

dialdehydes with be polymerized 

for their thermo-oxidative stability 

with 

and 

opto( electronic) propeliies exploration. Moreover, the synthesized poly( azomethine)s 

will be doped with different dopants (10-camphorsulfonic acid, Ag+, 12, quinine 

sulfate, p-toluene sulfonic acid, FeCl3 etc) and their effect on opto(electronic), and 

electroluminescent propeliies will be studied. After doping, these poly(azomethine)s 

will be studied for their electrical properties (impedance, resistivity, and conductivity) 

and the mechanism of conduction will be derived based on cyclic voItammetric 

measurements, density functional computational calculations, as well as FT-1R 

spectroscopic analysis. The polyazomethines prepared by polycondensation and 

chemical vapor deposition methods will be compared based on better perfonnance in 

solar cell device fabrication. The physicochemical properties will be investigated by 

incorporation of ferrocene and other heterocyclic aromatics (oxadiazole, flurene, 

thiadiazdole rings) as main chain or as pendent groups. The synthesized aromatic 

dialdehydes will be polymerized with different aliphatic or aromatic diamines and 

their liquid crystalline properties will be examined. The metal (Eu+3, La+3, Cu+2, 

Zn+2, A1+3 etc) complexes of polyazomethines will be studied for their liquid 

crystalline phases. The carbon nanoparticles will be synthesized from 

polyazomethine ' s calcinations in ineli atmosphere and these particles will be explored 

for catalytic activity as well as electrode mateIials in solar cell device. 
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