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Preface

The theory of fixed point is a growing field of research with several applications in var-

ious fields. It is concerned with the results which state that a single-valued dynamical

systems z : Q → Q or a multi-valued dynamical system z : Q → P (Q) admits one

or more fixed points under particular circumstances. The necessity to prove theorems

about the existence of solutions to differential and integral equations drove the further

growth in this theory. There are three major topics of theory of fixed points: Metric,

Topological and Discrete fixed point theory. Some of the most well-known and sig-

nificant results in these fields are: Banach, Brouwer and Tarski fixed point theorems

respectively. In 1922, Banach was working on integral equations and proved a theorem

known as the Banach contraction principle, which guarantee to exists a unique fixed

point in a complete metric space. The Banach contraction principle is a very useful

tool in nonlinear analysis with many applications to operator equations, fractal theory,

optimization theory and other topics.

After Banach, many researchers introduced new type of contractions in metric spaces.

It has been observed that a Banach contraction z is always a continuous map. This

brings up the question whether some contraction conditions exist which guarantee to

exists of unique fixed point of discontinuous mappings. In 1968, Kannan and Cheatterja

gave positive answer to this question for complete metric spaces. Another important

contraction in this perspective which generalizes both Banach and Kannan contractions
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for a complete metric spaces was proved by Reich in 1971. Due to the wide range of

applications of Banach contraction principle, many authors have refined the contraction

condition or changed the metric space to different abstract spaces to generalize/extend

this elegant result.

Nadler extended first time the Banach contraction for the multi-valued dynamical

systems i.e.,z : Q→ CB(Q), where CB(Q) = {M ⊆ Q : M is bounded and closed}.
He proved for a complete metric space (Q, ρ) that if a map z : Q → CB(Q) satisfies

the following condition:

H(zp,zq) ≤ κρ(p, q)

for each p, q ∈ Q where H is a Hausdorff metric and k ∈ [0, 1), then there is a point

u0 ∈ Q which is a F ·P of the map z. After Nadler, a number of authors worked in this

direction. Some of the refinements of Nadler fixed point theorem are by Reich, where

he used H(Q) the collection of all compact subsets of a metric space Q and by Kam-

ran who used Cl(Q), the collection of all non-void closed subsets of Q instead of CB(Q).

Due to the importance of fixed point theory in diverse fields, some researchers have

extended the idea of metric space in various ways. In 1993, Czerwik introduced the

notion of a b-metric space by replacing the triangular property of a metric space with

ρ(p, t) ≤ b[ρ(p, q) + ρ(q, t)], where b ≥ 1. Later on, in 2017 Kamran et al. further ex-

tended the concept of b-metric space by introducing extended b-metric spaces. They

introduced a function θ : Q × Q → [1,∞) instead of b in triangular inequality condi-

tion. In 2018, Mlaiki et al. gave the idea of controlled metric type spaces. They used

θ : Q×Q→ [1,∞) instead of b in triangular inequality condition of metric spaces from

a different approach from Kamran et al.

In 2007, Huang and Zhang initiated the concept of cone metric space over a Banach

space as the generalization of metric spaces. They used ordered Banach space E instead

of R as the range set of metric ρ, i.e. they used ρ : Q×Q→ E. They also discussed Ba-

nach type contraction and proved some fixed point results. After that, many researcher
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concentrated to investigate such spaces and proved a number of fixed point theorems.

According to rough statistics, by using cone metric spaces, more than six hundred ar-

ticles have been published. But recently some scholars obtained the equivalent results

of usual metric space (Q, d∗) and that of cone metric space (Q, ρ). They defined the

real valued metric function d∗ as the non-linear scalarization function ξ. However, Liu

and Xu in 2013 introduced cone metric space by using a real Banach algebra instead of

Banach space and defined generalized Lipschitz mapping. They presented an example

which established that results of fixed point in metric spaces are not equivalent to that

of results in cone metric spaces over Banach algebras.

The concept of distances in uniform spaces and metric spaces was first time presented

by Valyi in 1985. We call it a Valyi-distances. After Valyi, some other researchers in-

troduced different type of distances in metric spaces and in uniform spaces. Some well

known distances are Tataru-distances by Tataru in 1992, ω-distance by Kada in 1996 and

τ -distance by Suzuki in 2001. Recently in 2010 Wlodarczyk gave an idea of distances

which provide a handy research tool to obtain more general results with weaker as-

sumptions in uniform space known as generalized pseudo-distances. He also introduced

generalized Hausdorff distances, gauge spaces, quasi-gauge spaces, triangular spaces,

quasi-triangular spaces.

The main objective of this thesis is to prove some fixed point theorems and proximity

fixed point theorems for single-valued and multi-valued dynamical systems in metric type

spaces. This thesis has been organized into six chapters.

In Chapter 1, We have recollect some fundamental notions, some well-known contrac-

tions, abstract spaces and results in such spaces. Also, we present some basic concepts

of comparison functions, introduction and basic theory of fractals in metric type spaces.

At the end, we gave the theory of proximity fixed point in metric type spaces and

generalized distances.

In Chapter 2, we introduced a new geometrical structure which is the hybrid of cone

metric space over Banach algebra and extended b-metric space. We prove analogues of
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Banach, Kannan and Reich type fixed point theorems in our predefined space. We also

furnish with various concrete examples to establish the validity of our results. At the

end, we have added some consequences and applications of our results. Recently, this

work has been published in the journal of Filomat.

Chapter 3, is concerned with the study of a new type of metric type space which

we call a controlled cone metric type space over Banach algebra. By using such spaces

we proved some fixed point theorems for generalized R-type contraction and generalized

lipschitz mappings. We add an example to show the validity of our results. Work of

this chapter has been published in the Journal of Inequalities and Applications.

The aim of chapter 4 is two fold. Firstly, we produced several results concern with

fixed point for the family of multi-valued contractions by using comparison functions in

extended b-metric spaces. Then, we constructed some new multi-valued fractals based

on a fixed point approach in the framework of extended b-metric spaces. Later on, using

the idea of well-posed problem of fixed point is studied. Some of the results of this

chapter has been published in the Journal of function spaces.

Chapter 5 is intended to the study of theory of proximity points in controlled metric

type spaces. We introduced generalized distances in controlled metric type spaces. We

proved some global maximality results by using the defined generalized distances.

Chapter 6 is the last chapter of this thesis, where we have introduced a new type

of space which we named controlled quasi-triangular space. We introduced left(right)

families generated by controlled quasi-triangular space. We proved Banach type theorem

by using such families in controlled quasi-triangular space. At the end, we gave some

concrete examples to validate our definitions and results.
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Chapter 1

Introduction and Preliminaries

The aim of this chapter is to recollect some definitions, results and their origin which

are needed in the sequel. Throughout in this thesis, by N(Q), CB(Q) and H(Q), we

mean the collection of all the nonempty subsets of Q, the collection of all the closed and

bounded subsets of Q and the collection of all compact subsets of Q respectively. By

F · P we mean fixed point, by B · P · P we mean best proximity point and by anM·S
we mean a metric space. We denote the set of non-negative real numbers by R+.

1.1 Fixed points of dynamical systems

By a single-valued dynamical system, we mean a pair (Q,z), where Q is a phase space

and z : Q → Q is a single-valued map. We think of Q as a phase space of possible

states of the system and the map z as a "law of evolution" of the system. The set of

F · P of a single-valued dynamical system z is defined as Fix(z) = {u ∈ Q : zu = u}.
Similarly, by a multi-valued (set-valued) dynamical system we mean the pair (Q,z),

where Q is a phase space and z : Q→ 2Q is a multi-valued map: here 2Q = {M ⊆ Q :

M 6= ∅}. The collection of all F · P of z is defined as Fix(z) = {u ∈ Q : u ∈ zu}.
Given $0 ∈ Q and a single-valued dynamical system (Q,z), the orbit of $0 is defined

as:

O($0) = {$n = z$n−1 = zn($0) : n ∈ N ∪ {0}}.
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For multi-valued dynamical system the orbit is defined as follows:

O($0) = {$n : $n ∈ z$n−1 : n ∈ N ∪ {0}}.

The main goal of the theory of dynamical system is to describe and classify the possible

structure which arise from the iteration of single-valued and multi-valued maps.

1.2 Some well-known contractions in metric spaces

In 1932 Banach [6] introduced a principle, the "Banach contraction" which is pioneer of

the theory of metric fixed point.

1.2.1 Banach contraction

Let (Q, ρ) be a M · S and z : Q → Q be a dynamical system. We say that z is a

Banach contraction if

{∃λ ∈ [0, 1) such that ∀ v, t ∈ Q, ρ(zv,zt) ≤ λρ(v, t)}. (1.2.1)

Banach proved that if Q is complete and z : Q → Q satisfy the contraction (1.2.1),

then there exists a unique u0 in Q which is a F · P of the map z.

After Banach, many researchers introduce new contractions for M · Ss. One well

known contraction for completeM · S is presented by Kannan [28].

1.2.2 Kannan contraction

Let (Q, ρ) be a M · S and z : Q → Q be a dynamical system. We say that z is a

Kannan contraction if there is a λ ∈ [0, 1
2
) such that

ρ(zu,zv) ≤ λ · [ρ(u,zu) + ρ(v,zv)] ∀u, v ∈ Q. (1.2.2)

Kannan proved that if Q is complete and z : Q → Q satisfy the contraction (1.2.2),

then there exists a unique point u0 in Q which is a F · P of the map z.
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One another important result in this perspective which generalizes both Banach and

Kannan contractions for a completeM · S (Q, ρ) was proved by Reich [41] in 1971.

1.2.3 Reich contraction

Let (Q, ρ) be aM · S and z : Q→ Q be a dynamical system. z is said to be a Reich

contraction if for all u, v ∈ Q, there exist three non-negative real numbers α, β, γ such

that α + β + γ < 1 and the following inequality holds:

ρ(zu,zv) ≤ αρ(u,zu) + βρ(v,zv) + γρ(u, v). (1.2.3)

Reich proved that if Q is complete and z : Q→ Q satisfy the contraction (1.2.3), then

there exists a unique point in Q which is a F · P of the map z.

If we put α = β = 0 in (1.2.3), then we get the Banach contraction (1.2.1) and for

α = β, γ = 0 we get Kannan contraction (1.2.2).

1.2.4 Nadler contraction

Nadler [37] extended first time the Banach contraction for the multi-valued mapping

z : Q → CB(Q). He used Hausdorff metric on a M · S (Q, ρ) to establish the result

of F · P for multi-valued dynamical systems. The Hausdorff metric H on CB(Q) is

denoted and defined as

{∀ U, V ∈ CB(Q), H(U, V ) = max{D(U, V ), D(V, U)}},

where D(U, V ) = supa∈U ρ(a, V ) and ρ(a, V ) = infb∈V ρ(a, b).

Definition 1.2.1. Let z : Q → CB(Q) be a multi-valued dynamical system with a

M · S (Q, ρ). z is said to be a Nadler’s contraction if for all p, q ∈ Q, the following

inequality holds:

H(zp,zq) ≤ κρ(p, q), (1.2.4)

where H is a Hausdorff metric and κ ∈ [0, 1).
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Nadler proved that if (Q, ρ) is complete and z : Q → CB(Q) satisfy (1.2.4), then

there is a point u ∈ Q which is fixed under z.

After Nadler, a number of authors worked in this direction. Some of the refinement

of Nadler F · P theorem are by Reich [42], where he used H(Q) the collection of all

compact subsets of a M · S Q and by Kamran [18] who used Cl(Q), the collection of

all nonempty closed subsets of Q instead of CB(Q).

1.3 Some abstract spaces

This section consists of some well-known generalizations ofM · S which we will use in

the upcoming chapters.

1.3.1 b-metric spaces

By transforming the condition of triangle inequality ofM·Ss, Czerwik [14] introduced

first time the idea of b-M · S.

Definition 1.3.1. For any non-empty set Q, a b-metric on Q is a function db : Q×Q→
R+ satisfying the following axioms:

B1 : db(p, v) = 0 iff p = v : ∀ p, v ∈ Q;

B2 : db(p, v) = db(v, p) : ∀ p, v ∈ Q;

B3 : ∃ b ≥ 1 such that db(p, u) ≤ b[db(p, v) + db(v, u)] : ∀ p, v, u ∈ Q.

The pair (Q, db) is then termed as b-metric space with coefficient b.

Example 1.3.2. Let Q = R and db : Q×Q→ R defined as

d(η, ξ) = (η − ξ)2.

Then db is a b-metric with b = 2, and db is not a metric on Q.

Every metric is clearly a b-metric with b = 1. Apparently, one can say that the class

of b-M · Ss is super-class of the class ofM · Ss.
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1.3.2 Extended b-metric spaces

In 2017, Kamran et al.[29] more generalized the idea of a b-M·Ss by introducing a map

s : Q ×Q → [1,∞) instead of b ≥ 1 in b-M · Ss. They called this space, an extended

b-M · S.

Definition 1.3.3. Let Q be a non empty set and s : Q × Q → [1,∞). A function

ds : Q×Q→ [0,∞) is called an extended b-metric (in short Eb−M) if for all p, v, t ∈ Q

it satisfies:

(i) ds(p, v) = 0 iff p = v;

(ii) ds(p, v) = ds(v, p);

(iii) ds(p, t) ≤ s(p, t)[ds(p, v) + ds(v, t)].

The pair (Q, ds) is then called an Eb−M space (extended b-metric space).

If ∀p1, p2 ∈ Q, s(p1, p2) = b for some b ≥ 1, then the Definition 1.3.3 becomes

equivalent to Definition 1.3.1 with coefficient b.

Example 1.3.4. [47] Let Q = N and ds : Q×Q→ [0,∞) be defined by by ds(σ,$) =

(σ −$)4. Define s : Q×Q→ [1,∞) as follow:

s(σ,$) =

|σ −$|3 if σ 6= $ ;

1 if σ = $.

Then (Q, ds) is an Eb−M space. space.

Definition 1.3.5. [29] Consider an Eb−M space (Q, ds). A sequence {σr} in Q is said

to be:

(i) convergent which converges to some σ ∈ Q iff ds(σr, σ) → 0 as r → ∞, we write

limr→∞ σr = σ;

(ii) Cauchy sequence if ds(σr, σk)→ 0 as r, k →∞.
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If every Cauchy sequence in Q converges in Q with respect to ds, then we say that

the Eb −M space (Q, ds) is complete. It has been noted that the Eb −M ds is not

always continuous and every convergent sequence has a unique limit in Q. Following is

the main theorem in [29] related to an Eb−M spaces.

Theorem 1.3.6. [29] Let (Q, ds) be a complete Eb−M space with ds continuous. Let

z be a self-map on Q which satisfy

ds(zη,zξ) ≤ κds(η, ξ) for all η, ξ ∈ Q, (1.3.1)

where κ ∈ [0, 1) be such that for each t0 ∈ Q, limj,i→∞ s(tj+1, ti) <
1
κ
, here tj = zjt0,

j = 1, 2, · · · . Then z has precisely one F · P %. Moreover for each y ∈ Q, the iterative

sequence zjy converges to %.

1.3.3 Controlled metric type spaces

After Kamran et al., in 2018, Mlaiki et al. [36] introduced controlled metric type spaces

by different approach to that of Kamran.

Definition 1.3.7. [36] Let Q be a non empty set and s : Q×Q→ [1,∞). A controlled

metric type (CMT ) is a function ds : Q ×Q → [0,∞) such that for all σ, %,$ ∈ Q it

satisfies the following:

(i) ds(σ, %) = 0 iff σ = %;

(ii) ds(σ, %) = ds(%, σ);

(iii) ds(σ,$) ≤ s(σ, %)ds(σ, %) + s(%,$)ds(%,$).

The pair (Q, ds) is then called a CMT -space (controlled metric type space).

Remark 1.3.8. 1. If ∀ p, q ∈ Q, s(p, q) = b for some b ≥ 1, then the Definition 1.3.7

coincides with the Definition 1.3.1.

2. Mlaiki et al. gave an example which provides that CMT and Eb −M are two

different notions.

6



In the present work, throughout we assume that the CMT ds is continuous on Q×Q.

Definition 1.3.9. [36] Let (Q, ds) be a CMT space. We say that a sequence σn is a:

(i) convergent sequence and converges to σ if and only if for every ε > 0, ∃ n0 ∈ N
such that ds(σn, σ) < ε for all n ≥ n0. We write limn→∞ σn = σ;

(ii) Cauchy sequence if ds(σr, σk)→ 0 as r, k →∞.

If every Cauchy sequence in Q converges in Q, then the CMT space (Q, ds) is said

to be complete. The main result of Mlaiki et al. [36] is given below.

Theorem 1.3.10. [36] Let (Q, ds) be a complete CMT space with ds continuous. Let

z : Q→ Q satisfy

ds(z%,z$) ≤ κds(%,$) for all %,$ ∈ Q, (1.3.2)

where κ ∈ [0, 1) be such that for each σ0 ∈ Q,

sup
m≥1

lim
i→∞

s(σi+1, σi+2)

s(σi, σi+1)
s(σi+1, σm) <

1

κ
, (1.3.3)

here σi = ziσ0. Furthermore, assume that for every q ∈ Q, we have

lim
n→∞

s(σn, q) and lim
n→∞

s(q, σn), (1.3.4)

exist and finite. Then z has only one F · P σ.

1.3.4 Cone b-metric space over Banach algebra

Before defining cone b-M·S (in short CbMS)over Banach algebra, we recall some basic

definitions and notions from the theory of Banach algebras [43].

Let A be a real Banach algebra with zero element ϑ. A cone P in A is a nonempty

closed subset of A such that P ∩ (−P) = ϑ, P + P ⊆ P, P · P ⊆ P and µP ⊆ P

for all µ ≥ 0. If the interior of P denoted by intP is nonempty, then the cone P is

called a solid cone. If we define a relation � on A by ς � $ iff $ − ς ∈ P, then �
is a partial order on A. We write ς � c$ iff $ − ς ∈ P and ς 6= $. Define another
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partial order � on A by ς � $ iff $− ς ∈ intP. A cone P in A is said to be a normal

cone if for all ς,$ ∈ A with ϑ � ς � $, there exists a real number M > 0 such that

||ς|| ≤M ||$||. The normal constant of P is the least positive constant M for which the

above inequality holds.

Consider a unital Banach algebra A with identity element e. An element ς in A is said

to be invertible if there exists $ in A such that ς$ = $ς = e. A complex number µ ∈ C
is said to be spectral value of $ ∈ A if $ − µe is non-invertible in A. The set of all

spectral values of $ ∈ A denoted by σ($) is called the spectrum of $. The number

rσ($) (or r($)) defined by rσ($) = sup{|µ| : µ ∈ σ($)} is called the spectral radius

of $ ∈ A.

Lemma 1.3.11. ([43]) Let A be a Banach algebra with identity e. Then the spectral

radius r(%) of % ∈ A satisfies:

r(%) = lim
n→∞

||%n||1/n. (1.3.5)

Furthermore, if r($) < |µ| for some $ ∈ A, then (µe−$) is invertible,

(µe−$)−1 =
∞∑
i=0

$i

µi+1
and r[(µe−$)−1] ≤ 1

|µ| − r($)
.

Lemma 1.3.12. [43] Let A be a Banach algebra and $, % ∈ A be such that $ and %

commute. Then we have

r($ + %) ≤ r($) + r(%) r($%) ≤ r($)r(%).

Definition 1.3.13. ([27]) Let A be a Banach algebra with solid cone P. A c-sequence

is a sequence {$i} in P such that for every c ∈ A with c� ϑ, there exists k ∈ N such

that

$i � c ∀i ≥ k.

Lemma 1.3.14. ([23]) Let α, β ∈ P be any two arbitrary vectors and {un}, {qn} be two
c-sequences in a solid cone P of a Banach algebra A. Then {αun+βqn} is a c-sequence.

Lemma 1.3.15. ([61]) Let P be a cone in a Banach algebra A (not necessary a normal

cone). Then the following assertions hold:
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(u1) If for each c with c� ϑ and ϑ � $ � c, implies that $ = ϑ.

(u2) If $ ∈ P is such that r($) < 1, then ||$j|| → 0 as j →∞.

(u3) Let c ∈ intP and $j → ϑ in A as j → ∞. Then ∃ M ∈ N such that ∀j ≥ M ,

$j � c.

(u4) If $ � $k, where $, k ∈ P and r(k) < 1, then $ = ϑ.

Definition 1.3.16. [23] For a nonempty set Q and a constant b ≥ 1. A mapping

db : Q×Q→ A is called a CbMS over a Banach algebra A if the following axioms hold:

B1 : ∀ η, ξ ∈ Q, db(η, ξ) � ϑ and db(η, ξ) = ϑ iff η = ξ;

B2 : ∀ η, ξ ∈ Q, db(η, ξ) = db(ξ, η);

B3 : ∀ η, ξ, ζ ∈ Q, db(η, ζ) � b[db(η, ξ) + db(ξ, ζ)].

The pair (Q, db) is called a CbMS over a Banach algebra A (in short CbMS over A).

Remark 1.3.17. If b = 1, then we say that d1 is a cone metric over a Banach algebra

A. So we can say that cone b-metric is the generalization of a cone metric.

Example 1.3.18. Consider the Banach algebra A = C([0, 1]) with unit element e(t) =

1 and supremum norm where multiplication is defined point wise. Let Q = R and

P = {f ∈ A : f(h) ≥ 0 ;∀h ∈ [0, 1]}. Define db : Q×Q→ A by

db(η, ξ)($) = |η − ξ|ae$ ∀η, ξ ∈ Q & a > 1.

Then db is a CbMS over A with b = 2a−1 but it is not a cone metric on Q.

Definition 1.3.19. ([23]) Let {σk} be a sequence in Q where (Q, db) is a CbMS over A.
We say that {σk} is:

(i) a convergent sequence which converges to σ ∈ Q if for every c ∈ intP (i.e.ϑ �
c), ∃ N ∈ N such that db(σk, σ)� c for all k ≥ N ;

(ii) a Cauchy sequence if for every c ∈ intP (i.e.ϑ� c), there exists a natural number

N such that db(σk, σi)� c for all k, i ≥ N .
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If every Cauchy sequence in Q is convergent in Q, then the space (Q, db) is called a

complete CbMS over A.

Remark 1.3.20. [23, 61] 1. If {σn} converges to σ inQ, then {db(σk, σ)} and {db(σk, σk+i)}
are c-sequences for any i ∈ N.

2. If ||σk|| → 0 as k → ∞, then for any c � ϑ, there exists N ∈ N such that for all

n > N we have σk � c.

Theorem 1.3.21. [23] Let (Q, d) be a complete CbMS over A with coefficient b ≥ 1

andP be the associated solid cone (not necessary normal) inA. Suppose that a mapping

z : Q→ Q satisfies one of the following generalized Lipschitz conditions for all σ, % ∈ Q:

(i) d(zσ,z%) � κd(σ, %) where κ ∈ P be such that r(κ) <
1

b
.

(ii) d(zσ,z%) � κ(d(zσ, σ) + d(z%, %)) where κ ∈ P be such that r(κ) <
1

1 + b
.

Then there exists a unique point $ ∈ Q which is a F · P of the map z.

Now we want to recall the definition of generalized α-admissible, α-regular and gen-

eralized R-type mapping in the setting of cone b-M · Ss over Banach algebras.

Definition 1.3.22. [56] Let (Q, db) be an cone b-M · S over a Banach algebra A with

P an underlying solid cone. Let α : Q × Q → [0,∞) and z : Q → Q be mappings.

Then:

(i) z is said to be a generalized α-admissible mapping if for p, q ∈ Q, α(p, q) ≥ b implies

that α(zp,zq) ≥ b;

(ii) (Q, db) is said to be α-regular if any sequence {uk} ∈ Q with α(uk, uk+1) ≥ b for

all k ∈ N and uk → p implies that α(uk, p) ≥ b.

Definition 1.3.23. [56] Let (Q, db) be a cone b-M · S over a Banach algebra A with

coefficient b, P an underlying solid cone and α : Q × Q → [0,∞) be mapping. Then

the mapping z : Q → Q is called a generalized Reich type contraction if there exists

v1, v2, v3 ∈ P such that for all p, q ∈ Q with α(p, q) ≥ b:

(i) 2br(v1) + (b+ 1)r(v2 + v3) < 2;

(ii) d(zp,zq) � v1d(p, q) + v2d(p,zp) + v3d(q,zq).
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1.4 Comparison functions in metric type spaces

An increasing self-map φ on [0,∞) is termed as a comparison function if for all p ∈
[0,∞), limr→∞ φ

r(p) = 0, see [35].

An increasing self-map φ on [0,∞) is said to be a c-comparison function if for every

p > 0, the following series converges

∞∑
r=1

φr(p).

It is evident from the above definitions that every c-comparison function is itself a

comparison function but the converse is not be true in general, see example in [44].

Now consider an increasing self-map φ on [0,∞) and a b-M · S (Q, db). The map φ is

called a b-comparison function if for all % ∈ [0,∞), the following series converges ([8, 44])

∞∑
r=0

brφr(%).

Let (Q, db) be a b-M · S with b ≥ 1 and let 0 < p <
1

b
. Then the function φ(η) = pη is

a b-comparison function.

We noted that for b = 1, the defined b-comparison function becomes equivalent to the

definition of a comparison function.

Next, in Eb − M spaces, we define the idea of z-orbital lower semi-continuity (lsc),

which we will utilise in the next chapters.

Definition 1.4.1. [21] Let z : D ⊂ Q → Q, $0 ∈ D and the orbit of $0 ∈ D,

O($0) = {$0,z($0),z2$0, · · · } ⊂ D. A function G : D → R is called z-orbitally lsc

at v ∈ D if $r → v and ($r) ⊂ O($0) implies G(v) ≤ limr→∞ inf G($r).

1.5 Fractals and multi-fractals in metric spaces

Fractals and multi-fractals play an important role in a variety of applications includ-

ing digital photography, fluid mechanics, soil mechanics, dynamical systems, computer

graphics, signal and image compression, and computer graphics etc. We can obtain
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most of these fractals (multi-fractals) by using the approach of iterated function (multi-

function) systems IFS (IMFS). Hutchinson [25] in 1981 defined first time the iterated

function systems (IFS) and Barnsley [7] developed further the iterated function systems

theory. This theory is called the Hutchinson–Barnsley (HB) theory. The collection of

finite number of contractive self mappings is said to by IFS by Hutchinson. He also

introduced the notion of HB operator which is defined on the hyper space of nonempty

compact sets. He defined a fractal (attractor) to be a unique fixed point of the HB

operator. The theory of F ·Ps plays a prominent role in order to construct new fractals.

For years, IFS has been used by the researchers to develop different new techniques

and generate new fractal objects. To construct fractals and self-similar sets, numerous

development, new results and extensions of IFS are made, see for example ([9, 12, 13]).

Let (Q, d) be aM · S and Pcp(Q) be the collection of all non-empty and compact

subsets of Q. Consider a collection of multi-valued operators Gj : Q → Pcp(Q) (for

j = 1, 2, · · · ,m), where each Gj is upper semicontinuous. An operator denoted and

defined as: {
for each Y ∈Pcp(Q), zG(Y ) =

m⋃
j=1

Gj(Y )

}
,

is called a multi-fractal operator which is produced by the iterated multi-functions sys-

tem (IMFS) G = (G1,G2, · · · ,Gm). By using the condition of upper semicontinuity on Gj,
we can say that the operator zG maps from Pcp(Q) to Pcp(Q). An element of Pcp(Q)

(say A ∗) is called a multi-valued fractal generated by the IMFS G = (G1, · · · ,Gm) if

and only if it is fixed under the associated multi-fractal operator zG.
If we take gj, the single-valued continuous operators instead of Gj, then a fractal (some-

time we call it a self-similar set) is a point which is fixed under the fractal operator

zg : Pcp(Q)→Pcp(Q) generated by the IFS g = (g1, g2, · · · , gm), where zg is defined

as follows: {
for each Y ∈Pcp(Q), zg(Y ) =

m⋃
j=1

gj(Y ),

}
.
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1.6 Best proximity point in metric type spaces

Let U ,V be the subsets of a M · S (Q, d) and z : U → V be a non-self mapping.

Then it is not necessary that there will exist u in U such that d(u,zu) = 0. Thus it is

contemplated to find some u in U such that the error d(u,zu) is minimum which will

be consider as the highest closeness between the element u and its image zu under z.

Since d(u,zu) ≥ Dist(U ,V) for each u ∈ U . The optimal solution for minimizing the

problem of error d(u,zu) will be the one for which the value Dist(U ,V) is attained.

The best approximation theory has been derived from this idea. In view of this idea

Kay Fan[17] presented the following theorem.

Theorem 1.6.1. [17] Let Q be a normed space and z : U → Q be a continuous

mapping where U is a compact and convex subset of Q. Then ∃ u ∈ U such that

||u−zu|| = inf{||v −zu|| : v ∈ U}.

Definition 1.6.2. Let U ,V be the subsets of (Q, d). A point p ∈ U is called a B · P · P
of the non-self mapping z : U → V if d(p,zp) = Dist(U ,V).

Similarly a point p ∈ U is called a B · P · P of a multi-valued mapping z : U → 2V

if D(p,zp) = dist(U ,V).

Remark 1.6.3. If U = V = Q, then Dist(U ,V) = 0 and p becomes a F · P of z.

1.6.1 WP -property and P -property

In 2014 Gabeleh [19] generalized the F · P theorem in [51] by using an appropriate

geometric property and established an interesting B · P · Ps theorem. We start by

recalling some definitions and notations.

Definition 1.6.4. [18] Let U ,V be the subsets of (Q, d). Define:

U0 = {e ∈ U : d(e, f) = Dist(U ,V) for some f ∈ V},

V0 = {f ∈ V : d(e, f) = Dist(U ,V) for some e ∈ U}.
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Example 1.6.5. Let Q = R with the usual metric d and let U = [0, 1],

V = {−2,−1, 2}. Then Dist(U ,V) = 1, U0 = {0, 1}, and V0 = {−1, 2}.

Definition 1.6.6. [18] Let U ,V be the subsets of (Q, d) such that U0 6= ∅. We say that

the pair (U ,V) has the WP -property if and only if

d(u1, v1) = Dist(U ,V),

d(u2, v2) = Dist(U ,V)

implies

d(u1, u2) ≤ d(v1, v2),

where u1, u2 ∈ U0, v1, v2 ∈ V0.

Example 1.6.7. Let Q = R with usual metric d and let U = [9, 10], V = [1, 4]∪ [15, 19].

Then Dist(U ,V) = 5, U0 = {9, 10}, V0 = {4, 15}. Let u1 = 9, u2 = 10, v1 = 4, v2 = 15.

Then d(u1, v1) = d(9, 4) = d(10, 15) = d(u2, v2) = 5 = Dist(U ,V) and d(u1, u2) =

d(9, 10) = 1 < d(v1, v2) = d(4, 15) = 11. Thus (U ,V) has the WP -property.

Example 1.6.8. Let Q = R with usual metric d and let U = {−1, 0, 3}, V = [1, 2].

Then Dist(U ,V) = 1, U0 = {0, 3}, V0 = {1, 2}. Let u1 = 0, u2 = 3, v1 = 1, v2 = 2. Then

d(u1, v1) = d(0, 1) = d(3, 2) = d(u2, v2) = 1 = Dist(U ,V) while

d(u1, u2) = d(0, 3) = 3 > 1 = d(1, 2) = d(v1, v2). Thus (U ,V) does not have the WP -

property.

Definition 1.6.9. [2] Let U ,V be the subsets of (Q, d) such that U0 6= ∅. We say that

the pair (U ,V) has the P -property if and only if

d(u1, v1) = Dist(U ,V),

d(u2, v2) = Dist(U ,V)

implies

d(u1, u2) = d(v1, v2),

where u1, u2 ∈ U0 and v1, v2 ∈ V0.
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Remark 1.6.10. It is obvious that if a pair (U ,V) has the P -property, then it has the

WP -property but in general its converse may not true.

Remark 1.6.11. Note that the the definitions of B·P ·P , P -property andWP -property

in b-M · Ss is similar to the definitions of these notions defined inM · Ss.

Example 1.6.12. Let U be the subset of (Q, d). Then the pair (U ,U) always has the

P -property.

Example 1.6.13. Let Q = R with usual metric d and let

U = {1, 2, 3...}, V = {...− 2,−1, 0, 1, 2...}. Then Dist(U ,V) = 0, U0 = U , V0 = V and if

u1, u2 ∈ U0, v1, v2 ∈ V0 such that

d(u1, v1) = 0 = Dist(U ,V) and d(u2, v2) = 0 = Dist(U ,V). Then it implies that u1 = v1

and u2 = v2, and so d(u1, u2) = d(v1, v2). Thus the pair (U ,V) has the P -property.
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Chapter 2

Fixed points of single-valued

dynamical systems on extended cone

b-metric space over Banach algebra

In this chapter, we have introduced a new geometrical structure which is the hybrid

of CMS over Banach algebra and Eb − M space. We prove analogues of Banach,

Kannan and Reich type F · P theorems in our introduced space. We also established

various concrete examples to validate our results. The main results due to Vujakovic

et al., Hussain et al., Huang, Radenovic, Xu become special cases of our results. At the

end, we have added some consequences of our results and application in the existence

of solution of integral equations. The work of this chapter has been published in an

esteemed international journal Filomat [53]. Throughout this chapter, we will consider

only real Banach algebras.

2.1 Extended cone b-metric space over Banach alge-

bras

We start this section by the definition of an ECbMS over Banach algebra.
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Definition 2.1.1. Let A be a real Banach algebra with cone P, Q be a non empty set

and s : Q×Q→ [1,∞) be a mapping. An extended cone b-metric (in short ECbM) on

Q over A is a function ds : Q×Q→ A such that:

(E1) ds(η, ξ) � ϑ and ds(η, ξ) = ϑ iff η = ξ for all η, ξ ∈ Q;

(E2) ds(η, ξ) = ds(ξ, η) for all η, ξ ∈ Q;

(E3) ds(η, ζ) � s(η, ζ)[ds(η, ξ) + ds(ξ, ζ)] for all η, ξ, ζ ∈ Q.

The pair(Q, ds) is then called an extended cone b-M · S over a Banach algebra A (in

short ECbMS over A).

Remark 2.1.2. It is clear that the class of ECbMS over Banach algebras is larger than

the classes of CbM spaces and cone metric spaces over Banach algebras.

The definitions of Cauchy sequence, convergent sequence and completeness for ECbM

space over A are similar to that of CbM spaces over Banach algebra defined in the

Definition 1.3.19.

In general ds is not necessarily a continuous function but in this chapter, ds will always

mean a continuous function ds : Q×Q→ A.

Example 2.1.3. Let s : Q×Q→ [1,∞) be defined as s(p, q) = 1+p+q forQ = {1, 2, 3}.
Consider the real Banach algebra A = R2 with solid cone P = {(a, b) ∈ R2 : a, b ≥ 0}.
If we define ds : Q×Q→ A by:

ds(1, 2) = ds(2, 1) = (80, 80);

ds(1, 3) = ds(3, 1) = (1000, 1000);

ds(3, 2) = ds(2, 3) = (600, 600);

ds(1, 1) = ds(2, 2) = ds(3, 3) = (0, 0) = ϑ.

Clearly the first and second conditions of an ECbMS over A are satisfied. For the third

condition we have:

s(1, 2)[ds(1, 3)+ds(3, 2)]−ds(1, 2) = 4[(1000, 1000)+(600, 600)]−(80, 80) = (6320, 6320) ∈ P;
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s(1, 3)[ds(1, 2)+ds2, 3)]−ds(1, 3) = 5[(80, 80)+(600, 600)]−(1000, 1000) = (2400, 2400) ∈ P;

s(2, 3)[ds(2, 1)+ds1, 3)]−ds(2, 3) = 6[(80, 80)+(1000, 1000)]−(600, 600) = (5880, 5880) ∈ P.

Hence for all η, ξ, ζ ∈ Q,

ds(η, ξ) � s(η, ξ)[ds(η, ζ) + ds(ζ, ξ)].

Thus (Q, ds) is an ECbMS over A = R2.

Remark 2.1.4. Let (Q, ds) be an ECbMS over A with s : Q×Q→ [1,∞). If A = R

and P = [0,∞), then (Q, ds) is an Eb−M space.

We now define generalized α-admissible mapping and α-regular space in term of

ECbMS over Banach algebra.

Definition 2.1.5. Consider (Q, ds) an ECbMS over A with P an underlying solid cone

in A and a self-map z on Q. Let α : Q×Q→ [0,∞). Then:

(i) z is said to be a generalized α-admissible mapping if for η, ξ ∈ Q, α(η, ξ) ≥ s(η, ξ)

implies that α(zη,zξ) ≥ s(zη,zξ);

(ii) (Q, ds) is said to be α-regular if any sequence {$k} ∈ Q with α($k, $k+1) ≥
s($k, $k+1) for all k ∈ N and $k → $ implies that α($k, $) ≥ s($k, $).

2.2 Generalized Reich type contraction in ECbMS over

Banach algebra

In this section, we have introduced generalized Reich type mapping in the setting of

ECbMS over A. Then we proved a couple of theorems and established an example to

prove the validity of the result.

Definition 2.2.1. Let (Q, ds) be an ECbMS over A with P an underlying solid cone

and α : Q×Q→ [0,∞) be a mapping. Then a self-map z on Q is called a generalized

R-type (Reich type) contraction if there exists three vectors $1, $2, $3 in P such that

for all η, ξ ∈ Q with α(η, ξ) ≥ s(η, ξ):
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(i) 2s(η, ξ)r($1) + (s(η, ξ) + 1)r($2 +$3) < 2 and for each %0 ∈ Q with %j = zj%0,

lim
k,i→∞

s(%j+1, %i) <
1

||κ||
where κ = (2e−$)−1(2$1 +$) for $ = $2 +$3;

(ii) ds(zη,zξ) � $1ds(η, ξ) +$2ds(η,zη) +$3ds(ξ,zξ).

One of the main results of this chapter is given as follows:

Theorem 2.2.2. Let (Q, ds) be a complete ECbMS over A with α : Q ×Q → [0,∞)

be a mapping and P an underlying solid cone. Suppose that the self-map z on Q is a

generalized R-type contraction with vectors v1, v2, v3 ∈ P such that:

1. z is a generalized α-admissible;

2. there exists an element u0 ∈ Q such that α(u0,zu0) ≥ s(u0,zu0);

3. (Q, ds) is regular or z is continuous.

Then there exists a point % in Q which is a F · P of the map z.

Proof. Let u0 be a point in Q such that α(u0,zu0) ≥ s(u0,zu0). For u0 ∈ Q, if we

define u1 = zu0, u2 = zu1 = z(zu0) = T 2u0, · · · , un+1 = zun = zn+1u0, then

α(u0, u1) ≥ s(u0, u1).

But z is generalized α-admissible, so

α(zu0,zu1) = α(u1, u2) ≥ s(u1, u2),

and so by induction we get

α(un, un+1) ≥ s(un, un+1).

By using Definition 2.2.1, we have

ds(un, un+1) = ds(zun−1,zun)

� v1ds(un−1, un) + v2ds(un−1,zun−1) + v3ds(un,zun), i.e.
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(e− v3)ds(un, un+1) � (v1 + v2)ds(un−1, un). (2.2.1)

Similarly

ds(un+1, un) = ds(zun,zun−1)

� v1ds(un, un−1) + v2ds(un,zun) + v3ds(un−1,zun−1), i.e.

(e− v2)ds(un+1, un) � (v1 + v3)ds(un−1, un). (2.2.2)

Adding (2.2.1) and (2.2.2), we obtain

(2e− v2 − v3)ds(un, un+1) � (2v1 + v2 + v3)ds(un−1, un).

If we take v = v2 + v3, then we obtain

(2e− v)ds(un+1, un) � (2v1 + v)ds(un−1, un). (2.2.3)

Note that

2r(v) ≤ (s(un, un+1) + 1)r(v) ≤ 2r(v1) + (s(un, un+1) + 1)r(v) < 2.

Hence r(v) < 1 < 2 =⇒ r(v) < 2. Thus by using Lemma 1.3.11, we obtain that the

element 2e− v is invertible and (2e− v)−1 =
∑∞

n=0
vn

2n+1 , r((2e− v)−1) < 1
2−r(v) .

Hence (2.2.3) becomes

ds(un, un+1) � κds(un−1, un), (2.2.4)

where κ = (2e− v)−1(2v1 + v). The inequality (2.2.4) then implies that for all n ∈ N

ds(un, un+1) � κds(un−1, un)

� κ2ds(un−1, un)

...

� κnds(u0, u1). (2.2.5)
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Now if we take m > n, then by using (2.2.5) and Definition 2.1.1, (iii) we have

ds(un, um) � s(un, un+1)ds(un, un+1) + s(un, un+1)s(un+1, un+2)ds(un+1, un+2) + · · ·+

s(un, un+1)s(un+1, un+2) . . . s(um−1, um)(ds(um−1, um))

� s(un, um)κnds(u0, u1) + s(un, um)s(un+1, um)κn+1ds(u0, u1) + · · ·+

s(un, um)s(un+1, um)s(un+2, um)...s(um−2, um)s(um−1, um)κm−1ds(u0, u1)

� ds(u0, u1)
[
s(u1, um)s(u2, um) . . . s(un−1, um)s(un, um)κn+

s(u1, um)s(u2, um) . . . s(un, um)s(un+1, um)κn+1 + · · ·+

{s(u1, um)s(u2, um) . . . s(un, um)s(un+1, um) . . . s(um−2, um)s(um−1, um)}κm−1
]

= ds(u0, u1)
[
κn

n∏
j=1

s(uj, um) + κn+1

n+1∏
j=1

s(uj, um) + · · ·+ κm−1
m−1∏
j=1

s(uj, um)
]
.

Let an = κn
∏n

j=1 s(uj, um) and S =
∑∞

n=1 an.

Since by Definition 2.2.1, ||κ|| limn,m→∞ s(un+1, um) < 1, so the series S converges abso-

lutely. Because by using ratio test we have

lim
n→∞

||an+1||
||an||

≤ lim
n→∞

||κ||||κn||s(un+1, um)

||κn||
= ||κ|| lim

n,m→∞
s(un+1, um) < 1.

But A is a Banach algebra and the series S is absolutely convergent, so it converges in A.
Thus Sm−1 − Sn =

[
κn
∏n

j=1 s(uj, um) + · · · + κm−1
∏m−1

j=1 s(uj, um)
]
→ ϑ as n,m→∞

and so is ds(u0, u1)(Sm−1−Sn). By Lemma 1.3.15, for every c� ϑ, there exists a natural

number n0 such that for all n ≥ n0, ds(un, um) � c. Thus by Definition 1.3.19 {un} is
a Cauchy sequence in Q. But Q is complete so there exists % ∈ Q such that un → % as

n→∞. We show that % is a F · P of the map z.

Suppose that z is continuous. It follows that un+1 = zun → z% as n→∞. But limit

of a sequence is unique, so we must have z% = %. Hence % is a F · P of the map z in

this case.

However, if (Q, ds) is α-regular, then by Definition 2.1.5 we have

α(un, %) ≥ s(un, %), for all n ∈ N.
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ds(%,z%) � s(%,z%)
[
ds(%,zun) + ds(zun,z%)

]
� s(%,z%)ds(%,zun) + s(%,z%)

[
v1ds(un, %) + v2ds(un,zun) + v3ds(%,z%)

]
� s(%,z%)ds(%,zun) + s(%,z%)v1ds(un, %) + s(%,z%)v3ds(%,z%)

+ s(%,z%)s(un, un+1)v2
[
ds(un, %) + ds(%, un+1)

]
= s(%,z%)(e+ s(un, un+1)v2)ds(%, un+1) + s(%,z%)v3ds(%,z%)

+ s(%,z%)(v1 + s(un, un+1)v2)ds(un, %),

which further implies that

(e−s(%,z%)v3)ds(%,z%) � s(%,z%)(e+s(un, un+1)v2)ds(un+1, %)+s(%,z%)(v1+s(un, un+1)v2)ds(un, %)

(2.2.6)

Similarly,

ds(%,z%) � s(%,z%)
[
ds(%,zun) + ds(zun,z%)

]
= s(%,z%)ds(%,zun) + s(%,z%)ds(z%,zun)

� s(%,z%)ds(%,zun) + s(%,z%)
[
v1ds(%, un) + v2ds(%,z%) + v3ds(un,zun)

]
� s(%,z%)ds(%,zun) + s(%,z%)v1ds(%, un) + s(%,z%)v2ds(%,z%)

+ s(%,z%)s(un, un+1)v3
[
ds(un, %) + ds(%, un+1)

]
= s(%,z%)(e+ s(un, un+1)v3)ds(%, un+1) + s(%,z%)v2ds(%,z%)

+ s(%,z%)(v1 + s(un, un+1)v3)ds(un, %),

which further implies that

(e−s(%,z%)v2)ds(%,z%) � s(%,z%)(e+s(un, un+1)v3)ds(un+1, %)+s(%,z%)(v1+s(un, un+1)v3)ds(un, %).

(2.2.7)

Therefore, by combining (2.2.6) and (2.2.7), we get

(2e− s(%,z%)v2 − s(%,z%)v3)ds(%,z%) � s(%,z%)(2e+ s(%,z%)v2 + s(%,z%)v3)ds(un+1, %)

+ s(%,z%)(2v1 + s(%,z%)v2 + s(%,z%)v3)ds(un, %), i.e.

(2e− s(%,z%)v)ds(%,z%) � s(%,z%)(2e+ s(%,z%)v)ds(un+1, %)

+ s(%,z%)(2v1 + s(%,z%)v)ds(un, %). (2.2.8)
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We also note that

r(s(%,z%)v) = s(%,z%)r(v) ≤ 2s(%,z%)r(v1) + (s(%,z%) + 1)r(v) < 2.

Thus by Lemma 1.3.11, 2e− s(%,z%)v is invertible and so (2.2.8) implies that

ds(%,z%) � (2e− s(%,z%)v)−1
[
s(%,z%)(2e+ s(%,z%)v)ds(un+1, %)

+ s(%,z%)(2v1 + s(%,z%)v)ds(un, %)
]
. (2.2.9)

By using Remark 1.3.20 the sequences {ds(un+1, %)} and {ds(un, %)} are c-sequences.
Hence by Lemma 1.3.14, the sequence {τ1ds(un+1, %)+τ2ds(un, %)} is a c-sequence (where
τ1 = (2e−s(%,z%)v)−1s(%,z%)(2e+s(%,z%)v) and τ2 = (2e−s(%,z%)v)−1s(%,z%)(2v1+

s(%,z%)v)). Therefore, for any c ∈ int(P)∃ n0 ∈ N such that

ds(%,z%) � τ1ds(un+1, %) + τ2ds(un, %)� c.

Which further implies by using Lemma 1.3.15 that ds(%,z%) = ϑ. Therefore, z% = %

and this complete the proof.

Example 2.2.3. Let A = C1
R[0, 1] and ||f || = ||f ||∞ + ||f ′ ||∞. If we define point wise

multiplication of functions on A, then A becomes a real Banach algebra with identity

e(t) = 1. If we take P = {T ∈ A : T (p) ≥ 0, p ∈ [0, 1]}, then it can be seen that P is

a non-normal cone (see [26]). Let Q = [0,∞) and s : Q×Q→ [1,∞) be defined as

s(%,$) =

%+$ + 2 if %,$ ∈ [0, 1];

2 elsewhere.

Define ds : Q×Q→ A by

ds(%,$)(t) = (%−$)2et.

Then ds is an ECbMS over A. Also note that Q is complete with respect to ds. Define

two maps α : Q×Q→ [0,∞) and z : Q→ Q by:

α(x, y) =

s(p, q) if p, q ∈ [0, 1];

0 elsewhere.
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z(p) =


√
5
3
p if p ∈ [0, 1];

p− 1 if p > 1.

Note that for every p ∈ [0, 1], zp ∈ [0, 1]. By choosing v1(t) = 1
36

+ 1
36
t, v2(t) = 1

18
+ 1

18
t

and v3(t) = 1
24

+ 1
24
t we obtain that r(v1) = 2

9
, r(v) = r(v2+v3) = 7

36
. Simple calculations

show that 2(2 + 2)r(v1) + (2 + 2 + 1)r(v) = 51
36
< 2 and so z is a generalized R-type

contraction as;

2s(x, y)r(v1) + (s(x, y) + 1)r(v) ≤ 2(2 + 2)r(v1) + (2 + 2 + 1)r(v) =
51

36
< 2.

Also for each u0 ∈ Q, the limit limn,m→∞ s(un+1, um) = 2 and ||κ|| = ||(2e− v)−1(2v1 +

v)|| ≤
(

72
130

)(
46
72

)
= 23

65
< 1

2
= 1

limn,m→∞ s(un+1,um)
. Similarly by easily calculation one can

show that

ds(zp,zq) � v1ds(p, q) + v2ds(p,zp) + v3ds(q,zq).

Next we show that there is a point u0 in Q such that α(u0,zu0) ≥ s(u0,zu0). Indeed,
for u0 = 1, we have

α(1,z1) = α(1,

√
5

3
) ≥ s(1,

√
5

3
) = s(1,z1).

Next we show that z is a generalized α-admissible mapping. In fact, if p, q ∈ Q are

such that α(p, q) ≥ s(p, q), then by definition of α, the points p, q is in [0, 1]. Therefore,

zp,zq ∈ [0, 1] and so

α(zp,zq) ≥ s(zp,zq).

Finally we show that (Q, ds) is α-regular. If we assume a sequence {σn} in Q such that

α(σn, σn+1) ≥ s(σn, σn+1) for all n ∈ N and σn → q ∈ Q, then {σn} ⊆ [0, 1]. But [0, 1]

is closed, so q ∈ [0, 1]. This implies that α(vn, q) ≥ s(σn, q) for all n ∈ N. Hence all the

axioms of Theorem 2.2.2 satisfied, and so there is a point % = 0 (say) which is a F · P
of the map z.

Theorem 2.2.4. Let A be a Banach algebra with solid cone P. Let (Q, ds) be a

complete ECbMS over A with α : Q × Q → [0,∞) a mapping. Suppose that the

self-map z on Q is a generalized R-type contraction with vectors v1, v2, v3 in P such

that v1 commutes with v2 + v3 and:
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1. z is a generalized α-admissible;

2. there exists u0 ∈ Q such that α(u0,zu0) ≥ s(u0,zu0);

3. z is continuous or (Q, ds) is regular;

4. for any two fixed points $, ζ of z, there exists z in Q such that α($, z) ≥ s($, z)

and α(ζ, z) ≥ s(ζ, z).

Then there exists a unique point % in Q which is a F · P of the map z.

Proof. From the hypothesis and the first three conditions, in Theorem 2.2.2, it has been

proved that exists a point % ∈ Q which is a F · P of the map z. We show that this

point is unique and for this let ζ ∈ Fix(z) such that % 6= ζ. Then by using Condition

4, there exists z ∈ Q with

α(%, z) ≥ s(%, z) and α(ζ, z) ≥ s(ζ, z). (2.2.10)

Since z is a generalized α-admissible mapping and %, ζ ∈ Fix(z) so by (2.2.10) we get

α(%,ziz) ≥ s(%,ziz) and α(ζ,ziz) ≥ s(ζ,ziz) , for all i ∈ N. (2.2.11)

By using Definition 2.2.1 and (2.2.11) we obtain

ds(%,ziz) = ds(z%,z(zi−1z))

� v1ds(%,zi−1z) + v2ds(%,z%) + v3ds(zi−1z,ziz)

� v1ds(%,zi−1z) + v3s(zi−1z,ziz)[ds(zi−1z, %) + ds(%,ziz)],

which further implies that

(e− s(zi−1z,ziz)v3)ds(%,ziz) � (v1 + s(zi−1z,ziz))v3)ds(%,zi−1z). (2.2.12)

Similarly,

ds(ziz, %) = ds(z(zi−1z),z%)

� v1ds(zi−1z, %) + v2ds(zi−1z),ziz)) + v3ds(%,z%)

� v1ds(zi−1z, %) + v2s(zi−1z,ziz)[ds(zi−1z, %) + ds(%,ziz)],
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which further implies that

(e− s(zi−1z,ziz)v2)ds(ziz, %) � (v1 + s(zi−1z,ziz))v2)ds(zi−1z, %). (2.2.13)

Adding (2.2.12) and (2.2.13) we have

(2e−s(zi−1z,ziz)v2−s(zi−1z,ziz)v3)ds(%,ziz) � (2v1+s(zi−1z,ziz)v2+s(zi−1z,ziz)v3)ds(%,zi−1z)

(2e− s(zi−1z,ziz)v)ds(%,ziz) � (2v1 + s(zi−1z,ziz)v)ds(%,zi−1z).

Note that 2r(s(zi−1z,ziz)v) ≤ (s(un, un+1)+1)r(s(zi−1z,ziz)v) ≤ 2r(v1)+(s(un, un+1)+

1)r(s(zi−1z,ziz)v) < 2. Which implies that r(s(zi−1z,ziz)v) < 1 < 2. Thus by

Lemma 1.3.11, we can say that 2e−s(zi−1z,ziz)v is invertible and (2e−s(zi−1z,ziz)v)−1 =∑∞
n=0

(s(zi−1z,ziz)v)n
2n+1 ,

r((2e− s(zi−1z,ziz)v)−1) < 1
2−r(s(zi−1z,ziz)v) . Thus we have

ds(%,ziz) � (2e− s(zi−1z,ziz)v)−1(2v1 + s(zi−1z,ziz)v)ds(%,zi−1z) , i.e.

ds(%,ziz) � τds(%,zi−1z) (2.2.14)

where τ = (2e− s(zi−1z,ziz)v)−1(2v1 + s(zi−1z,ziz)v). Therefore, we have

ds(%,ziz) � τds(%,zi−1z)

� τ 2ds(%,zi−2z)

...

� τ ids(%, z) for all i ∈ N.

Since v1 commutes with v2 + v3 = v, so

(2e− s(zi−1z,ziz)v)−1(2v1 + s(zi−1z,ziz)v) =
( ∞∑
n=0

(s(zi−1z,ziz)v)n

2n+1

)
(2v1 + s(zi−1z,ziz)v)

= 2v1
( ∞∑
n=0

(s(zi−1z,ziz)v)n

2n+1

)
+ s(zi−1z,ziz)v

( ∞∑
n=0

(s(zi−1z,ziz)v)n

2n+1

)
= (2v1 + s(zi−1z,ziz)v)(2e− s(zi−1z,ziz)v)−1.
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Which shows that (2e−s(zi−1z,ziz)v)−1 commutes with (2v1+s(zi−1z,ziz)v). Hence

by applying Lemma 1.3.11 and Lemma 1.3.12 we obtain that;

r(τ) = r((2e− s(zi−1z,ziz)v)−1(2v1 + s(zi−1z,ziz)v))

≤ r((2e− s(zi−1z,ziz)v)−1) · r((2v1 + s(zi−1z,ziz)v))

≤ 1

2− r(s(zi−1z,ziz)v)
(2r(v1) + r(s(zi−1z,ziz)v))

<
1

s(un, un+1)
< 1

By Lemma 1.3.15 it follows that ||τ i|| → 0 as i→∞ and so

||τ ids(%, z)|| ≤ ||τ i||||ds(%, z)|| → 0 (i→∞).

By Remark 1.3.20 we conclude that for any c� ϑ, ∃M ∈ N such that

ds(%,ziz) � τ ids(%, z) � c ∀ i ≥M.

Thus by Lemma 1.3.15 ziz → % as i→∞. Similarly we obtain that ziz → ζ as i→∞.

Now by uniqueness of limit, we conclude that % = ζ.

2.3 Generalized Lipschitz contractions in ECbMS over

Banach algebras

In this section, we have discussed the theory of F ·Ps of generalized Lipschitz mappings

in ECbMS over A.

Theorem 2.3.1. Let (Q, ds) be a complete ECbMS over A with P an associated cone

in A. Let z be a self-map on Q such that for all p, q ∈ Q;

ds(zp,zq) � κds(p, q), (2.3.1)

where κ ∈ P be such that r(κ) < 1 and for each u0 ∈ Q, limn,m→∞ s(un+1, um) <
1

||κ||
.

Then there exists a unique point % ∈ Q which is a F ·P of the map z. Furthermore for

each u0 ∈ Q, the iterative sequence un = z(un−1) = znu0 converges to %.
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Proof. If we take v1 = κ, v2 = v3 = ϑ and α(p, q) = s(p, q), then all the conditions of

Theorem 2.2.2 are satisfied, i.e. z satisfies the condition of Definition 2.2.1, z is gen-

eralized α-admissible, (Q, ds) is regular and for every u0 ∈ Q α(u0,zu0) � s(u0,zu0).
Hence there exists % in Q which is a F · P of the map z. Now it remains only to show

that this F · P is unique. For this, let there is ζ in Q such that zζ = ζ. Then we have

ds(%, ζ) = ds(z%,zζ) � κds(%, ζ).

But r(κ) < 1, so by Lemma 1.3.11, e−κ is invertible. Thus by Lemma 1.3.15 ds(%, ζ) =

ϑ.

Theorem 2.3.2. Let (Q, ds) be a complete ECbMS over A and P be the associated

cone in A. Let z be a self-map on Q satisfies the generalized Lipschitz condition, i.e.

for all p, q ∈ Q;

ds(zp,zq) � κ[ds(zp, p) + ds(zq, q)], (2.3.2)

where κ ∈ P be such that r(κ) <
1

s(p, q) + 1
and for each u0 ∈ Q, limn,m→∞ s(un+1, um) <

1

||τ ||
with τ = (e− κ)−1κ. Then there exists a unique point % ∈ Q which is F · P of the

map z.

Proof. If we take v1 = ϑ, v2 = v3 = κ and α(p, q) = s(p, q), then all the condition of

Theorem 2.2.2 are satisfied. Hence there exists % in Q which is a F · P of the map z.

Finally we show that % is a unique F · P of the map z. For this if ζ is another F · P of

z, then

ds(%, ζ) = ds(z%,zζ) � κ[ds(%,z%) + ds(ζ,zζ) = ϑ.

Therefore, % = ζ.

The result Theorem 1.3.21 for generalized Lipschitz mappings on CbM space over

Banach algebra [23] can be directly proved by using our results, Theorem 2.3.1 and

Theorem 2.3.2 when we define s(η, ξ) = b for some b ≥ 1.

Corollary 2.3.3. Let P be the associated cone in a Banach algebra A and (Q, ds) be

a complete CM space over A. Let z be a self-map on Q such that for all p, q ∈ Q;

ds(zp,zq) � κds(p, q), (2.3.3)
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where κ ∈ P be such that r(κ) < 1. Then for every σ0 ∈ Q, the iterative sequence

σn = z(σn−1) = znσ0 converges to $ which is a unique F · P of z.

Proof. Take s(η, ξ) = 1 for all η, ξ ∈ Q in Theorem 2.3.1, we get the required result.

Remark 2.3.4. 1. If we define s(p, q) = b for some b ≥ 1 in Theorem 2.3.1 and in

Theorem 2.3.2, we get the main results of [23] for CbMS over Banach algebras.

2. By using Remark 2.1.4, we obtain Theorem 1.3.6 as a corollary of our Theorem

2.3.1.

3. If we take s(x, y) = b for some b ≥ 1 in Theorem 2.2.2 and in Theorem 2.2.4, we get

the main results of [56] for CbMS over Banach algebra.

2.4 Consequences and applications

This section is devoted to some important consequences of our results which generalizes

the results of Hussain et al. [24], Xu and Radenovic [61], Malhotra et al. [33], Malhotra

et al. [34] and the results of Liu and Xu [32]. We also have added the applications of

our proved results in existence of solution of integral equations.

Definition 2.4.1. Let α : Q × Q → [0,∞) be a function for a non-empty set Q.

A mapping z : Q → Q is said to be an α-admissible mapping if α(η, ξ) ≥ 1 =⇒
α(zη,zξ) ≥ 1.

Definition 2.4.2. Let (Q, ds) be a complete ECbMS over A and P be the underlying

solid cone in A. A self-map z on Q is said to be generalized α-Lipschitz contraction if

for all η, ξ ∈ Q with α(η, ξ) ≥ 1 satisfies the following:

ds(zη,zξ) � κds(η, ξ),

where κ ∈ P is such that r(κ) < 1
s(η,ξ)

and for each $0 ∈ Q, limn,m→∞ s($n+1, $m) <
1

||κ||
.
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The following theorem becomes special case of Theorem 2.2.2 if we define α : Q×Q→
[0,∞) by α(η, ξ) = s(η, ξ) ≥ 1 for all η, ξ ∈ Q and take κ = $1, $2 = $3 = ϑ.

Theorem 2.4.3. Let (Q, ds) be a complete ECbMS over A and P be the associated

solid cone. Let z : Q → Q satisfies the generalized α-Lipschitz contraction with Lips-

chitz constant κ such that:

1. z is α-admissible;

2. there exists $0 ∈ Q such that α($0,z$0) ≥ 1;

3. z is continuous or if a sequence {$n} ∈ Q with α($n, $n+1) ≥ 1 for all n ∈ N and

$n → $ implies that for every n ∈ N, α($n, $) ≥ 1.

Then there is a point % in Q which is a F · P of the map z.

For uniqueness of this point, we use the following extra condition:

∀%, ζ ∈ Fix(z), there exists η ∈ Q such that α(%, η) ≥ 1 and α(ζ, η) ≥ 1. (2.4.1)

Theorem 2.4.4. If we add the condition (2.4.1) in the assumption of Theorem 2.4.3,

then the F · P is unique.

Proof. The assertion follows simply by using Theorem 2.4.3 and Theorem 2.2.4.

Remark 2.4.5. 1. If we take s(η, ξ) = b for some b ≥ 1, then we obtain the main

results due to Hussain et al. [24, Theorems 3.1 and 3.2].

2. Results due to in Malhotra et al. [33, Theorems 3.1, 3.2 and 3.5] become special

cases of Theorems 2.4.3 and 2.4.4 for s(η, ξ) = 1, $1 = 1 and $2 = $3 = ϑ.

3. Results due to Malhotra et al. [34, Theorems 3.1, 3.2 and 3.3] become special cases

of Theorems 2.4.3 and 2.4.4 for s(η, ξ) = 1, $1 = ϑ and $2 = $3.

If the given ECbMS over A is a partially ordered, then we have the following

theorem.
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Theorem 2.4.6. Let s : Q × Q → [1,∞) be a function, where (Q,�) is a partially

ordered set. Let (Q, ds) be a complete ECbMS over A with underlying solid cone P.

Assume a self-map z onQ is non-decreasing with respect to � and satisfies the following

conditions:

(1) there exists vectors $1, $2, $3 ∈ P such that 2s(η, ξ)r($1) + (s(η, ξ) + 1)r($2 +

$3) < 2, ds(zη,zξ) � $1ds(η, ξ) + $2ds(η,zη) + $3ds(ξ,zξ) for all η, ξ ∈ Q

with η � ξ and for each u0 ∈ Q with un = znu0,

lim
n,m→∞

s(un+1, um) <
1

||κ||
where κ = (2e−$)−1(2$1 +$) for $ = $2 +$3;

(2) ∃ $0 ∈ Q such that $0 �z$0;

(3) z is continuous or if {$n} is a non-decreasing sequence in Q with respect to �

such that $n → $ ∈ Q as (n→∞), then $n �$ for all n ∈ N.

Then there exists a point % in Q which is a F · P of the map z.

Proof. Define a function α : Q×Q→ [0,∞) by

α(η, ξ) =

s(η, ξ) if η � ξ;

0 elsewhere.

By condition (1), we can say that z is a generalized R-type contraction. Now since

z is non-decreasing, so z is a generalized α-admissible mapping. Definition of α and

condition (2) implies that there exists $0 ∈ Q such that α($0,z$0) = s($0,z$0). By

condition (3) we can see that either z is continuous or (Q, ds) is regular. It follows that

all the necessary conditions of Theorem 2.2.2 are satisfied, so we conclude that there

exists a point in Q which is a F · P of the map z.

Corollary 2.4.7. Let s : Q × Q → [1,∞) be a function, where (Q,�) is a partially

ordered set. Let (Q, ds) be a complete ECbMS over A with underlying solid cone P.

Let z be a self-map on Q which is non-decreasing with respect to � and the following

assumptions hold:
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(1) there exists vectors κ ∈ P such that r(κ) < 1
s(η,ξ)

, ds(zη,zξ) � κds(η, ξ) for all

η, ξ ∈ Q with η � ξ and for each u0 ∈ Q with un = znu0,

lim
n,m→∞

s(un+1, um) <
1

||κ||
;

(2) ∃ %0 ∈ Q with %0 �z%0;

(3) z is continuous or if {%n} is a non-decreasing sequence in Q with respect to � such

that %n → % ∈ Q, then %n � % for all n ∈ N.

Then there exists a unique point % in Q which is a F · P of the map z.

Proof. The assertion follows directly if we take $1 = κ and $2 = $3 = ϑ in Theorem

2.4.6.

Remark 2.4.8. 1. Theorem 2.4.6 reduces the main result due to Vujakovic [56, The-

orem 3.6] for s(p, q) = b and b ≥ 1.

2. Corollary 2.4.7 reduces to the main results due to Hussain et al. [24, Theorems 4.2

and 4.3 ] for s(p, q) = b and b ≥ 1.

3. Corollary 2.4.7 reduces to the results due to Nieto and Rodreguez-Lopez [38, Theo-

rems 2.1 and 2.2] for s(p, q) = 1 and A = R.

Following is given a lemma which is proved for cone b-M · Ss in [62] and the proof

in ECbM spaces over Banach algebras are same.

Lemma 2.4.9. Let Ψ be a Lebesgue measurable function defined on [0, 1] with k ≥ 1.

Then we have ∣∣∣∣∫ 1

0

Ψ(s)ds

∣∣∣∣k ≤ ∫ 1

0

|Ψ(s)|kds.

Example 2.4.10. Let A = Q = C1
R[0, 1] be the space of all real valued differentiable

functions with continuous derivative defined on [0, 1]. If we take P = {h ∈ A : h(a) ≥
0 : ∀a ∈ [0, 1]}, then P is a cone in A. Define a map ds : Q×Q→ A by:

ds(η, ξ)(t) = ||η − ξ||p∞et.
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Then ds is an extended cone b-metric over A with s : Q × Q → [1,∞) defined as

s(η, ξ)(t) = max |η(t)|+ max |ξ(t)|+ 2p.

Consider the following nonlinear integral equation

f(t) =

∫ 1

0

z(t, f(η))ds, (2.4.2)

where z satisfies the following:

(a) z : [0, 1]×R→ R is continuous;

(b) there exists a constant M ∈ [0, 1
2
) such that for each f0 ∈ Q we have that: Mp <

1
limn,m→∞ s(fn+1,fm)

and for all t ∈ [0, 1] and η, ξ ∈ R, |z(t, η)−z(t, ξ)| ≤M |η− ξ|.

Theorem 2.4.11. The equation (2.4.2) has a unique solution in Q = C1
R.

Proof. To show that (2.4.2) has a unique solution, define G : Q→ Q by

G(g)(p) =

∫ 1

0

z(p, g(s))ds.

By using Lemma 2.4.9 we have

ds(G(f),G(g))(t) = et||G(f)− G(g)||p∞
= et max

0≤x≤1
|G(f)(x)− G(g)(x)|p

= et max
0≤x≤1

∣∣∣∣∫ 1

0

z(x, f(s))ds−
∫ 1

0

z(x, g(s))ds

∣∣∣∣p
= et max

0≤x≤1

∣∣∣∣∫ 1

0

(z(x, f(s))−z(x, g(s))) ds

∣∣∣∣p
≤ et max

0≤x≤1

∫ 1

0

|z(x, f(s))−z(x, g(s))|p ds

≤ et
∫ 1

0

(M |f(s)− g(s)|)pds

= etMp

∫ 1

0

|f(s)− g(s)|p ds

≤ etMp max
0≤s≤1

|f(s)− g(s)|p ds

= Mpds(f, g).
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If we take κ = Mpe, then r(κ) ≤ ||Mpe|| = Mp < 1
limn,m→∞ s(fn+1,fm)

. So all the conditions

of Theorem 2.3.1 and thus there is a unique point in Q which is a F · P of the map G.
Equivalently, 2.4.2 has a unique solution in Q = C1

R.
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Chapter 3

Fixed points of single-valued

dynamical systems on controlled cone

metric type space over real Banach

algebra

In this chapter, we introduce a new type of M · S over a real Banach algebra which

we call a controlled cone metric type space over Banach algebra. By using such spaces

we proved some F · P theorems for generalized R-type contraction and generalized

lipschitz mapping. Our results extends/generalizes some previous well known results in

the literature. The work of this chapter has been published in the Journal of Inequalities

and Applications [54].

3.1 Controlled cone metric type spaces over real Ba-

nach algebras

We start this section by the definition of a CCMT space over Banach algebra.

Definition 3.1.1. Let A be a real Banach algebra with cone P, Q be a non empty set
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and s : Q×Q→ [1,∞) be a mapping. A controlled cone metric type (in short CCMT )

on Q over a Banach algebra A is a function ds : Q×Q→ A such that:

(E1) ds(p, q) � θ and ds(p, q) = θ iff p = q for all p, q ∈ Q;

(E2) ds(p, q) = ds(q, p) for all p, q ∈ Q;

(E3) ds(p, v) � s(p, q)ds(p, q) + s(q, v)ds(q, v) for all p, q, v ∈ Q.

The pair(Q, ds) is then called a controlled cone metric type space over a Banach algebra

A (in short CCMTS over A).

Remark 3.1.2. It is clear that the class of CCMTS over A is larger than the classes

of CbM spaces and coneM · Ss over Banach algebras.

The definition of Cauchy sequences, convergent sequences and completeness for CCMTS

over A are same as cone b-M · Ss over a Banach algebra defined in 1.3.19.

In general ds is not necessarily a continuous function but in this paper, ds will always

mean a continuous function ds : Q×Q→ A.

Example 3.1.3. Let Q = {1, 2, 3} and s : Q × Q → [1,∞) be defined as s(p, q) =

1 + p+ q. Consider the real Banach algebra A = R2 together with a solid cone

P = {(a, b) ∈ R2 : a, b ≥ 0}. If we define ds : Q×Q→ A by:

ds(1, 2) = ds(2, 1) = (100, 100);

ds(1, 3) = ds(3, 1) = (1200, 1200);

ds(3, 2) = ds(2, 3) = (800, 800);

ds(1, 1) = ds(2, 2) = ds(3, 3) = (0, 0) = θ.

Clearly the first and second conditions of a CCMTS over A are satisfied. For the third

condition we have:

s(1, 3)ds(1, 3)+s(3, 2)ds(3, 2)−ds(1, 2) = 5(1200, 1200)+6(800, 800)−(100, 100) = (10700, 10700) ∈ P;

s(1, 2)ds(1, 2)+s(2, 3)ds2, 3)−ds(1, 3) = 4(100, 100)+6(800, 800)−(1200, 1200) = (4000, 4000) ∈ P;

s(2, 1)ds(2, 1)+s(1, 3)ds1, 3)−ds(2, 3) = 4(100, 100)+5(1200, 1200)]−(600, 600) = (5800, 5800) ∈ P.
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Hence for all p, q, v ∈ Q,

ds(p, v) � s(p, q)ds(p, q) + s(q, v)ds(q, v).

Thus (Q, ds) is a CCMT space over A = R2.

Remark 3.1.4. Let (Q, ds) be a CCMTS over A with s : Q×Q→ [1,∞). If A = R

and P = [0,∞), then (Q, ds) is a CMT space.

We now define generalized α-admissible mapping and α-regular space in term of

controlled cone metric type spaces over Banach algebras.

Definition 3.1.5. Consider (Q, ds), a CCMTS over A and P an underlying solid cone

in A. Let G : Q→ Q and α : Q×Q→ [0,∞) be mappings. Then:

(i) z is said to be a generalized α-admissible mapping if for p, q ∈ Q, α(p, q) ≥ s(p, q)

implies that α(zp,zq) ≥ s(zp,zq);

(ii) (Q, ds) is said to be α-regular if any sequence {uk} ∈ Q with α(uk, uk+1) ≥
s(uk, uk+1) for all k ∈ N and uk → q implies that α(uk, q) ≥ s(uk, q).

3.2 Generalized Reich type contraction in controlled

cone metric type spaces

In this section, we have introduced generalized R-type mapping in the setting of CCMT

space over Banach algebra. Later on, we proved some results and gave an example to

prove the validity of the results.

Definition 3.2.1. Let (Q, ds) be a CCMTS over A with P an underlying solid cone

and α : Q × Q → [0,∞) be a mapping. Then the mapping z : Q → Q is called the

generalized R-type contraction if there exist three vectors v1, v2, v3 in P such that for

every p, q ∈ Q with α(p, q) ≥ s(p, q) we have:

(i) 2s(p, q)r(v1) + (s(p, q) + 1)r(v2 + v3) < 2 and for each u0 ∈ Q with um = zmu0,

lim
m,i→∞

s(pi+1, pi+2)

s(pi, pi+1)
s(pi+1, pm) <

1

||κ||
where κ = (2e−v)−1(2v1+v) for v = v2+v3;
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(ii) ds(zp,zq) � v1ds(p, q) + v2ds(p,zp) + v3ds(q,zq).

One of the main results of this chapter is given as follows:

Theorem 3.2.2. Let (Q, ds) be a complete CCMTS over A with P an underlying solid

cone and α : Q ×Q → [0,∞) a mapping. Suppose that the mapping z : Q → Q is a

generalized R-type contraction with vectors v1, v2, v3 ∈ P such that:

1. z is a generalized α-admissible mapping;

2. there exists u0 ∈ Q such that α(u0,zu0) ≥ s(u0,zu0);

3. (Q, ds) is regular or z is continuous.

Then there exists a point % in Q which is a F · P of the map z.

Proof. Let u0 be a point in Q such that α(u0,zu0) ≥ s(u0,zu0). For u0 ∈ Q, if we

define u1 = zu0, u2 = zu1 = z(zu0) = T 2u0, · · · , un+1 = zun = zn+1u0, then

α(u0, u1) ≥ s(u0, u1).

But z is generalized α-admissible, so

α(zu0,zu1) = α(u1, u2) ≥ s(u1, u2),

and so by induction we get

α(un, un+1) ≥ s(un, un+1).

By using Definition 3.2.1, we have

ds(un, un+1) = ds(zun−1,zun)

� v1ds(un−1, un) + v2ds(un−1,zun−1) + v3ds(un,zun), i.e.

(e− v3)ds(un, un+1) � (v1 + v2)ds(un−1, un). (3.2.1)
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Similarly

ds(un+1, un) = ds(zun,zun−1)

� v1ds(un, un−1) + v2ds(un,zun) + v3ds(un−1,zun−1), i.e.

(e− v2)ds(un+1, un) � (v1 + v3)ds(un−1, un). (3.2.2)

Adding (3.2.1) and (3.2.2), we obtain

(2e− v2 − v3)ds(un, un+1) � (2v1 + v2 + v3)ds(un−1, un).

If we take v = v2 + v3, then we obtain

(2e− v)ds(un+1, un) � (2v1 + v)ds(un−1, un). (3.2.3)

Note that

2r(v) ≤ (s(un, un+1) + 1)r(v) ≤ 2r(v1) + (s(un, un+1) + 1)r(v) < 2.

Hence r(v) < 1 < 2 =⇒ r(v) < 2. Thus by Lemma 1.3.11, we obtain that the element

2e− v is invertible and (2e− v)−1 =
∑∞

n=0
vn

2n+1 , r((2e− v)−1) < 1
2−r(v) .

Thus (3.2.3) becomes

ds(un, un+1) � κds(un−1, un), (3.2.4)

where κ = (2e− v)−1(2v1 + v). The inequality (3.2.4) then implies that for all n ∈ N

ds(un, un+1) � κds(un−1, un) � κ2ds(un−1, un) � · · · � κnds(u0, u1). (3.2.5)

Now if we take m > n, then by using (3.2.5) and Definition 3.1.1, (iii) we have
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ds(un, um) � s(un, un+1)ds(un, un+1) + s(un+1, um)ds(un+1, um)

� s(un, un+1)ds(un, un+1) + s(un+1, um)s(un+1, un+2)ds(un+1, un+2)

+ s(un+1, um)s(un+2, um)ds(un+2, um)

� s(un, un+1)ds(un, un+1) + s(un+1, um)s(un+1, un+2)ds(un+1, un+2)

+ s(un+1, um)s(un+2, um)s(un+2, un+3)ds(un+2, un+3)

+ s(un+1, um)s(un+2, um)s(un+3, um)ds(un+3, um)

�
...

� s(un, un+1)ds(un, un+1) +
m−2∑
i=n+1

s(ui, ui+1)ds(ui, ui+1)

(
i∏

j=n+1

s(uj, um)

)

+ ds(um−1, um)

(
m−1∏
k=n+1

s(uk, um)

)

� s(un, un+1)κ
nds(u0, u1) +

m−2∑
i=n+1

s(ui, ui+1)κ
ids(u0, u1)

(
i∏

j=n+1

s(uj, um)

)

+ κm−1ds(u0, u1)

(
m−1∏
k=n+1

s(uk, um)

)

� s(un, un+1)κ
nds(u0, u1) +

m−2∑
i=n+1

(
i∏

j=n+1

s(uj, um)

)
s(ui, ui+1)κ

ids(u0, u1)

+

(
m−1∏
k=n+1

s(uk, um)

)
s(um−1, um)κm−1ds(u0, u1)

� s(un, un+1)κ
nds(u0, u1) +

m−1∑
i=n+1

s(ui, ui+1)κ
ids(u0, u1)

(
i∏

j=n+1

s(uj, um)

)

� κnds(u0, u1)

(
n∏
j=0

s(un, un+1)

)
+

m−1∑
i=n+1

s(ui, ui+1)κ
ids(u0, u1)

(
i∏

j=0

s(uj, um)

)

= ds(u0, u1)
m−1∑
i=n

(
i∏

j=0

s(uj, um)

)
s(ui, ui+1)κ

i.

40



In the above steps we use the fact that s(p, q) ≥ 1 and thus x � s(p, q)x for any x ∈ A.
Let

an =

(
n∏
j=0

s(uj, um)

)
κns(un, un+1) and S =

∞∑
n=1

an.

Since by Definition 3.2.1, ||κ|| limm,i→∞
s(ui+1,ui+2)
s(ui,ui+1)

s(ui+1, um) < 1, so the series S con-

verges absolutely. Because by using ratio test we have

lim
n→∞

||an+1||
||an||

≤ lim
n→∞

||κ||||κn||
(∏n+1

j=1 s(uj, um)
)
s(un+1, un+2)

||κn||
(∏n

j=1 s(uj, um)
)
s(un, un+1)

= ||κ|| lim
n,m→∞

s(un+1, un+2)

s(un+1, un+1)
s(un+1, um) < 1.

But A is a Banach algebra and the series S is absolutely convergent, so it converges in

A. Thus Sm−1−Sn =
[∑m−1

i=n

(∏i
j=0 s(uj, um)

)
s(ui, ui+1)κ

i
]
→ θ as n,m→∞ and so

is ds(u0, u1)(Sm−1−Sn). Hence by Lemma 1.3.15, for every θ � δ, there exists a natural

number N such that for all n ≥ N, we have ds(un, um)� δ. Thus by Definition 1.3.19

the sequence {un} is a Cauchy sequence in Q. But Q is complete so there exists % ∈ Q

such that un → % as n→∞. We show that % is a F · P of the map z.

Suppose that z is continuous. It follows that un+1 = zun → z% as n→∞. But limit

of a sequence is unique, so we must have z% = %. Hence % is a F · P of the map z in

this case.

However, if (Q, ds) is α-regular, then by Definition 3.1.5 we have

α(un, %) ≥ s(un, %), for all n ∈ N,

and

ds(%,z%) � s(%,zun)ds(%,zun) + s(zun,z%)ds(zun,z%)

� s(%,zun)ds(%,zun) + s(zun,z%)
[
v1ds(un, %) + v2ds(un,zun) + v3ds(%,z%)

]
� s(%,zun)ds(%,zun) + s(zun,z%)v1ds(un, %) + s(zun,z%)v3ds(%,z%)

+ s(zun,z%)v2
[
s(un, %)ds(un, %) + s(%, un+1)ds(%, un+1)

]
= s(%,zzun)(e+ s(un+1,z%)v2)ds(%, un+1) + s(un+1,z%)v3ds(%,z%)

+ s(un+1,z%)(v1 + s(un, %)v2)ds(un, %),
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which further implies that

(e− s(un+1,z%)v3)ds(%,z%) � s(%,zun)(e+ s(un+1,z%)v2)ds(un+1, %) (3.2.6)

+ s(un+1,z%)(v1 + s(un, %)v2)ds(un, %).

Similarly,

ds(%,z%) � s(%,zun)ds(%,zun) + s(zun,z%)ds(zun,z%)

= s(%,zun)ds(%,zun) + s(zun,z%)ds(z%,zun)

� s(%,zun)ds(%,zun) + s(zun,z%)
[
v1ds(%, un) + v2ds(%,z%) + v3ds(un,zun)

]
� s(%,zun)ds(%,zun) + s(zun,z%)v1ds(un, %) + s(zun,zz%)v2ds(%,z%)

+ s(zun,z%)v3
[
s(un, %)ds(un, %) + s(%, un+1)ds(%, un+1)

]
= s(%,zun)(e+ s(un+1,z%)v3)ds(%, un+1) + s(un+1,z%)v2ds(%,z%)

+ s(un+1,z%)(v1 + s(un, %)v2)ds(un, %),

which further implies that

(e− s(un+1,z%)v2)ds(%,z%) � s(%,zun)(e+ s(un+1,z%)v3)ds(un+1, %) (3.2.7)

+ s(un+1,z%)(v1 + s(un, %)v3)ds(un, %).

Therefore, by adding (3.2.6) and (3.2.7) we get

(2e− s(un+1,z%)v2 − s(un+1,z%)v3)ds(%,z%) � s(%, un+1)(2e+ s(un+1,z%)v2

+ s(un+1,z%)v3)ds(un+1, %)

+ s(%,z%)(2v1 + s(%,z%)v2

+ s(%,z%)v3)ds(un, %), i.e.

(2e− s(un+1,z%)v)ds(%,z%) � s(%, un+1)(2e+ s(un+1,z%)v)ds(un+1, %)

+ s(%,z%)(2v1 + s(%,z%)v)ds(un, %). (3.2.8)

We also notice from Definition 3.2.1 that

2r(s(un+1,z%)v) = 2s(un+1,z%)r(v) ≤ 2s(un+1,z%)r(v1) + (s(un+1,z%) + 1)r(v) < 2,
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i.e. r(s(un+1,z%)v) < 1 < 2. Thus by Lemma 1.3.11, 2e − s(un+1,z%)v is invertible

and so (3.2.8) implies that

ds(%,z%) � (2e− s(un+1,z%)v)−1
[
s(%, un+1)(2e+ s(un+1,z%)v)ds(un+1, %)

+ s(%,z%)(2v1 + s(%,z%)v)ds(un, %)
]
. (3.2.9)

By using Remark 1.3.20 the sequences {ds(un+1, %)} and {ds(un, %)} are c-sequences.

Hence by Lemma 1.3.14, the sequence {τ1ds(un+1, %)+τ2ds(un, %)} is a c-sequence (where
τ1 = (2e−s(un+1,z%)v)−1s(%, un+1)(2e+s(un+1,z%)v) and τ2 = (2e−s(un+1,z%)v)−1s(%,z%)(2v1+

s(%,z%)v)). Therefore, for any c ∈ A with c� θ, there exists n0 ∈ N such that

ds(%,z%) � τ1ds(un+1, %) + τ2ds(un, %)� c.

Which further implies by using Lemma 1.3.15 that ds(%,z%) = θ. Therefore, z% = %

and this complete the proof.

Example 3.2.3. Let A = C1
R[0, 1] and ||f || = ||f ||∞ + ||f ′ ||∞. If we define point wise

multiplication of functions on A, then A becomes a real Banach algebra with identity

e(t) = 1. If we take P = {f ∈ A : f(t) ≥ 0, t ∈ [0, 1]}, then P is a non-normal cone

(see [26]). Let Q = [0,∞) and s : Q × Q → [1,∞) be defined as s(p, q) = 2 + p + q.

Define ds : Q×Q→ A by

ds(p, q)(t) = (p− q)2et.

Then ds is a controlled type cone metric over A. Also note that Q is complete with

respect to ds. If we define α : Q×Q→ [0,∞) and z : Q→ Q by:

α(p, q) =

s(p, q) if p, q ∈ [0, 1];

0 elsewhere.

z(p) =


√
5
3
p if p ∈ [0, 1];

p+ 1 if p > 1.

Note that for every p ∈ [0, 1], zp ∈ [0, 1]. By choosing v1(t) = 1
9

+ 1
9
t, v2(t) = 1

18
+ 1

18
t

and v3(t) = 1
24

+ 1
24
t we obtain that r(v1) = 2

9
, r(v) = r(v2+v3) = 7

36
. Simple calculations
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show that 2(2)r(v1) + (2 + 1)r(v) = 53
36

and so z is a generalized R-type contraction as;

1

2(p+ q + 2)r(v1) + ((p+ q + 2) + 1)r(v)
≤ 1

2(2)r(v1) + (2 + 1)r(v)
=

36

53
.

Which further implies that 2s(p, q)r(v1) + (s(p, q) + 1)r(v) ≤ 53
36

< 2. Also we have

limm,i→∞
s(pi+1,pi+2)
s(pi,pi+1)

s(pi+1, pm) = 2 and ||κ|| = ||(2e− v)−1(2v1 + v)|| ≤
(

72
130

)(
46
72

)
= 23

65
<

1
2

= limm,i→∞
s(pi,pi+1)
s(pi+1,pi+2)

s(pi+1, pm). Similarly by easily calculation one can show that

ds(zp,zq) � v1ds(p, q) + v2ds(p,zp) + v3ds(q,zq).

Next we show that there is a point u0 in Q such that α(u0,zu0) ≥ s(u0,zu0). Indeed,
for u0 = 1, we have

α(1,z1) = α(1,

√
5

3
) ≥ s(1,

√
5

3
) = s(1,z1).

Next we show that z is a generalized α-admissible mapping. In fact, if p, q ∈ Q are such

that α(p, q) ≥ s(p, q), then by definition of α, p, q ∈ [0, 1]. Therefore, zp,zq ∈ [0, 1]

and so

α(zp,zq) ≥ s(zp,zq).

Finally we show that (Q, ds) is α-regular. If we assume a sequence {pn} in Q such that

α(pn, pn+1) ≥ s(pn, pn+1) for all n ∈ N and pn → q ∈ Q (as n→∞), then {pn} ⊆ [0, 1].

But [0, 1] is closed, so q ∈ [0, 1]. This implies that α(pn, q) ≥ s(pn, q) for all n ∈ N.

Hence all the conditions of Theorem 3.2.2 are satisfied, so z has a F · P % = 0 (say).

Theorem 3.2.4. Let A be a Banach algebra and P be a solid cone in A. Let (Q, ds)

be a complete CCMTS over A and α : Q ×Q → [0,∞) be a mapping. Suppose that

the mapping z : Q→ Q is a generalized R-type contraction with vectors v1, v2, v3 in P

such that v1 commutes with v2 + v3 and:

1. z is a generalized α-admissible;

2. ∃ u0 ∈ Q such that α(u0,zu0) ≥ s(u0,zu0);

3. z is continuous or (Q, ds) is regular;
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4. for any two F · Ps $, ζ of z, there exists z ∈ Q such that α($, z) ≥ s($, z) and

α(ζ, z) ≥ s(ζ, z).

Then there exists a unique F · P of the map z.

Proof. Using Theorem 3.2.2 and the first three given condition we can say that there

exists a point % ∈ Q which is a F · P of the map z. We show that this point is unique

and for this let ζ ∈ Fix(z) such that % 6= ζ. Then by using Condition 4, there exists

z ∈ Q such that

α(%, z) ≥ s(%, z) and α(ζ, z) ≥ s(ζ, z). (3.2.10)

Since z is a generalized α-admissible mapping and %, ζ ∈ Fix(z) so by (3.2.10) we get

α(%,ziz) ≥ s(%,ziz) and α(ζ,ziz) ≥ s(ζ,ziz) , for all i ∈ N. (3.2.11)

By using Definition 3.2.1 and (3.2.11) we obtain

ds(%,ziz) = ds(z%,z(zi−1z))

� v1ds(%,zi−1z) + v2ds(%,z%) + v3ds(zi−1z,ziz)

� v1ds(%,zi−1z) + v3s(zi−1z, %)ds(zi−1z, %) + v3s(%,ziz)ds(%,ziz)],

which further implies that

(e− (%,ziz)v3)ds(%,ziz) � (v1 + s(zi−1z, %)v3)ds(%,zi−1z). (3.2.12)

Similarly,

ds(ziz, %) = ds(z(zi−1z),z%)

� v1ds(zi−1z, %) + v2ds(zi−1z),ziz)) + v3ds(%,z%)

� v1ds(zi−1z, %) + v2s(zi−1z, %)ds(zi−1z, %) + (%,ziz)v2ds(%,ziz)],

which further implies that

(e− (%,ziz)v2)ds(ziz, %) � (v1 + s(zi−1z, %))v2)ds(zi−1z, %). (3.2.13)
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Adding (3.2.12) and (3.2.13) we have

(2e−s(%,ziz)v2−s(%,ziz)v3)ds(%,ziz) � (2v1+s(zi−1z, %)v2+s(zi−1z, %)v3)ds(%,zi−1z), i.e.

(2e− s(%,ziz)v)ds(%,ziz) � (2v1 + s(zi−1z, %)v)ds(%,zi−1z). (3.2.14)

Note that 2r(s(%,ziz)v) ≤ (s(%,ziz)+1)r(v) ≤ 2s(%,ziz)r(v1)+(s(%,ziz)+1)r(v) < 2.

So that r(s(%,ziz)v) < 1 < 2 and by Lemma 1.3.11, we can say that 2e− s(%,ziz)v is

invertible and (2e− s(%,ziz)v)−1 =
∑∞

n=0
(s(%,ziz)v)n

2n+1 ,

r((2e− s(%,ziz)v)−1) < 1
2−r(s(%,ziz)v) . Thus by (3.2.14) we have

ds(%,ziz) � (2e− s(%,ziz)v)−1(2v1 + s(zi−1z, %)v)ds(%,zi−1z) , i.e.

ds(%,ziz) � τds(%,zi−1z), (3.2.15)

where τ = (2e− s(%,ziz)v)−1(2v1 + s(zi−1z, %)v). Therefore, we have

ds(%,ziz) � τds(%,zi−1z)

� τ 2ds(%,zi−2z)

...

� τ ids(%, z) for all i ∈ N.

Since v1 commutes with v2 + v3 = v, so

(2e− s(%,ziz)v)−1(2v1 + s(zi−1z, %)v) =

(
∞∑
n=0

(s(%,ziz)v)n

2n+1

)
(2v1 + s(zi−1z, %)v)

= 2v1

(
∞∑
n=0

(s(%,ziz)v)n

2n+1

)
+ s(zi−1z, %)v

(
∞∑
n=0

(s(%,ziz)v)n

2n+1

)
= (2v1 + s(zi−1z, %)v)(2e− s(%,ziz)v)−1.

Which shows that (2e − s(%,ziz)v)−1 commutes with (2v1 + s(zi−1z, %)v). Hence by

using Lemma 1.3.11 and Lemma 1.3.12 we have

r(τ) = r((2e− s(%,ziz)v)−1(2v1 + s(zi−1z, %)v))

≤ r((2e− s(%,ziz)v)−1) · r((2v1 + s(zi−1z, %)v))

≤ 1

2− s(zi−1z, %)r(v)
(2r(v1) + s(zi−1z, %)r(v))

< 1.
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Because,

2
(
r(v1) + s(zi−1z, %)r(v)

)
≤ 2s(zi−1z, %)r(v1) +

(
s(zi−1z, %) + 1

)
r(v) < 2,

implies that

2r(v1) + s(zi−1z, %)r(v) < 2− s(zi−1z, %)r(v).

By Lemma 1.3.15 it follows that ||τ i|| → 0 as i→∞ and so

||τ ids(%, z)|| ≤ ||τ i||||ds(%, z)|| → 0 (i→∞).

By Remark 1.3.20 we conclude that for any c ∈ A with c� θ, there exists N ∈ N such

that

ds(%,ziz) � τ ids(%, z) � c ∀ i ≥ N.

Thus by Lemma 1.3.15 ziz → % as i→∞. Similarly we obtain that ziz → ζ as i→∞.

Now by uniqueness of limit, we conclude that % = ζ, which completes the proof.

3.3 Generalized Lipschitz mappings in controlled cone

metric type spaces

This section is concerned with the discussion of the theory of F · Ps of generalized

Lipschitz mappings in CCMTS over Banach algebra.

Theorem 3.3.1. Let (Q, ds) be a complete CCMTS over A with underlying solid cone

P. Let z : Q→ Q be such that for all p, q ∈ Q;

ds(zp,zq) � κds(p, q), (3.3.1)

where κ ∈ P be such that r(κ) < 1 and for each p0 ∈ Q, limm,i→∞
s(pi+1,pi+2)
s(pi,pi+1)

s(pi+1, pm) <
1

||κ||
. Then there exists a unique point % ∈ Q which is a F·P of the map z. Furthermore

for each u0 ∈ Q, the iterative sequence un = z(un−1) = znu0 converges to %.

Proof. If we take v1 = κ, v2 = v3 = θ and α(p, q) = s(p, q), then z satisfied all the

conditions of Theorem 3.2.2, i.e. z satisfies the condition of Definition 3.2.1, z is gen-

eralized α-admissible, (Q, ds) is regular and for every u0 ∈ Q α(u0,zu0) � s(u0,zu0).
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Hence there exists % in Q which is a F · P of the map z. Now it remains only to show

that this F · P is unique. Suppose that there is ζ ∈ Q such that zζ = ζ. Then we have

ds(%, ζ) = ds(z%,zζ) � κds(%, ζ).

But r(κ) < 1, so by Lemma 1.3.11, e−κ is invertible. Thus by Lemma 1.3.15 ds(%, ζ) =

θ.

Theorem 3.3.2. Let (Q, ds) be a complete CCMTS over A with underlying solid cone

P. Let z : Q → Q satisfies the following generalized Lipschitz condition, i.e. for all

p, q ∈ Q;

ds(zp,zq) � κ[ds(zp, p) + ds(zq, q)], (3.3.2)

where κ ∈ P be such that r(κ) <
1

s(p, q) + 1
and for each p0 ∈ Q, we have

lim
m,i→∞

s(pi+1, pi+2)

s(pi, pi+1)
s(pi+1, pm) <

1

||τ ||
,

with τ = (e − κ)−1κ. Then there exists a unique point % ∈ Q which is a F · P of the

map z.

Proof. If we take v1 = θ, v2 = v3 = κ and α(p, q) = s(p, q), then all the condition of

Theorem 3.2.2 are satisfied. Hence there exists % in Q which is a F · P of the map z.

Finally we show that % is a unique F ·P of the map z. For this if we have another F ·P
of the map z say ζ, then

ds(%, ζ) = ds(z%,zζ) � κ[ds(%,z%) + ds(ζ,zζ)] = θ.

Therefore, % = ζ.

The main result of 1.3.21 about generalized Lipschitz mappings on CbM spaces over

a Banach algebras [23] becomes a special case of our results Theorem 3.3.1 and Theorem

3.3.2 when we define s(p, q) = b for some b ≥ 1.

Corollary 3.3.3. Let (Q, ds) be a complete CMS over A and P be the associated cone

in A. Let z : Q→ Q be such that for all p, q ∈ Q,

ds(zp,zq) � κds(p, q), (3.3.3)
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where κ ∈ P be such that r(κ) < 1. Then for each u0 ∈ Q, the iterative sequence

un = z(un−1) = znu0 converges to a unique F · P of z.

Proof. Take b = 1 in Theorem 1.3.21, we get the required result.

Remark 3.3.4. 1. If we take s(x, y) = b for some b ≥ 1 in Theorem 3.3.1 and in

Theorem 3.3.2, we get the main results of [23] for cone b-M · Ss over Banach

algebra.

2. By using Remark 3.1.4, we obtain Theorem 1.3.10 as a corollary of our Theorem

3.3.1.

3. If we take s(x, y) = b for some b ≥ 1 in Theorem 3.2.2 and in Theorem 3.2.4, we get

the main results of [56] for cone b-M · Ss over Banach algebra.

3.4 Consequences and applications

In this section, we have listed some important consequences and applications of our

results which generalizes some results of Hussain et al. [24], Xu and Radenovic [61],

Malhotra et al. [33, 34] and Liu and Xu [32].

Definition 3.4.1. Let Q be a non-empty set and α : Q×Q→ [0,∞) be a function. A

mapping z : Q → Q is said to be an α-admissible mapping if α(p, q) ≥ 1 implies that

α(zp,zq) ≥ 1.

Definition 3.4.2. Let (Q, ds) be a complete CCMTS over A and P be the underlying

solid cone. A mapping z : Q → Q is said to be generalized α-Lipschitz contraction if

for all p, q ∈ Q with α(p, q) ≥ 1 satisfies the following:

ds(zp,zq) � κds(p, q),

where κ ∈ P is such that r(κ) < 1
s(p,q)

and for each p0 ∈ Q, we have

lim
m,i→∞

s(pi+1, pi+2)

s(pi, pi+1)
s(pi+1, pm) <

1

||κ||
.

49



The following theorem becomes special case of Theorem 3.2.2 if we define α : Q×Q→
[0,∞) by α(p, q) = s(p, q) ≥ 1 for all p, q ∈ Q and take κ = v1, v2 = v3 = θ.

Theorem 3.4.3. Let (Q, ds) be a complete CCMTS over A and P be the associ-

ated solid cone. Let z : Q → Q satisfies the generalized α-Lipschitz contraction with

Lipschitz constant κ such that:

1. z is α-admissible;

2. there exists u0 ∈ Q such that α(u0,zu0) ≥ 1;

3. z is continuous or if a sequence {un} ∈ Q with α(un, un+1) ≥ 1 for all n ∈ N and

un → q implies that α(un, q) ≥ 1 for all n ∈ N.

Then there is a point % in Q which is fixed under z.

For uniqueness of F · P , we use the following extra condition:

∀%, ζ ∈ Fix(z), there exists z ∈ Q such that α(%, z) ≥ 1 and α(ζ, z) ≥ 1. (3.4.1)

Theorem 3.4.4. If we add the condition (3.4.1) in the assumption of Theorem 3.4.3,

then the F · P is unique.

Proof. The assertion follows simply by using Theorem 3.4.3 and Theorem 3.2.4.

Remark 3.4.5. 1. If we take s(p, q) = b for some b ≥ 1, then we obtain the main

results of Hussain et al. [24], Theorems 3.1 and 3.2.

2. Theorems 3.1, 3.2 and 3.5 in Malhotra et al. [33] become special cases of our Theorem

3.4.3 and 3.4.4 respectively with s(x, y) = 1, v1 = 1 and v2 = v3 = θ.

3. If we define s(p, q) = 1, v1 = θ and v2 = v3, then Theorems 3.1, 3.2 and 3.3 in Mal-

hotra et al. [34] become special cases of our Theorem 3.4.3 and 3.4.4 respectively.
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Chapter 4

Fixed points of multi-valued dynamical

systems using comparison functions

and multi-fractals in extended b-metric

spaces

In the first section of this chapter, we proved multiple results of F · Ps for the class of

multi-valued ϕ-contractions in the setting of Eb −M spaces. Then, constructed some

new multi-valued fractals based on a F ·P approach in the framework of Eb−M spaces.

Later on, the idea of well-posed problem of F · Ps is studied. Our results generalized

some famous recent results in the theory of iterated function system. For application

point of view, we discussed the Collage theorems. Some of the results in this chapter is

published in the Journal of function spaces [48].

4.1 Multi-valued ϕ-contractions in extended b-metric

spaces

The aim of this section is to produce several results of F ·Ps for the class of multi-valued

ϕ-contractions in Eb−M spaces.
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4.1.1 Extended b-comparison functions

Samreen et al., [47] presented for some technical reasons a new class of comparison

functions in the framework of Eb−M spaces as follow.

Definition 4.1.1. Let (Q, ds) be an Eb −M space. A self-map ϕ on [0,∞) is called

an extended b-comparison function (in short EbC function) if it is increasing and there

exists a function z : D ⊂ Q→ Q such that for some η0 ∈ D, the orbit O(η0) ⊂ D and

for all p ∈ [0,∞), for every k ∈ N, the following series converges

∞∑
r=0

(
r∏
i=1

s(ηi, ηk)

)
ϕr(p).

Here ηr = zrη0 for r ∈ N. We call a map ϕ to be an EbC function for z at η0.

Remark 4.1.2. For an arbitrary self-mapz onQ, if we take s(p1, p2) = b ≥ 1 (a constant),

then the Definition 4.1.1 becomes the definition of a b-comparison function. Further-

more for some b ≥ 1, every EbC is also a b-comparison, i.e. if s(p1, p2) ≥ 1 for every

p1, p2 ∈ Q, then by setting b = infp1,p2∈Q s(p1, p2) we have

∞∑
r=0

brϕr(l) ≤
∞∑
r=0

(
r∏
i=1

s(ωi, ωk)

)
ϕr(l).

Example 4.1.3. [47] Let z be a self-map on Q, where (Q, ds) is an Eb−M space. Let

limr,k→∞ s(ωr, ωk) exists for every ω0 ∈ Q, and with ωr = zrω0. Define ϕ : [0,∞) →
[0,∞) as ϕ(p) = tp such that

lim
r,k→∞

s(ωr, ωk) <
1

t
.

By using ratio test, the series
∑∞

r=1 (
∏r

i=1 s(ωi, ωk))ϕ
r(t) converges. Thus ϕ is an EbC

function for z for every ω0.

Lemma 4.1.4. Let a self-map φ : R+ → R+ be a comparison function. Then:

(1) each iteration φk is a comparison function for k ≥ 1;

(2) φ is continuous at zero;

(3) φ(η) < η for any η > 0.
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Lemma 4.1.5. Every EbC function is b-comparison and hence a comparison function

Definition 4.1.6. [49] Let (Q, ds) be an Eb−M space. A functionHs : H(Q)×H(Q)→
R+ induced by Eb −M ds called an extended Pompeiu-Hausdorff metric is defined as

follows: {
∀ W ,Z ∈ H(Q), Hs(W ,Z) = max

{
sup
w∈W

ds(w,Z), sup
z∈Z

ds(W , z)
}}

,

where ds(σ,Z) = inf{ds(σ, z) : z ∈ Z} and s(W ,Z) = sup{s(σ, %) : σ ∈ W , % ∈ Z}.

Theorem 4.1.7. [49] The space (H(Q),Hs( is complete Eb−M space whenever (Q, ds)

is a complete Eb−M space.

4.1.2 Generalized ϕ-contractions in extended b-metric space

We start be the following lemma whose proof is trivial.

Lemma 4.1.8. Let (Q, ds) be an Eb −M space and W ,Z ∈ H(Q). Then for every

z ∈ Z and for any γ > 0, there exist σ ∈ W such that

ds(σ, z) ≤ Hs(W ,Z) + γ.

Following is the main result of this section.

Theorem 4.1.9. Let (Q, ds) be an Eb −M space with ds a continuous functional on

Q. Let D ⊆ Q be a closed set and z : D → H(Q) be such that O(σ0) is subset of D.

Suppose that for all % ∈ O(σ0) and $ ∈ z(%);

Hs(z(%),z($)) ≤ ϕ(ds(%,$)). (4.1.1)

Moreover, the inequality (4.1.1) holds strictly if and only if % 6= $ and ϕ is an EbC

function for z at σ0 ∈ D. Then there is a point σ in Q such that the iterative sequence

σk converges to σ, where σk ∈ z(σk−1). Furthermore σ is a F · P under the map z iff

the map G(p) = ds(p,z(p)) is z-orbitally lsc at σ.
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Proof. Let σ0 ∈ D and σ1 ∈ z(σ0). Then σ0 6= σ1 because if it is not true, then σ0 is a

point, fixed under the z. By using (4.1.1) for z(σ0), z(σ1) ∈ H(Q), we obtain

Hs(z(σ0), z(σ1)) < ϕ(ds(σ0, σ1)).

Choose ε1 > 0 such that

Hs(z(σ0), z(σ1)) + ε1 ≤ ϕ(ds(σ0, σ1)). (4.1.2)

Now σ1 ∈ z(σ0) and ε1 > 0, then by Lemma 4.1.8 there exists σ2 ∈ z(σ1) such that

ds(σ1, σ2) ≤ Hs(z(σ0), z(σ1)) + ε1

≤ ϕ(ds(σ0, σ1)). (4.1.3)

Again, σ1 6= σ2, otherwise σ1 becomes fixed under z. By using (4.1.1), we obtain

Hs(z(σ1), z(σ2)) < ϕ(ds(σ1, σ2)).

Choose ε2 > 0 such that

Hs(z(σ1), z(σ2)) + ε2 ≤ ϕ(ds(σ1, σ2))

≤ ϕ(ϕ(ds(σ0, σ1)))

= ϕ2(ds(σ0, σ1)), (4.1.4)

here the second inequality obtained by using (4.1.3). By Lemma 4.1.8, for σ2 ∈ z(σ1)

and ε2 > 0 ∃ σ3 ∈ z(σ2) such that

ds(σ2, σ3) ≤ Hs(z(σ1), z(σ2)) + ε2

≤ ϕ2(ds(σ0, σ1)).

Continuing in the same way we get

ds(σr, σr+1) ≤ ϕr(ds(σ0, σ1)). (4.1.5)
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By utilizing the triangle inequality like condition of Eb −M and (4.1.5) if r < k, then

we have,

ds(σr, σk) ≤ s(σr, σk)ds(σr, σr+1) + s(σr, σk)s(σr+1, σk)ds(σr+1, σr+2)+

· · ·+ s(σr, σk)s(σr+1, σk) . . . s(σk−1, σk)ds(σk−1, σk)

≤ ds(σr, σr+1)
r∏
i=1

s(σi, σk) + ds(σr+1, σr+2)
r+1∏
i=1

s(σi, σk)+

· · ·+ ds(σk−1, σk)
k−1∏
i=1

s(σi, σk)

≤ ϕr(ds(σ0, σ1)
r∏
i=1

s(σi, σk) + ϕr+1(ds(σ0, σ1)
r+1∏
i=1

s(σi, σk)+

· · ·+ ϕk−1(ds(σ0, σ1)
k−1∏
i=1

s(σi, σk). (4.1.6)

Now ϕ is given to be an EbC function, so the series S =
∑∞

j=1

(∏j
i=1 s(σi, σk)

)
ϕj(ds(σ0, σ1))

converges. By setting Sn =
∑n

j=1

(∏j
i=1 s(σi, σk)

)
ϕj(ds(σ0, σ1)), from inequality (4.1.6)

we obtain that

ds(σr, σk) ≤ (Sk−1 − Sr−1).

Which further implies that limr,k→∞ ds(σr, σk) → 0. Hence {σr} becomes a Cauchy

sequence in D. But D ⊆ Q is closed set, so there must exists a point σ ∈ D such that

the iterative sequence σr converges to σ.

Using the definition Hs and (4.1.1), we obtain

ds(σr, σr+1) ≤ Hs(z(σr−1),z(σr))

≤ ϕ(ds(σr−1, σr))

< ds(σr−1, σr).

But σr → σ as r →∞ which infers that limn→∞ ds(σr,z(σr)) = 0.

Assume that G(σ) = ds(σ,zσ) is z-orbitally lsc at σ. Then

ds(σ,z(σ)) = G(σ) ≤ lim inf
r→∞

G(σr) = lim inf
r→∞

ds(σr,z(σr)) = 0.
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Hence σ ∈ z(σ). But z(σ) is closed, so σ ∈ z(σ) and thus σ is a F · P of the map z.

Conversely if σ is a point F · P of the map z, then G(σ) = 0 ≤ lim infr→∞G(σr).

Example 4.1.10. Let Q = [0, 1
4
] and ds : Q×Q→ R be defined as ds(l, q) = (l − q)2.

Then (Q, ds) is an Eb −M space with s(l, q) = l + q + 2. Define z : Q → H(Q) by

z(l) = [0, l2], then for each σ0 ∈ Q and σr ∈ z(σr−1), we have limr,k→∞ s(σr, σk) =

limr,k→∞(σr + σk + 2) = 2 < 4. Now for every l ∈ Q and q ∈ T (l), we have

Hs(zl,zq) = Hs([0, l
2], [0, q2]) = (l2 − q2)2

= (l + q)2(l − q)2

≤ 1

4
(l − q)2.

If we define ϕ : [0,∞)→ [0,∞) by ϕ(j) = j
4
, then z satisfied all the conditions present

in Theorem 4.1.9. So there exists σ in Q such that σ ∈ z(σ), as we can see here that

σ = 0 ∈ z0.

4.2 Multi-valued fractals and well-posedness in extended

b-metric spaces

This section is based on the construction of some new multi-valued fractals using a F ·P
approach in the framework of Eb−M spaces. Later on, the idea of well-posed problems

of F · P is discussed.

4.2.1 Generalized functionals in extended b-metric spaces

We introduced the notion of generalized functionals in the framework of Eb−M spaces

(Q, ds) in this section as follow.

The gap functional:

Ds : P(Q)×P(Q)→ [0,∞) ∪ {+∞},
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Ds(U ,V ) =


0, if U = φ = V

inf{ds(p, q) : p ∈ U , q ∈ V }, if U 6= φ 6= V

+∞, otherwise.

If a ∈ Q is an arbitrary element, then Ds(a,B) = Ds({a},B).

The excess generalized functional:

ρs : P(Q)×P(Q)→ [0,∞) ∪ {+∞},

ρs(U ,V ) =


sup{Ds(a,V ) : a ∈ U }, if U 6= φ 6= V

0, if U = φ

+∞, V = φ 6= U .

Pompeiu-Hausdorff generalized functional:

Hs : P(Q)×P(Q)→ [0,∞) ∪ {+∞},

Hs(U ,V ) =


max{ρs(U ,V ), ρs(V ,U )}, if U 6= φ 6= V

0, if U = φ = V

+∞, otherwise.

Lemma 4.2.1. Let U ,V ∈P(Q), where (Q, ds) an Eb−M space. Let there is r > 0

satisfying the following:

(i) for every element u ∈ U there is an element v ∈ V such that ds(u, v) < r;

(ii) for every element v ∈ V there is an element u ∈ U such that ds(u, v) < r.

Then Hs(U ,V ) < r.

Lemma 4.2.2. Suppose (Q, ds) is an Eb−M space and s(U ,V ) = sup{s(η, ξ) : η ∈
U , ξ ∈ V }. Then the following hold:

Ds(p,U ) ≤ s(p,U )[Ds(p,V ) +Hs(V ,U )], ∀ p ∈ Q and ∀ U ,V ∈P(Q).
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Lemma 4.2.3. Let (X , ds) be an Eb−M space. Then the following hold:

Hs(U ,W ) ≤ s(U ,W )[Hs(U ,V ) +Hs(V ,W )], ∀ U ,V ,W ∈ P(Q).

Lemma 4.2.4. (1) Let U ,V be a compact subsets of an Eb−M space (Q, ds). Then

for every η ∈ U there is a point ξ ∈ V such that:

ds(η, ξ) ≤ s(η, ξ)Hs(U ,V ).

(2) Let U ,V be elements of Pcp(Q), where (Q, ds) is an Eb −M space. Let the map

ds be a continuous functional. Then for each element η of U , there is an element ξ in

V such that

ds(η, ξ) ≤ Hs(U ,V ).

4.2.2 Picard operators in extended b-metric spaces

We start by the definition of a Picard operator and then proved a result of Picard

operators by using Eb−M spaces.

Definition 4.2.5. Let (Q, ds) be an Eb −M space. A Picard operator is a map z :

Q→ Q which satisfies the following conditions:

(i) Fix(z) = {σ};

(ii) for every point w0 in Q, the sequence zn(w0) converges to σ as n→∞.

Following is the main result of this section.

Theorem 4.2.6. Let (Q, ds) be a complete Eb −M space, where ds is a continuous

functional. Suppose that the self-map φ on [0,∞ is an EbC function for z at some

point x0, where z is a self φ-contraction. Then the following hold.

(i) The map z is a Picard operator, i.e. there exists a F · P σ of the map z such that

zn(ω)→ σ for all ω ∈ Q.

58



(ii) (1) For all ω ∈ Q and with ωn = znω, ds(ωn, σ) ≤ s(ωn, σ)Ss (φn(ds(ω,zω))).

(2) For all ω ∈ Q and with ωn = znω, ds(ωn, σ) ≤ s(ωn, σ)Ss ((ds(ωn, ωn+1))),

where

Ss(t) =
∞∑
k=0

(
k∏
i=1

s(ωn+i, ωm)

)
φk(t).

(iii) ds(ω, σ) ≤ s(ω, σ)Ss(ds(ω,zω)) for all ω ∈ Q.

Proof. Let %0 ∈ Q and %n = zn%0 = z(%n−1) for n ≥ 1. Since z is φ-contraction so we

have

ds(%n, %n+1) = ds(z(%n−1,z(%n))) ≤ φ(ds(%n−1, %n)),

which by induction yields

ds(%n, %n+1) ≤ φn(ds(%0, %1)). (4.2.1)

But ds is an Eb−M , so by triangular inequality like condition of ds and by using (4.2.1),

we have for m > n that:

ds(%n, %m) ≤ s(%n, %n+1)ds(%n, %n+1) + s(%n, %n+1)s(%n+1, %n+2)ds(%n+1, %n+2) + · · ·

+ s(%n, %n+1)s(%n+1, %n+2) · · · s(%m−1, %m)(ds(%m−1, %m))

≤ s(%n, %m)φn(ds(%0, %1)) + s(%n, %m)s(%n+1, %m)φn+1ds((%0, %1)) + · · ·

+ s(%n, %m)s(%n+1, %m)s(%n+2, %m)...s(%m−2, %m)s(%m−1, %m)φm−1(ds(%0, %1))

≤

(
n∏
i=1

s(%i, %m)

)
φn(ds(%0, %1)) +

(
n+1∏
i=1

s(%i, %m)

)
φn+1(ds(%0, %1))+

· · ·+

(
m−1∏
i=1

s(%i, %m)

)
φm−1(ds(%0, %1)). (4.2.2)

Since φ is an EbC function, the series
∑∞

k=1

(∏k
i=1 s(%i, %m)

)
φk(ds(%0, %1)) converges.

Thus if we take Sn =
∑n

k=1

(∏k
i=1 s(%i, %m)

)
φk(ds(%0, %1)), then by (4.2.2) we have

ds(%n, %m) ≤ (Sm−1 − Sn−1)→ 0, as n,m→∞.

That is {%n} is a Cauchy sequence in Q. By completeness of Q, there exists a point

σ ∈ Q such that %n → σ.
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Next we show that σ is a F · P of the map z and for this we have

ds(%n+1,z(σ)) = ds(z(%n),z(σ)) ≤ φ(ds(%n, σ)). (4.2.3)

But by Lemma 4.1.5 and Lemma 4.1.4, φ is continuous at zero and given that ds is con-

tinuous, so if we take limit as n→∞, then from (4.2.3) we can say that ds(σ,z(σ))=0,

which shows that σ is a point fixed under z. It remains only to show that this point σ

is unique. Suppose that there is a point $ ∈ Q, and z($) = $. Then we have

ds(σ,$) = ds(z(σ),z($))

≤ φ(ds(σ,$))

< ds(σ,$),

which is possible only when ds(σ,$) = 0 implies that σ = $. Hence z is a Picard

operator.

(ii) Let u ∈ Q be such that un = zn(u). From (4.2.2) we have

ds(un, um) ≤ s(un, um)φn(ds(u, u1)) + s(un, um)s(un+1, um)φn+1ds((u, u1)) + · · ·+

s(un, um)s(un+1, um)s(un+2, um) . . . s(um−2, um)s(um−1, um)φm−1(ds(u, u1))

≤ s(un, um)[φ0(φn(ds(u, u1))) + s(un+1, um)φ1(φnds((u, u1))) + . . .

+ s(un+1, um)s(un+2, um) · · · s(um−1, um)φm−n−1(φn(ds(u, u1)))], (4.2.4)

where n ≥ 0 and m > n. Letting m→∞ in (4.2.4) we get a priori estimate

ds(un, σ) ≤ s(un, σ)Ss (φn(ds(u,zu))) ∀n ≥ 0.

On the other side, for n ≥ 1 and p ≥ 0 such that n+ p = m we have

ds(un+p, un+p+1) = ds(z(un+p−1),z(un+p)) ≤ φ(ds(un+p−1, un+p)).

By using induction we get

ds(un+p, un+p+1) ≤ φp(ds(un, un+1)). (4.2.5)
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By (4.2.5) and triangular inequality like condition of Eb−M , we have

ds(un, um) = ds(un, un+p) ≤ s(un, um)[ds(un, un+1) + s(un+1, um)φ(ds((un, un+1)) + · · ·

+ s(un+1, um)s(un+2, um)s(un+3, um) . . . s(un+p−1, um)φp−1(ds(un, un+1))]

= s(un, um)[(ds(un, un+1)) + s(un+1, um)φ(ds((un, un+1)) + · · ·

+

(
p−1∏
j=1

s(un+j, um)

)
φp−1(ds(un, un+1))]. (4.2.6)

If we take the limit p→∞ in (4.2.5) we obtain a posteriori estimate

ds(un, σ) ≤ s(un, σ)Ss(ds(un, un+1)) ∀n ≥ 0. (4.2.7)

(iii) Let un = u for an arbitrary u ∈ Q in (4.2.7). Then

ds(u, σ) ≤ s(u, σ)Ss(ds(u,z(u))).

4.2.3 Multi-fractal operators in extended b-metric spaces

We start this section by a lemma which under some conditions guaranties that image of

a compact set under a multi-valued contractive operator is compact.

Lemma 4.2.7. Let G from Q to Pcp(Q) be a multi-valued contractive operator, where

(Q, ds) is an Eb−M space. i.e. ∀ η, ξ ∈ Q with η 6= ξ,

Hs(G(η),G(ξ)) < ds(η, ξ).

Furthermore, suppose that ∀x ∈ Q and for every compact set Y , limn→∞ s(ξn, x) exists

and finite for all ξn ∈ Y . Then G(Y ) is compact, i.e. G(Y ) lies in Pcp(Q).

Proof. If we choose ξn ∈ G(Y ), then there exists ηn ∈ Y such that ξn ∈ G(ηn) for all

n ∈ N. But Y is compact, so there exists a subsequence ηnk of ηn such that ηnk converges

to some p (say) in Y . Then by Lemma 4.2.4 (1) for ξnk ∈ G(ηnk), ∃ unk ∈ G(p) such

that

ds(ξnk , unk) ≤ s(ξnk , unk)Hs(G(ηnk),G(p))

< s(ξnk , unk)ds(ηnk , p)→ 0, when n→∞,
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since limk→∞ s(ξnk , unk) exists and finite. Now G(x) is compact and unk ∈ G(x), so there

is a convergent subsequence of unk which converges to some q ∈ G(p). Let us denote

this subsequence by unk too. Then we have

ds(ξnk , q) ≤ s(ξnk , q)[ds(ξnk , unk) + ds(unk , q)]

≤M [ds(ξnk , unk) + ds(unk , q)]

→ 0,

as n → ∞. Implies that ξnk → q ∈ G(x) ⊆ G(Y ). Hence G(Y ) is compact and so

G(Y ) ∈Pcp(Q).

Following is the main result of the present section.

Theorem 4.2.8. Let (Q, ds) be a complete Eb −M space, where ds be a continuous

functional. Suppose that for each (i ∈ {1, 2, · · · , n}), the map Gj : Q → Pcp(Q) is

a multi-valued φ-contraction, where the self-map φ on [0,∞) is an EbC function for

zG at some point, where zG is a multi-valued fractal operator generated by the IMFS

G = (G1,G2, · · · ,Gn). Then:

(a) the map zG maps from Pcp(Q) to Pcp(Q);

(b) the map zG is a φ-contraction;

(c) zG is a Picard operator, i.e. there is a unique point A ∗
G in Pcp(Q) which is a F ·P

of the map zG;

(d) Hs(zn
G(A ),A ∗

G ) ≤ s(A ,A ∗
G )Pb(φ

n(Hs(A ,zG(A ))));

(e) for each A in Pcp(Q), Hs(A ,A ∗
G ) ≤ s(A ,A ∗

G )Pb(Hs(A ,zG(A ))).

Proof. (a) As given that φ is an EbC function, so it is also a b-comparison and hence

a comparison function. Also for each t > 0, φ(t) < t, so for each j ∈ {1, 2, · · ·n}, Gj is
contractive. Therefore, by using Lemma 4.2.7, we can say that the map zG maps from

Pcp(Q) to Pcp(Q).
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(b) We prove that the map zG is a φ-contraction and for this we need to show that

∀U ,V ∈Pcp(Q),

Hs(zG(U ),zG(V )) ≤ φ(Hs(U ,V )).

Let U ,V be elements of Pcp(Q) and let u ∈ zG(U ). Then u ∈ Gj(U ) for some

j ∈ {1, 2, · · ·n}, which implies u ∈ Gj(p) for some p ∈ U . Since U ,V are compact and

p ∈ U , so there exists an element q in V by Lemma 4.2.4 (2) such that

ds(p, q) ≤ Hs(U ,V ). (4.2.8)

Thus by Lemma 4.2.4 (2), for u ∈ Gj(p), there exists an element v in Gj(q) for which

ds(u, v) ≤ Hs(Gj(p),Gj(q)). (4.2.9)

By combining the inequalities (4.2.8) and (4.2.9), we can say that for each u in zG(U ),

there is an element v in zG(V ) for which

ds(u, v) ≤ Hs(Gj(p),Gj(q))

≤ φ(ds(p, q))

≤ φ(Hs(U ,V )). (4.2.10)

By a similar process, we obtain that for every element v ∈ zG(V ) there is an element

u ∈ zG(U ) for which

ds(u, v) ≤ φ(Hs(U ,V )). (4.2.11)

Lemma 4.2.1 together with (4.2.10) and (4.2.11) implies that

Hs(zG(U ),zG(V )) ≤ φ(Hs(U ,V )).

Hence the self-map zG is a φ-contraction which is defined on a complete Eb−M space

(Pcp(Q), Hs).

By using Theorem 4.2.6, (c)− (e) follows immediately.

Remark 4.2.9. If we take s(p, q) = b for some b ≥ 1 in Theorem 4.2.8, then we obtain

the main results of [9].
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It is very convenient to show that any Meir-Keeler type multi-valued operator defined

on an Eb−M space is contractive. Thus by using Lemma 4.2.7, it is evident that G(Y )

lies in Pcp(Q) for every Y ∈Pcp(Q).

So if Gj : Q → Pcp(Q) is a family of finite numbers of Meir-Keeler type multi-valued

operator on an Eb −M space, then we can derive easily the existence and uniqueness

results for the multi-valued fractal generated by the IMFS G = (G1,G2, . . . ,Gm).

4.2.4 Well-posedness in extended b-metric spaces

In this section we present the concept of well-posedness in the setting of Eb−M spaces.

Definition 4.2.10. Let z be a self-map on Q, where (Q, ds) an Eb−M space. Then

the problem of F · P for the map z is said to be well-posed w.r.t ds if and only if the

following axioms hold:

(i) Fix(z) = {σ};

(ii) for any sequence {ηn} in Q satisfying ds(ηn,z(ηn)) → 0 as n → ∞, we have that

ds(ηn, σ)→ 0 as n→∞.

Definition 4.2.11. Let G : Q → P(Q) be a multi-valued map, where (Q, ds) is an

Eb−M space. Then we say that the map G has the property of well-posedness of F ·P
problem with respect to:

(i) the generalized functional Ds if and only if there exits a unique point σ which is a

F · P of the map G and for any sequence {ηn} in Q satisfying Ds(ηn,G(ηn))→ 0

as n→∞, implies that ds(ηn, σ)→ 0 as n→∞.

(ii) the generalized functional Hs if and only if SFix(G) = {σ} and for any sequence

{ηn} in Q satisfying Hs(ηn,G(ηn)) → 0 as n → ∞, implies that ds(ηn, σ) → 0 as

n→∞, where SFix(G) = {u ∈ Q : {u} = G(u)}.

Theorem 4.2.12. Let (Q, ds) be a complete Eb −M space, where ds is a continuous

functional. Let G : Q → Pcp(Q) be a multi-valued φ-contraction such that φ is an

EbC function. Suppose that SFix(G) is non-empty and for each η ∈ Q, the map
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ψ : [0,∞) → [0,∞) defined by ψ(t) = t − s(η, σ)φ(t) is onto and strictly increasing,

where σ is a F · P of G. Then the problem of F · P is well-posed for the map G with

respect to both Ds and Hs.

Proof. Let σ be an arbitrary element of SFix(G). We first prove that Fix(G) =

SFix(G) = {σ}. For this, if % is an element of Fix(G), then by using the fact that

G is φ-contraction, we have

ds(σ, %) = Ds(G(σ),G(%))

≤ Hs(G(σ),G(%))

≤ φ(ds(σ, %)).

But φ is an EbC function, so is comparison and thus for each p > 0, φ(p) < p. Hence

ds(σ, %) = 0 which implies that σ = %.

Let {ηn} be a sequence in Q satisfying Ds(ηn,G(ηn))→ 0 as n→∞. We need to show

that ds(ηn, σ)→ 0 as n→∞. For this we have by Lemma 4.2.2 that

ds(ηn, σ) = Ds(ηn,G(σ)) ≤ s(ηn,G(σ))[Ds(ηn,G(ηn)) +H(G(ηn),G(σ))]

≤ s(ηn, σ)[Ds(ηn,G(ηn)) + φ(ds(ηn, σ))].

Therefore we obtain for each n ∈ N that ψ(ds(ηn, σ)) ≤ s(ηn, σ)Ds(xn,G(xn)). Hence

ds(ηn, σ) ≤ ψ−1(s(ηn, σ)Ds(ηn,G(ηn))→ ψ−1(0)→ 0 as n→∞.

Thus, the problem of F · P is well-posed for the map G with respect to Ds. Notice that

Hs(ηn,G(ηn)) → 0 implies that Ds(ηn,G(ηn))→ 0 as n →∞. So the problem of F · P
is well-posed for the map G with respect to Hs too.

Theorem 4.2.13. Let G : Q → Q be a multi-valued φ-contraction such that φ :

[0,∞) → [0,∞) is an EbC function, where Q is a complete Eb −M space with ds a

continuous functional. Suppose that SFix(G) is non-empty and for each η ∈ Q, the

map ψ : [0,∞)→ [0,∞) defined by ψ(t) = t−s(η, σ)φ(t) is onto and strictly increasing,

where σ is a F · P of G. Then the problem of F · P is well-posed for the map G with

respect to ds.
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Proof. Clearly Fix(G) = {σ} by Theorem 4.2.6. Now let {ηn} be a sequence in Q

satisfying ds(ηn,G(ηn))→ 0 when n→∞. We have to prove that ηn → σ or equivalently,

ds(ηn, σ)→ 0 when n→∞. Note that the function ψ is a bijection and φ−1(ξ)→ 0 as

ξ → 0. Thus by triangular inequality condition of ds, we have

ds(ηn, σ) ≤ s(ηn, σ)[ds(ηn,G(ηn)) + ds(G(ηn),G(σ))]

≤ s(ηn, σ)[ds(ηn,G(ηn)) + φ(ds(ηn, σ))].

Hence

ds(ηn, σ) ≤ φ−1(s(ηn, σ)ds(ηn,G(ηn)))→ 0,

since s(ηn, σ)ds(ηn,G(ηn)) → 0 as n → ∞. Therefore, the F · P problem is well-posed

for G w.r.t ds.

By combining Theorem 4.2.8 and Theorem 4.2.13 we obtain the following result.

Corollary 4.2.14. Let (Q, ds) be a complete Eb − M space, where ds a continuous

functional. Let for each (j ∈ {1, 2, · · · , n}), the map Gj from Q to Pcp(Q) be a multi-

valued φ-contractions such that φ : [0,∞)→ [0,∞) is an EbC function for zG at some

point. Suppose that for each η ∈ Q, the self-map ψ on [0,∞) defined by ψ(t) = t −
s(η,A∗)φ(t) is onto and strictly increasing, where A∗ is a F ·P of zG. Then the problem

of F · P is well-posed for the multi-fractal operator defined by zG(Y ) = ∪nj=1Gj(Y ).

Remark 4.2.15. By taking s(p, q) = b for some b ≥ 1 in Theorems 4.2.12 and 4.2.13,

we obtain the same results in the setting of b-M · Ss [9].

4.3 Consequences and applications

This section consists of some important consequences of Theorem 4.1.9 which involves

β∗ − ϕ multi-valued contractions on Eb − M spaces. The results we have obtained

generalizes/extends some results by Bota et al. [10] and Hasanzadde et al. [5]. For

application point of view, we proved Collage theorems, which can be used to construct

more general fractals and to find solution of inverse problems in extended Hausdorff
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b-M · Ss. Following is one of the main results in [47] which is direct consequence of

Theorem 4.1.9.

Corollary 4.3.1. Let (Q, ds) be a complete Eb−M space with ds a continuous func-

tional. Let z : D ⊂ Q → Q be a map and there is some σ0 such that O(σ0) ⊆ D.

Suppose that ∀ q ∈ O(σ0)

ds(zq,z2(q)) ≤ ϕ
(
ds(q,z(q))

)
,

where ϕ is an EbC function for z at σ0. Then ∃ σ in Q such that zrσ0 → σ. Further-

more, the point σ is a F ·P of the map z iff the map G(t) = ds(t,zt) is z-orbitally lsc

at σ.

Proof. The assertion simply follows by using Theorem 4.1.9 for a self-map z.

Theorem 4.3.2. Let (Q, ds) be a complete Eb −M space with ds a continuous func-

tional. Let z : D ⊂ Q → Q be a map and σ0 be such O(σ0) ⊂ D. Assume that the

limit limr,k→∞ s(σr, σk) exists and λ is a constant such that for all σr, σk ∈ O(σ0),

lim
r,k→∞

s(σr, σk) <
1

λ
.

Assume further that

ds(z(p),z2p) ≤ λ
(
ds(p,z(p))

)
for every p ∈ O(σ0). Then the iterative sequence zrσ0 converges to σ ∈ Q. Additionally

the point of convergence σ is a F·P of the mapz if and only if the mapG(t) = ds(t,z(t))

is z-orbitally lsc at σ.

Proof. Define a map ϕ : R+ → R+ by ϕ(t) = λt. By taking z a self-map, by using

Example 4.1.3, we obtain that ϕ is an EbC function for z at every point σ0 ∈ Q. Hence

the assertion implies by Theorem 4.1.9.

Definition 4.3.3. Let (Q, ds) be an Eb−M space. A mapping z : Q→ P (Q) is called

a β∗-admissible map if there exists a mapping β : Q×Q→ R+ such that

β(p, q) ≥ 1 =⇒ β∗(z(p), z(q)) ≥ 1 ∀p, q ∈ Q
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Note that β∗ : P (Q)× P (Q)→ R+ is defined by

β∗(W,Z) = inf{β(p, q) : p ∈ W, q ∈ Z}.

Definition 4.3.4. [10] Let (Q, ds) be an Eb−M space. A mapping z : Q→ P (Q) is

said to be an β∗ − ϕ-contractive multi-valued operator of type (Eb) if there exists two

functions ϕ ∈ Φ̆Eb and β : Q×Q→ R+ such that

ϕ(ds(%, σ)) ≥ β∗(z(%), z(σ))Hs(z(%), z(σ)), (4.3.1)

for all %, σ ∈ Q. Here by Φ̆Eb, we mean the collection of all EbC functions.

Theorem 4.3.5. Let (Q, ds) be a complete Eb −M space such that ds is continuous.

Suppose that the map z : Q → H(Q) is a β∗ − ϕ contractive multi-valued operator of

type (Eb) which satisfies the following:

(i) z is β∗-admissible;

(ii) there exists points σ0 ∈ Q and σ1 ∈ z(σ0) such that β(σ0, σ1) ≥ 1.

Then there exists a point σ ∈ Q such that the iterative sequence σr converges to σ,

where σr ∈ z(σr−1). Additionally, the point σ is a F · P of z if and only if the map

G(t) = ds(t,zt) is z-orbitally lsc at σ.

Proof. Given that z is β∗ admissible and β(σ0, σ1) ≥ 1 for σ1 ∈ z(σ0), so that

β∗(z(σ0),z(σ1)) ≥ 1. By using infimum property, for σ1 ∈ z(σ0) and σ2 ∈ z(σ1)

β(σ1, σ2) ≥ β∗(z(σ0),z(σ1)).

Thus β(σ1, σ2) ≥ 1 which further implies that β∗(z(σ1),z(σ2)) ≥ 1. Again by using

the same property, for σ2 ∈ z(σ1) and σ3 ∈ Tσ2 β(σ2, σ3) ≥ β∗(z(σ1),z(σ2)) ≥ 1.

Continuing in the similar way, to obtain

β∗(z(σr), zσr+1) ≥ 1, r = 1, 2, 3, · · ·

The contractive condition 4.3.1 then implies that

Hs(z(σr), z(σr+1)) ≤ β∗(z(σr), z(σr+1))Hs(z(σr),z(σr+1))

≤ ϕ(ds(zr−1(σ0),zr(σ0))).
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Which becomes equivalent to the following condition

Hs(zp1,zp2) ≤ ϕ(ds(p1, p2)), (4.3.2)

for every p1 ∈ O(σ0) and p2 ∈ zp1. This shows that all the conditions of Theorem 4.1.9

are fulfilled and hence the assertion proved.

By using some additional conditions on Theorem 4.2.6, we obtain the following.

Theorem 4.3.6. Let (Q, ds) be a complete Eb −M space, where ds is a continuous

functional. Suppose that the self-map φ on [0,∞) is an EbC function for z at some

x0 ∈ Q and z : Q→ Q a φ-contraction. (By given hypothesis, it is clear that z admits

a unique F · P say σ by Theorem 4.2.6 Then:

(1)(Abstract Collage Theorem) If for all % ∈ Q, the function ψ : [0,∞) → [0,∞)

defined by ψ(t) = t− s(%, σ)φ(t) is onto and strictly increasing, then

ds(%, σ) ≤ ψ−1 (s(%, σ)ds(%,z(%))) ;

(2)(Abstract Anti-Collage Theorem) Suppose that the mapping g : [0,∞) →
[0,∞) defined by g(σ) = σ + φ(σ) is onto. Then we have ∀ % ∈ Q that

ds(%, σ) ≥ g−1
(

1

s(%,z(%))
ds(%,z(%))

)
.

Proof. (1) For an arbitrary $ ∈ Q we have

ds($, σ) ≤ s($, σ)[ds($,z($)) + ds(z($), σ)]

≤ s($, σ)[ds($,z($)) + φ(ds($, σ))],

which implies that ds($, σ)− s($, σ)φ(ds($, σ)) ≤ s($, σ)ds($,z($)). Hence

ψ(ds($, σ)) ≤ s($, σ)ds($,z($)).

But ψ is increasing and onto, so is an increasing bijection and thus for every $ ∈ Q, we

obtain that

ds($, σ) ≤ ψ−1(s($, σ)ds($,z($)).

69



(2) For an arbitrary element % of Q, we have by triangular inequality like condition of

ds that:

ds(%,z(%)) ≤ s(%,z(%))[ds(%, σ) + ds(σ,z(%))]

≤ s(%,z(%))[ds(%, σ) + φ(ds(%, σ))].

Hence g(ds(%, σ)) ≥ 1
s(%,z(%))

(ds(%,z(%))). Since φ is increasing and g is onto, so g is

strictly increasing and bijective. Thus we get that:

ds(%,$) ≥ g−1
(

1

s(%,z(%))
ds(%,z(%))

)
, ∀% ∈ Q.

Remark 4.3.7. If we take s(p, q) = b for some b ≥ 1 in Theorem 4.3.6, then we obtain

one of main results of [9].
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Chapter 5

Best proximity points of multi-valued

dynamical systems on controlled

metric type spaces

In this chapter, we introduced a new type of generalized distances on CMT space (Q, ds)

which we call controlled type generalized pseudo-distance (CTG pseudo-distance) . With

the help of this generalized distance, we define Js(u, F ), J∗(u, F ), HJs distance of Haus-

dorff type where E,F ∈ CB(Q), u ∈ E and WP Js-property of a pair of nonempty

subsets of Q. More precisely our newly defined mappings are more general then that of

corresponding notions defined by Gabeleh and Plebaniak.

5.1 Global optimality results for multi-valued maps in

b-metric spaces

In 2014 Plebaniak [39] introduced the notion of a b-generalized pseudo-distance (in short

bG pseudo-distance) on a b-M · S Q as below.

Definition 5.1.1. [39] Let (Q, db) be a b-M · S (with constant b ≥1). A map Jb :

Q×Q→ [0,∞) is said to be a bG pseudo-distance on Q, if the following are satisfied:
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(Jb1) Jb($, η) ≤ b[Jb($, ξ) + Jb(ξ, η)] for any $, ξ, η ∈ Q;

(Jb2) For any sequence (ηm) and (ξm) in Q such that

lim
n→∞

sup
m>n

Jb(ηn, ηm) = 0

and

lim
m→∞

Jb(ηm, ξm) = 0,

we have

lim
m→∞

db(ηm, ξm) = 0.

In 2018 Gabeleh [20] extends the main theorem of [19] by constructing the following

definitions and notations.

Let (U ,V) be a pair in a b-M·S Q of nonempty sets. We denote and define the following:

Jb(u,V) = inf
v∈V

Jb(u, v),

J∗b (u,V) =
1

s
Jb(u,V)− dist(U ,V) where u ∈ Q and dist(U ,V) = inf

u∈U ,v∈V
db(u, v),

HJ
b (V ,V) = max{sup

u∈U
Jb(v,U), sup

v∈V
(v,U)} ∀U ,V ∈ CB(Q),

U0 = {u ∈ U : Jb(u, v) = dist(U ,V) for some v ∈ V},

V0 = {v ∈ V : Jb(u, v) = dist(U ,V) for some u ∈ U}.

Definition 5.1.2. [20] Let (Q, db) be a b-M · S (with constant b ≥ 1) and (U ,V) be a

pair of nonempty subsets of Q with U0 6= ∅.
(1) The pair (U ,V) have the WP Jb-property if and only if the conditions

Jb(u1, v1) = dist(U ,V),

Jb(u2, v2) = dist(U ,V)

implies

Jb(u1, u2) ≤ Jb(v1, v2)
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where u1, u2 ∈ U0 and v1, v2 ∈ V0.
(2) A bG pseudo-distance Jb is said to be associated with the pair (U ,V) if for any

sequences (ηn) and (ξn) in Q with

lim
n→∞

ηn = η, lim
m→∞

ξm = ξ;

and

Jb(ηm, ξm−1) = dist(U ,V) ∀ m ∈ N,

we have db(η, ξ) = dist(U ,V).

Definition 5.1.3. [20] let (Q, τ) be a topological space and U ,V be nonempty subsets

of Q. A mapping z : U → 2V is said to be closed whenever (ηm) is a sequence in U and

(ξm) is a sequence in V such that ξm ∈ z(ηm)∀ m ∈ N, ηm → η ∈ U , and ξm → ξ ∈ V
implies that ξ ∈ z(η).

Definition 5.1.4. [20] Let η : [0, 1)→ (1/2, 1] by η(r) = 1
1+r

. Let Q be a bM·S (with

b ≥1) and the mapping Jb : Q×Q→ [0,∞) be a bG pseudo-distance on Q. Let (U ,V)

be a pair of nonempty subsets of Q. A multi-valued non-self mapping z : U → 2V

is said to be a contraction of Suzuki type with respect to (in short S-type w.r.t) bG

pseudo-distances if there exists r ∈ [0, 1) such that

η(r)

b
J∗b (u,zu) ≤ Jb(u,w) implies bHJb(zu,zw) ≤ rdb(u,w), ∀ u,w ∈ U .

5.2 Global optimality results for multi-valued map-

pings in controlled metric type spaces

Inspired by the ideas of Mlaiki et al. [36] of CMT space, we define a new class of multi-

valued contraction of S-type w.r.t CTG pseudo-distances. To begin with our main

results, first we define the following.

Definition 5.2.1. Let (Q, ds) be a CMT space. A map Js : Q×Q→ [0,∞) is said to

be a CTG pseudo-distance if the following two conditions satisfy:

73



(Js1) Js(ζ, γ) ≤ s(ζ, ξ)Js(ζ, ξ) + s(ξ, γ)Js(ξ, γ) for all ζ, ξ, γ ∈ Q;

(Js2) For any sequences (ζm) and (ξm) in Q with

lim
n→∞

sup
m>n

Js(ζn, ζm) = 0 and lim
m→∞

Js(ζm, ξm) = 0,

we have

lim
m→∞

ds(ζm, ξm) = 0.

Remark 5.2.2. Every controlled metric ds : Q ×Q → [1,∞) on Q is a CTG pseudo-

distance on Q but the converse is false in general.

Example 5.2.3. Let (Q, ds) be a CMT space and E be a closed subset of Q such

that it contain at least two different points. Let r > 0 be such that r > δ(E) where

δ(E) = sup{ds(σ, %) : σ, % ∈ E}. Define Js : Q×Q→ [1,∞) by

Js(%,$) =

ds(%,$) if {%,$} ⊆ E

r if {%,$} * E.

Then Js is a CTG pseudo-distance.

Proof. (Js1) Let σ0, %0, $0 ∈ Q be such that

Js(σ0, $0) > s(σ0, %0)Js(σ0, %0) + s(%0, $0)Js(%0, $0). (5.2.1)

Then we have {σ0, %0, $0} * E. Because if it is subset of E, then

Js(σ0, %0) = ds(σ0, %0), Js(σ0, $0) = ds(σ0, $0), Js(%0, $0) = ds(%0, $0), and with this,

the Inequality (5.2.1) will become ds(σ0, $0) > s(σ0, %0)ds(σ0, %0) + s(%0, $0)ds(%0, $0),

which is a contradiction to the fact that ds is a controlled metric type. Thus there will

exists some u ∈ {σ0, %0, $0} such that u /∈ E. If u = σ0, then Js(σ0, $0) = r and

Js(σ0, %0) = r and so (5.2.1) becomes r > s(σ0, %0)r + s(%0, $0)Js(%0, $0) which is a

contradiction.

Similarly if we take u = %0 or u = $0, then we get the same contradiction. Hence the

condition (Js1) of Definition 5.2.1 is fulfilled, i.e.
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Js(ζ, γ) ≤ s(ζ, ξ)Js(ζ, ξ) + s(ξ, γ)Js(ξ, γ) for all ζ, ξ, γ ∈ Q.

(Js2) Let {xm}m∈N and {ym}m∈N be any two sequences in Q such that

limn→∞ supm>n Js(xn, xm) = 0 and limm→∞ Js(xm, ym) = 0. We need to show that

lim
m→∞

ds(xm, ym) = 0.

As limm→∞ Js(xm, ym) = 0, so we have limm→∞ zm = 0 where zm = Js(xm, ym) ∈ R+.

Which implies that for every ε > 0 (hence for 0 < ε < r), there exists a natural number

k such that d(zm, 0) = |zm − 0| < ε for all m ≥ k. Thus |zm − 0| < ε < r for

all m ≥ k, and so zm < ε < r for all m ≥ k, because zm ≥ 0 ∀n ∈ N. So that

zm = Js(xm, ym) = ds(xm, ym) for all m ≥ k. Thus, Js(xm, ym) = ds(xm, ym) < ε < r for

all m ≥ k. Hence limm→∞ ds(xm, ym) = 0.

Let (Q, ds) be a CMT space and Js : Q ×Q → [0,∞) be a CTG pseudo-distance

on Q. Let (U ,V) be a nonempty pair of subsets of Q. We define the following notions:

Js(%,V) = inf
v∈V

Js(%, v)

J∗s (%,V) =
1

s(%, %)
Js(%,V)− dist(U ,V), ∀% ∈ U ,

U0 = {% ∈ U : s(%, v)Js(%, v) = dist(U ,V) for some v ∈ V},

V0 = {v ∈ V : s(%, v)Js(%, v) = dist(U ,V) for some % ∈ U}.

We define HJs : CB(Q)× CB(Q)→ [0,∞) by

HJs(U ,V) = max

{
sup
%∈U

Js(%,U), sup
v∈V

Js(U , v)

}
,∀ U ,V ∈ CB(Q).

Definition 5.2.4. Let (Q, ds) be a CMT space and Js : Q × Q → [0,∞) be a CTG

pseudo-distance on Q. Let U ,V be non-void subsets of Q with U0 6= ∅. Then:

1. The pair (U ,V) is said to have the WP Js-property if and only if the conditions

s(u1, v1)Js(u1, v1) = dist(U ,V),
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s(u2, v2)Js(u2, v2) = dist(U ,V)

implies that

Js(u1, u2) ≤ Js(v1, v2),

where u1, u2 ∈ U0 and v1, v2 ∈ V0.

2. A CTG pseudo-distance Js is said to be associated with the pair (U ,V) if for any

sequences (ηm) and (ξm) in Q such that limm→∞ ηm = η, limm→∞ ξm = ξ and for

all m ∈ N, s(ηm, ξm−1)Js(ηm, ξm−1) = dist(U ,V), we have

ds(η, ξ) = dist(U ,V).

Lemma 5.2.5. Let (Q, ds) be a complete controlled metric type space and Js : Q×Q→
[0,∞) be a controlled type generalized pseudo-distance on Q. Let a sequence (σm) in

Q be such that the limits

lim
n→∞

s(σi+n, σn) and lim
n→∞

s(σn, σj+n),

are finite for every i, j ∈ N and satisfies

lim
n→∞

sup
m>n

Js(σn, σm) = 0. (5.2.2)

Then (σm) is a Cauchy sequence in Q, for m ∈ {0} ∪N.

Proof. From (5.2.2) we can say that for all ε > 0 there exists n1 = n1(ε) ∈ N such that

∀ n > n1,

sup{Js(σn, σm) : m > n} < ε.

In particular, ∀ ε > 0 ∃ n1 = n1(ε) ∈ N such that ∀ n > n1,∀ t ∈ N we have

Js(σn, σt+n) < ε. (5.2.3)

Let i0, j0 ∈ N, i0 > j0, be fixed and arbitrary. Define the sequences

zn = σi0+n and un = σj0+n for n ∈ N. (5.2.4)
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Then (5.2.3) gives

lim
n→∞

Js(σn, zn) = lim
n→∞

Js(σn, yn) = 0. (5.2.5)

Therefore by using (5.2.2),(5.2.4) and (Js2) we have

lim
n→∞

ds(σn, zn) = lim
n→∞

ds(σn, yn) = 0. (5.2.6)

By using (5.2.6) and (5.2.4), we have

lim
n→∞

ds(σi0+n, σn) = lim
n→∞

ds(σn, σj0+n) = 0. (5.2.7)

Let k, l ∈ N be such that k > l > n0. Then for some i0, j0 ∈ N, k = i0 + n0 and

l = j0 + n0, and that i0 > j0. Now by using (5.2.7) and the triangular inequality like

condition of controlled type metric ds, we have

ds(σk, σl) = ds(σi0+n0 , σj0+n0)

≤ s(σi0+n0 , σn0)ds(σi0+n0 , σn0) + s(σn0 , σj0+n0)ds(σn0 , σj0+n0)

→ 0 + 0 as n0 →∞,

since the limits limn→∞ s(σi0+n0 , σn0) and limn→∞ s(σn0 , σj0+n0) are finite. Hence, we

conclude that limk,l→∞ ds(σk, σl) = 0 and so the sequence (σm : m ∈ N) is a Cauchy

sequence.

Definition 5.2.6. Let η : [0, 1) → (1/2, 1] be defined by η(r) = 1
1+r

. Let (Q, ds) be a

CMT space and the map Js : Q ×Q → [0,∞) be a CTG pseudo-distance on Q. Let

(U ,V) be a pair of nonempty subsets of Q. A multi-valued non-self mapping z : U → 2V

is said to be a S-type w.r.t a CTG pseudo-distances if there exists r ∈ [0, 1) such that

for all x, y ∈ U ,

η(r)

s(x, y)
J∗s (x,zx) ≤ Js(x, y) implies s(x, y)HJs(zx,zy) ≤ rJs(x, y) (5.2.8)

Clearly the class of multi-valued non-self mappings which are contraction of Suzuki

type with respect to CTG pseudo-distances contains the class of multi-valued non-

self mappings which are S-type w.r.t b-generalized pseudo-distances. As if we take

s(x, y) = b, then Js = Jb ∀ x, y ∈ Q.
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Theorem 5.2.7. Let Q be a complete CMT space and let the map Js : Q×Q→ [0,∞)

be a CTG pseudo-distance on Q. Let (U ,V) be a nonempty closed pair of subsets of

Q with U0 6= ∅ and such that (U ,V) has the WP Js-property and Js is associated with

(U ,V). Let z : U → 2U be a closed S-type w.r.t CTG pseudo-distance Js and r ∈ [0, 1)

be such that

lim
n,m→∞

s(%n+1, %n+2)

s(%n, %n+1)
s(%n+1, %m) <

1

r
, lim
n,m→∞

s(σn+1, σn+2)

s(σn, σn+1)
s(σn+1, σm) <

1

r
,

for every %n ∈ U0 and σn ∈ z%n, n = 0, 1, 2 . . . .

If z(x) ∈ CB(Q) ∀ x ∈ U , and z(x) ⊂ V0 for each x ∈ U0, then z has a B · P · P in U .

Proof. Since U0 = ∅, so let %0 ∈ U0 , σ0 ∈ z%0 ⊆ V0. Then by definition of V0, there
exits %1 ∈ U such that

s(%1, σ0)Js(%1, σ0) = dist(U ,V). (5.2.9)

But since V0 ⊆ V , so σ0 ∈ V and thus from the above we conclude that %1 ∈ U0. Now

we have

Js(%0,z%0) = inf
y∈z%0

Js(%0, y)

≤ Js(%0, σ0)

≤ s(%0, %1)Js(%0, %1) + s(%1, σ0)Js(%1, σ0)

≤ s(%0, %0)[s(%0, %1)Js(%0, %1) + s(%1, σ0)Js(%1, σ0)].

Thus we have

J∗s (%0,z%0) =
1

s(%0, %0)
Js(%0,z%0)− dist(U ,V)

≤ 1

s(%0, %0)
s(%0, %0)[s(%0, %1)Js(%0, %1) + s(%1, σ0)Js(%1, σ0)]− dist(U ,V)

= s(%0, %1)Js(%0, %1) + s(%1, σ0)Js(%1, σ0)− dist(U ,V)

= s(%0, %1)Js(%0, %1),

since by (5.2.9). Which further implies that

1

s(%0, %1)
J∗s (%0,z%0) ≤

1

s(%0, %1)
s(%0, %1)Js(%0,z%0) = Js(%0, %1).
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Also since η(r) ≤ 1, we obtain

η(r)

s(%0, %1)
J∗s (%0,z%0) ≤ Js(%0, %1).

Thus by (5.2.8) we have

s(%0, %1)H
Js(z%0,z%1) ≤ rJs(%0, %1)

=⇒ HJs(z%0,z%1) ≤
r

s(%0, %1)
Js(%0, %1).

Since Js(σ0,z%1) ≤ HJs(z%0,z%1) ≤ r
s(%0,%1)

Js(%0, %1), so there will exists σ1 ∈ z%1 such
that

Js(σ0, σ1) ≤
r

s(%0, %1)
Js(%0, %1). (5.2.10)

Again as %1 ∈ U0,z%1 ⊆ V0, σ1 ∈ z%1, so there exists %2 ∈ U0 such that

s(%2, σ1)Js(%2, σ1) = dist(U ,V). (5.2.11)

Now we have

Js(%1,z%1) = inf
y∈z%1

Js(%1, y)

≤ Js(%1, σ1)

≤ s(%1, %2)Js(%1, %2) + s(%1, σ1)Js(%2, σ1)

≤ s(%1, %1)[s(%1, %2)Js(%1, %2) + s(%2, σ1)Js(%2, σ1)].

Thus we have

J∗s (%1,z%1) =
1

s(%1, %1)
Js(%1,z%1)− dist(U ,V)

≤ 1

s(%1, %1)
s(%1, %1)[s(%1, %2)Js(%1, %2) + s(%2, σ1)Js(%2, σ1)]− dist(U ,V)

= s(%1, %2)Js(%1, %2) + s(%2, σ1)Js(%2, σ1)− dist(U ,V)

= s(%1, %2)Js(%1, %2),

since by (5.2.11). Which further implies that

1

s(%1, %2)
J∗s (%1,z%1) ≤

1

s(%1, %2)
s(%1, %2)Js(%1,z%1) = Js(%1, %2).
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Also since η(r) ≤ 1, we obtain

η(r)

s(%1, %2)
J∗s (%1,z%1) ≤ Js(%1, %2).

Thus by (5.2.8) we have

s(%1, %2)H
Js(z%1,z%2) ≤ rJs(%1, %2)

=⇒ HJs(z%1,z%2) ≤
r

s(%1, %2)
Js(%1, %2).

Since Js(σ1,z%2) ≤ HJs(z%1,z%2) ≤ r
s(%1,%2)

Js(%1, %2), so there will exists σ2 ∈ z%2 such
that

Js(σ1, σ2) ≤
r

s(%1, %2)
Js(%1, %2). (5.2.12)

Continuing this process, we can find two sequences (%n) and (σn) for n ∈ {0} ∪N such

that

(1) %n ∈ U0, σn ∈ V0 ∀ n ∈ N.
(2) σn ∈ z%n ∀ n ∈ {0} ∪N.
(3) s(%n, σn−1)Js(%n, σn−1) = dist(U ,V) ∀ n ∈ N.
(4) Js(σn−1, σn) ≤ r

s(%n−1,%n)
Js(%n−1, %n) ∀ n ∈ N.

Now for any n ∈ N we have s(%n, σn−1)Js(%n, σn−1) = dist(U ,V) and s(%n+1, σn)Js(%n+1, σn) =

dist(U ,V). But (U ,V) satisfy the WP Js-property, so we conclude that

Js(%n, %n+1) ≤ Js(σn−1, σn) ∀ n ∈ N.
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Thereby,

Js(%n, %n+1) ≤ Js(σn−1, σn)

≤ r

s(%n−1, %n)
Js(%n−1, %n)

≤ r

s(%n−1, %n)
Js(σn−2, σn−1)

≤ r2

s(%n−1, %n)s(%n−2, %n−1)
Js(%n−2, %n−1)

≤ r2

s(%n−1, %n)s(%n−2, %n−1)
Js(σn−3, σn−2)

...

≤ rn−1∏n
i=2 s(%i−1, xi)

Js(σ0, σ1)

≤ rn∏n
i=1 s(%i−1, xi)

Js(%0, %1) (5.2.13)

Now for each m > n, we have
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Js(%n, %m) ≤ s(%n, %n+1)Js(%n, %n+1) + s(%n+1, %m)Js(%n+1, %m)

≤ s(%n, %n+1)Js(%n, %n+1) + s(%n+1, %m)s(%n+1, %n+2)

Js(%n+1, %n+2) + s(%n+1, %m)s(%n+2, %m)Js(%n+2, %m)

≤ s(%n, %n+1)Js(%n, %n+1) + s(%n+1, %m)s(%n+1, %n+2)

Js(%n+1, %n+2) + s(%n+1, %m)s(%n+2, %m)s(%n+2, %n+3)Js(%n+2, %n+3)

+ s(%n+1, %m)s(%n+2, %m)s(%n+3, %m)Js(%n+3, %m)

...

≤ s(%n, %n+1)Js(%n, %n+1) +
m−2∑
i=n+1

(
i∏

j=n

s(%j, %m)

)
s(%i, %i+1)Js(%i, %i+1)

+

(
m−1∏
k=n

s(%k, %m)

)
Js(%m−1, %m)

≤ s(%n, %n+1)Js(%n, %n+1) +
m−2∑
i=n+1

(
i∏

j=n

s(%j, %m)

)
s(%i, %i+1)Js(%i, %i+1)

+

(
m−1∏
k=n

s(%k, %m)

)
s(%m−1, %m)Js(%m−1, %m)

= s(%n, %n+1)Js(%n, %n+1) +
m−1∑
i=n+1

(
i∏

j=n

s(%j, %m)

)
s(%i, %i+1)Js(%i, %i+1)

≤

(
n∏
j=0

s(%j, %m)

)
s(%n, %n+1)Js(%n, %n+1)

+
m−1∑
i=n+1

(
i∏

j=0

s(%j, %m)

)
s(%i, %i+1)Js(%i, %i+1)

=
m−1∑
i=n

(
i∏

j=0

s(%j, %m)

)
s(%i, %i+1)Js(%i, %i+1)

≤
m−1∑
i=n

(
i∏

j=0

s(%j, %m)

)
s(%i, %i+1)

ri∏i
k=1 s(%k−1, xk)

Js(%0, %1)

≤
m−1∑
i=n

(
i∏

j=0

s(%j, %m)

)
s(%i, %i+1)r

iJs(%0, %1)

= Js(%0, %1)
m−1∑
i=n

(
i∏

j=0

s(%j, %m)

)
s(%i, %i+1)r
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In the above steps we use the fact that s(p, q) ≥ 1 and thus x ≤ s(p, q)x for any

x ∈ [0,∞).

Let

an =

(
n∏
j=0

s(%j, %m)

)
s(%n, %n+1)r

n and S =
∞∑
n=1

an.

Since by hypothesis, r limm,i→∞
s(%i+1,%i+2)
s(%i,%i+1)

s(%i+1, %m) < 1, so the series S converges,

because by using ratio test we have

lim
n→∞

an+1

an
≤ lim

n→∞

rn+1
(∏n+1

j=0 s(%j, %m)
)
s(%n+1, %n+2)

rn
(∏n

j=0 s(%j, %m)
)
s(%n, %n+1)

= r lim
n,m→∞

s(%n+1, %n+2)

s(%n, %n+1)
s(%n+1, %m) < 1.

Thus Sm−1 − Sn =
[∑m−1

i=n

(∏i
j=0 s(uj, um)

)
s(ui, ui+1)r

i
]
→ 0 as n,m → ∞ and so is

ds(u0, u1)(Sm−1 − Sn). Hence we deduce that

lim
n→∞

sup
m>n

Js(%n, %m) = 0.

Similar calculation implies that

lim
n→∞

sup
m>n

Js(σn, σm) = 0.

Therefore, by Lemma 5.2.5 we can say that the sequences (%n) and (σn) are Cauchy

sequences in U and V respectively. Since (U ,V) is a closed pair of subsets of the complete

CMT space Q, so there will exists p ∈ U and q ∈ V such that %n → p and σn → q. Also

since σn ∈ z%n∀ m ∈ {0} ∪N, so by closeness of z we obtain that q ∈ zp.
On the other hand, since s(%n, σn−1)Js(%n, σn−1) = dist(U ,V) and Js is associated with

(U ,V), so we conclude that ds(p, q) = dist(U ,V). We now have

dist(U ,V) ≤ D(p,V) ≤ D(p,zp) ≤ ds(p, q) = dist(U ,V).

i.e D(p,zp) = dist(U ,V) and so p ∈ U is a B · P · P of the non-self mapping z.
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5.3 Consequences and applications

This section consists of some important consequences of Theorem 5.2.7. The results we

have obtained generalizes/extends some results by Gabeleh and Plebaniak.

Corollary 5.3.1. Let Q be a completeM·S and let the mapping J : Q×Q→ [0,∞)

be a generalized pseudo-distance on Q. Let (U ,V) be a nonempty closed pair of subsets

of Q with U0 6= ∅ and such that (U ,V) has the WP -property and J is associated with

(U ,V). Let z : U → 2V be a closed contraction of S-type. If z(u) ∈ CB(Q) ∀ u ∈
U , and z(u) ⊂ V0 for each u ∈ U0, then z has a B · P · P in U .

Proof. The assertion holds if we define s(u, v) = 1 for all u, v ∈ Q in Theorem 5.2.7.

Following is the main result in [19] which is direct consequence of the result 5.2.7.

Theorem 5.3.2. [19] Let η : [0, 1) → (1/2, 1] by η(k) = 1
1+k

. Let U ,V be the closed

subsets of the complete space (Q, d) such that (U ,V) has the P -property. Letz : U → 2V

be a multi-valued mapping such that

η(k)D∗(u,zu) ≤ d(u, v) implies Hd(zu,zv) ≤ kd(u, v) for each u, v ∈ U ,

where 0 ≤ k < 1, D∗(u,zu) = D(u,zu) − Dist(U ,V). Let zu ∈ CB(Q) for each u ∈
U , zu ⊂ V0 for each u ∈ U0. Then there exists some p in U such that D(p,zp) =

Dist(U ,V).

The main result of [20] is proved easily by Theorem 5.2.7 when we define s(σ, %) =

b ≥ 1.

Theorem 5.3.3. Let Q be a complete b-M · S (with s ≥1) and let the mapping

Jb : Q ×Q → [0,∞) be a bG pseudo-distance on Q. Let (U ,V) be a nonempty closed

pair of subsets of Q with U0 6= ∅ and such that (U ,V) has the WP Jb-property and

Jb is associated with (U ,V) . Let z : U → 2V be a closed contraction of S-type. If

z(%) ∈ CB(Q) ∀ % ∈ U , and z(%) ⊂ V0 for each % ∈ U0, then z has a B · P · P in U .
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Chapter 6

Fixed point theorems of single-valued

dynamical systems in controlled

quasi-triangular spaces

In this chapter, we have extended the idea of Wlodarczyk [59] and introduced a new

space, which we call the controlled quasi-triangular space (in short CQT space). We

introduced the left (right) families generated by such spaces and proved Banach type

theorem in such spaces. Our results generalizes results proved in triangular space, QT

space, CMT space, b-metric, quasi-metric, quasi b-metric andM · S. Throughout this

chapter by L(R), we will always mean left (right).

6.1 Controlled quasi-triangular space

We start this section by the definition of CQT family and CQT space.

Definition 6.1.1. Let Q be a non-empty set and I be an index set. Let C = {Sα :

Q×Q→ [1,∞) : α ∈ I}.
1. We say that a family PC;I = {pα : Q×Q→ [0,∞) : α ∈ I} of distances is a CQT
(in short CQT ) family on Q if

pα(ζ, γ) ≤ Sα(ζ, ξ)pα(ζ, ξ) + Sα(ξ, γ)pα(ξ, γ) for all ζ, ξ, γ ∈ Q. (6.1.1)
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A CQT space (Q,PC;I) is a set Q together with the CQT family PC;I on Q.

2. Let (Q,PC;I) be a CQT space. We say that the family PC;I is separating if for all

ζ, γ ∈ Q with ζ 6= γ, there exists α ∈ I such that

pα(ζ, γ) > 0 or pα(γ, ζ) > 0.

3. If (Q,PC;I) is a CQT space and for all α ∈ I, p−1α (ζ, γ) = pα(γ, ζ) for all ζ, γ ∈ Q,

then ∀α ∈ I, and for all ζ, ξ, γ ∈ Q,

p−1α (ζ, γ) ≤ Sα(ζ, ξ)p−1α (ζ, ξ) + Sα(ξ, γ)p−1α (ξ, γ).

We say that the CQT space (Q,P−1
C;I) is the conjugation of (Q,PC;I) where P−1

C;I =

{p−1α : Q×Q→ [0,∞) : α ∈ I}.

Remark 6.1.2. In general, in the space (Q,P−1
C;I) the distances pα : Q ×Q → [0,∞)

for α ∈ I do not vanish on the diagonal, they are asymmetric and do not satisfy triangle

inequality, (i.e. the properties pα(u, u) = 0 ∀u ∈ Q or pα(u,w) = pα(w, u) ∀u,w ∈ Q

or pα(u,w) ≤ pα(u, v) + pα(v, w) ∀u, v, w ∈ Q do nor hold necessary)

Definition 6.1.3. LetQ be a non-void set and let C = {Sα : Q×Q→ [1,∞) : α ∈ I}.
1. We say that a family QC;I = {qα : Q×Q→ [0,∞) : α ∈ I} of distances is an ultra

CQT family on Q if

qα(%,$) ≤ max{Sα(%, σ)qα(%, σ), Sα(σ,$)qα(v,$)} : ∀ α ∈ I, ∀ %, σ,$ ∈ Q.

(6.1.2)

An ultra CQT space (Q,QC;I) is a set Q together with the CQT family QC;I on Q.

2.We say that a family SC;I = {pα : Q × Q → [0,∞) : α ∈ I} of distances is a

controlled partial QT family on Q if

pα(ζ, γ) ≤ Sα(ζ, ξ)pα(ζ, ξ) + Sα(ξ, γ)pα(ξ, γ)− pα(ξ, ξ) for all ζ, ξ, γ ∈ Q. (6.1.3)

A controlled partial QT space (Q,SC;I) is a set Q together with the controlled partial

QT family SC;I on Q.
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Remark 6.1.4. 1. If we define Sα(u,w) = Cα ∈ [1,∞) for each α ∈ I and for each

u,w ∈ Q in (6.1.1), then we get a quasi-triangular space [59, 60].

2. It is noticing that CQT space generalize ultra CQT and controlled partial QT space.

Example 6.1.5. Let Q = [0 : 6], and p1 : Q2 → [0,∞), S1 : Q2 → [1,∞) be defined by

p1(%,$) =

0 if % ≥ $

($ − %)3 if % < $.
(6.1.4)

S1(%,$) = %+$ + 4 (6.1.5)

(1) The space (Q,PC;{1}), PC;{1} = {p1} is a CQT space. In fact for all %, σ,$ ∈ Q

p1(%,$) ≤ (%+ σ + 4)p1(%, σ) + (σ +$ + 4)p1(σ,$)

holds. This can be prove from the following cases.

Case 1. If σ ≤ % < $ then p1(%, σ) = 0, $ − % ≤ $ − σ. Consequently,

ps(%, σ) = ($ − %)3 ≤ (%− σ)3

< (%+ σ + 4)p(%, σ)3

= (%+ σ + 4)p1(%, σ)

= (%+ σ + 4)p1(%, σ) + (σ +$ + 4)p1(σ,$).

Case 2. If % < $ and % ≤ σ ≤ $ then p1(%,$) = ($ − %)3 and f(σ0) =

min%≤σ≤$ f(σ) = ($ − %)3 where σ0 = (%+$)
2

is a minimum element of the

map

f(σ) = (%+ σ + 4)p1(%, σ) + (σ +$ + 4)p1(σ,$)

Case 3. If % < $ ≤ σ, then p1(σ,$) = 0 and consequently

p1(%,$) = ($ − %)3 ≤ (σ − %)3 < (%+ σ + 4)(%, σ)3

= (%+ σ + 4)p1(%, σ)

= (%+ σ + 4)p1(%, σ) + (σ +$ + 4)p1(σ,$).
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(2) PC;{1} = {p1} is asymmetric. Indeed, we have that 0 = p1(6, 0) 6= p1(0, 6) = 216.

Therefore condition p1(%,$) = p1($, %) does not hold for all %,$ ∈ Q.

(3) PC;{1} = {p1} vanishes on the diagonal. By (6.1.4), it is clear that ∀% ∈ Q, p1(%, %) =

0.

Example 6.1.6. Let Q = [0,∞), and p1 : Q2 → [0,∞), S1 : Q2 → [1,∞) be defined

by

p1(ζ, η) =



0 if ζ = η = 0

η
1+η

if ζ = 0 and η 6= 0

ζ
1+ζ

if ζ 6= 0 and η = 0

ζ + η if ζ 6= 0 6= η,

(6.1.6)

S1(ζ, η) = 2ζ + 2η + 2.

1. The space (Q,PC;{1}) with PC;{1} = {p1} is a CQT space and for this we need to

show that ∀ζ, ξ, η ∈ Q the following inequality holds:

p1(ζ, η) ≤ S1(ζ, ξ)p1(ζ, ξ) + S1(ξ, η)p1(ξ, η). (6.1.7)

For this we have the following cases.

Case 1. If ζ = 0 = η, then (6.1.7) holds trivially.

Case 2. If ζ = 0, η 6= 0 and ξ = 0, then we have

p1(ζ, η) =
η

1 + η

≤ (2)(0) + (2 + 2η)
η

1 + η

≤ S1(ζ, ξ)p1(ζ, ξ) + S1(ξ, η)p1(ξ, η).
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Case 3. If ζ = 0, η 6= 0 and ξ 6= 0, then we have

p1(ζ, η) =
η

1 + η

≤ η ≤ (2 + 2ξ + 2η)(ξ + η)

≤ (2 + 2ξ)
ξ

1 + ξ
+ (2 + 2ξ + 2η)(ξ + η)

≤ S1(ζ, ξ)p1(ζ, ξ) + S1(ξ, η)p1(ξ, η).

Case 4. If ζ 6= 0 and η = 0, then by similar process as Cases 3 and 4, we obtain

that (6.1.7) holds.

Case 5. If ζ 6= 0 6= η and ξ = 0, then we have:

p1(ζ, η) = ζ + η

≤ (2 + 2ζ)
ζ

1 + ζ
+ (2 + 2η)

η

1 + η

≤ S1(ζ, ξ)p1(ζ, ξ) + S1(ξ, η)p1(ξ, η).

Case 6. If ζ 6= 0 6= η and ξ 6= 0, then we have:

p1(ζ, η) = ζ + η

< ζ + ξ + ξ + η

≤ (2 + 2ζ + 2ξ)(ζ + ξ) + (2 + 2ξ + 2η)(ξ + η)

≤ S1(ζ, ξ)p1(ζ, ξ) + S1(ξ, η)p1(ξ, η).

2. The space (Q,PC;{1}) with PC;{1} = {p1} is not a quasi-triangular space.

We show this by contradiction, i.e. if it is quasi-triangular space, then there

exists Sα ∈ [1,∞) such that

p1(ζ, η) ≤ Sα[p1(ζ, ξ) + p1(ξ, η)] ∀ζ, ξ, η ∈ Q.

Now for any ξ > 0, we have

p1(ξ, ξ + 1) ≤ Sα[p1(ξ, 0) + p1(0, ξ + 1)].
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Which implies that

2ξ + 1 ≤ Sα

[
ξ

ξ + 1
+
ξ + 1

ξ + 2

]
. (6.1.8)

But when we take limit as y → ∞ in (6.1.8), we get that +∞ ≤ 2Sα which

is not possible and hence (Q, p1) is not a quasi-triangular space.

3. (Q,PC;{1}) with PC;{1} = {p1} does not vanish on the diagonal, i,e, if η 6= 0,

then p1(η, η) = 2η 6= 0.

6.2 Left(Right) Families Generated by CQT families

Let PC;I be a CQT family on Q. It is natural to define families generated by PC;I

which will provides a new structure on Q.

Definition 6.2.1. Let (Q,PC;I) be a CQT space.

(a) The family of distances JC;I = {Jα : Q ×Q → [0,∞) α ∈ I} is said to be a left

(right) (in short L(R)) family generated by PC;I if it satisfies the following:

J1 For all α ∈ I and for all ζ, ξ, γ ∈ Q,

Jα(ζ, γ) ≤ Sα(ζ, ξ)Jα(ζ, ξ) + Sα(ξ, γ)Jα(ξ, γ); (6.2.1)

J2 If the sequences {sm} and {tm} in Q satisfying the following

lim
m→∞

sup
n>m

Jα(sm, sn) = 0 ∀ α ∈ I, (6.2.2)(
lim
m→∞

sup
n>m

Jα(sn, sm) = 0 ∀ α ∈ I
)
, (6.2.3)

lim
m→∞

Jα(tm, sm) = 0 ∀ α ∈ I, (6.2.4)

(
lim
m→∞

Jα(sm, tm) = 0 ∀ α ∈ I
)
, (6.2.5)

then the following hold:

lim
m→∞

pα(tm, sm) = 0 ∀ α ∈ I, (6.2.6)(
lim
m→∞

pα(sm, tm) = 0 ∀ α ∈ I
)
. (6.2.7)
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(b) JL(Q,PC;I)
(JR(Q,PC;I)

) is the collection of all JC;I on Q generated by PC;I .

Remark 6.2.2. (a) It can be directly seen from the Definition 6.2.1 that PC;I lies in

both JL(Q,PC;I)
and JR(Q,PC;I)

.

(b) The structure on Q determined by L(R) families JC;I generated by PC;I are more

general than the structure on Q determined by PC;I .

(c) If JC;I ∈ JL(Q,PC;I)
∩JR(Q,PC;I)

, then by (6.2.1), we can say that (Q,JC;I) is a CQT

space.

Motivated from [59, Theorem 14], we present the following result which shows the

validity of Definition 6.2.1 and that JL(Q,PC;I)
−PC;I 6= ∅ and JR(Q,PC;I)

PC;I 6= ∅.

Proposition 6.2.3. Let (Q,PC;I) be a CQT space. Let E ⊆ Q be a set containing at

least two different points and for every α ∈ I, µα ∈ (0,∞) be such that

µα ≥
δα(E )

2
, (6.2.8)

where for all α ∈ I, δα(E ) = sup{pα(u,w) : u,w ∈ E }.
If JC;I = {Jα : α ∈ I}, where for each α ∈ I, the distance Jα : Q2 → [0,∞) is defined

by

Jα(u,w) =

pα(u,w) if {u,w} ⊆ E

µα if {u,w} * E ,
(6.2.9)

then JC;I is L(R) family generated by PC;I .

Proof. Suppose on contrary that J1 does not holds. Then there exist some α0 ∈ I and

σ0, %0, $0 ∈ Q such that

Jα0(σ0, $0) > Cα0(σ0, %0)Jα0(σ0, %0) + Cα0(%0, $0)Jα0(%0, $0). (6.2.10)

Then we have {σ0, %0, $0} * E . Because if it is subset of E , then

Jα0(σ0, %0) = pα0(σ0, %0), Jα0(σ0, $0) = pα0(σ0, $0), Jα0(%0, $0) = pα0(%0, $0), and with

this, the Inequality (6.2.10) will become pα0(σ0, $0) > Cα0(σ0, %0)pα0(σ0, %0)+Cα0(%0, $0)pα0(%0, $0),

which is a contradiction to the fact that (Q,PC;I) is a CQT space. Thus we have the

following four cases.
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Case 1. If {σ0, $0} ⊆ E , then %0 /∈ E , then by using (6.2.9) we get that Jα0(σ0, $0) =

pα0(σ0, $0), Jα0(σ0, %0) = µα0 and Jα0(%0, $0) = µα0 . Thus (6.2.10) and (6.2.8)

implies that

pα0(σ0, $0) > Cα0(σ0, %0)µα0 + Cα0(%0, $0)µα0

≥ µα0 + µα0

≥ δ0(E )

2
+
δ0(E )

2

= δ0(E ),

which is impossible because σ0, $0 ∈ E .

Case 2. If σ0 ∈ E and $0 /∈ E , then by using (6.2.9) we get that Jα0(σ0, $0) = µα0

and Jα0(%0, $0) = µα0 . Thus (6.2.10) and (6.2.8) implies that

µα0 > Cα0(σ0, %0)pα0(σ0, %0) + Cα0(%0, $0)µα0 ,

which is not possible for every %0 ∈ Q.

Case 3. If σ0 /∈ E and $0 ∈ E , then by using (6.2.9) we get that Jα0(σ0, $0) = µα0

and Jα0(σ0, %0) = µα0 . Thus (6.2.10) and (6.2.8) implies that

µα0 > Cα0(σ0, %0)µα0 + Cα0(%0, $0)µα0 ,

which is not possible for every %0 ∈ Q.

Case 4. If σ0 /∈ E and $0 /∈ E , then by using (6.2.9) we get that Jα0(σ0, $0) = µα0 ,

Jα0(σ0, %0) = µα0 and Jα0(%0, $0) = µα0 . Thus (6.2.10) and (6.2.8) implies that

µα0 > Cα0(σ0, %0)µα0 + Cα0(%0, $0)µα0 ,

which is not possible for every %0 ∈ Q.

Thus our supposition was wrong and hence for all α ∈ I we have

Jα(ζ, γ) ≤ Sα(ζ, ξ)Jα(ζ, ξ) + Sα(ξ, γ)Jα(ξ, γ) for all ζ, ξ, γ ∈ Q.
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Assume that the sequence (sm) and (tn) in Q satisfy (6.2.2) and (6.2.4). We need to

show that (6.2.6) holds. Indeed, (6.2.4) implies that ∀ α ∈ I, ∀ 0 < ε < µα there exists

m0 = m0(α) ∈ N such that ∀ m ≥ N , we have

Jα(sm, tm) < ε. (6.2.11)

Denote m′ = min{m0(α) : α ∈ I}, we can see by (6.2.11) and (6.2.9), that ∀ m ≥ m′,

E ∩ {sm, tm} = {sm, tm}. Thus in view of Definition 6.2.1(a), (6.2.9) and (6.2.11), this

implies that ∀ α ∈ I, ∀ 0 < ε < µα there exists m′ ∈ N such that ∀ m ≥ m′, we have

pα(sm, tm) = Jα(sm, tm) < ε.

This show that (6.2.6) holds. Thus JC;I is a left family generated by PC;I .

In the similar way, we can show that JC;I is a right family generated by PC;I . We

have proved that JC;I ∈ JL(Q,PC;I)
∩ JR(Q,PC;I)

holds.

Definition 6.2.4. Let (Q,PC;I) be a CQT space and JC;I be a L(R) family generated

by PC;I . Let (ηn) be a sequence in Q.

1. We say that (ηn) is L(R) JC;I-Cauchy sequence if ∀α ∈ I we have

lim
m→∞

sup
n>m

Jα(ηm, ηn) = 0

(
lim
m→∞

sup
n>m

Jα(ηn, ηm) = 0

)
.

2. We say that (ηn) is L(R) JC;I-convergent to η ∈ Q if

η ∈ LIML−JC;I
(ηm)

(
η ∈ LIMR−JC;I

(ηm)

)
,

where

LIML−JC;I
(ηm) =

{
u ∈ Q : lim

m→∞
Jα(u, ηm) = 0 ∀ α ∈ I

}
(
LIMR−JC;I

(ηm) =
{
u ∈ Q : lim

m→∞
Jα(ηm, u) = 0 ∀ α ∈ I

})
.

3. If every L(R) JC;I-Cauchy sequence (ηm) is L(R) JC;I-convergent in Q (i.e.,

LIML−JC;I
(ηm) 6= ∅

(
LIMR−JC;I

(ηm) 6= ∅)
)
, then the space (Q,PC;I) is said to be L(R)

JC;I-sequential complete.
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The proof of the following result is similar to the case of quasi-triangular space [59].

Theorem 6.2.5. Let (Q,PC;I) be a CQT space, and let JC;I be the L(R) family

generated by PC;I . If PC;I is separating on Q, i.e. if for all η, ξ ∈ Q with η 6= ξ, there

exists α ∈ I such that

pα(η, ξ > 0 ∨ pα(ξ, η) > 0, (6.2.12)

then JC;I is separating on Q, i.e. for all η, ξ ∈ Q with η 6= ξ, there exists α ∈ I such

that

Jα(η, ξ > 0 ∨ Jα(ξ, η) > 0. (6.2.13)

6.3 Banach type theorem in controlled quasi-triangular

spaces

In this section, we discussed a Banach type theorem in the setting of CQT spaces.

Definition 6.3.1. Let (Q,PC;I) be a CQT space and JC;I be the L(R) family gen-

erated by PC;I . Let z : Q → Q be a map, λ = {λα : α ∈ I, λα ∈ [0; 1)}, and

η = 1 or 2.

(A) If JC;I ∈ JL(Q,PC;I)
, then the left quasi-distance D

L−JC;I
Q,η on Q is defined by

D
L−JC;I
Q,η = {DL−JC;I

η;Q;α : Q×Q→ [0,∞), α ∈ I},

where ∀ α ∈ I ∀σ, % ∈ Q

D
L−JC;I
1;Q;α (σ, %) = max{Jα(σ, %), Jα(%, σ)}, (6.3.1)

D
L−JC;I
2;Q;α (σ, %) = Jα(σ, %).

We say thatz is a left (D
L−JC;I
Q,η , λ)-controlled quasi–contraction onQ if ∀α∈I ∀σ,%∈Q

Sλ(σ, %)D
L−JC;I
η;Q;α (T (σ), T (%)) ≤ λαJα(σ, %), (6.3.2)

and for each σ0 ∈ Q with σn+1 = T (σn) we have

lim
m,i→∞

Sα(σi+1, σi+2)

Sα(σi, σi+1)
Sα(σi+1, σm) <

1

λα
.
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(B) If JC;I ∈ JR(Q,PC;I)
, then we define the right D

R−JC;I
Q,η quasi-distance on Q by

D
R−JC;I
Q,η = {DR−JC;I

η;Q;α : Q×Q→ [0,∞), α ∈ I} where ∀α∈I ∀σ,%∈Q

D
R−JC;I
2;Q;α (σ, %) = max{Jα(σ, %), Jα(%, σ)}, (6.3.3)

D
R−JC;I
2;Q;α (σ, %) = Jα(σ, %).

We say thatz is right (D
R−JC;I
Q,η , λ)-controlled quasi–contraction onQ if ∀α∈I ∀σ,%∈Q

we have

Sλ(σ, %)D
R−JC;I
η;Q;α (T (σ), T (%)) ≤ λαJα(σ, %), (6.3.4)

and for each σ0 ∈ Q with σn+1 = T (σn) we have

lim
m,i→∞

Sα(σi+1, σi+2)

Sα(σi, σi+1)
Sα(σi+1, σm) <

1

λα
.

Definition 6.3.2. Let (Q,PC;I) be a CQT space and JC;I be the L(R) family gener-

ated by PC;I . Let z : Q→ Q be a map.

(A) Given %0 ∈ Q, we say that z is L(R) JC;I-admissible in %0 if for the sequence

(%m = T [m](%0)), we have LIML−JC;I
(%m

6= ∅
(
LIMR−JC;I

(%m
6= ∅
)
whenever

lim
m→∞

sup
n>m

Jα(%m, %n) = 0

(
lim
m→∞

sup
n>m

Jα(%n, %m) = 0

)
, ∀ α ∈ I. (6.3.5)

(B) we say that z is L(R) JC;I-admissible on Q, if z is L(R) JC;I-admissible in each

point %0 ∈ Q.

Following is the generalization of continuity.

Definition 6.3.3. Let (Q,PC;I) be a CQT space. Let z : Q→ Q be a map and k ∈ N.
The single-valued dynamical system (Q,z[k]) is called a L(R) PC;I-closed on Q if for

each sequence (xm) in z[k](Q), L(R) PC;I-converging in Q and having subsequences

(vm) and (um) satisfying that for all m ∈ N, vm = z[k](um), the following property

holds:

∃ η ∈ LIML−JC;I
(%m) (LIM

R−JC;I
(%m) ) such that η = z[k](η).

Now we present the main result of this chapter.
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Theorem 6.3.4. Let (Q,PC;I) be a CQT space, z : Q → Q a map, ζ ∈ {0, 1} and

λ = {λα ∈ [0, 1) : α ∈ I}. Suppose that there is a L(R) family JC;I generated by

PC;I and a point σ0 ∈ Q which satisfy the following properties.

(a1) z is left (D
L−JC;I
Q,ζ , λ) controlled quasi–contraction (right (D

R−JC;I
Q,ζ , λ) controlled

quasi–contraction) on Q.

(a2) z is L(R) JC;I-admissible in a point σ0 ∈ Q.

Then the following hold.

(b1) There exists a point $ ∈ Q such that the sequence σn = znσ0 is L(R)-PC;I

convergent to $.

(b2) If the dynamical system zk is L(R) PC;I-closed on Q for some k ∈ N, then

Fix(zk) 6= ∅, there exists a point $ ∈ Fix(zk) such that the sequence σn =

zn(σ0) is L(R) PC;I-convergent to $, and for all α ∈ I, ∀ ζ ∈ Fix(zk) we have

Jα(ζ,z(ζ)) = Jα(z(ζ), ζ) = 0. (6.3.6)

(b3) If the family PC;I is separating on Q and if the map zk is L(R) PC;I-closed on

Q for some k ∈ N, then there exists a point $ ∈ Q such that

Fix(zk) = Fix(z) = {$}, (6.3.7)

and the sequence σn = zn(σ0) is L(R) PC;I-convergent to $, and for all α ∈ I,

Jα($,$) = 0. (6.3.8)

Proof. We only prove the theorem for the case of left. The proof for right is based on

analogous technique.
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(b1) For σ0 ∈ Q, let σn = zn−1(σn−1) = zn(σ0). By using the Definition 6.3.1 we have,

Jα(σn, σn+1) ≤ D
L−JC;I
η;Q;α (σn, σn+1)

= D
L−JC;I
η;Q;α (z(σn−1),z(σn))

≤ λα
Sα(σn−1, σn)

Jα(σn−1, σn)

≤ λαJα(σn−1, σn)

≤ λαD
L−JC;I
η;Q;α (σn−1, σn)

= λαD
L−JC;I
η;Q;α (z(σn−2),z(σn−1))

≤ λα
λα

Sα(σn−2, σn−1)
Jα(σn−2, σn−1)

≤ λ2αJα(σn−2, σn−1)

...

≤ λnαJα(σ0, σ1). (6.3.9)

Now if we take m > n, then by using (6.3.9) and (6.1.1), we have
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Jα(σn, σm) ≤ Sα(σn, σn+1)Jα(σn, σn+1) + Sα(σn+1, σm)Jα(σn+1, σm)

≤ Sα(σn, σn+1)Jα(σn, σn+1) + Sα(σn+1, σm)Sα(σn+1, σn+2)Jα(σn+1, σn+2)

+ Sα(σn+1, σm)Sα(σn+2, σm)Jα(σn+2, σm)

≤ Sα(σn, σn+1)Jα(σn, σn+1) + Sα(σn+1, σm)Sα(σn+1, σn+2)Jα(σn+1, σn+2)

+ Sα(σn+1, σm)Sα(σn+2, σm)Sα(σn+2, σn+3)Jα(σn+2, σn+3)

+ Sα(σn+1, σm)Sα(σn+2, σm)Sα(σn+3, σm)Jα(σn+3, σm)

≤ . . .

≤ Sα(σn, σn+1)Jα(σn, σn+1) +
m−2∑
i=n+1

(
i∏

j=n+1

Sα(σj, σm)

)
Sα(σi, σi+1)Jα(σi, σi+1)

+

(
m−1∏
k=n+1

Sα(σk, σm)

)
Jα(σm−1, σm)

≤ Sα(σn, σn+1)λ
n
αJα(σ0, σ1) +

m−2∑
i=n+1

(
i∏

j=n+1

Sα(σj, σm)

)
Sα(σi, σi+1)λ

i
αJα(σ0, σ1)

+

(
m−1∏
k=n+1

Sα(σk, σm)

)
λm−1α Jα(σ0, σ1)

≤ Sα(σn, σn+1)λ
n
αJα(σ0, σ1) +

m−2∑
i=n+1

(
i∏

j=n+1

Sα(σj, σm)

)
Sα(σi, σi+1)λ

i
αJα(σ0, σ1)

+

(
m−1∏
k=n+1

Sα(σk, σm)

)
Sα(σm−1, σm)λm−1α Jα(σ0, σ1)

≤ Sα(σn, σn+1)λ
n
αJα(σ0, σ1) +

m−1∑
i=n+1

(
i∏

j=n+1

Sα(σj, σm)

)
Sα(σi, σi+1)λ

i
αJα(σ0, σ1)

≤

(
n∏
j=0

Sα(σn, σn+1)

)
λnαJα(σ0, σ1) +

m−1∑
i=n+1

(
i∏

j=0

Sα(σj, σm)

)
Sα(σi, σi+1)λ

i
αJα(σ0, σ1)

= Jα(σ0, σ1)
m−1∑
i=n

(
i∏

j=0

Sα(σj, σm)

)
Sα(σi, σi+1)λ

i
α.
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Let

an =

(
n∏
j=0

Sα(σj, σm)

)
λnαSα(σn, σn+1) and S =

∞∑
n=1

an.

Since by Definition 6.3.1, λα limm,i→∞
Sα(σi+1,σi+2)
Sα(σi,σi+1)

Sα(σi+1, σm) < 1, so the series S

converges because by using ratio test we have

lim
n→∞

an+1

an
≤ lim

n→∞

λαλ
n
α

(∏n+1
j=1 Sα(σj, σm)

)
Sα(σn+1, σn+2)

λnα

(∏n
j=1 Sα(σj, σm)

)
Sα(σn, σn+1)

= λα lim
n,m→∞

Sα(σn+1, σn+2)

Sα(σn+1, σn+1)
Sα(σn+1, σm) < 1.

Thus Summ−1−Sumn =
[∑m−1

i=n

(∏i
j=0 Sα(σj, σm)

)
Sα(σi, σi+1)λ

i
α

]
→ 0 as n,m→

∞ and so is Jα(σ0, σ1)(Summ−1 − Sumn), where Summ =
∑m

i=1 ai. This shows

that for all α ∈ I we have

lim
n→∞

sup
m>n

Jα(σn, σm) = 0. (6.3.10)

Now, since (Q,z) is left JC;I-admissible in σ0 ∈ Q, so by Definition 6.3.2 there

exists a point $ ∈ Q such that for all α ∈ I we have

lim
n→∞

Jα($, σn) = 0. (6.3.11)

By defining sn = σn and tn = $ for all n ∈ {0}∪N, then by (6.3.10) and (6.3.11),

we can see that the conditions (6.2.2) and (6.2.4) hold for the sequences sn = σn

and tn = $ in Q. Thus by Definition 6.2.1, (6.2.6) holds, i,e, for all α ∈ I we have

lim
n→∞

pα($, σn) = 0, (6.3.12)

and so in particular $ ∈ LIML−PC;I
σn .

(b2) We only prove that (6.3.6) holds. For this, suppose on contrary that ∃ β ∈ I
and there exists η ∈ Fix(zk) such that Jβ(η,z(η)) > 0. But then we have

η = zk(η) = z2k(η), z(η) = z2k(T (η)) and for ζ ∈ {1, 2}, by Definition 6.3.1 we
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have

0 < Jβ(η,z(η)) = Jβ
(
z2k(η),z2k(z(η))

)
≤ D

L−JC;I
ζ;Q;β

(
z2k(η),z2k(z(η))

)
≤
(

λβ
Sβ(z2k−2(η),z2k−1(η))

)
Jβ
(
z2k−1(η),z2k−1(z(η))

)
≤
(

λβ
Sβ(z2k−2(η),z2k−1(η))

)
D
L−JC;I
ζ;Q;β

(
z2k−1(η),z2k−1(z(η))

)
≤
(

λ2β
Sβ(z2k−2(η),z2k−1(η)) · Sβ(z2k−3(η),z2k−2(η))

)
Jβ
(
z2k−2(η),z2k−2(z(η))

)
≤
...

≤

(
λ2kβ∏2k

j=1 Sβ(zj−2(η),zj−1(η))

)
Jβ (η,z(η))

< Jβ (η,z(η))

which is not possible. Thus for all α ∈ I and for all η ∈ Fix(zk) we have

Jα(η,z(η)) = 0. (6.3.13)

Now it is easy to show that for all α ∈ I and for all η ∈ Fix(zk), Jα(z(η), η) = 0

by using (6.3.13) and the fact that η = zk(η) = z2k(η). Thus (6.3.6) holds true.

(b3) Next we show that properties (6.3.7) and (6.3.8) hold. For this, suppose that there

exists η ∈ Fix(zk) such that z(η) 6= η. Then since the family PC;I is separating

on Q, so there exists α ∈ I such that

pα(z(η), η) > 0 ∨ pα(η,z(η)) > 0.

Thus in view of (6.2.5), we get that there exists α ∈ I such that Jα(z(η), η) >

0 ∨ Jα(η,z(η)) > 0, which is not possible by property (6.3.6). Hence z(η) = η

and thus Fix(zk) = Fix(z), which is (6.3.7).

Now we prove the property (6.3.8). By property (6.3.6), we conclude that for all
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α ∈ I and for all η ∈ Fix(zk),

Jα(η, η) ≤ Sα(η,z(η))Jα(η,z(η)) + Sα(z(η), η)Jα(z(η), η) = 0 + 0 = 0.

Finally we prove that Fix(z) is singleton set. For this, let $1, $2 ∈ Fix(z) and

$1 6= $2. Then, since the family PC;I is separating on Q, so there exits β ∈ I
such that {pβ($1, $2) > 0∨pβ($2, $1) > 0}. By (6.2.5), we obtain that there exits

β ∈ I such that {Jβ($1, $2) > 0 ∨ Jβ($2, $1) > 0}. Consequently, for ζ ∈ {1, 2},
by Definition 6.3.1, we conclude that there exists β ∈ I such that either

Jβ($1, $2) = Jβ(z($1),z($2))

≤ D
L−JC;I
ζ;Q;β (z($1),z($2))

≤
(

λβ
Sβ($1, $2)

)
Jβ($1, $2)

< Jβ($1, $2),

or,

Jβ($2, $1) = Jβ(z($2),z($1))

≤ D
L−JC;I
ζ;Q;β (z($2),z($1))

≤
(

λβ
Sβ($2, $1)

)
Jβ($2, $1)

< Jβ($2, $1),

which is not possible. Thus Fix(z) is a singleton set and hence (6.3.7) and (6.3.8)

hold true.

6.4 Consequences and applications

In this section, we have discussed some consequences of the Theorem 6.3.4 and an

example which fulfill the assumption of Theorem 6.3.4.
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Example 6.4.1. Let Q = (0, 6), γ > 3 and A = A1 ∪A2 where A1 = (0, 3], A2 = [5, 6).

Let p : Q2 → [0,∞) be defined by

p(ζ, η) =

0 if A ∩ {ζ, η} = {ζ, η}

γ if A ∩ {ζ, η} 6= {ζ, η},
(6.4.1)

and let J{S},{1} = P{S},{1} = {p} with S(ζ, η) = 1 ∀ ζ, η ∈ Q. Define a map

z : Q→ Q by

z(η) =

5 if η ∈ (0, 4)

3 if η ∈ [4, 6).
(6.4.2)

1. (Q,P{S},{1}) is a CQT space. Indeed (6.4.1) implies that for all ζ, ξ, η ∈ Q,

p(ζ, η) ≤ p(ζ, ξ) + p(ξ, η). Because if it is not true and there exist ζ0, ξ0, η0 ∈
Q such that p(ζ0, η0) > p(ζ0, ξ0) + p(ξ0, η0). Then clearly p(ζ0, η0) = γa and

p(ζ0, ξ0) = p(ξ0, η0) = 0, implies that A∩{ζ0, η0} 6= {ζ0, η0}, A∩{ζ0, ξ0} = {ζ0, ξ0}
and A ∩ {ξ0, η0} = {ξ0, η0}, which is not possible.

2. For λ ∈ [0, 1), the dynamic system (Q,z) is (D
L−P{1}:{1}
1;Q , λ) controlled quasi-

contraction on Q. Indeed, for all ζ, η ∈ Q implies that z(ζ),z(η) ∈ A and so we

have

D
L−P{1}:{1}
1;Q (z(ζ),z(η)) = 0 ≤ λp(ζ, η).

3. The dynamical system (Q,z) is left and right P{1};{1}-admissible in Q. Clearly for

any η0 ∈ Q, The sequence ηn with ηn+1 = z(ηn), satisfies limn→∞ supm>n p(ηn, ηm) =

0. Thus by using (6.4.1) and (6.4.2) we have ηn ∈ A. This gives us that LIM
L−P{1}:{1}
ηn =

LIMR−P{1}:{1}
ηn = A.

4. The single-valued dynamical system (Q,z2) is left and right P{1}:{1}-closed in Q.

Indeed, if (ηn) ⊆ z2(Q) = {3, 5} is a left P{1}:{1}-convergent sequence in Q and

having subsequence (un), (vn) such that ∀ n ∈ N, vn ∈ z(un). Then by using

(6.4.1) and (6.4.2) we have LIML−P{1}:{1}
ηn = LIMR−P{1}:{1}

ηn = A. In particular,

3 = z2(3) ∈ LIML−P{1}:{1}
ηn and 5 = z2(5) ∈ LIML−P{1}:{1}

ηn .
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5. The family P{1}:{1} = {p} is not separating on Q. Since if ζ, η ∈ Q such that

ζ, η /∈ A, then p(ζ, η) = p(η, ζ) = γ 6= 0.

Considering the cases 1-5, we can see that (b1) and (b2) of Theorem 6.3.4 hold. But b3
does not holds, because the family is not separating.

Now we have discussed some consequences of the Theorem 6.3.4. Following is one

of the main results in [59] which is directly proved if we define Sα(η, ξ) = Cα for all

η, ξ ∈ Q in Theorem 6.3.4.

Theorem 6.4.2. [59] Let (Q,PC;I) be a quasi-triangular space and let z : Q → Q

be a single-valued dynamical system. Let ζ ∈ {0, 1} and λ = {λα ∈ [0, 1) : α ∈ I}.
Suppose that there is a left (right) family JC;I generated by PC;I and a point σ0 ∈ Q

which satisfy the following properties.

(a1) z is L− (D
L−JC;I
Q,ζ , λ) quasi-contraction (R− (D

R−JC;I
Q,ζ , λ) quasi-contraction) on

Q.

(a2) z is left (right) JC;I-admissible in a point σ0 ∈ Q.

Then we have the following.

(b1) There exists a point $ ∈ Q such that the sequence σn = znσ0 is left (right)-PC;I

convergent to $.

(b2) If the map zk is left (right) PC;I-closed on Q for some k ∈ N, then Fix(zk) 6= ∅,
and thus there exists a point $ ∈ Fix(zk) such that the sequence σn = zn(σ0) is

left (right) PC;I-convergent to $, and for all α ∈ I, ∀ ζ ∈ Fix(zk) we have

Jα(ζ,z(ζ)) = Jα(z(ζ), ζ) = 0.

(b3) If the family PC;I is separating on Q and if the mapping zk is left (right) PC;I-

closed on Q for some k ∈ N, then ∃ η ∈ Q such that

Fix(zk) = Fix(z) = {η},
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and the sequence σn = zn(σ0) is left (right) PC;I-convergent to η, and for all

α ∈ I,
Jα(η, η) = 0.

The main results of Banach type for triangular spaces is direct consequence of our

result 6.3.4 when we define Sα(η, ξ) = 1 for all η, ξ ∈ Q.

Corollary 6.4.3. Let (Q,PC;I) be a triangular space and z : Q → Q be a map. Let

ζ ∈ {0, 1} and λ = {λα ∈ [0, 1) : α ∈ I}. Suppose that there is a left (right) family

JC;I generated by PC;I and a point σ0 ∈ Q such that the following axioms satisfied.

(a1) z is L− (D
L−JC;I
Q,ζ , λ) contraction (R− (D

R−JC;I
Q,ζ , λ) contraction) on Q.

(a2) z is left (right) JC;I-admissible in a point σ0 ∈ Q.

Then we have.

(b1) If the map zk is left (right) PC;I-closed on Q for some k ∈ N, then Fix(zk) 6= ∅,
and thus there exists a point $ ∈ Fix(zk) such that the sequence σn = zn(σ0) is

left (right) PC;I-convergent to $, and for all α ∈ I, ∀ ζ ∈ Fix(zk) we have

Jα(ζ,z(ζ)) = Jα(z(ζ), ζ) = 0.

(b2) If the family PC;I is separating on Q and if the mapping zk is left (right) PC;I-

closed on Q for some k ∈ N, then ∃η ∈ Q such that

Fix(zk) = Fix(z) = {η},

and the sequence σn = zn(σ0) is left (right) PC;I-convergent to η, and for all

α ∈ I,
Jα(η, η) = 0.
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