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Preface

The theory of fixed point is a growing field of research with several applications in var-
ious fields. It is concerned with the results which state that a single-valued dynamical
systems f : Q — £ or a multi-valued dynamical system F : Q — P(Q) admits one
or more fixed points under particular circumstances. The necessity to prove theorems
about the existence of solutions to differential and integral equations drove the further
growth in this theory. There are three major topics of theory of fixed points: Metric,
Topological and Discrete fixed point theory. Some of the most well-known and sig-
nificant results in these fields are: Banach, Brouwer and Tarski fixed point theorems
respectively. In 1922, Banach was working on integral equations and proved a theorem
known as the Banach contraction principle, which guarantee to exists a unique fixed
point in a complete metric space. The Banach contraction principle is a very useful
tool in nonlinear analysis with many applications to operator equations, fractal theory,

optimization theory and other topics.

After Banach, many researchers introduced new type of contractions in metric spaces.
It has been observed that a Banach contraction f is always a continuous map. This
brings up the question whether some contraction conditions exist which guarantee to
exists of unique fixed point of discontinuous mappings. In 1968, Kannan and Cheatterja
gave positive answer to this question for complete metric spaces. Another important

contraction in this perspective which generalizes both Banach and Kannan contractions



for a complete metric spaces was proved by Reich in 1971. Due to the wide range of
applications of Banach contraction principle, many authors have refined the contraction
condition or changed the metric space to different abstract spaces to generalize/extend

this elegant result.

Nadler extended first time the Banach contraction for the multi-valued dynamical
systems i.e., F : Q — CB(Q), where CB(Q) = {M C £ : M is bounded and closed}.
He proved for a complete metric space (9, p) that if a map F : Q — CB(Q) satisfies

the following condition:

H(Fp,Fq) <kp(p,q)

for each p,q € Q where H is a Hausdorff metric and k£ € [0,1), then there is a point
g € £ which is a F-P of the map F. After Nadler, a number of authors worked in this
direction. Some of the refinements of Nadler fixed point theorem are by Reich, where
he used H () the collection of all compact subsets of a metric space Q and by Kam-
ran who used C1(9), the collection of all non-void closed subsets of 9 instead of CB(Q).

Due to the importance of fixed point theory in diverse fields, some researchers have
extended the idea of metric space in various ways. In 1993, Czerwik introduced the
notion of a b-metric space by replacing the triangular property of a metric space with
p(p,t) < blp(p,q) + p(g,t)], where b > 1. Later on, in 2017 Kamran et al. further ex-
tended the concept of b-metric space by introducing extended b-metric spaces. They
introduced a function 6 : Q x Q — [1,00) instead of b in triangular inequality condi-
tion. In 2018, Mlaiki et al. gave the idea of controlled metric type spaces. They used
0: 9 x0 — [1,00) instead of b in triangular inequality condition of metric spaces from

a different approach from Kamran et al.

In 2007, Huang and Zhang initiated the concept of cone metric space over a Banach
space as the generalization of metric spaces. They used ordered Banach space E instead
of R as the range set of metric p, i.e. they used p : Q xQ — E. They also discussed Ba-

nach type contraction and proved some fixed point results. After that, many researcher
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concentrated to investigate such spaces and proved a number of fixed point theorems.
According to rough statistics, by using cone metric spaces, more than six hundred ar-
ticles have been published. But recently some scholars obtained the equivalent results
of usual metric space (Q,d*) and that of cone metric space (Q,p). They defined the
real valued metric function d* as the non-linear scalarization function £. However, Liu
and Xu in 2013 introduced cone metric space by using a real Banach algebra instead of
Banach space and defined generalized Lipschitz mapping. They presented an example
which established that results of fixed point in metric spaces are not equivalent to that

of results in cone metric spaces over Banach algebras.

The concept of distances in uniform spaces and metric spaces was first time presented
by Valyi in 1985. We call it a Valyi-distances. After Valyi, some other researchers in-
troduced different type of distances in metric spaces and in uniform spaces. Some well
known distances are Tataru-distances by Tataru in 1992, w-distance by Kada in 1996 and
T-distance by Suzuki in 2001. Recently in 2010 Wlodarczyk gave an idea of distances
which provide a handy research tool to obtain more general results with weaker as-
sumptions in uniform space known as generalized pseudo-distances. He also introduced
generalized Hausdorff distances, gauge spaces, quasi-gauge spaces, triangular spaces,

quasi-triangular spaces.

The main objective of this thesis is to prove some fixed point theorems and proximity
fixed point theorems for single-valued and multi-valued dynamical systems in metric type
spaces. This thesis has been organized into six chapters.

In Chapter 1, We have recollect some fundamental notions, some well-known contrac-
tions, abstract spaces and results in such spaces. Also, we present some basic concepts
of comparison functions, introduction and basic theory of fractals in metric type spaces.
At the end, we gave the theory of proximity fixed point in metric type spaces and
generalized distances.

In Chapter 2, we introduced a new geometrical structure which is the hybrid of cone

metric space over Banach algebra and extended b-metric space. We prove analogues of
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Banach, Kannan and Reich type fixed point theorems in our predefined space. We also
furnish with various concrete examples to establish the validity of our results. At the
end, we have added some consequences and applications of our results. Recently, this
work has been published in the journal of Filomat.

Chapter 3, is concerned with the study of a new type of metric type space which
we call a controlled cone metric type space over Banach algebra. By using such spaces
we proved some fixed point theorems for generalized R-type contraction and generalized
lipschitz mappings. We add an example to show the validity of our results. Work of
this chapter has been published in the Journal of Inequalities and Applications.

The aim of chapter 4 is two fold. Firstly, we produced several results concern with
fixed point for the family of multi-valued contractions by using comparison functions in
extended b-metric spaces. Then, we constructed some new multi-valued fractals based
on a fixed point approach in the framework of extended b-metric spaces. Later on, using
the idea of well-posed problem of fixed point is studied. Some of the results of this
chapter has been published in the Journal of function spaces.

Chapter 5 is intended to the study of theory of proximity points in controlled metric
type spaces. We introduced generalized distances in controlled metric type spaces. We
proved some global maximality results by using the defined generalized distances.

Chapter 6 is the last chapter of this thesis, where we have introduced a new type
of space which we named controlled quasi-triangular space. We introduced left(right)
families generated by controlled quasi-triangular space. We proved Banach type theorem
by using such families in controlled quasi-triangular space. At the end, we gave some

concrete examples to validate our definitions and results.
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Chapter 1
Introduction and Preliminaries

The aim of this chapter is to recollect some definitions, results and their origin which
are needed in the sequel. Throughout in this thesis, by N(Q), CB(Q) and H(Q), we
mean the collection of all the nonempty subsets of £, the collection of all the closed and
bounded subsets of 9 and the collection of all compact subsets of Q respectively. By
F - P we mean fixed point, by B - P - P we mean best proximity point and by an M-S

we mean a metric space. We denote the set of non-negative real numbers by R.,.

1.1 Fixed points of dynamical systems

By a single-valued dynamical system, we mean a pair (Q, F ), where £ is a phase space
and F : Q — 9 is a single-valued map. We think of 9 as a phase space of possible
states of the system and the map F as a "law of evolution" of the system. The set of
F - P of a single-valued dynamical system f is defined as Fix(f) ={u € Q : Fu = u}.
Similarly, by a multi-valued (set-valued) dynamical system we mean the pair (Q, F),
where Q is a phase space and f : Q — 29 is a multi-valued map: here 22 = {M C Q :
M # 0}. The collection of all F - P of F is defined as Fix(F) = {u € Q : u € Fu}.
Given wy € Q and a single-valued dynamical system (£, f ), the orbit of g is defined
as:

O(wo) ={wn = Fwp—1 = F"(wpy) : ne€ N U{0}}.



For multi-valued dynamical system the orbit is defined as follows:
O(wo) = {wy : wn € Fw,_1:n € NU{0}}.

The main goal of the theory of dynamical system is to describe and classify the possible

structure which arise from the iteration of single-valued and multi-valued maps.

1.2 Some well-known contractions in metric spaces

In 1932 Banach [6] introduced a principle, the "Banach contraction" which is pioneer of

the theory of metric fixed point.

1.2.1 Banach contraction

Let (Q,p) be a M-S and F : Q — Q be a dynamical system. We say that [ is a

Banach contraction if
{3X €[0,1) such that Vv, t € Q, p(Fov, Ft) < Ap(v,t)}. (1.2.1)

Banach proved that if £ is complete and F : Q — £ satisfy the contraction (1.2.1),
then there exists a unique ug in 9 which is a F - P of the map F.

After Banach, many researchers introduce new contractions for M - §s. One well

known contraction for complete M - S is presented by Kannan [28].

1.2.2 Kannan contraction

Let (Q,p) be a M-S and F : Q — Q be a dynamical system. We say that [ is a

Kannan contraction if there is a A € [0, %) such that
o F0) < A [p(u, Fu) + plv, Fo)] Vu,v € 9. (1.22)

Kannan proved that if 9 is complete and F : Q — Q satisfy the contraction (1.2.2),
then there exists a unique point ug in 9 which is a F - P of the map f .



One another important result in this perspective which generalizes both Banach and

Kannan contractions for a complete M - S (Q, p) was proved by Reich [41] in 1971.

1.2.3 Reich contraction

Let (Q,p) bea M-S and F : Q — Q be a dynamical system. f is said to be a Reich
contraction if for all u,v € Q, there exist three non-negative real numbers «, 5,y such

that a + 4+ v < 1 and the following inequality holds:
p(Fu, Fv) < ap(u, Fu) + Bp(v, Fo) +vp(u,v). (1.2.3)

Reich proved that if Q is complete and F : Q — Q satisfy the contraction (1.2.3), then
there exists a unique point in £ which is a F - P of the map F.
If we put « = = 0 in (1.2.3), then we get the Banach contraction (1.2.1) and for

a =, v =0 we get Kannan contraction (1.2.2).

1.2.4 Nadler contraction

Nadler [37]| extended first time the Banach contraction for the multi-valued mapping

[ :Q — CB(Q). He used Hausdorff metric on a M - S (9, p) to establish the result
of F - P for multi-valued dynamical systems. The Hausdorff metric H on CB(Q) is
denoted and defined as

{vU,V e CB(Q), H(U,V) = max{D(U, V), D(V,U)}},
where D(U, V') = sup,¢p p(a, V) and p(a, V) = infiey p(a, b).

Definition 1.2.1. Let f : Q — CB(Q) be a multi-valued dynamical system with a
M-S (Q,p). F is said to be a Nadler’s contraction if for all p,q € Q, the following
inequality holds:

H(Fp, Fq) < rp(p,q), (1.2.4)

where H is a Hausdorff metric and « € [0, 1).



Nadler proved that if (Q, p) is complete and F : Q — CB(Q) satisfy (1.2.4), then
there is a point u € £ which is fixed under F .
After Nadler, a number of authors worked in this direction. Some of the refinement
of Nadler F - P theorem are by Reich [42], where he used H(Q) the collection of all
compact subsets of a M - S Q and by Kamran [18] who used C1(8), the collection of
all nonempty closed subsets of Q instead of C'B(Q).

1.3 Some abstract spaces

This section consists of some well-known generalizations of M - S which we will use in

the upcoming chapters.

1.3.1 b-metric spaces

By transforming the condition of triangle inequality of M - Ss, Czerwik [14] introduced
first time the idea of b-M - S.

Definition 1.3.1. For any non-empty set 1, a b-metric on £ is a function d, : Q x Q —

R, satistying the following axioms:

By :dy(p,v)=0iff p=v : VpoveW,
By : dy(p,v) = dy(v,p) : Vpve;
Bs : 3b > 1such that dy(p,u) < b[dp(p,v) + dp(v,u)] :  Vp,o,ue.

The pair (9, d,) is then termed as b-metric space with coefficient b.

Example 1.3.2. Let Q = R and d;, : Q x Q — R defined as

d(n, &) = (n —€)*.
Then dj, is a b-metric with b = 2, and d; is not a metric on Q.

Every metric is clearly a b-metric with b = 1. Apparently, one can say that the class

of b-M - Ss is super-class of the class of M - Ss.
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1.3.2 Extended b-metric spaces

In 2017, Kamran et al.[29] more generalized the idea of a b-M - Ss by introducing a map
s:0Q x9 —[1,00) instead of b > 1 in b-M - Ss. They called this space, an extended
b-M - S.

Definition 1.3.3. Let 9 be a non empty set and s : Q x Q — [1,00). A function
ds : QxQ — [0,00) is called an extended b-metric (in short £b— M) if for all p,v,t € Q

it satisfies:
(1) ds(p,v) = 0 iff p = v;
(i4) ds(p, v) = ds(v, p);
(#i1) ds(p,t) < s(p,t)|ds(p,v) + ds(v, 1)].
The pair (9, d;) is then called an Eb — M space (extended b-metric space).

If Vpi,ps € Q, s(p1,p2) = b for some b > 1, then the Definition 1.3.3 becomes

equivalent to Definition 1.3.1 with coefficient b.

Example 1.3.4. [47] Let Q = N and d, : Q x Q — [0, 00) be defined by by dy(o,w) =

(0 —w@)*. Define s : Q x Q — [1,00) as follow:

o —w]® ifo#w;
s(o,w) =
1 if o =w.

Then (9, d;) is an Eb — M space. space.

Definition 1.3.5. [29] Consider an Eb— M space (Q,ds). A sequence {0, } in 9 is said
to be:

(i) convergent which converges to some o € Q iff ds(o,,0) — 0 as r — oo, we write

hmr—)oo Or = 0,

(ii) Cauchy sequence if dg(o,.,0%) — 0 as r, k — oc.



If every Cauchy sequence in £ converges in £ with respect to dy, then we say that
the Eb — M space (2,d,) is complete. It has been noted that the EFb — M d; is not
always continuous and every convergent sequence has a unique limit in £. Following is

the main theorem in [29] related to an Eb — M spaces.

Theorem 1.3.6. [29] Let (9, d;) be a complete Eb — M space with d, continuous. Let
F be a self-map on £ which satisfy

ds(Fn, F&) < kdyg(n,&) foralln & enN, (1.3.1)

where x € [0,1) be such that for each ¢y € Q, lim;; o0 s(tj41,) < %, here t; = [ to,
j=1,2,---. Then F has precisely one F - P p. Moreover for each y € Q, the iterative

sequence f 7y converges to o.

1.3.3 Controlled metric type spaces

After Kamran et al., in 2018, Mlaiki et al. [36] introduced controlled metric type spaces
by different approach to that of Kamran.

Definition 1.3.7. [36] Let 9 be a non empty set and s : Q x Q — [1,00). A controlled
metric type (CMT) is a function ds : Q x Q — [0,00) such that for all 0,0, € Q it

satisfies the following:
(i) ds(0,0) = 0 iff 0 = ¢;
(i2) ds(o, 0) = ds(0,0);
(ii1) ds(o, @) < (0, 0)ds(0, 0) + 5(0, w)ds(0, @).
The pair (9, d;) is then called a CMT-space (controlled metric type space).

Remark 1.3.8. 1. IfVp,q € Q,s(p,q) = b for some b > 1, then the Definition 1.3.7
coincides with the Definition 1.3.1.

2. Mlaiki et al. gave an example which provides that CMT and Eb — M are two

different notions.



In the present work, throughout we assume that the CMT d, is continuous on £ X Q.

Definition 1.3.9. [36] Let (9, d;) be a CMT space. We say that a sequence o, is a:

(i) convergent sequence and converges to o if and only if for every e > 0, I ny € IN

such that ds(o,,0) < € for all n > ny. We write lim,,_,o, 0, = 7;

(ii) Cauchy sequence if ds(o,,0,) — 0 as r, k — oo.

If every Cauchy sequence in  converges in £, then the CMT space (9, ds) is said

to be complete. The main result of Mlaiki et al. [36] is given below.

Theorem 1.3.10. [36] Let (9, d;) be a complete CMT space with ds continuous. Let

F :Q — 9 satisfy
ds(F o, Fw) < kds(0, ) for all p,w € Q,

where k € [0,1) be such that for each oy € Q,

sup lim $(Cit1, 0it2)

s\ O; (o2 < —
mZI 00 S(O‘Z’O'Z_,’_l) ( ’L+17 m) /{’

here o; = F ‘oy. Furthermore, assume that for every ¢ € £, we have
lim s(o,,q) and lim s(q,0,),

n—0o0 n—0o0

exist and finite. Then F has only one F - P o.

1.3.4 Cone b-metric space over Banach algebra

(1.3.2)

(1.3.3)

(1.3.4)

Before defining cone b-M - S (in short CoM S)over Banach algebra, we recall some basic

definitions and notions from the theory of Banach algebras [43].

Let A be a real Banach algebra with zero element 9. A cone B in A is a nonempty

closed subset of A such that PN (—P) =0, PL+P C P, PP C P and 1P C P
for all 4 > 0. If the interior of P denoted by int3 is nonempty, then the cone P is
called a solid cone. If we define a relation < on A by ¢ <X w iff w — ¢ € B, then <

is a partial order on A. We write ¢ < cw iff w — ¢ € P and ¢ # w. Define another

7



partial order < on A by ¢ < w iff w —¢ € intP. A cone P in A is said to be a normal
cone if for all ¢,w € A with ¥ < ¢ < w, there exists a real number M > 0 such that
lls|] < M||w||. The normal constant of 3 is the least positive constant M for which the
above inequality holds.

Consider a unital Banach algebra A with identity element e. An element ¢ in A is said
to be invertible if there exists w in A such that ¢w = w¢ = e. A complex number p € C
is said to be spectral value of w € A if w — pe is non-invertible in 4. The set of all
spectral values of w € A denoted by o(w) is called the spectrum of w. The number
ro(w) (or r(w)) defined by r,(w) = sup{|p| : p € o(w)} is called the spectral radius
of we A.

Lemma 1.3.11. ([43]) Let A be a Banach algebra with identity e. Then the spectral
radius r(g) of o € A satisfies:

r(e) = lim [[g"[|"". (1.3.5)

Furthermore, if r(w) < |u| for some @w € A, then (ue — w) is invertible,

[e.9]

1= = an r[(ue — @)~ ! —1
we=m) =2 o ad e =) S g

Lemma 1.3.12. [43] Let A be a Banach algebra and w, ¢ € A be such that w and o

commute. Then we have
r(w+o) <r(@) +rle) r(wo) < r(w)r(o).

Definition 1.3.13. (|27]) Let A be a Banach algebra with solid cone . A c-sequence
is a sequence {w;} in P such that for every ¢ € A with ¢ > ¥, there exists k € IN such
that

w; L ¢ Vi > k.

Lemma 1.3.14. (|23]) Let o, 5 € P be any two arbitrary vectors and {u, }, {g,} be two

c-sequences in a solid cone B of a Banach algebra A. Then {au, + 8¢,} is a c-sequence.

Lemma 1.3.15. ([61]) Let I3 be a cone in a Banach algebra A (not necessary a normal

cone). Then the following assertions hold:



(up) If for each ¢ with ¢ > ¢ and ¥ < w < ¢, implies that w = 9.
(ug) If @ € P is such that r(w) < 1, then ||@’|| — 0 as j — co.

(ug) Let ¢ € int' and w; — ¥ in A as j — oco. Then 3 M € IN such that Vj > M,
wj<<c.

(ug) If w < wk, where w, k € P and r(k) < 1, then w = 9.

Definition 1.3.16. [23| For a nonempty set Q and a constant b > 1. A mapping
dy : QxQ — Ais called a CbMS over a Banach algebra A if the following axioms hold:

Bi: Vn,£eQ, dy(n,€) =¥ and dy(n,§) =V iff n = §;

By: Vn,£€, dy(n,€) = dy(§,m);

By Vn,&¢ €8, dyn, ) 2b[dy(n, &) + dy(&, Q)]

The pair (9, d,) is called a CbM S over a Banach algebra A (in short CbM S over A).

Remark 1.3.17. If b = 1, then we say that d; is a cone metric over a Banach algebra

A. So we can say that cone b-metric is the generalization of a cone metric.

Example 1.3.18. Consider the Banach algebra A = C([0, 1]) with unit element e(t) =
1 and supremum norm where multiplication is defined point wise. Let Q = R and

PB={feA: f(h) >0;Vh €]0,1]}. Define d, : Q x Q — A by
dy(n,&)(@) = n— "™ Vn,{€eQ&a>1.
Then dp, is a CbM S over A with b = 2! but it is not a cone metric on Q.

Definition 1.3.19. ([23]) Let {0y} be a sequence in Q where (9, d;) is a CbM S over A.
We say that {o} is:

(1) a convergent sequence which converges to o € 9 if for every ¢ € int (i.e.d <
¢), 3 N € N such that dy(oy,0) < ¢ for all k > N;

(77) a Cauchy sequence if for every ¢ € int'B (i.e.) < ¢), there exists a natural number

N such that dy(oy, 0;) < ¢ for all k, i > N.

9



If every Cauchy sequence in £ is convergent in £, then the space (Q, dp) is called a
complete CbM S over A.

Remark 1.3.20. [23,61] 1. If {0, } converges to o in 9, then {d,(ox, o)} and {dy(o%, or+:) }
are c-sequences for any ¢ € IN.

2. If ||ok|| = 0 as k — oo, then for any ¢ > ¢, there exists N € IN such that for all
n > N we have o, < c.

Theorem 1.3.21. [23] Let (9Q,d) be a complete CbM S over A with coefficient b > 1
and B be the associated solid cone (not necessary normal) in A. Suppose that a mapping

F : Q — 9 satisfies one of the following generalized Lipschitz conditions for all o, p € Q:
1
(1) d(F o, F 0) = kd(o, 0) where k € B be such that r(k) < 3

1

(17) d(F o, F 0) 2 k(d(Fo,0)+ d(F o, 0)) where k € P be such that r(k) < s

Then there exists a unique point w € Q which is a F - P of the map F.

Now we want to recall the definition of generalized a-admissible, a-regular and gen-

eralized R-type mapping in the setting of cone b-M - Ss over Banach algebras.

Definition 1.3.22. [56] Let (Q,d) be an cone b-M - S over a Banach algebra A with
B an underlying solid cone. Let o : Q x Q — [0,00) and F : Q — Q be mappings.
Then:

(1) F is said to be a generalized a-admissible mapping if for p, ¢ € Q, a(p, q) > b implies
that a(Fp, Fq) > b;

(17) (9Q,dp) is said to be a-regular if any sequence {uy} € Q with a(uy, ugy1) > b for
all k € N and uy — p implies that a(ug,p) > b.

Definition 1.3.23. [56] Let (Q,d;) be a cone b-M - S over a Banach algebra A with
coefficient b, P an underlying solid cone and a : Q x Q — [0,00) be mapping. Then
the mapping F : Q — £ is called a generalized Reich type contraction if there exists
v1, Vg, v3 € P such that for all p, g € Q with a(p,q) > b:

() 2br(vy) + (b+ 1)r(ve + v3) < 2;
(1) d(F p, F q) = vid(p,q) + vad(p, F p) + vsd(g, F q).

10



1.4 Comparison functions in metric type spaces

An increasing self-map ¢ on [0,00) is termed as a comparison function if for all p €
[0,00), lim, . ¢"(p) = 0, see [35].
An increasing self-map ¢ on [0,00) is said to be a c-comparison function if for every

p > 0, the following series converges

> ¢ (p).

It is evident from the above definitions that every c-comparison function is itself a
comparison function but the converse is not be true in general, see example in [44].
Now consider an increasing self-map ¢ on [0,00) and a b-M - S (Q,d;). The map ¢ is

called a b-comparison function if for all p € [0, o), the following series converges ([8, 44])
Z b ¢r( Q)-
r=0

Let (Q,dy) be a b-M - S with b > 1 and let 0 < p < % Then the function ¢(n) = pn is
a b-comparison function.

We noted that for b = 1, the defined b-comparison function becomes equivalent to the
definition of a comparison function.

Next, in Eb — M spaces, we define the idea of F-orbital lower semi-continuity (lsc),

which we will utilise in the next chapters.

Definition 1.4.1. [21] Let F : D € Q — 9, wy € D and the orbit of wy € D,
O(wy) = {wo, F (wy), F w0, -+ } C D. A function G : D — R is called F-orbitally Isc
at v € D if w, - v and (w,) C O(wy) implies G(v) < lim,_, inf G(w,).

1.5 Fractals and multi-fractals in metric spaces

Fractals and multi-fractals play an important role in a variety of applications includ-
ing digital photography, fluid mechanics, soil mechanics, dynamical systems, computer

graphics, signal and image compression, and computer graphics etc. We can obtain
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most of these fractals (multi-fractals) by using the approach of iterated function (multi-
function) systems IFS (IMFS). Hutchinson [25] in 1981 defined first time the iterated
function systems (IFS) and Barnsley [7] developed further the iterated function systems
theory. This theory is called the Hutchinson-Barnsley (HB) theory. The collection of
finite number of contractive self mappings is said to by IFS by Hutchinson. He also
introduced the notion of HB operator which is defined on the hyper space of nonempty
compact sets. He defined a fractal (attractor) to be a unique fixed point of the HB
operator. The theory of F -Ps plays a prominent role in order to construct new fractals.
For years, IFS has been used by the researchers to develop different new techniques
and generate new fractal objects. To construct fractals and self-similar sets, numerous

development, new results and extensions of IFS are made, see for example (]9, 12, 13]).

Let (Q,d) be a M - S and Z.,(Q) be the collection of all non-empty and compact
subsets of . Consider a collection of multi-valued operators G, : Q — £,,(Q) (for

j = 1,2,---,m), where each G; is upper semicontinuous. An operator denoted and
defined as:

{for each % € Z.,(Q), Fg(¥)= G gj(@)} ;

is called a multi-fractal operator which is produced by the iterated multi-functions sys-
tem (IMFS) G = (G1,Ga, -+ ,Gyn). By using the condition of upper semicontinuity on G;,
we can say that the operator f g maps from #.,(Q) to Z.,(Q). An element of Z,,(Q)
(say «7*) is called a multi-valued fractal generated by the IMFS G = (Gy,--- ,G,,) if
and only if it is fixed under the associated multi-fractal operator [ g.

If we take g;, the single-valued continuous operators instead of G;, then a fractal (some-
time we call it a self-similar set) is a point which is fixed under the fractal operator
Fg:2,Q) = Pp(9Q) generated by the IFS g = (g1, 92, - - , gm), Where [, is defined

as follows:

{for each % € Z.,(Q), F (%)= Ogj(@), } :

j=1
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1.6 Best proximity point in metric type spaces

Let U,V be the subsets of a M-S (Q,d) and F : U — V be a non-self mapping.
Then it is not necessary that there will exist u in U such that d(u, Fu) = 0. Thus it is
contemplated to find some u in U such that the error d(u, F ) is minimum which will
be consider as the highest closeness between the element u and its image Fu under F .
Since d(u, Fu) > Dist(U,V) for each u € U. The optimal solution for minimizing the
problem of error d(u, Fu) will be the one for which the value Dist(U,V) is attained.
The best approximation theory has been derived from this idea. In view of this idea

Kay Fan|17| presented the following theorem.

Theorem 1.6.1. [17] Let 9Q be a normed space and F : U — Q be a continuous
mapping where U is a compact and convex subset of . Then 3 u € U such that

||lu — Ful] =inf{||lv — Ful| : velU}.

Definition 1.6.2. Let U,V be the subsets of (Q,d). A point p € U is called a B-P - P
of the non-self mapping F : U — V if d(p, F p) = Dist(U, V).

Similarly a point p € U is called a B - P - P of a multi-valued mapping f : U — 2V
if D(p, Fp) = dist(U,V).

Remark 1.6.3. If Y =V = Q, then Dist(U,V) =0 and p becomes a F - P of F.

1.6.1 W P-property and P-property

In 2014 Gabeleh [19] generalized the F - P theorem in [51] by using an appropriate
geometric property and established an interesting B - P - Ps theorem. We start by

recalling some definitions and notations.

Definition 1.6.4. [18] Let U,V be the subsets of (Q, d). Define:
Uy={e el :dle, )= Dist(U,V) for some f € V},
Vo={f€V:de,f)= Dist(U,V) for some e € U}.
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Example 1.6.5. Let Q = R with the usual metric d and let U = [0, 1],
V ={-2,—-1,2}. Then Dist(U,V) =1, Uy = {0,1},and Vy = {—1,2}.

Definition 1.6.6. [18| Let U,V be the subsets of (£, d) such that Uy # (). We say that
the pair (U, V) has the W P-property if and only if

d(uy,v1) = Dist(U, V),

d(ug,v9) = Dist(U,V)
implies
d(uy,us) < d(vy,v9),
where uy,uy € Uy, v1,v9 € V.
Example 1.6.7. Let Q = R with usual metric d and let & = [9,10], V = [1,4]U[15, 19].
Then Dist(U,V) =5, Uy = {9,10}, Vo = {4,15}. Let ug = 9,us = 10,v1 = 4, v, = 15.

Then d(uy,v;) = d(9,4) = d(10,15) = d(ug,vs) = 5 = Dist(U,V) and d(uy,us) =
d(9,10) =1 < d(vy,v2) = d(4,15) = 11. Thus (U, V) has the W P-property.

Example 1.6.8. Let Q = R with usual metric d and let Y = {—1,0,3}, V = [1,2].
Then Dist(U,V) =1, Uy = {0,3}, Vo = {1,2}. Let u; = 0,us = 3,v1 = 1,09 = 2. Then
d(uy,v1) =d(0,1) = d(3,2) = d(ug,vs) = 1 = Dist(U,V) while

d(uy,ug) = d(0,3) =3 > 1 =4d(1,2) = d(vy,vs). Thus (U,V) does not have the W P-
property.

Definition 1.6.9. [2] Let U,V be the subsets of (9, d) such that Uy # (). We say that
the pair (U, V) has the P-property if and only if

d(uy,v1) = DistU, V),

d(ug,v9) = Dist(U,V)

implies

d(ul, Ug) = d(Ul, UQ),

where uq, us € Uy and vy, vy € V.
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Remark 1.6.10. It is obvious that if a pair (i, V) has the P-property, then it has the

W P-property but in general its converse may not true.

Remark 1.6.11. Note that the the definitions of B-P-P, P-property and W P-property
in b-M - Ss is similar to the definitions of these notions defined in M - Ss.

Example 1.6.12. Let U be the subset of (,d). Then the pair (U,U) always has the
P-property.

Example 1.6.13. Let Q = R with usual metric d and let
U=141,2,3...},v={..—-2,-1,0,1,2...}. Then Dist(U,V)=0,Uy =U, Vo =V and if
Uy, Uy € Uy, V1,2 € Vg such that

d(uy,v1) = 0= Dist(U,V) and d(uz,vs) = 0 = Dist(U,V). Then it implies that u; = v,
and uy = vg, and so d(uy, us) = d(vy, vz). Thus the pair (U, V) has the P-property.
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Chapter 2

Fixed points of single-valued
dynamical systems on extended cone

b-metric space over Banach algebra

In this chapter, we have introduced a new geometrical structure which is the hybrid
of CMS over Banach algebra and Eb — M space. We prove analogues of Banach,
Kannan and Reich type F - P theorems in our introduced space. We also established
various concrete examples to validate our results. The main results due to Vujakovic
et al., Hussain et al., Huang, Radenovic, Xu become special cases of our results. At the
end, we have added some consequences of our results and application in the existence
of solution of integral equations. The work of this chapter has been published in an
esteemed international journal Filomat [53]. Throughout this chapter, we will consider

only real Banach algebras.

2.1 Extended cone b-metric space over Banach alge-

bras

We start this section by the definition of an ECbM S over Banach algebra.
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Definition 2.1.1. Let A be a real Banach algebra with cone B, Q be a non empty set
and s : Q x Q — [1,00) be a mapping. An extended cone b-metric (in short ECbM) on
9 over A is a function dy : Q x Q — A such that:

(£1) ds(n,€) = 9 and ds(n, §) =V iff p = ¢ for all n,{ € Q;
(E2) ds(nag) = ds(£777) for all 7775 € Q?

(E3) ds(n, ) = s(n, Q)[ds(n, &) +ds(&, Q)] for all n, &, ¢ € Q.

The pair(R, ds) is then called an extended cone b-M - S over a Banach algebra A (in
short ECbHM S over A).

Remark 2.1.2. It is clear that the class of ECbM S over Banach algebras is larger than
the classes of C'bM spaces and cone metric spaces over Banach algebras.

The definitions of Cauchy sequence, convergent sequence and completeness for ECbM
space over A are similar to that of CbM spaces over Banach algebra defined in the
Definition 1.3.19.

In general d; is not necessarily a continuous function but in this chapter, d, will always

mean a continuous function d, : Q x Q — A.

Example 2.1.3. Let s : 9x£ — [1,00) be defined as s(p, q) = 1+p+q for Q = {1, 2, 3}.
Consider the real Banach algebra A = R? with solid cone B = {(a,b) € R* : a, b > 0}.
If we define d; : Q x Q — A by:

dy(1,2) = dy(2,1) = (80, 80);

dy(1,3) = dy(3,1) = (1000, 1000);
ds(3,2) = d,(2,3) = (600, 600);

dy(1,1) = dy(2,2) = dy(3,3) = (0,0) = 9.

Clearly the first and second conditions of an ECbM S over A are satisfied. For the third

condition we have:
s(1,2)[ds(1,3)+ds(3,2)]—ds(1,2) = 4][(1000, 1000)+ (600, 600)]— (80, 80) = (6320, 6320) € J;
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s(1,3)[dy(1,2)+d,2, 3)]—dy(1, 3) = 5[(80, 80)+(600, 600)]— (1000, 1000) = (2400, 2400) € ;
8(2,3)[ds(2, 1)+d,1, 3)]—dy(2, 3) = 6[(80,80)+(1000, 1000)]— (600, 600) = (5880, 5380) € L.
Hence for all n, ¢, € Q,

ds(1,€) = s(n,€)lds(n, C) + ds(C, E)1-
Thus (9, d;) is an ECbM S over A = R?,

Remark 2.1.4. Let (9Q,d;) be an ECOM S over A with s: Q x Q — [1,00). f A =R
and ‘P = [0, 00), then (Q,d;) is an Eb — M space.

We now define generalized a-admissible mapping and a-regular space in term of

ECbLM S over Banach algebra.

Definition 2.1.5. Consider (2, ds) an ECbM S over A with B an underlying solid cone
in A and a self-map F on Q. Let o : Q x Q — [0,00). Then:

(1) F is said to be a generalized a-admissible mapping if for n,& € Q, a(n, &) > s(n, &)
implies that a(Fn, F&) > s(Fn, F§);

(i1) (Q,ds) is said to be a-regular if any sequence {w;} € Q with a(wy, wir1) >

s(wy, wg1) for all k € N and @y, — @ implies that a(wy, w) > s(wy, @).

2.2 Generalized Reich type contraction in ECOM S over
Banach algebra

In this section, we have introduced generalized Reich type mapping in the setting of
ECbM S over A. Then we proved a couple of theorems and established an example to
prove the validity of the result.

Definition 2.2.1. Let (Q,d;) be an ECbM S over A with 8 an underlying solid cone
and o : Q x Q — [0,00) be a mapping. Then a self-map F on £ is called a generalized
R-type (Reich type) contraction if there exists three vectors wy, ws, w3 in P such that

for all n, ¢ € Q with a(n,&) > s(n,§):
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(4) 2s(n, &)r(w1) + (s(n,&) + 1)r(w2 + w3) < 2 and for each gy € Q with o; = F7 gy,

1
lim s(gj11,0i) < —— where k = (2¢ — @) ' (21 + @) for @ = @y + w3;
,i—»00

g |||

(“) dS<F777 Ff) = w1d5<7]7£) + w2ds(n7 F77) + W3d5(£, Ff)

One of the main results of this chapter is given as follows:

Theorem 2.2.2. Let (Q,d;) be a complete ECbM S over A with a : Q x Q — [0, 00)
be a mapping and P an underlying solid cone. Suppose that the self-map F on Q is a

generalized R-type contraction with vectors vy, vo,v3 € B such that:

1. F is a generalized a-admissible;
2. there exists an element uy € £ such that a(ug, Fug) > s(ug, F uo);

3. (9, dy) is regular or F is continuous.

Then there exists a point ¢ in £ which is a F - P of the map F.

Proof. Let ug be a point in £ such that a(ug, Fug) > s(ug, F ug). For ug € Q, if we

define uy; = Fug, uy = Fuy = F (Fug) = T?ug, -+, Upy1 = F u, = F"ug, then
a(ug, ur) > s(ug, uy).
But F is generalized a-admissible, so
a(Fug, Fui) = a(ur, ug) > s(ur, us),
and so by induction we get
(tn, Unt1) 2 8(Un, Uni1)-
By using Definition 2.2.1, we have

ds(un7un+1) - ds<Fun—1a Fun)

—_< Ulds(un—la Un) + Ust(un—h Fun—l) + U3d5<um Fun)7 Le.
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(e — v3)ds(Up, Upy1) = (V1 4+ V2)ds(Up_1, up). (2.2.1)

Similarly

ds(“n—&-la”n) - ds(FunaFun—l)

j Ulds(una un71> + des(una Fun) + ’U3ds(un71> Funfl)v le

(e — v2)ds(Upi1,upn) = (1 4+ v3)ds(Up_1,uy). (2.2.2)

Adding (2.2.1) and (2.2.2), we obtain
(26 — vg — v3)ds(Up, Upt1) = (201 + Vo + v3)ds(Up_1, Up).
If we take v = vy 4+ v3, then we obtain
(2 — v)ds(Unt1, Un) = (201 + V)ds(Up—1, Un)- (2.2.3)
Note that
2r(v) < ($(tp, Ung1) + 1)r(v) < 2r(vy) + ($(tn, Unt1) + Dr(v) < 2.

Hence r(v) <1 <2 = r(v) < 2. Thus by using Lemma 1.3.11, we obtain that the

element 2e — v is invertible and (2 —v) ™' =3 Ly | r((2e —v)7h) <

Hence (2.2.3) becomes

1
2—r(v) "

ds(Un, Uny1) = Kds(Up—1,Un), (2.2.4)

where £ = (2¢ — v)"}(2v; + v). The inequality (2.2.4) then implies that for all n € N

ds(un7 un+1) j 'Lids(unfla un)

j "izds (un—la un)

= Kk"dg(ug, uy). (2.2.5)
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Now if we take m > n, then by using (2.2.5) and Definition 2.1.1, (iii) we have

ds(tn, Un) = 8(Upy Uni1)ds(Uny Uni1) + $(Uny Uns1)S (U1, Uns2)ds(Upg1, Upso) + -+ +
S(Upy Upy1)S(Unt1, Uny2) « oo (U1, U ) (ds (U1, Up))

= 5(Un, U )K" dg (U0, 1) + 5(Uny U )8 (Unp1, U )K" T g (10, up) + -+ +

5(Uny U )5 (U1, U ) S (Ung2, U )« S (U2 U ) S (Un— 1, U )™ Ll (10, 1)

= ds(ug, uy) [s(ul, U )S(Ug, Uy ) -+ -+ S(Up—1, U ) S(Upyy U )K"+

5(Uy, U )S(Ugs Uy ) -+ . 8(Unyy U ) S (U1, U )™ T 4+

{s(ur, um)s(ug, ) - .. $(Uny Um)S(Ung1, Um) -+« S(Umn—2, U ) S (U —1, um)}nm_l}

n n+1 m—1
= d(ug, uy) [ﬂ" Hs(uj,um) + K H $(Wjy Up) + -+ 4+ KT H s(uj,um)} :
=1 =1 =1

Let a, = &" [[_; s(uj, up) and S =377 | a,.
Since by Definition 2.2.1, ||| limy, ;m—oo S(Unt1, Um) < 1, so the series S converges abso-
lutely. Because by using ratio test we have

n
L e 1 e R
e Tlanll Sk [Jen] mtoe

But A is a Banach algebra and the series S is absolutely convergent, so it converges in A.
Thus S,,—1 — S, = [/1” H;”:l S(Ujy W) 4 -+ 4+ K™! H;”;ll $(uj, Up) | — 0 as n,m — 00
and so is ds(ug, u1)(Sm—1—Sy). By Lemma 1.3.15, for every ¢ > 9, there exists a natural
number ng such that for all n > ng, ds(up,un) < c. Thus by Definition 1.3.19 {u,} is
a Cauchy sequence in . But 9 is complete so there exists o € 9 such that u,, — o as
n — 0o. We show that o is a F - P of the map F.

Suppose that F is continuous. It follows that u,.; = Fu, — F 0 as n — oco. But limit
of a sequence is unique, so we must have f o = p. Hence p is a F - P of the map F in

this case.

However, if (9, d;) is a-regular, then by Definition 2.1.5 we have

a(ty, 0) > s(un, 0), for all n € IN.
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ds(0, F 0) = (0, F 0) [ds(0, F un) + ds(F un, F 0)]
= s(0, F 0)ds(0, Fun) + (0, F 0) [v1ds(un, 0) + vads(un, Fuy) + vsds(o, F 0)]
= s(o, F o)ds(o. Fun) + s(o, F 0)vids(un, 0) + s(o, F 0)vsds(o. F 0)
+ 50, F 0)$(tn, Unt1)v2 [ds(un, 0) + ds(0, tnt1)]
= s(0, F 0)(e + s(un, tnt1)v2)ds(0, nt1) + s(0, F 0)vsds(o, F 0)
+ s(0, F 0)(v1 + s(un, Uns1)v2)ds(n, 0),

which further implies that

(e—s(0, F 0)vs3)ds(0, F 0) = s(0, F 0)(e+8(tn, Uni1)V2)ds(Uni1, 0)+5(0, F 0) (V1 +8(tn, Uny1)v2)ds(tn, 0)

(2.2.6)
Similarly,
ds(0, F 0) = (0, F 0)[ds(0, Fun) + ds(F un, F 0)]
= s(o, F 0)ds(0, Fuyn) + s(o, F 0)ds(F o, F uy,)
= s(0, F 0)ds(0, F un) + s(o, F 0)[v1ds(0,un) + vads(0, F 0) + v3ds(tn, F uy)]
= s(0, F 0)ds(0, F un) + s(o, F 0)vids(0, un) + s(o, F 0)vads (0, F 0)

+ S(Qa FQ)S(una unJrl)US [ds(um Q) + ds(@a un+1)]
= s(0, F 0)(e + 8(un, Upt1)v3)ds(0, Uns1) + (0, F 0)vads(o, F 0)

+ S(Qa FQ)<U1 + S(Un, Un+1)’(]3)ds(un7 9)7
which further implies that
(6_5(97 FQ)UZ)ds(Q7 FQ) j 5(97 FQ) (e_'_S(una un+1)v3)ds(un+1> Q)+S(Q> FQ) (U1+5(un> un+1)v3)ds<um Q)

(2.2.7)
Therefore, by combining (2.2.6) and (2.2.7), we get
(2e — (0, F 0)va — s(0, F 0)vs3)ds(o, F 0) = s(o, F 0)(2e + s(0, F 0)va + 5(0, F 0)v3)ds(Unt1, 0)
+ 5(0, F 0)(2v1 + s(o, F 0)vs + s(o, F 0)vs)ds(tn, 0), i.e.

(2e — s(o, F 0)v)ds(o, F o) = s(o, F 0)(2¢ + s(o, F 0)v)ds(tns1, 0)
+ s(0, F 0)(2u1 + s(o, F 0)v)ds(uy, 0). (2.2.8)
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We also note that

r(s(o, Fo)v) = s(o, F o)r(v) < 2s(o, F o)r(v1) + (s(o, F o) + 1)r(v) < 2.

Thus by Lemma 1.3.11, 2e — s(p, F o)v is invertible and so (2.2.8) implies that

ds(0, F 0) = (2e — s(p, F 0)v) " [s(g, Fo)(2e + s(o, F 0)v)ds(unyi1, 0)
+5(0, F 0)(2v1 + 5(0, F 0)v)ds(un, 0)]. (2.2.9)

By using Remark 1.3.20 the sequences {ds(un11,0)} and {ds(un, 0)} are c-sequences.
Hence by Lemma 1.3.14, the sequence {71ds(tun 1, 0) +Tods(un, 0)} is a c-sequence (where
T = (2e—s(o, F 0)v)~"s(0, F 0)(2e+s(0, F 0)v) and 72 = (2e—s(0, F 0)v)'s(o, F 0)(201+
s(o, F 0)v)). Therefore, for any ¢ € int(3)3 ny € N such that

ds(0, F o) = Tids(tuni1, 0) + T2ds(uy, 0) < c.

Which further implies by using Lemma 1.3.15 that ds(o, F ¢) = 0. Therefore, F o = o
and this complete the proof. n

Example 2.2.3. Let A = CL[0,1] and ||f]| = ||flloo + || ||so- If we define point wise
multiplication of functions on A, then A becomes a real Banach algebra with identity
e(t) =1.If we take P={T"€ A : T(p) >0, p € [0,1]}, then it can be seen that P is
a non-normal cone (see [26]). Let Q = [0,00) and s : Q x Q — [1,00) be defined as

o+w+2 ifo,we [0,1];
s(o, @) =
2 elsewhere.
Define d, : Q x Q — A by
dy(0,@)(t) = (0 — w)*e".
Then d, is an ECbM S over A. Also note that £ is complete with respect to d,. Define
two maps o : Q x Q — [0,00) and F : Q — Q by:

s(p,q) ifp,qge [0,1];
ofx,y) =
0 elsewhere.
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V5 : .
wp o ifpe [0,1];
Fp)=9"

p—1 ifp>1.
Note that for every p € [0,1], Fp € [0,1]. By choosing v;(t) = % - %t, va(t) = % - %875
and vs(t) = 57+ 5t we obtain that r(v1) = 2, 7(v) = r(va+v3) = 2. Simple calculations
show that 2(2 + 2)r(v1) + (2+ 2+ 1)r(v) = 2t < 2 and so F is a generalized R-type

contraction as;

25, )r(vr) + (52, ) + D)) < 22+ 2)r(y) + (2 + 2+ 1)r(v) = 2—; <2

Also for each ug € 9, the limit lim,, ;o0 S(Uni1, ) = 2 and ||&|| = ||(2e — v) (20 +

72\ (46 23 _ 1 1 . : :
V)|l < (ﬁ) (ﬁ) =5 <27 T st Similarly by easily calculation one can

show that
ds(Fp, Fq) = vids(p, q) + vads(p, F p) + v3ds(q, F q).

Next we show that there is a point uy in £ such that a(ug, F ug) > s(ug, F ug). Indeed,

for ug = 1, we have

?) > (1, ?) = s(1,F1).

a(l,F1) = a1,
Next we show that F is a generalized a-admissible mapping. In fact, if p,q € Q are
such that a(p, q) > s(p, q), then by definition of «, the points p, ¢ is in [0, 1]. Therefore,
Fp,Fqe|0,1] and so

a(Fp,Fq) > s(Fp,Fq).

Finally we show that (Q,d;) is a-regular. If we assume a sequence {o,} in Q such that
a(op, 0nt1) > 8(0p,0ne1) for all n € N and 0, — ¢ € Q, then {o,} C [0,1]. But [0, 1]
is closed, so g € [0, 1]. This implies that a(v,,q) > s(on,q) for all n € IN. Hence all the
axioms of Theorem 2.2.2 satisfied, and so there is a point ¢ = 0 (say) which is a F - P
of the map F.

Theorem 2.2.4. Let A be a Banach algebra with solid cone . Let (Q,ds) be a
complete ECbM S over A with o : Q x Q — [0,00) a mapping. Suppose that the
self-map F on £ is a generalized R-type contraction with vectors vy, vy, v3 in P such

that v; commutes with v, + v3 and:
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1. F is a generalized a-admissible;
2. there exists ug € Q such that a(ug, Fug) > s(ug, F up);
3. F is continuous or (9, d;) is regular;

4. for any two fixed points @, ¢ of F, there exists z in 9 such that a(w, z) > s(w, 2)
and a((, 2) > 5(C,2).

Then there exists a unique point ¢ in £ which is a F - P of the map F .

Proof. From the hypothesis and the first three conditions, in Theorem 2.2.2, it has been
proved that exists a point o € Q which is a F - P of the map . We show that this
point is unique and for this let { € Fiz(F ) such that ¢ # (. Then by using Condition
4, there exists z € Q with

alo,z) > s(0,2) and «(C, 2) > s((, 2). (2.2.10)
Since F is a generalized a-admissible mapping and g, ¢ € Fiz(F ) so by (2.2.10) we get
a(o, F'z) > s(o,F'z) and (¢, F'2) > s(¢,F'z), foralli€N. (2.2.11)

By using Definition 2.2.1 and (2.2.11) we obtain

ds(o, F'z) = ds(Fo, F(F'"'2))
=< vids(0, F'2) + vads(0, F 0) + vads(F 'z, F'z)
= vids(0, F7'2) +v3s(F 'z, Fi2)[ds(F 2, 0) + ds(o0, F'2)],

which further implies that
(e —s(F" 2, F'2)us)ds(0, F'2) = (v1 +s(F 2, F'2)vs)ds(o, F'2). (2.2.12)
Similarly,

ds(F'z,0) = ds(F (F"'2),F o)
< 01ds(F"™'2, 0) 4+ vads(F'2), F'2)) + vsds(o, F 0)
= ondo(F7 2, 0) +0ps(F 2, Fi2)[ds(F7 12, 0) + ds(o, F2)),
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which further implies that
(e — s(F™ 2, F'2)ua)ds(F'2,0) < (v1 + s(F" 2, F'2))ve)ds(F' ' 2, 0). (2.2.13)
Adding (2.2.12) and (2.2.13) we have
(2e—s(F "2, F'2)va—s(F e, F'2)vs)ds(0, F'2) = (2ui+s(F 2, F'2)vg+s(F 2, Fi2)vs)ds(o, F12)

(2e — s(F 'z, Fi2)v)dy(o, F'z) = (2u1 + s(F 'z, Fi2)v)dy(o, F'2).

Note that 2r(s(F "'z, F'2)v) < (s(tp, Uns1)+1)r(s(F 2, Fi2)v) < 2r(vy)+(8(tn, Uni1)+
Dr(s(F™'z, F'z)v) < 2. Which implies that r(s(F*'z,F’z)v) < 1 < 2. Thus by

Lemma 1.3.11, we can say that 2e—s(F "'z, F “2)v is invertible and (2e—s(F "1z, Fi2)v) ™! =
Zoo (s(F1z,Fiz)v)"

n=0 2n+l )

r((2e — s(F7 'z, Fi2)v) 1) < 2—T(5(Fi}12,Fiz)v)' Thus we have

ds(0,F'2) = (2e — s(F" 2, F'2)v) " (2u1 + s(F 'z, F'2)v)ds (0, F12) | ie.

ds(0, F'z) 2 7ds(0, F''2) (2.2.14)

where 7 = (2e — s(F" 'z, F2)v) "} (2u; + s(F 12, F'z)v). Therefore, we have
ds(o. F'z) X 7dy(o, F''2)
=< 7%ds(0, F?2)
=< 7'dy(p, ) for alli € IN.

Since v; commutes with vy + v3 = v, so

i i - i - FZ L2, Fiz)u)" i i
(2e — s(F 7'z, Fi2)v) H(2uy + s(F 2, Fi2)v Z YIS ) )(2u1 + s(F 'z, Fi2)v)
n=0
o0 Fz 1Z Fz ),U)n z . o0 Fz 12 Fz ) )n
=2u; Z on+1 ) (P2, F z)v Z 2n+l1 )
n=0 n=0

= (2u1 +s(F" 'z, F'2)v)(2e — s(F 7z, Flz)v)
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Which shows that (2e —s(F 1z, F'z)v) ™! commutes with (2v; +s(F 'z, Fz)v). Hence
by applying Lemma 1.3.11 and Lemma 1.3.12 we obtain that;

r(1) =r((2e — s(F" 'z, F'2)v) " (2u + s(F 7z, F2)v))

<r((2e —s(F 'z, F2)v) ™) - r((2uy + s(F" 2, F'2)v))
1

= 2 —r(s(Fi—1z, Fiz)v) (2r(v1) + T(S(FFI@ FiZ)”))
1
< S(Upy Upt1) <1

By Lemma 1.3.15 it follows that ||7¢|| — 0 as i — oo and so
7dy(0,2)]] < [I7[llldslo, 2)]| = 0 (i = o).
By Remark 1.3.20 we conclude that for any ¢ > 1, 3 M € IN such that
ds(o,F'z) X T'ds(0,2) = ¢ Vi> M.

Thus by Lemma 1.3.15 F ‘2 — p as 1 — oco. Similarly we obtain that f ‘2 — ( as i — oo.

Now by uniqueness of limit, we conclude that o = (. n

2.3 Generalized Lipschitz contractions in £FCbM S over

Banach algebras

In this section, we have discussed the theory of F - Ps of generalized Lipschitz mappings
in ECbM S over A.

Theorem 2.3.1. Let (Q, d;) be a complete ECbM S over A with 8 an associated cone
in A. Let F be a self-map on 9 such that for all p,q € Q;

ds(Fp,Fq) 2 kdy(p,q), (2.3.1)

1
5]

Then there exists a unique point ¢ €  which is a F - P of the map f . Furthermore for

where k € B be such that r(k) < 1 and for each ug € Q, lim, 00 $(Unt1, Um) <

each ug € 9, the iterative sequence u,, = F (un_l) = F"ug converges to g.
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Proof. 1f we take v; = K, v9 = v3 = ¢ and «a(p,q) = s(p, q), then all the conditions of
Theorem 2.2.2 are satisfied, i.e. F satisfies the condition of Definition 2.2.1, F is gen-
eralized a-admissible, (9, dy) is regular and for every ug € Q a(ug, F ug) = s(ug, F ug).
Hence there exists ¢ in 9 which is a F - P of the map f. Now it remains only to show

that this F - P is unique. For this, let there is ¢ in £ such that F { = (. Then we have

ds(0,¢) = ds(F 0, F () = rds(0, Q).

But r(k) < 1, so by Lemma 1.3.11, e — & is invertible. Thus by Lemma 1.3.15 ds(p, () =
. O

Theorem 2.3.2. Let (9Q,d;) be a complete ECOM S over A and P be the associated
cone in A. Let F be a self-map on 9 satisfies the generalized Lipschitz condition, i.e.
for all p,q € Q;

ds(Fp, F q) = K[ds(F p,p) +ds(F q,9)], (2.3.2)
1

s(p,q) +1
—— with 7 = (e — k) 7'k. Then there exists a unique point ¢ € Q which is F - P of the

where k € 3 be such that r(k) < and for each vy € Q, limy, 100 S(Unt1, Um) <

Proof. If we take v = ¥, vy = v3 = k and a(p,q) = s(p,q), then all the condition of
Theorem 2.2.2 are satisfied. Hence there exists ¢ in Q which is a F - P of the map F .
Finally we show that o is a unique F - P of the map F. For this if ( is another F - P of
F, then

ds(0,¢) = ds(F o, F ¢) = klds(o, F o) + ds(¢, F () = 0.

Therefore, o = (. n

The result Theorem 1.3.21 for generalized Lipschitz mappings on CbM space over
Banach algebra [23| can be directly proved by using our results, Theorem 2.3.1 and
Theorem 2.3.2 when we define s(n, ) = b for some b > 1.

Corollary 2.3.3. Let B be the associated cone in a Banach algebra A and (9, d,) be
a complete C'M space over A. Let f be a self-map on Q such that for all p,q € Q;

ds(Fp, Fq) = xds(p,q), (2.3.3)
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where £ € P be such that r(k) < 1. Then for every oy € 9Q, the iterative sequence

on = F (0,_1) = F "0g converges to w which is a unique F - P of F.
Proof. Take s(n,§) =1 for all n,£ € Q in Theorem 2.3.1, we get the required result. [

Remark 2.3.4. 1. If we define s(p,q) = b for some b > 1 in Theorem 2.3.1 and in
Theorem 2.3.2, we get the main results of [23] for CbM S over Banach algebras.

2. By using Remark 2.1.4, we obtain Theorem 1.3.6 as a corollary of our Theorem
2.3.1.

3. If we take s(z,y) = b for some b > 1 in Theorem 2.2.2 and in Theorem 2.2.4, we get
the main results of [56] for CbM S over Banach algebra.

2.4 Consequences and applications

This section is devoted to some important consequences of our results which generalizes
the results of Hussain et al. [24], Xu and Radenovic [61], Malhotra et al. [33], Malhotra
et al. [34] and the results of Liu and Xu [32]. We also have added the applications of

our proved results in existence of solution of integral equations.

Definition 2.4.1. Let o : Q x Q — [0,00) be a function for a non-empty set Q.
A mapping F : Q — £ is said to be an a-admissible mapping if a(n,§) > 1 =
alFn, F§) > 1

Definition 2.4.2. Let (Q,d;) be a complete ECbM S over A and B be the underlying
solid cone in A. A self-map F on £ is said to be generalized a-Lipschitz contraction if

for all n, & € Q with a(n, &) > 1 satisfies the following:

ds<F777 Fg) j /ids(na’f)a

where k € B is such that r(k) < D and for each wy € Q, limy, ;00 S(Wpt1, @) <
1

|5l
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The following theorem becomes special case of Theorem 2.2.2 if we define o : QxQ —

[0,00) by a(n, &) = s(n,&) > 1 for all n,£ € Q and take k = wy, wy = w3z = 0.

Theorem 2.4.3. Let (Q,d;) be a complete ECOM S over A and P be the associated
solid cone. Let F : Q — £ satisfies the generalized a-Lipschitz contraction with Lips-

chitz constant s such that:
1. F is a-admissible;
2. there exists wy € Q such that a(wo, Fwo) > 1;

3. F is continuous or if a sequence {w,} € Q with a(w,, w,+1) > 1 for all n € IN and

w, — w implies that for every n € N, a(w,,w) > 1.
Then there is a point ¢ in £ which is a F - P of the map F.

For uniqueness of this point, we use the following extra condition:
Vo,( € Fix(F), there exists n € Q such that a(g,n7) > 1 and o((,n) > 1. (2.4.1)

Theorem 2.4.4. If we add the condition (2.4.1) in the assumption of Theorem 2.4.3,
then the F - P is unique.

Proof. The assertion follows simply by using Theorem 2.4.3 and Theorem 2.2.4. n

Remark 2.4.5. 1. If we take s(n,£) = b for some b > 1, then we obtain the main
results due to Hussain et al. [24, Theorems 3.1 and 3.2].

2. Results due to in Malhotra et al. [33, Theorems 3.1, 3.2 and 3.5] become special
cases of Theorems 2.4.3 and 2.4.4 for s(n,&) =1, w; = 1 and wy = w3 = V.

3. Results due to Malhotra et al. |34, Theorems 3.1, 3.2 and 3.3] become special cases
of Theorems 2.4.3 and 2.4.4 for s(n,&) =1, w; = ¥ and wy = w;.

If the given ECbM S over A is a partially ordered, then we have the following

theorem.
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Theorem 2.4.6. Let s : Q x Q — [1,00) be a function, where (Q,>) is a partially
ordered set. Let (Q,d,) be a complete ECbM S over A with underlying solid cone .
Assume a self-map [ on £ is non-decreasing with respect to > and satisfies the following

conditions:

(1) there exists vectors wy, ws, w3 € P such that 2s(n, )r(wy) + (s(n, &) + 1)r(wy +
w3) < 27 ds(Fna Fg) = wlds<n:£) + des(na FU) + w3ds(€: Fg) for all 77,5 € D
with > ¢ and for each uy € Q with u,, = F "uo,

Hm  s(Upi1, Um) < Tall where k = (2¢ — @) ' (2w + @) for @ = wy + w3;
n,m—00 K

(2) 3wy € Q such that wy > F wo;

(3) F is continuous or if {w,} is a non-decreasing sequence in 9 with respect to >

such that w, — @w € Q as (n — ), then w, > w for all n € IN.
Then there exists a point g in Q which is a F - P of the map F .

Proof. Define a function o : Q x Q — [0, 00) by

s(n,§) ifn>¢;

0 elsewhere.

a(n, &) =

By condition (1), we can say that F is a generalized R-type contraction. Now since
F is non-decreasing, so F is a generalized a-admissible mapping. Definition of o and
condition (2) implies that there exists wy € Q such that a(wy, F wy) = s(wo, F wo). By
condition (3) we can see that either F is continuous or (Q, d) is regular. It follows that
all the necessary conditions of Theorem 2.2.2 are satisfied, so we conclude that there

exists a point in Q which is a F - P of the map F . O

Corollary 2.4.7. Let s : Q x Q — [1,00) be a function, where (Q,>) is a partially
ordered set. Let (2,ds) be a complete ECbM S over A with underlying solid cone ‘B.
Let F be a self-map on 9 which is non-decreasing with respect to > and the following

assumptions hold:
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(1) there exists vectors k € B such that r(k) < m, ds(Fn, F§) = krds(n, &) for all

n, & € Q with n > £ and for each uy € Q with u,, = F "uy,
I ( ) < 1
M $(Unt1, Um) < 77773
n,m—00 ||,€H

(2) 3 0o € Q with 9o > F go;

(3) F is continuous or if {p,} is a non-decreasing sequence in Q with respect to &> such

that o, — 0 € Q, then g, > p for all n € IN.
Then there exists a unique point ¢ in £ which is a F - P of the map F .

Proof. The assertion follows directly if we take w; = k and wy = w3 = ¥ in Theorem
2.4.6. ]

Remark 2.4.8. 1. Theorem 2.4.6 reduces the main result due to Vujakovic [56, The-
orem 3.6| for s(p,q) =band b > 1.

2. Corollary 2.4.7 reduces to the main results due to Hussain et al. |24, Theorems 4.2
and 4.3 | for s(p,q) = b and b > 1.

3. Corollary 2.4.7 reduces to the results due to Nieto and Rodreguez-Lopez 38, Theo-
rems 2.1 and 2.2 for s(p,q) =1 and A = R.

Following is given a lemma which is proved for cone b-M - Ss in [62] and the proof

in ECbM spaces over Banach algebras are same.

Lemma 2.4.9. Let ¥ be a Lebesgue measurable function defined on [0, 1] with & > 1.

[ wissas " [ 1wt

Example 2.4.10. Let A = Q = Ci[0,1] be the space of all real valued differentiable
functions with continuous derivative defined on [0, 1]. If we take B ={h € A : h(a) >
0 : Va € [0,1]}, then B is a cone in A. Define a map ds : Q x Q — A by:

Then we have

ds(n, €)(t) = |In — &llee’.
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Then dy is an extended cone b-metric over A with s : Q x Q — [1,00) defined as
s(1,€)(t) = max [n(t)| + max [§(t)] + 27

Consider the following nonlinear integral equation

£(t) = / £t f(n))ds, (2.4.2)

where [ satisfies the following:
(a) F :]0,1] x R — R is continuous;
(b) there exists a constant M € [0, 5) such that for each fy € Q we have that: MP <

L and for all ¢t € [0,1] and n, £ € R, |F (t,n) — F (,&)] < M|n—¢&]|.

limn,m%oo S(fn-!—lyfm)

Theorem 2.4.11. The equation (2.4.2) has a unique solution in Q = Cj.

Proof. To show that (2.4.2) has a unique solution, define G : Q — Q by

G(9)(p) = / F(p. g(s))ds.

By using Lemma 2.4.9 we have

di(G(1),G(9))(t) = €'llG(f) — G(a)lI%
= ¢ max |G(f)(x) = G(g) (@)l

:etorgz(l /o F(x,f(s))ds—/o F(z,g(s))ds
= o | [ (F (@ (9 = Flag() ds

< ¢ max / F (2, £()) — F (2, ()P ds

0<z<1

<o / (M |f(s) — g(s)|)Pds

—eMp/ If(s) —g(s)|" ds
<etMpggg<Xl\f( s) = g(s)|" ds
:Mpds(fag)
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If we take K = MPe, then r(r) < [|[MPe|| = MP < f—— 1S(f 7. Soall the conditions

of Theorem 2.3.1 and thus there is a unique point in £ which is a F - P of the map G.
Equivalently, 2.4.2 has a unique solution in Q = Cj. O
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Chapter 3

Fixed points of single-valued
dynamical systems on controlled cone
metric type space over real Banach

algebra

In this chapter, we introduce a new type of M - & over a real Banach algebra which
we call a controlled cone metric type space over Banach algebra. By using such spaces
we proved some F - P theorems for generalized R-type contraction and generalized
lipschitz mapping. Our results extends/generalizes some previous well known results in
the literature. The work of this chapter has been published in the Journal of Inequalities
and Applications [54].

3.1 Controlled cone metric type spaces over real Ba-

nach algebras

We start this section by the definition of a CCMT space over Banach algebra.

Definition 3.1.1. Let A be a real Banach algebra with cone B, Q be a non empty set
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and s: Q xQ — [1,00) be a mapping. A controlled cone metric type (in short CCMT)
on 9 over a Banach algebra A is a function d, : Q x Q — A such that:

(E1) ds(p,q) = 0 and dy(p,q) = 0 iff p = ¢ for all p,q € Q;
(E2) ds(p,q) = ds(q,p) for all p,q € Q;

(E3) ds(p,v) = s(p, q)ds(p, q) + s(q,v)ds(q,v) for all p,q,v € Q.

The pair(R, ds) is then called a controlled cone metric type space over a Banach algebra

A (in short CCMTS over A).

Remark 3.1.2. It is clear that the class of CCMTS over A is larger than the classes
of CbM spaces and cone M - Ss over Banach algebras.

The definition of Cauchy sequences, convergent sequences and completeness for CCMT'S
over A are same as cone b-M - Ss over a Banach algebra defined in 1.3.19.

In general d, is not necessarily a continuous function but in this paper, d, will always

mean a continuous function ds : Q x Q — A.

Example 3.1.3. Let Q = {1,2,3} and s : Q x Q — [1,00) be defined as s(p,q) =
1+ p + q. Consider the real Banach algebra A = R? together with a solid cone
B ={(a,b) € R?:a, b > 0}. If we define d, : Q x Q — A by:

dy(1,2) = dy(2,1) = (100, 100):

dy(1,3) = dy(3,1) = (1200, 1200);
dy(3,2) = d,(2,3) = (800,800);

dy(1,1) = dy(2,2) = dy(3,3) = (0,0) = 6.

Clearly the first and second conditions of a CCMTS over A are satisfied. For the third

condition we have:
s(1,3)ds(1,3)+s(3,2)ds(3,2)—ds(1,2) = 5(1200, 1200)+6(800, 800)—(100, 100) = (10700, 10700) € *B;

s(1,2)dy(1,2)+5(2,3)d,2, 3)—d,(1,3) = 4(100, 100)-6(800, 800)— (1200, 1200) = (4000, 4000) € B;

$(2,1)ds (2, 1)4s(1, 3)d,1,3)—ds(2, 3) = 4(100, 100)-+5(1200, 1200)]— (600, 600) = (5800, 5800) € .

36



Hence for all p,q,v € 9Q,

dy(p,v) = s(p, q)ds(p, q) + s(q,v)ds (g, v).
Thus (9Q, d,) is a CCMT space over A = R?.

Remark 3.1.4. Let (Q,d,) be a CCMTS over A with s: Q xQ — [1,00). f A=R
and P = [0, 00), then (Q,d;) is a CMT space.

We now define generalized a-admissible mapping and a-regular space in term of

controlled cone metric type spaces over Banach algebras.

Definition 3.1.5. Consider (Q,d;), a CCMTS over A and B an underlying solid cone
in A. Let G: Q — Q and a : Q x Q — [0,00) be mappings. Then:

(7) F is said to be a generalized a-admissible mapping if for p,q € Q, a(p, q) > s(p,q)
implies that a(F p, F q) > s(F p, F q);

(i1) (Q,ds) is said to be a-regular if any sequence {u;} € Q with a(ug,ups1) >
s(ug, ugy1) for all k£ € N and uy, — ¢ implies that o(ux, q) > s(ug, q).

3.2 Generalized Reich type contraction in controlled
cone metric type spaces

In this section, we have introduced generalized R-type mapping in the setting of CCMT
space over Banach algebra. Later on, we proved some results and gave an example to

prove the validity of the results.

Definition 3.2.1. Let (Q,d;) be a CCMTS over A with B an underlying solid cone
and a : Q x Q — [0,00) be a mapping. Then the mapping F : Q — Q is called the
generalized R-type contraction if there exist three vectors vy, vs,v3 in P such that for

every p,q € Q with a(p,q) > s(p,q) we have:

(1) 2s(p, q)r(v1) + (s(p,q) + 1)r(ve 4+ v3) < 2 and for each uy € Q with u,, = F ™uo,
lim $(Pit1, Pit2) 1”

i1, Pm) < —— wh = (2e—v)71(2 for v = ;
e "s(pispret) S(Pit1, Pm) where k = (2e —v) (201 +v) for v = vy +v3

I

37



(i2) ds(F p, F q) X v1ds(p, q) + vads(p, F p) + v3ds(q, F q).
One of the main results of this chapter is given as follows:

Theorem 3.2.2. Let (Q,d;) be a complete CCMT'S over A with 8 an underlying solid
cone and « : Q X Q — [0,00) a mapping. Suppose that the mapping F : Q — Q is a

generalized R-type contraction with vectors vy, v9, v3 € B such that:

1. F is a generalized a-admissible mapping;
2. there exists ug € Q such that a(ug, Fug) > s(ug, F up);
3. (Q,dy) is regular or F is continuous.
Then there exists a point ¢ in £ which is a F - P of the map F.

Proof. Let ug be a point in £ such that a(ug, Fug) > s(ug, F ug). For ug € Q, if we

define uy; = Fug, us = Fuy = F (Fug) = T?ug, -+, Upy1 = F u, = F " ug, then
alug, ur) > s(ug, uy).
But F is generalized a-admissible, so
a(Fug, Fuy) = alug, ug) > s(uq, us),
and so by induction we get
A(Up,y Upt1) > S(Up, Uptr)-
By using Definition 3.2.1, we have

ds(un7un+1) - ds<Fun—1a Fun)

j Ulds(un—la Un) + U2ds(un—l7 Fun—l) + U3d5<unu Fun)7 Le.

(e — v3)ds(Un, Unt1) = (V1 + V2)ds(Up—1, Up). (3.2.1)



Similarly

ds(un+1aun) = ds(Funy Funfl)

j Ulds(una unfl> + Ust(una Fun) + /USds(unfla Funfl)a le

(e — v)ds(Upi1,un) = (1 + v3)ds(Up_1, Uup). (3.2.2)

Adding (3.2.1) and (3.2.2), we obtain
(26 — vy — v3)ds(Up, Upr1) < (201 + Vo + v3)ds(Up_1, Up).
If we take v = vy 4 v3, then we obtain
(2 — 0)ds(Upy1, Un) = (201 + 0)dg(Up_1, Up)- (3.2.3)
Note that
2r(v) < (8(Upy Upr1) + D)r(v) < 2r(vy) + (8(tUn, Ung1) + 1)r(v) < 2.

Hence r(v) <1 <2 = r(v) <2. Thus by Lemma 1.3.11, we obtain that the element
2e — v is invertible and (2e —v) ' =37 Y r((2e —v) ) < =

2—r(v) "
Thus (3.2.3) becomes

ds(Up, Upt1) = Kds(Up_1,Up), (3.2.4)

where k = (2¢ — v) 7' (2v; 4+ v). The inequality (3.2.4) then implies that for all n € IN
ds(unyun—H) j /{ds(un—la un) j Hst(un—la un) j e j Hnds(UOa U1>. (325)

Now if we take m > n, then by using (3.2.5) and Definition 3.1.1, (iii) we have
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S(Uerla um)ds (un+17 um)

5(Un+1, Um)S(UnH, Un+2)ds (Un+1: Un+2)

)
)
)
$(tn, Up41)ds (Uns Ungr) + 5(Uns1, W) S(Unt 1, Ungo)ds (Ungr, Unta)
)
)

»
—~
S
3
+
=
S
3
»
—~~
S
S
+
g
S
~— \3_/
»

(un+27 un+3)ds (un+27 un+3)
(

Up+2, Um ) S\ Un+3, um)ds (un—‘r?n um)

m—2 7
= 5 (tn, Un1)ds (Un, Uni1) + Z § (U, wigr)ds (Ui, Uitr) < H S(Ujaum))

i=n+1 j=n+1

+ ds(Um—1, Up,) ( 1:[ s(uk,um)>

k=n+1

m—2 i
= 5(tn, una1 )K" ds(uo, ur) + Z s(t, i1 )R ds (o, ua) ( 11 S(ijum)>
j=n+1
+ K/m_lds(u()’ul) < Uk,um )
k=
= 5(un, unsr )K" ds(uo, ur) + ( uj;“m)) §(wi, ti1) k' ds (uo, ur)
m—1
+ ( H S(uk,um)) § (U1, U )™ Vg (ug, uy)

k=n+1

m—1 7
= $(un, tng1) K" ds (ug, ur) + Z 5(ui, i)' dy(uo, ur) < H S(Umum))

1=n+1 j=n+1
n m—1 A
= K"ds(uo, uy) (HS Upy Unt1 > + Z (i, Ui )K" ds(ug, uy) (H S(Ujaum))
=0 i=n+1 =0
m—1 %
= ds(ug, uy) Z ( s(uj,um)> s(ug, Uip1)K'
i=n \j=0
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In the above steps we use the fact that s(p,q) > 1 and thus = < s(p, ¢)x for any z € A.
Let

a, = (H s(uj,um)> K"$(Up, Ups1) and S = Zan.
j=0 n=1

5(Uit1,%it2)

PRy $(Uiy1,um) < 1, so the series S con-

Since by Definition 3.2.1, ||&|| limy, ;0

verges absolutely. Because by using ratio test we have
o el (T ) s 1)
im

T el (T (s ) ) $(tn, )

. 3(un+17 un+2)
=] lim ——m—=
nm—=00 §(Un 1, Unt1)

But A is a Banach algebra and the series S is absolutely convergent, so it converges in
A. Thus S,,—1 — S, = [mel <H;:0 s(uj, um)> s(ui,uiﬂ)/{i} — 0 as n,m — oo and so

=n

. lanta]]
lim

n=oo ||ag|

S(Uny1, Um) < 1.

is ds(ug, u1)(Sm—1— Sn). Hence by Lemma 1.3.15, for every 6 < ¢, there exists a natural
number N such that for all n > N, we have d,(u,, u,,) < 6. Thus by Definition 1.3.19
the sequence {u,} is a Cauchy sequence in . But Q is complete so there exists o € Q
such that uw, — 0 as n — co. We show that g is a F - P of the map F.

Suppose that F is continuous. It follows that u,.y = Fu, — F 0 as n — oco. But limit
of a sequence is unique, so we must have f o = p. Hence p is a F - P of the map F in
this case.

However, if (£, dy) is a-regular, then by Definition 3.1.5 we have

Uy, 0) > s(tp, 0), for all n € IN,

ds(0, F o) = s(o, Fun)ds(o, Fuy) 4 $(Ftn, F 0)ds(F un, F 0)
= s(o, Fup)ds(o, Fup) + s(F tun, F 0) [vlds(un, 0) + vods(up, F uy,) + vsds(p, FQ)}
= s(o, Fun)ds(o, Fuy) +
+ S(F tn, F 0)2[$(tn, 0)ds(tn, 0) + (0, Uny1)ds (0, Unt)]
= s(0, F Fuy)(e + s(uns1, F 0)v2)ds(0; unt1) + $(uns1, F 0)vsds(o, F 0)
+ 5(unt1, F o) (1 + $(un, 0)v2)ds(un, 0),

S(F tn, F 0)v1ds(tn, 0) + 8(F un, F 0)vsds(o, F 0)
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which further implies that

(e — $(tng1, F 0)vs)ds(o, F 0) = 5(0, F un)(e+ $(tung1, F 0)v2)ds(tns1,0)  (3.2.6)
+ 5(Uns1, F 0)(v1 + 5(up, 0)v2)ds(tn, 0).

Similarly,

ds(o, F 0) < s(o, Fun)ds(0, F uy) + s(Fun, F 0)ds(F un, F 0)
= s(0, F un)ds(o, Fun) + S(F un, F 0)ds(F 0, F uy)
= 5(0, F un)ds(0, Fun) + S(F tn, F 0) [v1ds(0, un) + vads(0, F 0) + v3ds(tn, F )]
=< s(0, Fun)ds(0, F un) + s(F un, F 0)v1ds(un, 0) + S(F un, F F 0)v2ds(0, F 0)

+ S(Fun7 FQ)U3 [S(un7 Q)ds(unv Q) + S(Q> un+1)ds(g> un-i—l)}
= 3(@7 Fun)(e + S(“n-ﬁ-la FQ)U?))ds(Qa un-i-l) + S(U’n-‘rly FQ)Ust(Q, FQ)
+ S(un+17 FQ)(Ul + 5(“%7 Q)U2)ds(un7 Q)J

which further implies that

(e — $(tng1, F 0)v2)ds(0, F 0) = 5(0, F un)(e+ $(tng1, F 0)v3)ds(uns1,0)  (3.2.7)
+ S<un+17 FQ)(”l + S(una Q)US)ds(un7 Q)

Therefore, by adding (3.2.6) and (3.2.7) we get

(2 — $(tps1, F 0)va — $(unt1, F 0)v3)ds(0, F 0) = $(0, Uunyi1)(2€ 4+ $(tpi1, F 0)vo
+ $(unt1, F 0)v3)ds(unt1, 0)
+ s(o, F 0)(2v1 + s(o, F 0)va
+ 5(0, F 0)vs)ds(uy, 0), i.e.

(2¢ = s(up+1, F 0)v)ds(0, F 0) = s(0, un+1)(2€ + 5(tnt1, F 0)v)ds(up1, 0)
+ 5(0, F 0)(2v1 + s(0, F 0)v)ds(tn, 0). (3.2.8)
We also notice from Definition 3.2.1 that
2r(8(Unt1, F 0)v) = 28(Uny1, F 0)7(v) < 28(Uny1, F 0)7(v1) + (8(Uny1, F o) + 1)r(v) <2,
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ie. r(s(ups1, Fo)v) < 1 < 2. Thus by Lemma 1.3.11, 2¢ — s(un41, F 0)v is invertible
and so (3.2.8) implies that

ds(o, F 0) = (2 — s(un41, FQ)U)_l [S(Qv Unt1)(2€ + 8(Unt1, F 0)v)ds(tns1, 0)
+5(0, F0)(2v1 + s(o, F 0)v)ds(un, 0)].  (3.2.9)

By using Remark 1.3.20 the sequences {ds(un+1,0)} and {ds(un, 0)} are c-sequences.

Hence by Lemma 1.3.14, the sequence {71ds(u,11, 0)+72ds(un, 0)} is a c-sequence (where

71 = (26—8(Uns1, F 0)v) 7 8(0, Uns1)(2e+5(upyi1, F 0)v) and 75 = (2e—5s(uns1, F 0)v) " 's(o, F 0)(2v1+
s(o, F 0)v)). Therefore, for any ¢ € A with ¢ > 6, there exists nog € IN such that

ds(0, F0) = Tids(tuni1, 0) + T2ds(uy, 0) < c.

Which further implies by using Lemma 1.3.15 that ds(o, F 0) = 0. Therefore, Fo = p
and this complete the proof. O

Example 3.2.3. Let A = CL[0,1] and ||f]| = ||flloo + ||f ||co- If we define point wise
multiplication of functions on A, then A becomes a real Banach algebra with identity
e(t) =1. If we take P={f e A : f(t) >0,te|0,1]}, then P is a non-normal cone
(see [26]). Let Q = [0,00) and s : Q x Q — [1,00) be defined as s(p,q) = 2+ p + ¢.
Define d, : Q x Q — A by

ds(p,q)(t) = (p — q)*¢".

Then d, is a controlled type cone metric over A. Also note that £ is complete with

respect to dg. If we define av: Q x Q — [0,00) and F : Q — Q by:

s(p,q) ifp,qe [0,1];
a(p,q) =
0 elsewhere.

V5 : .
=P lpr [Oal]a
F(p)=4°
p+1 ifp>1.

Note that for every p € [0, 1], Fp € [0, 1]. By choosing vy (t) = §+&t, va(t) = 15+ 7t

and vs(t) = 57+ 55t we obtain that r(vi) = 2, 7(v) = r(va+v3) = 2. Simple calculations
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show that 2(2)r(vy) + (2+ 1)r(v) = 22 and so F is a generalized R-type contraction as;

: 1 36
2P+ g+ 2r() +((p+a+2)+ Dr(v) = 22)r(vy) + 2+ r(v) 53’

Which further implies that 2s(p, q)r(vi) + (s(p,q) + 1)r(v) < 33 < 2. Also we have

litmy, o0 SPELLED () ) = 2 and [[s]] = [[(2e—0) 7 (201 +v)|| < () (%) = 2 <
1_ s(pi,pit+1)

5 = 1My o0 s(thpiH)s(le, Pm)- Similarly by easily calculation one can show that

ds(Fp, Fq) = vids(p, q) + vads(p, F p) + v3ds(q, F q).

Next we show that there is a point uy in Q such that a(ug, Fug) > s(ug, F ug). Indeed,

for ug = 1, we have

a(l,F1) =o(l,—) > s(1, §> =s(1,F1).

“l%

Next we show that [ is a generalized a-admissible mapping. In fact, if p, ¢ € Q are such
that a(p,q) > s(p,q), then by definition of «, p,q € [0,1]. Therefore, F p, Fq € [0,1]
and so

alFp,Fq)>s(Fp,Fq).

Finally we show that (9, d;) is a-regular. If we assume a sequence {p,} in Q such that
(P, Pnt1) > $(Pn, Pny1) for alln € N and p, — g € Q (as n — o), then {p,} C [0, 1].
But [0, 1] is closed, so ¢ € [0,1]. This implies that a(pn,q) > s(pn,q) for all n € IN.
Hence all the conditions of Theorem 3.2.2 are satisfied, so F has a F-P o =0 (say).

Theorem 3.2.4. Let A be a Banach algebra and B be a solid cone in A. Let (9Q,d;)
be a complete CCMTS over A and « : Q x Q — [0,00) be a mapping. Suppose that
the mapping f : Q — Q is a generalized R-type contraction with vectors vy, vo, v3 in P

such that vy commutes with vy + v3 and:
1. F is a generalized a-admissible;
2. Jug € Q such that a(ug, Fug) > s(ug, F up);
3. F is continuous or (9, d;) is regular;
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4. for any two F - Ps w, ( of F, there exists z € £ such that a(w, z) > s(w, z) and
a(C,z) = s(¢, 2).

Then there exists a unique F - P of the map F .

Proof. Using Theorem 3.2.2 and the first three given condition we can say that there
exists a point o € Q which is a F - P of the map F. We show that this point is unique
and for this let ¢ € Fixz(F) such that ¢ # ¢. Then by using Condition 4, there exists
z € 9 such that

alo,z) > s(0,2z) and «((, 2) > s((, 2). (3.2.10)

Since F is a generalized a-admissible mapping and g, ¢ € Fiz(F ) so by (3.2.10) we get
alo, F'z) > s(o, F'2) and a(C, F'z) > s(¢,F'z), forallie€NN. (3.2.11)
By using Definition 3.2.1 and (3.2.11) we obtain

ds(0,F'z) = ds(F o, F (F"'2))
= vids(0, F'2) + vads(0, F 0) + vsds(F' ™12, F'z)
= vids(0, F'2) +v3s(F' 'z, 0)ds (F "2, 0) 4+ vss(o, F'2)ds (0, F'z)],

which further implies that
(6 - (97 FiZ>U3)d$(Q, FZZ) j (Ul + S<Fi_lz’ Q>U3)d8(g7 Fi_lz)' (3212>
Similarly,

ds(F'z,0) = ds(F (F"'2),F o)
2 udy(F 72, 0) + vads(F'2), F'2)) + vsds (o, F 0)
= oido(F 712, 0) +028(F' 2, 0)ds(F2,0) + (0, F'2)vads (0, F'2))],

which further implies that
(e = (0, F '2)ua)ds(F'z,0) = (v1 + s(F 7'z, 0)v2)ds(F "2, 0). (3.2.13)
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Adding (3.2.12) and (3.2.13) we have
(2e—s(0, F'2)va—s(0, F'2)vs3)ds(0, F'2) = (2ui+s(F 2, 0)vat+s(F' 'z, 0)vs)ds (0, F'2), i.e.
(2e — s(o, F'2)v)ds(0, F'2) = (2u1 + s(F" 2, 0)v)d,(0, F"'2). (3.2.14)

)d
Note that 2r(s(, F2)0) < (s(0, F2)+1)r(v) < 25(0, Fi2)r(ur)+ (s(0, Fi2)+1)r(v) < 2.
So that 7(s(o, F2)v) < 1 < 2 and by Lemma 1.3.11, we can say that 2e — s(g, F 'z)v is
invertible and (2e — s(p, F ‘z)v )_1 =3 (S(%In#,
r((2e — s(o, F'2)v)™!) < W Thus by (3.2.14) we have

ds(0, F'z) = (2¢ = s(o, F'2)v) " (201 + s(F' "2, 0v)da(o, F ' '2) , e
ds(o, F'z) < 7ds(0, F'2), (3.2.15)
where 7 = (2e — s(p, F'z)v) ' (2v; + s(F "'z, o)v). Therefore, we have

ds(0, F'z) = 7ds(0, F " '2)
=< 7%d,(0, F'*2)

< 7'dy(0, 2) for alli € IN.

Since v; commutes with vy + v3 = v, s0

(2e — s(o, F'2)v) " (2u; + s(F" 'z, (Z 9’2’:; n) (201 + s(Fi 12, 0)v)
= 21, (Z (S(Q’Qi—jm) +s(F2, o) (Z (S(Q;Zj)v)”)

= (2u1 + s(F "'z, 0)0)(2¢ = s(0, F'2)v) "
Which shows that (2e — s(g, F'z)v)™' commutes with (2v; + s(F'"'z, o)v). Hence by
using Lemma 1.3.11 and Lemma 1.3.12 we have
r(r) =r((2e = s(o, F'2)v) ™ (2v1 + s(F 7'z, 0)v))

<r((2e — s(o, F'2)v)™") - (201 + s(F 712, 0)v))
1

= 2 —s(Fi=1z,0)r(v)

< 1.

(2r(v1) +s(F" 'z, 0)r(v))

46



Because,
2 (r(v1) + s(F 'z, 0)r(v)) < 2s(F 'z, 0)r(v1) + (s(F'2,0) + 1) r(v) < 2,
implies that
2r(vy) +s(F 'z, 0)r(v) <2 —s(F7 'z, 0)r(v).
By Lemma 1.3.15 it follows that ||7°|| — 0 as i — oo and so
I7'ds (o, )| < [I7']llds (e, 2)Il = 0 (i — o0).

By Remark 1.3.20 we conclude that for any ¢ € A with ¢ > 0, there exists N € IN such
that
dS(Qv FZZ) = Tids(@, Z) <c V1 > N.

Thus by Lemma 1.3.15 f ‘2 — p as i — oo. Similarly we obtain that f ‘2 — ( as i — o0.

Now by uniqueness of limit, we conclude that o = ¢, which completes the proof. n

3.3 Generalized Lipschitz mappings in controlled cone

metric type spaces

This section is concerned with the discussion of the theory of F - Ps of generalized

Lipschitz mappings in CCMT'S over Banach algebra.

Theorem 3.3.1. Let (9, ds) be a complete CCMTS over A with underlying solid cone
PB. Let F : Q — Q be such that for all p,q € Q;

dS(Fp7 FQ) j ’{ds(pa Q)v (331)

where r € B be such that r(k) < 1 and for each py € 9Q, limy, ;00 %s(piﬂ,pm) <

1
m. Then there exists a unique point ¢ €  which is a F-P of the map F . Furthermore
K

for each uy € 9, the iterative sequence u,, = F (u,_1) = F "ug converges to o.

Proof. 1f we take v; = Kk, v = v3 = 6 and «a(p,q) = s(p,q), then F satisfied all the
conditions of Theorem 3.2.2, i.e. F satisfies the condition of Definition 3.2.1, F is gen-

eralized a-admissible, (9Q, d;) is regular and for every uy € Q a(ug, F ug) = s(ug, F uo).

47



Hence there exists ¢ in Q which is a F - P of the map f. Now it remains only to show

that this F - P is unique. Suppose that there is ( € Q such that F { = (. Then we have

ds(0,¢) = ds(F 0, F ) = kds(0, Q).

But r(k) < 1, so by Lemma 1.3.11, e — & is invertible. Thus by Lemma 1.3.15 ds(p, () =
6. O

Theorem 3.3.2. Let (9, ds) be a complete CCMTS over A with underlying solid cone
P. Let f : Q — Q satisfies the following generalized Lipschitz condition, i.e. for all
p:q €L

ds(Fp, Fq) < klds(Fp,p) +ds(Fq,9)], (3.3.2)

where k € B be such that r(x) < and for each py € 9, we have

s(p,q) +1

, . 1
111’[1 S(pz+1>pz+2)8(pi+1’pm) < —
mi—oo $(Pj, Pit1) I7l]

with 7 = (e — k) "'k. Then there exists a unique point ¢ € Q which is a F - P of the
map f .

Proof. 1f we take v; = 0, vy = v3 = k and «a(p,q) = s(p,q), then all the condition of
Theorem 3.2.2 are satisfied. Hence there exists ¢ in Q which is a F - P of the map F .
Finally we show that g is a unique JF - P of the map F . For this if we have another F -P
of the map F say (, then

ds(0,C) = ds(F o, F ¢) = klds(0, F 0) + ds(¢, F Q)] = 0.
Therefore, o = (. O

The main result of 1.3.21 about generalized Lipschitz mappings on CbM spaces over
a Banach algebras [23] becomes a special case of our results Theorem 3.3.1 and Theorem

3.3.2 when we define s(p, q) = b for some b > 1.

Corollary 3.3.3. Let (Q,d;) be a complete C' M .S over A and P be the associated cone
in A. Let F : Q — Q be such that for all p,q € Q,

ds(Fp, Fq) = wds(p,q), (3.3.3)
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where k£ € B be such that r(k) < 1. Then for each uy € 9, the iterative sequence

Up = F (uy_1) = F "ug converges to a unique F - P of F.
Proof. Take b =1 in Theorem 1.3.21, we get the required result. O]

Remark 3.3.4. 1. If we take s(z,y) = b for some b > 1 in Theorem 3.3.1 and in
Theorem 3.3.2, we get the main results of [23]| for cone b-M - Ss over Banach

algebra.

2. By using Remark 3.1.4, we obtain Theorem 1.3.10 as a corollary of our Theorem

3.3.1.

3. If we take s(z,y) = b for some b > 1 in Theorem 3.2.2 and in Theorem 3.2.4, we get

the main results of [56] for cone b-M - Ss over Banach algebra.

3.4 Consequences and applications

In this section, we have listed some important consequences and applications of our
results which generalizes some results of Hussain et al. [24], Xu and Radenovic [61],

Malhotra et al. [33, 34] and Liu and Xu [32].

Definition 3.4.1. Let Q be a non-empty set and o : Q x Q — [0, 00) be a function. A
mapping f : Q — £ is said to be an a-admissible mapping if a(p,q) > 1 implies that
a(Fp,Fq) > 1.

Definition 3.4.2. Let (9, d;) be a complete CCMTS over A and B be the underlying
solid cone. A mapping f : Q — £ is said to be generalized a-Lipschitz contraction if

for all p,q € Q with a(p,q) > 1 satisfies the following:

ds(Fp, Fq) = kds(p,q),

where k € B is such that r(k) < qu) and for each py € Q, we have
lim $(Pit1, Pit2)

(Pist, Pm) < —
| S\ Pi+1,Pm T
m,1—00 3<piapi+1) * HHH
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The following theorem becomes special case of Theorem 3.2.2 if we define o : QxQ —

[0,00) by a(p,q) = s(p,q) > 1 for all p,q € Q and take kK = vy, vy = v3 = 6.

Theorem 3.4.3. Let (Q,ds) be a complete CCMTS over A and P be the associ-
ated solid cone. Let F : Q — £ satisfies the generalized a-Lipschitz contraction with

Lipschitz constant s such that:
1. F is a-admissible;
2. there exists ug € Q such that a(ug, Fug) > 1;

3. F is continuous or if a sequence {u,} € Q with a(u,,u,+1) > 1 for all n € IN and

u, — ¢ implies that a(u,,q) > 1 for all n € IN.
Then there is a point ¢ in £ which is fixed under £ .

For uniqueness of F - P, we use the following extra condition:
Vo,( € Fix(F), there exists z € Q such that a(p,2) > 1 and (¢, 2) > 1.  (3.4.1)

Theorem 3.4.4. If we add the condition (3.4.1) in the assumption of Theorem 3.4.3,
then the F - P is unique.

Proof. The assertion follows simply by using Theorem 3.4.3 and Theorem 3.2.4. n

Remark 3.4.5. 1. If we take s(p,q) = b for some b > 1, then we obtain the main
results of Hussain et al. [24], Theorems 3.1 and 3.2.

2. Theorems 3.1, 3.2 and 3.5 in Malhotra et al. [33] become special cases of our Theorem

3.4.3 and 3.4.4 respectively with s(z,y) =1, v; = 1 and vy = v3 = 0.

3. If we define s(p,q) = 1, v; = 0 and vy = v3, then Theorems 3.1, 3.2 and 3.3 in Mal-

hotra et al. [34] become special cases of our Theorem 3.4.3 and 3.4.4 respectively.
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Chapter 4

Fixed points of multi-valued dynamical
systems using comparison functions
and multi-fractals in extended b-metric

spaces

In the first section of this chapter, we proved multiple results of F - Ps for the class of
multi-valued (p-contractions in the setting of Eb — M spaces. Then, constructed some
new multi-valued fractals based on a F - P approach in the framework of Eb— M spaces.
Later on, the idea of well-posed problem of F - Ps is studied. Our results generalized
some famous recent results in the theory of iterated function system. For application
point of view, we discussed the Collage theorems. Some of the results in this chapter is

published in the Journal of function spaces [48].

4.1 Multi-valued ¢-contractions in extended b-metric
spaces

The aim of this section is to produce several results of F -Ps for the class of multi-valued

p-contractions in Kb — M spaces.
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4.1.1 Extended b-comparison functions

Samreen et al., [47] presented for some technical reasons a new class of comparison

functions in the framework of Eb — M spaces as follow.

Definition 4.1.1. Let (Q,ds) be an Eb — M space. A self-map ¢ on [0,00) is called
an extended b-comparison function (in short EbC function) if it is increasing and there
exists a function f : D C Q — 9Q such that for some 79 € D, the orbit O(rny) C D and

for all p € [0,00), for every k € IN, the following series converges

> (H 8(%%)) " (p).

r=0 =1

Here 0, = F"no for r € IN. We call a map ¢ to be an EbC' function for f at 7.

Remark 4.1.2. For an arbitrary self-map f on 9Q, if we take s(p1, p2) = b > 1 (a constant),
then the Definition 4.1.1 becomes the definition of a b-comparison function. Further-
more for some b > 1, every EbC' is also a b-comparison, i.e. if s(py,p2) > 1 for every

p1, P2 € Q, then by setting b = inf,, ,,eq s(p1,p2) we have

>0 <3 (TTsenan)) 0.

r=0 r=0 =1
Example 4.1.3. [47] Let F be a self-map on £, where (Q, ds) is an Eb— M space. Let
lim, ;00 S(wr, wi) exists for every wy € Q, and with w, = F"wy. Define ¢ : [0,00) —

[0,00) as ¢(p) = tp such that

| =

lim s(w,,ws) <
r,k— o0

r

By using ratio test, the series >~ (J]i_; s(wsi,wy)) ¢"(t) converges. Thus ¢ is an EbC

function for F for every wy.

Lemma 4.1.4. Let a self-map ¢ : R, — R, be a comparison function. Then:
(1) each iteration ¢* is a comparison function for k& > 1;

(2) ¢ is continuous at zero;

(3) ¢(n) < n for any n > 0.
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Lemma 4.1.5. Every EbC' function is b-comparison and hence a comparison function

Definition 4.1.6. [49] Let (9, d;) be an Eb— M space. A function H, : H(Q)x H(Q) —
R, induced by Eb — M d; called an extended Pompeiu-Hausdorff metric is defined as

follows:

{‘v’ W, Z e H(Q), HW,Z) = max{ sup dy(w, Z),sup ds(W, z)}} ,

weWw 2€Z
where dy(0, Z) = inf{ds(0,2) : z € Z} and s(W, Z) = sup{s(o,0) : c €W, o€ Z}.
Theorem 4.1.7. [49] The space (H(Q), Hs( is complete Eb— M space whenever (R, dy)

is a complete Eb — M space.

4.1.2 Generalized p-contractions in extended b-metric space

We start be the following lemma whose proof is trivial.

Lemma 4.1.8. Let (Q,d,) be an Eb — M space and W, Z € H(LQ). Then for every
z € Z and for any v > 0, there exist ¢ € W such that

0u(0,2) < Ho W, 2) +7.
Following is the main result of this section.

Theorem 4.1.9. Let (9Q,d;) be an Eb — M space with ds a continuous functional on
Q. Let D C Q be a closed set and F : D — H(Q) be such that O(oy) is subset of D.
Suppose that for all p € O(oy) and @ € F (0);

Hs(F (0), F(w)) < ¢(ds(0, @)). (4.1.1)

Moreover, the inequality (4.1.1) holds strictly if and only if ¢ # w and ¢ is an EbC
function for f at og € D. Then there is a point ¢ in £ such that the iterative sequence
oy converges to o, where oy € F (0k_1). Furthermore o is a F - P under the map F iff

the map G(p) = ds(p, F (p)) is F-orbitally lsc at o.
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Proof. Let 09 € D and o1 € F (0p). Then 0y # 01 because if it is not true, then oy is a

point, fixed under the F. By using (4.1.1) for F (o), F (01) € H(LQ), we obtain
Hs(F (00), F (01)) < ¢(ds(00, 01))-
Choose ¢; > 0 such that
Hs(F (00), F(01)) + €1 < p(ds(00, 01)). (4.1.2)
Now oy € F (0p) and ¢; > 0, then by Lemma 4.1.8 there exists oy € F (01) such that

ds(o1, 09) < H(F (00), F(01)) + €1
< ¢(ds(00, 01)). (4.1.3)

Again, o1 # 0y, otherwise o; becomes fixed under f. By using (4.1.1), we obtain
Ha(F (01), F(02)) < plds(o1, 02)).
Choose €3 > 0 such that

H(F (01), F (02)) + €2 < p(ds(01, 02))
< 90(90(d5(007 01)))
= *(ds(00, 01)), (4.1.4)

here the second inequality obtained by using (4.1.3). By Lemma 4.1.8, for o5 € F (07)
and eo > 0 3 03 € F (02) such that

Continuing in the same way we get

ds(or, 0ri1) < ©"(ds(00, 01)). (4.1.5)
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By utilizing the triangle inequality like condition of Eb — M and (4.1.5) if r < k, then

we have,

dS(UT7 Ok) < 3<UT7 O-k)ds<o-r) UT+1> + S(Jru O'k)S(O'T+1, O-k)ds(o-r+lyo-r+2)+

-+ s(oy, or)s(0ra1, o) ... s(ok_1, o)ds(0k_1,0%)

T r+1
< ds(a—ra UT+1) H S(Uia Uk) + dS(UT+1> Ur+2) H S(Uia Uk)+
i=1 i=1
k—1
Uk 1,0k HS 01701@
=1
r r+1
007 01 H S\0j, Uk + SOT+1 (ds(o-()v Jl) H S(Uia O-k)+
=1 =1
k—1
--—|—wk_l(ds(ao,al)Hs(ai,ak). (4.1.6)
=1

Now ¢ is given to be an EbC' function, so the series S = » 77| < le s(oy, ak)> 0 (ds(09,01))
converges. By setting S, =37, (HLI s(oy, ak)> ¢’ (ds(00,01)), from inequality (4.1.6)
we obtain that

d (Uraak) (Sk 1= Srfl)-

Which further implies that lim, ;o ds(o,,0,) — 0. Hence {o,} becomes a Cauchy
sequence in D. But D C £ is closed set, so there must exists a point ¢ € D such that
the iterative sequence o, converges to o.

Using the definition #, and (4.1.1), we obtain

ds(araar+1> S HS(F<0‘T*1)’ F(Ur))
< @(dy(ov-1,0,))

< ds<0-r—1> Ur)'

But 0, — 0 as r — oo which infers that lim,,_,, ds(o,, F (o,)) = 0.
Assume that G(0) = ds(o, F o) is F-orbitally lsc at 0. Then

ds(o, F (0)) = G(0) < liminf G(0,) = liminf ds(o,, F (0,)) = 0.

r—00 r—00
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Hence o € F (o). But F (o) is closed, so 0 € F (o) and thus o is a F - P of the map F.
Conversely if ¢ is a point F - P of the map f, then G(0) =0 < liminf, ,,, G(o,). O

Example 4.1.10. Let Q = [0, 1] and d, : Q x Q — R be defined as d,(I,q) = (I — q)*.

i
Then (9Q,ds) is an Eb — M space with s(l,q) =1+ q+ 2. Define f : Q — H(Q) by

F (1) = [0,1?], then for each o9 € Q and o, € F(0,_1), we have lim, o (0, %) =
lim, k00 (0 + 0k +2) = 2 < 4. Now for every | € Q and g € T(I), we have

HS(Fla F(]) = HS([Ov lz]v [O>q2]) = (l2 - q2)2
= (I +9)?*(l—q)?

1
< (1 —q)>.
_4( q)

If we define ¢ : [0, 00) — [0,00) by ¢(j) = %, then F satisfied all the conditions present
in Theorem 4.1.9. So there exists ¢ in 9 such that o € F (o), as we can see here that

c=0¢€ FO0.

4.2 Multi-valued fractals and well-posedness in extended

b-metric spaces

This section is based on the construction of some new multi-valued fractals using a F - P

approach in the framework of Eb— M spaces. Later on, the idea of well-posed problems

of F - P is discussed.

4.2.1 Generalized functionals in extended b-metric spaces

We introduced the notion of generalized functionals in the framework of Eb — M spaces
(9Q,d,) in this section as follow.

The gap functional:

Dy: 2(Q) x 2(Q) — [0,00) U {+o0},
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0, WU =¢p="
Dy, V)= infl{ds(p,q) - pEU,qeV}, if U+¢+V
+o00, otherwise.

If a € Q is an arbitrary element, then Dy(a, #) = Ds({a}, #).

The excess generalized functional:
ps : P(Q) x P(Q) — [0,00) U {400},

sup{Ds(a,¥) : a€ U}, if U+ P#V
ps(%, V) = {0, it Y — ¢
+00, V=¢p+U.

Pompeiu-Hausdorff generalized functional:

H,: 2(Q) x 2(Q) — [0,00) U {+o0},

max{ps(%, V), ps(V, %)}, & UFOFV
Hoz,v)={o, U ==V

400, otherwise.

Lemma 4.2.1. Let %,V € #(Q), where (Q,d;) an Eb — M space. Let there is v > 0
satisfying the following:

(1) for every element u € % there is an element v € ¥ such that ds(u,v) < t;
(1) for every element v € ¥ there is an element u € % such that ds(u,v) < t.
Then Hy (% ,V) < t.

Lemma 4.2.2. Suppose (9Q,dy) is an Eb — M space and s(%,?) = sup{s(n,&) : n €
U, & € ¥V}, Then the following hold:

Dy(p, %) < s(p,%)[Ds(p, V) + Hy(V,%)], YpeQ and V%,V € 2(Q).
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Lemma 4.2.3. Let (27, ds) be an Eb — M space. Then the following hold:
H (U W) < s(U W) HU,V)+ H(V W), YUV, W EPQ).

Lemma 4.2.4. (1) Let %, be a compact subsets of an Eb — M space (Q,ds). Then
for every n € % there is a point £ € ¥ such that:

ds(n, &) < s(n, )H (%, 7).

(2) Let %,V be elements of Z.,(Q), where (Q,d;) is an Eb — M space. Let the map
ds be a continuous functional. Then for each element n of %, there is an element £ in
¥ such that

ds(n,§) < HJ(%, V).

4.2.2 Picard operators in extended b-metric spaces

We start by the definition of a Picard operator and then proved a result of Picard
operators by using Eb — M spaces.

Definition 4.2.5. Let (Q,d,) be an Eb — M space. A Picard operator is a map F :

9 — 9 which satisfies the following conditions:
(i) Fiz(F) = {o};
(i7) for every point wy in Q, the sequence F™(wp) converges to o as n — oo.
Following is the main result of this section.

Theorem 4.2.6. Let (9Q,d;) be a complete Eb — M space, where d; is a continuous
functional. Suppose that the self-map ¢ on [0,00 is an EbC function for F at some

point xg, where F is a self ¢-contraction. Then the following hold.

(7) The map F is a Picard operator, i.e. there exists a F - P ¢ of the map F such that
F™"(w) — o for allw € Q.
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(27) (1) For all w € Q and with w, = F"w, ds(wn, ) < s(wn, 0)Ss (¢"(ds(w, Fw))).
(2) For all w € Q and with w, = F"w, ds(wp,0) < s(wn, 0)Ss ((ds(wn, wni1))),

where

= Z <H s(wn+i,wm)> ¢k<t)'

k=0 \i=1
(17i) ds(w,0) < s(w, 0)Ss(ds(w, Fw)) for all w € Q.
Proof. Let oo € Q and g, = F ™09 = F (0n—1) for n > 1. Since F is ¢-contraction so we

have
ds(@n»@n—i-l) :ds(F(Qn 17F( ))) < ¢( (Qn—l,@n))a

which by induction yields

ds(gnv Qn—i—l) < ¢n<ds(Q0a Ql)) (421)

But d is an Eb— M, so by triangular inequality like condition of d, and by using (4.2.1),

we have for m > n that:

(Qna Qm) S ( ny Qn+1> (Qm Qn+1) + S(Qna Qn+1) (Qn+17 Qn+2)ds(Qn+la Qn+2) 4
(Q Qn-i—l) (Qn—f—h Qn+2> (Qm—h Qm)(ds(gm—la Qm))
$(0n, 0m) @™ (ds(00, 01)) + 5(0ns Om)$(Ont1, 0m) " ds((00, 01)) + -+ -

S(Qm Qm Qn+1 Qm) (Qn+2> Qm)---S(Qm—Qy Qm)s(gmfb Qm)(bmil(ds(QOa Ql))

n n+1
(HS 0iy Om ) s(00, 01)) <HS 0iy Om > ¢ (ds (00, 01))+

=1

(H 503> Om ) ) | 0™ (ds(eo, 1))- (4.2.2)

=1

I/\+

Since ¢ is an EbC function, the series Y, (H s(0i, Qm)> #*(ds (00, 01)) converges.
Thus if we take S, = >}, (H s(0is gm)> ®*(ds(00, 01)), then by (4.2.2) we have

ds(on, 0m) < (Sm—1 — Sn-1) = 0, as n,m — oo.

That is {g,} is a Cauchy sequence in Q. By completeness of £, there exists a point
o € 9 such that g, — 0.
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Next we show that ¢ is a F - P of the map F and for this we have

ds(0ns1, F (0)) = ds(F (0n), F (0)) < ¢(ds(on, 0)). (4.2.3)

But by Lemma 4.1.5 and Lemma 4.1.4, ¢ is continuous at zero and given that d is con-
tinuous, so if we take limit as n — oo, then from (4.2.3) we can say that ds(o, F (¢))=0,
which shows that ¢ is a point fixed under F. It remains only to show that this point o

is unique. Suppose that there is a point w € 9, and f (@) = w. Then we have

ds(07 w) = ds(F(U)v F(’(D))
< ¢(ds(0,@))

< ds(o,w),

which is possible only when ds(o,w) = 0 implies that ¢ = w. Hence F is a Picard
operator.

(77) Let u € Q be such that u, = F"(u). From (4.2.2) we have

A (tn; tm) < 8 (s )" (ds(u ur)) + 8 (s W)Ut U ) 9™ (w0, ur)) + -+ +
5 (Un s U )5 (U1, U ) S (Ung 2, Unn) - -+ S (U2 U ) S (U1, U ) @™ (s (1, 1))
< 5(ttn, ) [0°(0" (ds (1, 1)) + 8 (i1, ) (¢"ds (w,w1))) + . ..
+ 5 (g1, Um) S (g2, ) -+ S (U1, U )" TN (ds(w,w)))],  (4.2.4)

where n > 0 and m > n. Letting m — oo in (4.2.4) we get a priori estimate
ds(tp,0) < s(uy,0)Ss (9" (ds(u, Fu))) Vn > 0.

On the other side, for n > 1 and p > 0 such that n + p = m we have

s (tntps Untpr1) = ds(F (Unap-1), F (Untp)) < O(ds(tnsp-1, Unsp))-

By using induction we get

ds(“n—i—pu un+p+1) S ¢p<ds(un7 un—i—l))' (425)
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By (4.2.5) and triangular inequality like condition of Eb — M, we have
ds(una um) = ds(una un-l—p) S S(Un, um)[ds(una un+1) + S(Un-H, um)gb(ds((un, un+1)) +
+ S(un—i-la um)5<un+27 um)8<un+3a um) s 8<un+p—17 Um)¢p_1(ds<una un—i—l))]

= 5(tn, tm )[(ds (tn; Un11)) + 5(Untr, wm)P(ds((n; Unga)) + - -
-1
T <h $(Un+j, um)) ¢p_1(d8(una Unt1))]- (4.2.6)
j=1
If we take the limit p — oo in (4.2.5) we obtain a posteriori estimate
ds(tn, 0) < $(Up, 0)Ss(ds(tn, Unt1)) Yn > 0. (4.2.7)
(7i1) Let u, = u for an arbitrary u € Q in (4.2.7). Then

ds(u, o) < s(u,0)Ss(ds(u, F (u))).

4.2.3 Multi-fractal operators in extended b-metric spaces

We start this section by a lemma which under some conditions guaranties that image of

a compact set under a multi-valued contractive operator is compact.

Lemma 4.2.7. Let G from Q to Z2.,(Q) be a multi-valued contractive operator, where
(Q,d,) is an Eb— M space. i.e. V1, € Q withn # ¢,

Hy(G(n),G(£)) < ds(n,€).

Furthermore, suppose that Vax € 9 and for every compact set %, lim,,_,, s(&,, z) exists

and finite for all &, € #". Then G(%') is compact, i.e. G(#) lies in Z.,(Q).

Proof. If we choose &, € G(%), then there exists 7, € # such that &, € G(n,) for all
n € IN. But % is compact, so there exists a subsequence 7, of 1, such that n,, converges
to some p (say) in #. Then by Lemma 4.2.4 (1) for &, € G(1n, ), I un, € G(p) such
that

ds(Engr Uny) < 8(Engs ny ) Hs (G (), G (p))

< s(gnmunk)ds(nnk,p) — O, when n — oQ,
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since limy_yo0 (&, s Un,,) exists and finite. Now G(z) is compact and u,, € G(z), so there
is a convergent subsequence of u,, which converges to some ¢ € G(p). Let us denote

this subsequence by u,, too. Then we have

dS (57%7 q) S S(gnka Q)[ds (gnm unk) + dS (unka Q)]
< M[ds(&nyr uny,) + ds(tny, q)]
— 0,

as n — oo. Implies that &, — ¢ € G(x) C G(#'). Hence G(#¥) is compact and so
G(¥) e Z,(Q). O

Following is the main result of the present section.

Theorem 4.2.8. Let (9Q,ds) be a complete Eb — M space, where ds be a continuous
functional. Suppose that for each (i € {1,2,---,n}), the map G, : Q — £, (9Q) is
a multi-valued ¢-contraction, where the self-map ¢ on [0,00) is an EbC' function for

[ g at some point, where f ¢ is a multi-valued fractal operator generated by the IMFS
G =1(G1,G2,-+,G,). Then:

(a) the map F ¢ maps from Z.,(Q) to &, (Q);
(b) the map F ¢ is a ¢-contraction;

(¢) F g is a Picard operator, i.e. there is a unique point @75 in #,(Q) which is a F - P
of the map Fg;

(d) Ho(Fg(), d5) < s(, g) Fy(¢" (Hs(, Fg())));
(e) for each &7 in &£, (Q), H(, ;) < s(, 75 )Py(Hy (A, F g())).

Proof. (a) As given that ¢ is an EbC function, so it is also a b-comparison and hence
a comparison function. Also for each ¢t > 0, ¢(t) < t, so for each j € {1,2,---n}, G; is

contractive. Therefore, by using Lemma 4.2.7, we can say that the map F g maps from

P.,(9) to Z,(9).
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(b) We prove that the map F¢ is a ¢-contraction and for this we need to show that
YU,V € P.,(Q),
Hy(Fg(%), Fg(V)) < o(H (%, 7))

Let %,V be elements of Z,,(Q) and let u € Fg(%). Then u € G;(%) for some
j € {1,2,---n}, which implies u € G;(p) for some p € % . Since %, are compact and
p € %, so there exists an element ¢ in # by Lemma 4.2.4 (2) such that

ds(p.q) < Hy(%, V). (4.2.8)

Thus by Lemma 4.2.4 (2), for u € G;(p), there exists an element v in G;(¢) for which

ds(u,v) < Hy(G;(p), 9;(q)). (4.2.9)

By combining the inequalities (4.2.8) and (4.2.9), we can say that for each w in F g(%),

there is an element v in f g(¥#’) for which

ds(u,v) < Hy(9;(p), G(a))

< ¢(ds(p,q))
< G(H (U, V). (4.2.10)

By a similar process, we obtain that for every element v € Fg(%') there is an element
u € F g(% ) for which
ds(u,v) < p(H (%, V). (4.2.11)

Lemma 4.2.1 together with (4.2.10) and (4.2.11) implies that
Hy(F(%),Fg(V)) < 0(Hs(%,7)).

Hence the self-map f ¢ is a ¢-contraction which is defined on a complete Eb — M space
(Zep(Q), Hs).
By using Theorem 4.2.6, (¢) — (e) follows immediately. O

Remark 4.2.9. If we take s(p, q) = b for some b > 1 in Theorem 4.2.8, then we obtain

the main results of [9].
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It is very convenient to show that any Meir-Keeler type multi-valued operator defined
on an Fb— M space is contractive. Thus by using Lemma 4.2.7, it is evident that G(%/)
lies in Z,(Q) for every # € Z.,(9Q).

Soif G; : Q - Z,(9Q) is a family of finite numbers of Meir-Keeler type multi-valued
operator on an Eb — M space, then we can derive easily the existence and uniqueness

results for the multi-valued fractal generated by the IMFS G = (G1,Gs, ..., Gn).

4.2.4 Well-posedness in extended b-metric spaces
In this section we present the concept of well-posedness in the setting of Eb— M spaces.

Definition 4.2.10. Let f be a self-map on £, where (Q,ds) an Eb — M space. Then
the problem of F - P for the map F is said to be well-posed w.r.t d, if and only if the

following axioms hold:
(i) Fiz(r) = {o};

(1) for any sequence {n,} in Q satisfying ds(n,, F (1,)) — 0 as n — oo, we have that

ds(n,0) = 0 as n — 0.

Definition 4.2.11. Let G : Q — () be a multi-valued map, where (Q,d;) is an
Eb— M space. Then we say that the map G has the property of well-posedness of F - P

problem with respect to:

(1) the generalized functional Dy if and only if there exits a unique point o which is a
F - P of the map G and for any sequence {n,} in Q satisfying D(n,,G(n,)) — 0

as n — oo, implies that dy(n,,0) — 0 as n — 0.

(1) the generalized functional Hy if and only if SFiz(G) = {0} and for any sequence
{nn} in Q satistying H(n,,G(n,)) — 0 as n — oo, implies that dg(n,,0) — 0 as
n — oo, where SFiz(G) ={ue Q : {u} =G(u)}.

Theorem 4.2.12. Let (Q,d;) be a complete Eb — M space, where d; is a continuous
functional. Let G : Q — Z.,(Q) be a multi-valued ¢-contraction such that ¢ is an
EbC function. Suppose that SFix(G) is non-empty and for each n € Q, the map
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Y 1 [0,00) — [0,00) defined by ¥(t) = t — s(n,0)¢p(t) is onto and strictly increasing,
where o is a F - P of G. Then the problem of F - P is well-posed for the map G with
respect to both D, and H.

Proof. Let ¢ be an arbitrary element of SFiz(G). We first prove that Fiz(G) =
SFiz(G) = {o}. For this, if p is an element of Fiz(G), then by using the fact that

G is ¢-contraction, we have

ds(0, 0) = Ds(G(0),6(0))
< H,(G(0),G(0))
< ¢(ds(0, 0)).
But ¢ is an EbC function, so is comparison and thus for each p > 0, ¢(p) < p. Hence
ds(o, 0) = 0 which implies that o = p.
Let {n,} be a sequence in Q satisfying Ds(1,,G(1,)) — 0 as n — co. We need to show
that ds(n,,0) — 0 as n — oo. For this we have by Lemma 4.2.2 that

ds(1n> 0) = Dy(1n, G(0))

IN

(N G(0))[Ds(0: G (1)) + H(G (), G(0))]
(1, @) [Ds(Mn, G () + &(ds(1n, 0))]-

IN

Therefore we obtain for each n € IN that ¥(ds(n,, o)) < $(0n, 0)Ds(x,, G(x,)). Hence

dy(Nn, o) < V" H$(n, 0)Ds(0, G(0)) = ~H0) = 0 as n — co.

Thus, the problem of F - P is well-posed for the map G with respect to D,. Notice that
Hy(nn, G(nn)) — 0 implies that Dg(n,,G(n,)) — 0 as n — oo. So the problem of F - P
is well-posed for the map G with respect to Hy too. O

Theorem 4.2.13. Let G : Q — £ be a multi-valued ¢-contraction such that ¢ :
[0,00) — [0,00) is an EbC function, where 9 is a complete Eb — M space with ds a
continuous functional. Suppose that SFiz(G) is non-empty and for each n € Q, the
map ¢ : [0,00) — [0, 00) defined by 1(t) =t —s(n, o)¢(t) is onto and strictly increasing,
where o is a F - P of G. Then the problem of F - P is well-posed for the map G with

respect to ds.
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Proof. Clearly Fiz(G) = {o} by Theorem 4.2.6. Now let {n,} be a sequence in Q
satisfying ds(n,, G(n,)) — 0 when n — 0o. We have to prove that 1, — o or equivalently,
ds(nn,0) — 0 when n — oo. Note that the function v is a bijection and ¢~1(¢) — 0 as

¢ — 0. Thus by triangular inequality condition of d,, we have

ds (N, 0) < $(0n, 0)[ds (N, G (1)) + ds(G (), G(0))]
(1> 0)[ds(Mn, G (1)) + &(ds (1, 0))]-

IN

Hence
(11, o) < ¢~ (510, 0)ds (0, G (110))) — O,

since (0, 0)ds(Nn, G(n,)) — 0 as n — oco. Therefore, the F - P problem is well-posed
for G w.r.t d,. O

By combining Theorem 4.2.8 and Theorem 4.2.13 we obtain the following result.

Corollary 4.2.14. Let (Q,ds) be a complete Eb — M space, where d; a continuous
functional. Let for each (j € {1,2,--- ,n}), the map G, from Q to &.,(Q) be a multi-
valued ¢-contractions such that ¢ : [0,00) — [0,00) is an EbC' function for F g at some
point. Suppose that for each n € Q, the self-map v on [0,00) defined by ¥(t) =t —
s(n, A*)p(t) is onto and strictly increasing, where A* is a F-P of F g. Then the problem
of F - P is well-posed for the multi-fractal operator defined by F ¢(#) = U}_,G;(¥).

Remark 4.2.15. By taking s(p,q) = b for some b > 1 in Theorems 4.2.12 and 4.2.13,
we obtain the same results in the setting of b-M - Ss [9)].

4.3 Consequences and applications

This section consists of some important consequences of Theorem 4.1.9 which involves
B« — ¢ multi-valued contractions on Eb — M spaces. The results we have obtained
generalizes/extends some results by Bota et al. [10] and Hasanzadde et al. [5]. For
application point of view, we proved Collage theorems, which can be used to construct

more general fractals and to find solution of inverse problems in extended Hausdorff
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b-M - Ss. Following is one of the main results in [47] which is direct consequence of

Theorem 4.1.9.

Corollary 4.3.1. Let (Q,d;) be a complete Eb — M space with ds a continuous func-
tional. Let F : D C Q — 9 be a map and there is some oy such that O(gy) C D.
Suppose that V g € O(0y)

ds(Fq,F2(q)) < ¢(ds(q, F (q))),

where ¢ is an EbC function for F at og. Then 3 ¢ in Q such that F "oy — o. Further-
more, the point ¢ is a F - P of the map F iff the map G(t) = d4(t, Ft) is F -orbitally lsc

at o.
Proof. The assertion simply follows by using Theorem 4.1.9 for a self-map F . O

Theorem 4.3.2. Let (Q,d;) be a complete Eb — M space with d; a continuous func-
tional. Let F : D C Q — Q be a map and oy be such O(oy) C D. Assume that the
limit lim, 0 s(0, 0%) exists and A is a constant such that for all o,, 0, € O(0y),

lim s(o,,0%) <
r,k—00

> =

Assume further that
ds(F (p), F?p) < A(ds(p, F (p)))

for every p € O(oyp). Then the iterative sequence F "oy converges to o € £. Additionally
the point of convergence o is a F-P of the map F if and only if the map G(t) = ds(¢, F (t))
is F-orbitally lsc at o.

Proof. Define a map ¢ : Ry — Ry by ¢(t) = M. By taking F a self-map, by using
Example 4.1.3, we obtain that ¢ is an EbC function for f at every point oy € Q. Hence
the assertion implies by Theorem 4.1.9. O

Definition 4.3.3. Let (Q,d;) be an Eb— M space. A mapping F : Q — P(R) is called
a [,-admissible map if there exists a mapping §: Q x Q — R, such that

Bp,q) >1 = Bu(F(p), F(g))>1  Vp,ge
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Note that g, : P(Q) x P(Q) — R, is defined by

B.W.Z) =inf{B(p.q) : pEW, g€ Z}.

Definition 4.3.4. [10] Let (9Q,d;) be an Eb — M space. A mapping F : Q — P(Q) is
said to be an f, — p-contractive multi-valued operator of type (Eb) if there exists two

functions ¢ € $ppand B:Q x Q — R, such that

o(ds(o,0)) = B(F (0), F (0))Hs(F (0), F (0)), (4.3.1)

for all o, 0 € Q. Here by ® gy, we mean the collection of all EbC' functions.

Theorem 4.3.5. Let (Q,ds) be a complete Eb — M space such that ds is continuous.
Suppose that the map F : Q — H(Q) is a 5, — ¢ contractive multi-valued operator of
type (Fb) which satisfies the following;:

(i) F is p.-admissible;
(ii) there exists points o¢ € Q and oy € F (0g) such that (o9, 01) > 1.

Then there exists a point ¢ € £ such that the iterative sequence o, converges to o,
where 0, € F(0,-1). Additionally, the point o is a F - P of F if and only if the map
G(t) = ds(t, Ft) is F-orbitally lsc at o.

Proof. Given that F is f, admissible and f(og,01) > 1 for o1 € F(0y), so that
B+(F (00), F (01)) > 1. By using infimum property, for o1 € F (0p) and o9 € F (07)
Blov,02) = Bu(F (00), F (01))

Thus B(01,02) > 1 which further implies that 5.(F (1), F (02)) > 1. Again by using
the same property, for oo € F(01) and o3 € Toy [(09,03) > Bi(F (01), F (02)) > 1.

Continuing in the similar way, to obtain
B«(F (0,.), Forg1) > 1, r=1,23,---
The contractive condition 4.3.1 then implies that

Hs(F(00), F(0r41)) < BuF (0,), F(0r11))Hs(F (0,), F (0741))
< o(ds(F"Y(00), F"(00)))-
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Which becomes equivalent to the following condition

Hs(FplaFPQ) < Sp(ds(plaPQ))a (432)

for every p; € O(oy) and ps € F p;. This shows that all the conditions of Theorem 4.1.9

are fulfilled and hence the assertion proved. O
By using some additional conditions on Theorem 4.2.6, we obtain the following.

Theorem 4.3.6. Let (9Q,d;) be a complete Eb — M space, where d; is a continuous
functional. Suppose that the self-map ¢ on [0,00) is an EbC function for f at some
o € Q and F : Q — Q a ¢-contraction. (By given hypothesis, it is clear that f admits
a unique F - P say o by Theorem 4.2.6 Then:

(1)(Abstract Collage Theorem) If for all p € 9, the function 1 : [0,00) — [0, c0)
defined by ¥(t) =t — s(0,0)¢(t) is onto and strictly increasing, then

ds(0,0) <97 (s(e,0)ds(e, F ()

(2)(Abstract Anti-Collage Theorem) Suppose that the mapping g : [0,00) —
[0,00) defined by g(0) = o + ¢(0) is onto. Then we have V p € Q that

oo 257 L),

v
s(o, F (0))

Proof. (1) For an arbitrary w € Q we have

which implies that ds(w, o) — s(w, 0)d(ds(w,0)) < s(w, 0)ds(w, F (w)). Hence
P(ds(w,0)) < s(w,0)ds(w, I (w)).

But 1 is increasing and onto, so is an increasing bijection and thus for every w € 9, we
obtain that
ds(w, o) <Y~ (s(w,0)ds(w, F (w)).
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(2) For an arbitrary element g of £, we have by triangular inequality like condition of

ds that:

ds(o, F (0)) < s(o, F (0))[ds(0,0) + ds(o, F (0))]
s(o, F (0))[ds(0,0) + ¢(ds(0,0))]-

IN

Hence ¢(ds(0,0)) > m (ds(o, F (0))). Since ¢ is increasing and g is onto, so ¢ is

strictly increasing and bijective. Thus we get that:

dJ@W)Zg*( dA@F@D>7V@€D-

s(o, F (0))
0

Remark 4.3.7. If we take s(p, q) = b for some b > 1 in Theorem 4.3.6, then we obtain

one of main results of [9].
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Chapter 5

Best proximity points of multi-valued
dynamical systems on controlled

metric type spaces

In this chapter, we introduced a new type of generalized distances on CMT space (Q, d;)
which we call controlled type generalized pseudo-distance (C'T'G pseudo-distance) . With
the help of this generalized distance, we define J,(u, F'), J*(u, F'), H’* distance of Haus-
dorff type where £, F € CB(Q),u € E and W P’s-property of a pair of nonempty
subsets of 2. More precisely our newly defined mappings are more general then that of

corresponding notions defined by Gabeleh and Plebaniak.

5.1 Global optimality results for multi-valued maps in

b-metric spaces

In 2014 Plebaniak [39] introduced the notion of a b-generalized pseudo-distance (in short
bG pseudo-distance) on a b-M - S 9 as below.

Definition 5.1.1. [39] Let (Q,d;) be a bM - S (with constant b >1). A map J, :
0 x Q — [0,00) is said to be a bG pseudo-distance on 9, if the following are satisfied:
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(So1) Jo(w@,n) < b[Jo(w, &) + Jo(&,m)]  for any @, &,n € Q;

(Jp2) For any sequence (7,,) and (&,,) in Q such that

lim sup Jy(n, m) =0

n—0o0 m>n
and
hm Jb(nmyém) = 0,
m—00
we have

lim dy(Nm, Em) = 0.
m—00

In 2018 Gabeleh |20] extends the main theorem of [19] by constructing the following
definitions and notations.

Let (U, V) be a pair in a b-M-S 2 of nonempty sets. We denote and define the following:

Jp(u, V) = inf Jy(u,v),

veY

Iy (u, V) = %Jb(u, V) — dist(U,V) where u € Q and dist(U,V) = inf dy(u,v),

ueU ey

H(V,V) = max{sup J,(v,U),sup(v,U)} VU,V € CB(Q),
ucl veEV

Uy ={u el : Jy(u,v) = distU,V) for some v € V},

Vo={veV: Jy(u,v) = dist(U,V) for some u € U}.

Definition 5.1.2. [20] Let (Q,d;) be a b-M - S (with constant b > 1) and (U, V) be a
pair of nonempty subsets of Q with Uy # 0.
(1) The pair (U, V) have the W P”»-property if and only if the conditions

Jp(ur,v1) = dist(U, V),

Jp(ug,ve) = dist(U,V)
implies

Jp(ur, uz) < Jy(v1,v2)
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where uq,us € Uy and vy, v9 € V.
(2) A bG pseudo-distance J, is said to be associated with the pair (U, V) if for any
sequences (1,) and (&,) in Q with

n—00 m—00

and
Jo(Nmy Em—1) = dist(U, V)V m € N,

we have dy(n, &) = dist(U, V).

Definition 5.1.3. [20] let (Q,7) be a topological space and U,V be nonempty subsets
of Q. A mapping F : U — 2Y is said to be closed whenever (,,) is a sequence in U and
(&n) is a sequence in V such that &, € F(n,)Vm e N, n,, > n €U, and &, - €V
implies that & € F ().

Definition 5.1.4. [20] Let 7 : [0,1) — (1/2,1] by n(r) = 115 - Let Q be a b M-S (with
b >1) and the mapping J, : Q x Q — [0, 00) be a bG pseudo-distance on Q. Let (U, V)
be a pair of nonempty subsets of Q. A multi-valued non-self mapping f : U — 2V
is said to be a contraction of Suzuki type with respect to (in short S-type w.r.t) bG
pseudo-distances if there exists r € [0, 1) such that

@J:(u, Fu) < Jy(u,w) implies DH(Fu,Fw) < rdy(u,w), ¥ u,w € U.

5.2 Global optimality results for multi-valued map-

pings in controlled metric type spaces

Inspired by the ideas of Mlaiki et al. [36] of C M T space, we define a new class of multi-
valued contraction of S-type w.r.t C'I'G pseudo-distances. To begin with our main

results, first we define the following.

Definition 5.2.1. Let (Q,d) be a CMT space. A map J; : Q x Q — [0, 00) is said to
be a C'T'G pseudo-distance if the following two conditions satisfy:
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(Js1) Jo(C7) < 8(6 ) J6(C,€) + 8(6,7) Ja(€,7) for all ¢, &,y € 9;

(Js2) For any sequences ((,,) and (§,,) in Q with

lim sup Js(Gr,Gn) =0 and lim Js((n,&m) =0,
m—00

n—0 m>n

we have

lim ds(Gm, &m) = 0.
m—00

Remark 5.2.2. Every controlled metric dg : Q x Q — [1,00) on Q is a CT'G pseudo-

distance on 9 but the converse is false in general.

Example 5.2.3. Let (Q,d;) be a CMT space and E be a closed subset of £ such
that it contain at least two different points. Let r > 0 be such that r > §(E) where
d(F) =sup{ds(o,0) : 0,0 € E}. Define Js: Q x Q — [1,00) by

ds(o,@) if {o,w}CE

r if {o,@w}¢E.

Ji(o, @) =

Then J; is a C'T'G pseudo-distance.

Proof. (Js1)  Let g, 00, @wo € Q be such that

Js(00,@0) > s(00, 00)Js(00, 00) + s(00, @0)Js(00, @0)- (5.2.1)

Then we have {00, 0o, @0} € F. Because if it is subset of F, then

Js(00, 00) = ds(00, 00), Js(00,@0) = ds(00, @0), Js(00, @0) = ds(00, @), and with this,
the Inequality (5.2.1) will become dg(0q, o) > s(00, 00)ds(00, 00) + (00, @o)ds(00, @),
which is a contradiction to the fact that ds is a controlled metric type. Thus there will
exists some u € {0, 0o, @o} such that w ¢ E. If u = 09, then Js(0p,wp) = r and
Js(00,00) = r and so (5.2.1) becomes r > s(ag, 00)r + $(00, @o)Js(00, W) Which is a
contradiction.

Similarly if we take u = gy or u = wy, then we get the same contradiction. Hence the
condition (Js1) of Definition 5.2.1 is fulfilled, i.e.
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Jo(C,7) < 8(6,€) (6, ) + 5(€,7)Jo(&, 7) for all €, €,y € Q.

(Js2) Let {x tmen and {ym }men be any two sequences in 9 such that
limy, oo SUDPsy Js(Tn, T ) = 0 and limy, o0 J5(Tm, Ym) = 0. We need to show that

lim ds(xm, Ym) = 0.

m—0o0

As limy, 00 Js(Tm, Ym) = 0, so we have lim,, o0 2, = 0 where z,,, = Js(2, ym) € Ry
Which implies that for every € > 0 (hence for 0 < € < r), there exists a natural number
k such that d(z,,0) = |z, — 0] < € for all m > k. Thus |z, — 0] < € < r for
all m > k, and so z,, < € < r for all m > k, because z,, > 0 Vn € IN. So that
Zm = Js(Tm, Ym) = ds(Tm, ym) for all m > k. Thus, Js(2m, ym) = ds(Tm, ym) < € < r for
all m > k. Hence lim,, o ds(Zpm, Ym) = 0. O

Let (Q,ds) be a CMT space and J; : Q x Q — [0,00) be a CTG pseudo-distance
on Q. Let (U, V) be a nonempty pair of subsets of . We define the following notions:

Js(0,V) = })g]f} Js(0,v)

—_

Ji(0,V) =

J.(0,V) — dist(U,V), Yo €U,
0.0 (0, V) u,v) 0

Uy={oeU : s(o,v)Js(0,v) = dist(U,V) for some v € V},

»

Vo={veV : s(o,v)Js(o,v) =dist(U,V) for some o € U}.

We define H's : CB(Q) x CB(Q) — [0,00) by
H’*(U,V) = max{sup Js(0,U), sup JS(U,U)} YU,V € CB(Q).
oeU veY

Definition 5.2.4. Let (Q,ds) be a CMT space and J; : Q x Q — [0,00) be a CTG
pseudo-distance on . Let U,V be non-void subsets of  with Uy # (). Then:

1. The pair (U, V) is said to have the W P’s-property if and only if the conditions

s(uy, v1)Js(ug, v1) = dist(U, V),
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s(ug, v9)Js(ug, vo) = dist(U, V)

implies that
Js(ur, ug) < Jg(v1,v2),

where uy,uy € Uy and vy, v9 € V.

2. A CTG pseudo-distance J, is said to be associated with the pair (U, V) if for any
sequences (1,,) and (&,,) in Q such that lim,, o m = 7, limy, 00 & = € and for
all m € N, s(Nm, Em1)Js(Mmy Em—1) = dist(U, V), we have

ds(n, &) = dist(U, V).

Lemma 5.2.5. Let (Q, d;) be a complete controlled metric type space and Jg : QxQ —
[0,00) be a controlled type generalized pseudo-distance on £. Let a sequence (0,,) in

£ be such that the limits

lim s(0j4n,0,) and lim s(oy,, 0j1p),
n—oo n—ro0

are finite for every 7,5 € IN and satisfies

lim sup Js(on, 0m) = 0. (5.2.2)

n—oo m>n

Then (0,,) is a Cauchy sequence in 9, for m € {0} UN.

Proof. From (5.2.2) we can say that for all € > 0 there exists n; = ny(¢) € IN such that
Vn>n,

sup{Js(op,0m) : m >n} <e.

In particular, V e > 0 3n; = ny(e) € N such that Vn > ny,V ¢ € N we have
Js(On, Opan) < €. (5.2.3)
Let ig, jo € IN, 79 > jo, be fixed and arbitrary. Define the sequences

Zn = Ojgtn 0Nd Uy, = Ojoin for n € N. (5.2.4)
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Then (5.2.3) gives
lim Js(on, 2,) = lim Jg(on, yn) = 0. (5.2.5)
n—oo

n—oo

Therefore by using (5.2.2),(5.2.4) and (.J;2) we have

lim ds(oy, 2,) = lim ds(o,,y,) = 0. (5.2.6)
n—oo

n—oo

By using (5.2.6) and (5.2.4), we have

nh_)ngo ds(Cign, On) = nh_)nolo ds(On, jg4n) = 0. (5.2.7)

Let k,I € IN be such that £ > [ > ng. Then for some ig,j0 € N, k = ip + ng and
[ = jo + ng, and that iqg > jo. Now by using (5.2.7) and the triangular inequality like

condition of controlled type metric d,, we have

ds(ak7 Ul) - d8(0i0+n07 Ujo-l—"m)
< 5(0i0+n07 Jno)d8<0i0+n0> Uno) + S(Unov 0j0+n0)d8(0n07 Uj0+n0)

—-0+0 as ng— oo,

since the limits lim,, o0 $(Tigtng, Ony) and limy, e S(0ng, 0jo4n,) are finite. Hence, we
conclude that limg ;o ds(o%, ;) = 0 and so the sequence (o, : m € IN) is a Cauchy

sequence. 0

Definition 5.2.6. Let 7 : [0,1) = (1/2,1] be defined by n(r) = . Let (Q,d;) be a
CMT space and the map J, : Q x Q — [0,00) be a CTG pseudo-distance on Q. Let
(U, V) be a pair of nonempty subsets of Q. A multi-valued non-self mapping f : U — 2V
is said to be a S-type w.r.t a CTG pseudo-distances if there exists r € [0,1) such that
for all z,y € U,

n(r)
s(x,y)

J(z, Fx) < Jy(x,y) implies s(x,y)H”™(Fx, Fy) < rJy(z,y) (5.2.8)

Clearly the class of multi-valued non-self mappings which are contraction of Suzuki
type with respect to C'T'G pseudo-distances contains the class of multi-valued non-

self mappings which are S-type w.r.t b-generalized pseudo-distances. As if we take

s(z,y) =b, then J; = J, Vz,y € Q.
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Theorem 5.2.7. Let Q be a complete C MT space and let the map J, : Q xQ — [0, 00)
be a CTG pseudo-distance on . Let (U,V) be a nonempty closed pair of subsets of
Q with Uy # 0 and such that (U, V) has the W P’s-property and J, is associated with
(U, V). Let F : U — 24 be a closed S-type w.r.t CT'G pseudo-distance J, and r € [0,1)
be such that

1 1
n,N—00 S(Qm Qn+1) r nm—oo 3(0n7 Un—f—l) T

for every o, € Uy and o, € F 0,,n =0,1,2....
If F(z) e CB(Q)Yxel,and F (z) C V) for each z € Uy, then F hasa B-P-PinlU.

Proof. Since Uy = 0, so let oy € Uy ,00 € F 0o € Vy. Then by definition of V,, there
exits p; € U such that
S(Ql,O'(])JS(Ql,O'o) = dZSt(Z/{,V) (529)

But since Vy C V, so 09 € V and thus from the above we conclude that p; € Uy. Now

we have

Js(00, F 00) = inf J(00,v)
yeF oo

S JS(Q07UO)
< 5(00, 01)Js(00, 01) + 5(01,00)Js(01,00)
< 5(00, 00)[5(00, 01)Js(00, 01) + s(01,00)Js(01,00)].

Thus we have

JX (00, F 00) = Js(00, F 00) — dist(U, V)

8(@07 QO)

(gol, 20) s(00, 00)[5(00, 01) Js(00, 01) + s(01,00) Js(01,00)] — dist(U, V)
= s(00, 01)J5(00, 01) + s(01,00) Js(01,00) — dist(U, V)
<QO> Ql) S(QO> Ql)

since by (5.2.9). Which further implies that

1 1
——J (00, F 00) <
s(00, 01) (o0, Feo) s(00, 01)

s(00, 01)Js(00, F 00) = Js(00, 01)-
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Also since n(r) < 1, we obtain

n(r)
5(@0, Ql)

‘]:(Qoa FQO) < Js(QOa Ql)-
Thus by (5.2.8) we have
s(00, 00) H” (F 00, F 1) < J5(00, 01)

— H”(F oo, F 01) <

.
J.(00, 01).
s(00, 01) (o0, 1)

Since Jy (00, F 01) < H”*(F 00, F 01) <
that

= Sleoe) 91)(]8(907 01), so there will exists oy € F g1 such

r
JS(O'(),O'l) S Js(QO;Ql)- (5210)
S(QO; Ql)

Again as 01 € Uy, I 01 C Vo, 01 € F 01, so there exists g9 € Uy such that

S(Q2,0'1>JS<Q2,(71) = dZSt(Z/{,V) (5211)
Now we have

Js(o1, Fo1) = Hlf J(Qb Y)
S JS(Q17O-1)
< (01, 02)Js(01, 02) + s(01,01)Js(02,01)
< 5(@1, Ql)[S(Qla Q2)J3(Q17 Qz) + 3(@27 Ul)Js(QQa 01)]-

Thus we have

J:(QlaFQI) = JS(QhFQl) - diSt(Z/LV)

S(Ql) Ql)

(Qll o s(o1, 01)[8(01, 02)Js(01, 02) + 8(02,01)Js( 02, 01)] — dist(U, V)
= 5(01, 02)Js(01, 02) + 5(02,01)Js(02,01) — dist(U, V)
= s(01, 02)Js(01, 02),

since by (5.2.11). Which further implies that

J:(Qla FQl) S

3(917 Q2)Js(Q17 FQl) = Js(@la QQ)-

3(@1;@2) 5(01792)
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Also since n(r) < 1, we obtain

n(r)
3(91, Qz)

Ji (o1, F 01) < Js(o1, 09)-

Thus by (5.2.8) we have

s(01, 02)H”* (F 01, F 02) < 1J.(01, 02)

- ]—IJ5 F 7F S Js 01, :
( 01 92) S(Ql, QQ) ( 1 92)
Since J, (o1, F 02) < H'*(F 01, F 02) < WJS(Q, 02), so there will exists oy € F 9o such
that
’
Js(oq,09) < Js(01,02). 5.2.12
( 1 2) 5(@1,@2) (Ql Q?) ( )

Continuing this process, we can find two sequences (g,) and (o,,) for n € {0} U N such
that

(1) on €Uy,0, € VoV neN.

(2) o,€Fo,Vne{0}UN.

(3)  s(0n,0n-1)Js(0n, 0n—1) = dist(U,V) ¥ n € N.

(4) Js(op_1,00) < mjs(gn,l, on) V' €N.

Now for any n € IN we have s(0n, 0p—1)Js(0n, on-1) = dist(U, V) and s(0n+1, 0n)Js(0n+1,0n) =
dist(U, V). But (U, V) satisfy the W P/s-property, so we conclude that

JS(Qm Qn-i—l) S Jg(Un_l, Un) VY n & N.
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Thereby,

Js(gna Qn+1) S Js(o-nfly Un)

r
S —Js On—1, On
S(anlv Qn) ( ! )

r

IN

—J(0p_0,0n_
S(anly Qn) ( ? 1)
2

<

IN

J, On—2; On—1
S(Qn—l; Qn)s(gn—Qa Qn—l) S< )
2

<

IN

Js(o—n—3a Un—2)
S(anla Qn)S(an% anl)

IN

~Js(00, 01) (5.2.13)

Now for each m > n, we have
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Js(@nv Qm) S S(Qna Qn+1)Js(Qn7 Qn+1) +s On+1, Qm) (Qn+17 Qm)

< 5(0ns Ont1)Js(0ns Ont1) + 5(Ong15 0m)S(Ont1, Ont2)

(
(

J (Qn+17 Qn—i—?) + S(Qn—l—ly Qm)s(gn+2> Om (Qn—i—?a Qm)
(

(

)J.
(0, 0n+1)Js(0ns Ont1) + 8(0n+1, 0m)S(0n+15 Ont2)
Js(On+1, Ont2) + $(0nt1, Om)S(Ont2, 0m)$(0n+2; 0n43)Js(0n+2, Ont3)
(

+ 5(0n+1, 0m)S(0nt2, 0m)S(0n+3, Om)Js(Ont3, Om)

it S(Qna Qn+l)Js(Qn>Qn+1 Z <HS Qj;Qm ) S\ i, Q1+1)J5(Qi7Qi+l)

i=n-+1

+ (ﬁ S(Qk,gm)> Js(Om—1, Om)

k=n

n

~ S(Qna Qn+1)Js(Qn>Qn+1 Z (HS Qj;Qm ) S\ 0is Qz+1)Js(Qi79i+l)

i=n+1 \Jj=n

+ (f[ S(Qk, Qm)> S(mela Qm)‘]S<Qm717 Qm)

k=n

m—1 %
= 5(0n Ont1) s (0ns Oni1) + Y (H S(Qj,gm)) s(0i, 0i11)J5( 01, 0i1)

i=n+1 \j=n

HS Q]a@m > Qm@n—&—l)ls(@na@n—f—l)

-1 i

+ ( s(oj, .Qm)) s(0i, 0i+1)J5(0i, 0i+1)
) i

= ( S(qu Qm) S(Qia Qi+1)Js<Qi7 Qz‘+1)
i J

)

m—1 %
r
S(Q7Qm) S(Qiagi+1> 4 JS(QO?IQI)
; (j—O ’ [Tiey s(ok—1, 2k)

IN

S(Q]7Qm) S<Q’L‘7(Qi+1)riJS(QO7Q1>

m—1
= Js(00, 01) Z <H8 QJ,Qm8)2> $(0i, 0i1)T

7=0

VAN
M3
3 AR
7
S
g <



In the above steps we use the fact that s(p,q) > 1 and thus x < s(p,q)z for any
z € [0,00).
Let

an - <H S(Qj7 Qm)) S(Qn; Qn+1)rn and S = Zan.
=0 n=1

5(0i11,0i42)
5(0i,0i+1)

because by using ratio test we have

Since by hypothesis, 7lim,, ;oo $(0i+1,0m) < 1, so the series S converges,

et ( ?201 s(0j, Qm)) $(On+1; On+2)

. a .
lim ! < lim

n—o0 Ay nTee (H?:o S(Qj>QM)> S(Q”’Q”Jrl)

=7 lim S(Qn+17@n+2)

$(Ont1, 0m) < 1.
n,m—00 S(Qnagn+1> ( 1 )

Thus S,,_1 — S, = [mel (H;zos(uj,um)> s(ui,uiﬂ)ri] — 0 as n,m — oo and so is

1=n

ds(ug, u1)(Sm—1 — Sn). Hence we deduce that

lim sup Js(0n, 0m) = 0.

n—0 m>n

Similar calculation implies that

lim sup Js(op,0m) = 0.
n—oo m>n

Therefore, by Lemma 5.2.5 we can say that the sequences (g,) and (o,) are Cauchy
sequences in U and V respectively. Since (U, V) is a closed pair of subsets of the complete
CMT space 9, so there will exists p € U and ¢ € V such that o, — p and o,, — ¢. Also
since o, € F 0,V m € {0} UNN, so by closeness of F we obtain that g € F p.

On the other hand, since s(g,,0,-1)Js(0n, 0n_1) = dist(U,V) and J, is associated with
(U,V), so we conclude that dy(p,q) = dist(U,V). We now have

distU,V) < D(p,V) < D(p, F p) < ds(p, q) = dist(U, V).

i.e D(p,Fp)=dist(d,V) and so p € U is a B - P - P of the non-self mapping f . O
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5.3 Consequences and applications

This section consists of some important consequences of Theorem 5.2.7. The results we

have obtained generalizes/extends some results by Gabeleh and Plebaniak.

Corollary 5.3.1. Let Q be a complete M - S and let the mapping J : Q x Q — [0, 00)
be a generalized pseudo-distance on £. Let (U, V) be a nonempty closed pair of subsets
of Q with Uy # () and such that (U, V) has the W P-property and J is associated with
(U, V). Let F : U — 2Y be a closed contraction of S-type. If F(u) € CB(Q)Vu €
U, and F (u) C VW, for each u € Uy, then F hasa B-P-PinlU.

Proof. The assertion holds if we define s(u,v) = 1 for all u,v € Q in Theorem 5.2.7. [
Following is the main result in [19] which is direct consequence of the result 5.2.7.

Theorem 5.3.2. [19] Let 7 : [0,1) — (1/2,1] by n(k) = - Let U,V be the closed
subsets of the complete space (Q, d) such that (i, V) has the P-property. Let f : U — 2V

be a multi-valued mapping such that
n(k)D*(u, Fu) < d(u,v) implies H(Fu, Fv) < kd(u,v) for each u,v € U,

where 0 < k < 1, D*(u, Fu) = D(u, Fu) — Dist(U,V). Let Fu € CB(Q) for each u €
U, Fu C V, for each u € Uy. Then there exists some p in U such that D(p, Fp) =
Dist(U, V).

The main result of [20] is proved easily by Theorem 5.2.7 when we define s(o, 0) =
b>1.

Theorem 5.3.3. Let Q be a complete b-M - S (with s >1) and let the mapping
Jp 1 Q x Q — [0,00) be a bG pseudo-distance on Q. Let (U, V) be a nonempty closed
pair of subsets of Q with Uy # 0 and such that (U,V) has the W P’-property and
Jy is associated with (U,V) . Let F : U — 2Y be a closed contraction of S-type. If
F(o) €eCB(Q)Y o €U, and F (0) C Vy for each 9 € Uy, then F hasa B-P-P inU.
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Chapter 6

Fixed point theorems of single-valued
dynamical systems in controlled

quasi-triangular spaces

In this chapter, we have extended the idea of Wlodarczyk [59] and introduced a new
space, which we call the controlled quasi-triangular space (in short CQT space). We
introduced the left (right) families generated by such spaces and proved Banach type
theorem in such spaces. Our results generalizes results proved in triangular space, QT
space, CMT space, b-metric, quasi-metric, quasi b-metric and M - S. Throughout this
chapter by L(R), we will always mean left (right).

6.1 Controlled quasi-triangular space

We start this section by the definition of CQT family and CQT space.

Definition 6.1.1. Let Q be a non-empty set and Z be an index set. Let C' = {9, :
Qx9N —[l,0) : ael}.

1. We say that a family Pcz = {p, : Q x Q — [0,00) : a € I} of distances is a CQT
(in short CQT) family on £ if

PalC,7) < SalC E)Pa(C,E) + Sa(&,7)pa(&, ) for all ¢, &, v € Q. (6.1.1)
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A CQT space (Q, Pc.7) is a set Q together with the CQT family P¢.z on Q.
2. Let (Q, Zc.z) be a CQT space. We say that the family ¢z is separating if for all
(,v € Q with  # ~, there exists a € Z such that

Pa(C,7) >0 or pa(v,¢) > 0.

3. If (Q, Pcz) is a CQT space and for all a € Z, p*(,7) = pa(7,¢) for all (,v € Q,
then Vo € Z, and for all (,&,v € Q,

pgl(CaV) S Sa(C,é)p;1(<;€> + Sa(£77)p;1(£77)'

We say that the CQT space (Q, ,@5}2) is the conjugation of (Q, #¢.z) where ,@5;11 =
{p;':Qx0Q—=[0,00) : a €T}

Remark 6.1.2. In general, in the space (9, @5}1) the distances p, : Q x Q — [0, 00)
for @ € Z do not vanish on the diagonal, they are asymmetric and do not satisfy triangle
inequality, (i.e. the properties p,(u,u) = 0 Vu € Q or po(u, w) = po(w,u) Yu,w € Q
or po(u, w) < pa(u,v) + po(v,w) Yu,v,w € Q do nor hold necessary)

Definition 6.1.3. Let Q be a non-void set and let C' = {S, : QxQ — [1,00) : o € T}.
1. We say that a family 2oz = {g, : Q xQ — [0,00) : a € I} of distances is an ultra
CQT family on £ if

Go(0, @) < max{S,(0,0)qa(0,0), Sa(0,@)qa(v,@)} Va€Z, Vo,0,we€N.
(6.1.2)
An ultra CQT space (Q, Zc.7) is a set Q together with the CQT family 2.z on Q.
2.We say that a family oz = {po : Q x Q — [0,00) : «a € I} of distances is a
controlled partial QT family on £ if

PalC:7) < 5alC E)palC,€) + Sa(€,7)Palé ) — Pl ) forall 6,y € Q. (6.1.3)

A controlled partial QT space (Q,.7¢.7) is a set Q together with the controlled partial
QT family .7 on Q.
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Remark 6.1.4. 1. If we define S, (u,w) = C, € [1,00) for each o € Z and for each
u,w € Q in (6.1.1), then we get a quasi-triangular space [59, 60].

2. It is noticing that CQT space generalize ultra C'Q)T and controlled partial QT space.
Example 6.1.5. Let Q = [0: 6], and p; : Q% — [0,00), S; : Q% — [1,00) be defined by

0 if o>w
(w—0) if o<

Si(o,w) =0+ w+4 (6.1.5)
(1) The space (Q, Zc.1y), Peoy = {p1} is a CQT space. In fact for all p,0,w € Q
pi(o, @) < (0+0+4)pi(o,0) + (0 + @+ 4)pi(0, @)
holds. This can be prove from the following cases.

Case 1. If 0 < p < w then p1(0,0) =0, w — o < w — 0. Consequently,

ps(0,0) = (w—0)° < (0—0)°
<(o+o+4)po,0)
=(e+o+4)p(o,0)
= (

o+o+4)pi(o,0)+ (0 +w+4)p (o, w).

Case 2. If p < @ and ¢ < ¢ < w then pi(p,@w) = (@ — 0)? and f(og) =

Mmin,<, < f(0) = (@ — 0)* where gy = @ is a minimum element of the

map

flo)=(e+o+4)pi(0,0) + (0 + @+ 4)pi(0, @)
Case 3. If p < @w < o, then p;(o,w) = 0 and consequently
pi(o,@) = (w—0)’ < (0 —0)° < (0+0+4)(0,0)°

=(o+o+4)pi(o,0)
=(e+o+4)pi(o,0) + (0 + @ +4)pi(o, ).
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(2) Py = {p1} is asymmetric. Indeed, we have that 0 = p,(6,0) # p1(0,6) = 216.
Therefore condition p; (g, w) = p1(w, ) does not hold for all g, w € Q.

(3) Pciq13 = {p1} vanishes on the diagonal. By (6.1.4), it is clear that Vo € Q, pi(o,0) =
0.

Example 6.1.6. Let Q = [0,00), and p; : Q% — [0,00), S : Q% — [1,00) be defined
by

(

0 if (=n=0

L if (=0 and n#0

nGm =977 (6.1.6)
s if (#0 and n=0
(C+n it CF0Fm,

S1(¢,n) =2+ 2n+ 2.

1. The space (Q, Pc.q1y) with Py = {p1} is a CQT space and for this we need to
show that V(, &, n € Q the following inequality holds:

For this we have the following cases.

Case 1. If ( =0 =7, then (6.1.7) holds trivially.

Case 2. If ( =0, n # 0 and £ = 0, then we have
pi(¢,n) = T4y

< 2)(0) + 2+ 20)

S Sl(Ca f)pl(Ca 5) + 51(67 77)171(57 77)
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Case 3. If ( =0, n # 0 and £ # 0, then we have

pl((?”) = %
<n<(2+26+2n)(E+1)

< (2+2§)1L+5+(2+25+2,7)(5+n)

S Sl(gv g)p1(<> f) + 51(57 77)]’1(57 77)

Case 4. If ( # 0 and n = 0, then by similar process as Cases 3 and 4, we obtain
that (6.1.7) holds.

Case 5. If ( # 0 # n and £ = 0, then we have:
pi(¢n) = ¢+

1+
S Sl(gu g)pl(ga §> + Sl(ga n)p1<§7 77)

< (24 2§)% +(2+ 2n)Ln

Case 6. If ( # 0 # n and £ # 0, then we have:

p(Cn) =C+n
<(+E+E+7
S @2+20+2)(C+8) + (24264 2n)(E +n)
< 51(¢OPi(C€) + Si(Empa (€ ).

2. The space (Q, Pc;qy) with Py = {p1} is not a quasi-triangular space.
We show this by contradiction, i.e. if it is quasi-triangular space, then there

exists S, € [1,00) such that

pl(C?ﬁ) S Sa[pl(g,f) +p1(€777)] VQfﬂ? € Q

Now for any & > 0, we have

pl(&g + 1) S Sa[p1(£>0) +p1(07€+ 1)]
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Which implies that

13 E+1
264+1< 8, [m + £+—2] . (6.1.8)

But when we take limit as y — oo in (6.1.8), we get that +oo < 2S5, which

is not possible and hence (£, p;) is not a quasi-triangular space.
3. (Q, Pe.q1y) with Py = {p1} does not vanish on the diagonal, ie, if n # 0,
then pi(n,n) = 2n # 0.

6.2 Left(Right) Families Generated by CQT families

Let Pc.z be a CQT family on Q. It is natural to define families generated by Pc.z

which will provides a new structure on £.
Definition 6.2.1. Let (Q, Zc.z) be a CQT space.
(a) The family of distances Zc.z = {Jo : Q x Q — [0,00) o € T} is said to be a left
(right) (in short L(R)) family generated by Zc.z if it satisfies the following:

J For all a € T and for all ¢,&,v € Q,

Ja(C,7) < 5a(C,€)Ja(C ) + Sal8,7) Jal€,7); (6.2.1)
P> If the sequences {s,,} and {t,,} in Q satisfying the following
lim sup Jo(Sm,sn) =0V a €T, (6.2.2)
m—0o0 n>m
< lim sup Jo(Sp, $m) =0V a € I) , (6.2.3)
m—ro0 n>m
lim Jo(tm,sm) =0V aeZ, (6.2.4)
m—r0o0
( lim Ja(Sptm) =0V a € I) , (6.2.5)
m—0oQ
then the following hold:
Hm po(tm, Sm) =0V a €, (6.2.6)
m—0o0
( M (S, tm) =0V a € I) . (6.2.7)
m—0o0

90



(1) J(a,20.0) (J(4,20.4)) 18 the collection of all #c.z on Q generated by Fc;z.

Remark 6.2.2. (a) It can be directly seen from the Definition 6.2.1 that Z¢.z lies in

L R
both J(D,(@c;z) and J(Q,ﬁ’c;z)'

(b) The structure on £ determined by L(R) families _#¢.z generated by &¢.z are more

general than the structure on Q determined by Zc.z.

(c)If Zox € J](LQ,QZCI) QJ&’&ZO‘Z), then by (6.2.1), we can say that (Q, Zc.z)isa CQT

space.

Motivated from [59, Theorem 14|, we present the following result which shows the
validity of Definition 6.2.1 and that J]{b”@c;z) — Poz # 0 and J&”@C;I) Pz # 0.

Proposition 6.2.3. Let (Q, Zc.z) be a CQT space. Let & C Q be a set containing at
least two different points and for every a € Z, p,, € (0,00) be such that
da(&)
> 2a\7)
Mo = 5
where for all @ € Z, 6,(&) = sup{pa(u,w) : u,w € &}.
If Zoz={Ja : o €T}, where for each o € Z, the distance J, : Q% — [0, 00) is defined
by

(6.2.8)

Jo(u, w) = Paw) i {uwp €& (6.2.9)

po i {u,w} €&,
then Zc.7 is L(R) family generated by Z¢.z.

Proof. Suppose on contrary that _#; does not holds. Then there exist some oy € Z and
00, 00, Wy € 1 such that

Jao (00, @0) > Cag (00, 00) Jag (00, 00) + Cap (00, @0) Jag (00, @0)- (6.2.10)

Then we have {09, g0, @0} € &. Because if it is subset of &, then

Jao (00, 00) = Pap(005 00), Jao (00, @0) = Pay (00, @0), Jag (00, To) = Pay(00, @0), and with
thiS, the Inequahty (6210) will become Payg <007 wO) > Cao (UOJ QO)pao (007 Q0)+CQO(IQOJ wO)pao (QO; wO)a
which is a contradiction to the fact that (Q, Zc.r) is a CQT space. Thus we have the

following four cases.
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Case 1. If {09, o} C &, then gy ¢ &, then by using (6.2.9) we get that J,,(0q, @) =
Do (00, @0), Jap (00, 00) = fay and Ju, (00, @o) = fla,- Thus (6.2.10) and (6.2.8)
implies that

Pag (00, wO) > Ooco (007 QO)M&O + Cao(QOa wO),uao

2 fhag F Hag
S 60(&) + 50(&)
) 2

= 00(&),

which is impossible because oq, @y € &.

Case 2. If 0y € & and wy ¢ &, then by using (6.2.9) we get that J., (00, @0) = fag
and J,, (00, @0) = flag- Thus (6.2.10) and (6.2.8) implies that

Hag > Cao (007 QO)pao (007 QO) + COL()(QO? wO)/vbam
which is not possible for every gy € Q.

Case 3. If 09 ¢ & and wy € &, then by using (6.2.9) we get that J.,(00,@0) = fag
and J,, (00, 00) = fa,- Thus (6.2.10) and (6.2.8) implies that

Moy > an (007 QO)Mao + Cao(QOa wO),uaoa
which is not possible for every oy € Q.

Case 4. If 0g ¢ & and wy ¢ &, then by using (6.2.9) we get that J,, (00, @0) = fag
oo (005 00) = fay and Joy (00, @0) = fla,- Thus (6.2.10) and (6.2.8) implies that

Hag > Cozo (007 QO)M@O + Cao(QOa wO),uaoa
which is not possible for every oy € Q.

Thus our supposition was wrong and hence for all « € Z we have

Ja(C,7) < 5a(C€)Jal(C:§) 4 Sal&,7)Ja(§; 7) for all ¢, &, v € Q.
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Assume that the sequence (s,,) and (t,) in Q satisfy (6.2.2) and (6.2.4). We need to
show that (6.2.6) holds. Indeed, (6.2.4) implies that Vo € Z, V 0 < € < p, there exists
mo = mo(a) € N such that V. m > N, we have

Jo(Smytm) < €. (6.2.11)

Denote m' = min{my(«) : « € T}, we can see by (6.2.11) and (6.2.9), that V. m > m/,
E N {Sm,tm} = {Sm,tm}. Thus in view of Definition 6.2.1(a), (6.2.9) and (6.2.11), this
implies that Vo € Z, V 0 < € < p, there exists m’ € IN such that ¥V m > m/, we have

pa(smatm) = Ja(Sm,tm) < €.

This show that (6.2.6) holds. Thus Z¢.z is a left family generated by P¢.z.
In the similar way, we can show that Zc.7 is a right family generated by Z¢.z. We
have proved that Zc.z € J(LQ%;I) N J&,Wc;z) holds. O

Definition 6.2.4. Let (Q, Z¢.z) be a CQT space and _Z¢.7 be a L(R) family generated
by Pc.z. Let (n,) be a sequence in 9.

1. We say that (n,,) is L(R) _Zc.z-Cauchy sequence if Vao € Z we have

lim sup Ja(nmynn) =0 ( lim sup Ja(nnanm) = 0) :

2. We say that (n,) is L(R) _Zc.z-convergent to n € Q if

L_/C;I R_/C';Z
n € LIM{ (n € LIM - ) ,

where
LIM{, /o7 = {u €0 : lim Jo(u,mm) =0 Vae I}
m m—»00
(LIM{};{W - {u €Q ¢ lim Jo(m,u)=0 Vae I}) .
m m—00

3. If every L(R) _Zc.z-Cauchy sequence (7,,) is L(R) _Zc.z-convergent in 9 (i.e.,
LIM (/7 £ ¢ (LIM@;{C%I S Q))), then the space (Q, P¢.z) is said to be L(R)

Fc.r-sequential complete.
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The proof of the following result is similar to the case of quasi-triangular space [59].

Theorem 6.2.5. Let (Q, Z¢.z) be a CQT space, and let Zc.z be the L(R) family
generated by Pc.z. If Pc.r is separating on Q, i.e. if for all n,£ € Q with n # &, there
exists a € Z such that

Pa(n,§ >0V pa(&,m) >0, (6.2.12)

then fZc.r is separating on £, i.e. for all n,{ € Q with n # &, there exists o € Z such
that
Jo(n, & >0V Jy(&n) > 0. (6.2.13)

6.3 Banach type theorem in controlled quasi-triangular
spaces

In this section, we discussed a Banach type theorem in the setting of C'QT spaces.

Definition 6.3.1. Let (Q, Z¢.z) be a CQT space and _Zc.z be the L(R) family gen-
erated by Pe.r. Let F : Q — Q be amap, A = {\, : @ € Z,\, € [0;1)}, and
n = lor2.

(A)If Zog € ‘]]%Q, 0., then the left quasi-distance .@é;{’g “* on 9 is defined by

95 7T — (DETOT  Q x Q= [0,00),a € T},

Qn 7,95«
where Voo € ZVo,0 € Q
Dia (0, 0) = max{Ju(0, 0), Ju(0,0)}, (6.3.1)
Dyaa’(0,0) = Jal0,0).

We say that f is a left (95;7’@ <% X)-controlled quasi-contraction on Q if Voer Vo peq

S\(0,0) Dy a2 (T(0), T(0)) < Aadalo, 0), (6.3.2)

UBeHe
and for each oy € Q with 0,1 = T(0,,) we have

i DalTi1 0ive) o

1
; < —.
m,i—300 Sa(O'i, 0_i+1) a(01+17 Um) )\a
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(B) If Zez € V(G ., then we define the right .@gzjc‘z quasi-distance on £ by

Doy’ =Dyl 1 Qx Q= [0,00),a € T} where Yaer Yo pea

Dyt (0, 0) = max{Ju(0, 0). Ju(0,0)}. (6.3.3)

R— Z0.
Dyl (0, 0) = Ju(o, 0).

We say that [ is right (@g " oz, A)-controlled quasi-—contraction on Q if Vaez Vs pen
we have

Sx(a, 0)DES 7T (T(0), T(0)) < Aada(a, 0), (6.3.4)

;0
and for each o € Q with 0,1 = T(0,,) we have

. Sal0is1,0042) 1

lim ———————25,(0i41,0m) < —.
m,igloo Sa(O'i, Ui—l—l) (U 1,9 ) Aa
Definition 6.3.2. Let (Q, Pc.z) be a CQT space and _Z¢.7 be the L(R) family gener-
ated by Pc.z. Let F : Q — Q be a map.

(A) Given gy € Q, we say that F is L(R) _Zc.z-admissible in gy if for the sequence

(om = T (0p)), we have LH\/[(LQ;’(/C;I £ 0 (LIMZ;/C;I #* @) whenever

M—00 p>m m—=on>m

lim sup Ju(0m, 0n) =0 ( lim sup Ju(0n, 0m) = O> , YVael. (6.3.5)

(B) we say that f is L(R) Zc.z-admissible on 9Q, if F is L(R) _Z¢.z-admissible in each
point gy € Q.

Following is the generalization of continuity.

Definition 6.3.3. Let (Q, Z¢.z) be a CQT space. Let F : Q — Q be amap and k € IN.
The single-valued dynamical system (9, F ¥]) is called a L(R) Z¢.z-closed on £ if for
each sequence (z,,) in F*¥(Q), L(R) P¢.r-converging in 9 and having subsequences
(vm) and (u,,) satisfying that for all m € N,v,, = F¥(u,,), the following property
holds:

dn e LIM(LQ;{C;I (LIMZ;()]C;I) such that n = £ ¥ ().

Now we present the main result of this chapter.
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Theorem 6.3.4. Let (Q, Zc.r) be a CQT space, F : Q — Q a map, ¢ € {0,1} and
A={X €[0,1) : a € TI}. Suppose that there is a L(R) family _#c7 generated by
Pc.r and a point 0y € Q which satisfy the following properties.

(ar) F is left (.@ézf “% ) controlled quasi-contraction (right (@52/ “% ) controlled

quasi—contraction) on .
(az) F is L(R) _Z¢.z-admissible in a point oy € Q.
Then the following hold.

(by) There exists a point w € Q such that the sequence o, = F"0¢ is L(R)-Pc1

convergent to w.

(by) If the dynamical system F* is L(R) Pc.r-closed on 9 for some k € IN, then
Fiz(F*) # 0, there exists a point @ € Fiz(F*) such that the sequence o, =
F"(00) is L(R) Pc.r-convergent to w, and for all a € Z, V ¢ € Fiz(F*) we have

Ja(C F(Q)) = Ja(F(€), €) = 0. (6.3.6)

(b3) If the family Pc.r is separating on 9 and if the map F* is L(R) Zc.z-closed on
1 for some k € IN, then there exists a point @w € 9 such that

Fiz(F*) = Fiz(F) = {w}, (6.3.7)
and the sequence o,, = F "(0y) is L(R) P¢.z-convergent to w, and for all o € 7,

Jo(w, w) = 0. (6.3.8)

Proof. We only prove the theorem for the case of left. The proof for right is based on

analogous technique.
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(by) For og € Q, let 0, = F" Y(0,_1) = F"(0¢). By using the Definition 6.3.1 we have,

Ja(ana Un+1) S Di:)ic;z (Un7 Un+1)
= Dyl (F (o), F (on)

A
< —/—" —1,0n
S Silonaony Jelon-1:0n)

S )\aJa(O'n—la Un)

<ADL A (001, 0)

7950
= Ao DLl (F (0u2). F (00-))
Aa
<A Ja(0n7270n71>

o aSa(O-nf% O-n71>

S )\iJa(o'nf% O-nfl)

S )\ZJQ(O'[),Ul). (639)

Now if we take m > n, then by using (6.3.9) and (6.1.1), we have
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S Sa(o-naa-n-l—l)Ja(o-naO_n-l—l Z ( H S Ujagm) (O-iao-i—i-l)Ja(O-i»O-i—i-l)

i=n+1 \j=n+1

m—1
+ ( Sa(aka Um)) Joz(O'mfla Um)
S,

m—2 i
a(0n, Ont1)Ag Jal00, 01) + Z ( H Sa<0j70m>> Sea(0i, Ti41) Ay Ja (00, 01)
j

i=n-+1 j=n+1

m—1
+ ( Sa(ak,am)> )\;”_IJQ(UO,Ul)
S

a(On; On41) A0 Ja(00, 01) + Z (H Sal Umam) a(0i,0i41) Ao Ja(00, 01)

i=n+1 \j=n-+1

m—1
+ ( Sa(akaom)> Sa(am—lagm)AZl_lJa(O-Oaal)
S

k=n-+1
m—1 )
< Sal0n, o)) Ao dalo0,01) + > (H Sa(aj,am)> Sa(0i, 0i41) Mg Ja(00, 01)
1=n+1 \j=n-+1
< (Hsa(0n70n+1)> Aadal00, 01) + Z (HS Um%) a(0i,0i41) N Ja(00, 01)
j i=n+1
= J 0-070-1 Z (HS 0j,0m ) (O-i70-i+1)AZ(‘X'
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an = (H Sa(aj) Um>> )‘ZSa(O-na Un-l-l) and S = Zan'
i n=1

Since by Definition 6.3.1, A, limy, ;00 %Sa(aiﬂ, om) < 1, so the series S

converges because by using ratio test we have

Aa)\g <H?:11 Sa<0_j7 Um)) Sa(0n+17 0n+2)
e (H?:1 Sal0j, O'm)> Sa(Ony0ni1)

_ Aa 111'11 Sa(gn+17 0n+2)
n,M—00 Sa(gn+17 Un+1)

. a .
lim /1 < lim

Sa(Opi1,0m) < 1.

Thus Sun,,_1—Sum, = [Zygf (Hj‘:o Sal0j, Um)) Se(oi, O'H_l)/\ia} —0asn,m —
oo and so is J, (09, 01)(Sumsy,—1 — Sum,,), where Sum,, = »_", a;. This shows
that for all « € Z we have

lim sup J,(0,,0m) = 0. (6.3.10)

n—oo m>n

Now, since (Q, ) is left _Zc.z-admissible in oy € Q, so by Definition 6.3.2 there

exists a point w € Q such that for all & € Z we have

lim J,(w,o,) = 0. (6.3.11)

n—oo

By defining s,, = 0, and t,, = w for all n € {0} UN, then by (6.3.10) and (6.3.11),
we can see that the conditions (6.2.2) and (6.2.4) hold for the sequences s, = o,
and t,, = w in Q. Thus by Definition 6.2.1, (6.2.6) holds, i,e, for all & € Z we have

lim pa(@,0,) =0, (6.3.12)

n—oo

and so in particular @ & LIMﬁ;gZ G,

We only prove that (6.3.6) holds. For this, suppose on contrary that 35 € Z
and there exists n € Fix(F*) such that Js(n, F(n)) > 0. But then we have
n=F*n) = F%*@), F(n) = F2(T(y)) and for ¢ € {1,2}, by Definition 6.3.1 we
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have

0 < Js(n, F(n) = Js (F*(n), F*(F (1))
< Dia” (P (). 24 ()

Ag 2%k—1 2%k—1
< (s ) (o)

)\ﬁ L= Jeox 2k—1 2k—1
: <55(F2k—2(77)7 F2k—1(n>)> Dear™ (P ), P27 ()
N 2%—2 2%—2
= <55(F2k_2(77), F26=1(n)) - Sg(f 2+=3(n), F2k—2(n))> Js (F?72(n), F**72(F (n))

IN

(.

<

~ I, Ss(F7=2(m), Fi=(n))
< Js(n,F(n))

> Js (0, F(n))

which is not possible. Thus for all @ € Z and for all n € Fix(F*) we have

Jo(n, F(n)) = 0. (6.3.13)

Now it is easy to show that for all « € Z and for all n € Fiz(F*), Jo(F (n),n) =0
by using (6.3.13) and the fact that n = £ *(n) = F?*(n). Thus (6.3.6) holds true.

(b3) Next we show that properties (6.3.7) and (6.3.8) hold. For this, suppose that there
exists n € Fiz(F") such that F (n) # n. Then since the family Zc.zr is separating
on £, so there exists a € Z such that

Pa(F(1),1m) >0 V pa(n, F(n)) > 0.

Thus in view of (6.2.5), we get that there exists « € Z such that J,(F (n),n) >
0V Ju(n, F(n)) > 0, which is not possible by property (6.3.6). Hence F (n) =7
and thus Fiz(F*) = Fiz(F), which is (6.3.7).

Now we prove the property (6.3.8). By property (6.3.6), we conclude that for all
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a € T and for all n € Fix(FF),

Jo(n,m) < Sa(n, F(0))Ja(n, F(n) + Sa(F (1),m)Ja(F (n),n) =0+ 0=0.

Finally we prove that Fixz(F) is singleton set. For this, let wy, ws € Fiz(F ) and
wy # ws. Then, since the family ¢,z is separating on 9, so there exits § € 7
such that {ps(wy, wa) > 0Vps(ws, wi) > 0}. By (6.2.5), we obtain that there exits
f € T such that {Jz(wy, ws) > 0V Jg(ws, w;) > 0}. Consequently, for ¢ € {1,2},
by Definition 6.3.1, we conclude that there exists § € Z such that either

Js(w1, @a) = Js(F (1), F (2))
< DEnl  (F (@), F (w2))

= (ﬁ) Js (w1, w2)

< J,B(wla w?)a
or,

Jg(@, @w1) = J(F (@2), F (1))
< D (F (@), F (1))

< Jﬁ(?ﬂg, ’Zﬂl),

which is not possible. Thus Fiz(F ) is a singleton set and hence (6.3.7) and (6.3.8)
hold true.

6.4 Consequences and applications

In this section, we have discussed some consequences of the Theorem 6.3.4 and an

example which fulfill the assumption of Theorem 6.3.4.
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Example 6.4.1. Let Q = (0,6), v > 3 and A = A; U Ay where A; = (0, 3], A2 = [5,6).
Let p: Q2 — [0,00) be defined by

if A -
p(C,m) = ’ NG =ien (6.4.1)

v it An{¢n} #{¢
and let sy = sy = {p} with S(¢(,n) =1 V (,n € Q. Define a map
F:Q— by
5 if ne(0,4)
F(n) = (6.4.2)
3 if nel4,6).
1. (Q,Zsy,q13y) is a CQT space. Indeed (6.4.1) implies that for all (,&,n € Q,
p(¢,n) < p(¢, &) + p(&,n). Because if it is not true and there exist (o, &, 1m0 €
9 such that p(¢o,m0) > p(Co, &) + p(&o,mo). Then clearly p(¢yp,m0) = ~va and

p(Cos §0) = (&0, m0) = 0, implies that AN {Co,m0} # {Cos M}, AN {0, &} = {Co, &0}
and AN {&,n0} = {0, n0}, which is not possible.

2. For A € [0,1), the dynamic system (Q,F) is (.@{:g%l}’{l},/\) controlled quasi-

contraction on Q. Indeed, for all ¢, € Q implies that F (¢), F (n) € A and so we

have
DERT I (1 (), F () = 0.< Ap(C,m).

3. The dynamical system (Q, F ) is left and right Z?(y,113-admissible in Q. Clearly for
any 1o € Q, The sequence 1, with 7,11 = F (1,,), satisfies lim,,_, oo SUP,,<,, D(Mns ) =
0. Thus by using (6.4.1) and (6.4.2) we have n,, € A. This gives us that LIMf,n_y{l}:{l} =
LIM,. 70 = 4,

4. The single-valued dynamical system (9, F?) is left and right Z(1y.113-closed in Q.
Indeed, if (n,) € F?(Q) = {3,5} is a left Pp1y.13-convergent sequence in Q and
having subsequence (uy), (v,) such that V n € N, wv, € F(u,). Then by using
(6.4.1) and (6.4.2) we have LIM#;y{l}:“} = LIMWRn_y“}:“} = A. In particular,
3= F2(3) € LIMy, " and 5 = F2(5) € LIM,, 007,
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5. The family Zy.13 = {p} is not separating on Q. Since if (,n € Q such that
¢.n ¢ A, then p(¢,n) = p(n,¢) =7 #0.

Considering the cases 1-5, we can see that (by) and (by) of Theorem 6.3.4 hold. But b5

does not holds, because the family is not separating.

Now we have discussed some consequences of the Theorem 6.3.4. Following is one
of the main results in [59] which is directly proved if we define S,(n,&) = C, for all
n,& € Q in Theorem 6.3.4.

Theorem 6.4.2. [59] Let (Q, Pc.zr) be a quasi-triangular space and let f : Q — Q
be a single-valued dynamical system. Let ¢ € {0,1} and A = {\, € [0,1) : a € T}.
Suppose that there is a left (right) family #c.z generated by ¢z and a point oy € Q
which satisfy the following properties.

(a1) F is L — (@éy_gfc;z, A) quasi-contraction (R — (@g’gfc;l, A) quasi-contraction) on
Q.

(ag) F is left (right) Zc.z-admissible in a point o € Q.
Then we have the following.

(b1) There exists a point w € 9 such that the sequence o,, = F "0y is left (right)-Pc.7

convergent to w.

(by) If the map F* is left (right) Pc.z-closed on Q for some k € IN, then Fix(F*) # 0,
and thus there exists a point w € Fiz(F*) such that the sequence o, = F "(0y) is

left (right) Pc.r-convergent to w, and for all « € Z, V ¢ € Fiz(F*) we have
Joa(C? F(g)) = JOC(F(Q-)’ C) = 0.

(bg) If the family Pc.7 is separating on Q and if the mapping £ * is left (right) Pc.z-
closed on 9 for some k € IN, then 3 1 € Q such that

Fiz(r*) = Fiz(F) = {n},
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and the sequence o, = F"(0p) is left (right) Zc.z-convergent to 7, and for all
a€el,

Jo(n,m) = 0.

The main results of Banach type for triangular spaces is direct consequence of our

result 6.3.4 when we define S,(n,£) =1 for all n,£ € Q.

Corollary 6.4.3. Let (Q, Z¢.z) be a triangular space and f : Q — Q be a map. Let
¢ € {0,1} and A = {\, € [0,1) : a € Z}. Suppose that there is a left (right) family
Hc.1 generated by Pz and a point oy € Q such that the following axioms satisfied.

(a1) F is L — (.@52/0;2,)\) contraction (R — (.@gzjci, A) contraction) on 9.
(ag) F is left (right) Zc.z-admissible in a point oy € Q.
Then we have.

(by) If the map F* is left (right) Pc.z-closed on Q for some k € IN, then Fix(F*) # 0,
and thus there exists a point w € Fiz(F ") such that the sequence o,, = F "(0y) is

left (right) Pc.r-convergent to w, and for all « € Z, V ¢ € Fiz(F*) we have
Joz(C? F(C)) = JO&(F(C)a C) = 0

(by) If the family Pc.r is separating on Q and if the mapping £ * is left (right) .-
closed on £ for some k& € IN, then dn € Q such that

Fiz(F*) = Fiz(F) = {n},

and the sequence o, = F"(0p) is left (right) Zc.z-convergent to n, and for all
a€el,

Jo(n,m) = 0.
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