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Preface

The clarity and effectiveness of fixed point theory has motivated several re-
searchers to explore it not only in single valued but also in multi-valued map-
pings. Banach contraction principle has attained its fame in case of single
valued mapping and attracted various authors for many years. The principle
assures the uniqueness and existence of fixed point of specific self-maps on
complete metric spaces and gives a powerful tool to estimate the fixed point.
The panoptic and comprehensive aspect of Banach fixed point theorem has
led to a number of generalizations of the result. Banach contraction principle
is expanded by Nadler to multi valued mappings using the idea of Hausdorff
metric spaces. The frequent appearance of fixed point theory in modern sci-
entific fields has forced researchers to analyze this field from more general
point of view. From various aspects this field has been explored such as by
generalization of metric spaces and the contraction conditions.

The study of gauge spaces was initiated by Dugundji which generalize met-
ric spaces. Gauge spaces have the property that even the distance between two
different points of the space may be zero. This simple characterization has
been the center of interest for many researchers world wide. Reilly designed
quasi-gauge spaces in 1973 and showed that it is generalization of quasi uni-
form spaces, quasi metric spaces and topological spaces. The quasi-gauge space
generates asymmetric structure which has applications in theoretical computer
science.

Given a quasi-gauge space, Wlodarczyk and Plebaniak have introduced the
notion of left(right) families of generalized quasi-pseudo distances in quasi-
gauge space. These left(right) families generalize the quasi-gauge and provide
significant and useful tools to obtain more general results with weaker assump-
tions in fixed point theory.

The object of this dissertation is to study the results of periodic and fixed
points for single and multi-valued mappings in generalized gauge type metric
spaces and to add some more widely applicable results to the literature.

This dissertation mainly contains 5 chapters. Chapter 1, contains some
basic definitions, significant results and some generalizations of contraction
mapping relevant to our work. Also, some generalizations of metric space
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along with their properties that make these spaces remarkable then metric
spaces are discussed.

Chapter 2, comprises of three sections. In the first section, we intro-
duce Js.o-families of generalized pseudo-b-distances in b-gauge spaces (U, QS;Q).
Moreover, by using these Jsqo-families on U, we define the J;qo-sequential
completeness which generalizes the usual Q; o-sequential completeness. In the
second section, we develop novel results for periodic and fixed point of F-type
contractions in the setting of b-gauge space using Js.qo-family on U, which
generalize and improve the existing results in the corresponding literature.
An example validating our result is given at the end of the section. In the
third section we derive some fixed point results for mappings in b-gauge space
equipped with the graph as a consequences of our results obtained in second
section. At the end of the section, the validity and importance of our theorems
are shown through an application via existence theorem for integral equations.

Chapter 3 consists of four main sections. In the first section, we estab-
lish the concept of quasi b-gauge space (U, Q,q). In the second section, we
introduce the notion of left (right) Js.o-families of generalized quasi-pseudo-
b-distances generated by Q.. In the third section, we prove novel periodic
and fixed point theorems in quasi b-gauge space, which generalize the existing
results due to Nadler and Banach in the corresponding literature. The last
section comprises of some important consequences of the obtained results.

Chapter 4 consists of five sections. In the first section, we introduce the
notion of extended b-gauge spaces (U, QW;Q). In the second section we estab-
lish the notion of extended J,.o-families of generalized extended pseudo-b-
distances. In the third section, we investigate novel results for periodic and
fixed points of multi valued mappings in extended b-gauge space equipped
with a graph. In the fourth section, in extended b-gauge spaces the periodic
points for Caristi type G-contractions are discussed. The last section contains
important consequences of the results obtained.

Chapter 5 consists of four main sections. In the first section, we initiate
the idea of extended quasi b-gauge space (U, Q,q). In the second section,
we introduce the notion of extended left (right) J,.o-families of generalized
extended quasi-pseudo-b-distances generated by Q.. In the third section, we
investigate novel periodic and fixed point theorems in the locale of extended
quasi b-gauge space, which generalize and improve the existing results due
to Banach and Rus in fixed point theory. The last section consists of some
important consequences of the results obtained. Each section of this chapter
includes some examples to illustrate the corresponding results.
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Chapter 1

Introduction and Preliminaries

In order to make this dissertation self content and pedagogical, this chapter
aims to recollect some elementary definitions, notions and results which are
relevant to our work.

The first section defines fixed and periodic points for single and multi-
valued mappings and states the renowned fixed point theorems due to Banach
and Nadler. Moreover, the definition of semicontinuity of a function is dis-
cussed. The second section comprises of some generalizations of contraction
mapping which we will use in our results. The third section defines some well
known distance spaces and contains a detailed diagram showing hierarchy of
these spaces.

1.1 Fixed and Periodic Points

In this section we discuss fixed and periodic points for single and multi-valued
mappings.

1.1.1 Single-valued Mappings

Let X be a non empty set. A point x € X is said to be a fixed point of f : X —
X if f(z) = z. In case X = R we observe that fixed points are precisely the
points where the graphs y = f(x) and y = x intersect. We denote by Fix(f) the
set of all fixed points of f, i.e., Fix(f) :={x € X : z = f(x)}. A function may
or may not have a fixed point. Further, the set of fixed points of a function may
or may not be finite. It may happens that a mapping f does not has a fixed
point but some of its iterate f*, where k& € N has a fixed point. Such a point
is called the periodic point of f with period k. we denote by Per(f) the set of
all periodic points of f, i.e., Per(f) := {z € X : v = flFl(z) for some k in N}.

1



2 Chapter 1. Introduction and Preliminaries
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Figure 1.2: Periodic points of mappings.

1.1.2 Multi-valued Mappings

Let X and Y be two non void sets. A multi-valued map or set-valued map is
a mapping 7' : X — Y relating a subset T'(z) of a set Y with every z € X.
For the case when T'(z) has exactly one element for each z € X, the map
T : X — Y becomes a single-valued map. Thus single valued maps are special
case of set-valued maps. Let T': X — 2% is a multi-valued map then a point
x € X is said to be the fixed point of T" [55], if x € T'(x). Let Fix(T") indicates
the set of all fixed points of of T, then Fix(T) = {xr € X : z € T(x)}. A
point € X is called to be periodic point [52] of T : X — 2% if x € T (x),
for some k € N, where T™(z) = T(T" (z)) = Uy cqn-uTy. Let Per(T)
symbolizes the set of all periodic points of T then Per(T) = {x € X : x €
Tk (z) for some k in N}.

Example 1.1.1. Let X = [0,1] and let map T : X — 2% is defined by
T(x)=1[0,z], forall ze X.
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Then Fix(T") = [0, 1].

(a) Fix(T) = [0,1]

Figure 1.3: Fixed points of multi-valued mapping.

1.1.3 Banach Fixed Point Theorem

Banach realized the importance of Picard method of successive approximation
in finding solution of integral and differential equations and puts these ideas
in to firm abstract settings [1]. The following theorems appeared first time in
Banach Ph.D. thesis [1].

Theorem 1.1.2. (Banach contraction principle [1]) Let (X, d) be a com-
plete metric space and f : X — X if there exists pu € [0, 1) such that

d(fz, fy) < pd(z,y) (1.1.1)

for all z,y € X. Then for each 2y € X, the sequence (1, = f™(zy) : m € N)
converges to the unique fixed point of f.

Banach contraction principle is a very useful tool in finding zeroes of poly-
nomials, solving system of algebraic equations, to obtain solution of differential
and integral equations. It has also been used in computational mathematics
for proving the convergence of algorithms.

Here we briefly discuss its use in image processing. Noise is an unwanted
factor which attempts to fail many image processing algorithms [2]. The Ba-
nach contraction principle is effectively used in image denoising [3]. In this case
we generally consider the Banach space X = R¥*M with suitable norm such as
||z|| = max; ; |x(4, j)|. Further, the median filter My, : X — X for a given win-
dow W (a window simply means that it is a sliding submatrix in a given image
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matrix) is defined by My (z)(i,7) = median of {z(i + a,j + b) : (a,b) € W}.
For a noisy image V' € X is given and we seek to the solution of the equation

U=(1-a)V+aMyU) for a€|0,1) (1.1.2)

as a denoised image of V. The model defined in (1.1.2) suggest that an image
is unchanged, V = U if and only if My (V) = V. The recovered image using
Banach contraction principle can be seen in figure 1.4.

a) Noisy image (b) Denoised image

Figure 1.4: Image denoising using Banach contraction principle.

1.1.4 Nadler’s Fixed Point Theorem

Nadler [55] expanded Banach fixed point theorem to multi-valued mappings.
We begin with the definition of Hausdorff metric. Let (X, d) be a metric space
and C'B(X) be the class of all closed and bounded subsets of X. For all
A, B € CB(X) we define

HY(A, B) = max{sup, ,d(z, B), sup,cpd(y, A)},
where for all z € X and for all B € CB(X)
d(z, B) = infyepd(z,y).
The function H? : CB(X) x CB(X) — R is said to be Hausdorff metric on

CB(X). It is well known that completeness of (X, d) implies the completeness
of (CB(X), H?).
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Theorem 1.1.3. [Nadler fixed point theorem [55]] Let (X, d) be a com-
plete metric space and let 7' : X — CB(X) satisfies (H?, p)-contraction, i.e.,
there exist u € [0, 1) such that

H (T(x),T(y)) < pd (z,y)
for all ,y € X. Then there exists z € X such that z € T(z), thus, Fix(T) # 0.
Example 1.1.4. Assume X = [0,1]. Define map 7 : X — 2% by

T(z) =10,2%, forall z€ X.

Then Fix(T') = {0, 1}.

1.1.5 Semicontinuity

In this subsection we define semicontinuity of functions. To define semiconti-
nuity we define the notions of limit supremum and limit infimum of a sequence.

We know that every convergent sequence is bounded, but every bounded
sequence may not be convergent. For instance, ((—1)" : m € N) is a bounded
sequence which is not converent. For convergence in bounded sequence we
define weaker condition of convergence which is known as limit supremum and
limit infimum.

For this, let (u,, : m € N) is a bounded sequence. Let vy = sup{u,, : m >
N}, thus

U1 = Sup{uh Ug, U3, }7
vy = supq{ug, ug, Uy, ...},

v3 = sup{us, uy, us, ... }, ...

then v > v9 > w3 > vy > ...
Thus (vy) is a decreasing sequence and obviously bounded. Hence it conveges
to its infimum. i.e.,

lim vy = inf{vy, vy, v3, ... }.
N—o0
This implies

limsup u,, = lim vy
m—00 N—o0

= limsup{u,, : m > N},
N—00
where limsup,,,_, . Uy, is denoting limit supremum of the sequence (u,y,).
The following example illustrates the concept perceptibly.
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Suppose (uy, :m € N) = 4,32 1,—1,1,—1,1.... is a bounded sequence. Al-
though this sequence doesnot converge, but we can find its limit supremum

which always exists. To do this we construct a helper seqence vy = sup{u,, :
m > N}, thus

vy =sup{uy, ug, us, ...} =4,
Vg = supqug, ug, g, ...} = 3,
v3 = supq{us, uy, us, ...} =2,
vy = supq{ug, us, ug, ...} = 1,

vs = supqus, ug, uz, ...} =1, ...
then v > ve > w3 > vy > ...
Thus (vy) is a decreasing sequence and obviously bounded. Hence it conveges

to its infimum which is 1.
Thus we can write

YA

3
N
2 limsu
. -
i
1 1] & 1
[ ] —»
4 T T T T : T I| l| »
1 2 3 4 5 7 8 9 X
+ [] ¢ [ ]
) =1 - =1
Y

lim sup u,, = limsup{u,, : m > N} = 1.
m—00 N—o0

From the above definition and example of limit supremum we obseve the fol-
lowing important points.

Remark 1.1.5. (i) We observe that even though the lim,, . u,, doesnot
exists, but limsup,, . u, always exist. Also note that if the sequence
(u,) is convergent to u, then limit supremum must be equal to w.
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(ii) limit supremum is not the same as supremum, because supremum is the
biggest value of the sequence which is 4 but limit supremum is 1.

(iii) If (u, : m € N) is not bounded above then limsup,,_, . t, = 0.

Analogously, we can define limit infimum of a sequence (u,,). Thus we have
the following definition.

liminf u,, = liminf{w,, : m > N},
m—00 N—oo

where liminf,, , t,, is denoting limit infimum of the sequence (u,).

Definition 1.1.6. An extended real-valued function f: X — R U {—o0, o0}
is said to be upper (lower) semi-continuous at a point z € X, if and only if

limsup f(z) < f(7),

T—T

(timint f(2) = £(2)),

T—T
where limsup (liminf) is denoting limit supremum (limit infimum) of the func-
tion at z. A function is upper (lower) semi-continuous function if it is upper
(lower) semi-continuous function at every point of X. Also a function is con-
tinuous if and only if it is both upper and lower semi-continuous.

Following examples and diagrams illustrate the concept perceptibly.

Example 1.1.7. The real function f defined by

x if v <1,
f(w)_{x+1 if £ > 1.

is upper semi-continuous at x = 1.

Example 1.1.8. The real function f defined by

x if z <1,
f(z)_{x+1 if o> 1.

is lower semi-continuous at z = 1.
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Figure 1.6: Lower semi-continuity at z = 1.

1.2 Generalized Contractions

A mapping f : X — X fulfilling condition (1.1.1) is said to be a contraction.
This contraction condition plays pivotal rule in proving that the iterative se-
quence of the function is Cauchy. Banach proved that every contraction on a
complete metric space has a unique fixed point. Now a question arises what
happen if the given function is not a contraction or if the contractive condition
does not hold for all pair of points in X x X. So, attempts were made to obtain
fixed point of mapping which are not contraction in the sense of (1.1.1).

In this section we will discuss some contractive conditions which are more
general than the contraction condition (1.1.1). Indeed there are numerous
generalization of the contraction mapping (1.1.1) but we will present only those
generalization of (1.1.1) which we will use in our results. All over, this section,
X denotes a nonempty set equipped with a metric d, unless otherwise stated.
Further, we will call a mapping f satisfying (1.1.1) as Banach contraction.
Observe that a Banach contraction is continuous.
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1.2.1 Rus contractions

Rus [4] proved that a mapping f on a complete metric space satisfying con-
tractive condition (1.1.1) for all pair of points in X x f(X) instead of X x X
still has a fixed point.

Definition 1.2.1. [Rus contraction [4]] A mapping f : X — X is called
Rus contraction, if there exists p € [0, 1) such that

d (fx,f%) < pd(z, fx) forall z € X. (1.2.1)

By taking y = f(x) in (1.1.1), we see that every Banach contraction is a Rus
contraction. The converse is not true as exhibited in the following example.

Example 1.2.2. Let X = [0, 1] is endowed with usual metricd and f : X — X
is defined by

for 0 << 3,
for%ﬁxgl.

fx) =

—
SIS

Note that f is not continuous at x = %, and thus it is not a Banach contraction.
By taking p = %, we see that f is Rus contraction.

1.2.2 Caristi mapping

By introducing a lower semi continuous function from a metric space into the
set of non-negative real numbers, Caristi [5] generalized Rus contraction in the
following manner.

Definition 1.2.3. [Caristi mapping [5]] A self map f on X is called Caristi
mapping if there is a lower semi continuous function ¢ : X — [0, 00) such that

d(z, fx) < ¢(x) — ¢(fz) forall z € X. (1.2.2)

Taking ¢(z) = d(%if)), where 1 € [0,1), we see that every Rus contraction
is a Caristi mapping. Following example substantiate that a Caristi mapping
need not to be a Rus contraction.

Example 1.2.4. Let X = {0, 1,2}, define the metric d : X x X — [0,00) by

d(0,1) = 1,d(2,0) = 1,d(1,2) = ;,d(a,a) —0,Ya € X and d(a, b) = d(b, a)¥a,b € X.

Define f : X — X by
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and ¢ : X — [0,00) by

¢(0) =0, ¢(1) =4, ¢(2)=2.
Clearly f is a Caristi mapping. Since d(f(0), f2(0)) = d(0, f(0)), f does not

satisfy Rus contraction condition. Also f does not satisfy Banach contraction

since d(f(1), f(0)) = d(1,0).

1.2.3 Banach G-contraction

Jachymaski [6] generalized Banach contraction by considering a graph G =
(V,E) in X x X, where the vertex set V = X and the edge set E contains
the diagonal but includes no parallel edge. He showed that the conclusion of
Banach theorem remained valid if the condition (1.1.1) holds for those ordered
pairs which form edges in the graph.

Definition 1.2.5. [Banach G-contraction [6]] A mapping f : X — X is
called Banach G-contraction, if there is p € [0,1) such that:

(a) (z,y) € E= (fa,fy) €E
(b) d(fz, fy) < pd(z,y)
for all (z,y) € E.

Every Banach contraction is Banach G-contraction, where the graph G is
defined by £ = X x X. The converse is not true as exhibited in the following
example.

Example 1.2.6. Let X = {0, 1,2, 3}, define d: X x X — [0,00) by
d(xz,y) = |z —vy|, forall x,ye€ X.
Then (X, d) is a metric space. Define f : X — X by

f(0>:O7 f(l):0> f(2):1> f(3):1,

Also define E(G) = {(0,1),(0,2),(2,3),(0,0),(1,1),(2,2),(3,3)}.
It is easy to see that f is a Banach G-contraction. To see that f is not a
Banach contraction, observe that

d(f(1), f(2)) = d(0,1) = 1 = d(1,2).

It is important to note here that just as Jachymaski [6] generalized Banach
contraction to Banach G-contraction by considering graph, others generalized
Rus contraction to G-graphic contraction [7] and Caristi mapping to Caristi
G-mapping [8] by considering graphs.
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1.2.4 « — i-contractive type mapping

By introducing two auxiliary functions Samet et. al., [9] generalized Banach
contraction as follows. They established the concepts of a-admissible and o —
1-contractive type mappings. A mapping f : X — X is called a-admissible,
where a : X x X — [0,00), if a(z,y) > 1 implies a(fz, fy) > 1, z,y € X.
Let ¥ indicates the family of non-decreasing mappings ¢ : [0,00) — [0, 00)
fulfilling the properties: (i) ¥(0) = 0; (ii) ¥(nt) = nY(t) < nt, for every
n,t > 0; and (i) 3377, ¢/ (t) < oo.

Definition 1.2.7. [a — ¢-contractive type mapping [9]] A self map f on
X is said to be a — 1-contractive type mapping, if we have

alz,y)d(fx, fy) < ¥(d(x,y)) forall z,y € X. (1.2.3)

If we take in (1.2.3) a(z,y) = 1, for all z,y € X and ¥(t) = ut, for each
t >0 and p € [0,1), we obtain Banach contraction. Every a — -contractive
type mapping need not to be a Banach contraction as shown in the following
example.

Example 1.2.8. Let X = [0, 1] is endowed with usual metric. Define f : X —
X by

2v if0<ax< i,

1 el

Since f is not continuous at x = %, so that f is not a Banach contraction.
But f is @ — 1-contractive type mapping with () = % and

L fo< 1
alzy) =44 1= DYSg
0 otherwise.
1.2.5 [F-contraction

In 2012, Wardowski generalized Banach contraction in another direction, which
he named as F-contraction. Wardowsiki [10] introduced the family § of all
functions F': (0,00) — R satisfying the properties given below:

(Fy) for any z,y € (0,00) with x < y we have F(z) < F(y);

(Fy) for any sequence (z,, : m € N) of positive numbers, we have lim,,, o, 2., =
0 iff lim,,, oo F(z) = —00;

(F3) there exist p € (0,1) such that lim, ,o+ 2P F(z) = 0.
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Some examples of the functions F': (0,00) — R are given below:
(i) Fr =2 +1Inz for any = € (0, 00).
(i) F, =Iny for any y € (0,00).

Definition 1.2.9. [F-contraction [10]] A mapping f : X — X is said to be
F-contraction if there exists 7 > 0 such that

d(fz, fy) > 0= 7+ F(d(fz, fy)) < F(d(,y)) forall 2,y € X. (1.24)

When we examine in (1.2.4) the various kinds of the mappings F' then we
get the different types of contractions, which are already known to us. For
instance, for F, = Inz, (1.2.4) is Banach contraction. Following example
substantiate that F-contraction need not to be a Banach contraction.

Example 1.2.10. [10] Define the set X by

1
X :={ty, :m e N} where tm:M

, for all m € N.
We consider the usual metric d on X. Define the map f: X — X by
f(tl) =1y, f(tm) =tm_1 for all m >1

since

AU, T()
m—00 d(tm, tl) ’

Therefore, f is not a Banach contraction. Now let us define F' : (0,00) — R
by
F(z)=xz+Inz forall x >0,

then the mapping f is a F-contraction, with 7 = 1.

Following Figure 1.7 is a hierarchy diagram showing a complete picture
of the relationship between the above mentioned contraction type conditions.

1.3 Distance Spaces

In the previous section we have discussed some generalizations of the Banach
contraction. This section will exhibit some generalizations of metric spaces
which are relevant to our work. The idea of metric spaces was originated
by the French mathematician Maurice Frechet [11] in order to generalize the
notion of usual distance function on the real line to more general settings.
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Caristi mapping

Rus contraction

Banach contraction | Banach G-contraction

Figure 1.7: Hierarchy of contraction type mappings.

Throughout, this section, X is a nonempty set and €2 is an index set.
Further, we recall that a metric space is a set X along with a function d :
X x X — [0,00) fulfilling for all z,y,z € X the properties: (a) d(x,y) > 0;
(b) d(z,y) = 0 if and only if = = y; (c) d(x,y) = d(y,x); and (d) d(z,z) <
d(x,y) + d(y, z) (triangular inequality).

1.3.1 b-metric spaces

The b-metric space is a fascinating generalization of metric space, initiated by
Bakhtin [12] in 1989. Later on, Czerwik [13] formally defined b-metric space
by giving an axiom which was weaker than the triangular inequality.

Definition 1.3.1. A map d : X x X — [0,00) is b-metric, if there is s > 1
fulfilling the following properties for all x,y, z € X:

(a) d(z,y) =0 iff z = y;
(b) d(z,y) = d(y,z); and
(c) d(x,z) < s{d(z,y) +d(y,2)}.

For prescribed b-metric d on X, the pair (X, d) is called to be b-metric space.
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When s = 1, we get the definition of a metric space. However, every b-
metric space need not to be a metric space if s > 1. Thus b-metric space
generalizes metric space. For evidence we give the following example.

Example 1.3.2. Suppose X = [0,1]. Describe d : X x X — [0,00) for all
r,y € X as:

d(z,y) = (z - y)*.
Then d is a b-metric on X, where s = 2.

We observe that d is not a metric on X, since for x =0, y = % and z = 1,
the triangular inequality does not hold.

It is important to note that b-metric is not continuous, in general. Further
detail on the topic of b-metric spaces can be seen in references [14, 15, 16, 17,
18, 19, 20, 21, 22].

1.3.2 Extended b-metric spaces

In 2017, Kamran et. al., [23] enriched the notion of b-metric space by amending
the triangular inequality and introduced the following definition of extended
b-metric space in view of generalizing b-metric space.

Definition 1.3.3. A map d : X x X — [0,00) is called to be an extended
b-metric, if there exists ¢ : X x X — [1, 00) satisfying the following properties
for all z,y,z € X:

(a) d(z,y) =0 iff = =y;
(b) d(z,y) = d(y,x); and
(c) d(z,2) < oz, 2){d(z,y) + d(y,2) }-

For prescribed extended b-metric d, (X, d) is called extended b-metric space.

We notice from the definition that when 1 < ¢(z,y) = s(a finite constant),
for all x,y € X, both the definitions of extended b-metric space and b-metric
space coincide. However, every extended b-metric space need not to be a b-
metric space. Thus the class of extended b-metric spaces is bigger than the
class of b-metric spaces.

Following are examples of extended b-metric spaces.

Example 1.3.4. [23] Let X = Cla,b]. Define d : X x X — [0,00) and
p: X xX —[l,00) for all z,y € X as follows:

d(z,y) = til[l% 2 (t) — y(1)]?,
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and
p(e,y) = |z + ly(O)] + 2.
Then (X, d) is an extended b-metric space.

Example 1.3.5. [24] Let X = [0,00). Define d : X x X — [0,00) and
@: X x X —[l,00) for all z,y € X by:

d(z, y) 0 if v =y,
x,Y) =
Y x+y ifx#y

and p(z,y) =x +y+ 1.
Then d is an extended b-metric on X but d is not a b-metric on X.

For more examples and recent results see [24, 25, 26, 27, 28, 29, 30].

1.3.3 (Gauge spaces

In 1966, Dugundji [31] initiated the idea of gauge spaces which generalizes
metric spaces (or more generally pseudo-metric spaces). Gauge spaces have
the characteristic that even the distance between two different points of the
space may be zero. This simple characterization has been the center of interest
for many researchers world wide.

Here, we discuss the topology induced by gauge spaces and the condition
in which these spaces are Hausdorff.

Definition 1.3.6. A map d : X x X — [0,00) is a pseudo metric, if for all
x,y,z € X it satisfies:

(a) d(z, ) =0;
(b) d(z,y) = d(y,z); and
(c) d(z,2) < d(z,y) +d(y, 2).
The pair (X, d) is said to be pseudo metric space.

Example 1.3.7. Suppose X = R? and define d : X x X — [0,00) by

d((v1,91), (T2, 92)) = |71 — 22| for all (z1,y1), (T2, 2) € X.

Then (X, d) is a pseudo metric space. However, since d((3,4), (3,6)) = [3—3| =
0, that is, two distinct points have distance 0, therefore, (X, d) is not a metric
space.

Definition 1.3.8. Each family D = {dg : § € } of pseudo metrics dg :
X x X —[0,00) for g € Q, is said to be gauge on X.
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Definition 1.3.9. The family D = {dg : § € Q} is called to be separating if
for each pair (z,y) where = # y, there is dg € D such that dg(x,y) > 0.

Definition 1.3.10. Let D = {ds : § € Q} is a family of pseudo metrics
on X. The topology T (D) on X whose subbase is defined by the family
B(D) = {B(x,e5) : © € X,e5 > 0,8 € Q} of all balls B(z,e5) = {y € X :
ds(z,y) < €s}, is called the induced topology.

Definition 1.3.11. A topological space (X, T) is called a gauge space, if there
exists gauge D on X with 7 = T(D). The pair (X, 7 (D)) denotes gauge space
and is Hausdorff if D is separating.

Example 1.3.12. Let X = R? and let dy,dy : X x X — [0,00) are defined
for all (xy1,v1), (z2,y2) € R? by

di((z1,91), (T2, 92)) = |v2 — 21| and do((z1,91), (T2,92)) = [y2 — w1l-

Then d; and dy are pseudo metrics on X.

Note that dy((2,3),(2,5)) =|2—2] = 0, but (2, 3) and (2, 5) are distinct points.
Also dy((3,6),(5,6)) = |6 — 6] = 0, but (3,6) and (5,6) are distinct points.
Therefore, d; and dy are not metrics on X.

Let the family D = {d;,ds} is a gauge on X. We now look for the topology
7 (D) induced by gauge D in the following manner.

First finding balls B(z, €1) for dy, where z = (z1,y1) € X and ¢; > 0.

B((z1,y1), 1) = {(2,92) € X : di((w1,91), (22,92)) < &1}
= {(.’Eg,yg) cX: Ty € (—61 + Z1,€61 + xl)}

Thus B((z1,91), €1) contains all verticle strips in the plane.
Similarly

B(($1791>7€2) =

(x2,y2) € X 1 do((z1,21), (T2,92)) < €2}
(r2,12) € X 192 € (—e2 +y1, €2 + 1)}

{
{
Thus B((z1,y1), €2) contains all horizontal strips in the plane.

The subbase B(D) for induced topology T (D) is the collection all vertical and
horizontal infinite open strips. Their intersectsion are open rectangles which
form the base of induced topology shown in the Figure 1.8. The induced
topology is thus the usual topology on R?. Therefore, (X, D) is a gauge space.

Example 1.3.13. [31] Every metric space is a gauge space, but the converse
of the statement is not true, since for d(x,y) = 0, © = y may not hold.
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Figure 1.8: Base for usual topology in R?

Dugundji [31] has proved an important result which set the relationship

between gauge space and topological space. In this regard, we first note the
following definition of a completely regular space.
A topological space (X, J) is completely regular iff for every closed set B in
X and y € X such that y ¢ B, there is a continuous function f : X — [0, 1]
such that f(y) =0 and f(B) = 1.

We now state the result:

Theorem 1.3.14. [31] A space X is a gauge space if and only if it is com-
pletely regular.

For further facts on gauge spaces see Agarwal et. al., [34], Frigon [32], Chis
and Precup [33], Chifu and Petrusel [35], Lazara and Petrusel [38], Cherichi
et. al., [36, 37] and Jleli et. al., [39].

1.3.4 Quasi-gauge spaces

In 1973, Reilly [40] initiated the idea of quasi-gauge spaces in order to gener-
alize quasi-pseudo metric spaces by replacing single quasi-pseudo metric space
by the family of such spaces on the set. In this way, he was also able to show
that quasi-gauge spaces generalize gauge spaces.

We record the following definitions of his work.
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Definition 1.3.15. The map d : X x X — [0,00) is called a quasi-pseudo
metric, if for all z,y, 2 € X the following properties hold:

(a) d(z,z) = 0; and
(b) d(z, 2) < d(z,y) + d(y, 2).
The pair (X, d) is called quasi-pseudo metric space.

Definition 1.3.16. Each family D = {dg : 8 € Q} of quasi-pseudo metrics
dg: X x X — [0,00) for § € Q, is said to be quasi-gauge on X.

Definition 1.3.17. The family D = {ds : f € Q} is separating if for every
pair (z,y) where x # y, there is dg € D such that either dg(x,y) > 0 or
dg(y, ) > 0.

Definition 1.3.18. Let D = {dz : f € Q} be the family of quasi-pseudo
metrics on X. The topology 7 (D) on X whose subbase is defined by the
family B(D) = {B(x,€e3) : v € X,e5 > 0,5 € Q} of all balls B(z,eg) = {y €
X :dg(x,y) < €g}, is called the induced topology.

Definition 1.3.19. Let (X, T) is a topological space. If there exists a quasi-
gauge D on X with 7 = T (D), then the topological space (X, T) is called to
be a quasi-gauge space. It is denoted by the pair (X, D) and is Hausdorff if D
is separating.

According to Reilly given a topological space (X, T) such that O € T, we
can always define quasi-pseudo metric d : X x X — [0,00) by

0 ifzé¢ O,
d(z,y) =40 ifzeO,ye0, (1.3.1)
1 ifze0,y¢0,

Thus D= {d: O € T} is a quasi-gauge on X. Moreover,

B(x.e) O ifxreOande <1,
xr,6) =
X otherwise.

Thus B(D) = {O : O € T} and T(D) = T. This is illustrated through the
following simple example.

Let X ={1,2,3} and J = {0, {1}, {2}, {1, 2}, X'}, then (X, J) is a topological
space.

Let O = {1,2} € J. For all x € X and for € = 1, we obtain the balls B(x,¢)
in the following manner.
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B(1,1) ={y e X :d(1,y) < 1}.

Using (1.3.1), we see that d(1,1) =0, d(1,2) = 0 and d(1,3) = 1.

This gives B(1,1) = {1,2} = O.

Similarly we have B(2,1) = O and B(3,1) = X.

Similar results are obtain when ¢ < 1 and other O € J are used. This gives
B(D) ={O : 0 e T} and T(D) = T, which implies the following important
result by Reilly.

Theorem 1.3.20. [40] Every topological space is a quasi-gauge space.

Since every pseudo metric space is a quasi-pseudo metric space, it follows
that every gauge space is a quasi-gauge space, but every quasi-gauge space
need not to be a gauge space and hence metric space (or more generally pseudo
metric space). For evidence we present the following example.

Example 1.3.21. [44] Let X = [0,1] and B = {5~ : m € N}. Define
d: X x X —[0,00) for all z,y € X by

Az, 1) |z — y ifre Bory¢ B,
x? = .
Y lr—yl+1 ifx¢ Band y€ B.

Then d is a quasi-pseudo metric on X. Let D = {d}, then (X, D) is a quasi-
gauge space.

Since the symmetric property does not hold (i.e., d(0, 1) # d(3,0)), there-
fore (X, D) is not a gauge space.

1.3.5 b-gauge spaces

Recently, Ali et. al., [45] introduced the notion of b-gauge spaces, thus extended
the idea of gauge spaces in the locale of b-metric spaces. We note down the
following definitions of their work.

Definition 1.3.22. A map d: X x X — [0,00) is a b-pseudo metric, if there
is s > 1 satisfying for all z,y, z € X the following conditions:

(b) d(z,y) = d(y,z); and

(¢) d(z,2) < s{d(x,y) + d(y, 2)}.

For prescribed b-pseudo metric d, (X, d) is called b-pseudo metric space.
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Definition 1.3.23. Each family D = {dg : 5 € Q} of b-pseudo metrics dg :
X x X — [0,00), is called b-gauge on X.

Definition 1.3.24. The family D = {ds : § € Q} is separating if for each pair
(x,y) where x # y, there is dg € D such that dg(z,y) > 0.

Definition 1.3.25. Let D = {dj : 5 € Q} be the family of b-pseudo metrics on
X. The topology T (D) on X whose subbase is defined by the family B(D) =
{B(z,e5) :x € X,e5 > 0,0 € Q}, where B(z,¢5) = {y € X : dg(z,y) < €3}, is
called the topology induced by D. The pair (X, T (D)) is called to be a b-gauge
space and is Hausdorff if D is separating.

Ali et. al., [45] presented the following example to show that b-pseudo
metric space (in fact, b-gauge space) is the generalization of metric space,
pseudo metric space (in fact, gauge space) and b-metric space.

Example 1.3.26. [45] Suppose X = C([0,00),R) and describe d : X x X —

[0,00) by

d(u(t). v(1) = max (u(t) - (1))

Then d is a b-pseudo metric, but not a metric, pseudo metric or b-metric.

The Figure 1.9 represents the relationship between the above mentioned
distance spaces and topological space.

Quasi-gauge space

Topological space

Quasi pseudo metric space

b-pseudo
Pseudo metric space metric space

Figure 1.9: Hierarchy of distance spaces and topological space.
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1.3.6 Left (right) J-families of generalized quasi-pseudo
distances

Given a quasi-gauge space (X, D), Wlodarczyk and Plebaniak [44] have intro-
duced the notion of left(right) J-families of generalized quasi-pseudodistances
on X. These J-families generated by quasi-gauge D, determine a structure
on X which is more general than the structure on X determined by D and
provide useful tools to obtain more general results with weaker assumptions
which can be seen in [46, 47, 48, 49, 50, 51]. In this direction, in case of metric
spaces the work done by Kada et. al., [41], Suzuki [42], and Lin and Du [43]
are also appreciable.

Definition 1.3.27. [44] Let (X, D) is a quasi-gauge space. The family J =
{Jsg : B € Q} where Jz : X x X — [0,00), f € Q is called the left(right)
J-family of generalized quasi-pseudodistances on X if for all z,y, 2 € X and
for all g € Q the following properties are fulfilled:

(\71) Jg([L’, Z) < Jﬁ(x>y) + Jﬁ(ya 2)§ and

(J2) for each sequences (u,, : m € N) and (v, : m € N) in X fulfilling

lim sup Jg(tm, u,) =0, (1.3.2)

m—0o0 n>m
( lim sup Jg(ty, Un) = O),
m—0o0 n>m

and

lim Jg(vpm, Unm) = 0, (1.3.3)

m—00

( lim Jg(tp, vy) = 0),

m—0o0
the following holds:
lim dg(vp, Um) = 0, (1.3.4)

m— 00

< lim dg(Um, vm) = 0).

m—0o0

Note that Jfx ) (J{k p)) denotes the set of all left(right) J-families on X.
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Example 1.3.28. [52] Let (X, D) be a quasi-gauge space, where X has at
least two distinct points and D = {ds : § € 1} is the family of quasi-pseudo
metrics dg : X x X — [0,00), 8 € €.

Let the set F' C X also contains at least two distinct, arbitrary and fixed
points and let ¢g € (0,00), B € Q satisfies 63(F) < cg for all § € €2, where
d3(F) = sup{ds(a,b) : a,b € F'}. Define Jz : X x X — [0,00), 5 € Q for all
x,y € X and for all § € Q as:

dg(z,y) if FN{z,y} = {7y},
Cs if 7' {z,y} # {z,y}.

Then J ={Jz: B €Q} € J(LX’Q) ﬂJfXQ).

Here Js(x, 2) < Jg(z,y) + Js(y, z) for all § € Q and for all z,y,z € X. Hence
condition (J) is satisfied. Certainly, condition (J;) does not hold only if there
exists x,y,z € X and some § €  such that Jz(z,2) = ¢, Jz(z,y) = dg(x,y),
Js(y, 2) = dg(y, z) and ¢z > dg(x,y) +ds(y, z). However, then this implies the
existence of w € {z, z} such that w ¢ F and x,y, z € F, which is unfeasible.
Now let (1.3.2) and (1.3.3) hold for the sequences (u,,) and (v,,) in X. Then
(1.3.3) implies that for all § € © and for all 0 < € < c¢g, there exists m; =
my () € N such that

Js(z,y) = { (1.3.5)

Jg(Um, um) < €, for all m > ms. (1.3.6)
By (1.3.6) and (1.3.5), denoting my = min{m, () : 5 € Q}, we have
{Vm, U} NV F = {vg, uy}, for all m > my
and
dg(Vm, Um) = J3(Um, up,) < €.

Hence (1.3.4) holds. Thus, J is a left J-family on X. Similar method follows
in order to show that J is a right J-family on X.
We note the following consequences from the above definition and example.

Remark 1.3.29. (i) D€ Jx p NI p)-

(ii) There exists example of J-family on X which shows that Js, 5 € Q are
not a quasi-pseudo metrics.

(iii) Let J ={Js : B € Q}. If Jg(v,v) = 0, for all v € X and for all § € Q
then Jg for each 8 € (O, is a quasi-pseudo metric.



Chapter 2

Periodic and Fixed Points for
Single-valued Mappings in
b-Gauge Spaces

Throughout this chapter (U, Q,q) is representing a b-gauge space, where U
is the underlying nonempty set and Q. is a b-gauge with s as coefficient of
b-metric and 2 is an index set.

The motivation behind this chapter is to develop novel results based on
periodic and fixed points of F-type contractions in b-gauge space (U, Qq.q)
using Js.o-family of generalized pseudo-b-distances on U.

For the said purpose this chapter is divided into three sections. The first
section, introduces Js.o-families of generalized pseudo-b-distances in b-gauge
space (U, Q,.q). Moreover, by using these Jio-families on U, we define the
Jso-sequential completeness which generalizes the usual Q. o-sequential com-
pleteness. In the second section, we develop novel periodic and fixed point re-
sults for F-type contractions in the setting of b-gauge space using Js.o-family
on U, which generalize and improve all the results in [64] and some of the
results of [65]. An example validating our result is given at the end of the
section. In the third section, as a consequences of our results we derive some
fixed point results for mappings in b-gauge space with the graph. At the end
of the section, the validity and importance of our theorems are shown through
an application via existence theorem for integral equations.

2.1 J;qo-families of generalized pseudo-b-distances

In this section, we introduce Jsqo-families of generalized pseudo-b-distances
in b-gauge space (U, Q,.q). The new structure determine by these families
of distances are generalization of b-gauges and give valuable and important
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tools for inquiring periodic points and fixed points of maps in b-gauge spaces.
Moreover, by using these Js.qo-families on U, we define the Jsqo-sequential
completeness which generalizes the usual Q,.o-sequential completeness.

Definition 2.1.1. Let (U, Q,.q) be a b-gauge space. The family J.o = {Js :
B e Q} where Jz : U x U — [0,00), 8 € €, is said to be the J;.qo-family
of generalized pseudo-b-distances on U (for short, Js.o-family on U) if for all
B € Q and for all u,v,w € U the following statements hold:

(JT1) Js(u,w) < sg{Js(u,v) + Js(v,w)};

(J2) for each sequences (u,,) and (vy,) in U fulfilling

Yil_r)réosgg Jg (U, upn) =0, (2.1.1)
and
Tim (0, ) = 0, (2.1.2)
the following holds:
W1L1_1>réo 45 (Vm, um) = 0. (2.1.3)

We denote

J(U’QS;Q) = {k7S,Q : \78;9 = {JB 1B € Q}}
Also, we denote

Ugs;g = {u € U :Vgea{Js(u,u) = 0}} and
Uz = {u € U Vsea{Js(u,u) > 0}}.
Then, of course U = Uf}m U U};;n'

Example 2.1.2. Let (U, Q,q) be a b-gauge space where U contains at least
two distinct elements and suppose Q..q = {gs : f € Q} the family of b-pseudo
metrics, is a b-gauge on U.

Let the set ' C U contains at least two distinct elements but arbitrary
and fixed. Let ag € (0, 00) satisfies dg(F') < ag, where dz(F) = sup{gs(e, f) :
e,f € F} forall 5 €. Let Js: U x U — [0,00) for all e, f € U and for all
B € Q be defined as:

gsle, f) it Fnde f}={e [}
ag if Fnde f} #{e, f}.

Then Joo ={Js: 5 € Q} € Ju,g)-
We observe that Js(e,g) < sg{Js(e, f) + Js(f,g)}, for all e, f,g € U, thus

Jsle, f) = { (2.1.4)
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condition (J;) holds. Indeed, condition (1) will not hold in case if there is

some e, f,g € U with Jg(e, g) = ag, Js(e, f) = qs(e, f), Js(f,9) = qs(f, g) and
sg{as(e, f)+qs(f,9)} < ag. However, then this implies that there is h € {e, g}
such that h ¢ F' and on other hand, e, f, g € F, which is impossible.

Now suppose that (2.1.1) and (2.1.2) are satisfied by the sequences (u,y, :
m € N) and (v, : m € N) in U. Then (2.1.2) yields that for all 0 < € < ag,
there exists m; = my(8) € N such that

Jg(Um, um,) < € for all m >my, for all € Q. (2.1.5)
By (2.1.5) and (2.1.4), denoting ms = min{m4(3) : g € Q}, we have
Fn{om, um} = {vm, un}, forall m > my
and

48(Vm, Um) = Jg(Um, up,) < €.

Thus (2.1.3) is satisfied. Therefore, Jsqo = {Js : 5 € Q} is a Jso-family of
generalized pseudo-b-distances on U.

We now mention some trivial properties of J;.o-families.

Remark 2.1.3. (a) Q0 € Jwq.)-

(b) Let Tsa € Jw.q,.q)- I Js(v,v) = 0 and Jg(u,v) = Jg(v,u) for all 5 € Q2
and for all w,v € U then for each 8 € €, Jg is b-pseudo metric.

(c) There exists examples of Jy.q € Jv,q, ) which shows that the maps Jg,
B € € are not b-pseudo metrics.

Proposition 2.1.4. Let (U, Q,.) is a Hausdorff b-gauge space and the family
Tsa = {Js : B € Q} be the J;q-family of generalized pseudo-b-distances on
U. Then for each e, f € U, there exists g € () such that

e# f=Jsle, f) >0V Js(f,e) >0.

Proof. Let there are e, f € U where e # f such that Js(e, f) = 0 = Jz(f,e) for
all € Q. Then by using property (J1) we have Jz(e,e) =0, for all g € €.

Defining sequences (u,,) and (v,,) in U by u,, = f and v,, = e, we see
that conditions (2.1.1) and (2.1.2) of property (J2) are satisfied and therefore
condition (2.1.3) holds, which implies that gz(e, f) = 0, for all § € Q. But,
this denies the fact that (U, Q) is a Hausdorft b-gauge space. Therefore, our
supposition is wrong and there exists 5 € ) such that

e# f=Jsle,f) >0V Js(f,e) >0
for alle, f € U. ]
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Now, using Js.o-families on U, we establish the following concept of Js.0-
completeness in the b-gauge space (U, Q,.q) which generalizes the usual Q,.o-
sequential completeness.

Definition 2.1.5. Let (U, Q,.q) be a b-gauge space. Let Jyo = {Js: § € Q}
be the Js.o-family on U. A sequence (v, : m € N) is J;.q-Cauchy sequence in
U if

lim sup Jz(vm,v,) =0, forall g e Q.

m—o0 n>m
Definition 2.1.6. Let (U, Q,q) be a b-gauge space. Let Jso = {Jp: B € Q}
be the Jsq-family on U. The sequence (v, : m € N) is called to be Js.q-
convergent to v € U if lim7s¢_v,, = v , where

m—o0 M
3 \_75;52

lim U, = U & limy, o0 Jg(v, 0p,) = 0 = limy,, o0 Jg(vi, v), for all g € €

m—oo M

Definition 2.1.7. Let (U, Q,q) be a b-gauge space. Let Jso = {Js : B € Q}
be the Js.o-family on U. If G ) 7 0, where

('Um:meN
\js;ﬂ _ - 14 \73' —
Stommeny = v € U 1 limy9 vy = v}
Then (v, : m € N) in U is Js.q-convergent sequence in U.

Definition 2.1.8. Let (U, Q,) be a b-gauge space. Let Jg0 = {Js : 8 €
Q} be the Jso-family on U. The space (U, Q,.q) is called Jo-sequentially
complete, if every Js.o-Cauchy in U is J;.q-convergent in U.

Example 2.1.9. Let U = [0,4] and let Q,. = {q}, where ¢ : U x U — [0, 00)
is pseudo-b-metric on U defined by

q(z,y) = |z —y|* forallz,y € U. (2.1.6)

Then (U, Q,.q) is a b-gauge space.
Let the set F = [5,1] C U and let J: U x U — [0,00) for all z,y € U be
defined as:

_Ja(z,y) it Fd{z,y} = {z,y},
Ja,y) = {4 if FN{z,y} #{z,y}. (21.7)

Then Js.q = {J} is the Jso-family on U (see Example 2.1.2).

We show that (U, Q.q) is Js-sequential complete.

For this, let {v,, : m € N} is J;.o-Cauchy sequence. We may suppose, without
loosing generality that for all 0 < ¢; < = and for all n,m € N, there exist

64
ko € N such that

1
J(Vm,vn) < € < 61 for all n > m > k. (2.1.8)
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Then by using (2.1.7), (2.1.6) and (2.1.8), we get

J(Vm, vn) = (U, V) =] Uy — vy |2< € < (2.1.9)

a.
1
Uy € F = [g, 1] for all m > k. (2.1.10)

Rewriting (2.1.9) for all 0 < € < % and for n,m, ky € N as

1
|Um—1)n|<€<§, for all n > m > ky,

where € = /€.

Now since (R,| . |) is complete, F' = [%, 1} is closed in R, also, by (2.1.10)
U € F = [3,1]} for all m € N such that m > ko and {v,, : m € N} is Cauchy
with respect to | . |, so there is v € F such that for all 0 < ¢ < 4 and for all

n,m € N, there exist kg € N such that

| v — vy, [<e€ forall n>m > k.

Hence, {v,, : m € N} is J;.q-convergent to v.
This implies (U, Q,.q) is Js0-sequential complete.

Remark 2.1.10. There exist examples of b-gauge spaces (U, Q,.q) and Js0-
family on U with J.0 # Q,.q such that (U, Q..q) is Jso-sequential complete
but not Q,.o-sequential complete (see Example 2.1.11 below).

Example 2.1.11. Let U = [0,1] and B = {5 : m € N}.
Let Q.q = {q}, where ¢ : U x U — [0, 00) is b-pseudo metric on U defined for
alle, f € U by

(2.1.11)

.= Jle=1P ife=for{es}nB={e/},
PO Ve—fP+1 if e fand {e, f} N B # {e. f}.

Then (U, Q.q) is a b-gauge space.
Let the set FF = [5,1] C U and let J: U x U — [0,00) for all e, f € U be
defined as:

_ Jale f) i Fnfe fi={e f},
se.f) {4 if F0{e, f}# {e, f}. (2.1.12)

Then Js.q = {J} is the Jsq-family on U (see Example 2.1.2).
First we show that (U, Q,.q) is not Q,.q-sequential complete.
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For this let {v,,} = {5 : m € N}, then by (2.1.11) for all € > 0 and for all
n,m € N, there exist ky € N such that

1 1

q(Vm, vn) = om  om

2
<e, forall n>m > k.

Thus {v, : m € N} is a Q,.q-Cauchy sequence. However, this sequence is
not Q. q-convergent in U. Otherwise, suppose that lim,, ;o v, = v, for some
v € U. We may suppose without loosing generality that for all 0 < € < 1,
there exist ky € N such that

q(v,v,) < e <1, forall m> k. (2.1.13)
We have the following two cases:
(i) if v ¢ B, then using (2.1.11) we can write
(v, ) = v — v, + 1 <e< 1, forall m > ko.
Which is not possible.

(i) If v € B, then let v = 5=, for some m; € N and using (2.1.11), we can

omy )
write
2

1
gmi gm

C](U,Um) = ‘U - 'Um‘Q = ’ )

taking limit interior as m — oo, we get

lim ¢(v,v,,) = —, where mgy = 2m;.
m—o0o 2ma2

Which by (2.1.13) is impossible.

Thus we conclude that (U, Q,q) is not Q,o-sequential complete.

Next, we show that (U, Q..q) is Jso-sequential complete.

Let {v,, : m € N} be a J;.q-Cauchy sequence; without loosing generality we
may let that for 0 < € < 1, there exist ky € N such that

J(VUm,vp) < €< 1, forall n>m > k. (2.1.14)
Then by (2.1.12), (2.1.11) and (2.1.14), we obtain

Jmy ) = @V, V) = [vm —val> < e < 1, forall n>m >k, (2.1.15)

1
v, € F = [g, 1] for all m > kg (2.1.16)

and vy, = vy, for all mg > ko or v, € B for all m > k. (2.1.17)

From (2.1.17), we have two cases:



2.2 Periodic and fixed point theorems for F-type contractions in b-gauge
spaces 29

(i) if vy = vy, for all mg > ko. Then {v,, : m € N} represent a constant
sequence and by (2.1.16), (2.1.12), (2.1.11) and (2.1.17) the sequence
{vm : m € N} is Jy.q-convergent to vy, .

(ii) If v, € B, for all my > k.
Let vg4s € B for all s € N. This together with (2.1.15), (2.1.16) and
(2.1.17) implies that vy,4s = 3 for all s € N or vg4s = 1 for all s € Noor
Ukots = % for all s € N. Therefore, {v,, : m € N} is J,.q-convergent to

the point % or %‘ or % respectively.

Thus we conclude that (U, Q,.q) is Jso-sequential complete.

Definition 2.1.12. Let (U, Q) be a b-gauge space. The map T* : U — U,
where k € N is called to be a Q,.q-closed map on U if for each sequence (w,)

in T™(U), which is Q,,q-converging in U, i.e., g ) # () and for all m € N,

(wm:mEN
T, = T (y,,,) holds for its subsequences (2, : m € N) and (y,, : m € N)
QS'Q

has the property that there exists w € 5, " -\

such that w = TH (w).

2.2 Periodic and fixed point theorems for F'-
type contractions in b-gauge spaces

Now we present novel periodic and fixed point results for F-type contractions
(utilizing idea of a-admissibility [9] and Hardy-Rogers contraction [66]) in the
setting of b-gauge space using J,.o-families on U. In this context we recall that
Cosentino et, al., [67] modify the §-family introduced by Wardowski [10], in
the setting of b-metric spaces as follows:

Let s > 1 be a real number. Denote by §s the family of functions F' : (0;00) —
R fulfilling the following properties:

(Fy) for any a,b € (0,00) with a < b we have F(a) < F(b);

(Fy) for any sequence (b, : m € N) of positive numbers, we have lim,, o b, =
0 iff lim,, oo F(by) = —00;

(F3) for any sequence (b, : m € N) in R, we have lim,, ,o, b,, = 0, there is
p € (0, 1) such that lim,, o b2, F(b,,) = 0;

(Fy) if sequence (b, : m € N) in Ry satisfying 7+ F(sb,,) < F(bp,—1) Vm €N
and some 7 > 0, then 7 + F(s™by,) < F(s™  by_1).

Some examples of the functions belonging to §, are given below:
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(i) F, =2+ Inz for any = € (0, 00).
(i) F, =Iny for any y € (0,00).
Our main results are now given below, where a: U x U — [0, 00).

Theorem 2.2.1. Let (U, Q,q) be a b-gauge space. Let Jy0 = {Js: 8 € Q},
where Jz : U x U — [0,00), be the Jiqo-family of distances generated by
Qs.q such that U‘(}S;Q # 0 and (U, Q,.q) is Jso-sequentially complete. Let map
T :U — U be such that T(U) C Uy, and for which we have I € §, and
7 > 0 such that :

a(u,v) > 1= 74 F(sgJg(Tu,Tv)) < F(agJﬁ(u, v) + bgJs(u, Tu) + cgJz(v, Tv)
tegds(u, Tv) + Lng(v,Tu)) (2.2.1)

for all 5 € Q and for any w,v € U whenever Jg(Tu,Tv) # 0.

Further, ag, bg, cs, e, Lg > 0 be such that ag + bg + c3 + (sg + 1)eg < 1 for
each g € (.

Assume, moreover that, the following statements hold:

(i) there exist 2 € U such that a(2°,2') > 1;
(ii) if a(z,y) > 1, then a(Tz, Ty) > 1;

(iii) if a sequence (2™ : m € N) in U is such that a(z™,2™") > 1 and

lim7=2 2™ = 2 then a(z™,2) > 1 and a(z, 2™) > 1.

Then the following statements hold:

(I) For each 2° € U, (2™ : m € {0} UN) is Q,o-convergent sequence in U;
thus, S(Q‘“Q y # 0.

zm:me{0}UN

(I) Furthermore, assume that T for some k € N, is Q,.o-closed map on U
and sg{cs + egsg} < 1, for each € Q. Then
(an) Fi(TH) £ 0;
(az) there exists z € Fix(T™") such that z € S(%;fme{()}uNﬁ and
(ag) for all z € Fix(TW), Js(z,T(2)) = Js(T(2),2) = 0, for all 3 € Q.
(III) Furthermore, let Fix(T™*) # @ for some k € N and (U, Q,.q) is a Haus-
dorff space. Then

(bn) Fix(T¥)=Fix(T)
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(by) there exists z € Fix(T) such that z € Sé;%;g{o}um; and
(bs) for all z € Fix(T), Js(z,2) =0, for all 5 € Q.

Proof. (I) We first prove that the sequence (2 : m € {0} UN) is J,.o-Cauchy
sequence in U.

Using assumption (i) there is z° € U such that a(2° z') > 1. Now for each
p €, using (2.2.1) we can write

T+ F(sgJg(z',2%)) = 7 + F(s5Js(T2°, T2Y))

< F(aﬁJﬁ(zO, )+ s (20, T20) + cads(2!, T2Y)
+egds(2°, T2h) + LgJs(2!, TZO)>

< F(agjg(zo, 21+ bsJs(20, 2Y) + cpds (2, 27)
+ egds(2°, 2%) + Lg.O)

< F(agjg(zo, 21+ bsJs(2°, 2Y) + cpds(2h, 27)
+ eass(Jp(2", 2) + Ja(=1,22)))

= F((ag +bs + esp)Js(2°, 2") + (cp + epsp) s (2!, zQ)).

This gives

T+ F(sgJs(2h, 2%)) < F((ag +bg + epsp)Ja(2°, 21) + (cs + epsp) Ja (2, 22)>.
(2.2.2)

As F is strictly increasing, we can write from above that
spds(zt,2?) < (ag+bs+epsp)da(2°, 21) + (cs+epsp)Ja(2', 2%)  for all B € Q.
We can also write it as

(sp —cg —epsp)da(2h, 2%) < (ag + bg + egsp)Js(2% 21)  for all B € Q.

(1— ‘83_5 — eg)spds(z,2%) < (ag +bg + epsg)Jp(2,2")  forall e Q.
B

Since ag + bs + cg + (sg+ 1)eg < 1, we get
g
1———6521—05—63>6Lﬂ+b5+8ﬂ6520.
Sp

Thus
spda(2t, 2%) < Jg(2% 2")  forall B € Q.
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Now using (2.2.2), we can write
T+ F(sgJs(2h, 2%)) < F(Js(2°, 2"))  for all 8 € Q.

Using assumption (ii), we have a(T2° Tz') = a(z!,2%) > 1. Now for each
p € Q, using (2.2.1) we can write

T+ F(s3J3(2% 2%)) = 7+ F(sgJs(T2', T2?))

< F(ang(zl, 22) 4+ bgds(2', T2Y) + cpJs(2%, T2%)
+epds(2), T22) + LyJs(2, Tzl))

< F(aﬁjﬁ(zl, 22) + baJs(2, 2%) + cads (22, 2°)
+ egds(2h, 2°) + Lg.())

< F(ang(zl, 22) + baJs(2, 2%) + cads (22, 2°)
+egsp(Jp(z', 2%) + Jp (2, Z3))>

= F((ag +bg + epsg)Jg (2, 2) + (s + egsp) Js(27, 23)>

This gives

T+ F(spJs(2%, 2%)) < F((ag +bg +egsg)Ja(2, 2%) + (cp + epsp) g2, z3)>.
(2.2.3)
As F is strictly increasing, we can write from above that

spds(2%,2%) < (ag+bg+epss)Js(z', 2%) + (cg+epss)Ja(22,2°)  for all B € Q.
We can also write it as

(55— cg —epsp))Js(2%,2°) < (ap + bs + epsg)Js(z',2%)  for all B € Q.
Since ag + bs + cg + (sg+ 1)eg < 1, we get

C
1——’8—6521—65—65>a5+b5+856520.

Thus
spds(2?,2°) < Jg(2', 2%)  for all B € Q.

Now using (2.2.3), we can write

T+ F(spJs(2%, 2%)) < F(Js(2', 2%)  for all 8 € Q.
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Progressing in the above manner, we get a sequence (2™ :m € {0} UN) C U
such that
2™ =Tzm L 2=t £ 2™ and a(z™71, 2™) > 1, for each m € N. Furthermore,

T+ F(sgJg(2™, ™) < F(Jg(z™1,2™))  for all 8 € Q.
Now using property (Fy), for all m € N, we can write
T+ F(sgJs(2™, 2" < F(sgb_lJB(zm_l, 2™))  for all g € Q.
Furthermore,
F(s§Ja(z™, 2" Y) < F(Js(2°,2") —mr  forall B € Qand m € N. (2.2.4)

Now, letting m — oo, from (2.2.4) we get lim,, o0 F(s5J5(2™, 2™ ) = —o0
for all 8 € Q. Hence using property (F3) we get limy, o 55 J5(2™, 2" 1) = 0.
Let (Jg)m = Jg(z™,2™) for all B € Q and m € N. From (F3), there is
p € (0,1) such that

lim (s5'(Jg)m) " F (85 (Jg)m) =0 for all B € Q.

m—r0o0

From (2.2.4), we can write for all § €  and m € N
(55 (Jp)m )" E((s5"Tg)m) = (55 (Jp)m )P F((Jp)o) < =(s5'(Jg)m)'mT < 0. (2.2.5)
Applying m — oo, we have

lim m(sy'(Jg)m)? =0 for all 3 € Q. (2.2.6)
m—r0o0
This suggests that there is m; = m;(8) € N such that m(sj(Jg)m)? < 1 for
each m > my and for all § € 2. Hence, we can write

1
s (Jg)m < —  forallm>m; and g€ Q. (2.2.7)

mr

bS]

Now by repeated use of (J1) and (2.2.7) for all m,n € N such that n > m > m;
and for all # € ), we get

Since ) 77| T is convergent series, thus we can write

jp

lim sup Js(2™,2") =0 forall g€ (2.2.8)

m—o0 n>m
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Now, since (U, Q,.q) is Jso-sequentially complete b-gauge space, so (2™ : m €

{0} UN) is Js.q-convergent in U, thus for all z € g e we can write

(zm:me{0}UN)’
lim Jg(z,2™) =0 forall € Q. (2.2.9)
m—ro0
Thus from (2.2.8) and (2.2.9), fixing z € S‘Zi,f’me{o}uN), defining (u,, = 2™

m € {0} UN) and (v,, = z : m € {0} UN) and applying (J2) to these
sequences, we get
lim gs(z,2™) =0 forall g €.

m— 00

This implies S5, o £ 0.

(IT) To prove (a1), let 2° € U be arbitrary and fixed. Since S( meme {0}UN) 7 0
and we have

S(m+1k _ T[k](zmk), for m € {0}UN

m—1+k .

thus defining (z,, = z :m € N), we can write

(zm :m € N) c TH(U),

Qs Q QS;Q
S(zm :me{0}UN) S(zm:mE{O}UN) 7& @’
also, its subsequences
(g = 28 c TH(U)

and

(2 = 2™F) c THF(D)

satisfy
Ym = TH(2,,), for all m € N

and are Q. q-convergent to each point z € g (2 Now, using the fact

mE{O}UN)
below
QS;Q s Q QS;Q s Q
S(zm:mEN) - S (ym:meN) and S(zm:mEN - S (zm:mEeN)

and the supposition that 7™ for some k € N, is a Qs.q-closed map on U, we

have there exists z € S(Z e {0}UN) = S(Z;QmE{O}UN such that z € T*(2). Thus,
( 1) holds.
The assertion (ay) follows from (a;) and the fact that S anQme o) F 0.

To prove (a3), on contrary suppose that Jg(z,7z) > 0 for some (3 € 2, there
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exists my € N such that Jz(2™,Tz2) > 0 for each m > mgy. Hence for each
m > myg, use triangular inequality and inequality (2.2.1), we obtain

Jo(2,T2) < sg{Ja(z, ") + Jg(2" T2)}
= s{Js(z, 2™ + Js(T2",T2)}
< sa{Js(z, 2™ + agds (2™, 2) + bgJs(2™, T2™) + cgJs(z, Tz)
+epdp(2™,T2) + LgJg(2,T2")}
< sp{Js(z, 2™ 7) + agds(2™, 2) + b Jp(2™, 2™ ) + s Jp(2, T2)
+ epsg{Js(2", 2) + Jg(2,T2)} + LgJs(z, 2"}

Letting m — oo, we have
Js(2,Tz) < sg{cg +epsp}ts(z,Tz) vV Bef.
Now since we have assumed that sz{cs + egsg} < 1, we get
Js(2,T2) < sg{csg+epsg}ds(z,Tz) < Jz(2,T%) vV Beq.

Which is absurd, thus Jgz(z,T2) = 0 for all g € Q.

Next, we prove that Jg(T'z,2) = 0 for all § € Q. On contrary suppose that
Js(Tz,z) > 0 for some B € €, there exists my € N such that Jg(T'z,2™) > 0
for each m > mg. Hence for each m > my, use triangular inequality and
inequality (2.2.1), we obtain

Js(Tz,2) < sg{Js(Tz, 2™) + Jg (2™, 2)}
= s5{Js(T2,T2™) + Jg (2", 2)}
< sglagds(z,2™) + bgJs(2, Tz) + cgds(z", T=") + egJs(z, T2™)
+ LgJs(2™, T2) + Ja(z™, 2)}
< splags(z,2™) + bgJs(2, T2) + caJa (2™, 2™") + epdp(2, 2™ )
+ Lﬁsﬁ{‘]ﬁ(zm’ z) + Jﬁ(z7 TZ)} + Jﬁ(zm+1’ Z)}

Letting m — oo, we have
Js(Tz,2z) < sg{bs + Lgsg}Js(z,Tz) vV pefl.

Now as we have proved that Js(z,72) = 0 for all § € , thus we obtain
Js(Tz,z) =0 for all § € 2. Hence assertion (a3) holds.

(IT) Since (U, Q,.q) is a Hausdorff space, using Proposition (2.1.4), assertion
(a3) suggests that for z € Fix(T™), we have z = T(z). This gives z € Fix(T).
Hence (b) is true.

Assertions (az) and (by) imply (bs) .
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To prove assertion (bs), consider (J1) and use (a3) and (b1), we have for all
z € Fix(TH) = Fix(T),
Js(z,2) < sa{Js(2,T(2)) + J3(T(2),2)} =0 for all 5 € .

[

Theorem 2.2.2. Let (U, Q,q) be a b-gauge space and suppose Jao = {Jp :
B € Q}, where Jz : U x U — [0,00), be the Js.o-family of distances generated
by Q. such that UPTQ;Q # 0 and (U, Q,.q) is Jso-sequentially complete. Let
map 7' : U — U be such that T(U) C Uy, , and for which we have F' € §, and
7 > 0 such that :

a(u,v) > 1= 74 F(sgJsg(Tu,Tv)) < F<maX {J[g(u, v), Jg(u, Tw), Jg(v, Tv),

Jg(u,Tv)+Jg(v,Tu
A )QSﬁﬁ( )} + Lﬁjﬂ(vau)>
(2.2.10)

for all 5 € Q and for any u,v € U whenever Jg(Tu,Tv) # 0. Also Lz > 0.
Assume, moreover that:

(i) there exist 2 € U such that (2% 2') > 1; and
(ii) if a(u,v) > 1, then a(Tu,Tv) > 1.
Then the following statements hold:

(I) For any 2% € U, (2™ : m € {0} UN) is Q,q-convergent sequence in U,
thus S(Q” ) # 0.

zm:me{0}UN

(II) Furthermore, let that T for some k € N, is a Q,.-closed map on U.
Then

(a;) Fix(T™) # (); and

(ag) there exists z € Fix(T™) such that z € S(%f:zme{o}uN)'

(IIT) Furthermore, let Fix(T*!) # () for some k € N and T is continuous. Then

(by) Fix(T*=Fix(T) ;

(bg) there exists z € Fix(T") such that z € S(Lz:n%;g{o}uN); and

(bs) for all z € Fix(T), Js(z,2) =0, for all 5 € Q.
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Proof. (I) We first prove that the sequence (2™ : m € {0}UN) is a J,.q-Cauchy
sequence in U.

Using assumption (i) there is 2° € U such that a(2° 2') > 1. Now for each
p € Q, using (2.2.10) we can write

T+ F(sgJs(z',2%)) = 7 + F(s5Js(T2°, T2))
< F<max {JB(ZO, 21, Jg(2°,T2%), Ja(2', T2,

0 T 1 1 T 0
J/B(z L2 );’ Jﬁ(z L2 )} +L,3J5(21,TZO>>
Sg

= F(maX{Jg(ZO, 21, Jg(2h, 22)}>

We observe a contradiction if we choose max{Jg(2°, z1), J5(21, 2%)} = Js(21, 22).
Hence choosing max{Jz(2°, z1), Ja(2', 2%)} = J5(2°, 21) for all 8 € Q, we get

T+ F(sgJs(z',2%) < F(J3(2° 2"))  for all B € Q.

Using assumption (ii), we have a(T2° T2') = a(z!,2%) > 1. Now for each
f €, using (2.2.10) we can write

T+ F(sgJp(2%,2°)) = 7 + F(spJs(T2", T2%))
< F(maX {Jg(zl, 22), Jg(24, T2h), J5(2%, T2%),

Jﬂ(zl,TzQ) + Jﬁ(zz,Tzl) 9 1
. } + LgJs(22, T ))

= F(maX{Jg(zl, 2?), Jg(2%, 23)}>.

We observe a contradiction if we choose max{Js(z', 2%), Jg(22, 2%)} = J5(2?%, 2%).
Hence choosing max{Jz(z', 22), Js(2%, 2%)} = Js(z!, 2?) for all 8 € Q, we get

T+ F(sgJs(2%,2°)) < F(Js(2',2%)  for all 3 € Q.

Progressing in the above manner, we get a sequence (2™ : m € {0} UN) C U
such that
2 =Tzm=l 2=t £ 2™ and a(z™71, 2™) > 1, for each m € N. Furthermore,

T+ F(sgdg(z™, 2™)) < F(Jg(z™7 1, 2™))  for all B € Q.
Now using property (F}), for all m € N, we can write

T+ F(sgJs(2™, 2" < F(sgL’ng(szl, 2™))  for all g € Q.
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Furthermore,

F(sJa(z™, 2" ) < F(J5(2°,2")) —ms  forall € Qand m € N.
(2.2.11)
Now, letting m — oo, from (2.2.11) we get limp, o0 F(s5J5(2™, 2" 1)) = —o0
for all 5 € Q. Hence using property (Fy) we get hmm_m sgJs(2™, 2™ = 0.
Let (Jg)m = Jg(z™,zm*1) for all § € Q and m € N. From (F3), there is
€ (0,1) such that
lim (s5'(Jg)m)" F (85 (Jg)m) =0 for all B € Q.

m—r0o0

From (2.2.11), we can write for all § € Q and m € N

(55 (J8)m)"F (5 J5)m) — (55 (Js)m)"F((Jg)o) < —(s5 (Jg)m)'mT < 0.
(2.2.12)
Applying m — oo, we have

lim m(sj'(Jg)m)? =0 for all g € Q. (2.2.13)

m— 00

This suggests that there is m; = my(8) € N such that m(sj(Js),)? < 1 for
each m > my and for all § € 2. Hence, we can write

1
s (Jg)m < —5  forall m >m; and 8 € Q). (2.2.14)
m

3

Now by repeated use of (J1) and (2.2.14) for all m,n € N, n > m > m; and
for all g € Q, we get

n—

1 00 00
Jg(2™, 2") < Sé Jg); < Z JB Jg); < Z
J Jj=m j=mJ

'UM—‘| =

i—m

Since Z;’il L is convergent series, therefore we have
jP

lim sup Jz(2™,2") =0 for all € Q. (2.2.15)

m—0o0 n>m

Now, since (U, Q,.q) is Jso-sequentially complete b-gauge space, so (2™ : m €

{0} UN) is Js.q-convergent in U, thus for all z € S‘Zinﬂme{o}UN) we can write
lim Js(z,2™) =0 forall g€ Q. (2.2.16)
m—o0

Thus from (2.2.15) and (2.2.16), fixing z € SZST"Qme{O}UNV defining (u,, = 2™

m € {0} UN) and (v,, = z : m € {0} UN) and applying (J2) to these
sequences, we get
lim gz(z,2™) =0 forall g €.

m—00
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This implies S anﬂme oy # 0.

(IT) To prove (a;), let z° € U be arbitrary and fixed. Since S (o me{O}uN) #

and we have
L(mtDk _ T[k](zmk), for m € {0} UN

thus defining (2, = 2™ 1** : m € N), we can write
(zm :m e N) c TH(T),

Qs;ﬂ . s Q
S(zm:mE{O}UN S (zm:me{0}UN) 7& @,
also, its subsequences

(ym = 2%y € TH(D)

and
(2 = 2™) C TH(D)

satisfy
=Tk (z,,) for all m e N

and are Q. q-convergent to each point z € e (2 Now, using the fact

me{o}uN)
below
QS;Q 5;Q Qs Q 5;Q
S(zm:mGN C Sy :meN) and S(z :meN) C Sz :meN)

and the supposition that T for some k € N, is Qs.o-closed map on U, we

have there exists z € S(Cis Qme{O}UN) = Sg;ﬂme{o}uN) such that z € TH(z).
Thus, (a1) holds.

The assertion (az) follows from (a;) and the fact that S anﬂme o # 0.

(I1I) Since by (ay), there is z € Fix(T™™) such that z € S annme{O}UN) we have
lim,, oo 2™ = 2.
Now, if T"is continuous, then z = lim,, oo 2™ = lim,, oo T2™ = T(lim,, oo 2™) =
T'(z). This gives z € Fix(T). Hence (by) is true.
Assertions (as) and (by) imply (by) .
To prove assertion (bs), since T'(U) C Uj _, this implies that z = T'(z) € U, _.
Therefore, Js(z, z) = 0, for all 5 € €. ’ ,

O]

Example 2.2.3. Let U = [0,1] and B = {5 : m € N}.
Let Q,.q = {q}, where ¢ : U x U — [0, 00) is b-pseudo metric on U defined for
all u,v € U by

— v|? if u= B =
o) = lu — v 1 u=wvor {u,v}N {u,v}, (2217)
lu—v]2+1 ifu#ovand {u,v} N B # {u,v}.
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Let the set F' = [§,1] C U and let J: U x U — [0,00) for all u,v € U be
defined as:

if F =
Sy = J0) F O} = o) 2o
4 it F'N{u,v} # {u,v}.
Define av: U x U — [0, 00)
0 ifu=w,
a(u,v) = _
5 ifu#w.
The single-valued map 7T is defined by
1
T(u) = u; , forallueU. (2.2.19)
Note that T(U) = [}, 2] C Udo = [£,1].
Also, take F'(u) = In(u), then F € F.

L1) (U, Q,.q) is a b-gauge space which is also Hausdorff.
1.2) The family Js.0 = {J} is Jso-family on U (see Example 2.1.2).

(L.1)

(L.2)

(I.3) (U, Qu.q) is Tsn-sequential complete (follows from Example 2.1.11).
(I.4) Next, Applying F(u) = In(u) to condition (2.2.1), we show that 7" satis-

fies the following condition.

a(u,v) > 1= J(Tu,Tv) < aJ(u,v) 4+ bJ(u, Tu) + cJ(v, Tv)
+eJ(u, Tv) + LJ(v, Tu)

for any u,v € U whenever J(Tu,Tv) # 0.

It is obvious that above condition holds fora = b = ¢ = % ande =L =0.

(I.5) Assumption (4), (i7) and (¢ii) of Theorem 2.2.1 holds.
For zyp = 0 and 2, = Tzg = £, we have a(z,T2) > 1. Also a(Tu, Tv) >
1, if a(u,v) > 1. Finally, if a sequence (z,, : m € N) in U is such that

(2, Zmi1) > 1 and im7=2 2, = 2, then a(z,,2) > 1 and a(z, z,) >
1.

(I.6) Finally, we show that 7" is Q,.q-closed map on U.
For this let (z, : m € N) be a sequence in T(U) = [£, 2] which is Q,.q-

55
convergent to each point of S 8 QOe (O}UN) # (). Let the subsequences (v,,)

and (u,,) satisfy v, = T'(u,,), for all m € N.
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Let z € Sg;ﬂme {O}UN)> then without loosing generality we may assume

that for all 0 < ¢; < 1 there exists k € N such that
q(2,2m) = |2 — zm|* < &1 < 1, for all m > k.
As a result, for € = /€1, we can also write for all 0 < € < 1 there exists
k € N such that
[|z—zm |[< N[ 2 —um [< A 2= vm |< €]
A = T(uy,)], forall m > k.
This in particular implies that
|z —um | =|z—=5v,+1|=|5z—4z—5v, + 1|
=4(3 —2) = 5(vm — 2) |< €
and we get
1
4|Z_Z|<6+5|Um_zl for all m > k.
Now since | z — v, |[—= 0, when m — oo, we get | 1 — z [< e where
€2 =3 < i. This gives

Qsi0 = {3} and there exists z = } € gt such that § = T'(3).

(#m:meN) (2m:meN)

Hence, T is Q,.o-closed map on U.

(L.7) As all the assumptions of Theorem 2.2.1 holds, we have

Fix(T) = {i}

Q.S;Q m 1
dm =

and 11
J>,2)=0

(47 )

2.3 Consequences and applications

This section exhibits some important consequences and applications.

Let (U, Q,.q) be a b-gauge space and G = (V, E) be a directed graph such that
set of vertices V' is equal to U and set of edges F includes {(u,u) : u € U},
but G includes no parallel edges. We obtain the following corollaries from our
theorems by defining a: U x U — [0, 00) for some x > 1 in the following way.

o(u, v) = k if (u,v) € E, (2.3.1)
710 otherwise. e
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Corollary 2.3.1. Let (U, Q,.q) be a b-gauge space. Let J.o = {Jz: § € Q},
where Jz : U x U — [0,00), be the Jyqo-family of distances generated by
Q..o such that U‘(}S;Q # 0 and (U, Q,.q) is Jso-sequentially complete. Let map
T : U — U be such that T(U) C Ugsﬂ and for which we have F' € §, and
7 > 0 such that :

(u,v) € E =7+ F(sgJsg(Tu,Tv)) < Fl(agJs(u,v) + bgJs(u, Tw) + cgJz(v, Tv)
+€5J,3(u, TU) + ngﬁ(l), TU))

for all g € Q and for any w,v € U whenever Jg(Tu,Tv) # 0.
Further, ag, bg, cs, es, Lz > 0 be such that ag + bz + ¢ + (sg + 1)eg < 1 for
each g € ().

Assume, moreover that:
(i) there exist 2 € U such that (2°, z') € E;
(ii) if (u,v) € E, then (Tu,Tv) € E;

(iii) if a sequence (2™ : m € N) in U is such that (2™, z™"!) € E and
lim7s2 2™ = 2 then (2™, 2) € F and (z,2™) € E.

m— o0

Then the following statements hold:

(I) For each 2° € U, (2™ : m € {0} UN) is Q,-convergent sequence in U;
thus, S(QS;Q ) # 0.

zm:me{0}UN

(IT) Furthermore, assume that 7! for some k € N, is Qs.q-closed map on U
and sg{cs + egsp} < 1, for each g € Q. Then

(a1) Fix(TH) # 0;
Qs.0

(ag) there exists z € Fix(T¥) such that z € S ; and

Zm:me{0}UN)

(az) for all z € Fix(TH), Js(2,T(2)) = Js(T(2),2) = 0, for all B € Q.

(III) Furthermore, let Fix(T™*) # @ for some k € N and (U, Q,.q) is a Haus-
dorff space. Then
(b1) Fix(Tk)=Fix(T) ;
(bg) there exists z € Fix(T') such that z € S(Lz:”?;";g{o}uN); and

(bs) for all z € Fix(T), Js(z,2) =0, for all 5 € Q.
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Corollary 2.3.2. Let (U, Q,.) be a b-gauge space. Let J.o = {Jz: f € Q},
where Jz : U x U — [0,00), be the Jyqo-family of distances generated by
Q.0 such that Uf}s; o #0and (U, Q.q) is Jso-sequentially complete. Let map
T :U — U be such that T(U) C U&g;ﬂ and for which we have F € §, and
7 > 0 such that :

(u,v) € E= 7+ F(sgJsg(Tu,Tv)) < F(max {Jg(u,v), Jg(u, Tw), Jg(v, Tv),

Jg(u,Tv)+Jg(v,Tu)
AT CD 4 Ly 0, Tu))

for all € Q and for any u,v € U, whenever Jz(Tw,Tv) # 0. Also, Lg > 0.
Assume, moreover that:

(i) there exist z° € U such that (2°,2') € E;
(i) if (u,v) € E, then (Tu,Tv) € E.
Then the following statements hold:
(I) For any 2° € U, (2™ : m € {0} UN) is Q,.q-convergent sequence in U;
thus, g0 y # 0.

(zm:me{0}UN

(II) Furthermore, assume that T for some k € N, is a Q,.-closed map on
U. Then

(a1) Fix(TH) # 0;

(ag) there exists z € Fix(T¥) such that z € §ne

(zm:me{0}UN)"
(IIT) Furthermore, let Fix(T*!) # () for some k € N and T is continuous. Then
(b1) Fix(Tk)=Fix(T) ;

(bg) there exists z € Fix(T') such that z € S(Lz;ijg{o}um; and

(bs) for all z € Fix(T'), Js(z,2) =0, for all 5 € €.

Remark 2.3.3. (a) The fixed point results concerning F-type-contractions
in gauge space in [64] require the completeness of the space (U, d). There-
fore, our theorems and corollaries for F-type-contractions in the b-gauge
space are new generalization of the results in [64] in which assumption
are weaker and assertions are stronger.

(b) Our results for F-type-contractions in b-gauge space tells about periodic
points as well. Hence improve the results in [64].
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(¢) The above theorems, Theorem 2.2.1 and Theorem 2.2.2 generalize The-
orem 4.2 and Theorem 5.2 respectively in [65].

Now, we consider possible application of our results for the solution an
integral equation.
The volterra integral equation
g(t)
u(t) = f(t) + K(t,s)u(s)ds t,s € [0,00) (2.3.2)
0
is the integral equation located in the space C[0, 00) of all continuous functions
defined on the interval [0,00). Where K(t,s) : [0,00) x [0,00) — R and
f,9:10,00) = R are continuous functions and g(¢) > 0 for all ¢t € [0,00). Let
U = (C[0,00),R). Define the family of b-pseudo metrics by
dn(10) = max {Ju®) = oft) e}
0
Obviously, Q.q = {¢m : m € N} defines a complete Hausdorff b-gauge struc-
ture on U. Here in particular we consider the case when Q..o = Js0 = {qm :
m € N}. Define the map o : U x U — [0, 00) for some £ > 1 in the following
way.

o, v) = {Ii ifu#v

0 otherwise.

Theorem 2.3.4. Define the operator 7" : C|0,00) — C[0, 00) as follows:
g(t)
+/ K(t,s)u(s)ds t,s € [0,00) (2.3.3)
0

where K(t,s) : [0,00) x [0,00) — R and f,g : [0,00) — R are continuous
functions and g(t) > 0 for all ¢ € [0, 00).

Assume, moreover there exist v : U — (0,00) and a : U x U — (0, 00) such
that the following statements hold:

(i) there exist 7 > 0 such that

e T

|K(t,s)u(s) — K(t,s)v(s)| < \/7( >qm(u,v)

u+v

for each t,s € [0,00) and u,v € U, moreover

2
’/ ds‘ §e|”|;
VA (u(
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(i) there exist 2 € U such that a(z", T2°%) > 1;
(iii) for x,y € U with a(z,y) > 1 we have a(Tz,Ty) > 1,

(iv) if a sequence (2™ : m € N) in U is such that a(z™,z""!) > 1 and
lim7s2 2™ = 2z then a(2™, z) > 1 and a(z,2™) > 1;

(v) T is Q,.q-closed map.
Then there exist at least one solution of integral equation (2.3.2).
Proof. We first prove that T satisfies condition (2.2.1). For any u,v € U with
au,v) > 1, we have

g(t) 2
Tu(t) — To () / K(tsyulsyds = (70 + [ K(top(s)ds)

—)/ K(t,s)u ds—/ K(t,s)v ds
ds)

K( s)u(s)ds — K(t, s)v(s)

< elmle g (u,v).
From here we can write
1 Tu(t) — Tw(t)Pe™ ™ < e gy (u,v).
This can be written as
G (Tu — Tv) < e gy (u,v).

Obviously, natural logarithm belong to the family §s, therefore, taking loga-
rithm on both sides, we have

(g (Tu — Tv)) < In(e” " gm(u,v)).
Simplification leads to the following
7+ In(gn (Tu — Tv)) < In(gm(u,v)).
This implies that (2.2.1) holds for a,, = 1 and b,, = ¢, = e, = L, = 0,

for all m € N and F(u) = Inu. Hence, Theorem (2.2.1), ensure a fixed point
of the operator T', thus, there is at least one solution of the integral equation

(2.3.2). O
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Chapter 3

Periodic and Fixed Points in
Quasi-b-(zauge Spaces

The panoptic and comprehensive aspect of Banach fixed point theorem has led
to a number of generalizations of the result. In case of multi valued mapping
it is extended to Nadler fixed point theorem which has its own significance.
Keeping in view the importance of these theorems this chapter is designed to
present novel periodic and fixed point results in the setting of quasi-b-gauge
space, which generalize and improve the existing results due to Nadler and
Banach in fixed point theory.

Throughout the following sections (U, Q,.) is representing a quasi-b-gauge
space (denoted by @ — b — G space, for short), where U is the underlying
nonempty set and Q. is a quasi-b-gauge with s as coefficient of o-metric and
2 is an index set. Also, L(R) is representing the concept of left(right).

This chapter contains four sections. The first section introduces the notion
of quasi-b-gauge space (U, QS;Q). In the second section we establish the concept
of left(right) Js.q-families of generalized quasi-pseudo-b-distances generated by
Qs.0- In the third section, we investigate novel results based on periodic and
fixed point in the setting of quasi-b-gauge space, which generalize and improve
the existing results due to Nadler and Banach in the corresponding literature.
An example is presented to support our result. The last section is devoted to
some important and fascinating consequences and applications of the results
obtained. This chapter is published as research article [53].

3.1 Quasi-b-gauge spaces

Reilly [40] studied quasi-gauge spaces and since then numerous researchers
continued to work in this direction and obtained several important results.

47
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In this section, we establish the concept of () —b— G spaces which generalize
the existing b-gauge space and quasi-gauge space. We begin with the initiation
of the concept of quasi-pseudo-b metric space.

Definition 3.1.1. Let s > 1. The map ¢ : U x U — [0,00) is said to be
quasi-pseudo-b metric, if for all e, f, g € U the following properties hold:

(a) q(e,e) =0; and

(b) qle,g) < s{ale, f) +q(f,9)}.

The pair (U, q) is said to be quasi-pseudo-b metric space and is called Hausdorff
if it satisfies

e# f=qle,f)>0Vq(f,e)>0
foralle, f € U.
Example 3.1.2. Suppose U = [0, 6]. Define g : UxU — [0,00) forall z,y € U

as:
(z.7) 0 ifz>y

‘/'E’ = .
Ny t ifx <y,

where t > 2. Then q is a quasi-pseudo-b-metric on U. In fact, ¢(z,z) = 0 for
all z € U. Further, ¢(z, z) < £{q(x,y) + q(y,2)} holds for all z,y,z € U and
for £ =s>1. Also, (U, q) is Hausdorff.

Example 3.1.3. Let U = I, = {{zn}p>1 C R : > 07 |2,P < oo}, where
1 <p<oo. Define q: U x U — [0,00) for all z,y € U by

z,y) = . N .
ey (> |zal?)»  otherwise.

Then ¢ is a quasi-pseudo-b-metric on U with s = p > 1. Since symmetry
property does not hold therefore ¢ is not a pseudo-b-metric and hence not a
b-metric.

Example 3.1.4. Suppose U = [0, 6]. Define g : UxU — [0,00) for alle, f € U
by

o ife> f,
qe, ) = {(e_f)2 o< (3.1.1)

Then ¢ is a quasi-pseudo-b-metric on U. Indeed, g(e,e) = 0 for all e € U.
Further, q(e,g) < 2{q(e, f) + q(f,g)} holds for all e, f,g € U and for s = 2.
Note that, (U, q) is not quasi-pseudo-metric space.
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Definition 3.1.5. Each family Q,. = {gs : 8 € Q} of quasi-pseudo-b metrics
g : U x U — [0,00) (with constant sz > 1) for § € (2, is said to be a quasi
b-gauge on U.

Definition 3.1.6. The family Q. = {gs : 8 € Q} is called to be separating
if for every pair (e, f) where e # f, there exists gg € Q,q such that either

qs(e, f) > 0 or gg(f,e) > 0.

Definition 3.1.7. Let the family Q,.q = {gs : 8 € Q} is a quasi b-gauge on U.
The topology T (Q,.q) on U whose subbase is defined by the family B(Q,.q) =
{Bl(e,ep) e € Uesz >0,8€Q}of all balls Ble,eg) = {f € U : ggle, f) < es},
is called the topology induced by Q... The topological space (U, T(Q,.q)) is
a @ — b — G space, denoted by (U, Q,.q). We note that (U, Q,.q) is Hausdorft
if Q,.q 1s separating.

Remark 3.1.8. Each quasi-gauge space is a () — b — G space (where sz = 1,
for all 8 € Q). Also every b-gauge space is a Q — b — G space. Thus, the class
of Q) — b — G spaces is bigger than the class of quasi-gauge spaces and b-gauge
spaces .

3.2 Left (right) J,.o-families of generalize quasi-
pseudo-b-distances

In this section, we establish the notion of L(R) Js.q-families of generalize
quasi-pseudo-b-distances on () — b — G spaces. Moreover, by using these L(R)
Jso-families, we define the L(R) Jsq-sequential completeness and establish
for set-valued map T : U — Cl7s2(U) the Nadler type contractions and for
single-valued map 7' : U — U the Banach type contractions.

The new asymmetric structure determine by these families of distances
are generalization of quasi-b-gauges and give valuable and important tools for
inquiring periodic points and fixed points of maps in () — b — G spaces.

Definition 3.2.1. Let (U, Q,q) is a Q@ —b— G space. The family Js0 = {Js :
p € Q} where Jz : U x U — [0,00), 5 € Qis called the L(R) J.o-family of
generalized quasi-pseudo-b-distances on U (L(R) Js.q-family on U, for short)
if for all z,y, z € U and for all g € € the following statements are fulfilled:

(T1) Jg(w,2) < sp{Js(z,y) + Ja(y, 2)};
(J2) for each sequences (u,, : m € N) and (v, : m € N) in U fulfilling

lim sup Jg(tp,, u,) =0, (3.2.1)

m—r0o0 n>m
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( lim sup Js(tn, ) = 0), (3.2.2)
m—r0o0 n>m
and
lim Jg(vpm, ) = 0, (3.2.3)
m—0oQ
( it Js(tm, V) = o), (3.2.4)
m—0o0
the following holds:
lim qg(vpm, tm) = 0, (3.2.5)
m—0o0
< i qs(tm, V) = 0). (3.2.6)
m—0o0

We denote
J(LUQS'Q) ={Tsa: Tea ={Js: f € Q} is left J;o-family on U},
J?U,QS;Q) ={Tsq : Tea ={Js: f € Q}} is right J,q-family on U}.

Example 3.2.2. Let (U, Q,.q) be a Q —b— G space, where U contains at least
two distinct points and Q. = {gs : B € Q} is the family of quasi-pseudo-b
metrics ¢z : U x U — [0,00), 8 € Q.

Let the set F' C U has at least two distinct, arbitrary and fixed points and
let ag € (0,00), 5 € Q satisfies 63(F) < ag for all § € Q, where dg(F) =
sup{gs(a,b) : a,b € F}. Define Jg : U x U — [0,00),8 € Qforalle, f €U
and for all g € Q as:

qsle, f) it F{e f} ={e [},

ag if e f} #{e, f}. (327)

Jﬁ(evf):{

Then Juo = {Js: B € Q} € I ) N Ilq.0)

We notice that Jg(e,g) < sg{Js(e, f) + Js(f,g)} for all § € Q and for all
e, f,g € U, where sz > 1. Hence condition (J;) is satisfied. Certainly, condi-
tion (J1) does not hold only if there exists e, f,g € U and some § €  such
that Js(e,g) = ag, Js(e, f) = qs(e, f), Js(f,9) = as(f.9) and sg{qs(e, ) +
q3(f,9)} < ag. However, then this implies that there exists h € {e, g} such
that h ¢ F and on other hand e, f, g € F', which is unfeasible.

Now let (3.2.1) and (3.2.3) hold for the sequences (u,, : m € N) and (v, :
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m € N) in U. Then in particular (3.2.3) yields that for all 5 € € and for all
0 < € < ag, there exists m; = my(f) € N such that

Js(Um, um) <€, for all m >my (3.2.8)
By (3.2.8) and (3.2.7), denoting my = min{m, () : 5 € Q}, we have
{Vmy U} OV EF = {vg, up}, for all m > my (3.2.9)
and
45 (Vmy Um) = Jg(Um, um) < €. (3.2.10)

Hence (3.2.5) holds. Thus, J,.q is a left J,o-family on U.
Similarly, we can show that J.q is a right J,.o-family on U.

Now we state few trivial properties of L(R) Js.q-families in the following
remark.

Remark 3.2.3. Let (U, Q,.q) is a Q — b — G space.
L R
(a) QS;Q 6 J(UzQs;Q) m J(Ust;Q)‘

(b) Let Jsq € J(LU@S;Q) or Jsq € JﬁU7Qs;Q). If Js(v,v) =0 for all § € Q and
for all v € U, then Js for each 8 € (2, is a quasi-pseudo-b metric.

(¢) There exists example of Jy.q € J(LU,QS;Q) and Js.q € J?U,QS;Q) which shows
that Jg, 8 € Q are not a quasi-pseudo-b metrics.

Proposition 3.2.4. Let (U, Q,.) be a Hausdorff @Q — b — G space and Jg0 =
{Js : B € Q} be the L(R) Js.o-family on U. Then there exists 5 € §2 such that
foralle, f € U

e# f=Js(e, f) >0V Js(f,e) >0.

Proof. Let Js.q is a left Js.o-family on U and suppose that there are e, f € U
with e # f such that Js(e, f) = 0 = Jg(f,e) for all € Q. Then by using
property (J1) we have Js(e,e) =0, for all g € €.

Defining sequences (u,, : m € N) and (v,, : m € N) in U by u,, = e and v,,, = f
or u, = f and v, = e, we see that conditions (3.2.1) and (3.2.3) of property
(J2) are satisfied and therefore condition (3.2.5) holds, which implies that
qsle, f) = 0 = qs(f,e), for all B € Q. But, this denies the fact that (U, Q..q)
is a Hausdorff () — b — G space. Therefore, our supposition is wrong and there
exists § € €1 such that

e# f=Jsle,f) >0V Js(f,e) >0

foralle, f € U.
Similarly for Js.q is a right Js.o-family on U, the proof is based on analogous
technique. O
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Definition 3.2.5. Let (U, Q,q) is a Q@ —b— G space and J,,o = {Js : § € Q}
be the L(R) Jiq-family on U. Define the L(R) Ji.qo-ball center at 2° and
radius € = {€3}geq € (0,00) as:

BLijS;Q(SCO,E) = {y (- U: VﬁeQ{Jﬁ(wovy) S 66}}’

(B0 (2% €) = {y € U : Voca{Js(y,2") < e5}}).

Remark 3.2.6. From Example 3.2.2 it follows that there is a Q@ — b — G
space, the family J..q on U, 2° € U and € = {es}geq € (0,00) such that
20 ¢ BETs9 (20 €) (20 & BRI (20 ¢)).

Now, using L(R) Js.o-family on U, we describe L(R) J.q-completeness in
the Q — b — G space (U, Q,.) which generalizes the usual Q,.o-completeness.

Definition 3.2.7. Let (U, Q,.) is a Q—b—G space and let Jgo = {Js : B € Q}
is a L(R) Js.q-family on U.

(A) A sequence (v, : m € N) is said to be L(R) Js.o-Cauchy sequence in U
if for all 5 € 2, we have

lim sup Jg(vpm, v,) =0

m—r0o0 n>m

( lim sup Jz(vp, vm) = O).

m—0o0 n>m

(B) The sequence (v, : m € N) is said to be L(R) Js.q-convergent to v € U
if lim2 T2y, =0 (lim7 =752 4, = v), where
limE =759 4, = v < lim,, o Jg(v,vy,) =0, for all g€

m— o0

<limR"75‘fZ U, = U & limy, 0 Jg(vim,v) =0, forall g e Q)

m—0o0

(C) TESi Tme £ 0 (S T2y, #0), where

(vm:meN (vm:meN
L_js; .« 13 L= Ts; —
S(vm:mZN) = {U eU: hIn'rn—>J<><5Q Um = ’U}
R_‘-7S§ - 13 R— S; i
<S(Um:mgN) - {U ceU: hrnm—io’Q Um = U}) :

Then the sequence (v, : m € N) in U is L(R) Js.q-convergent in U.

(D) The space (U, Q,.q) is L(R) J,q-sequentially complete Q — b — G space,
if each L(R) Js.0-Cauchy sequence in U is L(R) Js.q-convergent in U.

Remark 3.2.8. Let (U, Q,.q) be a Q —b—G space and let J,q = {Js : § € Q}
be the J;.o-family on U.
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(i) There exist examples of Q—b—G spaces (U, Q,.q) and L(R) Js;o-family on
U with J0 # Q,.q such that (U, Q,.q) is L(R) Jse-sequential complete
but not L(R) Q,.q-sequential complete (see Example 2.1.11).

(ii) If (v :m € N) be a L(R) Js.q-convergent sequence in U, then for every
of its subsequence (u,, : m € N) we have

L_js;Q L— \.759 R_js;ﬂ R—Js.0
S(vm:meN - Su :meN) (S(vm:meN - S(u meN))

(iii) There exist examples of ) —b — G spaces (U, Q,.q) and Jo-family on

U with Js.q € J(LUQS;Q) N J?U,QS;Q) such that (U, Q,.q) is left Ji,q-Cauchy
sequence, but not right J;.o-Cauchy sequence (see Example 3.2.9 below).

Example 3.2.9. Let U = R and let Q.. = {¢} where ¢ is a quasi-pseudo-b-
metric on U defined for all x,y € U by

(2.9) 0 ifx>y,
x? - .
"y t ifzr<y.

Where ¢t > 2.
Let G = Z~ is a subset of U. Let Jsq = {J} where J: U x U — [0,00) is
defined for all x,y € U by

_ Jaley) it Gnd{x,y} = {x,u},
Ja,y) = {t2 it GN{z,y} # {x,y}.

Then (U, Q,.q) is a Q — b — G space and Jgq € .,]](LUQ N J (0. Qu)"

Take a sequence (u,, : m € N) = (—=m : m € N), then it is left J,.o-Cauchy
sequence, but not right J,.o-Cauchy sequence.

Also, we observe that (—m : m € N) is left J;.q-convergent to each point in
Z~, but not right J;.q-convergent to any point in R.

Definition 3.2.10. Suppose (U, Q,.q) is a Q —b—G space and let T : U — 2V
is a multi-valued map. The map T™ is called a L(R) Q,.q-quasi-closed map
on U, where k € N, if for each sequence (w,, : m € N) within 7 (U), which
is L(R) Q,.q-convergent in U, thus SLw Q;ZN #0 (S Ii Q;@ZN # ()), and having
subsequences (Ym : m € N) and (2, : m € N) which satisfy

Ym € TH(z,,) for all m € N,
has the characteristic that there exists w € S
that w € TH (w)(w € TH(w)).

Qsﬂ (

(wmemen) (W € Sl Qe ) such

(wm:meN)
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Definition 3.2.11. Let (U, Q,.q) is a @ — b — G space and let Jyq = {Js :
B € Q} be the L(R) Ja.q-family on U. A set W € 2V is a L(R) J..q-closed in
Uit W = el (W) (W = el 7% (W), where cly,” (W) (clfl 7> (W)),
is the L(R) Js.q-closure in U and defined as:

Ay O W) ={z € U : lim= 70 2, = 2}

(clg_jS?Q(W) ={zcU:limi 722, =2).

Define CIL=Ts2(U) = {W € 2V : W = dlfy " (W)} (CIE-T2(U) = {W ¢
2U W = cl(}j_JS;Q(W)}). Thus ClE=7s2(U) (CI1#7s2(U)) symbolizes the

class of all L(R) Js.q-closed subsets of U.

Definition 3.2.12. Let (U, Q,.q) is a @ — b — G space and let J0 = {J3 :
B € Q}is a L(R) Jeo-family on U. The map T : U — 2V is called L(R)
Jso-admissible at a point 2° € U if for each sequence (2™ : m € {0} UN)
which satisfies 2™ € T'(2™) for all m € {0} UN and for all 8 € Q

lim sup Jgz(2™,2") =0

m—00 n>m
( lim sup Jz(2",2™) = 0),
m—r0o0 n>m
there is z € U such that
limy, 00 Jp(2,2™) =0 (limmﬁoo Jg(2™, z) = 0), for all g€ Q.
The map 7' : U — 2Y is called L(R) Jso-admissible in U if it is L(R) Js0-
admissible at every 2° € U .

Example 3.2.13. Let U = [0,6] and let Q. = {¢q} where ¢ is a quasi-pseudo-
b-metric on U defined for all x,y € U by

0 if x >y,

Y) = - 3.2.11
atr.y) {(:z;—y)Q if v <uy. ( )

Then (U, Q,.q) is a Q@ — b — G space.

Let G = [0,3)U(3, 6] be asubset of U. Let Js.q0 = {J} where J : UxU — [0, 00)

is defined for all x,y € U by

_Jalzy) itGn{z,y}t = {z,y}
Hwy) = {40 it GN{z,y} # {z,y}. (82.12)

Then Js.q is a L(R) Js.o-family on U.
The set-valued map 7' is defined by

_ ] [4,6] forx€]0,3)U(3,6]
Tie) = {[5, 6] forz =3. (3.2.13)
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We show that T is left J;.q-admissible at U. Thus if 22 e U and {z™:m €
{0} U N} fulfils the properties

2" e T(z™), forall me {0} UN (3.2.14)

and
nlLLHéO 222 J(z™,2") =0, (3.2.15)

then
nllg(l)o J(z,2™) =0 where z = 6. (3.2.16)

In fact, we observe
T"(U) = [4,6] C G for m > 2. (3.2.17)

We can also write (3.2.15) in the form that for all € > 0, there exists my € N
such that for all n > m > mg, we have J(2™,2") < € and so, in particular in
view of (3.2.17), (3.2.11) and (3.2.12), this implies that there exist m; > mg
such that for all 0 < € and for all n > m > my, we have

J(z™, 2") = q(z™,2") =0 < e (3.2.18)

From (3.2.17), (3.2.18), (3.2.11) and (3.2.12), we conclude that z™ > z™"! for
all m > my, and since 6 > 2™ for all m and 6 € G, we have lim,, ., q(z, 2") =
0 where z = 6 and this implies (3.2.16). Thus, (U,T) is left J,.o-admissible at
U.

Remark 3.2.14. Suppose (U, Q,.q) is a Q@ — b — G space and let Jgo = {Js
B e Q}isal(R) Jso-family on U.

(a) There exist examples of Q) — b — G space (U, Q,.q) and Jyo-family on U
with Jg0 # Qq.q such that (U, T) is L(R) J,;o-admissible on U but not
Q,.q-sequential complete (see Example 6.4 of [44]).

(b) If (U, Q) is a L(R) Js.q-sequentially complete then T : U — 2V is L(R)
Js;0-admissible on U.

(c) Note that if s3 = 1, for all § € Q, we obtain all the definitions of this
section in J-family of generalized quasi-pseudo distances in quasi-gauge
spaces [52].

In the @ — b — G space, we describe the L(R) Hausdorff type quasi-b-
distances and Nadler type L(R) contractions in the following way.
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Definition 3.2.15. Let (U, Q..q) is a @ — b — G space and let Jyo = {Js :
p e Q}isal(R) Jso-family on U, let ¢ € {1,2,3} and suppose for all 5 € Q,
for all e € U and for all F' € 2V

Js(e, F) = inf{Js(e,g) : g € F}
NJg(F,e) = inf{Js(g,€) : g € F}. (3.2.19)

(a) Define on ClL=7s2(U) (C1%7s2(U)) the L(R) quasi-b-distances of Haus-
dorff type DL Ts;0 {DL Jssz’ﬁ e Q} ( R Ts;0 {DR ‘_73975 c Q})
where DS . Q- 1) x CU-5wa(U) - [0,00], § € 0 (D7

ol JSQ(U) x ClE=Js2(U) — [0,00], B € Q) forall B e€Q and for all
E,F € Cl72(U) as:

(a.1) Dy (B, F) = max{sup.cp, Jy(e, F).supsep Jo(E, f)}.
L ‘73 (B, F) = max{sup, g Js(e, F), supser Jp(f, )} and
L jSQ(E, F) =sup,cpJsle, F), if Ts0 € J(UQ).

(a.2) D R ng(E, F) = max{sup.c Js(e, '), sup e p J3(E, f)},
DI 59(B, F) = wa{sup,ep Jae, F)osupger Ja(f, B)} and
R jSQ(E, F) =sup.cpJsle, F), if Ty € “]](U,Q)‘

(b) Let p = {ug}pea € [0,1). The map T : U — ClF=Tse(U) (T :
U — Cllt=Ts2(U)) is L(R) (Df_”j”ﬂ,u)—contraction on U ((D?_‘JS‘Q,M)—
contraction on U) if for all 5 € Q and for all u,v € U:

(b.1) D" (T(u), T(v)) < ppJs(u,v), if Tug € Ty o;
(b.2) D7 (T(w), T(v)) < pada(u,v), if Jua € I o).

Remark 3.2.16. Let (U, Q,q) is a Q—b—G space and let Jyo = {Js : 8 € Q}
of maps Jz : U x U — [0,00), f € Q, be a L(R) Js.o-family on U.

(a) In general DL_JS‘Q(D?L;J“Q) are not symmetric thus, DCLﬁJSQ(E F) =

DCLﬁJS *(F, E)(DR_JS YE,F) = DR o “(F, E)) not necessarily hold. Also

DCBJSQ(E E) = O(DR J52(E, E) = 0) not necessarily hold; see Remark
3.3.6 (b) and (c) for detall.

(b) Each (D ~Jua p)-contraction on U ((D?_JS;Q,M)—contraction onU), (€

{1,2,3} is (DY™7 p)-contraction on U (D57, u)-contraction on U)
but, the converse not generally true.
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3.3 Periodic and fixed point theorems in quasi-
b-gauge spaces

Wlodarczyk and Plebaniak [52] have investigated periodic and fixed point the-
orems in quasi-gauge spaces using J-family of generalized quasi-pseudo dis-
tances. Using their technique we present novel theorems related to periodic
and fixed points of certain maps in () — b — G space which generalize some of
their results.

Theorem 3.3.1. Let (U, Q.q) be a Q —b— G space, let Juo = {Js: 3 € Q}
is a L(R) Jso-family on U and let ¢ € {1,2,3}. Assume, moreover, that u =
{us}pea € [0,1) and the map T : U — Cl+=Ts2(U) (T : U — Cl1*I=2(U))
satisfy:

(i) T is (D7, u)-contraction on U (D7, ju)-contraction on U'); and

(ii) for any u € U and any v = {v5}seq € (0, 00), there exists v € T'(u) such
that for all 5 € Q2

Jg(u,v) < Jg(u, T'(uw)) + s (3.3.1)

(Jg(v, w) < Ja(T(u), u) + 75). (3.3.2)

(I) If (U,T) at a point z° € U is L(R) J.o-admissible, then there is a
sequence (2™ :m € {0} UN) starting at z° € U such that 2™ € T'(z™!)
for all m € N, a point z € U and r = {rs}geq € (0,00) such that z™ €
BETs0(20 r) (2™ € BRT:92(20 1)}) for all m € N and lim%~Js2 2 = »
(limfb’_;&ﬂ Zm = z)

(I1) If (U, T) at a point 2° € U is L(R) Js.q-admissible and if ¥ for some
k €N, is L(R) Q,q-quasi-closed map on U then Fix(T™) is non-empty
and there is a sequence (2™ : m € {0} UN) starting at 2° € U such that
2™ € T(2™ 1) for all m € N, a point 2z € Fix(TH) and r = {rg}seq €
(0,00) such that 2™ € BL=7s2(20 r)(2™ € BE~Ts2(20 r)) for all m € N

3 Lij,Q — 3 Rfj,ﬂ —
and lim,; {59 2, = 2z (hmmﬁgo Zm = z).

Proof. (1) Suppose that (U, T) is L(R) Jsq-admissible at a point 2° € U.
From using (3.2.19) and the fact that Jz: U x U — [0,00), § € 2, we choose

T = {7“5}56(2 S (O, OO) (333)

S = {Sﬁ}geg € [1, OO) (334)
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such that for all g € Q

1 —
Jo(0,T(20)) < L) S’W’B . (3.3.5)
B
1 —
Put A — % _ (0 T() forall BEQ. (3.3.6)

From (3.3.3), (3.3.4) and (3.3.5) we have v(0) = {véo)}geg € (0,00) and apply-
ing (3.3.1) to get 2! € T(2(”) such that

J5(2%,24) < J5(2°, T(z°) + 1 for all § e Q. (3.3.7)

We see from (3.3.6) and (3.3.7) that

1 _
Js(20,2Y) < % for all § € Q. (3.3.8)

Observe that (3.3.8) implies 2! € BL=Ts2(20 r).
Put now

1 _
A0 = s [(S#)’”ﬁ ~Js(z% Y] forall e Q. (3.3.9)
B

From (3.3.8) we have, 4! = {’yél)}ﬁeﬂ € (0,00) and we apply (3.3.1) to find
22 € T(2W) such that

Ja(24, 2%) < Jg(24, T(21)) +’yél) for all g € Q. (3.3.10)

Also note that

1 —
Ts(2),22) < M for all 4 € Q. (3.3.11)
B

Indeed, from (3.3.10), (3.2.19), Definition 3.2.15 and (3.3.9), we get for all
£ e

1 1
oz, ) < Jy(a T(1) 4 5 < b Tyl TE1) 937
< DL (T, TE) 1) < s, =) 4l = 2205490 ¢ e {1,2,3),
Thus (3.3.11) holds.
Further, by (J1) there exist s = {sg}seq € [1,00) and using (3.3.8) and
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(3.3.11), we have for all 5 € 2

JB(ZO’ 22) < 85{J5(20721) + Jﬁ('zl?ZQ)}
(L—pg)rs | pp(l — pg)r
<3ﬁ{ Sﬁ 6, M 2/36}
e 55
I
< (1—pp)rs(l+=2)
58
< (1= pg)ra(L + pp)

< (L= pp)rs Y uh=rp.
k=0

Thus 22 € BE=Ts2(20 7).

Repeating the above process, using Definition 3.2.15 and property (3.3.1), we

find a sequence (2™ : m € N) in U satisfies
2" e T(2™) for all m € {0} UN.

Letting v(™) = {Vém)}geg for all m € N, where

o JB(Zm_l, Zm)

B m+1

m—1
m pg (1 — pg)rs
7 ):M,B[ -
S8

(3.3.12)

also, we notice that {7™ € (0,00) : m € N} and for all 8 € Q and for all

m € {0} UN, we have

J,@(Zm7 Zm+1) < Jﬁ('zmv T(2m>) + V(m)a

(3.3.13)
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For all g € 2 and for all m € {0} UN, we can write
Jp(2°, 2" < spds(2°, 2Y) + s5Js(2", 2%) + shJa(27, 2%)
o+ sEIg(2" T 2 + sE (2, 2

1— 1— 2(1 — pg)r
<35( Mﬁ)T,BJrS%Mﬁ( /w)rﬂJrSs/%( 1)rs

g 5% A 5%
m—1
I 1 —pg)r wi (1 — pg)r
ol (m 5)ﬂ+sgﬂ ﬁ(m+16)5
58 58
=(1- 1 2 H5
= (1= pg)rg L+ pg + fgeenene. g Lo ”
S (1 —/ig)?"g{l —|—,Uﬁ+,u§ ........ ‘f‘,u@}

= (1= pp)rs > pf
k=0

< (L—pp)rs > _ph=rp.
k=0

Hence this implies that 2™ € BL=72 (2% r) for all m € N.
Applying (J1) and (3.3.13), for all m,n € N such that n > m, we have

lim sup Js(2™,2") < lim sup {85J5(zm,zm+1)+S%J5(zm+1,zm+2)

m—r0o0 n>m m—ro0 n>m

o ST (2 ) s (2 2

{ pg (1= pg)rs N ST = pg)rs

< i
oo b 7 st p s
-9 n—1
pg (L —pa)rs g (L= pg)rg
n—m—18 n—-m—18
++86 n—1 +85 n—1+1 }
S 3/3
m+1 n—1
Hg 2 o8 2
< lim sup(1l —uﬁ)rg{— + B ++... Bm + flﬂ}

< lim sup(1 — pg)ra{pg + umH + ..+ ,ugfz + ,ugfl}

m—00 p>m

n—1
=(1- ug)rg hm Sup Z ,uﬂ
<
<7 Jim, i
This implies
lim sup Jg(2™,2") =0 forall g€ Q. (3.3.14)
m— o0

n>m
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Given that (U,T) is left J,.q-admissible on U, hence using Definition 3.2.12,
properties (3.3.12) and (3.3.14) we find z € U such that

lim Js(z,2™) =0 forall € Q. (3.3.15)

m—00

Let us decide v,, = z and u,,, = 2™ for m € N and note that conditions (3.2.1)
and (3.2.3) hold for sequences (uy,,) and (vy,) in U by (3.3.14) and (3.3.15).
Consequently, we get (3.2.5) by (J2) which gives
lim gs(z,2™) = lim g3(vm, un) =0 forall e
m—r0o0

m—r0o0

—Qs;0
(zm mGN

={reU: limy, o 2" = z}.

and thus, we have z € S’
(IT) Let (U,T) is left J..q-admissible at a point z° € U and TH is left
Qs.0-quasi-closed on U, for some k € N.

Let 2% € U be arbitrary and fixed. Since S zanS’Lg{O}UN) # ) and for m € {0}UN,
we have
Z(m—‘rl)k c T[k] (ka’)’

m=1+k . m € N), we have

thus defining (z,, = 2

(zm :m € N) c TH(U),

L-Q, L-Q,
S(zm:mg{O}UN =5 (zm: mg{O}UN) 7£ ®7
also, its subsequences
(g = 208 c TH(U)

and
(2 = 2™) c TH(U)

satisty
= T¥(z,,) forall m €N

and are left Q) n-convergent to each point z € S( anS"LZ{O}UN) Now, since

SLst;Q

LiQs;Q
(2m:meEN) S

L— QSQ L— QSQ
(ym:meN) S - S

and (2m:meN) (zm:meN)”

C

Using above and the assumption that 7™ for some k € N, is L(R) Qs.0-quasi-

closed map on U, there exists z € SZ Qme{o}uN = Szm me{0JUN)> such that
z € TH(2). O

Now extending the above theorems to the Banach type single valued L(R)-
contractions.
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Definition 3.3.2. Let (U, Q,q) be a Q —b— G space, let J.o = {Js : 8 € Q}
is a L(R) Js.q-family on U and let ¢ € {1, 2}.

(c)

(d)

Define on U the L(R) b-distance D —Tne {DL T 5 e QD DT =
(D7 8 € Q}) on U, where ijsﬂ LU x U = [0, ), B e
0 (Défﬁjs@ L UxU = [0,00), B € Q) forall a,b € U and 8 € Q
as follows:
L-J,
(c.1) Dys""" (a,b) = max{Js(a,b), J5(b, a)},
L-Js .
D57 (a,b) = Jg(a,b), if Teq € J(LUQ )
(c.2) Dy57(a,b) = max{Js(a,b), Js(b,a)},
R—-J;
Dy (a,b) = Ja(a,b), if Too € Ifrg -

Let = {pp}pea €10,1). Amap T :U — U is (DCL_J“Q, f)- contraction
on U ((DR Joar, p)-contraction on U) if for all 5 € 2 and for all u,v € U:

(d.1) D7 (T(w), T(v)) < padslu,v), if Tuo € Iy )i
(d.2) D&s ™ (T(w), T(v)) < paJa(u,v), if Tuo € I -

As a result of above Definition 3.3.2 and Theorem 3.3.1, we have now the
following result.

Theorem 3.3.3. Let (U,Q,.q) is a @ —b — G space, let Juo = {Js : €
0} is a L(R) Jso-family on U and let ¢ € {1,2}. Moreover, assume that

M_

{s}peq € [0,1) and T' : U — U be (DL jg“,u)—contraction on U

DT “p)-contraction on U).
1

¢

()

(IT)

If (U,T) at a point 2° € U is L(R) J.o-admissible, then there exist
a sequence (2™ : m € {0} UN) starting at 2° € U such that (z™ =
Tm(z% : m € {0} UN), a point 2 € U and r = {rg}sea € (0,00)
such that 2™ € BE=Ts2(20 r)(z™ € BE~7s92 (20 r)) for all m € N and

limi—Jse 2 = 2 (hmﬁ;{g“ Zm = z).

If (U,T) at a point 2° € U is L(R) Js.q-admissible and if T is L(R)
Qs.0-quasi-closed map on U, for some k € N, then Fix(T™) is non-
empty and there exist a sequence (2™ : m € 0 U N) starting at 2° € U
such that (2™ = T (%) : m € {0} UN), a point z € Fix(T™*) and
r = {rg}gea € (0,00) such that z™ € BE=7s2(20 r) (2™ € BE=Ts2(20 1))

for all m € N, im2 759 = 2 (lim®~7 2 = 2) and we have
Y m—ro0 m—0o0

Js(2,T(2)) = Js(T'(2),2) = 0, (3.3.16)
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for all B € Q and for all z € Fix(T*).

(IIT) If (U, Q,q) is a Hausdorff space, if (U, T') at a point 2° € U is L(R) Jy0-
admissible and if 7" is L(R) Qs.0-quasi-closed map on U, for some k € N,
then there exist a sequence (2™ : m € OUN) starting at 2° € U such that
(2™ = TIM(2%) : m € {0}UN), a point z € Fix(T*) = Fix(T) = {z} and
r={rg}sea € (0, oo) such that 2™ € BL=7s9 (20 r) (2™ € Bfi=Ts2(20 1))

for all m € N, limi—Jse , = (limR’JS;Q Zm = z) and we have

m—)oo m—0o0

Js(z,2) =0 forall € Q. (3.3.17)

Proof. We prove only (3.3.16) and (3.3.17) here.
On contrary suppose that there exists 3y € Q and z € Fix(T™) for which
Jso (2, T(2)) > 0. Indeed, z = T?(2), T(z) = TP¥(T(2)) and for ¢ € {1,2},
by Definition (3.3.2),
0 < Jgo(2,T(2)) = Jg (TP (2), TP(T(2)))
< D (TP (2), TPH(T(2)))
< iy I (TP (2), TER(T(2)))
< ua Dy (TP (2), TE (T (2)))
< i3y I (THFA(2), TEF(T(2))) <
< M%’;Jﬂo(za T(Z)) < Jg()(Z,T(Z)),

which is unfeasible.

Now suppose that there exists 3y € Q and z € Fix(T*)) such that Js,(T(2), 2) >

0. Then, Definition (3.3.2) and the fact that z = T (2) = TP*(2), implies
that for ¢ € {1,2},
0 < Jg(T(2), 2) = Jg (TH(2), T (2))
< 50T, (T (2), T (2)) + 53, T, (T2 (2), T (2))
bt ol 2 (TP1(2), T292)
< SBODLBJSQ(T[IC+1]( ) T[k+2]( )) +5BOD§; JSQ(T[k+2]< >7T[k+3]<z>>
4+ +Sk 2D§B(;759<T[2k 1]( ) T[2k]( ))
< Sﬂoﬂﬂﬂjﬂo(z T(2)) + skt T2, T(2))
+..+ Sﬂo Mﬁo s (2, T(2)) = 0.

which is impossible. Thus property (3.3.16) holds.
Next, we show that property (3.3.17) holds.
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If the space (U, Q,q) is Hausdorff, then Proposition (3.2.4) and property
(3.3.16) suggest that T'(z) = z, for all z € Fix(T¥). Also, for all z € Fix(T),
we have

Js(z,2) < s3da(2,T(2)) + spds(T(2),2) =0, forall g€ Q.

Thus, Fix(T™) = Fix(T") and for all z € Fix(T'), we have

Js(z,2) =0, for all g € Q.

To prove Fix(T) is singleton, on contrary let y,z € Fix(7T) and y # =z.
Then, Proposition (3.2.4) implies there exists fy € Q such that Jg,(y,2) >
0V Jg,(2z,y) > 0. Obviously, for ¢ € {1,2}, we then have

a0 (4, 2) > 0 ATy (4, 2) = T (T (1), T(2)) < D™ (T(y), T(2))

< Mﬂo‘]ﬂo(y’ Z) < Jﬁo(y7LZ>] v [J,Bo(za y) >0A Jﬂo(zvy)

= Jﬁo (T(Z)vT(y)) < DC;EOJS;Q (T(Z)7T(y)) < :uﬂoJﬁo (Z’ y) < Jﬁo (Z’ y)]a

which is unfeasible. Hence, we obtain Fix(7) = {z}. O

Remark 3.3.4. (i) The proof of right case in above theorems is based on
same method.

(ii) The proof of fixed point theorem due to Banach [1] and Nadler [55] re-
quire the completeness of the metric spaces (U, q) and (CB(U), H?), the
continuity of ¢ and H? and the continuity of the mappings 7. Our main
theorems Theorem 3.3.1 and Theorem 3.3.3 remove these assumptions
and leaving the assertion more general. Hence our results are new gen-
eralization of the fixed point theorems due to Banach and Nadler.

Example 3.3.5. Let U = [0, 6] and let Q..o = {q} where ¢ is a quasi-pseudo-
b-metric on U defined for all u,v € U by

0 ifu>wv
) = — 3.3.18
(v ) {(u —v)? ifu<w. ( )

Let G = [0,3)U(3, 6] be asubset of U. Let Js.q = {J} where J: UxU — [0, 00)
is defined for all u,v € U by

~Jau,v) it G0 {u, v} = {u,v}
Juv) = {40 it GN{u,v} # {u,v}. (3:3.19)

The set-valued map T is defined by

) [4,6] forwue|0,3)U(3,6]
T(u) = {[57 § foru—3. (3.3.20)
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(I.1) Jsq is not symmetric. Indeed, J(4,0) = 0 and J(0,4) = 16.

(1.2) §)U2, ;25;9) is a Q —b—G space and J.q € J{JU,QS;Q) HJFU,QS;Q)' See Example

(I.3) Using (3.3.18) and Definitions 3.2.11 and 3.2.7(C), the property 7' : U —
CIE=Qs2(U) (T : U — O~ %2 (U)) holds,

(L4) T : U — Cll=92(U) is a (DlL_jS;Q,,u = 15)-contraction on U, i.e., for
all u,v e U
DY (T(u), T(v)) < pJ(u,v), where for A, B € 2V
D774, B) = max{sup,c4 J(a, B),sup,c5 J(4,b)}.
Denoting D1L7‘7S;Q = Dy, we prove this in the following subcases:

(I.4.1) If u,v € [0,3) U (3, 6], this implies u,v € G, T(u) = T(v) = [4,6] = E C
G and by (3.3.18) for all e € E we have inf{J(e, f) : f € E} = J(e,e) =
Q(ea 6) = 0. ThUS, D1<T(U)7T(U>) =0< ,uJ(u, U)'

(I.4.2) If w € [0,3) U (3,6] and v = 3, then v € G, v ¢ G, J(u,v) = 40,
T(u)=[4,6] = EC G, T(v) =[5,6) = F C G and by (3.3.18), e € E
suggests

4  whenever e € [4, 5]
0 whenever e € [5,6].

inf{J(e,f):q(e,f):feF}:{
Whereas, f € F inferred inf{J(e, f) = q(e,f) : e € E} = 0. Thus,
Di(T(u),T(v)) =4 = pJ(u,v).

(I.4.3) f u=3and v € [0,3) U (3,6], then u ¢ G, v € G, J(u,v) =40, T(u) =
[5,6) = FE C G, T(v) =1[4,6] = F C G. As aresult, by (3.3.18), e € E
implies inf{J(e, f) = q(e, f) : f € F} = 0. Further, by (3.3.18) f € F
suggests inf{J(e, f) : e € E} = 0. Thus, D1(T(u), T(v)) =0 < pJ(u,v).

(I1.4.4) If u = v = 3, then J(u,v) = 40, T(u) = T(v) = [5,6] = E C G and
for all e € FE inf{J(e, f) = qle, f) : f € E} = q(e,e) = 0. Therefore,
Dy(T(u), T(v)) =0 < pd(u,v).

(I.5) To prove that there exists v € T'(u) such that J(u,v) < J(u,T'(u)) + 7,
for each u € U and for all v € (0, 00), we observe the following subcases:

(I5.1) If w e [0,3)U(3,4) and v =4 € T'(u) = [4,6], then J(u,v) = q(u,v) =
(u—v)% Ju,T(u)) = (u—v)? and J(u,v) < J(u,T(u)) + 7 for all
v € (0,00).
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(I.5.2) If w € [4,6] and v = 4 € T(u) = [4,6], then J(u,v) = q(u,v) = 0,
J(u, T(u)) =0 and J(u,v) < J(u, T(u)) + ~ for all v € (0, c0).

(I.5.3) If w = 3 and v € T(u) = [5,6], then J(u,v) = J(u,T(u)) = 40 and
J(u,v) < J(u, T(u)) +~ for all v € (0, 00).

(I.6) The map T is left J,.g-admissible at U (follows from Example 3.2.13).

(L7) To prove (U,T) is a left Q,.q-quasi-closed map in U, suppose (wy, :
m € N) CT(U) is a left Q) o-converging sequence in U. Now, as [4,6] C
C1E= Q9 (U), there exists w € T'(U) = [4, 6] such that lim,,, .. ¢(w, w,,) =
0.

Equivalently, there exist w € T'(U) = [4, 6] and my such that ¢(w, w,,) <
e for all € > 0 and for all m > mg and thus, by (3.3.19) and (3.3.18), there
exist w € T(U) = [4,6] and m; > myg such that ¢(w, w,,) = 0 < ¢, for all
0 < e and m > my or analogously there exist w € T'(U) = [4, 6] and my
such that w > w,, for all m > m;. Obviously, then [w,6] C S(Lw:anZN)

The consideration above implies that if (z,,) and (y,,) are fixed and arbi-

trary subsequences of {w,, : m € N} fulfilling y,,, € T'(x,,) for all m € N,

then there exists my such that x,, € [4,6] Aym € T(xm) A2 > 2 A2 >

ym A z € T(z) for all m > my and for all z € [w, 6].

(I.8) From (I.1)-(1.7), we observe that, in the left case all the hypotheses of
Theorem 3.3.1 hold.
Thus, Fix(T) = [4,6], and we declare that if 2 € U, 2! € T(2°), 2% €
T(z') and w € [4,6] are fixed and arbitrary and 2™ = w for all m > 3,
then the sequence {z™ : m € {0} UN} beginning at z° and left Q,q-
converging to each point z, satisfies z € T'(2).

Remark 3.3.6. Let a Q — b — G space (U, Q,.q) and a family J,.o = {J} be
as defined in Example 3.3.5.

(a) (3.3.18) implies that ¢ is a quasi-pseudo-b-metric, where s = 2 and ¢ is
not a quasi-pseudo-metric. Thus (U, Qy.q) is a @ — b — G space, but not
a quasi-gauge space. Hence a () — b — G space becomes a more general
space than a quasi-gauge space.

(b) From cases 1.4.2 and 1.4.3, it follows that 4 = Dy~ 7*%(E, F) # D} 7**(E, F) =
0 for F = [5,6] and E = [4,6].

(c) We see that Dy~ 7%(E, E) # 0 if E = {3}.
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3.4 Consequences and application

This section is concerned about some important consequences and application

of the results obtained. Following corollaries are some fascinating consequences

of the main results.

Corollary 3.4.1. Let (U, Q) is a quasi-gauge space, let J = {Jz : f € Q}

is a L(R) J-family on U and let ¢ € {1,2,3}. Assume, moreover, that y =

{uglseq € [0,1) and themap T : U — CIE=7(U) (T : U — CI*I(U)) satisfy:
(i) T is (Df‘J, )-contraction on U ((D?_J, )-contraction on U); and

(ii) for any v € U and any v = {ys}seq € (0,00), there exists v € T'(u) such
that for all 5 € Q2

Jo(u, v) < Jp(u, T(u)) + 75
(Jg(v,u) < J5(T'(u),u) + Wj).
(I) If (U,T) at a point 2° € U is L(R) J-admissible, then there is a sequence

(2™ :m € {0} UN) starting at 2° € U such that z™ € T(2™!) for all
m € N, a point z € U and r = {rg}geq € (0,00) such that z™ €

BYI(20 1) (#™ € B J(2%r)}) for all m € N and lim%~7 2z, = =
(limﬁ__;zo Zm = 2).

(IT) If (U,T) at a point 2° € U is L(R) J-admissible and if 7™ is L(R)
Q-quasi-closed map on U, for some k € N, then Fix(T!) is non-empty
and there exist a sequence (2™ : m € {0} UN) starting at 2° € U
such that z™ € T(z™!) for all m € N, a point z € Fix(T*) and
r = {rs}peq € (0,00) such that z™ € BL=7 (2% r)(z™ € BE~T(20 r)),

for all m € N and limfn__{oo Zm = 2 (limffl__;zo 2, = z)

Proof. The proof follows from the proof of Theorem 3.3.1 by taking sg = 1 for
each 8 € Q.. H

Corollary 3.4.2. Let (U, Q) is a quasi-gauge space, let J = {Jsz: f € Q} is a
L(R) J-family on U and let ¢ € {1,2}. Moreover, assume that p1 = {g}peq €
[0,1) and T': U — U be (Df’j,u)—contraction on U ((D?’j,u)—contraction
on U).

(I) If (U,T) at a point 2° € U is L(R) J-admissible, then there is a sequence
(2™ : m € {0} UN) starting at 2° € U such that (2™ = T2 :
m € {0} UN), a point z € U and r = {rg}geq € (0,00) such that
™€ BEI(20 1) (2™ € BRI (2% r)) for all m € N and lim~2~7 2, = 2

m—o0 ~Mm
(limﬁ_;zo Zm = z)
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(II) If (U,T) at a point 2° € U is L(R) J-admissible and if T* is L(R)

Q-quasi-closed map on U, for some k € N, then Fix(T!¥]) is non-empty

and there exist a sequence (z™ : m € {0} UN) starting at z° € U

such that (z™ = TM(2%) : m € {0} UN), a point z € Fix(T*) and

r = {rs}peq € (0,00) such that 2™ € BE=7 (20, r)(z™ € BF~7 (2% r)) for
R-7J

all m € N, lim" 7 2,, = 2z (lim//~7 2,, = 2) and we have

Js(2,T(2)) = Jp(T(2),2) =0,
for all B € Q and for all z € Fix(T*]).

(ITT) If (U, Q) is a Hausdorff space, if (U,T) at a point 2° € U is L(R) J-
admissible and if 7™ is L(R) Q-quasi-closed map on U, for some k € N,
then there is a sequence (2™ : m € 0 UN) starting at 2° € U such that
(zm = TM(2%) : m € {0}UN), a point z € Fix(T*) = Fix(T) = {2} and
r = {rg}seq € (0,00) such that for all m € N 2™ € BL=T (20 r)(2™ €

BRI (20 r), im% Y 2, = 2 (Imf~7 2, = 2) and we have

Js(z,2) =0 forall € Q.

Proof. The proof easily follows by taking sg = 1 for each § € €, in the proof
of Theorem 3.3.3. O

Remark 3.4.3. We note that Corollary 3.4.2 is Theorem 11.1 of Wlodarczyk
and Plebaniak [52]. Hence our Theorem 3.3.3 is generalization of their result.

Now we present an application on the existence of solution of integral equa-
tion.
Consider

u(t) = f(t) + n/ot K(t,s,u(s))ds, te€]0,00) (3.4.1)

is the Volterra integral equation located in the space C0,00), i.e., the space
of all continuous functions defined on the interval I = [0, 00), such that K :
I xIxR—Rand f:I— R are continuous functions and n € [0, 1).

Let U = (C[0,00),R), define the quasi-pseudo-b-metric for all u,v € U by

G (1, 0) = {|O|(u ~ )l HuAo (3.4.2)

if u=no.

where ||ul[m, = max,ejom)(u(r))?, for all u € U, where m € N.
Clearly Qun = {¢m : m € N} is a Q@ —b— G on U and thus (U, Q.y) is a
() — b — G space which is complete and Hausdorff. Here in particular we take

Qs;N = \7S;N‘
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Theorem 3.4.4. Define T': C[0,00) — C[0,00) as follows

Tu(t) = f(t) —I—n/o K(t,s,u(s))ds, te]0,00) (3.4.3)

is the integral equation located in the space C[0,00), i.e., the space of all
continuous functions defined on the interval [0, 00), where K : I x [ x R - R
and f: I — R are continuous functions and n € [0,1).

Suppose that the following statements hold:

(i) for each t,s € [0,m] and u,v € U, there is a continuous mapping ¢ :

I x I — I such that |K(t,s,u(s)) — K(t,s,v(s))] < +/g(t, s)gm(u,v) for

each m € N;

(i) supsso fy /9t s)ds =b < 1;
(iii) 7" is Q,.n-quasi-closed map on U.
Then there exist a solution of integral equation (3.4.1).

Proof. For any u,v € U and t € [0,m)], consider

(Tu(t) = Tol0)? = (56 +n [ Kitos,utsds = G0+ [ Kt 06
(n/OtK(t,s,u(s))ds—n/OtK(t,s,v(s))ds>2

([ 1K G006 = K 15,0057 ds)

7 ([ Vot Tt as)
< n2</0t Vot s)ds>2qm(u,v)

= 0?0 ¢ (u, v)
= pugm(u,v), where u=n? < 1.

IN

IN

Hence, for each u,v € U such that Tu # Tv and m € N, we obtain
G (Tu, Tv) < pgm(u,v)  where pu < 1. (3.4.4)

For Tu = Tv, we have ¢,,(Tu,Tv) = 0, so (3.4.4) holds. Hence, by Theorem
(3.3.3), the operator T" has a fixed point, that is, the integral equation (3.4.1)
has at least one solution. O]
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Chapter 4

Periodic and Fixed Points for
Set-valued Mappings in
Extended b-Gauge Spaces

Throughout this chapter (U, Q) in denoting an extended b-gauge space with
underlying nonempty set U enriched with a graph G = (V| F) such that the
vertex set V' = U and the edge set F contains the diagonal but includes no
parallel edge.

This chapter is aimed to introduce the notions of extended b-gauge space
(U, Q,.q) and extended J,.q-families of generalized extended pseudo-b-distances
on U. Moreover, by using these extended J,,o-families on U, we define the ex-
tended J,.0-sequential completeness and investigate some periodic and fixed
point theorems for set-valued mappings in the novel space equipped with a
graph.

This chapter includes five sections. In the first section, we introduce the no-
tion of extended b-gauge space (U, Q@;Q). In the second section we establish the
notion of extended J,.o-families of generalized extended pseudo-b-distances on
U. In the third section, we investigate some periodic and fixed point theorems
for set-valued mappings in extended b-gauge space equipped with a graph. In
the fourth section, in extended b-gauge spaces the periodic points for Caristi
type G-contractions are discussed. The last section contains important conse-
quences of the results obtained. A part of this chapter is published as research
article [54].

4.1 Extended b-gauge spaces

Recently, gauge spaces have been defined in the locale of b-pseudo metrics by
Ali et. al., [45], which are called b-gauge spaces. In this section we introduce

71
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the concept of extended b-gauge space. For this we initiate by establishing the
definition of a extended pseudo-b-metric space.

Definition 4.1.1. A map ¢ : U X U — [0, 00) is an extended pseudo-b-metric,
if for all u,v,w € U, there exists ¢ : U x U — [1, 00) satisfying the following
properties:

(a) q(u,u) = 0;
(b) q(u,v) = q(v,u); and
() qlu,w) < o(u, w){q(u,v) +q(v,w)}.
The pair (U, q) is called extended pseudo-b-metric space.

Example 4.1.2. Let U = [0,1]. Define ¢ : U x U — [0,00) and ¢ : U x U —
[1,00) for all u,v € U as:

Q(u7v) = (u - U>2
and
o(u,v) =u+v+2.

Then ¢ is an extended pseudo-b-metric on U. Indeed, q(u,u) = 0 and q(u,v) =
q(v,u) for all u,v € U. Further, q(u,w) < ¢(u,w){q(u,v) + q(v,w)} holds for
all u,v,w e U.

Example 4.1.3. Let U = {u,v,w} and ¢ : UxU — [1, 00) such that p(u,v) =
|u| + |v| + 2. Define ¢ : U x U — [0, 00) for all u,v,w € U by:

q(
q(u,v) = q(v,u) = 1,
1

ofv.0) = gl,) = 1,
and g(w,u) = q(u,w) = 2,

)
yu) =

Q

Further, q(u, w) < ¢(u, w){q(u,v) + ¢(v,w)} holds. Indeed, ¢ is an extended
pseudo-b-metric on U. Note that % = q(u,v)+q(v,w) < q(u, w) = 2; hence q is
not a pseudo metric on U. The example proves that extended pseudo-b-metric
is generalization of pseudo metric.

Definition 4.1.4. Each family Qo = {gs : 8 € Q} of extended pseudo-b-
metrics ¢z : U x U — [0,00), § € Q, is called an extended b-gauge on U.

Definition 4.1.5. The family Q. = {gs : 8 € Q} is called to be separating if
for every pair (e, f) where e # f, there exists g3 € Q. such that gs(e, f) # 0.
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Definition 4.1.6. Let the family Q.o = {gs : 8 € 2} be an extended b-gauge
on U. The topology T(Q,.q) on U whose subbase is defined by the family
B(Q,.q) = {Ble,eg) 1 e € Uyeg > 0,8 € Q} of all balls B(e,eg) = {f € U :
qs(e, f) < eg}, is called the topology induced by Q,.o. The topological space
(U, T(Q,q)) is an extended b-gauge space, denoted by (U, Q). We note that
(U, Q,.q) is Hausdortt if Q,, is separating.

Remark 4.1.7. For sz=1, for each § € (2, each gauge space is bs-gauge space
and for pg(u,v) = s, for each § € 0, where s > 1, each b-gauge space is an
extended D-gauge space. Hence, extended b-gauge space is the largest general
space.

4.2 Extended J,o-families of generalized ex-
tended pseudo-b-distances

In the following, we establish the idea of extended J,.o-families of generalized
extended pseudo-b-distances on U (which are called extended 7,.o-families on
U, for short). These extended J,.o-families are the generalization of extended
b-gauges.

Definition 4.2.1. Let (U, Q,q) be an extended b-gauge space. The family
T = {Jg : B € Q} where Jg : U x U — [0,00), f € €, is said to be the
extended J,.o-family of generalized extended pseudo-b-distances on U if the
following statements hold for all u,v,w € U and for all § €

(T1) Jp(u, w) < @p(u, w){Jp(u,v) + Js(v, w)};
(J2) for each sequences (u,, : m € N) and (v, : m € N) in U fulfilling

%1_13;0 Sgg J(tm, upn) =0, (4.2.1)
and
nll_r}l(l)o J(Um, um) =0, (4.2.2)
the following holds:
ﬂ"lzgléo 43U, up) = 0. (4.2.3)

We denote
Jw.ap) = {Tp0: Toa = {Js: 8 € Q}}.

Also, we denote
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Uy, = {u €U :Vsea{Js(u,u) = 0}} and
U};;Q = {u eU: VgeQ{J/g(u, u) > O}}
Then, of course U =Uj  UUZ .

Example 4.2.2. Let U contains at least two distinct elements and suppose
Qu0 = {gs : B € 2} be the family of extended pseudo-b-metrics, is an extended
b-gauge on U. Thus (U, Q@;Q) is an extended b-gauge space.

Let there are at least two distinct but arbitrary and fixed elements in a set
F C U. Let ag € (0,00) satisfies dg(F) < ag, where d3(F) = sup{gs(e, f) :
e,feF}, forall €. Let Jg: U x U — [0,00) for all e, f € U is define as:

asle.f) i Frfe f} = e, f},
a5 HFA{e S} #{e S}

Then J,0 ={Js: 6 € Q} € Jwo-

We observe that Js(e, g) < pgple,g){Js(e, f)+Js(f,g)}, foralle, f,g € U, thus
condition (J;) holds. Indeed, condition (J;) will not hold in case if there is
some e, f, g € U such that Js(e, g) = ag, Js(e, f) = gs(e, f), Js(f.9) = a5(f. 9)
and g(e, g){qs(e, f)+qs(f,9)} < ag. However, then this implies the existence
of h € {e, g} with h ¢ F and on other hand, e, f, g € F, which is impossible.
Now suppose that (4.2.1) and (4.2.2) are satisfied by the sequences (u,,) and
(Umm) in U. Then (4.2.2) yields that for all 0 < € < ag, there exists m; =
m1(B) € N such that

Ts(e, f) = { (4.2.4)

Jg(Vm, Up,) < € for all m > my, for all g€ Q. (4.2.5)
By (4.2.5) and (4.2.4), denoting my = min{m; () : 5 € Q}, we have
F O {vm,um} = {vm,un}, forall m > my
and
48U, Um) = Ja(Up, U,) < €.
Thus (4.2.3) is satisfied. Therefore, J,.q is a J,.o-family on U.
We now state few trivial characteristics of extended J,.o-families on U.

Remark 4.2.3. Let (U, Q,.q) be an extended b-gauge space. Then the follow-
ing hold:

(a) QL,D;Q S J(Uva;Q).
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(b) Let Jpi0 € Jwq, o) I Js(v,v) = 0 and Js(u,v) = Jg(v,u) for all 5 € Q2
and for all w,v € U then for each 8 € €2, Jz is an extended pseudo-b-
metric.

(c) There exists examples of J,.q € J (U,Q,.) Which shows that the maps Jg,
B € € are not extended pseudo-b-metrics.

Proposition 4.2.4. Let (U, Q,q) is a Hausdorff extended b-gauge space and
the family J,.0 = {Js : B € Q} be the extended J,.o-family on U. Then for
each e, f € U, there exists § € () such that

e;éf:>J5(e,f) >0\/J5(f,€) > 0.

Proof. : Let there are e, f € U where e # f such that Jg(e, f) =0 = Jz(f,e)
for all 5 € Q. Then by using property (J1) we have Jz(e, e) = 0, for all 5 € €.
Defining sequences (u,,) and (v,,) in U by u,, = f and v,, = e, we see that
conditions (4.2.1) and (4.2.2) of property (72) are satisfied and therefore con-
dition (4.2.3) holds, which implies that gs(e, f) = 0, for all 5 € . But, this
denies the fact that (U, Q,.q) is a Hausdorff extended b-gauge space. Therefore,
our supposition is wrong and there exists 8 € €2 such that for all e, f € U

e# f=Js(e, f) >0V Js(f,e) > 0.
O

We now define extended J,.o-completeness in the extended b-gauge space
(U, Q,.q), using extended J,o-families on U.

Definition 4.2.5. Let (U, Q,q) be an extended b-gauge space and J,.q =
{Js : B € Q} be the extended J.o-family on U.

(A) A sequence (v, : m € N) is extended J,.o-Cauchy sequence in U if

lim sup Jg(vpm, v,) =0, forall g€ Q.

m—r 00 n>m

(B) The sequence (v, : m € N) is called to be extended J,.-convergent to

SR EINV o) _
v e U if limy#¢ v, = v , where
lim 7%

oeL Uy = U & im0 Ja(v,v) = 0 = limy, o J3(vp, v), for all

B e .
() If 5% ) # 0, where

(vm:meN
G0 = {veU:lim’»2_v,, =v}.

(vm:meN m—oo ~Mm
Then (v, : m € N) in U is extended J,.o-convergent sequence in U.
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(D) The space (U, Q,.q) is called extended J,.o-sequentially complete, if ev-
ery extended J,.o-Cauchy in U is an extended J,.o-convergent in U.

Remark 4.2.6. There exist examples of extended b-gauge space (U, Q%Q)
and Jo-family on U with J.q # Q.o such that (U, Q,.q) is J,.0-sequential
complete but not Q,,.o-sequential complete (see Example 2.1.11).
Definition 4.2.7. Let (U, Q) be an extended b-gauge space and let T': U —
2V is a multi-valued map. The map T™! is said to be extended Q,.q-closed map
on U, for some k € N, if for each sequence (w,, : m € N) in T*/(U), which is
extended Q,.q-converging in U, thus S(%iﬁmeN) # () and its subsequences (y,,)
and (z,,) satisfy
Ym € TH(2,,), for all m € N

Qui0

has the property that there exists w € S, " ) such that w € TH (w).

Definition 4.2.8. Let (U, Q%Q) be an extended b-gauge space, let J,.0 =
{Js : B € Q} be the extended J,.q-family on U. A set Y € 2V is . o-closed
inUifYy = clg“”;Q(Y), where clg*”?Q(Y), is the J,.q-closure in U, indicates the
set of all uw € U for which there is a sequence (u,, : m € N) in Y such that it
Jg0-converges to u.

Define Cl17»2(U) = {Y € 2V . YV = clg“";Q(Y)}. Thus Cl7#2(U) denotes the
class of all J.o-closed subsets of U.

Definition 4.2.9. Let (U, Q,q) be an extended b-gauge space, let J,.q0 =
{Js : B € Q} be the extended J,.o-family on U and let for all 5 € , for all
e € U and for all F € 2V

Js(e, F') = inf{Js(e,g) : g € F'}.

Define on C17#¢(U) the distance Dg“‘”ﬂ of Hausdorff type for all 5 € 2 and for

all B, F € Cl7#2(U), where D= : Ol (U) x Ol (U) — [0,00), § € Q
as follows:

max{sup.cp Jg(e, F),supser Js(f, £)}, if the maximum exists;

0, otherwise.

Dj**(E,F) = {

4.3 Periodic and fixed point theorems in ex-
tended b-gauge spaces endowed with a graph

In this section, we prove a couple of theorems in extended b-gauge spaces
equipped with a graph. For each theorem and corollary of this chapter ahead
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it is assumed that (U, Q,.q) be an extended b-gauge space and Jp0 = {Jp :
p € Q}, where Jg : U x U — [0,00), be the extended J,.o-family on U such
that (U, Q,.q) is extended J,0-sequentially complete.

We first proof the following lemma.

Lemma 4.3.1. Let (U, Q,q) be an extended b-gauge space and let J,q =
{Jg : B € Q}, where Jz : U x U — [0,00), be the extended J,,o-family on U.
Then

Js(u, A) < g(u, A){Js(u, v) + Js(v, A)},
for all 5 € Q, for all u,v € U and for all A C U, where
vs(u, A) = inf{ps(u,a) : a € A}.
Proof. From axioms of definition, we can write for all § € )

Js(u,a) < pp(u, a){Js(u,v) + Jz(v,a)} for all u,v,a € U

Js(u,a) < pg(u,a)ds(u,v) + ps(u, a)Js(v, a).
By taking infimum of both sides over A, we get for all 5 € Q2

. _ . .
inf Js(u, a) < inf ps(u, a)Js(u, v) + inf ps(u, a) inf Js(v, a)

Jﬁ(ua A) < QOQ(U, A)Jﬂ(u7 U) + gpﬂ(uv A)Jg(l), A)
Jﬁ(ua A) < Soﬁ(ua A>{J5(uv U) + JB(U7 A)}
]

Our main results for set-valued G-contraction in the new setting of extended
b-gauge space equipped with the graph are now given below.

Theorem 4.3.2. Let the set-valued map 7' : U — Cl7¢2(U) and @g : UxU —
[1,00) for each B € Q satisty:

Dg“’;ﬂ (Tu,Tv) < agJs(u,v)+bgds(u, Tu)+csJz(v, Tv)+ess(u, Tv)+L5275(v, T)ﬂu)
4.3.1

for all (u,v) € E, where ag,bs,cs, e, Lg > 0 be such that ag + bg + ¢ +

2e5p5(2™ 1, T2™) < 1 and limy, 500 p(2™, 2" )us < 1, for some pug < 1 and

each 20 € U, here 2™ € T(2™ 1), for m € N.

Moreover, let that

(i) there exist z° € U and 2! € T2° such that (2%, 2!) € E;
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(ii) if (u,v) € E and x € Tu and y € Tv such that Jz(z,y) < Jsz(u,v), for
all g € Q then (z,y) € E;

(iii) for any {rg:rg > 1}geq and u € U there exists v € Tu such that

Jg(u,v) <rgds(u, Tu), forall g e Q.

Then the following statements hold:

(I) Forany 2° € U, (2™ : m € {0}UN) is extended Q,,.-convergent sequence
in U, thus S22 croyum 7 0

zmm

(II) Moreover, suppose that T is an extended Q,.q-closed map on U, for
some k € N. Then

(a1) Fix(T®) # (); and

(ag) there exists z € Fix(T™™) such that z € S (2 me{o}uN)

Proof. (I) We first show that (2™ : m € {0} UN) is an extended J,.o-Cauchy
sequence in U.

Using supposition (i) there exists 2%, 2! € U such that z' € Tz" and (2, 2!) €
E. Now for each § € Q, applying (4.3.1) we have

Dﬁj‘P;Q(TzO,Tzl) < agJp(2°, 21) + bgJs(2°, T20) + csda(2', T2Y) + egdg(2¥, T2t)
+ LgJg(2*,T2°).
(4.3.2)

Now as Jg(2!,T2) < Dg“‘””(TzO, TzY) and Jg(2°, T2Y) < @p(2°, T2 { (20, 21 )+
Jg(2', Tz}, therefore (4.3.2) implies

1
Js(21, T2 < C_,BJB(ZO’ZI)’ (4.3.3)

_ l-cg—egp(z0,Tz1)
where (5 = agtbs+esp(20,Tz1)
Tz! such that

> 1. Now using assumption (iii), we have z? €

2%) </ CaJp(2h, T2Y). (4.3.4)
Combining (4.3.3) and (4.3.4), we can write

Ja (', 2* (2,2, vpBeq. (4.3.5)

T
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Assumption (77) and (4.3.5) implies that (2!, 2?) € E. Progressing in the same
manner, we find a sequence (2™ : m € {0} UN) in U such that (2™, 2™") € E
and

I \m
Ja(2™, 2" < (7) Js(2%,2Y), VvBe. (4.3.6)
B
For convenience let pp = %, for each g € Q.
8

Now by repeated use of (J1) and (4.3.6) for all 5 € Q and for all m,n € N
such that n > m, we get

Jp(2™, 2") < (2™, 2" i Ja (20, 21) + @p(2™, 2" )op (2™ 2 g T p(20, 2Y)
+op(2™, 2" )pp(2™ 2 pp (22, 2 it (20, 21
+ o+ (2™, 2" Zm“ 2)pp(2 T 2 Ip (20, 21
< Jp(2°, 2 )[90/3(3 g2, 2") . pp (2™, 2
+p(zh, 2")pp(2%, 2") . pp (2™, 2" ) (2, 2 g
)

/%
4o+ @5(21, z")gog(z2, 2").pp (2™, 2") . pp (2, )Mgfl]-

8
")

Since limy, 00 (2™, 2" g < 1, for some pg < 1,50 theseries Y "\ ui [T, @a(2’, 2")

converges by ratio test. Let S =Y 7" | ui [[1; wp(2',2") and S, = D77, ,u% [T, ps(2i, 2™).
This gives
Js(2™, 2") < J5(2°, 2N [Sno1 — Sl

This implies
lim sup Jz(2™,2") =0 for all g € Q. (4.3.7)

m—0o0 n>m

Now, since (U, Q%Q) is extended J,.o-sequentially complete b-gauge space,
so (2™ : m € {0} UN) is extended J,. convergent in U, thus for all z €

Sjgpfl

(mme{oyun) s We have

lim Jg(z,2™) =0 forall g€ Q. (4.3.8)
m—0o0
Thus from (4.3.7) and (4.3.8), fixing z € SZ mefoyuny defining (uy = 2"
m € {0} UN) and (v,, = z : m € {0} UN) and applying (J2) to these
sequences, we get

lim ¢s(z,2™) = lim q3(vm,un,) =0 forall g eQ

m—ro0 m—0o0

This implies S Z:’;Qme {O}UN # .
(H()1 To show (a;), let 2° € U is fixed and arbitrary. Since Szf”QmE{O}UN) #0
an

Lk e Tl (mky - for m e {0} UN
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m—1+k .

thus describing (z,, = 2 :m € N), we get

(zm :m € N) c TH(U),

Chioa = St o A0,

(zm:mef{0}UN) — ~(zm:me{0}UN

also, its subsequences
(g = 2" T08) c TH(U)

and
(2 = 2™ c THE(U)

satisfy
Ym € T¥(2,,) for all m € N

and are extended @,.q-convergent to each point z € S zilﬂme{()}UN) Thus,
applying the fact below

Qu:0 .Q Qu:0 Q
S(z::mEN) C Syw :meN) and S(Z:L:mGN C Szw :meN)

and the assumption that T is an extended Q,.q-closed map on U, for some

k € N, we have there exists z € SZ me{0}UN) = SZiQmG{O}UN) such that z €
T ().

Thus, (a;) holds.

The statement (ay) follows from (a;) and the certainty that S(’zﬁlﬂme N 7
0.

Let us consider T' : U — U, we get the following result in single-valued
mapping.

Theorem 4.3.3. Let the single-valued map 7' : U — U and ¢g : U x U —
[1,00) for each § € Q satisfy:

Jg(Tu, Tv) < agdg(u,v)+bgJs(u, Tu)+cgds(v, Tv)+egdz(u, Tv)+LgJz(v, Tu)
(4.3.9)

for all (u,v) € E, where ag,bs,cp, e, Lg > 0 be such that ag + bg + cg +

2e505(2™ 1 T2™) < 1 and limy, 00 (2™, 2™ g < 1, for some pug < 1 and

each 2° € U, here z™ = TI™(2°), where m € N.

Moreover, let that

(i) there exist 2 € U such that (2°,72%) € E;

(ii) for (u,v) € E we have (Tu,Tv) € E, given that Jz(Tu, Tv) < Jz(u,v)
for all g € §;
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(iii) if a sequence (2™ : m € N) in U is such that (2™,2™"!) € F and
lim7#2 2™ =z then (2™, 2) € E and (z,2™) € E.

mM— 00

Then the following assertions hold:
(I) For each 2° € U, (z”;: m € {0} UN) is extended Q,-convergent
sequence in U, thus, S(zijflme{o}UN) # ().

(IT) Moreover, suppose that TH is an extended Q,.q-closed map on U, for
some k € N and ¢3(z,Tz){cs + eglim, 00 (2™, T2)} < 1. Then

(a1) Fix(TW) # ()
(ag) there is z € Fix(T™) such that z € S(Zl’; me{0TUN)

(ag) for all 2z € Fix(TH), Js(2,T(2)) = Js(T(2), 2) = 0, for all B € Q.

and

(III) Furthermore, let Fix(T*) # ), for some k € N and (U, Q,.0) is a Haus-
dorff space. Then

(b1) Fix(Tk)=Fix(T) ;
(by) there is z € Fix(T') such that z € S’ (2 nieﬂ{O}UN) and

(bs) for all z € Fix(T'), Js(z,2) = 0, for all 5 € €.

Proof. In view of Theorem 4.3.2, it remains to prove assertions (a3) and (b;)-
(bs) of the above stated theorem.

To prove (a3), on contrary suppose that Jg,(z,7%) > 0 for some [y € §2. Use
J 1, assumption (i4i) and inequality (4.3.9), we can write

oo (2, T2) < @po(2, T2){Jgo (2, 2™ F1) + Jg, (2", T2) }
= o (2, T2){Jgo (2, 2™H1) + Jgo (T2™, T2) }
< s, (2, Tz){J/go(z, 2" b ag, I, (27 2) 4 by gy (2™, T2™) + cgy gy (2, T2)
+ ey s, (27, T2) + Lg,Jg, (2, T2™)}
< g, (2, Tz){JBO(z, 2+ agy Jg, (2 2) + bgy I, (27 2" + g, 5, (2, T2)
+ ey 05, (2™ T2){J30 (2™, 2) + Jgo (2, T2)} + Ly Jgo (2, 2™}

Letting m — oo, since lim,, ;o0 pp(2™, 2™")ps < 1, for some pg < 1 and for
each 2™, 2" € U, @g(2™,2") is finite and thus we obtain

Jﬁo(zv TZ) < V8o (Z’ TZ){C,BO +ép, W%g%o Qpﬁo(zmv TZ)}JBO(Zv TZ)'
Now since g(z, T2){cs + eglimy, o0 05(2™, T2)} < 1, we get

Jﬁo('Z?T’Z) < wﬂo(zaTz){cﬂo + €5 7711_120 ¢Bo(Zm>TZ)}J50<ZvTZ) < Jﬁo('z?TZ)‘
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Which is absurd, thus Js(z,T%2) = 0, for all g € 2.
Next, we prove that Jz(T'z, z) = 0, for all g € €.

J5(Tz,2) < ps(Tz, 2){Js(Tz, 2" ) + Jg (2" 2)}
= p(Tz, 2){Js(Tz, T2™) + Jo(z"", 2)}
< s(Tz, 2){agds(z, 2™) + bgJs(z, Tz) + caJg(z", T=") + egJs(z, T2™)
+ LgJs(2™, Tz) + Js(2™11, 2)}
< ws(Tz, 2){agTs(z,2™) + bgJs(2, T2) + caJp(2™, 2" ) + e Jp(z, 2 )
+ Lapa(2™, T2){Jp(2", 2) + Ja(2, T2)} + Jo (271, 2)}-

Letting m — oo, since lim,, ;00 0p(2", 2")us < 1, for some pg < 1 and for
each 2™, z" € U, @g(2™, 2") is finite and thus we have

To(T22) < os(Tz,2){bs + Ly lim s(z" T2)}Js(,T2) ¥ BeQ
m—00

Also, since we have proved that Js(z,T2) = 0 for all § € Q, thus we obtain
J5(Tz,z) =0 for all 5 € Q. Hence assertion (as) holds.

(ITI) Since (U, Q) is a Hausdorff space, using Proposition (4.2.4), assertion
(a3) suggests that for z € Fix(T™), we have z = T(z). This gives z € Fix(T).
Hence (by) is true.

Assertions (ag) and (by) imply (bg) .

To prove assertion (b3), consider (J1) and use (a3) and (by), we have for all
z € Fix(T) = Fix(T™) and for all 8 € Q

Jo(2,2) < (2, 2){Jp(2, T(2)) + Jp(T(2), 2)} = 0.
[l

Before moving ahead to the next results we first define the family ¥, of
mappings ¥ : [0,00) — [0, 00) which are non-decreasing and satisfy the follow-
ing conditions:

(i) ©(0) = 0;
(i) ¥(nt) =nY(t) <nt for each n,t > 0,
(i) >252, rY'(t) an:l p(2™,2") < 0o

where r > 1.
Theorem 4.3.4. Let the set-valued map 7' : U — Cl7+2(U) and @5 : UxU —
[1,00) for each B € Q and (u,v) € E satisfy:
D37 (Tu, Tv) < ¥p(J5(u, v)), (4.3.10)

where Y5 € W,,.
Moreover, let that
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(i) there exist z° € U and z' € Tz" such that (2°,2') € E;

(i) if (u,v) € F and x € Tu and y € Tv such that %Jg(]), y) < Jg(u,v), for
all 8 € Q, where {r3: 15 > 1}seq, then (z,y) € E;

(ili) for each {7z : 7 > 1}geq and o € U there exists y € Tz such that

Js(z,y) < rgJsg(z,Tz), forall g€ Q.

Then the following assertions hold:
I) For each 2° € U, (z™ : m € {0} UN) is extended Q,.o-convergent
©;Q2
sequence in U, thus, Sg:’;ﬁ?me o) 7 0.

(IT) Moreover, suppose that TH is an extended Q,.q-closed map on U, for
some k € N. Then

() Fis(T1) £ 0;
(co) there exists z € Fix(T™™) such that z € S((if'fme{o}UN)'

Proof. (I) We first show that (2™ : m € {0} UN) is an extended J,.o-Cauchy
sequence in U.

Using supposition (¢) there exists z° € U and z' € T2° such that (2%, 2') € E.
Now for each 3 € €, applying (4.3.10) we have

Js(21, T21) < DJ7(T2°, T2Y) < ws(J5(2°, 2Y)). (4.3.11)
Now using assumption (ii4), for z! € U, there exists z? € T'2! such that
Js(2h, 22) < rpds(2h, T2Y) < rpbs(Js(2°, 2Y)), vV B e (4.3.12)
Applying 13, we get
U(Js(2h,2%) < W(ravs(Js(2’, 21)) = ravs(Js(2,21)), ¥V BeQ.

Using assumption (ii), from (4.3.12) it follows that (2!, 2%) € E. Now again
for each 5 € €, using (4.3.10) we can write

Jp(22, T2%) < D7 (T2, T22) < h(Ja(2", 2%)).
Using assumption (#i4), for 22 € U, there exists 23 € T'2% such that

Js(2%,2°) < rgds(2*, T2%) < ravps(Jp(2',2%)) < rgup(Js(2%,2Y), ¥V Beq.
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It is obvious that, (z2,2%) € E. Proceeding in the similar fashion we find a
sequence (2™ :m € {0} UN) such that (2™, 2™*!) € F and

Ja(z™, 2" < e (Ja(2°,2Y), Vo Be. (4.3.13)

Now by repeated use of (J1) and (4.3.13) for all 8 € 2 and for all m,n € N
such that n > m, we get

Tal=", ") < 0p(a™, WEUE (Tp(2%, 24)) + al™, 27 )pa (2, 2 Ly (T (20, 21)
0

+ (2™, 2" pp(2™ Y, 2" pp (212, 2 ) m+2¢m+2( 2,2Y)
+ oA p(2™, 2 (T 2 g2 2 g (J(20, 21))
< pp(z', 2"y ( 2").pp(2™ 2 g (Js(20, 2Y)

+pp(2, 2 )905(2’ ,2").pa(2, 2o (2 2 m“’tbm“( 5(2%,21))
+'”+905(217Zn)(pﬁ<z27Zn)"’@ﬁ('zm?’zn)'"@ﬁ( ) % ) Tz 1% (JB(Z le))‘

Let Sy, =00, réwé((]g(zo, ) TIZ, ws(2, 2™), we can write
Jg(Zm, Zn) S (Sn—l — Sm)
Since 5, < 0o, we can write

lim sup Jz(2™,2") =0 for all g € Q. (4.3.14)

m—o0 n>m

Now, since (U, Q,q) is extended J.q-sequentially complete b-gauge space,
so (2™ : m € {0} UN) is extended J,q convergent in U, thus for all z €

Sjgp;Q

(sm:mefoyun)s We can write

lim Jg(z,2™) =0 forall € Q. (4.3.15)
m—0o0
Thus from (4.3.14) and (4.3.15), fixing z € SZﬁﬂme{O}uN), defining (u,, = 2™

m € {0} UN) and (v,, = z : m € {0} UN) and applying (J2) to these
sequences, we get
lim gg(z,2™) =0 forall g€

m—r0o0
This implies S(Q‘,’;ZQmE{O}UN # 0.

(IT) To show (c1), let 2° € U is fixed and arbitrary. Since Szm mefoyum) 7 0
and
Lk e Tl (mEy  for m e {0} UN

m—1+k .

thus defining (z,, = z :m € N), we have

(zm :m € N) c TH(U),
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Qy: .
S(z:f:nE{O}UN S z’flﬂme{o}uN) 7£ @,
also, its subsequences
(ym = 208 c TH(U)

and
(2 = 2™) C TH(D)

satisfy
Ym € TW(z,,,), for all m e N

and are extended @),-convergent to each point z € S (2 me{O}uN) Thus,
applying the fact that

Q HYJ Q Q
S(Z:’;LIWEN - Syw :meN) and S(z :meN

(zm mGN)

and the assumption that T is an extended Q,.q-closed map on U, for some

k € N, we get there exists z € SZ‘” s:ne{O}UN) = S(ij;?n»be{o}uN) such that z €
T (z). Thus, (c;) holds.
The statement (cz) follows from (¢q) and the fact S fozme oy 7 0. O

Let us consider T' : U — U, we get the following result in single-valued map-
ping.

Theorem 4.3.5. Let the map 7 : U — U and @5 : U x U — [1,00) for each
B €  satisfy:
Js(Tu, Tv) < ¢p(Js(u,v)), V (u,v) € E, (4.3.16)

where ¢g € U,,.
Moreover, let that

(i) there exist z° € U such that (2°,T2") € F;

(ii) for (u,v) € E we have (T'u,Tv) € E, provided Jz(Tu,Tv) < Jz(u,v),
for all g € §;

(iii) if a sequence (2™ : m € N) in U is such that (2™,2™"!) € F and
lim7#2 2™ = 2 then (2™, 2) € E and (z,2™) € E.

m— 00
Then the statements below are satisfied:

(I) Forany 2° € U, (2™ : m € {0}UN) is extended Q,,.o-convergent sequence
in U, thus, S Foie {0}UN) # 0.

zmm
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(II) Moreover, suppose that T is an extended Q,.q-closed map on U, for
some k € N. Then
(c1) Fix(T™) £ 0;
(cp) there exists z € Fix(T™) such that z € S(Cjﬁ?me{o}uNﬁ and
(c3) for all z € Fix(TH), Js(2,T(2)) = J5(T(2),2) = 0}, for all 3 € Q.
(IIT) Furthermore, let Fix(T™) #  for some k € N and (U, Q,.q) is a Haus-
dorff space. Then
(dy) Fix(Tk)=Fix(T) ;
Qy; .
:mEQ{O}UN)’ and

(d3) for all z € Fix(TH) = Fix(T), Js(z, 2) = 0, for all 3 € Q.

(d2) there exists z € Fix(T") such that z € S(LZ;

Proof. Since every single-valued mapping can be viewed as multi-valued map-
ping, it remains to prove assertion (c3) and assertions (d;)-(d3) of the above
stated theorem.

To prove (c3), use J1, assumption (7i7) and inequality (4.3.16), we obtain for
all € Q

J5(27TZ) < 905(2’ TZ){J,B(Z7 Zm+1) + JB(Zm+17Tz)}
< (2, T2){Js(z,2") + Jg(T2™, T2)}
< @p(2, T2){Js(2, 2™ ) + 1p(Jp(2™, 2)) }-

Letting m — oo, we have
Js(2,T2) =0 vV Beq.

Similarly we can show that Jz(T'z,2) =0 V [ € (L

(ITI) Since (U, Q,.q) is a Hausdorff space, using Proposition (4.2.4), assertion
(c3) suggests that for z € Fix(T™), we have z € T'(z). This gives z € Fix(T).
Hence (dy) is true.

Assertions (c2) and (dy) imply (d2) .

To prove assertion (d3), consider (J1) and use (c3) and (d;), we have for all
z € Fix(TH) = Fix(T),

Js(z,2) < (2, 2){Js(2,T(2)) + J3(T'(2),2)} = 0, for all 5 € €. O

Remark 4.3.6. In comparison with results in [45], our results in extended
b-gauge spaces are more generalized and improved, in which assumptions are
weak and claims are robust.
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4.4 Periodic points for Caristi type G-contractions
in extended D-gauge spaces

Indeed, the Caristi fixed point theorem [5] (also known as Caristi-Kirk fixed
point theorem [68, 69]) came into being as a result of looking for a different
proof of the superlative Banach contraction principle. Indeed, Caristis theorem
is identical to the completeness of metric [70]. For further details to this
subject, we refer to [71, 72, 73].

In this section, we develop novel periodic and fixed point results for Caristi
type G-contractions T': U — C17%2(U) in the new setting of extended b-gauge
space endowed with a graph, which generalize, enhance and unite the current
results in the corresponding literature.

Our main results in multi-valued mappings are given below.

Theorem 4.4.1. Let map T : U — Cl17¢2(U) be edge preserving and ¢g :
U — [0,00), f € Qis a lower semi continuous function such that for each
u € U and v € Tu where (u,v) € E, we have

Js(v, Tv) < ¢g(u) — ps(v), V B € Q. (4.4.1)
Moreover, let that
(i) there exist z° € U and 2! € T2% such that (2%, 2!) € E;
(ii) for each {rg:rs > 1}geq and u € U there exists v € T'u such that

Js(u,v) <rgdsg(u,Tu), V €.

Then the following assertions hold:

(I) Forany 2° € U, (2™ : m € {0}UN) is extended Q,,.-convergent sequence
in U, thus S(Q“‘”Q ) 7 0.

zm:me{0}UN

(II) Moreover, suppose that T is an extended Q,.q-closed map on U, for
some k € N. Then

(ar) Fis(T1) £ 0
(ag) there exists z € Fix(T™™) such that z € S((iﬁ;?me{o}UN)‘

Proof. (I) We first show that (2™ : m € {0} UN) is an extended J,.o-Cauchy
sequence in U.
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Using supposition (i) there exists 20 € U and 2! € T2° such that (2%, z!) € E.
Now applying (4.4.1) we have

Ja(2', T2") < ¢s(2°) — dp(2"), V B e (4.4.2)

Now by using assumption (i) and (4.4.2) we have r3 > 1 for each € Q2 and
2% € Tz such that

Jo(2',2%) < sz, T2') < rp{dp(2”) — gs(2")}, vV Be

We have (2!, 2%) € E, since T is edge preserving. Moving on the same lines,
we have a sequence {z™ : m € {0} UN} such that (2™, 2™") € E and for all
B € Q and for each m € N, we get

Jp(z™, 2" ) <rgda(2™ T2™) < rp{dp(z™1) — dp(2™)}-

From here we observe that {¢g(2™)} is a non-increasing sequence, hence we
can find I3 > 0 such that {¢3(z™)} — I3 as m — oco. For m,p € N and each
B € Q, we write

J,B(Zm, Zm+p) S @B(Zm7 Zm+p)JB(Zm m—i—l) + 90,8( m’ Zm—&—p)soﬂ(zm—&—l’ Zm+p)Jg(Zm+1, Zm+2)
P )@B(szrlv Zm+p>(pﬁ(zm+2’ Zm+p>JB(Zm+2’ Zm+3>
+ . +905 zm,zm*”)soﬁ( ML 2P g (2P ) Jg (2P 2R
Pyra{op(z™ ) = dp(2™)} + pp(2™, 2P g (2, 2MHP)
7"5{¢/3( ") - ( IO} 4 (2™, 2P pp (2, 2P g (2R, M)
re{dp(z" ) = Ga ()} H o (2 22 2P L
a2 2 ) { g (M) — (M)

Letting m — oo, we have {¢3(2™)} — l5. This implies that (2™ : m € {0} UN)
is an extended J,.o-Cauchy sequence in U, thus for all g € Q, for all € > 0
and for all n,m € N, there exists k& € N such that

Jg(2™, 2") <€, forall n>m > k. (4.4.3)

Now, since (U, Q@;Q) is extended J,.q-sequentially complete b-gauge space,
so (2™ : m € {0} UN) is extended J,.q-convergent in U, thus for all z €

Séfnﬂme{O}uN for all € > 0 there exists k € N such that for all m € N and for

all 8 € Q, we have

Js(z,2™) < e, forall m > k. (4.4.4)
Thus from (4.4.3) and (4.4.4), fixing z € Sifnﬂme{O}UN)7 defining (u,, = 2™

m € {0} UN) and (v,, = z : m € {0} UN) and applying (J2) to these
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sequences, for all € > 0 there exists k¥ € N such that for all m € N and for all
B € €, we have
qs(z,2™) <, forall m > k.

This implies S ij e {O}UN £ ().

(IT) To show (ay), let 2° € U is fixed and arbitrary. Since Szm me{O}UN) 7 0
and
Lk o Tl (me) - for me {0} UN

m—1+k .

thus describing (z,, = z :m € N), we have

(zm :m e N) c TH(),
gt — g #0
(zm:me{0}UN) — ~(2m:me{0}UN) ’
also, its subsequences

(ym = 208 ¢ TH(U)

and
(2 = 2™) c TH(U)

satisfy
Y € T (), forall meN

and are extended @,q-convergent to each point z € g% (2 Thus,

applying the fact

mE{O}UN)

Qps0 Q Qui0 Q
S(Z:L:mGN - yi :meN) and S(z:lszN) CS5 mi :meN)

and the assumption that T is an extended Q,.q-closed map on U, for some

= SQ“"’Q such that z €

k € N, we get there exists z € S (zm:me{0}UN)

T(2). Thus, (a;) holds.

The statement (as) follows from (a;) and the certainty that S R ouN) 7
0.

Theorem 4.4.2. Let map T : U — Cl7¢2(U) be edge preserving and ¢p :
U — [0,00), B € Q be a lower semi continuous function such that for each
u € U and v € Tu where (u,v) € E, we have

Js(u,v) < gs(u) — ds(v), ¥V Be (4.4.5)

zm mE{O}UN)

Moreover, let that

(i) there exist z° € U and 2! € T2° such that (2%, 2!) € E;
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Then the assertions below hold:

(I) For any 2° € U ( ™ m € {0}UN) is extended Q,.o-convergent sequence
in U, thus S mme{O}uN) # ().

(II) Moreover, suppose that T is an extended Q,.q-closed map on U, for
some k € N. Then

(by) Fix(T¥) # 0;

(by) there exists z € Fix(T*) such that z € S Zﬁl mE{O}UN)"

Proof. (I) We first show that (2™ : m € {0} UN) is an extended J,.o-Cauchy
sequence in U.

Using supposition (7) there exists 2 € U and z' € Tz° such that (29, 2!) € E.
Now applying (4.4.5) we have

J5(2%, 21) < ¢5(2%) — pp(2"), forall B € Q. (4.4.6)

We can write (z!,2%) € E, since T is edge preserving. Progressing in the same
way, we obtain a sequence {z™ : m € {0} UN} such that (2™, 2™%!) € F and
for each m € N and for each § € €2, we have

Jo(2™, ™) < d(2™) — da(2™).

From here we observe that {¢g(z™)} is a non-increasing sequence, thus we can
find Iz > 0 such that {¢g(2™)} — Iz as m — oo. For m,p € N and each
B € Q, we write

Ja(2™, 2P) < @g(2™, 2 HP) Jp (2™, 2M) (2, 2P ) (2, 2P g (2, 2 H)
(10,6’( m+1 m+p)(pﬁ( m+2’ Zm+p>JB(Zm+2’ Zm+3>
+ o+ 5 zm’ m+p)90/3< m—|—1’ m+p)m¢ﬁ(zm+p—1,Zm—f—p)JB(Zm—I—p—l’zm-i—p)
< (2™, 2" ) (™) = dp(2™ )} + a2, 2 ) pp (2T, 2P
) = @p(2™ )} + a2, 2P )pp (2, 2P ) g (22, )
{#5(2"72) = @ (™)} + o+ (2™, 2P ) (2, 2P
L2 (2P — (M)}

Letting m — oo, we have {¢3(2™)} — lz. This implies that (2™ : m € {0} UN)

is an extended [J,.o-Cauchy sequence in U, for all € > 0 there exists ¥ € N
such that for all m,n € N and for all g € 2, we have

Jg(z™, 2") <e, forall n>m > k. (4.4.7)
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Now, since (U, Q,q) is extended J.q-sequentially complete b-gauge space,
so (2™ : m € {0} UN) is extended J,q-convergent in U, thus for all z €

S‘Z‘fnﬂme (O}UN)> for all € > 0 there exists k € N such that for all m € N and for
all B € Q, we have

Js(z,2™) < e, forall m> k. (4.4.8)
Thus from (4.4.7) and (4.4.8), fixing z € Sifnﬂme{o}uN)v defining (u,, = 2™

m € {0} UN) and (v,, = z : m € {0} UN) and applying (J2) to these
sequences, we get, for all g € Q, for all ¢ > 0 and for all m € N, there exists
k € N such that

qs(z,2™) <€, forall m > k.

This implies Sgiﬁ“me {O}UN # 0.

(IT) To show (1), let 2° € U is fixed and arbitrary. Since S(Zm mefoyun) 7 0
and
Lk e Tl (mey - for moe {0} UN

m—1+k .

thus describing (z,, = 2 :m € N), we have

(zm :m e N) c TH(),

Qy;
(z:::ne{O}UN =5 z’v;lQmE{O}UN) 7& ®7

also, its subsequences
(Y = 208 c TH(U)

and
(2 = 2™ c TH(U)
satisfy
Ym € TW(z,,), for all m e N
and are extended @,.q-convergent to each point z € S anﬂme (O}uN)- Thus,

applying the fact

Qui0 Q Qui0
S(Z:L:mEN - Syw :meN) and S(z ‘meN

(zm mGN)

and the assumption that T¥ is an extended Q,.q-closed map on U, for some

k € N, we get there exists z € SZ“’ QmE{O}UN) = ng;f;ne{o}um such that z €
T (2).

Thus, (by) holds.

The statement (by) follows from (b;) and the certainty that S (o e oun) #
0.
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Theorem 4.4.3. Let map T : U — Cl7»2(U) be edge preserving and v :
U — [0,00), B € Q be an upper semi continuous function such that for each
u € U and v € Tu where (u,v) € FE, we have

Js(v, Tv) < Pg(u) —Ps(v), ¥V pe. (4.4.9)
Moreover, let that
(i) there exist z' € U and z' € T2° such that (2°,2') € E;
(ii) for each {rg: 13 > 1}geq and = € U there exists y € Tx such that

J/J’(xay) < T5J5<$,T$)}, vV pgeq.

Then the below assertions are satisfied:

(I) Forany 2° € U, (2™ : m € {0}UN) is extended Q,,.-convergent sequence
in U, thus S(Q“";Q # ().

zm:me{0}UN)

11 Moreover, suppose that T[k} is an extended Q .o-closed map on Z/, for
©;Q2
some k € N. Then

(c1) Fix(TH) # 0;

(cz) there exists z € Fix(T™*) such that z € S(Cjﬁ?me{o}ul\f)'

Proof. (I) We first show that (2 : m € {0} UN) is an extended J,.o-Cauchy
sequence in U.

Using supposition (i) there exists 2° € U and z' € T2° such that (2°,2!) € F.
Now using (4.4.9) we can write

Ja(2, T2') < p(2%) —ys(z!), ¥V Beq (4.4.10)

Now by using assumption (i) and (4.4.10) we have 73 > 1 for each 5 €  and
2?2 € T2! such that

Jp(z',2%) < rgds(2', T2") < rp{p(2°) — vs(2)}.

We have (21, 2?) € F, since T is edge preserving. Progressing in the same
manner, we obtain a sequence {z™ : m € {0} UN} such that (2™, z"!) € E
and for each g € ) and for each m € N, we have

Jo(2™, 2" ) < rpdg(2™, T2™) < rp{p(2™ ) — ¥p(2™)}-



4.4 Periodic points for Caristi type G-contractions in extended b-gauge spacés

From here we see that {15(2"™)} is a non-increasing sequence, thus we can find
lg > 0 such that {¢3(2™)} — I3 as m — oco. For m,p € N and each € 2, we
write

Ja(2™, 2™P) (2™, 2P I (27, 2 ) 4 (2, 2P ) (2, 2H) Jg (2 2R
+90/3( 2" 2P g (2, 2P ) (2 m+27 2P Jg (2 m+2a 2"*)
+ o a2, 2P g (2™ 2P g (2P 2P Jo (2P AP
(™, 2" P rg{e (M) = Yp(2™)} 4+ @p(2™, 2P )@ (27, 2P
ra{ta(2™) = Ya(2™ )} + pp(2™, 2 ) (2, 2P ) g (22, 2 M)
ra{thp(z™Y) — (2™ )} + 4 a2, 2 )pp (2T 2P L
a2 P 2P {ahp(2MPTR) — a2

Letting m — oo, we have {¢3(2™)} — lg. This implies that (2™ : m € {0}UN)
is an extended J,.o-Cauchy sequence in U, thus for all € > 0 there exists k € N
such that for all m,n € N and for all § € €2, we have

Jp(2™, 2") <€, forall n>m > k. (4.4.11)

Now, since (U, Q%Q) is extended J,.o-sequentially complete b-gauge space,
so (2™ :m € {0} UN) is extended J,.q-convergent in U, thus for all z €

S‘angme{o}uN) we can write for all g € €, for all € > 0 and for all m € N, there
exists £ € N such that

Js(z,2™) < e, forall m> k. (4.4.12)

Thus from (4.4.11) and (4.4.12), fixing z € 57 (2 me{O}uN , defining (u,, = 2™

m € {0} UN) and (v,, = z : m € {0} U N) and applying (J2) to these
sequences, we get, for all § € Q, for all € > 0 and for all m € N, there exists
k € N such that

qs(z,2™) <€, forall m > k.
This implies S (o e {O}UN # ().

(II()1 To show (cy), let 20 € U is fixed and arbitrary. Since S(Zﬁﬂme ooy # 0
an

Lk e Tl (mky - for m e {0} UN

m—1+k .

thus describing (z,, = 2 :m € N), we have

(zm :m e N) c TH(W),

Qy; ®;
(sz?mE{O}UN =5 zQOE{O}UN) # ®7
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also, its subsequences
(Y = 2" OF) C TH(U)
and
(2 = 2™ c THE(U)

satisfy
Ym € T¥(z,,), for all m € N

and are extended @,.q-convergent to each point z € 5% (2 Thus,

applying the fact

mG{O}UN)

and SQ‘T’::Q C S Qein

and the assumption that T is an extended Q,.q-closed map on U, for some

k € N, we get there exists z € S(z me{0}UN) S(ziQmE{O}UN such that z €
TH(2).

Thus, (¢;) holds.

The statement (cz) follows from (c¢;) and the certainty that S(Zﬁ{;ne oun) F
0. O

Remark 4.4.4. (a) Our main results in extended b-gauge space are new
generalization and improvement of the results in [74] in which assumption
are weak and assertions are robust.

(b) We must note that that by taking pg(u,v) = s > 1, for all 8 € , we
obtain the results in b-gauge space.

4.5 Consequences and applications

This section consists of important and fascinating consequences of the theorems
proved in the third section.

We set up some periodic and fixed point results for mappings fulfilling
contraction inequalities involving function «.

Recall that U is a non-void set and the Graph G := (V| E) is defined as
V:=U and E :={(a,b) € U x U : a(a,b) > 1},
where o : U x U — [0, 00).

Corollary 4.5.1. Let the map 7 : U — Cl7»2(U) and ¢s : U x U — [1,00)
for each 8 € ) satisfy:

D?*”‘“(Tu, Tv) < agds(u,v)+bgJs(u, Tu)+CgJ5(v,Tv)+ngg(u,Tv)+LgiZ(v,7)’u)
0.1
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for all a(u,v) > 1, where ag, bg,cs, es, Lz > 0 be such that ag + bg + ¢z +
2e5p5(2™ 1, T2™) < 1 and limy, 00 pp(2™, 2" )us < 1, for some pug < 1 and
each 20 € U, here 2™ € T(2™!), where m € N.

Moreover, let that

(a) there exist z' € U and 2! € T2° such that a(2°,2') > 1;

(b) if a(u,v) > 1 and x € Tw and y € Tv such that Jz(z,y) < Jz(u,v), for
all g € , then a(z,y) > 1,

(c) for any {rg:rg > 1}geq and u € U there exists v € T'u such that

Js(u,v) <rgdg(u,Tu)}, forall g €.

Then the following assertions hold:

(I) Forany 2° € U, (2™ : m € {0}UN) is extended Q,,.o-convergent sequence
in U, thus S(Q“”Q # (.

zm:me{0}UN)

11 Moreover, suppose that Tk is an extended Q o-closed map on U, for
p;Q
some k € N. Then

(c1) Fix(TH) # 0;
Qpi0

(ca) there exists z € Fix(T™™) such that z € S(zm:me{o}uN)-

Proof. Consider the graph G = (V, F) and define the map a: U x U — [0, )
for some p > 1 as:

a(u,v) = {p if (u,0) € B, (4.5.2)

0 otherwise.
Now the inequality (4.5.1) takes the foam

D‘g“’;ﬂ (T, Tv) < agdg(u,v)+bgJs(u, Tu)+cgJz(v, Tv)+esJs(u, Tv)+L@€5(v, ’_Z)ﬂu)
4.5.3
for all (u,v) € E. This yields that T satisfies inequality (4.3.1). Also conditions
(a), (b) and (c) implies conditions (i), (ii) and (iii) of Theorem 4.3.2. Hence
conclusion follows from Theorem 4.3.2. O

Let us consider T' : U — U, we get the following result in single-valued
mapping.
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Corollary 4.5.2. Let the single-valued map 7' : U — U and g : U x U —
[1,00) for each § € ) satisfy:

Js(Tu, Tv) < agdg(u,v)+bgJs(u, Tu)+csJs(v, Tv)+ezds(u, Tv)+LgJz(v, Tu)
(4.5.4)

for all a(u,v) > 1, where ag, bg,cs, es, Lg > 0 be such that ag + bs + c5 +

2e505(2™ 1 T2™) < 1 and limy, 0o (2™, 2")ug < 1, for some pug < 1 and

each 2% € U, here 2™ = T (2°), where m € N.

Moreover, let that

(a) there exist z° € U such that (2", Tz%) > 1;

(b) for a(u,v) > 1 we have o(T'u,Tv) > 1, provided Jz(Tu,Tv) < Jg(u,v),
for all 5 € §;

(c) if a sequence (2™ : m € N) in U is such that a(z™,2™") > 1 and

lim7#2 2™ = 2 then a(2™, z) > 1 and a(z,2™) > 1.
Then the following assertions hold:

(I) Forany 2° € U, (2™ : m € {0}UN) is extended Q,,.o-convergent sequence
- Qy;
in U, thus, S(zm?mE{O}UN) £ .

(IT) Moreover, suppose that T™ is an extended Q,.q-closed map on U, for
some k € N and ¢s(z, Tz){cs + eglim,, 00 (2™, T2)} < 1. Then

(c1) Fix(TH) # 0;
(cg) there exists z € Fix(T™¥) such that z € S(Czﬁfme{o}uN)? and
(c3) for all z € Fix(TH)), Js(2,T(2)) = Js(T(2),2) = 0, for all 5 € Q.

(III) Furthermore, let Fix(T™) # @ for some k € N and (U, Q,.0) is a Haus-
dorff space. Then

(dy) Fix(TM)=Fix(T) ;
(dy) there exists z € Fix(T) such that z € S(Lz;iﬁg{o}uN); and
(d3) for all z € Fix(TW) = Fix(T), Js(z,2) = 0 for all 8 € Q.
Proof. Same reasons as in the proof of Theorem 4.5.1. m

Corollary 4.5.3. Let the set-valued map 7' : U — Cl7¢2(U) and ¢z : U x
U — [1,00) for each g € Q and a(u,v) > 1 satisfy:

D57 (Tu, Tv) < s(Js(u,v)), (4.5.5)

where Y5 € W,,.
Moreover, let that
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(a) there exist z° € U and 2! € T2° such that «(z, 21) > 1;

if a(u,v) > 1 and x € Tu and y € Twv such that for a e (),
b) if d T d T h that f 13 Q
é 5(z,y) < Jg(u,v), where {rs : rg > 1}eq, then a(z,y) > 1;

(c) for each {rs:rg > 1}geq and u € U there exists v € T'u such that

Js(u,v) < rgdg(u, Tu), forall 5 e Q.

Then the following assertions hold:

(I) For each 2 € U, (2™ : m € {0} UN) is extended Q,.q-convergent

sequence in U, thus, S(Cjﬁi?me{o}uN) 7 0.

II) Moreover, suppose that TI¥ is an extended Q_.,-closed map on U, for
;2
some k € N. Then

(e1) Fix(T™) £ 0;
(e2) there exists z € Fix(T*]) such that z € S(szi?me{o}uN)'

Proof. Consider the graph G = (V, E) and define the map o : U x U — [0, 00)
for some p > 1 as:

p if (v,y) €E
Ly) = 4.5.6
a(z,y) {O otherwise. ( )

Now the inequality (4.5.5) takes the foam
T
D7 (Tu, Tv) < p(Js(u,v)), (4.5.7)

for all (u,v) € E. This yields that T satisfies inequality (4.3.10). Also con-
ditions (a), (b) and (c) implies conditions (i), (ii) and (iii) of theorem 4.3.4.
Hence conclusion follows from Theorem 4.3.4. O

Let us consider 7' : U — U, we get the following result in single-valued
mapping.

Corollary 4.5.4. Let the single-valued map T': U — U and @3 : U x U —
[1,00) for each § € Q satisfy:

Js(Tu, Tv) < p(Js(u,v)) V alu,v)>1, (4.5.8)

where 9g € U,,.
Moreover, let that
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(a) there exist 2° € U such that «(2°,T2%) > 1;

(b) for a(u,v) > 1 we have o(T'u,Tv) > 1, provided Jz(Tu,Tv) < Jg(u,v),
for all 5 € §;

(c) if a sequence (2™ : m € N) in U is such that a(z™,z™"!) > 1 and

lim7#2 2™ = 2 then a(z™, z) > 1 and a(z,2™) > 1.

Then the following assertions hold:
D) Forany 2° € U, (2™ : m € {0}UN) is extended Q_.q-convergent sequence
;2
in U, thus, g ) # 0.

(zm:me{0}UN

(E) Moreover, suppose that T is an extended Q,.q-closed map on U, for
some k € N. Then

(er) Fix(T¥) £ 0;
(e2) there exists z € Fix(T™) such that z € S(Cjﬁi?me{o}uN)? and
(e3) for all z € Fix(TWH), Js(2,T(2)) = Js(T(2),2) = 0, for all B € Q.

(F) Furthermore, let Fix(T™) # () for some k € N and (U, Q) is a Haus-
dorff space. Then

(f)) Fix(TF)=Fix(T) ;
(fy) there exists z € Fix(T) such that z € Sé:”:Qwﬁg{O}uN); and
(f3) for all z € Fix(T'), Js(z,2) =0, for all g € Q.

Proof. Same evidences as in the proof of Theorem 4.5.3. ]

Remark 4.5.5. (a) The above results in extended b-gauge space are new
generalization and improvement of the results in [76] in which assumption
are weak and assertions are robust.

(b) Observed that in case « greater than or equal to one is used in any con-
traction inequality, bringing it back to the regular contractive inequality
without « (see for instance inequalities (4.5.3) and (4.5.7)). Therefore it
seems that a-function plays no roll in proving the existence of the fixed
point of any mapping. Hence when the under lying space is endowed
with the graph, the fixed point theorems can easily be reduced to the
a-type analogous.

(c) Since we have stated a few theorems for contraction inequalities involving
function . Some more analogues of the above results for contraction
inequalities involving function « can simply be derived from results in
(77, 78, 75].



Chapter 5

Periodic and Fixed Points in
Extended Quasi-b-GGauge Spaces

The famous fixed point results due to Bannach [1] and Rus [4] (see also [79])
for single-valued mapping in complete metric space have many different ver-
sions in the literature. Their analogues in more general spaces are important,
fascinating and challenging for the researchers.

This chapter aims to prove the Banach contraction principle and theorem
due to Rus for single-valued mapping in more general spaces with asymmetric
structure using new families of distances. Hence, our results generalize and
improve the existing results due to Banach and Rus in the literature.

Throughout this chapter (U, Q,.q) is representing an extended quasi-b-
gauge space, where U is the underlying nonempty set and Q. is an extended
quasi-b-gauge with ¢ : U x U — [1,00) and € is an index set.

This chapter includes four main sections. The first section introduces the
notion of extended quasi-b-gauge space (U, Q%Q). In the second section, we
establish the notion of left (right) J.q-families of generalized extended quasi-
pseudo-b-distances generated by (U, Q@;Q). In the third section, we investigate
novel periodic and fixed point results in the setting of extended quasi-b-gauge
space, which generalize and improve the existing results due to Banach and Rus
in fixed point theory. The last section consists of some important consequences
of the results obtained. Each section consists some examples to explain the
corresponding results.

5.1 Extended quasi-b-gauge spaces

In this section, we introduce the notion of extended quasi-b-gauge space. We
begin with the development of the notion of extended quasi-pseudo-b metric
space.

99
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Definition 5.1.1. The map ¢ : U x U — [0,00) is called to be an extended
quasi-pseudo-b metric, if for all e, f,g € U, there exists ¢ : U x U — [1,00)
satisfying the following conditions:

(a) q(e,e) =0; and

(b) qle,g) < wle,g){ale, f)+a(f 9)}-

The pair (U, q) is called extended quasi-pseudo-b metric space. A Hausdorff
extended quasi-pseudo-b metric space (U, q) satisfies

e# f=qle, f)>0Vq(f,e)>0
foralle, f € U.

Example 5.1.2. Let U = C([0,00),R) be the space of all continuous real
valued function defined on [0, 00). Define ¢ : U x U — [0,00) and ¢ : U xU —
[1,00) for all f,g € U as:

q(f(t),g(t)) = tem[gff](f(t) —g(1)).

and
e(f,9) =) +19()] + 2.

Then ¢ is an extended quasi-pseudo-b-metric on U.

We observe that ¢ is not a quasi-pseudo metric on U. For this, we take

f,g9,h € U defined by

f(t>:{0 if0<t<l,

t—1 ift>1,

g(t) = 3 for each t > 0 and h(t) = —3 for each ¢ > 0. Now we note that
a(g.h) £ alg, f) +a(f. h).

Example 5.1.3. Suppose U = [0,1]. Define ¢ : U x U — [0,00) and ¢ :
UxU—[l,00) for all e, f € U as:

~J0 ife> f,
Q(e’f)_{@—n? ife < f.

and
ole,f)=e+ f+2.

Then ¢ is an extended quasi-pseudo-b metric on U. Certainly, ¢(e,e) = 0, for
all e € U. Further, q(e,g) < p(e,9){q(e, f) +q(f,9)}, for all e, f, g € U holds.
Also, (U, q) is Hausdorff.
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Definition 5.1.4. Each family Q. = {gs : 8 € 2} of extended quasi-pseudo-
b metrics gg : UxU — [0, 00) for § € €2, is said to be an extended quasi b-gauge
on U.

Definition 5.1.5. The family Q. = {gs : 8 € 2} is called to be separating
if for every pair (e, f) where e # f, there exists gg € Q,.q such that either

qsle, f) > 0 or qs(f,e) > 0.

Definition 5.1.6. Let the family Q.o = {gs : f € 2} be an extended quasi
b-gauge on U. The topology T(Q%Q) on U whose subbase is defined by the
family B(Q,.q) = {B(e,e3) : e € U,eg > 0,3 € Q} of all balls B(e, e5) = {f €
U :qple, f) < €}, is called the topology induced by Q. The topological
space (U, T(Q,.q)) is called to be an extended quasi-b-gauge space, denoted
by (U, Q,.q). We note that (U, Q,.q) is Hausdorff if Q¢ is separating.

Remark 5.1.7. (a) Every quasi-gauge space is an extended quasi-b-gauge
space (where @g(u,v) = 1 for each g € Q). Also every quasi-b-gauge
space is an extended quasi-b-gauge space (where pg(u,v) = sg for each
f € Q). Therefore, in the asymmetric structure extended quasi-b-gauge
space is the largest general space.

(b) Note that if pg(u,v) = 1, for each 5 € Q, we obtain the definitions in
quasi-gauge spaces.

5.2 Extended left (right) J,o-families of gen-
eralize extended quasi-pseudo-b-distances

In the following, we establish the idea of extended left (right) J,.o-families
of generalized extended quasi-pseudo-b-distances on U (which are called ex-
tended left (right) J,.q-family on U, for short). These extended left (right)
Jpo-families are the generalization of extended quasi-b-gauges. Moreover, by
using these extended left (right) J,.o-families, the extended left (right) J,.q-
sequential completeness are defined and the Banach and Rus types contractions
T :U — U are constructed, which are not necessarily continuous.

Definition 5.2.1. Let (U, Q,q) is an extended quasi-b-gauge space. The
family J,0 = {Js : f € Q} where Jz : U x U — [0,00), B € Q is called
the extended left (right) J,.o-family of generalized extended quasi-pseudo-b-
distances on U if for all x,y, 2 € U and for each § € Q the following conditions
hold:

(T1) Jg(w, 2) < pp(x, 2){Js(,y) + Js(y, 2)};
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(J2) for each sequences (u,, : m € N) and (v, : m € N) in U fulfilling

lim sup Jg(tp,, u,) = 0, (5.2.1)
< lim sup Jg(tn, Um) = 0), (5.2.2)
M= n>m
and
lim Jg(vm, Uy) =0, (5.2.3)
m—0oQ
( i Js(tm, V) = o), (5.2.4)
m—o0
the following holds:
lim qg(vpm, Um) = 0, (5.2.5)
m—r0o0
<WIL1§(1>O 43 (U, V) = 0). (5.2.6)

We denote
J(LMQ%Q) ={Tp0: Tpo ={Js: € Q} is left J,o-family on U},
Ja,e = {1Tw0 1 Tao ={Js: B € Q} is right Tpo-family on U}.

Example 5.2.2. Let U contains at least two distinct elements and suppose
Qua = {gs : B € Q} is the family of extended quasi-pseudo-b-metrics, is an
extended quasi-b-gauge on U. Thus (U, Q,q) is an extended quasi-b-gauge
space.

Let there are at least two distinct but arbitrary and fixed elements in a set
F C U. Let ag € (0,00) satisfies d0g(F) < ag, where d5(F) = sup{gs(e, f) :
e,f € F}, forall €. Let Js : U x U — [0,00) for all e, f € U and for all
B € € be defined as:

Qﬁ(eaf) ifFﬂ{e,f}:{e,f},
s HFPO{ef} A e )

Then Jpo ={Js: B € Q} € 0., NIba,0)

We observe that Jz(e, g) < goﬁ(e,g)y{Jg(e, f)%Jg(f,g)}, foralle, f,g € U, thus
condition (7;) holds. Indeed, condition (7;) will not hold in case if there exists
some e, f, g € U such that Jz(e, g) = ag, Js(e, f) = qsle, f), Js(f.9) = qs(f, 9)

Js(e, f) = { (5.2.7)
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and pg(e, 9){qs(e, f)+as(f, 9)} < as. However, then this implies the existence
of h € {e, g} with h ¢ F and on other hand, e, f,g € F, which is impossible.
Now let that (5.2.1) and (5.2.3) are fulfilled by the sequences (u,,) and (vy,) in
U. Then (5.2.3) implies that for all § € Q and for all 0 < € < ag, there exists
my = my(f) € N such that

Js(Um, um) < € for all m > my. (5.2.8)
By (5.2.8) and (5.2.7), denoting my = min{m,(3) : 5 € Q}, we have
Fn{vm, um} = {vm, un}, for all m > my
and
43V, W) = Jg (U, ) < €.

Thus (5.2.5) holds. Therefore, Tp0 is a left J,.o-family.
Moving on the same lines, we can prove that J,.q is an extended right
Tp0-family.

We now state few trivial properties of extended left (right) J,.o-families
on U as follows.

Remark 5.2.3. Let (U, Q) be an extended quasi-b-gauge space. Then the
following is true:

L R
(a) Quo € J.q,.0) N Iv.a,.0)

(b) Let Jp0 € J(LU’QWQ) or Jp0 € J?U,Q%g)‘ If for each 8 € Q, Jg(v,v) =0,
for all v € U, then Jgz for each B8 € (1, is an extended quasi-pseudo-b
metric.

(c) There exists example of J,.q € J(LU’QWQ) and J,.0 € J@Q%Q) which shows
that the maps Jg, 8 € €1 are not extended quasi-pseudo-b metrics.

(d) We note that the above definition reduces to the corresponding definition
in quasi-gauge space, if @(u,v) =1, for all § € Q and for all u,v € U.

Proposition 5.2.4. Let (U, QW;Q) is a Hausdorff extended quasi-b-gauge space
and the family J,.o = {Jz : 8 € Q} be the extended left (right) J,.o-family
on U. Then we can find § € 2 such that for all e, f € U

e# f=Jsle, f) >0V Js(f,e) >0.
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Proof. : Let J,.q is a left J,.o-family on U and suppose that there are e, f € U
with e # f such that Js(e, f) = 0 = Jg(f,e) for all f € Q. Then by using
property (J1) we have Jz(e,e) =0, for all § € Q.

Defining sequences (u,,) and (v,,) in U by u,, = e and v,, = f or u,, = f
and v, = e, we see that conditions (5.2.1) and (5.2.3) of property (J2) are
satisfied and therefore condition (5.2.5) holds, which implies that gs(e, f) =
0 = gs(f,e), for all B € Q. But, this denies the fact that (U, Q,q) is a
Hausdorff extended quasi-b-gauge space. Therefore, our supposition is wrong
and there exists § € () such that for all e, f € U

e# f=Jsle,f) >0V Js(f,e) >0.

Similar proof follows for J,.q is a right J,.o-family on U. O

Next, we define extended left (right) J,.o-completeness using extended left
(right) J.o-families on U.

Definition 5.2.5. Let (U, Q,.q) is an extended quasi-b-gauge space and the
family J,.o = {Js : B € Q} is an extended left (right) J,,o-family on U.

(A) A sequence (vy, : m € N) is said to be extended left (right) J,.o-Cauchy
sequence in U if for all 5 € Q)

lim sup Jg(vpm, v,) =0

m—ro0 n>m

( lim sup Jz(vpn, vm) = O).
m—0o0 n>m
(B) The sequence (v, : m € N) is said to be extended left (right) J,.o-

convergent to v € U if limX 722 ¢, = v (lim~7#2 v, = v), where

limE o2 g, = v & limy, 00 J3(v, v) = 0, for all € Q
<limf;_;1f;“ U, = U < limy, o0 Jg(vm,v) =0, for all B € Q>
L—J,, R—J,,
(C) IES, Sty # 0 (S, meny # 0), where
Sé}:fn‘i‘gN) = {veU:limk Ts20, =0}
(SE 22 = 1o € U =T, = o},

Then the sequence (v, : m € N) in U is extended left (right) J,.o-
convergent in U.

(D) The extended quasi-b-gauge space (U, Q,.q) is said to be extended left
(right) J,.0-sequentially complete, if every extended left (right) J,.o-
Cauchy sequence in U is an extended left (right) J,.o-convergent se-
quence in U.
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Remark 5.2.6. Suppose (U, Q%Q) is an extended quasi-b-gauge space.

a) There exist examples in which (U, Q,.q) is left(right) J,.q-sequential
(p,Q 2
complete but not left(right) Q,.q-sequential complete (see Example 6.4
of [44]).

(b) If (v, : m € N) be an extended left (right) J,.o-convergent sequence in
U, then for every of its subsequence (u,, : m € N) we have

L—Js.0 L-J,.0 R—J,.0 R—J,.0
S(vm:mEN C Su :meN) (S(’Um :meN) C S(u :meN)

(c) We observe that if pg(u,v) = 1 for all § € Q, we obtain the above
definitions in quasi-gauge spaces.

Definition 5.2.7. Suppose (U, Q,.q) is an extended quasi-b-gauge space. The
map TH : U — U is called an extended left (right) Q,.q-quasi-closed map
on U, where k € N, if for every sequence (z,, : m € N) in TF ](U), Which is
extended left (right) Q,.q-convergent in U, i.e., S (- QmeN) #0 (S (Zm meN #0),
and having (z,,, : m € N) and (y,, : m € N) as 1ts subsequences which satlsfy
= T(z,,), for all m € N,

has the property that there exists z € SZ meN)(Z e s
z=TW(2)(z = TH(2)).

R— QLP;Q

(zmmeny) Such that

5.3 Periodic and fixed point theorems in ex-
tended quasi-b-gauge spaces

Wlodarczyk and Plebaniak [44] have investigated periodic and fixed point theo-
rems in quasi-gauge spaces using J-family of generalized quasi-pseudodistances.
Using their technique we present novel periodic and fixed point results in the
novel setting of extended quasi-b-gauge space, which generalize and improve
the existing results due to Banach and Rus in fixed point theory.

Theorem 5.3.1. Suppose (U, Q,.q) is an extended quasi-b-gauge space and
let Jp0 = {Js: 5 € Q}, where Jg : U x U — [0, 00) is an extended left (right)
Jpa-family on U such that (U, Q,.q) is extended left (right) J.0-sequentially
complete. Let for all v € U and for all § € Q, there exists pug € [0,1) such
that T: U — U and ¢g : U x U — [1, 00) satisfy:

Js(T(v), T*(v)) < pgJg(v,T(v))  (CI)

and lim,, ;,, o0 5(2™, 2" )uus < 1, for each 2° € U, here (2™ = T (2%) : m €
N).
Then the statements below are satisfied:
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(I) The sequence (2™ : m € {0}UN), for any 2% € U, is extended left (right)
Q,.q-convergent in U; thus S zQOeQ{O}UN £ (Z)( Zm%eQ{O}uN) £ (Z)),

(II) Moreover, suppose that 7™ is an extended left (right) Q,.o-quasi-closed
map on U, for some k € N. Then

(a;) Fix(TH) £ ¢;
(ag) there exists z € Fix(T™¥) such that z € S (2 me{o}uN) <z € Sﬁ;mczneﬂ{o}um)

and
(az) for all z € Fix(TH), Js(2,T(2)) = Js(T(2),2) = 0, for all B € Q.

(III) Furthermore, let Fix(T™) # @ for some k € N and (U, Q,.0) is a Haus-
dorff space. Then

(by) Fix(TF)=Fix(T) ;
(bg) there exists z € Fix(T') such that z € s’ (o mG{O}UN) (z € Sim(ineg{o}uN)>

and
(bs) for all z € Fix(T), Js(z,2) =0, for all 5 € Q.

Proof. (I) We first show that (2™ : m € {0} UN) is an extended J,.o-Cauchy
sequence in U.

Let 8 € Q and 2° € U is fixed and arbitrary. Also using (C1) and (J1)
repeatedly, for n,m € N such that n > m, we get

Ja(2™,2") < (2™, 2" g Jp(2°, 21) 4+ @p(2™, 2")pp (2™, 2" gt Is(20, 2Y)
+@p(2™, 2" )pp (2™, 2o (22, 2 gt I (20, 2
+ (2™, 2 )‘Pﬁ(zmH 2")pp(2" T 2 g Ip (20, 21
< Jp(2°, 2N [pp(2h, 2" pp(2?, 2) o (27 2™y
+ a2, 2")pp(2? ,Z")---QOB( ™, 2" )pp(2

g
+"'+90,3(Zlazn)905<75272 ) 905( x4 ) 905( " 1

):U’B ]
Since, limy, m 00 ©3(2" 1, 2") g < 1, s0 that the series Y7 uf [T, wp(2", 2")
converges by ratio test. o
Let §=3 0 mp TIZ, ws(z',2") and Sy = 3700y [Ty @a(2, 27).
This gives

Ja(2™,2") < Jp(2°, 2Y) St — Sl
Letting m — oo, we have (2™ : m € {0} UN) is an extended J,.o-Cauchy
sequence in U, thus for all g € €, for all € > 0 and for all n,m € N, there is

[ € N such that
Jg(2™, 2") <€, forall n>m > 1. (5.3.1)
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Now, since (U, Q) is an extended left (right) J.o-sequentially complete

space, for z € SZMJQS{O}UN), we can write for all § € Q, for all e > 0 and for

all m € N, there is [ € N such that
Js(z,2™) < e, forall m> 1. (5.3.2)

Thus from (5.3.1) and (5.3.2), fixing z € S(ijn“ig{o}UN, defining (u,, = 2™ :m €
{0} UN) and (v,, = z: m € {0} UN) and applying (J2) to these sequences,
we get, for all 5 € , for all € > 0 and for all m € N, there exists [ € N such

that
qs(z,2™) <€, for all m > 1.

This implies S I;;ang{o}UN £ ().
(IT) To prove assertion (ay), let 2 € U is fixed and arbitrary. Since S ZQOE (ojuN) 7
0 and for m € {0} UN, we write

Z(m-‘,—l)k _ T[k} (ka)7

m—1+k .

thus defining (z,, = 2 :m € N), we get

(zm : m € N) c TH(U),
L—-Q,. L-Q
(zm:’r:EQ{O}UN =5 (zm: ’r:g{[)}UN) 7£ ®7
also, its subsequences

(ym = 208 c TH(D)

and
(T = 2™ c TH(U)
satisty
Ym = TH(2,,,), for all m € N
apd are extended left (Q,.o-convergent to each point z € Sé;(iﬁg{c)}um-
since

Now,

SL_QWQ SL_QW§Q

L—Qu.0 L—Qyu.0
(2m:meN) (ym:meN) S . S ;

and (2m:meN) - (zm:meN)"

Using above and the assumption that 7 for some k € N IS an extended
left (right) Q,.qo-quasi-closed map on U, there exists z € S%

S(in{?me (ojuny Such that z = T*(2). Thus assertion (a;) holds.

Now, the assertion (ay) follows from assertion (ay).

(2m me{O}UN) =
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To prove assertion (as3), let z € Fix(T™) is fixed and arbitrary and on con-
trary suppose that there exists 5y € 2 such that Jg,(2,7(z)) > 0. Now, using
THk(2) = TP*(2) = z and (C1), we have

Jao (2, T(2)) = Jg (TPH (2), TRH (T (2)))
< gy T (T(TPF2(2)), TR(TPF(2)))
< pdy Jao (THF2(2), T (T2 (2)))
<. < MﬁOJﬁo(zaT(z)) < Jg(2,T(2)),

which is illogical. Thus Js(z,T(z)) = 0, for all g € Q.
Now let Jg,(T(2),2) > 0 for some 3y € Q. Using z = TH(2) = T2 (), (J1),
(C1) and the facts that k 4+ 1 < 2k and Jg,(2,T(z)) = 0, we can write

0 < J5o(T(2), 2) = Ja(T(TH(2)), T#H(2))
= T, (T (2), TP (2))

< o (T (2), TR () ps Iy (2, T(2))

+ 8, (T (2), TP (2) ) (T2 (2), TR (2)) 15 T (2, T (2))

Bo

o 0 (T (2), TP (2)) 05 (T2 (2), TPH(2))
0 (TP (2), TR (2)) ™ g (2, T (2)) = 0,

which is absurd. Thus J3(7(2), 2) = 0, for all 5 € Q.

Hence, the assertion (a3) holds.

(ITI) Since (U, Q,.q) is a Hausdorff space, using Proposition (5.2.4), assertion
(a3) suggests that for z € Fix(T™), we have z = T(z). This gives z € Fix(T).
Hence (by) is true.

Assertions (az) and (by) imply (bs) .

To prove assertion (b3), consider (J1) and use (a3) and (by), we have for all
z € Fix(T) = Fix(T),

Js(z,2) < p(z,2){Js(2,T(2)) + Js(T(2),2)} = 0 for all B € Q. O

Theorem 5.3.2. Suppose (U, Q,.q) is an extended quasi-b-gauge space and
let Jp0 = {Jg: 5 € Q}, where Jg : U x U — [0, 00) is an extended left (right)
Jpio-family on U such that (U, Q,.q) is extended left (right) J.0-sequentially
complete. Let for all u,v € U and for all 8 € Q, there exists ug € [0, 1) such
that T: U — U and ¢g : U x U — [1, 00) satisfy:

Js(T(u), T(v)) < ppp(u,v)  (C2)

and limy, ;00 5(2™, 2" g < 1, for each 20 € U, here (2™ = TI™(2%) : m €
N).
Then the statements below are satisfied:
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(I) The sequence (2™ : m € {0}UN), for any 2% € U, is extended left (right)
; L=Q; R=-Q;
Q,.q-convergent in U; thus S(zm:mEQ{O}UN) #* ®<S(zm:mEQ{O}UN) #* (7)).

(IT) Moreover, suppose that Tl is an extended left (right) Q,.o-quasi-closed
map on U, for some k € N. Then

(c1) Fix(TH) # 0;
L—Qu0 (Z c SR_QWQ )

(co) thedre exists z € Fix(T™) such that z € S (am e {0}UN) (wmme {0}UN)
an

(c3) for all z € Fix(TH), Js(z,T(2)) = Js(T(2),z) = 0, for all 3 € Q.

(IIT) Furthermore, let Fix(T™) # () for some k € N and (U, Q,.q) is a Haus-
dorff space. Then
(dy) Fix(T™) =Fix(T) = {2} for some z € U ;
(dy) there exists z € Fix(T) such that z € Sé;?£éz{0}UN)(z € Sg;i‘jéz{o}um)
and
(ds) Js(z,2) =0, for all g € Q.
Proof. Since each map T that is satisfying (C2) also satisfies (C1) therefore,

it is suffices to show that (d;) holds. We observe that for y,z € Fix(T) such
that y # z, (C2) gives for all 5 € Q, there exists ug € [0, 1) such that

[Js(y, 2) < ppds(y, 2)] A [Js(2,9) < psds(2, )]

However, using Proposition (5.2.4), as y # z, we can write that there exist
Bo € €2 such that

[‘]ﬁo(yv z) > 0] \ [‘]ﬁo(zay) > 0]'
This implies
[Ja0 (Y, 2) > 0N, (y, 2) < gy e (Y, 2)|V[I5e (2,4) > 0N (2,y) < tage s (2, 9)]-

Which is absurd. Hence Fix(T) = {z}.
By (di), we notice that (dy) and (d3) can be obtained from (by) and (b3)
respectively. O]

Remark 5.3.3. The proof of right case for above theorems follow on the same
lines.
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Example 5.3.4. Suppose U = [0, 1] and Q. = {q}, where g : UxU — [0, 00)
is an extended quasi-pseudo-b metric on U defined for all e, f € U by

~J0 ife > f,
qle, f) = {(e Cf? e f (5.3.3)

and ¢ : U x U — [1,00) is defined as:
ple,f)=e+ f+2.

Let the set F' = [§,1] € U and let J: U x U — [0,00) for all e, f € U be
defined as:

_Jale, f) ifFnfe f}={e [}
Tl = {4 it £ {e, ) # {e ) >34
and g(e, f) =e+ f + 2.
T :U — U is described as
e+ 1 ifee]0,3),
T(e) = {z 4 fec [%’i] (5.3.5)

(I.1) (U, Q,.q) is Hausdorff extended quasi-b-gauge space (see Example 5.1.3).
(1.2) Jpq = {J} is an extended left J,.o-family on U (see Example 5.2.2).
(I.3) (U, Q,.q) is extended left J,.o-sequential complete.

For this, let {v,, : m € N} is an extended left J,.-Cauchy sequence.

Without loosing generality, let for 0 < ¢ < X and for all n,m € N,

64
there exists kg € N such that
1
J(Vm,vn) < € < 7k for all n > m > k. (5.3.6)
Then by using (5.3.6), (5.3.4) and (5.3.3), we get

1
TV, V) = @V, V) =] Uy — vy |P< €1 < 51 for all n > m > k.
(5.3.7)
1
U € F = [g, 1], for all m > k. (5.3.8)

Rewriting (5.3.7) as

1
| U — vy, <e<§,, for all n > m > ko
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(L4)

where € = /¢;.
Now since (R,| . |) is complete, F' = [£,1] is closed in R, also, v, € F =
[£,1] by (5.3.8) and {v,, : m € N} is Cauchy with respect to | . |, hence
for all 0 < e < é and for all m € N, there exists k&1 € N and we can find
v € F' such that

| v — vy, |< €, forall m> k.

Hence, {v,, : m € N} is extended left J,.q-convergent to v.
This implies (U, Q,.q) is extended left J,.q-sequential complete.

Next we show that T satisfies condition (C1) for p = 2.

The following cases are considered.

Case-1: Let e = 0, then T'(e) = ; € F and T?(e) = 2 € F, then by using
(5.3.4) and (5.3.3), we have

Case-2: Let e € (0,%), then
T(e) € F. Similarly
T?(e) € F. This gives

e L 1 e 3
12 4 408
e 1° 1 3
13 S < 1 pd(e, T(e));
Case-3: Let e € [5,3), then & < T(e) < 2 < 1, this implies that
T(e) € F, similarly 2 < T%(e) < {z < 3, which implies that T?%(e) € F.

This gives
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(L5)

Case-4: Let e € [3,1], then {T'(e),T%(e)} = % and {T'(e),T?(e)} € F.
This gives
J(T(e), T*(e)) = a(T'(e), T*(e))
=| T(e) = T%(e) |
_ ‘% M0 < pdte, T(e)).

Hence, T satisfies condition (C1) for p = 3.

Finally, we show that T"is extended left @, o-quasi-closed map on U.
Let the arbitrary and fixed sequence (z,, : m € N) belongs to T'(U) =
[, 3] which is extended left Q,.-convergent to S (e {O}UN and let the
subsequences (ym) and (z,,) are satistying y,, = T'(x,,), for all m € N.
Let z € S (m me {O}UN be fixed and arbitrary. Then this implies for all

€1 > 0 and for all m € N, there exists k € N such that
q(z,2™) < e, forall m > k.
As a result,
[| 2= 2m |[< A 2—am |< €
A2 =y [< A [ym = T(m)],

where € = \/a

We see that S

(zm mGN
z € SI; QW"::N)\{ﬁ} and then for all e > 0 and for all m € N, there exists

k:ENsuch that
| z—=z2m |[< e A[| 2 —xm |< €
A 2= Ym |< €] A [ym = T(x,,)], forall m > k.

= {3}, otherwise

However, this implies the following
1 1
| 2 — 2y |= z—2ym—|—§ = 5—2+2(z—ym) <€
and we get

1
574 <€+2|z—1yYny|, forall m>k.

Now since | z — 4y, |— 0, when m — oo, we get | 3 — z |< ¢, which is a
contradiction. Thus we have shown that

(Z:isgN) = {4} and there exists z = 1 € S (o nfeﬂN) such that $ = T'(1).
Hence, T is extended left Q,.o-quasi- closed map on U.
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(I.6) Hence by using Theorem 5.3.1, we can write
Fix(T) 1
ix(T) ==
2 Y

L—-Qu0

lim 2™ =
m—00

1
27
and

11

HGr5) =0,

Remark 5.3.5. By taking ¢g(u,v) = s, where s > 1, for each § € Q, we
attain the above results in quasi-b-gauge space.

5.4 Consequences and applications

This section consists of some fascinating consequences of obtained results.

Corollary 5.4.1. Suppose (U, Q) is a quasi-gauge space and J = {Jz : § € 2}
where, Jg : U x U — [0, 00) is left (right) J-family on U. Assume that, (U, Q)
is left (right) J-sequentially complete and let for all v € U and for all g € ,
there exists pg € [0,1) such that 7': U — U satisfies:

Js(T(v), T*(v)) < pgJp(v,T(v)).  (G1)
Then the statements below are fulfilled:

(I) The sequence (2™ : m € {0} UN), for any 2° € U, is left (right) Q-
convergent in U; thus S(Lz;fgme{o}uN) # (D(S(Iz;/?ne{o}um #£ ().

(IT) Moreover, suppose that Tl is left (right) Q-quasi-closed map on U, for
some k € N. Then

() Fix(TH) 5 0;

(ug) thzre exists z € Fix(T™) such that 2 € Sé;?me{o}um(z e s 9
an

(u3) for all z € Fix(TH), Js(2,T(2)) = Js(T(2),2) = 0, for all 5 € Q.
(ITT) Furthermore, let Fix(T*) # () for some k € N and (U, Q) is a Hausdorff

space. Then
(v1) Fix(TH) =Fix(T) ;
(vo) there exists z € Fix(T') such that z € Sé;?me{o}um(z € S(};gne{o}uN)

and

(2m:me{0}UN)

)

)
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(vs) for all z € Fix(T), Js(z,2) =0, for all g € Q.

Proof. The proof follows directly from the proof of Theorem (5.3.1) if we take
vg(u,v) =1, for each 8 € Q. O

Corollary 5.4.2. Suppose (U, Q) is a quasi-gauge space and J = {Jz : f € 2}
where, Jg : U x U — [0, 00) is left (right) J-family on U. Assume that, (U, Q)
is left (right) J-sequentially complete and let for all u,v € U and for all 5 € €2
there is g € [0, 1) such that 7 : U — U satisfies:

Jp(T(u), T'(v)) < pgds(u,v).  (G2)
Then the following hold:

(I) The sequence (2™ : m € {0} UN), for any 2° € U, is left (right) Q-
convergent in U; thus S(I;:n?me{o}uN) # Q(Sg;%e{mum + @).

(IT) Moreover, suppose that Tl is left (right) Q-quasi-closed map on U, for
some k € N. Then
(s1) Fix(TH) # 0;
(s2) there exists z € Fix(T™¥) such that z € Sé;?me{o}um <z € S(E:”%E{O}UN)>
and
(s3) for all z € Fix(TH), Js(2,T(2)) = Js(T(2),2) = 0, for all B € Q.

(III) Furthermore, let Fix(T¥) # () for some k € N and (U, Q) is a Hausdorff
space. Then

(t1) Fix(T*) =Fix(T") = {z} for some z € U ;

(t2) there exists z € Fix(T") such that z € Sé;?me{O}UN)} <z € S(R;;:ane{O}UN)>
and

(t3) Js(z,2) =0, for all g € €.

Proof. The proof follows directly from the proof of Theorem (5.3.2) if we take
wg(u,v) =1, for each g € Q. O

Remark 5.4.3. (a) We note that Corollary 5.4.1 and Corollary 5.4.2 are
Theorem 4.2 and Theorem 4.1 of Wlodarczyk and Plebaniak [44] respec-
tively. Hence our theorems are generalization of their results.



(b) The proof of fixed point theorem due to Banach [1] and Rus [4] (see also
[79]) require the completeness of the metric space (U, ¢), the continuity
of ¢ and the continuity of the mappings 7. On other hand, our Theo-
rem 5.3.1 and Theorem 5.3.2 remove these assumptions and leaving the
assertions more general. Hence our results are new generalization of the
fixed point theorems due to Banach and Rus.
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