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Abstract
Beamforming and Kalman filtering have vast applications in signal processing. It has been

used widely in source location estimation algorithms. The first part of this thesis deals

with the estimation of the location of sound source using microphone array processing and

beamforming. The algorithm based on power maximization gives raw position estimates

of the source. An array is composed of a set of microphones that are placed in certain

locations. Microphone array is to give high gain to signal from one desired direction

and attenuate the other. This is implemented by maximizing the power of beamformer’s

output in one specific direction.

Following that, a source tracking system based on the Kalman filter algorithm is

proposed. The microphone array approach is employed in the first step to finding

the sound source location. The Kalman filtering method is then used to refine those

estimations. For the motion of the target source, three system models are proposed:

motion along with a single coordinate, constant velocity, and constant acceleration model.

The outcome of combining these two techniques is a robust system to sound source

localization and tracking.
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Chapter 1

Introduction

The modern study of sound source localization started in the late 19th century, however,

researchers and philosophers were interested in the matter since the time of ancient

Greeks. The question that arose at the time was how humans were able to detect a

source based on the sound it produced. A “Garden Experiment” was conducted by Lord

Rayleigh, he concluded the experiment with the statement that the ability to determine

the position of people who spoke in the garden could be explained by a binaural ratio

of sound level at each ear. The current study of the acoustic cues employed for sound

source localisation began with this kind of examination. Initially, during the first world

war, the tracking and destruction of armaments were accomplished utilizing the sound

they produced.

Hearing aids, headsets, and meeting rooms are just a few examples of how localization

technology has advanced and become a part of our daily lives. This technique can be

employed to handle a variety of challenges, including tracking, voice improvement, and

human-robot interface, among others. Using microphone arrays, numerous algorithms

can be used to pinpoint the location of the sound source.

Billingsley in 1974, pioneered the microphone antenna, which has since experienced

significant advances due to the availability of better data gathering and computer

technology. A microphone array is made up of a couple of microphone antennas arranged

in such a way that spatial information is recorded well. The geometry of the microphone

array may play a crucial role in the development of the processing algorithms, based on

the nature of the applications. In source localization, for example, the array geometry

must be determined to effectively localize a source. Furthermore, a standard geometry

can sometimes make estimation easier, which is why uniform linear and circular arrays

are commonly utilized. These two geometries currently dominate the market. The

array’s advantage is that it can suppress background noise, allowing researchers to explore

sources in reverberant or loud situations. When sound sources are explored in difficult

environments, beamforming through microphone arrays has become a regular procedure.

The signals from an array of microphones can be utilized to examine acoustic sources

in a variety of ways. One of the approaches offered is beamforming. It is the process

1



Chapter 1. Introduction 2

of the desired signal coming from a single direction and impinging on several sensors

at the receiver. With the advancement of the beamforming approach, the number

of microphones, sampling frequency, and dynamic range of the analysis could all be

expanded. For the localization of sound sources on moving objects, such as flying

airplanes, high-speed trains, moving automobiles, and open rotors such as helicopter

and wind turbine rotors, beamforming is essential.

The next stage is to track a mobile source using the Kalman filtering approach

after the source has been localized using the above procedures. Video compression,

video surveillance, vision-based control, human-computer interfaces, medical imaging,

augmented reality, and robotics are all implementations of object detection and tracking

in computer vision. It is also useful in video databases for features like content-based

indexing and retrieval.

Kalman filtering has been popular for the past few years for tracking a moving object.

Since Sutherland’s effort at the beginning of 1960, the systems for tracking heads are

dealt with. Due to the efficiency of Kalman filtering to track an object, the majority of

researchers make use of or compare it with other techniques. Kalman filter is composed

of a set of mathematical equations. Those equations are used to effectively minimize the

mean squared error covariance by iteratively evaluating the state and error covariance.

Kalman filters are easy to understand and work with also they demand less computation

capability.

1.1 Significance of the Project

In an effort to assess the acoustic information, the sense of hearing plays a crucial role

as the other senses are not able to do so. The sense of hearing is a miraculous gift from

nature. The ability of humans to be able to accompany a conversation in the congregation

by the virtue of this bestowal makes it more remarkable.

With the rise in the aptness of sound source localization, it plays a vital role in certain

areas. Sound source localization has been used in several fields for locating the sound

sources including videogames, audio surveillance, hands-free acquisition in a car, musical

control interfaces, system monitoring, voice recognition, virtual reality, human-machine

interaction, and teleconferencing systems.

Sound source localization and tracking attracted considerable attention in the past

few years due to its significance in a variety of future applications. Several applications

including automatic speech recognition, motion planning, and beamforming took the

benefit of the acquaintance of localization and tracking. Further applications in acoustic

scene analysis such as robotics, autonomous systems, smart environments, and hearing

aids had a powerful impact on them.
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1.2 Objectives

The objectives of the project are,

• To accurately locate a sound source applying the TDOA technique.

• To model a tracking system for a nonstationary sound source.

1.3 Organization Of the Thesis

The second chapter begins with a discussion of the fundamentals of beamforming

using microphone arrays. Following this, the project’s system model for sound source

localization is described. This chapter also presents and explains the algorithm used to

locate the source. Finally, the simulation results for the algorithm are discussed, and

a comparison of results is made to determine which approximations provide the best

localization results. Various noise values are tested in the simulation for comparison and

the creation of a robust localization model.

The tracking model for a mobile sound source is discussed in Chapter 3. The chapter

introduces a traditional tracking algorithm, Kalman filtering. For a better understanding

of the concept, the fundamentals of the Kalman Filter are discussed. Following that, the

models proposed for this project are presented. The models include all of the necessary

elements for simulating the trajectory of the moving source. The simulation results of

the algorithm are presented at the end of this chapter to demonstrate the effective result

of this tracking technique.

The thesis is concluded in Chapter 4 with a discussion of what parameters should be

optimised in this model to make it more effective and to produce better results.



Chapter 2

Microphone Beamforming for Source

Localization

2.1 Delay and Sum Beamforming

Delay and sum beamformer is easy to understand and work with. It is the process in

which a source signal arrives from far-field and is received at an array of sensors. The

signal is received at each sensor with some delay with respect to the reference microphone.

After some weight compensation, the linear combination of the outputs gives a high gain

as a result of synchronization of the received signals as indicated in fig 2.1

Figure 2.1: Beamformer

One of its most useful advantage is that it can enhance a signal that has been corrupted

by noise, reverberation or other sound sources. It is basically comprised of two parts:

Synchronization and weight and sum. Synchronization is the process of imparting proper

phases on the outputs of the microphones in such a way that they all constructively

interfere and the signals coming from desired direction synchronize. On the other hand,

weight and sum is to make a linear combination of the output signals by weighting

them appropriately. Beamforming can also be used to achieve information about the

4
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direction of arrival(DOA) and number of incoming source signals. For a given input

signal, beamformer maximizes the output power.

2.2 Array Model

The array model for direction of arrival(DOA) estimation used here is Uniform Linear

Array Model.

2.2.1 Uniform Linear Array(ULA)

Uniform Linear array structure (ULA) is used in this thesis for the geometry of the

microphone array. The uniform linear array consists of n identical sensors as shown in

figure 2.2

Figure 2.2: Uniform Linear Array(ULA)

An array element is represented as a point receiver on the spatial coordinates. As

shown in figure 2.2 the 2D coordinates of the sensors are written as ln = (xnyn)T . The

signal arriving from the source to the array are considered plane wavefronts. This is

because the source is assumed to be present in the far-field region.

The field estimated at the microphone array can be expressed as,

E(l, t) = s(t)ejwt−k(xncosθ+ynsinθ) (2.1)

Let r be the separation between two adjacent microphones and θ be the angle of arrival

of the incoming source signal estimated anticlockwise from line normal to the sensors.

Using the first microphone as the reference, the delay is calculated using the following

equation,
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τ =
(n− 1)rcosθ

c
(2.2)

where c is the speed of the incoming sound signal and the condition on the separation

between two adjacent microphones can be written as,

r <
λ

2
(2.3)

and λ being the wavelength of the source signal.

For a source signal received at the array,there results an array propagation vector

which can be written as,

v(θ) =
[
v1(θ) , v2(θ), . . . . , vn(θ)

]
Considering that all the array elements have same directivity,

d1(θ) = d2(θ) = ..... = dn(θ)

The array steering vector for uniform linear array(ULA) can be expressed as,

v(θ) = d(θ)
[
1 e−jrcos(θ)w/c, . . . , e−j(n−1)rcos(θ)w/c

]
(2.4)

Assuming that all the microphones are identical therefore their directivity is equal to

unity. So the array steering vector becomes,

v(θ) =
[
1 e−jrcos(θ)w/c, . . . , e−j(n−1)rcos(θ)w/c

]
(2.5)

2.3 Source Localization Algorithm

The algorithm for the sound source localization is based on conventional beamforming.

An array of sensors is placed that receives the source signal incident on the array. For the

acquisition of the source,a scan range is set in which the source is to be located. The scan

range is set depending upon the number of array elements. Delay is estimated from each

point in the scan range to all possible sensor locations. Those delays are then imparted

on the output of the microphones when they are processed. In this way,signals from the

microphone array constructively interfere and their amplitude is enlarged. Subsequently,

power is estimated at each scan point. The source signal will be the one having maximum

power amplitude.
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Figure 2.3: Overall Source Localization Flowchart

2.3.1 Mathematical model for source localization

Suppose that a source signal s(m) is arriving from far-field and is incident on an n element

microphone array. The signal received at the microphone array are pre-processed and

they are discretized at arbitrary time instances for simplicity.The received signal can be

expressed as,

x(m) =
[
x0(m) , x1(m), . . . . , xn−1(m)

]T
(2.6)

As the signal at each microphone is received with some delay so the vector can be

written as,

x(m) =
[
s(m) , s(m− τ10), . . . . , s(m− τ(n−1)0)

]T
(2.7)

where τi0 is the delay experienced at each microphone. From Equation 2.5 we can

write x as,

x(m) = v(θ)s(m)
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and the noise added from each microphone is expressed as,

u(m) =
[
u0(m) , u1(m), . . . . , un−1(m)

]T
(2.8)

Adding the noise in the received vector at the microphone array, so the x vector becomes,

x(m) = v(θ)s(m) + u(m) (2.9)

It is important to measure the similarity of the signals between pair of sensors as the

parameters considered in here are spatial in nature. To do so cross covariance information

is required which is taken from the cross-covariance matrix. As only sample estimates are

available and easier to work with therefore sample covariance is estimated. The sample

covariance matrix is written as,

R̂ =
1

M

M∑
m=1

x(m)xH(m) (2.10)

R̂ = E[x(m)xH(m)] (2.11)

R̂ = E[(v(θ)s(m) + u(m))(v(θ)s(m) + u(m))H ]

R̂ = E[(v(θ)s(m) + u(m))(vH(θ)sH(m) + uH(m))]

After simplifying the sample covariance matrix becomes,

R̂ = E[(v(θ)(vH(θ))(s(m)sH(m))] + E[u(m)uH(m)] (2.12)

As elaborated before, the power is estimated at each scan point by “steering” the array

in all the directions. The scan point having maximum power amplitude is extracted as

the source location. First, the output from each microphone is summed up to make a

linear combination of signals. Then the array feedback is steered by multiplying it with

a weight vector.

z(m) =
M∑
m=1

w∗
n(m)x(m) (2.13)

The power is measured at each scan point through the following equation,

P (θ) =
1

M

M∑
m=1

|z(m)|2 (2.14)
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P (θ) =
1

M

M∑
m=1

wHx(m)

P (θ) =
1

M

M∑
m=1

wHx(m)xH(m)w

From Equation 2.10 we can write,

P (θ) =
1

M

M∑
m=1

wHR̂w (2.15)

where the location having maximum power is estimated from,

(xn, yn) = max[
1

M

M∑
m=1

wHR̂w] (2.16)

The power estimated at each location is normalized to 1, so that the maximum power

amplitude is equal to unity.

2.4 Simulation Results

2.4.1 In the Presense of Noise

Simulation results for different noise amplitudes are shown below. For different noise

amplitudes source location is estimated using different cell sizes so that the localization

is done more precisely. The variable r used in cell size represents the separation of the

microphones.

• Noise Amplitude–1

It can be seen that in this case SNR = 1 i.e., the amplitude of the noise is equal to

the amplitude of the source signal. Therefore, decreasing the cell size has no impact

on improving the source localization results. As the source cannot be distinguished

from the noise.

• Noise Amplitude–0.5

When the noise amplitude was 1, the estimated and real locations had no effect on

reducing cell size, as shown in Figure 2.4. However, when the noise is reduced to

0.5, the results are slightly improved when the grid size is r/10 x r/10, as indicated

in Figure 2.5(d). However, they are not as precise as they should be.

• Noise Amplitude–0.25

Figure 2.6 indicates that the noise amplitude is reduced. The localization results

have improved and the estimated and actual localizations become closer.
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• Noise Amplitude–0.1 As indicated in the Figure 2.7, when the noise amplitude

is set to 0.1 the localization results are much better as compared to higher noise

amplitudes. Since the SNR is high in this case and the noise has little effect on the

accuracy of the results.

2.4.2 In the Absence of Noise

In this case, the source localization is performed in the absence of noise. Since noise

has no effect on the algorithm, almost perfect localization results are obtained as the

cell size is reduced even further. Figure 2.8 illustrates that when the cell size is large,

the estimated and actual locations are far apart. However, as the cell size decreases, the

estimated and actual location points coincide.
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Figure 2.4: Localization results for noise amplitude = 1
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Figure 2.5: Localization results for noise amplitude = 0.5
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Figure 2.6: Localization results for noise amplitude = 0.25
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Figure 2.7: Localization results for noise amplitude = 0.1
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Figure 2.8: Localization results without noise



Chapter 3

Tracking of a Variable Sound Source

using Kalman Filtering

The challenge of evaluating the unknown parameters from one or more observations is

known as an estimation. When we use a ’sensor’ to collect measurements for a quantity

of interest, we run into an estimated difficulty. The estimation phenomenon is critical

for integrating the real world as seen by a sensor with human decisions about how to

manipulate or impact our surroundings.

The requirement to represent uncertainty lies at the foundation of all estimating

challenges. It would be simple to figure out what was going on in reality if we could

always take precise measurements of a completely understood process. Unfortunately,

this is impossible. Our observations are either imprecise or unreliable. They deal with a

procedure that is not fully understood. Furthermore, we rarely view the actual quantity

of interest; rather, the variables we observe infer the value of this quantity indirectly.

The estimation algorithm applied in this model is The Kalman filter. In current

systems theory, the Kalman filter algorithm is the most commonly used estimating

technique, with applications in practically every field of engineering.

R.E. Kalman’s renowned paper outlining a recursive solution to the discrete-data

linear filtering problem was presented in 1960. The Kalman filter has been the

source of much development and practice since that time, owing in substantial part

to advancements in digital computing, especially in the field of autonomous or assisted

navigation.

The Kalman filter is a set of mathematical equations that provides an efficient

computational and recursive solution to the least-squares method. The filter is extremely

versatile. It is capable of evaluating the previous, current, as well as future states even if

the true nature of the modeled system is unclear at the time.

The figure below illustrates the overall procedure of the Kalman filter. A system

model is operated by established controls on the other hand a measurement device is

used to supply relevant quantities. The physical system data available for estimation is

simply information about these system inputs and outputs.

14
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Figure 3.1: Complete Overview of Kalman Filter

3.1 Static Model

A static model is defined as a model which deals with the constant structural analysis

and does not change over time. It represents the system’s structure, which is less likely to

vary with time. The purpose of this model is to describe the fundamentals of the Kalman

filter in a straightforward and intuitive manner.

3.1.1 Kalman Filter in One-Dimension

The model of the system is fully described by five equations. These equations cover the

past, present, and future aspects of the system state.

• State Update Equation

The first equation is called the state update equation. This equation takes into

account the system’s current condition and is, given by

x̂k,k = x̂k,k−1 +Kk(zk − x̂k,k−1)

where xk,k and xk,k−1 is the estimate of the current state and the predicted value of

the current state respectively. The Kalman gain and observed value are represented

by the factors Kk and zk, respectively. As demonstrated by the subscript k, both

of these variables change with each cycle.

• State Extrapolation Equation
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The state extrapolation equation, often known as a prediction equation, given by

x̂k,k+1 = x̂k,k

It extrapolates from the current state to the next. The system’s dynamic model is

deemed constant in this scenario, its state does not vary over time.

• Kalman Gain

The variations between the measurements and the true value are referred to as

measurement errors. Because measurement errors are arbitrary, we can describe

them using variance. The measurement uncertainty is the variance of the

measurement errors and is represented by r.

The estimated error is the variation between the estimate and the true system state.

Although the estimated error is unknown, the degree of uncertainty in the estimate

can be calculated. The estimated uncertainty will be represented by the letter p.

The Kalman gain is the third Kalman filter equation, represented as

Kk =
pk,k−1

pk,k−1 + rk

It ranges from 0 to 1. In the preceding equation, pk,k−1 represents the predicted

uncertainty in estimate and rk represents the uncertainty in measurement.

• Covariance Update Equation

As the name suggests this equation calculates the current uncertainty in the

estimate, give by

pk,k = (1− kk)pk,k−1

where kk and pk,k−1 are respectively the Kalman gain and the predicted uncertainty

in estimate.

• Covariance Extrapolation Equation

The covariance extrapolation equation, given by

pk+1,k = pk,k + qk

where q represents the process noise variance. The process noise is a factor added in

the covariance extrapolation equation due to the uncertainty of the dynamic model.

The dynamic model at this stage is constant so the later state equals the current

state.
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Figure 3.2: Block Diagram of Kalman Filter

3.2 Dynamic Model

Dynamic models can be used to describe many real-world scenarios using mathematical

equations or computer algorithms. As the name implies, these models explain system

states that change over time.

3.2.1 Multidimensional Kalman Filter

The multidimensional Kalman filter is discussed in the following topic. Most dynamic

models have system states with two, three, or even additional dimensions. This section

explains the Kalman filter’s matrix notation.

• State Extrapolation Equation

The state extrapolation equation, often known as the prediction equation connects

the system’s current and future states. In a multidimensional setting, the equation

is defined as,

x̂k+1,k = φx̂k,k + Guk + wk

in this equation x̂k+1,k and x̂k,k represent the extrapolated system state and

estimated system state vectors respectively. uk is the input or control variable

while the matrix wk is the process noise. φ and G refers to the state transition

matrix and input transition matrix respectively.

The input variable uk in this work is considered zero as there is no external force

acting on the system.
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• Covariance Extrapolation Equation

In a multidimensional setting, the general description of this equation is as follows

P̂k+1,k = φP̂k,kφ
T + Q

where Pk,k and Pk+1,k is covariance matrix and extrapolated covariance matrix

respectively. φ is state transition matrix and Q is process noise matrix.As previously

stated, process noise has a significant impact on the Kalman filter’s functioning.

This noise is represented in the multidimensional setting by a covariance matrix Q.

The process noise included in this working configuration is dependent and correlated

between the state variables.

• Measurement Equation

The measurement value was symbolized by zk in the preceding section; it relates to

the hidden true system state that is damaged owing to measurement noise vk. The

measurement noise variance, denoted by rk, might be either constant or variable.

In matrix form, the measurement equation for the multidimensional scenario is

zk = Hxk + vk

where zk, xk and vk is the measurement or output, hidden system state and

random noise vector respectively. H corresponds to the observation matrix.The

measurement does not correspond to the expected output in certain system models.

In that instance, a transformation is required to translate the system state to the

measured state. The matrix H serves as a bridge between these two states.

• State Update Equation

In matrix form, the state update equation for the multidimensional scenario is

x̂k,k = x̂k,k-1 + Kk(zk −Hx̂k,k-1)

where x̂k,k, x̂k,k-1 and zk is estimated, extrapolated and measured system state

respectively. Kk is the Kalman gain and H is the observation matrix.

• Covariance Update Equation

In a multidimensional setting, the general description of this equation is as follows

Pk,k = (I−KkH)Pk,k-1(I−KkH)T + KkRkK
T
k

where Pk,k and Pk,k-1 is the updated covariance matrix and the extrapolated

covariance matrix at previous state receptively. Kk is the kalman gain also H



Chapter 3. Tracking of a Variable Sound Source using Kalman Filtering 19

and Rk is observation and measurement uncertainty matrix respectively.

• Kalman Gain

The Kalman gain equation is the final of the five equations. It is defined as follows

in a multidimensional setting

Kk =
Pk,k-1H

T

HPk,k-1H
T + Rk

where Kk denotes the Kalman gain. H and Rk is observation and measurement

uncertainty matrix respectively. Pk,k-1 is the extrapolated covariance matrix at

previous state.

3.3 Proposed Models

The purpose of this project is to track a source using the Kalman filter algorithm.The

source is free to roam around in the surrounding.Three motion models are appropriate

for modeling this scenario: motion along one axis, constant velocity, and constant

acceleration. Following are the three proposed models for this thesis.

3.3.1 First Model: Motion Along One Axis

For this model the system state consists of the target position and velocity in y coordinate.

xk =

[
ŷk
ˆ̇yk

]

The expected source states at n instants can be specified using two equations based on

the motion along one axis model.

ŷk+1,k = ŷk,k + ˆ̇yk,kδt

ˆ̇yk+1,k = ˆ̇yk,k

The extrapolated state vector can be derived from the equation,

x̂k+1,k = φx̂k,k (3.1)

In matrix representation, [
ŷk+1,k

ˆ̇yk+1,k

]
=

[
1 δt

0 1

][
ŷk
ˆ̇yk

]



Chapter 3. Tracking of a Variable Sound Source using Kalman Filtering 20

The state transition matrix thus derived is

φ =

[
1 δt

0 1

]

The estimate uncertainty derived from the covariance update equation can be written in

the form,

P =

[
Py Pyẏ
Pẏy Pẏ

]
where Py and Pẏ is the variance of y coordinate position and velocity estimate respectively.

Pyẏ and Pẏy represent the covariance.

P =

[
Py 0

0 Pẏ

]

Because the estimation error in position and velocity are believed to be unrelated in this

work, the covariance terms are set to zero.

P =

[
600 0

0 600

]
The state vector begins with a random guess, which explains why the location and velocity

variances are so large.

The process noise matrix is defined in the following manner.The discrete noise model

is used to account for process noise. It states that the noise’s value varies between

time periods but remains constant within a time period. The variance and covariance

of location and velocity can be described using random acceleration covariance σ2
a.The

random acceleration covariance in this model is set at 0.25.

Q =

[
σ2
y σ2

yẏ

σ2
ẏy σ2

ẏ

]

Now constructing the process noise model for this case,lets consider a matrix

Qb =

[
0 0

0 1

]
σ2
a

the process noise matrix Q can be derived from the equation

Q = φQbφ
T
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substituting the values results in the matrix below,

Q =

[
δt2 δt

δt 1

]
σ2
a

The measurement equation is defined below, it provides us with the y coordinate location

of the source.

zk = Hxk (3.2)

[
yk,measured

]
= H

[
yk
ẏk

]
So the observation matrix is defined as,

H =
[
1 0

]
The measurement covariance matrix Rk models the error in y coordinate position

measurement.

Rk =
[
σ2
ym

]
For the sake of this model the measurement uncertainty between each measurement is

kept constant.

Rk =
[
10
]

3.3.2 Second Model: Constant Velocity Model

For this model the system state consists of the target position and velocity in x and y

coordinate respectively.

xk =


x̂k
ˆ̇xk
ŷk
ˆ̇yk


The expected source states at n instants can be specified using these four equations based

on the constant velocity motion model.

x̂k+1,k = x̂k,k + ẋk,kδt

ˆ̇xk+1,k = ˆ̇xk,kδt

ŷk+1,k = ŷk,k + ẏk,kδt

ˆ̇yk+1,k = ˆ̇yk,k

The extrapolated state vector can be derived from the equation,

x̂k+1 = φx̂k,k (3.3)
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In matrix representation, 
x̂k+1,k

ˆ̇xk+1,k

ŷk+1,k

ˆ̇yk+1,k

 = φ


x̂k
ˆ̇xk
ŷk
ˆ̇yk


The state transition matrix thus derived is

φ =


1 δt 0 0

0 1 0 0

0 0 1 δt

0 0 0 1


The estimate uncertainty derived from the covariance update equation can be written in

the form,

P =


Px 0 0 0

0 Pẋ 0 0

0 0 Py 0

0 0 0 Pẏ


where Py and Pẏ is the variance of y coordinate position and velocity estimate respectively.

Px and Pẋ is the variance of x coordinate position and velocity estimate respectively. Th

covariance are set to zero as the terms are not correlated.

P =


600 0 0 0

0 600 0 0

0 0 600 0

0 0 0 600


The state vector begins with a random guess, which explains why the location and velocity

variances are so large.

The process noise matrix is defined in the following manner.The discrete noise model

is used to account for process noise. It states that the noise’s value varies between

time periods but remains constant within a time period. The variance and covariance

of location and velocity can be described using random acceleration covariance σ2
a. The

random acceleration covariance in this model is set at 0.25.

Constructing the process noise model for this case in the same manner as previously

stated using the equation,

Q = φQbφ
T

where the matrix Qa is

Qb =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

σ2
a
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so the final process noise matrix is,

Q =


0 0 0 0

0 0 0 0

0 0 δt2 δt

0 0 δt 1

σ2
a

The measurement equation is defined below, it provides us with the x and y coordinate

location of the source.

zk = Hxk (3.4)

from the above equation the observation matrix H derived is mentioned below, where

zk =

[
xk,measured
yk,measured

]

H =

[
1 0 0 0

0 0 1 0

]
The measurement covariance matrix Rn models the error in y and x coordinate position

measurements.

R =

[
σ2
xm 0

0 σ2
ym

]
For the sake of this model the measurement uncertainty between each measurement is

kept constant.

R =

[
10 0

0 10

]

3.3.3 Third Model: Constant Acceleration Model

For this model the system state consists of the source position, velocity and acceleration

in x and y coordinates respectively.

xk =



x̂k
ˆ̇xk
ˆ̈xk
ŷk
ˆ̇yk
ˆ̈yk


The expected source states at n instants can be specified using these nine equations

based on the constant velocity motion model.
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x̂k+1,k = x̂k,k + ẋk,kδt+
1

2
ẍk,kδt

2

ˆ̇xk+1,k = ˆ̇xk,k + ẍk,kδt

ˆ̈xk+1,k = ẍk,k

ŷk+1,k = ŷk,k + ẏk,kδt+
1

2
ÿk,kδt

2

ˆ̇yk+1,k = ˆ̇yk,k + ÿk,kδt

ˆ̈yk+1,k = ÿk,k

The extrapolated state vector can be derived from the equation,

x̂k+1,k = φx̂k,k (3.5)

The state transition matrix thus derived is

φ =



1 δt 0.5δt2 0 0 0

0 1 δt 0 0 0

0 0 1 0 0 0

0 0 0 1 δt 0.5δt2

0 0 0 0 1 δt

0 0 0 0 0 1


The estimate uncertainty derived from the covariance update equation can be written in

the form,

P =



Px Px,ẋ Px,ẍ 0 0 0

Pẋ,x Pẋ Pẋ,ẍ 0 0 0

Pẍ,x Pẍ,ẋ Pẍ 0 0 0

0 0 0 Py Py,ẏ Py,ÿ
0 0 0 Pẏ,y Pẏ Pẏ,ÿ
0 0 0 Pÿ,y Pÿ,ẏ Pÿ


where Py and Pẏ is the variance of y coordinate position and velocity estimate respectively.

Px and Pẋ is the variance of x coordinate position and velocity estimate respectively.The

off diagonal entries are covariance.They are set to zero as the terms are not correlated.

P =



600 0 0 0 0 0

0 600 0 0 0 0

0 0 600 0 0 0

0 0 0 600 0 0

0 0 0 0 600 0

0 0 0 0 0 600


The state vector begins with a random guess, which explains why the location and velocity
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variances are so large.

The process noise matrix is defined in the following manner.The discrete noise model

is used to account for process noise. It states that the noise’s value varies between

time periods but remains constant within a time period. The variance and covariance

of location and velocity can be described using random acceleration covariance σ2
a.The

random acceleration covariance in this model is set at 0.25.

Q =



δt4

4
δt3

2
δt2

2
0 0 0

δt3

2
δt2 δt 0 0 0

δt2

2
δt 1 0 0 0

0 0 0 δt4

4
δt3

2
δt2

2

0 0 0 δt3

2
δt2 δt

0 0 0 δt2

2
δt 1


σ2
a

The measurement equation is defined below, it provides us with the x and y coordinate

location of the source.

zk = Hxk (3.6)

from the above equation the observation matrix H derived is mentioned below, where

zn =

[
xk,measured
yk,measured

]

H =

[
1 0 0 0 0 0

0 0 0 1 0 0

]
The measurement covariance matrix Rk models the error in y and x coordinate position

measurements.

R =

[
σ2
xm 0

0 σ2
ym

]
For the sake of this model the measurement uncertainty between each measurement is

kept constant.

R =

[
10 0

0 10

]

3.4 Simulation Results

The simulation was carried out using MATLAB to demonstrate the effectiveness of the

speaker tracking algorithm. To achieve better results 35 iterations were performed to

estimate the trajectory of sound source.

The results of tracking a sound source moving along a single Cartesian coordinate

are shown in Figure 3.3(a). The true values are fed into the first algorithm, to model

the source movement. The measurement values are obtained from the sound source

localization algorithm and the Kalman filtering algorithm is used to smooth those location

values. The results indicate that the Kalman algorithm estimates are smooth and
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perfectly track the trajectory of source.

Figure 3.3(b) depicts the Kalman filter estimates for modeling the constant velocity

motion of a sound source along with the two Cartesian coordinates x and y. As previously

stated, the true values are the input to the first algorithm, and the outputs are referred to

as measurement values.In this model, the Kalman filtering algorithm is indeed effective.

The estimates are perfectly consistent with the source’s trajectory.

The final model proposed is the motion of the source with constant acceleration along

with the Cartesian coordinates x and y. Simulation rsults for this model are depicted

in Figure 3.3(c) where True values represent the model of the source trajectory, while

measurement values represent the output of the localization algorithm. The measurement

values in this model are rather irregular and noisy, however, the Kalman filter algorithm

estimates are even and perfectly track the trajectory of the source.
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(a) First Model: Motion along Single Axes

(b) Second Model: Motion with Constant Velocity

(c) Third Model: Motion with Constant Acceleration

Figure 3.3: Simulation Results for Tracking of Moving Sound Source
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Conclusion

The theory of microphone beamforming and Kalman filtering has been assessed in this

thesis for sound source localization and tracking. The main goal is to distinguish the

noise signal from the source signal so that localization is done expeditiously. Aiming

that, a power maximization algorithm is used. It assists to extract the source from the

noise based on the power amplitude. Conventional Beamforming has been reviewed for

the location estimation. It has some restrictions because of its beam wideness and they

can be handled by enlarging the number of array elements. But doing so requires a lot

of cost and effort. So methods to work with or remove some of the limitations have been

observed throughout.

The proposed system in this study is the multidimensional system for sound source

localization and tracking. The performance of the localization algorithm was evaluated

in both the absence and presence of noise. The technique uses noise values of 0.1, 0.25,

0.5 and 1. The search grid size was lowered to counteract the influence of noise and make

the localization mechanism more robust. Localization estimations with a smaller search

grid size have proven to be more efficient.

The Kalman filter algorithm is applied to improve the estimates and track a

moving sound source. To completely characterize a sound source in a multidimensional

environment, a model is required that takes into account all the aspects. To model

the arbitrary mobility of the sound source, three approaches are utilized. Motion in a

single coordinate, motion in two coordinates with constant velocity, and motion in two

coordinates with constant acceleration are the proposed models. In the suggested model,

the coordinate corresponding to height is kept constant.

Kalman filtering has been utilized to smooth out the trajectory of the speaker’s

movement through its estimation procedure. In conventional beamforming, the delay

and sum technique has been debated over. The efficiency and restraints of these

algorithms have been observed through MATLAB simulations. Using these techniques,

the localization and tracking have been done efficiently and better SNR is achieved.

28
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MATLAB Code for Sound Source

Localization

1 clc

2 clearvars -except sourceXCoord sourceYCoord

3 close all;

4

5 %% Constants

6 global noOfMics d xRef yRef spSnd freqSrc fs T t L w wvNum micXCoord

micYCoord

7

8 noOfMics = 10;

9 d = 1; %distance b/w sensors

10 xRef = 0; %position of refrence microphone

11 yRef = 0;

12 spSnd = 343; %speed of sound

13 freqSrc = 400; %frequency of source signal

14 fs = 9000; %sampling frequency

15 T = 0.1; %sampling period

16 t = 0:1/fs:T;

17 L= length(t);

18 w = 2*pi*freqSrc;

19 wvNum = w/spSnd; %wave number

20

21 %% Setting up the microphone array

22

23 micXCoord = 1:d:noOfMics;

24 micXCoord = micXCoord ’;

25 micYCoord = zeros(noOfMics ,1);

26 %% Scan Range

27 stRangeX = -10;

28 stRangeY = 0;

29 stepSize = 0.5;

30 endRangeX = 50;

31 endRangeY = 50;

29
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1 function [column ,row] = beamForming(sourceXCoord ,sourceYCoord)

2 defineConstants

3

4 sourceSig = sin(2*w*t);

5

6 % sourceXCoord = input(’Please input source X Coordinate: ’) ;

7 % sourceYCoord = input(’Please input source Y Coordinate: ’) ;

8

9 [distFromSource2RefMic ,distFromSource2MicArray] = calcSource2MicDist(

sourceXCoord ,sourceYCoord);

10

11 receivedSignals = returnSignalsReceivedByMicArray(sourceSig ,

distFromSource2RefMic ,distFromSource2MicArray);

12

13 receivedSignals = addNoise(receivedSignals);

14

15 scanRangeXCoord = stRangeX:stepSize:endRangeX;%linspace(1,noOfMics ,

noOfMics);

16 scanRangeYCoord = stRangeY:stepSize:endRangeY;%linspace(1,noOfMics ,

noOfMics);

17 outputPower = computePower(receivedSignals , scanRangeXCoord ,

scanRangeYCoord);

18

19 maxOpPower = max(max(outputPower));

20 [row , column] = find(outputPower == maxOpPower);

21 %outputPower ’

22

23 row = (row.* stepSize) + stRangeY -stepSize;

24 column = (column .* stepSize) + stRangeX -stepSize;

25

26 sprintf (" Source is located at (%0.2f ,%0.2f)",column ,row)

27

28 end

29

30 function [distFromSource2RefMic ,distFromSource2MicArray] =

calcSource2MicDist(sourceXCoord ,sourceYCoord)

31 global xRef yRef noOfMics micXCoord micYCoord

32

33 distFromSource2RefMic = sqrt(( sourceXCoord - xRef).^2 + (

sourceYCoord - yRef).^2);

34 for k= 1: noOfMics

35 distFromSource2MicArray(k) = sqrt(( sourceXCoord - micXCoord(k))

.^2 + (sourceYCoord - micYCoord(k)).^2);

36 end

37 end

38

39 function receivedSignals = returnSignalsReceivedByMicArray(sourceSig ,

distFromSource2RefMic ,distFromSource2MicArray)



Appendix A. MATLAB Code for Sound Source Localization 31

40 global noOfMics wvNum

41

42 A = distFromSource2RefMic ./ distFromSource2MicArray; %

amplitude of received signal

43 dist_wr_refmic = distFromSource2MicArray - distFromSource2RefMic;

44 for k = 1: noOfMics

45 SteeringVect(k) = cos(wvNum*dist_wr_refmic(k))-1i*sin(wvNum*

dist_wr_refmic(k));

46 receivedSignals(k,:) = A(k)*sourceSig .* SteeringVect(k);

47 end

48 end

49

50 function receivedSignals = addNoise(receivedSignals)

51 global noOfMics L

52

53 Am = 10^( -1);

54 n1 = Am * (randn(noOfMics , L) + j*randn(noOfMics , L));

55 receivedSignals = receivedSignals + n1;

56 % %% Adding noise to the signal

57 % Am = 10^( -1);

58 % n1 = Am * (randn(noOfMics , L) + j*randn(noOfMics , L));

59 % mic_in_sig = received_sig + n1;

60 end

61

62 function outputPower = computePower(receivedSignals , scanRangeXCoord ,

scanRangeYCoord)

63 global noOfMics micXCoord micYCoord xRef yRef wvNum

64

65 Source2AnyMicDist = nan(length(scanRangeXCoord),length(

scanRangeYCoord));

66 Source2RefMicDist = nan(length(scanRangeXCoord),length(

scanRangeYCoord));

67 covar_matrix = (receivedSignals*receivedSignals ’)/length(

receivedSignals);

68

69 for p = 1: length(scanRangeYCoord)

70 for q = 1: length(scanRangeXCoord)

71 Source2AnyMicDist = sqrt(( scanRangeXCoord(q)-micXCoord).^2

+ (scanRangeYCoord(p) - micYCoord).^2);

72 Source2RefMicDist = sqrt(( scanRangeXCoord(q)-xRef).^2 + (

scanRangeYCoord(p) - yRef).^2);

73 dist_wr_refmic_ = Source2AnyMicDist - Source2RefMicDist;

74 weightVec = cos(wvNum*dist_wr_refmic_) -1i*sin(wvNum*

dist_wr_refmic_);

75 outputPower(p,q) = abs(weightVec ’* covar_matrix*weightVec);

76 end

77 end

78
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79 for k1 = 1: length(scanRangeYCoord)

80 maxP(k1) = max(outputPower(k1 ,:));

81 end

82 outputPower = outputPower/max(maxP);

83 end
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MATLAB Code for Sound Source

Tracking

1 clear all

2 clc

3 close all

4

5 x = 0:1:35 -1;

6 linearLocations = x-min(x)+1;

7 constantLocations = 20* ones(1,length(x));

8 exponentialLocations = exp(x./15);

9

10 y = linearLocations; % Select Which Type of Input to Run

11

12 xArrOut = []; yArrOut = [];

13 for k = 1: length(x)

14 [xOut ,yOut] = beamForming(x(k),y(k));

15 xArrOut = [xArrOut , xOut];

16 yArrOut = [yArrOut , yOut];

17 end

18

19 trueValues = [x;y];

20 measurements = [xArrOut;yArrOut ];

21

22 maximumError = max(max(abs(measurements - trueValues)))

23

24 plot(x,y,’.-’)

25 hold on

26 plot(xArrOut ,yArrOut ,’.-’)

27 legend(’Input Values ’,’Output Values ’)

33
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