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Preface 
The study of commutative rings originated from the theory of algebraic number 
and algebraic geometry [3]. In 1921, Emmy Noether gave the first axiomatic 
foundation of the theory of commutative rings in her monumental paper “Ideal 
theory in rings”. The genesis of the theory of commutative rings dates back to 
the early 19th century while its maturity was achieved in third decade of 20th

For any type of abstract algebra, a generalization is a defined class of such 
algebra. Of course, a generalization of a concept is an extension of the 
concept to less specific criteria. Generalization plays a vital role to enhance a 
mathematical concept and to walk around the tracks which leads to achieve 
new goals. 

 
century. 

Since the introduction of the concept of commutative rings, much progress has 
been made by many researchers in the development of this concept through 
generalization [28, 29, 39]. 

In 1972, a generalization of a commutative semigroup has been introduced by 
Kazim and Naseeruddin [26]. In ternary commutative law, , they 
introduced braces on the left of this law and explored a new pseudo 
associative law, that is . This they called the left invertive law. A 
groupoid satisfying the left invertive law is called a left almost semigroup and is 
abbreviated as LA-semigroup. Despite the fact that the structure is non-
associative and non-commutative, however it possesses properties which usually 
come across in associative and commutative algebraic structures.  

In 1978, Mushtaq and Yusuf [50] established some interesting and useful results in 
the theory of LA-semigroups. In [51], they introduced locally associative LA-
semigroups. 

Later in 1991, Mushtaq and Iqbal [43] did an extensive study in decomposition of 
locally associative LA-semigroup. One can see that Mushtaq and his associates 
have a remarkable contribution to strengthen and explore new tracks in the 
theory of LA-semigroups. 

In 1994, Protic and Stevanovic [56] have used the name Abel-Grassmann’s 
groupoids(abbreviated as AG-groupoids ), instead of LA-semigroups. For more 
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details of their spad work regarding AG*-groupoids and AG**-groupoids, we 
refer [57, 58, 59, 69]. Mushtaq and Khan [46, 47, 48, 49] also focused on AG*-
groupoids and AG**-groupoids and have done extensive work.  

In 1996, Mushtaq and Kamran [45] extended this concept to left almost group 
(abbreviated as LA-group). An LA-semigroup is called an LA-group if (i) there 
exist a left identity  such that  for all , and (ii) for every  there 
exists a left inverse ∈ G such that   For more details see [25].   

The fundamental questionnaire like, Why’s, What’s, If’s, always insist the human 
mind to explore an unending task, to move from known to unknown and from 
visible to invisible. The passionate purposefulness has always led to the opening 
of new outlook of expanse.  

Keeping in view the fundamental questionnaire, we thought of a purpose to 
generalize commutative rings by an outcome of LA-semigroups and LA-groups. 
Actually, this offshoot is a non-associative and a non-commutative structure, 
known as left almost rings (abbreviated as LA-rings), introduced by Yusuf [70]. 
Left almost rings are in fact a generalization of commutative rings and carries 
attraction due to its peculiar characteristics and structural formation. 

This thesis comprises 8 chapters and on the whole it is a threefold study. In first 
phase we discuss AG-groupoids and Γ-AG-groupoids which are in fact single 
(binary) operational structures. These structures have been investigated in 
chapters 2 and 5. In second phase, we deal with two (binary) operational 
structures such as LA-rings and Γ-LA-rings. These concepts have been studied in 
chapters 3, 4 and 6. While in the third phase, we look into the application side 
and investigated the fuzzy concepts of these algebraic structures.  

In chapter one, a brief history of LA-semigroups, LA-groups, Γ-semigroups and Γ-
rings has been discussed. Moreover, some basics of fuzzy concepts have been 
provided. We have also included the fundamental information about these 
structures which are directly related to our study.   

Chapter 2 contains two sections. In section one; we have discussed the ordering 
of AG-groupoids. Actually the purpose of defining ordering has been based to 
tackle the degree questions in LA-ring of finitely non-zero functions, which have 
been discussed in chapter 4 (section 2). In section 2, we have included some 
results regarding ideals, M-systems and N-systems in ordered AG-groupoids. 
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The contents of chapter 2, in the form of two papers have been published 
(accepted) in;  

(i) Far East J. Mathematical Sciences, 47(2010), 13-21. 
(ii) Int. Electronic J. Pure and Applied Mathematics (to appear). 

Chapter 3 is distributed into three sections. In section one, we have provided 
some elementary properties of LA-rings. In second section, we have discussed 
ideals, M-system, P-system, I-system and subtractive sets in LA-rings. We have 
proved that if R is an LA-ring with left identity e, then R is fully prime if and only if 
every ideal is idempotent and the set ideal(R) is totally ordered under inclusion. 
Further, a left ideal I of an LA-ring R with left identity e is quasi-prime if and only if 
R\I is an M-system. Also we have shown that every subtractive subset of an LA-
ring R is semi-subtractive. In section 3 we continued the developments made in 
section 2, regarding elementary concepts of ideals in LA-rings. We have taken a 
step forward to study the direct sum in LA-rings and have established some 
criterion for LA-ring to be the direct sum of its ideals.  

In chapter 4, our study is distributed into two sections. In section one, we 
generalize the structure of commutative semigroup ring (ring of semigroup S 
over ring R represented as R[X; S]) to a non-associative LA-ring of commutative 
semigroup S over LA-ring R represented as R[Xs

The motivational source behind this study is the book: Commutative semigroup 
rings, the University Chicago, Press, 1984 (see [13]). During the construction of LA-
ring represented as     R[X

; s∈S], consisting of finitely nonzero 
functions. Nevertheless it also possesses associative ring structures.  

s; s∈S], we have adopted the analogous way as in [13]. 
In this study we have obtained various generalizations parallel to corresponding 
parts of commutative semigroup rings. For this we mostly followed [12, 13, 20, 
54].  Some results concerning homomorphisms of LA-ring R[Xs

In the second section, we have taken the case in which commutative 
semigroup has been replaced by an LA-semigroup and accordingly we have 
constructed an LA- ring through which all the established results in section one 
stood as particular case. Here is the right place to use the concept of ordered 

; s∈S] have been 
included. We have also introduced the concept of LA-modules which intuitively 
would be the most useful tool for further developments. For example recently, 
Shah and  Raees [68] have investigated several results corresponding to 
associative modules theory over the rings.  
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AG-groupoids as discussed earlier in chapter 2; to tackle the degree problem 
arose during the developments of this type of LA-rings. 

The contents of chapter 4 have been published in;  

Int. J. Contemp. Math. Sciences, 5 (2010), no. 5, 209-222. 

In chapter 5, we have divided our work into two sections. In section one; we 
have introduced a non-commutative and a non-associative structure, which we 
named as Γ-AG-groupoids.  Our main objective behind this study is to generalize 
the concept of AG-groupoids which have been studied by several researchers 
[41, 42, 43, 46, 47, 50, 57, 58, 69]. We have discussed the concepts of Γ-ideals 
and Γ-bi-ideals in this structure.  In second section, we have studied regular and 
intra-regular Γ-AG-groupoids. And have characterized these particular types of 
Γ-AG-groupoids by the properties of Γ-ideals.  

Also we are with a plan to use the characteristics of Γ-AG-groupoids and to 
make a link with Γ-LA-rings which have been discussed in chapter 6. One can 
observe that Γ-LA-rings are an immediate generalization of LA-rings and also it is 
a generalization of commutative Γ-rings [4, 34, 35, 52].  

The contents of chapter 5 also have been published in;  

(i) Proc. Pakistan Acad. Sci., 47 (2010), 33-39. 
(ii) Int. J. Algebra, 4 (2010), no. 6, 267-276. 
(iii) Int. J. Applied Mathematics and statistics, (to appear).    

In chapter 6, we have introduced Γ-left almost rings (abbreviated as Γ-LA-rings). 
We have initiated this idea by taking inspiration from an article: “On a 
generalization of ring theory” published in Osaka Journal of Mathematics, 1964. 
In this article, Nobusava [52] have introduced the concept of Γ-rings for the first 
time. After his research, Barnes [4] weakened slightly the conditions in the 
definition of the Γ-ring in the sense of Nobusava. Barnes [4], Kyuno [34, 35] and 
Luh [37], studied the structure of Γ-rings and obtained various generalizations 
analogous to the corresponding parts in ring theory. 

Γ-left almost rings are a direct generalization of LA-rings discussed earlier in 
chapters 3 and 4. We can easily observe that Γ-left almost rings are in fact a 
generalization of commutative Γ-rings and intuitively commutative Γ-rings are 
generalization of commutative ring theory. Consequently, Γ-left almost rings 
become a generalization of commutative rings. 
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In this study we have generalized some results which were established for LA-
rings in chapter 3 earlier. 

Lastly, in chapter 7 we have made our thoughts to turn to the application side 
and for the first time we have taken a step forward to investigate the fuzzy 
concepts of these algebraic structures. We have established some interesting 
results concerning Γ-AG-groupoids and LA-rings. For these developments, we 
mostly followed [1, 8, 22, 23, 31, 32, 70]. 

 



vi 
 

Research Profile 

The work contained in this thesis has been published, accepted and submitted 
in international professional journals in the form of following articles. 

[1] T. Shah, I. Rehman and A. Ali, On ordering of AG-groupoids, Int. Electronic J. 
Pure and Applied Mathematics (to appear). 

[2] T. Shah, I. Rehman and R. Chinram, On M-systems in ordered AG-groupoids, 
Far East J. Mathematical Sciences, 47 (1)(2010), 13-21. 

[3] T. Shah, I. Rehman and R. Chinram, Some characterizations of regular and 
intra-regular Γ-AG-groupoids, Int. J. Applied Mathematics and statistics, (to 
appear).    

[4] T. Shah and I. Rehman, On M-systems in Γ-AG-groupoids, Proc. Pakistan 
Acad. Sci., 47 (1)(2010), 33-39. 

[5] T. Shah and I. Rehman, On Γ-ideals and Γ-bi-ideals in Γ-AG-groupoids, Int. J. 
Algebra, 4 (2010), no. 6, 267-276.  

[6] T. Shah and I. Rehman, On LA-ring of finitely non-zero functions, Int. J. 
Contemp. Math. Sciences, 5 (2010), no. 5, 209-222.  

[7] T. Shah, I. Rehman and R. Salim Badar, On generalization of Commutative 
Semigroup rings, (submitted).  

[8] T. Shah and I. Rehman, On characterizations of LA-rings through some 
properties of their ideals, (submitted).  

[9] T. Shah, I. Rehman and M. Raees, On direct sum in LA-rings, (submitted).  

[10] T. Shah, I. Rehman and R. Chinram, On Γ-left almost rings, (submitted).  

[11] T. Shah, I. Rehman and A. Khan, Fuzzy Γ-ideals in Γ-AG-groupoids, Int. J. 
Fuzzy Systems, ( accepted). 

[12] T. Shah, I. Rehman and Chinram, Regular and intra-regular Γ-AG-groupoids 
characterized by the properties of fuzzy Γ- ideals, (submitted). 

 

 



vii 
 

 

Table of Implications 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Commutative Rings Commutative -rings 

LA-rings 

AG-groupoids 

-LA-rings 
 

-AG-groupoids 
 



viii 
 

 

Index of main notations 
 

Symbol    Page          Meaning 
 ⊆               4                Set inclusion 

 G/H             5                Set of all right cosets of H in G 

 S\L             7               Complement of L in S  

 C×S/∼             8                  Set of all equivalence classes of  
                                              C×S under ∼                                          

 Kerφ               10                 The kernel of φ 

 Q+

 (H]               13                 The set of all elements of S such  

               10                 The positive rational numbers 

                                            that s is less than or equal to h,  
                                            where s∈S and h∈H 

 <H>               14                 The left ideal of S generated by A 

         17                  Intersection of the sets of quasi- 
                                             prime ideals  

U( R)            20                 Set of all unit elements in LA- 
                                              ring R 

I+
                                             elements 

 (R)             23                 Set of all additively idempotent  

V(R)              33                 Set of all those elements of R  
                                            having additive inverse                                                                                                                                                                                                                               

               35                The direct sum of LA-rings 

               35                 The direct product of LA-rings 



ix 
 

R[Xs

                                             semigroup S over LA-ring R             
; s∈S]         42                 The LA-ring of commutative 

R[S]                  45                  An additive LA-group 

Supp(f)              47                 The support of f  

L⊕M                48                 External direct sum of commutative  
                                         semigroups L and M 

               49                 Finite set of indeterminates 

                54                 The set of positive rational numbers 
                                             with zero adjoint                   

f                   97                 A function from a non-empty set X  
                                            to the  interval [0,1], called as fuzzy  
                                            subset of S                                                                                  

f∧g                    97                 Minimum of f and g 

 f∨g                  97                Maximum of f and g 

U(f ; t)              98                The level set of f 

                   98                The characteristic of A 

FI(S)                104               The set of all fuzzy Г-ideals of S 

                   104               Fuzzy point with support t 

                   105               Fuzzy left Г-ideals generated by  

                                      



Contents

1 Brief History and Preliminaries 3

1.1 LA-semigroups and LA-groups . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 �-semigroups and �-rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Ordered AG-groupoids 7

2.1 Ordering of AG-groupoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 M-Systems in Ordered AG-groupoids . . . . . . . . . . . . . . . . . . . . . . . 12

3 Left Almost Rings 20

3.1 Some basics of LA-rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Ideals in LA-rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.1 M-systems, I-systems and Subtractive sets in LA-rings . . . . . . . . . 31

3.3 Direct Sum in LA-Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.1 Complete Direct Sum and Direct Sum . . . . . . . . . . . . . . . . . . 36

4 A generalization of Commutative Semigroup Rings 44

4.1 LA-rings of �nitely non-zero functions . . . . . . . . . . . . . . . . . . . . . . 44

4.1.1 The Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1.2 Representation of elements of T . . . . . . . . . . . . . . . . . . . . . 47

4.1.3 Degree and order of elements of LA-ring R [Xs; s 2 S] . . . . . . . . . 49

4.1.4 Further Developments . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Generalized LA-rings of �nitely non-zero functions . . . . . . . . . . . . . . . . 55

4.2.1 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

1



5 �-AG-groupoids 63

5.1 The characteristics of elements of �-AG-groupoids . . . . . . . . . . . . . . . 63

5.1.1 Relationship between �-AG-groupoids and �-semigroups . . . . . . . . 67

5.1.2 �-Ideals in �-AG-groupoids . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2 Some characterizations of regular and intra-regular �-AG-groupoids . . . . . . 76

5.2.1 Quasi-�-ideals in �-AG-groupoids . . . . . . . . . . . . . . . . . . . . 79

5.2.2 Regular and intra-regular �-AG-groupoids . . . . . . . . . . . . . . . . 81

6 �-Left Almost Rings 88

6.1 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7 Fuzzy Concepts in �-AG-groupoids and LA-rings 97

7.1 Fuzzy �-ideals in �-AG-groupoids . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.1.1 Fuzzy Subset of �-AG-groupoids . . . . . . . . . . . . . . . . . . . . . 99

7.1.2 Fuzzy �-ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.1.3 Fuzzy points in �-AG-groupoids . . . . . . . . . . . . . . . . . . . . . 106

7.2 Regular and Intra-regular �-AG-groupoids characterized by the properties of

fuzzy �-ideals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.2.1 De�nitions and Preliminary Lemmas . . . . . . . . . . . . . . . . . . . 114

7.2.2 Fuzzy ideals in regular �-AG-groupoids . . . . . . . . . . . . . . . . . . 116

7.2.3 Fuzzy ideals in intra-regular �-AG-groupoids . . . . . . . . . . . . . . . 123

7.2.4 Fuzzy idempotent ideals in regular and intra-regular �-AG-groupoids. . 127

7.3 Fuzzy ideals in LA-rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.3.1 Fuzzy Quasi-Prime ideals in LA-ring . . . . . . . . . . . . . . . . . . . 142

8 Conclusions 144

8.1 Future prospects of the work . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

References 148

2



3

Chapter 1

Brief History and Preliminaries

Introduction
This chapter contains the brief history of LA-semigroups; LA-groups, �-semigroups and

�-rings. We have provided the preliminaries of these structures and those de�nitions and

fundamental results which are directly related to our study. We have partitioned this chapter

into two sections. In �rst section, we deal the basic de�nitions; and fundamental results of LA-

semigroups and LA-groups which are used successively in further discussion. In second section,

we provide some preliminaries about �-semigroups and �-rings.

1.1 LA-semigroups and LA-groups

In 1972, a generalization of a commutative semigroup has been introduced by M. A. Kazim and

M. Naseeruddin [26]. In ternary commutative law, abc = cba, they introduced braces on the

left of this law and introduced a new pseudo associative law, that is (ab)c = (cb)a. They called

it left invertive law. A groupoid satisfying the left invertive law is called a left almost semigroup

and is abbreviated as LA-semigroup. The notion of LA-semigroups signi�cantly contributed

in the generalization of commutative semigroups. With the help of this left invertive law,

they successfully manipulated subtraction and division as binary operations and proved several

results. They have generalized some useful results of semigroup theory. Despite the fact that

the structure is non-associative and non-commutative, however it possesses properties which

usually valid for associative and commutative algebraic structures.

Later, Q. Mushtaq and his associates have investigated the structure further and added



many useful results to the theory of LA-semigroups. The notion of locally associative LA-

semigroups was introduced by Q. Mushtaq and S. M. Yusuf [51]. An LA-semigroup S is said to

be a locally associative if (aa)a = a(aa) for all a 2 S: Later in [43], Q. Mushtaq and Q. Iqbal

have done extensive study on Locally associative LA-semigroups. We genuinely acknowledge

that in this �eld much of the spade work has been done by M. Kazim and M. Naseeruddin [26],

Q. Mushtaq and his associates [40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 51] and P. V. Protic and

N. Stevanovic [56, 57, 58, 59, 69].

In [17], P. Holgate has called this structure as left invertive groupoid. He de�ned it as a

groupoid S in which every a; b; c satisfy the left invertive law (ab)c = (cb)a. He has preferred the

term left invertive groupoid instead of LA-semigroup because naturally commutative semigroup

satisfy left invertive law and LA-semigroups lie between them and groupoids.

LA-semigroups are also known as Abel-Grassmann�s groupoids [56] and abbreviated as AG-

groupoids. In an AG-groupoid S the medial property, (ab)(cd) = (ac)(bd) for all a; b; c; d 2 S;

holds. A groupoid G is called a paramedial if (ax)(yb) = (bx)(ya) for all a; b; x; y 2 G

[24]. Ideals in AG-groupoids have been discussed in [69]. In an AG-groupoid S with left

identity e, S(Sa) � Sa and (aS)S � aS; where a is an idempotent in S: Also in [69],

a subset Q of an AG-groupoid S is said to be a quasi-ideal if SQ \ QS � Q and since

Q2 = Q2 \Q2 � SQ \QS � Q; this implies that Q is an AG-subgroupoid of S: P. V. Protic

and N. Stevanovic [69] have de�ned AG�-groupoid. An AG-groupoid with weak associative law

is called as AG�-groupoid. Also they have generalized AG-groupoid with left identity in the

form of AG��-groupoid. An AG��-groupoid with a weak associative law becomes a semigroup.

They have shown that a non-associative a left simple (right simple, simple) AG�-groupoid does

not exist. In [59], they have also introduced the concept of AG-bands. An AG-groupoid is

called an AG-band if all of its elements are idempotents.

Later in 1994, Q. Mushtaq and M. Kamran [25] extended this concept to left almost group

(abbreviated as LA-group). An LA-semigroups is called an LA-group if (i) there exist a left

identity such that ea = a for all, and (ii) for every a 2 G , there exists a left inverse a
0 2 G

such that a
0
a 2 G. By e we shall mean the left identity. It is not very hard to see that the left

4



identity �e�and the left inverse are unique. It is important to note that if a0is the left inverse of

a then aa0 = (ea)a0 = (a0a)e = ee = e: This implies a0 is the right inverse of a. A non-empty

subset H of an LA-group G is said to be an LA-subgroup of G if H is itself an LA-group under

the same binary operation as de�ned in G. Suppose (G; �) is commutative group then it is easy

to see that (G; �) ; where ���is de�ned as a � b = ba�1 for all a; b 2 G is an LA-group. If H is

a non-empty subset of an LA-group G; then H � G if and only if ab�1 2 H for all a; b 2 H.

Theorem 1 [45; Theorem 3:2] If G is an LA-group; then

(1) GG = G.

(2) eG = Ge = G.

Lemma 2 [45; Lemma 3:4] If G is an LA-group and H � G; then

(1) aH = (Ha)e.

(2) (ab)H = H(ba) for all a; b 2 G.

Lemma 3 [45; Lemma 3:5] The relation a � b(modH) is an equivalence relation; where

H � G.

Theorem 4 [45; Theorem 3:8] If G is an LA-group and H � G; then G=H = fHa : a 2 Gg

is an LA-group.

1.2 �-semigroups and �-rings

In this section, we give basic concept of �-semigroups and �-rings. In 1981, the notion of

�-semigroups was introduced by M. K. Sen (see [63] and [64]). LetM and � be any nonempty

sets. If there exists a mapping M � � �M ! M written (a; �; c) by a�c; M is called a

�-semigroup if M satis�es the identity (a�b)�c = a�(b�c) for all a; b; c 2 M and �; � 2

�: Whereas the �-semigroups are a generalization of semigroups. Many classical notions of

semigroups have been extended to �-semigroups. We remark that the �-semigroup given in

[64, 65] by Sen and Saha may be called a one-sided �-semigroup. Later on in [10], Dutta and

5



Adhikari introduced a both sided �-semigroup in which the operation � � S � � �! � was

also taken into consideration.

Nobusawa studies �-rings for the �rst in [52]. After his research, Barnes [4] weakened slightly

the conditions in the de�nition of the �-ring in the sense of Nobusawa. Barnes [4], Kyuno [34,

35] and Luh [37] studied the structure of �-rings and obtained various generalizations analogous

to corresponding parts in ring theory. Let (M;+) and (�;+) be abelian groups. M is called a

�-ring if there exists a mapping M � ��M !M satisfying the following conditions:

(i) (a+ b)�c = a�c+ b�c.

(ii) a�(b+ c) = a�b+ a�c.

(iii) a(�+ �)b = a�b+ a�b.

(iv) (a�b)�c = a�(b�c).

6
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Chapter 2

Ordered AG-groupoids

Introduction
This chapter contains two sections. In section one we deal with ordering of AG-groupoid.

The motivation behind this study is the usefulness of totally ordered semigroups. For this

purpose, we have extended this concept to the AG�-groupoids with left identity e and established

that: AnM -torsion free and cancellative AG�-groupoid S with quotient group T; admits a total

order compatible with its operation if and only if T has a total order.

In section 2, we have investigated M-systems, N-systems and I-systems in ordered AG-

groupoids. We have proved that if S is an ordered AG-groupoid with left identity and L a

proper left ideal of S. Then L is quasi-prime if and only if S nL is an M-system. Also we have

shown that if N is an N-system of S and a 2 N , then there exists an M-system M of S such

that a 2M � N:

2.1 Ordering of AG-groupoids

The techniques we have used in this study are mainly inspired by [13]. We begin initially by the

following theorem which is a generalization of [13, Theorem 1.2].

Theorem 5 If S is an AG�-groupoid and C is a left cancellative subAG�-groupoid of S; then

there exists an embedding � : S ! T; where T is an abelian monoid such that

(1) � (c) has an inverse (� (c))�1 in T for all c 2 C and

(2) T = f(� (c))�1� (s) : s 2 S; c 2 Cg:

If S = C; then monoid T is an abelian group.



Proof. De�ne a relation � on A = C�S by (c1; s1) � (c2; s2) if and only if c1s2 = c2s1: We

claim that � is an equivalence relation. Indeed: The relation � is re�exive, as cs = cs implies

(c; s) = (c; s) : Clearly � is symmetric as (c1; s1) � (c2; s2) implies c1s2 = c2s1, i.e. c2s1 = c1s2

and hence (c2; s2) � (c1; s1) : Now suppose (c1; s1) � (c2; s2) and (c2; s2) � (c3; s3) : This

implies c1s2 = c2s1 and c2s3 = c3s2: Now we have (c1s3) c2 = (c2s3) c1 = (c1s2) c3 =

(c2s1) c3 = (c3s1)c2: This implies that c1s3 = c3s1 and hence (c1; s1) � (c3; s3) and therefore

� is transitive. If (c1; s1) � (c2; s2) ; then c1s2 = c2s1: By [50, Theorem 2.7], it implies

that s2c1 = s1c2. Now (c3s4) (s2c1) = (c3s4) (s1c2) implies (c3s2) (s4c1) = (c3s1) (s4c2)

and so (c3s2; s4c2) � (c3s1; s4c1) or (c3; s4) (c2; s2) � (c3; s4) (c1; s1) or (c3; s4) (c1; s1) �

(c3; s4) (c2; s2) : This implies � is left compatible. Again if (c1; s1) � (c2; s2) ; then c1s2 = c2s1

and s2c1 = s1c2: Now (s2c1) (c3s4) = (s1c2) (c3s4) ; using medial law we have (s2c3) (c1s4) =

(s1c3) (c2s4) and so (c1s4) (s2c3) = (c2s4) (s1c3) : This implies; (c1s4; s1c3) � (c2s4; s2c3) or

(c1;s1) (c3; s4) � (c2; s2) (c3; s4) : Hence � is right compatible. Thus � is compatible. Now

T = C�S= �= f[c; s] : c 2 C; s 2 Sg is the set of all equivalence classes of C�S under ���:

T is a commutative monoid under the binary operation ���de�ned by [(c1; s1)] � [(c2; s2)] =

[(c1c2; s2s1)] 2 T: Clearly T is closed. Now we show that (T; �) is an AG-groupoid. For this

consider,

([(c1; s1)] � [(c2; s2)]) � [(c3; s3)] = [(c1c2; s2s1)] � [(c3; s3)]

= [(c1c2; s2s1)] � [(c3; s3)]

= [((c1c2) c3; s3 (s2s1))]

= [((c3c2) c1; s2 (s3s1))] :

Now we take

([c3; s3] � [c2; s2]) � [c1; s1] = [(c3c2; s2s3)] � [(c1; s1)]

= [((c3c2) c1; s1 (s2s3))]

= [((c3c2) c1; s2 (s3s1))]
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Thus ([c1; s1] � [c2; s2]) � [c3; s3] = ([(c3; s3)] � [(c2; s2)]) � [(c1; s1)] : Hence (T; �) is an AG-

groupoid. Let [(c1; s1)] 2 T; then

[(c1; s1)] � [(c; c)] = [(c1c; cs1)] = f(c2; s2) 2 A : (c1c; cs1) � (c2; s2)g

= f(c2; s2) 2 A : (c1c) s2 = c2 (cs1)g = f(c2; s2) 2 A : c (c1s2) = c (c2s1)g

= f(c2; s2) 2 A : c1s2 = c2s1g

= f(c2; s2) 2 A : (c1; s1) � (c2; s2)g = [(c1; s1)] :

Hence [(c; c)] is a right identity in T for all c 2 C. Now since T is an AG-groupoid therefore by

[50, Theorem 2.4] it becomes a commutative monoid. Now de�ne � : S ! T by � (s) = [(c; cs)]

for all s 2 S: Let s1; s2 2 S such that s1 = s2: It is easy to verify that � is well-de�ned. Now

we show that � is one-one. Let s1; s2 2 S,

� (s1s2) = [(c; c (s1s2))] = [((c2c1) ; (c2c1) (s1s2))] = [((c2c1) ; (c2s1) (c1s2))]

= [((c2c1) ; (c2s1) (c1s2))] [(e; e)] = [((c2c1) e; e((c2s1) (c1s2)))]

= [((c2c1) e; e((c2s1) (c1s2)))] = [((ec1) c2); (c2s1) (c1s2)]

= [(c1; c1s2)][(c2; c2s1)] = [(c2; c2s1)][(c1; c1s2)]

= [(c1s1; c1)] [(c2s2; c2)] = � (s1)� (s2) :

Now

Ker� = fs 2 S : � (s) is the identity of Tg = fs 2 S : � (s) = [(c; c)]g

= fs 2 S : [(c; cs)] = [(c; c)]g = fs 2 S : (c; cs) � (c; c)g

= fs 2 S : cc = c(cs)g = fs 2 S : cc = (cc)sg

= fs 2 S : e = sg = fs 2 S : s = eg = feg:

Thus � is one-one. Hence � : S ! T is an embedding. Hence � is one-one. Thus � : S ! T is

an embedding. Now if c 2 C; then � (c) =
��
c; c2

��
has an inverse (� (c))�1 =

��
c2; c

��
2 T:
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Indeed, � (c) (� (c))�1 =
�
c; c2

� ��
c2; c

��
=
��
c:c2; c:c2

��
= [(c1; c1)] ; where c1 = c:c2 2 C

and [(c1; c1)] is an identity in T: Now an arbitrary element [(s; c)] in T can be written as

(� (c))�1 � (s) = [(c; cs)]
��
c2; c

��
=
��
cc2; c (cs)

��
=

��
cc2; (cc) s

��
=
��
cc2; c2s

��
= [(c; s)]

��
c2; c2

��
= [(c; s)] :

As T is commutative, so (� (c))�1 � (s) = � (s) (� (c))�1 = [(c; s)] : If S = C; then every

element of T is invertible. Consider [(c; s)] [(s; c)] = [(cs; cs)] =
��
c2; c2

��
= [(c1:c1)]; which

is an identity in T: Hence T is an abelian group.

Now in the following we extend the de�nition [61, Page 332] for an AG�-groupoid with left

identity e.

De�nition 6 Let (S; �) be an AG�-groupoid, then S is said to be M -torsion free if for all

x; y 2 S there exist 1 � m 2M � Z+ with xm = ym; then x = y:

Example 7 Take AG�-groupoid (Q+; �); in which the binary operation ��� is de�ned as

a � b = b:a�1: (Q+; �) is an O-torsion free, where O is the set of odd positive integers. In

particular for m = 3, take x3 = y3 and by locally associative property we have x2 � x = y2 � y:

Now as for all x 2 Q+; x2 = 1; so 1�x = 1�y: This implies x = y: Hence (Q+; �) is O-torsion

free AG�-groupoid. Similarly (Z; �) is an O-torsion free de�ned by a � b = b� a:

De�nition 8 Let S be a nonempty set, ���a binary operation on S and � a relation on S.

(S; �;�) is called a total ordered AG-groupoid if (S; �) is a AG-groupoid, (S;�) is a partially

ordered set and for all a; b; c 2 S, a � b implies that a � c � b � c and c � a � c � b.

Lemma 9 Let (S; �) be an AG�-groupoid. If � is total order on S compatible with �; then S

is M -torsion free and cancellative.

Proof. Let a; b 2 S and say a < b (that is a � b and a 6= b) : If a < b, this implies a�x < b�x

for all x 2 S: Since � is compatible with respect to �; this implies S is cancellative. Now if
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a < b; then a�a < a� b::: (1) and a� b < b� b::: (2) : It further implies that a�a < a� b < b� b:

From (1) ; we have ( a � a) � a < (a � b) � a and from (2) ; we can say (a � b) � b < (b � b) � b:

Now for a < b; the compatibility of � implies that (a � b)�a < (a � b)�b and hence (a � a)�a <

(a � b) � b < (b � b) � b:

Continuing this process for m-times, where m is minimal in the set M , we have am < ::: <

bm. This implies am < bm for some m 2M: Hence (S; �) is M -torsion free.

The following theorem establishes a relation between an AG�-groupoid and its quotient

group.

Theorem 10 Let T be the quotient group of a cancellative AG�-groupoid S. Then T is

M -torsion free if and only if for all x; y 2 S, xn = yn implies x = y;where n 2M � Z+:

Proof. Suppose T = C�S= � is torsion free. This implies [(x; x)] is only element of C�S= �

of �nite order. So, [(x; x)]n = [(x; x)] : Assume that xn = yn; where n 2 M � Z+: Then

x:xn = x:yn: So by power associativity of S; we have x1+n = x:yn or xn:x = x:yn. This

implies (xn; yn) � (x; x) or [(x; y)]n = [(x; x)] and hence it implies x = y:

Conversely suppose that for all x; y 2 S; xn = yn implies x = y: Let [x; y] 2 C � S= �

such that [(x; y)]n = [(x; x)] : This implies (xn; yn) � (x; x) and therefore xn:x = x:yn: So by

power associativity in S; xn+1 = x:yn or x:xn = x:yn: This implies xn = yn and so x = y:

Thus [(x; x)]n = [(x; x)] and hence T = C � S= � is M -torsion free:

Theorem 11 Let S be a M -torsion free cancellative AG�-groupoid with quotient group T:

Then S admits a total order compatible with its operation if and only if T has a total order.

Proof. If T is totally ordered under �; then the relation � induces a total order on S

compatible with the AG�-groupoid operation. Conversely, if S is totally ordered under �;

then we de�ne a relation � on T as follows, each element of T is expressible in the form

c
0
s for some c; s 2 S and c

0
is inverse of c: Now for t1 = c

0
1s1 and t2 = c

0
3s3 in T; we

de�ne t1 � t2 by c
0
1s1 � c

0
3s3: It is not hard to see that � is a well de�ned relation of

total order on T that is consistent with the group operation on T and for the restriction of
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the relation � on S, we just to verify that � is well de�ned and that it agrees with the

relation � on S: Thus, if t1 = c
0
1s1 = c

0
2s2 and t2 = c

0
3s3 = c

0
4s4; where c3s1 � c1s3; then,

(c3s1) (c2s4) � (c1s3) (c2s4) :::::::: (1)

Now for the values of c2 and s4, we consider c
0
1s1 = c

0
2s2; then by cancellativity we

have (c
0
1s1)s

0
2 = (c

0
2s2)s

0
2 = (s

0
2s2)c

0
2 = ec

0
2: So, (c

0
1s1)s

0
2 = c

0
2 and ((c

0
1s1)s

0
2)

0
= (c

0
2)

0

implies that (c1s
0
1)s2 = c2: Now for s4; consider c

0
3s3 = c

0
4s4: Then c4(c

0
3s3) = c4(c

0
4s4) or

c4(c
0
3s3) = (c

0
4c4)s4 = s4. Now by repeated use of de�nitions of AG-groupoid, AG

�-groupoid

and medial law in (1); it can be easily veri�ed that if (c3s1) (c2s4) � (c1s3) (c2s4), then

(c4s2) � (c2s4) and hence � is well de�ned. De�ne � : S ! T by � (s) = c
0
(cs); where c

0
is

inverse of c 2 S: Then � is an embedding. Indeed,

� (s1s2) = c
0
(c(s1s2)) = (cc

0
)(s1s2) = e(s1s2) = s1s2

= [(cc
0
)s1][(cc

0
)s2] = [c

0
(cs1)][c

0
(cs2)] = � (s1)� (s2) :

Let � (s1) = � (s2) : This implies that [c
0
(cs1)] = [c

0
(cs2)] or (cc

0
)s1 = (cc

0
)s2 and hence

s1 = s2: Thus for s; t 2 S; we have s � t if and only if c (cs) � c (ct) if and only if s � t:

2.2 M-Systems in Ordered AG-groupoids

In this section, we have studied ideals, M-systems, N-systems and I-systems of ordered AG-

groupoids. We have proved that if L is a left ideal of an ordered AG-groupoid with left identity,

then L is quasi-prime if and only if S n L is an M-system; L is quasi-semiprime if and only if

S n L is an N-system and L is quasi-irreducible if and only if S n L is an I-system. Moreover,

we show that every quasi-semiprime left ideal of an ordered AG-groupoid with left identity is

an intersection of some quasi-prime left ideals.

Let S be a nonempty set, ��� a binary operation on S and � a relation on S. (S; �;�) is

called an ordered AG-groupoid if (S; �) is a AG-groupoid, (S;�) is a partially ordered set and

for all a; b; c 2 S, a � b implies that ac � bc and ca � cb. This structure is a generalization

of AG-groupoids and ordered semigroups. The following theorem follows by Theorem 1 in [41]
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and de�nitions of ordered AG-groupoids and ordered semigroups.

Theorem 12 An ordered AG-groupoid S is an ordered semigroup if and only if a(bc) = (cb)a

for all a; b; c 2 S.

For H � S, let (H] = ft 2 S j t � h for some h 2 Hg: This lemma is similar to the case

of ordered semigroups.

Lemma 13 Let S be an ordered AG-groupoid and A;B subsets of S. The following state-

ments hold.

(1) If A � B; then (A] � (B].

(2) (A](B] � (AB].

(3) ((A](B]] � (AB]:

A nonempty subset A of an ordered AG-groupoid S is called a left ideal of S if (A] � A

and SA � A and called a right ideal of S if (A] � A and AS � A. A nonempty subset A of

S is called an ideal of S if A is both left and right ideal of S.

Proposition 14 Let S be an ordered AG-groupoid with left identity. Then every right ideal

of S is a left ideal of S.

Proof. Let R be a right ideal of S. Then (R] � R and RS � R. We claim that SR � R,

indeed, SR = (eS)R = (RS)e � Re � R:

For A � S; let < A > denote the left ideal of S generated by A and for a 2 S, < fag >

is denoted by < a >.

A groupoid S is called a paramedial if (ax)(yb) = (bx)(ya) for all a; b; x; y 2 S [24].

Lemma 15 If S is an AG-groupoid with left identity e; then it satis�es paramedial law.
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Proof. Let x; y; l;m 2 S; then consider

(xy)(lm) = (xl)(ym); by medial law

= (e(xl))(ym)

= [(ym)(xl)]e; by left invertive law

= [(yx)(ml)]e; by medial law

= [e(ml)](yx)

= (ml)(yx)

= (my)(lx).

Hence S is a paramedial.

Lemma 16 Let S be an ordered AG-groupoid with left identity and A � S. Then S(SA) =

SA and S(SA] � (SA]:

Proof. Since S has a left identity, S = SS. Then by de�nition of AG-groupoids and paramedial

law, we have S(SA) = (SS)(SA) = (AS)(SS) = (AS)S = (SS)A = SA: Thus S(SA) =

SA. By Lemma 13, we have S(SA] = (S](SA] � (S(SA)] = (SA].

Lemma 17 Let S be an ordered AG-groupoid with left identity and a 2 S. Then < a >=

(Sa].

Proof. Since S has a left identity, a 2 (Sa]. By Lemma 16, we have S(Sa] � (Sa]. So (Sa]

is a left ideal of S containing a. Let L be another left ideal containing a. Thus Sa � L, so

(Sa] � L.

Let S be an ordered AG-groupoid. A nonempty subset M of S is called an M-system of S

if for each a; b 2M , there exists x 2 S and c 2M such that c � a(xb). Equivalent de�nition:

for each a; b 2M , there exists c 2M such that c 2 (a(Sb)].

Remark 18 (1) If (S; �) is an AG-groupoid, we endow S with the order relation �, then
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(S; �;�) is an ordered AG-groupoid. Moreover, the set M is an M-system of a AG-groupoid

(S; �) if and only if M is an M-system of an ordered AG-groupoid (S; �;�).

(2) If an ordered AG-groupoid S is an ordered semigroup, then the set M is an M-system

of an ordered AG-groupoid S if and only if M is an M-system of an ordered semigroup S.

A left ideal P of an ordered AG-groupoid S is called quasi-prime if and only if for all left

ideals A;B of S, AB � P implies A � P or B � P .

Lemma 19 Let L be a left ideal of an ordered AG-groupoid S with left identity e. Then L

is quasi-prime if and only if for all a; b 2 S, a(Sb) � L implies a 2 L or b 2 L.

Proof. Suppose that a(Sb) � L: We get S(a(Sb)) � SL � L and by medial law, paramedial

law and the de�nition of AG-groupoid, we have

S(a(Sb)) = (SS)(a(Sb)) = (Sa)(S(Sb)) = Sa((SS)(Sb))

= (Sa)((bS)(SS)) = (Sa)((bS)S) = (Sa)((SS)b) = (Sa)(Sb):

Since L is a left ideal of S; (Sa](Sb] � ((Sa)(Sb)] = (S(a(Sb))] � L. Since (Sa] and (Sb]

are left ideals of S and L is quasi-prime, (Sa] � L or (Sb] � L. By Lemma 17, a 2 L or

b 2 L. Conversely, let A and B be left ideals of S such that AB � L and A * L. Then there

exists s 2 A and x =2 L. Now for all y 2 B, we have x(Sy) � A(SB) � AB � L. Hence by

assumption, y 2 L for all y 2 B. Hence B � L, this implies that L is quasi-prime.

Theorem 20 Let S be an ordered AG-groupoid with left identity and L a proper left ideal of

S. Then L is quasi-prime if and only if S n L is an M-system.

Proof. Assume L is quasi-prime and let a; b 2 S n L. Suppose c =2 (a(Sb)] for all c 2 S n L.

Then (a(Sb)] � L, this implies a(Sb) � L. By Lemma 19, a 2 L or b 2 L, which is impossible.

Then there exist c 2 S n L such that c 2 (aSb]. Hence S n L is an M-system.

Conversely, assume that S nL is an M-system. Let a; b 2 S such that a(Sb) � L. Suppose

that a; b 2 S n L. Since S n L is an M-system, there exist c 2 S n L and x 2 S such that

15



c � a(xb) 2 a(Sb) � L. Since L is a left ideal of S, we have c 2 L, which is impossible.

Hence a 2 L or b 2 L. By Lemma 19, L is quasi-prime.

Let S be an ordered AG-groupoid. A nonempty subset N of S is called an N-system of S

if for each a 2 N , there exists x 2 S and c 2 N such that c � a(xa). Equivalent de�nition:

for each a 2 N , there exists c 2 N such that c 2 (a(Sa)].

Remark 21 (1) In [48], de�nition of N-systems in AG-groupoids is called a P-system. If (S; �)

is a AG-groupoid, we endow S with the order relation �:= idS , then (S; �;�) is an ordered

AG-groupoid. Moreover, the set N is an P-system of a AG-groupoid (S; �) if and only if N is

an N-system of an ordered AG-groupoid (S; �;�).

(2) If an ordered AG-groupoid S is an ordered semigroup, then the set M is an M-system

of an ordered AG-groupoid S if and only if M is an M-system of an ordered semigroup S.

(3) Let S be an ordered AG-groupoid. Each M-system of S is an N-system of S.

A left ideal P of an ordered AG-groupoid S is called quasi-semiprime if for any left ideal

A of S, A2 � P implies that A � P . It is obvious that a quasi-prime subset of S is a

quasi-semiprime subset of S.

Lemma 22 Let L be a left ideal of an ordered AG-groupoid S with left identity e. Then L

is quasi-semiprime if and only if for all a 2 S, a(Sa) � L implies a 2 L.

Proof. Suppose that a(Sa) � L: We get S(a(Sa)) � SL � L and by similar in the proof

of Lemma 22, we have S(a(Sa)) = (Sa)(Sa): Since L is a left ideal of S; (Sa](Sa] �

((Sa)(Sa)] = (S(a(Sa))] � L. Since (Sa] is a left ideal of S and L is quasi-semiprime,

(Sa] � L. By Lemma 17, a 2 L. Conversely, let A be a left ideal of S such that A2 � L.

Now for all x 2 A, we have x(Sx) � A(SA) � A2 � L. Hence by assumption, x 2 L for all

x 2 A. Hence A � L, this implies that L is quasi-semiprime.

Theorem 23 Let S be an ordered AG-groupoid with left identity and L a proper left ideal of

S. Then L is quasi-semiprime if and only if S n L is an N-system.
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Proof. Assume L is quasi-semiprime and let a 2 S nL. Suppose c =2 (a(Sa)] for all c 2 S nL.

Thus (a(Sa)] � L, this implies a(Sa) � L. By Lemma 17, a 2 L, which is impossible. So

there exist c 2 S n L such that c 2 (aSa]. Hence S n L is an N-system. Conversely, assume

that S n L is an N-system. Let a 2 S such that a(Sa) � L. Suppose that a 2 S n L. Since

S nL is an N-system, there exist c 2 S nL and x 2 S such that c � a(xa) 2 a(Sa) � L. Then

c 2 L, which is impossible. Therefore a 2 L. By Lemma 22, L is quasi-semiprime.

The intersection of quasi-prime left ideals of an ordered AG-groupoids S (if it is non empty)

need not be a quasi-prime left ideals of S. The following proposition shows that it becomes

quasi-semiprime.

Proposition 24 Let Ji be any set of quasi-prime left ideals of an ordered AG-groupoid for

all i 2 I. If P =
T
i2I Ji 6= ;, then P is a quasi-semiprime left ideal of S.

Proof. Let L be a left ideal of S such that L2 � P . Then L2 � Ji for all i 2 J . This implies

L 2 Ji for all i 2 J . So L � P . Hence P is a quasi-semiprime left ideal of S.

Theorem 25 Every quasi-semiprime left ideal of an ordered AG-groupoid with left identity is

an intersection of some quasi-prime left ideals.

Proof. Let L be a quasi-semiprime left ideal of S and fJi j i 2 Ig the set of all quasi-prime left

ideal of S containing L. This set is not empty because S itself is a quasi-prime left ideal of S.

Let a 2 S n L. Then a(Sa) * L, take a1 2 a(Sa) � (a(Sa)] but a1 =2 L. From a1(Sa1) * L,

we have a2 2 S such that a2 2 a1(Sa1) � (a1(Sa1)] but a2 =2 L. We continue this way, take

ai 2 (ai�1(Sai�1)] but ai =2 L. We put a = a0 and let A = fa0; a1; a2; : : :g. So A \ L = ;.

Next, we claim that M is an M-system. Let ai; aj 2 M . Let us assume that i � j. If i = j,

then ai+1 2 (ai(Sai)] = (aj(Sai)]. If i < j, then aj+1 2 (aj(Saj)] � (aj(S(aj�1(Saj�1)))] �

(aj(Saj�1)] : : : � (aj(Sai)] by Lemma 16. A similar argument takes care of the case in which

i > j. Now we have that A is an M-system and A \ L = ;. Let T = fM jM is an M-system

of S such that a 2 M and M \ L = ;g. Then T 6= ; because A 2 T . By Zorn�s Lemma,

there exists a maximal element, say M 0 in T . Again let X = fJ j J is a left ideal of S such
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that J \ M 0 = ; and L � Jg. Then X 6= ; because L 2 X. By Zorn�s Lemma, there

exists a maximal element, say J 0 in X. Let x; y 2 S n J 0. Then (Sx [ J 0] \M 0 6= ; and

(Sy [ J 0] \M 0 6= ;. So there exist a; b 2M 0 such that a � ux and b � vy for some u; v 2 S.

Since M 0 is an M-system, there exists m 2M such that m � a(wb) for some w 2 S. Thus

m � (ux)(w(vy)) = ((vy)x)(wu) = (uw)(x(vy)) = (e(uw))(x(vy))

= (ex)((uw)(vy)) = x((yw)(vu)) = x(((vu)w)y).

Then S n J 0 is an M-system. From maximality of M 0, S n J 0 =M 0 and so J 0 is a quasi-prime

left ideal of S containing L. Since a =2 J 0, L = \fJi j i 2 Ig.

Theorem 26 Let S be an ordered AG-groupoid. If N is an N-system of S and a 2 N , then

there exists an M-system M of S such that a 2M � N:

Proof. Since N is an N-system and a 2 N , there exists c1 2 N such that c1 2 (a(Sa)]; So

(a(Sa)] \N 6= ;, take a1 2 (a(Sa)] \N . Since N is an N-system, there exists c2 2 N such

that c2 2 (a1(Sa1)]; So (a1(Sa1)] \N 6= ;, take a2 2 (a1(Sa1)] \N . We continue this way,

take ai 2 (ai�1(Sai�1)] \N . We put a = a0 and let M = fa0; a1; a2; : : :g: We have M is an

M-system and a 2M � N .

Let S be an ordered AG-groupoid and a left ideal P of S is called quasi irreducible

(quasi strongly irreducible) if for any left ideals A;B of S, A \ B = P (A \B � P ) implies

that A = P or B = P (A � P or B � P ).

Let S be an ordered AG-groupoid with left identity. A nonempty subset I of S is called an

I-system of S if for each a; b 2 I, (< a > \ < b >) \ I 6= ;.

Theorem 27 Let S be an ordered AG-groupoid with left identity and L a proper left ideal of

S. Then the following statements are equivalent.

(1) L is quasi-irreducible.

(2) For all a; b 2 S, < a > \ < b >� L implies a 2 L or b 2 L.

(3) S n L is an I-system.
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Proof. (1)) (2) Assume L is quasi-irreducible and let a; b 2 S such that < a > \ < b >� I.

Thus < a >2 L or < b >2 L. Then a 2 L or b 2 L. (2) ) (3) Let a; b 2 S n L. Suppose

(< a > \ < b >) \ (S n L) = ;. This implies < a > \ < b >� L. So a 2 L or b 2 L, it is

impossible. Hence (< a > \ < b >)\(SnL) 6= ;. Therefore SnL is an I-system. (3)) (1) Let

A;B be left ideals of S such that A\B � L. Suppose A * L and B * L. Let a 2 A nL and

b 2 B nL. This implies that a; b 2 S nL. By hypothesis, (< a > \ < b >)\ (S nL) 6= ;. Then

there exists c 2< a > \ < b > and c 2 S n L. It shows that c 2< a > \ < b >� A \B � L,

it is impossible. Thus A � L or B � L. Hence L is quasi-irreducible.
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Chapter 3

Left Almost Rings

Introduction
Actually left almost rings (abbreviated as LA-rings) [70], are an o¤shoot of LA-semigroups

and LA-groups . LA-rings are in fact a generalization of commutative rings and carries attraction

due to its peculiar characteristics and structural formation. Despite the fact that the structure

is non-associative and non-commutative, however it possesses properties which usually come

across in associative and commutative algebraic structures.

This chapter contains three sections. In section one, we have discussed some elementary

properties of LA-rings. In second section, we deal with the concepts of ideals, M-systems,

P-systems, I-systems and subtractive sets in LA-rings. In continuity to second section, in the

third section, we have taken a step forward and established some results regarding the direct

sum in LA-rings.

3.1 Some basics of LA-rings

De�nition 28 Let R be a set with at least two elements and two binary operations �+�and

���de�ned on R. Suppose (R;+) is an LA-group and (R; �) is an LA-semigroup satisfying both

left and right distributive laws: a(b + c) = ab + ac and (a + b)c = ac + bc for all a; b; c 2 R.

Then (R;+; �) is called an LA-ring.

Since (R;+) is an LA-group; it contains a left additive identity �0�such that 0 + a = a for



all a 2 R. Now

0 � a = (0 + 0) � a = 0 � a+ 0 � a

) 0 + 0 � a = 0 � a+ 0 � a

As (R;+) is cancellative; so 0 = 0a for all a 2 R. i.e. ,0 is the left zero for (R; �). Similarly;

it can be proved that a0 = 0 for all a 2 R; so that 0 is the right zero for (R; �). We shall refer

to 0 as the zero element of LA-ring (R;+; �). By the de�nition of an LA-group; every element

a of (R;+) contains a unique additive inverse �a. An LA-ring (R;+; �) is called an LA-ring

with left identity e if for all a 2 R; e:a = a.

Example 29 From a commutative ring (R;+; �) ; we can always obtain an LA-ring (R;�; �)

by de�ning for a; b 2 R; a� b = b� a; a � b; is same as in the ring.

Let R be an LA-ring with left identity e. An element a 2 R is said to be invertible or unit

in R if there exists an element b 2 R such that ab = ba = e.

We represent U (R) ; the set of all unit elements in R. It is not hard to prove that U (R)

is an LA-group under the multiplication.

Theorem 30 If (R;+; �) is an LA-ring. Then

(1) a0 = 0 = 0a

(2) a (�b) = �ab = (�a) b

(3) �(�a) = a

(4) (�a) (�b) = ab

(5) � (a+ b) = �a� b for all a; b 2 R.

Proof. (1)

a0 = a (0 + 0) = a0 + a0

) 0 + a0 = a0 + a0
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By the cancellative law for the additive LA-group(R;+) ; we have 0 = a0: Likewise; 0a =

(0 + 0) a = 0a+ 0a implies 0a = 0.

(2) By the de�nition; � (ab) is the element which when added to ab gives 0. Thus in

order to show a (�b) = � (ab) ; we must show a (�b) + ab = 0. By the left distributive law :

a (�b) + ab = a (�b+ b) = a0 = 0. Similarly; (�a) b+ ab = (�a+ a) b = 0b = 0: (3) Since

0 = a� a;

0� (�a) = (a� a)� (�a) adding both sided by � (�a)

= (�(�a) + (�a)) + a = 0 + a = a

) 0� (�a) = a

) �(�a) = a:

(4) By using (2) and (3) ; we have (�a) (�b) = � (a (�b)) = � (� (ab)) = ab. (5) Since

0 = �(a+ b) + (a+ b)

0 + (�a� b) = (�(a+ b) + (a+ b)) + (�a� b) adding both sides by (�a� b)

(�a� b) = ((�a� b) + (a+ b)� (a+ b) by left invertive law

= ((�a+ a) + (�b+ b))� (a+ b)

= (0 + 0)� (a+ b) = 0� (a+ b) = �(a+ b)

) (�a� b) = �(a+ b).

Lemma 31 If an LA-ring has left identity e; then it is unique.

Proof. Suppose there exists another left identity; say f . Then ef = f and fe = e. Now

f = ef = (ee)f = (fe)e = ee = e. This implies left identity is unique.

In an LA-ring medial law holds trivially, i.e, (ab) (cd) = (ac) (bd) for all a; b; c; d 2 R. While

paramedial law: (ab) (cd) = (db) (ca) holds only if R has left identity e.
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Lemma 32 Let R be an LA-ring with left identity �e�such that ab = cd for all a; b; c; d 2 R.

Then ba = dc.

Proof. Let ab = cd for all a; b; c; d 2 R. Now ba = (eb) a = (ab) e = (cd) e = (ed) c = dc.

De�nition 33 Let (R;+; �) be an LA-ring. If S is a non-empty subset of R and S is itself an

LA-ring under the binary operation induced by R; then S is called an LA-subring of (R;+; �).

Lemma 34 If S is non-empty subset of an LA-ring (R;+; �) ; then S is an LA-subring of

(R;+; �) if and only if both a� b and ab 2 S for all a; b 2 S.

Proof. Proof is straight forward.

Lemma 35 The intersection of two LA-subrings of an LA-ring R is again an LA-subring.

Proof. Straight forward.

Remark 36 The intersection of any family of LA-subrings of an LA-ring R is again an LA-

subring.

Let R be an LA-ring and 0 6= a 2 R; then a is said to be a left (right) zero divisor in R

if there exists some element 0 6= b 2 R such that ab = 0 (ba = 0) and is called zero divisor

if it is both left zero and right zero divisor. An LA-ring R is cancellative if ab = ac and

ba = ca (where a 6= 0) implies b = c for all a; b; c 2 R. Let (R;+; �) be an LA-ring. If ab = 0

for all a; b 2 R; implies either a = 0 or b = 0; then (R;+; �) is called an LA-integral domain.

Lemma 37 A left cancellative LA-ring is a cancellative LA-ring.

Proof. Let R be a left cancellative LA-ring. Let a; b; c 2 R such that ba = ca. Consider

d 2 R be any �xed element of R. Then (ba) d = (ca) d. This implies (da) b = (da) c. Thus

b = c. Hence a left cancellative LA-ring is a cancellative LA-ring.

Remark 38 A right cancellative LA-ring with left identity e is cancellative.

23



Theorem 39 An LA-ring R is an LA-integral domain if and only if it satis�es the cancellative

laws.

Proof. Let R be an LA-integral domain. Suppose

ac = ab for all a; b; c 2 R and a 6= 0

) ac� ab = 0

) a(c� b) = 0

) c� b = 0 since a 6= 0

) c = b.

Now suppose

ca = ba

) ca� ba = 0

) (c� b)a = 0

) c� b = 0 since a 6= 0

) c = b.

Hence R satis�es the cancellative laws.

Conversely; suppose R satis�es the cancellative laws. we have to show that R is an LA-

integral domain. It is enough to show that R has no zero divisor. But we suppose a contradiction

that R has zero divisor. Then by de�nition ab = 0 where a; b are non-zero elements of R.

This implies ab = a0. By left cancellative law; we get b = 0, which a contradiction. R has no

left zero divisor. Now ba = 0 = b0. By left cancellative law a = 0, which is a contradiction.

This implies R has no right zero divisor. This implies R has no zero divisor. Hence R is an

LA-integral domain.

An element a of an LA-ring R is called additively idempotent if a+ a = a. I+(R) denotes

24



the set of all additively idempotent elements of R. Since I+(R) is non-empty; because 0 2 R

as left additive identity. If every element of R is additively idempotent then R is additively

idempotent.

Lemma 40 An LA-ring is additively idempotent if and only if I+ (R) = R.

Proof. Suppose R is additively idempotent. This implies a+a = a for all a 2 R. As we know

that I+ (R) � R. Since a + a for all a 2 R. This implies R � I+ (R). Hence R = I+ (R).

Conversely; suppose I+ (R) = R. Let a 2 R. This implies a 2 I+ (R) i.e., a is additively

idempotent element of R. Since a was taken to arbitrary element of R. Hence R is additively

idempotent.

Lemma 41 If a; b; c and d are elements of an additively idempotent LA-ring R satisfying

a+ c = b and b+ d = a then a = b.

Proof. By additive idempotent; we have

a = a+ a = a+ (b+ d) = b+ (a+ d) = (a+ c) + (a+ d)

= (a+ a) + (c+ d) = a+ (c+ d) = (b+ d) + (c+ d)

= (b+ c) + (d+ d) = (b+ c) + d = ((a+ c) + c) + d

= ((c+ c) + a) + d = (c+ a) + d = (d+ a) + c

= (d+ (b+ d)) + c = (b+ (d+ d)) + c

= (b+ d) + c = a+ c = b

Hence b = c.

An element a of an LA-ring R is called multiplicative idempotent if a2 = a (i.e., aa = a).

I�(R) denotes the set of all multiplicative idempotent elements of R. Since I�(R) is non-

empty; because 00 = 0 2 R as left additive identity. If R is an LA-ring with left identity

e; then e is multiplicative idempotent element of R; since ee = e. If every element of R is

multiplicative idempotent then R is multiplicative idempotent.
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Lemma 42 An LA-ring R is multiplicative idempotent if and only if I� (R) = R.

Proof. Proof is easy.

3.2 Ideals in LA-rings

In this section, we discuss the concept of ideals in LA-rings. Main results are (1) Let R be an

LA-ring with left identity e; then R is fully prime if and only if every ideal is idempotent and

the set ideal(R) is totally ordered under inclusion. (2) A left ideal I of an LA-ring R with left

identity e is quasi-prime if and only if RnI is an M -system. (3) Every subtractive subset of an

LA-ring R is semi-subtractive. (4) Every quasi-prime ideal of an LA-ring R with left identity e

is semi-subtractive.

De�nition 43 If A is an LA-subring of an LA-ring (R;+; �) ; then A is called a left ideal if

RA � A: Right ideal and two sided ideal are de�ned in the usual manner.

The following proposition provided that every right ideal in an LA-ring is a two sided ideal.

Proposition 44 If (R;+; �) is an LA-ring with left identity e; then every right ideal is a left

ideal.

Proof. Let I be a right ideal of LA-ring R; this implies I is a LA-subring of R: Now let r 2 R

and i 2 I; then ri = (er) i = (ir) e 2 I: Thus I is also a left ideal.

Now onward by ideal in LA-ring R with left identity e; we mean a right ideal. An element

r of an LA-ring (R;+; �) is called idempotent if r � r = r: An ideal I of an LA-ring R is called

minimal if it does not contain any ideal of R other than itself.

Lemma 45 Let R be an LA-ring with left identity e: If I is a minimal left ideal of R; then aI

is a minimal left ideal of R for every idempotent a:

Proof. Let I be a minimal left ideal of an LA-ring R and a is an idempotent element,

consider aI = fai : i 2 Ig : Let ai1; ai2 2 aI: Then ai1 � ai2 = a (i1 � i2) = ai
0 2 aI, where
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i
0
= i1� i2 2 I and (ai1) � (ai2) = (a � a) (i1 � i2) = a (i1 � i2) = ai

00 2 aI; by medial law. Thus

aI is a subring of R: For r 2 R; ai 2 aI; using [51, Lemma 4], we have r (ai) = a (ri) 2 aI.

Thus aI is a left ideal of R: Next, let H be a non-empty left ideal of R which is properly

contained in aI. De�ne K = fi 2 I : ai 2 Hg and let y 2 K: Then ay 2 H; and so we

get a (ry) = r (ay) 2 RH � H: This implies that ry 2 K: Hence K is a left ideal properly

contained in I: But this is a contradiction to the minimality of I: Thus aI is a minimal left

ideal of LA-ring R:

Lemma 46 If I is a right ideal of an LA-ring R with left identity e then I2 is an ideal of R:

Proof. Let i 2 I2; then we can write i = xy where x; y 2 I: Now consider ir = (xy)r =

(ry)x 2 II = I2: This implies that I2 is a right ideal and hence by proposition 44, I2 is a left

ideal.

Remark 47 If I is a left ideal of R with left identity e; then I2 becomes an ideal of R:

Lemma 48 Intersection of two left(right) ideals of an LA-ring is again a left(right) ideal.

Proof. Let I; J be two left ideals of an LA-ring R: Let a; b 2 I \ J this implies that a; b 2 I

and a; b 2 J: So; a� b 2 I; a� b 2 J and a � b 2 I and a:b 2 J . This implies that a� b 2 I \J

and a � b 2 I \ J . Now let r 2 R and a 2 I \ J; so a 2 I and a 2 J: This implies ra 2 I and

ra 2 J and hence ra 2 I \ J: Thus I \ J is a left ideal.

Addition of ideals I and J of an LA-ring R is de�ned as

I + J = fx+ y : x 2 I; y 2 Jg � R:

Lemma 49 The sum of two left ideals of an LA-ring with left identity e is again a left ideal.

Proof. Let R be an LA-ring. Let I; J be left ideals in R: Suppose z1; z2 2 I + J: This

implies z1 = (x1 + y1) and z2 = (x2 + y2). z1 � z2 = (x1 + y1) � (x2 + y2) = (x1 + y1) +
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(�x2 � y2) = (x1 � x2) + (y1 � y2) 2 I + J . Now

z1 � z2 = (x1 + y1) � (x2 + y2) = x1 (x2 + y2) + y1 (x2 + y2)

= (x1x2 + x1y2) + (y1x2 + y1y2) = (x1x2 + y1x2) + (x1y2 + y1y2) 2 I + J:

Again suppose z 2 I + J and r 2 R then z = x+ y for some x 2 I; y 2 J:

rz = r (x+ y) = (rx+ ry) 2 I + J . Thus I + J is a left ideal.

Consequently we obtain the following:

Corollary 50 Let R be an LA-ring R with left identity e:Then

(1) Sum of two right ideals of R is a right ideal of R.

(2) The sum of one left ideal and one right ideal of an LA-ring R is a left ideal of R:

(3) Addition of left ideals is not commutative as well as not associative.

Remark 51 For an LA-ring R with left identity e; the following hold;

(1) I +R = R and R+ I 6= R:

(2) (0) + I = I and I + (0) 6= I:

(3) I = �I = �x : x 2 I:

Let A;B are ideals of an LA-ring R. Then the product of A and B is de�ned by

IJ = f
P
finite

xiyi : xi 2 I; yi 2 Jg.

= f
P
finite

xiyi = (:::(((x1y1 + x2y2) + x3y3) + x4y4) + :::+ xn�1yn�1) + xnyn : xi 2 I; yi 2 Jg.

Lemma 52 Let R be an LA-ring with left identity e: Product of two left ideals of R is again

a left ideal.

Proof. Straight forward.
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Lemma 53 Let R be an LA-ring with left identity e: If I is a proper ideal of R, then e =2 I:

Proof. Assume on contrary that e 2 I and let r 2 R; then consider r = er 2 IR � I: This

implies that R � I; but I � R: So, I = R: A contradiction. Hence e =2 I:

De�nition 54 An LA-ring R is said to be fully idempotent if all ideals of R are idempotent.

If R is an LA-ring with left identity e then the principal left ideal generated by an element a is

de�ned as hai = Ra = fra : r 2 Rg.

Remark 55 It is important to note that if I is an ideal of R; then I = hIi and also I2 is an

ideal of LA-ring R: Hence I2 = hI2i:

Proposition 56 If R is an LA-ring with left identity e and I, J are ideals of R, then the

following assertions are equivalent:

(1) R is fully idempotent,

(2) I \ J = hIJi,

(3) the ideals of R form a semilattice (LS ;^); where I ^ J = hIJi:

Proof. (1))(2). Since IJ � I \ J , hIJi � I \ J: Now let a 2 I \ J . As hai is principal

left ideal generated by a �xed element a; so a 2 hai = haihai � hIJi. Hence I \ J = hIJi.

(2))(3). I ^ J = hIJi = I \ J = J \ I = J ^ I and also I ^ I = hIIi = I \ I = I: Hence

(LS ;^) is a semilattice. (3))(1). Now I = I ^ I = hIIi = II:

Proposition 57 Suppose R is an LA-ring with left identity e. Let I be a right ideal, then

the following are equivalent;

(1) I = R:

(2) e 2 I:

(3) I contains a unit

(4) I contains an element which is right invertible or left invertible.

Proof. (1))(2). Suppose I = R; then since e 2 R; we have e 2 I: Now suppose e 2 I;

then for all x 2 R; x = ex 2 I: Thus R � I and I being an ideal in R; I � R: Hence

29



I = R: (2))(3). If e 2 I; I contains a unit obviously. Now suppose I contains a unit u; then

e = u � u�1 2 I: (3))(4). Suppose I contains a unit, then obviously I contains an element

which is both right and left invertible. (4))(1). Now suppose I contains an element a which

is right invertible or left invertible. But in an LA-ring right invertibility implies left invertibility

and vice versa. Thus a is a unit.

An ideal P of an LA-ring R is said to be prime ideal if and only if AB � P implies either

A � P or B � P;where A and B are ideals in R and it is called semi-prime if for any ideal I

of R; I2 � P implies that I � P: An LA-ring R is said to be fully prime if every ideal of R is

prime and it is fully semiprime if every ideal is semiprime.

The set of ideals of an LA-ring R is said to be a totally ordered under inclusion if for all

ideals I; J of R, either I � J or J � I and is denoted by ideal(R).

Theorem 58 Let R be an LA-ring with left identity e; then R is fully prime if and only if

every ideal is idempotent and the set ideal(R) is totally ordered under inclusion.

Proof. Let R is fully prime and I be any ideal of R: By lemma 46, I2 is an ideal of R, and

so I2 � I: Also II � I which implies that I � I2. So, I2 = I and hence I is idempotent.

Now let A;B be ideals of R and AB � A; AB � B which implies that AB � A \ B: As A

and B are prime ideals so A \ B is also a prime ideal of R: Then A � A \ B or B � A \ B

which implies that either A � B or B � A. Hence the set ideal(R) is totally ordered under

inclusion. Conversely let every ideal of R is idempotent and ideal(R) is totally ordered under

inclusion. Let L;M and N be any ideals of R with LM � N such that L � M: Now since

L is idempotent, L = L2 = LL � LM � N: This implies that L � N and hence R is fully

prime.

De�nition 59 An ideal I of an LA-ring is said to be strongly irreducible if P \Q � I implies

P � I or Q � I:

Theorem 60 Let R is an LA-ring with left identity e; then an ideal I of R is prime if and

only if it is semiprime and strongly irreducible.

Proof. The proof is obvious.
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3.2.1 M-systems, I-systems and Subtractive sets in LA-rings

In this study, we discussM -system, P -system, I-system and subtractive sets in an LA-ring with

left identity e:We prove the equivalent conditions for a left ideal to be anM -system, P -system,

I-system and establish that every M -system of elements of an LA ring with left identity e is

P -system. Also we prove that every subtractive subset of R is semi-subtractive. Finally, we

show that every quasi-prime ideal of an LA-ring R with left identity e is semi-subtractive.

De�nition 61 A nonempty subset S of an LA-ring R is called an M -system if for a; b 2 S

there exists r in R such that a(rb) 2 S:

Example 62 Since we assume that any LA-ring R has left identity e; so any LA-semigroup

or LA-monoid of (R; �) is an M -system.

De�nition 63 Let I be a left ideal of an LA-ring R with left identity e: Then I is said to be

a quasi-prime if HK � I implies that either H � I or K � I; where H and K are any left

ideals of R: If for any left ideal H of R such that H2 � I; we have H � I; then I is called

quasi-semiprime.

Proposition 64 Let I be a left ideal of R with left identity e; then the following are equivalent:

(1) I is quasi-prime ideal.

(2) HK = hHKi � I implies that either H � I or K � I; where H and K are any left

ideals of R:

(3) If H * I and K * I then HK * I; where H and K are any left ideals of R:

(4) If h; k are elements of R such that h =2 I and k =2 I then hhihki * I:

(5) If h; k are elements of R satisfying h(Rk) � I; then either h 2 I or k 2 I:

Proof. (1),(2). Let I is quasi-prime. Now by de�nition if HK = hHKi � I, then

obviously it implies that either H � I or K � I for all left ideals H and K of R. Converse

is trivial.(2),(3) is trivial. (1))(4). Let hhihki � I, then either hhi � I or hki � I; which

implies that either h 2 I or k 2 I: (4))(2). Let HK � I: If h 2 H and k 2 K; then
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hhihki � I and hence by hypothesis either h 2 I or k 2 I. This implies that either H � I or

K � I: (1),(5). Let h(Rk) � I; then R(h(Rk)) � RI � I: Now consider

R(h(Rk)) = (RR)(h(Rk)) = (Rh)(R(Rk)); by medial law

= (Rh)((RR)(Rk)) = (Rh)((kR)(RR)); by paramedial law

= (Rh)((RR)k); by left invertive law

= (Rh)(Rk) � I:

Since Rh and Rk are left ideals for all h 2 H and k 2 K; hence either h 2 I or k 2 I:

Conversely, let HK � I where H and K are any left ideals of R: Let H * I then there exists

l 2 H such that l =2 I: For all m 2 K, we have l(Rm) � H(RK) � HK � I: This implies

that K � I and hence I is quasi-prime ideal of R:

Proposition 65 A left ideal I of an LA-ring R with left identity e is quasi-prime if and only

if RnI is an M -system.

Proof. Suppose I is a quasi-prime ideal. Let a; b 2 RnI which implies that a =2 I and b =2 I:

So by Proposition 64, a(Rb) * I. This implies that there exists some r 2 R such that a(rb) =2 I

which further implies that a(rb) 2 RnI: Hence RnI is an M -system. Conversely, let RnI is

an M -system. Suppose a(Rb) � I and let a =2 I and b =2 I: This implies that a; b 2 RnI:

Since RnI is an M -system so there exists r 2 R such that a(rb) 2 RnI which implies that

a(Rb) * I, which is a contradiction. Hence either a 2 I or b 2 I: This shows that I is a

quasi-prime ideal.

De�nition 66 A nonempty subset Q of an LA-ring R with left identity e is called P -system

if for all a 2 Q; there exists r 2 R such that a(ra) 2 Q:

Proposition 67 Let I be a left ideal of an LA-ring R with left identity e, then the following

are equivalent:

(1) I is quasi-semiprime.
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(2) H2 = hH2i � I ) H � I; where H is any left ideal of R:

(3) For any left ideal H of R : H * I ) H2 * I:

(4) If a is any element of R such that hai2 � I; then it implies that a 2 I:

(5) For all a 2 R : a(Ra) � I ) a 2 I:

Proof. (1),(2),(3) is trivial.(1))(4). Let hai2 � I: But by hypothesis I is quasi-semiprime,

so it implies that hai � I which further implies that a 2 I: (4))(2). For all left ideals H of

R; let H2 = hH2i � I: If a 2 H; then by (4) hai2 � I implies that a 2 I: Hence it shows that

H � I: (1),(5) is straight forward.

Proposition 68 A left ideal I of an LA-ring R with left identity e is quasi-semiprime if and

only if RnI is a P -system.

Proof. Let I is quasi-semiprime ideal of R and let a 2 RnI: On contrary suppose that there

does not exist an element x 2 R such that a(xa) 2 RnI. This implies that a(xa) 2 I: Since I is

quasi-semiprime, so by proposition 67, a 2 I which is a contradiction. Thus there exists x 2 R

such that a(xa) 2 RnI. Hence RnI is a P -system. Conversely, suppose for all a 2 RnI there

exists x 2 R such that a(xa) 2 RnI. Let a(Ra) � I. This implies that there does not exist

x 2 R such that a(xa) 2 RnI which implies that a 2 I: Hence by 67, I is quasi-semiprime.

Lemma 69 An M -system of elements of an LA-ring R is a P -system.

Proof. Let S be a nonempty subset of R such that S is an M -system. Then for all a; b 2 S;

there exists an element r 2 R such that a(rb) 2 S: If we take b = a, then a(ra) 2 S which

implies that S is a P -system.

De�nition 70 An ideal I of an LA-ring R with left identity e is strongly irreducible if and

only if for ideal H and K of R, H \K � I implies that H � I or K � I and I is said to be

irreducible if for ideals H and K, I = H \K implies that I = H or I = K:

Lemma 71 Every strongly irreducible ideal of an LA-ring R with left identity e is irreducible.
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Proof. The proof is obvious.

Proposition 72 An ideal I of an LA-ring R with left identity e is prime if and only if it is

semiprime and strongly irreducible.

Proof. The proof is obvious.

De�nition 73 A nonempty subset S of an LA-ring R with left identity e is called an I-system

if for all a; b 2 S; (hai \ hbi) \ S 6= �:

Proposition 74 The following conditions on an ideal I of an LA-ring R are equivalent:

(1) I is strongly irreducible.

(2) For all a; b 2 R : hai \ hbi � I implies that either a 2 I or b 2 I:

(3) RnI is an I-system.

Proof. (1))(2) is trivial. (2))(3). Let a; b 2 RnI: Let (hai \ hbi) \ RnI = �: This implies

that hai \ hbi � I and so by hypothesis either a 2 I or b 2 I which is a contradiction. Hence

(hai\hbi)\RnI 6= �. (3))(1). Let H and K be ideal of R such that H \K � I: Suppose H

and K are not contained in I; then there exist elements a; b such that a 2 HnI and b 2 KnI:

This implies that a; b 2 RnI: So by hypothesis (hai \ hbi) \RnI 6= � which implies that there

exists an element c 2 hai \ hbi such that c 2 RnI: It shows that c 2 hai \ hbi � H \K � I

which further implies that H \K * I: A contradiction. Hence either H � I or K � I and so

I is strongly irreducible.

De�nition 75 A nonempty subset A of an LA-ring R with left identity e is said to be sub-

tractive if and only if a 2 A and a+ b 2 A implies that b 2 A and A is called semi-subtractive

if and only if a 2 A \ V (R) implies that �a 2 A \ V (R); where V (R) is a set of all those

elements of R having additive inverse.

Proposition 76 Let A be a subtractive subset of an LA-ring R with left identity e; then

(1) Every subtractive subset of R contains 0.

(2) Every subtractive subset of R is semi-subtractive.
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Proof. (1) If a 2 A then 0 + a = a 2 A: Hence by de�nition 0 2 A: (2) Let A be a

subtractive subset of R: Let a 2 A \ V (R): This implies that a 2 V and a 2 V (R): Now as

A is subtractive, so a + (�a) = 0 2 A: This implies that �a 2 A and also �a 2 V (R): So

�a 2 A \ V (R): Hence A is semi-subtractive.

Proposition 77 For subtractive and semi-subtractive left ideals of R; the following holds:

(1) Intersection of subtractive left ideals of LA-ring R with left identity e is a subtractive

left ideal of R:

(2) Intersection of semi-subtractive left ideals of LA-ring R with left identity e is a semi-

subtractive left ideal of R:

Proof. The proof is obvious.

Proposition 78 Every quasi-prime ideal of an LA-ringR with left identity e is semi-subtractive.

Proof. Let I be a quasi-prime ideal of R and a 2 I \ V (R): If r 2 R; then (�a)(r(�a)) +

a(r(�a)) = 0 and so (�a)(r(�a)) = �a(r(�a)): But on the other hand a(ra) + a(r(�a)) =

0 which implies that a(ra) = �a(r(�a)): So by uniqueness of additive inverse, we have

(�a)(r(�a)) = a(ra): For all r 2 R if (�a)(r(�a)) = a(ra) 2 I; then by Proposition 64,

�a 2 I and also �a 2 V (R); which implies that �a 2 I \ V (R): Hence I is semi-subtractive.

Since every quasi-prime ideal is surely quasi-semiprime, so following corollary is an immediate

consequence of Proposition 78.

Corollary 79 Every quasi-semiprime ideal of an LA-ring R is semi-subtractive.

Proof. The proof is analogous to the proof of Proposition 78.

3.3 Direct Sum in LA-Rings

In this section, we construct some new LA-rings from a given family fRi : i 2 Ig of LA-rings.

For this purpose, we introduce complete direct sum and direct sum of this family. We discuss
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some criterion for LA-ring to be the direct sum of its ideals. We show that if fAi : i 2 Ig be a

family of ideals of an LA-ring R, I = f1; 2; 3:::; ng : Then the following conditions are equivalent.

(1) �i2I Ai is a direct sum. (2) �i2I ai = (::: ((a1 + a2) + a3) + :::+ an�1) + an = 0; ai 2

Ai; i 2 I; implies that ai = 0 for all i 2 I: (3) Each element a 2 �i2I Ai is uniquely expressible

in the form a = (::: ((a1 + a2) + a3) + :::+ an�1) + an; where ai 2 Ai and i 2 I:

It is natural to ask is it possible to construct something new from old? In algebra, we use

the notion of direct sum. Here we adopt this notion to answer this question.

3.3.1 Complete Direct Sum and Direct Sum

Let fRi : i 2 Ig be a family of LA-rings indexed by a nonempty set I. The Cartesian product

� fRi : i 2 Ig of the sets Ri is the set of all functions f : I �! U fRi : i 2 Ig such that

f (i) 2 Ri for all i 2 I: Let f; g 2 � fRi : i 2 Ig : De�ne f + g; fg by f + g (i) = f (i)+ g (i) ;

fg (i) = f (i) g (i) for all i 2 I: Then f + g; fg 2 � fRi : i 2 Ig : It can be easily veri�ed that

� fRi : i 2 Ig together with the above two operations is an LA-ring. This LA-ring is called the

complete direct sum of the family of LA-rings � fRi : i 2 Ig and is denoted by �i2IRi:

Suppose that I is a �nite set, say I = f1; 2; 3:::; ng : In this case, the complete direct sum

is denoted by �i2IRi = (((:::((R1�R2)�R3):::)�Rn�1)�Rn) and an element fai : i 2 Ig

is usually written as an n-tuple (a1; a2; a3; :::; an) :

De�nition 80 The direct sum of family of LA-rings fRi : i 2 Ig, denoted by �i2IRi is the

set �i2IRi = f(ai) 2 �i2IRi : ai 6= 0 for at most �nitely many i 2 Ig:

Theorem 81 Let R be an LA-ring and fRi : i 2 Ig a non empty family of LA-rings, �i2IRi

the direct product of LA-rings Ri, and �i2IRi the direct sum the LA-rings Ri.

(1) �i2IRi, is an LA-ring.

(2) �i2IRi is an LA-subring of �i2IRi:

Proof. Straight forward.

De�nition 82 Let I be a nonempty set, say, f1; 2; 3:::; ng ; and each fAi : i 2 Ig be a family

of ideals of LA-rings R. Then the sum of this family, denoted by �i2I Ai is the set
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�i2I Ai= f (::: ((a1 + a2) + a3) + :::+ an�1)+an: ai2 Aig:

Theorem 83 Let fAi : i 2 Ig be a family of ideals of an LA-ring R. Then

(1) �i2I Ai is an ideal of R,

(2) Ai � �j2I Aj for all i 2 I;

(3) if A is an ideal of R such that Ai � A for all i 2 I; then �i2I Ai � A:

Proof. Straight forward.

De�nition 84 Let fAi : i 2 Ig be a family of ideals of an LA-ring R, where I is �nite or

in�nite. Then the sum of this family, denoted by �i2I Ai; is the set

�i2I Ai= fa 2 R : a 2 �i2I Ai for some �nite subset I0 of Ig

Theorem 85 Let fAi : i 2 Ig be a family of ideals of an LA-ring R. Then �i2I Ai is an ideal

of R.

Proof. It is straight forward.

De�nition 86 Let fAi : i 2 Ig be a family of ideals of an LA-ring R. A sum �i2I Ai of

fAi : i 2 Ig is called a direct sum, if for all k 2 I; Ak \ �
i2I
i6=k

Ai = f0g :

Lemma 87 Let fAi : i 2 Ig be a family of ideals of an LA-ring R. If �i2I Ai is a direct sum,

then for all a 2 Ak; b 2 Al; k 6= l, ab = 0.

Proof. Let a 2 Ak; b 2 Al; and k 6= l: Since Ak and Al are ideals, ab 2 Ak and ab 2 Al:

Since Ak � �
i2I
i6=k

Ai; ab 2 �
i2I
i6=k

Ai: Therefore ab 2 Ak \ �
i2I
i6=k

Ai: Since �i2I Ai is a direct sum, so

Ak \ �
i2I
i6=k

Ai f0g : Hence ab = 0:

Lemma 88 [67] If (S; �) is an LA-monoid with left identity e; then position of any element

ai in the �nite product of elements of S can be changed accordingly.
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(1) If n� i is even, then

((::: ((a1 � a2) � a3) :::) � ai) � :::) � an�1) � an

= ((::: ((a1 � a2) � a3) :::) � ai�1) � [ai+1 � e]) � :::) � [an�1 � e]) � [an � e]) � ai

(2) If n� i is odd, then

((::: ((a1 � a2) � a3) :::) � ai) � :::) � an�1) � an

= ((::: ((a1 � a2) � a3) :::) � ai�1) � [ai+1 � e]) � :::) � [an�1 � e]) � [an � e]) � [ai � e] ;

where ai 2 S; i = 1; 2; :::; n.

Theorem 89 Let fAi : i 2 Ig be a family of ideals of an LA-ring R, I = f1; 2; 3:::; ng : Then

the following conditions are equivalent.

(1) �i2I Ai is a direct sum.

(2) �i2I ai = (::: ((a1 + a2) + a3) + :::+ an�1) + an = 0; ai 2 Ai; i 2 I; implies that

ai = 0 for all i 2 I:

(3) Each element a 2 �i2I Ai is uniquely expressible in the form

a = (::: ((a1 + a2) + a3) + :::+ an�1) + an; where ai 2 Ai and i 2 I:

Proof. Case I: ( when k � i is even);
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(1)) (2); let (::: ((a1 + a2) + a3) + :::+ an�1) + an = 0; ai 2 Ai; i 2 I: Let k 2 I: Now

0 = ((((::: ((a1 + a2) + a3) + :::+ ak�1) + (ak+1 + 0)) + :::+ (an�1 + 0)) + (an + 0)) + ak

0� ak = (((((::: ((a1 + a2) + a3) + :::+ ak�1) + (ak+1 + 0)) + :::+ (an�1 + 0)) + (an + 0)) + ak)� ak

�ak = (ak � ak) + ((((::: ((a1 + a2) + a3) + :::+ ak�1) + (ak+1 + 0)) + :::+ (an�1 + 0)) + (an + 0))

�ak = 0 + ((((::: ((a1 + a2) + a3) + :::+ ak�1) + (ak+1 + 0)) + :::+ (an�1 + 0)) + (an + 0))

�ak = ((((::: ((a1 + a2) + a3) + :::+ ak�1) + (ak+1 + 0)) + :::+ (an�1 + 0)) + (an + 0))

2 Ak \ �
i2I
i6=k

Ai = f0g :

Hence ak = 0.

(2)) (3);

a = (::: ((a1 + a2) + a3) + :::+ an�1) + an = (::: ((b1 + b2) + b3) + :::+ bn�1) + bn;

where ai; bi 2 Ai; for all i 2 I: Then

0 = ((::: ((a1 + a2) + a3) + :::+ an�1) + an)� ((::: ((b1 + b2) + b3) + :::+ bn�1) + bn)

0 = ((::: ((a1 + a2) + a3) + :::+ an�1)� (::: ((b1 + b2) + b3) + :::+ bn�1)) + (an � bn)

0 = (((::: ((a1 + a2) + a3) + :::+ an�2)� (::: ((b1 + b2) + b3) + :::+ bn�2)))

+ (an�1 � bn�1) + (an � bn) :

Continuing in this way, we get (::: (((a1 � b1) + (a2 � b2)) + (a3 � b3)) + :::+ (an�1 � bn�1))+

(an � bn) = 0: Hence by (2), ai � bi = 0 for all i 2 I: That is ai = bi for all i 2

I: (3) ) (1); Let a 2 Ak \ �
i2I
i6=k

Ai: Then there exist ai 2 Ai; i = 1; 2; 3:::; n; such that
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a = ak = (::: ((::: ((a1 + a2) + a3) + :::+ ak�1) + ak+1) + :::+ an�1) + an; this implies that

0 = ((::: ((::: ((a1 + a2) + a3) + :::+ ak�1) + ak+1) + :::+ an�1) + an)� ak

= ((::: ((::: ((a1 + a2) + a3) + :::+ ak�1) + (�ak) + (ak+1 + 0)) + :::+ (an�1 + 0)) + (an + 0))

= 0:

Also 0 + 0 + :::+ 0 = 0: Therefore, by (3), ai = 0 for all i 2 I: Thus, Ak \ �
i2I
i6=k

Ai = f0g and

so �i2I Ai is a direct sum.

Case II: (when k � i odd): It is trivial.

De�nition 90 An LA-ring R is said to be an internal direct sum of a �nite family of ideals

fAi : i 2 Ig if

(i) R = (::: ((A1 +A2) +A3) + :::+An�1) +An.

(ii) (::: ((A1 +A2) +A3) + :::+An�1) +An is a direct sum.

Theorem 91 Let R be an LA-ring with the property that (R;+) is an abelian group. If

fAi : i 2 Ig is a �nite family of ideals R and R is an internal direct sum of fAi : i 2 Ig ; then

R ' �i2IAi.

Proof. Let I = f1; 2; 3; :::; ng : Suppose R is an internal direct sum of ideals A1; A2; :::; An:

Let a 2 R: Then a is uniquely expressible in the form

a = (::: ((::: ((a1 + a2) + a3) + :::+ ak�1) + ak+1) + :::+ an�1) + an; where ai 2 Ai; i 2 I:

Now (a1; a2; a3; :::; an�1; an) 2 �i2IAi: De�ne

f : R �! �i2IAi by f (a) = (a1; a2; a3; :::; an�1; an) :
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Let a; b 2 R. Then there exist ai; bi 2 Ai; i 2 I such that

a = (:::::: ((a1 + a2) + a3) + :::+ an�1) + an

and b = (:::::: ((b1 + b2) + b3) + :::+ bn�1) + bn.

Let a = b

, (::: ((a1 + a2) + a3) + :::+ an�1) + an = (::: ((b1 + b2) + b3) + :::+ bn�1) + bn

, ai = bi for all i 2 I

, (a1; a2; a3; :::; an�1; an) = (b1; b2; b3; :::; bn�1; bn)

, f (a) = f (b)

This shows that f is a one to one function. Let (a1; a2; a3; :::; an�1; an) 2 �i2IAi: Then a =

(:::::: ((a1 + a2) + a3) + :::+ an�1)+an 2 �i2I Ai = R and f (a) = (a1; a2; a3; :::; an�1; an) :

Hence, f is onto �i2IAi: Finally, we shows that f is a homomorphism. Since a + b =

(::: (((a1 + b1) + (a2 + b2)) + (a3 + b3)) + :::+ (an�1 + bn�1)) + (an + bn) ; we have,

f (a+ b) = ((a1 + b1) ; (a2 + b2) ; (a3 + b3) ; :::; (an + bn))

= (a1; a2; a3; :::; an) + (b1; b2; b3; :::; bn) = f (a) + f (b) :

By lemma 87, ab = (((a1b1 + a2b2) + a3b3) + :::+ an�1bn�1)+anbn =
n
�
i=1

aibi: ab =
n
�
i=1

ai
n
�
i=1
bi;
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where; a =
n
�
i=1
ai; b =

n
�
i=1
bi; ai; bi 2 Ai; for all i 2 I:

ab =
n
�
i=1

ai
n
�
i=1
bi =

�
n�1
�
i=1
ai + an

��
n�1
�
i=1
bi + bn

�
=

�
n�1
�
i=1
ai + an

�
n�1
�
i=1
bi +

�
n�1
�
i=1
ai + an

�
bn

=

�
n�1
�
i=1
ai
n�1
�
i=1
bi + an

n�1
�
i=1
bi

�
+

�
n�1
�
i=1
aibn + anbn

�
=

�
n�1
�
i=1
aibi + 0

�
+ (0 + anbn) = 0 +

�
n�1
�
i=1
aibi + anbn

�

by using (a+ b) + c = b + (a+ c) =

�
n�1
�
i=1
aibi + anbn

�
=

n
�
i=1

aibi. This implies that

f (ab)= f

�
n
�
i=1

aibi

�
=(a1b1; a2b2; :::; anbn)= (a1; a2; :::; an) (b1; b2; :::; bn)= f (a) f (b) : So, f is

LA-ring homomorphism. Hence R ' �i2IAi:

Theorem 92 LetR be an LA-ring with 1 such that (R;+) is an abelian group and fAi : i 2 Ig

be a �nite family of ideals of R. Then R = (((:::((A1 � A2) � A3):::) � An�1) � An) if and

only if there exist idempotents ei 2 Ai; i = 1; 2; :::; n, such that

(1) 1 = (::: ((e1 + e2) + e3) + :::+ en�1) + en;

(2) eiR = Ai for all i = 1; 2; 3:::; n;

(3) eiej=ejei = 0 for i 6= j:

Proof. Let R = (((:::((A1 � A2) � A3):::) � An�1) � An): Now 1 2 R: Thus, there exist

ei 2 Ai; i = 1; 2; :::; n; such that 1 = (::: ((e1 + e2) + e3) + :::+ en�1) + en: Then

ei = (((::: ((::: ((e1 + e2) + e3) + :::+) ei�1) + ei) + ei+1 + :::+ en�1) + en) ei

=
���
::: ((::: ((e1ei + e2ei) + e3ei) + :::+) ei�1ei) + e

2
i

�
+ ei+1ei + :::+ en�1ei

�
+ enei

�
=

���
::: ((::: ((0 + 0) + 0) + :::+) 0) + e2i

�
+ 0 + :::+ 0

�
+ 0
�
; by Lemma 87.

Hence ei =
� e2i if n�i=even
e2i+0 if n�i=odd

	
: If ei = e2i + 0; then ei = 0 +

�
e2i + 0

�
=
�
e2i + 0

�
+ 0; by

using given property that (a+ b)+ c = b+(a+ c) ; so, this implies that ei = (0 + 0)+ e2i . So,

ei = e
2
i : Hence ei is an idempotent for all i = 1; 2; 3; :::; n: Since ei 2 Ai and Ai is an ideal, so
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eiR � Ai: Let a 2 Ai: Then

a= 1a = ((::: ((e1 + e2) + e3) + :::+ en�1) + en) a

= (::: ((e1a+ e2a) + e3a) + :::+ en�1a)+ena

=

�
eia if n-i is even
eia+ 0 if n-i is odd

�

because eiej = 0 for all i 6= j: If a = eia + 0; then a = 0 + (eia+ 0) = (eia+ 0) + 0; by

using given property that (a+ b) + c = b + (a+ c) ; so, this implies that a = (0 + 0) + eia;

by left invertive law. So, a = eia: Hence a = eia 2 eiR: Therefore, eiR = Ai: Conversely,

assume that there exist idempotents ei 2 Ai; i = 1; 2; 3:::; n; satisfying the given conditions.

Let a 2 R.

a = 1a = ((::: ((e1 + e2) + e3) + :::+ en�1) + en) a

= (::: ((e1a+ e2a) + e3a) + :::+ en�1a) + ena

2 (((:::((e1R1 + e1R2) + e1R3):::) + e1Rn�1) + e1Rn)

� (((:::((A1 +A2) +A3):::) +An�1) +An)

Hence, R � (((:::((A1 + A2) + A3):::) + An�1) + An): But (((:::((A1 + A2) + A3):::) +

An�1) + An) � R: Hence, R = (((:::((A1 + A2) + A3):::) + An�1) + An): Now we show

that this sum is direct sum. Let a 2 Ai \ �
i2I
i6=k

Ai: Then there exist a1; a2; :::; an 2 R such

that, a = (::: ((::: ((a1 + a2) + a3) + :::+ ai�1) + ai+1) + :::+ an�1)+an. This implies eia =

(::: ((::: ((eia1 + eia2) + eia3) + :::+ eiai�1) + eiai+1) + :::+ eian�1) + eian: Thus,

eia = (::: ((::: ((0 + 0) + 0) + :::+ 0) + 0) + :::+ 0) + 0; because eiej = 0 for all i 6= j:

Thus eia = 0: Since 0 6= ei 2 Ai; therefore eia = 0 implies that a = 0: Hence R =

(((:::((A1 �A2)�A3):::)�An�1)�An):
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Chapter 4

A generalization of Commutative Semigroup Rings

Introduction
On the basis of developments made in chapter 2, regarding the ordering of AG-groupoids

and in chapter 3, regarding the concepts of ideals and direct sum in LA-rings, we take a step

forward into broad vision and deal with an area which is comparatively hard. This chapter

contains two sections and main objective of this study is to generalize commutative semigroup

rings. For this in �rst section, we construct LA-rings of �nitely non-zero functions. We adopt

the analogous way as in [13] and obtain various generalizations parallel to corresponding parts

of commutative semigroup rings. During construction we also introduce the concept of LA-

module, which intuitively would be the most useful tool for further developments. For example

recently in [68], T. Shah and M. Raees have investigated several results parallel to associative

modules theory over the rings.

In second section, we generalize the results established in �rst section. In this study, we

actually consider a case in which we replace commutative semigroups by LA-semigroups (or

AG-groupoids) and construct an LA-ring of �nitely non-zero functions. Here is the due place

to use the concept of ordering of AG-groupoids as discussed earlier in chapter 2; to tackle the

degree problem arose during the developments of this type of LA-rings.

4.1 LA-rings of �nitely non-zero functions

In this study, we generalize the structure of a commutative semigroup ring (ring of functions

from a commutative semigroup S to ring R represented as R [X;S]) to an LA-ring of com-

mutative semigroup S over LA-ring R represented as R [Xs; s 2 S] ; which is a non-associative



structure, consisting of �nitely nonzero functions from a commutative semigroup S into LA-ring

R. Generally, the concepts of degree and order are not de�ned in semigroup rings unless we

consider S; a totally ordered semigroup with 0 adjoined. Analogous to commutative semigroup

rings R [X;S] ; we may de�ne degree and order of an element of LA-ring R[Xs; s 2 S].

4.1.1 The Construction

Let (R;+; �) be an LA-ring with left identity and S be a commutative semigroup under binary

operation ���. Let T = ff j f : S ! R; where f are �nitely nonzerog: De�ne the binary

operation �+� in T as (f + g)(s) = f(s) + g(s):

(T;+) is an LA-group. Indeed, let f; g 2 T: Now as f(s); g(s) 2 R for all s 2 S; so,

(f + g)(s) = f(s) + g(s) 2 R and hence f + g 2 T . Let f; g; h 2 T . As f(s); g(s); h(s) 2 R;

so by left invertive law in (R;+) ; we have

((f + g) + h)(s) = (f + g)(s) + h(s) = (f(s) + g(s)) + h(s)

= (h(s) + g(s)) + f(s) = (h+ g) (s) + f(s)

= ((h+ g) + f)(s):

Hence (f+g)+h = (h+g)+f: Thus left invertive law holds in T: De�ne the map o : S ! R

such that o(s) = 0 for all s 2 S;

(o+ f)(s) = o(s) + f(s) = 0 + f(s) = f(s)

o+ f = f:

Thus o is left additive identity in T . For every f 2 T there exists a function �f : S ! R

de�ned by (�f)(s) = �f(s) for all s 2 S and ((�f) + f)(s) = (�f(s)) + f(s) = �f(s) +

f(s) = 0 = o(s). This implies (�f)+ f = o: So the left inverses exist in (T;+) : Hence (T;+)

is an LA-group. We can say f + (�f) = 0 as �f(s) is also the right inverse of f(s) in R by

[45]. Now we de�ne binary operation ��� in T as follows f � g (s) =
P
t�u=s f(t) � g(u): We
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claim that (T;�) is an LA-semigroup. As for f(t) and g(u) 2 R; where t; u 2 (S; �) and

(R; �) is LA-ring, f � g(s) 2 R. Since f; g are �nitely nonzero on S; therefore f � g 2 T: For

f; g; h 2 T and s 2 S; consider

[(f � g)� h](s) =
X
t�u=s

(f � g)(t) � h(u) =
X
t�u=s

f
X
t=p�q

((f(p) � g(q))g � h(u)

=
X

(p�q)�u=s
(f(p) � g(q)) � h(u) =

X
(u�q)�p=s

(h(u) � g(q)) � f(p).

As every commutative semigroup implies an LA-semigroup, so (p � q) � u = (u � q) � p for

all p; q; u 2 (S; �): Hence

[(f � g)� h](s) =
X

(p�q)�u=s
(f(p) � g(q)) � h(u) =

X
(u�q)�p=s

(h(u) � g(q)) � f(p)

=
X
r0�p=s

f
X
r0=u�q

(h(u) � g(q))g � f(p) =
X
r0�p=s

(h� g)(r0) � f(p)

= [(h� g)� f ] (s) :

Thus (T;�) is an LA-semigroup: Now we verify that the binary operation ��� is distributive

over addition. Indeed as f (t) ; g (u) and h (u) 2 R and multiplication is distributive over

addition in R, so

[f � (g + h)] (s) =
X
t�u=s

f (t) � (g + h) (u) =
X
t�u=s

f (t) � (g(u) + h(u))

=
X
t�u=s

(f (t) � g (u) + f (t) � h (u)) =
X
t�u=s

f (t) � g (u) +
X
t�u=s

f (t) � h (u)

= (f � g) (s) + (f � h) (s) = [f � g + f � h] (s) :
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Hence f � (g + h) = f � g + f � h: Similarly

[(g + h)� f ] (s) =
X
t�u=s

(g + h) (t) � f (u) =
X
t�u=s

(g(t) + h(t)) � f (u)

=
X
t�u=s

(g (t) � f (u) + h (t) � f (u)) =
X
t�u=s

g (t) � f (u) +
X
t�u=s

h (t) � f (u)

= (g � f) (s) + (h� f) (s) = [g � f + h� f ] (s) :

Hence (g + h)� f = g � f + h� f: Thus (T;+;�) is an LA- ring of commutative semigroup

(S; �) over LA-ring (R;+; �).

Remark 93 If we take S = Z0 then polynomial LA-ring becomes a particular case of LA-ring

(T;+;�):

4.1.2 Representation of elements of T

To represent the elements of ring (T;+;�), we �rst de�ne LA- modules over an LA-ring R.

De�nition 94 Let (R;+; :) be an LA-ring with left identity e. An LA-group (M;+) is said

to be LA-module over R if R�M !M de�ned as (a;m) 7! am 2M; where a 2 R, m 2M

satis�es

(i) (a+ b)m = am+ bm;

(ii) a(m+ n) = am+ an;

(iii) a(bm) = b(am);

(iv) 1:m = m;

for all a; b 2 R, m;n 2M .

For instance, let (R;+; �) be an LA-ring with left identity and S be a commutative semi-

group. It is important to note that every commutative semigroup is an LA-semigroup. Now

it is easy to verify that R[S] = f
nX
j=1

ajsj : aj 2 R; sj 2 Sg is an additive LA-group. We

claim that R[S] is an LA-module over R. Indeed, let R � R[S] 7! R[S] be de�ned as

(a;

nX
j=1

ajsj) 7!
nX
j=1

(aaj)sj which is obviously well-de�ned.
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The �rst two and fourth properties are easy to verify. We verify the third property. Consider

a(b
nX
j=1

ajsj) = a(
nX
j=1

(baj) sj) = (
nX
j=1

(a (baj)) sj).

As R is an LA-ring with left identity, so by [51, Lemma ], a(bc) = b(ac) holds for all

a; b; c 2 R: Hence a(b
nX
j=1

ajsj) = (
nX
j=1

(b (aaj)) sj) = b(
nX
j=1

(aaj) sj) = b(a
nX
j=1

ajsj) Thus

a(b
nX
j=1

ajsj) = b(a
nX
j=1

ajsj):

Remark 95 If (S; �) is a commutative semigroup, then T = R[S] and elements of LA-ring

T are written either in the form of
P
s2S f(s)s or

Pn
i=1 f(si)si: Thus (1) S is a free basis

for R[S] as an LA-module over LA-ring R and (2) multiplication in R[S] is determined by

using distributivity and by setting (r1s1)(r2s2) = (r1r2)(s1s2) where r1; r2 2 R and s1; s2 2 S:

Indeed, consider f(s1)s1 + f(s2)s2 + :::+ f(sn)sn = 0: Since s1; s2; :::; sn 2 S and si 6= 0 for

all i = 1; 2; :::; n; so; f(si) = 0 for all i = 1; 2; :::; n: Thus s1; s2; :::; sn are linearly independent.

Now let f(s1); f(s1); :::; f(sn) 2 R and s1; s2; :::; sn 2 S: Then, f(s1)s1+f(s2)s2+:::+f(sn)sn

is a linear combination of elements of S whose coe¢ cients are from the LA-ring R: Thus S

is a free basis for ring T as an LA-module over an LA-ring R: Now let f =
Pn
i=1 f(si)si and

g =
Pm
i=1 g(ti)ti:

For n = 1;m = 1; f � g = (f(s1)s1) � (g(t1)t1)

= f(s1)g(t1) � s1t1

For n = 2;m = 2; (f(s1)s1 + f(s2)s2) � (g(t1)t1 + g(t2)t2)

= f(s1)s1 � (g(t1)t1 + g(t2)t2) + f(s2)s2 � (g(t1)t1 + g(t2)t2)

= f(s1)s1 � g(t1)t1 + f(s1)s1 � g(t2)t2) + f(s2)s2 � g(t1)t1 + f(s2)s2 � g(t2)t2)

= f(s1)g(t1) � s1t1 + f(s1)g(t2) � s1t2 + f(s2)g(t1) � s2t1 + f(s2)g(t2) � s2t2

=
4X

i+j=2

f(si)g(tj)sitj : Thus in general, f � g =
m+nX
i+j=2

f(si)g(tj)sitj :

Remark 96 If (S;+) is a commutative semigroup, then the elements of T are written either

in the form
P
s2S f(s)X

s or
Pn
i=1 f(si)X

si :
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From next lemma, it is obvious that the introduction of symbol X and notation Xs has

the e¤ect of transforming (S;+) into (fXs j s 2 Sg; �) by means of isomorphism.

Lemma 97 For a semigroup (S;+); there exists a semigroup (fXs : s 2 Sg ; �) which is iso-

morphic to S; where ��� is usual multiplication.

Thus by the e¤ect of this isomorphism, the representation of an element f of T gets the

form f =
nX
i=1

f(si)X
si or

nX
i=1

fiX
si ; where fi = f(si): We shall represent T by R [Xs; s 2 S] :

4.1.3 Degree and order of elements of LA-ring R [Xs; s 2 S]

The concepts of degree and order are not generally de�ned in semigroup rings unless we have

to consider S; a totally ordered semigroup with 0 adjoined (that is ordered monoid). The

structure of LA-ring R [Xs; s 2 S] is also not convenient for de�ning degree and order of an

element unless (S; �) is totally ordered. Here we de�ne support of f =
nX
i=1

fiX
si abbreviated

as Supp(f) = fsi : fi 6= 0g. The order and degree of f is de�ned as ord(f) =min(supp(f))

and deg(f) =max(supp(f)):

Lemma 98 (1) If R is an LA-ring with left identity, then for f; g 2 R [Xs; s 2 S] ;

deg (f:g) � deg (f) + deg (g) :

(2) If R is an LA-integral domain, then deg(f:g) =deg(f)+deg(g) :

Proof. (1) Let f = (f0+f1X+ :::; fnXn) and g = (g0+g1X+ :::; gmXm) where fn; gm 6= 0:

So

f � g = (f0g0; (f1g0 + f0g1)X + :::+ fngmX
n+m:

Now if fn � gm 6= 0; then, deg(f � g) = n+m = deg(f) + deg(g) and if fn � gm = 0; then

deg(f � g) < deg(f) + deg(g): Thus deg (f:g) � deg (f) + deg (g) :

(2) As R is an LA-integral domain, so for fn 6= 0; gm 6= 0; the product fn � gm 6= 0: Thus
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clearly deg(f:g) =deg(f)+deg(g) :

4.1.4 Further Developments

A mapping ' of an LA-ring (R;+; �) into an LA-ring (R0;+; �) is called a homomorphism if

' (a+ b) = ' (a) + ' (b) and ' (ab) = ' (a) � ' (b) and for the two sided ideal I of R; the

mapping � : R ! R=I de�ned as � (a) = a + I is called the natural epimorphism of LA-ring

R onto R=I.

Let � be an epimorphism of an LA-ring R to an LA-ring R0; then R=Ker� ' R0.

Theorem 99 Let R be an LA-ring and L;M be commutative semigroups. Then

R
h
X(l;m); (l;m) 2 L�M

i
' (R

h
X l; l 2 L

i
)([Xm;m 2M ]);

where L�M the is external direct sum of commutative semigroups L and M .

Proof. Here we regard the elements of LA- ring R, as �nitely non-zero functions from com-

mutative semigroup to LA-ring R.

Assume that (R
�
X l; l 2 L

�
)([Xm;m 2M ]) = A: De�ne � : A! R

�
X(l;m); (l;m) 2 L�M

�
by [� (f)] (l;m) = [f (m)] (l) where f (m) 2 R[X l; l 2 L]; f 2 A and f : M ! R[X l; l 2 L]:

Clearly � is surjective because if h 2 R
�
X(l;m); (l;m) 2 L�M

�
; then the element f 2 A

de�ned by

[f (m)] (l) = h (l;m) is such that

[� (f)] (l;m) = [f (m)] (l) = h (l;m) :
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Now Suppose f 6= g:

Then f (m) 6= g (m) for some m 2M:

[f (m)] (l) 6= [g (m)] (l) for some l 2 L;m 2M

� (f) (l;m) 6= �(g)(l;m)

� (f) 6= �(g):

Thus � is one-one. It is an LA-ring homomorphism. Indeed, let f; g 2 A and (l;m) 2 L�M:

[� (f + g)] (l;m) = [(f + g) (m)] (l) = [f (m) + g (m)] (l)

= [f (m)] (l) + [g (m)] (l) = [� (f)] (l;m) + [� (g)] (l;m)

= [�(f) + � (g)] (l;m)

Now consider

[� (f � g)] (l;m) = [(f � g) (m)](l) = [
X
a�b=m

(f (a) � g (b))] (l)

=
X
a�b=m

(
X
c�d=l

(f (a)) (c)) � ((g (b)) (d))

=
X

(c�d;a�b)=(l;m)
(f (a)) (c)) � ((g (b)) (d)

=
X

(c�a)+(d�b)=(l;m)
� (f) (c; a) � � (g) (d; b)

= [� (f)� �(g)] (l;m) for all (l;m) 2 L�M:

Thus � is an isomorphism.

Remark 100 From above result, for the �nite set fYigni=1 of indeterminates, isomorphism of

R[Y1; Y2; :::; Yn] and R[X;Zn0 ] follows by induction.

The following theorem is an extended form of theorem 99.

Theorem 101 The polynomial LA-ring R [fY�g�2�] ; where R is an LA-ring and fY�g�2� is a
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family of commuting indeterminates and F =
Pw

�2�
Z� such that Z� ' Z0: Then R [fY�g�2�]

is isomorphic to LA-ring R [X;F ] of free commutative semigroup (F;+) over R:

Proof. As F =
Pw

�2�
Z� such that Z� ' Z0 for each � and fe�g�2� be the standard free

basis for F that is the �-th coordinate of e� is 1 and all others coordinates are 0. Each element

of F is uniquely expressible in the form a =
P
k�e�, for some k� � 0 (k� 2 Z�). For each

raX
a 2 R [X;F ] ; we haveP
ra��2�Y

k�
� 2 R [fY�g�2�] : We de�ne

� : R [X;F ]! R
h
[Y�]�2�

i
by �(

X
a2F

raX
a) =

X
a2F

ra��2�Y
k�
� :

Suppose
X
a2F

raX
a =

X
b2F

rbX
b:

Here, a =
X

k�e� and b =
X

k
0
�e�; where k�; k

0
� � 0:X

a2F
raX

P
k�e� =

X
b2F

rbX
P
k
0
�e�

X
a2F

raX
k1e1+k2e2+:::+k�e�+::: =

X
b2F

rbX
k
0
1e1+k

0
2e2+:::+k

0
�e�+:::

X
a2F

raX
k1e1Xk2e2 :::Xk�e� ::: =

X
b2F

rbX
k
0
1e1Xk

0
2e2 :::Xk0�e� :::

X
a2F

raX
(k1;0;0;:::)

:::X
(::;0;0;0;k�:::) ::: =

X
b2F

rbX
(k
0
1;0;0;:::) :::X

(0;:::;0;k
0
�;0:::) :::

X
a2F

raY
k1
1 :Y

k2
2 :::Y

k�
� ::: =

X
b2F

rbY
k
0
1

1 :Y
k
0
2

2 :::Y
k
0
�

� :::

X
a2F

ra��2�Y
k�
� =

X
b2F

rb��2�Y
k
0
�

�

�(
X
a2F

raX
a) = �(

X
b2F

rbX
b):

Thus � is well-de�ned. Now it is straight forward to prove that � is an isomorphism.

The following is a generalized form of [13, Theorem 8.1].

Theorem 102 Let R be an LA-ring with left identity e and let (S; �) be a commutative
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semigroup. Let R [Xs; s 2 S] be an LA-ring of S over R. Then R [Xs; s 2 S] is an LA-integral

domain if and only if R is an LA-integral domain and S is an torsion free and cancellative.

Proof. Assume that R is an LA-integral domain. Now S is torsion free and cancellative if and

only if S admits a total order � compatible with its operation [13, Corollary 3.4]. Let f; g 2

R [Xs; s 2 S] n f0g such that f =
Pm
i=1 fiX

si ; g =
Pn
i=1 giX

ti ; where s1 � s2 � ::: � sm

and t1 � t2 � ::: � tn. If f1 6= 0; g1 6= 0; then s1 + t1 2supp(f � g) and f1g1Xs1+t1 is the

corresponding term in f � g. In particular, f � g 6= 0 hence R [Xs; s 2 S] is an LA-integral

domain. Conversely, assume that R [Xs; s 2 S] is an LA-integral domain. On the contrary,

suppose that R is not an LA- integral domain then for a; b 2 Rn f0g ; we have a:b = 0: If s 2 S;

then aXs � bXs = 0; where aXs 6= 0; bXs 6= 0: This implies that R [Xs; s 2 S] is not an LA-

integral domain. Similarly, if S is not cancellative and s; t; u 2 S are such that s+t = s+u but

t 6= u; then for r 2 Rn f0g ; we have rXs�
�
rXt � rXu

�
= 0; where rXs and rXt� rXu are

nonzero. Hence R [Xs; s 2 S] is not an LA-integral domain. Finally, assume that R is an LA-

integral domain and that S is cancellative but not torsion free. Let s; t 2 S be such that s 6= t

while ns = nt for some n 2 Z+ and choose k 2 Z+ minimal so that ks = kt: If 0 6= r 2 R,

then 0 = (r2Xks� r2Xkt) = (rXs� rXt)� (
Pk�1
i=0 rX

(k�i�1)s+it
): Since S is cancellative the

choice of k implies (k � i1 � 1)s + i1t 6= (k � i2 � 1)s + i2t for 0 � i1 < i2 � k � 1:ThusPk�1
i=0 rX

(k�i�1)s+it 6= 0. Hence again R [Xs; s 2 S] is not an LA-integral domain.

The next result generalizes [13, Theorem 7.2] and contains some basic informations con-

cerning homomorphisms of LA-rings of commutative semigroups over LA-rings.

Theorem 103 Let � : R �! R0 be an LA-ring homomorphism. Let A =ker� and � : S �!

S0 be a semigroup homomorphism, where S; S0 are commutative semigroups with 0 adjoined

to them. Then the following statements holds;

(1) �� : R [Xs; s 2 S] �! R0 [X
s; s 2 S] is de�ned as ��(

Pn
i=1 riX

si) =
Pn
i=1 � (ri)X

si ;

is LA-ring homomorphism such that ker�� = A[Xs; s 2 S] =ker� [Xs; s 2 S]. �� is surjective

if � is surjective.

(2) �� : R[Xs; s 2 S]! R[Xs; s 2 S0] de�ned as ��(
Pn
i=1 riX

si) =
Pn
i=1 riX

�(si); is sur-
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jective and ker�� = I: The ideal ofR[Xs; s 2 S] generated by
�
rXa � rXb : � (a) = � (b) ; r 2 R

	
.

�� is surjective if � is surjective.

(3) � : R [Xs; s 2 S] ! R0 [X
s; s 2 S0] de�ned as �(

Pn
i=1 riX

si) =
Pn
i=1 � (ri)X

�(si);

is an LA-ring homomorphism such that ker� = ker��+ker�� = A[Xs; s 2 S] + I. Then � is

surjective if � and � are surjective.

Proof. Same as in [13, Theorem 7.2].

Corollary 104 Assume that A is an ideal of the LA-ring R and that � is a congruence

on commutative semigroup S = S [ f0g : Let I =
�
rXa � rXb : � (a) = � (b) ; r 2 R

	
; � :

S ! S= � is a canonical epimorphism: Then R [Xs; s 2 S] =A [Xs; s 2 S] ' R
A [X

s; s 2 S] and

R [Xs; s 2 S] =I ' R [Xs; s 2 S= �] ; where the ideal I is called the kernel ideal of congruence.

Proof. As � : S ! S= � is de�ned by � (s) = [s] : So we de�ne �� : R [Xs; s 2 S] !

R [Xs; s 2 S= �] as ��(
Pn
i=1 riX

si) =
Pn
i=1 riX

�(si) =

nX
i=1

riX
[si] which is an LA-ring

epimorphism. Therefore R [Xs; s 2 S] =ker�� ' R [Xs; s 2 S= �] : Similarly we may de�ne

a map �� : R [Xs; s 2 S] ! R
A [X

s; s 2 S] by ��(
Pn
i=1 riX

si) =
Pn
i=1 �(ri)X

si ; where

� : R ! R
A is a surjective LA-ring homomorphism de�ned as � (r) = r + A: �� is also

LA- ring epimorphism. Hence R [Xs; s 2 S] =ker�� ' R
A [X

s; s 2 S] : It can be shown that

ker�� = A [Xs; s 2 S] : Therefore, R [Xs; s 2 S] =A [Xs; s 2 S] ' R
A [X

s; s 2 S] :

De�nition 105 An ideal P of an LA-ring R is called prime if and only if AB � P implies

that either A � P or B � P; where A and B are ideals in R:

Theorem 106 Let R be an LA-ring with left identity 1. Then P is a prime ideal in R if and

only if R=P is an LA-integral domain having the left identity P + 1.

Proof. Same as [19, Theorem 2.16].

The following is a generalized form of [13, Corollary 8.2].

Corollary 107 Let A be a proper ideal of LA-ring R; then A [Xs; s 2 S] is prime ideal in

R [Xs; s 2 S] if and only if A is prime ideal in R and S is cancellative and torsion free semigroup.

Proof. Follows from theorem 102 and corollary 104.
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4.2 Generalized LA-rings of �nitely non-zero functions

In continuation to �rst section, in this section, we have investigated a case in which commutative

semigroup S is taken as an LA-semigroup and almost all the established results in �rst section

stand as a particular case. We construct an LA-ring of �nitely non-zero functions from LA-

semigroup S to LA-ring R, represented as R [Xs; s 2 S] and also we discuss the concepts of

degree and order of R [Xs; s 2 S] :

Let (R;+; �) be an LA-ring with left identity and S be an LA-semigroup under ���. We

name the set ff : f : S ! R, where f are �nitely nonzerog as T: Similar to section one, we

de�ne the binary operations �+�and ��� in T as (f + g)(s) = f(s) + g(s) and f � g (s) =P
t�u=s f(t) � g(u):

It is not hard to see that (T;+;�) is an LA- ring of LA-semigroup (S; �) over LA-ring

(R;+; �) :

To represent the elements of LA-ring (T;+;�), we follow the same procedure as in �rst

section. Ultimately the canonical form of an element of T is
nX
i=1

f(si)si or
nX
i=1

fisi:

The following is a generalization of lemma 97 of �rst section.

Lemma 108 For an LA-semigroup (S; �), there exists an LA-semigroup (fXs j s 2 Sg;�)

which is isomorphic to S; where ��� is not a usual multiplication.

Proof. Suppose A = fXs j s 2 Sg: We claim that A is an LA-semigroup. Let Xs1 ; Xs2 2 A;

so Xs1 � Xs2 = Xs1�s2 2 A; as S under � is an LA-semigroup: Hence A is closed under

���:Let Xs1 ; Xs2 ; Xs3 2 A then (Xs1 � Xs2) � Xs3 = X(s1�s2 ) � Xs3 = X(s1�s2)�s3 =

X(s3�s2)�s1 = X(s3�s2) �Xs1 = (Xs3 �Xs2)�Xs1 :

Hence A is an LA-semigroup under ���. Now de�ne � : S ! A as � (s) = Xs: Let for

s1; s2 2 S; s1 = s2 : This implies Xs1 = Xs2 and � (s1) = � (s2) : Thus � is well-de�ned.

suppose � (s1) = �(s2). Thus Xs1 = Xs2 ;so s1 = s2: Hence � is one-one. Clearly � is

onto. Now � is homomorphism as for s1; s2 2 S; �(s1 � s2) = X(s1�s2 ) = Xs1 � Xs2 =

� (s1)� � (s2) : Thus � is an LA-semigroup isomorphism.
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Thus by the e¤ect of above isomorphism, the representation of an element f of T gets the

form f =
nX
i=1

f(si)X
si or

nX
i=1

fiX
si ; where fi = f(si): We shall represent T by R [Xs; s 2 S] :

The concept of degree and order are not generally de�ned in semigroup rings unless we

have to consider S; a totally ordered semigroup with 0 adjoined (that is ordered monoid).

The structure of LA-ring R [Xs; s 2 S] is also not convenient for de�ning degree and order

of an element unless (S; �) is totally ordered. The concept of ordering of LA-semigroups (or

AG-groupoids) has been discussed earlier in Chapter 2.

Here we de�ne support of f =
nX
i=1

fiX
si abbreviated as Supp(f) = fsi : fi 6= 0g. The

order and degree of f is de�ned as ord (f) = minSupp(f) and deg (f) = maxSupp (f) :

Let (Q+; �) denote the group of all positive rational numbers. If we take S =
�
Q+0
�ILAS

;

where ILAS abbreviates Initial LA-semigroup, which is made an LA-semigroup by de�ning the

binary operation � as

a � b = 0 if a = 0 or b = 0;

= b � a�1 if a 6= 0 and b 6= 0:

If R is an LA-ring with left identity, then for f; g 2 R[Xs; s 2 (Q+0 ; �)]; the degree and order

of f (X) = a0 + a1X
a1
b1 + ::: + anX

an
bn 2 R [Xs; s 2 S] with a1

b1
< a2

b2
< ::: < an

bn
; is de�ned

as, ord (f) = 0 if a0 6= 0 and deg (f) = an
bn
:

In a polynomial ring R[X]; for f; g 2 R [X] ; deg (f � g) � deg (f)+deg (g) and ord (f � g) �

ord (f)+ord (g) : If R is an integral domain, then deg (f � g) = deg (f)+deg (g) andord (f � g) =

ord (f)+ ord (g) : But the following lemma shows a deviation for LA-ring R [Xs; s 2 S] of LA-

semigroup (Q+0 ; �) = S over LA-ring R:

Proposition 109 Let R be an LA-ring with left identity and f; g 2 R [Xs; s 2 S] such that

f (X) = f0+f1X
a1
b1 +:::+fm�1X

am�1
bm�1 +fmX

am
bm and g (X) = g0+g1X

c1
d1 +:::+gn�1X

cn�1
dn�1 +

gnX
cn
dn :

(1) If R is an LA-integral domain, then deg (f � g) = deg (g) �(deg (f))�1 if (deg (f))�1 >

1 and deg (f � g) > deg (g) � (deg (f))�1 if (deg (f))�1 < 1:
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(2) If R is not LA-integral domain, then deg (f � g) < deg (g) � (deg (f))�1 if bm�1am�1
> 1

and deg (f � g) > deg (g) � (deg (f))�1 if bm�1am�1
< 1:

Proof. (1) As R is an LA-integral domain, so for fm 6= 0; gn 6= 0; fm � gn 6= 0:

f (X)� g (X) = f0g0 + f1g0X
a1
b1 + f0g1X

c1
d1 + :::+ fmgnX

am
bm
� cn
dn :

As
ct
dt

<
cn
dn
; where t = 1; 2; :::; n� 1: So am

bm
� ct
dt
<
am
bm

� cn
dn

if
bm
am

> 1: Hence deg (f � g) = am
bm

� cn
dn
=
cn
dn
� bm
am

= deg (g) � (deg (f))�1 :

Now for t = 1; 2; :::; n� 1; ct
dt
<
cn
dn
implies

am
bm

� ct
dt
>
am
bm

� cn
dn

if
bm
am

< 1 so, deg (f � g) > am
bm

� cn
dn
=
cn
dn
� bm
am

= deg (g) � (deg (f))�1 if bm
am

< 1:

(2) If R is not an LA-integral domain, then there is a possibility that for fm 6= 0; gn 6= 0;

fm � gn = 0:

As
am�1
bm�1

� ck
dk

<
am�1
bm�1

� cn�1
dn�1

; where k = 1; 2; :::; n� 2:

Hence deg (f � g) =
am�1
bm�1

� cn�1
dn�1

<
am
bm

� cn
dn

=
cn
dn
� bm
am

= deg (g) � (deg (f))�1 :

Thus deg (f � g) < deg (g) � (deg (f))�1 :

Now
am�1
bm�1

� cn�1
dn�1

>
am
bm

� cn
dn
=
cn
dn
:
bm
am

Thus in this case, deg (f � g) > deg (g) � (deg (f))�1 if bm�1
am�1

< 1:

Remark 110 There could be two possibilities for deg (f � g) :

(i) If R is an LA-integral domain, ambm � cn
dn
< am

bm
or am

bm
� cn
dn
< cn

dn
; then in this case,

deg (f � g) < deg (f) or deg (f � g) < deg (g).
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(ii) If R is not an LA-integral domain am�1bm�1
� cndn <

am
bm
or cndn ; then in this case, deg (f � g) <

deg (f) or deg (f � g) < deg (g) :

Remark 111 If we take an LA-semigroup other than (Q+0 ; �); then the results for degree and

order will be di¤erent from those of (Q+0 ; �):

4.2.1 Main Results

In this section we generalize the results as established in �rst section of this chapter. Speci�cally,

we show the necessary and su¢ cient condition for an LA-ring R [Xs; s 2 S] to be an LA-integral

domain. We also discuss the homomorphisms of LA-rings.

Following external direct sum of semigroups as in [13, Page 18], we de�ne external direct

sum of LA-semigroups (S; �) and (T;#) as S�T = f(s; t) : s 2 S; t 2 Tg ; whereas the binary

operation in S�T is de�ned as (s1; t1)~(s2; t2) = (s1 � s1; t1#t2) for s1; s2 2 S and t1; t2 2 T:

A mapping ' of an LA-ring (R;+; �) into an LA-ring (R0;+; �) is called a homomorphism

if ' (a+ b) = ' (a) + ' (b) and ' (a � b) = ' (a) � ' (b) and for the ideal I of R; the mapping

� : R ! R=I de�ned as � (a) = a + I is called the natural epimorphism of LA-ring R onto

R=I. Let � be an epimorphism of an LA-ring R to an LA-ring R0; then R=Ker� ' R0.

The following is a generalized form of Theorem 99 of �rst section.

Theorem 112 LetR be an LA-ring and S; T be LA-semigroups. Then R
�
X(s;t); (s; t) 2 S � T

�
'

(R [Xs; s 2 S])(
�
Xt; t 2 T

�
); where S � T the is external direct sum of LA-Semigroups S and

T .

Proof. Here we regard the elements of LA-ring of S (respectively of T ) over R as �nitely

nonzero functions from the LA-semigroup S (respectively LA-semigroup T ) into LA-ring R.

Assume that (R [Xs; s 2 S])(
�
Xt; t 2 T

�
) = A: De�ne � : A ! R

�
X(s;t); (s; t) 2 S � T

�
as follows; if f 2 A and (s; t) 2 S�T , then [� (f)] (s; t) = [f (t)] (s), where f (t) 2 R[Xs; s 2

S] and f : T ! R[Xs; s 2 S]; which is well-de�ned map. Clearly � is surjective because if h 2

R
�
X(s;t); (s; t) 2 S � T

�
; then the element f 2 A de�ned by [f (t)] (s) = h (s; t) is such that
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[� (f)] (s; t) = [f (t)] (s) = h (s; t) :

Now Suppose f 6= g:

Then f (t) 6= g (t) for some t 2 T:

[f (t)] (s) 6= [g (t)] (s) for some s 2 S; t 2 T

� (f) (s; t) 6= �(g)(s; t)

� (f) 6= �(g):

Thus � is one-one. Let f; g 2 A and (s; t) 2 S � T:

[� (f + g)] (s; t) = [(f + g) (t)] (s) = [f (t) + g (t)] (s)

= [f (t)] (s) + [g (t)] (s) = [� (f)] (s; t) + [� (g)] (s; t)

= [�(f) + � (g)] (s; t) .

Now consider

[� (f � g)] (s; t) = [(f � g) (t)](s) = [
X
a�b=t

(f (a) � g (b))] (s)

=
X
a�b=t

(
X
c�d=s

(f (a)) (c)) � ((g (b)) (d))

=
X

(c�d;a�b)=(s;t)
(f (a)) (c)) � ((g (b)) (d)

=
X

(c�a)+(d�b)=(s;t)
� (f) (c; a) � � (g) (d; b)

= [� (f)� �(g)] (s; t) for all (s; t) 2 S � T:

Thus � is an isomorphism.

Corollary 113

R[X(r;s); (r; s) 2
�
Q+0
�ILAS � �Q+0 �ILAS ] ' (R hXr; r 2

�
Q+0
�ILASi

)(
h
Xs; s 2

�
Q+0
�ILASi
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By [61, Page 332], a semigroup S is said to be m-torsion free if for any x; y 2 S there

exists m � 1 with xm = ym; then x = y. We extend this for LA�-semigroup with left identity

e.

De�nition 114 An LA�-semigroup (S; �) with left identity e is said to be an M -torsion free

if for all x; y 2 S there exists a subset M of Z+ such that 1 � m 2M with xm = ym implies

x = y:

Example 115 (Q+0 ; �) is an LA�-semigroup with left identity 1; de�ned as

a � b = 0 if a = 0 or b = 0;

= b � a�1 if a 6= 0 and b 6= 0;

is an O-torsion free where O is the set of odd positive integers. For this, consider m = 3,

Let x3 = y3: As (Q+0 ; �) is an LA�-semigroup, so x2 � x = y2 � y: Now as for all x 2 Q+0 ;

x2 = 1; so 1�x = 1�y: This implies x = y: Hence (Q+0 ; �) is an O-torsion free LA�-semigroup.

Similarly (Z; �) ; an LA�-semigroup with left identity 0 de�ned as a � b = b� a; is an O-torsion

free where O is a the set of odd positive integers.

The following is a generalized form of Theorem 102, proved in �rst section.

Theorem 116 Let R be an LA-ring with left identity and let (S; �) be an LA�-semigroup.

Let R [Xs; s 2 S] be an LA-ring of S over R. Then R [Xs; s 2 S] is an LA-integral domain if

and only if R is an LA-integral domain and S is an M -torsion free and cancellative.

Proof. Assume that R is an LA-integral domain. Now S is an M -torsion free and cancellative

if and only if S admits a total order � compatible with its operation (see chapter 2, section

one). Let f; g 2 R [Xs; s 2 S] n f0g such that f =
Pn
i=1 fiX

si ; g =
Pn
i=1 giX

ti ; where

s1 � s2 � ::: � sn and t1 � t2 � ::: � tn: If f1 6= 0; g1 6= 0; then s1 � t1 2 Supp(f � g) and

f1g1X
s1�t1 is the corresponding term in f � g. In particular f:g 6= 0 hence R [Xs; s 2 S] is an

LA-integral domain. Conversely, assume that R [Xs; s 2 S] is an LA-integral domain. On the

60



contrary, suppose that R is not an LA- integral domain then for a; b 2 Rn f0g ; we have a:b = 0:

If s 2 S; then aXs�bXs = 0; where aXs 6= 0; bXs 6= 0: This implies that R [Xs; s 2 S] is not

an LA-integral domain. Similarly, if S is not cancellative and s; t; u 2 S are such that s�t = s�u

but t 6= u; then for r 2 Rn f0g ; we have rXs�
�
rXt � rXu

�
= 0; where rXs and rXt� rXu

are nonzero. Hence R [Xs; s 2 S] is not an LA-integral domain. Finally, assume that R is an

LA-integral domain and that S is cancellative but not an M -torsion free. Let s; t 2 S be such

that s 6= t while sm = tm for some m 2 M � Z+ and choose k 2 Z+ minimal in M so that

sk = tk: If 0 6= r 2 R, then 0 = (r2Xsk�r2Xtk) = (rXs�rXt)�(
Pk�1
i=0 rX

s(k�i�1)�it): Since

S is cancellative the choice k implies that ts(k�i1�1)�i1t 6= s(k�i2�1)�i2t for 0 � i1 < i2 � k�1:

Thus
Pk�1
i=0 rX

s(k�i�1)�it 6= 0: Hence again R [Xs; s 2 S] is not an LA-integral domain.

The next result generalizes Theorem 103 and contains some basic information concerning

homomorphisms of LA-rings.

Theorem 117 Let � : R �! R0 be an LA-ring homomorphism. Let A = ker� and � :

S �! S0 be an LA-semigroup homomorphism, where S; S0 are LA-semigroups with 0 adjoined

to them. Then the following statements holds;

(1) �� : R [Xs; s 2 S] �! R0 [X
s; s 2 S] is de�ned as ��(

Pn
i=1 riX

si) =
Pn
i=1 � (ri)X

si ;

is LA-ring homomorphism such that ker�� = A[Xs; s 2 S] = ker� [Xs; s 2 S]. �� is surjective

if � is surjective.

(2) �� : R[Xs; s 2 S] ! R[Xs; s 2 S0] de�ned as ��(
Pn
i=1 riX

si) =
Pn
i=1 riX

�(si); is

surjective and ker�� = I: The ideal of R[Xs; s 2 S] generated by�
rXa � rXb : � (a) = � (b) ; r 2 R

	
. �� is surjective if � is surjective.

(3) � : R [Xs; s 2 S]! R0 [X
s; s 2 S0] de�ned as �(

Pn
i=1 riX

si) =
Pn
i=1 � (ri)X

�(si); is

an LA-ring homomorphism such that ker � = ker�� + ker�� = A[Xs; s 2 S] + I. Then � is

surjective if � and � are surjective.

Proof. Same as [13, Theorem 7.2].

The congruences on LA-semigroups have been discussed in [42].

The following generalizes Corollary104.
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Corollary 118 Assume that A is an ideal of the LA-ring R and that � is a congruence

on an LA-semigroup S = S [ f0g : Let I =
�
rXa � rXb : � (a) = � (b) ; r 2 R

	
; � : S !

S= � is a canonical epimorphism: Then R [Xs; s 2 S] =A [Xs; s 2 S] ' R=A [Xs; s 2 S] and

R [Xs; s 2 S] =I ' R [Xs; s 2 S= �] ; where the ideal I is called the kernel ideal of congruence.

Proof. As � : S ! S= � is de�ned by � (s) = [s] : So we de�ne �� : R [Xs; s 2 S] !

R [Xs; s 2 S= �] as ��(
Pn
i=1 riX

si) =
Pn
i=1 riX

�(si) =

nX
i=1

riX
[si] which is an LA-ring epi-

morphism. Therefore,R [Xs; s 2 S] = ker�� ' R [Xs; s 2 S= �] :

Similarly we may de�ne a map �� : R [Xs; s 2 S]! R=A [Xs; s 2 S] by ��(
Pn
i=1 riX

si) =Pn
i=1 �(ri)X

si ; where � : R ! R=A is a surjective LA-ring homomorphism de�ned as

� (r) = r+A:�� is also LA-ring epimorphism. Hence R [Xs; s 2 S] = ker�� ' R=A [Xs; s 2 S] :

It can be shown that ker�� = A [Xs; s 2 S] : Therefore, R [Xs; s 2 S] =A [Xs; s 2 S] '

R=A [Xs; s 2 S] :

De�nition 119 An ideal P of an LA-ring R is called prime if and only if AB � P implies

that either A � P or B � P; where A and B are ideals in R:

Corollary 120 Let A be a proper ideal of LA-ring R; then A [Xs; s 2 S] is prime ideal in

R [Xs; s 2 S] if and only if A is prime ideal in R and S is cancellative M -torsion free LA-

semigroup.

Proof. Proof is straight forward.
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Chapter 5

�-AG-groupoids

Introduction
In this study, we have introduced a non-commutative and a non-associative structure, which

we named as �-AG-groupoids. �-AG-groupoids are a direct generalization of AG-groupoids

which have been studied by several researchers [41, 42, 43, 46, 47, 50, 57, 58, 69]. The

motivation behind this study is an article ; On �-semigroups, by M. K. Sen [63], published in

1981. �-semigroups are a generalization of semigroups. Many classical notions of semigroups

were extended to �-semigroups.

In this chapter, we present our work into two sections. In section one, we have de�ned �-AG-

groupoids and also constructed some examples. �-AG-groupoids are in fact a generalization

of AG-groupoids. We discussed some basic characteristics of this concept and established

some important results which have been used for further developments in the theory of �-

AG-groupoids. Moreover, we investigated the concept of �-ideals and M-systems in �-AG-

groupoids. In second section, we characterized regular and intra-regular �-AG-groupoids by the

properties of �-ideals.

5.1 The characteristics of elements of �-AG-groupoids

In this section, we extend some properties of AG-groupoids to �-AG-groupoids and correlate

�-AG-groupoids and �-semigroups [63, 64].

We initiate with the following de�nition:

De�nition 121 Let S and � be nonempty sets. We call S to be a �-AG-groupoid if there



exists a mapping S � � � S ! S; written (a; 
; c) by a
c; such that S satis�es the identity

(a
b)�c = (c
b)�a for all a; b; c 2 S and 
; � 2 �:

Example 122 An AG-groupoid is �-AG-groupoid. Indeed, let S be an arbitrary AG-groupoid

and � any nonempty set. De�ne a mapping S � �� S ! S; by a
b = ab for all a; b 2 S and


 2 �: It is easy to see that S is a �-AG-groupoid. Indeed, consider

(a
b)�c = (ab)�c = (ab)c = (cb)a:

Now take (c
b)�a = (cb)�a = (cb)a:

Hence (a
b)�c = (c
b)�a for all a; b; c 2 S and 
; � 2 �:

Thus every AG-groupoid is a �-AG-groupoid.

Example 123 Let � = f1; 2; 3g. De�ne a mapping Z � � � Z ! Z by a
b = b � 
 � a

for all a; b 2 Z and 
 2 �; where ��� is a usual subtraction of integers. Then Z is a �-AG-

groupoid. Indeed, (a
b)�c = (b � 
 � a)�c = c � � � (b � 
 � a) = c � � � b + 
 + a: and

(c
b)�a = (b� 
� c)�a = a��� (b� 
� c) = a��� b+ 
+ c = c��� b+ 
+ a: Hence

(a
b)�c = (c
b)�a for all a; b; c 2 Z and 
; � 2 �:

Example 124 In general a �-AG-groupoid S is not an AG-groupoid but if we de�ne a�b = a
b

for all a; b 2 S and 
 a �xed element in �: Then it can be easily veri�ed that (S; �) is an AG-

groupoid and we denote this by S
 :

An element e 2 S is called a left identity of �-AG-groupoid if e
a = a for all a 2 S and 
 2

�: Let G and � be non-empty sets. If there exists a mapping G���G! G; written (x; 
; y)

by x
y; G is called a �-medial if it satis�es the identity (x�y)�(l
m) = (x�l)�(y
m) for all

x; y; l;m 2 G and �; �; 
 2 �; and if G satis�es the identity (x�y)�(l
m) = (m�y)�(l
x);

then it is called �-paramedial. A �-AG-groupoid S is said to be commutative if for any a; b 2 S;

there exists � 2 � such that a�b = b�a:Let G and � be non-empty sets.

Theorem 125 If a �-AG-groupoid S has a left identity e; then it is unique.
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Proof. Suppose there exists another left identity f . Then e
f = f and f
e = e: Now

f = e
f = (e
e)
f = (f
e)
e = e
e = e:

Theorem 126 In a �-AG-groupoid, a right identity becomes a left identity.

Proof. Let S be a �-AG-groupoid with right identity e; then a
e = a for all a 2 S and 
 2 �:

Consider e
a = (e
e)
a = (a
e)
e = a
e = a: Hence this implies that e is also a left identity.

Theorem 127 Every �-AG-groupoid is a �-medial.

Proof. Let S be a �-AG-groupoid and for all x; y; l;m 2 S and �; �; 
 2 �; using de�ni-

tion of �-AG-groupoid repeatedly we have (x�y)�(l
m) = [(l
m)�y]�x = [(y
m)�l]�x =

(x�l)�(y
m):

Theorem 128 If a �-AG-groupoid S has left identity e; then S is �-paramedial.

Proof. Consider

(x�y)�(l
m) = (x�l)�(y
m) = [e�(x�l)]�(y
m)

= [(y
m)�(x�l)]�e = [(y
x)�(m�l)]�e

= [e�(m�l)]�(y
x) = (m�l)�(y
x) = (m�y)�(l
x).

Hence S is a �-paramedial.

Theorem 129 In a �-AG-groupoid with left identity e, associativity and commutativity imply

each other.

Proof. Suppose S be a �-AG-groupoid with left identity e and let S be associative, then for

all a; b 2 S and � 2 �: Consider

a�b = e
(a�b) = (e
a)�b = (b
a)�e = b
(a�e) = (e�b)
(a�e)

= (e�a)
(b�e) = a
(b�e) = (a
b)�e = (e
b)�a = b�a:
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Thus S is commutative. Conversely let S be commutative and let for any a; b; c 2 S, there

exists � 2 �: Then consider a�(b�c) = (b�c)�a = (c�b)�a = (a�b)�c: Hence S is associative.

Theorem 130 In a �-AG-groupoid S, the following statements are equivalent:

(1) (a�b)�c = b�(c�a)

(2) (a�b)�c = b�(a�c)

Proof. (1) ) (2); a�(b�c) = (b�c)�a = (c�b)�a = (a�b)�c: (2) ) (1), (a�b)�c =

(c�b)�a = b�(c�a)

Theorem 131 Let S be a �-AG-groupoid with left identity e: If for any a; b; c; d 2 S; there

exists � 2 �; then a�b = c�d implies b�a = d�c:

Proof. b�a = (e�b)�a = (a�b)�e = (c�d)�e = (e�d)�c = d�c:

Lemma 132 If S is a �-AG-groupoid with left identity e; then (a�b)2 = (b�a)2 for all a; b 2 S

and �; � 2 �:

Proof. (a�b)2= (a�b)�(a�b) = (a�a)�(b�b) = (b�a)�(b�a) = (b�a)2:

De�nition 133 A �-AG-groupoid S is said to be a left cancellative if for all a; b; c 2 S and

any � 2 �; if c�a = c�b implies a = b:

Theorem 134 (1) A left cancellative �-AG-groupoid is also a right cancellative.

(2) A right cancellative �-AG-groupoid S with left identity e is a left cancellative.

Proof. (1) Let S be a left cancellative �-AG-groupoid. Now for all a; b; c 2 S and �; � 2 �;

suppose a�c = b�c: Let t 2 S be any �xed element. Then (a�c)�t = (b�c)�t implies

(t�c)�a = (t�c)�b: So a = b:

(2) Let S be a right cancellative �-AG-groupoid S with left identity e and let a�x = a�y.

Now by theorem 131, a�x = a�y implies x�a = y�a: As S is right cancellative, therefore

x = y and hence a left cancellative.
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In the following we have an interesting result which may be useful in further development

in �-AG-groupoids.

Theorem 135 Let S be a �-AG-groupoid with left identity e; then a�(b�c) = b�(a�c) for

all a; b; c 2 S and �; � 2 �:

Proof. For all a; b; c 2 S and �; �; 
 2 �; consider a�(b�c) = (e
a)�(b�c) = (e
b)�(a�c) =

b�(a�c):

5.1.1 Relationship between �-AG-groupoids and �-semigroups

We have established some interesting results which show a relationship between �-AG-groupoids

and �-semigroups.

Theorem 136 A �-AG-groupoid is a �-semigroup if and only if a�(b�c) = (c�b)�a for all

a; b; c 2 S and �; � 2 �:

Proof. Let S be a �-AG-groupoid and let a�(b�c) = (c�b)�a holds for all a; b; c 2 S

and �; � 2 �: a�(b�c) = (c�b)�a = (a�b)�c: This implies that S is a �-semigroup. Now

conversely let S is a �-semigroup, then (a�b)�c = a�(b�c); Also (a�b)�c = (c�b)�a: Hence

a�(b�c) = (c�b)�a.

Theorem 137 If a �-AG-groupoid S has a right identity e; then S is a commutative �-

semigroup with identity.

Proof. Let S be a �-AG-groupoid with right identity e; then by theorem 126, e is also a left

identity in S: Let for any a; b 2 S; there exists � 2 �: Then a�b = (e�a)�b = (b�a)�e = b�a:

Hence S is commutative. Further consider (a�b)�c = (c�b)�a = (b�c)�a = a�(b�c): Thus S

is a commutative �-semigroup with identity.

Theorem 138 A �-AG-groupoid S with left identity e is a commutative �-semigroup with

identity if and only for any a; b; c 2 S; there exists � 2 � such that a�(b�c) = (c�b)�a:
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Proof. Suppose S is a �-AG-groupoid with left identity e such that a�(b�c) = (c�b)�a:

Consider a�e = a�(e�e) = (e�e)�a = e�a = a. Which implies e is the right identity of S

and hence by theorem 137, S is a commutative �-semigroup with identity. Conversely suppose

S is a commutative �-semigroup with identity. Then for all a; b; c 2 S and � 2 �; we have

a�(b�c) = (a�b)�c = c�(a�b) = c�(b�a) = (c�b)�a:

The following corollary is a consequence of theorems 129 and 136.

Corollary 139 For a �-AG-groupoid S; the following are equivalent:

(1) Associativity

(2) Commutativity

(3) a�(b�c) = (c�b)�a for all a; b; c 2 S and �; � 2 �:

5.1.2 �-Ideals in �-AG-groupoids

In this study, we have discussed �-ideals and �-bi-ideals of �-AG-groupoids which are in fact

a generalization of ideals and bi-ideals of AG-groupoids (for a suitable choice of �). we have

studied some characteristics of �-ideals and �-bi-ideals of �-AG-groupoids. Speci�cally, we

have proved that a �-AG-groupoid S with left identity e is fully �-prime if and only if every

�-ideal in S is �-idempotent and the set of �-ideals of S is totally ordered under inclusion.

We also proved the equivalent conditions for �-bi-ideals of S that is (1) every �-bi-ideal of

S is �-idempotent, (2) H \ K = H�K, where H and K are any �-bi-ideals of S and (3)

the �-ideals of S form a semilattice (LS ;^), where H ^ K = H�K: Also we have shown

that every �-bi-ideal of a �-AG-groupoid S with left identity e is a �-prime if and only if it is

�-idempotent and the set of �-bi-ideals of S is totally ordered under inclusion. In the end we

have established some results regarding m-systems in �-AG-groupoids

We initiated with the following lemma:

Lemma 140 If S is a �-AG-groupoid with left identity e then S�S = S and S = e�S = S�e:

Proof. Let x 2 S; then for any 
 2 �; we have x = e
x 2 S�S and so S � S�S. Hence

S = S�S: Now as e is left identity in S, so for any 
 2 �; it is obvious that e�S = S: Now
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consider S�e = (S�S)�e = (e�S)�S = S�S = S: Hence S = e�S = S�e:

De�nition 141 Let S be a �-AG-groupoid. A nonempty subset M of S is called a sub�-AG-

groupoid of S if a
b 2 M for all a; b 2 M and 
 2 �: A sub�-AG-groupoid I of S is called

a left(right) �-ideal of S if S�I � I (I�S � I) and is called an �-ideal if it is left as well as

right �-ideal.

Proposition 142 If a �-AG-groupoid S has a left identity e; then every right �-ideal is a left

�-ideal.

Proof. Let I be a right �-ideal of S. Then for i 2 I; s 2 S and � 2 �; consider s�i =

(e
s)�i = (i
s)�e 2 I. Hence I is a left �-ideal.

Lemma 143 If I is a left �-ideal of a �-AG-groupoid S with left identity e, and if for any

a 2 S; there exists 
 2 �; then a
I is a left �-ideal of S:

Proof. Let I is a left �-ideal of S,consider s
(a
i) = (e
s)
(a
i) = (e
a)
(s
i) =

a
(s
i) 2 a
I: Hence a
I is a left �-ideal of S:

Lemma 144 If I is a right �-ideal of a �-AG-groupoid S with left identity e, then I�I or a

�-ideal of S:

Proof. Let x 2 I�I; then x = i
j where i; j 2 I and 
 2 �: Now consider x�s = (i
j)�s =

(s
j)�i 2 I�I: This implies that I�I is a right �-ideal and hence by proposition 142, I�I is

a �-ideal of S:

Corollary 145 If I is a left �-ideal of S then I�I becomes a �-ideal of S:

De�nition 146 A �-ideal I of S is called minimal �-ideal, if it does not properly contain any

�-ideal of S:

Lemma 147 A proper �-ideal M of a �-AG-groupoid S with left identity e, is minimal if and

only if M = a2�M; for all a 2 S:
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Proof. Assume that M is a minimal �-ideal of S. Now as M�M is a �-ideal of S so

M = M�M: It is easy to see that a2�M is a �-ideal and is contained in M: But as M is

minimal so M = a2�M: Conversely let M = a2�M; for all a 2 S: On contrary let K be a

minimal �-ideal of S which is properly contained in M containing a; the M = a2�M � K;

which is a contradiction.

A �-ideal P of �-AG-groupoid S is said to be �-prime if A�B � P implies that either

A � P or B � P; for all �-ideals A and B in S: A �-ideal P is called �-semiprime if I�I � P

implies that I � P; for any �-ideals I of S: If every �-ideal of �-AG-groupoid S is �-semiprime,

then S is said to be fully �-semiprime and if every �-ideal is �-prime, then S is called fully

�-prime. A �-ideal I of a �-AG-groupoid S is called a �-idempotent if I�I = I and if every

�-ideal of S is �-idempotent then S is called fully �-idempotent. The set of �-ideals of �-AG-

groupoid S is said to be totally ordered under inclusion if for all �-ideals H;K; either H � K

or K � H and we denote it by �-ideal(S).

Theorem 148 A �-AG-groupoid S with left identity e is fully �-prime if and only if every

�-ideal in S is �-idempotent and �-ideal(S) is totally ordered under inclusion.

Proof. Let S is fully �-prime. Let I be a �-ideal in S. Then by lemma 144, I�I will also be

a �-ideal in S and hence I�I � I: Also I�I � I�I: But as S is fully �-prime, so it implies

that I � I�I: Thus I�I = I and hence I is �-idempotent. Now let H; K be �-ideals of S

and H�K � H; H�K � K which imply that H�K � H \K: Now as H \K is prime, so

H � H \K or K � H \K which further imply that H � K or K � H: Hence �-ideal(S)

is totally ordered under inclusion. Conversely, let every �-ideal is �-idempotent and �-ideal(S)

is totally ordered under inclusion. Let I; J and P be �-ideals in S with I�J � P such that

I � J: As I is �-idempotent, so I = I�I � I�J � P which imply that S is fully �-prime.

De�nition 149 If S is a �-AG-groupoid S with left identity e, then the principal left �-ideal

generated by x is de�ned as hxi = S�x = fs
x : s 2 Sg ; for all x 2 S and 
 2 �:

De�nition 150 Let P be a left �-ideal of a �-AG-groupoid S; then P is said to be a qausi

�-prime if for left �-ideals A and B of S such that A�B � P; we have A � P or B � P
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and P is called qausi �-semiprime if for any left �-ideal of S such that I�I � P implies that

I � P:

Theorem 151 If S is a �-AG-groupoid S with left identity e, then a left �-ideal P of S is

qausi �-prime if and only if a�(S�b) � P implies a 2 P or b 2 P; for all a; b 2 S and any

�; � 2 �:

Proof. Let P be a qausi �-prime in �-AG-groupoid S with left identity e: Assume that

a�(S�b) � P; then S
(a�(S�b)) � S�P � P: So by lemma 140, �-medial and �-paramedial,

we get

S
(a�(S�b)) = (S�S)
(a�(S�b)) = (S�a)
(S�(S�b)) = (S�a)
((S�S)�(S�b))

= (S�a)
((b�S)�(S�S)) = (S�a)
((b�S)�S) = (S�a)
((S�S)�b)

= (S�a)
(S�b):

This implies that hai
hbi � S�P � P: But P is qausi �-prime, hence either a 2 P or

b 2 P: Conversely, assume that A�B � P , where A and B are left �-ideals of S such that

A * P: Then there exists x 2 A such that x =2 P: Now x�(S�y) � A�(S�B) � A�B � P;

for all y 2 B and �; � 2 �: So by hypothesis, y 2 P for all y 2 B implies that B � P: Hence

P is qausi �-prime.

Corollary 152 If S is a �-AG-groupoid with left identity e; then a left �-ideal P of S is qausi

�-semiprime if and only if a�(S�a) � P implies a 2 P , for all a 2 S and any �; � 2 �:

Lemma 153 If I is a proper right(left) �-ideal of a �-AG-groupoid S with left identity e; then

e =2 I:

Proof. On contrary let e 2 I: Then for any 
 2 �; we have S = e
S 2 I�S � I and

consequently I = S: A contradiction arises because I is proper �-ideal of S: Hence e =2 I:

De�nition 154 Let S be a �-AG-groupoid. A sub �-AG-groupoid B of S is said to be

�-bi-ideal of S if (B�S)�B � B:
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Example 155 Let S = f1; 2; 3; 4; 5g : De�ne a binary operation ��� in S as follows:

� 1 2 3 4 5

1 x x x x x

2 x x x x x

3 x x x x x

4 x x x x x

5 x x 3 x x

Then (S; �) becomes an AG-groupoid, where x 2 f1; 2; 4g : Now let � = f1g and de�ne a

mapping S � �� S ! S; by

a�b = ab for all a; b 2 S. Then it is easy to see that S is a �-AG-groupoid. If we take

B = f3; xg ; then B becomes

�-bi-ideal of S:

Remark 156 Example 155 shows that �-bi-ideals in �-AG-groupoids are in fact a generaliza-

tion of bi-ideals in AG-groupoids (for a suitable choice of �).

Proposition 157 Let A be a left �-ideal and B be a bi-�-ideal of a �-AG-groupoid S with

left identity e, then B�A and (A�A)�B are �-bi-ideals of S:

Proof. To show thatB�A is a �-bi-ideal of S; let consider ((B�A)�S)�(B�A) = ((S�A)�B)�(B�A) =

((B�A)�B)�(S�A) � ((B�S)�B)�A � B�A: Also by �-medial law, it can be veri�ed that

(B�A)�(B�A) = (B�B)�(A�A) � B�A: Hence B�A is a �-bi-ideal of S: Now by corollary

145, �-medial law and the fact that S�S = S; we have

(((A�A)�B)�S)�((A�A)�B) = (((A�A)�S)�(B�S))�((A�A)�B)

� ((A�A)�(B�S))�((A�A)�B)

= ((A�A)�(A�A))�((B�S)�B) � (A�A)�B:

Hence (A�A)�B is a �-bi-ideal of S:
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Proposition 158 The product of two �-bi-ideals of a �-AG-groupoid S with left identity e

is again a �-bi-ideal of S:

Proof. Let H and K be two �-bi-ideals of S: Then using �-medial law and S�S = S; we get

((H�K)�S)�(H�K) = ((H�K)�(S�S))�(H�K) = ((H�S)�(K�S))�(H�K) = ((H�S)�H)�((K�S)�K)

� H�K: Hence H�K is a �-bi-ideal of S:

Theorem 159 Let S be a �-AG-groupoid andHi a �-bi-ideal of S for all i 2 I: If \i2IHi 6= ?;

then \i2IHi is a �-bi-ideal of S:

Proof. Let S be a �-AG-groupoid and Hi a �-bi-ideal of S for all i 2 I: Assume that

\i2IHi 6= ?: Let x; y 2 \i2IHi; s 2 S and �; � 2 �: Now x; y 2 Hi for all i 2 I and since

for each i 2 I; Hi is a �-bi-ideal of S, so x�y 2 Hi and (x�s)�y 2 (Hi�S)�Hi � Hi for all

i 2 I: Therefore x�y 2 \i2IHi and (x�s)�y 2 \i2IHi: Hence \i2IHi is a �-bi-ideal of S for

all i 2 I:

Theorem 160 If B is �-idempotent �-bi-ideal of a �-AG-groupoid S with left identity e, then

B is a �-ideal of S:

Proof. Consider B�S = (B�B)�S = (S�B)�B = (S�(B�B))�B = ((B�B)�S)�B =

(B�S)�B � B: Which implies that B is a right �-ideal and so is left �-ideal of S: Hence B

is a �-ideal of S:

Lemma 161 If B is a proper �-bi-ideal of a �-AG-groupoid S with left identity e, then e =2 B:

Proof. On contrary let e 2 B: Now consider s�b = (e
s)�b 2 B. Also for any s 2 S and

any 
 2 �; we have s = (e
e)
s = (s
e)
e 2 (S�B)�B � B which implies that S � B: A

contradiction to the hypothesis. Hence e =2 B:

Proposition 162 If H and K are �-bi-ideals of a �-AG-groupoid S with left identity e; then

the following assertions are equivalent:

(1) every �-bi-ideals of S is �-idempotent,

73



(2) H \K = H�K,

(3) the �-ideals of S form a semilattice (LS ;^), where H ^K = H�K:

Proof. (1) ) (2), By lemma 160, it is obvious that H�K � H \K: For reverse inclusion,

as H \ K � H and also H \ K � K; so (H \ K)�(H \ K) � H�K which implies that

H \K � H�K: Hence H \K = H�K:

(2)) (3), H^K = H�K = H\K = K\H = K^H: AlsoH^H = H�H = H\H = H:

Similarly associativity follows. Hence (LS ;^) is a semilattice. (3)) (1), H = H^H = H�H:

De�nition 163 A �-bi-ideal P of a �-AG-groupoid S is said to be prime �-bi-ideal if for all

�-bi-ideals A and B of S; A�B � P implies either A � P or B � P:

De�nition 164 The set of �-bi-ideals of S is totally ordered under inclusion if for all �-bi-

ideals I, J either I � J or J � I:

The following theorem gives necessary and su¢ cient conditions for a �-bi-ideal to be a

�-prime ideal.

Theorem 165 Every �-bi-ideal of a �-AG-groupoid S with left identity e is a �-prime if and

only if it is �-idempotent and the set of �-bi-ideals of S is totally ordered under inclusion.

Proof. Let P be a �-bi-ideal of �-AG-groupoid S and assume that each �-bi-ideal of S is

�-prime. Since P�P is a �-ideal, so it is �-prime which implies that P � P�P; hence P is

�-idempotent. Now let A and B be any �-bi-ideals of S: As A \B is also a �-bi-ideal, so by

hypothesis A \ B is �-prime. Now by lemma 160, either A � A \ B or B � A \ B which

further implies that either A � B or B � A: Hence the set of bi-�-ideals of S is totally ordered

under inclusion. Conversely, let every �-bi-ideal of S is �-idempotent and the set of �-bi-ideals

of S is totally ordered under inclusion. Let A; B and P are �-bi-ideals of S with A�B � P

and also assume that A � B: Now as A is �-idempotent, so A = A�A � A�B � P: Hence

every �-bi-ideal of a �-AG-groupoid S with left identity e is a �-prime.
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A nonempty subset A of a �-AG-groupoid S is called an M -system if for a; b 2 A there

exist r 2 S and �; � 2 � such that a�(r�b) 2 A and A is called P -system if for all a 2 A; there

exist r 2 S and �; � 2 � such that a�(r�a) 2 A: Let I be a left �-ideal of a �-AG-groupoid

S: Then I is said to be a quasi-�-prime if H�K � I implies that either H � I or K � I;

where H and K are any left �-ideals of S: If for any left �-ideal H of S such that H�H � I;

we have H � I; then I is called quasi-�-semiprime.

Proposition 166 Let I be a left �-ideal of S with left identity e; then the following are

equivalent:

(1) I is quasi-�-prime ideal.

(2) H�K = hH�Ki � I implies that either H � I or K � I; where H and K are any

left �-ideals of S:

(3) If H * I and K * I then H�K * I; where H and K are any left �-ideals of S:

(4) If h; k are elements of S such that h =2 I and k =2 I; then hhi�hki * I:

(5) If h; k 2 S and �; � 2 � satisfying h�(S�k) � I; then either h 2 I or k 2 I:

Proof. (1), (2). Let I be a quasi-�-prime. Now by de�nition if H�K = hH�Ki � I, then

obviously it implies that either H � I or K � I for all left �-ideals H and K of S. Converse

is trivial. (2) , (3) is trivial. (1) ) (4). Let hhi�hki � I. Then either hhi � I or hki � I;

which implies that either h 2 I or k 2 I: (4)) (2). Let H�K � I: If h 2 H and k 2 K; then

hhi�hki � I and hence by hypothesis either h 2 I or k 2 I. This implies that either H � I or

K � I: (1), (5). Let h�(S�k) � I: Then S�(h�(S�k)) � S�I � I: Now consider

S�(h�(S�k)) = (S�S)�(h�(S�k))

= (S�h)�(S�(S�k)); by �-medial law

= (S�h)�((S�S)�(S�k))

= (S�h)�((k�S)�(S�S)); by �-paramedial law

= (S�h)((S�S)�k); by de�nition of �-AG-groupoid

= (S�h)(S�k) � I:
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Since S�h and S�k are left �-ideals for all h 2 H and k 2 K; hence either h 2 I or k 2 I:

Conversely, let H�K � I where H and K are any left �-ideals of S: Let H * I then there

exists l 2 H such that l =2 I: For all m 2 K, we have l�(S�m) � H�(S�K) � H�K � I:

This implies that K � I and hence I is quasi-�-prime ideal of S:

Proposition 167 A left �-ideal I of a �-AG-groupoid S with left identity e is quasi-�-prime

if and only if RnI is an M -system.

Proof. Suppose I is a quasi-�-prime ideal. Let a; b 2 SnI which implies that a =2 I and b =2 I:

So by proposition 166 a�(S�b) * I. This implies that there exist some r 2 S and �; � 2 �

such that a�(r�b) =2 I which further implies that a�(r�b) 2 SnI: Hence SnI is an M -system.

Conversely, let SnI is an M -system. Suppose a�(S�b) � I and let a =2 I and b =2 I: This

implies that a; b 2 RnI: Since RnI is an M -system so there exist r 2 R and �; � 2 � such

that a�(r�b) 2 RnI which implies that a�(S�b) * I. A contradiction. Hence either a 2 I or

b 2 I: This shows that I is a quasi-�-prime ideal.

Lemma 168 An M -system of elements of �-AG-groupoid S is a P -system.

Proof. Let A be a nonempty subset of S such that A is an M -system. Then for all a; b 2 A;

there exist an element r 2 S and �; � 2 � such that a�(r�b) 2 S: If we take b = a, then

a�(r�a) 2 S which implies that S is a P -system.

5.2 Some characterizations of regular and intra-regular �-AG-groupoids

In this section we have investigated the characterizations of regular �-AG-groupoids by the

properties of �-ideals.

De�nition 169 A �-AG-groupoid S is said to be a regular �-AG-groupoid if for each a in S

there exist x 2 S and �; � 2 � such that a = (a�x)�a:

Lemma 170 Every right �-ideal of a regular �-AG-groupoid is a �-ideal.
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Proof. Let S is a regular �-AG-groupoid and let I be its right �-ideal. Now for each s 2 S

there exist x 2 S and �; � 2 � such that s = (s�x)�s: If a 2 S and 
 2 �; then consider

s
a = ((s�x)�s)
a = (a�s)
(s�x) 2 I: Which implies that I is a left �-ideal. Hence I is a

�-ideal of S:

Lemma 171 Every regular �-AG-groupoid is fully �-idempotent.

Proof. Let S be a regular �-AG-groupoid and I be a �-ideal of S. It is always true that

I�I � I: Now if a 2 I; then as S is regular �-AG-groupoid, so there exists b 2 S and �; � 2 �

such that a = (a�b)�a 2 I�I: Thus I � I�I; and hence S is fully �-idempotent.

Lemma 172 If S is a regular �-AG-groupoid then H�K = H \K; where H is right �-ideal

and K is left �-ideal.

Proof. Let H and K be right and left �-ideals of S with H�K � H\K: Now let x 2 H\K;

then there exist y 2 S and �; � 2 � such that x = (x�y)�x 2 H�K: Hence H�K = H \K:

Theorem 173 A regular �-AG-groupoid S is fully �-prime if and only if �-ideal(S) is totally

ordered under inclusion.

Proof. Proof follows from theorem 148 and lemma 172.

De�nition 174 A �-ideal I of a regular �-AG-groupoid S is said to be strongly irreducible if

for �-ideals P and Q of S, P \Q � I implies that either P � I or K � I:

Theorem 175 Every �-ideal in a regular �-AG-groupoid S is �-prime if and only if it is

strongly irreducible.

Proof. Assume that P is a prime �-ideal of S: Then there exist �-ideals A and B in S such

that A�B � P: Now by lemma 172 A�B = A \ B implies that either A � P or B � P:

Hence P is strongly irreducible. Now conversely let every �-ideal of a regular �-AG-groupoid

S is strongly irreducible. Then for any �-ideals A and B of S; A \B � P implies that either

A � P or B � P: But by lemma 172, A�B = A \B: Hence P is a prime �-ideal of S:
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De�nition 176 A �-AG-groupoid S is said to be an anti-rectangular �-AG-groupoid if x =

(y�x)�y; for all x; y 2 S and �; � 2 �:

Proposition 177 If A and B are �-ideals of an anti-rectangular �-AG-groupoid S, then there

product is also a �-ideal.

Proof. Using �-medial law and S�S = S; we have (A�B)�S = (A�B)�(S�S) = (A�S)�(B�S) �

AB; and S�(A�B) = (S�S)�(A�B) = (S�A)�(S�B) � AB: Hence A�B is a �-ideal.

As a consequence, if I1; I2; I3; :::; In are �-ideals of S, then (:::((I1�I2)�I3)�:::�In) is

also a a �-ideal of S:

Theorem 178 Any subset of an anti-rectangular �-AG-groupoid S is left �-ideal if and only

if it is right �-ideal.

Proof. Let I be right �-ideal of S. Now for all x; y 2 S and �; �; 
 2 �; consider x
i =

((y�x)�y)
i = (i�y)
(y�x) 2 I: Conversely, assume that I is a left �-ideal, then i
x =

((y�i)�y)
x = (x�y)
(y�i) 2 I:

Lemma 179 If I is a �-ideal of an anti-rectangular �-AG-groupoid S; then

H�(a) = fx 2 S : (x�a)�x = x; for a 2 I and �; � 2 �g � I:

Proof. Let y 2 H�(a); then for any a 2 I and �; � 2 �; we have y = (y�a)�y 2 (S�I)�S �

I:

Proposition 180 If H and K are �-ideals of an anti-rectangular �-AG-groupoid S; then the

following assertions are equivalent:

(1) S is fully �-idempotent,

(2) H \K = H�K,

(3) The �-ideals of S form a semilattice (LS ;^), where H ^K = H�K:

78



Proof. The proof follows from proposition 162.

Theorem 181 Every �-ideal of an anti-rectangular �-AG-groupoid S is �-prime if and only

if it is �-idempotent and �-ideals(S) is totally ordered under inclusion.

Proof. The proof follows from theorem 148.

5.2.1 Quasi-�-ideals in �-AG-groupoids

Now we study quasi-�-ideals of �-AG-groupoids analogous to quasi-�-ideals in �-semigroups

[7].

De�nition 182 Let S be a �-AG-groupoid. A nonempty subset Q of S is called a quasi-�-

ideal of S if S�Q \Q�S � Q:

Remark 183 (1) Each quasi-�-ideal Q of �-AG-groupoid S is a sub�-AG-groupoid of S. In

fact, Q�Q � S�Q \Q� � Q:

(2) Every right �-ideal and every left �-ideal of a �-AG-groupoid S is a quasi-�-ideal of S:

The proof of the next theorem similar to the case of quasi-�-ideals of �-semigroups (see

[7]).

Theorem 184 Let S be a �-AG-groupoid and Qi a quasi-�-ideal of S for each i 2 I: IfT
i2I Qi is nonempty set, then

T
i2I Qi is a quasi-�-ideal of S:

Remark 185 In theorem 184, it is necessary that
T
i2I Qi is a nonempty set. For example,

let � = f1; 2g and N be a set of positive integers. De�ne a mapping N � � � N ! N; by

a�b = a + b + � for all a; b 2 N where + is the usual addition on N . Obviously N is a

�-AG-groupoid. Take Qn = fn+ 1; n+ 2; n+ 3; :::g for n 2 N: Then Qn is a quasi-�-ideal of

N for all n 2 N but
T
n2NQn is an empty set.

Theorem 186 The intersection of a left �-ideal and a right �-ideal of a �-AG-groupoid S

is a quasi-�-ideal of S.
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Proof. Let L and R be left and right �-ideal of S. Consider a 2 R; b 2 L and � 2 �, we

have a�b 2 L\R. So L\R 6= ;. Consider S�(L\R)\ (L\R)�S � S�L\R�S � L\R:

Hence L \R is a quasi-�-ideal of S.

In the following we give an example of �-AG-groupoid with left identity e in which the

condition (x�e)�S = x�S holds for all x 2 S and �; � 2 �:

Example 187 Let S = fa; b; c; d; eg : De�ne a binary operation � in S as follows:

� a b c d e

a a b c d e

b b b b d e

c c b a d e

d e e e b d

e d d d e b

Then (S; �) becomes an AG-groupoid. Now let � = f1g and de�ne a mapping S���S ! S;

by x1y = xy for all x; y 2 S. Then S is a �-AG-groupoid. Also we can see that a is a left

identity in S and (x�a)�S = x�S holds for all x 2 S and �; � 2 �: However, a is not an

identity of S.

Remark 188 Let S be a �-AG-semigroup with left identity e. We have S�e = S, in deed,

S�e = (S�S)�e = (e�S)�S = S�S = S. However, e need not be an identity.

Theorem 189 Let S be a �-AG-groupoid with left identity e such that (x�e)�S = x�S for

all x 2 S and �; � 2 �. Every quasi-�-ideal of S is the intersection of a left �-ideal and a right

�-ideal of S:

Proof. Let Q be a quasi-�-ideal of S: Set L = Q [ S�Q and R = Q [ Q�S: Then S�L =

S�(Q[S�Q) = S�Q[S�(S�Q) = S�Q[(S�e)�(S�Q) = S�Q[(S�S)�(e�Q) = S�Q �

L: So, S�L � L: This implies that L is a left �-ideal of S: Similarly, R�S = (Q[Q�S)�S =

Q�S [ (Q�S)�S = Q�S [ (Q�S)�(e�S) = Q�S [ (Q�e)�(S�S) = Q�S [ (Q�e)�S =
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Q�S � R: So R is a right �-ideal of S: We have L \ R = (Q [ S�Q) \ (Q [ Q�S) =

Q [ (S�Q \Q�S) = Q: Hence Q = L \R:

Similar to [7], bi-�-ideals of �-AG-groupoids are de�ned as follows:

De�nition 190 A sub�-AG-groupoid B of �-AG-groupoid S is said to be a bi-�-ideal of S

if (B�S)�B � B:

Theorem 191 Let S be a �-AG-groupoid with left identity e such that (x�e)�S = x�S for

all x 2 S and �; � 2 �. Then every quasi-�-ideal Q of S is a bi-�-ideal of S.

Proof. Since Q�Q � Q�S and Q�Q � S�Q; Q�Q � Q�S \ S�Q � Q: This implies

that Q is a sub�-AG-groupoid of S: Now (Q�S)�Q � (S�S)�Q = S�Q: Also (Q�S)�Q �

(Q�S)�S = (Q�S)�(e�S) = (Q�e)�(S�S) = (Q�e)�S = Q�S. This implies that (Q�S)�Q �

S�Q \Q�S � Q: Hence Q is a bi-�-ideal of S.

5.2.2 Regular and intra-regular �-AG-groupoids

In this study, we give necessary and su¢ cient conditions for regular �-AG-groupoids with left

identity. Moreover, in last theorem, we give necessary and su¢ cient conditions for regular and

intra-regular �-AG-groupoids with left identity.

Lemma 192 Let S be a �-AG-groupoid with left identity e; then a�(b�c) = b�(a�c) for all

a; b; c 2 S and �; � 2 �:

Proof. For all a; b; c 2 S and �; �; 
 2 �; consider a�(b�c) = (e
a)�(b�c) = (e
b)�(a�c) =

b�(a�c):

Lemma 193 Let S be a �-AG-groupoid with left identity e such that (x�e)�S = x�S for all

x 2 S and �; � 2 �. The following statements are true.

(1) S�a is the smallest left �-ideal of S containing a.

(2) a�S [ S�a is the smallest right �-ideal of S containing a.
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Proof. (1) Since S has a left identity, a 2 S�a. Consider S�(S�a) = (S�e)�(S�a) =

(S�S)�(e�a) = S�a, thus S�a is a left �-ideal of S containing a. Next, let L be any left

�-ideal containing a. So S�a � S�L � L. Hence S�a is the smallest left �-ideal of S

containing a.

(2) Claim that (a�S [ S�a)�S � (a�S [ S�a). Consider

(a�S [ S�a)�S = (a�S)�S [ (S�a)�S

= (S�S)�a [ (S�a)�(e�S)

= S�a [ (S�e)�(a�S)

= S�a [ S�(a�S)

= S�a [ a�(S�S) by lemma 192

= S�a [ a�S = a�S [ S�a:

Hence a�S [ S�a is a right �-ideal of S. Since a 2 S�a, a 2 a�S [ S�a. Let R be any

right �-ideal of S containing a. Since a�S 2 R�S � R; a�S � R: Also S�a = (S�S)�a =

(a�S)�S � (R�S)�S � R�S � R. It follows that a�S [ S�a � R. Therefore a�S [ S�a is

the smallest right �-ideal of S containing a.

Theorem 194 Let S be a �-AG-groupoid with left identity e such that (x�e)�S = x�S for

all x 2 S and �; � 2 �. Then the following statements are equivalent:

(1) S is regular.

(2) Q = (Q�S)�Q for every quasi-�-ideal Q of S.

(3) R \ L = R�L for every right �-ideal R and every left �-ideal L of S.

Proof. (1) ) (2). Let Q be a quasi-�-ideal of S. Let x 2 Q and �; � 2 �. Since S is

regular, so there exist a 2 S and �; � 2 � such that x = (x�a)�x: Thus x = (x�a)�x 2

(Q�S)�Q: This implies that Q � (Q�S)�Q: Now (Q�S)�Q � (Q�S)�S = (Q�S)�(e�S) =

(Q�e)�(S�S) � (Q�e)�S = Q�S: Thus (Q�S)�Q � Q�S: Also (Q�S)�Q � (Q�S)�S =

(S�S)�Q � S�Q: It follows that (Q�S)�Q � Q�S\S�Q � Q and henceQ = (Q�S)�Q: (2))
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(3). LetR be a right �-ideal and L a left �-ideal of S: So by theorem 186, R\L is a quasi-�-ideal

of S: Then by hypothesis, R\L = ((R\L)�S)�(R\L) � (R�S)�L � R�L: This implies that

R\L � R�L: Obviously, R�L � R\L: Hence R\L = R�L: (3)) (1). Let x 2 S: By lemma

193, S�x is a left �-ideal of S containing x and x�S[S�x is a right �-ideal of S containing x:

So by hypothesis (x�S[S�x)\S�x = (x�S[S�x)�(S�x) = (x�S)�(S�x)[(S�x)�(S�x):

Since x 2 (x�S [ S�x) \ S�x; x 2 (x�S)�(S�x) [ (S�x)�(S�x) which further implies that

x 2 (x�S)�(S�x) or x 2 (S�x)�(S�x):

Case 1: x 2 (x�S)�(S�x): By the de�nition of �-AG-groupoids and lemma 192, we have

x = (x�a)�(b
x) = ((b
x)�a)�x

= (((e�b)
x)�a)�x = (((x�b)
e)�a)�x

= ((a
e)�(x�b))�x = (x�((a
e)�b))�x

= (x�s)�x; where s = (a
e)�b 2 S:

Hence x = (x�s)�x: So x is regular.

Case 2: x 2 (S�x)�(S�x): Since (S�x)�(S�x) = ((e�S)�x)�(S�x) = ((x�S)�e)�(S�x) =

(x�S)�(S�x), x 2 (x�S)�(S�x): By using the process of case 1, we have x is regular. In

both two cases, therefore S is regular.

De�nition 195 A nonempty subset A of �-AG-groupoid S is called a generalized bi-�-ideal

of S if (A�S)�A � A:

Remark 196 (1) Generalized bi-�-ideal of S need not be a subAG-groupoids of S.

(2) If S is a �-AG-groupoid with left identity e such that (x�e)�S = x�S for all x 2 S

and �; � 2 �, then every quasi-�-ideal Q of S is a generalized bi-�-ideal of S.

Theorem 197 Let S be a �-AG-groupoid with left identity e such that (x�e)�S = x�S for

all x 2 S and �; � 2 �. Then the following statements are equivalent:

(1) S is regular.

(2) Q = (Q�S)�Q for every quasi-�-ideal Q of S.
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(3) A = (A�S)�A for every generalized bi-�-ideal A of S:

Proof. (1) ) (3). Let A be a generalized bi-�-ideal of S; then (A�S)�A � A: Now let

a 2 A. Since S is regular, there exist x in S and �; � in � such that a = (a�x)�a: It

follows that a = (a�x)�a 2 (A�S)�A which further implies that A � (A�S)�A: Hence

A = (A�S)�A: (3)) (2). Let Q be a quasi-�-ideal of S: Since every quasi-�-ideal of S is a

generalized bi-�-ideal of S and by hypothesis, Q = (Q�S)�Q. (2)) (1). By theorem 194.

De�nition 198 A nonempty subset A of �-AG-groupoid S is called an interior �-ideal of S

if (S�A)�S � A:

Lemma 199 Let S be a �-AG-groupoid with left identity e. Then a non-empty subset I of

S is an interior �-ideal of S if and only if I is a �-ideal of S.

Proof. Suppose I is an interior �-ideal of S. Let a 2 I and s 2 S . This implies a 2 S; and

so we have a = e
a; where 
 2 �. Now consider a�s = (e
a)�s 2 (S�I)�S � I, it follows

that a�s 2 I and so I�S � I . Hence I is a right �-ideal of S and hence I is a �-ideal of S:

Conversely, let I be a �-ideal of S. Then (S�I)�S � I�S � I. This implies (S�I)�S � I.

Hence I is an interior �-ideal of S.

Theorem 200 Let S be a �-AG-groupoid with left identity e such that (x�e)�S = x�S for

all x 2 S and �; � 2 �. Then the following statements are equivalent:

(1) S is regular.

(2) Q \ J = (Q�J)�Q for every quasi-�-ideal Q and every �-ideal J of S:

(3) B \ J = (B�J)�B for every bi-�-ideal B and every �-ideal J of S:

(4) G \ J = (G�J)�G for every generalized bi-�-ideal G and every �-ideal J of S:

Proof. (1)) (4). Let a 2 G\ J; where G is a generalized bi-�-ideal and J is a �-ideal of S:

Since S is regular, there exist x in S and �; � in � such that a = (a�x)�a: Then consider a =

(a�x)�a = (((a�x)�a)�x)�a = ((x�a)�(a�x))�a = (a�((x�a)�x))�a by lemma 192. Since

(x�a)�x 2 (S�J)�S � J�S � J; (x�a)�x 2 J: Thus a = (a�((x�a)�x))�a 2 (G�J)�G:
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It follows that G \ J � (G�J)�G: On the other hand, let G be a generalized bi-�-ideal

and J be a �-ideal of S: Then (G�J)�G � (G�S)�G � ((e�G)�S)�G � G�G � G: Also

(G�J)�G � (S�J)�S � J: It follows that (G�J)�G � G\J: Hence G\J = (G�J)�G: Now

by theorem 191 and it is fact that every bi-�-ideal is a generalized bi-�-ideal, we have (4)) (3)

and (3) ) (2). (2) ) (1). Let Q be a quasi-�-ideal of S: Since S itself is a �-ideal of S, it

follows that Q = Q \ S = (Q�S)�Q: Hence by theorem 194, S is regular.

Theorem 201 Let S be a �-AG-groupoid with left identity e such that (x�e)�S = x�S for

all x 2 S and �; � 2 �. Then the following statements are equivalent:

(1) S is regular.

(2) Q \R � R�Q for every quasi-�-ideal Q and every right �-ideal R of S:

(3) B \R � R�B for every bi-�-ideal B and every right �-ideal R of S:

(4) G \R � R�G for every generalized bi-�-ideal G and every right �-ideal R of S:

Proof. (1) ) (4). Let G be a generalized bi-�-ideal and R a right �-ideal of S: Let

a 2 G \ R: Since S is regular, there exist x 2 S and �; � 2 � such that a = (a�x)�a: Then

a = (a�x)�a = (a�x)�((a�x)�a) 2 R�G: This implies that G \ R � R�G: (4) ) (3) and

(3) ) (2) are trivial. (2) ) (1). Suppose that L is a left �-ideal and R is a right �-ideal

of S: Obviously, R�L � L \ R: Since every left �-ideal of S is a quasi-�-ideal of S and by

hypothesis, L \R � R�L: Hence L \R = R�L: So By theorem 194, S is regular.

De�nition 202 A �-AG-groupoid S is said to be an intra-regular �-AG-groupoid if for each

a in S there exist x; y 2 S and �; �; 
 2 � such that a = (x�a)�(a
y).

Proposition 203 Let S be a �-AG-groupoid with left identity e. Then A is a �-ideal of S if

and only if A is an interior �-ideal of S:

Proof. Let A be a �-ideal of S: Then (S�A)�S � A�S � A; this implies that A is an interior

�-ideal of S: Conversely, suppose A is an interior �-ideal of S: Now let t 2 A�S; then t = a�b

for some a 2 A; � 2 � and b 2 S: Since S is intra-regular, so there exist p; q in S and �; �; 


in � such that b = (p�b)�(b
q): Then t = a�b = a�((p�b)�(b
q)) = (p�b)�(a�(b
q)) =
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(p�a)�(b�(b
q)) 2 (S�A)�S � A: It follows that A�S � A; which further implies that A is

a right �-ideal of S and hence A is a �-ideal of S:

Theorem 204 Let S be a �-AG-groupoid with left identity e such that (x�e)�S = x�S for

all x 2 S and �; � 2 �. Then S is regular and intra-regular if and only if every quasi-�-ideal

of S is �-idempotent.

Proof. Assume that S is regular and intra-regular and let Q be a quasi-�-ideal of S: Then

Q�Q � Q: On the other hand, let a 2 Q: Since S is regular and intra-regular, there exist

x; y; z 2 S and �; �; 
 2 � such that a = (a�x)�a and a = (y�a)�(a
z): Using de�nition of

�-AG-groupoid repeatedly and lemma 192, we have

a = (a�x)�a = (((y�a)�(a
z))�x)�a

= ((x�(a
z))�(y�a))�a = ((a�(x
z))�(y�a))�a

= (((y�a)�(x
z))�a)�a = ((((e�y)�a)�(x
z))�a)�a

= ((((a�y)�e)�(x
z))�a)�a = ((((x
z)�e)�(a�y))�a)�a

= (((x
z)�(a�y))�a)�a = ((a�((x
z)�y))�a)�a

= ((a�p)�a)�a; where p = (x
z)�y 2 S

2 ((Q�S)�Q)�Q = Q�Q:

This implies that Q � Q�Q: Hence Q�Q = Q; which shows that Q is �-idempotent.

Conversely, assume every quasi-�-ideal of S is �-idempotent. Let a 2 S: Then S�a is a

quasi-�-ideal of S. So,

S�a = (S�a)�(S�a) = (S�a)�((e�S)�a) = (S�a)�((a�S)�e)

= (S�a)�((a�S)�(e�S)) = (S�a)�((a�e)�(S�S)) = (S�a)�(a�S):

Thus a 2 (S�a)�(a�S); which further implies that a = (x�a)�(a
y) for some x; y 2 S and

�; �; 
 2 �: Hence a is intra-regular. So S is intra-regular. Next, we show that S is regular by
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using theorem 194 (3)) (1), let R and L be right and left ideals of S, respectively. Claim that

R \ L = R�L. Clearly R�L � R \ L. Conversely, by theorem 186, R \ L is a quasi-�-ideal

of S. By assumption, R \ L = (R \ L)�(R \ L) � R�L. Hence R \ L = R�L. By theorem

194, S is regular.
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Chapter 6

�-Left Almost Rings

Introduction
In this chapter, we introduce gamma left almost rings (�-LA-rings) which are in fact a

generalization of left almost rings (LA-rings) introduced by S. M. Yusuf [70] and also a gener-

alization of commutative �-rings [52]. We have initiated this idea by taking inspiration from

an article: �On a generalization of ring theory� published in Osaka Journal of Mathematics,

1964. In this article, Nobusawa [52] have introduced the concept of �-rings for the �rst time.

After his research, Barnes [4] weakened slightly the conditions in the de�nition of the �-ring

in the sense of Nobusawa. Barnes [4], Kyuno [34, 35] and Luh [37], studied the structure of

�-rings and obtained various generalizations analogous to corresponding parts in ring theory.

�-left almost rings are a direct generalization of LA-rings discussed earlier in chapters 3;

4. We can easily observe that �-left almost rings are in fact a generalization of commutative

�-rings and intuitively commutative �-rings are generalization of commutative ring theory.

Consequently, �-left almost rings become a generalization of commutative rings.

Let (M;+) and (�;+) be abelian groups. M is called a �-ring if there exists a mapping

M � ��M !M satisfying the following conditions:

(i) (a+ b)�c = a�c+ b�c.

(ii) a�(b+ c) = a�b+ a�c.

(iii) a(�+ �)b = a�b+ a�b.

(iv) (a�b)�c = a�(b�c).

In this study we have generalized some results which were established for LA-rings in chapter

3 earlier.



6.1 Main Results

We �rst de�ne �-LA-ring.

De�nition 205 Let (M;+) and (�;+) be additive LA-groups. If there exists a mapping

M � ��M !M satisfying the following conditions:

(L1) (a+ b)�c = a�c+ b�c

(L2) a�(b+ c) = a�b+ a�c

(L3) a(�+ �)b = a�b+ a�b

(L4) (a�b)�c = (c�b)�a

for all a; b; c 2 M and �; � 2 �; then M is called a gamma left almost ring (�-LA-ring).

Throughout the matter below M denotes a �-LA-ring.

De�nition 206 An additive LA-subgroup A of M is said to be a left �-ideal if m�a 2 A for

all a 2 A;� 2 � and m 2 M: Right �-ideals and two sided �-ideals are de�ned in the usual

manner.

De�nition 207 An element e 2 M is called a left identity of M if e
a = a for all a 2 M

and 
 2 �:

Proposition 208 If M is a �-LA-ring with left identity e; then every right �-ideal of M is a

left �-ideal of M .

Proof. Let I be a right �-ideal of M; this implies I is an additive LA-subgroup of M: Now

let m 2 M; i 2 I and 
 2 �; then m
i = (e�m) 
i = (i�m) 
e 2 I: Thus I is also a left

�-ideal of M .

Now onward by �-ideal in �-LA-ring M with left identity e; we mean a right �-ideal of M:

Lemma 209 If I is a right �-ideal of M with left identity e then I�I is a �-ideal of M:

Proof. Let i 2 I�I; then we can write i = x�y where x; y 2 I and � 2 �: Now consider

i
m = (x�y)
m = (m�y)
x 2 I�I: This implies that I�I is a right �-ideal and by Proposition

208, I�I is a left �-ideal. Hence it follows that I�I is a �-ideal of M:
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Lemma 210 Let M be a �-LA-ring with left identity e: If I is a proper right (left) �-ideal of

M , then e =2 I:

Proof. Assume on contrary that e 2 I and let m 2M and � 2 �; then consider m = e�m 2

I�M � I: This implies that M � I; but I �M: So I =M; a contradiction. Hence e =2 I:

A �-LA-ring M is said to be fully �-idempotent if all �-ideals of M are �-idempotent. If

M is a �-LA-ring with left identity e then the principal left �-ideal generated by an element m

is de�ned as hmi =M�m = fn�m : n 2M and � 2 �g.

It is important to note that if I is a �-ideal of M then I = hIi; and as I�I is a �-ideal of

M; hence I�I = hI�Ii:

Proposition 211 If M is a �-LA-ring with left identity e and I, J are �-ideals of M , then

the following assertions are equivalent:

(1) M is fully �-idempotent,

(2) I \ J = hI�Ji,

(3) the �-ideals of M form a semilattice (LM ;^); where I ^ J = hI�Ji:

Proof. (1) ) (2). Since I�J � I \ J , hI�Ji � I \ J: Now let m 2 I \ J . As hmi is

a principal left �-ideal generated by a �xed element m; so m 2 hmi = hmi�hmi � hI�Ji.

Hence I \ J = hI�Ji. (2)) (3). I ^ J = hI�Ji = I \ J = J \ I = J ^ I and also I ^ I =

hI�Ii = I \ I = I: Hence (LM ;^) is a semilattice. (3)) (1). Now I = I ^ I = hI�Ii = I�I:

A �-ideal P of a �-LA-ring M is said to be prime �-ideal of M if and only if A�B � P

implies either A � P or B � P; where A and B are �-ideals in M and P is called semiprime if

for any �-ideal I of M; I�I � P implies that I � P: A �-LA-ring M is said to be fully prime

if every �-ideal of M is prime and it is fully semiprime if every �-ideal is semiprime.

The set of �-ideals of M is said to be a totally ordered under inclusion if for all �-ideals I;

J of M , either I � J or J � I and is denoted by �-ideal(M).

Theorem 212 Let M be a �-LA-ring with left identity e; then M is fully prime if and only

if every �-ideal is �-idempotent and the set �-ideal(M) is totally ordered under inclusion.
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Proof. Let M be fully prime and I be any �-ideal of M: By Lemma 209, I�I is a �-ideal of

M , and so I�I � I: Also I�I � I which implies that I�I = I and hence I is �-idempotent.

Now let A;B be �-ideals of M and A�B � A; A�B � B which implies that A�B � A \B:

As A and B are prime �-ideals so A \ B is also a prime �-ideal of M: Then A � A \ B

or B � A \ B which implies that either A � B or B � A. Hence the set �-ideal(M) is

totally ordered under inclusion. Conversely, assume that every �-ideal of M is �-idempotent

and �-ideal(M) is totally ordered under inclusion. Let Q;R and S be any �-ideals of M with

Q�R � S such that Q � R: Now since Q is �-idempotent, Q = Q�Q � Q�R � S: This

implies that Q � S and hence M is fully prime.

De�nition 213 A �-ideal I of a �-LA-ring M is said to be strongly irreducible if P \Q � I

implies P � I or Q � I:

Theorem 214 Let M be a �-LA-ring with left identity e; then a �-ideal I of M is prime if

and only if it is semiprime and strongly irreducible.

Proof. The proof is straight forward.

De�nition 215 A nonempty subset A of a �-LA-ring M with left identity e is called an

M -system if for a; b 2 A there exist m 2M and �; � 2 � such that a�(m�b) 2 A:

Let M be a �-LA-ring, a; b; c; d 2 M and �; �; 
 2 �, we have that (a�b)�(c
d) =

[(c
d)�b]�a = [(b
d)�c]�a = (a�c)�(b
d): So (a�b)�(c
d) = (a�c)�(b
d), this is called the

�-medial law. Next, let M be a �-LA-ring with left identity e, a; b; c; d 2 M and �; �; 
 2 �,

we have that

(a�b)�(c
d) = [e�(a�b)]�(c
d) = [(c
d)�(a�b)]�e

= [(c
a)�(d�b)]�e = [e�(d�b)]�(c
a)

= (d�b)�(c
a):

Then (a�b)�(c
d) = (d�b)�(c
a), this is called the �-paramedial law.
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De�nition 216 Let I be a left �-ideal of a M with left identity e: Then I is said to be

quasi-�-prime if H�K � I implies that either H � I or K � I; where H and K are any left

�-ideals of M: If for any left �-ideal H of M such that H�H � I; we have H � I; then I is

called quasi-�-semiprime.

Proposition 217 Let I be a left �-ideal of M with left identity e; then the following are

equivalent:

(1) I is a quasi-�-prime ideal of M .

(2) H�K = hH�Ki � I implies that either H � I or K � I; where H and K are any

left �-ideals of M:

(3) If H * I and K * I then H�K * I; where H and K are any left �-ideals of M:

(4) If h; k are elements of M such that h =2 I and k =2 I then hhi�hki * I:

(5) If h; k 2M satisfying h�(M�k) � I; then either h 2 I or k 2 I:

Proof. (1) , (2). Let I be quasi-�-prime. Now by de�nition if H�K = hH�Ki � I, then

obviously it implies that either H � I or K � I for all left �-ideals H and K of M . Converse

is trivial. (2), (3) is trivial.

(1) ) (4). Let hhi�hki � I, then either hhi � I or hki � I; which implies that either

h 2 I or k 2 I:

(4)) (2). Let H�K � I: If h 2 H and k 2 K; then hhi�hki � I and hence by hypothesis

either h 2 I or k 2 I. This implies that either H � I or K � I: (1), (5). Let h�(M�k) � I;

then M�(h�(M�k)) �M�I � I: Now consider

M�(h�(M�k)) = (M�M)�(h�(M�k)) = (M�h)�(M�(M�k))

= (M�h)�((M�M)�(M�k)) = (M�h)�((k�M)�(M�M))

= (M�h)�((k�M)�M);= (M�h)�((M�M)�k)

= (M�h)�(M�k):
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Hence (M�h)�(M�k) � I: Since M�h and M�k are left �-ideals for all h 2 H and

k 2 K; hence either h 2 I or k 2 I: Conversely, let H�K � I where H and K are any

left �-ideals of M: Let H * I then there exists l 2 H such that l =2 I: For all m 2 K,

we have l�(M�m) � H�(M�K) � H�K � I: This implies that K � I and hence I is a

quasi-�-prime ideal of M:

Proposition 218 A left �-ideal I of a �-LA-ring M with left identity e is quasi-�-prime if

and only if RnI is an M -system.

Proof. Suppose I is a quasi-�-prime ideal. Let a; b 2 MnI which implies that a =2 I and

b =2 I: So by Proposition 217, we have a�(M�b) * I. This implies that there exist some

m 2 M and �; � 2 � such that a�(m�b) =2 I which further implies that a�(m�b) 2 MnI:

Hence MnI is an M -system. Conversely, let MnI is an M -system. Suppose a�(M�b) � I

and let a =2 I and b =2 I: This implies that a; b 2 MnI: Since MnI is an M -system so there

exist m 2 M and �; � 2 � such that a�(m�b) 2 MnI which implies that a�(M�b) * I, a

contradiction. Hence either a 2 I or b 2 I: This shows that I is a quasi-�-prime ideal.

De�nition 219 A nonempty subset Q of a �-LA-ringM with left identity e is called P -system

if for all a 2 Q; there exist m 2M and �; � 2 � such that a�(m�a) 2 Q:

Proposition 220 Let I be a left �-ideal of M with left identity e, then the following are

equivalent:

(1) I is quasi-�-semiprime.

(2) H�H = hH�Hi � I ) H � I; where H is any left �-ideal of M:

(3) For any left �-ideal H of M : H * I ) H�H * I:

(4) If m is any element of M and 
 2 � such that hm
mi � I; then it implies that m 2 I:

(5) For all m 2M and �; � 2 � : m�(M�m) � I ) m 2 I:

Proof. (1) , (2) , (3) is trivial. (1) ) (4). Let hm
mi � I: But by hypothesis I is

quasi-�-semiprime, so it implies that hmi � I which further implies that m 2 I: (4) ) (2)
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For all left �-ideals H of M; let H�H = hH�Hi � I: If m 2 H and 
 2 �; then by (4)

hm
mi � I implies that m 2 I: Hence it shows that H � I: (1), (5) is straight forward.

Proposition 221 A left �-ideal I of M with left identity e is quasi-�-semiprime if and only

if MnI is a P -system.

Proof. Let I be a quasi-�-semiprime ideal of M and let m 2MnI: On contrary suppose that

there do not exist an element x 2M and �; � 2 � such that m�(x�m) 2MnI: This implies

that m�(x�m) 2 I: Since I is quasi-�-semiprime, so by Proposition 220, m 2 I which is a

contradiction. Thus there exist x 2 M and �; � 2 � such that m�(x�m) 2 MnI. Hence

MnI is a P -system. Conversely, suppose for all m 2 MnI there exist x 2 M and �; � 2 �

such that m�(x�m) 2 MnI. Let m�(M�m) � I. This implies that there does not exist

x 2M such that m�(x�m) 2MnI which implies that m 2 I: Hence by Proposition 220, I is

quasi-�-semiprime.

Lemma 222 An M -system of elements of �-LA-ring is a P -system.

Proof. Let A be a nonempty subset of M such that A is an M -system. Then for all a; b 2 A;

there exist an element m 2 M and �; � 2 � such that a�(m�b) 2 A: If we take b = a, then

a�(m�a) 2 A which implies that A is a P -system.

De�nition 223 A �-ideal I of a �-LA-ring M with left identity e is strongly irreducible if

and only if for � -ideals H and K of M , H \K � I implies that H � I or K � I and I is

said to be irreducible if for �-ideals H and K, I = H \K implies that I = H or I = K:

Lemma 224 Every strongly irreducible �-ideal of M with left identity e is irreducible.

Proof. The proof is obvious.

Proposition 225 A �-ideal I of M with left identity e is �-prime if and only if it is �-

semiprime and strongly irreducible.

Proof. The proof is straight forward.
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De�nition 226 A nonempty subset B of �-LA-ring M with left identity e is called an I-

system if for all a; b 2 B; (hai \ hbi) \B 6= �:

Proposition 227 The following conditions on �-ideal I of M with left identity e are equiv-

alent:

(1) I is strongly irreducible.

(2) For all a; b 2M : hai \ hbi � I implies that either a 2 I or b 2 I:

(3) MnI is an I-system.

Proof. (1)) (2) is trivial. (2)) (3) Let a; b 2MnI: Let (hai\hbi)\MnI = �: This implies

that hai \ hbi � I and so by hypothesis either a 2 I or b 2 I which is a contradiction. Hence

(hai\hbi)\MnI 6= �. (3)) (1) LetH andK be �-ideals of M such thatH\K � I: Suppose

H andK are not contained in I; then there exist elements a; b such that a 2 HnI and b 2 KnI:

This implies that a; b 2MnI: So by hypothesis (hai\ hbi)\MnI 6= � which implies that there

exists an element c 2 hai \ hbi such that c 2 MnI: It shows that c 2 hai \ hbi � H \K � I

which further implies that H \K * I: A contradiction. Hence either H � I or K � I and so

I is strongly irreducible.

De�nition 228 A nonempty subset T of �-LA-ring M with left identity e is said to be

subtractive if and only if t 2 T and t + s 2 T implies that s 2 T and T is called semi-

subtractive if and only if t 2 T \ V (M) implies that �t 2 T \ V (M); where V (M) is a set of

all those elements of M having additive inverse.

Proposition 229 Let T be a subtractive subset of M with left identity e; then

(1) every subtractive subset of M contains 0 and

(2) every subtractive subset of M is semi-subtractive.

Proof. (1) If t 2 T then 0 + t = t 2 T: Hence by de�nition 0 2 T:

(2) Let T be a subtractive subset of M: Let t 2 T \ V (M): This implies that t 2 T and

t 2 V (M): Now as T is subtractive, so t + (�t) = 0 2 T: This implies that �t 2 T and also

�t 2 V (M): So, �t 2 T \ V (M): Hence T is semi-subtractive.
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Proposition 230 For subtractive and semi-subtractive left �-ideals ofM; the following holds.

(1) Intersection of subtractive left �-ideals of M with left identity e is a subtractive left

�-ideal of M:

(2) Intersection of semi-subtractive left �-ideals of M with left identity e is a semi-

subtractive left �-ideal of M:

Proof. The proof is obvious.

Proposition 231 Every quasi-prime �-ideal of M with left identity e is semi-subtractive.

Proof. Let I be a quasi-prime �-ideal of M and a 2 I \ V (M): If m 2 M and �; � 2 �

then (�a)�(m�(�a)) + a�(m�(�a)) = 0 and so (�a)�(m�(�a)) = �a�(m�(�a)): But on

the other hand a�(m�a) + a�(m�(�a)) = 0 which implies that a�(m�a) = �a�(m�(�a)):

So by uniqueness of additive inverse, we have (�a)�(m�(�a)) = a�(m�a): For all m 2 M

if (�a)�(m�(�a)) = a�(m�a) 2 I; then by Proposition 217, �a 2 I and also �a 2 V (M);

which implies that �a 2 I \ V (M): Hence I is semi-subtractive.

Since every quasi-prime �-ideal is surely quasi-semiprime, so following corollary is an im-

mediate consequence of Proposition 231.

Corollary 232 Every quasi-semiprime �-ideal of �-LA-ring M is semi-subtractive.

Proof. The proof is analogous to the proof of Proposition 231
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Chapter 7

Fuzzy Concepts in �-AG-groupoids and LA-rings

Introduction
Earlier in chapter 5, we have introduced the notion of �-AG-groupoids and have studied

this structure from di¤erent aspects. The aim of this study is to extend the results established

in chapter 5, to fuzzy concepts. We have investigate fuzzy �-ideals and prime, semiprime

fuzzy �-ideals of a �-AG-groupoid S. We have proved that, if S is a �-AG-groupoid with left

identity e, then every fuzzy �-ideal of S is idempotent if and only if every fuzzy �-ideal of S

is semiprime. We have also shown that, if S is a �-AG-groupoid with left identity, then every

fuzzy �-ideal of S is prime if and only if every fuzzy �-ideal of S is idempotent and the set of

fuzzy �-ideals of S is totally ordered by inclusion.

In [71], Zadeh introduced the notion of a fuzzy subset f of a set S as a function from S

into [0; 1]. The notion of a fuzzy ideal in �-rings was �rst introduced by Jun and Lee [23].

They studied some preliminary properties of fuzzy ideals of �-rings. Dutta and Chanda [11],

studied the structures of fuzzy ideals of a �-ring and characterize �-�eld, Noetherian �-ring,

etc. with the help of fuzzy ideals via operator rings of �-ring. Jun [22] de�ned fuzzy prime

ideal of a �-ring and obtained a number of characterizations for a fuzzy ideal to be a fuzzy

prime ideal.

In 1981, the notion of �-semigroups was introduced by Sen (see [63; 64; 65]). Let M and

� be any nonempty sets. If there exists a mapping M ���M �!M written (a; 
; c) by a
c,

M is called a �-semigroup if M satis�es the identity (a�b)�c = a�(b�c) for all a; b; c 2 M

and �; � 2 �. Whereas the �-semigroups are a generalization of semigroups. Many classical

notions of semigroups have been extended to �-semigroups.



In this paper we de�ne fuzzy �-ideals in a �-AG-groupoids and study some of its properties.

We also de�ne prime and semiprime fuzzy �-ideals in �-AG-groupoids and study those �-AG-

groupoids in which each fuzzy �-ideal is (prime) semiprime.

7.1 Fuzzy �-ideals in �-AG-groupoids

We recall certain de�nitions and preliminaries from chapter 5, which are needed for our dis-

cussion.

De�nition 233 Let S and � be nonempty sets. We call S to be a �-AG-groupoid if there

exists a mapping S���S �! S, written as (a; 
; c) and denoted by a
c such that S satis�es

the identity (a
b)�c = (c
b)�a for all a; b; c 2 S and 
; � 2 �:

In a �-AG groupoid S the medial law holds, that is

(a�b)�(c
d) = (a�c)�(b
d) for all a; b; c 2 S and �; �; 
 2 �:

An element e of a �-AG groupoid S is called left identity if e
a = a for all a 2 S and


 2 �.

A non-empty subset A of a �-AG groupoid S is called a sub �-AG groupoid of S if a
b 2 A

for all a; b 2 S and 
 2 �.

An �-AG groupoid S whose all elements are idempotent, that is a
a = a for all a 2 S and


 2 � is called a band.

In a �-AG band the following laws are true

1: (a�b)�a = a�(b�a) for all a; b 2 S and �; � 2 �:

2: (a�b)�c = (a�c)�(b
c) for all a; b; c 2 S and �; �; 
 2 �:

3: (a�b)�b = b�a for all a; b 2 S and �; � 2 �:
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If S is �-AG groupoid and A;B � S we denote

A�B := fa
bja 2 A; 
 2 �; b 2 Bg:

A non-empty subset I of a �-AG groupoid S is called a left (right) �-ideal of S if S�I � I

(I�S � I). A non-empty subset I of a �-AG groupoid S is called a �-ideal if it is both a

left and right �-ideal of S. The intersection and union of a non-empty family of left (right)

�-ideals of a �-AG groupoid is again a �-ideal of S. If S is a �-AG groupoid with left identity

e, then every right �-ideal of S is a left �-ideal of S.

7.1.1 Fuzzy Subset of �-AG-groupoids

A function f from a non empty set X to the unit interval [0; 1] is called a fuzzy subset of S.

For fuzzy subsets f; g of X, f � g means that f(x) � g(x) for all x 2 X. The fuzzy subsets

f ^ g and f _ g of X are de�ned as

(f ^ g)(x) = f(x) ^ g(x) = minff(x); g(x)g;

(f _ g)(x) = f(x) _ g(x) = maxff(x); g(x)g for all x; y 2 S.

More generally, if ffiji 2 Ig is a family of fuzzy subsets of X, then
^
i2I
fi and_

i2I
fi are de�ned as follows:

 ^
i2I
fi

!
(x) =

^
i2I
fi(x) = infi2Iffiji 2 Ig; _

i2I
fi

!
(x) =

_
i2I
fi(x) = supi2Iffiji 2 Ig

and will be the intersection and union of the family ffiji 2 Ig of fuzzy subset of X.
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Let f be a fuzzy subset and t 2 (0; 1] then the set

U(f ; t) := fx 2 Xjf(x) � tg

is called the level set of f .

If S is an �-AG groupoid and f; g are any fuzzy subsets of S. We de�ne the product f�g

of f and g as follows:

(f�g)(x) :=

8>><>>:
_

x=y
z

minff(y); g(z)g if 9 x; y 2 S and 
 2 � such that x = y
z,

0 if x 6= y
z

7.1.2 Fuzzy �-ideals

Let S be a �-AG groupoid and ; 6= A � S: Then the characteristic function �A of A is de�ned

by:

�A : S �! [0; 1]; 7�! �A(x) :=

8<: 1 if x 2 A,

0 if x =2 A

Let S be a �-AG groupoid and f a fuzzy subset of S. Then f is called a fuzzy sub �-AG

groupoid of S if f(x
y) �minff(x); f(y)g for all x; y 2 S and 
 2 �:

Let S be a �-AG groupoid and f a fuzzy subset of S. Then f is called a fuzzy left (right)

�-ideal of S if f(x
y) � f(y)(f(x
y) � f(x)) for all x; y 2 S and 
 2 �:

If f is both a fuzzy left �-ideal and a fuzzy right �-ideal of S. Then f is called a two-sided

fuzzy �-ideal of S.

Note that if f is fuzzy right �-ideal of a �-AG groupoid S with left identity e. Then

f(x) = f(ex) � f(e) for all x 2 S.

Proposition 234 Let S be a �-AG groupoid and ; 6= A � S. Then A is a sub �-AG

groupoid if and only if the characteristic function �A of A is a fuzzy sub �-AG groupoid.
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Proof. Suppose that A is a �-AG groupoid and a; b 2 S, and 
 2 �: If a; b 2 A, then

a
b 2 A and we have �A(a
b) = 1 =minf1; 1g =minf�A(a); �A(b)g: If a =2 A or b =2 A, then

min{�A(a); �A(b)g = 0 � �A(a
b): Hence �A is a fuzzy sub �-AG groupoid.

Conversely, assume that �A is a fuzzy sub �-AG groupoid. Let a; b 2 A and 
 2 �; then

1 =minf�A(a); �A(b)g � �A(a
b): Thus a
b 2 A and A is a sub �-AG groupoid.

Proposition 235 Let S be a �-AG groupoid and ; 6= A � S. Then A is a left (right) �-ideal

of S if and only if the characteristic function �A of A is a fuzzy left (right) �-ideal of S.

Proof. The proof is similar to Proposition 234.

Proposition 236 Let S be a �-AG groupoid f a fuzzy subset of S. Then f if a fuzzy sub

�-AG groupoid if and only if U(f ; t)(6= ;) is a sub �-AG groupoid for all t 2 (0; 1]:

Proof. Suppose that f is a fuzzy sub �-AG groupoid. Let a; b 2 U(f ; t)(6= ;): Then f(a) � t

and f(b) � t. Since f(a
b) �minff(a); f(b)g = t: Hence a
b 2 U(f ; t) and U(f ; t) is a sub

�-AG groupoid of S.

Conversely, assume that U(f ; t)(6= ;) is a sub �-AG groupoid of S for all t 2 (0; 1]. Let

a; b 2 S and 
 2 � such that f(a
b) <minff(a); f(b)g = t: Then t 2 (0; 1] and a; b 2 U(f ; t)

but a
b =2 U(f ; t): This is a contradiction. Hence f(a
b) �minff(a); f(b)g for all a; b 2 S

and 
 2 �.

Proposition 237 Let S be a �-AG groupoid and f a fuzzy subset of S. Then f is a fuzzy

left (right) �-ideal of S if and only if U(f ; t)(6= ;) is a left (right) �-ideal of S for all t 2 (0; 1]:

Proof. The proof is similar to Proposition 236.

Example 238 Let S = f1; 2; 3; 4; 5g and de�ne a binary operation ��� in S as follows:
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� 1 2 3 4 5

1 1 1 1 1 1

2 1 1 1 1 1

3 1 1 5 3 4

4 1 1 4 5 3

5 1 1 3 4 5

Then (S; �) is an AG-groupoid: Now let � = f1g and de�ne mapping S � � � S �! S

by a1b = ab for all a; b 2 S. Then S is a �-AG groupoid (see example 155 chapter 5) and

f1g; f1; 2g; f1; 3; 4; 5g and S are ideal of S.

De�ne f : S �! [0; 1] by f(1) = 0:9, f(2) = 0:8, f(3) = 0:5, f(4) = 0:5, f(5) = 0:5.

U(f ; t) :=

8>>>>>>><>>>>>>>:

S if t 2 (0; 0:5]

f1; 2g if t 2 (0:5; 0:8]

f1g if t 2 (0:8; 0:9]

; if t 2 (0:9; 1]

Then by Proposition 237, f is a fuzzy ideal of S.

Lemma 239 If S is �-AG groupoid with left identity e. Then every fuzzy right �-ideal of S

is a fuzzy left �-ideal of S.

Proof. Let S be a �-AG groupoid with left identity e and f a fuzzy right �-ideal of S. Let

a; b 2 S and �; � 2 � then

f(a�b) = f((e�a)�b) because e is left identity

= f((b�a)�e) by left invertive law

� f(b�a) because f is a fuzzy right �-ideal

� f(b) because f is a fuzzy right �-ideal.
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Thus f(a�b) � f(b) for all a; b 2 S and �; � 2 �: Hence f is a fuzzy left �-ideal.

Note that the intersection and union of any family of fuzzy �-ideals of a �-AG groupoid S

is a fuzzy �-ideal of S.

Proposition 240 If S is a �-AG groupoid and f; g; h are fuzzy subsets of S. Then

(f�g)�h = (h�g)�f:

Proof. Let x 2 S and �; � 2 �; then

((f�g)�h)(x) =
_

x=y�z

f(f�g)(y) ^ h(z)g

=
_

x=y�z

8<:
0@ _
y=a�b

(f(a) ^ g(b))

1A ^ h(z)
9=;

=
_

x=(a�b)�z

f(f(a) ^ g(b)) ^ h(z)g

(since x = (a�b)�z = (z�b)�a by left invertive law)

so ((f�g)�h)(x) =
_

x=(z�b)�a

[(h(z) ^ g(b)) ^ f(a)]

(since h(z) ^ g(b) �
_

z�b=c�d

fh(c) ^ g(d)g)

so, ((f�g)�h)(x) �
_

x=(z�b)�a

"( _
z�b=c�d

fh(c) ^ g(d)g
)
^ f(a)

#

=
_

x=(z�b)�a

f(h�g)(z�b) ^ f(a)g

�
_
x=s
t

f(h�g)(s) ^ f(t)g

= ((h�g)�f)(x):

Hence (f�g)�h � (h�g)�f: Similarly, (h�g)�f � (f�g)�h: Thus (f�g)�h = (h�g)�f:

Remark 241 If S is a �-AG groupoid and F (S) is the collection of all fuzzy subsets of S,

then (F (S);�) is a �-AG groupoid.
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Lemma 242 Let S be an �-AG groupoid with left identity e and f; g; h be fuzzy subsets of

S, then

f�(g�h) = g�(f�h):

Proof. Let x 2 S, then

(f�(g�h))(x) =
_

x=y�z

[f(y) ^ (g�h)(z)]

=
_

x=y�z

24f(y) ^ _
z=a�b

fg(a) ^ h(b)g

35
=

_
x=y�(a�b)

ff(y) ^ (g(a) ^ h(b))g

(since x = y�(a�b) implies x = a�(y�b) because S has left identity)

So, (f�(g�h))(x) =
_

x=a�(y�b)

fg(a) ^ (f(y) ^ h(b))g

(since f(y) ^ h(b) �
_

y�b=t
s

(f(t) ^ h(s)))

So, (f�(g�h))(x) �
_

x=a�(y�b)

24g(a) ^
8<: _
y�b=t
s

(f(t) ^ h(s))

9=;
35

=
_

x=a�(y�b)

[g(a) ^ f(f�h)(y�b)g]

�
_

x=p�q

[g(p) ^ f(f�h)(q)g]

= (g�(f�h))(x):

Thus f�(g�h) � g�(f�h):

Similarly, g�(f�h) � f�(g�h): Therefore f�(g�h) = g�(f�h):

Lemma 243 Let S be a �-AG groupoid with left identity e and f a fuzzy right �-ideal of S,

then f�f is a fuzzy �-ideal of S.

Proof. Since f is a fuzzy right �-ideal of S, by Proposition 235, f is a fuzzy left �-ideal of S.
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Let a; b 2 S. If (f�f)(a) = 0; then (f�f)(ab) � (f�f)(a): Otherwise

(f�f)(ab) =
_

a=y
z

ff(y) ^ f(z)g

(If a = y
z; then a�b = (y
z)�b = (b
z)�y by left invertive law)

So, (f�f)(ab) =
_

a=y
z

ff(y) ^ f(z)g

�
_

a=y
z

ff(b
z) ^ f(y)g since f is a fuzzy left �-ideal

�
_

a�b=c
d

ff(c) ^ f(d)g = (f�f)(ab):

Thus (f�f)(ab) � (f�f)(a): Hence f�f is fuzzy right �-ideal of S and by Lemma 239, a

fuzzy �-ideal of S.

Lemma 244 If S is a �-AG groupoid and f; g are fuzzy �-ideals of S, then f�g � f \ g.

Proof. Let f and g be fuzzy �-ideals of S and x 2 S. If (f�g)(x) = 0; then (f�g)(x) �

(f \ g)(x); otherwise

(f�g)(x) =
_

x=y�z

(f(y) ^ g(z))

�
_

x=y�z

(f(y) ^ g(z))(f(yz) ^ g(yz)) since f and g are fuzzy �-ideals of S

=
_

x=y�z

(f(x) ^ g(x))

= (f \ g)(x):

Thus f�g � f \ g:

Remark 245 If S is a �-AG groupoid with left identity e and f and g are fuzzy right �-ideals

of S, then f�g � f�g. If S is a �-AG groupoid and f a fuzzy �-ideal of S, then f�f � f .

Lemma 246 If S is a �-AG groupoid with left identity e and f; g are fuzzy �-ideals of S,

then f�g is a fuzzy �-ideal of S.
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Proof. Let f; g be fuzzy �-ideals of S and a; b 2 S; and �; �; 
 2 �. If (f�g)(a) = 0; then

(f�g)(a) � (f�g)(ab); otherwise

(f�g)(a) =
_
a=c
d

(f(c) ^ g(d))

(since a = c
d, so a�b = (c
d)�b = (c
d)�(e�b) = (c
e)�(d�b) by medial law)

(f�g)(a) �
_
a=c
d

(f(c
e) ^ g(d�b))( since f and g are fuzzy �-ideals)

�
_

a�b=x
y

(f(x) ^ g(y))

= (f�g)(a�b):

Thus (f�g)(a�b) � (f�g)(a):

Therefore f�g is a fuzzy right �-ideal of S and by Lemma 239, f�g is a fuzzy �-ideal of

S.

Remark 247 Let S be a �-AG-groupoid with left identity e and let FI(S) be the set of all

fuzzy �-ideals of S, then (FI(S);�) forms a �-AG-groupoid.

7.1.3 Fuzzy points in �-AG-groupoids

Let S be a �-AG-groupoid and x 2 S. Then for a 2 S and t 2 (0; 1]; we de�ne

at : S �! [0; 1]; x 7�! at(x) :=

8<: t if x = a

0 otherwise

Then at is a fuzzy subset of S and is called a fuzzy point with support t.

By at 2 f; we mean f(a) � t:

Theorem 248 Let S be a �-AG groupoid with left identity e and let it holds �-medial law

. If f is a fuzzy left �-ideal of S, then at�f is a fuzzy left �-ideal of S; where at is a fuzzy

point of S.
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Proof. Suppose that f is a fuzzy left �-ideal of S. Let x; y 2 S and �; �; 
 2 �: If

(at�f)(x) = 0; then (at�f)(x
y) � (at�f)(x); otherwise

(at�f)(x) =
_

y=p�q

fat(p) ^ f(q)g

(Since y = p�q; so x
y = x
(p�q)

= (e�x)
(p�q) = (e�p)
(x�q) = p
(x�q) by medial law)

Thus, (at�f)(x) =
_

y=p�q

fat(p) ^ f(q)g

�
_

y=p�q

fat(p) ^ f(x�q)g since f is a fuzzy left �-ideal of S

�
_

x
y=c�d

fat(c) ^ f(d)g

= (at�f)(x
y):

Thus (at�f)(x
y) � (at�f)(x): Consequently, at�f is a fuzzy left �-ideal of S.

Let S be a �-AG groupoid and a 2 S. A fuzzy left (two-sided) �-ideal f of S is called the

fuzzy left (two-sided) �-ideal of S, generated by at for t 2 (0; 1] if f is the smallest fuzzy left

(two-sided) �-ideal of S containing at.

Theorem 249 Let S be a �-AG groupoid with left identity e and at a fuzzy point of S. Then

the fuzzy left �-ideal of S, generated by at is lat , de�ned by:

lat : S �! [0; 1]; x 7�! lat(x) :=

8<: t if x 2 S�a

0 otherwise
:

Proof. Let x; y 2 S and �; �; 
; � 2 �:

Case 1. If y =2 S�a; then lat(y) = 0 � lat(x
y):
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Case 2. If y 2 S�a; then y = s�a for some a 2 S and � 2 �: Hence

x
y = x
(s�a) = (e�x)
(s�a)

= ((s�a)�x)
e by left invertive law

= ((s�a)�(e�x))
e

= ((s�e)�(a�x))
e by medial law

= (e�(a�x))
(s�e) by left invertive law

= (a�x)
(s�e)

= ((s�e)�x)
a 2 Sa:

Hence lat(y) = t = lat(x
y): Thus in any case lat(x
y) � lat(x): Consequently, lat is a

fuzzy left �-ideal of S.

Also by the de�nition of at, we have at � lat :

Now let f be a fuzzy left �-ideal of S containing at.

Case 1. If x 2 S�a; then x = s�a for some s 2 S and � 2 � and so lat(x) = t:

Also

t = at(a) � f(a)

) t � f(a) � f(s�a) = f(x)

) f(x) � t = lat(x):

Case 2. If x =2 S�a; then lat(x) = 0 � f(x):

Thus lat � f in any case. This shows that lat is the smallest fuzzy left �-ideal of S

containing at.

Theorem 250 Let S be a �-AG-groupoid with left identity e and at a fuzzy point of S. Then
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the fuzzy right �-ideal tat of S, generated by at is de�ned by:

tat : S �! [0; 1]; x 7�! tat(x) :=

8<: t if x 2 a�S [ S�a;

0 otherwise
:

Proof. Let x; y 2 S and .

Case 1. If x =2 a�S [ S�a; then tat(x) = 0 � tat(x
y):

Case 2. If x 2 a�S [ S�a; then x 2 a�S or x 2 S�a: If x 2 a�S; then x = a�c for some

c 2 S and � 2 �: So x
y = (a�c)
y = (y�c)
a 2 S�a:

Let x 2 S�a; then x = s�a for some s 2 S and � 2 � and so

x
y = (s�a)
y = (s�a)
(e�y)

= (s�e)
(a�y)

= a
((s�e)�y) 2 a�S because a�(b�c) = b�(a�c):

Hence x
y 2 a�S [ S�a; and we have tat(x) = t = tat(x
y): Thus in any case tat(x
y) �

tat(x): Therefore tat is a fuzzy right �-ideal of S.

Also by de�nition by the de�nition of at, we have at � tat :

Now let f be a fuzzy right �-ideal of S containing at. Then by Lemma 239, f is a fuzzy

�-ideal of S. Then for any x 2 a�S [ S�a; we have x = a�s or x = s�a for some s 2 S and

� 2 �: Hence tat(x) = t:

If x = a�s; then

t = at(a) � f(a) � f(a�s) = f(x):

If x = s�a; then

t = at(a) � f(a) � f(s�a) = f(x), since f is a fuzzy �-ideal of S:

Hence f(x) � t = tat(x):
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If x =2 a�S [S�a, then tat(x) = 0 � f(x): Thus, we have tat � f: Consequently tat is the

smallest fuzzy �-ideal of S generated by at.

A �-AG-groupoid S is called is called regular if for every a 2 S, there exists x in S and

�; � 2 � such that a = (a�x)�a; or equivalently, a 2 (a�S)�a.

For a regular �-AG-groupoid it is easy to see that S�S = S.

Proposition 251 Every fuzzy right �-ideal of a regular �-AG-groupoid is a fuzzy left �-ideal

of S.

Proof. Let f be a fuzzy right �-ideal of S and a; b 2 S and 
 2 �: Since S is regular, there

exist x 2 S, and �; � 2 � such that a = (a�x)�a. Then

f(a
b) = f(((a�x)�a)
b)

= f((b�a)�(a
x))

� f(b�a) since f is a fuzzy right �-ideal of S

� f(b).

Thus f(a
b) � f(b): Therefore f is a fuzzy left �-ideal of S.

Corollary 252 In a regular �-AG groupoid S, every fuzzy right �-ideal of S is a fuzzy �-ideal

of S.

Lemma 253 If f and g are fuzzy right �-ideals of a regular �-AG groupoid S, then f�g =

f \ g.

Proof. Since S is regular, by Proposition 251, every fuzzy right �-ideal of S is a fuzzy �-

ideal of S. Since S is regular, so for every a 2 S there exist x 2 S and �; � 2 � such that
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a = (a�x)�a: Thus

(f \ g)(a) = f(a) ^ g(a)

� f(a�x) ^ g(a) since f is a fuzzy right �-ideal

�
_

a=y
z

(f(a) ^ g(b))

= (f�g)(a):

Thus f \ g � f�g. On the other hand by Lemma 244, we have f�g � f \ g: Therefore

f�g = f \ g:

Corollary 254 Let f be a fuzzy right �-ideal of a regular �-AG groupoid S, then f = f�f .

Remark 255 It is clear that if S is a regular �-AG groupoid, then FI(S) (the set of all fuzzy

�-ideals) is a commutative semigroup.

A fuzzy �-ideal f of a �-AG groupoid S is called prime (semiprime) if:

g�h � f (g�g � f) implies g � f or h � f (g � f) for every fuzzy �-ideal g and h of S:

Note that every prime fuzzy �-ideal of a �-AG groupoid is semiprime.

A fuzzy �-ideal f of a �-AG groupoid S is called irreducible if:

g \ h � f implies g � f or h � f for every fuzzy �-ideal g and h of S:

Proposition 256 A fuzzy �-ideal f of a �-AG groupoid S is prime if and only if it is both

semiprime and irreducible.

Proof. Suppose that f is a prime fuzzy �-ideal of S. Then clearly, f is semiprime. Let g and
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h be fuzzy �-ideals of S such that g \ h � f: As

g�h � g \ h � f ) g�h � f

) g � f or h � f , since f is irreducible.

Hence f is prime fuzzy �-ideal of S.

A �-AG groupoid is called fully fuzzy prime if every fuzzy �-ideal of S is prime fuzzy �-ideal

of S.

Theorem 257 A regular �-AG groupoid S is fully fuzzy prime if and only if the set of all

fuzzy �-ideals FI(S) of S is totally ordered under inclusion.

Proof. Suppose that S is fully fuzzy prime. Let f; g be fuzzy �-ideals of S. Then by Lemma

244, f�g � f \ g. As f \ g is a prime fuzzy �-ideal of S, hence either f � f \ g or g � f \ g.

This implies that either f � g or g � f . Hence FI(S) is totally ordered under inclusion.

Conversely, assume that FI(S) is totally ordered under inclusion. Let f; g; h be fuzzy �-

ideals of S such that g�h � f . As FI(S) is totally ordered under inclusion, so either g � h

or h � g. Suppose that g � h. Then g = g�g � g�h � f: It follows that g � f . Thus f is

prime fuzzy �-ideal of S and hence S is fully fuzzy prime.

Theorem 258 Every fuzzy �-ideal f in a regular �-AG groupoid S is prime if and only if f

is irreducible.

Proof. Let f be a prime fuzzy �-ideal of S. Let g; h be fuzzy �-ideals of S such that g\h � f:

By Lemma 244,

g�h � g \ h � f

) g � f or h � f , since f is prime.

Hence f is irreducible.
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Conversely, assume that f is irreducible. Let g; h be fuzzy �-ideals of S such that g�h � f:

Since S is regular, by Lemma 242, g�h = g\h. Thus g\h � f; since f is irreducible, we have

g � f or h � f . Hence f is prime.

A fuzzy subset f of a �-AG groupoid is called a �-AG band if all its elements are idempotent.

Lemma 259 The concepts of fuzzy right and fuzzy left �-ideals in a �-AG band coincide.

Proof. Let f be a fuzzy right �-ideal of S and a; b 2 S and �; �; 
 2 �. Then

f(a�b) = f((a�a)�b)

= f((b�a)�a) by left invertive law

� f(b�a); since f is a fuzzy right �-ideal

� f(b)

Hence f(a�b) � f(b) and f is a fuzzy left �-ideal of S.

Conversely, assume that f is a fuzzy left �-ideal. Then for a; b 2 S and �; �; 
 2 �; we

have

f(a�b) = f((a�a)�b)

= f((b�a)�a) by left invertive law

� f(a) since f is fuzzy left �-ideal.

Hence f is a fuzzy right �-ideal of S.

Lemma 260 Every fuzzy �-ideal of a �-AG-band is idempotent.

Proof. Straightforward.

Theorem 261 Every fuzzy �-ideal of a �-AG-band is prime if and only if FI(S) is totally

ordered under inclusion.
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Proof. Suppose that every fuzzy �-ideal of S is prime. Let f and g be fuzzy �-ideals of S,

then f ^ g is a fuzzy �-ideal of S and hence prime. Thus

f�g � f ^ g

) f � f ^ g or g � f ^ g

) f � g or g � f .

Hence FI(S) is totally ordered under inclusion.

Conversely, suppose that FI(S) is totally ordered by inclusion. Let f; g, and h be fuzzy

�-ideal of S such that f�g � h: Since FI(S) is totally ordered under inclusion so either f � g

or g � f: Assume that f � g; since S is a band, so every fuzzy �-ideal is idempotent and hence

f = f�f � f�g � h

) f � h:

Hence f is prime.

7.2 Regular and Intra-regular �-AG-groupoids characterized by the properties

of fuzzy �-ideals.

In this section, we characterize regular and intra-regular �-AG-groupoids by the properties

of fuzzy �-quasi-ideals, fuzzy �-interior ideals and fuzzy �-bi-ideals and fuzzy �-generalized

bi-ideals.

7.2.1 De�nitions and Preliminary Lemmas

Throughout this study S will denote a �-AG-groupoid unless otherwise stated. For de�nitions

and lemmas we refer to chapter 5.

In the following we recall certain de�nitions and results from �rst section of this chapter.

De�nition 262 Let S be a �-AG groupoid and ; 6= A � S: Then the characteristic function
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�A of A is de�ned by:

�A : S �! [0; 1]; 7�! �A(x) :=

8<: 1 if x 2 A,

0 if x =2 A

De�nition 263 A function f from a non empty set X to the unit interval [0; 1] is called a

fuzzy subset of S. For fuzzy subsets f; g of X, f � g means that f(x) � g(x) for all x 2 X.

The fuzzy subsets f ^ g and f _ g of X are de�ned as

(f ^ g)(x) = f(x) ^ g(x) = minff(x); g(x)g;

(f _ g)(x) = f(x) _ g(x) = maxff(x); g(x)g for all x; y 2 S.

If f; g are any fuzzy subsets of S. We de�ne the product f�g of f and g as follows:

(f�g)(x) :=

8>><>>:
_

x=y
z

minff(y); g(z)g if 9 x; y 2 S and 
 2 � such that x = y
z,

0 if x 6= y
z

De�nition 264 Let S be a �-AG groupoid and f a fuzzy subset of S. Then f is called a

fuzzy sub �-AG groupoid of S if f(x
y) �minff(x); f(y)g for all x; y 2 S and 
 2 � and f

is called a fuzzy left (right) �-ideal of S if f(x
y) � f(y)(f(x
y) � f(x)) for all x; y 2 S

and 
 2 �: If f is both a fuzzy left �-ideal and a fuzzy right �-ideal of S. Then f is called a

two-sided fuzzy �-ideal of S.

Lemma 265 Let S be a �-AG groupoid with left identity e: Then every fuzzy right �-ideal

of S is a fuzzy left �-ideal.

Lemma 266 If S is a �-AG groupoid with left identity e and f; g are fuzzy �-ideals of S;

then f�g is a fuzzy �-ideal of S:

Lemma 267 If S is a �-AG groupoid and f; g are fuzzy �-ideals of S; then f�g � f \ g:
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De�nition 268 A �-AG-groupoid S is said to be a regular �-AG-groupoid if for each a in S

there exist x 2 S and �; � 2 � such that a = (a�x)�a:

7.2.2 Fuzzy ideals in regular �-AG-groupoids

We initiate with the following lemma:

Lemma 269 In a regular �-AG-groupoid S, f�g = f \ g; where f is a fuzzy right �-ideal

and g is a fuzzy left �-ideal.

Proof. Since f�g � f \ g, so we only show that f \ g � f�g. Let a 2 S, then there exist

x 2 S and �; � 2 � such that a = (a�x)�a. Now (f�g)(a) = _a=y�z ff (y) ^ g (z)g �

f(a�x) ^ g(a) � f(a) ^ g(a) = f(a) ^ g(a) = (f \ g)(a). This implies f \ g � f�g. Hence

f�g = f \ g.

Lemma 270 Every fuzzy right �-ideal of a regular �-AG-groupoid is fuzzy �-idempotent.

Proof. Let S be a regular �-AG-groupoid and f a fuzzy right �-ideal of S. Since f�f � f , so

we only show that f � f�f: Let a 2 S then there exist an element x in S and �; � 2 � such that

a = (a�x)�a: Now (f�f)(a) = _a=y
z ff (y) ^ f (z)g � f(a�x)^f(a) � f(a)^f(a) = f(a).

This implies f � f�f:

De�nition 271 Let A be a subset of �-AG-groupoid S. The characteristic function of A is

denoted by CA and de�ned by

CA(a) =

8<: 1 if a 2 A

0 otherwise

We note that a �-AG-groupoid S can be considered a fuzzy �-subset of itself and write

S = CS ; i.e.; S(x) = 1 for all x 2 S.

Proposition 272 Let A and B be any non-empty subsets of �-AG-groupoids S. Then the

following properties hold.
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Lemma 273 (1) If A � B then CA � CB.

(2) CA�CB = CA�B.

(3) CA [ CB = CA[B.

(4) CA \ CB = CA\B.

Proof. (1) Let a be any element of S. Suppose a 2 A; this implies a 2 B: Thus CA(a) = 1 =

CB(a). This implies CA � CB. If a =2 A; this implies a =2 B. This implies CA(a) = 0 = CB(a).

Thus CA � CB.

(2) Let x be any element of S. Suppose x 2 A�B. This implies x = a�b for some a 2 A,

b 2 B and � 2 �. (CA�CB)(x) = _x=y
z fCA (y) ^ CB (z)g � CA(a)^CB(b) = 1^ 1 = 1 =

CA�B(x).

Now suppose x =2 A�B. This implies x 6= a�b for some a 2 A, b 2 B and � 2 �.

(CA�CB)(x) = _x=y
z fCA (y) ^ CB (z)g = 0 ^ 0 = 0 = CA�B(x). Hence CA�CB = CA�B.

(3) Let a be any element of S. Suppose a 2 A [B. Then there are three cases

(i) when a 2 A and a 2 B. (CA [ CB)(a) = CA(a) _ CB (a) = 1 _ 1 = 1 = CA[B(a).

(ii) when a 2 A and a =2 B. (CA [ CB)(a) = CA(a) _ CB (a) = 1 _ 0 = 1 = CA[B(a).

(iii) when a =2 A and a 2 B. (CA [ CB)(a) = CA(a) _ CB (a) = 0 _ 1 = 1 = CA[B(a).

If a =2 A [B. This implies a =2 A and a =2 B. This implies (CA [ CB)(a) = CA[B(a). Hence

in all cases CA [ CB = CA[B.

(4) Let a be any element of S. Suppose a 2 A \B. This implies a 2 A and a 2 B. Now

(CA \ CB)(a) = CA(a) ^ CB (a) = 1 ^ 1 = 1 = CA\B(a). Suppose a =2 A \ B. This implies

a =2 A and a =2 B. Now (CA \ CB)(a) = CA(a) ^ CB (a) = 0 ^ 0 = 0 = CA\B(a). Hence

CA \ CB = CA\B.

De�nition 274 A fuzzy �-subAG-groupoid f of a �-AG-groupoid S is called a fuzzy �-bi-ideal

of S if f ((x�y)�z) � f (x) ^ f (z) for all x; y; z 2 S and �; � 2 �:

Lemma 275 Every fuzzy right (two-sided) �-ideal of a �-AG-groupoid S is a fuzzy �-bi-ideal

of S.
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Proof. Let f is a fuzzy right �-ideal of S. Let x; y; z 2 S and �; � 2 �. Now f ((x�y)�z) =

f (x�y) � f (x) and f((x�y)�z) = f((z�y)�x) � f(z�y) � f(z). It follows that f((x�y)�z) �

f(x) ^ f(z). This implies f is a fuzzy �-bi-ideal of S. Similarly it is fairly easy to prove that

every two sided fuzzy �-ideal is also a fuzzy �-bi-ideal of S:

Lemma 276 Let S be a regular �-AG-groupoid. Then for every fuzzy �-bi-ideal f , (f�S)�f =

f:

Proof. Since (f�S)�f � f; because f is a fuzzy �-bi-ideal of S. Let a 2 S. This implies

there exist x 2 S and �; � 2 � such that a = (a�x)�a: Now

((f�S)�f)(a) = _a=y
z f(f�S) (y) ^ f (z)g � (f�S)(a�x) ^ f(a)

= _a�x=p�q f(f (p) ^ S (q)g ^ f(a) � f(a) ^ S(x) ^ f(a) = 1 ^ f(a) = f(a)

This implies f � (f�S)�f . Thus (f�S)�f = f .

Lemma 277 Every fuzzy right �-ideal of a regular �-AG-groupoid is a fuzzy �-ideal of S.

Proof. Let f is a fuzzy right �-ideal of S. Let a; b 2 S. This implies there exist elements

x 2 S and �; � 2 � such that a = (a�x)�a. f(a
b) = f((a�x)�a)
b) = f((b�a)
(a�x)) �

f(b�a) � f(b): This implies f(a
b) � f(b): This implies f is a fuzzy left �-ideal and hence f

is a fuzzy �-ideal of S.

De�nition 278 A fuzzy subset f of �-AG-groupoid S is called a fuzzy �-interior ideal of S

if f ((x�y)�z) � f (y) for all x; y; z 2 S and �; � 2 �:

Lemma 279 Let S be a regular �-AG-groupoid. Then any non-empty fuzzy subset f of S is

a fuzzy �-interior ideal of S if and only if f is a fuzzy �-ideal of S.

Proof. Suppose f is a fuzzy �-interior ideal of S. Let a; b 2 S. This implies there ex-

ist elements x 2 S and �; � 2 � such that a = (a�x)�a. f(a
b) = f((a�x)�a)
b) =

f((b�a)
(a�x)) � f(a). This implies f(a
b) � f(a): It follows that f is a fuzzy �-right ideal
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of S and hence by Lemma 277, f is a fuzzy �-ideal of S. Conversely, let f be a fuzzy �-ideal

of S. Let x; y; z 2 S and �; � 2 �. Now f ((x�y)�z) = f (x�y) � f (y). Thus f is a fuzzy

interior �-ideal of S.

Remark 280 Fuzzy interior �-ideal and fuzzy �-ideal coincide if S is regular �-AG-groupoid.

De�nition 281 A fuzzy subset f of �-AG-groupoid S is called a fuzzy �-quasi-ideal of S if

(f�S) \ (S�f) � f .

Proposition 282 In a regular �-AG-groupoid S with left identity e; (f�S) \ (S�f) = f for

every fuzzy right �-ideal f of S.

Proof. Let f be a fuzzy right �-ideal of S. This implies (f�S) \ (S�f) � f; because

every fuzzy right �-ideal is fuzzy �-quasi-ideal. Let a 2 S. This implies there exist x 2 S

and �; � 2 �; such that a = (a�x)�a. (f�S)(a) = _a=y
z ff (y) ^ S (z)g � f(a�x) ^

S(a) = f(a�x) ^ 1 = f(a�x) � f(a). This implies f � f�S. This implies (S�f)(a) =

_a=l�m fS (l) ^ f (m)gg � S(a�x) ^ f(a) = 1 ^ f(a) = f(a).f � S�f

(S�f)(a) = _a=l�m fS (l) ^ f (m)gg � S(a�x) ^ f(a) = 1 ^ f(a) = f(a)

f � S�f

) f � (f�S) \ (S�f).

Hence (f�S) \ (S�f) = f .

Lemma 283 Let S be a groupoid with left identity e such that �-medial law holds. Then

every fuzzy �-quasi-ideal is a fuzzy �-bi-ideal of S.

Proof. Let f is a fuzzy quasi-ideal of S. Let x; y; z 2 S and �; � 2 �. This implies

f((x�y)�z) � ((f�S)\(S�f))((x�y)�z) = (f�S)((x�y)�z)^(S�f)((x�y�)z); since f is a
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quasi-ideal of S. Now (S�f)((x�y)�z) = _(x�y)�z=l
m fS (l) ^ f (m)g = _(x�y)�z=l
m f1 ^ f (m)g �

f(z): This implies (S�f)((x�y)�z) � f(z). (f�S)((x�y)�z) = _(x�y)�z=p
q ff (p) ^ S (q)g =

_(x�y)�z=p
q ff (p) ^ 1g.

Now (x�y)�z = (x�y)�(e�z) = (x�e)�(y�z) 2 (x�e)�S = x�S. This implies (x�y)�z 2

x�S; so (x�y)�z = x�r for some r 2 S and � 2 �. This implies (f�S)((x�y)�z) =

_(x�y)�z=x�r=pq ff (p) ^ S(q)g = _x�r=pq ff (p) ^ 1g � f(x). This implies(f�S)((x�y)�z) �

f(x). Thus f((x�y)�z) � (f�S)((x�y)�z) ^ (S�f)((x�y)�z) � f(x) ^ f(z). This implies

f((x�y)�z) � f(x) ^ f(z). This implies f is a fuzzy �-bi-ideal of S.

Theorem 284 Let S be a �-AG-groupoid with left identity e. Then the following conditions

are equivalent.

(1) S is regular.

(2) f \ g = f�g for every fuzzy right �-ideal f and every fuzzy left �-ideal g of S.

(3) h = (h�S)�h for every fuzzy �-quasi-ideal h of S.

Proof. (1) ) (2) : By Lemma 269. (1) ) (3) : Let a 2 S. This implies there exist elements

x in S and �; � in � such that a = (a�x)�a. Now

((h�S)�h)(a) = _a=y
z f(h�S) (y) ^ h (z)g � (h�S)(a�x) ^ h(a)

= (_a�x=l�m fh (l) ^ S (m)g) ^ h(a) � h(a) ^ S(x) ^ h(a) = h(a)

) h � (h�S)�h:

Since every fuzzy �-quasi-ideal is fuzzy �-bi-ideal of S by lemma 283. This implies

(h�S)�h � h. Hence it follows that h = (h�S)�h. (3) ) (2) : Let f is a fuzzy right �-

ideal and g is a fuzzy left �- ideal of S. Then obviously f and g are fuzzy �-quasi-ideals of S.

Since intersection of any two fuzzy �-quasi-ideals of S is also a fuzzy �-quasi-ideal of S by;

so f \ g is a fuzzy �-quasi-ideal of S. f \ g = ((f \ g)�S)�(f \ g) � (f�S)�g � f�g. This

implies f \ g � f�g. Since f�g � f \ g. Hence f�g = f \ g. (2) ) (1) : Let a 2 S. Since

S�a is a left �-ideal of S generated by a and a�S [ S�a is a right �-ideal of S containing
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a. This implies CS�a and Ca�S[S�a are fuzzy �-left and fuzzy �-right ideals of S respectively

and by hypothesis Ca�S[S�a \ CS�a = Ca�S[S�a�CS�a. So by Proposition 272, we have

C(a�S[S�a)\S�a = C(a�S[S�a)S�a. Consequently (a�S [ S�a) \ S�a = (a�S [ S�a)S�a.

Now as a 2 (a�S [S�a)\S�a; so a 2 (a�S [S�a)S�a. This implies a is regular and hence

S is regular.

Theorem 285 Let S be a �-AG-groupoid with left identity e. Then the following conditions

are equivalent.

(1) S is regular.

(2 ) f = (f�S)�f for every quasi-ideal f of S.

(3) f = (f�S)�f for every bi-ideal f of S.

Proof. (1) ) (3) : Straight forward. (3) ) (2) : Because every fuzzy �-quasi -ideal is fuzzy

�-bi-ideal by Lemma 283. (2)) (1). By Theorem 284.

Theorem 286 Let S be a �-AG-groupoid with left identity e. Then the following conditions

are equivalent.

(1) S is regular.

(2) f \ g = (f�g)�f for every fuzzy �-quasi-ideal f and every fuzzy �-ideal g of S.

(3) h \ k = (h�k)�h for every fuzzy �-bi-ideal h and every fuzzy �-ideal k of S.

Proof. (1)) (3). Let h be a fuzzy �-bi-ideal and k be a fuzzy �-ideal of S. Then (h�k)�h �

(S�k)�S � k�S � k and (h�k)�h � (h�S)�h � h. It follows that (h�k)�h � h \ k.
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Let a 2 S and �; � 2 �. Then a = (a�x)�a = (((a�x)�a)�x)�a = ((x�a)�(a�x))�a =

(a�((x�a)�x))�a. Now

((h�k)�h)(a) = _a=l�m f(h�k) (l) ^ h (m)g

� (h�k)(a�((x�a)�x)) ^ h(a)

= (_a�((x�a)�x)=y�z fh (y) ^ k (z)g) ^ h(a)

� h(a) ^ k((x�a)�x) ^ h(a) � h(a) ^ k(a)

= (h \ k)(a)

) h \ k � (h�k)�h

Consequently h \ k = (h�k)�h.(3) ) (2) : Straight forward because every fuzzy �-quasi-

ideal of S is a fuzzy �-bi-ideal of S.(2)) (1) : Since S is fuzzy �-ideal;so f \ S = (f�S)�f .

It follows that f = (f�S)�f; where f is a fuzzy �-quasi-ideal of S. Hence by Theorem 284,

S is regular.

Theorem 287 Let S be a �-AG-groupoid with left identity e. Then the following conditions

are equivalent.

(1) S is regular.

(2) f \ g � g�f for every fuzzy �-quasi-ideal f and every fuzzy right �-ideal g of S.

(3) h \ g � g�h for every fuzzy �-bi-ideal h and every fuzzy right �-ideal g of S.

(4) k \ g � g�k for every fuzzy generalized �-bi-ideal k and every fuzzy right �-ideal g of

S.

Proof. (1) ) (4). Let a 2 S and �; � 2 �; then by hypothesis, a = (a�x)�a: Now

(g�k)(a) = _a=l
m f(g) (l) ^ k (m)g � g(a�x) ^ k(a) � g(a) ^ k(a) = k(a) ^ g(a). This

implies (k ^ g)(a) and consequently k \ g � g�k for every fuzzy generalized �-bi-ideal k and

every fuzzy right �-ideal g of S. (4)) (3)) (2) are straight forward.

(2) ) (1) : Let f be a fuzzy right �-ideal and g be a fuzzy left �-ideal of S:Then clearly

g�f � f \ g: Also since every fuzzy left �- ideal is fuzzy �-quasi-ideal of S, so by hypothesis
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f \ g � g�f: It follows that f \ g = g�f for every fuzzy right �-ideal f and g is a fuzzy left

�-ideal of S. This implies that g \ f = g�f . Hence S is regular 284.

7.2.3 Fuzzy ideals in intra-regular �-AG-groupoids

De�nition 288 A �-AG-groupoid S is called intra-regular if for each a 2 S; there exist x;

y 2 S and �; �; 
 2 � such that a = (x�a)�(a
y).

Lemma 289 In an intra-regular �-AG-groupoid S; every fuzzy �-ideal is fuzzy �-idempotent.

Proof. Let f be a any fuzzy �-ideal of S. Since f�f � f . We only show that f � f�f .

Let a 2 S. So by de�nition a = (x�a)�(a
y). Now (f�f)(a) = _a=y�z ff (y) ^ f (z)g �

f(x�a) ^ f(a
y) � f(a) ^ f(a) = f(a). This implies f � f�f . Hence f = f�f .

Lemma 290 Let S be an intra-regular �-AG-groupoid S; then g \ f � f�g for every fuzzy

left �-ideal f and for every fuzzy right �-ideal g of S.

Proof. Let a 2 S. This implies there exist x; y 2 S and �; �; 
 2 � such that a =

(x�a)�(a
y). Now (f�g)(a) = _a=y�z ff (y) ^ g (z)g � f(x�a) ^ g(a
y) � f(a) ^ g(a) =

g(a) ^ f(a) = (g \ f)(a). This implies g \ f � f�g.

Lemma 291 Every fuzzy right �-ideal of an intra-regular �-AG-groupoid S is a fuzzy �-ideal

of S.

Proof. Let f be a fuzzy right �-ideal of S. Let a; b 2 S. Then by de�nition, a = (x�a)�(a
y).

Now f(a�b) = f((x�a)�(a
y))�b) = f((b�(a
y))�(x�a)) � f(b�(a
y)) � f(b).

This implies f is a fuzzy left �-ideal of S and consequently f is a fuzzy �-ideal of S.

Theorem 292 Let S be an intra-regular �-AG-groupoid with left identity e. Then any non-

empty fuzzy subset f of S is a fuzzy �-interior ideal of S if and only if f is a fuzzy �-ideal of

S.
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Proof. Suppose f is a fuzzy �-interior ideal of S. Let a; b 2 S. Then there exist element

x; y 2 S and �; �; 
 2 �; such that a = (x�a)�(a
y). f(a�b) = f((a�x)�(a
y))�b) =

f((b�(a
y))�(a�x)) � f(a
y) � f((e�a)
y) � f(a). This implies f(a�b) � f(a): It follows

that f is a fuzzy right �-ideal of S and hence by Lemma 291, f becomes a fuzzy �-ideal of S.

Conversely, let f be a fuzzy �-ideal of S. Let x; y; z 2 S and �; � 2 �. Now f ((x�y)�z) =

f (x�y) � f (y). Thus f is a fuzzy interior �-ideal of S.

Remark 293 In an intra-regular �-AG-groupoid S; fuzzy �-interior ideal and fuzzy �-ideal

coincide.

Theorem 294 Let S be a �-AG-groupoid with left identity e. Then the following conditions

are equivalent.

(1) S is an intra-regular.

(2) g \ f � f�g for every fuzzy left �-ideal f and for every fuzzy right �-ideal g of S.

Proof. (1) ) (2) : Straight forward by lemma 290. (2) ) (1) : Let a 2 S; then S�a is a

left �-ideal of S generated by a and a�S [ S�a is the right �-ideal of S containing a. It

follows that CS�a and Ca�S[S�a are fuzzy �-left and fuzzy �-right ideals of S respectively.

So by hypothesis Ca�S[S�a \ CS�a � CS�a � Ca�S[S�a. Then by Proposition 272, we have

C(a�S[S�a)S�a � CS�a(a�S[S�a). It follows that (a�S [S�a)\S�a � S�a(a�S [S�a). Since

a 2 (a�S [ S�a) \ S�a; so a 2 S�a(a�S [ S�a). This implies a is intra-regular. Hence S is

intra-regular.

Theorem 295 Let S be a �-AG-groupoid with left identity e. Then the following conditions

are equivalent.

(1) S is intra-regular.

(2) f \ g = (f�g)�f for every fuzzy �-quasi-ideal f and for every fuzzy �- ideal g of S.

(3) h \ k = (h�k)�h for every fuzzy �-bi-ideal h and for every fuzzy �-ideal k of S.
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Proof. (1) ) (3). Let x 2 S, so there exist s; t 2 S and �; �; 
 2 � such that x =

(s�x)�(x
t). Consider

x
t = ((s�x)�(x
t))
t = (x�((s�x)
t))
t = (x�((s�x)
t))
(e�t)

= (x�e)
(((s�x)
t)�t) = (x�e)
((t
t)�(s�x)) = (x�e)
(((e�t)
t)�(s�x)

= (x�e)
(((t�t)
e)�(s�x)) = (x�e)
(((t�t)
s)�(e�x) = (x�e)
(((t�t)
s)�x)

= (x�((t�t)
s))
(e�x) = (x�((t�t)
s))
x

and

s�x = s�((s�x)�(x
t)) = s�(x�((s�x)
t))

= (e�s)�(x�((s�x)
t)) = (e�x)�(s�((s�x)
t))

= x�(s�((s�x)
t))

Now

((h�k)�h)(x) = _x=y
z f(h�k) (y) ^ h (z)g

� (h�k)(s�x) ^ h(x
t)

= (_s�x=l"m fh (l) ^ k (m)g) ^ h((x�((t�t)
s))
x)

� h(x) ^ k(s�((s�x)
t)) ^ h(x) since h is a fuzzy �-bi-ideal.

� h(x) ^ k(x) = h \ k(x) since k is a fuzzy �-ideal.

) h \ k � (h�k)�h
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Also

(h�k)�h � (S�k)�S � k�S � k

) (h�k)�h � k

(h�k)�h � (h�S)�h � h

) (h�k)�h � h

) (h�k)�h � h \ k.

Hence h \ k = (h�k)�h. (3) ) (2) : Straight forward because every fuzzy �-quasi-ideal

of S is a fuzzy �-bi-ideal of S. (2) ) (1) : Let E be a fuzzy right �-ideal and J be a fuzzy

two-sided �-ideal of S. Since every fuzzy right �-ideal of S is a fuzzy �-quasi-ideal of S. Then

by hypothesis E \ J = (E�J)�E � (S�J) �E � J�E: Since E is a fuzzy right �-ideal and

J is also a fuzzy left �-ideal. Hence S is intra-regular by Theorem 294.

Theorem 296 Let S be a �-AG-groupoid with left identity e. Then the following conditions

are equivalent.

(1) S is intra-regular.

(2) f \ g � g�f for every fuzzy �-quasi-ideal f and every fuzzy left �-ideal g of S.

(3) h \ g � g�h for every fuzzy �-bi-ideal h and every fuzzy left �-ideal g of S.

Proof. (1) ) (3) : Let h be fuzzy �-bi-ideal and g be a fuzzy left �-ideal of S. Let x 2 S.

Then by de�nition x = (s�x)�(x
t). Now

x
t = ((s�x)�(x
t))�t = (x�((s�x)
t))�t

= (x�((s�x)
t))�(e�t) = (x�e)�(((s�x)
t)�t); �-medial law

= (x�e)�((t
t)�(s�x)) = (x�e)�(((e�t)
t)�(s�x))

= (x�e)�(((t�t)
e)�(s�x)) = (x�e)�(((t�t)
s)�(e�x))

= (x�e)�(((t�t)
s)�x) = (x�((t�t)
s))�(e�x)

= (x�((t�t)
s))�x
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Now

(g�h)(x) = _x=a�b fg (a) ^ h (b)g � g(s�x) ^ h((x�((t�t)
s))�x)

� g(x) ^ h(x) = h(x) ^ g(x) = (h \ g)(x)

) h \ g � g�h

(3)) (2) : Obvious because every fuzzy �-quasi-ideal of S is fuzzy �-bi-ideal of S. (2))

(1) : Let R be a fuzzy right �-ideal of S and L be a fuzzy left �-ideal of S. Since every fuzzy

right �-ideal of S is fuzzy �-quasi-ideal of S. Consequently R is a fuzzy �-quasi-ideal of S.

So by hypothesis R \ L � L�R. Hence S is intra-regular by 294.

7.2.4 Fuzzy idempotent ideals in regular and intra-regular �-AG-groupoids.

Theorem 297 Let S be a �-AG-groupoid with left identity e. Then the following conditions

are equivalent.

(1) S is Regular and intra-regular.

(2) f�f = f for all fuzzy �-bi-ideals of S.

(3) f1 \ f2 = (f1�f2) \ (f2�f1) for all fuzzy �-bi-ideals f1; f2 of S.

Proof. (1)) (2) : Let x 2 S. Since S is regular, so there exist elements a 2 R and �; � 2 �

such that x = (x�a)�x; also S is intra-regular; so by de�nition x = (s�x)�(x
t). Now
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x = (x�a)�x = (x�a)�((x�a)�x):

Also x�a = ((s�x)�(x
t))�a, since x = (s�x)�(x
t)

= ((s�x)�(x
t))�(e�a) = ((s�x)�e)�((x
t)�a)

= ((e�x)�s)�((x
t)�a) = (x�s)�((x
t)�a)

= (x�s)�((((x�a)�x)
t)�a) = (x�s)�(((t�x)
(x�a))�a)

= (x�s)�((a
(x�a))�(t�x)) = (x�s)�((x
(a�a))�(t�x))

= (x�s)�(((e�x)
(a�a))�(t�x)) = (x�s)�((((a�a)�x)
e)�(t�x))

= (x�s)�((((a�a)�x)
t)�(e�x)) = (x�s)�((((a�a)�x)
t)�x)

= (x�s)�(((t�x)
(a�a))�x) = (x�s)�((((e�t)�x)
(a�a))�x)

= (x�s)�((((x�t)�e)
(a�a))�x) = (x�s)�((((a�a)�e)
(x�t))�x)

= (x�s)�((((e�a)�a)
(x�t))�x) = (x�s)�(((a�a)
(x�t))�x)

= (x�s)�((x
((a�a)�t))�x) = (x�s)�((x
z)�x); where z = (a�a)�t

= (((x
z)�x)�s)�x = ((s�x)�(x
z))�x = (x�((s�x)
z))�x

So we have x = (x�a)�((x�a)�x) = ((x�((s�x)
z))�x)�((x�a)�x); since x�a =

(x�((s�x)
z))�x:

Now consider

(f�f)(x) = _x=a�bff (a) ^ f (b)g � f((x�((s�x)
z))�x) ^ f((x�a)�x)

� (f(x) ^ f(x) = f(x)

So, f � f�f:

Also f�f � f: Hence it follows that f = f�f .

(2) ) (3) : Let f1; f2 are fuzzy �-bi-ideals of S. Then obviously f1 \ f2 is also a fuzzy

�-bi-ideal of S. So by hypothesis, we have f1\f2 = (f1\f2)�(f1\f2) � f1�f2: Also f1\f2 =

(f1 \ f2)�(f1 \ f2) � f2�f1: It follows that f1 \ f2 � (f1�f2) \ (f2�f1). Now we claim that
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that f1�f2 is a fuzzy �-bi-ideal of S. For this we show that ((f1�f2)�S)�(f1�f2) � (f1�f2):

((f1�f2)�S)�(f1�f2) = ((f1�f2)�(S�S))�(f1�f2)

= ((f1�S)�(f2�S))�(f1�f2)

= ((f1�S)�f1)((f2�S)�f2) � f1�f2

Consequently f1�f2 is a fuzzy �-bi-ideal of S. Similarly f2�f1 is also a fuzzy �-bi-ideal of

S. As intersection of fuzzy �-bi-ideals of S is also fuzzy �-bi-ideal of S; so (f1�f2) \ (f2�f1)

is a fuzzy �-bi-ideal. Then by hypothesis

(f1�f2) \ (f2�f1) = ((f1�f2) \ (f2�f1))�((f1�f2) \ (f2�f1))

� (f1�f2)�(f2�f1) � (f1�S)�(S�f1)

= ((S�f1)�S)�f1 = (((Se)�f1)�S)�f1

= (((f1e)�S)�S)�f1 = ((f1�S)�S)�f1

= ((S�S)�f1)�f1 = (S�f1)�f1

= ((Se)�f1)�f1 = ((f1e)�S)�f1 = (f1�S)�f1 � f1.

On same lines we have; (f1�f2) \ (f2�f1) � f2 and hence it follows that (f1�f2) \

(f2�f1) � f1 \ f2. Consequently f1 \ f2 = (f1�f2) \ (f2�f1).

(3)) (1) : Let R be a fuzzy right �- ideal and L a fuzzy �-ideal of S. Then R and L are

fuzzy �-bi-ideals of S. By lemma 275, every fuzzy right �-ideal and fuzzy two-sided �-ideal is

a fuzzy �-bi-ideal of S. Then by hypothesis we have R \ L = (R�L) \ (L�R): This implies

R\L � (R�L)\(L�R) and R\L � L�R) R\L � R�L: Since R�L � R\L always true.

Hence it follows that R \ L = R�L and R \ L � L�R. Hence S is regular and intra-regular

which completes the proof.

Theorem 298 Let S be a �-AG-groupoid with left identity e. Then following conditions are

equivalent.
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(1) S is regular and intra-regular.

(2) Every fuzzy �-quasi-ideal of S is �-idempotent.

Proof. (1)) (2) : Let g be a fuzzy �-quasi-ideal of S. Since g�g � g, so we only show that

g � g�g: Let x 2 S. Then S being a regular we have by de�nition x = (x�a)�x; also S is

intra-regular; so there exist s; t 2 S and �; �; 
 2 � such that x = (s�x)�(x
t). Consider

x = (x�a)�x = (((s�x)�(x
t))�a)�x = ((a�(x
t))�(s�x))�x

= ((x�(a
t))�(s�x))�x = (((s�x)�(a
t))�x)�x

= ((((e�s)�x)�(a
t))�x)�x = ((((x�s)�e)�(a
t))�x)�x

= ((((a
t)�e)�(x�s))�x)�x = ((x�(((a
t)�e)�s)))�x)�x

Now

(g�g)(x) = _x=y�z fg (y) ^ g (z)g � g((x�(((a
t)�e)�s)))�x) ^ g(x)

� (g(x) ^ g(x)) ^ g(x) = g(x)

) g � g�g

Hence it follows that g = g�g.

(2) ) (1); let a 2 S. Then S�a is a right �-ideal of S containing a. Since every

right �-ideal is �-quasi ideal of S; so S�a is a �-quasi-ideal of S. This implies CS�a a

fuzzy �-quasi- ideal of S. Then by (2) ; CS�a = CS�a�CS�a = C(S�a)(S�a). It follows that

S�a = (S�a)(S�a). As a 2 S�a; so a 2 (S�a)(S�a). Hence a is regular and intra-regular.

Consequently S is regular and intra-regular.

Theorem 299 Let S be a �-AG-groupoid with left identity e. Then following conditions are

equivalent.

(1) S is regular and intra-regular.

(2) Every fuzzy �-quasi-ideal of S is �-idempotent.
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(3) Every fuzzy �-bi-ideal of S is �-idempotent.

Proof. (1)) (3) : Obvious by Theorem 297. (3)) (2) : Straight forward because every fuzzy

�-quasi-ideal of S is a fuzzy �-bi-ideal of S by Lemma 283.

(2)) (1) : Follows from Theorem 298.

Theorem 300 Let S be a �-AG-groupoid with left identity e. Then following conditions are

equivalent.

(1) S is regular and intra-regular.

(2) f1 \ f2 � f1�f2 for all fuzzy �-quasi-ideals f1; f2 of S.

(3) f \ g � f�g for every fuzzy �-quasi-ideal f and every fuzzy �-bi-ideal g of S.

(4) g \ f � g�f for every fuzzy �- bi-ideal g and every fuzzy �-quasi-ideal f of S.

(5) g1 \ g2 � g1�g2 for all fuzzy �-bi-ideals g1; g2 of S.

Proof. (1)) (5) : Let g1; g2 are fuzzy �-bi-ideals of S. Then g1\g2 is also a fuzzy �-bi-ideal

of S. Also by Theorem 297, every fuzzy �-bi-ideal in S is �-idempotent: Then it follows that

g1 \ g2 = (g1 \ g2)�(g1 \ g2) � g1�g2.(5)) (4)) (2) and (5)) (3)) (2) : Because every

fuzzy �-quasi-ideal of S is fuzzy �-bi-ideal of S by Lemma 283.(2) ) (1) : Let R be a fuzzy

right �- ideal and L is a fuzzy left �-ideal of S. Since every fuzzy right and fuzzy left �-ideal

of S is fuzzy �-quasi-ideal of S: Then by hypothesis, we have R \L � R�L. Also it is always

true that R�L � R\L. So consequently R\L = R�L. Hence S is regular by Theorem 284.

Again by (2), R \ L = L \R � L�R. It follows that R \ L � L�R. Hence by Theorem 294,

S is intra-regular.

7.3 Fuzzy ideals in LA-rings

In this section, we introduce the concept of fuzzy ideals in LA-rings. Speci�cally we have shown

that: (1) If R is an LA-ring with left identity e; then every fuzzy right ideal of R is a fuzzy

ideal of R. (2) In an LA-ring R with left identity e, a non-empty fuzzy subset f of R is a

fuzzy interior ideal if and only if f is a fuzzy ideal of R. (3) If R is a fully fuzzy quasi-prime

LA-ring; then every fuzzy left ideal is fuzzy idempotent.
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De�nition 301 Let R be an LA-ring. A fuzzy subset f of R is a function from R into the

closed unit interval [0; 1] ; that is f : R! [0; 1].

Remark 302 F (R) denote the collection of all fuzzy subsets of R.

De�nition 303 Let A be a subset of R. The characteristic function of A is denoted by CA

and de�ned by

CA(a) =

8<: 1 if a 2 A

0 otherwise

We note that an LA-ring R can be considered a fuzzy subset of itself and write R = CR;

i.e.; R(x) = 1 for all x 2 R.

De�nition 304 Let f and g be two fuzzy subsets of an LA-ring R. The product f � g is

de�ned by (f � g)(x) = _
x=

nP
i=1

aibi

f^ni=1ff(ai) ^ g(bi)gg;otherwise 0.

Lemma 305 Let A and B be any non-empty subset of an LA-ring R. Then the following

properties hold.

(1) If A � B then CA � CB.

(2) CA � CB = CAB.

(3) CA [ CB = CA[B.

(4) CA \ CB = CA\B.

Proof. (1) Let a be any element of R. Suppose a 2 A; this implies a 2 B: Thus CA(a) = 1 =

CB(a). This implies CA � CB. If a =2 A; this implies a =2 B. This implies CA(a) = 0 = CB(a).

Thus CA � CB.

(2) Let x be any element of R. Suppose x 2 AB. This implies x = ab for some a 2 A and

b 2 B. (CA � CB)(x) = _x=Pn
i=1 aibi

f^ni=1 fCA (ai) ^ CB (bi)gg � CA(a) ^ CB(b) = 1 ^ 1 =

1 = CAB(x).

Now suppose x =2 AB. This implies x 6= ab for some a 2 A and b 2 B. (CA � CB)(x) =

_x=Pn
i=1 aibi

f^ni=1 fCA (ai) ^ CB (bi)gg = 0 ^ 0 = 0 = CAB(x). Hence CA � CB = CAB.
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(3) Let a be any element of R. Suppose a 2 A [B. Then there are three cases

(1) a 2 A and a 2 B. Now (CA [ CB)(a) = CA(a) _ CB (a) = 1 _ 1 = 1 = CA[B(a).

(2) a 2 A and a =2 B. Now (CA [ CB)(a) = CA(a) _ CB (a) = 1 _ 0 = 1 = CA[B(a).

(3) a =2 A and a 2 B. Now (CA [ CB)(a) = CA(a) _ CB (a) = 0 _ 1 = 1 = CA[B(a). If

a =2 A [B. This implies a =2 A and a =2 B. This implies (CA [ CB)(a) = CA[B(a). Hence in

all cases CA [ CB = CA[B.

(4) Let a be any element of R. Suppose a 2 A \B. This implies a 2 A and a 2 B. Now

(CA \ CB)(a) = CA(a) ^ CB (a) = 1 ^ 1 = 1 = CA\B(a). Suppose a =2 A \ B. This implies

a =2 A and a =2 B. Now (CA \ CB)(a) = CA(a) ^ CB (a) = 0 ^ 0 = 0 = CA\B(a). Hence

CA \ CB = CA\B.

Proposition 306 If f; g; h are fuzzy subsets of an LA-ring R; then

(f � g) �h =(h � g) �f.

Proof. Let x 2 R and suppose f � g = k. Now

(k � h)(x) = _x=Pn
i=1 aibi

f^ni=1 fk (ai) ^ h (bi)gg

Now k(ai) = (f � g)(ai) = _ai=Pn
i=1 cidi

f^ni=1 ff (ci) ^ g (di)gg

((f � g) � h)(x) = _x=Pn
i=1 aibi

f^ni=1
n
(_ai=Pn

i=1 cidi
f^ni=1 ff (ci) ^ g (di)gg) ^ h (bi)

o
g

= _x=Pn
i=1(

Pn
i=1 cidi)bi

f^ni=1(f^ni=1 ff (ci) ^ g (di)gg ^ h (bi))g

= _x=Pn
i=1(cidi)bi

f^ni=1((f (ci) ^ g (di)) ^ h (bi))g

= _x=Pn
i=1(bidi)ci

f^ni=1((h (bi) ^ g (di)) ^ f (ci))g

= _x=Pn
i=1(

Pn
i=1 bidi)ci

f^ni=1(f^ni=1 fh (bi) ^ g (di)gg ^ f (ci))g

= _x=Pn
i=1mibif^

n
i=1

n
(_mi=

Pn
i=1 bidi

f^ni=1 fh (bi) ^ g (di)gg) ^ f (ci)
o
g

= _x=Pn
i=1mibif^

n
i=1 fl (mi) ^ f (bi)gg

= (l � f)(x) = ((h � g) � f)(x)
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where l(mi) = (h � g)(mi) = _mi=
Pn
i=1 bidi

f^ni=1 fh (bi) ^ g (di)gg. Thus (f � g) � h =

(h � g) � f .

Remark 307 Let R be an LA-ring with left identity e; then it easy to verify that f �(g � h) =

g � (f � h) ; (f � g) � (h � k) = (f � h) � (g � k) and (f � g) � (h � k) = (k � h) � (g � f) for all

fuzzy subset f; g; h and k of R.

De�nition 308 A fuzzy subset f of an LA-ringR is called fuzzy LA-subring ofR if f (a� b) �

f (a) ^ f(b) and f (ab) � f (a) ^ f (b) for all a; b 2 R.

A fuzzy LA-subring f of an LA-ring R is called a fuzzy left ideal of R if f (ab) � f (b) for

all a; b 2 R. Similarly; f is called a fuzzy right ideal of R if f (ab) � f (a) for all a; b 2 R. f is

called a fuzzy ideal of R if f is a fuzzy right ideal and a fuzzy left ideal of R.

In an LA-ring if f and g are two fuzzy LA-subrings of R then obviously f \ g is also a

fuzzy LA-subring of R and similarly the intersection of two fuzzy left (right; two-sided) ideals

is again a fuzzy left (right; two-sided) ideal of R:

Theorem 309 Let A be a non-empty subset of an LA-ring R. Then the following properties

hold.

(1) A is an LA-subring of R if and only if CA is a fuzzy LA-subring of R.

(2) A is a left (right; two-sided) ideal of R if and only if CA is a fuzzy left (right; two-sided)

ideal of R.

Proof. (1) Suppose A is an LA-subring of R. Let a; b 2 R. If a; b =2 A. This implies

CA(a) = 0 = CA(b); so CA(a� b) � 0 = CA(b)^CA(b) and CA(ab) � 0 = CA(b)^CA(b). If

a; b 2 A. This implies CA(a) = 1 = CA(b); so CA(a� b) = 1 = CA(a)^CA (b) and CA(ab) =

1 = CA(a)^CA (b). This implies CA(a� b) � CA(a)^CA (b) and CA(ab) � CA(a)^CA (b).

This implies CA is a fuzzy LA-subring of R. Conversely; assume that CA is a fuzzy LA-subring

of R. Let a; b 2 A. Since CA(a�b) � CA(a)^CA (b) = 1 and CA(ab) � CA(a)^CA (b) = 1.

This implies CA(a�b) = 1 and CA(ab) = 1. Thus a�b and ab 2 A. Hence A is an LA-subring.
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(2) Suppose A is a left ideal of R. Let a; b 2 R. If b =2 A; then CA(b) = 0; so CA(ab) �

0 = CA(b). If b 2 A; then ab 2 A; since A is a left ideal. This implies CA(ab) = 1 = CA(b).

This implies CA(ab) � CA(b). Thus CA is fuzzy left ideal of R. Conversely; assume that CA

is a fuzzy left ideal of R. Let r 2 R and a 2 A. Since CA(ra) � CA(a) = 1. This implies

CA(ra) = 1. This implies ra 2 A. Thus A is a left ideal of R. Similarly we can prove for right

and two-sided ideal.

Theorem 310 Let f be a fuzzy LA-subring of an LA-ring R; then the following assertions

are true.

(1) f is a fuzzy LA-subring of R if and only if f � f � f and f(x� y) � f(x) ^ f(y) for

all x; y 2 R.

(2) f is a fuzzy left ideal of R if and only if R � f � f .

(3) f is a fuzzy right ideal of R if and only if f �R � f .

Proof. (1) Suppose f is a fuzzy LA-subring of R. Let x 2 R. If (f � f)(x) = 0 � f(x).

This implies f � f � f . Otherwise ; (f � f)(x) = _x=Pn
i=1 aibi

f^ni=1 ff (ai) ^ f (bi)gg �

_x=Pn
i=1 aibi

f^ni=1 ff (aibi)gg = f(x). This impliesf � f � f .

Conversely; assume that f � f � f and f(x � y) � f(x) ^ f(y) for all x; y 2 R. Let

x; y 2 R; then f(xy) � (f � f)(xy) = _xy=Pn
i=1 aibi

f^ni=1 ff (ai) ^ f (bi)gg � f(x) ^ f(y).

This implies f is a fuzzy LA-subring of R.

(2) Suppose f is a fuzzy left ideal of R. Let x 2 R. If (R � f) (x) = 0 � f(x). This

implies R � f � f . Otherwise;

(R � f)(x) = _x=Pn
i=1 aibi

f^ni=1 fR (ai) ^ f (bi)g = _x=Pn
i=1 aibi

f^ni=1 f1 ^ f (bi)gg

= _x=Pn
i=1 aibi

f^ni=1 ff (bi)gg � _x=Pn
i=1 aibi

f^ni=1 ff (aibi)gg = f(x)

Conversely; assume that R � f � f . Let y; z 2 R. Set x = yz. Now f(yz) = f(x) �

(R � f)(x) = _x=Pn
i=1 aibi

f^ni=1 fR (ai) ^ f (bi)gg � R(y) ^ f(z) = 1 ^ f(z) = f(z). This

implies f is a fuzzy left ideal of R. Similarly we can prove (3).
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Remark 311 f is a fuzzy ideal of R if and only if R � f � f and f �R � f .

Lemma 312 If f; g are fuzzy LA-subrings of an LA-ring R with left identity e; then f � g is

a fuzzy LA-subring of R.

Proof. Let f; g are fuzzy LA-subrings of R. Now we have to show that f � g is a fuzzy

LA-subring of R.

(1) (f � g) � (f � g) = (f � f) � (g � g) � f � g by 307. This implies (f � g) � (f � g) � f � g.

(2) Since g is a fuzzy LA-subring. This implies g(x � y) � g(x) ^ g(y) for all x; y 2 R.

This implies f(g(x� y)) � f(g(x)^ g(y)). So (f � g)(x� y) � (f � g)(x)^ (f � g)(y); by use

part (1) of theorem 310.

Lemma 313 If R is an LA-ring with left identity e; then every fuzzy right ideal of R is a

fuzzy ideal of R.

Proof. Let R be an LA-ring with left identity e and f be a fuzzy right ideal of R. Let a; b 2 R.

Now f (ab) = f ((ea) b) = f ((ba) e) � f (ba) � f (b) Thus f is a fuzzy ideal of R.

Lemma 314 If R is an LA-ring with left identity e and f; g are fuzzy ideals of R; then f � g

is a fuzzy ideal of R.

Proof. Let x; y 2 R. It is enough to show that f �g is a fuzzy right ideal of R. If (f � g) (x) =

0 � (f � g) (xy) ; otherwise (f � g)(x) = _x=Pn
i=1 aibi

f^ni=1 ff (ai) ^ g (bi)gg. Since x =Pn
i=1 aibi; so; xy = (

Pn
i=1 aibi)y =

Pn
i=1(aibi)y =

Pn
i=1(aibi)(ey) =

Pn
i=1(aie)(biy). Now

(f � g)(x) = _x=Pn
i=1 aibi

f^ni=1 ff (ai) ^ g (bi)gg

� _xy=Pn
i=1(aie)(biy)

f^ni=1 ff (aie) ^ g (biy)gg

� _xy=Pn
i=1 cidi

f^ni=1 ff (ci) ^ g (di)gg = (f � g)(xy)

) (f � g)(xy) � (f � g)(x)

This implies f � g is a fuzzy ideal of R by 313.
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Theorem 315 If R is an LA-ring and f; g are fuzzy ideals of R with left identity e; then

f � g � f \ g.

Proof. Let f; g be fuzzy ideals of R and x 2 R. If (f � g) (x) = 0 � (f \ g) (x) ; then

(f � g) (x) � (f \ g) (x) ; otherwise

f � g(x) = _x=Pn
i=1 aibi

f^ni=1 ff (ai) ^ g (bi)gg

� _x=Pn
i=1 aibi

f^ni=1 ff (aibi) ^ g (aibi)gg

= _x=Pn
i=1 aibi

f^ni=1 ff \ g (aibi)gg = (f \ g)(x)

) f � g � f \ g.

Remark 316 If R is an LA-ring and f is a fuzzy ideal of R; then f � f � f .

Theorem 317 Let R be an LA-ring and f is a fuzzy right ideal of R; then f � f is a fuzzy

ideal of R.

Proof. Since f is fuzzy right ideal of R and R is an LA-ring. Let x; y 2 R. We show that

(f � f) (xy) � (f � f) (x). If (f � f) (x) = 0 � (f � f) (xy) ; otherwise

(f � f)(x) = _x=Pn
i=1 aibi

f^ni=1 ff (ai) ^ f (bi)gg

= _x=Pn
i=1 aibi

f^ni=1 ff (bi) ^ f (ai)gg

= _xy=(Pn
i=1 aibi)y

f^ni=1 ff (bi) ^ f (ai)gg

= _xy=Pn
i=1(aibi)y

f^ni=1 ff (bi) ^ f (ai)gg

� _xy=Pn
i=1(ybi)ai

f^ni=1 ff (ybi) ^ f (ai)gg

� _xy=Pn
i=1 cidi

f^ni=1 ff (ci) ^ f (di)gg = (f � f)(xy)

) (f � f)(xy) � (f � f)(x)

This implies f � f is a fuzzy ideal of R.
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Remark 318 Let R be an LA-ring and f is a fuzzy left ideal of R with left identity; then

f � f is a fuzzy ideal of R.

Lemma 319 Let R be an LA-ring. Then f � g � f \ g for every fuzzy right ideal f and fuzzy

left ideal g of R.

Proof. Let f is a fuzzy right ideal and g is a fuzzy left ideal of R. Let x 2 R. If f � g(x) =

0 � f \ g(x); otherwise

(f � g) (x) = _x=Pn
i=1 aibi

f^ni=1 ff (ai) ^ g (bi)gg

� _x=Pn
i=1 aibi

f^ni=1 ff (aibi) ^ g (aibi)gg

= _x=Pn
i=1 aibi

f^ni=1(f \ g) (aibi)g = (f \ g) (x)

) f � g � f \ g.

Lemma 320 In an LA-ring R with left identity e; R �R = R.

Proof. Every x in R can be written as x = ex; where e is the left identity in R. So

(R � R) (x) = _x=Pn
i=1 aibi

f^ni=1 fR (ai) ^ f (bi)gg � fR (e) ^R (x)g = 1 This implies (R �

R) (x) = 1 = R (x) for all x in R. Hence R �R = R.

A fuzzy LA-subring f of an LA-ring R is called a fuzzy interior ideal of R if f ((xy)z) � f (y)

and f is called a fuzzy bi-ideal if f ((xy)z) � f (x) ^ f (z) for all x; y; z 2 R. A fuzzy LA-

subring f of an LA-ring R is called a fuzzy quasi-ideal of R if (f �R) \ (R � f) � f . A fuzzy

ideal f of an LA-ring R is called a fuzzy idempotent if f � f = f:

As in theorem 309, it can be easily veri�ed that " A is a bi (interior;quasi) ideal of R if and

only if CA is a fuzzy bi (interior;quasi) ideal of R".

Theorem 321 Let f be a fuzzy LA-subring of an LA-ring R. Then f is a fuzzy interior ideal

of R if and only if (R � f) �R � f .
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Proof. Suppose f is a fuzzy interior ideal of R. Let x 2 R. If ((R � f) �R)(x) = 0 � f(x).

This implies (R � f) � R � f . Otherwise there exist ai; bi; ci; di 2 R such that x =
Pn
i=1 aibi

and ai =
Pn
i=1 cidi. Since f is a fuzzy interior ideal of R. This implies f((cidi)bi) � f(di).

Now

((R � f) �R)(x) = _x=Pn
i=1 aibi

f^ni=1 f(R � f) (ai) ^R (bi)gg

= _x=Pn
i=1 aibi

f^ni=1
n
(_ai=Pn

i=1 cidi
f^ni=1 fR (ci) ^ f (di)gg) ^R (bi)

o
g

= _x=Pn
i=1 aibi

f^ni=1
n
(_ai=Pn

i=1 cidi
f^ni=1 f1 ^ f (di)gg) ^ 1

o
g

= _x=Pn
i=1 aibi

f^ni=1
n
(_ai=Pn

i=1 cidi
f^ni=1f (di)g) ^ 1

o
g

= _x=Pn
i=1 aibi

f^ni=1
n
_ai=Pn

i=1 cidi
f^ni=1f (di)g

o
g

= _x=Pn
i=1(cidi)bi

f^ni=1f (di)g

� _x=Pn
i=1(cidi)bi

f^ni=1f ((cidi) bi)g; by def of fuzzy interior ideal.

= f(x)

) ((R � f) �R) � f .

Conversely; assume that ((R � f) �R) � f . Let x; y; z 2 R and set a = (xy)z. Now

f((xy)z) = f(a) � ((R � f) �R)(a)

= _a=Pn
i=1 aibi

f^ni=1 f(R � f) (ai) ^R (bi)gg

� (R � f)(xy) ^R(z)

= _xy=Pn
i=1 cidi

f^ni=1 fR(ci) ^ f (di)g ^R(z)

� R(x) ^ f(y) ^R(z) = 1 ^ f(y) ^ 1 = f(y)

) f((xy)z) � f(y).

This implies f is a fuzzy interior ideal of R.

Theorem 322 Let f be a fuzzy LA-subring of an LA-ring R. Then f is a fuzzy bi-ideal of R

if and only if (f �R) � f � f .
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Proof. Suppose f is a fuzzy bi-ideal of R. Let x 2 R. If ((f � R) � f)(x) = 0 � f(x).

So; (f � R) � f � f . Otherwise there exist ai; bi; ci; di 2 R such that x =
Pn
i=1 aibi and

ai =
Pn
i=1 cidi. Since f is a fuzzy bi- ideal of R. This implies f((cidi)bi) � f(ci) ^ f(bi).

Now

((f �R) � f)(x) = _x=Pn
i=1 aibi

f^ni=1 f(f �R) (ai) ^ f (bi)gg

= _x=Pn
i=1 aibi

f^ni=1
n
(_ai=Pn

i=1 cidi
f^ni=1 ff (ci) ^R (di)gg) ^ f (bi)

o
g

= _x=Pn
i=1 aibi

f^ni=1
n
(_ai=Pn

i=1 cidi
f^ni=1 ff(ci) ^ 1gg) ^ f(bi)

o
g

= _x=Pn
i=1 aibi

f^ni=1
n
(_ai=Pn

i=1 cidi
f^ni=1f (ci)g) ^ f(bi)

o
g

= _x=Pn
i=1(cidi)bi

f^ni=1ff (ci) ^ f(bi)gg

� _x=Pn
i=1(cidi)bi

f^ni=1f ((cidi) bi)g = f(x)

) ((f �R) � f) � f .

Conversely; assume that ((f �R) � f) � f . Let x; y; z 2 R and set a = (xy)z. Now

f((xy)z) = f(a) � ((f �R) � f)(a)

= _a=Pn
i=1 aibi

f^ni=1 f(f �R) (ai) ^ f (bi)gg

� (f �R)(xy) ^ f(z)

= _xy=Pn
i=1 cidi

f^ni=1 ff(ci) ^R (di)g ^ f(z)

� f(x) ^R(y) ^ f(z) = f(x) ^ 1 ^ f(z) = f(x) ^ f(z)

) f((xy)z) � f(x) ^ f(z).

This implies f is a fuzzy bi-ideal of R.

Proposition 323 In an LA-ring R, the following hold:

(1) Every fuzzy ideal of R is a fuzzy interior ideal of R.

(2) Every fuzzy left (right; two-sided) ideal of R is a fuzzy quasi-ideal of R.

(3) Every fuzzy right (two-sided) ideal of R is a fuzzy bi-ideal of R.

140



Proof. The proof is straight forward.

Remark 324 If f and g be two fuzzy interior (bi;quasi) ideals of an LA-ring R. Then it is

straight forward to show that f \ g is a fuzzy interior (bi; quasi) ideal of R.

Lemma 325 Let R be an LA-ring with left identity e. Then any non-empty fuzzy subset f

of R is a fuzzy interior ideal if and only if f is a fuzzy ideal of R.

Proof. Suppose f is a fuzzy interior ideal of R. Let x; y 2 R. Now f(xy) = f((ex)y) � f(x).

This implies f is a fuzzy ideal of by lemma 313. Converse is true by Proposition 297.

Lemma 326 Every fuzzy quasi-ideal of an LA-ring R with left identity e; is a fuzzy bi-ideal

of R.

Proof. Let f is a fuzzy quasi-ideal of R. Let x; y; z 2 R. This implies f((xy)z) � ((f �R)\

(R � f))((xy)z) = (f �R)((xy)z) ^ (R � f)((xy)z); since f is a quasi-ideal of R. Now

(R � f)((xy)z) = _(xy)z=Pn
i=1 aibi

f^ni=1 fR (ai) ^ f (bi)gg

= _(xy)z=Pn
i=1 aibi

f^ni=1 f1 ^ f (bi)gg � f(z)

) (R � f)((xy)z) � f(z).

(f �R)((xy)z) = _(xy)z=Pn
i=1 aibi

f^ni=1 ff (ai) ^R (bi)gg

= _(xy)z=Pn
i=1 aibi

f^ni=1 ff (ai) ^ 1gg

Now (xy)z = (xy)(ez) = (xe)(yz) 2 (xe)R = xR. This implies (xy)z 2 xR; so (xy)z =

xr for some r 2 R. This implies

(f �R)((xy)z) = _(xy)z=xr=Pn
i=1 aibi

f^ni=1 ff (ai) ^ 1gg

= _xr=Pn
i=1 aibi

f^ni=1 ff (ai) ^ 1gg � f(x)

) (f �R)((xy)z) � f(x).
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Thus f((xy)z) � (f � R)((xy)z) ^ (R � f)((xy)z) � f(x) ^ f(z). This implies f((xy)z) �

f(x) ^ f(z). This implies f is a fuzzy bi-ideal of R.

7.3.1 Fuzzy Quasi-Prime ideals in LA-ring

De�nition 327 A fuzzy left ideal P of an LA-ring R is called fuzzy quasi-prime ideal of R if

f � g � P implies that either f � P or g � P; for all fuzzy left ideals f and g of R. And R is

called fully fuzzy quasi-prime if every fuzzy left ideal of R is fuzzy quasi-prime.

Lemma 328 Let R be a fully fuzzy quasi-prime LA-ring with left identity e; then every fuzzy

left ideal is fuzzy idempotent.

Proof. Let f be a fuzzy left ideal of R. This implies f is a fuzzy quasi-prime ideal of R.

Since f � f is a fuzzy ideal of R by Remark 318. This implies f � f is a fuzzy quasi-prime ideal

of R. Since f � f � f � f . This implies f � f � f . Since f � f � f . Hence f � f = f .

Proposition 329 If R is a fully fuzzy quasi-prime LA-ring with left identity e; then every

fuzzy left ideal is a fuzzy ideal of R.

Proof. Let f be a fuzzy left ideal of R. Now we have to show that f is a fuzzy right ideal

of R. f � R = (f � f) � R = (R � f) � f � f � f � R � f � f . This implies f � R � f . This

implies f is a fuzzy right ideal of R. Hence f is a fuzzy ideal of R.

Theorem 330 If R is fully fuzzy quasi-prime LA-ring with left identity e. Then for every

fuzzy left ideal f of R following are true.

(1) R � f is an idempotent.

(2) Every fuzzy right ideal g of R commutes with f .

Proof. (1) (R � f)2 = (R � f) � (R � f) = (R �R) � (f � f) = R � f by Remark 307.

(2) f �g = (f �f)�g = (g �f)�f � (g �R)�f � B �f . g �f = g � (f �f) = f � (g �f) �

f � (g �R) � f � g. This implies f � g = g � f .
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Proposition 331 Let R be a fully fuzzy quasi-prime LA-ring with left identity e; then for all

fuzzy left ideals f and g of R; f � g = f \ g.

Proof. Let f and g are fuzzy left ideals of R. f � g � R � g � g and g � f � R � f � f .

Now f � g = (f � f) � (g � g) = (g � g) � (f � f) = g � f . This implies f � g � f \ g. Now

(f \ g)2 = (f \ g) � (f \ g) � f � g. This implies f \ g � f � g. Thus f \ g = f � g. Since

f \ g is a left ideal of R and f \ g is idempotent by Lemma 328.

Theorem 332 Let R be a fully fuzzy quasi-prime LA-ring with left identity e. Then for every

fuzzy left ideal f; then the following conditions are equivalent.

(1) f is a fuzzy ideal.

(2) f is a fuzzy interior ideal.

(3) f is fuzzy bi-ideal.

(4) f is fuzzy quasi-ideal.

Proof. (1) ) (2) ; is obvious by Proposition 323. (2) ) (3) ; suppose f is a fuzzy interior

ideal. (f �R) � f = (f �R) � (f � f) = (f � f) � (R � f) � (R � f) � f � (R � f) �R � f . This

implies (f �R) � f � f . Thus f is fuzzy bi-ideal. (3)) (4) ; suppose f is a fuzzy bi-ideal.

(f �R) \ (R � f) � f �R = (f � f) �R = (R � f) � f = (R � (f � f)) � f

= (f � (R � f)) � f � (f � f) � f � (f �R) � f � f

) (f �R) \ (R � f) � f .

Hence f is a fuzzy quasi-ideal of R. (4)) (1) ; suppose f is a fuzzy quasi-ideal. Now we

have to show that f is a fuzzy ideal of R. It is enough to show that f �R � f . f �R = (f �f)�

R = (R�f)�f � f �f � R�f . This implies f �R � R�f . Thus f �R � (f �R)\(R�f) � f .

This implies f �R � f . Hence f is a fuzzy ideal.
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Chapter 8

Conclusions

The whole study in this thesis can be divided into three phases. In �rst phase we discuss AG-

groupoids and �-AG-groupoids which are in fact single (binary) operational structures. These

structures have been investigated in chapters 2; 5. In second phase, we deal with two (binary)

operational structures such as LA-rings and �-LA-rings. These concepts have been studied

in chapters 3; 4; and 6. While in the third phase, we look into the application aspect and

investigated the fuzzy concepts of these algebraic structures.

AG-groupoids (also known as LA-semigroups) have been studied by several researchers. We

genuinely acknowledge that in this �eld much of the fundamental work has been done by M.

Kazim and M. Naseeruddin [24], Q. Mushtaq and his associates [40; 41; 42; 43; 44; 45; 47; 48; 49]

and P. V. Protic and N. Stevanovic [56; 57; 58; 59; 69]:

In phase one, we �rst time introduce the concept of ordered AG-groupoids. Also we initiate

the concept of �-AG-groupoids which are a generalization of AG-groupoids.

In the second phase, we have discussed left almost rings (abbreviated as LA-rings), which

are in fact a generalization of commutative rings. Despite the fact that this structure is non-

associative and non-commutative, interestingly it possesses properties which usually are valid

in associative and commutative algebraic structures. Moreover, we have studied �-LA-rings

which also lead to the generalizations of commutative rings. The concepts focused in phase

one, have signi�cant contribution in phase 2 and phase 3. For instance, the purpose of de�ning

the concept of ordered AG-groupoids was to deal with the �degree questions�arose in LA-ring

of �nitely non- zero functions. Likewise, the characteristics of �-AG-groupoids can be seen in

the set up of �-LA-rings discussed in chapter 6.



Some of the important conclusions which can be drawn from the chapters 2� 7 are as

follow.

(1) It is beyond doubt that total ordering of semigroups plays a vital role to enhance the

theory of semigroups. Keeping in view the importance of this concept, we �rst time investigate

the ordering of AG-groupoids. For this study we followed mostly [13].

(2) By following [27; 48]; we also study ideals, M-systems, N-systems and I-systems of

ordered AG-groupoids.

(3) We introduce a non-commutative and a non-associative structure, which we named as

�-AG-groupoids. This structure is a direct generalization of AG-groupoids. The motivation

behind this study is an article ; On �-semigroups, by M. K. Sen [63]; published in 1981. �-

semigroups are a generalization of semigroups. Many classical notions of semigroups were

extended to �-semigroups. The supporting literature for this study which we followed is in

[7; 10; 15; 16; 63; 64; 65].

(4) Several authors, for example, E. Kleinfeld in [28; 29] and D. C. Murdoch and O. Ore

in [39] have generalized the concept of commutative rings and investigated the structural

properties of these generalizations. In this study we also generalize the concept of com-

mutative rings but however with a di¤erent mode. For this we discuss left almost rings

(abbreviated as LA-rings) [70]. We investigate some elementary concepts in LA-rings. More-

over, we introduce the concepts of ideals and establish some results analogous to associative ring

theory. We also discuss M-systems, P-systems and I-systems and subtractive sets in LA-rings.

The main objective of this study is to generalize the results corresponding the commutative rings

and to �nd the characteristics hidden in this non-commutative and non-associative structure.

Also we discuss direct sums in LA-rings using the concepts of ideals.

(5) We discuss an area which is comparatively hard. For this we construct LA-rings of

�nitely nonzero functions, represented as R [Xs; s 2 S] : Also we introduce the concept of LA-

modules which will play a vital role to enhance the theory LA-rings. Recently in [68]; T. Shah

and M. Raees have investigated this concept and generalized several results corresponding to

associative modules theory over the rings. For this study we followed [12; 13; 20; 54].
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(6) Taking motivations from Nobosawa [52]; we introduce �-left almost rings, which are

a direct generalization of LA-rings. It is not hard to see that �-left almost rings are also a

generalization commutative �-rings. During the discussions on �-left almost rings, we followed

[4; 34; 35; 37; 52].

(7) We also attempt the fuzzy concepts of algebraic structures such as LA-rings and �-

AG-groupoids which have been discussed in earlier chapters. For this we mostly followed

[1; 8; 11; 18; 23; 36; 62; 71].

8.1 Future prospects of the work

(1) In phase one, we deal with single (binary) operational structures such as AG-groupoids and

�-AG-groupoids, which have been discussed in chapters 2 and 5.

In 1972; the concept of LA-semigroups (or AG-groupoids) has been introduced by M. Kazim

and M. Naseerudin. We have investigated some characteristics of ordered AG-groupoids in

chapter 2. Keeping in view the importance of ordered semigroup theory, we can see a lot of space

to be �lled in, by doing work in this particular area. In the same phase, we have also introduced a

non-commutative and a non-associative structure, which we named as �-AG-groupoids (chapter

5). We have discussed its elementary characteristics and established some results regarding its

ideals. In future, this structure can be investigated in many di¤erent aspects. For example,

semilattice decompositions of �-AG-groupoids, orthodox �-AG-groupoids, archimedean �-AG-

groupoids and theory of ordered �-AG-groupoids. This structure can further be extended to

�-AG�-groupoids and �-AG��-groupoids.

(2) In second phase, we discuss LA-rings and �-LA-rings which are in fact two (binary)

operational structures. These concepts have been studied in chapters 3; 4 and 6. Though LA-

ring is a non-associative and non-commutative structure, but due to its peculiar characteristics,

it possesses properties which we usually encounter in associative algebraic structures. In future

we can see a lot of room to extend and study this concept in di¤erent parameters. For example

on the basis of developments made in chapter 3; we have constructed LA-rings of �nitely

non-zero functions (chapter 4; section one), represented as R [Xs; s 2 S] : By Remark 93, we
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got liberty to extend this to integral dependence. Also we are planning to use R [Xs; s 2 S] in

coding theory and cryptography. Several authors have investigated these concepts, for instance,

Reed and Solomon [60]; I. F. Blake [5] and A. A. Andrade and R. Palazzo [2]. We may replace

the polynomial codes by taking bits from a �nite LA-ring or from �nite almost �eld. During

the construction of R [Xs; s 2 S] ; we have also de�ned LA-module which intuitively would be

the most useful tool for further developments. In this regard recently in [68]; T. Shah and M.

Raees have investigated several results parallel to associative modules theory over the rings.

(3) In the third phase, we have initiated fuzzy concepts of the structures discussed in phase

one and phase two. We investigated the concept of fuzzy ideals in �-AG-groupoids and in LA-

rings (chapter 7). In future we are planning to investigate the concepts of soft AG-groupoids,

soft ordered AG-groupoids, (�; �)-fuzzy ideals, generalized fuzzy ideals, intuitionistic fuzzy

ideals and rough ideals in these newly established structures ( ordered AG-groupoids, �-AG-

groupoids and LA-rings ).
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