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Abstract 

The notion of Picard operator was introduced by Rus. The notion of weakly Picard 

operators was introduced and used by Rus and his collaborators. Berinde 

extended the notion of weakly Picard operator to multi-valued case. Kamran 

introduced the notion of f-weakly Picard operators. Popescu introduced the 

notion of (s,r)-contractive multi-valued operator. He presented some basic 

problem for fixed point and strict fixed point theory for (s,r)-contractive multi-

valued operator. 

In this dissertation, we extend the notion of (s,r)-contractive multi-valued 

operator and proved some fixed points theorems for newly defined contraction. 

In chapter one, we recollect some basic definitions and results, which are needed 

for subsequent chapters. In chapter two, we review some fixed point theorems 

for (s,r)-contractive multi-valued operator. We study, in detail, some results 

obtained by Popescu. In chapter three, we define the notion of weakly (s,r)-

contractive multi-valued operator and f-(s,r)-contractive multi-valued operator 

and using these conditions we obtain some new fixed point theorems. 
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Chapter 1

Preliminaries

In this chapter we present basic concepts and results which will be used in sub-

sequent chapters. Moreover, we shall �x our notions and terminologies to be used in this

dissertation. Throughout, this dissertation X is a metric space endowed with a metric d

unless stated otherwise.

1.1 Fixed points for single-valued maps

A point x 2 X is called �xed point of a mapping f : X ! X if

f(x) = x

We denote the set of �xed points of f by Fixf; i:e:;

F ixf = fx 2 X : f(x) = xg:

Note that a mapping need not have a �xed point. Further, if �xed point of a mapping exist

then it is not always unique.
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1.1.1 Examples

De�ne f : R! R by f(x) = x2 � 3x+ 4 then Fixf = f2g:

1.1.2 Example

De�ne f : R! R by f(x) = x2 then Fixf = f0; 1g:

1.1.3 Example

De�ne f : R! R by f(x) = x3 then Fixf = f0; 1;�1g:

1.1.4 Example

De�ne f : R! R by f(x) = x+ 1 then Fixf = �:

1.1.5 Example

De�ne f : R! R by f(x) = x then Fixf = R:

1.2 Lipschtizian Mappings

A mapping f : X ! X is said to be Lipschtizian if there exist a constant c > 0

such that d(fx; fy) � cd(x; y); for all x 2 X: Note that a Lipschtizian mapping is uniformly

continuous. Now, we give some subclasses for the class of Lipschtizian mapping.

1.2.1 Example

Let X = R be endowed with the usual metric. De�ne f : X ! X by fx = 2x;

then f is Lipschtizian mapping.
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1.2.2 Contraction Mappings

A mapping f is said to be a contraction if there exist a constant 0 < c < 1 such

that

d(fx; fy) � cd(x; y);8 x; y 2 X:

1.2.3 Example

Let X = R be endowed with the usual metric. De�ne f : X ! X by fx = 1 + x
4 ;

then f is a contraction on X:

1.2.4 Contractive Mappings

Amapping f is said to be a contractive mappings if there exist a constant 0 < c < 1

such that

d(fx; fy) < cd(x; y);8 x; y 2 X;x 6= y:

1.2.5 Example

Let X = [1;1) be endowed with the usual metric space. De�ne f : X ! X by

fx = x+ 1
x ; then f is a contractive mapping on X:

1.2.6 Non-expansive Mappings

A mapping f is said to be a non-expansive mappings if,

d(fx; fy) � d(x; y);8 x; y 2 X;x 6= y:
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1.2.7 Example

Let X = R be endowed with the usual metric space. De�ne f : X ! X by fx = x;

then f is non-expansive on X:

Therefore, Contraction ) Contractive ) Non-expansive ) Lipschtizian

Remark 1 Note that a contraction mapping is contractive, a contractive mapping is non-

expansive and a non-expansive mapping is Lipschtizian.

1.2.8 Banach Fixed Point Theorem (Contraction Theorem)

Banach showed that every contraction on a complete metric space has a unique

�xed point. This result appeared explicitly �rst time in Banach�s doctorial thesis and com-

monly known as Banach contraction principal. This principle is an existence and uniqueness

theorem for �xed points of self-mappings. Banach�contraction principle extensively used

to study the existence of solutions for nonlinear integral and di¤erential equations and to

prove the convergence of algorithms in computational mathematics.

1.2.9 Theorem[11]

Let (X; d) be a complete metric space and f : X ! X be a contraction on X with

contraction constant c. Then f has unique �xed point z. Moreover, for any x0 2 X:

1: The iterative sequence ffnx0g converge to z:

2: The following prior estimate hold

d(xm; z) �
cm

1� cd(x0; x1):
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3: The following posterior estimate hold

d(xm; z) �
c

1� cd(xm�1; xm):

Proof. Fix any arbitrary element x0 2 X and de�ne the iterative sequence fxng

by x0; x1 = fx0; x2 = fx1 = f2x0; � � � ; xn = fnx0:

By triangle inequality, we have

d(xm; xn) � d(xm; xm+1) + d(xm+1; xm+2) + � � �+ d(xn�1; xn)

= d(fxm�1; fxm) + d(fxm; fxm+1) + � � �+ d(fxn; fxn�1)

� cd(xm�1; xm) + cd(xm; xm+1) + � � �+ cd(xn; xn�1)

= cd(fxm�2; fxm�1) + cd(fxm�1; fxm) + � � �+ cd(fxn�1; fxn�2)

� c2d(xm�2; xm�1) + c
2d(xm�1; xm) + � � �+ c2d(xn�1; xn�2):

Continuing this process we obtain

d(xm; xn) � (cm + cm+1 + � � �+ cn�1)d(x0; x1)

= cm
1� cn�m
1� c d(x0; x1)

Since 0 < c < 1; so 1� cn�m < 1; consequently,

d(xm; xn) �
cm

1� cd(x0; x1) (1)

On the right, 0 < c < 1 and d(x0; x1) is �xed, so that we can make the right-hand

side as small as we please by taking m su¢ ciently large (and n > m). This proves that

fxmg is a Cauchy sequence. Since X is complete, fxmg converges, i:e: there is z 2 X such

that xm ! z as n!1: Now

d(z; fz) � d(z; xm) + d(xm; fz) � d(z; xm) + cd(xm; z)
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letting m!1, we get

d(z; fz) = 0, which implies z = fz:

This show that z is �xed point of f: For uniqueness suppose on contrary that y and z are

two �xed points of f: Now

d(y; z) = d(fy; fz) � cd(y; z) < d(y; z); since 0 < c < 1:

this yields a contraction.

letting n!1 in equation (1); we get

d(xm; z) �
cm

1� cd(x0; x1) (2)

Taking m = 1 and writing y0 for x0 and y1 for x1 in (2);we have

d(y1; z) �
c

1� cd(y0; y1):

setting y0 = xm�1; we have y1 = fy0 = xm; we obtain

d(xm; z) �
c

1� cd(xm�1; xm):

1.3 Multi-valued Maps

Let X;Y be two non-empty sets. We say that T is a multi-valued mapping from

X into Y if for each x 2 X; T (x) is a subset of Y: Clearly, a single-valued mappings are

special case of multi-valued mappings. We denote T : X  Y to represent that T is a

multi-valued from X into Y: The trigonometric, hyperbolic and exponential functions are

all single-valued mappings, their inverses are multi-valued mappings.
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1.3.1 Example

Let f : X ! Y is a continuous mapping. Then its inverse can be consider as

multi-valued mappings S : Y  X de�ned by

S(y) = f�1(y); for y 2 Y:

1.3.2 Example

Let X = [0; 1] and let N(X) denote the family of all non-empty subsets of X:

De�ne T : X ! N(X) by Tx = [x; 1] and S : X ! N(X)

Sx =

�
[0; 1] if x 6= 1

2

fa; bg if x = 1
2

then T and S are multi-valued mappings.

1.4 Fixed point for multi-valued mapping

Let X and Y be two metric (or topological) spaces and T : X  Y be a multi-

valued mapping an element x 2 X is called �xed point of T if x 2 T (x):

1.4.1 Example

LetX = f1; 2; 3g; CB(X) denotes the set of non empty closed and bounded subsets

of X and d(x; y) = jx� yj 8 x; y 2 X. De�ne T : X ! CB(X) by T1 = T2 = f1; 2g;

T3 = f3g: Then, every x 2 X is a �xed point of T:
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1.4.2 Example

Let X = [0; 1] be endowed with the usual metric d and let S : X  X be given by

S(x) =

� 1
2x+

1
2 ; 0 � x �

1
2

�1
2x+ 1;

1
2 < x � 1

:

De�ne T : X ! CB(X) by T (x) = f0g[fS(x)g for each x 2 X; then the set of �xed points

of T is f0; 23g:

1.4.3 De�nition

Let X and Y be two metric spaces and T; S : X  Y be two multi-valued

mapping. An element x 2 X is said to be common �xed point of T and S; if x 2 Tx and

x 2 Sx:

1.4.4 Example

De�ne T; S : [a; b]! [a; b]; where b > a and a; b 2 R by

Tx =

�
fag if x = fa; bg;
[x; b] if a < x < b;

and

Sx = [a; x] for all x 2 [a; b]:

then each x 2 [a; b] is a common �xed point of T and S:

1.5 Hausdor¤Metric

The key to the classical Banach �xed point theorem is that one is working in a

complete metric space. To get an analogous result for multi-valued mappings,we have to
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equip the powerset of a metric space with a metric. One such metric on the power set of

a metric space X was given by Hausdor¤ and it is commonly known as Hausdor¤ metric.

Now we give some detail to explain the notion of Hausdor¤ metric.

Let M;N be subsets of X then,

D(x;N) = inffd(x; y) : y 2 Ng

D(M;N) = supfD(x;N) : x 2Mg

1.5.1 Example

Let X = [0:1] be endowed with the usual metric d;A = (0; 1) be a non empty

subset of X. Then for all x 2 X D(x;A) = 0:

1.5.2 De�nition

The Hausdor¤ metric on the family of all non-empty closed bounded subsets of a

metric space is de�ned by

H(M;N) = maxf D(M;N); D(N;M)g:

1.5.3 Example

Let X = R; A = [1; 3]; B = [2; 5] and d(x; y) = jx� yj for all x; y 2 A;B: Then

H(A;B) = 2:

It is well known that if (X; d) is a complete metric space, then (CB(X);H) is a

complete metric space, where H is Hausdor¤ metric induced by d[7]:
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1.6 Multi-valued Contraction

Nadler [6] gave a generalization of Banach�s contraction principle to the case of

multi-valued mappings. In this section we give the proof of Nadler theorem.

1.6.1 De�nition

Let (X; d) be a metric space. A map T : X ! CB(X) is called multi-valued

contraction if

H(Tx; Ty) � kd(x; y) for all x; y 2 X;

for some k 2 [0; 1):

1.6.2 Example

Let X = [0; 1] be endowed with the usual metric space d and let S : X ! X be

given by

S(x) =

� 1
2x+

1
2 ; 0 � x �

1
2

�1
2x+ 1;

1
2 < x � 1

:

De�ne T : X ! CB(X) by T (x) = f0g [ fS(x)g for each x 2 X; then T is multi-valued

contraction mapping.

1.6.3 Lemma[6]

If A;B 2 CB(X) and a 2 A, then for each k > 0, there exists b 2 B such that

d(a; b) � H(A;B) + k:
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1.6.4 Nadler �xed point Theorem [6]

Let (X; d) be a complete metric space and T : X ! CB(X) is a multi-valued

contraction mapping. Then T has a �xed point.

Proof. Let x0 2 X: Choose x1 2 Tx0: Since Tx0; Tx1 2 CB(X) and x1 2 Tx0;

there exist x2 2 Tx1 such that

d(x1; x2) � H(Tx0; Tx1) + k:

Since Tx1; Tx2 2 CB(X) and x2 2 Tx1; there exist x3 2 Tx2 such that

d(x2; x3) � H(Tx1; Tx2) + k2:

continuing in the same way, we get a sequence fxng such that xn+1 2 Txn and

d(xn; xn+1) � H(Txn�1; Txn) + kn; for all n 2 N:

Now we have

d(xn; xn+1) � H(Txn�1; Txn) + k
n

� kd(xn�1; xn) + k
n

� k[H(Txn�2; Txn�1) + k
n] + kn

� k2d(xn�2; xn�1) + 2k
n

...

� knd(x1; x0) + nk
n;8n 2 N:
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Hence

d(xn; xn+m) � d(xn; xn+1) + d(xn+1; xn+2) + � � �+ d(xn+m�1; xn+m)

� knd(x1; x0) + nk
n + kn+1d(x1; x0) + (n+ 1)k

n+1

+ � � �+ kn+m�1d(x1; x0) + (n+m� 1)kn+m�1

=

n+m�1X
i=n

(ki)d(x1; x0) +

n+m�1X
i=n

(iki);8n;m 2 N:

It follows that fxng is Cauchy sequence. Since (X; d) is complete, so the sequence

fxng converges to some x 2 X: Therefore the sequence fTxng converges to Tx; since

xn 2 Txn�1 for all n; it follows that x 2 Tx:

1.6.5 Example

Let X = [0;1) be endowed with the usual metric and T : X ! CB(X) be a

multi-valued mapping such that Tx = 1
3fx; x + ug; for each x 2 X: where u is some �nite

real number. For each x; y 2 X; we have

H(Tx; Ty) =
1

3
jx� yj = 1

3
d(x; y):

Hence by theorem 1.6.4, T has �xed point.
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Chapter 2

(s; r)-Contractive Multi-valued

Operator

Rus [8] introduced the notion of a multi-valued weakly Picard operator. Popescu

[4] introduced the notion of (s; r)-contractive multi-valued operators and showed that they

are weakly picard operators. He also obtained �xed point and strict �xed point theorems for

(s; r)-contractive multi-valued operators. This chapter is a review of the paper by Popescu

[4].

2.1 Multi-valued Weakly Picard Operators

Berinde and Berinde [9] extended the notion of weak picard operator from single

valued mapping to multi-valued mapping. They also introduced, the notion of multi-valued

(�; L) weak contraction[10].

A multi-valued operator T from metric space X to set of all non-empty closed and
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bounded subsets of X is said to be multi-valued weakly picard operator i¤ 8 x 2 X and

y 2 Tx; there exit a sequence fxng in X such that

(i) x0 = x; x1 = y;

(ii) xn+1 2 Txn for all n � 0;

(iii) fxng is convergent and its limit is �xed point of T:

2.1.1 Example [6]

Let (X; d) be complete metric space and T : X ! CB(X) be a multi-valued

contraction. Then T is a multi-valued weakly Picard operator.

2.1.2 De�nition [9]

Let T : X ! CB(X) be a multi-valued operator T is said to be multi-valued weak

contraction or a multi-valued (�; L) weak contraction i¤ for all x; y 2 X there exist two

constants � 2 (0; 1) and L � 0 such that

H(Tx; Ty) � �d(x; y) + L(y; Tx):

2.2 Multi-valued f-weak contraction

Kamran [3] extended the notion of weak contraction and presented the notions of

multi-valued f -weak contraction and generalized multi-valued f -weak contraction.
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2.2.1 De�nition [3]

Let (X; d) be a metric space, f : X ! X and T : X ! CB(X) be a multi-valued

operator. T is said to be an f� weakly picard operator i¤ for all x 2 X and fy 2 Tx

(y 2 X); there exit a sequence fxng in X such that

(i) x0 = x; x1 = y;

(ii) fxn+1 2 Txn for all n � 0;

(iii) ffxng is converges to fp where p is the coincidence point of f and T .

2.2.2 Example [3]

Let g : X ! X and S : X ! CL(X) be a multi-valued operator such that

SX � gX; and

H(Sx; Sy) � h[tE(x; y) + (1� t)F (x; y)]

for all x; y 2 X; 0 � h < 1; 0 � t � 1; where

E(x; y) = maxfd(gx; gy); d(gx; Sx); d(gy; Ty); 1
2
[d(gx; Sy) + d(gy; Sx)]g;

F (x; y) = [maxfd2(gx; gy); d(gx; Sx)d(gy; Ty); d(gx; Sy)d(gy; Sx);

1

2
d(gx; Sx)d(gy; Tx);

1

2
d(gx; Sy)d(gy; Ty)g]2

T is an f�weakly Picard operator if one of SX and gX is a complete subspace of X:



16

2.2.3 De�nition [3]

Let (X; d) be a metric space, f : X ! X and T : X ! CB(X) be a multi-valued

operator. T is called a multi-valued f -weak contraction or a multi-valued (f; �; L)-weak

contraction i¤ there exist two constants � 2 (0; 1) and L � 0 such that

H(Tx; Ty) � �d(fx; fy) + Ld(fy; Tx); for all x; y 2 X:

2.3 (s; r) Contraction

Popescu [4] introduce the notion of a (s; r) contractive multi-valued operator as

follows.

2.3.1 De�nition [4]

A multi-valued operator T from metric space X to set of all non-empty closed and

bounded subsets of X is said to be a (s; r)-contractive multi-valued operator if for r 2 [0; 1),

s � r such that,

D(y; Tx) � sd(y; x) ) H(Tx; Ty) � rMT (x; y);8 x; y 2 X:

where

MT (x; y) = maxfd(x; y); D(x; Tx); D(y; Ty);
D(x; Ty) +D(y; Tx)

2
g:
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2.4 Fixed Point Theorems For (s; r)-ContractiveMulti-valued

Operator

In this section we study, in detail, some results obtained by Popescu [4] for (s; r)

contractive multi-valued operator.

2.4.1 Theorem [4]

Let T be a (s; r)� contractive multi-valued operator from complete metric space

X to set of all non-empty closed and bounded subsets of X with s > r. Then T is a

multi-valued weakly picard operator.

Proof. Take a real number t < 1 such that 0 � r < t < s. Let x1 2 X and

x2 2 Tx1:Then D(x2; Tx1) = 0 � sd(x2; x1) and by hypothesis we have

D(x2; Tx2) � H(Tx1; Tx2)

� rmaxfd(x1; x2); D(x1; Tx1); D(x2; Tx2);

D(x1; Tx2) +D(x2; Tx1)

2
g

D(x2; Tx2) � rmaxfd(x1; x2); D(x2; Tx2);

d(x1; x2) +D(x2; Tx2)

2
g:

As r < 1; so we have D(x2; Tx2) � rd(x1; x2): Then there exist x3 2 Tx2 such that

d(x2; x3) � rd(x1; x2): Therefore a sequence fxng can be constructed in X such that xn+1 2

Txn and d(xn+1; Txn+2) � td(xn; xn+1) for all n 2 N: Therefore, we have
1X
n=1

d(xn; xn+1) �
1X
n=1

tn�1d(x1; x2) <1
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which implies fxng is a Cauchy sequence. Since X is complete, there is some point z 2 X

such that fxng converges to z Now,we will show that there exist a subsequence fxn(k)g of

fxng such that

D(z; Txn(k)) � sd(z; xn(k)) 8 k 2 N:

Suppose that there exist a positive integer N 2 N such that

D(z; Txn) > sd(z; xn) 8 n � N:

This implies

d(z; xn+1) > sd(z; xn) 8 n � N:

By induction, we have

d(z; xn+p) > s
pd(z; xn) 8 n � N; p � 1 (1)

Since

d(xn+p; xn) � d(xn; xn+1) + d(xn+1; xn+2) + � � �+ d(xn+p�1; xn+p):

d(xn+p; xn) � d(xn; xn+1)(1 + t+ t
2 + � � �+ tp�1)

=
1� tp
1� t d(xn; xn+1) 8 n � N; p � 1:

Letting p!1;we obtain

d(z; xn) �
1

1� td(xn; xn+1) 8 n � 1.

Thus we have,

d(z; xn+p) � 1

1� td(xn+p; xn+p+1)

� tp

1� td(xn; xn+1) 8 n � 1; p � 1 (2)
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(1) and (2) implies,

d(z; xn) <
( ts)

p

1� td(xn; xn+1) 8 n � N; p � 1:

By letting p!1 we obtain

d(z; xn) = 0 8 n � N:

which contradicts (1): Therefore, there exist a subsequence fxn(k)g of fxng such that

D(z; Txn(k)) � sd(z; xn(k)) 8 k 2 N:

Therefore, we have

H(Tz; Txn(k)) � rmaxfd(z; xn(k)); D(z; Tz); D(xn(k); Txn(k));

D(z; Txn(k)) +D(xn(k); T z)

2
g:

Hence

D(xn(k)+1; T z) � rmaxfd(z; xn(k)); D(z; Tz); D(xn(k); Txn(k)+1);

D(z; Txn(k)+1) +D(xn(k); T z)

2
g:

Letting k !1 we obtain

D(z; Tz) � rmaxfD(z; Tz); D(z; Tz)
2

g

As r < 1 which yields D(z; Tz) = 0.

Since Tz 2 CB(X) so z 2 Tz:

2.4.2 Theorem [4]

Let (X; d) be a complete metric space and T : X ! X be an (s; r)�contractive

single-valued operator. Then T has a �xed point. Moreover, if s � 1 then T has a unique
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�xed point:

Proof. From Theorem 2.4.1 T has a �xed point. If s � 1 Suppose that T has two

distinct �xed points x and y. Then

d(y; Tx) = d(y; x) � sd(y; x)

So by hypothesis, d(Tx; Ty) � rMT (x; y): It follows that d(x; y) � rd(x; y): Since r < 1

which contradict our supposition.

2.4.3 Theorem [4]

Let T be a mapping from complete metric space X to CB(X): Assume that there

exist r; s 2 [0; 1) such that r < s and

1

1 + r
D(x; Tx) � d(y; x) � 1

1� sD(x; Tx) ) H(Tx; Ty) � rMT (x; y):

Where

MT (x; y) = maxfd(x; y); D(x; Tx); D(y; Ty);
D(x; Ty) +D(y; Tx)

2
g:

Then T is a multi-valued weakly picard operator.

Proof. Take a real number t < 1 such that 0 � r < t < s. Let x1 2 X and

x2 2 Tx1 such that

d(x1; x2) �
1� t
1� sD(x1; Tx1):

Then

1

1 + r
D(x1; Tx1) � D(x1; Tx1) � d(x1; x2) �

1

1� sD(x1; Tx1):
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and by hypothesis we have

D(x2; Tx2) � H(Tx1; Tx2)

� rmaxfd(x1; x2); D(x1; Tx1); D(x2; Tx2);
D(x1; Tx2) +D(x2; Tx1)

2
g:

� rmaxfd(x1; x2); D(x2; Tx2);
d(x1; x2) +D(x2; Tx2)

2
g:

As r < 1; so we have

D(x2; Tx2) � rd(x1; x2):

Then there exist x3 2 Tx2 such that d(x2; x3) � rd(x1; x2): Therefore a sequence fxng

can be constructed in X such that xn+1 2 Txn and d(xn+1; Txn+2) � td(xn; xn+1) for all

n 2 N: Therefore, we have

1X
n=1

d(xn; xn+1) �
1X
n=1

tn�1d(x1; x2) <1

which implies fxng is a Cauchy sequence. Since X is complete, there is some point z 2 X

such that fxng converges to z. Since

d(xn+p; xn) � d(xn; xn+1) + d(xn+1; xn+2) + � � �+ d(xn+p�1; xn+p).

d(xn+p; xn) � d(xn; xn+1)(1 + t+ t
2 + � � �+ tp�1)

=
1� tp
1� t d(xn; xn+1) 8 n � N; p � 1:

Now letting p!1 we have

d(z; xn) �
1

1� td(xn; xn+1) 8 n � 1.
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Since

d(xn; xn+1) �
1� t
1� sD(xn; Txn):

we have

d(z; xn) �
1

1� sD(xn; Txn) 8 n � 1:

Now suppose that there exist N > 0 such that

d(z; xn) <
1

1 + r
D(xn; Txn) 8 n � N:

Thus we have,

d(xn; xn+1) � d(z; xn) + d(z; xn+1)

<
1

1 + r
[D(xn; Txn) +D(xn+1; Txn+1)]

<
1

1 + r
[D(xn; Txn) + rd(xn; xn+1)] :

This implies that

d(xn; xn+1) < D(xn; Txn):

which is not possible. So there exist a subsequence
�
xn(k)

	
of fxng such that

d(z; xn(k)) �
1

1 + r
D(xn(k); Txn(k)) 8 k � N:

Since

d(z; xn) �
1

1� sD(xn; Txn) 8 n � 1;

Thus we have

H(Tz; Txn(k)) � rmaxfd(z; xn(k)); D(z; Tz); D(xn(k); Txn(k));

D(z; Txn(k)) +D(xn(k); T z)

2
g:
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Hence

D(xn(k)+1; T z) � rmaxfd(z; xn(k)); D(z; Tz); D(xn(k); Txn(k)+1);

D(z; Txn(k)+1) +D(xn(k); T z)

2
g:

Let k !1 we have

D(z; Tz) � rmaxfD(z; Tz); D(z; Tz)
2

g:

D(z; Tz) � rmaxfD(z; Tz); D(z; Tz)
2

g:

As r < 1;then we get D(z; Tz) = 0 and since Tz 2 CB(X); z 2 Tz:

2.4.4 Corollary

Let (X; d) be a complete metric space, T : X ! X be a mapping . Assume that

there exist r 2 [0; 1] such that

1

1 + r
D(x; Tx) � d(x; y) � 1

1� rD(x; Tx) ) H(Tx; Ty) � rMT (x; y)

where

MT (x; y) = maxfd(x; y); D(x; Tx); D(y; Ty);
D(x; Ty) +D(y; Tx)

2
g:

The there exist z 2 X such that Tz = z:

Proof. One can easily prove that for every x1 2 X the sequence fxng de-

�ned by xn+1 = Txn be such that d(xn+1; xn+2) � rd(xn; xn+1) also fxng is Cauchy

and there is point z 2 X such that limn!1 xn = z. From above theorem we have

d(z; xn) � 1
1�rd(xn; xn+1) 8 n � 1 and there exist a subsequence fxn(k)g of fxng such
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that

d(z; xn(k)) �
1

1 + r
d(xn(k); xn(k)+1) 8 k � N:

Therefore, we obtain

d(xn(k)+1; T z) � rmaxfd(z; xn(k)); d(z; Tz); d(xn(k); Txn(k)+1);

d(z; Txn(k)+1) + d(xn(k); T z)

2
g:

by taking k !1 we obtain Tz = z:
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Chapter 3

Generalization of (s; r) Contractive

Multi-valued Operator

3.1 Introduction

In this Chapter we use the concept of f�weakly picard operator given by Kamran

[3] to extend the results presented by Popescu [4] for (s; r) contractive multi-valued operator.

Throughout this chapter, we denote set of all non-empty closed and bounded

subsets of a metric space X by CB(X) and all non-empty closed subsets of a metric space

X by CL(X).

3.2 Weakly (s; r)-Contractive Multi-valued Operator

In this section we introduce the notion of weakly (s; r)-contractive multi-valued

operator and extend the results given by Popescu [4]. We start this section with following
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de�nition.

3.2.1 De�nition

Let (X; d) be a complete metric space and T : X ! CB(X) be a multi-valued

operator. T is said to be weakly (s; r)-contractive multi-valued operator if r 2 [0; 1); s �

r; L � 0 with

D(y; Tx) � sd(y; x) ) H(Tx; Ty) � rM(x; y) 8 x; y 2 X:

where,

M(x; y) = maxfd(x; y); D(x; Tx); D(y; Ty); D(x; Ty) +D(y; Tx)
2

g

+Lminf(d(x; y); d(y; Tx)g:

Remark 2 When L = 0 the above de�nition reduce to de�nition 2.3.1

3.2.2 Theorem

Let T : X ! CB(X) be weakly (s; r)� contractive multi-valued operator with

s > r and L � 0 where (X; d) is a complete metric space. Then T is multi-valued weakly

picard operator.

Proof. Take a real number t < 1 such that 0 � r < t < s. Let x1 2 X and
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x2 2 Tx1:Then D(x2; Tx1) = 0 � sd(x2; x1) and by hypothesis we have:

D(x2; Tx2) � H(Tx1; Tx2)

� rmaxfd(x1; x2); D(x1; Tx1); D(x2; Tx2);
D(x1; Tx2) +D(x2; Tx1)

2
g

+Lminf(d(x1; x2); d(x2; Tx1):

D(x2; Tx2) � rmaxfd(x1; x2); D(x2; Tx2);
d(x1; x2) +D(x2; Tx2)

2
g+ 0:

As r < 1; so we have D(x2; Tx2) � rd(x1; x2): Then there exist x3 2 Tx2 such that

d(x2; x3) � rd(x1; x2): Therefore a sequence fxng can be constructed in X such that

xn+1 2 Txn and d(xn+1; Txn+2) � td(xn; xn+1) for all n 2 N: Therefore, we have

1X
n=1

d(xn; xn+1) �
1X
n=1

tn�1d(x1; x2) <1

which implies fxng is a Cauchy sequence. Since X is complete, there is some point z 2 X

such that fxng converges to z Now, we claim that there exist a subsequence fxn(k)g of

fxng such that

D(z; Txn(k)) � sd(z; xn(k)) 8 k 2 N:

Suppose on contrary that there exist a positive integer N 2 N such that

D(z; Txn) > sd(z; xn) 8 n � N:

This implies

d(z; xn+1) > sd(z; xn) 8 n � N:

By induction, we obtain

d(z; xn+p) > s
pd(z; xn) 8 n � N; p � 1: (1)
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Since

d(xn+p; xn) � d(xn; xn+1) + d(xn+1; xn+2) + � � �+ d(xn+p�1; xn+p):

d(xn+p; xn) � d(xn; xn+1)(1 + t+ t
2 + � � �+ tp�1)

=
1� tp
1� t d(xn; xn+1) 8 n � N; p � 1:

Letting p!1;we obtain

d(z; xn) �
1

1� td(xn; xn+1) 8 n � 1.

Thus we have,

d(z; xn+p) � 1

1� td(xn+p; xn+p+1)

� tp

1� td(xn; xn+1) 8 n � 1; p � 1: (2)

From (1) and (2) we obtained

d(z; xn) <
( ts)

p

1� td(xn; xn+1) 8 n � N; p � 1:

for all n � N; p � 1:By letting p!1 we have d(z; xn) = 0 for all n � N which contradicts

(1) therefore there exist a subsequence fxn(k)g of fxng such that

D(z; Txn(k)) � sd(z; xn(k)) 8 k 2 N:



29

Thus we have

D(xn(k)+1; T z) � H(Tz; Txn(k))

� rmaxfd(z; xn(k)); D(z; Tz); D(xn(k); Txn(k));
D(z; Txn(k)) +D(xn(k); T z)

2
g

+Lminf(d(xn(k); z); d(xn(k); T z)g

D(xn(k)+1; T z) � rmaxfd(z; xn(k)); D(z; Tz); D(xn(k); Txn(k)+1);
D(z; Txn(k)+1) +D(xn(k); T z)

2
g

+Lminf(d(xn(k); z); d(xn(k); T z)g:

Letting k !1 we have

D(z; Tz) � rmaxfD(z; Tz); D(z; Tz)
2

g+ Lminf(d(z; z); d(z; Tz)g:

As r < 1,then we get D(z; Tz) = 0 and since Tz 2 CB(X); z 2 Tz:

Remark 3 When L = 0 then above theorem reduces to theorem 2.4.1

3.2.3 Example

Let X = f1; 2; 3g and d(x; y) = jx� yj 8 x; y 2 X: Let T : X ! CB(X) be such

that T1 = T2 = f1; 2g; T3 = f3g.Then:

(a) T is a weakly (s; r)-contractive multi-valued operator with r = 0:3; s = 0:6 and

L = 1;

(b) Every x 2 X is a �xed point of T ;

(c) T is not an (s; r)�contractive multi-valued operator.

Proof. (a) We have

H(T1; T1) = H(T1; T2) = H(T3; T3) = H(T2; T2) = 0;
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and

D(3; T1) = 1 < sd(3; 1) = 1:2;

implies

H(T3; T1) = 1

< rmaxfd(3; 1); D(3; T3); D(1; T1); D(3; T1) +D(1; T3)
2

g

+Lminfd(3; 1); d(1; T3)g = 2:6;

D(1; T3) = 2 > sd(1; 3) = 1:2;

D(2; T3) = 1 > sd(2; 3) = 0:6;

D(3; T2) = 1 > sd(3; 2) = 0:6;

so T is a weakly (s; r)-contractive multi-valued operator with r = 0:3; s = 0:6 and L = 1:

(b) It is obvious.

(c)

D(3; T1) = 1 < sd(3; 1) = 1:2;

but

H(T3; T1) = 1

> rmaxfd(3; 1); D(3; T3); D(1; T1); D(3; T1) +D(1; T3)
2

g

= 0:6;
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3.2.4 Theorem

Let (X; d) be a complete metric space and T : X ! X be a weakly (s; r)�contractive

single-valued operator. Then T has a �xed point. Moreover, if s � 1 and L+ r < 1 then T

has a unique �xed point.

Proof. From Theorem 3.2.2 T has a �xed point. If s � 1 Suppose that T has two

distinct �xed points x and y.

Then

d(y; Tx) = d(y; x) � sd(y; x)

Thus

d(Tx; Ty) � rM(x; y):

It follows that d(x; y) � (r + L)d(x; y),since (r + L) < 1 which is a contradiction.

3.2.5 Theorem

Let T be a mapping from complete metric space X to set of all non-empty closed

and bounded subsets of X: Assume that there exist r; s 2 [0; 1]; r < s such that

1

1 + r
D(x; Tx) � d(x; y) � 1

1� sD(x; Tx)) H(Tx; Ty) � rM(x; y)

where

M(x; y) = maxfd(x; y); D(x; Tx); D(y; Ty); D(x; Ty) +D(y; Tx)
2

g

+Lminfd(x; y); d(y; Tx):
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Then T is a multi-valued weakly picard operator.

Proof. Take a real number t < 1 such that 0 � r < t < s. Let x1 2 X and

x2 2 Tx1 such that

d(x1; x2) �
1� t
1� sD(x1; Tx1)

Then

1

1 + r
D(x1; Tx1) � D(x1; Tx1) � d(x1; x2) �

1

1� sD(x1; Tx1)

and by hypothesis we have

D(x2; Tx2) � H(Tx1; Tx2)

� rmaxfd(x1; x2); D(x1; Tx1); D(x2; Tx2);
D(x1; Tx2) +D(x2; Tx1)

2
g

+Lminf(d(x1; x2); d(x2; Tx1)

� rmaxfd(x1; x2); D(x2; Tx2);
d(x1; x2) +D(x2; Tx2)

2
g+ 0:

As r < 1; so we have

D(x2; Tx2) � rd(x1; x2):

Then there exist x3 2 Tx2 such that d(x2; x3) � rd(x1; x2): Therefore a sequence fxng

can be constructed in X such that xn+1 2 Txn and d(xn+1; Txn+2) � td(xn; xn+1) for all

n 2 N: Therefore, we have

1X
n=1

d(xn; xn+1) �
1X
n=1

tn�1d(x1; x2) <1

which implies fxng is a Cauchy sequence. Since X is complete, there is some point z 2 X

such that fxng converges to z. Since

d(xn+p; xn) � d(xn; xn+1) + d(xn+1; xn+2) + � � �+ d(xn+p�1; xn+p).
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d(xn+p; xn) � d(xn; xn+1)(1 + t+ t
2 + � � �+ tp�1)

=
1� tp
1� t d(xn; xn+1) 8 n � N; p � 1:

Now letting p!1 we have

d(z; xn) �
1

1� td(xn; xn+1) 8 n � 1.

as

d(xn; xn+1) �
1� t
1� sD(xn; Txn):

we have

d(z; xn) �
1

1� sD(xn; Txn) 8 n � 1:

Now suppose that there exist N > 0 such that

d(z; xn) <
1

1 + r
D(xn; Txn) 8 n � N .

Therefore, we have

d(xn; xn+1) � d(z; xn) + d(z; xn+1)

<
1

1 + r
[D(xn; Txn) +D(xn+1; Txn+1)]

<
1

1 + r
[D(xn; Txn) + rd(xn; xn+1)] :

This implies that

d(xn; xn+1) < D(xn; Txn):

which is not possible. So there exist a subsequence
�
xn(k)

	
of fxng such that

d(z; xn(k)) �
1

1 + r
D(xn(k); Txn(k)) 8 k � N::
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Since

d(z; xn) �
1

1� sD(xn; Txn) 8 n � 1;

By hypothesis we have

H(Tz; Txn(k)) � rmaxfd(z; xn(k)); D(z; Tz); D(xn(k); Txn(k));

D(z; Txn(k)) +D(xn(k); T z)

2
g

+Lminf(d(xn(k); z); d(xn(k); T z)g

Hence

D(xn(k)+1; T z) � rmaxfd(z; xn(k)); D(z; Tz); D(xn(k); Txn(k)+1);

D(z; Txn(k)+1) +D(xn(k); T z)

2
g

+Lminf(d(xn(k); z); d(xn(k); T z)g:

Letting k !1 we have

D(z; Tz) � rmaxfD(z; Tz); D(z; Tz)
2

g+ Lminf(d(z; z); d(z; Tz)g:

D(z; Tz) � rmaxfD(z; Tz); D(z; Tz)
2

g+ 0

As r < 1; so we get D(z; Tz) = 0 and since Tz 2 CB(X); z 2 Tz:

Remark 4 When L = 0 then above theorem reduces to theorem 2.4.3

3.2.6 Corollary

Let (X; d) be a complete metric space, T : X ! X be a mapping . Assume that

there exist r 2 [0; 1] such that



35

1

1 + r
D(x; Tx) � d(x; y) � 1

1� rD(x; Tx) ) H(Tx; Ty) � rM(x; y)

where

M(x; y) = maxfd(x; y); D(x; Tx); D(y; Ty); D(x; Ty) +D(y; Tx)
2

g

+Lminf(d(x; y); d(y; Tx)g:

The there exist z 2 X such that Tz = z:

Proof. One can easily prove that for every x1 2 X the sequence fxng de-

�ned by xn+1 = Txn be such that d(xn+1; xn+2) � rd(xn; xn+1) also fxng is Cauchy

and there is point z 2 X such that limn!1 xn = z. From above theorem we have

d(z; xn) � 1
1�rd(xn; xn+1) for all n � 1 and there exist a subsequence fxn(k)g of fxng

such that

d(z; xn(k)) �
1

1 + r
d(xn(k); xn(k)+1).

holds for every k � N:Therefore, we get

d(xn(k)+1; T z) � rmaxfd(z; xn(k)); d(z; Tz); d(xn(k); Txn(k)+1);
d(z; Txn(k)+1) + d(xn(k); T z)

2
g

+Lmin (d(xn(k); z); d(xn(k); T z)g:

by taking k !1 we obtain Tz = z:

3.3 f � (s; r)-Contractive Multi-valued Operator
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In this section we extend the results given by Popescu [4] for (s; r)-contractive

multi-valued operator by using the concept of multi-valued f�weak contractions given by

Kamran [3].

3.3.1 De�nition

Let (X; d) be a metric space and f : X ! X ;T : X ! CB(X) be a multi-valued

operator T is said to be an f � (s; r)-contractive multi-valued operator if r 2 [0; 1); s � r

and u; v 2 X with

D(fx; Ty) � sd(fx; y) ) H(Tx; Ty) � rMT (fx; fy)

where

MT (fx; fy) = maxfd(fx; fy); D(fx; Ty); D(fx; Ty);
D(fx; Ty) +D(fx; Ty)

2
g

Remark 5 When f = I then above de�nition reduces to de�nition 2.3.1

3.3.2 Theorem

Let (X; d) be a metric space, f : X ! X and T : X ! CB(X) be an f � (s; r)�

contractive multi-valued operator with s > r such that TX � fX: Suppose fX is complete.

Then T is an f�multi-valued weakly picard operator

Proof. Take a real number t < 1 such that 0 � r < t < s. Let x1 2 X and
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fx2 2 Tx1:Then D(fx2; Tx1) = 0 � sd(fx2; fx1) and by hypothesis we have,

D(fx2; Tx2) � H(Tx1; Tx2):

� rmaxfd(fx1; fx2); D(fx1; Tx1); D(fx2; Tx2);
D(fx1; Tx2) +D(fx2; Tx1)

2
g:

� rmaxfd(fx1; fx2); D(fx2; Tx2);
d(fx1; fx2) +D(fx2; Tx2)

2
g.

As r < 1; so we have

D(fx2; Tx2) � rd(fx1; fx2):

Then there exist fx3 2 Tx2 such that

d(fx2; fx3) � rd(fx1; fx2):

Thus we can construct a sequence ffxng in E such that fxn+1 2 Txn and d(fxn+1; Txn+2) �

td(fxn; fxn+1) for all n 2 N: Therefore, we have

1X
n=1

d(fxn; fxn+1) �
1X
n=1

tn�1d(fx1; fx2) <1

which implies ffxng is a Cauchy sequence. Since fX is complete, there is some point

fz 2 fX such that ffxng converges to fz. Now,we will show that there exist a subsequence

ffxn(k)g of ffxng such that

D(fz; Txn(k)) � sd(fz; fxn(k)) 8 k 2 N:

Suppose on contrary that there exist a positive integer N such that

D(fz; Txn) > sd(fz; fxn) 8 n � N:

as fxn+1 2 Txn so,

d(fz; fxn+1) > sd(fz; fxn) 8 n � N:
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By induction, we get for all n � N; p � 1 that

d(fz; fxn+p) > s
pd(fz; fxn) (1)

d(fxn+p; fxn) � d(fxn; fxn+1) + d(fxn+1; fxn+2) + � � �+ d(fxn+p�1; fxn+p):

d(fxn+p; fxn) � d(fxn; fxn+1)(1 + t+ t
2 + � � �+ tp�1)

=
1� tp
1� t d(fxn; fxn+1):

for all n � N; p � 1:Now letting p!1 we get,

d(z; fxn) �
1

1� td(fxn; fxn+1) 8 n � 1.

Now for all n � 1; p � 1 we have

d(z; fxn+p) �
1

1� td(fxn+p; fxn+p+1) �
tp

1� t d(fxn; fxn+1) : (2)

From (1) and (2) we obtained

d(fz; fxn) <
( ts)

p

1� td(fxn; fxn+1); 8 n � N; p � 1:

By taking limit as p ! 1 we have d(fz; fxn) = 0 for all n � N which contradicts (1)

therefore there exist a subsequence ffxn(k)g of ffxng such that

D(fz; Txn(k)) � sd(fz; fxn(k)) 8 k 2 N:

By hypothesis We have

H(Tz; Txn(k)) � rmaxfd(fz; fxn(k)); D(fz; Tz); D(fxn(k); Txn(k));

D(fz; Txn(k)) +D(fxn(k); T z)

2
g:
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Hence

D(fxn(k)+1; T z) � rmaxfd(fz; fxn(k)); D(fz; Tz); D(fxn(k); Txn(k)+1);

D(fz; Txn(k)+1) +D(fxn(k); T z)

2
g:

by letting k !1 we have

D(fz; Tz) � rmaxfD(fz; Tz); D(z; Tz)
2

g:

As r < 1;so we get D(fz; Tz) = 0 and since Tz 2 CB(X); fz 2 Tz:

Remark 6 When f = I then above theorem reduces to theorem 2.4.1

3.3.3 Example

Let X = f1; 2; 3g and d(x; y) = jx� yj 8 x; y 2 X: Let f : X ! X and T : X !

CB(X) be such that T1 = T2 = f1; 2g; T3 = f2; 3g and f1 = f2 = 1; f3 = 3. Then:

(a) T is a f � (s; r)-contractive multi-valued operator with r = 0:3; s = 0:4;

(b) Every e 2 X is coincidence point of f and T .;

(c) T is not (s; r)�contractive multi-valued operator.

Proof. (a) We have

H(T1; T1) = H(T1; T2) = H(T2; T2) = H(T3; T3) = 0;

and

D(f3; T1) = 1 > sd(f3; f1) = 0:8;

D(f1; T3) = 2 > sd(f1; f3) = 0:8;
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D(f2; T3) = 1 > sd(f2; f3) = 0:8;

D(f3; T2) = 1 > sd(f3; f2) = 0:8;

so T is a f � (s; r)-contractive multi-valued operator with r = 0:3; s = 0:4.

(b) It is obvious.

(c)

D(2; T3) = 0 < sd(2; 3) = 0:4;

but

H(T2; T3) = 1 > rmaxfd(2; 3); D(2; T2); D(3; T3); D(3; T2) +D(2; T3)
2

g = 0:3;

3.3.4 Theorem

Let (X; d) be a metric space, f : X ! X and T : X ! X be an f�(s; r)�contractive

single-valued operator such that TX � fX. Suppose fX is complete. Then T and f has

a coincidence point. Moreover, if s � 1 then T and f has a unique coincidence point.

Proof. From Theorem 3.3.2 T and f has a coincidence point. If s � 1 suppose

that there exist fx; fy 2 C(f; T ); fx 6= fy: Then

d(fy; Tx) = d(fy; fx) � sd(fy; fx):

so by hypothesis

d(Tx; Ty) � rMT (fx; fy):

It follows that

d(fx; fy) � rd(fx; fy):
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which is a contradiction.

3.3.5 Example

Let X = fa; b; c; dg and d : X � X ! X be a metric space such that d (a; b) =

d (b; d) = 4; d (b; c) = d (a; c) = d (a; d) = d (c; d) = 5 further f : X ! X and T : X ! X be

such that fa = fc = c; fc = a; fd = d and Ta = Tc = b; T b = Td = d then

(a) X is complete metric space and T and f has a coincidence point.

(b) T is a f � (s; r)-contractive single valued operator with r = 0:9; s = 1:2;

(c) T is not (s; r)�contractive multi-valued operator.

Proof. (a) It is obvious.

(b) we have d(Ta; T b) = d(Tb; Td) = 0; in remaining cases we have,

1) If x = a; y = b or x = b; y = a, then d (fx; Ty) = 5 > sd(fx; fy) = 0:

2) d(fa; Td) = 5 < sd(fa; fd) = 6 and d(fd; Ta) = 4 < sd(fa; fd) = 6;also

d(Ta; Td) = 4 and MT (fa; fd) = 5;hence d(Ta; Td) < rMT (fa; fd):

3) If x = b; y = c or x = c; y = b, then d (fx; Ty) = 5 < sd(fx; fy) = 6;also

d(Tx; Ty) = 4;MT (fx; fy) = 5 hence d(Tx; Ty) < rMT (fx; fy):

4) d(fc; Td) = 5 < sd(fc; fd) = 6 and d(fd; T c) = 4 < sd(fc; fd) = 6;also

d(Tc; Td) = 4 and MT (fc; fd) = 5;hence d(Tc; Td) < rMT (fc; fd):

(c) d(b; Ta) = 0 < sd(b; a) = 4:8 but d(Ta; Ta) = 4 > rMT (a; b) = 3:6.

3.3.6 Theorem

Let (X; d) be a metric space, f : X ! X and T : X ! CB(X) be a mapping . As-

sume that there exist r; s 2 [0; 1]; r < s such that 1
1+rD(fx; Tx) � d(fx; fy) �

1
1�sD(fx; Tx)
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) H(Tx; Ty) � rMT (fx; fy) and TX � fX where

MT (fx; fy) = maxfd(fx; fy); D(fx; Tx); D(fy; Ty);
D(fx; Ty) +D(fy; Tx)

2
g:

Suppose fX is complete. Then T is an multi-valued weakly picard operator

Proof. Take a real number t < 1 such that 0 � r < t < s. Let x1 2 X and

fx2 2 Tx1 such that

d(fx1; fx2) �
1� t
1� sD(fx1; Tx1):

Then

1

1 + r
D(fx1; Tx1) � D(fx1; Tx1) � d(fx1; fx2) �

1

1� sD(fx1; Tx1)

and by hypothesis we have

D(fx2; Tx2) � H(Tx1; Tx2) � rmaxfd(fx1; fx2); D(fx1; Tx1); D(fx2; Tx2);

D(fx1; Tx2) +D(fx2; Tx1)

2
g

� rmaxfd(fx1; fx2); D(fx2; Tx2);
d(fx1; fx2) +D(fx2; Tx2)

2
g

As r < 1; so we have

d(fx2; Tx2) � rd(fx1; fx2):

Then there exist fx3 2 Tx2 such that

d(fx2; fx3) � rd(fx1; fx2):
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Thus we can construct a sequence ffxng in E such that fxn+1 2 Txn and d(fxn+1; Txn+2) �

td(fxn; fxn+1) for all n 2 N: Therefore, we have

1X
n=1

d(fxn; fxn+1) �
1X
n=1

tn�1d(fx1; fx2) <1

which implies ffxng is a Cauchy sequence. sequence. Since fX is complete, there is some

point fz 2 fX such that ffxng converges to fz. and Therefore, we have;

d(fxn+p; fxn) � d(fxn; fxn+1) + d(fxn+1; fxn+2) + � � �+ d(fxn+p�1; fxn+p)

d(fxn+p; fxn) � d(fxn; fxn+1)(1 + t+ t
2 + � � �+ tp�1)

=
1� tp
1� t d(fxn; fxn+1) 8 n � N; p � 1:

Letting p!1

d(fz; fxn) �
1

1� t d(fxn; fxn+1) 8 n � 1:

as

d(fxn; fxn+1) �
1� t
1� sD(fxn; Txn):

we have

d(fz; fxn) �
1

1� sD(fxn; Txn) 8 n � 1:

Now suppose that there exist N > 0 such that

d(fz; fxn) <
1

1 + r
D(fxn; Txn) 8 n � N:

Then we have
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d(fxn; fxn+1) � d(fz; fxn) + d(fz; fxn+1)

<
1

1 + r
[D(fxn; Txn) +D(fxn+1; Txn+1)]

<
1

1 + r
[D(fxn; Txn) + rd(fxn; fxn+1)] :

This implies that

d(fxn; fxn+1) < D(fxn; Txn).

which is not possible. So there exist a subsequence
�
fxn(k)

	
of ffxng such that

d(fz; fxn(k)) �
1

1 + r
D(fxn(k); Txn(k)).

holds for every k � N: Since

d(fz; fxn) �
1

1� sD(fxn; Txn):

for all n � 1;By hypothesis we have

H(Tz; Txn(k)) � rmaxfd(fz; fxn(k)); D(fz; Tz); D(fxn(k); Txn(k));

D(fz; Txn(k)) +D(fxn(k); T z)

2
g:

Hence

D(fxn(k)+1; T z) � rmaxfd(fz; fxn(k)); D(fz; Tz); D(fxn(k); Txn(k)+1);

D(fz; Txn(k)+1) +D(fxn(k); T z)

2
g:

by letting k !1 we have

D(fz; Tz) � rmaxfD(fz; Tz); D(fz; Tz)
2

g:

As r < 1;then we get D(fz; Tz) = 0 and since Tz 2 CB(X); fz 2 Tz:



45

Remark 7 When L = 0 then above theorem reduces to theorem 2.4.3

3.3.7 Corollary

Let (X; d) be a metric space, f : X ! X and T : X ! X be a mapping. Assume

that there exist r 2 [0; 1]; such that

1

1 + r
d(fx; Tx) � d(fx; fy) � 1

1� rd(fx; Tx) ) H(Tx; Ty) � rMT (fx; fy)

and TX � fX where

MT (fx; fy) = maxfd(fx; fy); D(fx; Tx); D(fy; Ty);
D(fx; Ty) +D(fy; Tx)

2
g

:Suppose fX is complete. Then there exist fz 2 X such that fz = Tz:

Proof. One can easily prove that for every fx1 2 X the sequence ffxng de�ned

by fxn+1 = Txn be such that d(fxn+1; fxn+2) � rd(fxn; fxn+1) also ffxng is Cauchy

and there is point fz 2 X such that limn!1 fxn = fz. From above theorem we have

d(fz; fxn) � 1
1�rd(fxn; fxn+1) for all n � 1 and there exist a subsequence ffxn(k)g of

ffxng such that

d(fz; fxn(k)) �
1

1 + r
d(fxn(k); fxn(k)+1).

holds for every k � N:Therefore, we get

d(fxn(k)+1; T z) � rmaxfd(fz; fxn(k)); d(fz; Tz); d(fxn(k); Txn(k)+1);

d(fz; Txn(k)+1) + d(fxn(k); T z)

2
g:

by taking k !1 we obtain Tzb = fz:
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