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Abstract

The notion of Picard operator was introduced by Rus. The notion of weakly Picard
operators was introduced and used by Rus and his collaborators. Berinde
extended the notion of weakly Picard operator to multi-valued case. Kamran
introduced the notion of f-weakly Picard operators. Popescu introduced the
notion of (s,r)-contractive multi-valued operator. He presented some basic
problem for fixed point and strict fixed point theory for (s,r)-contractive multi-
valued operator.

In this dissertation, we extend the notion of (s,r)-contractive multi-valued
operator and proved some fixed points theorems for newly defined contraction.
In chapter one, we recollect some basic definitions and results, which are needed
for subsequent chapters. In chapter two, we review some fixed point theorems
for (s,r)-contractive multi-valued operator. We study, in detail, some results
obtained by Popescu. In chapter three, we define the notion of weakly (s,r)-
contractive multi-valued operator and f-(s,r)-contractive multi-valued operator
and using these conditions we obtain some new fixed point theorems.
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Chapter 1

Preliminaries

In this chapter we present basic concepts and results which will be used in sub-
sequent chapters. Moreover, we shall fix our notions and terminologies to be used in this
dissertation. Throughout, this dissertation X is a metric space endowed with a metric d

unless stated otherwise.

1.1 Fixed points for single-valued maps
A point z € X is called fixed point of a mapping f: X — X if
f@) =a
We denote the set of fixed points of f by Flizf,i.e.,
Fizf={z e X : f(x) =x}.

Note that a mapping need not have a fixed point. Further, if fixed point of a mapping exist

then it is not always unique.



1.1.1 Examples

Define f : R — R by f(z) = 22 — 3z + 4 then Fizf = {2}.

1.1.2 Example

Define f : R — R by f(z) = 2% then Fizf = {0,1}.

1.1.3 Example

Define f: R — R by f(z) = 23 then Fizf = {0,1,—1}.

1.1.4 Example

Define f : R — R by f(z) =« + 1 then Fixf = ®.

1.1.5 Example

Define f : R — R by f(z) = « then Fizf =R.

1.2 Lipschtizian Mappings

A mapping f: X — X is said to be Lipschtizian if there exist a constant ¢ > 0
such that d(fz, fy) < cd(z,y), for all z € X. Note that a Lipschtizian mapping is uniformly

continuous. Now, we give some subclasses for the class of Lipschtizian mapping.

1.2.1 Example

Let X = R be endowed with the usual metric. Define f : X — X by fx = 2z,

then f is Lipschtizian mapping.



1.2.2 Contraction Mappings

A mapping f is said to be a contraction if there exist a constant 0 < ¢ < 1 such
that
d(fz, fy) < cd(z,y),V z,y € X.
1.2.3 Example
Let X = R be endowed with the usual metric. Define f: X — X by fo =1+ 7,
then f is a contraction on X.
1.2.4 Contractive Mappings

A mapping f is said to be a contractive mappings if there exist a constant 0 < ¢ < 1

such that
d(fz, fy) < cd(z,y),¥V 2,y € X,z #y.
1.2.5 Example
Let X = [1,00) be endowed with the usual metric space. Define f : X — X by
fr=x+ %, then f is a contractive mapping on X.
1.2.6 Non-expansive Mappings

A mapping f is said to be a non-expansive mappings if,

d(fz, fy) <d(z,y),¥Y z,y € X,z #y.



1.2.7 Example

Let X = R be endowed with the usual metric space. Define f : X — X by fz =z,
then f is non-expansive on X.

Therefore, Contraction = Contractive = Non-expansive = Lipschtizian

Remark 1 Note that a contraction mapping is contractive, a contractive mapping is non-

expansive and a non-erpansive mapping is Lipschtizian.

1.2.8 Banach Fixed Point Theorem (Contraction Theorem)

Banach showed that every contraction on a complete metric space has a unique
fixed point. This result appeared explicitly first time in Banach’s doctorial thesis and com-
monly known as Banach contraction principal. This principle is an existence and uniqueness
theorem for fixed points of self-mappings. Banach’ contraction principle extensively used
to study the existence of solutions for nonlinear integral and differential equations and to

prove the convergence of algorithms in computational mathematics.

1.2.9 Theorem[11]

Let (X, d) be a complete metric space and f : X — X be a contraction on X with
contraction constant ¢. Then f has unique fixed point z. Moreover, for any g € X:
1. The iterative sequence {f"xg} converge to z.

2. The following prior estimate hold




3. The following posterior estimate hold

d(xm, z) < %d(mm_l, Tym).

Proof. Fix any arbitrary element xg € X and define the iterative sequence {x,}
by xo, x1 = fxo, 2 = fr1 = [P, a0 = [

By triangle inequality, we have
d(xfm xn) < d($m7 merl) + d(merly xm+2) + -+ d(xnfly $n)
= d(fm1, [Tm) + A fTm, fEmir) + -+ A(fn, fn1)

< Cd($m_1, xm) + Cd(&?m, xm-i—l) + -+ Cd(xm mn—l)

= Cd(fxm—% fxm—l) + Cd(fl‘m—lv fxm) + -+ Cd(fxn—lv fxn—2)

IN

Ad(Tm—2,Tm—1) + Ed(Tm_1,Tm) + - + d(Tp_1,Tn_2).
Continuing this process we obtain

ATy ) < ("4 Y d (g, 21)

1—c—m
= ¢ 1%Cal(%o,ibl)

Since 0 < c< 1,80 1 — "™ < 1, consequently,

m

(2, ) < 167_Cd(a:0,331) (1)

On the right, 0 < ¢ < 1 and d(z, z1) is fixed, so that we can make the right-hand
side as small as we please by taking m sufficiently large (and n > m). This proves that
{zm} is a Cauchy sequence. Since X is complete, {x,,} converges, i.e. there is z € X such

that z,, — 7z as n — oco. Now

d(z, fz) < d(z,zpm) + d(zm, f2) < d(z,2m) + cd(zy, 2)



letting m — oo, we get
d(z, fz) = 0, which implies z = fz.

This show that z is fixed point of f. For uniqueness suppose on contrary that y and z are

two fixed points of f. Now
d(y,z) =d(fy, fz) < cd(y, z) < d(y,z),since 0 < ¢ < 1.

this yields a contraction.

letting n — oo in equation (1), we get

(T, 2) < 1c:ncd(x0,x1) (2)

Taking m = 1 and writing yo for ¢ and y; for z; in (2),we have

C
< — .
d(ylvz) =1_ Cd(y()ayl)

setting yo = T;m—1, we have y; = fyg = ,, we obtain

1.3 Multi-valued Maps

Let X,Y be two non-empty sets. We say that 7" is a multi-valued mapping from
X into Y if for each x € X, T'(x) is a subset of Y. Clearly, a single-valued mappings are
special case of multi-valued mappings. We denote T' : X ~~ Y to represent that 7 is a
multi-valued from X into Y. The trigonometric, hyperbolic and exponential functions are

all single-valued mappings, their inverses are multi-valued mappings.



1.3.1 Example

Let f : X — Y is a continuous mapping. Then its inverse can be consider as
multi-valued mappings S : Y ~» X defined by

1.3.2 Example

Let X = [0,1] and let N(X) denote the family of all non-empty subsets of X
Define T': X — N(X) by Tz = [z,1] and S : X — N(X)

- 1
S:z::{[o’l] 1f:n7$§1
{a,b} if v =35

then T" and S are multi-valued mappings.

1.4 Fixed point for multi-valued mapping

Let X and Y be two metric (or topological) spaces and T : X ~» Y be a multi-

valued mapping an element = € X is called fixed point of T" if x € T'(z).

1.4.1 Example

Let X = {1,2,3}, CB(X) denotes the set of non empty closed and bounded subsets

of X and d(z,y) = |[x —y| V 2,y € X. Define T : X — CB(X) by T1 = T2 = {1,2},
T3 = {3}. Then, every x € X is a fixed point of 7.



1.4.2 Example

Let X = [0, 1] be endowed with the usual metric d and let S : X ~ X be given by

1 1 1
§$+§70§$§§
—%m+1,%<az§1

S(z) = {
Define T : X — CB(X) by T'(x) = {0} U{S(z)} for each = € X, then the set of fixed points
of T is {0, 2}.
1.4.3 Definition

Let X and Y be two metric spaces and T,S : X ~» Y be two multi-valued
mapping. An element x € X is said to be common fixed point of 7" and 5, if x € Tz and

x € Sx.

1.4.4 Example

Define T', S : [a,b] — [a, b], where b > a and a,b € R by

To = {[{a} if & = {a,b}:

z, bl if a <z <D,
and

Sz = [a,z] for all z € [a,]].

then each = € [a,b] is a common fixed point of 7" and S.

1.5 Hausdorff Metric

The key to the classical Banach fixed point theorem is that one is working in a

complete metric space. To get an analogous result for multi-valued mappings,we have to



equip the powerset of a metric space with a metric. One such metric on the power set of
a metric space X was given by Hausdorff and it is commonly known as Hausdorff metric.
Now we give some detail to explain the notion of Hausdorff metric.

Let M, N be subsets of X then,

D(z,N) =inf{d(z,y) :y € N}

D(M,N) =sup{D(z,N):x € M}

1.5.1 Example

Let X = [0.1] be endowed with the usual metric d,A = (0,1) be a non empty

subset of X. Then for all z € X D(z,A) = 0.

1.5.2 Definition

The Hausdorff metric on the family of all non-empty closed bounded subsets of a

metric space is defined by

H(M, N) =max{ D(M,N), D(N,M)}.

1.5.3 Example

Let X =R, A =[1,3],B =[2,5] and d(z,y) = |z —y| for all z,y € A, B. Then
H(A,B) =2.
It is well known that if (X,d) is a complete metric space, then (CB(X),H) is a

complete metric space, where H is Hausdorff metric induced by d[7].
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1.6 Multi-valued Contraction

Nadler [6] gave a generalization of Banach’s contraction principle to the case of

multi-valued mappings. In this section we give the proof of Nadler theorem.

1.6.1 Definition

Let (X,d) be a metric space. A map 7' : X — CB(X) is called multi-valued
contraction if

H(Tz,Ty) < kd(z,y) for all z,y € X,

for some k € [0, 1).

1.6.2 Example

Let X = [0,1] be endowed with the usual metric space d and let S : X — X be

given by

1 1 1
§$+570§$§§
—%m+1,%<x§1

S(z) = {
Define ' : X — CB(X) by T'(z) = {0} U{S(x)} for each x € X, then T is multi-valued

contraction mapping.

1.6.3 Lemmal|6]

If A,B e CB(X) and a € A, then for each k > 0, there exists b € B such that

d(a,b) < H(A, B) + k.
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1.6.4 Nadler fixed point Theorem [6]

Let (X,d) be a complete metric space and T : X — CB(X) is a multi-valued
contraction mapping. Then T has a fixed point.
Proof. Let zg € X. Choose z1 € Tzg. Since Txg, Tx; € CB(X) and z1 € Tz,

there exist xo € T'x1 such that

d(:t?l,l‘g) < H(Tl‘o,TﬂSl) + k.

Since Tz1,Tzy € CB(X) and x9 € Tx1, there exist x3 € Txo such that

d(xy,x3) < H(Txy, Txo) + K2

continuing in the same way, we get a sequence {x,} such that z, 11 € Tz, and

d(xp, xpi1) < H(Txp—1,Txy) + k", for all n € N.

Now we have

d(xn, tnt1) < HTxp—1,Txy,) + k"

< kd(xn—h xn) + k"

< k[HTwp—2,Trn 1)+ k"] +E"
< Kd(zp_o,xp_1) + 2k

< k"d(z1,x0) + nk™,Vn € N.
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Hence

d(Zn, Tnym) < d(Tp, Tos1) + d(Tng1, Tag2) + -+ A Tprm—1, Tnm)

IN

E"d(z1, z0) + nk™ 4+ k" rd(x1, x0) + (n + 1)k

+ o KT (2, 20) + (0 +m — D)EMTL

n+m—1 ) n+m—1 .
= > (K)d(z1,m0)+ Y (ik'),¥n,m e N.

It follows that {z,} is Cauchy sequence. Since (X, d) is complete, so the sequence
{z,} converges to some x € X. Therefore the sequence {Tz,} converges to Tz, since

Ty, € Txyp_q for all n, it follows that z € Tz. m

1.6.5 Example

Let X = [0,00) be endowed with the usual metric and 7' : X — CB(X) be a
multi-valued mapping such that T'x = %{x, x + u}, for each z € X. where u is some finite

real number. For each x,y € X, we have

1 1

Hence by theorem 1.6.4, T" has fixed point.
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Chapter 2

(s,7)-Contractive Multi-valued

Operator

Rus [8] introduced the notion of a multi-valued weakly Picard operator. Popescu
[4] introduced the notion of (s,r)-contractive multi-valued operators and showed that they
are weakly picard operators. He also obtained fixed point and strict fixed point theorems for

(s, r)-contractive multi-valued operators. This chapter is a review of the paper by Popescu

[4].

2.1 Multi-valued Weakly Picard Operators

Berinde and Berinde [9] extended the notion of weak picard operator from single
valued mapping to multi-valued mapping. They also introduced, the notion of multi-valued
(0, L) weak contraction[10].

A multi-valued operator 1" from metric space X to set of all non-empty closed and
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bounded subsets of X is said to be multi-valued weakly picard operator iff V z € X and

y € Tx, there exit a sequence {x,} in X such that
(i) @0 ==, 31 =y,
(ii) xpy1 € Txy, for all n > 0,
(#i7) {xy} is convergent and its limit is fixed point of T

2.1.1 Example [6]

Let (X,d) be complete metric space and T' : X — CB(X) be a multi-valued

contraction. Then T is a multi-valued weakly Picard operator.

2.1.2 Definition [9]

Let T': X — C'B(X) be a multi-valued operator T is said to be multi-valued weak
contraction or a multi-valued (0, L) weak contraction iff for all z,y € X there exist two

constants 6 € (0,1) and L > 0 such that

H(Tz,Ty) < 0d(z,y) + L(y, Tx).

2.2 Multi-valued f-weak contraction

Kamran [3] extended the notion of weak contraction and presented the notions of

multi-valued f-weak contraction and generalized multi-valued f-weak contraction.
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2.2.1 Definition [3]

Let (X, d) be a metric space, f: X — X and T : X — CB(X) be a multi-valued
operator. T is said to be an f— weakly picard operator iff for all z € X and fy € Tx
(y € X), there exit a sequence {z,} in X such that

(1) xo=m,21 =y,

(ii) fanpy1 € Tay, for all n > 0,

(7i1) {fxy,} is converges to fp where p is the coincidence point of f and T.

2.2.2 Example [3]

Let g : X — X and S : X — CL(X) be a multi-valued operator such that

SX C gX, and

H(S:E?Sy) < h[tE(I7y) + (1 - t)F(xay)]

forall z,y € X,0<h <1,0<t<1, where

E(z,y) = max{d(gz, gy), d(g9z, Sz),d(gy, T'y), 5[d(g9z, Sy) + d(gy, Sz)]},

N | —

F(z,y) = [max{d*(gz,gy),d(gz,Sz)d(gy,Ty),d(gz, Sy)d(gy, Sz),

1 1
597, Sx)d(gy, Tx), S d(gz, Sy)d(gy, Ty)})?

T is an f—weakly Picard operator if one of SX and gX is a complete subspace of X.
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2.2.3 Definition [3]

Let (X, d) be a metric space, f: X — X and T : X — CB(X) be a multi-valued
operator. T is called a multi-valued f-weak contraction or a multi-valued (f,6, L)-weak

contraction iff there exist two constants § € (0,1) and L > 0 such that

H(Tz,Ty) < 6d(fzx, fy) + Ld(fy,Tx), for all z,y € X.

2.3 (s,r) Contraction

Popescu [4] introduce the notion of a (s,r) contractive multi-valued operator as

follows.

2.3.1 Definition [4]

A multi-valued operator T' from metric space X to set of all non-empty closed and
bounded subsets of X is said to be a (s, r)-contractive multi-valued operator if for r € [0, 1),

s > r such that,
D(y,Tz) < sd(y,z) = H(Txz,Ty) <rMrp(z,y),Y z,y € X.

where

D(z,Ty) + D(y, Tx)}
5 :

Mr(z,y) = max{d(z,y), D(z, Tz), D(y, Ty),
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2.4 Fixed Point Theorems For (s, r)-Contractive Multi-valued

Operator

In this section we study, in detail, some results obtained by Popescu [4] for (s,7)

contractive multi-valued operator.

2.4.1 Theorem [4]

Let T be a (s,r)— contractive multi-valued operator from complete metric space
X to set of all non-empty closed and bounded subsets of X with s > r. Then T is a
multi-valued weakly picard operator.

Proof. Take a real number ¢t < 1 such that 0 < r <t < s. Let 1 € X and

x9 € Tx1.Then D(x9,Tx1) =0 < sd(z2,21) and by hypothesis we have

D((L‘Q,T.rg) S H(Ta:1,Ta:2)

IN

rmax{d(z1,x2), D(x1,Tx1), D(x9, Txz2),

D(z1,Txo) + D(azg,Tml)}
2

D(xz9,Tx2) < rmax{d(z1,z2), D(x2,Tz2),

d((L‘l, .’122) + D(:L‘Q, T.%'Q)
2

1.
As r < 1, so we have D(z9,Tx2) < rd(x1,z2). Then there exist x3 € Txy such that
d(x2,x3) < rd(x1,x2). Therefore a sequence {z,} can be constructed in X such that x,; €

Tz, and d(zp+1, Txni2) < td(xp, xny1) for all n € N. Therefore, we have

Z d(xn, Tpt1) < Zt”‘ld(xl,xg) < 00
n=1

n=1
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which implies {z,} is a Cauchy sequence. Since X is complete, there is some point z € X
such that {z,} converges to z Now,we will show that there exist a subsequence {z,)} of
{zy} such that

D(Z,T:L‘n(k)) < Sd(z,l'n(k)) VkeN.
Suppose that there exist a positive integer N € N such that
D(z,Txy) > sd(z,z,) Vn > N.

This implies

d(z,Tp41) > sd(z,zn) V> N.

By induction, we have
d(z,Tpip) > sPd(z,2p,) V> N,p>1 (1)

Since

A(Tntp, Tn) < A(Tn, Tnt1) + d(Tnt1, Tns2) + 0+ A Tngp—1, Tntp)-

d(xnﬂaa xn) < d(~rn7 $n+1)(1 +1+ t? et tp_l)

1—1tP
= 1 td(xnvxn-i-l)anNale

Letting p — oo, we obtain

1
d(z,zy) < ﬁd(l’n,$n+1) Vn>1.

Thus we have,

IN

(2, Tnip) md(l’n-&-pa Tnip+1)

tP
1-t¢

IN

d(xn, Tpt1) VN >1,p>1 (2)
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(1) and (2) implies,

(5)”

d(z,zn
(z,xp) < .-

d(Tp, Znt1) VN> N,p> 1.

By letting p — oo we obtain

d(z,z,) =0V n> N.
which contradicts (1). Therefore, there exist a subsequence {w,,)} of {z,} such that
D(z, Txpm) < sd(z, 2p4)) ¥V k € N,
Therefore, we have
H(Tz,Txngy) < rmax{d(z,vnm), D(2,T2), D(Tpw), TTnk))s

D(2, Txpy) + D(Tp)s TZ)}
5 .

Hence

D(zppy41,T2) < rmax{d(z, Tyr)), D(2,T2), D(Tn), TTnk)41);

D(2, Ty 11) + D(Zni) Tz)}
5 .

Letting k — oo we obtain
D(z,T
D(z,Tz) < rmax{D(z,Tz), (Zéz)}
As r < 1 which yields D(z,Tz) = 0.
Since Tz € CB(X)soz€ Tz m

2.4.2 Theorem [4]

Let (X,d) be a complete metric space and T': X — X be an (s, r)—contractive

single-valued operator. Then T has a fixed point. Moreover, if s > 1 then T has a unique
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fixed point.
Proof. From Theorem 2.4.1 T has a fixed point. If s > 1 Suppose that 1" has two

distinct fixed points « and y. Then
d(y, Tz) = d(y,z) < sd(y,z)

So by hypothesis, d(Tz,Ty) < rMp(z,y). It follows that d(z,y) < rd(z,y). Since r < 1

which contradict our supposition. =

2.4.3 Theorem [4]

Let T be a mapping from complete metric space X to CB(X). Assume that there

exist 7, s € [0,1) such that r < s and

1 1
?D(‘T,T.’B) <d(y,x) < TD(LE,TCE) = H(Tz,Ty) <rMrp(z,y).
r -5

Where

D(z,Ty) + D(y, Tx)

MT(xvy) = max{d(x,y),D(x,Tm),D(y,Ty), 9

}.

Then T is a multi-valued weakly picard operator.
Proof. Take a real number ¢ < 1 such that 0 < r <t < s. Let z1 € X and
zo € T'xq such that

1—-1¢
d($1,m2) S 17D($1,T$1).
S

Then

1
1 T TD(ZE1,T$1) S D(fBl,Tl‘l) S d(ﬂ?l,fE2> S ED(QZ].?T'T].)'
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and by hypothesis we have

D({EQ,T.%‘Q) S H(T;Ul,T.%'Q)

D(l’l, T:L‘Q) + D(:L'Q, Tl’l)
2

}.

IN

rmax{d(zy,x2), D(x1,Tx1), D(x2, Txa), }.

d(.%'l, .%'2) + D(afg, T.%'Q)
2

IN

rmax{d(z1,x2), D(x2, Tx2),

As r < 1, so we have

D(x9,Txs) < rd(x1,x2).

Then there exist x3 € Tz such that d(xza,x3) < rd(zi,x2). Therefore a sequence {z,}
can be constructed in X such that x,41 € Tx,, and d(xy41, Txny2) < td(zy,xn11) for all

n € N. Therefore, we have
(o] (o]
Z d(Tn, Tns1) < Ztnfld(wl,ﬂfz) < 00
n=1 n=1

which implies {z,} is a Cauchy sequence. Since X is complete, there is some point z € X

such that {z,} converges to z. Since

d(xn+p7 In) < d(ﬂ?n, xn—&-l) + d($n+1a xn—i—?) + o+ d(xn—i—p—ly xn—i—p)-

d(xnﬂﬂa Tn) < d(wp, )1+ + 24+ tp_l)

1 -1
= 1 td(xnvxn-i-l)anNale

Now letting p — oo we have

1
d(z,zy) < ﬁd(:nn,xnﬂ) Vn>1.
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Since

1-—-t¢
(T, Tpt1) < iD(xn,Txn).

we have
1
d(z,zy) < TD($n,TCBn) Vn>1.
-5

Now suppose that there exist N > 0 such that

d(z,zn

D(zp,Tx,) ¥ n > N.

Thus we have,

d(xnann—l-l) < d(z,xn)—i-d(z,ajm_l)

1

< 3 g [D(xn, Txp) + D(zpt1, Tnt1)]
1

< 1+r [D(2n, Tan) + rd(zn, Tni1)] .-

This implies that
d(xp, Tny1) < D(xp, Tzy).
which is not possible. So there exist a subsequence{xn(k)} of {z,} such that

1
1+7r

d(2, Zpy) > D(y k), Tpry) ¥V k> N.

Since

1
d <
(Z, :L'n) =7

D(zy,,Tx,) ¥V n>1,
— s

Thus we have

H(TZ7 Txn(k)) < r max{d(z, {Bn(k:))a D(Z, TZ), D(xn(k)v Tmn(k))a

D(2, Txpmy) + D(Tn)s TZ)}
5 .
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Hence

D(xpy41,T2z) < rmax{d(z,Tnw)), D(2,T2), D(Tn), TTn)+1),

D(2, Ty 11) + D(Zn), TZ)}
5 .

Let k — oo we have
D(z,T
D(z,Tz) < rmax{D(z,Tz), (Zéz)}

D(z,Tz)

D(z,Tz) < rmax{D(z,Tz), 5 }.

As r < 1,then we get D(z,Tz) =0 and since Tz € CB(X),z2 € Tz. m

2.4.4 Corollary

Let (X,d) be a complete metric space, 7' : X — X be a mapping . Assume that

there exist r € [0, 1] such that

1 1
r -7
where
D ‘/E)Ty +D y,TJJ
My (z,y) = max{d(z,y), D(z,Tx), D(y, Ty), ( ) ; ( )}_

The there exist z € X such that Tz = z.

Proof. One can easily prove that for every z; € X the sequence {z,} de-
fined by x,+1 = Tz, be such that d(xni1,2n12) < rd(zp,Tnt1) also {z,} is Cauchy
and there is point z € X such that lim, ..oz, = z. From above theorem we have

1

d(z,7) < 75.d(zp, Tpy1) ¥V m > 1 and there exist a subsequence {z,)} of {z,} such



that

>
d('zaxn(k)) “1+r

Therefore, we obtain

d(Tpy41,T2) < rmax{d(z, Tyr)), d(2, T2), d(Tnk), TTrk)+1);

d(2z, Topr)1) + d(@nw), T'2)
2

1.

by taking k — co we obtain Tz = 2. =

24
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Chapter 3

Generalization of (s,r) Contractive

Multi-valued Operator

3.1 Introduction

In this Chapter we use the concept of f—weakly picard operator given by Kamran
[3] to extend the results presented by Popescu [4] for (s, r) contractive multi-valued operator.
Throughout this chapter, we denote set of all non-empty closed and bounded
subsets of a metric space X by CB(X) and all non-empty closed subsets of a metric space

X by CL(X).

3.2 Weakly (s,r)-Contractive Multi-valued Operator

In this section we introduce the notion of weakly (s, r)-contractive multi-valued

operator and extend the results given by Popescu [4]. We start this section with following
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definition.

3.2.1 Definition

Let (X,d) be a complete metric space and T : X — CB(X) be a multi-valued
operator. T' is said to be weakly (s, r)-contractive multi-valued operator if r € [0,1),s >

r,L > 0 with

D(y,Tx) < sd(y,z) = H(Tz,Ty) <rM(z,y) V z,y € X.

where,

D(z,Ty) + D(y, Tx)

M(z,y) = max{d(z,y), D(z,Tz),D(y,Ty), 5

}

+L min{(d(z,y),d(y, Tz)}.

Remark 2 When L = 0 the above definition reduce to definition 2.3.1

3.2.2 Theorem

Let T : X — CB(X) be weakly (s,r)— contractive multi-valued operator with
s >r and L > 0 where (X,d) is a complete metric space. Then T is multi-valued weakly
picard operator.

Proof. Take a real number ¢ < 1 such that 0 < r <t < s. Let z1 € X and
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x9 € Tx1.Then D(zo,Tx1) =0 < sd(z2,z1) and by hypothesis we have.

D(IQ,T$2) S H(Txl,Tl‘g)

D T D T
rmax{d(z1,x2), D(z1,T21), D(x2, Tx2), (21, x2)—; (2, xl)}

IN

+Lmin{(d(x1, z2),d(z2, Tx1).

d(xl, 162) + D(.%’Q, T.rg)
2

D(x9,Txo) < rmax{d(z1,z2), D(xs, Tx2), }+0.

As r < 1, so we have D(z9,Tx2) < rd(x1,22). Then there exist x3 € Txo such that
d(xz2,x3) < rd(xy,x2). Therefore a sequence {z,} can be constructed in X such that

Tnt1 € Txy, and d(zpy1, TTnt2) < td(xp, Tni1) for all n € N. Therefore, we have

Z d(xp, Tpi1) < Zt”_ld($1,m2) < 00

which implies {z,} is a Cauchy sequence. Since X is complete, there is some point z € X
such that {x,} converges to z Now, we claim that there exist a subsequence {w,)} of
{z,,} such that

D(z,Tacn(k)) < sd(z,xn(k)) vV kel
Suppose on contrary that there exist a positive integer N € N such that
D(z,Txy) > sd(z,x,) Vn>N.

This implies

d(z,Tp4+1) > sd(z,z,) Vn > N.

By induction, we obtain

d(z, xpyp) > sPd(z,2,) V> N,p> 1. (1)
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A Tnip, Tn) < d(Tn, Tny1) + d(@nt1, Tni2) + 0+ A(Togp-1, Togp)-

d($n+p7 xn) < d(xn; xn—i—l)(l + 1+ t2 + -+ tp_l)

1—1¢
= 1 + d(mn,$n+1) Vn > Nap > 1.

Letting p — oo,we obtain

1
d(z,zy) < ﬁd(a:n,mnﬂ) Vn>1.

Thus we have,
1
d(z, Tnp) < md(fﬁn—i—paxnﬂ-p—&-l)

tP
1-t¢

IN

d(wn,$n+1) vV n > 17p > 1.

From (1) and (2) we obtained

(2)”

d(z,xn) < L

d(xmxn+1) Vn>N,p>1.

for all n > N,p > 1.By letting p — oo we have d(z,x,) = 0 for all n > N which contradicts

(1) therefore there exist a subsequence {x, )} of {z,} such that

D(z, Txpp)) < sd(2,Tp)) V k€N
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Thus we have

D(xn(k)+17 TZ) < H(TZ, Txn(k))
D(z, Txpm)) + D(Tn), T'2)

< rmax{d(z, Tpm)), D(2,T2), D(Tp), TTnk)), 5 }
+Lmin{(d(zyx), 2), d(Tnr), T2)}
D(ZaTxnk 1)+D(xnk ,TZ)
D(xn(k)+17Tz) < TmaX{d(zaxn(k))7D(Z,Tz),D(l'n(k),Tajn(k)Jrl)’ (k)+ 5 (k) }

+L min{(d(xy,x), 2), d(Tp k), T2)}-

Letting k — oo we have

D(z,Tz)

D(z,Tz) < rmax{D(z,Tz), )

} 4+ Lmin{(d(z, 2),d(z,T=2)}.
As r < 1,then we get D(z,7Tz) =0 and since Tz € CB(X),z€Tz. =

Remark 3 When L = 0 then above theorem reduces to theorem 2.4.1

3.2.3 Example

Let X = {1,2,3} and d(z,y) = |z —y| YV z,y € X. Let T : X — CB(X) be such
that T1 = T2 = {1,2}, T3 = {3}.Then:

(a) T is a weakly (s, r)-contractive multi-valued operator with r = 0.3, s = 0.6 and

(b) Every x € X is a fixed point of T
(c) T is not an (s, r)—contractive multi-valued operator.

Proof. (a) We have

H(T1,T1) = H(T1,T2) = H(T3,T3) = H(T2,T2) =0,
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and

D(3,T1) =1<sd(3,1) = 1.2,

implies

H(T3,T1) = 1

D(3,T1) + D(1,T3)

< rmax{d(3,1),D(3,73),D(1,T1), :

}

+Lmin{d(3,1),d(1,73)} = 2.6,

D(1,T3) = 2> sd(1,3) =12,

D(2,T3) = 1> sd(2,3) = 0.6,

D(3,72) 1> sd(3,2) = 0.6,

so T is a weakly (s,7)-contractive multi-valued operator with » = 0.3, s = 0.6 and L = 1.
(b) It is obvious.
(c)

D(3,T1) =1 < sd(3,1) = 1.2,

but

H(T3,T1) = 1

> rmax{d(3,1), D(3,73), D(1, 1), ZE: TV —2F D1, T3),

= 0.6;
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3.2.4 Theorem

Let (X, d) be a complete metric space and T : X — X be a weakly (s, )—contractive
single-valued operator. Then T has a fixed point. Moreover, if s > 1 and L+ < 1 then T’
has a unique fixed point.

Proof. From Theorem 3.2.2 T' has a fixed point. If s > 1 Suppose that T has two
distinct fixed points x and y.

Then

d(y,TZL') = d(y,l’) < Sd(y,l')

Thus

d(Tz, Ty) <rM(z,y).

It follows that d(x,y) < (r 4+ L)d(x,y),since (r + L) < 1 which is a contradiction. m

3.2.5 Theorem

Let T be a mapping from complete metric space X to set of all non-empty closed

and bounded subsets of X. Assume that there exist r, s € [0,1],7 < s such that

1 1
where
D x7Ty +D y,T{E
M(z,y) = max{d(z,y),D(z,Tz), D(y,Ty), ( ) : ( )}

+Lmin{d(z,y),d(y, Tz).
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Then T is a multi-valued weakly picard operator.
Proof. Take a real number ¢ < 1 such that 0 < r < ¢t < s. Let 21 € X and
To9 € T'xy such that

1—1¢
d($1,$2) § 71 D(l’l,T:L‘l)
S

Then

1
T TD(:L“l,Txl) < D(z1,Tz1) < d(x1,22) < ED(CELTﬂfl)

and by hypothesis we have

D(:L'Q, T.’L'Q) S H(Txl, TIBQ)

D(CL‘l, T:BQ) + D(ZEQ, T$1)}
2

IN

rmax{d(z1,x2), D(x1,Tx1), D(x2, T22),

+L min{(d(x1,x2),d(xs, Tz1)

d D T
< TmaX{d(.’El,&fz),D(xQ,TﬂfQ), (xl,xQ) +2 (x27 xz)} + 0.

As r < 1, so we have

D(xg,Tx2) < rd(x1,x2).

Then there exist x3 € Txg such that d(x2,x3) < rd(x1,x2). Therefore a sequence {x,}
can be constructed in X such that z,+1 € Tzy, and d(zp41,TTpt2) < td(xp, xhy1) for all

n € N. Therefore, we have

o o
g A(Tp, Tpy1) < g " 1d (21,22) < 00
n=1 n=1

which implies {z,} is a Cauchy sequence. Since X is complete, there is some point z € X

such that {z,} converges to z. Since

d(xn—i-Pv Tp) < d(Tn, Tng1) + d(Tpy1, Tnga) + o0 F d<$n+p—1> wn—i—p)'



A(Tnip,tn) < d(Tp, Tppr)(L+HE4+12 4+ F P71

1—1¢P
= 1 td(mnaxn+1)anN7p21-

Now letting p — oo we have

1
d(z,z,) < ﬁd(xn,an) Vn>1.

as
1—1
d($na anrl) < 7SD($T“ Tq:n)

we have

1
d(z,zy,) < fD(xn,Txn) Vn>1.

— s
Now suppose that there exist N > 0 such that
1
d(z,zy) < mD(mn,Txn) Vn>N.

Therefore, we have

d(xna$n+1) < d<zaxn)+d(27$n+l)

1

< T [D(zp, Txyn) + D(pi1, Tny1)]
1

< 1+r [D('TnaTl'n) + Td(xna -Tn+1)] .

This implies that

d(xp, Tpt1) < D(zp, Txy).

which is not possible. So there exist a subsequence{xn(k)} of {z,} such that

1
147

d(2, Tpry) > D(y (), Tpy) ¥V & > N..

33
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Since

1
d(z,x,) < T D(zy,Tx,) Vi >1,
—s

By hypothesis we have

H(Tz, Txyyy) < rmax{d(z, o)), D(2,T2), D(@n), TTn)),

D(z, Twyy)) + D), Tz)
2

+Lmin{(d(x ), 2), d(Tp k), T2)}
Hence

D(zpy41,T2) < rmax{d(z, Tyw)), D(2,T2), D(Tn), TTn(k)41);

D(z, Ty 41) + D(@p k), Tz)}
2

Letting £ — oo we have

D(z,Tz)

D(z,Tz) < rmax{D(z,Tz), 5

}+ Lmin{(d(z, 2),d(z,Tz)}.

D(z,Tz)

D(z,Tz) < rmax{D(z,Tz), 5

}+0

Asr <1, s0we get D(z,Tz) =0 and since Tz € CB(X),z€Tz. =

Remark 4 When L = 0 then above theorem reduces to theorem 2.4.3

3.2.6 Corollary

Let (X,d) be a complete metric space, T': X — X be a mapping . Assume that

there exist r € [0, 1] such that
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1 1
T - T

where

D(z,Ty) + D(y, Tx)
2

M(z,y) = max{d(z,y),D(x,Tz), D(y,Ty), }

+L min{(d(z,y),d(y, Tz)}.

The there exist z € X such that Tz = z.
Proof. One can easily prove that for every z; € X the sequence {z,} de-
fined by x,4+1 = Tz, be such that d(zp+1,Tpt2) < rd(zn,zp+1) also {z,} is Cauchy

and there is point z € X such that lim, ..oz, = z. From above theorem we have

d(z, ) < 1=d(p, Tpq1) for all n > 1 and there exist a subsequence {4} of {w,}

such that

1
1+7r

d(2, T (ry) = A(Tp(k)s Tn(k)+1)-

holds for every k > N.Therefore, we get

d(2, Ty 11) + ATk, Tz)}
2

d(Tpy1,T2) < rmax{d(z, Tpm)), d(2,T2), d(Tp), TTrk)+1),

+L min (d(xn(k)v Z)v d(mn(k) ) TZ)}

by taking k — co we obtain Tz = 2. =

3.3 f— (s,r)-Contractive Multi-valued Operator
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In this section we extend the results given by Popescu [4] for (s,r)-contractive
multi-valued operator by using the concept of multi-valued f—weak contractions given by
Kamran [3].

3.3.1 Definition

Let (X, d) be a metric space and f: X — X T : X — CB(X) be a multi-valued
operator T is said to be an f — (s, r)-contractive multi-valued operator if r € [0,1),s > r

and u,v € X with
D(fz,Ty) < sd(fx,y) = H(Tz,Ty) < rMr(fz, fy)

where

D(fz,Ty) + D(fx,Ty)}
2

My (fz, fy) = max{d(fz, fy), D(fz,Ty), D(fz,Ty),

Remark 5 When f =1 then above definition reduces to definition 2.3.1

3.3.2 Theorem

Let (X,d) be a metric space, f: X — X and T: X — CB(X) be an f — (s,7)—
contractive multi-valued operator with s > r such that TX C fX. Suppose fX is complete.
Then T is an f—multi-valued weakly picard operator

Proof. Take a real number ¢t < 1 such that 0 < r < ¢t < s. Let 21 € X and
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fxo € Tx1.Then D(fxo,Tx1) =0 < sd(fz2, fr1) and by hypothesis we have,
D(f:l,’g, T:L‘Q) S H(Ta:l, sz).

D(f$1, Tﬁlﬁg) + D(f.’L'g, T.Tl)
2

IN

rmax{d(fz1, fr2), D(fx1,Tz1), D(f22, TT2),

rmax{d(fx1, fxe), D(fxa, Tx2), d(fx1, fr2) —;D(f:vz,ng)}'

.

IN

As r < 1, so we have

D(fxo,Txa) < rd(fxi1, fxs).

Then there exist fxs € Txo such that

d(fzo, frs) < rd(fx1, fza).

Thus we can construct a sequence { fx,, } in E' such that fz,+1 € Tz, and d(frp41,TTpi2) <

td(fxp, frns1) for all n € N. Therefore, we have

S d(fan, fraen) <Yt Nd(fa, fra) < o0
n=1 n=1

which implies {fz,} is a Cauchy sequence. Since fX is complete, there is some point

fz € fX such that { fz,} converges to fz. Now,we will show that there exist a subsequence

{fzn@)} of {fzn} such that
D(fz, Txnpy) < sd(fz, frnw) V keN.
Suppose on contrary that there exist a positive integer N such that
D(fz,Txy) > sd(fz, frn) ¥V n > N.

as farpy1 € Txy so,

d(fz, feps1) > sd(fz, frn,) Y n>N.
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By induction, we get for all n > N,p > 1 that

d(fZ, f':UTLer) > Spd(fzv f.In) (1)

d(fwn—i-p: frn) <d(fn, foni1) +d(font1, fonge) +--0 + d(fxn—&-p—lv fxn—&-p)-

A(fTnip fon) < d(fon, fopp) L+t +87 4 P71

1—tP

= 1_td(fxnafxn+1)'

for all n > N,p > 1.Now letting p — oo we get,

1
d(z, fzy) < md(fxn,f:cnﬂ) Vn>1.

Now for all m > 1,p > 1 we have

tP

d(z, frnyp) < %d(fxn—&-pa fanipt1) < 1—¢ d(fzn, fTni1) - (2)

From (1) and (2) we obtained

t

d(fZ,fﬂSn) < 1(5_)z;d(fxnafl‘n+1)7 Vn> N,p > 1.

By taking limit as p — oo we have d(fz, fx,) = 0 for all n > N which contradicts (1)

therefore there exist a subsequence {fx,)} of {fz,} such that
D(fza Txn(k)) < Sd(fza fl‘n(k)) VEkeN.
By hypothesis We have

H(TZ, T:En(k)) <r max{d(fz, f$n(k))a D(fza TZ), D(fmn(k)a T$n(k))?

D(fza T:En(k)) + D(fxn(k;)v TZ)}
5 .
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Hence

D(fxn(k)+1a TZ) < r maX{d(fZ) fmn(k))v D(fZ, TZ), D(fxn(k) ) Tmn(k)+1)a

D(fz, Txpg)+1) + D(fTne)s TZ)}
5 .

by letting k — oo we have

D(z,Tz)

D(fz,Tz) <rmax{D(fz,Tz), 5 }.

As r < 1,50 we get D(fz,Tz) =0 and since Tz € CB(X), fz€Tz. n

Remark 6 When f =1 then above theorem reduces to theorem 2.4.1

3.3.3 Example

Let X ={1,2,3} and d(z,y) = |z —y|Vz,ye X. Let f: X - X and T : X —
CB(X) be such that T1 =72 = {1,2},73 = {2,3} and f1 = f2=1, f3 =3. Then:

(a) T is a f — (s,r)-contractive multi-valued operator with r = 0.3, s = 0.4;

(b) Every e € X is coincidence point of f and T';

(c) T is not (s, r)—contractive multi-valued operator.

Proof. (a) We have
H(T1,T1) = H(T1,T2) = H(T2,T2) = H(T3,T3) =0,
and

D(f3,T1) = 1> sd(f3,f1)=0.8,

D(f1,T3) = 2> sd(f1,f3)=0.8,
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D(f2,73) = 1> sd(f2,f3)=0.8,

D(f3,T2) = 1> sd(f3,f2)=0.8,

so T is a f — (s, r)-contractive multi-valued operator with r = 0.3, s = 0.4.
(b) Tt is obvious.
(¢)
D(2,73) =0 < sd(2,3) = 0.4,
but

D(3,T2) + D(2,T3)

H(T2,T3) = 1> rmax{d(2,3), D(2,T2), D(3,T3), }=0.3;

3.3.4 Theorem

Let (X, d) be ametricspace, f : X — X andT : X — X bean f—(s,r)—contractive
single-valued operator such that TX C fX. Suppose fX is complete. Then T' and f has
a coincidence point. Moreover, if s > 1 then T and f has a unique coincidence point.

Proof. From Theorem 3.3.2 T' and f has a coincidence point. If s > 1 suppose

that there exist fz, fy € C(f,T), fxr # fy. Then

d(fy,Tz) = d(fy, fr) < sd(fy, fz).

so by hypothesis

d(Tx,Ty) < rMr(fz, fy).

It follows that

d(fz, fy) < rd(fz, fy).
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which is a contradiction. m

3.3.5 Example

Let X = {a,b,c,d} and d : X x X — X be a metric space such that d (a,b) =
d(b,d)=4,d(b,c) =d(a,c) =d(a,d) =d(c,d) =5 further f: X - X and T': X — X be
such that fa = fc=c¢, fc=a,fd=d and Ta=Tc=b,Tb=Td = d then

(a) X is complete metric space and T and f has a coincidence point.

(b) T is a f — (s, r)-contractive single valued operator with r = 0.9, s = 1.2;

(¢) T is not (s, r)—contractive multi-valued operator.

Proof. (a) It is obvious.

(b) we have d(T'a,Tb) = d(Th,Td) = 0, in remaining cases we have,

1)Ifx=a,y=borz=by=a,then d(fz,Ty) =5 > sd(fz, fy) =0.

2) d(fa,Td) = 5 < sd(fa,fd) = 6 and d(fd,Ta) = 4 < sd(fa, fd) = 6,also
d(Ta,Td) =4 and Mp(fa, fd) = 5hence d(Ta,Td) < rMr(fa, fd).

3) If x = by =corx =cy=>b, then d(fz,Ty) =5 < sd(fx, fy) = 6,also
d(Tz,Ty) =4, Mr(fx, fy) =5 hence d(Tx,Ty) < rMrp(fx, fy).

4) d(fe,Td) = 5 < sd(fe, fd) = 6 and d(fd, Tc) = 4 < sd(fe, fd) = 6,also
d(Te,Td) =4 and Mp(fc, fd) = 5hence d(Te, Td) < rMrp(fe, fd).

(c) d(b,Ta) =0 < sd(b,a) =4.8 but d(Ta,Ta) =4 > rMrp(a,b) =3.6. =

3.3.6 Theorem

Let (X, d) be a metric space, f: X — X and T : X — CB(X) be a mapping . As-

sume that there exist r, s € [0, 1], < s such thatl—}er(fm, Tz) <d(fx, fy) < ﬁD(f:E, Tz)
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= H(Tz,Ty) < rMrp(fz, fy) and TX C fX where

(fz,Ty) + D(fy,Tz)
2

Mz (fz, fy) = max{d(fz, fy), D(fe. Tx), D(fy, Ty), > .

Suppose fX is complete. Then T is an multi-valued weakly picard operator
Proof. Take a real number ¢t < 1 such that 0 < r < ¢t < s. Let 21 € X and
fxa € Txy such that

d(fxy, fra) < %D(fa:l, Txy).

Then

DU, Ton) < D(fon, Ton) < d(fa, faa) < 1 D(for, T

and by hypothesis we have

D(fxo,Txa) < H(Tx1,Txs) <rmax{d(fz1, fzx2), D(fr1,Tx1), D(fr, T22),

D(fxlaT:EZ) + D(fx27Txl)}
2

< rmax{d(fzr1, fra), D(fra, Tx2), d(fx1, fr2) —;D(f.%’g,Txg)}

As r < 1, so we have

d(fzo, Txe) < rd(fz1, fra).

Then there exist fxsy € T'zo such that

d(fxa, frs) < rd(fz1, fx2).
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Thus we can construct a sequence { fz,, } in E such that fz,+1 € Tz, and d(fzpi1, Topi2) <

td(fxn, frne1) for all n € N. Therefore, we have

> d(frp, frns) <Dt ld(far, fra) < 00
n=1 n=1

which implies {fx,} is a Cauchy sequence. sequence. Since fX is complete, there is some

point fz € fX such that {fx,} converges to fz. and Therefore, we have,

d(fxn+pa fxn) < d(fxna f$n+1) + d(fanrl? fﬂjn+2) +F d(fxrﬁpfl» fanrp)

d(frpyp, f2n) < d(fon, frop)(1 41+ 24+ tp_l)

1—tP
- 1—¢ d(fxnvfxn-‘rl)vnszpZ 1.

Letting p — oo

Af2 fn) < T d(frm, fnen) V> 1.

as

d(fxn, frny1) < ED(fxn, Txy).

we have

d(fz, fxy,) < %D(fxn,Tmn) vV n>1.

Now suppose that there exist N > 0 such that

1
- > N.
d(fz7fl'n)<1+rD(f$naTxn)v n=>N

Then we have
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d(fxn>f$n+1) < d(fz,fmn)+d(fz,fxn+1)

1

< 1+r [D(fmanxn) + D(fwn—&-lvTx?H-l)]
1

<

ey [D(fxpn, Tzyn) + rd(frn, fTni1)]-

This implies that

d(f.Tn, f$n+1) < D(fl‘na Tmn)
which is not possible. So there exist a subsequence{ fxn(k)} of {fx,} such that

1
d(fz, frum) > mD(fxn(k) T (1)

holds for every k£ > N. Since

d(fZ, fxn) S iD(fxn, T:En)

for all n > 1,By hypothesis we have
H(TZ, Txn(k)) < r max{d(fz, fxn(k))v D(fzv TZ)7 D(fxn(k)v Txn(k))v

D(fz,Txpwy) + D(frpr), T2) !
5 .

Hence
D(fmn(k)+1a TZ) <r max{d(fz, f$n(k))7 D(fza TZ), D(fxn(kﬁTl'n(k)-‘rl)a

D(fza Txn(k)—f—l) + D(fxn(k)7 TZ) }
5 .

by letting k — oo we have

D(fz,Tz) <rmax{D(fz,Tz), D(fz2,Tz)}

As r < 1,then we get D(fz,Tz) =0 and since Tz € CB(X),fz € Tz. m
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Remark 7 When L = 0 then above theorem reduces to theorem 2.4.3

3.3.7 Corollary

Let (X, d) be a metric space, f: X — X and T : X — X be a mapping. Assume

that there exist r € [0, 1], such that

141_Td(fx,T1:) <d(fx, fy) < 1%ral(f:c,’fx) = H(Tz,Ty) <rMp(fz, fy)

and TX C fX where

D(fx,Ty)+ D(fy,Tx)
2

Mr(fz, fy) = max{d(fz, fy), D(fz,Tx),D(fy, Ty), }

.Suppose fX is complete. Then there exist fz € X such that fz =T=.

Proof. One can easily prove that for every fx; € X the sequence {fz,} defined
by fxni1 = Tap be such that d(fzpi1, frni2) < rd(fan, frps1) also {fz,} is Cauchy
and there is point fz € X such that lim, . fx, = fz. From above theorem we have
d(fz, fry,) < ﬁd(fmn,f:cnﬂ) for all n» > 1 and there exist a subsequence {fz)} of

{fx,} such that

1
d(fza fxn(k)) > md(fxn(k)a f$n(k)+1)

holds for every k > N.Therefore, we get

d(frngy+1,T2) < rmax{d(fz, frpm),d(fz, T2),d(fTnm), TTnk)+1);

d(fZ, Txn(k)+1) + d(fmn(k)aTz)
2

.

by taking k — oo we obtain Tzb= fz. m
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